

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"DISEÑO ESTRUCTURAL DE UN EDIFICIO MULTIFAMILIAR DE 5 PISOS Y UN SEMISÓTANO, ATE - 2018"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERA CIVIL

AUTORA:

Janampa Cacñahuaray, Ruth Melissa

ASESORA:

Ing. Bonilla Vera, Ericka

LÍNEA DE INVESTIGACIÓN:

Diseño Sísmico y Estructural

CALLAO - PERÚ 2018

ACTA DE APROBACIÓN DE LA TESIS

Código : F07-PP-PR-02.02

Versión: 09

Fecha : 23-03-2018

Página : 1 de 1

El Jurado encargado de evaluar la tesis presentada por DOÑA JANAMPA CACÑAHUARAY, RUTH MELISSA, cuyo título es: "DISEÑO ESTRUCTURAL DE UN EDIFICIO MULTIFAMILIAR DE 5 PISOS Y UN SEMISÓTANO, ATE-2018", reunido en la fecha, escuchó la sustentación y la resolución de preguntas por la estudiante, otorgándole el calificativo de: 16 (Dieciséis).

Callao, 22 de diciembre del 2018.

Mg. Gustavo Adolfo Aybar Arriola

PRÉSIDENTE

Mg. Ericka Claudia Bonilla Vera

SECRETARIO

Each Domly

Mg. Eduardo Quintanilla De La Cruz

VOCAL

DEDICATORIA

El presente trabajo de investigación está dedicado especialmente a mi madre María quien me dio la oportunidad y su confianza de poder realizar mis estudios universitarios y a mi padre Nicasio que juntos han logrado que lleve una mejor vida; así mismo a mis hermanos Janeth, Pilar, Kelly y Javier, por todos sus consejos que me dieron para nunca rendirme y las fuerzas que me dieron para ser fuerte ante las adversidades, de eso modo a mis sobrinos Ian y Breana por siempre sacarme sonrisas en esas adversidades. A todas esas personas que me brindaron su apoyo para ser mejor profesionalmente.

Ruth Melissa Janampa Cacñahuaray

AGRADECIMIENTO

A Dios por la vida y salud que me brinda, a toda mi familia por su apoyo incondicional para ser una mejor profesional, a la Universidad Cesar Vallejo por darme la oportunidad de poder desarrollar mis habilidades y conocimientos. Así mismo, a todos los asesores de la universidad quienes, con sus conocimientos y experiencias, hicieron que esta investigación se desarrolle de manera óptima, también a las tesis de ingeniería civil que brindaron información sobre sus proyectos, que sirvieron como guía para poder desarrollar la presente investigación.

Ruth Melissa Janampa Cacñahuaray

DECLARACIÓN DE AUTENTICIDAD

Yo, Janampa Cacñahuaray Ruth Melissa con DNI Nº 75897906, a efecto de cumplir con

las disposiciones vigentes consideradas en el Reglamento de Grados y Títulos de la

Universidad César Vallejo, Facultad de Ingeniería, Escuela Profesional de Ingeniería

Civil.

Declaro bajo juramento la autenticidad de mi estudio de investigación

denominado "DISEÑO ESTRUCTURAL DE UN EDIFICIO

MULTIFAMILIAR DE 5 PISOS Y UN SEMISÓTANO, ATE - 2018" para lo cual,

me someto a las normas sobre elaboración de estudios de investigación al respecto.

Así mismo, declaro que:

1) La tesis es de mi autoría

2) Se ha respetado las normas internacionales de citas y referencias de las fuentes que

fueron consultadas para realizar la investigación en tal sentido, esta tesis no es plagio.

3) Los datos que se presentan son resultados reales, por ende, los resultados de la tesis

se constituyen en aporte a la realidad investigada

En tal sentido asumo la responsabilidad que corresponda ante cualquier, plagio, auto

plagio, falsedad, omisión tanto de los documentos como de información aportada por lo

cual me someto a lo dispuesto en las normas académicas de la Universidad César

Vallejo.

Lima, 11 de diciembre del 2018

RUTH MELISSA JANAMPA CACÑAHUARAY

DNI: 75897906

V

PRESENTACIÓN

Señores miembros del jurado calificador:

En cumplimiento con lo dispuesto en el reglamento de grado y títulos de la Universidad César Vallejo; presento ante ustedes la presente tesis titulada: "DISEÑO ESTRUCTURAL DE UN EDIFICIO MULTIFAMILIAR DE 5 PISOS Y UN SEMISÓTANO, ATE- 2018", con la finalidad de obtener el título de ingeniero civil. La investigación está dividida en siete capítulos:

- I. INTRODUCCIÓN. Se detalla la realidad problemática, trabajos previos, teorías relacionadas al tema, formulación del problema, justificación del estudio, hipótesis y objetivos de la investigación.
- II. MÉTODO. Se menciona el diseño de investigación; variables, operacionalización; población y muestra; técnicas e instrumentos de recolección de datos, validez y confiabilidad y métodos de análisis de datos.
- III. RESULTADOS. En esta parte se menciona las consecuencias del procesamiento de la información.
- IV. DISCUSIÓN. Se presenta el análisis y discusión de los resultados encontrados durante la tesis.
- V. CONCLUSIONES. Se considera en enunciados cortos, teniendo en cuenta los objetivos planteados.
- VI. RECOMENDACIONES. Se precisa en base a los hallazgos encontrados.
- VII. REFERENCIAS. Se consigna todos los autores de la investigación.

ÍNDICE

DEDICATORIA	III
AGRADECIMIENTO	IV
DECLARACIÓN DE AUTENTICIDAD	V
PRESENTACIÓN	VI
ÍNDICE	VII
ÍNDICE DE TABLAS	X
ÍNDICE DE ANEXOS	XII
RESUMEN	XIII
ABSTRACT	XIV
INTRODUCCIÓN	15
1.1. Realidad problemática	16
1.2. Trabajos Previos	20
1.2.1 A Nivel Nacional	20
1.3.1 Variable Dependiente: Diseño Estructural	25
1.3.2 Variable Independiente: Análisis Estructural	26
1.4 Formulación del problema	28
1.4.1 Problema General	28
1.4.2 Problemas Específicos	28
1.5 Justificación del estudio	28
1.5.1 Justificación Metodológica	28
1.5.2 Justificación Práctica	29
1.5.3 Justificación Teórica	29
1.6 Hipótesis	29
1.6.1 Hipótesis General	30
1.6.2 Hipótesis Especificas	30
1.7 Objetivos	30
1.7.1 Objetivo General	30
1.7.2 Objetivos Específicos	30
MÉTODO	31
2.1. Diseño de Investigación	32
2.1.1 Investigación Aplicativa	32
2.1.4 Investigación No experimental	32
2.1.5 Investigación Transversal	33
2.2 Variables, Operacionalización	34
2.3. Población y muestra	36
2.3.1 Población	36

2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad	37
2.4.1 Técnica	37
2.4.3 Validez y Confiabilidad	37
2.5.1 Estadística descriptiva	38
2.5.2 Test de normalidad	38
2.5.3 Estadística inferencial	38
RESULTADOS	40
3.1. Configuración estructural	41
3.1.1 Estructuración del plano	42
3.1.1.1 Criterios de Estructuración	43
3.1.2 Pre dimensionamiento	43
3.1.2.1 De las losas aligeradas armadas en una dirección	43
3.1.2.2 De escalera	44
3.1.2.3 De placas	44
3.2 Cargas Estructurales	46
3.2.1 Metrado para una losa aligerada armada de una dirección	46
3.2.2 Metrado de viga	47
3.2.3 Metrado de columnas y placas	48
3.2.4. Metrado de escalera	49
3.3. Análisis Sísmico	49
3.3.1 Proceso de análisis	50
3.3.2. Análisis estático y dinámico modal espectral	55
3.4 Diseño	61
3.4.1 Diseño de Losa	61
3.4.2 Diseño de vigas	62
3.4.3 Diseño de columnas	70
3.4.4 Diseño de placa	74
3.4.6 Diseño de muros de semisótano	81
3.5 Resultado SPSS	86
3.5.1 Resultados de los análisis de datos descriptivos	87
3.5.2 Test de normalidad	110
3.5.3 Análisis inferencial	112
DISCUSIÓN	116
CONCLUSIONES	119
RECOMENDACIONES	121
REFERENCIA BIBLIOGRAFICAS	123
ANEXOS	126

ÍNDICE DE ILUSTRACIONES

Ilustración 1: Ubicación del anillo de fuego	17
Ilustración 2: Zonas sísmica según RNE- E.030 (2018)	18
Ilustración 3: ETABS 2017	18
Ilustración 4: Diagrama de Ishikawa	19
Ilustración 5: Ubicación de zona en investigación (2018)	41
Ilustración 6: Terreno de investigación (2018)	41
Ilustración 7: Plano de corte del edificio	42
Ilustración 8: Losa armada en un sola dirección	
Ilustración 9: Ancho tribuaria de viga en eje 8-8,A-B	47
Ilustración 10: Distribución de cargas ultimas en la viga	48
Ilustración 11: Area tributaria de la columna a metrar	48
Ilustración 12:Modelo estructural del edifico (3D)	52
Ilustración 13: Espectro Pseudoaceleraciones Norma E-030	56
Ilustración 14: Casos de carga - SDX	57
Ilustración 15:Casos de carga - SDY	57
Ilustración 16: Máximas derivas en eje X	60
Ilustración 17: Máximas derivas en eje Y	60
Ilustración 18: Diagrama momento flector (t.m)	61
Ilustración 19: Diagrama fuerza cortnate (t.m)	61
Ilustración 20: Interaccion en X	77
Ilustración 21: Interacción en Y	
Ilustración 22: Vista en planta - techo1	82
Ilustración 23: Distribución de la frecuencia género de los ingenieros civiles especializados e	en
estructuras de Ate con más de 8 años de experiencia del CIP-Lima	88
Ilustración 24: Distribución de las frecuencias edad de los ingenieros civiles especializados e	
estructuras de Ate con más de 8 años de experiencia del CIP-Lima	89

ÍNDICE DE TABLAS

Tabla 1: Operacionalización de variable independiente	.34
Tabla 2:Operacionalización de variable dependiente	.35
Tabla 3: Coeficiente de Correlación	.39
Tabla 4: Esfuerzos en los muros en el eje x	
Tabla 5: Radios modales de masas participativas de la estructura	
Tabla 6: Periodo fundamental de vibración de la estructura	
Tabla 7: Cortante en la base Eje X	
Tabla 8: Cortante en la base Eje Y	
Tabla 9: Cortante en muros Eje X	
Tabla 10: Cortante en muros Eje Y	
Tabla 11: Comparación del 80% en fuerzas cortantes SE con el 100% de SD	
Tabla 12: Características del suelo y el muro de sótano	
Tabla 13: Coeficiente de confiabilidad	
Tabla 14: Fiabilidad de la variable independiente Análisis estructural	
Tabla 15: Fiabilidad de la Variable Dependiente: Diseño Estructural	.87
Tabla 16: Distribución de la frecuencia género de los ingenieros civiles especializados en	
	.87
Tabla 17:Distribución de las frecuencias edad de los ingenieros civiles especializados en	
estructuras de Ate con más de 8 años de experiencia del CIP-Lima	.89
Tabla 18: Distribución de frecuencias de los ingenieros estructurales de Ate, según la	
· · · · · · · · · · · · · · · · · · ·	.90
Tabla 19: Distribución de frecuencias de los ingenieros estructurales de Ate, según el pre	
	91
Tabla 20: Distribución de frecuencias de los ingenieros estructurales de Ate, según la carga	-
	.92
Tabla 21: Distribución de frecuencias de los ingenieros estructurales de Ate, según la carga	. , _
	.93
Tabla 22:Distribución de frecuencias de los ingenieros estructurales de Ate, según el metrado	
	.94
	.94
Tabla 23:Distribución de frecuencias de los ingenieros estructurales de Ate, según el sistema	05
	.95
Tabla 24 Distribución de frecuencias de los ingenieros estructurales de Ate, según el análisis	_
	.96
Tabla 25 Distribución de frecuencias de los ingenieros estructurales de Ate, según el análisis	
dinámico modal espectral	
Tabla 26 Distribución de frecuencias de los ingenieros estructurales de Ate, según el ETABS	.98
Tabla 27 Distribución de frecuencias de los ingenieros estructurales de Ate, según el análisis	
sísmico	.99
Ilustración 33 pregunta10Tabla 28 Distribución de frecuencias de los ingenieros estructurales	de
Ate, según el análisis sísmico	
Tabla 29: Distribución de frecuencias de los ingenieros estructurales de Ate, según el uso de	
NTP	00
Tabla 30: Distribución de frecuencias de los ingenieros estructurales de Ate, según la norma	00
E.020	01
Tabla 31: Distribución de frecuencias de los ingenieros estructurales de Ate, según la norma	O1
E.030	വാ
Tabla 32: Distribución de frecuencias de los ingenieros estructurales de Ate, según influencia	
del diseño estructural	.03
Tabla 33:Distribución de frecuencias de los ingenieros estructurales de Ate, según el material	٠.
	04
Tabla 34:Distribución de frecuencias de los ingenieros estructurales de Ate, según altura de	
edificación1	
Tabla 35: Distribución de frecuencias de los ingenieros estructurales de Ate, según impacto de	•

ÍNDICE DE ANEXOS

Anexo 1: Plano final de los resultados	127
Anexo 2: Vista en planta del edificio	128
Anexo 3: Secciones vigas	129
Anexo 4: Secciones Columnas	132
Anexo 5: Normas Peruanas integradas a la investigación	134
Anexo 6: Estudio de suelo de la presente investigacion	135
Anexo 7: Diagrama de flujo de Diseño Estructural	149
Anexo 8: Validación de Expertos	150
Anexo 9: Matriz de consistencia	156

RESUMEN

El presente proyecto de investigación titulado "DISEÑO ESTRUCTURAL DE UN

EDIFICIO MULTIFAMILIAR DE 5 PISOS Y UN SEMISÓTANO, ATE-2018" se

desarrolló con el fin de brindar una solución con seguridad al diseñar un edificio para la

gran demanda poblacional que tiene el país y así mismo mejor el aprovechamiento del

recuso suelo que cada vez es más limitada.

El edificio tiene un área de 200 m2, con suelo arcilloso de baja plasticidad con arena.

Conformado por un sistema de muros estructurales. Para la estructuración del edificio se

usó losas aligeradas que transmiten las cargas a las vigas, columnas y placas, los cuales

a su vez transmiten cargas a la cimentación y estas al suelo.

Este proyecto presenta 4 tipos de diseño según la metodología la primera es la Norma

técnica de edificaciones E.020 Cargas, el cual busca permite conocer las cargas que la

estructura puede soportar, segundo la norma técnica de edificaciones e.030, para

determinar el comportamiento sísmico que tendrá la estructura, tercero la norma técnica

de edificaciones e.060, para el diseño del material a usar en la estructura y por último el

SPSS que ayuda a conocer la relación que tiene las variables.

Una vez obtenido el análisis de cada elemento estructural del edificio, se procede al

desarrollo del diseño respectivo, con el fin de determinar el diseño óptimo para la

seguridad del cliente.

Esta tesis tiene un diseño de investigación descriptivo y correlacional, ya que la

investigación se centra en solucionar la problemática general que existe que es la

inadecuada construcción de edificios

Por último, para el cálculo del análisis de objeto en investigación se usó, ETABS que

permitió obtener el análisis estático y dinámico modal espectral y hojas de cálculo para

el desarrollo del diseño, asimismo se usó el AutoCAD para el modelamiento de la

estructura y el SPSS para conocer la relación de las variables. De esta manera se busca

obtener un análisis y diseño óptimo para la seguridad del cliente, según las normas

vigentes requeridas por la tesis.

Palabras clave: análisis estático, análisis dinámico modal espectral, etabs, AutoCAD.

XIII

ABSTRACT

The present research project entitled "STRUCTURAL EDUCATION OF A

MULTIFAMILY BUILDING OF 5 FLOORS AND A SEMI-SISTEM, ATE-2018" is

reported in order to provide a solution, same better use of the soil that is increasingly

limited.

The building has an area of 200 m2, with clayey soil of low plasticity with sand. Made

up of a system of structural walls. For the structuring of the building the transmissions

of the loads of the beams, the columns and the plates, those of the transmission of the

loads and the communication were used.

This project presents 4 types of design according to the methodology. The first. The

rule. Writing. E.020. Seismic that will have the structure, third the technical standard of

buildings and 060, for the design of the material in the structure and finally the SPSS

that helps to know the relationship that has the variables.

Once the analysis of each structural element of the building has been obtained, as a result

of the respectful development, in order to determine the optimal design for the client's

safety.

This thesis has a descriptive and correlational research design, since the research focuses

on the problem of the general problem that exists that is the inadequate construction of

buildings

Finally, ETABS to obtain the static and dynamic spectral modal analysis and the

spreadsheets for the development of the design, the use of AutoCAD for the mode of

the structure of the structure and the SPSS to know the relation of the variables. In this

way we seek to obtain an analysis and an optimal design for the security of the client,

according to the current regulations required for the thesis.

Key words: static analysis, spectral modal dynamic analysis, etabs, AutoCAD

XIV

ACTA DE APROBACIÓN DE ORIGINALIDAD DE TESIS

Código : F0 Versión : 09

: F06-PP-PR-02.02

Versión Fecha

: 23-03-2018

Página : 1 de 1

Yo, BONILLA VERA, ERICKA CLAUDIA, docente de la Facultad de Ingeniería y Escuela Profesional de Ingeniería Civil de la Universidad César Vallejo-Callao, revisora de la tesis titulada: "DISEÑO ESTRUCTURAL DE UN EDIFICIO MULTIFAMILIAR DE 5 PISOS Y UN SEMISÓTANO, ATE - 2018" de la estudiante JANAMPA CACÑAHUARAY, RUTH MELISSA, constato que la investigación tiene un índice de similitud de 28 % verificable en el reporte de originalidad del programa Turnitin.

La suscrita analizó dicho reporte y concluyó que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

Callao, 15 de julio 2019

Mg. Ericka Claudia Bonilla Vera

Bucka Boull

DNI: 09945649

Elaboró	Dirección de Investigación	Revisó	Responsable del SGC	Aprobó	Vicerrectorado de investigación
---------	-------------------------------	--------	---------------------	--------	------------------------------------