

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA DE INDUSTRIAL

Mejora del método de trabajo para incrementar la Productividad en el Área de Corte - Soldado de la Fábrica de Bicicletas Lions E.I.R.L. Lima 2016

TESIS PARA OBTENER EL TITULO PROFESIONAL DE INGENIERIA INDUSTRIAL

AUTORA:

María Del Carmen Llauca Alcántara

ASESOR:

Dr. Leónidas Manuel Bravo Rojas

LÍNEA DE INVESTIGACIÓN

Sistema de Gestión Empresarial y Procesos de Producción

LIMA - PERÚ

2016

Página del Jurado

Jurado 1: Bravo Rojas, Leónidas Manuel

Jurado 2: Mapartida Gutiérrez Jorge Nelson

Jurado 3: Alarcón García Marco Antonio

Dedicatoria

A Dios por ser mi fortaleza y guía ante las adversidades; por ello, con toda la humildad que de mi corazón emana, dedico primeramente mi trabajo a Dios.

A mis padres que siempre han fomentado en mis valores y el deseo de superación; a mi madre y amiga quien siempre ha tenido una palabra de aliento para mí: Carmen Julia Llauca Alcántara, a mi padre que en vida era una de las personas más entusiasmadas en verme forjar este proyecto y con sus palabras de aliento me levantaba en todo momento. Ahora me guía desde el cielo y por ello en base a él va dedicado mi presente tesis en su memoria; mi padre: Oscar Llauca Díaz.

A mis hermanos: Marcos, Katy, Lourdes y Raquel, por su apoyo, comprensión, cariño, consejos y confianza depositada en mí.

A mis sobrinos: Valentina, Adrián, Mateo, Sara y María de Carmen quienes con su presencia, cariño y abrazos endulzaron mis días.

A personas especiales en mi vida y familiares en general quienes siempre depositaron su confianza en mí y ante las adversidades; me dieron sus respaldo y palabras de aliento para seguir adelante y cumpla con mis ideales para supérame día a día: a Luis Rivera quien me apoyo incondicionalmente en los momentos más difíciles de mi vida y a mi cuñado Edgar Guimac.

Agradecimiento:

A mi asesor y amigo el Dr. Leónidas Bravo Rojas, quien sin su valiosa tutoría y

conocimientos no hubiera sido posible realizar mi proyecto de investigación, así

como también por haberme tenido toda la paciencia del mundo para guiarme

durante todo el desarrollo de mi tesis. Gracias profesor; que Dios lo bendiga.

A cada uno de mis profesores: Al Mgtr. Desmond Mejía Ayala por haberme brindado

la oportunidad de recurrir a su capacidad y conocimiento científico. A mis profesores

que fueron parte de mi formación profesional como Ing. (a) Industrial: en cada ciclo

de estudio.

A personas especiales en mi vida, a mis familiares en general; quienes depositaron

siempre su confianza en mí y a pesar de las dificultades siempre fueron una fuente

de aliento e inspiración constante para cumplir con mis ideales: mi madre Carmen

Julia Llauca Alcántara; en la memoria de mi padre Oscar Llauca Díaz; gracias a Luis

Rivera quien me apoyo incondicionalmente en los momentos más difíciles de mi

vida.

A quienes laboran en la empresa Lions por compartir sus aportes, experiencias en

sus respectivas áreas productivas. Y disposición de tiempo brindados para los

estudios realizados en la aplicación de mi tesis.

A mis amistades con quienes compartimos conocimientos, alegrías, tristezas pero

todos en general fueron momentos vividos durante mi etapa de estudios.

Muchas gracias a todos

iii

Declaración de autenticidad

Yo María del Carmen Llauca Alcántara con DNI Nº 43060735, a efecto de cumplir con las disposiciones vigentes consideradas en el Reglamento de Grados y Títulos de la Universidad César Vallejo, Facultad de Ingeniería, Escuela de Ingeniería Industrial, declaro bajo juramento que toda la documentación que acompaño es veraz y auténtica.

Así mismo, declaro también bajo juramento que todos los datos e información que se presenta en la presente tesis son auténticos y veraces.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada por lo cual me someto a lo dispuesto en las normas académicas de la Universidad César Vallejo.

Lima, julio del 2016.

Maria del Carmen Llauca Alcántara

DNI 43060735

Presentación

Señores miembros del jurado:

En cumplimiento a las normas establecidas en el Reglamento de Grados y de la

Universidad Cesar Vallejo pongo a su disposición la tesis titulada "Mejora del método

de trabajo para incrementar la productividad en el área de corte-soldado de la fábrica

de bicicletas Lions E.I.R.L. Lima 2016"

En la presente investigación se desarrollaron mejora de tiempos y movimientos de

las actividades que se realizan en el área de corte-soldado para la producción de

bicicletas, por lo tanto se ha incrementado la productividad. En el área de corte-

soldado no se labora con métodos apropiados sin tomar en cuenta el tiempo que se

desperdiciaba para ejecutar cada actividad, la cual es un referente para planear la

productividad que se emplee a futuro.

La tesis consta de siete capítulos: Capítulo I: Introducción, Capítulo II: Marco

metodológico, Capítulo III: Resultados, Capítulo IV: Discusión, Capítulo V:

Conclusiones, Capítulo VI: Recomendaciones, y Capítulo VII: Referencias

bibliográficas y anexos.

Esperando cumplir con los requisitos de aprobación para obtener el título Profesional

de Ingeniero Industrial.

Atentamente

Llauca Alcántara Maria de Carmen

٧

ÍNDICE

	Pag
Página del Jurado	i
Dedicatoria:	ii
Agradecimiento:	iii
Declaración de autenticidad	iv
Presentación	V
Índice	vi
Resumen	xii
Abstract	xiii
I. Introducción	
1.1 Realidad Problemática	15
1.2 Trabajos previos	18
1.3 Teorías relacionadas al tema	24
1.3.1 Método de trabajo	24
1.3.2 Productividad	33
1.3.3 Marco Conceptual	39
1.4 Formulación del problema	40
1.4.1 Problema general	40
1.4.2 Problemas específicos	40
1.5 Justificación del estudio	40
1.5.1 Justificación Teórica	40
1.5.2 Justificación práctica	41
1.5.3 Justificación Social	42
1.5.4 Justificación económica	42
1.6 Objetivos	43
1.6.1 Objetivo general	43
1.6.2 Objetivos específicos	43
1.7 Hipótesis	43
1.7.1 Hipótesis general	43
1.7.2 Hipótesis especificas	
II. Metodo	
2.1 Diseño de investigación	45
2.2 Tipo de estudio	45
2.3 Identificación de variables	
2.3.1 Variables, operacionalización:	46
2.4 Población y muestra	49
2.4.1 Población	

2.4.2 Muestra	50
2.4.3 Muestreo	51
2.4.4 Criterios de selección	51
2.5 Técnicas e instrumentos de recolección de datos, validez y confiabilidad	52
2.5.1 Técnicas:	52
2.5.2 Instrumentos	53
2.5.3 Validación y confiabilidad del instrumento	53
2.6 Métodos de análisis de datos	55
2.6.1 Implementación de la mejora	56
2.7 Aspectos éticos	77
2.8 Gestión realizada con la aplicación de metodo de trabajos	78
2.9 Cronograma de actividades	92
III. Resultados	93
3.1 Prueba de Normalidad	94
3.1.1 Variable dependiente: productividad antes	94
3.1.2 Variable dependiente: productividad después	95
3.2 Contrastación de hipótesis:	96
3.2.1 Hipótesis general:	96
3.2.2 Hipótesis específico 01:	97
3.2.3 Hipótesis específico 02:	100
IV. Discusión	101
V. Conclusiones	104
VI. Recomendaciones	106
VII. REFERENCIAS	108
7.1 Citas Bibliográficas:	
7.1.1 Trabajos previos	109
7.1.2 Libros	110

INDICE DE FIGURAS

	Pág
Figura 1: Diagrama de actividades de proceso de corte y soldado	32
Figura 2: Árbol del problema empresarial	39
Figura 3: Diagrama de analisis de proceso	66
Figura 4: Índice de actividades_ antes	67
Figura 5: Índice de actividades	68
Figura 6: Dap antes de la mejora	80
Figura 7: Diagrama de recorrido antes de la mejora	83
Figura 8: Técnicas en la medición del trabajo	84
Figura 9: Dap después de la mejora	85
Figura 10: Diagrama de recorrido después de la mejora	88
Figura 11: Indicador de actividades	90
Figura 12: Productividad	91

INDICE DE TABLAS

	Pág.
Tabla 1: Desplazamiento de personas por tipo de vehículo	16
Tabla 2: Símbolos del diagrama de actividades de proceso	31
Tabla 3: Operacionalizacion de variables	48
Tabla 4: Población de bicicletas	49
Tabla 5: Escalas de confiabilidad del instrumento	54
Tabla 6: Dimensión (1) - tiempo estandar antes	56
Tabla 7: Dimensión (1) tiempo estandar despues	61
Tabla 8: Resultados del dap	66
Tabla 9: Índice de actividades - antes	67
Tabla 10: Índice actividades - después	68
Tabla 11: Índice actividades – después	69
Tabla 12: Productividad despues	74
Tabla 13: Modelo de toma de tiempos estándar antes - cuadro	84
Tabla 14: Resultados del dap	88
Tabla 15: Modelo tiempo estándar después - cuadro	89
Tabla 16: Cronograma de actividades	92
Tabla 17: Prueba de normalidad	94
Tabla 18: Prueba de normalidad	95
Tabla 19: Hipótesis general	96
Tabla 20: Hipótesis general	97
Tabla 21: H. Especifica 1	98
Tabla 22: H. Especifica 1	99
Tabla 23: H. Específica 21	00
Tabla 24: H. Específica 21	00

INDICE DE ANEXOS

			Pág.
Anexo	1:	Matriz de consistencia	115
Anexo	2:	Identificación de los problemas de la empresa (Lluvia de ideas 1)	116
Anexo	3:	Identificación de los problemas del área de corte soldado	117
Anexo	4:	Diagrama causa y efecto de la empresa (Ishikawa)	118
Anexo	5:	Diagrama causa y efecto del área de corte soldado (Ishikawa_b)	119
Anexo	6:	Diagrama de Pareto de la empresa (Ishikawa)	120
Anexo	7:	Diagrama de Pareto del área de corte_ soldado (Ishikawa_b)	121
Anexo	8:	Diagrama de Pareto de la empresa (Ishikawa_a)	122
Anexo	9:	Diagrama de Pareto del área de corte_ soldado (Ishikawa_b)	123
Anexo	10:	Ficha D.A.P.	124
Anexo	11:	Tiempo estándar	125
Anexo	12:	Validación de los instrumentos	126
Anexo	13:	Certificado de calibración del cronometro	128
Anexo	14:	Ficha técnica del cronometro	130
Anexo	15:	Encuesta _empresa Lions E.I.R.L.	132
Anexo	16:	Resultados de las encuestas	133
Anexo	17:	Encuestas a los de la empresa Lions EIRL	134
Anexo	18:	Dap_ antes de la mejora	134
Anexo	19:	Dap_ después de la mejora	139
Anexo	20:	Dap proceso ensamblado	139
Anexo	21:	Diagrama bimanual_antes de la mejora	144
Anexo	22:	Diagrama bimanual_ después de la mejora	146

Anexo 23: Presupuesto	146
Anexo 24: Costo/beneficio	146
Anexo 25: Diagrama de recorrido antes de la mejora	150
Anexo 26: Diagrama de recorrido después de la mejora	151
Anexo 27: Detallado tiempo estandar	152

Resumen

La presente investigación titulada: Mejora del método de trabajo para incrementar la

productividad en el área de corte-soldado de la fábrica de bicicletas Lions E.I.R.L.

2016, tuvo como objetivo determinar como la mejora del método de trabajo

incrementa la productividad del área de corte-soldado de la fábrica de bicicletas

Lions E.I.R.L. 2016. Como respuesta a la problemática planteada: ¿Cómo la mejora

del método de trabajo incrementa la productividad del área de corte-soldado de la

fábrica de bicicletas Lions E.I.R.L, Lima, 2016?

El presente trabajo de investigación se efectuó en un diseño pre experimental,

basado en un enfoque cuantitativo, por consiguiente la muestra fue efectuada para

164 bicicletas; para un periodo de 22 días antes y después durante el mes de

marzo-Abril. Donde para la mejora de la presente investigación, se efectuó

previamente la validación de los instrumentos, evidenciando la validez y

confiabilidad, mediante la técnica de juicio de expertos y calibración del cronómetro;

siendo la técnica empleada las fichas de observación y el instrumento el cual fue el

cronometro digital.

Siendo el objetivo general: Determinar como la mejora del método de trabajo

incrementa la productividad del área de corte-soldado de la fábrica de bicicletas

Lions E.I.R.L, Lima, 2016, definiendo una relación entre medias de la productividad

antes y productividad después, después de aplicar la mejora del método de trabajo.

Por consiguiente se obtuvo como conclusión final que la mejora del método de

trabajo incrementa la productividad del área de corte-soldado de la fábrica de

bicicletas Lions E.I.R.L. 2016. Donde la productividad se incrementó de 13 a 18

bicicletas por día.

Palabras clave: Método de trabajo, productividad, estudio de tiempo, producción

Χij

Abstract

This research entitled: Enhancing working methods to increase productivity in the area of cutting-soldier bicycle factory Lions E.I.R.L. 2016, aimed to determine how improved working method increases the productivity of the cutting area-soldier bicycle factory Lions E.I.R.L. 2016. In response to the issues raised: How improved working method increases the productivity of the cutting area-soldier bicycle factory Lions E.I.R.L, Lima, 2016.

This research was conducted in a pre-experimental design, based on a quantitative approach, therefore the sample was carried out for 164 bicycles; for a period of 22 days before and after during the month of March-April. Where to improve this research, validation of instruments previously performed, demonstrating the validity and reliability through technical expert judgment and calibration of timer; It is the technique used observation forms and the instrument which was the digital timer.

As the overall objective: Determine as improved working method increases the productivity of the cutting-soldier bicycle factory Lions EIRL, Lima, 2016, defining a relationship between means productivity before and productivity later, after applying improving the method of work. Thus, it was obtained as an ending finished that improving the working method increases the productivity of the cutting area-soldier bicycle factory Lions E.I.R.L. 2016. Where productivity increased from 13 to 18 bikes per day.

Keyword: Method of work, productivity, study time, production