

FACULTAD DE INGENIERIA

ESCUELA PROFESIONAL DE INGENIERIA INDUSTRIAL

APLICACIÓN DEL MANTENIMIENTO PRODUCTIVO TOTAL PARA
LA MEJORA DE LA PRODUCTIVIDAD EN LA LÍNEA DE
HABILITADO DE CORTE EN LA EMPRESA HAUG S.A. LURÍN, LIMA
2016

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO INDUSTRIAL

AUTOR:

JEAN FRANCO HUAMÁN DE LA CRUZ

ASESOR:

MG. RONALD DÁVILA LAGUNA

LINEA DE INVESTIGACIÓN:

SISTEMA DE GESTIÓN EMPRESARIAL Y PRODUCTIVA

LIMA – PERÚ

2017

DEDICATORIA

A Dios por estar siempre conmigo, por ser mi guía espiritual y por darme la fuerza e inteligencia para lograr las metas de mi vida.

A mis padres por haberme brindado todo el apoyo y por confiar en mí en todo momento a lo largo del camino, por enseñarme que se debe seguir adelante y luchar por las metas que se trazan en la vida sin importar las adversidades que se presenten.

A ti que apareciste en mi vida pero que rápidamente te convertiste en pieza clave y ayuda idónea, mis hijos que son mi motor e inspiración para seguir adelante.

A todas aquellas personas que de una u otra manera pusieron su granito de arena.

A ellos les dedico todos mis logros porque sin ellos no fuese sido posible lograr esta meta de entender que el éxito se logra con sacrificio y actitud.

AGRADECIMIENTO

Agradezco a Dios por darme la oportunidad de cumplir una meta más, por llenarnos de sabiduría y valentía para asumir los retos que la vida nos propone.

A mis padres por enseñarme a luchar por sacar adelante nuestros sueños.

A la universidad por lo aprendido que influye en la vida diaria, haciendo de mi persona un profesional humano.

A todos aquellos que de una manera u otra participaron en la realización del proyecto de tesis.

Agradecemos a los profesores que nos aportaron el conocimiento adquirido a lo largo de la carrera.

A la empresa HAUG S.A en la cual pude encontrar el apoyo y las herramientas necesarias para este trabajo.

DECLARACIÓN DE AUTENTICIDAD

Yo Jean Franco Huamán De La Cruz con DNI N° 40293042, a efectos de cumplir con las disposiciones vigentes consideradas en el Reglamento de Grados y Títulos de Universidad César Vallejo, Facultad de Ingeniería Industrial Escuela de Ingeniería, declaro bajo juramento que toda la documentación que acompaño es veraz y autentica.

Así mismo, declaro también bajo juramento que todos los datos e información que se presenta en la presente tesis son auténticos y veraces.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada por lo me someto a lo dispuesto en las normas académicas de la Universidad César Vallejo.

Lima, 02 de julio del 2017

Jean Franco Huamán De La Cruz

PRESENTACIÓN

El presente informe se ha elaborado con la finalidad de aplicar el mantenimiento productivo total para la Mejora de la productividad en la línea de habilitado de corte de la empresa Haug S.A

En el informe de investigación, se ha utilizado para dar forma al diseño descriptivo, seleccionando información de la organización, aplicando herramientas de gestión para la identificación y aplicación de la solución del problema.

Dado el cumplimiento de las normas según el reglamento de elaboración y sustento del desarrollo de tesis de la Facultad de Ingeniería Industrial.

Espero que este informe de investigación sea evaluada y merezca su aprobación

ÍNDICE

PÁGINA DEL JURADO	ii
DEDICATORIA	iii
AGRADECIMIENTO	iv
DECLARACIÓN DE AUTENTICIDAD	V
RESUMEN	xvii
ABSTRACT	xviii
CAPÍTULO I	1
INTRODUCCIÓN	1
1.1 Realidad problemática	2
1.2 Trabajos previos	12
1.2.1. Antecedentes internacionales	12
1.2.2. Antecedentes Nacionales	18
1.3. Teorías relacionadas al tema	23
1.3.1. Variable independiente: Mantenimiento productivo total	23
1.3.2. Variable dependiente: Productividad	35
1.4. Formulación del problema	40
1.4.1 Problema general	40
1.4.2 Problemas específicos	40
1.5. Justificación del estudio	41
1.5.1 Justificación Teórica	41
1.5.2 Justificación práctica	41
1.5.3 Justificación metodológica	42
1.5.4 Justificación económica	42
1.6 Hipótesis	43
1.6.1 Hipótesis general	43
1.6.2 Hipótesis especificas	43

1.7 Objetivos	43
1.7.1 Objetivo general	43
1.7.2 Objetivos específicos	43
II. MÉTODO	45
2.1 Diseño de investigación	46
2.1.1 Tipo de estudio	47
2.2 Variables operacionalización	49
2.2.1 Variable independiente: Mantenimiento Productivo Tota	al. 49
2.2.2 Variable dependiente: Productividad	49
2.3 Población y muestra	52
2.3.1 Población	52
2.3.2 Muestra	52
2.4 Técnicas e instrumentos de recolección de datos, validez	y confiabilidad
53	
2.4.1 Técnicas	53
2.4.2 Instrumentos	53
2.4.3. Validez	53
2.4.4 Confiabilidad	54
2.5 Métodos de análisis de datos	54
2.5.1 Análisis descriptivo	54
2.5.2 Análisis inferencial	54
2.6 Aspectos éticos	55
2.7 Elaboración de la Propuesta de Mejora	56
2.7.1 Situación actual del antes	56
2.7.2 Propuesta de mejora	68
2.7.3 IMPLEMENTACION DE LA PROPUESTA	76
2.7.4. Resultado	118

2.7.5 Análisis económico y financiero	124
III. RESULTADOS	133
3.1 Análisis descriptivo	134
3.1.1 Variable dependiente: Productividad	134
3.1.2 Variable dependiente – dimensión 1: Eficiencia	136
3.1.3 Variable dependiente – dimensión 2: Eficacia.	138
3.2 Análisis inferencial	140
3.2.1 Análisis de la hipótesis general	141
3.2.2 Análisis de la primera hipótesis especifica	143
3.2.3 Análisis de la segunda hipótesis especifica	146
IV. DISCUSIÓN	149
V. CONCLUSIONES	152
VI RECOMENDACIONES	154
VII REFERENCIAS BIBLIOGRÁFICAS	156
VIII ANEXOS	162

ÍNDICE DE ILUSTRACIONES

Ilustración 1: Diagrama de Ishikawa Area de mantenimiento máquinas de	
habilitado	8
Ilustración 2: Diagrama de Pareto	9
llustración 3: Representación porcentual en el diagrama de Pareto.	10
Ilustración 4: Reunión de trabajo	11
llustración 5: Formación y entrenamiento en el TPM	24
llustración 6: Relación del TPM con otras áreas de la empresa	25
Ilustración 7: Mantenimiento autónomo	26
llustración 8: Mantenimiento Planificado, mantenimiento seguro	28
Ilustración 9: Mantenimiento predictivo	29
llustración 10: Pilares de TPM	34
llustración 11: Se muestra un esquema de cómo el CMI contribuye a generar e	
implementar una estrategia	39
llustración 12: Diagrama de Pareto	39
llustración 13: Diagrama de causa efecto	40
llustración 14: Diagrama de Ishikawa	57
Ilustración 15: Diagrama de Pareto	58
llustración 16: Estación y ambientes de la línea de habilitado	60
llustración 17: Resumen de horas efectivas de trabajo con lo programado	62
llustración 18: Diagrama de flujo del área de mantenimiento antes del TPM	66
llustración 19: Diagrama de flujo de línea de habilitado antes del TPM	67
llustración 20: Comisión encargada de elaborar el maestro del TPM	73
Ilustración 21: Implantación del TPM	74
Ilustración 22: Consolidación del TPM	74
llustración 23: Acuerdo de la mejora en el área de habilitado de corte	76
llustración 24: Charla de difusión de implementación del TPM	78
llustración 25: Estructura del TPM	79
Ilustración 26: Área de trabajo	84
llustración 27: Formato de tarjeta roja	85
Ilustración 28: Clasificación de elementos	86
Ilustración 29: Orden del área de mantenimiento	86
Ilustración 30: Limpieza línea de habilitado	87

llustración 31: Auto mantenimiento por el operador de habilitado	88
llustración 32: Inspecciones de equipos	91
llustración 33: Mejora continúa del mantenimiento	92
llustración 34: Grafica del mantenimiento autónomo	95
llustración 35: Etiquetas de operatividad de los equipos	98
llustración 36: Charla de orientación al personal	100
llustración 37: Capacitación del personal de mantenimiento	100
llustración 38: Grafica del mantenimiento planificado	109
Ilustración 39: Mantenimiento preventivo	110
llustración 40: Averías diferentes equipos de habilitado	111
llustración 41: Capacitación al personal de mantenimiento	112
llustración 42: del mantenimiento predictivos e inspección	112
llustración 43: Grafica del mantenimiento predictivo	116
llustración 44: Productividad en el proceso de implementacion del TPM	117
llustración 45: Diagrama de flujo del área de mantenimiento después del TPM	.122
llustración 46: Diagrama de flujo de línea de habilitado después del TPM	123
llustración 47: Diagrama de frecuencias de la variable productividad	134
llustración 48: Diagrama normal de la variable productividad	135
llustración 49: Diagrama de cajas de la variable productividad	135
llustración 50: Diagrama de frecuencias del indicador tiempo de cumplimiento	en
el programa de habilitado de la dimensión eficiencia	137
llustración 51: Diagrama normal del indicador tiempo de cumplimiento en	
programa de habilitado de la dimensión eficiencia	137
llustración 52: Diagrama de cajas del indicador tiempo de cumplimiento en	
programa de habilitado de la dimensión eficiencia.	138
llustración 53: Diagrama de frecuencias del indicador cumplimiento de metros	de
habilitado de la dimensión eficacia	139
llustración 54: Diagrama normal indicador cumplimiento de metros de habilitad	ob
de la dimensión eficacia	139
llustración 55: Diagrama de cajas indicador cumplimiento de metros de habilita	ado
de la dimensión eficacia	140

ÍNDICE DE TABLAS

Tabla 1: Operacionalización de la variable independiente. Mantenimiento	
productivo total	50
Tabla 2: Operacionalización de la variable dependiente. Productividad	50
Tabla 3: Lista de maquinarias	59
Tabla 4: Fichas de recolección de datos con información recolectada antes de	: la
aplicación del TPM	61
Tabla 5: Fichas de recolección de datos con información recolectada antes de	· la
aplicación del TPM	62
Tabla 6: Eficiencia en el cumplimiento del programa de habilitado	63
Tabla 7: Resumen de los cortes en metros de habilitado con lo programado	64
Tabla 8: Clasificación de fallas	65
Tabla 9: Matriz de prioridad para resolver la problemática	68
Tabla 10: Metodologías relacionadas con el estudio	69
Tabla 11: Matriz de criterios ponderados	70
Tabla 12: Matriz de criterios ponderados	72
Tabla 13: Presupuesto de implementación	75
Tabla 14: Acta de reunión y detalle de actividades	77
Tabla 15: Plan de acción del Mantenimiento Productivo Total	82
Tabla 16: Cuadro de programación de auto-mantenimiento básico por equipo	89
Tabla 17: Instructivo de limpieza, lubricación y ajustes básicos	90
Tabla 18: Formato de registro de limpieza y lubricación	93
Tabla 19: Recolección de datos de la variable independiente antes y después	94
Tabla 20: Lista de maquinaria del área de habilitado y corte	96
Tabla 21: Programación anual de mantenimiento antes del TPM	97
Tabla 22: Lista de repuestos para los equipos de habilitado	99
Tabla 23: Registro de mantenimiento	101
Tabla 24: Control de mantenimiento semanal	102
Tabla 25: Orden de trabajo de mantenimiento	103
Tabla 26: Instructivo de mantenimiento	104
Tabla 27: Hoja de mantenimiento	105
Tabla 28: Ficha de mantenimiento correctivo	106

Tabla 29: Programa anual de mantenimiento y evidencias de equipos críticos	
después de la aplicación del TPM	107
Tabla 30: Fichas de datos de mantenimiento planificado antes y después	108
Tabla 31: Programa Anual de inspección y diagnóstico de avería	113
Tabla 32: Registro de inspección de equipos de habilitado	114
Tabla 33: Recolección de datos del mantenimiento predictivo antes y después	115
Tabla 34: Ficha de recolección de datos	116
Tabla 35: Recoleccion de datos de la productividad en el proceso de la	
implementacion del TPM.	117
Tabla 36: Fichas de recolección de datos con información recolectada despué	s de
la aplicación del TPM.	118
Tabla 37: Recolección de datos de la productividad después del TPM	119
Tabla 38: Resumen de horas efectivas de trabajo con lo programado	120
Tabla 39: Resumen de los cortes en metros de habilitado con lo programado	121
Tabla 40: Presupuesto de implementación	124
Tabla 41: Costos en la línea de habilitado en el proceso de corte antes y desp	ués
del TPM.	125
Tabla 42: Resumen y calculo costo - beneficio	126
Tabla 43: Recolección de datos de la variable independiente antes y después	del
TPM	127
Tabla 44: Estadística Descriptiva de la dimensión mantenimiento autónomo	128
Tabla 45: Recolección de datos de la variable independiente antes y después	del
TPM	129
Tabla 46: Estadística Descriptiva de la dimensión mantenimiento planificado	130
Tabla 47: Recolección de datos de la variable independiente antes y después	del
TPM	131
Tabla 48: Estadística Descriptiva de la dimensión mantenimiento predictivo	132
Tabla 49: Estadística descriptiva de la variable productividad	134
Tabla 50: Estadística descriptiva de la dimensión eficiencia	136
Tabla 51: Estadística descriptiva de la dimensión eficacia	138
Tabla 52: Prueba de normalidad de la variable productividad	141
Tabla 53: Descriptivos de Productividad antes y después con T Student.	142
Tabla 54: Análisis del valor de productividad antes y después con T Student.	143

Tabla 55: Prueba de normalidad de la dimensión eficiencia	144
Tabla 56: Estadística de dimensión eficiencia	144
Tabla 57: Prueba de hipótesis del indicador tiempo de cumplimiento en progra	ma
de habilitado de dimensión eficiencia	145
Tabla 58: Prueba de normalidad de la dimensión eficacia	146
Tabla 59: Estadística de dimensión eficacia	147
Tabla 60: Prueba de hipótesis de dimensión eficacia	147

ÍNDICE DE ANEXOS

Anexo 1: Matriz de consistencia	. 163
Anexo 2: Organigrama empresa Haug S.A. (actual)	. 165
Anexo 3: Flujograma de procesos Planta empresa Haug S.A (actual)	. 166
Anexo 4: Organigrama de mantenimiento Haug S.A. después TPM	. 167
Anexo 5: Distribución de Planta layout Haug S.A	. 168
Anexo 6: Planta Lurín Haug S.A	. 169
Anexo 7: Equipos CNC de la línea Habilitado	
Anexo 8: Equipos hidráulico de la línea Habilitado	. 171
Anexo 9: Ficha de recolección de datos del antes, durante y después del TPM	1 172
Anexo 10: Programa anual de Mantenimiento equipos críticos de Habilitado	. 173
Anexo 11: Registros de Mantenimiento preventivo del Pantógrafo HPR 260	. 174
Anexo 12: Registros de Mantenimiento preventivo de Corte y taladrado CNC	
A25LG	. 175
Anexo 13: Registros de Mantenimiento preventivo de Sierra y taladrado CNC	
1003	. 176
Anexo 14: Registros de Mantenimiento preventivo de Cizalla universal AM-11	5177
Anexo 15: Registros de Mantenimiento preventivo de Corte y taladrado CNC	
A25LG	. 178
Anexo 16: Registros de Mantenimiento preventivo de Cizalla universal AM-17	5179
Anexo 17: Registros de Mantenimiento preventivo de Sierra y taladrado CNC	803
DXB	. 180
Anexo 18: Registros de Mantenimiento preventivo de Pantógrafo HPR 400	. 181
Anexo 19: Registros de Mantenimiento preventivo de Cizalla Hidráulica RPG-	3112
	. 182
Anexo 20: Registros de Mantenimiento autónomo de Pantógrafo HPR- 400 / 2	260
	. 183
Anexo 21: Registros de Mantenimiento Predictivo e inspección de Pantógrafo	у
Taladro y Sierra CNC	. 184
Anexo 22: Registros de Mantenimiento Correctivo de Taladro y Sierra CNC 10)03
DEB	. 185

Anexo 23: Certificados de calibración de equipos de instrumentación Pirómetro	οу
Multímetro digital para los mantenimientos predictivo	186
Anexo 24: Validación de dimensiones de la variable independiente por el	
Ingeniero Ronald Dávila Laguna	187
Anexo 25: Validación de dimensiones de la variable Dependiente por el Ingeni	ero
Ronald Dávila Laguna	188
Anexo 26: Validación de dimensiones de la variable independiente por el	
Ingeniero Leónidas Bravo Rojas	189
Anexo 27: Validación de dimensiones de la variable Dependiente por el Ingeni	ero
Leónidas Bravo Rojas	189
Anexo 28: Validación de dimensiones de la variable independiente por el	
Ingeniero José Zeña Ramos	191
Anexo 29: Validación de dimensiones de la variable Dependiente por el Ingeni	ero
José Zeña Ramos	192

RESUMEN

La presente tesis es de tipo cuantitativo y cuasi experimental. Objetivos: Determinar como la aplicación del mantenimiento productivo total mejorará la productividad en la línea de habilitado de corte en la empresa Haug S.A. Lurín, Lima 2017. Método de investigación: aplicada y explicativa con la finalidad de establecer la influencia de sus variables y demostrar que mediante el Mantenimiento Productivo Total se puede incrementar la productividad en la línea de habilitado de corte en la empresa Haug S.A.. Para esta investigación el problema principal se concentra en el área de habilitado de corte, en donde existe incumplimientos de entrega por mantenimientos reactivos, mantenimientos incumplidos y falta de inspecciones a los equipos Población: 18 semanas de mantenimiento Muestra: semanas de mantenimiento, 18 semanas pre-test y 18 semanas pos-test. Resultados: se demostró que el Mantenimiento Productivo Total mejora la productividad en la línea de habilitado de corte. Se logró un incremento de la productividad en 38,22%, de la eficiencia en 20,26% y de la eficacia en 27,38% Conclusión: que el resultado del análisis descriptivo de la variable independiente, mantenimiento productivo total, se logró una mejora en la fiabilidad de los equipos, inspecciones oportunas y acondicionamiento de los mismos para evitar averías en el proceso de habilitado de corte. El análisis inferencial de la variable dependiente, productividad, se realizó mediante la prueba de normalidad (Kolmogorov-Smirnov) y mediante la prueba t student para la prueba de hipótesis en la cual al procesar la variable y sus dimensiones resulto menor que 0,05 lo que permitió se acepte la hipótesis del investigador (H1) y con un nivel de significancia de 0.000.

Palabras clave: Mantenimiento productivo total, Productividad y proceso de corte y habilitado

ABSTRACT

The present thesis is of quantitative and quasi-experimental type. Objectives: To determine how the application of total production maintenance will improve productivity in the Haug S.A. Lurín, Lima 2017. Research method: applied and explanatory in order to establish the influence of its variables and demonstrate that through the Productive Maintenance Tota can increase productivity in the line of cutter authorized in the company Haug SA For this Research The main problem is concentrated in the cutting area, where there is a lack of delivery due to reactive maintenance, unsatisfied maintenance and lack of equipment inspections Population: 18 weeks of maintenance Sample: maintenance weeks, 18 weeks pretest And 18 weeks post-test. Results: it was demonstrated that Total Productive Maintenance improves productivity in the cutting line. An increase in productivity was achieved by 38.22%, efficiency by 20.26% and efficiency by 27.38%. Conclusion: that the result of the descriptive analysis of the independent variable, total productive maintenance, was achieved an improvement in the reliability of the equipment, timely inspections and conditioning of the same to avoid breakdowns in the cutting enable process. The inferential analysis of the dependent variable, productivity, was performed by means of the normality test (Kolmogorov-Smirnov) and by means of the t student test for the test of hypothesis in which when processing the variable and its dimensions was less than 0,05 Which allowed the hypothesis of the investigator (H1) to be accepted and with a level of significance of 0.000.

Key words: Total productive maintenance, Productivity and cutting process and enabled

٠