

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Evaluación del desempeño sismorresistente del Colegio Matemático Honores usando el análisis estático no lineal del distrito de Los Olivos, Lima-Perú 2017

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniera Civil

AUTORA:

Br. Quesada Carrillo, Flor Carina

ASESOR:

Mg. Ríos Díaz, Orlando Hugo

LÍNEA DE INVESTIGACIÓN:

Diseño sísmico y estructural

LIMA - PERÚ

2018

Página del jurado

ACTA DE APROBACIÓN DE LA TESIS

Código: F06-PP-PR-02.02

Versión: 09

Fecha : 23-03-2018 Página : 1 de 1

El Jurado encargado de evaluar la tesis presentada por Flor Carina Quesada Carrillo cuyo título es: "Evaluación del desempeño sismorresistente del colegio Matemático Honores usando el análisis estático no lineal del distrito de Los Olivos, Lima – Perú 2017"

Lima, 19 de Julio de 2018

MG. MARQUINA CALLACNA, RODOLFO

PRESIDENTE

MG. ARRIOLA MOSCOSO, CECILIA

SECRETARIA

MG. RÍOS DÍAZ, ORLANDO HUGO

VOCAL

Elaboró	Dirección de Investigación	Revisó	Responsable de SGC	Aprobó	Vicerrectorado de Investigación
---------	-------------------------------	--------	--------------------	--------	------------------------------------

Dedicatoria

A dios, por permitirme terminar mi tesis. A mis papás y hermanos por haberme apoyado en todo momento de manera incondicional, siendo mi motivo de seguir luchando y llegar a cumplir mi objetivo.

Agradecimiento

A mis papás y hermanos que estuvieron conmigo en el desarrollo de mi tesis, apoyándome y dándome fuerzas para seguir y lograr mi objetivo con éxito.

Declaratoria de autenticidad

Declaratoria de Originalidad del Autor

Yo, QUESADA CARRILLO, Flor Carina estudiante de la Facultad de Ingeniería y Escuela Profesional de Ingeniería Civil de la Universidad César Vallejo sede Lima Norte, declaro bajo juramento que todos los datos e información que acompañan al Informe de Investigación titulado:

"Evaluación del desempeño sismorresistente del colegio Matemático Honores usando el análisis estático no lineal del distrito de Los Olivos, Lima – Perú 2017", es de mi autoría, por lo tanto, declaro que la Tesis:

- No ha sido plagiado ni total, ni parcialmente.
- He mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- No ha sido publicado ni presentado anteriormente para la obtención de otro grado académico o título profesional.
- Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Lima 19 de julio de 2018

Apellidos y Nombres del Autor QUESADA CARRILLO, Flor Carina	
DNI: 47108485	Firma
ORCID: https://orcid.org/0000-0001-8049-1927	Finter Out

Índice	Pág.
Carátula	i
Página del jurado	ii
Dedicatoria	iii
Agradecimiento	iv
Declaratoria de autenticidad	V
Índice	vi
Índice de tablas	X
Índice de figuras	xi
Resumen	xiii
Abstract	xiv
I. INTRODUCCIÓN	15
1.1. Realidad problemática	16
1.2. Trabajos previos	17
1.2.1. Antecedentes internacionales	17
1.2.2. Antecedentes nacionales	23
1.3. Teorías relacionadas al tema	26
1.3.1. Desempeño Sismorresistente	26
1.3.2. Análisis estático no lineal	27
1.3.2.1. Curva de capacidad	28
1.3.2.2. Conversión de la curva de capacidad a un	28
espectro de capacidad	
1.3.2.3. Representación bilineal del espectro de	29
capacidad	
1.3.2.4. Curva de demanda	31
1.3.2.5. Punto de desempeño	33
1.3.3. Norma técnica E-030 "Diseño Sismorresistente"	34
1.3.3.1. Peligro sísmico	34
1.3.3.2. Perfil de suelo	35
1.3.3.3. Parámetros de sitio	36
1.3.3.4. Factor de amplificación sísmica (c)	36
1.3.3.5. Parámetros de sitio (S, Tp y TL)	36

1.3.4. Categoría de las edificaciones y factor de uso (U)	37
1.4. Formulación del Problema	40
1.4.1. Problema general	40
1.4.2. Problemas específicos	40
1.5. Justificación del estudio	41
1.5.1. Justificación social	41
1.5.2. Justificación económica	42
1.6. Hipótesis	42
1.6.1. Hipótesis general	42
1.6.2. Hipótesis específica	42
1.7. Objetivos	43
1.7.1. Objetivo general	43
1.7.2. Objetivos específicos	44
II. MÉTODO	45
2.1. Diseño de la investigación	46
2.1.1. Tipo de investigación	46
2.1.2. Nivel de investigación	47
2.2. Variables, operacionalización	47
2.3. Población y muestra	48
2.3.1. Población	48
2.3.2. Muestra	48
2.3.3. Diseño muestral	48
2.4. Técnicas e instrumentos de recolección de datos, validez y	48
confiabilidad	
2.4.1. Técnicas de recolección de datos	48
2.4.2. Instrumentos de recolección de datos	49
2.4.3. Validez del instrumento	49
2.4.4. Confiabilidad	49
2.5. Método de análisis de datos	50
2.6. Aspectos éticos	50
III. RESULTADOS	51
3.1. Definición del proyecto	52
3.1.1 Localización	52

3.1.2. Descripcion arquitectonica dei proyecto	53
3.2. Análisis del diseño sísmico	54
3.2.1. Normas técnicas empleadas	54
3.2.2. Metrado de cargas	54
3.2.3. Parámetros sísmicos	56
3.2.4. Cálculo del espectro de demanda	58
3.3. Modelo estructural adoptado	61
3.3.1. Análisis modal de la estructura	63
3.3.2. Análisis dinámico	64
3.3.3. Desplazamientos y distorsiones	65
3.3.4. Memoria de cálculo	66
3.3.5. Introducción gráfica de cargas al SAP2000	66
3.3.6. Diseño en concreto armado	67
3.4. Elaboración de la curva de capacidad	71
3.4.1. Conversión de la curva de capacidad a un espectro de	73
capacidad	
3.5. Obtención del espectro de demanda	75
3.5.1. Conversión del espectro sísmico norma peruana E-030	75
en un espectro de demanda según cada nivel de daño de la	
norma ATC-40	
3.6. Intersección del espectro de demanda Vs. el espectro de	78
capacidad	
3.7. Nivel de desempeño de la estructura	79
3.7.1. Seccionamiento del espectro de capacidad según	79
VISIÓN 2000	
3.7.2. Respuesta del edificio ante los sismos	84
3.8. Análisis	86
3.9. Matriz de desempeño	88
IV. DISCUSIÓN	89
4.1. Discusión	90
V. CONCLUSIONES	97
Conclusiones	98
VI. RECOMENDACIONES	99

VIII. ANEXOS	105
Referencias	102
VII. REFERENCIAS	101
Recomendaciones	100

Índice de tablas

Tabla Nº 1: Factores de zona "Z"	35
Tabla Nº 2: Factores de suelo "S"	35
Tabla Nº 3: Factores de suelo "T _p y T _{l"}	36
Tabla Nº 4: Categoría de las edificaciones y factor "U"	37
Tabla Nº 5: Peso de los elementos estructurales	55
Tabla Nº 6: Factor de zona	56
Tabla Nº 7: Factor de suelo	57
Tabla Nº 8: Periodos	67
Tabla Nº 9: Calculo de espectros de sismo en X-X y Y-Y	60
Tabla Nº 10: Modos, periodos de vibración	63
Tabla Nº 11: Fuerzas cortantes en la base Vx, Vy del análisis dinámico	64
Tabla Nº 12: Análisis estático	65
Tabla Nº 13: Escalados	65
Tabla Nº 14: Deriva en dirección Y	66
Tabla Nº 15: Deriva en dirección X	66
Tabla Nº 16: Espectro de respuesta de desplazamiento espectral Vs.	73
Aceleración espectral en dirección X	
Tabla Nº 17: Espectro de respuesta de desplazamiento espectral Vs.	74
Aceleración espectral en dirección Y	
Tabla Nº 18: Parámetros para definir niveles sísmicos	76
Tabla Nº 19: Espectro sísmico de aceleraciones	76
Tabla Nº 20: Datos del espectro de demanda	77
Tabla Nº 21: Parámetros utilizados para el seccionamiento	79
Tabla Nº 22: Matriz de desempeño ATC-40	89

Índice de figuras

Figura Nº 1: Proceso del análisis estático no lineal "Pushover" según	27
FEMA 356	
Figura Nº 2: Esquema del método pushover	28
Figura Nº 3: Conversión de la curva de capacidad a un espectro de	29
capacidad	
Figura Nº 4: Representación bilineal del espectro de capacidad	30
Figura Nº 5: Criterio de áreas iguales	30
Figura Nº 6: Interacción del factor de amplificación sísmica (C) según	31
el periodo	
Figura Nº 7: Aplicación de la aceleración espectral según el tipo de	32
suelo	
Figura Nº 8: Forma del espectro de aceleración Norma E-030	32
Figura Nº 9: Espectro de demanda	33
Figura Nº 10: Zona sísmica	34
Figura Nº 11: Planta del proyecto piso 1	53
Figura Nº 12: Zonas	56
Figura Nº 13: Cálculo y gráfico del espectro de sismo de diseño (Sa)	59
en el eje X:	
Figura Nº 14: Cálculo y gráfico del espectro de sismo de diseño (Sa)	59
en el eje Y:	
Figura Nº 15: Esquema de las columnas	61
Figura № 16: Esquema viga	61
Figura Nº 17: Esquema Iosa	62
Figura Nº 18: Modo 1	63
Figura Nº 19: Modo 2	64
Figura Nº 20: Cargas	67
Figura Nº 21: Esquema de las secciones de las columnas	67
Figura № 22: Curva de columnas	68
Figura Nº 23: Diagrama de columnas	68
Figura Nº 24: Esquema de las secciones de las viga	69
Figura Nº 25: Diagrama de fuerzas axiales	69

Figura Nº 26: Diagrama de fuerzas cortante	70
Figura Nº 27: Diagrama de momento flector	70
Figura Nº 28: Rotulas que se presentan en el eje X	71
Figura Nº 29: Curva de capacidad – dirección X	72
Figura Nº 30: Curva de capacidad – dirección Y	72
Figura Nº 31: Espectro de capacidad en dirección X	74
Figura Nº 32: Espectro de capacidad en dirección Y	75
Figura Nº 33: Espectro de demanda según el nivel de daño	78
Figura Nº 34: Intersección en la dirección X – espectro de capacidad	78
Vs. espectro de demanda	
Figura Nº 35: Intersección en la dirección Y – espectro de capacidad	79
Vs. espectro de demanda	
Figura Nº 36: Criterio de áreas	80
Figura Nº 37: Criterio de áreas en la dirección X	82
Figura Nº 38: Criterio de áreas en la dirección Y	82
Figura Nº 39: Seccionamiento en la dirección X en el espectro de	84
capacidad	
Figura Nº 40: Seccionamiento en la dirección Y en el espectro de	84
capacidad	
Figura Nº 41: Nivel y punto de desempeño en la dirección X	85
Figura Nº 42: Nivel y punto de desempeño en la dirección Y	86
Figura Nº 43: Nivel y punto de desempeño para el sismo de servicio	87
Figura Nº 44: Nivel y punto de desempeño para el sismo de diseño	88
Figura Nº 45: Nivel y punto de desempeño para el sismo máximo	89

Resumen

El tema de la presente investigación esta abordada específicamente en la Evaluación del Desempeño Sismorresistente de la estructura del colegio Matemático Honores en el distrito de Los Olivos, para ello se aplicará el análisis estático no lineal o también llamado "Pushover". Por ello se plantea en la hipótesis que a partir de los criterios estipulados en la norma ATC-40 se realizara una evaluación del desempeño sismorresistente con el objetivo del no daño estructural y del no colapso de la estructura, saber si el punto de desempeño conseguido gracias al espectro de capacidad y espectro de demanda encontrado con la norma E-030 se encuentran dentro del rango de desempeño determinado según el código de la norma ATC-40.

El método que se utilizó en la investigación es de tipo aplicada, así mismo se considera un nivel correlacional, la investigación se destaca por ser de diseño no experimental debido a que no se realiza la manipulación de ninguna variable. La población de estudio que se tomó en cuenta viene a ser los 18 colegios particulares de la Urbanización Panamericana Norte del distrito de los Olivos, de lo cual se tomó como muestra el colegio Matemático Honores, del cual tomamos todos los datos que se requiere para llegar al objetivo. Para el proceso de los datos conseguidos se ejecutó mediante el uso del software SAP2000 v20.0.0, los resultados obtenidos darán a conocer el desempeño que mostrara la estructura durante un evento sísmico.

Palabras claves: Evaluación sismorresistente, Desempeño, Análisis estático no lineal – Pushover.

Abstract

The subject of the present investigation is specifically addressed in the Seismic Resistant Performance Evaluation of the structure of the Honors Mathematics school in the district of Los Olivos, for this will be applied the nonlinear static analysis or also called "Pushover". Therefore, the hypothesis is that, based on the criteria stipulated in the ATC-40 norm, an evaluation of the earthquake performance will be carried out with the objective of not structural damage and the non-collapse of the structure, to know if the point performance obtained thanks the spectrum of capacity and spectrum of demand found with the E-030 norm are within the range determined according to the code of the norm ATC-40.

The method used in the research is of the applied type, it is also considered a correlational level, the research stands out because it is of non-experimental design because no manipulation of the variable is performed. The study population that was taken into account well to be the 18 private schools of the Pan-American Urbanization North of the Olivos district, from which the Honors Mathematical School was taken, from which we take all the data that is required to reach the target. For the process of the obtained data was executed by means of the use of software SAP2000 v20.0.0, the results obtained will reveal the performance of the structure analyzed during a seismic event.

Keywords: Seismic Resistant Evaluation, Performance, Nonlinear Static Analysis - Pushover.

Acta de aprobación de originalidad de tesis

ACTA DE APROBACIÓN DE ORIGINALIDAD DE TESIS

Código : F06-PP-PR-02.02 Versión : 09

Fecha : 23-03-2018 Página : 1 de 1

Yo, **RÍOS DÍAZ**, **Orlando Hugo**, docente de la Facultad de Ingeniería y Escuela Profesional de Ingeniería Civil de la Universidad César Vallejo, Lima Norte (precisar filial o sede), revisor(a) de la tesis titulada

"EVALUACIÓN DEL DESEMPEÑO SISMORRESISTENTE DEL COLEGIO MATEMÁTICO HONORES USANDO EL ANÁLISIS ESTÁTICO NO LINEAL DEL DISTRITO DE LOS OLIVOS, LIMA-PERÚ 2017"

del (de la) estudiante QUESADA CARRILLO, Flor Carina, constato que la investigación tiene un índice de similitud de 25 % verificable en el reporte de originalidad del programa Turnitin.

El/la suscrito (a) analizó dicho reporte y concluyó que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

Lugar y fecha Los Olivos 19 de julio del 2018

Firma

Nombres y apellidos del (de la) docente:

Mg. RÍOS DÍAZ, Orlando Hugo

DNI: 09748089

Elaboró	Dirección de Investigación	Revisó	Responsable de SGC	Aprobó	Vicerrectorado de Investigación
---------	-------------------------------	--------	--------------------	--------	------------------------------------