FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Curado y protección del concreto en climas fríos para evaluar el desempeño mecánico del pavimento rígido en la Carretera Oyon-Ambo 2019

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTOR:

Br. Villafuerte Salas, Hugo Enrique (ORCID: 0000-0002-1223-5929)

ASESOR:

Dr. Luis Alberto Vargas Chacaltana (ORCID: 0000-0002-4136-7189)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LIMA - PERÚ

2019

DEDICATORIA

La presente dedicatoria siempre presente mi familia, mí entorno laboral por la que pase en estos años de experiencia para realizar mis sueños profesionales complementando mis estudios académicos y lo práctico.

AGREDECIMIENTO

Siempre agradecido del divino dios, a la Universidad César Vallejo a los docentes e profesionales de mi entorno laboral que me encaminaron con sus enseñanzas que me permitieron llegar a presentar mi Proyectó de investigación la cual me llena de orgulloso y satisfacción de seguir adelante para obtener mi título profesional de ingeniero civil.

Página del Jurado

Declaratoria de Autenticidad

DECLARACIÓN DE AUTENTICIDAD

Yo HUGO ENRIQUE VILLAFUERTE SALAS a efecto de cumplir con las disposiciones vigentes consideradas en el Reglamente de Grados y Títulos de la Universidad César Vallejo, Facultad de Ingeniería, Escuela Académico profesional de Ingeniera Civil, declaro bajo juramento que toda la documentación que acompaño es veraz y auténtica.

Así mismo, declaro también bajo juramento que todos los datos e información que se muestra en la presente tesis son auténticos y veraces.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento y omisión tanto de los documentos como de la información aportada, por lo cual me someto a lo dispuesto en las normas académicas de la Universidad César Vallejo.

Lima, 22 de junio del 2019

Hugo Enrique Villafuerte Salas nombre

DNI: 09879254

PRESENTACIÓN

Señores miembros del Jurado:

En cumplimiento del Reglamento de Grados y Títulos de la Universidad César Vallejo presento ante ustedes la Tesis titulada: "Curado y Protección del Concreto en Climas Fríos para Evaluar el Desempeño Mecánico del Pavimento Rígido en la Carretera Oyon-Ambo 2018", la misma que someto a vuestra consideración y espero que cumpla con los requisitos de aprobación para obtener el título Profesional de Ingeniera Civil.

Villafuerte Salas, Hugo Enrique

Índice

Carátula		i
Dedicatoria		ii
Agradecimie	nto	iii
Página del Ju	ırado	iv
Declaratoria	de Autenticidad	v
Presentación	1	vi
Índice		vii
Resumen		xiv
Abstract		XV
	DUCCIÓN	1
	alidad Problemática	1
	abajos Previos	5
1.2.1	Antecedentes Nacionales	5
1.2.2	Antecedentes Internacionales	9
1.3 Te	orías Relacionadas al Tema	12
1.3.1	Curado y Protección del concreto	12
1.3.2	Factores Determinantes	13
1.3.2	Métodos y Materiales de Curado	16
1.3.3	Tiempo de Curado del Concreto	20
1.3.4	Pavimento	20
1.3.5	Tipos de Pavimentos	21
1.3.6	Pavimento Rígido	22
1.3.7	Diseño de Pavimentos Rígidos	22
1.3.8	Trafico	26
1.3.9	Desempeño Mecánico Final	27
1.3.10	Ensayos que Determinan el Desempeño del Concreto	30
1.4 Fo	rmulación del Problema	31
1.4.1	Antecedentes del Problema	31
1.4.2	Problema General	31
1.4.3	Problemas Específicos	31
	stificación del estudio	32
1.5.1	Justificación de la Investigación	32
1.5.2	Justificación Técnica	32
1.5.3	Justificación Económica	32

1.6	Hip	ótesis general	32
1	.6.1	Hipótesis General	33
1	.6.2	Hipótesis Especificas	33
1.7	Obj	ietivos	33
1	.7.1	Objetivo Principal	33
1	.7.2	Objetivos Específicos	34
II N	1ÉTOI	00	34
2.1	Fas	es del proceso de investigación	34
2	.1.1	Enfoque	34
2	.1.2	Tipo de Investigación	35
2	.1.3	Nivel de Investigación	35
2	.1.4	Diseño de Investigación	35
2.2	Var	riables	36
2	.2.1	Curado y Protección del Concreto	36
2	.2.2	Desempeño Mecánico	36
2	.2.3	Operacionalización de la Variable	37
2.3	Pob	olación, muestra y muestreo	37
2	.3.1	Población	37
2	.3.2	Muestra	38
2.4	Téc	nicas y métodos de recolección de datos, validez y confiabilidad	38
2	.4.1	Técnicas de recolección de datos	38
2	.4.2	Instrumentos de recolección de datos	39
2	.4.3	Validez	39
2	.4.4	Confiabilidad	39
2.5	Asp	pectos Éticos	39
2.6	Ens	ayos realizados	40
2	.6.1	Ensayo para determinar la granulometría del agregado.	40
	.6.2	Requerimientos, Equipos y Procedimientos para Ensayos de Agregados	
-	ara Co		43
	.6.3	Análisis Granulométrico por Tamizado	46
	.6.4	Gravedad Especifica y Absorción de los agregados	47
	.6.5	Pesos Unitarios y Vacíos de los Agregados	51
	.6.6	Durabilidad al Sulfato de Sodio y sulfato de Magnesio	52
	.6.7	Ensayo de Abrasión Maquina de los Ángeles	54
	.6.8 n el Ag	Ensayo Estándar para Determinar el Porcentaje de Partículas Fracturada regado Grueso	as 56
е	n er Ay	regado Grueso	

	2.6.	9	Ensayo Partículas Chatas y Alargadas de los Agregados	56
	2.6.	10	Ensayo Para determinar el Equivalente de arena del Agregado Fino	57
	2.6.	11	Ensayo para determinar el Material que pasa el Tamiz N° 200	59
	2.6.	12	Diseño de Mezclas	60
	2.6.	13	Materiales y Diseño	61
	2.6.	14	Elección de la Relación Agua Cemento (w/c) ACI 211	61
	2.6.	15	Volumen de agua recomendado ACI 211	62
	2.6.	16	Asentamientos recomendados ACI 211	62
	2.6.	17	Contenido de aire Incluido ACI 211	62
	2.6.	18	Diseño de mezcla Teórico 1	63
	2.6.	19	Diseño de mezcla Teórico 2	64
	2.6.	20	Diseño de mezcla Teórico 3	65
	2.6.	21	Preparación de la Mezcla de Concreto	66
	2.6.	22	Trabajabilidad Requerida según tablas ACI 211	66
	2.6.	23	Aire Incluido según tablas ACI 211	67
	2.6.	24	Peso Unitario del Concreto	68
	2.6.	25	Toma de Muestras del Concreto en Estado Fresco	68
	2.6.	26	Ensayo de Inicio y Final de fragua del Concreto	69
	2.6.	27	Curado del Concreto	70
	2.6.	28	Curado y Protección del Pavimento Rígido (losa de Concreto)	72
	2.6.	29	Monitoreo de Temperaturas del Pavimento Rígido Superficial e Interna	74
	2.6.	30	Ensayo Para Determinar la Resistencia a la Compresión	81
	2.6.	31	Ensayo de Resistencia a la Flexión	84
III	RES	SUL	ΓADOS	86
3	.1	Gra	nulometría Agregado Grueso Huso 57	86
3	.2	Ens	ayo de Gravedad Especifica	87
3	.3	Ens	ayo de Abrasión Maquina de Los Ángeles	88
3	.4	Ens	ayo de Durabilidad al Sulfato de Magnesio	88
3	.5	Ens	ayo Pesos Unitarios	89
3	.6	Ens	ayo de Partículas chatas y Alargadas de los Agregados	89
3	.7	Ens	ayo de Partículas Fracturadas	90
3	.8	Gra	nulometría Agregado Fino	91
3	.9	Ens	ayo Gravedad Específica Agregado Fino	92
3	.10	Ens	ayo Pesos Unitarios	92
3	.11	Ens	ayo de Equivalente de Arena	93
3	.12	Ens	ayo Material Fino que pasa el Tamiz n° 200	93

3.	.13	Ensayo Durabilidad Sulfato de Magnesio	94
3.	.14	Ensayos del Concreto fresco	94
	3.14 Amb	.1 Pesos Unitarios del concreto, asentamiento, porcentaje de aire, temperatu biental y del Concreto	u ra 94
	3.14	.2 Ensayo de tiempo de Fragua del Concreto	95
3.	.15	Monitoreo de Temperaturas Curado y Protección de losa de Concreto	96
3.	.16	Ensayos de Testigos de Concreto Endurecido Resistencia a la Compresión	98
	3.16	.1 Curadas en Poza de Curado a 23°C	98
	3.16	.2 Resistencias a la compresión de Testigos Curadas con curador Químico	99
	3.16 Prot	.3 Resistencias a la compresión de Testigos Curadas con Curador Químico sección con Mantas de Lana de Fibra de Vidrio	y 100
	3.16	.4 Resistencias de Núcleos Diamantinas a los 28 Días	101
	3.16	.5 Resistencias a la Compresión Tipos de Fallas	102
	3.16	.6 Resistencias Ensayos de Flexión de Vigas	103
IV	DIS	CUCIÓN	104
V	CON	NCLUSIONES	107
VI	REC	COMENDACIONES	109
VII	CRO	DNOGRAMA DE EJECUCIÓN	111
VII	IREF	FERENCIAS	112
IX	ANE	EXOS	115

ÍNDICE DE FIGURAS

Figura 1: Mapa de zonas del Perú	2
Figura 2: Curado mixto con yute húmedo y Cobertor Plástico	16
Figura 3: Curado del Concreto lluvia de agua	17
Figura 4: Curado químico fornocedores de Película	18
Figura 5: Curado con Cubiertas Aislantes	18
Figura 6: Cobertor de aislante térmico Pavimento texturizado	19
Figura 7: Protección Térmica del Pavimento	19
Figura 8: Curado con vapor	20
Figura 9: Curado por tuberías a Vapor	20
Figura 10: Factores de comportamiento de pavimento	24
Figura 11: Acopios de over grueso producto del zarandeo de explotación de finos	41
Figura 12: Vista satelital de la cantera Yanamayo. Fuente: Google Earth	41
Figura 13: Chancadora Trituración de Agregados	42
Figura 14: Secado de agregados	46
Figura 15: Peso tamizado Agregado Grueso	47
Figura 16: Tamizado de agregados	47
Figura 17: Gravedad Especifica y absorción agregado grueso	49
Figura 18: Ensayo de absorción agregado fino	50
Figura 19: Ensayo de Gravedad Especifica agregado fino	50
Figura 20: Peso Unitario Compactado	52
Figura 21: Peso Unitario Suelto	52
Figura 22: Sulfato de Magnesio	53
Figura 23: Temperatura de la Solución Sulfato de Magnesio	54
Figura 24: Ensayo de Abrasión Maquina de los Ángeles	55
Figura 25: Particulas Fracturadas	56
Figura 26: Calibrador Ensayo de Partículas Chatas y Alargadas	57
Figura 27: Ensayo de Equivalente de Arena	58
Figura 28: Ensayo de Equivalente de Arena	58
Figura 29: Lavado de la muestra Tamiz Nº 200	59
Figura 30: Mezcla del Concreto Figura 31: Temperatura del Concreto Fresco	66
Figura 32: Ensayo de Asentamiento	67
Figura 33: Ensayo de Aire Incluido	67
Figura 34: Ensayo del Peso Unitario del concreto Fresco	68
Figura 35: Moldeo de Probeta Figura 36: Varillado de Probeta	69
Figura 37: Penetrómetro Ensayo de Fragua	69
Figura 38: Poza de curado con resistencias temperatura del agua 23°C	70
Figura 39: Poza de Curado	71
Figura 40: Poza de Curado colocación de Probetas	71
Figura 41: Poza de Curado Ubicación de Probetas	71
Figura 42: Curado Químico del Pavimento	73
Figura 43: Disposición Química Figura 44: Lana de Fibra de Vidrio	73
Figura 45: Monitoreo de Temperatura sin Protección del Pavimento	74
Figura 46: Monitoreo de Temperatura con Protección del Pavimento	74
Figura 47: Ensayo de Resistencia a la Compresión	82
Figura 48: Extracción de núcleos de concreto Figura 49: Perfilado en la cortadora	82
Figura 50: Diagrama de Ensayos de Núcleos Diamantinas	83
Figura 51: Croquis de ensayo de Flexión	85
Figura 52: Ensayo de flexión Figura 53: Rotura por esfuerzo a flexión	85
Figura 54: Lectura de Resistencia a esfuerzo Flector	86
Figura 55: Curva Granulométrico Huso 57	87
Figura 56: Tipos de Fallas a la Compresión	102

ÍNDICE DE TABLAS

Tabla 1: Fuente ACI Comité 306	
Tabla 2: Fuente ACI Comité 306	13
Tabla 3: Ensayos al agregado grueso y agregado fino	30
Tabla 4: Ensayos al agua	30
Tabla 5: Ensayos al concreto fresco	30
Tabla 6: Ensayos al concreto endurecido	31
Tabla 7: Operacionalización de variables	37
Tabla 8: Características de la cantera Yanamayo-Churin-Oyon	41
Tabla 9: Husos del agregado grueso	
Tabla 10: Requisitos Físicos Químicos agregado grueso	
Tabla 11: Granulometría	
Tabla 12: Requisitos Físicos Químicos agregado fino	
Tabla 13: Requisitos Químicos del Agua	
Tabla 14: Pesos Mínimos de la muestra para el Ensayo	
Tabla 15: Capacidad de recipientes de Medida	
Tabla 16: Serie de Tamices Fina y Gruesa	
Tabla 17: Gradación "B" para Agregado Grueso	
Tabla 18: Cantidades mínimas para el ensayo	
Tabla 19: Temperaturas Minimas de la zona	
Tabla 20: Características Físicas de los Materiales	
Tabla 21: Relación Agua-Cemento de diseño en Peso	
Tabla 22: Volumen Unitario de Agua	
Tabla 23: Asentamientos del Pavimento	
Tabla 24: Contenido de Aire en Mezcla de Concreto	
Tabla 25: Relación W/C 0.40	
Tabla 26: Relación W/C 0.43	
Tabla 27: Relación W/C 0.45	
Tabla 28: Peso Unitario del Concreto	
Tabla 29: Ficha de Monitoreo de Temperatura	
Tabla 30: Temperatura del Concreto vs Tiempo	
Tabla 31: Temperatura Superficial del Concreto y Ambiente vs Tiempo	
Tabla 32: Temperatura Interna del Concreto y Ambiente vs Tiempo	
Tabla 33: Ficha de Monitoreo de Temperatura	
Tabla 34: Temperatura del Concreto vs Tiempo	
Tabla 35: Temperatura Superficial del Concreto y Ambiente vs Tiempo	
Tabla 36: Temperatura Interna del Concreto y Ambiente vs Tiempo	
Tabla 37: Diseños con diferentes relaciones W/C, Poza de curado a 23°C,	
Tabla 38: Curadas curador químico protegidas con mantas de lana de fibra de vidrio	
Tabla 39: Curadas solo con curador químico Eucocuret	
Tabla 40: Resistencias a la compresión en Horas	
Tabla 41: Curadas en poza de curado a 23°C	
Tabla 42: Curadas con curador químico, protegidas con Mantas de lana fibra de Vidrio	
Tabla 43: Resultados de Ensayos Granulométricos	
Tabla 44: Resultados de Gravedad Especifica del Agregado Grueso	87
Tabla 45: Resultados de Ensayo de Abrasión	
Tabla 46: Resultados de ensayo Sulfato de Magnesio	
Tabla 47: Pesos Unitarios del Agregado	89
Tabla 48: Resultado de Ensayos de Partículas chatas y alargadas	89
Tabla 49: Resultados de Ensayo Partículas Fracturadas	90
Tabla 50: Resultado de Ensayo Granulometría de Agregado Fino	91
Tabla 51: Curva Granulométrica Agregado Fino	91

Tabla 52: Resultados de Gravedad Especifica Agregado Fino	92
Tabla 53: Resultados de Pesos Unitarios para Agregado Fino	
Tabla 54: Resultado de Equivalente en Arena	
Tabla 55: Resultado de Ensayo de Tamiz Nº 200	93
Tabla 56: Resultado de Ensayo de Durabilidad Sulfato de Magnesio	94
Tabla 57: Resultados de Ensayos al Concreto Fresco	94
Tabla 58: Diseño elegido W%C 0.40	95
Tabla 59: Resultado de Monitoreo de Temperatura Con Curador Químico y Protección Manta	ıs fibra
vidrio	96
Tabla 60: Con curador Químico y Sin Protección	97
Tabla 61: Relación w/c 0.40	98
Tabla 62: Relación w/c 0.43	98
Tabla 63: Relación w/c 0.45	99
Tabla 64: Resistencia del concreto con curador Químico	99
Tabla 65: Resistencia del concreto Protegido con manta de fibra de vidrio	100
Tabla 66: Resistencia de Núcleos de Diamantina	101
Tabla 67: Resultados de Ensayo de Flexión	103
Tabla 68: Resistencia del concreto Protegido con Manta de Fibra de Vidrio	104
Tabla 69: Resistencia con curado químico	105
Tabla 70: Resistencia con protección de lana de fibra de Vidrio	105
Tabla 71:Cronograma	111

RESUMEN

En Perú debido a su geografía variable en donde hay lugares que llegan a elevadas altitudes se presentan temperaturas extremas durante los inviernos, debido a esto se presentan condiciones de intemperismo perjudiciales para el concreto.

Las temperaturas varían tanto durante el día generando ciclos de hielo-deshielo lo cual es una causa de las principales causas de la degradación del concreto. En los ciclos de hielo-deshielo se generan presiones hidráulicas en los poros del concreto, generando una expansión volumétrica que a su vez conlleva al fisuramiento del concreto y por ende la disminución de la resistencia del concreto, así como la disminución de su durabilidad.

Las consecuencias generadas por el ciclo de hielo-deshielo dependerán mucho del diseño de mezcla, así como del curado y protección que se le den al concreto durante su estado fresco, un buen curado permitiría una consistencia optima que evite el fisuramiento por la pérdida de agua líquida sobre el concreto y una protección debida evitaría que las partículas de agua en los poros puedan integrarse con el gel de cemento para garantizar la máxima resistencia física química en obra.

El objetivo de este trabajo científico es cuantificar las mejoras del desempeño mecánico final del concreto partiendo de un concreto colocado de manera habitual con un curado y protección tradicional con otro en el cual se ha realizado un curado y protección para soportar la intemperie en climas fríos, se realiza una campaña experimental sobre probetas de concreto curadas "in situ" las cuales tienen un seguimiento para verificar su temperatura a la hora del vaciado.

Luego de los ensayos de resistencia y flexión a los que se someterán dichas probetas dan como resultado la diferencia en el desempeño mecánico final del concreto luego de ser curado y protegido.

Palabras clave: Climas fríos, curado, protección, mantas de lana de fibra de vidrio

ABSTRACT

In Peru, due to its variable geography, where there are places that reach high altitudes, extreme temperatures occur during winters, due to this weathering conditions are detrimental to the

concrete.

The temperatures vary so much during the day generating cycles of ice-thaw which is a cause of the main causes of the degradation of the concrete. In the freeze-thaw cycles hydraulic

pressures are generated in the pores of the concrete, generating a volumetric expansion that in turn leads to the cracking of the concrete and therefore the decrease in the strength of the

concrete, as well as the decrease in its durability.

The consequences generated by the freeze-thaw cycle will depend a lot on the design of the

mixture, as well as the curing and protection given to the concrete during its fresh state, a good

curing would allow an optimal consistency to avoid cracking due to the loss of water liquid on the concrete and a proper protection would prevent the water particles in the pores can be

integrated with the cement gel to ensure maximum physical chemical resistance on site.

The objective of this scientific work is to quantify the improvements of the final mechanical

performance of the concrete starting from a concrete placed in a habitual way with a traditional curing and protection with another in which a curing and protection has been carried out to

withstand the weather in cold climates, an experimental campaign is carried out on concrete specimens cured "in situ" which have a follow-up to verify their temperature at the time of

emptying.

After the resistance and bending tests to which said specimens will be subjected, they result in

the difference in the final mechanical performance of the concrete after it is cured and protected

Keywords: Cold climates, curing, protection, fiberglass wool blankets

ΧV

I. INTRODUCCIÓN

1.1 Realidad Problemática

"En el mundo las condiciones para considerar temperaturas extremas en el concreto cuando la temperatura medida ambiental es menor a 5°c y supera los 28°C. En estos escenarios ambientales se recomienda no escatimar los cuidados en los momentos de elección de los materiales, formulaciones de diseños de mezcla, elaboración del concreto fresco, curado y control riguroso de calidad, encofrado y desencofrado de las estructuras del concreto", (Revista Colegio de Ingenieros Lambayeque, 2018, p. 13).

Se debe tener siempre en consideración las combinaciones de estas condiciones ambientales como velocidad del viento y humedades relativas obteniendo registros históricos ambientales de temperaturas máximas y mínimas para aplicarlos en las zonas donde se desarrolla la obra.

Para considerar clima frio en él, presente trabajo bajo consideraciones del ACI 306 las condiciones ambientales se tendrían quedar de la siguiente manera para un periodo de 3 días consecutivos

- A.- La temperatura promedio del aire es inferior a 5 °C
- B.- La temperatura del aire no supera a 10°C en más del 50% de cualquier espacio de tiempo de 24 horas.

"En el Perú se debe tener consideraciones especiales de diseño, por ser un país ubicado en al Cinturón de Fuego del Pacífico y en la que tenemos una actividad sísmica es continua. A demás por la tesis formulada por el geógrafo peruano Dr. Javier Pulgar Vidal, sabemos que en el Perú tenemos ocho regiones, dentro de las que destacamos: Costa o Chala (0 @ 500 msnm); Yunga (500 @ 2300); Quechua (2300 @ 3500 msnm); Sumi (3500 @ 4000 msnm); Puna (4000 @ 4800) y Janca o Cordillera (4800 @ 6768 msnm) que es la altura del nevado Huascarán, además de los climas de selva que son: Omagua (80 @ 400 msnm) y Rupa Rupa (400 @ 1000 msnm). Estas diferencias de alturas sobre el nivel del mar, implica que las temperaturas varíen, que dan origen a los gradientes térmicos, entiéndase como gradiente térmico a la variación entre la menor y mayor temperatura registrada, por ejemplo, si tenemos una temperatura máxima de 24 °C y una temperatura de 10 °C, entonces el gradiente térmico es de 14 °C. Este gradiente térmico

para una misma región puede variar dependiendo de la estación en la que estemos, es decir para el verano, otoño, invierno y primavera", (Revista Actualidad, 2018, p. 18).

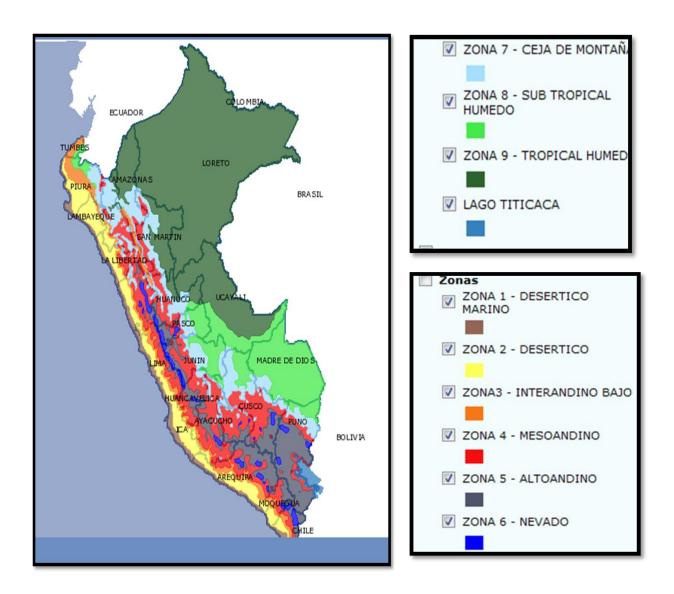


Figura 1: Mapa de zonas del Perú

Fuente: Revista Actualidad (2018)

El desarrollo de este trabajo de investigación se desarrollará en la zona de **Oyon-Ambo**, por la cual se encuentra en la zona Puna del Perú, como se observa en el mapa es una zona de nevado (Zona 6), por lo cual se debe de tener las mejores condiciones de colocado y curado del concreto que se va emplear en este proyecto.

En el libro Tópicos de Tecnología del Concreto del Ing. Enrique Pasquel Carbajal, "los factores que afectan la durabilidad del concreto y entre las que se clasifica en cinco grupos: I) Congelamiento y descongelamiento (tema de esta investigación); II) Ambiente Químicamente agresivo; III) Abrasión; IV) Corrosión de metales en el concreto y V) Reacciones químicas de los agregados. A demás nos hace una explicación sobre el fenómeno que se produce por efecto de las bajas temperaturas tiene que ver con los componentes del concreto como son el cemento, agregados y el agua, indica las siguientes teorías: Primera Teoría 'Presión Hidráulica': que considera, que, dependiendo del grado de saturación de los poros capilares y poros de gel, de la velocidad de congelamiento y la permeabilidad de la pasta, al congelarse el agua en los poros, aumenta de volumen y ejerce presión sobre el agua aun líquido, ocasionando tensiones en la estructura resistente y estas tensiones superan los esfuerzos últimos de la pasta, se produce el fisuramiento, y posteriormente constante agrietamiento. Segunda Teoría 'Presión Osmótica': es igual que la anterior, pero esta supone que al congelarse el agua en los poros cambia la alcalinidad del agua aún en su estado líquido, por lo que tiende a dirigirse a las zonas congeladas de alcalinidad menor para entrar en solución, lo que genera una presión osmótica del agua líquida sobre el agua sólida ocasionando presiones internas en la estructura resistente de la pasta con consecuencias similar a la primera teoría".

El efecto en los agregados:

"Existe evidencia de que por los tamaños mayores de los poros capilares se producen generalmente presiones hidráulicas y no osmóticas con esfuerzos similares a los que se presentan en la pasta de cemento, existiendo indicios de que el tamaño máximo tiene una influencia importante, estimándose que para cada tipo de material existe un tamaño máximo por debajo del cual se puede producir el congelamiento confinado dentro del concreto sin daño interno en los agregados. Por otro lado, cuando menor sea la capacidad del agregado para absorber agua, menor será el efecto del congelamiento interno de la misma."

"La resistencia del concreto dependerá mucho del cuidado que se tenga durante su etapa de curado, si además de esta solución económica, pensamos en el uso de aditivos incorporadores de aire de ser el caso estaremos evitando que el concreto sufra la presión hidráulica que sufre durante su etapa inicial de vida, y los incorporadores de aire se basan en introducir en la mezcla una estructura adicional de vacíos No intercomunicados, que permitirán absorber los desplazamientos generados por el congelamiento eliminando las tensiones. Este fenómeno no sólo se presenta en el concreto recién vaciado, sino en aquellos elementos sometidos a humedad continua durante su vida útil, y la fatiga que se produce por el transcurrir del tiempo, también generarán daño a los elementos.

Durante la época de invierno y/o frío, la temperatura del concreto al momento de su colocación no debe ser menor que los valores dados en la Tabla Nº 01, en adición para prevenir temperaturas muy frías a edades tempranas del concreto, la temperatura del concreto debe ser mantenida cercana a las recomendadas para la temperatura de colocación durante el período de protección indicada en las tablas".

Tabla 1: Fuente ACI Comité 306

Línea	Temperatura del Aire	Dimensiones de la sección, dimensión mínima (mm.)			
Linea		300	300-900	900-1800	1800
	Temperatura mínima del concreto colocado y para mantenimiento				
1	-	13°C	10°C	7°C	5°C
Temperatura mínima del concreto para la mezcla de acuerdo a la temperatura del aire					
2	-1°C	16°C	13°C	10°C	7°C
3	-18°C a -1°C	18°C	16°C	13°C	10°C
4	-18°C	21°C	18°C	16°C	13°C
Máxima temperatura permitida en las primeras 24 hrs. al final del período de protección					
5	-	28°C	22°C	17°C	11°C

"Otro aporte importante que se ha tenido en el desarrollo de concreto para pavimentos rígidos es los últimos años, ha sido la tecnología del uso de los aditivos químicos que han dado grandes progresos, principalmente debido al control de la reología del concreto a través del empleo de aditivos reductores de agua de alto rango y aditivos modificadores de viscosidad."

Se puede entender por lo expuesto anteriormente que el concreto puede presentar una disminución en sus capacidades de durabilidad y resistencia ante un clima frio y en el Perú estos climas extremos con temperaturas bajo los 0°C hacen que se presente un ciclo de hielo y deshielo en el concreto, por lo que es necesario una metodología apropiada para la zona con climas fríos para evitar estos problemas en el concretado.

1.2 Trabajos Previos

1.2.1 Antecedentes Nacionales

Según la investigación de Amacifuen, Rodney en su tesis titulada "Curado y Protección de Concretos Colocados en Climas Fríos" Tesis para optar el Título Profesional de Ingeniero Civil en la universidad Nacional de Ingeniería Lima-Perú la cual tiene por objetivo Mostrar que un concreto protegido con una manta de lana de fibra de vidrio, puede llegar a desarrollar su resistencia a la compresión ante la inclemencia de un clima frío, concluye que:

- [...]Para la colocación de concretos en climas fríos se hace necesario realizar estudios de monitoreos de la temperatura ambiental del lugar donde se realizarán las labores, de esta forma se determinará:
- a) Si realmente nos encontramos en un lugar bajo condiciones de clima frío
- b) Se hallará el rango de tiempo ideal para poder ejecutar los trabajos, en el caso especial de nuestro territorio, tal como sucede en la sierra se podrá utilizar los períodos en que la temperatura asciende durante las tardes y optimizar los resultados [...] Para poder obtener las temperaturas requeridas en el concreto al momento de su colocación se hace necesario la utilización de un método de calentamiento de los componentes del concreto [...] Utilizar mantas de lana de fibra de vidrio de 3" de espesor, A.=0.035KcaVmh°C y densidad=40.6 kg/m³, las cuales han sido verificadas su efectividad por la presente tesis [...]. (2002, p.273).

El autor nos presenta una metodología para poder determinar las condiciones y las variaciones del concreto en su colocado y fraguado en obra, además de concluir que la protección del concreto con lana de fibra de vidrio reduce las problemáticas originadas por las bajas temperaturas en su lugar de estudio, **concuerdo** en que si bien las bajas temperaturas exigen un curado especial se debe hacer un estudio para elegir el correcto curado dependiendo de la temperatura y las otras condiciones climáticas de la zona del proyecto así como además un

tratamiento en la temperatura de los componentes del concreto lo cual ayuda a evitar que se enfrié rápidamente.

Según la investigación de Medina & Quispe, en su tesis titulada "Curado y Protección de Concretos Colocados en Climas Fríos" Para Optar el Título Profesional de Ingeniero Civil en la universidad Nacional de San Agustín Arequipa Perú el cual tiene como objetivo "Encontrar experimentalmente el material de protección más óptimo en el proceso de curado que influya en la resistencia de los concretos expuestos a ciclos de congelamiento y deshielo", concluyen que:

[...]Al someter los especímenes de concreto a los ciclos de congelamiento y deshielo se evaluó el comportamiento de los materiales de protección dando como resultado que la lámina de Poliestireno expandido (tecnoport) y el polietileno con aserrín tienen mejor comportamiento de aislamiento térmico que los demás materiales de protección, con una diferencia de 6.89°C y 6.32°C de temperatura respectivamente con respecto a la temperatura externa [...] Según el análisis de costos obtenemos que el polietileno con papel y el polietileno con aserrín son los más económicos. Considerando costo beneficio el material más óptimo para proteger al concreto durante su periodo de curado de los ciclos de congelamiento y deshielo es el polietileno con aserrín [...] El uso del aditivo antisol no se recomienda debido a que este utiliza el agua propia de la mezcla para curarse, siendo insuficiente para que adquiera la resistencia requerida [...]. (2017, p.280).

Los autores realizaron una investigación empírica llevando los especímenes de concreto a una temperatura fija para que se recree el ciclo de hielo y deshielo para ambos casos con distintos tipos de protección y curado, concluyendo que no solo presentan mejor comportamiento térmico, sino que además son más económicos el Polietileno con aserrín y el Tecnoport.

En mi opinión los dos métodos para la protección del concreto en su colocación resultan bastante importantes para combatir el fisuramiento causado por el congelamiento del concreto durante las heladas, además los autores concluyen que la utilización del aditivo antisol debido a que no se logra obtener la resistencia a la compresión deseada.

Vasquez, Marvin nos comenta, en su tesis titulada "Control del Concreto en Estado Fresco y Endurecido en Climas Fríos" Tesis para obtener el Título Profesional de Ingeniero Civil en la Universidad Nacional de Ingeniería Lima Perú la cual tiene como objetivo "Plantear una técnica"

para curar y proteger el concreto cuando se realizan trabajos en lugares donde hay las condiciones climatológicas y temperaturas correspondientes a climas fríos", **concluye** que:

[...]La relación de a/c no debe ser mayor que 0.50; el exceso El exceso de agua en la mezcla traerá como consecuencia que se produzca el fenómeno de congelamiento y la resistencia no deberá ser menor de 245kg/cm2 por razones de durabilidad, y cumple con las consideraciones de la Norma E-060 [...] Si empleamos acelerantes de fragua, debemos controlar el calor de hidratación del concreto, ya que los efectos por el exceso de calor son los mismos, es decir generan fisuramiento [...] (2015, p.196).

Es muy importante poder cumplir con las consideraciones que indica la Norma E-060 del Reglamento Nacional de Edificaciones, los autores concluyen en una dosificación máxima de a/c con el fin de reducir el porcentaje de volumen de concreto a congelarse además de indicar que la por razones de durabilidad las mezclas deben diseñarse con una resistencia mayor a 245 kg/cm², esto es muy importante pues si bien aún no está normado una metodología única para la colocación de concretos en climas fríos se puede utilizar los parámetros recomendados como elementos de consulta.

También logran concluir los autores que la utilización de acelerantes de fragua deben ser cuidadosamente calculados pues el calor de hidratación aumenta a la vez que se aumenta su dosificación y esto es perjudicial para el concreto. En mi opinión la utilización de acelerantes de fragua tienen un diferente resultado dependiendo de las condiciones ambientales de donde se utilice por lo que se deben hacer ensayos previos para determinar el desempeño final del concreto.

Contreras & Velazco nos comentan, en su tesis titulada "Análisis Comparativo del Método de Curado en Especímenes de losa de Concreto Simple, Simulando Condiciones Constructivas de Obra en La Ciudad de Arequipa" Tesis para obtener el Título Profesional de Ingeniero Civil en la Universidad Nacional de San Agustín de Arequipa Perú la cual tiene como objetivo "Realizar un análisis comparativo de la influencia del tipo de curado en la resistencia a la compresión de losas de concreto simple", llegan a la conclusión que:

[...] Para los 3 métodos de curado (curado continuo, discontinuo y con cubierta de geotextil) realizados en losas de concreto simple [...] Se concluye que el

método de curado por riego continuo (inundación) otorgo mayor resistencia [...] los curadores químicos desarrollan una película impermeable que conserva la humedad del concreto, pero no adicionan humedad a este [...] (2018, p.246).

Los autores realizaron una investigación en donde comparan 3 métodos distintos de curado, concluyendo que el curado en losas por inundación (curado continuo) es el más efectivo comparado con la cubierta de geotextil, en mi opinión esto es muy importante aclarar pues una hidratación constante del concreto permite que este se reduzca el número de fisuras, además los curadores químicos que ayuden a evitar que la humedad se pierda de la superficie de las losas esto sin incorporar humedad al concreto permite que no varié la relación de agua y cemento en la mezcla.

Cuellar & Sequeiros nos comentan, en su tesis titulada "Influencia del Curado en la Resistencia a la Compresión del Concreto preparado con Cemento Portland Tipo I y Cemento Puzolánico Tipo IP en la Cuidad de Abancay- Apurímac" Tesis para obtener el Título Profesional de Ingeniero Civil en la Universidad Tecnológica de los Andes Abancay Apurímac Perú la cual tiene como objetivo "Determinar cuál es la influencia que ejerce el curado en el concreto para el clima de la ciudad de Abancay y Pachachaca, utilizando el cemento portland tipo I y cemento puzolánico tipo IP", concluyen lo siguiente:

[...] Se evaluó los especímenes de concreto con cemento tipo I y tipo IP simulando la exposición a diferentes condiciones ambientales en un periodo de un mes y 15 días [...]Las resistencias que alcanzan cada concreto elaborado con los dos tipos de cemento tienen gran diferencia en cuanto a la resistencia [...] TIPO I logra superar las resistencia requerida por el diseño llegando a un 387.93 kg/cm2[...] para el concreto elaborado con cemento TIPO IP llego a una resistencia a los 28 días de fc = 230.77 kg/cm2 que está dentro de los rangos del parámetro de diseño de mezcla [...] (2017, p.311).

Los autores simularon condiciones ambientales para dos tipos de probetas en las cuales la diferencia era solo la utilización del cemento Tipo I con el cemento Tipo IP, como resultado se obtiene la mayor resistencia en el concreto elaborado con cemento Tipo I concluyendo así que el cemento Tipo I es el más recomendado por resistencia para las estructuras de concreto expuestas a climas fríos.

En mi opinión se puede utilizar el cemento Tipo I como mejor opción, aunque esto debe verificarse con un correcto diseño de mezclas en donde se pueda conocer la dosificación más adecuada dependiendo a la zona y requerimiento de la estructura.

1.2.2 Antecedentes Internacionales

All-Assadi, Ghaida nos comenta, en su tesis titulada "Influencia de las Condiciones de curado en el Comportamiento del Hormigón sometido a ciclos Hielo-Deshielo" Tesis Para Optar el Título de Doctor en Ingeniería Civil en la Universidad Politécnica de Madrid-España cuyo objetivo es "Relacionar las condiciones de curado del hormigón y la adición de un inclusor de aire, con los daños producidos por los ciclos hielo-deshielo en hormigones curados con baja humedad y alta temperatura" concluye que:

[...] Las propiedades de durabilidad del hormigón sometido a los ciclos hielodeshielo están muy relacionadas con su estructura porosa. El volumen, el radio y la distribución del tamaño de poros definen el punto de congelación y la cantidad de hielo formado en los poros [...] durante el ensayo de hielo-deshielo se completa la hidratación del cemento, insuficientemente desarrollada al principio por el curado extremo aplicado [...] (2009, p.178).

El autor nos indica que la relación de poros en el concreto está directamente relacionada con la durabilidad del concreto sometido a ciclos de hielo-deshielo en mi opinión esto sucede debido a que los poros permiten que el aumento del volumen del agua al congelarse no aumente el volumen del concreto evitando así que este de agriete siendo muy importante tener en cuenta la distribución de los poros en el concreto para que el hielo no genere daños.

Bardales, Fernando nos comenta, en su tesis titulada "Optimización del Desempeño de Pavimentos Rígidos Mediante la Utilización de Soporte Lateral" Tesis para obtener el Título de Ingeniero Civil Administrativo en el Grado Académico de Licenciado en la Universidad Rafael Landívar Asunción Guatemala en donde su objetivo es "Realizar un análisis comparativo de pavimentos rígidos para determinar la forma en que la utilización de diferentes casos de soporte lateral afecta positiva o negativamente su desempeño y comportamiento estructural", nos concluye que:

[...] La utilización de soporte lateral en losas de pavimentos rígidos disminuye los esfuerzos máximos debidos a la aplicación de cargas de tránsito en el borde. En los modelos analizados se observa que se reduce de esfuerzos de hasta

36.5% en las losas con soporte lateral comparando con aquellas sin soporte lateral [...] El IRI al cabo de 20 años a partir de la construcción de un pavimento rígido es menor en pavimentos con soporte lateral en comparación con pavimentos sin soporte lateral [...] (2015, p. 227).

El autor nos menciona sobre la ventaja que le da al concreto la utilización de un soporte lateral en su desempeño, esto en mi opinión es muy importante pues permite reducir los esfuerzos máximos de borde, siguiendo las conclusiones del autor se puede decir que la utilización de un soporte lateral aumenta la vida útil del pavimento rígido.

Monobanda, Carlos nos comenta, en su tesis titulada "El Curado del Hormigón y su incidencia en las Propiedades Mecánicas Finales" Tesis para obtener el Título de Ingeniero Civil en la Universidad Técnica de Ambato Ecuador cuyo objetivo es "Realizar un estudio al curado del hormigón para mejorar sus propiedades mecánicas finales", concluye que:

[...] No existe un documento que se enfoque en la importancia del curado del hormigón, como son, los factores que influyen en el mismo, las diferentes técnicas de curado existentes y sus formas de aplicarlas [...] pese a que el 97,14 % de la muestra sabe que es curar el hormigón, el 88,57 % realiza algún tipo de curado, de este porcentaje el 74,29 % lo realiza mediante aspersión o rocío de agua, y solo el 2,86 % lo realiza de una manera técnica y adecuada [...]

Nos indica el autor que además de no existir documentación que especifique el óptimo curado del concreto solo un porcentaje bastante pequeño de los constructores realiza un curado especial al concreto, además Monobanda nos comenta:

[...]Se observa que no se toma en cuenta las condiciones climáticas del lugar [...]Existe un desconocimiento de la duración de curado (curado mínimo), para las construcciones en estudio [...] Las probetas expuestas al curado con agua permanente son las de mayor resistencia [...] (2015, p.284).

El autor nos resalta que no se tienen en consideración las condiciones climáticas del lugar y en mi opinión las condiciones climáticas de cada lugar deberían tenerse en cuenta de manera particular para desarrollar una técnica de curado y protección de concreto en cada obra, también hace mención de que el tiempo de curado mínimo es un tema de desconocimiento entre los profesionales del ámbito de la construcción, por ultimo concluye que el curado continuo es el que genera un concreto con mayor resistencia.

En mi opinión establecer las condiciones de curado y protección de concreto debería ser una prioridad en las obras de construcción para garantizar el óptimo desempeño mecánico del concreto.

Leal, Rodrigo nos comenta, en su tesis titulada "Hormigonado en Tiempo Frio" Tesis para obtener el Título Constructor Civil en la Universidad Austral de Valdivia Chile cuyo objetivo es "Formar un criterio con el cual, se pueda desarrollar en forma exitosa la elaboración, transporte, colocación y curado del hormigón bajo 2 posibles escenarios distintos", llega a la conclusión:

[...] la importancia de la buena selección del material a emplearse para la elaboración del hormigón para el tiempo frío, es que esté presente las mejores condiciones técnicas para afrontar las condiciones climáticas, es por ello, que los áridos deben cumplir las características convencionales para los hormigones elaborado y colocados en un clima normal (sobre 5°C) y más aún deben presentar características especiales para un hormigón en tiempo frío, como por ejemplo Las condiciones de trabajabilidad (condiciones de granulometría, contenido de granos finos, etc.) [...] (2005, p.306).

Yela, Jorge nos comenta, en su tesis titulada "Determinación del Gradiente Térmico en losas de Pavimentos de Concreto Hidráulico" Tesis para obtener el Título de Ingeniero Civil en la Universidad de San Carlos de Guatemala la cual tiene como objetivo "Determinar el comportamiento térmico de las losas de pavimento de concreto hidráulico, relacionándolo con la temperatura ambiente y su influencia en el desempeño del elemento estructural", concluye que:

[...] la losa se ve menos afectada por la temperatura ambiente al fondo que en la superficie, y sus cambios de temperatura son menos abruptos en el fondo [...]Los períodos de tiempo críticos para el alabeo por temperatura de las losas suelen presentarse cuando el gradiente es máximo positivo y máximo negativo [...] (2017, p.306).

El autor nos comenta que los cambios de temperaturas en las losas de concreto se agudizan más en las esquinas de estas, cuando los gradientes de la temperatura son máximos y mínimos se producen esfuerzos mayores en las esquinas de las losas debido al alabeo en ellas, en mi opinión la consideración de este alabeo debe ser incluido en el diseño de los pavimentos rígidos.

1.3 Teorías Relacionadas al Tema

1.3.1 Curado y Protección del concreto

Definiciones

- 1) El período durante el cual el concreto debe ser protegido y curado depende de muchos factores. Entre ellos, el tipo de El curado es la manutención de la temperatura y del contenido de humedad satisfactorios, por un periodo de tiempo que empieza inmediatamente después de la colocación (colado) y del acabado, para que se puedan desarrollar las propiedades deseadas del concreto. Siempre se debe enfatizar la necesidad de curado pues tiene una fuerte influencia sobre las propiedades del concreto endurecido, o sea, él curado adecuado hace que el concreto tenga mayor durabilidad, resistencia, impermeabilidad, resistencia a abrasión, estabilidad dimensional, Resistencia al congelamiento, hielo-deshielo. (Portland Cement Association, 2004. p.261)
- 2) La adecuada implementación cemento, el uso de aditivos, las proporciones de la mezcla, el asentamiento, la resistencia requerida, el tipo, el tamaño, la geometría del elemento, las condiciones ambientales y el grado de exposición durante su vida útil. (Artículo editado por Asocreto para el blog 360° en Concreto,2014. p.3)
- 3) El curado es el proceso de controlar y mantener un contenido de humedad satisfactorio y una temperatura favorable en el concreto, durante la hidratación de los materiales cementantes, para el desarrollo de las propiedades para las cuales fue diseñada la mezcla.
 - Es importante que el proceso de curado se realice inmediatamente después de haber culminado las operaciones de acabado y la superficie del concreto haya perdido el brillo del agua. Si no se procede de esta manera, se corre el riesgo de que el secado pueda eliminar el agua necesaria para que se dé la reacción química llamada hidratación, de modo que el concreto no podrá alcanzar sus propiedades potenciales. (Concremax, marzo 2019)
- 4) Considerar que todo proceso de curado, especialmente en las primeras edades, trae como consecuencia mayor hidratación del cemento que garantiza la resistencia y durabilidad requerida, evitando además fisuras por las contracciones plásticas por secado. Para proteger el concreto y obtener mejores resultados, iniciar el curado cuando la superficie empiece a perder su brillo y se torne opaca. Realizar el curado por un período mínimo

- de 7 días, tal como lo especifican los reglamentos nacionales e internacionales. (www.unicon.com.pe/repositorioaps/F_T_%20UNIBASE%20-%20UNICON)
- 5) Él curado es el nombré que se les da a los procedimientos utilizados para promover la hidratación del cemento; consiste en el control de la temperatura y en el movimiento de la humedad, a partir de la superficie, hacía dentro del concreto.

Más específicamente el objeto del curado es mantener saturado al concreto, o tan cercamente saturado como sea posible, hasta que el espacio originalmente llenada con agua de la pasta de cementó fresco se haya llenado con el grado deseado por los productos de hidratación del cemento.

En el caso del concreto en obra, él curado efectivo se detiene casi siempre mucho antes de que se haya ocurrido la máxima hidratación posible. (A. Neville, 1995. p.222).

Marco Normativo

Como norma técnica de referencia se puede mencionar a la ACI Comité 306, ASTM a la Norma Técnica Peruana las cuales dan parámetros para la elaboración de ensayos, así como consideraciones mínimas de evaluación.

Dimensiones de la sección, dimensión mínima Temperatura del Aire Línea (mm.) 300-900 900-1800 300 1800 Temperatura mínima del concreto colocado y para mantenimiento 13°C 10°C 7°C Temperatura mínima del concreto para la mezcla de acuerdo a la temperatura del aire 2 -1°C 16°C 13°C 10°C 7°C 10°C -18°C a -1°C 18°C 16°C 13°C -18°C 21°C 18°C 16°C 13°C 4 Máxima temperatura permitida en las primeras 24 hrs., al final del período de protección 5 17°C 11ºC

Tabla 2: Fuente ACI Comité 306

1.3.2 Factores Determinantes

La inadecuada implementación de estas labores tiene una gran influencia sobre las propiedades del concreto, tanto en estado plástico, como en estado endurecido, particularmente, en lo que se refiere a su fraguado, estabilidad volumétrica, permeabilidad, densidad. Resistencia mecánica, durabilidad y resistencia a la abrasión. (Asocreto, enero 2014).

El período durante el cual el concreto debe ser protegido y curado depende de muchos factores. Entre ellos, el tipo de cemento, el uso de aditivos, las proporciones de la mezcla, el asentamiento, la resistencia requerida, el tipo, el tamaño, la geometría del elemento, las condiciones ambientales y el grado de exposición durante su vida útil. (Asocreto, enero 2014).

El Cemento Portland Tipo I

Es un aglomerante hidrófilo, resultante de la calcinación de rocas calizas, areniscas y arcillas, de manera de obtener un polvo muy fino que en presencia de agua endurece adquiriendo propiedades resistentes y adherentes.

En el año 1945 cuando se desarrolla el procedimiento industrial del cemento Portland moderno que con algunas variantes persiste hasta nuestros días y que consiste en moler rocas calcáreas con rocas arcillosas en cierta composición y someter este polvo a temperaturas sobre los 1300°C produciéndose lo se llama el Clinker, constituido por bolas endurecidas de diferentes diámetros, que finalmente se muelen añadiéndose yeso para tener como producto definitivo un polvo sumamente fino.(E. Pasquel, 1999.p.17)

Tipo de Cemento

Los tipos de cemento Portland que podemos calificar de estándar ya que su fabricación esta normada por requisitos específicos los cuales son.

- **Tipo I.-** De uso general, dónde no se requiere propiedades especiales.
- **Tipo II.-** De moderada resistencia a los sulfatos y moderado calor de hidratación. Pará emplearse en estructuras con ambientes y/o en vaciados masivos,
- **Tipo III**.- Desarrollo rápido de resistencia con elevado calor de hidratación. Para su uso en clima frio o en los casos que se necesite resistencias tempranas para adelantar la puesta en servicio de las estructuras.
- **Tipo IV.** De bajo calor de hidratación para concretos masivos.
- **Tipo V**.- Alta resistencia a los sulfatos, parás ambientes muy agresivos

Existen también los cementos adicionados como son tipo IS, ISM, IP, IPM

El cemento como factor determinante para este tipo de clima frio el cemento recomendado es el **TIPO III** por su elevado calor de hidratación que se necesita en las primeras horas para llegar a la madures del concreto evitando el congelamiento. (E. Pasquel, 1999. p.17)

Aditivos

Son materiales orgánicos o inorgánicos que se añaden a la mezcla durante o luego de formada la pasta de cemento y que se modifica en forma dirigida algunas características del proceso de hidratación, el endurecimiento e incluso la estructura interna del concreto.

Clasificación de los Aditivos para Concreto

Para el desarrollo de los diferentes tipos de aditivos, los clasificaremos desde el punto de vista de las propiedades del concreto que modifican, ya que es el aspecto básico al cual se apunta en obra cuando se desea una alternativa de solución que no puede lograrse con el concreto normal.

- Aditivos Acelerantes
- Aditivos Incorporadores de Aire
- Aditivos reductores de Agua-Plastificantes
- Aditivos Superplastificantes
- Aditivos Impermeabilizantes
- Aditivos Retardadores

Curadores Químicos

Pese a que no encajan dentro de la definición clásica de aditivos, pues no reaccionan con el cemento, constituyen que se añaden con la superficie del concreto vaciado para evitar la pérdida de agua y asegurar que exista la humedad necesaria para el proceso de hidratación.

El principio de acción consiste en crear una membrana impermeable sobre el concreto que contrarreste la perdida de agua por evaporación.

(E. Pasquel.1, 999.pag.113)

Diseño de mezclas

El diseño de mezclas de concreto, es conceptualmente la aplicación técnica y practica de los conocimientos científicos sobre sus componentes y la interacción entre ellos, para lograr un material resultante que satisfaga de la manera más eficiente los requerimientos particulares el proyecto constructivo.

- El principio de los volúmenes absolutos
- La Resistencia en compresión y la relación agua/cemento
- La granulometría de los agregados y el Tamaño Máximo de la piedra
- La trabajabilidad y su Trascendencia

1.3.2 Métodos y Materiales de Curado

"El método o la combinación de métodos elegido depende de factores como la disponibilidad de los materiales de curado, el tamaño, forma y edad del concreto, las instalaciones de producción apariencia estética y economía. Como resultado, él curado normalmente envuelve una serie de procedimientos usados en momentos específicos a medida que el concreto se envejece. Por ejemplo, aspersión de niebla o estopa húmeda cubierta con plástico preceder la aplicación del compuesto de curado. Él momento de cada procedimiento depende del grado necesario de endurecimiento para el procedimiento no dañe la superficie de concreto", (ACI 308,1977).

Coberturas Húmedas

"Normalmente para el curado, se usan las cubiertas de telas saturadas con agua, cómo las arpilleras, esteras de algodón, mantas u otras telas que retengan humedad. Las coberturas de tela saturada, capaces de retener el agua, deberán colocarse tan pronto el concreto se haya endurecido suficientemente para evitar daños a su superficie", (PCA, 2004, p.300).

Figura 2: Curado mixto con yute húmedo y Cobertor Plástico

Curado por Humedad Interna

"El curado por humedad interna se refiere a métodos que fornecen humedad desde el interior del concreto y no desde su exterior. Está agua no debe afectar al fraguado inicial de la relación agua-cemento del concreto fresco", (PCA, 2004, p.300).

Cimbras dejadas en su lugar

"Las cimbras (encofrados) fornecen una protección satisfactoria contra la perdida de humedad si se mantiene húmeda la superficie superior expuesta. La manguera de regar es excelente para esta finalidad. Se deben dejar las cimbras en el concreto el mayor tiempo posible", (PCA, 2004, p.301).

Figura 3: Curado del Concreto lluvia de agua

Figura 4: Curado químico fornocedores de Película

Mantas o cubiertas Aislantes

"Camadas de material seco y poroso, tales como, la paja o heno se pueden utilizar para fornecer aislamiento contra la congelación del concreto, cuándo las temperaturas caen a menos de 0° C (32°F). El curado del concreto en clima frio debe seguir las recomendaciones del capítulo 14 y del ACI 306(1977) colocación del concreto en clima frio (Cold-Weather Concreting)", (PCA,2004, p.297).

Figura 5: Curado con Cubiertas Aislantes

Fuente: blog.structuralia (2018)

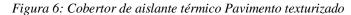


Figura 7: Protección Térmica del Pavimento

PROTECCIÓN TÉRMICA Y POR LLUVIAS

Curado a vapor

"El curado a vapor es ventajoso donde sea importante el desarrollo de la resistencia temprana o donde sea necesario calor adicional para que logre la hidratación, como en el caso del clima frio", (PCA, 2004, p.298).

Figura 8: Curado con vapor

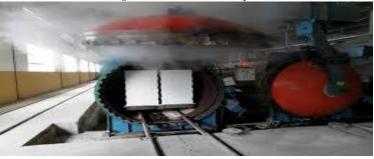


Figura 9: Curado por tuberías a Vapor

1.3.3 Tiempo de Curado del Concreto

"El periodo de tiempo que se debe proteger el concreto de la congelación, temperaturas elevadas anormales y contra la pérdida de humedad depende de diversos factores: el tipo de material cementante usado, las proporciones de la mezcla, resistencia requerida, tamaño y forma del miembro del concreto, clima ambiente y condiciones de exposición futura. Él periodo de curado puede ser de 3 semanas o más para concretos magros usados en estructuras masivas, Tales como presas. Por otro lado, puede ser unos pocos días de mezclas ricas, especialmente si se emplean cementos de alta resistencia inicial. En losas de concreto sobre el terreno y en concretos estructural el periodo de curado con temperaturas menores a 5°C (40° F) debe ser por lo menos de 7 días, pero un tiempo adicional se puede requerir para que se logre 70% de las resistencias a compresión o a flexión especificadas", (PCA, 2004, 293).

1.3.4 Pavimento

El pavimento es el acabado de una calle, carretera y pista de aterrizaje, por lo tanto, realizada la explanación, no está aún terminada la vía y para que el tráfico pueda utilizarla es preciso construir el pavimento necesario y suficiente a fin de que los vehículos puedan circular en todo tiempo.

La preocupación de construir pavimentos de suficiente resistencia aparece desde la más remota antigüedad, las calles enlosadas de Babilonia y Roma son vestigios de una vieja técnica,

fundadas en principios similares a los actuales. La aparición del vehículo y de la aeronave impusieron imperiosamente, condiciones especiales no solo de resistencia del pavimento, sino también de continuidad y reducido desgaste de su superficie, para evitar el polvo. La técnica moderna dispone de un gran número de pavimentos de variadas condiciones de resistencia y costo; es posible contar en cada caso, según las condiciones del terreno de fundación, con el preciso tráfico que la vía va soportar. (Céspedes Abanto,2002, p.31)

1.3.5 Tipos de Pavimentos

Los Tipos de pavimentos se pueden agrupar según las siguientes categorías:

Por su ubicación

- Pavimentos para vivienda y alrededores
- Pavimentos para zonas urbanas
- Pavimentos para carreteras
- Pavimentos para aeropuertos
- Pavimentos para puertos y muelles

Por los materiales que están constituidos

- Suelos estabilizados
- Pavimentos bituminosos
- Pavimentos de losas de concreto de cemento Portland
- Pavimentos adoquinados
- Pavimentos empedrados

Por el número de capas

- Pavimento simple
- Pavimento compuesto

Por la manera como transmiten la carga a la subrasante

- Pavimentos flexibles
- Pavimentos rígidos
- Pavimentos mixtos

1.3.6 Pavimento Rígido

"Un pavimento regido consiste básicamente en una losa de concreto simple o armado, apoyada directamente sobre una base o sub base. La losa, debido a su rigidez y alto módulo de elasticidad, absorbe gran parte de los esfuerzos que ejercen sobré el pavimento lo que produce una buena distribución de las cargas de rueda, dando como resultado tensiones muy bajas en la sub rasante. Se compone de losas de concreto hidráulico en algunas ocasiones armado de acero, tiene un costo inicial más elevado que el flexible, su periodo de vida varía entre 20 y 40 años; él mantenimiento que requiere es mínimo y solo se efectúa (comúnmente) en las juntas de las losas y por eventos emergentes.

Los pavimentos rígidos están sujetos a los siguientes esfuerzos:

- Esfuerzos abrasivos causados por las llantas de los vehículos.
- Esfuerzos directos de compresión y cortadura, causados por las cargas de las ruedas.
- Esfuerzos de compresión y tensión que resultan de la deflexión de las losas bajo las cargas de la rueda.
- Esfuerzos de compresión y tensión causadas por la expansión y contracción del concreto y por defectos de cambios de temperatura.

Clases de Pavimento Rígido:

- Pavimento de Concreto Simple
- Pavimento de Concreto Armado
- Pavimento de Concreto Compactado con Rodillo
- Pavimento de Hormigón pre o Postensado". (Salazar, 2016, p. 3)

1.3.7 Diseño de Pavimentos Rígidos

MÉTODO AASHTO 93 PARA EL DISEÑO DE PAVIMENTOS RÍGIDOS

El diseño del pavimento rígido involucra el análisis de diversos factores: tráfico, drenaje, clima, características de los suelos, capacidad de transferencia de carga, nivel de serviciabilidad deseado, y el grado de confiabilidad al que se desea efectuar el diseño acorde con el grado de importancia de la carretera. Todos estos factores son necesarios para predecir un comportamiento confiable de la estructura del pavimento y evitar que el daño del pavimento alcance el nivel de colapso durante su vida en servicio.

1.3.7.1 Criterios de comportamiento

Confiabilidad

La confiabilidad es la probabilidad de que el pavimento se comporte satisfactoriamente durante su vida útil o período de diseño, resistiendo las condiciones de tráfico y medio ambiente dentro de dicho período. Cabe resaltar, que cuando hablamos del comportamiento del pavimento nos referimos a la capacidad estructural y funcional de éste, es decir, a la capacidad de soportar las cargas impuestas por el tránsito, y asimismo de brindar seguridad y confort al usuario durante el período para el cual fue diseñado. Por lo tanto, la confiabilidad está asociada a la aparición de fallas en el pavimento.

Serviciabilidad

La serviciabilidad se usa como una medida del comportamiento del pavimento, el mismo pavimento, la misma También se relaciona con la seguridad y comodidad que puede brindar al usuario (comportamiento funcional), cuando éste circula por la vialidad. las características físicas que puede presentar el pavimento como grietas, fallas, peladuras, etc, que podrían afectar la capacidad de soporte de la estructura (comportamiento estructural).

a) Índice de serviciabilidad inicial (P0)

El índice de serviciabilidad inicial (P0) se establece como la condición original del pavimento inmediatamente después de su construcción o rehabilitación. AASHTO estableció para pavimentos rígidos un valor inicial deseable de 4.5, si es que no se tiene información disponible para el diseño.

b) Índice de serviciabilidad final (Pt)

El índice de serviciabilidad final (Pt), ocurre cuando la superficie del pavimento ya no cumple con las expectativas de comodidad y seguridad exigidas por el usuario. Dependiendo de la importancia de la vialidad, pueden considerarse los valores Pt indicados en la tabla 1.4.

Así, el cambio total en el PSI en cualquier momento puede ser obtenido sumando los efectos dañinos del tráfico, arcillas expansivas y/o levantamientos por helada.

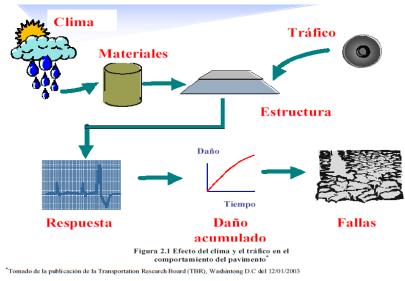


Figura 10: Factores de comportamiento de pavimento

Fuente: Tranportation Research Board (2003)

1.3.7.2 Propiedades de los materiales

Módulo de reacción de la subrasante (k)

Este factor nos da idea de cuánto se asienta la subrasante cuando se le aplica un esfuerzo de compresión. Numéricamente, es igual a la carga en libras por pulgada cuadrada sobre un área de carga, dividido por la deflexión en pulgadas para esa carga. Los valores de k son expresados como libras por pulgada cuadrada por pulgada (psi).

Puesto que la prueba de carga sobre placa, requiere tiempo y es costosa, el valor de k es estimado generalmente por correlación con otros ensayos simples, tal como la razón de soporte california (CBR) o las pruebas de valores R. El resultado es válido porque no se requiere la determinación exacta del valor k; las variaciones normales para un valor estimado no afectarán apreciablemente los requerimientos de espesores del pavimento. Pudiendo obtener estos valores utilizando los unos cuadros que se encuentran en la Guía AASHTO "Diseño de estructuras de pavimentos, 1993".

Módulo de rotura del concreto

Es un parámetro muy importante como variable de entrada para el diseño de pavimentos rígidos, ya que va a controlar el agrietamiento por fatiga del pavimento, originado por las cargas

repetitivas de camiones. Se le conoce también como resistencia a la tracción del concreto por flexión.

El módulo de rotura requerido por el procedimiento de diseño es el valor medio determinado después de 28 días utilizando el ensayo de carga en los tercios. De esta manera, se obtiene en el tercio medio una zona sometida a un momento flector constante igual a PL/3 y la rotura se producirá en cualquier punto de este tercio medio con la única condición que exista allí una debilidad. Este ensayo es recomendable frente al ensayo de carga en el punto medio, en el cuál la rotura se producirá indefectiblemente en dicho punto (punto de aplicación de la carga) donde el momento flector es máximo.

El módulo de rotura también se puede determinar a través de las siguientes correlaciones:

1. Estimación a través de la resistencia a compresión del concreto.

$$S = k(f) S = k(f) 7 < k < 12$$

Dónde:

f c= Resistencia a compresión del concreto en psi.

2. Estimación a través de la resistencia a la tracción indirecta.

$$S'= 210 1.02 IT$$

Dónde:

IT = Tracción indirecta medida en las probetas en psi.

Los valores del módulo de rotura varían entre 2.8 MPa (400 psi) y 4.8 MPa (700 psi), llegando incluso a valores de 8.2 MPa (1200 psi), en concretos con alta resistencia inicial.

Módulo de elasticidad del concreto

Es un parámetro que indica la rigidez y la capacidad de distribuir cargas que tiene una losa de pavimento. Es la relación entre la tensión y la deformación. Las deflexiones, curvaturas y tensiones están directamente relacionadas con el módulo de elasticidad del concreto.

En los pavimentos de concreto armado continuo, el módulo de elasticidad junto con el coeficiente de expansión térmica y el de contracción del concreto, son los que rigen el estado de tensiones en la armadura. Para concreto de peso normal, el Instituto del Concreto Americano sugirió:

Ec = 57000(fc)0.5

Donde Ec y c f están dados en psi

1.3.7.3 Características Estructurales

Drenaje

El proceso mediante el cual el agua de infiltración superficial o agua de filtración subterránea es removida de los suelos y rocas por medios naturales o artificiales, se llama drenaje. El drenaje es uno de los factores más importantes en el diseño de pavimentos.

Transferencia de carga

Las cargas de tránsito deben ser transmitidas de una manera eficiente de una losa a la siguiente para minimizar las deflexiones en las juntas. Las deflexiones excesivas producen bombeo de la subbase y posteriormente rotura de la losa de concreto.

Pérdida de soporte

Este factor, LS (loss of support = pérdida de soporte) es incluido en el diseño de pavimentos rígidos para tomar en cuenta la pérdida potencial de soporte proveniente de la erosión de la subbase y/o movimientos diferenciales verticales del suelo. Deberá también considerarse este factor en términos de los movimientos verticales del suelo que pueden resultar de vacíos bajo el pavimento.

Resultar de vacíos bajo el pavimento. Aun cuando se utilice una subbase no erosionable, pueden desarrollarse vacíos, reduciendo la vida del pavimento. *Guía AASHTO "Diseño de estructuras de pavimentos, 1993".

1.3.8 Tráfico

"Cuando los ejes cargados transitan sobre el pavimento pasando de una losa a otra producen dos grandes efectos: esfuerzos de flexión en la losa de concreto y deflexiones en juntas, grietas, esquinas y borde del pavimento", (Ministerio de Transportes y Comunicación, 2016).

"En el primero se inducen esfuerzos internos y deformaciones que acumulan fatiga en cada pasada, dichos esfuerzos son críticos cuando la losa presenta una deformación de alabeo

cóncavo, donde los esfuerzos son máximos en el centro de la cara superior de la losa y en la zona central de los bordes superiores. Al cabo de muchas repeticiones de carga, el material alcanza un fatigamiento que se manifiesta en la aparición de fisuras en dichos puntos, los que luego se propagan hacia abajo afectando todo el espesor de la losa. Es claro que si en los sectores de altos esfuerzos de flexo-tracción preexisten fusilamientos iniciados por retracción plástica en el concreto fresco, la propagación de las fisuras se facilita grandemente y el fatigamiento se acelera", (Ministerio de Transportes y Comunicación, 2016).

1.3.9 Desempeño Mecánico Final

Definiciones

- Diseñar una estructura por durabilidad aporta ventajas técnicas u económicas.
 Técnicamente permite que la estructura tenga un mejor desempeño ante sus condiciones de servicio, por lo tanto, se disminuye el porcentaje de reparaciones minimizando costos económicos. (Fernández -Castañeda-Mendoza-Escobedo UNAM marzo. 2006).
- Ningún diseñador o propietario espera que los sistemas contraincendios o la instalación eléctrica funcionen adecuadamente sin inspección y mantenimiento; sin embargo, es un supuesto no hablado o escrito que las estructuras de concreto servirán indefinidamente sin ninguna atención. La experiencia ha mostrado que el costo por no considerar la durabilidad es mayor al que se invierte si se le considera (Taylor, 2002 y Uribe, 1999, 2001).
- El ACI define la durabilidad del concreto de cemento Portland como la habilidad para resistir la acción del intemperismo, al ataque químico, abrasión, y cualquier otro proceso de o condición de servicio de las estructuras que produzcan deterioro del concreto. La conclusión primordial que se desprende de esta definición es que la durabilidad no es un concepto absoluto que dependa solo del diseño de mezcla, sino que está en función del ambiente y las condiciones de trabajo a las cuales las sometemos para lograr el desempeño mecánico final esperado. (E. Pasquel, 1999.pag.273).
- El concreto de cemento portland ha emergido claramente como el material de elección para la construcción de un gran número y variedad de estructuras en el mundo de nuestros días. Esto se atribuye principalmente al bajo costo de los materiales y la

construcción para estructuras de concreto, así como también al bajo costo del mantenimiento. Por lo tanto, no es sorprendente que muchos avances en la tecnología del concreto hayan ocurrido como resultado de dos fuerzas impulsoras, específicamente la velocidad de construcción y la durabilidad del concreto. (Instituto Mexicano del Cemento y del Concreto, A.C. Revista Construcción y Tecnología octubre 2000).

• La durabilidad es la capacidad que tienen las estructuras de concreto reforzado de conservar inalteradas sus condiciones físicas y químicas durante su vida útil cuando se ven sometidas a la degradación de su material por diferentes efectos de cargas y solicitaciones, las cuales están previstas en su diseño estructural. Dicho diseño debe estipular las medidas adecuadas para que la construcción alcance la vida útil establecida en el proyecto, teniendo en cuenta las condiciones ambientales, climatológicas y el género de las estructuras a construir. Las medidas preventivas indicadas en la etapa de proyecto suelen ser muy eficaces logrando objetivos con desempeños satisfactorios. (Hormigón especial A. Valdez Marzo,2017Cemex).

Importancias

Importante el tema de la medida del desempeño real del concreto, para generar un producto de alta calidad.

Entre los diversos factores que inciden en la f´c, se abordarán en este escrito: la relación aguacemento (a/c) y el grado de compactación de la mezcla; las características de los materiales componentes; la edad del concreto; la temperatura e higrometría del ambiente de curado; la toma de muestras y su almacenamiento, así como las condiciones del ensayo de para verificar el desempeño de acuerdo fue diseñado. (Ingeniería, E. Vidaut, Sep,2013).

Debilidades

No existe una receta para solucionar los problemas y las necesidades en infraestructura, es decir, que cada proyecto dependiendo de su localización, al margen del diseño y los cálculos estructurales se tendrá analizar sobre el correcto procedimiento constructivo porque tendremos dos interrogantes:

¿Porque el concreto no desarrolla resistencia en tiempos de heladas? Este es uno de los problemas álgidos en la región Quechua, y con mayor agudeza en las estaciones de invierno

(Mayo, Junio, Julio y Agosto), y la explicación que tenemos es que el concreto no desarrolla resistencia debido a que la velocidad de hidratación es lenta, se prolonga el tiempo de fraguado y en algunos casos hasta llega a detenerse, las bajas temperaturas oscilan desde –8 °C hasta 20 °C en un periodo de 24 horas, y en las obras civiles trae consigo consecuencias a contracciones y extensiones en el concreto generando grietas, y si a esto le sumamos que se diseñan concretos de bajas resistencias (f´c= 175kg/cm2), el resultado a corto plazo es evidente: concretos deteriorados y fragmentados ya que estas causas no permiten que el concreto tenga una buena durabilidad. (C. Damiani, mayo,2011).

Correctivos

Finalmente, el cuidado y las consideraciones que debemos tener son importantes, a continuación, le doy algunos consejos que deben tomar antes y después del vaciado:

- 1. Deberemos escoger las horas más apropiadas y donde la temperatura ambiente sea la más caliente.
- 2. Dosificar la mezcla con agregados de buena calidad, poco permeables.
- 3. La relación de a/c no supere el 0,45 el exceso de agua en la mezcla traerá como consecuencia que se produzca el fenómeno de congelamiento.
- 4. Calentar agua de ser necesario, de tal manera que nuestra concreto en su estado plástico alcance un mínimo de 13°C
- 5. Dependiendo del espesor de los elementos vaciados estos deberán permanecer mayor tiempo encofrados, es decir no debemos desencofrar al día siguiente si es posible que las formas permanezcan 72 horas, en especial en columnas.
- 6. El curado debe ser controlado, evitando la perdida rápida de humedad podemos emplear plásticos de color negro que durante las horas de sol absorberán calor, para conservarlo en horas de la noche.
- 7. Durante la noche en el caso de losas, estas deben ser cubiertas con mantas, tierra, arena de tal manera que la superficie no esté expuesta a la temperatura ambiente.

8. Si empleamos acelerantes de fragua, debemos controlar el calor de hidratación del concreto, ya que los efectos por el exceso de calor son los mismos, es decir generan fisuramiento. (C. Damiani, mayo,2011).

1.3.10 Ensayos que Determinan el Desempeño del Concreto

1.3.10.1 Agregados grueso y fino

Tabla 3: Ensayos al agregado grueso y agregado fino

DESCRIPCIÓN	NORMA ASTM	NORMA NTP
Abrasión	ASTM C131	NTP 400.019 - 400.020
Cloruros solubles		NTP 400.042
Inalterabilidad por medio de Sulfato de Magnesio	ASTM C88	NTP 400.016
Equivalente de arena	ASTM D2419	NTP 339.146
Granulometría	ASTM C136	NTP 400.037
Humedad	ASTM C566	NTP 339.185
Impurezas orgánicas	ASTM C40	NTP 400.013
Malla 200	ASTM C117	NTP 400.018
Partículas chatas y alargadas	ASTM D4791	NTP 400.04
Partículas Friables y Terrones de Arcilla	ASTM C142	NTP 400.015
Partículas Ligeras	ASTM C123	NTP 400.023
Peso Específico y Absorción	ASTM C127 - C128	NTP 400.021 - 400.022
Peso Unitario	ASTM C29	NTP 400.017
Sales solubles totales	ASTM C114	NTP 400.042
Detección de reacción potencial de Álcali - Sílice (método de la barra de mortero)	ASTM C1260	

1.3.10.2 Agua (laboratorio externo)

Tabla 4: Ensayos al agua

	, 0	
DESCRIPCIÓN	NORMA ASTM	NORMA NTP
Alcalinidad	ASTM D1067	NTP 334.051
Cloruros solubles		NTP 339.076
Ph		NTP 339.073
Residuos sólidos totales		NTP 339.071
Sulfatos solubles		NTP 339.079

1.3.10.3 Ensayos al concreto fresco

Tabla 5: Ensayos al concreto fresco

DESCRIPCIÓN	NORMA ASTM			
Slump	ASTM C143			

Contenido de aire	ASTM C231
Temperatura	ASTM C1064
Peso Unitario	ASTM C138
Tiempo de Fragua	ASTM C403

1.3.10.4 Ensayos en concreto endurecido

Tabla 6: Ensayos al concreto endurecido

ENSAYOS AL CONCRETO ENDURECIDO					
DESCRIPCIÓN NORMA ASTM					
Flexión	ASTM C78				
Resistencia a la compresión	ASTM C39				

1.4 Formulación del Problema

1.4.1 Antecedentes del Problema

Existen varias investigaciones referidas sobre los efectos negativos que tiene el concreto expuesto a ciclos de congelamiento y deshielo, donde dan soluciones referentes a su estructura del concreto como es la incorporación de aire, fibras de polipropileno, etc. Pero hay pocas investigaciones referentes a la protección que se le da al concreto en su fase de endurecimiento.

1.4.2 Problema General

¿De qué manera el curado el curado y protección del concreto mejora el desempeño mecánico del pavimento rígido en la carretera Oyon-Ambo?

1.4.3 Problemas Específicos

- > ¿De qué manera el curado y protección del concreto mejora el diseño de mezclas en el desempeño mecánico del pavimento rígido en la carretera Oyon- Ambo?
- ➢ ¿Porque el Cemento Portland tipo I por sus características de hidratación sería lo más recomendable para estos tipos de clima?
- > ¿Cómo influyen los aditivos incorporadores de aire en la resistencia (f'c) y durabilidad del concreto para pavimentos rígidos en altura?

1.5 Justificación del estudio

1.5.1 Justificación de la Investigación

Indica por qué la investigación se centrará en un tema aún se encuentra poco abordado en las investigaciones realizadas hasta ahora, que es la determinación de la influencia del clima frio en la durabilidad del concreto sometido a ciclos de congelamiento y deshielo, el cual se desarrollará a través de un ensayos en campo y respaldado en laboratorio donde se desprenderá un análisis físico-mecánico de acuerdo a su comportamiento, con los cuales se estudiará el concreto sometido a ciclos de congelamiento y deshielo.

1.5.2 Justificación Técnica

El concreto, aunque es un material bastante resistente, no es invulnerable a los efectos del medio ambiente en el que se encuentre.

El efecto prolongado de deterioro de los diferentes agentes o acciones sobre las estructuras de concreto ocasiona un descenso en los tiempos o períodos de vida útil y de servicio, el concreto de alta resistencia no es ajeno a esto. Por tal motivo lo que buscará esta investigación es afirmar las bases de futuras investigaciones, para las diferentes regiones del Perú. En un futuro no muy lejano el uso de concretos de alta resistencia no será muy ajeno ya que su uso de este tipo de concreto se viene masificando desde sus inicios en diversas partes del mundo.

Existen indicios de su investigación en nuestro país desde el año 2002, y que mejor panorama para realizar una investigación en las regiones con estos climas como caso específico donde desarrollara la investigación en la ciudad de Oyon.

1.5.3 Justificación Económica

Demostrar que el uso de adecuado de protecciones de manta de lana para concretado en clima frio no son excesivos, considerando lo requerido y los beneficios resultantes. La omisión de protección contra congelamiento temprano puede causar la inmediata destrucción o permanente debilitación del concreto en clima frio son esenciales una adecuada protección con mantas de lana para poder así prevenir las bajas temperaturas.

1.6 Hipótesis general

Para definir lo que es una hipótesis podemos mencionar la definición que nos brinda Tamayo (2010), quien indica "Es un enunciado de una relación entre dos o más variables sujetas a una

prueba empírica. Una proposición enunciada para responder tentativamente a un problema" (p.120).

Relacionando las variables de la presente tesis podemos definir la hipótesis general y las específicas.

1.6.1 Hipótesis General

➤ Si se realiza un curado adecuado este garantizara el desempeño mecánico del pavimento rígido en climas fríos mayores a 4700 m.s.n.m.

1.6.2 Hipótesis Específicas

- ➤ Si se realiza la protección de los pavimentos rígidos con lana de fibra de vidrio por espacio de 72 horas se optimizará el desarrollo de la resistencia y durabilidad del concreto.
- ➤ Si se realizan los diseños con relación w/c bajas se estarían solucionado este tipo de problema para estos climas fríos.
- ➤ Si utilizamos el Cemento Portland tipo I por sus características de hidratación sería lo más recomendable para estos tipos de clima.
- > Si utilizamos aditivos incorporadores de aire como influyen estos en la resistencia (f´c) y durabilidad del concreto para pavimentos rígidos en altura.

1.7 Objetivos

Valderrama, (2013) nos comenta que: "La determinación de los objetivos es la parte fundamental de toda investigación, ya que estos establecen los límites de la investigación; es decir, establecen hasta donde se desea llegar. Los objetivos son los cimientos de la estructura en la que se apoyara el resto de nuestra investigación; si estos son endebles, todas las etapas que le siguen lo serán...La elaboración de los objetivos de la investigación se realizará sobre la base de la formulación del problema; para ello, se hará uso de verbos en infinitivo" (p.135).

1.7.1 Objetivo Principal

Determinar como el curado y protección de la concreto mejora el desempeño mecánico final del pavimento rígido en la carretera Oyon-Ambo

1.7.2 Objetivos Específicos

- ➤ Determinar como el curado y protección del concreto mejora el diseño de mezclas en el desempeño mecánico final del pavimento rígido en la carretera Oyon-Ambo
- ➤ Determinar como el curado y protección del concreto mejora el factor seguridad en el desempeño mecánico final del pavimento en la carretera Oyon-Ambo.
- ➤ Determinar porque el Cemento Portland tipo I por sus características de hidratación sería lo más recomendable para estos tipos de clima.
- Determinar cómo influyen los aditivos incorporadores de aire en la resistencia (f´c) y durabilidad del concreto para pavimentos rígidos en altura.

II. MÉTODO

Valderrama, (2013) afirma: "Es una forma ordenada para obtener conocimientos sobre el problema de investigación. En términos prácticos, es la manera en que se busca solución a un problema determinado" (p. 181).

En este plan de investigación sus fundamentos se basan en el método científico, ya que se determinará cuáles son los métodos de curado y protección para el pavimentó rígido, usando métodos o procedimientos para la semejanza de resultados.

2.1 Fases del proceso de investigación

2.1.1 Enfoque

En este sentido, el método cuantitativo de acuerdo con Valderrama, (2013) "Es una forma de llevar a cabo la investigación; es una orientación filosófica o un camino a seguir que elige el investigador, con la finalidad de llevar a cabo una investigación. Se trata de proyecciones de planteamientos filosóficos que se suponen tener determinadas concepciones del fenómeno que se quiere indagar. Sé caracteriza por que se usa la recolección y el análisis de los datos para contestar a la formulación del problema de investigación, utiliza, además, los métodos o técnicas estadísticas para contrastar la verdad o falsedad de las hipótesis" (p. 106).

En este proyecto de investigación tiene un enfoque cuantitativo, porque las variables van ser comparadas por medio de una información cuantificada.

2.1.2 Tipo de Investigación

"Para Valderrama (2013) La investigación aplicada busca conocer para hacer, construir y modificar; le preocupa la aplicación inmediata sobre una realidad concreta. Este tipo de investigación es la que realiza o veden realizar los egresados del pre-y posgrados de las universidades, para conocer la realidad social, económica, política y cultural de su ámbito, y plantear soluciones concretas, reales, factibles y necesarias a los problemas planteados" (p. 113). Por lo tanto, se puede deducir que el tipo de investigación del proyecto es la aplicada, ya que en esta posición se practicara conocimientos antes de solucionar una problemática en una situación real.

2.1.3 Nivel de Investigación

Según Valderrama (2013) "La investigación explicativa responde a la interrogante ¿Por qué?, es decir con este estudio podemos conocer un hecho o un fenómeno de la realidad tiene tales y cuales características, cualidades, propiedades, etc., en síntesis, porque la variable en estudio es como es". (p. 173)

Dicho en otras palabras, se encarga de buscar el porqué del problema mediante la relación causaefecto.

En concordancia con lo explicado por Valderrama, definimos que el presente proyecto de investigación es explicativo, porque se puede conocer un hecho o fenómeno de la realidad que es el curado y protección del concreto del pavimento rígido.

2.1.4 Diseño de Investigación

Para Valderrama (2013), define: "En el diseño experimental se manipulan en forma deliberada una o más variables independientes para observar sus efectos en las variables dependientes.

Resaltando algunas características de este diseño, es que te faculta a trabajar con uno o varios grupos; señalando una serie de pautas con las variables que se van a manipular; además. recomienda las veces que se debe repetir el experimento y el orden, para poder establecer u grado de confianza, a la causa y efecto de un problema" (p. 176).

Por lo tanto, este proyecto de investigación será experimental, ya que la variable experimental será manipulada para elaborar pronósticos cuyo objetivo es describir de qué modo y por qué se produce el fenómeno para el curado y protección del concreto en pavimentos rígidos.

2.2 Variables

2.2.1 Curado y Protección del Concreto

"El período durante el cual el concreto debe ser protegido y curado depende de muchos factores. Entre ellos, el tipo de El curado es la manutención de la temperatura y del contenido de humedad satisfactorios, por un periodo de tiempo que empieza inmediatamente después de la colocación (colado) y del acabado, para que se puedan desarrollar las propiedades deseadas del concreto. Siempre se debe enfatizar la necesidad de curado pues tiene una fuerte influencia sobre las propiedades del concreto endurecido, o sea, él curado adecuado hace que el concreto tenga mayor durabilidad, resistencia, impermeabilidad, resistencia a abrasión, estabilidad dimensional, Resistencia al congelamiento, hielo-deshielo". (Portland Cement Association, 2004. p.261)

2.2.2 Desempeño Mecánico

El ACI define la durabilidad del concreto de cemento Portland como la habilidad para resistir la acción del intemperismo, al ataque químico, abrasión, y cualquier otro proceso de o condición de servicio de las estructuras que produzcan deterioro del concreto. La conclusión primordial que se desprende de esta definición es que la durabilidad no es un concepto absoluto que dependa solo del diseño de mezcla, sino que está en función del ambiente y las condiciones de trabajo a las cuales las sometemos para lograr el desempeño mecánico final esperado. (E. Pasquel, 1999.pag.273)

2.2.3 Operacionalización de la Variable

Tabla 7: Operacionalización de variables

VARIABLES	DEFINICIÓN	DEFINICIÓN	DIMENSIONES	INDICADORES	INSTRUMENTOS
Concreto	Según la (Portland Cement Association,2004. p.261) (PCA) El curado es la manutención de la	El curado y protección del concreto se evalúa tomando en cuenta los	Método de curado a vapor	Temperatura ambiente micro clima Resistencia Temprana Vapor Directo a Presión	Termómetro de laboratorio °C. Ensayo de compresión fo kg/cm² Presión lb/pul²
Curado y Protección del Concreto	temperatura y del contenido de humedad satisfactorios, por un periodo de tiempo que empieza inmediatamente después de la colocación		elementos observables a		Termocuplas internas, concreto fresco °C. Termocuplas, según sección kg/cal.
Curado y	(colado) y del acabado, para que se puedan desarrollar las propiedades deseadas del concreto.	través de los indicadores con ensayos de laboratorio, X instrumentos medibles y confiables.	Método de Formadores de Película	Sección Perdida de Humedad del Concreto Fisuras Superficiales Control Agrietamiento	Porcentaje de humedad % Fisuro metros. Mapeo checklist.
	Fernández-Castañeda, - Mendoza-Escobedo UNAM (México enero		Agregados	Durabilidad Equivalente de Arena Reactividad Álcalis Sílice	Ensayos de calidad de los agregados en laboratorio.
Desempeño Mecánico	marzo 2006). Afirma: El diseñar una estructura por durabilidad aporta ventajas técnicas y económicas. Técnicamente permite que	El desempeño Mecánico final del Concreto en pavimentos Rígidos depende de las características físicas mecánicas de los	Diseño de Mezclas	Resistencia a la Compresión Resistencia Flexo Tracción Aditivo incorporador de Aire	Ensayo de compresión fo kg/cm2. Ensayo a la flexión Mpa. Contenido de aire %
Desempeñ	la estructura tenga un mejor desempeño ante sus condiciones de servicio, por lo tanto, se disminuye el porcentaje de reparaciones minimizando costos económicos.	agregados, de la correcta relación w/c y del método de curado y protección del Concreto.	Factor de seguridad	Evaluación del Concreto Reducción de parámetros de resistencia F´c Factor de seguridad permisible	Estadística. Por desviación Estándar.

2.3 Población, muestra y muestreo

2.3.1 Población

Valderrama (2013) Afirma: Es un conjunto finito o infinito de elementos, seres o cosas, qué tienen atributos o características comunes, susceptibles a ser observados. Por lo tanto, se puede hablar del universo de familias, empresas, instituciones, votantes, automóviles, beneficiarios de un programa de distribución de alimentos dé un distrito en extrema pobreza, etc." (p. 182). La población estará dada lo que conformará la carretera Oyon-Ambo tramo km 134+900 hasta el km 181+000.

2.3.2 Muestra

Valderrama (2013) afirma "Es un subconjunto representativo de un universo o poblaciones representativo, porque refleja finalmente las características de la población cuando se aplica la técnica adecuada de muestreo de la cual procede; difiere de ella solo en el número de unidades incluidas y es adecuada, ya que se debe incluir un numero optimo y mínimo de unidades; este número se determina mediante el empleo de procedimientos diversos, para cometer un error de muestreo dado al estimar las características poblacionales más relevantes" (p. 184).

En el estudio científico se realizarán toma de muestras del concreto fresco en el tramo km 140+500 hasta el km 141+500 de acuerdo a la población, margen de error, nivel de confianza y desviación estándar para determinar las características físico mecánicas del concreto.

Del kilómetro tomado como muestra, se van a obtener 18 juegos de probetas para ensayos de compresión y la misma cantidad para ensayos de flexo-tracción.

2.3.3 Muestreo

Valderrama (2013) afirma: "Es el proceso de selección de una parte representativa de la población, la cual permite estimar los parámetros de la población. Un parámetro es un valor numérico que caracteriza a una población que es objeto de estudio" (p. 188).

En el estudio científico se realizarán muestreo probabilístico aleatorio simple porque todos los elementos de la población tienen la misma probabilidad de ser seleccionados en la muestra y esta es conocida.

2.4 Técnicas y métodos de recolección de datos, validez y confiabilidad

2.4.1 Técnicas de recolección de datos

Para la presente investigación se empleará la observación como una de las técnicas de recolección de datos, para esto se elaborarán ensayos predeterminados en los cuales se evaluarán los desempeños del concreto, y se realizarán posteriores análisis.

2.4.2 Instrumentos de recolección de datos

Para la mejora del proyecto de investigación se usarán programas AutoCAD, Hojas de cálculo Excel, (monitoreo de temperaturas del pavimento) y para análisis de datos se usarán tablas y gráficos, se trabajará con softwares de diseño de concreto ACI 211.

2.4.3 Validez

Según Valderrama (2013), "Todo instrumento de medición ha de reunir dos características, validez y confiabilidad. Ambas son de suma importancia en la investigación científica, por los instrumentos que se van a utilizar deben ser precisos y seguros" (p. 205).

La validez de nuestro estudio científico será medida con resultados de ensayos de laboratorio que se obtengan de los métodos establecidos para el estudio, qué será validado por trabajos previos o de igual similitud.

2.4.4 Confiabilidad

Para Valderrama (2013.pag.215)" Un instrumento es confiable o fiable si produce resultados consistentes cuando se aplica en diferentes ocasiones esquemáticamente, se evalúa administrando el instrumento a una misma muestra de sujetos, ya sea en dos ocasiones (confiabilidad Inter observación). Se trata de analizar la concordancia entre los resultados obtenidos en las diferentes aplicaciones del instrumento

La confiabilidad de nuestro estudio científico en los instrumentos se basa en las calibraciones de todos los equipos e instrumentos medibles de acorde a las normas del ASTM.

2.5 Aspectos éticos

Para la mejora del proyecto de investigación se recopilo información científica, dé diversas tesis relacionadas, libros, y otras fuentes de información confiables, las cuales serán referenciadas por la norma ISO 690.

Respeto

El valor, del respeto es muy importante en; el desarrollo de nuestra vida personal, entornó laboral y académica, por lo tanto, este proyecto de investigación contiene información veraz y clara, con la cual la reunión de información, de otros autores serán referenciados con la norma correspondiente.

Honestidad

Ser honesto es sinónimo de honradez, decente, recatado, razonable y justo. Es lo que se busca, en el presente proyecto de investigación; siendo de vital importancia los análisis de datos de laboratorio y con frecuentes visitas a campo del proyecto ya que; se cuenta con fuentes confiables para la argumentación del proyecto.

2.6 Ensayos realizados

2.6.1 Ensayo para determinar la granulometría del agregado.

Ubicación de la cantera.

Se ubica a la altura del km 117+000, lado izquierdo de la carretera Churin-Oyon, a una altitud promedio de 2,840 msnm, Los materiales se distribuyen en la margen izquierda y derecha del Rio Yanamayo.

Descripción

Sus materiales empleados en la presente investigación pertenecen a depósitos fluviales acumulados a lo largo del cauce del rio Yanamayo, y están conformados por gravas arenosas de forma redondeada y sub redondeadas, presentando boleos y cantos rodados de tamaño máximo 16".

Los resultados de laboratorio han permitido determinar que el material típico está conformado por gravas arcillosas de pobre graduación con arena y gravas arcillosas de buena graduación con arena, de forma sub redondeada, de color beige con finos de baja plasticidad, no presenta impurezas orgánicas el material se clasifica en el sistema SUCS como GW, mientras que en el sistema AASHTO como A-1-a (0).

Figura 11: Acopios de over grueso producto del zarandeo de explotación de finos

Figura 12: Vista satelital de la cantera Yanamayo. Fuente: Google Earth

Tabla 8: Características de la cantera Yanamayo-Churin-Oyon

Ubicación	Coordenadas Este 297968.80 Norte 8813108.80
Acceso	230 mts de longitud buen estado
Propietario	Comunidad Campesina Santo Domingo de Nava
Material	Gravo Arenoso de origen fluvial
Profundidad	2.00 mts
Cobertor Orgánico	0.00 mts
Área aproximada	17.8 Has
Volumen Bruto	153,204.33
Volumen neto	153,204.33
Eficiencia	80%
Época de	
Explotación	Época de Estiaje de Mayo a Octubre

Fuente: Elaboración propia

Se ubicó la cantera que, de acuerdo a la ley, se encuentra bajo la jurisdicción de la Municipalidad de Oyon. No obstante, está cantera se encuentra en los terrenos de la Comunidad Campesina Santo Domingo de Nava, la cual administra su extracción.

Actualmente es explotada para la atención de trabajos puntuales en la zona minera y obras municipales.

Explotación de la Cantera

Se puede utilizar su explotación con cargador frontal y/o tractor de oruga, excavadora y volquete en periodo no lluvioso, entré los meses de Mayo a Octubre.

Su procesamiento de los agregados para su ejecución trituración primaria, secundaria y terciaria además de zarandas vibratorios para su lavado y selección de agregados.

Procesamiento de los agregados

Para el proceso de, chancado de los agregados se utiliza una planta chancadora compuesta por una manta primaria, dónde se tritura los bolones menores de 12" hasta 3" pasando, posteriormente al trompo secundario donde; se tritura la grava menor de 3" que se clasifica en una zaranda vibratorio por tamaños, para que finalmente retorne al triturador terciario que es un centrifugo de impacto para, obtener gravas semi cubicas y evitar porcentajes altos de las partículas chatas y alargadas.

Mediante lavado por zarandeo vibratorio se, logra tener una arena limpia y libre de limos y arcillas que cumplan con los requisitos de limpieza en el tamiz N° 200.

Fuente: Elaboración Propia

Requerimientos, Equipos y Procedimientos para Ensayos de Agregados para 2.6.2 Concreto

Requerimientos del Agregado Grueso

Se considera agregado grueso como tal a la porción del agregado retenido en el tamiz 4.75 mm (N°4). Método de ensayo normalizado para la determinación granulométrica de agregados finos y gruesos norma ASTM C136

Tabla 9: Husos del agregado grueso

Granulometría del agregado grueso para concreto Portland

	Tamaño Nominal		% Porcentaje que pasa												
HUSO	(tamices con aberturas cuedrada)	100 mm (4 plg)	90 mm (3 ½ plg)	75 mm (3 plg)	63 mm (2% pig)	50 mm (2 plg*)	37,5 mm (1% pig)	25,0 mm (1 pig)	19,0 mm (% plg)	12,5 mm (% plg)	9,5 mm (3/6 plg)	4,75 mm (N° 4)	2,36 mm (N° 8)	1,18 mm (N° 16)	300 jun (N= 50)
1	90 a 37,5 mm (3 % a 3% plg)	300	90 ±100	-	25 a 60	-	0 = 15	-	OnS	-	-	-	-	-	-
2	63 a 37,5 mm (26-1% plg)	-	-	300	90 ± 100	35 ±70	0 = 15	-	0 a 5	-	-	-	-	-	-
3	50 a 25 mm (2 a 1 pig)	-	-	-	100	90 x 100	35 a 70	0 a 15	-	0 a 5	-	-	-	-	-
357	50 a 4,75 mm (2 pira N° 4)	-	-	-	100	95 a 100	-	35 a 70	-	10 ± 30	-	0 a S	-	-	-
4	37,5 a 19,0 mm (3% a % plg)	-	-	-	-	100	90 s 100	20 a 55	0 a 15	-	0 a 5	-	-	-	-
467	37,5 a 4,75 mm (3% ple a N° 4)	-	-	-	-	100	95 a 100	-	35 a 70	-	30 a 30	0 a S	-	-	-
5	25 a 12,5 mm (1 a % plg)	-	-	-	-	-	100	90 s 100	20 a 55	0 a 10	0 = 5	-	-	-	-
56	25 a 9,5 mm (3 a 3/5 pir)	-	-	-	-	-	100	90 s 100	40 x 85	10 a 40	0 a 15	0 a 5	-	-	-
57	25 a 4,75 mm (1 pig a N* 4)	-	-	-	-	-	100	95 x 100	-	25 a 60	-	0 = 10	0 a 5	-	-
6	19 a 9,5 mm (Note a 3/8 pts)	-	-	-	-	-	-	100	90 x 100	20 ± 55	0 = 15	0 a 5	-	-	-
67	29 a 4,75 mm (% pig a N* 4)	-	-	-	-	-	-	100	90 ± 100	-	20 a 55	0 = 10	0 a 5	-	-
7	12,5 a 4,75 mm (6 pig a N* 4)	-	-	-	-	-	-	-	100	90 a 100	40 s 70	0 = 15	0 a 5	-	-
•	9,5 a 2,36 mm (3/8 pig a N° 8)	-	-	-	-	-	-	-	-	100	85 x 100	10 a 30	0 = 10	0 = 5	-
89	9,5 a 1,16 mm (3/6 pig a N° 16)	-	-	-	-	-	-	-	-	100	90 a 100	20 a 55	5 a 30	0 a 10	0 a 5
SA	4,75 a 1,18 mm (N° 4a N° 16)	-	-	-	-	-	-	-	-	-	100	85 a 100	10 a 40	0 = 10	0 a 5

Fuente: Especificaciones Generales MTC EGE-2013

Tabla 10: Requisitos Físicos Químicos agregado grueso

Requisitos del agregado grueso para pavimentos de concreto hidráulico

Ens	ayo	Norma MTC	Norma NTP	Requisito
Dureza				
Desgaste en la máquina de Los Ángeles		MTC E 207	NTP 400.019 NTP 400.020	40
Durabilidad				
Pérdidas en ensayo	- Sulfato de sodio	MTC E 209	NTP 400.016	12
de solidez en sulfatos, % máximo≥ 3 000 msnm.	- Sulfato de magnesio	MTC E 209	NTP 400.016	18
Limpieza				
Terrones de arcilla y partículas deleznables, 96 máximo		MTC E 212	NTP 400.015	3
Carbón y lignito, % má	ximo	MTC E 211	NTP 400.023	0,5
Geometría de las part	ículas			
Partículas fracturadas mecánicamente (una cara), % mínimo		MTC E 210	D - 5821 (*)	60
Partículas chatas y alargadas (relación 5:1) , % máximo			NTP 400.040	15
Características químicas				
Contenido de sulfatos, expresado como SO ₄ , % máximo.		-,-	NTP 400.042	1,0
Contenido de cloruros, expresado como cl ⁻ , % máximo.		-,-	NTP 400.042	0,1

Fuente: Especificaciones Generales MTC EGE-2013

Requerimientos del Agregado Fino

Se considera como tal, a la porción del agregado que pasa el tamiz 4.75 mm

Tabla 11: Granulometría

Granulometría para el agregado fino para pavimentos de concreto hidráulico

Tamiz	Porcentaje que	
Normal	Alterno	pasa
9,5 mm	3/8"	100
4,75 mm	N.º 4	95-100
2,36 mm	N.º 8	80-100
1,18 mm	N.º 16	50-85
600 μm	N.º 30	25-60
300 μm	N.º 50	10-30
150 μm	N.º 100	2-10

Fuente: Especificaciones Generales MTC EGE-20132

Tabla 12: Requisitos Físicos Químicos agregado fino

Ensavo Norma MTC Norma NTP Requisito					
*		Norma MTC	Norma NIP	Requisito	
Durabilidad					
Pérdidas en ensayo de solidez en sulfatos, %	- Sulfato de sodio	MTC E 207	NTP 400.016	10	
máximo ≥ 3 000 msnm	- Sulfato de magnesio	MTC E 209	NTP 400.016	15	
Limpieza					
Índice de plasticidad	d, % máximo	MTC E 111	NTP 339.129	No plástico	
Equivalente de arena,	f'c≤21 MPa (210 kg/cm²)	MTC E 114	NTP 339.146	65	
%mínimo	f'c>21 MPa (210 kg/cm²)	MTC E 114	NTP 339.146	75	
Terrones de arcilla y partíc % máximo	Terrones de arcilla y partículas deleznables, % máximo		NTP 400.015	3	
Carbón y lignito, % máximo	•	MTC E 211	NTP 400.023	0,5	
Material que pasa el tamiz 200), % máximo	de 75 μm (N.º	MTC E 202	NTP 400.018	3	
Contenido de materia orga	ánica				
Color más oscuro permisib	le	MTC E 213	NTP 400.024	lgual a muestra patrón	
Características químicas					
Contenido de sulfatos, expresado como SO _{4,} ** % máximo.		~	NTP 400.042	1,2	
Contenido de cloruros, expresado como cl ⁻ , % máximo.			NTP 400.042	0,1	
Absorción					
Absorción de agua, % máxi	mo	MTC E 205	NTP 400.022	4	

Fuente: Especificaciones Generales MTC EGE-20132

Requerimientos para el Cemento

El Cemento será Portland, de marca aprobada oficialmente si los requisitos del proyecto no lo mencionan se utilizará el cemento tipo I. No se permitirá el uso de cemento endurecido o con fechas hayan expirado.

Requerimientos para el Agua

Cuando se empleen otras fuentes o mezclas de agua de dos o más procedencias, el agua deberá ser calificado mediante ensayos. Los requisitos primarios para esta calificación se encuentran detallados en el cuadro siguiente.

Tabla 13: Requisitos Químicos del Agua

Tubia 15. Requisitos Químicos act 11811a						
Contaminante	Límite ppm ^A	Método de ensayo				
*. Cloruro como Cl						
En concreto pretensado, tabieros de puentes, o designados de otra manera.	500 ⁸	NTP 339.076				
 Otros concretos reforzados en ambientes húmedos o que contengan aluminio embebido, o metales diversos, o con formas galvanizadas permanentes. 	1.000 ⁸	NTP 339.076				
B. Sulfatos como SO ₄	3.000	NTP 339.074				
C. Álcalis como (Na ₂ O + 0,658 K ₂ O)	600	ASTM C 114				
D. Sólidos totales por masa	50.000	ASTM C 1603				

Fuente: Especificaciones Generales MTC EGE-2013

Requerimientos para los Aditivos

Se podrán utilizar aditivos de reconocida calidad para modificar las propiedades del concreto, con la finalidad de adecuarlo a las condiciones especiales del pavimento a construir su empleo se deberá definir por medio de ensayos con antelación de la obra.

Con las dosificaciones que garanticen el efecto deseado, sin que se perturben las propiedades restantes de la mezcla.

2.6.3 Análisis Granulométrico por Tamizado

La Norma ASTM C33 Especificación Normalizada de Agregados para Concreto

Esta especificación define los requisitos para granulometría y calidad de los agregados finos y gruesos para utilizar en concreto.

Siguiendo la norma ASTM C136. Se necesitaron los siguientes equipos para los ensayos granulométricos para determinar sus características mecánicas.

- Tamices de 8" de diámetro, según norma con aberturas cuadradas de: 1 1/2", 1", 3/4", 1/2", 3/8", Nº4, Nº8, Nº16, Nº30, Nº50, Nº100, Nº200, con fondo y tapa
- Balanza de precisión digital de 30 kg de capacidad con precisión de (0.1gr) del peso del material que está siendo ensayado.
- Horno Eléctrico digital de 3 niveles de 250 litros de capacidad con temperatura de 110 +/- 5°C

Continuando con el procedimiento de la norma en mención, las muestras de agregados finos y gruesos estos fueron lavados y secados al horno por espacio de 24 horas a una temperatura constante de 110+/-5°C.

Luego se dejó enfriar las muestras para separar los tamaños por los tamices descritos para separar el agregado grueso (porción retenida por el tamiz N° 4) y el material pasante del tamiz N° 4 (agregado fino)

Se registra los pesos retenidos en los tamices en una hoja de cálculo para determinar los porcentajes de los pasantes y obtener el grafico definido.

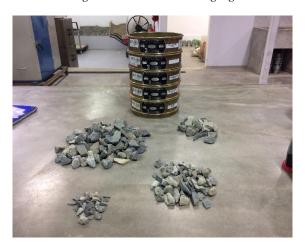


Figura 14: Secado de agregados

Figura 15: Peso tamizado Agregado Grueso

Figura 16: Tamizado de agregados

2.6.4 Gravedad Específica y Absorción de los agregados

Agregado grueso

La norma MTC E-206 establece un procedimiento para determinar el peso específico seco, él peso específico saturado con superficie seca, y el peso específico aparente y la absorción (después de 24 horas) del agregado grueso.

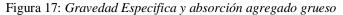
Una muestra de agregado se sumerge al agua por 24 horas aproximadamente para llenar los poros esencialmente. Luego se retira el agua, sé seca el agua de la superficie de las partículas, y se pesa, La muestra se pesa posteriormente mientras es sumergida al agua, finalmente la muestra secada al horno y se pesa una tercera vez, usando los pesos obtenidos y las fórmulas en este

modo operativo, es posible calcular los tres tipos de pesos específicos y la absorción.

Teniendo como referencia Normativa NTP 400.021 Método de ensayo Normalizado para peso específico y absorción del agregado grueso.

Los equipos utilizados están compuestos por una balanza con una sensibilidad de 0.5 gr y capacidad de 15,100 gr acoplada con un dispositivo para sostener la muestra en una cesa de alambre en el recipiente agua desde el centro de la plataforma del pesado.

La cesta es una malla de con abertura correspondiente al tamiz N° 6 también se puede utilizar un recipiente con igual altura y ancho con capacidad entre 4 y 7 litros.


El depósito de agua estanco adecuado para sumergir la cesta en el agua con el dispositivo para poder suspender la cesta en el medio de la balanza.

EL tamiz normalizado de 4.75 mm ($N^{\circ}4$) y una estufa capaz de mantener la temperatura constante de 100°C +-5°C.

Tabla 14: Pesos Mínimos de la muestra para el Ensayo

Peso mínimo de la muestra de ensayo Peso Mínimo de la Muestra de Tamaño Máximo Nominal Ensayo mm (pulg) Kg (lb) 12,5 (1/2) o menos 2 (4,4) 19,0 (3/4) 3 (6,6) 25,0 (1) 4 (8,8) 37,5 (1 1/2) 5 (11) 50,0 (2) 8 (18) 63,0 (2 1/2) 12 (26) 75,0 (3) 18 (40) 90,0 (3 1/2) 25 (55) 100,0 (4) 40 (88) 112,0 (4 1/2) 50 (110) 125,0 (5) 75 (165) 150,0 (6) 125 (276)

Fuente: Especificaciones Generales MTC EGE-2013

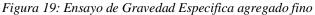
Agregado fino

La norma MTC E 205 determina el peso específica seco, peso específico saturado con superficie seca, el peso específico aparente y la absorción después de las 24 horas de sumergido al agua del agregado fino.

El peso específico (gravedad especifica) es las características generalmente usadas para calcular el volumen ocupado por el agregado en varias mezclas que contienen agregado incluyendo concreto de cemento Portland, concreto bituminoso y otras que son proporcionadas y analizadas en base al volumen.

Los valores de absorción son usados para calcular el cambio en la masa de un agregado debido al agua absorbida entre los espacios de los poros las partículas constituyentes, comparado con la condición seca.

Se aplica para determinar el peso específico seco, pesó específico saturado con superficie seca, peso específico aparente y la absorción del agregado fino, afín de usar estos valores tanto en el cálculo y correcciones de diseños de mezcla.


Se tiene como referencia normativa NTP 400.022 Peso específico y Absorción del agregado fino. Se tiene como referencia normativa NTP 400.017 método de ensayo normalizado para determinar la masa por unidad de volumen o densidad y los varios en los agregados.

Los equipos utilizados para determinas la gravedad específica y la absorción del agregado fino: balanza de capacidad de 6,100 gr con sensibilidad de 0.1 gr. frasco volumétrico de 1,000 cm3 calibrado hasta 0.1cm3 a 20°C, molde cónico metálico de 40 mm de diámetro interior en su base menor, 90 mm de diámetro en su base mayor y de 75 mm de altura.

EL tamiz normalizado de 4.75 mm (N°4) y una estufa capaz de mantener la temperatura constante de 100°C +-5°C.

Figura 18: Ensayo de absorción agregado fino

2.6.5 Pesos Unitarios y Vacíos de los Agregados

La norme MTC E 203 determina el peso unitario, suelto o compactado y el porcentaje de vacíos de los agregados finos gruesos o una mezcla de ambos.

Se utiliza siempre para determinar el valor del peso unitario utilizado por algunos métodos de diseño de mezclas de concreto.

También se utiliza para determinar la relación masa / volumen para conversiones en acuerdos de compra donde se desconoce la relación entre el grado de compactación del agregado en una unidad de transporte o depósito de almacenamiento.

Los equipos de medición utilizados se componen de una balanza con exactitud de 0.1 % del peso del material usado, recipiente metálico con fondo y borde interior pulidos, planos suficientemente rígidos los recipientes tendrán una altura igual al diámetro, o en ningún caso menor del 80% con relación al diámetro.

Varilla compactadora, de acero, cilíndrico de 16 mm (5/8") de diámetro, con una longitud aproximada de 600 mm (24"). Un extremo debe estar seno esférico y de 8 mm de radio (5/16") y una pala o cucharon suficiente para llenar el recipiente con el agregado.

Tabla 15: Capacidad de recipientes de Medida

Capacidad de recipientes de medida

Tamaño Máximo Nominal del Agregado		Capacidad de recipiente de medida ^D		
Mm	pulgadas	L(m ³)	Pie ³	
12,5	1/2	2,8 (0,0028)	1/10	
25,0	1	9,3 (0,0093)	1/3	
37,5	1 1/2	14,0 (0,014)	1/2	
75,0	3	28,0 (0,028)	1	
112,0	4 1/2	70,0 (0,070)	2 1/2	
150,0	6	100,0 (0,100)	3 1/2	

Fuente: Especificaciones Generales MTC EGE-2013

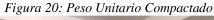


Figura 21: Peso Unitario Suelto

2.6.6 Durabilidad al Sulfato de Sodio y sulfato de Magnesio

La norma Establece MTC E 209 mediante el ensayo para determinar la resistencia de los agregados a la desintegración por medio de soluciones saturados de sulfato de sodio o de magnesio. Esté modo operativo es una medida a la desintegración de los agregados grueso y fino por medio de soluciones saturadas de sulfato de sodio o de magnesio, durante no menos de 16 horas ni más de 18 horas, dé una manera tal que las soluciones cubran la toda muestra, después del periodo de inmersión se saca la muestra de agregado de la solución y se coloca en el horno a secar. Se repite el proceso alternado de inmersión y secado hasta que se obtenga el

número de ciclos requerido. Se tiene como referencia la normativa NTP 400.016 Agregados Determinación de la Inalterabilidad de los agregados por medio del sulfato de sodio y de magnesio.

Los tamices utilizados están normalizados según la tabla Nº 11.

Tabla 16: Serie de Tamices Fina y Gruesa

ABERTURA SERIE FINA		ABERTURA SERIE GRUESA		
NOMINAL	TAMIZ NORMALIZADO	TAMIZ NORMALIZADO		
Nº 100	150 µm	8,00 mm (5/16")		
	130,011	9,50 mm (3/8")		
Nº 50	300 μm	12,5 mm (1/2")		
	300 jan	16,0 mm (5/8")		
No 30	600 µm	19,0 mm (3/4")		
	000 jun	25,0 mm (1")		
Nº 16	1,18 mm	31,5 mm (1 ¼")		
Nº 8	2,36 mm	37,5 mm (1 ½")		
	2,36 11111	50,0 mm (2")		
Nº 5	4,00 mm	63,0 mm (2 ½")		
Nº 4	4,75 mm	Tamaños mayores aumentan		
	4,73 mm	en 12,7 mm (1/2")		

Fuente: Especificaciones Generales MTC EGE-2013

Se utiliza balanzas con capacidad no menor de 500 gr y con una sensibilidad de 0.1 gr para pesar el agregado fino, y una balanza de 5000 gr con una sensibilidad de 1 gr para pesar el agregado grueso.

El horno de secado que pueda mantener la temperatura constante de 105 a 110 °C durante cuatro horas manteniendo las puertas cerradas.

Figura 22: Sulfato de Magnesio

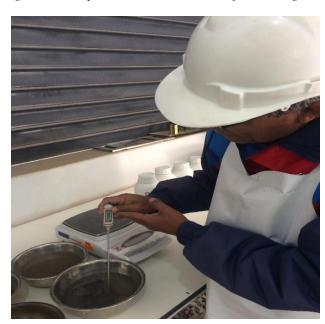


Figura 23: Temperatura de la Solución Sulfato de Magnesio

2.6.7 Ensayo de Abrasión Máquina de los Ángeles

La norma MTC E 207 establece para ensayar agregados gruesos menores de 37.5 mm (11/2") para determinar la resistencia a la degradación utilizando la máquina de los Ángeles.

Este modo operativo es una medida de degradación de agregados minerales de gradaciones normalizadas resultantes de una combinación de acciones, las cuales incluyen abrasión o desgaste impacto y trituración, en un tambor de acero de rotación que contiene un numero especificado de esferas de acero, dependiendo de la gradación de la muestra de ensayo, al rotar tambor, las muestras y las bolas de acero so recogidas por una pestaña de acero transportándolas hasta que son arrojadas al lado opuesto del tambor, creando un efecto de trituración por impacto. Esté ciclo es repetido mientras el tambor gira con su contenido luego de 500 revoluciones por minuto.

Se menciona como referencia normativa NTP 400.019 Agregados método de ensayo normalizado para determinación de la resistencia a la degradación en los agregados gruesos de tamaños menores por abrasión e impacto en la máquina.

Figura 24: Ensayo de Abrasión Maquina de los Ángeles

Fuente: Elaboración propia

Los tamices utilizados están de acorde con la tabla $N^{\circ}12$ en este caso se utilizó la gradación "B"

Tabla 17: Gradación "B" para Agregado Grueso

Gradación de las muestras de ensayo

Medida del tamiz (abertura cuadrada)		Masa de tamaño indicado, g			
Que pasa	Retenido sobre	Gradación			
		Α	В	С	D
37,5 mm (1 ½")	25,0 mm (1")	1 250 ± 25	5.5	-,-	575
25,0 mm (1")	19,0 mm (3/4")	1 250 ± 25	5.5	-,-	575
19,0 mm (3/4")	12,5 mm (1/2")	1 250 ±10	2 500 ±10	-,-	
12,5 mm (1/2")	9,5 mm (3/8")	1 250 ±10	2 500 ±10	-,-	-,-
9,5 mm (3/8")	6,3 mm (1/4")	5.5		2 500 ±10	
6,3 mm (1/4")	4,75 mm (Nº 4)	7,7	7-7	2 500 ±10	
4,75 mm (Nº 4)	2,36 mm (Nº 8)	-,-	545		5 000
TOTAL		5 000 ±10	5 000 ±10	5 000 ± 10	5 000 ±10

Fuente: Especificaciones Generales MTC EGE-2013

2.6.8 Ensayo Estándar para Determinar el Porcentaje de Partículas Fracturadas en el Agregado Grueso

La norma MTC E 210 establece que este método de ensayo abarca la determinación del porcentaje, en masa o cantidad, dé una muestra de agregado grueso que contiene partículas fracturadas que reúnen requerimientos especificados.

Las especificaciones difieren tanto en el número de caras de fracturas requeridas sobre una partícula fracturada, y en ellas también difieren del porcentaje por masa o porcentaje por cantidad partículas a ser considerada, Si la especificación no lo específica, usar los criterios de al menos una cara fracturada y calcular el porcentaje por masa.

Se considera una cara fracturada si tiene una superficie angular, áspera y rugosa o rota de un agregado ocasionado por chancado o por otro medio artificial o natural.

Se menciona como referencia normativa ASTM D 5821 Stándar Test Method For Determining the Porcentage of fractures particles in Coarse Aggregates.

Equipos sutilizados para el ensayo normalizados según norma MTC E 210.

Figura 25: Particulas Fracturadas

Fuente: Especificaciones Generales MTC EGE-2013

2.6.9 Ensayo Partículas Chatas y Alargadas de los Agregados

La norma MTC E 223 determina este método de los porcentajes de las partículas chatas y alargadas en el agregado grueso.

Este método provee el medio para verificar si se cumple con la especificación que limitan tales partículas o, para determinar la forma característica del agregado grueso.

Como referencia normativa ASTM D 4791 Stándard Test Methot for Flat Particles, Enlogated Particles, or Falt and, Enlogated Particles in coarse Aggregate.

El calibrador proporcional es utilizado para este método de ensayo, consiste en una base plana con dos postes fijos y un brazo giratorio entre ellos de tal modo que las distancias entre los extremos del brazo y los postes, mantengan una relación constante.

La balanza para los pesos es de una precisión de 0.5% del peso de la muestra a ensayar del agregado grueso.

Figura 26: Calibrador Ensayo de Partículas Chatas y Alargadas

2.6.10 Ensayo Para determinar el Equivalente de arena del Agregado Fino

Según norma MTC E 114 este método de ensayo se propone servir como una prueba de correlación rápida de campo, él propósito de este método es indicar, bajó condiciones estándar las proporciones relativas de los suelos arcillosos o finos plásticos y polvo en suelos granulares y agregados finos que pasan el tamiz N°4, son mezclas de partículas gruesas deseables, arena y generalmente arcillas o finos plásticos y polvo indeseables.

En los equipos se encuentra un cilindro graduado, transparente de plástico acrílico, tapón de jebe, irrigador, dispositivo de pesado de pie y ensamble del sifón, confortantes de las especificaciones respectivas mostradas en la figura N° 24.

La solución Stock está compuesta por cloruro cálcico anhidro 454 gr, glicerina USP,2050 gr, formaldehido 47 gr, disolver los 454 gr de cloruro en 1.9 litros de agua destilada, enfriar a la

temperatura de ambiente y filtra a través de un papel filtro, añadir 2050gr de glicerina y 47 gr de formaldehido a la solución filtrada, mezclar bien y diluir a 3.8 litros.

Asimismo, el horno cumple con mantener la temperatura constante de 110°C +-5°C, y el agitador mecánico que está diseñado para mantener el cilindro de plástico graduado requerido.

Figura 27: Ensayo de Equivalente de Arena

2.6.11 Ensayo para determinar el Material que pasa el Tamiz N° 200

La norma MTC E 202 describe el procedimiento para determinar por lavado con agua, la cantidad de material fino que pasa el tamiz de 75 um ($N^{\circ}200$) en un agregado. Durante el ensayo se separan de la superficie del agregado, por lavado, las partículas que pasan el tamiz $N^{\circ}200$ tales como las arcillas, agregados muy finos y materiales solubles en el agua.

Este ensayo se aplica para determinar la aceptabilidad de agregados finos en lo relacionado al material pasante del tamiz N° 200

En la referencia normativas NTP 400.018 Método de ensayo normalizado para determinar materiales más finos que pasan el tamiz N° 200 por lavado en agregados.

Los equipos de medición comprenden una balanza de precisión de 0.1% del peso del material que se va a ensayar, horno de temperatura constante de 110°C +- 5°C, y un tamiz N° 200.

Tabla 18: Cantidades mínimas para el ensayo

Cantidad mínima de muestra

	ximo nominal del gregado	Peso mínimo de la muestra (g)			
4,75 mm	(Nº 4) ó menor	300			
9,5 mm	(3/8")	1 000			
19,0 mm	(3/4")	2 500			
37,5 mm	(1 ½") o mayor	5 000			

Fuente: Especificaciones Generales MTC EGE-2013

Figura 29: Lavado de la muestra Tamiz Nº 200

2.6.12 Diseño de Mezclas

Siguiendo las recomendaciones del Comité ACI 306 "Cold Weather Concreting" Concreto en Climas fríos, se utiliza las tablas recomendadas el diseño de mezclas del Comité ACI 211

En la que, se indica la manera correcta, de utilizar las tablas para; la elección del agua requerida, según el tamaño nominal del agregado, la correcta relación w/c con aditivos incorporadores de aire, él volumen del agregado grueso según el módulo de finura de la arena.

Considerando las temperaturas mínimas en los registros en las tres zonas en lo largo de la carretera, donde se esta investigación científica se desarrolla Oyon (3,600 msnm), Laguna Surasaca (4,546 msnm) y Laguna Cochaquillo (4,752 msnm).

Según recomendaciones del ACI 211, se procedió a diseñar con las tablas donde recomienda para diferentes relaciones de Agua-Cemento **0.40,0.43,0.45** con aire incluido por ser zonas donde las temperaturas mínimas están por debajo de -4.4 °C y -6°C.

Los verificaran la mayor resistencia (f´c) para tomar como patrón para el desarrollo del monitoreo de temperaturas del concreto por espacio de 72 horas en la losa del pavimento rígido.

Tabla 19: Temperaturas Minimas de la zona

Estación	Escenario	Temperatura (°C)											
10000000000	Caccinario	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Oyon	Minimo	0.4	0.4	0.9	1.6	-0.5	-1.3	-1.0	0.0	0.1	0.5	-0.3	0.0
(3676 msnm)	Promedio	3.2	3.5	3.5	3.0	1.4	1.3	8.0	1.2	1.9	2.5	2.3	2.6
Coop manny	Máxima	5.0	5.2	5.2	4.4	24	3.0	2.3	2.5	3.9	3.8	4.0	4.9
Laguna	Minimo	-42	-2.0	-3.8	-3.6	-4.8	-5.0	-5.0	-5.8	-6.0	45	-5.0	-5.2
Surasaca	Promedio	-2.1	-1.0	-1.8	-23	-3.1	-3.6	-4.3	-4.3	-3.4	-3.2	-2.8	-21
(4546 msnm)	Máxima	0.0	0.7	0.0	-1.3	-1.0	-1.7	-3.0	-2.7	-1.0	-1.8	-0.3	0.4
Laguna	Minimo	-3.4	4.0	-3.0	-3.4	-3.8	-4.8	44	4.6	4.6	-4:4	-5.6	-4.1
Cochaquillo (4752 msnm)	Promedio	-2.1	-1.9	-1.9	-22	-2.5	-3.2	-3.7	-3.3	-3,1	-3.0	-3.0	-21
	Máxima	0.1	-1.0	0.0	-0.4	-1.5	-1.2	-3.0	-2.4	-2.0	-1.6	-2.0	0.0

Fuente: Cesel Ingenieros proyectistas de la Carretera Oyon -Ambo

2.6.13 Materiales y Diseño

Este diseño se basa en el método de diseño ACI 211 cuyas tablas recomienda para los cálculos del diseño utilizar una relación agua-cemento (w/c) de **0.40** para concretos con aire incluido para un f°c de 350 kg/cm2.

Empleando los siguientes materiales para el diseño de concreto:

- Cemento: SOL portland tipo I de peso específico Pe = 3.15 gr/cm3
- Agua: Quebrada Yuracayan km 137+410 cuya gravedad especifica es = 1gr/cm3
- Aditivos Plastificante: Reductor de agua de alto rango **EUCO 37**
- Incorporador de Aire: AIR MIX 200 EUCO

Tabla 20: Características Físicas de los Materiales

1.0 Cemento: 2.0 Agregado Fino:				ido Fino:	3.0 Agregado Grueso:					
A.S.T.M. C-150 Tipo I: sol tipo 1 P		Peso espec	eso especifico BULK		gr/cc	Tamaño Máximo Nominal		11/2"	pulg.	
Peso Especifico	3.15 gr	/cc	Adsorcion		1.68	%	Peso especifico	BULK	2.64	gr/cc.
Superficie especifica:	3115 cr	n²/gr	Humedad		1.5	%	Peso seco com	pactado	1560	kg/m³
			Modulo de F	ineza	2.78		Peso Unitario Su	uelto .	1489	kg/m³
			Peso Unita	rio Suelto	1520	kg/m³	Absorción		0.89	%
			Peso Unitar	io Compactado.	1640	kg/m³	Humedad		1.3	%

Fuente: Elaboración Propia

2.6.14 Elección de la Relación Agua Cemento (w/c) ACI 211

Tabla 21: Relación Agua-Cemento de diseño en Peso

f'cr 420	(28 dias)	Concreto sin aire incorporado	Concreto con aire
420		concreto sin and incorporado	incorporado
	150	0.80	0.71
	200	0.70	0.61
	250	0.62	0.53
	300	0.55	0.46
	350	0.48	0.4
	400	0.43	****
	450	0.38	****

2.6.15 Volumen de agua recomendado ACI 211

Tabla 22: Volumen Unitario de Agua

ASENTAMIENTO	Agua en lt/i	m³para lost	amaños	max. No	minales d	le agre	egado gi	rueso y
ASENTAMIENT	consistencia	indicados.						
	3/8"	1/2"	3/4"	1"	1 1/2"	2"	3"	6"
	C	ONCRETO SIN	I AIRE IN	CORPOR	ADO			
1" a 2"	207	199	190	179	166	154	130	113
3" a 4"	228	216	205	193	181	169	145	124
6" a 7"	243	228	216	202	190	178	160	***
	CC	NCRETO CO	N AIRE IN	ICORPOR	RADO			
1" a 2"	181	175	168	160	150	142	122	107
3" a 4"	202	193	184	175	165	157	133	119
6" a 7"	243	205	197	184	174	166	154	***

2.6.16 Asentamientos recomendados ACI 211

Tabla 23: Asentamientos del Pavimento

TIPO DE CONSTRUCCION	MAXIMO	MINIMO
*Zapatas y muros de cimentación reforzados	3	1
*Zapatas simples , cajones y muros de subestructura	3	1
*Vigas y muros reforzados	4	1
*Columnas de edificios	4	1
*Pavimentos y losas.	3	1
* Concreto ciclopeo	2	1

Esta tabla ha sido confeccionada por el Comité ACI-211

2.6.17 Contenido de aire Incluido ACI 211

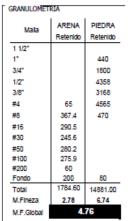
Tabla 24: Contenido de Aire en Mezcla de Concreto

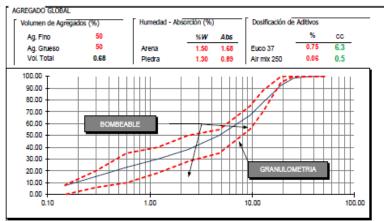
Tamaño	Conten	ido de aire tot	al, en %
maximo	Exposicion	Expososcion	Exposicion
Mominal	suave	moderada	Severa
3/8"	4.5%	6.0%	7.5%
1/2"	4.0%	5.5%	7.0%
3/4"	3.5%	5.0%	6.0%
1"	3.0%	4.5%	6.0%
1 1/2"	2.5%	4.5%	5.5%
2"	2.0%	4.0%	5.0%
3"	1.5%	3.5%	4.5%
6"	1.0%	3.0%	4.0%

Esta tabla ha sido confeccionada por el Comité ACI-211

2.6.18 Diseño de mezcla Teórico 1

Tabla 25: Relación W/C 0.40


CONTROL DE MEZCLAS DE CONCRETO


Fecha fc (kg/cm²) Relación a/c fc + r (r= 70)

04/05/2019
350
0.400
420

ADITIVOS 1 Euco 37 2 Air mix 250

CARACTERÍSTICAS FÍSICAS DE LOS MATERIALES

MATERIALES	PROCEDENCIA	Peso Especifico kg/m3	Peso Seco kg/m3	Peso Humedo kg/m3
Cemento	Sol T-I	3115	425	425.0
Agua	Yuracayan	1000	170.00	167.9
Arena	Yanamayo	2550	867.83	880.9
Ag. Grueso	Yanamayo	2640	898.46	910.1
Euco 37	QSI	1190	3.19	3.2
Air mix 250	QSI	1100	0.26	0.3
Aire			1.00%	
TOTAL		Vol = 1.0000	Kq =	2387.3

MATERIALES	VOLUMEN (LIS) Dosificación o	lt	0.03 • gr
Cemento	12.75 k	ıg	
Agua	5.04 L	I	
Arena	26.43 k	g	
Ag. Grueso	27.30 k	g	
Euco 37	95.63 g	ır	
Air mix 250	7.65	ır	

CONTROL DE CALIDAD

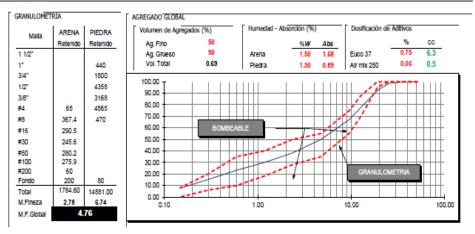
PROPIEDADES FIS	SICAS											
Tara	(Kg)	3.382	SLUMP	TEMP	. (°C)	AIRE	P.U. Teórico	P.U. Real	RENDIMIENTO	N° TEST	Hora	Hora
Volumen	(m3)	0.007054	(pulg)	Concr.	Amb	(%)	(kg/m³)	(kg/m³)	KENDIMIENTO	N 1EST	Inidal	A/C
Tara + concreto	(Kg)	20.144	2 3/4	19.2	19.0	3.8	2387.3	2376.2	1.005	9	14:17	14:23

2.6.19 Diseño de mezcla Teórico 2

Tabla 26: Relación W/C 0.43

CONTROL DE MEZCLAS DE CONCRETO

 Fecha
 08/05/2019


 fc (kg/cm²)
 350

 Relación a/c
 0.430

 fc + r (r= 70)
 420

1 Euco 37 2 Air mix 250

CARACTERÍSTICAS FÍSICAS DE LOS MATERIALES

DOSIFICACIÓN (m3) MATERIALES	PROCEDENCIA	Peso Especifico kg/m3	Peso Seco kg/m3	Peso Humedo kg/m3
Cemento	Sol T-I	3115	395	395.0
Agua	Yuracayan	1000	170.00	167.8
Arena	Yanamayo	2550	880.37	893.6
Ag. Grueso	Yanamayo	2640	911.45	923.3
Euco 37	QSI	1190	2.96	3.0
Air mix 250	QSI	1100	0.24	0.2
Aire			1.00%	
TOTAL	<u> </u>	Vol = 1.0000	Kq=	2382.9

MATERIALES	VOLUMEN (LIS) Dosificación (o It	0.03 • gr
Cemento	11.85	kg	
Agua	5.04	Lī	
Arena	26.81	kg	
Ag. Grueso	27.70	kg	
Euco 37	88.88	gr	
Air mix 250	7.11	gr	

CONTROL DE CALIDAD

[.	PROPIEDADES FIS	SICAS											
Ш	Tara	(Kg)	3.382	SLUMP	TEMP	. (°C)	AIRE	P.U. Teórico	P.U. Real	RENDIMIENTO	N° TEST	Hora	Hora
Ш	Volumen	(m3)	0.007054	(pulg)	Concr.	Amb	(%)	(kg/m³)	(kg/m³)	NEW DIRECTO	1201	Inidal	A/C
lĿ	Tara + concreto	(Kg)	19.978	2 1/2	19.7	20.0	3.7	2382.9	2352.7	1.013	9	14:35	14:43

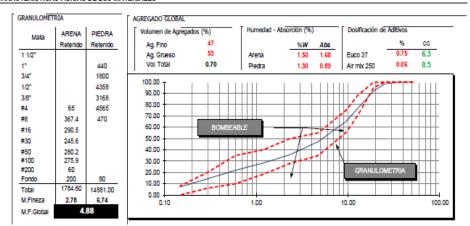

2.6.20 Diseño de mezcla Teórico 3

Tabla 27: Relación W/C 0.45

Fecha	07/05/2019	ADITIVOS
fc (kg/cm²)	350	1 Euco 37
Relación a/c	0.450	2 Air mix 250
fc + r (r= 70)	420	

CARACTERÍSTICAS FÍSICAS DE LOS MATERIALES

DOSIFICACIÓN (m3) MATERIALES	PROCEDENCIA	Peso Especifico kg/m3	Peso Seco kg/m3	Peso Humedo kg/m3	MATERIALES	VOLUMEN (LIS) DOSIFICACIÓN ○	0.03 t • gr
Cemento	Sol T-I	3115	378	378.0	Cemento	11.34	g
Agua	Yuracayan	1000	170.00	167.5	Agua	5.03 L	I
Arena	Yanamayo	2550	834.23	846.7	Arena	25.40	g
Ag. Grueso	Yanamayo	2640	973.93	986.6	Ag. Grueso	29.60	g
Euco 37	QSI	1190	2.84	2.8	Euco 37	85.05 g	r
Air mix 250	QSI	1100	0.23	0.2	Air mix 250	6.80	r
Aire			1.00%		OBSERVACIÓN		
TOTAL		Vol = 1.0000	Ka-	2381.9	H		

CONTROL DE	CALIDAD)										
PROPIEDADES FI	SICAS											
Tara	(Kg)	3.382	SLUMP	TEMP	. (°C)	AIRE	P.U. Teórico	P.U. Real	RENDIMIENTO	N° TEST	Hora	Hora
Volumen	(m3)	0.007054	(pulg)	Concr.	Amb	(%)	(kg/m³)	(kg/m²)	RENDIMIENTO	N IESI	Inicial	A/C
Tara + concreto	(Kg)	20.036	2 1/2	22.1	20.2	3.7	2381.9	2360.9	1.009	9	14:05	14:13

2.6.21 Preparación de la Mezcla de Concreto

Se hizo, la mezcla en un mezclador eléctrico de 2 pies cúbicos de capacidad, donde se introdujeron los agregados, cemento, el agua calentada a 30° C, colocando las tres cuartas partes del agua, luego con la parte sobrante de agua se introdujo el aditivo incorporador de aire, concluyendo con el aditivo plastificante, amasando los agregados por espacio de 5 minutos comprobando la uniformidad de la mezcla en su totalidad.

Figura 30: Mezcla del Concreto Fig

Figura 31: Temperatura del Concreto Fresco

Fuente: Elaboración Propia

2.6.22 Trabajabilidad Requerida según tablas ACI 211

El ensayo de asentamiento de acuerdo a la norma ASTM 143 el ensayo no es aplicable cuando el concreto contiene una cantidad apreciable de agregado grueso de tamaño mayor a 11/2" o cuando el concreto no sea plástico o cohesivo.

Se empleó el cono de Abrahans normalizado, y la varilla compactadora de hierro liso cilíndrica de 5/8" de diámetro y una longitud de 24" al extremo compactador de forma hemisférica con un radio de 8 mm.

En este estudio científico se utilizó las tablas del ACI 211 para obtener un asentamiento de 1" a 3" recomendada para losas de concreto

Figura 32: Ensayo de Asentamiento

2.6.23 Aire Incluido según tablas ACI 211

El aire incluido (incorporado) es particularmente en cualquier concreto colado durante climas fríos. Los concretos sin aire incluido pueden sufrir perdida de resistencia y daños internos y de superficie, como resultado de la congelación-deshielo.

El aire incluido fornece la capacidad de absorber tensiones debidas a la formación del hielo en el concreto.

Figura 33: Ensayo de Aire Incluido

2.6.24 Peso Unitario del Concreto

La norma MTC E 714 determina la densidad del concreto recién mezclado que proporcionara para calcular el rendimiento, el rendimiento se define como el volumen de concreto logrado en una mezcla de cantidades conocidas de sus materiales componentes.

Como Referencia Normativa ASTM C 138 Standard Test Method for Slump of hidraulic Cement Concrete.

Figura 34: Ensayo del Peso Unitario del concreto Fresco

Fuente: Elaboración propia

2.6.25 Toma de Muestras del Concreto en Estado Fresco

La norma MTC E 701 provee los requerimientos y procedimientos normalizados, necesarios para efectuar el muestreo de mezclas de concreto de diferentes recipientes usados tanto en la producción como en el transporte y el extendido del mismo.

Las muestras mínimas para el ensayo deberán tener un volumen mínimo de litros (pie 3). Se permiten tamaños de muestras más pequeñas para ensayos rutinarios de contenido de aire y asentamiento dependiendo del tamaño máximo del agregado.

Referencias normativas ASTM C 172 Standard Practice for Sampling Freshly Mixed Concrete.

Figura 35: Moldeo de Probeta

Figura 36: Varillado de Probeta

Fuente: Elaboración Propia

2.6.26 Ensayo de Inicio y Final de fragua del Concreto

Resulta útil poder mesurar la perdida de trabajabilidad del concreto y en especial definir, aunque sea arbitrariamente los parámetros del denominado fraguado de interés para la puesta en obra y la consolidación. Como se sabe el comportamiento del concreto fresco por intervención de los aditivos, temperatura, etc., no se gobierna de la misma manera que el cemento y difieren de sus respectivos valores de fraguado. La norma peruana 339-082, que tiene como antecedentes la ASTM C 403, especifica un método de ensayo para la determinación del tiempo de fraguado del concreto por la resistencia que ofrece a la penetración.

quit 97. I enerioneiro Ensayo de 17ag

Figura 37: Penetrómetro Ensayo de Fragua

2.6.27 Curado del Concreto

La norma MTC E 723 establece un procedimiento para el moldeo y curado de probetas cilíndricas de hormigón (concreto) en obra.

El hormigón utilizado para el moldeo de las probetas deberá tener el mismo asentamiento, contenido de aire y porcentaje de agregado grueso del concreto colocado en obra.

Las probetas hechas con el fin de juzgar la calidad y la uniformidad del hormigón colocado en obra o para que sirvan como base para decidir sobre la aceptación del mismo. Se desmoldarán al cabo de 20 horas +- 4 horas después de moldeados.

Inmediatamente después las probetas se colocarán en una solución saturada de agua de cal a una temperatura de 23° C +- 2°C, la saturación se puede tener incorporando 2 gramos de cal hidratada por litro de agua.

Referencia normativa ASTM C 31 Standard Practice for Making and curing Concrete Test Specimens in field.

Figura 38: Poza de curado con resistencias temperatura del agua 23°C

Figura 39: Poza de Curado

Fuente: Elaboración Propia

Figura 40: Poza de Curado colocación de Probetas

Fuente: Elaboración Propia

Figura 41: Poza de Curado Ubicación de Probetas

2.6.28 Curado y Protección del Pavimento Rígido (losa de Concreto)

Para este estudio científico se encofro una losa de concreto de 3.70 m de largo x 3.00 metros de ancho x 0.25 m de espesor.

Se dosifico en concreto con relación **w/c 0.40** por tener mejor resultado a ensayos de resistencia a la compresión los diseños realizado con, agregado grueso chancado al 100%, agregados finos con proporción de 70% de arena natural, 30% arena triturada.

El cemento Sol Tipo I elegido por tener mayor calor de hidratación, plastificante EUCO 37 73, (0.075) del peso del cemento. aire incluido AIR MIX 200 EUCO (0.06) DEL PESO DEL CEMENTO.

Se calentó el agua a una temperatura de 30°C, dando como resultado una mezcla de concreto, con temperatura de colocación de 19°C, con las características que se muestra en las tablas

Tabla 28: Peso Unitario del Concreto

PESO UNITARIO - A/C	0.40) – Fe	echa 04-05-2019
Peso de Recipiente		Kg	3.382
Volumen de Recipiente		cm³	0.007054
Peso de Recipiente + Mez	Kg	20.144	
Peso de la Mezola de Conc	Kg	16.762	
PESO UNITARIO	k	(g/m²	2376

HORA DE MEDICION (Hrs.)							
14:17							
SLUMP	% DE AIRE						
2 3/4"	3.8						
TEMP, CONCRETO	TEMP. AMBIENTE						
19.2	19.0						

Fuente: Elaboración Propia

Después del vaciado de la losa, cuando desapareció el brillo superficial se procedió a curar con el curador químico EUCOCURET es un compuesto acrílico que forma una membrana elástica recomendada en el curado del concreto fresco y el sellado del concreto endurecido. La membrana sella la superficie de concreto evitando la evaporación de agua del elemento permitiendo el desarrollo adecuado de resistencias en el elemento. **EUCOCURE** está completamente desprovisto de compuestos orgánicos volátiles.

Figura 42: Curado Químico del Pavimento

Fuente: Elaboración Propia

Continuando con la protección de la estructura losa del pavimento rígido con mantas de lana de fibra de vidrio de 6 metros de largo x 4 metros de ancho x un espesor de 2" que el fabricante garantiza una temperatura kilos /calorías de 24° centígrados en la totalidad del área de la losa protegida hasta una temperatura de ambiente menor de -10°C.

El producto de marca Aislanglass

La **lana de vidrio** un producto de Aislanglass es una fibra mineral fabricada con millones de filamentos de vidrio unidos con un aglutinante. El espacio libre con aire atrapado entre las fibras aumenta la resistencia a la transmisión de calor. La lana de vidrio es un material aislante térmico y acústico sumamente eficiente y de fácil manejo. El material posee una muy buena relación resistencia térmica / precio, siendo un material muy apropiado para acondicionamiento acústico y aislamiento térmico de infraestructuras.

Figura 43: Disposición Química

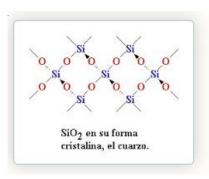


Figura 44: Lana de Fibra de Vidrio

2.6.29 Monitoreo de Temperaturas del Pavimento Rígido Superficial e Interna

Se monitoreo la temperatura ambiental, interna a 10 centímetros de la de la sub base y superficial del concreto a 5 centímetros de la superficie de la losa. Por espacio de 72 horas con parámetros de mantas de lana de fibra de vidrio y sin protección de las mantas de fibra de vidrio.

Para esta medición de temperaturas de uso un termómetro tipo K de 4 canales de salida digital con pantalla led y cuatro termocuplas tipo K con sensores que sensibles al contacto con el concreto como se aprecia en las figuras mostradas.

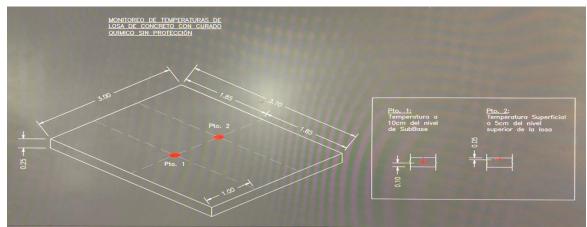
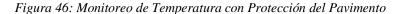
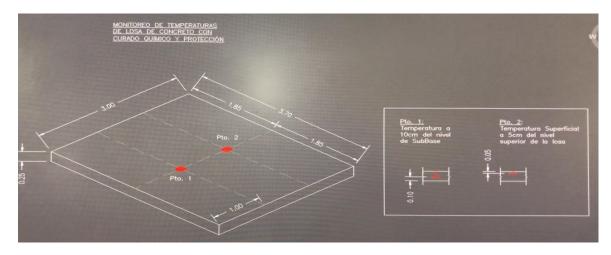




Figura 45: Monitoreo de Temperatura sin Protección del Pavimento

2.6.29.1 Monitoreo de Temperaturas de Losa de concreto con Curador Químico Protegido con Mantas de Lana de Fibra de Vidrio

Tabla 29: Ficha de Monitoreo de Temperatura

PROCEDIMIENTO EXPERIMENTAL DE PROTECCION DE ABRIGADO CON MANTAS DE LANA DE VIDRIO CON CEMENTO TIPO I - PAVIMENTO RIGIDO (LOSA DE CONCRETO)

TEMPERATURA DE MONITOREO

Viernes 10 de Mayo 201

vietties to de may	0 2019		vaciauo 2.00 p.ili.	
HO	RA	TEMPERATURA	TEMPERATURA	
Del Día	Acumulada	Interna °C	Superficial °C	Ambiente °C
6:00 PM	6.0	22.0	16.8	5.7
8:00 PM	8.0	24.7	18.7	5.5
10:00 PM	10.0	28.3	24.5	4.8
12:00 AM	12.0	30.8	28.3	-1.8

PROPORCIONES EN VOLUMEN

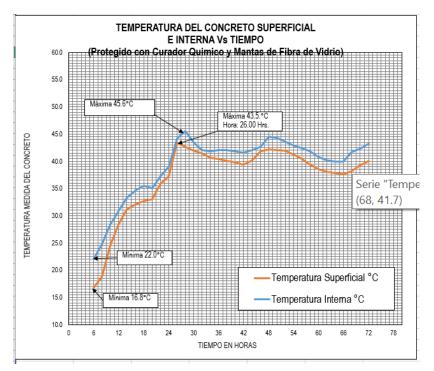
Cemento	1				
Arena	2.3				
Piedra Huso 57	2.7				
Agua	17				
Air Mix	25.5 g				
	318 q.				

Sábado 11 de Mayo 2019

Sabado 11 de May	0 20 19						
HO	HORA		TEMPERATURA DEL CONCRETO				
Del Día	Acumulada	Interna °C	Superficial °C	Ambiente °C			
2:00 AM	14.0	33.3	31.2	-2.9			
4:00 AM	16.0	34.7	32.1	-1.5			
6:00 AM	18.0	35.5	32.7	-1.2			
8:00 AM	20.0	35.0	33.1	6.2			
10:00 AM	22.0	37.2	35.8	13.8			
12:00 PM	24.0	39.0	37.2	18.9			
2:00 PM	26.0	44.2	43.5	20.6			
4:00 PM	28.0	45.6	42.6	14.2			
6:00 PM	30.0	43.5	41.9	7.2			
8:00 PM	32.0	42.0	41.5	6.1			
10:00 PM	34.0	41.8	40.7	5.1			
12:00 AM	36.0	42.0	40.4	-2.2			

DETERMINACIONES

ire Total 3.80% Temp. de Ambiente 10.3°C Temp. de Agua 30.0°C
emp. de Agua 30.0°C
emp. del Concreto 22.0°C
'emp. de la Piedra 16.2°C
emp. de la Arena 16.2°C
emp. del Cemento 16.2°C


Domingo 12 de Mayo 2019

н	ORA	TEMPERATURA	TEMPERATURA	
Del Día	Acumulada	Interna °C	Superficial °C	Ambiente °C
2:00 AM	38.0	42.1	40.1	-3.6
4:00 AM	40.0	41.8	39.8	-1.9
6:00 AM	42.0	41.6	39.4	1.2
8:00 AM	44.0	42.1	40.2	7.1
10:00 AM	46.0	42.6	41.8	12.0
12:00 PM	48.0	44.5	42.2	16.8
2:00 PM	50.0	44.3	42.1	19.9
4:00 PM	52.0	43.6	41.9	13.8
6:00 PM	54.0	42.9	41.2	6.9
8:00 PM	56.0	42.4	40.4	5.8
10:00 PM	58.0	41.8	39.4	4.2
12:00 AM	60.0	40.8	38.5	-1.9

Lunes 13 de Mayo 2019

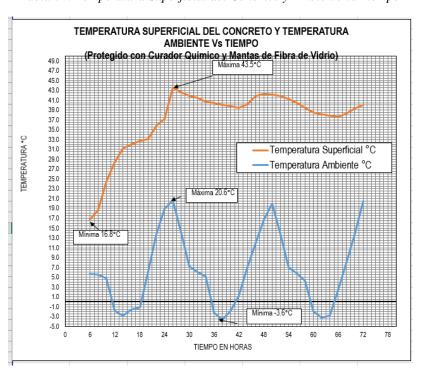

HORA		TEMPERATURA	TEMPERATURA	
Del Día	Acumulada	Interna °C	Superficial °C	Ambiente °C
2:00 AM	62.0	40.2	38.1	-3.2
4:00 AM	64.0	40.0	37.8	-2.8
6:00 AM	66.0	40.0	37.6	2.3
8:00 AM	68.0	41.7	38.2	7.9

Tabla 30: Temperatura del Concreto vs Tiempo

Fuente: Elaboración Propia

Tabla 31: Temperatura Superficial del Concreto y Ambiente vs Tiempo

TEMPERATURA INTERNA DEL CONCRETO Y TEMPERATURA AMBIENTE VS TIEMPO (Protegido con Curador Químico y Mantas de Fibra de Vidrio) 49.0 47.0 45.0 43.0 41.0 39.0 37.0 35.0 33.0 31.0 TEMPERATURA °C Temperatura Interna °C 29.0 27.0 25.0 23.0 Temperatura Ambiente °C 21.0 19.0 17.0 15.0 13.0 11.0 9.0 7.0 5.0 3.0 1.0 -1.0 -3.0 42 48 36 TIEMPO EN HORAS

Tabla 32: Temperatura Interna del Concreto y Ambiente vs Tiempo

2.6.29.2 Monitoreo de Temperaturas de Losa de concreto Curadas con **Curador Químico Eucocuret**

Tabla 33: Ficha de Monitoreo de Temperatura

PROTECCION CON CURADOR QUIMICO EUCOCURE Y CEMENTO TIPO I -PAVIMENTO RIGIDO (LOSA DE CONCRETO)

TEMPERATURA DE MONITOREO

Viernes 10 de May	0 2019		Hora de	e Vaciado 2:00 p.m.
HORA		TEMPERATURA DEL CONCRETO		TEMPERATURA
Del Día	Acumulada	Interna °C	Superficial °C	Ambiente °C
6:00 PM	6.0	16.2	13.9	5.7
8:00 PM	8.0	15.1	12.1	5.5
10:00 PM	10.0	14.4	9.5	4.8
12:00 AM	12.0	14.0	9.2	-1.8

PRO	POR	CIO	VES	ΕN	VOL	UME	N

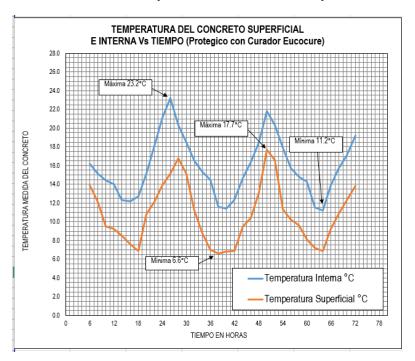
PROPORCIONES EN VOLUMEN				
Cemento	1			
Arena	2.3			
Piedra Huso 57	2.7			
Agua Litros	17			
Air Mix 0.06% p.c.	25.5 g			
Euco 37 0.075% p.c.	318 q.			

Sábado 11 de Mayo 2019

н	HORA		TEMPERATURA DEL CONCRETO		
Del Día	Acumulada	Interna °C	Superficial °C	Ambiente °C	
2:00 AM	14.0	12.3	8.5	-2.9	
4:00 AM	16.0	12.2	7.6	-1.5	
6:00 AM	18.0	12.7	6.9	-1.2	
8:00 AM	20.0	15.1	10.8	6.2	
10:00 AM	22.0	18.1	12.1	13.8	
12:00 PM	24.0	21.1	13.9	18.9	
2:00 PM	26.0	23.2	15.1	20.6	
4:00 PM	28.0	20.3	16.8	14.2	
6:00 PM	30.0	18.5	15.1	7.2	
8:00 PM	32.0	16.5	11.2	6.1	
10:00 PM	34.0	15.3	8.8	5.1	
12:00 AM	36.0	14.5	7.0	-22	

	ACIO!	

Slump	21/2"
Aire Total	3.80%
Temp. de Ambiente	10.3°C
Temp. de Agua	30.0°C
Temp. del Concreto	22.0°C
Temp. de la Piedra	16.2°C
Temp. de la Arena	16.2°C
Temp. del Cemento	16.2°C


Domingo 12 de Mayo 2019

Conningo 12 de mayo 2019					
HO	HORA		TEMPERATURA DEL CONCRETO		
Del Día	Acumulada	Interna °C	Superficial °C	Ambiente °C	
2:00 AM	38.0	11.6	6.6	-3.6	
4:00 AM	40.0	11.4	6.8	-1.9	
6:00 AM	42.0	12.3	6.9	1.2	
8:00 AM	44.0	14.7	9.5	7.1	
10:00 AM	46.0	16.4	10.4	12.0	
12:00 PM	48.0	18.5	13.1	16.8	
2:00 PM	50.0	21.8	17.7	19.9	
4:00 PM	52.0	20.3	16.6	13.8	
6:00 PM	54.0	17.9	11.3	6.9	
8:00 PM	56.0	15.7	10.2	5.8	
10:00 PM	58.0	14.8	9.6	4.2	
12:00 AM	60.0	14.3	8.1	-1.9	

Lunes 13 de Mayo 2019

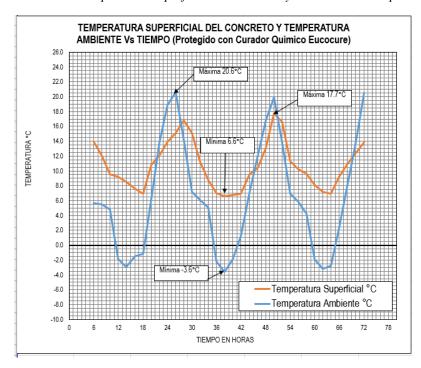

HORA		TEMPERATURA	TEMPERATURA	
Del Día	Acumulada	Interna °C	Superficial °C	Ambiente °C
2:00 AM	62.0	11.5	7.2	-3.2
4:00 AM	64.0	11.2	6.9	-2.8
6:00 AM	66.0	13.9	9.2	2.3
8:00 AM	68.0	15.7	10.9	7.9

Tabla 34: Temperatura del Concreto vs Tiempo

Fuente: Elaboración Propia

Tabla 35: Temperatura Superficial del Concreto y Ambiente vs Tiempo

TEMPERATURA INTERNA DEL CONCRETO Y TEMPERATURA AMBIENTE Vs TIEMPO (Protegico con Curador Quimico Eucocure) 26.0 24.0 22.0 20.0 18.0 10.0 8.0 6.0 4.0 2.0 0.0 -2.0 -6.0 Temperatura Interna °C -8.0 Temperatura Ambiente °C -10.0

Tabla 36: Temperatura Interna del Concreto y Ambiente vs Tiempo

Fuente: Elaboración Propia

TIEMPO EN HORAS

42

78

2.6.30 Ensayo Para Determinar la Resistencia a la Compresión

La norma MTC E 704 tiene como objetivo determinar la resistencia a la compresión de especímenes cilíndricos de concreto, tanto cilindros moldeados como núcleos extraídos y se limita a concretos con un peso unitario superior a los 800 kg m3.

El ensayo consiste en aplicar una carga axial de compresión a cilindros moldeados a núcleos, a una velocidad de carga prescrita, hasta que presente la falla. La resistencia a la compresión del espécimen se determina dividiendo la carga aplicada durante el ensayo entre el área o sección del mismo.

Como Referencia Normativa ASTM C 39-39M 2005 Standard Test Methot compressive Strengh of Cylindral Concrete Specimens.

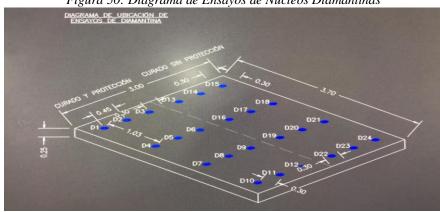
Tabla 37: Diseños con diferentes relaciones W/C, Poza de curado a 23°C,

ENSAYO DE RESISTENCIA A LA COMPRESIÓN TESTIGOS CILÍNDRICOS							
DISEÑO	1	NUMERO DE DÍAS					
DISENO	7 DÍAS	14 DÍAS	28 DÍAS				
W/C 0.40	6	6	6				
W/C 0.43	6	6	6				
W/C 0.45	6	6	6				
54 PROBETAS TOTAL ENSAYADAS							

Figura 47: Ensayo de Resistencia a la Compresión

Fuente: Elaboración propia

Tabla 38: Curadas curador químico protegidas con mantas de lana de fibra de vidrio


ENSAYO DE RESISTENCIA A LA COMPRESIÓN DIAMANTINAS				
DISEÑO	NUMERO DE DÍAS			
	28 DÍAS			
W/C 0.40	12			
TOTAL	12 PROBETAS ENSAYADAS			

Fuente: Elaboración propia

Figura 48: Extracción de núcleos de concreto Figura 49: Perfilado en la cortadora

Figura 50: Diagrama de Ensayos de Núcleos Diamantinas

Fuente: Elaboración propia

Tabla 39: Curadas solo con curador químico Eucocuret

ENSAYO DE RESISTENCIA A LA COMPRESIÓN DIAMANTINAS			
DISEÑO	NUMERO DE DÍAS		
	28 DIAS		
W/C 0.40	12		
TOTAL	12 PROBETAS ENSAYADAS		

Fuente: Elaboración propia

Tabla 40: Resistencias a la compresión en Horas

ENSAYO	DE RESISTENC	CIA A LA COMI	PRESIÓN		
DISEÑO	NUMERO DE DÍAS (HORAS)				
DISENO	24 horas	48 horas	72 horas		
W/C 0.40	6	6	6		
TOTAL	18 PROBETAS	S ENSAYADAS			

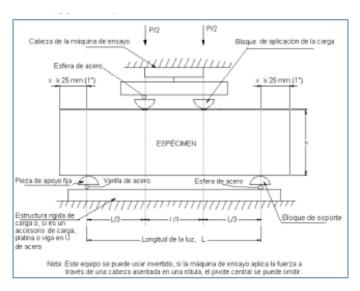
2.6.31 Ensayo de Resistencia a la Flexión

La norma MTC E 709 resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo, cuyo objetivo es establecer el procedimiento que se debe seguir para la determinación de la resistencia a la flexión del concreto, por medio del uso de una viga simple cargada en los tercios de la luz.

Las muestras deben tener una distancia libre entre apoyos de al menos, tres veces su altura, con una tolerancia del 2%. Los lados de las muestras deberán formar ángulos rectos con las caras superior e inferior. Todas las superficies de contacto con los bloques de aplicación de carga y de soporte deben ser suaves y libres de grietas, agujeros o inscripciones.

Como referencia normativa ASTM C 78 Standard Test Method for fleural Strength of Concrete (Using simple Beam with third point loading)

Tabla 41: Curadas en poza de curado a 23°C


ENSAYO DE RESISTENCIA A LA FLEXIÓN VIGAS					
DISEÑO	NUMERO DE DÍAS				
	28 DÍAS				
W/C 0.40	5				
TOTAL	5 VIGAS ENSAYADAS				

Fuente: Elaboración propia

Tabla 42: Curadas con curador químico, protegidas con Mantas de lana fibra de Vidrio

ENSA	YO DE RESISTENCIA A LA FLEXIÓN VIGAS
DISEÑO	NUMERO DE DÍAS
	28 DÍAS
W/C 0.40	5
TOTAL	5 VIGAS ENSAYADAS

Figura 51: Croquis de ensayo de Flexión

Fuente: Elaboración propia

Figura 52: Ensayo de flexión Figura 53: Rotura por esfuerzo a flexión

Ensayo de flexión (vigas apoyadas en los dos tercios de los extremos)

Elaboración: Fuente propia

Figura 54: Lectura de Resistencia a esfuerzo Flector

Fuente: Elaboración propia

III. RESULTADOS

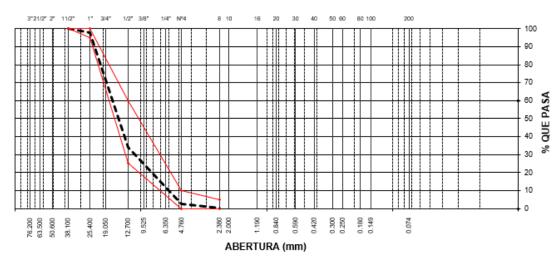

3.1 Granulometría Agregado Grueso Huso 57

Tabla 43: Resultados de Ensayos Granulométricos

cificación	Especi	% que	% Ret	% Ret	Peso	alla	Ma
- HUSO 57	ASTM -	Pasa	Acum.	Parcial	(g)	mm.	Tamiz
						76.200	3"
						63.500	2 1/2"
						50.600	2"
100	10	100.0				38.100	1 1/2"
100	95	97.8	2.2	2.2	740	25.400	1"
		65.6	34.4	32.2	10635	19.050	3/4"
60	25	34.2	65.8	31.4	10365	12.700	1/2"
		20.8	79.2	13.4	4428	9.525	3/8"
		7.1	92.9	13.7	4523	6.350	1/4"
10	0	2.5	97.5	4.6	1530	4.760	No4
5	0	0.5	99.5	2.0	658	2.360	8
			100.0	0.5	152	2.000	10
						1.190	16
						0.840	20
						0.600	30
						0.420	40

Figura 55: Curva Granulométrico Huso 57

CURVA GRANULOMETRICA

Fuente: Elaboración propia

Interpretación: Curva bien graduada, (GW) calibrada en las zarandas vibratorias, por mallas pasantes del tamiz de 1" y retenido en el tamiz de ½" esta configuración se logró después de varios ensayos consecutivos para lograr la curva especificada del huso 57.(Tabla N° 55)

La Cantera Yanamayo de origen fluviales, redondeadas y sub redondeadas cumplen con los requerimientos de la norma MTC para concretos Portland.

3.2 Ensayo de Gravedad Específica

Tabla 44: Resultados de Gravedad Especifica del Agregado Grueso

	AGREGADO	JIKULUU .	
Peso Mat.Sat. Sup. Seca (En Aire) (gr)	3597.0	4469.7	
Peso Mat.Sat. Sup. Seca (En Agua) (gr)	2248.1	2796.0	
Vol. de masa + vol de vacíos = A-B (gr)	1348.9	1673.7	
Peso material seco en estufa (110 °C)(gr)	3565.2	4430.4	
Vol. de masa = C- (A - D) (gr)	1317.1	1634.4	PROMEDIC
Pe bulk (Base seca) = D/C	2.643	2.647	2.645
Pe bulk (Base saturada) = A/C	2.667	2.671	2.669
Pe Aparente (Base Seca) = D/E	2.707	2.711	2.709
% de absorción = ((A - D) / D * 100)	0.89	0.89	0.89

Observaciones:

Interpretación: Gravedad especifica base seca de 2.645 grs/cm3 tomada como dato para los diseños de mezcla de concreto, porcentaje de absorción de 0.89 % está cerca del límite de 1% para tener en consideración de la pasta de cemento.

3.3 Ensayo de Abrasión Maquina de Los Ángeles

Tabla 45: Resultados de Ensayo de Abrasión

	DATOS DE LA	A MUESTRA					
TAMIZ	GRADACION						
	В						
2 1/2"							
2"							
11/2"							
1"							
3/4"							
1/2"	2514.0						
3/8"	2502.0						
1/4"							
N* 4							
PESO TOTAL	5016.0						
Retenido en la malla Nº 12	3825.0						
Que pasa en la malla Nº 12	1191.0						
N° de Esferas	11						
% Desgate	23.7						
Especificación Máxima	40.0						
OBSERVACIONES:							

Fuente: Elaboración propia

Interpretación: Grava cumple con los requerimientos del MTC para concreto Portland teniendo como desgaste 23.7% siendo el máximo permisible 40%.

3.4 Ensayo de Durabilidad al Sulfato de Magnesio

Tabla 46: Resultados de ensayo Sulfato de Magnesio

MATERIAL: A	CDECADO C	DILEGO		SOLUCION DE SU	ILFATO DE SODIO)		
WATERIAL. A	OKEGADO G	KUESU		SOLUCION DE SU	ILFATO DE MAGN	ESIO	> <	
TAMAÑO D	EMALLA	ESCALONADO	PESO INICIAL	PESO PESO	PESO DE	PORCE	NTAIF	PORCENTAJE
TAMANOD	LINIALLA	ORIGINAL	ANTES DE	DESPUES DE	DESGASTE	DE DES		DE DESGASTE
PASA	RETIENE	OKIOINAL	ENSAYO	ENSAYO	DEGUNGTE	DE DES	ONOTE	CORREGIDA
rnon	KETTERE	(%)	(g)	(g)	(g)	(%	6)	(%)
2"	1 1/2"							
1 1/2"	1"	2.2	1011.0	914.0	97.0	9.	6	0.2
1"	3/4"	32.2	504.0	458.0	46.0	9.	.1	2.9
3/4"	1/2"	31.4	674.0	631.0	43.0	6.	4	2.0
1/2"	3/8"	13.4	304.0	269.0	35.0	11	.5	1.5
3/8"	N° 4	18.3	300.0	296.0	4.0	1.	3	0.2
						TO	TAL (%)	6.9

Fuente: Elaboración propia

Interpretación: La dureza del agregado grueso sometido al ensayo de durabilidad al sulfato de magnesio cumple con los requerimientos de la norma del MTC E 209 para mezclas de concreto dando como resultado 6.9% siendo el máximo permisible 18 %. (Tabla N° 46)

3.5 Ensayo Pesos Unitarios

Tabla 47: Pesos Unitarios del Agregado

Р	ESO UN		ACIOS DE I		GADOS		
		Peso Unitario Suelto F			Peso Unita	rio poi Perc	onadd 🔀 usión
Repetición N.		1	2	3	1	2	3
Peso del Molde + Agregado Seco	g	51650	51600	51600	53750	53800	53850
Peso del Molde	g	9439 9439					
Peso del Agregado Seco	g	42211	42161	42161	44311	44361	44411
Volumen del Molde	cm ³		28317		28317		
Gravedad Específica del Agregado (SSS)	g/cm³		2.669			2.669	
% Absorción del Agregado	0.1%		0.89			0.89	
Vacíos en el Agregado	0.1%	44.1	44.2	44.2	41.4	41.3	41.2
Peso Unitario del Agregado	kg/m³	1491	1489	1489	1565	1567	1568
Peso Unitario del Agregado Promedio	kg/m³	1489 1567					
OBSERVACIONES:						_	

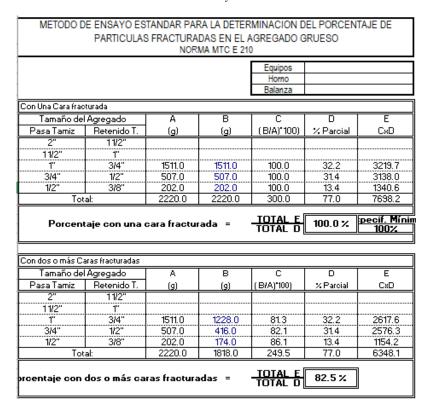
Fuente: Elaboración propia

Interpretación: Ensayos pesos unitario suelto y compactado dentro de los parámetros esperados para el cálculo del agregado grueso para los diseños de mezclas de concreto. (Tabla N° 47)

3.6 Ensayo de Partículas chatas y Alargadas de los Agregados

Tabla 48: Resultado de Ensayos de Partículas chatas y alargadas

					Equipos Horno Balanza,Calibrador	
Tamaño de	el Agregado	Α	B Peso de Chatas y	C Porcentaje	D	E Corrección
Pasa Tamiz	Retenido T.	Peso Inicial (g)	Alargadas (g)	(B)/(A)*100 (%)	Gradación Original (%)	(C)*(D) (%)
2"	1 1/2"					
1 1/2"	1"					
1"	3/4"	1511.0	37.6	2.5	32.2	80.5
3/4"	1/2"	507.0	38.1	7.5	31.4	235.3
1/2"	3/8"	202.0	10.8	5.3	13.4	71.0
To	tal:	2220.0	86.5	15.3	77.0	386.9
P	ORCENTAJE DE	PARTÍCULAS CHA	TAS Y ALARGADAS =-	TOTAL E	5.0 %	Especif. Máxin


Fuente: Elaboración propia

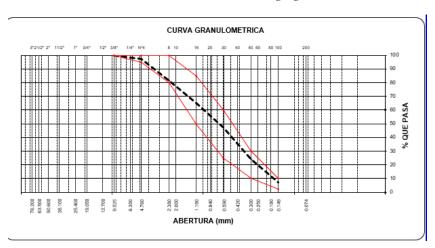
Interpretación: Los resultados de partículas chatas y alargadas cumplen con la norma MTC E 223, este resultado confirma que se tuvo que utilizar un triturador terciario por impacto donde

las partículas son de forma semi cubica, resultado es del 5% siendo el máximo permisible 15% cumple para mezclas de concreto con cemento Portland. (Tabla N° 48)

3.7 Ensayo de Partículas Fracturadas

Tabla 49: Resultados de Ensayo Partículas Fracturadas

Fuente: Elaboración propia


Interpretación: el resultado es esperado de las partículas fracturadas por que se trituro por un triturador primario, luego paso al triturador secundario y para terminar en un triturador terciario siendo el resultado 100% de partículas con una cara fracturada, cumpliendo con la norma MTC E 210 para concreto con cemento Portland. (Tabla N° 49)

3.8 Granulometría Agregado Fino

Tabla 50: Resultado de Ensayo Granulometría de Agregado Fino

os de ensayo	(MTC E - 204)					Módulo de Fineza	
o Total		12	57.0			2.778	
					Espe	ecificación = 2.3 a 3.	.1
Ma	alla	Peso	% Ret	% Ret	% que	Especifica	ción
Tamiz	mm.	(g)	Parcial	Acum.	Pasa	ASTM - (233
3"	76.200						
2 1/2"	63.500						
2"	50.600						
1 1/2"	38.100						
1"	25.400						
3/4"	19.050						
1/2"	12.700						
3/8"	9.525				100.0	100	
1/4"	6.350	12.3	1.0	1.0	99.0		
No4	4.760	22.9	1.8	2.8	97.2	95	100
8	2.360	196.4	15.6	18.4	81.6	80	100
10	2.000	46.6	3.7	22.1	77.9		
16	1.190	160.0	12.7	34.9	65.1	50	85
20	0.840	105.9	8.4	43.3	56.7		
30	0.600	118.3	9.4	52.7	47.3	25	60
40	0.420	122.5	9.7	62.4	37.6		
50	0.300	171.3	13.6	76.1	23.9	10	30
60	0.250						
80	0.180						
100	0.149	211.6	16.8	92.9	7.1	2	10
200	0.074	44.4	3.5	96.4	3.6		
< 200		44.8	3.6	96.5			

Tabla 51: Curva Granulométrica Agregado Fino

Fuente: Elaboración propia

Interpretación: Arenas combinadas 70% de arena natural,30% de arena triturada (lavadas mecánicamente) de la cantera Yanamayo cumple con la gradación del huso granulométrico según norma MTC E 204 apta para diseños de concreto de cemento Portland. (Tabla N°51)

3.9 Ensayo Gravedad Específica Agregado Fino

Tabla 52: Resultados de Gravedad Especifica Agregado Fino

GRAVEDAD ESPEC	IFICA Y ABSO	RCION DE	LOS AGREG	ADOS	
	NORMA MTC	E 205/206			
			Equipos		
			Horno		
			Balanza		
			Termometro		
	AGREGADO	FINO			
A Peso Mat. Sat. Sup. Seco (en Aire) (gr)	500.0	500.0			
B Peso Frasco + agua	1384.6	1368.3			
C Peso Frasco + agua + A (gr)	1884.6	1868.3			
D Peso del Mat. + agua en el frasco (gr)	1691.9	1675.3			
E Vol de masa + vol de vacio = C-D (gr)	192.7	193.0			
F Pe. De Mat. Seco en estufa (110°C) (gr)	491.8	491.8			
G Vol de masa = E - (A - F) (gr)	184.4	184.8			PROMEDIO
Pe bulk (Base seca) = F/E	2.552	2.547			2.550
Pe bulk (Base saturada) = A/E	2.595	2.590			2.593
Pe aparente (Base Seca) = F/G	2.666	2.661			2.664
% de absorción = ((A - F)/F)*100	1.68	1.68			1.68

Fuente: Elaboración propia

Interpretación: la mezcla de las arenas natural y chancada proporcionan un valor de gravedad especifica equilibrado compuesta de partículas duras libre de limos y arcillas perjuiciosas para las mezclas de concreto, con un porcentaje de absorción de 1.68 % para tener en consideración en el pastón de cemento. (Tabla N° 52)

3.10 Ensayo Pesos Unitarios

Tabla 53: Resultados de Pesos Unitarios para Agregado Fino

PESO UNITARIO Y VACIOS DE LOS AGREGADOS NORMA MTC E 203										
		Peso Unitario Suelto			so Unita		sona> cusi:			
Repetición N. ⁻		1	2	3	1	2	3			
Peso del Molde + Agregado Seco	9	6331	6320	6320	6861	6858	6866			
Peso del Molde	9		1609 1609							
Peso del Agregado Seco	9	4722	4711	4711	5252	5249	5257			
Volumen del Molde	cm³		2825			2825				
Gravedad Específica del Agregado (SSS)	g/cm³		2.593			2.593				
% Absorción del Agregado	0.1%		1.68			1.68				
Vacíos en el Agregado	0.1%	35.5	35.7	35.7	28.3	28.3	28.2			
Peso Unitario del Agregado	kg/m³	1672	1668	1668	1859	1858	1861			
Peso Unitario del Agregado Promedio	kg/m³		1669			1859				

Interpretación: Combinación de arenas natural 70% y arena triturada 30% elevan el peso unitario de la arena, para tener en cuenta en los diseños de concreto con cemento Portland. (Tabla N° 53)

3.11 Ensayo de Equivalente de Arena

Tabla 54: Resultado de Equivalente en Arena

				Equi	inos	Serie
		Horno			17/002745	
				Conjunto de E	quival. Aren	143
DATOS DE LA MUESTRA		IDENTIFICACION				PROMEDIO
DATOS DE LA MUESTRA		1	2	3		PROMEDIO
Tamaño máximo (pasa malla № 4) 🛚 r	mm	4.76	4.76	4.76		
Hora de entrada a saturación O(0:10	11:12	11:14	11:16		
Hora de salida de saturación (ma	as 10°	11:22	11:24	11:26		
Hora de entrada a decantación OG	0:02	11:24	11:26	11:28		
Hora de salida de decantación (ma	s 20	11:44	11:46	11:48		
Altura máxima de material fino r	mm	4.30	4.40	4.30		
Altura máxima de la arena 💮 🕝	mm	3.30	3.30	3.30		
Equivalente de Arena	×	77	75	77		77
Especificación Mínima Concreto < 210 Kg/cm ²						65
	Especificación Mínima Concreto > 210 Kg/cm²					75

Fuente: Elaboración propia

Interpretación: La arena se lavó con vibración mecánica y agua logrando el resultado de 77% cumpliendo con las normas del MTC E 114 para el uso de concreto de cemento Portland para menores y mayores de F´c= 210 kg /cm2.

3.12 Ensayo Material Fino que pasa el Tamiz nº 200

Tabla 55: Resultado de Ensayo de Tamiz Nº 200

		A MTC E 202		
			Equipos	Serie
			Horno	17/002745
			Balanza	170553379
Nº de Ensayo		1	2	3
Peso de la Muestra Seca	(g)	742.2	750.1	
Peso de la muestra seca despues de lavado	(g)	722.2	728.1	
Porcentaje que Pasa el Tamiz de 75 μm - Nº 20	0 (%)	2.7	2.9	
Promedio Pasa el Tamiz de 75 µm - Nº 200	(%)		2.8	

Interpretación: La arena se lavó con vibración mecánica y agua logrando el resultado de pasando por el tamiz N° 200 de 2.8 % cumpliendo con las normas del MTC E 114 siendo el máximo permisible de 5% para concreto de cemento Portland.

3.13 Ensayo Durabilidad Sulfato de Magnesio

Tabla 56: Resultado de Ensayo de Durabilidad Sulfato de Magnesio

MATERIAL	: AGREGADO	JLFATO DE SOD									
TAMAÑO I	TAMAÑO DE MALLA ESCALONADO ORIGINAL ANTES DE				ANTES DE						PORCENTAJE DE DESGASTE
PASA	RETIENE	(%)	ENSAYO (g)	(g)	(g)	DE DESGASTE (%)	CORREGIDA (%)				
3/8"	N° 4	2.8	100.0	80.0	20.0	20.0	0.6				
N° 4	N° 8	15.6	100.0	82.0	18.0	18.0	2.8				
N° 8	N° 16	16.4	100.0	75.0	25.0	25.0	4.1				
N° 16	N° 30	17.8	100.0	81.0	19.0	19.0 19.0					
N° 30	N° 50	23.4	100.0	80.0	80.0 20.0 2		4.7				
Menor qu	ie N° 050										
						TOTAL (%)	15.5				

Fuente: Elaboración propia

Interpretación: Los resultados de la arena cumplen con las normas del MTC E 209 sometida a la solución de sulfato de magnesio tiene un valor de 15.5% siendo el máximo permisible 18% cumpliendo para uso de concretos con cemento Portland.

3.14 Ensayos del Concreto fresco

3.14.1 Pesos Unitarios del concreto, asentamiento, porcentaje de aire, temperatura Ambiental y del Concreto

Tabla 57: Resultados de Ensayos al Concreto Fresco

CONTENIDO DE AIRE EN EL CONCRETO FRESCO METODO DE PRESION
Y PESO UNITARIO
NORMA MTC E 706 / 714

oos	
ıza	
metro	
de Aire	
	nza metro de Aire

PESO UNITARIO - A/C 0.40 - Fecha 04-05-2019												
Peso de Recipiente	Kg	3.382										
Volumen de Recipiente	cm³	0.007054										
Peso de Recipiente + Mezcla	Kg	20.144										
Peso de la Mezda de Concreto	Kg	16.762										
PESO UNITARIO	Kg/m³	2376	_									

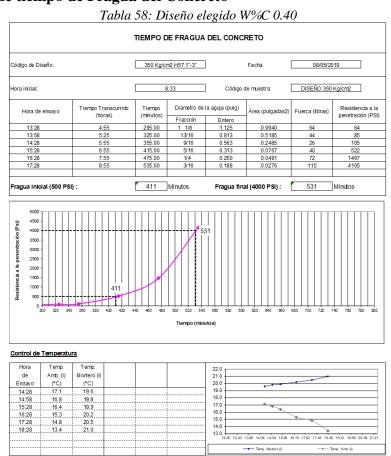
PESO UNITARIO - A/C 0.43 - Fecha 06-05-2019											
Peso de Recipiente	Kg	3.382									
Volumen de Recipiente	cm³	0.007054									
Peso de Recipiente + Mezda	Kg	19.978									
Peso de la Mezda de Concreto	Kg	16.596									
PESO UNITARIO	Kg/m³	2353									

PESO UNITARIO - A/C 0.45 - Fecha 07-05-2019											
Peso de Recipiente	Kg	3.382									
Volumen de Recipiente	cm ³	0.007054									
Peso de Recipiente + Mezcla	Kg	20.036									
Peso de la Mezda de Concreto	Kg	16.654									
PESO UNITARIO	Kg/m³	2361									

HORA DE MEDICION (Hrs.)								
14:17								
SLUMP	% DE AIRE							
2 3/4"	3.8							
TEMP. CONCRETO	TEMP. AMBIENTE							
19.2	19.0							

HORA DE MEDICION (Hrs.)									
14:35									
SLUMP	% DE AIRE								
2 1/2"	3.6								
TEMP. CONCRETO	TEMP. AMBIENTE								
19.7	20.0								

HORA DE MEDICION (Hrs.)									
14:05									
SLUMP	% DE AIRE								
2 1/2"	3.4								
TEMP. CONCRETO	TEMP. AMBIENTE								
22.1	20.3								


Fuente: Elaboración propia

Interpretación: Los pesos Unitarios de los diseños concreto con relación agua cemento 0.40, 0.43,0.45 están dentro de los esperados ya que dependiendo de la gravedad específica de agregados estos pesos unitarios deberían estar entre 2,300 a 2,400 kg/m3, el asentamiento de diseño es de 1" a 3" recomendadas en las tablas del ACI 211, para losas de pavimentos rígidos, en los ensayos realizados SLUMP está dentro de 21/2" y 23/4" (Tabla N° 57)

El porcentaje de aire incluido más recomendado es de 3.8 % con relación W/C 0.40 para tener una mezcla de concreto cuyo objetivo específico es lograr una mezcla por durabilidad, ante los fenómenos naturales de hielo-deshielo.

La temperatura del ambiente, recomendable para hacer concreto promedio 19.8° para estos tipos de climas fríos, llegando la temperatura del concreto promedio 20°C que garantizan el desarrollo del proceso de hidratación del cemento para desarrollar resistencia en las primeras horas evitando daños en la estructura.

3.14.2 Ensayo de tiempo de Fragua del Concreto

Fuente: Elaboración propia

Interpretación: El tiempo de fraguado es un periodo en el cual mediante reacciones químicas del cemento y el agua conducen a un proceso, que, mediante diferentes velocidades de reacción, generan calor y dan origen a nuevos compuestos, estos en la pasta de cemento generan que este endurezca y aglutine al agregado de la mezcla del concreto.

Tener en consideración el concepto bien claro perdida de trabajabilidad (disminución del asentamiento) con inicio de fragua del concreto.

Se considera inicio de fragua cuando la resistencia a la penetración llega a las 500lbs/pulg2 que en el grafico mostrado se logró a los 411 minutos (6.85 horas).

El final de fragua se da cuando la resistencia a la penetración llega a 4000 lbs/pulg2 que en el grafico del ensayo realizado llega a 531 minutos (8.85 horas). Tabla N°58

3.15 Monitoreo de Temperaturas Curado y Protección de losa de Concreto

Tabla 59: Resultado de Monitoreo de Temperatura Con Curador Químico y Protección Mantas fibra vidrio

	TEMPER	RATURA DE MON	NITOREO	
/iernes 10 de Ma	yo 2019		Hora de	Vaciado 2:00 p.m
н	DRA	TEMPERATURA	DEL CONCRETO	TEMPERATURA
Del Día	Acumulada	Interna °C	Superficial °C	Ambiente °C
6:00 PM	6.0	22.0	16.8	5.7
8:00 PM	8.0	24.7	18.7	5.5
10:00 PM	10.0	28.3	24.5	4.8
12:00 AM	12.0	30.8	28.3	-1.8
Sábado 11 de Ma	yo 2019			
н	DRA	TEMPERATURA	DEL CONCRETO	TEMPERATURA
Del Día	Acumulada	Interna °C	Superficial °C	Ambiente °C
2:00 AM	14.0	33.3	31.2	-2.9
4:00 AM	16.0	34.7	32.1	-1.5
6:00 AM	18.0	35.5	32.7	-1.2
8:00 AM	20.0	35.0	33.1	6.2
10:00 AM	22.0	37.2	35.8	13.8
12:00 PM	24.0	39.0	37.2	18.9
2:00 PM	26.0	44.2	43.5	20.6
4:00 PM	28.0	45.6	42.6	14.2
6:00 PM	30.0	43.5	41.9	7.2
8:00 PM	32.0	42.0	41.5	6.1
10:00 PM	34.0	41.8	40.7	5.1
12:00 AM	36.0	42.0	40.4	-2.2

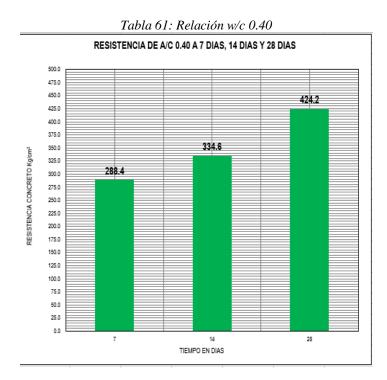
Elaboración: Fuente propia

Interpretación: La tabla mostrada nos indica que la temperatura interna máxima del concreto registrada a 15 centímetros de profundidad de la superficie llego a las 4 de tarde, (45.6 °C) a las 28 horas del vaciado de la losa, la temperatura superficial registrada a 5 centímetros de profundidad de la superficie llego a misma hora 2 de la tarde (43.5 °C) con una temperatura máxima de ambiente de entre 14.2 °C y 20.6 °C.

Se registró temperaturas mínimas ambientales de -3.2°C que se debe tener en consideración el considerar protección después del curado, ya que el curado solo protege de la evaporación del agua del concreto, poniendo en riesgo la estructura sin protección ya que las temperaturas registradas no garantizan la resistencia esperada cuya hipótesis y objetivos se relacionan con este estudio científico. (Tabla N° 59)

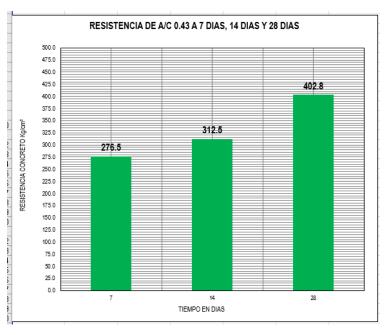
Tabla 60: Con curador Químico y Sin Protección

Н	ORA	TEMPERATURA	DEL CONCRETO	TEMPERATURA	
Del Día	Acumulada	Interna °C	Superficial °C	Ambiente °C	
2:00 AM	14.0	12.3	8.5	-2.9	
4:00 AM	16.0	12.2	12.2 7.6		
6:00 AM	18.0	12.7	6.9	-1.2	
8:00 AM	20.0	15.1	10.8	6.2	
10:00 AM	22.0	18.1	12.1	13.8	
12:00 PM	24.0	21.1	13.9	18.9	
2:00 PM	26.0	23.2	15.1	20.6	
4:00 PM	28.0	20.3	16.8	14.2	
6:00 PM	30.0	18.5	15.1	7.2	
8:00 PM	32.0	16.5	11.2	6.1	
10:00 PM	34.0	15.3	15.3 8.8		
12:00 AM	36.0	14.5	14.5 7.0		
ningo 12 de N	layo 2019				
Н	DRA	TEMPERATURA	DEL CONCRETO	TEMPERATURA	
Del Dia	Acumulada	Interna °C	Superficial °C	Ambiente °C	
2:00 AM	38.0	11.6	6.6	-3.6	
4:00 AM	40.0	11.4	6.8	-1.9	
6:00 AM	42.0	12.3	6.9	1.2	
8:00 AM	44.0	14.7	9.5	7.1	
	44.0	17.7			
10:00 AM	46.0	16.4	10.4	12.0	
	46.0	16.4	10.4	12.0	
12:00 PM	46.0 48.0	16.4 18.5	10.4 13.1	12.0 16.8	
12:00 PM 2:00 PM	46.0 48.0 50.0	16.4 18.5 21.8	10.4 13.1 17.7	12.0 16.8 19.9	
12:00 PM 2:00 PM 4:00 PM	46.0 48.0 50.0 52.0	16.4 18.5 21.8 20.3	10.4 13.1 17.7 16.6	12.0 16.8 19.9 13.8	
4:00 PM 6:00 PM	46.0 48.0 50.0 52.0 54.0	16.4 18.5 21.8 20.3 17.9	10.4 13.1 17.7 16.6 11.3	12.0 16.8 19.9 13.8 6.9	
12:00 PM 2:00 PM 4:00 PM 6:00 PM 8:00 PM	46.0 48.0 50.0 52.0 54.0 56.0	16.4 18.5 21.8 20.3 17.9 15.7	10.4 13.1 17.7 16.6 11.3	12.0 16.8 19.9 13.8 6.9 5.8	


Fuente: Elaboración propia

Interpretación: La tabla mostrada nos indica que la temperatura interna máxima del concreto registrada a 15 centímetros de profundidad de la superficie llego a las 2 de la tarde (23.2 °C) a las 26 horas del vaciado de la losa, la temperatura superficial registrada a 5 centímetros de profundidad de la superficie llego a las 2 de la tarde (17.7°C) con una temperatura máxima de ambiente de 19.9°C y 20.6°C.

Se registró temperaturas mínimas ambientales de -3.2°C, las cuales con las temperaturas registrada en el monitoreo protegidas con mantas de lana de fibra de vidrio garantizan claramente la hidratación del cemento, contrastando con nuestras hipótesis y objetivos del presente estudio científico. (Tabla N° 60)


3.16 Ensayos de Testigos de Concreto Endurecido Resistencia a la Compresión

3.16.1 Curadas en Poza de Curado a 23°C

Fuente: Elaboración propia

Tabla 62: Relación w/c 0.43

Fuente: Elaboración propia

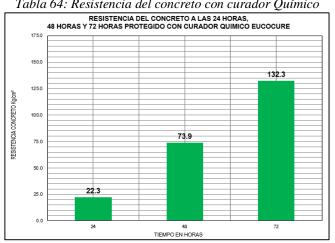
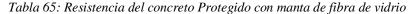
RESISTENCIA DE A/C 0.45 A 7 DIAS, 14 DIAS Y 28 DIAS 500.0 475.0 450.0 425.0 377.6 375.0 325.0 298.9 300.0 264.7 275.0 250.0 225.0 200.0 175.0 150.0 125.0 100.0 75.0 50.0 25.0 TIEMPO EN DIAS

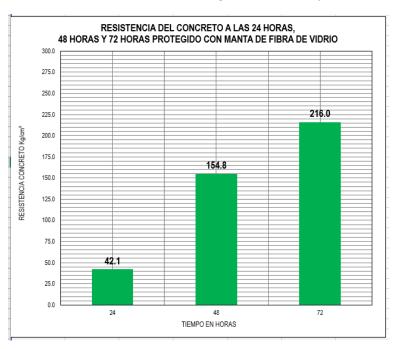
Tabla 63: Relación w/c 0.45

Fuente: Elaboración propia

Interpretación: Los resultados reflejan en la tabla N°61 que la relación W/C más baja 0.40 registro mayor resistencia a compresión (424kg/cm2) a los 28 días. concordando con nuestra hipótesis especificas donde la relación w/c más baja para estos estas condiciones ambientales, es lo más conveniente, donde el concreto se enfrenta a temperaturas ambientales adversas para su desarrollo de maduración y resistencia.

3.16.2 Resistencias a la compresión de Testigos Curadas con curador Químico

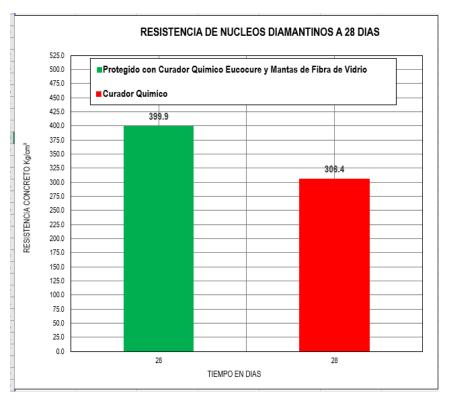




Tabla 64: Resistencia del concreto con curador Químico

Fuente: Elaboración propia

Interpretación: Los resultados que muestra el grafico, (Tabla N°64) se comprueba que la resistencia a 24 horas llego **a 22.3 kg/cm2**, debiendo llegar a **34 kg/cm2**.que es lo que se busca para garantizar que se tendrá a los 28 días el 100% como mínimo de su F´c diseñado. Como consecuencia que solo se utilizó en curador químico la temperatura del concreto a las 72 horas (3 días) solo llego **al 38%** de su F´c de diseño (350kg/cm2). Siendo lo más recomendable que llegue al **50%** a los 28 días de su F´c diseñado.

3.16.3 Resistencias a la compresión de Testigos Curadas con Curador Químico y Protección con Mantas de Lana de Fibra de Vidrio


Fuente: Elaboración propia

Interpretación: Resultados esperados ya que los testigos de concreto fueron curados con curador químico y protegido con mantas de fibra de vidrio por espacio de 72 horas, afirmando la hipótesis general y específicas sobre sobre la protección del concreto para lograr el desarrollo de las resistencias y durabilidad del concreto.

Los resultados registrados en las primeras 24 horas **42.1 kg/cm2** garantizan el desarrollo de su resistencia a los 28 días de su F'c de diseño, ya que logro desarrollar una resistencia mayor de **35 kg/cm2** a las 24 horas recomendadas por comité ACI 211. (Tabla N° 65)

3.16.4 Resistencias de Núcleos Diamantinas a los 28 Días

Tabla 66: Resistencia de Núcleos de Diamantina

Fuente: Elaboración propia

Interpretación: De la losa de concreto (tramo de prueba) se observa en la tabla N° 66 las estadísticas de 12 ensayos de núcleos diamantinas, con curador químico y protección de mantas de lana de fibra de vidrio que se representa con la barra de color verde donde el resultado al esfuerzo de compresión llego a 399.9 kg/cm2, es mayor del obtenido en los 12 ensayos de núcleos que representa la barra de color rojo que fue curado con curador químico sin protección dando como resultado al esfuerzo de compresión 308.4 kg/cm2 llegando solo 88% de su F´c de diseño, la cual pone en riesgo el pavimento es su tiempo de servicio.

Estos resultados confirman nuestra hipótesis general y nuestras hipótesis especificas donde se menciona con énfasis el curado y protección de las estructuras de concreto en climas extremos expuestos a congelamientos y deshielos.

El concreto, aunque es un material resistente, no es invulnerable a los efectos del medio ambiente en el que se encuentre. (Tabla N° 66)

3.16.5 Resistencias a la Compresión Tipos de Fallas

Figura 56: Tipos de Fallas a la Compresión

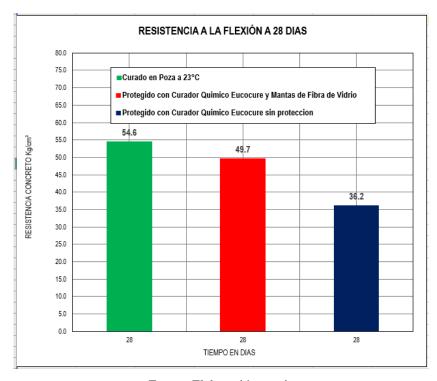
Resistencia a la Compresión a 28 Días Falla Tipo 1.- Conos razonablemente bien formados en ambos extremos, fisuras a través de los cabezales de menos de 25 mm (1°).

Resistencia a la Compresión a 14 Días Falla Tipo 2 - Conos bien formados en un extremo, fisuras verticales a través de los cabezales, cono no bien definido en el otro extremo.

Resistencia a la Compresión a 7 Días Falla Tipo 4. - Fractura diagonal sin fisuras a través de los extremos; golpee suavemente con un martillo para distinguir del Tipo 1.

Resistencia a la Compresión a 72 Horas Falla Tipo 3.- Fisuras verticales encolumnadas a través de ambos extremos, conos mal formados.

Resistencia a la Compresión a 48 horas Falla Tipo 5.- Fracturas en los lados en las partes superior o inferior (ocurre comúnmente con cabezales no adheridos).



Resistencia a la Compresión a 24 horas Falla Tipo 6.- Similar a Tipo 5 pero extremo del cilíndro es puntiagudo.

Fuente: Elaboración propia

3.16.6 Resistencias Ensayos de Flexión de Vigas

Tabla 67: Resultados de Ensayo de Flexión

Fuente: Elaboración propia

Interpretación: Los ensayos de flexión para determinar el módulo de rotura son de vital importancia ya que es un parámetro muy importante como variable de entrada para el diseño de pavimentos rígidos, ya que va a controlar el agrietamiento por fatiga del pavimento, originado por las cargas repetitivas de los camiones.

De la tabla N° 67 donde se observa las barras de color verde se obtuvo como resultado el valor más alto de módulo de rotura llego a **54.6 kg/cm2** dichos especímenes (vigas) fueron curadas en la poza de agua a 23°C. por 28 días. En la barra de color rojo donde los especímenes fueron curados con curador químico y protegidos con mantas de lana de fibra de vidrio por 28 días, el valor de módulo de rotura llego a **49.7 kg/cm2**.

La barra de color azul donde los especímenes fueron curados solo con curador químico por un periodo de 28 días el módulo de rotura llego a **36.2 kg/cm2**, la cual no cumple con el módulo de rotura para el pavimento diseñado que tiene como parámetro módulo de diseño de **45 kg/cm2**. (Tabla N° 67)

IV DISCUSIÓN

1.- "Si se realiza la protección de los pavimentos rígidos con de fibra por espacio de 72 horas se optimizará el desarrollo de la resistencia y durabilidad del concreto en la carretera Oyon-Ambo en la provincia de Oyon 2019".

En la investigación de Amasifuén en su tesis titulada "Curado y Protección de Concretos Colocados en Climas Fríos".(2002).Menciona que para la colocación de concretos en climas fríos, es necesario realizar estudios de monitoreos de la temperatura ambiental del lugar donde se realizaran las labores, para que de esta forma determinar, si nos encontramos realmente en un clima frio y tener las consideraciones ante este fenómeno medio ambiental la cual **coincidimos** completamente con su estudio científico.

Existe **similitud** con la protección de la losa de concreto protegidas con mantas de fibra de vidrio de 2" y 3" de espesor con resultados satisfactorios a las 24 horas de curado y protección de la estructura. (42.1 kg/cm2) y (44.7kg/cm2).

Se **contrasta** que los resultados del curado y protección de nuestra investigación científica esta más de acorde con la realidad de curar y proteger estructuras con mayor área superficial como son los pavimentos rígidos expuesto al periodo frio durante la noche. (Tabla N° 68)

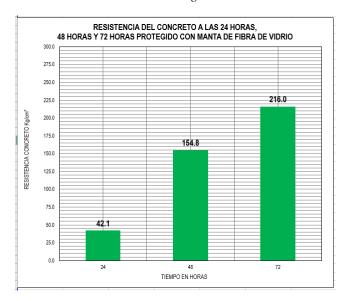
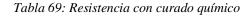


Tabla 68: Resistencia del concreto Protegido con Manta de Fibra de Vidrio

Fuente: Elaboración propia

2.- "Si realizan los diseños con relación agua-cemento bajas se estarían solucionado este tipo de problema para estos climas fríos en la carretera Oyon-Ambo en la provincia de Oyon 2019".


En la investigación Vásquez nos comenta en su tesis titulada "Control del Concreto en Estado Fresco y Endurecido en Climas Fríos" (2015). Concluye que la relación a/c no debe ser mayor de 0.50 por que el exceso de agua en la mezcla traerá como consecuencia que se produzca el fenómeno de congelamiento y que la resistencia no deberá ser menor de 245 kg/cm2 por razones de durabilidad, **coincidimos** con la conclusión de Vásquez nuestros resultados obtenidos en nuestra investigación científica se obtuvo mejores resultados con la relación agua-cemento 0.40 haciendo un concreto mas impermeable ante el fenómeno de congelamiento (399 Kg/cm2).

Lo que **discute** en sus conclusiones, si bien es cierto no está normado una metodología para la colocación del concreto en climas fríos, existen recomendaciones y estudios científicos para la colocación del concreto es estos tipos de climas donde las experiencias se aplican para tener resultados esperados.

Con relación al curado del concreto en climas fríos, Vásquez concluye que el concreto debe recibir desde el inicio curado y de esta manera se estará protegiendo de la congelación.

Los resultados obtenidos en nuestro estudio científico se discuten de la conclusión de Vásquez porque para curar el concreto hay que esperar que desaparezca el brillo del agua de lo contrario el curado desaparece con la película de agua por la velocidad del viento originado fisuras por contracción térmica.

Con los resultados que se obtuvo en nuestra investigación se afirma que la función de los curadores químicos es solo para evitar la evaporación del agua del concreto y no protege al concreto de climas fríos donde se desarrolló esta investigación.

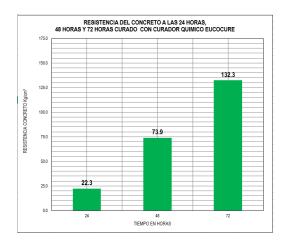



Tabla 70: Resistencia con protección de lana de fibra de Vidrio

3.- Si utilizamos el cemento Portland Tipo I por sus características de hidratación seria lo más recomendable para estos tipos de climas en la carretera Oyon-Ambo en la provincia de Oyon 2019.

En su investigación Cuellar, Sequeiros nos comentan en su tesis "Influencia del Curado en la resistencia a la compresión del Concreto preparado con Cemento Portland Tipo I y Cemento Puzolánico Tipo IP en la Cuidad de Abancay-Apurímac"

Las pruebas comparativas ensayadas a la resistencia a la compresión con cemento Tipo I y Tipo IP; los autores concluyen que las resistencias con cemento Tipo I por su mayor calor de hidratación que la del Tipo IP, logro desarrollar mayor resistencia del concreto a los 28 días **coincidiendo** con nuestras hipotesis (387 kg/cm2).

En cambio, **se discute** el uso del Cemento Tipo IP de diferente reacción química por sus componentes en su composición requieren de más tiempo para el desarrollo de la fragua inicial y madurez del concreto más aun teniendo en cuenta las condiciones ambientales que es sometido.

En el trabajo científico realizado en la carretera Oyon-Ambo se eligió el uso del cemento Tipo I en consideración a los fenómenos ambientales que se enfrenta, recordando de las propiedades del concreto por ser duros y durables no son invulnerables a las condiciones ambientes que son sometidos.

Los autores realizaron una investigación donde comparan 3 métodos de curado, concluyendo que el curado por inundación (curado continuo) es el más efectivo.

Se **discute**, dé este tipo de curado en zonas de climas fríos ya que, si no se monitorea la temperatura interna y superficial de la losa, se debería estimar el tiempo de curado por inundación, en este tipo de climas, se estaría cubriendo los poros con agua, enfrentando la estructura a ciclos de hielos y deshielos con mucha más rapidez de lo normal con resultados no esperados.

V CONCLUSIONES

- 1.-Para la colocación del concreto en climas fríos es muy importante realizar monitoreos de temperatura ambientales en las zonas donde se realizarán los trabajos para tener la seguridad del tipo de clima y poder determinar en qué condiciones de clima frio nos encontramos.
- Se buscará el rango óptimo para poder realizar los trabajos, ya que en zonas de sierra de nuestro territorio las temperaturas ambientales descienden bruscamente sobre todo en horas de la tarde disminuyendo las horas de la colocación del concreto.
- 2.- El uso de una técnica mixta de curado y protección del concreto (curador químico y mantas de lana de fibra de vidrio) en climas fríos se considera totalmente efectiva durante un periodo de protección conservador de 48 horas obteniendo valores superiores de la resistencia a la compresión a las 24 horas de 35 kg/cm2 superando lo requerido por las normas.
- 3.-Los diseños con cemento Portland Tipo I con relación a/c baja (0.40) para estos tipos de climas fueron óptimos lográndose resistencias a la compresión a los 28 días de 399.9 kg/cm2 obtenidas de los núcleos diamantinas en la losa de prueba curadas con curador químico y protegidas con mantas de lana de fibra de vidrio mejorando el desempeño mecánico del pavimento rígido en la carretera Oyon -Ambo.
- 4.- De los núcleos diamantinas obtenidos de la losa de prueba, curadas con curador químico, del mismo diseño mencionado en el numeral 3 las resistencias a la compresión llego a 308kg/cm2 a los 28 días la cual no llego a resistencia de diseño requerido 350 kg/cm2 para la losa del pavimento rígido en la carretera Oyon-Ambo.

El valor esperado debió estar por encima de los 400 kg/cm2 considerando el factor de seguridad que se aplicó en el diseño con relación a/c 0.40 y que si se logró en la losa curada con curador químico y protegida con mantas de lana de fibra de vidrio.

5.- Se comprobó que el aditivo incorporador de aire con 3.8% del diseño con relación a/c 0.40 influye en la resistencia y durabilidad cuyas propiedades de proteger al concreto de los daños causados por la congelación y el deshielo. Aumentando la trabajabilidad de la mezclad debido

a la acción lubricante de micro burbujas de aire. Reduce la segregación en concretos con granulometría deficiente, disminuye la capilaridad, brindando concretos más durables.

Los resultados de ensayos a la compresión y flexión validan estas conclusiones de este estudio científico.

VI RECOMENDACIONES

- Se recomienda comprobar si se utiliza mantas de lana de fibra de vidrio de 2" su efectividad como aislante térmico en las primeras 48 horas.
- Presentar un procedimiento de curado y protección del concreto planificado con mucha anticipación de posible ataque de congelación y deshielo en zonas de climas fríos
 En las losas de concreto sobre el terreno y en concretos estructural el periodo de curado con temperaturas menores a 5°C debe ser por lo menos no menor de 7 días.
- Monitoreo constante de la losa del pavimento rígido para incidir con el curado y protección de losa sobre todo en las zonas de las equinas donde el calor de hidratación del cemento se disipa rápidamente, teniendo como resultado losas con presencia de alabeo puede ser causado por diferencias de temperatura entre las partes superior e inferior de la losa. La parte superior de la losa expuesta al sol se expandirá en relación con la parte inferior menos caliente, provocando una deformación cóncava hacia abajo, con los bordes levantados.
- Los agregados deberán estar protegidos de las lluvias, nieves o vientos y evitar su congelamiento, en especial los agregados lavados.
- Calentar el agua de la mezcla para elaborar el concreto de la tal manera que temperatura de colocación del concreto tenga los requerimientos mínimos según las dimensiones de la sección recomendada por del comité del ACI 306 Tabla N°1.
- Es de nuestra recomendación en el curado químico de membrana ni bien desapareció el brillo del agua para evitar la evaporación del agua de la superficie expuestas al viento por mucho tiempo y de la radiación solar que es normal en climas de la sierra del Perú.
- Se recomienda retirar las mantas de lana de fibra de vidrio (el aislamiento) cuando la temperatura ambiental este adecuado o este aumentando. En el caso de comprobar que el

gradiente de temperaturas del ambiente y del concreto se encuentren con mucha diferencia, debemos esperar que mejore las condiciones climatológicas. En nuestro territorio nacional, en las zonas alto andinas donde se presentan climas fríos siempre hay periodos durante el día donde las condiciones del clima cálido ayudarían, y se daría en la condición para obtener el equilibrio térmico deseado.

VII CRONOGRAMA DE EJECUCIÓN

Tabla 71:Cronograma

	CLIB ADO Y PROTECCI	ON DEL CONCRETO EN CLIMAS FRI	IOS P	DA!						gram Ño M		MIC	O DE	=I D/	۸\/IN/	FNT	O PIC	סחוב	EN	Ι Δ (`A D E	ETE	PΛ	000	N_AM	BO 2	N1 R			
NOMB	RE: HUGO ENRIQUE VILLAFUERTE		100 P	nn A I	vi E J	JNAR		LOE	.WIFE	140 10	LCF	TIVIC	ם טו		- V 11VI	LIVI	O KIL	טטוכ	LIV	LA	ARI	\LIE	ıΛΑ	010	14-WIAI	JU 2	V10			
CARR	ERA: INGENIERIA CIVIL																													
PERIC	DO: 7 DE SETIEMBRE 2018 HASTA	A 30 JULIO 2019	1 0		- 4				N		- 4	'n		L 4																
	actividades	Mes	Seti	embr 8			ubre'			iembr 8			cieml 8	bre1		Abri				yo19			nio1	9	J	lulio1	9			
		Semana	1	2 3	4	1	2 3	4	1	2 3	4	1	2	3 4	1	2	3 4	4 1	2	3	4	1 2	2 3	3 4	1 :	2 3	4			
	Reunión de coordinación Presentación del esquema			-			-		_	-				_			_	_	-				-			-			+	+
	Presentación del esquema Resentación del esquema														+														+	+
	Pautas para búsqueda de informa	ación					+	\vdash	+													-							+	+
	Propuesta del problema de inves															H													+	
	6. Justificación, Hipótesis y objetivo						+		+							H													+	_
	7. Diseño, tipo y nivel de investigaci		+																										+	+
	8. Variables y operacionalización		H																+		1			1					+	+
PI	Presentación del modelo metodo	lógico	H													$ \cdot $								t					+	$\dagger \dagger$
	10. Presentación del primer avance																													
	11. Población y muestra																													
	 Técnicas e instrumentos de obte y aspectos administrativos. 	ención de datos, métodos de análisis																												
	13. Presentación el proyecto para s	u revisión																												
	14. Presentación del proyecto de in	vestigación corregido																												
	15. Sustentación del proyecto de in-	-																												
	16. Recopilación de datos del Proye	ecto																												
	17. Visita de campo del proyecto																													
	18. Estudio de teorías relacionadas	,																											\perp	
	19. Estudio de teorías relacionadas	al tema (CyPC, DMFPR)																											\perp	
	20. Redacción del capítulo uno																													
DPI	21. Ensayos de Materiales y validad																												\perp	
	22. Redacción del capítulo dos y tre																												\perp	
	23. Monitores de temperaturas del I							Ш																					\perp	
	24. Análisis de ensayos de Compre							Ш																				Ш	\perp	
	25. Comparación de resultados mét	•						Ш																				Ш	\perp	
	26. Redacción de conclusiones y re							Ш																					\perp	
	27. Sustentación del proyecto de in	vestigación																											\perp	

VIII. REFERENCIAS

Revista Colegio de Ingenieros Lambayeque, 2018.

Pulgar Vidal, Javier." Las Ochos Regiones Naturales del Perú". Tesis sobre las regiones naturales, Lima. 1940.

ACI Committee 306, "Cold Weather Concreting (ACI 306R-88)". ACI Manual of Concrete Practice, Part 2. American Concrete Instituto. Farmington Hills. Detroit, Michigan. USA 1988.

Damiani, Carlos." Concretos en Climas Fríos", [en línea]. Mayo 2011, Disponible en la Web: http://Carlosdamiani.blogdpot.com/2011/05/concretosen-climas-frios.html

Pasquel Carbajal Enrique" tópicos de tecnología del Concreto en el Perú" 8 ava edición noviembre 1998.

Neville, Adam "Tecnología del Concreto" Primera Edición en español impresa en México enero 1998.

Amasifuén Figueredo Romney Walter, 2002 "Curado y Protección de Concretos Colocados en Climas Fríos en la Ciudad alto Andina de Tacna-Perú."

(Quispe Yucra & Medina Cardenas, 2017)"Curado y Protección de Concretos Colocados en Climas Fríos en la Ciudad de Arequipa-Perú."

Vásquez Jauregui Marvin Rony 2015 "Control del Concreto en Estado Fresco y Endurecido en Limas Fríos en la Ciudad de Arequipa-Perú".

Contreras, Stephany & Velazco, Cristian 2018 "Analís Comparativo del Método de Curado en Especímenes de Losa de Concreto Simple, Simulando condiciones Constructivas de Obra en la Cuidad de Arequipa-Perú."

Cuellar, Julio & Sequeiros, Walker 2017 "Influencia del Curado en la Resistencia a la Compresión del Concreto Preparado con Cemento Portland Tipo I y con Cemento Puzolánico Tipo IP en la Cuidad de Abancay -Apurímac, Perú.

All-Assadi, Ghaida 2009 "Influencia de las Condiciones de curado en el Comportamiento del Hormigón sometido a ciclos Hielo-Deshielo en Madrid, España"

Bardales, Zsasdi Fernando 2015 "Optimización del Desempeño de Pavimentos Rígidos Mediante la Utilización del Soporte Lateral Licenciado en la Universidad Rafael Landívar Asunción Guatemala.

Monobanda, Laica Carlos 2013" El Curado del Hormigón y su incidencia en la Propiedades Mecánicas Finales "en la Universidad Técnica de Ambato, Ecuador,

Leal, Castro Rodrigo 2005 "Hormigonado en Tiempo Frio" en la Universidad Austral de Valdivia, Chile.

Yela, Quijada Jorge 2017 "Determinación del Gradiente Térmico en Losas de Pavimento de Concreto Hidráulico" en la Universidad de San Carlos, Guatemala.

Portland Cement Asociación, 2004 "Diseño y Control de Mezclas de Concreto" Boletín de Ingeniería EB201.

Asocreto, 2014 artículo Científico "Curado y Protección del Concreto" editado para blog 360° en concreto Colombia.

Concremax, marzo 2019 artículo Científico "Recomendaciones para curado del Concreto Lima, Perú.

Unicon Revista Portal <u>www.unicom.pe/repositorioaps/F_T_%20UNIBASE%20-</u>%20UNICON

ACI Committee 308,1971" Estándard-Recommeded Practice for Curing Concrete"

Céspedes Abanto, José 2002 "Los Pavimentos en las Vías Terrestres Calles, Carreteras y Aeropistas"

Salazar Rodríguez, Aurelio 1998"Guia para el diseño y Construcción de Pavimentos Rígidos" Instituto Mexicano del Cemento y del Concreto.

Diseño de Pavimento Rígido, 1993 "Guía AASHTO 93 Para el Diseño de Estructuras de Pavimentos Rígidos"

O. Hernández-Castañeda & C.J. Mendoza-Escobedo, 2006 Facultad de Ingeniería, UNAM e Instituto de Ingeniería, UNAM. "Durabilidad e Infraestructura retos e impactos Socio Económico"

Instituto Mexicano del Cemento y del Concreto,2000" Durabilidad del Concreto" A.C. Revista Construcción y Tecnología.

Valdez, A 2017 Cemex "Hormigón Especial Innovación en Hormigón" Fotocatálisis la opción descontaminante en Materiales de Construcción.

Referencia Normativa ASTM C 39-39M (2005) Standard Test Method Compressive Strength of Cylindral Concrete Specimens.

Referencia Normativa ASTM C 78 (2002) Standard Test Method for fleural Strength of Concrete (Using simple Beam with third point loading).

Referencia Normativa ASTM C 31 (2010) Standard Practice for Making and curing Concrete Test Specimens in field.

Referencia Normativa ASTM D 4791 (2010) Standard Test Method for Flat Particles, Elongated Particles, or Falt and, elongated Particles in coarse Aggregate

Referencia Normativa ASTM D 5821 (2013) Standard Test Method For Determining the Porcentage of fractures particles in Coarse Aggregates.

Unicon Centro De Investigación Tecnológica del Cemento y el Concreto – CITEDEC www.unicon.com.pe/principal/categoria/innovacion-y-tecnologia/4/c-4

www.hormigonespecial.com/blog/(Hormigon especial A. Valdez Marzo,2017 Cemex)

Ministerio De Transportes y Comunicaciones Reglamento Nacional de Gestión de Infraestructura Vial dirección de normatividad Vial y Estudios Especiales actualización del Manual de Ensayos de Materiales (2016)

Valderrama, Santiago (2013) "Metodología de la Investigación Científica"

Ingenieria, E. Vidaut Sep. 2013 pag. 31 Construcción y Tecnologia del Concreto Sustentable

El Proceso de la Investigación Científica, Mario Tamayo y Tamayo 2010

Transportation Research Board TRB, Washintong DC 2003

Diseño de Estructuras de Pavimentos, 1993, Por el METODO AASHTO

IX. ANEXOS

ANEXO N°1 CUADRO DE OPERALIZACIÓN DE VARIABLES

VARIABLES	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	INSTRUMENTOS
Concreto	Según la (Portland Cement Association,2004. p.261) (PCA) El curado es la manutención de la	El curado y protección del concreto se evalúa tomando en cuenta los métodos de curado al	Método de curado a vapor	Temperatura ambiente micro clima Resistencia Temprana Vapor Directo a Presión	Termómetro de laboratorio °C. Ensayo de compresión fo kg/cm² Presión lb/pul²
Curado y Protección del Concreto	temperatura y del contenido de humedad satisfactorios, por un periodo de tiempo que empieza inmediatamente después de la colocación	vapor, de mantas o aislantes térmicos y de formadores de película, en el análisis de elementos observables a través de los indicadores	Método de Mantas o Aislantes Térmicos	Congelación del Concreto Temperaturas internas del Concreto Calculo Térmico de la Sección	Termocuplas internas, concreto fresco °C. Termocuplas, según sección kg/cal.
Curado y	(colado) y del acabado, para que se puedan desarrollar las propiedades deseadas del concreto.	con ensayos de laboratorio, y instrumentos medibles y confiables.	Método de Formadores de Película	Perdida de Humedad del Concreto Fisuras Superficiales Control Agrietamiento	Porcentaje de humedad % Fisuro metros. Mapeo checklist.
	Fernández-Castañeda, - Mendoza-Escobedo UNAM (México enero		Agregados	Durabilidad Equivalente de Arena Reactividad Álcalis Sílice	Ensayos de calidad de los agregados en laboratorio.
Desempeño Mecánico	marzo 2006). Afirma: El diseñar una estructura por durabilidad aporta ventajas técnicas y económicas. Técnicamente permite que la estructura tenga un	El desempeño Mecánico final del Concreto en pavimentos Rígidos depende de las características físicas mecánicas de los agregados, de la correcta	Diseño de Mezclas	Resistencia a la Compresión Resistencia Flexo Tracción Aditivo incorporador de Aire	Ensayo de compresión fo kg/cm2. Ensayo a la flexión Mpa. Contenido de aire %
Desempeñ	mejor desempeño ante sus condiciones de servicio, por lo tanto, se disminuye el porcentaje de reparaciones minimizando costos económicos.	agregados, de la correcta relación w/c y del método de curado y protección del Concreto.	Factor de seguridad	Evaluación del Concreto Reducción de parámetros de resistencia F´c Factor de seguridad permisible	Estadística. Por desviación Estándar.

ANEXO N°2 MATRIZ DE CONSISTENCIA

				os Para Mejorar el De	sempeño Mecánico	del Pavimento Rí	gido en la Carretera OYON-	-AMBO										
PROBLEMAS Problema general	OBJETIVOS Objetivo general	HIPOTESIS <u>Hipótesis general</u>	VARIABLES <u>Variable</u> independiente	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	INSTRUMENTOS	METODOLOGIA									
¿De qué manera el Curado y Protección del Concreto mejora Desempeño Mecánico del	Determinar como el Curado y Protección del Concreto mejora Desempeño Mecánico	Si se realiza un curado adecuado este garantizara el desempeño mecánico del		Según la (Portland Cement Association,2004. p.261) (PCA) El curado es la	El curado y protección del concreto se evalúa tomando en cuenta los métodos de	Método de Curado a Vapor	Temperatura Ambiente Micro Clima Resistencia Temprana	Termómetro de laboratorio °C. Ensayo de compresión fc	Tipo: Aplicada Nivel:									
Pavimento rígido en la carretera Oyon-Ambo?	del Pavimento rígido en la carretera Oyon. Ambo	pavimento rígido en climas fríos mayores a 4700 m.s.n.m.		manutención de la temperatura y del contenido de humedad	curado al vapor, de mantas o aislantes térmicos y de formadores de	Curado a vapo.	Vapor Directo a Presión Congelación del Concreto	kg/cm ² Presión lb/pul ² Termocuplas	Explicativa									
Problemas específicos	Objetivos específicos	Hipótesis específicas	Curado y Protección del Concreto	satisfactorios, por un periodo de tiempo que empieza	película, en el análisis de elementos	Método de Mantas Aislantes	Temperaturas Internas del Concreto	internas, concreto fresco °C. Termocuplas, según	Diseño: Experimental									
				inmediatamente después de la	observables a través de los	observables a través de los	observables a través de los	observables a través de los	observables a través de los	través de los	través de los		Térmicos	Calculo Térmico de la Sección	sección kg/cal.	- (
		Si se realiza la protección de los pavimentos rígidos con		colocación (colado) y del acabado, para que se puedan		Método	Perdida de Humedad del Concreto Fisuras Superficiales	Porcentaje de	Enfoque: Cuantitativo									
Curado y Protección del Concreto mejora el diseño	Concreto mejora el	lana de fibra de vidrio por espacio de 72 horas se optimizará el desarrollo de la resistencia y		desarrollar las propiedades deseadas del concreto	instrumentos medibles y confiables.	Formadores de Película	Agrietamiento	humedad % Fisuro metros. Mapeo checklist	Población: La carretera Oyón- Ambo Tramo I progresiva									
de mezclas en el Desempeño Mecánico del Pavimento rígido en la	diseño de mezclas en el Desempeño Mecánico del Pavimento rígido en	durabilidad del concreto.		Fernández- Castañeda, -			Durabilidad	Ensayos de calidad	134+900.00km- 181+000.00km									
carretera Oyon- Ambo?	la Carretera Oyon-Ambo	Si se realizan los diseños con relación w/c bajas se estarían		Mendoza-Escobedo UNAM (México enero marzo 2006).		Agregados	Equivalente en Arena	de los agregados en laboratorio.	Muestra: Progresivas									
		solucionado este tipo de problema para estos climas fríos.		Afirma: El diseñar una estructura por durabilidad aporta	El desempeño Mecánico del Concreto en	Mecánico del	Reactividad Álcalis Sílice	iaboratorio.	140+500.00km a 141+500.00 km									
¿De qué manera el Curado y Protección del	Determinar como el Curado y Protección	Si utilizamos el Cemento Portland tipo		ventajas técnicas y económicas.	pavimentos Rígidos depende		Resistencia a la Compresión	Ensayo de	Muestreo: Probabilístico									
Concreto mejora el factor seguridad en el	del Concreto mejora el factor seguridad en el	l por sus características de hidratación sería lo	Desempeño	Técnicamente permite que la	de las características	Diseños de	En Resistencia a Flexo Tracción	compresión fc kg/cm2. Ensayo a la flexión	aleatorio simple									
Desempeño Mecánico del Pavimento rígido en la Carretera Oyon-Ambo?	Desempeño Mecánico del Pavimento en la Carretera Oyon. Ambo	más recomendable para estos tipos de clima.	Mecánico	estructura tenga un mejor desempeño ante sus	físicas mecánicas de los agregados, de la correcta	Mezclas	Aditivo Incorporador de Aire	Mpa. Contenido de aire %	Técnica: NORMA ASTM									
		Si utilizamos aditivos incorporadores de aire como influyen estos en		condiciones de servicio, por lo tanto, se disminuye el	relación w/c y del método de curado y protección del Concreto.		Evaluación del Concreto Reducción de Parámetros de Resistencia F´c	Estadística.	Instrumento: Equipos de									
		la resistencia (f´c) y durabilidad del concreto para pavimentos rígidos en altura.	repara minim							reparac minimiz	porcentaje de reparaciones minimizando costos económicos.	reparaciones minimizando costos	reparaciones minimizando costos	eparaciones ninimizando costos	Factor de Seguridad	Factor de seguridad permisible	Por desviación Estándar.	laboratorio

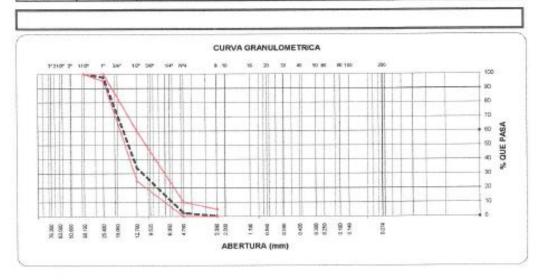
ANEXO 3 Ficha N° 1 de Validación de datos

PROYECTO	Curado y Proteccion o	iel Concreto en Cli	mas frios para Evaluar el Oyon-Amb	Desempeño Mecanico del Pavim o 2019	ento Rigido en la Carr	
AUTOR	VILLAPUERTE SALAS Hug					
			INFORMACION GENERA			
	DISTRITO	Oyon	ALTUTUD	4,737 msnm		
JBICACIÓN	PROVINCIA	Oyon	LATITUD	10°40'06"S	EXPERTO	
	DEPARTAMENTO	Lima	LONGITUD	78*46:13*O		
		DISENOS DE C	ONCRETO CON AIRE INC	CUIDO		
T	RELACION A/C 0.		RELACION A/C 0.43	RELACION A/C 0.45	/	
agua del peso del cemento			ia del peso del cemento	agua del peso del cemento	V	
		NAME AND ADDRESS OF	UNIVERSE NAMED OF THE			
22	Control to Control		NCIA A LA COMPRESION			
111	Resistencia a la		Resistencia a la	Resistencia a la	1	
	Compresion a los 7	dias Co	impresion a los 14 dias	Compresion a los 28 días	15	
		RESIS	TENCIA A LA FLEXION		- 537	
m	Resis	tencia a la		Resilencia a la	16	
	Flexion	a los 28 dias	Flexion a los 28 dies		K)	
	CADA	CTEDISTICAS EIG	CAS MECANICAS DE LO	SAGREGATIOS		
IV					Vo	
1000	Huso granulometri	ico,durabilidad,abrasion	,equivalente de arena,reactivi d	ad alcalis-silice,pesos unitarios	\ L/s	
ADCLUDOS	Y NOMBRES	Cobo	n De la Cruz Felix Gerson		11111	
	Y NUMBRES	Laba	10350202			
E-N		- A-M	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.4	BAN DE LA CRUZ	
	O CIP No.	- 1010	r,laban11@gmail.com 215930		IGENIERO CIVII. IG. CIP N° 215930	
	FONO .		988914426	- R	eg. Gr W William	

ANEXO 4 Ficha N° 2 de Validación de datos

PROYECTO	Curado y Proteccion o	del Concreto en C	limas frios para Evaluar el	Desempeño Mecanico del Pavin	nento Rigido en la Carre	
			Oyon-Ambo	2019		
AUTOR	VILLAFUERTE SALAS Hug	o Enrique	INFORMACION GENERA			
	DISTRITO	Α	ALTUTUD	4,737 msnm		
JBICACIÓN	PROVINCIA	Oyon	LATITUD	4,737 msem 10*40'06*S	EVEEDTA	
IBICACION	DEPARTAMENTO	Lime	LONGITUD	76*46 13*0	EXPERTO	
	122.73.03.00.00		100.000			
		DISENOS DE	CONCRETO CON AIRE INC			
1	RELACION AC II	.40	RELACION AIC 0.43	RELACION A/C 0.45		
	agua del peso del cernento agua del pes		gua del peso del cemento	agua del peso del cemento		
		RESIST	ENCIA A LA COMPRESION			
п	Resistencia a la		Resistencia a la			
	Compresion a los 7		Compresion a los 14 días Compresion a			
		PUPPE	PER DE LA PIENDE			
	B-10		STENCIA A LA FLEXION	Bu-Named and		
III	7.14-2-1	dencia a la a los 28 das	Résitencia a la			
	riexon	8 406 Z0 WAS		Flexion a los 28 dias		
	CARA	CTERISTICAS FI	SICAS NECANICAS DE LO	SAGREGADOS		
IV	Huso granulometr	ico, durabilidad, abrasi	on, equivalente de arena, reactivid	ad alcalis-silice, pesos unitarios	-	
APELLIDOS	YNOMBRES		amunaque Miranda Jorge			
	NI.		16462120			
E-N	IAIL	con	sultas 03@yahoo.com.br	1990	JORGE COIS MUNAQUE MINAMOA	
REGISTR	O CIP No.		38744		BIGENOMIC CALL Ring CIP N/38744	
TELE	FONO		984703431		Held Cit. (6) 381-44	

ANEXO 5 Ficha N° 3 de Validación de datos


	Tarrier and the same					
PROYECTO	Curado y Protección d	el Concreto en Cli	mas frios para Evaluar el Oyon-Ambo	Desempeño Mecanico del Pavimo 2019	ento Rigido en la Carre	
AUTOR	VILLAFJERTE SALAS Hugo					
			NFORMACION GENERA			
	DISTRITO	Oyan	ALTUTUD	4,737 msnm	There was a series	
BICACIÓN	PROVINCIA	Oyon	LATITUD	10"40"06"S	EXPERTO	
	DEPARTAMENTO	Lima	LONGITUD	76°46'13°O	ocara service	
		DISENOS DE C	ONCRETO CON AIRE INC	ETHIDO	7	
1	RELACION AC 0.4		RELACION A/C 0.43	RELACION A/C 0.45	/	
	agua del peso del cen	nento agu	ia del peso del cemento	agua del peso del cemento	-	
		RESISTE	NCIA A LA COMPRESION			
II	Resistencia a la		Resistencia a la	Resistencia a la	V	
	Compression a los 7 (dias Co	mpresion a los 14 días	a los 14 días Compresion a los 28 días		
		RESIS	TENCIA A LA FLEXION			
m	Resist	encia a la		Resitencia a la		
	Flexion	los 28 dies		Flexion a los 28 dias		
	6100	STERIOTIA A PINI	ALC HEATHAL SELA	* 100P*1000		
IV	CARA	TERISTICAS PISI	CAS MECANICAS DE LO	SAGREGADOS	./	
1.0	Huso granulometrio	o, durabilidad, abrasion	equivalente de arena,reactivid	ad alcalis-silice, pesos unitarios	V.	
APELLIDOS	Y NOMBRES	Vanili	as Homa Dunnay Enrique		7 Lette	
	NI		41173186		An.	
E-M	IAIL	dvar	llas@allterrainperu.pe		INNAY ENRIQUE	
REGISTR	O CIP No.		138071		RILLAS HORNA	
1,000			987833644		NICE MERO CIVIL.	

ANEXO N° 6 Análisis Granulométrico Agregado Grueso

ANALISIS GRANULOMETRICO DE AGREGADOS GRUESOS Y FINOS MTC E-204 Registro Cantera CVA-Yanamayo-Grava-002 Fecha: 03/05/19 117+000 Ubic. Km. Izquierdo Mezcla de Agregados para Huso 57 50% - Grava de TM. 1" y 50%-TM 3/4" Lado Material Granulometria (MTC E-204) Detos de enseyo Peso Total Módulo de Fineza 3 107

Na	illa	Peso	% Ret	% Ret	% que		ficación
Tamiz	mm.	(g)	Percial	Aoum.	Pasa	ASTM -	HUSO 57
3*	76.200						
2 1/2"	63.500	24					
2	50.600	5 :					
1.1/2"	34.100	S. Commercial Commerci		- AG 41 -	100.0		00
1"	25.400	7.40	2.2	2.2	97.8	95	100
3/4"	19.050	10635	32.2	34.4	65.6		
1/2"	12,700	10365	31.4	65.8	34.2	25	80
3/8"	9.525	4428	13.4	79.2	20.8		
1/4"	6.350	4523	13.7	92.9	7.1		
No4	4.780	1530	4.6	97.5	2.5	0	10
8	2.360	658	2.0	99.5	0.5	0	5
10	2 000	152	0.5	100.0			
16	1.190	-	1000				
20	0.840						
30	0.600						
40	0.420						
50	0,300						
60	0.250	Š					
80	0.180				2		
100	0.149	8					
200	0.074						
< 200							

TECNICO

Julio Ernesto Diaz Gutierrez

INGENIERO Margarita Boza Olaechea

ANEXO N° 7 Gravedad Específica y Absorción Agregado Grueso

	LABORATORIO DE MECANICA DE SUELOS,	CONCRETO Y PAVIME	NTOS
Cantera	Yanamayo		
Ubicación Km.	117+000		
Lado	Izquierdo		
Material	Mezcla de Agregados para Huso 57	Fecha	04/05/2019
	50% = Grava de TM, 1" y 50%=TM 3/4"		

GRAVEDAD ESPECIFICA Y ABSORCION DE LOS AGREGADOS NORMA MTC E 205/206

Equipos	
Homo	
Balanza	
Termometro	

		AGREG/	ADO FINO		
A	Peso Mat. Set. Sup. Seco (on Aire) (gr)				
8	Peso Frasco + agua				
C	Peso Frasco + agua + A (gr)				
D	Peso del Mat. + agua en el frasco (gr)				
E	Vol de masa + vol de vecio = C-D (gr)				
F	Pe. De Mat. Seco en estufa (110ºC) (gr)				
G	Vol de masa = E - (A - F) (gr)				PROMEDIO
	Pe bulk (Base seca) ≃ F/E				
	Pe bulk (Base saturada) = A/E				
	Pe aparente (Base Seca) = F/G				
	% de absorción = ((A - F)/F)*100				

	AGREGADO GRUESO						
A	Peso Met.Set, Sup. Sece (En Aire.) (gr)	3597.0	4469 7				
В	Peso Mat Sat. Sup. Seca (En Agua) (gr)	2248.1	2796.0				
c	Vol. de masa + vol de vacios = A-B (gr)	1348.9	1673.7				
D	Peso material seco en estufa (110 °C)(gr)	3565.2	4430.4				
E	Vol. de masa = C- (A - D) (gr)	1317.1	1634.4	PROMEDIO			
	Pe bulk (Base sece) = D/C	2.643	2.647	2.645			
	Pe bulk (Base saturada) = A/C	2.667	2.671	2.669			
	Pe Aparente (Base Seca) = D/E	2.707	2711	2.709			
	% de absorción = ((A - D) / D * 100)	0.89	0.89	0.89			

Observaciones:				

Julio Erresto Díaz Gutierrrez. Margarita Boza Oleachea

Margarita Boza Olaechea INGENIERA CIVIL CIP. 80500

INCENIERO

ANEXO N° 8 Abrasión Máquina de los Ángeles

	LABORATORIO DE MECANICA DE SUELOS, C	ONCRETO Y PAVIMENTO	S	
Cantera	Yanamayo			
Ubicación Km.	117+000			
.ado	Izquierdo			_
Material	Mezdia de Agregados para Huso 57	Fecha	03/05/2019	
	50% = Grava de TM. 1° y 50%=TM 3/4°			

ABRASIÓN LOS ANGELES (L.A.) AL DESGASTE DE LOS GREGADOS DE TAMAÑOS MENORES DE 37,5 MM (1½") NORMA MTC E 207

Equipos	
Balanza	5. 7
Homo	
Maquina de Abrasión	

	DATOS DE LA MUESTRA					
TAMIZ	GRADACION					
	В					
2 1/2"						
2*						
1 1/2"						
1'						
3/4*						
1/2*	2514.0					
3/8*	2502.0					
1/4"						
N° 4						
PESO TOTAL	5016.0		A			
Retenido en la malla Nº 12	3825.0					
Que pasa en la malla Nº 12	1191.0					
N° de Esferas	11					
% Desgate	23.7					
Especificación Máxima	40.0					

OBSERVACIONES:

TECNICO

Julio Emesto Diaz Gutierrez

INGENIERO

Margarita Boza Olaechea

Margarita Boza Olaechea INGENIERA CIVIL CIP. 80500

ANEXO N° 9 Partículas Chatas y Alargadas

	LABORATORIO DE MECANICA DE SUE	LOS, CONCRETO Y PA	VIMENTOS
Cantera	Yanamayo		
Ubicación Km.	117+000		
Lado	Izquierdo		San Alexander
Material	Mezcla de Agregados para Huso 57	Fecha	03/05/2019
	50% = Grava de TM. 1" y 50%=TM 3/4"		

PARTICULAS CHATAS Y ALARGADAS EN AGREGADOS NORMA MTC E 223

Equipos	
Homo	V
Balanza, Calibrador	

Tamaño de	Agregado	A	B Peso de Chatas y	C Porcentaje	D	E Corrección
Pasa Tamiz	Retenido T.	Peso Inicial (g)	Alargadas (g)	(B)/(A)*100 (%)	Gradación Original (%)	(C)*(D) (%)
2*	1 1/2"					
1 1/2"	1"					
1*	3/4"	1511.0	37.6	2.5	32.2	80.5
3/4"	1/2"	507.0	38.1	7.5	31.4	235.3
1/2"	3/8"	202.0	10.8	5.3	13.4	71.0
To	tat	2220.0	88.5	15.3	77.0	386.9

PORCENTAJE DE PARTÍCULAS CHATAS Y ALARGADAS = TOTAL E 5.0 % Especif. Máxima 15%

TECNICO

Julio Emesto Diaz Gutierrez

INGENIERO

Margarita Boza Olaechea

Margarita Bóza Olaecheo INGENIERA CIVIL CIP. 80500

ANEXO N° 10 Partículas Fracturadas

	LABORATORIO DE MECANICA DE SUELOS	CONCRETO Y PAY	IMENTOS	
Cantera	Yanamayo			
Ubicación Km.	117+000			
Lado	Izquierdo			
Material	Mezda de Agregados para Huso 57	Fecha	03/05/2019	
	50% = Grava de TM. 1" y 50%=TM 3/4"			

METODO DE ENSAYO ESTANDAR PARA LA DETERMINACIÓN DEL PORCENTAJE DE PARTICULAS FRACTURADAS EN EL AGREGADO GRUESO NORMA MTC E 210

Equipos	
Homo	
Balanza	

Tamaño de	Agregado	A	В	C	D	E
Pasa Tamiz	Retenido T.	(g)	(g)	(B/A)*100)	% Parcial	CxD
2*	1 1/2"			T T		
1 1/2"	1"					
1"	3/4*	1511.0	1511.0	100.0	32.2	3219.7
3/4"	1/2"	507.0	507.0	100.0	31.4	3138.0
1/2"	3/8*	202.0	202.0	100.0	13.4	1340.6
Tot	at	2220.0	2220.0	300.0	77.0	7698.2

Porcentaje con una cara fracturada = TOTAL E 100.0 % Especif. Minima 100%

Tamaño del Agregado		A.	В	C	D	E
Pasa Tamiz	Retenido T.	(g)	(g)	(B/A)*100)	% Parcial	CxD
2'	1 1/2"					
1 1/2"	1"					
1*	3/4"	1511.0	1228.0	81.3	32.2	2617.6
3/4"	1/2"	507.0	416.0	82.1	31.4	2576.3
1/2"	3/8"	202.0	174.0	86.1	13,4	1154.2
Tot	at	2220.0	1818.0	249.5	77.0	6348.1

Porcentaje con dos o más caras fracturadas = TOTAL E 82.5 %

Julio Ernesto Diaz Gutierrez

TECNICO

INGENIERO

Margarita Boza Olaechea

Margarita Boza Olaechea INGENIERA CIVIL CIP. 80500

ANEXO Nº 11 Peso Unitarios y vacíos del Agregado grueso

	LABORATORIO DE MECANICA DE SUELOS	, CONCRETO Y PAVIMENTOS
Cantera	Yanamayo	
Ubicación	117+000	
Lado	Izquierdo	
Material	Mezcla de Agregados para Huso 57	Fecha 03/05/2019

PESO UNITARIO Y VACIOS DE LOS AGREGADOS NORMA MTC E 203

		Pe	so Unitario Su	elto	Peso Unitar	io nor i	Apison Percus		\geq
Repetición N.*		1	2	3	1	2			3
Peso del Molde + Agregado Seco	g	51650 51600 51600		53750	53800		53	850	
Peso del Molde	9		9439			94	39		
Peso del Agregado Seco	9	42211	42161	42161	44311	443	61	44	411
Volumen del Moide	cm ³	28317			28317				
Gravedad Especifica del Agregado (SSS)	g/cm ³	2.669		2.669 2.66		69			
% Absorción del Agregado	0.1%		0.89			0.8	9		
Vacios en el Agregado	0.1%	44.1	44.2	44.2	41.4	41	.3	41	1.2
Peso Unitario del Agregado	kg/m³	1491	1489	1489	1565	15	37	15	68
Peso Unitario del Agregado Promedio	kg/m³		1489			15	57.		

OBSERVACIONES:

TECNICO

Julio Ernesto Diaz Gutierrez

INGENIERO

Margarita Boza Olaechea

Margarita Boza Olaeche. INGENIERA CIVIL CIP. 80500

ANEXO Nº 12 Ensayo de Durabilidad agregado grueso

	LABORATORIO DE MECANICA DE SUEI	LOS, CONCRETO Y PAVIM	ENTOS	
Cantera	Yanamayo			
Ubicación Km.	117+000			
ado	Izquierdo			
Material	Mezda de Agregados para Huso 57	Fecha	09/05/2019	
-	50% = Grava de TM. 1' y 50%=TM 3/4"			

DURABILIDAD AL SULFATO DE SODIO Y SULFATO DE MAGNESIO NORMA MTC E 209

Equipos	
Balanza	
Horno	
Termometro	

MATERIAL:	AGREGADO GR	RUESO		SOLUCION DE SULF SOLUCION DE SULF			
TAMAÑO DE MALLA		ESCALONADO ORIGINAL	PESO INICIAL ANTES DE	PESO DESPUES DE ENSAYO	PESO DE DESGASTE	PORCENTAJE DE DESGASTE	PORCENTAJE DE DESGASTE
PASA	RETIENE	(%)	ENSAYO (g)	(g)	(g)	(%)	CORREGIDA (%)
2	1 1/2*						100
1 1/2"	1"	2.2	1011.0	914.0	97.0	9.6	0.2
1"	3/4"	32.2	504.0	458.0	46.0	9.1	2.9
3/4"	1/2"	31.4	674.0	631.0	43.0	6.4	2.0
1/2"	3/8"	13.4	304.0	269.0	35.0	11.5	1.5
3/8*	N* 4	18.3	300.0	296.0	4.0	1.3	0.2
						TOTAL (%)	6.9

Tamices	1		I		De 1	%" a 1"	De 1"	a 3/4"
Número Inicial de Particulas		\				30		32
Particulas Rajadas		1		1	3	10%	0	0%
Particulas Desmoronadas					0	0%	1	3%
Particulas Fracturadas				1	2	7%	2	6%
Particulas Astilladas				1	1	3%	0	0%

MATERIAL: AGREGADO FINO				SOLUCION DE SULF SOLUCION DE SULF			
TAMAÑO DE MALLA		ESCALONADO ORIGINAL	PESO INICIAL ANTES DE	PESO DESPUES DE ENSAYO	PESO DE DESGASTE	PORCENTAJE DE DESGASTE	PORCENTAJE DE DESGASTE
PASA	RETIENE	(%)	ENSAYO (g)	(g)	(g)	(%)	CORREGIDA (%)
3/8"	N* 4		92.7		100		
N° 4	N°8						
N* 8	N° 16						
N° 16	N° 30						
N° 30	N* 50						
Menor qu	ie N° 050						
						TOTAL (%)	

Observaciones:

Julio Emesio Diaz Gutierrez

INGENIERO

Margarita Boza Oleachea

Margarita Boza Olaechea INGENIERA CIVIL CIP. 80500

ANEXO N° 13 Análisis granulométrico agregado fino

ANALISIS GRANULOMETRICO DE AGREGADOS GRUESOS Y FINOS MTC E-204 Registro Arena-Yanamayo-001 Canters Yanamayo 117+000 Fecha: 02/05/119 Ubic. Km. Izquierdo Lado Mezcia de Arenas 70% Natural - 30% Triturada Material Balanza, Tamicos Granulometria (MTC E - 204) Detos de ensayo Peso Total Módulo de Fineza 2.778 Especificación = 23 a 3.1 Especificación ASTM - C33 % Ret % Ret % que Parcial Pasa Tamiz mm. 76.200 (a) Acum. 63,500 2 1/2" 1 1/2" 25,400 19.050 100.0 99.0 97.2 100 6.350 100 2.8 18.4 22.1 34.9 43.3 52.7 62.4 No4 81.6 77.9 100 2,360 2.000 15 65.1 56.7 47.3 50 1.190 9.4 0.840 60 25 0.600 40 0.420 30 0.300 10 0.180 92.9 96.4 96.5 7.1 3.6 10 100 0.149 211.5 16.8 0.074 **CURVA GRANULOMETRICA** 100 90 80 70 QUE PASA 50 50 40 30 20 70 9000 3 5 5 5 278 ABERTURA (mm)

Julio Ernesto 1932 Guiterrez

INGENIERO

Margarita Boza Otaechea

Margarita Boza Olaechea INGENIERA CIVIL CIP. 80500

ANEXO N° 14 Ensayo de equivalente de arena agregado fino

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS					
Cantera	Yanamayo	Registro	Arena-Yanamayo-001		
Ubicación Km.	117+000				
Lado	Izquierdo				
Material	Mezcla de Arenas	Fecha	02/05/2019		
	70% Natural - 30% Triturada				

METODO DE ENSAYO ESTANDAR PARA EL VALOR EQUIVALENTE DE ARENA DE SUELOS Y AGREGADO FINO NORMA MTC E 114

Equipos	
Horno	
Conjunto de Equival. Arena	

DATOS DE LA MUESTRA		IDENTIFICACION			
DATOS DE LA MOESTA	1	2	3	PROMEDIC	
Tamaño máximo (pasa malla N° 4) mm	4.76	4.76	4.76		
Hora de entrada a saturación 0:10	11:12	11:14	11:16		
Hora de salida de saturación (mas 10")	11:22	11:24	11:26		
Hora de entrada a decantación 0:02	11:24	11:26	11:28		
Hora de salida de decantación (mas 20")	11:44	11:46	11:48		
Altura máxima de material fino mm	4.30	4.40	4.30		
Altura máxima de la arena mm	3.30	3.30	3.30		
Equivalente de Arena %	77	75	77	77	
	Especificación	65			
Especificación Mínima Concreto > 210 Kg/cm²					

TECNICO

Julio Erriesto Diaz Guitierrez

INGENIE.RO

Margarita Boza Olaechea

Marganita Boza Olaechea INGENIERA CIVIL CIP. 80500

ANEXO N° 15 Gravedad específica y absorción agregado fino

	LABORATORIO DE MECANICA DE SUE	LOS, CONCRETO Y PAVIMENTOS
Cantera	Yanamayo	Registro Arena-Yanamayo-00
Ubicación Km.	117+000	
Lado	Izquierdo	
Material	Mezcia de Arenas	Fecha 02/05/2019
	70% Natural - 30% Triturada	

GRAVEDAD ESPECIFICA Y ABSORCION DE LOS AGREGADOS NORMA MTC E 205/206

Equipos	
Horno	
Balanza	
Termometro	

	AGREGADO FINO						
A	Peso Mat. Sat. Sup. Seco (en Aire) (gr)	500.0	500.0				
В	Peso Frasco + ague	1384.6	1368.3				
C	Peso Frasco + agua + A (gr)	1884.6	1868.3				
D	Peso del Mat. + agua en el frasco (gr)	1691.9	1675.3				
E	Voi de masa + voi de vacio = C-D (gr)	192.7	193.0				
F	Pe. De Mat. Seco en estufa (110°C) (gr)	491.8	491.8				
G	Vol de masa = E - (A - F) (gr)	184.4	184.8	PROMEDIO			
	Pe bulk (Base seca) = F/E	2.552	2.547	2.550			
	Pe bulk (Base saturada) = A/E	2.595	2.590	2.593			
	Pe aparente (Base Seca) = F/G	2.686	2.661	2.664			
	% de absorción = ((A - F)/F)*100	1.68	1.68	1.68			

		AGREGAL	DO GRUESO		
A,	Peso Mat Sat. Sup. Seca (En Aire) (gr)				
В	Peso Mat.Sat. Sup. Seca (En Agua) (gr)				
C	Vol. de masa + vol de vacios = A-B (gr)				
D	Peso material seco en estufa (110 °C)(gr)				
E	Vol. de masa = C- (A - D) (gr)				PROMEDIO
	Pe bulk (Base sece) = D/C				
	Pe bulk (Base saturada) = A/C				
	Pe Aparente (Base Seca) = D/E				
	% de absorción = ((A - D) / D * 100 }				

Observaciones:

TECNICO
Julio Ernesto Diaz Guitierrez

INGENIERO

Margarita Boza Olaechea

ANEXO N° 16 Peso Unitario y vacíos agregado fino

	LABORATORIO DE MECANICA DE SUE	LOS, CONCRETO Y PAVIMENTOS
Cantera	Yanamayo	Registro Arena-Yanamayo-001
Ubicación.	117+000	
Lado	Izquierdo	
Material	Mezcla de Arenas	Fecha 02/05/2019
	70% Natural - 30% Triturada	

PESO UNITARIO Y VACIOS DE LOS AGREGADOS NORMA MTC E 203

		Pes	o Unitario Su	elto	Peso Unitari	io por	Apisonado Percusión	-
Repetición N.º		1	2	3	1		2	3
Peso del Molde + Agregado Seco	g	6331	6320	6320	6861	68	858	6866
Peso del Molde	g		1609			16	609	
Peso del Agregado Seco	9	4722	4711	4711	5252	5	249	5257
Volumen del Molde	cm ³	2825			2825			
Gravedad Especifica del Agregado (SSS)	g/cm ³		2.593			2.	593	
% Absorción del Agregado	0.1%		1.68			- 1	.68	
Vacios en el Agregado	0.1%	35.5	35.7	35.7	28.3	2	8.3	28.2
Peso Unitario del Agregado	kg/m ³	1672	1668	1668	1859	1	858	1861
Peso Unitario del Agregado Promedio	kg/m³	1669				1	859	

Julio Ernesto Diaz Guiterrez

TECNICO:

INGENIERO

Margarita Boza Olaechea

ANEXO N° 17 Material fino que pasa el tamiz n° 200

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS						
Cantera	Yanamayo	Registro	Arena-Yanamayo-001			
Ubicación	117+000					
Lado	Izquierdo					
Material	Mezda de Arenas	Fecha	02/05/2019			
	70% Natural - 30% Triturada					

CANTIDAD DE MATERIAL FINO QUE PASA EL TAMIZ DE 75 µm (Nº 200) POR LAVADO NORMA MTC E 202

			Horno Balanza	
№ de Ensayo		1	2	3
Peso de la Muestra Seca	(g)	742.2	750.1	
Peso de la muestra seca despues de lavado	(g)	722.2	728.1	
Porcentaje que Pasa el Tamiz de 75 µm - Nº 200	(%)	2.7	2.9	
Promedio Pasa el Tamiz de 75 μm - № 200	(%)		2.8	

OBSERVACIONES:	 			
	 	*************	***************************************	

Julio Emesto Diaz Gutierrez

INGENIERO

Equipos

Margarita Boza Olaechea

ANEXO N° 18 Durabilidad agregado fino

	LABORATORIO DE MECANICA DE S	UELOS, CONCRETO Y PAVIMENTOS
Cantera	Yanamayo	Registro Arena-Yanam ayo-00
Ubicación Km.	117+000	
Lado	Izquierdo	
Material	Mezda de Arenas	Fecha 08/05/2019
21/2	70% Natural - 30% Triburada	

DURABILIDAD AL SULFATO DE SODIO Y SULFATO DE MAGNESIO NORMA MTC E 209

Equipos	
Balanza	
Horno	
Termometro	

ATERIAL:	AGREGADO G	RUESO		SOLUCION DE SULE SOLUCION DE SULE		sio ><	
TAMAÑO	DE MALLA	ESCALONADO ORIGINAL	PESO INICIAL ANTES DE	PESO DESPUES DE ENSAYO	PESO DE DESGASTE	PORCENTAJE DE DESGASTE	PORCENTAJE DE DESGASTE
PASA	RETIENE	(%)	ENSAYO (g)	(g)	(9)	(%)	CORREGIDA (%)
2"	1 1/2"						
1 1/2"	1"						
1*	3/4"						
3/4"	1/2"					7	
1/2"	3/8"						
3/8"	N* 4						
	-			•		TOTAL (%)	

Tamices	_			 10000	-	
Número înicial de Particulas		7				
Particulas Rajadas	27/2		1			
Particulas Desmoronadas						
Particulas Fracturadas					-	
Particulas Astilladas						

MATERIAL AGREGADO FINO				SOLUCION DE SULF	and the second second second second	810			
TAMAÑO DE MALLA		TAMAÑO DE MALLA		ESCALONADO ORIGINAL	PESO INICIAL ANTES DE	PESO DESPUES DE ENSAYO	ES DE PESO DESPUES PESO DE	PORCENTAJE DE DESGASTE	PORCENTAJE DE DESGASTI
PASA	RETIENE	(%)	ENSAYO (g)	(g)	(g)	(%)	CORREGIDA (%)		
3/8*	N° 4	28	100.0	80.0	20.0	20.0	0.6		
N° 4	Nº 8	15.6	100.0	82.0	18.0	18.0	2.8		
Nº 8	N* 16	16.4	100.0	75.0	25.0	25.0	4.1		
N° 16	N° 30	17.8	100.0	81.0	19.0	19.0	3.4		
N° 30	N* 50	23.4	100.0	0.08	20.0	20.0	4,7		
Menor qu	ue N° 050								
						TOTAL (%)	15.5		

Observaciones:

Julio Emesto Diaz Gutierrez

INGENIERO

Margarita Boza Olaechea

ANEXO Nº 19 Ensayos de cloruros, sulfatos, sales totales. Materia orgánica Cantera Yanamayo

INFORME DE ENSAYO ICP/INF-259/2018

SOLICITANTE:

DOMICILIO: TELÉFONO:

SERVICIO SOLICITADO: REFERENCIA: MUESTREO: FECHA:

CONSORCIO VIAL AMBO.

Atención: Sr. Hugo Villafuerta Av. Javier Prado Este 175 Int. 801 - San Isidro

991804668

Análtsis químico en 65 (cinco) muestras sólidas. ICP/PRO-219/2018.

Realizado por el solicitante.

2018-11-13.

1. DESCRIPCIÓN DE LAS MUESTRAS

Fueron recibidas (15 (cinco) muestras de suelos para la determinación de los items establecidos en

Código solicitante	Código ICP PUCP 2018AQ	Observaciones según el solicitante
CANTERA BELLA LUZ	1062	Km 141+100 LADO IZQUIERDO
CANTERA PATON	1063	DEPÓSITO MORRENICO km 152+960 LADO IZQUERDO
CANTERA SILVIA	1064	Km 177+650 LADO IZQUIERDO Y DERECHO
CANTERA POLVORIN	1065	Km 162+710 LADO (ZQUIERDO
CANTERA YANAMAYO	1065	Km 117+00 LADO IZQUIERDO

2. FECHA DE RECEPCIÓN DE LAS MUESTRAS:

2016-10-31

FECHA DE EJECUCIÓN DE ENSAYOS;

2018-11-02 a 2018-11-13.

MÉTODOS DE ENSAYO

Determinación de cloruro soluble: Determinación de sulfato soluble: Método titrimétrico basado en ASTM D1411-09. Método turbidimétrico basado en HACH 8051. Método gravimétrico basado en SM 2540 C.

Determinación de sales solubles totales: Determinación de materia orgánica:

Método gravimétrico basado en ASTM D 2974.

SM: Standard Methods for Examination of Water & Wastewater APNA-AWWA-WEF, Ed 22 *- 2012.

5. RESULTADOS

	ANÁLISIS DE	MUESTRAS I	DE SUELOS		
Código Solicitante	Código PUCP 2018AQ	CLORURO SOLUBLE	SULFATO SOLUBRE	BALES TOTALES	MATERIA ORGÁNICA mg/Kg
	2018AG	mg/Kg	mg/Kg	mg/Kg	
CANTERA BELLA LUZ	1062			90	0,71
CANTERA PATON	1063		*******	258	4,23
CANTERA SILVIA	1064			165	9,99
CANTERA POLVORIN	1065			248	4,23
CANTERA YANAMAYO	1066	2	27	162	2,07

Los resultados obtenidos son aplicables únicamente a la(s) muestra(s) ensayada(s).

OBSERVACIONES

Los resultados reportados son promecios de dos réplicas.

EL PRESENTE INFORME DE ENSAYO CONSTA DE 01 (UNA) PÁGINA DE TEXTO.

ing, tise Eliana Acosta Sutcahuaman.

Jefe (e) del Laboratorio de Artálisis Químico e Instrumental.

PONTPORTONIOSTRAD ENFOLGADAL PERO Byttitede de Controldo y Protectifiq

Will the total time to the t

134

ANEXO N° 20 Reactividad álcalis sílice agregado grueso

Facultad de Ingeniería Civil

LABORATORIO QUÍMICO FIC ANÁLISIS FÍSICO-QUÍMICO

SOLICITANTE: CONSORCIO VIAL AMBO

REGISTRO: \$18-895 / LQC:18-1993

PROVECTO: CARRETERA OVÓN - AMBO - TRAMO I

UBICACIÓN: OVÓN

TIPO DE MATERIAL: AGREGADO GRUESO

CONTERA: VANASIAVO

VANAMAVO Km, 117 + 100 Lado logozerdo

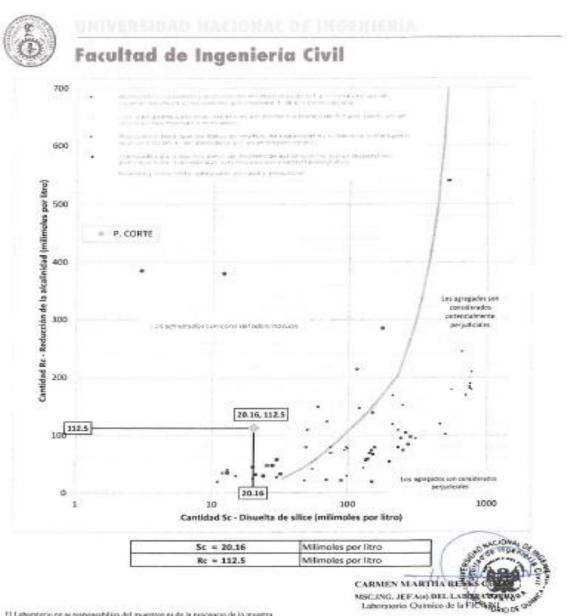
RECEPCIÓN DE LA MUESTRA: 07-11-18

ANALISIS DEI	BEACTIVEDAD POTENCIAL ALCALISSILICE AND C 289		
	Silice disarits Sc : Millerald.	Reducción Algulialdad He : Millimol/1	
REPORT MATERIALI AGREGADO GRAPRO CANTERA VANAMAYO Ria, 117 + 600 Laid Expérido	29,16	112,5	

Linux, 12 de Noviembre de 2018

CARMEN M. REVIEW COMP. 10

AUS.: ING. JEFA (a) DEL DANGE I DEN


Laboratorio de Químico de la DOVERIO

El Laboratorio no responsabilica del muestros ni da la procedencia de la muestra

Av. Tupac Amaru 210, Lima 25, Parú Apartado Postal 1301 Lima 100 - Perú / Telefax: (511) 481 - 9845 Central Telefónica: 481-1070 / Americ: 295

ANEXO N° 21 Gráfico ensayo alcalisis -sílice

El Laboratorio no se responsabiliza del asuesteo ni de la pisconce de la muestra

Av. Tupac Amaru 210, Lima 25, Perú Apertado Postal 1301 Lima 100 - Perú / Telefax. (511) 481 - 9845 Central Telefónica: 481-1070 / Anexo: 295

ANEXO N° 22 Contenido de arcilla y partículas friables

DEPARTAMENTO DE INGENIERIA LABORATORIO DE MISCANICA DE SUELOS

PROPIEDADES FÍSICAS DE AGREGADOS ASTM C-142

Solicitante:	CONSORCIO VIAL AMBO	E E		
Proyecto ;	CARRETERA OYON AMBO TRAMO I	Expediente :	18-234	
Muestra 1	CANT. YANAMAYO MEZCLA	Fecha :	20-Nov-2018	

Contenido de Arcilla y Partículas Friables

Agregado Fino	0.09%
Agregado Grueso	

MANUEL A. OLCESE FRANZESCO
Ingusiera Circi CIP 12965
Jole del Labersterio

18-234/5/CAR/1 de T

Av. Universitaria (WII. Non Nigard, Tylethina 63) 2000 Anova-4651, Epc620 2837, Internet, audios/group ashipe:

ANEXO Nº 23 Ensayo de carbón y lignito agregado fino

DATVERSIDAD NACIONAL DE INGENIERIA

Facultad de Ingeniería Civil

LABORATORIO QUÍMICO FIC ANÁLISIS FÍSICO-QUÍMICO

SOLECITANTE: CONSORCIO VIAL AMBO

REGISTRO: \$18-895 / LQU18-1092

PROYECTO: CARRETERA OYÓN - AMBO - TRAMO J

UBICACIÓN: OYÓN

TIPO DE MATERIAL: AGREGADO FINO

CANTERAL VANAMAYO

YANAMAYO Km, 117 + 999 Lado Izquirrile

RECEPCIÓN DE LA MILENTRA: 05-61-18

ANALISIS DE	OVER THE
	*
TIPO DE SIATERRAL	
ACREGADO PINO	
CANTERN	200
YANAMAND	9,000
Nov. 117 + 800	
Están Engalectrica	

Linux, 12 de Noviembre de 2018

CARMEN M. RETES OF THE AND STATE OF THE ACCOUNTY OF THE ACCOUNT OF THE ACCOUNTY OF THE ACCOUNT

El Laboratorio no responsabiliza del muestreo ni de la procedencia de la muestra

Av. Tuper, Ameru 210, Lima 25, Perú Apartado Postal 1301 Lima 100 - Perú / Telefax: (511) 481 - 9845 Central Telefónica: 481-1070 / Anexo: 295

ANEXO Nº 24 Ensayos químicos del agua Quebrada Yuracayan

INFORME DE ENSAYO ICP/INF-258/2018

SOLICITANTE

DOMICILIO: TELÉFONO:

FECHA:

SERVICIO SOLICITADO: REFERENCIA: MUESTREO:

CONSORCIO VIAL AMBO. Atención: Sr. Hugo Villafuerte

Av. Javier Prado Este 175 Int. 801 - San Isidro

B31804668

Análisia químico en 06 (sels) muestras acuosas. ICP/PRO-219/2018.

Realizado por el solicitante. 2018-11-12.

1. DESCRIPCIÓN DE LAS MUESTRAS

Fueron recibides 06 (seis) muestras de agua para la determinación de los itema establecidos en la referencia.

Código solicitante	Código ICP-PUCP 2018AQ	Observaciones según el solicitante
QUEBRADA YURACAYAM	1056	Km 137+418 LADO DERECHO
MINI CENTRAL BELLA LUZ	1057	Km 142+250 LADO DERECHO
LAGUNA PATON	1058	Km 146+900 LADO IZQUIERDO.
LAGUNA CULQUICOCHA	1059	Km 162+500 LADO IZQUIERDO
LAGUNA AÑILCOCHA	1060	Km 155+700 LADO DERECHO
POZO RICO	1081	Km 189+250 LADO IZQUIERDO.

2. FECHA DE RECEPCIÓN DE LAS MUESTRAS:

2018-10-31.

3. FECHA DE EJECUCIÓN DE ENSAYOS:

2018-11-02 a 2018-11-12.

4. MÉTODOS DE ENSAYO

Determinación de pH:

Determinación de sólidos totales en auspensión: Determinación de alcalinidad total:

Determinación de sulfato: Determinación de materia orgánica:

Método electrométrico basado en SM 4500 H". Método gravimétrico basado en SM 2540 D. Método litrimétrico basado en SM 2320 B. Método turbidimátrico basado en HACH 8051. Método colorimètrico basado en SM 5220 D.

SM: Standard Methods for Examination of Water & Wastewater APHA-AWWA-WEP, Ed 22 "-2012.

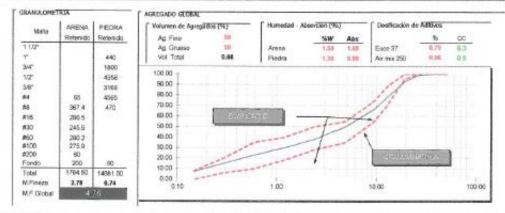
5 PESHITADOS

Ah	MULIUS DE MU	ESTRAS DE AGU		
	Código solicitante	QUEBRADA YURACAYAM	MINI CENTRAL BELLA LUZ	PATON
Códigos de muestras	Código ICP-PUCP 2018AQ	1054	1067	1058
Parámetros	Unidades Resultados			
pH (*)		7,773	7,845	7,596
Sólidos totalos en suspensión	mg/L	3	N.D.	N.D.
Alcalinidad total	mg/L	79.7	79,1	79.4
Sulfato	mg/L	120	118	132
Materia orgánica (**)	ma/L	2	< 1	- 6

^{(&}quot;) Expresado como COD de reflujo.

AIC UNING ROTARIA 1901 - LAMA 32 - SAN MIGUREL APARTADO POSTAL 1751 - LAMA 193 TELEPONOS: DIRECTO (6001-11-20025 10 / 505 2000 arcens 2516 - 5071 / (5061-1) 620 2636 Emilia (1988) Arbida

ANEXO Nº 25 Diseño de concreto relación agua-cemento 0.40


DISEÑOS DE MEZCLAS DE CONCRETO

Fecha fc (kg/cm²) Relacion a/c fc = r (r= 70)

04/05/2019	
350	
0.400	
420	

1 Euro 37 2 Air mix 250

CARACTERÍSTICAS FÍSICAS DE LOS MATERIALES

MATERIALES	PROCEDENCIA	Peso Especifico kg/m3	Peec Seco kg/m2	Peso Humedo kg/m3
Cemento	8ol T-l	3115	625	425.0
Ague.	Yuracayan	1000	170.00	167.9
Arena	Yanamayo	2550	867.83	880.9
Ag: Grueso	Yenemeyo	2640	898.46	910.5
Euro 37	QSI	1190	3.19	32
Air mix 250	QSI	1100	0.26	0.3
Aine			1.00%	
TOTAL	1	Vel = 1.0000	Ko -	2387.3

IATERIALES	DOSIFICACIÓN		0.03
onnento	12.75	kg	
gue	5.04	Lr	
re.raa	26.62	kg	
g. Grueso	37.30	kg	
uoo 37	15.42	gr	
ir mix 250	7.65	gr	

CONTROL DE CALIDAD

PROPIEDADES FE												
Tare	(Kg)	3.382	SLUMP	TEMP	(%)	ARE	P.U. Teórico	P.U. Real	RENDMENTO	N: TEST	Hota	Hora
Volumen	(m3)	0.007054	(pulg)	Coner	Amb	(%)	(spini)	(kg/m²)	SEPTEMENT	14 1001	Inicial	AC
Tara + concrute	(Kg)	20.044	23/4	19.2	19.0	3.8	2387.5	2376.2	1 005	9	14.17	14.23

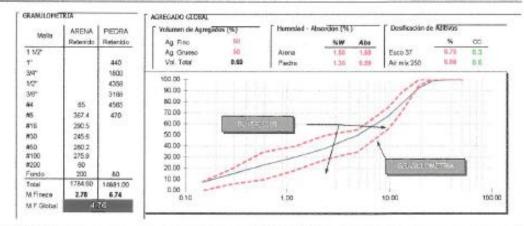
Julio Ernesto Diaz Gutierrez

INGENIERO

Margarita Boza Olaechea

ANEXO Nº 26 Diseño de concreto relación agua-cemento 0.43

UNIVERSIDAD CÉSAR VALLEJO


DISEÑOS DE MEZCLAS DE CONCRETO

Fechs fo (kg/om²) Relación a/c fc + r (r= 70)

	06/05/2019	
-	350	
	0.430	
-	420	

ADITIVOS 1 Euro 37 2 Air mix 250

CARACTERÍSTICAS FÍSICAS DE LOS MATERIALES

MATERIALES	PROCEDENCIA	Peso Especifico kg/m3	Peso Seco kg/m3	Peso Humedo kg/m3
Comento	Sel T-I	3115	386	395.6
Ague	Yvanacasysen	1000	170.00	167.4
Arene	Yanamayo	2550	880.37	863.6
Ag Crumo	Yanamayo	2640	911.45	923.3
Euco 37	QSI	1190	2.96	3.0
Air mix 250	QBI	1100	0.24	0.2
Aire			1.00%	
TOTAL		Val + 1 0000	Kg=	2382.9

MATERIALES	DOSIFICACIÓN	a k	0.03
emento	11.85	kg	
gua	5.44	L	
irena	26.61	kg.	
g. Grueso	27,70	kg	
iuce 37	88.60	gr.	
Lir mitr 250	7.11	gr	

CONTROL DE CALIDAD

PROPIEDADES FE	1045								92			
Taria Volumee Taria + concreto	(Kg)	3,362	SLUMP	TEMP	(190)	ARE	P.U. Teóngo	P.U. Reel	RENDMENTO	AN TEST	Hora	Here
Volume	(m3)	0.007054	(pulg)	Concr.	Amb	(%)	(kg/m²)	(kg/m²)	HENDINENTO.	N IDOI	tricial	A/C
Yare + concreto	(g)6	19.978	21/2		20.0	3.7	2382.9	2952.7	1.013	9	1435	14.45

TECNICO

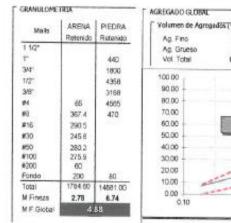
Julio Ernesto Diaz Gutierrez

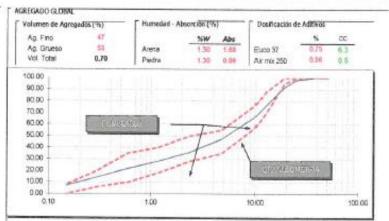
INGENIERO

Margarita Boza Olaechea

ANEXO Nº 27 Diseño de concreto relación agua-cemento 0.45

UNIVERSIDAD CÉSAR VALLEJO


DISEÑOS DE MEZCLAS DE CONCRETO


Fecha fc (kg/cm²) Relación a/c fc + r (m 70)

07/05/2019
350
0.450
420

ADETUKOS 1 Euco 37 2 Air mix 250

CARACTERÍSTICAS FÍSICAS DE LOS MATERIALES

DOSIFICACIÓN (REZ MATERIALES	PROCEDENCIA	Peso Especifico kg/m3	Peso Seco ligim3	Paso Humedo Ag/m3
Cemento	Sai T-I	3115	378	378.0
Agua	Yuracayan	1000	170.00	167.5
Arena	Yanamayo	2550	834.23	845.7
Ag. Grueso	Yanamayo	2640	973.93	996.6
Euro 37	Q81	1190	2.84	2.6
Air mix 250	QSI	1100	0.23	0.2
Are			1.00%	
TOTAL		Val+1.0000	Kq =	2381.9

MATERIALES	WOLUMEN (LIN) DOSIFICACIÓN		0.03
Centente	11.34	hg	
Agua	6.00	L	
Arene	26.40	1g	
Ag. Grusso	29.40	kg	
Euco 37	85.05	gr	
Air mix 250	6.80	gr.	
OBSERVACIÓN			-111

CONTROL DE CALIDAD

PROPIEDADES PE	SECAS	Dec 1 1 10		41.								
Tera	04g)	3.382	SLUMP	TEMP	(°G)	AIRE	P.U. Tedrico	P.U. Real		au trous	Hora	Hora
Volumen	(m3)	0.007054	(pulg)	Coner.	Amb	(%)	(kg/m²)	(kg/m²)	RENCIMIENTO	Nº TEST	Inicial	A/C
Tara + concreto	1500	20,004	2 1/2	22.1	20.2	3.7	2381.9	2360.9	1.009	9	14.05	14:13

Julio Ernesto Diaz Gutierrez

INGENIERO

Margarita Boza Olaechea

ANEXO N° 28 Contenido de aire, pesos unitarios del concreto

	LABORATORIO DE MECANICA DE SUELOS	CONCRETO Y PAVIMENTOS	
Mezcla	Diseño de Concreto F'c 350 Kg/cm2		
Ubicación	Laboratorio CVA - Oyon		
		Fachs	07/05/2019

CONTENIDO DE AIRE EN EL CONCRETO FRESCO METODO DE PRESIÓN Y PESO UNITARIO NORMA MTC E 706 / 714

Equipos	
Balanza	
Termometro	
Medidor de Aire	

PESO UNITARIO - A/C	0.40 - Fecha 04	4-05-2019
Peso de Recipiente	Kg	3.382
Volumen de Recipiente	cm ³	0.007054
Peso de Recipiente + Mezcla	Kg	20.144
Peso de la Mezcla de Concreto	Kg	16.762
PESO UNITARIO	Kg/m³	2376

HORA DE ME	DICION (Hrs.)				
14:17					
SLUMP	% DE AIRE				
2 3/4"	3.8				
TEMP. CONCRETO	TEMP. AMBIENTE				
19.2	19.0				

PESO UNITARIO - A/C	0.43 - Fecha 06	6-05-2019
Peso de Recipiente	Kg	3.382
Volumen de Recipiente	cm ^a	0.007054
Peso de Recipiente + Mezcla	Kg	19.978
Peso de la Mezcla de Concreto	Kg	16.596
PESO UNITARIO	Kg/m³	2353

HORA DE ME	DICION (Hrs.)				
14:35					
SLUMP	% DE AIRE				
2 1/2*	3.6				
TEMP. CONCRETO	TEMP. AMBIENTE				
19.7	20.0				

PESO UNITARIO - A/C	0.45 - Fecha 0	7-05-2019
Peso de Recipiente	Kg	3.382
Volumen de Recipiente	cm ³	0.007054
Peso de Recipiente + Mezcla	Kg	20.036
Peso de la Mezcla de Concreto	Kg	16.654
PESO UNITARIO	Kg/m³	2361

HORA DE ME	DICION (Hrs.)				
14:05					
SLUMP	% DE AIRE				
2 1/2"	3.4				
TEMP. CONCRETO	TEMP. AMBIENTE				
22.1	20.3				

TECNICO	INGENIERO
CyA	
Julio Ernesto Diaz Gutierrez	Margarita Boza Olaechea

ANEXO N° 29 Resistencias compresión a 7,14,28 días diseño relación agua -cemento 0.40

UNIVERSIDAD CÉSAR VALLEJO

REGISTRO: RELACION A/C FECHA DE INFORME:	DISENO-001 0.40 0206/2019									E	Equipos Prense Concreto Venter	
CODIGO DE PROBETA	ESTRUCTURA/ ELEMENTO	FECHA DE MOLDEO	FECHA DE ROTURA	EDAD DE ENSAYO (dias)	DISENO Fc (Kg/em2)		Diametro (cm)	AREA (cm2)	LECTURA DEL DIAL (Kg)	RESISTENCIA OBTEN (Kg/cm2)	DA PROMEDIO (Agricm2)	50
95-350-HS7-0001	DISEÑO DE MEZOLA DE CONCRETO 350 Kylowiz	04/05/0910	11/05/2019	r	360		10.1h	014	22945.0	381.5		
015-350-H57-0002	резобо ре мелоци ре сомолет о 356 куюча	0495/2019	11/05/2019	7	990		90.16	81.1	20084.0	294.6		
98-350-H57-0003	DISEÑO DE MEZIZA DE CONDRETO 360 Kg/cm2	04/85/3819	19050019	7	360		10.15	80.9	29141.0	296.0	-	
NG 350-H57-0008	DISEÑO DE MEZOLA DE CONCRET O 160 Kylová	04/95/0019	11/05/2019	7	360		60.17	812	20000.0	363.2	288.4	12%
XS-350-H57-0005	DISEND DE MEZOLA DE CONORET O 960 Kg/cm2	04/95/2019	11/05/2019	1	360		10.16	909	29900.0	296.4		
05 350:H57-0006	DISEÑO DE MEZOJA DE CONCRETO 350 Kg/cm?	0405/2019	11/05/2019	1	360		10.18	81.4	29568.0	289.6		
01S-350-H57-0007	DISEÑO DE MEZOLA DE CONCRETO 350 Kylow2	0405/2019	19/05/2019	-14	380		10.17	812	26950.0	331.6		HON.
OS-350-H57-0908	DISSEÑO DE MEZOLA DE CONCRET O 150 KgAniZ	04959019	19/05/2019	14	950		10.18	81.1	27153.0	334.9		
XS-390-H57-0000	DISSRO DE MEZOLA DE CONCRET D 350 Kg/km2	04/95/2019	18/05/2019	18	350		10:18	81.4	27444.0	337.2	3046	
01S-350-H57-0010	DISEÑO DE MEZOLA DE CONCRET O 160 Kg/kv/2	0495/2019	18/05/2019	18	350		f0.16	81.1	272220	335.6	3046	200
05-350-H57-0011	DISEÑO DE MEZOLA DE CONCRETO 250 Kybniz	0495/2019	18/15/2019	18	350		10.17	812	38791.0	329.7		
05-250-H57-0012	DESCRIPTION DE MEZICA DE CONCRETO SE Kyloniz	0405/0019	19/15/2019	14	390		10.15	80.1	27591.0	336.5		
06-391-H57-0013	DISEND DE MEZICLA DE CONCRETO 351 Kg/m/2	0405/2019	01/96/2019	28	360		16 18	81.4	34006.0	417.8		
15-256-H57-6014	DISEÑO DE MEZOJA DE CONCRETO 368 Kg/km2	0405/2019	eroparyro	26	350		10:17	812	34836.0	69.6		
NS-358 H57-0015	DISEÑO DE MEZOLA DE CONCRETO 360 Kyloniz	04/05/2019	01/953019	21	350		10:17	81.2	3655.0	425.4		
0S-356-H57-8016	DISENDIDE MEZICLA DE CONCRETO 368 Kg/m²	9405/2019	01/962019	- 28	950		18:18	81.4	34712.9	426.5	121.2	1219
NS-356-H57-0017	DISEÑO DE MEZOLA DE CONCRET O 358 KANAZ	D405/9019	01/06/2019	28	360		10.16	81.1	3396.0	419.3		
NS 350-H57-0018	OSEÑO DE MEZOLA DE CONCHET O 260 Kylonik	0465/2019	01/99/2019	28	950		10 17	81.2	34686.0	426.6		
			9-11-1				atios s 7 Diam		latico s 14 Diss	Dates Estadistico s 26 D	ш	
DEEDTVACIONES: CURA	DO EN POZA A TEMPERATURA ZIPC					Rp.	269.4	ND XD	334.6	N 6	-	
TECN	00		KOENIERO			Me	281.9	He	329.7	Mn 4978	_	

Cesi Exande

Virience

32.6

23

11.1

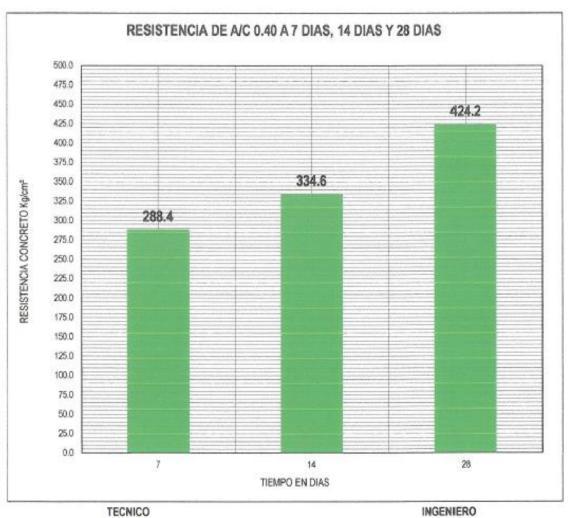
Ossi, Estandar

Varianze

Coef. Warleotth

46

Varianza


Margarita Boza Olaechea INGENIERA CIVIL CIP. 80500

Margarita Roze Olseches

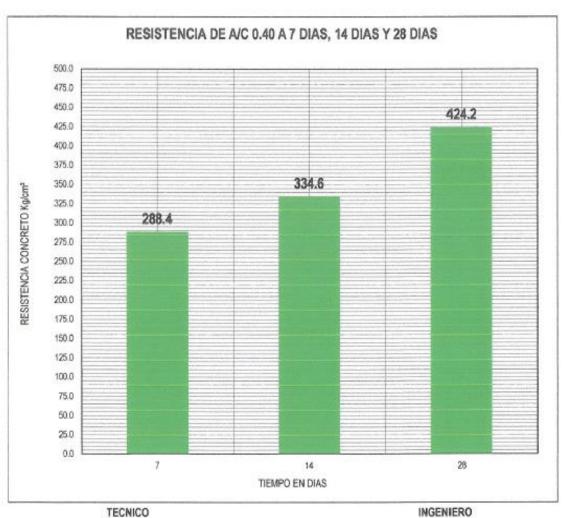
ANEXO N° 30 Gráfico resistencia a compresión diseño relación a/c 0.40

GRAFICO Nº 01

Julio Emesto Diaz Gutierrez

Margarita Boza Olaechea

ANEXO N° 31 Resistencias compresión a 7,14,28 días diseño relación agua -cemento 0.43


UNIVERSIDAD CÉSAR VALLEJO

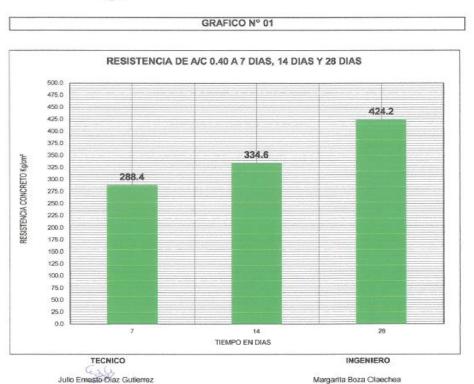
REGISTRO:	DISENO-002					mestical state		and the same of th			Equip	906	
RELACION AIC	043	-									Prensa C		
FECHA DE INFORME:	0406/2019										Vern		
CODIGO DE PROBETA	ESTRUCTURA / ELEMENTO	FECHA DE MOLDEO	FECHA DE ROTURA	EDAD DE ENSAYO (dies)	DISEÑO Fe (Kg/em/2)		ametro (om)	AREA (cm2)	LECTURA DEL. DIAL (Kg)	RESISTENCIA OBTE (Kg/om2)	INDA	PROMEDIO (kg/om2)	**
DIS-350-H57-0019	DISEND DE MEZOLA DE CONCRETO 300 kg/k/k2	9605/9019	13/85/2019	2	356	9	10.16	81.1	20906.0	277.€			
06-350 H57 0020	DISEÃO DE MEZICA DE CONCRETO 201 Kaloniz	09/05/2019	13/95/2019	7	350		18.17	612	27276 6	2716			
05-350-H57-0021	овайо ое мехал ое сомскето 368 куюч2	06/05/2019	13/850119	7	350	1 2	12.19	81.6	22506.0	277.1		200.6	79
os-350-H57-0022	DISEND DE MEZICA DE CONCRETO 351 Kg/m²	06/05/2019	13/95/2019	7	350	1	11.15	80.9	22091	272.0		276.5	. 100
06-300-457-0023	DISEÑO DE MEZOLA DE CONCRETO 300 Kylun2	0905/0019	13/65/2015	2	366		10.10	814	22517.0	274.2			
05-350-457-0404	DISSING DE MEZISA DE CONCRETO 358 Kg/bn/2	06/05/2019	13/15/2019	7	360		10.16	61.1	29061	261.6			
06-360 H57-0025	DISEÑO DE MEZOLA DE CONCRETO 360 Kylini2	06/05/2019	20/65/2010	и	350	1 3	12.16	1111	26137.0	312.1			ātra.
05-360-457-8636	DISENDICE MEZICLA DE CONCRETO 350 Haben?	0605/0019	29/95/2019	14	360	1	11.15	80.9	25492.0	314.4			
D6-350-H57-8007	DISSNO DE MEZICIA DE CONCRETO 368 Kg/km2	0605,0019	20/05/2019	ж	350		12:18	814	25196.0	3314		444.6	
05-350-H57-0028	DISEÑO DE MEZQA DE CONCRETO 360 Najon2	0905,0019	20/05/2019	и	250		12.16	81.9	25669.0	316.6		312.6	
05-360-H57-0029	DISEND DE MEZICA DE CONCRETO 350 Kg/m/2	06/06/2019	20/95/2019	и	350		10 17	812	25239.0	310.7			
06-350-H57-9930	DISEÑO DE MEZOLA DE CONCRETO 350 Kyloni2	09050019	20/95/2019	14	250	1	10:17	812	25501.0	312.9			
05-250-697-0001	DISENCI DE MÉZITA DE CONCRETO 360 Habina?	06/05/2019	03/99/2019	26	350		11.17	812	33992.0	402.4			
16-350 H57 0032	DISEÑO DE MEZIQUA DE CONCRETO 380 HightiniZ	06/05/2019	03/95/2915	28	250		15.18	214	32806.0	404.0			
75-350-H57-9K53	DISENCIO DE MEZIZA DE CONCRETO 360 National	09/05/2019	09/99/2019	- 29	300		15:19	819	33609-1	399.2		6328	115
06-360-657-0004	DISEÑO DE MEZOLA DE CONCRETO 380 Kyuniz	9606/9019	09/95/2019	26	360		10.15	60.9	32461	4013		142.6	110
05-350-167-0035	DISSEND DE MEZICIA DE CONCRETO 361 Hybrid	06/5/0019	03/890919	26	360		16:17	812	33001.0	406.3			
DIS-360-H57-0036	DISSEÑO DE MEZQLA DE CONCRETO 350 KyANIS	99050019	03/892619	38	350		16.16	81.1	22751.0	404.0			
anatalana dalah	No. 10 (No. 10 No.				B	alos Estadisi	and the last device of the last	Datos Estadis		Datas Estadistico a 29	_		
OBSERVACIONES: CURA	DO EN POZA A TEMPERATURA 25°C					6	6	n	8	0 6			
***************************************	pri:	INGENIE	Sec.		-	No Me	275.5	3p ide	312.5	Xp 433			
TECHN		INGENE	ALC:			Hec	283.8	Man	315 6	Service Advanced to the Control of t	63		
Julio Ernesto Diaz	zdutenez	Mergeria Boza	Olivechen		Des	- Ecade	40	Des Estender	28	Dear Estector 2			
	11022400	31.90.00		9250	1	imerco	16.1	Verional	8.1	Venunce 6.	2		
				CARO	Coe	f. Variación	1.85	Coef. Varientin	0.97	Coef Variación 01	67		

ANEXO N° 32 Gráfico resistencia a compresión diseño relación a/c 0.43

GRAFICO Nº 01

Julio Emasto Díaz Gutierrez Margarita Boza Olaechea

ANEXO N° 33 Resistencias compresión a 7,14,28 días diseño relación agua -cemento 0.45


UNIVERSIDAD CÉSAR VALLEJO

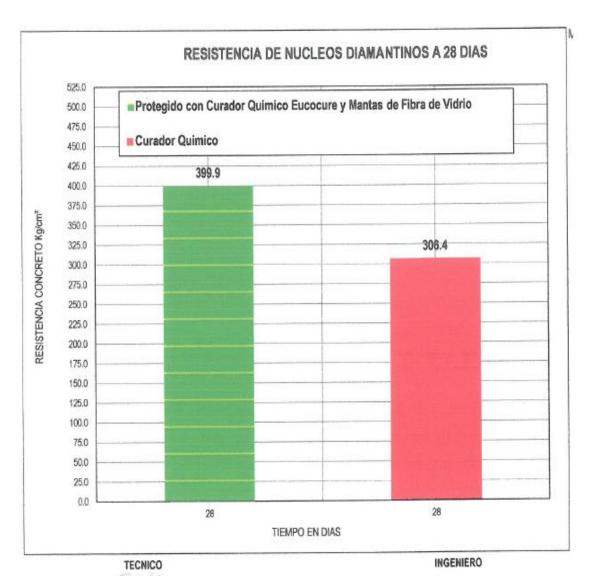
REGISTRO:	DISEÑO-003										Equipos	
RELACION A/C	0.45									1	Prensa Concreto	
FECHA DE INFORME	04/06/2019									Ī	Vernier	
CODIGO DE PROBETA	ESTRUCTURA / ELEMENTO	FECHA DE NOLDEO	FECHA DE ROTURA	EDAD DE ENSAYO (dias)	DISEÑO fc (Kglamž	Diam (on	1000	AREA (cm2)	LECTURA DEL DIAL (Kg)	RESISTENCIA OBTE (Kg/cm2)	MIDA PROMEDI (kg/cm2)	
06-250-H57-000F	DISEÑO DE MEZOLA DE CONCRETO 360 kg/shi2	1705/2019	14/05/2019	7	350	10.	15	20.5	21239.0	262.5		
01S-350-H57-0008	DISERIO DE MEZCLA DE CONCRETO 360 Agiona	67/05/2013	14/05/2019	7	350	10.	18	B1.4	21997.0	265.3		
ors-950 H67-0036	DISEÑO DE MEZOLA DE CONCRETO 360 Rg/uni2	EA05/2019	14/05/2019	7	360	10	15	06.0	21294.0	264.4		
015-050-H5F-0040	DISEÑO DE MEZOLA DE CONCRETO 360 Agámil	67/05/2019	14/05/2019	7	350	10.	17	912	21846.0	270.1	264.7	704
DIS-360-H57-0(41	DISERO DE MEZOLA DE CONCRETO 380 Rigiónio	1705/2019	14/05/2019	7	350	10	17	612	21212.0	2011		
06-360 H57-0642	DISENO DE MEZICIA DE CONCRETO 350 Kgbm2	1705/2010	14/05/2019	7	350	10	36	81.1	21444.0	2845		
06-350-457-0949	DISEÑO DE MEZOLA DE CONORETO 960 Kg/cm/l	07/06/2019	21/05/2019	94	350	10	96	01.1	24390.0	300.8		
05-250 HS7-08H	DISIEÑO DE MEZOLA DE CONCRETO 360 Kg/cm/l	97/05/2019	21/05/2019	14	250	10	38	01.6	24004.0	294.9		
05-350-167-0015	DISEÑO DE MEZOLA DE CONORETO 360 Kyriniz	0706/2019	21/95/2019	54	358	10	17	812	24096 5	304.0	7 2.0	- 00
06-350-67-8946	DISESTO DE MEZICILA DE CONCRETO 350 Kg/cmQ	07105/2019	21/85/01/8	- 14	350	13	17	81.2	247111	304.2	298.9	ach
05-360 H57 0647	DISEÑO DE MEZOUA DE CONCRETO 350 Kg/Lwi?	07/06/2019	21/09/2015	9	358	10	16	81.1	25962 \$	295.0		
DIS-350-H57-0048	DISERO DE MEZIDA DE CONCRETO 350 Kg/cm2	07/05/2019	21/05/2018	ы	352	12	18	.81.4	23967.6	2937		
15-350-H57-0040	DISEND DE MEZIZA DE COMIRETO 350 Kgderž	0/06/2019	1409/2019	26	361	13	16	81.1	30/66/0	3/57		
15-360-H57-8088	OISEÑO DE MEZIQUA DE CONCRETO 350 Agraniz	07/85/2019	8406/2019	26	350	10	15	80.9	30503.0	379.0		
015-350-657-0051	DISENDICE MEZOLA DE CONCRETO 250 AgranZ	07/85/2019	1406/2019	26	360	10	16	81.1	30582.0	377.3		- 1
015-350-H67-0062	DISENDICE VEZGLA DE CONCRETO 350 Kg/cm2	07/95/2019	\$406/2019	26	350	10	16	81.1	30711.0	376.8	377.6	108
0r5-350-H57-0063	DISERCIDE MEZIZIA DE CONCRETO 350 Rajon2	07/950915	04062019	28	360	10.1	17	81.2	3083.0	3754		
NS-250-HST-0064	DISEÑO DE MEZIDA DE CONCRETO 350 kg/m/2	07/65/2019	04/06/2019	25	350	10	17	81.2	30803.0	379.2		
						Daine Estadiation	a 7 Otea	Datos Estado	atico a 14 Dias	Datos Estadístico a 28	Dies	
BRERNACIONES CURAL	DO EN POZA A TEMPERATURA 20°C.					n	6		6	n 8		
TECNO		IN GENERAL	·		-		2617	Np.	268.9	No. 377 Me 375		
HING	4	MORNES			-	and the second second	270.1	Max	304.2	Max 379	the same of the sa	
Julio Emissão Dies	G-deever	Margarite Boza	Tionches		lo.	ery Estandar	31	Data Estandar	47	Desy Estander 17		
Suro Crimeo Disa	Contract Co.	Pringers Duce	A. A.	40	15	Varianza	1.6	Varianzo	22.0	Verience 21		
			~ ~ 1	The second secon		-		and the sales are the		- CO		

| No. | 201 | No. | 2076 | No.

ANEXO N°34 Gráfico resistencia a compresión diseño relación a/c 0.45

ANEXO N° 35 Ensayos de compresión relación a/c 0.40 con curador químico y protegido con mantas de lana de fibra de vidrio

HAMPA.	DS890-001					OS CILINDRICO						Eguipos	
REGISTRO: RELACION A/C	0.40	-									P	ensa Concreto	
ECHA DE INFORME:	07/06/2019	-										Vernier	
CODISC DIAMANTINA	ESTRUCTURA / ELEMENTO	FECHA DE VACEADO	FECHA DE EXTRACCION	FECHADE ROTURA	EDAD DE ENSAYO (dias)	DISEÑO Fc (Kg/cm2)	Altura (on)	Diámetro (cm)	AREA (om2)	LECTURA DEL DIAL (Kg)	RESISTENCIA OBTENIDA (Kgicmž)	PROMEDIO (tiglom2)	5.0
MAN-350-H57-0001	LOSA DE CONCRETO - PAVIMENTO RIGIDO	19090010	06/06/2019	07/05/2019	30	263	20.10	10.18	101	32020.0	393.4		
IAM/350-H57-0002	LOSA DE CONCRETO - PAVIMENTO RIGIDO	19/05/2019	0606(2019	07/06/2019	28	350	20.08	10.16	11.1	33002.0	407.1		
MM-350-H57-0003	LOSA DE CONCRETO - PAVMENTO RIGIDO	10/05/2019	0606/2019	07/06/2019	28	300	30.30	1815	809	32450.0	401.1		110%
AN-350 HST-0004	LOSA DE CONCRETO - PAVMENTO RIGIDO	10/05/2019	00000010	0706/2019	28	350	20.20	18:17	812	32796.0	403.7		
MAN 350 H 57-4005	LOSA DE CONCRETO - PAYMENTO RIGIDO	10050019	05/06/2019	8706/2019	28	350	2040	10.16	811	32864.0	405.6		
WM4390-H57-0006	LOSA DE CONCRETO - PRYMENTO RIGIDO	1006/2019	9506/2019	£7/06/2019	28	350	20.17	10 18	614	32009.0	383.2	306.5	
WAM-360-H57-R0E7	LOSA DE CONCRETO - PRVIMENTO RICIDO	1005/2019	96/06/2019	67/06/2019	28	360	20.50	10.17	81.2	32968.0	454.9		
WW-360-H67-B008	LOSA DE CONORETO - PAVIMINTO RIGIDO	10050019	3606/2019	07/06/2019	28	360	20 20	10.15	81.1	32158.6	396.7		
WW 350-H67-R019	LOSA DE CONCRETO - PAVIMENTO PICIDO	1005/0019	2006/2019	07/06/2019	28	360	20.18	10.18	81.4	1,1252	398.4		
WW-350-H57-8010	LOSA DE CONCRETO - PAVIMENTO PIGICO	1005/2019	06/06/2013	07/09/2019	28	360	20 22	10.15	80.9	31950.0	394.9		
WW.350-HS7-2011	LOSA DE CONCRETO - PAVIMENTO RIGIDO	10/05/2019	09/06/3019	07/06/2019	26	350	20.90	10.18	81.4	32945 8	397.3		
WW.360+67-0012	LOSA DE CONCRETO - PAVIMENTO RIGIDO	1005/0019	09/99/2019	(7/09/2019)	28	360	20.48	10.17	812	32093.0	402.5		
										Daton Cuta	distino		
BESTVACIONES CURA	DOR QUIMICO EUCOCURE Y PROTECCION CON MANTAS	DE LANAS DE PIDRA D	E VIDEO ESPESOR	ROET.						in .	12		
24-14				10.10.						Xo	789.9	4	
	TECHICO					INCENIERO			-	Min	399.2 407.1	-	
(var.				Allen	garita Boza Olae	ohan.			Day Estandar	43		
Julio Emer	eto Diaz Gutarrez				1/3	garina duza Olae	Circles			Veterze	289		
										Coof, Variance	1.22		


ANEXO N° 36 Ensayo de compresión diseño 0.40 núcleos diamantinas a los 28 días curado solo con curador químico

EGISTRO: ELACION A/C ECHA DE INFORME:	0.6EÑO-001 0.40 3005/2019											Prensa Concreto Verniar	
CODISC DIAMANTINA	ESTRUCTURA / ELEMENTO	FECHA DE VACEADO	FECHA DE EXTRACCION	FECHA DE ROTURA	EDAD DE ENSAYO (dias)	DISEÑO fo (Kgicm2)	Altura (om)	Diámetro (on)	AREA [cm2]	LECTURA DEL DIAL (Kg)	RESISTENCI OBTEMBA (Kg/cm2)		**
Web 350-HS7-0013	LOSA DE CONCRETO - PAVIMENTO RIGIDO	19/15/00/19	06/06/2018	07/06/20:19	26	353	20.16	10.18	81.4	34822.0	305.1		
WW.350-H57-0014	LOSA DE CONCRETO - PAVIMENTO RIGIDO	19/05/2019	06/06/2019	07/06/2019	26	363	20.08	10.16	81.1	25 152 0	310.2		
AW 350 H57-0015	LOGA DE DONORETO - PAVAMENTO PIGIDO	19/160019	06/06/2019	01/09/2019	28	350	20.30	10.15	40.9	24360.0	301.1		80%
AW350H57-0016	LOSA DE DONOREYO - PAVIMENTO RIGIDO	10/05/2019	06/06/2019	01/08/2019	20	363	30.20	10.17	812	24791.0	306.2		
AM-350-457-0017	LOSA DE DONORETO - PAYMENTO RIGIDO	16/05/2015	06/06/2019	07/06/2019	29	360	20 60	11.16	31.1	25100.0	309.6		
MM350-H5T-00/III	LOSA DE CONCRETO - PAVIMENTO RICIDO	10/05/2019	06/06/2019	07/06/2019	35	350	20.17	10.16	81.4	24697.0	303.4	306.4	
BY05-18H-08CNA	LOSA DE DONCRETO - PAZIMENTO RIGIDO	10/05/2019	969640019	07/06/2019	28	350	20.20	11.17	11.2	25007.0	307.8		
JAM 390-167-000	LOSA DE CONCRETO - PAVIMENTO RIGIDO	10/05/2019	0606/2019	07/06/2019	38	350	21/09	10.10	81.4	25255.0	3/83		
1930-181-00(-MAI	LOSA DE CONCRETO - PRIVMENTO RIGIDO	10052019	9606/2019	0706/2019	29	350	25.11	11.16	87.7	25480.0	314.3		
AW-380-HET-0022	LOSA DE CONCRETO - PAVIMENTO PIGIDO	10/05/2019	0606/2019	0700/2019	28	350	20.10	10.15	80.9	24850.0	307.1		
E231-151-068 AIA	LOSA DE CONCRETO - PRVIMENT O RIGIDO	10052019	9606/2019	9706/2019	28	990	20-07	18.19	83.8	24580.0	305.5		
IAM-390-H57-IXQ4	LOSA DE CONCRETO - PRANMENTO RIGIDO	10/05/2018	99/05/2019	27069019	28	360	20.12	10.17	19.2	24125.0	296.9		
										Onton Enter			
GSERVACIONES: CURAI	DOR QUINICO EUCOCURE.								-	n Xe	12	-	
										16:	296.9	-	
-	TECHICO					INGENIERO				Max	314.3		
	6 MD					Margarita Boza (Des Esercia	4.5		

ANEXO N° 37 Gráfico resistencia núcleo diamantinas a los 28 días

GRAFICO Nº 05

Julio Erneste Diaz Gutierrez Margarita Boza Olaechea

ANEXO N° 38 Monitoreo de temperaturas del concreto protegido con mantas fibra de vidrio

PROCEDIMIENTO EXPERIMENTAL DE PROTECCION DE ABRIGADO CON MANTAS DE LANA DE VIDRIO CON CEMENTO TIPO I - PAVIMENTO RIGIDO (LOSA DE CONCRETO)

TEMPERATURA DE MONITOREO

Viennes 10 de Hayo 2019 HORA

Acumelada

60

8.0

10.0

12.0

	Hora d	le Vaciado 2:00 p.m.
TEMPERATURA	TEMPERATURA	
Interna "C	Superficial *C	Ambienta *C
22.0	16.8	5.7
24.7	18.7	5.5
28.3	24.5	4.8

PROPORCIONES EN VOLUMEN

Cemento	1
Arena	2.3
Pledra Huso 57	2.7
Agua	17
AirMix	25.5 g
- 9	318 a

Sábado 11 de Navo 2019

Del Die

6:00 PM

8:00 PM

10:00 PM

12:00 AM

HO	ORA	TEMPERATURA	DEL CONCRETO	TEMPERATURA
Del Dia	Acumulada	Interna °C	Superficial *C	Ambienta *C
200 AM	14.0	33.3	31.2	-2.9
4:00 AM	16.0	34.7	32.1	-1,5
6:00 AM	18.0	35.5	32.7	-1.2
8:00 AM	20.0	36.0	33.1	5.2
10:00 AM	22.0	37.2	35.8	13.8
12:00 PM	24.0	39.0	37.2	18.9
2:00 PM	26.0	44.2	43.5	20.6
4:00 PM	28.0	45.6	42.6	14.2
6:00 PM	30.0	43.5	41.9	7.2
8.00 PM	32.0	42.0	41.5	6.1
10:00 PM	34,0	41.8	40.7	5.t
12:00 AM	36.0	42.0	40.4	-22

DETERMINACIONES

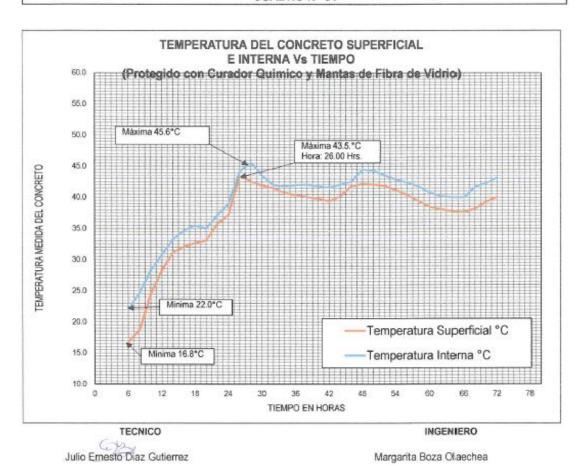
Slump	21/2"		
Aire Total	3.80%		
Tarap. de Ambiente	10.310		
Temp. de Agua	30.010		
Temp. del Concreto	22.0°C		
Temp. de la Piedra	16.2°C		
Temp. de la Arena	16,2*0		
Temp. del Cemento	16.2°C		

Domingo 12 de Mayo 2019

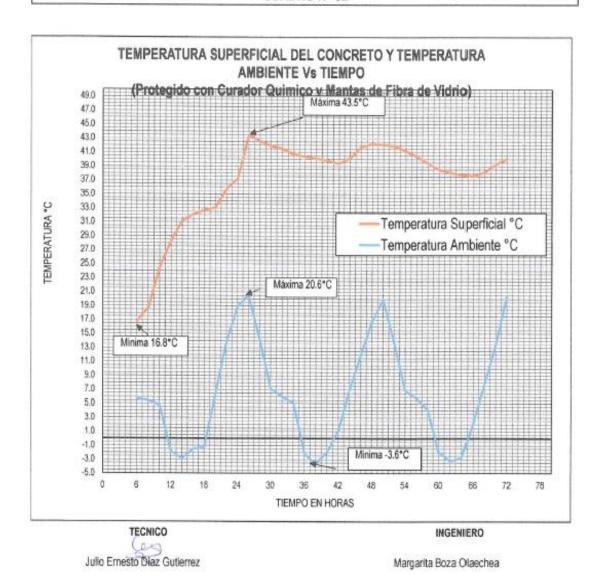
HC	ORA.	TEMPERATURA	A DEL CONCRETO	TEMPERATURA
Del Die	Acumulada	Interna °C	Superficial *C	Ambiente *C
2:00 AM	38.0	42.1	40.1	-3.6
4:00 AM	40.0	41.8	39.8	4.9
6:00 AM	42.0	41.6	39.4	12
8.00 AM	44.0	42.1	40.2	7.1
10:00 AM	46.0	42.6	41.8	12.0
12:00 PM	48.0	44.5	422	16.8
2:00 PM	50.0	44.3	42.1	19.9
4:00 PM	\$2.0	43.6	41.9	13.8
6.00 PM	54.0	42.9	41.2	6.9
8.00 PM	56.0	42.4	40.4	5.8
10:00 PM	58.0	41.8	39.4	42
12:00 AM	60.0	40.8	38.5	-1.9

Lunes 13 de Mayo 2019

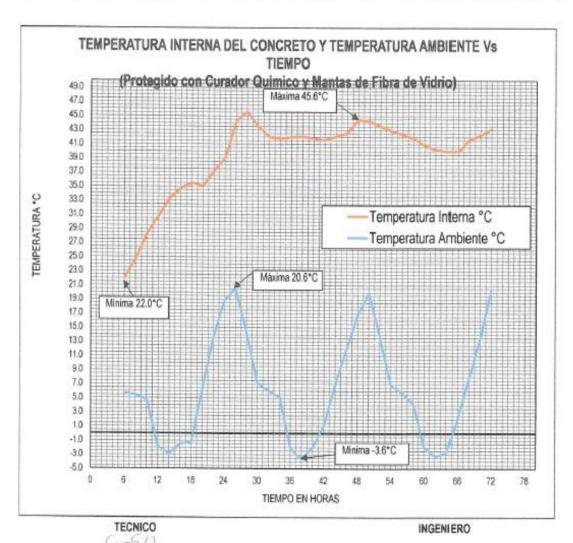
HORA		TEMPERATURA	TEMPERATURA	
Dai Die	Acumulada	Interna *C	Superficial °C	Ambiente °C
2:00 AM	62.0	40.2	38.1	-3.2
4:00 AM	64.0	40.0	37.8	-2.8
6:00 AM	0.39	40.0	37.6	23
8:00 AM	68.0	41.7	38.2	7.9


10:00 AM	70.0	42.3	39.3	13.5
12:00 PM	72.0	43.2	40.1	20.5

ANEXO Nº 39 Gráfico de temperaturas superficial, interna vs tiempo del concreto


CUADRO Nº 01

ANEXO N° 40 Gráfico Temperatura superficial del concreto y ambiente vs tiempo


CUADRO Nº 02

ANEXO N° 41 Gráfico Temperatura interna del concreto y ambiente vs tiempo

CUADRO Nº 03

Julio Ernesto Diaz Gutierrez Margarita Boza Olaechea

ANEXO N° 42 Temperatura del concreto curado con curador químico

PROTECCION CON CURADOR QUIMICO EUCOCURE Y CEMENTO TIPO I -PAVIMENTO RIGIDO (LOSA DE CONCRETO)

TEMPERATURA DE MONITOREO

Viernes 10 de Mayo 2019

HORA		TEMPERATURA	TEMPERATURA	
Del Dia	Acumulada	Interna °C	Superficial *C	Ambiente *C
6:00 PM	60	16.2	13.9	5.7
8:00 PM	8.0	15.1	12.1	5.5
10:00 PM	10.0	14.4	9.5	4.8
12:00 AM	12.0	14.0	9.2	-1.8

PROPORCIONES EN VOLUMEN

Comento	1		
Arena	2.3		
Pledra Huso 57	2.7		
AgraLitros	17		
Air Mix 0.06% p.c.	25.5 g		
Euco 37 0.075% p.c.	318 g.		

Sábado 11 de Mayo 2019

HC	ORA	TEMPERATURA	DEL CONCRETO	TEMPERATURA
Del Dia	Acumulada	Interna *C	Superficial *C	Ambiente °C
200 AM	54.0	123	8.5	-29
4:00 AM	16.0	12.2	7.6	-1.5
6:00 AM	18.0	12.7	6.9	-1.2
B.00 AM	20.0	15.1	10.8	6.2
10:00 AM	22.0	18.1	12.1	13.8
12:00 PM	24.0	21.1	13.9	18.9
200 PM	26.0	23.2	15.1	20.6
4:00 PM	28.0	20.3	16.8	14,2
6:00 PM	30.0	18.5	15.1	7.2
8:00 PM	32.0	16.5	11.2	6.1
10:00 PM	34.0	153	8.8	5.1
12:00 AM	36.0	14.5	7.0	-2.2

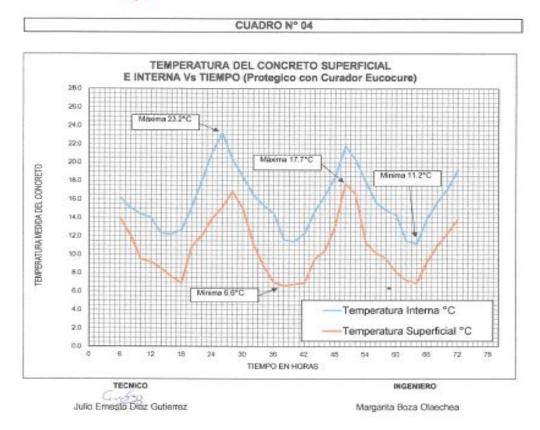
DETERMINACIONES

Slump	21/2"
Aire Total	3.80%
Temp. de Ambiente	10.3°C
Temp. de Agua	30.0°C
Temp. del Concreto	22.0°C
Temp. de la Piedra	16.2°C
Temp. de la Arena	16.2°C
Temp. del Cemento	16.2°C

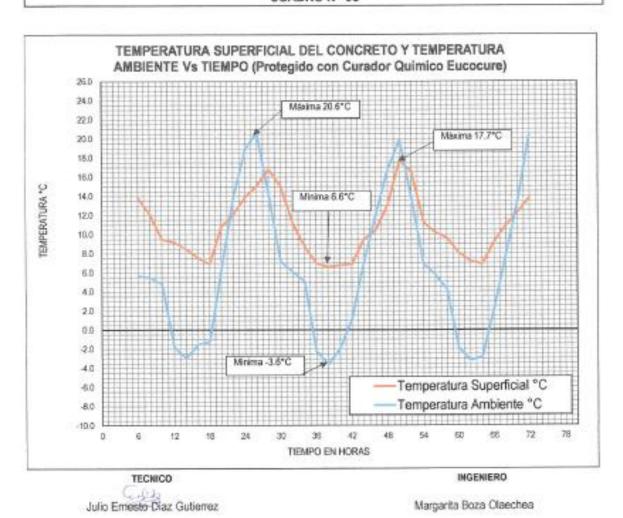
Domingo 12 de Mayo 2019

HC	ORA	TEMPERATURA	DEL CONCRETO	TEMPERATURA
Del Dia	Acumulada	Interne °C	Superficial *C	Ambienta °C
2:00 AM	38.0	11.6	6.6	-3.6
4:00 AM	40.0	11.4	6,8	-1.9
6:00:AM	42.0	12.3	6.9	1.2
8:00 AM	44.0	14.7	9.5	7.1
MA 00:00	46.0	16.4	10.4	12.0
12:00 PM	45.0	18.5	13.1	16.8
2:00 PM	50.0	21.8	17.7	19.9
4:00 PM	52.0	20.3	16.6	13.8
8:00 PM	54.0	17.9	11.3	6.9
B:00 PM	56.0	157	10.2	5.8
10:00 PM	58.0	14.8	9.6	4.2
12:00 AM	60:0	14.3	8.1	-1.9

- HI	ORA	TEMPERATURA	TEMPERATURA	
Del Dia	Acumulada	Interna °C	Superficial °C	Ambiente °C
2:00 AM	62.0	11.5	7.2	-3.2
4:00 AM	64.0	11.2	6.9	-2.8
6:00 AM	66.0	139	9.2	2.3
MA.00.8	68.0	15.7	10.9	7.9


10:00 AM	70.0	17.1	12.3	13.5
12:00 PM	72.0	19.2	13.8	20.5

ANEXO N° 43 Gráfico Temperatura del concreto superficial e interna vs tiempo



ANEXO Nº 44 Gráfico temperatura superficial y ambiente del concreto vs tiempo

CUADRO Nº 05

Marganta Boza Olaechea exigencena Covii CIP 20500

ANEXO Nº 45 Gráfico Temperatura interna del concreto y ambiente vs tiempo

CUADRO Nº 06

Julio Emesto Diaz Gutierrez

Margarita Boza Olaechea

Margarita Boza Olacchee augunt For Civil CIP 80500

$ANEXO\ N^{\circ}\ 46$ Ensayos de compresión a 24.48.72 horas curado químico y protegido con mantas de lana de fibra de vidrio

		RES	ISTENCIA A LA	COMPRESION TEST	FIGOS CILINDI	RICOS - NORMA M	C E 704				
EGISTRO:	DISEÑO-RESIST HORAS-001					200000000000000000000000000000000000000				Equipos	
RELACION A/C ECHA DE INFORME:	0.40 08/06/2019	_								Trensa Concreto	
CONFIDE INFORME.	1 9900000	-				-		-		Vernier	
CODIGO DE PROBETA	ESTRUCTURA/ ELEMENTO	FECHA DE MOLDEO	FECHA DE ROTURA	(horse)	DISEÑO Fc (Kg/cm2)	Diametro (cm)	AREA (om2)	LECTURA DEL DIAL (Kg)	RESISTENCIA OBTEN (Kg/om2)	DA PROMECIO (Kg/cm2)	**
NS 3801-57-0001-24H	DISENDIDE MEZICLA DE CONCRETO 350 Agraniz	04950816	05/05/2019	24	360	10.17	812	3885.0	41.8		
0S 260 H57-0002-24H	DISEÑO DE MÉZCLA DE CONCRETO 350 Aglaniz	04050018	0505/2019	24	390	10.18	81.4	3410.0	41.5		12%
015-250 HS7-0003-24H	DISEÑO DE MEZCLA DE CONCRETO 350 Agranz	04/05/2018	Q5/Q5/2019	24	390	10.17	81.2	3479.0	42.8		
HS-280Hd7-0004-24H	DISENO DE MEZCIA DE CONCRETO 350 sgiong	64/35/2019	0505(2019	74	390	10.18	81.4	3379.0	41.5	- 61	
7IS 350:HS7:0905:24H	DISEÑO DE MEZCLA DIL CONCRETO 350 Rg/srs2	0405/2019	05/05/2019	24	360	10.15	80.5	3427.0	42.4		
05-258-H57-0005-24H	DISENO DE MEZOLA DIS CONCRETO 160 Kg/cm2	5405/2013	05/05/2019	24	360	10:16	.01.1	3404.0	42.0		
75-350 H57-0007-48H	015EÑO DE MEZCLA DE CONORETO 350 Kylonig	8405/2019	06950019	48	390	10.16	81.1	12541.0	164.7		_
IS-350-H57-0008-48H	DISEÑO DE MEZOLA DE CONCRETO 360 Kg/cm2	5406/2019	08/05/2019	40	350	10.18	81.4	12763.0	106.3		
IS-356 HS7 0006-45H	DISEÑO DE MEZOLA DE CONCRETO 350 Kgt-n2	0406/2019	06/05/01/9	85	350	10.17	813	12514.0	164.1		
15-390-H57-0010-46H	DISSING DE MEZOLA DE COMORETO 350 Kgc/e/2	9495/2019	86050818	48	350	10:17	81.2	1244.0	153.2	151.1	
IS-390-H57-0011-48H	DISEÑO DE MEZOLA DE CONCRETO 350 Kg6m2	04/06/2019	1605/019	46	350	10.15	80.9	12399.3	153.2		
IS-350-HST-9012-45H	DISEÑO DE MEZICLA DE CONCRETO SER Agranz	04/652010	36052013	40	360	13.16	\$1.1	12697.8	156.6		
IS-360 H87 0013 72H	DISEND DE MEZITA DE CONCRETO JER KONTZ	04/95/2010	E006/2019	72	358	13.17	81.2	17521.0	216.7		+
IS-350H5T-0014-72H	DISERO DE MEZQUA DE CONCRETO TEU RIJENZ	04950919	07/08/2019	72	360	30.16	81.4	17884.0	219.7		
IS-380H\$7:0016-73H	DISERIO DE MEZOLA DE CONCRETO 160 Agêniz	(4/25/0919	07/66/2019	72	960	10.18	81.6	17423.0	214.1		62%
IS-350.H57.0016.73H	DISEÑO DE MEZOLA DE CONCRETO 360 Rigitado	04/05/0013	07/05/2019	η	350	10.15	80.9	17501.0	214.6	316.0	
G-250 HS7 0017 72H	DISEÑO DE MEZOLA DE CONORETO 360 Kg/cm²	8406/2019	.07/85/2015	72	350	10:17	612	17981.0	215.4		
5-356+57-0018-72H	DISEÑO DE MEZOLA DE COMORETO 350 Kg/cm2	04/05/2019	07/05/2019	72	350	19.16	81.1	74760	215.6		
					Date	s Estadistico a 24 Horas	Datos Estad	istice a 48 Horas	Dates Estadistice s 72 No.	20	
						1 6	, n	5	n 6		
BRERVACIONES: CUITAD	IOR QUIMICO EUCOCURE Y PROTECCION CON MANTAS (IS	LANAS DE FIBRA DE VIDR	RO ESPESOR DE Z'.			Xp 42.1	7a	154.8	78 SHED		
TEONIO			MOENERO			Min 41.5 Visu 42.8	Mer	153.2	Min 216.1 Men 219.7		

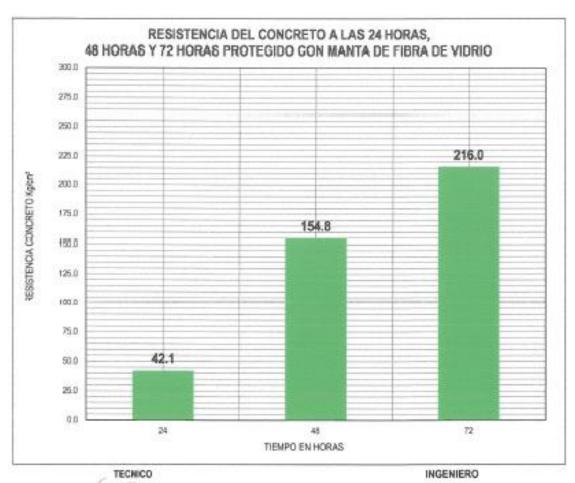
Margarita Boza Olaecheo INGENIERA CIVIL CIP. H0500 0.5

Verienza

Variores

ANEXO N° 47 Gráfico resistencia concreto a 24.48.72 horas con protección fibra de vidrio

CUADRO Nº 04


Margarita Boza Olaechea

Margarita Basa Olaechea INGENERA CIVE. CIP. 80500

ANEXO N° 48 Gráfico resistencia concreto a 24.48.72 horas con protección fibra de vidrio

GRAFICO Nº 06

Julio Ernesto Diaz Guterrez Maragarita Boza Olaechea

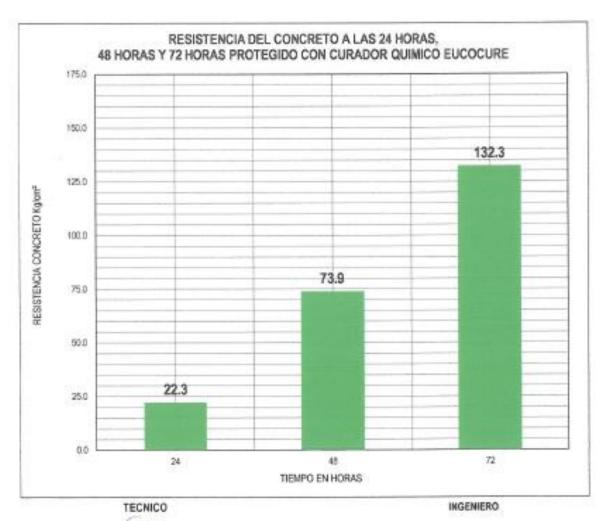
ANEXO N° 49 Ensayos de compresión a 24.48.72 horas curado químico


4	UNIVERSIDAD	CÉSAR	VALLEJO
- TI	ONTERSIONS	CLOAN	THELESO

REGISTRO:	DISEÑO-RESIST HORAS-002	-1									E	quipos	
RELACION A/C	0.40											a Concreto	
FECHA DE INFORME	08/05/2019										1	Fornier	
CODIGO DE PROBETI	A ESTRUCTURA/ELEMENTO	FECHA DE MOLDEO	FECHA DE ROTURA	EDAD DE ENBAYO (horse)	DISEÑO Fo (Kgiom2)		imetra (om)	AREA (om2)	LECTURA DEL DIAL (Kg)	RESISTENCIA (Kg/cr		PROMEDIO (Kalom2)	8.1
015-350:H57-0019-24H	DISERCICE MEZGLA DE CONCRETO 350 KgWn2	04950015	05/05/2019	.24	360	3	10.18	81.4	1810)0	22.3			
35-350H5T-0020-24H	DISENO DE MEZOLA DE CONCRETO 300 Agranz	04652519	06062019	24	360		10.17	B1.2	1644.0	22.7			en.
IS-393-H87-0021-24H	DISBROCIE MEZOLA DE CONCRETO 250 Agianz	04/05/2019	9505/2019	24	300		10.16	M.1	1750	22.1	7	723	
IS-390-H87-0022-24H	DISEÑO DE MEZOLA DE CONCRETO INI KylonZ	04/05/2019	1905/2019	24	351		10.17	812	1868.0	20.3		16.0	
315-960-H57-8023-24H	DISEÑO DE MEZOLA DE CONCRETO 350 Nyum2	04652019	16/05/2019	24	361		10:16	81.1	1821.0	22.6	ē .		
05-050 H67-0024-24H	DISSÃO DE VEZOLA DE CONGRETO 350 kg/cm2	04/05/2019	85/05/2019	24	358		10-17	81.2	1769.0	21.6			-
DS-350 H57-6025-45H	DISEND DE MEZITA DE CONCRETO 356 Kgitar2	94/05/2019	06/05/2018	46	350		15 18	81.4	9985.G	73.6	9		
DIS-360 H67-000H-49H	DISENO DE MEZIDA DE COMORETO 350 Ngovi2	98050019	06/05/2015	48	358		18:17	81.2	9999 C	73.6			
DIS-390-HS7-8027-49H	DISEÑO DE MEZOLA DE COMORETO 360 Kg/km²	94/05/2019	06/05/2015	48	350		10:18	81.4	6000 G	23.7		73.9	2
DIS-350-H57-8028-48H	омейо ве мего, а ое сомолето 350 кулна	0406/2019	06/05/2019	49	350		10:17	61.2	60310 74.1				870
DIS-350 HS7-0039-48H	овейо ве мегода ое сомочето 350 курний	9405/2019	M/05/01/8	40	350		15.16	B1.1	6012-0	74.2	74.2		
DIS-350-H57-9930-48H	DISEÑO DE MEZOLA DE CONCRETO 350 RIGUEZ	9409/2019	16/05/2019	46	350		10 17	81.2	6035.0	74.3			
DIS-350-H57-0031-72H	DISEÑO DE MEZOLA DE COMORETO 350 Kgbm2	3405/2019	07/09/2019	72	350		10.17	81.5	10881.0	131.5			
DIS-356-H57-0030-77H	DISEÑO DE MEZOLA DE COMORETO 360 Kg/cm2	94059019	07/05/2015	72	398		10.16	81.1	10006.0	131.0	6		
DS-250-H57-0838-77H	DISEÑO DE MEZICIA DE COMQRETO 350 Kg/cm2	04052019	07/09/2819	72	350		10.18	81.6	10791 0	152.0		105.3	3
DIS-250-HS7 0034-72H	DISERO DE MEZQUA DE CONCRETO 350 Kg/cm2	94052019	07/95/2015	72	356		10 16	81.1	(0800.0	139.3		320	100
DIS-350-H57-0035-72H	DISEÑO DE MEZCUA DE CONCRETO 360 Hgóin2	\$406(2019	07/95/2919	72	350		10.15	50.1	10/13.0	182			
08-250-H57-0036-72H	DISORO DE MEZOLA DE CONORETO 350 Kgkm2	5405/2010	07/85/2819	72	350		10.16	81.1	10744.0	132.			
					D	etos Estadietis	aniantermontal points of a	Dates Estadisti		Dates Estadistic	and the second second		
OBSERVACIONES: PR	TOTEGIDO CON CUPADOR QUIMICO EUCOCURE					fi:	6	n.	6	n n	132.3		
				-	Ny Ma	21.8	2g:	739	Np Mn	122.5			
	TECHCO		96.5	ONDINO		Max	22.7	Max	74.3	Max	120.2		
1	No Emento Diaz Guterrez		Maragarita Boza	Olacchea	De	ov. Estandar	12	Decy. Extender	0.3	Desc Estandist	67		
30	IN EMICRO MAZ GODE POZ		marayansa buzi	MEDROD		Variance	1.1	Variança	8.1	Varianze	24		
_			1111	argarita Boza O	Contractor Inc.	ed Variación	1.00	Coef Vaneous	0.40	Coef, Verteción	0.50		

ANEXO N° 50 Gráfico resistencia concreta a 24.48.72 horas curado con curador químico

CUADRO Nº 05



Julio Emesto Diaz Gutierrez Margarita Boza Olaechea

ANEXO N° 51 Gráfico resistencia concreto a 24.48.72 horas curado con curador químico

GRAFICO Nº 07

Julio Ernesto Diaz Gutierrez

Margarita Boza Olaechea

Margarita Boza Olasches Margarita Boza Olasches MGENIERA CIVI. CIP 80500

ANEXO N° 52 Tipos de falla de testigos de concreto


Resistencia a la Compresión a 28 Días Falla Tipo 1.- Conos razonablemente bien formados en ambos extremos, fisuras a través de los cabezales de menos de 25 mm (1°).

Resistencia a la Compresión a 14 Días Feite Tipo 2 - Conos bien formados en un extremo, fisures verticales a través de los cabezales, cono no bien definido en el otro extremo.

Resistencia a la Compresión a 7 Días Falle Tipo 4.- Fractura diagonal sin fisuras a través de los extremos; golpee suavemente con un martillo para distinguir del Tipo 1.

Resistencia a la Compresión a 72 Horas Falla Tipo 3.- Fisuras verticales encolumnadas a través de ambos extremos, conos mai formados.

Resistencia a la Compresión a 48 horas Falla Tipo 5.- Fractures en los lados en las partes superior o inferior (ocurre comúnmente con cabezales no adheridos).

Resistencia a la Compresión a 24 horas Falla Tipo 6.- Similar a Tipo 5 pero extremo del cilindro es puntisgudo.

TECNICO

Julio Emesto Diaz Gutierrez

INGENIERO

Margarita Boza Olaechea

Marganta Voca Oleechea BIGENIERA CIVIL CIP. 80000

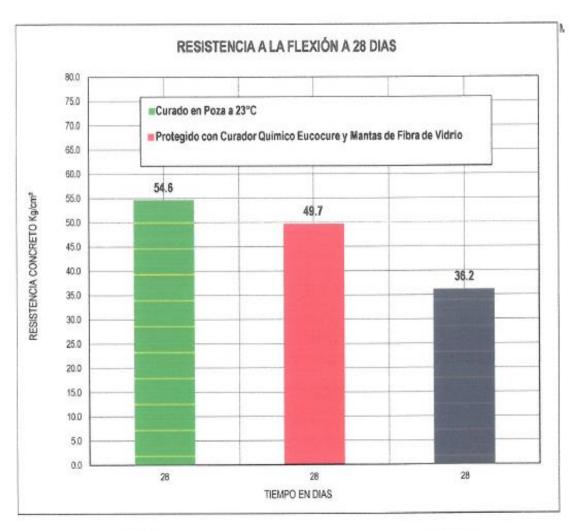
ANEXO N° 53 Ensayo de flexión vigas 28 días curadas en poza de agua a 23° C

RESISTENCIA A LA FLEXION DEL CONCRETO EN VIGAS SIMPLEMENTE **APOYADAS** CON CARGAS A LOS TERCIOS DEL TRAMO - NORMA MTC E 709 PROMEDIO Viga 5 Viga 1 Viga 2 Viga 3 Viga 4 Identificacion de Vigas 04/05/2019 04/05/2019 04/05/2019 04/05/2019 04/05/2019 Fecha de Toma 01/06/2019 01/06/2019 01/06/2019 01/06/2019 01/08/2019 Fecha de Ensayo 28 28 28 Tiempo de Curado (dias) 350 350 350 350 350 F'c Diseño a/c 0.40 21/2" 21/2" 21/2" 21/2" 21/2" Asentamiento Pavimento Pavimento Pavimento Tipo de Elemento Vaciado Pavimento Pavimento 151.2 150.1 151.2 150.6 150.3 Altura (d) Dimensiones 150.9 149.8 150.2 150.6 150.7 Ancho (b) 450 450 450 450 450 Largo (I) 4.4 Volumen $\sigma_{ij}\sigma_{ij}$ ++ ** 40 +.+ Area Peso Peso Unitario --4,4 2,0 -,-40.5 39.7 41.1 40.6 42.3 39 Carga en Kn 5.1 5.4 5.2 5.5 5.4 5.6 Modulo de Ruptura 56.8 52.3 54.6 55.0 53.0 56.1 Carga en Kg/cm2 Observaciones: CURADO EN POZA A TEMPERATURA 23°C. **Datos Estadisticos** n Min Max 56.8 Desv. Estandar 1.9 Applications of the second of Varianza Coef. Variación TECNICO INGENIERO Julio Ernesto Diaz Gutierrez Margarita Boza Olaechea

ANEXO N° 54 Ensayo de flexión vigas 28 días con curador químico y protegidos con mantas de lana de fibra de vidrio

	CON CARG	AS A LOS T	ERCIOS D	ELTRAMO	- NORMA	MTC E 709		
Identificacio	n de Vigas	Viga 6	Viga 7	Viga 8	Viga 9	Viga 10	PROMEDIO	
Fecha de		04/05/2019	04/05/2019	04/05/2019	04/05/2019	04/05/2019		
Fecha de	Ensayo	01/06/2019	01/06/2019	01/06/2019	01/06/2019	01/06/2019		
Tiempo de Ci	N 101501 101	28	28	28	28	28		
F'c Diseñ		350	350	350	350	350		
Asentar	miento	2 3/4 *	2 3/4 *	2 3/4 *	2 3/4 *	2 3/4 *		
Tipo de Eleme	ento Vaciado	Pavimento	Pavimento	Pavimento	Pavimento	Pavimento		
	Altura (d)	151.1	150.2	151.1	150.3	150.2		
Dimensiones	Ancho (b)	150.8	150.1	150.3	150.4	150.3		
	Largo (I)	450	450	450	450	450		
Volumen		97	**	51	55	0.95		
Area	Peso		*,*	v	5-	-,-		
Peso U	nitario	100	20	**	37	575		
Carga	en Kn	35.9	36.1	38.1	36.8	37.4	36.9	
Modulo de		4.7	4.8	5.0	4.9	5.0	4.9	
Carga en	Kg/cm2	48.0	49.0	51.5	49.6	50.5	49.7	
URADOR QUIMI					Datos	Estadisticos		
VMAIN C		Departo de Voca A IN DO			П		5	
± 1 inum row	orn J	4	Ť _		(p	49.7		
Copation before some an age of a FL Total Copation before some some some some some some some som					lin	48.0 51.5		
				Desv.	ax standar		13	
				Van	anza		1.8	
MARKET STREET,	1 mar (mar)	des de acción de como de	CHARLES VIII.	Coef. V	ariación		2.70	
	TECNICO					INGENIERO		
	esto Diaz Gutier				Marnarita	Boza Olaeche	00	

ANEXO Nº 55 Ensayo de flexión vigas 28 días curadas con curador químico



RESISTENCIA A LA FLEXION DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS CON CARGAS A LOS TERCIOS DEL TRAMO - NORMA MTC E 709 **PROMEDIO** Viga 13 Viga 14 Viga 15 Viga 11 Viga 12 Identificacion de Vigas 04/05/2019 04/05/2019 04/05/2019 04/05/2019 04/05/2019 Fecha de Toma 01/06/2019 01/06/2019 01/06/2019 01/06/2019 01/06/2019 Fecha de Ensayo 28 28 28 28 28 Tiempo de Curado (dias) 350 350 350 350 350 F'c Diseño a/c 0.40 23/4" 23/4" 23/4" 2 3/4" 23/4" Asentamiento Pavimento Pavimento Pavimento Pavimento Pavimento Tipo de Elemento Vaciado 150.8 150.9 150.9 150.7 151 Altura (d) 150.5 150.6 150.1 150.3 Dimensiones 150.6 Ancho (b) 450 450 450 450 450 Largo (I) Volumen Area Peso Peso Unitario 27.1 26.8 27.9 25.5 26.9 26.8 Carga en Kn 3.5 3.6 3.5 3.7 3.4 3.6 Modulo de Ruptura 36.4 36.1 37.5 34.6 36.4 36.2 Carga en Kg/cm2 **CURADOR QUIMICO EUCOCURE Datos Estadisticos** SIN PRETECCION n Χp 36.2 34.6 Min Max Common training more or an arrange of the color training of training Deşv. Estandar With a rest of the later test Varianza Coef. Variación INGENIERO TECNICO Julio Ernesto Diaz Gutierrez Margarita Boza Olaechea

ANEXO N° 56 Gráfico resistencia a la flexión de vigas a los 28 días

GRAFICO Nº 04

TECNICO INGENIERO

Julio Ernesto Díaz Gutierrez Margarita Boza Olaechea

ANEXO N° 57 Mantas de lana de fibra de vidrio

LANA DE VIDRIO UNITED INSULATION

La manta de Lana de Vidrio de United Insulation, es la solución ideal para el aislamiento térmico y acústico. La lana Vidrio de United Insulation tiene un gran número de pequeñas bolsas de aire, para desempeña el buen papel de aislamiento térmico, la absorción de sonido, la resistencia a la corrosión y el rendimiento químico estable. Este producto de Lana de vidrio con revestimiento y sin revestimiento son el mejor material para aplicaciones de aislamiento.

USOS

- Uso para la pared en separaciones del edificio de alto grado, como aislamiento térmico de equipos, homos industriales y electrodomésticos que trabajen hasta 250 °C.
- Instalado sobre cielomasos suspendidos y entre techos en posición horizontal o inclinadas sin cargas.
- Almacenes y Centros Comerciales.
- En drywall, silenciadores industriales y reducción de ruidos.

VENTALAS

- Ahorro de energia a largo plazo
- . Ligero y fádil
- Excelentes propledades térmicas
- Material incombustible
- · Propiedades químicas estables
- Excelente reducción del ruido acústico
- La humedad no le afecta
- No es atacado por pájaros, insectos y roedores
- Económico

PRESENTACION

DANK DE VIERRO	EMPLSON	AMEHU	LONGITUO	ANE A	DENISHBO
Sin Revestir	50 mm (2")	1,20	15,00	18	24
Sin Revestir	38 mm (1 %")	1,20	12,00	14.40	16
Cas Fail de Numitio	38 mm (1 %")	1,20	15,00	18	13

ANEXO N° 58 Solicitud de permiso para el uso del Laboratorio de Suelos y Materiales

"Año de la lucha contra la corrupción e impunidad"

SOLICITO PERMISO PARA EL USO DE LABORATORIO DE SUELOS Y MATERIALES

Lima, 20 de abril del 2019

LILA TAPIA NUÑES

JEFA DE LABORATORIO

Presente.

YO, Villafuerte Salas Hugo Enrique alumno de la facultad de ingeniería civil decimo ciclo con el código 6700279092, celular 991804668 y correo electrónico <u>hugovillafuerte2003@hotmail.com</u>, ante Ud. ma presento respetuosamente y le solicito permiso para usar el laboratorio de mecánica de suelos y materiales para realizar mi estudio de muestras de agregados para mi trabajo de CONCRETO EN CLIMAS FRIOS EN PAVIMENTOS RIGIDOS,2019 del curso de desarrollo del proyecto de investigación al mismo tiempo nos facilite el juego de tamices desde el 1º hasta el tamiz Nº 200 y equipos par hacer ensayos de Pesos Unitarios, gravedad específica, abrasión ensayos de compresión y flexión.

En espera de su autorización solicitada quedo de Ud.

Atentamente

VILLAFUERTE SLAS HUGO ENRIQUE

DNI: 09879254

CORREO.hugovillafuerte2003@hotmail.com