

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENÍERIA CIVIL

Incidencia de la respuesta estructural aplicando la norma sísmica peruana y chilena para muros delgados de 15 niveles, Lima-2020

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero civil

AUTORES:

Alvarez Llajaruna, Davis Alfred Juniors (ORCID: 0000-0002-3697-0880) Luchini Sarmiento, Teresa de Jesús (ORCID: 0000-0003-2176-2939)

ASESOR:

Dr. Ing. Tello Malpartida, Omart Demetrio (ORCID: 0000-0002-5043-6510)

LÍNEA DE INVESTIGACIÓN:

Diseño Sísmico y Estructural

LIMA – PERÚ

2020

DEDICATORIA

Alvarez Llajaruna Davis:

A mis padres y hermano, por apoyarme en tantos momentos de dificultad y ser mi sendero en mi superación personal

Luchini Sarmiento Teresa:

A mi madre, por estar conmigo siempre. A mi padre, por darme aliento. A mis hermanos, por recordarme cada día mis razones de seguir adelante.

AGRADECIMIENTO

Agradecemos a nuestros docentes, a nuestro asesor de tesis por aconsejarnos y guiarnos. A nuestros amigos de la Universidad y a nuestros compañeros de trabajo.

ÍNDICE DE CONTENIDOS

CARÁT	ULA	I
DEDICA	ATORIA	II
AGRAD	ECIMIENTO	Ш
ÍNDICE	DE CONTENIDOS	IV
ÍNDICE	DE TABLAS	V
ÍNDICE	DE FIGURAS	VI
RESUM	EN	Х
ABSTR	ACT	XI
I.	INTRODUCCIÓN	1
II.	MARCO TEÓRICO	4
III.	METODOLOGÍA	
	3.1 Tipo y diseño de investigación	30
	3.2 Variables y operacionalización	30
	3.3 Población, muestra y muestreo	31
	3.4 Técnicas e instrumentos de recolección de datos	32
	3.5 Procedimientos	33
	3.6 Método de análisis de datos	34
	3.7 Aspectos éticos	35
IV.	RESULTADOS	36
V.	DISCUSIÓN	102
VI.	CONCLUSIONES	105
VII.	RECOMENDACIONES	108
R	EFERENCIAS	110
Д	NEXOS	

ÍNDICE DE TABLAS

Tabla 1: Factor de zona	09
Tabla 2: Factor de suelo	10
Tabla 3: Periodos	10
Tabla 4: Coeficiente básico de reducción de las fuerzas sísmicas (Ro)	11
Tabla 5: Límites para la distorsión del entrepiso	12
Tabla 6: Factor de zona (Ao)	12
Tabla 7: Parámetros de sitio	13
Tabla 8: Factor de reducción sísmica	14
Tabla 9: Coeficiente de reducción sísmica (R y Ro)	15
Tabla 10: Periodo de retorno	24
Tabla 11: Derivas en X, Y E030	63
Tabla 12: Derivas en X, Y Nch433	64
Tabla 13: Desempeño y demanda eje X E030	86
Tabla 14: Desempeño y demanda eje Y E030	90
Tabla 15: Desempeño y demanda eje X Nch433	95
Tabla 16: Desempeño y demanda eje Y Nch433	99
Tabla 17: Punto de desempeño eje X	100
Tabla 18: Punto de desempeño eje Y	101

ÍNDICE DE FIGURAS

Figura 1: Pandeo de muros fuera del plano	02
Figura 2: Zonificación sísmica peruana	09
Figura 3: Comportamiento de la estructura ante solicitaciones	11
de zonificación, tipo de suelo y amplificación sísmica	
Figura 4: Zonificación sísmica chilena	13
Figura 5: Análisis lineal	17
Figura 6: Distorsión	18
Figura 7: Periodo de una estructura	20
Figura 8: Modos de vibración	21
Figura 9: Fuerza de inercia	22
Figura 10: Curva de capacidad	24
Figura 11: Detalle de la curva de capacidad	25
Figura 12: Modo de piso débil, piso k	26
Figura 13: Modo de piso débil, primer piso	27
Figura 14: Modo de viga	27
Figura 15: Diagrama V vs D. Sectorizado por VISION2000	29
Figura 16: Ubicación Condominio Sol de Collique Mz. E- Comas	36
Figura 17: Plano de estructuras	37
Figura 18: Plano de encofrado	37
Figura 19: Plano de arquitectura	38
Figura 20: Plano de sondaje	39
Figura 21: Vista interior de la calicata CE-2	39
Figura 22: Vista interior de la calicata CE-54	40
Figura 23: Calicata CE-24, se aprecia material extraído de la excavació	n 40
Figura 24: Calicata CA-11	40
Figura 25: Frame Properties	41
Figura 26: Slab Properties	41
Figura 27: Wall Properties	42
Figura 28: Modelo estructural, Torre E-32	42
Figura 29: Carga viva y carga muerta	43
Figura 30: Join Assignment	43

Figura 31: Parámetros de diseño E030	44
Figura 32: Periodos n para el cálculo del espectro E030	45
Figura 33: Periodo (s) vs Aceleración (m/s²) E030	46
Figura 34: Espectro de respuesta para un sismo frecuente E030	47
Figura 35: Espectro de respuesta para un sismo ocasional E030	47
Figura 36: Espectro de respuesta para un sismo raro E030	48
Figura 37: Espectro de respuesta para un sismo muy raro E030	48
Figura 38: Carga gravitacional no lineal	49
Figura 39: ASCE Tabla 10-7	50
Figura 40: Asignación de rotulas plásticas	50
Figura 41: Distancia de rótulas plásticas en %	51
Figura 42: Rotulas plásticas de todas las vigas de la torre E-32	51
Figura 43: Asignación de rotulas por placa	52
Figura 44: Rotulas pertenecientes a la estructura	52
Figura 45: Patrones de carga de la estructura	53
Figura 46: Distribución de la cortante basal por piso E030	53
Figura 47: Distribución de la cortante basal en X E030	54
Figura 48: Distribución de la cortante basal en Y E030	54
Figura 49: Pushover en X y Y E030	55
Figura 50: Carga viva y carga muerta Nch433	55
Figura 51: Masa sísmica NCh433	56
Figura 52: Parámetros de diseño NCh433	56
Figura 53: Periodos n para el cálculo del espectro NCh433	57
Figura 54: Periodo (s) vs Aceleración (m/s²) Nch433	58
Figura 55: Espectro de respuesta para un sismo frecuente Nch433	58
Figura 56: Espectro de respuesta para un sismo ocasional Nch433	59
Figura 57: Espectro de respuesta para un sismo raro Nch433	59
Figura 58: Espectro de respuesta para un sismo muy raro Nch433	59
Figura 59: Rotulas pertenecientes a cada placa	60
Figura 60: Patrones de carga de la estructura	60
Figura 61: Distribución de la cortante basal en cada piso Nch433	61
Figura 62: Distribución de la cortante basal en X Nch433	61
Figura 63: Distribución de la cortante basal en Y Nch433	62

Figura 64: Distorsión en X	65
Figura 65: Distorsión en Y	66
Figura 66: Periodos y modos de vibración E030	67
Figura 67: Periodos y modos de vibración NCh433	68
Figura 68: Modos y masa participativa E030 y NCh433	69
Figura 69: Espectro de aceleraciones E030 y NCh433	70
Figura 70: Análisis estático E030	71
Figura 71: Análisis estático X-X E030	72
Figura 72: Análisis estático Y-Y E030	72
Figura 73: Cortantes dinámica y estática E030	72
Figura 74: Cortantes dinámica y estática escalados E030	73
Figura 75: Relación de R y Cmax NCh433	73
Figura 76: Cortante dinámica y estática NCh433	74
Figura 77: Cortante dinámica y estática escalados NCh433	75
Figura 78: Cortante Basal Estática	75
Figura 79: Cortante Basal Dinámica	76
Figura 80: Capacidad estructural en X E030	77
Figura 81: Capacidad estructural en Y E030	77
Figura 82: Capacidad estructural en X Nch433	78
Figura 83: Capacidad estructural en Y Nch433	79
Figura 84: Capacidad estructural en X	80
Figura 85: Capacidad estructural en Y	80
Figura 86: Punto de desempeño para un sismo frecuente X E030	81
Figura 87: Punto de desempeño para un sismo ocasional X E030	82
Figura 88: Punto de desempeño para un sismo raro X E030	82
Figura 89: Punto de desempeño para un sismo muy raro X E030	83
Figura 90: Capacidad de desplazamiento de la estructura X E030	83
Figura 91: Niveles de desempeño X E030	84
Figura 92: Desplazamiento de la demanda sísmica X E030	84
Figura 93: Espectros de demanda X E030	84
Figura 94: Desempeño de la edificación según VISION2000	85
Figura 95: Nivel de desempeño vs Demanda de la estructura X E030	85
Figura 96: Punto de desempeño para un sismo frecuente Y E030	86

Figura 97: Punto de desempeño para un sismo ocasional Y E030	87
Figura 98: Punto de desempeño para un sismo raro Y E030	87
Figura 99: Punto de desempeño para un sismo muy raro Y E030	88
Figura 100: Capacidad de desplazamiento de la estructura Y E030	88
Figura 101: Niveles de desempeño Y E030	89
Figura 102: Desplazamiento de la demanda sísmica Y E030	89
Figura 103: Espectros de demanda Y E030	89
Figura 104: Nivel de desempeño vs Demanda de la estructura Y E030	90
Figura 105: Punto de desempeño para un sismo frecuente X Nch433	91
Figura 106: Punto de desempeño para un sismo ocasional X Nch433	91
Figura 107: Punto de desempeño para un sismo raro X Nch433	92
Figura 108: Punto de desempeño para un sismo muy raro X Nch433	92
Figura 109: Capacidad de desplazamiento de la estructura X Nch433	93
Figura 110: Niveles de desempeño X Nch433	93
Figura 111: Desplazamiento de la demanda sísmica X Nch433	93
Figura 112: Espectros de demanda X Nch433	94
Figura 113: Nivel de desempeño vs Demanda de la estructura X Nch433	3 94
Figura 114: Punto de desempeño para un sismo frecuente Y Nch433	95
Figura 115: Punto de desempeño para un sismo ocasional Y Nch433	96
Figura 116: Punto de desempeño para un sismo raro Y Nch433	96
Figura 117: Punto de desempeño para un sismo muy raro Y Nch433	97
Figura 118: Capacidad de desplazamiento de la estructura Y Nch433	97
Figura 119: Niveles de desempeño Y Nch433	98
Figura 120: Desplazamiento de la demanda sísmica Y Nch433	98
Figura 121: Espectros de demanda X Nch433	98
Figura 122: Nivel de desempeño vs Demanda de la estructura X Nch433	3 99

RESUMEN

El presente trabajo de investigación, tuvo como objetivo principal el determinar de qué manera influye la aplicación de la norma sísmica peruana y chilena en la respuesta estructural para muros delgados de 15 niveles. Tuvo como metodología de investigación el tipo aplicada y diseño cuasiexperimental. La población de estudio fue detallada por todos los edificios de muros delgados de 15 niveles, Lima 2020. La muestra de estudio fue de tipo no probabilístico. El procedimiento del siguiente trabajo fue dado por la recopilación de información necesaria, revisión de diseño sísmico según la Normativa Peruana, revisión de diseño sísmico según la Normativa Chilena, comparación de resultados, conclusiones y recomendaciones. Nuestros principales resultados fueron: derivas máximas de 6.13‰ en X, 4.91‰ en Y, periodo de vibración 0.570 s (X) y 0.485 s (Y), cortante basal estática 1552.48 ton y cortante basal dinámica 1396.27, capacidad estructural de 40.60 cm en X, 25.42 cm en Y, y como punto de desempeño, el resguardo de vida para la normativa chilena. Se concluye que la norma sísmica peruana influye de mayor manera que la norma sísmica chilena al evaluar la respuesta estructural, esto es debido a que los resultados obtenidos con la norma E030 son más conservadores.

Palabras clave: Distorsión, periodo de vibración, cortante basal, capacidad estructural, punto de desempeño.

ABSTRACT

The main objective of this research work was to determine how the application of the Peruvian and Chilean seismic standards influences the structural response for thin walls of 15 levels. His research methodology was the applied type and quasi-experimental design. The study population was detailed by all the 15-story thin-walled buildings, Lima 2020. The study sample was non-probabilistic. The procedure of the following work was given by the compilation of necessary information, seismic design review according to the Peruvian Regulation, seismic design review according to the Chilean Regulation, comparison of results, conclusions and recommendations. Our main results were: maximum drifts of 6.13 % in X, 4.91 % in Y, vibration period 0.570 s (X) and 0.485 s (Y), static basal shear 1552.48 ton and dynamic basal shear 1396.27, structural capacity of 40.60 cm in X, 25.42 cm in Y, and as a performance point, the life guard for Chilean regulations. It is concluded that the Peruvian seismic standard has a greater influence than the Chilean seismic standard when evaluating the structural response, this is because the results obtained with the E030 standard are more conservative.

Keywords: Distortion, vibration period, basal shear, structural capacity, performance point.

I. INTRODUCCIÓN

En los últimos años, el mundo pasa por una gran cantidad de movimientos sísmicos en su corteza terrestre, llegando a tener hasta una cantidad de 30 sismos por día dejando gran número de muertos y pérdidas económicas, así lo detalla un estudio desarrollado por el Banco Mundial en el cual expresa que, en el año 2015 las pérdidas económicas se estimaron hasta un alrededor de 92 mil millones de dólares y que cada año se elevan a más de 300 mil millones, dejando anualmente en condiciones de pobreza a 26 millones de persona²¹.

Esto conlleva a realizar investigaciones aplicables particularmente para cada región del mundo, de esta manera en la mayoría de normativas, el cálculo sísmico se da mediante la curva de amplificación de las aceleraciones dependiendo de la zona sísmica a la que pertenece la norma, añadiendo que los espectros de respuesta se obtienen mediante la multiplicación de coeficientes, mayormente empíricos y caracterizados por la subzona a la que fueron ajustadas. Ya una vez definidos los espectros de diseño, cada normativa dicta la forma de evaluar la fuerza sísmica modal a usar para señalar la respuesta estructural total¹¹.

En el Perú, tras el terremoto en Pisco del año 2007, se realizó modificaciones de la norma E.030 añadiendo una zona sísmica adicional y modificando el coeficiente de amplificación sísmica para largos periodos, sin embargo, esto generó proyectos con mayor costo de inversión. Situación similar se presentó en Chile, tras el terremoto del 2010, donde se actualizó la norma NCh433 pero con menos cambios que la norma peruana, dado a que su normativa es más exigente y desarrollada, además que el uso de aisladores sísmicos es necesario para estructuras de categoría importante^{2.}

Adicionalmente a todo lo mencionado anteriormente, a pesar de que las edificaciones de 10 a 15 pisos cumplían con los lineamientos de la norma chilena, se obtuvo que estos llegaron a sufrir daños severos, incluso logrando colapsar² en el sismo del 2010, otorgando modificaciones en su norma sismoresistente.

Figura 1. Pandeo de muros fuera de plano

En ese sentido es necesario evaluar la respuesta estructural aplicando la norma sísmica peruana y chilena para muros delgados de 15 niveles.

Entonces el problema de investigación es: ¿De qué manera influye la aplicación de la norma sísmica peruana y chilena en la respuesta estructural para muros delgados de 15 niveles, Lima 2020?

Es importante evaluar el comportamiento de los edificios altos de muros delgados basados en la normativa peruana y compararla con los lineamientos de la norma chilena, que fue modificada tras el sismo del 2010. De esa manera, poder diseñar edificios de muros delgados más seguros.

Además, es importante recalcar que el actual trabajo de investigación brindará información para que futuras estructuras de muros delgados, otorguen la seguridad necesaria ante eventos sísmicos y proteger a las personas de viviendas multifamiliares.

El objetivo general es: Determinar de qué manera influye la aplicación de la norma sísmica peruana y chilena en la respuesta estructural para muros delgados de 15 niveles.

De la misma manera, se detallan los siguientes objetivos específicos: Determinar de qué manera influye la aplicación de la norma sísmica peruana y chilena en la distorsión para muros delgados de 15 niveles. Determinar de qué manera influye la aplicación de la norma sísmica peruana y chilena en el periodo de vibración para muros delgados de 15 niveles. Determinar de qué manera influye la aplicación de la norma sísmica peruana y chilena en la cortante basal para muros delgados de 15 niveles. Determinar de qué manera influye la aplicación de la norma sísmica peruana y chilena en la capacidad estructural para muros delgados de 15 niveles. Determinar de qué manera influye la aplicación de la norma sísmica peruana y chilena en el punto de desempeño para muros delgados de 15 niveles

Se tiene como hipótesis de trabajo: La norma sísmica chilena es más eficiente que la norma peruana al momento de evaluar la respuesta estructural en muros delgados de 15 niveles.

II. MARCO TEÓRICO

Alfaro (2017), en su investigación titulada "Estudio comparativo de la norma peruana e.030 diseño sismorresistente y la norma chilena nch433 diseño sísmico de edificios, y su aplicación a un edificio de concreto armado". Detalla que su objetivo de investigación es efectuar el estudio comparativo entre la norma sismo resistentes peruana y chilena con el fin de diseñar una edificación multifamiliar. Fue un estudio tipo explorativa, la población de estudio fue las edificaciones multifamiliares ubicadas en el distrito de San Borja - Lima, se realizó una muestra no aleatoria, los instrumentos empleados fueron el software ETABS, la norma sismoresistente peruana y chilena. Los principales resultados fueron que el mayor valor del espectro de diseño fue según la norma peruana fue de 0.2143s y el mayor valor para el espectro de la norma chilena fue de 0.1738s esto se debe a que el coeficiente de reducción (R) toma diferentes valores para cada una de las normas. En caso de la norma peruana el factor de reducción (R) es afectado por las anomalías de la estructura, en cambio en la norma chilena el factor de reducción R se ve influenciado por el factor de modificación, así como el tipo de material utilizado y el periodo de la estructura. Se concluyó que la norma chilena muestra un mejor manejo en su análisis dinámico modal espectral ya que emplea un mejor uso de su factor de reducción, ya que depende del periodo de vibración T de la estructura².

Silva y Aguila (2019), en su investigación titulada *Respuestas sísmicas* para un edificio de sistema de muros estructurales ubicado en el distrito de san miguel, comparando la norma e030 y la nch 433.of1996 - año 2019. Tuvo como objetivo de investigación contrastar el comportamiento del sistema de muros estructurales al comparar la norma E0.30 y Nch433 para llegar a la finalidad de cuál de las dos normas presenta las derivaciones más conservadoras. Fue un estudio tipo cuantitativo, la población de estudio fue una vivienda diseñada con sistemas de muros estructurales en San Miguel, Lima. Muestra y población de esta investigación fue igual a la unidad en consecuencia

el diseño muestral fue de tipo discrecional, los instrumentos empleados fueron Excel, las normativas de estudio y el software ETABS 2017. Los principales resultados fueron que los desplazamientos laterales obtenidos al aplicar la norma técnica E.030 son mayores en cada nivel, además cuando se realizó el análisis de las derivas o distorsiones se obtuvo resultados similares cuando se comparó los desplazamientos laterales. Se concluyó que la norma E.030 es más conservadora que la chilena. Teniendo una divergencia promedio de 5.28cm y 0.36cm (X y Y correspondientemente) ⁴⁵.

Gonzales y Veli (2016), *Evaluación del comportamiento sísmico de una edificación con sistema mdl aplicando la ntp e030-2016 y la norma chilena 433-2012*. Tuvo como finalidad de investigación establecer cuál de las dos normativas ofrece mejor comportamiento sísmico en las estructuras diseñadas con MDL. Fue un estudio tipo fue descriptiva y cuantitativa, la población de estudio fue una vivienda multifamiliar de 8 niveles situado en Collique – Comas, los instrumentos fueron Excel, las normas sismo resistente peruana y chilena y el software ETABS. Los principales resultados fueron que según la norma E.030, al aplicar los valores de "Z", "R" Y "C" resulto que la cortante basal tuvo una fuerza de 1066.06 tn., para la NCH 433-2012 de acuerdo con los mismos indicadores se obtuvo una cortante basal "Q" de 719.24 Tn. Se concluyó que el coeficiente "C" para la norma chilena es de 0.253 esto es menor en comparación a la E.030, por lo tanto, se tendrá una disminución de la cortante basal¹⁹.

Barrera (2017), en su investigación titulada Evaluación del punto de desempeño sísmico de una edificación escolar, diseñado con la norma e.030, usando criterios de visión 2000. Establecer si el punto de desempeño con la norma E.030 cumple con los parámetros de VISION2000. Fue un estudio tipo aplicada y explicativo, la población fueron los sistemas estructurales de una edificación escolar, la muestra es el centro educativo inicial 133 situado en el Distrito de Ventanilla, el instrumento fue el SAP200 v.18. Los principales

resultados fueron que la estructura examinada cumple con la matriz de desempeño de VISION2000 por lo cual se garantiza que el punto de desempeño con la norma E.030 es efectivo. Se concluyó que la edificación muestra un desempeño operacional para un sismo raro de la vigente norma E.030, mediante el uso de la matriz de desempeño que nos ofrece VISION2000⁶.

Puican (2019), en su investigación titulada *Desempeño Sísmico de un edificio de 6 pisos, para identificar niveles de seguridad frente a movimientos sísmicos, Lima-2019*. Tuvo como objetivo identificar el desempeño sísmico de una estructura de 6 niveles, con la finalidad de saber si la estructura cuenta con los niveles de seguridad frente a solicitaciones sísmicas, fue un estudio tipo aplicada, la población es una vivienda de 6 niveles, la muestra son elementos estructurales, el instrumento fue el software SAP2000 y Excel. Los principales resultados fueron que, para un sismo con un Tr de 950 años, la estructura tendrá un desplazamiento de 0.3514 en el eje Y, 0.415 en el eje X, entrando en colapso porque sus desplazamientos límites son de 0.2349 (y) y 0.2142 (x). Se concluyó que, para un sismo frecuente de 43 años, se obtuvo un desplazamiento de 0.115854m en el eje X y un desplazamiento de 0.113736m en el eje Y, dando a saber la estructura seguirá segura y ocupacional³⁵.

Saldaña (2019), en su investigación titulada *Evaluación del desempeño sísmico de edificaciones esenciales - pabellón de emergencias del hospital regional de Ica – 2019*. Tuvo como objetivo el establecer el desempeño sísmico del hospital regional de Ica. Fue un estudio tipo aplicada, la población de estudio fue el hospital regional de Ica, los instrumentos empleados fueron el software SAP 2000 y Excel. Los principales resultados fueron que el hospital demuestra un procedimiento aceptable en el rango no lineal para un evento sísmico muy raro, el servicio que demostró fue ocupacional ya que la estructura puede seguir siendo habitable post sismo, teniendo en cuenta que el máximo desplazamiento seria de 31 cm en el eje X. Se concluyó que

el hospital demuestra un comportamiento aceptable en el rango no lineal para un evento sísmico muy raro lo cual demuestra que se puede continuar el servicio teniendo en cuenta que el máximo desplazamiento seria los 31 cm en la dirección XX⁴².

Valerazo, Suarez y Zapata (2014), en su investigación titulada Análisis comparativo de pórticos diseñados con varios códigos sismoresistentes. Tuvo como objetivo; determinar el análisis pórtico diseñados con diferentes comparativo códigos sismoresistentes. Fue un estudio tipo descriptiva, la población de estudio fue un edifico de concreto armado, los instrumentos fueron el software ETABS, EXCEL y las diferentes normas de sismoresistencia en Latinoamérica. Los principales resultados fueron que la demanda de hormigón en la estructura es superior según los códigos de Perú y Colombia, siendo estos que presentan una relación R/∆m mas alta, esto es porque tienen una baja deriva máxima permitida. Los códigos de Chile y Venezuela requieren menos volumen de concreto ya que su relación R/Δm es baja. Finalizo que los códigos de Venezuela y Chile basados en fuerzas, son los que mejor predicen el comportamiento que se tendrá en una estructura⁴⁸.

Salcedo (2017), en su tesis de investigación titula Desempeño sísmico por el Método Push-Over de una edifico construido en la ciudad de Barranquilla bajo la Norma Nsr-10. Tuvo como objetivo el usar el método push-over para determinar el punto de desempeño de un edificio en Barranquilla aplicando la norma NSR-10. Fue un estudio tipo aplicada, la población de estudio fue un edificio en la ciudad de Barranquilla, el instrumento empleado fue el software ETABS. Los principales resultados fueron que la deriva total para una amenaza sísmica alta es de 841.94 mm, esto corresponde al 2.59%. Se concluyó que el edificio en caso de presentarse un sismo, la gran mayoría de elementos quedarían totalmente operativos y algunos elementos de la parte inferior presentarán daños mínimos. Se puede decir que para un sismo de intensidad alta la deriva que se puede

esperar es del 2.59%, la estructura demuestra que tiene un nivel de desempeño de ocupación inmediata⁴¹.

Alvear y Ruales (2014), en su tesis de investigación titulada *Diseño* por desempeño en edificios de hormigón armado, de acero estructural, y mixtos. Tuvo como objetivo el contrastar el desempeño y costo de una edificación, empleando tres sistemas de construcción Fue un estudio tipo aplicada, la población de estudio fueron 3 edificios de 12 pisos, en Quito, el instrumento empleado fue el software ETABS. El principal resultado fue que la estructura de hormigón armado presento un colapso antes llegar a los desplazamientos requeridos y que no cumple con la norma FEMA 273. Se concluyó que los edificios de hormigón armado no cumplieron con los desplazamientos requeridos que establece la norma FEMA 273, para el nivel de seguridad básico³.

TEORÍAS

Las normas son herramientas que sirven para promover la innovación y aumentar la producción, haciendo que las entidades sean más exitosas y asegurando la vida diaria de la gente⁹.

Norma sismoresistente peruana (E.030-2018):

La norma E.030 es un conjunto de condiciones y especificaciones que nos va a servir para que el diseño de nuestras estructuras tenga un comportamiento adecuado al momento en el que ocurre un sismo. Lo que nos dice la NTP.E030 es que el diseño de edificaciones va a tener circunstancias mínimas para que las estructuras tengan un procedimiento conforme a los parámetros que se está estableciendo en esta norma³⁷. Tanto la norma peruana como la norma chilena se basa en un estudió de peligro sísmico y características de la edificación para sacar los factores sísmicos que nos van a ayudar a determinar el análisis estático y dinámico de las correspondientes normas. Se dice que el peligro sísmico se caracteriza por precisar los niveles de movimiento del terreno en el momento en el ocurre un sismo³⁶.

Zonificación (z)

El Perú se clasifica en 4 distintas zonas, de acuerdo a su peligro sísmico, donde cada valor es un porcentaje de la gravedad.

Tabla 1. Factor de zona

FACTOR DE ZONA		
ZONA	"Z"	
4	0.45	
3	0.35	
2	0.25	
1	0.1	

Fuente: Norma E.030

Figura 2. Zonificación sísmica peruana

Parámetros de sitio (S, Tp y TL)

En estos parámetros se van a establecer de acuerdo a la clasificación del suelo en el que esta puesta la estructura (esto va a depender de la zona) y los periodos.

Tabla 2. Factor de suelo

Factor de suelo				
Z/S	S0	S1	S2	S3
Z1	0.8	1	1.05	1.1
Z2	0.8	1	1.15	1.2
Z3	0.8	1	1.2	1.4
Z4	0.8	1	1.6	2

Fuente: Norma E.030

Tabla 3. Periodos

PERIODOS "TP" Y "TL"				
	Perfil de suelo			
	S0	S1	S2	\$3
TP (S)	0.3	0.4	0.6	1
TL (S)	3	2.5	2	1.6

Fuente: Norma E.030

Factor de amplificación Sísmica (C)

Se tomará teniendo en cuenta las particularidades del lugar. También se puede considerar como el factor de amplificación de la aceleración estructural respecto de la aceleración en el suelo, este factor se definirá con las próximas formulas:

$$T < T_p$$
 C=2.5

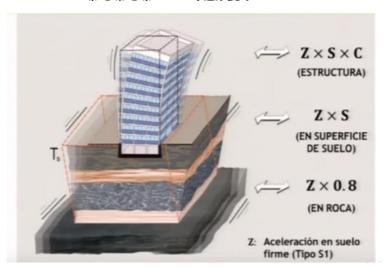


Figura 3. Comportamiento de la estructura ante solicitaciones de zonificación, tipo de suelo y amplificación sísmica

Coeficiente básico de reducción de las fuerzas sísmicas (R₀)

El factor R, con el que se va a pasar de un espectro elástico a uno inelástico, depende de unas ciertas variables.

El coeficiente R_o se tomará en cuenta con qué sistema estructural va a ser diseñada, este factor va a cambiar de valor dependiendo de las irregularidades de la estructura. La fórmula para el coeficiente de reducción estaría dada por:

$$R = I_a * I_p * R_0$$

Donde:

Tabla 4. Coeficiente básico de reducción sísmicas (Ro)

SISTEMA ESTRUCTURAL	R _o
CONCRETO ARMADO	
Porticos	8
Dual	7
De muros estructurales	6
Muros de ductilidad limitada	4
Albañaliería confinada	3
Madera	7

Desplazamientos Laterales Relativos Admisibles

El desplazamiento lateral relativos admisibles o también conocido como distorsión admisible es una relación entre (Δ_I/h_{ei})

Fuente: Norma E.030

Tabla 5. Límites para la distorsión del entrepiso

LIMITES PARA LA DISTORCION DEL ENTREPISO		
Material Predominante	(∆/h)	
Concreto Armado	0.007	
Acero	0.01	
Albañileria	0.005	
Madera	0.01	
Edificios de concreto armado con muros de ductulidad limitada	0.005	

Norma chilena de diseño sísmico de edificios (Nch433-2012)

La norma tiene como función reducir el riesgo sísmico que se presenta en la estructura al momento de ocurrir un sismo²³. Los sismos en el que se basa la norma chilena, tienen la probabilidad de que en 50 años sean excedidos en un 10%, con un Tr de 475 años.

Zonificación Sísmica (Ao)

El país de chile a diferencia de Perú su territorio se divide en tres zonas. A cada zona se le asigna una cantidad representativa del porcentaje de la aceleración gravitacional.

Tabla 6. Factor de zona (Ao)

FACTOR DE ZONA (Ao)		
ZONA	Ao	
1	0.2	
2	0.3	
3	0.4	

Fuente: Nch433

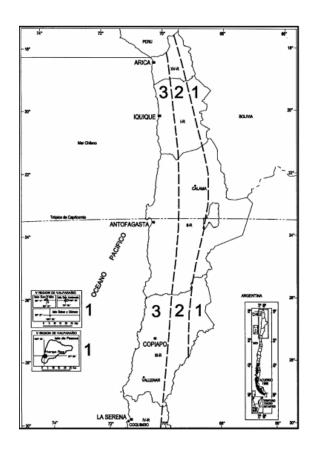


Figura 4. Zonificación sísmica chilena

Parámetros de sitio (S, To, T')

La norma chilena al igual que la peruana tiene parámetros de sitio que depende del suelo en donde esté ubicado la estructura.

Tabla 7. Parámetros de sitio

Tipo de suelo	S	To(S)	T´(S)	n	Р
Α	0.9	0.15	0.2	1	2
В	1	0.3	0.35	1.33	1.5
С	1.05	0.4	0.45	1.4	1.6
D	1.2	0.75	0.85	1.8	1
Е	1.3	1.2	1.35	1.8	1
F	*	*	*	*	*

Fuente: Nch433

Factor de amplificación sísmica (C)

La norma sismorresistente de chile tiene una expresión para calcular el valor de "C"

Donde:

$$C = \frac{2.75 * S * Ao}{g * R} * (\frac{T^{"}}{T^{*}})$$

n, T', S= Son valores que dependen del tipo de suelo

T+= Periodo de reducción

g= aceleración gravitacional (9.81 m/s2)

C no puede ser menor que Ao*S/6g

Tabla 8. Factor de reducción sísmica

R	Cmax	
2	0.90 SAo/g	
3	0.60 SAo/g	
4	0.55 SAo/g	
5.5	0.40 SAo/g	
6	0.35 SAo/g	
7	0.35 SAo/g	

Fuente: Nch433

Coeficiente de reducción sísmica (R y Ro)

La norma chilena tiene una particularidad, pues a diferencia de la peruana, no se basa en el sistema estructural como la hace nuestra norma, el factor de reducción sísmico se basa dependiendo del material con el que está hecha la estructura y tiene dos factores de reducción sísmica una es para el análisis dinámico (Ro) y el otro es para el análisis estático (R).

Tabla 9. Coeficiente de reducción sísmica (R y Ro)

SISTEMA ESTRUCTURAL	MATERIAL ESTRUCTURAL	R	Ro		
PORTICOS	Hormigon armado	7	11		
PORTICOS	Hormigon armado	7	11		
MUROS Y SISTEMAS ARRIOSTRADOS	Hormigon armado Y Albañileria confinada				
	Los muros de hormigón armado deben tomar en cada piso, el 50% del esfuerzo de corte del piso, como mínimo	6	9		
	Si el muro de hormigon armado toma menos del 50% del esfuerzo cortante del piso	4	4		
	Madera	5.5	7		
	Albañileria Confinada	4	4		
	Albañileria Confinada armada				
	De bloques de hormigon que se llenan todos los huecos	4	4		
	De ladrillo ceramicos y bloques de hormigon que no se llenan todos los huecos	3	3		

Factor de R* se determina con la siguiente ecuación

$$R^* = 1 + \frac{T^*}{0,10 T_o^* + \frac{T^*}{R_o}}$$

En que:

T* = Periodo del modo con mayor masa trasnacional (en la dirección del análisis)

Ro= Coeficiente de reducción sísmica

Para edificios que están construidos con muros, el factor de reducción R* se determinara de la siguiente manera:

$$R^{*}=1+\frac{NR_{o}}{4T_{o}R_{o}+N}$$

Dónde: N = número de niveles de la estructura

Desplazamientos Laterales Relativos Admisibles

El desplazamiento relativo máximo no debe ser mayor a 0.002 h donde h es la altura de entre piso. En caso de que se mida desde cualquier punto de la planta este no debe exceder de 0.001h al desplazamiento medido desde el centro de masas.

Respuesta Estructural

Parámetros

Para ayudar a evaluar el presente trabajo de investigación, se procedió a dividir la variable independiente en dos características particulares; parámetros lineales y no lineales. La diferencia es principalmente por la rigidez, pues es la propiedad que caracteriza la respuesta de una pieza o ensamblaje ante una carga que se le fue aplicada⁴⁶, variando o no su forma, material y soporte.

Parámetros lineales

Análisis Lineal

La rigidez es una propiedad que define a un elemento para que evite su deformación ante cargas aplicadas. Si el cambio de rigidez es reducido, se asume que las propiedades de la forma y las del material no cambiaron durante el proceso de deformación. Esta suposición es el principio del análisis lineal. Esto nos da a entender que el elemento a través de todo el proceso de deformación mantuvo su rigidez que poseía en la forma no deformada antes de la aplicación de la carga²⁷.

Esta suposición simplifica enormemente la ecuación para el cálculo de las deformaciones

$$[F] = [K] * [d]$$

[F] = Vector conocido de cargas nodales

[K]= Matriz de rigidez conocida

[d]= vector desconocido de desplazamientos nodales

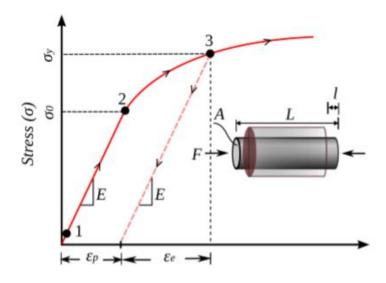


Figura 5. Análisis lineal

I. Distorsión

La distorsión se representa como la altura del entrepiso o deriva, que depende de la rigidez y la curva de fluencia de vigas.

La ductilidad que se presenta en un sistema estructural precisa el desplazamiento de fluencia y el desplazamiento objetivo, tomando en cuenta el tipo de estructura y el diseño de este, comprendiendo las distorsiones y el desplazamiento que está relacionado a la curvatura de fluencia, la distribución de los elementos y la geometría de la estructura²⁶.

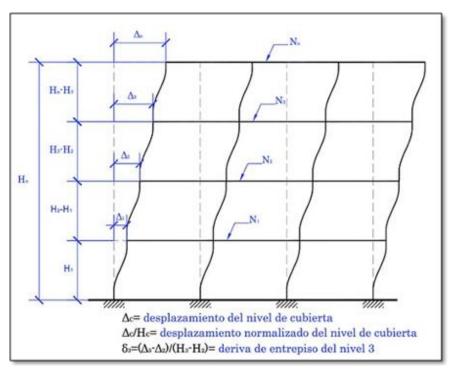


Figura 6. Distorsión

Se debe tener en cuenta que, en vigas trapezoidales sujetas a cargas excéntricas, se pueden producir una distorsión excesiva en la sección transversal e inducir a la deformación además de que, la mayoría de normas o pautas de diseño, limitan el índice o deriva de control de la distorsión a valores específicos, que recaen en un diseño bastante conservador⁵⁰.

II. Periodo de vibración

El periodo de vibración está vinculado a la rigidez de la estructura, así como a la aceleración y la respuesta del suelo, que se basan en su formación externa, pero internamente también depende del material y la calidad de la construcción, el diseño estructural utilizado, el historial sísmico, etc⁴⁷.

Conocer el tiempo de vibración, así como la frecuencia que genera, nos ayuda a entender mejor la manera en la que se comporta la estructura, pues luego de un sismo, el edificio o estructura sometida a este movimiento, retorna a su estado natural¹³. Calcular el periodo de vibración, es relevante para evaluar el diseño sísmico, pues de lo contrario puede generar que el sistema suelo-estructura se encuentre en el rango de resonancia que otorga efectos destructivos por su amplificación de movimiento.

La forma de obtener el periodo de vibración se da a través de formas empíricas tomando como base la altura de la estructura, otorgando ecuaciones para calcular los periodos tan sólo con una aproximación. Sin embargo, se debe tener en cuenta la rigidez y el peso de la estructura, así como el efecto de las conexiones semirrígidas¹⁴ puesto que, las vibraciones excesivas o de larga duración, pueden generar complicaciones en los habitantes y grandes deterioros en los elementos estructurales y no estructurales, determinados por parámetros dinámicos (masa, rigidez y amortiguamiento), modificando las características de la edificación, así como minimizando su respuesta.

Siendo la fórmula de Rayleigh una de las más usadas en las normas sísmicas.

$$P = 2\pi^{2} \sqrt{\frac{\sum Wi * \Omega i^{2}}{g\sum Wi * \Omega i}}$$

Donde P es el periodo, Wi el peso muerto de la estructura, Ω el desplazamiento lateral y g es la aceleración de la gravedad.

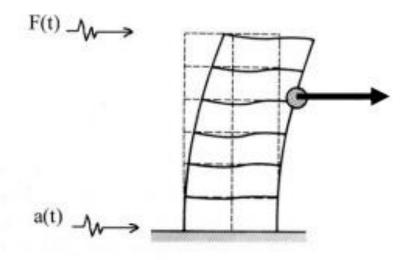


Figura 7. Periodo de una estructura

En la Norma Peruana, se estima como:

$$T = \frac{h_n}{C_T}$$

La norma chilena no establece una manera en la que puedes calcular el periodo de vibración, lo que nos dice es que para hallar el periodo de vibración tiene que ser una expresión fundamentada, después de investigar se concluyó que el periodo va a depender de la rigidez y del peso de la estructura con la siguiente expresión:

$$T = 2\pi * \sqrt{\frac{m}{k}}$$

Modos de Vibración

Se establecen por un sistema de análisis, que tiene en cuenta las peculiaridades de rigidez y la distribución de las masas³⁰.

Figura 8. Modos de vibración

Análisis Dinámico Modal Espectral

Tiene el mismo procedimiento que el análisis estático, con la diferencia de que las fuerzas laterales son aplicadas en el centro de masas de los pisos van hacer calculadas con la respuesta dinámica de la estructura²⁹.

La relación que tiene un sistema de un grado de libertad es:

$$[M] * \ddot{u}(t) + [C] * \mathring{u}(t) + [K] * u(t), = - [M] * \ddot{u}_{g}(t)$$
 (1.1)

Al estudiar el caso de vibración libre $(\ddot{u}_g(t) = 0)$ no amortiguada (C=0) se obtiene las frecuencias y periodos naturales de la estructura.

$$[M] * \ddot{u}(t) + [K] * u(t) = 0$$

La solución de esta ecuación diferencial es:

$$\{ [K] - [M] * v^2 \} * A = 0$$
 (3.28)

La solución no trivial es:

$$\det [K] - [M] * v^2 I = 0$$
 (3.29)

La ecuación (3.29) es una ecuación algebraica de grado n (n = la cantidad de pisos en la estructura). Los datos de cada valor de V^2

que satisface la ecuación ya mencionada, se resuelve mediante la ecuación (3.28), de esta manera para A_1 , A_2 A_n , estas soluciones llegan a representarse como los modos de vibración de la estructura³⁸.

Aceleración Espectral

La aceración espectral de respuesta es una forma completa de representar el movimiento, se puede expresar en términos de aceleración, velocidad o desplazamiento⁷.

La norma E.030 nos una manera de poner hallar la aceleración espectral:

$$Sa = \frac{\text{Z. U. C. S}}{\text{R}}.g$$

Análisis Estático

Es un modelo abreviado para el análisis de edificios, en relación a hipótesis de comportamiento y a las tipologías de estructuración, teniendo en cuenta que la altura no rebase con lo establecido en las normas¹⁵.

Sismo: Fuerza de Inercia .- $F = m \cdot a$ Se ubica donde se concentra la masa:

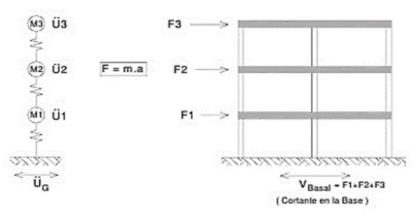


Figura 9. Fuerza de inercia

III. Cor..... _ ___.

"Los valores de la cortante basal, corresponden a un cortante estático este varia proporcionalmente, según las características geométricas de cada estructura y del coeficiente sísmico [...]" [12]

Desarrollar el valor de la cortante basal, ayuda a limitar el comportamiento de la estructura ante solicitaciones sísmicas, proveyendo resistencia con o sin reducción de las fuerzas resultantes. Como consecuencia de las fuerzas de inercia en un sistema de N-grados de libertad que son distribuidas en las diferentes alturas de la estructura para de esa manera determinar la fuerza lateral total⁴³.

Existen diferentes formas de calcular la cortante basal de una edificación, ya sea por efecto de la inercia o la aceleración espectral.

Para la E.030, se determina tomando en cuenta los coeficientes ya mencionados, multiplicando estos valores por el peso de la edificación.

$$V = \frac{Z.U.C.S}{R}.P$$

La NCh433 la define como el efecto de la acción sísmica en un esfuerzo de corte en el nivel basal de la estructura el cual está dado por:

$$Qo = CIP$$

El coeficiente sísmico se obtiene:

$$C = \frac{2,75SAo}{qR} \left(\frac{T'}{T^{\circ}}\right)^n$$

Parámetros no lineales

I. Capacidad Estructural

La capacidad estructural de una edificación, se define como la estabilidad que presenta ante fuerzas externas. Es decir, toma en cuenta el comportamiento mediante un análisis estático no lineal, también llamado push-over o método de curva de capacidad, que se enfoca en colocar un conjunto de fuerzas horizontales en la estructura, observando su punto de colapso⁴⁹. Los resultados se generarán a partir del uso del programa ETAPS, ya que otorga un control de desplazamientos y fuerzas al llegar a su capacidad última.

Al realizar los procedimientos de cálculo, el método pushover, logra una aproximación al diagrama de fuerza-desplazamiento, continuando el proceso aplicando fuerzas incrementadas hasta que fallen los componentes adicionales y llegue un punto donde la estructura se vuelva inestable o alcance un límite determinado⁴⁰.

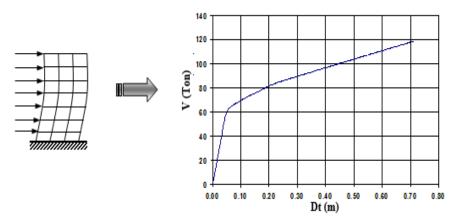


Figura 10. Curva de capacidad

La dificultad para predecir las solicitudes de carga se da en que dependen del tiempo, la fluencia y la contracción, así como los eventos de carga que se generan particularmente durante el proceso de construcción. Esto puede llegar a generar un efecto adverso en el rendimiento a largo plazo de la estructura¹⁶.

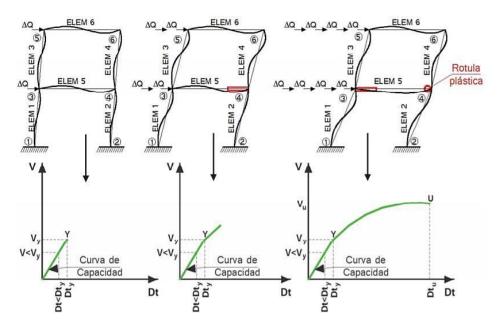


Figura 11. Detalle de la curva de capacidad

a. Curva de capacidad

Una vez inducida las cargas laterales crecientemente a la estructura, estás simulan las fuerzas provocadas por un sismo. Como resultado, se construye la curva de capacidad que muestra la variabilidad de la cortante en la base en relación al desplazamiento del edificio⁵.

"Modo de piso débil"

Bajo la definición de rótulas plásticas, un modo de derrumbe en una estructura dúctil en donde se articulan los dos extremos de cada columna en un entrepiso designado del edificio.

En donde se aplican una distribución de cargas laterales arbitrarias $(F_1 \ a \ F_4)$, donde V_k corresponde a la cortante en el entrepiso k y $V_1 = V_b$ en la cortante de la base. Las cargas laterales se van ampliando continuamente hasta llegar al momento último, el cual el cortante correspondiente al último piso k sea V_{uk} . En ese caso, el cortante último o resistente en la base del edificio está dado por:

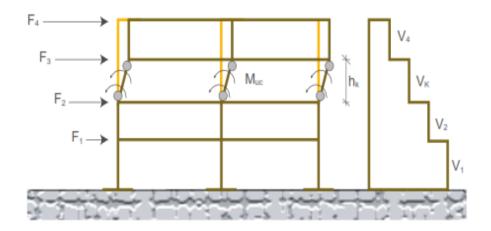


Figura 12. Modo de piso débil, piso k.

$$V_{ub} = V_b \frac{V_{uk}}{V_k} \tag{1}$$

$$V_{uk} = \frac{\Sigma M_{uc}}{h_k}$$
 (2)

Donde:

Vub: Cortante último en la base.

Vuk: Cortante último en el entrepiso k.

Muc: Momento último en un extremo de una columna del entrepiso k.

h_k: Altura del entrepiso k.

Al momento de sumar la ecuación (2), la cual es el desarrollo de los dos extremos en cada columna del entrepiso k, en el cual se deben de incluir el efecto de la fuerza axial al momento de calcular el momento último.

En caso de que se formen rótulas plásticas en cada columna del primer piso como modo de derrumbe, k=1=b, entonces las ecuaciones (1) y (2) se simplificarían a:

$$V_{uk} = \frac{\Sigma M_{uc}}{h_k}$$
 (3)

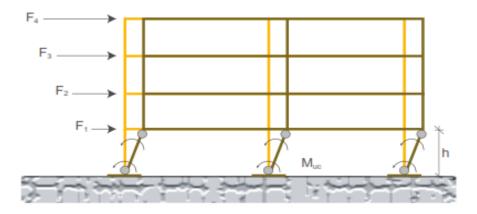


Figura 13. Modo de piso débil, primer piso.

Es decir, el cortante último que se encuentra en la base, está compuesto por la sumatoria de los momentos resistentes en ambos extremos de cada columna del primer piso, distribuido por su altura

"Modo de viga"

Se articulan cada una de las vigas y en la parte extrema inferior de todas las columnas del primer piso. Así el desempeño sísmico permite mayor disipación de energía en las vigas, preservando las columnas.

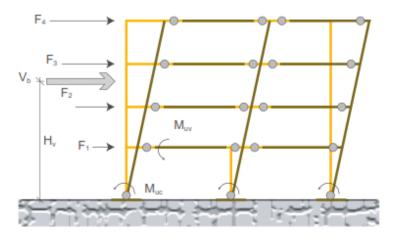


Figura 14. Modo de viga

El cortante último de este caso es:

$$V_{ub} = \frac{\Sigma M_{uc} + \Sigma M_{uv}}{H_v}$$
 (4)

Donde:

Muv: Momento último en un extremo de una viga

H_v: Altura en la que se localiza la resultante de las fuerzas laterales aplicadas o cortante basal, que se obtiene de:

$$V_{\rm ub} = \frac{\Sigma F_{\rm j}. H_{\rm i}}{V_{\rm b}} \tag{5}$$

Donde:

Fi: Fuerza aplicada en el nivel i

Hi: Altura del nivel i respecto al nivel de base

En la primera sumatoria de la ecuación (4) se resuelve para el extremo inferior de cada columna del primer piso y la segunda suma es para ambos extremos de cada viga del pórtico.

II. Punto de desempeño

La aplicación de este punto ayuda a predecir y controlar el comportamiento de la estructura ante el daño de un movimiento sísmico, por ello se han generado conceptos y aplicaciones para estimarla en términos de rigidez estructural, resistencia, ductilidad, así como la disipación de energía⁸.

La ingeniería basada en el desempeño, se aplica en construcciones nuevas y ya existentes, pues genera la evaluación y construcción de estructuras que cubran las demandas futuras tanto de los habitantes como de la naturaleza. El desempeño puede cuantificarse, prediciéndolo analíticamente, así como evaluar el costo compensado en las consideraciones del ciclo de vida en lugar de solo los costos de construcción³¹.

Tabla 10. Periodo de retorno

SISMO	VIDA ÚTIL	PROBABILIDAD DE EXCEDENCIA	PERÍODO DE RETORNO
Frecuente	30 años	50%	43 años
Ocasional	50 años	50%	72 años
Raro	50 años	10%	475 años
Muy raro	100 años	10%	970 años

Fuente: VISION2000

Para reducir el riesgo sísmico, se debe generar una gestión en las ciudades con gran cantidad de edificaciones que puedan contener las características del edificio para condicionar el desempeño estructural ante un sismo²⁵, el cual está muy arraigado a los valores del índice de vulnerabilidad, pues toma en cuenta varias características como la antigüedad de la obra, la cantidad de pisos, el suelo, el grado de deterioro y la profundidad del depósito de suelo²⁵.

El análisis por desempeño se estructuró con la conformación del COMITÉ VISION 2000, el cual se creó con la misión de mirar hacia el futuro, desarrollando procedimientos para conducir a las estructuras a un desempeño sísmico predecible²⁴. Ellos proponen que, todas las estructuras deben de ser estudiadas mediante cuatro niveles sísmicos.

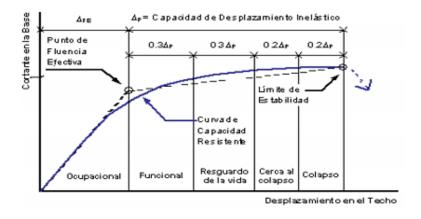


Figura 15. Diagrama V vs D. Sectorizado por VISION2000

III. METODOLOGÍA

3.1 Tipo y diseño de investigación

Tipo de investigación:

El presente trabajo de investigación es de tipo aplicada. La investigación aplicada tiene como propósito el resolver un problema determinado o específico para su aplicación, de esa manera apoyar al crecimiento cultural y científico²⁸.

Diseño de investigación:

El diseño de investigación es de tipo cuasiexperimental. Los diseños de investigación cuasiexperimentales comprueban hipótesis de tipo causal, identificando un grupo de comparación a otro de tratamiento⁵¹.

3.2 Variables y operacionalización

Variable dependiente: Norma sísmica peruana y chilena

<u>Definición conceptual:</u> Las normas son herramientas que sirven para promover la innovación y aumentar la producción, haciendo que las entidades sean más exitosas y asegurando la vida diaria de la gente⁹.

<u>Definición operacional</u>: Se efectuará el diseño de dos edificios de 15 pisos con muros delgados de acuerdo a la norma sísmica peruana y chilena, en sus respectivas actualizaciones; tomando en cuenta parámetros de derivas de diseño, zonificación, coeficiente sísmico y coeficiente de reducción sísmica.

<u>Indicadores</u>: Derivas, zonificación, coeficiente sísmico, coeficiente de reducción sísmica.

Escala de medición: De razón.

Variable independiente: Respuesta estructural

<u>Definición conceptual:</u> La respuesta estructural y la sensibilidad de respuesta, requieren frecuentemente un monitoreo y se debe calcular los efectos que generan para la salud y seguridad de la estructural²².

<u>Definición operacional</u>: Se analizará la manera en cómo responde las estructuras diseñadas ante solicitaciones sísmicas, mediante el apoyo de un software que ayudará a medir los parámetros indicados.

<u>Indicadores:</u> Distorsión, periodo de vibración, cortante basal, punto de desempeño, capacidad estructural.

Escala de medición: De razón

3.3 Población, muestra y muestreo

Población: La población de estudio es un conjunto delimitado, definido y accesible de casos bajo una serie de criterios predeterminados, el cual está vinculado a la elección de la muestra a estudiar⁴. En relación a lo planteado anteriormente, la población de estudio está detallada por todos los edificios de muros delgados de 15 niveles en Lima, 2020.

Muestra: La muestra de estudio no probabilístico se usa para indicar las características o rasgos en particular de la población, además que permite observar un tema de manera singular que necesita un análisis a profundidad³⁴. En este caso, está definida por un edificio ubicado en la Manzana E, torre 32; del Condominio Sol de Collique – Comas, un distrito que permite la construcción de grandes proyectos de vivienda social. Además, el distrito de Comas en el 2018, tal como lo detalla la revista Gestión, superó en ventas a todos los distritos de Lima en el mes de marzo³², incrementando de esta manera el sector inmobiliario. Se eligió este edificio debido a que cuenta con un diseño de 15 niveles, constituida por un sistema de muros delgados de concreto armado. Así mismo, se cuenta con la accesibilidad de información de los planos estructurales y de arquitectura necesarios para su evaluación y corroborar si cumple con el diseño de análisis lineal y no lineal en relación a lo dictado por la Norma Peruana E.030 y a la vez ser comparada con la Norma Chilena Nch433.

Muestreo: El muestreo de estudio es de tipo no probabilístico por conveniencia, también llamado muestreo intencional, ya que consiste en la selección de una muestra que tenga características similares a la población de estudio⁴.

3.4 Técnicas e instrumentos de recolección de datos

Técnicas:

La técnica de estudio es observación experimental, también llamada estudio de intervención, la cual se detalla como un análisis prospectivo caracterizado por la manipulación indirecta de un factor de estudio por parte del investigador²⁰. Por lo detallado anteriormente, el trabajo de investigación utiliza una técnica de observación experimental.

Instrumentos:

Los instrumentos de investigación, las cuales pueden ser herramientas conceptuales o materiales, ayudan a recolectar datos e informaciones mediante la realización de preguntas o ítems que generarán respuestas con respecto a lo que se desea investigar³³. Se usará como instrumento de investigación, una ficha técnica de recolección de datos, elaborado para medir la variable dependiente, ubicado en anexos.

Ficha N°1: Indicador - Distorsión (anexo 3)

Ficha N°2: Indicador - Periodo de vibración (anexo 4)

Ficha N°3: Indicador - Cortante basal (anexo 5)

Ficha N°4: Indicador - Punto de desempeño (anexo 6)

Ficha N°5: Indicador - Capacidad estructural (anexo 7)

Validez:

El juicio de expertos es detallado como un método útil de validación, que permite verificar la fiabilidad de una investigación³⁹. De esta manera, todos los resultados obtenidos serán veraces y confiables mediante la validación de la ficha

técnica utilizada según la calificación de tres ingenieros estructurales colegiados.

Confiabilidad:

Se detalla que un instrumento es confiable cuando los resultados obtenidos, no varían significativamente, ya sea por la aplicación a diferente muestra o por el paso del tiempo³³. Los resultados del presente trabajo de investigación serán de carácter confiable, pues se contará con la licencia de funcionamiento del software utilizado, que garantice la calidad para el diseño, desarrollo y distribución de fuerzas y momentos. Datos que serán obtenidos mediante la simulación del comportamiento estructural lineal y no lineal con el apoyo del software ETAPS.

3.5 Procedimientos

- A. Recopilación de información necesaria
 - Se cuenta con los planos estructurales y de arquitectura del proyecto diseñado con anterioridad
 - Se cuenta con los resultados del estudio de mecánica de suelos.
- B. Revisión de diseño sísmico según la Normativa Peruana
 - Modelo estructural tomando en cuenta las dimensiones planteadas en los planos estructurales y de arquitectura
 - Análisis del modelo estructural de acuerdo a la norma vigente (desplazamientos, fuerzas, cortante, etc.)
 - Parámetros de diseño sísmico en cumplimiento de la norma E030.
 - Parámetros para el modelamiento del diseño no lineal de la estructura, en consideración de la norma E030 y ASCE 4113.

C. Revisión de diseño sísmico según la Normativa Chilena

- Modelo estructural tomando en cuenta las dimensiones planteadas en los planos estructurales y de arquitectura
- Análisis del modelo estructural de acuerdo a la norma vigente (desplazamientos, fuerzas, cortante, etc.)
- Parámetros de diseño sísmico en cumplimiento de la norma E030.
- Parámetros para el modelamiento del diseño no lineal de la estructura, en consideración de la norma NCh433 y ASCE 4113.

D. Comparación de resultados

- Se obtendrán resultados mediante el uso del software ETABS.
- Con apoyo de la ficha técnica elaborada, se recolectará los datos obtenidos para su comparación y posterior análisis.

E. Conclusiones y recomendaciones

Luego del análisis y comparación de resultados, se procederá a formular cada conclusión y recomendación en función de los indicadores registrados en el proyecto de investigación.

3.6 Método de análisis de datos

La estadística descriptiva, sustituye un conjunto de datos de estudio a un grupo pequeño de valores descriptivos y ayuda a brindar información de las características claves de la investigación⁴⁴. Es por ello que el método de análisis de datos de la presente investigación es estadístico descriptivo.

3.7 Aspectos éticos

Se respetarán los derechos de autor mediante el uso de la herramienta web Turnitin, para evaluar que no exista algún tipo de plagio y que la tesis sea de autoría de los autores. Así mismo, se respetará la propiedad intelectual mediante la licencia del software empleado en la investigación (ETABS). Recalcando que la información estará debidamente referenciada según ISO.

IV. RESULTADOS

4.1 Desarrollo del Procedimiento

Ubicación:

La población de estudio está ubicada en la Manzana E torre 32; del Condominio Sol de Collique – Comas en la Av. Micaela Bastidas.

Figura 16. Ubicación Condominio Sol de Collique Mz. E- Comas

Etapa 1: Recopilación de información necesaria

Se cuenta con los planos estructurales y de arquitectura del proyecto diseñado con anterioridad:

Se solicitó la adquisición de información sobre los planos de estructuras, detalles y estudio de mecánica de suelos de la Torre 32, el cual queda ubicado en el Proyecto de la Mz. E, Ciudad Sol de Collique – Comas.

Una vez recibida la información necesaria, se procedió a analizar sus características: La Torre E-32 cuenta con 15 niveles de seis departamentos por piso y un cuarto de máquinas en la azotea. Además, pertenece al Programa Nuevo Crédito Mi Vivienda, planteada con revisiones:

N°06 12/02/2020

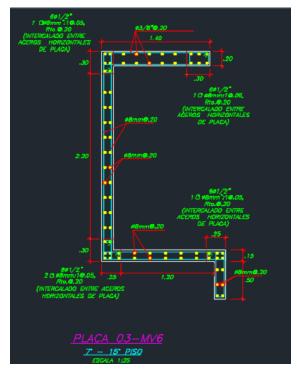


Figura 17. Plano de estructuras

N°03 19/11/19

Figura 18. Plano de encofrado

N° 09 17/02/2020

Figura 19. Planos de arquitectura

Se cuenta con los resultados del estudio de mecánica de suelos: El informe final del estudio de mecánica de suelos realizado para la Manzana E, que dio como resultado la conformación de plateas de cimentación, se dio en febrero del 2017 a cargo de la empresa M&M CONSULTORES S.R.L. con N°M4717C.

Parámetros de diseño según la NTP E030:

- 4.1.1 Factor de zona: Z=0.45
- 4.1.2 Tipo de suelo = S_2
- 4.1.3 Factor de suelo: S=1.05
- 4.1.4 Periodos predominantes de vibración $T_P = 0.6$ s.

 $T_L = 2.0 \text{ s}.$

4.1.5 Df= 2.50m

Exploración de Campo: Se llevó a cabo la excavación manual de 55 calicatas con profundidades comprendidas entre 3.00 y 9.00 m respecto a la superficie del terreno (denominadas CE-1 a CE-55). Así mismo, se excavó manualmente 4 calicatas de 2.00 y 3.00 m de profundidad con referencia al nivel de la superficie

actual del terreno (denominadas CA-9 a CA-12), ubicadas en el emplazamiento de las pistas interiores.

Ubicación de calicatas:

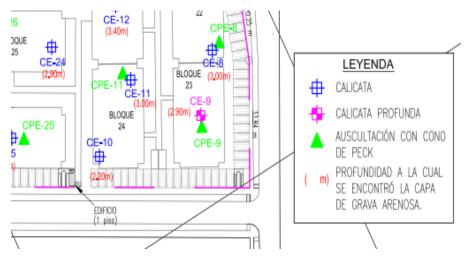


Figura 20. Plano de sondaje

Fotografías:

Figura 21. Vista interior de la calicata CE-2

Figura 22. Vista interior de la calicata CE-54

Figura 23. Calicata CE-24, se aprecia material extraído de la excavación

Figura 24. Calicata CA-11

Etapa 2: Revisión de diseño sísmico según la Normativa Peruana

Modelo estructural tomando en cuenta las dimensiones planteadas en los planos estructurales y de arquitectura:

Una vez definido el grillado y el número de pisos, así como el tipo de material a utilizar, asignamos los elementos estructurales presentes en el diseño:

VIGAS:

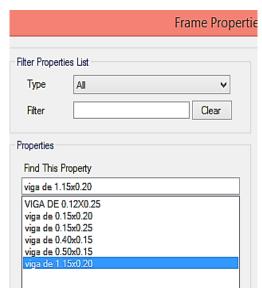


Figura 25. Frame Properties

LOSA:

Figura 26. Slab Properties

MUROS:

Figura 27. Wall Properties

Posteriormente se da inicio al modelamiento estructural:

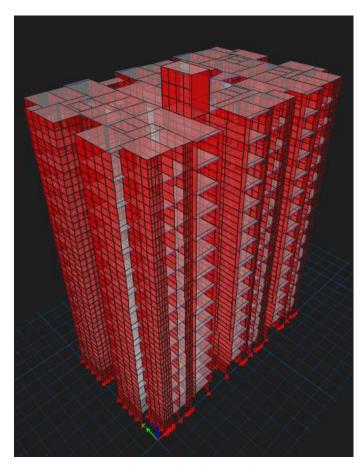


Figura 28. Modelo estructural, Torre E-32

Análisis del modelo estructural de acuerdo a la norma vigente (desplazamientos, fuerzas, cortante, etc.):

Para realizar el análisis del modelo realizo anteriormente, es necesario asignar carga viva y carga muerta (de acuerdo a la norma E.020, en la página 4, corresponde una sobrecarga de 200 kg/cm² por ser vivienda multifamiliar)

Figura 29. Carga viva y carga muerta

Posteriormente, se asignan los diafragmas rígidos para cada nivel:

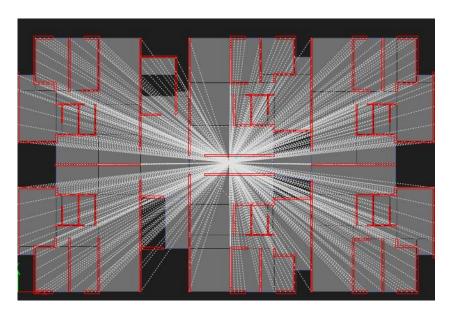


Figura 30. Joint Assignment Se precisa la masa sísmica (según la norma E.030 en la página 21, para edificaciones de tipo C, se tomará el 25% de la carga viva y el 100% de la carga muerta) Parámetros de diseño sísmico en cumplimiento de la norma E030.

Para obtener los resultados requeridos en relación a la Norma Sísmica Peruana E030, se procede a definir los datos pertenecientes al espectro de diseño como zonificación, categoría de la edificación, tipo de suelo, factores de irregularidad y el coeficiente básico de reducción:

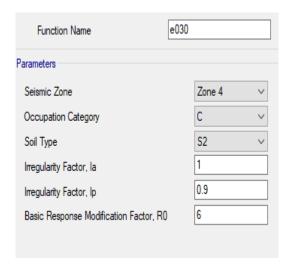


Figura 31. Parámetros de diseño E.030

T	С	Sa (m/s ²)	T	С	Sa (m/s²)
	2.5	0.2188	0.37	2.50	0.2188
0.01	2.50	0.2188	0.38	2.50	0.2188
0.02	2.50	0.2188	0.39	2.50	0.2188
0.03	2.50	0.2188	0.4	2.50	0.2188
0.04	2.50	0.2188	0.41	2.50	0.2188
0.05	2.50	0.2188	0.42	2.50	0.2188
0.06	2.50	0.2188	0.43	2.50	0.2188
0.07	2.50	0.2188	0.44	2.50	0.2188
0.08	2.50	0.2188	0.45	2.50	0.2188
0.09	2.50	0.2188	0.46	2.50	0.2188
0.1	2.50	0.2188	0.47	2.50	0.2188
0.11	2.50	0.2188	0.48	2.50	0.2188
0.12	2.50	0.2188	0.49	2.50	0.2188
0.13	2.50	0.2188	0.5	2.50	0.2188
0.14	2.50	0.2188	0.51	2.50	0.2188
0.15	2.50	0.2188	0.52	2.50	0.2188
0.16	2.50	0.2188	0.53	2.50	0.2188
0.17	2.50	0.2188	0.54	2.50	0.2188
0.18	2.50	0.2188	0.55	2.50	0.2188
0.19	2.50	0.2188	0.56	2.50	0.2188
0.2	2.50	0.2188	0.57	2.50	0.2188
0.21	2.50	0.2188	0.58	2.50	0.2188
0.22	2.50	0.2188	0.59	2.50	0.2188
0.23	2.50	0.2188	0.6	2.50	0.2188
0.24	2.50	0.2188	0.61	2.46	0.2152
0.25	2.50	0.2188	0.62	2.42	0.2117
0.26	2.50	0.2188	0.63	2.38	0.2083
0.27	2.50	0.2188	0.64	2.34	0.2051
0.28	2.50	0.2188	0.65	2.31	0.2019
0.29	2.50	0.2188	0.66	2.27	0.1989
0.3	2.50	0.2188	0.67	2.24	0.1959
0.31	2.50	0.2188	0.68	2.21	0.1930
0.32	2.50	0.2188	0.69	2.17	0.1902
0.33	2.50	0.2188	0.7	2.14	0.1875
0.34	2.50	0.2188	0.71	2.11	0.1849
0.35	2.50	0.2188	0.72	2.08	0.1823
0.36	2.50	0.2188	0.73	2.05	0.1798

Figura 32. Periodos n para el cálculo del espectro E030

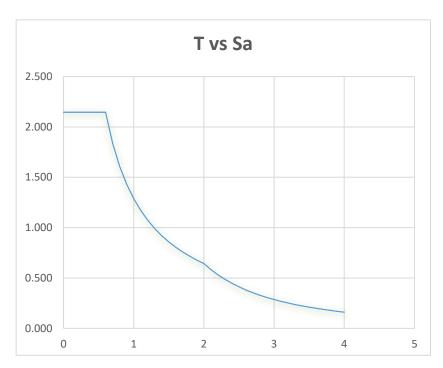


Figura 33. Periodo (s) vs Aceleración (m/s²) E030

Cada valor perteneciente al espectro de diseño sísmico E030 fue ingresado al programa ETABS mediante el ítem Response Spectrum, tomando en cuenta el 5% de amortiguamiento.

Parámetros para el modelamiento del diseño no lineal de la estructura, en consideración de la norma E030 y ASCE 4113.

Se asigna los sismos de diseño al software ETABS, para ello se calcula lo siguiente:

$$c = \left(\frac{sismo\ frecuente}{sismo\ de\ retorno}\right)^{0.35}$$

Factor de reducción:

$$R = \frac{1}{c}$$

Entonces:

a) Sismo Frecuente

$$c = \left(\frac{43}{475}\right)^{0.35} = 0.43$$

$$R = \frac{1}{c} = \frac{1}{0.43} = 2.31$$

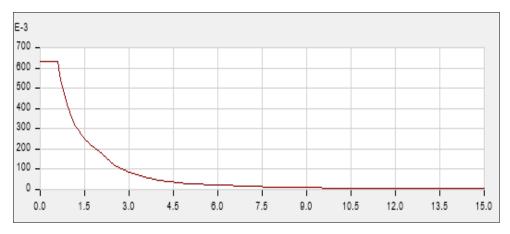


Figura 34. Espectro de Respuesta para un sismo frecuente E030

b) Sismo Ocasional

$$c = \left(\frac{72}{475}\right)^{0.35} = 0.52$$

$$R = \frac{1}{c} = \frac{1}{0.52} = 1.935$$

Figura 35. Espectro de Respuesta para un sismo ocasional E030

c) Sismo Raro

$$c = \left(\frac{475}{475}\right)^{0.35} = 1$$

$$R = \frac{1}{c} = \frac{1}{1} = 1$$



Figura 36. Espectro de Respuesta para un sismo raro E030

d) Sismo Muy Raro

$$c = \left(\frac{2500}{475}\right)^{0.35} = 1.78$$

$$R = \frac{1}{c} = \frac{1}{1.78} = 0.56$$

Figura 37. Espectro de Respuesta para un sismo muy raro E030

Las gráficas mostradas anteriormente, se obtuvieron de acuerdo a los parámetros de peligro sísmico y de suelo. Estos parámetros fueron analizados inicialmente en el análisis lineal.

Asignamos las cargas gravitacionales no lineales, el cual tiene como inicio la determinación del 100% de carga viva y 25% de carga muerta del edificio; según norma E030:

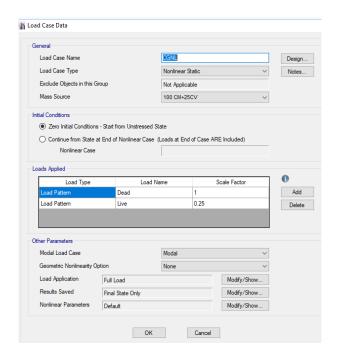


Figura 38. Carga Gravitacional No Lineal

Para el cálculo de las rótulas plásticas, se tomó en consideración la tabla 10-7, que nos otorga el ASCE para asignar las rotulas plásticas en vigas. Esta normativa nos guía a evaluar dos conformidades:

$$\frac{d}{3}$$
 > separación de estribo

$$Vs > Vu * 0.75$$

Table 10-7. Modeling Parameters and Numerical Acceptance Criteria for Nonlinear Procedures—Reinforced Concrete Beams

				lodeling Paramete	ars"	A	cceptance Criteria	p.	
			Plastic Rotal	tions Angle	Residual Strength	Plastic F	Plastic Rotations Angle (radians)		
			(radio		Ratio	F	erformance Level	ı	
	Conditions		a	ь	0	10	LS	CP	
Condition	i. Beams controlled by fl	exure ^b							
$\rho - \rho'$	Transverse	V 4							
Phul	reinforcement ^c	$b_{s}d\sqrt{f_{c}'}$							
≤0.0	C	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05	
≤0.0	C	≥6 (0.5)	0.02	0.04	0.2	0.005	0.02	0.04	
≥0.5	C	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03	
≥0.5	C	≥6 (0.5)	0.015	0.02	0.2	0.005	0.015	0.02	
≤0.0	NC	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03	
≤0.0	NC	≥6 (0.5)	0.01	0.015	0.2	0.0015	0.01	0.01	
≥0.5	NC	≤3 (0.25)	0.01	0.015	0.2	0.005	0.01	0.01	
≥0.5	NC	≥6 (0.5)	0.005	0.01	0.2	0.0015	0.005	0.01	
Condition	ii. Beams controlled by s	hear ^b							
Stirrup spo	icing ≤ d/2		0.0030	0.02	0.2	0.0015	0.01	0.02	
	cing > d/2		0.0030	0.01	0.2	0.0015	0.005	0.01	
Condition	iii. Beams controlled by	insdomisto develonment	or solicine slone the	enon ^a					
	ucing $\leq d/2$	madequate development	0.0030	0.02	0.0	0.0015	0.01	0.02	
	ucing $> d/2$		0.0030	0.01	0.0	0.0015	0.005	0.01	
								0.01	
Condition	iv. Beams controlled by	inagequate embedment ii	nto beam-column joi 0.015	0.03	0.2	0.01	0.02	0.03	
			0.015	0.03	0.2	0.01	0.02	0.03	

Figura 39. ASCE Tabla 10-7

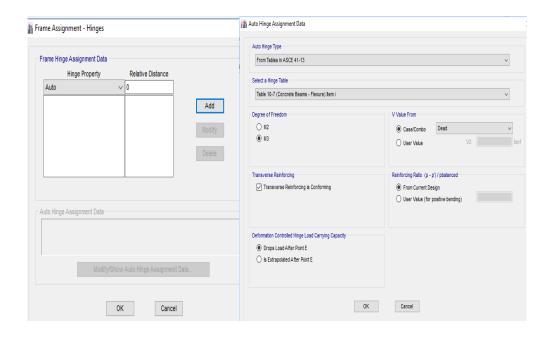


Figura 40. Asignación de rotulas plásticas

NOTE: f_c'' in 10fm.^2 (MPa) units.

"Values between those listed in the table should be determined by linear interpolation.

"Where more than one of conditions i, ii, iii, and iv occur for a given component, use the minimum appropriate numerical value from the table.

"C" and "NC" are abbreviations for conforming and nonconforming transverse reinforcement, respectively. Transverse reinforcement is conforming if, within the flexural plastic hinge region, hoops are spaced at $\leq d/3$, and if, for components of moderate and high ductility demand, the strength provided by the hoops (V_c) is at least 3/4 of the design shear. Otherwise, the transverse reinforcement is considered nonconforming.

"V is the design shear force from NSP or NDP.

La distancia asignada de cada rótula en relación a la luz de la viga, será entre alrededor del 5% y 95%.

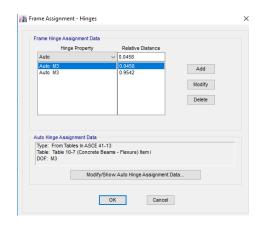


Figura 41. Distancia de rotulas plásticas en %

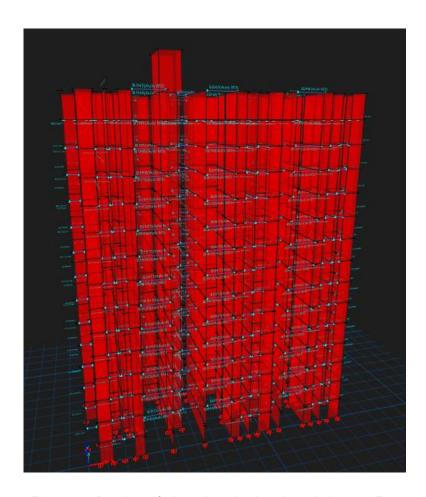


Figura 42. Rotulas plásticas de todas las vigas de la torre E-32

Se le asigna la distribución de acero correspondiente a cada placa que conforma los seis departamentos de los 15 pisos de la torre E-32. Posteriormente, se asigna las rótulas plásticas de cada placa establecida.

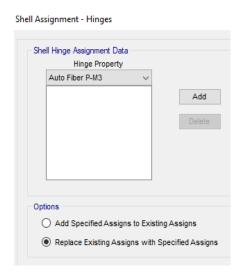


Figura 43. Asignación de rotulas por placa

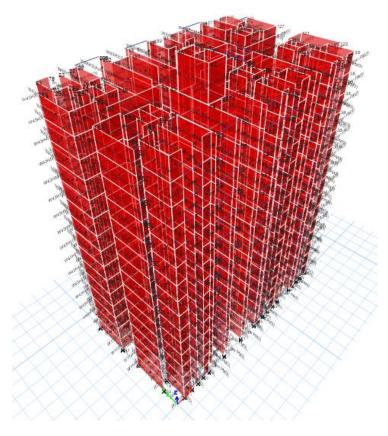


Figura 44. Rótulas pertenecientes a la estructura

Se agregan los patrones de carga que serán aplicadas por cada piso de la estructura a analizar:

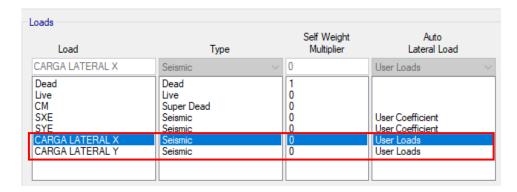


Figura 45. Patrones de carga de la estructura

Los resultados de la cortante basal tanto en X como en Y, son distribuidos en cargas laterales por piso, los cuales están en relación a lo dictado por la norma sísmica E-030:

MASA ETABS	N° PISO	MASA	(pi)PESO	(hi)ALTURA	pi(hi) ^k	αί	fuerzas sismica
42.7071	PISO 15	42.7071	418.785823	37.14	17397.068	0.1240	173.4743
42.7071	PISO 14	42.7071	418.785823	34.73	16234.3201	0.1158	161.8800
42.7071	PISO 13	42.7071	418.785823	32.32	15074.0729	0.1075	150.3106
42.7071	PISO 12	42.7071	418.785823	29.91	13916.5072	0.0992	138.7680
42.7071	PISO 11	42.7071	418.785823	27.50	12761.8325	0.0910	127.2542
42.7071	PISO 10	42.7071	418.785823	25.09	11610.2947	0.0828	115.7717
42.7071	PISO 9	42.7071	418.785823	22.68	10462.1862	0.0746	104.3233
42.7071	PISO 8	42.7071	418.785823	20.27	9317.8607	0.0664	92.9127
42.7071	PISO 7	42.7071	418.785823	17.86	8177.75536	0.0583	81.5442
42.7071	PISO 6	42.7071	418.785823	15.45	7042.42402	0.0502	70.2233
42.7071	PISO 5	42.7071	418.785823	13.04	5912.59214	0.0422	58.9572
42.7071	PISO 4	42.7071	418.785823	10.63	4789.25242	0.0341	47.7559
42.7071	PISO 3	42.7071	418.785823	8.22	3673.84904	0.0262	36.6337
42.7071	PISO 2	42.7071	418.956651	5.81	2569.73436	0.0183	25.6240
42.12555	PISO 1	54.03457	530.079132	2.41	1312.80517	0.0094	13.0906

Figura 46. Distribución de la cortante basal por piso E030

Estos valores son introducidos en el software ETABS para ser analizados posteriormente:

Story	Diaphragm	Fx tonf	Fy tonf	Mz tonf-cm	
AZOTEA	D16	0	0	0	
Story15	D15	173.4743	0	0	
Story14	D14	161.88	0	0	
Story13	D13	150.3106	0	0	
Story12	D12	138.768	0	0	
Story11	D11	127.2542	0	0	
Story10	D10	115.7717	0	0	
Story9	D9	104.3233	0	0	
Story8	D8	92.9127	0	0	
Story7	D7	81.5442	0	0	
Story6	D6	70.2233	0	0	
Story5	D5	58.9572	0	0	
Story4	D4	47.7559	0	0	
Story3	D3	36.6337	0	0	
Story2	D2	25.624	0	0	
Story1	D1	13.0906	0	0	

Figura 47. Distribución de la cortante basal en X E030

Story	Diaphragm	Fx tonf	Fy tonf	Mz tonf-cm	
AZOTEA	D16	0	0	0	
Story15	D15	0	173.4743	0	
Story 14	D14	0	161.88	0	
Story 13	D13	0	150.3106	0	
Story 12	D12	0	138.768	0	
Story 11	D11	0	127.2542	0	
Story 10	D10	0	115.7717	0	
Story9	D9	0	104.3233	0	
Story8	D8	0	92.9127	0	
Story7	D7	0	81.5442	0	
Story6	D6	0	70.2233	0	
Story5	D5	0	58.9572	0	
Story4	D4	0	47.7559	0	
Story3	D3	0	36.6337	0	
Story2	D2	0	25.624	0	
Story1	D1	0	13.0906	0	

Figura 48. Distribución de la cortante basal en Y E030

Posteriormente, asignamos la carga pushover en cada dirección para luego correr el análisis con las asignaciones no lineales para obtener el punto de desempeño y la curva de capacidad.

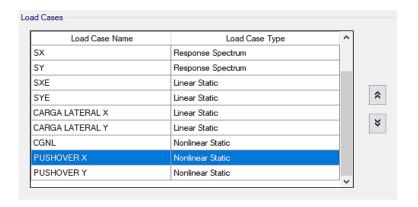


Figura 49. Pushover en X y Y E030

Etapa 3: Revisión de diseño sísmico según la Normativa Chilena

Modelo estructural tomando en cuenta las dimensiones planteadas en los planos estructurales y de arquitectura:

Una vez tomados los datos de forma equivalente a los detallados para la evaluación del diseño sísmico según la Normativa Peruana, se da inicio al modelo estructural.

Análisis del modelo estructural de acuerdo a la norma vigente (desplazamientos, fuerzas, cortante, etc.):

Para realizar el análisis del modelo realizado anteriormente, es necesario asignar carga viva y carga muerta (de acuerdo a la norma NCh1537, en la tabla #4, nos indica una sobrecarga de acuerdo al uso el cuál es 2KPa)

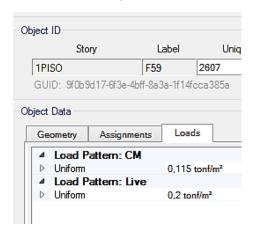


Figura 50. Carga viva y carga muerta Nch433

Posteriormente, se asignan los diafragmas rígidos para cada nivel en el software ETABS.

Se precisa la masa sísmica (al igual que la norma E.030, la norma chilena NCh433, toma en cuenta el 25% de la carga viva y el 100% de la carga muerta)

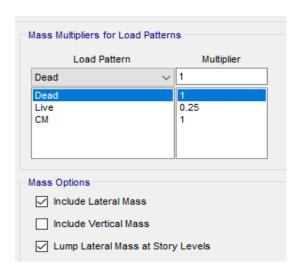


Figura 51. Masa sísmica NCh433

Parámetros de diseño en cumplimiento de la norma Nch433.

Para obtener los resultados requeridos en relación a la Norma Sísmica Chilena NCh433, se procede a definir los datos pertenecientes al espectro de diseño como zonificación, categoría de la edificación, tipo de suelo, factores de irregularidad y el coeficiente básico de reducción:

Ao =	0,4				
I=	1				
Tipo de suelo	S	To(S)	T'(S)	n	Р
Α	0,9	0,15	0,2	1	2
В	1	0,3	0,35	1,33	1,5
С	1,05	0,4	0,45	1,4	1,6
D	1,2	0,75	0,85	1,8	1
E	1,3	1,2	1,35	1,8	1
F	*	*	*	*	*

Figura 52. Parámetros de diseño NCh433

Tn	Sα	ā
0,01	0,0701	1,0123
0,02	0,0719	1,0372
0,03	0,0742	1,0709
0,04	0,0770	1,1119
0,05	0,0803	1,1593
0,06	0,0840	1,2122
0,07	0,0880	1,2699
0,08	0,0923	1,3320
0,09	0,0969	1,3978
0,1	0,1016	1,4668
0,11	0,1066	1,5384
0,12	0,1117	1,6120
0,13	0,1169	1,6872
0,14	0,1222	1,7633
0,15	0,1275	1,8398
0,16	0,1328	1,9161
0,17	0,1380	1,9917
0,18	0,1431	2,0659
0,19	0,1482	2,1383
0,2	0,1530	2,2084
0,21	0,1577	2,2757
0,22	0,1621	2,3397
0,23	0,1663	2,4001
0,24	0,1702	2,4566
0,25	0,1738	2,5089
0,26	0,1772	2,5567
0,27	0,1801	2,5998
0,28	0,1828	2,6382
0,29	0,1851	2,6718
0,3	0,1871	2,7006
0,31	0,1888	2,7246
0,32	0,1901	2,7440
0,33	0,1912	2,7587
0,34	0,1919	2,7691
0,35	0,1923	2,7752
0,36	0,1924	2,7773
0,37	0,1923	2,7756
0,38	0,1920	2,7703
0,39	0,1914	2,7617
0,4	0,1906	2,7500
0,41	0,1895	2,7355
0,42	0,1884	2,7184

Figura 53. Periodos n para el cálculo del espectro Nch433

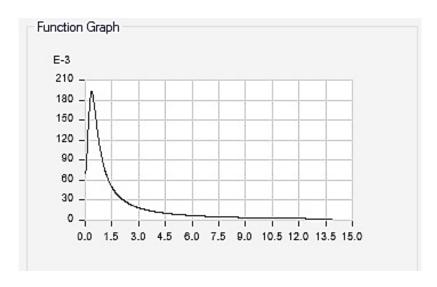
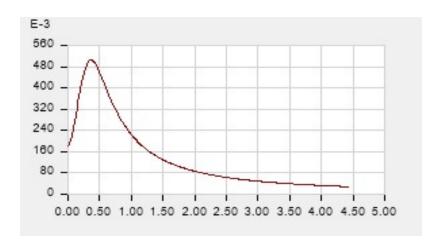


Figura 54. Periodo (s) vs Aceleración (m/s²) NCh433

Parámetros para el modelamiento del diseño no lineal de la estructura, en consideración de la norma Nch433 y ASCE 4113. Se asigna los sismos de diseño al software ETABS, para ello se calcula lo siguiente:


$$c = \left(\frac{sismo\ frecuente}{sismo\ de\ retorno}\right)^{0.35}$$

Factor de reducción:

$$R = \frac{1}{c}$$

Entonces:

a) Sismo Frecuente

b) Sismo Sicasiperalo de Respuesta para un sismo frecuente Nch433

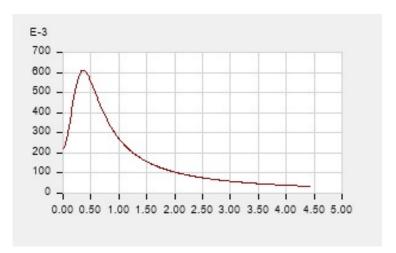


Figura 56. Espectro de Respuesta para un sismo ocasional Nch433

c) Sismo Raro

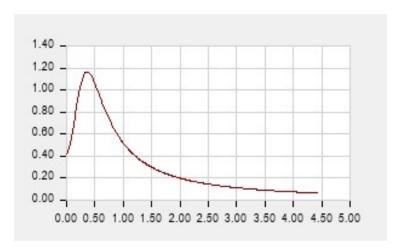


Figura 57. Espectro de Respuesta para un sismo raro Nch433

d) Sismo Muy Raro

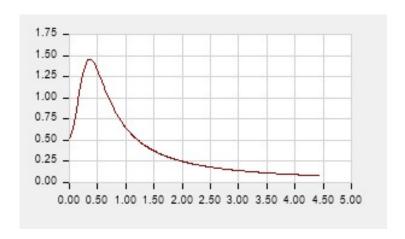


Figura 58. Espectro de Respuesta para un sismo muy raro Nch433

Asignamos las cargas gravitacionales no lineales de igual manera que para la norma E030, 100% de carga viva y 25% de carga muerta del edificio. Posteriormente se especifica las rótulas plásticas en consideración a la tabla 10-7 evaluando dos conformidades detalladas anteriormente (ver imagen 39, 40).

Se le asigna la distribución de acero correspondiente a cada placa que conforma los seis departamentos de los 15 pisos de la torre E-32. Posteriormente, se asigna las rótulas plásticas de cada placa establecida.

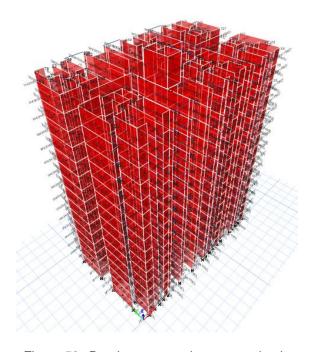


Figura 59. Rotulas pertenecientes a cada placa

Se agregan los patrones de carga que serán aplicadas por cada piso de la estructura a analizar:

Load	Туре	Self Weight Multiplier	Auto Lateral Load
CARGA LATERAL X	Seismic	v 0	User Loads
Dead	Dead	1	
Live	Live	0	
CM	Super Dead	0	
SXE	Seismic	0	User Coefficient
SYE	Seismic	0	User Coefficient
CARGA LATERAL X	Seismic	0	User Loads
CARGA LATERAL Y	Seismic	0	User Loads

Figura 60. Patrones de carga de la estructura

Los resultados de la cortante basal tanto en X como en Y, son distribuidos en cargas laterales por piso, los cuales están en relación a lo dictado por la norma sísmica Nch433:

PISO	Zk	Zk/H	1-Zk/H	√1-(Zk/H)	Ak	Masa	Pk	Ak*Pk	Fkx	Fky
AZOTEA	40	1.0000	0.0000	0	0.3041					
15	36.3	0.908	0.092	0.304	0.087	42.707	418.957	36.46	98.495	123.519
14	33.88	0.847	0.153	0.391	0.071	42.707	418.957	29.71	80.265	100.656
13	31.46	0.787	0.214	0.462	0.061	42.707	418.957	25.72	69.490	87.144
12	29.04	0.726	0.274	0.523	0.055	42.707	418.957	23.00	62.155	77.946
11	26.62	0.666	0.335	0.578	0.050	42.707	418.957	21.00	56.745	71.162
10	24.2	0.605	0.395	0.628	0.046	42.707	418.957	19.45	52.542	65.890
9	21.78	0.545	0.456	0.675	0.043	42.707	418.957	18.19	49.154	61.641
8	19.36	0.484	0.516	0.718	0.041	42.707	418.957	17.15	46.347	58.122
7	16.94	0.424	0.577	0.759	0.039	42.707	418.957	16.28	43.973	55.144
6	14.52	0.363	0.637	0.798	0.037	42.707	418.957	15.52	41.930	52.582
5	12.1	0.303	0.698	0.835	0.035	42.707	418.957	14.86	40.147	50.347
4	9.68	0.242	0.758	0.871	0.034	42.707	418.957	14.28	38.575	48.374
3	7.26	0.182	0.819	0.905	0.033	42.707	418.957	13.76	37.173	46.617
2	4.84	0.121	0.879	0.938	0.032	42.707	418.957	13.29	35.915	45.039
1	2.42	0.061	0.940	0.969	0.031	54.035	530.079	16.29	43.999	55.178

Figura 61. Distribución de la cortante basal en cada piso Nch433

Estos valores son introducidos en el software ETABS para ser analizados posteriormente:

Story	Diaphragm	Fx tonf	Fy tonf
Story15	D15	98.4955	0
Story14	D14	80.2648	0
Story13	D13	69.4898	0
Story12	D12	62.155	0
Story11	D11	56.7452	0
Story10	D10	52.5419	0
Story9	D9	49.1538	0
Story8	D8	46.3472	0
Story7	D7	43.9726	0
Story6	D6	41.9295	0
Story5	D5	40.1472	0
Story4	D4	38.5745	0
Story3	D3	37.1733	0
Story2	D2	35.9146	0
Story1	D1	43.9994	0

Figura 62. Distribución de la cortante basal en X Nch433

Story	Diaphragm	Fx tonf	Fy tonf
Story15	D15	0	123.5186
Story14	D14	0	100.6563
Story13	D13	0	87.1439
Story12	D12	0	77.9456
Story11	D11	0	71.1615
Story10	D10	0	65.8903
Story9	D9	0	61.6415
Story8	D8	0	58.1218
Story7	D7	0	55.144
Story6	D6	0	52.5818
Story5	D5	0	50.3467
Story4	D4	0	48.3745
Story3	D3	0	46.6173
Story2	D2	0	45.0388
Story1	D1	0	55.1776

Figura 63. Distribución de la cortante basal en Y Nch433

Posteriormente, asignamos la carga pushover en cada dirección para luego correr el análisis con las asignaciones no lineales para obtener el punto de desempeño y la curva de capacidad.

4.2 Resultados

4.2.1 Parámetros Lineales:

Se replantea lo siguiente; si el cambio de rigidez es reducido, se asume que las propiedades de la forma y las del material no cambiaron durante el proceso de deformación. Esta suposición es el principio del análisis lineal.

4.2.1.1 Distorsión:

Para realizar el cálculo de la distorsión de la estructura, está dado por la siguiente fórmula:

 $\frac{\Delta i}{hei}$ Δi = Desplazamiento relativo de entrepiso Δi + Altura de entrepiso

4.2.1.1.1 Según Norma Peruana E030

Los resultados obtenidos de las derivas se rigen mediante:

$$\frac{\Delta}{h}$$
 < 0,007

Las derivas de cada piso pueden llegar a experimentar valores menores a 0,007. Los valores de distorsión, deben ser multiplicados por R en estructuras irregulares (R: coeficiente de reducción sísmica =5.4) de acuerdo a la Norma Sismoresistente E030.

Tabla 11. Derivas en X, Y E030

Deriva en x			Deriva en y		
Piso	Δ/h	R*Drift	Piso	Δ/h	R*Drift
1	0.000276	0.001488	1	0.000195	0.001053
2	0.000539	0.002912	2	0.000396	0.002138
3	0.000719	0.003881	3	0.000537	0.002901
4	0.000859	0.004637	4	0.000652	0.003519
5	0.000964	0.005208	5	0.000742	0.004005
6	0.001041	0.005624	6	0.000810	0.004375
7	0.001094	0.005906	7	0.000860	0.004642
8	0.001124	0.006070	8	0.000892	0.004818
9	0.001135	0.006132	9	0.000910	0.004914
10	0.001130	0.006103	10	0.000915	0.004940
11	0.001110	0.005997	11	0.000909	0.004908
12	0.001079	0.005829	12	0.000894	0.004830
13	0.001041	0.005619	13	0.000874	0.004720
14	0.000998	0.005390	14	0.000851	0.004597
15	0.000958	0.005174	15	0.000829	0.004475

Fuente: Elaboración propia

4.2.1.1.2 Según Norma Chilena NCh433

Los valores para las derivas de cada piso, se realizaron en relación a la norma estudiada, con un límite de:

$$\frac{\Delta}{h}$$
 < 0,002h

En este caso, la norma chilena toma en cuenta un factor menor, el cual depende de la altura de entrepiso. Al proceder con la operación, nos genera el límite de deriva que se puede obtener en cada dirección.

Tabla 12. Derivas en X, Y Nch433

Der	iva en x	Deriva en y		
Piso	Δ/h	Piso	Δ/h	
1	0.000166	1	0.000149	
2	0.000326	2	0.000304	
3	0.000435	3	0.000413	
4	0.000520	4	0.000502	
5	0.000585	5	0.000572	
6	0.000632	6	0.000625	
7	0.000664	7	0.000664	
8	0.000682	8	0.000689	
9	0.000689	9	0.000702	
10	0.000685	10	0.000705	
11	0.000673	11	0.000700	
12	0.000653	12	0.000689	
13	0.000630	13	0.000673	
14	0.000604	14	0.000655	
15	0.000580	15	0.000638	

Fuente: Elaboración propia

4.2.1.1.3 Comparación

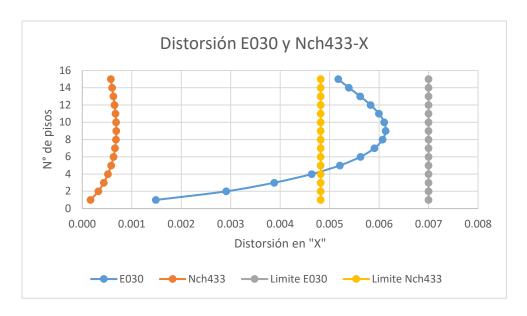


Figura 64. Distorsión en x

Interpretación:

Se observa en la gráfica que las distorsiones según la normativa peruana en el eje "X" llegan a un máximo de 6.13‰, el cual se encuentra por debajo del límite permisible (7‰) en un 12.42%. Sin embargo, al momento en el que comparamos la distorsión máxima (6.13‰) con el límite permisible de la normativa chilena (4.82‰) este supera por 27.17% al límite establecido. En relación a la distorsión máxima en el eje "X" según la normativa chilena, este tiene como punto máximo 0.689‰, el cual se encuentra por debajo de su límite permisible (4.82‰) en un 85.85%.

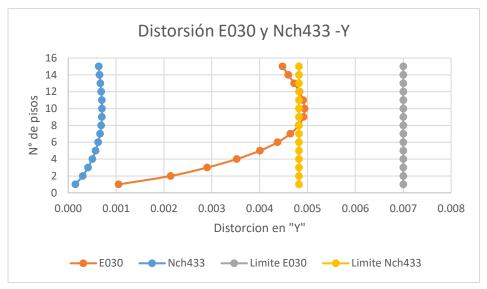


Figura 65. Distorsión en y

Interpretación:

Se observa en la gráfica que las distorsiones según la normativa peruana en el eje "Y" llegan a un máximo de 4.91‰, el cual se encuentra por debajo del límite permisible (7‰) en un 29.85%. Sin embargo, al momento en el que comparamos la distorsión máxima (4.91‰) con el límite permisible de la normativa chilena (4.82‰) este supera por 1.86% al límite establecido. En relación a la distorsión máxima en el eje "Y" según la normativa chilena tiene como punto máximo 0.705‰, el cual se encuentra por debajo del límite permisible (4.82‰) en un 85.37%.

Entonces, la hipótesis de que la norma sísmica peruana es más conservadora que la chilena al momento de evaluar la distorsión, se acepta. Esto se explica debido a que las fuerzas sometidas en la estructura son mayores en la normativa peruana, esto haciendo que los desplazamientos sean mayores en comparación a la de nuestro país vecino.

4.2.1.2 Periodo de Vibración:

4.2.1.2.1 Según Norma Peruana E030

Ecuación a tener en cuenta:

$$Sa = \frac{ZUCS}{R} \cdot g$$

La aceleración de un sismo está directamente vinculada a los valores que otorgan las características de la estructura como su ubicación, tipo e irregularidades, ya que:

$$R = Ia \times Ip \times Ro$$

En este caso, la estructura a analizar tiene irregularidad de esquinas entrantes, el cuál según la norma E030, corresponde un valor de Ip=0,90.

Para el valor del factor de amplificación sísmica, se tomó en cuenta las características del sitio, las cuales se obtuvieron posteriormente al estudio de suelos (TI, Tp)

Modos de vibracion de la estructura (El	TABS)
---	-------

Case	Mode	Period	UX	UY	Sum UX	Sum UY	RZ	Sum RZ
Cusc	Mode	sec	O A	0.	Julii OX	Suili O I		Juilling
Modal	1	0.57	0.6833	0.0018	0.6833	0.0018	0.0042	0.0042
Modal	2	0.52	0.0056	0.049	0.6889	0.0508	0.6283	0.6325
Modal	3	0.485	0.0007	0.6265	0.6896	0.6773	0.0507	0.6832
Modal	4	0.145	0.1726	1.24E-05	0.8621	0.6773	0.0005	0.6837
Modal	5	0.127	0.0005	0.0047	0.8626	0.682	0.1652	0.8489
Modal	6	0.114	1.02E-05	0.1749	0.8626	0.8569	0.0046	0.8536
Modal	7	0.068	0.0558	2.43E-06	0.9184	0.8569	0.0001	0.8537
Modal	8	0.057	0.0002	0.0011	0.9186	0.858	0.0591	0.9128
Modal	9	0.051	4.51E-05	0.0584	0.9187	0.9164	0.0009	0.9137
Modal	10	0.045	0.0129	0.0004	0.9316	0.9169	0.0006	0.9143
Modal	11	0.042	0.0116	0.0008	0.9432	0.9176	0.0002	0.9145
Modal	12	0.041	0.0029	0.0008	0.9461	0.9184	3.86E-05	0.9146

Figura 66. Periodos y modos de vibración E030

4.2.1.2.2 Según Norma Chilena NCh433

Ecuaciones a tener en cuenta:

$$Sa = \frac{S.Ao.\alpha}{(\frac{R*}{I})}$$

$$\alpha = \frac{1 + 4.5(\frac{Tn}{To})^{P}}{1 + (\frac{Tn}{To})^{3}}$$

$$R *= 1 + \frac{T *}{0.10 To + \frac{T *}{Ro}}$$

Para edificios estructurados con muros, el factor de reducción R* se puede determinar cómo:

$$R *= 1 + \frac{NRo}{4ToRo + N}$$

Modos de vibracion de la estructura (ETABS)
---------------------------------------	--------

Case	Mode	Period sec	UX	UY	Sum UX	Sum UY	RZ	Sum RZ
Modal	1	0.57	0.6833	0.0018	0.6833	0.0018	0.0042	0.0042
Modal	2	0.52	0.0056	0.049	0.6889	0.0508	0.6283	0.6325
Modal	3	0.485	0.0007	0.6265	0.6896	0.6773	0.0507	0.6832
Modal	4	0.145	0.1726	1.24E-05	0.8621	0.6773	0.0005	0.6837
Modal	5	0.127	0.0005	0.0047	0.8626	0.682	0.1652	0.8489
Modal	6	0.114	1.02E-05	0.1749	0.8626	0.8569	0.0046	0.8536
Modal	7	0.068	0.0558	2.43E-06	0.9184	0.8569	0.0001	0.8537
Modal	8	0.057	0.0002	0.0011	0.9186	0.858	0.0591	0.9128
Modal	9	0.051	4.51E-05	0.0584	0.9187	0.9164	0.0009	0.9137
Modal	10	0.045	0.0129	0.0004	0.9316	0.9169	0.0006	0.9143
Modal	11	0.042	0.0116	0.0008	0.9432	0.9176	0.0002	0.9145
Modal	12	0.041	0.0029	0.0008	0.9461	0.9184	3.86E-05	0.9146

Figura 67. Periodos y modos de vibración NCh433

C'atama		Estructural con la	Masa	Estructural con la	Masa	Estructural con la	
Sistema	Periodos	E.030	participativa UX	E.030	participativa UY	E.030	Masa participativa RZ (>90%)
Periodo vibracion		(Sx)	(>90%)	(Sy)	(>90%)	(Rz)	
Modo 1	0.57	0.6833	68.33%	0.0018	0.18%	0.0042	0.42%
Modo 2	0.52	0.0056	68.89%	0.049	5.08%	0.6283	63.25%
Modo 3	0.485	0.0007	68.96%	0.6265	67.73%	0.0507	68.32%
Modo 4	0.145	0.1726	86.22%	0.00001242	67.73%	0.0005	68.37%
Modo 5	0.127	0.0005	86.27%	0.0047	68.20%	0.1652	84.89%
Modo 6	0.114	0.00001022	86.27%	0.1749	85.69%	0.0046	85.35%
Modo 7	0.068	0.0558	91.85%	0.00000243	85.69%	0.0001	85.36%
Modo 8	0.057	0.0002	91.87%	0.0011	85.80%	0.0591	91.27%
Modo 9	0.051	0.00004508	91.88%	0.0584	91.64%	0.0009	91.36%
	DIRECCION	MODO	Ts	% DE F	PARTICIPACION DE	MASA	Aceleracion espec.
	DIRECCION	IVIODO	15	Ux	Uy	Uz	Adg
E.030	TRAS EN X	1	0.570	68.33%			2.1458
	TRAS EN Z	2	0.520			62.83%	2.1458
	TRAS EN Y	3	0.485		62.65%		2.1458
Sistema	Estructural con la		Masa	Estructural con la	Masa	Estructural con la	
Sistema	Periodos	Nch433	participativa	Nch433	participativa	Nch433	Masa participativa (>90%)
Periodo vibracion		(Sx)	(>90%)	(Sy)	(>90%)	(Rz)	
Modo 1	0.57	0.6833	68.33%	0.0018	0.18%	0.0042	0.42%
Modo 2	0.52	0.0056	68.89%	0.049	5.08%	0.6283	63.25%
Modo 3	0.485	0.0007	68.96%	0.6265	67.73%	0.0507	68.32%
Modo 4	0.145	0.1726	86.22%	0.00001242	67.73%	0.0005	68.37%
Modo 5	0.127	0.0005	86.27%	0.0047	68.20%	0.1652	84.89%
Modo 6	0.114	0.00001022	86.27%	0.1749	85.69%	0.0046	85.35%
Modo 7	0.068	0.0558	91.85%	0.00000243	85.69%	0.0001	85.36%
Modo 8	0.057	0.0002	91.87%	0.0011	85.80%	0.0591	91.27%
Modo 9	0.051	0.00004508	91.88%	0.0584	91.64%	0.0009	91.36%
	DIRECCION	MODO	Ts	% DE PARTICIPACION DE MASA			Aceleracion espec.
	DIRECCION	IVIODO	13	Ux	Uy	Uz	Adg
NCH 433	TRAS EN X	1	0.570	68.33%			1.56
	TRAS EN Z	2	0.520			62.83%	1.67
	TRAS EN Y	3	0.485		62.65%		1.75

Figura 68. Modos y masa participativa E030 y Nch433

Los períodos de vibración con mayor masa participativa se encuentran en los tres primeros modos. Las dos primeras son movimientos traslacionales (x; z) y la tercera es movimiento rotacional (y), cada una correspondiente a cada norma estudiada, verificando la sumatoria de masa participativa (> 90%).

4.2.1.2.3 Comparación

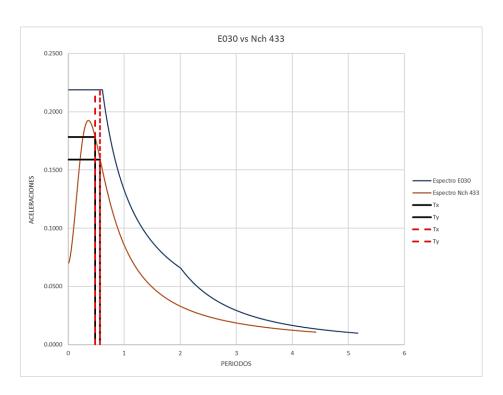


Figura 69. Espectro de aceleraciones E030 y Nch433

Interpretación:

Observamos que, en el espectro de aceleraciones de la norma técnica peruana, las cuales están en función del periodo de la estructura, se encuentran en el punto más alto de la gráfica. Esto es todo lo contrario en el espectro de la norma chilena, donde las aceleraciones se encuentran en la parte descendiente de la función. Esto se puede interpretar de la siguiente manera: La norma sismoresistente peruana es más conservadora en sus periodos y aceleraciones que la chilena, esto haciendo que los esfuerzos y desplazamientos en la estructura sean mayores en comparación de la normativa sismoresistente chilena.

4.2.1.3 Cortante Basal:

4.2.1.3.1 Según Norma Peruana E030

Ecuación a tomar en cuenta:

$$\frac{ZUCS}{R} \times P$$

> Análisis Estático

Dirección X-X e Y-Y

Z=	0,45	Zonificación
U=	1	Uso de la Edificación
hn=	40	Altura total de la Edificación
Ct=	60	Coeficiente para hallar el periodo fundamental
T= hn/Ct	0,67	Periodo fundamental de la estructura
S=	1,05	Suelo
Tp=	0,6	Periodo del suelo
T _{L=}	2	Periodo para el factor C desplazamiento constante
C=	2,25	Coeficiente Sísmico
R=	6	Muros estructurales
lp=	0,9	Irregularidad en planta
R"= R*lp	5,4	Coeficiente de Reducción Sísmica
ZUSC/R=	0,197	
K=	1,083	

Figura 70. Análisis estático E030

Luego de insertar los valores correspondientes de la norma al software ETABS, se obtuvo los siguientes periodos:

$$Tx = 0.570$$

$$Ty = 0.485$$

$$Tz = 0.520$$

Z	0.45 Zonificación
U	1 Uso de la Edificación
Т	0.570 Periodo fundamental de la estructura
S	1.05 Suelo
Тр	0.6 Periodo del suelo
T _L	2 Periodo para el factor C desplazamiento constante
С	2.50 Coeficiente Sísmico
R	6 Factor de reducción
R"=	5.4
ZUSC/R	0.21875
K	1.03500

Figura 71. Análisis estático X-X E030

Dirección	Y-Y

Z	0.45	Zonificación
U	1	Uso de la Edificación
Т	0.485	Periodo fundamental de la estructura
S	1.05	Suelo
Тр	0.6	Periodo del suelo
T _L	2	Periodo para el factor C desplazamiento constante
С	2.50	Coeficiente Sísmico
R	6	Factor de reducción
R"=	5.4	
ZUSC/R	0.21875	
K	1.000	

Figura 72. Análisis estático Y-Y E030

Una vez insertados los datos para cada dirección, se obtiene que:

Load Case/Combo	FX	FY
	tonf	tonf
sEx	-1552.4795	-1.10E-06
SX D Max	1104.9326	57.6298
sEy	2.05E-06	-1552.4814
SY D Max	57.6297	1068.2959

Figura 73. Cortantes dinámica y estática E030

Se debe tener en cuenta que la cortante dinámica debe ser mayor al 90% de la cortante estática (Vd > 90%Ve). En nuestro caso no se cumple y de acuerdo a la norma E030, tomamos un *factor de escala* dado como:

$$FE = \frac{0.80\,VEx}{Vx}$$
 ... Estructuras regulares
$$FE = \frac{0.90\,VEx}{Vx}$$
 ... Estructuras irregulares
$$FE \le 1$$

Load Case/Combo	FX	FY
	tonf	tonf
sEx	-1552.4795	-1.10E-06
SX D Max	1396.6454	72.8446
sEy	2.05E-06	-1552.4814
SY D Max	75.3224	1396.2698

Figura 74. Cortantes dinámica y estática escalados E030

4.2.1.3.2 Según Norma Chilena NCh433

Ecuación a tomar en cuenta:

$$Q = CIP$$

En referencia a lo dictado por la norma (ver figura 52) para el tipo de estructura que se está evaluando, tomamos los siguientes datos:

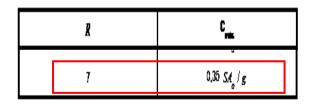


Figura 75. Relación de R y Cmáx Nch433

> Valores según la norma:

R= 7 Sismo estático

Ro= 11 Sismo dinámico

> Periodos según ETABS:

Tx = 0.570

Ty = 0.485

Tz = 0.520

> Valores calculados:

$$Cmax = 0.35 \frac{Ao * S}{g} \qquad \dots Cmax = 0.147$$

$$Cmin = \frac{Ao * S}{6g} \qquad \dots Cmin = 0.07$$

Entonces:

$$Cx = 2.75 \left(\frac{S * Ao}{R * g} \right) * \frac{T'^n}{Tx}$$
 ... Cx= 0.1292

$$Cy = 2.75(\frac{S * Ao}{R * g}) * \frac{T'^n}{Ty}$$
 ... Cy= 0.148

Se insertan los datos anteriores en el software y nos da los siguientes resultados:

Load	FX	FY
Case/Combo	tonf	tonf
SNCH X Max	791.1687	43.8669
sExNCH	-837.6433	-5.94E-07
SNCH Y Max	43.8669	843.0857
sEyNCH	1.37E-06	-1043.506

Figura 76. Cortantes dinámica y estática NCh433

Entonces; para realizar la cortante basal, se debe cumplir que:

$$Qe > Qd$$
 y $FE = \frac{Qe}{Qd}$

Load	FX	FY
Case/Combo	tonf	tonf
SNCH X Max	837.0565	46.4112
sExNCH	-837.6433	-5.94E-07
SNCH Y Max	54.2634	1042.897
sEyNCH	1.37E-06	-1043.506

Figura 77. Cortantes dinámica y estática escalados NCh433

4.2.1.3.3 Comparación

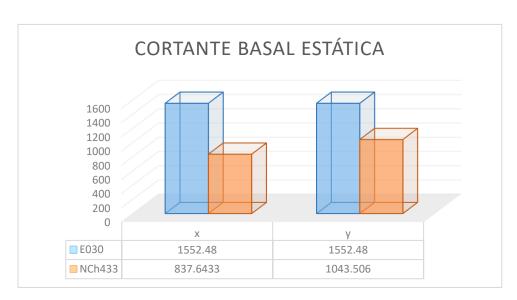


Figura 78. Cortante Basal Estática

Interpretación:

Se observa que el resultado de la cortante basal estática analizado con la Norma E030 en dirección "X "y "Y", supera en un 46% y 32.8% a la analizada con la Norma NCh433 respectivamente.

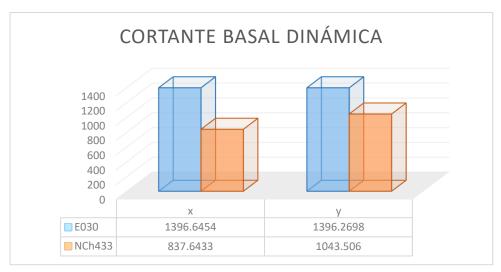


Figura 79. Cortante Basal Dinámica

Interpretación:

Al observar los resultados de la cortante basal dinámica, se tiene que la Norma E0.30 posee valores mayores a comparación de la Norma NCh433, con una diferencia de 40% en X, y 25.3% en Y.

Por lo tanto, nuestra hipótesis de que la norma sísmica chilena es más restrictiva que la peruana al momento de evaluar la cortante basal de la estructura, se acepta.

Lo detallado en las interpretaciones anteriores, está relacionado a que en nuestra norma no se tiene restricciones tanto para la cortante dinámica como la cortante estática. En cambio, la Norma NCh433 indica un Cmax y un Cmin de diseño, tanto para valores en x como para valores en y, así mismo difiere en datos para un sismo dinámico y estático, otorgando más restricciones de diseño en relación a la respuesta sísmica.

4.2.1.4 Capacidad Estructural:

4.2.1.4.1 Según norma E030:

El máximo desplazamiento que se dará post-sismo en la estructura en relación al eje X, luego de aplicar una fuerza cortante de 4248.179 ton, será de 20.839 cm:

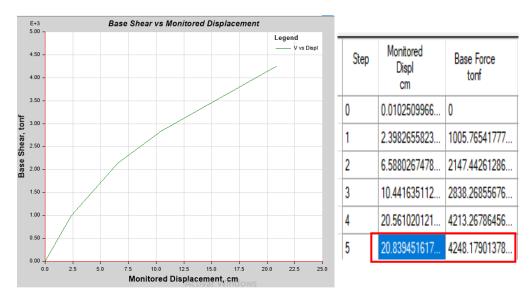


Figura 80. Capacidad Estructural en X E030

El mayor desplazamiento que experimentará la estructura en un sismo al recibir una fuerza cortante de 4448.625 ton, en relación al eje Y, será de 24.216 cm:

Figura 81. Capacidad Estructural en Y E030

Al observar los desplazamientos máximos de cada eje, se analiza que el valor en "Y" supera en 3.377 cm con respecto al valor en "X". Esto debido a que la mayor cantidad de placas se encuentran distribuidas y diseñadas en el eje Y. Por lo tanto, la estructura tendrá más holgura al momento de responder las solicitaciones sísmicas en el eje mencionado. Es importante señalar también que la estructura analizada, tiene una junta sísmica de 23 cm en el eje X, el cual colinda con otro departamento; cumpliendo de esta manera la dilatación sísmica (20.839 cm) para permitir que la estructura permanezca intacta.

4.2.1.4.2 Según norma NCh433:

El mayor desplazamiento que experimenta la estructura en un sismo al recibir una fuerza cortante de 6463.35 Tn en relación al eje "X" es de 40.598 cm .

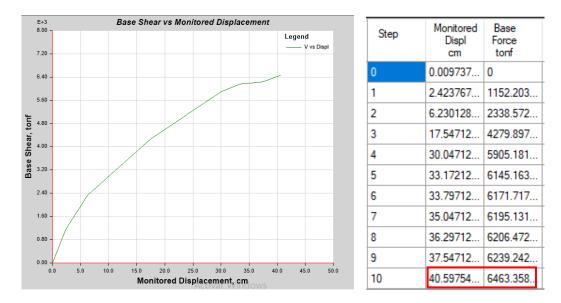


Figura 82. Capacidad Estructural en X Nch433

El mayor desplazamiento que experimenta la estructura en un sismo al recibir una fuerza cortante de 5017.90 en relación al eje "Y" es de 25.420 cm

Figura 83. Capacidad Estructural en Y Nch433

La falta de rigidez en el eje "X" hace que la estructura tenga un mayor desplazamiento en relación con el eje "Y" haciendo que esta tenga más capacidad de disipación de fuerza sísmica. Si bien se sabe que al tener mayor rigidez puede absorber mayor fuerza sísmica, esto no quiere decir que soporte mucha más fuerza, ya que al ser mucho más rígido tiene menor capacidad de deformación (menor capacidad de la disipación de la energía) haciendo que llegue a la falla mucho más rápido en comparación con el eje "X". Sin embargo, en concordancia a la norma Nch433, la junta sísmica de 23cm incluida en el diseño estructural, no estaría cumpliendo con el desplazamiento máximo, pues quedaría una diferencia de 17.60 cm.

4.2.1.4.3 Comparación

Figura 84. Capacidad Estructural en X

Interpretación:

Como se observa en la gráfica, el mayor desplazamiento es de 40.598 cm, perteneciente a la normativa chilena. En comparación con la E030, el cual tiene un desplazamiento máximo esperado de 20.839 cm. Esto está relacionado a la aplicación de las fuerzas sísmicas para ambas normativas, pues difieren en un 43.22%. Este cambio tan brusco en las fuerzas sísmicas aplicadas en cada nivel se debe a que a que el factor de amplificación sísmica "C" para ambas normativas varia de manera significativa.

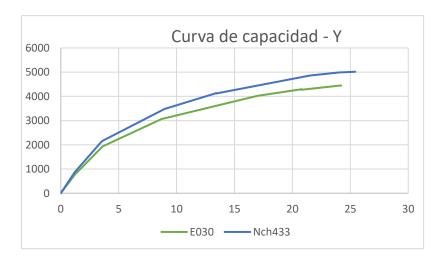


Figura 85. Capacidad Estructural en Y

Interpretación:

Como se puede apreciar en la gráfica, el mayor desplazamiento obtenido es de 25.420 correspondiente a la normativa chilena, teniendo estas una diferencia de 1.204 cm con respecto a la E030. En este caso la diferencia no es mucha en comparación del eje "X" ya que la aplicación de las fuerzas sísmicas en contraste para ambas normas es de 28.78%.

4.2.1.5 Punto de Desempeño:

4.2.1.5.1 Según norma E030:

Al colocar los espectros de demanda sísmica, rótulas plásticas y las secciones de acero en los elementos estructurales, se obtiene a través del software ETABS realiza el análisis pushover y consecuentemente obtenemos el punto de desempeño para los sismos de demanda insertados anteriormente.

Análisis en dirección X:

Sismo Frecuente

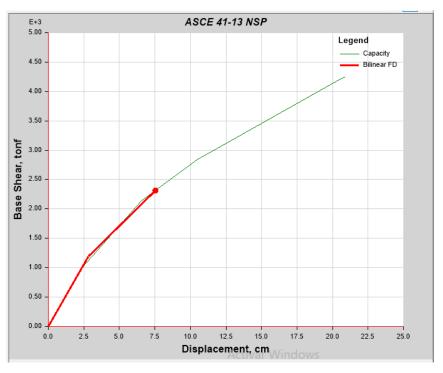


Figura 86. Punto de desempeño para un sismo frecuente X E030

Sismo Ocasional:

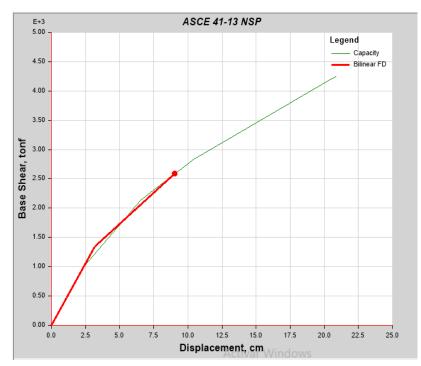


Figura 87. Punto de desempeño para un sismo ocasional X E030

Sismo Raro (Diseño):

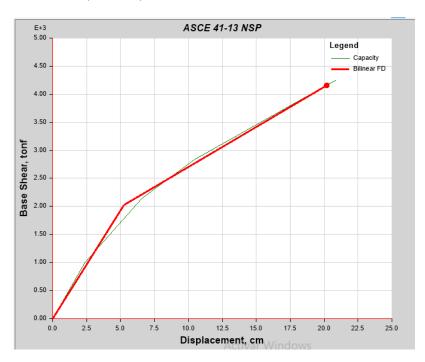


Figura 88. Punto de desempeño para un sismo raro X E030

Sismo Muy Raro:

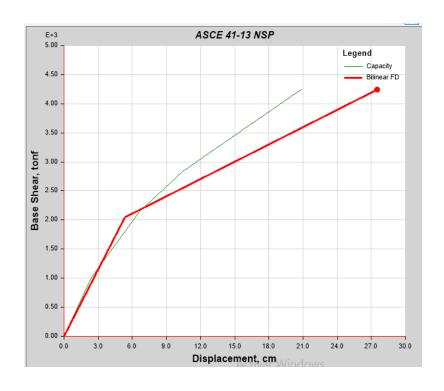


Figura 89. Punto de desempeño para un sismo muy raro X E030

Se obtienen los niveles de desempeño de la estructura en el eje X, de acuerdo a los parámetros dictados por el comité VISION200.

	Δ	ΣΔ
Funcional	5.05183549	9.05183549
Seguridad de vida	5.05183549	14.103671
Cerca del colapso	3.36789032	17.4715613
Colapso	3.36789032	20.8394516

Figura 90. Capacidad de desplazamiento de la estructura X E030

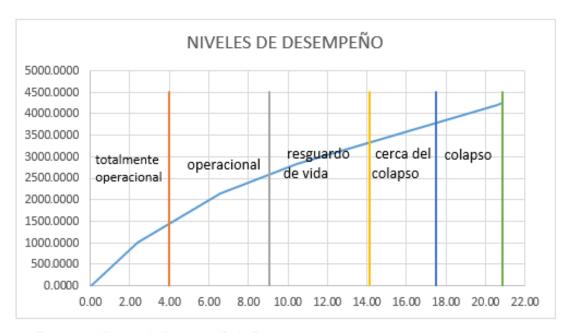


Figura 91. Niveles de Desempeño X E030

Sismos	Δ (cm)
frecuente	7.53
ocasional	9.048
raro	20.83
muy raro	27.51

Figura 92. Desplazamiento de la demanda sísmica X E030

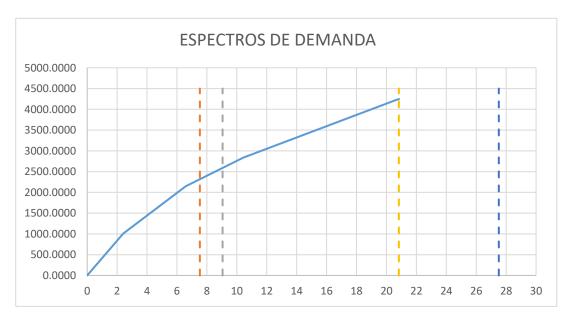


Figura 93. Espectros de demanda X E030

De acuerdo a los espectros de demanda obtenidos, se evalúa el nivel de desempeño de la edificación con relación a la siguiente tabla:



Figura 94. Desempeño de la edificación según VISION2000

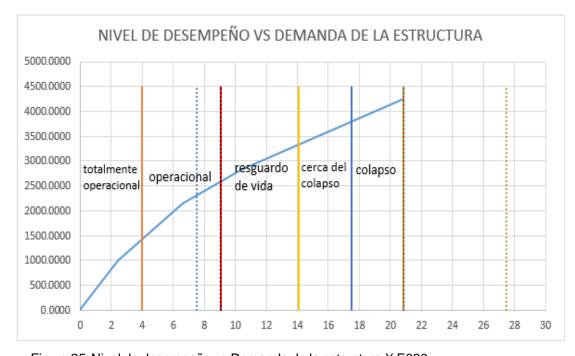


Figura 95. Nivel de desempeño vs Demanda de la estructura X E030

Interpretación:

En el eje X, las demandas que soportan la estructura ante solicitaciones sísmicas no cumplen con el nivel de desempeño guiado por el comité VISION2000, debido a que no se encuentran en el rango de solicitación para una edificación común.

Tabla 13. Desempeño y demanda eje x E030

	DESEMPEÑO (cm)	DEMANDA (cm)	DIFERENCIA REQUERIDA (cm)
Totalmente operacional	4	7.53	3.53
Operacional	9.05	9.048	ok
Resguardo de vida	14.10	20.83	6.73
Cerca del colapso	17.47	27.51	10.04
Colapso	20.84		

Fuente: Elaboración propia

Análisis en dirección Y:

Sismo Frecuente:

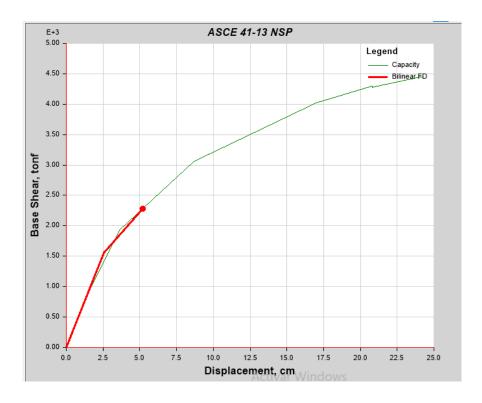


Figura 96. Punto de desempeño para un sismo frecuente Y E030

Sismo Ocasional:

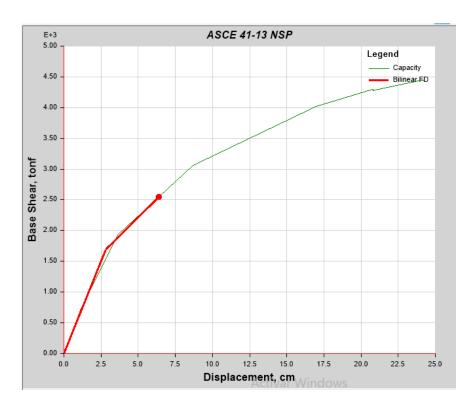


Figura 97. Punto de desempeño para un sismo ocasional Y E030

Sismo Raro (Diseño):

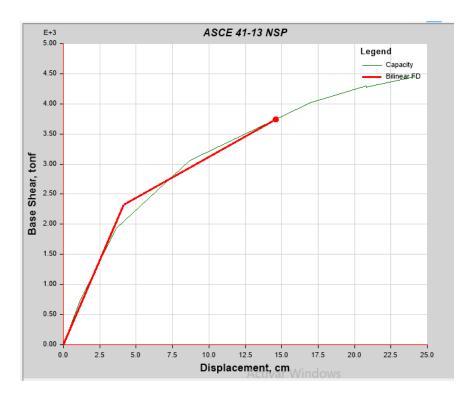


Figura 98. Punto de desempeño para un sismo raro Y E030

Sismo Muy Raro:

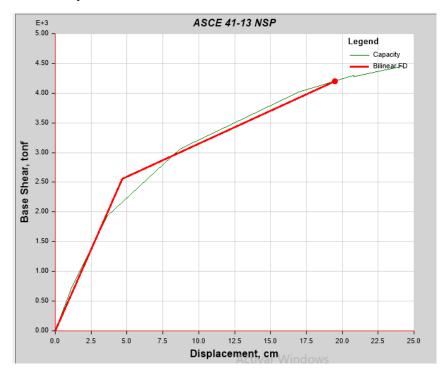


Figura 99. Punto de desempeño para un sismo muy raro Y E030

El desempeño de la estructura en el eje Y, de acuerdo a los parámetros dictados por el comité VISION200, son:

	Δ	ΣΔ
Funcional	6.063	10.063
Segurida de vida	6.063	16.126
Cerca del colapso	4.042	20.168
Colapso	4.042	24.21

Figura 100. Capacidad de desplazamiento de la estructura Y E030

Figura 101. Niveles de Desempeño Y E030

Sismos	Δ (cm)
frecuente	6.063
ocasionjal	6.063
raro	4.042
muy raro	4.042

Figura 102. Desplazamiento de la demanda sísmica Y E030

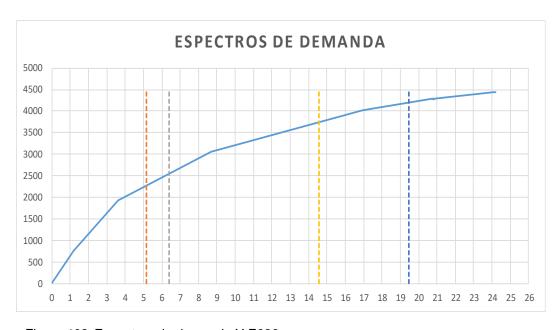


Figura 103. Espectros de demanda Y E030

Al igual que los espectros de demanda obtenidos en el eje X, se procede a evaluar el nivel de desempeño de la edificación:

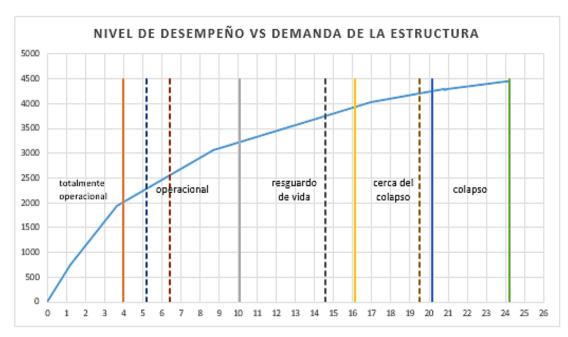


Figura 104. Nivel de desempeño vs Demanda de la estructura Y E030

Interpretación:

En el eje Y, las demandas obtenidas al analizar la estructura ante solicitaciones sísmicas, cumplen con el nivel de desempeño regido por el comité VISION2000.

Tabla 14. Desempeño y demanda eje y E030

	DESEMPEÑO	DEMANDA	SALDO
	(cm)	(cm)	(cm)
Totalmente	4	5.18	1.18
operacional	4	5.16	1.10
Operacional	10.063	6.4	3.663
Resguardo de	16.126	14.58	1.546
vida	10.120	11.00	1.010
Cerca del	20.168	19.48	3.663
colapso	20.100	19.40	3.003
Colapso	24.21		

Fuente: Elaboración propia

4.2.1.5.2 Según norma NCh433:

Análisis en dirección "X"

Sismo Frecuente:

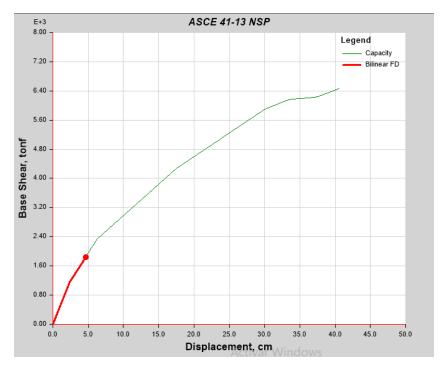


Figura 105. Punto de desempeño para un sismo frecuente X Nch433

Sismo Ocasional:

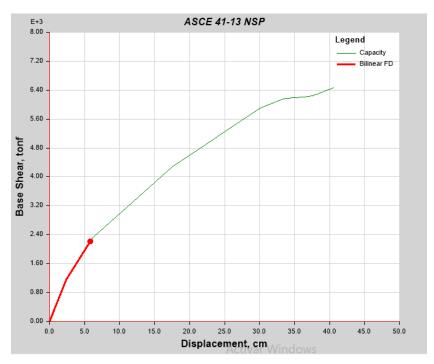


Figura 106. Punto de desempeño para un sismo ocasional X Nch433

Sismo Raro (Diseño):

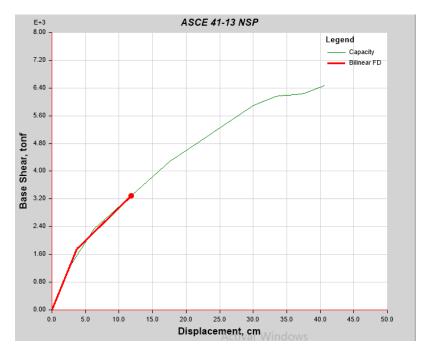


Figura 107. Punto de desempeño para un sismo raro X Nch433

Sismo Muy Raro:

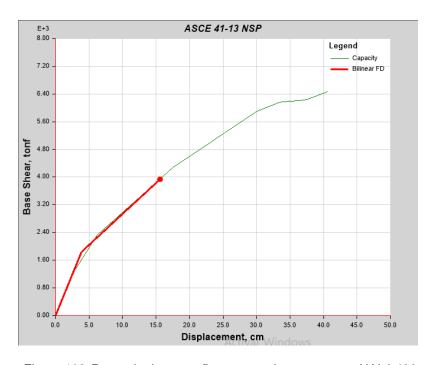


Figura 108. Punto de desempeño para un sismo muy raro X Nch433

El desempeño sísmico según visión 2000 será especificado en la siguiente tabla:

	Δ	ΣΔ
Funcional	10,259	16,659
Seguridad de vida	10,259	26,919
Cerca del colapso	6,840	33,758
Colapso	6,840	40,598

Figura 109. Capacidad de desplazamiento de la estructura X Nch433

Figura 110. Niveles de desempeño X Nch433

	Δ	ΣΔ
Funcional	10,259	16,659
Seguridad de vida	10,259	26,919
Cerca del colapso	6,840	33,758
Colapso	6,840	40,598

Figura 111. Desplazamiento de la demanda sísmica X Nch433

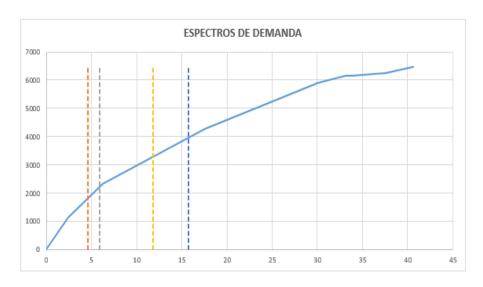


Figura 112. Espectros de demanda X Nch433



Figura 113. Nivel de desempeño vs Demanda de la estructura X Nch433

Interpretación:

En el eje X, las demandas que soportan la estructura ante solicitaciones sísmicas cumplen con el nivel de desempeño guiado por el comité VISION2000, incluso tienen rango amplio para llegar al límite de estas solicitaciones. Esto es debido a que la norma Nch433 tiene más amplitud al momento de evaluar el máximo desplazamiento de la estructura en relación a la capacidad estructural.

Tabla 15. Desempeño y demanda eje x Nch433

	DESEMPEÑO	DEMANDA	SALDO
	(cm)	(cm)	(cm)
Totalmente operacional	6.4	4.64	1.76
Operacional	16.659	5.9	10.759
Resguardo de vida	26.919	11.8	15.119
Cerca del colapso	33.758	15.7	18.058
Colapso	40.598		

Fuente: Elaboración propia

Análisis en dirección Y:

Sismo Frecuente:

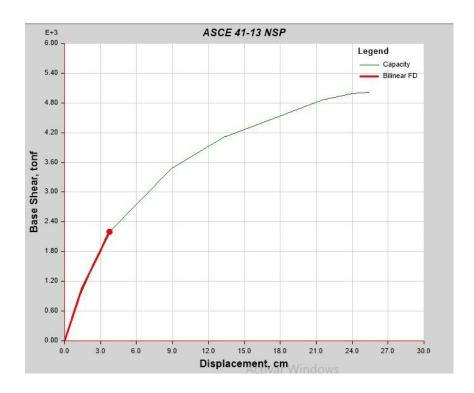


Figura 114. Punto de desempeño para un sismo frecuente Y Nch433

Sismo Ocasional:

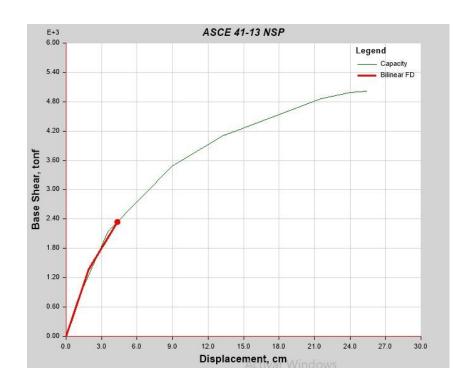


Figura 115. Punto de desempeño para un sismo ocasional Y Nch433

Sismo Raro (Diseño):

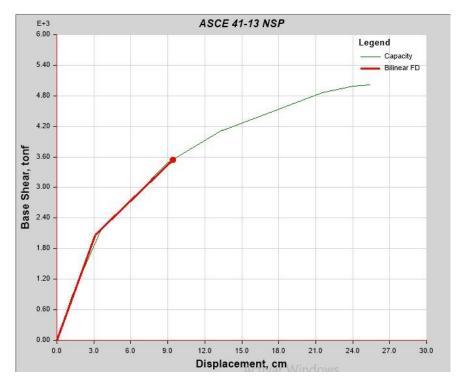


Figura 116. Punto de desempeño para un sismo raro Y Nch433

Sismo Muy Raro:

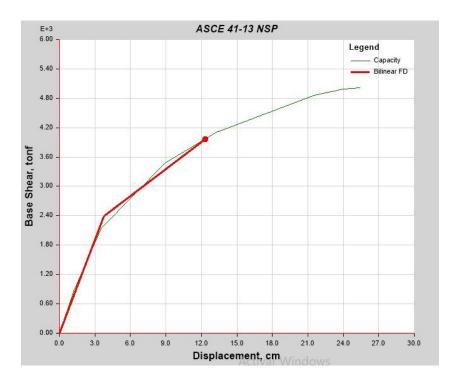


Figura 117. Punto de desempeño para un sismo muy raro Y Nch433

El desempeño de la estructura en el eje Y, de acuerdo a los parámetros dictados por el comité VISION200, son:

	Δ	ΣΔ
Funcional	6,576	10,076
Seguridad de		
vida	6,576	16,652
Cerca del		
colapso	4,384	21,036
Colapso	4,384	25,420

Figura 118. Capacidad de desplazamiento de la estructura Y Nch433

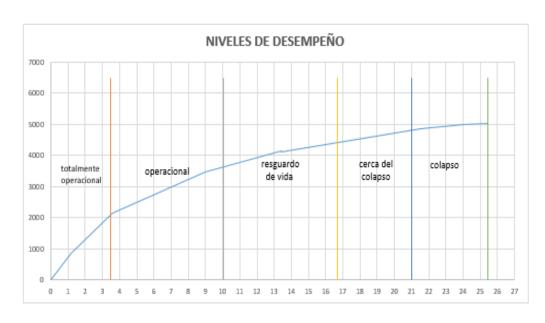


Figura 119. Niveles de Desempeño Y Nch433

Sismos	Δ (cm)
frecuente	3,7
ocasional	4,34
raro	9,41
muy raro	12,32

Figura 120. Desplazamiento de la demanda sísmica Y Nch433

Figura 121. Espectros de demanda Y Nch433

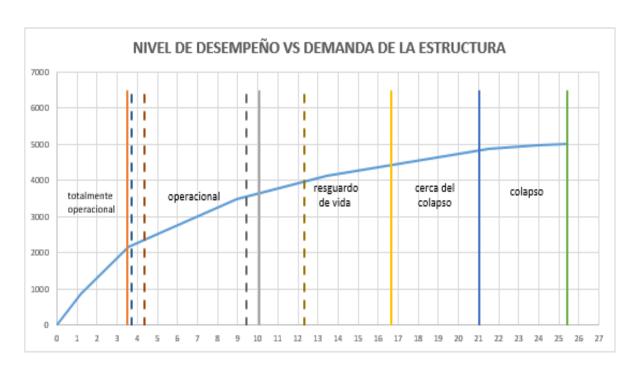


Figura 122. Nivel de desempeño vs Demanda de la estructura X Nch433

Interpretación:

En el eje Y, las demandas obtenidas al analizar la estructura ante solicitaciones sísmicas, cumplen en la gran mayoría, con el nivel de desempeño regido por el comité VISION2000, hasta en un 58.57%.

Tabla 16. Desempeño y demanda eje y Nch433

	DESEMPEÑO	DEMANDA	SALDO
	(cm)	(cm)	(cm)
Totalmente	3.5	3.7	0.2
operacional	5.5	5.7	0.2
Operacional	10.076	4.34	5.736
Resguardo de	16.652	9.41	7.242
vida	10.002	0.41	7.272
Cerca del	21.036	12.32	8.716
colapso	21.030	12.32	0.710
Colapso	25.420		

Fuente: Elaboración propia

4.2.1.5.3 Comparación

EJE X:

Tabla 17. Punto de desempeño eje X

E030

	DESEMPEÑO (cm)	DEMANDA (cm)	DIFERENCIA REQUERIDA (cm)
Totalmente operacional	4	7.53	3.53
Operacional	9.05	9.048	ok
Resguardo de vida	14.10	20.83	6.73
Cerca del colapso	17.47	27.51	10.04
Colapso	20.84		

Nch433

	DESEMPEÑO	DEMANDA	SALDO
	(cm)	(cm)	(cm)
Totalmente operacional	6.4	4.64	1.76
Operacional	16.659	5.9	10.759
Resguardo de vida	26.919	11.8	15.119
Cerca del colapso	33.758	15.7	18.058
Colapso	40.598		

Fuente: Elaboración propia

Interpretación:

Para los sismos de demanda en el eje x, se observa que los valores obtenidos para la norma sísmica peruana, no cumplen con los parámetros de desempeño permitido por el comité VISION2000, debido a que la estructura sobrepasa el desplazamiento máximo en un sismo de diseño, llegando a colapsar antes del resguardo de vida. Todo lo contrario sucede con los datos obtenidos de la norma Nch433, pues se encuentran dentro de los requerimientos en todos los niveles de desempeño. Esto se debe a que los espectros de diseño para ambas normas sísmicas tienen diferencias, ya que los valores relacionados a la normativa peruana, ofrecen factores que hacen que el espectro de diseño sea más conservador (zonificación, coeficiente de amplificación sísmica, coeficiente de reducción sísmica).

EJE Y:

Tabla 18. Punto de desempeño eje Y

E030

	DESEMPEÑO	DEMANDA	SALDO
	(cm)	(cm)	(cm)
Totalmente operacional	4	5.18	1.18
Operacional	10.063	6.4	3.663
Resguardo de vida	16.126	14.58	1.546
Cerca del colapso	20.168	19.48	3.663
Colapso	24.21		

Nch433

	DESEMPEÑO	DEMANDA	SALDO
	(cm)	(cm)	(cm)
Totalmente operacional	3.5	3.7	0.2
Operacional	10.076	4.34	5.736
Resguardo de vida	16.652	9.41	7.242
Cerca del colapso	21.036	12.32	8.716
Colapso	25.420		

Fuente: Elaboración propia

Interpretación:

Se puede observar que en el eje y, la mayoría de datos cumplen con la demanda solicitada por el comité VISION2000 en ambas normativas, el cual ayuda a establecer de esa manera la seguridad de los habitantes de una vivienda multifamiliar. Del mismo modo, se analiza que los parámetros de desempeño que soportará la estructura con el diseño sismoresistente chileno, son mayores en comparación a la normativa nacional. Esto se debe a que la normativa chilena delimita valores del coeficiente de reducción sísmica, otorgando un espectro de diseño menor que la normativa peruana.

V. DISCUSIÓN

- Según los resultados obtenidos para el indicador de distorsión, los valores máximos para las derivas en X se dan en el piso 09; 6.13‰ para la norma E030 0.689\% para la norma Nch433, esto resulta en una diferencia de 5.44%. Los valores máximos de las distorsiones en Y se dan en el piso 10; 4.94‰ para la norma E030 y 0.705‰ para la norma Nch433, con una diferencia de 4.235%. A comparación de Silva y Aguila, en su investigación realizada el 2017, obtienen en el eje X una deriva de 5.12‰ y 1.14‰ para la norma peruana y chilena respectivamente; y en el eje Y obtuvo una deriva de 0.68% y 2.87%, existiendo una divergencia de 3.98% y 2.19% (X y Y correspondientemente). Con lo mencionado anteriormente, se entiende que los resultados de las derivas obtenidas con la norma sísmica E030 son mayores en comparación a las resultantes de la norma Nch433, esto para ambas investigaciones. Esto es generado debido a que la norma sísmica peruana considera mayores valores en relación al coeficiente de amplificación sísmica, además de que toma valores de irregularidad estructural el cual, a diferencia de la normativa chilena, no los contempla. Haciendo así que las distorsiones para la e030 sean mayores.
- Según los resultados obtenidos para el indicador de periodo de vibración, comparando los valores de la norma peruana con la chilena, el valor de mayor espectro de diseño se da en la meseta de la función correspondiente a la E030 con un periodo de 0.57 s y con una aceleración de 2.14 cm/s2. Alfaro, en su tesis del 2017, obtiene también que el valor en la meseta del espectro de diseño con la norma peruana es mayor y constante con un periodo de 0.310 s y con una aceleración de 2.14 cm/s2. Esto se debe a que la Norma Peruana toma el factor de amplificación sísmica (C) como valor constante en el inicio de la función, a comparación de la Norma Chilena, el cuál para detallar el factor de amplificación (α), empieza

gradualmente hasta llegar a un punto límite y descender. Debido a estos coeficientes de amplificación sísmica, la aceleración de la estructura obtenida es mayor en nuestra normativa que la del país vecino.

- Según los resultados obtenidos para el indicador de cortante basal, los valores obtenidos según la norma sísmica E030 en el rango estático es de 1552.4795 ton y 1552.4814 ton, para X y Y respectivamente; para la norma sísmica Nch433, 837.6433 ton (X) y 1043.506 ton (Y). En comparación a lo estudiado por Gonzales y Veli, en su investigación del 2016, los valores de la constante basal estática que detalla es de 1066.06 ton para la norma peruana y 719.24 ton para la norma chilena. Esto concuerda con nuestros resultados ya que la normativa peruana es la que nos otorga datos más altos, esto es debido a que factores de zonificación y reducción sísmica en la E030 generan que se obtenga más fuerza en la base.
- Según los resultados obtenidos para el indicador de capacidad estructural, se tiene que los desplazamientos límites para un periodo de retorno de 950 años, en el eje X es de 20.839 cm para la norma sísmica peruana, mientras que para el país vecino será de 40.598 cm. En el eje Y, son de 24.216 cm y 25.420 cm con respecto a las normas E030 y Nch433. En comparación a Puican en su trabajo realizado el 2019, obtuvo que la estructura tendrá un desplazamiento de 41.5 cm y 35.14 cm en el eje X y Y correspondientemente, entrando en un estado de colapso diseñado para un sismo raro. Se observa, que nuestros resultados en relación a nuestra normativa no son similares, esto es debido a que las condiciones estructurales de ambos diseños no se asemejan, ya que el tipo de estructura que sea sometida a un sismo, interfiere mucho en relación a su capacidad sismoresistente.

Según los resultados obtenidos para el indicador de punto de desempeño, se tiene que la estructura analizada de 15 pisos en relación a la norma E030, no cumple con el desempeño requerido dictado por el comité VISION2000, ya que se encuentra por debajo de la demanda sísmica, esto en el eje X, ya que en el eje Y; se tiene garantizado la efectividad de la estructura ante eventos sísmicos para ambas normas. En comparación a lo analizado por Barrera en su investigación del 2017, obtiene que la estructura examinada muestra un desempeño operacional para un sismo raro de diseño, por lo cual se garantiza que el punto de desempeño con la norma E.030 es efectiva. Nuestros resultados son diferentes en relación a la norma sísmica E030, estos datos están relacionados al tipo de estructura analizada, ya que Barrera estudia un pórtico y la presente investigación utiliza muros estructurales. Es importante recalcar también, que los valores detallados dependen de la altura de la edificación, así como su peso y la fuerza sísmica que recibe. Ello se relaciona directamente al desplazamiento máximo que puede llegar a tener la estructura antes de fallar.

VI. CONCLUSIONES

- Se ha determinado que la aplicación de la norma sísmica peruana y chilena influyen en el resultado de la distorsión de la siguiente manera; con la normativa peruana los datos obtenidos en el eje X y Y, cumplen con el límite establecido por la E030 (7‰). Sin embargo, al comparar los mayores resultados de distorsión con la norma chilena (6.13‰ en X, 4.91‰ en Y), estos valores superan en un 27.17% y 1.86% al límite establecido por la Nch 433 (ver figura 64 y 65). Esto nos indica que la aplicación de la norma E030 influye en mayor medida al momento de obtener los resultados de distorsión. Esto es debido a que la norma E030 trabaja con derivas inelásticas.
- Se ha determinado que la aplicación de la norma sísmica peruana y chilena influyen en el resultado del periodo de vibración de la siguiente manera; los periodos de vibración de la estructura para ambas normativas son de 0.570 s (X) y 0.485 s (Y). La diferencia se da en que para un mismo periodo se va a tener distintas aceleraciones (ver figura 69), para la E030 se cuenta con una aceleración de 2.145 cm/s² para ambas direcciones y para la Nch433 se cuenta con 1.56 cm/s² y 1.66 cm/s² (X y "Y" respectivamente) teniendo una diferencia del 27% en "X" y 22.66% en "Y". La razón por la que la norma sismorresistente peruana influye en mayor medida que la chilena, se debe a que el coeficiente de amplificación sísmica (C) y los factores de zonificación (Z), son mayores en nuestra normativa a comparación de la norma chilena.
- Se ha determinado que la aplicación de la norma sísmica peruana y chilena influyen en el resultado de la cortante basal de la siguiente manera; para la norma sismorresistente chilena, los resultados obtenidos son menores a comparación de la norma peruana E030, esto es debido a que en el eje "X" se tiene una diferencia del 46% y 32.8% (cortante estática y dinámica respectivamente); mientras que en el eje "Y", la diferencia es de 40% y 25.3% (Ver figuras 78 y 79). Esto genera que la estructura

diseñada con la normativa peruana tenga más fuerza sísmica lateral aplicada en la base en sus respectivas direcciones dado a que la influencia del factor de amplificación sísmica, el factor de zonificación y de reducción generan que los valores en la E030 sean mayores.

- Se ha determinado que la aplicación de la norma sísmica peruana y chilena influyen en el resultado de la capacidad estructural de la siguiente manera; el resultado para la norma sismorresistente E030 es poco favorable ante una respuesta estructural después de un sismo, a comparación de la norma Nch433 tanto como para "X" como para "Y" (ver figura 84 y 85). Esto se debe a que los desplazamientos laterales obtenidos en la normativa sismorresistente E030 son menores en comparación a la Nch433 en un 48.65% en "X" y un 4.76% en "Y". La razón por la que la capacidad estructural de la norma sismorresistente E030 es menor que la Nch433, se debe a que la aplicación de fuerzas laterales de entrepiso (Ver figuras 46 y 61), haciendo que la estructura llegue al punto de falla más rápido.
- Se ha determinado que la aplicación de la norma sísmica peruana y chilena influyen en el resultado del punto de desempeño de la siguiente manera; la norma sismorresistente E030 no cumple con lo establecido por VISION2000 pues se encuentra por debajo de la demanda sísmica en la dirección "X" (Ver tabla 17). Sin embargo, el punto de desempeño evaluado con la norma Nch433, tendrá la solicitación necesaria para el resguardo de vida para un sismo de diseño (ver tabla 17 y 18). La razón por la que difieren los resultados se debe a que el espectro de demanda E030 agrega y considera valores más conservadores a comparación de normativa sismorresistente Nch433; estos valores serian la zonificación (Z), factores de irregularidad y el coeficiente sísmico (C).

• En síntesis, se concluye que la norma sísmica peruana E030 influye de mayor manera que la norma sísmica chilena Nch433 al momento de evaluar la respuesta estructural de un edificio de 15 niveles, debido a que al comparar resultados del cálculo de distorsión, se obtuvo como máxima deriva 6.13‰ en X, 4.91‰ en Y, periodo de vibración 0.570 s (X) y 0.485 s (Y), cortante basal estática 1552.48 ton y cortante basal dinámica 1396.27, capacidad estructural de 40.60 cm en X, 25.42 cm en Y, y como punto de desempeño, el resguardo de vida para la normativa chilena. Esto se debe a que los resultados obtenidos con la norma E030 son más conservadores.

VII. RECOMENDACIONES

- Para futuras investigaciones, es importante que tengan en cuenta el cálculo de la distorsión, ya que para la E030; se establecen límites según el tipo material. Sin embargo, estos límites son mayores a comparación de la Nch433, pues en su norma aplican un límite elástico, el cual depende de la altura de entrepiso multiplicada por 0.002. Para modificaciones de la normativa peruana, se recomienda que la distorsión se trabaje con límites elásticos igual que la normativa vecina sin la necesidad de ser multiplicada por un factor "R", el cual lo amplifica más, esto genera que algunas estructuras diseñadas estén moderadamente sobredimensionadas. También se debería tomar en consideración definir las derivas máximas de acuerdo al tipo e importancia de la edificación.
- Se recomienda que, para el cálculo del coeficiente de amplificación sísmica (C), la norma sismoresistente peruana tome en consideración en su análisis no sólo los valores entregados por el estudio de suelos (Tp y Tl), sino también la gama de periodos que llegara a tener la estructura en su diseño, al igual que la normativa vecina (α). Esto ayudará a que el resultado del análisis del coeficiente sísmico sea más acercado a la realidad. Para ello es importante nuevas investigaciones que generen un cálculo menos crítico, ya que tener una función lineal inicial de 2.5, genera que el espectro de diseño tenga resultados conservadores.
- Se recomienda estudiar más a fondo el coeficiente de reducción sísmica dado que la normativa chilena otorga dos opciones de cálculo. La primera toma en cuenta una forma convencional y la segunda es vasado en la tipología de muros estructurales. Ambas operaciones toman en cuenta el periodo de vibración de la estructura (T). Comparando con el cálculo otorgado por la normativa peruana el cual emplea factores de irregularidad para el cálculo de coeficiente de reducción sísmico (R) la cual de determina de una forma rápida, directa y menos precisa. Es por ello, que se debe considerar incluir los

periodos de vibración de la estructura en la ecuación de factor de reducción haciendo que los resultados sean más adecuados ante la respuesta de un sismo.

- Se recomienda que para futuras investigaciones tengan en cuenta el análisis no lineal para ver si las estructuras están cumpliendo con los estándares de niveles de seguridad, que se encuentre en seguridad de vida, De esta manera podremos analizar si la edificación esta apta para su ocupación después de un sismo de cualquier magnitud.
- La estructura debe disponer de longitudes adecuadas de los muros y estar alineados en ambas direcciones, para que sea capaz de soportar la excitación sísmica en cualquier dirección y limitando los desplazamientos de los entrepisos y controlando los daños a la estructura.
- Se debe tener la necesidad de tener una estructura capaz de deformarse sin llegar al colapso, lo cual se deforme de manera dúctil cuando ésta sea sometida a un movimiento sísmico incursionando en el rango inelástico, en la cual las secciones de la estructura tengan la capacidad de disipar energía sin llegar a colapsar.

REFERENCIAS

- AGUIAR, R. Factor de reducción de las fuerzas sísmicas en edificios de hormigón armado sin muros de corte. *Monografías de ingeniería sísmica*. [en línea]. 2007, 10 [fecha de consulta 11 mayo 2020]. ISSN 1134-3249
- 2. ALFARO RÍOS, Victor. Estudio comparativo de la Norma Peruana E.030 Diseño Sismorresistente y la Norma Chilena Nch433 Diseño Sísmico de edificios, y su aplicación a un edificio de concreto armado [en línea]. Tesis para optar el título profesional de ingeniero civil. Universidad Privada de Tacna, 2017. [consultado 5 mayo 2020] Disponible en: http://repositorio.upt.edu.pe/bitstream/UPT/333/1/Alfaro-R%c3%ados-V%c3%adctor.pdf
- ALVEAR S., Javier y RUALES, José. Diseño por desempeño en edificios de hormigón armado, de acero estructural, y mixtos [en línea]. Tesis para optar el título de ingeniero civil. Universidad Católica de Ecuador, 2014. [consultado 7 mayo] Disponible en: http://repositorio.puce.edu.ec/bitstream/handle/22000/9575/TESIS-ALVEAR%20RUALES.pdf?sequence=1&isAllowed=y
- ARIAS Jesús, VILLASÍS Miguel y MIRANDA María. El protocolo de investigación III: la población de estudio. Revista Alergia México [en línea].
 2016, Vol. 62 [fecha de consulta 10 junio 2020]. Disponible en: http://revistaalergia.mx/ojs/index.php/ram/article/view/181/309
- BARBAT, A.H. et al. Probabilistic assessment of the seismic risk based on stiffness degradation. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería [en linea]. 2016, 32 (1) [fecha de consulta 7 de mayo 2020]. DOI 10.1016/j.rimni.2014.11.001
- 6. BARRERA ALVARADO, Pedro. Evaluación del punto de desempeño sísmico de una edificación escolar, diseñado con la Norma E.030, usando criterios de Visión 2000 [en línea]. Tesis para optar el título profesional de ingeniero civil. Universidad Cesar Vallejo,2017. [consultada 6 mayo 2020] Disponible en: http://repositorio.ucv.edu.pe/bitstream/handle/UCV/1370/Barrera_APJ.pdf ?seguence=1&isAllowed=y

- BENITO, Belén y CABAÑAS, Luis. Caracterización del Movimiento del Suelo en Ingeniería Sísmica. *E.U.I.T de topografía* [en línea].1999,11, [fecha de consulta 12 mayo 2020]. ISSN 0214-4557.
- BONETT DÍAZ, Ricardo. Vulnerabilidad y riesgo sísmico de edificios.
 Aplicación a entornos urbanos en zonas de amenaza alta y moderada [en línea]. Tesis doctoral. Universidad Politécnica de Cataluña, 2003.
 [Consultado 16 mayo 2020]. Disponible en:
 https://upcommons.upc.edu/handle/2117/93542
- BSI Group. ¿Qué es una norma? -Ventajas y Beneficios para su uso. [en línea] [fecha de consulta: 20 mayo 2020]. Disponible en: https://www.bsigroup.com/es-PE/normas/informacion-acerca-de-las-normas-/que-es-una-norma/
- 10. CAMPOS, Daniel. Application of the Unbounded Probability Distribution of the Johnson System for Floods Estimation. *Ingeniería, investigación y tecnología* [en linea]. 2015, **15** (4) [fecha de consulta 22 de mayo]. ISSN 1405-7743. DOI 10.1016/j.riit.2015.09.005
- 11. CARRILLO, Julián, HERNÁNDEZ, Hugo y RUBIANO, Astrid. Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico. *Ingeniería, investigación y tecnología* [en línea]. 2014, 15 [fecha de consulta 15 mayo 2020]. ISSN 1405-7743.
- 12. DARIA, Julio. Análisis comparativo de estructuras con y sin reforzamiento. Universidad Laica Eloy Alfaro de Manabí [en línea]. 2016, 17 [fecha de consulta 9 mayo 2020]. ISSN 1390-1915.
- 13. DOMINGUEZ, Mauricio. Periodo de vibración de las edificaciones. Revista de Arquitectura e Ingeniería [en línea]. 2014, 8 (2), [fecha de consulta 14 de mayo 2020]. ISSN 1990-8830
- 14. EDDIN, Dia. A Simple Model for Calculating the Fundamental Period of Vibration in Steel Structures. APCBEE Procedia [en línea] 2014, Vol. 9, 339-346 [fecha de consulta: 16 mayo 2020] Disponible en: https://www.sciencedirect.com/science/article/pii/S221267081400061X
- 15. GARCIA, Octavio, ZÁRATE, Gonzalo y AYALA, Gustavo. Método sísmico estático para edificios asimétricos: revisión de enfoques. Revista de Ingeniería Sísmica [en línea]. 2003, N° 69, 25-44 [fecha de consulta 10 mayo 2020]. Disponible en:

- https://www.researchgate.net/publication/26506085 Metodo sismico est atico_para_edificios_asimetricos_revision_de_enfoques
- 16. GOGGINS Jamie y BYRNE David. Evaluating the structural capacity of concrete elements through in situ instrumentation. Key Engineering Materials [en línea] 2013, Vol. 569, 382-389 [fecha de consulta: 15 mayo 2020]. Disponible en: https://www.researchgate.net/publication/272608419 Evaluating the Structural Capacity of Concrete Elements through In Situ Instrumentation
- 17. GÓMEZ Daniel, MARULANDA Johannio y THOMSON Peter. Sistemas de control para la protección de estructuras civiles sometidas a cargas dinámicas. *DYNA* [en línea]. 2007, **75**. [fecha de consulta: 16 mayo 2020]. ISSN: 2346 – 2183.
- 18. GÓMEZ, José. Presentación de un nuevo modelo matemático para cálculo del periodo fundamental de vibración de estructuras de edificios. XII Congreso Nacional de Ingeniería Estructural [en línea] 2002, 149-160 [fecha de consulta: 16 mayo 2020]. Disponible en: http://www.smie.org.mx/SMIE_Articulos/co/co 12/te 01/ar 15.pdf
- 19.GONZALES TOYCO, Cesar y VELI SEGOVIA, Alfredo. Evaluación del comportamiento sísmico de una edificación con sistema MDL aplicando la NTP e030-2016 y la Norma Chilena 433-2012 [en línea]. Tesis para optar el título profesional de ingeniero civil. Universidad San Martin de Porres, 2016. [consulta 5 mayo 2020] Disponible en: http://www.repositorioacademico.usmp.edu.pe/bitstream/handle/usmp/27 19/gonzales veli.pdf;jsessionid=827CFB210A8EB811D2B0990C9E5FFB 90?sequence=1
- 20. GUTIERREZ, Enrique et al. Identification of Close Vibration Modes of a Quasi-Axisymmetric Structure: Complementary Study. *Ingeniería, investiación y tecnología* [en linea]. 2013, **14** (2) [fecha de consulta 15 de mayo 2020]. ISSN 1405-7743. DOI 10.1016/S1405-7743(13)72237-6
- 21. HALLEGATTE, Stephane et al. Unbreakable: Building the Resilience of the Poor in the Face of Natural Disasters. Worl Bank Group [en línea]. 2016 [fecha de consulta 02 mayo 2020]. ISSN 4648-1003. DOI 10.1596/978-1-4648-1003-9

- 22. HONGPING, Zhu et al. Calculation of structural response and response sensitivity with improved substructuring method. *Journal of aerospace engineering* [en línea] 2019, Vol. **32** (3) [fecha de consulta: 20 mayo 2020]. Disponible en: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29AS.1943-5525.0000996
- 23. Ingeniería Civil Chile. Norma Chilena Oficial [en línea] [fecha de consulta 15 mayo 2020]. Disponible en: https://ingenieria-civil.github.io/chile/normas/00-NCh-433-Of-1996-Mod-2009-DS-61-2011-refundido.pdf
- 24. ISIK, E. y KUTANIS, M. Determination of Local Site-Specific Spectra Using Probabilistic Seismic Hazard Analysis for Bitlis Province, Turkey. *Earth Sciences Research Journal* [en línea]. 2015, **19** (2), 129-134 [fecha de consulta: 16 mayo 2020] ISSN 1794-6190. DOI 10.15446/esrj. v19n2.50101
- 25.LÓPEZ, Oscar, CORONEL, Gustavo y ROJAS, Romme. Índices de priorización para la gestión del riesgo sísmico en edificaciones existente. Revista de la Facultad de Ingeniería Universidad Central de Venezuela [en línea]. 2014, 29 [fecha de consulta: 16 mayo 2020]. ISSN: 0798-4065.
- 26. LÓPEZ, Saúl y AYALA, A. Método de diseño sísmico basado en desplazamientos para marcos de concreto reforzado. SCIELO Scientific Electronic Library Online [en línea]. 2013, 88, [fecha de consulta 16 mayo 2020]. ISSN 0185-092X.
- 27.LOPEZ, Tomas, TOMAS, Espín y SANCHEZ, Gregorio. Influence of the type of plastic hinge in the non-linear analysis of reinforced concrete structures. *Hormigón y acero* [en linea]. 2017, 68, 107-119 [fecha de consulta 15 de mayo 2020]. ISSN 0439-5689. DOI 10.1016/j.hya.2017.04.006
- 28.LOZADA José. Investigación aplicada. Definición, propiedad intelectual e industria. Revista de divulgación científica de la Universidad Tecnológica Indoamérica [en linea]. 2014, Vol. 3, (1) [fecha de consulta 20 de mayo 2020]. Disponible en:

https://dialnet.unirioja.es/servlet/articulo?codigo=6163749

- 29. LUEVANOS, Arnulfo. Análisis de dos modelos por el método dinámico para el diseño sísmico de edificios. Revista de Arquitectura e Ingeniería [en línea].2012, 5 (3) [fecha de consulta 13 de mayo 2020]. ISSN 1990-8830.
- 30.MATIAS, W.T et al. Nonlinear analysis of plane frames using a co-rotating Timoshenko beam element. *Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería* [en linea]. 2017, Vol. **33** (1-2). 115-122. [fecha de consulta 15 de mayo 2020]. Disponible en: https://www.scipedia.com/public/Silva_et_al_2016a
- 31.MEDINA, Ricardo y MUSIC, Juan. Determination of the performance level of a residential building based on reinforced concrete walls and designed according to Chilean regulations. *Obras y proyectos* [en linea]. 2018, Vol. 23, [fecha de consulta 13 de mayo 2020]. Disponible en:

 https://scielo.conicyt.cl/scielo.php?script=sci_abstract&pid=S0718-28132018000100063&lng=en&nrm=iso
- 32.MIÑÁN Whitney. Comas supera a San Miguel en la venta de viviendas en marzo [en línea] [fecha de consulta 10 junio 2020]. Disponible en: https://gestion.pe/economia/comas-supera-san-miguel-venta-viviendas-marzo-232389-noticia/?ref=gesr
- 33. MOLINA, Jose. Mixed methods research and management: advantages and implications. *Department of Management, University of Alicante* [en linea]. 2012, **15**, 33-56 [fecha de consulta 4 de mayo 2020]. Disponible en: https://journals.sagepub.com/doi/abs/10.1177/1094428110393023#
- 34. PIMIENTA, Rodrigo. Encuestas probabilísticas vs no probabilísticas. *Política y cultura* [en línea] 2000, **13**, 263-276 [fecha de consulta 8 de mayo 2020]. ISSN 0188-7742
- 35. PUICAN RUDECINDO, Williams. Desempeño Sísmico de un edificio de 6 pisos, para identificar niveles de seguridad frente a movimientos sísmicos, Lima-2019 [en línea]. Tesis para optar el título profesional de ingeniero civil. Universidad Cesar Vallejo, 2019. [consultada 6 mayo 2020] Disponible en: http://repositorio.ucv.edu.pe/bitstream/handle/UCV/39829/Puican_RWM.p

- 36. QUINDE, Pablo y REINOSO, Eduardo. Estudio de peligro sísmico de Ecuador y propuesta de espectros de diseño para la Ciudad de Cuenca. *Ingeniería Sísmica* [en línea]. 2016, 94 [fecha de consulta 19 mayo 2020]. ISSN 0185-092X
- 37. REGLAMENTO NACIONAL DE EDIFICACIONES. *Diseño sismoresistente*[en línea]. Perú: Normas legales [fecha de consulta 15 mayo 2020].

 Disponible en:

 https://www.sencico.gob.pe/investigacion/publicaciones.php?id=444
- 38.ROBERTO, Awad. *Análisis y diseño sísmico de edificios* [en linea]. Medellin: Fondo Editorial Universidad EAFIR [fecha de consulta 12 de mayo 2020]. Disponible en: https://es.slideshare.net/juantul/anlisis-y-diseo-ssmico-de-edificios-2daed-roberto-rochel-awad
- 39. ROBLES, Pilar y ROJAS, Manuela. La validación por juicio de expertos: dos investigaciones cualitativas en Lingüística aplicada. Revista Nebrija [en línea]. 2015, Vol. 18 [fecha de consulta 10 junio 2020]. Disponible en: https://www.nebrija.com/revista-linguistica/files/articulosPDF/articulo_55002aca89c37.pdf
- 40.S. Antoniou, R. Pinho, Debe. Development and verification of a displacement based adaptive pushover procedure. *Journal of Earthquake Engineering*. 2004, Vol. 8 (5) 643-661 [fecha de consulta 05 mayo 2020]. ISSN 643-661
- 41. SALCEDO BARCO, Yuler. Desempeño sísmico por el Método Push-Over de un edifico construido en la ciudad de Barranquilla bajo la Norma Nsr-10 [en línea]. Tesis para optar el título de ingeniero civil. Universidad de la Costa, 2017. [consultado 8 mayo] Disponible en: http://repositorio.cuc.edu.co/bitstream/handle/11323/248/1032418668.pdf ?sequence=1&isAllowed=y
- 42. SALDAÑA CRUZADO, Felix. Evaluación del desempeño sísmico de edificaciones esenciales pabellón de emergencias del Hospital Regional de Ica 2019 [en línea]. Tesis para optar el título profesional de ingeniero civil. Universidad Cesar Vallejo, 2019. [consultada 6 mayo 2020] Disponible en: http://repositorio.ucv.edu.pe/bitstream/handle/UCV/39616/Salda%c3%b1 a CFM.pdf?sequence=1&isAllowed=y

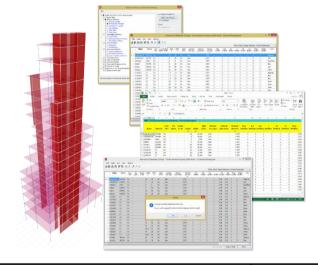
- 43. SALGADO, M.A et al. Probabilistic seismic risk assessment of Lorca through scenario simulations. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería [en linea]. 2016, 32 (2) [fecha de consulta 18 de mayo 2020]. ISSN 0213-1315. DOI 10.1016/j.rimni.2014.12.001
- 44. SEOANE, T. et al. Chapter 7: Statistics: descriptive and inferential statistics. SEMERGEN Medicina de familia [en linea]. 2007, **33** (9), 466-471 [fecha de consulta 22 de mayo 2020]. ISSN 1138-3593. DOI 10.1016/S1138-3593(07)73945-X
- 45. SILVA GARCIA, David y AGUILA ROJAS, Diego. Respuestas sísmicas para un edificio de sistema de muros estructurales ubicado en el distrito de San Miguel, comparando la norma E030 y la Nch 433.of1996 año 2019 [en línea]. Tesis para optar el título profesional de ingeniero civil. Universidad Ricardo Palma, 2019. [consultado 5 mayo 2020] Disponible en: http://repositorio.urp.edu.pe/xmlui/handle/URP/2598
- 46. SOLIDWORKS. Understanding nonlinear analysis. *Dassault Systemes* [en línea] [fecha de consulta: 16 mayo 2020]. 2019 Disponible en: https://www.solidworks.com/media/understanding-nonlinear-analysis
- 47.TAVERA, Hernando et al. Establishing Empirical Period Formula for RC Buildings in Lima, Peru: Evidence for the Impact of Both the 1974 Lima Earthquake and the Application of the Peruvian Seismic Code on High-Rise Buildings. Seismological Research Letters [en línea] 2014, 85 (6) [fecha de consulta: 16 mayo 2020]. ISSN 1308-1315. DOI 10.1785/0220140078
- 48. VALAREZO AGUILAR, Marlon et al. Análisis comparativo de pórticos diseñados con varios códigos sismoresistentes [en línea]. Tesis para optar el título profesional de ingeniera civil. Universidad Técnica Particular de Loja,2014. [consultado 7 mayo 2020] Disponible en: https://mvalarezo.files.wordpress.com/2014/01/valarezo-suarez-zapata-morocho.pdf
- 49. VIELMA, J.C y CANDO, M.A. Assesment of the behavior factor prescribed by the Ecuadorian Construction Code for steel framed structures. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería [en linea]. 2017, Vol.33, 3-4, [fecha de consulta 25 de mayo 2020]. ISSN 0213-1315. DOI 10.1016/j.rimni.2016.09.001

- 50.WANG, Jia-Ji et al. Multi-index distortion control of steel-concrete composite tub-girders considering interior cross-frame deformation.

 Engineering Structures [en línea] 2020, Vol. 210 [fecha de consulta: 13 mayo 2020]. Disponible en:

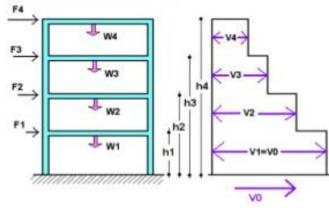
 https://www.sciencedirect.com/science/article/abs/pii/S014102961933093
 7
- 51.WHITE, Howard y SABARWAL, Shagun. Diseño y métodos cuasiexperimentales. *Fondo de las Naciones Unidad para la Infancia (UNICEF)* [en línea] 2014, N° **8** [fecha de consulta: 21 mayo 2020]. Disponible en: https://www.unicef-irc.org/publications/pdf/MB8ES.pdf

TITULO: INCIDENCIA DE LA RESPUESTA ESTRUCTURAL APLICANDO LA NORMA SISMICA PERUANA Y CHILENA PARA MUROS DELGADOS DE 15 NIVELES, LIMA 2020

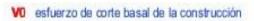

N	MATRIZ RELACIONAL	L	MATRIZ OPERACIONAL															
FORMULACION DEL PROBLEMA	OBJETIVO	HIPOTESIS	VARIABLE	DEFINICION CONCEPTUAL	DEFINICION OPERACIONAL	DIMENSIONES	INDICADORES	ITEMS / PARÁMETROS	ESCALA / NIVEL DE MEDICIÓN									
				"Las normas son	Se efectuará el diseño		DERIVAS											
				conocimiento. Son herramientas	de dos edificios de 15	NODMA CICMICA	ZONIFICACIÓN (Z)											
					pisos con muros delgados de acuerdo a	NORMA SISMICA PERUANA	COEFICIENTE SÍSMICO (C)	E.030										
		I	NODAMA OLOMICA	•	la Norma Sísmica Peruana y Chilena, en		COEFICIENTE DE REDUCCIÓN SÍSMICA (R)											
			NORMA SISMICA PERUANA Y	la productividad. Pueden hacer que las	sus respectivas actualizaciones;		DERIVAS		De razón									
¿DE QUE MANERA INFLUYE LA	DETERMINAR DE QUE MANERA		CHILENA .	organizaciones sean más exitosas y hacer	tomando en cuenta parámetros de derivas		ZONIFICACIÓN (Ao)		De lazon									
APLICACIÓN DE LA NORMA SISMICA	INFLUYE LA APLICACIÓN DE	LA NORMA SISMICA CHILENA		más fácil saludab cotidiana c	más fácil, segura y saludable la vida	más fácil, segura y	más fácil, segura y	más fácil, segura y	más fácil, segura y	más fácil, segura y	más fácil, segura y	más fácil, segura y	más fácil, segura y de dis	de diseño, zonificación,	NORMA SISMICA CHILENA	COEFICIENTE SÍSMICO (C)	NCh433	
PERUANA Y CHILENA EN LA RESPUESTA	LA NORMA SISMICA PERUANA Y	ES MAS EFICIENTE QUE LA PERUANA AL			cotidiana de la gente" [1]	cotidiana de la gente" coeficiente [1] coeficie	coeficiente sísmico y coeficiente de reducción sísmica.		COEFICIENTE DE REDUCCIÓN SÍSMICA (R)									
ESTRUCTURAL PARA MUROS	CHILENA EN LA RESPUESTA	MOMENTO DE EVALUAR LA					DISTORSIÓN											
DELGADOS DE 15	ESTRUCTURAL	RESPUESTA		La respuesta estructural y la sensibilidad de Se analizará la manera en como responde las	La respuesta	Co analizará la manara	/											
NIVELES, LIMA 2020?	PARA MUROS DELGADOS DE 15	ESTRUCTURAL. 5			estructural y la	s LINEALES	PERIODO DE VIBRACIÓN (segundos)											
2020.	NIVELES		RESPUESTA	respuesta, requieren frecuentemente un	estructuras diseñadas ante solicitaciones sísmicas, mediante el		CORTANTE BASAL (Tn)	SAP 2000	De razón									
	ESTRUC		ESTRUCTURAL		calcular los efectos que generan para la	yo de un software e ayudará a medir	CAPACIDAD ESTRUCTURAL (Tn, Δt)	OAI 2000	DC 102011									
			salud y seguridad de la estructura ¹	llud y seguridad de la indicados	LINEALES	PUNTO DE DESEMPEÑO												

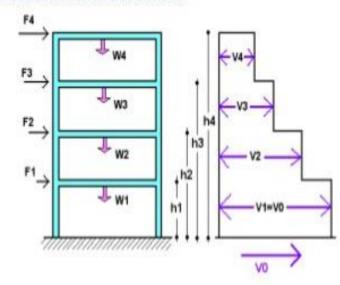
MATRIZ DE CONSISTENCIA

PROBLEMAS	OBJETIVOS	HIPÓTESIS	VARIABLES	DIMENSIONES	INDICADORES
PROBLEMA GENERAL	OBJETIVO GENERAL	HIPÓTESIS GENERAL	V. INDEPENDIENTE		DERIVAS (%)
				NORMA SISMICA	ZONIFICACION (Z)
				PERUANA	COEFICIENTE SISMICO (C)
¿DE QUE MANERA INFLUYE LA	DETERMINAR DE QUE MANERA	LA NORMA SISMICA CHILENA ES MAS			COEFICIENTE DE REDUCCION SISMICA (R)
APLICACIÓN DE LA NORMA SISMICA PERUANA Y CHILENA EN LA	INFLUYE LA APLICACIÓN DE LA NORMA SISMICA PERUANA Y CHILENA	EFICIENTE OLIE LA DEPLIANA AL	NORMA SISMICA PERUANA		DERIVAS (%)
RESPUESTA ESTRUCTURAL PARA MUROS DELGADOS DE 15 NIVELES,	EN LA RESPUESTA ESTRUCTURAL PARA MUROS DELGADOS DE 15	RESPUESTA ESTRUCTURAL PARA MUROS DELGADOS DE 15 NIVELES	Y CHILENA .		ZONIFICACION (Ao)
LIMA 2020?	NIVELES	WIOROS DELGADOS DE 13 NIVELES		NORMA SISMICA CHILENA	COEFICIENTE SISMICO (C)
					COEFICIENTE DE REDUCCION SISMICA (R)
PROBLEMAS ESPECÍFICOS	OBJETIVOS ESPECÍFICOS	HIPÓTESIS ESPECÍFICOS	V. DEPENDIENTE		
¿DE QUE MANERA INFLUYE LA APLICACIÓN DE LA NORMA SISMICA PERUANA Y CHILENA EN LA DISTORSION PARA MUROS DELGADOS DE 15 NIVELES, LIMA 2020?	DETERMINAR DE QUE MANERA INFLUYE LA APLICACIÓN DE LA NORMA SISMICA PERUANA Y CHILENA EN LA DISTORSION PARA MUROS DELGADOS DE 15 NIVELES	LA NORMA SISMICA PERUANA ES MÁS CONSERVADORA QUE LA CHILENA AL MOMENTO DE EVALUAR LA DISTORSION			DISTORSION (Δ_i/h_{ei})
¿DE QUE MANERA INFLUYE LA APLICACIÓN DE LA NORMA SISMICA PERUANA Y CHILENA EN EL PERIODO DE VIBRACIÓN PARA MUROS DELGADOS DE 15 NIVELES, LIMA 2020?	DETERMINAR DE QUE MANERA INFLUYE LA APLICACIÓN DE LA NORMA SISMICA PERUANA Y CHILENA EN EL PERIODO DE VIBRACION PARA MUROS DELGADOS DE 15 NIVELES	LA NORMA SISMICA CHILENA INFLUYE DE MENOR MANERA QUE LA PERUANA AL MOMENTO DE EVALUAR EL PERIODO DE VIBRACIÓN	CHILENA INFLUYE DE LUE LA PERUANA AL UAR EL PERIODO DE	PARAMETROS LINELAES	PERIODO DE VIBRACION (segundos)
¿DE QUE MANERA INFLUYE LA APLICACIÓN DE LA NORMA SISMICA PERUANA Y CHILENA EN LA CORTANTE BASAL PARA MUROS DELGADOS DE 15 NIVELES, LIMA 2020?	APLICACIÓN DE LA NORMA SISMICA PERUANA	LA NORMA SISMICA CHILENA ES MÁS RESTRICTIVA QUE LA PERUANA AL MOMENTO DE EVALUAR LA CORTANTE BASAL DE LA ESTRUCTURA	RESPUESTA ESTRUCTURAL		CORTANTE BASAL (TN)
¿DE QUE MANERA INFLUYE LA APLICACIÓN DE LA NORMA SISMICA PERUANA Y CHILENA EN EL PUNTO DE DESEMPEÑO PARA MUROS DELGADOS DE 15 NIVELES, LIMA 2020?	DETERMINAR DE QUE MANERA INFLUYE LA APLICACIÓN DE LA NORMA SISMICA PERUANA Y CHILENA EN EL PUNTO DE DESEMPEÑO PARA MUROS DELGADOS DE 15 NIVELES	LA NORMA CHILENA INFLUYE DE MEJOR MANERA QUE LA PERUANA, YA QUE TIENE MAS REESTRICCIONES AL MOMENTO DE EVALUAR EL PUNTO DE DESEMPEÑO		PARAMETROS NO	CAPACIDAD ESTRUCTURAI (Tn , Δt)
¿DE QUE MANERA INFLUYE LA APLICACIÓN DE LA NORMA SISMICA PERUANA Y CHILENA EN LA CAPACIDAD ESTRUCTURAL PARA MUROS DELGADOS DE 15 NIVELES, LIMA 2020?	DETERMINAR DE QUE MANERA INFLUYE LA APLICACIÓN DE LA NORMA SISMICA PERUANA Y CHILENA EN LA CAPACIDAD ESTRUCTURAL PARA MUROS DELGADOS DE 15 NIVELES	LA NORMA CHILENA INFLUYE EN MAYOR GRADO QUE LA PERUANA, YA QUE TIENE MAS APLICACION AL MOMENTO DE EVALUAR LA CAPACIDAD ESTRUCTURAL		LINEALES	PUNTO DE DESEMPEÑO

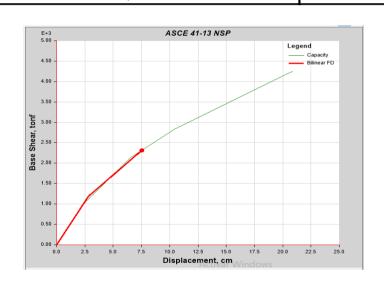

			VD: RE	SPUESTA ESTRUCTUF	RAL			
			INDI	CADOR: DISTORSIÓN	l			
TITULO:	INCIDENCIA	INCIDENCIA DE LA RESPUESTA ESTRUCTURAL APLICANDO LA NORMA SISMICA PERUANA Y CHILENA PARA MUROS DELGADOS 15 NIVELES, LIMA 2020						
		ALVAREZ LLAJARUNA, Davis Alfred Juniors						
ALUMNOS:				LUCHINI SARMIENTO	, Teresa de Jesús			
UBICACIÓN:	Distrito			Col	lique - Comas			
ODICACION:	Av:			Mic	aela Bastidas			
Deriva en X	Drift elastico		Drift inelastico E030	0.007>deriva	Deriva en X	DRIFT con la Nch 433	0.002h>deriva	
Piso	(∆/h))	R*DRIFT		Piso	(∆/h)		
15	0,0009	58	0,005174	CUMPLE	15	0,000580	CUMPLE	
14	0,0009	98	0,005390	CUMPLE	14	0,000604	CUMPLE	
13	0,0010)41	0,005619	CUMPLE	13	0,000630	CUMPLE	
12	0,0010	79	0,005829	CUMPLE	12	0,000653	CUMPLE	
11	0,0011	.10	0,005997	CUMPLE	11	0,000673	CUMPLE	
10	0,0011	.30	0,006103	CUMPLE	10	0,000685	CUMPLE	
9	0,0011	.35	0,006132	CUMPLE	9	0,000689	CUMPLE	
8	0,0011		0,006070	CUMPLE	8	0,000682	CUMPLE	
7	0,0010	94	0,005906	CUMPLE	7	0,000664	CUMPLE	
6	0,0010)41	0,005624	CUMPLE	6	0,000632	CUMPLE	
5	0,0009	64	0,005208	CUMPLE	5	0,000585	CUMPLE	
4	0,0008	359	0,004637	CUMPLE	4	0,000520	CUMPLE	
3	0,0007	'19	0,003881	CUMPLE	3	0,000435	CUMPLE	
2	0,0005	39	0,002912	CUMPLE	2	0,000326	CUMPLE	
1	0,0002	276	0,001488	CUMPLE	1	0,000166	CUMPLE	
Deriva en Y	Drift elas		Drift inelastico E030	0.007>deriva	Deriva en Y	DRIFT con la Nch 433	0.002h>deriva	
Piso	(∆/h)		R*DRIFT		Piso	(∆/h)		
15	0,0008		0,004475	CUMPLE	15	0,000638	CUMPLE	
14	0,0008		0,004597	CUMPLE	14	0,000655	CUMPLE	
13	0,0008		0,004720	CUMPLE	13	0,000673	CUMPLE	
12	0,0008		0,004830	CUMPLE	12	0,000689	CUMPLE	
11	0,0009		0,004908	CUMPLE	11	0,000700	CUMPLE	
10	0,0009		0,004940	CUMPLE	10	0,000705	CUMPLE	
9	0,0009		0,004914	CUMPLE	9	0,000702	CUMPLE	
8	0,0008		0,004818	CUMPLE	8	0,000689	CUMPLE	
7	0,0008		0,004642	CUMPLE	7	0,000664	CUMPLE	
6	0,0008		0,004375	CUMPLE	6	0,000625	CUMPLE	
5	0,0007		0,004005	CUMPLE	5	0,000572	CUMPLE	
4	0,0006		0,003519	CUMPLE	4	0,000502	CUMPLE	
3	0,0005		0,002901	CUMPLE	3	0,000413	CUMPLE	
2	0,0003		0,002138	CUMPLE	2	0,000304	CUMPLE	
1	0,0001	.95	0,001053	CUMPLE	1	0,000149	CUMPLE	
N°			EXPERTO		CIP	FIRMA	PUNTAJE	
1	HUAMANI ANDRADE, Katherine Patricia			200803	Katherine Patricia Naemari Andraos INGENIERO.CNIL Reg. C.I.P. 200803	1,0		
2	BENDEZU ROMERO, Lenin Miguel			guel	75361	LEIGH MIGUEL BEADEZU ROMERO INCENIERO CIVIL ROB. CIP Nº 7536*	1,0	
3		TOF	RALVA BENDEZU, Jersy Po	ool	192067	JERSY POOL JORALIA BENDEZU INGENIERO CIVIL Reg. CIP N° 192097	1,0	

			VD: RESI	PUESTA ESTRUCTURAL					
			INDICADOR	: PERIODO DE VIBRACI	IÓN				
TITU	LO:	INCIDENCIA DE I	LA RESPUESTA ESTRUCT	URAL APLICANDO LA NORM.	IA SISMICA PERUANA Y CHI	ILENA PARA MUROS DELGAI	DOS 15 NIVELES, LIMA 2020		
	Alvarez Llajaruna, Davis Alfred Juniors								
ALUMI	NOS:	Luchini Samientos, Teresa de Jesus							
LIDICA	CIÁN.	Distrito			Collique - Comas				
UBICAC	LION:	Av:			Micaela Bastidas				
Sistema	Periodos	Estructural con la E.030	Masa participativa UX	Estructural con la E.030	Masa participativa	Estructural con la E.030	Masa participativa RZ (>90%)		
Periodo vibracion		(Sx)	(>90%)	(Sy)	UY (>90%)	(Rz)			
Modo 1	0,57	0,6833	68,33%	0,0018	0,18%	0,0042	0,42%		
Modo 2	0,52	0,0056	68,89%	0,049	5,08%	0,6283	63,25%		
Modo 3	0,485	0,0007	68,96%	0,6265	67,73%	0,0507	68,32%		
Modo 4	0,145	0,1726	86,22%	0,00001242	67,73%	0,0005	68,37%		
Modo 5	0,127	0,0005	86,27%	0,0047	68,20%	0,1652	84,89%		
Modo 6	0,114	0,00001022	86,27%	0,1749	85,69%	0,0046	85,35%		
Modo 7	0,068	0,0558	91,85%	0,00000243	85,69%	0,0001	85,36%		
Modo 8	0,057	0,0002	91,87%	0,0011	85,80%	0,0591	91,27%		
Modo 9	0,051	0,00004508	91,88%	0,0584	91,64%	0,0009	91,36%		
	DIRECCION	MODO	Ts	% DE	PARTICIPACION DE N	MASA	Aceleracion espec.		
	DIRECCION	MODO	15	Ux	Uy	Uz	Adg		
E.030	TRAS EN X	1	0,570	68,33%			2,1458		
		•	0.530			62,83%	2,1458		
	TRAS EN Z	2	0,520			0-/00/-	2,1430		
-	TRAS EN Z TRAS EN Y	3	0,520		62,65%	02,007	2,1458		
Sistama				Estructural con la		Estructural con la	,		
Sistema		3	0,485	Estructural con la Nch433	Masa participativa		,		
Sistema Periodo vibracion	TRAS EN Y	3 Estructural con la	0,485 Masa			Estructural con la	2,1458		
	TRAS EN Y	3 Estructural con la Nch433	0,485 Masa participativa	Nch433	Masa participativa	Estructural con la Nch433	2,1458		
Periodo vibracion	TRAS EN Y Periodos	3 Estructural con la Nch433 (Sx)	0,485 Masa participativa (>90%)	Nch433 (Sy)	Masa participativa (>90%)	Estructural con la Nch433 (Rz)	2,1458 Masa participativa (>90%)		
Periodo vibracion Modo 1	Periodos 0,57	3 Estructural con la Nch433 (Sx) 0,6833	0,485 Masa participativa (>90%) 68,33%	Nch433 (Sy) 0,0018	Masa participativa (>90%) 0,18%	Estructural con la Nch433 (Rz) 0,0042	2,1458 Masa participativa (>90%) 0,42%		
Periodo vibracion Modo 1 Modo 2	Periodos 0,57 0,52	3 Estructural con la Nch433 (Sx) 0,6833 0,0056	0,485 Masa participativa (>90%) 68,33% 68,89%	Nch433 (Sy) 0,0018 0,049	Masa participativa (>90%) 0,18% 5,08%	Estructural con la Nch433 (Rz) 0,0042 0,6283	2,1458 Masa participativa (>90%) 0,42% 63,25%		
Periodo vibracion Modo 1 Modo 2 Modo 3	7 Periodos 0,57 0,52 0,485	3 Estructural con la Nch433 (Sx) 0,6833 0,0056 0,0007	0,485 Masa participativa (>90%) 68,33% 68,89% 68,96%	Nch433 (Sy) 0,0018 0,049 0,6265 0,00001242 0,0047	Masa participativa (>90%) 0,18% 5,08% 67,73% 67,73% 68,20%	Estructural con la Nch433 (Rz) 0,0042 0,6283 0,0507	2,1458 Masa participativa (>90%) 0,42% 63,25% 68,32%		
Periodo vibracion Modo 1 Modo 2 Modo 3 Modo 4 Modo 5 Modo 6	7 Periodos 0,57 0,52 0,485 0,145	3 Estructural con la Nch433 (Sx) 0,6833 0,0056 0,0007 0,1726 0,0005 0,00001022	0,485 Masa participativa (>90%) 68,33% 68,89% 68,96% 86,22% 86,27% 86,27%	Nch433 (Sy) 0,0018 0,049 0,6265 0,00001242 0,0047 0,1749	Masa participativa (>90%) 0,18% 5,08% 67,73% 67,73% 68,20% 85,69%	Estructural con la Nch433 (Rz) 0,0042 0,6283 0,0507 0,0005 0,1652 0,0046	2,1458 Masa participativa (>90%) 0,42% 63,25% 68,32% 68,37% 84,89% 85,35%		
Periodo vibracion Modo 1 Modo 2 Modo 3 Modo 4 Modo 5	7RAS EN Y Periodos 0,57 0,52 0,485 0,145 0,127	3 Estructural con la Nch433 (Sx) 0,6833 0,0056 0,0007 0,1726 0,0005	0,485 Masa participativa (>90%) 68,33% 68,89% 68,96% 86,22% 86,27%	Nch433 (Sy) 0,0018 0,049 0,6265 0,00001242 0,0047	Masa participativa (>90%) 0,18% 5,08% 67,73% 67,73% 68,20%	Estructural con la Nch433 (Rz) 0,0042 0,6283 0,0507 0,0005 0,1652	2,1458 Masa participativa (>90%) 0,42% 63,25% 68,32% 68,37% 84,89%		
Periodo vibracion Modo 1 Modo 2 Modo 3 Modo 4 Modo 5 Modo 6 Modo 7 Modo 8	7RAS EN Y Periodos 0,57 0,52 0,485 0,145 0,127 0,114	3 Estructural con la Nch433 (Sx) 0,6833 0,0056 0,0007 0,1726 0,0005 0,00001022 0,0558 0,0002	0,485 Masa participativa (>90%) 68,33% 68,89% 68,96% 86,22% 86,27% 86,27% 91,85% 91,85%	Nch433 (Sy) 0,0018 0,049 0,6265 0,00001242 0,0047 0,1749 0,00000243 0,0011	Masa participativa (>90%) 0,18% 5,08% 67,73% 67,73% 68,20% 85,69% 85,69% 85,80%	Estructural con la Nch433 (Rz) 0,0042 0,6283 0,0507 0,0005 0,1652 0,0046	2,1458 Masa participativa (>90%) 0,42% 63,25% 68,32% 68,37% 84,89% 85,35%		
Periodo vibracion Modo 1 Modo 2 Modo 3 Modo 4 Modo 5 Modo 6 Modo 7	7RAS EN Y Periodos 0,57 0,52 0,485 0,145 0,127 0,114 0,068	3 Estructural con la Nch433 (Sx) 0,6833 0,0056 0,0007 0,1726 0,0005 0,0001022 0,0558	0,485 Masa participativa (>90%) 68,33% 68,89% 68,96% 86,22% 86,27% 86,27% 91,85%	Nch433 (Sy) 0,0018 0,049 0,6265 0,00001242 0,0047 0,1749 0,00000243 0,0011 0,0584	Masa participativa (>90%) 0,18% 5,08% 67,73% 67,73% 68,20% 85,69% 85,69% 85,80% 91,64%	Estructural con la Nch433 (Rz) 0,0042 0,6283 0,0507 0,0005 0,1652 0,0046 0,0001 0,0591 0,0009	2,1458 Masa participativa (>90%) 0,42% 63,25% 68,32% 68,37% 84,89% 85,35% 85,36% 91,27% 91,36%		
Periodo vibracion Modo 1 Modo 2 Modo 3 Modo 4 Modo 5 Modo 6 Modo 7 Modo 8	7RAS EN Y Periodos 0,57 0,52 0,485 0,145 0,127 0,114 0,068 0,057 0,051	3 Estructural con la Nch433 (Sx) 0,6833 0,0056 0,0007 0,1726 0,0005 0,00001022 0,0558 0,0002 0,00004508	0,485 Masa participativa (>90%) 68,33% 68,89% 68,96% 86,22% 86,27% 86,27% 91,85% 91,85% 91,87%	Nch433 (Sy) 0,0018 0,049 0,6265 0,00001242 0,0047 0,1749 0,00000243 0,0011 0,0584	Masa participativa (>90%) 0,18% 5,08% 67,73% 68,20% 85,69% 85,69% 85,80% 91,64% PARTICIPACION DE N	Estructural con la Nch433 (Rz) 0,0042 0,6283 0,0507 0,0005 0,1652 0,0046 0,0001 0,0591 0,0009	2,1458 Masa participativa (>90%) 0,42% 63,25% 68,32% 68,37% 84,89% 85,35% 85,36% 91,27% 91,36% Aceleracion espec.		
Periodo vibracion Modo 1 Modo 2 Modo 3 Modo 4 Modo 5 Modo 6 Modo 7 Modo 8 Modo 9	7RAS EN Y Periodos 0,57 0,52 0,485 0,145 0,127 0,114 0,068 0,057	3 Estructural con la Nch433 (Sx) 0,6833 0,0056 0,0007 0,1726 0,0005 0,00001022 0,0558 0,0002	0,485 Masa participativa (>90%) 68,33% 68,89% 68,96% 86,22% 86,27% 86,27% 91,85% 91,87% 91,88% Ts	Nch433 (Sy) 0,0018 0,049 0,6265 0,00001242 0,0047 0,1749 0,00000243 0,0011 0,0584 % DE Ux	Masa participativa (>90%) 0,18% 5,08% 67,73% 67,73% 68,20% 85,69% 85,69% 85,80% 91,64%	Estructural con la Nch433 (Rz) 0,0042 0,6283 0,0507 0,0005 0,1652 0,0046 0,0001 0,0591 0,0009	2,1458 Masa participativa (>90%) 0,42% 63,25% 68,32% 68,37% 84,89% 85,35% 85,36% 91,27% 91,36%		
Periodo vibracion Modo 1 Modo 2 Modo 3 Modo 4 Modo 5 Modo 6 Modo 7 Modo 8	7 Periodos 0,57 0,52 0,485 0,145 0,127 0,114 0,068 0,057 0,051 DIRECCION TRAS EN X	3 Estructural con la Nch433 (Sx) 0,6833 0,0056 0,0007 0,1726 0,0005 0,00001022 0,0558 0,0002 0,00004508 MODO 1	0,485 Masa participativa (>90%) 68,33% 68,89% 68,96% 86,22% 86,27% 86,27% 91,85% 91,85% 91,87% 91,88% Ts 0,570	Nch433 (Sy) 0,0018 0,049 0,6265 0,00001242 0,0047 0,1749 0,00000243 0,0011 0,0584	Masa participativa (>90%) 0,18% 5,08% 67,73% 68,20% 85,69% 85,69% 85,80% 91,64% PARTICIPACION DE N	Estructural con la Nch433 (Rz) 0,0042 0,6283 0,0507 0,0005 0,1652 0,0046 0,0001 0,0591 0,0009 MASA Uz	2,1458 Masa participativa (>90%) 0,42% 63,25% 68,32% 68,37% 84,89% 85,35% 85,36% 91,27% 91,36% Aceleracion espec. Adg 1,56		
Periodo vibracion Modo 1 Modo 2 Modo 3 Modo 4 Modo 5 Modo 6 Modo 7 Modo 8 Modo 9	7 TRAS EN Y Periodos 0,57 0,52 0,485 0,145 0,127 0,114 0,068 0,057 0,051 DIRECCION	3 Estructural con la Nch433 (Sx) 0,6833 0,0056 0,0007 0,1726 0,0005 0,00001022 0,0558 0,0002 0,00004508 MODO	0,485 Masa participativa (>90%) 68,33% 68,89% 68,96% 86,22% 86,27% 86,27% 91,85% 91,87% 91,88% Ts	Nch433 (Sy) 0,0018 0,049 0,6265 0,00001242 0,0047 0,1749 0,00000243 0,0011 0,0584 % DE Ux	Masa participativa (>90%) 0,18% 5,08% 67,73% 68,20% 85,69% 85,69% 85,80% 91,64% PARTICIPACION DE N	Estructural con la Nch433 (Rz) 0,0042 0,6283 0,0507 0,0005 0,1652 0,0046 0,0001 0,0591 0,0009	2,1458 Masa participativa (>90%) 0,42% 63,25% 68,32% 68,37% 84,89% 85,35% 85,36% 91,27% 91,36% Aceleracion espec. Adg		


N°	EXPERTO	CIP	FIRMA	PUNTAJE
1	HUAMANI ANDRADE, Katherine Patricia	200803	Katheline Paticia Humani Ardao. INGENIERO CNII. Ring. C.I.R. 200803	1,0
2	BENDEZU ROMERO, Lenin Miguel	75361	LEIGHNIGUEL BEMEZU ROMERO INGENIERO CIVIL Reg. CIP N° 7536°	0,9
3	TORALVA BENDEZU, Jersy Pool	192067	JERSY POOL JERSY POOL JORALIAN BENDEZU INGENIERO CIVIL Reg. GIP Nº 192097	0,9


	VD: RESPUESTA ESTRUCTURAL							
	INDICADOR: CORTANTE BASAL							
TITU	TITULO: INCIDENCIA DE LA RESPUESTA ESTRUCTURAL APLICANDO LA NORMA SISMICA PERUANA Y CH PARA MUROS DELGADOS 15 NIVELES, LIMA 2020							
21118	ANIOC:		Alvare	z Llajaruna, Davis Alfred Juniors				
ALUN	INOS:		Luchi	ni Samientos, Teresa de Jesus				
LIBICA	ACIÓN:	Distrito		Collique - Comas				
OBICA	CIOIV.	Av:	: Micaela Bastidas					
Sistema			Estructura con la norma E.030					
Cortante	V Dinamica	V Estatica	90% Ve	Vd> 90% Ve	Factor escala			
Basal en X	1104,9326	1552,48	1397,232	No cumple	1,26454			
Cortante	V Dinamica	V Estatica	90% Ve	90% Ve Vd> 90% Ve				
Basal en Y	1068,2959	1552,48	1397,232	No cumple	1,30791			
Cortante	V Dinamica	V Estatica		FE<=1				
corre. X	1396,6454	1552,48		CUMPLE				
Cortante	V Dinamica	V Estatica		FE<=1				
corre. Y	1396,2698	1552,48		CUMPLE				
Sistema			Estructura	con la norma Nch433				
Cortante	Q Dinamica	Q Estatica		Qe>Qd	Factor escala			
Basal en X	791,1687	837,6433	١	lo cumple, escalar	1,058			
Cortante	Q Dinamica	Q Estatica		Qe>Qd	Factor escala			
Basal en Y	843,0857	1043,506	1	lo cumple, escalar	1,237			
Cortante	Q Dinamica	Q Estatica		Qe>=Qd				
corre. X	837,6433	837,6433		CUMPLE				
Cortante	Q Dinamica	Q Estatica		Qe>=Qd				
corre. Y	1043,506	1043,506		CUMPLE				
	V0 esfuerzo de corte basal de la construcción							

N°	EXPERTO	CIP	FIRMA	PUNTAJE
1	HUAMANI ANDRADE, Katherine Patricia	200803	Katherine Patricia Huemani Andraos INGENIERO CVIL Reg. C.I.P. 200803	1,0
2	BENDEZU ROMERO, Lenin Miguel	75361	LEMMAGUEL BENBEZUROMERO INGENIERO CIVIL Rog. CIP Nº 7536*	0,9
3	TORALVA BENDEZU, Jersy Pool	192067	JERSY POD. TORALVA BENDEZU INGENIERO CIVIL Reg. GIP Nº 192097	1,0


VD: RESPUESTA ESTRUCTURAL						
INDICADOR: CAPACIDAD ESTRUCTURAL						
TITULO:	INCIDENCIA DE LA RESPUESTA ESTRUCTURAL APLICANDO LA NORMA SISMICA PERUANA Y CHILENA PARA MUROS DELGADOS 15 NIVELES, LIMA 2020					
ALUMNOS:	Alvarez Llajaruna, Davis Alfred Juniors					
ALUIVINUS:	Luchini Samientos, Teresa de Jesus					
UBICACIÓN:	Distrito	Collique - Comas				
	Av:	Micaela Bastidas				
Sistema	Estructural con la E.030					
Fuerzas (Ton X)	Desplazamient	o (X) Fuerzas (Ton Y)	Desplazamiento (Y)			
1005,76	2,38	758,75	1,19			
2147,44	6,58	1933,61	3,62			
2838,26	10,44	4272,47	20,81			
4248,17	20,83	83 4448,62 24,21				
Sistema	Estructural con la Nch433					
Fuerzas (Ton X)	Desplazamient	o (X) Fuerzas (Ton Y)	Desplazamiento (Y)			
1152,2	2,42	865,47	1,19			
2338,57	6,23	2152,24	3,56			
5905,18	30,04	4862,35	21,52			
6463,35	40,59	0,59 5017,91 25,42				

N°	EXPERTO	CIP	FIRMA	PUNTAJE
1	HUAMANI ANDRADE, Katherine Patricia	200803	Katherine Patrick husmani Andraoc Brage C.I.F. 200003	0,9
2	BENDEZU ROMERO, Lenin Miguel	75361	LEBRAIGUEL BENBEZU ROMERO INCENIERO CIVIL Reg. CIP Nº 7536*	1,0
3	TORALVA BENDEZU, Jersy Pool	192067	ASSO PER YOUR LINES OF PER YOUR PER YOU	0,9

VD. DECRUECTA ECTRUCTURAL							
VD: RESPUESTA ESTRUCTURAL							
INDICADOR: PUNTO DE DESEMPEÑO							
TITULO:	INCIDENCIA DE LA RESPUESTA ESTRUCTURAL APLICANDO LA NORMA SISMICA PERUANA Y CHILENA PARA MUROS DELGADOS 15 NIVELES, LIMA 2020						
ALLINANIOC.	Alvarez Llajaruna, Davis Alfred Juniors						
ALUMNOS:	Luchini Samientos, Teresa de Jesus						
LIDICACIÓN	Distrito	Collique - Comas					
UBICACIÓN:	Av:	Micaela Bastidas					
Sistema	Estructural con	la E.030	Estructural con la E.030				
Punto de desempeño	Desplazamiento (X)		Desplazamiento (Y)				
Sismo frecuente	9,05		10,06				
Sismo ocasional	14,10		16,12				
Sismo raro-diseño	17,47		20,16				
Sismo muy raro	20,83		24,21				
	Estructural con la Nch433		Estructural con la Nch433				
Punto de desempeño	Desplazamiento (X)		Desplazamiento (Y)				
Sismo frecuente	16,65		10,076				
Sismo ocasional	26,91		16,65				
Sismo raro-diseño	33,75		21,036				
Sismo muy raro	40,59		25,42				

N°	EXPERTO	CIP	FIRMA	PUNTAJE
1	HUAMANI ANDRADE, Katherine Patricia	200803	Katherine Patricia Husmani Andrao. INGENIERO CAVIL. Reg. C.I.P. 200803	1,0
2	BENDEZU ROMERO, Lenin Miguel	75361	LERONMICULE DEMOCRA ROMERO INCRINERO CIVIL ROB. CIP Nº 7536*	0,9
3	TORALVA BENDEZU, Jersy Pool	192067	JERGY POOL JORAMA BENDEZU INGENIERO CORIL Reg. OIP Nº 192097	1,0

INFORMACIÓN CON FINES ACADÉMICOS

Lima 23 de Octubre del 2020

PARA: A quien corresponda

ATENCIÓN: Ing. Roger Contreras Dávila (Especialista y Asesor en Software de CSI CARIBE – ETABS, SAP 2000, SAFE, PERFROM 3D, CSI BRIDGE Y CSI COL).

Por medio de la presente, se hace Constar que los tesistas:

DAVIS ALFRED JUNIORS ALVARES LLAJARUNA

TERESA DE JESUS LUCHINI SARMIENTO

Identificados con DNI: 74654880 y 72253600 Con TITULO: Incidencia de la respuesta estructural aplicando la norma sísmica peruana y chilena para muros delgados de 15 niveles, Lima 2020.

Aplicaron correctamente el uso del Software ETABS V.2018, verificando los análisis y diseño de acuerdo al RNE (E020 | E-030 2006 y E-030 2018 | E-060).

ROGER CRISTIAN CONTRERAS DAVILA RUC: 20605163930

MANAGEMENT SYSTEM CERTIFICATE

Certificate No: 29928-2008-AQ-USA-ANAB Initial certification date: 26 June 2008

Valid: 05 August 2020 - 64 August 2023.

This is to certify that the management system of

CSI-Computers and Structures, Inc.

1646 North California Boulevard, Suite 600, Walnut Creek, CA, 94596, USA

has been found to conform to the Quality Management System standard:

ISO 9001:2015

This certificate is valid for the following scope:

The Development, Support and Licensing of Software Tools for Structural and Earthquake Engineering.

Mace and date: Kety, TX, 21 July 2020

For the issuing effice: DNV GL - Business Assurance 1400 Ravello Drive, Katy, TX, 77449-5164, USA

Sherif Mekkawy

Management Representative

COMPUTERS & STRUCTURES, INC. STRUCTURAL AND EARTHQUAKE ENGINEERING SOFTWARE

OUR QUALITY POLICY The employees of CSI are committed to:

ACHIEVING THE HIGHEST STANDARDS in innovation and technology

CONTINUALLY IMPROVING our products and quality system

EXCEEDING customer expectations

Ashraf Habibullah President Marilya Wicke

Marilyn Wilkes Senior Vice President Syed Hasanain

Executive Vice President