

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Rediseño estructural de una edificación familiar de dos niveles en la Urbanización San Miguel, Huaraz 2018"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL

AUTORES:

Espinoza Valerio Lenin Alejandro Moreno Huaman Jhon Jhunior

ASESOR:

Ing. Rivera Tena Félix Nicanor

LÍNEA DE INVESTIGACIÓN

Diseño Sísmico y Estructural

HUARAZ – PERÚ 2018

ACTA DE APROBACIÓN DE LA TESIS

Código: F07-PP-PR-02.02

Versión:

Fecha

23-03-2018

Página : 1 de 1

El jurado encargado de evaluar la tesis presentada por don (a) ESPINOZA VALERIO, LENIN ALEJANDRO cuyo título es:

REDISEÑO ESTRUCTURAL DE UNA EDIFICACIÓN FAMILIAR DE DOS NIVELES EN LA URBANIZACIÓN SAN MIGUEL, HUARAZ 2018

Reunido en la fecha, escuchó la sustentación y la resolución	de preguntas por el
estudiante, otorgándole el calificativo de:17	(Número)
DIECISIETE (Letras).	

Huaraz, 16 de diciembre Del 2018

Mgtr. MOZO CASTAÑEDA, ERIKA MAGALY

Ing. RIVERA TENA, FELIX NICANOR

Ing. DÍAZ BETETA, DANIEL ALBERT

ACTA DE APROBACIÓN DE LA TESIS

Código :

F07-PP-PR-02.02

Versión:

: 23-03-2018

Fecha : Página :

1 de 1

09

ΕI	jurado	encargado	de	evaluar	la	tesis	presentada	por	don	(a)	MORENO
ΗL	JAMAN,	JHON JHU	NIC	R cuyo t	ítu	lo es:					

REDISEÑO ESTRUCTURAL DE UNA EDIFICACIÓN FAMILIAR DE DOS NIVELES EN LA URBANIZACIÓN SAN MIGUEL, HUARAZ 2018

Reunido en la fecha, escuchó la sustentación y la resolución	de preguntas por e
estudiante, otorgándole el calificativo de:	(Número)
DIECISIETE (Letras).	

Huaraz, 16 de diciembre Del 2018

Mgtr. MOZO CASTAÑEDA, ERIKA MAGALY

Ing. RIVERA TENA, FELIX NICANOR

Ing. DÍAZ BETETA, DANIEL ALBERT

DEDICATORIA

A DIOS por habernos concedido la dicha de la vida.

A nuestros padres por el apoyo incondicional.

A nuestras esposas e hijos por su comprensión

AGRADECIMIENTO

A DIOS por habernos dado la oportunidad	
de conocernos en el sendero de esta vida y	
entablar una estrecha amistad.	

A la Universidad Cesár Vallejo por permitirnos cumplir nuestro sueño.

A nuestros amigos y familiares por las muestras de consideración en todo este proceso de formación académica.

DECLARACIÓN DE AUTENCIDAD

Jhon Jhunior Moreno Huaman identificado con número de DNI: 44006439, y Espinoza

Valerio Lenin Alejandro identificado con número de DNI: 10724303 a efecto de cumplir

con las disposiciones vigentes consideradas en el Reglamento de Grados y Títulos de la

Universidad César Vallejo, Facultad de Ingeniería, Escuela Académico Profesional de

Ingeniería Civil, declaramos bajo juramento que toda documentación que acompaño es

veraz y autentica.

Así mismo, declaramos también bajo juramento que todos los datos e información que se

presenta en la presente tesis son auténticos y veraces.

En tal sentido asumo la responsabilidad que corresponde ante cualquier falsedad,

ocultamiento u omisión tanto de los documentos como de información aportada por lo cual

me someto a lo dispuesto en las normas académicas de la Universidad César Vallejo.

Huaraz, Diciembre 2018

JHON JHUNIOR MORENO HUAMAN

DNI: 44006439

LENIN A. ÉSPINOZA VALERIO

DNI: 10724303

vi

PRESENTACIÓN

Señores miembros del Jurado:

Cumpliendo con las disposiciones vigentes establecidas por el Reglamento de Grado y Títulos de la Universidad Cesar Vallejo, Facultad de Ingeniería, Escuela de Ingeniería Civil, someto a vuestro criterio profesional la evaluación del presente trabajo de investigación titulado "Rediseño estructural de una edificación familiar de dos niveles en la urbanización San Miguel, Huaraz 2018", cuyo objetivo principal es realizar el rediseño estructural de la edificación familiar de dos niveles ubicada en la urbanización San Miguel, para lo cual se realizó la evaluación visual de la vivienda, y la prueba de esclerometría en vigas y columnas para obtener el parámetro del f_c , posterior a la evaluación realizamos el estudio de mecánica de suelos y el levantamiento topográfico de la unidad de estudio, para realizar el análisis sísmico bajo la norma E. 030-2018. Para el modelamiento y diseño de los elementos estructurales de la vivienda, se utilizaron los programas: Etabs v17 y Safe v16. Al término de nuestra investigación realizamos la comparación de los elementos estructurales existentes en función a lo rediseñado.

En el **primer capítulo** se desarrolla la introducción, que abarca la realidad problemática, antecedentes, teorías relacionadas al tema, formulación del problema, justificación y objetivos de la presente investigación.

En el **segundo capítulo** se describe la metodológica de la investigación, es decir el diseño de la investigación, variables y su Operacionalización, población y muestra, técnicas e instrumentos de recolección de datos que se empleó, su validez realizada por tres jueces expertos en la materia.

En el **tercer capítulo** se expondrán los resultados obtenidos de la investigación.

En el **cuarto capítulo**, se discutirán los resultados.

En el quinto capítulo se expondrá las conclusiones.

En el **sexto capítulo** se dará las recomendaciones y senderos a futuras investigaciones.

Con la convicción que se me otorgara el valor justo y mostrando apertura a sus observaciones, agradezco por anticipado las sugerencias a apreciaciones que se brinde a la presente investigación.

ÍNDICE

A	CTA DE APROBACIÓN DE TESIS	ii
Dl	EDICATORIA	iv
A	GRADECIMIENTO	v
Dl	ECLARACIÓN DE AUTENCIDAD	vi
ΡI	RESENTACIÓN	vii
Rl	ESUMEN	xi
	BSTRACT	
	INDRODUCCIÒN	
	1.1 REALIDAD PROBLEMÁTICA	14
	1.2 TRABAJOS PREVIOS	15
	1.3 TEORÍAS RELACIONADAS AL TEMA	17
	1.3.1. Suelo	17
	1.3.2. Cimentaciones superficiales	19
	1.3.3. Teoría de la capacidad de la carga última	19
	1.3.4. Cimentación corrida	20
	1.3.5. Zapatas	20
	1.3.6. Columnas:	20
	1.3.7. Vigas:	20
	1.3.9. Losas:	21
	1.3.10. Cargas	21
	1.3.11. Concreto:	21
	1.3.12. Acero:	22
	1.3.13. Concreto armado:	22
	1.3.14. Análisis Estructural:	22
	1.3.15. Diseño	22
	1.3.16. Diseño Estructural:	22
	1.3.17. Diseño por flexión	23
	1.3.19. Diseño por Flexo compresión:	24
	1.3.20. Diagrama de interacción:	24
	1.3.21. Resistencia al cortante:	24
	1.3.22. Resistencia al cortante proporcionada por el concreto en elementos no preesforzados:	25
	1.3.23. Dinámica Estructural:	
	1.3.24. Concepción Estructural Sismo resistente	
	1.3.25. Análisis dinámico modal espectral	
	THE TAX A A A A A A A A A A A A A A A A A A	<u>~</u> U

	1.3.26. Factores de Irregularidad (Ia, Ip)	. 27
	1.3.27. Coeficientes de reducción:	. 31
	1.3.28. Coeficiente de Reducción de las Fuerzas Sísmicas, R	. 31
	1.3.29. Fuerza Cortante Mínima	. 31
	1.3.30. Requisitos de resistencia y de servicio	. 32
	1.3.31. Resistencia requerida	. 32
	1.3.32. Resistencia de diseño	. 32
	1.3.33. Albañilería Estructural	. 33
	1.3.34. Pórticos	. 33
	1.3.35. Etabs	. 33
	1.3.36. Safe	. 34
	1.4 FORMULACIÓN DEL PROBLEMA	. 34
	1.5 JUSTIFICACIÓN DEL ESTUDIO	. 34
	1.6 HIPÓTESIS	. 35
	1.7 OBJETIVOS	. 35
	1.7.1 Objetivo General	. 35
	1.7.2 Objetivos Específicos	. 35
II.	. МÉТОDО	. 36
	2.1 DISEÑO DE INVESTIGACIÓN	. 36
	2.1.1 Enfoque Cuantitativo:	. 36
	2.1.2 No experimental:	. 36
	2.1.3 Diseño de Investigación:	. 36
	2.1.4 Diseño Transeccional Descriptivo:	. 36
	2.2 VARIABLES, OPERACIONALIZACIÓN	. 36
	2.2.1 Variable Independiente	. 36
	2.2.2 Operacionalización de variables	. 36
	2.3 POBLACIÓN Y MUESTRA	. 38
	2.3.1. Población.	. 38
	2.3.2. Muestra.	. 38
	2.4 TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS, VALIDEZ Y	
	CONFIABILIDAD	
	2.4.1 Técnicas	
	2.4.2 Instrumento de recolección de datos	
	2.4.3 Validez y confiabilidad	. 38
	2.5 MÉTODOS DE ANÁLISIS DE DATOS	38

2.6 A	SPECTOS ÉTICOS	19
III. RE	SULTADOS4	Ю
IV. DIS	SCUSIÓN	34
v. co	ONCLUSIONES	37
VI. RE	COMENDACIONES	39
REFER	RENCIAS	0
ANEXO	OS)4

RESUMEN

La presente investigación tiene como finalidad realizar el rediseño estructural de la vivienda familiar de dos niveles ubicada en el Distrito de Independencia, Urbanización San Miguel. Según el enfoque la investigación es de tipo cuantitativa, No experimental, Transeccional Descriptivo. En el presente trabajo se da a conocer, que tanto la población como la muestra son la misma unidad de análisis, debido a que el objeto en estudio está puntualmente suscitado sin tener población y por ende no es necesario realizar ningún tipo de muestreo.

Así mismo la investigación está dividida en 7 etapas.

En la primera etapa, se presenta la información que se recabó, después que se realizó la visita a la unidad de estudio, para tal objetivo se empleó la ficha de evaluación para la toma de características de la unidad de estudio, posterior a ello se realizó la prueba de Esclerometría, para obtener el parámetro del f_c del concreto en columnas y vigas, también realizamos el levantamiento topográfico del lugar, para determinar las coordenadas de los vértices y las curvas de nivel de la unidad de estudio.

En la segunda etapa, realizamos una calicata de 1mx1mx3m en el ingreso de la vivienda, de donde se extrajo una de muestra de suelo, para luego ser llevado al laboratorio de la Universidad Cesar Vallejo, en donde se realizó los ensayos de Granulometría por tamizado, Limite Líquido, Límite Plástico, para poder determinar el tipo de suelo. La clasificación se realizó según SUCS (Sistema Unificado de Clasificación de los suelos), el cual resultó un suelo tipo **GM** (Grava limosa; mezcla de grava regular, arena y limo). En función a los resultados obtenidos de los ensayos realizados en el laboratorio de mecánica de suelos de la Universidad Cesar Vallejo, el laboratorio privado VH certificó la capacidad admisible del terreno el cual es de $2.20 \ kg/cm^2$.

La tercera etapa, consistió en modelar la edificación multifamiliar existente, con el Software Etabs v17, para poder determinar los puntos críticos de falla.

La tercera etapa, consistió en diseñar los elementos estructurales de la edificación, con los software Etabs v17 y Safe v16, bajo la norma E.030-2018.

La cuarta etapa, consistió modelar la edificación multifamiliar rediseñada, con el Software Etabs v17, una modelación tanto por cargas estáticas y el análisis sísmico

dinámico por el método espectral obteniendo los parámetros de control de acuerdo a la

E.030 del Diseño Sismo resistente.

La quinta etapa, consistió en realizar una comparación de los estructurales actuales en

función a lo rediseñado.

La sexta etapa, consistió en realizar la comparación de los resultados con los antecedentes

presentados en la presente investigación.

En la última etapa, se llega a las conclusiones según los objetivos planteados, y se da las

recomendaciones.

Palabras claves: Análisis y diseño estructural.

xii

ABSTRACT

The purpose of this research is to carry out the structural redesign of the two-level family dwelling located in the District of Independencia, Urbanization San Miguel. According to the approach, the research is quantitative, not experimental, descriptive transectional. In the present work it is made known that both the population and the sample are the same unit of analysis, because the object under study is promptly raised without having a population and therefore it is not necessary to carry out any type of sampling.

The investigation is divided into seven stages

In the first stage, the information that was gathered is presented after the visit to the study unit was made. For this purpose, the evaluation form was used to take the characteristics of the study unit, after which it was carried out. The sclerometry test, to obtain the parameter of the concrete f_c in columns and beams, we also perform the topographic survey of the place, to determine the coordinates of the vertices and the level curves of the study unit.

In the second stage, we made a pit of 1mx1mx3m in the entrance of the house, from which a soil sample was extracted, to be later taken to the Cesar Vallejo University laboratory, where the granulometry tests were carried out by sieving, Limit Liquid, Plastic Limit, to determine the type of soil. The classification was made according to SUCS (Unified System of Soil Classification), which was a GM type soil (silty gravel, mixture of regular gravel, sand and silt). Based on the results obtained from the tests carried out in the soil mechanics laboratory of the Cesar Vallejo University, the private laboratory VH certified the admissible capacity of the soil, which is $2.20 \, kg / cm^2$.

The third stage consisted of modeling the existing multifamily building, with the Etabs Software v17, in order to determine the critical points of failure. The third stage consisted of designing the structural elements of the building, with the Etabs v17 and Safe v16 software, under the E.030-2018 standard.

The fourth stage consisted in modeling the redesigned multifamily building, with the Etabs v17 Software, a modeling both for static charges and the dynamic seismic analysis

by the spectral method, obtaining the control parameters according to E.030 of the

resistant earthquake design.

The fifth stage, consisted in making a comparison of the current structural according to

the redesigned.

The sixth stage consisted of comparing the results with the background presented in the

present investigation.

In the last stage, conclusions are reached according to the objectives set, and

recommendations are given.

Keywords: Analysis and structural design.

xiv

I. INDRODUCCIÓN

1.1 REALIDAD PROBLEMÁTICA

El incremento anual de la población en nuestro País actualmente es alrededor del 10,7 % (www.inei.gob.pe), lo que origina un aumento en la construcción de viviendas para las nuevas familias. Para la construcción de las viviendas se emplea ladrillo de arcilla cocido o ladrillo pandereta, agregados, cemento, agua y varillas de acero como refuerzo. Debido a la crisis económica, que está atravesando nuestro país, muchos habitantes peruanos no cuentan con la economía para contratar los servicios de un profesional en la construcción para diseñar y dirigir el proceso constructivo de una vivienda, por ese motivo muchas personas recurren a la construcción informal asesorándose por los llamados "albañiles". El problema de estas viviendas es que presentan deficiencias estructurales y son altamente vulnerables ante un evento sísmico. El fenómeno natural conocido como sismos ocasiona pérdidas humanas y económicas, por este motivo una vivienda tiene que contar con un buen diseño de elementos estructurales, que puedan tener un desempeño adecuado ante un movimiento telúrico (Mosqueira, 2005, p.1).

La autoconstrucción debe ser denominada más bien "construcción informal", pues se construye de manera desordenada y con escasos conocimientos de diseño sísmico de estructuras. No tener asesoría técnica trae consigo problemas como consecuencia de la falta de conocimiento, tales como una deficiente estructuración de las viviendas, baja calidad en la construcción y deficiencias en la arquitectura. Además es muy frecuente que se haga una mala utilización de algunos materiales de construcción (Flores, 2002, p.2).

Los efectos sísmicos sobre los elementos estructuras de una edificación han sido materia de investigación, producto de ello surgieron normativas para realizar diseños estructurales adecuados, para evitar daños en las edificaciones. A pesar de los avances tecnológicos y las nuevas normativas todavía se incurre en los errores de diseño, construcción y otros que aumentan el riesgo de colapso de las construcciones debido a que en muchas zonas no se aplica adecuadamente y desconocen la normativa (Flores, 2015, p.1 y 2).

La realidad que atraviesa nuestra Ciudad de Huaraz no es ajena a la crisis económica ni a los movimientos sísmicos, ante este panorama con la presente investigación se pretende realizar el rediseño estructural de una edificación familiar de dos niveles en la Urbanización San Miguel, aplicando el Reglamento Nacional de Edificaciones (RNE) vigente.

1.2 TRABAJOS PREVIOS

Internacionales

Gonzáles (1990) en su tesis de doctorado titulada "Análisis del proceso de diseño de estructuras porticadas", realizada en la Escuela técnica superior de arquitectura de Madrid, país España, tuvo como objetivo general analizar las peculiaridades del diseño, problema que se caracteriza por la existencia de muchas variables y pocas ecuaciones definidas, lo que lleva a la necesidad de decidir algunas arbitrariamente para deducir el resto. Concluyó que el análisis del procedimiento de diseño de estructuras porticadas implica definir un número muy elevado de variables; además, muchas de éstas no son numéricas, lo que dificulta su consideración. Gracias al apoyo informático de que se dispone, han sido elaboradas numerosas herramientas que permiten analizar el comportamiento estructural, con objeto de validarlo; sin embargo, como se ha demostrado no son, en general, directamente aplicables al diseño, ya que, para entrar en el análisis, es necesario que la estructura esté totalmente definida.

Pinzón (2015) en su tesis de pre grado titulada "Diseño estructural para el proyecto de vivienda nueva para el Barrio Bella Vista del Municipio de Soacha (Cundinamarca)", realizada en la Universidad Católica de Colombia, país Colombia, tuvo como objetivo general diseñar los elementos estructurales que constituyen el sistema estructural dimensionado para resistir las cargas muertas, vivas y fuerzas sísmicas, evaluadas de acuerdo con los requisitos establecidos en el Reglamento NSR-10 o Reglamento Colombiano de Diseño y Construcción Sismo resistente y sus Decretos reglamentarios. Concluyó que el diseño de estructuras requiere por parte de los Ingenieros civiles un sentido de responsabilidad e identidad en la ejecución de sus diseños, logrando así estructuras que sean sismo resistentes y en las cuales se garantice la conservación de la vida humana, la estructura diseñada es capaz de resistir los temblores pequeños sin daño, temblores moderados sin daño estructural, pero con algún daño en los elementos no estructurales, y un temblor fuerte sin colapso o pérdida de vidas humanas.

López y Méndez (2015) en su tesis de pre grado para optar el título de Ingeniero Civil titulada "Propuesta para el cálculo estructural sismo resistente de una edificación auxiliar de tres pisos en el núcleo "armando Mendoza" de la F.I.U.C.V. Realizada en la Universidad Central de Venezuela, tuvo como objetivo Desarrollar una propuesta para el cálculo estructural sismo resistente para una edificación auxiliar situada en el Núcleo Armando Mendoza de la F.I.U.C.V. (Cagua Edo. Aragua). Concluyeron que el trabajo realizado de acuerdo a su amplio contenido más que limitarse solo al cálculo estructural sismo resistente supera esta denominación y es descrito más apropiadamente como un diseño sismo resistente detallado donde se comprueban cuidadosamente cada uno de los aspectos técnicos relacionados, con el fin de garantizar la propuesta más fiable posible.

Nacionales

Cabrera (2003) en su tesis para optar el título de Ingeniero Civil titulada "Diseño estructural en concreto armado de un edificio de nueve pisos en la ciudad de Piura", realizada en la Universidad de Piura, tuvo como objetivo principal realizar el análisis estructural de un edificio y diseñar los principales elementos estructurales. Concluyó que de acuerdo a los resultados del análisis sísmico y del análisis vertical se ha podido verificar que los esfuerzos sísmicos gobiernan el diseño, por eso la importancia de emplear correctamente la norma de diseño sismo resistente.

Cruz (2015), en su tesis para optar el título de Ingeniero Civil titulada "análisis y diseño estructural en concreto armado para una vivienda multifamiliar aplicando la nueva norma de diseño sismo resistente en la urbanización Soliluz—Trujillo", realizada en la Universidad privada Antenor Orrego, tuvo como objetivo principal Realizar el análisis y diseño estructural en concreto armado para una vivienda multifamiliar aplicando la nueva norma de diseño sismo resistente en la urbanización Soliluz - Trujillo. El edificio se modelo en el programa ETABS para poder hacer el análisis sísmico (Derivas) y análisis estructural (Fuerzas internas). Concluyó que de acuerdo a los resultados del análisis sísmico y del análisis vertical se ha podido verificar que los esfuerzos sísmicos gobiernan el diseño, por eso la importancia de emplear correctamente la norma de diseño sismo resistente.

Choquehuanca Kevin (2017) en su tesis para optar el título de Ingeniero Civil titulada "Análisis y diseño estructural de una edificación en concreto armado de 5 pisos y 1 semisótano", realizada en la Universidad nacional de San Agustín, tuvo como objetivo principal desarrollar y exponer el proceso de análisis y diseño estructural para un edificio irregular en Concreto Armado aplicando las normas correspondientes y que se encuentren vigentes hasta la fecha. Concluyó que para los diseños estructurales de los distintos elementos que posea la estructura, antes de proceder con el proceso de diseño, se deberá considerar las exigencias constructivas que se señalan en la normativa, como recubrimientos, calidad y resistencia mínima del concreto, entre otras, y una vez definido la distribución del refuerzo, deben ser representados en los planos de estructuras de una forma tal que sea sencilla su compresión en campo por los profesionales y técnicos encargados de su construcción.

Locales

Habiendo realizado una búsqueda exhaustiva, en las bibliotecas físicas y virtuales, sobre investigaciones con variables y objetivos similares a los que aborda la presente investigación, no se encontraron investigaciones similares; situación que realza la importancia de realizar una investigación de este tipo.

1.3 TEORÍAS RELACIONADAS AL TEMA

1.3.1. Suelo

Juárez sostiene al respecto:

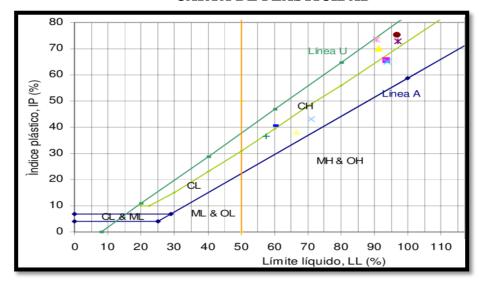
"El suelo es un agregado de partículas orgánicas e inorgánicas, con una organización definida y propiedades que varían vectorialmente. En la dirección vertical generalmente sus propiedades cambian mucho más rápidamente que en la horizontal" (2010, p.34).

Braja sostiene al respecto:

"En ingeniería, suelo se define como el agregado no cementado de granos minerales y materia orgánica descompuesta junto con el líquido y gas que ocupan los espacios vacíos entre las partículas sólidas. El suelo es usado como material de construcción en diversos

proyectos de ingeniería civil, y sirve para soportar las cimentaciones superficiales" (2010, p.1).

La clasificación de los suelos nos permitirá obtener una descripción apropiada de la misma.


Los métodos de clasificación de suelos son dos, El sistema de clasificación AASHTO (American Association of State Highway and Transportation Officials) y el Sistema SUCS (Sistema de Clasificación de Suelos Unificado). Para la presente investigación emplearemos el Sistema de Clasificación de Suelos Unificado SUCS, el cual se trata de un sistema más completo de clasificación que nos permitirá conocer las características de plasticidad y gradación de la misma, este método es más empleado para la ingeniería geotécnica el cual clasifica las muestras mediante abreviaciones y les asigna un nombre con respecto a sus características, este sistema clasifica al suelo en dos amplias categorías:

- A. Suelos de grano grueso los cuales son de tipo grava y arenosa con menos de 50% pasando por la malla N° 200. En este grupo los símbolos inician con un prefijo G o
 S. Donde G significa grava o suelo gravoso y S significa arena o suelo arenoso.
- **B.** Los suelos de grano fino son aquellos que con 50% o más pasan la malla N° 200, en este caso los símbolos de grupo inician con un prefijo M, que significa limo orgánico, C para arcilla inorgánica u O para limos y arcillas orgánicas. Es necesario mencionar que *Pt* se usa para turbas, lodos y otros suelos altamente orgánicos. (2010, p.39).

Este método hace uso de la carta de plasticidad el cual está en función al límite líquido y índice plástico, si más del 12% pasa la malla N° 200; los Limites de Atterberg se grafican debajo de la Línea A o el índice de plasticidad es menor que 4.

La carta de plasticidad se muestra en la siguiente figura.

CARTA DE PLASTICIDAD

Fuente: Fundamentos de ingeniería geotécnica

1.3.2. Cimentaciones superficiales

"Son elementos estructurales de concreto que transmite el peso de la superestructura al suelo". (Nawy, 1988, p.68).

"La parte inferior de una estructura se denomina cimentación y se apoyan sobre las capas superficiales debido a que tienen suficiente capacidad portante, y su función es transferir la carga de la estructura al suelo en que este descansa". (Braja, 2010. p. 389).

1.3.3. Teoría de la capacidad de la carga última

Braja sostiene al respecto:

Para una cimentación continua. Terzaghi expresó la capacidad última de carga con la siguiente ecuación:

$$q_u = cN_C + qN_q + \frac{1}{2}\gamma BN_{\gamma}$$

Dónde:

c= cohesión del suelo

 γ = peso específico del suelo

 $q = \gamma D_f$

B = ancho de la cimentación

 N_C , N_q , N_γ = factores de capacidad de carga adimensionales que son únicamente funciones del ángulo de fricción del Suelo \emptyset . (2010, p. 394).

1.3.4. Cimentación corrida

San Bartolomé, Quiun y Silva sostienen al respecto:

"El cimiento corrido es aquel elementos que conforma el cimiento, medidos desde el nivel de piso hasta el fondo de la cimentación. Estos elementos son colocados en posición horizontal que tiene una función estructural ya que recibe la carga de los muros y las transmite al suelo portante, son elaborados de concreto ciclópeo con un $f_c = 100kg/cm^2$ (o cemento-hormigón 1:10) y un 30% de piedra de 10 pulgadas." (2011, p. 98).

1.3.5. Zapatas

El reglamento nacional de edificaciones (E.060) sostiene al respecto: Las zapatas son elementos estructurales sobre el cual se apoyará la estructura, deben diseñarse para resistir las cargas amplificadas (diseño por Resistencia) y las reacciones inducidas.

"La superficie de la zapata se deberá determinarse en función de la capacidad portante del suelo de fundación" (2018, p.507).

1.3.6. Columnas:

Según Nawy:

"Son los elementos verticales que soportan el sistema de piso estructural. Son miembros en compresión sujetos en la mayoría de los casos a carga axial y flexión y son de mayor importancia en las consideraciones de seguridad de cualquier estructura" (1988, p.68).

1.3.7. Vigas:

Nawy Sostiene al respecto:

"Son elementos estructurales que transmiten las cargas tributarias de las losas de piso a las columnas verticales. Normalmente se cuelan de manera

monolítica con las losas y están reforzadas estructuralmente en una cara, la parte más baja de tensión, o ambas caras superior e inferior" (1988, p.67).

1.3.9. Losas:

Gonzáles sostiene al respecto:

"Son elementos estructurales cuyas dimensiones en planta son relativamente grandes en comparación con su peralte. Se usan para disponer de superficies útiles horizontales como los pisos de edificios o las cubiertas de puentes" (2005, p.547).

1.3.10. Cargas

"Las cargas son fuerza o acciones que resulten del peso de los materiales de construcción, ocupantes y sus pertenencias, efectos del medio ambiente, tales como movimientos telúrico o viento" (RNE, 2018. P.374)

Kassimali sostiene al respecto:

Las cargas que operan en las estructuras de ingeniería civil pueden ser agrupadas de acuerdo con su naturaleza y fuente en tres clases:

- 1. Cargas muertas: son cargas de gravedad de magnitud constante y en ubicaciones fijas que actúan de manera permanente en la estructura, tales cargas consisten en el peso propio de la estructura, así como de todos materiales y equipos colocados de manera permanente en el sistema estructural.
- **2. Cargas Vivas:** son cargas de magnitud variable y/o de posición causadas por el uso de la estructura. Algunas veces el termino carga viva se emplea para referirse a todas las cargas en la estructura que no son cargas muertas.
- **3. Cargas ambientales**: son aquellas que son causadas por los efectos ambientales como el viento, la nieve y los terremotos.

2.3.10. Concreto:

"Es una mezcla de cemento, agregado grueso o piedra, agregado fino o arena y agua" (Teodoro, 2005, p.11).

"Is a stonelike material obtained by permitting a carefully proportioned mixture of cement, sand and gravel or other aggregate, and water to harden in froms of the shape and dimensions of the desired structure" (Nilson, 2010, p. 18).

3.3.10. Acero:

"El acero es una aleación de diversos elementos entre ellos: carbono, manganeso, silicio, cromo, níquel y vanadio" (Teodoro, 2005, p.39).

"Steel reinforcing bars are basically round in cross section, with lugs or deformations rolled into the surface to aid in anchoring the bars in the concrete" (MacGregor, 2009, p. 93).

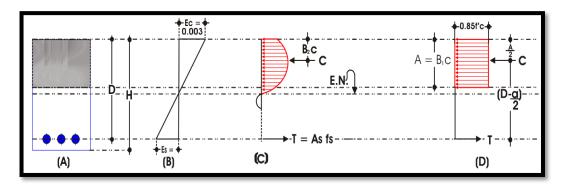
1.3.13. Concreto armado:

"Es el concreto que tiene acero de refuerzo distribuido en el elemento para que pueda resistir los esfuerzos a los que se encuentre sometido. Las propiedades varían de acuerdo al tipo de concreto y acero" (Nawy, 1988. P.62).

1.3.14. Análisis Estructural:

"Es la predicción del desempeño de una estructura ante las cargas prescritas y/o efectos externos, tales movimientos en los apoyos y cambios de temperatura" (Kassimali, 2014, p. 3).

1.3.15. Diseño


"El diseño es el proceso general mediante el cual el ingeniero aplica sus conocimientos, aptitudes y puntos de vista a la creación de dispositivos, estructuras y procesos" (Krick, 2013, p.121).

1.3.16. Diseño Estructural:

McCormac sostienen al respecto:

El diseño estructural abarca lo siguiente: la disposición general del sistema estructural; el estudio de las configuraciones estructurales alternativas que proporcionen soluciones factibles; la consideración de las condiciones de carga; el análisis y diseño estructural preliminares de las soluciones posibles; la selección de una solución y el análisis y el diseño estructural final de la estructura [...] también incluye la preparación de planos (2010, p.3).

1.3.17. Diseño por flexión

Deformaciones y esfuerzos en una viga rectangular

Por equilibrio se tiene:

$$Compresión = Tensión$$

$$0.85f_c'. a. b = A_s. f_y$$

Tomando momentos respecto a un eje que pasa por el centroide del acero tenemos:

$$M_n = A_s f_{\nu}(d - 0.4c)$$

$$M_u = \emptyset M_n = \emptyset A_s f_y (d - 0.4c)$$

Donde:

 M_u : Momento amplificado en la sección (tn. m).

 M_n : Resistencia nominal a flexión en la sección (tn.m).

 A_s : Área de refuerzo longitudinal (cm²).

c: Altura de la fibra superior en compresión al punto donde no existe compresión ni tensión (m).

 d: Distancia desde la fibra extrema en compresión hasta el centroide del refuerzo longitudinal en tracción (m).

b: Ancho de la cara en compresión del elemento (m).

 f_{ν} : Resistencia especificada a la fluencia del refuerzo (kg/cm²).

 f_c' : Resistencia especificada a la compresión del concreto (kg/cm²).

Ø: Factor de resistencia.

El código ACI proporciona límites de cuantía para el diseño:

• Cuantía balanceada

"Se conoce como falla balanceada si simultáneamente se inicia la fluencia del acero y el aplastamiento de concreto" (Morales.2012 p.12).

La cuantía balanceada está dado por la siguiente formula:

$$\rho_b = \frac{0.85 f_c}{f_v} \left(\frac{6000}{6000 + f_v} \right)$$

• Refuerzo máximo en tracción:

"Para asegurar que los diseños sean subreforzados, la Norma Peruana específica que la cuantía máxima sea menor o igual al 75% de la cuantía Balanceada (ρ_b)". (Blanco 2011, p.147).

$$\rho m \acute{a} x \leq 0.75 \rho_b$$

1.3.18. Refuerzo mínimo en tracción

"Cuando se tenga secciones rectangulares el área mínima de refuerzo podrá calcularse con la siguiente fórmula":

$$A_{smin} = \frac{0.7b. \, d\sqrt{f_c'}}{f_v} \dots \dots (cm^2)$$

(Blanco 2011, p.147).

1.3.19. Diseño por Flexo compresión:

"Para poder diseñar un elemento estructural que está siendo sometido a flexo compresión, como es el caso de las columnas, se tendrá en cuenta las mismas hipótesis del diseño en flexión, considerando adicionalmente el problema de la esbeltez". (Blanco 2011, p. 207).

1.3.20. Diagrama de interacción:

"Si se estudia una sección transversal (sección de área de acero) que está sometida a flexo compresión, se puede obtener diferentes valores de carga y momento resistentes" (Blanco 2011, p. 208).

1.3.21. Resistencia al cortante:

El reglamento nacional de edificaciones (E. 060 - 2018) sostiene al respecto:

El diseño de secciones transversales el cual está siendo sometido a fuerza cortante debe satisfacer la siguiente desigualdad:

$$\emptyset V_{n \geq} V_u \cdots \alpha$$

Donde V_u es la fuerza cortante amplificada en la sección considerara, V_n es la resistencia nominal a la cortante el cual se calcula con la siguiente ecuación:

$$V_n = V_c + V_s \cdots \beta$$

Donde V_c es la resistencia nominal al cortante proporcionada por el concreto, y V_s es la resistencia nominal al cortante proporcionado por el refuerzo de cortante. (2018, p. 482).

1.3.22. Resistencia al cortante proporcionada por el concreto en elementos no preesforzados:

El reglamento nacional de edificaciones (E. 060 – 2018) sostiene al respecto:

La resistencia nominal proporcionada por el concreto, V_c Para elementos sometidos únicamente a cortante y flexión, V_c está dada por la siguiente expresión matemática:

$$V_c = 0.17bd\sqrt{f_c'}$$

(2018, p. 483).

Diseño del refuerzo para el cortante.

Cuando la fuerza cortante amplificada (V_u) exceda a $\emptyset V_c$, el refuerzo para cortante debe proporcionarse de acuerdo con las ecuaciones $\alpha y \beta$, y la resistencia nominal (V_s) debe calcularse con la siguiente fórmula:

$$V_{S} = \frac{A_{v}.fyt.d}{S}$$

Donde A_v Es el área de refuerzo para cortante dentro del espaciamiento s, proporcionada por la suma de las áreas de las ramas de los estribos ubicados en el alma. (2018, p. 485).

1.3.23. Dinámica Estructural:

García, sostiene que:

"La dinámica estructural, estudia las vibraciones de cuerpos flexibles, aunque en muchos casos las deformaciones relativas entre algunas partes de la estructura son de un orden de magnitud tan pequeño, que pueden aplicarse los principios de la dinámica de cuerpos rígidos en algunas porciones de la estructura" (1998, pp. 3).

1.3.24. Concepción Estructural Sismo resistente

El reglamento nacional de edificaciones (E. 030 – 2018) sostiene al respecto:

Se tendrá en cuenta los siguientes aspectos:

- Simetría, en la distribución de masas y de rigideces.
- Peso mínimo, especialmente en los últimos pisos.
- Selección y uso adecuado de los materiales de construcción.
- Resistencia adecuada ante cargas laterales.
- Continuidad estructural, tanto en planta como en elevación.
- Ductilidad, entendida como la capacidad de deformación de la estructura más allá del rango elástico.
- Deformación lateral limitada.
- Buena práctica constructiva y supervisión estructural rigurosa.
 (2018, p. 382, 383).

1.3.25. Análisis dinámico modal espectral

El reglamento nacional de edificaciones (E. 030 – 2018) sostiene al respecto:

"Cualquier estructura puede ser diseñada usando los resultados de los análisis dinámicos por combinación modal espectral".

1.3.25.1. Modos de Vibración

"Para poder hallar los modos de vibración se realizará un procedimiento de análisis que considere las características de tales como la rigidez y la distribución de las masas".

"En cada dirección se consideraran aquellos modos de vibración cuya adición de masas efectivas sea por lo menos el 90% de la masa total, además deberá tomarse en cuenta los tres primeros modos predominantes en la dirección de análisis" (2018, p. 391).

1.3.25.2. Aceleración Espectral

En cada dirección horizontal analizada se empleará un espectro inelástico de pseudoaceleraciones definido por la siguiente expresión matemática:

$$S_a = \frac{Z.U.C.S}{R}.g$$

Dónde:

 S_a : Espectro de pseudoaceleraciones (m/s^2) .

Z: Factor de zona.

U: Factor de uso o importancia.

C: Factor de amplificación sísmica.

S: Factor de amplificación de suelo.

R: Coeficiente de reducción de las fuerzas sísmicas.

g: Aceleración de la gravedad (m/s^2) .

(2018, p. 391).

Para realizar el análisis en la dirección vertical se empleará un espectro con valores iguales a los 2/3 del espectro empleado para las direcciones horizontales.

Para la zona donde T < 0,2 TP se considerará la siguiente expresión:

$$C = 1 + 7.5 \left(\frac{T}{T_P}\right)$$

1.3.26. Factores de Irregularidad (I_a, I_p)

El reglamento nacional de edificaciones (E. 030 – 2018) sostiene al respecto:

"El factor I_a se considerará como el menor de los valores de la Tabla 01 correspondiente a las irregularidades estructurales existentes en altura en las dos direcciones de análisis. El factor I_p se considerará como el menor de los valores de la Tabla 02 correspondiente a las irregularidades estructurales existentes en planta en las dos direcciones de análisis. Si al aplicar los datos de las Tablas 01 y 02 se obtuvieran valores distintos de los factores I_a o I_p para las dos direcciones de análisis, se deberá tomar para cada factor el menor valor entre los obtenidos para las dos direcciones" (2018, p. 388).

Tabla 01: IRREGULARIDADES DE LA ESTRUCTURA EN ALTURA

IRREGULARIDADES ESTRUCTURALES EN ALTURA	FACTOR DE IRREGULARIDAD I_a
Irregularidad de Rigidez – Piso Blando	
Existe irregularidad de rigidez cuando, en cualquiera de las	0.75
direcciones de análisis, la distorsión de entrepiso (deriva) es	0.73
mayor que 1.4 veces el correspondiente valor en el entrepiso	

inmediato superior, o es mayor que 1.25 veces el promedio de	
las distorsiones de entrepiso en los tres niveles superiores	
adyacentes.	
La distorsión de entre piso se calculará como el promedio de	
las distorsiones en los extremos del entrepiso.	
Irregularidad de Resistencia – Piso Débil	
Existe irregularidad de resistencia cuando, en cualquiera de	
las direcciones de análisis, la resistencia de un entrepiso frente	
a fuerzas cortantes es inferior a 80% de la resistencia del	
entrepiso inmediato superior.	
Irregularidad Extrema de Rigidez	
Se considera que existe irregularidad extrema en la rigidez	
cuando, en cualquiera de las direcciones de análisis, la	
distorsión de entrepiso (deriva) es mayor que 1.6 veces el	
correspondiente valor del entrepiso inmediato superior, o es	
mayor que 1.4 veces el promedio de las distorsiones de	
entrepiso en los tres niveles es superiores adyacentes.	0.50
La distorsión de entrepiso se calculará como el promedio de	0.50
las distorsiones en los extremos del entrepiso.	
Irregularidad Extrema de Resistencia	
Existe irregularidad extrema de resistencia cuando, en	
cualquiera de las direcciones de análisis, la resistencia de un	
entrepiso frente a fuerzas cortantes es inferior a 65% de la	
resistencia del entrepiso inmediato superior.	
Irregularidad de Masa o Peso	
Se tiene irregularidad de masa (o peso) cuando el peso de un	0.90
piso, es mayor que 1.5 veces el peso de un piso adyacente.	V.7U
Este criterio no se aplica en azoteas ni sótanos.	

Irregularidad Geométrica Vertical	
La configuración es irregular cuando, en cualquiera de las	
direcciones de análisis, la dimensión en planta de la estructura	
resistente a cargas laterales es mayor que 1.3 veces la	0.90
correspondiente dimensión en un piso adyacente.	
Este criterio no se aplica en azoteas ni sótanos.	
Discontinuidad en los Sistemas Resistentes	
Se califica a la estructura como irregular cuando en cualquier	
elemento que resista más de 10% de la fuerza cortante se tiene	
un desalineamiento vertical, tanto por un cambio de	0.80
orientación, como por un desplazamiento del eje de magnitud	
mayor que 25% de la correspondiente dimensión del	
elemento.	
Discontinuidad extrema en los Sistemas Resistentes	
Existe discontinuidad extrema cuando la fuerza cortante que	0.60
resisten los elementos discontinuos según se describen en el	U.UU
ítem anterior, supere el 25% de la fuerza cortante total.	

Fuente: RNE (2018). NTE. E. 030 Diseño sismo resistente.

Tabla 02: IRREGULARIDADES ESTRUCTURALES EN PLANTA

	FACTOR DE
IRREGULARIDADES ESTRUCTURALES EN PLANTA	IRREGULARIDAD
	I_p
Irregularidad Torsional	
Existe irregularidad torsional cuando, en cualquiera de las	
direcciones de análisis el máximo desplazamiento relativo de	
entrepiso en un extremo del edificio, calculado incluyendo la	
excentricidad accidental (Δmáx), es mayor que 1.2 veces el	0.75
desplazamiento relativo del centro de masas del mismo	
entrepiso para la misma condición de carga (Δcm). Este	
criterio solo se aplica en edificios con diafragmas rígidos y	
sólo si el máximo desplazamiento relativo de entrepiso es	

mayor que 50% del desplazamiento permisible.	
Irregularidad Torsional Extrema	
Existe irregularidad torsional extrema cuando, en cualquiera	
de las direcciones de análisis, el máximo desplazamiento	
relativo de entrepiso en un extremo del edificio, calculado	
incluyendo la excentricidad accidental (Δmáx), es mayor que	0.60
1.5 veces el desplazamiento relativo del centro de masas del	0.00
mismo entrepiso para la misma condición de carga (Δcm).	
Este criterio solo se aplica en edificios con diafragmas rígidos	
y sólo si el máximo desplazamiento relativo de entrepiso es	
mayor que 50% del desplazamiento permisible.	
Esquinas entrantes	
La estructura se califica como irregular cuando tiene esquinas	
entrantes cuyas dimensiones en ambas direcciones son	0.90
mayores que 20% de la correspondiente dimensión total en	
planta.	
Discontinuidad del Diafragma	
La estructura se califica como irregular cuando los diafragmas	
La estructura se califica como irregular cuando los diafragmas tienen discontinuidades abruptas o variaciones importantes en	
tienen discontinuidades abruptas o variaciones importantes en	0.95
tienen discontinuidades abruptas o variaciones importantes en rigidez, incluyendo aberturas mayores que 50% del área bruta	0.85
tienen discontinuidades abruptas o variaciones importantes en rigidez, incluyendo aberturas mayores que 50% del área bruta del diafragma. También existe irregularidad cuando, en	0.85
tienen discontinuidades abruptas o variaciones importantes en rigidez, incluyendo aberturas mayores que 50% del área bruta del diafragma. También existe irregularidad cuando, en cualquiera de los pisos y para cualquiera de las direcciones de	0.85
tienen discontinuidades abruptas o variaciones importantes en rigidez, incluyendo aberturas mayores que 50% del área bruta del diafragma. También existe irregularidad cuando, en cualquiera de los pisos y para cualquiera de las direcciones de análisis, se tiene alguna sección transversal del diafragma con	0.85
tienen discontinuidades abruptas o variaciones importantes en rigidez, incluyendo aberturas mayores que 50% del área bruta del diafragma. También existe irregularidad cuando, en cualquiera de los pisos y para cualquiera de las direcciones de análisis, se tiene alguna sección transversal del diafragma con un área neta resistente menor que 25% del área de la sección	0.85
tienen discontinuidades abruptas o variaciones importantes en rigidez, incluyendo aberturas mayores que 50% del área bruta del diafragma. También existe irregularidad cuando, en cualquiera de los pisos y para cualquiera de las direcciones de análisis, se tiene alguna sección transversal del diafragma con un área neta resistente menor que 25% del área de la sección transversal total de la misma dirección calculada con las	0.85
tienen discontinuidades abruptas o variaciones importantes en rigidez, incluyendo aberturas mayores que 50% del área bruta del diafragma. También existe irregularidad cuando, en cualquiera de los pisos y para cualquiera de las direcciones de análisis, se tiene alguna sección transversal del diafragma con un área neta resistente menor que 25% del área de la sección transversal total de la misma dirección calculada con las dimensiones totales de la planta.	0.85
tienen discontinuidades abruptas o variaciones importantes en rigidez, incluyendo aberturas mayores que 50% del área bruta del diafragma. También existe irregularidad cuando, en cualquiera de los pisos y para cualquiera de las direcciones de análisis, se tiene alguna sección transversal del diafragma con un área neta resistente menor que 25% del área de la sección transversal total de la misma dirección calculada con las dimensiones totales de la planta. Sistemas no Paralelos	
tienen discontinuidades abruptas o variaciones importantes en rigidez, incluyendo aberturas mayores que 50% del área bruta del diafragma. También existe irregularidad cuando, en cualquiera de los pisos y para cualquiera de las direcciones de análisis, se tiene alguna sección transversal del diafragma con un área neta resistente menor que 25% del área de la sección transversal total de la misma dirección calculada con las dimensiones totales de la planta. Sistemas no Paralelos Se considera que existe irregularidad cuando en cualquiera de	0.85
tienen discontinuidades abruptas o variaciones importantes en rigidez, incluyendo aberturas mayores que 50% del área bruta del diafragma. También existe irregularidad cuando, en cualquiera de los pisos y para cualquiera de las direcciones de análisis, se tiene alguna sección transversal del diafragma con un área neta resistente menor que 25% del área de la sección transversal total de la misma dirección calculada con las dimensiones totales de la planta. Sistemas no Paralelos Se considera que existe irregularidad cuando en cualquiera de las direcciones de análisis los elementos resistentes a fuerzas	

fuerza cortante del piso.

Fuente: RNE (2018). NTE. E. 030 Diseño sismo resistente.

1.3.27. Coeficientes de reducción:

McCormac y Brown sostienen al respecto:

"Los factores de reducción de resistencia se usan para tener en cuenta las incertidumbres respecto a la resistencia de los materiales, las inexactitudes en las ecuaciones de diseño, las aproximaciones del análisis, las variaciones posibles en las dimensiones de las secciones de concreto y la colocación del refuerzo, la importancia de los miembros en las estructuras de las cuales son en parte, etc. El código 9.3 del ACI, prescribe valores de Ø o factores de reducción de resistencia para la mayoría de las situaciones. Algunos de estos valores dados son: 0.9 para losas y vigas controladas por tensión, 0.75 para cortante y torsión y vigas, 0.65 o 0.75 para columnas, 0.65 o 0.75 a 0.9 para columnas que sustentan cargas axiales muy pequeñas y 0.65 para soporte en concreto" (2011, p. 70).

1.3.28. Coeficiente de Reducción de las Fuerzas Sísmicas, R

El reglamento nacional de edificaciones (E. 030) sostiene al respecto:

El coeficiente de reducción de las fuerzas sísmicas es el producto del coeficiente Ro y de los factores I_a o I_p obtenidos de las Tablas A y B, es decir expresados con la siguiente ecuación:

$$R = R_0 \cdot I_a \cdot I_n$$

(2018, p. 389).

1.3.29. Fuerza Cortante Mínima

El reglamento nacional de edificaciones (E. 030) sostiene al respecto:

"Para cada una de las direcciones consideradas en el análisis, la fuerza cortante en el primer entrepiso del edificio no podrá ser menor que el 80% del valor calculado, para estructuras regulares, ni menor que el 90% para estructural irregulares.

Si fuera necesario incrementar el cortante para cumplir los mínimos señalados, se deberán escalar proporcionalmente todos los otros resultados obtenidos excepto los desplazamientos" (2018, p. 391).

1.3.30. Requisitos de resistencia y de servicio

El reglamento nacional de edificaciones (E. 060) sostiene al respecto:

"Las estructuras y los elementos estructurales deberán diseñarse para obtener en todas sus secciones resistencias de diseño $(\emptyset R_n)$ por lo menos iguales a las resistencias requeridas (R_u) , calculadas para las cargas y fuerzas amplificadas".

En todas las secciones de los elementos estructurales deberá cumplirse la siguiente desigualdad:

$$\emptyset R_n \geq R_u$$

(2018, p. 472).

1.3.31. Resistencia requerida

El reglamento nacional de edificaciones (E. 030) sostiene al respecto:

La resistencia requerida por cargas muertas (CM) y cargas vivas (CV) será como mínimo:

$$U = 1.4CM + 1.7CV$$

Si en el diseño se tuvieran que considerar cargas de sismo (CS), la resistencia requerida como mínimo:

$$U = 1.25(CM + CV) \pm CS$$
$$U = 0.9CM + CS$$

(2018, p. 372).

1.3.32. Resistencia de diseño

El reglamento nacional de edificaciones (E. 060) sostiene al respecto:

Las resistencias de diseño \emptyset R_n deberán tomarse como la resistencia nominal calculada de acuerdo con los requisitos y suposiciones de la norma técnica E.060, multiplicada por los factores \emptyset de reducción dadas a continuación:

- Flexión sin carga axial: $\emptyset = 0.90$
- > Carga axial y carga axial con flexión:
- Carga axial de tracción con o sin flexión tomará el valor de $\emptyset = 0.90$.
- Carga axial de compresión con o sin flexión tomará el valor de $\emptyset = 0.90$

> Otros elementos 0.70

"Para elementos en flexo compresión \emptyset puede incrementarse linealmente hasta 0.90 en la medida que $\emptyset P_n$ disminuye desde $0.1f_c'A_g$ ó $\emptyset P_b$, el que sea menor, hasta cero".

- \triangleright Cortante y torsión: $\emptyset = 0.850$.
- Aplastamiento en el concreto $\emptyset = 0.70$. (2018, p. 472).

1.3.33. Albañilería Estructural

San Bartolomé, Quiun y Silva al respecto sostienen que:

"Son aquellas construcciones el cual hace uso de ladrillo de arcilla cosida, de manera que las cargas actuantes durante su vida útil se transmitan adecuadamente a través de los elementos de albañilería debidamente confinada, hasta el suelo de cimentación" (2011, p.19).

1.3.34. Pórticos

El reglamento nacional de edificaciones (E. 030) sostiene al respecto:

Son elementos horizontales que se encuentran unidos a elementos verticales (vigas y columnas) mediante nudos rígidos de tal forma que se origine la continuidad en todo el conjunto asegurando la estabilidad del mismo, en este tipo de sistema estructural el 80% de la fuerza cortante en la base actúa sobre la columna de los pórticos (2018, p.386).

1.3.35. Etabs

"Etabs (Extended Three Dimensional Analysis of Building Systems: Análisis tridimensional extendido de edificaciones) es un software computacional de análisis y diseño estructural de edificaciones"

"Este programa está enfocado al análisis y diseño de estructuras altas, el cual realiza el análisis estático y dinámico lineal y no lineal, también

permite la utilización de elementos no lineales tales como: aislantes antisísmicos, disipadores, amortiguadores, etc.

También permite el análisis y diseño de estructuras 3D combinando pórticos y muros pantalla a través de una completa interacción entre ambos" (civilgeeks.com, 2013, p. 4).

1.3.36. Safe

"SAFE (Integrated Analysis and Design of Slab Systems: Análisis y diseño integrado de sistemas de placas) es una programa de cálculo de estructuras muy poderosa para el análisis y diseño de losas de concreto y cimentaciones, este software emplea los elementos finitos para sus cálculos" (civilgeeks.com, 2016, p.1).

1.4 FORMULACIÓN DEL PROBLEMA

¿Cuál será la metodología para rediseñar estructuralmente la edificación familiar de dos niveles ubicada en la urbanización San Miguel?

2.4 JUSTIFICACIÓN DEL ESTUDIO

La necesidad de vivienda para las personas tiene relación directa con el crecimiento demográfico. Esto quiere decir; a mayor población mayor necesidad de viviendas. Ya que no todos los ciudadanos cuentan con recursos económico para una adecuada construcción de sus viviendas, muchos optan por realizar construcciones de manera informal; es decir, con ausencia de dirección técnica y profesional que respalde una construcción de calidad.

Las viviendas construidas informalmente no tendrían un buen comportamiento sísmico y podrían colapsar, ocasionando pérdidas materiales y humanas (Mosqueira y Tarque, 2005, p.2).

Con los resultados obtenidos se pretende concientizar a la población, albañiles y maestros de obra, en lo que respecta a construcción de viviendas, como sabemos la vivienda es un lugar en donde nos albergamos y por ende tiene que brindar las comodidades y seguridad del caso ante un evento sísmico.

Es necesario mencionar que el alcance del presente estudio está enfocado en el rediseño estructural de la edificación multifamiliar de dos niveles en la Urbanización San Miguel, empleando el método estático y dinámico y un sistema de albañilería.

1.6 HIPÓTESIS

El rediseño estructural mejorara las condiciones estructurales según la norma E. 030 en la edificación familiar de dos niveles ubicada en la Urbanización San Miguel.

1.7 OBJETIVOS

1.7.1 Objetivo General

Realizar el rediseño estructural de la edificación familiar de dos niveles ubicada en la Urbanización San Miguel.

1.7.2 Objetivos Específicos

- * Realizar la evaluación visual de los elementos estructurales existentes.
- * Realizar el estudio de mecánica de suelos con fines de cimentación.
- ❖ Modelar la edificación familiar existente, con el Software Etabs v17.
- ❖ Modelar la edificación con las normativas del RNE vigente, y empleado el Software Etabs v17.
- ❖ Diseñar los elementos estructurales de la edificación, con los software Etabs v17 y Safe v16, bajo la norma E.030-2018.
- Realizar la comparación de los elementos estructurales actuales en función a lo rediseñado.

II. MÉTODO

2.1 DISEÑO DE INVESTIGACIÓN

Cuantitativa → No experimental → Transeccional → Descriptivo

2.1.1 Enfoque Cuantitativo:

"Enfoque cuantitativo Utiliza la recolección de datos para probar hipótesis con base en la medición numérica y el análisis estadístico, con el fin establecer pautas de comportamiento y probar teorías" (Hernández, Fernández y Baptista, 2014, p. 4).

2.1.2 No experimental:

"Estudio que se realiza sin la manipulación deliberada de variables, en los que solo se observan los fenómenos en su ambiente natural para analizarlos" (Hernández, Fernández y Baptista, 2014, p. 152).

2.1.3 Diseño de Investigación:

"Los diseños de investigación Transeccional o transversal recolectan datos en un solo momento, en un tiempo único. Su propósito es describir variables y analizar sus incidencias e interrelación en un momento dado" (Hernández, Fernández y Baptista, 2014, p. 154).

2.1.4 Diseño Transeccional Descriptivo:

"Los Diseños transeccionales descriptivos tienen como objetivo indagar la incidencia de las modalidades, categorías o niveles de una o más variables en una población" (Hernández, Fernández y Baptista, 2014, p. 155).

2.2 VARIABLES, OPERACIONALIZACIÓN

2.2.1 Variable Independiente

Rediseño estructural de una edificación familiar de dos niveles.

2.2.2 Operacionalización de variables

VARIABLE INDEPENDIENTE	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA DE MEDICIÓN
	Diseño estructural:	Se realizó la inspección de la vivienda para luego tomar datos mediante una	Estudio de mecánica de suelos	Clasificación del suelo	Nominal
	"Es un proceso que incluye la disposición y el	ficha de evaluación técnica,		Configuración estructural	Razón
Rediseño estructural de	dimensionamiento de las	el siguiente paso fue el		Análisis sísmico	Razón
una edificación familiar	estructuras y de sus partes,	estudio de mecánica de suelos, para determinar la		Cargas	Razón
de dos niveles.	de manera que soporten en forma satisfactoria las cargas a las cuales puedan estar sujetas" (McCormac, 2010, p.3).	capacidad portante de la misma. Posteriormente se procesaron e identificaron las posibles deficiencias de la edificación, en lo que	Diseño	Predimensionamiento	Razón
		respecta a elementos estructurales, con la finalidad de realizar el rediseño estructural.		Modelamiento	Nominal

2.3 POBLACIÓN Y MUESTRA

En la presente investigación se da a conocer que tanto la población como la muestra son la misma unidad de análisis, debido a que el objeto en estudio esta puntualmente suscitado sin tener población y por ende no es necesario realizar ningún tipo de muestreo, quedando de la siguiente manera:

2.3.1. Población.

Edificación familiar de dos niveles ubicada en el barrio de San Miguel.

2.3.2. Muestra.

Edificación familiar de dos niveles ubicada en el barrio de San Miguel.

2.4 TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS, VALIDEZ Y CONFIABILIDAD

2.4.1 Técnicas

Para validar la ficha de captación de datos a la estructura con el método de juicio de expertos, se hizo uso de la técnica de la encuesta.

2.4.2 Instrumento de recolección de datos

Sea hizo uso del cuestionario para validar la ficha de captación de datos de la estructura.

2.4.3 Validez y confiabilidad

El presente proyecto de investigación se trabajó mediante un formato de ingreso de datos al software la cual ayudará a ejecutar un correcto modelado computacional y posteriormente analizar y diseñar estructuralmente una edificación familiar de 2 niveles.

Cabe mencionar que los formatos de ingreso de datos al software serán íntegramente elaborados por los autores para beneficio del presente proyecto de investigación, la técnica para validarla será por el método de JUICIO DE EXPERTOS.

2.5 MÉTODOS DE ANÁLISIS DE DATOS

Se realizó los ensayos en el laboratorio de mecánica de suelos de la Universidad Cesar Vallejo – Huaraz, tales como: granulometría, limite líquido, limite plástico y contenido de humedad, es de mencionar que el ensayo de corte directo el cual nos permite determinar la capacidad portante del suelo; no se pudo realizar debido a que el

instrumento del laboratorio de la Universidad Cesar Vallejo - Huaraz está en mal estado, por ello se obtuvo la capacidad portante del suelo en función a los resultados obtenidos de los ensayos anteriores, el mismo que se llevó a un laboratorio privado denominado: Laboratorio de Suelos, Concreto y Asfalto – VH, el mismo que procedió previa evaluación a certificar la capacidad portante del suelo.

Los datos obtenidos a través de la evaluación estructural visual y los datos extraídos de la prueba con el esclerómetro realizado a la unidad de estudio, nos conllevaron a realizar el análisis a través de la modelación con el software Etabs V.2017.

Posterior a los trabajos previos de inspección se procedió a realizar los cálculos en gabinete, haciendo uso del Software Etabs V. 2017 (Para el diseño y análisis de vigas y columnas) y Safe V.16 (Para el diseño y análisis de losas y cimentaciones).

2.6 ASPECTOS ÉTICOS

Los investigadores se comprometen a respetar la veracidad de las opiniones de los juicios de experto donde no se deben provocar actitudes que condicionen las respuestas de los participantes y reproducir los contenidos de manera seria sin cambiarlos, así como la confiabilidad de los datos obtenidos de la recolección de información ya realizados.

III. RESULTADOS

Realizar la evaluación visual de los elementos estructurales existentes.

Se realizó la inspección visual de la vivienda de dos pisos ubicada en la Urbanización San Miguel, para lo cual se realizó la evaluación visual estructural, tomando apuntes de datos importantes de la vivienda, como por ejemplo: dimensiones de las columnas, varillas longitudinales de las columnas, vigas, peralte de losa, años de construcción de la vivienda, etc.

La siguiente tabla muestra un resumen de la evaluación a la unidad de estudio.

Tabla N° 01. Dimensiones de los elementos estructurales.

ELEMENTO	DIMENSIONE (m)	OBSERVACIONES
Columna	0.25 x 0.25	La columna cuenta con seis varillas longitudinales de 1/2".
Viga	0.25x0.40	
Losa (espesor)	0.20	Se pudo observar que existen zonas en donde se puede observar las varillas de acero.
Muro primer nivel (ancho)	0.15	En el primer nivel los ladrillos son artesanales.
Muro segundo nivel (ancho)	0.13	En el segundo nivel, son ladrillos pandereta de 6 huecos.

Fuente: elaboración propia.

Ver anexo 1.

Se tuvo en cuenta los instrumentos validados por los profesionales expertos, conocedores de la variable de estudio. **Ver anexo 2.**

Se usó el Esclerómetro, de la Empresa MEGACONCRETO, la misma que nos proporcionó a través de sus resultados un parámetro del f_c del concreto de los elementos estructurales visibles como: columnas y vigas, esos resultados nos sirvieron para modelara la edificación existente. **Ver anexo 4.**

Los elementos que fueron sometidos a la prueba de esclerometría, son aquellos que se muestran en las siguientes figuras:

Primer nivel.

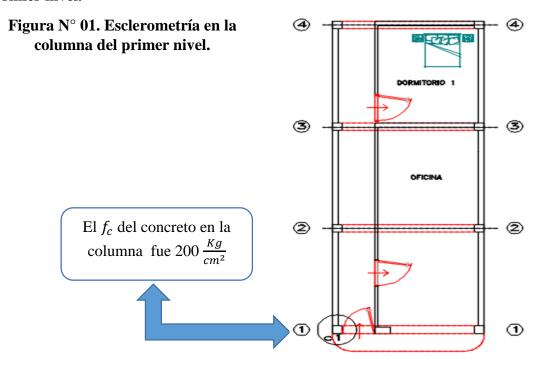


Figura N° 02. Esclerometría en columnas del segundo.

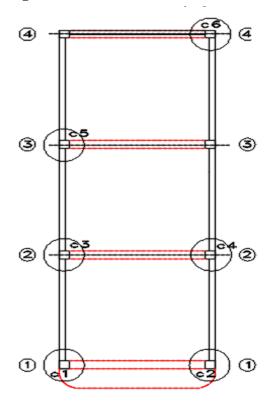


Tabla N° 02. Resultados con el Esclerómetro

Columnas 2 ^{do} nivel	$f_c \frac{\kappa_g}{cm^2}$
C1	235
C2	168
С3	174
C4	214
C5	187
C6	194

Fuente: Elaboración propia.

Figura N° 03. Esclerometría en vigas del segundo nivel.

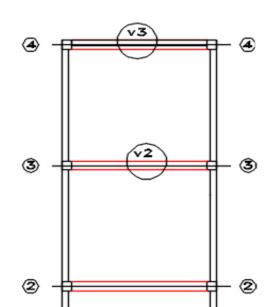


Tabla N° 03. Resultados con el Esclerómetro.

Elemento	$f_c \frac{Kg}{cm^2}$
v1	390
v2	351
v3	306

Fuente: Elaboración propia.

El esclerómetro cuenta con certificación de calibración de fecha 19 de Octubre del 2018, lo cual nos garantiza que sus resultados obtenidos fueron con mayor precisión. **Ver anexo 5.** Se realizó el levantamiento topográfico para determinar la pendiente, altitud, coordenadas de los vértices y ubicación, de la unidad de estudio. **Ver anexo 6.**

①

Tabla N° 04. Coordenadas de la unidad de estudio.

CUADRO DE COORDENADAS DATUM WGS-84								
PUNTO	LADO	DIST.	ANGULO	ESTE(X)	NORTE(Y)	COTA (Z)	AREA	PERIMETRO
A	A-B	17.00	90°00'00"	223326.315	8946982.183	3168.340		
В	В-С	3.90	90°00'00"	223321.733	8946998.554	3168.340	0m2	41.8m
С	C-D	17.00	90°00'00"	223325.488	8946999.605	3168.340	66.3	41.
D	D-A	3.90	90°00'00"	223330.070	8946983.234	3168.340	Y	

Fuente: Elaboración propia.

1

Realizar el estudio de mecánica de suelos con fines de cimentación.

Se realizó una calicata de 1mx1mx3m en el ingreso de la vivienda, extrayendo 30 kg de muestra de suelo, para luego trasladarlo al laboratorio de la Universidad Cesar Vallejo, con la finalidad de realizar los ensayos de Granulometría por tamizado, Limite Líquido, Límite Plástico. La clasificación del suelo extraído de la unidad de estudio, se realizó según SUCS (Sistema Unificado de Clasificación de los suelos), **GM** (Grava limosa; mezcla de grava

regular, arena y limo) para nuestro caso y la capacidad admisible del mismo arrojó $2.20 \, kg/cm^2$. Ver anexo 7.

Tabla N° 05. Estratigrafía en la unidad de estudio.

	DATOS OBTENIDOS EN EL LABORATORIO						
PROFUNDIDAD (m)	SOTOBMIS	HUMEDAD (%)	Descripción y clasificación del material : color, humedad natural, plasticidad, estado natural de compacidad, forma de las partículas, tamaño mínimo de piedras, presencia de materia orgánico, etc.				
0.20	Re	2.9	Suelo arcillo-arenoso, semi seco, de color negro, semi compacto, con presencia de residuos orgánicos (raíces, hojas secas). S/M				
2.80	В	6.8	Grava arcillosa; mezcla de grava, arena y arcilla de media plasticidad. Muy húmedo, compacto, de color marrón claro. Grava de caras fracturadas menores o igual a 4". M-01 NO SE ENCONTRO NAPA FREATICA				

Fuente: Resultado del ensayo realizado en el laboratorio de UCV.

Leyenda:

S/M: Sin muestra

M - 1: Muestra alterada N°1

Re: Material de relleno

En la calicata hasta los 0.20 m se encontró material de relleno (Re), y a los 2.80 m se encontró un suelo que fue categorizado como GM

Las características del $\,$ suelo encontrado son las que se muestran $\,$ en el Tabla $\,$ N $^{\circ}$ 05.

Tabla N° 06. Características físicas según el tipo de suelo.

Características	Tipo de suelo		
Caracteristicas	GM		
Densidad $(\frac{Kg}{m^3})$	18.175		
Ángulo de fricción	26°		
Cohesión	0		

Fuente: VH- Laboratorio de suelos.

Tabla N° 07. Valores de los factores de capacidad de carga.

Factores de capacidad de	Tipo de suelo		
carga.	GM		
N_c	11.85		
N_q	22.25		
N_{γ}	12.54		

Fuente: VH- Laboratorio de suelos.

Las cimentaciones se calcularán en base a una capacidad de carga admisible de $2.20 \, Kg/cm^2$ y a una profundidad de desplante igual a 1.50 m, estos datos se tomaran para el posterior diseño de la cimentación en la presente investigación.

Modelar la edificación multifamiliar existente, con el Software Etabs v17.

Se realizó el modelamiento de la vivienda existente con el programa Etabs V17, para ello ingresamos los datos de las secciones de los elementos estructurales visibles, tales como columnas, vigas y losa aligerada.

Tabla N° 08. Dimensiones de las secciones de los elementos visibles.

Elemento existente	Sección (cm)
Columna	25 <i>x</i> 25
Viga	25 <i>x</i> 40
Losa aligerada	20
Muro de albañilería	13

Fuente: Elaboración propia.

La resistencia del concreto en cada uno de los elementos se ingresó acorde a los registrados en los ensayos del esclerómetro, mostrados anteriormente. Una vez ingresada los valores respectivos que pide el programa (Etabs), se obtiene la siguiente representación gráfica.

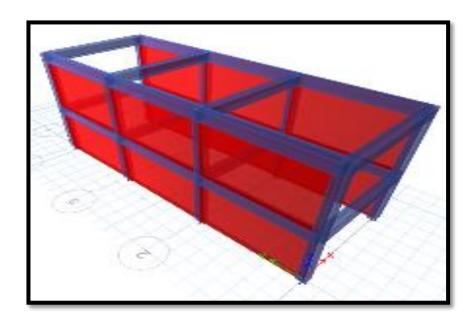


Imagen de la vivienda con el Etabs.

El siguiente paso fue ejecutar el programa para ver la deformación de la estructura por carga muerta.

Posterior a ello se le asignó las cargas corresponde del peso de la tabiquería que se encuentra en la parte posterior y frontal de la vivienda, el cual está calculada por:

$$1.800 * 0.13 * 1.00 = 0.234 ton/m$$

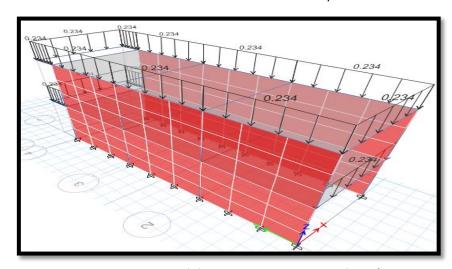


Imagen de la vivienda con el peso de la tabiquería.

Carga en la azotea.

Corresponde al peso de la tabiquería que se encuentra en el perímetro:

$$1.800 * 0.13 * 1.00 = 0.234 Ton/m$$

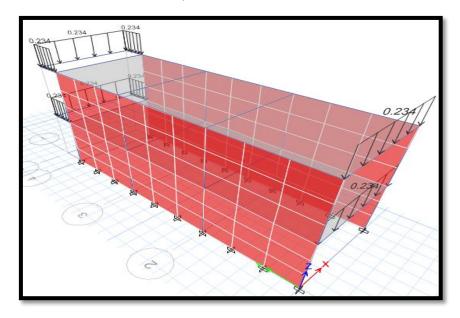
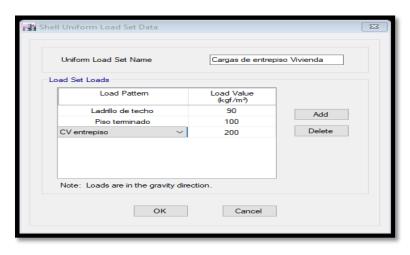
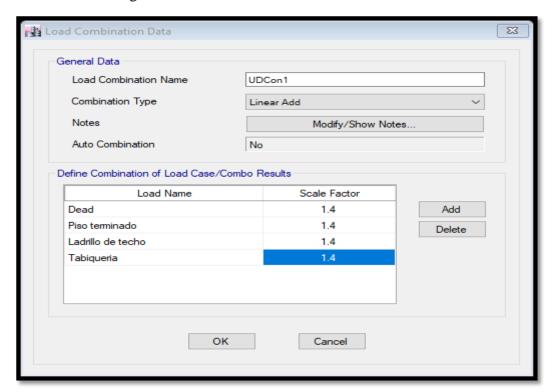
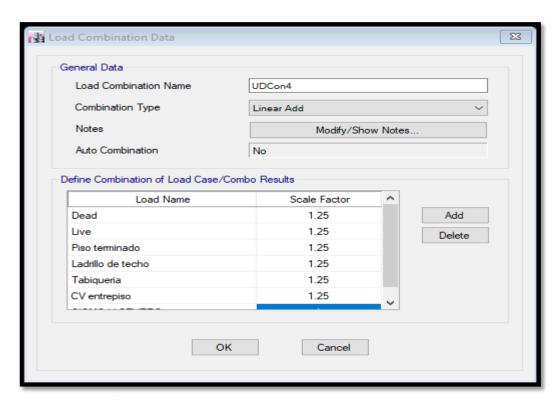




Imagen de la vivienda con el peso de la tabiquería que se encuentra en el perímetro.


Asignamos las cargas constantes carga-entrepiso. Luego se definió la masa del edificio según la norma E.030, también se definió los modos de vibración, en un número equivalente a los grados de libertad del modelo estructural, para nuestro caso 6 (Tres en el primer nivel y tres en el segundo nivel), luego se determinó los periodos de vibración en las direcciones de los ejes x, y estos periodos son necesarios para determinar la cortante basal por el método estático. La fuerza cortante mínima de la norma E.030. La cual establece que la cortante basal calculada mediante el análisis dinámico, no debe ser menor al 80% de la cortante basal calculada por el método estático.

Combinaciones de carga.

Fuente: Etabs v17

Fuente: Etabs v17.

También se analizó la cantidad de acero colocado en cada columna y viga, el cual se muestra en los siguientes gráficos:

Leyenda de colores

Tabla N° 09. Descripción de colores que indica la capacidad de la columna, según el Etabs.

COLORES	DESCRIPCIÓN
Rojo	Presenta falla
Morado	Está cerca a la falla
Verde	Soporta esfuerzos intermedios
Celeste	Soporta esfuerzos bajos

Fuente: Elaboración propia.

Eje A.

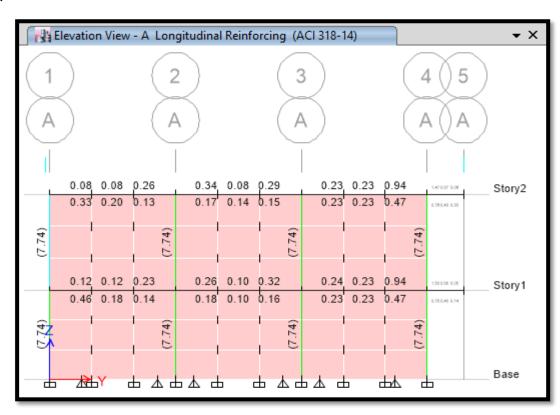


Imagen de la cantidad de acero longitudinal en columnas y acero requerido en vigas según diseño.

Eje B.

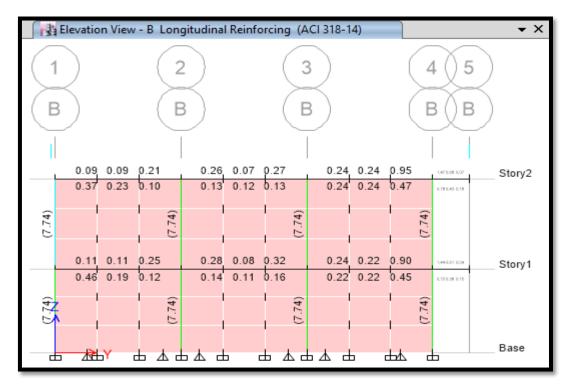


Imagen de la cantidad de acero longitudinal en columnas y acero requerido en vigas según diseño.

Análisis de acero en los pórticos.

Eje 1-1

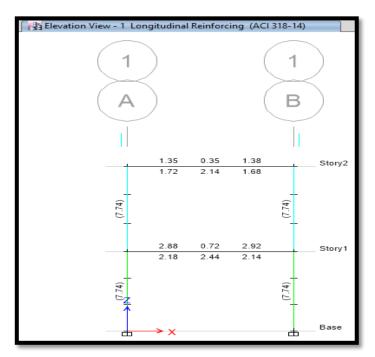


Imagen del acero requerido en columnas y vigas en el eje 1-1.

Eje 2-2

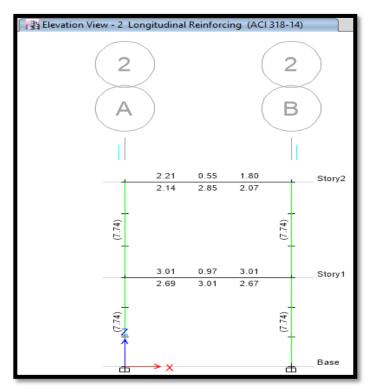


Imagen del acero requerido en columnas y vigas en el eje 2-2.

Eje 3-3

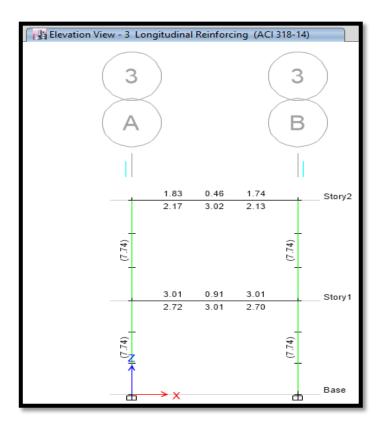
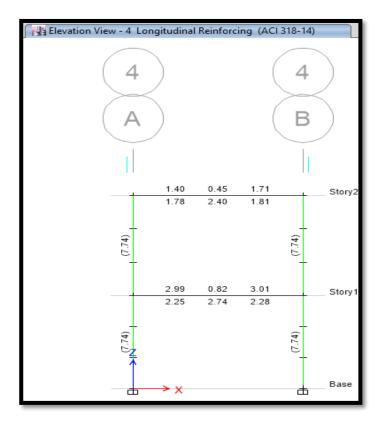
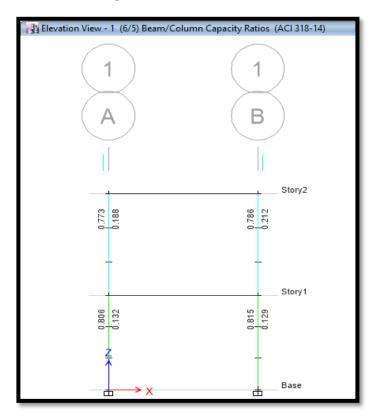
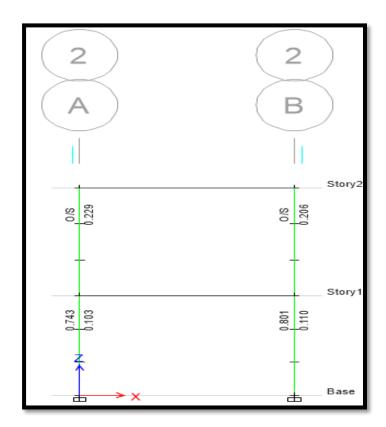


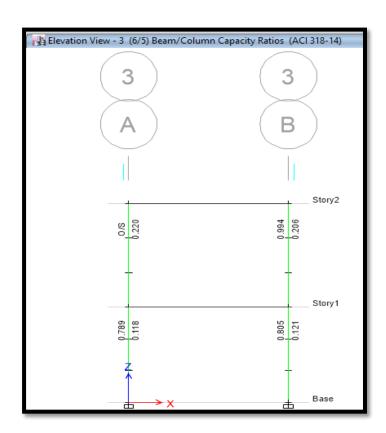
Imagen del acero requerido en columnas y vigas en el eje 3-3.

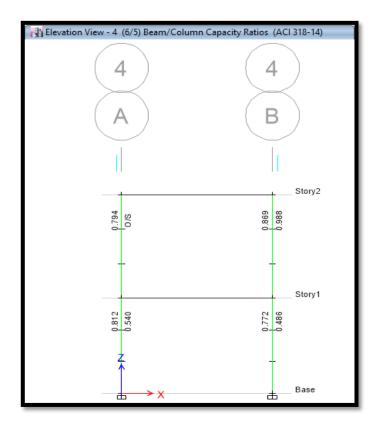
Eje 4-4


Imagen del acero requerido en columnas y vigas en el eje 4-4.

Verificación en los nudos (relación viga débil columna fuerte)


Eje 1-1


Eje 2-2

Eje 3-3

Eje 4-4

La siguiente tabla que se muestra ha sido extraído del Etabs V17, el cual indica que se deben de revisar los nudos de las columnas del segundo piso (Story2) ya que estas están fallando por que la viga es más fuerte que la columna con la que se unen, por consiguiente, la vivienda tiene una falla frágil.

Tabla N° 10. Revisión de nudos del segundo nivel

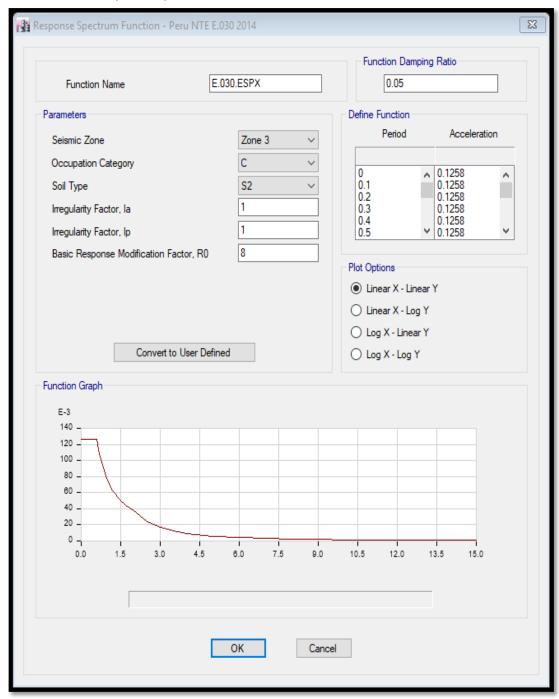
Pisos	Columna	Notación de la Combinació n de carga en y	Combinació	Notación de la Combinació n de carga en y	Combinació	Advertencias
Piso 2	C1	UDCon3	0.268	UDCon3	0.371	La relación de capacidad de viga / columna excede el límite
Piso 2	C2	UDCon3	0.252	UDCon3	0.287	Sin mensaje
Piso 2	C3	UDCon3	0.311	UDCon3	0.067	La relación de capacidad de viga / columna excede el límite
Piso 2	C4	UDCon3	0.328	UDCon3	0.068	Sin mensaje
Piso 2	C5	UDCon3	0.278	UDCon3	0.059	La relación de capacidad de viga / columna excede el límite

Pisos	Columna	Notación de la Combinació n de carga en y	Combinació	Notación de la Combinació n de carga en y	Combinació	Advertencias
Piso 2	C6	UDCon3	0.328	UDCon3	0.066	La relación de capacidad de viga/ columna excede el límite
Piso 2	C7	UDCon3	0.294	UDCon3	0.072	Sin mensaje
Piso 2	C8	UDCon3	0.3	UDCon3	0.081	Sin mensaje
Piso 1	C1	UDCon3	0.459	UDCon3	0.301	Sin mensaje
Piso 1	C2	UDCon3	0.461	UDCon3	0.289	Sin mensaje
Piso 1	C3	UDCon3	0.461	UDCon3	0.067	Sin mensaje
Piso 1	C4	UDCon3	0.461	UDCon3	0.068	Sin mensaje
Piso 1	C5	UDCon3	0.461	UDCon3	0.063	Sin mensaje
Piso 1	C6	UDCon3	0.461	UDCon3	0.062	Sin mensaje
Piso1	C7	UDCon3	0.552	UDCon3	0.089	Sin mensaje
Piso 1	C8	UDCon3	0.559	UDCon3	0.087	Sin mensaje

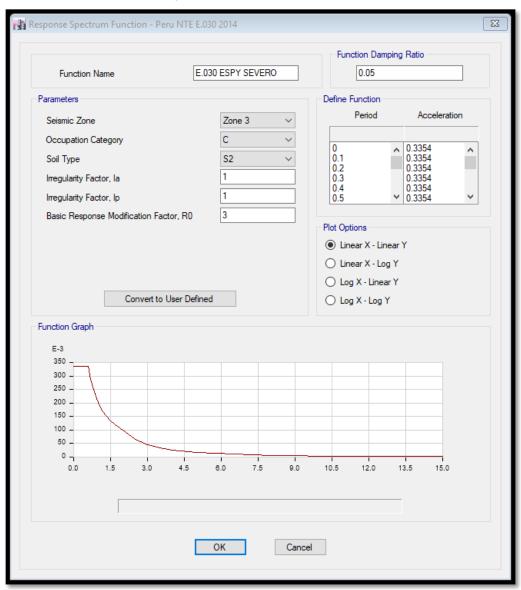
Fuente: Datos obtenidos del Etabs V17.

Luego se procedió a identificar los periodos de vibración que corresponden a los movimientos en direcciones de los ejes x, y.

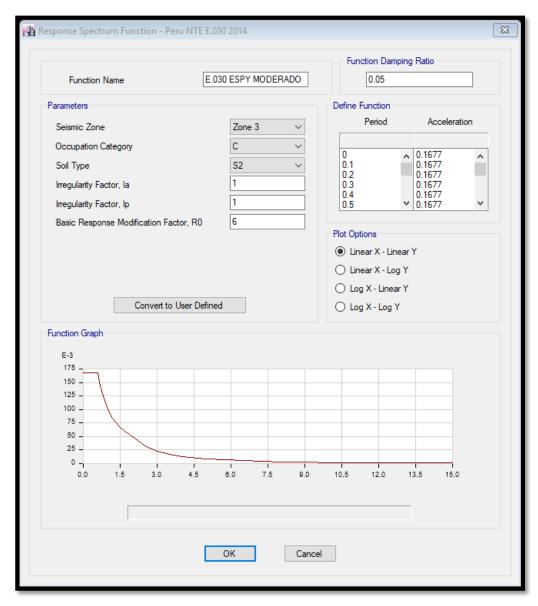
Los modos de vibración con la cual se trabajaron fueron:


El primer modo de vibración t1 = 0.367 seg, corresponde al periodo en dirección del eje x; es decir tx = 0.367 seg.

El segundo modo de vibración $t2 = 0.060 \, seg$. corresponde al periodo en dirección del eje y; es decir $ty = 0.060 \, seg$.


Se redefinió la masa de la vivienda, tomando en cuenta la excentricidad accidental, luego se generó los espectros de diseño según la Norma E. 030, según la Norma E030 – 2018, se encuentra en la categoría C en la que no se permiten Irregularidades. Por lo tanto: Ia = 1, Ip = 1. Ver anexo 8.

$$R = Ia x Ip x Ro$$


Espectro sísmico en x (Pórtico)

Espectro sísmico en y – severo $R_0 = 3$

Espectro sísmico en y - moderado $R_0=6$ (acorde al RNE E.070 se define como la mitad de los valores del sismo severo)

Se le asignó los sismos (método espectros) al modelo estructural.

Sismo en dirección del eje x

Se ingresó al programa los datos del sismo horizontal y vertical según la norma e030.

Sismo horizontal el 100%, sismo vertical 2/3 del sismo horizontal.

Una vez analizado se procedió a verificar los desplazamientos laterales relativos admisibles y comparamos las derivas de piso con las máximas permisibles con la norma E.030 – 2018 (vigente)

Masa participante

Tabla N° 11. Masa participante

Nombre	Tipo de carga	Valores
MsSrc1	Muerta	1
MsSrc1	Piso terminado	1
MsSrc1	Ladrillo de techo	1
MsSrc1	Tabiquería	1
MsSrc1	CV entrepiso	0.25
MsSrc1	CV de azotea	0.25

Los valores de 1 indican que son cargas permanentes, y los valores de 0.25 porcentaje que se toma según la norma E. 030 Pg. 489.

Fuente: Elaboración propia.

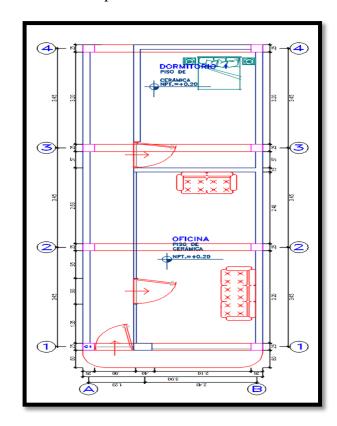
Periodos y frecuencias

Tabla N° 12. Tabla de Periodos y frecuencias

Caso	Modo	Periodo Seg.	Frecuencia 1/seg.	Frecuencia Circular Rad/seg.	Eigenvalue rad²/seg²
Modal	1	0.369	2.708	17.0119	289.4035
Modal	2	0.147	6.8	42.7243	1825.3663
Modal	3	0.136	7.343	46.1364	2128.5696
Modal	4	0.077	12.953	81.3882	6624.0345
Modal	5	0.057	17.558	110.3176	12169.9765
Modal	6	0.053	18.772	117.9492	13912.0167

Fuente: Datos obtenidos del Etabs.

Comparamos las derivas de piso con las máximas permisibles con la norma E.030 , en donde obtuvimos la siguiente tabla.


Tabla N° 13 Derivas de la vivienda existente

					Albañilería dirección Y R = 3			Pórticos dirección X R = 8	
Pisos	Intensidad de sismo	Dirección	Drif	Х	Y	Z	0.75*Drif*R	Deriva. Max	Validación
				m	m	m			
Piso2	SISMO X Max	Х	0.000969	0	11.35	5.2	0.005814	0.007	ОК
Piso 2	SISMO Y SEVERO Max	Х	0.000026	3.65	0	5.2	0.000156	0.007	OK
Piso 2	SISMO Y SEVERO Max	Y	0.000096	0	11.35	5.2	0.000216	0.005	ОК
Piso 1	SISMO X Max	Х	0.00112	3.65	10.35	2.5	0.006720	0.007	OK
Piso 1	SISMO Y SEVERO Max	Х	0.000034	3.65	0	2.5	0.000204	0.007	OK
Piso 1	SISMO Y SEVERO Max	Y	0.000135	0	9.2	2.5	0.000304	0.005	OK

Fuente: Elaboración propia.

Modelamiento de la edificación rediseñada, con el Software Etabs v17.

Se tiene la siguiente distribución en planta

Predimensionamiento de los elementos estructurales

Dimensionamiento del espesor de la losa aligerada:

Sabemos que: $h = \frac{l_n}{20}$

Tabla N° 14. Luz libre en mm

l_{niy}	l_n (mm)	hi (mm)
$ln_{1y} =$	3200	160
$ln_{2y} =$	3200	160
ln _{3y} =	3200	160

Fuente: Elaboración propia.

Tomaremos el valor para el espesor de losa igual:

$$h_l = 200mm$$

Teniendo un recubrimiento por acabados de:

$$e_{recubrimiento} = 20mm$$

Cálculo de la fuerza cortante para el eje Y:

Se sabe que: $V = \frac{Z.U.S.C}{R}P$

Donde:

Z: Factor de zona. Para nuestro caso Z = 0.35

C: Factor de amplificación sísmica.

S: Tipo de suelo. Para nuestro caso S = 1.2

R: Coeficiente de reducción de las fuerzas sísmicas.

P: Peso total de la edificación.

U: Factor de uso o importancia. Para nuestro caso U = 1.0

Calculo del factor de amplificación sísmica.

Sabemos que $T_p = 0.6$ por el tipo de suelo (S_2)

 $C_T = 60$ (Edificios de albañilería)

El valor de $T = \frac{h_n}{c_T}$

Donde:

 $h_n = 5.2m < 15m$ ok

Reemplazando valores se tiene que:

T = 0.082

Como $T < T_p$, entonces el valor de C será: C = 2.5

Coeficiente de reducción:

Para el tipo de estructuras de Albañilería, el valor de R será:

R = 3.0 (Para una edificación de albañilería de diseño regular).

Con los valores anteriores en la dirección Y tenemos que:

$$V = 0.35P$$

Cálculo de la fuerza cortante para el eje X:

Se sabe que:
$$V = \frac{Z.U.S.C}{R}P$$

Donde:

Z: Factor de zona. Para nuestro caso Z = 0.35

C: Factor de amplificación sísmica.

S: Tipo de suelo. Para nuestro caso S = 1.2

R: Coeficiente de reducción de las fuerzas sísmicas.

P: Peso total de la edificación.

U: Factor de uso o importancia. Para nuestro caso U=1.0

Cálculo del Factor de amplificación sísmica

Sabemos que $T_p = 0.6$ por el tipo de suelo

 $C_T = 45$ (Pórticos de concreto armado)

El valor de $T = \frac{h_n}{c_T}$

Donde:

 $h_n = 5.20m < 15m$ ok

Reemplazando valores se tiene que:

$$T = 0.12$$

Como $T < T_p$, entonces el valor de C será: C = 2.5

Coeficiente de reducción:

Para el tipo de estructuras de Pórticos, el valor de R será:

R = 8.0 (Para una edificación de albañilería de diseño regular).

Con los valores anteriores en la dirección *X* tenemos que:

$$V = 0.35P$$

Cálculo del espesor de muros:

Se tomarán las medidas de eje a eje:

Sabemos que: $t = \frac{h}{20}$

h: Es la medida de eje a eje, entonces en este caso será h=2450mm

Entonces vemos que: t = 122.5 mm

Predimensionamiento de muros:

Se ha supuesto un aparejo de soga, hechos con ladrillos KK industrial de un espesor de:

t = 13 cm, el cual cumple con la desigualdad de $t > \frac{h}{20}$.

El espesor de muro sin tarrajeo será de: t = 130 mm.

Estructuración:

En la siguiente figura se aprecia las características de los muros portantes o muros que serán los que resistirán las diferentes cargas que afectan a la estructura.

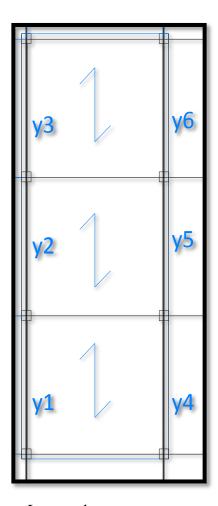


Imagen de muros portantes

Datos de Diseño:

Se tienes las siguientes consideraciones:

f'c = 210kg/cm2 Resistencia a compresión del concreto

fy = 4200kg/cm2 Resistencia del acero

f'm = 65kg/cm2 Resistencia a compresión de pilas de albañilería

Verificando la longitud máxima de los refuerzos de confinamiento:

Conocemos que: h = 2.45 m Entonces: 2h = 4.90

OK está dentro del Rango

Del predimensionamiento anterior tendremos las siguientes longitudes de los muros:

Tabla N° 15. Longitud de muro en X

Tabla N° 16. Longitud de muro en Y

EN LA DIRECCION $X - X$						
MURO	Lxx					
$\sum Mxx$	0.00					

EN LA DIRECCION Y – Y					
MURO	Lyy				
Y1	3.20				
Y2	3.20				
Y3	3.20				
Y4	3.20				
Y5	3.20				
Y6	3.20				
$\sum Myy$	19.20				

Fuente: Elaboración propia.

Fuente: Elaboración propia.

Verificación de la Densidad Mínima de los muros reforzados en cada dirección:

El cual está dado por la siguiente expresión:

$$\frac{A_{Muro}}{A_{Planta}} = \frac{A_m}{A_p} = \frac{\sum txL}{Ap} \ge \frac{ZUS}{56}N$$

Donde:

N: Numero de pisos

t: Espesor del muro

Ap: Area en planta

Conocemos: Ap = 41.3m2

Reemplazando valores tenemos que:

$$\frac{ZUS}{56} = 0.0075$$

También

El número de pisos es N = 2

Conocemos las longitudes de los muros obtenidos en la Tabla 14 de donde:

En la dirección X - X, se tiene:

 $\frac{0.13 \times 0.00}{41.3} = 0 < 0.03$ No cumple la condición, debido a que en la dirección X son pórticos.

En la dirección Y - Y:

$$0.13 x \frac{19.20}{41.3} = 0.060377358 > 0.03$$
 OK ... cumple la condicion

Tabla N° 17. Metrado de cargas

METRADO DE CARGAS:						
Se resumen los siguientes pesos de los materiales:						
Concreto Armado	=	2.400	tn/m ³			
Acabados	=	0.100	tn/m ²			
Albañilería solida:	=	0.019	tn/m ² /cm			
Albañilería solida más tarrajeo $e_{tarraj\acute{e}o} = 0.01m =$	=	0.285	tn/m ²			
Parapetos y tabiques	=	0.014	tn/m ² /cm			
Parapetos y tabiques más tarrajeado $e_{tarraj\acute{e}o} = 0.01m =$	=	0.210	tn/m ²			
Ventana y vanos (puertas)	=	0.020	tn/m ²			
S/C para vivienda	=	0.200	tn/m ²			
S/C por efecto sísmico 25%(S/C)	=	0.050	tn/m ²			
S/C Azoteas	=	0.100	tn/m ²			
Carga provenientes de la Losa:						
Losa aligerada:	=	0.300	tn/m ²			
Acabados	=	0.100	tn/m ²			
S/C por efecto sísmico 25%(S/C)	=	0.050	tn/m ²			
	W =	0.450	tn/m ²			

Tabla N° 18. Metrado de cargas en losa.

Carga provenientes de la Losa:								
Losa aligerada:	=	0.300	tn/m ²					
Acabados	=	0.100	tn/m ²					
S/C por efecto sísmico 25%(S/C)	=	0.050	tn/m ²					
	W =	0.450	tn/m^2					

Fuente: Elaboración propia.

Tabla N° 19. Derivas permisibles.

					Albañilería dirección Y R = 3	3		Pórticos dirección X R = 8	8
Pisos	Intensidad de sismo	Dirección	Drif	Х	Υ	Z	0.75*Drif*R	Derv. Max	Validación
				m	m	m			
Piso2	SISMO X Max	Х	0.000969	0	11.35	5.2	0.005814	0.007	ОК
Piso 2	SISMO Y SEVERO Max	Х	0.000026	3.65	0	5.2	0.000156	0.007	ОК
Piso 2	SISMO Y SEVERO Max	Υ	0.000096	0	11.35	5.2	0.000216	0.005	ОК
Piso 1	SISMO X Max	х	0.00112	3.65	10.35	2.5	0.006720	0.007	ОК
Piso 1	SISMO Y SEVERO Max	Х	0.000034	3.65	0	2.5	0.000204	0.007	ОК
Piso 1	SISMO Y SEVERO Max	Υ	0.000135	0	9.2	2.5	0.000304	0.005	OK

Fuente: Datos obtenidos del Etabs.

Diseño de albañilería

Análisis y diseño estructural

El diseño sismorresistente, según la norma E.030 emplea un coeficiente de reducción de solicitación sísmica R=3 (Para un sismo severo), y para un sismo moderado es mitad de los valores producido por el sismo severo.

Tabla N° 20. Cortantes y momentos para R = 3 y R = 6

	SISMO SEVERO		SISMO MODERADO		
	R	= 3		R=6	
MURO	Vs (V2)	Ms (M3)	Ve	Me	
P1Y	3.7971	2.5646	1.89855	1.2823	
P2Y	4.0309	1.9272	2.01545	0.9636	
P3Y	3.7148	2.6718	1.8574	1.3359	
P4Y	3.6644	2.4769	1.8322	1.23845	
P5Y	3.8889	1.8627	1.94445	0.93135	
P6Y	3.5834	2.5822	1.7917	1.2911	

Fuente: Elaboración propia.

Control de Fisuración

Tiene por objetivo evitar que los muros se fisuren ante los sismos moderados, que son los más frecuentes. Se sabe que para el diseño se consideran las fuerzas cortantes por el sismo moderado.

Para los muros portantes deberá verificarse que en cada entrepiso se satisfaga la siguiente expresión que controla la ocurrencia de fisuras por corte.

$$V_e \leq 0.55 V_m = Fuerza \ cortante \ admisible$$

Se sabe que:

 V_e :Es la fuerza cortante producida por el sismo moderado.

 V_m : Fuerza cortante asociada al agrietamiento diagonal de la albañilería.

 V_m Se calculó en cada entre piso, teniendo en cuenta las siguientes fórmulas:

Para unidades de arcilla y concreto

$$V_m = 0.5 v_m \cdot \alpha \cdot t \cdot L + 0.23 P_g$$

Para unidades sílico calcáreas

$$V_m = 0.35 v_m^{'} \cdot \alpha \cdot t \cdot L + 0.23 P_g$$

De donde se obtuvo la siguiente tabla:

^{*}Las cortantes y los momentos son obtenidos del Etabs V17.

Tabla N° 21

MURO	L (cm)	t (cm)	Ve (ton)	Mfe (ton – m)	V'm (ton /m2)	α	α final	Pg = PD + 0.25 PL	Vm	<i>Vc</i> ≤ 0.55 * <i>Vm</i>
P1Y	320	13	1.89855	1.2823	81	4.74	1.00	6.88	18.4304	ОК
P2Y	320	13	2.01545	0.9636	81	6.69	1.00	7.57	18.5891	ОК
P3Y	320	13	1.8574	1.3359	81	4.45	1.00	8.19	18.7317	ОК
P4Y	320	13	1.8322	1.23845	81	4.73	1.00	6.88	18.4304	ОК
P5Y	320	13	1.94445	0.93135	81	6.68	1.00	7.57	18.5891	ОК
P6Y	320	13	1.7917	1.2911	81	4.44	1.00	8.19	18.7317	ОК

Verificación de resistencia al corte del edificio

Para proporcionar una adecuada resistencia y rigidez al edificio, en cada entrepiso i, y en cada dirección principal de la edificación, se deberá de cumplir que la resistencia al corte sea mayor que la fuerza cortante producida por el sismo severo.

$$\sum V_{mi} \ge V_{Ei}$$

Tabla N° 22: Verificación de resistencia al corte del edificio

	Piso 01 y 02	Vm	Unidades
	Muro	0.55 * v'm * a * t * L + 0.23 * Pg	
	P1Y	18.4304	ton
	P2Y	18.5891	ton
Dirección YY	P3Y	18.7317	ton
Direccion 1 1	P4Y	18.4304	ton
	P5Y	18.5891	ton
	P6Y	18.7317	ton
	$\sum Vm$	111.5024	ton

Fuente: Elaboración propia.

Sismo severo 45.16 Ton (Dato obtenido del Etabs)

De donde se puede observar que si cumple la desigualdad

$$\sum V_{mi} \ge V_{Ei}$$
 Si cumple

Diseño de vigas

Cálculo de acero requerido para un pórtico de 1 tramo por piso.

Sección de viga (cm)

h = 40

bw = 2!

En la siguiente tabla se muestra los datos importantes de la viga.

Tabla N° 23. Datos para el diseño de viga

h =	40	cm
bw =	25	cm
Recub = d' =	6	cm
Recub = d' =	9	cm
d =	34	Cm (1 capa)
d =	31	Cm (2 capas)
$\phi =$	0.90	factor de reducción por flexión
f'c =	210	kg/cm2
fy =	4200	kg/cm2
β1=	0.85	

Fuente: Elaboración propia.

Diseño por flexión de la viga

Cuadro de momentos de la envolvente en kgf * m (del Etabs v 2017).

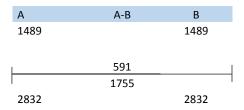
Tabla N° 24. Tabla de momentos de la envolvente.

Tramo:	А	A-B	В
Mu- =	1489	591	1489
MU+ =	2832	1755	2832

Fuente: Datos obtenidos del Etabs V17.

El momento mínimo de diseño en los nudos está dado por:

$$Mu+= 1/2 Mu - y Mu \pm$$


Según el RNE E.060: art: 21.5.2.2

En cualquier sección el momento no debe de ser menos a $Mu \pm /4$ de los nudos.

Tabla N° 25. Momento en los nudos.

	А	A-B	В
MU- =Mu- /4=	372	372	372
Mu- =	1489	591	1489
Mu+=	2832	1755	2832
MU+ =Mu- /2=	745		745
MU+ =Mu+/4=	708	708	708

Fuente: Elaboración propia.

Se sabe que:

$$As = \frac{Mu}{\varphi * fy * \left(d - \frac{a}{2}\right)}$$

$$a = \frac{As * fy}{0.85 * f'c * bw}$$

Realizando los cálculos respetivos e iteraciones respectivas se tiene:

Distribución de acero de refuerzo final a colocar.

Distribución de acero de refuerzo final a colocar

	Α	A-B	В
As-=	2φ1/2"	2φ1/2"	2φ1/2''

As+=	2φ1/2"	2φ1/2"	2φ1/2"

Diseño por cortante (estribos)

Tabla N° 26. Área de acero.

Calculo de área (cm) del acero colocado

	Α	A-B	В
superior	2.39	2.39	2.39
inferior	2.39	2.39	2.39

Fuente: Elaboración propia.

Calculo del Máximo Momento probable el cual es igual a 1,25*Momento Nominal:

 $(Momento\ probable\ =\ 1.25*Mn)\ (ton*m).\ RNE\ E.060\ art.\ 21.5.4.1.$

Distancia entre apoyos: 3.40m

Calculo de la Cortante V:

 $CM = 1.30305 \ t/m$ (Carga muestra distribuida, obtenido del metrado de cargas obtenido del Etabs) .

$$w = 1.4 * cm + 1.7cv$$

 $CV = 0.651525 \ t/m$ (Carga viva distribuida, obtenido del metrado de cargas obtenidas del Etabs) w = 2.932 t/m (Carga amplificada del metrado de cargas).

Calculo de las cortantes debido a los momentos máximos probables y cargas distribuidas.

Momentos anti horarios	
	TRAMO I
Izquierda	7.557405973
Derecha	2.410926527
Momento horario	
	2.410926527
	7.557405973

Calculo de la Cortante resistente del concreto *Vc*, está dado por:

$$V_c = 0.53 * \sqrt{f'c} * "bw * d = 6.53 t$$

Calculo del espaciamiento.

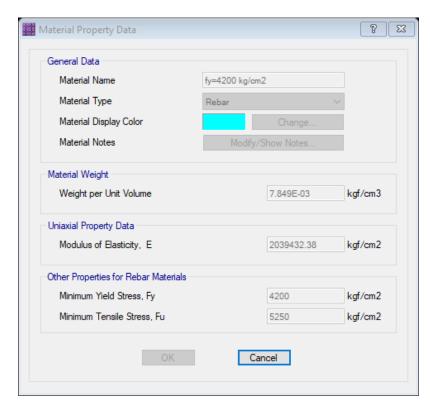
El primer estribo debe de estar a: 5cm

La separación de los estribos en la zona de confinamiento será de 10 cm.

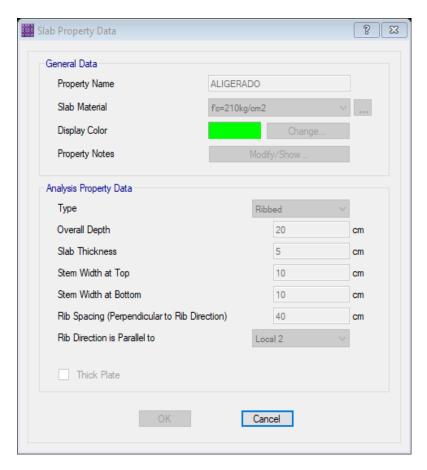
Colocación final de los estribos:

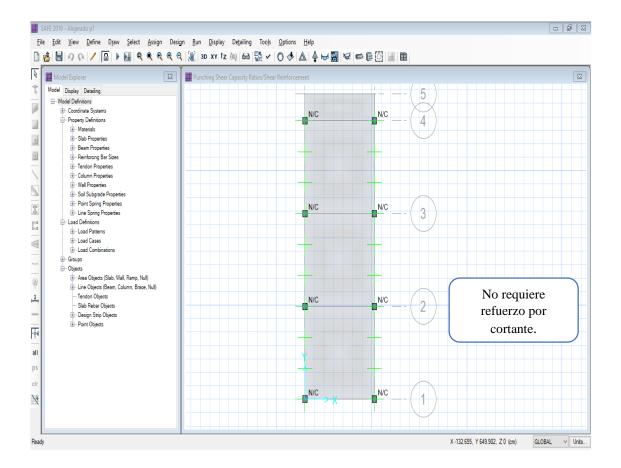
Estribos de 3/8

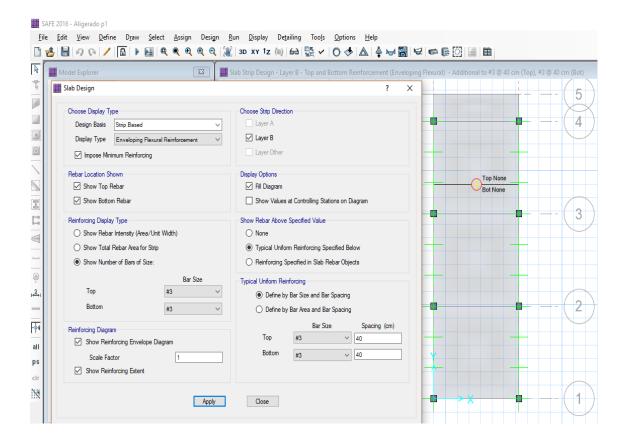
1 a cada 5cm (a cada lado), 8 cada 10 cm y el resto a 15cm


Ver anexo 10.

Diseño de losa aligerado con el Safe V16


Para ello Exportamos los datos del Etabs V.17 previamente analizado.


Definimos los materiales en el Safe. Como el $f_c^{'}=210~\frac{Kg}{cm^2}$, la fluencia del acero $f_y=4200~\frac{Kg}{cm^2}$.



Definimos las secciones de la losa, posterior a ello se analizó y verifico la falla por cortante.

Verificamos el acero requerido por flexión en la losa aligerada, e indicamos que se coloque el mínimo requerido por norma.

Se observa que con acero de 3/8 en cada vigueta es suficiente.

Tabla N° 27. Acero requerido en la losa aligerada.

Momentos	Acero Longitudinal	Acero de temperatura	Nota
Momento +	Varillas de 3/8	Varillas de 1/4	Acorde al plano de
Momento -	Varillas de 3/8	Varillas de 1/4	estructuras E-01

Fuente: Elaboración propia.

Ver anexo 9 (Diagrama de momentos y cortantes para el diseño de losa aligerada)

Diseño de columnas

Predimensionamiento para el Etabs

	ancho (cm)	alto (cm)	Área cm²)
columna	25	25	625.000

$$As_{min} = 0.01 * bw * d = 6.25$$

$$As_{m\acute{a}x} = 0.04 * bw * d = 25$$

$$As_{COLOCADO} = 6\varphi 1/2" + 1\varphi 3/8"$$

Acero por cortante:

 $As(cm^2) = 0.03cm^2/cm$ Dato obtenido del Etabs.

Entonces se colocara varillas de 3/8 cada 47 cm.

El RNE en la norma E.060 Artículo 21.4.5 – Elementos en flexo compresión

Tabla N° 28

$L_o =$	h/6 =	0.35	m
$L_o =$	max(a;b)	0.25	m
$L_o =$	0.500	0.50	m
Por lo tanto	$L_o =$	0.50	m

Espaciamiento de refuerzo transversal.

Tabla N° 29

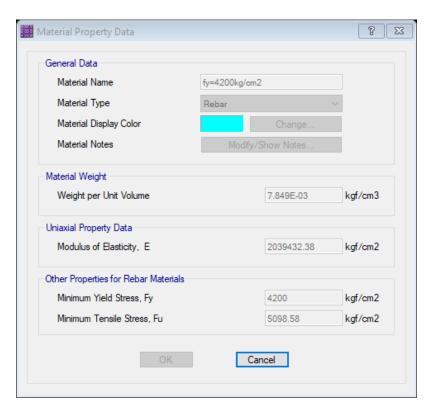
S_0 =	8*db(1/2")	10.16	m
S_0 =	min(a;b)	0.250	m
S ₀ =	0.100	0.100	m
Por lo tanto	S ₀ =	0.100	m

 S_0 Fuera de la zona de confinamiento L_o

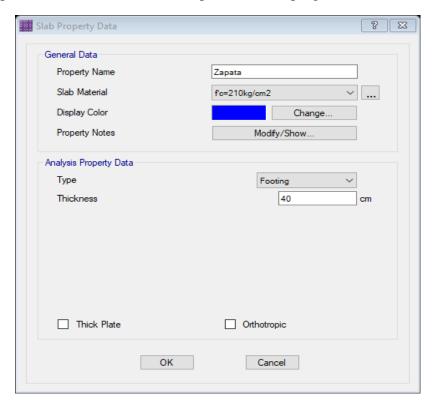
Tabla N° 30

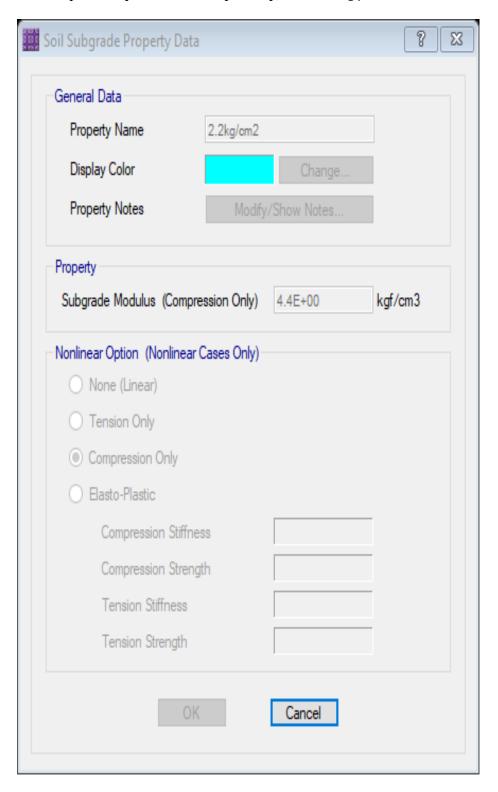
S ₀ =	Req. Corte	0.47	m
S ₀ =	0.300	0.300	m
Por lo tanto	S ₀ =	0.300	m

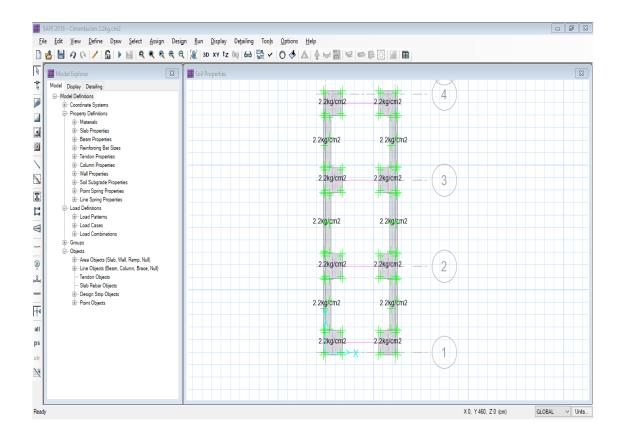
Se tendrá en cuenta que La separación de los estribos en los nudos no debe ser mayor a 150mm (E.060). **Ver anexo 11.**


Diseño de la cimentación

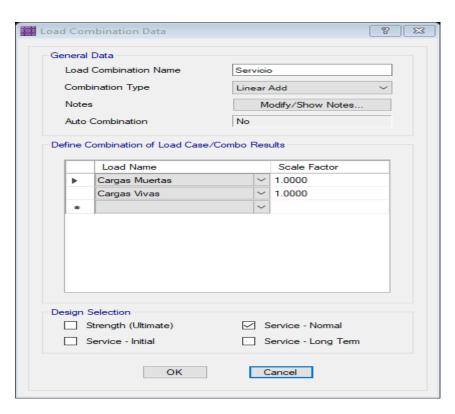
Se exporta del Etabs v.17 la cimentación dibujada y analizada previamente.

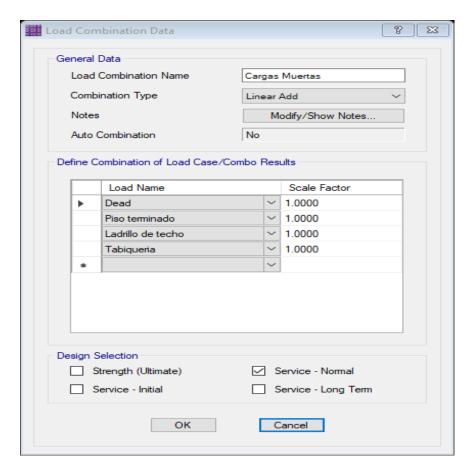

En el Safe se define la característica del concreto en este caso Concreto $f'c = 210kg/cm^2$.

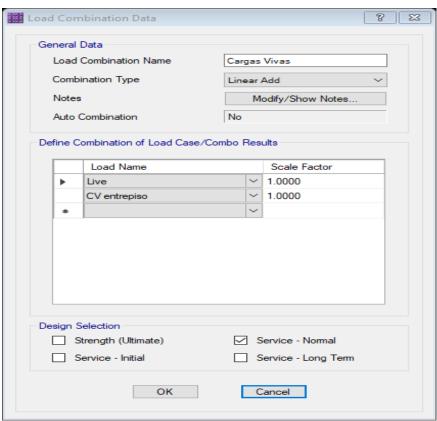

Así como también la fluencia del acero $f_y = 4200 \frac{Kg}{cm^2}$.

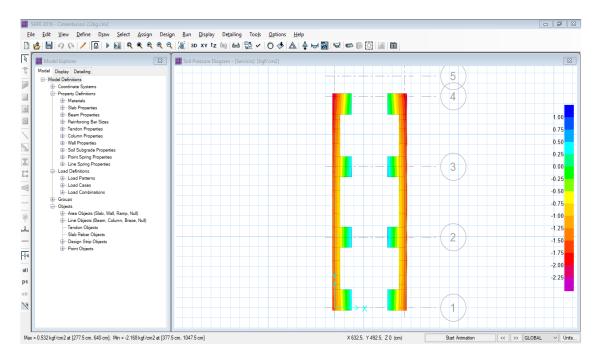


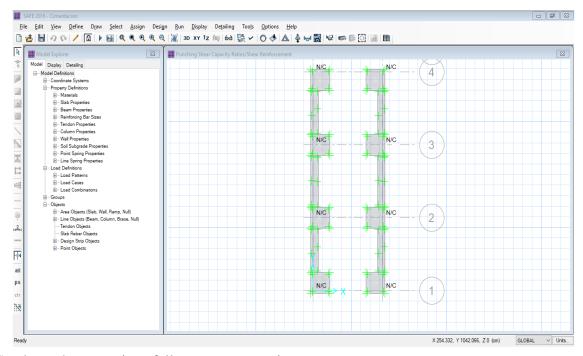
Se definió la zapata con sus características respectivas en el programa Safe.




Luego asignamos la capacidad portante del suelo el cual es de $2.20 \, kg/cm^2$ con el coeficiente de balasto (El coeficiente de balasto Ks es un parámetro que se define como la relación entre la presión que actúa en un punto, p) de $4.40 \, kg/cm^3$.

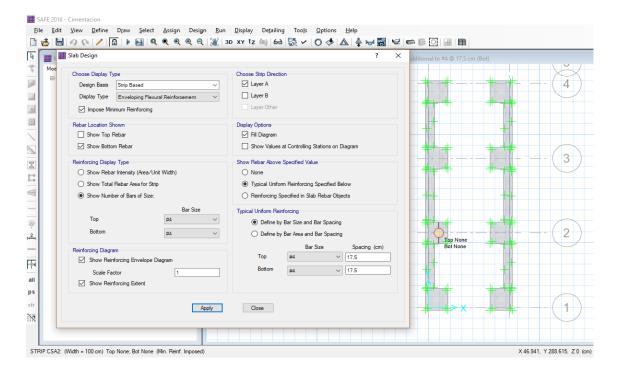


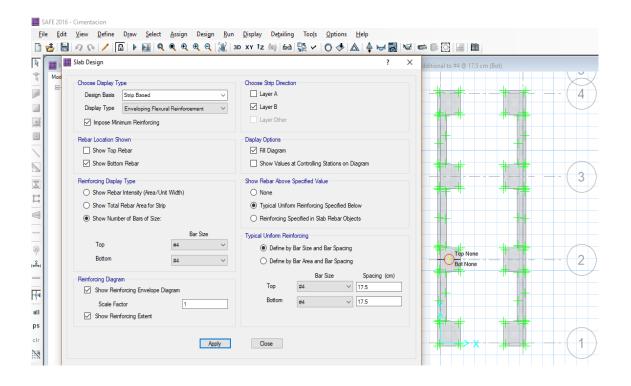

Se agrega la combinación de carga de servicio que es de la carga muerta + la carga viva (E.050).



Analizamos y verificamos las presiones soportadas por el suelo:

Se evidenció que la carga soportada por el suelo es menor a la actuante siendo de $2.17 \ kg/cm^2$, entonces las dimensiones de la zapata queda aceptado los cuales fueron de $1.00 \mathrm{m} \ \mathrm{x} \ 1.00 \mathrm{m} \ \mathrm{y}$ cimiento corrido de $0.40 \mathrm{m}$ de ancho.


Verificamos la falla por punzonamiento de la cimentación:


Se observó que no tiene falla por punzonamiento.

Verificación del acero de refuerzo en la zapata con las combinaciones de carga el cual colocando el acero a mínimo y de diseño sale ½"@0.15 en ambas direcciones.

En la dirección del layer A (eje X-X).

En la dirección del Layer B (eje Y-Y)

De donde el acero de refuerzo en la zapata con las combinaciones de carga el cual colocando el acero mínimo y de diseño sale ½"@0.15 en ambas direcciones, el cual cumple las condiciones de servicio.

Ver anexo 12 (Diseño de cimiento corrido y diagrama de momentos y cortantes obtenidos con el Safe para zapatas aisladas).

Se realizó la comparación de los elementos estructurales actuales en función a lo rediseñado.

Tabla N° 31. Comparación de elementos estructurales existentes con lo rediseñado.

E1		Existente		Redis	eñado
Elemento	Nombre	Dimensiones(cm)	Observación	Dimensiones	Observación
	Sección	25 <i>x</i> 25		25 <i>x</i> 25	
	Acero longitudinal	6 Ø 1/2		6 Ø 1/2	
	Estribos		No se puede visualizar	6 Ø 3/8	Acorde a diseño
Columna	Derivas de piso		Cumple	Cumple	
	Nudos		Presenta falla en el segundo nivel.	No presenta falla	
	Sección	25 <i>x</i> 40		25 <i>x</i> 40	
	Viga en voladizo		No tiene	25 <i>x</i> 20	
Viga	Acero longitudinal		No se puede visualizar		Acorde al plano y cálculo.
	Estribos		No se puede visualizar	Cumple	Acorde al plano y cálculo.
	Espesor	20		20	
Losa Aligerada	Acero longitudinal		No se puede visualizar		Acorde al plano y cálculo con el Safe.
Aligerada	Acero de temperatura		No se puede visualizar		Acorde al plano y cálculo con el Safe.
	Espesor	13		13	
Muro	Juntas	1.5 <i>cm x</i> 5 <i>cm</i>	No cumple la norma	1 cm x 1.5cm	Acorde a la norma.
	Artesanal		No se puede visualizar	Industrial	

	Pandereta		Industrial	
	Dimensión de zapata	No se puede visualizar	1x1x0.40	De acuerdo a cálculos.
Cimentaci ón	Capacidad por punzonamient o	No se sabe		Cumple.
	Acero longitudinal	No se puede visualizar	Industrial	$\emptyset \frac{1}{2} @ 0.175$
	Cimiento corrido	No se puede visualizar	40 cm x 40 cm	Ancho y espesor.

IV. DISCUSIÓN

En la tesis para optar el grado de doctor realizado por el arquitecto Juan González Cárceles, (1990) "Análisis del proceso de diseño de estructuras porticadas", su investigación determinó que el análisis del procedimiento de diseño de estructuras porticadas implica definir un número muy elevado de variables y ecuaciones, complejas de resolverlas manualmente, gracias al apoyo informático, ha sido posible elaborar numerosas herramientas que permiten analizar el comportamiento estructural de una edificación, con mayor facilidad.

En nuestra investigación la informática fue un apoyo preponderante, debido a que se realizaron los modelamientos y cálculos estructurales con el programa Etabs para modelar la edificación y diseñar las columnas y vigas, por otro lado también se usó el programa Safe para diseñar losas y cimentaciones. El uso correcto de los programas de ingeniería facilitó los cálculos estructurales de forma muy eficiente.

En la tesis de Cristian Pinzón Chivatá, (2013) "Diseño estructural para el proyecto de vivienda nueva para el Barrio Bella Vista del Municipio de Soacha (Cundinamarca)", el autor determinó que el diseño de estructuras requiere por parte de los Ingenieros civiles un sentido de responsabilidad e identidad en la ejecución de sus diseños, los diseños deberán estar acorde a los requisitos establecidos en el Reglamento NSR-10 o Reglamento Colombiano de Diseño y Construcción Sismo resistente y sus Decretos reglamentarios, para poder logara estructuras que sean sismo resistentes y garantice la conservación de la vida humana, ante movimientos sísmicos. La estructura diseñada deberá ser capaz de resistir los temblores pequeños sin daño, temblores moderados sin daño estructural, pero con algún daño en los elementos no estructurales, y un temblor fuerte sin colapso o pérdida de vidas humanas.

La unidad de estudio está situada en la zona 3 según el Reglamento Nacional de Edificaciones, el cual es una zona altamente sísmica, por lo tanto se realizó el análisis dinámico estipulado en el RNE - E. 030 (diseño sismo resistente), cumpliendo con las derivas permisibles establecidas en la norma. Los diseños y análisis de edificaciones realizadas en el Perú están sujetas a normas internacionales (ACI 318 SUS -14) y nacionales (RNE), al igual que los diseños y análisis realizados en Colombia están sujetos su Reglamento NSR-10 y al (ACI 318 SUS -14), el cual es una norma internacional.

En la tesis de Javier Ernesto López y Jesús Eduardo Méndez Hernández, (2015) "Propuesta para el cálculo estructural sismo resistente de una edificación auxiliar de tres pisos en el núcleo "armando Mendoza" de la F.I.U.C.V. su estudio indicó la importancia de que tiene el programa Etabs para realizar los cálculos estructurales sismo resistente en una edificación, también los tesistas usaron el AutoCAD con el cual elaboraron los planos de detalle.

Según la propuesta de estudio se estableció el rediseño estructural de la edificación de dos niveles, para realizar los cálculos estructurales se utilizó el programa Etabs v17, el cual nos permitió realizar los cálculos sismo resistentes de la vivienda, por otro lado para realizar los planos de arquitectura y estructuras se utilizó el Civil 3D 2015.

En la tesis de Elmer Cabrera Cabrera, (2003) "Diseño estructural en concreto armado de un edificio de nueve pisos en la ciudad de Piura" determinó que en el análisis sísmico y análisis vertical, los esfuerzos sísmicos gobiernan el diseño, es por eso que recomienda que se debe usar correctamente la norma de diseño sismo resistente.

Así mismo en el presente trabajo de investigación, se determinó que las cargas de diseño que gobiernan fueron las cargas muertas, cargas vivas, sobre cargas y las cargas de sismo, las cargas de sismo fueron trabajadas con mayor cuidado teniendo en cuenta lo establecido en la Norma E-030.

El estudio realizado por Iván Antony Cruz Barreto, (2015) "análisis y diseño estructural en concreto armado para una vivienda multifamiliar aplicando la nueva norma de diseño sismo resistente en la urbanización Soliluz—Trujillo" realizó el análisis y diseño estructural en concreto armado para una vivienda multifamiliar aplicando la nueva norma de diseño sismo resistente; así mismo modeló en el programa ETABS para poder hacer el análisis sísmico (Derivas) y análisis estructural (Fuerzas internas).

De la misma manera en el presente trabajo se realizó el diseño estructural sismo resistente teniendo en cuenta la norma E.030 vigente, el cual ha sido actualizada, en función a nuestra realidad peruana.

En la tesis realizada por Kevin Paul Choquehuanca Mamani (2017) "Análisis y diseño estructural de una edificación en concreto armado de 5 pisos y 1 semisótano" determinó

que para los diseños estructurales de los distintos elementos que posea la estructura, antes de proceder con el proceso de diseño, se deberá considerar las exigencias constructivas que se señalan en la normativa, como recubrimientos, calidad y resistencia mínima del concreto, entre otras, y una vez definido la distribución del refuerzo, deben ser representados en los planos de estructuras de una forma tal que sea sencilla su compresión en campo por los profesionales y técnicos encargados de su construcción.

Así mismo en el presente estudio se tuvo en consideración las exigencias constructivas de diseño acorde como lo exige el Reglamento Nacional de edificaciones vigente, terminado todo el proceso de análisis y diseño de los elementos estructurales tales como losas, vigas, columnas y cimentaciones se procedió a realizar las representaciones gráficas en el Civil 3D-2015, empleando un lenguaje técnico acorde a la especialidad (estructuras), de tal manera que los técnicos encargados de la construcción puedan comprender los dibujos de los diseños realizados.

V. CONCLUSIONES

- ❖ Al realizar la evaluación visual a la vivienda, con el instrumento de evaluación validado por los expertos, se pudo evidenciar que la vivienda cuenta con un sistema estructural aporticado (paralelo a la calle principal) y albañilería (perpendicular a la calle), la vivienda cuenta con muros de ladrillos de arcilla cosida (ladrillo artesanal) y muros con ladrillo pandereta, así mismo su techo es una losa aligerada de peralte igual a 20 cm, el primer nivel esta tarrajeado y el segundo nivel se encuentra sin acabados, para salvar el desnivel entre el primer y segundo nivel la vivienda cuenta con una escalera artesanal hecha de madera. La propietaria manifestó que las varillas de acero longitudinales fueron de media pulgada (1/2"), la misma que se pudieron evidenciar solo en las columnas, cuyas varillas de refuerzo sobresalían en la azotea las cuales fueron 6 varillas de refuerzo longitudinal por cada columna. En cuanto al espaciamiento que debe existir entre las viviendas colindantes el cual es una distancia mínima s para evitar el contacto durante un movimiento sísmico, se pudo observar que superan excesivamente en el lado izquierdo, a lo establecido en la norma.
- Se realizó el estudio de mecánica de suelos con fines de cimentación, para lo cual se realizó una calicata en el ingreso de la vivienda, de donde se extrajo la muestra de suelo para luego ser trasladado al laboratorio de la Universidad Cesar Vallejo y realizar los ensayos tales como: Granulometría, Contenido de Humedad, Limite Líquido y Limite Plástico, el cual determino la clasificación según SUCS un suelo tipo GM, los cuales fueron visados por la Universidad Cesar Vallejo y el jefe del laboratorio, en función a dicho resultados de los ensayos, el laboratorio de suelos, concreto y asfalto VH procedió a certificar la capacidad portante del suelo la misma que fue de $2.20 \frac{Kg}{cm^2}$, con el cual se calculó el dimensionamiento de la cimentación la para las columnas.
- ❖ Se realizó el modelamiento de la vivienda existe para poder determinar los puntos donde fallaría la vivienda ante un movimiento sísmico, para tal fin se usó el programa Etabs v17, y también los resultados de la prueba de esclerometría, los cuales fueron: columna C1 del primer nivel $f_c = 200 \frac{Kg}{cm^2}$, columna C2 del segundo nivel $f_c = 235 \frac{Kg}{cm^2}$, columna C2 del segundo nivel $f_c = 168 \frac{Kg}{cm^2}$, columna C3 del segundo nivel $f_c = 174 \frac{Kg}{cm^2}$, columna C4 del segundo nivel $f_c = 214 \frac{Kg}{cm^2}$, columna C5 del segundo

nivel $f_c=187~\frac{Kg}{cm^2}$, columna C6 del segundo nivel $f_c=194~\frac{Kg}{cm^2}$, Viga V1 del segundo nivel $f_c=390~\frac{Kg}{cm^2}$, Viga V2 del segundo nivel $f_c=351~\frac{Kg}{cm^2}$, Viga V3 del segundo nivel $f_c=306~\frac{Kg}{cm^2}$ el cual dicha prueba nos otorgó los parámetros de la capacidad a la compresión del concreto (f_c) .

- ❖ Se logró diseñar los elementos estructurales de la edificación, haciendo uso del Etabs v17 y el Safe v16, teniendo en consideración la norma E. 030 vigente.
- ❖ Se modeló la edificación rediseñada con el Software Etabs v17, en donde se pudo observar que la vivienda tiene un comportamiento eficiente ante un movimiento sísmico.
- ❖ No se pudo realizar la comparación de los elemento estructurales rediseñados con los existentes en su totalidad, debido a que no se puede observar los refuerzos longitudinales ni transversales en losas, vigas columnas o cimientos, ello imposibilita realizar una comparación de manera satisfactoria.

VI. RECOMENDACIONES

- ❖ Se recomienda tener en cuenta las escaleras en los diseños estructurales, para evitar daños a la unidad estructural, cuando se pretenda unir la escalera a la edificación ya construida, como consecuencia de esa unión forzada se aumentando la carga muerta que no fue considerada en el análisis y diseño de la misma.
- ❖ El estudio topográfico deberá realizarse con un grupo de profesionales con ética y equipos topográficos calibrados y certificado, ya que de ello dependerá los resultados, que posteriormente será usados.
- ❖ El estudio de mecánica de suelos debería de realizarlo una empresa con certificación ISO, de tal manera que los resultados obtenidos de los ensayos, tales como: cálculo del ángulo de fricción interna del material, cohesión del suelo, peso específico y la capacidad portante del suelo sobre el cual se va a cimentar, sean datos confiables.
- ❖ El análisis dinámico modal espectral es confuso porque no se sabe si la estructura fue sobre o sub dimensionada por tal motivo se recomienda un análisis tiempo historia que es un método que nos da mayor precisión, o un análisis interacción suelo estructura donde se logra detectar daños estructurales así como también una mejor optimización de los elementos estructurales.
- ❖ Antes de realizar los modelamientos, análisis y cálculos estructurales de una edificación con programas tales como el Etabs y Safe o cualquier otro programa de ingeniería; es necesario realizar un estudio detallado del fundamento teórico (Análisis estructural, Resistencia de materiales, Sísmica, etc.) y normativas vigentes, para evitar omisiones de pasos importantes en el diseño.
- ❖ El presente estudio servirá como base a todos a aquellos estudiantes interesados en el campo de estructuras y diseño sísmico de viviendas bajo la Norma E.030 del Reglamento Nacional de Edificaciones, los cuales deberían estar en concordancia con los parámetros urbanísticos establecidos en por la Sub Gerencia de catastro y desarrollo urbano de la Municipalidad Distrital de independencia.

REFERENCIAS

 BAZAN, E. Diseño sísmico de edificios. 4^{ta}.ed.Mexico: Grupo Noriega Editores, 2001,317 pp.

ISBN: 968-18-5349-0.

BRAJA, Das. Fundamentos de Ingeniería Geotécnica. 2a. ed. México.D.F:
 International Thomson Editores, 2010. 594 pp.

ISBN: 970-686-061-4.

- BLANCO, Antonio, Estructuración y Diseño de Edificaciones de Concreto Armado
 2ª. Ed. Lima: PRINTED IN PERU, 2011.303 pp.
- CIVILGEEKS. Etabs [En línea], Perú: Civilgeeks, 2018 [Fecha de Consulta: 05 de Noviembre del 2018].

Disponible en: https://civilgeeks.com/nosotros/

 CIVILGEEKS. Etabs [En línea], Perú: Civilgeeks, 2018 [Fecha de Consulta: 05 de Noviembre del 2018].

Disponible en: https://civilgeeks.com/2011/04/23/coleccion-manuales-etabs-safe-sap2000/

 GONZÁLES, Óscar. Aspectos Fundamentales del Concreto Reforzado. 4^{ta}.ed.México: Limusa, 2005,802 pp.

ISBN: 968-1 8- 6446-8.

GARCIA Reyes, Luis Enrique. Dinámica Estructural Aplicada Al Diseño Sísmico.
 Colombia. Fondo Editorial Universidad de los Andes, Facultad de Ingeniería, 1998,
 584 pp.

Disponible en: https://civilgeeks.com/2014/08/18/dinamica-estructural-aplicada-al-diseno-sismico/.

 HERNÁNDEZ, Roberto, FERNÁNDEZ, Carlos y BAPTISTA, Pilar. Mitología de la investigación. 6^{ta}.ed.Mexico: McGraw-Hill / Interamericana Editores, S.A. DE C.V.2014, 634 pp.

ISBN: 978-1-4562-2396-0.

KASSIMALI, Aslam Análisis Estructural.5^{ta}.ed.Mexico: Cengage Learning, 2014,802
 pp.

ISBN: 978-1-133-94389-1.

 KRICK, E. Introducción a la Ingeniería y al diseño en la Ingeniería. 1^{era}.ed. México: Limusa, 2013,240 pp.

ISBN: 978-968-18-0176-2.

MCCORMAC, Jack, Análisis de Estructuras Métodos Clásico y Matricial. 4^{ta}.ed.
 México: Alfaomega Grupo Editor, S.A. 2010. 612 pp.

ISBN: 978-607-7854-56-2.

 MCCORMAC, Jack y BROWN, Russell. Diseño de Concreto Reforzado. México: Alfaomega Grupo Editor, S.A.2011. 724 pp.

ISBN: 978-607-707-231-7

 MACGREGOR, James. Reinforced Concrete Mechanics y Design. 6th.ed. New York San Francisco: Copyright Manufactured in the United States of America, 2009, 1177 pp.

ISBN: 978-0-13-217652-1.

 MENDOZA, Jorge. Topografía. 1^{era}.ed.Lima: Depósitos Legales en la Biblioteca Nacional del Perú, 2012, 546 pp.

ISBN: 978-612-00-0577-4.

- MORALES, Roberto, Diseño en Concreto Armado 1ª. Ed. Lima: Editorial Hozlo SAC, 2012.318 pp.
- Mecánica de materiales por Ferdinand Berr [et al.].México: Editorial Mc Graw Hill
 Education, 2013.635 pp.

ISBN: 978-607-15-0934-5

 NAWY, Edward. Concreto Reforzado un Enfoque Básico. 1^{era}.ed.Mexico: Prentice-Hall Hispanoamericana. 1988,743 pp.

ISBN: 968-880-075-9.

 NILSON, Arthur. Desing of Concrete Structures. 14th.edi. New York: Copyright the McgRAW-Hill Companies. 2010, 813 pp.

ISBN: 978-0-07-329349-3.

 San Bartolomé, Quiun y Silva. Diseño y Construcción de Estructuras Sismo resistente de Albañilería. 1ª. Ed. Lima: Fondo Editorial de la Pontifica Universidad Católica Del Perú ,2011.343 pp.

ISBN: 84-8390-965-0.

 TEODORO, Harmsen. Diseño de Estructuras de Concreto Armado. 4^{ta}.ed. Perú: Fondo Editorial de la Pontificia Universidad Católica del Perú, 2004,679 pp.
 ISBN: 9972-42-730-7.

Reglamento

 Ministerio de vivienda, construcción y saneamiento (Perú). Reglamento Nacional de Edificaciones. Decreto Supremo Nº 002-2014-Vivienda.Lima, 2018. 823 pp.

Tesis

- CABRERA Elmer. Diseño estructural en concreto armado de un edificio de nueve pisos en la ciudad de Piura. Tesis (Título de Ingeniero Civil).Piura: Universidad de Piura, Facultad de Ingeniería, 2003. 143 pp.
- CRUZ Iván, Antony y DIEGUEZ Valía, Sthefany. Análisis y diseño estructural en concreto armado para una vivienda multifamiliar aplicando la nueva norma de diseño sismo resistente en la urbanización Soliluz-Trujillo. Tesis (Título de Ingeniero Civil).
 Trujillo: Universidad privada Antenor Orrego, Facultad de Ingeniería, escuela de Ingeniería Civil, 2015. 112 pp.
- CHOQUEHUANCA Kevin, Paul. Análisis y diseño estructural de una edificación en concreto armado de 5 pisos y 1 semisótano. Tesis (Título de Ingeniero Civil).
 Arequipa: Universidad Nacional de San Agustín, Facultad de Ingeniería, escuela de Ingeniería Civil, 2017, 151 pp.
- FLORES de los Santos, Roberto, Diagnostico preliminar de la vulnerabilidad sísmica de las autoconstrucciones en Lima. Tesis (Título de Ingeniero Civil). Lima: Pontificia Universidad Católica del Perú, Facultad de Ciencias e Ingeniería, 2002.65 pp.
- FLORES Ortega, Rogelio. Vulnerabilidad, peligro y riesgo sísmico en viviendas Autoconstruidas del Distrito de Samegua, Región Moquegua. Tesis (Título de Ingeniero Civil). Moquegua: Universidad José Carlos Mariátegui, Facultad de Ingeniería, 2015. 152 pp.
- GONZALES, Juan. Análisis del proceso de diseño de estructuras porticadas. Tesis doctoral. Madrid: Universidad politécnica de Madrid escuela técnica superior de arquitectura, 1990, 331 pp.

- LOPÉZ Javier, Ernesto y MÉNDEZ Jesús, Eduardo. Propuesta para el cálculo estructural sismo resistente de una edificación auxiliar de tres pisos en el núcleo "armando Mendoza" de la f.i.u.c.v. Tesis (Título de Ingeniero Civil).Caracas: Universidad Central de Venezuela, Facultad de Ingeniería Civil, 2015. 277 pp.
- MOSQUEIRA Miguel, Ángel y TARQUE Sabino, Nicolás.
 Recomendaciones Técnicas para Mejorar la Seguridad Sísmica de Viviendas de Albañilería Confinada de la Costa Peruana. Tesis para optar el grado académico demag íster en ingeniería civil. Lima: Pontificia Universidad Católica del Perú escuela de graduados, 2005. 142 pp.
- PINZÓN Chivata, Cristian. Diseño estructural para el proyecto de vivienda nueva para el barrio Bella Vista del Municipio de Soacha (Cundinamarca). Tesis (Título de Ingeniero Civil). Bogotá: Universidad Católica de Colombia, Facultad de Ingeniería Programa de Ingeniería Civil, 2015. 88 pp.

ANEXOS

- 1. Instrumento de recojo de información.
- 2. Validación del instrumento por expertos.
- 3. Matriz de consistencia.
- **4.** Resultados de las pruebas de esclerometría.
- **5.** Certificación de calibración de la prensa de concreto (ESCLEROMETRÍA)
- 6. Estudio topográfico.
- 7. Estudio de mecánica de suelos.
- **8.** Cálculo de Regularidad estructural.
- **9.** Diagrama de cortante y momento para el diseño de la losa aligerada y cálculo del acero requerido según el Safe.
- 10. Cálculos estructurales de vigas.
- 11. Cálculos estructurales de columnas.
- 12. Cálculos estructurales de cimiento.
- **13.** Panel fotográfico.
- 14. Plano topográfico de la unidad de estudio.
- **15.** Plano de planta y elevación de la vivienda existente.
- 16. Plano de estructuras de la vivienda rediseñada.
- 17. Dibujo informal de construcción de la unidad de estudio.

1. INSTRUMENTO DE RECOJO DE INFORMACIÓN

FICHA DE EVALUACIÓN ESTRUCTURAL DE LA VIVIENDA

Fecha de evaluación: 04/10/2018 **Familia:** Liduvina Menacho Jachilla Cantidad de personas que viven: 4 **Dirección:** Pasaje Luis Pardo N° 175 – Urbanización San Miguel. 1. ¿Recibió asesoría técnica para construir su vivienda, por qué? No La vivienda se construyó con un vecino albañil 2. ¿Cuándo empezó a construirla? 2006 (Solo el primer nivel) 3. ¿Cuándo terminó? 2015 (Se culminó el segundo nivel) Tiempo de residencia de la vivienda: 08 años N° de pisos: 2 N° de pisos proyectado: 2 4. Secuencia de construcción de los ambientes: ➤ Paredes límites () ➤ Sala – comedor () ➤ Dormitorio 1 () ➤ Dormitorio 2 **≻**Cocina () ≽Baño () ➤ Todo a la vez (x)➤ Primero un cuarto () 5. Datos técnicos: PARÁMETROS DEL SUELO **OBSERVACIONES**

Flexibles ()

No sabe

Rígido ()

Intermedios ()

ELEMENTOS		OBSERVACIONES				
	CIMIENT	O CORRIDO	ZAPA	ΛTA	La profundidad de la	
Cimientos (m)	Profundidad		Profundidad		zapata no recuerda.	
	Ancho	••••	Sección	1m x1 m	Zuputu 110 Teederda.	
	LADRILLO	ARTESANAL	LADRILLO PA	ANDERETA	Las juntas, tanto horizontales como	
	Dimensiones	No se pueden	Dimensiones	12 <i>x</i> 10 <i>x</i> 23	verticales son variables	
Muros (m)		visualizar.		cm	en los muros de	
	Juntas	No se pueden	Juntas	H = 2cm	segundo nivel.	
		visualizar.		V=3.5 cm		
	LOSA AI	LIGERADA	LOSA M	ACIZA	Se pudo evidenciar que	
Techo (m)	Peralte	20 cm	Peralte		la vivienda cuenta con	
					losa aligerada.	
	CON	CRETO	OTRO MA	TERIAL	Solo se pueden	
Columnas (m)	Dimensiones	0.25m x 0.25m	Dimensiones		observar las varillas	
					longitudinales (6).	
Vigas (m)	CONCRETO		OTRO MA	TERIAL	Solo se puede observar	
1500 (111)	Dimensiones	0.25m x 0.40m	Dimensiones		las secciones.	

Comentario:

Cuando a la propietaria se le pregunto el tipo de varilla de acero que habían empleado, dijo que solo recordaba que el albañil le decía de "media" y cemento sol, cuando se le pregunto por agregados ella dijo que solo se usó arena fina para el tarrajeo, arena gruesa para asentar los ladrillos y hormigón para las columnas vigas y losas.

Se pudo observar que en el primer piso se cuenta con muros de ladrillo artesanal en el eje *Y* y en el segundo piso ladrillo pandereta en el mismo eje; las mismas que son muros portantes. Actualmente la edificación no cuenta con escalera de concreto armado solo tiene una escalera de madera que conecta el primer nivel con el segundo.

También se pudo observar que las juntas entre viviendas colindantes en uno es de 1cm (Lado derecho) y en el otro es de 6cm (Lado izquierdo).

6. OBSERVACIÓN.

En cuanto a la separación entre viviendas adyacentes a la unidad de estudio están fuera de los parámetros establecidos en el Reglamento nacional de edificaciones vigente (Norma E.030 capítulo 5).

La norma E.030 capítulo 5 establece que toda estructura debe estar separada de las estructuras vecinas, desde el nivel del terreno natural, una distancia mínima *s* para evitar el contacto durante un movimiento sísmico.

$$s = 0.006h \ge 0.03m \dots \alpha$$

Donde h es la altura medida desde el nivel del terreno natural hasta el nivel considerado para evaluar.

Para nuestro caso h = 5.10m.

Reemplazando en la ecuación α se tiene:

$$s = 0.006(5.10)m$$

s = 3.00 cm (Separación entre viviendas adyacentes)

Se puede notar que las medidas de separación tomadas en campo, no cumplen con lo establecido en la norma.

7. CONFORMIDAD DE LA PROPIETARIA Y TESISTAS.

Acta de conformidad de visita domiciliaria En el Pasaje Luis Pardo N° 175 – Urbanización San Miguel – Distrito de Independencia – Huaraz – Ancash.

En el lugar Urbanización San Miguel, siendo el día 04 del mes de octubre del año 2018, a horas 9:15 am, reunidos con la Señora Propietaria Liduvina Menacho Jachilla, con DNI Nº 31609015, en su propiedad ubicada en el domicilio en el Pasaje Luis Pardo Nº 175 – Urbanización San Miguel – Distrito de Independencia – Huaraz – Ancash, en adelante se le denominara "LA PROPIETARIA"; y los alumnos Jhon Jhunior Moreno Huaman, con DNI Nº 44006439, y el alumno Lenin Alejandro Espinoza Valerio, con DNI Nº 10724303, ambos alumnos de la carrera de Ingeniería Civil - de la Facultad de ingeniería Civil de la UNIVERSIDAD CESAR VALLEJO, quienes vienen realizando su tesis para optar el grado de Ingeniero Civil, en delante de les denominará "LOS ALUMNOS", reunidos levantan la presente acta:

PRIMERO.- "LA PROPIETARIA" da fe y certifica que es verdad que "LOS ALUMNOS" durante el tiempo que vienen realizando su tesis han venido en reiteradas oportunidades a mí inmueble ubicado en el lugar antes descrito, con la finalidad de obtener datos de la construcción de mi predio, han realizado pruebas de las estructura del predio, han realizado medidas a vigas, columnas y losas, han realizado el levantamiento topográfico, del mismo modo han realizado una calicata para extraer la muestra de suelo, así como también han realizado la prueba de esclerometría, del cual doy plena fe.

Siendo, la misma fecha, a las 11:40 am, suscriben las partes, previa lectura de la presente, dan la conformidad de todo lo actuado, sin mediar coerción, siendo voluntaria el mismo, se suscribe la presente.

Liduvina Menacho Jachilla.

DNI Nº .3160 9015

Propietaria

Lenin Alejandro Espinoza Valerio.

DNI Nº 10724303.

2. VALIDACIÓN DEL INSTRUMENTO POR EXPERTOS

Apellidos y Nombres del experto: DIAZ BETETA DANIEL ALBERT.

VARIABLE	DIMENSIÒN	ÍTEMS	Construcción – critica de respuesta				la entre el le y dimensión ión y los ítems		Observaciones y/o Recomendaciones
			SI	NO	SI	NO	SI	NO	
		¿Recibió asesoría técnica para construir su vivienda?	X		X		X		
Rediseño estructural de una		¿Cuándo empezó la construcción de la vivienda?		х	X		X		
edificación familiar de dos	DISEÑO	¿Cuándo se terminó de construir?		X	Х		X		
niveles.		Secuencias de construcción de los ambientes.	X		X		X		
		Captación de datos técnicos.	X		Х		X		

VALIDACIÓN DEL INSTRUMENTO

NOMBRE DEL INSTRUMENTO : Ficha de evaluación estructural de la vivienda.

OBJETIVO :Validar el instrumento de evaluación a

Ingenieros expertos.

DIRIGIDO A : Ingenieros Civiles expertos en estructuras de la

Ciudad de Huaraz.

VALORACIÓN DEL INSTRUMENTO:

Pésimo	Malo	Regular	Muy Bueno	Excelente
				X

APELLIDOS Y NOMBRES DEL EXPERTO:

DIAZ BETETA DANIEL ALBERT.

GRADO ACADÉMICO DEL EXPERTO:

Ing. CIVIL.

${\bf Apellidos\ y\ Nombres\ del\ experto:\ MONCADA\ SAUCEDO\ SEGUNDO\ FRANCISCO.}$

VARIABLE	DIMENSIÒN	ÍTEMS	respuesta v		critica de		critica de respuesta		critica de		critica de respuesta Relación entre la variable y			N ción ce el nsión	Observaciones y/o Recomendaciones
		¿Recibió asesoría técnica	SI	NO	SI	NO	SI	NO							
		para construir su vivienda?	X		X		X								
Rediseño		¿Cuándo empezó la construcción de la													
estructural de una		vivienda?	X		X		X								
edificación	DISEÑO	¿Cuándo se terminó de construir?	Х		X		X								
familiar de dos		Secuencias de													
niveles.		construcción de los ambientes.	X		X		X								
		Captación de datos técnicos.	X		X		X								

to F Moneade Saucedo
ING CIVIL
R CIP 109939
FIRMA DEL EXPERTO

VALIDACIÓN DEL INSTRUMENTO

NOMBRE DEL INSTRUMENTO : Ficha de evaluación estructural de la vivienda.

OBJETIVO :Validar el instrumento de evaluación a

Ingenieros expertos.

DIRIGIDO A : Ingenieros Civiles expertos en estructuras de la

Ciudad de Huaraz.

VALORACIÓN DEL INSTRUMENTO:

Pésimo	Malo	Regular	Muy Bueno	Excelente
				X

APELLIDOS Y NOMBRES DEL EXPERTO:

MONCADA SAUCEDO SEGUNDO

FRANCISCO.

GRADO ACADÉMICO DEL EXPERTO:

Mgtr. GERENCIA EN LA

CONSTRUCCIÓN.

TO F Moneada Saucedo

FIRMA DEL EXPERTO

Apellidos y Nombres del experto: ESPINOZA VALERIO JOSÉ FREDY.

VARIABLE	DIMENSIÒN	ÍTEMS	Construcción critica de respuesta				RIOS DE JACIÓN Relación entre el dimensión y los ítems		Observaciones y/o Recomendaciones
		¿Recibió asesoría técnica	SI	NO	SI	NO	SI	NO	
Rediseño estructural de una edificación familiar de dos niveles.	DISEÑO	para construir su vivienda?	X		X		X		
		¿Cuándo empezó la construcción de la vivienda?	X		X		X		
		¿Cuándo se terminó de construir?	X		X		X		
		Secuencias de construcción de los ambientes	X		X		X		
		Captación de datos técnicos	X		X		X		

JOSÉ FREDY ESPINOZA VALERIO INGENIERO CIVIL Reg. CIP N° 121215

VALIDACIÓN DEL INSTRUMENTO

NOMBRE DEL INSTRUMENTO : Ficha de evaluación estructural de la vivienda.

OBJETIVO :Validar el instrumento de evaluación a

Ingenieros expertos.

DIRIGIDO A : Ingenieros Civiles expertos en estructuras de la

Ciudad de Huaraz.

VALORACIÓN DEL INSTRUMENTO:

Pésimo	Malo	Regular	Muy Bueno	Excelente

APELLIDOS Y NOMBRES DEL EXPERTO:

ESPINOZA VALERIO JOSÉ FREDY.

Reg. CIP Nº 121215

GRADO ACADÉMICO DEL EXPERTO:

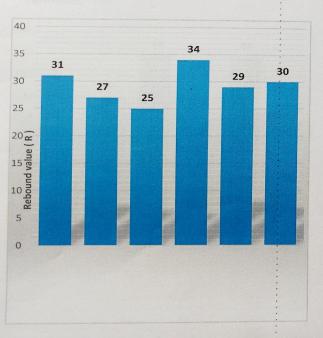
Ing. CIVIL

3. MATRIZ DE CONSISTENCIA

Título	Formulación del	Objetivos	Hipótesis	Tipo de	Diseño de la	Variable
	problema	·	•	investigación	Investigación	
Rediseño estructural de una edificación familiar de dos niveles en la urbanización San Miguel, Huaraz 2018.	¿Cuál será la metodología para rediseñar estructuralmente la edificación familiar de dos niveles ubicada en la urbanización San Miguel?	 Objetivo General Realizar el rediseño estructural de la edificación familiar de dos niveles ubicada en la Urbanización San Miguel. Objetivos Específicos: ❖ Realizar la evaluación visual de los elementos estructurales existentes. ❖ Realizar el estudio de mecánica de suelos con fines de cimentación. ❖ Modelar la edificación multifamiliar existente, con el Software Etabs v17. ❖ Diseñar los elementos estructurales de la edificación, con los software Etabs v17 y Safe v16, bajo la norma E.030-2018. ❖ Modelar la edificación rediseñada, con el Software Etabs v17. ❖ Realizar la comparación de los elementos estructurales actuales en función a lo rediseñado. 	El rediseño estructural mejorara las condiciones estructurales según la norma E. 030 en la edificación familiar de dos niveles ubicada en la Urbanización San Miguel.	Cuantitativo	No experimental- Transeccional- descriptivo	Rediseño estructural de una edificación familiar de dos niveles.

4.RESULTADOS DE LAS PRUEBAS DE ESCLEROMETRÍA

Descripción				
Tipo de Muestra	Código de Muestra	Punto :	Dirección de Impacto	Plano
1era Planta	C1	1	→ a 90° del Elemento	S/N


Title: COLUMNA

Name:

PTL

Date: 26-Oct-18

Remarks: TESIS

Set parameters

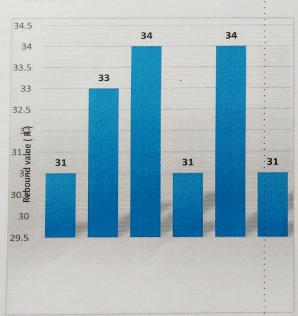
Conversion curveB-PROCEQForm factor0.81Time factor1.00Carbonation depthd = 0 mm

Statistic

Measured rebound value (R)

31 27 25 34 29 30

Desc	Descripción		Dirección de Impacto	A CONTRACTOR OF THE CONTRACTOR	
Tipo de Muestra	Código de Muestra	Punto	Direction de Impacto	Plane	
2da Planta	C1	2	→ a 90° del Elemento	S/N	


Name:

PTL

COLEGIO DE INGENIEROS DEL PER

Title: COLUMNA Date: 26-Oct-18

Remarks: TESIS

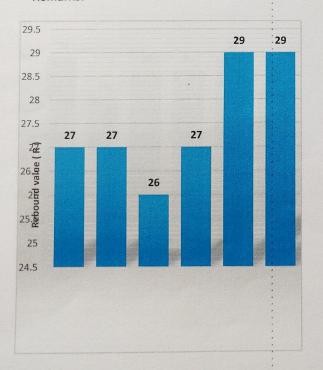
Set parameters

P

Statistic

Measured rebound value (R)

31 33 34 31 34 31



Descripción		Punto	Dirección de Impacto		
Tipo de Muestra	Código de Muestra	Fullo	Dirección de impacto	Plano	
2da Planta	C2	3	→ a 90° del Elemento	S/N	

PROCEQ - DIGISCHMIDT (4.5, 89-3978, ND 5428)
Title: COLUMNA

Date: 26-Oct-18

Remarks: TESIS

Set parameters

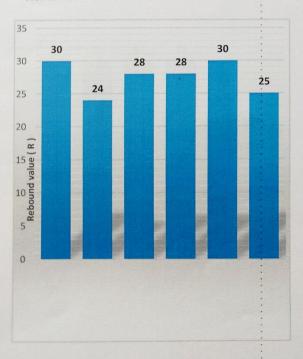
Statistic

Name:

PTL

		and the state of t				
27	27	26	27	29	29	

Descripción		Punto	Dirección de Impacto	Plano	
Tipo de Muestra	Código de Muestra	, unto	Direction de Impacte	Fight	
2da Planta	C3	4	→ a 90° del Elemento	S/N	


Name:

PTL

Title: COLUMNA

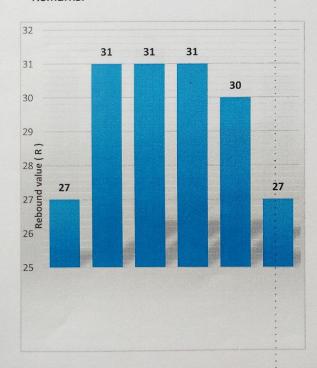
Date: 26-0ct-18

Remarks: TESIS

Set parameters

Statistic

			a mela				
3	0	24	28	28	30	25	



Descripción		Punto :	Dirección de Impacto		
Tipo de Muestra	Código de Muestra	Tuno :	Direction de impacto	Plano	
2da Planta	C4	5 .	→ a 90° del Elemento	S/N	

26-0ct-18

Date: Title: COLUMNA

Remarks: TESIS

Set parameters

Conversion curve **B-PROCEQ** Form factor 0.81 Time factor 1.00 d = 0 mmCarbonation depth

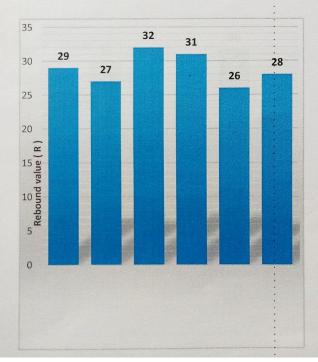
Statistic

Number of measurements	N =	6	
Mean rebound calue	m =	29.5	R
Mean compressive strength	fck =	214	kg/cm2
Standard deviation	sa =	2.0	R
Minimum rebound value	Min =	27	R
Maximum rebound value	Max =	31	R

Name:

PTL

27	31	31	31	30	27	



Descripción		Punto	Dirección de Impacto	The second secon	
Tipo de Muestra	Código de Muestra	:	Dirección de impacto	Plano	
2da Planta	C 5	6	→ a 90° del Elemento	S/N	

Title: COLUMNA

Date: 26-0ct-18

Remarks: TESIS

Set parameters

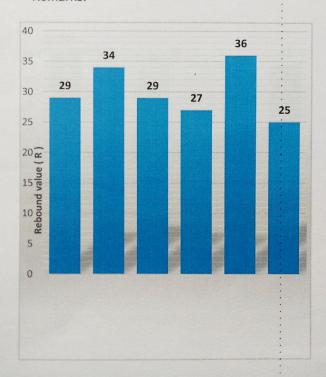
Conversion curve	B-PROCEQ
Form factor	0.81
Time factor	1.00
Carbonation depth	d = 0 mm

Statistic

Number of measurements	N =	6	
Mean rebound calue	m =	28.8	R
Mean compressive strength	fck =	187	kg/cm2
Standard deviation	sa =	2.3	R
Minimum rebound value	Min =	26	R
Maximum rebound value	Max =	32	R

Name:

29	27	32	31	26	28	



Des	cripción	Prints Physics at 1		
Tipo de Muestra	Código de Muestra	Punto ;	Dirección de Impacto	Plano
2da Planta	C6	7	→ a 90° del Elemento	S/N

Title: COLUMNA

Date: 26-0ct-18

Remarks: TESIS

Set parameters

B-PROCEQ
0.81
1.00
d = 0 mm

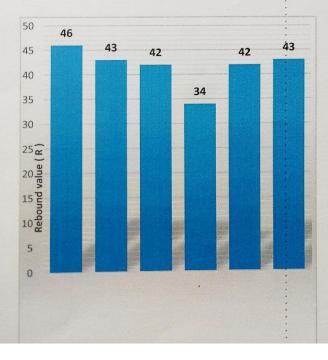
Statistic

Number of measurements	N =	6	
Mean rebound calue	m =	30.0	R
Mean compressive strength	fck =	194	kg/cm2
Standard deviation	sa =	4.2	R
Minimum rebound value	Min =	25	R
Maximum rebound value	Max =	36	R

Name:

PTL

2	9	34	29	27	36	25	



Desc	cripción	Provide the Control of the Control o		Punto : Dirección de Impacto		
Tipo de Muestra	Código de Muestra	Funto :	Dirección de Impacto	Plano		
2da Planta	V1	8	† a 90° del Elemento	S/N		

Date: 26-Oct-18

Remarks: TESIS

Title: VIGA

Set parameters

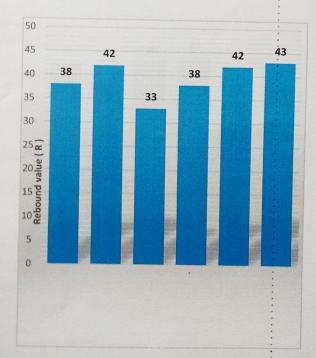
Conversion curve	B-PROCEQ
Form factor	0.81
Time factor	1.00
Carbonation depth	d = 0 mm

Statistic

Number of measurements	N =	6	
Mean rebound calue	m =	41.7	R
Mean compressive strength	fck =	390	kg/cm2
Standard deviation	sa =	4.0	R
Minimum rebound value	Min =	34	R
Maximum rebound value	Max =	46	R

Name:

PTL


46	43	42	34	42	43	
----	----	----	----	----	----	--

Des	oripeión			
Tipo de Muestra	Código de Muestra	Punto :	Dirección de Impacto	Plano
2da Planta	V2	9	→ a 90° del Elemento	S/N
		:		S/N

Title: VIGA Date: 26-Oct-18

Remarks: TESIS

Set parameters

Conversion curveB-PROCEQForm factor0.81Time factor1.00Carbonation depthd = 0 mm

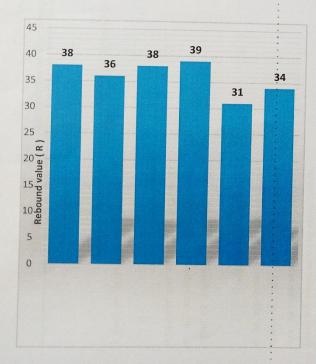
Statistic

Name:

PTL

EROS DEL PERL

38	42	33	38	42	43		
----	----	----	----	----	----	--	--



Descripción				
Tipo de Muestra	Código de Muestra	Punto :	Dirección de Impacto	Plano
2da Planta	V3	10	→ a 90° del Elemento	SAN
	DT/// T 00 00 00 00	:	→ a 90° del Elemento	S/N

Date: 26-Oct-18

Remarks: TESIS

Title: VIGA

Set parameters

Conversion curve	B-PROCEQ
Form factor	0.81
Time factor	1.00
Carbonation depth	d = 0 mm

Statistic

o tationo			
Number of measurements	N =	6	
Mean rebound calue	m =	36.0	R
Mean compressive strength	fck =	306	kg/cm2
Standard deviation		3.0	
Minimum rebound value	Min =	31	R
Maximum rebound value	Max =	39	R

Name:

PTL

38	36	38	39	31	34	

5. CERTIFICACIÓN DE CALIBRACIÓN DE LA PRENSA DE CONCRETO

METROLOGÍA & TÉCNICAS S.A.C.

CERTIFICADO DE CALIBRACIÓN MT - LF - 274 - 2018

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o

internacionales, que realizan las unidades

de la medición de acuerdo con el Sistema

Los resultados son validos en el momento de la calibración. Al solicitante le

corresponde disponer en su momento la ejecución de una recalibración, la cual

está en función del uso, conservación y mantenimiento del instrumento de

METROLOGÍA & TÉCNICAS S.A.C. no se responsabiliza de los perjuicios que pueda

ocasionar el uso inadecuado de este instrumento, ni de una incorrecta

interpretación de los resultados de la

Este certificado de calibración no podrá

ser reproducido parcialmente sin la

aprobación por escrito del laboratorio

El certificado de calibración sin firma y

calibración aquí declarados.

que lo emite.

medición o a reglamento vigente.

Internacional de Unidades (SI).

Área de Metrología Laboratorio de Fuerza

Página 1 de 3

1. Expediente

18847

2. Solicitante

MEGACONCRETO INGENIERIA Y CONSTRUCCIÓN S.A.C.

3. Dirección

Jr. Porvenir N° 170 Barrio Monterrey, Independencia - Huaraz - ANCASH.

4. Equipo

PRENSA DE CONCRETO

Capacidad

2000 kN

Marca

YU FENG

Modelo

STYE-2000

Número de Serie

110927

Procedencia

CHINA

Identificación

QC.EC.PRE.01

(**)

Indicación Marca

Modelo Número de Serie

Resolución

Ubicación

DIGITAL MC

LM-02 NO INDICA

0,01 / 0,1 kN (*)

LABORATORIO DE PLANTA DE CONCRETO PRE sello carece de validez.

MEZCLADO

5. Fecha de Calibración Fecha de Emisión

2018-10-20

2018-10-19

Jefe del Laboratorio de Metrología

Sello

LABORATORIC

Metrología & Técnicas S.A.C.

Av. San Diego de Alcalá Mz F1 Lote 24 Urb. San Diego - LIMA - PERÚ

Telf:: (511) \$40-0642 Cel.: (511) 971 439 272 / 942 635 342 / 971 439 282 RPM: #971439272 / #942635342 / #971439282

email: metrologia@metrologiatecnicas.com ventas@metrologiatecnicas.com WEB: www.metrologiatecnicas.com

METROLOGÍA & TÉCNICAS S.A.C.

ervicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laborataria

Área de Metrología Laboratorio de Fuerza

CERTIFICADO DE CALIBRACIÓN MT - LF - 274 - 2018

Página 2 de 3

6. Método de Calibración

La calibración se realizó por el método de comparación directa utilizando patrones trazables al SI calibrados en las instalaciones del LEDI-PUCP tomado como referencia el método descrito en la norma UNE-EN ISO 7500-1 "Verificación de Máquinas de Ensayo Uniaxiales Estáticos. Parte 1: Máquinas de ensayo de tracción/compresión. Verificación y calibración del sistema de medida de fuerza." - Julio 2006.

7. Lugar de calibración

LABORATORIO DE PLANTA DE CONCRETO PRE MEZCLADO Jr. Porvenir N° 170 Barrio Monterrey, Independencia - Huaraz - ANCASH.

8. Condiciones Ambientales

	Inicial	Final
Temperatura	19,1 °C	19,1 °C
Humedad Relativa	66 % HR	66 % HR

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Informe/Certificado de calibración
Celdas patrones calibradas en el National Standars Testing Laboratory de Maryland - USA	Celda de carga calibrado a 1500 kN con incertidumbre del orden de 0,6 %	`LEDI-PUCP INF-LE-006-18A

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- (*) La resolucion del indicador es 0,01 kN para lecturas menores a 1000 kN y 0,1 kN para lecturas fuera de este rango.
- (**) Código de identificación indicado en una etiqueta adherido al equipo.

OGIA & TECHNOSO

Metrología & Técnicas S.A.C. Av. San Diego de Alcalá Mz F1 Lote 24 Urb. San Diego - LIMA - PERÚ Telf.: (511) 540-0642 Cel.: (511) 971 439 272 / 942 635 342 / 971 439 282 RPM: #971439272 / #942635342 / #971439282

email: metrologia@metrologiatecnicas.com ventas@metrologiatecnicas.com WEB: www.metrologiatecnicas.com

METROLOGÍA & TÉCNICAS S.A.C.

Área de Metrología Laboratorio de Fuerza

CERTIFICADO DE CALIBRACIÓN MT - LF - 274 - 2018

Página 3 de 3

11. Resultados de Medición

	Indicación del Equipo		Indicación de Fuerza (Ascenso) Patrón de Referencia				
%	$F_i(kN)$	F_1 (kN)	F ₂ (kN)	F ₃ (kN)	Fpromedio(kN)		
10	100	100,6	100,4	100,4	100,5		
20	200	200,4	200,0	200,2	200,2		
30	300	300,5	300,1	300,7	300,5		
40	400	400,7	400,2	401,0	400,7		
50	500	500,8	500,5	501,3	500,9		
60	600	601,0	600,6	601,2	600,9		
70	700	701,3	701,3	701,7	701,5		
80	800	801,4	800,4	801,9	801,2		
90	900	901,7	901,3	902,1	901,7		
100	1000	1001,9	1001,6	1002,6	1002,0		
Retorn	o a Cero	0,0	0,0	0,0			

Indicación	Err	ores Encontrados er	el Sistema de Medi	ción	Incertidumbre
del Equipo	Exactitud	Repetibilidad	Reversibilidad	Resol. Relativa	U (k=2)
F(kN)	q (%)	b (%)	v (%)	a (%)	(%)
100	-0,49	0,20		0,01	0,34
200	-0,08	0,20		0,01	0,34
300	-0,16	0,20		0,00	0,34
400	-0,17	0,20	-	0,00	0,34
500	-0,17	0,16		0,00	0,34
600	-0,15	0,10		0,00	0,34
700	-0,21	0,06		0,00	0,34
800	-0,15	0,19	m rt 10	0,00	0,34
900	-0,19	0,09		0,00	0,34
1000	-0,20	0,11		0,00	0,34

0,00 % MÁXIMO ERROR RELATIVO DE CERO (fo)

12. Incertidumbre

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no propositivo una estimación de variaciones a

largo plazo.

Metrología & Técnicas S.A.C.

Av. San Diego de Alcalá Mz F1 Lote 24 Urb. San Diego - LIMA - PERÚ
Telf: (511) 540-0642

Cel.: (511) 971 439 272 / 942 635 342 / 971 439 282 RPM: #971439272 / #942635342 / #971439282

email: metrologia@metrologiatecnicas.com ventas@metrologiatecnicas.com WEB: www.metrologiatecnicas.com

6.ESTUDIO TOPOGRÁFICO.

LEVANTAMIENTO TOPOGRÁFICO DE LA UNIDAD DE ESTUDIO

"REDISEÑO ESTRUCTURAL DE UNA EDIFICACIÓN FAMILIAR DE DOS NIVELES EN LA URBANIZACIÓN SAN MIGUEL, HUARAZ 2018"

DISTRITO INDEPENDENCIA

PROVINCIA HUARAZ

DICIEMBRE 2018

I. MEMORIA DESCRIPTIVA DEL PLANO PERIMÉTRICO

1.1. OBJETO DEL LEVANTAMIENTO TOPOGRÁFICO

Realizar el levantamiento topográfico de la unidad de estudio, a fin de conocer las cotas del terreno y emplazamiento actual de las edificaciones existentes al interior del predio en mención.

1.2. MÉTODO DE TRABAJO

El levantamiento topográfico se ha realizado empleando un teodolito electrónico. Para el procesamiento de datos se ha empleado el programa AutoCAD Land 2018 y para los dibujos digitales el programa Civil 3D 2018.

En campo se ubicó las estaciones de levantamiento en los puntos de mayor visibilidad del área de estudio generando una poligonal cerrada de cinco 4 vértices, que permitió tomar los puntos necesarios para la ubicación de todos los elementos constructivos y de relieve a levantar. El Interior del terreno del ha sido levantada en su totalidad mediante medición métrica conectada con los vértices estaciones que sirvieron también para levantar el contorno con fines de definir mejor la ubicación de la unidad de estudio. El levantamiento incluyó las calles adyacentes y el entorno en general, lo que permitió posteriormente determinar la ubicación del predio en coordenadas UTM a partir de un plano de catastro de la carta nacional del IGN. Se ha tomado un punto de referencia establecido en altura (BM) en un vértice de la vereda existente, con una cota de 3176 m.s.n.m. geo referenciado con el GPS Navegador debido a la no existencia de cartilla del Instituto Geográfico Nacional.

1.3. UBICACIÓN Y ACCESO AL PREDIO

La unidad de estudio se ubica en la Urbanización San Miguel, distrito de Independencia, provincia de Huaraz departamento de Ancash. Para poder llegar a la unidad de estudio se puede tomar la línea N° 20 del centro de la ciudad de Huaraz.

1.4. ANTECEDENTE

Para la ejecución del Levantamiento Topográfico se contó con el

Siguiente personal:

- Los tesistas:
 - > Moreno Huaman Jhon Jhunior.
 - > Espinoza Valerio Lenin Alejandro.
- Se utilizó el siguiente equipo:
 - > 01 Estación Total TOP-COM
 - > 01 Prisma
 - > 01 GPS 12
 - > 01 Wincha

1.5. LINDEROS Y MEDIDAS PERIMÉTRICAS

El terreno tiene los siguientes linderos y medidas perimétricas:

- Por el Norte, 3.90 ml. Propiedad de terceros.
- Por el Sur, 3.90 ml. Con el pasaje Luis Pardo.
- Por el Este, 17.00 ml. Propiedad de terceros.
- Por el Oeste, 17.00 ml. Propiedad de terceros.

1.6. CUADRO DE DATOS TECNICOS

CUADRO DE COORDENADAS DATUM WGS-84								
PUNTO	LADO	DIST.	ANGULO	ESTE (X)	NORTE (Y)	COTA (Z)	AREA	PERIMETRO
Α	A-B	17.00	90°00'00"	223326.315	8946982.183	3168.340		
В	B-C	3.90	90°00'00"	223321.733	8946998.554	3168.340	0m2	8m
С	C-D	17.00	90°00'00"	223325.488	8946999.605	3168.340	66.3	41.
D	D-A	3.90	90°00'00''	223330.070	8946983.234	3168.340		

1.7. ÁREA Y PERÍMETRO DEL TERRENO.

El área de terreno delimitado por los linderos antes descritos es de 66.3 m², el cual

cuenta con un perímetro de 41.8 ml.

1.8. DESCRIPCIÓN DEL TERRENO Y EDIFICACIONES EXISTENTES

La unidad de estudio comprende un terreno de forma rectangular, tiene una

superficie plana.

El predio ocupa un área rodeada por viviendas de terceros y un pasaje denominado

Luis Pardo. La unidad de estudio cuenta con una construcción de dos pisos de

material noble, el primer piso esta tarrajeado y con divisiones de drywall, el segundo

nivel no está tarrajeado, para salvar el desnivel de piso a piso (del primero al

segundo) la vivienda cuenta con una escalera de madera. El lote cuenta con área total

de 66.20 m2, de donde solo 41.34 m2 está construido.

1.9. ALGUNOS DATOS GEOGRÁFICOS DEL DISTRITO DE INDEPENDENCIA

El distrito de Independencia, se encuentra en la provincia de Huaraz y algunos datos

geográficos de importancia son:

• Altitud : 3052 m.s.n.m aproximadamente

• Clima : Seco-Templado, propio de sierra.

• Temperatura : Media anual entre 13°C a 19°C.

II. TAQUIMETRIA

Se efectuó el levantamiento topográfico mediante una poligonal cerrada.

Se adjunta los puntos de levantamiento topográfico.

128

2.1SERVICIOS PUBLICOS

La urbanización San Miguel cuenta con red de agua potable denominada "JAPSHAN", que pasa por el pasaje Luis Pardo a una distancia de 1.82 ml de la vivienda. La red de energía eléctrica a una distancia de 1.12 ml. Cuenta con servicio de desagüe y alcantarillado.

7. ESTUDIO DE MECÁNICA DE SUELOS

LABORATORIO DE ENSAYOS DE MATERIALES LABORATORIO DE SUELOS DE LA UNIVERSIDAD CESAR VALLEJO

SOLICITANTES : ESPINOZA VALERIO LENIN ALEJANDRO

: MORENO HUAMAN JHON JHUNIOR

PROYECTO (TESIS) : "REDISEÑO ESTRUCTURAL DE UNA EDIFICACIÓN FAMILIAR DE DOS

NIVELES EN LA URBANIZACIÓN SAN MIGUEL, HUARAZ 2018".

UBICACIÓN : DISTRITO DE INDEPENDENCIA - PROVINCIA DE HUARAZ - ANCASH

FECHA DE RECEPCIÓN : HUARAZ, 18 DE OCTUBRE DE 2018 FECHA DE EMISIÓN : HUARAZ, 20 DE OCTUBRE DE 2018

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM D422

CALICATA	C-01
UBICACIÓN	VIVIENDA DE LA FAMILIA: MENACHO JACHILLA N: 8946977; E: 223326; Z: 3171 m.s.n.m.
PROFUNDIDAD (m)	3.00

TAMIZ	% QUE PASA
3"	100.0
2"	100.0
1 1/2"	90.4
1"	83.8
3/4"	76.7
1/2"	67.7
3/8"	59.9
1/4"	54.3
N°4	49.3
N°10	41.7
N°20	37.0
N°40	29.6
N°60	24.4
N°140	17.5
N°200	14.2

CLASIFICACIÓN DE SUELOS

	SÍMBOLO	GM
sucs	NOMBRE DE GRUPO	GRAVA LIMOSA; MEZCLA DE GRAVA REGULAR, ARENA Y LIMO

OBSERVACIÓN

LA MUESTRA FUE PROPORCIONADA POR LOS ALUMNOS

CAMPUS HUARAZ

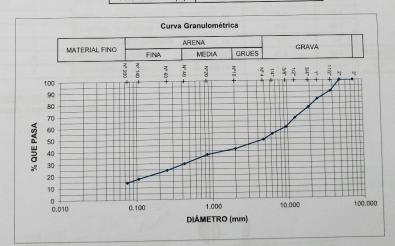
Av. Independencia 1488 Barrio: Palmira Baja, Independencia - Huaraz Telf: (043) 483031 TEC VICTOR HUGO VILLANUEVA NAJARRO
LABORATORIO DE INGENIERIA CIVIL
REG 5/25/3
UCV HUARAZ

Mg. Erika Magaly Mozo Castañeda Coordinadora de la Escuela de Ingemena Civil fb/ucv.peru
@ucv_peru
#saliradelante
ucv.edu.pe

LABORATORIO DE SUELOS

: ESPINOZA VALERIO LENIN ALEJANDRO SOLICITANTES

: MORENO HUAMAN JHON JHUNIOR


: "REDISEÑO ESTRUCTURAL DE UNA EDIFICACIÓN FAMILIAR DE DOS PROYECTO (TESIS)

NIVELES EN LA URBANIZACIÓN SAN MIGUEL, HUARAZ 2018".

: DISTRITO DE INDEPENDENCIA - PROVINCIA DE HUARAZ - ANCASH UBICACIÓN

FECHA DE RECEPCIÓN : HUARAZ, 18 DE OCTUBRE DE 2018 : HUARAZ, 20 DE OCTUBRE DE 2018 FECHA DE EMISIÓN

	CALICATA	C - 01
	UBICACIÓN	VIVIENDA DE LA FAMILIA: MENACHO JACHILLA N: 8946977; E: 223326; Z: 3171 m.s.n.m.
t	PROFUNDIDAD (m)	3.00

: LA MUESTRA FUE PROPORCIONADA POR LOS ALUMNOS **OBSERVACIÓN**

CAMPUS HUARAZ

Av. Independencia 1488 Barrio: Palmira Baja, Independencia - Huaraz Telf: (043) 483031

TEC. VÍCTOR HUGO VILLANUEVA NAJARRO LABORATORIO DE INGENIERIA CIVIL REG 62630 UCV HUARAZ

Mg. Erika Magaly Mozo Castañeda Coordinadors de la Escuela de Ingemena Civil

LABORATORIO DE SUELOS DE LA UNIVERSIDAD CESAR VALLEJO

: ESPINOZA VALERIO LENIN ALEJANDRO : MORENO HUAMAN JHON JHUNIOR SOLICITANTE

PROYECTO (TESIS)

: "REDISEÑO ESTRUCTURAL DE UNA EDIFICACIÓN FAMILIAR DE DOS NIVELES EN LA URBANIZACIÓN SAN MIGUEL, HUARAZ

UBICACIÓN

: DISTRITO DE INDEPENDENCIA - PROVINCIA DE HUARAZ -: HUARAZ, 18 DE OCTUBRE DE 2018

FECHA DE RECEPCIÓN FECHA DE EMISIÓN

: HUARAZ, 20 DE OCTUBRE DE 2018

ENSAYO PARA LA DETERMINACIÓN DEL CONTENIDO DE HUMEDAD NATURAL

NTP 339.127 / ASTM D2216

CALICATA	C - 01	UBICACIÓN	URBANIZACIÓN SAN MIGUEL N: 8946977; E: 2223326; Z: 3171 m.s.n.m.	PROF. (m)	3.00
CANTERA		MUESTRA		V-01	

1	N° DEL RECIPIENTE	17	18	
2	PESO DEL RECIPIENTE (g)	18.3	17.3	
3	PESO DEL RECIPIENTE + SUELO HUMEDO (g)	68.9	86.4	
4	PESO DEL RECIPIENTE + SUELO SECO (g)	65.8	82.5	
5	PESO DEL AGUA CONTENIDA (3) - (4) (g)	3.1	3.9	
6	PESO DEL SUELO SECO (4) - (2) (g)	47.5	65.2	PROMEDIO
7	CONTENIDO DE HUMEDAD (5) / (6) * 100 (%)	6.5	6.0	6.3

OBSERVACIONES :

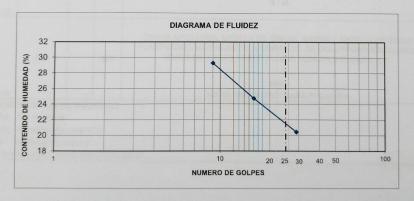
Muestra proporcionada e identificada por los alumnos

TEC VICTOR HUGO VILLANUEVA NAJARRO, LABORATORIO DE INGENIERIA CIVIL REG 62630 UCV HUARAZ

Mg. Erika Magaly Mozo Castaneda

CAMPUS HUARAZ

Av. Independencia 1488 Barrio: Palmira Baja, Independencia - Huaraz Telf: (043) 483031


LABORATORIO DE SUELOS DE LA UNIVERSIDAD CESAR VALLEJO HUARAZ

SOLICITANTES	ESPINOZA VALERIO LENIN ALEJANDRO.						
SOLICITANTES	MORENO HUAMAN JHON JHUNIOR.						
PROYECTO (TESIS) :	"REDISEÑO ESTRUCTURAL DE UNA EDIFICACIÓN FAMILIAR DE DOS NIVELES EN LA URBANIZACIÓN SAN MIGUEL, HUARAZ 2018"						
UBICACIÓN :	DISTRITO DE INDEPENDENCIA - PROVINCIA DE HUARAZ - ANCASH						
FECHA DE RECE	PCION: 18 DE OCTUBRE DEL 2018 FECHA DE EMISION: 20 DE OCTUBRE DEL 2018						

LÍMITES DE CONSISTENCIA ASTM D4318 / NTP 339.129

CALICATA:	01	MUESTRA : M-01	PROF. (m):	3.00
UBICACION: VIVIENDA	DE LA FAMILI	A: MENACHO JACHILLA N: 8946977; E:	223326; Z: 3171 m.s.n.m.	

2 3 2 18 2 18 20 20 20 20 20 20 20 20 20 20 20 20 20		L	LÍMITE LÍQUIDO			LÍMITE PLÁSTICO	
PRUEBA N°		1	2	3	4	1	2
ROTULO DE RECIPIENTE	P	Q	R		S	T	
NÚMERO DE GOLPES		9	16	29			
PESO DEL RECIPIENTE	(g)	10.9	10.3	11.1		11.6	11.2
PESO DEL RECIPIENTE + SUELO HÚMEDO	(g)	21.5	20.9	22.3		16.3	15.8
PESO DEL RECIPIENTE + SUELO SECO	(g)	19.1	18.8	20.4	D & 100	15.5	15.1
PESO DEL AGUA	(g)	2.4	2.1	1.9	TS A IS	0.8	0.75
PESO DEL SUELO SECO	(9)	8.2	8.5	9.3		3.9	3.85
CONTENIDO DE HUMEDAD	(%)	29	25	20		21	19

LÍMITE LÍQUIDO : 25%

LÍMITE PLÁSTICO : 20%

ÍNDICE PLÁSTICO : 5%

CAMPUS HUARAZ

Av. Independencia 1488 Barrio: Palmira Baja, Independencia - Huaraz Telf: (043) 483031 TEC VICTOR HUCO VILLANUEVA NAJARRO
LABORATORIO DE INGENIERIA CIVIL
REG 6263º
UCV HUARAZ

Mg. Erika Magaly Mozo Castaneda Coordinadora de la causta canada Meore Personal Medical Personal Persona

LA	BORATORIO DE UNIVERS		NICA DE S			ESTRATIGRAFIA				
SOL	ICITANTES:	ESPINOZA VALERIO LENIN A. MORENO HUAMAN JHON J.			EXCAVACION NIVEL FREATICO UBICACIÓN	: C - 01 : No se encuentra Adyacente a la Vivienda				
PROYECTO: "REDISEÑO ESTRUCTURA MIGUEL, HUARAZ 2018"					UNA EDIFICACIÓN FAMILI	AR DE DOS NIVELES EN LA URBANIZACIÓN SAN				
UBIC	ACIÓN :	DISTRITO DE INDEPENDENCIA - PROVINCIA DE HUARAZ - ANCASH			F/ EMISION	: 20 OCTUBRE DEL 2018				
METO	ODO DE EXC			Manual	REGISTRADO POR	: LABORATORISTA				
	CLASIFICA	CION			PRUE	BAS DE CAMPO				
PROFUNDIDAD (m)	SIMBOLOS	GRAFICO	HUMEDAD (%)	PLASTICID	DESCRIPCION Y CLASIFICACIÓN DEL MATERIAL : COLOR, HUMEDAD NATURAL, PLASTICIDAD, ESTADO NATURAL DE COMPACIDAD, FORMA DE LAS PARTICULAS, TAMAÑO MÍNIMO DE PIEDRAS, PRESENCIA DE MATERIA ORGANICO, ETC.					
	Re		2.9	SUELO ARCILLO-ARENOSO, SEMI SECO, DE COLOR NEGRO, SEMI COMPA CON PRESENCIA DE RESIDUOS ORGANICOS (RAICES, HOJAS SECAS						
0.20					S/M					
					GRAVA ARCILLOSA; MEZCLA DE GRAVA, ARENA Y ARCILLA DE ME PLASTICIDAD, MUY HUMEDO, COMPACTO, DE COLOR MARRON CL/					
	GM		6.8	GRAVA DE CARAS FRACTURADAS MENORES O IGUAL A 4". M-01 NO SE ENCONTRO NAPA FREATICA						
80										
	FICACION DI Sin muestra	MUE	STRAS	WASSES.	E LE TIESES					
7.0	Auestra alter Material de re	and the same of the same	1°1							

CAMPUS HUARAZ

DATOS PROPORCIONADOS POR LOS ALUMNOS

Av. Independencia 1488 Barrio: Palmira Baja, Independencia - Huaraz Telf: (043) 483031 TEC VICTOR HUGO VILLA NUEVA NAJARRO
LABORATORIO DE INGENIERIA CIVIL
REG 62630
UCV HUARAZ

Mg. Erika Magaly Mozo Castañeda Coordinadora de la Escuela de Ingenieria Civil fb/ucv.peru
@ucv_peru
#saliradelante
ucv.edu.pe

LABORATORIO DE SUELOS, CONCRETO Y ASFALTO

SERVICIO DE ENSAYO DE MATERIALES Y CONTROL DE CALIDAD
ALQUILER DE EQUIPOS PARA LA CONSTRUCCION

ASESORAMIENTO Y SUPERVISION DE OBRAS EN CAMPO

LABORATORIO DE ENSAYO DE MATERIALES LABORATORIO DE SUELOS

SOLICITANTES : ESPINOZA VALERIO LENIN - MORENO HUAMAN JHON JH

PROYECTO (TESIS) : "REDISEÑO ESTRUCTURAL DE UNA EDIFICACIÓN FAMILIAR DE DOS

NIVELES EN LA URBANIZACIÓN SAN MIGUEL, HUARAZ 2018"

UBICACIÓN : DISTRITO DE INDEPENDENCIA - PROVINCIA DE HUARAZ - ANCASH

FECHA DE EMISION : HUARAZ, 25 DE OCTUBRE DEL 2018

CALICATA : C-01 MUESTRA : 01

CLASIFICACION SUCS : GM

UBICACIÓN - CALICATA : ADYACENTE A LA VIVIENDA

CAPACIDAD DE CARGA ADMISIBLE

DATOS OBTENIDOS EN FUNCIÓN AL TIPO DE SUELO

С	AA = 1	0.9316	[kN/m2]	B =	1.00
Ø	E	26.00	[°]	/ L=	1.00
γ	=	18.18	[kN/m31	D =	3.00

FACTOR DE CAPACIDAD DE CARGA EN FUNCIÓN DE

Nq = 11.85 Nc = 22.25 Ny = 12.54

CAPACIDAD DE CARGA ADMISIBLE ULTIMO

 $qult = 6.59 \text{ Kg./Cm}^2$

CARGA ADM. CON UN FACTOR DE SEGURIDAD F.S. = 3

 $qa = 2.196166 \text{ Kg./Cm}^2$

CAPACIDAD DE CARGA ADMISIBLE

 $q_a = 2.20 \text{ Kg./Cm}^2$

NOTA:

LOS DATOS TOMADOS PARA EL CALCULO SON REFERENCIALES, UTILIZAR LAS DIMENSIONES SEGUN LA NECESIDAD DEL PROYECTO.

Victor Hugo Villanueva Majarro
ESPECIALISTA IN SUBSIGNATION DE SÚLIOS
CONCRETO Y PAVIMENTO
REG. 62639

Alberto Niffanue a Medina
INGENIERO CIVIL
CIP. 96217

Urb. San Miguel de Chicney S/N Independencia - Huaraz / Jr. Progreso 660 - San Marcos

Telefono: FIJO 916826490 - RPM # 949004338

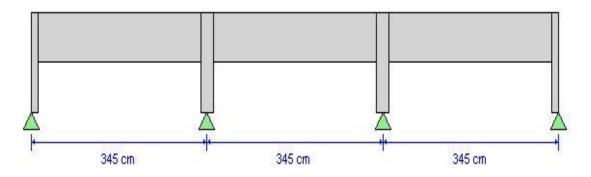
E-mail: vh_laboratorio @hotmail.com REG. INDECOPI CERTF. 95136

RUC: 20600954173

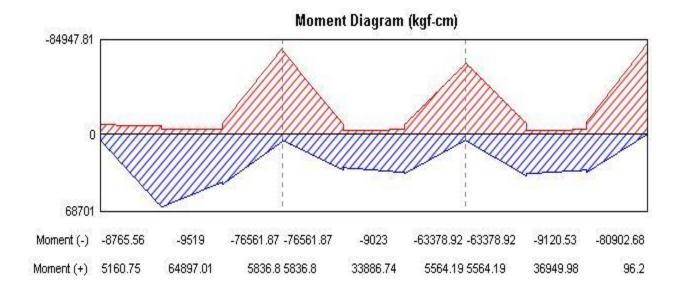
8. CALCULO DE REGULARIDAD DE LA ESTRUCTURA

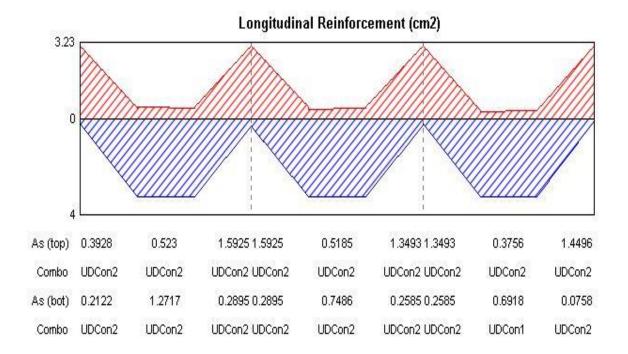
	TABLE: Deriva	as		Albañile	ría direcc	ión Y R=	3	Porticos dire	ección X R=	8
Pisos	Sismo en cada direccion	Dirección	Deriva	Label	X	Y	Z	0.75*Drif*	Derv. Max	Vadidación
					m	m	m	R		vauluacion
Piso 2	SISMO X Max	X	0.000988		0	11.35	5.2	0.005928	0.007	OK
Piso 2	SISMO Y SEVERO Max	Y	0.000057		0	11.35	5.2	0.000128	0.005	OK
Piso 1	SISMO X Max	X	0.001044		3.65	10.35	2.5	0.006264	0.007	OK
Piso 1	SISMO Y SEVERO Max	Y	0.000073		0	9.2	2.5	0.000164	0.005	OK
	IRREGULARIDADES									
A.	Relación de derivas en Direc	cion X-X		1.05668	<	1.4	Cumple		Ia = 1	
В.	Relación de derivas en Direc		1.2807	<	1.4	Cumple		Ia = 1		
A.	En la Direccion Y-Y se tiene	albañileria	confinada co	ntinua por	lo que las	rigides de	los dos p	isos son casi	identicas	
B.	En la Direccion X-X se tiene	porticos co	ontinuos por	lo que la ri	gides de l	os pos piso	os son cas	i identicas		
	La relacion de derivas de piso es menor que 1.4 por lo que no hay irregularidad extrema									
	Iregularidad de masa o peso									
	No se aplica al presente caso ya que se tiene una losa de entrepiso y una azotea y como dice la norma no se aplica.									
	Se tiene sistemas paralelos por lo que no se tiene irregularidad en planta									
	Se tiene continuidad de difrac	emas por lo	que no se ti	ene irregula	aridad en	planta				
	No se tiene esquinas entrante	es por lo qu	e no se tiene	irregularid	ad en plai	nta				
	Por lo que:	Ia = 1.00		Ip = 1.00		R= R0*Ia	ı*Ip			
	En la direccion X (Porticos):		R=8*1*1=	8						
	En la direccion Y (albañileria		R=3*1*1=	3						

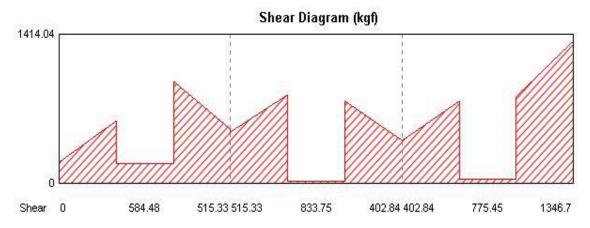
9. DIAGRAMA DE CORTANTE,
MOMENTO PARA EL DISEÑO
DE LOSA ALIGERADA Y
CÁLCULO DEL ACERO
REQUERIDO SEGÚN EL SAFE

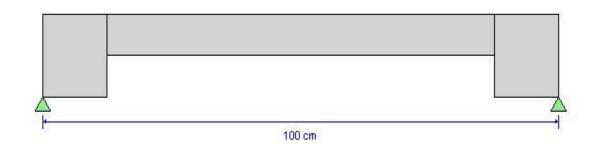

ACI 318-14 Concrete Strip Design

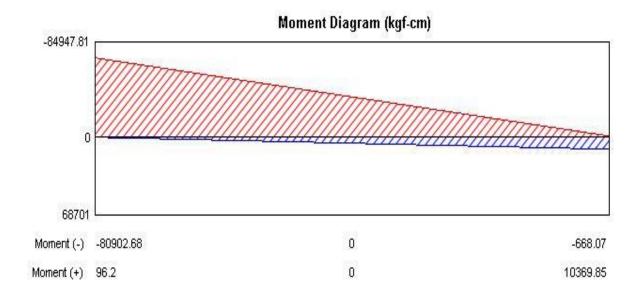
Geometric Properties

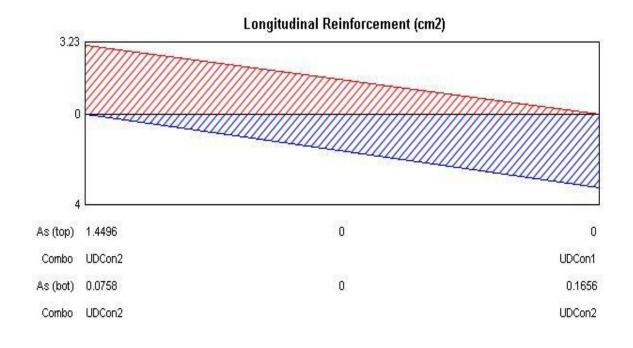

Combination = Overall Envelope Strip Label = CSB1 Length = 1135 cm Distance to Top Rebar Center = 3.4288 cm Distance to Bot Rebar Center = 3.4288 cm

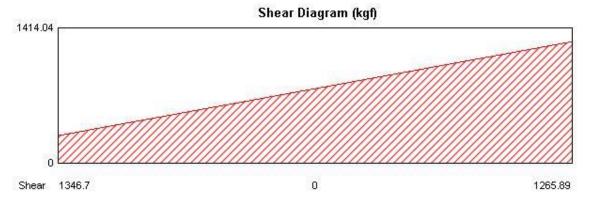

Material Properties

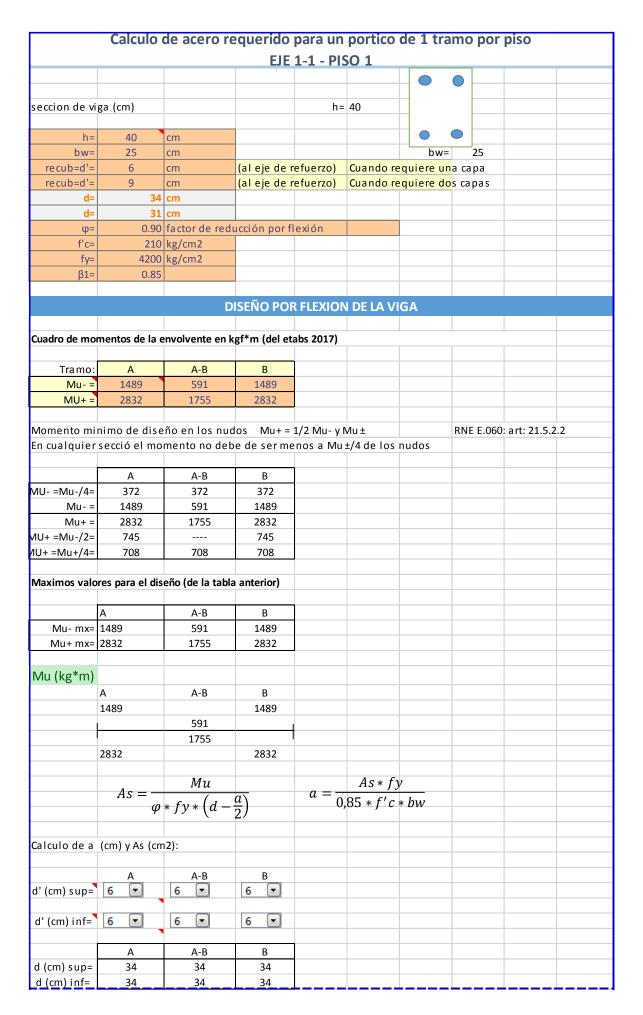

Concrete Comp. Strength = 210 kgf/cm2 Concrete Modulus = 217370.66 kgf/cm2

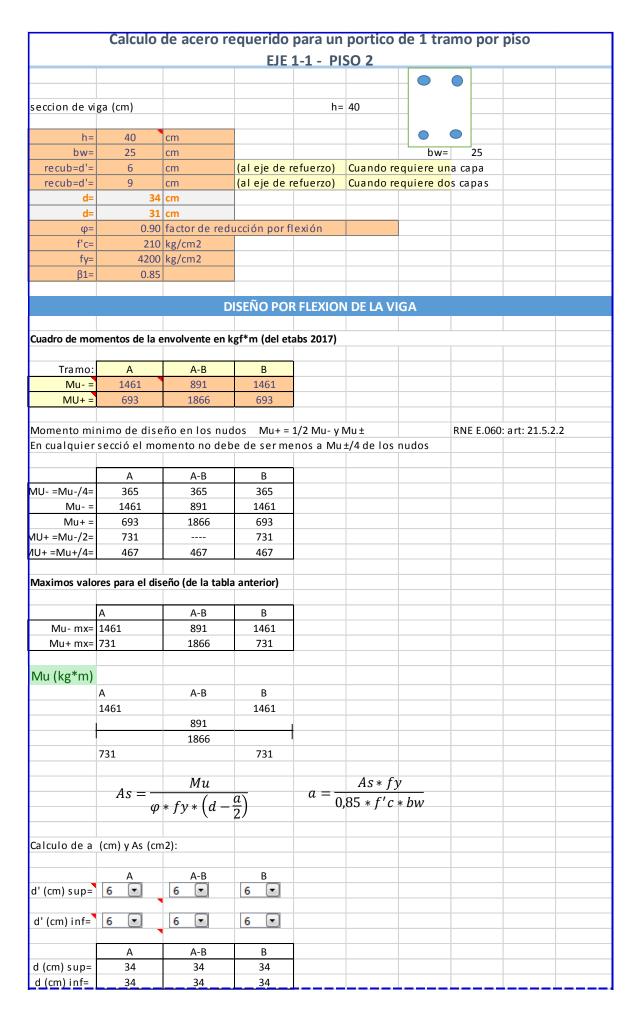



Longitudinal Rebar Yield = 4200 kgf/cm2



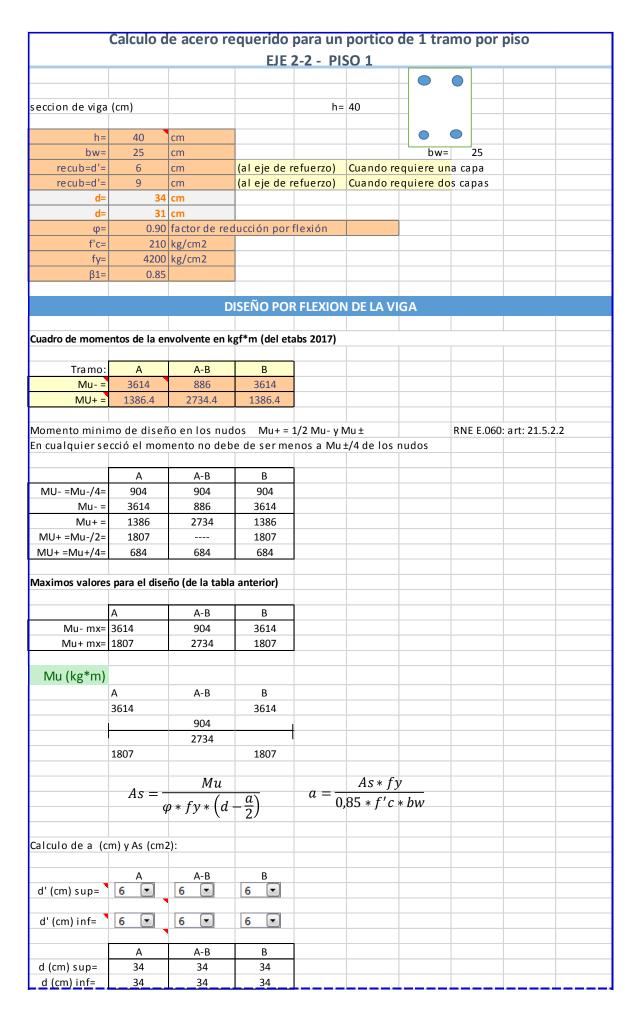





10. CÁLCULOS ESTRUCTURALES DE VIGAS

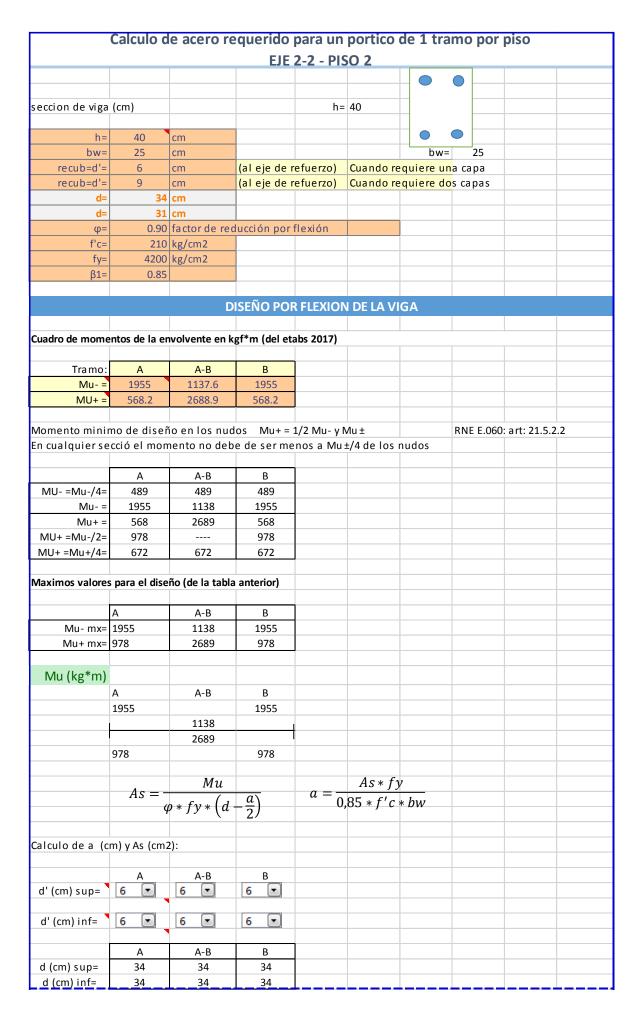
En cm, cm2	Α	A-B	В						
Asumido a± :	10	10	10						
Itera 1 As-=	1.36	0.54	1.36						
Itera 1 As+=	2.58	1.60	2.58						
a-=	1.28	0.51	1.28						
a+=	2.43	1.51	2.43						
Itera 2 As-=	1.18	0.46	1.18						
Itera 2 As+=	2.29	1.40	2.29						
a-=	1.11	0.44	1.11						
a+=	2.15	1.31	2.15						
Itera 3 As-=	1.18	0.46	1.18						
Itera 3 As+=	2.28	1.39	2.28						
a-=	1.11	0.44	1.11						
a+=	2.14	1.31	2.14						
		-							
	0,70 *	$\sqrt{f'c}$ * bw *	-						
As_{mi}	$_{n}=\frac{1}{f_{n}}$	* bw *	d =	2.053	cm2				
	, ,								
	$As_{max} = 0$,025 * bw * d	d =	21.25	cm2				
Acero negativo	o en cada zona	(cm2) (acero s	uperior de la	viga)					
	Α	A-B	В						
As requerido	2.05	2.05	2.05						
N° de Varilla		2	2						
diametro φ =		1/2"	1/2"						
	+	+	+						
N° de Varilla:	s 0 •	0	0						
diametro φ =		3/8" 🔻	3/8"						
As usado (cm		2.54	2.54						
ris asaao (cii	OK	OK	OK						
	OK T	UK I	OK .						
	2φ1/2''	2φ1/2''	2φ1/2''						
Acero positivo	en cada zona	(cm2) (acero in	ferior de la v	riga)					
,	А	A-B	В						
As requerido		2.05	2.28						
N° de Varilla	\$ 7	2	2						
diametro φ =	1/2"	1/2"	1/2"						
arametro φ =	1/2	+	+						
Nº da Varilla	s 0 💌	0	0						
N° de Varilla: diametro φ =									
		3/8" 🔻	3/8"						
As usado (cm		2.54	2.54						
	OK	OK	OK						
	2φ1/2''	2φ1/2''	2φ1/2''						
Calculo de la c	uantıa ρ:	$\rho = \frac{As}{a}$	_						
		$\rho = \frac{1}{hw *}$							
	Α	A-B	В						
	0.299%	0.299%	0.299%						
	0.299%	0.299%	0.299%						
Calculo de la c	uantia sup - in	nf:							
		f'c 6000)						
$\rho_b = 0$,85 * β1 * ²	$\frac{f'c}{fy} * \frac{6000}{6000} +$	=	2.125%		$\rho - \rho' \le$	$0.5\rho_{b} =$	1.063%	
			Jy						
	Α	A-B	В						
	0.000%	0.000%	0.000%						
	OK!!!	OK!!!	OK!!!	<u></u>					

DISTRIBUCIO	N DE ACERO D	E REFUERZO FI	NAL A COLO	CAR					
	The process of								
	Α	A-B	В						
As-=	2φ1/2"	2φ1/2''	2φ1/2''						
	2ψ1/2	2ψ1/2	ΖΨ1/Ζ						
	2φ1/2"	2φ1/2''	2φ1/2''						
As+=	ΖΨ1/2	Ζψ1/2	ΖΨ1/2						
			~						
		DI:	SEÑO POR	CORTAN	TE (ESTRI	BOS)			
Calculo de a ((cm): del acero	colocado							
	Α	A-B	В						
superior	2.39	2.39	2.39						
nferior	2.39	2.39	2.39						
Calculo del IV	laximo Momen	to probable = 1	,25*Moment	o Nominal:	(Mpr = 1.2	5*Mn) (ton	*m)		
RNE E.060 ar	t. 21.5.4.1								
	А	A-B	В						
superior	4.37	4.37	4.37						
nferior	4.37	4.37	4.37						
distancia (m		3.40 m							
entre apoyo									
Calculo de I	a Cortante V:								
	cm=	1.30305	t/m	w=	1,4*cm+1.				
	cv=	0.651525	t/m	w=	2.932	t/m			
	LAS CORTANTE antihorarios	S DEBIDO A LO	S MOMENTO)S MAXIMO)S PROBAB	LES Y CARO	SAS DISTRIB	UIDA.	
		TRAMO I							
zquierda		7.557405973							
Derecha		2.410926527							
Momento h	orario								
		2.410926527							
		7.557405973							
Cortes de Dis	eño		21.5.4.1						
Cortes de Dis	eño	7.557405973	21.5.4.1						
Cortes de Dis	ceño cortante V=	7.557405973	21.5.4.1 ton						
Cortes de Dis		7.557405973 RNE E.060 art:							
Cortes de Dis		7.557405973 RNE E.060 art:							
Cortes de Dis		7.557405973 RNE E.060 art: 7.557							
Cortes de Dis		7.557405973 RNE E.060 art: 7.557 3.40 m							
		7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I	ton						
	cortante V=	7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I	ton						
	cortante V=	7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I	ton						
	cortante V=	7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I	ton						
	cortante V=	7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I	ton						
	cortante V=	7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I istancia d (ton) 6.046	ton						
	cortante V=	7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I istancia d (ton) 6.046 3.40 m	ton						
Cortantes de	cortante V=	7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I istancia d (ton) 6.046 3.40 m TRAMO I	ton						
Cortantes de Calculo de la	cortante V=	7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I istancia d (ton) 6.046 3.40 m TRAMO I	ton						
Cortantes de Calculo de la	cortante V=	7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I istancia d (ton) 6.046 3.40 m TRAMO I	ton	kg			0,85 * V _c =	5549.11	kg
Cortantes de Calculo de la	cortante V=	7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I istancia d (ton) 6.046 3.40 m TRAMO I	ton	kg			0,85 * V _c =	5549.11 5.55	kg
Cortantes de Calculo de la	cortante V=	7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I stancia d (ton) 6.046 3.40 m TRAMO I ente del concre "bw * d =	ton ton to Vc:				0,85 * V _c =		
Cortantes de Calculo de la	cortante V=	7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I stancia d (ton) 6.046 3.40 m TRAMO I ente del concre "bw * d =	ton ton to Vc:				0,85 * V _c =		
Cortantes de Calculo de la	cortante V=	7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I istancia d (ton) 6.046 3.40 m TRAMO I ente del concre "bw * d = =================================	ton ton to Vc:				0,85 * V _c =		
Calculo de la	cortante V=	7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I istancia d (ton) 6.046 3.40 m TRAMO I ente del concre "bw * d = =================================	ton ton to Vc:				0,85 * V _c =		
Cortantes de Calculo de la	cortante V=	7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I istancia d (ton) 6.046 3.40 m TRAMO I ente del concre "bw * d = = 0.50	ton ton to Vc:				0,85 * V _c =		


Calculo del e	especiamient	o S (cm)		Øbarra =	3/8' 💌		Av=	0.71	cm2
	El primer es	trivo debe de	estara:		S=	5	cm		
Separaacion		407.5	cm						
de confinam	iento	TRAMO I							
Calcula dal a	cnasiamiant	o on la zona o	la confinam	ionto	Loor	afinamia	ento = 2*h =	90	cm
RNE E.060: ar	·	o en la zona d	RNE E.060 a			IIIIIaiiiie	2110 = 2111 =	00	CIII
KINE E.UOU. at	l. 21.3.3.1		d/4 =		cm				
	-	0 Arofi					S=	10	cm
	-		ierzo long = Ø estribo =				3=	10	cm
	-	24	Ī						
	-		30 cm =	30	cm				
Espaciamien	to de los est	ribos en la zo	na de confir	namiento f	inal:				
Espa	ciamiento S=	10	cm						
		TRAMO I							
Numero de e	stribos en la	zona de confi	namiento =						
	N°=	8	estribos						
		TRAMO I							
Calculo de la	cortante fue	ra de la zona	de confinar	niento					
distancia de	d''=	85							
cortante ulti	ı Vud''=	3.779							
		TRAMO I							
senaracion r	naxima fuera	de la zona de	confinamie	ento.	Smx=d/2=	17	cm	art·	21.3.5.4
					J u, =		0	4.0	
cortante de d	diseño para l	a zona no con	finada:						
		TRAMO I							
Cortante a sop	ortar x acero:	-1.77	Ton						
Requerimiento		No requiere							
•	estribos calcu:		cm						
Semaración :		15	cm						
COLOCACION	FINAL DE LOS	ESTRIBOS							
		1@0.05+							
Estrivos de:		8@0.1+R@0.1							
3/8''		5							
A cada lado		3.40 m							
		TRAMO I							

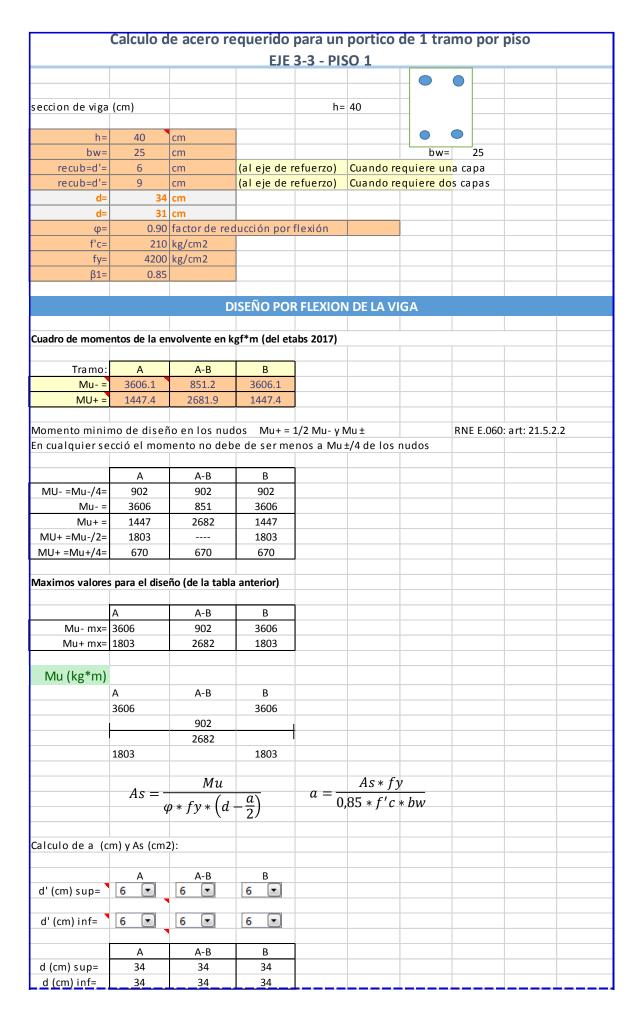
En cm, cm2	Α	A-B	В						
Asumido a± :	10	10	10						
Itera 1 As-=	1.33	0.81	1.33						
Itera 1 As+=	0.67	1.70	0.67						
a-=	1.25	0.76	1.25						
		1.60							
a+=	0.63		0.63						
Itera 2 As-=	1.16	0.70	1.16						
Itera 2 As+=	0.57	1.49	0.57						
a-=	1.09	0.66	1.09						
a+=	0.54	1.40	0.54						
Itera 3 As-=	1.16	0.70	1.16						
Itera 3 As+=	0.57	1.48	0.57						
a-=	1.09	0.66	1.09						
a+=	0.54	1.40	0.54						
-									
	o - o	[]							
1 -	0.70 *	$\sqrt{f'c}$ * bw *		2.052	_				
AS_{mi}	$n \equiv \frac{1}{fv}$	* <i>DW</i> *	a =	2.053	cm2				
	, ,								
	$As_{max} = 0$,025 * bw * 0	d =	21.25	cm2				
Acero negativo	o en cada zona	(cm2) (acero s	uperior de la	viga)					
J									
	Α	A-B	В						
As requerido		2.05	2.05						
N° de Varilla		2	2 💌						
diametro φ =	1/2"	1/2"	1/2"						
	+	+	+						
N° de Varillas	s 0 💌	0	0						
diametro φ =	3/8"	3/8'' 💌	3/8" 🔻						
As usado (cm		2.54	2.54						
,	OK	ОК	OK						
	,								
	2φ1/2''	2φ1/2''	2φ1/2''						
A iai		/ 2) / :	f	-:\					
Acero positivo		(cm2) (acero in		/iga)					
	Α	A-B	В						
As requerido	2.05	2.05	2.05						
N° de Varilla:	s 2 💌	2	2 🔻						
diametro φ =	1/2"	1/2"	1/2"						
	+	+	+						
N° de Varilla	0	0	0						
diametro φ =		3/8" 🔹	3/8"						
As usado (cm		2.54	2.54						
ns usaut (til	2.54 OK	0K	OK						
	2φ1/2''	2φ1/2''	2φ1/2''						
Calculo de la c	uantia ρ:	$o = \frac{As}{a}$	_						
		$\rho = \frac{1}{bw *}$							
	Α	A-B	В						
	0.299%	0.299%	0.299%						
	0.299%	0.299%	0.299%						
		_							
Calculo de la c									
	OF 01 .	$\frac{f'c}{fy} * \frac{6000}{6000} +$	<u> </u>	2 1250/				1 0620/	
$\rho_b = 0$,σɔ * β1 * ⁻	$\frac{1}{4}$ $\frac{1}{4}$	$\frac{1}{fv} =$	2.125%		$\rho - \rho' \le$	υ. 5ρ _b =	1.063%	
	Α	A-B	В						
	0.000%	0.000%	0.000%						
	OKIII	OKILI	OKILI	ı					
	OK!!!	OK!!!	OK!!!						

	Α	A-B	В						
As-=	2φ1/2''	2φ1/2''	2φ1/2''						
	Σψ1/2		- μ-/- μ-						
	+								
	2φ1/2"	2φ1/2''	2φ1/2''						
As+=	ΣΨ1/2	ΣΨ1/2	ΣΨ1/2						
			~ .						
			EÑO POR	CORTANT	TE (ESTRI	BOS)			
Calculo de a	(cm): del acero	colocado							
	A	A-B	В						
suerior	2.39	2.39	2.39						
inferior	2.39	2.39	2.39						
	Maximo Momen	to probable = 1,	25*Moment	o Nominal:	(Mpr = 1.2	5*Mn) (to	on*m)		
RNE E.060 ar									
	A	A-B	В						
suerior	4.37	4.37	4.37						
nferior	4.37	4.37	4.37						
distancia (n		3.40 m							
entre apoyo									
Calculo de l	a Cortante V:								
	cm=	1.30305	t/m		1,4*cm+1	•			
	cv=	0.651525	t/m	w=	2.932	t/m			
	LAS CORTANTE antihorarios		OS MOMENT	OS MAXIM	OS PROBA	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos		TRAMO I	OS MOMENT	OS MAXIM	OS PROBA	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda		TRAMO I 7.557405973	OS MOMENT	OS MAXIM	OS PROBA	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha	antihorarios	TRAMO I	OS MOMENT	OS MAXIM	OS PROBA	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha	antihorarios	TRAMO I 7.557405973 2.410926527	OS MOMENT	OS MAXIM	OS PROBA	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha	antihorarios	TRAMO I 7.557405973 2.410926527 2.410926527	OS MOMENT	OS MAXIM	OS PROBA	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha	antihorarios	TRAMO I 7.557405973 2.410926527	OS MOMENT	OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha Momento h	antihorarios orario	TRAMO I 7.557405973 2.410926527 2.410926527 7.557405973		OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha Momento h	antihorarios orario	TRAMO I 7.557405973 2.410926527 2.410926527		OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha Momento h	orario seño	TRAMO I 7.557405973 2.410926527 2.410926527 7.557405973 RNE E.060 art:	21.5.4.1	OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha Momento h	antihorarios orario	TRAMO I 7.557405973 2.410926527 2.410926527 7.557405973		OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha Momento h	orario seño	TRAMO I 7.557405973 2.410926527 2.410926527 7.557405973 RNE E.060 art:	21.5.4.1	OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha Momento h	orario seño	TRAMO I 7.557405973 2.410926527 2.410926527 7.557405973 RNE E.060 art: 7.557	21.5.4.1	OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha Momento h	orario seño	TRAMO I 7.557405973 2.410926527 2.410926527 7.557405973 RNE E.060 art: 7.557	21.5.4.1	OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha Momento h	orario seño	TRAMO I 7.557405973 2.410926527 7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I	21.5.4.1	OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha Momento h	orario seño cortante V=	TRAMO I 7.557405973 2.410926527 7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I	21.5.4.1	OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha Momento h	orario seño cortante V=	TRAMO I 7.557405973 2.410926527 7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I	21.5.4.1	OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha Momento h	orario cortante V=	TRAMO I 7.557405973 2.410926527 2.410926527 7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I istancia d (ton)	21.5.4.1 ton	OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha Momento h	orario cortante V=	TRAMO I 7.557405973 2.410926527 2.410926527 7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I istancia d (ton)	21.5.4.1 ton	OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a zquierda Derecha Momento h	orario cortante V=	TRAMO I 7.557405973 2.410926527 2.410926527 7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I istancia d (ton) 6.046	21.5.4.1 ton	OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha Momento h	orario cortante V=	TRAMO I 7.557405973 2.410926527 7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I istancia d (ton) 6.046 3.40 m	21.5.4.1 ton	OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha Momento h Cortes de Dis	orario cortante V=	TRAMO I 7.557405973 2.410926527 7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I istancia d (ton) 6.046 3.40 m TRAMO I	21.5.4.1 ton	OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha Momento h Cortes de Dis	orario cortante V= diseño a una D cortante Vd=	TRAMO I 7.557405973 2.410926527 7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I 6.046 3.40 m TRAMO I	21.5.4.1 ton	OS MAXIM	OS PROBAI	BLES Y CA	ARGAS DISTRIE	BUIDA.	
Momentos a Izquierda Derecha Momento h Cortes de Dis Cortantes de	orario cortante V= diseño a una D cortante Vd=	TRAMO I 7.557405973 2.410926527 7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I 6.046 3.40 m TRAMO I	21.5.4.1 ton		OS PROBAI	BLES Y CA			kg
Momentos a Izquierda Derecha Momento h Cortes de Dis Cortantes de	orario cortante V= diseño a una D cortante Vd=	TRAMO I 7.557405973 2.410926527 7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I 6.046 3.40 m TRAMO I	21.5.4.1 ton		OS PROBAI	BLES Y CA	0,85 * V _c =		kg
Momentos a Izquierda Derecha Momento h Cortes de Dis Cortantes de	orario cortante V= diseño a una D cortante Vd=	TRAMO I 7.557405973 2.410926527 7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I 6.046 3.40 m TRAMO I	21.5.4.1 ton ton	kg	OS PROBAI	BLES Y CA		5549.11	
Momentos a Izquierda Derecha Momento h Cortes de Dis	orario cortante V= diseño a una D cortante Vd=	TRAMO I 7.557405973 2.410926527 7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I 6.046 3.40 m TRAMO I	21.5.4.1 ton ton	kg	OS PROBAI	BLES Y CA		5549.11	
Momentos a Izquierda Derecha Momento h Cortes de Dis Cortantes de	orario cortante V= diseño a una D cortante Vd=	TRAMO I 7.557405973 2.410926527 2.410926527 7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I istancia d (ton) 6.046 3.40 m TRAMO I ente del concret "bw * d = = =	21.5.4.1 ton ton	kg	OS PROBAI	BLES Y CA		5549.11	
Momentos a Izquierda Derecha Momento h Cortes de Dis Cortantes de	orario cortante V= diseño a una D cortante Vd=	TRAMO I 7.557405973 2.410926527 2.410926527 7.557405973 RNE E.060 art: 7.557 3.40 m TRAMO I istancia d (ton) 6.046 3.40 m TRAMO I ente del concret "bw * d = = =	21.5.4.1 ton ton	kg	OS PROBAI	BLES Y CA		5549.11	


Calculo del e	speciamient	o S (cm)		Øbarra =	3/8'■		Av=	0.71	cm2
	El primer es	trivo debe de	estara:		S=	5	cm		
Separaacion	en la zona	407.5	cm						
de confinam	iento	TRAMO I							
Calculo del e	espaciamient	o en la zona d	le confinam	iento:	L co	nfinamie	ento = 2*h =	80	cm
RNE E.060: a r	t: 21.3.5.1		RNE E.060 a	rt: 21.3.5.2					
	-		d/4 =	10	cm				
	-	8 Ørefu	erzo long =	10.17	cm		S=	10	cm
	-	24	Ø estribo =	22.82	cm				
	-		30 cm =	30	cm				
Espaciamien	to de los est	ribos en la zo	na de confir	namiento f	inal:				
Fona	ciamiento S=	10	cm						
Espa		TRAMO I	CIII						
		I NAIVIO I							
Numaro da a	stribos an la	zona de confi	namiento -						
ivamero de e	Stilbos ciria	Zona uc conn	namicito -						
	N°=	8	estribos						
	14 -	TRAMO I	CSUIDOS						
		TIVILVIO							
Calculo de la	cortante fue	ra de la zona	de confinar	niento					
distancia de	d''=	85							
cortante ulti	Vud''=	3.779							
		TRAMO I							
separacion r	naxima fuera	de la zona de	confinami	ento:	Smx=d/2=	17	cm	art:	21.3.5.4
cortante de d	diseño para l	a zona no con	finada:						
		TRAMO I							
Cortante a sop	ortar x acero:	-1.77	Ton						
Requerimiento):	No requiere							
separacion de	estribos calcu:	17	cm						
Semaración	a colocar:	15	cm						
	FINIAL DE LOS	ESTRURGS							
COLOCACION	FINAL DE LOS	1							
		1@0.05+							
Estrivos de:		8@0.1+R@0.1							
3/8"		5							
A cada lado		3.40 m							
		TRAMO I							

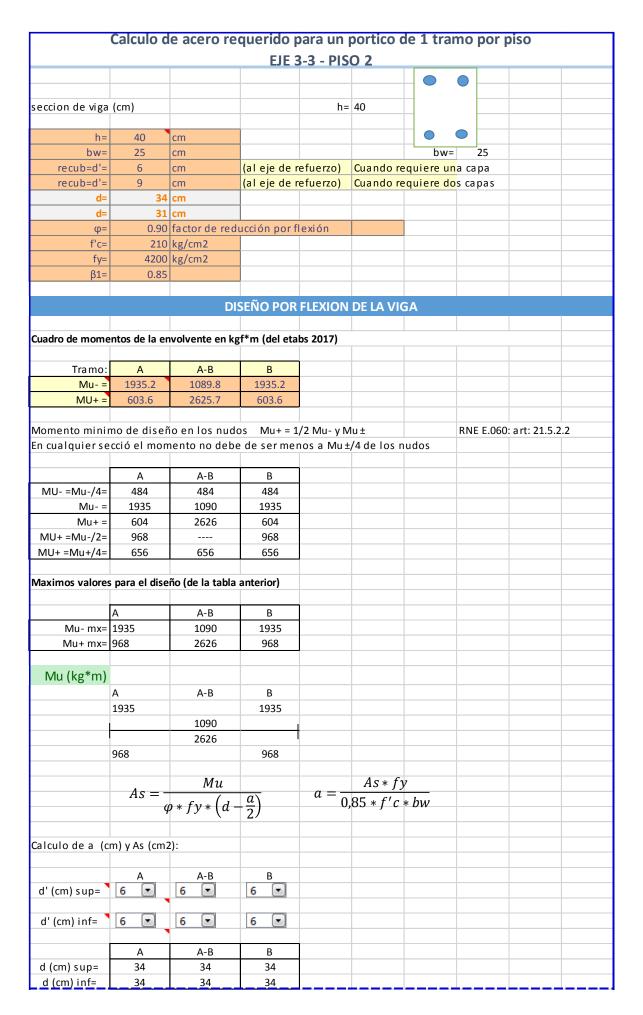
				1					
En cm, cm2	Α	A-B	В						
Asumido a±=	10	10	10						
Itera 1 As-=	3.30	0.82	3.30						
Itera 1 As+=	1.65	2.49	1.65						
a-=	3.10	0.78	3.10						
a+=	1.55	2.35	1.55						
Itera 2 As-=	2.95	0.71	2.95						
Itera 2 As+=	1.44	2.20	1.44						
a-=	2.77	0.67	2.77						
a+=	1.35	2.07	1.35						
Itera 3 As-=	2.93	0.71	2.93						
Itera 3 As+=	1.43	2.19	1.43						
a-=	2.76	0.67	2.76						
a+=	1.35	2.07	1.35						
	0.70 *	$\frac{f'c}{}*bw*$							
As_{min}	= <u> </u>	* bw *	d =	2.053	cm2				
	, , ,								
A	$s_{max} = 0$	025 * bw * o	d = 1	21.25	cm2				
Acero negativo e	n cada zona	(cm2) (acero s	uperior de la	viga)					
		, , , , , , , ,		J . ,					
	Α	A-B	В						
As requerido=	2.93	2.05	2.93						
N° de Varillas									
		1/2"	2 •						
diametro φ =		,	,						
	+	+	+						
N° de Varillas	1 💌	0	1						
diametro φ =	3/8"	3/8"	3/8"						
As usado (cm2)	3.25	2.54	3.25						
	OK	OK	OK						
	2φ1/2'' +	2:-4/2!!	2φ1/2" +						
	1φ3/8''	2φ1/2''	1φ3/8''						
Acero positivo e	n cada zona (cm2) (acero in	ferior de la v	riga)					
	Α	A-B	В						
As requerido=	2.05	2.19	2.05						
N° de Varillas									
	2	1/2"	2						
diametro φ =			1/2"						
	+	+	+						
N° de Varillas	0	0	0						
diametro φ =	3/8" 💌	3/8"	3/8" 💌						
As usado (cm2)		2.54	2.54						
	OK	OK	OK						
	2φ1/2''	2φ1/2''	2φ1/2''						
Calculo de la cua	ntia ρ:	As	3						
		$\rho = \frac{1}{hw}$: <u>d</u>						
	Α	A-B	В						
	0.382%	0.299%	0.382%						
		5123070							
	0.299%	0.299%	0.299%						
	J.2J3/0	0.233/0	0.433/0						
Calaula da la a	ntin ava i f								
Calculo de la cua									
	f	c 6000							
$ ho_b = 0.8$	$5 * \beta 1 * \frac{7}{4}$	$\frac{c}{y} * \frac{6000}{6000} +$	<u></u>	2.125%		$\rho - \rho' \le$	$0.5\rho_{b} =$	1.063%	
	J		Jy						
	Α	A-B	В						
	0.084%	0.000%	0.084%						
	OK!!!	OK!!!	OK!!!						

DISTRIBUCION	DE ACERO DE								
	A	A-B	В						
		A-D							
As-=	2φ1/2" +	24/211	2φ1/2" +						
	1φ3/8''	2φ1/2''	1φ3/8''						
	2φ1/2''	2φ1/2''	2φ1/2''						
As+=	' '	,	, ,						
		DIS	EÑO POR	CORTAN1	E (ESTRII	BOS)			
Calculo de a (c	m): del acero c	olocado							
	A	A-B	В						
suerior	3.06	2.39	3.06						
nferior	2.39	2.39	2.39						
Calculo del Ma	ximo Momento	probable = 1.	 25*Moment	o Nominal:	(Mpr = 1.25	i *Mn) (ton	ı*m)		
RNE E.060 art.		,			, ,	, (,		
	А	A-B	В						
uerior	5.54	4.37	5.54						
nferior	4.37	4.37	4.37						
distancia (m)		3.40 m							
entre apoyos									
Calculo de la		0 - 1 - 1			a a.n.	<u> </u>			
	cm=	2.5185	t/m	w=	1,4*cm+1.				
					"				
	as cortantes	1.25925 DEBIDO AL LO	t/m OS MOMENT	W=	5.667 OS PROBAE	t/m BLES Y CAR	IGAS DISTRIB	SUIDA.	
Momentos ar	AS CORTANTES	DEBIDO AL LO					RGAS DISTRIB	SUIDA.	
Momentos ar Izquierda Derecha	AS CORTANTES ntihorarios	DEBIDO AL LO					GAS DISTRIB	BUIDA.	
Momentos ar Izquierda Derecha	AS CORTANTES ntihorarios	TRAMO I 12.5493806 6.71714437					GAS DISTRIB	BUIDA.	
Momentos ar Izquierda Derecha	AS CORTANTES ntihorarios	TRAMO I 12.5493806 6.71714437					EGAS DISTRIB	UIDA.	
Momentos ar zquierda Derecha	AS CORTANTES ntihorarios	TRAMO I 12.5493806 6.71714437					GAS DISTRIB	SUIDA.	
Momentos ar zquierda Derecha Momento hor	AS CORTANTES atihorarios	TRAMO I 12.5493806 6.71714437 6.71714437 12.5493806	OS MOMENT				RGAS DISTRIB	SUIDA.	
Momentos ar Izquierda Derecha Momento hor	AS CORTANTES atihorarios	TRAMO I 12.5493806 6.71714437	OS MOMENT				EGAS DISTRIB	SUIDA.	
Momentos ar Izquierda Derecha Momento hor	AS CORTANTES atihorarios	TRAMO I 12.5493806 6.71714437 6.71714437 12.5493806	OS MOMENT				EGAS DISTRIB	SUIDA.	
Momentos ar Izquierda Derecha Momento hor	AS CORTANTES atihorarios ario	TRAMO I 12.5493806 6.71714437 6.71714437 12.5493806 RNE E.060 art	: 21.5.4.1				RGAS DISTRIB	SUIDA.	
Momentos ar Izquierda Derecha Momento hor	AS CORTANTES atihorarios ario	TRAMO I 12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549	: 21.5.4.1				RGAS DISTRIB	SUIDA.	
Momentos ar Izquierda Derecha Momento hor	AS CORTANTES atihorarios ario	TRAMO I 12.5493806 6.71714437 6.71714437 12.5493806 RNE E.060 art	: 21.5.4.1				EGAS DISTRIB	BUIDA.	
Momentos ar zquierda Derecha Momento hor	AS CORTANTES ntihorarios rario cortante V=	TRAMO I 12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I	: 21.5.4.1				RGAS DISTRIB	SUIDA.	
Momentos ar Izquierda Derecha Momento hor	AS CORTANTES atihorarios ario	TRAMO I 12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I	: 21.5.4.1				RGAS DISTRIB	SUIDA.	
Momentos ar zquierda Derecha Momento hor	AS CORTANTES ntihorarios rario cortante V=	TRAMO I 12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I	: 21.5.4.1				EGAS DISTRIB	BUIDA.	
Momentos ar zquierda Derecha Momento hor	AS CORTANTES ntihorarios rario cortante V=	TRAMO I 12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton)	: 21.5.4.1 ton				EGAS DISTRIB	SUIDA.	
Momentos ar zquierda Derecha Momento hor	AS CORTANTES ntihorarios rario cortante V=	TRAMO I 12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton) 10.040	: 21.5.4.1 ton				RGAS DISTRIB	BUIDA.	
vomentos ar zquierda Derecha Momento hor	AS CORTANTES ntihorarios rario cortante V=	TRAMO I 12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton)	: 21.5.4.1 ton				RGAS DISTRIB	BUIDA.	
Momentos ar zquierda Derecha Momento hor Cortes de Dise	AS CORTANTES atihorarios ario cortante V=	TRAMO I 12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I	: 21.5.4.1 ton				EGAS DISTRIB	BUIDA.	
Momentos ar zquierda Derecha Momento hor Cortes de Dise	AS CORTANTES ntihorarios rario cortante V=	TRAMO I 12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I	: 21.5.4.1 ton				EGAS DISTRIB	BUIDA.	
Xomentos ar zquierda Derecha Momento hor Cortes de Dise Cortantes de d	AS CORTANTES Itihorarios Fario Cortante V= Iseño a una Dis cortante Vd= Ortante resister	TRAMO I 12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I	: 21.5.4.1 ton	OS MAXIMO		BLES Y CAR	$0.85 * V_c =$		kg
Xomentos ar zquierda Derecha Momento hor Cortes de Dise Cortantes de d	AS CORTANTES atihorarios ario cortante V=	TRAMO I 12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I	ton	OS MAXIMO		BLES Y CAR			kg
Xomentos ar zquierda Derecha Momento hor Cortes de Dise Cortantes de d	AS CORTANTES Itihorarios Fario Cortante V= Iseño a una Dis cortante Vd= Ortante resister	TRAMO I 12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I the del concret bw * d = =	co Vc:	OS MAXIMO		BLES Y CAR		5549.11	
Xomentos ar zquierda Derecha Momento hor Cortes de Dise Cortantes de d	AS CORTANTES Itihorarios Fario Cortante V= Iseño a una Dis cortante Vd= Ortante resister	TRAMO I 12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I the del concret bw * d =	co Vc:	OS MAXIMO		BLES Y CAR		5549.11	
Xomentos ar zquierda Derecha Momento hor Cortes de Dise Cortantes de d	AS CORTANTES Itihorarios Fario Cortante V= Iseño a una Dis cortante Vd= Ortante resister	TRAMO I 12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I the del concret bw * d = 4.49	co Vc:	OS MAXIMO		BLES Y CAR		5549.11	
Momentos ar Izquierda Derecha Momento hor Cortes de Dise Cortantes de d	AS CORTANTES Itihorarios Fario Cortante V= Iseño a una Dis cortante Vd= Ortante resister	TRAMO I 12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I the del concret bw * d = =	co Vc:	OS MAXIMO		BLES Y CAR		5549.11	


Calculo del esp	eciamiento	S (cm)		Øbarra =	3/8'■		Av=	0.71	cm2
	El primer e	strivo debe d	e estara:		S=	5	cm		
Separaacion er	12 7002	45	cm						
•			CIII						
de confinamier	10	TRAMO I							
Calculo del esp	aciamiento	en la zona d	e confinam	iento:	I co	nfinamie	ento = 2*h =	80	cm
RNE E.060: art: 2		C11 14 20114 4	RNE E.060 a			······································	1110 - 2 11 -	- 00	CIII
	-		d/4 =		cm				
	-	8 Ørefu	erzo long =				S=	10	cm
	-		Ø estribo =						
	-		30 cm =		cm				
Espaciamiento	de los estri	bos en la zor	na de confir	namiento f	inal:				
Fanasi	amianta C-	10	om						
Espaci	amiento S=	10	cm						
		TRAMO I							
Numero de estr	ibos en la z	ona de confi	namiento =						
	N°=	8	estribos						
		TRAMO I							
Calculo de la co	rtante fuer	a de la zona	de confinan	niento					
distancia de Vu									
cortante ultima	Vud''=	6.275							
		TRAMO I							
	· C	1. 1			C 1/2	47			24 2 5 4
separacion max	xima iuera (ie ia zona de	Commanne	ento:	Smx=d/2=	17	cm	art:	21.3.5.4
cortante de dis	eño para la	zona no con	inada:						
	- p = 1 = 1 = 1	TRAMO I							
Cortante a soport	ar x acero:	0.73	Ton						
Requerimiento:		equiere refuer	ZO ZO						
separacion de est		279.467509	cm						
Separación a co	olocar:	15	cm						
COLOCACION FIN	NAL DE LOS E	1							
		1@0.05+							
Estrivos de:		8@0.1+R@0.							
3/8"		15							
A cada lado		3.40 m							
		TRAMO I							

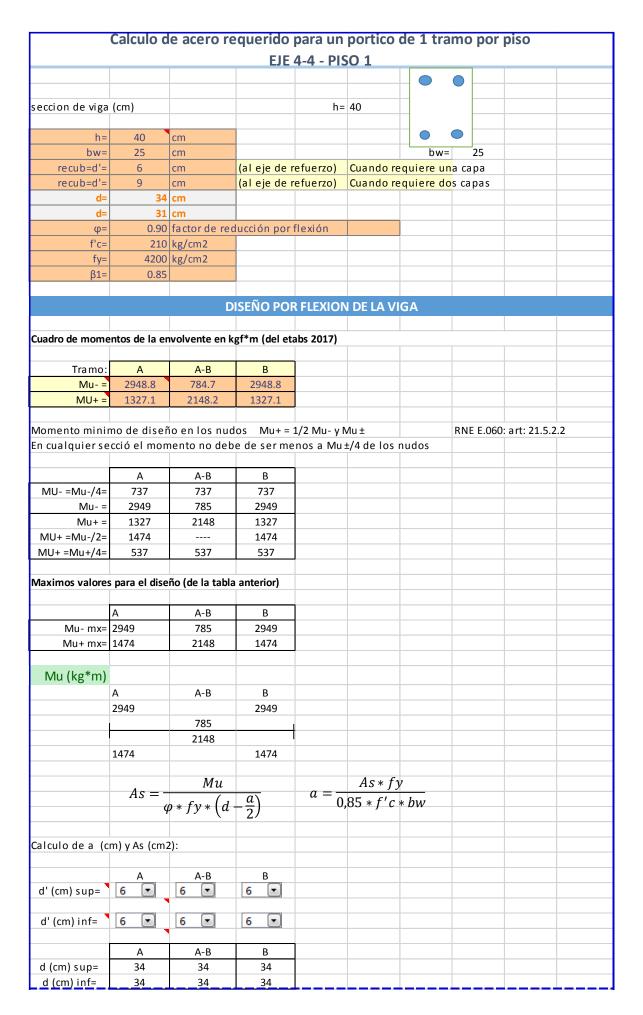
		,		1					
En cm, cm2	Α	A-B	В						
Asumido a±=	10	10	10						
Itera 1 As-=	1.78	1.04	1.78						
Itera 1 As+=	0.89	2.45	0.89						
a-=	1.68	0.98	1.68						
a+=	0.84	2.31	0.84						
Itera 2 As-=	1.56	0.90	1.56						
Itera 2 As+=	0.77	2.17	0.77						
a-=	1.47	0.85	1.47						
a+=	0.72	2.04	0.72						
Itera 3 As-=	1.55	0.90	1.55						
Itera 3 As+=	0.77	2.16	0.77						
a-=	1.46	0.84	1.46						
a+=	0.72	2.03	0.72						
	0.70 *	f'c							
Ac . :	= 0,70 * 1	$\sqrt{f'c}$ * bw *	d =	2.053	cm2				
113min	fy	" DVV "	u —	2.033	CITIZ				
	, , ,			04.05					
A.	$s_{max} = 0,0$	025 * bw * o	1 =	21.25	cm2				
Acero negativo e	n cada zona	(cm2) (acero s	uperior de la	viga)					
	Α	A-B	В						
As requerido=	2.05	2.05	2.05						
_									
N° de Varillas	2	12	2						
diametro φ =	1/2"	1/2"	1/2"						
	+	+	+						
N° de Varillas	0	0	0						
diametro φ =	3/8'' 💌	3/8"	3/8" 🔻						
As usado (cm2)		2.54	2.54						
no asaao (cinz)	OK	OK	OK						
	UK T	UK	UK						
	2φ1/2''	2φ1/2''	2φ1/2''						
	ΣΨ1/2	ΣΨ1/2	ΣΨ1/Σ						
Acero positivo er	n cada zona (cm2) (acero in	ferior de la v	riga)					
ricero positivo ei		A-B	В	1547					
	A 2.05								
As requerido=	2.05	2.16	2.05						
N° de Varillas	2 🔻	2	2 💌						
diametro φ =	1/2"	1/2"	1/2"						
	+	+	+						
N° de Varillas	0	0	0						
diametro φ =	3/8"	3/8" 🔻	3/8" ▼						
	_	2.54	2.54						
As usado (cm2)									
	OK	OK	OK						
	2φ1/2''	2φ1/2''	2φ1/2''						
Calculo de la cua	ntia ρ:	As	5						
		$\rho = \frac{1}{hw}$: d						
	A	A-B	В						
	0.299%	0.299%	0.299%						
	0.233/0	0.23370	0.23370						
	0.299%	0.299%	0.299%						
Calculo de la cua	ntia sup - inf	:							
0 - 00	f	$\frac{c}{y} * \frac{6000}{6000} +$)	2 1250/			0.5.	1 0629/	
$\rho_b = 0.8$	ɔ * β1 * -	w * 6000 ±	$\frac{1}{fv} =$	2.125%		$\rho - \rho' \leq$	υ. 5ρ _b =	1.063%	
	Α	A-B	В						
	0.000%	0.000%	0.000%						
				ı					
	OK!!!	OK!!!	OK!!!						

			_						
	A	A-B	В						
As-=									
	2φ1/2''	2φ1/2''	2φ1/2''						
	0.4/011	0.4/011	0 4 (0)						
As+=	2φ1/2''	2φ1/2''	2φ1/2''						
		DIG	TEÑA DAD	CORTANI	FE /ECTRU	DOC)			
			EÑO POR	CORTAN	E (ESTRII	BOS)			
Calculo de a (cr	n): del acero c	olocado							
	Α	A D	В						
suerior	2.39	A-B 2.39	2.39						
nferior	2.39	2.39	2.39						
	2.33	2.33	2.55						
Calculo del Max	cimo Momento	probable = 1,	25*Moment	o Nominal:	(Mpr = 1.25	*Mn) (ton	^k m)		
RNE E.060 art.									
	А	A-B	В						
suerior	4.37	4.37	4.37						
nferior	4.37	4.37	4.37						
distancia (m)		3.40 m							
entre apoyos									
Calculo de la		0.5:05	. ,						
	cm=	2.5185	t/m		1,4*cm+1.				
	CV=	1.25925	t/m	w=	5.667	t/m			
CALCULO DE LA	C CODTANTEC	DEDIDO AL IA	DC BAOBAERIT	OC NANVINA	OC DDODA	DIEC V CAD	CAC DISTRIC	IIID A	
Momentos an		DEBIDO AL LO	JS IVIOIVIEIVI	US IVIANIIVI	US PRUBAL	DLES I CAR	JAS DISTRIE	OIDA.	
violile ii tos a ii	tillorarios	TRAMO I							
zquierda		12.2065022							
Zquiciua									
Derecha	ario	7.06002278							
	ario	7.06002278							
Derecha	ario								
Derecha	ario	7.06002278 7.06002278							
Derecha Momento hora		7.06002278 7.06002278 12.2065022	:: 21.5.4.1						
Derecha		7.06002278 7.06002278	:: 21.5.4.1						
Derecha Momento hora		7.06002278 7.06002278 12.2065022	:: 21.5.4.1 ton						
Derecha Momento hora	io	7.06002278 7.06002278 12.2065022 RNE E.060 art							
Derecha Momento hora	io	7.06002278 7.06002278 12.2065022 RNE E.060 art 12.207							
Derecha Momento hora	io	7.06002278 7.06002278 12.2065022 RNE E.060 art							
Derecha Momento hora Cortes de Diseñ	cortante V=	7.06002278 7.06002278 12.2065022 RNE E.060 art 12.207 3.40 m TRAMO I							
Derecha Momento hora	cortante V=	7.06002278 7.06002278 12.2065022 RNE E.060 art 12.207 3.40 m TRAMO I							
Derecha Momento hora Cortes de Diseñ	cortante V=	7.06002278 7.06002278 12.2065022 RNE E.060 art 12.207 3.40 m TRAMO I	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	7.06002278 7.06002278 12.2065022 RNE E.060 art 12.207 3.40 m TRAMO I							
Derecha Momento hora Cortes de Diseñ	cortante V=	7.06002278 7.06002278 12.2065022 RNE E.060 art 12.207 3.40 m TRAMO I stancia d (ton) 9.765	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	7.06002278 7.06002278 12.2065022 RNE E.060 art 12.207 3.40 m TRAMO I stancia d (ton) 9.765 3.40 m	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	7.06002278 7.06002278 12.2065022 RNE E.060 art 12.207 3.40 m TRAMO I stancia d (ton) 9.765	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	7.06002278 7.06002278 12.2065022 RNE E.060 art 12.207 3.40 m TRAMO I stancia d (ton) 9.765 3.40 m TRAMO I	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	7.06002278 7.06002278 12.2065022 RNE E.060 art 12.207 3.40 m TRAMO I stancia d (ton) 9.765 3.40 m TRAMO I	ton						
Derecha Momento hora Cortes de Diseñ Cortantes de dis	cortante V=	7.06002278 7.06002278 12.2065022 RNE E.060 art 12.207 3.40 m TRAMO I stancia d (ton) 9.765 3.40 m TRAMO I	ton	kg			D,85 * V. =	5549.11	kg
Derecha Momento hora Cortes de Diseñ Cortantes de dis	cortante V=	7.06002278 7.06002278 12.2065022 RNE E.060 art 12.207 3.40 m TRAMO I stancia d (ton) 9.765 3.40 m TRAMO I	ton ton	kg			0,85 * V _c =	5549.11 5.55	kg
Derecha Momento hora Cortes de Diseñ Cortantes de dis	cortante V=	7.06002278 7.06002278 12.2065022 RNE E.060 art 12.207 3.40 m TRAMO I stancia d (ton) 9.765 3.40 m TRAMO I	ton ton to Vc:				0,85 * V _c =		
Derecha Momento hora Cortes de Diseñ Cortantes de dis	cortante V=	7.06002278 7.06002278 12.2065022 RNE E.060 art 12.207 3.40 m TRAMO I stancia d (ton) 9.765 3.40 m TRAMO I	ton ton to Vc:				0,85 * V _c =		
Derecha Momento hora Cortes de Diseñ Cortantes de dis	cortante V=	7.06002278 7.06002278 12.2065022 RNE E.060 art 12.207 3.40 m TRAMO I stancia d (ton) 9.765 3.40 m TRAMO I	ton ton to Vc:				D,85 * V _c = =		
Derecha Momento hora Cortes de Diseñ Cortantes de dis	cortante V=	7.06002278 7.06002278 12.2065022 RNE E.060 art 12.207 3.40 m TRAMO I stancia d (ton) 9.765 3.40 m TRAMO I	ton ton to Vc:				0,85 * V _c =		


Calculo del esp	eciamiento	S (cm)		Øbarra =	3	/8. ▶		Av	= 0.71	cm2
	El primer e	strivo debe d	e estara:			S=	5	cm		
Separaacion er		47.5	cm							
de confinamier	nto	TRAMO I								
Calculo del esp	aciamionto	on la zona d	o confinam	ionto:		Loon	finami	ento = 2*h	_ 90	cm
RNE E.060: art: 2		en la zona u	RNE E.060 a			L COII	IIIIaiiii	1110 - 2 11	- 60	CIII
ININE E.OOO. art. 2	.1.3.3.1		d/4 =		cm					
	-	9 Arofu	u/4 = ierzo long =					S=	= 10	cm
	-		Ø estribo =					J-	- 10	cm
	_	24	30 cm =		cm					
			30 0111	30	Citi					
Espaciamiento	de los estri	bos en la zor	na de confin	amiento f	inal	:				
Espaci	amiento S=	10	cm							
		TRAMO I								
Numero de esti	ibos en la z	zona de confi	namiento =							
	N°=	8	estribos							
		TRAMO I								
Calculo de la co	ortante fuer	a de la zona	de confinan	niento						
distancia de Vu	d''=	85								
cortante ultima										
		TRAMO I								
separacion ma	xima fuera (de la zona de	confinamie	ento:	Sm	<=d/2=	17	cm	art	21.3.5.4
	. ~		·							
cortante de dis	eno para la		rinada:							
C · · · · · · ·		TRAMO I	Ton							
Cortante a soport		0.55 equiere refuer	Ton							
Requerimiento:		365.928744								
separacion de est Separación a co		15	cm							
ocharación a ((nucal.	13	CIII							
COLOCACION FI	NAL DE LOS E	STRIBOS								
		1@0.05+								
Estrivos de:		8@0.1+R@0.								
3/8''		15	I							
A cada lado		3.40 m								
A cada lado										

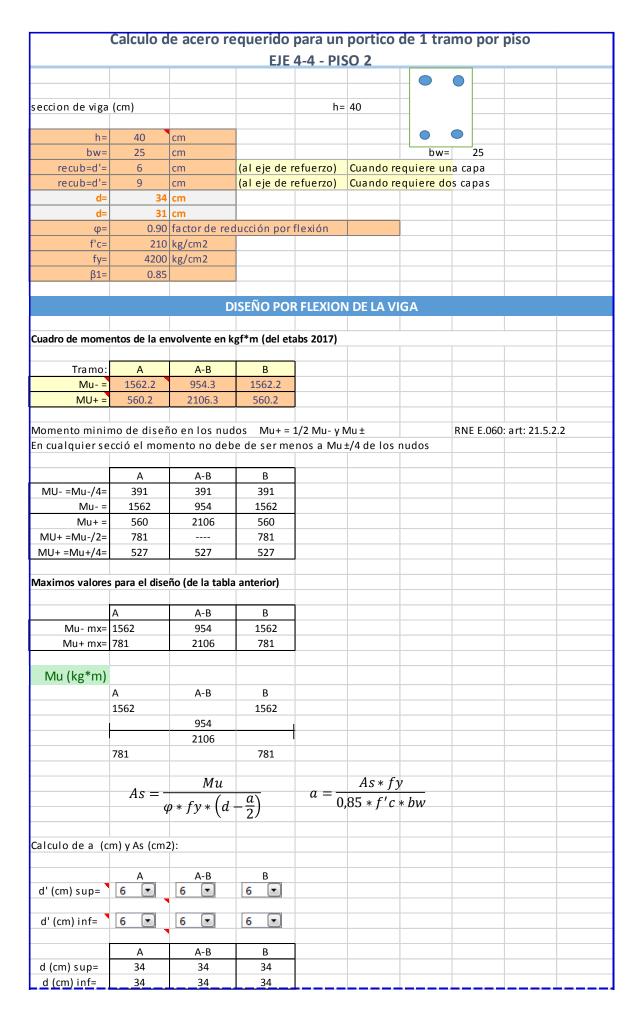
				1					
En cm, cm2	Α	A-B	В						
Asumido a±=	10	10	10						
Itera 1 As-=	3.29	0.82	3.29						
Itera 1 As+=	1.64	2.45	1.64						
a-=	3.10	0.77	3.10						
a+=	1.55	2.30	1.55						
Itera 2 As-=	2.94	0.71	2.94						
Itera 2 As+=	1.44	2.16	1.44						
a-=	2.77	0.67	2.77						
a+=	1.35	2.03	1.35						
Itera 3 As-=	2.92	0.71	2.92						
Itera 3 As+=	1.43	2.15	1.43						
a-=	2.75	0.67	2.75						
a+=	1.35	2.02	1.35						
	0.70 *	$\frac{f'c}{}*bw*$							
As_{min}	= <u> </u>	* bw *	d =	2.053	cm2				
	, , ,								
A	$s_{max} = 0$	025 * bw * o	d = 1	21.25	cm2				
Acero negativo e	n cada zona	(cm2) (acero s	uperior de la	viga)					
		, , , , , , , ,		J . ,					
	Α	A-B	В						
As requerido=	2.92	2.05	2.92						
N° de Varillas									
		1/2"	2 •						
diametro φ =		,	,						
	+	+	+						
N° de Varillas	1 💌	0	1						
diametro φ =	3/8"	3/8"	3/8"						
As usado (cm2)	3.25	2.54	3.25						
	OK	OK	OK						
	2φ1/2'' +	2:-4/2!!	2φ1/2" +						
	1φ3/8''	2φ1/2''	1φ3/8''						
Acero positivo e	n cada zona (cm2) (acero in	ferior de la v	riga)					
	Α	A-B	В						
As requerido=	2.05	2.15	2.05						
N° de Varillas									
	2	1/2"	2						
diametro φ =			1/2"						
	+	+	+						
N° de Varillas	0	0	0						
diametro φ =	3/8"	3/8"	3/8"						
As usado (cm2)		2.54	2.54						
	OK	OK	OK						
	2φ1/2''	2φ1/2''	2φ1/2''						
Calculo de la cua	ntia ρ:	As	3						
		$\rho = \frac{1}{hw}$: <u>d</u>						
	Α	A-B	В						
	0.382%	0.299%	0.382%						
		5123070							
	0.299%	0.299%	0.299%						
	J.2J3/0	0.233/0	0.433/0						
Calaula da la a	ntin ava i f								
Calculo de la cua									
	f	c 6000							
$ ho_b = 0.8$	$5 * \beta 1 * \frac{7}{4}$	$\frac{c}{y} * \frac{6000}{6000} +$	<u></u>	2.125%		$\rho - \rho' \le$	$0.5\rho_{b} =$	1.063%	
	J		Jy						
	Α	A-B	В						
	0.084%	0.000%	0.084%						
	OK!!!	OK!!!	OK!!!						

	Α	A-B	В						
As-=	2φ1/2" +	2.4/20	2φ1/2" +						
	1φ3/8''	2φ1/2"	1φ3/8''						
As+=	2φ1/2''	2φ1/2''	2φ1/2''						
		DIS	SEÑO POR	CORTANT	TE (ESTRII	BOS)			
Calculo de a (cn	n): del acero c	olocado							
	Α	A D	n n						
uerior	3.06	A-B 2.39	3.06						
nferior	2.39	2.39	2.39						
menor	2.55	2.33	2.55						
Calculo del Max		probable = 1,	25*Moment	o Nominal:	(Mpr = 1.25	*Mn) (ton	*m)		
RNE E.060 art.									
	Α	A-B	В						
uerior	5.54	4.37	5.54						
nferior	4.37	4.37	4.37						
distancia (m)		3.40 m							
entre apoyos	<u> </u>								
Calculo de la (0.5:05	. ,						
	cm=	2.5185	t/m		1,4*cm+1.				
	cv=	1.25925	t/m	w=	5.667	t/m			
CALCULO DE LA	S CODTANTES	DEBIDO AL LO	OS MONTENIT	OC NANVINA	OC DDOD AD	DIEC V CAD	CAS DISTRIB	HIDA	
Momentos an		DEBIDO AL LO	J3 IVIOIVIEIVI	US IVIANIIVI	US PROBAL	DLES I CAN	GAS DISTRIE	OIDA.	
violitetitos ati									
	cinorarios	TRAMOL	Ì						
		TRAMO I							
zquierda		12.5493806							
zquierda Derecha									
zquierda		12.5493806 6.71714437							
zquierda Derecha		12.5493806 6.71714437 6.71714437							
zquierda Derecha		12.5493806 6.71714437							
zquierda Derecha	ario	12.5493806 6.71714437 6.71714437	:: 21.5.4.1						
zquierda Derecha Momento hora	ario	12.5493806 6.71714437 6.71714437 12.5493806 RNE E.060 art	:: 21.5.4.1						
zquierda Derecha Momento hora	ario	12.5493806 6.71714437 6.71714437 12.5493806	:: 21.5.4.1 ton						
zquierda Derecha Momento hora	ario	12.5493806 6.71714437 6.71714437 12.5493806 RNE E.060 art							
zquierda Derecha Momento hora	ario	12.5493806 6.71714437 6.71714437 12.5493806 RNE E.060 art							
zquierda Derecha Momento hora Cortes de Diseñ	ario io cortante V=	12.5493806 6.71714437 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I							
zquierda Derecha Momento hora	ario io cortante V=	12.5493806 6.71714437 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I							
zquierda Derecha Momento hora Cortes de Diseñ	ario io cortante V=	12.5493806 6.71714437 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I							
zquierda Derecha Momento hora Cortes de Diseñ	cortante V=	12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton)	ton						
zquierda Derecha Momento hora Cortes de Diseñ	cortante V=	12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I	ton						
zquierda Derecha Momento hora Cortes de Diseñ	cortante V=	12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I	ton						
zquierda Derecha Momento hora Cortes de Diseñ	cortante V=	12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I	ton						
zquierda Derecha Momento hora Cortes de Diseñ Cortantes de dis	cortante V=	12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I 10.040 3.40 m TRAMO I	ton ton	kg			0.85 * V —	5549.11	kg
zquierda Derecha Momento hora Cortes de Diseñ Cortantes de dis	cortante V=	12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I	ton ton ton o Vc:				0,85 * V _c =		
zquierda Derecha Momento hora Cortes de Diseñ Cortantes de dis	cortante V=	12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I 10.040 3.40 m TRAMO I	ton ton	kg			0,85 * V _c =	5549.11 5.55	kg
zquierda Derecha Momento hora Cortes de Diseñ Cortantes de dis	cortante V=	12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I	ton ton ton o Vc:				0,85 * V _c =		
zquierda Derecha Momento hora Cortes de Diseñ Cortantes de dis	cortante V=	12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I	ton ton ton o Vc:				0,85 * V _c =		
zquierda Derecha Momento hora Cortes de Diseñ Cortantes de dis	cortante V=	12.5493806 6.71714437 12.5493806 RNE E.060 art 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I	ton ton ton o Vc:				0,85 * V _c =		


Calculo del esp	eciamiento	S (cm)		Øbarra =	3/8'■		Av=	0.71	cm2
	Fl nrimer e	strivo debe d	e estara:		S=	5	cm		
	zi piilier c	Julio debe d	c cstar a.		J	<u> </u>	CIII		
Separaacion er	la zona	45	cm						
de confinamier		TRAMO I	OIII						
Calculo del esp	Jaciamiento	en la zona d	e confinam	iento:	L co	nfinamie	nto = 2*h =	80	cm
RNE E.060: art: 2			RNE E.060 a						
	_		d/4 =		cm				
	-	8 Ørefu	erzo long =				S=	10	cm
	_		Ø estribo =						
	-		30 cm =		cm				
Espaciamiento	de los estri	bos en la zoi	na de confir	namiento f	inal:				
Espaci	amiento S=	10	cm						
		TRAMO I							
Numero de esti	ribos en la z	ona de confi	namiento =						
	N°=	-	estribos						
		TRAMO I							
Calculo de la co	rtanta fuar	. do la zona	do confinan	nionto					
carcuro de la co	Trante ruer	a ue la zolla	ue comman	illelitto					
distancia de Vu	d''=	85							
cortante ultima									
		TRAMO I							
separacion ma	xima fuera (de la zona de	confinamie	ento:	Smx=d/2=	17	cm	art:	21.3.5.4
cortante de dis	eño para la	zona no con	finada:						
		TRAMO I							
Cortante a soport	ar x acero:	0.73	Ton						
Requerimiento:	R	equiere refuer	ZO ZO						
separacion de est	ribos calcu:	279.467509	cm						
Separación a co	olocar:	15	cm						
COLOCACION 5:3	UAL DE LOC	CTDIDOC							
COLOCACION FI	NAL DE LOS E	1							
Fatulina de .		1@0.05+							
Estrivos de:		8@0.1+R@0.							
3/8"		15							
A cada lado		3.40 m							
		TRAMO I					1		

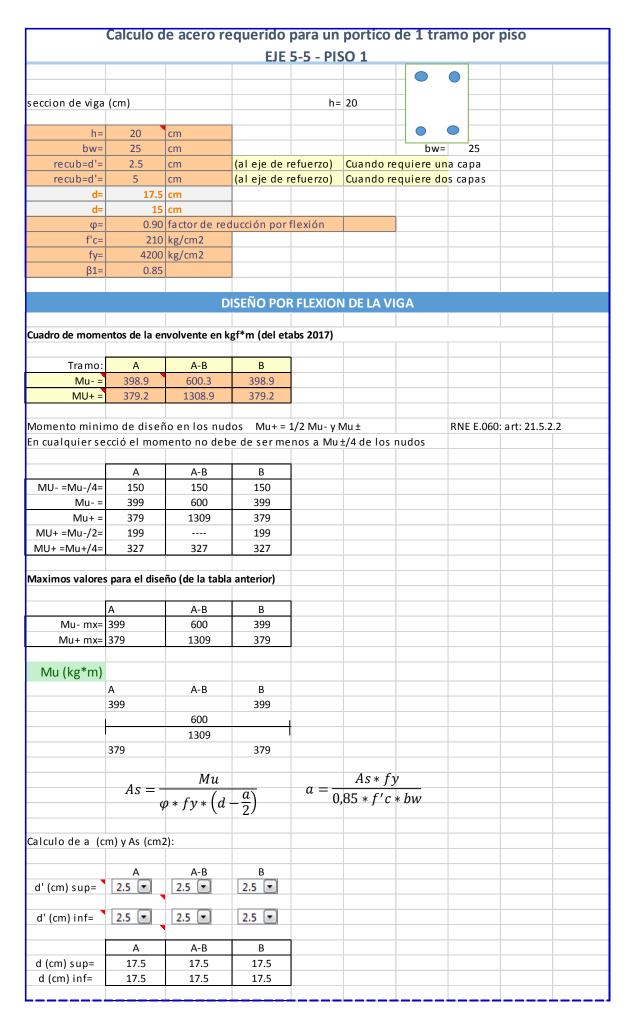
En cm, cm2	А	A-B	В						
Asumido a±=	10	10	10						
Itera 1 As-=	1.77	0.99	1.77						
Itera 1 As+=	0.88	2.40	0.88						
a-=	1.66	0.94	1.66						
a+=	0.83	2.25	0.83						
Itera 2 As-=	1.54	0.86	1.54						
Itera 2 As+=	0.76	2.11	0.76						
a-=	1.45	0.81	1.45						
a+=	0.72	1.99	0.72						
Itera 3 As-=	1.54	0.86	1.54						
Itera 3 As+=	0.76	2.10	0.76						
a-=	1.45	0.81	1.45						
a+=	0.72	1.98	0.72						
	0.70 *	f'c							
A s	$=\frac{0.70 \pm }{}$	$\frac{f'c}{}*bw*c$	1 =	2.053	cm2				
rismin	fy	1 200 1 6	1		0				
1	- 0	025 . h	i	24.25	2				
A	$S_{max}=0,$	025 * bw * c	l =	21.25	cm2				
Acero negativo e	en cada zona	(cm2) (acero su	perior de la	viga)					
	А	A-B	В						
As requerido=	2.05	2.05	2.05						
N° de Varillas	2.03	2.05	2.03						
diametro φ =	1/2"	1/2"	1/2"						
	+	+	+						
N° de Varillas	0	0	1						
diametro φ =	3/8" 🔻	3/8"	3/8"						
As usado (cm2)		2.54	3.25						
,	ОК	ОК	ОК						
	, OK	U.	2φ1/2" +						
	2φ1/2''	2φ1/2''							
			1φ3/8''						
Acero positivo e	n cada zona (cm2) (acero inf	erior de la vi	ga)					
	Α	A-B	В						
As requerido=	2.05	2.10	2.05						
N° de Varillas									
	2								
diametro φ =			1/2"						
	+	+	+						
N° de Varillas	0	0	0						
diametro φ =	3/8" 💌	3/8"	3/8"						
As usado (cm2)		2.54	2.54						
()	OK	OK	OK						
	2φ1/2''	2φ1/2''	2φ1/2"						
Colouis de la -		As							
Calculo de la cua	intia p:	0	_						
		hw *	d						
	Α	A-B	В						
	0.299%	0.299%	0.382%						
			1						
				1					
	0.2009/	0.2009/	0.2009/						
	0.299%	0.299%	0.299%						
Calculo de la cua	ıntia sup - inf	:							
	f	6000							
$\rho_h = 0.8$	35 * β1 * ^J	$\frac{c}{y} * \frac{6000}{6000} +$	_ =	2.125%		$\rho - \rho' \le$	0.5ու =	1.063%	
F 0 0,0	F	y 6000 +	fy			- r -			
	Α	A-B	В						
	0.000%	0.000%	0.084%						
	0.000%	0.000%	0.064%						
				1					
			'						
L	OK!!!	OK!!!	OK!!!		L		<u> </u>		

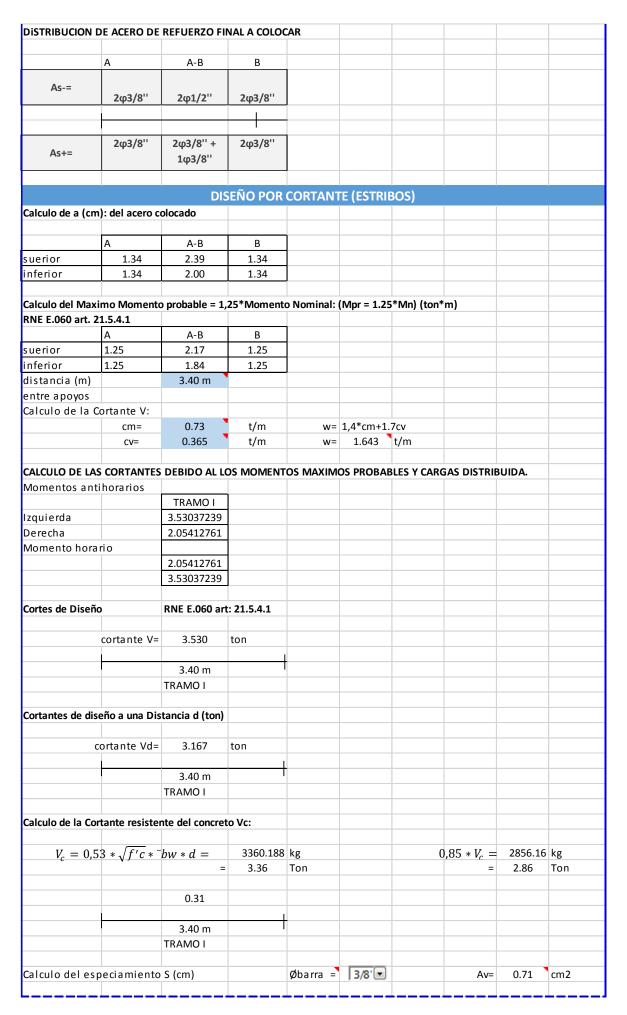
	_	A D							
	Α	A-B	В						
As-=	2.01/211	2.01/211	2φ1/2" +						
	2φ1/2''	2φ1/2''	1φ3/8''						
As+=	2φ1/2''	2φ1/2''	2φ1/2''						
A3T-									
		DIS	EÑO POR (CORTANT	E (ESTRIE	BOS)			
Calculo de a (cn	n): del acero c								
	А	A-B	В						
suerior	2.39	2.39	3.06						
nferior	2.39	2.39	2.39						
		probable = 1,2	5*Momento	Nominal: (Mpr = 1.25	*Mn) (ton*	m)		
RNE E.060 art. 2			_						
	Α	A-B	В						
suerior	4.37	4.37	5.54						
nferior	4.37	4.37	4.37						
distancia (m)		3.40 m							
entre apoyos									
Calculo de la (
	cm=	2.5185	t/m		1,4*cm+1				
	cv=	1.25925	t/m	w=	5.667	t/m			
CALCULO DE LA		DEBIDO AL LO	S MOMENTO	OS MAXIMO	S PROBAB	LES Y CARG	AS DISTRIB	UIDA.	
Momentos ant	ihorarios								
		TRAMO I							
		12.20650222							
Derecha									
Izquierda Derecha Momento hora	rio	12.20650222 7.060022777							
Derecha	rio	12.20650222 7.060022777 6.717144369							
Derecha	rio	12.20650222 7.060022777							
Derecha Momento hora		12.20650222 7.060022777 6.717144369 12.54938063	24.5.4.1						
Derecha Momento hora		12.20650222 7.060022777 6.717144369	21.5.4.1						
Derecha Momento hora	0	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art:							
Derecha Momento hora		12.20650222 7.060022777 6.717144369 12.54938063	21.5.4.1 ton						
Derecha Momento hora	0	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art:							
Derecha Momento hora	0	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art: 12.549							
Derecha	0	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art:							
Derecha Momento hora Cortes de Diseñ	o cortante V=	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art: 12.549 3.40 m TRAMO I							
Derecha Momento hora Cortes de Diseñ	o cortante V=	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art: 12.549 3.40 m TRAMO I							
Derecha Momento hora Cortes de Diseñ	o cortante V=	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art: 12.549 3.40 m TRAMO I							
Derecha Momento hora Cortes de Diseñ	cortante V=	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art: 12.549 3.40 m TRAMO I	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art: 12.549 3.40 m TRAMO I tancia d (ton)	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art: 12.549 3.40 m TRAMO I tancia d (ton)	ton						
Derecha Momento hora Cortes de Diseñ Cortantes de dis	cortante V=	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art: 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I	ton						
Derecha Momento hora Cortes de Diseñ Cortantes de dis	cortante V=	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art: 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I	ton						
Derecha Momento hora Cortes de Diseñ Cortantes de dis Calculo de la Co	cortante V=	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art: 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I	ton ton						
Derecha Momento hora Cortes de Diseñ Cortantes de dis Calculo de la Co	cortante V=	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art: 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I	ton ton Vc:),85 * V _c =		
Derecha Momento hora Cortes de Diseñ Cortantes de dis Calculo de la Co	cortante V=	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art: 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I	ton ton	kg),85 * V _c =	5549.11 5.55	kg
Derecha Momento hora Cortes de Diseñ Cortantes de dis Calculo de la Co	cortante V=	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art: 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I the del concreto bw * d = =	ton ton Vc:),85 * V _c = = =		
Derecha Momento hora Cortes de Diseñ Cortantes de dis Calculo de la Co	cortante V=	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art: 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I	ton ton Vc:				D,85 * V _c =		
Derecha Momento hora Cortes de Diseñ Cortantes de dis Calculo de la Co	cortante V=	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art: 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I the del concreto bw * d = 4.49	ton ton Vc:),85 * V _c =		
Derecha Momento hora Cortes de Diseñ Cortantes de dis Calculo de la Co	cortante V=	12.20650222 7.060022777 6.717144369 12.54938063 RNE E.060 art: 12.549 3.40 m TRAMO I tancia d (ton) 10.040 3.40 m TRAMO I the del concreto bw * d = =	ton ton Vc:),85 * V _c = =		


Calculo del esp	eciamiento	S (cm)		Øbarra =	3/8'▼		Av=	0.71	cm2
	El primer e	strivo debe de	estara:		S=	5	cm		
Separaacion er		45	cm						
de confinamier	nto	TRAMO I							
Calculo del esp	aciamiento	en la zona de	confinami	ento:	L co	nfinamie	ento = 2*h =	80	cm
RNE E.060: art: 2		21114 20114 4	RNE E.060 a				2 11		Citi
	-		d/4 =		cm				
	_	8 Ørefu	erzo long =				S=	10	cm
	_		Ø estribo =				3-	10	CITI
	-	27	30 cm =		cm				
Espaciamiento	de los estri	bos en la zon	a de confin	amiento fi	nal:				
Fans -:	amianta C	10	cm						
Espaci	amiento S=	10	cm						
		TRAMO I							
Numero de estr	ihos en la z	ona de confir	iamiento =						
ivamero de esti	1503 CII IU 2	lona ac comm							
	N°=	8	estribos						
		TRAMO I							
Calculo de la co	rtante fuer	a de la zona d	e confinam	iento					
distancia de Vu									
cortante ultima	Vud''=								
		TRAMO I							
separacion max	xima fuera (de la zona de	confinamie	nto:	Smx=d/2=	17	cm	art:	21.3.5.4
cortante de dis	eño para la		nada:						
• • •		TRAMO I	-						
Cortante a soport		0.73	Ton						
Requerimiento:		equiere refuera							
separacion de est		279.4675086							
Separación a co	olocar:	15	cm						
COLOCACION FIN	NAL DE LOS E	STRIBOS							
		1@0.05+							
Estrivos de:		8@0.1+R@0.1							
3/8''		5	I						
A cada lado		3.40 m							
		TRAMO I							

	_			1					
En cm, cm2	Α	A-B	В						
Asumido a±=	10	10	10						
Itera 1 As-=	2.69	0.72	2.69						
Itera 1 As+=	1.35	1.96	1.35						
a-=	2.53	0.67	2.53						
a+=	1.27	1.84	1.27						
Itera 2 As-=	2.38	0.62	2.38						
Itera 2 As+=	1.17	1.72	1.17						
a-=	2.24	0.58	2.24						
a+=	1.10	1.62	1.10						
Itera 3 As-=	2.37	0.62	2.37						
Itera 3 As+=	1.17	1.71	1.17						
	2.23	0.58	2.23						
a-=									
a+=	1.10	1.61	1.10						
									
4	0,70 ∗ √	$\frac{f'c}{}*bw*$	7						
As_{min}	$=\frac{f_{V}}{f_{V}}$	* bw *	a =	2.053	cm2				
	, , ,								
A	$s_{max} = 0.0$	025 * bw * o	1 =	21.25	cm2				
Acero negativo e	n cada zona	(cm2) (acero s	uperior de la	viga)					
	Α	A-B	В						
As requerido=	2.37	2.05	2.37						
N° de Varillas	2	2	2						
diametro φ =	1/2"	1/2"	1/2"						
	+	+	+						
N° de Varillas	0	0	0						
diametro φ =	3/8" ▼	3/8"	3/8" ▼						
As usado (cm2)		2.54	2.54						
2 2.2000 (01112)	OK	OK	OK						
	2φ1/2''	2φ1/2''	2φ1/2''						
Acara nacitiva -	n cada zona (cm2) (200=2 :==	forior de la ··	viga)					
Acero positivo er				iga)					
A	A 2.05	A-B	В						
As requerido=	2.05	2.05	2.05						
N° de Varillas	2	2	2						
diametro φ =		1/2"							
	+	+	+						
N° de Varillas	0	0	0						
diametro φ =	3/8" 💌	3/8'' 💌	3/8" 🔻						
As usado (cm2)		2.54	2.54						
	OK	OK	OK						
	2φ1/2''	2φ1/2''	2φ1/2''						
Calculo de la cua	ntia ρ:	As	<u> </u>						
		$\rho = \frac{1}{hw}$	$\cdot d$						
	Α	A-B	В						
	0.299%	0.299%	0.299%						
	0.299%	0.299%	0.299%						
Calculo de la cua	ntia sup - inf	:							
0 - 00	5 4 R1 <u>f</u>	$\frac{c}{y} * \frac{6000}{6000} +$		2.125%		-1-	0.50	1.063%	
$ \rho_b = 0.8 $	0*b1*	$v^* = 6000 +$	fv =	2.125%		$\rho - \rho' \leq$	υ. 5ρ _b =	1.005%	
	Α 0000/	A-B	B						
	0.000%	0.000%	0.000%						
	OK!!!	OK!!!	OK!!!						

			_						
	A	A-B	В						
As-=									
	2φ1/2''	2φ1/2''	2φ1/2''						
	0.4/011	0.4/011	0 4 (0)						
As+=	2φ1/2''	2φ1/2''	2φ1/2''						
		DIG	TEÑO DOD	CORTANI	E /ECTDU	200			
			EÑO POR	CORTAN	E (ESTRII	305)			
Calculo de a (cr	n): del acero c	olocado							
	Α	Λ Ρ	В						
uerior	2.39	A-B 2.39	2.39						
nferior	2.39	2.39	2.39						
	2.33	2.33	2.55						
Calculo del Max	cimo Momento	probable = 1,	25*Moment	o Nominal:	(Mpr = 1.25	*Mn) (ton	*m)		
RNE E.060 art.									
	Α	A-B	В						
suerior	4.37	4.37	4.37						
nferior	4.37	4.37	4.37						
distancia (m)		3.40 m							
entre apoyos									
Calculo de la		4 00	. ,						
	cm=	1.6644	t/m		1,4*cm+1.				
	CV=	0.8322	t/m	w=	3.745	t/m			
CALCULO DE LA	C CODTANTEC	DEDIDO AL IA	DC BAODAENIT	OC BAAVIBA	OC DDOD A	LEC V CAD	CAC DICTRIR	IIID A	
CALCULO DE LA Momentos an		DEBIDO AL LO	JS IVIOIVIEIVI	US IVIANIIVI	US PRUBAL	LES I CAR	פואו כוע כאט	OIDA.	
vioinentos an	unoranos	TRAMO I							
zaujerda									
		8.93956972							
zquierda Derecha Momento hora	ario								
	ari o	8.93956972 3.79309028							
Derecha	ario	8.93956972							
Derecha	ario	8.93956972 3.79309028 3.79309028							
Derecha Momento hora		8.93956972 3.79309028 3.79309028 8.93956972	: 21.5.4.1						
Derecha Momento hora		8.93956972 3.79309028 3.79309028	: 21.5.4.1						
Derecha Momento hora		8.93956972 3.79309028 3.79309028 8.93956972	: 21.5.4.1 ton						
Derecha Momento hora	io	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art							
Derecha Momento hora	io	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940							
Derecha Momento hora	io	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art							
Derecha Momento hora Cortes de Disef	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I							
Derecha Momento hora Cortes de Disef	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I							
Derecha Momento hora Cortes de Diseñ	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I							
Derecha Momento hora Cortes de Diseñ	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m TRAMO I	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m TRAMO I	ton						
Derecha Momento hora Cortes de Diseñ Cortantes de di	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m TRAMO I	ton ton o Vc:	kg			0,85 * V. =	5549.11	kg
Derecha Momento hora Cortes de Diseñ Cortantes de di	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m TRAMO I	ton	kg			0,85 * V _c =	5549.11 5.55	kg
Derecha Momento hora Cortes de Diseñ Cortantes de di	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m TRAMO I	ton ton o Vc:				0,85 * V _c =		
Derecha Momento hora Cortes de Diseñ Cortantes de di	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m TRAMO I	ton ton o Vc:				0,85 * V _c =		
Derecha Momento hora Cortes de Diseñ Cortantes de di	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m TRAMO I the del concret bw * d = =	ton ton o Vc:				0,85 * V _c =		
Derecha Momento hora Cortes de Diseñ Cortantes de di	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m TRAMO I the del concret bw * d = =	ton ton o Vc:				0,85 * V _c = =		


Calculo del esp	eciamiento	S (cm)		Øbarra =	3/8'▼		Av=	0.71	cm2
	El primer e	strivo debe d	e estara:		S=	5	cm		
	,	425							
Separaacion er		125	cm						
de confinamier	1to	TRAMO I							
Calculo del esp	aciamionto	on la zona d	o confinam	ionto:	Loo	nfinamio	ento = 2*h =	90	cm
RNE E.060: art: 2			RNE E.060 a			IIIIaiiiit	21110 - 2 11 -	00	CIII
NIVE E.000. art. 2	_		d/4 =		cm				
	_	& Mrafi	ierzo long =				S=	10	cm
	_		Ø estribo =				3-	10	CIII
	_	21	30 cm =		cm				
			30 0		0				
Espaciamiento	de los estri	bos en la zoi	na de confir	namiento f	inal:				
Fsnari	amiento S=	10	cm						
LSpaci	annenio 3-	TRAMO I	UIII						
		TIVAIVIOT							
Numero de esti	ibos en la z	zona de confi	namiento =						
	N°=	8	estribos						
		TRAMO I							
Calculo de la co	rtante fuer	a de la zona	de confinan	niento					
distancia de Vu	d''=	85							
cortante ultima	Vud''=	4.470							
		TRAMO I							
separacion ma	xima fuera o	de la zona de	confinamie	ento:	Smx=d/2=	17	cm	art:	21.3.5.4
cortante de dis	eño para la	zona no con	finada:						
		TRAMO I							
Cortante a soport	ar x acero:	-1.08	Ton						
Requerimiento:		No requiere							
separacion de est	ribos calcu:	17	cm						
Separación a co	olocar:	15	cm						
COLOCACION FI	NAL DE LOS E	STRIBOS							
	52 203 1	1@0.05+							
Estrivos de:		1@0.05 + 8@0.1+R@0.							
3/8"		15	I						
•		3.40 m	 						
A cada lado		3.40 111							

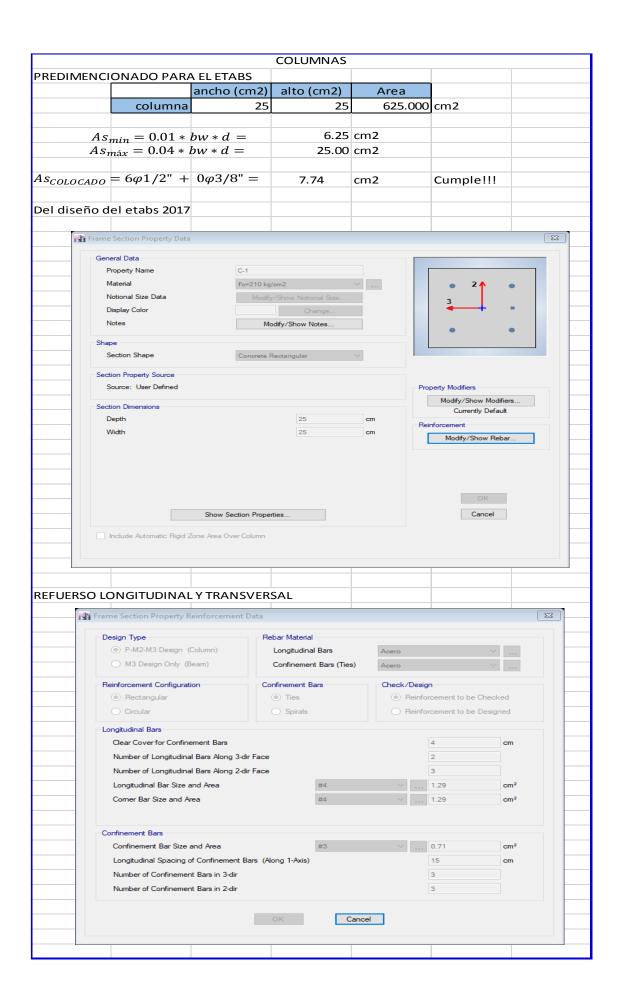

En cm, cm2	Α	A-B	В						
Asumido a±=	10	10	10						
Itera 1 As-=	1.43	0.87	1.43						
Itera 1 As+=	0.71	1.92	0.71						
a-=	1.34	0.82	1.34	_					
a+=	0.67	1.81	0.67						
Itera 2 As-=	1.24	0.75	1.24						
Itera 2 As+=	0.61	1.68	0.61						
a-=	1.17	0.71	1.17						
a+=	0.58	1.58	0.58						
Itera 3 As-=	1.24	0.75	1.24						
						_			
Itera 3 As+=	0.61	1.68	0.61						
a-=	1.16	0.71	1.16						
a+=	0.58	1.58	0.58						
	0.70 *	f'c							
Ac . :	= 0,70 * 1	$\sqrt{f'c}$ * bw *	d =	2.053	cm2				
113min	fy	" DVV "	u —	2.033	CITIZ				
	, , ,								
A.	$s_{max} = 0,0$	025 * bw * o	a =	21.25	cm2				
Acero negativo e	n cada zona	(cm2) (acero s	uperior de la	viga)					
	Α	A-B	В						
As requerido=	2.05	2.05	2.05						
N° de Varillas	2	2	2 •	-	-				
diametro φ =	1/2"	1/2"	1/2"						
	+	+	+						
N° de Varillas	0	0	0						
diametro φ =	3/8'' 💌	3/8"	3/8" 🔻						
As usado (cm2)		2.54	2.54						
no asaao (cinz)	OK	OK	OK						
	UK T	UK	UK						
	2φ1/2''	2φ1/2''	2φ1/2''						
	-4-/-	- 	-4-/-						
Acero positivo er	n cada zona (cm2) (acero in	ferior de la v	iga)					
	Α	A-B	В	J ,					
As roquerido-									
As requerido=	2.05	2.05	2.05	-	-				
N° de Varillas	2	2	2 🔻						
diametro φ =	1/2"	1/2"	1/2"						
	+	+	+						
N° de Varillas	0	0	0						
diametro φ =	3/8"	3/8" 🔻	3/8'' ▼						
As usado (cm2)	_	2.54	2.54						
no usauo (CIIIZ)									
	OK	OK	OK						
	2φ1/2''	2φ1/2''	2φ1/2''						
Calculo de la cua	ntia ρ:	As	<u> </u>						
		$\rho = \frac{1}{hw}$	d						
	Α	A-B	В						
	0.299%	0.299%	0.299%						
	J.2JJ/0	0.23370	0.233/0		-	-			
					-	-			
			I						
	0.299%	0.299%	0.299%						
Calculo de la cua	ntia sup - inf	:							
0 - 00	F 01 f	$\frac{c}{y} * \frac{6000}{6000} +$	<u> </u>	2.125%			0.5-	1.0629/	
$\rho_b = 0.8$	ɔ * β1 * -	_* <u>6000</u> ±	$\frac{}{fv} =$	2.125%		$\rho - \rho' \le$	$\upsilon.5\rho_b =$	1.063%	
	Α	A-B	В						
	0.000%	0.000%	0.000%						
				4					
				l			1		
	OK!!!	OK!!!	OK!!!						

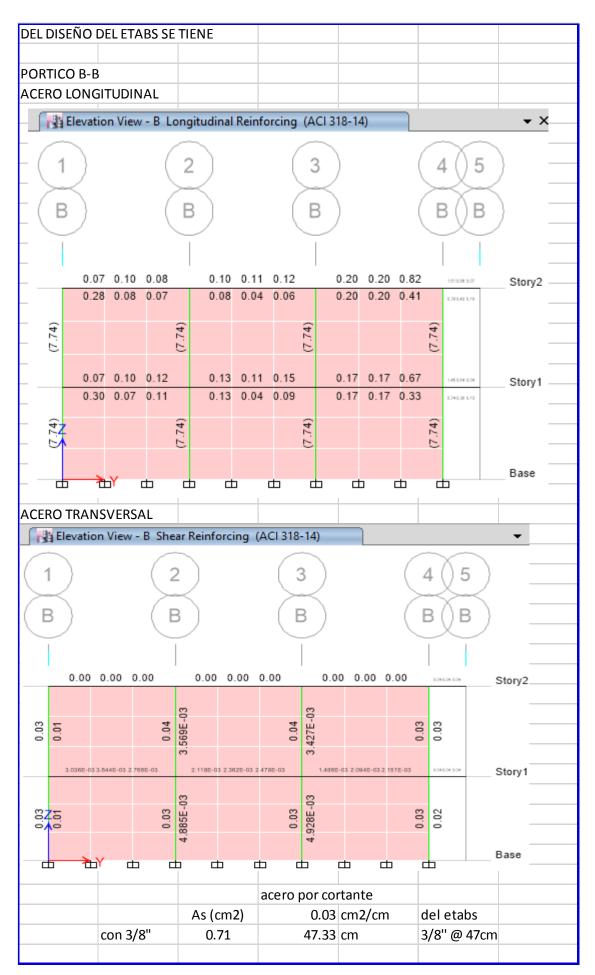
			_						
	A	A-B	В						
As-=									
	2φ1/2''	2φ1/2''	2φ1/2''						
	0.4/011	0.4/011	0 4 (0)						
As+=	2φ1/2''	2φ1/2''	2φ1/2''						
		DIG	TEÑO DOD	CORTANI	E /ECTDU	200			
			EÑO POR	CORTAN	E (ESTRII	305)			
Calculo de a (cr	n): del acero c	olocado							
	Α	Λ Ρ	В						
uerior	2.39	A-B 2.39	2.39						
nferior	2.39	2.39	2.39						
	2.33	2.33	2.55						
Calculo del Max	cimo Momento	probable = 1,	25*Moment	o Nominal:	(Mpr = 1.25	*Mn) (ton	*m)		
RNE E.060 art.									
	Α	A-B	В						
suerior	4.37	4.37	4.37						
nferior	4.37	4.37	4.37						
distancia (m)		3.40 m							
entre apoyos									
Calculo de la		4 00	. ,						
	cm=	1.6644	t/m		1,4*cm+1.				
	CV=	0.8322	t/m	w=	3.745	t/m			
CALCULO DE LA	C CODTANTEC	DEDIDO AL IA	DC BAODAENIT	OC BAAVIBA	OC DDOD A	LEC V CAD	CAC DICTRIR	IIID A	
CALCULO DE LA Momentos an		DEBIDO AL LO	JS IVIOIVIEIVI	US IVIANIIVI	US PRUBAL	LES I CAR	פואו כוע כאט	OIDA.	
vioinentos an	unoranos	TRAMO I							
zaujerda									
		8.93956972							
zquierda Derecha Momento hora	ario								
	ari o	8.93956972 3.79309028							
Derecha	ario	8.93956972							
Derecha	ario	8.93956972 3.79309028 3.79309028							
Derecha Momento hora		8.93956972 3.79309028 3.79309028 8.93956972	: 21.5.4.1						
Derecha Momento hora		8.93956972 3.79309028 3.79309028	: 21.5.4.1						
Derecha Momento hora		8.93956972 3.79309028 3.79309028 8.93956972	: 21.5.4.1 ton						
Derecha Momento hora	io	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art							
Derecha Momento hora	io	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940							
Derecha Momento hora	io	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art							
Derecha Momento hora Cortes de Disef	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I							
Derecha Momento hora Cortes de Disef	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I							
Derecha Momento hora Cortes de Diseñ	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I							
Derecha Momento hora Cortes de Diseñ	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m TRAMO I	ton						
Derecha Momento hora Cortes de Diseñ	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m TRAMO I	ton						
Derecha Momento hora Cortes de Diseñ Cortantes de di	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m TRAMO I	ton ton o Vc:	kg			0,85 * V. =	5549.11	kg
Derecha Momento hora Cortes de Diseñ Cortantes de di	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m TRAMO I	ton	kg			0,85 * V _c =	5549.11 5.55	kg
Derecha Momento hora Cortes de Diseñ Cortantes de di	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m TRAMO I	ton ton o Vc:				0,85 * V _c =		
Derecha Momento hora Cortes de Diseñ Cortantes de di	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m TRAMO I	ton ton o Vc:				0,85 * V _c =		
Derecha Momento hora Cortes de Diseñ Cortantes de di	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m TRAMO I the del concret bw * d = =	ton ton o Vc:				0,85 * V _c =		
Derecha Momento hora Cortes de Diseñ Cortantes de di	cortante V=	8.93956972 3.79309028 3.79309028 8.93956972 RNE E.060 art 8.940 3.40 m TRAMO I tancia d (ton) 7.152 3.40 m TRAMO I the del concret bw * d = =	ton ton o Vc:				0,85 * V _c = =		

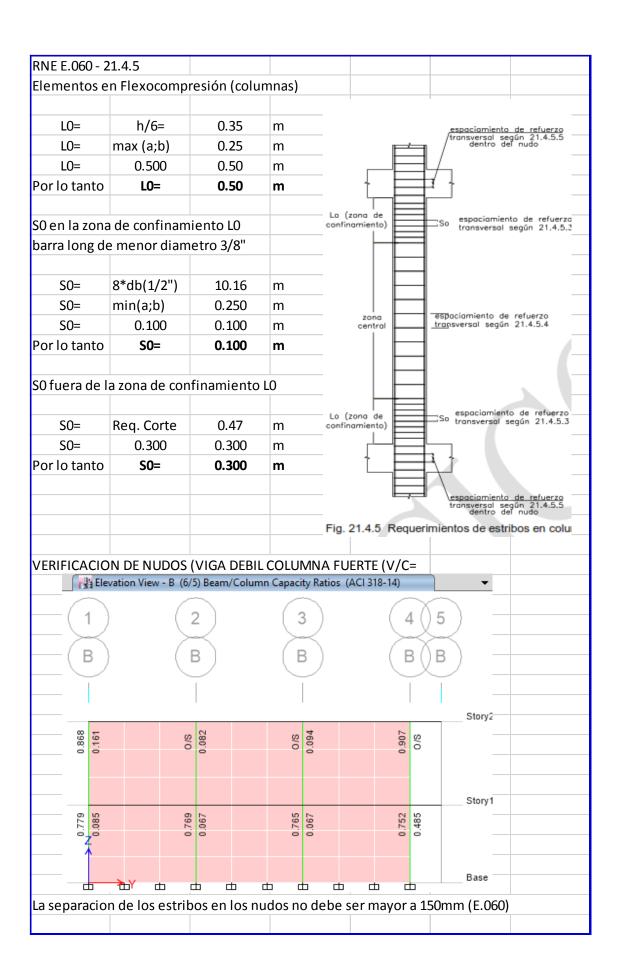
Calculo del esp	eciamiento	S (cm)		Øbarra =	3/8'▼		Av=	0.71	cm2
	El primer e	strivo debe d	e estara:		S=	5	cm		
Separaacion er		125	cm						
de confinamier	nto	TRAMO I							
Calculo del esp	aciamiento	en la zona d	e confinam	iento:	L co	nfinam	iento = 2*h =	80	cm
RNE E.060: art: 2			RNE E.060 a						
	_		d/4 =		cm				
	-	8 Ørefu	ierzo long =				S=	10	cm
	-		Ø estribo =						
	-	_	30 cm =		cm				
Tanadami anta	مام امم مماسا	has an la -a-	aa da aanfin	amianta f	:				
Espaciamiento	ue ios estri	nos en la zoi	ia de contir	iamiento f	IIIdI:				
Ecnaci	amiento S=	10	cm						
Espaci	annento 3=	TRAMO I	UII						
		TRAIVIOT							
Numero de esti	ibos en la z	zona de confi	namiento =						
	N°=	8	estribos						
		TRAMO I							
Calculo de la co	rtante fuer	a de la zona	de confinan	niento					
distancia de Vu	d''=	85							
cortante ultima	Vud''=	4.470							
		TRAMO I							
separacion ma	xima fuera o	de la zona de	confinamie	ento:	Smx=d/2=	17	cm	art:	21.3.5.4
<u>'</u>					,				
cortante de dis	eño para la	zona no con	finada:						
		TRAMO I							
Cortante a soport	ar x acero:	-1.08	Ton						
Requerimiento:		No requiere							
separacion de est	ribos calcu:	17	cm						
Separación a co	olocar:	15	cm						
COLOCACION FI	NAL DE LOS E	STRIBOS							
22200101011111	5	1@0.05+							
Estrivos de:		8@0.1+R@0.							
3/8"		15	1						
•		3.40 m							
A cada lado		3.40.00							

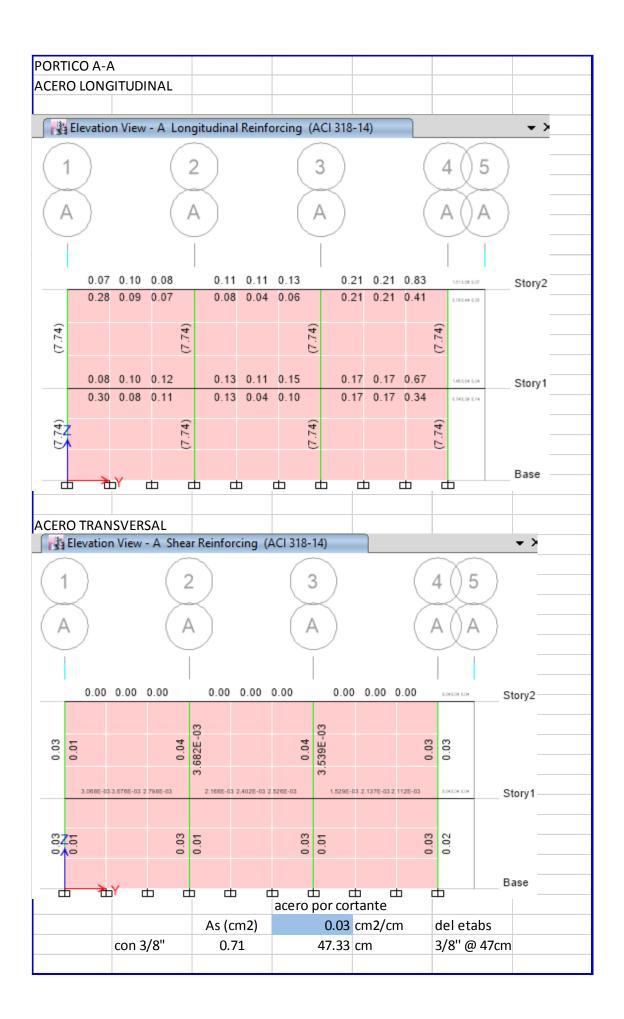
		1						
En cm, cm2	Α	A-B	В					
Asumido a±=	10	10	10					
Itera 1 As-=	0.84	1.27	0.84					
Itera 1 As+=	0.80	2.77	0.80					
a-=	0.79	1.20	0.79					
a+=	0.76	2.61	0.76					
Itera 2 As-=	0.62	0.94	0.62					
Itera 2 As+=	0.59	2.14	0.59					
			1					
a-=	0.58	0.88	0.58					
a+=	0.55	2.01	0.55					
Itera 3 As-=	0.61	0.93	0.61					
Itera 3 As+=	0.58	2.10	0.58					
a-=	0.58	0.88	0.58					
a+=	0.55	1.98	0.55					
	0.70 *	f!c						
A s	$=\frac{0.70 * }{}$	$\frac{f'c}{}*bw*$	d =	1.057	cm2			
rismin_	fy		u —	1.037	CITIZ			
1	2 - 0	025 de braz de	d —	10.0275	cm 2			
А	$S_{max} = 0,$	025 * bw *	u =	10.9375	CITIZ			
Acero negativo e	en cada zona	(cm2) (acero s	uperior de la	viga)				
	Α	A-B	В					
As requerido=	1.06	1.06	1.06					
N° de Varillas	2	2	2					
diametro φ = ්	3/8"	1/2"	3/8"					
	+	+	+					
N° de Varillas	0	0	0					
			,					
diametro φ =	3/8"	3/8"	3/8"					
As usado (cm2)		2.54	1.42					
	OK	OK	OK					
	2φ3/8''	2φ1/2''	2φ3/8''					
	2ψ3/0	2ψ1/2	2ψ3/0					
Acero positivo e	n cada zona (cm2) (acero in	ferior de la v	iga)				
•	Α	A-B	В					
As requerido=	1.06	2.10	1.06					
N° de Varillas	2 •	2 •	2 •					
diametro φ =	2/0"	20"	20"					
ulailletio ψ -								
	+	+	+					
N° de Varillas	0	1	0					
diametro φ =	3/8"	3/8'' ▼	3/8"					
As usado (cm2)	1.42	2.13	1.42					
	OK	ОК	OK					
	2φ3/8''	2φ3/8" +	2/02/011					
	2ψ3/δ	1φ3/8''	2φ3/8''					
Calculo de la cua	ntia p:	A.						
		$\rho = \frac{1}{hw}$	* d					
	Α	A-B	В					
	0.325%	0.581%	0.325%					
	0.32370	0.361%	0.323%					
			-					
	0.325%	0.487%	0.325%					
Calculo de la cua	ntia sup - inf	•						
	f	6000	1					
$\rho_{b} = 0.8$	5 * <i>B</i> 1 * ^{<i>J</i>}	$\frac{c}{y} * \frac{6000}{6000} +$	=	2.125%		$\rho - \rho' \leq 0.5 \rho_b =$	1.063%	
νυ 0,0	f	y 6000 +	fy			P = 0.0Pb =		
	Α	A-B	В					
	0.000%	-0.094%	0.000%					
	0.00070	-0.094%	0.000%					
		1						
	OK!!!	OK!!!	OK!!!					
L		<u></u>						

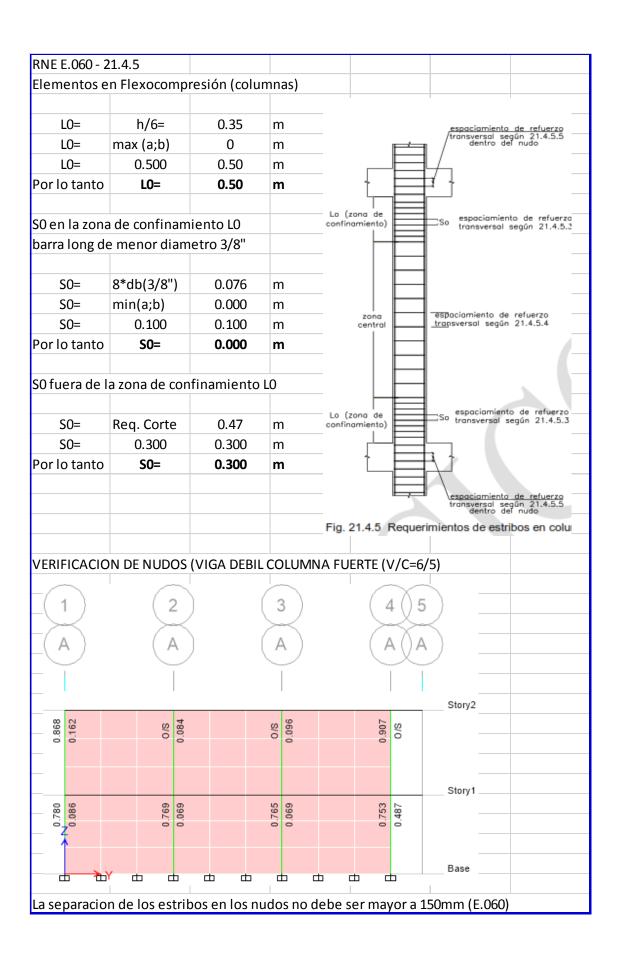
	El primer estrivo debe de estar a:				S=	5	cm		
		225							
Separaacion er		335	cm						
de confinamie	nto	TRAMO I							
Calculo del esc	 paciamiento	en la zona d	e confinami	ento:	l cor	ıfinamie	ento = 2*h =	40	cm
RNE E.060: art: 21.3.5.1		en la zona de confinamiento: RNE E.060 art: 21.3.5.2						10	CITI
	_		d/4 =		cm				
	_	8 Ørefu	ierzo long =				S=	7.5	cm
	-	- 24 Ø estribo =							
	-		30 cm =		cm				
Espaciamiento	de los estri	bos en la zor	na de confina	amiento f	inal:				
Espaci	amiento S=	7.5	cm						
		TRAMO I							
Numero de est	ribos en la z	zona de confi	namiento =						
	N°=	5	estribos						
		TRAMO I							
Calculo de la co	ortante fuer	a de la zona	de confinam	iento					
distancia de Vı	d''=	42.5							
cortante ultima	Vud''=	2.648							
		TRAMO I							
separacion ma	vima fuera (do la zona do	confinamio	nto:	Smx=d=	17.5	cm		
separación ma	XIIIIa IUEIa (ie ia zolia de	Commanne	III.U.	JIIIX-U-	17.3	CIII		
cortante de dis	eño para la	zona no con	finada:						
		TRAMO I							
Cortante a soport	tar x acero:	-0.21	Ton						
Requerimiento:		No requiere							
separacion de es	tribos calcu:	17.5	cm						
Separación a co	olocar:	17.5	cm						
COLOCACION FII	NAL DE LOS E	STRIBOS							
		1@0.05+							
Estrivos de:		5@0.075+R@							
3/8''		0.175							
A cada lado		3.40 m							
		TRAMO I							


	Calculo d	e acero re	querido	para un	portico	de 1 t	ramo	por	piso	
			EJE	5-5 - PIS	0 1					
						Ш				
seccion de viga	(cm)			h=	20					
						\mathbb{H}_{\bullet}				
h=	20	cm								
bw=	25	cm				bv		25		
re cub=d'=	2.5	cm	(al eje de ı		Cuando re					
re cub=d'=	5	cm	(al eje de i	refuerzo)	Cuando re	equiere	dos ca	pas		
d=	17.5									
d=		cm		51						
φ=		factor de red	lucción por	flexión						
f'c=		kg/cm2								
fy=		kg/cm2								
β1=	0.85									
			~							
		D	ISEÑO POI	R FLEXION	DE LA V	IGA				
Cuadro de mome	ntos de la er	volvente en k	gf*m (del et	abs 2017)						
Tra mo:	Α	A-B	В							
Mu- =	148.5	711.6	148.5							
MU+ =	248.2	1359.2	248.2							
Momento minii	no de diser	ío en los nud	os Mu+=	1/2 Mu- y N	∕lu ±		RN	E E.060	: art: 21.5.	2.2
n cualquier se	cció el mon	nento no deb	e de ser me	enos a Mu:	±/4 de los	nudos				
	Α	A-B	В							
MU- =Mu-/4=	178	178	178							
Mu- =	149	712	149							
Mu+=	248	1359	248							
MU+ =Mu-/2=	74		74							
•										
MU+ =Mu+/4=		340	340							
MU+ =Mu+/4=	340	340	340							
,	340									
•	340									
Maximos valore	340 s para el dise	ño (de la tabla	anterior)							
Maximos valores	340 s para el dise	ño (de la tabla A-B	anterior)							
Maximos valores Mu- mx=	340 s para el dise A 178	ño (de la tabla A-B 712	anterior) B 178							
/laximos valore	340 s para el dise A 178	ño (de la tabla A-B	anterior)							
Maximos valores Mu- mx= Mu+ mx=	340 s para el dise A 178	ño (de la tabla A-B 712	anterior) B 178							
Maximos valores Mu- mx=	340 s para el dise A 178 340	ño (de la tabla A-B 712 1359	B 178 340							
Maximos valores Mu- mx= Mu+ mx=	340 s para el dise A 178 340	ño (de la tabla A-B 712	B 178 340							
Maximos valores Mu- mx= Mu+ mx=	340 s para el dise A 178 340	ño (de la tabla A-B 712 1359 A-B	B 178 340							
Maximos valores Mu- mx= Mu+ mx=	340 s para el dise A 178 340	ño (de la tabla A-B 712 1359 A-B 712	B 178 340							
Maximos valores Mu- mx= Mu+ mx=	340 s para el dise A 178 340 A 178	ño (de la tabla A-B 712 1359 A-B	B 178 340 B 178							
Maximos valores Mu- mx= Mu+ mx=	340 s para el dise A 178 340	ño (de la tabla A-B 712 1359 A-B 712	B 178 340							
Maximos valores Mu- mx= Mu+ mx=	340 s para el dise A 178 340 A 178	ño (de la tabla A-B 712 1359 A-B 712 1359	B 178 340 B 178		An: C					
Maximos valores Mu- mx= Mu+ mx=	340 S para el dise A 178 340 A 178 340	ño (de la tabla A-B 712 1359 A-B 712 1359	B 178 340 B 178	a = -	As*f					
Maximos valores Mu- mx= Mu+ mx=	340 S para el dise A 178 340 A 178 340	ño (de la tabla A-B 712 1359 A-B 712 1359	B 178 340 B 178	$a = \frac{1}{0}$	As * f' 85 * f' c	y * bw				
Maximos valores Mu- mx= Mu+ mx=	340 S para el dise A 178 340 A 178 340	ño (de la tabla A-B 712 1359 A-B 712 1359	B 178 340 B 178	$a = \frac{1}{0}$	As * f' 85 * f' c	y * bw				
Mu- mx= Mu+ mx= Mu (kg*m)	340 A 178 340 A 178 340 A 178	A-B 712 1359 A-B 712 1359 A-B 712 1359 Mu 0 * fy * (d -	B 178 340 B 178	$a = \frac{1}{0}$	As * f' 85 * f' c	y * bw				
Mu- mx= Mu+ mx= Mu (kg*m)	340 A 178 340 A 178 340 A 178	A-B 712 1359 A-B 712 1359 A-B 712 1359 Mu 0 * fy * (d -	B 178 340 B 178	$a = \frac{1}{0}$	As * f' 85 * f' c	y * bw				
Mu- mx= Mu+ mx= Mu (kg*m)	340 A 178 340 A 178 340 A 178	A-B 712 1359 A-B 712 1359 A-B 712 1359 Mu 0 * fy * (d - 2):	B 178 340 B 178 340	$a = \frac{1}{0}$	As * f' 85 * f' c	y * bw				
Mu- mx= Mu+ mx= Mu (kg*m)	340 A 178 340 A 178 340 A 178 340 A 178	A-B 712 1359 A-B 712 1359 Mu 0 * fy * (d - 2):	B 178 340 B 178 340 B 178	$a = \frac{1}{0}$	As * f' c	y * bw				
Mu- mx= Mu+ mx= Mu (kg*m)	340 A 178 340 A 178 340 A 178	A-B 712 1359 A-B 712 1359 A-B 712 1359 Mu 0 * fy * (d - 2):	B 178 340 B 178 340	$a = \frac{1}{0}$	As * f' c	y * bw				
Mu- mx= Mu+ mx= Mu (kg*m) Calculo de a (c	340 A 178 340 A 178 340 A 2.5	A-B 712 1359 A-B 712 1359 Mu 0 * fy * (d - 2): A-B 2.5 •	B 178 340 B 178 340 B 2.5	$a = \frac{1}{0}$	As * f' c	y * bw				
Mu- mx= Mu+ mx= Mu (kg*m)	340 A 178 340 A 178 340 A 178 340 A 178	A-B 712 1359 A-B 712 1359 Mu 0 * fy * (d - 2):	B 178 340 B 178 340 B 178	$a = \overline{0}$	As * f' c	y * bw				
Mu- mx= Mu+ mx= Mu (kg*m) Calculo de a (c	340 A 178 340 A 178 340 A 2.5	A-B 712 1359 A-B 712 1359 Mu 0 * fy * (d - 2): A-B 2.5 •	B 178 340 B 178 340 B 2.5	$a = \overline{0}$	As * f' c	y * bw				
Mu- mx= Mu+ mx= Mu (kg*m) Calculo de a (c d' (cm) sup=	340 A 178 340 A 178 340 A 2.5	A-B 712 1359 A-B 712 1359 Mu 0 * fy * (d - 2): A-B 2.5 •	B 178 340 B 178 340 B 2.5	$a = \frac{1}{0}$	As * f' c	y * bw				
Mu- mx= Mu+ mx= Mu (kg*m) Calculo de a (c	340 A 178 340 A 178 340 A 2.5	ño (de la tabla A-B 712 1359 A-B 712 1359 Mu 0 * fy * (d - 2): A-B 2.5 ▼	B 178 340 B 178 340 B 2.5 •	a = 0	As * f' c	y * bw				


En cm, cm2	Α	A-B	В						
Asumido a±=	10	10	10						
Itera 1 As-=	0.38	1.51	0.38						
Itera 1 As+=	0.72	2.88	0.72						
a-=	0.35	1.42	0.35						
a+=	0.68	2.71	0.68						
Itera 2 As-=	0.27	1.12	0.27						
Itera 2 As+=	0.52	2.23	0.52						
a-=	0.26	1.06	0.26						
a+=	0.49	2.10	0.49						
Itera 3 As-=	0.43	1.11	0.43						
Itera 3 As+=	0.52	2.19	0.52						
a-=	0.32	1.04	0.32						
a a+=	0.49	2.06	0.49						
a+=	0.43	2.00	0.43			-			
	0 = 0	/ <u></u>							
1 -	_ 0,70 ∗ √	f'c	d —	1.057	cm ²				
AS_{min}	$=$ $f_{\mathcal{V}}$	$\frac{f'c}{}*bw*$	u =	1.057	cm2	-			
	, , ,			40.05==	_				
A.	$s_{max} = 0.0$	025 * bw * o	1 =	10.9375	cm2	-			
_						-			
Acero negativo e	n cada zona	(cm2) (acero s	uperior de la	viga)					
	Α	A-B	В						
As requerido=	1.06	1.11	1.06						
N° de Varillas	2	2	2						
diametro φ = 🥈	3/8"	3/8'' 💌	3/8"						
	+	+	+						
N° de Varillas	0	0	0						
diametro φ =	1/2"	3/8"	3/8"						
As usado (cm2)		1.42	1.42						
` ′	OK	ОК	OK						
	2φ3/8''	2φ3/8''	2φ3/8''						
Acero positivo en	rada zona /	cm2) (acero in	ferior de la v	riga)					
Acero positivo en	A	A-B	B	·6 ⁰ /					
As requerido=	1.06	2.19	1.06						
N° de Varillas									
	12 💌	3/8" ▼	2/9"						
diametro φ =						-			
NIO 1	+	+	+			-			
N° de Varillas	0 💌	1	0 💌						
diametro φ =	3/8''	1/2"	1/2"						
As usado (cm2)		2.13	1.42						
	OK	Cambiar	OK						
	2φ3/8''	2φ3/8" +	2φ3/8''						
		$1\phi 3/8$							
Calculo de la cua	ntia ρ:	$\rho = \frac{AS}{bw}$,						
		' bw *	∢d						
	Α	A-B	В						
	0.325%	0.325%	0.325%						
	0.325%	0.487%	0.325%						
Calculo de la cua	ntia sup - inf	:							
	•								
a. — n g	5 * R1 * <u>f</u>	$\frac{c}{y} * \frac{6000}{6000} +$	<u></u>	2.125%		0 0/-	0 Ea -	1.063%	
μ_b — 0,0	5 ^ β1 * - f	$y^{} 6000 +$	fy -	2.123/0		$\rho - \rho' \leq$	υ. 5ρ _b =	1.003/0	
	Α 00000/	A-B	B 0.000%						
	0.000%	0.162%	0.000%						
	0.000,0	0.102,0	0.0007						
	0.00070	0.102,0							


DISTRIBUCION E	DE ACERO DE	REFUERZO FI	NAL A COLO	CAR					
	Α	A-B	В						
			_						
As-=	2φ3/8''	2φ3/8''	2φ3/8''						
			1						
	2φ3/8"	2φ3/8'' +	2φ3/8''						
As+=		1φ3/8''							
		-							
		DIS	SEÑO POR	CORTANT	F (ESTRI	BOS)			
Calculo de a (cm): del acero c		LITOTOR		_ (2311				
	Α	A-B	В						
suerior	1.34	1.34	1.34						
inferior	1.34	2.00	1.34						
Calculo del Maxi	imo Momento	probable = 1,	25*Moment	o Nominal:	(Mpr = 1.25	*Mn) (to	n*m)		
RNE E.060 art. 2	1.5.4.1								
	А	A-B	В						
suerior	1.25	1.25	1.25						
nferior	1.25	1.84	1.25						
distancia (m)		3.40 m							
entre apoyos									
Calculo de la C	ortante V:								
	cm=	2.5185	t/m	w=	1,4*cm+1.	7cv			
	cv=	1.25925	t/m	w=	5.667				
Momentos ant									
la musica melo		TRAMO I							
Izquierda		10.3713849							
Derecha Momento hora		8.89514011							
Momento nora	110	8.89514011							
		10.3713849							
		10.3713849							
Cortes de Diseño)	RNE E.060 art	:: 21.5.4.1						
	cortante V=	10.371	ton						
		0							
		3.40 m		1					
		TRAMO I							
Contontes de d'	060 c D'	tonois d'+\							
Cortantes de dis	eno a una Dis	tancia d (ton)							
_	ortanto Va	0.204	ton						
С	ortante Vd=	9.304	ton .						
		2.40							
		3.40 m	<u>'</u>						
		TRAMO I							
Calculo de la Cor	tante resisto:	nte del concret	o Vc·						
carcuio de la COI	tante resister	ite dei concret	.o vc.						
V - 0 F	$3 * \sqrt{f'c} *$	hw * d -	3360.188	kø			$0.85 * V_c =$	2856 16	kσ
$v_c = 0.5$	J * √ J C *	pw * a =	3.36	Ton			0,03 ↑ V _C —	2.86	Ton
		_	3.30	1011			-	2.00	1011
		6.45							
		0.43							
		3.40 m							
		TRAMO I							
		I NAIVIO I							


Calculo del esp	eciamiento	S (cm)		Øbarra =	3/8'■		Av=	0.71	cm2
	El primer e	strivo debe d	e estara:		S=	5	cm		
Separaacion er		15	cm						
de confinamier	nto	TRAMO I							
Calcula dal aco	a ci a mi a nta	on la zona d	o confinam	iontos	Loo	nfinamia	ento = 2*h =	40	cm
Calculo del esp RNE E.060: art: 2		en la zona d				mmamie	ento = 2·n =	40	CIII
KINE E.UbU: art: 2	1.3.5.1		RNE E.060 a						
	-	0 0 - 5	d/4 =		cm			7.5	
	-		erzo long =				S=	7.5	cm
	-	24	Ø estribo =						
	-		30 cm =	30	cm				
Espaciamiento	da los astri	hos en la zor	na de confir	amiento f	inal·				
Lapaciaiiiieiito	ue 103 e3ti1	DU3 EII IA 201	ia de comm		illai.				
Fsnari	amiento S=	7.5	cm						
Борист		TRAMO I	CIII						
		110/110/10							
Numero de esti	ihos en la z	ona de confi	namiento =						
ivamero de esti	1503 CII I u 2	ond de com	namicito -						
	N°=	5	estribos						
		TRAMO I							
		110/11/10/1							
Calculo de la co	rtante fuer	a de la zona	de confinan	niento					
distancia de Vu	d''=	42.5							
cortante ultima	Vud''=	7.779							
		TRAMO I							
separacion ma	xima fuera d	de la zona de	confinamie	ento:	Smx=d=	17.5	cm		
cortante de dis	eño para la		inada:						
_		TRAMO I	_						
Cortante a soport		4.92	Ton						
Requerimiento:		equiere refuer							
separacion de est			cm						
Separación a co	olocar:	17.5	cm						
00100100100	 	(TDID 6.2							
COLOCACION FI	nal de los e	1							
		1@0.05+							
Estrivos de:		5@0.075+R@							
3/8''		0.175							
A cada lado		3.40 m							
		TRAMO I							


11. CÁLCULOS ESTRUCTURALES DE COLUMNAS

DISEÑO DE COLUMNAS RECTANGULARES 250 mm **DIMENSIONES REFUERZO LONGITUDINAL** dist. 2 = 250 mm Cada Esquina dist. 3 = 250 mm Diam. = N13 =1/2" En la Dir. 3 recub. = 40 mm Cant. = 0 **MATERIALES** 250 mm Diam. = N13 =1/2" En la Dir. 2 fc = 21 MPa $\beta 1 = 0.85$ Cant. = 1 $\epsilon c = 0.003$ Diam. = N13 =1/2" fy = 420 MPa**REFUERZO TRANSVERSAL** Es = 2.00E+05 MPa Diam. = N10 =3/8" Pu (N) (N-mm) (N-mm) 3.50E+06 Pu Mu2 Cod Mu3 01 UDCon1 1.03E+05 | 2.24E+06 | 2.10E+06 3.00E+06 02 UDCon2 1.19E+05 | 1.29E+06 | 4.64E+06 03 UDCon3 1.14E+05 | 1.37E+06 | 1.70E+07 2.50E+06 ρ=0.08 04 UDCon4 1.46E+05 | 4.18E+06 | 3.67E+06 ρ=0.07 ρ=0.06 - 05 UDCon5 7.60E+04 | 1.02E+07 | 1.58E+07 2.00E+06 ρ=0.05 🤜 06 UDCon6 1.10E+05 | 2.18E+06 | 2.36E+06 ρ=0.04 1.50E+06 ρ=0.03 07 ρ=0.02 -08 ρ=0.01 -1.00E+06 09 10 5.00E+05 En el grafico de diagrama de interacción se M3 0.00E+00 0.00E+00 5.00E+07 1.50E+08 2.00E+08 Observa que Cumple el diseño la columna

12. CÁLCULOS
ESTRUCTURALES DE
CIMIENTO Y DIAGRAMA DE
MOMENTO, CORTANTE Y
CÁLCULO REQUERIDO
SEGÚN EL SAFE.

DISEÑO DE CIMIENTO CORRIDO

1. DATOS DEL SUELO

Peso Específico (y) : 1818 kg/cm3

Angulo de Fricción (Ø) : 26.3 °

Capacidad Portante : 2.2 Kg/cm2

2. DATOS DEL MURO

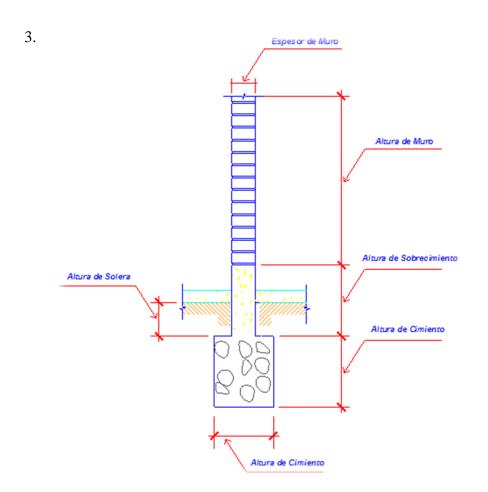
Espesor de Muro : 0.13 m

Según *Tabla N°1 (NORMA E030-2014/DS-003-2016)*

Elegimos una **Zona 3** con un Coeficiente Sísmico de **0.35** Con un Factor de Uso (U) acuerdo a la *Tabla N°6 E030-2014* se trata de una Edificaciones Comunes

Según la *Tabla N°3 E030-2014* de tenemos un suelo de Suelo Intermedio el correspondiente valor del factor de ampliación del suelo es 1.2.

Altura de Muro (h) : 1.9 m


Ancho Solera : 0.2 m

Altura de Solera : 0.3 m

Ancho de Sobre cimiento (S/C) : 0.15 m

Altura de sobre cimiento : 0.5 m

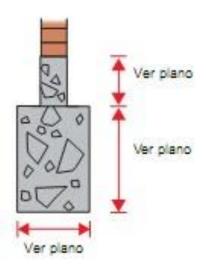
Peso específico del muro (\mbox{ym}) : 1800 Kg/cm3 Peso específico del C°A° (\mbox{ym}) : 2400 Kg/cm3 Peso específico del C°S° (\mbox{ym}) : 2300 Kg/cm3

3. DATOS DEL CIMIENTO

Ancho del cimiento (a) : 0.4 m

Altura del cimiento (hc) : 0.4 m

Profundidad del cimiento (hf) : 0.7 m

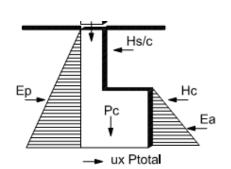

Altura de relleno (hr) : 0.3 m

$$Ka = tg(45^{\circ} - \frac{\emptyset}{2})^{2}$$

$$Kp = tg(45^{\circ} + \frac{\emptyset}{2})^{2}$$

$$Ea = \frac{Ka * \gamma_{s} * hc^{2} * B}{2}$$

$$Ep = \frac{Kp * \gamma_{s} * hc^{2} * B}{2}$$



Ka: 0.357

Kp: 2.803

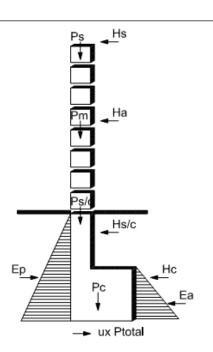
Ea: 68.544 kg

Ep: 538.176 kg

4. CALCULO DEL PESO TOTAL

P solera : 144 kg
P muro : 444.6 kg

P S/C : 172.5 kg
P cimiento : 368 kg
P relleno : 180 kg


Siendo el Ptotal: 1309.1 kg

Empuje sísmico sobre la solera (Hs): 28.8 kg

Empuje sísmico sobre el muro (Ha): 136.8 kg

Empuje sísmico sobre el S/C (Hs/C) : 46 kg

Empuje sísmico sobre la cimentación (Hc): 73.6 kg

Fuerza Resistente (Fr)

$$Fr = \mu * P_{total} + Ep$$

Fr = 2109.096 Kg

Fuerza actuante (Fa)

$$Fa = Hs + Ha + Hc + H_{s/c} + Ea$$

$$Fa = 353.744 \text{ kg}$$

$$F.S.D = 5.962$$

Por lo tanto el 5.962 > 2.2 entonces Cumple con la Primera Comprobación.

5. EXTREMO IZQUIERDO

Momento de volteo (Mv)

ELEMENTO	Н	d	M (kg-m)
Solera	10.08 Kg	2.95 m	29.736
Muro de albañilería	47.88 Kg	1.85 m	88.578
Sobre cimiento	16.1 Kg	0.65 m	10.465
Cimiento	25.76 Kg	0.2 m	5.152
Empuje Activo	68.544 Kg	0.133 m	9.116

 $Mv: 143.047 \ kg - m$

Momento Resistente

 $Mr: 387.394 \ kg - m$

Luego:

F.S.D. = Mr/Ma

F.S.D: 2.708

Por lo tanto el 2.708 > 2.2 entonces Cumple con la Segunda Comprobación.

6. EXTREMO DERECHO

Momento de volteo (Mv)

ELEMENTO	Н	d	M (kg-m)
Solera	10.08 Kg	2.95 m	29.736
Muro de albañilería	47.88 Kg	1.85 m	88.578
Sobre cimiento	16.1 Kg	0.65 m	10.465
Cimiento	25.76 Kg	0.2 m	5.152
Empuje Activo	68.544 Kg	0.233 m	15.971

Mv: 149.902 *Kg*

Momento Resistente

Mr: 387.394 Kg - m

Luego:

F.S.D. = Mr/Ma

F.S.D: 2.584

Por lo tanto el 2.58 > 0.15 entonces Cumple con la Tercera Comprobación.

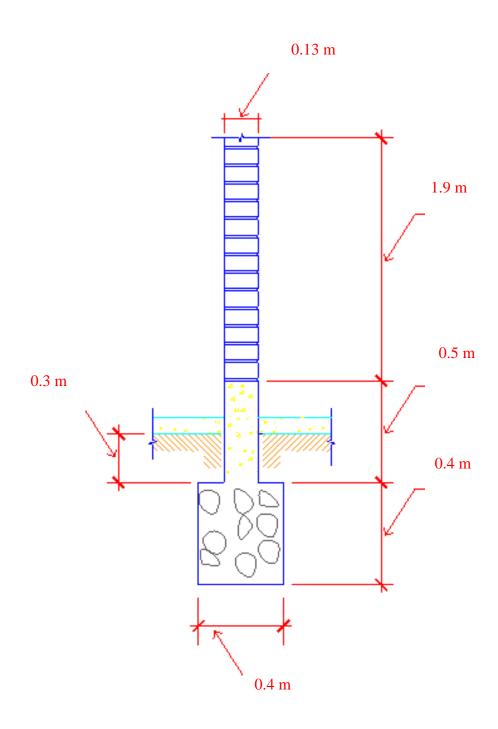
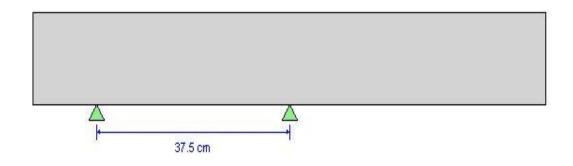
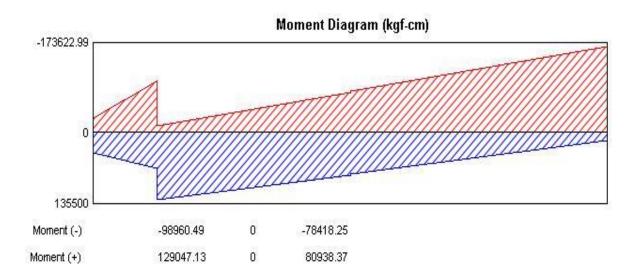
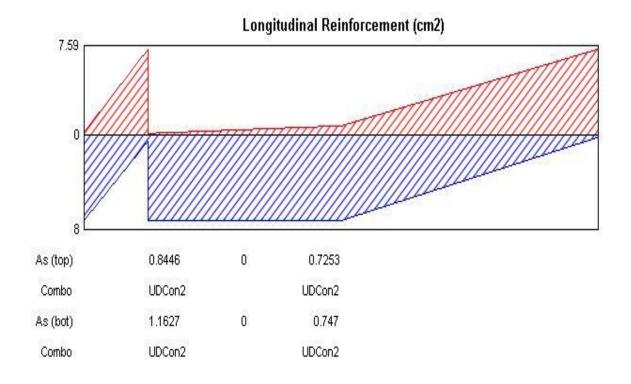
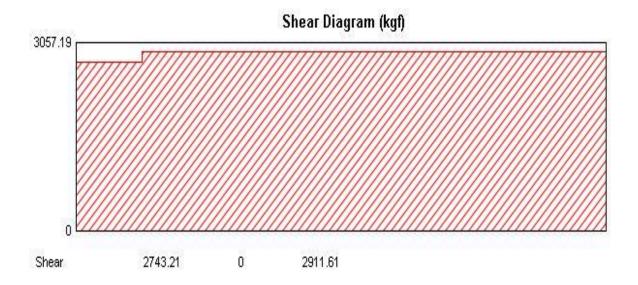


Diagrama de momentos, cortante y cálculo del acero requerido según el Safe para el diseño de zapatas aisladas.


ACI 318-14 Concrete Strip Design


Geometric Properties


Combination = Overall Envelope Strip Label = CSB1 Length = 100 cm Distance to Top Rebar Center = 8.905 cm Distance to Bot Rebar Center = 8.905 cm


Material Properties

Concrete Comp. Strength = 210 kgf/cm2 Concrete Modulus = 217370.66 kgf/cm2 Longitudinal Rebar Yield = 4200 kgf/cm2

13. PANEL FOTOGRÁFICO.

PANEL FOTOGRÁFICO I EVALUACIÓN VISUAL DE LA VIVIENDA

TOMANDO LA MEDIAD DEL PERALTE DE LA VIGA

UNIÓN DE COLUMNA Y VIGA (PÓRTICO)

TOMANDO LA MEDIDA DEL PERALTE DE LA VIGA DEL SEGUNDO NIVEL

TOMANDO LA MEDIDA DEL PERALTE DE LA COLUMNA DEL SEGUNDO NIVEL

TOMANDO LA MEDIDA DEL PERALTE DE LA VIGA Y LOSA

DISTANCIA ENTRE COLUMNAS

PANEL FOTOGRÁFICO II PRUEBAS CON EL ESCLERÓMETRO

CON EL TÉCNICO DE MEGA CONCRETO LISTOS PARA LAS PRUEBAS

PRUEBA DE ESCLEROMETRÍA A LA COLUMNA DEL PRIMER NIVEL


PRUEBA DE ESCLEROMETRÍA A LA VIGA DEL SEGUNDO NIVEL

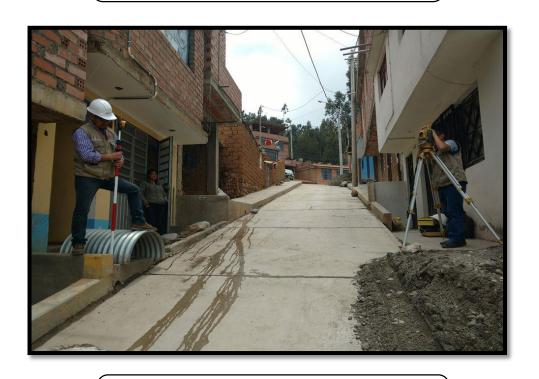
PRUEBA DE ESCLEROMETRÍA A LA VIGA DEL SEGUNDO NIVEL

 f_c OBTENIDO CON EL ESCLERÓMETRO, EN LA VIGA 06 DEL SEGUNDO NIVEL



 f_c OBTENIDO CON EL ESCLERÓMETRO, EN LA COLUMNA 03 DEL SEGUNDO NIVEL

PANEL FOTOGRÁFICO III LEVANTAMIENTO TOPOGRÁFICO


LEVANTAMIENTO TOPOGRÁFICO DE LA UNIDAD DE ESTUDIO

SEÑALIZANDO EL BM

TOMANDO LOS PUNTOS TOPOGRÁFICO

TOMANDO LOS PUNTOS PARA EL LEVANTAMIENTO TOPOGRÁFICO

PANEL FOTOGRÁFICO IV ESTUDIO DE MECÁNICA DE SUELOS

EMPEZANDO LA EXACAVACIÓN DE LA CALICATA

RECOJO DE LA MUESTRA PARA LLEVARLO AL LABORATORIO

PREPARANDO LA MUESTRA PARA REALIZAR EL CUARTEO

CUARTEO DE LA MUESTRA

TOMANDO LA MUESTRA PARA REALIZAR EL ENSAYO DE GRANULOMET'RIA

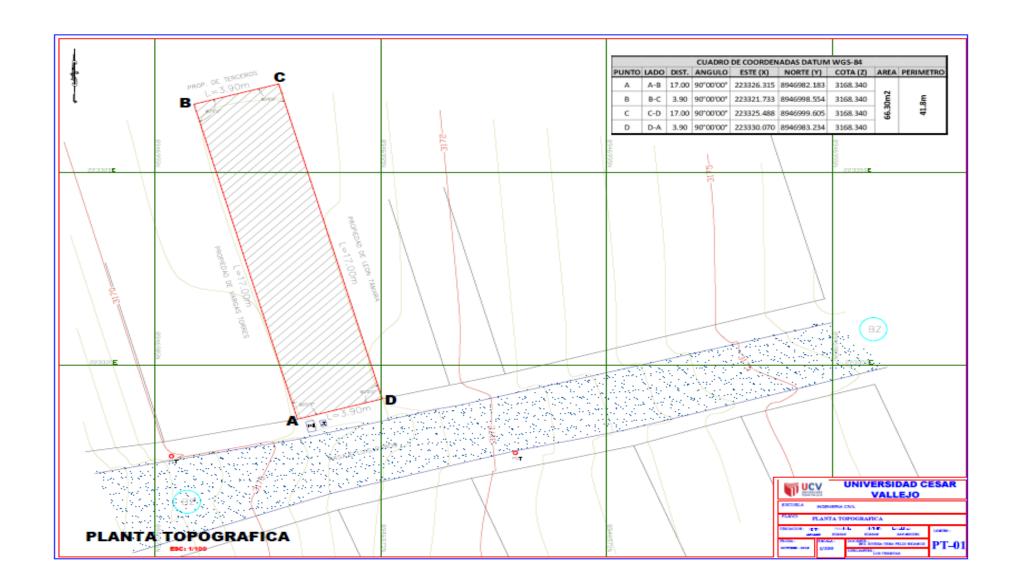
VERTIENDO LA MUESTRA A LOS TAMICES

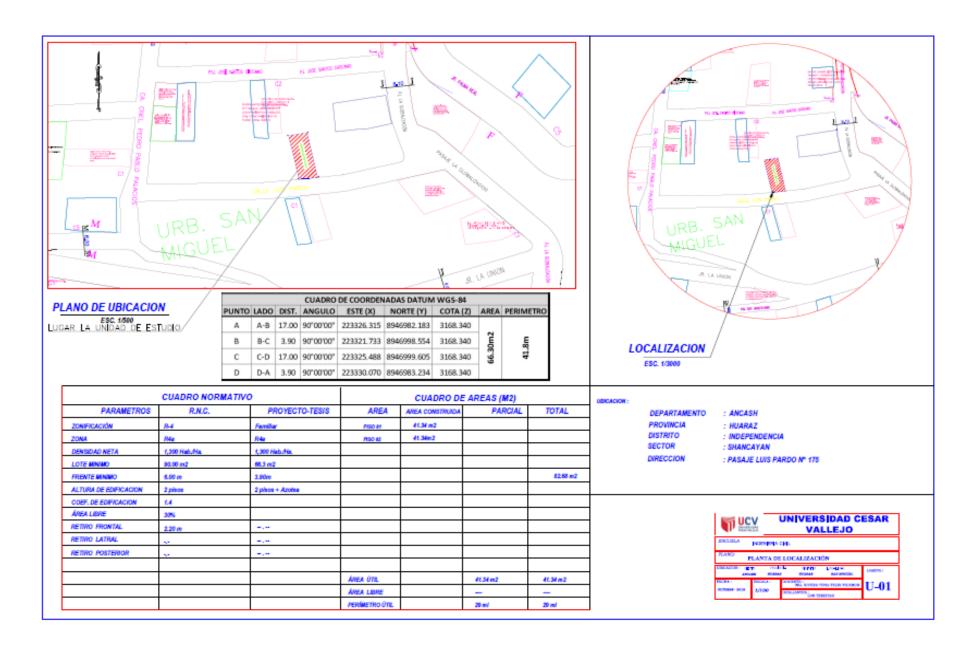
TAMIZANDO LA MUESTRA LAVADA POR LA MALLA N° 40

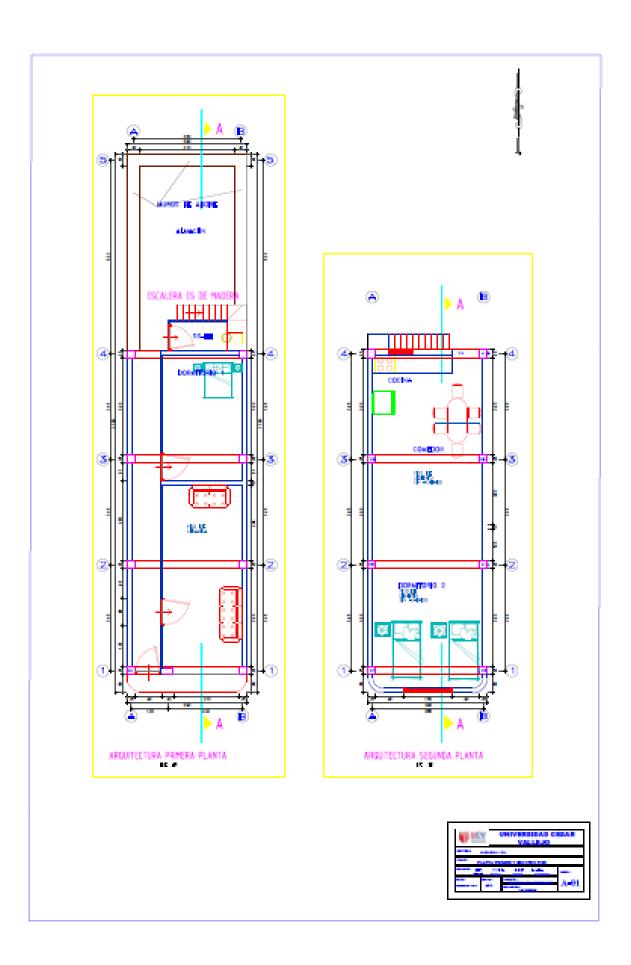
REALIZANDO EL ENSAYO DE LÍMITE LÍQUIDO

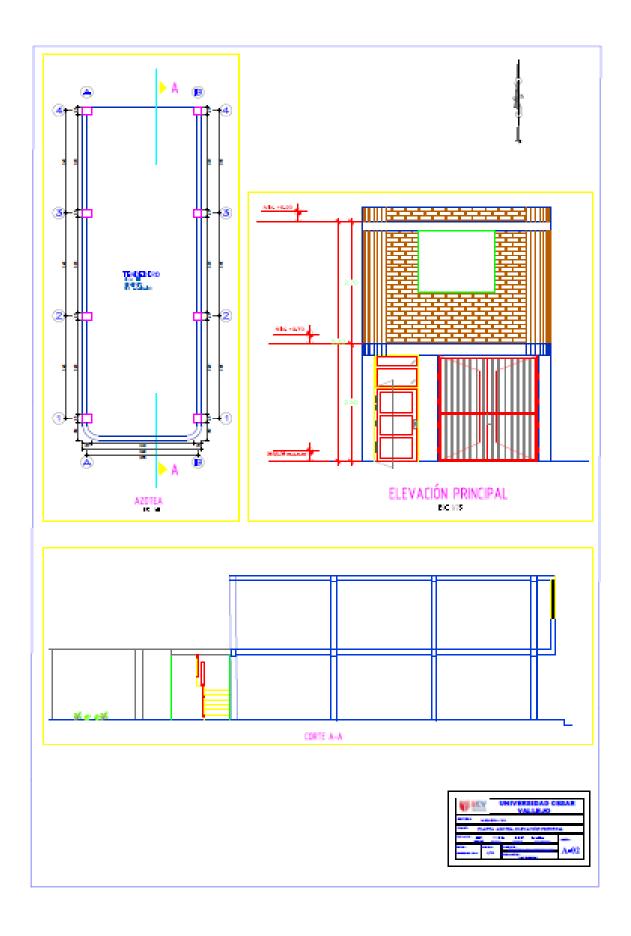
REALIZANDO EL CORTE EN LA MUESTRA EN LA COPA DE CASAGRANDE

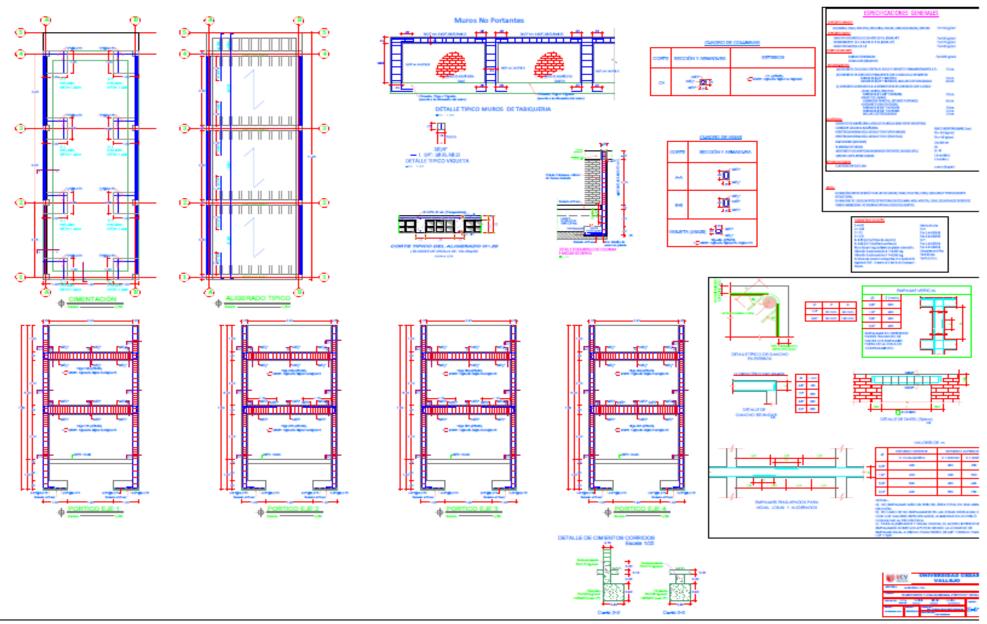
COLOCANDO LAS MUESTRAS EN LAS TARAS, AL HORNO DURANTE 24 HORAS

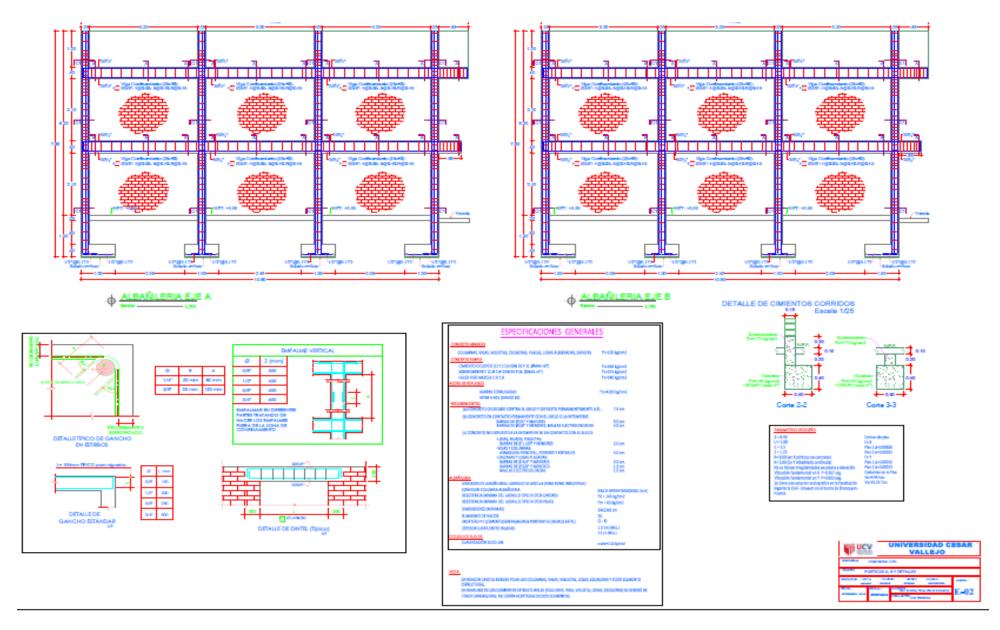


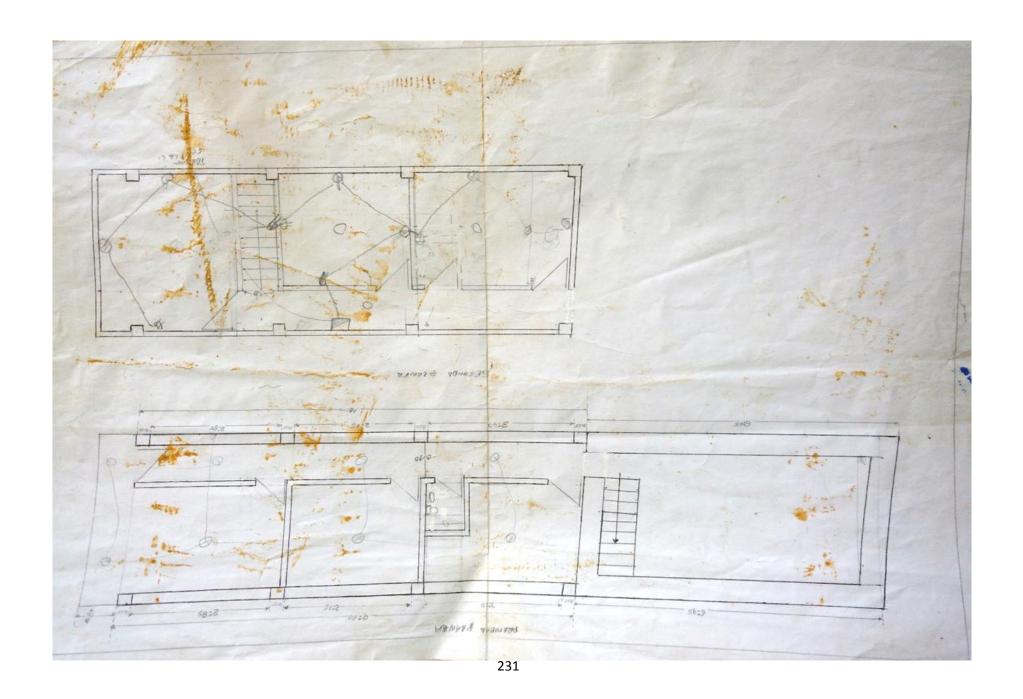

REALIZANDO EL ENSAYO DE LÍMITE PLÁSTICO


SACANDO DEL HORNO LAS MUESTRAS COLOCADAS PARA DETERMINAR EL LÍMITE PLÁSTICO


14.PLANO TOPOGRÁFICO DE LA UNIDAD DE ESTUDIO.




15.PLANO DE PLANTA Y ELEVACIÓN DE LA VIVIENDA EXISTENTE.



16.PLANO DE ESTRUCTURAS DE LA VIVIENDA REDISEÑADA.

17.DIBUJO INFORMAL DE CONSTRUCCIÓN DE LA UNIDAD DE ESTUDIO.

DOCUMENTOS DE SIMILITUD

ACTA DE APROBACIÓN DE ORIGINALIDAD DE TESIS

Código : F06-PP-PR-02.02 Versión : 09 Fecha : 23-03-2018 Página : 1 de 1

0

Yo, Mgtr. MOZO CASTAÑEDA, ERIKA MAGALY Docente de la Facultad de Ingeniería y Escuela Profesional de Ingeniería Civil de la Universidad César Vallejo Huaraz, revisor (a) de la tesis titulada:

"REDISEÑO ESTRUCTURAL DE UNA EDIFICACIÓN FAMILIAR DE DOS NIVELES EN LA URBANIZACIÓN SAN MIGUEL, HUARAZ 2018", del (de la) estudiante ESPINOZA VALERIO, LENIN ALEJANDRO constato que la investigación tiene un índice, de similitud de 27% verificable en el reporte de originalidad del programa Turnitin.

El/la suscrito (a) analizó dicho reporte y concluyó que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

Huaraz, 10 de diciembre de 2018

Mgtr. MOZO CASTAÑEDA, ERIKA MAGALY

DNI: 40711879

ACTA DE APROBACIÓN DE ORIGINALIDAD DE TESIS

Código Versión Fecha Página F06-PP-PR-02.02. 09

a : 09

23-03-2018 1 de 1

Yo, Mgtr. MOZO CASTAÑEDA, ERIKA MAGALY Docente de la Facultad de Ingeniería y Escuela Profesional de Ingeniería Civil de la Universidad César Vallejo Huaraz, revisor (a) de la tesis titulada:

"REDISEÑO ESTRUCTURAL DE UNA EDIFICACIÓN FAMILIAR DE DOS NIVELES EN LA URBANIZACIÓN SAN MIGUEL, HUARAZ 2018", del (de la) estudiante MORENO HUAMAN, JHON JHUNIOR constato que la investigación tiene un índice de similitud de 27% verificable en el reporte de originalidad del programa Turnitin.

El/la suscrito (a) analizó dicho reporte y concluyó que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

Huaraz, 10 de diciembre de 2018

0

Mgtr. MOZO CASTAÑEDA, ERIKA MAGALY

DNI: 40711879

AUTORIZACIÓN DE PUBLICACIÓN DE TESIS EN REPOSITORIO INSTITUCIONAL UCV

Código : F08-PP-PR-02.02

Versión: 09

Fecha : 23-03-2018 Página : 1 de 1

Yo ESPINOZA VALERIO, LENIN ALEJANDRO identificado con DNI N° 10724303 Egresado de la Escuela Profesional de Ingeniería Civil de la Universidad César Vallejo, autorizo () la divulgación y comunicación pública de mi trabajo de investigación titulado : "REDISEÑO ESTRUCTURAL DE UNA EDIFICACIÓN FAMILIAR DE DOS NIVELES EN LA URBANIZACIÓN SAN MIGUEL, HUARAZ 2018"; en el Repositorio Institucional de la UCV (http://repositorio.ucv.edu.pe/), según lo estipulado en el Decreto Legislativo 822, Ley sobre Derecho de Autor, Art.23 y Art. 33.

Fundamentación en caso de no autorización:	
······································	

Firma

DNI: 10724303

FECHA: 16 de DIEMBR del 2018

AUTORIZACIÓN DE PUBLICACIÓN DE TESIS EN REPOSITORIO INSTITUCIONAL UCV

Código : I

: F08-PP-PR-02.02 : 09

Versión : Fecha :

23-03-2018

Página : 1 de 1

Yo MORENO HUAMAN, JHON JHUNIOR identificado con DNI N° 44006439 Egresado de la Escuela Profesional de Ingeniería Civil de la Universidad César Vallejo, autorizo (), No autorizo () la divulgación y comunicación pública de mi trabajo de investigación titulado : "REDISEÑO ESTRUCTURAL DE UNA EDIFICACIÓN FAMILIAR DE DOS NIVELES EN LA URBANIZACIÓN SAN MIGUEL, HUARAZ 2018"; en el Repositorio Institucional de la UCV (http://repositorio.ucv.edu.pe/), según lo estipulado en el Decreto Legislativo 822, Ley sobre Derecho de Autor, Art.23 y Art. 33.

Fundamentación en caso de no autorizació	
••••••	

DNI: 44006439

FECHA: 16. de. DICHEMBRE del 2018

Formulario de autorización de la versión final del trabajo de investigación

UNIVERSIDAD CÉSAR VALLEJO

AUTORIZACIÓN DE LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN

	o
CONSTE POR EL PRESENTE EL VISTO BUENO QUE OTORGA EL ENC	CARGADO DE INVESTIGACIÓN DE
E. P. Ingeniería Civil	
A LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN QUE PRES ESPINOZA VALERIO, LENIN ALEJANDRO	ENTA:
INFORME TÍTULADO:)
" REDISEÑO ESTRUCTURAL DE UNA EDIFICACION SAN MIGUEL,	
PARA OBTENER EL TÍTULO O GRADO DE:	
INGENIERO CIVIL SUSTENTADO EN FECHA: Domingo, 16 de diciembre de 2018 NOTA O MENCIÓN: Diecisiete (17)	o
FIRMA DEL ENCARGADO DE INVESTIGA DE E. P. INGENIERÍA CIVIL	ACIÓN

UNIVERSIDAD CÉSAR VALLEJO

AUTORIZACIÓN DE LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN

9	
CONSTE POR EL PRESENTE EL VISTO BUENO QUE OTORGA EL ENCARGADO DE INVESTIGACIO	ÓN DE
E. P. Ingeniería Civil	
A LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN QUE PRESENTA: MORENO HUAMAN, JHON JHUNIOR	
INFORME TÍTULADO:	
"REDISEÑO ESTRUCTURAL DE UNA EDIFICACIÓN FAMILIAR DE D NIVELES EN LA URBANIZACIÓN SAN MIGUEL, HUARAZ 2018"	OS
PARA OBTENER EL TÍTULO O GRADO DE:	
INGENIERO CIVIL	
SUSTENTADO EN FECHA: Domingo, 16 de diciembre de 2018	
NOTA O MENCIÓN: Diecisiete (17)	
FIRMA DEL ENCARGADO DE INVESTIGACIÓN DE E. P. INGENIERÍA CIVIL	