

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

ESTABILIZACION DE SUELOS EN LA PAVIMENTACION PARA REDUCIR COSTOS DE MANTENIMIENTO DE LA CALLE 4, URBANIZACION SAN CARLOS, SANTA ANITA – LIMA 2018

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL

Autor:

Oswaldo Enoc Ruiz Gonzales

Asesor:

DR. FRANKLIN MACDONALD ESCOBEDO APESTEGUI

LÍNEA DE INVESTIGACIÓN

INFRAESTRUCTURA VIAL

LIMA – PERÚ

2018

Página del Jurado

DICTAMEN DE SUSTENTACIÓN DE TESIS N° 083(D)- 2018-II-UCV Lima Ate /PFA/EP IC DPI

El presidente y los miembros del Jurado Evaluador designado con RESOLUCIÓN DIRECTORAL N°105-2018-II-UCV Lima Ate/PFA/EP IC DPI de la Escuela Profesional de Ingeniería Civil acuerdan:

PRIMERO		
Aprobar pase a publicación Aprobar por unanimidad Aprobar por mayoría Desaprobar	() () (X) ()	de de la companya de
El Proyecto de Investigación presenta	ada por el (la) estudiante RUIZ GONZALES, O	SWALDO ENOC,

ESTABILIZACION DE SUELOS EN LA PAVIMENTACION PARA REDUCIR COSTOS DE MANTENIMIENTO DE LA CALLE 4, URBANIZACION SAN CARLOS, SANTA ANITA – LIMA 2018

<u>SEGUNDO</u>. - Al culminar la sustentación, el (la) estudiante **RUIZ GONZALES, OSWALDO ENOC**, obtuvo el siguiente calificativo:

LETRAS	CONDICIÓN
TRECE	APROBADO POR MAYORIA

Presidente (a):

denominado:

Mgtr. CHOQUE FLORES, LEOPOLDO

Secretario:

Mgtr. CONTRERAS VELASQUEZ, JOSE

Vocal:

Dr. ESCOBEDO APESTEGUI, FRANKLIN

MGTR. Heredia Benavides, Raul

Coordinador de Escuela

UCV - Lima Ate

C.c. Archivo Somिक्ष्यीव रिप्तानिकांग्यने हाल्यक्ति विकास क्षिणे que quieren salir adelante. **Firma**

Firma

DEDICATORIA

Agradezco a Dios por darme la fuerza y la sabiduría para realizar este trabajo. Dedico este trabajo a mi familia que siempre me apoyo en los malos y buenos momentos y por confiar en mí. A mi padre que siempre me supo guiar y darme las fuerzas para seguir adelante en este camino profesional. Les agradezco a todos por su apoyo incondicional.

AGRADECIMIENTO

Agradezco el aporte de mis profesores de la UCV para lograr hacer realidad este trabajo de investigación. Al profesor Franklin Escobedo Apestegui por la asesoría brindada muchas gracias. DECLARATORIA DE AUTENTICIDAD

Yo, Oswaldo Enoc Ruiz Gonzales con DNI Nº 45645298 a efecto de cumplir con las

disposiciones vigentes consideradas en el Reglamento de Grados y Títulos de la Universidad

César Vallejo, Facultad de Ingeniería, Escuela de Ingeniería Civil, declaro bajo juramento que

toda la documentación que acompaño es veraz y auténtica.

Así mismo, declaro también bajo juramento que todos los datos e información que se presenta

en la presente tesis son auténticos y veraces.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento

u omisión tanto de los documentos como de información aportada por lo cual me someto a lo

dispuesto en las normas académicas de la Universidad César Vallejo.

Lima, 15 de Diciembre de 2018.

.

Oswaldo Enoc Ruiz Gonzales

D.N.I. N°45645298

PRESENTACIÓN

Señores miembros del Jurado:

En cumplimiento del Reglamento de Grados y Títulos de la Universidad César Vallejo presento ante ustedes la Tesis titulada, "Estabilización de suelos en la pavimentación para reducir costos de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018", la misma que someto a vuestra consideración y espero que cumpla con los requisitos de aprobación para obtener el título Profesional de Ingeniero Civil.

La investigación se ha dividido en ocho capítulos teniendo en cuenta el esquema de investigación dado por la universidad. En el capítulo I se realiza la introducción de la investigación que explica la realidad problemática, y se exponen los trabajos previos, teorías relacionadas, formulación del problema, justificación, hipótesis y objetivos. En el capítulo II se considera al método utilizado, junto al diseño de investigación, variables y operacionalización, población y muestra, técnicas e instrumentos, métodos de análisis y aspectos éticos. En el capítulo III se muestran los resultados a través de las herramientas de ingeniería en los procesos de la empresa. En el capítulo IV, se expone la discusión de los resultados. En el capítulo V se dan a conocer las conclusiones. En el capítulo VI se redactan las recomendaciones. Por último, en el capítulo VII se tienen las referencias y en el capítulo VIII se muestran los anexos de la investigación

Oswaldo Enoc Ruiz Gonzales

ÍNDICE

Página del Jurado	i
Dedicatoria	iii
Agradecimiento	iv
Declaratoria de Autenticidad	V
Presentación	vi
Índice	. vii.
Índice de tablas	×
Índice de anexos ·····	xii
RESUMEN	xiii
ABSTRACT	xiv
I INTRODUCCIÓN	15
1.1. Realidad Problemática	17
1.2. Trabajos previos	19
1.2.1. Antecedentes nacionales	19
1.2.2. Antecedentes Internacionales	20
1.3 Teorías relacionadas al tema	21
1.3.1 Estabilización de pavimentos	21
1.3.1.2 Definición	21
1.3.2 Costos de mantenimiento	22
1.3.2.1 Definición	22
1.3.2.2 costos directos	22
1.3.2.3 Costos indirectos	22
1.4 Formulación del problema	23
1.4.1 Problema General	23
1.4.2 Problemas específicos	23
1.5 Justificación del problema	23
1.5.1 Justificación Teórica:	23
1.5.2 Justificación Práctica	23
1.5.3 Justificación Metodológica:	23
1.5.4 Justificación económica:	24
1.6 Hipótesis	24

1.6.1 Hipótesis General	24
1.6.2 Hipótesis Específicos	24
1.7 Objetivos	24
1.7.1 Objetivo general	24
1.7.2 Objetivos específicos	24
II. MÉTODO	25
2.1 Diseño de investigación	26
2.1.1 Tipo de estudio	26
2.2 Variables, Operacionalización	27
2.2.2 Variable Dependiente:	27
2.3 Población y muestra	29
2.3.1 Población	29
2.3.2 Muestra	29
2.4 Técnicas e instrumentos de recolección de datos, validez y confiabilidad	29
2.4.2. Instrumento	29
2.4.3. Validez	29
2.4.4 Confiabilidad del Instrumento	30
2.5 Métodos de análisis de datos	30
2.5.1 Estadística descriptiva:	30
2.5.2 Estadística inferencial:	30
2.6. Aspectos éticos	30
III. RESULTADOS	31
3.1 Ubicación y descripción del área de estudio	32
3.2. Área de estudio	34
3.3. Descripción técnica:	34
3.4. Estudio de Mecánica de Suelo	36
3.5. Análisis descriptivo	53
3.5.1 Variable: costo de mantenimiento	53
3.5.2 dimensión 1: Costo fijo de mantenimiento	54
3.5.3 Dimensión 2: Costo variable de mantenimiento	55
3.6. Análisis inferencial	56
3.6.1 Análisis de la hipótesis general	56

3.6.	2 Análisis de la primera hipótesis especifica	58
3.6.	Análisis de la segunda hipótesis especifica	50
IV. [DISCUSIÓN	52
V.	CONCLUSIONES	54
VI.	RECOMENDACIONES	56
VII.	REFERENCIAS	58
VIII	ANFXOS	71

ÍNDICE DE TABLAS

Tabla 1. Infraestructura vial por departamentos	17
Tabla 2. Operacionalización de las variables	28
Tabla 3. Validación de 3 expertos de la carrera profesional	29
Tabla 4. Coordenadas UTM	32
Tabla 5. Programa de investigación norma ce. 010	37
Tabla 6. Resumen de puntos de investigación	37
Tabla 7. Relación detallada de puntos de investigación	37
Tabla 8. Relación de ensayos	38
Tabla 9. Contenido de humedad	39
Tabla 10. Límite de consistencia	39
Tabla 11. Resumen del análisis granulométrico	40
Tabla 12. Clasificación de suelos	41
Tabla 13. Resultados del proctor y CBR.	41
Tabla 14. Perfil estratigráfico representativo CALICATA C-1	41
Tabla 15. Resultados del análisis químico	42
Tabla 16. Parámetros permisibles	43
Tabla 17. Sistema unificado clasificación de suelos SUCS	44
Tabla 18. Sistema de clasificación AASHTO	45
Tabla 19. Hoja de Resumen de 24 horas del Control de Flujo Vehicular Clasificado	46
Tabla 20. Resumen del CBR del Suelo de Fundación	47
Tabla 21 Índice Medio Diario	18

Tabla 22. Número de Ejes Equivalentes Acumulados de 8.2 ton. (18 KIPS)	49
Tabla 23. Número Estructural para el Diseño de los Espesores del Pavimento Flexible	Tramo
total	50
Tabla 24. Coeficientes de Resistencia Relativa (ai) y Coeficiente de Drenaje (mi)	51
Tabla 25. Resumen de los Espesores de las Capas del Pavimento (1ra Etapa 10 años) -	- Tramo
total	52
Tabla 26. Resumen de los Espesores de las Capas del Pavimento - Tramo total	52
Tabla 27. Estadística descriptiva de la variable costo de mantenimiento	53
Tabla 28. Estadística descriptiva de la dimensión costo fijo de mantenimiento	54
Tabla 29. Estadística descriptiva de la dimensión costo variable de mantenimiento	55
Tabla 30. Prueba de normalidad de la variable costo de mantenimiento	56
Tabla 31. Descriptivos de Productividad antes y después con T Student	57
Tabla 32. Análisis del valor de productividad antes y después con T Student	58
Tabla 33. Prueba de normalidad de la dimensión costo fijo de mantenimiento	58
Tabla 34. Estadística de dimensión costo fijo de mantenimiento	59
Tabla 35. Prueba de hipótesis de la dimensión costo fijo de mantenimiento	59
Tabla 36. Prueba de normalidad de la dimensión costo variable de mantenimiento	60
Tabla 37. Estadística de dimensión costo variable de mantenimiento	60
Tabla 38. Prueba de hipótesis de la dimensión costo fijo de mantenimiento	61

ÍNDICE DE ANEXOS

Anexo 1: Matriz de Consistencia	72
Anexo 2: Cuestionario de Variable Independiente	74
Anexo 3: Cuestionario de Variable Dependiente	76
Anexo 4: Presupuesto Construcción de Vía	78
Anexo 5: Prueba de Ensayo	79
Anexo 6: Acta de Originalidad de Tesis	99
Anexo 7: Turnitin	100
Anexo 8: Acta de Aprobación de la Tesis	101
Anexo 9: Autorización de Publicación de Tesis	102
Anexo 10: Autorización de la Versión Final	103

RESUMEN

La presente investigación cuyo título es "Estabilización de suelos en la pavimentación para

reducir costos de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima

2018", tuvo por objetivo, Determinar cómo la estabilización de suelos en la pavimentación

reducirá los costos de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima

2018.

La tesis es de tipo aplicada con diseño cuasi experimental cuyo procesamiento de la información

recolectada se hizo con el programa SPSS versión 22, logrando una mejora en el costo de

mantenimiento en 27,50%, siendo evidente que se reducen gastos innecesarios que no están

contemplados en el presupuesto También mejoro el costo fijo de mantenimiento en 25,01% y

el costo variable de mantenimiento en 4,37%, con un nivel de significancia de 0,000.

Palabras claves: Estabilización de suelos, pavimentación, costos

xiii

ABSTRACT

The present investigation whose title is "Stabilization of floors in paving to reduce maintenance

costs of the street 4, urbanization San Carlos, Santa Anita - Lima 2018", had as objective,

Determine how the stabilization of floors in the paving will reduce the costs of maintenance of

the street 4, urbanization San Carlos, Santa Anita - Lima 2018.

The thesis is of type applied with quasi-experimental design whose processing of the

information collected was done with the program SPSS version 22, achieving an improvement


in the cost of maintenance in 27.50%, being evident that unnecessary expenses are reduced that

are not contemplated in the budget Also better the fixed maintenance cost in 25.01% and the

variable cost of maintenance in 4.37%, with a level of significance of 0.000.

Keywords: Soil stabilization, paving, costs

xiv

1.1. Realidad Problemática

En el mundo es recurrente que las vías de alto transito se deterioren por circulación diaria de vehículos diversos, causando mayores daños las de carga pesada, que generalmente son camiones y tráiler. Es frecuente que las vías se deterioren progresivamente, pero también es preciso considerar que las vías deben construirse con materiales de calidad. La problemática a nivel de los países se manifiesta cuando no existe un plan estructurado para el sostenimiento de las vías durante el servicio. Por ellos algunas vías principales concesionadas para que la empresa privada administre y monitoree en óptimas condiciones a través de la adjudicación de los peajes.

En el Perú la problemática a nivel nacional se da por falta de presupuesto para mejora de las vías de transporte a nivel de la ciudad y en las vías de acceso a los diversos departamentos, por ello muchos distritos de la capital en la actualidad presentan deficientes vías por la falta de mantenimiento de las mismas. Por otra parte en algunas urbanizaciones los vecinos organizados han invertido en asfaltar sus calles ya que el desplazamiento de vehículos genera polvo, ocasionando malestar a vecinos del lugar.

Tabla 1. Infraestructura vial por departamentos

				k	ilómetros						
	LONGITUD		NACIONA	L	DE	DEPARTAMENTAL			VECINALI/		
DEPARTAMENTO	TOTAL	SUB TOTAL	Pavimenta da	No Pavimentada	SUB- TOTAL	Pavimen to	No Pavimentada	SUB- TOTAL	Pavimen to	No Pavimentada	
TOTAL	166 694.8	26 976.7	21 007.1	5 969.7	27 515.3	3 707.5	23 807.8	112 202.7	1 880.7	110 322.0	
AMAZONAS	3 337.4	851.9	851.9	0.0	746.5	31.3		1738.9	0.0	1738.9	
ÁNCASH	10 773.4	1893.4	1,223.6	669.8	1 218.6	482.8	735.8	7 661.4	112.4	7 549.0	
APURÍMAC	7 489.6	1 281.0	831.8	449.2	1 261.9	9.1		4 946.6	7.3	4 939.3	
AREQUIPA	9 395.4	1497.1	1,215.6	281.5	1738.9	571.0	1,167.9	6 159.4	402.3	5 757.	
AYACUCHO	12 340.0	1801.1	1,641.1	160.0	1853.7	264.8	1,588.9	8 685.2	18.9	8 666.2	
CAJAMARCA	14 667.6	1738.9	1,456.9	282.1	886.4	31.8	854.6	12 042.3	39.8	12 002.5	
CALLAO	0.050.3	0.043.4	43.4	0.0	6.9	5.2	1.7	0.000.0	0.0	0.000.0	
CUSCO	15 545.8	2 057.9	1,623.5	434.4	2 802.6	565.3	2,237.2	10 685.4	124.6	10 560.8	
HUANCAYELICA	8 230.9	1403.7	1,181.2	222.4	2 002.3	21.3	1,981.0	4 825.0	0.7	4 824.3	
HUÁNUCO	7 647.8	1242.0	625.7	616.3	772.4	16.7	755.8	5 633.4	4.2	5 629.2	
ICA	3 483.6	697.9	680.7	17.2	743.1	48.9	694.1	2 042.7	82.0	1960.7	
JUNÍN	12 015.2	1734.4	972.5	761.9	1,135.0	67.7	1,067.4	9 145.8	219.4	8 926.3	
LA LIBERTAD	8 767.4	1264.3	788.9	475.4	1932.1	92.0	1,840.1	5 571.0	155.4	5 415.6	
LAMBAYEQUE	3 198.1	469.0	450.8	18.2	672.4	208.6	463.8	2 056.6	27.6	2 029.1	
LIMA	7 522.1	1684.1	1,246.5	437.6	1577.3	160.4	1,416.9	4 260.6	172.0	4 088.6	
LORETO	0 885.1	124.9	93.6	31.3	320.7	97.2	223.6	439.5	19.1	0 420.4	
MADRE DE DIOS	2 017.8	399.3	399.3	0.0	340.2	2.3	337.9	1278.3	6.4	1271.9	
MOQUEGUA	2 647.0	469.2	469.2	0.0	908.9	91.4		1268.8	99.8	1169.1	
PASCO	3 285.7	591.1	310.5	280.6	607.6	34.4		2 086.9	0.0	2 086.9	
PIURA	8 926.8	1740.5	1,516.1	224.5	589.7	167.5	422.2	6 596.5	171.2	6 425.4	
PUNO	13 207.0	2 017.1	1,711.4	305.7	2 368.0	416.4	1,951.6	8 821.9	43.0	8 778.9	
SAN MARTÍN	5 287.3	873.2	728.4	144.8	966.1	161.4	804.7	3 448.0	0.1	3 447.9	
TACNA	2 517.5	635.7	584.4	51.3	489.7	85.0	404.7	1392.1	163.1	1229.0	
TUMBES	0 939.9	138.5	138.5	0.0	285.3	69.5	215.8	0.516.1	9.3	0 506.8	
UCAYALI	2 516.2	0.327.2	0 221.6	0 105.5	1288.8	0.005.5		0 900.2	0.002.3	0.897.9	

Fuente: MTC, 2018

En la tabla 1, se tiene un cuadro comparativo de la infraestructura vial a nivel nacional obtenido el presente año,

Por otra parte las empresas concesionarias responsables de la conservación de las vías, tienen altos costos por el servicio y sin embargo se han incorporado nuevas concesiones a lo largo del país, siendo objeto de rechazo por parte de los usuarios transportistas y particulares por el incremento desmesurado que se viene realizando. Si bien es necesaria la conservación de las carreteras, es sin importante otorgar la concesión para que los encargados fijen precios racionales y no establezcan sus precios de acuerdo a su beneficio económico.

En el Perú muchas vías están dañadas y no tienen mantenimiento que permite conservarlas en perfecto estado. Es preciso remarcar que muchos usuarios se ven perjudicados por las pistas en mal estado porque sus vehículos se deterioran rápidamente por este problema.

Considerando que el Ministerio de Transportes asuma el control y establezca la recuperación de las vías dañadas es preciso contar con recursos para este balance. Sin los recursos no se disponen porque existen otras prioridades que postergan estas obras.

Es preciso recalcar que el alto índice de corrupción en el estado hace que no se resuelvan los problemas urgentes que se tiene en lo referente al transporte, por lo que se requiere decisión política y un sentido común solidario con los usuarios para proteger su fuente de ingresos a los que hacen servicios de taxi.

El presente proyecto se localiza en la Urbanización San Carlos, calle 4 distrito de Santa Anita. La calle ha sido asfaltada el año 2003 que fue financiada por los vecinos por la indiferencia para resolver esta problemática la Municipalidad de Santa Anita. De dicha fecha a la actualidad no ha tenido ningún mantenimiento y por ese motivo la calle presenta deterioros en la carpeta de rodadura, así como hundimientos, piel de cocodrilo, grietas horizontales, transversales, parcheo

Figura 1. Situación actual de la Calle 4
Fuente: Elaboración propia

En la figura 1, se observa que la calle 4 presenta deterioros en su carpeta de rodadura por falta de mantenimiento y también porque es consecuencia de que no hubo un buen diseño de asfalto, resaltando que el espesor es muy delgado siendo una falla que presentó el diseño de la calle 4 en su etapa constructiva.

1.2. Trabajos previos.

1.2.1. Antecedentes nacionales.

RABANAL, Jaime (2014), en su investigación relacionada con el nivel de conformidad y buen estado del pavimento en zona de alto tránsito

Su objetivo fue indagar en qué estado se encuentra esta vía. En la ejecución del estudio se hizo uso del índice de condición del pavimento obteniendo un índice de 50 siendo propio del pavimento standard. Las deficiencias de la vía se da al comprobar su deterioro con diversas grietas localizadas y desniveles, por lo que se sugiere la ampliación de la vía en ambos extremos en cuyos bordes se precisa de drenaje, que reforzara la conservación y duración de la vía.

CAMPOSANO Y GARCIA (2012), presentaron la tesis relacionada con la evaluación de una vía de alto tránsito mediante el índice de condición de pavimento. Su objetivo tuvo que ver como se encuentra la vía respecto a su conservación comprobando mediante ello un nivel situacional regular con PCI de 51. Se concluye comprobando diversos tipos de problemas como son las más

resaltantes las grietas, zonas hundidas y en varios tramos existe desprendimiento en la superficie. En el estudio se comprobó que estos inconvenientes localizados se deben al factor climatológico, exceso de unidades en circulación por la vía, material utilizado en la vía deficiente e inestable.

APOLINARIO, Edwin (2012), presento la tesis sobre el método Vizir relacionados al mantenimiento y conservación de las vías.

Su fin es el mejoramiento de las vías con bajo volumen de tránsito, con fines de decidir respecto a su nivel de conservación y mantenibilidad. Habiendo realizado el análisis respectivo entre Km 209+000 al Km 212+000, se concluye a través del método utilizado que el 58.35% de la zona en estudio presenta fisuras, deformación y reparadas hechas, por su parte con ESBVT, al 100% se determina que son fallas de estructura. Es importante considerar mayor estudio con otras metodologías con fines de aumentar opciones para buenos estudios de la conservación de los pavimentos.

1.2.2. Antecedentes Internacionales.

ZERPA, Gustavo (2012), presentó un estudio referente al mantenimiento correctivo de carreteras. Con esto busca aportar en la mejora de la vía en estudio.

En la ejecución evaluó como se encuentra la calle siendo un limitante la alta vegetación en la zona para cumplir con los mantenimientos previstos. Mediante el estudio se asegura la buena transitabilidad de los vehículos con lo que se realza el accionar edil.

PONCE, José (2013), presentó estudio referido a alineación con fines de conservación de carretera.

Su fin tuvo que ver con alineamiento analizando las deflexiones simultáneamente, efectuando sondeos en pavimentos en los hombros de la vía ya que el grosor localizado no presentó base hidráulica dejando de lado el sondeo al centro de la vía con fines de no desgastar y dañar la parte superficial.

HIGUERA, Viviana (2015), presentó su estudio referido al nivel de conservación de pavimento y su impacto en el recorrido de unidades pesadas.

Su fin fue comprobar el nivel de incidencia en la transitabilidad de este tipo de unidades, comprobando que en todas las zonas evaluadas de 12 se tiene que 10 presenten fallas, siendo las

más resaltantes las de daño de sello de juntas. Mediante el método PCI se comprobó la verdadera situación que presenta el pavimento a través del estudio de campo.

Según ensayo de subrasante se tiene que logra soportar adecuadamente y que en los diseños realizados se precisa de programar los mantenimientos previa indagación de la vía.

1.3 Teorías relacionadas al tema

1.3.1 Estabilización de pavimentos

1.3.1.2 Definición

"Se da cuando el suelo tiene resistencia suficiente evitando deformación, no habiendo desgastes por el uso y por situaciones climatológicas, en estas condiciones se asegura estabilidad" (Nguyen Vu Lam., 2011, p.13).

Estabilización Física:

Nguyen Vu Lam (2011), manifiesta que:

Se da uso con fines de obtener un buen suelo generando variaciones físicas, habiendo las: Este es el más usado, sin embargo de manera individual no es favorable requiere de compactación de manera complementaria. Es importante remarcar que las partículas de los suelos estén cohesionadas lo que permitirá ser tolerante al tránsito de las unidades pesadas. Es también importante a parte de esta cualidad la fricción presentada en la superficie ya que en épocas de precipitación ocasionaría que los conductores pierdan el control de la unidad y ocasionar accidentes. En suma estas dos cualidades es prioritario para las vías de tránsito con lo que se garantiza la estabilidad de las unidades al paso por estas vías (p.13).

Estabilización Química:

Nguyen Vu Lam (2011) manifiesta que:

Tiene que ver esencialmente al uso de aditivos químicos patentizadas de tal manera que utilizarlos implica mejoras en la estructura de los suelos que están insertos en el proceso.

Cal: Reduce plasticidad en suelos arcillosos resultado menos costoso.

Cemento Portland: Incrementa resistencia de los suelos.

Productos Asfálticos: Se usa en material triturado sin cohesión.

Cloruro de Sodio: Es un factor impermeabilizante reduciendo polvos.

Cloruro de Calcio: También sirven de impermeabilizante y reduce el polvo.

Escorias de Fundición: Se usa con frecuencia en carpetas asfálticas con fines de mejora la resistencia, ampliando su tiempo de duración.

Polímeros: Su uso es en carpetas asfálticas con fines de resistencia, impermeabilidad y ampliar su tiempo de vida (p.15).

1.3.2 Costos de mantenimiento

1.3.2.1 Definición

"Los costos cuando se da uso, en los diversos tipos de trabajo realizado y particularidades, se debe tener en cuenta los costos de materiales, obreros, maquinarias, zona y periodo de trabajo" (Capeco 2016, p.8).

1.3.2.2 costos directos

"Está relacionada con materiales, mano de obra, equipos, herramientas, y lo que fuera necesario para la realización del trabajo" (Capeco 2016, p.15).

1.3.2.3 Costos indirectos

Los costos indirectos son gastos generales no aplicables a una partida específica, sino a todo la actividad general (Capeco 2016, p.242).

Clasificación de los costos indirectos

"Los costos indirectos lo conforman los gastos generales y utilidad. El primero también tiene que ver con los gastos no asociados al tiempo de desarrollo de la actividad y también los relacionados con el tiempo de desarrollo de la actividad" (Capeco 2016, p.242).

También Capeco (2016) considera que:

En primera instancia los no relacionados son: Gastos documentarios, los de visita, aquellos por adjudicación de trabajo y el que se incurre en el contrato. Del mismo modo diversos gastos: De contratos no logrados, legales y notariales. Por patentes. Por diversos seguros. Todos los gastos asociados al periodo de desarrollo de la obra

representan más porcentaje según el tipo de obra durante el tiempo de duración de la labor (p.242).

1.4 Formulación del problema

1.4.1 Problema General

¿Cómo la estabilización de suelos en la pavimentación reduce los costos de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018?

1.4.2 Problemas específicos

- a) ¿Cómo la estabilización de suelos en la pavimentación reduce los costos fijos de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita Lima 2018?
- b) ¿Cómo la estabilización de suelos en la pavimentación reduce los costos variables de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita Lima 2018?

1.5 Justificación del problema

Las razones consideradas tienen que ver con:

1.5.1 Justificación Teórica:

"Se considera cuando mediante el estudio se tiene confrontación de contenido teórico al mismo tiempo se hacen contrastaciones" (Bernal, C., 2010, p. 106).

Es importante para el mantenimiento de la calle 4, donde se busca desarrollar el proyecto en base a un sustento teórico consistente que permita definir las variables de manera que se identifique las dimensiones e indicadores para el desarrollo del proyecto.

1.5.2 Justificación Práctica

"En este caso se busca resolver la problemática presente planteando alternativas de solución mediante criterios coherentes" (Bernal, C. 2010, p. 106).

En el presente se busca dar solución al inconveniente presentado en estabilización de suelos en la pavimentación con fines de minimizar los costos para su perfecto estado.

1.5.3 Justificación Metodológica:

"En este caso se propone una nueva forma categórica que conduzca a el adecuado método usado permitiendo la validación del mismo" (Bernal, C. 2010, p.107).

En este caso se cumple con los lineamientos establecidos en la labor investigativa en la búsqueda de reducir los costos de mantenimiento.

1.5.4 Justificación económica:

"Implica tener conciencia del factor costo con fines de hace un mejor uso de los recursos disponibles" (Samuelson y Nordhaus, 2006, p.4)

Es importante la estabilización de suelos en la pavimentación con fines de evitar gastos adicionales en la calle 4, ya que tiene un impacto favorable en la economía de la comuna ya que se evitan gastos al Municipio que son necesario para atender otras necesidades de la población.

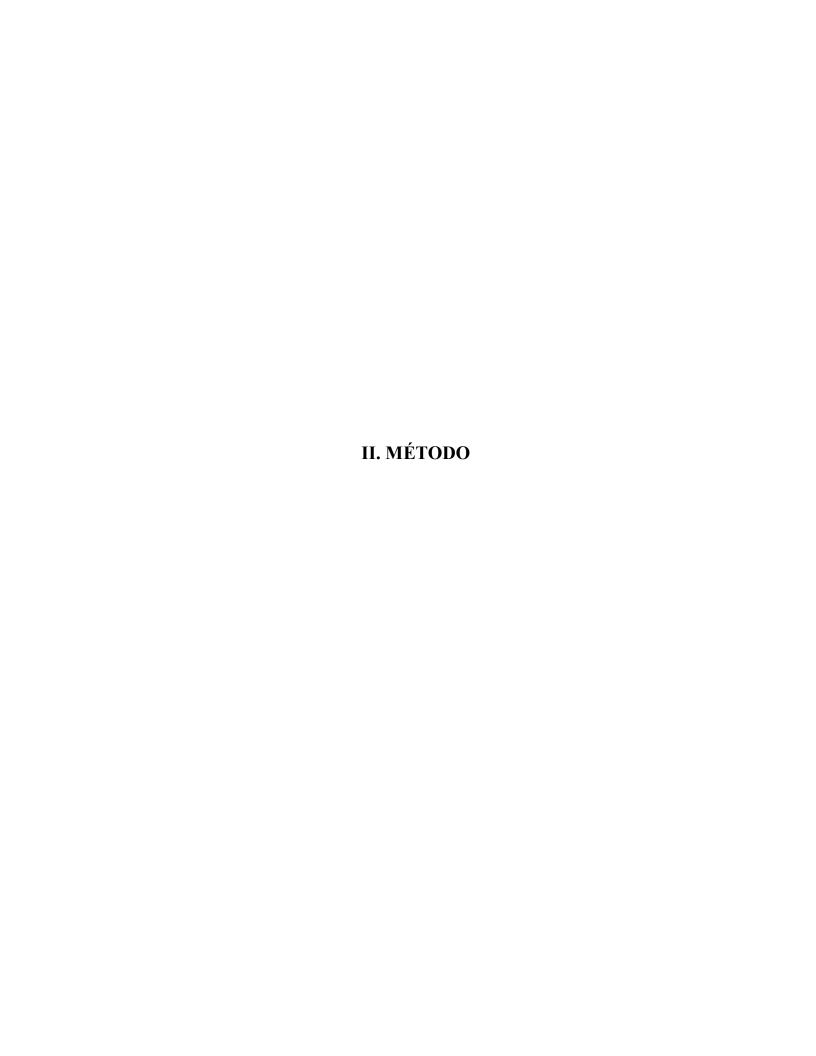
1.6 Hipótesis

1.6.1 Hipótesis General

La estabilización de suelos en la pavimentación reduce los costos de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018.

1.6.2 Hipótesis Específicos

- a) La estabilización de suelos en la pavimentación reduce los costos fijos de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita Lima 2018.
- b) La estabilización de suelos en la pavimentación reduce los costos variables de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita Lima 2018.


1.7 Objetivos

1.7.1 Objetivo general

Determinar cómo la estabilización de suelos en la pavimentación reduce los costos de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018.

1.7.2 Objetivos específicos

- a) Determinar cómo la estabilización de suelos en la pavimentación reduce los costos fijos de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita Lima 2018.
- b) Determinar cómo la estabilización de suelos en la pavimentación reduce los costos variables de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita Lima 2018.

2.1 Diseño de investigación

Hernández, Fernando y Baptista (2014), manifiesta que "Los diseños cuasi experimentales, está conformado por un grupo con control mínimo" (p. 137).

En el estudio se consideró el cuasi experimental de series cronológicas, sin criterio aleatorio de los que lo conforman, considerando mediciones antes y después.

G: 01 X 02

Dónde: X: variable independiente (estabilización de suelos en pavimentación).

01: Mediciones previas (antes de la estabilización de suelos en pavimentación) a la variable dependiente costos de mantenimiento.

02: Medición posterior (Luego de la estabilización de suelos en pavimentación)

2.1.1 Tipo de estudio

Según el tipo de estudio se considera:

Aplicada. Valderrama (2014), afirma que "mediante ella se logra ejercer un control en la situación actual en busca de la mejora" (p. 39).

Por ello se realizará la estabilización de suelos en pavimentación con fines de reducir los costos de mantenimiento.

Explicativa. Carlos Sabino (1996) considera a "aquellos en las que se busca establecer relación de variables" (p.110).

En la investigación se busca explicar cómo la estabilización de los suelos en pavimentación reduce los costos de mantenimiento de la calle 4.

Cuantitativa. Hernández et.al (2014), manifiesta que.

En este caso se tiene información obtenida de la información recolectada con fines interpretativos (pp. 16-17).

En tal sentido consideramos así debido a que se cuenta con datos numéricos de las variables y nos conduce a la toma de decisiones.

Longitudinal. Hernández et.al (2014) considera que "El estudio requiere de periodos establecidos para el proceso investigativo" (p. 278).

En el estudio se considera información numérica obtenida en el transcurso del tiempo.

2.2 Variables, Operacionalización

2.2.1 Variable Independiente: Estabilización de suelos en pavimentación

"Tiene que ver cuando tiene la resistencia suficiente sin tener variaciones ni por razones climatológicas por lo que se tiene un suelo estabilizado y por tanto nuestro pavimento" (S.A.S., s.f.).

2.2.2 Variable Dependiente:

"Los costos cuando se incurre en ellos dependiendo de la obra, se considera aquellos referidos al material, trabajadores, equipo y periodo de duración de la obra" (Capeco 2016, p.8).

Tabla 2. Operacionalización de las variables

VARIABLE	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	FORMULA	ESCALA
V.I. Estabilización de suelos en	Cuando un suelo presenta resistencia suficiente para no sufrir deformaciones ni desgastes inadmisibles por la acción del uso o de los agentes atmosféricos y	Sus dimensiones son las estabilizaciones físicas y químicas	Estabilización física	Índice de estabilización física	Estabilización física registrada x100 Estabilización permitida	RAZON
pavimentación	conserva además esta condición bajo los efectos climatológicos normales en la localidad, se dice que el suelo es estable y por ende el pavimento (S.A.S., s.f.)	cuyos indicadores son índice de estabilización de física y química	Estabilización química	Índice de estabilización química	Estabilización química registrada x100 Estabilización química tolerable	
V.D. Costo de mantenimiento	Los costos al momento de su utilización, a los diferentes tipos de obra y a las características de cada una de ellas, se debe tener	Son sus dimensiones los costos fijos y variables del	oosto fijo de mantenimiento	Índice de costos fijos	Costos fijos presupuestados x100 Total costos fijos	RAZON
	en consideración aspectos relacionados con los costos de materiales, manos de obra y equipo a utilizar, lugar y tiempo de ejecución, que constituyen un factor importante para determinar la inversión a realizar (capeco 2016, p.8).	mantenimiento	costo variable de mantenimiento	Índice de costos variables	Costos variables presupuestados x100 Total costos variables	

Fuente: Elaboración propia

2.3 Población y muestra

2.3.1 Población

Según Hernández et al. (2014), "Está formado por el grupo de elementos que tienen aspectos comunes" (p. 174)

En este caso, se considera población a la estabilización realizada al suelo de la pavimentación en la calle 4

2.3.2 Muestra

Hernández et al. (2014), indica "es una fracción de población de la que específicamente se hace el estudio de tal manera que represente como tal" (p.175).

La investigación, considera el estudio completo por lo que conforma la estabilización del suelo de la pavimentación en la calle 4.

2.4 Técnicas e instrumentos de recolección de datos, validez y confiabilidad

2.4.1 Técnicas

Bernal, C. (2010), considera que "Esta se define en función del estudio que se ejecuta de tal manera que sirva para lograr cumplir con lo que se desea saber" (p. 192).

En este caso considero el Análisis documental y observación del área de estudio.

2.4.2. Instrumento

Hernández et al. (2014), precisa que es "el que permite hacer el estudio respecto a lo que se tiene previsto indagar" (p.199).

- Análisis Granulométrico (ASTM 422 Y ASHTO T88)
- Proctor Modificado (ASTMD 1557 y ASSHTO T180 método C)
- C.B.R (ASTMD 1883 y AASHTO T 193)

Todo esto estará registrado en las fichas de datos

2.4.3. Validez

Hernández et al. (2014), considera que "esto tiene que ver con lo que se desea saber siempre que se concordante con lo que se desea demostrar" (p 201).

Tabla 3. Validación de 3 expertos de la carrera profesional

N°	Apellidos y Nombres	%
01	Carlos Manuel Segura Pérez	90
02	Emile Altamirano Pardo	90
03	María Isabel Ruiz Correa	90
Total		90

2.4.4 Confiabilidad del Instrumento

Por otro lado Hernández, et. al. (2014) dice "está relacionado con los resultados obtenidos los cuales guarda similitud" (p. 200).

Los ensayos a realizar estarán a cargo y supervisión del Técnico e Ingeniero experto con fines de garantizar la validez y confiabilidad en los resultados.

2.5 Métodos de análisis de datos

2.5.1 Estadística descriptiva:

Córdoba (2003), manifiesta que "que está referida a la obtención de información representada en tablas y diagramas de los datos procesados" (p.1).

En este caso se evalúa los resultados de tendencia central y la dispersión existente entre los datos, también se considera las gráficas respectivas para su interpretación.


2.5.2 Estadística inferencial:

Según Hernández, et al. (2014), "Considera el análisis de los logros obtenidos que nos permitan dar validez a los supuestos planteados en el estudio" (p.299).

En la estadística inferencia se realizará la prueba de hipótesis para validar la inferencia, mediante un programa estadístico denominado SPSS.

2.6. Aspectos éticos

Lo que se tiene consignado en el estudio, se ha referenciado de manera integral, respetando autores y siguiendo secuencia metodológica de acuerdo a lo que se exige un trabajo de esta índole como aspecto fundamental en el desarrollo profesional y que se mantiene principios como la honestidad y reserva respecto a la información que se utiliza de la zona de estudio.

3.1 Ubicación y descripción del área de estudio.

El lugar fijado está en el sistema viario 1 perteneciente Lima, distrito de Santa Anita y se localiza en la calle 4 de San Carlos, encontrándose a la altura de la posta San Carlos – Santa Anita.

Tabla 4. Coordenadas UTM

COORDENADAS UTM					
PUNTO SUR OESTE					
CALLE 4 SAN CARLOS	12° 2' 17.074" - 12.0380761	76° 57' 33.354" – 76.959265			

Fuente: Elaboración propia

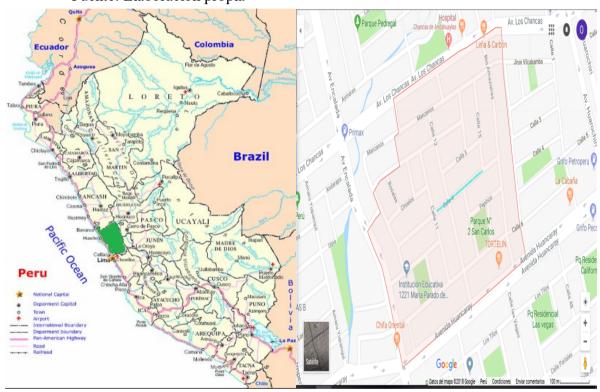


Figura 2. Ubicación de la calle 4

Fuente: Google maps

3.1.1 Situación actual

El problema es que en la calle 4 de la urbanización San Carlos - Santa Anita. La vía se rencuentra en mal estado causando daños a las unidades que transitan por dicha vía, se busca una buena estabilización del suelo para poder tener una carpeta asfáltica en buen estado y reducir las reparaciones y mantenimiento de las unidades. También se busca reducir los costos de mantenimiento de la vía.

Al referir sobre el asfalto considero que debe tener una vida útil adecuada para el tipo de transito que va a pasar por la calle 4, nosotros tenemos que demostrar que tiene una buena estabilización el suelo y la carpeta asfáltica. Para así probar que tendrá una vida útil más adecuada ya que esta vía fue construida con el coste de los vecinos y no tuvo una construcción adecuado de acuerdo a la normativa vigente.

En seguida se muestran evidencia de fallas habidas en la calle 4, tanto en su estructura como la aparición de grietas y hundimiento en sectores de la calle

Figura 3: Evidencia de hundimiento en la calle 4

Fuente: propia

Figura 4: Evidencia de grieta de piel de cocodrilo en la calle 4

Fuente: propia

3.1.2 Propuesta de mejora

La metodología de la propuesta para la mejora es:

Una evaluación completa y detallada de la calle 4 comprendida en los términos de referencia, además de información de estudios realizados en la zona como referencia.

3.2. Área de estudio.

El proyecto se ubica en la Calle 4 de Santa Anita, comprende las zonas dañadas de la calle 4.

3.2.1. Estabilización Física:

En este caso tiene que ver con el suelo generando variaciones en él. Existe diversas formas: Mezclas de Suelos: en este caso se necesita necesariamente de la compactación. Para ello es necesario que se tenga cohesión y fricción en la superficie con fines de que las unidades de transporte que circulan puedan transitar con seguridad por las ventajas que se ofrece independientemente del ambiente y clima existente.

Hule de Neumáticos: Utilizado frecuentemente en las carpetas asfálticas con fines de brindar más resistencia, impermeabilizar y mayor durabilidad.

Estabilización Mecánica: En este caso se mejora no existiendo algunas reacciones de tipo química.

Compactación: Se hace la mejora específicamente en la carpeta asfáltica.

3.3. Descripción técnica:

3.3.1 Etapa 1

Se procederá hacer unas calicatas para ver qué tipo de terreno tenemos, Para poder analizar el material en laboratorio y así poder llegar a una conclusión y tomar decisiones para el mejoramiento de la rasante natural.

Figura 5: calicata

Fuente: Calle 4

3.3.2 Etapa 2

Una vez analizado el terreno procederemos hacer el mejoramiento del suelo natural donde tendremos que cavar un aproximado de 30 centímetros, para luego hacer el mejoramiento con material de préstamo..

3.3.3 Etapa 3

En esta etapa se procede a humectar el terreno ya excavado para que se asiente los materiales limosos o finos para que llegue a su máxima resistencia portante.

3.3.4 Etapa 4

Una vez asentada el área humectada se procederá a echar el material de cantera aprobada. Nuestra estabilización es física ya que tiene el componente adecuado para que soporten las cargas de distintas unidades que pasen. El material que utilizaremos será afirmado por que cumple con los estándares a la capacidad portante y se adhiere al suelo logrando una buena estabilización física.

Figura 6: Cantera

Fuente: Propia

3.3.5 Etapa 5

Luego se procede a humectar el afirmado batiendo con la maquinaria pesada para que llegue a un punto adecuado para la compactación y llegue al proctor de acuerdo al diseño de la pavimentación.

3.3.6 Etapa 6

se vierte el afirmado batido con la humectación adecuada en el terreno a mejorar, para que siguiente pase la maquinaria pesada y llegar a los niveles ya planificado en campo una vez nivelado el afirmado se procede a hacer la compactación con la maquina pesada para que llegue al punto máximo de dureza y tenga las características adecuadas.

3.3.7 Etapa 7

Una vez nivelado y compactado el área a mejorar se procede a hacer las pruebas necesarias de dureza llamado también proctor. Posteriormente se hace la limpieza de la zona sobre cualquier impureza que allá en la suba base. Luego se procede a hacer la imprimación asfáltica.

3.3.8 Etapa 8

Una vez cubierto con emulsión asfaltico líquida se procede a echar la carpeta asfáltica de acuerdo al diseño ya acordado.

3.3.9 Etapa 9

Se procede a verter el asfalto con las características apropiadas. En este caso el asfalto es un asfalto caliente que viene trasportada con camiones de 18 m3 luego se procede hacer el vaciado en la esparcidora que es la máquina que transporta el asfalto en su tolva para luego proceder a echar el asfalto caliento con un espesor de 2 "a nivel. Esta máquina está construida para que lleve un nivel estable sin dejar desniveles.

3.3.10 Etapa 10

En esta etapa de construcción se realiza la compactación del asfalto en todos los sentidos del área a realizar con un rodillo de compactar de 12 toneladas esta maquinaria pesada hace que vibre y compacte el material ya regado por la esparcidora donde las partículas del asfalto se compriman y llegues a su mayor resistencia portante después de este procedimiento se pasa el rodillo neumático. Este rodillo neumático tiene la función de pulir la vía para que tenga un acabado mejor y sierre todos los poros.

3.4. Estudio de Mecánica de Suelo

3.4.1 Investigación de campo

Aplicando la norma Técnica CE.010, para determinar el programa de exploración mediante calicatas, se tiene que el número de puntos de investigación será como mínimo de tres calicatas y este podrá extenderse de acuerdo al tipo de vía según lo indica en la tabla 2 de la norma técnica CE.010 que apreciamos en el Cuadro N°03

Tabla 5. Programa de investigación norma ce. 010

TIPO DE VÍA	NÚMERO MÍNIMO DE PUNTOS DE INVESTIGACIÓN	ÁREA (m²)
Expresas	1 cada	2000
Arteriales	1 cada	2400
Colectoras	1 cada	3000
Locales	1 cada	3600

Para el caso del proyecto se ejecutaran 03 calicatas distribuidas adecuadamente según lo indicado en el TDR del estudio.

Tabla 6. Resumen de puntos de investigación

TIPO DE PUNTO DE INVESTIGACIO	CANTIDAD	DENOMINACIO N
CALICATAS	01	C-1

Tabla 7. Relación detallada de puntos de investigación

PUNTO DE INVESTIGACIÓN	DENOMINACIÓN	PROFUNDIDAD
CALICATA	C - 1	1.20

Profundidad "p" mínima a alcanzar en cada punto de investigación

Se ejecutaran las calicatas con la profundidad mínima de 1.20 m.

Distribución de los puntos de investigación

Se toma en cuenta las características y dimensiones de la vía.

Número y tipo de muestras a extraer

Se han extraído una muestra tipo Mab. Se Verifico un suelo homogéneo en las calicatas compuesto de relleno, gravas, arena y limo.

En las calicatas registramos el perfil estratigráfico del suelo, realizando la clasificaciónfijado por el sistema "aashto"

1. Ensayos de laboratorio

Estos se refirieron a la variación según RNE-Norma E.050 "SUELOS Y CIMENTACIONES". Las labores hechas en este caso fueron para analizar propiedades físicas del suelo, tanto mecánicamente como químicamente que se obtienen de los estudios.

Se han ejecutado:

- 01 Registro de excavaciones
- 01 análisis granulométricos.
- 01 clasificaciones de suelos.
- 01 limites líquido, plástico e índice de plasticidad.
- 01 contenido de humedad.
- 01 proctor modificado y CBR.
- 01 peso específico.

Las muestras se analizaron con los especialistas para este fin. Además se han dejado muestras en Laboratorio de la UNAM, con los que se validaron los resultados obtenidos por nuestro laboratorio.

Tabla 8. Relación de ensayos

NOMBRE DEL	USO	METODO AASHTO	ENSAY O	TAMAÑO DE	PROPOSITO ENSAYO
ANALISIS	CLASIFICACION	T88	D422	1.50 KG	Determina la distribución
GRANULOMETRICO					del tamaño de las
CONTENIDO	CLASIFICACION	T265	D2216	1.50 KG	Cantidad de agua
DE HUMEDA					retenida por el suelo
LIMITES					Hallar el contenido de
CONSISTEN	CLASIFICACION	T89	D4318	1.50 KG	agua entre los estados
CIA	CLASIFICACION	109	D4316	1.30 KG	líquido y plástico
ENSAYO QUIMICO	SALES	T290	C-114	1.50 KG	Tipo de cemento y
					recomendaciones.
					Grado de compactación,
					máxima densidad seca y
PROCTOR MODIFICADO	RESISTENCIA	T180	D1557	20.00 KG	optimo contenido de
MODIFICADO					humedad
CAPACIDAD DE	RESISTENCIA	T193	D1883	40.00 KG	Resistencia del suelo.
SOPORTE CBR					

Propiedades físicas.

Respecto a los ensayos físicos permiten determinar propiedades índices de los suelos para su clasificación

Contenido de humedad natural (ASTM D-2216)

Esta se muestra en porcentaje del peso de agua entre el peso del material seco. Es preciso luego del ensayo hacer la labor en seguida para tener valores coherentes sin variaciones.

Tabla 9. Contenido de humedad

CALICATA	MUESTRA	PROFUNDIDAD MUESTRA (m)	CONTENIDO HUMEDAD %
C-1	M - 1	0.60	5.420
C-1	M – 2	1.20	2.656

Límites de consistencia (ASTM D4318)

La plasticidad del suelo indica su nivel de moldeabilidad. Es relacionado con cantidad de arcilla que pasa la malla N° 200, ya que interviene como ligante.

Tabla 10. Límite de consistencia

CALICATA	MUESTRA	PROFUNDIDAD MUESTRA (m)	LIMITE LIQUIDO LL %	LIMITE PLASTICO LP %	INDICE PLASTICO IP %
C-1	M - 1	1.20	N P	N P	NP

Análisis granulométrico por tamizado (ASTM D-422)

Se refiere a la distribución de las partículas de un suelo según tamaño, para ellos se hace el tamizado con mallas de distinto diámetro de 3" (de diámetro 76.3mm) hasta el tamiz Nº 200 (de diámetro 0.074 milímetros). Luego se procede con el ensayo de sedimentación. Este proceso esta normado por:

- D 422 Method for Particle-Size Analysis of Soils ASTM.
- D 6913 Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis
- Das, B.M.; Fundamentos de Ingeniería Geotécnica. Ed. Thomson Learning. 2001

 Bowles, J.E.; Manual de Laboratorio de Suelos en Ingeniería Civil. Ed. Mc Graw Hill. 1978 Según las muestras obtenidas en campo se tienen un suelo compuesto por finos, podemos clasificar para un mejor entendimiento el tamaño de las partículas según lo indicado en la figura N° 3

MATERIAL	CARACTERISTICA	TAMAÑO (mm)	
canto rodado		> 70	
Grava	Gruesa	30 - 70	
Grava	Media	5 - 30	Diámetro de las particulas del suelo
	Fina	2-5	0,002 mm 0,05 mm 2 mm
Arena	Gruesa	1-2	*
Archa	Media	0.2 - 1	VI21 1 122 1 2
	Fina	0.1 - 0.2	Arctia Limo Arena
Polvo	Grueso	0.05 - 0.1	
	Fino	0.02 - 0.05	
Limo	Grueso	0.006 - 0.02	
	Fino	0.002 - 0.006	
Arcilla	Gruesa	0.0006 - 0.002	
	Fina	0.0002 - 0.0006	
Ultra - Arcilla		0.00002 - 0.0002	Othe COMET Prog

Figura 7: Tamaño de partículas

En la figura, se presenta el resumen de las características granulométricas encontradas en las calicatas seleccionadas.

Tabla 11. Resumen del análisis granulométrico

CALICATA	MUESTRA	PROFUNDIDAD MUESTRA (m)	% GRAVA	% ARENA	% FINO
C-1	M - 1	1.20	80.53	12.42	7.05

Clasificación de suelos por el método sucs y aastho

Estos se diferencian por el tipo de partículas que tienen.

Tabla 12. Clasificación de suelos

CALICA	MUESTRA	S	AASHT	DESCRIPCIÓN
C-1	M-1	G	A-1-a(0)	Grava pobremente graduada con
		P		matriz limosa con arena
C-1	M-2	G	A-1-a(0)	Grava pobremente graduada con arena
		P		

Propiedades mecánicas

Con los ensayos se logra obtener la resistencia de los suelos

Peso específico de 2.012 T/m³.

Ensayo para determinar el proctor modificado y C.B.R.

En este caso se hace la descripción del proceso de ensayo para precisar el índice de resistencia de los suelos denominado valor de la relación de soporte. Este se realiza considerando la humedad y densidad.

Tabla 13. Resultados del proctor y CBR.

CALICATAS	MUESTR A	OC H (%)	MDS (t/m³)	CBR 95% MDS	CBR 100% MDS
С	M-1	10.50	2.12	35.200	42.750
-1					

Perfil estratigráfico.

De acuerdo a la exploración efectuada mediante el ensayo de calicata, se obtuvo el siguiente perfil estratigráfico en la tabla

Tabla 14. Perfil estratigráfico representativo CALICATA C-1

CALICATAS	PROFUNDIDAD	SUC	AASHTO	DESCRIPCION
C - 1	0.00 - 0.60	R	-	RELLENO, LIMO ARENOSO COLOR MARRON OSCURO
	0.80 - 1.20	GP- GM	A-1- a(0)	GRAVA POBREMENTE GRADUADA CON LIMO.

Presencia napa freática

No hubo en el estudio por lo que se efectuó con las mismas condiciones existentes

Tabla 15. Resultados del análisis químico

CALICATA	PROFUNDIDAD	CL ppm	SO4 ppm	S.S.T. ppm	
C - 1	1.00	-	21.51	150.33	

Aplicando los rangos permisibles indicados por el RNE en y el ACI 318-83 podemos concluir que la exposición a Sales, Cloruros y Sulfatos se considera despreciable.

Análisis de resultados

Tal como se muestra en los ensayos de laboratorio así como en los perfiles o registros de sondajes el suelo predominante a nivel de suelo de fundación, es del tipo conglomerado es decir conformado por gravas sub-redondeadas con matriz limosa arenosa. Encima del conglomerado con un espesor de 0.60 m se encuentra un relleno superficial conformado por desmonte, limos, arenas, raíces secas, etc.

Del manual de Carreteras del MTC respecto a suelos y pavimentos podemos concluir.

- De los resultados obtenidos el suelo de la sub-rasante es granular, sin plasticidad, por lo que presenta buenas condiciones geotécnicas.
- Para una sub-rasante con CBR de 10% a 20% es una sub-rasante buena, nuestros
 CBR al 95% MDS están por encima del 10%, por lo que la sub-rasante es buena.

De la norma Técnica CE.010 de Pavimentos Urbanos del RNE, podemos indicar.

• El CBR de 30% a 40% se puede usar como Sub-Base granular, nuestro suelo de sub rasante podría darse uso como sub-base granular, retirando el relleno existente y aplicándole un proceso de compactación.

Conclusiones y recomendaciones

• En el tramo de estudio, se presenta como suelo de fundación natural un conglomerado conformado por gravas sub-redondeadas con matriz de limos y arenas, sin plasticidad y superficialmente un relleno de desmonte, arenas, limos y gravas.

- Se han realizado 01 calicatas a lo largo del área de intervención que va desde la calle
 # 4 hasta el asesor calle rio Huallaga.
- El suelo tipo de fundación es un conglomerado conformado por gravas subredondeadas con matriz areno limosa, se presenta una cobertura de relleno superficial de 0.30 m de espesor.
- Para los diseños y cálculo de capacidad portante utilizaremos los valores más desfavorables obtenidos:
 - ✓ Angulo de fricción interna de 30.34°
 - ✓ Cohesión de 0.000 Kg/cm²
 - ✓ Peso específico de 2.012 T/m^3 .

Corresponde a un suelo con una buena sub-rasante conformada por gravas sub redondeadas y con una matriz que varía de limos a arenas con limo.

Según el manual de Carreteras del MTC respecto a suelos y pavimentos tenemos:

- De los resultados obtenidos el suelo de la sub-rasante es granular, sin plasticidad, por lo que presenta buenas condiciones geotécnicas.
- Para una sub-rasante con CBR de 10% a 20% es una sub-rasante buena, nuestros CBR al 95% MDS están por encima del 10%, por lo que la sub-rasante es buena.
- El CBR de 30% a 40% se puede usar como Sub-Base granular, nuestro suelo de subrasante también se usaría como sub-base granular, retirando relleno existente y aplicándole un proceso de compactación.

Tabla 16. Parámetros permisibles

Grado de Alteració	Observaciones		
Perjudicial	Ocasiona problemas de pérdida de resistencia mecánica por problema de lixiviación		
	Alteració		

Comité ACI 318-83

^{**} Experiencia existente

Tabla 17. Sistema unificado clasificación de suelos SUCS

		IDENTI	ICACION EN	EL CAMPO		SIMBOLO DEL GRUPO	NOMBRES TIPICOS	CRITERIOS DE CLASIFICACION EN EL LABORATORIO
)EL	MITAD DE ESA ES AMIZ # 4	GRAVAS LIMPIAS (CON POCOS FINOS O SIN ELLOS)	10 10 10 10 10 10 10 10 10 10 10 10 10 1	AMA DE TAMAÑOS Y C BLES DE TODOS LOS INTERMEDIOS		GW	GRAVA BIEN GRADUADA, MEZCIA DE GRAVA Y ARENA CON POCOS FINOS O SIN ELLOS	Od W S $\frac{1}{2}$
MITAD DEL	GRU GRU			UN TAMAÑO O UN TIPO E ALGUNOS TAMAÑOS		GP	GRAVAS MAL GRADUADAS, MEZCLAS DE ARENA Y GRAVA CON POCOS FINOS O SIN ELLOS	NO SATISFACEN TODOS LOS REQUISITOS OF A CONTROL OF A CONT
DE LA	- MAS VACCIO	GRAVAS CON FINOS (CANTIDAD APRECIABLE DE FINOS)		NO PLASTICA (PARA L EL GRUPO ML, MAS A		GM	GRAVAS LIMOSAS, MEZCLAS MAL GRADUADAS DE GRAVA, ARENA Y LIMO	W AUA SO LIMITES DE ATTERBERG
POR	GRAVAS LA FR RETENI			TICOS (PARA IDENTIF L GRUPO CL MAS ABA		GC	GRAVAS ARCILLOSAS, MEZCLAS MAL GRADUADAS DE GRAVA, ARENA Y ARCILLA	L L W G G G G G G G G G G G G G G G G G
SANO GRUESO ES RETENIDO	MITAD DE SA PASA # 4	ARENAS LIMPIAS (CON POCOS FINOS O SIN ELLOS)		AMAÑOS Y CANTIDAD LOS TAMAÑOS INTER		SW	ARENAS BIEN GRADUADAS, ARENAS CON GRAVA, CON POCOS FINOS O SIN ELLOS	$C_v = \frac{D_{tot}}{D_{tot}} \text{MAYOR DE 6} \; ; \; C_r = \frac{(D_{tot})^2}{D_{tot} \times D_{tot}} \; \text{ENTRICED STATES} $ $O \; \text{SATISFACEN TODOS LOS REQUISITOS} $ $O \; \text{SATISFACEN TODOS LOS REQUISITOS} $ $O \; \text{GRANULOMETRICOS DE LAS SW}$
	DE LA GRUE AMIZ	ARENAS (CON FIN		UN TAMAÑO O UN TIPO E ALGUNOS TAMAÑOS		SP	ARENAS MAL GRADUADAS, ARENAS CON GRAVA, CON POCOS FINOS O SIN ELLOS	NO SATISFACEN TODOS LOS REQUISITOS STATISFACEN TODOS LOS REQUISITOS GRANULOMETRICOS DE LAS SW STATISFACEN TODOS LOS REQUISITOS GRANULOMETRICOS DE LAS SW
SUELOS DE GI MATERIAL	- MAS ACCION OR EL 1	RENAS CON FINO (CANTIDAD APRECIABLE DE FINOS)		ASTICOS (PARA IDENT L GRUPO ML MAS ABA		SM	ARENAS LIMOSAS, MEZCLAS DE ARENA Y LIMO MAL GRADUADAS	NDICTOR AND A STATEMENT OF A STATEME
v	₩ 5		TICOS (PARA IDENTIF L GRUPO CL MAS ABA		sc	ARENAS ARCILLOSAS, MEZCLAS MAL GRADUADAS DE ARENAS O ARCILLAS	LIMITES DE ATTERBERG REQUIEREN EL USC POR ENCIMA DE LA LINEA SIMBOLOS DOBLI	
	METODOS DE IDENTIFICACION PARA LA FRACCION QUE PASA POR EL TAMIZ # 40				R EL TAMIZ # 40			
AD DEL		= 50	RESISTENCIA EN ESTADO SECO (A LA DISGREGACION)	DILATANCIA (REACCION A LA AGITACION)	TENACIDAD (CONSISTENCIA CERCA DEL LIMITE PLASTICO)			LINEA A: Ip = 0.73(WL - 20)
LA MITAD		TENOR DE	NULA A LIGERA	RAPIDA A LENTA	NULA	ML	LIMOS INORGANICOS Y ARENAS MUY FINAS, POLVO DE ROCA, ARENAS FINAS LIMOSAS O ARCILLAS CON LIGERA PLASTICIDAD	A D COMPARANDO CON SUELOS CON EL MISMO LIMITE LIQUIDO CH UNEA A UNEA A
IO - MAS DE LA POR EL TAMIZ	2		MEDIA A ALTA	NULA A MUY LENTA	MEDIA	CL	ARCILLAS INORGANICAS DE PLASTICIDAD BAJA A MEDIA, ARCILLAS COM GRAVA, ARCILLAS ARENOSAS, ARCILLAS LIMOSAS, ARCILLAS MAGRAS	20 CT OHOWH
FIN		1	LIGERA A MEDIA	LENTA	LIGERA	OL	LIMOS ORGANICOS Y ARCILLAS LIMOSAS ORGANICAS DE BAJA PLASTICIDAD	D I I I I I I I I I I I I I I I I I I I
S DE GRANO MATERIAL PA	ARCILLAS	IQUIDO E SO	LIGERA A MEDIA	LENTA A NULA .	LIGERA A MEDIA	мн	LIMOS INORGANICOS, SUELOS LIMOSOS O ARENOSOS FINOS MICACEOS O CON DIATOMEAS, LIMOS ELASTICOS	0 10 20 30 40 50 60 70 80 90 10
SUELOS D	OS Y ARG	E o	ALTA A MUY ALTA	NULA	ALTA	СН	ARCILLAS INORGANICAS DE PALSTICIDAD ELEVADA, ARCILLAS GRASAS	
	5	8	MEDIA A ALTA NULA A MUY LENTA LIGERA A MEDIA OH ARCILLAS ORGANICAS DE PLASTICIDAD MEDIA A ALTA			GRAFICO DE PLASTICIDAD PARA LA CLASIFICACION		
SUI	ORGANI		FACILMENTE ID SENSACION ES	ENTIFICABLES POR S PONJOSA Y FRECUENT TEXTURA FIBROSA	U COLOR, OLOR, EMENTE POR SU	Pt	TURBA Y OTROS SUELOS ALTAMENTE ORGANICOS	LABORATORIO DE SUELOS DE GRANO FINO

Tabla 18. Sistema de clasificación AASHTO

AASHTO SOIL CLASSIFICATION

GENERAL CLASSIFICATION	GRANULAR MATERIALS (35% OR LESS PASSING 0.075 SIEVE)						SILT-CLAY MATERIALS (MORE THAN 35% PASSING 0.075 SIEVE)				
GROUP CLASSIFICATION	2	A-1	A-3	A-2			A-4	A-5	A-6	A-7-5 A-7-6	
GROOF GEAGGIFIGATION	A-1-a	A-1-b		A-2-4	A-2-5	A-2-6	A-2-7			1	
SIEVE ANALYSIS, PERCENT PASSING:											
2.00 mm (No. 10)	≤ 50	-	-	=	-	-	-	-	-	-	-
0.425 mm (No. 40)	≤ 30	≤ 50	≥ 51	-	-	-	-	-	-	-	-
0.075 mm (No. 200)	≤ 15	≤ 25	≤ 10	≤35	≤ 35	≤35	≤ 35	≥36	≥ 36	≥36	≥ 36
CHARACTERISTICS OF FRACTION PASSING											
0.425 SIEVE (No. 40):											
LIQUID LIMIT	-	247	-	≤ 40	≥ 41	≤ 40	≥ 41	≤ 40	≥ 41	≤ 40	≥ 41
PLASTICITY INDEX *	6 n	nax	NP	≤ 10	≤ 10	≥ 11	≥ 11	≤ 10	≤ 10	≥ 11	≥ 11
USUAL TYPES OF CONSTITUENT MATERIALS	STONE FRAGM'TS, GRAVEL, SAND		FINE SAND	SILTY OR CLAYEY GRAVEL AND SAND			SILTY	SOILS	CLAYE	SOILS	
GENERAL RATING AS A SUBGRADE			E	XCELLENT	TO GOOD)			FAIRTO	POOR	

^{*}Plasticity index of A-7-5 subgroup is equal to or less than LL-30. Plasticity index of A-7-6 subgroup is greater than LL-30. NP = Non-plastic (use "0"). Symbol "-" means that the particular sieve analysis is not considered for that classification.

If the soil classification is A4-A7, then calculate the group index (GI) as shown below and report with classification. The higher the GI, the less suitable the soil. Example: A-6 with GI = 15 is less suitable than A-6 with GI = 10.

$$GI = (F-35)[0.2+0.005(LL-40)]+0.01(F-15)(PI-10)$$

Percent passing No. 200 sieve, expressed as a whole number. This percentage is based only on the material passing the No. 200 sieve. where:

Liquid limit LL = PI = Plasticity index

If the computed value of GI < 0, then use GI = 0.

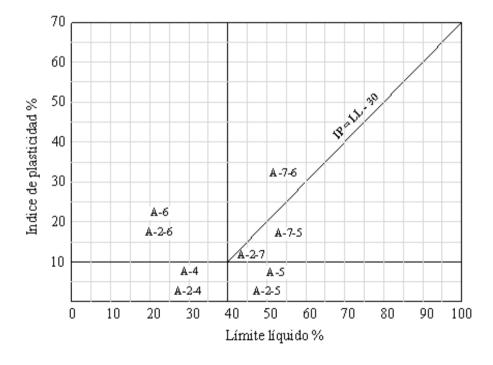


Figura 8: Índice de plasticidad %

3.5 Diseño de pavimento

Genealidades

El trabajo de pavimentación se realizará sobre la calle # 4 San Carlos – Santa Anita- Lima. Se adoptó el método AASHTO 93 para el diseño respectivo

Para ello utilizamos la información base del Estudio de Tránsito y resultados del Estudio Geotécnico.

Trafico

Respecto al flujo vehicular se obtuvo del Estudio de Clasificación Vehicular realizado en octubre 2018, que tuvo como punto de observación la calle # 4 San Carlos – Santa Anita-Lima

La presenta el resumen del flujo vehicular utilizado para el diseño, que representa la suma de los valores obtenidos en la calle.

Tabla 19. Hoja de Resumen de 24 horas del Control de Flujo Vehicular Clasificado

						Can	niones
Auto + Camioneta	Taxis colectivos	C. Rural (Combi)	Microbús	Ómnibus	Camiones Unitarios		Vehículos acoplados (Trailer y Semi
					2 Ejes	3 Ejes	Trailer)
200	50	10	3		2	2	2

Elaboración propia

CONDICIONES DE LA SUB RASANTE

De las investigaciones de campo y de los ensayos de laboratorio se obtuvieron los resultados que se presentan

Tabla 20. Resumen del CBR del Suelo de Fundación

Calicata	Ubicación	OCH %	MDS (t/cm³)	CBR 100%	CBR 95%
C12/ M-1	Calle # 4 San Carlos	10.51	2.012	35.20	42.75

De los valores obtenidos del CBR en los ensayos de laboratorio se pueden determinar el tramo total en la vía en estudio. Además para la determinación de este tramo se ha tenido en cuenta el material encontrado en la sub rasante, presentando el Tramo total una sub rasante compuesta por gravas limosas.

Se ha logrado determinar los siguientes sectores para cada tramo total:

• Tramo total.

De este tramo se obtendrán los valores del CBR de diseño calculados con el percentil al 60%.

Diseño del pavimento

El método AASHTO 93 considera parámetros para el cálculo:

- Tráfico,
- Período de diseño,
- C.B.R. de la sub rasante,
- Coeficientes de resistencia relativa y de drenaje.
- Determinación del Número de Ejes Equivalentes

Para lograr el Índice Medio Diario consideramos la clasificación del tráfico vehicular del Estudio de Tránsito cuyas mediciones se realizaron en octubre 2018.

Tabla 21. Índice Medio Diario

Índice Medio Diario

Pavimento Flexible - Método AASHTO 93

Muestra vehicular 24 horas

18 Kips = 8170 Kgr.

	Auto +	Taxis	C. Rural	Microbus	Camiones		
	camioneta	colectivos	(Combi)		2 Ejes	3 Ejes	T y ST
Calle # 4 San Carlos (un sentidos)	200	50	10	3	2	2	2
Factor Destructivo (NEE 8.2 Ton)	0.0002	0.0002	0.004	0.277	1.92	1.92	1.92
Calle # 4 San Carlos		E	E Día			3	39

Para el cálculo total de Ejes Equivalentes Acumulados de 8.2 Toneladas (18 Kips) se tomará el año 2018 como año base, cuyo periodo es 20 años y tasa de crecimiento anual a partir del año 2018 de 3%, de acuerdo a la siguiente expresión:

$$N = 365 \times \left(\frac{(1+r)^{n} - 1}{\ln(1+r)}\right) \times \left(IMD_{AC} \times FD_{AC} + IMD_{TC} \times FD_{TC} + IMD_{CR} \times FD_{CR} + IMD_{M} \times FD_{M} + IMD_{2E} \times FD_{2E}\right)$$

Donde:

 $W_{18} = N = Total$ Ejes Equivalentes Acumulados de 8.2 Ton. (18 Kips).

IMD = Índice medio diario

FD = Factor destructivo

r_i = taza de crecimiento del año i

n = período de diseño

AC = Autos y Camionetas

TC = Taxis y colectivos

CR = Camionetas Rurales

M = Microbús

2E = Camión de 2 ejes

Tabla 22. Número de Ejes Equivalentes Acumulados de 8.2 ton. (18 KIPS)

SECTOR	PARAMETROS	AUTO CAMIONETA	TAXIS COLECTIVO S	C. RURAL (Combi)	Microb"	Camión 2E	TOTAL
calle # 4 san carlos -ST	TRAFIC0'2018	200	50	10	2	7	269
	TRAFICO' 2018	200	50	10	2	7	269
	F. Carga	00,002	00,002	00,040	02,770	19,200	
	F. Pres. 1 lantas	1	1	1	1	1	
	Ejes Equ iv. (EE)	7	1	3	2	326	339
	Nº de direcciones	2	2	2	2	2	
	Nº carr ilesxd irección	2	2	2	2	2	
	F. Direccional	045	045	045	045	045	
	F.carr i1	080	080	080	080	080	
	EE/dia-carr i 1	2	0	1	1	118	122
	Tasa de creeim iento	3.00%	3.00%	3.00%	3.00%	3.00%	
10 años	Nº rep. (2005-2018)	9.35E•03	0.00E•00	4.67E•03	4.67E•03	5.52E•05	5.70E+05
20 años	Nº rep. (2005-2025)	2.09E•04	0.00E•00	1.05E•04	1.05E•04	1.24E•06	1.28E+06
10 - 20 años	Nº rep. (2016-2025)	1.16E•04	O.OOE•OO	5.79E•03	5.79E•03	6.83E•05	7.07E+05

Determinación del Número Estructural de Diseño

La fórmula es:

$$\log_{10}(W_{18}) = Z_r \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.4 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(MR) - 8.07$$

Donde:

W₁₈ : Número de cargas equivalente de 18 kips (18000 lb, axial simples.

Zr : Desviación estándar normal.

So : Error estándar combinado del tráfico proyectado y del comportamiento proyectado.

ΔPSI : Diferencia entre indice de serviciabilidad inicial, por y el indice de serviciabilidad terminal, pt.

MR : Modulo resilente (psi).

SN : Número estructural indicativo del espesor del pavimento requerido.

Para la determinación del módulo resilente MR se tomará las recomendaciones de AASHTO 93, que lo correlaciona con los valores de CBR mediante la siguiente expresión:

$$MR_{SR} = 4326\ln(CBR) + 241$$
 (psi)

De la aplicación de las fórmulas, se determina el siguiente número estructural SN para calcular espesores del pavimento flexible en cada tramo.

Tabla 23. Número Estructural para el Diseño de los Espesores del Pavimento Flexible Tramo total

CALLE 4 SAN	CARLOS	TRAMO TOTAL
	SN	SN
AASHT0'98	Mr de Sub Rasanate	Mr de Sub Rasante
PERIODO DE DISEÑO	10 años	10 - 20 años
Nº REP. (8.2 t)	5.70E+05	7.07E+05
Log. № REP. (8.2 t)	5.756	5.849
Log. № REP. (8.2 t)	5.756	5.850
zR	(1.645)	(1.645)
So	0.450	0.450
Ро	4.0	4.0
Pf	2.5	2.5
PSI (Po - Pt)	1.5	1.5
CBR	66	66
MR	12126	12126
sN	2.845	2.953

Pavimento nuevo a construir – zonas de ampliación de calzada

Para cubrir el número estructural (SN) determinado en EL tramo total se utilizó la siguiente expresión:

$$SN = a_1 x D_1 + a_2 x D_2 x m_2 + a_3 x D_3 x m_3$$

Donde:

 Di = Espesores de la superficie de rodadura, base y sub base que componen un pavimento flexible.

ai y mi= son los coeficientes que determinan las propiedades estructurales de cada capa

Tabla 24. Coeficientes de Resistencia Relativa (ai) y Coeficiente de Drenaje (mi)

Capa de pavimento	Coeficiente de resistencia	Coeficiente de drenaje
Capa de pavimento	Relativa a _i	$\mathbf{m_i}$
Carpeta de rodadura asfáltica	2pulg = 0.170/cm	
Capa de base	6pulg = 0.055/cm	
Capa de <u>sub</u> base	5pulg = 0.043/cm	

Se efectuaron diseños de pavimentos para 10 y 20 años, adoptándose una estructura de pavimentos construida por etapas de 10 años cada una, que resulta considerando el aspecto técnico – económico como mejor alternativa de ejecución.

Tabla 25. Resumen de los Espesores de las Capas del Pavimento (1ra Etapa 10 años) - Tramo total

ESTRUCTURA DEL PAVIMENTO	10-20 AÑOS
ADOPTADO (SN)	3.281
CARPETA.ASFALTICA (cm)	6.0
BASEGRANULAR (cm)	25.0
SUBBASE GRANULAR (cm)	0.0
ESPESOR TOTAL (cm)	35.0

Tabla 26. Resumen de los Espesores de las Capas del Pavimento - Tramo total

Construcción por etapas hasta comple	tar un periodo de servicio de 20 años
calle 4 SAN CARLOS	TRAMO TOTAL
REFUERZO	10 - 20 años
NUMERO DE REPETICIONES PAR	A Pt : 1.5 (Condición de falla)
N° REP. (8.2 t) Pt = 2.5	5.70E•05
N° REP. (8.2 t) Pt : 1.5	1.09E+06
Log. N° REP. $(8.2 t)$ Pt = 1.5	6,036
ZR	-1,645
So	0,450
Po	40
Pf	15
PSI (Po - Pt)	25
CBR	66
MR	12126
SN (inicial)	2,965
PERIODO	10 - 20 AÑOS
Número Estructural requerido para el refuerzo (SN,,)	0,330
Número Estructural requerido total (SN ₀)	2,952
Número Estructural inicial (SN ₀)	2,965
% Vida remanente (RL)	47.5%
Factor de condición (CF)	088
Número Estructural efectivo	

La Carpeta Asfáltica de espesor 6 cm, estará constituida por combinación de asfalto sólido PEN 60-70, se colocará en dos capas de 0.05 m cada una, unidas por un riego de liga con asfalto líquido RC-250. A su vez la carpeta asfáltica estará sobre una Base Granular previamente imprimada con asfalto líquido MC-30, esta Base será de material seleccionado chancado con CBR > 80% compactado al 100% de la MDS y estará asentada, sobre una sub rasante compactada al 95% de la MDS y con un CBR no menor al de diseño.

3.5. Análisis descriptivo

Se realizó recolección de datos durante 12 semanas antes y 12 semanas después de mayo 2018 hasta octubre 2018.

3.5.1 Variable: costo de mantenimiento

Tabla 27. Estadística descriptiva de la variable costo de mantenimiento

VARIABLE			Estadístico
	Media		52,1388
COSTO DE MANTENIMIENTO	95% de intervalo de	Limite inferior	50,5837
ANTES	confianza para la media	Límite superior	53,6938
	Mediana	•	51,9250
	Varianza	13,561	
	Desviación estándar	3,68258	
	Media		80,5333
COSTO DE MANTENIMIENTO DESPUES	95% de intervalo de	Limite inferior	78,5246
2201020	confianza para la media	Limite superior	82,5421
	Mediana	80,4250	
	Varianza	22,630	
	Desviación estándar		4,75708

Fuente spss versión 22

Según tabla tenemos el comparativo de costo de mantenimiento en el que se confirma que después de la mejora se incremento significativamente.

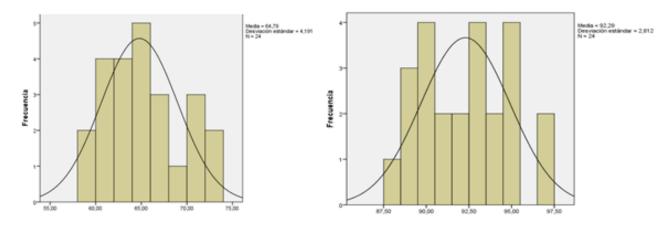


Figura 9: Diagrama de frecuencias de la variable costo de mantenimiento

Fuente: Spss versión 22

En los diagramas referidos al costo de mantenimiento tenemos que el comportamiento de los datos tienen la tendencia normal y su nivel de dispersión es bajo por lo que se puee observar la variación en cuanto a resultados de las medias de 27,50%

3.5.2 dimensión 1: Costo fijo de mantenimiento

Tabla 28. Estadística descriptiva de la dimensión costo fijo de mantenimiento

			Estadístico
	Media		68,9625
costo fijo de mantenimiento	95% de intervalo de confianza	Limite inferior	67,0996
antes	para la media	Limite superior	70,8254
	Mediana	68,1000	
	Varianza	19,464	
	Desviación estándar		4,41182
	Media		93,9750
costo fijo de mantenimiento	95% de intervalo de confianza	Limite inferior	92,9582
después	para la media	Limite superior	94,9918
	Mediana		94,1000
	Varianza		5,798
	Desviación estándar		2,40800

Fuente: Spss versión 22

Según tabla respecto a los resultados del costo fijo de mantenimiento se tiene un incremento significativo después de la mejora de estabilización de suelos para pavimento.

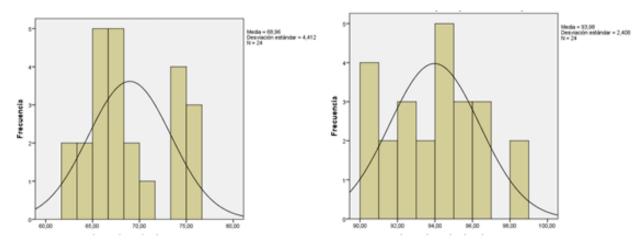


Figura 10: Diagrama de frecuencias de la dimensión costo fijo de mantenimiento

Fuente: Spss versión 22

En los diagramas respectivos observamos que el comportamiento en ambos casos es normal y su dispersión pequeña encontrando una variación favorable de 25,01%

3.5.3 Dimensión 2: Costo variable de mantenimiento

Tabla 29. Estadística descriptiva de la dimensión costo variable de mantenimiento

		Estadístico		
costo variable de	Media		93,9458	
mantenimiento	95% de intervalo de confianza	Limite inferior	93,2054	
antes	para la media	Limite superior	94,6863	
	Mediana		94,3000	2
	Varianza		3,075	
	Desviación estándar		1,75350	
costo variable de	Media		98,3167	
mantenimiento	95% de intervalo de confianza	Limite inferior	97,9840	
después	para la media	Limite superior	98,6493	
	Mediana	•	98,4500	
	Varianza		,621	
	Desviación estándar		,78777	

Fuente: Spss versión 22

Según tabla tenemos el costo variable de mantenimiento en el cual se observa que el porcentaje se incrementó significativamente luego de la estabilización de suelo para pavimentación.

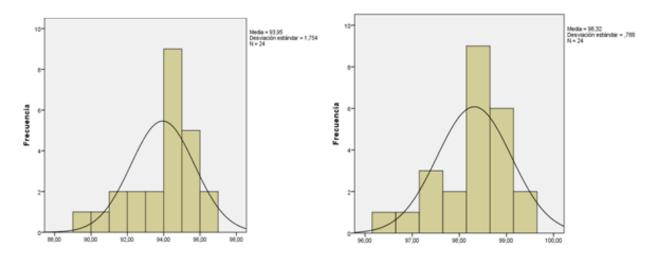


Figura 11: Diagrama de frecuencias de la dimensión costo variable de mantenimiento

Fuente: Spss versión 22

Según figuras referidas a la frecuencia se tiene que en ambos casos tienen un comportamiento normal incrementándose significativamente después de la estabilización de suelo para pavimentación siendo en 4,37%.

3.6. Análisis inferencial

En este caso a través el programa de estadística se procede a realizar la prueba de hipótesis respectivamente.

3.6.1 Análisis de la hipótesis general

Prueba de normalidad

Tabla 30. Prueba de normalidad de la variable costo de mantenimiento

	Shapiro-Wilk				
Variable	Estadístico	gl	Sig.		
costo de mantenimiento antes	,932	24	,107		
costo de mantenimiento después	,949	24	,262		

Fuente: Spss versión 22

Según tabla comprobamos la significancia de la variable dependiente resultado en ambos casos 0.107 y 0.202 mayor al 0.05 de tal forma que nos permite comprobar que nuestros datos siguen una distribución normal.

Prueba t student

Prueba de hipótesis

H_o: La estabilización de suelos en la pavimentación no reduce los costos de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018

H1: La estabilización de suelos en la pavimentación reduce los costos de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018

Tabla 31. Descriptivos de Productividad antes y después con T Student.

			Desviación	Media de error
Variable	Media	N	estándar	estándar
costos de mantenimiento pre test	64,7917	24	4,19087	,85546
costos de mantenimiento post test	92,2917	24	2,61233	,53324

Fuente: Spss versión 22

Con la tabla, comprobamos que el costo de mantenimiento aumenta de 64,79 a 92,29, con lo que se comprueba la mejora.

A continuación mediante la prueba T Student se busca encontrar la respuesta a la hipótesis con lo que podremos comprobar si se cumple la hipótesis planteada por el investigador.

Tabla 32. Análisis del valor de productividad antes y después con T Student.

		Difere						
			Media de	95% de intervalo de				
		Desviación	error	confianza de la diferencia				Sig.
Variable	Media	estándar	estándar	Inferior	Superior	t	øl	(bilateral)
costos de								
mantenimiento pre test								
costos de	-27,50000	4,49154	,91683	-29,39661	-25,60339	-29,995	23	,000
mantenimiento post								
test								

Fuente: Spss versión 22

Según tabla, se tiene que el valor de significancia es de 0.000, por lo que, se acepta que la hipótesis alterna: La estabilización de suelos en la pavimentación reduce los costos de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018

3.6.2 Análisis de la primera hipótesis especifica

Tabla 33. Prueba de normalidad de la dimensión costo fijo de mantenimiento

	Shapiro-Wilk				
	Estadístico	Gl	Sig.		
costo fijo de mantenimiento antes	,930	24	,098		
costo fijo de mantenimiento después	,941	24	,171		

Fuente: Spss version 22

Según tabla la significancia obtenida en ambos casos es de 0.098 y 0.171 de tal manera que se deduce que los datos siguen una distribución normal.

Prueba de hipótesis

H_o: La estabilización de suelos en la pavimentación no reduce el costo fijo de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018

H1: La estabilización de suelos en la pavimentación reduce el costo fijo de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018

Tabla 34. Estadística de dimensión costo fijo de mantenimiento

Prueba de muestras emparejadas									
			Media de	95% de in					
		Desviación	error	confianza de			Sig.		
Indicador	Media	estándar	estándar	Inferior	Superior	t	gl	(bilateral)	
costo fijo de									
mantenimiento									
antes –									
costo fijo de	-25,01250	4,48197	,91488	-26,90507	-23,11993	-27,340	23	,000	
mantenimiento									
tiempo después									

Fuente: Spss versión 22

Según tabla, se comprueba que la media lograda se incrementó significativamente luego de la mejoras

Tabla 35. Prueba de hipótesis de la dimensión costo fijo de mantenimiento

Según tabla, resulta el valor de significancia de 0.000, por tanto, se acepta que la hipótesis alterna: La estabilización de suelos en la pavimentación reduce el costo fijo de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018

3.6.3 Análisis de la segunda hipótesis especifica

Tabla 36. Prueba de normalidad de la dimensión costo variable de mantenimiento

	Shap ir o-Wilk					
Indicador	Estadístico	gl	Sig.			
El costo variable de mantenimiento antes	,920	24	,057			
El costo variable de mantenimiento depués	,948	24	,247			

Fuente: Spss versión 22

Según tabla anterior, la significancia obtenida en ambos casos fue de 0.057 y 0.247 mayor que 0.05 por lo que se concluye que los datos siguen una distribución normal.

Prueba de hipótesis

H_o: La estabilización de suelos en la pavimentación no reduce el costo variable de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018

H1: La estabilización de suelos en la pavimentación reduce el costo variable de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018

Tabla 37. Estadística de dimensión costo variable de mantenimiento

	Media	N	Desviación estándar	Media de error estándar
costo variable de mantenimiento antes	93,9458	24	1,75350	,35793
costo variable de mantenimiento después	98,3167	24	,78777	,16080

Fuente: Spss versión 22

Según tabla, se comprueba que el costo variable de mantenimiento se incrementa luego de la mejora respectiva.

Tabla 38. Prueba de hipótesis de la dimensión costo fijo de mantenimiento

Diferencias emparejadas								
		Desviación	Media de error	95% de intervalo de confianza de la diferencia				Sig.
	Media	estándar	estándar	Inferior	Superior	t	gl	(bilateral)
costo variable de mantenimiento antes – costo variable de mantenimiento después	-4,37083	2,09502	,42764	-5,25548	-3,48618	-10,221	23	,000,

Fuente: Spss versión 22

Se tabla, el nivel de significancia resulta 0.000, por tal sentido, se acepta que la hipótesis alterna: La estabilización de suelos en la pavimentación reduce el costo variable de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018.

IV. DISCUSIÓN

Teniendo en cuenta las tesis anteriores, que forman parte de los antecedentes, podemos darnos cuenta de la importancia y el aporte que esta tesis brinda al presente estudio

Según la hipótesis general se logró se logró un incremento del costo de mantenimiento en 27,50%, con la significancia de 0.000, aceptando la hipótesis del investigador: La estabilización de suelos en la pavimentación reduce los costos de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018.

De la dimensión costo fijo de mantenimiento se ha logrado un incremento del costo fijo de mantenimiento en 25,01%,. Con la significancia de 0.000 se aceptó la hipótesis del investigador: La estabilización de suelos en la pavimentación reduce el costo fijo de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018, logrando un incremento del costo fijo de mantenimiento en 25,01%.

De la dimensión costo variable de mantenimiento, se logró un incremento de del costo variable de mantenimiento en 4,37%, con un nivel de significancia de 0.000 aceptando la hipótesis del investigador: La estabilización de suelos en la pavimentación reduce el costo variable de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018.

V. CONCLUSIONES

De acuerdo al estudio realizado se concluye

Del objetivo general, se tiene que la significancia resulta 0.000, en tal sentido se acepta que la hipótesis alterna: La estabilización de suelos en la pavimentación reduce los costos de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018 y se logró un incremento del costo de mantenimiento en 27,50%.

Del objetivo específico 1, la significancia fue de 0.000, en ese sentido, se acepta que la hipótesis alterna: La estabilización de suelos en la pavimentación reduce el costo fijo de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018, logrando un incremento del costo fijo de mantenimiento en 25,01%.

Del objetivo específico 2, la significancia resultante es de 0.000, por lo que se acepta que la hipótesis alterna: La estabilización de suelos en la pavimentación reduce el costo variable de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018 y se logró un incremento de del costo variable de mantenimiento en 4,37%.

VI. RECOMENDACIONES

Se recomienda lo siguiente:

Respecto al objetivo general es preciso que el costo de mantenimiento se considere como parte de una necesidad de mantener en condiciones estables los suelos y por tanto es preciso definir adecuadamente que clase de materiales utilizar.

Respecto a los costos fijos del mismo modo se debe establecer los gastos acordes a la necesidad de los resultados de la pavimentación considerando que una via es útil para de manera permanente lo que es preciso mantenerlas en condiciones buenas

Por último, respecto al costo variable es preciso que se contemplen en el presupuesto necesidades de apoyo presupuestado lo que permitirá cubrir los gastos adicionales. Por tanto, es también importante concientizar a los trabajadores para que efectúen sus labores de manera eficiente, para evitar más gastos innecesarios.

VII. REFERENCIAS

- APOLINARIO, Edwin. "Innovación del método vizir en estrategias de conservación y mantenimiento de carreteras con bajo volumen de tránsito", Universidad Nacional de Ingeniería, 2012.
- BERNAL, Cesar. Metodología de la investigación 3.ª ed. Colombia: Pearson Educación, 2010. 106 pp. ISBN: 9789586991285.
- CÓRDOVA, Manuel. Estadística descriptiva e inferencial. 5.ª ed. Perú, 2003. Editorial Moshera SRL. ISBN: 9972-813-05-3.
- CAMPOSANO Y GARCIA. "Diagnóstico del estado situacional de la vía: av. Argentina av. 24 de junio por el método: índice de condición de pavimentos 2012", Universidad Peruana los Andes, Huancayo Perú, 2012.
- HERNADEZ, Roberto, FERNADEZ, Roberto y BAPTISTA, Pilar. Metodologia de la Investigación 6.ª ed. México: Edamsa Impresiones, 2014. 634 pp. ISBN 9701057538.
- HIGUERA, Viviana. "El estado de las vías de pavimento rígido y su incidencia en la circulación del tráfico pesado de la planta Holcim Latacunga del cantón Latacunga provincia de Cotopaxi", Universidad privada de Ambato, Ecuador, 2015
- RABANAL, Jaime. "Análisis del estado de conservación del pavimento flexible de la vía de evitamiento norte, utilizando el método del índice de condición del pavimento Cajamarca", Universidad Peruana de Ciencias Aplicadas, Lima, 2014
- ZERPA, Gustavo. "Plan de mantenimiento correctivo general de la carretera el progreso ubicada en el municipio el Hatillo de Caracas", Universidad Nueva Esparta, Caracas Venezuela, 2012.
- PONCE, José, "Proyecto geométrico para corrección de alineamientos horizontal y vertical para trabajos de conservación periódica de la carretera San Luis Potosí Charcas Matehuala; Tramo: Entronque Ahualulco Charcas, del Km.: 18+000 al Km.: 19+000", Universidad de Veracruzana, México, 2013.
- NGUYEN, Lam. Estabilización de un suelo de la Formación Vía Blanca con Sistema Rocamix y Sistema Rocamix-Vinaza para subrasante. Instituto "José Antonio Echevarria". Facultad de Ingeniería Civil. La habana 2011.

- SABINO, Carlos. El proceso de Investigación. Editorial Pamericana, Bogotá y Ed. Lumen Buenos Aires, 1996.
- VALDERRAMA, Santiago. Pasos para elaborar Proyectos de Investigación

 Científica: Cuantitativa, Cualitativa y Mixta. 3.ª ed. Lima: Editorial San Marcos,
 2014. 182, 184 pp. ISBN: 9786123208787.

VIII. ANEXOS

Anexo 1: Matriz de Consistencia

PROBLEM	OBJETIV	HIPOTES	VARIABL	DEFINICIÓN	DEFINICIÓN	DIMENSION	INDICADOR	FORMULA	ESCAL
A	0	IS	E	CONCEPTUAL	OPERACION	ES	ES		A
					AL				
GENERAL	GENERAL	GENERAL La	V.I.	Cuando un suelo presenta resistencia	Sus dimensiones	Estabilización	Índice de estabilización	Estabilización física registrada	
¿Cómo la estabilización de suelos en la pavimentación	Determinar cómo la estabilización de	estabilización de pavimento reduce los	Estabilizació n de suelos en	suficiente para no sufrir deformaciones ni desgastes inadmisibles por la acción del uso o	son las estabilizaciones físicas y químicas cuyos	física	física	x100 Estabilización permitida	
reduce los costos de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018?	pavimento reduce los costos de mantenimient o de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018.	costos de mantenimient o de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018.	pavimentació n	de los agentes atmosféricos y conserva además esta condición bajo los efectos climatológicos normales en la localidad, se dice que el suelo es estable y por ende el pavimento (S.A.S., s.f.)	indicadores son indice de estabilización de física y química	Estabilización química	Índice de estabilización química	Estabilización química registrada x100 Estabilización química tolerable	RAZO N
¿Cómo la estabilización de suelos en la pavimentación reduce los costos fijos de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018?	Determinar cómo la estabilización de pavimento reduje los costos fijos de mantenimient o de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018.	La estabilización de pavimento reduce los costos fijos de mantenimient o de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018	V.D. Costo de mantenimient o	Los costos al momento de su utilización, a los diferentes tipos de obra y a las características de cada una de ellas, se debe tener en consideración aspectos relacionados con los costos de materiales, manos de obra y equipo a utilizar, lugar y tiempo de ejecución, que constituyen un factor importante para determinar la inversión	Son sus dimensiones los costos fijos y variables del mantenimiento	costo fijo de mantenimiento	Índice de costos fijos	Costos fijos <u>presupuestados</u> x100 Total costos fijos	RAZO N

¿Cómo la estabilización de suelos en la pavimentación para reducir costos variables de mantenimiento de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018?	cómo la estabilización de pavimento reduce los costos variables de mantenimient o de la calle 4, urbanización San Carlos, Santa Anita – Lima 2018.	estabilización de pavimento reduce los costos variables de s de mantenimient o de la calle talle 4, urbanización san Carlos, Santa Anita – Lima 2018.	a realizar (Capeco 2016, p.8).		costo variable de mantenimiento	Índice de costos variables	Costos variables presupuestados x100 Total costos variables		
---	--	---	-----------------------------------	--	------------------------------------	-------------------------------	---	--	--

Fuente: Elaboración propia

FORMATO DE VALIDACION DEL INSTRUMENTO DE INVESTIGACION

Anexo 2: Cuestionario de Variable Independiente

Instrucciones

Este es un test que le permitirá a usted conocer la estabilización de suelos en la pavimentación con sus dimensiones estabilización física y estabilización química para lo cual deberá contestar las preguntas que a continuación se reproducen escribiendo una "x" dentro de la celda que mejor describa su respuesta.

No hay respuestas buenas ni malas, sólo interesa la forma como usted siente y percibe el momento actual, de ello dependerá la validez y la confiabilidad de sus resultados.

ESCALA VALORATIVA

CÓDIGO	CATEGORÍA	
S	Siempre	5
CS	Casi siempre	4
AV	A veces	3
CN	Casi nunca	2
N	Nunca	1

N°	N° INDICADORES		ESCALA				
	II (DICI DOKES	S	CS	AV	CN	N	
	Índice de estabilización física						
01	¿La estabilización física mejora la pavimentación?						
02	¿La estabilización física garantiza la durabilidad de la pavimentación?						
03	¿La estabilización física se realiza con materiales de calidad?						
04	¿La estabilización física se realiza con equipos de calidad?						
05	¿Se cumple correctamente el procedimiento de estabilización física?						
06	¿La estabilización física se realiza dentro del plazo previsto en el proyecto?						
07	¿Se requiere para la estabilización física un control de calidad de la obra?						

08	¿Es preciso que la estabilización física lo realicen Ingenieros expertos?			
	Índice de estabilización química			
09	¿La estabilización química constituye un procedimiento importante para la estabilización de los suelos?			
10	¿Mediante la estabilización química se logra mejorar la vida útil de la pavimentación?			
11	¿Se tiene presupuesto suficiente para la estabilización química?			
12	¿Es preciso que se realice pruebas a la obra para garantizar la confiabilidad de la estabilización química?			
13	¿En la estabilización química se cuenta con insumos de calidad?			
14	¿Los trabajadores están capacitados para realizar una correcta estabilización química?			
15	¿Considera que la estabilización química se demora por falta de insumos?			

¡Muchas gracias!

Anexo 3: Cuestionario de Variable Dependiente

Instrucciones

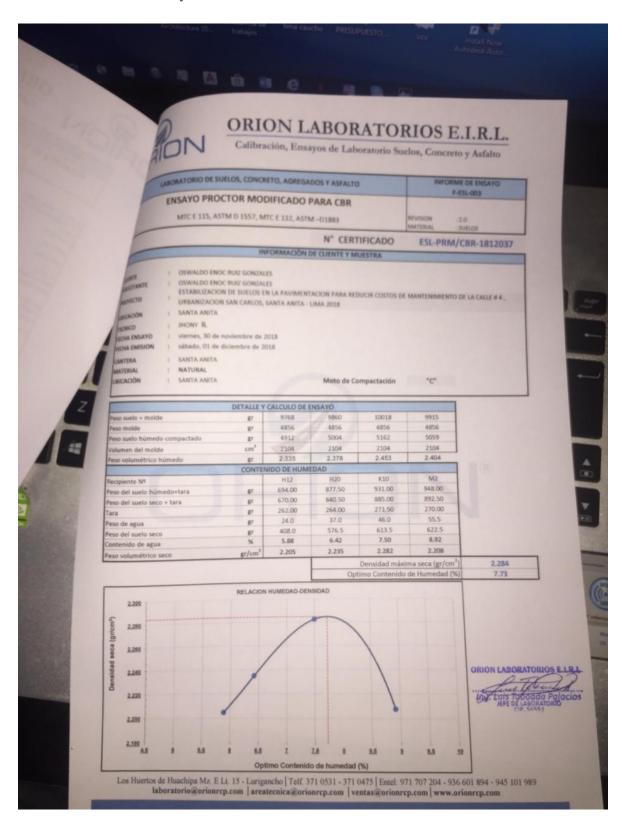
Este es un test que le permitirá a usted conocer los costos de mantenimiento con las siguientes dimensiones: costo fijo de mantenimiento y costo variable de mantenimiento, para lo cual deberá contestar las preguntas que a continuación se reproducen escribiendo una "x" dentro de la celda que mejor describa su respuesta.

No hay respuestas buenas ni malas, sólo interesa la forma como usted siente y percibe el momento actual, de ello dependerá la validez y la confiabilidad de sus resultados.

ESCALA VALORATIVA

CÓDIGO	CATEGORÍA	
S	Siempre	5
CS	Casi siempre	4
AV	A veces	3
CN	Casi nunca	2
N	Nunca	1

N°	N° INDICADORES		ESC	ALA			
	II. DICTIDORES		S	CS	AV	CN	N
	Índice de costos fijos						
16	¿Los costos fijos nos permiten presupuestar correctamente el proyecto?						
17	¿La variación de los costos fijos se da cuando la obra tendrá mayor tiempo duración en su ejecución?	o de					
18	¿Los costos fijos se ajustan al presupuesto de la obra?						
19	¿Los costos fijos con frecuencia se incrementan por ausentismo de trabajadores?						
20	¿Considera que las variaciones de los costos fijos, se debe a falta equipamiento?	de					


21	¿Considera que los costos se incrementan por inconvenientes que se presentan en la obra debido a la situación climática?			
22	¿Los responsables de la obra no tienen la experiencia debida en la obra lo que incrementan los costos fijos?			
23	¿Considera que los costos fijos deben programarse previa sugerencia de los trabajadores en los requerimientos necesarios, para evitar gastos adicionales?			
	Índices de costos variables			
24	¿Los costos variables generalmente ocasionan mayores gastos en la obra?			
25	¿En la determinación de los costos variables se tiene previsto los gastos no presupuestados?			
26	¿La mayor parte del incremento de los costos variables se debe por el mal uso de los materiales e insumos?			
27	¿Considera que los costos variables deben cubrir inmediatamente las horas extras en el trabajo?			
28	¿En la ejecución de la obra se requiere optimizar los tiempos de trabajo para evitar el incremento de los costos variables?			
29	¿Considera que los costos variables no se calculan correctamente por los malos presupuestos realizados?			
30	¿La falta de experiencia del personal es causal del incremento de los costos variables?			

¡Muchas gracias!

Anexo 4: Presupuesto Construcción de Vía

Subpresupuesto	CALLE 4				
Cliente:					
Lugar :	SANTA ANITA - LIMA - LIMA				
Item	Descripción	Und.	Metrado	Precio (S/.)	Parcial (S/.)
01	OBRAS PROVISIONALES				
01.01	CASETA DE GUARDIANIA Y ALMACEN DE OBRA	m2	84.00	50.00	4,200.00
01.02	CARTEL DE IDENTIFICACION	und	1.00	1,401.87	1,401.87
01.03	SERVICIOS HIGIENICOS PARA LA OBRA	und	1.00	3,000.00	3,000.00
01.04	POZA DE AGUA	und	1.00	1,296.43	1,296.43
01.05	MOVILIZACION Y DESMOVILIZACION DE EQUIPOS Y MAQUINARIAS	glb	1.00	2,000.00	2,000.00
01.06	SEGURIDAD VIAL Y DESVIO DE TRÁFICO	est	1.00	1,500.00	1,500.00
02	PAYIMENTACION				
02.01	TRABAJOS PRELIMINARES				
02.01.01	LIMPIEZA MANUAL DEL TERRENO PARA PISTAS	m2	1,000.00	3.27	3,270.00
02.01.02	TRAZO, NIVELACION Y REPLANTEO PARA PISTAS	m2	1,000.00	2.01	2,010.00
XC	RIEGO DE ZONA A EXCAVAR PARA MITIGAR LA CONTAMINACION DEL POL	m3	1,000.00	10.82	10,820.00
02.02	MOVIMIENTO DE TIERRAS				
02.02.01	CORTE DE MATERIAL NORMAL A NIVEL DE SUBRASANTE	m3	1,000.00	7.27	7,270.00
02.02.02	SUB BASE GRANULAR COMPACTADO E=0,20 m	m2	1,000.00	17.55	17,550.00
02.02.03	BASE GRANULAR CON AFIRMADO COMPACTADO E=0.15 m	m2	1,100.00	23.52	25,872.00
02.02.04	ELIMINACION DE MATERIAL EXCEDENTE	m3	1,100.00	36.57	40,227.00
02.03	PAYIMENTO FLEXIBLE EN CALIENTE				
02.03.01	IMPRIMACION ASFALTICA	m2	1,000.00	4.08	4,080.00
02.03.02	CARPETA ASFALTICA EN CALIENTE DE 2"	m2	1,000.00	26.12	26,120.00
		COSTO DIRE	сто		150,617.30
			NERALES (15	X)	22,592.60
		UTILIDAD	[10%]		15,061.73
		IGB	(18%)		27,111.11
		COSTO DE C			215,382.74

Anexo 5: Prueba de Ensayo

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

ORION LABORATORIOS ELILL. LABORATORIO DE SUELOS, CONCRETO Y ASFALTO	INFORME DE ENSAYO F-ESI-603
ENSAYO PROCTOR MODIFICADO PARA CBR	
NORMAS MTC € 115, ASTM D 1557, MTC € 182, ASTM -01888	MINISTER 12.0

N° CERTIFICADO

ESL-PRM/CBR-1812039

	CLIENTE	

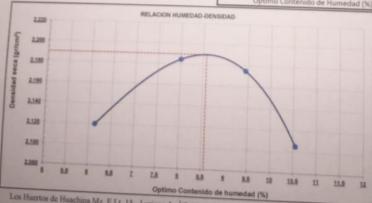
COWALDO ENOC RUZ GONZALES DEWALDO ENOC RUZ GONZALES SOUICITANTE

ESTABLIZACION DE SUILOS EN LA PRYMENTACION PRAS REDUCIR COSTOS DE MANTENAMENTO DE LA CALLE #4.

URBANIZACION SAN CARLOS, SANTA ANTA - LINA 2018

JHONY R.

MOYECTO


FECHA ENSAYO viernes, 30 de noviembre de 2018 FECHA EMISION sébedo, 01 de diciembre de 2018

CANTERA MATERIAL BASE GRANULAR

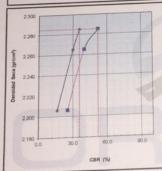
Meto de Compactación "C"

	DETALLE Y	CALCULO DE	ENSAYO		
Peso suelo + molde	87	10968	11200	11245	11130
Peso molde		6198	6198	6198	6130
Peso suelo húmedo compactado	87	4770	5002	5047	5000
Volumen del molde	cm _y	2120	2120	2120	2148
Peso volumétrico húmedo	B.	2.250	2.359	2.381	2.328
	CONTEN	IDO DE HUMI	EDAD		
Recipiente Nº		83	85	D17	AZ-
Peso del suelo húmedo+tara	87	918.00	808.00	833.00	870.00
Peso del suelo seco + tara	Er .	880.00	768.00	784.00	812.26
ara	Br .	261.00	268.00	265.00	265.00
eso de agua	gr I	38.0	40.0	49.0	57.7
eso del suelo seco	87	619.0	500.0	519.0	
ontenido de agua	%	6.14	8.00		547.3
eso volumétrico seco	gr/cm ³	2.120	2.185	9.44 2.175	2.106

Densidad máxima seca (gr/cm³) Optimo Contenido de Humedad (%) 2.190 8.57

ORION LABORATORIOS E.LR.L.

Los Huertos de Huachipa Mz. E Lt. 15 - Lurigancho | Teif. 371 0531 - 371 0475 | Entel: 971 707 204 - 936 601 894 - 945 101 989 | Inhoratorio@orionrep.com | areatecnica@orionrep.com | ventas@orionrep.com | www.orionrep.com


Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

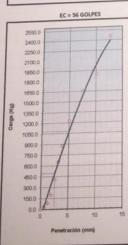
ON : 0.0 RIAL : SUELOS	
	ALIEN DE

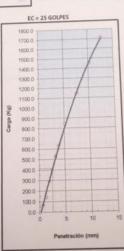
Nº INFORME

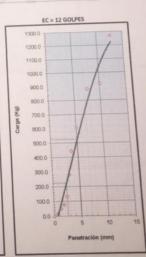
ESL-CBR-1812037

	DATOS DE LA MUESTRA
CLIENTE SOUCITANTE PROYECTO UBICACIÓN	OSWALDO ENOC RUIZ GONZALES OSWALDO ENOC RUIZ GONZALES OSWALDO ENOC RUIZ GONZALES ESTABULZACION DE SUELOS EN LA PAVIMENTACION PARA REDUCIR COSTOS DE MANTENIMIENTO DE LA CALLE # 4 ,
TECNICO FECHA ENSAYO FECHA EMISION	: JHONY %. : viernes, 30 de noviembre de 2018 : sábado, 01 de diciembre de 2018
MATERIAL CANTERA UBICACIÓN	: SANTA ANITA : NATURAL : SANTA ANITA

 METODO DE COMPACTACION
 : ASTM D155


 MAXIMA DENSIDAD SECA (g/cm3)
 : 2.285


 OPTIMO CONTENIDO DE HUMEDAD (%)
 : 7.77


 95% MAXIMA DENSIDAD SECA (g/cm3)
 : 2.171

C.B.R. a) 100% de M.D.S. (%) 0.1": 35.7 0.2": 52.1 C.B.R. a) 95% de M.D.S. (%) 0.1": 10.3 0.2": 31.8

RESULTADOS:		52.1 (%)
Valor de C.B.R. al 100% de la M.D.S.	-	31.8 (%)
Valor de C.B.R. al 95% de la M.D.S.		

ORION LABORATORIOS E.181.

ORION LABORATORIOS E.181.

Ing. Luis Tobiographical Constitution of the Constit

Los Huertos de Huachipa Mz. E Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 936 601 894 - 945 101 989 | laboratorio@orionrcp.com | areatecnica@orionrcp.com | ventas@orionrcp.com | www.orionrcp.com

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

ORION LABORATORIOS E.L.R.L. LABORATORIO DE SURLOS, CONCRETO Y ASFALTO	FOR	F.ESL-004
ENSAYO PARA DETERMINAR LA DENSIDAD Y PESO UNITARIO DEL SUELO INSITU MEDIANTE EL METODO DEL CONO DE ARENA	REVISION	:0.0
ASTM D1556 / NTP 339.144	MATERIAL.	SUELOS

N°CERTIFICADO

ESL-DN-1814059

	DATOS DEL CLIENTE Y DEL MATERIAL
CLIENTE	: OSWALDO ENOC RUIZ GONZALES
PROYECTO	ESTABILIZACION DE SUELOS EN LA PAVIMENTACION PARA REDUCIR COSTOS DE MANTENIMIENTO DE LA CALLE # 4 , URBANIZACION SAN CARLOS, SANTA ANITA - LIMA 2018
UBICACIÓN	: SANTA ANITA
FECHA ENSAYO	viernes, 30 de noviembre de 2018
FECHA EMISION	sábado, 01 de diciembre de 2018
TECNICO	: JHORMAN GUERRERO
TIPO DE MATERIAL	: BASE GRANULAR
ANTERA	: SAN MARTIN

		1	2		
	ELEMENTO / ESTRUCTURA	VIA	VIA		
	UBICACIÓN DE ENSAYO	SUB RASANTE	SUB RASANTE		
	N° DE CAPA / N° NIVEL	CAPA FINAL	CAPA FINAL		
	PROFUNDIDAD DE ENSAYO	15 cm	15 cm		
1	PESO DEL FRASCO + ARENA (g)	9012	9005		
2	PESO DEL FRASCO + ARENA QUE QUEDA (g)	4240	4260		
3	PESO DE ARENA EMPLEADA (g)	4772	4745		
4	PESO DE ARENA EN EL CONO (g)	1577	1577		
5	PESO DE ARENA EN EXCAVACIÓN (g)	3195	3168		
5	DENSIDAD DE LA ARENA (g/cm3)	1.40	1.40		
7	VOLUMEN DE MATERIAL EXTRAÍDO (cm3)	2282	2263		
1	PESO DEL RECIPIENTE + SUELO + GRAVA (g)	5436	5412		
18	PESO DEL RECIPIENTE (g)	20.0	20.0		
0	PESO DEL SUELO + GRAVA (g)	5416	5392		100
ğ	PESO RETENIDO EN EL TAMIZ 3/4" (g)	875	910		UKU
ij	PESO ESPECÍFICO DE GRAVA (g/cm3)	2.71	2.71		
	VOLUMEN DE GRAVA (cm3)	323	336		
đ	PESO DE FINOS (g)	4541	4482		
Ì	VOLUMEN DE FINOS (cm3)	1959	1927		
Ť	DENSIDAD HÚMEDA (g/cm3)	2.318	2.326		
_	CONT	ENIDO DE HUMEDAD	UTILIZANDO CARB	URO DE CALCIO	
		ASTM D4644	4 / NTP 339.250		
	LECTURA DIRECTA DE EQUIPO SPEEDY (PSI)	14 PSI	15 P	PSI	
L	ECTURA DEL EQUIPO SPEEDY CORREGIDO (%)	7.1	7.6		
1	DENSIDAD SECA (g/cm3)	2.164	2.161		
	MÁXIMA DENSIDAD PRÓCTOR (g/cm3)	2.216	2.216		
ĕ	PTIMO CONTENIDO DE HUMEDAD PRÓCTOR (%)	7.96	7.96		
ä					

ESPE	EDY N° 001-18 CS
Marca	: ORION
Capacidad	: 6 grs
N/S	: 1727
Manometro	: WINTERS
Rango de Humedad	: 30 PSI

21 GRADO DE COMPACTACIÓN (%)

Lect. PSI	Humedad %	Lect. PSI	Humedad %	Lect. PSI	Humedad %
1	0.6	11	5.60	21	10.64
2	1.1	12	6.10	22	11.14
3	1.6	13	6.61	23	11.64
4	2.1	14	7.11	24	12.15
5	2.6	15	7.62	25	12.65
6	3.1	16	8.12	26	13.15
7	3.6	17	8.62	27	13.66
8	4.1	18	9.13	28	14.16
9	4.6	19	9.63	29	14.66
10	5.1	20	10.13	30	15.17

ORION LABORATORIOS E.LR.L.

Inty: Luis Taboada Polacios
JEFE DE LABORATORIO

Observaciones Importantes

Los Huertos de Huachipa Mz. E Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 936 601 894 - 945 101 989

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

LABORATORIO DE SUELOS, CONCRETO, AGREGADOS Y ASFALTO	INFORME DE ENSAYO F-ESL-003		
ENSAYO PROCTOR MODIFICADO		1-131-003	
MTC E 115 / ASTM D 1557	REVISION	: 2.0	

N° CERTIFICADO

ESL-PRM-18130051

INFORMACION DE CLIENTE Y MUESTRA

CLIENTE : OSWALDO ENOC RUIZ GONZALES SOUCITANTE

PROYECTO

OSWALDO ENOC RUIZ GONZALES ESTABILIZACION DE SUELOS EN LA PAVIMENTACION PARA REDUCIR COSTOS DE MANTENIMIENTO DE LA CALLE # 4 , URBANIZACION SAN CARLOS, SANTA ANITA - LIMA 2018

UBICACIÓN : SANTA ANITA

: JHORMAN GUERRERO TECNICO FECHA ENSAYO viernes, 30 de noviembre de 2018 FECHA EMISION sábado, 01 de diciembre de 2018

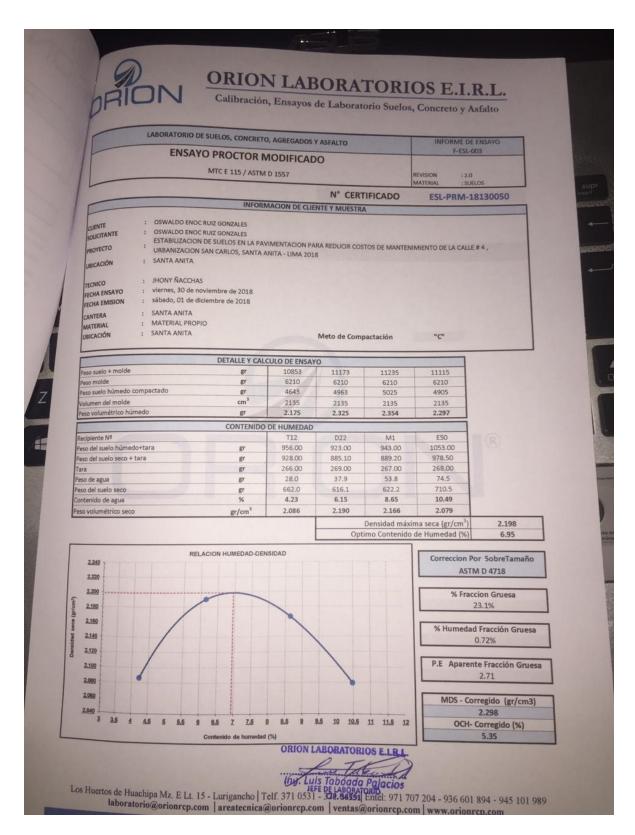
: SAN MARTIN CANTERA : BASE GRANULAR MATERIAL

Meto de Compactación

"C"

	DETALLE Y C	ALCULO DE ENS	AYO			
Peso suelo + molde	gr	10700	10905	11215	11180	
Peso molde	gr	6210	6210	6210	6210	
Peso suelo húmedo compactado	gr	4490	4695	5005	4970	
Volumen del molde	cm ³	2135	2135	2135	2135	
Pesa volumétrico húmedo	gr	2.103	2.199	2.344	2.328	
	CONTENI	DO DE HUMEDA	AD OA			
Recipiente Nº		F45	F20	F44	G10	
Peso del suelo húmedo+tara	gr	895.00	955.00	995.00	930.00	
Peso del suelo seco + tara	gr	865.94	915.62	945.99	875.54	
Tara	gr .	264.30	270.00	270.00	265.00	
Peso de agua	67	29.1	39.4	49.0	54.5	
Peso del suelo seco	gr	601.6	645.6	676.0	610.5	
Contenido de agua	%	4.83	6.10	7.25	8.92	
Peso volumétrico seco	gr/cm ³	2.006	2.073	2.186	2.137	
				Densidad máxin	na seca (gr/cm³)	2.216
			Opti	imo Contenido	de Humedad (%)	7.96

Correccion Por SobreTamaño ASTM D 4718


> % Fraccion Gruesa 31.9%

% Humedad Fracción Gruesa 0.73%

P.E Aparente Fracción Gruesa 2.69

MDS - Corregido (gr/cm3) 2.348 OCH- Corregido (%) 5.42

Los Huertos de Huachipa Mz. E Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 936 601 894 - 945 101 989 | laboratorio@orionrep.com | areatecnica@orionrep.com | ventas@orionrep.com | www.orionrep.com

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

LABORATORIO DE SUELOS, CONCRETO Y ASFALTO

FORMATO DE ENSAYO F-ESL-002

RELACION DE SOPORTE DE CALIFORNIA (C.B.R.)

REVISION FECHA DE CREA. MATERIAL

:11/04/2017

(NORMA MTC E 132 - 2000)

N° INFORME

ESL-CBR-1812039

DATOS DE LA MUESTRA

: OSWALDO ENOC RUIZ GONZALES SOLICITANTE

ATENCION PROYECTO

: OSWALDO ENOC RUIZ GONZALES : ESTABILIZACION DE SUELOS EN LA PAVIMENTACION PARA REDUCIR COSTOS DE MANTENIMIENTO DE LA CALLE # 4 ,

URBANIZACION SAN CARLOS, SANTA ANITA - LIMA 2018

- MAAM

F. EMISION

MATERIAL CANTERA

viernes, 30 de noviembre de 2018 : MATERIAL GRANULAR

CLASF, (SUCS)

CLASF. (AASHTO) : A-1-a (0)

: SAN MARTIN

ENSAYO DE COMPACTACION Molde Nº apas Nº Golpes por capa Nº SATURADO SATURADO NO SATURADO NO SATURADO SATURADO NO SATURADO 12290.00 7594.50 4695.50 2131.00 12482.00 7593.50 4888.50 2120.00 2.306 12605.00 7536.50 5068.50 2099.00 Peso de molde (g)
Peso de molde (g)
Peso de molde (g)
Peso del suelo húmedo (g)
Volumen del molde (cm²)
Densidad húmeda (g/cm²) 12521.50 7536.50 4985.00 4716.50 2131.00 2120.00 2.203 F25 2.415 R10 800.69 746.03 K11 Tara (Nº)
Peso suelo húmedo + tara (g)
Peso suelo seco + tara (g)
Peso de tara (g) N12 N41 N05 740.10 821.32 760.00 212.50 789.55 747.49 700.16 245.30 39.94 252.30 266.80 38.29 Peso de agua (g)
Peso de suelo seco (g)
Contenido de humedad (%)
Densidad seca (g/cm²) 8.78 11.07 11.82 11.20 8.76 1.993 2.172 2.120 2.096 2.026 2,180

FECHA	HORA	TIEMPO	T	DIAL	EXPAN	ISION	D	IAL	EXPAN	SION	D	AL	EXPAN:	-
PECHA	nois	hrs	Pulg.	0,001	mm	%	Pulg.	0.001	mm	%	Pulg.	0.001	mm	2
					NO	EX	PAN	VSIV	0 =					
											-			

PENETRACION

		CARGA	MOLDI	Nº 20		M	OLDE Nº 5	MOLDE Nº 81			
PENETRA	PENETRACION STAND.		CARGA	CORRECCION		CARGA	CORRECCION		CARGA	CORRECCION	
mm	pulg.	kg/cm2	kg	kg	%	kg	kg	%	kg	kg	%
0.000	0.000		0			0			0		
0.635	0.025		405.5	70		205.0			105.0		
1.270	0.050		655.0			401.5			350.5		
1,905	0.075		812.5			511.0			412.0		
2.540	0.100	70.45	1200.5	1250.8	90.4	798.5	879.2	63.6	590.6	663.3	47.9
3.180	0.125		1535.0			1244.0			790.5		
3.810	0.150		1805.0			1356.5			1050.0		
5.080	0.200	105.68	2105.5	2034.4	98.0	1436.0	1527.7	73.6	1245.5	1163.9	56.1
7.620	0.300		2365.0			1980.0			1440.0		
10.160	0.400		2688.0			2135.0			1739.0		
12,700	0.500		2796.0			2347.0			1975.	5	

ORION LABORATORIOS E.LR.L

Los Huertos de Huachipa Mz. E. Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 936 601 894 - 545 101 989

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

ORION LABORATORIOS E.F.R.L. LABORATORIO DE SURLOS, CONCRETO Y ASSALTO	FOI	F-ESL-004
ENSAYO PARA DETERMINAR LA DENSIDAD Y PESO UNITARIO DEL SUELO INSITU MEDIANTE EL METODO DEL CONO DE ARENA	REVISION .	10.0
ASTM D1556 / NTP 339.144	MATERIAL	SUILOS

N°CERTIFICADO

ESL-DN-1814058

	DATOS DEL CLIENTE Y DEL MATERIAL
CLIENTE	OSWALDO ENOC RUIZ GONZALES ESTABILIZACION DE SUELOS EN LA PAVIMENTACION PARA REDUCIR COSTOS DE MANTENIMIENTO DE LA CALLE # 4.
PROYECTO	ESTABILIZACION DE SUELOS EN LA PAYIMENTACION PROGREDUCIA COSTOS DE NORTE EN ENTRE DE LA COSTOS DEL COSTOS DE LA COSTOS DEL COSTOS DE LA COSTOS DEL COSTOS DEL COSTOS DE LA COS
UBICACIÓN	SANTA ANTA
FECHA ENSAYO	viernes, 30 de noviembre de 2018
FECHA EMISION	sábado, 01 de diciembre de 2018
TECNICO	: JHORMAN GUERRERO
TIPO DE MATERIAL	NATURAL
ANTERA	SANTA ANITA

	1	2		
ELEMENTO / ESTRUCTURA	VIA	VIA		
UBICACIÓN DE ENSAYO	SUB RASANTE	SUB RASANTE		
N° DE CAPA / N° NIVEL	CAPA FINAL	CAPA FINAL		
PROFUNDIDAD DE ENSAYO	35 cm	15 cm		
1 PESO DEL FRASCO + ARENA (g)	8979	9956		
2 PESO DEL FRASCO + ARENA QUE QUEDA (g)	3509	.8500		
3 PESO DE ARENA EMPLEADA (g)	5470	5456		
4 PESO DE ARENA EN EL CONO (g)	1577	1577		
5 PESO DE ARENA EN EXCAVACIÓN (g)	3893	3879		
6 DENSIDAD DE LA ARENA (g/cm3)	1.40	1.40		
VOLUMEN DE MATERIAL EXTRAÍDO (cm3)	2781	2773		
# PESO DEL RECIPIENTE + SUELO + GRAVA (g)	6448	6353		
9 PESO DEL RECIPIENTE (g)	20.0	20.0		
10 PESO DEL SUELO + GRAVA (E)	6428	6331		12
11 PESO RETENIDO EN EL TAMIZ 3/4" (g)	340	1000		
12 PESO ESPECÍFICO DE GRAVA (g/cm3)	2.71	2.71		
13 VOLUMEN DE GRAVA (cm.)	126	369		
14 PESO DE FINOS (g)	6062	5331		
15 VOLUMEN DE FINOS (cm3)	2653	2402		
16 DENSIDAD HÜMEDA (g/cm3)	2.292	2.220		
CONTEN	NIDO DE HUMEDAD	UTILIZANDO CARBU	JRO DE CALCIO	
	ASTM D464	4 / NYP 339.250		
LECTURA DIRECTA DE EQUIPO SPEEDY (PSI)	12 Pt	12 P	54	
FLECTURA DEL EQUIPO SPEEDY CORREGIDO (%)	6.1	6.1		
8 DENSIDAD SECA (g/cm3)	2.161	2.092		
MÁXIMA DENSIDAD PRÓCTOR (g/cm3)	2.198	2.198		
OPTIMO CONTENDO DE HUMEDAD PRÓCTOR (%)	6.95	6.95		
GRADO DE COMPACTACIÓN (%)	98%	95%		

Marca	CRION
Canacidad	(6 prs
N/S	:1727
Manometro	: WINTERS
Rango de Humedad	: 30 PSI

Lact. PS2	Numeded %	Lact. PSI	Hurtedad %	Lact. PSI	Humsdad S
1	0.6	11	5.80	21	10.64
2	1.1		6.10	22	11.14
3	1.6	.13	6.61	23	11.64
A	2.1	14	7.11	34	12.15
- 5	2.6	15	7.62	25	12.65
6	3.1	16	8.12	26	13.15
7	3.6	17	8.62	27	13.66
ě	4.1	18	9.13	26	14.16
9	4.6	19	9.63	29	14.66
10	5.1	20	10.13	30	15.17

ORION LABORATORIOS E LR L.
Ing Kuis Tobododo Polocios
IFFE DE LABORATORIO

Observaciones importantes

Los Huertos de Huachipa Mz. E Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 936 601 894 - 945 101 989 laboratorio@orionrcp.com | areatecnica@orionrcp.com | ventas@orionrcp.com | www.orionrcp.com

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

LABORATORIO DE SUELOS, CONCRETO, AGREGADOS Y ASFALTO	INFORME DE ENSAYO F-ESL-003
ENSAYO PROCTOR MODIFICADO	
MTC £ 115 / ASTM D 1557	REVISION : 2.0 MATERIAL : SUELOS

ESL-PRM-18130042 N° CERTIFICADO

DATOS DEL CLIENTE Y MATERIAL

CLIENTE

: OSWALDO ENOC RUIZ GONZALES

PROYECTO

COMMADD ENDC RUIZ CONZALES
 COMMADD ENDC RUIZ CONZALES
 ESTABLIZACIÓN DE SULLOS EN LA PAVIMENTACIÓN PARA REDUCIR COSTOS DE MANTENIMIENTO DE LA CALLE # 4,
 URBANIZACIÓN SAN CARLOS, SANTA ANITA - LIMA 2018
 SANTA ANITA

UBICACIÓN TECNICO

: JHONY RACCHAS

FECHA ENSAYO FECHA EMISION

viernes, 30 de noviembre de 2018 sábado, 01 de diciembre de 2018

CANTERA

: SANTA ANITA

UBICACIÓN

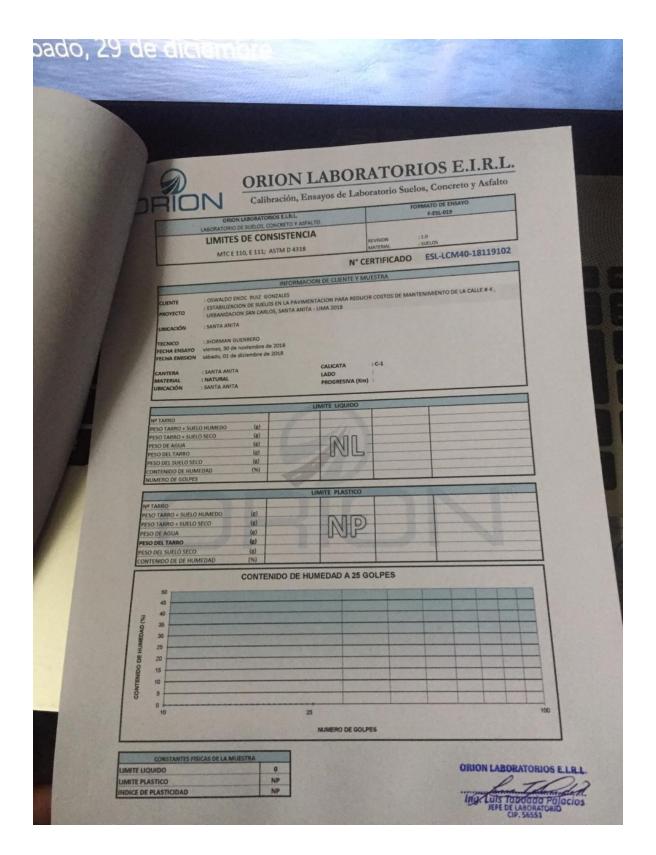
: MATERIAL PROPIO : SANTA ANITA

RESUMEN DE ENSAYO PROCTOR MODIFICADO

Maxima Densidad Seca 6.95 % Optimo Contenido de Humedad

Peso Especifico de Agregado Grueso

2.71 gr/cm3



Optimo Contenido de Humedad Corregido

2.298 gr/cm3 5.35 %

ORION LABORATORIOS E LR.A.

Los Huertos de Huachipa Mz. E. Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 936 601 894 - 945 101 989 | laboratorio@orionrcp.com | areatecnica@orionrcp.com | ventas@orionrcp.com | www.orionrcp.com

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

LABORATORIO DE SUELOS, CONCRETO, AGREGADOS Y ASFALTO	FORMATO DE ENSAYO F-EAG-001AG
PESO ESPECIFICO Y ABSORCION DEL AGREGADO GRUESO	REVISION : 2.0 MATERIAL : AGREGADO

ASTM C1287 MTC E-206 NTP 400.021

N° CERTIFICADO EAG-PEAG-1841B045

DATOS DEL CLIENTE Y MUESTRA

SOLICITANTE : OSWALDO ENOC RUIZ GONZALES
CUENTE : OSWALDO ENOC RUIZ GONZALES

PROYECTO

: ESTABLIZACIÓN DE SUELOS EN LA PAVIMENTACIÓN PARA REDUCIR COSTOS DE MANTENIMIENTO DE LA CALLE #4,

UBICACIÓN: : SANTA ANITA - LIMA 2018

UBICACIÓN: : SANTA ANITA - LIMA 2018

: SANTA ANITA

: J. GUERRERO TECNICO

F. ENSAYO viernes, 30 de noviembre de 2018 F. EMISION sábado, 01 de diciembre de 2018

CANTERA : SANTA ANITA : NATURAL MUESTRA

DESARROLLO DE ENSAYO			
1	Peso del recipiente (gr.)	1100.0	1085.0
2	Peso del recipiente + Peso de la grava sat. sup. seca (gr.)	5442.0	4893.0
3	Peso de la grava sat. sup. seca (gr.)	4342.0	3808.0
4	Peso de la canastilla en el agua (gr.)	1229.0	1236.0
5	Peso de la grava sat. sup. seca + Peso canastilla dentro del agua (gr.)	3941.0	3610.0
6	Peso de la grava sat. sup. seca dentro del agua (gr.)	2712.0	2374.0
7	Peso del recipiente + Peso de la grava seca (g)	5399.0	4858.0
8	Peso de la grava seca (gr.)	4299.0	3773.0
9	Peso específico de masa	2.64	2.63
10 Peso específico de masa saturado superficialmente seco		2.66	2,66
11 Peso específico aparente		2.71	2.70
12	Porcentaje de Absorcion	1.00%	0.939

RESUMEN DE RESULTADOS - PR	OMEDIO	
Peso específico de masa	2.63	g/cm3
Peso específico de masa saturado superficialmente seco	2.66	g/cm3
Peso específico aparente	2.70	g/cm3
Porcentaje de Absorcion	0.96%	%

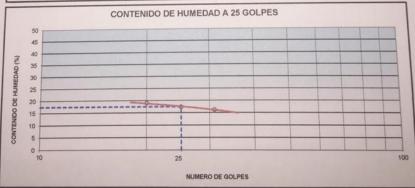
*La Muestra fue facilitada por el cliente.

ORION LABORATORIOS ELR.L

Los Huertos de Huachipa Mz. E Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 936 601 894 - 945 101 989 | laboratorio@orionrcp.com | areatecnica@orionrcp.com | ventas@orionrcp.com | www.orionrcp.com

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

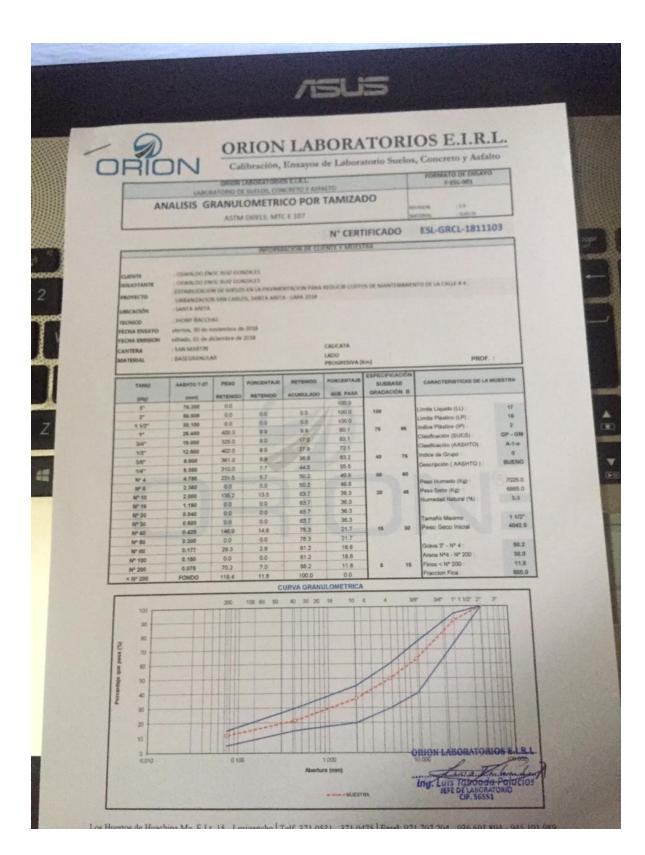
ORION LABORATORIOS E.I.R.L.	FORMATO DE ENSAYO	
LABORATORIO DE SUELOS, CONCRETO Y ASFALTO		
LIMITES DE CONSISTENCIA	REVISION :1.0	
(NORMA MTC F 110, E 111; AASHTO T-89, T-90; ASTM D 4318)	MATERIAL : SUELOS	


N° CERTIFICADO

ESL-LCM40-18119103

		N CENTIL		
	INFORM	ACION DE CLIENTE	Y MUESTRA	
CUENTE SOLICITANTE PROYECTO UBICACIÓN	: OSWALDO ENOC RUIZ GONZALES : OSWALDO ENOC RUIZ GONZALES :ESTABRIZACION DE SUELOS EN LA PAVIN URBANIZACION SAN CARLOS, SANTA ANI : SANTA ANITA	MENTACION PARA REDU ITA - UMA 2018	CIR COSTOS DE MAN	TENIMIENTO DE LA CALLE # 4 ,
TECNICO FECHA ENSAYO FECHA EMISION	: JHONY RACCHAS viernes, 30 de noviembre de 2018 sábado, 01 de diciembre de 2018			
CANTERA MATERIAL	: SAN MARTIN : BASEGRANULAR	CALICATA LADO PROGRESIVA (Km)		PROF.:

		LIMITE	LIQUIDO		
		#20	#11	#71	
Nº TARRO		75.30	78.90	82.50	
PESO TARRO + SUELO HUMEDO	(g)	70.08	74.38	76.50	
PESO TARRO + SUELO SECO	(g)		4.52	6.00	
PESO DE AGUA	(g)	5.22	The state of the s	39.50	
PESO DEL TARRO	(g)	42.50	48.32		
PESO DEL SUELO SECO	(g)	27.6	26.1	37.0	
	(%)	18.92	17.36	16.21	17
CONTENIDO DE HUMEDAD	(70)	20	25	31	


		LIMITE	PLASTICO	
Nº TARRO		#70	#30	
PESO TARRO + SUELO HUMEDO	(g)	53.21	48.69	
PESO TARRO + SUELO SECO	(g)	50.01	46.54	
PESO DE AGUA	(g)	3.20	2,15	
PESO DEL TARRO	(g)	28.96	33.12	
PESO DEL SUELO SECO	(g)	21.05	13.42	
CONTENIDO DE DE HUMEDAD	(%)	15.2	16.0	

CONSTANTES FISICAS DE LA N	MUESTRA
LIMITE LIQUIDO	17
LIMITE PLASTICO	16
INDICE DE PLASTICIDAD	2

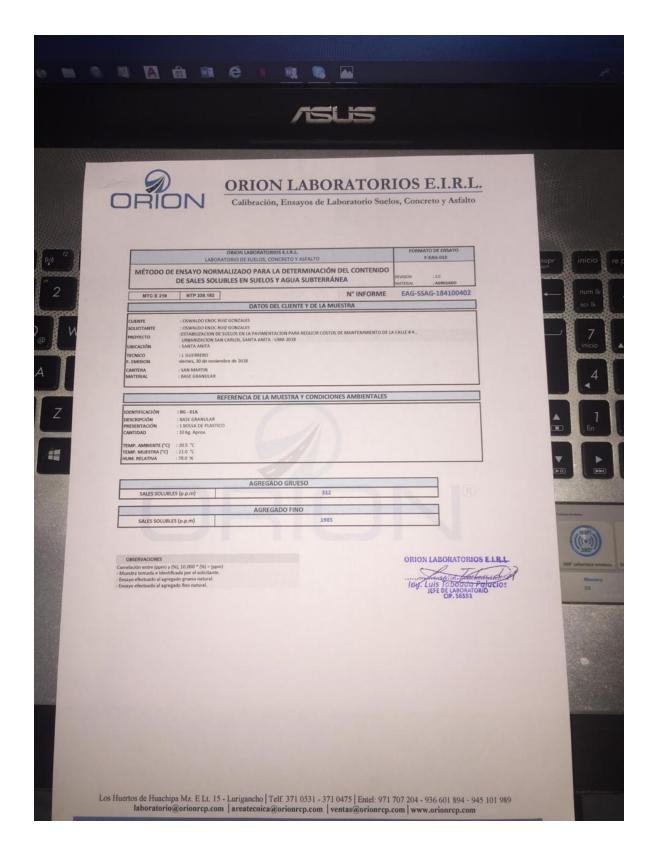
ORION LABORATORIOS E LR.L.

Los Huertos de Huachipa Mz. E Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 936 601 894 - 945 101 989

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

ORION LABORATORIOS E.I.R.L. LABORATORIO DE SUELOS, CONCRETO Y ASFALTO	FORM	F-ESL-001
ANALISIS GRANULOMETRICO POR TAMIZADO	REVISION	11.0
AASHTO T-27, ASTM D422	MATERIAL	:500.05

N° CERTIFICADO ESL-GRCL-1811102


	INFORM	ACION DE CLIENTE Y MUESTRA		
CLIENTE PROYECTO	OSWALDO ENOC RUIZ GONZALES ESTABILIZACION DE SUELOS EN LA PAVIME URBANIZACION SAN CARLOS, SANTA ANITA		E MANTENIMIENTO	DE LA CALLE#4,
UBICACIÓN TECNICO	: SANTA ANITA : JHORMAN GUERRERO			
FECHA EMISION	viernes, 30 de noviembre de 2018 sábado, 01 de diciembre de 2018			
CANTERA MATERIAL IBICACIÓN	: SANTA ANITA : NATURAL : SANTA ANITA	CALICATA LADO PROGRESIVA (Km)	:01	PROF. : 1.20 m.

TAMIZ (plg)	AASHTO T-27	PESO RETENIDO	PORCENTA/E RETENIDO	RETENIDO	PORCENTAJE QUE PASA	CARACTERISTICAS DE LA MUESTRA
2 1/2"	76.200	0.0			100.0	
2"	50.800	120.0	1.8	1.8	98.2	Limite Liquido (LL):
1 1/2"	38.100	448.0	6.6	8.4	91.6	Límite Plástico (LP): NP
1"	25.400	512.0	7.6	16.0	84.0	Indice Plástico (IP): NP
3/4"	19.000	474.0	7.0	23.1	76.9	Clasificación (SUCS): GP - GC
1/2"	12.500	661.0	9.8	32.9	67.1	Clasificación (AASHTO): A-1-a
3/8"	9.500	431.0	6.4	39.3	60.7	Indice de Grupo : 0
1/4"	6.350	473.0	7.0	46.3	53.7	Descripción (AASHTO) : BUENO
Nº 4	4.750	350.0	5.2	51.5	48.5	The second control of the second
N# 8	2.360	0.0	0.0	51.5	48.5	Peso Humedo (Kg): 3200.0
Nº 10	2.000	85.9	8.3	59.8	40.2	Peso Seco (Kg) : 3100.0
Nº 16	1.190	0.0	0.0	59.8	40.2	Humedad Natural (%): 5.0
Nº 20	0.840	0.0	0.0	59.8	40.2	S.O
N# 30	0.600	0.0	0.0	59.8	40.2	Tamaño Maximo 21/2"
N# 40	0.425	142.4	13.8	73.6	26.4	The state of the s
Nº 50	0.300	0.0	0.0	73.6	26.4	Peso Seco Inicial 6739.0
Nº 80	0.177	54.0	5.2	78.9	21.1	
Nº 100	0.150	0.0	0.0		The second second second	Grava 3" - N# 4 : 51.5
N# 200		122.1	11.8	78.9	21.1	Arena N94 - Nº 200 : 39.2
< N# 200	FONDO	95.6	9.3	90.7	9.3	Finos < Nº 200 ; 9.3 Fraccion Fina : 500.0

CURVA GRANULOMETRICA

Los Huertos de Huachipa Mz. E Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 936 601 894 - 945 101 989 | laboratorio@orionrcp.com | areatecnica@orionrcp.com | ventas@orionrcp.com | www.orionrcp.com

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

	DREON LABORATORIOS E L.R.L. LABORATORIO DE BURLOS, CONCRETO Y AUFACTO		F EAG-510
MÉTODO DI	E ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DEL CONTENIO DE SALES SOLUBLES EN SUELOS Y AGUA SUBTERRÂNEA	-	SAG-184100401
MTC 2 219	N° INFORMI	EAG-	5580-10-10-1
	DATOS DEL CLIENTE Y DE LA MIJESTRA		
CLIENTE SOLICITANTE PROVECTO RECACIÓN	CEMANDO CINCX BUT CONDUCTOR OWNARDO CINCX BUT CONDUCTOR DESTABBLICACIONE DI SULTORI EN LA PROMERITACION FARA REDUCIN CENTOS DE MANETENMINISTO D URBANDACIONES DA CARLOS, DANETA ANITA - LIRAS DESE SANTA ANITA. SANTA ANITA.	ELA CALLES 4.	
EMISION	14 (GUEERERO) sierrors, 30 de oculembre de 2018		
ANTERA ATERIAL BICACIÓN	SANTA ANTA NATINAL SANTA ANTA		
	- VIIII PART		

	AGREGADO GRUESO
SALES SOLUBLES (p.p.m)	10
	AGREGADO FINO
	AGNEGADO FINO

ORION LABORATORIOS E.LR.L.

Los Huertos de Huachipa Mz. E Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 936 601 894 - 945 101 989 | laboratorio@orionrep.com | areatecnica@orionrep.com | ventas@orionrep.com | www.orionrep.com

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

ORION LABORATORIOS E.L.R.L.	FORM	F-EAG-018
LABORATORIO DE SUELOS, CONCRETO Y ASFALTO MÉTODO DE ENSAYO PARA LA DETERMINACIÓN CUANTITATIVA DE SULFATOS SOLUBLES EN SUELOS Y AGUA SUBTERRÁNEA	REVISION MATERIAL	: 2.0 : AGREGADO

N* INFORME EAG-SFS-18418031

DATOS DEL CLIENTE Y DE LA MUESTRA

CLIENTE : OSWALDO FINO: BUE GONZALES
SOLICITANTE : CSWALDO ENOC RUE GONZALES
CONVALDO ENOCALES CONVALDES CONVALDADOS CONVALDES CONVALDADOS CONVALDES CONVALDADOS CONVALDES CONVALDADOS CONVAL

REFERENCIA DE LA MUESTRA Y CONDICIONES AMBIENTALES

| IDENTIFICACIÓN : M-018 | DESCRIPCIÓN : MATERIAL NATURAL | PRESENTACIÓN : 1 BOISA DE PLASTICO | CANTIDAD : 1 BOIS A DE PLASTIC

AG	REGADO GRUESO
SULFATOS SOLUBLES (p.p.m)	70
A	GREGADO FINO


OBSERVACIONES

Muestra tomada e identificada por el solicitante.
 Ensayo efectuado al agregado grueso natural.

ORION LABORATORIOS ELEL

0

Luis Toboada Polacios
JEFE DE LABORATORIO
CIP. 56551

Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

FORMATO DE ENSAYO LABORATORIO DE SUELOS, CONCRETO, AGREGADOS Y ASFALTO F-ESL-002 RELACION DE SOPORTE DE CALIFORNIA (C.B.R.) : 2.0 : SUELOS (NORMA MTC E 132, ASTM -D1883)

N° INFORME

ESL-CBR-1812037

DATOS DE LA MUESTRA

COSWALDO ENOC RUIZ GONZALES

COSWALDO ENOC RUIZ GONZALES

ESTABLIZACION DE SUELOS EN LA PAVIMENTACION PARA REDUCIR COSTOS DE MANTENIMIENTO DE LA CALLE # 4 ,
URBANIZACION SAN CARLOS, SANTA ANITA - LIMA 2018

CLIENTE SOLICITANTE BIREFI PROYECTO

SANTA ANITA

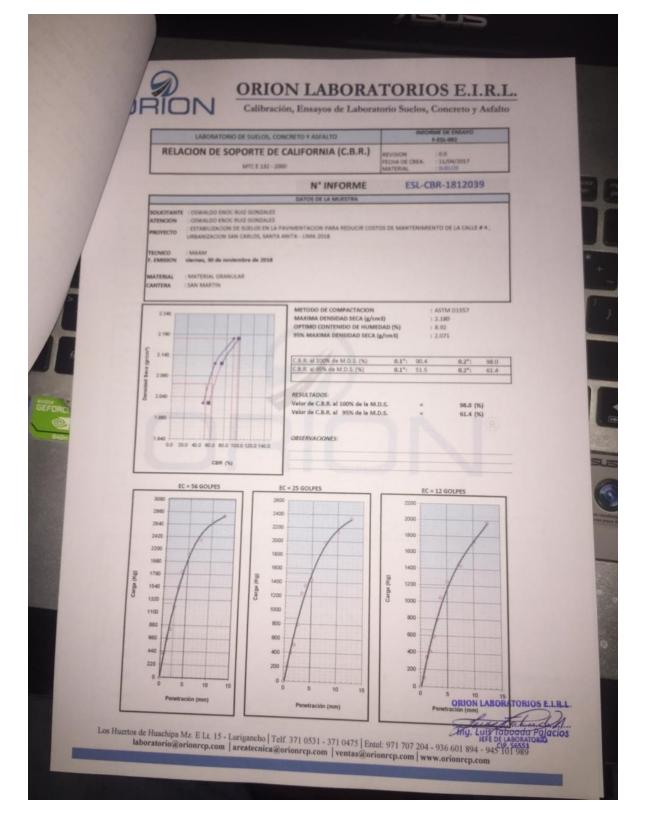
TECNICO FECHA ENSAYO

JHONY Ñ. viernes, 30 de noviembre de 2018 sábado, 01 de diciembre de 2018 FECHA EMISION

MATERIAL CANTERA UBICACIÓN SANTA ANITA : NATURAL : SANTA ANITA CLASF. (SUCS)
CLASF. (AASHTO)
INDICE DE GRUPO
DESCRIPCION (AASHTO) : A-1-a : 0 : BUENO

2.255

		ENSAYO DE	COMPACTACION		L1	1
Molde Nº	LI	2	Ł.	24	5	_
Capas Nº	5			5	17	2
Golpes por capa Nº	56			25	NO SATURADO	SATURADO
Condición de la muestra	NO SATURADO	SATURADO	NO SATURADO	SATURADO		12735.00
Peso de molde + Suelo húmedo (g)	12946.92	12973.00	12652.00	12704.00	12638.00	
	7822.00	7822.00	7561.00	7561.00	7679.00	7679.00
Peso de molde (g)		5151.00	5091.00	5143.00	4959:00	5056.00
Peso del suelo húmedo (g)	5124.92		2085.00	2085.00	2085.00	2085.00
Volumen del molde (cm²)	2081.00	2081.00		2,467	2.378	2,425
Densidad húmeda (g/cm²)	2.463	2.475	2.442		E50	M1
Tara (NP)	T12	K2	MI	T15	The second secon	628.50
Peso suelo húmedo + tara (g)	790.00	714.00	670.00	545.00	760.00	
	752.08	681.00	640.48	521.50	724.35	596.50
Peso suelo seco + tara (g)	264.00	269.00	262.00	271.50	268.00	262.00
leso de tara (g)			29.52	23.50	35.65	32.00
Peso de agua (g)	37.92	33.00	_	- CONTRACTOR OF THE PARTY OF TH	456.35	334.50
Peso de suelo seco (g)	488.08	412.00	378.48	250.00	450.55	334.30


EXPANSION

FECHA	HORA	TIEMPO		DIAL	EXPA	VSION	0	HAL	EXPAN	ISION	D	IAL	EXPAN	SION
7.66185	7,5.0	hrs	Pulg.	0.001	mm	1 %	Pulg.	0.001	mm	%	Pulg.	0.001	mm	%
						-	-	-			1			
					NO	EXI	PAN	SIVO						
				- 2										

PENETRACION

		CARGA	MOLDE	Nº 20		MO	LDE Nº 5		MOLD	E Nº 81	
PENETRA	CION	STAND.	CARGA	CORREC	CION	CARGA	CORRECCIO	N	CARGA	CORRECCI	ON
mm	pulg.	kg/cm2	kg	kg	%	kg	kg	%	kg	kg	%
0.000	0.000		0.0			0.0			0.0		
0.635	0.025		38.0			70.0			14.8		
1.270	0.050		87.5			142.0			49.9		
1.905	0.075		199.5			291.0			77.3		
2.540	0.100	70.45	410.5	494.2	35.7	400.0	414.5	30.0	133.8	224.8	16.2
3.180	0.125		655.0			527.5		50.0	280.4		10.2
3.810	0.150		875.0			634.0					
5.080	0.200	105.68	1225.0	1081.4	52.1	845.0	826.9	39.9	442.2		-
7.620	0.300		1660.0			1149.5		39.9	605.5		25.3
10.160	0.400		1898.0			1448.0		-	880.2		
12.700	0.500		2460.0			1715.0		ORION	LABORATO	JOSELI	RL
			2,100,10			1/15.0	8	THE REAL PROPERTY.	1270.	0	-

Los Huertos de Huachipa Mz. E Lt. 15 - Lurigancho | Telf. 371 0531 - 371 0475 | Entel: 971 707 204 - 936 0 1989 | laboratorio@orionrep.com | areatecnica@orionrep.com | wentas@orionrep.com | www.orionrep.com

ACTA DE APROBACIÓN DE **ORIGINALIDAD DE TESIS**

Código: F06-PP-PR-02.02

Versión: 09

23-03-2018 Fecha

Página

: 1 de 1

Yo, Franklin Escobedo Apestegui, docente de la Facultad de Ingeniería y Escuela Profesional de Ingeniería Civil de la Universidad César Vallejo sede Ate, revisor de la tesis titulada

ESTABILIZACION DE SUELOS EN LA PAVIMENTACION PARA REDUCIR COSTOS DE MANTENIMIENTO DE LA CALLE 4, URBANIZACION SAN CARLOS, SANTA ANITA – LIMA 2018

De la estudiante Ruiz Gonzales Oswaldo Enoc, constato que la investigación tiene un índice de similitud de (10 %) verificable en el reporte de originalidad del . programa Turnitin.

La suscrita analizó dicho reporte y concluyó que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

Ate, 15 de diciembre del 2018

Firma

Escobedo Apestegui Franklin

DNI: 08257238

Anexo 7: Turnitin

ACTA DE APROBACIÓN DE LA TESIS

Código : F07-PP-PR-02.02

Versión : 09

Fecha: 23-03-2018

Página : 1 de 1

El Jurado encargado de evaluar la tesis presentada por don(a) RUIZ GONZALES, OSWALDO ENOC, cuyo título es: "ESTABILIZACION DE SUELOS EN LA PAVIMENTACION PARA REDUCIR COSTOS DE MANTENIMIENTO DE LA CALLE 4, URBANIZACION SAN CARLOS, SANTA ANITA – LIMA 2018".

Reunido en la fecha, escuchó la sustentación y la resolución de preguntas por el estudiante, otorgándole el calificativo de: **13** (número) **TRECE** (letras).

Ate, 15 de diciembre del 2018

Mgtr. CHOQUE FLORES, LEOPOLDO

PRESIDENTE

Mgtr. CONTRERAS VELASQUEZ JOSE

SECRETARIO

Dr. ESCOBEDO APESTEGUI FRANKLIN

VOCAL

Dirección de Investigación

Revisó

WICE W

Apropo de Investigación

AUTORIZACIÓN DE PUBLICACIÓN DE TESIS EN REPOSITORIO INSTITUCIONAL UCV

Código: F08-PP-PR-02.02

Versión: 09

Fecha : 23-03-2018 Página : 1 de 1

Yo Oswaldo Enoc Ruiz Gonzales, identificado con DNI N° 45645298, egresado(a) de la Carrera Profesional de Ingeniería Civil de la Universidad César Vallejo, Autorizo (x), No autorizo () la divulgación y comunicación pública de mi trabajo de investigación titulado "ESTABILIZACION DE SUELOS EN LA PAVIMENTACION PARA REDUCIR COSTOS DE MANTEMIMIETNO DE LA CALLE 4 ,URBANIZACION SAN CARLOS, SANTA ANITA-LIMA 2018 "; en el Repositorio Institucional de la UCV (http://repositorio.ucv.edu.pe/), según lo estipulado en el Decreto Legislativo 822, Ley sobre Derecho de Autor, Art. 23 y Art. 33

Fundamentación en caso de no autorización:

Oswaldo Enoc Ruiz Gonzales

DNI : 45645298

Fecha: 06/06/2019

Elaboró Investigación R

Revisó

A September del SGE

DCV Proctorodo de Investigación

AUTORIZACIÓN DE LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN

CONSTE POR EL PRESENTE EL VISTO BUENO QUE OTORGA EL ENCARGADO DE II	NVESTIGACIÓN DE:
PROGRAMA DE ESTUDIOS DE INGENIERÍA CIVIL	
A LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN QUE PRESENTA:	
Ruiz Gonzales Oswaldo Enoc	
TITULO DE LA INVESTIGACION:	
TÍTULO DE LA INVESTIGACIÓN:	
"ESTABILIZACION DE SUELOS EN LA PAVIMENTACION PARA R MANTEMIMIETNO DE LA CALLE 4, URBANIZACION SAN CARLO	
"ESTABILIZACION DE SUELOS EN LA PAVIMENTACION PARA R	
"ESTABILIZACION DE SUELOS EN LA PAVIMENTACION PARA R	
"ESTABILIZACION DE SUELOS EN LA PAVIMENTACION PARA R	

SUSTENTADO EN FECHA: 15 DE DICIEMBRE DEL 2018

NOTA O MENCIÓN: 13