

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Diseño de Infraestructura Vial para mejorar el Nivel de Servicio Vehicular del tramo Centro Poblado de Gallito – Lambayeque, Lambayeque, 2020

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

AUTOR:

Porras Crisanto, Andraitt Yeraldilne (ORCID: 0000-0001-5527-6053)

ASESORA:

Mg. Ramos Gallegos, Susy Giovana (ORCID: 0000-0003-2450-9883)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

CHICLAYO - PERÚ

2020

Dedicatoria

A Dios, por brindarme salud, fe y por tener bien de salud a mis padres y hermana, ya que ellos son mi fortaleza necesaria para poder culminar con éxito mis estudios y con este proyecto de desarrollo.

A mis padres por el ejemplo de superación y abnegado apoyo, me inculcaron a luchar y ser mejor día a día. A mi hermana quien estuvo siempre pendiente con su apoyo moral.

A mi familia por brindarme esas palabras de motivación e inculcarme valores a no rendirse fácilmente.

Agradecimiento

El presente proyecto es dedicado primeramente a Dios, a mis padres, hermana y a todas las personas quienes en todo momento me brindaron su apoyo, el cual me permitió lograr mis objetivos y metas.

A mis docentes Mg. Ramos Gallegos, Susy Giovana y el Ing. Aybar Arriola, Gustavo Adolfo, quien con sus consejos, colaboración, exigencia y valiosa orientación desinteresada me permitió sacar este proyecto adelante.

A toda mi familia por su apoyo emocional y sus consejos positivos que me permitieron seguir adelante; también a los pobladores de los caseríos y sectores beneficiados que me brindaron su apoyo para la realización de los estudios.

Índice de contenidos

Carátula		İ
Dedicatoria		ii
Agradecimiento		iii
Índice de contenid	los	iv
Índice de tablas		v
Índice de gráficos	y figuras	vii
Resumen		ix
Abstract		x
I. INTRODUCCI	ÓN	1
II. MARCO TEÓI	RICO	5
III. METODOLO	DGÍA	11
3.1 Tipo y diseñ	o de investigación	11
3.2. Variables y	Operacionalización	12
3.3. Población, n	nuestra, muestreo, unidad de análisis	13
3.4. Técnicas e i	nstrumentos de recolección de datos	14
3.5. Procedimien	ntos	17
3.6. Método de a	análisis de datos	18
3.7. Aspectos éti	icos	19
IV. RESULTAD	OS	20
V. DISCUSIÓN	V	70
VI. CONCLUSION	ONES	73
VII. RECOMENI	DACIONES	74
REFERENCIAS		75
ANEXOS		81

Índice de tablas

Tabla 1.	Técnicas e instrumentos de recolección de datos	16
Tabla 2.	Tiempos estimados para llegar hacia el proyecto	20
Tabla 3.	Ubicación del estado de Obras de Arte	22
Tabla 4.	Resumen de Conteo de Trafico Semanal.	23
Tabla 5.	Continuación de Estudio de Trafico	24
Tabla 6.	Promedios de variación diaria de Conteo de Vehículos	26
Tabla 7.	Promedios de Conteo de Vehículos estimado a 2035	26
Tabla 8.	Resumen de Estudio de Tráfico.	28
Tabla 9.	Resumen de Ubicación de BM	29
Tabla 10.	Cuadro de los ensayos y su respectiva norma	31
Tabla 11.	Dimensiones de Tamices	32
Tabla 12.	Promedio de CBR al 95% MDS.	32
Tabla 13.	Resumen de Mecánica de Suelos	33
Tabla 14.	Promedio de CBR	33
Tabla 15.	Estudio de Cantera Tres Tomas	35
Tabla 16.	Cantera Tres Tomas - Límites de consistencia	36
Tabla 17.	Cantera Tres Tomas - Ensayo de Compactación	37
Tabla 18.	Cantera Tres Tomas - Ensayo CBR	38
Tabla 19. Precipitad	Servicio Nacional de Meteorología e Hidrología del sión Máxima 24 h	
Tabla 20.	Promedio de precipitaciones mensuales – SENAHMI	42
Tabla 21.	Promedios de Precipitaciones Máximas	43
Tabla 22.	Prueba de bondad de Ajuste Smirnov-Kolgomorov	44
Tabla 23.	Precipitaciones para diferentes periodos de retorno - Lambayeq	jue45
Tabla 24.	Precipitación Máximas para diferente periodo de retorno	46
Tabla 25.	Velocidad de Marcha	48
Tabla 26.	Distancia de visibilidad en pendientes 0%	48
Tabla 27.	Distancia de visibilidad en pendientes 0%: (DG-2018, pp. 105)	48
Tabla 28.	Distancia de visibilidad adelanto	48
Tabla 29.	Mínima distancia de visibilidad de adelantamiento para carretera	as49
Tabla 30.	Radios Mínimos	49
Tabla 31.	Longitud mínima de curva de transición	49
Tabla 32.	Pendientes máximas	50

Tabla 33.	Anchos mínimos de calzada50
Tabla 34.	Anchos de bermas: (DG-2018, pp. 193)51
Tabla 35.	Bombeo de calzada51
Tabla 36.	Anchos mínimos de derecho de vía51
Tabla 37.	Ensanche de plataforma52
Tabla 38. visibilidad.	Resumen de clasificación de demanda, orografía y distancia de 52
Tabla 39.	Tiempo de diseño de la vía54
Tabla 40.	Ejes equivalentes (ESAL)55
Tabla 41.	Desviación estándar del pavimento rígido y flexible56
Tabla 42.	Factor de Confiabilidad según el tipo de tráfico57
Tabla 43.	Índice de Serviciabilidad según el tipo de tráfico59
Tabla 44.	Índice de serviciabilidad final según el tipo de tráfico (Pt)60
Tabla 45.	Valores recomendados para el coeficiente de drenaje63
Tabla 46.	Estado de obras de arte existente66

Índice de gráficos y figuras

Gráfica 1. Lambayeqı	Promedios de Vehículos del tramo Centro Poblado de Gallito - ue. 25
Gráfica 2. Poblado de	Promedios de Vehículos estimado hacia el año 2035 del tramo Centro Gallito - Lambayeque
Gráfica 3.	Comparación distribuciones Teóricas44
Gráfica 4.	Curva Intensidad – Duración Frecuencia46
Gráfica 5.	Pavimento Flexible65
Figura 1.	Vista Satelital - Google Earth20
Figura 2. Lambayeqı	Punto de inicio del proyecto, Km 00+000 – Centro Poblado de Gallito – ue
Figura 3.	Conteo Vehicular del tramo Centro Poblado de Gallito - Lambayeque. 182
Figura 4.	Tipo de Vehículos que pasan por la trocha Carrozable en estudio. 182
Figura 5.	Tipo de Vehículos que pasan por la trocha Carrozable en estudio. 183
Figura 6.	Tipo de Vehículos que pasan por la trocha Carrozable en estudio. 183
Figura 7.	Levantamiento Topográfico184
Figura 8.	Estudio Topográfico184
Figura 9.	Calicata N°1 - Km 0+000185
Figura 10.	Calicata N°2 - Km 0+500185
Figura 11.	Calicata N°3 - Km 1+000186
Figura 12.	Calicata N°4 - Km 1+500186
Figura 13.	Calicata N°5 - Km 2+000187
Figura 14.	Calicata N°5 - Km 2+000187
Figura 15.	Calicata N°7 - Km 3+000188
Figura 16.	Calicata N°8 - Km 3+500188
Figura 17.	Calicata N°9 - Km 4+000189
Figura 18.	Calicata N°10 - Km 4+500189
Figura 19.	Calicata N°11 - Km 5+000190
Figura 20.	Calicata N°12 - Km 5+500190
Figura 21.	Calicata N°13 - Km 6+000191
Figura 22.	Calicata N°14 - Km 6+554191
Figura 23.	Laboratorio de Suelos - Granulometría192
Figura 24	Laboratorio de Suelos - Límite de Plasticidad

Figura 25.	Laboratorio de Suelos - Proctor	.193
Figura 26.	Laboratorio de Suelos - Contenido de Sales	.193

Resumen

La presente tesis titulada "Diseño de infraestructura vial para mejorar el Nivel de Servicio Vehicular del tramo Centro Poblado de Gallito – Lambayeque, Lambayeque, 2020", se llevó a cabo en el Distrito de San José, Provincia de Lambayeque, Departamento de Lambayeque en el año 2020. La investigación se justifica en el desarrollo del diseño de la infraestructura vial para el mejoramiento el nivel de servicio vehicular existente, el cual no reúne las condiciones de diseños adecuados, tales como anchos de calzada, pendientes longitudinales y transversales, obras de drenaje, señalizaciones, seguridad vial, etc.

Con la finalidad de satisfacer las necesidades actuales de los sectores de caseríos inmersas en el ámbito de influencia del proyecto, se propone el diseño de infraestructura vial para mejorar el nivel de servicio, el cual consiste en el diseño Geométrico en planta, perfil y secciones transversal, el diseño de la carpeta de rodadura a nivel de pavimento flexible en caliente, estableciendo las señales de tránsito adecuadas, etc. De acuerdo a la Norma de Diseño Geométrico de Carreteras (DG-2018), el proyecto estuvo enmarcado en el tipo de investigación de carácter descriptivo. Los datos obtenidos del área de influencia del proyecto serán procesados mediante programas especializados como el CIVIL 3D, S10, MS PROJECT entre otros, así mismo se contará con la orientación de un asesor especializado en la línea de investigación para el análisis de los datos obtenidos.

La investigación consta de 8 capítulos, donde tenemos; capítulo I: Introducción, conformado por la realidad problemática, formulación del problema, justificación del estudio, hipótesis y objetivos, capítulo II: Marco Teórico, trabajos previos, teoría relacionada al tema, capítulo III: Metodología, conformado por diseño de investigación, variable y Operacionalización, población y muestra, técnicas e instrumentos de recolección de datos, validez y confiabilidad, métodos de análisis de datos, aspectos éticos, capítulo IV; Resultados, capítulo V: Discusión, capítulo VI: Conclusiones, capítulo VII: Recomendaciones, Referencias Bibliográficas y Anexos, conformado por memorias de cálculos, permisos, entre otros.

Palabras clave: Diseño, Infraestructura, Normatividad, Nivel de Servicio, Pavimento Flexible en Caliente.

Abstract

This thesis entitled "Design of road infrastructure to improve the Vehicle Service Level of the Centro Poblado de Gallito - Lambayeque section, Lambayeque, 2020", was developed in the District of Olmos, Lambayeque Province, Department of Lambayeque in the year 2020. The investigation time was 16 weeks. The research is justified in the development of the design of road infrastructure to improve the existing level of vehicle service, which does not meet the conditions of adequate designs, such as road widths, longitudinal slopes and drainage works, signs, road safety, etc.

In order to meet the current needs of the sectors and hamlets immersed in the scope of the project, it is proposed the design of road infrastructure to improve the level of service, which consists of the Geometric design in plant, profile and cross section, the design of the rolling folder at the hot flexible pavement level, establishing the appropriate traffic signals, etc. According to the Road Geometric Design Standard (DG-2018), the project was framed in the type of descriptive research. The data obtained from the area of influence of the project will be processed through specialized programs such as CIVIL 3D, S10, MS PROJECT among others, as well as the guidance of a specialized advisor in the research line for the analysis of obtained data.

The research consists of 8 chapters, where we have; Chapter I: Introduction, consisting of problematic reality, previous work, the topic theory, problem formulation, study justification, hypotheses and objectives, chapter II: Theoretical Framework, previous work, the topic theory, chapter III: Methodology, consisting of research design, variable and operationalization, population and sample, data collection techniques and instruments, validity and reliability, data analysis methods, ethical aspects, chapter IV; Results, Chapter V: Discussion, Chapter VI: Conclusions, Chapter VII: Recommendations, Bibliographic References and Annexes, consisting of, calculation reports, permits, among others.

Keywords: Design, Infrastructure, Regulations, Service Level, Hot Flexible Pavement.

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, RAMOS GALLEGOS SUSY GIOVANA, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - CHICLAYO, asesor de Tesis titulada: "DISEÑO DE INFRAESTRUCTURA VIAL PARA MEJORAR EL NIVEL DE SERVICIO VEHICULAR DEL TRAMO CENTRO POBLADO DE GALLITO – LAMBAYEQUE, LAMBAYEQUE, 2020", cuyo autor es PORRAS CRISANTO ANDRAITT YERALDILNE, constato que la investigaci ón cumple con el índice de similitud establecido, y verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

CHICLAYO, 20 de Diciembre del 2020

Apellidos y Nombres del Asesor:	Firma
RAMOS GALLEGOS SUSY GIOVANA	Firmado digitalmente por: SGRAMOSR el 20-12-
DNI : 09715409	
ORCID 0000-0003-2450-9883	2020 11:00:37

Código documento Trilce: TRI - 0089462

