FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Viabilidad de la construcción del pavimento rígido utilizando concreto reciclado en la Avenida Pachacútec, Villa el Salvador – 2019

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTORES:

Aguilar Espinoza, Yonathan Smith (ORCID: 0000-0002-0895-9131)

Perez Ayala, Juan Fernando (ORCID: 0000-0002-7204-2125)

ASESORES:

Dr. Arriola Prieto, Cesar Teodoro (ORCID: 0000-0002-8091-6873)

Dra. Garcia Alvarez, Maria Ysabel (ORCID: 0000-0001-8529-878X)

Mg. Paccha Rufasto, Cesar Augusto, (ORCID: 0000-0003-2085-3046)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LIMA – PERÚ

2019

DEDICATORIA

El presente trabajo lo dedico a mis padres, Ynes Espinoza Fernandez y Abdon Aguilar Quinto, quienes siempre me han brindado su apoyo incondicional, a través de sus consejos y motivaciones para seguir perseverando, aun en los momentos más difíciles de mi vida universitaria.

Yonathan A.

Dedico este trabajo de investigación a mis padres Victoria Ayala Arias y Juan Perez Camargo. Gracias a su apoyo y consejos fueron fundamentales para concluir exitosamente mi formación profesional.

Fernando P.

AGRADECIMIENTO

En primer lugar, agradezco a Dios, quien siempre me acompaña, brindándome salud y bienestar. En segundo lugar, agradezco a mis padres, Ynes Espinoza Fernandez y Abdon Aguilar Quinto y a mis familiares, quienes siempre me han apoyado a lo largo de mi vida universitaria, motivándome en las buenas y en las malas. Finalmente, agradezco a cada uno de mis docentes y asesores, quienes gracias a su enseñanza y buena disposición han hecho posible desarrollo dela presente investigación.

Yonathan A.

En primera instancia agradezco a mis padres Victoria Ayala Arias y Juan Perez Camargo por darme aliento cuando más lo necesite en mi formación profesional y en segunda instancia agradezco todos los catedráticos y profesionales de la carrera de ingeniería civil quienes nos guiaron en el proceso de desarrollo de esta investigación,

Fernando P.

PÁGINA DEL JURADO

PÁGINA DEL JURADO

DECLARATORIA DE AUTENTICIDAD

Nosotros, Yonathan Smith Aguilar Espinoza con DNI N°48066952 y Juan Fernando Perez

Ayala con DNI N °72497722, egresados de la Facultad Ingeniería y Arquitectura y Escuela

Profesional de Ingeniería Civil de la Universidad César Vallejo Sede Lima Este, declaramos

bajo juramento que todos los datos e información que acompañan a la tesis titulado

"Viabilidad de la construcción del pavimento rígido utilizando concreto reciclado en la

Avenida Pachacútec, Villa el Salvador - 2019", es de es de nuestra autoría. Así mismo,

declaramos que la tesis:

No ha sido plagiado ni total, ni parcialmente.

2. He mencionado todas las fuentes empleadas, identificando correctamente toda cita

textual o de paráfrasis proveniente de otras fuentes.

3. No ha sido publicado ni presentado anteriormente para la obtención de otro grado

académico o título profesional.

4. Los datos presentados en los resultados no han sido falseados, ni duplicados, ni

copiados.

En tal sentido, asumimos la responsabilidad que corresponda ante cualquier falsedad,

ocultamiento u omisión, tanto de los documentos como de la información aportada; por lo

cual, nos sometemos a lo dispuesto en las normas académicas vigentes de la Universidad

César Vallejo.

Lima, San Juan de Lurigancho, 12 de Julio del 2019

Yonathan Smith Aguilar Espinoza

DNI: 48066952

Juan Fernando Perez Ayala

DNI: 72497722

vi

PRESENTACIÓN

Señores miembros del jurado:

En cumplimiento con las disposiciones del reglamento de grados y títulos de la Universidad

César Vallejo; presentamos ante ustedes la tesis titulada "Viabilidad de la construcción del

pavimento rígido utilizando concreto reciclado en la Avenida Pachacútec, Villa el Salvador

- 2019". La misma que dejamos a vuestra consideración esperando cumplir con los

requisitos de aprobación para obtener el título profesional de Ingeniería Civil.

Lima, San Juan de Lurigancho, 12 de Julio del 2019

Yonathan Smith Aguilar Espinoza

DNI: 48066952

Juan Fernando Perez Ayala

DNI: 72497722

ÍNDICE

Carátula	i
Dedicatoria	ii
Agradecimiento	iii
Página del Jurado	iv
Declaratoria de Autenticidad	vi
Índice	viii
Índice de figuras	ix
Índice de tablas	xi
RESUMEN	xiii
ABSTRACT	xiv
I. INTRODUCCIÓN	1
II. MÉTODO	42
2.1 Diseño de investigación	43
2.2 Operacionalización de variables	45
2.3 Población, muestra y muestreo	48
2.4 Técnicas e instrumentos de recolección de datos, validez y confiabilidad	49
2.5 Procedimiento	51
2.6 Métodos de análisis de datos	52
2.7 Aspectos éticos	52
III. RESULTADOS	53
IV. DISCUSIÓN	93
V. CONCLUSIONES	96
VI. RECOMENDACIONES	98
REFERENCIAS	100
ANEXOS	104

ÍNDICE DE FIGURAS

Figura 1. Porcentaje de agregados reciclados en el uso total de agregados	. 2
Figura 2. Mejoramiento: Avenidas Los Héroes y Pachacútec	. 4
Figura 3. Toma de núcleos en pavimento rígido	11
Figura 4. Máquina de ensayo de abrasión Los Ángeles	12
Figura 5. Clasificación y manejo de los residuos de la actividad de la construcción	13
Figura 6. Opciones de aprovechamiento de los residuos de la construcción	14
Figura 7. Proceso de producción de los agregados de concreto reciclado	15
Figura 8. Esquema de planta de procesamiento de agregados reciclados	16
Figura 9. Limites granulométricos del agregado grueso para el diseño de concretos	17
Figura 10. Peso mínimo de la muestra de ensayo	18
Figura 11. Cantidad de mortero adherido según el tipo de resistencia	22
Figura 12. Tipos de cementos de acuerdo con la ASTM C150	23
Figura 13. Distribución granulométrica de agregados finos	23
Figura 14. Requisitos de calidad del agua	24
Figura 15. Procedimiento para el diseño de mezcla	26
Figura 16. Sección transversal típico de un pavimento rígido	28
Figura 17. Molde para determinar el asentamiento	29
Figura 18. Asentamientos recomendados según los tipos de proceso constructivo	30
Figura 19. Asentamientos recomendados según los tipos de edificaciones	30
Figura 20. Esquema de equipo para ensayo de resistencia a la flexión	31
Figura 21. Esquema de equipo para ensayo de resistencia a la compresión	32
Figura 22. Esquema para la elaboración del presupuesto de un proyecto	34
Figura 23. Formato de análisis de costo unitario	35
Figura 24. Formato general de presentación de un presupuesto	36
Figura 25. Clasificación de los residuos sólidos	37
Figura 26. Ciclo de manejo de los residuos sólidos de construcción	38
Figura 27. Resistencia mecánica o dureza de los agregados gruesos	55
Figura 28. Curva de análisis granulométrico de los agregados naturales	56
Figura 29. Curva de análisis granulométrico de los agregados reciclados	57
Figura 30. Peso específico de los agregados gruesos	58

Figura 31.Porcentaje de absorción de los agregados gruesos	59
Figura 32.Porcentaje de humedad de los agregados gruesos	60
Figura 33. Peso unitario suelto de los agregados gruesos	61
Figura 34. Peso unitario compactado de los agregados gruesos	62
Figura 35. Tipos de diseño de mezcla	64
Figura 36. Temperatura de vaciado del concreto según los tipos de diseño de mezcla	67
Figura 37. Asentamiento (Slump) según los tipos de diseño de mezcla	68
Figura 38. Resumen de las resistencias promedio a la compresión del concreto f´c = 3 kg/cm2 a los 7 días, según el tipo de diseño de mezcla	
Figura 39. Resistencias promedio a la compresión del concreto f´c = 350 kg/cm2 a los días, según el tipo de diseño de mezcla	
Figura 40. Resistencia promedio a la compresión del concreto f'c = 350 kg/cm2 a los días, según el tipo de diseño de mezcla	
Figura 41. Resistencias promedio a la compresión del concreto vs tiempo de curado, seg el tipo de diseño de mezcla	-
Figura 42. Resistencias promedio a flexo tracción del concreto, según los tipos de diseño mezcla	
Figura 43. Costo directo de la partida eliminación convencional de demoliciones	76
Figura 44. Costo directo de la partida eliminación de demoliciones a planta recicladora	76
Figura 45. Costos directos de las partidas eliminación de demoliciones	77
Figura 46. Costo directo de la partida concreto f'c = 350 kg/cm2 con agregado grueso natu	
Figura 47. Costo directo de la partida concreto f'c = 350 kg/cm2 con agregado grue reciclado	eso 78
Figura 48. Costos directos de las partidas concreto f'c = 350 kg/cm2 para pavimentos rígio	
Figura 49. Presupuesto de la construcción de pavimento rígido utilizando agregados grues	
Figura 50. Presupuesto de la construcción de pavimento rígido utilizando agregados grues de concreto reciclado	
Figura 51. Presupuesto de la construcción del pavimento rígido	82
Figura 52. Manejo de residuos de construcción y demolición	83

ÍNDICE DE TABLAS

Tabla 1. Operacionalización, variable: Concreto reciclado	7
Tabla 2.Operacionalización, variable: Viabilidad de la construcción de pavimento rígido 4	7
Tabla 3.Tramos del proyecto en estudio	8
Tabla 4. Población del estudio de investigación	8
Tabla 5. Muestra del estudio de investigación	9
Tabla 6. Confiabilidad de los instrumentos	1
Tabla 7. Resistencia del concreto primario extraído por ensayo de diamantina54	4
Tabla 8. Resistencia mecánica o dureza de los agregados gruesos	4
Tabla 9. Análisis granulométrico de los agregados gruesos naturales	5
Tabla 10. Análisis granulométricos de los agregados gruesos reciclados	5
Tabla 11. Peso específico de los agregados gruesos	7
Tabla 12. Porcentaje de absorción de los agregados gruesos	8
Tabla 13. Porcentaje de humedad de los agregados gruesos	9
Tabla 14. Peso unitario suelto de los agregados gruesos	C
Tabla 15. Peso unitario compactado de los agregados gruesos	1
Tabla 16. Cantidad de mortero adherido en los agregados grueso reciclados	2
Tabla 17. Resumen de las propiedades físicas de los agregados	3
Tabla 18. Dosificación del diseño de mezcla 1	4
Tabla 19. Dosificación del diseño de mezcla 2	5
Tabla 20. Dosificación del diseño de mezcla 3	5
Tabla 21. Dosificación del diseño de mezcla 4	5
Tabla 22. Dosificación del diseño de mezcla 5	5
Tabla 23. Temperatura de vaciado del concreto según los tipos de diseño de mezcla 67	7
Tabla 24. Asentamiento (slump) según los tipos de diseño de mezcla	8
Tabla 25. Resistencia a la compresión del concreto con diseño de mezcla 2	9
Tabla 26. Resistencia a la compresión del concreto con diseño de mezcla 369	9
Tabla 27. Resistencia a la compresión del concreto con diseño de mezcla 4	О
Tabla 28. Resistencia a la compresión del concreto con diseño de mezcla 5	О
Tabla 29. Resistencia promedio a la compresión del concreto f´c = 350 kg/cm2 a los 7 días según el tipo de diseño de mezcla	

Tabla 30. Resistencia promedio a la compresión del concreto f´c = 350 kg/cm2 a los 14 días, según el tipo de diseño de mezcla72
Tabla 31. Resistencia promedio a la compresión del concreto f´c = 350 kg/cm2 a los 28 días, según el tipo de diseño de mezcla
Tabla 32. Resistencias promedio a la compresión del concreto vs tiempo de curado, según el tipo de diseño de mezcla
Tabla 33. Resistencias a flexo tracción del concreto, según los tipos de diseño de mezcla 75
Tabla 34. Manejo de Residuos de Construcción y Demolición
Tabla 35. Temperatura de vaciado del concreto según los tipos de diseños de mezcla 84
Tabla 36. Asentamiento según los tipos de diseño de mezcla
Tabla 37. Prueba de normalidad de las resistencias a la compresión según las dosificaciones
Tabla 38. Prueba de normalidad de las resistencias a la compresión
Tabla 39. Análisis de varianza ANOVA para la resistencia promedio a la compresión 87
Tabla 40. Prueba de las comparaciones múltiples de las resistencias a la compresión 88
Tabla 41. Subconjuntos homogéneos de las resistencias promedio a la compresión del concreto
Tabla 42. Análisis de varianza ANOVA para la resistencia promedio a flexo tracción 90

RESUMEN

La presente investigación tiene como objetivo determinar la influencia del uso de concreto

reciclado en la viabilidad de la construcción del pavimento de la Avenida Pachacútec en el

distrito de Villa el Salvador.

Para el desarrollo de este trabajo se empleó el método científico, con un enfoque cuantitativo

de tipo aplicada y un diseño cuasi experimental. Donde la población estuvo conformada por

el pavimento rígido del Tramo IV (Av.26 de noviembre - Av. Lima) del Proyecto de

mejoramiento de la infraestructura vial y peatonal de la Av. Los Héroes – Av. Pachacútec.

De la cual, se tomó como muestra para el análisis, 1km del tramo de la vía en el sentido de

norte a sur. La recolección de datos se llevó a cabo bajo la técnica de la observación para lo

cual se tuvo como instrumento las fichas técnicas de laboratorio, las mismas que antes de su

aplicación fueron validadas por dos ingenieros expertos de la carrera y un metodólogo.

Posteriormente, con los datos recolectados se procedió al análisis de resultados mediante los

softwares, Excel para las tablas y gráficos comparativos y SPSS Versión 23 para análisis de

varianza ANOVA.

Luego del análisis y contrastación de las hipótesis la conclusión final a la que se llego fue

que el uso de concreto reciclado no influye significativamente en la viabilidad de la

construcción del pavimento rígido. Siempre y cuando los agregados reciclados no se

incorporen en la mezcla de concreto para pavimento rígido hasta más del 20% de los

agregados gruesos totales.

Palabras clave: Viabilidad, construcción, pavimento rígido y concreto reciclado.

xiii

ABSTRACT

The objective of this research is to determine the influence of the use of recycled concrete

on the viability of pavement construction on Pachacutec Avenue in the Villa El Salvador

district.

The scientific method was used for the development of this work, with a quantitative

approach of applied type and a quasi-experimental design. Where the population was formed

by the rigid pavement of Section IV (Av. November 26 - Av. Lima) of the Improvement

Project of the road and pedestrian infrastructure of Av. Los Heroes - Av. Pachacutec. Of

which, 1km of the section of the road in the direction from north to south was taken as a

sample for the analysis. The data collection was carried out under the observation technique

for which the laboratory data sheets were used as instruments, the same ones that were

validated by two expert career engineers and a methodologist before their application.

Subsequently, with the data collected, the results were analyzed using softwares, Excel for

comparative tables and graphs and SPSS Version 23 for ANOVA analysis of variance.

After the analysis and contrast of the hypotheses, the final conclusion reached was that the

use of recycled concrete does not significantly influence the viability of the rigid pavement

construction. Provided that recycled aggregates are not incorporated into the rigid pavement

concrete mix up to more than 20% of the total coarse aggregates.

Keywords: Feasibility, construction, rigid pavement and recycled concrete.

xiv

A lo largo de la historia se sabe que la civilización romana, desde los años 312 a.C., fue una de las culturas que tuvo un mayor desarrollo en la construcción de redes viales. Donde en ese entonces estos servían como un medio de mayor control ya sea de forma demográfica, política, cultural o económica, lo cual les permitió gobernar su imperio durante siglos. Dado la gran importancia que resultaba tener un sistema vial, los romanos fueron incorporando diversos materiales a sus calzadas (primer tipo de pavimento de la historia) para mejorar la resistencia a las cargas de éstos. Por lo que, ya desde esas épocas se vienen explotando los recursos naturales para fines de este uso (agregados); ya que, resultaba la forma más viable y razonable pero hoy en día en muchos países desarrollados ya no se les considera así, debido a que los recursos naturales cada vez son más escasos a causa de su sobre explotación. Este suceso ha conllevado a buscar nuevas alternativas en la adquisición de recursos para la construcción de las carreteras, encontrando para ello una solución en el reciclaje de los Residuos de Construcción y Demolición (RCD) para su procesamiento y reutilización como agregados. Así tenemos, a países como Alemania, Suiza, Bélgica, Holanda y el Reino Unido como los principales usuarios de este tipo de material para sus construcciones (Cement Sustainability Initiative, 2009, p. 26).

Figura 1. Porcentaje de agregados reciclados en el uso total de agregados

Fuente: Cement Sustainability Initiative, 2009, p. 26

Del mismo modo, sin ir tan lejos en Brasil, Colombia y México también se viene teniendo buenos avances en la cultura del reciclaje y reutilización de los agregados producidos a partir de los residuos de los RCD, teniendo inclusive implementadas algunas normativas. De forma similar, aunque de manera insipiente, en Perú también se cuenta con la Norma Técnica Peruana NTP 400.050 (2017), cuyos representantes mencionan que en el caso de que los RCD sean aprovechados para la construcción de losas de concreto. Estos residuos deben provenir de la demolición de otras losas o de demoliciones de edificios cuyos materiales deben ser previamente seleccionadas.

Por otro lado, también a nivel nacional, los representantes de la empresa (MP RECICLA SAC, 2019), actualmente la única dedicada al reciclaje y reutilización de los RCD, sostienen "que el sector de la construcción depreda aproximadamente la mitad de los recursos naturales y a la vez produce la mitad de los residuos generados en el mundo". El Perú no está exento a esta problemática, ya que la mayoría de los RCD son tirados a los espacios públicos y rellenos sanitarios que en su mayoría no cuentan con un adecuado manejo medio ambiental. A esto también se suma la sobreexplotación en las canteras de agregados, tal es el caso de la Cantera Gloria que actualmente ya no produce más agregados y viene lotizando sus terrenos. En este sentido, la empresa CICLO viene trabajando desde el año 2016 para dar soluciones a un adecuado manejo del reciclaje de los RCD, con el fin de procesarlos como agregados y transformarlos en nuevos materiales eco amigables, ya sea en la producción de bloques de ladrillos o simplemente como agregados para la producción de nuevos concretos.

A nivel local, Lima y sus distritos como es el caso de Villa el Salvador tampoco son ajenos a la problemática de no tener una adecuada gestión para el manejo de sus RCD. Tal como se puede observar en la mayoría de sus calles donde a diario se tiran desmontes de concreto procedentes de las demoliciones de las viviendas y pistas. A consecuencia de un mal manejo medio ambiental de los desperdicios en las obras de mantenimientos y rehabilitaciones viales y domiciliarios.

Dado el problema del mal manejo de los residuos de construcción y de la sobreexplotación de las canteras y en vista de que se seguirán mejorando y construyendo más pavimentos. Como es el caso del Proyecto de construcción de la Avenida los Héroes y Pachacútec que beneficiaran a más de 625 mil personas, con un tramo de 12.5 km entre el puente Atocongo

(San Juan de Miraflores) y la Avenida Lima (Villa el Salvador) dando una total de 200,000 m2 de pavimentación, utilizando como materia prima el concreto de las cuales actualmente aproximadamente ya sean han pavimentado el 60% (El Comercio, 2019). Resulta un tema de interés, analizar la viabilidad del uso de los RCD en la producción de concreto; ya que, implica beneficios técnicos, económicos y ambientales. Sobre todo, en proyectos de gran envergadura como el de la Avenida Pachacútec donde se requerirá grandes cantidades de concreto.

Figura 2. Mejoramiento: Avenidas Los Héroes y Pachacútec

Fuente: El Comercio, 2019

El desarrollo de esta investigación se complementará con otros trabajos previos, así a nivel internacional tenemos las siguientes investigaciones:

En Colombia Ospina, Moreno y Rodríguez (2017) en su investigación titulada *Análisis* técnico - económico del uso de concreto reciclado y el concreto convencional en Colombia. Buscó incorporar materiales no convencionales como los Residuos de Construcción y Demolición (RCD) en el diseño de nuevos concretos. Para este estudio tuvo en cuenta el método de investigación de tipo cuantitativa buscando evaluar la viabilidad económica y técnica, de los agregados reciclados. Donde se concluyó que los áridos de concreto reciclado presentan menores valores de coeficiente de forma, densidad y desgaste a comparación de

los agregados naturales. En cuanto a la evaluación técnica de la resistencia a la flexión, compresión y tensión del concreto producido con el reemplazo del 100% agregados naturales por agregados reciclados se encontró que no resultan viables debido a que los valores de dichas resistencias fueron menores a los concretos con agregados naturales. Pero también se encontró que si solo se reemplaza el 30% de los agregados naturales por los reciclados se puede obtener mejores resultados técnicos en las resistencias de compresión, flexión y tensión del nuevo concreto garantizándose para distintas aplicaciones. En cuanto a la evaluación económica se encontró que el concreto producido con agregados reciclados presentan un costo mayor en comparación con el concreto convencional. Pero esto no es una razón para descartar su uso ya que, si se tiene en cuenta que los costos ambientales no son considerados por los productores de concreto y si por la sociedad, entonces desde este punto de vista si resulta viable el uso de los agregados de concreto reciclado.

En Colombia Gallo y Posada (2017) en su investigación titulada *Diseño de un pavimento en concreto poroso con adicción de agregados de concreto reciclado para la construcción de un modelo a escala*. Buscó el diseño de pavimento rígido poroso por el método mecanicista tras realizar una cantidad de modelos a escala construidos empleando agregado reciclado producto de la trituración de losas de concreto. Para lo cual, realizó ensayos de resistencia a la compresión, ensayo de resistencia a flexo tracción y ensayo de permeabilidad en un numero de mezclas con distintas variaciones de porcentaje de concreto reciclado en testigos cilíndricas y tipo vigueta. Este estudio se desarrolló bajo una metodología experimental del tipo explicativo. Concluyéndose que el concreto poroso producido con sustitución del 25% de agregado natural por el agregado reciclado presento mayor resistencia a la compresión en comparación de los concretos producidos con un reemplazo de hasta el 50% y 100% de áridos naturales por áridos reciclados. Así mismo, también se encontró que los mejores resultados de módulos de rotura (Mr) se obtuvo en los pavimentos de concreto porosos compuestos por agregados puramente naturales.

En Colombia Castellanos, Rivera y Roa (2017) en su investigación titulada *Comparación* estructural y estimación de costos de la utilización de concreto con agregados naturales y concreto con residuos de construcción y demolición (R.C.D.) como agregado. Realizó una comparación teórica de las estructuras y costos de un edifico con regularidad en planta y de 5 pisos altura, construida a base de concreto convencional y de concreto con RCD. Donde a

partir de una comparación de costos, se concluyó que la diferencia presupuesto de la edificación a base de concreto convencional y de concreto con RCD es del 0.97% a favor de este último. Lo cual si bien es cierto no es significativo económicamente, pero si se tiene en cuenta el aspecto ambiental si hay grandes beneficios por la cantidad de RCD reutilizados y la cantidad de recursos naturales conservados. Además, esto es en caso de producción de concreto estructural donde la cantidad de RCD incorporados se limita por los aspectos técnicos que deben cumplir los áridos reciclados, pero si se usaran para aplicaciones no estructurales los beneficios serían mayores.

En Ecuador Arias y Pro (2017) en su investigación titulada Propiedades físico – mecánicas del hormigón elaborado con áridos reciclados. Evaluó la durabilidad y las propiedades mecánicas del concreto producido con agregados reciclados. Donde se obtuvo como resultados que tanto para un concreto con 70% agregado natural (AN) y 30% de agregado de concreto reciclado (ACR) como para un concreto con 50% de AN y 50% de ACR los asentamientos en comparación con un concreto convencional (100% de AN) disminuyeron hasta en un 6.25%, esto debido a que los áridos reciclados poseen mayor capacidad de absorción. Así mismo, en cuanto a las propiedades mecánicas se encontró que los esfuerzos a compresión de los concretos reciclados en comparación con los convencionales suelen ser muy elevadas desde edades tempranas, tal como ocurrió a los 7 días con los concretos con una sustitución del 30% y 50% de AN por ACR, donde se obtuvo resistencias del 84% al 93% de su esfuerzo final. Mientras que para los esfuerzos a flexión las variaciones suelen ser más moderadas, tal como sucedió con los concretos obtenidos con la dosificación del 50% de AN y 50% de ACR, donde se obtuvo que la resistencia a flexión disminuyo en 6.7% de la resistencia a flexión del concreto convencional. De todos los ensayos, se concluyó que si es posible producir concretos reciclados con propiedades físicas y mecánicas similares a las convencionales teniendo en cuenta que sus resistencias mecánicas finales pueden variar en menos 20% siempre que se cumpla que la sustitución de agregados naturales por agregados reciclados no supere los 30%. Pero si se desea mejorar aún más la similitud de las propiedades mecánicas finales de estos dos tipos de concreto también se puede contemplar el uso de aditivos en las dosificaciones. Por otro lado, ambientalmente la conclusión para el uso de los agregados reciclados también es positiva teniendo en cuenta la cantidad de recursos naturales que se pueden conservar y la producción acumulación diaria de residuos de concreto.

En España Laserna (2015) en su tesis doctoral titulada *Avances en el comportamiento del hormigón reciclado: Fabricación, propiedades mecánicas y simulación numérica*. Realizó estudios para lograr una adecuada dosificación y resistencia en la producción de concreto con áridos reciclados y de esta manera adaptarlas a las técnicas comunes del concreto convencional. Los estudios se realizaron por medio del método cuasi – experimental. Concluyéndose que para el diseño de mezcla con agregados reciclados se debe realizar algunas consideraciones especiales como el cálculo de porcentaje de agua efectiva para lograr la hidratación del cemento y obtener resultados similares de resistencia y consistencia; así mismo, se debe tener un especial cuidado en la determinación del porcentaje de humedad. Es importante tener en cuenta estas consideraciones para poder realizar comparaciones de concretos convencionales y con agregados reciclados. Así se obtuvo como principal resultado que las propiedades de resistencia a compresión permanecen casi invariables hasta un reemplazo del 50% de agregados naturales por los reciclados.

De forma similar a nivel nacional tenemos las siguientes investigaciones:

Alarcón (2018) en su investigación titulada Estudio del comportamiento del concreto de alta resistencia f'c = 420 kg/cm2 elaborados con agregados reciclados. Estudió el comportamiento de concretos de resistencia alta elaborados con agregados de concreto reciclado, provenientes de pavimentos rígidos. Para lo cual, primero realizó la caracterización de las propiedades mecánicas y físicas de los áridos reciclados y luego se procedió a determinar las resistencias a la compresión de testigos de concretos realizados con estos. Este estudio se desarrolló bajo un diseño de investigación experimental. Con lo cual, obtuvo resultados de resistencias a la compresión de 5 diseños propuestos con diferentes adiciones de agregados reciclados y con el uso de aditivo súper plastificante. El primero diseño fue el concreto patrón con agregados naturales que alcanzaron resistencias de 429.82 kg/cm2; el segundo fue concreto con áridos naturales y aditivo Sikament-290N donde obtuvo una resistencia de 447.82 kg/cm2; el tercero fue el concreto con 10% de árido reciclado incorporado más aditivo Sikament-290N ,obteniendo una resistencia de 451.61 kg/cm2; el cuarto fue el concreto con 20% de árido reciclado incorporado aditivo Sikament-290N con una resistencia de 443.19 kg/cm2 y el quinto fue un concreto con 30% de árido reciclado alcanzó una resistencia de 428.80 kg/cm2. Donde se concluyó que los diseño de concreto 2,3 y 4 en comparación con el diseño 1 (concreto patrón) están por encimas del porcentaje de resistencia mientras que el diseño 5 se ubica por debajo de la resistencia del concreto patrón en un 0.24%. Pero este valor aún sigue cumpliendo con la resistencia de diseño, lo cual quiere decir que se pueden producir concretos de alta resistencia con adición de aditivos, con resultados muy favorables.

Coila (2018) en su trabajo de investigación titulado Producción de concretos ecológicos y su desarrollo sostenible en la ciudad de puno. Analizó la manera cómo influye la elaboración de concretos no convencionales en la sostenibilidad de la ciudad Puno, en comparación de sus canteras. Para ello, determinó las propiedades físicas y mecánicas de concretos reciclados con los convencionales para finalmente establecer una relación beneficio – costo de la producción de ambos concretos. Esto bajo una investigación con metodología de enfoque cuantitativo y nivel correlacional. Donde se concluyó que la producción de concretos no convencionales resulta sostenible para conservar los recursos naturales; puesto que, en la obra "Mejoramiento del Jr. Rómulo Diaz Dianderas del barrio Huáscar de la ciudad de Puno, Provincia de Puno – Puno", donde se aplicó este estudio, se disminuyó la extracción de agregados de la cantera de 347m3 a 221.71m3 el cual representa una conservación del 36.17% de agregados naturales. En cuanto a las propiedades mecánicas se concluyó que son similares para los concretos ecológicos no convencionales y convencionales donde con un reemplazo del 10% de agregados reciclados de pavimento por agregados naturales para un diseño patrón de f'c=175 kg/cm2 se obtuvo una resistencia de f'c=200.87 kg/cm2. Por último, en la relación de beneficio – costo se encontró que el proyecto original con el uso de concretos convencionales resulta más viable económicamente a comparación del proyecto con el uso de concreto con agregados reciclados.

Rengifo (2017) en su trabajo de investigación titulada *Influencia de la calidad del concreto reciclado, en la resistencia de un pavimento rígido, Jr. Sargento Lores, distrito Morales – San Martín – 2017*. Evaluó las propiedades mecánicas, químicas y físicas de los agregados provenientes de concreto reciclado de pavimento rígido, también determinó las resistencias a la compresión axial del concreto elaborados con dichos agregados para diseñar un pavimento rígido. Este estudio se desarrolló bajo un diseño de investigación experimental de tipo pre – experimental. Donde para la caracterización de los agregados gruesos reciclados encontró como principales resultados que no cumplen con la granulometría

especificada en la NTP 400. 037. Así mismo al someter estos agregados al ensayo de desgaste por abrasión se obtuvo un 67.5% estando este valor por debajo del óptimo. Donde los resultados de resistencia a la compresión axial del concreto con agregados reciclados finos y gruesos con un reemplazo total de los agregados naturales se obtuvo un 41.82% de la resistencia esperada; mientras que, si solo se reemplaza la totalidad de los agregados finos manteniendo los agregados gruesos naturales si se logra un 136.41% de la resistencia de esperada. Con tales resultados, se concluyó que el uso de agregados de concreto reciclado influye de manera satisfactoria solo con la incorporación de estos como agregados finos mientras que como agregado grueso no cumplen los valores mínimos de diseño ya que sus resistencias no son óptimas técnicamente para el uso en pavimentos rígidos.

Sumari (2016) en su investigación titulado *Estudio del concreto de mediana a alta* resistencia elaborados con residuos de concreto y cemento portland tipo I. Estudió las propiedades mecánicas y físicas de los agregados reciclados (gruesos y finos), con material provenientes de concreto de varias construcciones de Lima; así mismo, evaluó las propiedades físicas y mecánicas del concreto en el estado fresco y endurecido. Donde se conoció que los agregados gruesos reciclados tienen una granulometría parecida al de los agregados naturales, pero con una disminución del 1% en su módulo de fineza; del mismo modo, su peso unitario suelto baja 11.3%, el peso unitario varillado en 10.5%, su peso específico en 10.9%; mientras que su absorción aumenta a un 867% y el desgaste a la abrasión a un 121%. Respecto a las propiedades de los concretos con agregados reciclados en comparación del concreto convencional, ambos con material cementante de 604, 508 y 445 kg/cm2, se concluyó que tienen una pérdida de resistencia a la compresión (f°c) a los 28 días de 9.7%, 7.3% y 2.7%.

Ruelas (2015) en su investigación titulada *Uso de pavimento rígido reciclado de la ciudad de Puno, como agregado grueso para la producción de concreto*. Evaluó las propiedades de los agregados reciclados obtenidos del reciclaje de pavimentos para conocer las características del concreto, en estado fresco y endurecido, elaborado a base de agregados reciclados. Luego analizó los precios de producción de un concreto tradicional con uno de concreto reciclado. Comparando las propiedades de los agregados reciclados y naturales se encontró que estos tienen similares características. Donde las propiedades de peso específico abrasión resultaron con valores deficientes. Y respecto a las propiedades en estado

endurecido se encontró que el concreto de 140 kg/cm2 de resistencia se puede usar hasta un 40% de agregado grueso reciclado en reemplazo de los agregados naturales. Pero para el resto de diseños de concreto de 245, 210 y 175 kg/cm2 en general se encontró que el uso de agregados reciclados brinda resultados satisfactorios solo hasta un reemplazo del 20% de agregados reciclados por los naturales. En cuanto a la comparación de costos se encontró que los áridos naturales son más baratos que los áridos reciclados, pero estos al ser analizados ambos en el precio unitario de un concreto para columna, el incremento de precio es despreciable. Por lo que, se concluyó que el uso de agregados reciclados en la producción de concretos es viable tanto técnicamente como económicamente hasta un 20% de incorporación.

Por otra parte, el desarrollo de esta investigación también se complementará con información de otros libros, las mismas que servirán para definir las principales variables de esta investigación.

El concreto reciclado es aquel concreto cuyos agregados provienen total o parcialmente de las arenas, gravas y gránulos reciclados a partir de los residuos de construcción y demolición (Decreto Supremo 003, 2013, Anexo 1).

Para obtener concretos reciclados óptimos, según Morales, Zamorano, Ruiz y Valverde (2011, p. 742-748), se debe tener en cuenta la calidad y caracterización de los agregados reciclados.

La calidad de los agregados de concreto reciclado, según Kou, Poon y Wan (2012, p. 881 - 889), se relacionan directamente con la resistencia de la roca madre y del concreto de donde provienen, es decir a mayor resistencia del concreto primario, mayor resistencia tendrán los agregados reciclados provenientes de este. Teniendo en cuenta esto, para la obtención de los Agregados Gruesos de Concreto Reciclado (en adelante AGCR), primero se deberá obtener la resistencia del concreto de donde provienen para luego determinar la resistencia mecánica de los agregados obtenidos. Por ello, en la NTP 400.050 (2017) se delimita la procedencia del concreto reciclado dependiendo del tipo de aplicación. Así mismo, de acuerdo a los representantes del comité del ACI 555 (2001, p. 19), en la calidad de los agregados reciclados también interviene el proceso de producción de estos.

La resistencia del concreto en estado endurecido (concreto primario), de acuerdo a los representantes del Ministerio de Transportes y Comunicaciones (2016, p. 814), se determina por medio del ensayo MTC E 707 - Toma de núcleos y vigas en concretos endurecidos.

Figura 3. Toma de núcleos en pavimento rígido

Fuente: Ministerio de Transportes y Comunicaciones, 2016, p. 0

En cuanto a la resistencia mecánica o dureza de los agregados reciclados. Braja (2014, p. 34) lo define como la capacidad de un material de soportar a la abrasión, desgaste y degradación de los agregados. Y según los representantes del Ministerio de Transportes y Comunicaciones (2016, p. 315), se determina mediante el ensayo del MTC E 207 - Abrasión Los Ángeles. Además de cumplir con los parametros de este ensayo, Rivva (2010, p. 76) recomienda que, los agregados pruesos para concretos de pavimentos, no deben tener una pérdida de más del 50% en los ensayos de abrasión.

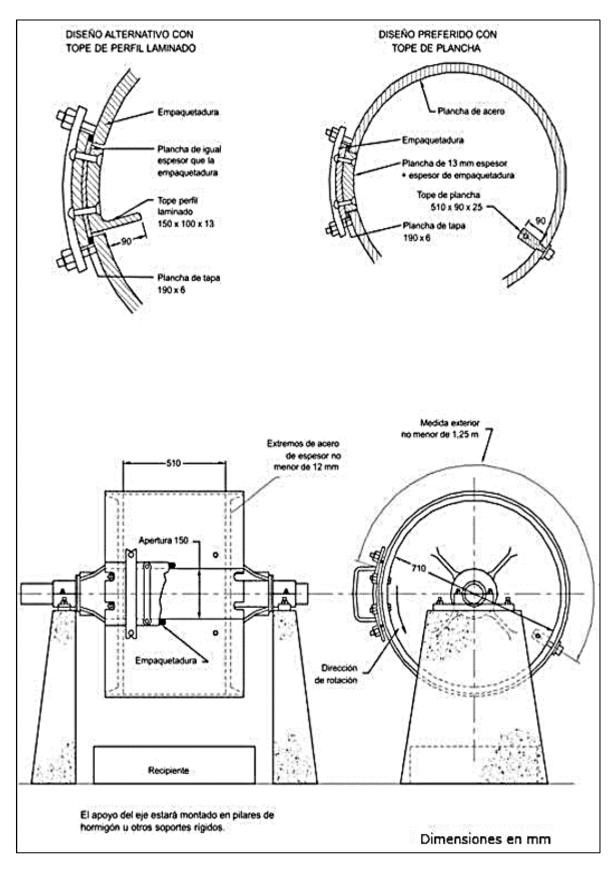


Figura 4. Máquina de ensayo de abrasión Los Ángeles

Fuente: Ministerio de Transportes y Comunicaciones, 2016, p. 318

Respecto a la procedencia en la NTP 400.050 (2017) se menciona que los desechos de la actividad de la construcción se seleccionan y reciclan dependiendo del tipo de aplicación al que se les destinará. Y para el caso del concreto reciclado para la construcción de losas de pavimentos rígidos, se especifica que deben provenir de otras losas de concreto y demoliciones de edificaciones luego de una adecuada selección.

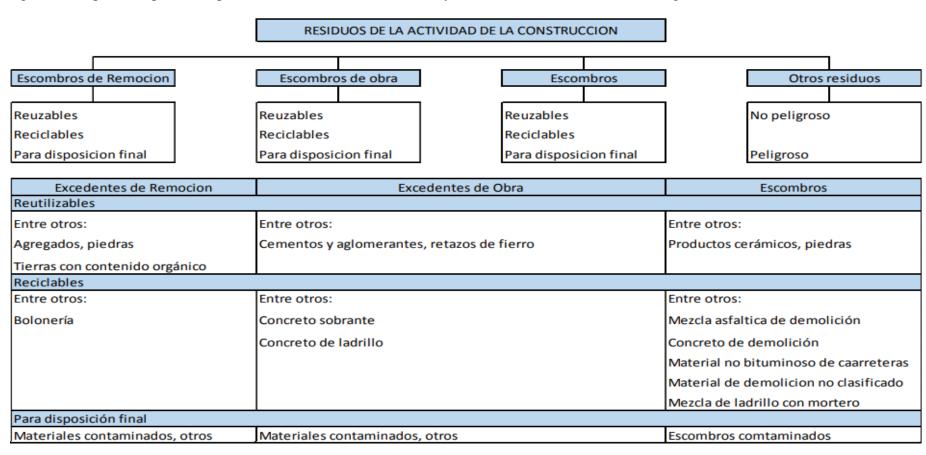


Figura 5. Clasificación y manejo de los residuos de la actividad de la construcción

Fuente: NTP 400.050, 2017

	Fracciones de residuos Información relevante		emolición PNTP 400.051	Material Bituminoso de Demolicion de Carreteras PNTP 400.052	Concreto de demolición PNTP 400.053		Materiales de Demolición no clasificado PNTP	Excedentes de remoción PNTP 400.055		
	Procedencia	Carpetas aasfálticas Trat. Asf. Superficial		Bases y subbases granuladas no tratadas de pavimentos	Losas de concreto Edificacion		nes, carreteras, canales	Suelos a remover		
	Proceso de obtención de Fracciones de Residuos	Fresado Levantamiento/fresado		Remoción/ frenado	Levantamiento/ Demolición frenado selectiva		Demolición	Levantamiento		
	Proceso de obtención de Materiales Secundarios	Chancado		Chancado	Chancado/ selección Chancado/ selección		Chancado/ selección			
	Material Secundario obtenido	Granulado de Asfálto		Granulado no Bituminoso de carreteras	Granulado de co	oncreto	Granulado no clasificado			
	Usos			Nivel de Recomendación						
	Carpeta Asfáltica	1								
	Losas de concreto				1					
TIPO I	Morteros			2						
	Concreto			2	1		1			
	Ladrillos			1	1		1			
	Bases sin aglomerante	2		1	2		2			
TIPO II	Sub-base	2		1	2					
	Capa sub-rasante*	2		1	2		2			
	Rellenos no portantes	3		3	3		3		3	1
TIPO III	Taludes contra ruido	3		3	3		3 3		3	1
	Rellenos sanitarios			3	3		3	1		

Leyenda

Usos: TIPO I: Opciones con uso de aglomerantes(Cemento y asfálto)

TIPO II: Opciones sin necesidad de aglomerantes con mayor exigencia técnica
TIPO III: Opciones sin necesidad de aglomerantes con minima exigencia técnica

Nivel de recomendación 1: Uso óptimo bajo el criterio de uso de materiales con la ópcionde mayor exigencia técnica posible

2: Uso posibles asumiendo pérdida en el potencial de reciclaje de la obra realizada con este material secundario

3: Opción menos recomendable

No recomendable

Figura 6. Opciones de aprovechamiento de los residuos de la construcción

Fuente: NTP 400.050, 2017

^{*} Capa de espesor h, ubicada debajo de sub-rasante

Para el proceso de producción de los AGCR, el ACI Committee 555 (2001) sostiene que, este varía de acuerdo a las disposiciones de los equipos de las plantas procesadoras y también del tipo de obras o productos para el que se requieren los agregados reciclados. Teniendo en cuenta estas variaciones en el proceso, se planteó las siguientes etapas de producción.

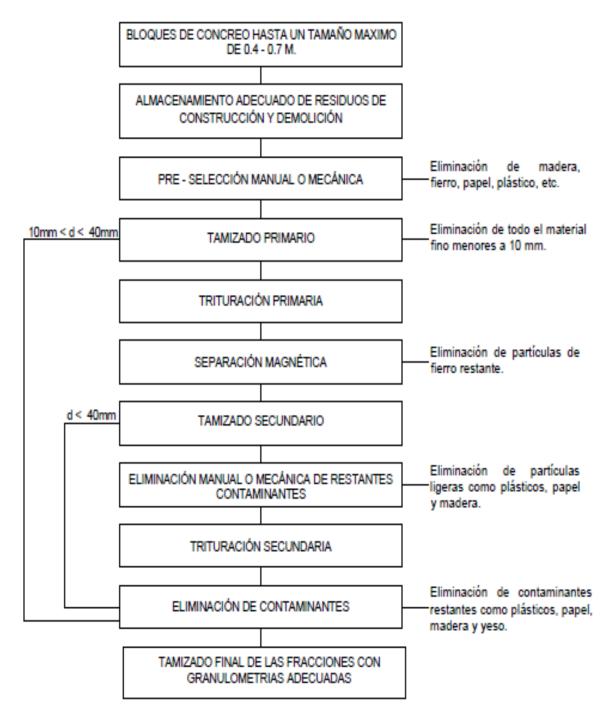


Figura 7. Proceso de producción de los agregados de concreto reciclado

Fuente: ACI Committee 555, 2001, p. 19

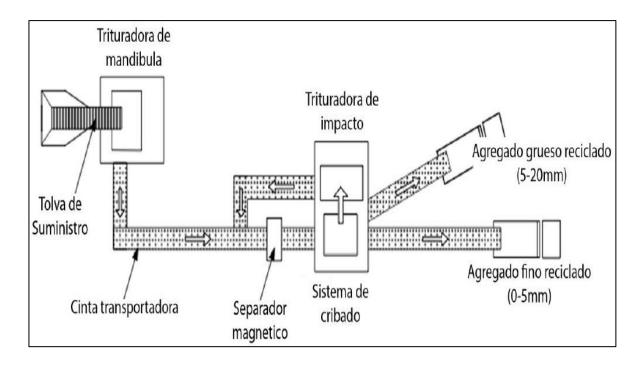


Figura 8. Esquema de planta de procesamiento de agregados reciclados

Fuente: Eguchi, Teranishi, Nakagome, Kishimoto, Shinozaki y Narikawa, 2007

De acuerdo a Morales et al (2011), para llevar a cabo la caracterización de los agregados reciclados, los países que no cuentan con normativas propiamente para estos, se enfocan en cumplir los principales parámetros de caracterización de los agregados naturales como la granulometría, el peso específico, el peso unitario suelto y compactado, los porcentajes de absorción y humedad, etc. Adicionando a ellas algunos parámetros propios del agregado reciclado como la cantidad de mortero adherido y otros dependiendo de la calidad y procedencia de los agregados.

La granulometría, según Braja (2014, p. 33), es el análisis mecánico que se realiza para determinar el tamaño de las partículas presentes en una muestra y se expresa en porcentajes de la masa seca total del material pasante y retenido en los tamices estandarizados. Y de acuerdo a los representantes del Ministerio de Transportes y Comunicaciones (2016, p. 303), se determina por medio del ensayo MTC E 204 - Análisis granulométrico de agregados gruesos y finos.

	TAMAÑO MAXIMO	PORCENTAJE QUE PASA POR LOS TAMICES NORMALIZADOS													
HUSO	NOMINAL	100mm (4 pulg)	90mm (3 1/2 pulg)	75mm (3 pulg)	63mm (2 1/2 pulg)	50mm (2 pulg)	37,5mm (1 1/2 pulg)	25,0mm (1 pulg)	19,0mm (3/4 pulg)	12,5mm (1/2 pulg)	9,50mm (3/8 pulg)	4,75mm (N° 4)	2,36mm (N° 8)	1,18mm (N° 16)	4,75μm (N° 50)
1	90mm a 37,5mm (3 1/2 a 1 1/2 pulg)	100	90 a 100		25 a 60		0 a 15		0 a 15			-			
2	63mm a 37,5mm (2 1/2 a 1 1/2 pulg)			100	90 a 100	35 a 70	0 a 15		0 a 15			-			
3	50mm a 25mm (2 a 1 pulg)				100	90 a 100	35 a 70	0 a 15		0a5					
357	50mm a 4,75mm (2pulg a N°4)				100	95 a 100		35 a 70		0 a 30		0 a 5			
4	37,5mm a 19,0mm (1 1/2 a 3/4pulg)					100	90 a 100	20 a 55	0a5		0a5				
467	37,5mm a 4,75mm (1 1/2pulg a N°4)			-		100	95 a 100		35 a 70		10 a 30	0a5			
5	25,0mm a 12,5mm (1 a 1/2pulg.)			-			100	90 a 100	20 a 55	0 a 10	0a5	1			
56	25,0mm a 9,5mm (1 a 3/8pulg.)						100	90 a 100	40 a 85	10 a 40	0 a 15	0 a 5			
57	25,0mm a 4,75mm (1pulg a N°4)						100	95 a 100		25 a 60		0 a 10	0a5		
6	19,0mm a 9,5mm (3/4 a 3/4pulg.)							100	90 a 100	20 a 55	0 a 15	0 a 5			
67	19,0mm a 4,75mm (3/4pulg a N°4)							100	90 a 100		20 a 55	0 a 10	0a5		
7	12,5mm a 4,75mm (1/2pulg a N°4)								100	90 a 100	40 a 70	0 a 15	0a5		
8	9,5mm a 2,36mm (3/8pulg a N°8)									100	85 a 100	10 a 30	0 a 10	0a5	
89	9,5mm a 1,18mm (3/8pulg a N°16)									100	90 a 100	20 a 35	5 a 30	0 a 10	0a5
9	4,75mm a 1,18mm (N°4 a N°16)										100	85 a 100	10 a 40	0 a 10	0a5

Figura 9. Limites granulométricos del agregado grueso para el diseño de concretos

Fuente: NTP 400.037, 2018

El peso específico y porcentaje de absorción, de acuerdo a los representantes del Ministerio de Transportes y Comunicaciones (2016, p. 312), son características que se obtienen por medio del ensayo MTC E 206 - Peso específico y absorción de agregados gruesos. La cual consiste, primero en extraer una muestra piloto, luego sumergir esta muestra en agua por un lapso de 24 horas para saturar los poros libres que se encuentra en la muestra, después del tiempo transcurrido se limpia la muestra superficialmente para llevar al horno. En cada uno de estos pasos se debe pesar la muestra para calcular los tres tipos de peso específico y el porcentaje de absorción.

Tamaño Máximo Nominal mm (pulg)	Peso Mínimo de la Muestra de Ensayo Kg (lb)					
12,5 (1/2) o menos	2 (4,4)					
19,0 (3/4)	3 (6,6)					
25,0 (1)	4 (8,8)					
37,5 (1 ½)	5 (11)					
50,0 (2)	8 (18)					
63,0 (2 ½)	12 (26)					
75,0 (3)	18 (40)					
90,0 (3 ½)	25 (55)					
100,0 (4)	40 (88)					
112,0 (4 1/2)	50 (110)					
125,0 (5)	75 (165)					
150,0 (6)	125 (276)					

Figura 10. Peso mínimo de la muestra de ensayo

Fuente: Ministerio de Transportes y Comunicaciones, 2016, p. 313

Cálculos:

1. Peso específico

a) Peso específico de la masa (P_{em})

$$Pe = \frac{A}{(B-C)} \times 100$$

Dónde:

A = Peso de la muestra secado al aire libre, en gramos.

B = Peso de la muestra saturada superficialmente secado al aire libre, en gramos.

C = Peso en el agua de la muestra saturada, en gramos.

b) Peso específico de la masa saturada con la superficie seca (Pesss)

$$P_{eSSS} = \frac{B}{(B-C)} \times 100$$

c) Peso específico aparente (Pea)

$$Pea = \frac{A}{(A-C)} \times 100$$

2. Absorción (Ab)

$$Ab (\%) = \frac{B-A}{A}x \ 100$$

Por su parte, Rivva (2010) sostiene que los agregados reciclados poseen un peso específico menor al de los agregados naturales, debido a que los primeros tienen adheridos moteros cuyas densidades son menores a la de los agregados. Caso contrario sucede con el porcentaje de absorción donde los áridos reciclados poseen una elevada absorción respecto a los áridos naturales; ya que gracias a la capa de mortero adherido que tienen pueden absorber entre el 20% a 5 % de agua a diferencia de los áridos naturales que solo tienden a absorber menos del 2% de agua.

El porcentaje de humedad, es una de las características principales de los agregados y se determina según el ensayo de la NTP 339.185 (2013). Para llevarla a cabo, primero se pesa una muestra de 3000 gr. con su humedad natural, luego se seca la muestra en el horno a 110 $^{\circ}$ C \pm 5 $^{\circ}$ C, después se pesa la muestra seca para finalmente realizar el cálculo del contenido de humedad del agregado.

Cálculos:

a) Contenido de humedad (W%)

$$W\% = \frac{Mh - Ms}{Ms} \times 100$$

Dónde:

Mh = Masa de muestra húmeda, en gramos.

Ms = Masa de muestra seca, en gramos.

De acuerdo a Rivva (200, p. 82) el porcentaje de humedad de los agregados, se debe determinar antes de cada mezcla de concreto; ya que según el porcentaje de agua que tengan los agregados se corregirá la cantidad de agua para las mezclas. Este procedimiento es aún más importante el caso de los áridos reciclados debido a que sus contenidos de humedades son muy superiores a las de los áridos naturales, gracias a la gran cantidad de poros que poseen sus capas de moteros adheridos.

El peso unitario suelto y compactado es una característica de los agregados que se determina para dosificar las mezclas de concreto por volumen. Y en el caso de combinar dos o más tipos de agregados en una mezcla, la determinación de esta propiedad resulta aún más importante, puesto que sirven para determinar los pesos y volúmenes de los agregados. Su determinación, según los representantes del Ministerio de Transportes y Comunicaciones (2016, p. 298), se lleva a cabo por medio del ensayo MTC E 203 - Peso unitario y vacíos de los agregados. Para realizarlo, primero se determina la relación del factor de recipiente, para lo cual se debe calcular el peso específico del agua, luego se llena el recipiente de ensayo totalmente con esta agua y se pesa, después se halla el peso del recipiente vacío para los cálculos correspondiente; segundo, se determina el peso unitario suelto, llenando los agregados al recipiente de ensayo desde una altura menor igual a 2" hasta el tope del recipiente, enrasando con una regla el material sobrante, luego se halla el peso del recipiente con los agregados y el peso del recipiente vacío. Tercero, para agregados con un tamaño nominal menor o igual a 11/2", el peso específico compactado, se halla llenando los agregados hasta la tercera parte del recipiente de ensayo para luego apisonarlos uniformemente con 25 golpes de una varilla de 5/8" de diámetro y 60 cm de largo sin tocar el fondo del recipiente, luego se llena las 2/3 partes del recipiente, emparejando y apisonando la superficie nuevamente, después se llena los agregados hasta el tope para apisonarlos y enrazar el material sobrante con la misma varilla de compactación, finalmente se halla el peso del recipiente con los agregados y el peso del recipiente vacío para proceder con los cálculos correspondientes.

Cálculos:

a) Factor del recipiente (f)

$$f = \frac{Pe}{W - M}$$

Dónde:

Pe = Peso específico del agua, en kg/m3.

W = Peso del recipiente con agua, en kg.

M = Peso del recipiente vacío, en kg.

b) Peso unitario suelto o compactado (PU)

$$PU = \frac{G - T}{V}$$

$$PU = (G - T) x f$$

Dónde:

G = Peso del recipiente más agregado, en kg.

T = peso del recipiente, en kg.

V = Volumen del recipiente, en m3

 $f = Factor del recipiente, m^{-3}$

La cantidad de motero adherido es una de las principales características de los agregados reciclados; puesto que, todo material de este tipo luego del proceso de trituración del concreto aún sigue manteniendo cierto porcentaje de mortero adherido. El cual debe ser caracterizado si se quiere usar dichos agregados para un diseño de mezcla ya que las propiedades de estos, como su poca resistencia al desgaste (dureza), su alta absorción de agua y su baja densidad influyen significativamente en diseño del concreto. Su determinación se lleva a cabo por medio de diversos métodos como el de variación de temperatura, cemento de color, sumergiendo en ácido clorhídrico, método físico de separación y otros (Hansen, 1990).

Cálculos:

a) Porcentaje de motero adherido (%Ma)

$$\%Ma = \frac{A - B}{A} \times 100$$

Dónde:

A = Peso del agregado con mortero, en gr.

B = Peso del agregado sin mortero retenido en la malla $N^{\circ}4$, en gr.

De esta manera en Japón se han ido realizando ensayos para determinar la cantidad de motero adherido en agregados procedentes de varios tipos de resistencia (Hansen, 1990).

f'c	MORTERO ADHERIDO
24 Mpa	35.5%
41 Mpa	36.7%
51 Mpa	38.4%

Figura 11. Cantidad de mortero adherido según el tipo de resistencia

Fuente: Hansen, 1990

Por otra parte, antes de definir propiamente el diseño de concreto primero describiremos al concreto para dar a conocer sus componentes y los parámetros de calidad que estos tienen que cumplir para ser empleados en el diseño de mezclas.

El concreto es una mezcla compuesta de material cementante, agregados finos, agregados gruesos y agua sin o con la incorporación de aditivos (Ministerio de Vivienda, Construcción y Saneamiento, 2017, p. 451).

El cemento es uno de los principales componentes del concreto y se definen como como todo aquel material pulverizado que mezclado con el agua son capaz de formar una pasta aglomerante con las propiedades de endurecer, tanto bajo los efectos del aire como en el agua. Dentro de los materiales con esta capacidad se encuentran los Cemento Portland obtenido a partir de Clinker pulverizado mezclado con sulfato de calcio (Ministerio de Vivienda, Construcción y Saneamiento, 2017, p. 451). Y para su aplicación en la construcción de pavimentos de concreto se han fabricado diversos tipos. De las cuales, las más usadas para estos fines son las del tipo I y II (Zárate, Salazar y Tena 2015, p. 48). Pero

en casos específicos también se podrá usar los demás tipos de cemento, dependiendo de las condiciones del terreno, clima, trafico, etc.

Tipo	Descripción	Opciones
1	Normal	BA
IA	Normal, con inclusor de aire	BA
I	De resistencia moderada a los sulfatos	MH, BA
IIA	De resistencia moderada a los sulfatos, con inclusor de aire	MH, BA
Ш	De alta resistencia a edad temprana	MS, AS, BA
IIIA	De alta resistencia a edad temprana, con inclusor de aire	AS, BA
IV	De bajo calor de hidratación	BA
V	De resistencia elevada a los sulfatos	BA. EXP

BA: Bajo contenido de álcalis (≤ 0.60% como Na₂ O)

MH: Requisitos alternativos para un moderado calor de hidrata-

ción: 70 cal/g máximo a 7 días, o C₃S + C₃A \leq 58%. MS: Resistencia moderada a los sulfatos: C₃A \leq 8%

AS: Resistencia alta a los sulfatos: C₃A ≤5%

EXP: Requisitos opcionales para lograr una alta resistencia a los sulfatos. Expansión ≤ 0.040% en ensaye sobre mortero (prueba ASTM C 452, a los 14 días).

Figura 12. Tipos de cementos de acuerdo con la ASTM C150

Fuente: Zárate et al., 2015, p. 174

Los agregados finos son aquellos áridos procedentes de la desintegración artificial o natural de las rocas, que pasan el tamiz de 3/8" (Ministerio de Vivienda, Construcción y Saneamiento, 2017, p. 451). Así mismo, estos agregados deben cumplir con los parámetros granulométricos del ASTM C 33 (Zárate et al., 2015, p. 173).

Denominación de la malla	Porcentaje que pasa, en peso	
3/8" (9.52 mm)	100	
No. 4 (4.75 mm)	95 – 100	
No. 8 (2.36 mm)	80 - 100	
No. 16 (1.18 mm)	50 - 85	
No. 30 (0.60 mm)	25 - 60	
No. 50 (0.30 mm)	10 - 30	
No. 100 (0.15 mm)	2 - 10	

Figura 13. Distribución granulométrica de agregados finos

Fuente: Zárate et al., 2015, p. 173

Los agregados gruesos son aquellos áridos procedentes de la desintegración natural o artificial de materiales pétreos de gran tamaño y que son retenidos en la malla del tamiz N°4 (4.75 mm) (Ministerio de Vivienda, Construcción y Saneamiento, 2017, p. 451). Del mismo modo, estos agregados deben cumplir los parámetros granulométricos establecidos en el ASTM C33 o en la NTP 400.037 (Figura 9). Por su parte, Zárate et al. (2015, p. 170) menciona que los áridos gruesos deben ser duras y resistentes para su uso en el diseño de concreto evitándose el uso de partículas blandas y deleznables y frágiles. De igual manera, también indica que los agregados deben estar limpias y libres de sustancias contaminantes como plásticos, limo, arcillas, materia orgánica, sales, etc.; que reduzcan su adherencia con el material aglomerante. Y respecto a su uso en los pavimentos rígidos los representantes del Ministerio de Transportes y Comunicaciones (2013, p. 806) hacen hincapié en que el tamaño máximo nominal del agregado no debe ser mayor a 1/3 de espesor de la losa del pavimento.

El agua es el componente del concreto que sirve para generar el material conglomerante una vez mezclado con el cemento. Los representantes del Ministerio de Transportes y Comunicaciones (2013, p. 802) sugieren que, si se usa agua de una fuente diferente a la de agua potable o si combina el agua de diferentes lugares, se deberá realizar los ensayos correspondientes para determinar su calidad.

Ensayo	Límites	Método de ensayo
рН	5.5 – 8.5	NTP 339.073
Resistencia a compresión, mínimo, % del control a 7 días ^A .	90	NTP 339.034
Tiempo de fraguado, desviación respecto al control, horas: minutos ^A .	De 1 h más temprano a 1,5 h más tarde	NTP 339.082

Figura 14. Requisitos de calidad del agua

Fuente: Ministerio de Transportes y Comunicaciones, 2013, p. 802

El aditivo, según Zárate et al. (2015, p. 47), es el componente del concreto que tiene la capacidad de modificar las propiedades del concreto en su estado fresco y endurecido. Para su empleo, previamente deben pasar por los ensayos de laboratorio para verificar su eficacia y definir su dosificación de acuerdo a las propiedades del concreto que se desean modificar. En este sentido, se han ido fabricado diferentes tipos de aditivos, como los inclusores de aire, acelerantes de fraguado, retardantes de fraguado, reductores de agua, aditivos puzolánicos y los aditivos reductores de agua de alto rango (superplastificantes). Para fines de esta investigación se empleará este último; ya que ayudara a compensar el exceso de absorción de agua que tienen los Agregados Gruesos de Concreto Reciclado (AGCR) a comparación con los agregados naturales. Además, el empleo de este aditivo también permitirá obtener altas resistencias mecánicas del concreto en estado endurecido y buena trabajabilidad y consistencia en estado fresco.

Respecto al diseño del concreto con la incorporación de agregados reciclados. Chang, Huang, Lee y Weng (2011, p. 1038-1049), sostienen que el diseño principalmente consiste en determinar la resistencia requerida, los porcentajes de agregados gruesos y finos incorporados, la relación agua - cemento, la consistencia y el uso de aditivos para mejorar las propiedades del concreto. Para la incorporación de los agregados reciclados, investigaciones realizadas en Australia, Estados Unidos y Reino Unido indican que, los agregados gruesos provenientes de concreto reciclado son aptos como sustitutos del agregado grueso natural, pudiendo ser remplazados en cantidades de 10%, 20% y 30% respectivamente según cada país (Cement Sustainability Initiative, 2009, p. 27).

Para el diseño de mezclas, existen diferentes métodos y procedimientos, pero en esta investigación se optó por el método del ACI Committee 211 (1998). Debido a que, posee una estructura de cálculos más adecuado para acoplar las propiedades y características de los agregados reciclados que se incorporaran en el diseño de mezcla.

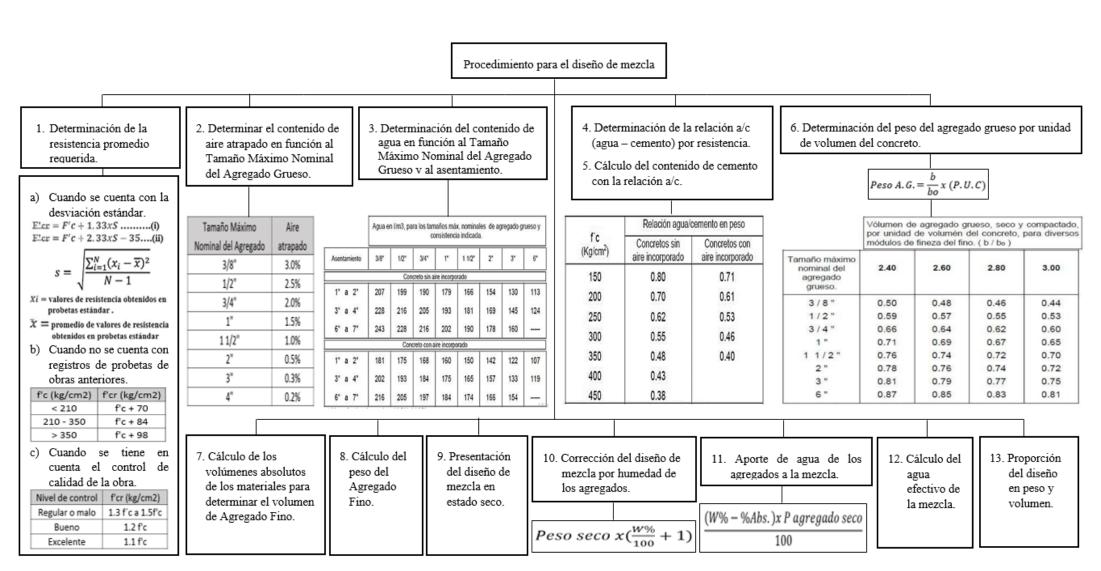


Figura 15. Procedimiento para el diseño de mezcla

Fuente: ACI Committee 211, 1998

Por otro lado, respecto a la viabilidad de la construcción del pavimento rígido. Pérez y Merino (2013) sostienen que, antes de iniciar la ejecución de una obra de construcción resulta de suma importancia analizar su viabilidad desde diferentes enfoques. De esta manera, mediante una previa evaluación de las características técnicas, económicos, ambientales y sociales del proyecto se determina la probabilidad de que este se lleve a cabo o no. En este sentido en este trabajo se analizarán la viabilidad de la construcción de un pavimento rígido con la incorporación de concreto reciclado como agregados. Reforzando esta propuesta Menéndez (2016, p. 33) mencionan que, a lo largo de los años, diversos estudios y avances en la tecnología del reciclaje de Residuos de Construcción y Demolición (RCD) permiten que la incorporación de estos como agregados en el diseño de concreto para la construcción pavimentos rígidos sean viables técnica, económica y ambientalmente.

Antes de definir la viabilidad de la construcción del pavimento de los puntos de vista técnico, económico y ambiental, primero describiremos al pavimento.

El pavimento consiste en un paquete estructural construida sobre una capa conocida como sub rasante del camino, teniendo la cualidad de resistir y distribuir los esfuerzos generados por el paso del tránsito. Los pavimentos se clasifican en flexibles, semirrígidos y rígidos (Ministerio de Transportes y Comunicaciones, 2014, p. 21). Donde para fines de este trabajo se desarrollará a más profundidad el pavimento rígido.

El pavimento rígido es un paquete estructural compuesto por la losa de concreto o capa de rodadura, capa base y la sub rasante. Estos pavimentos se categorizan en pavimentos de concreto reforzados continuamente, reforzados con juntas y los de concreto sin refuerzo con juntas (Rondón y Reyes, 2015). De lo cuales, para fines de esta investigación se abordará más los pavimentos reforzados con juntas.

Los pavimentos de concreto son llamados "rígidos" debido a la naturaleza de la losa de concreto que la constituye (Ministerio de Transportes y Comunicaciones, 2014, p. 224). Por lo que, cuando se habla de su construcción básicamente se refiere a la losa de concreto (capa de rodadura), pero para su colocación también se debe considerar la subrasante y en algunos casos la base y subbase, donde este último puede obviarse dependiendo del dimensionamiento, diseño y tipo del pavimento. Entonces para la conformación del

pavimento rígido; primero, tenemos a la subrasante que viene a ser la capa de la parte superior de la excavación en el terreno, que se encargara de soportar el paquete estructural del pavimento; por lo que, deberá estar compuesta por suelos de características optimas, las cuales deberán ser compactadas hasta constituir un cuerpo estable que no se vea perjudicada por las cargas provenientes del tránsito. Segundo, tenemos a la subbase que es la capa que se encuentra entre la subrasante y la base, cuya función es soportar las cargas provenientes de la base y a la capa de rodadura; por lo que, se constituyen de materiales granulares con CBR \geq 40% y propiedades que facilitan el drenaje y control de capilaridad del agua. Tercero, encontramos a la base que es la capa inferior del paquete estructural, cuya función es trasmitir, distribuir y sostener las cargas provenientes de la capa de rodadura; por lo que, se componen de materiales granulares con CBR \geq 80% y propiedades drenantes. Finalmente, tenemos a la superficie de rodadura que es la capa superficial del pavimento, el cual tiene la función de soportar directamente las cargas generadas por el paso del tránsito; por lo que, deberán constituirse de materiales resistentes a esfuerzos y agentes ambientales (Ministerio de Transportes y Comunicaciones, 2014, p. 21).

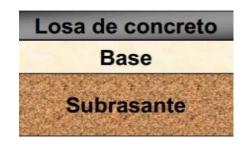


Figura 16. Sección transversal típico de un pavimento rígido

Fuente: Olivo, 2014

Pasando al análisis de la viabilidad técnica para la construcción de un pavimento rígido con la incorporación de concreto reciclado, los principales ensayos que se deben realizar para verificar la calidad del nuevo concreto y definir su aceptación en la construcción de los pavimentos rígidos son: la verificación de la temperatura, la medición del asentamiento, la elaboración de testigos para determinar su resistencia a la compresión a los 28 días y la elaboración de vigas para determinar su resistencia a flexo tracción a los 28 días (Alvarado, 2013, p. 15).

La temperatura, de acuerdo a Rivva (2010, p. 122) es la aquella propiedad del concreto que depende de la temperatura de los demás componentes de la mezcla como las del cemento, los agregados y el agua. En cuanto a sus valores recomienda que la temperatura del concreto durante su vaciado y colocación debe encontrarse entre los 13 °C y 32 °C. Además, una vez vaciado el concreto su temperatura solo deberá variar en ± 2 °C de la temperatura promedio especificada en la obra. Así mismo, el concreto deberá mantener la temperatura mínima por al menos más de 3 días para que pueda lograr las propiedades mecánicas deseadas.

El asentamiento, según Rivva (2010, p. 126) es una de las propiedades del concreto en su estado fresco y sirve para determinar el porcentaje de humedad de las mezclas. Para su determinación existen diversos métodos, pero de todos ellos el que más se recomienda en las obras, es aquel donde la consistencia de la mezcla se mide por medio del Cono de Abrams. Los procedimientos para dicha medición se llevan a cabo por medio del ensayo del MTC E 705 - Asentamiento del concreto (Ministerio de Transportes y Comunicaciones, 2016, p. 801).

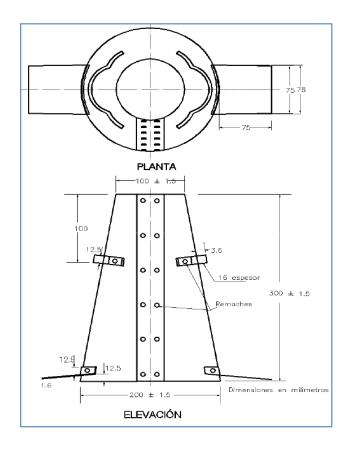


Figura 17. Molde para determinar el asentamiento

Fuente: Ministerio de Transportes y Comunicaciones, 2016, p. 802

Por su lado, Zárate et al. (2015, p. 46) recomiendan que, las mezclas de concreto para la construcción de pavimentos rígidos no tengan un exceso de agua. Ya que, esto ocasiona un exceso de sangrado al momento de colocar la mezcla; así mismo, favorecen la generación de grietas en su estado endurecido. Por este motivo, para la producción de estas mezclas se sugieren asentamientos bajos.

Tipo de construcción	Revenimiento recomendado cm		
Con cimbra deslizante	1.0 - 6.0		
Con cimbra fija	4.0 - 7.0		
Colocación manual	10.0 máximo		

Figura 18. Asentamientos recomendados según los tipos de proceso constructivo

Fuente: Zárate, et al., 2015, p. 47

Tipo de Construcción	Máxima	Mínima
Zapatas y muros de cimentación armados	3"	1"
Cimentaciones simples, cajones y subestructuras de muros	3"	1"
Vigas y muros armados	4"	1"
Columnas de edificios	4"	1"
Losas y pavimentos	3"	1"
Concreto ciclópeo	2"	1"

Figura 19. Asentamientos recomendados según los tipos de edificaciones

Fuente: Rivva, 2010, p. 52

La resistencia del concreto es uno de los principales ensayos que se debe tener en cuenta para el diseño del pavimento rígido. Debido a que estos principalmente se flexionan bajo cargas de transito que generan esfuerzos de compresión y tensión. Donde resulta más importante analizar los valores de este último, debido a que la resistencia a la flexión del concreto apenas representa un 10% de la resistencia a compresión. La determinación de los

esfuerzos a la tensión se logra por medio del módulo de ruptura a la tensión por flexión (MR) (Zárate et al., 2015, p. 46).

La resistencia a la flexión, es la propiedad más enmarcada del concreto endurecido para fines de construcción de pavimentos rígidos. Y por esta razón, el rechazo o recepción del concreto depende mucho de los valores de esta resistencia. Para su obtención, se sugiere que esta se determine por medio del ensayo MTC E 709 - Resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo. La cual básicamente consiste en elaborar 3 vigas a ensayarse a los 28 días de su elaboración, por medio de una prueba de carga en los tercios de su luz (Ministerio de Transportes y Comunicaciones, 2016, p. 823)

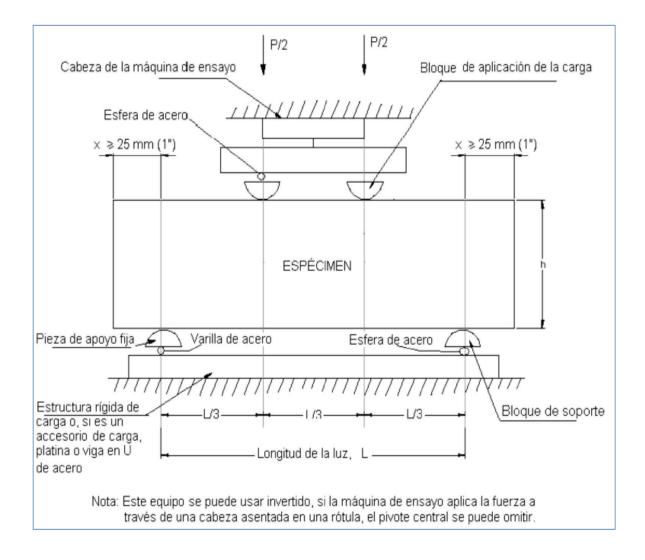


Figura 20. Esquema de equipo para ensayo de resistencia a la flexión

Fuente: Ministerio de Transportes y Comunicaciones, 2016, p. 823

La resistencia a la compresión, según Osorio (2019), es una de las principales características mecánicas del concreto y la define como la capacidad portante de una carga por unidad de área. Para su cálculo se recomienda el ensayo MTC E 704 - Resistencia a la compresión testigos cilíndricos; la cual, en resumen, consiste en la elaboración de probetas en forma de cilindro para ser ensayadas a los 28 días de su curado, por medio de la aplicación de una carga axial sobre sus extremos planos (Ministerio de Transportes y Comunicaciones 2016, p. 789).

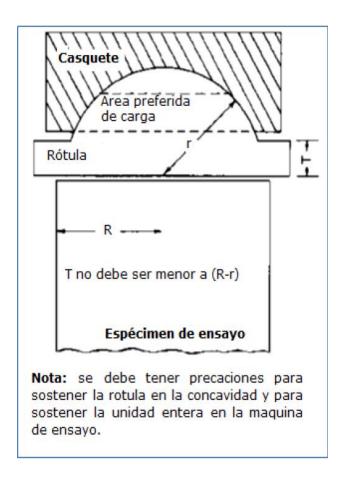


Figura 21. Esquema de equipo para ensayo de resistencia a la compresión

Fuente: Ministerio de Transportes y Comunicaciones, 2016, p. 793

Los representantes del Ministerio de Transportes y Comunicaciones (2014, p. 224, 231) también mencionan que, de acuerdo a la Método de diseño AASHTO 93 las variables del diseño de concreto que intervienen técnicamente en el diseño de la losa del pavimento rígido son: la resistencia media a flexo tracción a los 28 días y el módulo elástico del concreto, cuyos valores pueden ser obtenidos directamente mediante ensayos o por medio de correlaciones recomendadas por el ACI, la cual depende directamente de los valores de la

resistencia a la compresión del concreto. Adicionalmente también se deben considerar otros parámetros presentes en la ecuación de diseño del pavimento rígido según la metodología AASHTO 93.

Ecuación de diseño de pavimento rígido según la metodología AASHTO 93

$$\log_{10}W_{8.2} = Z_RS_o + 7.35\log_{10}(D + 25.4) - 10.39 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.5 - 1.5}\right)}{1 + \frac{1.25 \times 10^{19}}{(D + 25.4)^{8.46}}} + (4.22 - 0.32P_t)x\log_{10}\left(\frac{M_rC_{dx}(0.09D^{0.75} - 1.132)}{1.51 \times J\left(0.09D^{0.75} - \frac{7.38}{(E_c/k)^{0.25}}\right)}\right)$$

Parámetros de diseño del pavimento rígido:

 $W_{8,2}$ = Cantidad prevista de EE de 8.2 ton / m en el periodo de diseño.

 Z_R = Desviación normal estándar

 S_o = Error estándar combinado en la predicción del tránsito y en la variación del comportamiento espera del pavimento.

D = espesor del pavimento rígido en milímetros

 ΔPSI = Diferencia entre los índices de servicio final e inicial

 P_t = Servicio final o índice de serviciabilidad

 M_r = Resistencia media del concreto Mpa en flexo tracción

 C_d =coeficiente de drenaje

J = Coeficiente de transmisión de cargas juntas

Ec = Modulo de elasticidad k = Modulo de reacción

Por otro lado, respecto a la viabilidad económica para la construcción de nuevos pavimentos rígidos, en la actualidad uno de los casos por las que esto se justifica este proceso, es que el concreto existente de los mismos pavimentos, puede ser reciclado para reducir los costos directos en el presupuesto del proyecto. (Menéndez, 2016, p. 33).

El presupuesto viene a ser el cálculo del valor del proyecto, expresado en cantidades monetarias y se compone de la suma de los costos directos e indirectos y adicionalmente también se le aplica el tributo correspondiente al Impuesto General a las Ventas (I.G.V.). Su cálculo es de suma importancia, antes de iniciar cualquier proyecto; ya que, a su término permiten autorizar o no la inversión para la ejecución de estas (CAPECO, 2003, p. 242).

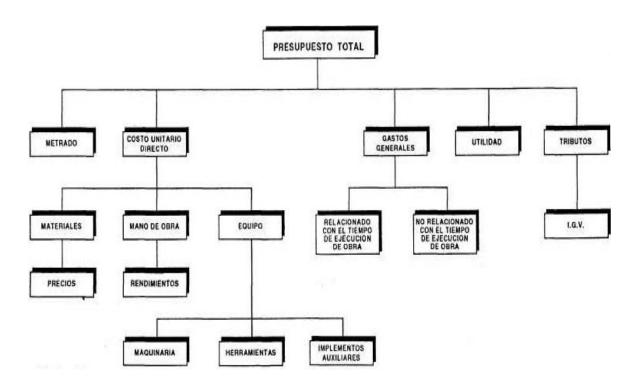


Figura 22. Esquema para la elaboración del presupuesto de un proyecto

Fuente: CAPECO, 2003, p. 265

El costo directo del proyecto viene a ser la sumatoria de todos los costos unitarios de cada partida. Las partidas a su vez constan de la sumatoria de los costos de materiales, equipos, herramientas, mano de obra y otros de ser el caso. En este proceso, también se debe tener en cuenta que cada analista de costos desarrollará el costo unitario directo de todas las partidas de acuerdo a las características de cada proyecto (CAPECO, 2003, p. 15).

En cuanto a las partes que componen a los costos unitarios de las partidas. Primero, tenemos los materiales, los mismos que para determinar su cantidad son analizados en términos de aporte unitario y para determinar su precio se hace en base a los precios de cotización. Segundo, tenemos la mano de obra, los mismos que según el régimen de construcción civil, dependiendo de cada partida se pueden componer por capataces, operario, oficial, peones u operadores de equipos y para determinar su cantidad se analiza por medio de unidades de costo horas por hombre (hh), cuyos valores están sujetas al rendimiento de cada individuo. Tercero, tenemos a los equipos y herramientas, donde para los equipos la determinación de su cantidad se analiza por medio de unidades de costo hora maquina (hm) en base a sus rendimientos y respecto a su costo depende del precio de alquiler. En cuanto a las

herramientas tanto para su cantidad como para su costo se calcula por medio de un porcentaje respecto al costo de mano de obra (CAPECO, 2003, p. 205).

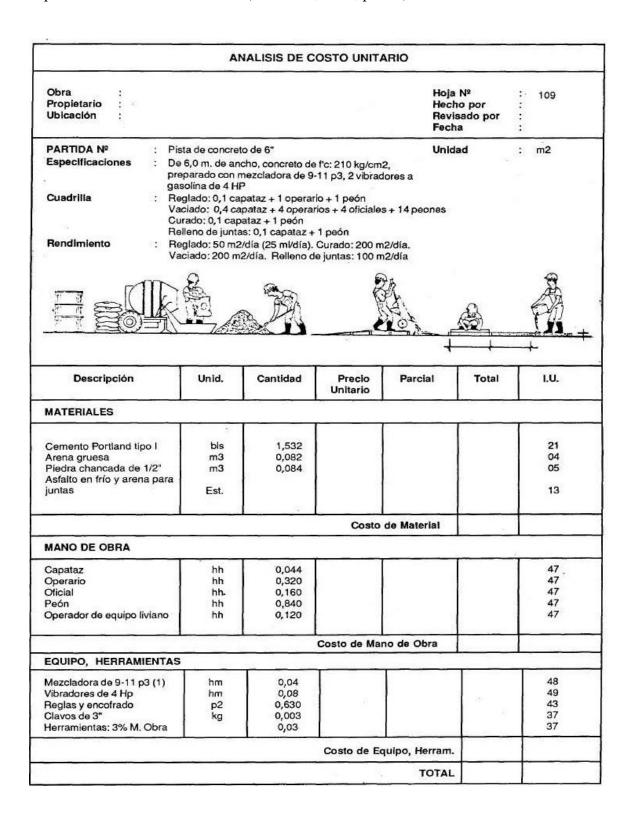


Figura 23. Formato de análisis de costo unitario

Fuente: CAPECO, 2003, p. 205

Ahora en lo que respecta a los costos indirectos estos se componen por los costos de utilidad y gastos generales. Donde, la utilidad es el monto que percibe la persona o empresa encargada de ejecutar el proyecto y se calcula como un porcentaje del costo directo del presupuesto. Y los gastos generales vienen a ser los gastos por consumo que realizan la persona o empresa que tiene a cargo la ejecución del proyecto. Estas a su vez se clasifican en gastos generales vinculados y no vinculados con el tiempo de ejecución de la obra (CAPECO, 2003, p. 242, 255).

4			PRESUPUES	TO		
	Obrá Ubicación Fecha	:		Hecho por	de	
Partida Nº	Descripción	Unidad	Metrado	Precio Unitario	Parcial	Total
1.00	Rubro 1.00					
					Sub-Total 1	xxxx
2.00	Rubro 2.00				Sub-Total 2	YYYY
—— <i>}</i>	ml		m1	~~		
7			~		Sub-Total N	ZZZZ
		Mo (Su	nto Total a Cost umatoria de Sub-	o Directo (CD) Totales)	+ S/.	мммм
	Gastos	1	Gastos generales tiempo de ejecució (% del Monto Tota	ón de obra.	con el	mmmm
Generales (G.G.)		31	Gastos generales relacionados con el tiempo de ejecución de obra. (% del Monto Total a C.D.)			nnnn
			Utilidad (U) % del Monto de (C.D.		uuuu
1		del monto (CD	a las Ventas (I.G +G.G+U.)	.V.)		m
		7	Fresupuesto Tota		S/.	Р

Figura 24. Formato general de presentación de un presupuesto

Fuente: CAPECO, 2003, p. 266

Respecto a la viabilidad ambiental para la construcción de nuevos pavimentos rígidos, uno de los casos por las que esto se justifica este proceso, es que el concreto existente de los mismos pavimentos, puede ser reciclado y reutilizados como nuevos materiales eco amigables, ya sea transformados como nuevos productos o como agregados para la producción de concreto. Esta actividad a su vez resulta muy beneficiosa para la sociedad debido a que contribuye a la conservación de los recursos naturales (MP RECICLA SAC, 2019).

Por su parte, Rivva (2015, p. 113) también menciona que otras de las razones por las que resulta viable la incorporación de los agregados reciclados en la elaboración de mezclas de concreto, es que en los últimos años se está notando una disminución de recursos en las canteras, específicamente en las zonas cercanas a las ciudades. Así mismo, otras de las razones justamente vienen a ser la lejanía de las canteras disponibles, donde el alto costo del transporte conlleva a la búsqueda de nuevas alternativas.

Para hablar de los Residuos de Construcción y Demolición (RCD) y su aprovechamiento como agregados reciclados. Primero tenemos que definir a los residuos sólidos en general, que es de donde provienen. Y según la Ley General de Residuos Sólidos 27314 (2000, p. 7), estos vienen a ser todas aquellas sustancias en estado semisólido o sólido, de las cuales las personas que la generan están obligados a hacerse cargo de acuerdo a las normativas correspondientes. De acuerdo a esta ley estos residuos, según su procedencia se subdividen en residuos sólidos de ámbito no municipal y municipal.

Figura 25. Clasificación de los residuos sólidos

Fuente: Hidalgo, 2017, p. 7

Los Residuos Sólidos de Construcción y Demolición son aquellos que aparte de cumplir con los lineamientos de la Ley General de Residuos Sólidos, provienen de las obras de remodelación, rehabilitación, construcción y demolición de infraestructuras y edificaciones (Decreto Supremo 003, 2013, Articulo 6, 7). Para un mejor tratamiento se clasifican en residuos peligrosos y no peligrosos (Decreto Supremo 003, 2013, Anexo 3,4).

El reciclaje del concreto de demolición, según el Artículo 28 del Decreto Supremo 003 (2013), consiste en la obtención de los bloques o pequeños fragmentos de concreto provenientes de las demoliciones o rehabilitaciones de las obras civiles (edificios, puentes, cimentaciones, canales, veredas, pisos, losas de pavimentos de concreto, etc.) que no posean los elementos peligrosos especificados en el Anexo 3 del Decreto Supremo 003 (2013). Todo esto con la finalidad de que el concreto reciclado pueda ser empleado como materiales de rellenos no portantes, en la producción de nuevos concretos y otros usos que no se contravengan con las normativas que rigen el manejo de los residuos sólidos.

El manejo de los residuos sólidos de construcción, de acuerdo al Artículo 8 del Decreto Supremo 003 (2013), se logra cumpliendo un plan selectivo y en las condiciones sanitarias y ambientales óptimas. Así mismo, se debe tener en cuenta una adecuada clasificación para el destino correcto de cada una de ellas dependiendo de su tipo y los parámetros de la Ley General de Residuos Sólidos.

Figura 26. Ciclo de manejo de los residuos sólidos de construcción

Fuente: Hidalgo, 2017, p. 20

Problema general

¿Cómo influye el uso de concreto reciclado en la viabilidad de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019?

Problemas específicos

PE1: ¿Cómo influye el uso de concreto reciclado en la viabilidad técnica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019?

PE2: ¿Cómo influye el uso de concreto reciclado en la viabilidad económica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019?

PE3: ¿Cómo influye el uso de concreto reciclado en la viabilidad ambiental de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019?

Justificación del Estudio

Justificación teórica

Para este fin los especialistas del Cement Sustainability Initiative (2009) mencionan que, aún queda mucho por investigar en temas relacionados a promover el uso de los agregados gruesos de concreto reciclado en la producción de nuevos concretos para distintas aplicaciones. En este sentido, lo que se busca en esta investigación es evaluar la viabilidad del uso del concreto reciclado en su forma de agregado grueso en la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

Justificación Practica

Según Borja (2012, p. 19), este tipo de justificación existe cuando la investigación está destinada a resolver problemas, por lo cual deberá responder a la interrogante: ¿Por qué es importante realizar esta investigación?

Respondiendo a dicha interrogante, es importante llevar a cabo esta investigación; ya que, al diseñar un concreto, incorporando agregados de concreto reciclado, para la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019. Se logrará un gran avance en el manejo de materiales provenientes de las demoliciones y cortes de las losas de pavimento rígido que se vienen realizando en dicho distrito, puesto estos serán reutilizados en lugar de ser tirados en lugares públicos y botaderos no autorizados.

Justificación Metodológica

El presente trabajo se desarrollará bajo un método científico ya que se llevará a cabo de manera metódica y secuencial para luego buscar probar una hipótesis, tendrá un enfoque cuantitativo debido a que se realizaran mediciones numéricas bajo ciertos parámetros, será de tipo aplicativo ya que se busca conocer para modificar una realidad problemática y tendrá un diseño experimental del tipo cuasi – experimental.

Hipótesis general

El uso de concreto reciclado influye en la viabilidad de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

Hipótesis específicas

HE1: El uso de concreto reciclado influye en la viabilidad técnica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

HE2: El uso de concreto reciclado influye en la viabilidad económica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

HE3: El uso de concreto reciclado influye en la viabilidad ambiental de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

Objetivo general

Determinar la influencia del uso de concreto reciclado en la viabilidad de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

Objetivos específicos

OE1: Determinar la influencia del uso de concreto reciclado en la viabilidad técnica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

OE2: Determinar la influencia del uso de concreto reciclado en la viabilidad económica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

OE3: Determinar la influencia del uso de concreto reciclado en la viabilidad ambiental de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

2.1 Diseño de investigación

2.1.1 Método Científico

Para el desarrollo de esta investigación se empleará el método científico; el cual, según Borja (2012, p. 31), consiste en un conjunto de procedimientos y estrategias planteadas de forma metódica y secuencial que tiene como fin comprobar empíricamente el planteamiento de una hipótesis, la misma que permitirá la interpretación de una realidad. Al respecto, también es importante mencionar que las conclusiones obtenidas por este método no pueden tomarse como una verdad absoluta sino como complementaria.

Para el presente trabajo de acuerdo al método científico se procederá a realizar una cantidad determinada de diseño de mezclas, sustituyendo diferentes porcentajes de agregado grueso natural por agregados gruesos reciclados; para luego ser ensayadas con el objeto de comprobar la hipótesis planteada desde el punto de vista técnico para determinar la viabilidad del uso del concreto producido en la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador. Del mismo modo también se analizarán la viabilidad económica y ambiental.

2.1.2 Enfoque

El estudio se llevará a cabo bajo un enfoque cuantitativo; el cual, de acuerdo Hernández, Fernández y Baptista (2014, p. 4), emplea la recolección de datos para luego probar las hipótesis planteadas teniendo en cuenta un análisis estadístico y una medición numérica, con el objeto de trazar patrones de comportamiento y luego probar las teorías.

2.1.3 Tipo

El presente estudio es de tipo aplicada; ya que, según Borja (2012, p. 10), este tipo de investigaciones buscan actuar, conocer, construir y modificar una realidad problemática y no está enfocado en el desarrollo de un nuevo conocimiento de valor universal. Así mismo, también menciona que los proyectos e investigaciones de ingeniería civil se encuentran dentro de esta clasificación solo si están evocados a la solución de una problemática.

2.1.4 Diseño

El desarrollo de la presente investigación se llevará a cabo por medio de un diseño experimental. Donde, según lo mencionado por Borja (2012, p. 15), en este tipo de investigaciones se manipula la variable independiente con el objeto de determinar la relación de causa - efecto de los fenómenos estudiados y verificar las hipótesis planteadas. Además, menciona que se deben cumplir tres requisitos para que una investigación sea de tipo experimental, estas son: La manipulación intencional de la variable independiente, donde la hipótesis tendrá validez solo si se determina que la variable independiente genera modificaciones en el comportamiento de la variable dependiente; la medición del efecto de la variable independiente, donde se busca determinar el grado de influencia que tiene la variable independiente en la variable dependiente; y por último se debe tener un control interno de la situación experimental, es decir se debe tener cuidado en que las modificaciones que sufra la variable dependiente se deban únicamente a las variaciones hechas en la variable independiente.

Borja (2012, p. 28), también señala que dentro del diseño experimental existen tres tipos de experimentos, las cuales son: el pre – experimento, el experimento puro y los cuasi – experimentos. En el caso de este estudio forma parte de los cuasi – experimentos, que según este autor hasta cierto punto adoptan las mimas características que los experimentos puros que consisten en la manipulación de las variables dentro de dos grupos de estudio (un Grupo de Control: Oc y un Grupo de Experimental: Oe). Donde estos grupos deben tener características similares. Ya que, luego al Grupo Experimental se le aplicaran estímulos (para este estudio incorporación de un agregado grueso reciclado) mientras que al Grupo de Control no se le aplicaran ningún estímulo (para este estudio solo se diseñara el concreto patrón con agregados naturales), de esta forma este grupo se utilizara como un patrón para compararlas con los resultados del otro grupo. Además, este procedimiento se realiza buscando asegurar que las relaciones entre las variables independiente y dependiente (X, Y) se realice de la manera más pura, esto quiere decir sin que exista interferencia de las variables intervinientes no controladas.

Por otra parte, es importante mencionar que los cuasi – experimentos se diferencian de los experimentos puros en la selección de los grupos de estudios donde estos ya se forman desde

antes de la investigación para los cuasi – experimentos, pero en el caso de los experimentos puros son escogidos al azar.

De esta manera el diseño que se empleará se puede representar de la siguiente manera:

Oe \longrightarrow X1 \longrightarrow M1: Para el grupo experimental

Oc --> - X1 --> M2 : Para el grupo de control

Dónde:

Oe: Objeto de estudio experimental.

Oc: Objeto de estudio de control.

X1: Estimulo a la variable independiente.

- X1: Ausencia de estímulo a la variable independiente.

M1: Medición de la variable dependiente Y con estimulo de la variable independiente.

M2: Medición de la variable dependiente Y sin estimulo de la variable independiente.

Donde para este estudio tenemos:

Oe: Pavimento rígido

Oc: Pavimento rígido

X1: Concreto Reciclado

- X1: Concreto Convencional

M1: Viabilidad de la construcción de pavimento rígido con concreto reciclado.

M2: Viabilidad de la construcción del pavimento rígido con concreto convencional.

2.2 Operacionalización de variables

2.2.1 Variables

Variable independiente: Concreto reciclado

Definición conceptual

El concreto reciclado es aquel concreto cuyos agregados provienen total o parcialmente de

las arenas, gravas y gránulos reciclados a partir de los residuos de construcción y demolición

(Decreto Supremo 003, 2013, Anexo 1).

Definición operacional

Para un reciclado exitoso de concreto, se debe tener en cuenta la calidad y la caracterización

de los agregados obtenidos para lograr óptimos diseños de concreto (Morales et al, 2011).

Variable dependiente: Viabilidad de la construcción del pavimento rígido

Definición conceptual

El término de viabilidad es un recurso útil antes de iniciar la ejecución de una obra de

construcción; puesto que, mediante una previa evaluación de las características técnicas,

económicos, ambientales y sociales del proyecto, determina la probabilidad de que este se

lleve a cabo (Pérez y Merino, 2013).

Definición operacional

A lo largo de los años, diversos estudios y avances en la tecnología del reciclaje de los

Residuos de Construcción y Demolición (RCD) permiten que la incorporación de estos como

agregados en el diseño de concreto para la construcción pavimentos rígidos sean viables

técnica, económica y ambientalmente (Menéndez, 2016, p. 33).

46

Matriz de Operacionalización de variables

Tabla 1. Operacionalización, variable: Concreto reciclado

DIMENSIONES	INDICADORES	ESCALA DE MEDICIÓN
Calidad	Resistencia del concreto primario Resistencia o dureza de los AGCR Procedencia (Cantera) Proceso de producción	Razón Razón Nominal Nominal
Caracterización	Granulometría Peso especifico Porcentaje de absorción Porcentaje de humedad Peso unitario suelto Peso unitario compactado Cantidad de mortero adherido	Razón Razón Razón Razón Razón Razón Razón
Diseño concreto	Resistencia requerida Contenido de aire atrapado Asentamiento (Slump) Contenido de agua Relación a/c por resistencia Contenido de cemento Contenido de AGN Porcentajes de AGCR Contenido de agregados finos Cantidad de aditivo	Razón Razón Razón Razón Razón Razón Razón Razón Razón

Fuente: Propia

Tabla 2. Operacionalización, variable: Viabilidad de la construcción de pavimento rígido

DIMENSIONES	INDICADORES	ESCALA DE MEDICIÓN
Técnica	Temperatura Asentamiento (Slump) Resistencia a la compresión Resistencia a flexo tracción	Razón Razón Razón Razón
Económico	Costos directos Presupuesto del proyecto	Razón Razón
Ambiental	Cantidad de RCD reciclado Cantidad de RCD reutilizado Cantidad de recursos naturales conservado	Razón Razón Razón

Fuente: Propia

2.3 Población, muestra y muestreo

2.3.1 Población

Según Borja (2012, p. 30), la población viene a ser el grupo de elementos o sujetos que serán estudiados. Entonces, según lo sostenido por este autor el presente estudio tendrá como población al Pavimento rígido del Tramo IV (Av.26 de noviembre – Av. Lima) del Proyecto de mejoramiento de la infraestructura vial y peatonal de la Av. Los Héroes – Av. Pachacútec. Donde los tramos I, II y III se encuentran en la Av. Los Héroes y el Tramo IV en la Av. Pachacútec.

Tabla 3. Tramos del proyecto en estudio

TRAMOS	AVENIDAS	PROGRESIVAS
Tramo I	Pte. Atocongo – Av. San Juan	0+000 a la 1+000
Tramo II	Av. San Juan – Av. Miguel Iglesias	1+000 a la 2+600
Tramo III	Av. Miguel Iglesias – Av. 26 de Noviembre	2+600 a la 5+460
Tramo IV	Av. 26 de Noviembre – Av. Lima	5+460 a la 12+500

Fuente: Informe N°4 de Factibilidad del Proyecto Mejoramiento de la Av. Los Héroes – Av. Pachacútec.

Tabla 4. Población del estudio de investigación

TRAMOS	AVENIDAS	PROGRESIVAS
Tramo IV	Av. 26 de Noviembre – Av. Lima	5+460 a la 12+500

Fuente: Propia

2.3.2 Muestra

Según Hernández et al. (2014, p. 173), la muestra viene a ser un subgrupo de la población a estudiar, en el cual se recogerá la información buscada en la investigación. Por ello, este subgrupo se debe seleccionar o delimitar con mucha precisión, ya que deberá ser el grupo más representativo de la población.

Pero debido a que para esta investigación se empleara un muestreo no probabilístico, se determinó que se tomara como muestra solo 1 km de Pavimento Rígido del Tramo IV entre las progresivas 11+220 y 12+220 de la Av. Pachacútec. Esto porque los demás tramos ya se encuentran en la etapa final de su ejecución. Mientras que, en el tramo seleccionado como muestra, recién se están iniciando los trabajos de construcción de la infraestructura vial de pavimento rígido.

Tabla 5. Muestra del estudio de investigación

AVENIDAS	PROGRESIVAS
Av. Pachacútec	11+220 a la 12+220

Fuente: Propia

2.3.3 Muestreo

Para esta investigación se empleará el muestreo no probabilístico, el cual según Borja (2012, p. 32), a diferencia del muestreo probabilístico este tipo de muestreo la delimitación de los elementos o grupos no depende de la probabilidad sino más bien del criterio de cada investigador.

2.4 Técnicas e instrumentos de recolección de datos, validez y confiabilidad

2.4.1 Técnicas de recolección de datos

Sánchez y Reyes (2015, p. 163) explican que, las técnicas son aquellas herramientas por medio del cual se recolecta la información de un hecho o fenómeno de acuerdo a los objetivos del estudio.

Por otro lado, Borja (2012 p. 33) sostiene que, hay varios tipos de técnicas para recolectar la información, las cuales no son excluyentes sino complementarios. Así se tiene las siguientes técnicas: las pruebas estandarizadas, la encuesta, la entrevista y la observación.

Para fines de este trabajo se empleará la técnica de la observación ya que se está empleando un diseño de investigación cuasi - experimental, el cual se corresponde mejor con este tipo de técnicas, mientras que las demás técnicas mencionadas son más utilizadas en diseños no experimentales.

2.4.2 Instrumentos de recolección de datos

En cuanto al instrumento Sánchez y Reyes (2015, p. 166) mencionan que, su elección depende de la técnica previamente seleccionada, también explican que son herramientas que básicamente se utilizan en la etapa de recolección de datos.

Por otra parte, Borja (2012, p. 33) menciona que, para investigaciones de ingeniería, los datos observados deberán ser plasmados en adecuados formatos de recolección de información.

Teniendo en cuenta esto, para esta investigación se tendrá como instrumento formatos de laboratorio adecuados para cada prueba de los agregados gruesos reciclados; así mismo para cada uno de los ensayos de los testigos y vigas. Esto con la finalidad de recolectar los datos de una manera formal, precisa y lo más confiable posible.

2.4.3 Validez del instrumento

Al respecto Hernández et al. (2014, p. 200) explica que, la validez viene a ser el grado o la medida en que un instrumento es válido al medir las variables. En otras palabras, la validez del instrumento dependerá de la consistencia e intención con el fueron realizadas, para buscar la verdad en las variables que se busca medir.

Para fines de este proyecto se presentará, tanto los formatos para las pruebas de los agregados gruesos reciclados como para los formatos para los ensayos de los testigos y vigas, a los ingenieros expertos en la línea de investigación de este proyecto para que evalúen la consistencia e intención con la que fueron elaboradas.

2.4.4 Confiabilidad del instrumento

Según Hernández et al. (2014, p. 200), este término viene a ser el grado o medida con el que un instrumento es capaz de brindar resultados coherentes y consistentes.

Para la presente investigación la coherencia y consistencia de los formatos elaborados dependerá del juicio de expertos en la línea de investigación bajo el cual se desarrolla este proyecto. Así tenemos, la validación del instrumento por de 2 ingenieros con grados de maestría y colegiatura vigente, quienes fueron seleccionados de acuerdo a los lineamientos del programa académico. Así mismo, se cuenta con la aprobación de un metodólogo con grado de doctor.

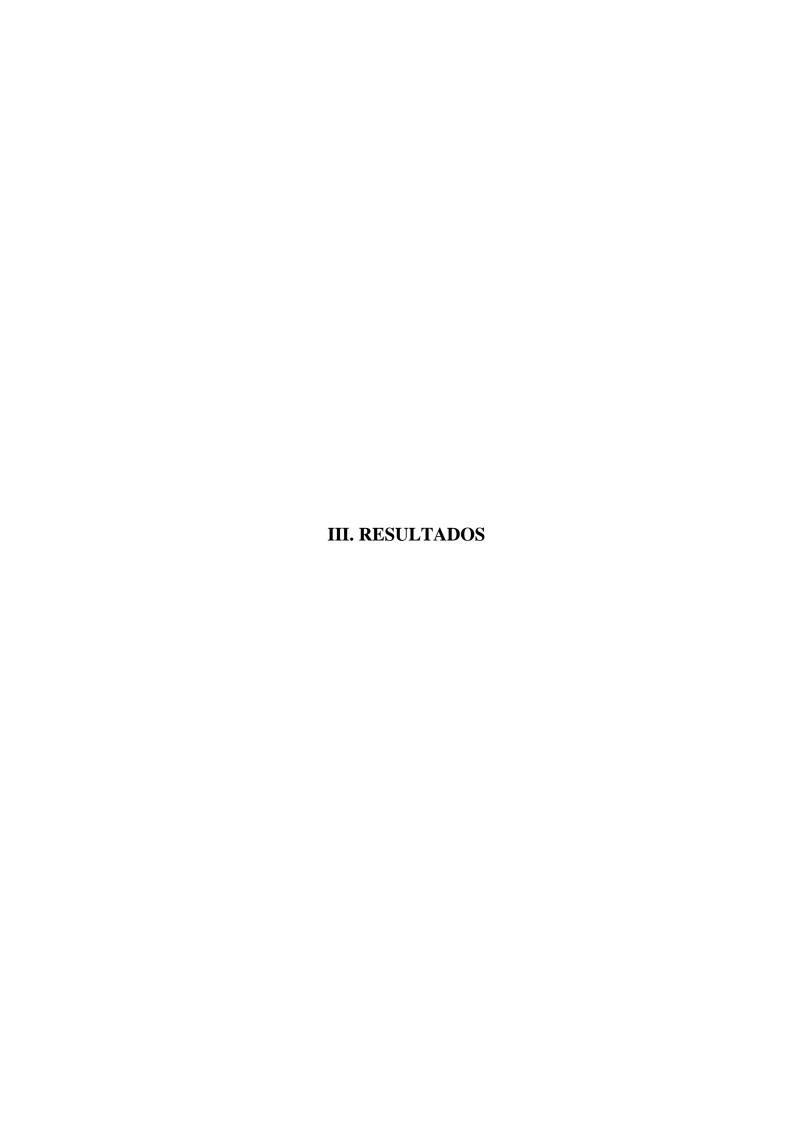
Tabla 6. Confiabilidad de los instrumentos

EXPERTOS	Ing. Delgado Ortega	Ing. Ramos Suarez	Mg. Vertiz Osores
	Henry	Alvaro	Ricardo Ivan
PROMEDIO DE VALORACIÓN DE INSTRUMENTOS	67.2%	80.15%	66.75%

Fuente: Propia

2.5 Procedimiento

Para el desarrollo de este trabajo se empleó el método científico, con un enfoque cuantitativo de tipo aplicada y un diseño cuasi experimental. Donde la población estuvo conformada por el pavimento rígido del Tramo IV (Av.26 de noviembre – Av. Lima) del Proyecto de mejoramiento de la infraestructura vial y peatonal de la Av. Los Héroes – Av. Pachacútec. De la cual, se tomó como muestra para el análisis, 1km del tramo de la vía en el sentido de norte a sur. La recolección de datos se llevó a cabo bajo la técnica de la observación para lo cual se tuvo como instrumento las fichas técnicas de laboratorio, las mismas que antes de su aplicación fueron validadas por dos ingenieros expertos de la carrera y un metodólogo. Posteriormente, con los datos recolectados se procedió al análisis de resultados mediante los softwares, Excel para las tablas y gráficos comparativos y SPSS Versión 23 para análisis de varianza ANOVA. Y finalmente se procedió a realizar las discusiones, conclusiones y recomendaciones donde cada una de ellas respondían a los objetivos planteados.


2.6 Métodos de análisis de datos

En esta investigación los datos recolectados para los agregados gruesos de concreto reciclado serán procesadas con la ayuda de hojas Excel 2013 y luego serán analizadas y comparadas con los parámetros establecidos en la NTP para cada dimensión planteada. Posteriormente se procederá a elaborar y diseñar los concretos bajo la metodología del ACI del comité 211 para luego ensayar los testigos, vigas, y recolectar los datos bajo el método de la observación. Esto con la finalidad de evaluar su viabilidad técnica teniendo en cuenta los parámetros de la metodología AASHTO 93 para el uso del concreto en el diseño de las losas para pavimentos rígidos. Finalmente, también se evaluarán la viabilidad económica mediante una comparación de costos y de igual manera también se verá la viabilidad ambiental mediante tablas comparativas.

2.7 Aspectos éticos

La presente investigación titulada "Viabilidad del uso de concreto reciclado en la construcción del pavimento rígido de la Avenida Pachacútec, Villa el Salvador – 2019" es de carácter original, cuya autenticidad y autoría corresponde a los investigadores mencionados en la declaración jurada.

Por otro lado, el esquema para su desarrollo está garantizado ya que se rige a la normativa para investigaciones de la universidad. Así mismo, se garantiza la parte metodológica cumpliendo la metodología planteada.

Ubicación

La vía de estudio está localizada en el departamento de Lima, El proyecto abarca los distritos de San Juan de Miraflores, Villa María del Triunfo y Villa el Salvador, donde el tramo a estudiar se encuentra entre la Av. Pachacútec y la Av. Lima.

Resultados de la variable: Concreto reciclado

Dimensión 1: Calidad del concreto reciclado

Tabla 7. Resistencia del concreto primario extraído por ensayo de diamantina

D-1 28/05/2019 03/06/2019 7.49 10.30 1.38 0.95 17903.0 406.32 384.22 4 D-2 28/05/2019 03/06/2019 7.49 8.70 1.16 0.91 19181.8 435.35 395.47 381.18 2	ID	Fecha de extracción	Fecha de rotura		Relación Altura / Diámetro (A/D)			Esfuerzo (kg/cm2)	corregido	Esfuerzo promedio (kg/cm2)	de
D-2 28/05/2019 03/06/2019 7.49 8.70 1.16 0.91 19181.8 435.35 395.47 381.18 2				 10.50		0.55	17903.0		384.22		4
D-3 28/05/2019 03/06/2019 7.49 10.20 1.36 0.94 16996.5 385.75 363.84 2				0.70		0.51	17101.0	155.55	000117	381.18	2

Fuente: Propia

Interpretación:

En la tabla 7 se observa que los núcleos de la diamantina D-1 tiene una falla de tipo 4, las cual es distinta al de los otros dos núcleos de diamantina D-2 y D-3 que tienen una falla de tipo 2. Pero a pesar de esto los 3 núcleos diamantinos tienen esfuerzos o resistencias cercanos, siendo estos 384.22, 395.47 y 363.84 kg/cm2, que al promediar se obtiene que la resistencia del concreto primario extraído de una losa de pavimento rígido es 381.18 kg/cm2.

Tabla 8. Resistencia mecánica o dureza de los agregados gruesos

Descripción	Agregado natural	Agregado reciclado	
Tipo de gradación	A	A	
Peso seco inicial (g)	5002.0	5002.5	
Peso luego de la abrasión (g)	4301.7	3401.7	
Porcentaje de desgaste (%)	14%	32%	

Fuente: Propia

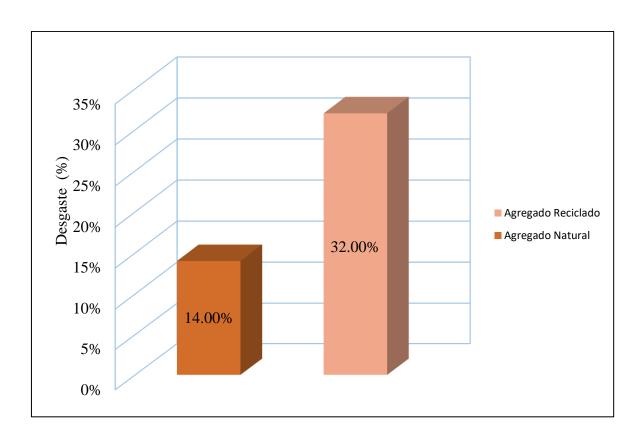


Figura 27. Resistencia mecánica o dureza de los agregados gruesos

Fuente: Propia

Interpretación:

En la tabla 8 y figura 27 se observa que tanto el agregado grueso natural como el reciclado tienen el mismo tipo de gradación para el ensayo de abrasión en la Maquina de los Ángeles. En donde se obtuvo un 14% de desgaste para los áridos naturales y 32% de desgaste para los áridos reciclados, siendo este último mayor en 18%.

Dimensión 2: Caracterización de los agregados gruesos

Tabla 9. Análisis granulométrico de los agregados gruesos naturales

Tamiz	Peso retenido (g)	% Parcial retenido	% Acumulado retenido	% Acumulado que pasa
1"	0.00	0.00	0.00	100.00
3/4"	212.50	7.40	7.40	92.60
1/2"	1492.90	51.98	59.38	40.62
3/8"	832.70	28.99	88.37	11.63
N°4	149.60	5.21	93.58	6.42
Fondo	184.30	6.42	100.00	0.00
TOTAL	2872.00	100.00		

Fuente: Propio

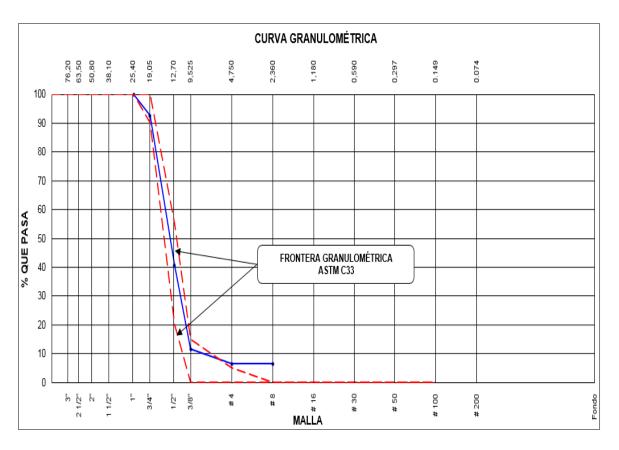


Figura 28. Curva de análisis granulométrico de los agregados naturales

Fuente: Propio

Interpretación:

Según los porcentajes pasantes de los agregados naturales, por los tamices. En la tabla 9 se observa que corresponden a un HUSO 6. De igual manera, en la figura 28 se aprecia que la curva se encuentra dentro de las fronteras para un agregado de HUSO 6.

Tabla 10. Análisis granulométricos de los agregados gruesos reciclados

Tamiz	Peso retenido (g)	% Parcial retenido	% Acumulado retenido	% Acumulado que pasa
1"	0.00	0.00	0.00	100.00
3/4"	460.60	7.13	7.13	92.87
1/2"	4401.40	68.13	75.26	24.74
3/8"	1411.20	21.85	97.11	2.89
N°4	173.80	2.69	99.80	0.20
Fondo	13.00	0.20	100.00	0.00
TOTAL	6460.00	100.00		

Fuente: Propio

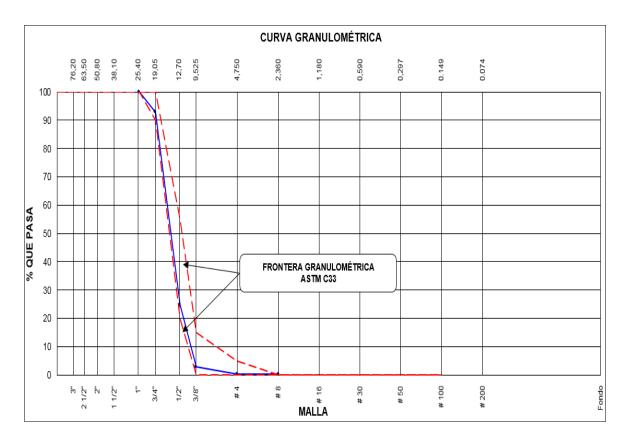


Figura 29. Curva de análisis granulométrico de los agregados reciclados

Fuente: Propio

Interpretación:

Según los porcentajes pasantes de los agregados reciclados, por los tamices. En la tabla 10 se observa que corresponden a un HUSO 6. De igual manera, en la figura 29 se aprecia que la curva se encuentra dentro de las fronteras para un agregado de HUSO 6.

Tabla 11. Peso específico de los agregados gruesos

Descripción	1	Agregado natural			Agregado reciclado		
Descripción	1	2	Promedio	1	2	Promedio	
Peso de la muestra SSS (g)	2338.0	2338.0		2721.0	2721.0		
Peso de la muestra SSS sumergida (g)	1525.0	1524.0		1662.0	1660.0		
Peso de la muestra secada al horno (g)	2326.0	2329.0		2651.0	2655.0		
Peso específico de masa (g/cm3)	2.861	2.861	2.861	2.503	2.502	2.503	
Peso específico de masa SSS (g/cm3)	2.876	2.872	2.874	2.569	2.565	2.567	
Peso específico aparente (g/cm3)	2.904	2.893	2.899	2.680	2.668	2.674	

Fuente: Propia

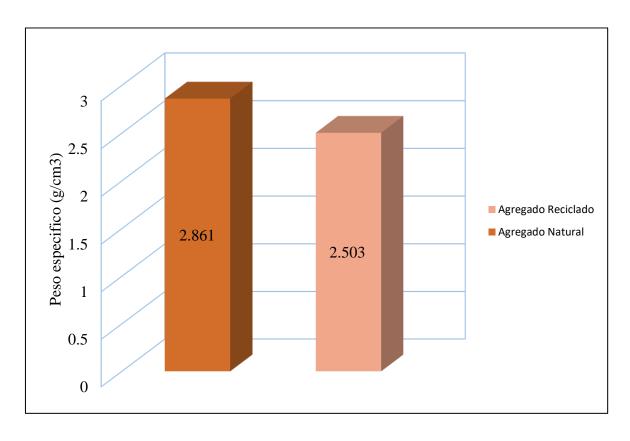


Figura 30. Peso específico de los agregados gruesos

Fuente: Propia

Interpretación:

En la tabla 11 y figura 30 se observa que para cada tipo de agregado se realizó dos ensayos para determinar sus pesos específicos. Los cuales son de tres tipos, pero el que se usa directamente en el diseño de mezcla es el peso específico de masa, que para el agregado grueso natural es 2.861 g/cm3 y para el agregado grueso reciclados es 2.503 g/cm3, siendo este último menor en 0.358 g/cm3. Lo cual quiere decir que los áridos reciclados son más livianos que los áridos naturales. Por lo mismo que su uso producirá concretos más livianos.

Tabla 12. Porcentaje de absorción de los agregados gruesos

Descripción	Agregado natural			Agregado reciclado		
Descripción	1	2	Promedio	1	2	Promedio
Peso de la muestra SSS (g)	2338.0	2338.0		2721.0	2721.0	
Peso de la muestra secada al horno (g)	2326.0	2329.0		2651.0	2655.0	
Porcentaje de Absorción (%)	0.5	0.4	0.5	2.6	2.5	2.6

Fuente: Propia

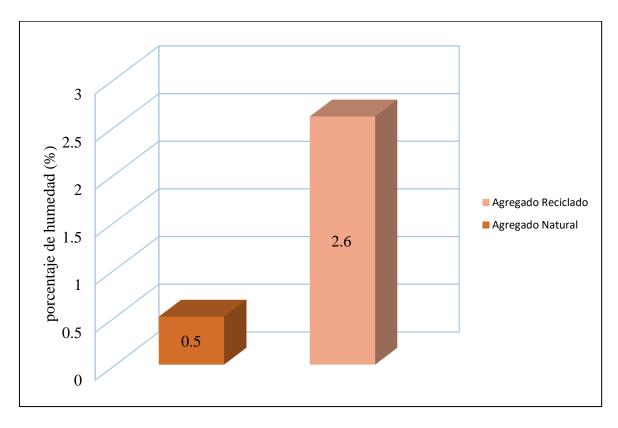


Figura 31. Porcentaje de absorción de los agregados gruesos

Interpretación:

En la tabla 12 y figura 31 se observa que para cada tipo de agregado se realizó dos ensayos para determinar sus porcentajes de absorción. Donde los agregados gruesos naturales tienen 0.5% de absorción y los agregados reciclados 2.6% de absorción, siendo este mayor en 2.1%. Lo que quiere decir que los áridos reciclados absorben mayor cantidad de agua al ser empleadas en las dosificaciones de las mezclas de concreto.

Tabla 13. Porcentaje de humedad de los agregados gruesos

Descripción		Agregado natural			Agregado reciclado		
Descripcion	1	2	Promedio	1	2	Promedio	
Peso de la muestra húmeda (g)	3000.0	3000.0		3000.0	3000.0		
Peso de la muestra seca (g)	2994.0	2996.0		2953.0	2958.0		
Porcentaje de Humedad (%)	0.2	0.1	0.2	1.6	1.4	1.5	

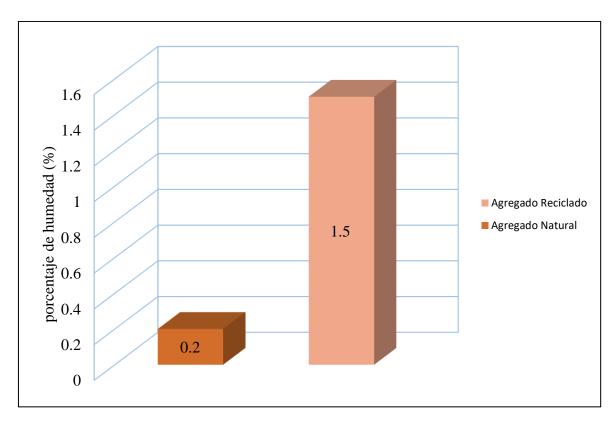


Figura 32. Porcentaje de humedad de los agregados gruesos

Interpretación:

En la tabla 13 y figura 32 se observa que para cada tipo de agregado se realizó dos ensayos para determinar sus porcentajes de humedades. Donde los agregados gruesos naturales tienen 0.2% de húmeda y los agregados reciclados 1.5% de húmeda, siendo este mayor en 1.3%. Lo que quiere decir que los áridos reciclados tienden a absorber mayor cantidad de agua del medio ambiente, gracias a la cantidad de mortero adherido que poseen.

Tabla 14. Peso unitario suelto de los agregados gruesos

December	1	Agregado natural			Agregado reciclado		
Descripción	1	2	Promedio	1	2	Promedio	
Peso del molde (kg)	3.509	3.509		3.509	3.509		
Volumen del molde (m3)	0.007	0.007		0.007	0.007		
Peso de molde + muestra suelta (kg)	13.686	13.463		13.112	13.178		
Peso de muestra suelta (kg)	10.177	9.954		9.603	9.669		
Peso unitario suelto (kg/m3)	1442	1411	1427	1361	1370	1366	

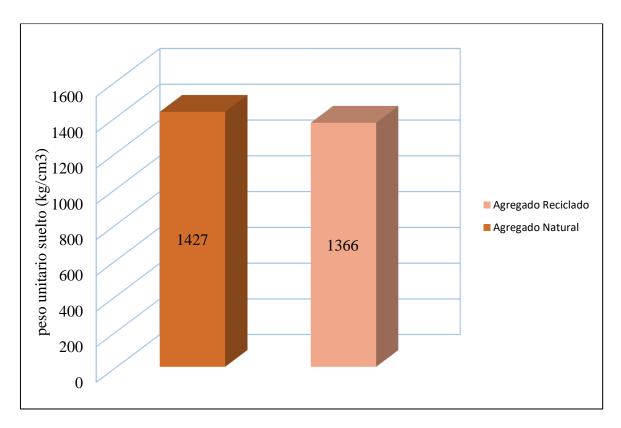


Figura 33. Peso unitario suelto de los agregados gruesos

Interpretación:

En la tabla 14 y figura 33 se observa que para cada tipo de agregado se realizó dos ensayos para determinar sus pesos unitarios sueltos. Donde los agregados gruesos naturales tienen un peso unitario suelto de 1427 kg/m3 mientras que el peso unitario suelto de los agregados reciclados resulto 1366 kg/m3, siendo este menor en 61 kg/m3. Respecto a los valores de los pesos unitarios sueltos, estos se usan redondeado a la decena, en los diseños de mezcla. Entonces el peso unitario suelto del árido natural seria 1430 kg/m3 y del árido reciclado 1370 kg/m3.

Tabla 15. Peso unitario compactado de los agregados gruesos

Dogarinaión	I	Agregado natural			Agregado reciclado		
Descripción	1	2	Promedio	1	2	Promedio	
Peso del molde (kg)	3.509	3.509		3.509	3.509		
Volumen del molde (m3)	0.007	0.007		0.007	0.007		
Peso de molde + muestra suelta (kg)	14.829	14.453		13.975	14.167		
Peso de muestra suelta (kg)	11.320	10.944		10.466	10.658		
Peso unitario suelto (kg/m3)	1604	1551	1578	1483	1510	1497	

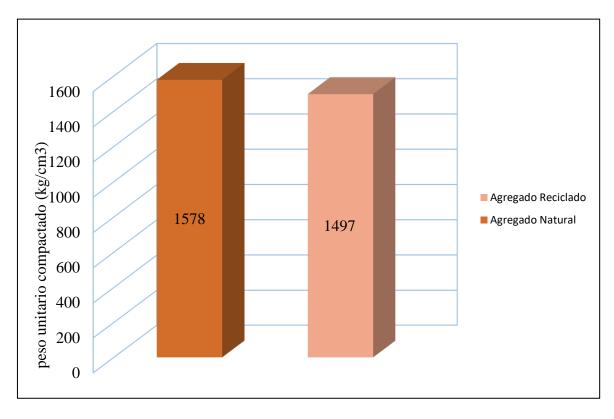


Figura 34. Peso unitario compactado de los agregados gruesos

Interpretación:

En la tabla 15 y figura 34 se observa que para cada tipo de agregado se realizó dos ensayos para determinar sus pesos unitarios compactados. Donde los agregados gruesos naturales tienen un peso unitario compactado de 1578 kg/m3 mientras que el peso unitario suelto de los agregados reciclados resulto 1497 kg/m3, siendo este menor en 81 kg/m3. Respecto a los valores de los pesos unitarios compactados, estos se usan redondeado a la decena, en los diseños de mezcla. Entonces el peso unitario compactado del árido natural seria 1580 kg/m3 y del árido reciclado 1500 kg/m3.

Tabla 16. Cantidad de mortero adherido en los agregados grueso reciclados

Dogovinoi ón	Agregado reciclado		
Descripción	1	2	Promedio
Peso del agregado con mortero (g)	3000.00	3000.00	
Peso del agregado sin mortero retenida en la malla Nº4 (g)	2369.00	2345.00	
Porcentaje de mortero adherido (%)	21.03	21.83	21.43

Interpretación:

En la tabla 16 se observa que se realizaron dos ensayos para determinar la cantidad de mortero adherido en los agregados gruesos de concreto reciclado. Donde se obtuvo que estos poseen un 21.43% de motero adherido. Este ensayo es importante para saber las características de los agregados reciclados que se usó en el diseño de concreto de esta investigación.

Tabla 17. Resumen de las propiedades físicas de los agregados

Propiedades físicas	Finos	Gruesos Naturales	Gruesos Reciclados
Tamaño máximo nominal		3/4"	3/4"
Módulo de finura		7.42	7.79
Peso específico de masa	2552 kg/m3	2861 kg/m3	2503 kg/m3
Peso unitario suelto	1430 kg/m3	1430 kg/m3	1370 kg/m3
Peso unitario compactado	1560 kg/m3	1580 kg/m3	1500 kg/m3
Contenido de humedad	0.60%	0.20%	1.50%
Absorción	2.00%	0.50%	2.60%

Fuente: Propia

Interpretación:

En la tabla 17 se observa un resumen de las propiedades físicas que se emplearon en el diseño de mezcla. Las cuales se obtuvieron luego de los ensayos de caracterización.

Dimensión 3: Diseño de concreto

Para el desarrollo de esta investigación se consideraron 5 tipos de diseños de mezclas con diferentes dosificaciones incorporando 10%, 20% y 30% de Agregados Gruesos de Concreto Reciclado (AGCR).

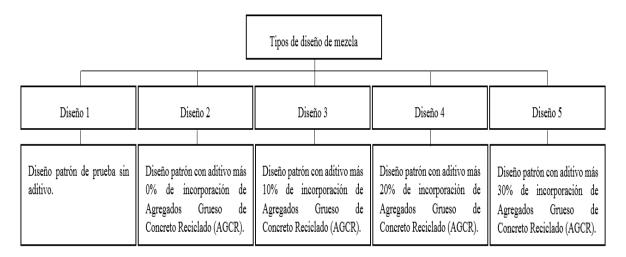


Figura 35. Tipos de diseño de mezcla

Fuente: Propia

Tabla 18. Dosificación del diseño de mezcla 1

Materiales	Por 1 m3	Por tanda de 0.045 m ³
Cantidad de aire atrapado	2.00 %	0.09 %
Cemento Sol Tipo I	512.00 kg	23.06 kg
Aditivo Dynamon SP1	0.00 L	0.00 L
Agregado grueso natural	803.00 kg	36.14 kg
Agregado grueso reciclado	0.00 kg	0.00 kg
Agregado fino	848.00 kg	38.16 kg
Agua efectiva corregida	219.20 L	9.86 L

Fuente: Propia

Interpretación:

En la tabla 18 se observa la dosificación del diseño de mezcla 1, el cual corresponde al diseño de mezcla patrón sin aditivo. Este diseño se realizó para 1m3 y para una tanda de prueba de 0.045m3, que sirvió para corregir las dosificaciones de agua con el uso de aditivos y también para verificar si la tanda era suficiente para el moldeo de 2 vigas, 9 testigos y para una prueba de Cono de Abrams.

Tabla 19. Dosificación del diseño de mezcla 2

Materiales	Por 1 m3	Por tanda de 0.045 m3
Cantidad de aire atrapado	2.00 %	0.09 %
Cemento Sol Tipo I	346.45 kg	15.59 kg
Aditivo Dynamon SP1	2.67 L	0.12 L
Agregado grueso natural	803.00 kg	36.14 kg
Agregado grueso reciclado	0.00 kg	0.00 kg
Agregado fino	1149.00 kg	51.71 kg
Agua efectiva corregida	157.00 L	7.06 L

Interpretación:

En la tabla 19 se observa la dosificación del diseño de mezcla 2, el cual corresponde al diseño de mezcla patrón con aditivo más 0% de incorporación de AGCR. Este diseño se realizó para 1m3 y para una tanda de 0.045m3, con las correcciones de agua y proporciones de los materiales por el uso del aditivo Dynamon SP1 (superplastificante).

Tabla 20. Dosificación del diseño de mezcla 3

Materiales	Por 1 m3	Por tanda de 0.045 m3
Cantidad de aire atrapado	2.00 %	0.09 %
Cemento Sol Tipo I	346.45 kg	15.59 kg
Aditivo Dynamon SP1	2.67 L	0.12 L
Agregado grueso natural	722.00 kg	32.49 kg
Agregado grueso reciclado	71.00 kg	3.20 kg
Agregado fino	1149.00 kg	51.71 kg
Agua efectiva corregida	157.50 L	7.09 L

Fuente: Propia

Interpretación:

En la tabla 20 se observa la dosificación del diseño mezcla patrón con aditivo más 10% de incorporación de AGCR. Donde se aprecia que esta incorporación genera un aumento de 0.50 L de agua en la dosificación de 1m3 y de 0.03 L de agua para la tanda de 0.045m3, respecto a la dosificación del diseño de mezcla 2 con 0% de AGCR.

Tabla 21. Dosificación del diseño de mezcla 4

Materiales	Por 1 m3	Por tanda de 0.045 m3
Cantidad de aire atrapado	2.00 %	0.09 %
Cemento Sol Tipo I	346.45 kg	15.59 Kg
Aditivo Dynamon SP1	2.67 L	0.12 L
Agregado grueso natural	642.00 kg	28.89 Kg
Agregado grueso reciclado	142.00 kg	6.39 Kg
Agregado fino	1149.00 kg	51.71 Kg
Agua efectiva corregida	158.00 L	7.11 L

Interpretación:

En la tabla 21 se observa la dosificación del diseño mezcla patrón con aditivo más 20% de incorporación de AGCR. Donde se aprecia que esta incorporación genera un aumento de 1L de agua en la dosificación de 1m3 y de 0.05 L de agua para la tanda de 0.045m3, respecto a la dosificación del diseño de mezcla 2 con 0% de AGCR.

Tabla 22. Dosificación del diseño de mezcla 5

Materiales	Por 1 m3	Por tanda de 0.045 m3
Cantidad de aire atrapado	2.00 %	0.09 %
Cemento Sol Tipo I	346.45 kg	15.59 kg
Aditivo Dynamon SP1	2.67 L	0.12 L
Agregado grueso natural	562.00 kg	25.29 kg
Agregado grueso reciclado	213.00 kg	9.59 kg
Agregado fino	1149.00 kg	51.71 kg
Agua efectiva corregida	158.60 L	7.14 L

Fuente: Propia

Interpretación:

En la tabla 22 se observa la dosificación del diseño mezcla patrón con aditivo más 30% de incorporación de AGCR. Donde se aprecia que esta incorporación genera un aumento de 1.60L de agua en la dosificación de 1m3 y de 0.08 L de agua para la tanda de 0.045m3, respecto a la dosificación del diseño de mezcla 2 con 0% de AGCR.

Resultados de la variable: Viabilidad de la construcción del pavimento rígido

Dimensión 1: Viabilidad técnica

Tabla 23. Temperatura de vaciado del concreto según los tipos de diseño de mezcla

Tipos de diseño de mezcla	Temperatura (°C)
Diseño 2 (0% AGCR)	23.0
Diseño 3 (10% AGCR)	22.5
Diseño 4 (20% AGCR)	22.3
Diseño 5 (30% AGCR)	21.6

Fuente: Propia

Figura 36. Temperatura de vaciado del concreto según los tipos de diseño de mezcla

Fuente: Propia

Interpretación:

En la tabla en la tabla 23 y figura 36 se observa que, para los diseños de mezcla 2,3,4,5 con incorporación de 0%, 10%, 20% y 30% de AGCR respectivamente, las temperaturas tienden a disminuir de forma variada a medida que se adiciona más AGCR.

Tabla 24. Asentamiento (slump) según los tipos de diseño de mezcla

Tipos de diseño de mezcla	Asentamiento (pulg.)
Diseño 2 (0% AGCR)	3 ½"
Diseño 3 (10% AGCR)	3 1/4"
Diseño 4 (20% AGCR)	3"
Diseño 5 (30% AGCR)	2 ½"

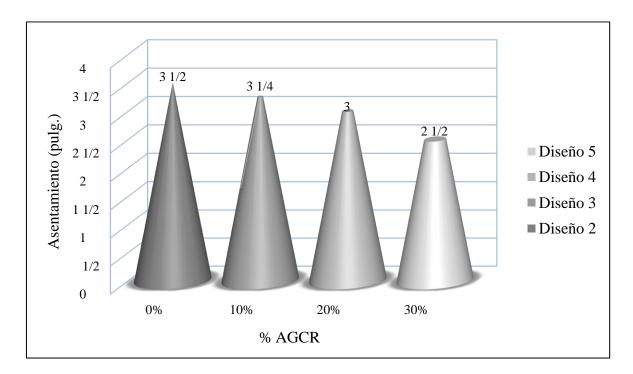


Figura 37. Asentamiento (Slump) según los tipos de diseño de mezcla

Fuente: Propia

Interpretación:

En la tabla en la tabla 24 y figura 37 se observa que, para los diseños de mezcla 2,3,4,5 con incorporación de 0%, 10%, 20% y 30% de AGCR respectivamente, los asentamientos tienden a disminuir de forma variada a medida que se adiciona más AGCR.

Tabla 25. Resistencia a la compresión del concreto con diseño de mezcla 2

Identificación	Fecha de vaciado	Fecha de rotura	Edad (días)	Diámetro (cm)	Altura (cm)	Tipo de falla	Resistencia especificada (kg/cm2)	Carga de rotura (kg)	Resistencia obtenida (kg/cm2)	Resistencia promedio obtenida (kg/cm2)	Resistencia obtenida (%)	Resistencia promedio obtenida (%)
Diseño 2	04/06/2019	11/06/2019	7	10.11	20.20	5	350.00	22378.3	278.76		79.65	
Diseño 2	04/06/2019	11/06/2019	7	10.08	20.10	5	350.00	21805.6	273.25	276.72	78.07	79.06
Diseño 2	04/06/2019	11/06/2019	7	10.10	20.11	5	350.00	22285.1	278.15		79.47	
Diseño 2	04/06/2019	18/06/2019	14	10.09	20.11	6	350.00	25843.2	323.20		92.34	
Diseño 2	04/06/2019	18/06/2019	14	10.10	20.09	5	350.00	25614.1	319.70	321.23	91.34	91.78
Diseño 2	04/06/2019	18/06/2019	14	10.11	20.11	6	350.00	25745.5	320.77		91.65	
Diseño 2	04/06/2019	02/07/2019	28	10.11	20.20	5	350.00	29528.6	367.83		105.10	
Diseño 2	04/06/2019	02/07/2019	28	10.08	20.10	6	350.00	29729.3	372.54	368.82	106.44	105.38
Diseño 2	04/06/2019	02/07/2019	28	10.10	20.11	5	350.00	29330.4	366.09		104.60	

Tabla 26. Resistencia a la compresión del concreto con diseño de mezcla 3

Identificación	Fecha de vaciado	Fecha de rotura	Edad (días)	Diámetro (cm)	Altura (cm)	Tipo de falla	Resistencia especificada (kg/cm2)	Carga de rotura (kg)	Resistencia obtenida (kg/cm2)	Resistencia promedio obtenida (kg/cm2)	Resistencia obtenida (%)	Resistencia promedio obtenida (%)
Diseño 3	05/06/2019	12/06/2019	7	10.08	20.12	5	350.00	23251.4	291.37		83.25	
Diseño 3	05/06/2019	12/06/2019	7	10.10	20.11	5	350.00	23714.3	295.99	293.61	84.57	83.89
Diseño 3	05/06/2019	12/06/2019	7	10.10	20.11	5	350.00	23512.6	293.47		83.85	
Diseño 3	05/06/2019	19/06/2019	14	10.09	20.11	6	350.00	26677.5	333.64		95.32	
Diseño 3	05/06/2019	19/06/2019	14	10.11	20.10	5	350.00	26478.7	329.84	331.57	94.24	94.73
Diseño 3	05/06/2019	19/06/2019	14	10.07	20.09	5	350.00	26379.3	331.22		94.63	
Diseño 3	05/06/2019	03/07/2019	28	10.08	20.10	5	350.00	29677.4	371.89		106.25	
Diseño 3	05/06/2019	03/07/2019	28	10.10	20.09	6	350.00	29878.7	372.93	373.25	106.55	106.64
Diseño 3	05/06/2019	03/07/2019	28	10.09	20.10	6	350.00	29979.3	374.93		107.12	

Tabla 27. Resistencia a la compresión del concreto con diseño de mezcla 4

Identificación	Fecha de vaciado	Fecha de rotura	Edad (días)	Diámetro (cm)	Altura (cm)	Tipo de falla	Resistencia especificada (kg/cm2)	Carga de rotura (kg)	Resistencia obtenida (kg/cm2)	Resistencia promedio obtenida (kg/cm2)	Resistencia obtenida (%)	Resistencia promedio obtenida (%)
Diseño 4	05/06/2019	12/06/2019	7	10.10	20.04	5	350.00	22645.2	282.65		80.76	
Diseño 4	05/06/2019	12/06/2019	7	10.11	20.06	5	350.00	22156.4	276.00	281.04	78.86	80.30
Diseño 4	05/06/2019	12/06/2019	7	10.06	20.10	5	350.00	22612.7	284.49		81.28	
Diseño 4	05/06/2019	19/06/2019	14	10.09	20.03	6	350.00	26673.8	333.59		95.31	
Diseño 4	05/06/2019	19/06/2019	14	10.10	20.05	5	350.00	25894.4	323.20	327.39	92.34	93.54
Diseño 4	05/06/2019	19/06/2019	14	10.08	20.11	5	350.00	25965.5	325.38		92.96	
Diseño 4	05/06/2019	03/07/2019	28	10.08	20.01	5	350.00	29193.8	365.83		104.52	
Diseño 4	05/06/2019	03/07/2019	28	10.11	20.04	5	350.00	29394.4	366.16	368.50	104.62	105.29
Diseño 4	05/06/2019	03/07/2019	28	10.09	20.10	6	350.00	29865.1	373.50		106.71	

Tabla 28. Resistencia a la compresión del concreto con diseño de mezcla 5

Identificación	Fecha de vaciado	Fecha de rotura	Edad (días)	Diámetro (cm)	Altura (cm)	Tipo de falla	Resistencia especificada (kg/cm2)	Carga de rotura (kg)	Resistencia obtenida (kg/cm2)	Resistencia promedio obtenida (kg/cm2)	Resistencia obtenida (%)	Resistencia promedio obtenida (%)
Diseño 5	05/06/2019	12/06/2019	7	10.07	20.11	5	350.00	21451.4	269.34		76.96	
Diseño 5	05/06/2019	12/06/2019	7	10.11	20.09	5	350.00	21752.4	270.97	269.59	77.42	77.03
Diseño 5	05/06/2019	12/06/2019	7	10.09	20.08	5	350.00	21466.4	268.46		76.70	
Diseño 5	05/06/2019	19/06/2019	14	10.07	20.11	5	350.00	24251.7	304.50		87.00	
Diseño 5	05/06/2019	19/06/2019	14	10.11	20.10	5	350.00	23852.9	297.07	300.38	84.88	85.82
Diseño 5	05/06/2019	19/06/2019	14	10.09	20.08	5	350.00	23953.2	299.57		85.59	
Diseño 5	05/06/2019	03/07/2019	28	10.08	20.10	5	350.00	28951.4	362.79		103.66	
Diseño 5	05/06/2019	03/07/2019	28	10.09	20.10	5	350.00	27952.4	349.58	355.31	99.88	101.52
Diseño 5	05/06/2019	03/07/2019	28	10.11	20.09	5	350.00	28383.4	353.57		101.02	

Tabla 29. Resistencia promedio a la compresión del concreto f'c = 350 kg/cm2 a los 7 días, según el tipo de diseño de mezcla

Identificación	Resistencia promedio obtenida (kg/cm2)	Resistencia Promedio obtenida (%)
Diseño 2	276.72	79.06
Diseño 3	293.61	83.89
Diseño 4	281.04	80.30
Diseño 5	269.59	77.03

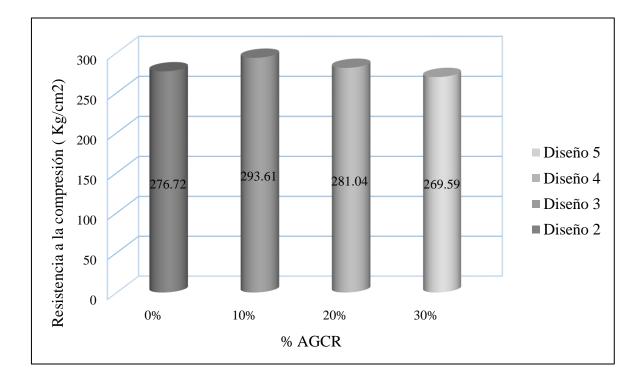


Figura 38. Resumen de las resistencias promedio a la compresión del concreto f´c = 350 kg/cm2 a los 7 días, según el tipo de diseño de mezcla

Fuente: Propia

Interpretación:

En la tabla 23 y figura 38 se observa que los diseños de mezclas con incorporación de 0%, 10%, 20% y 30% de AGCR han alcanzado un 79.06%, 83.89%, 80.30% y 77.03% de la resistencia especificada respectivamente.

Tabla 30. Resistencia promedio a la compresión del concreto f'c = 350 kg/cm2 a los 14 días, según el tipo de diseño de mezcla

Identificación	Resistencia promedio obtenida (kg/cm2)	Resistencia Promedio obtenida (%)
Diseño 2	321.23	91.78
Diseño 3	331.57	94.73
Diseño 4	327.39	93.54
Diseño 5	300.38	85.82

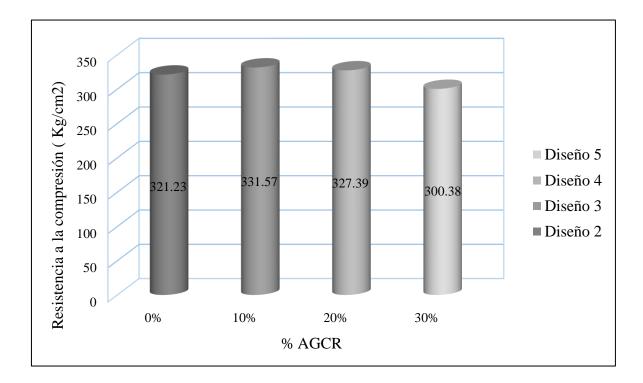


Figura 39. Resistencias promedio a la compresión del concreto f´c = 350 kg/cm2 a los 14 días, según el tipo de diseño de mezcla

Fuente: Propia

Interpretación:

En la tabla 30 y figura 39 se observa que los diseños de mezclas con incorporación de 0%, 10%, 20% y 30% de AGCR han alcanzado un 91.78%, 94.73%, 93.53% y 85.82% de la resistencia especificada respectivamente.

Tabla 31. Resistencia promedio a la compresión del concreto f'c = 350 kg/cm2 a los 28 días, según el tipo de diseño de mezcla

Identificación	Resistencia promedio obtenida (kg/cm2)	Resistencia Promedio obtenida (%)
Diseño 2	368.82	105.38
Diseño 3	373.25	106.64
Diseño 4	368.50	105.29
Diseño 5	355.31	101.52

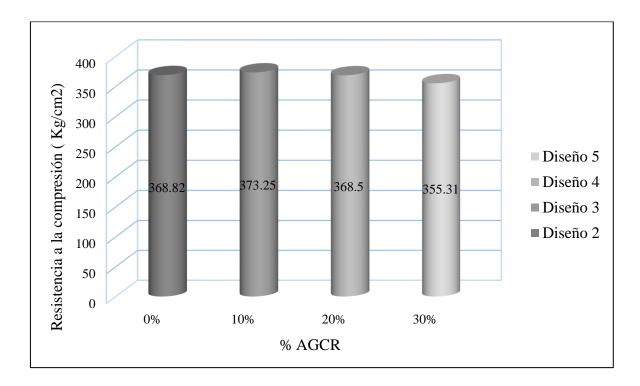


Figura 40. Resistencia promedio a la compresión del concreto f'c = 350 kg/cm2 a los 28 días, según el tipo de diseño de mezcla

Fuente: Propia

Interpretación:

En la tabla en la tabla 31 y figura 40 se observa que los diseños de mezclas con incorporación de 0%, 10%, 20% y 30% de AGCR han alcanzado un 105.38%, 106.64%, 105.29% y 101.52% de la resistencia especificada respectivamente.

Tabla 32. Resistencias promedio a la compresión del concreto vs tiempo de curado, según el tipo de diseño de mezcla

Resistencia promedio obtenida (kg/cm2)										
Tiempo de	Tipo de diseño de mezcla									
curado (días)	Diseño 2	Diseño 3	Diseño 4	Diseño 5						
7	276.72	293.61	281.04	269.59						
14	321.23	331.57	327.39	300.38						
28	368.82	373.25	368.50	355.31						

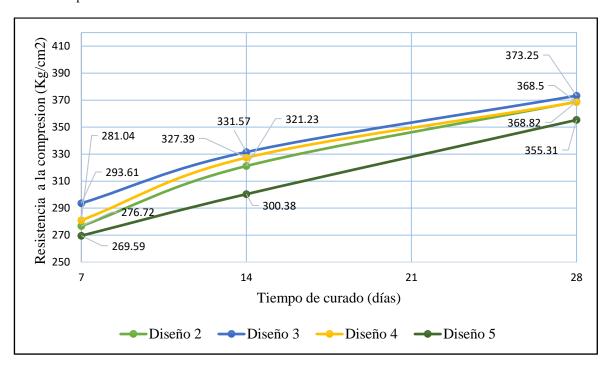


Figura 41. Resistencias promedio a la compresión del concreto vs tiempo de curado, según el tipo de diseño de mezcla

Fuente: Propia

Interpretación:

En la tabla en la tabla 32 y figura 41 se observa que la curva de resistencia a compresión del diseño de mezcla 3 (10% AGCR) supera a las demás resistencias. Mientras que la curva de resistencia del diseño de mezcla 4 (20% AGCR) se asemeja a la del concreto patrón con diseño de mezcla 2 (0% AGCR). Por último, la curva de resistencia del concreto con diseño de mezcla 5 (30% AGCR) es inferior a las demás resistencias de los otros diseños de mezcla.

Tabla 33. Resistencias a flexo tracción del concreto, según los tipos de diseño de mezcla

Identificación	Fecha de vaciado	Fecha de rotura	Edad (días)	Altura (cm)	Ancho (cm)	Ubicación de la falla	Luz libre (cm)	Carga de rotura (kg)	Resistencia obtenida (kg/cm2)	Resistencia promedio obtenida (kg/cm2)
Diseño 2	04/06/2019	02/07/2019	28	15.1	15.1	Tercio central	45	3552.8	46.44	46.28
Diseño 2	04/06/2019	02/07/2019	28	15.1	15.1	Tercio central	45	3528.6	46.12	40.26
Diseño 3	05/06/2019	03/07/2019	28	15.1	15.1	Tercio central	45	3549.7	46.40	46.43
Diseño 3	05/06/2019	03/07/2019	28	15.1	15.1	Tercio central	45	3554.3	46.46	40.43
Diseño 4	05/06/2019	03/07/2019	28	15.1	15.1	Tercio central	45	3520.1	46.01	46.25
Diseño 4	05/06/2019	03/07/2019	28	15.1	15.1	Tercio central	45	3557.3	46.49	40.23
Diseño 5	05/06/2019	03/07/2019	28	15.1	15.1	Tercio central	45	3505.9	45.82	45.40
Diseño 5	05/06/2019	03/07/2019	28	15.1	15.1	Tercio central	45	3441.7	44.98	45.40

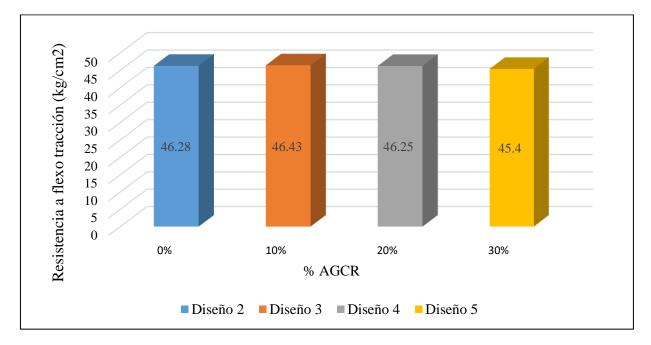


Figura 42. Resistencias promedio a flexo tracción del concreto, según los tipos de diseño de mezcla

Fuente: Propia

Interpretación:

En la tabla en la tabla 34 y figura 42 se observa que la resistencia a flexo tracción del concreto con 10% de AGCR supera en 0.15 kg/cm2 al concreto patrón con 0% de AGCR. Mientras que el concreto con 20% de AGCR tiene la resistencia más próxima al concreto patrón con 0.03 kg/cm2 de diferencia por debajo. Por último, el concreto con 30% de ACGR es el que más difiere de la resistencia del concreto patrón con 0.88 kg/cm2.

Dimensión 2: Viabilidad económica

Para evaluar la viabilidad económica se analizaron los costos directos de las partidas del presupuesto del proyecto donde inciden el costo del concreto reciclado.

Partida	02.02	ELIMINACIÓN	DE DEMOLICIONES					
Rendimiento	m3/DIA	MO. 30.0000	EQ. 30.0000			Costo unitario d	irecto por: m3	57.18
Código	Descripción l	Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra						
0101010003	OPERARIO			hh	2.0000	0.13	20.64	2.68
0101010005	PEON			hh	2.0000	0.13	15.16	1.97
								4.65
		Equipos						
0301010006	HERRAMIE	NTAS MANUALES		%mo		5.00	4.65	0.23
03011600010004	CARGADOF	R SOBRE LLANTAS DE 16	0-195 HP 3.5 yd3	hm	1.0000	0.07	220.34	15.42
0301220009	VOLQUETE	CAP=15.00M ³ D= 25 km		hm	1.0000	0.07	526.90	36.88
								52.53

Figura 43. Costo directo de la partida eliminación convencional de demoliciones

Fuente: Propia

Partida	02.02	ELIMINACIÓN	DE DEMOLICIONES A PL	ANTA RECICLAD	ORA			
Rendimiento	m3/DIA	MO. 30.0000	EQ. 30.0000			Costo unitario d	irecto por: m3	48.43
Código	Descripción R	ecurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra						
)101010003	OPERARIO			hh	2.0000	0.13	20.64	2.68
101010005	PEON			hh	2.0000	0.13	15.16	1.97
								4.65
		Equipos						
301010006	HERRAMIEN	ITAS MANUALES		%mo		5.00	4.65	0.23
3011600010004	CARGADOR	SOBRE LLANTAS DE 16	0-195 HP 3.5 yd3	hm	1.0000	0.07	220.34	15.42
301220009	VOLQUETE	CAP=15.00M ³ D= 25 km		hm	1.0000	0.07	401.90	28.13
								43.78

Figura 44. Costo directo de la partida eliminación de demoliciones a planta recicladora

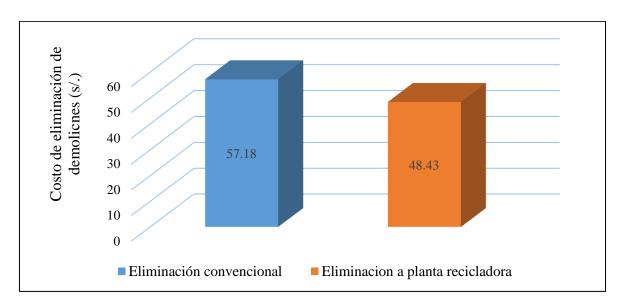


Figura 45. Costos directos de las partidas eliminación de demoliciones

Interpretación:

En las figuras 43, 44 y 45 se observa que los costos directos de la eliminación convencional de los desmontes de demolición, es mayor en S/8.75 al costo de eliminación de los desmontes a una planta recicladora.

Partida	04.03.03	CONCRETO f'c =	350 kg/cm2 EN PAVIMEN	TOS RIGIDOS				
Rendimiento	m3/DIA	MO.14.0000	EQ. 14.0000			Costo unitario d	lirecto por: m3	362.48
Código	Descripción	Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010003	OPERARIO	Mano de Obra		hh	2.0000	1.14	20.64	23.54
0101010004	OFICIAL			hh	2.0000	1.14	18.19	20.73
0101010005	PEON			hh	8.0000	4.57	15.16	69.28
								103.55
		Materiales						
02070100010005	AGREGADO) GRUESO NATURAL		m3		0.28	65.00	18.20
02070200010002	ARENA GRU	JESA		m3		0.45	50.00	22.50
0213010001	CEMENTO F	PORTLAND TIPO I (42.5 kg)	bol		8.15	23.50	191.53
0290130022	AGUA			m3		0.16	5.60	0.90
0290130021	ADITIVO			m3		0.02	6.00	0.12
								233.25
		Equipos						
0301010006	HERRAMIEN	NTAS MANUALES		%mo		5.00	103.55	5.17
03010600020010	REGLA DE A	ALUMINIO		und		0.02	59.90	1.20
03012900010006	VIBRADOR	DE CONCRETO 4 HP 2.40'	•	Hm	1.0000	0.57	12.71	7.24
03012900030004	MEZCLADO	RA DE CONCRETO TAMB	OR 18 HP 11 p3	Hm	1.0000	0.57	21.19	12.07
								25.68

Figura 46. Costo directo de la partida concreto f'c = 350 kg/cm 2 con agregado grueso natural Fuente: Propia

Partida	04.03.03	CONCRETO f'c =	350 kg/cm2 EN PAVIMENT	OS RIGIDOS CON	AGREGADOS GR	UESOS DE CONC	RETO RECICLADO	
Rendimiento	m3/DIA	MO.14.0000	EQ. 14.0000			Costo unitario o	lirecto por: m3	362.48
Código	Descripción	Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010003	OPERARIO	Mano de Obra		hh	2.0000	1.14	20.64	23.54
0101010003	OFICIAL			hh	2.0000	1.14	18.19	20.73
0101010004	PEON			hh	8.0000	4.57	15.16	69.28
0101010003	FLON			IIII	0.0000	4.31	13.10	103.55
		Materiales						100.00
02070100010005	AGREGADO	GRUESO NATURAL		m3		0.22	65.00	14.30
02070100010006	AGREGADO	GRUESO DE CONCRET	O RECICLADO	m3		0.06	65.00	3.90
02070200010002	ARENA GRI	JESA		m3		0.45	50.00	22.50
0213010001	CEMENTO F	PORTLAND TIPO I (42.5 kg	3)	bol		8.15	23.50	191.53
0290130022	AGUA			m3		0.16	5.60	0.90
0290130021	ADITIVO			m3		0.02	6.00	0.12
								233.25
0004040000		Equipos		0/		5.00	400.55	
0301010006		NTAS MANUALES		%mo		5.00	103.55	5.17
03010600020010	REGLA DE /			und		0.02	59.90	1.20
03012900010006	VIBRADOR	DE CONCRETO 4 HP 2.40	"	Hm	1.0000	0.57	12.71	7.24
03012900030004	MEZCLADO	RA DE CONCRETO TAME	OR 18 HP 11 p3	Hm	1.0000	0.57	21.19	12.07
								25.68

Figura 47. Costo directo de la partida concreto f'c = 350 kg/cm2 con agregado grueso reciclado

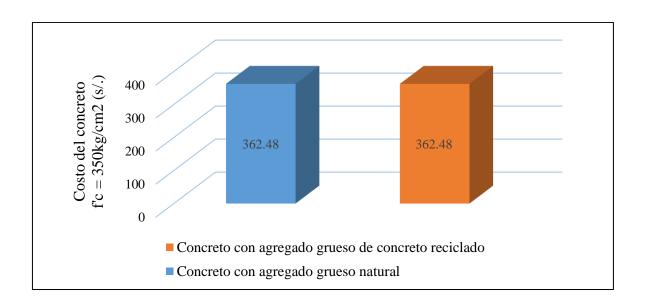


Figura 48. Costos directos de las partidas concreto f'c = 350 kg/cm2 para pavimentos rígidos

Interpretación:

En las figuras 46, 47 y 48 se observa que los costos directos del concreto f'c = 350 kg/cm2 con agregados gruesos naturales y de concreto reciclado tienen el mismo costo. Esto debido a que el tanto el precio unitario del agregado grueso natural y reciclado no varían. Ya que para el desarrollo de esta investigación el material reciclado, ya procesado en una planta especializada, tenía el mismo que el agregado natural.

Presupuesto

0202001 VIABILIDAD DE LA CONSTRUCCIÓN DEL PAVIMENTO RÍGIDO UTILIZANDO CONCRETO Presupuesto

RECICLADO EN LA AVENIDA PACHACÚTEC, VILLA EL SALVADOR - 2019

Subpresupuesto PRESUPUESTO GENERAL 1 KM VILLA EL SALVADOR - LIMA 001

Lugar

Item	Descripción	Und.	Metrado	Precio (S/.)	Parcial (S/.)
01	OBRAS PROVISIONALES				
01.01	CARTEL DE IDENTIFICACIÓN DE OBRA 8.50MX3.60M	Und.	1.00	1,169.23	1,169.23
01.02	OFICIAL Y ALMACENES	mes	7.00	508.47	3,559.29
02	TRABAJOS PRELIMINARES				
02.01	MOVILIZACION Y DESMOVILIZACION DE EQUIPOS Y MAQUINARIAS	glb	1.00	18,850.91	18,850.91
02.02	DEMOLICIONES	m3	1,320.00	59.86	79,015.20
02.03	ELIMINACION DE DEMOLICIONES	m3	1,320.00	57.18	75,477.60
02.04	TRAZO, NIVELES Y REPLANTEO	m2	6,660.00	2.07	13,786.20
020.05	LIMPIEZA DEL TERRENO MANUAL	m2	6,600.00	0.47	3,102.00
03	SEGURIDAD Y SALUD				
03.01	ELABORACION, IMPLEMENTACION Y ADMISTRACION DEL PLAN	alb	1.00	4,500.00	4,500.00
VJ.VT	DE SEGURIDAD Y SALUD EN EL TRABAJO	glb	1.00	4,500.00	4,300.00
03.02	EQUIPOS DE PROTECCION INDIVIDUAL	Und.	1.00	13,923.09	13,923.09
03.03	SEÑALIZACION TEMPORAL DE SEGURIDAD	Und.	1.00	1,401.60	1,401.60
03.04	CAPACITACION EN SEGURIDAD Y SALUD	Und.	1.00	4,500.00	4,500.00
02.05	RECURSOS PARA REPUESTAS ANTE EMERGENCIA EN SEGURIDAD	Hed	4.00	524.40	524.40
03.05	Y SALUD DURANTE EL TRABAJO	Und.	1.00	521.19	521.19
04	PAVIMENTOS				
04.01	MOVIMIENTO DE TIERRAS				
04.01.01	CORTE A NIVEL DE SUBRASANTE	m3	1,320.00	3.65	4,818.00
04.01.02	RELLENO CON MATERIAL PROPIO SELECCIONADO	m3	6,600.00	18.14	119,724.00
04.01.03	PERFILADO Y COMPACTADO DE LA SUBRASANTE DE PAVIMENTO RIGIDO	m2	6,600.00	2.78	18,348.00
04.01.04	ELIMINACION DE MATERIAL EXCEDENTE	m3	1,320.00	57.18	75,477.60
04.02	SUBBASE GRANULAR E= 0.30 M				
04.02.01	CONFORMACION Y COMPACTACION SUBBASE GRANULAR	m2	1,980.00	24.20	47,916.00
04.03	OBRAS DE CONCRETO ARMADO				
04.03.01	ENCOFRADO Y DESENCOFRADO DE PAVIMENTO RIGIDO	m2	280.00	51.48	14,414.40
04.03.02	CONCRETO f'c = 350 kg/cm2 EN PAVIMENTOS RIGIDOS	m3	1,848.00	362.48	669,863.04
04.03.03	CURADO DEL CONCRETO EN PAVIMENTO RIGIDO	m2	6,600.00	0.58	3,828.00
04.03.04	JUNTAS DE DILATACION (d)	m	158.40	19.10	3,025.44
04.03.05	JUNTAS DE CONTRACCION	m	1,000.00	13.65	13,650.00
04.03.06	ACERO LISO PARA PASADORES LONGITUDINALES Y TRANSVERSALES	kg	3,231.78	5.46	17,645.53
	COSTO DIRECTO (CD)				1,203,787.80
	GASTOS GENERALES (GG)		10.00%		120,378.78
	UTILIDAD		5.00%		60,189.39
	SUBTOTAL		010070		1,384,355.97
	IGV (18%)		18.00%		249,184.07
	TOTAL		1010070		1,633,540.04
					.,,

SON: UN MILLÓN SEISCIENTOS TREINTA Y TRES MIL QUINIENTOS CUARENTA CON 4/100 NUEVOS SOLES

Figura 49. Presupuesto de la construcción de pavimento rígido utilizando agregados gruesos naturales

Fuente: Propia

05/07/2019

costo al

Presupuesto

Presupuesto 0202001 VIABILIDAD DE LA CONSTRUCCIÓN DEL PAVIMENTO RÍGIDO UTILIZANDO CONCRETO

RECICLADO EN LA AVENIDA PACHACÚTEC, VILLA EL SALVADOR - 2019

Subpresupuesto PRESUPUESTO GENERAL 1 KM VILLA EL SALVADOR - LIMA 001

Lugar

costo al 05/07/2019

Item	Descripción	Und.	Metrado	Precio (S/.)	Parcial (S/.)
01	OBRAS PROVISIONALES				
01.01	CARTEL DE IDENTIFICACIÓN DE OBRA 8.50MX3.60M	Und.	1.00	1,169.23	1,169.23
01.02	OFICIAL Y ALMACENES	mes	7.00	508.47	3,559.29
02	TRABAJOS PRELIMINARES				
02.01	MOVILIZACION Y DESMOVILIZACION DE EQUIPOS Y MAQUINARIAS	glb	1.00	18,850.91	18,850.91
02.02	DEMOLICIONES	m3	1,320.00	59.86	79,015.20
02.03	ELIMINACION DE DEMOLICIONES	m3	1,320.00	48.43	63,927.60
02.04	TRAZO, NIVELES Y REPLANTEO	m2	6,660.00	2.07	13,786.20
020.05	LIMPIEZA DEL TERRENO MANUAL	m2	6,600.00	0.47	3,102.00
03	SEGURIDAD Y SALUD				
03.01	ELABORACION, IMPLEMENTACION Y ADMISTRACION DEL PLAN DE SEGURIDAD Y SALUD EN EL TRABAJO	glb	1.00	4,500.00	4,500.00
03.02	EQUIPOS DE PROTECCION INDIVIDUAL	Und.	1.00	13,923.09	13,923.09
03.03	SEÑALIZACION TEMPORAL DE SEGURIDAD	Und.	1.00	1,401.60	1,401.60
03.04	CAPACITACION EN SEGURIDAD Y SALUD	Und.	1.00	4,500.00	4,500.00
03.05	RECURSOS PARA REPUESTAS ANTE EMERGENCIA EN SEGURIDAD Y SALUD DURANTE EL TRABAJO	Und.	1.00	521.19	521.19
04	PAVIMENTOS				
04.01	MOVIMIENTO DE TIERRAS				
04.01.01	CORTE A NIVEL DE SUBRASANTE	m3	1,320.00	3.65	4,818.00
04.01.02	RELLENO CON MATERIAL PROPIO SELECCIONADO	m3	6,600.00	18.14	119,724.00
04.01.03	PERFILADO Y COMPACTADO DE LA SUBRASANTE DE PAVIMENTO RIGIDO	m2	6,600.00	2.78	18,348.00
04.01.04	ELIMINACION DE MATERIAL EXCEDENTE	m3	1,320.00	57.18	75,477.60
04.02	SUBBASE GRANULAR E= 0.30 M				
04.02.01	CONFORMACION Y COMPACTACION SUBBASE GRANULAR	m2	1,980.00	24.20	47,916.00
04.03	OBRAS DE CONCRETO ARMADO				
04.03.01	ENCOFRADO Y DESENCOFRADO DE PAVIMENTO RIGIDO	m2	280.00	51.48	14,414.40
04.03.02	CONCRETO f'c = 350 kg/cm2 EN PAVIMENTOS RIGIDOS CON (AGCR)	m3	1,848.00	362.48	669,863.04
04.03.03	CURADO DEL CONCRETO EN PAVIMENTO RIGIDO	m2	6,600.00	0.58	3,828.00
04.03.04	JUNTAS DE DILATACION (d)	m	158.40	19.10	3,025.44
04.03.05	JUNTAS DE CONTRACCION	m	1,000.00	13.65	13,650.00
04.03.06	ACERO LISO PARA PASADORES LONGITUDINALES Y TRANSVERSALES	kg	3,231.78	5.46	17,645.53
	COSTO DIRECTO (CD)				1,192,237.80
	GASTOS GENERALES (GG)		10.00%		119,223.78
	UTILIDAD		5.00%		59,611.89
	SUBTOTAL		010070		1,371,073.47
	IGV (18%)		18.00%		246,793,22
	TOTAL		1010070		1,617,866.69
					, ,

SON: UN MILLÓN SEISCIENTOS DIECISIETE MIL OCHOCIENTOS SESENTA Y SEIS CON 69/100 NUEVOS SOLES

Figura 50. Presupuesto de la construcción de pavimento rígido utilizando agregados gruesos de concreto reciclado

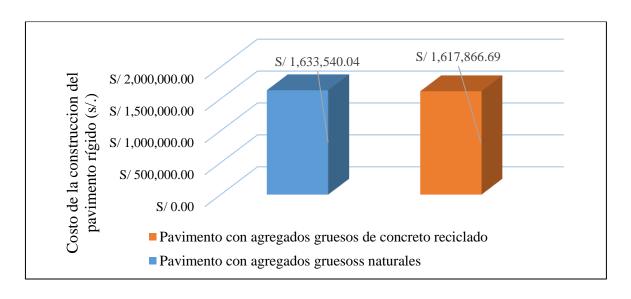


Figura 51. Presupuesto de la construcción del pavimento rígido

Interpretación:

En las figuras 49, 50 y 51 se observa que el presupuesto de la construcción del pavimento rígido utilizando agregados gruesos de concreto reciclado disminuye en S/ 15,673.35 en comparación con la construcción del pavimento construido con agregados gruesos naturales. De las figuras, también se deduce que no hay mucha variación en los presupuestos debido a que la diferencia de precio únicamente se debe a la diferencia del costo directo de la partida Eliminación de Demoliciones.

Dimensión 3: Viabilidad ambiental

La evaluación de la viabilidad ambiental de este proyecto principalmente se centró en el análisis de los indicadores donde interviene el aprovechamiento de los Residuos de Construcción y Demolición (RCD).

Tabla 34. Manejo de Residuos de Construcción y Demolición

Manejo de los RCD	Cantidad de concreto (m3)
RCD reciclado del pavimento demolido	1650.00
RCD reutilizado como AGCR	103.51
Recursos naturales conservado	103.51

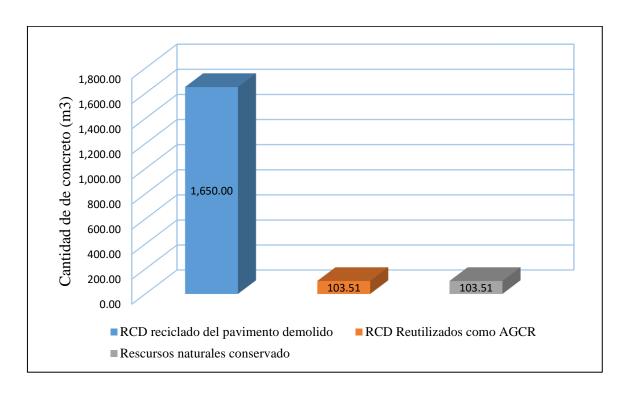


Figura 52. Manejo de residuos de construcción y demolición

Interpretación:

En la tabla 34 y figura 52 se observa que la cantidad de los RCD reciclados es 1650 m3 el cual es superior en 1546.49 m3 a la cantidad RCD reutilizados y conservados.

Prueba de hipótesis

Prueba de hipótesis general

Ho: El uso de concreto reciclado no influye en la viabilidad de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019

H1: El uso de concreto reciclado influye en la viabilidad de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

La contrastación de esta hipótesis se dará luego de la contrastación de las hipótesis específicas.

Prueba de hipótesis específicas

Hipótesis específica 1

Ho: El uso de concreto reciclado no influye en la viabilidad técnica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

H1: El uso de concreto reciclado influye en la viabilidad técnica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

El contraste de esta hipótesis se realizará a través del análisis de las hipótesis de sus indicadores.

Indicador 1: Temperatura de vaciado del concreto

Ho: Las temperaturas de vaciado de las mezclas de concreto en todas y cada una de las dosificaciones son iguales.

H1: Las temperaturas de vaciado de las mezclas de concreto en todas y cada una de las dosificaciones son diferentes.

Tabla 35. Temperatura de vaciado del concreto según los tipos de diseños de mezcla

Tipos de diseño de mezcla	Temperatura (°C)
Diseño 2 (0% AGCR)	23.0
Diseño 3 (10% AGCR)	22.5
Diseño 4 (20% AGCR)	22.3
Diseño 5 (30% AGCR)	21.6

Fuente: Propia

Interpretación:

En la tabla 35 se observa que todos y cada uno de las temperaturas para cada tipo de diseño de mezcla, difieren entre. Por lo que se rechaza la hipótesis nula y se acepta la hipótesis alterna.

Indicador 2: Asentamiento de la mezcla de concreto

Ho: Los asentamientos de las mezclas de concreto en todas y cada una de las dosificaciones son iguales.

H1: Los asentamientos de las mezclas de concreto en todas y cada una de las dosificaciones son diferentes.

Tabla 36. Asentamiento según los tipos de diseño de mezcla.

Tipos de diseño de mezcla	Asentamiento (pulg.)
Diseño 2 (0% AGCR)	3 ½"
Diseño 3 (10% AGCR)	3 1/4"
Diseño 4 (20% AGCR)	3"
Diseño 5 (30% AGCR)	2 ½"

Fuente: Propia

Interpretación:

En la tabla 36 se observa que cada uno de los asentamientos para cada tipo de diseño de mezcla, difieren entre. Por lo que se rechaza la hipótesis nula y se acepta la hipótesis alterna.

Indicador 3: Resistencia a la compresión

Por otro lado, dado que en esta investigación se trabaja con más de dos grupos (concretos con cuatro dosificaciones), el análisis estadístico ya no se realizó con la prueba T (contrastación de hipótesis hasta dos grupos con muestras independientes) sino con el análisis de varianza ANOVA con un factor. Para el cual primero se evaluó las hipótesis de los supuestos de normalidad y homogeneidad de los datos.

Prueba de normalidad

Para esta prueba se elige el estadístico de Shapiro-Wilk, debido a que nuestros datos son menores a 30 (n < 30). Para llevarla a cabo se plantea las siguientes hipótesis.

Ho: El conjunto de datos se asemejan a una distribución normal.

H1: El conjunto de datos no se asemejan a una distribución normal.

Tabla 37. Prueba de normalidad de las resistencias a la compresión según las dosificaciones.

	Dasifiancián	Kolmogórov-Smirnov			Shapiro-Wilk		
	Dosificación	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Resistencia a la	0% AGCR	,283	3		. ,934	3	,504
compresión (kg/cm2)	10% AGCR	,249	3		. ,968	3	,656
	20% AGCR	,372	3		. ,782	3	,073
	30% AGCR	,268	3		. ,950	3	,571

Interpretación:

En la tabla 37 se observa que el nivel de significancia (p - valor) de todos y cada uno de las resistencias a la compresión según las dosificaciones son mayores a .05. Por lo que se acepta la hipótesis nula, lo cual quiere decir que los datos se ajustan a una distribución normal.

Prueba de homogeneidad

Para esta prueba se elige el Test de Levene para lo cual se planeta las siguientes hipótesis.

$$\begin{aligned} \boldsymbol{H}_{0}: \boldsymbol{\sigma}_{1}^{2} &= \boldsymbol{\sigma}_{2}^{2} = \ldots = \boldsymbol{\sigma}_{k}^{2} \\ \boldsymbol{H}_{1}: \boldsymbol{\sigma}_{i}^{2} &\neq \boldsymbol{\sigma}_{j}^{2}, \forall i \neq j \end{aligned}$$

Tabla 38. Prueba de normalidad de las resistencias a la compresión

Estadístico de			
Levene	gl1	gl2	Sig.
2,386	3	8	,145

Fuente: Propia

Interpretación:

En la tabla 38 se observa que el nivel de significancia del estadístico de Levene es tiene un p-valor=.145>.05. Por lo que se acepta la hipótesis nula, lo que significa que las varianzas son iguales.

Una vez comprobada ambos supuestos para los datos de compresión de las resistencias a compresión del concreto se procede a realizar el análisis de la varianza ANOVA, planeando las siguientes hipótesis:

Ho: La resistencia promedio a la compresión del concreto en todas y cada una de las dosificaciones son iguales.

H1: La resistencia promedio a la compresión del concreto en todas y cada una de las dosificaciones son diferentes.

Tabla 39. Análisis de varianza ANOVA para la resistencia promedio a la compresión

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	540,208	3	180,069	9,207	,006
Dentro de	156,461	8	19,558		
grupos	130,401	0	19,556		
Total	696,670	11			

Fuente: Propia

Interpretación:

Luego del análisis de varianza o la prueba de los análisis entre grupos en la tabla 39 se observa que la dosificación influye, en la resistencia promedio del concreto, con un nivel de significancia de p – valor = .006 < .05. Por lo que se rechaza la hipótesis nula y se acepta la hipótesis alterna, lo que significa que la resistencia promedio a la compresión del concreto en todas y cada una de las dosificaciones son diferentes.

Una vez contrastada la hipótesis de varianza unidireccional y dado que se probó la existencia de diferencias significativas en las resistencias según los grupos de dosificación del concreto. Corresponde realizar unas de las pruebas de las comparaciones múltiples Post hoc y para este caso se tomó la prueba de Tukey, ya que se tiene igual número de repeticiones de ensayo para cada grupo (tres ensayos de compresión para cada dosificación). Esta prueba permite saber cuál o cuáles de las resistencias medias difieren entre sí.

Tabla 40. Prueba de las comparaciones múltiples de las resistencias a la compresión

(I)	(J)	Diferencia de			Intervalo de co	nfianza al 95%
Dosificación	Dosificación	medias (I-J)	Error estándar	Sig.	Límite inferior	Límite superior
0% AGCR	10% AGCR	-4,43000	3,61088	,629	-15,9933	7,1333
	20% AGCR	,32333	3,61088	1,000	-11,2400	11,8866
	30% AGCR	13,50667*	3,61088	,024	1,9434	25,0700
10% AGCR	0% AGCR	4,43000	3,61088	,629	-7,1333	15,9933
	20% AGCR	4,75333	3,61088	,579	-6,8100	16,3166
	30% AGCR	17,93667*	3,61088	,005	6,3734	29,5000
20% AGCR	0% AGCR	-,32333	3,61088	1,000	-11,8866	11,2400
	10% AGCR	-4,75333	3,61088	,579	-16,3166	6,8100
	30% AGCR	13,18333*	3,61088	,027	1,6200	24,7466
30% AGCR	0% AGCR	-13,50667*	3,61088	,024	-25,0700	-1,9434
	10% AGCR	-17,93667*	3,61088	,005	-29,5000	-6,3734
	20% AGCR	-13,18333*	3,61088	,027	-24,7466	-1,6200

^{*.} La diferencia de medias es significativa en el nivel 0.05.

Interpretación:

En la tabla 40 se observa las comparaciones múltiples de las resistencias promedios a la compresión según sus dosificaciones. Donde lo que interesa para fines de esta investigación es la comparación de la resistencia del concreto con la incorporación de 0% de AGCR con las demás resistencias con distintas incorporaciones de AGCR. Teniendo en cuenta esto, se observa que la resistencia promedio de los concreto con 0% de AGCR es igual a las resistencias promedios de los concretos con 10% y 20% de AGCR, con un nivel de significancia de p – valor de .629 y 1.00 respectivamente. Mientras que la resistencia del concreto con 30% de AGCR difiere de la resistencia del concreto con 0% de AGCR con un nivel de significancia de p – valor = .024.

Adicional a la prueba de Tukey, la prueba de Duncan no permite obtener comparaciones mediante subconjuntos homogéneos.

Tabla 41. Subconjuntos homogéneos de las resistencias promedio a la compresión del concreto

			Cubaaniuntaa	ana alfa — 0.05
			Subconjunto p	ara alfa = 0.05
Dosificación	N		1	2
30% AGCR		3	355,3133	
20% AGCR		3		368,4967
0% AGCR		3		368,8200
10% AGCR		3		373,2500
Sig.			1,000	,242

Interpretación:

En la tabla 41 se observa que luego de la comparación de las resistencias promedio a la compresión de los concretos con las distintas dosificaciones de AGCR, existen dos subconjuntos homogéneos. Donde el primer grupo solo corresponde a las resistencias del concreto con 30% de AGCR y tiene la menor resistencia promedio la cual difiere de las demás. Mientras que el segundo grupo corresponde a las resistencias del concreto con 0%, 10% y 30% de AGCR los cuales son iguales entre si con un nivel de significancia de p – valor = .242 > .05.

Indicador 3: Resistencia a flexo tracción

Luego de evaluar los supuestos de normalidad y homogeneidad no se obtiene los valores estadísticos de estos ni sus niveles de significancia. Debido a que se cuenta con pocos datos, pero para fines de comparaciones múltiples y por subconjuntos homogéneos de esta investigación, se asume la igualdad de ambos supuestos para realizar el análisis de varianza ANOVA, planteando las siguientes hipótesis:

Ho: La resistencia promedio a flexo tracción del concreto en todas y cada una de las dosificaciones son iguales.

H1: La resistencia promedio a la compresión del concreto en todas y cada una de las dosificaciones son diferentes.

Tabla 42. Análisis de varianza ANOVA para la resistencia promedio a flexo tracción

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	1,307	3	,436	3,344	,137
Dentro de	,521	4	,130		
grupos	,321	4	,130		
Total	1,828	7			

Interpretación:

Luego del análisis de varianza o la prueba de los análisis entre grupos en la tabla 42 se observa que la dosificación influye, en la resistencia promedio del concreto, con un nivel de significancia de p – valor = 0.137>.05. Por lo que se acepta la hipótesis nula y se rechaza la hipótesis alterna, lo que significa que la resistencia promedio a flexo tracción del concreto en todas y cada una de las dosificaciones son iguales.

Una vez contrastada la hipótesis de varianza ANOVA y dado que se observó que no existe diferencias significativas entre las resistencias promedio a flexo tracción del concreto para cada dosificación. Ya no corresponde realizar las pruebas de las comparaciones múltiples Post hoc.

Hipótesis específica 2

El uso de concreto reciclado influye en la viabilidad económica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

Ho: El uso de concreto reciclado no influye en la viabilidad económica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

H1: El uso de concreto reciclado influye en la viabilidad económica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

El contraste de esta hipótesis se realizará a través del análisis de las hipótesis de sus indicadores.

Indicador 1: Costos directos de las partidas

Ho: Los costos directos de las partidas son iguales al utilizar concreto reciclado y concreto convencional.

H1: Los costos directos de las partidas no son iguales al utilizar concreto reciclado y concreto convencional.

Luego de realizar el análisis de costos unitarios de las partidas en las que incide el uso del concreto reciclado y compararlas con análisis de costo unitario con el uso de concreto convencional se encontró que en la partida eliminación de material de demolición existe una diferencia de precios. Por lo que se acepta rechazo la hipótesis nula y se aceptó la hipótesis alterna. Pero al analizar los costos de la partida concreto f'c = 350 kg/cm2 para pavimento rígido, se encontró que no existe diferencia entre los precios. Por lo que se aceptó la hipótesis nula.

Indicador 2: Presupuesto del proyecto

Ho: El presupuesto del proyecto es igual al utilizar concreto reciclado y concreto convencional.

H1 El presupuesto del proyecto no es igual al utilizar concreto reciclado y concreto convencional.

Luego de realizar el presupuesto del proyecto de construcción de 1km de pavimento rígido con la utilización de concreto convencional y reciclado se encontró que existen diferencias en los precios. Por lo que se rechazó la hipótesis nula y se aceptó la hipótesis alterna.

Hipótesis específica 3

El uso de concreto reciclado influye en la viabilidad ambiental de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

Ho: El uso de concreto reciclado no influye en la viabilidad ambiental de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

H1: El uso de concreto reciclado influye en la viabilidad ambiental de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

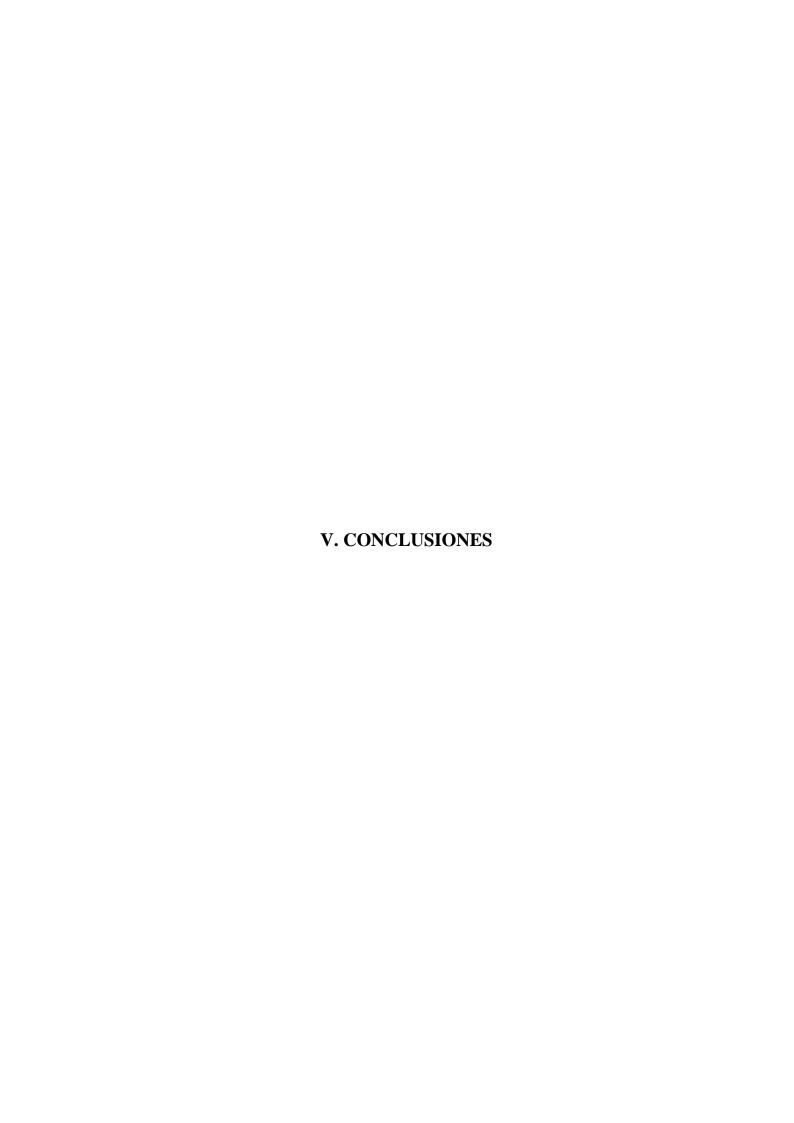
El contraste de esta hipótesis se realizará a través del análisis de las hipótesis de sus indicadores.

Indicadores:

Ho: La cantidad de los RCD reciclado es igual a la cantidad de RCD reutilizado.

H1 La cantidad de los RCD reciclado no es igual a la cantidad de RCD reutilizado.

Luego de realizar el medrado y analizar las cantidades RCD reciclado y reutilizado se encontró que existe una gran diferencia entre estas dos cantidades. Por lo que se rechazó la hipótesis nula y se aceptó la hipótesis alterna.


En esta investigación se planteó como hipótesis general que el uso de concreto reciclado influye en la viabilidad de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019. Para lo cual, se propuso la incorporación del concreto reciclado como agregados gruesos, en porcentajes de 10%, 20% y 30% para la producción de un concreto de alta resistencia. Donde para alcanzar esta propiedad se empleó el aditivo Dynamon SP1 (superplastificante) como una componente constante del concreto para que no influya en los resultados. Esto con la finalidad de que el concreto cumpla con las especificaciones de empleo en la construcción del pavimento rígido planteado en esta investigación.

Según los resultados obtenidos se encontró que el uso de los Agregados Gruesos de Concreto Reciclado (AGCR) no influye significativamente en la viabilidad de la construcción del pavimento rígido. Ya que, al analizar los resultados de los puntos de vista técnico, económico y ambiental, como se planteó este estudio, encontramos que:

Técnicamente no influye de manera relevante en los indicadores de la calidad del concreto para la construcción de pavimentos rígidos. Ya que, para la temperatura de vaciado del concreto con la incorporación de 10%, 20% y 30% de AGCR, se obtuvieron valores de 22.5, 22.3 y 21.6 °C respectivamente, los cuales se encuentran dentro del rango de 13°C y 32°C de temperatura recomendada por Rivva (2010, p. 122). En cuanto a los asentamientos de la mezcla de concreto con la incorporación de 10%, 20% y 30% de AGCR, se obtuvieron valores de 3 1/4", 3" y 2 1/2" respectivamente, de los cuales solo los revenimientos de la mezcla con 20% y 30% de AGCR se encuentran dentro del rango de 1" y 3" recomendada por Rivva (2010, p. 52). Del mismo modo, para las resistencias a la compresión del concreto a los 28 días con la incorporación de 10%, 20% y 30% de AGCR, se obtuvieron valores de 373.25, 368.50 y 355.31 kg/cm2 respectivamente, de los cuales el que más se acerca a la resistencia del concreto patrón, cuya resistencia es 368.82 kg/cm2, es el concreto con incorporación de 20% de AGCR, teniendo una diferencia de 0.32 kg/cm2 por debajo de este lo que en porcentaje viene a ser 0.09% de variación. Un valor muy cercano al que obtuvo Alarcón (2018) en su investigación titulada Estudio del comportamiento del concreto de alta resistencia f'c = 420 kg/cm 2 elaborados con agregados reciclados. Donde obtuvo solo una diferencia de 0.01% de variación de resistencias, realizando la misma comparación. Por último, en cuanto a la resistencia a flexo tracción del concreto a los 28 días con la incorporación de 10%, 20% y 30% de AGCR, se obtuvieron valores de 46.43, 46.25 y 45.40 kg/cm2 respectivamente, donde todos superan a la resistencia mínima de 45 kg/cm2, recomendada por los representantes del Ministerio de Transportes y Comunicaciones (2014, p. 231) para el diseño y construcción de pavimentos con ejes equivalentes mayores a 15'000,000.

Por otro lado, respecto a la viabilidad económica de la construcción de pavimentos rígidos utilizando AGCR se encontró que estos no influyen directamente en el precio de la partida concreto f'c = 350 kg/cm2 para pavimentos rígidos; ya que los costos directos para los concretos con uso de AGCR y agregados naturales resulto el mismo con un costo de S/.362.48. Pero en cuanto a la partida de los costos de eliminación de demolición, donde también interviene aprovechamiento del concreto reciclado, si se obtuvo un margen de ganancia de S/ 8.75 soles en la partida donde la eliminación de material se realiza en una planta recicladora con una distancia de transporte máximo 25km desde el punto de ubicación del proyecto. Por último, en cuanto a la comparación del presupuesto de construcción del pavimento rígido se obtuvo un margen de ganancia de S/ 15,673.35 en el presupuesto donde se consideró la eliminación de demolición en una planta recicladora. Pero si solo hubiera tenido en cuenta el costo de la partida del concreto no se obtendría ningún beneficio lo cual es razonable si lo comparamos con los resultados de Coila (2018) en su trabajo de investigación titulado Producción de concretos ecológicos y su desarrollo sostenible en la ciudad de puno. Donde incluso la relación de costo - beneficio de un proyecto original con el uso de concretos convencionales resulta económicamente más viable que si el proyecto se realizara con el uso de concreto reciclado.

Finalmente, respecto a la viabilidad ambiental de la construcción de pavimentos rígidos utilizando concreto reciclado se encontró que influyen muy poco. Ya que, comparando la cantidad de RCD reciclado (1650 m3) con la cantidad de RCD reutilizado (103.51m3), la cantidad de RCD aprovechado en muy bajo. Este aprovechamiento es limitado debido a que el aprovechamiento de los RCD se dio solo como agregados gruesos en la producción del concreto para la losa del pavimento rígido. Pero si adicionalmente también se hubiera aprovechado como agregados finos en la subbase, tal como lo recomiendan los especialistas del Cement Sustainability Initiative (2009, p. 26), se hubiera obtenido un mayor beneficio.



Referente al objetivo general, se concluyó que el uso de concreto reciclado no influye significativamente en la viabilidad de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.

Referente al objetivo específico 1, se concluyó que el uso de concreto reciclado no influye significativamente en la viabilidad técnica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019. Siempre y cuando se incorpore solo hasta el 20% de agregados gruesos de concreto reciclado en la dosificación de concreto para pavimento rígido. Lo cual se demostró mediante el análisis de las resistencias tanto a compresión como a flexión del concreto utilizando el método de análisis de varianza ANOVA con un nivel de significancia de p – valor = 1.00 y p – valor = 0.137>.05, respectivamente.

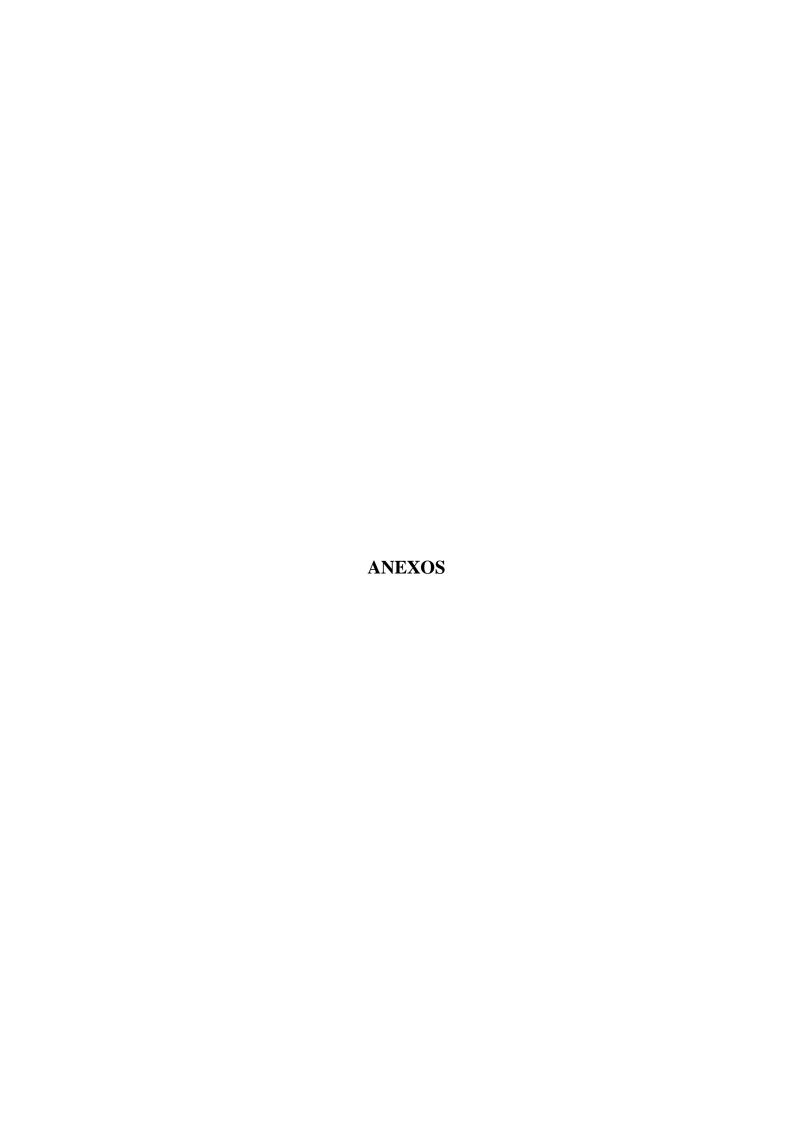
Referente al objetivo específico 2, se concluyó que el uso de concreto reciclado no influye significativamente en la viabilidad económica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019. Ya que, si solo se analiza el costo directo de la partida concreto f'c = 350 kg/cm2 con agregados gruesos naturales y de concreto reciclado ambos tienen el mismo costo de S/.362.48. lo cual tampoco influye en el presupuesto final del proyecto.

Referente al objetivo específico 3, se concluyó que el uso de concreto reciclado no influye significativamente en la viabilidad ambiental de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019. Ya que, comparando la cantidad de RCD reciclado (1650 m3) con la cantidad de RCD reutilizado (110m3), la cantidad de RCD aprovechado en muy bajo y por lo tanto la cantidad de recursos conservados también es mínima.

Se recomienda seguir investigando con mayor profundidad las propiedades físicas, mecánicas y químicas de los agregados tanto finos como gruesos provenientes del reciclaje de concreto. Para que el aprovechamiento de este no sea muy limitado y se pueda evaluar la viabilidad de su uso en otros tipos de proyectos y no solo en la infraestructura vial.

Debido a que, en la ciudad la mayoría de las vías son de alto tránsito y sobrepasan los 15'000,000 de EE, para estos se recomienda concreto con resistencias mayores a los 350 kg/cm2 por lo que si se quiere incorporar el concreto reciclado como agregado se tiene que considerar el uso de aditivos que ayuden a mejorar las propiedades tanto en estado fresco y endurecido del concreto.

Para que los proyectos de infraestructura vial resulten económicamente viables se recomienda que el reciclaje del concreto sea in situ, mediante los equipos móviles de reciclaje, lo cual aminoraría notablemente los costos de transportes y otros. Además, también se recomienda el aprovechamiento de los agregados finos de concreto reciclado como material granular para afirmado lo cual también reduciría considerablemente el costo de los proyectos viales.


Para que los proyectos sean viables ambientalmente con el uso de concreto reciclado se recomienda que estos sean aprovechados tanto como agregados gruesos y finos para evitar la pérdida de material reciclado. Adicional a esto también se recomienda que las autoridades aprueben más leyes que incentiven y motiven a las empresas a utilizar el concreto reciclaje, esto para alcanzar el mismo éxito de manejo de RCD que ya tienen otros países.

- AASHTO. (1993). Guide for Design of Pavement Structures. Washington D.C.: AASHTO.
- ACI Committee 211. (1998). Standard Practice for Selecting Proportions for Structural Lightweight Concrete (ACI 211.2-98). EEUU: ACI.
- ACI Committee 555. (2001). Removal and Reuse of Hardened Concrete. Michigan: ACI.
- Alarcón Alarcón, K. L. (2018). Estudio del comportamiento del concreto de alta resistencia f´c= 420 kg/cm2 elaborado con agregados reciclados. Obtenido de http://repositorio.unc.edu.pe/handle/UNC/2938
- Alvarado Alvarado, J. F. (2013). *Manual para la contrucción de losa de concreto para pavimento rígido*. Costa Rica: CONSORCIO FCC.
- Arias Cabezas, R. A., & Pro zambrano, R. E. (2017). Propiedades físicos mecánicas del hormigón elaborados con áridos reciclados. UCE. Obtenido de http://www.dspace.uce.edu.ec/handle/25000/13131
- Borja Suárez, M. (2012). *Metodología de la investigación científica para ingenieros*. Chiclayo.
- Braja M, D. (2014). Fundamentos de la ingeniería geotécnica. México: Ediciones Ova.
- CAPECO. (2003). Costos y presupuestos en edificación. Lima: CAPECO.
- Castellanos Giraldo, J. V., Rivera Martinez, F. D., & Roa Morales, M. (2017). Comparación estructural y estimación de costos de la utilización de concreto con agregados naturales y concreto con residuos de construcción y demolición (R.C.D) como agregado. Obtenido de https://repository.ucatolica.edu.co/handle/10983/15275
- Cement Sustainability Initiative: Consejo Mundial Empresarial Para El Desarrollo Sostenible. (Julio de 2009). Reciclando concreto. Washington. Obtenido de https://ficem.org/publicaciones-CSI/DOCUMENTO-CSI-RECICLAJE-DEL-CONCRETO/RECICLAJE-D-CONCRETO_1.pdf
- Chang, C. Y., Huang, R., Lee, P. C., & Weng, T. L. (2011). Application of a weighted Grey-Taguchi method for optimizing recycled aggregate concrete mixtures, Cement and Concrete Composites. *Elsevier*, *33*, 1038-1049.
- Coila Tapia, U. F. (2018). Producción de concretos ecológicos y su desarrollo sostenible en la ciudad de puno. Obtenido de http://repositorio.uancv.edu.pe/handle/UANCV/2598
- Decreto Supremo 003. (8 de febrero de 2013). Aprueban Reglamento para la Gestión y Manejo de los Residuos de las Actividades de la Construcción y Demolición. Lima, Perú: El Peruano.
- Eguchi, K., Teranishi, K., Nakagome, A., Kishimoto, H., Shinozaki, K., & Narikawa, M. (2007). Application of Recycled Coarse Aggregate by Mixture to Concrete Construction, Construction and Building Materials. 1542-1551.
- El Comercio. (28 de enero de 2019). Mejoramiento: Avenidas Los Héroes y Pachacútec. Obtenido de COMERCIO: https://elcomercio.pe/lima/obras/municipalidad-lima-lunes-inician-trabajos-mejoramiento-avenidas-heroes-pachacutec-noticia-nndc-601744

- Gallo Guarin, C. A., & Posada Castiblanco, E. M. (2017). Diseño de un paviento en concreto poroso con adición de agragados de concreto reciclado para la construcción de un modelo a escala. Obtenido de https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1308&context=ing_civil
- Hansen, T. C. (1990). *Recycling of Demolished Concrete and Masonry*. (Vol. 6). Copenhague, Dinamarca: CRC Press.
- Hernández Sampieri, R., Fernández Collado, c., & Baptista Lucio, M. (2014). *Metodologia de la investigación*. México D.F.: McGRAW-HILL / INTERAMERICANA EDITORES, S.A. DE C.V.
- Hidalgo Quispe, O. A. (09 de febrero de 2017). *Manejo de Residuos sólidos de construcción* y *Demolición* . Obtenido de https://issuu.com/trialh/docs/residuos_s_lidos_construccion
- Kou, S.-C., Poon, C.-S., & Wan, H.-W. (2012). Properties of concrete prepared with low-grade recycled aggregates, Construction and Building Materials. *Elsevier*, 36, 881-889.
- Laserna Arcas , S. (2015). Avances en el comportamiento del hormigón reciclado: Fabricación, propieades mecánicas y simulación numérica. Obtenido de https://ruidera.uclm.es/xmlui/handle/10578/7411
- Ley 27314. (20 de julio de 2000). Ley General de Residuos Sólidos. Lima, Perú: El peruano.
- Menéndez Acurio, R. (2016). Ingeniería de pavimentos. Lima: ICG.
- Ministerio de Transportes y Comunicaciones. (2013). *Manual de Carreteras*. *Especificaciones Técnicas Generales para Construcción*. Lima: MTC.
- Ministerio de Transportes y Comunicaciones. (2014). *Manual de Carreteras. Suelos, Geologia, Geotecnia y Pavimentos. Sección Suelos y Pavimentos.* Lima: MTC.
- Ministerio de Transportes y Comunicaciones. (2016). *Manual de ensayo de materiales*. Lima, Perú: MTC.
- Ministerio de Vivienda, Cosntrucción y Saneamiento. (2017). *Reglamento Nacional de Eficaciones*. Lima: Megabite S.A.C.
- Morales, M., Zamorano, M., Ruiz, A., & Valverde, I. (2011). Characterization of recycled aggregates construction and demolition waste for concrete production following the Spanish Structural Concrete Code EHE-08, Construction and Building Materials. *Elsevier*, 25, 742-748.
- MP RECICLA SAC. (15 de marzo de 2019). *Ciclo: Productos Áridos Reciclados*. Obtenido de https://ciclo.com.pe/
- NTP 339.185. (2013). AGREGADOS. Método de ensayo normalizado para contenido de humedad total evaporable de agregados por secado. Lima, Perú: INDECOPI.
- NTP 400.037. (2018). AGREGADOS. Agregados para concreto. Requisitos. Lima, Perú: INACAL.

- NTP 400.050. (2017). *Manejo de residuos de la actividad de la construcción y demolición*. Lima, Perú: INDECOPI.
- Olivo, K. (03 de noviembre de 2014). Los Pavimentos: Definición, tipos e importancia. Obtenido de https://es.slideshare.net/kenolivo1/presentacion1-41056662
- Osorio, J. D. (2019). 360 EN CONCRETO. Obtenido de https://www.360enconcreto.com/blog/detalle/resistencia-mecanica-del-concreto-y-compresion
- Ospina G., M. Á., Moreno A., L. Á., & Rodríguez, K. A. (2017). Análisis técnico-económico del uso de concreto reciclado y el concreto convencional en Colombia. Obtenido de https://www.researchgate.net/publication/330661099_Analisis_tecnico-economico_del_uso_de_concreto_reciclado_y_el_concreto_convencional_en_Colombia
- Pérez Porto, J., & Merino, M. (02 de julio de 2013). *Definición.DE*. Obtenido de https://definicion.de/viabilidad/
- Rengifo Candela, M. D. (2017). Influencia de la calidad de concreto reciclado, en la resistencia de un pavimento rígido, Jr. Sargento Lores, distrito Morales San Martín 2017. Obtenido de http://repositorio.ucv.edu.pe/handle/20.500.12692/23703
- Rivva López, E. (2010). Diseño de Mezclas. Lima: ICG.
- Rivva López, E. (2010). Materiales para el Concreto (2.ª ed.). Lima: ICG.
- Rivva López, E. (2010). Supervisión del Concreto en Obra (3.ª ed.). Lima: ICG.
- Rondón Quintana, H. A., & Reyes Lizcano, F. A. (2015). *Pavimentos. Materiales, contrucción y diseño*. Bogotá: Ecoe Ediciones.
- Ruelas Paredes, E. C. (2015). Uso de pavimento rigido reciclado de la ciudad de Puno, como agregado grueso apra la produccion de concreto. Obtenido de http://repositorio.unap.edu.pe/handle/UNAP/2038
- Sánchez Carlessi, H., & Reyes Romero, C. (2015). *Metodologia y Diseños de la Investigación Científica*. Lima: Bussines Suport.
- Sumari Ramos, J. C. (2016). Estudio del concreto de mediana a alta resistencia elaborado con residuos de concreto y cemento portland tipo I. Obtenido de http://cybertesis.uni.edu.pe/handle/uni/5379
- Zárate Aquino, M., Salazar Rodríguez, A., & Tena Colunga, J. A. (2015). *Pavimentos de concreto para carreteras* (Vol. I). México D.F.: Instituto Mexicano del Cemento y del Concreto, A.C.

Anexo 1: Matriz de Operacionalización de variables

VARIABLES	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	DEFINICIÓN OPERACIONAL	INDICADORES	ESCALA DE MEDICIÓN				
					Calidad	Según Kou et al (2012), la calidad de los agregados se relaciona directamente con la resistencia de la roca madre y del concreto de donde provienen. Lo mismo sucede con el concreto donde a mayor resistencia del concreto primario, mayor resistencia tendrá los agregados reciclados procedentes del concreto original. Por ello, en la NTP 400.050 (2017) se delimita la procedencia del concreto reciclado dependiendo del tipo de aplicación. Así mismo, de acuerdo a los representantes del comité del ACI 555 (2001, p. 19), en la calidad de los agregados gruesos reciclados también interviene el proceso de producción de estos.	Resistencia del concreto primario (Ensayo de diamantina) Resistencia o dureza de los agregados reciclados (Ensayo de Abrasión) Procedencia (Cantera) Proceso de Producción			
Variable Independiente Concreto reciclado	El concreto reciclado es aquel concreto cuyos agregados provienen total o parcialmente de las arenas, gravas y gránulos reciclados a partir de los residuos de construcción y demolición (Decreto	Para un reciclado exitoso de concreto, se debe tener en cuenta la calidad y la caracterización de los agregados obtenidos para lograr óptimos diseños de concreto (Morales et al,	Caracterización	De acuerdo a Morales et al (2011), para llevar a cabo la caracterización de los agregados reciclados, los países que no cuentan con normativas propiamente para estos, se enfocan en cumplir los principales parámetros de caracterización de los agregados naturales como la granulometría, el peso específico, el peso unitario suelto y compactado, los porcentajes de absorción y humedad, etc. Adicionando a ellas algunos parámetros propios del agregado reciclado como la cantidad de mortero adherido y otros dependiendo de la calidad y procedencia de los agregados.	Granulometría Peso especifico Porcentaje de absorción Porcentaje de humedad Peso unitario suelto Peso unitario compactado Cantidad de mortero adherido	Razón				
	demolición (Decreto Supremo 003, 2013, Anexo 1).		2011).			2011)	Supremo 003, 2013, Anexo 1).	Diseño de concreto	Para Chang et al (2011), el diseño de concreto con la incorporación de agregados reciclados consiste principalmente en determinar la resistencia requerida, los porcentajes de agregados grueso y finos incorporados, la relación agua - cemento, la consistencia y el uso de aditivos para mejorar las propiedades del concreto. Pero adicionalmente también se debe considerar otros parámetros tradicionales para el diseño de concreto.	Resistencia requerida Contenido de aire atrapado Asentamiento (Slump) Contenido de agua Relación a/c por resistencia Contenido de cemento Contenido de AGN Porcentajes de AGCR Contenido de agregados finos Cantidad de aditivo
Variable Dependiente	El término de viabilidad es un recurso útil antes de iniciar la ejecución de una obra de construcción; puesto	A lo largo de los años, diversos estudios y avances en la tecnología del reciclaje de los Residuos de Construcción y Demolición	Técnica	Técnicamente, los ensayos que se deben realizar para verificar la calidad del concreto y definir su aceptación en la construcción de los pavimentos rígidos son: la verificación de la temperatura, la medición del asentamiento, la elaboración de testigos para determinar su resistencia a la compresión a los 28 días y la elaboración de vigas para determinar su resistencia a flexo tracción a los 28 días (Alvarado, 2013, p. 15).	Temperatura Asentamiento (Slump) Resistencia a la compresión Resistencia a flexo tracción					
Viabilidad de la construcción del	que, mediante una previa evaluación de las características técnicas, económicos.	necuante una a evaluación de las terísticas técnicas, como agregados en el	a sel Económico	Económicamente, en la actualidad uno de los casos por las que se justicia la construcción de nuevos pavimentos rígidos, es que el concreto existente puede ser reciclado para reducir los costos directos en el presupuesto del proyecto (Menéndez, 2016, p. 33).	Costos directos Presupuesto del proyecto	- Razón				
pavimento rígido	ambientales y sociales del proyecto, determina la probabilidad de que	diseño de concreto para la construcción pavimentos rígidos sean viables técnica, económica y		Ambientalmente, un adecuado manejo de los RCD mediante el reciclaje y reutilización de estos como nuevos materiales eco amigables, ya sea transformados como nuevos productos o como	Cantidad de RCD reciclado					
	este se lleve a cabo (Pérez y Merino, 2013, p. 1).	se lleve a cabo economica y	Ambiental	agregados para la producción de concreto, contribuye a la conservación de los recursos naturales (Empresa CICLO, 2019).	Cantidad de RCD reutilizado Cantidad de recursos naturales conservado					

Anexo 2: Matriz de consistencia

PROBLEMAS	OBJETIVOS	HIPÓTESIS	METODOLOGÍA
GENERAL	GENERAL	GENERAL	DISEÑO DE INVETIGACIÓN
¿Cómo influye el uso de concreto reciclado en la viabilidad de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019?	Determinar la influencia del uso de concreto reciclado en la viabilidad de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.	El uso de concreto reciclado influye en la viabilidad de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.	Método: Científico (Borja, 2012, p.31) Enfoque: Cuantitativo (Hernández et al.,2014, p.4) Tipo: Aplicativo (Borja, 2012, p.10) Diseño: Cuasi – experimental (Borja, 2012, p.15)
ESPECÍFICOS	ESPECÍFICOS	ESPECÍFICOS	POBLACIÓN Y MUESTRA
¿Cómo influye el uso de concreto reciclado en la viabilidad técnica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019? ¿Cómo influye el uso de concreto reciclado en la viabilidad económica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019?	Determinar la influencia del uso de concreto reciclado en la viabilidad técnica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019. Determinar la influencia del uso de concreto reciclado en la viabilidad económica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.	El uso de concreto reciclado influye en la viabilidad técnica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019. El uso de concreto reciclado influye en la viabilidad económica de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.	Población (Borja, 2012, p.30): El presente estudio tendrá como población al pavimento rígido del Tramo IV (Av.26 de noviembre – Av. Lima) del Proyecto de mejoramiento de la infraestructura vial y peatonal de la Av. Los Héroes – Av. Pachacútec. Muestra (Hernández et al., 2014, p.173): Debido a que para esta investigación se empleara un muestreo no probabilístico, se determinó que se tomara como muestra solo 1 km de Pavimento Rígido del Tramo IV entre las progresivas 11+220 y 12+220 de la Av. Pachacútec. Muestreo (Borja, 2012, p.32):
¿Cómo influye el uso de concreto reciclado en la viabilidad ambiental de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019?	Determinar la influencia del uso de concreto reciclado en la viabilidad ambiental de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.	El uso de concreto reciclado influye en la viabilidad ambiental de la construcción del pavimento rígido de la Avenida Pachacútec en Villa el Salvador – 2019.	Se empleará el muestreo no probabilístico donde la delimitación de los grupos no depende de la probabilidad sino más bien del criterio de cada investigador. TÉCNICA E INSTRUMENTO Técnica (Borja, 2012, p.33): La técnica será la observación Instrumento: Formatos de laboratorio.

Anexo 3: Juicio de Expertos

I. DATOS GENERALES:

INFORME DE OPINIÓN DE EXPERTOS DE INSTRUMENTO DE INVESTIGACIÓN

1.1. Apellidos y l Dr./Mgtr	Henry Delgado Ortega
1.2. Cargo e instit	ución donde labora: Docembe de la Universidad César Vallejo
1.3. Especialidad	del validador:Ingeniero Civil
	nstrumento motivo de la evaluación: Formatos de resistencia a la flexión y compresión.
	recicledo en la Avenida Pachacútec, Villa el Salvador - 2019
	trumento: Aguilar Espinoza Yonathan Smith; Perez Ayala Juan Fernando

II. ASPECTOS DE VALIDACIÓN:

CRITERIOS	INDICADORES	Deficiente 00-20%	Regular 21-40%	Buena 41-60%	Muy buena 61-80%	Excelente 81-100%
1. Claridad	Esta formulado con lenguaje apropiado y específico.				79	
Objetividad	vidad Esta expresado en conductas observables.				77	
 Actualidad 	Actualidad Adecuado al avance de la ciencia y tecnología.			60		
Suficiencia	Comprende los aspectos en cantidad y calidad.			58		
5. Intencionalidad	Adecuado para valorar aspectos de las estrategias.				75	
6. Consistencia	Basados en aspectos teóricos- científicos				74	
7. Coherencia	Entre los índices, indicadores y dimensiones.				76	
8. Metodología	La estrategia responde al propósito del diagnóstico.			57		
9. Pertinencia	El instrumento es funcional para el propósito de la investigación.				75	
PROMEDIO DE VALIDACIÓN				S8.3	76	

2.1. OPINIÓN DE APLICACIÓN:

Joh	a brindado	Quinion Salve	los	ntar o suprimir en los instrumentos de investi formatos de Observación: resistencia	ala	Conor
11	/	The state of the	003	- Committee - Continued to the continued	1	1

III. PROMEDIO DE V	ALORACIÓN: 67.2 %. V: OPINIÓN DE APLICABILIDAD:
	(×) El instrumento puede ser aplicado, tal como está elaborado
	() El instrumento debe ser mejorado antes de ser aplicado.
Lugar y fecha: San Jua	n de Lurigancho, O.S. del 2019
	Thomas ?
	Firma del experto informante
	DNI. No 43043414 Teléfono No 944748824

INFORME DE OPINIÓN DE EXPERTOS DE INSTRUMENTO DE INVESTIGACIÓN

I.	DATOS GENERALES:
1.1.	Apellidos y Nombres del validador: Dr./Mg. Ramos Suarca Alvare
1.2.	Cargo e institución donde labora: Universidad Cesar Vallejo
1.3.	Especialidad del validador: Trg. Civil
1.4.	Nombre del instrumento motivo de la evaluación:
1.5.	Título de la investigación: Viabilidad de la Construcción del pavimento rígido utilizando Concreto reciclado en la Avenida Pachacútec, Villa el Salvador-2019
1.6.	Autor del instrumento: Aquiller Espinoza, Yonothan Smith . Perez Ayala, Fernando

II. ASPECTOS DE VALIDACIÓN:

CRITERIOS	INDICADORES	Deficient e 00-20%	Regular 21-40%	Buena 41-60%	Muy buena 61-80%	Excelent e 81-100%
Claridad	Esta formulado con lenguaje apropiado y específico.				78	
Objetividad	Esta expresado en conductas observables.				48	
3. Actualidad	Adecuado al avance de la ciencia y tecnología.				78	
4. Suficiencia	Comprende los aspectos en cantidad y calidad.					82
 Intencionalidad 	Adecuado para valorar aspectos de las estrategias.					82
6. Consistencia	Basados en aspectos teóricos- científicos					85
7. Coherencia	Entre los índices, indicadores y dimensiones.					85
8. Metodología	La estrategia responde al propósito del diagnóstico.				72	
9. Pertinencia	El instrumento es funcional para el propósito de la investigación.			-		85
PROMEDIO DE VALIDACIÓN		,			76.5	83.8

2.1. OPINIÓN DE APLICACIÓN:

¿Qué aspectos tendría que modificar, incrementar o suprimir en los instrumentos de investigación?	
	_

III.	PROMEDIO DE VALORACIÓN: 80.15 %. V: OPINIO	ÓN DE APLICABILIDAD:
	($ imes$) El instrumento puede ser aplicado, tal como está elabor	rado
	() El instrumento debe ser mejorado antes de ser aplicado	
Luga	ar y fecha: San Juan de Lurigancho, del 2019	(Juny
	F	irma del experto informante.
	DNI. Nº 42350042 Teléfono	Nº 945104807

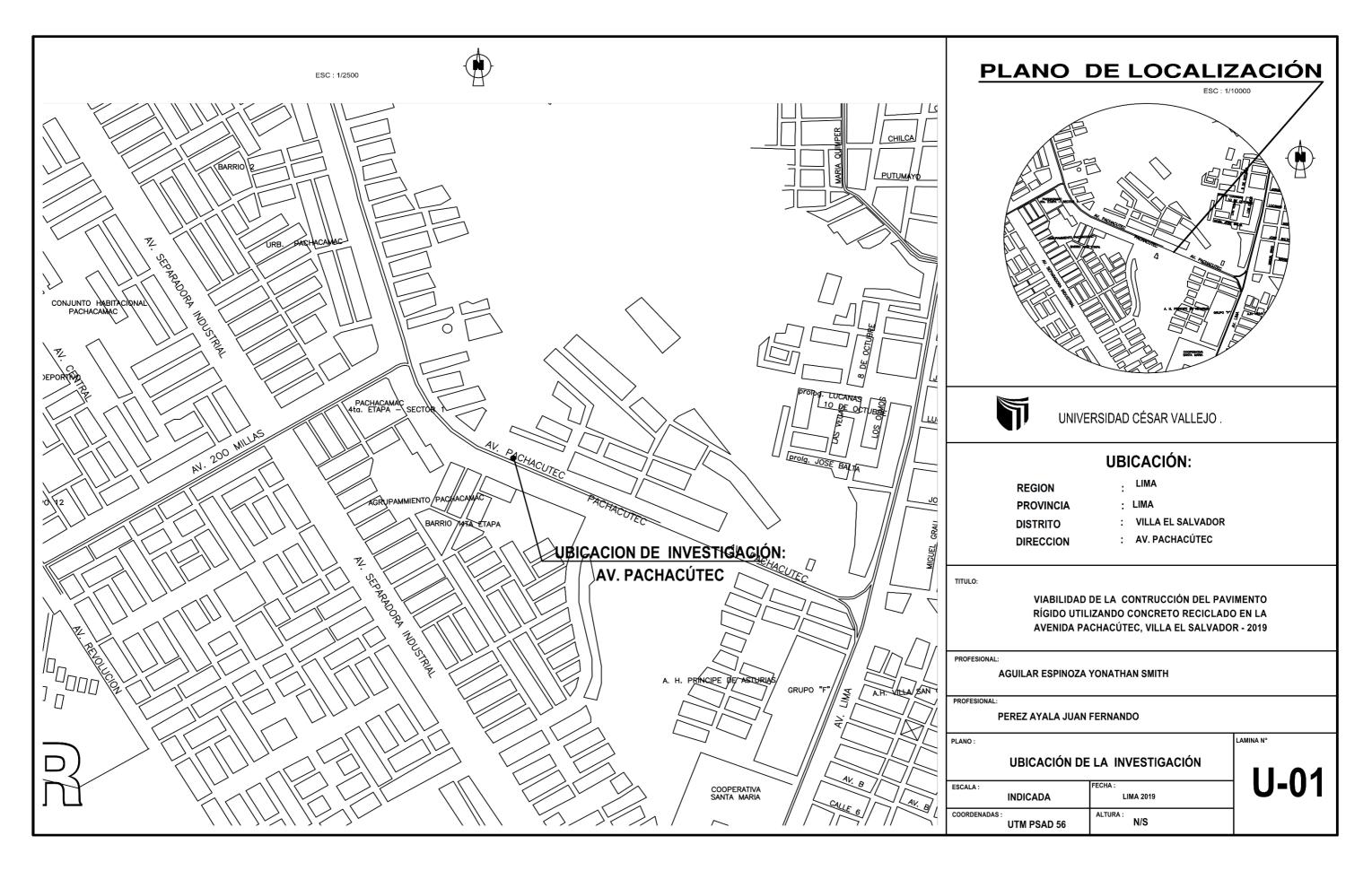
INFORME DE OPINIÓN DE EXPERTOS DE INSTRUMENTO DE INVESTIGACIÓN

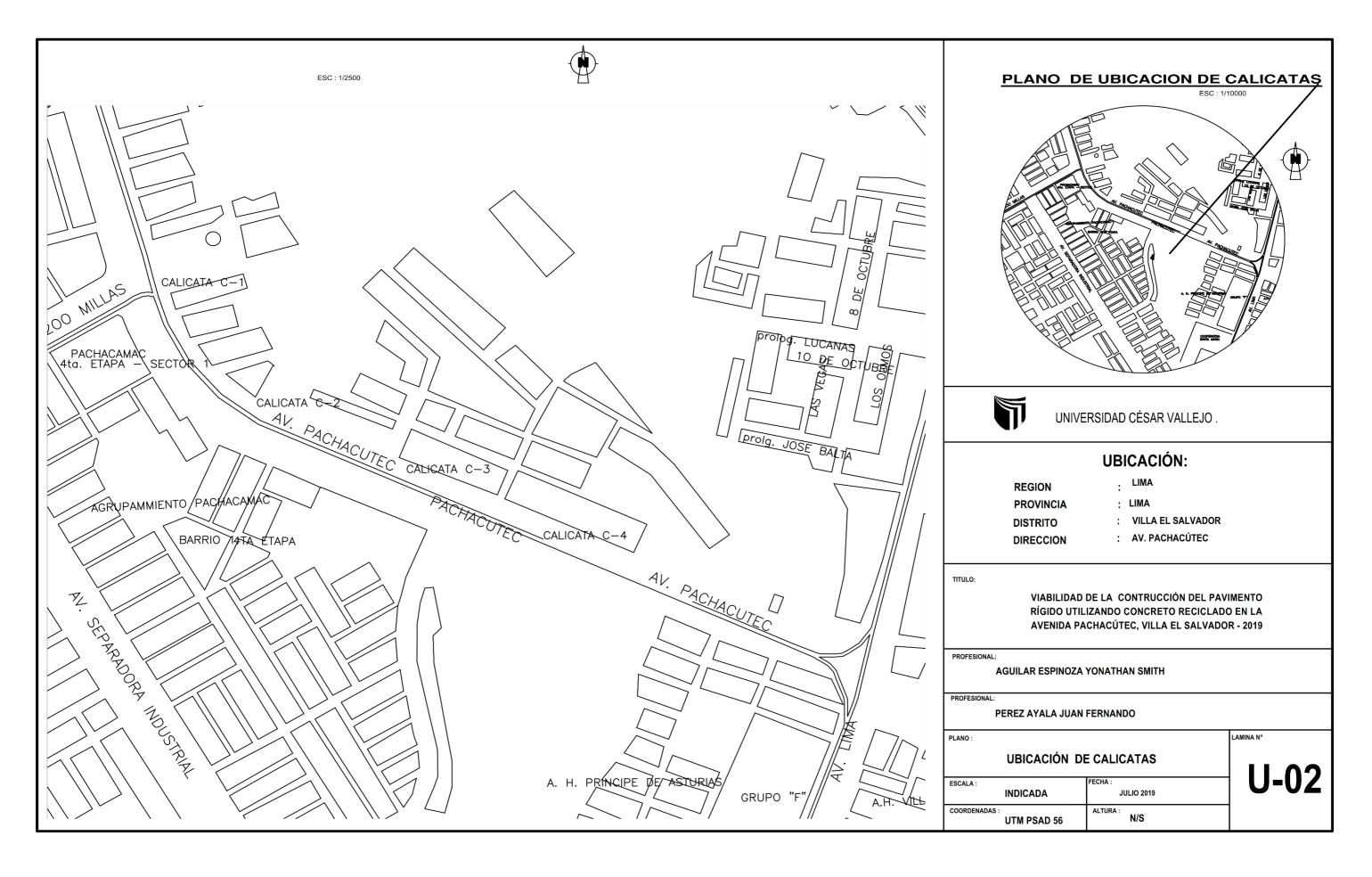
Th 4 7	P/ACI	CHILD	THOUSAND.	L T TOCA
110	1115	E-HIN	1 K K /	ALES

1.1. Apellidos y Nombres del validador:
Dr. Mgtr. Ricardo Zien Vertiz Osores
1.2. Cargo e institución donde labora: Docense - Universidad Cesar Valleja
Dr./Mgtr. Ricardo Julin Vertiz Osores 1.2. Cargo e institución donde labora: Docense - Universidad Cesar Valleja 1.3. Especialidad del validador: Investrgador social - Metodólogo.
1.4. Nombre del instrumento motivo de la evaluación: Procedimiento Hetodológico y Análisis de clatos
1.5. Título de la investigación: Viabilidad de la Construcción del pavimento rigido utilizando
concreto reciclado en la Avenida Pachacútec, Villa el Salvador - 2019
1.6. Autor del instrumento: Aguilar Espinoza Yonathan Smith; Perez Ayala Juan Fernando
,

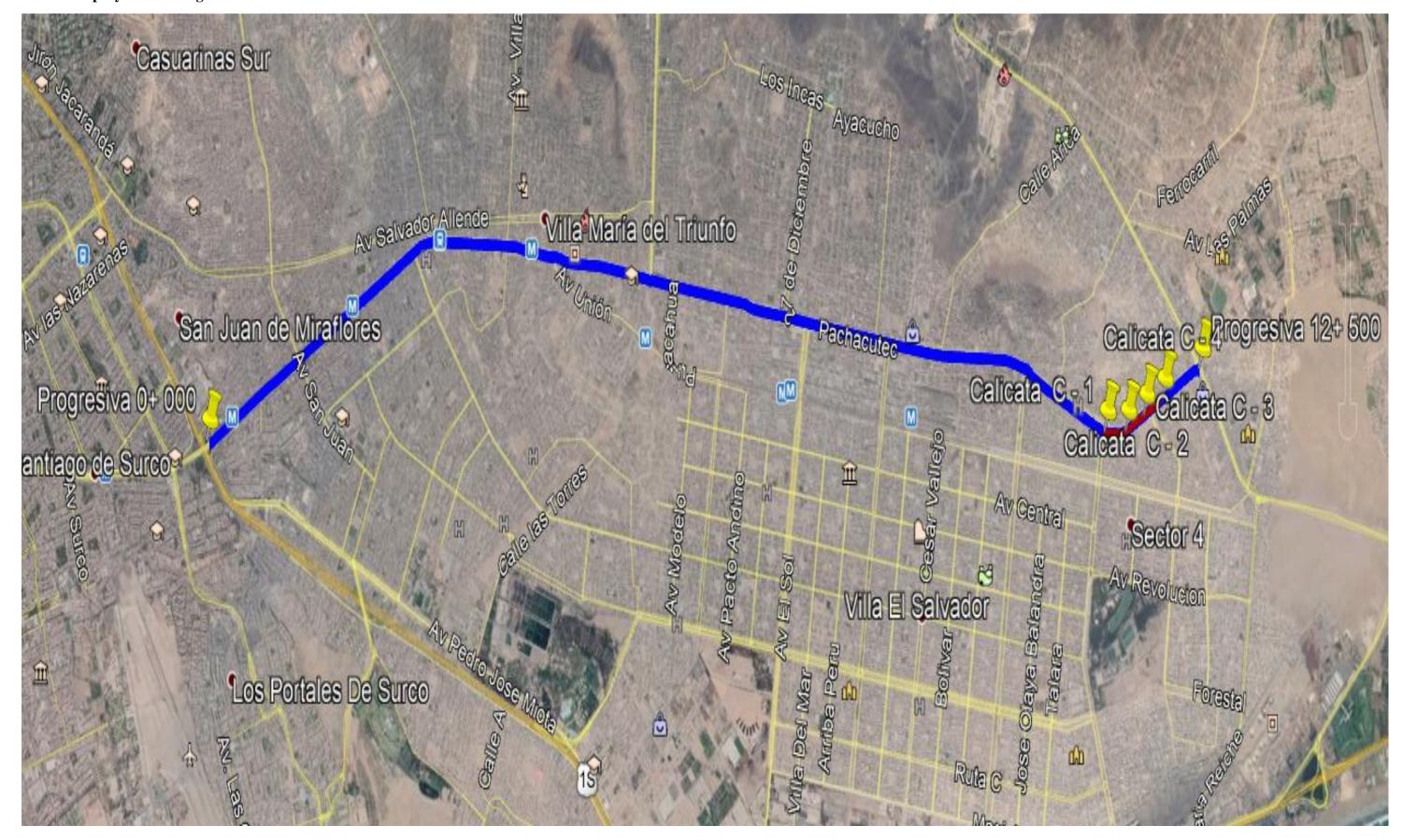
II. ASPECTOS DE VALIDACIÓN:

CRITERIOS	INDICADORES	Deficiente 00-20%	Regular 21-40%	Buena 41-60%	Muy buena 61-80%	Excelente 81-100%
1. Claridad	Esta formulado con lenguaje apropiado y específico.				79	
2. Objetividad	Esta expresado en conductas observables.				76	
3. Actualidad	Adecuado al avance de la ciencia y tecnología.			56		
4. Suficiencia	Comprende los aspectos en cantidad y calidad.			58		
5. Intencionalidad	Adecuado para valorar aspectos de las estrategias.			57		
5. Consistencia	Basados en aspectos teóricos- científicos				75	
7. Coherencia	Entre los índices, indicadores y dimensiones.				78	
3. Metodología	La estrategia responde al propósito del diagnóstico.				72	
9. Pertinencia	El instrumento es funcional para el propósito de la investigación.				79	
PROMEDIO DE VALIDACIÓN				57	76.5	

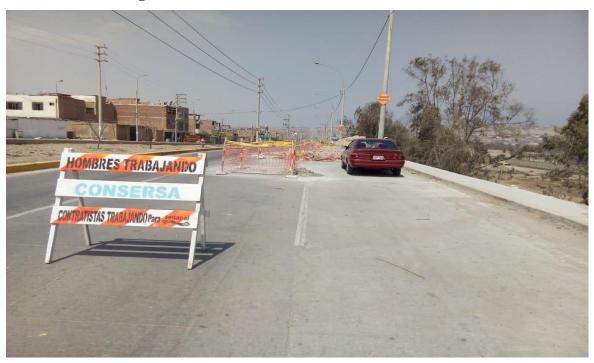

2.1. OPINIÓN DE APLICACIÓN:


¿Qué aspectos tendría que modificar, incrementar o suprimir en los instrumentos de investigación?	
	_

	(X) El instrumento puede ser aplicado, tal como está elaborado
	() El instrumento debe ser mejorado antes de ser aplicado.
Lugar y fecha:	: San Juan de Lurigancho,


DNI. Nº 40841949 Teléfono Nº 936 111776

Anexo 4: Planos


Tramo del proyecto: Envergadura de 12.5 km

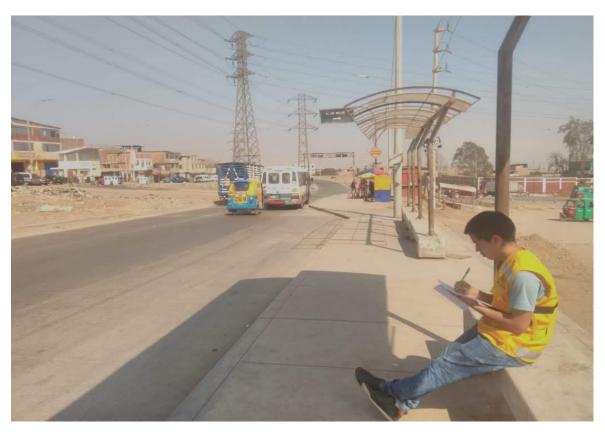
Ratio de flete para transporte a planta recicladora, volvo 15 M3, D = 25 km

Anexo 5: Panel fotográfico

Panel fotográfico 1. Ubicación de material de concreto reciclado - Av. Magisterio Fuente: Propia

Panel fotográfico 2. Concreto reciclado procedente de cortes de pavimentos rígidos en la Av. Magisterio.

Panel fotográfico 3. Cantera Quispe ubicada en la Urbanización Santa Clara – ATE, procedencia de los agregados gruesos naturales.


Panel fotográfico 4. Transporte de los agregados gruesos naturales en sacos de 50 kg.

Panel fotográfico 5. Cantera San Martin de Porras. S.A, procedencia del agregado fino natural.

Panel fotográfico 6. Transporte de los agregados finos naturales en sacos de 80 kg.

Panel fotográfico 7. Conteo vehicular de Sur a Norte en la Avenida Pachacútec

Panel fotográfico 8. Conteo vehicular de Sur a Norte en la Avenida Pachacútec

Panel fotográfico 9. Calicata en la Avenida Pachacútec para la obtención del valor de CBR Fuente: Propia

Panel fotográfico 10. Calicata en la Avenida Pachacútec para la obtención del valor de CBR Fuente: Propia

Panel fotográfico 11. Obtención de muestras representativas según la Normativa del MTC E 105 y la NTP 339.089

Panel fotográfico 12. Obtención de peso unitario y vacíos según la Normativa del MTC E 105 y la NTP 339.089.

Panel fotográfico 13. Obtención de peso unitario y vacíos del agregado grueso reciclado según la Normativa del MTC E 203, NTP 200.17

Panel fotográfico 14. Obtención de peso unitario y vacíos del agregado fino según la Normativa del MTC E 203, NTP 200.17

Panel fotográfico 15. Análisis granulométrico de agregado grueso natural según la Normativa del NTP 400.012, MTC E 204

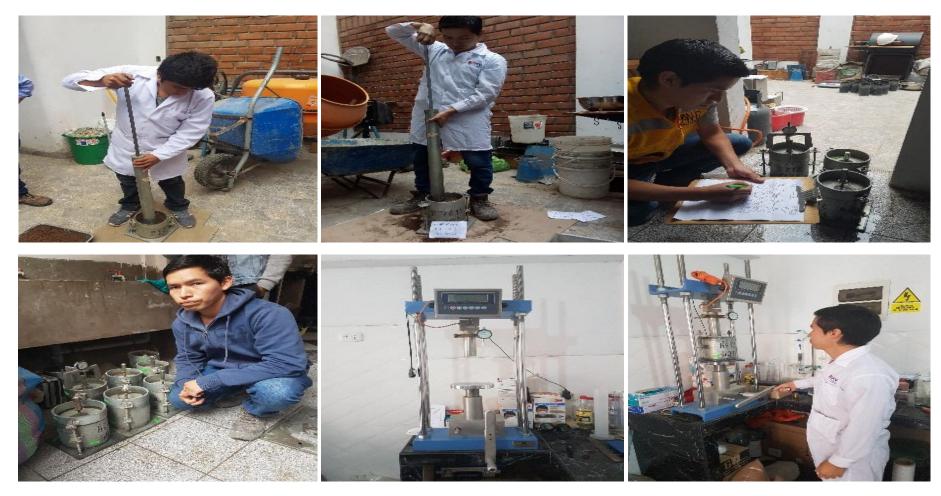
Panel fotográfico 16. Análisis granulométrico de agregado grueso reciclado según la Normativa del NTP 400.012, MTC E 204

Panel fotográfico 17. Análisis granulométrico de agregado fino según la Normativa del NTP 400.012, MTC E 204

Panel fotográfico 18. Gravedad específica y absorción de agregado fino según la Normativa MTC 205, NTP 400.22.

Panel fotográfico 19. Gravedad específica y absorción de agregado grueso según la Normativa MTC E 206, NTP 400.021.

Panel fotográfico 20. Contenido de humedad total de los agregados por secado según la Normativa MTC E 105, NTP 339.185.


Panel fotográfico 21. Toma de núcleos y vigas en concreto endurecido según la Normativa MTC E 707, NTP.39.059, ASTM C 42, AASHTO T 24

Panel fotográfico 22. Compactación de suelos utilizando Proctor modificado según la Normativa NTP 339.141, ASTM D 1557

Panel fotográfico 23. Análisis granulométrico de suelos por tamizado según la Normativa MTC E 107, ASTM D 422

Panel fotográfico 24. CBR de suelos según la Normativa MTC E 132, ASTM D 1883

Panel fotográfico 25. Slump de concreto según la Normativa NTP 339.035, AASHTO T 119, ASTMTT

Panel fotográfico 26. Elaboración y curado de especímenes de concreto según la Normativa NTP 339.183, ASTM C 192

Panel fotográfico 27. Resistencia a la compresión de testigos cilíndricos según la Normativa NTP 339.04 ASTM C- 39 – 39M- 2005e2

Panel fotográfico 28. Resistencia a la flexión de concreto en vigas según la Normativa NTP 339.078, ASTM C – 78, AASHTO 9

Anexo 6: Conteo vehicular

TRAMO DE LA CARRETERA	Tramo Ir - Av. Pachacitec	
SENTIDO	Vorte - Sur	
UBICACIÓN	Villa el Salvador	

DIA	Lones	
FECHA	06 - 05-2019	

HORA	AUTO	STATION	C	AMIONETA	-	-	8	US		CAMIÓN		Г	SEMIT	RAYLER			70	AVI ED		
noise	AUTO	WAGON	PICK UP	PANEL	RURAL	MICRO	2 E	3 E	2 E	3 E	4E	2\$1/2\$2	283	351/352	>= 353	2T2		AYLER	Т	-
				4	20 mm				-4	A	_ A		4	· ·		Z12	2T3	3T2	ST3	TOTAL
0-1	41	23	18	7	9	7					000 6	*****	000 8 8	***	886 80 8	1117	00 0 0 0	0 0 00 0	00 0 00 0	
1-2	56	31 .	26	10	12	q	5	0	6	1									1	11:
2-3	45	25	20	8	-	-	7	0	9	ı					1					161
3-4	12.8	71	57	22	28	7 22	5	0	7	1										12
4-5	186	103	83	32	THE OWNER WHEN PERSON NAMED IN	31	16	0	20	2					- 1					36
5-6	214	119	95	37	या	Water Street and Advanced in column 2 is not the	23	0	30	3					2				1	5
-7	271	150	121	47	47	36	26	0	34	4					2					6
-8	285	158	127	49	59	46	33		43	5		1	- 1		2					77
-9	171	95	76	AND DESCRIPTION OF THE PERSONS ASSESSMENT	62 37	48	35		45	5		1	1		3				1	81
10	114	63	51	29	THE R. P. LEWIS CO., LANSING, SPINSTER, SPINST	29	21		27	3	ŧ				2					49
-11	128	71	57	22	25 28	22	14		18	2					V					37
-12	143	79	64	25	31	-	17		20	S			2		1				1	36
-13	186	103	83	32	91	24	-		23	2		1			1					41
-14	204	113	91	35	45	31	23		30	3					2			ì		53
-15	128	71	57	22	28	-	25		35	3	1		1		2					58
16	243	135	801	42	53	22	16		20	2					1					36
17	214	119	95	37	47	-	29		39	4					2					69
18	271	150	(21	47	59	36	33		34	4	1				2				A	61
19	143	79	64	25	31	24	17		23	5		1	٧		2			1		7:
20	100	55	44	17	22	17	14		16	2					1					40
21	82	45	36	14	18	14	16		13	1					1					280
22	93	51	41	16	20	16	19		15	.2			,		-					23
24	57	63 32	25	20	25	19	10		18	2					T					26
ALES	3710	2058	1652	639	812	622	() 3		9	1 -					1					316
Name and Address of the Owner, where			1032	P604	012	0251	623		590	63	4	4	7		39		-	2	U	103

TRAMO DE LA CARRETERA	TRAMO IV - Avenida	Pachacú tec
SENTIDO	Norte - Sur	
UBICACIÓN	villa el Salvodor	- Lima

DIA	Mortes
FECHA	07-05-2019

	I	STATION	0	AMIONETA	s	Ι .	В	US		CAMIÓN		I de	SEMI T	RAYLER			TR	AYLER		T
HORA	AUTO	WAGON	PICK UP	PANEL	RURAL Combi	MICRO	2 E	3 E	2 E	3 E	4 E	251/252	283	351/352	>= 3S3	2T2	2T3	3T2	3T3	TOTAL
					-00 mm			100 00	-4		- COO - CO		000 8 0		000 BO 0		56 · 6 · 6	- 11 -		
0-1	39	22	17	6	8	17	5		6	1										121
1-2	53	29	24	8	12	24	7		9	1					1	4				167
2-3	42	24	19	6	q	19	6		7	1					- 1					133
3-4	122	80	55	17	27	55	16		20	2	1		1		1					382
4-5	176	98	79	25	39	79	23		29	3				1	2					551
5-6	204	113	91	29	44	91	27		34	3			1		2				1	636
6-7	258	143	115	37	56	115	34		43	4	1				3			1		508
7-8	271	151	121	39	59	121	36		45	4					3			-		847
8-9	163	90	7-3	23	36	73	21		27	3					2					849
9-10	109	60	46	15	24	48	14		18	2			3		1					510
10-11	122	68	55	17	27	55	16		20	2	2			1	2					338
11-12	136	75	61	19	30	61	િક		23	2				19110	- 2					383
12-13	176	98	79	25	39	79	23		29	3			1		2					426
13-14	194	108	87	28	42	87	25		32	3					7					552
14-15	122	68	55	17	27	55	16		20	2	1				3					607
15-16	231	128	103	33	50	103	30		38	ч					3					382
16-17	204	113	91	29	44	91	27		43	3			1		3				ì	722
17-18	258	143	115	37	36	115	34		23	4					2					636
18-19	138	75	61	19	30	61	18		16	2					2					806
19-20	94	53	42	19	21	42	13		13	1				1	3					488
20-21	78	43	35	11	17	35	10		15	1					1				-	297
21-22 22-23	88	49	39 48	13	29	48	12		18	2					2		-		-	244
23-24	64	30	24	8	12	24	1 4	-	5		 								-	3 38
TOTALES	3440	1909	1537	490	752	1537	H52		571	56	5		17	3	44			1	2	10761

TRAMO DE LA CARRETERA	tramo IV - Avenida Pachacútec	
SENTIDO	worte - Sur	
UBICACIÓN	Villa el Salvodor - Lima	

DIA	Miercoles	
FECHA	08-05-2019	New York

0-1	AUTO 22	STATION WAGON	PICK UP	PANEL	RURAL	MICRO														
0-1			Alle.	The second secon	COITIN		2 E	3 E	2 E	3 E	4 E	281/282	283	351/352	>= 383	2T2	2T3	3T2	3T3	TOTAL
0-1	22			= 1	50.00			00 00	÷ Å	∞ ♣	- A		*** *****		900 80 E			5 6 50 A	H + H + H	
	22	22	18	8	9	7	3		6	1										98
1-2	55	31	24	10	12	9	7		9	1			- Walter Control of Control		1					159
2-3	44	24	20	8	10	7	5		Ŧ	ħ		4								127
3-4	127	71	56	24	28	21	15		20	2					1					365
4-5	184	102	82	35	40	31	22	1	29	3			-		2					531
5-6	212	118	94	40	46	3b	25		33	4					2					610
6-7	269	149	119	50	59	45	32		40	5					3				1	774
7-8	283	157	125	53	62	47	34		44	5		1			3					814
8-9	170	94	75	32	37	28	20	4	26	3					2					487
9-10	113	63	50	21	25	19	13		18	2				1	1					325
10-11	127	71	56	24	28	21	15		20	2		1			1			-		366
-11-12	141	78	63	27	31	24	17		22	2	1			1	2					411
12-13	184	102	82	35	40	31	22	1	29	3					2		1			530
13-14	202	1/2	90	30	44	34	24		32	3					2		-			582
14-15	127	71	56	24	28	21	15		20	2				1	1					365
15-16	240	133	107	45	53	40	29		38	4					3					693
16-17	212	118	94	40	46	36	25	1	33	4)					611
17-18	269	149	119	50	59	45	32		42	5		1		2	3					774
18-19	141	78	63	27	3)	24	17		22	2					2				1	409
19-20	99	55	44	19	22	17	12		15	2					1					286
20-21	81	45	36	15	18	14	10		13	2					1					236
21-22	92	51	41	17	20	15	11		14	1										266
22-23	113	63	50	21	25	19	13		18	2	1	1			1					329
23-24 OTALES	3564	1988	1589	674	785	600	427	-	561	62	9			6	3B			1	2	10308

TRAMO DE LA CARRETERA	tramo IV - Avenido Pachacútec	
SENTIDO	vorte - Sur	
UBICACIÓN	villa el Salvodor	

DIA	Jueves
FECHA	09-05-2019

	T	STATION	C	AMIONETA	S		8	US		CAMIÓN	-	T	SEMIT	RAYLER		T	TRA	YLER		T
HORA	AUTO	WAGON	PICK UP	PANEL	RURAL	MICRO	2 E	3 E	2 E	3 E	4 E	2\$1/2\$2	283	351/352	>= 383	2T2	2T3	3T2	3T3	TOTAL
				-1-1	-0-0			90 90	* P	- A	- A		··· • •		969 80 G	4		0 00 5	55 S S S	107/12
0-1	42	21	18	7	9	7	-5		6	1									- 2	116
1-2	57	28	25	10	12	10	6		9	1				1						149
2-3	45	23	20	8	10	8	5		1	1		1		1						121
3-4	131	65	58	22	29	22	15		20	2				1					,	343
4-5	189	94	84	32	42	32	21		29	.3			1	2					-	497
5-6	218	108	97	37	48	37	24		33	4			1	2			1		-	572
6-7	277	137	123	47	61	47	31		42	5	2	1		3						726
7-8	291	(44	129	49	64	49	32		45	8				3						765
8-9	175	87	78	29	38	29	199		27	3				2			-			459
9-10	117	58	52	20	26	20	13		18	2		 	2	1			· ·			309
10-11	131	65	28	22	29	22	15		20	2			-	1						343
11-12	146	72	65	25	32	25	16		22	3	,		1	2						385
12-13	189	94	84	32	42	32	21		29	3	<u> </u>			2						497
13-14	208	103	92	35	46	35	23		32	ч			1	2						547
14-15	131	65	58	22	29	22	15		20	2	3			1						343
15-16	248	123	110	42	54	42	28		38	4	-			3						651
16-17	218	108	97	37	48	37	24		33	4			,	2						573
17-18	277	137	123	42	61	97	31		42	5		-	-	3					************	728
18-19	146	7-2	65	25	32	25	16		22	3				2						385
19-20	102	50	45	17	22	17	11		16	2	1			3						266
20-21	83	41	37	14	18	14	9		13	1			1	2					· ·	20
21-22	95	47	42	16	21	16	11		15	2				1						251
22-23	117	58	52	20	26	.20	13		19	2	1			1						307
23-24 TOTALES	3691	29	26	625	13	10	6		q	0 =				1						153
IOINES	المهوا	1829	1638	1023	8/2	625	410		565	65	8		0	38			2		3	9702

TRAMO DE LA CARRETERA	tramo IV - Avenida Pachacótec	
SENTIDO		
UBICACIÓN	-	

DIA	Viernes
FECHA	10-05-2019

		STATION	C	AMIONETA:	S		В	US		CAMIÓN			SEMIT	RAYLER			TRA	YLER		
HORA	AUTO	WAGON	PICK UP	PANEL	RURAL Combi	MICRO	2 E	3 E	2 E	3 E	4 E	281/282	283	381/382	>= 3S3	2T2	2T3	3T2	3T3	TOTAL
		4		-	30.0			00 00	• 4	**************************************	000 A		*** ***	· · ·	*** ***	4	10 TO 10	• • • •	10 - 0 - 0 - 0 1	TOTAL
0-1	36	20	16	7	8	6	5		6	1					1					106
1-2	20	28	22	9	11	8	7		8	1					(-		145
2-3	40	22	48	7	9	¥	5		7	1			(1					117
3-4	115	64	51	21	25	19	16		19	2					2					334
4-5	166	92	74	31	36	28	23		28	3					3					485
5-6	191	100	85	36	42	32	26		32	3					3				1	556
6-7	242	135	fol	46	53	241	33		41	4			1		4					702
7-8	255	142	113	47	56	43	35		43	4					4					444
8-9	153	85	68	28	34	26	21		26	3				1	2			***********		447
9-10	102	57	45	19	22	17	14		17	2			7		2					297
10-11	115	64	31	21	25	19	16		19	2				ι	2					337
11-12	127	71	57	24	28	22	18		22	2					3.			1		373
12-13	166	92	74	31	36	28	23		28	3			2		2					485
13-14	182	101	81	34	40	31	25		31	3				2	3					533
14-15	115	64	51	21	25	19	16		19	2					3					335
15-16	216	120	96	40	48	37	30		37	ч				2	4	-				633
16-17	191	106	85	36	42	32	20		32	3					2					558
17-18	242	135	107	48	53	41	33		41	ч			1		1				1	708
18-19	127	7-1	57	24	28	22	18		22 .	2					1					3+3
19-20	89	50	40	17	20	15	12		15	2				- 1	1					263
20-21	73	41	32	14	16	12	10		12	1					3					212
21-22	83	46	37	15	18	14	11.		14	1					2					240
22-23	5/	57	23	19	22	17	14		9	2					2					201
TOTALES	3229	1797	1436	600	708	545	444		545	56			2	8	53			1	2	9430

TRAMO DE LA CARRETERA	tramo IV - Avenida Pachacútec	
SENTIDO	Norte - Sur	
UBICACIÓN	villa el Salvador -	

DIA	3abado
FECHA	11-05-17

		STATION	C	AMIONETA	S		B	US		CAMION	-		SEMIT	RAYLER			TRA	YLER		T
HORA	AUTO	WAGON	PICK UP	PANEL	RURAL Combi	MICRO	2 E	3 E	2 E	3 E	4 E	281/252	283	351/352	>= 383	2T2	2T3	3T2	3Т3	TOTAL
		3			40 m			4 44	- A	- A	- F		··· •		900 80 B	4	4		4	
0-1	30	16	13	6	8	5	4		5	1									6.3	87
1-2	41	22	18	9	10	7	6		7	1						i			10.1	121
2-3	32	18	14	7	4	5	5		6	1									90	95
3-4	94	3-2	42	20	24	16	14		16	2						1	-		Carl.	278
4-5	135	75	60	29	30	23	2.0		23	2						2			200	399
5-6	156	86	69	34	37	260	13		27	3						2			Mer	460
6-7	197	109	88	43	40	33	29		34	3						3			320	583
7-8	208	115	93	45	50	35	31	NAME OF TAXABLE PARTY.	36	ч						3			Care.	616
8-9	125	69	56	27	23	21	18		21	4						2			360	368
9-10	83	46	37	18	19	M	12		14	2						(enon-	245
10-11	94	52	42	20	19	16	14		16	2						1		1	Direction.	278
11-12	104	58	46	23	21	18	15		16	2						1			9.0	308
12-13	135	75	60	29	32	. 23	20		23	2						0			20.2	399
13-14	149	82	66	32	25	25	22		25	7					-	2			4.5	439
14-15	94	52	42	20	26	16	14		16	3						1			gan	278
15-16	177	98	79	38	34	30	26		30	2						2		-	9/5/4/	522
16-17	156	86	69	34	40	26	23		27	3						2		-	Elder	460
17-18	193	109	88	43	26	33	29		34	3						3			465	583
18-19	104	58	46	23	15	18	12		18	u						ī			2/10	308
19-20	73	40	32	16	14	12	11		12	2						1			214	214
20-21	59	33	26	12	ra	10	9		10	1						1			Pro-	175
21-22	83	37	3 o	18	1	11	10		12	1						- 1			27-	200
22-23	42	23	19	13	15	14	6		14	2						1			CIL	245
TOTALES	2656	1457	1172	571	580	444	388		451	51						35			-1200	4785

TRAMO DE LA CARRETERA	tramo IV - Avenida Padhacútec
SENTIDO	North - Sur
UBICACIÓN	Villa el Salvador - Loma

DIA	Domino
FECHA	12-05-2019

		STATION	0	AMIONETA	S		8	US		CAMIÓN			SEMIT	RAYLER	-		70	AVIED		
HORA	AUTO	WAGON	PICK UP	PANEL	RURAL	MICRO	2 E	3 E	2 E	3 E	4E	2\$1/2\$2	283	3\$1/3\$2	>= 353	2T2	2T3	AYLER 3T2	373	
				1	20 mm				- A	60 6	- A		000 8		900 BD 0	A	# 1 A	- 1 A	0 1 0 A	TOTA
0-1	20	11	9	4	ı	3	3		3										-	
1-2	27	15	12	6	8	3-	4		5								-	-		2.
2-3	22	12	10	5	7	4	3		4											80
3-4	62	34	28	14	12	- 11	9		10	-										65
4-5	90	50	40	20	2.1	15	13		15	1										182
5-6	104	57	46	23	25	18	19		THE RESIDENCE PROPERTY.						- 1					266
6-7	131	73	58	29	24	23	20		17	2				1	2					30
7-8	138	76	61	31	27	24	12		22	2					2					38
8-9	893	46	37	18	-	-	-		23	2			٧		2					40
9-10	55	31	25	12	21	14	8		14	1					(244
10-11	62	34	28	14	10	4	9		9						1					163
11-12	69	38	31	15	16	И	15		10	1				1	1					185
2-13	90	50	40	Personal Property lies and the least of the	17	12	10		12						1					204
13-14	99	55	40	20	18	15	13		15	- 1					-					266
14-15	62	34	28	22	17	17	12		17	2					3					295
5-16	118	65	The real Party Name and Address of the Party Name and Address of t	14	19	11	9		10	1				7	1					185
6-17	104	57	57	26	25	20	17		20	2					2					348
7-18	131	73	46	23	24	18	15		17	E.			· ·	1	2			-		307
8-19	69	38	31	29	26	23	19		22	2					7					380
9-20	48	27	21	12	18	12	10		12	1								- Marie Carlo Carl		205
0-21	40	22	18	4	8	7	76		6											143
1-22	45	25	20	10	11	8	7		4	Y			,		1					120
2-23	55	31	25	12	10	9	8		94	1					-					135
3-24	28	15	12	6	7	5	4		5	-										163
TALES	1752	969	780	398	387	302	255		294	27			3	~	27				-	518

Anexo 7: Diseño de pavimento rígido

1. Conteo de tráfico es realizado por días laborables y no laborales. Clasificando el tipo de vehículo y el número de repeticiones por horas en IMDS

Tramo IV - Avenida Pachacútec

TRAMO DE LA CARRETERA

RESUMEN DE ESTUDIO DE CLASIFICACIÓN VEHICULAR

SENTIDO			Norte - Sur												DIA		Lunes	- Domingo]		
UBICACIÓN			Tramo IV - A	Avenida Pa	chacútec										FECHA		06/05/2019	9 - 12/05/2019			
		STATION	CA	AMIONETAS	5		Bl	JS		CAMIÓN			SEMI TI	RAYLER			TR	AYLER			
HORA	AUTO	WAGON	PICK UP	PANEL	RURAL Combi	MICRO	B 2	B 3	C2	C3	C4	T2\$2	T2S3	T3\$1	T3\$3	2T2	2T3	T3Se2	T3Se3	TOTAL	TOTAL %
					0-0	(a		81 88 88 88				<u>^</u> 2 	000 g 0		555 35 ♣		 ₽	**************************************	··· ·· ·· ··		
Lunes	3710	2058	1652	639	812	623	450	4	590	63	4	0	7	8	34	0	0	2	4	10660	16.41%
Martes	3528	1960	1575	502	770	595	462	6	587	56	7	0	8	6	45	0	0	0	0	10107	200.19%
Miercoles	3675	2037	1631	690	805	616	438	3	574	63	4	0	3	7	40	0	0	3	3	10592	189.80%
Jueves	3787	1875	1680	638	833	637	421	7	580	65	6	0	4	4	39	0	0	1	1	10578	198.91%
Viernes	3311	1841	1470	617	728	560	457	5	560	56	8	0	9	9	50	0	0	0	2	9683	198.65%
Sábado	2702	1498	1204	595	588	455	399	4	462	49	4	0	5	4	38	0	0	1	2	8010	181.84%
Domingo	1799	994	798	399	392	308	266	2	301	28	3	0	2	3	28	0	0	1	1	5325	150.42%
TOTALES	22512	12263	10010	4080	4928	3794	2893	31	3654	380	36	0	38	41	274	0	0	8	13	64955	100.00%
TOTALES	34.66%	18.88%	15.41%	6.28%	7.59%	5.84%	4.45%	0.05%	5.63%	0.59%	0.06%	0.00%	0.06%	0.06%	0.42%	0.00%	0.00%	0.01%	0.02%	100.00%	
IMDS	3216	1752	1430	583	704	542	413	4	522	54	5	0	5	6	39	0	0	1	2	9279	

Para el cálculo del IMDS se calcula con el sumatorio total de los días laborables y no laborables divido entre los 7 días de las semanas.

$$TDLasb = \left(\frac{L + M + Mi + J + V}{5}\right)$$

$$TDNLab = \left(\frac{S + D}{2}\right)$$

$$IMDs = \frac{5 \times TDLab + 2 \times TDNLab}{7}$$

2. Factor de camión por ejes equivalente EE

Configuración vehicular				Grá	fico				7
B-2			4	Ī					
EE=	[P/6.6]4.1	[p/8.2]4.1							\dashv
ejes	E1	E2	E3	E4	E5	E6	E7	E8	┪
peso	7	11							Factor de camión
factor E.E	1.273	3.507							4.780
			SU	MATORIA Tn					18
Configuración vehicular				Grá	fico				7
B-3			G.	II	3				
EE=	[P/6.6]4.1	[p/13.0]4.1							┪
ejes	E1	E2	E3	E4	E5	E6	E7	E8	7
peso	7	16							Factor de camión
factor E.E	1.273	2.343							3.616
			SU	MATORIA Tn					23
Configuración vehicular				Grá	fico				7
C-2		Œ.		J	I				
EE=	[P/6.6]4.1	[p/8.2]4.1							_
ejes	E1	E2	E3	E4	E5	E6	E7	E8	
peso	7	11							Factor de camión
factor E.E	1.273	3.335							4.608
			SU	MATORIA Tn					18
Configuración vehicular				Grá	fico				
C-3		Œ.		• I	IΙ				
EE=	[P/6.6]4.1	[p/13.3]4.1		_	1			T	\dashv
ejes	E1	E2	E3	E4	E5	E6	E7	E8	┪
peso	7	18							Factor de camión
factor E.E	1.273	3.458							4.731
			SU	MATORIA Tn	•		•		25
Configuración vehicular				Grá	fico				
C-4		Œ			I				
EE=	[P/6.6]4.1	[p/16.6]4.0							┑
ejes	E1	E2	E3	E4	E5	E6	E7	E8	
peso	7	23							Factor de camión
factor F F	1 273	3 685		i	i		i	1	4 958

Configuración vehicular				Grá	fico				
T2S2			Ī	Ε'-	Ĩ				
EE=	[P/6.6]4.1	[p/8.2]4.1	[p/13.3]4.1						1
ejes	E1	E2	E3	E4	E5	E6	E7	E8	1
peso	7	11	18						Factor de camión
factor E.E	1.273	3.335	3.797						8.405
			SUI	AATORIA Tn					36

Configuración vehicular		Gráfico							
T2S3		I II III							
EE=	[P/6.6]4.1	[p/13.3]4.1	[p/17.5]4.						7
ejes	E1	E2	E3	E4	E5	E6	E7	E8	
peso	7	18	25						Factor de camión
factor E.E	1.273	1.273 3.458 4.165							
	SUMATORIA Tn							50	

Configuración vehicular		Gráfico							
T3S1		I II I							
EE=	[P/6.6]4.1	[p/13.3]4.1	[p/8.2]4.						
ejes	E1	E2	E3	E4	E5	E6	E7	E8	
peso	7	18	11						Factor de camión
factor E.E	1.273	1.273 3.458 3.335							
	SUMATORIA Tn							36	

Configuración vehicular		Gráfico							
T3S3			Ī	II	TTT				
EE=	[P/6.6]4.1	[p/13.3]4.0	[p/17.5]4.						
ejes	E1	E2	E3	E4	E5	E6	E7	E8	
peso	7	18	25						Factor de camión
factor E.E	1.273	3.355	4.165						8.79
		•	SU	MATORIA To	1	•	•	•	5

Configuración vehicular		Gráfico							
T2Se2			I	Ī	ÎÏ				
EE=	[P/6.6]4.1	[p/8.2]4.1	[p/8.2]4.1	[p/8.2]4.1	[p/8.2]4.1				7
ejes	E1	E2	E3	E4	E5	E6	E7	E8	
peso	7	11	11	11	11				Factor de camión
factor E.E	1.273	1.273 3.335 3.335 3.335 3.335							
	SUMATORIA Tn							51	

Configuración vehicular				Gráf	ico				
T2Se3			I		: II				
EE=	[P/6.6]4.1	[p/8.2]4.1	[p/8.2]4.1	[p/13.3]4.1					
ejes	E1	E2	E3	E4	E5	E6	E7	E8	
peso	7	11	11	18					Factor de camión
factor E.E	1.273	3.335	3.335	3.458					11.400
			SUI	MATORIA Tn					47
Configuración vehicular				Gráf	ico				
T3Se2		•	I II	Ï	Ī				
EE=	[P/6.6]4.1	[p/13.3]4.1	[p/8.2]4.1	[p/8.2]4.1					
ejes	E1	E2	E3	E4	E5	E6	E7	E8	
peso	7	18	11	11					Factor de camión
factor E.E	1.273	3.458	3.335	3.335					11.400
			SUI	MATORIA Tn					47
Configuración vehicular				Gráf	ico				
T3Se3			I	ΙΙ	T.T				
EE=	[P/6.6]4.1	[p/13.3]4.1	[p/8.2]4.1	[p/13.3]4.1					
ejes	E1	E2	E3	E4	E5	E6	E7	E8	
peso	7	18	11	18					Factor de camión
factor E.E	1.273	3.458	3.335	3.458					11.524
			SUI	MATORIA Tn					54

Cuadro de resumen de Factor de equivalencia, donde se multiplica el IMDS de cada vehículo pesado con su factor de equivalencia donde el resultado es el Esal₀.

	Bl	JS		CAMIÓN			SEMI TRAY	/LER			TRAYLI	:R	
	B-2	B-3	C-2	C-3	C-4	T2S2	T2S3	T3S1	T3S3	T2Se2	T2Se3	T3Se2	T3Se3
		Louis de la constant	-	3 		,	800 8 A	, ",	***	919 81 B	,,,A	**************************************	n . n ♣
factor de equivalencia	4.780	3.616	4.608	4.731	4.958	8.405	8.896	8.066	8.793	14.612	11.400	11.400	11.524
PESO EN TN	18.00	23.00	18.00	25.00	30.00	36.00	50.00	36.00	50.00	51.00	47.00	47.00	54.00
PESO EN KIPS	39.68	50.71	39.68	55.12	66.14	79.37	110.23	79.37	110.23	112.43	103.62	103.62	119.05
IMDS	404	1	511	54	3	0	5	5	38	0	0	1	2
E.E	1929	4	2355	257	13	0	43	41	338	0	0	10	20
Esal°						5009							

3. Cálculo de Esal

Se identifican los factores de distribución de dirección y el factor de crecimiento acumulado Cuadro de distribución direccional

Número de calzadas	Número de sentidos	Número de carriles por sentido	Factor Direccional (Fd)	Factor Carril (Fc)	Factor Ponderado Fd x Fc para carril de diseño
	1 sentido	1	1.00	1.00	1.00
F	1 sentido	2	1.00	0.80	0.80
1 calzada	1 sentido	3	1.00	0.60	0.60
(para IMDa total de la calzada)	1 sentido	4	1.00	0.50	0.50
	2 sentidos	1	0.50	1.00	0.50
	2 sentidos	2	0.50	0.80	0.40
2 calzadas con	2 sentidos	1	0.50	1.00	0.50
separador central	2 sentidos	2	0.50	0.80	0.40
(para IMDa total de	2 sentidos	3	0.50	0.60	0.30
las dos calzadas)	2 sentidos	4	0.50	0.50	0.25

Factor de crecimiento acumulado

$$Fca = \frac{(1+r)^n - 1}{r}$$

Dónde:

r = Taza de crecimiento anual

n = Periodo de diseño

$$Fca = \frac{(1+0.05)^{20}-1}{0.05} = 33.06$$

 $Esal = Esal_0 \ x \ 365 \ x \ FD \ x \ FC \ x \ Fca$

 $Esal = 5009 \times 365 \times 1.00 \times 0.80 \times 33.06$

 $Esal = 48354481.68 \text{ tn} \approx 48.4 \text{ E} + 06 \text{ kN}$

4. Propiedades de los materiales

Resistencia de compresión del concreto

$$F'c = 350 \text{ kg/cm}2$$

Módulo de elasticidad del concreto

$E = 57,000x(f'c)^{0.5}; (f'c en PSI)$

$$F'c = 350 \text{ kg/cm} 2 \sim 4978.155 \text{ psi}$$

$$E = 57,000 \text{ x } (4978.155)^{0.5}$$

$$E=4021694.3 \text{ psi} \approx 27728.6 \text{ Mpa}$$

Módulo de rotura

$$Mr = a\sqrt{f'c}$$
 (Valores en kg/cm²), según el ACI 363

Donde los valores "a" varían entre 1.99 y 3.18

$$F'c = 350 \text{ kg/cm}2$$

$$S'c = 2.4(350 \text{kg/cm}^2)^{0.5}$$

$$S'c=44.90 \text{ kg/cm2} \approx 4.4 \text{ Mpa}$$

5. Datos de tráfico y otras propiedades

Números de ejes equivalentes.

$$Esal = 48354481.68 \text{ tn}$$

6. Factor de confiabilidad y desviación estándar Normal

TIPO DE CAMINOS	TRAFICO	EJES EQUIVALEN	ITES ACUMULADOS	NIVEL DE CONFIABILIDAD (R)	DESVIACIÓN ESTÁNDAR NORMAI (ZR)
	T _{Po}	100,000	150,000	65%	-0.385
	Ter	150,001	300,000	70%	-0.524
Caminos de Bajo Volumen de Tránsito	T _{P2}	300,001	500,000	75%	-0.674
	Tes	500,001	750,000	80%	-0.842
	Tea	750 001	1,000,000	80%	-0.842
	Tps	1,000,001	1,500,000	85%	-1.036
	Tes	1,500,001	3,000,000	85%	-1.036
	Tpy	3,000,001	5,000,000	85%	-1.036
	Tps	5,000,001	7,500,000	90%	-1.282
	Tee	7,500,001	10'000,000	90%	-1.282
Resto de Caminos	Teso	10'000,001	12'500,000	90%	-1.282
	Tett	12'500,001	15'000,000	90%	-1.282
	Tp12	15'000,001	20'000,000	90%	-1.282
	Teta	20'000,001	25'000,000	90%	-1.282
	Tele	25'000,001	30'000,000	90%	-1.282
	T _{PI5}	>30'0	000,000	95%	-1.645

$$R = 95\%$$
 $Zr = -1.645$

7. Desviación estándar (So)

La variación recomendada por la metodología AASHTO 93 es de 0.30 a 0.40. Pero en el manual del Ministerio de Transportes y Comunicaciones sugiere utilizar un So de 0.35.

En la presente investigación se empleó una desviación estándar de So = 0.31

- 8. Módulo de reacción de la subrasante K [Mpa/m]
- 8.1 Método Empírico mecanistico

Datos de la Subbase

CBR = 74%

Ecuación guía mecánica emperica

 $MR = 3000 (CBR) ^0.65$

MR= 49217.763 psi 339.34 Mpa

Ecuación de Kentucky

Regresión exponencial 1

MR=1910(CBR)^0.68

MR= 35654.220 psi 245.83 Mpa

SOLO PARA CBR<

Regresión exponencial 2 55%

 $MR = -7.5 (CBR)^{\wedge}$

2+800(CBR)+1820

MR= 19950 psi 137.55 Mpa

Se empleará el menor MR 137.55 Mpa de Subbase para CBR mayores de 55%

Datos de suelo de fundación

CBR = 17%

Datos de suelo de fundación

MR = 3000 (CBR)

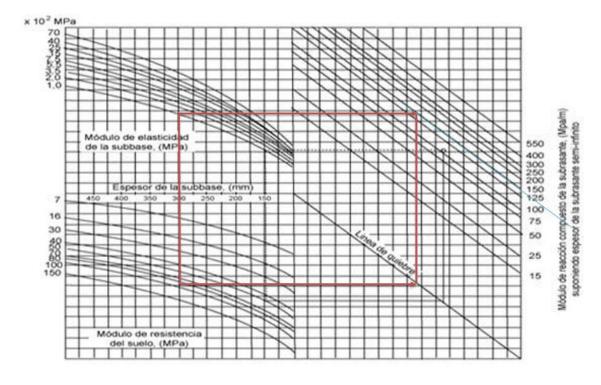
^0.65

MR= 49217.76 psi 339.83 Mpa

Ecuación de affer van til et al

regresión exponencial

MR = 5490


(CBR)^0.30

MR= 12844.199 psi

88.56 Mpa

Se emplea el mino MR del suelo de fundación el cual es 88.56 Mpa

Monograma para determinación de Modulo de reacción compuesto

Módulo de reacción compuesto por la subrasante (K) = 245Mpa/m ≈ 894.25 pci/m

8.2 Método AASHTO 93

Datos Subbase

CBR = 74%

Espesor de Subbase = 30 cm

Si CBR <10

K=2.55+52.5 LOG (CBR)

Si CBR > 10

K1=46+9.08 (LOG(CBR))^4.34

K1=46+9.08(LOG(74))^4.34

K1=183.12 Mpa/m

Datos del suelo de fundación

CBR = 17%

Si CBR < 10

K = 2.55 + 52.5 LOG (CBR)

SI CBR > 10

 $K2 = 46 + 9.08 (LOG (CBR))^4.34$

K2= 68.33 Mpa/m

MODULO DE REACCIÓN COMPUESTO DE LA SUBRAZANTE (K)

 $Kep = (1 + (h/38) ^2 (k1/k2) ^2/3) ^0.5 * k1$

 $Kep = (1 + (0.30/38) ^2 (183.12/68.33)$

Keq= 107.87 Mpa ~ 393.73 pci/m

9. Serviciabilidad inicial y final

TIPO DE CAMINOS	TRAFICO		VALENTES ILADOS	ÍNDICE DE SERVICIABILIDAD INICIAL (PI)	INDICE DE SERVICIABILIDAD FINAL O TERMINAL (PT)	DIFERENCIAL DE SERVICIABILIDAD (ΔPSI)
	TPI	150,001	300,000	4.10	2.00	2.10
Caminos de	T _{P2}	300,001	500,000	4.10	2.00	2.10
Bajo Volumen de Tránsito	T _{P3}	500,001	750,000	4.10	2.00	2.10
	T _{P4}	750 001	1,000,000	4.10	2.00	2.10
	T _{P5}	1,000,001	1,500,000	4.30	2.50	1.80
	T _{P6}	1,500,001	3,000,000	4.30	2.50	1.80
	T _{P7}	3,000,001	5,000,000	4.30	2.50	1.80
	Трв	5,000,001	7,500,000	4.30	2.50	1.80
	Тр9	7,500,001	10'000,000	4.30	2.50	1.80
Resto de Caminos	T _{P10}	10'000,001	12'500,000	4.30	2.50	1.80
	T _{P11}	12'500,001	15'000,000	4.30	2.50	1.80
	T _{P12}	15'000,001	20'000,000	4.50	3.00	1.50
	T _{P13}	20'000,001	25'000,000	4.50	3.00	1.50
	T _{P14}	25'000,001	30'000,000	4.50	3.00	1.50
	T _{P15}	>30'0	00,000	4.50	3.00	1.50

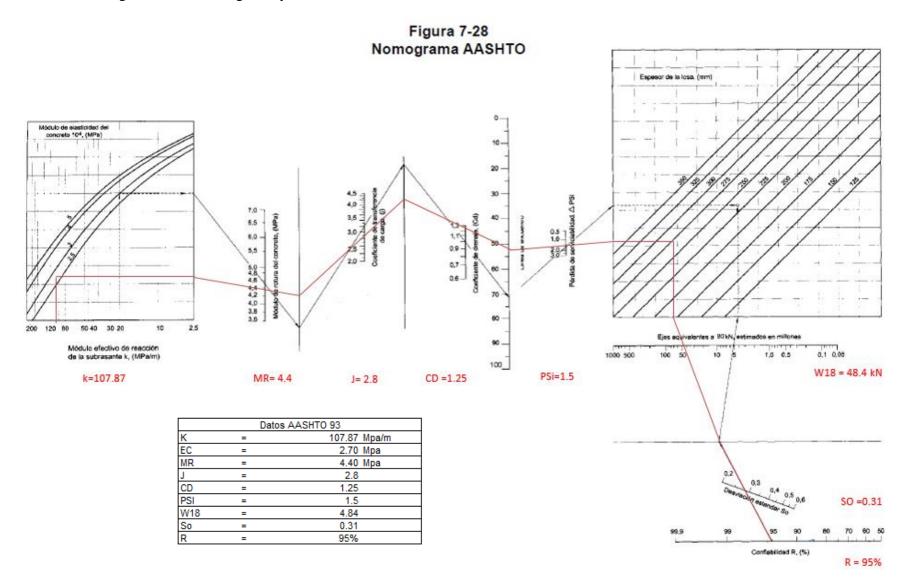
Índice de serviciabilidad inicial (pi) = 4.5

Índice de serviciabilidad final (Pf) = 3

10. Transferencia de carga

TIPO DE BERMA								
	GRANULAR	O ASFALTICA	CONCRETO	HIDRÁULICO				
	SI (con pasadores)	NO (sin pasadores)	SI (con pasadores)	NO (sin pasadores				
VALORES J	3.2	3.8 - 4.4	2.8	3.8				

 $J=2.8~{
m por}$ la cantidad de carga vehicular que estará sometido


11. Coeficiente de drenaje

Calidad de drenaje	% del tiempo en que el pavimento esta expuesto a niveles de humedad próximos a la saturación									
urenaje	< 1%	1 a 5%	5 a 25%	> 25%						
Excelente	1.25 - 1.20	1.20 - 1.15	1.15 - 1.10	1.10						
Bueno	1.20 - 1.15	1.15 - 1.10	1.10 - 1.00	1.00						
Regular	1.15 - 1.10	1.10 - 1.00	1.00 - 0.90	0.90						
Pobre	1.10 - 1.00	1.00 - 0.90	0.90 - 0.80	0.80						
Muy Pobre	1.00 - 0.90	0.90 - 0.80	0.80 - 0.70	0.70						


Se tomará el CD = 1.25 por el tipo de suelo

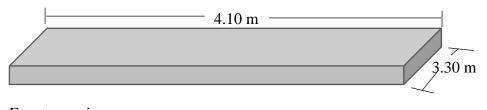
Estos datos se emplearán para el diseño de pavimento mediante el monograma de AASHTO 93 y se verifica con un software con su conversión de datos a psi.

Los datos se ingresan en el monograma y se obtiene como resultado una losa de 0.28cm

Comprobación del espesor de la carpeta de rodadura con el software ecuación AASHTO 93 donde se obtiene un espesor de losa de 11" $(27.94cm) \approx 28cm$

12. Dimensionamiento del pavimento

Se realiza el dimensionamiento del pavimento conociendo el ancho de la vía y su longitud


A: 6.60 m

L: $1000 \text{ m} \approx 1 \text{ km}$

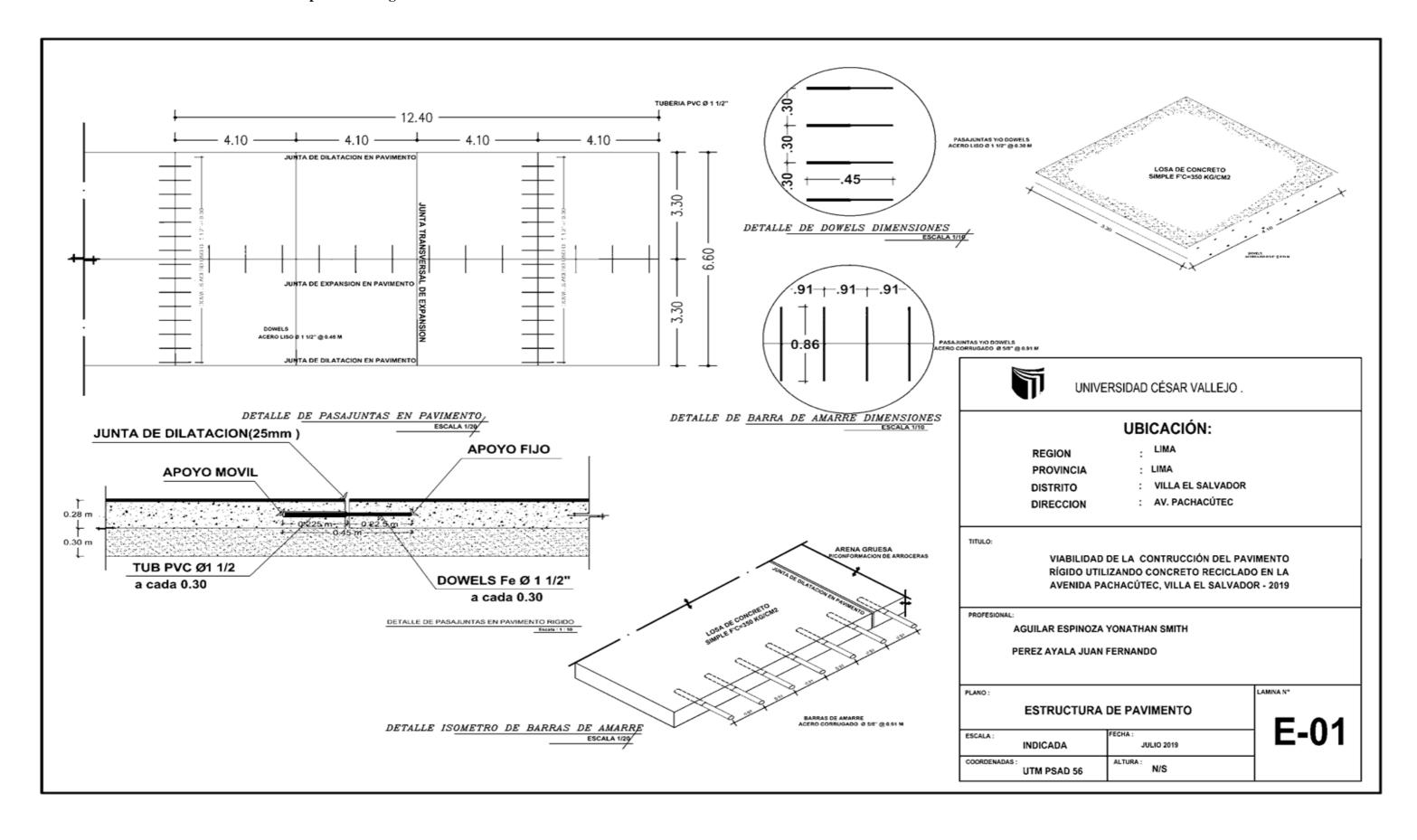
12.1 Dimensionamiento de la losa

Ancho de carril (M)	Longitud de Losa (M)	rango máximo 1.25
2.70	3.30	1.22
3.00	3.70	1.23
3.30	4.10	1.24
3.60	4.50	1.25

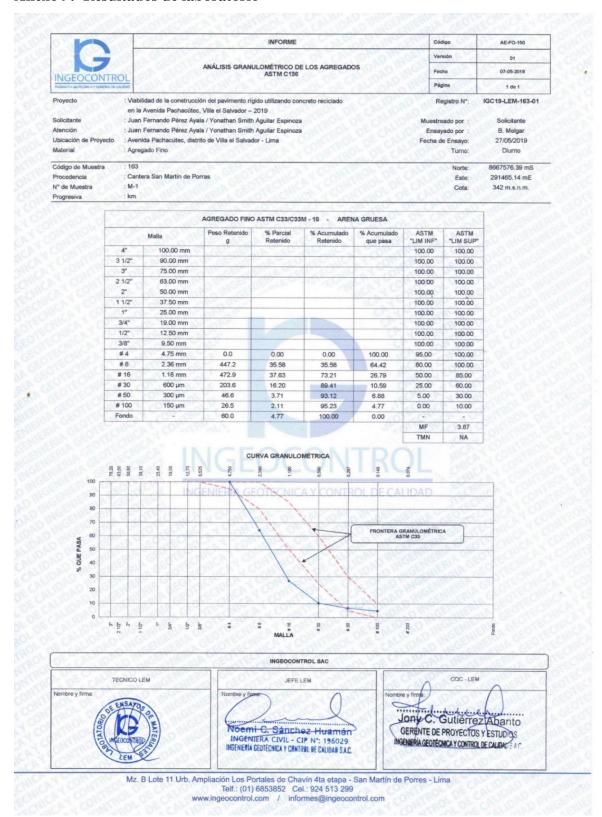
Por características del pavimento se realizará la separación por juntas de ancho de 3.30m siendo la mitad del ancho de la vía con una longitud de 4.10 m

Fuente propia

12.2 Transferencia de carga mediante pasadores o dowells


Las medidas y las distancias de colocación de los pasadores serán las que se especifican en el siguiente cuadro, según lo recomendado por los representantes de Ministerio de Transportes y Comunicaciones para un espesor de losa de pavimento, e = 280 mm.

RANGO DE	DIAMETRO		LONGITUD DEL PASADOR O	SEPARACIÓN ENTRE	
LOSA (MM)	ww	PULGADA	DOWELLS (MM)	PASADORES (MM)	
150 - 200	25	r	410	300	
200 - 300	32	1 1/4"	460	300	
300 - 430	38	1 1/3"	510	380	


12.3 Barras de amarre

El tamaño y las distancias de colocación de las barras de amarre serán las que se especifican el siguiente cuadro, según lo recomendado por los representantes de Ministerio de Transportes y Comunicaciones para un espesor de losa de pavimento para un espesor de losa del pavimento, e=280 mm.

ESPESOR DE	TAMAÑO DE	DISTANCIA DE LA JUNTA AL EXTREMO LIBRE		
LOSA (MM)	VARILLA (CM) DIAM. X LONG.	3.00 M	3.60 M	
150	1.27 x 66	@ 76 cm	@ 76 cm	
160	1.27 x 69	@ 76 cm	@ 76 cm	
170	1.27 x 70	@ 76 cm	@ 76 cm	
180	1.27 x 71	@ 76 cm	@ 76 cm	
190	1.27 x 74	@ 76 cm	@ 76 cm	
200	1.27 x 76	@ 76 cm	@ 76 cm	
210	1.27 x 78	@ 76 cm	@ 76 cm	
220	1.27 x 79	@ 76 cm	@ 76 cm	
230	1.59 x 76	@ 91 cm	@ 91 cm	
240	1.59 x 79	@ 91 cm	@ 91 cm	
250	1.59 x 81	@ 91 cm	@ 91 cm	
260	1.59 x 82	@ 91 cm	@ 91 cm	
270	1.59 x 84	@ 91 cm	@ 91 cm	
280	1.59 x 86	@ 91 cm	@ 91 cm	
290	1.59 x 89	@ 91 cm	@ 91 cm	
300	1.59 x 91	@ 91 cm	@ 91 cm	

Anexo 9: Resultados de laboratorio

Ubicación de Proyecto Material	; Avenida Pachacútec, distrito de Villa el Salvador - Lima : Agregado Fino	Fecha de Ensayo: Turno:	31/05/2019 Diurno
Código de Muestra	: 163	Norte:	8667576.39 mS
Procedencia	: Cantera San Martin de Porras	Este:	291465.14 mE
N° de Muestra	:M-1	Cota:	342 m.s.n.m.

	IDENTIFICACIÓN	CP1 C	2	
A	Peso Mat. Sat. Sup. Seca (SSS)	500.00	500.00	100
В	Peso Frasco + agua	672.20	672.20	OLV.
С	Peso Frasco + agua + muestra SSS	980.20	980.20	200
D	Peso del Mat. Seco	490.00	490.00	280
Pe Bulk (B	lase seca) o Peso específico de masa = D/(B+A-C)	2,552	2.552	2.552
Pe Bulk (B	lase Saturada) o Peso específico SSS = A/(B+A-C)	2.604	2.604	2.604
Pe Aparente (Base seca) o Peso específico aparente = D/(B+D-C)		2.692	2.692	2.692
% Absorción = 100*((A-D)/D)		2.0	2.0	2.0

INGEOCONTROL SAC				
TECNICO LEM	JEFE LEM	CQC - LEM		
Nombre y firma:	Noemi C. Sánchez Huamán Noemi C. Sánchez Huamán Ingeniera civil - CIP N°: 196029 Ingeniera gediécnica y control de Caudad SAC.	JOHY C. Gutiérréz Abanto GERENTE DE PROYECTOS Y ESTUDIOS INCEMERIA GEOTÉCNICA Y CONTROL DE CALIDAD S.A.C.		

Mz. B Lote 11 Urb. Ampliación Los Portales de Chavín 4ta etapa - San Martín de Porres - Lima Telf.: (01) 6853852 Cel.: 924 513 299 www.ingeocontrol.com / informes@ingeocontrol.com

N° de Muestra

Progresiva

M-1

km

INFORME DETERMINACIÓN DEL PESO UNITARIO SUELTO Y COMPACTADO DE LOS AGREGADOS ASTM C29 / C29M - 17a

	Código	AE-FO-101	
ì	Versión	01	Ī
	Fecha	30-04-2018	
	Página	1 de 1	1

Cota:

342 m.s.n.m.

: Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado en la Avenida Pachacútec, Villa el Salvador – 2019 Registro N°: IGC19-LEM-163-03 : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza Muestreado por : : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : Avenida Pachacútec, distrito de Villa el Salvador - Lima Atención Ensayado por : Ubicación de Proyecto Fecha de Ensayo: 31/05/2019 : Agregado Fino Turno: Diurno Código de Muestra 163 8667576.39 mS : Cantera San Martin de Porras Este: 291465,14 mE

PESO UNITARIO SUEL TO

IDENTIFICACIÓN	the state of	2	PROMEDIC
Peso de molde (kg)	6.282	6.282	50 Va
Volumen de molde (m3)	0.002	0.002	90/101
Peso de molde + muestra suelta (kg)	9.337	9.329	KROW!
Peso de muestra suelta (kg)	3.055	3.047	10001
PESO UNITARIO SUELTO (kg/m3)	1436	1433	1434

PESO UNITARIO COMPACTADO

IDENTIFICACIÓN	1	2	PROMEDIC
Peso de molde (kg)	6.282	6.282	PACE
Volumen de molde (m3)	0.002	0.002	0-16
Peso de molde + muestra suelta (kg)	9.616	9.565	1100
Peso de muestra suelta (kg)	3.334	3.283	MIC.
PESO UNITARIO SUELTO (kg/m3)	1567	1543	1555

INGEOCONTROL

INGENIERIA GEOTECNICA Y CONTROL DE CALIDAD

Nombre y firma:

Nombre

Mz. B Lote 11 Urb. Ampliación Los Portales de Chavin 4ta etapa - San Martín de Porres - Lima Telf.: (01) 6853852 Cel.: 924 513 299 www.ingeocontrol.com / informes@ingeocontrol.com

INFORME

ANÁLISIS GRANULOMÉTRICO DE LOS AGREGADOS ASTM C136

Código	AE-FO-150
Versión	01
Fecha	07-05-2018
Página	1 de 1

: Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado

en la Avenida Pachacútec, Villa el Salvador - 2019

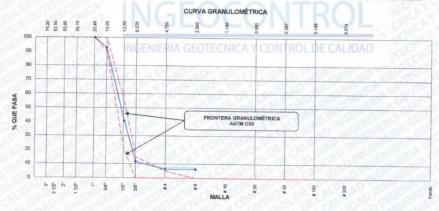
Solicitante : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza Atención ; Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza Ubicación de Proyecto : Avenida Pachacútec, distrito de Villa el Salvador - Lima

Material Agregado Grueso

Código de Muestra 163 : Cantera Santa Clara Procedencia

N° de Muestra : M-1 Progresiva km

IGC19-LEM-163-04 Registro N°:


Muestreado por : Ensayado por : Fecha de Ensayo:

B. Melgar 27/05/2019

Diurno

8668512.00 mS Norte Este: 296139.00 mE Cota: 540 m.s.n.m.

ECT	Malla	Peso Retenido g	% Parcial Retenido	% Acumulado Retenido	% Acumulado que pasa	ASTM "LIM INF"	ASTM "LIM SUP
4"	100.00 mm	5 - CD - CD	100	PERSON OF	1 101 3	100.00	100.00
3 1/2"	90.00 mm	100000	130 92	18-11-	2 105	100.00	100.00
3"	75.00 mm	J. C. C. C.	A POTO	A Secolle	10-	100.00	100.00
2 1/2"	63.00 mm	10 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10	16 -10-	111111111111111111111111111111111111111	V . 7 7 0	100.00	100.00
2"	50.00 mm	A In Car		1	MC A P	100.00	100.00
1 1/2"	37.50 mm	18 mg 18 mg			161 16	100.00	100.00
1"	25.00 mm	0.0	0.00	0.00	100.00	100.00	100.00
3/4"	19.00 mm	212.5	7.40	7.40	92.60	90.00	100.00
1/2"	12.50 mm	1492.9	51.98	59.38	40.62	20.00	55.00
3/8"	9.50 mm	832.7	28.99	88.37	11.63	0.00	15.00
#4	4.75 mm	149.6	5.21	93.58	6.42	0.00	5.00
#8	2.36 mm		0.00	93.58	6.42	0.00	0.00
# 16	1.18 mm	16.7				0.00	0.00
# 30	600 µm	129		The second second	1	0.00	0.00
# 50	300 µm	1				0.00	0.00
# 100	150 µm	- I		- 4	7	0.00	0.00
Fondo	10- 40	184.3	6.42	100.00	0.00		
-31/-	D. 10 V. 10	The state of			3"	MF	7.42
						TMN	3/4"

INFORME Código AE-FO-78 MÉTODO DE PRUEBA ESTÁNDAR PARA LA DENSIDAD RELATIVA (GRAVEDAD ESPECÍFICA) Y LA ABSORCIÓN DE AGREGADOS GRUESOS ASTM C127-15 Página 1 de 1

Proyecto	: Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado en la Avenida Pachacútec, Villa el Salvador – 2019	Registro N°:	IGC18-LEM-163-06
Solicitante Atención Ubicación de Proyecto Material	: Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza ; Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : Avenida Pachacútec, distrito de Villa el Salvador - Lima : Agregado Grueso	Muestreado por : Ensayado por : Fecha de Ensayo:	20,00,20,0
Código de Muestra	: 163	Turno:	Diurno
Procedencia	: Cantera Santa Clara	Norte:	8668512.00 mS
N° de Muestra	: M-1	Este:	296139.00 mE
Progresiva	: km	Cota:	540 m.s.n.m.

DATOS		DATOS	
1	Peso de la muestra sss	2338.0	2338.0
2	Peso de la muestra sss sumergida	1525.0	1524.0
3	Peso de la muestra secada al horno	2326.0	2329.0

RESULTADOS	1	2	PROMEDIO
PESO ESPECIFICO DE MASA	2.861	2.861	2.861
PESO ESPECIFICO DE MASA S.S.S	2.876	2.872	2.874
PESO ESPECIFICO APARENTE	2.904	2.893	2.899
PORCENTAJE DE ABSORCIÓN (%)	0.5	0.4	0.5

INFORME DETERMINACIÓN DEL PESO UNITARIO SUELTO Y COMPACTADO DE LOS AOREGADOS ASTM C29 (C29M - 17a

	Código	AE-FO-101	
S	Versión	01	
	Fecha	30-04-2018	Č,
	Página	1 de 1	-

: Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado Registro Nº: IGC19-LEM-163-06 en la Avenida Pachacútec, Villa el Salvador - 2019 : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : Avenida Pachacútec, distrito de Villa el Salvador - Lima Ensayado por : Fecha de Ensayo: B. Melgar 31/05/2019 Atención : Agregado Grueso Código de Muestra : 163 8668512.00 mS Norte: : Cantera Santa Clara Este: 296139.00 mE N° de Muestra : M-1 Cota: 540 m.s.n.m. Progresiva : km

PESO UNITARIO SUELTO

IDENTIFICACIÓN	1	2	PROMEDIO
Peso de molde (kg)	3,509	3.509	0, 00
Volumen de molde (m3)	0.007	0.007	60, 0
Peso de molde + muestra suelta (kg)	13.686	13,463	TRUOL I
Peso de muestra suelta (kg)	10.177	9.954	4750
PESO UNITARIO SUELTO (kg/m3)	1442	1411	1427

PESO UNITARIO COMPACTADO

IDENTIFICACIÓN	1	2	PROMEDIC
Peso de molde (kg)	3.509	3.509	PIC
Volumen de moide (m3)	0.007	0.007	ICP Y
Peso de molde + muestra suelta (kg)	14.829	14.453	WICH OF
Peso de muestra suelta (kg)	11.320	10.944	MICH
PESO UNITARIO SUELTO (kg/m3)	1604	1551	1578

INGEOCONTROL

INGENIERIA GEOTECNICA Y CONTROL DE CALIDAD

Nombre y firma:

Solicitante

Atención

Material

INFORME

ANÁLISIS GRANULOMÉTRICO DE LOS AGREGADOS ASTM C136

Código	AE-FO-150
Versión	01
Fecha	07-05-2018
Página	1 de 1

: Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado

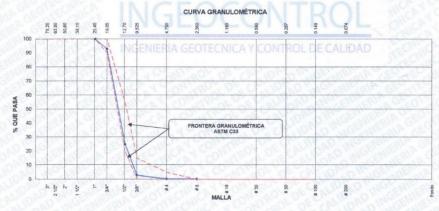
en la Avenida Pachacútec, Villa el Salvador - 2019

: Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza Ubicación de Proyecto : Avenida Pachacútec, distrito de Villa el Salvador - Lima

: Agregado Grueso de Concreto Reciclado

Código de Muestra 163 : Losa de Pavimento rígido de la Av. Magisterio - Villa el Salvador Procedencia : M-1 N° de Muestra

Progresiva


IGC19-LEM-163-07

Muestreado por Solicitante Ensayado por : B. Melgar 27/05/2019 Fecha de Ensayo: Turno:

Diurno 18649375.03 mS Norte

Este:	286883.51 mE
Cota:	84 m.s.n.m.
N. DA	The Charles
7300	T MY CENTRE
	A THE STREET

	Maila	Peso Retenido	% Parcial	% Acumulado	% Acumulado	ASTM	ASTM
	Malia	g	Retenido	Retenido	que pasa	"LIM INF"	"LIM SUP
4"	100.00 mm	168 418		185-0115-0	1000	100.00	100.00
3 1/2"	90.00 mm	ALICE MILL	30 95	18 111	2 000	100.00	100.00
3"	75.00 mm	C Magrat	7 N. P. T. S.	1 - Con 1011	101	100.00	100.00
2 1/2"	63.00 mm	01.00	1677,18	107-6-3	4.470	100.00	100.00
2"	50.00 mm	A 12.00				100.00	100.00
1 1/2"	37.50 mm	Craw F			10, 1	100.00	100.00
1"	25.00 mm	0.0	0.00	0.00	100.00	100.00	100.00
3/4"	19.00 mm	460.6	7.13	7.13	92.87	90.00	100.00
1/2"	12.50 mm	4401.4	68.13	75.26	24.74	20.00	55.00
3/8"	9.50 mm	1411.2	21.85	97.11	2.89	0.00	15.00
#4	4.75 mm	173.8	2.69	99.80	0.20	0.00	5.00
#8	2.36 mm		0.00	99.80	0.20	0.00	0.00
# 16	1.18 mm					0.00	0.00
# 30	600 µm				STREET (0.00	0.00
# 50	300 µm					0.00	0.00
# 100	150 µm				7	0.00	0.00
Fondo	10542	13.0	0.20	100.00	0.00	-C 0	3
7/15	7 105.47	The state of the s			-5%	MF	7.79
						TMN	3/4"

INGEOCONTROL SAC COC-LEM TECNICO LEM JEFE LEM Nombre v firma Noemi C. Sánchez Huamán Ingeniera civil - Cip nº: 196029 Ingenieria geutécnica y control de calidad s.a.c. Jony C. Gutiérrez Abanto GERENTE DE PROYECTOS Y ESTUDIOS INGENIERÍA GEOTÉCNICA Y CONTROL DE CALIDAD S.A.C.

INFORME	Código	AE-FO-78
MÉTODO DE PRUEBA ESTÁNDAR PARA LA DENSIDAD RELATIVA (GRAVEDAD ESPECÍFICA) Y	Versión	01
METODO DE PROEBA ESTANDAR PARA LA DENSIDAD RELATIVA (GRAVEDAD ESPECIFICA) Y LA ABSORCIÓN DE AGREGADOS GRUESOS ASTM C127-15	Fecha	30-04-2018
A31W C 127-13	Página	1 de 1

: Viabilidad de la construcción del pavimento rígido utilizando concreto reciclado Registro N°: IGC18-LEM-163-08 en la Avenida Pachacútec, Villa el Salvador - 2019 : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : Avenida Pachacútec, distrito de Villa el Salvador - Lima Solicitante Atención Ensayado por : B. Melgar Fecha de Ensayo: 29/05/2019 Material Agregado Grueso de Concreto Reciclado Turno: Diumo Código de Muestra 18649375.03 mS Norte: : Losa de Pavimento rígido de la Av. Magisterio - Villa el Salvador Este: 286883.51 mE N° de Muestra : M-1 84 m.s.n.m. Progresiva : km

	DATOS	A	В	
1	Peso de la muestra sss	2721.0	2721.0	
2	Peso de la muestra sss sumergida	1662.0	1660,0	
3	Peso de la muestra secada al horno	2651.0	2655.0	

RESULTADOS	1	2	PROMEDIO
PESO ESPECIFICO DE MASA	2.503	2.502	2.503
PESO ESPECIFICO DE MASA S.S.S	2.569	2.565	2.567
PESO ESPECIFICO APARENTE	2.680	2.668	2.674
PORCENTAJE DE ABSORCIÓN (%)	2.6	2.5	2.6

INFORME

DETERMINACIÓN DEL PESO UNITARIO SUELTO Y COMPACTADO DE LOS AGREGADOS ASTM C29 / C29M - 17a

ī	Código	AE-FO-101	
The same of	Versión	01	
	Fecha	30-04-2018	
	Página	1 de 1	

Proyecto : Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado en la Avenida Pachacióte, Villa el Salvador - 2019
Solicitante : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza
Atención : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza

: Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : Avenida Pachacítico, distrito de Villa el Salvador - Lima : Agregado Grueso de Concreto Reciclado Muestreado por : S Ensayado por : E Fecha de Ensayo: 3

Código de Muestra : 163

km

N° de Muestra

Progresiva

: 163 : Losa de Pavimento rígido de la Av. Magisterio - Villa el Salvador : M-1 do por : B. Melgar Ensayo: 31/05/2019 Turno: Diurno

Registro N°: IGC19-LEM-163-09

Norte: 18649375.03 mS Este: 286883.51 mE Cota: 84 m.s.n.m.

PESO UNITARIO SUELTO

IDENTIFICACIÓN	01	2	PROMEDIO
Peso de molde (kg)	3.509	3.509	D/ DE
Volumen de molde (m3)	0.007056	0.007056	60, 01
Peso de molde + muestra suelta (kg)	13.112	13,178	Lange I
Peso de muestra suelta (kg)	9.603	9.669	11,00
PESO UNITARIO SUELTO (kg/m3)	1361	1370	1366

PESO UNITARIO COMPACTADO

IDENTIFICACIÓN	1	2	PROMEDIC
Peso de molde (kg)	3.509	3.509	PUC
Volumen de molde (m3)	0.007056	0.007056	CP 4
Peso de molde + muestra suelta (kg)	13.975	14.167	OIL B
Peso de muestra suelta (kg)	10.466	10.658	MIC
PESO UNITARIO SUELTO (kg/m3)	1483	1510	1497

INGEOCONTROL

INGENIERIA GEOTECNICA Y CONTROL DE CALIDAD

Nombre y firma:

2. RELACIÓN AGUA CEMENTO

Ra/c = 0.40

3 DETERMINACIÓN DEL VOLUMEN DE AGUA

Agua = 205 L

4. CANTIDAD DE AIRE ATRAPADO

Aire = 2.0%

6. FACTOR CEMENTO

Bolsas x m3 = 12.1 Bolsas

AE-FO-93

01

1 de 1

J. Gutiérrez

J. Gutiérrez

4/06/2019

Diumo

350 kg/cm2

DISEÑO 1

7. ADITIVO

DYNAMON SP1 = 0.00%

8. CÁLCULO DEL VOLUMEN DE AGREGADOS PESO ESPECÍFICO VOLUMEN ABSOLUTO 3110 kg/m3 Cemento Sol Tipo I 1000 kg/m3 0.0200 m3

DYNAMON SP1	1090 kg/m3	0.0000 m3				The state of the	DITTO DE LA COLONIA
2 10 10 10 2	JUNE TO S	0.0000 m3	HUMEDAD	ABSORCIÓN	MÓD. FINEZA	P.U. SUELTO	P.U. COMPACTADO
Agregado grueso Natural	2861 kg/m3	-	0.20%	0.50%	7.42	1430	1580
Agregado grueso reciclado	2503 kg/m3	-	1.50%	2.60%	7.79	1370	1500
Agregado fino	2552 kg/m3	-	0.60%	2.00%	3.87	1430	1560
EUNED MU	Volumen de pasta	0.3898 m3	The state of the s		200	18 11/11/2	

Volumen de agregados 0.6102 m3

9 PROPORCIÓN DE AGREGADOS SECOS

45.89% ~ 0.2800 m3 ~ 801 kg Agregado grueso Natural 0.00% = 0.0000 m3 = 0 kg Agregado grueso Reciclado 54.11% = 0.3302 m3 = 843 kg Agregado fino

10. PESO HÚMEDO DE LOS AGREGADOS - CORRECCIÓN POR HUMEDAD

Agregado grueso Natural 803 kg Agregado grueso Reciclado 0 kg 848 kg Agregado fino

11. AGUA EFECTIVA CORREGIDA POR ABSORCIÓN Y HUMEDAD 219.2 L

12. VOLUMEN DE TANDA DE PRUEBI 0.045 m3

Cemento Sol Tipo I 23.06 kg Agua Agregado grueso Natural Agregado grueso Reciclado 0.00 kg A GEOTECNICA Y COI Agregado fino 38.16 kg DYNAMON SP1 0.00 g

13. PROPORCIÓN EN VOLUMEN DE OBRA

CEM A.F. A.G.N. A.G.R. ADIT AGUA 1 : 1.73 : 1.64 : 0.00 : 0g : 18. : 18.12 L / bolsa

OBSERVACIONES

- * Muestras provistas e identificadas por el solicitante
- * Prohibida la reproducción total o parcial de este documento sin la autorización de INGEOCONTROL.

DISEÑO DE MEZCLAS DE CONCRETO - DISEÑO COMPROBADO REFERENCIA ACI 211

FORMATO

	Código	AE-FO-93	
	Versión	01	
	Fecha	30-04-2018	
	Página	1 de 1	

: Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado

en la Avenida Pachacútec, Villa el Salvador - 2019

SOLICITANTE : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza CÓDIGO DE PROYECTO

UBICACIÓN DE PROYECTO : Avenida Pachacútec, distrito de Villa el Salvador - Lima FECHA DE EMISIÓN : 04/07/2019

REGISTRO Nº: IGC19-LEM-163-11

REALIZADO POR J. Gutiérrez REVISADO POR : J. Gutiérrez 4/06/2019 FECHA DE VACIADO :

F'c de diseño:

Asentamiento:

Código de mezcla:

Hora de Vaciado:

TURNO : Diurno

350 kg/cm2

DISEÑO 2

14:32

Piedra chancada / Arena Gruesa Agregado : Cantera Santa Clara / Cantera San Martin de Porras

Cemento : Cemento Sol Tipo I

1. RESISTENCIA A LA COMPRESIÓN REQUERIDA

5. CÁLCULO DE LA CANTIDAD DE CEMENTO

= 346.45 kg

F'or = 434 kg/cm2 2. RELACIÓN AGUA CEMENTO

Ra/c = 0.40

6. FACTOR CEMENTO

Bolsas x m3 = 8.2 Bolsas

3. DETERMINACIÓN DEL VOLUMEN DE AGUA

Agua = 138.58 L

7 ADITIVO

DYNAMON SP1 = 0.84%

4. CANTIDAD DE AIRE ATRAPADO

Aire = 2.0%

8 CÁLCULO DEL VOLUMEN DE AGREGADOS

INSUMO	PESO ESPECIFICO	VOLUMEN ABSOLUTO			
Cemento Sol Tipo I	3110 kg/m3	0.1114 m3			
Agua	1000 kg/m3	0.1386 m3			
Aire	150 - OF	0.0200 m3			
DYNAMON SP1	1090 kg/m3	0.0027 m3			
	M	0.0000 m3	HUMEDAD	ABSORCIÓN	la la
Agregado grueso Natural	2861 kg/m3	-	0.20%	0.50%	
Agregado grueso reciclado	2503 kg/m3	-	1.50%	2.60%	1

Volumen de pasta 0.2726 m3 Volumen de agregados 0.7274 m3

2552 kg/m3

9. PROPORCIÓN DE AGREGADOS SECOS

Agregado grueso Natural 38.50% ~ 0.2800 m3 ~ 801 kg 0.00% ~ 0.0000 m3 ~ 0 kg Agregado grueso Reciclado 61.50% ~0.4473 m3 ~1142 kg GEOTECNICA Y CO Agregado fino

1149 kg

10. PESO HÚMEDO DE LOS AGREGADOS - CORRECCIÓN POR HUMEDAD

12. VOLUMEN DE TANDA DE PRUEBA 0.045 m3 Cemento Sol Tipo I 15.59 kg

Agua 7.06 kg Agregado grueso Natural 36.14 kg Agregado grueso Reciclado 0.00 kg 51.71 kg Agregado fino

MÓD, FINEZA

7.79

130.96

DYNAMON SP1 Slump

P.U. SUELTO

P.U. COMPACTADO

11. AGUA EFECTIVA CORREGIDA POR ABSORCIÓN Y HUMEDAD

157.0 L

Agregado grueso Natural 803 kg

Agregado grueso Reciclado Agregado fino

13. PROPORCIÓN EN VOLUMEN DE OBRA

CEM AF A.G.N. A.G.R. ADIT AGUA 1 : 3.46 : 2.42 : 0.00 : 357g : 19.14 L / bolsa

OBSERVACIONES:

- * Muestras provistas e identificadas por el solicitante
- * Prohibida la reproducción total o parcial de este documento sin la autorización de INGEOCONTROL

DISEÑO DE MEZCLAS DE CONCRETO - DISEÑO COMPROBADO REFERENCIA ACI 211

FORMATO

Código AE-FO-93 Versión 01 Fecha 30-04-2018 1 de 1

: Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado

Piedra chancada / Arena Gruesa

: Cantera Santa Clara / Cantera San Martin de Porras

en la Avenida Pachacútec, Villa el Salvador - 2019 SOLICITANTE : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza CÓDIGO DE PROYECTO IGC19-LEM-163-12

: Cemento Sol Tipo I

UBICACIÓN DE PROYECTO Avenida Pachacútec, distrito de Villa el Salvador - Lima

FECHA DE EMISIÓN : 04/07/2019 REGISTRO Nº: IGC19-LEM-163-12

REVISADO POR J. Gutiérrez FECHA DE VACIADO : 5/06/2019

TURNO : Diurno

F'c de diseño: 350 kg/cm2 Asentamiento: Código de mezcla: DISEÑO 3 Hora de Vaciado 09:02

P.U. SUELTO P.U. COMPACTADO

1500

1560

1370

1430

15.59 kg

7.09 kg

32.49 kg 3,20 kg 51.71 kg

130.96 g

1. RESISTENCIA A LA COMPRESIÓN REQUERIDA

F'or = 434 kg/cm2

5 CÁLCULO DE LA CANTIDAD DE CEMENTO

Cemento = 346,45 kg

2. RELACIÓN AGUA CEMENTO

Agregado

Cemento

R a/c = 0.40

6. FACTOR CEMENTO

Bolsas x m3 = 8.2 Bolsas

7. ADITIVO

2.60%

2.00%

DYNAMON SP1 = 0.84%

1.50%

0.60%

4. CANTIDAD DE AIRE ATRAPADO

Aire = 2.0%

Agua = 139 L

8. CÁLCULO DEL VOLUMEN DE AGREGADOS

3 DETERMINACIÓN DEL VOLUMEN DE AGUA

INSUMO	PESO ESPECÍFICO	VOLUMEN ABSOLUTO			
Cemento Sol Tipo I	3110 kg/m3	0.1114 m3			
Agua	1000 kg/m3	0.1386 m3			
Aire	100% DOC	0.0200 m3			
DYNAMON SP1	1090 kg/m3	0.0027 m3			
- W. C. J. C.	MINOCH OF	0.0000 m3	HUMEDAD	ABSORCIÓN	Τ
Agregado grueso Natural	2861 kg/m3	-	0.20%	0.50%	t

2503 kg/m3

olumen de pasta Volumen de agregados 0.7274 m3

9. PROPORCIÓN DE AGREGADOS SECOS

Agregado grueso reciclado

Agregado fino

Agregado grueso Natural 34.65% ~ 0.2520 m3 ~ 721 kg Agregado grueso Reciclado Agregado fino

Cemento Sol Tipo I 3.85% ~ 0.0280 m3 ~ 70 kg 61.50% ~ 0.4473 m3 ~ 1142 kg Agua Agregado grueso Natural Agregado grueso Reciclado 10. PESO HÚMEDO DE LOS AGREGADOS - CORRECCIÓN POR HUMEDAD GEOTECNICA Y CO Agregado fino

Agregado grueso Natural 722 kg

Agregado grueso Reciclado 71 kg Agregado fino 1149 kg

13. PROPORCIÓN EN VOLUMEN DE OBRA

DYNAMON SP1

Slump

CEM A.F. A.G.N. A.G.R. ADIT AGUA 1 : 3.46 : 2.17 : 0.22 : 357g : 19.21 L / bolsa

MÓD. FINEZA

7.79

3.87

VOLUMEN DE TANDA DE PRUEBA 0,045 m3

11. AGUA EFECTIVA CORREGIDA POR ABSORCIÓN Y HUMEDAD Agua

157.5 L

OBSERVACIONES:

- * Muestras provistas e identificadas por el solicitante
- * Prohibida la reproducción total o parcial de este documento sin la autorización de INGEOCONTROL

DISEÑO DE MEZCLAS DE CONCRETO - DISEÑO COMPROBADO REFERENCIA ACI 211

FORMATO

 Código
 AE-FO-93

 Versión
 01

 Fecha
 30-04-2018

 Página
 1 de 1

PROYECTO : Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado

en la Avenida Pachacútec, Villa el Salvador – 2019

SOLICITANTE : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza

CÓDIGO DE PROYECTO : IGC19-LEM-163-13

UBICACIÓN DE PROYECTO : Avenida Pachacúfec, distrito de Villa el Salvador - Lima FECHA DE EMISIÓN : 04/07/2019 REGISTRO N°: IGC19-LEM-163-13

REALIZADO POR : J. Gutiérrez
REVISADO POR : J. Gutiérrez
FECHA DE VACIADO : 5/06/2019
TURNO : Diumo

 Agregado
 : Piedra chancada / Arena Gruesa
 F' c de diseño:
 350 kg/cm2

 Procedencia
 : Cantera Santa Clara / Cantera San Martín de Porras
 Asentamiento:
 3°

 Cemento
 : Cemento Sol Tipo I
 Código de mezcla:
 DISEÑO 4

 Hora de Vaciado:
 12:01

1. RESISTENCIA A LA COMPRESIÓN REQUERIDA

F'or = 434 kg/cm2

5. CÁLCULO DE LA CANTIDAD DE CEMENTO

Cemento = 346.45 kg

2. RELACIÓN AGUA CEMENTO R a/c = 0.40 6. FACTOR CEMENTO

Bolsas x m3 = 8.2 Bolsas

3. DETERMINACIÓN DEL VOLUMEN DE AGUA

Agua = 139 L

7. ADITIVO

DYNAMON SP1 = 0.84%

4. CANTIDAD DE AIRE ATRAPADO

Aire = 2.0%

8. CÁLCULO DEL VOLUMEN DE AGREGADOS INSUMO PESO

Cemento Sol Tipo I	3110 kg/m3	0.1114 m3					
Agua	1000 kg/m3	0.1386 m3	A				10000
Aire	07 27 O	0.0200 m3					
DYNAMON SP1	1090 kg/m3	0.0027 m3			187		
AND AFA	STORY OF	0.0000 m3	HUMEDAD	ABSORCIÓN	MÓD. FINEZA	P.U. SUELTO	P.U. COMPACTADO
Agregado grueso Natural	2861 kg/m3	-	0.20%	0.50%	7.42	1430	1580
Agregado grueso reciclado	2503 kg/m3	-	1.50%	2.60%	7.79	1370	1500
Agregado fino	2552 kg/m3		0.60%	2.00%	3.87	1430	1560

Volumen de pasta 0 2726 m³
Volumen de agregados 0.7274 m³

PESO ESPECÍFICO VOLUMEN ABSOLUTO

9. PROPORCIÓN DE AGREGADOS SECOS

 Agregado grueso Natural
 30.80%
 ~0.2240 m3
 ~641 kg

 Agregado grueso Reciclado
 7.70%
 ~0.0560 m3
 ~140 kg

 Agregado fino
 61.50%
 ~0.4473 m3
 ~1142 kg

12. VOLUMEN DE TANDA DE PRUEB. 0.045 m3
Cemento Sol Tipo I 15.50 kg
Agua 7.11 kg
Agregado grueso Natural 28.80 kg
Agregado grueso Reciclado 6.39 kg
Agregado fino 51.71 kg

10, PESO HÚMEDO DE LOS AGREGADOS - CORRECCIÓN POR HUMEDAD GEOTECNICA Y CO

Agregado grueso Natural 642 kg Agregado grueso Reciclado 142 kg Agregado fino 1149 kg

Siump 3"

11. AGUA EFECTIVA CORREGIDA POR ABSORCIÓN Y HUMEDAD

Agua 158.0 L

13. PROPORCIÓN EN VOLUMEN DE OBRA

CEM. A.F. A.G.N. A.G.R. ADIT AGUA

1 : 3.46 : 1.93 : 0.45 : 357g : 19.27 L / bolsa

OBSERVACIONES:

- * Muestras provistas e identificadas por el solicitante
- * Prohibida la reproducción total o parcial de este documento sin la autorización de INGEOCONTROL

CÓDIGO DE PROYECTO

DISEÑO DE MEZCLAS DE CONCRETO - DISEÑO COMPROBADO REFERENCIA ACI 211

Código	AE-FO-93	
Versión	01	
Fecha	30-04-2018	
Página	1 de 1	

SOLICITANTE

: Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado

en la Avenida Pachacútec, Villa el Salvador - 2019

: Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : IGC19-LEM-163-14

UBICACIÓN DE PROYECTO Avenida Pachacútec, distrito de Villa el Salvador - Lima FECHA DE EMISIÓN : 04/07/2019

1. RESISTENCIA A LA COMPRESIÓN REQUERIDA

REGISTRO Nº: IGC19-LEM-163-14

REALIZADO POR REVISADO POR : FECHA DE VACIADO :

F'c de diseño:

Asentamiento:

Hora de Vaciado:

P.U. SUELTO P.U. COMPACTADO

1500

1560

1430

1370

1430

J. Gutiérrez 5/06/2019

350 kg/cm2

DISEÑO 5

15:32

Diumo

Piedra chancada / Arena Gruesa Agregado : Cantera Santa Clara / Cantera San Martín de Porras

Cemento : Cemento Sol Tipo I

5. CÁLCULO DE LA CANTIDAD DE CEMENTO

F'cr = 434 kg/cm2 2. RELACIÓN AGUA CEMENTO

R a/c = 0.40

6. FACTOR CEMENTO

Bolsas x m3 = 8.2 Bolsas

3. DETERMINACIÓN DEL VOLUMEN DE AGUA

Agua = 139 L

7. ADITIVO

0.50%

2.60%

2.00%

0.20%

1.50%

0.60%

DYNAMON SP1 = 0.84%

4. CANTIDAD DE AIRE ATRAPADO

Aire = 2.0%

8. CÁLCULO DEL VOLUMEN DE AGREGADOS

INSUMO	PESO ESPECÍFICO	VOLUMEN ABSOLUTO			
Cemento Sol Tipo I	3110 kg/m3	0.1114 m3			
Agua	1000 kg/m3	0.1386 m3			
Aire	10 C 8 C C	0.0200 m3			
DYNAMON SP1	1090 kg/m3	0.0027 m3	1		
- FILE TO.	0 = 0 E	0.0000 m3	HUMEDAD	ABSORCIÓN	Γ
Agregado grueso Natural	2861 kg/m3		0.20%	0.50%	t

2503 kg/m3

2552 kg/m3

Volumen de agregados 0.7274 m3

9. PROPORCIÓN DE AGREGADOS SECOS

Agregado grueso reciclado

Agregado grueso Natural 26.95% ~ 0.1960 m3 ~ 561 kg Agregado grueso Reciclado Agregado fino

11.55% ~ 0.0840 m3 ~ 210 kg 61.50% ~ 0.4473 m3 ~ 1142 kg

10. PESO HÚMEDO DE LOS AGREGADOS - CORRECCIÓN POR HUMEDAD GEOTECNICA Y CO

Agregado grueso Natural 562 kg Agregado grueso Reciclado 213 kg Agregado fino 1149 kg

11. AGUA EFECTIVA CORREGIDA POR ABSORCIÓN Y HUMEDAD

158.6 L Agua

Cemento = 346.45 kg

VOLUMEN DE TANDA DE PRUEB 0.045 m3 Cemento Sol Tipo I

Agua 7.14 kg Agregado grueso Natural 25.29 kg

MÓD. FINEZA

7.42

7.79

3.87

Agregado grueso Reciclado 9.59 kg Agregado fino 51.71 kg DYNAMON SP1 130.96 . 2

13. PROPORCIÓN EN VOLUMEN DE OBRA

CEM A.F. A.G.N. A.G.R. ADIT AGUA 1:3.46:1.69:0.67:357g:19.34 L/bolsa

OBSERVACIONES

- * Muestras provistas e identificadas por el solicitante
- * Prohibida la reproducción total o parcial de este documento sin la autorización de INGEOCONTROL

CÓDIGO DE PROYECTO

UBICACIÓN DE PROYECTO FECHA DE EMISIÓN

SOLICITANTE

FORMATO Código AE-FO-101 Wersión 01 MÉTODO DE PRUEBA ESTÁNDAR PARA LA RESISTENCIA A LA COMPRESIÓN DE PROBETAS CILÍNDRICAS DE HORMIGÓN Platina 30-04-2018 CILÍNDRICAS DE HORMIGÓN

PROYECTO : Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado

en la Avenida Pachacútec, Villa el Salvador – 2019

 Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza
 REALIZADO POR : J. Gutlérrez
 J. Gutlérrez

 (IGC19-LEM-163-15
 REVISADO POR : J. Gutlérrez
 J. Gutlérrez

 Avenida Pachacutter, distrito de Villa el Salvador - Lima
 FECHA DE ENSAYO : TURNO : Diumo

 64/07/2019
 TURNO : Diumo


Tipo de muestra : Concreto endurecido
Presentación : Especimenes cillindricos 4" x 8"
Fc de diseño : 350 kg/cm2

Código de mezcla: DISEÑO 2

REGISTRO Nº: IGC19-LEM-163-15

RESISTENCIA A LA COMPRESIÓN DE CONCRETO ENDURECIDO ASTM C39

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD (días)	DIÁMETRO cm	ALTURA cm	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	ESFUERZO	% Fc
Concreto Patrón con Aditivo	4/06/2019	11/06/2019	7	10.11	20.20	5	2.00	278.76 kg/cm2	79.65%
Concreto Patrón con Aditivo	4/06/2019	11/06/2019	7	10.08	20.10	5	1.99	273.25 kg/cm2	78.07%
Concreto Patrón con Aditivo	4/06/2019	11/06/2019	7	10.10	20.11	5	1.99	278.15 kg/cm2	79.47%

of Typical Fracture Patterns

Fuente: ASTM C39

OBSERVACIONES:

- * Muestras elaboradas y curadas por el solicitante
- * Las muestras cumplen con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuerzo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

SOLICITANTE

MÉTODO DE PRUEBA ESTÁNDAR PARA LA RESISTENCIA A LA COMPRESIÓN DE PROBETAS CILÍNDRICAS DE HORMIGÓN Fecha 30-04-2018 Página 1 de 1

Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado PROYECTO

en la Avenida Pachacútec, Villa el Salvador – 2019 Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza

CÓDIGO DE PROYECTO IGC19-LEM-163-16 UBICACIÓN DE PROYECTO

FECHA DE EMISIÓN

: Avenida Pachacútec, distrito de Villa el Salvador - Lima

REGISTRO Nº: IGC19-LEM-163-16

REALIZADO POR : J. Gutiérrez FECHA DE ENSAYO 18/06/2019

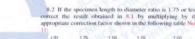
TURNO : Diurno

Código de mezcla:

Tipo de muestra Concreto endurecido Especimenes cilindricos 4" x 8"

F'c de diseño 350 kg/cm2

RESISTENCIA A LA COMPRESIÓN DE CONCRETO ENDURECIDO ASTM C39


IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD (días)	DIÁMETRO cm	ALTURA cm	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	ESFUERZO	% F'c
Concreto Patrón con Aditivo	4/06/2019	18/06/2019	14	10.09	20.11	6	1.99	323.20 kg/cm2	92.34%
Concreto Patrón con Aditivo	4/06/2019	18/06/2019	14	10.10	20.09	5	1.99	319.70 kg/cm2	91.34%
Concreto Patrón con Aditivo	4/06/2019	18/06/2019	14	10.11	20.11	6	1.99	320.77 kg/cm2	91.65%

NICA Y CONTROL DE CALIDAD

Fuente: ASTM C39

Fuente: ASTM C39

- * Muestras elaboradas y curadas por el solicitante
- * Las muestras cumplen con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuerzo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

MÉTODO DE PRUEBA ESTÁNDAR PARA LA RESISTENCIA A LA COMPRESIÓN DE PROBETAS CILÍNDRICAS DE HORMIGÓN Fecha

Código AE-FO-101 30-04-2018 1 de 1

REGISTRO Nº: IGC19-LEM-163-17

PROYECTO Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado

en la Avenida Pachacútec, Villa el Salvador – 2019 Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza SOLICITANTE CÓDIGO DE PROYECTO
UBICACIÓN DE PROYECTO IGC19-LEM-163-17

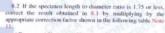
REALIZADO POR REVISADO POR : FECHA DE ENSAYO : J. Gutiérrez 2/07/2019

: Avenida Pachacútec, distrito de Villa el Salvador - Lima FECHA DE EMISIÓN : 04/07/2019

TURNO: Diurno

Tipo de muestra Concreto endurecido : Especimenes cilindricos 4" x 8" : 350 kg/cm2 F'c de diseño

Código de mezcla: DISEÑO 2


RESISTENCIA A LA COMPRESIÓN DE CONCRETO ENDURECIDO ASTM C39

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD (días)	DIÁMETRO cm	ALTURA cm	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	ESFUERZO	% F'c
Concreto Patrón con Aditivo	4/06/2019	2/07/2019	28	10.11	20.20	5	2.00	367.83 kg/cm2	105.10%
Concreto Patrón con Aditivo	4/06/2019	2/07/2019	28	10.08	20.10	6	1.99	372.54 kg/cm2	106.44%
Concreto Patrón con Aditivo	4/06/2019	2/07/2019	28	10.10	20.11	5	1.99	366.09 kg/cm2	104.60%

correction factors for L/D

Evente: ASTM C39

Fuente: ASTM C39

NICA Y CONTRO

Fuente: ASTM C39

OBSERVACIONES:

- * Muestras elaboradas y curadas por el solicitante
- * Las muestras cumplen con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuerzo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

OF CHAIR OF WELL	Mr. Olb	INGEOCONTROL SAC			
TECNICO LEM	D:	JEFE LBM	D:	CGC - LEW	D:
Numbre y firms:	M:	Nombre y firms:	M:	Nombre y figure.	M
INGEROCHARDIL PER	A C	Noemi C. Sánchez Huàm Ingeniera civil - cip nº: 1960 Ingenieria gediécnica y control de calidad s	án	JONY C. Gutiérrez Abanto GERENTE DE PROYECTOS Y ESTUDIOS INGENIERIA GEOTÉCNICA Y CONTROL DE CALIDÃO S.A.C.	A

Mz. B Lote 11 Urb. Ampliación Los Portales de Chavin 4ta etapa - San Martín de Porres - Lima Telf.: (01) 6853852 Cel.: 924 513 299

www.ingeocontrol.com / informes@ingeocontrol.com

Tipo de muestra : Concreto endurecido
Presentación : Especimenes cilindricos 4" x 8"
Fc de diseño : 350 kg/cm2

RESISTENCIA A LA COMPRESIÓN DE CONCRETO ENDURECIDO ASTM C39

DISEÑO 3

Código de mezcla:

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD (días)	DIÁMETRO	ALTURA cm	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	ESFUERZO	% F'c
Concreto Patron con Aditivo + 10% AGCR	5/06/2019	12/06/2019	7	10.08	20.12	5	2.00	291.37 kg/cm2	83.25%
Concreto Patron con Aditivo + 10% AGCR	5/06/2019	12/06/2019	7	10.10	20.11	5	1.99	295.99 kg/cm2	84.57%
Concreto Patron con Aditivo + 10% AGCR	5/06/2019	12/06/2019	7	10.10	20.11	5	1.99	293.47 kg/cm2	83.85%

Fuente: ASTM C39

OBSERVACIONES:

- * Muestras elaboradas y curadas por el solicitante
- * Las muestras cumplen con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuerzo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

08. Ch. 10 40 12 CS		INGEOCONTROL SAC			6.6%
TECNICO LEM	D:	JEFELEM	D:	COC-LEM	D:
Nombre y firms.	A A	Noemi C. Sánchez Huanan Ingeniera Civil - Cip Nº: 196029 Ingeniera Geutécnica y Control de Calidad Sac.	A:	JOTTY C. Gutiérrez Abanto GERENTE DE PROYECTOS Y ESTUDIOS INGENIERÍA GEOTÉCNICA Y CONTROL DE CALIDAD S.A.C.	A:

CÓDIGO DE PROYECTO

F'c de diseño

MÉTODO DE PRUEBA ESTÁNDAR PARA LA RESISTENCIA A LA COMPRESIÓN DE PROBETAS CILÍNDRICAS DE HORMIGÓN

FORMATO

Código AE-FO-101 Fecha 30-04-2018 Página 1 de 1 REGISTRO Nº: IGC19-LEM-163-19

: Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado en la Avenida Pachacútec, Villa el Salvador – 2019 PROYECTO

SOLICITANTE Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza

IGC19-LEM-163-19

UBICACIÓN DE PROYECTO FECHA DE EMISIÓN

: Avenida Pachacútec, distrito de Villa el Salvador - Lima : 05/07/2019

REALIZADO POR : REVISADO POR : FECHA DE ENSAYO :

J. Gutiérrez 12/06/2019

TURNO : Diurno

Concreto endurecido : Especimenes cilindricos 4" x 8" 350 kg/cm2

Código de mezcla:

DISEÑO 4

RESISTENCIA A LA COMPRESIÓN DE CONCRETO ENDURECIDO ASTM C39

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD (días)	DIÁMETRO cm	ALTURA cm	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	ESFUERZO	%Fc
Concreto Patron con Aditivo + 20% AGCR	5/06/2019	12/06/2019	7	10.10	20.04	5	1.98	282.65 kg/cm2	80.76%
Concreto Patron con Aditivo + 20% AGCR	5/06/2019	12/06/2019	7	10.11	20.06	5	1,98	276.00 kg/cm2	78.86%
Concreto Patron con Aditivo + 20% AGCR	5/06/2019	12/06/2019	7	10.06	20.10	5	2.00	284.49 kg/cm2	81.28%

1.50

Fuente: ASTM C39

NICA Y CONTROL DE CALIDAD

10.6%

Fuente: ASTM C39

Fuente: ASTM C39

OBSERVACIONES:

- * Muestras elaboradas y curadas por el solicitante
- * Las muestras cumplen con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuerzo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

OF CHILDING WAR		INGEOCONTROL SAC	TO TO	E ALIDAD MOENTE	
TECNICO LEM	D:	JEFE LEM	D:	CQC-LEM	D;
Number y firms	A.	Norma Visina Norma C. Sánchoz Hu Ingeniera Civil - Cipi Nr; Ingenieria gediécnica y control de cai	amán	JONY C. Gutiérrez Alb. GERENTE DE PROYECTOS Y ESTU INGENERIA GEOTÉCNICA Y CONTROL DE CALLE	

FORMATO 01 MÉTODO DE PRUEBA ESTÁNDAR PARA LA RESISTENCIA A LA COMPRESIÓN DE PROBETAS CILÍNDRICAS DE HORMIGÓN Fecha 30-04-2018 Página 1 de 1

PROYECTO Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado

en la Avenida Pachacútec, Villa el Salvador – 2019 : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza

SOLICITANTE CÓDIGO DE PROYECTO UBICACIÓN DE PROYECTO IGC19-LEM-163-20 : Avenida Pachacútec, distrito de Villa el Salvador - Lima FECHA DE EMISIÓN

: 05/07/2019

REGISTRO Nº: IGC19-LEM-163-20 REALIZADO POR :

J. Gutiérrez REVISADO POR J. Gutiérrez FECHA DE ENSAYO : TURNO : 12/06/2019

Diurno

Código de mezcla: DISEÑO 5

Tipo de muestra Concreto endurecido Especimenes cilindricos 4" x 8"

: 350 kg/cm2 Fc de diseño

RESISTENCIA A LA COMPRESIÓN DE CONCRETO ENDURECIDO ASTM C39

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD (días)	DIÁMETRO cm	ALTURA cm	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	ESFUERZO	% Fc
Concreto Patron con Aditivo + 30% AGCR	5/06/2019	12/06/2019	7	10.07	20.11	5	2.00	269.34 kg/cm2	76.96%
Concrete Patron con Aditivo + 30% AGCR	5/06/2019	12/06/2019	7	10.11	20.09	5	1.99	270.97 kg/cm2	77.42%
Concreto Patron con Aditivo + 30% AGCR	5/06/2019	12/06/2019	7	10.09	20.08	5	1.99	268.46 kg/cm2	76.70%

orrection factors for L/D

Fuente: ASTM C39

Fuente: ASTM C39

NICAY CONTROL DE CALIDAD

Fuente: ASTM C39

OBSERVACIONES:

- * Muestras elaboradas y curadas por el solicitante
- * Las muestras cumplen con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuerzo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

AE-FO-101 Versión 01 MÉTODO DE PRUEBA ESTÁNDAR PARA LA RESISTENCIA A LA COMPRESIÓN DE PROBETAS CILÍNDRICAS DE HORMIGÓN Fecha 30-04-2018

Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado PROYECTO

en la Avenida Pachacútec, Villa el Salvador – 2019 : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espínoza

SOLICITANTE CÓDIGO DE PROYECTO UBICACIÓN DE PROYECTO IGC19-LEM-163-21

FECHA DE EMISIÓN

: Avenida Pachacútec, distrito de Villa el Salvador - Lima : 04/07/2019

REALIZADO POR REVISADO POR J. Gutiérrez J. Gutiérrez

FECHA DE ENSAYO 19/6/2019

REGISTRO Nº: IGC19-LEM-163-21

TURNO :

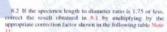
Diurno

Tipo de muestra Concreto endurecido Especimenes cilindricos 4" x 8"

Fc de diseño 350 kg/cm2

DISEÑO 3 Código de mezcla:

RESISTENCIA A LA COMPRESIÓN DE CONCRETO ENDURECIDO ASTM C39


IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD (días)	DIÁMETRO cm	ALTURA cm	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	ESFUERZO	% F'c
Concreto Patrón con Aditivo + 10% AGCR	5/6/2019	19/6/2019	14	10.09	20.11	6	1.99	333.64 kg/cm2	95.32%
Concreto Patrón con Aditivo + 10% AGCR	5/6/2019	19/6/2019	14	10.11	20.10	5	1.99	329.84 kg/cm2	94.24%
Concreto Patrón con Aditivo + 10% AGCR	5/6/2019	19/6/2019	14	10.07	20.09	5	2.00	331.22 kg/cm2	94.63%

prrection factors for L/D

Fuente: ASTM C39

NICA Y CONTROL DE CALIDAD

Fuente: ASTM C39

Fuente: ASTM C39

OBSERVACIONES:

- * Muestras elaboradas y curadas por el solicitante
- * Las muestras cumplen con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuerzo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

FECHA DE EMISIÓN

MÉTODO DE PRUEBA ESTÁNDAR PARA LA RESISTENCIA A LA COMPRESIÓN DE PROBETAS CILÍNDRICAS DE HORMIGÓN

AE-FO-101 01 30-04-2018 Página

Código de mezcla:

REGISTRO Nº: IGC19-LEM-163-22

DISEÑO 4

Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado

en la Avenida Pachacútec, Villa el Salvador – 2019 : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza SOLICITANTE

REALIZADO POR J. Gutiérrez CÓDIGO DE PROYECTO UBICACIÓN DE PROYECTO IGC19-LEM-163-22 REVISADO POR J. Gutiérrez : Avenida Pachacútec, distrito de Villa el Salvador - Lima FECHA DE ENSAYO 19/06/2019 : 04/07/2019 TURNO : Diurno

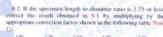
Tipo de muestra

Presentación Especimenes cilindricos 4" x 8"

: 350 kg/cm2 F'c de diseño

RESISTENCIA A LA COMPRESIÓN DE CONCRETO ENDURECIDO ASTM C39

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD (días)	DIÁMETRO cm	ALTURA cm	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	ESFUERZO	% F'c
Concreto Patrón con Aditivo + 20% AGCR	5/06/2019	19/06/2019	14	10.09	20.03	6	1.99	333.59 kg/cm2	95.31%
Concreto Patrón con Aditivo + 20% AGCR	5/06/2019	19/06/2019	14	10.10	20.05	5	1.99 1	323.20 kg/cm2	92.34%
Concreto Patrón con Aditivo + 20% AGCR	5/06/2019	19/06/2019	14	10.08	20.11	5	2.00	325.38 kg/cm2	92.96%


NICA Y CONTROL

prrection factors for L/D

Fuente: ASTM C39

Fuente: ASTM C39

Fuente: ASTM C39

OBSERVACIONES:

- * Muestras elaboradas y curadas por el solicitante
- * Las muestras cumplen con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuerzo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

FORMATO 01 MÉTODO DE PRUEBA ESTÁNDAR PARA LA RESISTENCIA A LA COMPRESIÓN DE PROBETAS CILÍNDRICAS DE HORMIGÓN Fecha 30-04-2018 Página 1 de 1

Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado PROYECTO

en la Avenida Pachacútec, Villa el Salvador – 2019 Juan Fernando Pérez Áyala / Yonathan Smith Aguilar Espinoza SOLICITANTE CÓDIGO DE PROYECTO IGC19-LEM-163-23 UBICACIÓN DE PROYECTO

FECHA DE EMISIÓN

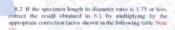
: Avenida Pachacútec, distrito de Villa el Salvador - Lima : 04/07/2019

REGISTRO Nº: IGC19-LEM-163-23

REALIZADO POR J. Gutiérrez REVISADO POR J. Gutiérrez FECHA DE ENSAYO : 19/06/2019 TURNO : Diurno

Tipo de muestra Concreto endurecido : Especimenes cilindricos 4" x 8"

Fc de diseño : 350 kg/cm2 Código de mezcla: DISEÑO 5


RESISTENCIA A LA COMPRESIÓN DE CONCRETO ENDURECIDO ASTM C39

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD (días)	DIÁMETRO cm	ALTURA cm	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	ESFUERZO	% F'c
Concreto Patrón con Aditivo + 30% AGCR	5/06/2019	19/06/2019	14	10.07	20.11	5	2.00	304.50 kg/cm2	87.00%
Concreto Patrón con Aditivo + 30% AGCR	5/06/2019	19/06/2019	14	10.11	20.10	5	1.99	297.07 kg/cm2	84.88%
Concreto Patrón con Aditivo + 30% AGCR	5/06/2019	19/06/2019	14	10.09	20.08	5	1.99	299.57 kg/cm2	85.59%

orrection factors for L/D

Fuente: ASTM C39

10.6% Fuente: ASTM C39

Fuente: ASTM C39

- * Muestras elaboradas y curadas por el solicitante
- * Las muestras cumplen con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuerzo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

SOLICITANTE

CÓDIGO DE PROYECTO

FECHA DE EMISIÓN

UBICACIÓN DE PROYECTO

FORMATO AE-FO-101 MÉTODO DE PRUEBA ESTÁNDAR PARA LA RESISTENCIA A LA COMPRESIÓN DE PROBETAS CILÍNDRICAS DE HORMIGÓN

PROYECTO Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado

en la Avenida Pachacútec, Villa el Salvador - 2019

: Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : IGC19-LEM-163-24 : Avenida Pachacútec, distrito de Villa el Salvador - Lima

: 04/07/2019

REALIZADO POR REVISADO POR FECHA DE ENSAYO

Código de mezcla:

J. Gutiérrez J. Gutiérrez

DISEÑO 3

3/07/2019

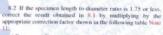
REGISTRO Nº: IGC19-LEM-163-24

TURNO

Diurno

Tipo de muestra Concreto endurecido Presentación Especimenes cilindricos 4" x 8"

F'c de diseño 350 kg/cm2


RESISTENCIA A LA COMPRESIÓN DE CONCRETO ENDURECIDO ASTM C39

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD (días)	DIÁMETRO cm	ALTURA cm	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	ESFUERZO	% F'c
Concreto Patrón con Aditivo + 10% AGCR	5/06/2019	3/07/2019	28	10.08	20.10	5	1.99	371.89 kg/cm2	106.25%
Concreto Patrón con Aditivo + 10% AGCR	5/06/2019	3/07/2019	28	10.10	20.09	6	1.99	372.93 kg/cm2	106.55%
Concreto Patrón con Aditivo + 10% AGCR	5/06/2019	3/07/2019	28	10.09	20.10	6	1.99	374.93 kg/cm2	107.12%

Fuente: ASTM C39

Evente: ASTM C39

OBSERVACIONES:

- * Muestras elaboradas y curadas por el solicitante
- * Las muestras cumplen con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuerzo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

CÓDIGO DE PROYECTO

SOLICITANTE

MÉTODO DE PRUEBA ESTÁNDAR PARA LA RESISTENCIA A LA COMPRESIÓN DE PROBETAS CILÍNDRICAS DE HORNIGÓN

: Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado

en la Avenida Pachacútec, Villa el Salvador – 2019 : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza IGC19-LEM-163-25

UBICACIÓN DE PROYECTO FECHA DE EMISIÓN

: Avenida Pachacútec, distrito de Villa el Salvador - Lima : 04/07/2019

REALIZADO POR : REVISADO POR

Código de mezcla:

J. Gutiérrez J. Gutiérrez 3/7/2019

30-04-2018

DISEÑO 4

FECHA DE ENSAYO : TURNO : Diumo

REGISTRO Nº: IGC19-LEM-163-25

Tipo de muestra Concreto endurecido : Especimenes cilindricos 4" x 8"

350 kg/cm2

F'c de diseño

RESISTENCIA A LA COMPRESIÓN DE CONCRETO ENDURECIDO ASTM C39

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD (días)	DIÁMETRO cm	ALTURA cm	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	ESFUERZO	% F'c
Concreto Patrón con Aditivo + 20% AGCR	5/6/2019	3/7/2019	28	10.08	20,01	5	1.99	365.83 kg/cm2	104.52%
Concreto Patrón con Aditivo + 20% AGCR	5/6/2019	3/7/2019	28	10.11	20.04	5	1.98	366.16 kg/cm2	104.62%
Concreto Patrón con Aditivo + 20% AGCR	5/6/2019	3/7/2019	28	10.09	20.10	6	1.99	373.50 kg/cm2	106.71%

Fuente: ASTM C39

NICA Y CONTROL DE CALIDAD Fuente: ASTM C39

Fuente: ASTM C39

- * Muestras elaboradas y curadas por el solicitante
- * Las muestras cumplen con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuerzo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

CÓDIGO DE PROYECTO

SOLICITANTE

MÉTODO DE PRUEBA ESTÁNDAR PARA LA RESISTENCIA A LA COMPRESIÓN DE PROBETAS CILÍNDRICAS DE HORMIGÓN Fecha

01 30-04-2018 Página 1 de 1 REGISTRO Nº: IGC19-LEM-163-26

Código de mezcla:

Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado PROYECTO

en la Avenida Pachacútec, Villa el Salvador - 2019

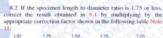
REALIZADO POR Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza J. Gutiérrez IGC19-LEM-163-26 REVISADO POR J. Gutiérrez : Avenida Pachacútec, distrito de Villa el Salvador - Lima FECHA DE ENSAYO 3/07/2019 TURNO: Diurno

UBICACIÓN DE PROYECTO FECHA DE EMISIÓN : 04/07/2019

Tipo de muestra Concreto endurecido Especimenes cilíndricos 4" x 8"

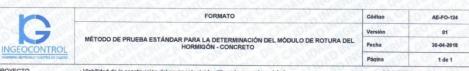
F'c de diseño 350 kg/cm2

RESISTENCIA A LA COMPRESIÓN DE CONCRETO ENDURECIDO ASTM C39


IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD (días)	DIÁMETRO cm	ALTURA cm	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	ESFUERZO	% F'c
Concreto Patrón con Aditivo + 30% AGCR	5/06/2019	3/07/2019	28	10.08	20.10	5	1.99	362.79 kg/cm2	103.66%
Concreto Patrón con Aditivo + 30% AGCR	5/06/2019	3/07/2019	28	10.09	20.10	5	1.99	349.58 kg/cm2	99.88%
Concreto Patrón con Aditivo + 30% AGCR	5/06/2019	3/07/2019	28	10.11	20.09	5	1.99	353.57 kg/cm2	101.02%

etion factors for L/D

Fuente: ASTM C39


Fuente: ASTM C39

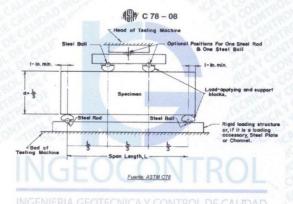
Fuente: ASTM C39

OBSERVACIONES:

- * Muestras elaboradas y curadas por el solicitante
- * Las muestras cumplen con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuerzo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado en la Avenida Pachacútec, Villa el Salvador – 2019 PROYECTO REGISTRO Nº: IGC19-LEM-163-27 SOLICITANTE Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza J. Gutiérrez REALIZADO POR CÓDIGO DE PROYECTO : IGC19-LEM-163-27 J. Gutiérrez REVISADO POR UBICACIÓN DE PROYECTO : Avenida Pachacútec, distrito de Villa el Salvador - Lima FECHA DE ENSAYO 2/07/2019 FECHA DE EMISIÓN : 04/07/2019 TURNO: Diurno

Tipo de muestra : Concreto endurecido
Presentación : Especimenes cilindricos


 Presentación
 : Especimenes cilindricos 150mm x 150mm x 500mm
 Código de mezcla:

 Fo de diseño
 : 350 kg/cm2

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78

DISEÑO 2

IDENTIFICACIÓN	VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	ALTURA (cm)	ANCHO (cm)	LUZ LIBRE (cm)	FUERZA MAXIMA	MÓDULO DE ROTURA
Concreto Patrón con Aditivo	4/06/2019	2/07/2019	28 dias	TERCIO CENTRAL	15.10	15.10	45.00	3552.8	46.44 kg/cm2
Concreto Patrón con Aditivo	4/06/2019	2/07/2019	28 dias	TERCIO CENTRAL	15.10	15.10	45.00	3528.6	46.12 kg/cm2

OBSERVACIONES:

- * Muestras elaboradas y curadas por el personal técnico de INGEOCONTROL.
- * Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

SOLICITANTE

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL MÓDULO DE ROTURA DEL HORMIGÓN - CONCRETO

FORMATO

 Código
 AE-FO-124

 Versión
 01

 Fecha
 30-04-2018

 Página
 1 de 1

REGISTRO Nº: IGC19-LEM-163-28

PROYECTO : Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado

en la Avenida Pachacútec, Villa el Salvador - 2019

: Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : IGC19-LEM-163-28

CÓDIGO DE PROYECTO : IGC19-LEM-163-28
UBICACIÓN DE PROYECTO : Avenida Pachacútec, distrito de Villa el Salvador - Lima
FECHA DE EMISIÓN : 04/07/2019

REVISADO POR : FECHA DE ENSAYO : TURNO : J. Gutiérrez J. Gutiérrez 3/07/2019

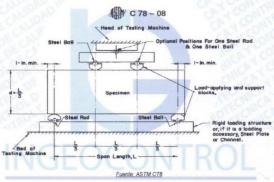
3/07/2019 Diurno

FECHA DE EMISIÓN : 04/07/2019

Tipo de muestra : Concreto endurecido

Tipo de muestra : Concreto endurecido
Presentación : Especímenes cilíndricos 150mm x 150mm x 500mm

F'c de diseño : 350 kg/cm2


Código de mezcla:

REALIZADO POR

cla: DISEÑO 3

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	ALTURA (cm)	ANCHO (cm)	LUZ LIBRE (cm)	FUERZA MAXIMA	MÓDULO DE ROTURA
Concreto Patrón con Aditivo + 10% AGCR	5/06/2019	3/07/2019	28 días	TERCIO CENTRAL	15.10	15.10	45.00	3549.7	46.40 kg/cm2
Concreto Patrón con Aditivo + 10% AGCR	5/06/2019	3/07/2019	28 días	TERCIO CENTRAL	15.10	15.10	45.00	3554.3	46.46 kg/cm2

INGENIERIA GEOTECNICA Y CONTROL DE CALIDAD

OBSERVACIONES:

- * Muestras elaboradas y curadas por el personal técnico de INGEOCONTROL.
- * Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL MÓDULO DE ROTURA DEL HORMIGÓN - CONCRETO

AE-FO-124 Fecha 30-04-2018

Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado

en la Avenida Pachacútec, Villa el Salvador - 2019

REALIZADO POR REVISADO POR

J. Gutiérrez 3/07/2019

SOLICITANTE CÓDIGO DE PROYECTO UBICACIÓN DE PROYECTO

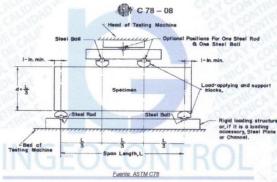
Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : IGC19-LEM-163-29 : Avenida Pachacútec, distrito de Villa el Salvador - Lima

FECHA DE ENSAYO :

REGISTRO Nº: IGC19-LEM-163-29

FECHA DE EMISIÓN : 04/07/2019

Concreto endurecido


: Especimenes cilindricos 150mm x 150mm x 500mm Fc de diseño : 350 kg/cm2

Código de mezcla:

DISEÑO 4

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	ALTURA (cm)	ANCHO (cm)	LUZ LIBRE (cm)	FUERZA MAXIMA	MÓDULO DE ROTURA
Concreto Patrón con Aditivo + 20% AGCR	5/06/2019	3/07/2019	28 días	TERCIO CENTRAL	15.10	15.10	45.00	3520.1	46.01 kg/cm2
Concreto Patrón con Aditivo + 20% AGCR	5/06/2019	3/07/2019	28 días	TERCIO CENTRAL	15.10	15.10	45.00	3557.3	46.49 kg/cm2

- * Muestras elaboradas y curadas por el personal técnico de INGEOCONTROL.
- * Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

PROYECTO

SOLICITANTE

CÓDIGO DE PROYECTO

AE-FO-124 MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL MÓDULO DE ROTURA DEL HORMIGÓN - CONCRETO 30-04-2018 1 de 1

Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado

en la Avenida Pachacútec, Villa el Salvador - 2019

: Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : IGC19-LEM-163-30

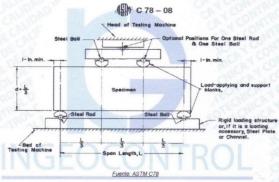
UBICACIÓN DE PROYECTO : Avenida Pachacútec, distrito de Villa el Salvador - Lima : 04/07/2019 FECHA DE EMISIÓN

REALIZADO POR REVISADO POR FECHA DE ENSAYO

J. Gutiérrez J. Gutiérrez 3/07/2019

TURNO : Diumo

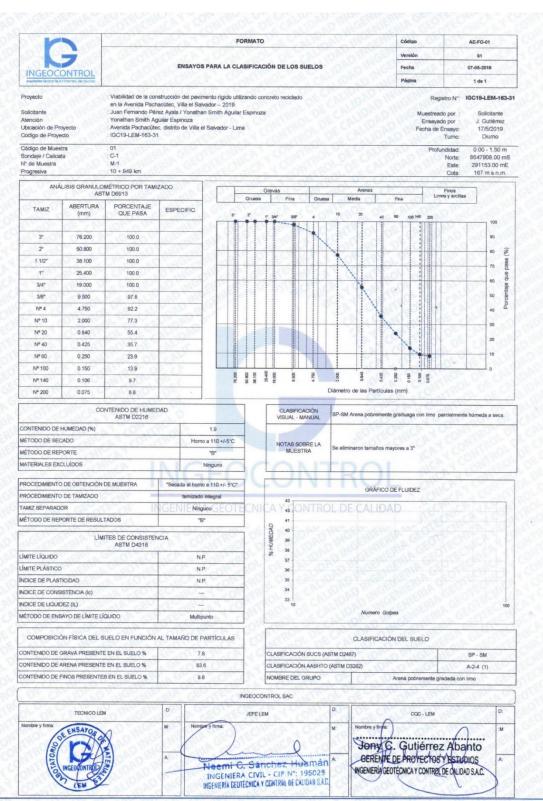
REGISTRO Nº: IGC19-LEM-163-30

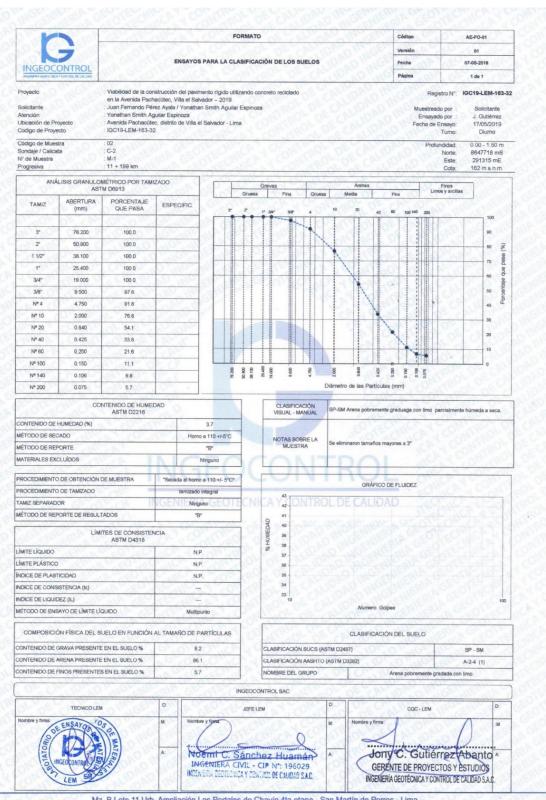

Tipo de muestra

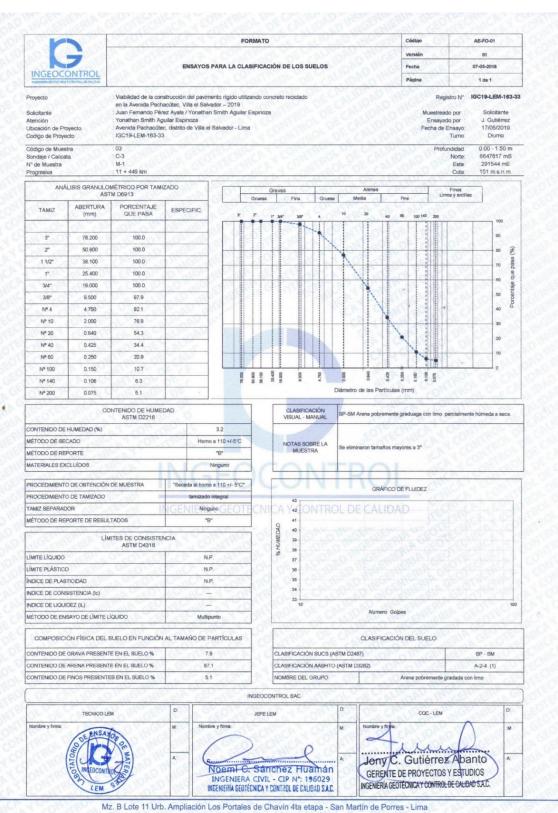
Presentación : Especimenes cilíndricos 150mm x 150mm x 500mm : 350 kg/cm2 F'c de diseño

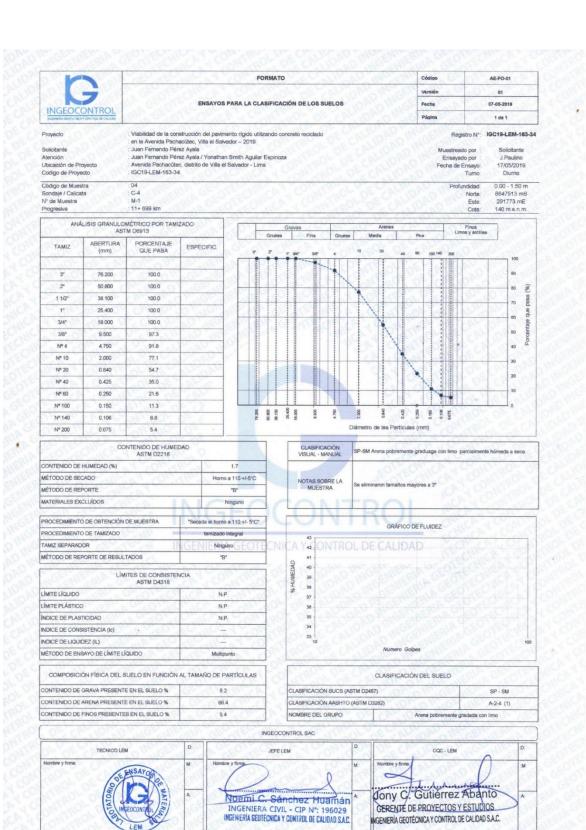
Código de mezcla:

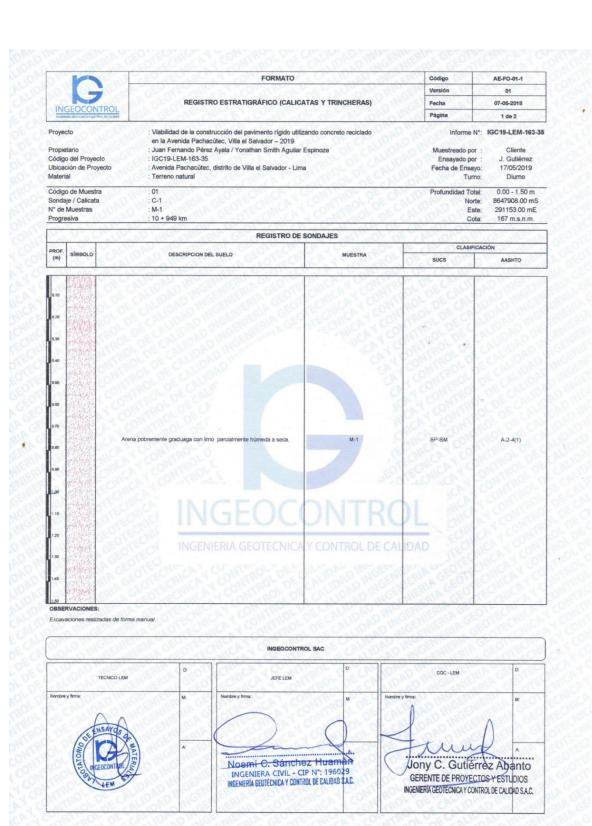
RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78

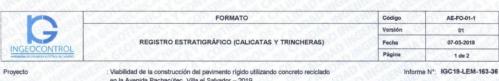

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	ALTURA (cm)	ANCHO (cm)	LUZ LIBRE (cm)	FUERZA MAXIMA	MÓDULO DE ROTURA
Concreto Patrón con Aditivo + 30% AGCR	5/06/2019	3/07/2019	28 días	TERCIO CENTRAL	15.10	15.10	45.00	3505.9	45.82 kg/cm2
Concreto Patrón con Aditivo + 30% AGCR	5/06/2019	3/07/2019	28 días	TERCIO CENTRAL	15.10	15.10	45.00	3441.7	44.98 kg/cm2

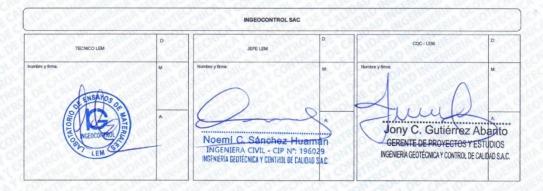


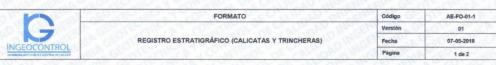

OBSERVACIONES:


- * Muestras elaboradas y curadas por el personal técnico de INGEOCONTROL.
- * Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL





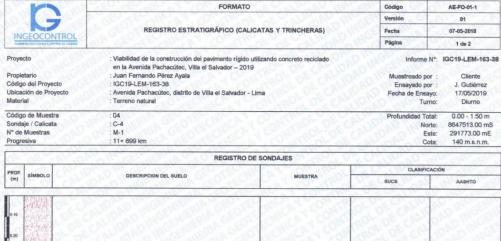




en la Avenida Pachacútec, Villa el Salvador – 2019 Juan Fernando Pérez Ayala IGC19-LEM-163-36 Muestreado por Código del Proyecto Ubicación de Proyecto J. Gutiérrez Ensayado por : Fecha de Ensayo: Avenida Pachacútec, distrito de Villa el Salvador - Lima 17/05/2019 Terreno natural Turno: Diurno Material 0.00 - 1.50 m 02 Profundidad Total: : C-2 8647718.00 mS

Código de Muestra Sondaje / Calicata N° de Muestras Norte: Este: M-1 291315.00 mE 162 m.s.n.m. Progresiva 11 + 199 km Cota:

PROF.	0000	TO SO MOUNTED ON OF THE	Programme of	CLASIF	ICACIÓN
(m)	SÍMBOLO	DESCRIPCION DEL SUELO	MUESTRA	sucs	AASHTO
N.	FIGHT.		THE TOTAL	A COLOR	20 10 C
0.10	· · · · · · · · · · · · · · · · · · ·		All the County	OF OF CHILL	
0	***		CONTON TO ME	COL OF COL	
0.20			CONTRACT COL	LACUL DE CH	
0.30			Service Co	MILEON DE	
0.40			"ICAY	ON LEGIT OF	
CB	2640		Con y	COMILEDOFO	
0.50	1		0 /	CONTROL	
0.60			- C	L COMME	Corection
25	.02			A COUNTR	
0.70		Arena pobremente graduaga con limo parcialmente húmeda a seca.	M-1	SP-SM	A-2-4(1)
0.90		Arena povreniente graduaga con mito parcianitente munecia a secia.	"	S G G G G G G G G G G G G G G G G G G G	W2-4(1)
0.90			1 / 1	C1110 1 C0	
G			.60	ECHICA A	
1.90				OF SEC SECTION	
1.10			DAITD	1 30	
681	THE PLANT		UNIK	1 20	
1.20		O. L. C. L. L.		5011	
1.30			AY CONTROL DE CA	LIDAD EC	
1.40	WHAT I		The Dr. Walter	WILL DE OFF	
36	4000		CALIDAD WOLL	ENIL GEOT	
1.50	RVACIONES:	The thirt of the street of the	E THORY IN	1 Ell. " P. "O.	SO WOW



Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado Informe N°: IGC19-LEM-163-37 Proyecto . Valaninad de la Ocarattocion de pavimento rigido dinical en la Avenida Pachacútec, Villa el Salvador – 2019 : Juan Fernando Pérez Ayala : IGC19-LEM-163-37 : Avenida Pachacútec, distrito de Villa el Salvador - Lima Propietario Muestreado por : Cliente Código del Proyecto Ubicación de Proyecto Ensayado por : Fecha de Ensayo: Turno: J. Gutiérrez 17/05/2019 : Terreno natural Material Diurno 0.00 - 1.50 m : 03 : C-3 : M-1 : 11 + 449 km Código de Muestra Profundidad Total: 8647617.00 mS Sondaje / Calicata N° de Muestras Norte: 291544.00 mE 151 m.s.n.m. Este: Progresiva Cota:

ROF.	. VY 0	" In " D , " C. " " She file No Land Man	Ja Co. M. OF	CLASIFI	CACIÓN
(m)	SÍMBOLO	DESCRIPCION DEL SUELO	MUESTRA	sucs	AASHTO
1	VANA I	Charles of the Charles of the Charles	THE BY CONTRACTOR	Not the state	1000
0.10			CHILLY COME	OF OF CALL	DAD THE
0.20	**************************************		ECHICLE A COM	CON DE CUT	DE DE
-			TE ME AY CO	TROUBECT	TIP OF O
0.30	17 197		A SHICK AC	ON, BOLDE	W. T. Carl
0.40			CAN	CONTROL D	CUTTO
0.50	244 O		OA.	COMINGOL	E Chille
				COM TRUCK	OF COAL
08.0				A CONTRA	1 OF C1
0.70			1	CONTO	TO OF
0.80	13.7	Arena pobremente graduaga con limo parcialmente húmeda a seca.	M-1	SP-SM	A-2-4(1)
				CHIENA	TIE OF D
0.90			- 60	CONTRA YO	OHILLO
1.00	1		37	O. FOLKONA	CONTRO
1.10	1489		DAITD	Asin In	A COME
68	****		UNIK	UL SIG	N. COS
1.20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,450,410		- EC. 2	CF CO
1.30		INGENIERIA GEOTECNIC	AN CONTROL DE CA	LIDAD KEO	M. A.
1.40			ALTONO INTERNA	EN'A GEOTE	THICK Y
NG	r detection		ALIDAD HOLE	TEH LA CEO	ECHICA

Excavaciones realizadas de forma manual

		INGEOCONTROL	SAC		
TECNICO LEM	D:	JEFE LEM	D	CQC-LEM	D
Nombre y firma:	M	Nombre y firma:	M: Nombre	y firma:	/ M
SE ENSAYOS OF SE	A	Noemi C. Sán Ingeniera civil Ingeneria seutécnica y	chez Huamán - CIP Nº: 196029	Jony C. Gustiero GERENTE DE PROYECT INGENIERÍA GEOTÉCNICA Y CONT	OS Y ESTUDIOS

Excavaciones realizadas de forma manual

INFORME

Código AE-FO-56 01 Versión Fecha 30-04-2018 1 de 1

DESGASTE POR ABRASIÓN ASTM C131/C131M-14

Registro N°: IGC18-LEM-163-39

Solicitante Atención Ubicación de Proyecto

Muestreado por : Ensayado por : Fecha de Ensayo: Turno:

Solicitante J. Gutierrez 28/05/2019 Diurno

Provecto

: Viabilidad de la construcción del pavimento rígido utilizando concreto reciclado en la Avenida Pachacútec, Villa el Salvador – 2019
: Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza
: Yonathan Smith Aguilar Espinoza
: Avenida Pachacútec, distrito de Villa el Salvador - Lima
: Agregado Grueso ICG18-LEM-163-39

Norte: 8668512.00 mS Este: Cota: 296139.00 mE 540 m.s.n.m.

Código de Muestra Procedencia N° de Muestra Cantera Santa Clara M-1 Progresiva km

PI	P100	P400	U	ABRASIÓN
5002.0	4763	4301.72	0.34	14

DETALLE	RESULTADO
Uniformidad	0.34
Abrasión	14%

TECNICO LEM Nombre y firma

INGEOCONTROL SAC

JEFE LEM

Nombre y firma:

Noemi C. Sánchez Huantán Ingeniera Civil - CIP N°: 196029 Ingeniería geotécnica y control de Calidad Sac.

Jony C. Gutiérrez Abanto GERENTE DE PROYECTOS Y ESTUDIOS INGENIERÍA GEOTÉCNICA Y CONTROL DE CALIDAD S.A.C.

INFORME	Código	AE-FO-56
CO. M. Cop. Of Car. W.	Versión	01
DESGASTE POR ABRASIÓN ASTM C131/C131M-14	Fecha	30-04-2018
THE CONTROL OF CALL	Página	1 de 1

Proyecto

Solicitante Atención

: Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado en la Avenida Pachacútec, Villa el Salvador – 2019
: Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza
: Yonathan Smith Aguilar Espinoza
: Avenida Pachacútec, distrito de Villa el Salvador - Lima
: Agregado Grueso de Concreto Reciclado Ubicación de Proyecto

Código de Muestra IGC18-LEM-163-40

: Losa de Pavimento rígido de la Av. Magisterio - Villa el Salvador : M-1 Procedencia N° de Muestra

Progresiva

Registro N°: IGC18-LEM-163-40

Solicitante J. Gutierrez Fecha de Ensayo: Turno: 28/05/2019

18649375.03 mS Este: 286883.51 mE

PI	P100	P400	U	ABRASIÓN
5002.5	4646	3401.7	0.22	32

DETALLE	RESULTADO
Uniformidad	0.22
Abrasión	32%

INGEOCONTROL SAC TECNICO LEM JEFE LEM CQC - LEM Nombre y firma: Nombre y firma: Nombre y firma: Jony C. Gutiérrez Abanto Noemi C. Sánchez Huamán Ingeniera civil - CIP Nº: 196029 Ingeniera gedfénica y control de calidad Sac. GERENTE DE PROYECTOS Y ESTUDIOS INGENIERÍA GEOTÉCNICA Y CONTROL DE CALIDAD S A C.

FORMATO

ENSAYO DE PROCTOR MODIFICADO PARA CBR

Código	AE-FO-15
Versión	01
Fecha	30-04-2018
Página	1 de 3

Código del Proyecto Ubicación de Proyecto Material

Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado en la Avenida Pachacidec, Villa el Salvador – 2019

Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza

IGC19-LEM-163-41 Avenida Pachacútec, distrito de Villa el Salvador - Lima Terreno Natural

Muestreado por : Ensayado por : Fecha de Ensayo: Turno: Diurno

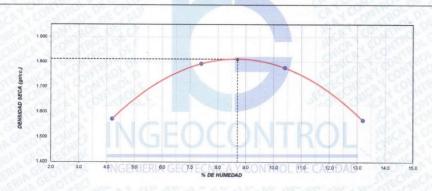
Registro N°: IGC19-LEM-163-41

J. Gutiérrez

Identificación Procedencia N° de Muestra : C-1 10 + 949 km Progresiva

1.50 m 8647908.00 mS 291153.00 mE Este: 167 m.s.n.m. Cota:

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO PARA CBR ASTM D1557 / ASTM D1883

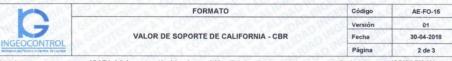

Vo	olumen Molde	2123	cm ³
" OF Charles On On 10 all	Peso Molde	6292	gr.

NUMERO DE ENSAYOS	110 6	100	2	3	4	25 W.
Peso Volumetrico Humedo	gr.	1.638	1.926	1.962	1.775	U. O. C. W.
Contenido de agua	%	4.2	7.4	10.4	13.2	TO TO STATE OF THE PARTY OF THE
Densidad Seca	gr/cc	1.572	1.793	1.777	1.568	Plant Al

Contenido Humedad Optima:

8.70 %

RELACION HUMEDAD - DENSIDAD SECA



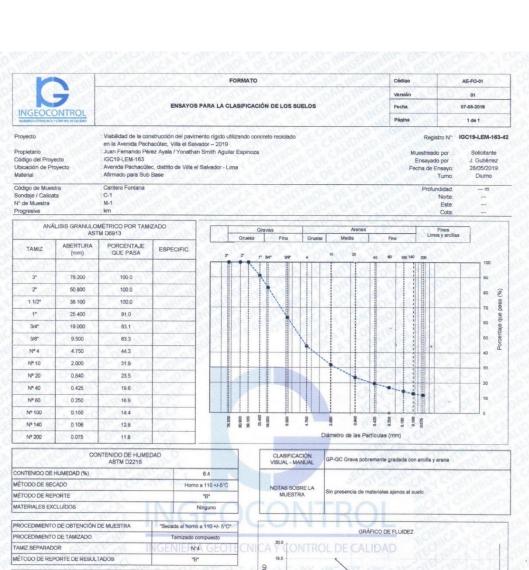
OBSERVACIONES:

- Muestra provista e identificada por el solicitante
 Muestra provista e identificada por el solicitante
 Prohibida la reproducción parcial o total de este documento sin la autorización escrita de INGEOCONTROL

 —

THE SHOP OF THE PARTY OF THE PA	The Ch	INGEOCONTROL SAC	CaO, 6	E CALIDA O INGENI	
TECNICO LEM	D:	JEFE LEM	0	CQC-LEM	D:
Nombre y firma.	M:	Nombro várma Noemi C. Sanchez H INGENIERA CIVIL - CIP Nº INGENIERIA BEUTÉCNICA Y CONTROL DE (196020	JONY C. GUTIÉRTEZ ADE GERENTE DE PROYECTOS Y ESTU- INGENIERÍA GEOTÉCNICA Y CONTROL DE CALIDI-	DIOS


Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado en la Avenida Pachacitoc, Villa el Salvador – 2019 ¿Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : IGC19-LEM-163-41 Registro N°: IGC19-LEM-163-41 Solicitante Solicitante Muestreado por : Código del Proyecto Ubicación de Proyecto J. Gutiérrez 22/05/2019 Ensayado por : Avenida Pachacútec, distrito de Villa el Salvador - Lima Fecha de Ensayo: Material Terreno Natural Turno: Diurno Identificación 1.50 m 8647908.00 mS Procedencia Norte: N° de Muestra M-1 Este: 291153.00 mE 167 m.s.n.m. Progresiva 10 + 949 km Cota:


ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA ASTM D1883

0-05 C	10	0	-	CALCULO	DE LA REL	ACIÓN DE	SOPORT	E CALIFO	RNIA (C.B.	.R.)	6 7 8	AD A	110	250		
Molde Nº	10,10	203	36V)	01/20	2	1	A STEP OF				25	DATE	PAN	-		
Número de capas		110	10	1 S S S S S S S S S S S S S S S S S S S			2011	5			5			100		
Número de golpes			56			The state of		25	177	10						
Condición de la muestra	F 100	100	NO SA	TURADO	1	JRADO	NO SAT	TURADO		IRADO	NO SA	TURADO	SATURADO			
Peso suelo + molde (gr.)	CAN PROPERTY AND ADDRESS OF THE PARTY OF THE		9,004		100	1	8.7		3 71	37 43	-	551		31000		
Peso molde (gr.)		OF CREW		812	11/6/1	A De 1	4.7		" X "	-01		827	133V	-6.17		
Peso suelo compactado	(ar)		La Caller	192	116	N. W. To	3,9		1	TOP	Co.	724	2011			
/olumen del moide (cm ⁵			-	127	1800		2,1		100	170	1 2,		U	100		
Densidad húmeda (gr./cr		8-19	1.5	100	1		1.8		NO.	176	100	750	200	- 107		
Densidad Seca (gr./cm³)		30		313			1.7	-	- 0	144		613	750			
	100	JUE .			CC	NTENIDO	CO / 10 - 10 10 C C C C C C C C C C C C C C C C C			1000	-00	010	WY			
Peso de tara (gr.)	415	1	Q.	1.4			86			CEL	-	6.7	UP.	()		
Tara + suelo húmedo (gr	1	ALK	7	52			402	1		Ch	-	21	0			
Tara + suelo seco (gr.)	DI KIN			33			378	YERR		ACP.		31.4	0× 0	100		
Peso de agua (gr.)	AD 18	1000		1.9						7.0	-		aU	COR.		
Peso de suelo seco (gr.)	701	ARY.	7	1.9		24.8		197	20.8		-01	191				
Humedad (%)	19.7					7	1 1000		8.			180	-	3.5	1	
surredad (%)	4 70	No of the	0			EVDA	NSIÓN	5		17.05		5.0	27.7	CIO		
THE RESERVE OF THE PERSON NAMED IN	TOP	1-0	Dial Expansión		Even	Expansión			-							
Fecha	Hora	Tiempo		Oial .01"	-	T .	D	ial	-		300	Dial		ansión		
Fecha	Hora	Hr			mm	%	D	ial	mm	%	200	Dial	mm	ansion %		
Fecha	Hora				mm	T.			-		200	Dial		-		
Fecha	Hora				mm	%	NSIVO		-			Dial		-		
		Hr	0	01*	mm	EXPAI	NSIVO	N	-							
Fecha Penetración	Carga S	Hr	INCE	01*	NO No 2	EXPAI	NSIVC RACIÓN	N	mm		L		mm			
		Hr	INCE	01" Molds	NO No 2	*EXPAI	NSIVC RACIÓN	Mold	mm	S CALIF	L	Molde	mm	%		
Penetración	Carga S	Hr	INGE	Molda	NO I	% EXPAI	NSIVO RACIÓN) Moldinga	mm eN° 4 Corre	%	L DAD .	Molde arga	mm N° 1 Corr	% acción		
Penetración (pulg.)	Carga S	Hr	ING c	Moldelanga kg/cm²	NO I	% EXPAI	NSIVO RACIÓN Ca	Moldinga kg/cm²	mm eN° 4 Corre	%	AD co	Molde arga kg/cm²	mm N° 1 Corr	% acción		
Penetración (pulg.) 0.025	Carga S	Hr	ING Col	Molds	NO I	% EXPAI	NSIVO	Moldd	mm eN° 4 Corre	%	AD co	Molde arga kg/om²	mm N° 1 Corr	% acción		
Penetración (oulg.) 0.025 0.050	Carga S	Hr	0 kg 29 140	Moldd	NO I	% EXPAI	NSIVC RACIÓN Ay Ca kg 19 93	Moldinga Moldinga Maylom ² 1.0 4.6	mm eN° 4 Corre	%	AD Co. kg 8 37	Molde arga kg/cm² 0.4 1.8	mm N° 1 Corr	% ección CBR		
Penetración (pulg.) 0.025 0.050 0.075	Carga S (kg/l	Hr	0 kg kg 29 140 300	Moldel Molder	NO I	PENET CBR %	NSIVC RACIÓN A Ca kg 19 93 199	Moldinga kg/cm² 1.0 4.6 9.9	mm N* 4 Corn kg/cm²	% section CBR %	AD Co	Molds arga kg/cm² 0.4 1.8 4.5	rnm N° 1 Corn kg/cm²	% ección CBR		
Penetración (pulg.) 0.025 0.050 0.075 0.100	Carga S (kg/l	Hr sitandard om²)	0 kg 29 140 300 420	Molde Molden Mol	NO I	PENET CBR %	NSIVC RACIÓN A Ca kg 19 93 199 280	Moldings Moldings	mm N* 4 Corn kg/cm²	% section CBR %	kg 8 37 91 126	Molde arga kg/cm² 0.4 1.8 4.5 6.3	rnm N° 1 Corn kg/cm²	% section CBR		
Penetración (pxlg.) 0.025 0.050 0.075 0.100 0.150	Carga S (kg/s	Hr sitandard om²)	0 kg 29 140 300 420 680	Moldel Mo	NO NO N° 2 Corn kg/cm²	PENET CBR %	NSIVC RACIÓN	Moldings Moldings	mm N° 4 Corn kg/cm²	% seción CBR %	AD Ca kg 8 37 91 126 197	Molde arga kg/cm² 0.4 1.8 4.5 6.3 9.8	mm N° 1 Corn kg/cm²	% ección		
Penetración (pulg.) 0.025 0.050 0.075 0.100 0.150 0.200	Carga S (kg/s	Hr sitandard om²)	0 kg 29 140 300 420 680 890	Moldd	NO NO N° 2 Corn kg/cm²	PENET CBR %	NSIVC RACIÓN (cg 19 93 199 280 399 520	Moldings kg/cm² 1.0 4.6 9.9 13.9 19.8 25.7	mm N° 4 Corn kg/cm²	% seción CBR %	AD Ca kg 8 37 91 126 197 235	Molde arga kg/cm² 0.4 1.8 4.5 6.3 9.8 11.7	mm N° 1 Corn kg/cm²	% section CBR		

OBSERVACIONES:

PROCEDIMIENTO DE OBTENCIÓN DE MUESTRA	"Secada al horno a 110 +/- 5°C
PROCEDIMIENTO DE TAMIZADO	Tamizado compuesto
TAMIZ SEPARADOR	INGENIER GEO
MÉTODO DE REPORTE DE RESULTADOS	*8*

LÍMITES DE CONSISTE ASTM D4318	ENCIA
LÍMITE LÍQUIDO	19
LÍMITE PLÁSTICO	14
ÍNDICE DE PLASTICIDAD	5
INDICE DE CONSISTENCIA (Ic)	2.7
INDICE DE LIQUIDEZ (IL)	-1.7
MÉTODO DE ENSAYO DE LÍMITE LÍQUIDO	Multipunto

13	COMPOSICIÓN FÍSICA DEL SUELO EN FUNCIÓN AL TI	AMAÑO DE PARTÍCULAS
co	NTENIDO DE GRAVA PRESENTE EN EL SUELO %	55.7
co	NTENIDO DE ARENA PRESENTE EN EL SUELO %	32.4
co	NTENIDO DE FINOS PRESENTES EN EL SUELO %	11.8

	CLASIFICACIÓN DEL SUELO		
CLASIFICACIÓN SUCS (ASTM D248	n of one	GP-GC	
CLASIFICACIÓN SUCS (ASTM D328	A-1-a (0)		
NOMBRE DEL GRUPO	IOMBRE DEL GRUPO Grava pobremente grad		

FORMATO

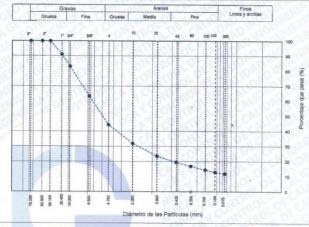
ENSAYOS PARA LA CLASIFICACIÓN DE LOS SUELOS

Código	AE-FO-01		
Versión	01	ľ	
Fecha	07-05-2018		
Página	1 de 1		
Fecha	07-05-2018	10 10 10 10 10 10 10 10 10 10 10 10 10 1	

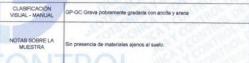
Proyecto

Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado en la Avenida Pachacidec, Villa el Salvador – 2019 Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza IGC194_EM-163-42 Avenida Pachacidec, distrito de Villa el Salvador - Lima Material para Sub Base Propietario Código del Proyecto Ubicación de Proyecto

Muestreado por : Ensayado por : Fecha de Ensayo: Turno:


J. Gutiérrez 28/5/2019 Diurno

Registro N°: IGC19-LEM-163-42


: Cantera Fontana : C-1 : M-1 Código de Muestra Sondaje / Calicata Nº de Muestra

Norte: Este: Cota.

AN		MÉTRICO POR TAMI M D6913	ZADO
TAMIZ	ABERTURA (mm)	PORCENTAJE QUE PASA	ESPECIFIC
3"	76.200	100.0	Challe
2"	50.800	100.0	365
1 1/2"	38.100	100.0	100
1"	25.400	91.0	0,00
3/4"	19.000	83.1	0 D 109
3/8"	9.500	63.3	-AP 18
Nº 4	4.750	44.3	2000
Nº 10	2.000	31.9	P OP
Nº 20	0.840	23.5	26,104
Nº 40	0.425	19.6	C 62. 11.
Nº 60	0.250	16.9	Otto
Nº 100	0.150	14.4	SCY.
Nº 140	0.106	12.8	209
Nº 200	0.075	11.8	V.

CONTENIDO DE HU ASTM D221	
CONTENIDO DE HUMEDAD (%)	6.4
MÉTODO DE SECADO	Horno a 110 +/-5°C
MÉTODO DE REPORTE	"B"
MATERIALES EXCLUÍDOS	Ninguno

PROCEDIMIENTO DE OBTENCIÓN DE MUESTRA	"Secada al horno a 110 +/- 5°C"		
PROCEDIMIENTO DE TAMIZADO	Tamizado compuesto		
TAMIZ SEPARADOR	INGENIERYA GEOT		
MÉTODO DE REPORTE DE RESULTADOS	"B"		

LÍMITES DE CONSISTE ASTM D4318	INCIA
LÍMITE LÍQUIDO	19
LÍMITE PLÁSTICO	14
ÍNDICE DE PLASTICIDAD	5
INDICE DE CONSISTENCIA (Ic)	2.7
INDICE DE LIQUIDEZ (IL)	-1.7
MÉTODO DE ENSAYO DE LÍMITE LÍQUIDO	Multipunto

COMPOSICIÓN FÍSICA DEL SUELO EN FUNCIÓN AL TA	AMAÑO DE PARTÍCULAS
CONTENIDO DE GRAVA PRESENTE EN EL SUELO %	55.7
CONTENIDO DE ARENA PRESENTE EN EL SUELO %	32.4
CONTENIDO DE FINOS PRESENTES EN EL SUELO %	11.8

	CLASIFICACIÓN DEL SUEL	.0
CLASIFICACIÓN SUCS (ASTM D248	De Comme	GP-GC
CLASIFICACIÓN SUCS (ASTM D328	A-1-a (0)	
NOMBRE DEL GRUPO	gradada con arcilla y arena	

Ubicación de Proyecto

Progresiva

FORMATO

ENSAYO DE PROCTOR MODIFICADO PARA CBR

Código AE-FO-15 Versión 01 Fecha 30-04-2018 Página 1 de 3

Propietario Código del Proyecto

: Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado en la Avenida Pachacútec, Villa el Salvador – 2019 : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : IGC19-LEM-183-43 Avenida Pachacútec, distrito de Villa el Salvador - Lima Material para Sub Base

Muestreado por Ensayado por Fecha de Ensayo:

J. Gutierrez 28/5/2019 Diumo

IGC19-LEM-163-43

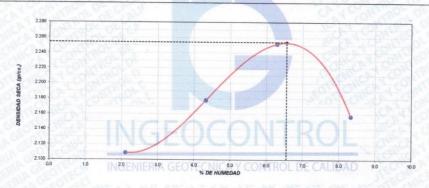
Identificación Cantera Fontana Procedencia C-1 N° de Muestra

Este

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO PARA CBR ASTM D1567 / ASTM D1883

Volumen Molde	2123	cm ³	
Peso Molde	6292		
	Peso Molde		THE PERSON AS A PROPERTY OF TH

NUMERO DE ENSAYOS	100	1	2	3	4	V _ U
Peso Volumetrico Humedo	gr.	2.154	2.272	2.393	2.337	
Contenido de agua	%	2.1	4.3	6.3	8.3	1000
Densidad Seca	gr/cc	2.109	2.178	2.252	2.157	


Densidad Máxima Seca:

2.254

Contenido Humedad Optima:

6.55 %

RELACION HUMEDAD - DENSIDAD SECA

OBSERVACIONES:

- Muestra provista e identificada por el solicitante
 Prohibida la reproducción parcial o total de este documento sin la autorización escrita de INGEOCONTROL
 Según norma, para la ejecución de los ensayos de Proctor para CBR y CBR, se eliminó el material retenido en el tamiz 3/4" y fue reemplazado en peso por material pasante 3/4" y retenido en el tamiz N"4

FORMATO	Código	AE-FO-15
	Versión	01
VALOR DE SOPORTE DE CALIFORNIA - CBR	Fecha	30-04-2018
Children Children Dr. Children	Página	2 de 3

: Viabilidad de la construcción del pavimento rígido utilizando concreto reciclado en la Avenida Pachacútec, Villa el Salvador - 2019 Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza : IGC19-LEM-163-43 Proyecto Registro N*: IGC19-LEM-163-43 Propietario Muestreado por : Solicitante Código del Proyecto Ubicación de Proyecto Ensayado por J. Gutierrez 1/6/2019 : Avenida Pachacútec, distrito de Villa el Salvador - Lima : Material para Sub Base Fecha de Ensayo: Turno: Material Diumo

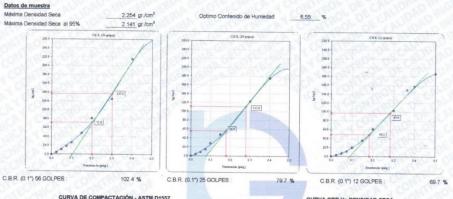
Identificación Procedencia : C-1 : M-1 Este N° de Muestra Cota: Progresiva

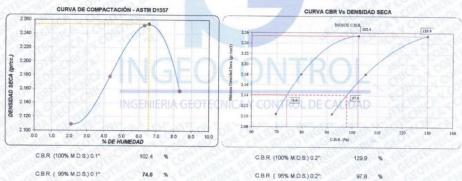
ENSAYO	DE	VALOR	DE	SOPORTE	DE	CALIFORNIA

O. Ch	DEND	TING	ERILE	EN	SAYO DE V		SOPORTE M D1883	DE CALI	FORNIA	106	CON	TOP OF	3 100	ELAN
D- 05 C	85 10°	V		CALCULO	DE LA RE	LACIÓN	E SOPOR	TE CALIF	ORNIA (C.I	3.8.1	Mark I	and the	10,7	9
Molde Nº	Or As	00	164	27/15-	1	27.50	100	. 0. 1	2	5.14.)	1	1000	App.	1
Número de capas	C PAN	000	130	4110	5	S 30	100	-0.7	5	3770	V -8		5	1000
Número de golpes	O Pro	son.	B Park	110 46	56	1000	1840	100	25	1000	1	-		
Condición de la muesti	ra	N. Oh	NO SA	TURADO	1000	URADO	NO SA	TURADO		URADO	NOO	ATI IDADO	10	
Peso suelo + molde (g	r.)		100	824	No	Par All	3 7 7 7 7 7	712	OAT	UNALLO	1000	ATURADO	SAT	URADO
Peso molde (gr.)		- Par o		698	11/6/6	JA.		762	-	700			1	
eso suelo compactad	o (gr.)	- D.W	5.	126	800	Nag.	W 15 5 5	950	1	707	W 100 M	715	-	
Volumen del molde (cn	n³)		200	135	1.30	1		129	100	9-0	3 7 3 7 5 7	140	Ch	1
Densidad húmeda (gr.)	cm³)	1	2.	401	1			325	100	A TO	1 3 1 1 1		200	1
-fumedad (%)	Tool-	187		6				6	1		100	243	1	
Densidad Seca (gr./cm	3	Y ()		252			0.000	181		CFL N	1000	6.6	10	
C 10	THE	Mr. Mark	1	24	C	ONTENIO	DE HUME			CA.	2	104	1	
Peso de tara (gr.)	31,46	at Y	5.4				- TIOME	CAD	1	CP	N	160.0	P	
Tara + suelo húmedo (g	pr.)		42	56			50	1.3			1		0	9
ara + suelo seco (gr.)	(O)	(N) 13	39	-	1000000			9.0			451.8 423.8		80	
Peso de agua (gr.)	201	78V	26				30		1000	19	1000	-	100	
eso de suelo seco (gr.)	348	39					9.0	-	13		8.0	100	1
fumedad (%)	4-15	379 118	6	5.9			Total Control	6		100		23.8		
0 00 116	N. A. L.	TO THE REAL PROPERTY.	DV.	V		EXP	ANSIÓN	.0		1	-	3.6	D. 1	
Fecha	Hora	Tiempo	-	Nal	Exp	ensión	1	1	Exp	ansión	1	- 50	Eve	ansión
reciid	Hora	Hr	0.	01"	mm	%		Dial	mm	%	1	Dial	mm	%
0.50,5C	SACE	12	-15						-	-	1	- N	aren .	76
07000	D. C.			T		1	1				1		1	1
1020V	000	0	IN		NO	EVDA	NSIVO			11		-		0
W. 6501	100	CP	113	i (T	NO	EXPA	NOIVE		1	1		200		10
CV GV	15.10		* *	4	1		T			1	Bases	-	CT	1
WILL OF	D350	100				DENE	TRACIÓN .						1000	1
	ON.	- 53	INGE	Mold	N-1		HACIOIN	Mold	e N° 2	ECAL	DAD	Mold	N° 3	1
Penetración	Carga S (kg./r		Ca	rga	Corre	ección	Ca			ección	-	arga		ección
(pulg.)	(Ng.)	cm)	Indicador	kg./cm²	kg /cm²	CBR %	Indicador	kg/cm ²	kg./cm²	CBR %	Indicador	1		
0.025	(30 K	18 1	18	4.6	- 13	0- 0	14	3.7	RyJoin	CON A	10	kg./cm²	kg_/cm²	CBR 9
0.050	1	250	48	11.2	7.0	TO !	37	8.8	1	200		2.8	A VICE	100
0.075	12 18	7.88	82	18.8	TO TO	300	63	14.6	100	200	26	6.4	014	100
0.100	70.3	107	119	27.0	72.0	102.4	125	28.4	56.0	79,7	48	11.2	7.0	
0.150	Alle	200	213	48.0	.20	13234	214	48.2	00.0	19.7	85	19.5	49.0	69.7
0.200	105.4	460	360	80.7	137.0	129.9	282	63.3	111.0	105.3	158	35.7	60	
0.300	166	D. 20	558	124.8	101.0	120.0	550	123.0	111.0	105.3	268	60.2	97.0	92.0
0.400	VE.	S B	965		No. of land	100	-		PATE A	10)	459	102.7	100	7
0.500	07 36	7.6			CP	1			CRY	CONT.			A Party	94
	C. TE	Ale C	965	215.3 256.7	PA	(2)	784 883	175.1 197.1	Chin	OPPO	706 837	157.7 186.8	CAR CAR	60 60

OBSERVACIONES:

- Muestra provista e identificada por el solicitante
 Prohibida la reproducción parcial o total de este documento sin la autorización escrita de INGEOCONTROL
 Según norma, para la ejecución de los arsayos de Proctor para CBR y CBR, se eliminó el material retenido en el tarniz 3/4" y fue reemplazado en peso por material pasante 3/4" y retenido en el tarniz N*4


: Viabilidad de la construcción del pavimento rigido utilizando concreto reciciado en la Avenida Pachacútec, Villa el Salvador – 2019 : Juan Fernando Pérez Ayala / Yonathan Smith Aguitar Espinoza : IGC19-LEM-163-43 IGC19-LEM-163-43 Registro N°: Muestreado por Solicitante Código del Proyecto Ensayado por Fecha de Ensayo J. Gutierrez 1/6/2019 Ubicación de Proyecto Avenida Pachacútec, distrito de Villa el Salvador - Lima Material Material para Sub Base Turno: Diurno Identificación Cantera Fontana Norte C-1 Procedencia N° de Muestra M-1 Cota


AE-FO-15

01

3 de 3

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA

OBSERVACIONES:

Progresiva

- Muestra provista e identificada por el solicitante
 Merca provista e identificada por el solicitante
 Prohibida la reproducción parcial o total de este documento sin la autorización escrita de INGEOCONTROL
 Según norma, para la ejecución de los ensayos de Proctor para CBR y CBR, se eliminó el material retenido en el tamiz 3/4" y fue reemplazado en peso por material pasante 3/4" y retenido en el tamiz Nº4

REGISTRO Nº: IGC19-LEM-163-44

B. Melgar

3/06/2019

Diurno

REALIZADO POR

REVISADO POR

TURNO :

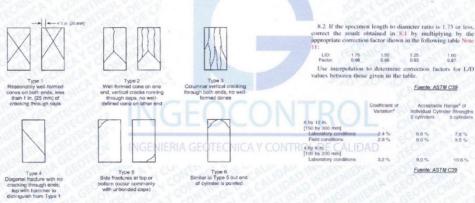
FECHA DE ENSAYO

PROYECTO : Viabilidad de la construcción del pavimento rigido utilizando concreto reciclado

en la Avenida Pachacútec, Villa el Salvador - 2019

SOLICITANTE : Juan Fernando Pérez Ayala / Yonathan Smith Aguilar Espinoza
CÓDIGO DE PROYECTO : IGC19-LEM-163-44

CÓDIGO DE PROYECTO : IGC19-LEM-163-44
UBICACIÓN DE PROYECTO : Avenida Magisterio - Villa el Salvador


FECHA DE EMISIÓN : 04/07/2019

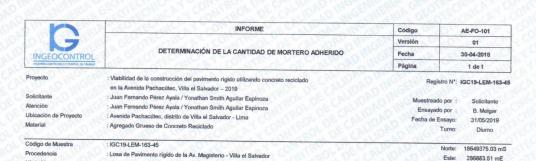
: Concreto endurecido extraído con diamantina de una losa de payimento rigido

Tipo de muestra : Concreto endurecido extraído con diamantina de una losa de pavimento rigis
Presentación : Especimenes cilindricos
Fc de diseño : kg/cm2

RESISTENCIA A LA COMPRESIÓN DE CONCRETO ENDURECIDO ASTM C39

IDENTIFICACIÓN	FECHA DE EXTRACCIÓN	FECHA DE ROTURA	PESO g	DIÁMETRO cm	ALTURA cm	FUERZA MÁXIMA kg/cm2	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	ESFUERZO CORREGIDO
D-1	28/05/2019	3/06/2019	_	7.49	10.3	17903.0	4	1.38	384.22 kg/cm2
D-2	28/05/2019	3/06/2019	65-11	7.49	8.7	19181.8	2	1.16	395.47 kg/cm2
D-3	28/05/2019	3/06/2019	-	7.49	10.2	16996.5	2	1.36	363.84 kg/cm2

Schematic of Typical Fracture Patterns


* Muestras extraidas y curadas por el personal técnico de INGEOCONTROL.

0

* Según el ACI 318, los resultados individuales no deben ser menores al 75% del fc y el promedio de tres muestras no debe ser menor al 85% del fc

Fuente: ASTM C39

Este: 286883.51 mE

84 m.s.n.m.

PESO UNITARIO SUELTO

N° de Muestra

Progresiva

: M-1

IDENTIFICACIÓN	SEO - 100	2	PROMEDIO
Peso del agregado con mortero (gr.)	3000.00	3000.00	100
Peso del agregado sin mortero (gr.)	2369.00	2345.00	045,30
MORTERO ADHERIDO (%)	21.03%	21.83%	21.43%

TO DINGE HER STATE OF	INGEOCONTROL SAC	ALIDAD INCENTERNACIO
TECNICO LEM	JEFE LEM	CQC - LEM
Nombre y firma:	Nombre y firma: Noemf C. Sánchoz Huasnán INGENIERA CIVIL - CIP N*: 196029 INGENIERÍA GEUTÉCNICA Y CONTROL DE CALIDAD S.A.C.	Jony C. Gutiérrez Abanto GERENTE DE PROYECTOS Y ESTUDIOS INGENERIA GEOTÉCNICA Y CONTROL DE CALIDAD SAC.

Anexo 10: Calibración de instrumentos de laboratorio

CALIBRACIÓN, MANTENIMIENTO Y VENTAS DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA PERUTEST S.A.C.

RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 095 - 2019

Area de Metrología Laboratorio de Masas

EQUIPOS E INSTRUMENTOS

	The state of the state of the state of	Página 1 de
1. Expediente	800-2019	Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales
2. Solicitante	INGEOCONTROL S.A.C.	que realizan las unidades de la medición de acuerdo con el Sistema internacional de Unidades (SI).
3. Dirección	MZA. B LOTE. 11 URB. AMPLIACION LOS PORTALES DE CHAVIN 4TA ETAPA LIMA - LIMA - SAN MARTIN DE PORRES	Los resultados son validos en e momento de la calibración. A solicitante le corresponde disponer er
4. Equipo de medición	BALANZA ELECTRÓNICA	su momento la ejecución de una recalibración, la cual está en función
Capacidad Máxima	250 g	del uso, conservación y mantenimiento del instrumento de medición o a
División de escala (d)	0.0001 g	reglamento vigente.
Div. de verificación (e)	0.001 g	PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasional
Clase de exactitud	And the state of t	el uso inadecuado de este instrumento ni de una incorrecta interpretación de los resultados de la calibración aqu
Marca	DENVER INSTRUMENT COMPANY	declarados.
Modelo	AA-250	Este certificado de calibración no podrá ser reproducido parcialmente sir
Número de Serie	B032815	la aprobación por escrito de laboratorio que lo emite.
Capacidad minima	0.0020 g	El certificado de calibración sin firma
Procedencia	U.S.A.	sello carece de validez.
Identificación	NO INDICA	C Seller C Heat at Buffer Sec. of Sec.
5. Fecha de Calibración	2019-02-13	STATES OF STATES OF THE STATES
Fecha de Emisión	Jefe del Laboratorio de Metrología	Sello
2019-02-15	11	QUTEST S. P.

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martin de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 764 5730

MANUEL ALEJANDRO ALIAGA TORRES

LABORATORIO

CALIBRACIÓN, MANTENIMIENTO Y VENTAS DE EQUIPOS E INSTRUMENTOS DE LABORATORIO
SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA
RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN

Área de Metrología Laboratorio de Masas PT - LM - 095 - 2019

Página 2 de 4

6. Método de Calibración

La calibración se realizó por comparación directa entre las indicaciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones según procedimiento PC-011 "Procedimiento para la Calibración de Balanzas de Funcionamiento No Automático Clase I y II". Cuarta Edición - Abril 2010. SNM - INDECOPI.

7. Lugar de calibración

En las instalaciones del cliente.

MZA B LOTE. 11 URB. AMPLIACION LOS PORTALES DE CHAVIN 4TA ETAPA LIMA - LIMA - SAN MARTIN DE PORRES.

8. Condiciones Ambientales

My 61, 70, 16,	Inicial	Final
Temperatura	20.6 ° C	20.6 º C
Humedad Relativa	56%	56%

9. Patrones de referencia

Los resultados de la calibración son trazables a la Unidad de Medida de los Patrones Nacionales de Masa de la Dirección de Metrología - INACAL en concordancia con el Sistema Internacional de Unidades de Medidas (SI) y el Sistema Legal de Unidades del Pení (SI UMP).

Trazabilidad	Patron utilizado	Certificado de calibración
Patrones de referencia	JUEGO DE PESAS 1 g a 1 kg (Clase de Exactitud: F1)	METROIL M-0842-2018

10. Observaciones

- Se adjunta una etiqueta autoadhesiva con la indicación de CALIBRADO.
- (**) Código indicada en una etiqueta adherido al equipo.

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martin de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 764 5730

CALIBRACIÓN, MANTENIMIENTO Y VENTAS DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN

Área de Metrologia Laboratorio de Masas PT - LM - 095 - 2019

11. Resultados de Medición

INSPECCIÓN VISUAL

AJUSTE DE CERO	TIENE	PLATAFORMA	TIENE	ESCALA	NO TIENE
OSCILACIÓN LIBRE	TIENE	SISTEMA DE TRABA	TIENE	CURSOR	NO TIENE
5 6 B 3	0 150	NIVELACIÓN -	TIENE	10 00 3	09 de

ENSAYO DE REPETIBILIDAD

Temperatura 21.2 °C 21.2 °C

Medición	Carga L1 =	120	- og	Carga L2 =	250	O g
Nº 6	o(g)	ΔL (mg)	E (mg)	(g)	AL (mg)	E(mg)
15	119.9970	V 20 1	-2,950	249.9911	8 B	-8,850
2	119.9971	0 -6	-2.850	249.9912	100.0	-8.750
3	119,9974	J. 120 30	-2.550	249.9915	4. 2. 9	-8.450
J4 6	119.9970	80.0	-2.950	249.9915	P . E	-8.450
5	119,9972	1 4 15	-2.750	249.9914	0. 6	-8.550
6 0	119.9970	13.6	-2.950	249.9915	37.10	-8.450
7	119,9973	S. C. 19	-2.650	249.9914	1 0 C	-8.550
8	119.9970	19, 19,	-2.950	249.9915	0 .97	-8.450
9	119.9971	2 30	-2.850	249.9915	10. 69	-8.450
10	119.9973	L 18	-2.650	249,9916	00.00	-8.350
3 1	Diferend	a Máxima	0.400	Diferenci	a Maxima	0.500
	Error Maxin	no Permisible	3	Error Maxim	o Permisible	3

ENSAYO DE EXCENTRICIDAD

Posición de las cargas

Temperatura

Inicial Final 21.9 °C 22.0 °C

Posición	Dete	rminación d	el Error en Ce	ero Eo	9 M	Determina	ción del Erro	r Corregido E	c .
de la Carga	Carga Minima*	E(g)	ΔL (mg)	Eo (mg)	Carga L(g)	SF(g) &	AL(mg)	E(mg)	Ec (mg)
.d1 G	19 NO	0.0008	19 18	-0.150	300	79.9977	18° 5	-2.250	-2 100
2	S. O.	0.0008	S .	-0.150	00	79.9971	8.50	-2,850	-2.700
3	0.0010	0.0009		-0.050	80.0000	79.9972	19. 18	-2.750	-2.700
4	3 6	0.0008	10 m	-0.150	C. C.	79.9978	8 .	-2.150	-2:000
5	100	0.0007	dr of	-0.250	5 35	79.9972	91: 119	-2.750	-2.500
* Valor	entre 0 y 1	0e	P 18 1	6 J. V	6 00	Error maxi	mo permisibl	0 6 3	3

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martin de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 764 5730

CALIBRACIÓN, MANTENIMIENTO Y VENTAS DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN

Área de Metrologia Laboratorio de Masas PT - LM - 095 - 2019

Página 4 de

ENSAYO DE PESAJE

Final

21.8 °C

Temperatura 21.7 °C

Carga	C 18	CREC	IENTES	65 m	6 8	DECRE	CIENTES	P 18 1	0 0
L(g)	1(9)	ΔL(mg)	E(mg)	ES may	CHAR	All mass	El ma la	Es (ma)	emp**
0.0010	0.0009	10.0	-0.050	Ec (mg)	- (g)	AL(mg)	E(mg)	Ec (mg)	(± mg)
0.0020	0.0019	8 19	-0.050	0.000	0.0015	10. 70.	-0.450	-0.400	10
1.0000	1.0005	0.0	0.550	0,600	0.9992	5 65	-0.750	-0.700	- AT 3
10.0000	10.0008	S. 187	0.850	0.900	9.9989	6. 6	-1.050	-1.000	8 2
50.0000	50.0012	8.50	1.250	1,300	49.9978		-2,150	-2.100	3 (
80.0000	80.0018	100	1.850	1.900	79.9986	1000	-1.350	-1.300	3
100,0000	100.0021	300	2.150	2.200	99.9989	8 18 3	-1.050	-1.000	03
120.0000	120.0025	5. 5	2.550	2.600	119.9975	10.18	-2.450	-2.400	3
150.0000	150,0031	6 25	3.150	3.200	149.9981	2 3	-1,850	-1.800	030
200.0000	200.0036	1. of	3.650	3.700	199,9985	3.00	-1.450	-1.400	3
250 0000	250.0039	0 6	3.950	4.000	250.0039	18 0	3 950	4.000	OUJES

error máximo permisible

Leyenda:

L' Carge aplicada a la balanza.

I. Indicación de la balanza.

ΔL: Carga adicional.

Eo: Error en cero.

contrado E c Error corregido.

Incertidumbre expandida de medición

+ 0.00000000000489 R2

LABORATORIO

Lectura corregida

R CORREGION = R F

0.0000191 R

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Fin del documento

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martín de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 764 5730

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 094 - 2019

Área de Metrología Laboratorio de Masas

Página 1 de 4

1. Expediente 800-2019 Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades 2. Solicitante INGEOCONTROL S.A.C. de la medición de acuerdo con el Sistema MZA. B LOTE. 11 URB. AMPLIACION LOS Internacional de Unidades (SI). 3. Dirección PORTALES DE CHAVIN 4TA ETAPA LIMA -LIMA - SAN MARTIN DE PORRES Los resultados son validos en el momento de la calibración. Al solicitante le 4. Equipo de medición BALANZA ELECTRÓNICA corresponde disponer en su momento la ejecución de una recalibración, la cual Capacidad Máxima 30000 q está en función del uso, conservación y mantenimiento del instrumento de División de escala (d) medición o a reglamento vigente. Div. de verificación (e) 10 PERUTEST S.A.C. no se responsabiliza Clase de exactitud de los perluicios que pueda ocasionar el uso inadecuado de este instrumento, ni de Marca **OHAUS** una incorrecta interpretación de los resultados de la calibración aqui Modelo R21PE30ZH Número de Serie B845372630 Este certificado de calibración no podrá Capacidad minima 20 g ser reproducido parcialmente sin la aprobación por escrito del laboratorio que Procedencia U.S.A. Identificación NO INDICA El certificado de calibración sin firma y sello carece de validez. 5. Fecha de Calibración 2019-02-13 Fecha de Emisión Jefe del Laboratorio de Metrología Sello 2019-02-15 LABORATORIO

Principal: Calle Yahuar Huaca Nro. 215 - Sch San Agustín II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail: ventas@perutest.com.pe . Web: www.perutest.com.pe

MANUEL ALEJANDRO ALIAGA TORRES

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 094 - 2019

Área de Metrologia Laboratorio de Masas

Página 2 de

6. Método de Calibración

La calibración se realizó según el método descrito en el PC-001: "Procedimiento de Calibración de Balanzas de Funcionamiento No Automático Clase I y Clase II" del SNM-INDECOPI. Tercera Edición.

7. Lugar de calibración

En las instalaciones del cliente.

MZA. B LOTE: 11 URB. AMPLIACION LOS PORTALES DE CHAVIN 4TA ETAPA LIMA - LIMA - SAN MARTIN DE PORRES

8. Condiciones Ambientales

	Inicial	Final
Temperatura	21.6°C	21.9°C
Humedad Relativa	56%	56 %

9. Patrones de referencia

Los resultados de la calibración son trazables a la Unidad de Medida de los Patrones Nacionales de Masa de la Dirección de Metrología - INACAL en concordancia con el Sistema Internacional de Unidades de Medidas (SI) y el Sistema Legal de Unidades del Perú (SLUMP).

Trazabilidad /	Patron utilizado	Certificado de calibración
Patrones de referencia	PESAS DE 5 kg (Clase de Execteut: M2)	SAT - LM - 0414 - 2018
Patrones de referencia	PESAS DE 10 kg (Clase de Exactitud: M2)	SAT - LM - 0413 - 2018
Patrones de referencia	PESAS DE 20 kg (Clase de Exectitud: M2)	SAT - LM - 0412 - 2018
Patrones de referencia	JUEGO DE PESAS 1 g a 1 kg (Clase de Exactitud: F1)	METROIL M-0842-2018

10. Observaciones

Se adjunta una etiqueta autoadhesiva con la indicación de CALIBRADO.

- (**) Código indicada en una etiqueta adherido al equipo.

LABORATORIO PERU

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail: ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 094 - 2019

Área de Metrología Laboratorio de Masas

Página 3 de 4

11. Resultados de Medición

INSPECCIÓN VISUAL

AJUSTE DE CERO	TIENE	PLATAFORMA	TIENE	ESCALA	NO TIENE
OSCILACIÓN LIBRE	TIENE	SISTEMA DE TRABA	NO TIENE	CURSOR	NO TIENE
05 05 05 05	00000	NIVELACIÓN	C-TIENE	02 02 02	07 07 8

ENSAYO DE REPETIBILIDAD

Inicial Final
Temperatura 21.6 °C 21.7 °C

Medición	Carga L1 =	15,000	9	Carga L2 =	30,000	- 9
No	1(g)	AL(g)	E(g)	(g)	AL(9)	E(g)
100	15,000	0.4	0.1	30,000	0.5	0.0
8 28	14,999	0.3	-0.8	30,000	0.5	0.0
_3_0	15,000	0.6	90.10	29,999	0.3	-0.8
4	15,000	9 0.6	-0.1	30,000	0.40	0.1
250	15,000	0.5	0.0	30,000	0.5	0.0
0.600	15,000	0.3	0.2	30,000	0.5	0.0
7	15,000	0.3	0.2	30,000	0.4	0.1
8	14,999	0.3	-0.8	30,000	0.5	0.0
9	15,000	0.5	0.0	30,000	0.5	0.0
10	15,000	0.5	0.0	29,999	0.3	-0.8
5 5	Differences	Maxima.	1.0	Diference	a Maxima	0.9
	Form Mayon	o Darmisible	£20.0	From Mayim	o Permisible	+30.0

ENSAYO DE EXCENTRICIDAD

Posición de las Inicial Final cargas Temperatura 21.7 °C 21.8 °C.

EC .	Corregido E	ción del Erros	Determinac	The state of	ero Eo	Error en Ce	ninación de	Detern	Posicion
Ec (g	F(9)	AL(g)	(g)	Carga L(g)	Eo (g)	ΔL(g)	J (g)	Carga Minima*	de la Carga
-0.3	-0.3	0.8	10,000	70,70	0.0	0.5	10	0 X 0 X	100
0.0	0.0	0.5	10,000	PAPA	(0.0°	0.5	10	6 10	20
-0.3	-0.4	0.9	10,000	10,000	-0.1	0.6	10	10 g	3
0.3	0.3	0.2	10,000	C6. C6	0.0	0.5	100	6, C 6, C	4
0.2	0.2	0.3	10,000	1 3 3	0.0	- 0.5	10 0	50	5
± 20.	e5 /5 /5	no permisible	Error máxir	19, 92,4	65 65	9 69 69	0e	entre 0 y 1	* Valor

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS É INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUIMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 094 - 2019

Area de Metrología Laboratorio de Masas

ENSAYO DE PESAJE

Final

Carga	18 18	CRECI	ENTES		18 18	DECRE	CIENTES	The state of	1 8 B
L(g)	1(g) O	AL(g)	E(g)	ENVOIG	900	Que Or	ELA C	Fotot	e.m.p.
10	10	0.8	-0.3	Ec(g)	1(0)	AL(0)	E(0)	Ec(g)	(±g)
20	20	0.6	-0.1	0.2	€ 20°	0.5	0.0	0.3	10.0
100	100	0.4	0.1	0.4	100	0.6	-0.1	0.2	10.0
500	500	0.9	-0.4	-0.1	500	0.4	0.1	0.4	10.0
1,000	1,000	0.5	0.0	0.3	1,000	0.8	-0.3	0.0	10.0
5,000	5,000	0.6	-0.1°	0.2	5,000	0.9	-0.4	-0.1	20.0
10,000	10,000	0.5	0.0	0.3	10,000	0.5	0.0	0.3	20.0
15,000	15,000	0.2	0.3	0.6	15,000	0.2	0.3	0.6	20.0
20,000	20,000	0.3	0.2	0.5	20,000	0.6	-0.1	0.2	30.0
25,000	25,001	0.3	01.20	5 1.5	25,000	0.5	0.0	0.3	30.0
30,000	30,000	0.5	0.0	0.3	30,000	0.5	0.0	0.3	30.0

^{**} error maximo permisible

Leyenda: L: Carga aplicada a la balanza.

ΔL: Carga adicional.

Eo: Error en cero.

I: Indicación de la balanza.

E: Error encontrado

E .: Error corregido

Incertidumbre expandida de medición

 $U = 2 \times \sqrt{(0.4223333)} g^2 + 0.000000000043$

Lectura corregida

0.0000323 R

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustín II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro, 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS É INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUIMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 093 - 2019

Área de Metrología Laboratoria de Masas

certificado de calibración 1. Expediente 800-2019 documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la INGEOCONTROL S.A.C. 2. Solicitante medición de acuerdo con el Sistema Internacional de Unidades (SI). 3. Dirección MZA B LOTE 11 URB AMPLIACION LOS Los resultados son validos en el PORTALES DE CHAVIN 4TA ETAPA LIMA LIMA - SAN MARTIN DE PORRES momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una 4. Equipo de medición BALANZA ELECTRÓNICA recalibración, la cual está en función del uso, conservación y mantenimiento Capacidad Máxima del instrumento de medición o a reglamento vigente. División de escala (d) 0.01 g PERUTEST S.A.C. no se responsabiliza Div. de verificación (e) 0.1 de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, Clase de exactitud ni de una incorrecta interpretación de los resultados de la calibración aquí OHAUS Marca declarados. Modelo SE602F Este certificado de calibración no podrá ser reproducido parcialmente sin Número de Serie B824537017 la aprobación por escrito del laboratorio que lo emite. Capacidad minima El certificado de calibración sin firma y Procedencia U.S.A. sello carece de validez. Identificación NO INDICA 5. Fecha de Calibración 2019-02-13

Fecha de Emisión

Jefe del Laboratorio de Metrología

Sello

ABORATO

2019-02-15

MANUEL ALEJANDRO ALIAGA TORRES

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

222

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATÓRIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUIMICA RUC Nº 20602182721

> CERTIFICADO DE CALIBRACIÓN PT - LM - 093 - 2019

Área de Metrología Laboratorio de Masas

Página 2 de

6. Método de Calibración

La calibración se realizó según el método descritó en el PC-001: "Procedimiento de Calibración de Balanzas de Funcionamiento No Automático Clase III y Clase IIII" del SNM-INACAL

7. Lugar de calibración

Las instalaciones del cliente.

MZA. B LOTE. 11 URB. AMPLIACION LOS PORTALES DE CHAVIN 4TA ETAPA LIMA - LIMA - SAN MARTIN DE PORRES

8. Condiciones Ambientales

60000	Inicial	Final
Temperatura	21.6	21.8
Humedad Relativa	56%	56%

9. Patrones de referencia

Los resultados de la calibración son trazables a la Unidad de Medida de los Patrones Nacionales de Masa de la Dirección de Metrología - INACAL en concordancia con el Sistema Internacional de Unidades de Medidas (SI) y el Sistema Legal de Unidades del Perú (SLUMP).

Trazabilidad	9 Patrón utilizado 9 9	Certificado de calibración
Patrones de referencia	JUEGO DE PESAS 1 g e 1 kg (Clase de Exactitud: F1)	METROIL M-0842-2018

10. Observaciones

- Se adjunta una etiqueta autoadhesiva con la indicación de CALIBRADO.
- (**) Código indicada en una etiqueta adherido al equipo.

LABORATORIC

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RÚC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 093 - 2019

Área de Metrología Laboratorio de Masas

Página 3 de 4

11. Resultados de Medición

INSPECCIÓN VISUAL

AJUSTE DE CERO	TIENE	PLATAFORMA	TIENE	ESCALA	NO TIENE
OSCILACIÓN LIBRE	TIENE	SISTEMA DE TRABA	TIENE	CURSOR	NO TIENE
	6 6 6	NIVELACIÓN	TIENE	0000	000

ENSAYO DE REPETIBILIDAD

Inicial Final
Temperatura 21.2 °C 21.2 °C

Medición	Carga L1 =	300	9	Carga L2 =	600	9
Nº C	1(9)	AL (mg)	E(mg)	01(9)0	ΔL (mg.)	E (mg)
9 19	300.00	9 59 9	0	600.00	5 5	909
2	300.00	6.0	20	600.00	080	201
3	300.00	6 6	00.10	599.99	3.0	-8
4	300.00	0 7 S	22	600.00	6	25-1-8
5	300.00	6	of a	599.99	2	-7
6	300.00	5 5 6	9 00	600.00	959	0
7	300.00	J 7 3	-2	600.00	4 5	5 15
8	300.00	5	0 0	600.00	6	040
9	300.01	8 .0	20	600.01	8.0	7
10	300.01	90	6	600.00	6	19-19
JE 16	Diference	a Máxima	9	Diferencia	a Maxima	15
	Error Máxin	no Permisible	100	Error Maxim	o Permisible	200

ENSAYO DE EXCENTRICIDAD

(3, 3)

Posición de las

Temperatura [

Inicial Final 21.9 °C 22.0 °C

Posición	Deter	minación o	del Error en Ce	ero Eo	6 15 15	Determina	ción del Error Corregido Ec		
de la Carga	Carga Minima*	1(9)	AL (mg)	Eo (mg)	Carga L(g)	1(9)	AL(mg)	E(mg)	Ec (mg)
- 1	F F	0.10	5	0		200.00	5	0 -	0
2	6°6°6	0.11	8	275	5000	200.00	4	5° 24° 25°	-6
3.6	0.10	0.10	6	4 6	200.00	200.00	8	S 10 3	000
4	5 15 18	0.10	5 6	0	100	200.00	5 5	0.0	0
5	0, 0, 0	0.10	8 8	0.10	0,00	200.01	8	7.0	8
* Valor	entre 0 y 10	De A	27272	57.67.6	Ya Xa	Error máx	mo permisib	le X3X	100

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail: ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUIMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 093 - 2019

Área de Metrología Laboratorio de Masas

Página 4 de 4

ENSAYO DE PESAJE

Inicial Final 21.7 °C 21.8 °C

R CORREGIDA

Carga	5 6 8	CREC	IENTES .	5 6	DECRECIENT			6 6 6	6.6.
L(g)	(g)	ΔL(mg)	E(mg)	En (ma)	S1 600	ALC max	Et ma t	Ec (ma)	e.m.p.**
0.10	0.10	6 6	0 34 30	Ec (mg)	(a)	ΔL(mg)	E(mg)	Ec(mg)	24 7 000
0.20	0.20	5	0 -	100	0.20	5	0	2 31 3	100
60.00	60.00	6	A . 1 .	0	60.00	5	0	1 1 K	100
120.00	120.00	C70 8	12/0	W 4 6	120.00	6 4 °	8000	200	100
150.00	150.00	6	8 8 8	808	150.00	5.5	3 0	5018	100
200.00	200,00	5 0	0 0	010	200.00	6 0	0-10	0 0 0	0 100
250.00	250.00	9 6 9	0.10	0 9	250.00	5 75	-20	9 10 9	100
300.00	300.00	660	8 0	000	299.99	24.0	0.9	-8	100
400.00	400.00	S 4 5	S 150	200	399.99	3 3	-8	5 07 N	100
500.00	500.00	5	000	100	499,99	9 4	-9	-8 #	200
600.00	600.00	5.	000	300	600.00	5.	00	05 15 c	200

^{**} error máximo permisible

Leyenda: L. Carga aplicada a la balanza.

ΔL: Carga adicional.

E o : Error en cero.

0.00000000015

I: Indicación de la balanza.

Ec. Error corregido. E: Error encontrado

Incertidumbre expandida de medición

0.0000018 R

Lectura corregida

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Fin del documento

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 092 - 2019

LABORATORIO

Área de Metrología

2019-02-15

Laboratorio de Masas

Fecha de Emisión	Jefe del Laboratorio de Metrología	Sello
5. Fecha de Calibración	2019-02-13	
Identificación	NO INDICA	
Procedencia	U.S.A.	sello carece de validez.
Capacidad minima	2.0 g	El certificado de calibración sin firma
Número de Serie	8346750775	sin la aprobación por escrito de laboratorio que lo emite.
Modelo	SE3001F	Este certificado de calibración n podrá ser reproducido parcialment
Marca	OHAUS	interpretación de los resultados de l calibración aqui declarados.
Clase de exactitud		el uso inadecuado de est Instrumento, ni de una incorrect
Div. de verificación (e)	1.0 g	PERUTEST S.A.C. no se responsabiliz de los perjuicios que pueda ocasiona
División de escala (d)	0.1 g	medición o a reglamento vigente.
Capacidad Maxima	3000 g	del uso, conservación mantenimiento del instrumento d
4. Equipo de medición	BALANZA ELECTRÓNICA	su momento la ejecución de un recalibración, la cual está en funció
3. Dirección	MZA B LOTE. 11 URB. AMPLIACION LOS PORTALES DE CHAVIN 4TA ETAPA LIMA - LIMA - SAN MARTIN DE PORRES	Los resultados son validos en e momento de la calibración. A solicitante le corresponde disponer el
		medición de acuerdo con el Sistem Internacional de Unidades (SI).
2. Solicitante	INGEOCONTROL S.A.C.	patrones nacionales o internacionales que realizan las unidades de l
1. Expediente	800-2019	documenta la trazabilidad a lo

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224

MANUEL ALEJANDRO ALIAGA TORRES

E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUIMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 092 - 2019

Área de Metrología Laboratorio de Masas

Página 2 de 4

6. Método de Calibración

La calibración se realizó según el método descrito en el PC-001: "Procedimiento de Calibración de Balanzas de Funcionamiento No Automático Clase I y Clase II" del SNM-INACAL

7. Lugar de calibración

Las instalaciones del cliente.

MZA. B LOTE, 11 URB. AMPLIACION LOS PORTALES DE CHAVIN 4TA ÉTAPA LIMA - LIMA - SAN MARTIN DE PORRES

8. Condiciones Ambientales

9 9 9 9 9 9	- Inicial	Final
Temperatura	21.6	21.6
Humedad Relativa	56%	56%

9. Patrones de referencia

Los resultados de la calibración son trazables a la Unidad de Medida de los Patrones Nacionales de Masa de la Dirección de Metrología - INACAL en concordancia con el Sistema Internacional de Unidades de Medidas (SI) y el Sistema Legal de Unidades del Perú (SLUMP).

Trazabilidad (7)	Patron utilizado	Certificado de calibración
Patrones de referencia	PESAS DE 5 kg (Clase de Exactitud: M2)	SAT - LM - 0414 - 2018
Patrones de referencia	JUEGO DE PESAS 1 g a 1 kg (Clase de Exactitud: F1)	METROIL M-0842-2018

10. Observaciones

- Se adjunta una etiqueta autoadhesiva con la indicación de CALIBRADO.
- (**) Código indicada en una etiqueta adherido al equipo:

LABORATORIO SERU

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustín II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUIMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 092 - 2019

Área de Metrología Laboratorio de Masas

11. Resultados de Medición

INSPECCIÓN VISUAL

AJUSTE DE CERO	TIENE	PLATAFORMA	TIENE	ESCALA	NO TIENE
OSCILACION LIBRE	9 TIENE 9	SISTEMA DE TRABA	TIENE	CURSOR	NO TIENE
25 11 22 22 22	21. 120	NIVELACIÓN	TIENE	20,20	16. 30. 20

ENSAYO DE REPETIBILIDAD

21.6 °C Temperatura 21,5°C

Medición	Carga L1 =	1,500	0 9	Carga L2 =	3,000	o g
S Nos	1(9)	AL (mg)	E(mg)	91(0)	ΔL (mg)	E(mg)
10110	1500.0	50	00	3000.0	50	0
2	1500,0	60	-10	3000.0	40	10
3	1500,0	60	-10	3000.0	40	10
4.5	1500.0	50	000	3000,1	80	70
5	1500.0	20	30	3000.0	60	-10
6	1500.0	60	-10	3000.0	50	50
6700	1500.1	80	70	3000.0	60	-10
8	1500.0	60	-10	3000.0	50	0.0
9 9	1500.0	50	000	3000.0	30	20
10	1500.0	20	30	3000.0	50	10 A
F 18 18	Diferencia	Máxima -	80	Diferenc	ia Maxima	80
	Error Maximo Permisible		1,000.0	Error Mávin	no Darmielhia	1,000.0

ENSAYO DE EXCENTRICIDAD

Final Inicial Temperatura 21.6 °C 21.8 °C

Posición	Dete	rminación	del Error en Ce	ro Eo	The Va	Determina	ción del Erro	r Corregido E	COO
de la Carga	Carga Minima*	(1(g)	AL (mg)	Eo (mg)	Cerga L(g)	1(9)	AL(mg)	E(mg)	Ec (mg)
X71.2	10,10	1.0	50	0.0	19,19	1000.0	294.9	46	46
2	2 10 10	1.0	50	00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000.0	60	-10	-10
€3€	1.0	1.0	40 8	10	1000.0	1000.0	50	000	-10
040	09000	1.0	50	0000	000000	1000.0	50	0 0	0.8
5 9	6 6	9 1.0	9500	90.0	9 9	999.9	30	-80	-80
* Valor	entre 0 y 10	De 9	6 6 6	10 10 N	09.00	Error máx	mo permisibl	le (2 (2)	1,000.0

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E-mail: ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 092 - 2019

Área de Metrología Laboratorio de Masas

Página 4 de 4

ENSAYO DE PESAJE

Temperatura

Inicial Final

Carga	Ja 16	CREC	ENTES	Un Un E	000	DECRE	CIENTES	Co Vo Vo	25 W.
L(g)	1(9)	AL(mg)	E(mg)	Farma C	1.00	Streen	ECHAN	Farmas	e.m.p **
1.0	1:0	40	10	Ec (mg)	1(9)	ΔL(mg)	E(mg)	Ec(mg)	(1 mg)
2.0	2.0	60	6 -10 G	-20	2.0	50	0	-10	1,000
10.0	10.0	40	10	0	10.0	50	000	-10	1,000
100.0	100.0	50	0 0	-10	100.0	60	-10	-20	1,000
500.0	500.0	50	0 0	-10	500.0	60	0-10	-20	1,000
800.0	800.0	60	9-109	20 9	800.0	60	=10 9	-20	1,000
1000.0	1000.0	50	200	-10	1000.0	50	00	-10	1,000
1500.0	1500.0	50	000	-10	1499.9	50	-100	-110	1,000
2000.0	2000.1	60	90	80	1999.9	8° 4° 69	-54	-64	1,000
2500.0	2500.1	80	70	60	2499.9	20	-70	-80	1,000
3000.0	3000.1	70	6 80 6	70	3000.1	80	70	60	1,000

^{**} error máximo permisible

Leyenda.

L. Carga aplicada a la balanza.

ΔL: Carga adicional.

E o Error en cero.

f: Indicación de la balanza.

E: Error encontrado

 $U = 2 \times \sqrt{(0.004094)} g^2 +$

E.c. Error corregido.

Incertidumbre expandida de medición

2 ×= ×R × +

20.00

0.0000219 R

12. Incertidumbre

Lectura corregida

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Fin del documento

LABORATORIO PERU

0.00000000135

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LL - 036 - 2019

Área de Metrología Laboratorio de Longitud

Fecha de Emisión

2019-02-15

Página 1 de 3

		Página 1 de 3
1. Expediente	800-2019	Este certificado de calibración documenta la trazabilidad a los
2. Solicitante	INGEOCONTROL S.A.C.	patrones nacionales o internacionales, que realizan las
3. Dirección	MZA. B LOTE. 11 URB. AMPLIACION LOS PORTALES DE CHAVIN 4TA ETAPA LIMA - LIMA - SAN MARTIN DE PORRES	unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).
4. Instrumento de Medición	COMPARADOR CUADRANTE (DIAL)	Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer
Alcance de Indicación	0 pulg. a 1.00 pulg.	en su momento la ejecución de una recalibración, la cual está en función
División de Escala / Resolución	0.001 pulg.	del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.
Marca	INSIZE of a solid of a solid of a	PERUTEST S.A.C. no se responsabiliza
Modelo	2307-1	de los perjulcios que pueda ocasionar el uso inadecuado de este
Número de Serie	NO INDICA	instrumento, ni de una incorrecta interpretación de los resultados de la calibración agui declarados.
Procedencia	NO INDICA	Campraction agui declarados.
Identificación	LL-036	Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del
Tipo de indicación	ANALÓGICO A A A A A A A	laboratorio que lo emite.
Ubicación	NO INDICA	El certificado de calibración sin firma y sello carece de validez.
5. Fecha de Calibración :	2019-02-13	

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustín II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

MANUEL ALEJANDRO ALIAGA TORRES

Jefe del Laboratorio de Metrología

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC № 20602182721

> CERTIFICADO DE CALIBRACIÓN PT - LL - 036 - 2019

Área de Metrología Laboratorio de Longitud

Pagina 2 de 3

6. Método de Calibración

La calibración se realizó según el método descrito en el PC-014: "Procedimiento de Calibración de Comparadores de Cuadrante (Usando Bloques)" del SNM-INDECOPI. Segunda Edición.

7. Lugar de calibración

Las instalaciones del cliente.

MZA. B LOTE. 11 URB. AMPLIACION LOS PORTALES DE CHAVIN 4TA ETAPA LIMA - LIMA - SAN MARTIN DE PORRES

8. Condiciones Ambientales

	Inicial	Final
Temperatura	21.6 ºC	21.7 ºC
Humedad Relativa	80%	81%

9. Patrones de Referencia

Trazabilidad	Patrón utilizado	Certificado/Informe de calibración
INACAL DM/LLA-138-2018	BLOQUES PATRON DE LONGITUD MARCA: INSIZE	LLA-C-070-2018

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- (*) Serie grabado en el instrumento.
- El instrumento presenta errores menores a los errores máximos permisibles.

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe , Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS É INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LL - 036 - 2019

Área de Metrología

Laboratorio de Longitud

Página 3 de 3

11. Resultados de medición

ALCANCE DEL ERROR DE INDICACIÓN (fe)

VALOR	PATRÓN S	INDICACION DEL COMPARADOR	DE INDICACIÓN
(mm)	(pulg)	(pulg)	(pulg)
2.0	0.0787	0.0789	-0.0002
4.0	0.1575	0.1578	-0.0003
5.0	0.1969	0.1971	-0.0002
8.0	0.3150	0.3151	-0.0001
12.0	0.4724	0.4724	0.0000
16.0	0.6299	0.6300	-0.0001
18.0	0.7087	0.7090	-0.0003
20.0	0.7874	0.7878	-0.0004
22.0	0.8661	0.8663	-0.0002
25.0	0.9843	0.9848	-0.0005

Alcance del error de indicación (fe) 0.000

Incertidumbre del error de indicación: ±0.59 mils para (k=2)

ALCANCE DEL ERROR DE REPETIBILIDAD (fiv)

VALOR	PATRON 9 9	INDICACIÓN DEL COMPARADOR	ERROR DE INDICACIÓN	
(mm)	(pulg)	(pulg.)	(F of pulg.)	
20,000	0,0,0,0,0	0.9844	-0.0001	
	1,01,51,01	0.9847	-0.0004	
18.0	0.98425	0.9845	-0.0002	
	En the the to	0.9845	-0.0002	
		0.9845	-0.0002	

Error de Repetibilidad (fiv): 0.00 mils

Incertidumbre del error de indicación : ± 0.59 mils para (k=2)

Nota 1.- 1 mils es equivalente a 25,4 µm.

12. Incertidumbre

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mall : ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUIMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 027 - 2019

Área de Metrología Laboratorio de Temperatura

1. Expediente 800-2019 2. Solicitante INGEOCONTROL S.A.C. MZA. B LOTE. 11 URB. AMPLIACION LOS PORTALES DE CHAVIN 4TA ETAPA LIMA -LIMA - SAN MARTIN DE PORRES 4. Equipo HORNO Alcance Máximo 300 °C Marca PERUTEST Modelo PT-H Número de Serie 0105 PERÚ Procedencia Identificación NO INDICA **Ubicación** NO INDICA

Descripción	Controlador / Selector	Instrumento de medición
Alcance	30 °C a 300 °C	30 °C a 300 °C
División de escala / Resolución	0 0.1.C 0 0	0.1 ℃
Tipo	CONTROLADOR	TERMÓMETRO DIGITAL

certificado calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Pagina 1 de 5

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

5. Fecha de Calibración 2019-02-13

Fecha de Emisión

Jefe del Laboratorio de Metrologia

2019-02-15

MANUEL ALEJANDRO ALIAGA TORRES

LABORATORI

ESTS

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

PEROTEST SA.O

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 027 - 2019

Área de Metrologia

Laboratorio de Temperatura

Página Z de 5

6. Método de Calibración

La calibración se efectuó por comparación directa con termómetros patrones calibrados que tienen trazabilidad a la Escala Internacional de Temperatura de 1990 (EIT 90), se consideró como referencia el Procedimiento para la Calibración de Medios Isotérmicos con aire como Medio Termostatico PC-018; 2da edición; Junio 2009, del SNM-INDECOPI.

7. Lugar de calibración

En las instalaciones del cliente.

MZA. B LOTE, 11 URB, AMPLIACION LOS PORTALES DE CHAVIN 4TA ETAPA LIMA - LIMA - SAN MARTIN DE

8. Condiciones Ambientales

	Inicial	Final
6 Temperatura	9 22,5 9	9 22.5 9
Humedad Relativa	63 %	63%

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Certificado y/o Informe de calibración
SAT - LABORATORIO ACREDITADO REGISTRO: LC-014	TERMÓMETRO DE INDICACIÓN DIGITAL DE 10 CANALES TERMOPARES TIPO T - DIGISENSE	LT-1145-2018

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación de CALIBRADO.
- (*) Código indicado en una etiqueta adherido al equipo.
 - La periodicidad de la calibración depende del uso, mantenimiento y conservación del instrumento de medición.

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS É INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 027 - 2019

Área de Metrologia Laboratorio de Temperatura

11. Resultados de Medición

21 °C Temperatura ambiental promedio

Tiempo de calentamiento y estabilización del equipo

El controlador se seteo en 110 PARA LA TEMPERATURA DE 110 °C

Tiempo	Termometro	TEMPERATURAS EN LAS POSICIONES DE MEDICIÓN (°C)			SER	-38 -6							
Dempo	del equipo	105	NIVEL SUPERIOR NIVEL INFERIOR			T prom	Fmax-Tm						
(min)	(*0)	10	2	.3	040	5	6	970	8	9	10	("0)	(°C)
00	110.0	106.9	107.1	111.0	115.1	112.4	104.2	109.0	112.4	112.4	109.7	110.0	10.9
02	110.0	107.3	107.1	109.7	115.7	113.0	104.0	108.6	113.0	113.0	109.7	110.1	11.7
04	110.0	107.0	106,9	111.3	115.4	112.6	104.2	108.6	112.6	112.6	109.6	110.1	11.2
06	110.0	107.4	107.0	110.5	115.3	112.6	104.0	108.6	112.4	112.6	109.7	110.0	11.3
08	110.0	106.9	107.1	113.0	115.1	112.4	104.0	109.0	113.0	112.4	109.7	110.1	11.1
10	110.0	107.3	107.0	109.7	115.7	113.0	104.1	106.6	112.6	113.0	109.5	110.1	11.6
12	110.0	107,0	107.1	111.0	115.4	112.6	104.0	108.6	112.6	112.6	109.7	110.1	11.4
14	110.0	107.4	106.9	109.7	115.3	112.6	104.1	109.0	113.0	112.6	109.7	110.0	11.2
16	110.0	106.9	107.0	111.3	115.1	112.4	104.2	108.6	112.6	112.4	109.6	110.0	10.9
18	110.0	107.3	107.1	110.5	115.7	113.0	104.0	109.0	113.0	113.0	109.7	110.2	11.7
20	110.0	107.0	107.1	111.5	115.4	112.6	104.2	108.6	112.6	112.6	109.7	110.1	11.2
22	110.0	107.4	107.1	110.5	115.1	112.6	104.0	108.6	112.6	112.6	109.6	110.0	11.1
24	110.0	106.9	106.9	111.0	115.7	112.6	104.2	108.6	113.0	112.6	109.7	110.1	11.5
26	110.0	107.3	107.0	109.7	115.4	112.4	104.0	108.6	112.4	112.4	109.7	109.9	11.4
28	110.0	106.9	106.9	111.3	115.3	113.0	104.2	108.6	113.0	113.0	109.6	110.2	11.1
30	110.0	107.3	107.0	110.5	115.4	112.4	104.0	109.0	112.4	112.4	109.7	110.0	11.4
32	110.0	107.0	107.1	111.0	115.3	113.0	104.0	108.6	113.0	113.0	109.7	110.2	11.3
34	110.0	107.4	107.0	109.7	115.1	112.6	104.0	109.0	112.6	112.6	109.6	110.0	11.1
36	110.0	107.4	107.1	111.3	115.7	112.6	104.2	108.6	112.5	112.6	109.7	110.2	11.5
38	110.0	106.9	107.1	110.5	115.1	113.0	104.0	108.6	113.0	113.0	109.7	110.1	11.1
40	110.0	107.3	106.9	111.0	115.7	112.6	104.0	109.0	112.5	112.6	109.6	110.1	11.7
42	110.0	107.0	107.0	109.7	115.4	112.4	104.2	108.6	112.6	112.4	109.7	109.9	11.2
44	110.0	107.4	107.0	111.0	115.3	113.0	104.0	108.6	112.4	113.0	109,7	110.1	11.3
46	110.0	106.9	107.1	109.7	115.1	112.6	104/2	108.6	113.0	112.6	109.6	109.9	10.9
48	9 110.0 9	107.3	107.1	111.3	115.7	112.6	104.1	109.0	112.6	112.6	109.7	110.2	11.6
50	110.0	106.9	106.9	110.5	115,4	1124	104.2	108,6	113.0	112.4	109.7	110.0	11.2
52	110.0	107.0	107.0	111.3	115.3	113.0	104.0	108.6	112.6	113.0	109.6	110.1	\$11.3
54	110.0	107.4	107.1	111.0	115.1	112.6	104.0	108.6	113.0	112.6	109.6	110.1	11.1
56	110.0	106.9	107.1	109.7	115.7	112.6	104.0	108.6	112.6	112.6	109.7	109.9	11.7
58	110.0	107.3	106.9	111.3	115.4	113.0	104.2	109.0	112.6	113.0	109.7	110.2	112
60	110.0	106.9	107.0	110.5	115.3	112.6	104.0	108.6	113.0	112.6	109.6	110.0	AN
T.PROM	110.0	107.1	107.0	110.6	115.4	112.7	104.1	108.7	112.7	112.7	109.7	110.1	1441
T.MAX	110.0	107.4	107.1	111.3	115.7	113.0	104.2	109.0	113.0	113.0	109.7	10 Po	1º A
T.MIN	110.0	106.9	106.9	109.7	115.1	112.4	104.0	108.6	112.4	112.4	109.6	0,00	LAB
DIT	9 0.0 9	0.5	0.2	1.60	0.6	0.6	0.20	0.4	0.6	0.6	0.1	9 6	TI

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Telefono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS É INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 027 - 2019

Área de Metrologia

Laboratorio de Temperatura

Página 4 de 5

PARÂMETRO	VALOR (°C)	INCERTIDUMBRE EXPANDIDA (°C)
Máxima Temperatura Medida	115.7	10.3
Minima Temperatura Medida	104.0	0.0
Desviación de Temperatura en el Tiempo	1.6	0.1
Desviación de Temperatura en el Espacio	0 11.3	10.4
Estabilidad Medida (±)	0.8	0.04
Uniformidad Medida	9 11.79	10.4

T.PROM : Promedio de la temperatura en una posición de medición durante el tiempo de calibración.

T.prom : Promedio de las temperaturas en la diez posiciones de medición para un instante dado.

T.MAX : Temperatura máxima. T.MIN : Temperatura mínima.

DTT : Desviación de Temperatura en el Tiempo.

Para cada posición de medición su "desviación de temperatura en el tiempo" DTT está dada por la diferencia entre la máxima y la mínima temperatura en dicha posición.

Entre dos posiciones de medición su "desviación de temperatura en el espacio" está dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.

Incertidumbre expandida de las indicaciones del termómetro propio del Medio Isotermo :

0.06 °C

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

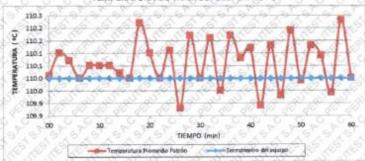
La uniformidad es la máxima diferencia medida de temperatura entre las diferentes posiciones espaciales para un mismo instante de tiempo.

La Estabilidad es considerada igual a ± 1/2 DTT.

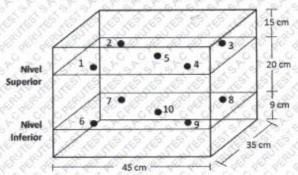
Durante la calibración y bajo las condiciones en que ésta ha sido hecha, el medio isotermo SI CUMPLE con los limites especificados de temperatura.

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

PERUMEST S.A.O


CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS É INSTRUMENTOS DE LABORATÓRIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 027 - 2019


Área de Metrología Laboratorio de Temperatura

Página 5 de 5

DISTRIBUCIÓN DE TEMPERATURAS EN EL EQUIPO TEMPERATURA DE TRABAJO: 110 °C ± 10 °C

DISTRIBUCIÓN DE LOS TERMOPARES

Los sensores 5 y 10 están ubicados en el centro de sus respectivos niveles. Los sensores del 1 al 4 y del 6 al 9 se colocaron a 9 cm de las paredes laterales y a 9 cm del fondo y frente del equipo a calibrar.

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estandar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

Fin del documento

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustín II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Officina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUIMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 037 - 2019

Área de Metrología Laboratorio de Fuerza

2019-02-15

666666	555555555	Página 1 de J
1. Expediente	800-2019	Este certificado de calibración
	0 0 0 0 0 0 0 0 0 0	documenta la trazabilidad a los
2. Solicitante	INGEOCONTROL S.A.C.	patrones nacionales c
	\$\delta \delta \	internacionales, que realizan las
3. Dirección	MZA. B LOTE, 11 URB. AMPLIACION LOS	unidades de la medición de acuerdo con el Sistema Internacional de
20 40 40 40 40	PORTALES DE CHAVIN 4TA ETAPA LIMA - LIMA	Unidades (SI).
5 4 5 5 5	- SAN MARTIN DE PORRES	5 5 5 5 5 5
4. Equipo	PRENSA CBR	Los resultados son validos en el
10 10 10 10 10 10	The time the time the time the time the	momento de la calibración. Al
Capacidad	5000 kgf	solicitante le corresponde disponer en su momento la ejecución de una
		recalibración, la cual está en función
Marca	RUMISTON	del uso, conservación
The land to the tent		mantenimiento del instrumento de
Modelo	NO INDICA	medición o a reglamento vigente.
		PERUTEST S.A.C. no se responsabiliza
Número de Serie	NO INDICA	de los perjuicios que pueda ocasionar
		el uso inadecuado de este
Procedencia	PERÚ A A A A A A A	instrumento, ni de una incorrecta
0 0 0 0 0 0	0.0.0.0.0.0.0.0.0.0.0	interpretación de los resultados de la
Identificación	LF-037	calibración aqui declarados.
Indicación	DIGITAL	Este certificado de calibración no
Marca	HIWEIGHT OF A A SO SO SO SO	podrá ser reproducido parcialmente
Modelo	315X5	sin la aprobación por escrito del
Número de Serie	ANO INDICA	laboratorio que lo emite.
Resolución	© 0.1 kgf & & & & & & & & & & & & & & & & & & &	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	El certificado de calibración sin firma
Ubicación	NO INDICA	y sello carece de validez.
5. Fecha de Calibración	2019-02-13	
Fecha de Emisión	Jefe del Laboratorio de Metrología	Sello

MANUEL ALEJANDRO ALIAGA TORRES

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustín II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS É INSTRUMENTOS DE LABORATÓRIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 037 - 2019

Área de Metrologia

Laboratorio de Fuerza

Página 2 de 3

6. Método de Calibración

La calibración se realizó por el método de comparación directa utilizando patrones trazables al SI calibrados en las instalaciones del LEDI-PUCP tomado como referencia el método descrito en la norma UNE-EN ISO 7500-1 "Verificación de Maquinas de Ensayo Uniaxiales Estáticos, Parte 1: Máquinas de ensayo de tracción/compresión. Verificación y calibración del sistema de medida de fuerza." - Julio 2006.

7. Lugar de calibración

En las instalaciones del cliente

MZA. B LOTE. 11 URB. AMPLIACION LOS PORTALES DE CHAVIN 4TA ETAPA LIMA - LIMA - SAN MARTIN DE PORRES

8. Condiciones Ambientales

	Inicial	Final
Temperatura	21.5 °C	21.5 °C
Humedad Relativa	61 % HR	61 % HR

LABORATORIO

Patrones de referencia

Trazabilidad	Patrón utilizado	Informe/Certificado de calibración
Celdas patrones calibradas en PUCP	CELDA DE CARGA OAP	
Laboratorio de estructuras	MOD: ZSF-A	INF-LE 092-19
antisismicas	SERIE: 55P4331 F-10-A F	8 18 18 18 18 18 18 18

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- Durante la realización de cada secuencia de calibración la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de ± 2,0 °C.
- El equipo no indica clase sin embargo cumple con el criterio para máquinas de ensayo uniaxiales de clase de 1.0 según la norma UNE-EN ISO 7500-1.

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail: ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUIMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 037 - 2019

Área de Metrologia

Laboratorio de Fuerza

Página 3 de 5

11. Resultados de Medición

	cación Equipo	20,000	Indicación de F	PERSONAL PROPERTY OF	16 6 6 6 B
10 W.	Fi(kgf)	Fi (kgf)	F ₂ [kgf]	F3 [kgf]	Fpramedio (kgf
10	500	501.6	500.6	501.6	501.4
20	1000	1002.2	1001.2	1002.2	1001,9
30	1500	1504.4	1505.4	1505.4	1504.9
40	2000	2008.2	2007.2	2007.2	2007,2
50	2500	2505.5	2504.4	2505.5	2505.5
60	3000	3005.2	3007.2	3006.2	3006.4
70	3500	3505.2	3504.2	3505.2	3504,9
80	4000	4007.6	4008.7	4008.7	4008.2
90	4500	4508.2	4510.3	4510.3	4509.5
100	5000	5010.1	5009.0	5010.1	5009.8
Retorn	no a Cero	0.0	0.000	0.0	0 0 0

Indicación	Em	Errores Encontrados en el Sistema de Medición				
del Equipo	Exactitud	Repetibilidad	Reversibilidad v (%)	Resol. Relativa or (%)	U (k=2) (%)	
500	-0.27	0.20	-0.20	0.02	0.58	
1000	-0.19	0.10	-0.10	0.01	0.58	
1500	0.32	0.07	0.07	0.01	0.58	
2000	-0.36	0.05	0.05	0.01	0.58	
2500	0.22	0.04	-0.08	0.00	0.58	
93000	9 -0.21 9	0.07	0.00	0.00	0.58	
3500	-0.14	0.03	-0.03	0.00	0.57	
4000	-0.20	0.03	0.03	0.00	0.57	
4500	-0.21	0.05	0.02	0.00	0.58	
5000	0.20	0.02	-0.02	0.00	0.57	

MÁXIMO ERROR RELATIVO DE CERO (fo) 0.00 %

5000

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC № 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 038 - 2019

Área de Metrología

2019-02-15

	rha de Emisión	Jefe del Laboratorio de Metrología	Sello
5. Fec	cha de Calibración	2019-02-13	
Ubi	icación	Laboratorio	y sello carece de validez.
nes	JOHN LIGHT	U-1 AB-1	El certificado de calibración sin firma
	solución	0.1 kg.f	neconatorio que io eninte.
	mero de Serie	NO INDICA	laboratorio que lo emite.
	ndelo	NO INDICA	sin la aprobación por escrito de
-	irca	ELE INTERNATIONAL	Este certificado de calibración no podrá ser reproducido parcialmente
Indi	licación	DIGITAL	Este certificado de calibración no
1117	ntificación	NO INDICA	instrumento, ni de una incorrecti interpretación de los resultados de la calibración aqui declarados.
0500	mero de Serie	1887-1-00074 U.S.A.	de los perjuicios que pueda ocasiona el uso inadecuado de este
***	de Conto	1007.4.00074	PERUTEST S.A.C. no se responsabiliza
Mo	odelo	ADR TOUCH	medición o a reglamento vigente.
Ma	irca	ELE INTERNATIONAL	del uso, conservación y mantenimiento del instrumento del
Сар	pacidad	120,000 kg.f	en su momento la ejecución de una recalibración, la cual está en función
4. Equ	uipo	PRENSA DE CONCRETO	momento de la calibración. A solicitante le corresponde dispone
		- SAN MARTIN DE PORRES	Los resultados son validos en e
3. Dire	ección	MZA. B LOTE. 11 URB. AMPLIACION LOS PORTALES DE CHAVIN 4TA ETAPA LIMA - LIMA	unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).
2. Soli	icitante	INGEOCONTROL S.A.C.	patrones nacionales c internacionales, que realizan la
1. Ехр	pediente	800-2019	Este certificado de calibración documenta la trazabilidad a los

MANUEL ALEJANDRO ALIAGA TORRES

Principal: Calle Yahuar Huaca Nro. 215 Urb. San Agustín II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail: ventas@perutest.com.pe , Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 038 - 2019

Área de Metrología

Laboratorio de Fuerza

Página 2 de 3

6. Método de Calibración

La calibración se realizó por el método de comparación directa utilizando patrones trazables al SI calibrados en las instalaciones del LEDI-PUCP tomado como referencia el método descrito en la norma UNE-EN ISO 7500-1 "Verificación de Máquinas de Ensayo Uniaxiales Estáticos. Parte 1: Máquinas de ensayo de tracción/compresión. Verificación y calibración del sistema de medida de fuerza." - Julio 2006.

7. Lugar de calibración

En las instalaciones del cliente.

MZA. B LOTE. 11 URB. AMPLIACION LOS PORTALES DE CHAVIN 4TA ETAPA LIMA - LIMA - SAN MARTIN DE PORRES

8. Condiciones Ambientales

1	Inicial	Final
Temperatura	22.0 °C	22.0 °C
Humedad Relativa	65 % HR	65 % HR

EABORATORIO PERU

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Informe/Certificado de calibración
Celdas patrones calibradas en PUCP -	Celda de Carga	
Laboratorio de estructuras	Código: PF-001	INF-LE-272-18
antisismicas	Capacidad: 150,000 kg.f	

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- Durante la realización de cada secuencia de calibración la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de ± 2,0 °C.
- El equipo no indica clase sin embargo cumple con el criterio para máquinas de ensayo uniaxiales de clase de 1.0 según la norma UNE-EN ISO 7500-1.

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe , Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 038 - 2019

Área de Metrología Laboratorio de Fuerza

Página 3 de 3

11. Resultados de Medición

Indicación del Equipo		Indicación de Fuerza (Ascenso) Patrón de Referencia			
%	Fi(kgf)	F ₁ (kgf)	F2 (kgf)	F ₃ (kgf)	Fpromedio (kgf
10	10000	10025.9	10029.3	10028.1	10027.3
20	20000	20085.7	20091.9	20088.2	20087.9
30	30000	30137.6	30143.0	30140.3	30139.6
40	40000	40139.7	40145.5	40141.1	40141.5
50	50000	50186.5	50199.0	50194.3	50191.6
60	60000	60216.5	60223.1	60219.8	60219.0
70	70000	70233.1	70240.1	70236.6	70235.7
80	80000	80268.0	80275.3	80271.7	80270.8
90	90000	90378.0	90378.0	90378.0	90381.3
100	100000	100533.9	100551.7	100547.7	100541.8
Retorr	no a Cero	0.0	0.0	0.0	

Indicación del Equipo F (kgf)	Errores Encontrados en el Sistema de Medición				Incertidumbre
	Exactitud q (%)	Repetibilidad b (%)	Reversibilidad v (%)	Resol. Relativa a (%)	U (k=2) (%)
10000	-0.27	0.03	0.03	0.10	0.58
20000	-0.44	0.03	0.03	0.05	0.58
30000	-0.46	0.02	0.02	0.03	0.58
40000	-0.35	0.01	0.01	0.03	0.57
50000	-0.38	0.02	0.02	0.02	0.57
60000	-0.36	0.01	0.01	0.02	0.57
70000	-0.34	0.01	0.01	0.01	0.57
80000	-0.34	0.01	0.01	0.01	0.57
90000	-0.42	0.00	-0.01	0.01	0.57
100000	-0.54	0.02	0.02	0.01	0.57

MÁXIMO ERROR RELATIVO DE CERO (f₆)

12. Incertidumbre

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.

0.00 %

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Principal; Calle Yahuar Huaca Nro. 215 - Urb. San Agustín II Etapa - Comas - Lima Sucursal; Calle Sinchi Roca Nro. 1320 - La Victoria - Chiciayo - Lambayeque Teléfono; 913028621 - 913028623 - 913028624 Oficina; (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe , Web: www.peratest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LL - 035 - 2019

Área de Metrología Laboratorio de Longitud

		Página 1 de 3
1. Expediente	800-2019	Este certificado de calibración documenta
		la trazabilidad a los patrones nacionales o
2. Solicitante	INGEOCONTROL S.A.C.	internacionales, que realizan las unidades
6.6.6.6.6.6	18 18 18 18 18 18 18 18 18 18 18 18 18 1	de la medición de acuerdo con el Sistema
		Internacional de Unidades (SI).
3. Dirección	MZA. B LOTE, 11 URB. AMPLIACION LOS	
16 6 6 6 6 6 6	PORTALES DE CHAVIN 4TA ETAPA LIMA - LI	MA - Los resultados son validos en el momento
	1 6 6 6 6 6 6 6 6 6 6 6 6 6 C	de la calibración. Al solicitante le
4. Instrumento de Medición	VERNIER	corresponde disponer en su momento la
10, 40, 40, 40, 40, 40, 40,	(PIE DE REY)	ejecución de una recalibración, la cual
Alcance de Indicación	0 mm a 150 mm / 0 pulg. a 6 pulg.	está en función del uso, conservación y
41414141414		mantenimiento del instrumento de
División de Escala /	0.01 mm / 0.0005 pulg.	medición o a reglamento vigente.
Resolución		medicini o a registrento vigente.
Marca	UBERMAN	PERUTEST S.A.C. no se responsabiliza de
8 18 18 18 18 18 18	15 15 15 15 16 16 16 16 16 1	los perjuicios que pueda ocasionar el uso
Modelo	NO INDICA CONTRACTOR OF THE PROPERTY OF THE PR	inadecuado de este instrumento, ni de
	the second of th	una incorrecta interpretación de los
Número de Serie	NO INDICA (*)	resultados de la calibración aqui
666666		declarados
Procedencia	S NO INDICA	at all all all all all all all
		Este certificado de calibración no podrá
Identificación	NO INDICA	ser reproducido parcialmente sin la
8 6 6 6 6 6 6	12 12 13 15 15 15 15 15 15 15	aprobación por escrito del laboratorio
Tipo de Indicación	DIGITAL	que la emite.
5. Fecha de Calibración	2019-02-13	El certificado de calibración sin firma y
9 10 10 10 10 10 10 10 10 10 10 10 10 10		sello carece de validez.
	o the ten the ten ten the ten ten ten ten ten ten ten ten ten te	The total the training the training the

2019-02-15

Fecha de Emisión

Jefe del Laboratorio de Metrología

LABORATORIO

MANUEL ALEJANDRO ALIAGA TORRES

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustín II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC № 20602182721

PT - LL - 035 - 2019

Área de Metrología Laboratorio de Longitud

Página 2 de 3

6. Método de Calibración

La calibración se realizó por comparación entre bloques patrones calibrados y la indicación del instrumento a calibrar tomando como referencia el método descrito en el PC-012: "Procedimiento de Calibración de Pie de Rey" del SNM-INDECOPI. Segunda Edición.

7. Lugar de calibración

Las instalaciones del cliente.

MZA. B LOTE. 11 URB. AMPLIACION LOS PORTALES DE CHAVIN 4TA ETAPA LIMA - LIMA - SAN MARTIN DE PORRES

8. Condiciones Ambientales

	minima	máxima
Temperatura	22.3 °C	22.6 °C
Humedad Relativa	61 %	68 %

9. Patrones de Referencia

Trazabilidad	Patrón utilizado	Certificado de calibración	
INACAL	BLOQUES PATRON DE LONGITUD MARCA: INSIZE	LLA-C-070-2018	

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- (*) Serie grabada en el instrumento.
- El instrumento presenta errores menores a los errores máximos permisibles.

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail : ventas@perutest.com.pe , Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATÓRIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FISICA- QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LL - 035 - 2019

Área de Metrología Laboratorio de Longitud

Página 3 de 3

11. Resultados de Medición

VALOR PATRÓN (mm)	INDICACIÓN DEL PIE DE REY			MAXIMO ERROR	ERRORES MAXIMOS
	EXTERIOR (mm)	INTERIOR (mm)	PROFUNDIDAD (mm)	ENCONTRADO (±µm)	PERMITIDOS (±µm)
10.000	10,000	10.000	10.000	0	20
20,000	20.004	20.003	20.000	4	20
40.000	40.002	40.000	40.000	S 802 60 80	20
80.000	80,002	80.003	80.000	9 3 9	20
100.000	100.002	100.000	100.002	0 10 20 10	200
150.000	150.002	150.000	150.000	C 28 0	20

INCERTIDUMBRE DE MEDICION: 1.5 µm; para k=2

12. Incertidumbre

La incertidumbre expandidad de medición se ha obtenido multiplicando la incertidumbre de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Principal: Calle Yahuar Huaca Nro. 215 - Urb. San Agustin II Etapa - Comas - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E- mail: ventas@perutest.com.pe Web: www.perutest.com.pe