FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL

Implementación de un plan de mantenimiento preventivo para mejorar la productividad en la empresa Agroindustria Santa María SAC, Independencia, 2019

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Industrial

AUTORES:

Cajas Ambrocio, Walter Saúl (ORCID: 0000-0002-0315-8925) Del Águila Paredes, Ántero de Jesús (ORCID: 0000-0002-3914-4517)

ASESORA:

Mg. Egúsquiza Rodríguez, Margarita Jesús (ORCID: 0000-0001-9734-0244)

LÍNEA DE INVESTIGACIÓN:

Gestión Empresarial y Productiva

LIMA - PERÚ

2019

DEDICATORIA

A Dios por darnos el don de la vida, guiarnos en este camino y brindarnos salud.

> La presente tesis está dedicada a mis hijos Ayleem y Anthony, mi esposa Jessica por brindarme su amor y fortaleza.

Dedicado a nuestros compañeros, a pesar de las dificultades de la vida, llegaron hasta el final contra todo pronóstico.

AGRADECIMIENTO

Agradecemos a Dios todo poderoso, a la Universidad César Vallejo por ser parte de nuestro desarrollo personal y profesional; a mi asesora Mgtr. Margarita Egúsquiza Rodríguez por su apoyo constante y compartir sus conocimientos para desarrollar una tesis.

A nuestros padres, familia que nos dieron todo el apoyo, para continuar y ser los profesionales que con mucho cariño y amor desearon para nosotros.

DECLARATORIA DE AUTENTICIDAD

Yo, Walter Saul CAJAS AMBROCIO identificado con DNI N.º 42900855, Antero de Jesús DEL ÁGUILA PAREDES identificado con Nº DNI: 44372105, a efecto de cumplir con las disposiciones vigentes consideradas en el Reglamento de Grados y Títulos de la Universidad César Vallejo, Facultad de Ingeniería, Escuela de Ingeniería Industrial, declaro bajo juramento que toda la documentación que acompaño es veraz y auténtica.

Así mismo, declaro también bajo juramento que todos los datos e información que se pre-

senta en la presente tesis son auténticos y veraces.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada por lo cual me someto a lo dispuesto en las normas académicas de la Universidad César Vallejo.

Lima, diciembre del 2019.

FIRMA

DNI: 44372105

FIRMA

DNI: 42900855

ÍNDICE

Dedicatoria.	ii
Agradecimi	entoiii
Página del J	uradoiv
Declaratori	a de Autenticidadv
Índice	vi
RESUMEN	xvi
ABSTRAC	Γ xviii
I. INTRO	DUCCIÓN 1
1.1. Re	alidad Problemática
1.2. Tra	abajos Previos
1.3. Te	orías relacionadas al tema
1.3.1.	Teorías relacionadas a variable dependiente: Productividad
1.3.2.	Teorías relacionadas a variable independiente: Mantenimiento
1.4. Fo	rmulación del problema
1.4.1.	Problema General
1.4.2.	Problemas Específicos
1.5. Jus	stificación del estudio
1.6. Hi	pótesis
1.6.1.	Hipótesis General
1.6.2.	Hipótesis Específicos
1.7. Ob	jetivos de la Investigación
1.7.1.	Objetivo General
1.7.2.	Objetivos Específicos
II. MÉT	ODO
2.1 Tip	po y diseño de investigación
2.1.1	Tipo de investigación
2.2 Va	riables y operacionalización
2.2.1	Variable independiente: Mantenimiento preventivo
2.2.2	Variable dependiente: Productividad

2.3	Pob	plación y muestra	40
2.3	3.1	Criterios de selección	40
2.4	Téc	enicas e instrumentos de recolección de datos, validez y confiabilidad	40
2.4	4.1	Técnicas	40
2.4	4.2	Instrumentos	40
2.4	4.3	Validez	42
2.4	4.4	Confiabilidad	43
2.5	Mé	todos de análisis de datos	43
2.6	Asp	pectos éticos	43
2.7	Des	sarrollo de la propuesta	43
2.7	7.1	Descripción de la empresa	43
2.7	7.2	Base legal	44
2.7	7.3	Plataforma estratégica.	45
2.7	7.4	Objeto de estudio	48
2.7	7.5	Pre-test	59
2.7	7.6	Propuesta de mejora	74
2.7	7.6.2 (Cronograma de la implementación de la mejora	78
2.7	7.7	Ejecución de la propuesta	80
2.7	7.7	Resultados de la implementación	92
2.7	7.9 Ar	nálisis económico financiero	. 109
III. RE	ESUL	ΓADOS	. 118
3.1 A	Anális	is descriptivo	. 119
3.1	1.1 Va	ariable independiente: Mantenimiento preventivo	. 119
3.1	1.2. V	ariable dependiente: Productividad	121
3.2	Análi	sis inferencial	124
3.2	2.1 Aı	nálisis de la hipótesis general	. 124
	2.2	Hipótesis Específicas	
IV.	DISC	USIÓN	131
V.		ICLUSIONES	134
VI	REC	OMENDACIONES	136

REFERENCIAS	138
ANEXOS	142

ÍNDICE DE TABLAS

Tabla 1. Causas que afectan a la productividad mayo - junio 2019	7
Tabla 2. Matriz de correlación de problemas	. 10
Tabla 3. Cuadro de tabulación de datos	. 11
Tabla 4. Estratificación de las causas por áreas	. 13
Tabla 5. Puntuación de la estratificación de las causas por áreas	. 13
Tabla 6. Alternativas de solución	. 15
Tabla 7. Herramientas de solución	. 15
Tabla 8. Grado de valoración	. 15
Tabla 9. Matriz de priorización con las causas a resolver	. 16
Tabla 10. Matriz de Coherencia	. 35
Tabla 11. Matriz de operacionalización de las variables	. 39
Tabla 12. Ficha de reporte de producción	. 41
Tabla 13. Indicador de medición de productividad	. 41
Tabla 14. Ficha de fallas	. 42
Tabla 15. Indicador de medición de mantenimiento	. 42
Tabla 16. Máquinas del proceso de molienda y tamizado	. 51
Tabla 17. Capacidad de la planta	. 56
Tabla 18. Horas de paradas de máquinas por semana en el mes de abril	. 59
Tabla 19. Historial de paradas no programadas de máquinas en molienda y tamizado ma	.yo
y junio	. 60
Tabla 20. Historial de frecuencias de paradas no programadas de mayo y junio del 2019.	. 61
Tabla 21. Horas de paradas de máquinas por semana en el mes de mayo	. 62
Tabla 22. Horas de paradas de máquinas por semana en el mes de junio	. 62
Tabla 23. Historial de producción del mes de mayo	. 64
Tabla 24. Historial de producción del mes de junio	. 65
Tabla 25. Eficiencia actual del proceso de molinería y tamizado a partir de horas máqui	ina.
	. 66
Tabla 26. Eficacia actual del proceso de molienda y tamizado	. 67
Tabla 27. Productividad actual del proceso de molinería y tamizado	. 68
Tabla 28. Indicadores de productividad de los equipos de molienda y tamizado	. 69
Tabla 29. Disponibilidad de las máquinas	. 69
Tabla 30. Confiabilidad de las máquinas	. 70

Tabla 31. Indicadores de mantenimiento	70
Tabla 32. Índice de disponibilidad y confiabilidad actual	71
Tabla 33. Fallas constantes en un mismo equipo de los meses mayo y junio	72
Tabla 34. Cantidad de paradas no programadas de mayo y junio del 2019	73
Tabla 35. Alternativas de solución para las principales causas	75
Tabla 36. Diagrama de Gantt del plan de mantenimiento preventivo	77
Tabla 37. Diagrama de Gantt del plan de mantenimiento preventivo	78
Tabla 38. Recursos utilizados durante la investigación	79
Tabla 39. Presupuesto de la investigación	80
Tabla 40. Ficha de fallas en las máquinas de molienda y tamizado	82
Tabla 41. Código de proceso	83
Tabla 42. Código por ser máquina/equipo	83
Tabla 43. Codificación de máquinas	83
Tabla 44. Inventario de máquinas del proceso de molienda y tamizado	84
Tabla 45. Ficha técnica de los bancos de molienda	85
Tabla 46. Creación de un plan de mantenimiento preventivo Trimestral	86
Tabla 47. Creación de un plan de mantenimiento preventivo semestral	86
Tabla 48. Creación de un plan de mantenimiento preventivo anual	87
Tabla 49. Procedimientos de engrase	88
Tabla 50. Requerimiento de materiales	89
Tabla 51. Costo de producción mes de mayo pre-test 2019	91
Tabla 52. Costo de producción del mes de junio pre-test 2019	92
Tabla 53. Promedio costo de un kilogramo de producción pre-test	92
Tabla 54. Historial de producción del mes de setiembre	93
Tabla 55. Historial de producción del mes de octubre	94
Tabla 56. Historial de paradas no programadas de setiembre y octubre de molienda y	
tamizado pos-test	95
Tabla 57. Historial de paradas no programadas de septiembre y octubre del 2019	95
Tabla 58. Horas de paradas del mes de setiembre	97
Tabla 59. Horas de paradas del mes de octubre	97
Tabla 60. Eficiencia en el proceso de molienda y tamizado a partir de horas máquina	98
Tabla 61. Eficacia en el proceso de molienda y tamizado	99
Tabla 62. Productividad en el proceso de molienda y tamizado	. 100

Tabla 63. Confiabilidad en el proceso de molienda y tamizado	102
Tabla 64 Disponibilidad en las máquinas en el proceso de molienda y tamizado	103
Tabla 65 Indicadores de mantenimiento preventivo en el proceso de molienda y ta	mizado
	104
Tabla 66. Resumen del porcentaje de la mejora del pre-test y el post-test	
Tabla 67. Costo de producción del mes de setiembre post-test 2019	107
Tabla 68. Costo de producción del mes de octubre post-test 2019	108
Tabla 69. Promedio costo de un kilogramo de producción pos-test	108
Tabla 70. Costos de implementación de mantenimiento preventivo	109
Tabla 71. Costo de recursos humanos para el mantenimiento preventivo	110
Tabla 72. Presupuesto total de la implementación	110
Tabla 73. Costos de sostenimiento de Mantenimiento Preventivo	110
Tabla 74. Margen de contribución del mes de mayo 2019	111
Tabla 75. Margen de contribución del mes de junio 2019	112
Tabla 76. Margen de contribución del mes de setiembre	113
Tabla 77. Margen de contribución del mes de octubre	114
Tabla 78. Cálculo del margen de contribución	115
Tabla 79. Datos previos para el cálculo del VAN Y TIR	116
Tabla 80. Cálculo de Valor Actual Neto(VAN) y la Tasa Interna de Retorno(TIR)	116
Tabla 81. Confiabilidad antes y después de la implementación del manteni	miento
preventivo	119
Tabla 82. Disponibilidad antes y después de la implementación del manten	imiento
preventivo	120
Tabla 83. Eficiencia antes y después de la implementación del mantenimiento pre-	ventivo
	121
Tabla 84. Eficacia antes y después de la implementación del mantenimiento prevent	ivo 122
Tabla 85. Productividad antes y después de la implementación del manten	imiento
preventivo	123
Tabla 86. Tipos de muestra	124
Tabla 87. Prueba de normalidad de la productividad	124
Tabla 88. Criterio de selección del estadígrafo	125
Tabla 89. Contrastación de la hipótesis general con la prueba T-Student	
Tabla 90. Prueba de normalidad de la eficiencia antes y después	126

Γabla 91. Contrastación de la hipótesis específica de eficiencia con la prueba de T-S		
	127	
Tabla 92. Prueba de normalidad dimensión de la eficacia	128	
Tabla 93. Criterio de selección del estadígrafo	128	
Tabla 94. Contrastación de la hipótesis específica de eficacia con la prueba	Wilconxon 129	
Tabla 95. Análisis de significancia de eficiencia con Wilconxon	129	

ÍNDICEDE FIGURAS

Figura 1. Oferta y demanda de cereales	2
Figura 2. Producción, utilización y existencias de cereales.	3
Figura 3. Producción, consumo y stocks finales de trigo a nivel mundial	3
Figura 4. Importación de harina de trigo 2018.	4
Figura 5. Importación de harina de trigo por empresas peruanas los demás 2018	5
Figura 6. Importación de trigo 2018.	5
Figura 7. Situación actual de la empresa en el segundo trimestre del año 2019	7
Figura 8. Diagrama de Ishikawa en el proceso de molinería Agroindustria Santa María	
SAC	8
Figura 9. Diagrama de Flujo del proceso de molinería	9
Figura 10. Diagrama de Pareto.	12
Figura 11. Matriz de estratificación.	. 14
Figura 12. Ubicación de la empresa agroindustria Santa María SAC.	. 45
Figura 13. Logo de la empresa agroindustria Santa María SAC.	. 46
Figura 14. Organigrama de la empresa Agroindustria Santa María SAC	. 47
Figura 15. Diagrama de flujo del objeto de estudio.	. 49
Figura 16. DOP del proceso de molinería (Niebel y Freivalds, 2014).	50
Figura 17. Bancos de molienda en el proceso de molienda y tamizado.	52
Figura 18. Esquema de simbología de plancifter en proceso de molienda y tamizado	53
Figura 19. Pasajes de seis salidas del plancifter	53
Figura 20. Diagrama de pasajes de seis salidas de un plancifter	. 54
Figura 21. Sasor de molienda y tamizado.	. 54
Figura 22. Terminadora de harina en proceso de molienda y tamizado.	. 54
Figura 23. Pulidora de trigo.	55
Figura 24. Estructura de mangas de filtro.	55
Figura 25. Mangas de filtro parte interna.	55
Figura 26. Diagrama de flujo en la etapa de trituración de trigo.	57
Figura 27. Diagrama de flujo en la etapa de reducción y compresión de trigo	58
Figura 28. Número de paradas por semana en mes de abril	59
Figura 29. % de motivos de paradas de los meses de mayo y junio	. 61
Figura 30. Paradas por semana en mes de mayo.	. 62
Figura 31. Paradas por semana en mes de junio.	63

Figura 32. DOP del proceso de mantenimiento correctivo	63
Figura 33. Producción del mes de mayo.	65
Figura 34. Producción del mes de junio.	66
Figura 35. Producción actual de Agroindustria Santa María SAC.	68
Figura 36. Indicadores de mantenimiento correctivo pre test	71
Figura 37. % de motivo de paradas no programadas de los meses de mayo y junio	74
Figura 38. DOP del proceso de Mantenimiento Preventivo	76
Figura 39. Diapositiva de sensibilización.	81
Figura 40. Orden de trabajo	89
Figura 41. Inducción del personal en el plan de mantenimiento preventivo	90
Figura 42. Producción del mes de setiembre	94
Figura 43. Producción del mes de octubre	95
Figura 44. % de motivo de paradas no programadas de los meses de setiembre y oc	ctubre.
	96
Figura 45. Paradas del mes de setiembre	97
Figura 46. Paradas del mes de octubre	98
Figura 47. Resumen de eficiencia antes y después en el proceso de molienda y tam	iizado.
	99
Figura 48 . Resumen de eficacia antes y después del proceso de molienda y tamizado	100
Figura 49. Resumen de productividad antes y después en el proceso de molienda y	
tamizado.	101
Figura 50. Productividad del proceso de molienda y tamizado.	101
Figura 51. Resumen de confiabilidad antes y después en el proceso de molienda y	
tamizado de harina de trigo.	102
Figura 52. Resumen de disponibilidad antes y después en el proceso de molienda y	
tamizado.	103
Figura 53. Indicador de mantenimiento preventivo en proceso de molienda y tamizado	do. 105
Figura 54. Resumen general de las dimensiones.	106
Figura 55. Costo de producción por kilogramo de harina inicial y final	109
Figura 56. Confiabilidad antes y después.	119
Figura 57. Disponibilidad antes y después.	120
Figura 58. Eficiencia antes y después	121
Figura 59. Eficacia antes y después	122

Figura 60. Productividad antes y después	3
--	---

RESUMEN

El presente desarrollo del proyecto de investigación, es realizado bajo la particularidad de tesis, de manera que implementar el plan de mantenimiento preventivo mejora la productividad en el proceso de molienda y tamizado de la empresa Agroindustria Santa María SAC., Independencia, 2019.

El modelo usado pertenece a un estudio del tipo aplicado, con un enfoque cuantitativo. Asimismo, su nivel es explicativo, porque busca aclarar las causas y sus efectos de implementar un plan de mantenimiento preventivo en el proceso de molienda y tamizado de harina de trigo. Del mismo modo su diseño es cuasi experimental.

Justificado ya que el problema principal de la empresa Agroindustria Santa María SAC., en el proceso de molienda y tamizado de harina de trigo se centra en la baja productividad, la población analizada será la productividad en periodos comprendidos de nueve semanas, esta será medida antes y después de la implementación de un plan de mantenimiento preventivo y los resultados de la productividad en toneladas de harina. Por consiguiente, la investigación es de diseño cuasi experimental porque la muestra será igual que la población.

Como se nombra líneas arriba el problema principal de la presente investigación es la baja productividad en el proceso de molienda y tamizado de harina de trigo en la empresa Agroindustria Santa María SAC., por diversos factores, los más destacados son la planificación inadecuada para realizar el plan de mantenimiento, paradas no programadas de las máquinas y equipos, múltiples fallas de un mismo equipo, personal técnico carece de capacitaciones, y el exceso de tiempos al realizar el mantenimiento correctivo.

Los resultados obtenidos en la presente investigación comprueban que la muestra analizada es significativa y por ende la productividad en el proceso de molienda y tamizado de harina de trigo en la empresa Agroindustria Santa María SAC., aumento en 20.25%, debido a que se implementó el plan de mantenimiento preventivo.

Al final, se acepta la hipótesis de la investigación con una significancia de la prueba de normalidad 0.000, demostrando que los datos ingresados provienen de una muestra representativa. Por consiguiente, se valida el aumento de la productividad en el proceso de molienda y tamizado de harina de trigo en la empresa Agroindustria Santa María SAC., en consecuencia, de haber implementado el plan de mantenimiento preventivo.

Palabras clave: Mantenimiento Preventivo, productividad, eficiencia, eficacia, disponibilidad, confiabilidad.

ABSTRACT

The present development of the research project is carried out under the particularity of thesis, so that implementing the preventive maintenance plan improves productivity in the milling and screening process of the company Agroindustria Santa María SAC., Independencia, 2019.

The model used belongs to a study of the applied type, with a quantitative approach. Likewise, its level is explanatory, because it seeks to clarify the causes and effects of implementing a preventive maintenance plan in the wheat flour milling and screening process. In the same way, its design is quasi experimental.

Justified since the main problem of the company Agroindustria Santa María SAC., In the process of milling and sieving wheat flour focuses on low productivity, the population analyzed will be productivity in periods of nine weeks, this will be measured before and after the implementation of a preventive maintenance plan and the productivity results in tons of flour. Consequently, the research is of quasi-experimental design because the sample will be the same as the population.

As mentioned above, the main problem of this research is the low productivity in the wheat flour milling and sieving process in the company Agroindustria Santa María SAC. Due to various factors, the most prominent are the inadequate planning for carry out the maintenance plan, unscheduled shutdowns of the machines and equipment, multiple failures of the same equipment, technical personnel lacks training, and excess times when performing corrective maintenance.

The results obtained in this research prove that the analyzed sample is significant and therefore the productivity in the wheat flour milling and sieving process in the company Agroindustria Santa María SAC., Increase in 20.25%, due to the implementation of the preventive maintenance plan.

In the end, the research hypothesis is accepted with a significance of the normality test 0.000, showing that the data entered comes from a representative sample. Consequently, the increase in productivity in the wheat flour milling and sieving process is validated at the Agroindustria Santa María SAC company. Consequently, having implemented the preventive maintenance plan.

Keywords: Preventive maintenance, productivity, efficiency, effectiveness, availability, reliability.

ACTA DE APROBACIÓN DE ORIGINALIDAD DE TESIS

Código: F06-PP-PR-02.02

Versión : 10

Fecha : 10-06-2019

Página : 1 de 1

Yo, EGUZQUIZA RODRIGUEZ, Margarita Jesús, Docente asesor de tesis de la EP de Ingeniería Industrial de la Universidad Cesar Vallejo, Lima Norte, revisor(a) de la Tesis Titulada: "Implementación de un plan de mantenimiento preventivo para mejorar la productividad en la empresa Agroindustria Santa María SAC, Independencia,2019, de los estudiantes CAJAS AMBROCIO, Walter Saúl y DEL ÁGUILA PAREDES, Antero de Jesús; constato que la investigación tiene un índice de similitud de 16 % verificable en el reporte de originalidad del programa Túrnitin.

El suscrito analizó dicho reporte y concluyó que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad

MGJR. EGUZQUKA RODRIGUEZ, MARGARITA JESÚS

EP Ingenieria Industrial

Elaboró	Dirección de Investigación	Revisó	Representante de la Dirección / Vicerrectorado de Investigación y Calidad	Aprobó	Rectorado
---------	-------------------------------	--------	---	--------	-----------