

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL

Optimización de Procesos para la mejora de la productividad en el área de mantenimiento en el modelo Yamaha FZ 150 de la empresa Moriwoki Racing Perú, Callao - 2017

TESIS PARA OBTENER EL TITULO PROFESIONAL DE: INGENIERO INDUSTRIAL

AUTOR:

Acosta Ccanto, Alfredo Christofer

ASESOR:

Dr. Ing. Quintanilla De La Cruz, Eduardo

LÍNEA DE INVESTIGACIÓN:

GESTIÓN EMPRESARIAL Y PRODUCTIVA

CALLAO-PERÚ

JURADO CALIFICADOR

Mg. Ortega Zavala, Daniel Luiggi PRESIDENTE
Mg. Quintanilla De La Cruz, Eduardo SECRETARIO
Mg. Hermoza Caldas, Augusto Fernando VOCAL

DEDICATORIA

A mi madre, que gracias a su dedicación y esfuerzo, ha logrado formarme como una persona con valores, mostrándome que en la vida existe dificultades las cuales siempre tenemos que verlas como oportunidades.

AGRADECIMIENTO

A mi familia que nunca me dio la espalda en toda esta etapa, así mismo a mis amigos que siempre estuvieron en los momentos más difíciles y me enseñaron el valor de la hermandad. También, un agradecer a la universidad Cesar Vallejo por brindarme una formación profesional adecuada y de calidad, con docentes excepcionales para el desarrollo de mi investigación

DECLARACIÓN DE AUTENTICIDAD

Yo Alfredo Christofer Acosta Ccanto con DNI N° 71455501, a efecto de cumplir con las disposiciones vigentes consideradas en el Reglamento de Grados y Títulos de la Universidad César Vallejo, Facultad de Ingeniería, Escuela de Ingeniería Industrial.

Declaro bajo juramento que:

- 1) La tesis es de mi autoría
- 2) He respetado las normas internacionales de citas y referencias para las fuentes consultadas, por lo tanto, la tesis no ha sido plagiada ni total ni parcialmente.
- 3) La tesis no ha sido autoplajeada, es decir, no ha sido publicada ni presentada anteriormente para obtener algún grado académico previo o título profesional.
- 4) Los datos presentados en los resultados son reales, no han sido falseados, ni duplicados, ni copiados, y por lo tanto los resultados que se presenten en la tesis se constituirán en aportes a la realidad investigada.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada por lo cual me someto a lo dispuesto en las normas académicas de la Universidad César Vallejo.

Callao, Julio del 2018

PRESENTACIÓN

Señores miembros del Jurado, presento ante ustedes la Tesis titulada "Optimización de Procesos para la mejora de la productividad en el área de mantenimiento en el modelo Yamaha FZ 150 de la empresa Moriwoki Racing Perú, Callao - 2017", con la finalidad de mejorar la productividad en el proceso de mantenimiento del modelo Yamaha FZ 150 de la empresa Moriwoki Racing Perú en el año 2018, en cumplimiento del Reglamento de Grados y Títulos de la Universidad César Vallejo para obtener el Título Profesional de Ingeniero Industrial.

Esperando cumplir con los requisitos de aprobación.

El Autor

INDICE

JURADO CALIFICADOR	iii
DEDICATORIA	iv
AGRADECIMIENTO	V
DECLARACIÓN DE AUTENTICIDAD	vi
PRESENTACIÓN	vii
INDICE DE FIGURA	xi
INDICE DE TABLAS	xii
RESUMEN	xiii
ABSTRACT	xiv
I. INTRODUCCIÓN	14
1.1. Realidad problemática	15
1.2. Trabajos Previos	20
1.3. Teorías relacionadas al tema	29
1.3.1. Optimización de procesos	29
1.3.2. Productividad	33
1.4. Formulación de problemas	36
1.4.1. Problema general	36
1.4.2. Problemas específicos	36
1.5. Justificación de estudio	36
1.5.1. Justificación Teórica	36
1.5.2. Justificación Metodológica	37
1.5.3. Justificación Práctica	37
1.6. Hipótesis	38
1.6.1. Hipótesis General	38
1.6.2. Hipótesis Específica	38
1.7. Objetivos	38
1.7.1. Objetivo general	38
1.7.2. Objetivos específicos	38
II. METODO	39
2.1. Diseño de la Investigación	40
2.1.1. Investigación Aplicada	40
2.1.2. Investigación Experimental	40
2.1.3. Investigación longitudinal	41
2.2. Operacionalización de Variables	41

2.2.1. Variable independiente – Optimización de Procesos	41
2.2.2. Variable Dependiente – Productividad	42
2.3. Población y Muestra	44
2.3.1. Población	44
2.3.2. Muestra	44
2.4. Técnicas e instrumentos de recolección de datos, valides y confiabilidad	45
2.4.1. Técnicas	45
2.4.2. Instrumento	45
2.4.3. Validez	46
2.4.4. Confiabilidad	46
2.5 Métodos de Análisis de datos	46
2.5.1. SPSS	47
2.5.2. Contrastación de Hipótesis	47
2.5.3. Prueba de Normalidad	47
2.6. Aspectos Éticos	48
III. RESULTADOS	49
3.1. Desarrollo de propuesta	50
3.1.1. Proceso de mantenimiento actual:	50
3.1.2 Descripción de implementación de la propuesta de mejora	59
3.1.3. Propuesta de mejora	62
3.1.4. Análisis costo/beneficio	70
3.2. Estadística descriptiva	74
3.2.1 Variable independiente: Optimización de Procesos	74
3.2.2. Variable dependiente: Productividad	80
3.3. Prueba de Normalidad	86
3.3.1. Variable dependiente: Productividad	87
3.3.2. Dimensión: Eficacia	87
3.4. Estadística Inferencial	88
3.4.1. Hipótesis general: productividad	88
3.4.2. Hipótesis específica: Eficiencia	89
3.4.3. Hipótesis específica: Eficacia	90
IV. DISCUSIÓN	88
V. CONCLUSIONES	92
VI. RECOMENDACIONES	94
REFERENCIA BIBLIOGRÁFICA	96

	Artículo	97
	Blog online	97
	Tesis Nacionales	97
	Teses Internacionales	98
	Libros	99
A	NEXOS	. 102
	Anexo 1: Matriz de Consistencia	. 103
	Anexo 2: Fotografía desmontaje	. 104
	Anexo 3: Flujograma General	. 106
	Anexo 4: Flujograma del área de mantenimiento	. 107
	Anexo 5: Ficha de Recolección de Datos	. 108
	Anexo 6: Datos para el tiempo estándar antes de la mejora	. 109
	Anexo 7: Datos para el tiempo estándar después de la mejora	. 117
	Anexo 8: Encuesta dicotómica	. 125
	Anexo 9: Tabla de Distribución	. 126
	Anexo 10: Acta de revisión de trabajo de investigación	. 127
	Anexo 11: Validación de expertos	128

INDICE DE FIGURA

Figura 1: Diagrama de Ishikawa del área de mantenimiento	18
Figura 2: Representación gráfica en forma porcentual en el diagrama de Pareto para	datos
de tabla 1	20
Figura 3: Sistema de suplementos por descanso porcentajes de los tiempos básicos	31
Figura 4: Cuadro de ritmo de trabajo	32
Figura 5: Tiempo del proceso por motos en horas (antes)	55
Figura 6: Promedio Total de Actividades Ejecutadas (antes)	56
Figura 7: Índice de Actividades (antes)	57
Figura 8: Tiempo del proceso por motos en horas (después)	67
Figura 9: Promedio Total de Actividades Ejecutadas (después)	67
Figura 10: Índice de Actividades (después)	69
Figura 11: Beneficios monetario obtenido en el área de mantenimiento	73
Figura 12: Tiempo del proceso por motos en horas	75
Figura 13: Índice de Actividades por motocicleta	78
Figura 14: Productividad antes y después	80
Figura 15: Eficiencia antes y después	83
Figura 16: Eficacia antes y después	86

INDICE DE TABLAS

Tabla 1: Estratificación por tipos de problemas en el área de mantenimiento en la emp	resa
Moriwoki Racing Perú	19
Tabla 2: Matriz de Operacionalización de variables	43
Tabla 3: Promedio Móvil	45
Tabla 4: Diagrama de Análisis de Procesos (Situación Actual)	51
Tabla 5: Índice de Actividades (antes)	57
Tabla 6: Índice de productividad antes de realizar la mejora	58
Tabla 7: Cronograma de Implementación	61
Tabla 8: Diagrama de Análisis de Proceso (Propuesta de Mejora)	63
Tabla 9: Índice de Actividades (después)	68
Tabla 10: Índice de productividad después de realizar la mejora	69
Tabla 11: Costos de la implementación	70
Tabla 12: Costos Laborales	71
Tabla 13: Costos Horas Hombre	71
Tabla 14: Costo anual por trabajador	71
Tabla 15: Beneficio monetario obtenidos en el área de mantenimiento	72
Tabla 16: Beneficio/Costo anual	73
Tabla 17: Beneficio Mensual por Horas Hombre	74
Tabla 18: Tiempo estándar	74
Tabla 19: Datos descriptivos del tiempo del proceso de mantenimiento antes y después	76
Tabla 20: Índice de Actividades	77
Tabla 21: Datos descriptivos del índice de actividades antes y después	78
Tabla 22: Productividad antes y después	80
Tabla 23: Datos descriptivos de la productividad antes y después	81
Tabla 24: Eficiencia antes y después	83
Tabla 25: Datos descriptivos eficiencia antes y después	84
Tabla 26: Eficacia antes y después	85
Tabla 27: prueba de normalidad productividad antes y después	87
Tabla 28: prueba de normalidad eficiencia antes y después	87
Tabla 29: Prueba de Wilcoxon para muestras emparejas productividad antes y después.	88
Tabla 30: Prueba de Wilcoxon para muestras emparejas eficiencia antes y después	89

RESUMEN

El presente estudio de investigación tuvo como objetivo determinar como la optimización

de proceso mejora la productividad en el área de mantenimiento en el modelo Yamaha FZ

150 de la empresa Moriwoki Racing Perú, Callao 2018.

La población para la ejecución de la presente investigación fue de 6 semanas (5 días por

semana), así mismo, se levantó información de la situación del proceso, el cual consistió

en tomar medidas de tiempos y actividades, luego se procedió a diseñar una optimización

de proceso del mantenimiento de la motocicleta Yamaha FZ 150, con el fin de aprovechar

al máximo este recurso. La aplicación de la optimización nos ayudó a estandarizar el

tiempo del proceso y eliminar actividades que no generan valor al proceso. Asimismo, se

puedo mejorar el tiempo disponible para realizar otros servicios e incrementar la

productividad.

Palabras clave: Optimización, Procesos y Productividad

xiii

ABSTRACT

The objective of this research study was to determine to what extent process optimization

improves productivity in the maintenance area of the Yamaha FZ 150 model of the company

Moriwoki Racing Perú, Callao 2017.

The population for the execution of the present investigation was of 6 weeks (5 days per

week), likewise, information of the situation of the process was collected, which consisted

in taking measurements of times and activities, then proceeded to design an optimization of

the maintenance process of the Yamaha FZ 150 motorcycle, in order to make the most of

this resource. The application of optimization helped us to standardize the time of the process

and eliminate activities that do not generate value to the process. Also, we can improve the

time available to perform other services and increase productivity.

Keywords: Optimization, Processes and Productivity

xiv

ACTA DE APROBACION DE ORIGINALIDAD DE TESIS

Código: FO6-PP-PR-02.02

Versión: 09

Fecha : 23-03-2018

Página: 1 de 1

Yo, QUINTANILLA DE LA CRUZ, Eduardo docente de la Facultad de Ingeniería y Escuela Profesional Ingeniería Industrial de la Universidad César Vallejo Filial Callao, revisor (a) de la tesis titulada

"OPTIMIZACIÓN DE PROCESOS PARA LA MEJORA DE LA PRODUCTIVIDAD EN EL ÁREA DE MANTENIMIENTO EN EL MODELO YAMAHA FZ 150 DE LA EMPRESA MORIWOKI RACING PERÚ, CALLAO 2017.", del estudiante ACOSTA CCANTO, ALFREDO CHRISTOFER, constato que la investigación tiene un indice de similitud de 17% verificable en el reporte de originalidad del programa Turnitin.

El suscrito (a) analizó dicho reporte y concluyó que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

Callao, 02 de Julio del 2018

Mg. Eduardo QUINTANILLA DE LA CRUZ DNI: 06293988

Elaboró	Dirección de Investigación	Revisó	Responsable del SGC	Aprobó	Vicerrectorado de Investigación
---------	-------------------------------	--------	---------------------	--------	------------------------------------