

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Diseño de un concreto ligero de resistencia a la compresión f'c=210 kg/cm² con la adición de agregados no convencionales, Lima - 2020

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

AUTOR:

Cordero Villacorta, Venturo (ORCID: 0000-0002-0446-8685)

ASESOR:

Mg. Ing. Villegas Martinez, Carlos Alberto (ORCID: 0000-0002-4926-8556)

LÍNEA DE INVESTIGACIÓN:

Diseño Sísmico y Estructural

LIMA - PERÚ

2020

DEDICATORIA

En primer lugar, quiero dedicar este desarrollo de proyecto de investigación o tesis a mi familia que me proporcionaron su ayuda económica y moral a lo largo de todo el proceso de mi carrera profesional. Por último, a mis amigos que también me brindaron su apoyo en la realización de este trabajo.

AGRADECIMIENTO

En primer lugar, agradecer a Dios por darme su bendición durante el desarrollo de este proyecto de investigación y el proceso de mi formación universitaria para lograr ser un profesional.

En último lugar agradecer la universidad, mis compañeros, al laboratorio UNI LEM, a mi asesora del proyecto de esta investigación la Mg. Ing. Cecilia Arriola Moscoso y a mi actual asesor del desarrollo de este proyecto el Mg. Ing. Carlos Alberto Villegas Martínez, por todo lo ayudado y aportado para este trabajo de investigación, así como los conocimientos obtenidos durante toda esta etapa de mi vida.

ÍNDICE DE CONTENIDOS

CARÁ1	ΓULA	i
DEDIC	ATORIA	ii
AGRAI	DECIMIENTO	iii
ÍNDICE	E DE CONTENIDOS	iv
RESU	MEN	x
ABSTF	RACT	xi
I. IN	TRODUCCIÓN	14
1.1.	Realidad problemática	15
1.2.	Formulación del problema	17
1.3.	Justificación del estudio	17
1.4.	Hipótesis	19
1.5.	Objetivos	19
II. MA	ARCO TEÓRICO	21
2.1.	Trabajos previos	22
2.2.	Teorías relacionadas al tema	26
III. N	METODOLOGÍA	43
3.1.	Tipo y diseño de investigación	44
3.2.	Variables y operacionalización	45
3.3.	Población, muestra y muestreo	48
3.4.	Técnicas e instrumentos de recolección de datos, validez y confia	ıbilidad
		50
3.5.	Procedimientos	51
3.6.	Método de análisis de datos	52
3.7.	Aspectos éticos	53
IV. F	RESULTADOS	54
4 1	Procedencia de los agregados	55

4.4	Propiedades físicas del concreto	66		
4.5	Propiedades mecánicas del concreto	73		
4.6	Análisis estadístico e interpretación de los resultados	87		
4.7	Contrastación de la hipótesis	. 111		
V.	DISCUSIÓN	. 114		
VI.	CONCLUSIONES	. 119		
VII.	RECOMENDACIONES	. 122		
VIII.	REFERENCIAS	. 124		
IX.	ANEXOS	. 131		
	ÍNDICE DE TABLAS			
Tabla	Tabla 2.1. Agua(lt/m³) para concreto en función del tamaño máximo nominal del			
agreg	gado	39		
Tabla	a 2.2. Resistencia requerida (f'cr)	39		
	Tabla 2.3. Cálculo del cemento.			
Tabla	a 2.4. Cálculo del peso de la piedra	40		
Tabla	Tabla 3.1. Dosificación requerida para resistencia a la compresión			
Tabla	a 3.2. Dosificación requerida para resistencia a la tracción por compresión	n		
diam	etral	49		
Tabla	a 3.3. Dosificación requerida para resistencia a la flexión	50		
Tabla	a 4.1. Análisis granulométrico del agregado fino – arena gruesa	57		
Tabla	a 4.2. Análisis granulométrico del agregado grueso – piedra chancada	58		
Tabla	a 4.3. Análisis granulométrico del agregado grueso no convencional – lad	Irillo		
rococ	cho triturado	59		
Tabla	a 4.4. Peso unitario y contenido de humedad de los agregados	60		
Tabla	Tabla 4.5. Peso específico y porcentaje de absorción de los agregados			
Tabla	Tabla 4.6. Datos respecto al cemento y agua para realizar el diseño de mezcla. 61			

4.2.

4.3.

Tabla 4.7. Propiedades de los agregados para realizar el diseño de mezcla	62
Tabla 4.8. Dosificación obtenida del diseño de mezcla en peso (kg) y después o	ek
la fabricación adicionando ladrillo rococho triturado y aserrín	66
Tabla 4.9. Medición del asentamiento del concreto con el cono de abrams	66
Tabla 4.10. Medición del peso unitario en estado fresco del concreto	68
Tabla 4.11. Medición del peso unitario en estado endurecido del diseño patrón	
con relación a/c = 0.48	69
Tabla 4.12. Medición del peso unitario en estado endurecido del diseño con la	
adición 35% Lr y 2% As con relación a/c = 0.58	70
Tabla 4.13. Medición del peso unitario en estado endurecido del diseño con la	
adición 65% Lr y 4% As con relación a/c = 0.58	71
Tabla 4.14. Medición del peso unitario en estado endurecido del diseño con la	
adición 100% Lr y 6% As con relación a/c = 0.58	71
Tabla 4.15. Resultados del ensayo a compresión de probetas del diseño patrón	
con relación a/c = 0.48	73
Tabla 4.16. Resultados del ensayo a compresión de probetas del diseño con la	
adición 35% Lr y 2% As con relación a/c = 0.58	74
Tabla 4.17. Resultados del ensayo a compresión de probetas del diseño con la	
adición 65% Lr y 4% As con relación a/c = 0.58	74
Tabla 4.18. Resultados del ensayo a compresión de probetas del diseño con la	
adición 100% Lr y 6% As con relación a/c = 0.58	75
Tabla 4.19. Resultados del ensayo de resistencia a la tracción por compresión	
diametral por cada tipo de mezcla a los 28 días de edad	82
Tabla 4.20. Resultados del ensayo de resistencia a la flexión por cada tipo de	
mezcla a los 28 días de edad	84
Tabla 4.21. Prueba de normalidad del peso unitario en estado endurecido del	
concreto	87
Tabla 4.22. Análisis de la varianza del peso unitario en estado endurecido del	
concreto	88
Tabla 4.23. Medias del peso unitario en estado endurecido del concreto	88
Tabla 4.24. Comparación múltiple entre muestras respecto al peso unitario en	
estado endurecido del concreto.	89

Tabla 4.25. Medias en subconjuntos homogéneos para el peso unitario en estado)
endurecido del concreto9	0
Tabla 4.26. Prueba de normalidad de la resistencia a la compresión a los 7 días	
de edad9	2
Tabla 4.27. Análisis de la varianza de la resistencia a la compresión a los 7 días	
de edad9	2
Tabla 4.28. Medias de la resistencia a la compresión a los 7 días de edad 9	3
Tabla 4.29. Comparación múltiple entre muestras respecto a la resistencia a la	
compresión a los 7 días de edad9	3
Tabla 4.30. Medias en subconjuntos homogéneos para la resistencia a la	
compresión a los 7 días de edad9	4
Tabla 4.31. Prueba de normalidad de la resistencia a la compresión a los 14 días	
de edad9	6
Tabla 4.32. Análisis de la varianza de la resistencia a la compresión a los 14 días	
de edad9	6
Tabla 4.33. Medias de la resistencia a la compresión a los 14 días de edad 9	7
Tabla 4.34. Comparación múltiple entre muestras respecto a la resistencia a la	
compresión a los 14 días de edad9	7
Tabla 4.35. Medias en subconjuntos homogéneos para la resistencia a la	
compresión a los 14 días de edad9	8
Tabla 4.36. Prueba de normalidad de la resistencia a la compresión a los 28 días	
de edad10	0
Tabla 4.37. Análisis de la varianza de la resistencia a la compresión a los 28 días	
de edad10	0
Tabla 4.38. Medias de la resistencia a la compresión a los 28 días de edad 10	1
Tabla 4.39. Comparación múltiple entre muestras respecto a la resistencia a la	
compresión a los 28 días de edad10	1
Tabla 4.40. Medias en subconjuntos homogéneos para la resistencia a la	
compresión a los 28 días de edad10	2
Tabla 4.41. Prueba de normalidad de la resistencia a la tracción por compresión	
diametral a los 28 días de edad10	4
Tabla 4.42. Análisis de la varianza de la resistencia a la tracción por compresión	
diametral a los 28 días de edad 10	4

Tabla 4.43. Medias de la resistencia a la tracción por compresión diametral a i	os		
28 días de edad	105		
Tabla 4.44. Comparación múltiple entre muestras respecto a la resistencia a la	а		
tracción por compresión diametral a los 28 días de edad	105		
Tabla 4.45. Medias en subconjuntos homogéneos para la resistencia a la tracció			
por compresión diametral a los 28 días de edad	106		
Tabla 4.46. Análisis de la varianza de la resistencia a la flexión a los 28 días d			
edad	108		
Tabla 4.47. Medias de la resistencia a la flexión a los 28 días de edad	108		
Tabla 4.48. Comparación múltiple entre muestras respecto a la resistencia a la	3		
flexión a los 28 días de edad	109		
Tabla 4.49. Medias en subconjuntos homogéneos para la resistencia a la flexi-	ón a		
los 28 días de edad	109		
ÍNDICE DE FIGURAS			
Figura 1.1. Concretos ligeros de ladrillo rococho y aserrín	16		
Figura 2.1. Edad vs resistencia a la compresión del concreto (%)			
Figura 4.1. Ladrillera artesanal cabrera			
Figura 4.2. Cantera trapiche			
Figura 4.3. Curva granulométrica del agregado fino – arena gruesa			
Figura 4.4. Curva granulométrica del agregado grueso – piedra chancada			
Figura 4.5. Curva granulométrica del agregado grueso no convencional – ladri			
rococho triturado.			
Figura 4.6. Asentamiento respecto a cada tipo de mezcla por cada tanda	00		
realizada	67		
Figura 4.7. Peso unitario promedio en estado fresco por cada tipo de mezcla.			
Figura 4.8. Peso unitario promedio en estado endurecido por cada tipo de mez			
Figura 4.9. Resistencia a la compresión promedio por cada tipo de mezcla a lo			
días de edad			

Figura 4.10. Resistencia a la compresión promedio por cada tipo de mezcla a los	
14 días de edad7	7
Figura 4.11. Resistencia a la compresión promedio por cada tipo de mezcla a los	
28 días de edad78	8
Figura 4.12. Grafica de evolución de la resistencia a la compresión promedio del	
diseño patrón con relación a/c = 0.4879	9
Figura 4.13. Grafica de evolución de la resistencia a la compresión promedio del	
diseño con la adición 35% Lr y 2% As con relación a/c = 0.58 80	O
Figura 4.14. Grafica de evolución de la resistencia a la compresión promedio del	
diseño con la adición 65% Lr y 4% As con relación a/c = 0.58 80	O
Figura 4.15. Grafica de evolución de la resistencia a la compresión promedio del	
diseño con la adición 100% Lr y 6% As con relación a/c = 0.58 8 [.]	1
Figura 4.16. Resistencia a la tracción por compresión diametral por cada tipo de	
mezcla a los 28 días de edad83	3
Figura 4.17. Resistencia a la flexión por cada tipo de mezcla a los 28 días de	
edad8	5
Figura 4.18. Medias del peso unitario en estado endurecido del concreto90	O
Figura 4.19. Medias de la resistencia a la compresión a los 7 días de edad 94	4
Figura 4.20. Medias de la resistencia a la compresión a los 14 días de edad 98	8
Figura 4.21. Medias de la resistencia a la compresión a los 28 días de edad 102	2
Figura 4.22. Medias de la resistencia a la tracción por compresión diametral a los	
28 días de edad	6
Figura 4.23. Medias de la resistencia a la flexión a los 28 días de edad 110	O

RESUMEN

La presente investigación obtuvo como objetivo general diseñar un concreto ligero de resistencia a la compresión f'c=210 kg/cm² con la adición de agregados no convencionales, Lima – 2020 y como objetivos específicos determinar la dosificación con la adición de agregados no convencionales para obtener concreto ligero, analizar las propiedades físicas y mecánicas de concreto ligero con la adición de agregados no convencionales, todos estos para una resistencia a la compresión f'c=210 kg/cm². Asimismo, la metodología fue el método científico, tipo aplicada, enfoque cuantitativo, nivel explicativo y diseño experimental.

Esta investigación consistió en primer lugar obtener las propiedades de los agregados a través de ensayos de laboratorio, diseñar el concreto patrón por el método del comité 211 del ACI y en su dosificación obtenida sustituir en peso sus agregados en 35%, 65% y 100% por ladrillo rococho triturado (Lr) como agregado grueso y en 2%, 4% y 6% por aserrín (As) como agregado fino. Donde fueron estudiados estos con una muestra de 44 probetas de 4" x 8" para ensayos de resistencia a compresión a los 7, 14 y 28 días de edad, 12 probetas para resistencia a la tracción por compresión diametral y 8 vigas de 6" x 6" x 20" para resistencia a la flexión, estos dos últimos a los 28 días. Como resultado se obtuvo que cuando a más porcentaje se sustituya en la dosificación del concreto patrón por estos agregados no convencionales más se reducirá el peso unitario en estado fresco y endurecido, se pierde trabajabilidad, se mejora las propiedades mecánicas de resistencia a la compresión, pero en tracción y flexión no se vieron afectadas. Finalmente se concluyó que se diseñó un concreto ligero de uso estructural con la mezcla que consistió en sustituir en 100% Lr y 6% As con un peso unitario en estado endurecido de 1,970 kg/m³ y resistencia a la compresión a los 28 días de edad de 393.4 kg/cm² siendo este ya superior a 210 kg/cm².

Palabras clave: concreto ligero, ladrillo rococho, aserrín, dosificación, sustitución.

ABSTRACT

The general objective of this research was to design a lightweight concrete with compressive strength f'c=210 kg/cm² with the addition of non-conventional aggregates, Lima - 2020 and as specific objectives to determine the dosage with the addition of non-conventional aggregates for obtain lightweight concrete, analyze the physical and mechanical properties of lightweight concrete with the addition of unconventional aggregates, all of these for a compressive strength f'c=210 kg/cm². Likewise, the methodology was the scientific method, applied type, quantitative approach, explanatory level and experimental design.

This research consisted in the first place of obtaining the properties of the aggregates through laboratory tests, designing the standard concrete by the method of ACI committee 211 and in its obtained dosage, replacing its aggregates by weight in 35%, 65% and 100% per crushed rock brick (Lr) as coarse aggregate and in 2%, 4% and 6% by sawdust (As) as fine aggregate. Where these were studied with a sample of 44 4 "x 8" specimens for compressive strength tests at 7, 14 and 28 days of age, 12 specimens for diametrical compression tensile strength and 8 6 "x beams. 6 "x 20" for flexural strength, the latter two at 28 days. As a result, it was obtained that when a higher percentage is substituted in the dosage of the standard concrete by these unconventional aggregates, the more the unit weight will be reduced in the fresh and hardened state, workability is lost, the mechanical properties of resistance to compression are improved, but in traction and flexion they were not affected. Finally, it was concluded that a light concrete for structural use was designed with the mixture that consisted of replacing 100% Lr and 6% As with a unit weight in hardened state of 1,970 kg/m³ and compressive strength at 28 days of age 393.4 kg/cm² being this already higher than 210 kg/cm².

Keywords: lightweight concrete, rock brick, sawdust, dosage, replacement.

I. INTRODUCCIÓN

1.1. Realidad problemática

El concreto es el material más usado y principal durante el diseño y construcción de cualquier tipo de infraestructura que se esté ejecutando, este es uno se los que influye mucho en el costo de un proyecto y donde su composición es en base a tres materiales el cemento, agregados y agua, en donde de acuerdo al diseño de mezcla que utilicemos podemos obtener uno de diferentes propiedades físicas y mecánicas. Pero cuando hablamos de agregados nos referimos a los convencionales, ósea los más usados comúnmente y normados que son la arena gruesa y piedra chancada de diferentes tamaños.

Por lo tanto, el poder reemplazar esos agregados en ciertos porcentajes por unos no convencionales como el aserrín como agregado fino y ladrillo rococho como agregado grueso nos abre la posibilidad de poder aligerar más su densidad trayendo como beneficios disminuir el acero en el diseño, disminuir la sección de un elemento estructural y en el costo. Este principio de cambio en la densidad es denominado "Concreto Ligero".

El concreto ligero es aquel que posee una densidad menor al convencional que fluctúa entre 2300 a 2400 kg/m³ y puede ser elaborado con el empleo de diferentes materiales, pero para efectos de esta investigación se usará el ladrillo rococho o también conocido como ladrillo triturado y el aserrín que son materiales de baja densidad.

Según (Carrillo Moreno, y otros, 2015), los ladrillos rocochos son unidades de albañilería de arcilla lo cual es obtenido después proceso de cocción mucho mayor a los otros, pues estos son tomados como desperdicios por las ladrilleras por su deformación, color oscuro y negruzco, adicional a ello reacciona al golpea emitiendo un sonido metálico.

Por otro lado, el aserrín procede de los desperdicios generados por la madera. Dando como resultado que ambos materiales provienen de desperdicios.

Por consiguiente, realizar este trabajo de investigación permitirá poder exponer un diseño para concreto ligero con la adición de agregados no convencionales como el aserrín como agregado fino y ladrillo rococho triturado como agregado grueso, pero empleados en porcentajes en reemplazo del agregado convencional (ver figura 1.1).

La finalidad de este estudio es aportar con un diseño de concreto ligero de una resistencia a la compresión 210 kg/cm² para poder así reflejar que el beneficio de usar este material es grande económicamente hablando ya que se optimizaría todo este problema al disminuir su uso en una infraestructura al ser más denso.

Figura 1.1. Concretos ligeros de ladrillo rococho y aserrín.

Fuente: Elaboración propia.

1.2. Formulación del problema

Problema general

¿Cuál es el diseño de un concreto ligero de resistencia a la compresión f'c=210 kg/cm² con la adición de agregados no convencionales, Lima - 2020?

Problemas específicos

- ¿Cuál será la dosificación con la adición de agregados no convencionales para obtener concreto ligero de resistencia a la compresión f'c=210 kg/cm²?
- ¿Cuáles son las propiedades físicas de concreto ligero con la adición de agregados no convencionales para una resistencia a la compresión f'c=210 kg/cm²?
- ¿Cuáles son las propiedades mecánicas de concreto ligero con la adición de agregados no convencionales para una resistencia a la compresión f'c=210 kg/cm²?

1.3. Justificación del estudio

Justificación social

Actualmente en nuestra sociedad de lima y a nivel nacional muchas infraestructuras desde edificaciones, puentes, obras hidráulicas y entre otras, independientemente de la calidad y resistencia a la compresión sobre lo que son diseñadas y construidas, son en base a concreto tradicional donde su densidad oscila entre los 2,200 a 2,400 kg/m³.

Es por ello que con esta investigación se pretende volver más denso al concreto aligerando su peso usando aquellos materiales no convencionales que son destinados como desperdicios, lo que da lugar al a un nuevo diseño de "concreto"

ligero". Trayendo como beneficios la reducción del uso del concreto en infraestructuras con la disminución de la sección de un elemento estructural, disminuir la cantidad de acero en el diseño, reducción de costos de construcción y entre otros.

Justificación metodológica

La finalidad de haber realizado este estudio es que logra buscar y brindar nuevos aportes de información muy relevante confiables a través de una metodología que pueda orientar a futuras investigaciones sobre el tema en cuestión para complementarla o profundizarla, como lo es brindar un nuevo diseño de concreto, pero más ligero que el tradicional.

Justificación ambiental

Actualmente se vive y se observa que existe una sobreexplotación constante de agregados como la arena gruesa y piedra chancada, dejando de lado aquellos materiales que, si pueden ser rescatados para su uso pero que son destinados actualmente como desperdicio o escombros, lo que genera contaminación ambiental, deterioro del paisaje y contaminación visual.

Es por ello que esta el tratar de realizar un diseño de concreto ligero empleando estos materiales traerían como beneficio reducir la contaminación ambiental, visual y deterioro del paisaje.

Justificación teórica

La finalidad de elaborar la presente investigación radica en el interés de estudiar un tema que no es empleado hoy en la actualidad comúnmente, el cual es elaborar un diseño y usar el concreto ligero con agregados no convencionales o reciclados. Así mismo el beneficio de este es que llenará un vacío teórico ya que se modificará lo existente cuando se brinde este nuevo diseño de concreto ligero.

1.4. Hipótesis

Hipótesis general

Con la adición de agregados no convencionales se logrará el diseño óptimo de concreto ligero de resistencia a la compresión f'c=210 kg/cm², Lima – 2020.

Hipótesis específicas

- La dosificación optima con la adición de agregados no convencionales permitirá obtener concreto ligero de resistencia a la compresión f'c=210 kg/cm².
- Las propiedades físicas de concreto ligero mejorarán con la adición de agregados no convencionales para una resistencia a la compresión f'c=210 kg/cm².
- Las propiedades mecánicas de concreto ligero mejorarán con la adición de agregados no convencionales para una resistencia a la compresión f'c=210 kg/cm².

1.5. Objetivos

Objetivo general

➤ Diseñar un concreto ligero de resistencia a la compresión f'c=210 kg/cm² con la adición de agregados no convencionales, Lima - 2020.

Objetivos específicos

Determinar la dosificación con la adición de agregados no convencionales para obtener concreto ligero de resistencia a la compresión f'c=210 kg/cm².

- Analizar las propiedades físicas de concreto ligero con la adición de agregados no convencionales para una resistencia a la compresión f'c=210 kg/cm².
- Analizar las propiedades mecánicas de concreto ligero con la adición de agregados no convencionales para una resistencia a la compresión f'c=210 kg/cm².

II. MARCO TEÓRICO

2.1. Trabajos previos

Antecedentes nacionales

(Carrillo Moreno, y otros, 2015), en la tesis titulada "Diseño de concreto estructural ligero adicionando desperdicios de las ladrilleras del distrito de santa – 2015" fijo como objetivo general diseñar concreto estructural liviano agregando los residuos de las ladrilleras (Ladrillo Rococho). Utilizando una metodología del método científico, en cuanto al tipo fue aplicada, respecto a su nivel fue explicativo y diseño fue experimental. Este proyecto se desarrolló partiendo de un diseño tradicional F'c = 210 kg/cm², para proseguir con el reemplazo porcentual del agregado grueso tradicional por ladrillo rococho hasta lograr el concreto Ligero ideal. Por consiguiente, fijo como conclusiones que se logra concreto ligero al sustituir el agregado grueso al 100% por ladrillo rococho arrojando como peso específico 1933.24 kg/m³, peso unitario 1892.32 kg/m³ y f'c=285.5 kg/cm² con factor de corrección 182 kg/cm², lo que involucra la implementación de 21.7% en cemento a comparación del concreto patrón.

(Masías Mogollón, 2018), en su tesis titulada "Resistencia a la flexión y tracción en el concreto usando ladrillo triturado como agregado grueso" fijo como objetivo general valorar características del concreto en estado fresco e endurecido al reemplazar el agregado grueso por ladrillo rococho triturado, analizando sus discrepancias en base a su procedencia. Aplicando una metodología del método científico, en cuanto al tipo fue aplicada, respecto a su nivel fue explicativo y diseño fue experimental. Este proyecto se desarrolló en base al ACI-211.1 para diseño de concreto con una relación a/c=0.54 y en reemplazos del agregado grueso tradicional por ladrillo rococho de cerro mocho y huaca en peso 5%, 10% y 20%, para luego evaluar en cada una de ellas el asentamiento, peso unitario, contenido de aire, resistencia de compresión, tracción y flexión después de 28 días. Por consiguiente, fijo como conclusiones que al reemplazar el agregado grueso parcialmente progresa las propiedades mecánicas, pero reduce su

trabajabilidad, pero en cuanto a su procedencia los de cerro mocho poseen dureza y absorción en comparación a huaca.

(Bellido Yarleque, 2018), en su tesis titulada "Propiedades mecánicas del concreto ligero con incorporación de virutas de madera" fijo como objetivo general realizar un estudio sobre propiedades mecánicas de concreto liviano o ligero con la implementación de virutas procedente de la madera (resistencia a la compresión, tracción, flexión y peso específico). Aplicando una metodología del método científico, aplicada, explicativo y experimental. Este proyecto consistió en elaborar un concreto para una f'c=17.5 MPa bajo los siguientes criterios de dosificación concreto patrón, 30 %, 60% y 90% de viruta; para ello se tomó 128 muestras de probetas cilíndricas y 8 muestras prismática. Finalmente, fijo como conclusiones que la implementación de virutas de madera reduce el peso específico al 71.26 % cumpliendo con la resistencia requerida en un concreto ligero, pero se reduce la trabajabilidad, aumenta tiempo de desmolde y produce cambio de color.

(Vilca Silva, 2017), en su tesis titulada "Influencia del porcentaje de ladrillo reciclado como agregado fino sobre el asentamiento, peso unitario y resistencia a la compresión de un concreto elaborado con cemento tipo Ms" fijo como objetivo general determinar la influencia del porcentaje de ladrillo desecho como agregado fino sobre el asentamiento, peso unitario y resistencia a la compresión de un concreto elaborado con cemento tipo MS. Aplicando la metodología del método científico, aplicada, explicativo y experimental. Este proyecto consistió en reemplazar en 10%, 20%, 30%, 40% y 50% respecto al peso del agregado fino del concreto convencional por ladrillo reciclado triturado, en donde fue estudiado en base a una muestra de 35 probetas. Finalmente, fijo como conclusiones que se logra concreto ligero al sustituir en su dosificación en el agregado fino al 20% por ladrillo reciclado triturado obteniendo un peso unitario de 1858.65 kg/m³ y una resistencia a la compresión de 196.54 kg/cm².

(Cigueñas Cabrera, 2020), en su tesis titulada "Determinación comportamiento mecánico del concreto con adición de aserrín" fijo como objetivo general determinar la influencia en el comportamiento mecánico del concreto con adición de aserrín. Aplicando la metodología del método científico, aplicada, descriptiva y experimental. Este proyecto consistió en elaborar un concreto para una f'c=210 kg/cm2 en donde en su dosificación se sustituyó respecto al volumen del concreto patrón por aserrín en los siguientes porcentajes: 0.5% y 1.0%. Finalmente, fijo como conclusiones que con la sustitución respecto al volumen del concreto patrón por aserrín disminuye el asentamiento del concreto en 20% y 40%, mientras que respecto a la resistencia a la compresión este aumenta al sustituir en 0.5% y 1.0%, siendo el adecuado la sustitución en 0.5% ya que con ello se logra buenos resultados al aumentar en 12% respecto a la resistencia a la compresión del concreto patrón que llegó a 254.46 kg/cm². Así mismo este material en sus propiedades físico – químico se ubicado dentro de los márgenes normales que establece la norma E.0.10.

Antecedentes internacionales

(Cenk Karakurt, 2017), en su artículo de investigación titulada "Influence of natural lightweight aggregates on the properties of concrete" o traducido al español "Atribución de los agregados livianos naturales en las propiedades de concreto". Nos hace mención que, en este estudio, se utilizan diferentes tipos de agregados livianos para la producción de concreto liviano poroso. Por esta razón, se obtuvieron piedra pómez de 8-15 mm y perlita expandida de la región de Ankara, se suministró piedra pómez de 4-8 mm de Manisa Salihli, se obtuvo agregado de toba volcánica de Antalya y se suministró arcilla expandida de Holanda. Antes de la producción de concreto liviano. Las propiedades del concreto fresco se determinan mediante pruebas de asentamiento y las del estado endurecido se evalúan por el peso unitario, la rapidez del latido de ultrasonido y las pruebas de resistencia a la compresión. Finalmente, fijo como conclusiones que se puede producir concreto estructural liviano con esos agregados. La arcilla prolongada y la perlita redujeron la trabajabilidad del

concreto fresco. Toba volcánica y piedra pómez proporcionadas para alcanzar datos de f'c mayores a 25 MPa.

(Thanon Dawood, 2018), en su artículo de investigación titulada "Experimental study of lightweight concrete used for the production of canoe" o traducido al español "Estudio experimental del hormigón ligero utilizado para la producción de canoas". Nos hace mención que, este estudio se realizó para investigar las propiedades del concreto liviano producido por las inclusiones de perlas de poliestireno y perlita que pueden usarse para la producción de Canoa. Se utilizaron diferentes porcentajes de poliestireno (20, 35, 50 y 65%). Además, se utilizó el 50% de los lechos de poliestireno con diferentes porcentajes de perlita (10, 20, 30, 40, 50 y 60%) como reemplazo parcial de arena. Finalmente, fijo como conclusiones que los resultados muestran que los usos de 50% de poliestireno con 50% de perlita como reemplazo parcial de arena exhiben rangos adecuados de densidad, resistencia por compresión y flexión de concreto ligero o liviano.

(López Enriquez, 2016), en su tesis titulada "Diseño de concreto refractario utilizando residuos de ladrillos de barro cocido" fijo como objetivo general graduar un concreto refractario usando ladrillo barro cocido, que pueda resistir altas temperaturas y evaluar su resistencia por compresión. Aplicando la metodología del método científico, aplicada, explicativo y experimental. Este consistió en evaluar resistencia por compresión al concreto e influencia del agregado grueso a altas temperaturas provenientes del ladrillo de barro cocido (refractario), ladrillo artesanal y piedrín de piedra caliza. Finalmente, fijo como conclusiones que la dosificación con estos materiales como agregado grueso reducen la resistencia por compresión al exhibirlas al calor, pero aumentan con el tiempo, siendo estos resistentes a fisuras.

(Patricio Rodriguez, 2016), en su tesis titulada "Análisis del comportamiento de mezclas cementicias con la inclusión de fibras de madera" fijo como objetivo

general desarrollar una mezcla cementante con inclusión de fibras de madera, y observar las ventajas y desventajas que presenta, cumpla los requerimientos de resistencias similares a los de hormigón tradicional. Empleando la metodología del método científico, aplicada, explicativo y diseño experimental. Esta investigación consistió en producir un hormigón alivianado donde su densidad se encuentre por debajo de los 2400 kg/m³ que presenta un hormigón tradicional empleando fibras de madera generados por la maderera. Finalmente, fijo como conclusiones que los hormigones livianos son muy buenos aislantes acústicos y de temperatura, resisten al calor y se obtuvo resultados óptimos de resistencia a la compresión de buena calidad, sino que con la única diferencia que su densidad es mucho más baja lo que lo hace más ligero, dúctil y disminuye el costo del acero de refuerzo en estructuras y cimentaciones.

(Revista de Arquitectura e Ingeniería, 2015), en su artículo de investigación titulada "Concreto Ligero utilizando Cáscara de Nuez". Nos hace mención que el problema de densidad en un concreto tradicional se resuelve con concreto ligero, el cual es en base a agregados ligeros. En esta investigación se empleó la cáscara de nuez para la elaboración de concreto liviano, la dosificación fue el 10%, 15% y 20% del peso total de este. La composición fue en base a cemento, arena, agua, cáscara de nuez y humo de sílice. Finalmente, fijo como conclusiones que la resistencia por compresión con únicamente cáscara de nuez posee un valor óptimo con 15% de este cuando es usado como agregado grueso. Por consiguiente, la dosificación del 15% este en diferentes porcentajes de humo de sílice, aumentan la resistencia por compresión.

2.2. Teorías relacionadas al tema

Bases teóricas

Concreto ligero

Según (Balaji, y otros, 2016) el concreto ligero o hormigón ligero es aquella mezcla en donde aumenta su volumen, pero se reduce el peso muerto. Así mismo

este es más liviano que el convencional ya que su densidad seca está por debajo de los 2,000 kg/m³, por lo tanto, entre sus características es su baja densidad y conductividad térmica. Existen diversos tipos ya que se pueden obtener en base a un agregado de peso ligero o mediante el uso de un aire.

Pero (Pengda Li, y otros, 2018) nos dice que el concreto ligero o liviano es aquel concreto hecho por cemento portland ordinario (OPC), agua, arena liviana y agregados gruesos livianos, pero con una densidad por debajo de 1950 kg/m³. [...] este material ofrece ventajas como ahorro de cargas muertas para cimientos, alta relación resistencia/peso y servicio como materiales rellenos. Este concreto tiene inconvenientes por su limitada propiedades mecánicas en resistencia por compresión, fragilidad y deformación.

Por lo tanto, frente a los mencionado anteriormente se puede decir que el concreto ligero es aquella mezcla de agua, cemento, agregados convencionales (arena gruesa y piedra chancada) y adicionalmente a esto agregados no convencionales, ósea materiales poco usuales en donde su proveniencia radica esencialmente por ser agregados ligeros de baja densidad. Por ende, entre la característica fundamental de este es que su densidad está por debajo del concreto tradicional ósea menor a 2200 y 2400 kg/m³.

Dosificación

(Cementos Inka, 2019) nos dice que "[...] la dosificación es una técnica básica en la construcción y para obtener buenos resultados se debe emplearla de forma adecuada. Este hace referencia a las proporciones de material a usar para la fabricación del concreto y así obtener adecuadas características como resistencia, durabilidad y adherencia. Por ende, este se expresa en gramos (gr) o metros cúbicos (m³).

Por lo tanto, la dosificación del concreto ya sea tradicional o ligero, independientemente del tipo de concreto que se desea diseñar, son en base a los

siguientes materiales: cemento, agregados convencionales o no convencionales, agua y si la situación lo amerita aditivos.

Cemento:

Según (Gartner, y otros, 2018), es aquel material mineral hecho por el hombre y cuando es triturado en polvo fino, este reacciona rápidamente con el agua para luego producir una masa endurecida que se usa en la fabricación del concreto o mortero y su endurecimiento es rápido en la adaptación de prácticas constructivas modernas.

Al respecto de esto (Chapoñan Cueva, y otros, 2017) nos dice que "[...] el cemento portland es resultado del Clinker y de la añadidura de sulfato de calcio, entre otros productos que no sean mayores del 1% y estos deben ser pulverizados con el Clinker".

Así mismo en base a las (NTP 334.009, 2016) y ASTM-C-150-99^a, existen los siguientes tipos:

- Tipo I: Empleo general.
- Tipo II: Empleo general y resistencia moderada a sulfatos.
- Tipo III: Alcanza mayores resistencias a temprana edad.
- Tipo IV: Alcanza menor calor de absorción o hidratación.
- Tipo V: Resistencia alta a sulfatos.

> Agregados:

(Zuñiga Quenta, y otros, 2019), nos dice que los agregados como fragmentos o partículas rocosas tienen el objetivo de abaratar la mezcla y disminuir la retracción plástica. Estas conforman gran parte del peso del concreto entre un 70 y 85%, motivo por el cual sus características resultan importantes.

De lo mencionado se puede decir que las características de los agregados están estrechamente ligados a las características y propiedades del concreto, ya

que ellos influyen en los resultados que se pueden obtener. Estos se rigen bajo la norma NTP 400.037 o ASTM C-33, por ello entre las clases de agregados tenemos los siguientes: por su tamaño (fino y grueso) y por su origen (naturales y artificiales).

Por su tamaño:

El agregado fino según (Mendoza Nina, y otros, 2017) es "aquello que pasa el tamiz de 3/8", mínimo un 95% en el N° 4 y atrapado en el N° 200".

El agregado Grueso según (Carrillo Leiva, y otros, 2017) es "aquel retenido en el tamiz N° 4 en un 95% como mínimo [...]".

Por su Origen:

Los agregados Naturales según (Carrillo Leiva, y otros, 2017), es "aquello que es formado por procesos naturales que han sucedido en la superficie terrestre y estos son explotados y tratados para producir concreto".

Los agregados artificiales según (Carrillo Leiva, y otros, 2017), es "resultado de la transformación de materiales naturales, productos que pueden ser suministrados para fabricar concreto. Agregados como escoria, arcilla horneada, concreto reciclado, etc.".

Agua:

(RAE, 2018) nos menciona que el agua es un "líquido cristalino e incoloro, conformado por moléculas de hidrógeno y oxígeno, además compone lo más abundante sobre la superficie terrestre y seres vivos".

Este resulta en la fabricación del concreto un material que se emplea tanto para su preparación y curado del mismo, en donde este debe cumplir lo que establece la NTP 339.088 donde hace mención que este debe ser potable y se prohíbe el uso de otras independientemente de su procedencia.

Propiedades físicas

Las propiedades físicas del concreto son aquellas características o cualidades que se determinan por observación y mediciones hechas en campo o en un laboratorio, estas se pueden analizar ya se en estado fresco o endurecido. Entre ellas tenemos las siguientes:

Asentamiento

Al respecto de esto (Thompson, 2017), nos dice que "el asentamiento es la medida que brinda consistencia al concreto. Pues en este se mide la facilidad del concreto para empujar, moldear y alisar [...]".

Así mismo su forma de medición es mediante pruebas de campo slump y otros en laboratorio tales como prueba de factor de compactación.

Por lo tanto, según (Zuñiga Quenta, y otros, 2019), la prueba del slump es aquella medición realizada en base a la norma NTP 339.035 utilizando la herramienta llamada Cono de Abrams y donde su procedimiento es: seleccionar la muestra en una carretilla, colocar el molde húmedo sobre una superficie plana, sostener el Cono de Abrams, llenar el molde con concreto en tres capas aplicando por cada una de ellas un compactado de 25 golpes utilizando una varilla lisa 5/8" de punta roma, enrazar la última capa con la varilla lisa, limpiar el Cono de Abrams, remover el cono y medir el asentamiento (slump) con una wincha.

Por consiguiente, como menciona la (Universidad Nacional de Ingeniería, 2014), si su "asentamiento obtenido es de 0" - 2" está seco, 3" - 4" es normal, 4" - 6" es plástico y mayor a 6" es superplastificado".

Peso unitario del concreto

Sobre esto la (Universidad Nacional de Ingeniería, 2014) nos dice que su método para hallarlo está regulado bajo la norma NTP 339.046 en estado fresco. Pues este es el peso de un espécimen expresada en kilos por metro cubico [...]. Variando de acuerdo a las características de los agregados, cantidad de aire atrapado, agua y cemento. Donde el procedimiento a seguir para determinarlo es primero agarrar y pesar un recipiente de 1/3 pie³ de volumen, llenarlo en tres capas apisonando cada uno con 25 golpes de una varilla lisa, enrasarlo y por último pesar la muestra de concreto con el recipiente y aplicar la siguiente formula:

$$P.U.C(fresco) = ((Wb - Wme) - Wb)/Vol$$

Donde: Wb (peso del balde), Wme (peso de la mezcla) y Vol (1/3 pie³).

Así mismo para obtenerlo en estado endurecido, la primera es de forma volumétrica en base al registro de los pesos y volúmenes de una cantidad determinada de muestras y la segunda es bajo la norma NTP 339.187:2018 y ASTM C642 para determinar la densidad en el concreto endurecido, este método es aplicado únicamente en un laboratorio, aunque su costo es alto.

Propiedades mecánicas

Las propiedades mecánicas del concreto ya sea el tradicional o ligero son aquellas características o cualidades que se determinan únicamente con ensayos hechos en laboratorio, estas se pueden analizar solamente en estado endurecido. Entre ellas tenemos las siguientes:

Resistencia a la compresión:

(CEMEX, 2019), nos hace mención que es una propiedad mecánica del concreto. Donde se caracteriza por resistir cargas por unidad de área, indicada en kg/cm², MPa o PSI. [...] las muestras cilíndricas tomadas se elaboran y curan bajo

la norma NTP 339.033 y ASTM C31. [...] la norma ASTM C31 hace referencia al curado en campo in situ, pero son sometidos a ensayos bajo la norma ASTM C39 y NTP 339.034. [...] en base a la normativa vigente de muchos países este se hace a los 28 días, aunque hay una enorme tendencia de realizarlo a los 7 días [...].

Pero al realizarlo a los 7 días de edad el concreto alcanza respecto a su resistencia el 65%, a los 14 días el 90% y a los 28 días el 100% aproximadamente (Ver figura 2.1).

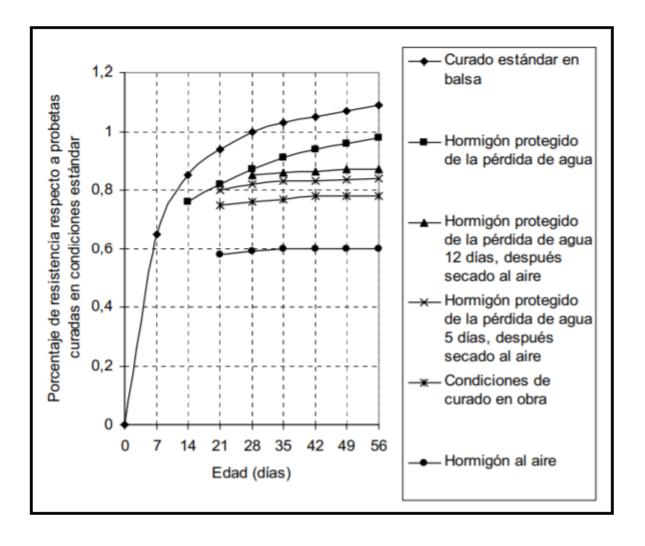


Figura 2.1. Edad vs resistencia a la compresión del concreto (%).

Fuente: Según (Gutiérrez Jiménez, y otros, 2008)

Resistencia a la tracción:

Según (Masías Mogollón, 2018), el concreto tiene muy bajo valor de esto y es por ello que no se toman en cuenta en los diseños de elementos estructuras. Pero si es importante en cuanto a agrietamiento debido a su restricción de contracción durante su proceso de secado. Por otro lado, existe una relación directa con resistencia por compresión ya que si una disminuye la otra también. Sin embargo, a mejor adherencia entre los materiales para la fabricación del concreto también mejorara ello. Esto se conseguiría con los ladrillos rocochos donde se lograría una adecuada adherencia.

Resistencia a la flexión:

(Masías Mogollón, 2018) nos dice que "es el valor indirecto de la resistencia a la tracción por compresión diametral del concreto. Aquel valor obtenido de la falla por momento en una viga. [...] este es expresado en Mpa y es determinada bajo ensayos regidos por las normas NTP 339.078 y ASTM C78 cargada en los puntos tercios o NTP 339.079 (ASTM C293) cargada en el punto medio [...]".

Agregados no convencionales

Nos hace mención (Ojeda Benitez, y otros, 2011) que el desarrollo urbano y la necesidad de generar nuevas obras, mantenimiento y sustitución de infraestructuras ha conllevado a la sobreexplotación de recursos trayendo consigo material de desperdicio y escombros, lo cual estos son destinados a un botadero causando deterioro del paisaje y contaminación visual. [...] es aquí donde surge el interés de cambiar las propiedades del concreto al reemplazar su agregado natural por agregados reciclados o no convencionales [...].

Por ende, se diría que los agregados no convencionales o reciclados, son aquellos recursos provenientes del producto del desperdicio que otro material genera pero que puede ser usado para la fabricación de concreto, ya que su empleo trae como beneficios al medio ambiente y a las propiedades del concreto.

Pero (Atilano Pineda, y otros, 2019) nos dice que los agregados reciclados [...] tiene algunas ventajas lo cual son los siguientes: como primero estos pueden ser recuperados, triturados y utilizados como agregados [...]. Por último, estos reducen la explotación de recursos naturales, costos de su transporte, desechos en vertederos de basura e impuestos asociados a este último. [...] Así mismo las pruebas aplicadas para obtener las propiedades físicas y mecánicas de estos agregados son los mismos que se realizan para los agregados tradicionales o de origen natural [...].

Aserrín

Según (Giralt Ortega, y otros, 2016), [...] es el polvillo el cual es origen de la madera producto de la serrada, compuesto de partículas de madera a lo largo del proceso, paneles contrachapados y/o comprimidos. Así mismo de este polvo durante el proceso de serrado da origen a la viruta cuyo material residual es de característica laminada curvada o hélice.

Pero (Phonphuak, y otros, 2015) nos menciona que "el aserrín es un desperdicio de la industria maderera. Tiene capacidad de disparo, aunque se usa como fuente de combustible. Usado como material aislante pero muy poco en trabajos de producción de materiales de construcción [...]".

Por lo tanto, el aserrín es el polvo y la viruta material espiral, ambos generado del desperdicio que genera la madera.

Peso específico

El peso específico según (Geronimo Urbina, y otros, 2015), "es el peso de un material por unidad de volumen. [...] siendo su unidad en el sistema internacional N/m³ y sistema técnico kg/m³ [...]".

Pero con respecto al aserrín (Giralt Ortega, y otros, 2016) nos dice que "el peso específico del aserrín proveniente de la madera de pino es de 167 kg/m³ [...]".

Aunque (Ortega Sánchez, y otros, 2019) nos menciona que "las fibras de aserrín mediante experimentos independientemente del tipo de madera de procedencia fueron en promedio de 178.83 kg/m³ [...]".

Por ende, se deduce de los dos autores antes mencionados que para obtener el valor exacto del peso específico del aserrín es necesario realizar los ensayos correspondientes para así obtener su valor exacto y debe hacerse bajo la norma NTP 400.022. Pero a manera de información se puede decir que su valor promedio oscila entre los 160 – 180 kg/m³ según lo observado por los autores antes mencionados.

Granulometría

Según (Masías Mogollón, 2018) "la granulometría es definida como el análisis de tamices sobre cada agregado, pues esta porción del agregado es recorrida por la columna de tamices regulados en forma decreciente en base al tamaño de la malla de cada uno [...]".

La granulometría viene a ser aquel ensayo que se realiza a cualquier tipo de agregado independiente de su procedencia, pero regulado en base a las normas vigentes que es este caso son la NTP 400.037 o ASTM C-33, con la única finalidad de dividir en agregado determinado si es gruesa o fina.

Pero para el caso de aserrín que trabajara como un agregado no convencional fino este según lo indicado ya líneas arriba donde se habló de agregados es aquello que pasa por el tamiz N° 4 (4.75mm) y tiene un módulo de finura que oscila entre 2.3 y 3.1.

Contenido de humedad

El contenido de humedad según (Bellido Yarleque, 2018) nos menciona que "es la cantidad de agua presente en un material en este caso la madera que da origen al aserrín, donde este aumenta la humedad relativa de una determina zona y disminuye la temperatura".

Según (Ortega Sánchez, y otros, 2019) "las fibras de aserrín [...] posee un contenido de humedad de $8.72 \pm 0.4\%$ [...]".

Mientras que (Giralt Ortega, y otros, 2016) menciona que "el aserrín proveniente del pino posee un contenido de humedad 15.5%".

Por lo tanto, la forma de determinar esto es en base al ensayo de contenido humedad el cual se rige bajo las normas NTP 339.127 y ASTM D2216, siempre y cuando se requiera.

Ladrillo rococho

Nos hace mención (Carrillo Moreno, y otros, 2015), que los ladrillos rocochos son unidades de albañilería de arcilla lo cual es obtenido después proceso de cocción mucho mayor a los otros, pues estos son tomados como desperdicios por las ladrilleras por su deformación, color oscuro y negruzco, adicional a ello reacciona al golpea emitiendo un sonido metálico.

No obstante, también son conocidos en su mayoría como ladrillos artesanales ya que estos no cumplen en su mayoría con las normas vigentes.

Pero con respecto a su uso es muy común hoy en la actualidad, producto de la autoconstrucción que se viene desarrollando en nuestro país.

Según (Masías Mogollón, 2018) nos dice [...] son aquellos denominados debido a su exceso de cocción. Estos presentan características de deformación, color y textura no uniforme a consecuencia a que son sometidos a temperaturas superiores a 1000 °C, alcanzando un cambio vidrioso de material cerámico [...].

Peso específico

Al respecto de esto (Carrillo Moreno, y otros, 2015), nos menciona que obtiene como resultados frente a sus ensayos que las propiedades del ladrillo rococho que en base a la ladrillera san francisco tiene un tamaño máximo nominal en base a su trituración de 3/4", peso específico 1860 kg/m³, absorción 8.61%, [...] peso unitario de 937 kg/m³ en estado compactado, suelto 808 kg/m³ y abrasión 50.2%.

Por ende, la importancia de realizar el ensayo de peso específico radica en que con ello se obtiene un valor real ligado a la procedencia del material, así mismo estas deben cumplir con la norma NTP 400.021.

Granulometría

Para el caso del ladrillo rococho que trabajara como un agregado no convencional grueso este según lo indicado ya líneas arriba donde se habló de agregados es aquello que en el tamiz N° 4 (4.75mm) es retenido y donde este ensayo debe estar regido bajo la norma NTP 400.037 o ASTM C-33.

Así mismo hacer mención que la única manera de convertir el ladrillo rococho en un agregado grueso es que paso que un proceso de triturado lo cual puede realizarse de manera manual.

La finalidad de esto es darle el tamaño adecuado, criterio que debe manejar la persona a estudiar esto.

Contenido de humedad

Este ensayo de contenido humedad es realizado en base normas NTP 339.127 y ASTM D2216. Aunque para el caso del ladrillo rococho este según (Carrillo Moreno, y otros, 2015), "posee un contenido de humedad de 0.86%".

Concreto ligero con la adición de agregados no convencionales

Según (Martínez Herrera, 2016), nos dice que el concreto ligero estructural es aquello que presenta una densidad entre 1,120 kg/m³ a 1,920 kg/m³, lo cual es menor a uno tradicional que oscila entre 2,240 kg/m³ y 2,480 kg/m³. [...] para su fabricación implica el uso de agregados no convencionales o de peso ligero [...].

Por lo tanto, al hablar de concreto ligero con la adición de agregados no convencionales hace referencia a que parte de los agregados tradicionales como son la arena gruesa y la piedra chancada serán reemplazos en porcentajes que define el investigador por agregados no convencionales, donde la única finalidad de esto es hacer más denso el concreto.

Diseño de mezclas - método comité 211 del ACI

Diseñar un concreto existen varios métodos planteados hoy en la actualidad, pero en esta investigación usaremos el método comité 211 del ACI, el cual establece unos procedimientos para diseñar mezclas de concreto en base a las propiedades de los materiales que debieron ser obtenidos de ensayos de laboratorio.

Por consiguiente, el (ACI 211, 2009), nos hace mención de los siguientes pasos a seguir para diseñar concreto por resistencia:

- Paso 1: Descripción de las propiedades obtenidas de los materiales por los ensayos de laboratorio realizados, resistencia especificada (f'c) y asentamiento (slump). Después de esto mediante la aplicación de los cuadros se obtienen los pesos de cada material (kg/m³).
- ➤ Paso 2: Se calcula el agua y el volumen de aire atrapado que está en relación al tamaño máximo nominal del agregado grueso y del asentamiento sobre el cual se desea diseñar el concreto, ver tabla 2.1.

Tabla 2.1. Agua(lt/m³) para concreto en función del tamaño máximo nominal del agregado.

Agua (It	Agua (lt/m³) para concreto en función del tamaño máximo nominal del agregado							
Slump (mm)	9.5mm	12.5mm	19.0mm	25mm	37.5mm	50mm	75mm	150mm
	(3/8")	(1/2")	(3/4")	(1")	(1 1/2")	(2")	(3")	(6")
		Sin air	e incorpora	do en el d	concreto			
1" a 2"	207	199	190	179	166	154	130	113
3" a 4"	228	216	205	193	181	169	145	124
6" a 7"	243	228	216	202	190	178	160	
Aire atrapado	3%	2.5%	2%	1.5%	1.5%	0.5%	0.3%	0.2%
		Con ai	re incorpora	ado en el	concreto	l		1
1" a 2"	181	175	168	160	150	142	122	107
3" a 4"	202	193	184	175	165	157	133	119
6" a 7"	216	205	197	184	174	166	154	
Total de aire								
Exposición								
Media	4.5%	4%	3.5%	3%	2.5%	2%	1.5%	1%
Exposición								
Moderada	6%	5.5%	5%	4.5%	4.5%	4%	3.5%	3%
Exposición								
Severa	7.5%	7%	6%	6%	5.5%	5%	4.5%	4%

Fuente: (ACI 211, 2009).

> Paso 3: Cálculo de la resistencia requerida (f'cr), ver tabla 2.2.

Tabla 2.2. Resistencia requerida (f'cr).

Resistencia especificada f'c	Resistencia requerida f'cr		
(kg/cm ²)	(kg/cm ²)		
f'c < 210	f'cr = f'c + 70		
210 ≤ f'c ≤ 350	f'cr = f'c + 85		
F'c > 350	f'cr = 1.10 × f'c + 50		

Fuente: (ACI 211, 2009).

> Paso 4: Cálculo del cemento, ver tabla 2.3.

Tabla 2.3. Cálculo del cemento.

Relación agua cemento y resistencia a la compresión requerida						
Resistencia	a la compresión	Relación agua	cemento (a/c)			
Мра	(kg/cm ²)	Sin aire incorporado al	Con aire incorporado			
		concreto	al concreto			
40	408	0.42				
35	357	0.47	0.39			
30	306	0.54	0.45			
25	255	0.61	0.52			
20	204	0.69	0.60			
15	153	0.69	0.70			

Fuente: (ACI 211, 2009).

➤ Paso 5: Calcular peso de la piedra en función del factor (b/b₀.), ver tabla 2.4.

Tabla 2.4. Cálculo del peso de la piedra.

Volumen del agregado grueso por unidad de volumen de concreto (b/b _o .)								
Tamaño máximo nominal	módulo de finura de la arena							
(D _{n máx} .)	2.40	2.60	2.80	3.00	3.20			
3/8"	0.50	0.48	0.46	0.44	0.42			
1/2"	0.59	0.57	0.55	0.53	0.51			
3/4"	0.66	0.64	0.62	0.60	0.58			
1"	0.71	0.69	0.67	0.65	0.68			
1 1/2"	0.76	0.74	0.72	0.69	0.67			
2"	0.78	0.76	0.74	0.72	0.70			
3"	0.81	0.79	0.77	0.75	0.74			
6"	0.87	0.85	0.83	0.81	0.79			

Fuente: (ACI 211, 2009).

Una vez calculado el factor (b/b_o .) se pasa a emplear la siguiente fórmula: Peso de la piedra = (b/b_o .) x PUC

- Paso 6: Se procede a calcular el volumen (volúmenes absolutos) y peso de la arena, aplicando las siguientes formulas:
 - Para volúmenes absolutos: el diseño es por (kg/m³).
 V(arena) = 1 m³ [V(agua) + V(cemento) + V(piedra) + V (aire a.)]
 V(agua) = agua / (PE agua x 1000) ------(m³)
 V(cemento) = cemento / (PE cemento x 1000) ------(m³)
 V(piedra) = piedra / (PE piedra x 1000) ------(m³)
 V(aire) = aire / 100 -------(m³)
 - Peso arena = V(arena) x PE (arena) x 1000 -----(kg/m³)
- Paso 7: Se realiza la corrección por humedad de los agregados (Pah), aplicando la siguiente formula:

P_{ah} = Peso seco del agregado × (1 + contenido de humedad (%))

➤ Paso 8: Se calcula el aporte agua libre de los agregados (AL).

AL = Peso seco del agregado × (% cont. Humedad - % absorción)

Paso 9: Se calcula el agua efectiva o de diseño.

Agua efectiva = agua de diseño - AL

Paso 10: Calculo de las proporciones en peso por m³ y en volumen.

Volumen de la arena = peso de la arena corregida x 35.31 / PUS arena Volumen de la piedra = peso de la piedra corregida x 35.31 / PUS piedra

Donde: P_{ah} (peso agregado húmedo), PE (peso específico), PUS (peso unitario suelto y PUC (peso unitario compactado).

Marco conceptual

- ➤ NTP: Estas siglas hace referencia a las Normas Técnicas Peruanas, el cual según (INACAL, 2016) son "documentación que establece especificaciones y requisitos de calidad para estandarizar productos, procesos y servicios".
- ➤ **ASTM:** Son siglas correspondientes a las normas internacionales que según (PACKSYS ACADEMY, 2018) "[...] significa American Society for Testing and Materials fundado en 1961 [...]". Que traducido al español dice: Asociación Americana de Ensayo de Materiales.
- ➤ ACI: Es una norma internacional denominada "American concrete institute", el cual es una organización que indica los requerimientos para diversos materiales y diseño de concreto estructural.
- Deformación: Según (SIGNIFICADOS, 2019), "es aquel cambio que sufre un cuerpo debido a fuerzas externas como tensión o compresión, dando como resultado variación de tamaño y forma".
- ➤ **Esfuerzo:** Al respecto (SIGNIFICADOS, 2018), "es la fuerza que se aplica contra alguna resistencia para revertirlo [...]".
- Resistencia: Según la (Real Academia Española, 2019), "Es cuando una determinada fuerza se contrapone a la acción de otra".
- Compresión: Según la (Real Academia Española, 2019), "es la presión a la que esta sometido un cuerpo por fuerzas opuestas reduciendo su volumen".
- ➤ **Tracción:** Según la (Real Academia Española, 2019), "son los ezfuerzos a la que esta sometido un cuerpo por fuerzas opuestas que tienden a extenderlo".
- Flexión: Según la (Real Academia Española, 2019), "es el doblamiento temporal que sufre un cuerpo flexible producto de una fuerza que lo deforma".

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

Método de la investigación

De acuerdo a (Labajo González, 2016), "El método científico es el conjunto de procedimiento a recorrer para lograr un conocimiento veraz, por lo cual se usa instrumentos fiables". Por estas premisas en la actual investigación se empleará el método científico.

Tipo de investigación

Según (Gomez Bastar, 2012), la investigación aplicada "es la aplicación real del método y la investigación". Por este motivo la presente investigación se le considera que es aplicada, ya que se busca aplicar o crear conocimientos que es modificar las propiedades y dosificación del concreto tradicional y volverlo ligero en cuanto a su densidad.

Diseño de la investigación

Según (Hernández Sampieri, y otros, 2014), "La investigación experimental posee alcances iniciales y finales correlacionales y explicativos". Por consiguiente, la presente investigación es carácter experimental, porque para obtener los resultados y verificar las Hipótesis planteadas en esta investigación será mediante la manipulación de la variable dependiente que es concreto ligero al evaluarlos en diferentes proporciones con agregados no convencionales, pero en porcentajes respecta a su dosificación patrón.

Nivel de la investigación

Respecto a esto (Niño Rojas, 2011) nos dice que la investigación explicativa "es un instrumento; siendo el objetivo, el fin o requerimiento para encontrar una respuesta a una interrogante, con la finalidad de saber y conocer. Averigua

causas y hechos o fenómenos de la realidad [...]". Por ende, en esta investigación fue del nivel explicativa.

3.2. Variables y operacionalización

Identificación de variables

- > Primera variable (Dependiente): Concreto ligero.
- > Segunda variable (Independiente): Agregados no convencionales.

Operacionalización de variables

Variable	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Escala
Agregados no convencionales	"los agregados reciclados o no convencionales [] tiene algunas ventajas lo cual son los siguientes: como primero estos pueden	Los agregados no convencionales son aquellos materiales que normalmente provienen de diversas maneras ya san producto del desperdicio que otro material genera o son resultantes de otro medio ya sea vegetal, mineral u otro. En pocas palabras de definen como aquel material que no es usado comúnmente para para fabricación de un determinado producto.	D1: Aserrín. D2: Ladrillo rococho.	I1: Peso específico.I2: Granulometría.I3: Contenido de humedad.	Nominal

		Es aquel material fruto de la mezcla de los agregados tradicionales (arena gruesa		I1: Cemento.I2: Agregados.I3: Agua.	
Concreto ligero	liviano o ligero tiene ventajosas características con una menor densidad de 2,000 kg/m³, mayor efecto de aislamiento y contiene agregados livianos naturales para reducir el peso del material; así	y piedra chancada), agua, cemento y la adición de porcentajes de agregados no convencionales con la finalidad de disminuir su densidad por debajo de los 2200 y 2400 kg/m³ el cual es la densidad de un concreto tradicional.	D2: Propiedades físicas.	 I1: Asentamiento. I2: Peso unitario del concreto I1: Resistencia a la compresión I2: Resistencia a la tracción. I3: Resistencia a la flexión. 	Nominal

3.3. Población, muestra y muestreo

Población

De acuerdo a (Niño Rojas, 2011), indica que "cuando se frecuenta detallar el objeto de estudio, se identifica la población a aprender, conformada por aquellos elementos como personas, objetos, sucesos y otros. [...] que conforman el contorno de investigación a realizarse".

Por consiguiente, en esta investigación la población está conformada por probetas cilíndricas de 4" x 8" para ensayos de compresión y tracción, y vigas de concreto de 6" x 6" x 20" para ensayos a flexión elaboradas con distintas dosificaciones para obtener el diseño óptimo de concreto ligero con adición de agregados no convencionales sustituyendo un porcentaje de agregados por aserrín y ladrillo rococho triturado.

Muestra y muestreo

(Lopez, 2004), nos manifiesta que "es un subconjunto de la población, sobre la cual se realizara un estudio o investigación". Por lo que en esta investigación se empleará el muestreo no probabilístico del tipo intencional, porque la unidad de estudio no parte bajo regímenes probabilísticos, por lo que para determinar la muestra se basa en el criterio del investigador y experiencia con la población.

De acuerdo a la (E.060, 2009), en el capítulo 5, ítem 5.3-"c", establece que "para dosificaciones basadas en práctica en obra o mezclas de experimento [...], se debe realizar como mínimo 30 pruebas [...]" Por consiguiente, en esta investigación el tamaño de la muestra será en base a la edad en días y respecto a la dosificación (% de sustitución por agregados no convencionales), es decir probetas por tipo de mezclas y ensayos a realizar. A continuación, se mostrará la cantidad de muestras a tomar por tipo de ensayo (ver tablas del 3.1 al 3.3), así mismo tener en cuenta la siguiente leyenda: Lr (Ladrillo rococho) y As (Aserrín).

➤ Ensayo de resistencia a la compresión (NTP 339.034:2015 – ASTM C39) = 44 unidades de probetas cilíndricas.

Tabla 3.1. Dosificación requerida para resistencia a la compresión.

	% Susti	% Sustituido en la dosificación del diseño patrón en los agregados					
Edad		grueso y fino por	agregados no conve	encionales			
(Días)	Patrón	35% Lr y 2% As	65% Lr y 4% As	100% Lr y 6% As			
7 días	3	3	3	3			
14 días	3	3	3	3			
28 días	5	5	5	5			
Parcial	11	11	11	11			
Total	44						

Fuente: Elaboración propia

➤ Ensayo de resistencia a la tracción por compresión diametral (NTP 339.084:2012 – ASTM C496-96) = 12 unidades de probetas cilíndricas.

Tabla 3.2. Dosificación requerida para resistencia a la tracción por compresión diametral.

	% Sustituido en la dosificación del diseño patrón en los agregados						
Edad	grueso y fino por agregados no convencionales						
(Días)	Patrón	35% Lr y 2% As	65% Lr y 4% As	100% Lr y 6% As			
28 días	3	3	3	3			
Total	12						

Ensayo de resistencia a la flexión (NTP 339.078:2012 – ASTM C78) = 8 vigas.

Tabla 3.3. Dosificación requerida para resistencia a la flexión.

	% Sustituido en la dosificación del diseño patrón en los agregados						
Edad	grueso y fino por agregados no convencionales						
(Días)	Patrón	35% Lr y 2% As	65% Lr y 4% As	100% Lr y 6% As			
28 días	2	2	2	2			
Total			8				

Fuente: Elaboración propia

3.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad

A fin de alcanzar la información relevante para conseguir desarrollar este trabajo de investigación se empleará las técnicas e instrumentos mostrados a continuación:

Según (Tamayo Ly, y otros, 2017), la observación experimental discrepa de la no experimental porque obtiene datos controlados por el investigador, porque este manipula las variables. Siendo este una buena técnica de recolección de datos porque aquí se puede utilizar como instrumento la ficha de recolección de datos.

Por lo tanto, la técnica a usar será la observación experimental porque la presente investigación obtendrá datos del laboratorio y estos a su vez serán procesados y analizados mediante el software "Microsoft Excel". Así mismo hacer mención que el instrumento a emplear será la "ficha de recolección de datos", ya que en este se almacenará la recopilación de datos tomados sobre las variables de estudio (ver anexo 02).

Con respecto a la validez del contenido del instrumento este son respaldados con la firma de 3 profesionales ingenieros civiles al pie de cada hoja del instrumento y también en otra ficha donde se hace las críticas del contenido de este si lo ameritase (ver anexo 03). Por último, la confiabilidad se determinará con los ensayos de laboratorio porque estos son elaborados por especialistas calificados que se rigen bajo las normas vigentes y otros estudios obtenidos acerca del tema.

3.5. Procedimientos

El procedimiento a seguir para desarrollar esta investigación será como primer lugar realizar los ensayos de los agregados y de los no convencionales para el diseño del concreto patrón. A continuación, se mostrará los ensayos a realizar en esta primera parte:

- Ensayo de granulometría (NTP 400.012:2018).
- Ensayo de peso unitario (NTP 400.017:2016).
- Ensayo de contenido de humedad (NTP 339.185:2018).
- Ensayo de peso específico y porcentaje de absorción (NTP 400.022:2018 y NTP 400.021:2018).

Como segundo se pasa a diseñar el concreto patrón en base al procedimiento descrito por el método del comité 211 del ACI, el tercero es sustituir los agregados por los no convencionales respecto a su peso del diseño patrón y pasar a elaborar las muestras cilíndricas y vigas de cada uno de las dosificaciones calculadas. Para después realizar ensayos de laboratorio que se muestran a continuación:

Medición del asentamiento del concreto con el cono de Abrams (NTP 339.035:2015).

- Peso unitario del concreto fresco (NTP 339.046:2008).
- Ensayo de resistencia a la compresión (NTP 339.034:2015 ASTM C39).
- Ensayo de resistencia a la tracción por compresión diametral (NTP 339.084:2017 ASTM C496-96).
- Ensayo de resistencia a la flexión (NTP 339.078:2017 ASTM C78).

El cuarto es que una vez obtenido todos los datos, almacenar estos en la ficha de recolección de datos para dar paso a su procesamiento de ellos. Como quinto es analizar los resultados, discutir ellos, redactar las conclusiones y recomendaciones a las que se llegó frente a esta investigación realizada.

3.6. Método de análisis de datos

La información obtenida del laboratorio sobre los ensayos del concreto de los diferentes tipos de mezclas en estado endurecido tales como resistencia a la compresión, tracción y flexión fueron almacenados en el programa "Microsoft Excel", para después reflejar los resultados mediante tablas y gráficos que se mostraran durante el desarrollo de esta investigación.

Pero el método de procesamiento y análisis de datos se realizó mediante la estadística inferencial o inductiva quien generaliza afirmaciones, conclusiones y características de una población a partir de la muestra extraída de la misma población estudiada. Pero como esta investigación es del tipo cuantitativa el cual para comprender y estudiar esta problemática se realizará mediante la recolección de datos numéricos, los mismos que fueron almacenados y procesados en Microsoft Excel, se trasladó estos al programa "IBM SPSS Statistics 25" y se realizó la prueba paramétrica denominado análisis de varianza (ANOVA) y como último se empleó la prueba post – hoc Tukey.

3.7. Aspectos éticos

Esta investigación realizada deja constancia que todas las fuentes empleadas están debidamente referenciadas según el sistema ISO 690, del mismo modo los datos obtenidos por los resultados de la investigación como tablas, gráficos y datos serán verídicos, para la realización de las discusiones, conclusiones y recomendaciones a las que se llegó con esta investigación.

IV. RESULTADOS

4.1. Procedencia de los agregados

Los agregados convencionales (arena gruesa y piedra chancada) a usar para diseñar concreto ligero de resistencia a la compresión f´c = 210 kg/cm² con la adición de agregados no convencionales, se consiguió de la "Cantera Trapiche" ubicada en el km. 35 de la Av. Tupac Amaru, cerca al paradero entrada a rio seco del distrito de Carabayllo, provincia de Lima. Esta empresa dedicada al rubro de producción y venta de agregados viene operando aproximadamente desde el 1 de abril del año 2012 hasta la actualidad (ver figura 4.2).

Con respecto a los agregados no convencionales en el caso del aserrín se obtuvo de la "Maderera Iquitos" que está ubicado en la Av. Gerardo Unger 3227 del distrito de Independencia y respecto al ladrillo rococho es procedente de la ladrillera artesanal Cabrera ubicado en la Calle Los Cedros del distrito de Lurigancho – Chosica (ver figura 4.1), así mismo a este último para formarlo en agregado se tiene que pasar por un proceso de trituración manual y realizarle los ensayos de laboratorio como agregado grueso ya que de esta manera se empleara en el concreto a diseñar, para así lograr obtener sus propiedades.

Figura 4.1. Ladrillera artesanal cabrera.

Fuente: Elaboración propia

Figura 4.2. Cantera trapiche.

Fuente: Cantera trapiche

4.2. Ensayos de laboratorio de los agregados

A fin de desarrollar esta investigación se realizaron los siguientes ensayos respecto a los agregados como: granulometría, peso unitario, contenido de humedad, peso específico y porcentaje de absorción. Todo esto con la finalidad de obtener las propiedades de cada uno de ellos para poder diseñar el concreto ligero con la adición de agregados no convencionales.

Cabe mencionar que en esta parte se mostrara los resultados obtenidos del Laboratorio UNI LEM de la Universidad Nacional de Ingeniería, lugar donde se realizaron los ensayos antes mencionados luego de dejarles las muestras de cada tipo de agregado.

En el caso del aserrín no se realizó ningún ensayo porque a este agregado no convencional solo se sustituirá en porcentajes parciales por la arena gruesa del diseño patrón, como lo fue con el ladrillo rococho triturado, a quien si se le realizo ensayos de laboratorio con la finalidad de obtener información de sus propiedades.

Por lo tanto, hacer mención que para los agregados no convencionales no necesariamente ameritan ensayos de laboratorio, pero si describir sus propiedades para conocer más de ellos y ver que más livianos son respecto a los agregados tradicionales.

Ensayo de granulometría

A continuación, se muestra los resultados obtenidos respecto a este tipo de ensayo normalizado por la NTP 400.012:2018 que se realizó a la arena gruesa, piedra chancada y ladrillo rococho triturado (ver tablas del 4.1 al 4.3 y figuras del 4.3 al 4.5).

Del agregado fino (arena gruesa)

Tabla 4.1. Análisis granulométrico del agregado fino – arena gruesa.

Tai	miz	% Retenido	% Retenido	% Pasa	% Pasa - ASTM C 33
(Pulg)	(mm)		acumulado		Huso agregado fino
3/8"	9.50	0.0	0.0	100.0	100
N°4	4.75	1.0	1.0	99.1	95 - 100
N°8	2.36	11.6	12.5	87.5	80 - 100
N°16	1.18	23.9	36.4	63.6	50 - 85
N°30	0.60	25.0	61.4	38.6	25 - 60
N°50	0.30	18.9	80.3	19.7	5 - 30
N°100	0.15	11.6	91.9	8.1	0 - 10
Fondo	-	8.1	100.0	0.0	0

Fuente: Elaboración propia

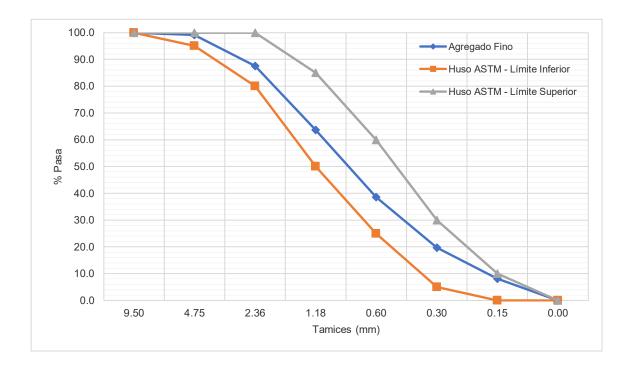


Figura 4.3. Curva granulométrica del agregado fino – arena gruesa.

> Del agregado grueso (piedra chancada)

Tabla 4.2. Análisis granulométrico del agregado grueso – piedra chancada.

Tai	miz	% Retenido	% Retenido	% Pasa	% Pasa - ASTM C 33
(Pulg)	(mm)		acumulado		Huso 5
1 1/2"	37.50	0.0	0.0	100.0	100
1"	25.00	28.8	28.8	71.2	90 - 100
3/4"	19.00	41.8	70.6	29.4	20 - 55
1/2"	12.50	20.1	90.7	9.3	0 - 10
3/8"	9.50	5.5	96.2	3.8	0 - 5
N°4	4.75	3.5	99.8	0.2	-
Fondo	-	0.2	100.0	0.0	-

Fuente: Elaboración propia

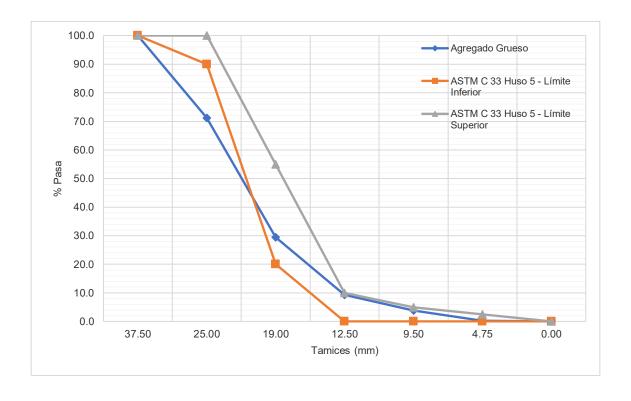


Figura 4.4. Curva granulométrica del agregado grueso – piedra chancada.

Del agregado grueso no convencional (ladrillo rococho triturado)

Tabla 4.3. Análisis granulométrico del agregado grueso no convencional – ladrillo rococho triturado.

Та	miz	% Retenido	% Retenido	% Pasa	% Pasa - ASTM C 33
(Pulg)	(mm)		acumulado		Huso 4
2"	50.00	0.0	0.0	100.0	100
1 1/2"	37.50	0.0	0.0	100.0	90 - 100
1"	25.00	82.6	82.6	17.4	20 - 55
3/4"	19.00	14.1	96.7	3.3	0 - 15
1/2"	12.50	0.5	97.3	2.7	-
3/8"	9.50	0.1	97.3	2.7	0 - 5
N°4	4.75	0.2	97.6	2.4	-
Fondo	-	2.4	100.0	0.0	-

Fuente: Elaboración propia

100.0 - Agregado Grueso 90.0 ASTM C 33 Huso 4 - Límite 80.0 Inferior - ASTM C 33 Huso 4 - Límite 70.0 Superior 60.0 50.0 40.0 30.0 20.0 10.0 0.0 9.50 4.75 50.00 37.50 25.00 19.00 12.50 0.00 Tamices (mm)

Figura 4.5. Curva granulométrica del agregado grueso no convencional – ladrillo rococho triturado.

De la tabla 4.2 y 4.3, el tamaño máximo nominal para ambos agregados gruesos según la NTP 400.037:2018 es correspondiente al menor tamiz que produce el primer retenido y que según los resultados mostrados este es de 1".

Ensayo de peso unitario y contenido de humedad

A continuación, se muestra los resultados obtenidos respecto a este tipo de ensayos normalizados por la NTP 400.017:2016 para el peso unitario y NTP 339.185:2018 para el contenido de humedad. Ensayos que se realizaron a la arena gruesa, piedra chancada y ladrillo rococho triturado, obteniéndose de cada uno de ellos el peso unitario suelto (PUS), compactado (PUC) y el contenido de humedad, resultados que son mostrados en la tabla 4.4.

Tabla 4.4. Peso unitario y contenido de humedad de los agregados.

Muestra	Peso unitario suelto (kg/m³)	Peso unitario compactado (kg/m³)	Contenido de humedad (%)
Arena gruesa	1598	1830	0.34
Piedra chancada	1456	1628	0.35
Ladrillo rococho triturado	1083	1224	0.01

Fuente: Elaboración propia

Ensayo de peso específico y porcentaje de absorción

A continuación, se muestra los resultados obtenidos respecto a este tipo de ensayo normalizado por la NTP 400.022:2018 para el agregado fino y NTP 400.021:2018 para el agregado grueso. Estos se realizaron a la arena gruesa, piedra chancada y ladrillo rococho triturado, obteniéndose de cada uno de ellos los siguientes resultados que son mostrados en la tabla 4.5.

Tabla 4.5. Peso específico y porcentaje de absorción de los agregados.

Muestra	Peso específico de masa (gr/cm³)	Peso específico de masa seco (gr/cm³)	Porcentaje de absorción (%)
Arena gruesa	2.62	2.64	0.79
Piedra chancada	2.81	2.83	0.47
Ladrillo rococho triturado	2.03	2.19	7.45

4.3. Diseño de mezclas - método comité 211 del ACI

A continuación, se mostrará las propiedades de cada material (ver tabla 4.6 y 4.7) para diseñar la mezcla del concreto patrón y para después sustituir sus agregados por otros no convencionales en porcentajes de la siguiente manera:

- ➤ El agregado fino (arena gruesa) se sustituirá por aserrín en 2%, 4% y 6% respecto a su cantidad en peso del diseño patrón.
- ➤ El agregado grueso (piedra chancada) se sustituirá por ladrillo rococho triturado en 35%, 65% y 100% respecto a su cantidad en peso del diseño patrón.

Propiedades de los materiales

Tabla 4.6. Datos respecto al cemento y agua para realizar el diseño de mezcla.

Material	Marca	Tipo	Peso específico
Cemento	Sol	I	3.12 gr/cm ³
Agua		Potable	1000 kg/m ³

Fuente: Elaboración propia (ver anexo 04 para las especificaciones técnicas del cemento sol)

Tabla 4.7. Propiedades de los agregados para realizar el diseño de mezcla.

Propiedades físicas de los agregados	Arena gruesa	Piedra chancada	Ladrillo rococho triturado
Peso unitario suelto (PUS)	1598 kg/m ³	1456 kg/m ³	1083 kg/m ³
Peso unitario compactado (PUC)	1830 kg/m ³	1628 kg/m ³	1224 kg/m ³
Peso específico de masa (PE)	2.62 gr/cm ³	2.81 gr/cm ³	2.03 gr/cm ³
Contenido de humedad	0.34 %	0.35 %	0.01 %
Porcentaje de absorción	0.79 %	0.47 %	7.45 %
Módulo de finura	2.84	7.65	7.79
Tamaño máximo nominal (D _{n máx.})		1"	1"

Con respecto al aserrín su peso específico según (Ortega Sánchez, y otros, 2019 "[...] independientemente del tipo de madera de procedencia es en promedio de 178.83 kg/m³ [...]". Aunque este último dato no es muy relevante ya que no influye en el diseño.

Diseño de mezcla del concreto patrón

- 1. Resistencia especificada (f'c) = 210 kg/cm².
 - Asentamiento (slump) = 3" 4".
- 2. Agua = 193 lt, en función del (Dnm = 1") y slump 3" 4", según tabla 2.1.

Volumen de aire atrapado = 1.5%, según tabla 2.1.

3. Resistencia requerida (f'cr) = f'c + 85 = 210 + 85 = 295 kg/cm², según tabla 2.2.

4. Cálculo del cemento, según tabla 2.3.

$$((306-255)/(295-255)) = ((0.54-0.61)/(X-0.61))$$
 ----- (a/c) = 0.56

Pero como se desea obtener en base a este diseño un concreto ligero de f'c=210 kg/cm² después de adicionar agregados no convencionales y que será para fines de uso estructural, se tomó la decisión de trabajar para este diseño de concreto patrón con una relación (a/c) = 0.47.

$$(a/c) = a / c$$

$$c = a / (a/c) = 193 / 0.47 = 410.6 kg$$

5. Cálculo del peso de la piedra, en función del factor (b/bo.), según tabla 2.4.

$$((2.80 - 3.00) / (2.84 - 3.00)) = ((0.67 - 0.65) / (X - 0.65))$$
 ----- (b/b₀.) = 0.666

Peso de la piedra = (b/b_0) x PUC = 0.666 x 1628 = 1084.2 kg

Volumen de piedra = piedra / (PE x 1000) = $1084.2 / 2810 = 0.386 \text{ m}^3$

6. Cálculo del volumen (volúmenes absolutos) y peso de la arena:

Volumen del cemento = $410.6 / (3.12 \times 1000) = 0.132 \text{ m}^3$

Volumen de agua = $193.0 / (1.00 \times 1000) = 0.193 \text{ m}^3$

Volumen de piedra = $1084.2 / (2.81 \times 1000) = 0.386 \text{ m}^3$

Volumen de aire = $1.50 / 100 = 0.015 \text{ m}^3$

Volumen parcial = 0.726 m³

Volumen de la arena = 1- Vol. (Piedra, agua, aire) =
$$1 - 0.726 = 0.274 \text{ m}^3$$

Peso de la arena = Vol. Arena x PE x $1000 = 0.274 \text{ x } 2620 = 717.88 \text{ kg}$

7. Corrección por humedad de los agregados:

Arena =
$$717.88 \times (1 + (0.34 / 100)) = 720.3 \text{ kg}$$

Piedra =
$$1084.2 \times (1 + (0.35 / 100)) = 1088.0 \text{ kg}$$

8. Cálculo del aporte agua libre de los agregados:

Arena =
$$717.88 \times (0.34 - 0.79) / 100 = -3.23 \text{ kg}$$

Piedra =
$$1084.2 \times (0.35 - 0.47) / 100 = -1.30 \text{ kg}$$

9. Cálculo del agua efectiva o de diseño:

Agua de diseño =
$$193 - (-3.23 - 1.30) = 197.53$$
 lt

10. Cálculo de las proporciones en peso por m³:

Pesos Secos Pesos de Obra
Cemento = 410.6 kg 410.6 kg
Agua = 193 lt 197.53 lt
Arena = 717.88 kg 720.3 kg
Piedra = 1084.2 kg 1088.0 kg
(a/c) = 0.47 0.48

1 : 1.75 : 2.64 - 20.0 lt. (a/c) = 0.47 ------ 1 : 1.75 : 2.65 - 20.4 lt. (a/c) = 0.48

Cálculo de las proporciones en volumen:

Materiales x Bolsa de cemento (W.U.O x 42.5)

Por lo tanto, la dosificación del diseño de mezcla de concreto patrón es:

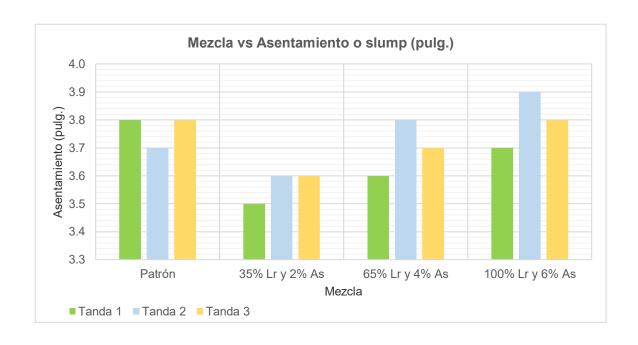
$$1:1.64:2.73, 20.4$$
 It. $(a/c) = 0.48$

Una vez obtenido la dosificación del concreto patrón se pasa a sustituir respecto a su peso de sus agregados por agregados no convencionales en los porcentajes antes mencionados.

Pero mencionar que durante la fabricación del concreto con la adición de agregados no convencionales se observó que como son materiales poco comunes en donde se desconocía su comportamiento durante su mezclado, al momento de ver que no se podía mezclar debido a la poca cantidad de agua se decidió agregar más agua frente a lo que establecía el diseño cambiando únicamente la relación agua cemento a 0.58. Así mismo aclarar que no se aumentó más cemento debido a que la relación a/c del diseño patrón tenía holgura en caso se necesitara aumentar agua y por ende cambiar esta. Por ende, en la tabla 4.8 se muestra la dosificación diseñada para el concreto patrón y las empleadas en la fabricación para obtener concreto ligero:

Tabla 4.8. Dosificación obtenida del diseño de mezcla en peso (kg) y después de la fabricación adicionando ladrillo rococho triturado y aserrín.

Mezcla	Cemento	Arena	Piedra chancada	Aserrín	Ladrillo rococho	Agua (It)	a/c
			Cilalicada		10000110		
Patrón	410.6	720.3	1088.0			197.53	0.48
35% Lr y 2% As	410.6	705.9	707.2	14.4	380.8	240.0	0.58
65% Lr y 4% As	410.6	691.5	380.8	28.8	707.2	240.0	0.58
100% Lr y 6% As	410.6	677.1		43.2	1088.0	240.0	0.58


4.4. Propiedades físicas del concreto

Asentamiento del concreto con el cono de abrams (NTP 339.035:2015)

La medición del slump o asentamiento se realizó para todas las mezclas que se exponen en la tabla 4.8, en donde se realizó el ensayo tres veces por cada tipo de mezcla ya que se realizaron tres tandas por cada uno de ellos. Por consiguiente, en la tabla 4.9 se muestra los resultados obtenidos.

Tabla 4.9. Medición del asentamiento del concreto con el cono de abrams.

Mezcla	Asentamiento o slump (pulg.)						
	Tanda 1	Tanda 3					
Patrón	3.8"	3.7"	3.8"				
35% Lr y 2% As	3.5"	3.6"	3.6"				
65% Lr y 4% As	3.6"	3.8"	3.7"				
100% Lr y 6% As	3.7"	3.9"	3.8"				

Figura 4.6. Asentamiento respecto a cada tipo de mezcla por cada tanda realizada.

De la figura 4.6 se aprecia que el concreto independientemente del tipo de mezcla su asentamiento no cambia, ya que están entre 3" a 4" como se diseñó. Pero esto se logró modificando la relación a/c de las mezclas por sustitución de agregados no convencionales para obtener trabajabilidad. Ya que con la relación a/c del diseño patrón no se pudieron mezclar todos los materiales por falta de agua al momento de fabricar cada uno de ellos.

Peso unitario en estado fresco del concreto (NTP 339.046:2008)

La medición de esta propiedad del concreto se realizó para todas las mezclas que se exponen en la tabla 4.8, donde se realizó el ensayo dos veces por cada uno de ellos. A continuación, se muestra en la tabla 4.10 los resultados obtenidos.

Tabla 4.10. Medición del peso unitario en estado fresco del concreto.

Mezcla	Peso del molde + concreto (kg)	Peso del molde (kg)	Volumen del molde (m³)	Peso unitario (kg/m³)	
	+ concreto (kg)	molue (kg)	moide (m²)	parcial	promedio
Patrón	37.085	3.185	0.014141	2,397	2,390
	36.885	3.185	0.014141	2,383	
35% Lr y 2% As	36.185	3.185	0.014141	2,334	2,327
270 AS	35.985	3.185	0.014141	2,319	
65% Lr y 4% As	35.085	3.185	0.014141	2,256	2,253
4 70 AS	34.985	3.185	0.014141	2,249	
100% Lr	34.085	3.185	0.014141	2,185	2,182
y 6% As	33.985	3.185	0.014141	2,178	

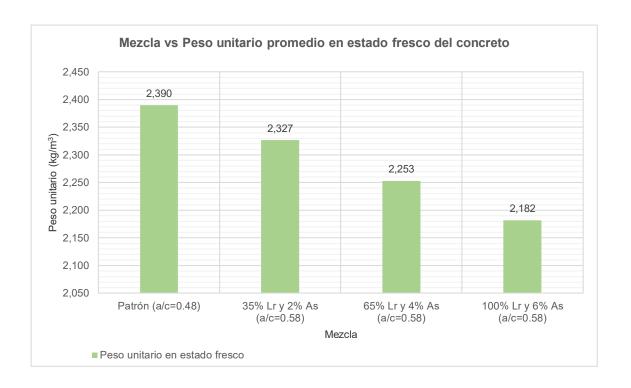


Figura 4.7. Peso unitario promedio en estado fresco por cada tipo de mezcla.

Frente a los resultados expuestos en la figura 4.7 se observa que cuando sustituimos los agregados del concreto patrón por aserrín y ladrillo rococho triturado que son agregados no convencionales el peso unitario en estado fresco disminuye aligerando el peso del concreto inicial. Cuando sustituimos en 35% Lr y 2% As disminuye en 2.64%, pero en 65% Lr y 4% As se reduce en 5.73% y por último con 100% Lr y 6% As disminuye en 8.70%.

Peso unitario en estado endurecido del concreto

La medición de esta propiedad del concreto se realizó para todas las mezclas que se exponen en la tabla 4.8, en donde se realizó este para todas las muestras de probetas, a excepción de las muestras que son vigas. Así mismo el procedimiento que se siguió fue como primero tomar los pesos de todas las probetas, registrar sus dimensiones y calcular el peso unitario de cada una en base a su peso y volumen, por cada tipo de mezcla. Por último, se procede a calcular el peso unitario promedio en estado endurecido por tipo de mezcla. A continuación, se muestra los resultados obtenidos (ver tablas del 4.11 al 4.14).

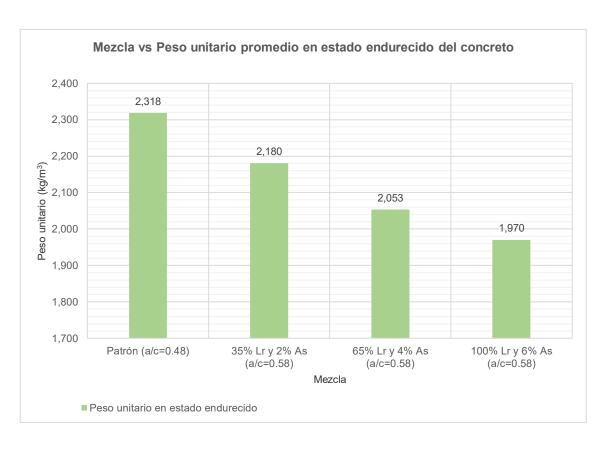
Tabla 4.11. Medición del peso unitario en estado endurecido del diseño patrón con relación a/c = 0.48.

Identificación de	Peso	Diámetro	Altura	Peso Unita	ario (kg/m³)
muestras	(kg)	(m)	(m)	Parcial	Promedio
M1PATRON	3.780	0.102	0.200	2,313	
M2PATRON	3.825	0.103	0.200	2,295	
M3PATRON	3.770	0.101	0.202	2,329	
M4PATRON	3.765	0.101	0.202	2,326	2 240
M5PATRON	3.767	0.101	0.201	2,339	2,318
M6PATRON	3.828	0.102	0.202	2,319	
M7PATRON	3.832	0.103	0.202	2,277	
M8PATRON	3.764	0.101	0.201	2,337	

M9PATRON	3.760	0.101	0.201	2,335	
M10PATRON	3.839	0.102	0.201	2,337	
M11PATRON	3.835	0.102	0.202	2,323	
M12PATRON	3.840	0.102	0.202	2,326	
T1PATRON	3.805	0.102	0.200	2,328	
T2PATRON	3.820	0.103	0.201	2,281	
T3PATRON	3.849	0.103	0.200	2,310	

Tabla 4.12. Medición del peso unitario en estado endurecido del diseño con la adición 35% Lr y 2% As con relación a/c = 0.58.

Identificación de	Peso	Diámetro	Altura	Peso Unita	ario (kg/m³)
muestras	(kg)	(m)	(m)	Parcial	Promedio
M1L35A2	3.545	0.101	0.200	2,212	
M2L35A2	3.545	0.102	0.200	2,169	
M3L35A2	3.543	0.101	0.201	2,200	
M4L35A2	3.570	0.102	0.200	2,184	
M7L35A2	3.540	0.101	0.202	2,187	
M8L35A2	3.550	0.101	0.200	2,215	
M9L35A2	3.525	0.101	0.201	2,189	
M10L35A2	3.510	0.100	0.203	2,202	2,180
M11L35A2	3.500	0.101	0.202	2,163	
M12L35A2	3.580	0.102	0.203	2,158	
D1L35A2	3.555	0.102	0.203	2,143	
D2L35A2	3.562	0.100	0.203	2,234	
T1L35A2	3.595	0.103	0.201	2,147	
T2L35A2	3.531	0.102	0.200	2,161	
T3L35A2	3.585	0.103	0.201	2,141	


Tabla 4.13. Medición del peso unitario en estado endurecido del diseño con la adición 65% Lr y 4% As con relación a/c = 0.58.

Identificación de	Peso	Diámetro	Altura	Peso Unita	ario (kg/m³)
muestras	(kg)	(m)	(m)	Parcial	Promedio
M1L65A4	3.345	0.102	0.201	2,037	
M2L65A4	3.302	0.102	0.200	2,020	
M3L65A4	3.380	0.101	0.202	2,088	
M4L65A4	3.350	0.102	0.201	2,040	
M5L65A4	3.379	0.101	0.202	2,088	
M6L65A4	3.335	0.102	0.201	2,031	
M7L65A4	3.355	0.101	0.201	2,083	
M8L65A4	3.348	0.101	0.201	2,079	2,053
M9L65A4	3.340	0.102	0.201	2,034	
M10L65A4	3.312	0.102	0.200	2,027	
M11L65A4	3.325	0.102	0.200	2,035	
M12L65A4	3.325	0.102	0.201	2,024	
T1L65A4	3.392	0.101	0.202	2,096	
T2L65A4	3.330	0.102	0.201	2,027	
T3L65A4	3.385	0.101	0.202	2,092	

Tabla 4.14. Medición del peso unitario en estado endurecido del diseño con la adición 100% Lr y 6% As con relación a/c = 0.58.

Identificación de	Peso	Peso [Diámetro	Peso Diámetro Altura	Peso Unitario (kg/m³)	
muestras	(kg)	(m)	(m) (m)	Parcial	Promedio	
M1L100A6	3.214	0.101	0.201	1,996		
M2L100A6	3.220	0.102	0.200	1,970		
M3L100A6	3.218	0.102	0.202	1,950	1,970	
M4L100A6	3.210	0.102	0.202	1,945		
M7L100A6R	3.238	0.102	0.201	1,971		

M8L100A6R	3.226	0.102	0.202	1,954	
M7L100A6	3.235	0.103	0.201	1,932	
M8L100A6	3.226	0.101	0.202	1,993	
M9L100A6R	3.240	0.102	0.201	1,973	
M10L100A6R	3.258	0.102	0.202	1,974	
M11L100A6R	3.220	0.102	0.202	1,951	
M12L100A6R	3.215	0.101	0.201	1,996	
T1L100A6	3.220	0.101	0.202	1,990	
T2L100A6	3.235	0.101	0.202	1,999	
T3L100A6	3.238	0.102	0.202	1,962	

Figura 4.8. Peso unitario promedio en estado endurecido por cada tipo de mezcla.

Frente a los resultados expuestos en la figura 4.8 se observa que cuando sustituimos los agregados del concreto patrón por aserrín y ladrillo rococho triturado que son agregados no convencionales el peso unitario en estado endurecido disminuye aligerando el peso del concreto inicial. Cuando sustituimos en 35% Lr y 2% As disminuye en 5.95%, pero en 65% Lr y 4% As se reduce en 11.43% y por último con 100% Lr y 6% As disminuye en 15.01%.

4.5. Propiedades mecánicas del concreto

A continuación, se exponen los resultados obtenidos del laboratorio UNI – LEM de la universidad nacional de ingeniería realizados a los 7, 14 y 28 días de edad por cada tipo de mezcla para ser analizados después en tablas y gráficos, según la propiedad que se esté estudiando (ver tablas del 4.15 al 4.20).

Ensayo de resistencia a la compresión (NTP 339.034:2015 – ASTM C39)

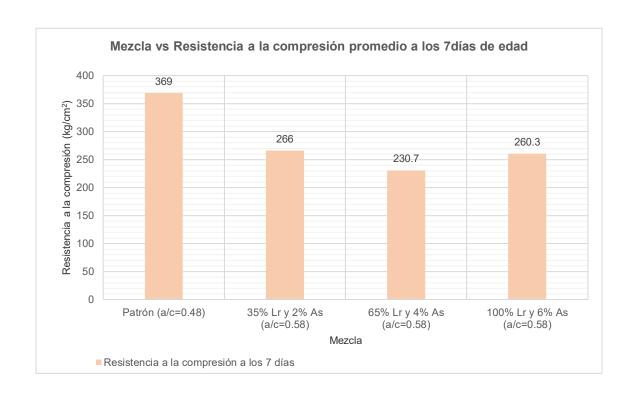
Tabla 4.15. Resultados del ensayo a compresión de probetas del diseño patrón con relación a/c = 0.48.

N°	Identificación de muestras	Edad (días)	Resistencia a la compresión (kg/cm²)	Resistencia promedio (kg/cm²)
1	M1PATRON		390	
2	M2PATRON	7	335	369
3	M3PATRON		382	
1	M4PATRON		398	
2	M5PATRON	14	454	398
3	M6PATRON		342	
2	M8PATRON		421	
3	M9PATRON		399	
4	M10PATRON	28	466	426.4
5	M11PATRON		439	

6	M12PATRON	407	

Tabla 4.16. Resultados del ensayo a compresión de probetas del diseño con la adición 35% Lr y 2% As con relación a/c = 0.58.

N°	Identificación de muestras	Edad (días)	Resistencia a la compresión (kg/cm²)	Resistencia promedio (kg/cm²)
4	M1L35A2		269	
5	M2L35A2	7	274	266
6	M3L35A2		255	
4	M4L35A2		312	
1	M7L35A2	14	291	303
2	M8L35A2		306	
7	M9L35A2		339	
8	M10L35A2		354	
9	M11L35A2	28	324	327.8
10	M12L35A2		330	
11	D1L35A2		292	


Tabla 4.17. Resultados del ensayo a compresión de probetas del diseño con la adición 65% Lr y 4% As con relación a/c = 0.58.

N°	Identificación de muestras	Edad (días)	Resistencia a la compresión (kg/cm²)	Resistencia promedio (kg/cm²)
1	M1L65A4		228	
2	M2L65A4	7	216	230.7
3	M3L65A4		248	

7	M4L65A4		246	
8	M5L65A4	14	240	253.7
9	M6L65A4		275	
13	M7L65A4		315	
14	M8L65A4		305	
16	M10L65A4	28	303	321.4
17	M11L65A4		347	
18	M12L65A4		337	

Tabla 4.18. Resultados del ensayo a compresión de probetas del diseño con la adición 100% Lr y 6% As con relación a/c = 0.58.

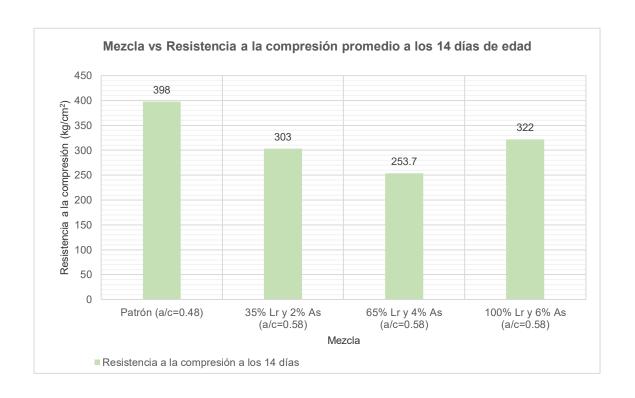

N°	Identificación de muestras	Edad (días)	Resistencia a la compresión (kg/cm²)	Resistencia promedio (kg/cm²)
4	M1L100A6		257	
5	M2L100A6	7	253	260.3
6	M3L100A6		271	
10	M4L100A6		352	
1	M7L100A6R	14	304	322
2	M8L100A6R		310	
20	M8L100A6		419	
21	M9L100A6R		404	
23	M11L100A6R	28	366	393.4
24	M12L100A6R		384	
25	M9L100A6D		394	

Figura 4.9. Resistencia a la compresión promedio por cada tipo de mezcla a los 7 días de edad.

De la figura 4.9 se visualiza que se obtuvo una resistencia a la compresión promedio a los 7 días de edad para el concreto patrón de 369 kg/cm², pero cuando sustituimos sus agregados en porcentajes por aserrín y ladrillo rococho triturado y cambiamos la relación a/c en las demás mezclas se disminuye respecto a lo alcanzado inicialmente en el patrón de la siguiente manera:

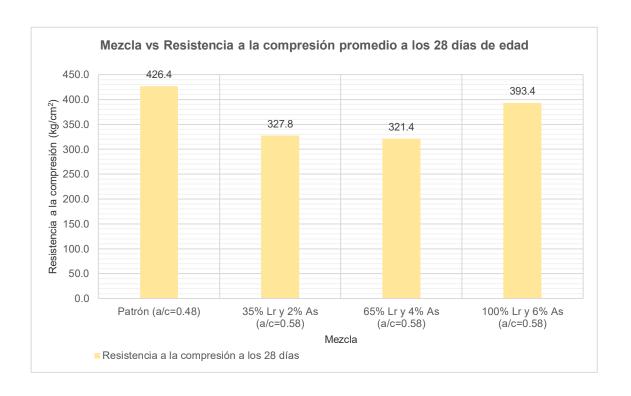
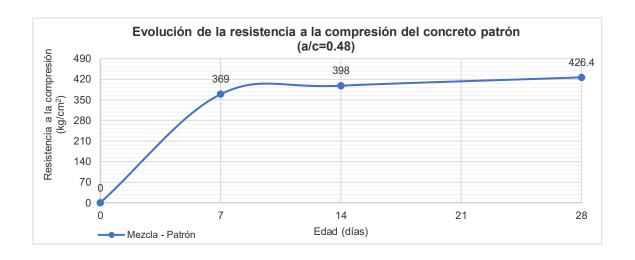

- Con el 35% Lr y 2% As obtenemos el 72% respecto a lo alcanzado del concreto patrón.
- Con el 65% Lr y 4% As obtenemos el 63% respecto a lo alcanzado del concreto patrón.
- Con el 100% Lr y 6% As obtenemos el 71% respecto a lo alcanzado del concreto patrón.

Figura 4.10. Resistencia a la compresión promedio por cada tipo de mezcla a los 14 días de edad.

Con respecto a la figura 4.10 se aprecia que se alcanzó una resistencia a la compresión promedio a los 14 días de edad para el concreto patrón de 398 kg/cm², pero cuando sustituimos sus agregados en porcentajes y cambiamos la relación a/c en las demás mezclas se reduce respecto a lo alcanzado inicialmente en el patrón de la siguiente manera:

- Con el 35% Lr y 2% As obtenemos el 76% respecto a lo alcanzado del concreto patrón.
- Con el 65% Lr y 4% As obtenemos el 64% respecto a lo alcanzado del concreto patrón.
- Con el 100% Lr y 6% As obtenemos el 81% respecto a lo alcanzado del concreto patrón.


Figura 4.11. Resistencia a la compresión promedio por cada tipo de mezcla a los 28 días de edad.

De la figura 4.11 se observa que se logró una resistencia a la compresión promedio a los 28 días de edad para el concreto patrón de 426.4 kg/cm², pero cuando sustituimos sus agregados en porcentajes y cambiamos la relación a/c en las demás mezclas se reduce respecto a lo alcanzado inicialmente en el patrón de la siguiente manera:

- Con el 35% Lr y 2% As obtenemos el 77% respecto a lo alcanzado del concreto patrón.
- Con el 65% Lr y 4% As obtenemos el 75% respecto a lo alcanzado del concreto patrón.
- Con el 100% Lr y 6% As obtenemos el 92% respecto a lo alcanzado del concreto patrón.

En resumen, la resistencia a la compresión del concreto patrón es mayor al resto debido al cambio de la relación a/c, esto realizado con la finalidad de obtener trabajabilidad en las mezclas por sustitución en peso de los agregados del diseño patrón por agregados no convencionales como el ladrillo rococho triturado y el aserrín.

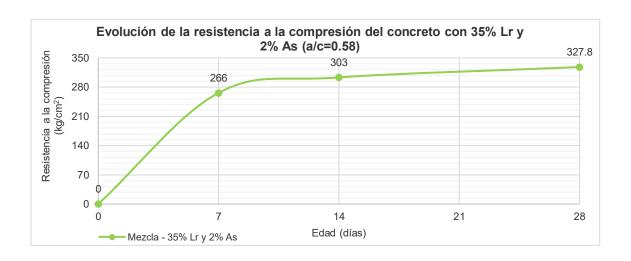
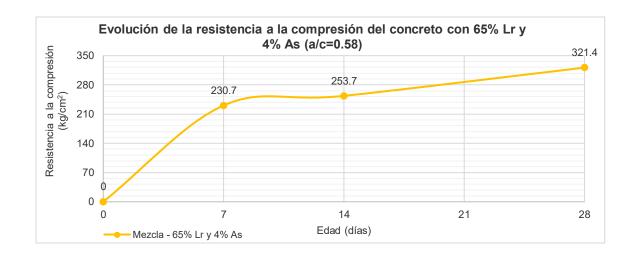
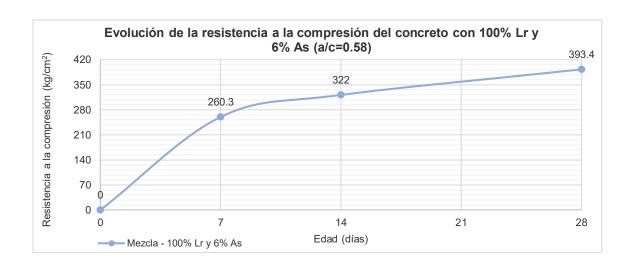

No obstante, con respecto a las mezclas por sustitución su resistencia a la compresión de la mezcla L35A2 y L65A4 es similar, mientras que la L100A6 si es diferente por ser mayor que el resto. Pero, aunque estos sean menores al diseño patrón estos ya son mayores a 210 kg/cm² y son de uso estructural, el cual fue la meta establecida para este diseño en esta investigación. A continuación, se muestra los gráficos de evolución de la resistencia a la compresión de todos los tipos de mezclas respecto a su edad en días (ver figuras del 4.12 al 4.15).

Figura 4.12. Grafica de evolución de la resistencia a la compresión promedio del diseño patrón con relación a/c = 0.48.


Fuente: Elaboración propia

De la figura 4.12 se observa que la mezcla patrón su resistencia a la compresión a los 7 días de edad alcanza el 87%, a los 14 días el 93% y a los 28 días el 100%.


Figura 4.13. Grafica de evolución de la resistencia a la compresión promedio del diseño con la adición 35% Lr y 2% As con relación a/c = 0.58.

Con respecto a la figura 4.13 se aprecia que la mezcla con el 35% Lr y 2% As su resistencia a la compresión a los 7 días de edad alcanza el 81%, a los 14 días el 92% y a los 28 días el 100%.

Figura 4.14. Grafica de evolución de la resistencia a la compresión promedio del diseño con la adición 65% Lr y 4% As con relación a/c = 0.58.

De la figura 4.14 se aprecia que la mezcla con el 65% Lr y 4% As su resistencia a la compresión a los 7 días de edad alcanza el 72%, a los 14 días el 79% y a los 28 días el 100%.

Figura 4.15. Grafica de evolución de la resistencia a la compresión promedio del diseño con la adición 100% Lr y 6% As con relación a/c = 0.58.

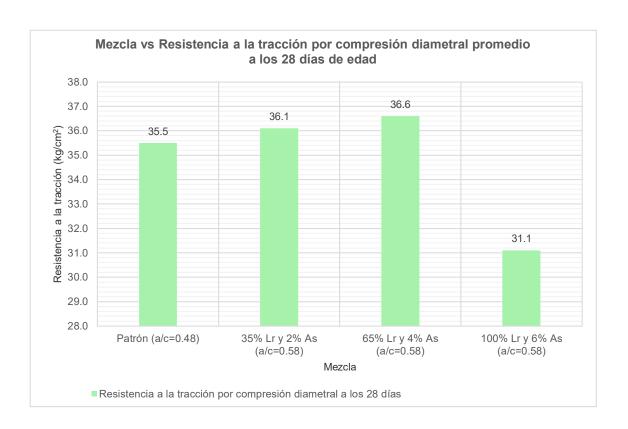
Fuente: Elaboración propia

Con respecto a la figura 4.15 se observa que la mezcla con el 100% Lr y 6% As que consiste en sustituir en peso los agregados del concreto patrón en 100% por ladrillo rococho triturado como agregado grueso y 6% de aserrín como fino, su resistencia a la compresión a los 7 días de edad alcanza el 66%, a los 14 días el 82% y a los 28 días el 100%.

Ensayo de resistencia a la tracción por compresión diametral (NTP 339.084:2017 – ASTM C496-96)

Este ensayo de resistencia a la tracción por compresión diametral del concreto se realizó para cada tipo de mezcla a los 28 días de edad, donde su objetivo es mostrar si la adherencia sigue siendo la misma o cambia respecto a la mezcla

patrón y las demás mezclas por sustitución con agregados no convencionales que son el ladrillo rococho triturado y aserrín, es decir para verificar si se pierde o no adherencia ya que existe una relación directa con los materiales para fabricar concreto, porque a mejor adherencia entre ellos también mejorara la resistencia a la tracción por compresión diametral. A continuación, en la tabla 4.19 se muestra los resultados obtenidos del laboratorio.


Tabla 4.19. Resultados del ensayo de resistencia a la tracción por compresión diametral por cada tipo de mezcla a los 28 días de edad.

Mezcla	Identificación de muestras	Edad (días)	Resistencia a la tracción (kg/cm²)	Resistencia promedio (kg/cm²)
	T1PATRON		37.3	
Patrón	T2PATRON	28	33.0	35.5
	T3PATRON		36.1	
	T1L35A2		36.4	
35% Lr y 2% As	T2L35A2	28	38.9	36.1
	T3L35A2		32.9	
	T1L65A4		31.8	
65% Lr y 4% As	T2L65A4	28	38.5	36.6
	T3L65A4		39.5	
	T1L100A6		27.2	
100% Lr y 6% As	T2L100A6	28	34.9	31.1
	T3L100A6		31.3	

Fuente: Elaboración propia

De la tabla 4.19 se observa que la resistencia a la tracción de la mezcla patrón es similar al resto de las mezclas por sustitución con agregados no convencionales porque la diferencia entre ellos es mínima a pesar de que este posee una relación a/c diferente al resto, por lo que esto nos quiere decir que

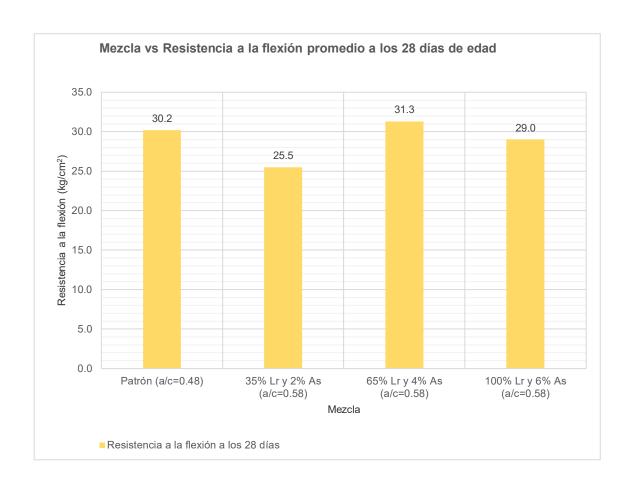
existe buena adherencia entre los materiales para fabricar cada tipo de mezcla, ya que la resistencia a la tracción por compresión diametral no se vio afectada con el empleo del ladrillo rococho triturado y aserrín como agregados para obtener concreto ligero. Por lo tanto, en la figura 4.16 se mostrará esto para una mejor visualización.

Figura 4.16. Resistencia a la tracción por compresión diametral por cada tipo de mezcla a los 28 días de edad.

Fuente: Elaboración propia

Con respecto a la figura 4.16 se observa que se logró una resistencia a la tracción por compresión diametral promedio a los 28 días de edad para el concreto patrón de 35.5 kg/cm², pero cuando sustituimos sus agregados en porcentajes y cambiamos la relación a/c en las demás mezclas estas cambian respecto a lo alcanzado inicialmente en el patrón de la siguiente manera:

- Con el 35% Lr y 2% As obtenemos el 102% respecto a lo alcanzado del concreto patrón.
- Con el 65% Lr y 4% As obtenemos el 103% respecto a lo alcanzado del concreto patrón.
- Con el 100% Lr y 6% As obtenemos el 88% respecto a lo alcanzado del concreto patrón.


Ensayo de resistencia a la flexión (NTP 339.078:2017 – ASTM C78)

Este tipo de ensayo de resistencia a la flexión está regulado por las normas NTP 339.078 – ASTM C78 para cargas a los tercios del tramo y la NTP 339.079 – ASTM C293 para cargas en el punto medio del tramo. Pero en esta investigación se realizó bajo la norma NTP 339.078 para cada tipo de mezcla a los 28 días de edad, los resultados obtenidos se muestran en la tabla 4.20.

Tabla 4.20. Resultados del ensayo de resistencia a la flexión por cada tipo de mezcla a los 28 días de edad.

Mezcla	Identificación de muestras	Edad (días)	Resistencia a la flexión (kg/cm²)	Resistencia promedio (kg/cm²)
Patrón	V1PATRON	28	28.1	30.2
	V2PATRON		32.2	
35% Lr y 2% As	V1L35A2	28	25.5	25.5
	V2L35A2		25.5	
65% Lr y 4% As	V1L65A4	28	29.7	31.3
	V2L65A4		32.9	
100% Lr y 6% As	V1L100A6	28	29.0	29.0
	V2L100A6		29.0	

Cabe mencionar que según (Rodriguez Vivanco, y otros, 2019), "la resistencia a la flexión es una medida indirecta de la resistencia a la tracción del concreto. Es el valor de la resistencia a la falla por momento de una viga no reforzada [...]. Pues este se puede expresar como MR (modulo de rotura) en Mpa, lb/pulg² o kg/cm² [...]". Por lo tanto, este estaría vinculado con la capacidad de deformación por flexión de una viga o losa de concreto. A continuación en la figura 4.17 se mostrara un grafico respecto a los valores obtenidos del laboratorio respecto a la resistencia a la flexión del concreto mostrados en la tabla 4.20 para una mejor interpretación del mismo.

Figura 4.17. Resistencia a la flexión por cada tipo de mezcla a los 28 días de edad.

Con respecto a la figura 4.17 se observa que se logró una resistencia a la flexión promedio a los 28 días de edad para el concreto patrón de 30.2 kg/cm², pero cuando sustituimos sus agregados en porcentajes y cambiamos la relación a/c en las demás mezclas estas cambian respecto a lo alcanzado inicialmente en el patrón de la siguiente manera:

- Con el 35% Lr y 2% As obtenemos el 84% respecto a lo alcanzado del concreto patrón.
- Con el 65% Lr y 4% As obtenemos el 104% respecto a lo alcanzado del concreto patrón.
- Con el 100% Lr y 6% As obtenemos el 96% respecto a lo alcanzado del concreto patrón.

En resumen, de los resultados obtenidos de la resistencia a la flexión del concreto patrón con respecto a las mezclas por sustitución en porcentajes con agregados no convencionales como el ladrillo rococho triturado y aserrín, se aprecia que la presencia de estos materiales no afecta la resistencia a la flexión. Ya que esta propiedad muestra una diferencia mínima en comparación a lo obtenido en cada tipo de mezcla.

Así mismo si analizáramos únicamente las mezclas por sustitución con agregados no convencionales quienes poseen la misma relación a/c y partiéramos a partir de la mezcla con el 35% Lr y 2% As, se visualiza un aumento de la siguiente manera:

- Con el 65% Lr y 4% As aumentaría un 23% respecto a lo alcanzado en la mezcla con el 35% Lr y 2% As.
- Con el 100% Lr y 6% As aumentaría un 14% respecto a lo alcanzado en la mezcla con el 35% Lr y 2% As.

4.6. Análisis estadístico e interpretación de los resultados

Se realizó el análisis de la varianza (ANOVA) según cada tipo de mezcla desde el patrón hasta las sustituciones por agregados no convencionales que son el ladrillo rococho triturado y el aserrín, respecto a sus resultados obtenidos del peso unitario en estado endurecido del concreto, sobre los ensayos de compresión, tracción y flexión a los 7, 14 y 28 días de edad según corresponda, siendo el rango múltiple Tukey para conseguir la diferencia estadística entre los tipos de mezclas propuestos en esta investigación. A continuación, se muestran los resultados obtenidos de cada uno de ellos.

Análisis estadístico del peso unitario en estado endurecido del concreto

En primer lugar, se realizó la prueba de normalidad con la finalidad de observar primero si los datos son normales o no. En donde si el valor de significancia (Sig.) es mayor a 0.05 significara que los datos son normales y se podrá emplear la prueba paramétrica como el ANOVA. Por lo tanto, se empleó la prueba de Kolmogorov – Smirnov que son cuando se realizara el análisis estadístico para datos mayores de 50. Pero la prueba de Shapiro – Wilk que son para datos menores de 50 no se empleó debido a que en esta parte se analizó en base a 60 datos obtenidos (ver tablas del 4.21 al 4.25 y figura 4.18).

Tabla 4.21. Prueba de normalidad del peso unitario en estado endurecido del concreto.

Pruebas de normalidad Kolmogorov-Smirnov^a Shapiro-Wilk

		Kulliu	guruv-armin	UV	0	napiro-vviik	
	Tipo de Mezcla	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Peso unitario en estado	Patrón	,193	15	,137	,859	15	,024
endurecido del concreto	L35A2	,128	15	,200*	,956	15	,625
	L65A4	,275	15	,003	,807	15	,005
	L100A6	,156	15	,200*	,937	15	,342

^{*.} Esto es un límite inferior de la significación verdadera.

a. Corrección de significación de Lilliefors

De la tabla 4.21 se obtuvo una significancia mayor a 0.05, por lo que esto nos quiere decir que los datos son normales y se puede realizar el análisis estadístico mediante la prueba paramétrica análisis de la varianza – ANOVA.

Tabla 4.22. Análisis de la varianza del peso unitario en estado endurecido del concreto.

Descriptivos

Peso unitario en estado endurecido del concreto

					95% del intervalo de confianza para la media			
	N	Media	Desv. Desviación	Desv. Error	Límite inferior	Límite superior	Mínimo	Máximo
Patrón	15	2318,33	19,809	5,115	2307,36	2329,30	2277	2339
L35A2	15	2180,33	28,570	7,377	2164,51	2196,15	2141	2234
L65A4	15	2053,40	29,604	7,644	2037,01	2069,79	2020	2096
L100A6	15	1970,40	21,206	5,475	1958,66	1982,14	1932	1999
Total	60	2130,62	135,021	17,431	2095,74	2165,50	1932	2339

Fuente: Elaboración propia

En la tabla 4.22 se apreció los intervalos de confianza al 95% para la media, pero también muestra las medias para cada tipo de mezcla, los límites de confiabilidad que representan el rango a los 95% de seguridad que produciría una probeta al azar de peso unitario en estado endurecido de acuerdo al tipo de mezcla.

Tabla 4.23. Medias del peso unitario en estado endurecido del concreto.

ANOVA

Peso unitario en estado endurecido del concreto

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	1040116,317	3	346705,439	547,133	,000
Dentro de grupos	35485,867	56	633,676		
Total	1075602,183	59			

Con respecto a la tabla 4.23 se mostró el análisis estadístico comparativo de medias del cual el nivel de significancia fue 0.000 menor a 0.05, entonces esto implicó que se halló diferencias estadísticamente significativas en las medias de cada tipo de mezcla en relación al peso unitario en estado endurecido. Por lo tanto, estos fueron analizados realizando las pruebas Post Hoc Tukey que se muestra a continuación para comprobar entre que tipos de mezclas exactamente se encuentran las diferencias.

Por ende, se consideró lo siguiente: existirá una diferencia estadísticamente significativa cuando la Sig. este entre (0.01 < P < 0.05); con alta diferencia estadísticamente significativa cuando (P < 0.01) y no existe diferencia estadística cuando (P > 0.05). Así mismo (gl) es grados de libertad y (F) es F calculado.

Tabla 4.24. Comparación múltiple entre muestras respecto al peso unitario en estado endurecido del concreto.

Comparaciones múltiples

Variable dependiente: Peso unitario en estado endurecido del concreto HSD Tukey

					Intervalo de cor	nfianza al 95%
(I) Tipo de Mezcla	(J) Tipo de Mezcla	Diferencia de medias (I-J)	Desv. Error	Sig.	Límite inferior	Límite superior
Patrón	L35A2	138,000	9,192	,000	113,66	162,34
	L65A4	264,933	9,192	,000	240,59	289,27
	L100A6	347,933	9,192	,000	323,59	372,27
L35A2	Patrón	-138,000	9,192	,000	-162,34	-113,66
	L65A4	126,933	9,192	,000	102,59	151,27
	L100A6	209,933	9,192	,000	185,59	234,27
L65A4	Patrón	-264,933	9,192	,000	-289,27	-240,59
	L35A2	-126,933	9,192	,000	-151,27	-102,59
	L100A6	83,000	9,192	,000	58,66	107,34
L100A6	Patrón	-347,933	9,192	,000	-372,27	-323,59
	L35A2	-209,933	9,192	,000	-234,27	-185,59
	L65A4	-83,000	9,192	,000	-107,34	-58,66

^{*.} La diferencia de medias es significativa en el nivel 0.05.

Tabla 4.25. Medias en subconjuntos homogéneos para el peso unitario en estado endurecido del concreto.

Peso unitario en estado endurecido del concreto

HSD Tukey^a Subconjunto para alfa = 0.05 3 Tipo de Mezcla Ν L100A6 15 1970,40 L65A4 15 2053,40 L35A2 15 2180,33 Patrón 15 2318,33

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

Sig.

a. Utiliza el tamaño de la muestra de la media armónica = 15,000.

1,000

1,000

1,000

1,000

Fuente: Elaboración propia

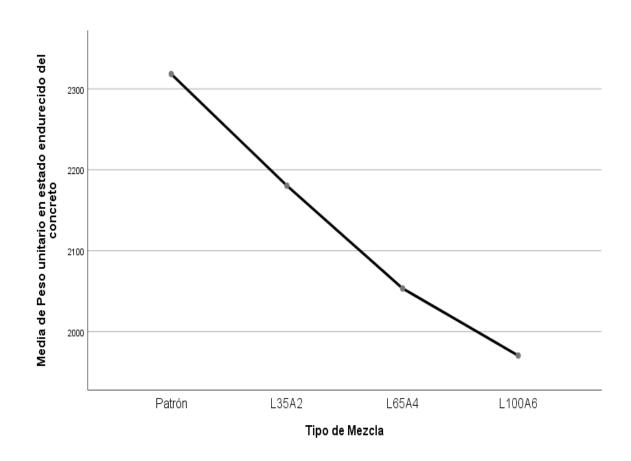


Figura 4.18. Medias del peso unitario en estado endurecido del concreto.

En la tabla 4.24 se mostró la comparación entre las medias de los tipos de mezclas que son el diseño patrón, L35A2 (Sustitución en peso del 35% de ladrillo rococho y 2% de aserrín de los agregados del concreto patrón), L65A4 (Sustitución en peso del 65% de ladrillo rococho y 4% de aserrín de los agregados del concreto patrón) y L100A6 (Sustitución en peso del 100% de ladrillo rococho y 6% de aserrín de los agregados del concreto patrón), en relación al peso unitario en estado endurecido. Todo esto aplicando el método Tukey con un intervalo de confianza al 95%.

Pero respecto a la tabla 4.25 del HSD Tukey se observó que entre las medias de los tipos de mezclas patrón, L35A2, L65A4 y L100A6 existen diferencias estadísticamente significativas por encontrarse en columnas distintas cada una de ellas. Mientras que en la figura 4.18 se apreció que a más porcentaje se sustituya en la dosificación del concreto patrón por estos agregados no convencionales más se reducirá el peso unitario en estado endurecido.

En resumen, de los resultados del análisis de varianza (ANOVA) se demostró que cuando sustituimos en porcentajes los agregados del diseño patrón por agregados no convencionales como el ladrillo rococho triturado y aserrín para producir concreto ligero existen diferencias estadísticamente significativas entre las medias de cada tipo de mezcla en relación al peso unitario en estado endurecido. Así mismo según la prueba Tukey los datos que se analizaron respecto a esta propiedad del concreto, los cuatro tipos de mezclas son estadísticamente diferentes entre sí.

Análisis estadístico de la resistencia a la compresión a los 7 días de edad

En primer lugar, se realizó la prueba de normalidad mediante el empleo de la prueba de Shapiro – Wilk debido a que se analizó en base a 12 datos obtenidos de los resultados de laboratorio (ver tablas del 4.26 al 4.30 y figura 4.19).

Tabla 4.26. Prueba de normalidad de la resistencia a la compresión a los 7 días de edad.

Pruebas de normalidad

		Kolmo	gorov-Smirn	10V ^a	Shapiro-Wilk		
	Tipo de Mezcla	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Resistencia a la	Patrón	,336	3		,856	3	,258
compresión - 7 días de edad	L35A2	,286	3		,930	3	,490
	L65A4	,232	3		,980	3	,726
	L100A6	,304	3		,907	3	,407

a. Corrección de significación de Lilliefors

Fuente: Elaboración propia

De la tabla 4.26 se consiguió una significancia mayor a 0.05, por lo que los datos son normales y se puede realizar el análisis estadístico mediante la prueba paramétrica análisis de la varianza – ANOVA.

Tabla 4.27. Análisis de la varianza de la resistencia a la compresión a los 7 días de edad.

Descriptivos

Resistencia a la compresión - 7 días de edad

					95% del intervalo de confianza para la media			
	N	Media	Desv. Desviación	Desv. Error	Límite inferior	Límite superior	Mínimo	Máximo
Patrón	3	369,0000	29,71532	17,15615	295,1831	442,8169	335,00	390,00
L35A2	3	266,0000	9,84886	5,68624	241,5341	290,4659	255,00	274,00
L65A4	3	230,6667	16,16581	9,33333	190,5086	270,8248	216,00	248,00
L100A6	3	260,3333	9,45163	5,45690	236,8542	283,8125	253,00	271,00
Total	12	281,5000	56,76667	16,38713	245,4322	317,5678	216,00	390,00

Fuente: Elaboración propia

En la tabla 4.27 se apreció los intervalos de confianza al 95% para la media, las medias para cada tipo de mezcla, los límites de confiabilidad que representan el rango a los 95% de seguridad que produciría una probeta al azar de resistencia a la compresión a los 7 días de edad de acuerdo al tipo de mezcla.

Tabla 4.28. Medias de la resistencia a la compresión a los 7 días de edad.

ANOVA

Resistencia a la compresión - 7 días de edad

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	32785,667	3	10928,556	32,851	,000
Dentro de grupos	2661,333	8	332,667		
Total	35447,000	11			

Fuente: Elaboración propia

Con respecto a la tabla 4.28 se observó el análisis estadístico comparativo de medias del cual el nivel de significancia fue 0.000 menor a 0.05, esto implicó encontrar diferencias estadísticamente significativas en las medias de cada tipo de mezcla en relación a la f'c a los 7 días de edad. Por lo tanto, estos fueron analizados realizando las pruebas Post Hoc Tukey mostrado a continuación.

Tabla 4.29. Comparación múltiple entre muestras respecto a la resistencia a la compresión a los 7 días de edad.

Comparaciones múltiples

Variable dependiente: Resistencia a la compresión - 7 días de edad

HSD Tukey

					Intervalo de cor	nfianza al 95%
(I) Tipo de Mezcla	(J) Tipo de Mezcla	Diferencia de medias (I-J)	Desv. Error	Sig.	Límite inferior	Límite superior
Patrón	L35A2	103,00000*	14,89221	,001	55,3099	150,6901
	L65A4	138,33333*	14,89221	,000	90,6432	186,0234
	L100A6	108,66667*	14,89221	,000	60,9766	156,3568
L35A2	Patrón	-103,000000*	14,89221	,001	-150,6901	-55,3099
	L65A4	35,33333	14,89221	,160	-12,3568	83,0234
	L100A6	5,66667	14,89221	,980	-42,0234	53,3568
L65A4	Patrón	-138,33333 [*]	14,89221	,000	-186,0234	-90,6432
	L35A2	-35,33333	14,89221	,160	-83,0234	12,3568
	L100A6	-29,66667	14,89221	,267	-77,3568	18,0234
L100A6	Patrón	-108,66667*	14,89221	,000	-156,3568	-60,9766
	L35A2	-5,66667	14,89221	,980	-53,3568	42,0234
	L65A4	29,66667	14,89221	,267	-18,0234	77,3568

^{*.} La diferencia de medias es significativa en el nivel 0.05.

Tabla 4.30. Medias en subconjuntos homogéneos para la resistencia a la compresión a los 7 días de edad.

Resistencia a la compresión - 7 días de edad

HSD Tukeya Subconjunto para alfa = 0.05 Ν Tipo de Mezcla 230,6667 L65A4 3 L100A6 3 260,3333 L35A2 3 266,0000 Patrón 3 369,0000 ,160 1,000

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

 a. Utiliza el tamaño de la muestra de la media armónica = 3,000.

Fuente: Elaboración propia

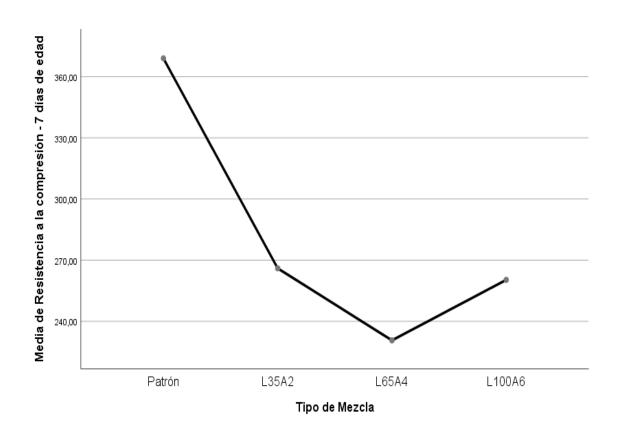


Figura 4.19. Medias de la resistencia a la compresión a los 7 días de edad.

En la tabla 4.29 se mostró la comparación entre las medias de los tipos de mezclas que son el diseño patrón, L35A2 (Sustitución en peso del 35% de ladrillo rococho y 2% de aserrín de los agregados del concreto patrón), L65A4 (Sustitución en peso del 65% de ladrillo rococho y 4% de aserrín de los agregados del concreto patrón) y L100A6 (Sustitución en peso del 100% de ladrillo rococho y 6% de aserrín de los agregados del concreto patrón), en relación a la resistencia a la compresión a los 7 días de edad. Todo esto aplicando el método Tukey con un intervalo de confianza al 95%.

Sin embargo, en la tabla 4.30 del HSD Tukey se observó que entre las medias de las mezclas L35A2, L65A4 y L100A6 no hay diferencias por encontrarse en una misma columna. Mientras que la mezcla patrón por encontrase en una columna distinta la diferencia es estadísticamente significativa respecto a los otros 3. Pues esto también es apreciable en la figura 4.19.

En resumen, de los resultados del análisis de varianza (ANOVA) se demostró que cuando sustituimos en porcentajes los agregados del diseño patrón por agregados no convencionales como el ladrillo rococho triturado y aserrín para producir concreto ligero existen diferencias estadísticamente significativas entre las medias de cada tipo de mezcla en relación a la compresión a los 7 días de edad. Así mismo según la prueba Tukey los datos que se analizaron respecto a esta propiedad del concreto, las mezclas ubicadas en las columnas 1 y 2 son estadísticamente diferentes entre sí.

Análisis estadístico de la resistencia a la compresión a los 14 días de edad

Como en el análisis estadístico de la resistencia a la compresión a los 7 días de edad como primer lugar se realizó la prueba de normalidad mediante el empleo de la prueba de Shapiro – Wilk debido a que se analizó en base a 12 datos obtenidos de los resultados de laboratorio (ver tablas del 4.31 al 4.35 y figura 4.20).

Tabla 4.31. Prueba de normalidad de la resistencia a la compresión a los 14 días de edad.

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Tipo de Mezcla	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Resistencia a la	Patrón	,175	3		1,000	3	1,000
compresión - 14 días de edad	L35A2	,276	3		,942	3	,537
	L65A4	,326	3		,874	3	,307
	L100A6	,343	3		,842	3	,220

a. Corrección de significación de Lilliefors

Fuente: Elaboración propia

De la tabla 4.31 se logró una significancia mayor a 0.05, por lo que los datos son normales y se puede realizar el análisis estadístico mediante la prueba paramétrica análisis de la varianza – ANOVA.

Tabla 4.32. Análisis de la varianza de la resistencia a la compresión a los 14 días de edad.

Descriptivos

Resistencia a la compresión - 14 días de edad

					95% del intervalo de confianza para la media			
	N	Media	Desv. Desviación	Desv. Error	Límite inferior	Límite superior	Mínimo	Máximo
Patrón	3	398,0000	56,00000	32,33162	258,8883	537,1117	342,00	454,00
L35A2	3	303,0000	10,81665	6,24500	276,1299	329,8701	291,00	312,00
L65A4	3	253,6667	18,71719	10,80638	207,1706	300,1628	240,00	275,00
L100A6	3	322,0000	26,15339	15,09967	257,0314	386,9686	304,00	352,00
Total	12	319,1667	60,97516	17,60201	280,4249	357,9084	240,00	454,00

Fuente: Elaboración propia

En la tabla 4.32 se observó los intervalos de confianza al 95% para la media, las medias para cada tipo de mezcla, los límites de confiabilidad que representan el rango a los 95% de seguridad que produciría una probeta al azar de resistencia a la compresión a los 14 días de edad de acuerdo al tipo de mezcla.

Tabla 4.33. Medias de la resistencia a la compresión a los 14 días de edad.

ANOVA

Resistencia a la compresión - 14 días de edad

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	32323,000	3	10774,333	10,052	,004
Dentro de grupos	8574,667	8	1071,833		
Total	40897,667	11			

Fuente: Elaboración propia

Con respecto a la tabla 4.33 se apreció el análisis estadístico comparativo de medias del cual el nivel de significancia fue 0.004 menor a 0.05, esto implicó encontrar diferencias estadísticamente significativas en las medias de cada tipo de mezcla en relación a la f'c a los 14 días de edad. Por lo tanto, estos fueron analizados realizando las pruebas Post Hoc Tukey mostrado a continuación.

Tabla 4.34. Comparación múltiple entre muestras respecto a la resistencia a la compresión a los 14 días de edad.

Comparaciones múltiples

Variable dependiente: Resistencia a la compresión - 14 días de edad HSD Tukey

					Intervalo de confianza al 95%		
(I) Tipo de Mezcla	(J) Tipo de Mezcla	Diferencia de medias (I-J)	Desv. Error	Sig.	Límite inferior	Límite superior	
Patrón	L35A2	95,00000*	26,73117	,031	9,3974	180,6026	
	L65A4	144,33333*	26,73117	,003	58,7307	229,9360	
	L100A6	76,00000	26,73117	,083	-9,6026	161,6026	
L35A2	Patrón	-95,00000*	26,73117	,031	-180,6026	-9,3974	
	L65A4	49,33333	26,73117	,321	-36,2693	134,9360	
	L100A6	-19,00000	26,73117	,890	-104,6026	66,6026	
L65A4	Patrón	-144,33333 [*]	26,73117	,003	-229,9360	-58,7307	
	L35A2	-49,33333	26,73117	,321	-134,9360	36,2693	
	L100A6	-68,33333	26,73117	,124	-153,9360	17,2693	
L100A6	Patrón	-76,00000	26,73117	,083	-161,6026	9,6026	
	L35A2	19,00000	26,73117	,890	-66,6026	104,6026	
	L65A4	68,33333	26,73117	,124	-17,2693	153,9360	

^{*.} La diferencia de medias es significativa en el nivel 0.05.

Tabla 4.35. Medias en subconjuntos homogéneos para la resistencia a la compresión a los 14 días de edad.

Resistencia a la compresión - 14 días de edad

HSD Tukeya

		Subconjunto para alfa = 0.05			
Tipo de Mezcla	N	1	2		
L65A4	3	253,6667			
L35A2	3	303,0000			
L100A6	3	322,0000	322,0000		
Patrón	3		398,0000		
Sig.		,124	,083		

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

 a. Utiliza el tamaño de la muestra de la media armónica = 3,000.

Fuente: Elaboración propia

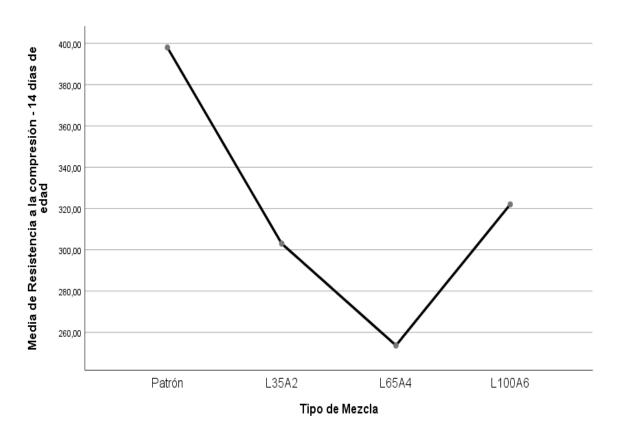


Figura 4.20. Medias de la resistencia a la compresión a los 14 días de edad.

En la tabla 4.34 se mostró la comparación entre los tipos de mezclas que son el diseño patrón, L35A2, L65A4 y L100A6 en relación a la resistencia a la compresión a los 14 días de edad. Todo esto aplicando el método Tukey con un intervalo de confianza al 95%.

Respecto a la tabla 4.35 del HSD Tukey se observó que entre las medias de las mezclas L35A2, L65A4 y L100A6 no hay diferencias por encontrarse en una misma columna como es el caso de las mezclas L100A6 y patrón. En donde la mezcla L100A6 es la única que no presenta diferencias independientemente en que columna este ubicado. Pues esto también es apreciable en la figura 4.20.

En resumen, de los resultados del análisis de varianza (ANOVA) se demostró que cuando sustituimos en porcentajes los agregados del diseño patrón por agregados no convencionales (ladrillo rococho triturado y aserrín) para producir concreto ligero existen diferencias estadísticamente significativas entre las medias de cada tipo de mezcla en relación a la resistencia a la compresión a los 14 días de edad. Así mismo según la prueba Tukey los datos que se analizaron respecto a esta propiedad del concreto, las mezclas ubicadas en las columnas 1 y 2 son estadísticamente diferentes entre sí.

Análisis estadístico de la resistencia a la compresión a los 28 días de edad

Así como en el análisis estadístico de la resistencia a la compresión a los 7 y 14 días de edad como primer lugar se realizó la prueba de normalidad mediante el empleo de la prueba de Shapiro – Wilk debido a que se analizó en base a 20 datos obtenidos de los resultados de laboratorio (ver tablas del 4.36 al 4.40 y figura 4.21).

Tabla 4.36. Prueba de normalidad de la resistencia a la compresión a los 28 días de edad.

Pruebas de normalidad

		Kolmogorov-Smirnov ^a				Shapiro-Wilk		
	Tipo de Mezcla	Estadístico	gl	Sig.	Estadístico	gl	Sig.	
Resistencia a la	Patrón	,180	5	,200*	,947	5	,716	
compresión - 28 días de edad	L35A2	,234	5	,200*	,951	5	,745	
	L65A4	,228	5	,200*	,883	5	,324	
	L100A6	,120	5	,200*	,998	5	,999	

^{*.} Esto es un límite inferior de la significación verdadera.

Fuente: Elaboración propia

De la tabla 4.36 se logró una significancia mayor a 0.05, por lo que los datos son normales y se puede realizar el análisis estadístico mediante la prueba paramétrica análisis de la varianza – ANOVA.

Tabla 4.37. Análisis de la varianza de la resistencia a la compresión a los 28 días de edad.

Descriptivos

Resistencia a la compresión - 28 días de edad

					95% del intervalo de confianza para la media			
	N	Media	Desv. Desviación	Desv. Error	Límite inferior	Límite superior	Mínimo	Máximo
Patrón	5	426,4000	26,84772	12,00666	393,0642	459,7358	399,00	466,00
L35A2	5	327,8000	22,98260	10,27813	299,2633	356,3367	292,00	354,00
L65A4	5	321,4000	19,66723	8,79545	296,9799	345,8201	303,00	347,00
L100A6	5	393,4000	20,04495	8,96437	368,5109	418,2891	366,00	419,00
Total	20	367,2500	49,92402	11,16335	343,8848	390,6152	292,00	466,00

Fuente: Elaboración propia

En la tabla 4.37 se determinó los intervalos de confianza al 95% para la media, las medias para cada tipo de mezcla, los límites de confiabilidad que representan el rango a los 95% de seguridad que produciría una probeta al azar de resistencia a la compresión a los 28 días de edad de acuerdo al tipo de mezcla.

a. Corrección de significación de Lilliefors

Tabla 4.38. Medias de la resistencia a la compresión a los 28 días de edad.

ANOVA

Resistencia a la compresión - 28 días de edad

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	39205,350	3	13068,450	25,655	,000
Dentro de grupos	8150,400	16	509,400		
Total	47355,750	19			

Fuente: Elaboración propia

Respecto a la tabla 4.38 se obtuvo el análisis estadístico comparativo de medias del cual el nivel de significancia fue 0.000 menor a 0.05, esto implicó encontrar diferencias estadísticamente significativas en las medias de cada tipo de mezcla en relación a la f'c a los 28 días de edad. Por lo tanto, estos fueron analizados realizando las pruebas Post Hoc Tukey mostrado a continuación.

Tabla 4.39. Comparación múltiple entre muestras respecto a la resistencia a la compresión a los 28 días de edad.

Comparaciones múltiples

Variable dependiente: Resistencia a la compresión - 28 días de edad HSD Tukey

					Intervalo de confianza al 95%		
(I) Tipo de Mezcla	(J) Tipo de Mezcla	Diferencia de medias (I-J)	Desv. Error	Sig.	Límite inferior	Límite superior	
Patrón	L35A2	98,60000*	14,27445	,000	57,7605	139,4395	
	L65A4	105,00000*	14,27445	,000	64,1605	145,8395	
	L100A6	33,00000	14,27445	,137	-7,8395	73,8395	
L35A2	Patrón	-98,60000*	14,27445	,000	-139,4395	-57,7605	
	L65A4	6,40000	14,27445	,969	-34,4395	47,2395	
	L100A6	-65,60000*	14,27445	,002	-106,4395	-24,7605	
L65A4	Patrón	-105,00000*	14,27445	,000	-145,8395	-64,1605	
	L35A2	-6,40000	14,27445	,969	-47,2395	34,4395	
	L100A6	-72,00000*	14,27445	,001	-112,8395	-31,1605	
L100A6	Patrón	-33,00000	14,27445	,137	-73,8395	7,8395	
	L35A2	65,60000*	14,27445	,002	24,7605	106,4395	
	L65A4	72,00000	14,27445	,001	31,1605	112,8395	

^{*.} La diferencia de medias es significativa en el nivel 0.05.

Tabla 4.40. Medias en subconjuntos homogéneos para la resistencia a la compresión a los 28 días de edad.

Resistencia a la compresión - 28 días de edad

HSD Tukey^a

		Subconjunto para alfa = 0.05			
Tipo de Mezcla	N	1	2		
L65A4	5	321,4000			
L35A2	5	327,8000			
L100A6	5		393,4000		
Patrón	5		426,4000		
Sig.		,969	,137		

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

 a. Utiliza el tamaño de la muestra de la media armónica = 5,000.

Fuente: Elaboración propia

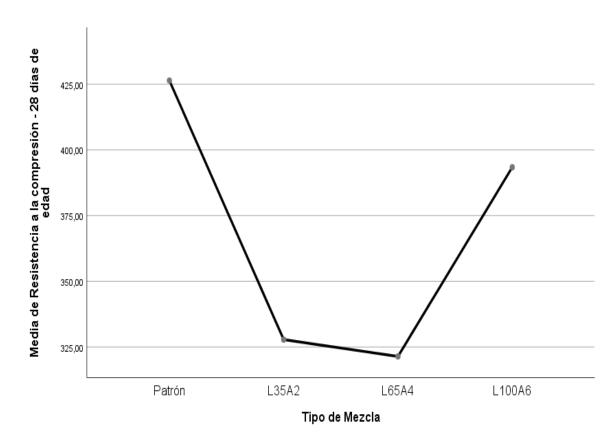


Figura 4.21. Medias de la resistencia a la compresión a los 28 días de edad.

En la tabla 4.39 se mostró la comparación entre los tipos de mezclas que son el diseño patrón, L35A2, L65A4 y L100A6 en relación a la resistencia a la compresión a los 28 días de edad. Todo esto aplicando el método Tukey con un intervalo de confianza al 95%.

Según la tabla 4.40 del HSD Tukey se observó que entre las medias de las mezclas L35A2 y L65A4 no hay diferencias por encontrarse en una misma columna. Mientras que la mezcla patrón y L100A6 por encontrase estos dos en una sola columna distinta, la diferencia es estadísticamente significativa respecto a los otros 2. Pues esto también es apreciable en la figura 4.21.

En resumen, de los resultados del análisis de varianza (ANOVA) se demostró que cuando se sustituyó en porcentajes los agregados del diseño patrón por ladrillo rococho triturado y aserrín para producir concreto ligero existen diferencias estadísticamente significativas entre las medias de cada tipo de mezcla en relación a la f'c a los 28 días de edad. Así mismo según la prueba Tukey los datos que se analizaron respecto a esta propiedad del concreto, las mezclas ubicadas en las columnas 1 y 2 son estadísticamente diferentes entre sí.

Por lo tanto, frente a los 3 resultados respecto al análisis estadístico de la resistencia a la compresión a las edades de 7, 14 y 28 días se observó que a más porcentaje se sustituya en la dosificación del concreto patrón por estos agregados no convencionales más se mejorará la resistencia a la compresión del concreto, pues esto se evidenció más en el análisis estadístico para los 28 días de edad.

Análisis estadístico de la resistencia a la tracción por compresión diametral a los 28 días de edad

En primer lugar, se realizó la prueba de normalidad mediante el empleo de la prueba de Shapiro – Wilk debido a que se analizó en base a 12 datos obtenidos de los resultados de laboratorio (ver tablas del 4.41 al 4.45 y figura 4.22).

Tabla 4.41. Prueba de normalidad de la resistencia a la tracción por compresión diametral a los 28 días de edad.

Pruebas de normalidad

	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Tipo de Mezcla	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Resistencia a la tracción	Patrón	,279	3		,939	3	,523
por compresión diametral - 28 días de	L35A2	,211	3		,991	3	,817
edad	L65A4	,342	3		,846	3	,229
	L100A6	,184	3		,999	3	,928

a. Corrección de significación de Lilliefors

Fuente: Elaboración propia

Respecto a la tabla 4.41 se logró una significancia mayor a 0.05, por lo que los datos son normales y se puede realizar el análisis estadístico mediante la prueba paramétrica análisis de la varianza – ANOVA.

Tabla 4.42. Análisis de la varianza de la resistencia a la tracción por compresión diametral a los 28 días de edad.

Descriptivos

Resistencia a la tracción por compresión diametral - 28 días de edad

					95% del intervalo de confianza para la media			
	N	Media	Desv. Desviación	Desv. Error	Límite inferior	Límite superior	Mínimo	Máximo
Patrón	3	35,4667	2,21886	1,28106	29,9547	40,9786	33,00	37,30
L35A2	3	36,0667	3,01386	1,74005	28,5798	43,5535	32,90	38,90
L65A4	3	36,6000	4,18688	2,41730	26,1992	47,0008	31,80	39,50
L100A6	3	31,1333	3,85270	2,22436	21,5627	40,7040	27,20	34,90
Total	12	34,8167	3,67988	1,06229	32,4786	37,1548	27,20	39,50

Fuente: Elaboración propia

En la tabla 4.42 se observó los intervalos de confianza al 95% para la media, las medias para cada tipo de mezcla, los límites de confiabilidad que representan el rango a los 95% de seguridad que produciría una probeta al azar de resistencia a la tracción por compresión diametral a los 28 días de edad de acuerdo al tipo de mezcla.

Tabla 4.43. Medias de la resistencia a la tracción por compresión diametral a los 28 días de edad.

ANOVA

Resistencia a la tracción por compresión diametral - 28 días de edad

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	56,197	3	18,732	1,616	,261
Dentro de grupos	92,760	8	11,595		
Total	148,957	11			

En relación a la tabla 4.43 se observó el análisis estadístico comparativo de medias del cual el nivel de significancia fue 0.261 mayor a 0.05, por lo tanto, no existe diferencia estadística en las medias de cada tipo de mezcla en relación a la resistencia a la tracción por compresión diametral a los 28 días de edad. Por ende, estos fueron analizados realizando las pruebas Post Hoc Tukey.

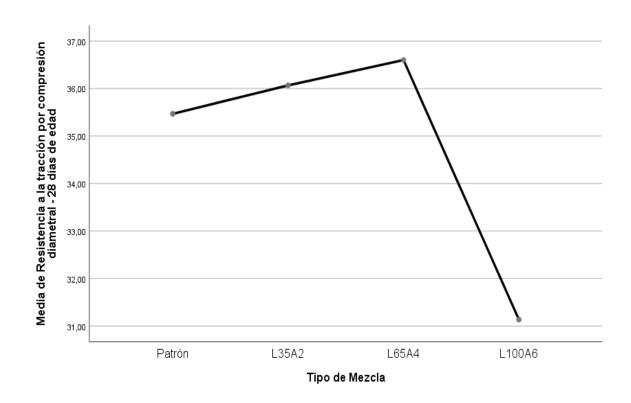
Tabla 4.44. Comparación múltiple entre muestras respecto a la resistencia a la tracción por compresión diametral a los 28 días de edad.

Comparaciones múltiples

Variable dependiente: Resistencia a la tracción por compresión diametral - 28 días de edad HSD Tukey

					Intervalo de con	alo de confianza al 95%	
(I) Tipo de Mezcla	(J) Tipo de Mezcla	Diferencia de medias (I-J)	Desv. Error	Sig.	Límite inferior	Límite superior	
Patrón	L35A2	-,60000	2,78029	,996	-9,5035	8,3035	
	L65A4	-1,13333	2,78029	,976	-10,0368	7,7701	
	L100A6	4,33333	2,78029	,450	-4,5701	13,2368	
L35A2	Patrón	,60000	2,78029	,996	-8,3035	9,5035	
	L65A4	-,53333	2,78029	,997	-9,4368	8,3701	
	L100A6	4,93333	2,78029	,350	-3,9701	13,8368	
L65A4	Patrón	1,13333	2,78029	,976	-7,7701	10,0368	
	L35A2	,53333	2,78029	,997	-8,3701	9,4368	
	L100A6	5,46667	2,78029	,276	-3,4368	14,3701	
L100A6	Patrón	-4,33333	2,78029	,450	-13,2368	4,5701	
	L35A2	-4,93333	2,78029	,350	-13,8368	3,9701	
	L65A4	-5,46667	2,78029	,276	-14,3701	3,4368	

Tabla 4.45. Medias en subconjuntos homogéneos para la resistencia a la tracción por compresión diametral a los 28 días de edad.


Resistencia a la tracción por compresión diametral - 28 días de edad

HSD Tukeya

		Subconjunto para alfa = 0.05
Tipo de Mezcla	N	1
L100A6	3	31,1333
Patrón	3	35,4667
L35A2	3	36,0667
L65A4	3	36,6000
Sig.		,276

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

Fuente: Elaboración propia

Figura 4.22. Medias de la resistencia a la tracción por compresión diametral a los 28 días de edad.

a. Utiliza el tamaño de la muestra de la media armónica = 3,000.

De la tabla 4.44 se visualizó la comparación entre los tipos de mezclas que son el diseño patrón, L35A2, L65A4 y L100A6 en relación a la resistencia a la tracción por compresión diametral a los 28 días de edad. Todo esto aplicando el método Tukey con un intervalo de confianza al 95%.

Pero de la tabla 4.45 del HSD Tukey se demostró que entre las medias de las mezclas patrón, L35A2, L65A4 y L100A6 no hay diferencias por encontrarse en una misma columna.

Mientras que en la figura 4.22 se apreció que a más porcentaje se sustituya en la dosificación del concreto patrón por estos agregados no convencionales la resistencia a la tracción por compresión diametral no se ve afectada ya que su disminución en la mezcla L100A6 es mínimo en comparación al resto.

En resumen, de los resultados del análisis de varianza (ANOVA) se demostró que cuando se sustituyó en porcentajes los agregados del diseño patrón por ladrillo rococho triturado y aserrín para producir concreto ligero no existen diferencias estadísticas entre las medias de cada tipo de mezcla en relación a la resistencia a la tracción por compresión diametral a los 28 días de edad. Así mismo según la prueba Tukey los datos que se analizaron respecto a esta propiedad del concreto, los cuatro tipos de mezclas son estadísticamente similares.

Análisis estadístico de la resistencia a la flexión a los 28 días de edad

Para el análisis estadístico de la resistencia a la flexión a los 28 días de edad se analizó en base a 8 datos obtenidos de los resultados de laboratorio de la universidad nacional de ingeniería UNI - LEM (ver tablas del 4.46 al 4.49 y figura 4.23)

Tabla 4.46. Análisis de la varianza de la resistencia a la flexión a los 28 días de edad.

Descriptivos

Resistencia a la flexión - 28 días de edad

					95% del intervalo de confianza para la media			
	N	Media	Desv. Desviación	Desv. Error	Límite inferior	Límite superior	Mínimo	Máximo
Patrón	2	30,1500	2,89914	2,05000	4,1023	56,1977	28,10	32,20
L35A2	2	25,5000	,00000	,00000	25,5000	25,5000	25,50	25,50
L65A4	2	31,3000	2,26274	1,60000	10,9701	51,6299	29,70	32,90
L100A6	2	29,0000	,00000	,00000	29,0000	29,0000	29,00	29,00
Total	8	28,9875	2,70578	,95664	26,7254	31,2496	25,50	32,90

Fuente: Elaboración propia

En la tabla 4.46 se observó los intervalos de confianza al 95% para la media, las medias para cada tipo de mezcla, los límites de confiabilidad que representan el rango a los 95% de seguridad que produciría una probeta al azar de resistencia a la flexión a los 28 días de edad de acuerdo al tipo de mezcla.

Tabla 4.47. Medias de la resistencia a la flexión a los 28 días de edad.

ANOVA

Resistencia a la flexión - 28 días de edad

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	37,724	3	12,575	3,719	,118
Dentro de grupos	13,525	4	3,381		
Total	51,249	7			

Fuente: Elaboración propia

Respecto a la tabla 4.47 se observó el análisis estadístico comparativo de medias del cual el nivel de significancia fue 0.118 mayor a 0.05, por lo tanto, no existe diferencia estadística en las medias de cada tipo de mezcla en relación a la resistencia a la flexión a los 28 días de edad. Por consiguiente, estos fueron analizados realizando las pruebas Post Hoc Tukey para una mayor comprensión.

Tabla 4.48. Comparación múltiple entre muestras respecto a la resistencia a la flexión a los 28 días de edad.

Comparaciones múltiples

Variable dependiente: Resistencia a la flexión - 28 días de edad HSD Tukey

					Intervalo de confianza al 95	
(I) Tipo de Mezcla	(J) Tipo de Mezcla	Diferencia de medias (I-J)	Desv. Error	Sig.	Límite inferior	Límite superior
Patrón	L35A2	4,65000	1,83882	,193	-2,8356	12,1356
	L65A4	-1,15000	1,83882	,919	-8,6356	6,3356
	L100A6	1,15000	1,83882	,919	-6,3356	8,6356
L35A2	Patrón	-4,65000	1,83882	,193	-12,1356	2,8356
	L65A4	-5,80000	1,83882	,108	-13,2856	1,6856
	L100A6	-3,50000	1,83882	,353	-10,9856	3,9856
L65A4	Patrón	1,15000	1,83882	,919	-6,3356	8,6356
	L35A2	5,80000	1,83882	,108	-1,6856	13,2856
	L100A6	2,30000	1,83882	,633	-5,1856	9,7856
L100A6	Patrón	-1,15000	1,83882	,919	-8,6356	6,3356
	L35A2	3,50000	1,83882	,353	-3,9856	10,9856
	L65A4	-2,30000	1,83882	,633	-9,7856	5,1856

Fuente: Elaboración propia

Tabla 4.49. Medias en subconjuntos homogéneos para la resistencia a la flexión a los 28 días de edad.

Resistencia a la flexión - 28 días de edad

HSD Tukeya

		Subconjunto para alfa = 0.05
Tipo de Mezcla	N	1
L35A2	2	25,5000
L100A6	2	29,0000
Patrón	2	30,1500
L65A4	2	31,3000
Sig.		,108

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

a. Utiliza el tamaño de la muestra de la media armónica = 2,000.

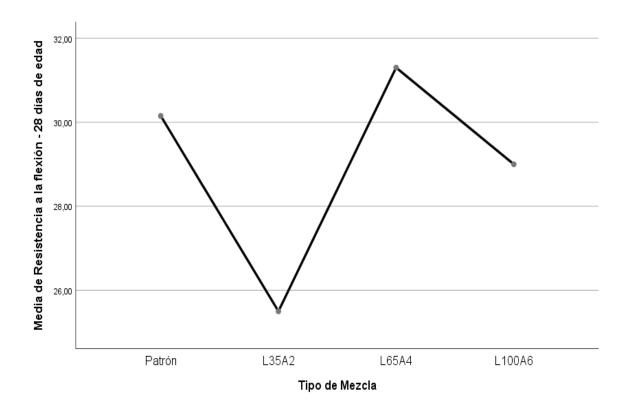


Figura 4.23. Medias de la resistencia a la flexión a los 28 días de edad.

De la tabla 4.48 se visualizó la comparación entre los tipos de mezclas que son el diseño patrón, L35A2, L65A4 y L100A6 en relación a la resistencia a la flexión a los 28 días de edad. Todo esto aplicando el método Tukey con un intervalo de confianza al 95%.

Pero de la tabla 4.49 del HSD Tukey se demostró que entre las medias de las mezclas patrón, L35A2, L65A4 y L100A6 no hay diferencias por encontrarse en una misma columna.

Mientras que en la figura 4.23 se apreció que a más porcentaje se sustituya en la dosificación del concreto patrón por estos agregados no convencionales la resistencia a la flexión no se ve afectada ya que la diferencia que hay entre los tipos de mezclas es mínimo.

En resumen, de los resultados del análisis de varianza (ANOVA) se demostró que cuando se sustituyó en porcentajes los agregados del diseño patrón por ladrillo rococho triturado y aserrín para producir concreto ligero no existen diferencias estadísticas entre las medias de cada tipo de mezcla en relación a la resistencia a la flexión a los 28 días de edad. Así mismo según la prueba Tukey los datos que se analizaron respecto a esta propiedad del concreto, los cuatro tipos de mezclas son estadísticamente similares.

4.7. Contrastación de la hipótesis

Contrastación de la hipótesis especifica 1

En base a la tabla 4.23 que se mostró en el análisis estadístico se observó que la significancia p = 0.000 < 0.05, por ende, se rechazó la hipótesis nula y se aceptó la hipótesis alternativa, por lo tanto, se afirmó que si hay diferencias estadísticamente significativas en las medias de cada tipo de mezcla en relación al peso unitario en estado endurecido. Donde la dosificación optima se consiguió de la mezcla L100A6 (100% Lr y 6% As), ya que este logró concreto ligero con un peso unitario de 1,970 kg/m³, por ser la media de menor valor hallado y que según la tabla 4.18 que se muestra en resultados se alcanzó una resistencia a la compresión superior a 210 kg/cm² a los 28 de edad.

Contrastación de la hipótesis especifica 2

Respecto a la tabla 4.23 que se expuso en el análisis estadístico se alcanzó una significancia p = 0.000 < 0.05, por consiguiente, se rechazó la hipótesis nula y se aceptó la hipótesis alternativa, por lo tanto, se afirmó que si hay diferencias estadísticamente significativas en las medias de cada tipo de mezcla en relación al peso unitario en estado endurecido. Donde a más porcentaje se sustituya en la dosificación del concreto patrón por estos agregados no convencionales más se

reducirá el peso unitario en estado endurecido y fresco, según la tabla 4.10 que se muestra en resultados respecto a este último, mientras que el sentamiento en base a la tabla 4.9 que se observa en los resultados no se afecta debido al cambio de la relación a/c para darle trabajabilidad a las mezclas por sustitución. En consecuencia, las propiedades físicas de concreto ligero mejoran respecto al peso unitario con la adición de estos agregados no convencionales que son el ladrillo rococho triturado y el aserrín, mientras que el asentamiento no se afecta.

Contrastación de la hipótesis especifica 3

Según la tabla 4.28 que se mostró en el análisis estadístico de la resistencia a la compresión a los 7 días de edad la significancia p = 0.000, en la tabla 4.33 para los 14 días p = 0.004 y en la tabla 4.38 para los 28 días p = 0.000, resultando estas menor a 0.05, por ende, se rechazaron las hipótesis nulas y se aceptaron las hipótesis alternativas, por consiguiente, se afirmó que si hay diferencias estadísticamente significativas en las medias de cada tipo de mezcla en relación a esta propiedad mecánica del concreto. Donde a más porcentaje se sustituya en la dosificación del concreto patrón por estos agregados no convencionales más se mejorará la resistencia a la compresión, ya que esto se evidenció con la mezcla L100A6 (100% Lr y 6% As) que con una relación a/c de 0.58 alcanzó un 92% respecto al concreto patrón que con una relación a/c de 0.48 llegó a 426.4 kg/cm².

Por otro lado, de la tabla 4.43 que se expuso en el análisis estadístico de la resistencia a la tracción por compresión diametral a los 28 días de edad se alcanzó una significancia p = 0.261 > 0.05, por consiguiente, se rechazó la hipótesis alternativa y se aceptó la hipótesis nula, por lo tanto, se afirmó que no hay diferencia estadística en las medias de cada tipo de mezcla en relación a esta propiedad mecánica del concreto, por ser todas estadísticamente similares. Donde a más porcentaje se sustituya en la dosificación del concreto patrón por estos agregados no convencionales esta propiedad no se afectará ya que su disminución en la mezcla L100A6 es mínimo en comparación al resto.

Del mismo modo en la tabla 4.47 que se mostró en el análisis estadístico de la resistencia a la flexión a los 28 días de edad se alcanzó una significancia p = 0.118 > 0.05, por consiguiente, se rechazó la hipótesis alternativa y se aceptó la hipótesis nula, por lo tanto, se afirmó lo mismo que para la resistencia a la tracción por compresión diametral. Donde a más porcentaje se sustituya en la dosificación del concreto patrón por estos agregados no convencionales esta propiedad no se afectará ya que la diferencia que hay entre los tipos de mezclas es mínimo.

En consecuencia, las propiedades mecánicas de concreto ligero mejoran respecto a la resistencia a la compresión, pero en tracción y flexión no se afectarán con la adición de estos agregados no convencionales que son el ladrillo rococho triturado y el aserrín.

Contrastación de la hipótesis general

En las tres hipótesis especificas 1, 2 y 3 se rechazaron las hipótesis nulas y se aceptaron las hipótesis alternativas ya que los niveles de significancia fueron menores a 0.05, a excepción de unas propiedades que fueron analizados en la hipótesis especifica 3, lo cual no es relevante para la contratación de esta hipótesis general. Por lo tanto, la hipótesis general nula se rechazó y se aceptó la hipótesis alternativa, donde se logró diseñar un concreto ligero de uso estructural al sustituir en peso los agregados del concreto patrón en 100% por ladrillo rococho triturado como agregado grueso y 6% por aserrín como agregado fino (L100A6) logrando un peso unitario en estado endurecido de 1,970 kg/m³ y resistencia a la compresión a los 28 días de edad de 393.4 kg/cm² siendo este ya superior a 210 kg/cm².

V. DISCUSIÓN

Primera discusión:

En base a los resultados obtenidos se reconoció que la dosificación optima se obtuvo cuando se sustituyó en peso los agregados del concreto patrón en 100% por ladrillo rococho triturado como agregado grueso y 6% por aserrín como agregado fino (100% Lr y 6% As), ya que con este se logró concreto ligero con un peso unitario de 1,970 kg/m³ menor al concreto tradicional que oscina entre 2200 y 2400 kg/m³ y con resistencia a la compresión superior a 210 kg/cm².

Por otro lado (Vilca Silva, 2017) menciona que se logra concreto ligero al sustituir en su dosificación en el agregado fino al 20% por ladrillo reciclado triturado obteniendo un peso unitario de 1858.65 kg/m³ y una resistencia a la compresión de 196.54 kg/cm². Por lo tanto, este resultado guarda relación con la presente tesis porque en ambos se obtuvo concreto ligero, aunque en lo que no se coincidió con esta investigación es que aquí se usó ladrillos triturados de diversos tipos, su empleó fue como agregado fino, lograron una resistencia a la compresión menor a 210 kg/cm² y se trabajó con otros porcentajes de sustitución.

Segunda discusión:

En esta presente investigación se obtuvieron como propiedades físicas del concreto ligero con la adición de agregados no convencionales que son el ladrillo rococho triturado (Lr) y el aserrín (As): un asentamiento con un slump entre 3" a 4" en todos los casos, pero se evidencio en las mezclas por sustitución la perdida de trabajabilidad si se desea trabajar con la misma relación a/c del diseño patrón o que sea menor a 0.58. Del peso unitario del concreto con la mezcla que consiste en sustituir en 100% Lr y 6% As, en estado fresco se llegó a reducir un máximo de 8.70% y en estado endurecido un máximo de 15.01% respecto al concreto patrón que llego en estado fresco a 2,390 kg/m³ y en estado endurecido a 2,318 kg/m³. Así mismo también se observó que a más porcentaje se sustituya en la dosificación del concreto patrón por estos agregados no convencionales más se

reducirá el peso unitario en estado fresco y endurecido. Por consiguiente, estos resultados guardan relación con lo que se sostiene en las siguientes investigaciones:

Al respecto (Masías Mogollón, 2018) obtuvo resultados en donde nos dice que a más sustituciones en peso del agregado grueso por ladrillo triturado más se reducirá el peso unitario del concreto independientemente de su procedencia, pero su trabajabilidad se reduce severamente. Siendo esto acorde con lo que en la presente tesis se concluyó.

Por otro lado (Patricio Rodriguez, 2016) nos dice que el hormigon o concreto con fibras de madera que esta compuesto por virutas y aserrín, en todos los casos al sustituir por este material en relación a la cantidad del agregado grueso presentarón una densidad más baja que el tradicional haciéndolos más ligeros, pero disminuye el revenimiento. Esto es acorde en lo que está presente tesis se halló, pero en lo que no se coincidió con esta investigación de Patricio es que ellos usaron adicionalmente las virutas de madera y la sustitución lo hicieron en relación a la cantidad del agregado grueso mientras que aquí fue respecto al agregado fino del diseño patrón.

Tercera discusión:

Frente a los resultados se obtuvieron como propiedades mecánicas a los 28 días de edad de concreto ligero con la adición de agregados no convencionales que son el ladrillo rococho triturado (Lr) y el aserrín (As), que con la mezcla que consiste en sustituir en 100% Lr y 6% As con una relación a/c de 0.58 en resistencia a la compresión alcanzó un 92% respecto al concreto patrón que con una relación a/c de 0.48 llegó a 426.4 kg/cm², de resistencia a la tracción por compresión diametral alcanzó un 88% respecto al concreto patrón que llegó a 35.5 kg/cm² y en resistencia a la flexión alcanzó un 96% respecto al concreto patrón que llegó a 30.2 kg/cm². Así mismo también se observó que a más

porcentaje se sustituya en la dosificación del concreto patrón por estos agregados no convencionales más se mejorará la resistencia a la compresión, mientras que a tracción por compresión diametral y a flexión no se vieron afectados. Por ende, estos resultados guardan relación con lo que se sostiene en las siguientes investigaciones:

Según (Masías Mogollón, 2018) nos dice que a más sustituciones en peso del agregado grueso por ladrillo triturado tiende a aumentar la resistencia a la compresión a causa de la disminución de relación a/c, mientras que su relación con la resistencia a la tracción no se ve afectada y respecto a la resistencia a la flexión o módulo de rotura si se ve afectada en reemplazos mayores a 10%, todo esto independientemente de su procedencia. Por lo tanto, esto es acorde con lo que en la presente tesis se determinó respecto a la resistencia a la compresión y tracción, mientras que se obtuvieron resultados opuestos a flexión y relación a/c.

Sin embargo (Cigueñas Cabrera, 2020) menciona que con la sustitución respecto al volumen del concreto patrón por aserrín disminuye el asentamiento del concreto en 20% y 40%, mientras que respecto a la resistencia a la compresión este aumenta al sustituir en 0.5% y 1.0%, siendo el adecuado la sustitución en 0.5% ya que aumenta en 12% respecto al concreto patrón que llegó a 254.46 kg/cm². Estando esta investigación acorde con lo que en la presente tesis se concluyó porque la resistencia a la compresión aumenta, aunque se trabajó en diferentes porcentajes de sustitución.

Del mismo modo (Patricio Rodriguez, 2016) hace referencia que el concreto con fibras de madera compuesto por virutas y aserrín, en todos los casos al sustituir por este material en relación a la cantidad del agregado grueso presentarón respecto a la resistencia a la flexión excelentes resultados que fueron mayores a lo optenido con el concreto tradicional. Estos resultados de esta investigación no coinciden con los de la presente tesis porque aquí esta propiedad no tiende a aumentar pero tampoco es afectada con el empleo del aserrín, por el uso adicional de virutas de madera y porque se sustituyó en base al agregado grueso.

Discusión general:

A partir de los resultados se logró diseñar un concreto ligero de uso estructural al sustituir en peso los agregados del concreto patrón en 100% por ladrillo rococho triturado como agregado grueso y 6% por aserrín como agregado fino (100% Lr y 6% As) logrando un peso unitario en estado endurecido de 1,970 kg/m³ y resistencia a la compresión a los 28 días de edad de 393.4 kg/cm² siendo este ya superior a 210 kg/cm². Por lo tanto, estos resultados coinciden frente a lo que se sostiene en la siguiente investigación:

Al respecto (Carrillo Moreno, y otros, 2015) hace mención que logra diseñar concreto estructural ligero al sustituir en su dosificación en el agregado grueso al 100% por ladrillo rococho obteniendo un peso específico de 1933.24 kg/m³, peso unitario de 1892.32 kg/m³ y una resistencia a la compresión de 285.5 kg/cm², pero que implico también cambiar la relación a/c al adicionar el 21.7% en cemento a comparación del concreto patrón.

Comparando ambos resultados se observó que se obtuvieron concreto ligero en la investigación de Carrillo moreno y en la presente tesis al sustituir en su dosificación en 100% el agregado grueso del concreto patrón por ladrillo rococho triturado, dando una resistencia a la compresión mayor a 210 kg/cm².

Pero en lo que no se coincidió con la investigación de Carrillo Moreno es que en esta investigación se cambió la relación a/c agregando más cemento mientras que en la presente tesis fue agregando más agua. En resumen, porque se plantío una medida diferente para obtener trabajabilidad y por el empleo del aserrín al sustituirlo por el agregado fino, lo cual también beneficio para obtener concreto ligero.

VI. CONCLUSIONES

Primera conclusión:

La dosificación óptima con la adición de agregados no convencionales se obtuvo de la mezcla que consiste en sustituir en peso los agregados del concreto patrón en 100% por ladrillo rococho triturado como agregado grueso y 6% por aserrín como agregado fino (100% Lr y 6% As), ya que con este se logró concreto ligero de un peso unitario de 1,970 kg/m³ y donde su dosificación obtenida es la siguiente:

Cemento	Arena gruesa	Aserrín	Ladrillo rococho	Agua	a/c
410.6 kg	677.1 kg	43.2 kg	1088.0 kg	240 lt	0.58

Segunda conclusión:

Se logró las siguientes propiedades físicas de concreto ligero con la adición de agregados no convencionales que son el ladrillo rococho triturado (Lr) y el aserrín (As): con respecto al asentamiento se obtuvo un slump entre 3" a 4" independientemente del tipo de mezcla, pues este se logró modificando la relación a/c para las mezclas por sustitución de 0.48 a 0.58, ya que se evidencio perdida de trabajabilidad si se desea trabajar con una relación a/c menor a 0.58 para las mezclas por sustitución con agregados no convencionales. Del peso unitario del concreto en estado fresco el concreto patrón llego a 2,390 kg/m³, pero al sustituir sus agregados este disminuye de la siguiente manera: con el 35% Lr y 2% As disminuye en 2.64%, con el 65% Lr y 4% As un 5.73% y con 100% Lr y 6% As un 8.70%. Por último, respecto al peso unitario del concreto en estado endurecido el concreto patrón llego a 2,318 kg/m³, pero al sustituir sus agregados este disminuye de la siguiente manera: con el 35% Lr y 2% As disminuye en 5.95%, con el 65% Lr y 4% As un 11.43% y con 100% Lr y 6% As un 15.01%.

Tercera conclusión:

Se logró las siguientes propiedades mecánicas a los 28 días de edad de concreto ligero con la adición de agregados no convencionales que son el ladrillo rococho triturado (Lr) y el aserrín (As): con respecto a la resistencia a la compresión el concreto patrón llego a 426.4 kg/cm², pero cuando sustituimos sus agregados y cambiamos la relación a/c este disminuye respecto al 100% alcanzado inicialmente: con el 35% Lr y 2% As alcanza un 77%, con el 65% Lr y 4% As un 75% y con el 100% Lr y 6% As un 92%, pero aunque sean valores menores al diseño patrón estos ya son mayores a 210 kg/cm². De la resistencia a la tracción el concreto patrón llego a 35.5 kg/cm², pero cuando sustituimos sus agregados y cambiamos la relación a/c este cambia respecto al 100% alcanzado inicialmente: con el 35% Lr y 2% As obtenemos un 102%, con el 65% Lr y 4% As un 103% y con el 100% Lr y 6% As un 88%. Por último, respecto a la resistencia a la flexión el concreto patrón llego a 30.2 kg/cm², pero al sustituir sus agregados y modificar la relación a/c este cambia respecto al 100% alcanzado inicialmente: con el 35% Lr y 2% As obtenemos un 84%, con el 65% Lr y 4% As un 104% y con el 100% Lr y 6% As un 96%.

Conclusión general:

Se logró diseñar un concreto ligero de uso estructural al sustituir en peso los agregados del concreto patrón en 100% por ladrillo rococho triturado como agregado grueso y 6% por aserrín como agregado fino (100% Lr y 6% As), con un peso unitario en estado endurecido de 1,970 kg/m³ y propiedades mecánicas a los 28 días de edad de resistencia a la compresión de 393.4 kg/cm² siendo este ya superior a 210 kg/cm², resistencia a la tracción por compresión diametral de 31.1 kg/cm² y resistencia a la flexión de 29 kg/cm².

VII. RECOMENDACIONES

Primera recomendación:

Se recomienda realizar más estudios para determinar otra dosificación con la finalidad de observar que más ligero se hace el concreto al emplear mayor porcentaje de sustitución en peso de los agregados del concreto patrón por aserrín (As) como agregado fino, reemplazando al 100% desde el inicio hasta el final por ladrillo rococho triturado (Lr) como agregado grueso y adicionando un aditivo plastificante para mejorar la trabajabilidad. Así mismo con ello observar también las propiedades mecánicas que obtendríamos respecto a su resistencia a la compresión, tracción y flexión.

Segunda recomendación:

Se recomienda realizar otras investigaciones para establecer las propiedades físicas y mecánicas de este tipo de concreto ligero respecto a distintas relaciones a/c al sustituir en peso los agregados del concreto patrón por ladrillo rococho triturado como agregado grueso y por aserrín como agregado fino.

Tercera recomendación:

Se recomienda realizar un estudio de diseño por durabilidad para establecer las propiedades físicas y mecánicas sobre este tipo de concreto ligero con la adición de agregados no convencionales como el ladrillo rococho triturado y el aserrín.

Recomendación general:

Se recomienda el uso de este concreto ligero estudiado en esta investigación para cualquier tipo de elemento estructural en obras de edificaciones, siempre y cuando la calidad que esté buscando la persona que quiera emplearlo sea la misma del diseño aquí desarrollado.

VIII. REFERENCIAS

ACI 211. 2009. Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete, reapproved 2002, ACI Committee 211. s.l.: American Concrete Institute, 2009.

Atilano Pineda, Jesús Jair, y otros. 2019. Comportamiento de un concreto especial experimental elaborado con agregado reciclado. Mexico: Revista Innova Ingeniería, Publicaciones Técnicas de Investigación, 30 de Junio de 2019. Vol. 1.

Balaji, B y Sathyakumar, N. 2016. High strength lightweight concrete. India: s.n., April de 2016. Vol. 3. ISSN: 2347 - 4718.

Bellido Yarleque, Leddy Jhoana. 2018. Propiedades mecánicas del concreto ligero con incorporación de virutas de madera. Departamento Académico de Ordenamiento Territorial y Construcción, Universidad Nacional Agraria La Molina. Lima: s.n., 2018. Tesis para optar el título de Ingeniero Agrícola.

Carrillo Leiva, Joel Romario y Rojas Chávez, Jairo Francisco. 2017. Análisis comparativo de las propiedades mecánicas de compresión y flexión de un concreto patrón f´c 210kg/cm² y un concreto reemplazado en porcentajes del 1, 2, 3 y 4% con Dramix 3D respecto al volumen del agregado fino de la mezcla, [...]. Escuela Profesional de Ingeniería Civil, Universidad Andina del Cusco. Cusco: s.n., 2017. pág. 210, Para optar el Título de Ingeniero Civil.

Carrillo Moreno, Yulfo Orlando y Lopéz Manrique, Carlos Alberto. 2015. Diseño de concreto estructural ligero adicionando desperdicios de las ladrilleras del distrito de Santa - 2015. Ancash, Universidad Nacional del Santa. Nuevo Chimbote: s.n., 2015. pág. 164, Tesis para Optar el Título Profesional de Ingeniero Civil.

Cementos Inka. 2019. INKA. [En línea] 20 de Marzo de 2019. [Citado el: 15 de Octubre de 2019.] http://www.cementosinka.com.pe/blog/que-es-la-dosificacion-de-concreto/.

CEMEX. 2019. ¿Por qué se determina la resistencia a la compresión en el concreto? Lima, Lima, Perú : CEMEX PERÚ, 5 de Abril de 2019.

Cenk Karakurt, Ugur Ozen. 2017. JOTCS B. Journal of The Turkish Chemical Society - Chemical Engineering. [En línea] 2017. [Citado el: 02 de Octubre de 2019.] https://dergipark.org.tr/en/download/article-file/388553.

Chapoñan Cueva, José Miguel y Quispe, Cirilo Joel. 2017. Ánalisis del comportamiento en las propiedades del concreto hidraulico para el diseño de pavimentos rigidos adicionando fibras de polipropileno en el A.A.H.H Villamaria - Nuevo Chimbote. Escuela Académico Profesional de Ingeniería Civil , Universidad Nacional del Santa. Nuevo Chimbote : s.n., 2017. pág. 214, Tesis para Optar el Título Profesional de Ingeniero Civil.

Chung, Sang-Yeop, Abd Elrahman, Mohamed y Stephan, Dietmar. 2017. Effect of Different Gradings of Lightweight Aggregates on the Properties of Concrete. [Documento] Suiza: Applied Sciences, 7 de June de 2017. Vol. 7.

Cigueñas Cabrera, Pablo Cesar. 2020. Determinación del comportamiento mecánico del concreto con adición de aserrín. Escuela profesional de ingeniería civil, Universidad Privada Antenor Orrego. Trujillo: s.n., 2020. pág. 107, Tesis para optar el título profesional de ingeniero civil.

DEFINECIVIL.COM. 2019. Workability of Concrete. Pakistan: DEFINECIVIL, 20 de August de 2019.

E.060. 2009. Reglamento Nacional de Edificaciones (RNE) E.060 Concreto Armado. [Documento] Lima, Lima, Perú : DIGIGRAF CORP. SA, Julio de 2009. ISBN 978-9972-9433-4-8.

Gartner, Ellis y Sui, Tongbo. 2018. Alternative cement clinkers. [Documento] China, Beijing: ELSEVIER, December de 2018. Vol. 114.

Geronimo Urbina, Mauricio, y otros. 2015. Balanza para Determinar la Densidad de los Gases. [ed.] ECORFAN-Bolivia. 4, México - Bolivia : Revista de Tecnología e Innovación, 2015. Vol. 2.

Giralt Ortega, Giselle, Serret Guasch, Nurian y Quintero Ríos, Mairet. 2016. Caracterización de aserrín de diferentes maderas. 3, Santiago de Cuba : SCIELO, 2016. Vol. 36. ISSN 2224-6185.

Gomez Bastar, Sergio. 2012. Metodología de la Investigación. México: RED TERCER MILENIO S.C., 2012. ISBN 978-607-733-149-0.

Gutiérrez Jiménez, J. P. y Revuelta Crespo, D. 2008. Estimación de la resistencia a compresión del hormigón mediante el muestreo, extracción y rotura de probetas testigo. Madrid, España: s.n., 2008.

Hernández Sampieri, Roberto, Fernández Collado, Carlos y Baptista Lucio, María Del Pilar. 2014. Metodología de la Investigación - 6ta Edición. México: McGRAW-HILL / INTERAMERICANA EDITORES, S.A. DE C.V., 2014. ISBN: 978-1-4562-2396-0.

INACAL. 2016. Instituto Nacional de Calidad. [En línea] 2016. [Citado el: 15 de Octubre de 2019.] https://www.inacal.gob.pe/principal/categoria/normas-tecnicas-peruanas.

Jacqueline Wigodski. 2010. Metodologia de la Investigacion. Poblacion y Muestra. [En línea] 2010. [Citado el: 12 de Noviembre de 2016.] http://metodologiaeninvestigacion.blogspot.pe/2010/07/poblacion-y-muestra.html.

Labajo González, Elena. 2016. El Método Científico. Madrid, España : Universidad Complutense de Madrid, 2016.

López Enriquez, Wilmer Estiven. 2016. Diseño de concreto refractario utilizando residuos de ladrillos de barro cocido. Escuela de Ingeniería Civil, Universidad de San Carlos de Guatemala. Guatemala: s.n., 2016. pág. 128, Al Conferírsele el Título de Ingeniero Civil.

Lopez, Pedro Luis. 2004. SCIELO. 2004. Vol. 9. ISSN 1815-0276.

Martínez Herrera, Iván Emilio. 2016. Producción de concretos ligeros con agregados vitrocerámicos elaborados con lodos de plantas potabilizadoras. Programa de Maestría y Doctorado en Ingeniería, Universidad Nacional Autónoma de México. México: UNAM, 2016. pág. 108.

Masías Mogollón, Kimberly. 2018. Resistencia a la flexión y tracción en el concreto usando ladrillo triturado como agregado grueso. Departamento de

Ingeniería Civil, Universidad de Piura. Piura : PIRHUA, 2018. pág. 119, Tesis para optar el Título de Ingeniero Civil.

Mendoza Nina, Renato Héctor y Sánchez Quijano, Jhon Marx. 2017. Ánalisis de la resistencia del concreto utilizando bacterias del género bacillus y biopolímeros como bioreparador, Cusco-2016. Escuela Profesional de Ingeniería Civil, Universidad Andina del Cusco. Cusco: s.n., 2017. pág. 234, Para optar al Título Profesional de Ingeniero Civil.

Niño Rojas, Víctor Miguel. 2011. Metodología de la Investigación. Bogotá: Ediciones de la U, 2011. pág. 34. ISBN 978-958-8675-94-7.

NTP 334.009. 2016. Norma Técnica Peruana. Lima, Perú: NTP, 2016.

Ojeda Benitez, Sara, y otros. 2011. Hacia la sustentabilidad: los residuos sólidos como fuente de materia prima y energía. California, USA: Universidad Autónoma de Baja California, 2011. ISBN: 978-607-607-015-4.

Ortega Sánchez, Andrés David y Gil, Harveth. 2019. Estudio del comportamiento mecánico de morteros modificados con fibras de aserrín bajo esfuerzos de compresión. 1, Medellín, Colombia: Revista Científica Ingeniería y Desarrollo, Enero - Junio de 2019. Vol. 37. ISSN electronico 2145—9371.

PACKSYS ACADEMY. 2018. ¿Qué es la ASTM? México: s.n., 2018.

Patricio Rodriguez, Jorge Coronel. 2016. Análisis del comportamiento de mezclas cementicias con la inclusión de fibras de madera. Facultad de Arquitectura e Ingeniería Civil, Universidad de Especialidades Espíritu Santo. Ecuador: s.n., 2016. pág. 105, Trabajo de Titulación Previo a Obtención de Título de Ingeniero Civil.

Pengda Li, y otros. 2018. Effects of Aggregate Types on the Stress-Strain Behavior of Fiber Reinforced Polymer (FRP)-Confined Lightweight Concrete. China: Sensors, 18 de October de 2018. Vol. 18.

Phonphuak, N. y Chindaprasirt, P. 2015. Types of waste, properties, and durability of pore-forming waste-based fired masonry bricks. s.l.: ScienceDirect, 2015. En Eco-Efficient Masonry Bricks and Blocks.

RAE. 2018. Real Academia Española. [En línea] 2018. [Citado el: 15 de Octubre de 2019.] https://dle.rae.es/?id=1BKpQj3.

Real Academia Española . 2019. RAE. [En línea] 2019. [Citado el: 22 de Setiembre de 2020.] https://dle.rae.es/compresión.

Real Academia Española. 2019. RAE. [En línea] 2019. [Citado el: 22 de Setiembre de 2020.] https://dle.rae.es/tracción?m=form.

- —. **2019.** RAE. [En línea] 2019. [Citado el: 22 de Setiembre de 2020.] https://dle.rae.es/flexión?m=form.
- —. **2019.** RAE. [En línea] 2019. [Citado el: 22 de Setiembre de 2020.] https://dle.rae.es/resistencia?m=form.

Revista de Arquitectura e Ingeniería. **De la cruz Acosta, Francisco Javier, Sáenz López, Agustín y Cortés martínez, Facundo. 2015.** 1, Cuba : Revista de Arquitectura e Ingeniería, Abril de 2015, Vol. 9, págs. 1-11. 1990-8830.

Rodriguez Vivanco, Frank Amadeo y Suere Villa, Anthony Brayam. 2019. Análisis comparativo de la resistencia a compresión y flexión del concreto utilizando adhesivos epóxicos: Poxbak 1580 y Sikadur 32. Escuela Profesional de ingeniería civil, Universidad César Vallejo. Lima: s.n., 2019. pág. 150, Tesis para obtener el título profesional de ingeniero civil.

SIGNIFICADOS. 2018. SIGNIFICADOS. [En línea] 29 de Diciembre de 2018. [Citado el: 22 de Setiembre de 2020.] https://www.significados.com/esfuerzo/.

—. **2019.** SIGNIFICADOS.COM. [En línea] 21 de Febrero de 2019. [Citado el: 15 de Octubre de 2019.] https://www.significados.com/deformacion/.

Tamayo Ly, Carla y Silva Siesquén, Irene. 2017. Técnicas e instrumentos de recolección de datos. [En línea] 2017. [Citado el: 22 de Setiembre de 2020.] http://www.postgradoune.edu.pe/pdf/documentos-academicos/ciencias-de-la-educacion/23.pdf.

Thanon Dawood, Eethar. 2018. ResearchGate. Experimental study of lightweight concrete used for the production of canoe. [En línea] 19 de July de 2018. [Citado el: 02 de Octubre de 2019.]

https://www.researchgate.net/publication/282033915_Experimental_study_of_light weight concrete used for the production of canoe.

Thompson, Jason. 2017. ¿Qué es el asentamiento del concreto? CALIFORNIA, USA: eHow, 20 de November de 2017. HOGAR.

Universidad Nacional de Ingeniería. 2014. Propiedades del Concreto - Concreto en Estado Fresco. Lima, Perú : UNI, 29 de Marzo de 2014. pág. 58.

Vilca Silva, Kevin Giancarlo. 2017. Influencia del porcentaje de ladrillo reciclado como agregado fino sobre el asentamiento, peso unitario y resistencia a la compresión de un concreto elaborado con cemento tipo MS. Escuela académico profesional de ingeniería de materiales, Universidad Nacional de Trujillo. Trujillo: s.n., 2017. pág. 147, Tesis para optar el título profesional de ingeniero de materiales.

Zuñiga Quenta, Mariela Lizeth y Condori Chata, Yudit Verónica. 2019. Influencia de adiciones de microsílice en la resistencia a la compresión del concreto producido con agregados de la cantera de arunta de la ciudad de tacna. Escuela Profesional de Ingeniería Civil, Universidad Privada de Tacna. Tacna: s.n., 2019. pág. 151, Tesis para Optar el Titulo Profesional de Ingeniero Civil.

IX. ANEXOS

MATRIZ DE CONSISTENCIA

Título: "Diseño de un concreto ligero de resistencia a la compresión f'c=210 kg/cm² con la adición de agregados no convencionales, Lima - 2020"

Problema	Objetivos	Hipótesis	Variables	Dimensiones	Indicadores	Método
Problema general: ¿Cuál es el diseño de un concreto ligero de resistencia a la compresión fc=210 kg/cm² con la adición de agregados no convencionales, Lima - 2020? Problemas específicos:	Objetivo general: Diseñar un concreto ligero de resistencia a la compresión f'c=210 kg/cm² con la adición de agregados no convencionales, Lima - 2020. Objetivos específicos:	Hipótesis general: Con la adición de agregados no convencionales se logrará el diseño óptimo de concreto ligero de resistencia a la compresión 210 kg/cm², Lima - 2020. Hipótesis específicas:	Variable independiente: Agregados no convencionales	Aserrín Ladrillo rococho	I1: Peso específico (gr/cm³) I2: Granulometría (%) I3: Contenido de humedad (%)	
¿Cuál será la dosificación con la adición de agregados no convencionales para obtener concreto ligero de resistencia a la compresión f'c=210 kg/cm²? ¿Cuáles son las propiedades físicas de concreto ligero con la adición de agregados no convencionales para una resistencia a la compresión 210 kg/cm²? ¿Cuáles son las propiedades mecánicas de concreto ligero con la adición de agregados no convencionales para una resistencia a la compresión 210 kg/cm²?	Determinar la dosificación con la adición de agregados no convencionales para obtener concreto ligero de resistencia a la compresión f'c=210 kg/cm². Analizar las propiedades físicas de concreto ligero con la adición de agregados no convencionales para una resistencia a la compresión 210 kg/cm². Analizar las propiedades mecánicas de concreto ligero con la adición de agregados no convencionales para una resistencia a la compresión 210 kg/cm².	La dosificación optima con la adición de agregados no convencionales permitirá obtener concreto ligero de resistencia a la compresión fc=210 kg/cm². Las propiedades físicas de concreto ligero mejorarán con la adición de agregados no convencionales para una resistencia a la compresión 210 kg/cm². Las propiedades mecánicas de concreto ligero mejorarán con la adición de agregados no convencionales para una resistencia a la compresión 210 kg/cm².	Variable dependiente: Concreto ligero	Propiedades físicas Propiedades mecánicas	I1: Cemento (kg) I2: Agregados (kg) I3: Agua (lt) I1: Asentamiento (pulg) I2: Peso unitario del concreto (kg/m³) I1: Resistencia a la compresión (kg/cm²) I2: Resistencia a la tracción (kg/cm²) I3: Resistencia a la flexión (kg/cm²)	Método: Científico Tipo: Aplicada Nivel: Explicativo Diseño: Experimental

FICHA DE RECOLECCIÓN DE DATOS

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

I. IN	IFORMACIÓN GENERAL:
1.1.	Nombre del proyecto de investigación: "Diseño de un concreto ligero de resistencia a la compresión f'c=210 kg/cm² con la adición de agregados no convencionales, Lima - 2020"
1.2.	Ubicación:
	Distrito: / Provincia: / Departamento:
II. A	GREGADOS CONVENCIONALES:
2.1.	Cemento:
	Marca / Tipo:
	Peso específico:
2.2.	Agua:
	Tipo:
	Peso específico:
2.3.	Arena gruesa:
	Procedencia:
	Peso específico de masa:
	Absorción / Contenido de humedad:
	Módulo de fineza:
	Peso unitario suelto:
	Peso unitario compactado:

2.4.	Piedra chand	cada:					
	Procedencia:						
	Tamaño máxi						-
	Peso específi						
	Absorción / C	ontenido de	humed	lad:			-
	Peso unitario	suelto:					
	Peso unitario	compactad	o:				
III. V	'I: AGREGADO	S NO CON	IVENCI	ONALES			
3.1.	Aserrín:						
	Procedencia:						
	Peso específi						
2.0	Ladrillo roco	aha tritura	do.				
3.2.	Laurillo roco	cno tritura	uo:				
	Procedencia:						
	Tamaño máxi	mo nomina	l:				-
	Peso específi	co de masa	ı:				
	Absorción / C	ontenido de	humed	lad:			-
	Peso unitario						
	Peso unitario	compactad	o:				
	D: CONCRET						
4.1.	Dosificación	:					
	Mezcla	Cemento	Agua	Arena Gruesa	Piedra Chancada	Aserrín	Ladrillo rococho
	Patrón			0.000	<u> </u>		13333113
35%	% Lr y 2% As						
65%	% Lr y 4% As						
100	% Lr y 6% As						

	Valores	Promedios	
% Sustituido	Trabajabilidad	Densidad en estado fresco	Densidad en estado endurecido
Patrón			
35% Lr y 2% As			
65% Lr y 4% As			
100% Lr y 6% As			

4.3. Propiedades mecánicas:

Valores Promedios a los días de edad						
% Sustituido	Densidad	Resistencia a	Resistencia	Resistencia		
		la	a la	a la flexión		
		compresión	tracción			
Patrón						
35% Lr y 2% As						
65% Lr y 4% As						
100% Lr y 6% As						

Sugerencias:			

	Puntuación						
Criterio	Puntaje	Pregunta 1	Pregunta 2	Pregunta 3	Pregunta 4		
Deficiente	00 - 05						
Aceptable	06 - 10						
Bueno	11 - 15						
Excelente	16 - 20						
Tota	ıl						

Firma y sello:			

FICHA DE RECOLECCIÓN DE DATOS Nº 1

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

1 1 2

I. INFORMACIÓN GENERAL:
1.1. Nombre del proyecto de investigación: "Diseño de un concreto ligero de resistencia a la compresión f'c=210 kg/cm² con la adición de agregados no convencionales, Lima - 2020"
1.2. Ubicación:
Distrito: Independença I Provincia: Loma I Departamento: Loma
II. AGREGADOS CONVENCIONALES:
2.1. Cemento:
Marca / Tipo: $50L/T$ Peso específico: $3.12 gr/cm^3$
2.2. Agua:
Tipo: Potalle
Peso específico: 1000 kg/m³
2.3. Arena gruesa:
Procedencia: Contera Trapoche
Peso específico de masa: 2,62 gr/cm ³
Absorción / Contenido de humedad: 0779 96 034 96
Módulo de fineza: <u>389</u>
Peso unitario suelto: 1598 llg/im ³
Peso unitario compactado: 1830 kg/m ³
Chymans -

	pag. 2-3
2.4. Piedra chancada:	
Procedencia: Comtera Trapsche	
Tamaño máximo nominal:	
Peso específico de masa: 2/81 go/cm ³	
Absorción / Contenido de humedad: 947 % / 0,35 9	%
Peso unitario suelto: 1456 kg/m ³	
Peso unitario compactado: 1628 Vg/m ³	
III. VI: AGREGADOS NO CONVENCIONALES	
3.1. Aserrín:	p. 3
Procedencia: Maderera Tyulos	
Peso específico de masa: Aprox. 178,83 Vg/m³ (08) 2019) - Dato reference	tega sandhez,
3.2. Ladrillo rococho triturado:	
Procedencia: Ladrellesa Attesanal Cabre	era
Tamaño máximo nominal:	
Peso específico de masa: 203 gr/cm ³	
Absorción / Contenido de humedad: 3,45% /0,0	1%
Peso unitario suelto: 1083 l/g/m ³	
Peso unitario compactado: 1224 Vg/m³	
IV. VD: CONCRETO LIGERO	-
4.1. Dosificación: (/g)-Diseño metrodo comete 2	11 del ACI

4.1.	Dosificación: (1/g) - Dis	eno metrodo	compte 211	del ACI
------	---------------------------	-------------	------------	---------

Mezcla	Cemento	Agua (4)	Arena Gruesa	Piedra Chancada	Aserrín	Ladrillo rococho	%
Patrón	410,6	197,53	7293	1088,0			948
35% Lr y 2% As	410,6	240,0	705,9	207,2	14,4	380,8	958
65% Lr y 4% As	410,6	240,0	691,5	380,8	28,8	707,2	0,58
100% Lr y 6% As	410,6	240,0	677,1	•	43,2	1088,0	0,58

pag. 3-3

4.2. Propiedades físicas

	Valores	Promedios		
% Sustituido	Trabajabilidad	Densidad en estado fresco	Densidad ei endure	
Patrón	3,811	2390 Va/m3	2318	Pg/m3
35% Lr y 2% As	3,611	2327 6/m3	2180	09/m3
65% Lr. y 4% As	3,7"	2253 Kg/m3	2053 1	folin3
100% Lr y 6% As	3,811	2182 Kg/m3	1970	de/m3

4.3. Propiedades mecánicas:

Valore	s Promedios	a los 🔫 día	as de edad	
% Sustituido	Densidad	Resistencia a la compresión	Resistencia a la tracción	Resistencia a la flexión
Patrón		369 Kg/cm2		
35% Lr y 2% As		266 Valun2	٠	
65% Lr y 4% As		230,7 6g/m2	-	
100% Lr y 6% As	-	260,3160 km2		

Sugerencias:	
	-

Puntuación							
Criterio	Puntaje	Pregunta 1	Pregunta 2	Pregunta 3	Pregunta 4		
Deficiente	00 - 05		W. Control of the Con				
Aceptable	06 - 10						
Bueno	11 - 15	V		/	V		
Excelente	16 - 20		V	0			
Tota	3.00	14	17	18	13		

promz-15,5

Firma y sello:	
	Character of the second

FICHA DE RECOLECCIÓN DE DATOS

Nº2

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Pag. 1-3

I. IN	FORMACIÓN GENERAL:
1.1.	Nombre del proyecto de investigación: "Diseño de un concreto ligero de resistencia a la compresión f'c=210 kg/cm² con la adición de agregados no convencionales, Lima - 2020"
1.2.	Ubicación: Distrito: Indegendaria / Provincia: Lima / Departamento: Lima
II. A	GREGADOS CONVENCIONALES: En la etha Nº 1
2.1.	Cemento:
	Marca / Tipo:
	Peso específico:
2.2.	Agua:
	Tipo:
	Peso específico:
2.3.	Arena gruesa:
	Procedencia:
	Peso específico de masa:
	Absorción / Contenido de humedad:
	Módulo de fineza:
	Peso unitario suelto:

Peso unitario compactado: _

José Luis Hualipa Muñoz Ingeniero Civil Reg. CIP 216878

						Pag	1.2-3		
2.4.	Piedra chan	cada: Ex	, la	Licha	NOT				
	Procedencia:								
	Tamaño máx	imo nomina	ıl:						
	Peso específ	ico de masa	a:						
	Absorción / C	Contenido de	e humed	dad:					
	Peso unitario	suelto:							
	Peso unitario	compactad	0:						
III. VI	: AGREGADO	OS NO CON	IVENCI	ONALES	En la	ficha r	v=1		
3.1.	Aserrín:								
	Procedencia:								
	Peso especif								
		.00 00 11100							
3.2.	Ladrillo rocc	cho tritura	do:						
	Procedencia:								
	Tamaño máx	imo nomina	1:		-				
	Peso especif	ico de masa	a:						
	Absorción / C	ontenido de	humed	lad:					
	Peso unitario	suelto:	_						
	Peso unitario	compactad	0:						
IV. VI	D: CONCRET	O LIGERO	En	la Ac	ha nº 1				
4.1.	Dosificación								
	Mezcla	Cemento	Agua	Arena Gruesa	Piedra Chancada	Aserrín	Ladrillo rococho		
	Patrón								
35%	Lry 2% As								
65%	Lr y 4% As								
1009	6 Lr y 6% As								
					Jos	é Luis Hually Ingeniero Reg. CIP 21	Da Muñoz Civil 16878		

fag.3-3

4.2. Propiedades físicas En la ficha Nº 1

	Valores	Promedios	
% Sustituido	Trabajabilidad	Densidad en estado fresco	Densidad en estado endurecido
Patrón			
35% Lr y 2% As			
65% Lr y 4% As			
100% Lr y 6% As			

4.3. Propiedades mecánicas:

Valore	s Promedios	a los 19 día	as de edad	
% Sustituido	Densidad	Resistencia a la compresión	Resistencia a la tracción	Resistencia a la flexión
Patrón		398 Vg/m2		
35% Lr y 2% As		303 lg/cm2		
65% Lr y 4% As		2537 16g km2		
100% Lr y 6% As		322 Kg/cm2		

Sugerencias:			
C.		-	

		Pui	ntuación		
Criterio	Puntaje	Pregunta 1	Pregunta 2	Pregunta 3	Pregunta 4
Deficiente	00 - 05				
Aceptable	06 - 10				
Bueno	11 - 15				1
Excelente	16 - 20	V		1	
Tota	al	17	14	18	13
				20	poom.

Firma y sello:

José Luis Huallpa Muñoz Ingeniero Civil Reg. CIP 216878

FICHA DE RECOLECCIÓN DE DATOS

Nº 3

INGENIE

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

	FORMACIÓN GENERAL:
1.1.	Nombre del proyecto de investigación: "Diseño de un concreto ligero de resistencia a la compresión fc=210 kg/cm² con la adición de agregados no convencionales, Lima - 2020"
1.2.	Ubicación:
	Distrito: Indefendencia Provincia: Lima Departamento: Lima
II. A	GREGADOS CONVENCIONALES: En la ficha Nº1
2.1.	Cemento:
	Marca / Tipo:
	Peso específico:
2.2.	Agua:
	Tipo:
	Peso específico:
2.3.	Arena gruesa:
	Procedencia:
	Peso específico de masa:
	Absorción / Contenido de humedad:
	Módulo de fineza:
	Peso unitario suelto:
	Peso unitario compactado:

OSCAR EDGARDO ANICAMA CORREA INGENIERO CIVIL C.I.P. Nº 43977

	×					Pag	1, 2-3
2.4.	Piedra chand	cada: En	la f	Cha N	21	10	
	Procedencia:	*					_
	Tamaño máxi	imo nomina	l:				
	Peso específi	co de masa	a:				
	Absorción / C	ontenido de	humed	dad:			
	Peso unitario	suelto:					_
	Peso unitario	compactad	0:				
111 \/	I. ACDECADO	20 00 00	IVENO!	ONIALEO	E / 10	/- n_8))
	I: AGREGADO	S NO CON	IVENCI	UNALES	En la fro	ana IV.	1
3.1.	Aserrín:						
	Procedencia:						
	Peso específi	co de masa):				-
3.2.	Ladrillo roco	cho tritura	do:				
	Procedencia:						·
	Tamaño máxi	mo nomina					-
	Peso especifi	co de masa	1:				·
	Absorción / C					***************************************	
	Peso unitario	suelto:					
	Peso unitario	compactad	0:				
IV. V	D: CONCRETO	D LIGERO	En la	a Sacha	a N-1		
4.1.	Dosificación	K		A.	-		
	Mezcla	Cemento	Agua	Arena	Piedra	Aserrín	Ladrillo
	Patrón			Gruesa	Chancada		rococho
35%	6 Lry 2% As						
	6 Lry 4% As						
	% Lr y 6% As						

OSCAR EDGARDO ANICAMA CORREA INGENIERO CIVIL C.I.P. Nº 43977

fag. 3-3

4.2. Propiedades físicas En la fecha Nº1

	Valores	Promedios	
% Sustituido	Trabajabilidad	Densidad en estado fresco	Densidad en estado endurecido
Patrón			
35% Lr y 2% As			
65% Lr y 4% As			
100% Lr y 6% As			

4.3. Propiedades mecánicas:

Valore	s Promedios	a los 28 dí	as de edad	
% Sustituido	Densidad	Resistencia a la compresión	Resistencia a la tracción	Resistencia a la flexión
Patrón		THE RESIDENCE OF THE PROPERTY OF THE PARTY O	35,5 Kg/cm2	30,2 19/cm
35% Lr y 2% As		327,8 Kg/on2	361 Halim2	25.5 Nalan
65% Lr y 4% As		321,4 Fg/m2	366 Kalant	313 Valen
100% Lr y 6% As		3934 Kalm2	31,1 Kalme	29.0 Walin

Sugerencias:	

		Pui	ntuación		
Criterio	Puntaje	Pregunta 1	Pregunta 2	Pregunta 3	Pregunta 4
Deficiente	00 - 05			,	
Aceptable	06 - 10	,		/	/
Bueno	11 - 15	0	/		0
Excelente	16 - 20		1		
Tota	orana orana orana	14	18	10	15 promo

Firma y sello:

OSCAR EDGARDO ANICAMA CORREA INGENIERO CIVIL C.I.P. Nº 43977

VALIDACIÓN DEL INSTRUMENTO

1.1. Apellido 1.2. Cargo e 1.3. Nombre	generales s y Nombres: institución donde labo del instrumento motivo el instrumento:	ra: _ o de	evalu	aciói	า:							<u> </u>
II. Aspec	to de validación											
CRITERIOS	INDICADORES	N	IO VALID	0	MAS O	MENOS	VALIDO	CASI VALIDO				
		30	35	40	45	50	55	60	70	80	90	100
1. Redacción	Esta formulada de una manera comprensible a la lectura											
2. Congruencia	Es congruente al momento de realizar los resultados con respecto a sus objetivos.											
3. Factibilidad de Aplicación	Es factible el llevarlo a cabo en la realidad descrita											
4. Relevancia del Contenido	La información descripta dentro de la investigación de valor significativo o sobresaliente.											
5. Medología	La investigación responde a una metodologia, diseño aplicada para lograr refutar la hipótesis											
6. Consistencia	Se base o fundamenta en antecendentes o aspectos técnicos u normas.											
√ ap	n de aplicabilidad El instrumento cumplicación. El instrumento no cur olicación. dio de valoración	mple	con	los r					%			
								F	FIRM	Α		

VALIDACIÓN DEL INSTRUMENTO

1,	Datos	general	es
----	-------	---------	----

1.1. Apellidos y Nombres: chuquimamani Cayo Kenin

1.2. Cargo e institución donde labora: _ +ngentero de ofect na = 1.3. Nombre del instrumento motivo de evaluación: +icha de recolec

1.4. Autor del instrumento: Vontuso cordeso Valacosto

II. Aspecto de validación

CRITERIOS	INDICADORES	N	IO VALID	0	MAS O MENOS VALIDO CASI VALIDO					VAUDO		
		30	35	40	45	50	55	60	70	80	90	100
1. Redacción	Esta formulada de una manera comprensible a la lectura										X	
2. Congruencia	Es congruente al momento de realizar los resultados con respecto a sus objetivos.								X			
3. Factibilidad de Aplicación	Es factible el llevarlo a cabo en la realidad descrita							X				
4. Relevancia del Contenido	La información descripta dentro de la investigación de valor significativo o sobresaliente.									X		
5. Medología	La investigación responde a una metodologia, diseño aplicada para lograr refutar la hipótesis								X			
6. Consistencia	Se base o fundamenta en antecendentes o aspectos técnicos u normas.						and other contract of the cont				X	

III. Opinión de aplicabilidad

- ✓ El instrumento cumple con los requisitos para su aplicación.
- ✓ El instrumento no cumple con los requisitos para su aplicación.

51

IV. Promedio de valoración

Correo: Kouin . Cayo @ out Look . com

Teléfono: 989 919 466

Fecha: 04 de noviembre del 2019

angoi **FIRMA**

VALIDACIÓN DEL INSTRUMENTO

1.1. Apellido 1.2. Cargo e 1.3. Nombre 1.4. Autor de	generales es y Nombres: Hucu e institución donde labo e del instrumento motivo el instrumento:	upo ra: _ o de	evalu	longe nge uació	02 n: p	Jo.	se resi	Luit der der cues de sues de s	nte ta	deed	206	5a Le	12005
CRITERIOS	INDICADORES	N	IO VALIE	00	MAS O	MENOS	VALIDO	CASI	VALIDO		VALIDO		
CHILINGS	HUNGALONES	30	35	40	45	50	55	60	70	80	90	100	
1. Redacción	Esta formulada de una manera comprensible a la lectura										X		
2. Congruencia	Es congruente al momento de realizar los resultados con respecto a sus objetivos.								X				
3. Factibilidad de Aplicación	Es factible el llevarlo a cabo en la realidad descrita									X			
4. Relevancia del Contenido	La información descripta dentro de la investigación de valor significativo o sobresaliente.										X		
5. Medología	La investigación responde a una metodologia, diseño aplicada para									X			

III. Opinión de aplicabilidad

6. Consistencia

lograr refutar la hipótesis Se base o fundamenta en

antecendentes o aspectos técnicos u normas.

✓ El instrumento cumple con los requisitos para su aplicación.

✓ El instrumento no cumple con los requisitos para su aplicación.

	51	-
_		
		- 1
		- 1
		- 1
		- 1
		- 1

IV. Promedio de valoración

Correo:	goselvis	hm 923@gmail.com	n
	M		

Teléfono: <u>967 873 114</u>
Fecha: <u>04 de noviembre del 2019</u>

iosé Luis Huallpa Muñoz Ingeniero Civil Reg. CIP 216878

FIRMA

VALIDACIÓN DEL INSTRUMENTO

generales es y Nombres: Anica e institución donde labo e del instrumento motivo el instrumento:	me ra:_ o de	evalu	Tng Iación	a 1: liro	Osci Production	den ha a	E o	gar de end	obra	2	te do
to de validación	***************************************					and have been been as a	NE STATE AND ADDRESS OF THE STATE A	and an experience of	elen Otompio de Saus		mitrockeroneolijacs
INDICADORES	1	NO VALID	10	MAS O	MENOS	VALIDO	CASIV	/ALIDO		VALIDO	
	30	35	40	45	50	55	60	70	80	90	100
Esta formulada de una manera comprensible a la lectura								X			
Es congruente al momento de realizar los resultados con respecto a sus objetivos.							X			After treast of Assessment Section (Assessment Section (Assessment Section (Assessment Section (Assessment Sec	
Es factible el llevarlo a cabo en la realidad descrita										X	
La información descripta dentro de la investigación de valor significativo o sobresaliente.		A CONTRACTOR OF THE PROPERTY O						X			
La investigación responde a una metodologia, diseño aplicada para lograr refutar la hipótesis											X
Se base o fundamenta en antecendentes o aspectos técnicos u normas.									X		
olicación. El instrumento no cun olicación. dio de valoración anicamae@hot	nple	con	los re		sitos	para CAR EDG	ARDO A	50 CI/	/IL\ 7	EA	
	Esta formulada de una manera comprensible a la lectura Es congruente al momento de realizar los resultados con respecto a sus objetivos. Es factible el llevarlo a cabo en la realidad descrita La información descripta dentro de la investigación responde a una metodología, diseño aplicada para lograr refutar la hipótesis Se base o fundamenta en antecendentes o aspectos técnicos u normas. In de aplicabilidad el instrumento cumple olicación. El instrumento no cumple olicación. El instrumento no cumple olicación. In termaca a logra maca a log	Esta formulada de una manera comprensible a la lectura Es congruente al momento de realizar los resultados con respecto a sus objetivos. Es factible el llevarlo a cabo en la realidad descrita La información descripta dentro de la investigación de valor significativo o sobresaliente. La investigación responde a una metodologia, diseño aplicada para lograr refutar la hipótesis Se base o fundamenta en antecendentes o aspectos técnicos u normas. In de aplicabilidad el instrumento cumple colicación. El instrumento no cumple colicación. In instrumento no cumple colicación. In instrumento no cumple colicación. In conficalmaca a la	INDICADORES Esta formulada de una manera comprensible a la lectura Es congruente al momento de realizar los resultados con respecto a sus objetivos. Es factible el llevarlo a cabo en la realidad descrita La información descripta dentro de la investigación de valor significativo o sobresaliente. La investigación responde a una metodología, diseño aplicada para lograr refutar la hipótesis Se base o fundamenta en antecendentes o aspectos técnicos u normas. In de aplicabilidad el instrumento no cumple con oblicación. El instrumento no cumple con oblicación. El instrumento no cumple con oblicación. Instrumento no cumple con oblicación. Instrumento no cumple con oblicación. Instrumento no cumple con oblicación.	Institución donde labora: Finge del instrumento motivo de evaluación del instrumento: Venturo Correla instrumento de validación NO VALIDO	Institución donde labora: Fingo Residentificación donde labora: Fingo Residentificación donde labora: Fingo Residentificación: El instrumento: Venturo Cordino de evaluación: El instrumento: Venturo Cordino de validación NO VALIDO MAS O	INDICADORES Esta formulada de una manera comprensible a la lectura Es congruente al momento de realizar los resultados con respecto a sus objetivos. Es factible el llevarlo a cabo en la realidad descrita La información descripta dentro de la investigación de valor significativo o sobresaliente. La investigación responde a una metodologia, diseño aplicada para lograr refutar la hipótesis Se base o fundamenta en antecendentes o aspectos técnicos u normas. In de aplicabilidad El instrumento no cumple con los requisitos par objicación. El instrumento no cumple con los requisitos par objicación. Instrumento no cumple con los requisitos par objicación.	s y Nombres: Anica ma Correa Oscar institución donde labora: Fng. Residente del instrumento motivo de evaluación: Jidha a el instrumento: Ventero Cordero Vella del instrumento de validade una manera comprensible a la lectura Es congruente al momento de realizar los resultados con respecto a sus objetivos. Es factible el llevarlo a cabo en la realidad descrita La información descripta dentro de la investigación de valor significativo o sobresaliente. La investigación responde a una metodologia, diseño aplicada para lograr refutar la hipótesis Se base o fundamenta en antecendentes o aspectos técnicos u normas. In de aplicabilidad El instrumento cumple con los requisitos para su oblicación. El instrumento no cumple con los requisitos para su oblicación. El instrumento no cumple con los requisitos para su oblicación. dio de valoración angramaca harmalación BECAR EDG. BECAR	s y Nombres: Anica ma Correa Oscar Ed institución donde labora: Fingo Residento del instrumento motivo de evaluación: Jidha de cel instrumento: Ventro Corden Vallausta de cel instrumento de la lactura de cel instrumento de realizar los resultados con respecto a sus objetivos. Es factible el llevarlo a cabo en la realidad descrita de la investigación de valor significativo o sobresaliente. La investigación responde a una metodología, diseño aplicada para lograr refutar la hipótesis Se base o fundamenta en antecendentes o aspectos técnicos u normas. In de aplicabilidad El instrumento no cumple con los requisitos para su oblicación. El instrumento no cumple con los requisitos para su oblicación. El instrumento no cumple con los requisitos para su oblicación. Gio de valoración SECAR EDGARDO (NGENIER)	Institución donde labora: Thg. Residento de labora: Thg. Residento de celul instrumento motivo de evaluación: Indel instrumento: Venturo Conduro Vellaurita To de validación INDICADORES NO VALIDO MAS O MENOS VALIDO CASI VALIDO Esta formulada de una manera comprensible a la lectura Es congruente al momento de realizar los resultados con respecto a sus objetivos. Es factible el llevario a cabo en la realidad descrita La información descripta dentro de la investigación de valor significativo o sobresaliente. La investigación responde a una metodología, diseño aplicada para lograr refuter la hipótesis Se base o fundamenta en antecendentes o aspectos técnicos u normas. In de aplicabilidad El instrumento cumple con los requisitos para su oblicación. El instrumento no cumple con los requisitos para su oblicación. Condura en el con los	sy Nombres: Ancama Corsea Oscar Edgarda institución donde labora: Ang. Resolente de obra del instrumento motivo de evaluación: Licha de cedence el instrumento: Ventror Cordero Vellaconta to de validación NO VALIDO MAS O MENOS VALIDO CASI VALIDO INDICADORES NO VALIDO MAS O MENOS VALIDO CASI VALIDO Esta formulada de una manera comprensible a la lectura Es congruente al momento de realizar los resultados con respecto a sus objetivos. Es factible el llevarlo a cabo en la realidad descripta dentro de la investigación de valor significativo o sobresaliente. La información descripta dentro de la investigación responde a una metodología, diseño aplicada para lograr refutar la hipótesis Se base o fundamenta en antecendentes o aspectos técnicos u normas. In de aplicabilidad El instrumento cumple con los requisitos para su plicación. El instrumento no cumple con los requisitos para su plicación. dio de valoración P33 9/6 1 SECAR EDGARDO ANICAMA CORR NOGENIERO CIVILI SECAR EDGARDO ANICAMA CORR	s y Nombres: Angama Correa Discrete Edgardo institución donde labora: Fig. Residente de obra del instrumento motivo de evaluación: Ficha de academoció del instrumento: Ventro Conder Vellaciona del instrumento: Ventro Conder Vellaciona del instrumento: Ventro Corder Vellaciona del instrumento: Ventro Corder Vellaciona del instrumento de la lactura de lactura de lactura de la lactura de lactura de la lactura de lactur

(FICHA TÉCNICA DEL CEMENTO SOL)

CEMENTO SOL

Descripción:

- Es un Cemento Tipo I, obtenido de la molienda conjunta de Clinker y yeso.
- Cuenta con la fecha y hora de envasado en la bolsa en beneficio de los consumidores, ya que permite una mayor precisión en la trazabilidad.

- El acelerado desarrollo de resistencias iniciales permite un menor tiempo en el desencofrado.
- Excelente desarrollo de resistencias en Shotcrete.
- Ideal para la producción de prefabricados en concreto.

Usos:

- Construcciones en general y de gran envergadura cuando no se requieren características especiales o no especifique otro tipo de cemento.
- Fabricación de concretos de mediana y alta resistencia a la compresión.
- Preparación de concretos para cimientos, sobrecimientos, zapatas, vigas, columnas y techado.
- Producción de prefabricados de concreto.
- Fabricación de bloques, tubos para acueducto y alcantarillado, terrazos y adoquines.
- Fabricación de morteros para el desarrollo de ladrillos, tarrajeos, enchapes de mayólicas y otros materiales.

Características Técnicas:

 Cumple con la Norma Técnica Peruana 334.009 y la Norma Técnica Americana ASTM C 150.

Formato de distribución:

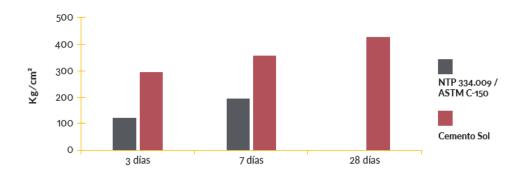
- Bolsas de 42.5 Kg: 04 pliegos (03 de papel + 01 film plástico).
- Granel: A despacharse en camiones bombonas y Big Bags.

Recomendaciones

Dosificación:

- Se debe dosificar según la resistencia deseada.
- Respetar la relación agua/cemento (a/c) a fin de obtener un buen desarrollo de resistencias, trabajabilidad y performance del cemento.
- Realizar el curado con agua a fin de lograr un buen desarrollo de resistencia y acabado final.

Manipulación:


- Se debe manipular el cemento en ambientes ventilados.
- Se recomienda utilizar equipos de protección personal.
- Se debe evitar el contacto del cemento con la piel, los ojos y su inhalación.

Almacenamiento:

- Almacenar las bolsas bajo techo, separadas de paredes y pisos. Protegerlas de las corrientes de aire húmedo.
- No apilar más de 10 bolsas para evitar su compactación.
- En caso de un almacenamiento prolongado, se recomienda cubrir los sacos con un cobertor de polietileno y en dos pallet de altura.

Requisitos mecánicos

Comparación resistencias NTP 334.009 / ASTM C-150 vs. Cemento Sol

Propiedades físicas y químicas

Parámetro	Unidad	Cemento Sol Tipo I	Requisitos 334.009 / ASTM C-150
Contenido de aire Expansión autoclave Superficie específica Densidad	% % cm²/g g/ml	6.62 0.08 3361 3.12	Máximo 12 Máximo 0.80 Máximo 2600 No Especifica
Resistencia a la Compresión Resistencia a la compresión a 3 días Resistencia a la compresión a 7 días Resistencia a la compresión a 28 días	kg/cm² kg/cm² kg/cm²	296 357 427	Mínimo 122 Mínimo 194 No especifica
Tiempo de Fraguado Fraguado Vicat inicial Fraguado Vicat final Composición Química	min min	127 305	Mínimo 45 Máximo 375
MgO SO3 Pérdida al fuego Residuo insoluble	% % % %	2.93 3.08 2.25 0.68	Máximo 6.0 Máximo 3.5 Máximo 3.0 Máximo 1.5
Fases Mineralógicas C2S C3S C3A C4AF	% % %	13.15 53.60 9.66 9.34	No especifica No especifica No especifica No especifica

ANEXO 05 (PANEL FOTOGRÁFICO)

Foto 1. Ladrillos rocochos

Foto 2. Selección de ladrillos rocochos.

Foto 4. Lista de materiales a emplear.

Foto 5. Vista de equipos de usar.

Foto 6. Ensayo de asentamiento del concreto.

Foto 7. Medición del slump del concreto.

Foto 8. Preparación de probetas.

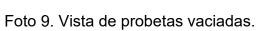


Foto 10. Curado del concreto.

Foto 11. Fabricación de moldes de madera para ensayar vigas de concreto a flexión.

Foto 12. Vista de vigas de concreto vaciadas.

Foto 13. Peso unitario del concreto en estado fresco.

Foto 14. Máquinas de compresión axial electro – hidráulica con certificado de calibración CMC-020-2020 y CMC-021-2020 del laboratorio UNI - LEM.

Foto 15. Colocación de la probeta de 4" x 8" en la máquina de compresión axial electro – hidráulica para proceder con en el ensayo de resistencia a compresión.

Foto 16. Ensayo de resistencia a la compresión para probetas de 4" x 8" del concreto patrón y mezclas por sustitución con agregados no convencionales.

MASSIMA COLUMNSTANCE OF THE PROPERTY OF THE PR

Foto 17. Fallas en concreto patrón.

Foto 18. Fallas en concreto L35A2.

Foto 20. Fallas en concreto L100A6.

Foto 21. Colocación de la probeta de 4" x 8" en la máquina de compresión axial electro – hidráulica para proceder con en el ensayo de resistencia a tracción por compresión diametral.

Foto 22. Ensayo de resistencia a la tracción por compresión diametral para probetas de 4" x 8" del concreto patrón y mezclas por sustitución con agregados no convencionales.

Foto 23. Máquina Tokyokoki Seizosho – Universal de 20 Tn con certificado de calibración CMC-046-2020 del laboratorio UNI - LEM.

Foto 24. Colocación de viga de 6" x 6" x 20" en la máquina Tokyokoki Seizosho – Universal de 20 Tn para proceder con en el ensayo de resistencia a la flexión.

Foto 25. Fallas en vigas de concreto de 6" x 6" x 20".

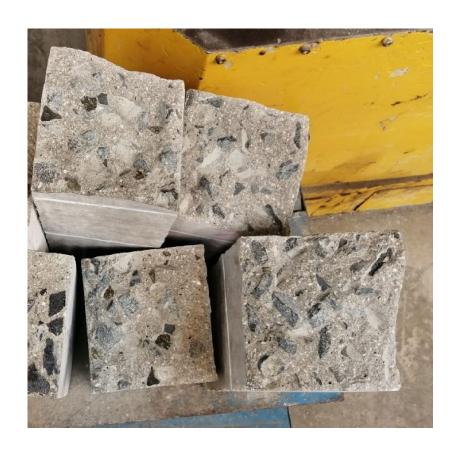


Foto 26. Vista interior de la viga de concreto patrón.

Foto 27. Vista interior de la viga de concreto L35A2.

Foto 28. Vista interior de la viga de concreto L65A4.

Foto 29. Vista interior de la viga de concreto L100A6.

ANEXO 06 (RESULTADOS DE LABORATORIO)

LABORATORIO Nº 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

Laboratorio N°1 Ensayo de Materiales VENTURO CORDERO VILLACORTA

"DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN F'C=210 Obra

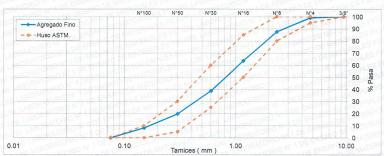
KG/CM2 CON LA ADICIÓN DE AGREGADOS NO CONVENCIONALES, LIMA 2019" LIMA Ubicación

Ensayo de Granulometría en Agregados 20-1230-01 Asunto Expediente N°

: 70619 : 23/09/2020 Recibo Nº Fecha de emisión

1. DE LA MUESTRA : ARENA GRUESA, procedente de la cantera TRAPICHE.

· Norma de referencia NTP 400 012:2018 2. MÉTODO DEL ENSAYO Procedimiento interno AT-PR-24.


3. RESULTADOS

3.1. ANÁLISIS GRANULOMÉTRICO

TAM	TAMIZ		A ORIU	YO DE MINERIA	% PASA.	
(Pulg)	(mm)	%RET	%RET ACUM.	% PASA	ASTM C 33 HUSO AGR. FINO	
3/8"	9.50	0.0	0.0	100.0	100	
N°4	4.75	1.0	1.0	99.1	95 - 100	
N°8	2.36	11.6	12.5	87.5	80 - 100	
N°16	1.18	23.9	36.4	63.6	50 - 85	
N°30	0.60	25.0	61.4	38.6	25 - 60	
N°50	0.30	18.9	80.3	19.7	5 - 30	
N°100	0.15	11.6	91.9	8.1	0 - 10	
FONDO	SA DE MAIN	8.1	100.0	0.0	0	

MÓDULO DE FINURA :

3.2. CURVA GRANULOMÉTRICA

4. OBSERVACIONES:

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e identificación han sido proporcionadas por el solicitante

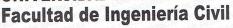
Hecho por : Mag. Ing. M. A. Tejada S Técnico : Srta. M.M.Q.

Ing. Isabel Moromi Nakata

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización del la 2) Los resultados de los ensayos solo corresponden a las muestras proporcionadas por el solicitante.

Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

(511) 481-1070 Anexo: 4058 / 4046



LABORATORIO N° 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

Del

: Laboratorio N°1 Ensayo de Materiales : VENTURO CORDERO VILLACORTA

Obra

"DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM2 CON LA ADICIÓN DE AGREGADOS NO CONVENCIONALES. LIMA 2019"

LIMA

Ubicación Asunto

: Ensayo de Granulometría en Agregados

Expediente No

20-1230-02

Recibo N° Fecha de emisión

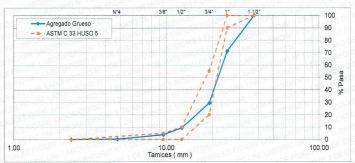
70619 : 23/09/2020

1. DE LA MUESTRA

: PIEDRA CHANCADA, procedente de la cantera TRAPICHE.

2. MÉTODO DEL ENSAYO

: Norma de referencia NTP 400.012:2018. Procedimiento interno AT-PR-24.


3. RESULTADOS

3.1. ANÁLISIS GRANULOMÉTRICO

TAMIZ		% RET.	% RET. ACUM.	% PASA	% PASA. ASTM C 33	
(Pulg)	(mm)	MATERIALES FIC	A NA LABORATORIO	E 1 PE ENSAY	HUSO 5	
1 1/2"	37.50	0.0	0.0	100.0	100	
1"0"	25.00	28.8	28.8	71.2	90 - 100	
3/4"	19.00	41.8	70.6	29.4	20 - 55	
1/2"	12.50	20.1	90.7	9.3	0 - 10	
3/8"	9.50	DE M 5.5	96.2	3.8	0 - 5	
N°4	4.75	3.5	99.8	0.2	WO DE M	
FONDO	OE ENDE	0.2	100.0	0.0	NE NO DE N	

MÓDULO DE FINURA :

3.2. CURVA GRANULOMÉTRICA

4. OBSERVACIONES:

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e identificación han sido proporcionadas por el solicitante.

Hecho por

: Mag. Ing. M. A. Tejada S. : Srta. M.M.Q.

Técnico

Ing. Isabel Moromi Nakata Jefe (e) del laboratorio

NOTAS:

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autoriza

La Calidad es nuestro compromiso Laboratorio Certificado ISO 9001

Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

(511) 481-1070 Anexo: 4058 / 4046

www.lem.uni.edu.pe

Engineering Technology Accreditation Commission ABET

LABORATORIO Nº 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

Del

: Laboratorio N°1 Ensayo de Materiales

A Obra

VENTURO CORDERO VILLACORTA "DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN F'C=210

KG/CM2 CON LA ADICIÓN DE AGREGADOS NO CONVENCIONALES. LIMA 2019': LIMA

Ubicación

Asunto

: Ensayo de Granulometría en Agregados

Expediente N° Recibo N°

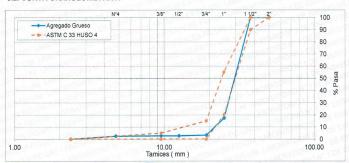
: 20-1230-03 70619 : 23/09/2020

1. DE LA MUESTRA

: LADRILLO ROCOCHO TRITURADO, procedente de la cantera ARTESANAL

2. MÉTODO DEL ENSAYO

: Norma de referencia NTP 400.012:2018 Procedimiento interno AT-PR-24.


3. RESULTADOS

3.1. ANÁLISIS GRANULOMÉTRICO

TAMIZ		% RET.	% RET. ACUM.	% PASA	% PASA. ASTM C 33	
(Pulg)	(mm)	MYERIALES FI	LASOSATURA	NO T DE SONSAY	HUSO 4	
2"	50.00	0.0	0.0	100.0	100	
1 1/2"	37.50	0.0	0.0	100.0	90 - 100	
1"	25.00	82.6	82.6	17.4	20 - 55	
3/4"	19.00	14.1	96.7	3.3	0 - 15	
1/2"	12.50	0.5	97.3	2.7	M 35 M	
3/8"	9.50	0.1	97.3	2.7	0 - 5	
N°4	4.75	0.2	97.6	2.4	SAYO W	
FONDO	4º THE LINES	2.4	100.0	0.0	WSW.O.	

MÓDULO DE FINURA :

3.2. CURVA GRANULOMÉTRICA

4. OBSERVACIONES:

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e

identificación han sido proporcionadas por el solicitante

Hecho por : Mag. Ing. M. A. Tejada S

: Srta. M.M.Q.

Técnico

NOTAS:

sayo, total o parcial 1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización
 2) Los resultados de los ensayos solo corresponden a las muestras proporcionadas por el solicitante

> La Calidad es nuestro compromiso Laboratorio Certificado ISO 9001

Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

(511) 481-1070 Anexo: 4058 / 4046

LABORATORIO Nº 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

Del

: Laboratorio N°1 Ensayo de Materiales : VENTURO CORDERO VILLACORTA

Obra

: "DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM2 CON LA ADICIÓN DE AGREGADOS NO CONVENCIONALES,

LIMA 2019"

Ubicación

: LIMA

Asunto

: Ensayo de Peso Unitario y Contenido de Humedad en Agregados

Expediente N° Recibo Nº

: 20-1230-04

Fecha de emisión

: 70619 : 23/09/2020

1.0. DE LA MUESTRA

: ARENA GRUESA, procedente de la cantera TRAPICHE.

2.0. MÉTODO DEL ENSAYO : Norma de referencia NTP 400.017:2016, para Peso Unitario y

NTP 339.185:2018, para contenido de humedad Procedimiento interno AT-PR-20, AT-PR-21.

3.0. RESULTADOS

MUESTRA	PESO UNITARIO	PESO UNITARIO	CONTENIDO DE
	SUELTO	COMPACTADO	HUMEDAD
	(Kg/m³)	(Kg/m³)	(%)
ARENA GRUESA	1598	1830	0.34

4.0. OBSERVACIONES:

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e

identificación han sido proporcionadas por el solicitante.

Hecho por : Mag. Ing. M. A. Tejada S

Técnico

: Srta. M.M.Q.

MSc. Ing. Isabel Moromi Nakata Jefe (e) del laboratorio

NOTAS

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización del laboratorio.

2) Los resultados de los ensayos solo corresponden a las muestras proporcionadas por el solicitante

Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

(511) 381-3343

(511) 481-1070 Anexo: 4058 / 4046

www.lem.uni.edu.pe

Carrera de Ingenieria Civil Acreditada por Engineering Technology Accreditation Commission

LABORATORIO Nº 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

Del : Laboratorio N°1 Ensayo de Materiales
A : VENTURO CORDERO VILLACORTA

Obra : "DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN

F'C=210 KG/CM2 CON LA ADICIÓN DE AGREGADOS NO CONVENCIONALES,

LIMA 2019"

Ubicación : LIMA

Asunto : Ensayo de Peso Unitario y Contenido de Humedad en Agregados

 Expediente N°
 : 20-1230-05

 Recibo N°
 : 70619

 Fecha de emisión
 : 23/09/2020

1.0. DE LA MUESTRA : PIEDRA CHANCADA, procedente de la cantera TRAPICHE.

2.0. MÉTODO DEL ENSAYO : Norma de referencia NTP 400.017:2016, para Peso Unitario y

NTP 339.185:2018, para contenido de humedad Procedimiento interno AT-PR-20, AT-PR-21.

3.0. RESULTADOS

MUESTRA	PESO UNITARIO	PESO UNITARIO	CONTENIDO DE
	SUELTO	COMPACTADO	HUMEDAD
	(Kg/m³)	(Kg/m³)	(%)
PIEDRA CHANCADA	1456	1628	0.35

identifica

identificación han sido proporcionadas por el solicitante.

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e

Hecho por : Mag. Ing. M. A. Tejada S.

Técnico : Srta. M.M.Q.

4.0. OBSERVACIONES:

MSc. Ing. Isabel Moromi Nakata Jefe (e) del laboratorio

NOTAS:

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización del laboratorio.

Los resultados de los ensayos solo corresponden a las muestras proporcionadas por el solicitante



Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

www.lem.uni.edu.pe lem@uni.edu.pe

Engineering Technology Accreditation ABET Commission

LABORATORIO N° 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

Del : Laboratorio N°1 Ensayo de Materiales

: VENTURO CORDERO VILLACORTA

: "DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN Obra

F'C=210 KG/CM2 CON LA ADICIÓN DE AGREGADOS NO CONVENCIONALES,

LIMA 2019'

Ubicación

Asunto : Ensayo de Peso Unitario y Contenido de Humedad en Agregados

Expediente N° : 20-1230-06 Recibo N° : 70619 : 23/09/2020 Fecha de emisión

1.0. DE LA MUESTRA : LADRILLO ROCOCHO TRITURADO, procedente de la cantera ARTESANAL

2.0. MÉTODO DEL ENSAYO : Norma de referencia NTP 400.017:2016, para Peso Unitario y

NTP 339.185:2018, para contenido de humedad Procedimiento interno AT-PR-20, AT-PR-21.

3.0. RESULTADOS

MUESTRA	PESO UNITARIO	PESO UNITARIO	CONTENIDO DE
	SUELTO	COMPACTADO	HUMEDAD
	(Kg/m³)	(Kg/m³)	(%)
LADRILLO ROCOCHO TRITURADO	1083	1224	0.01

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e

identificación han sido proporcionadas por el solicitante.

Hecho por : Mag. Ing. M. A. Tejada S.

: Srta. M.M.Q. Técnico

4.0. OBSERVACIONES:

Ing. Isabel Moromi Nakata Jefe (e) del laboratorio

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autoriza

2) Los resultados de los ensavos solo corresponden a las muestras proporcionadas por el solicitante.

Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

(511) 381-3343

(511) 481-1070 Anexo: 4058 / 4046

www.lem.uni.edu.pe lem@uni.edu.pe

ABET

UNIVERSIDAD NACIONAL DE INGENIERÍA Facultad de Ingeniería Civil

LABORATORIO Nº 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

Del

: Laboratorio N°1 Ensayo de Materiales : VENTURO CORDERO VILLACORTA

Obra

: "DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN F´C=210 KG/CM2 CON LA ADICIÓN DE AGREGADOS NO CONVENCIONALES,

LIMA 2019"

Ubicación

: LIMA

Asunto

: Ensayo de Peso Específico y Porcentaje de Absorción en Agregados

Expediente N°

: 20-1230-07

Recibo N°

: 70619

Fecha de emisión

: 23/09/2020

1.0. DE LA MUESTRA

: ARENA GRUESA, procedente de la cantera TRAPICHE.

2.0. MÉTODO DEL ENSAYO : Norma de referencia NTP 400.022:2018. Procedimiento interno AT-PR-22.

3.0. RESULTADOS

MUESTRA	PESO ESPECÍFICO DE MASA	PESO ESPECÍFICO DE MASA SUPERFICIALMENTE SECO	PORCENTAJE DE ABSORCIÓN (%)
ARENA GRUESA	2.62	2.64	0.79

4.0. OBSERVACIONES:

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e

identificación han sido proporcionadas por el solicitante.

Hecho por : Mag. Ing. M. A. Tejada S.

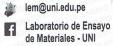
: Srta. M.M.Q. Técnico

> MSc. Ing. Isabel Moromi Nakata Jefe (e) del laboratorio

NOTAS:

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización del laboratorio

2) Los resultados de los ensayos solo corresponden a las muestras proporcionadas por el solicitante


Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

(511) 481-1070 Anexo: 4058 / 4046

www.lem.uni.edu.pe

LABORATORIO Nº 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

Del

: Laboratorio N°1 Ensayo de Materiales

VENTURO CORDERO VILLACORTA

Obra

: "DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM2 CON LA ADICIÓN DE AGREGADOS NO CONVENCIONALES,

LIMA 2019"

Ubicación

Asunto

: Ensayo de Peso Específico y Porcentaje de Absorción en Agregados

Expediente N° Recibo Nº

: 20-1230-08

Fecha de emisión

: 70619 : 23/09/2020

1.0. DE LA MUESTRA

: PIEDRA CHANCADA, procedente de la cantera TRAPICHE.

2.0. MÉTODO DEL ENSAYO : Norma de referencia NTP 400.021:2018.

Procedimiento interno AT-PR-23.

3.0. RESULTADOS

MUESTRA	PESO ESPECÍFICO DE MASA	PESO ESPECÍFICO DE MASA SUPERFICIALMENTE SECO	PORCENTAJE DE ABSORCIÓN (%)
PIEDRA CHANCADA	2.81	2.83	0.47

4.0. OBSERVACIONES:

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e

identificación han sido proporcionadas por el solicitante.

Hecho por : Mag. Ing. M. A. Tejada S.

Técnico : Srta. M.M.Q.

> MSc. Ing. Isabel Moromi Nakata Jefe (e) del laboratorio

NOTAS

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización de

2) Los resultados de los ensayos solo corresponden a las muestras proporcionadas por el solicitante

Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

(511) 481-1070 Anexo: 4058 / 4046

www.lem.uni.edu.pe

Carrera de Ingeniería Civil Acreditada por Engineering Technology Accreditation Commission ABET

LABORATORIO Nº 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

Del

: Laboratorio N°1 Ensayo de Materiales : VENTURO CORDERO VILLACORTA

Obra

: "DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM2 CON LA ADICIÓN DE AGREGADOS NO CONVENCIONALES,

LIMA 2019"

Ubicación

: LIMA

Asunto

: Ensayo de Peso Específico y Porcentaje de Absorción en Agregados

Expediente N° Recibo Nº

: 20-1230-09

Fecha de emisión

: 70619 : 23/09/2020

1.0. DE LA MUESTRA

: LADRILLO ROCOCHO TRITURADO, procedente de la cantera ARTESANAL.

2.0. MÉTODO DEL ENSAYO : Norma de referencia NTP 400.021:2018.

Procedimiento interno AT-PR-23.

3.0. RESULTADOS

MUESTRA	PESO ESPECÍFICO DE MASA	PESO ESPECÍFICO DE MASA SUPERFICIALMENTE SECO	PORCENTAJE DE ABSORCIÓN (%)		
LADRILLO ROCOCHO TRITURADO	2.03	2.19	7.45		

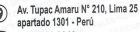
4.0. OBSERVACIONES:

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e identificación han sido proporcionadas por el solicitante.

Hecho por : Mag. Ing. M. A. Tejada S.

Técnico

: Srta. M.M.Q.


MSc. Ing. Isabel Moromi Nakata Jefe (e) del laboratorio

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización del laboratorio.

2) Los resultados de los ensayos solo corresponden a las muestras proporcionadas por el solicitante

(511) 381-3343 (511) 481-1070 Anexo: 4058 / 4046

www.lem.uni.edu.pe lem@uni.edu.pe

Engineering Technology Accreditation ABET Commission

LABORATORIO Nº 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

Del

: Laboratorio N°1 Ensayo de Materiales

Obra

: VENTURO CORDERO VILLACORTA : DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN F'C = 210 KG/CM2 CON

LA ADICIÓN DE AGREGADOS NO CONVENCIONALES

Ubicación

Asunto Expediente N° : Ensayo de Resistencia a la Compresión : 20-1446

Recibo Nº Fecha de emisión

70838 : 08/10/2020

1. DE LA MUESTRA

2. DEL EQUIPO

: Consistente en 6 probetas cilíndricas de concreto. : Máquina de ensayo uniaxial, ELE INTERNATIONAL

Certificado de Calibración: CMC-021-2020

3. MÉTODO DEL ENSAYO

: Norma de referencia NTP 339.034:2015

Procedimiento interno AT-PR-12

4. RESULTADOS

N°	IDENTIFICACIÓN DE MUESTRAS	FECHA DE OBTENCIÓN	FECHA DE ENSAYO	ÁREA (cm²)	CARGA DE ROTURA (Kg)	RESISTENCIA A LA COMPRESIÓN (Kg/cm²)	TIPO DE FALLA
1	M1PATRON	30/09/2020	08/10/2020	80.9	31,554	390	Tipo 3
2	M2PATRON	30/09/2020	08/10/2020	81.2	27,199	335	Tipo 3
3	M3PATRON	30/09/2020	08/10/2020	80.4	30,725	382	Tipo 3
4	M1L35A2	30/09/2020	08/10/2020	81.1	21,788	269	Tipo 2
5	M2L35A2	30/09/2020	08/10/2020	80.1	21,937	274	Tipo 2
6	M3L35A2	30/09/2020	08/10/2020	80.5	20,540	255	Tipo 3

5. OBSERVACIONES:

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e identificación han sido proporcionadas por el solicitante.

Hecho por : Mag. Ing. C. Villegas M Técnico : Sr. J.L.J

Tec. M.M.Q.

MSc. Ing. Isabel Moromi Nakata

NOTAS:

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización del 2) Los resultados de los ensayos solo corresponden a las muestras proporcionadas por el solicitante.

La Calidad es nuestro compromiso Laboratorio Certificado ISO 9001

Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

(511) 381-3343

(511) 481-1070 Anexo: 4058 / 4046

www.lem.uni.edu.pe

Engineering Technology Accreditation Commission

LABORATORIO N° 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

Del

: Laboratorio N°1 Ensayo de Materiales : VENTURO CORDERO VILLACORTA

Obra

: DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN F' c=210

Kg/cm2 CON LA ADICIÓN DE AGREGADOS NO CONVENCIONALES

Ubicación

: LIMA

Asunto

: Ensayo de Resistencia a la Compresión

Expediente N° Recibo N° Fecha de emisión

: 20-1458 : 70850 : 09/10/2020

1. DE LA MUESTRA

: Consistente en 6 probetas cilíndricas de concreto.

2. DEL EQUIPO

: Máquina de ensayo uniaxial, ELE INTERNATIONAL

Certificado de Calibración: CMC-020-2020

3. MÉTODO DEL ENSAYO

: Norma de referencia NTP 339.034:2015 Procedimiento interno AT-PR-12

4. RESULTADOS

N°	IDENTIFICACIÓN DE MUESTRA	FECHA DE OBTENCIÓN	FECHA DE ENSAYO	ÁREA (cm²)	CARGA DE ROTURA (Kg)	RESISTENCIA A LA COMPRESIÓN (Kg/cm²)	TIPO DE FALLA
1000	M1L65A4	01/10/2020	09/10/2020	80.8	18,439	228	Tipo 2
2	M2L65A4	01/10/2020	09/10/2020	81.3	17,541	216	Tipo 5
3	M3L65A4	01/10/2020	09/10/2020	81.5	20,173	248	Tipo 2
4	M1L100A6	01/10/2020	09/10/2020	81.0	20,801	257	Tipo 2
5	M2L100A6	01/10/2020	09/10/2020	81.5	20,642	253	Tipo 2
6	M3L100A6	01/10/2020	09/10/2020	81.0	21,929	271	Tipo 2

5. OBSERVACIONES:

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e identificación han sido proporcionadas por el solicitante.

Hecho por : Mag. Ing. M. A. Tejada S

Técnico : Sr. J.L.J Digitadora: Srta. D.I.A.

MSc. Ing. Isabel Moromi Nakata Jefe (e) del laboratorio

NOTAS:

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización del laboratorio.

2) Los resultados de los ensavos solo corresponden a las muestras proporcionadas por el solicitante.

Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

(511) 481-1070 Anexo: 4058 / 4046

www.lem.uni.edu.pe lem@uni.edu.pe

ABET

Engineering Technology Accreditation Commission

LABORATORIO N° 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

Del : Laboratorio N°1 Ensayo de Materiales : VENTURO CORDERO VILLACORTA

Obra : DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN F' C=210

KG/CM2 CON LA ADICIÓN DE AGREGADOS NO CONVENCIONALES

: LIMA Ubicación

: Ensayo de Resistencia a la Compresión Asunto

: 20-1502 Expediente N° : 70896 Recibo N° Fecha de emisión : 19/10/2020

1. DE LA MUESTRA : Consistente en 12 probetas cilíndricas de concreto.

2. DEL EQUIPO : Máquina de ensayo uniaxial, ELE INTERNATIONAL

Certificado de Calibración: CMC-020-2020

3. MÉTODO DEL ENSAYO : Norma de referencia NTP 339.034:2015 Procedimiento interno AT-PR-12

N°	IDENTIFICACIÓN DE MUESTRA	FECHA DE OBTENCIÓN	FECHA DE ENSAYO	ÁREA (cm²)	CARGA DE ROTURA (Kg)	RESISTENCIA A LA COMPRESIÓN (Kg/cm²)	TIPO DE FALLA
1	M4 PATRON	01/10/2020	16/10/2020	81.6	32,495	398	Tipo 3
2	M5 PATRON	01/10/2020	16/10/2020	81.9	37,152	454	Tipo 2
3	M6 PATRON	01/10/2020	16/10/2020	82.3	28,107	342	Tipo 2
4	M4 L35A2	01/10/2020	16/10/2020	82.7	25,764	312	Tipo 2
5	M5 L35A2	01/10/2020	16/10/2020	94.6	10,445	110	Tipo 3
6	M6 L35A2	01/10/2020	16/10/2020	95.2	9,968	105	Tipo 2
7	M4 L65A4	01/10/2020	16/10/2020	94.4	23,213	246	Tipo 3
8	M5 L65A4	01/10/2020	16/10/2020	81.6	19,581	240	Tipo 2
9	M6 L65A4	01/10/2020	16/10/2020	81.2	22,333	275	Tipo 3
10	M4 L100A6	01/10/2020	16/10/2020	81.2	28,606	352	Tipo 3

Hecho por : Mag. Ing. C. Villegas M. Técnico : Sr. T. M. T.

4. RESULTADOS

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización del laboratorio

2) Los resultados de los ensayos solo corresponden a las muestras proporcionadas por el solicitante.

Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

www.lem.uni.edu.pe

MSc. Ing. Isabel Moromi Nakata Jefe (e) del laboratorio

Laboratorio de Ensayo de Materiales - UNI

(511) 481-1070 Anexo: 4058 / 4046

Engineering Technology Accreditation Commission ABET

LABORATORIO N° 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

Del

: Laboratorio N°1 Ensayo de Materiales : VENTURO CORDERO VILLACORTA

Obra

: DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN F' C=210

KG/CM2 CON LA ADICIÓN DE AGREGADOS NO CONVENCIONALES

Ubicación

: Ensayo de Resistencia a la Compresión

Asunto Expediente N°

: 20-1573-1

Recibo N° Fecha de emisión : 70968 : 21/10/2020

1. DE LA MUESTRA

: Consistente en 2 probetas cilíndricas de concreto.

2. DEL EQUIPO

: Máquina de ensayo uniaxial, ELE INTERNATIONAL

Certificado de Calibración: CMC-021-2020

3. MÉTODO DEL ENSAYO

: Norma de referencia NTP 339.034:2015 Procedimiento interno AT-PR-12

4. RESULTADOS

N°	IDENTIFICACIÓN DE MUESTRA	FECHA DE OBTENCIÓN	FECHA DE ENSAYO	ÁREA (cm²)	CARGA DE ROTURA (Kg)	RESISTENCIA A LA COMPRESIÓN (Kg/cm²)	TIPO DE FALLA
0.1NI	M7L35A2	08/10/2020	21/10/2020	94.0	27,329	291	Tipo 3
2	M8L35A2	08/10/2020	21/10/2020	79.1	24,234	306	Tipo 2

5. OBSERVACIONES:

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e identificación han sido proporcionadas por el solicitante.

Hecho por : Mag. Ing. C. Villegas M.

Técnico : Sr. J.L.J Digitadora: Srta. D.I.A.

MSc. Ing. Isabel Moromi Nakata Jefe (e) del laboratorio

NOTAS:

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización del laboratorio

2) Los resultados de los ensayos solo corresponden a las muestras proporcionadas por el solicitante.

Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

(511) 481-1070 Anexo: 4058 / 4046

www.lem.uni.edu.pe

ría Civil Acreditada por Engineering Technology Accreditation ABET Commission

LABORATORIO N° 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

Del

: Laboratorio N°1 Ensayo de Materiales VENTURO CORDERO VILLACORTA

Obra

DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN F' C=210 KG/CM2 CON LA ADICIÓN DE AGREGADOS NO CONVENCIONALES

Ubicación Asunto

: LIMA Ensayo de Resistencia a la Compresión 20-1573-2

Expediente N° Recibo Nº

Fecha de emisión

70968 : 21/10/2020

1. DE LA MUESTRA

: Consistente en 2 probetas cilíndricas de concreto.

2. DEL FOUIPO

: Máquina de ensayo uniaxial, ELE INTERNATIONAL

Certificado de Calibración: CMC-021-2020

3. MÉTODO DEL ENSAYO

: Norma de referencia NTP 339.034:2015 Procedimiento interno AT-PR-12

4. RESULTADOS

N°	IDENTIFICACIÓN DE MUESTRA			ÁREA (cm²)	CARGA DE ROTURA (Kg)	RESISTENCIA A LA COMPRESIÓN (Kg/cm²)	TIPO DE FALLA Tipo 3	
1	M7L100A6R	08/10/2020	21/10/2020	94.1	94.1 28,574 3			
2	M8L100A6R	08/10/2020	21/10/2020	94.1	29,167	310	Tipo 3	

5. OBSERVACIONES:

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e identificación han sido proporcionadas por el solicitante.

Hecho por : Mag. Ing. C. Villegas M. Técnico : Sr. J.L.J

Digitadora: Srta. D.I.A.

MSc. Ing. Isabel Moromi Nakata Jefe (e) del laboratorio

NOTAS:

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización del labor

2) Los resultados de los ensayos solo corresponden a las muestras proporcionadas por el solicitante

Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

(511) 481-1070 Anexo: 4058 / 4046

www.lem.uni.edu.pe lem@uni.edu.pe

Engineering Technology Accreditation Commission ABET

LABORATORIO N° 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

Página 1 de 2

INFORME

Del

 : Laboratorio N°1 Ensayo de Materiales
 : VENTURO CORDERO VILLACORTA
 : DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM2 Obra

CON LA ADICIÓN DE AGREGADOS NO CONVENCIONALES

: LIMA Ubicación

: Ensayo de Resistencia a la Compresión : 20-1674 Asunto

Expediente N° Recibo N° : 71072 Fecha de emisión : 04/11/2020

1. DE LA MUESTRA : Consistente en 25 probetas cilíndricas de concreto.

2. DEL EQUIPO : Máquina de ensayo uniaxial, ELE INTERNATIONAL

Certificado de Calibración: CMC-021-2020

3. MÉTODO DEL ENSAYO : Norma de referencia NTP 339.034:2015

Procedimiento interno AT-PR-12

4. RESULTADOS

N°	IDENTIFICACIÓN DE MUESTRAS	FECHA DE OBTENCIÓN	FECHA DE ENSAYO	ÁREA (cm²)	CARGA DE ROTURA (Kg)	RESISTENCIA A LA COMPRESIÓN (Kg/cm²)	TIPO DE FALLA	
1	M7PATRON	01/10/2020	02/11/2020	81.6	42,314	519	Tipo 2	
2	M8PATRON	01/10/2020	02/11/2020	81.4	34,234	421 .	Tipo 5	
3	M9PATRON	01/10/2020	02/11/2020	20 81.4 32,443		399	Tipo 2	
400	M10PATRON	01/10/2020	02/11/2020	81.2	37,802	466	Tipo 3	
5	M11PATRON	01/10/2020	02/11/2020	80.5	35,302	439	Tipo 3	
6	M12PATRON	01/10/2020	02/11/2020	81.1	32,974	407	Tipo 5	
7	M9L35A2	01/10/2020	02/11/2020	79.2	26,854	339	Tipo 5	
8	M10L35A2	01/10/2020	02/11/2020	79.6	28,177	354	Tipo 3	
9	M11L35A2	01/10/2020	02/11/2020	79.2	25,651	324	Tipo 2	
10	M12L35A2	01/10/2020	02/11/2020	79.1	26,142	330	Tipo 3	

Hecho por : Mag. Ing. C. Villegas M.

: Sr. J.L.J Técnico Digitadora: Srta. D.I.A.

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización del laboratorio 2) Los resultados de los ensayos solo corresponden a las muestras proporcionadas por el solicitante.

La Calidad es nuestro compromiso Laboratorio Certificado ISO 9001

Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

(511) 481-1070 Anexo: 4058 / 4046

www.lem.uni.edu.pe

Ing. Isabel Moromi Nakata

Engineering Technology Accreditation Commission ABET

LABORATORIO Nº 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

Expediente N°

: 20-1674

N°	IDENTIFICACIÓN DE MUESTRAS	FECHA DE OBTENCIÓN	FECHA DE ENSAYO	ÁREA (cm²)	CARGA DE ROTURA (Kg)	RESISTENCIA A LA COMPRESIÓN (Kg/cm²)	TIPO DE FALLA
11	D1L35A2	01/10/2020	02/11/2020	81.6	23,858	292	Tipo 5
12	D2L35A2	01/10/2020	02/11/2020	81.5	23,081	283	Tipo 2
13	M7L65A4	01/10/2020	02/11/2020	81.1	25,524	315	Tipo 2
14	M8L65A4	01/10/2020	02/11/2020	81.4	24,867	305	Tipo 2
15	M9L65A4	01/10/2020	02/11/2020	82.1	28,983	353	Tipo 2
16	M10L65A4	01/10/2020	02/11/2020	82.5	25,033	303	Tipo 5
17	M11L65A4	01/10/2020	02/11/2020	81.2	28,215	347	Tipo 5
18	M12L65A4	01/10/2020	02/11/2020	81.6	27,459	337	Tipo 2
19	M7L100A6	01/10/2020	02/11/2020	81.3	35,529	437	Tipo 2
20	M8L100A6	01/10/2020	02/11/2020	81.1	34,008	419	Tipo 2
21	M9L100A6R	01/10/2020	02/11/2020	79.5	32,131	404	Tipo 3
22	M10L100A6R	01/10/2020	02/11/2020	91.6	28,882	315	Tipo 3
23	M11L100A6R	01/10/2020	02/11/2020	81.6	29,895	366	Tipo 3
24	M12L100A6R	01/10/2020	02/11/2020	81.6	31,300	384	Tipo 3
25	M9L100A6D	01/10/2020	02/11/2020	81.2	31,979	394	Tipo 3

5. OBSERVACIONES:

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e identificación han

sido proporcionadas por el solicitante.

Hecho por : Mag. Ing. C. Villegas M.

Técnico : Sr. J.L.J Digitadora: Srta. D.I.A.

Ing. Isabel Moromi Nakata Jefe (e) del laboratorio

NOTAS:

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización del laborate
2) Los resultados de los ensayos solo corresponden a las muestras proporcionadas por el solicitante.

Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

(511) 481-1070 Anexo: 4058 / 4046

www.lem.uni.edu.pe

LABORATORIO Nº 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

Del

: Laboratorio N°1 Ensayo de Materiales : VENTURA CORDERO VILLACORTA

Obra

: DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESION F'C=210 KG/CM2 CON LA ADICION DE AGREGADOS NO CONVENCIONALES

Ubicación

: LIMA

Asunto

: Ensayo de Resistencia a la Tracción por Compresión Diametral

Expediente N° Recibo N°

: 20-1674 : 71072

Fecha de emisión

: 06/11/2020

1. DE LA MUESTRA

: Consistente en 12 probetas cilíndricas de concreto.

2. DEL EQUIPO

: Máquina de ensayo uniaxial, ELE INTERNATIONAL Certificado de Calibración: CMC-021-2020

3. MÉTODO DEL ENSAYO

: Norma de referencia NTP 339.084:2017.

4. RESULTADOS

N°	IDENTIFICACIÓN DE MUESTRAS	FECHA DE OBTENCIÓN	FECHA DE ENSAYO	DIÁMETRO (cm)	ALTURA (cm)	CARGA DE ROTURA (Kg)	RESISTENCIA A LA TRACCIÓN (Kg/cm²)
1	T1 PATRON	01/10/2020	05/11/2020	10.12	19.94	11815.0	37.3
2	T2 PATRON	01/10/2020	05/11/2020	10.17	20.07	10596.0	33.0
3	T3 PATRON	01/10/2020	05/11/2020	10.18	19.91	11485.0	36.1
4	T1 L35 A2	01/10/2020	05/11/2020	10.14	19.87	11515.0	36.4
5	T2 L35 A2	01/10/2020	05/11/2020	10.20	19.85	12362.0	38.9
6	T3 L35 A2	01/10/2020	05/11/2020	10.16	19.97	10487.0	32.9
7	T1 L65 A4	01/10/2020	05/11/2020	10.11	20.12	10152.0	31.8
8	T2 L65 A4	01/10/2020	05/11/2020	10.21	20.15	12453.0	38.5
9	T3 L65 A4	01/10/2020	05/11/2020	10.13	20.15	12656.0	39.5
10	T1 L100 A6	01/10/2020	05/11/2020	10.92	20.33	9479.0	27.2
11_	T2 L100 A6	01/10/2020	05/11/2020	10.97	20.32	12215.0	34.9
12	T3 L100 A6	01/10/2020	05/11/2020	10.96	20.28	10935.0	31.3

5. OBSERVACIONES:

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e identificación han sido proporcionadas por el solicitante.

Hecho por

: Mag. Ing. C. Villegas M.

Técnico

: Sr. J. L. J.

MSc. Isabel Moromi N. efe(e) del laboratorio

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización del laboratorio

2) Los resultados de los ensayos solo corresponden a las muestras proporcionadas por el solicitante

La Calidad es nuestro compromiso

Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

www.lem.uni.edu.pe lem@uni.edu.pe

Engineering Technology Accreditation Commission

LABORATORIO N° 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

: Laboratorio N°1 Ensayo de Materiales Del : VENTURO CORDERO VILLACORTA

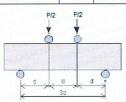
: DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN f' c = 210 kg/cm² CON LA ADICIÓN DE AGREGADOS NO CONVENCIONALES Obra

Ubicación

Asunto : Ensayo de Resistencia a la Flexión con cargas a los tercios del tramo

Expediente N° : 20-1674-1 : 71072 Recibo Nº Fecha de emisión : 03/11/2020

: Consistentes en 04 vigas de concreto, proporcionadas por el solicitante. 1. DE LA MUESTRA


: Máquina de ensayo universal TOKYOKOKI SEIZOSHO 2. DEL EQUIPO

Certificado de Calibración CMC-046-2020

: Norma de referencia NTP 339.078:2017. 3. MÉTODO DEL ENSAYO

4. RESULTADOS

MUESTRAS	FECHA DE	DISTANCIA ENTRE APOYOS	D	IMENSION (mm)	ES	Ubicación de la	CARGA DE ROTURA	RESISTENCIA A LA FLEXIÓN
CANN CAMP	ENSAYO	(mm)	LARGO	ANCHO	ALTURA	fractura	(Kg)	(Kg/cm²)
M1- V1 PATRÓN (01/10/20)	02/11/2020	450	501	156	151	Tercio central	2220	28.1
M2- V2 PATRÓN (01/10/20)	02/11/2020	450	501	154	150	Tercio central	2480	32.2
M3- V1 L35A2 (01/10/20)	02/11/2020	450	501	150	152	Tercio central	1950	25.5
M4- V2 L35A2 (01/10/20)	02/11/2020	450	500	149	153	Tercio central	1960	25.5

5. OBSERVACIONES:

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e

identificación han sido proporcionadas por el solicitante.

: Mag. Ing. C. Villegas M. Hecho por

Técnico : Sr. A.S.V.

NOTAS: 1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización del laboratorio

2) Los resultados de los ensayos solo corresponden a las muestras proporcionadas por el solicitante.

La Calidad es nuestro compromiso Laboratorio Certificado ISO 9001 7

Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

(511) 481-1070 Anexo: 4058 / 4046

(511) 381-3343

www.lem.uni.edu.pe

Laboratorio de Ensayo de Materiales - UNI

Ms. Ing. 4sabel Moromi Nakata Jefe (e) del laboratorio

LABORATORIO Nº 1 DE ENSAYO DE MATERIALES "ING. MANUEL GONZÁLES DE LA COTERA"

INFORME

Del : Laboratorio N°1 Ensayo de Materiales

: VENTURO CORDERO VILLACORTA

Obra : DISEÑO DE UN CONCRETO LIGERO DE RESISTENCIA A LA COMPRESIÓN f' c = 210 kg/cm²

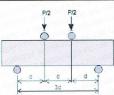
CON LA ADICIÓN DE AGREGADOS NO CONVENCIONALES

Ubicación : LIMA

Asunto : Ensayo de Resistencia a la Flexión con cargas a los tercios del tramo

Expediente N° : 20-1674-2
Recibo N° : 71072
Fecha de emisión : 03/11/2020

1. DE LA MUESTRA : Consistentes en 04 vigas de concreto, proporcionadas por el solicitante.


2. DEL EQUIPO : Máquina de ensayo universal TOKYOKOKI SEIZOSHO

Certificado de Calibración CMC-046-2020

3. MÉTODO DEL ENSAYO : Norma de referencia NTP 339.078:2017.

4. RESULTADOS

MUESTRAS	FECHA DE	DISTANCIA ENTRE APOYOS	DIMENSIONES (mm)			Ubicación de la	CARGA DE ROTURA	RESISTENCIA A LA FLEXIÓN
	ENSAYO	(mm)	LARGO	ANCHO	ALTURA	fractura	(Kg)	(Kg/cm²)
M5- V1 L65A4 (01/10/20))	02/11/2020	450	501	150	153	Tercio central	2320	29.7
M6- V2 L65A4 (01/10/20))	02/11/2020	450	502	149	152	Tercio central	2520	32.9
M7- V1 L100A6 (01/10/20))	02/11/2020	450	501	150	151	Tercio central	2200	29.0
M8- V2 L100A6 (01/10/20))	02/11/2020	450	502	151	153	Tercio central	2280	29.0

5. OBSERVACIONES:

1) La información referente al muestreo, procedencia, cantidad, fecha de obtención e

identificación han sido proporcionadas por el solicitante.

Hecho por

: Mag. Ing. C. Villegas M.

Técnico : Sr.

: Sr. A.S.V.

Ms Ing. Isabel Moromi Nakata Jefe (e) del laboratorio

NOTAS:

1) Está prohibido reproducir o modificar el informe de ensayo, total o parcialmente, sin la autorización del laboratorio

2) Los resultados de los ensayos solo corresponden a las muestras proporcionadas por el solicitante.

Av. Tupac Amaru N° 210, Lima 25 apartado 1301 - Perú

(511) 481-1070 Anexo: 4058 / 4046

www.lem.uni.edu.pe

(CERTIFICADOS DE CALIBRACIÓN)

LABORATORIO ACREDITADO Nº LC-016 NTP ISO / IEC 17025:2006

CERTIFICADO DE CALIBRACIÓN

Fecha de emisión : 2018-03-28

LV-0168-2018

SOLICITANTE: UNIVERSIDAD NACIONAL DE INGENIERIA : Av. Tupac Amaru Nro. 210, Lima - Lima - Rimac

INSTRUMENTO DE MEDICIÓN : FIOLA Marca : PYREX Modelo : No Indica N° de serie : No Indica Tipo : In Clase : A Alcance : 500 ml Temp. de Referencia : 20 °C Identificación : 1259-3 Procedencia : U.S.A. Ubicación : No Indica Fecha de Calibración : 2018-03-22

LUGAR DE MEDICIÓN

O.T. : 0527-0828

Laboratorio de TEST & CONTROL S.A.C.

MÉTODO DE CALIBRACIÓN

La calibración se efectuó por el método gavimétrico tomando como referencia el procedimiento PC-015 "Procedimiento para la calibración de Material Volumétrico de vidrio y plástico". Quinta Edición - Enero 2017. DM-INACAL.

CONDICIONES AMBIENTALES

MAGNITUD	INICIAL	FINAL
TEMPERATURA	20,0 °C	20,2 °C
HUMEDAD RELATIVA	57,0%	57,0%

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

Página : 1 de 2

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Jr. Condesa de Lemos № 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

PROHIBIDA LA REPRODUCCION TOTAL O PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACION ESCRITA DE TEST & CONTROL S.A.C.

Certificado : LV-0168-2018

Página : 2 de 2

TRAZABILIDAD

Patrón de Referencia	Patrón de Trabajo	Certificado de calibración
Pesas (Clase de exactitud F1) TEST & CONTROL S.A.C.	Balanza 6000 g de clase de exactitud	LM-0577-2017
Pesas (Clase de exactitud F1) TEST & CONTROL S.A.C.	Balanza 210 g de clase de exactitud	LM-0386-2017

RESULTADOS DE MEDICIÓN

	Volumen		
Volumen Nominal	Contenido	Desviación	Incertidumbre
	(*)		
ml	ml	ml	ml
500,00	499,46	-0,54	0,03

(*) Valor Contenido = Volumen Nominal + desviación

OBSERVACIONES

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva de color verde. Los resultados de las mediciones efectuadas están corregidos para la Temperatura de Referencia de 20 °C

INCERTIDUMBRE

La incertidumbre expandida de medida se ha obtenido multiplicando la incertidumbre típica de medición por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

FIN DEL DOCUMENTO

Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

CERTIFICADO DE CALIBRACIÓN LD-1038-2018

O.T. : 1026-1221 Fecha de emisión : 2018-05-28

SOLICITANTE: UNIVERSIDAD NACIONAL DE INGENIERIA

Dirección : Centro Industrial Mza. B Lote 5-6 Las Praderas de Lurin, Lima - Lima - Lurin

 INSTRUMENTO DE MEDICIÓN : TAMIZ

 Marca
 : FORNEY

 Modelo
 : No Indica

 N° de serie
 : 8BS8F785432

N° de tamiz : N° 8

Tamaño de abertura : 2,36 mm
Identificación : MVAF-2

Procedencia : U.S.A.

Ubicación : No Indica

Fecha de Calibración : 2018-05-23

LUGAR DE MEDICIÓN

Laboratorio de TEST & CONTROL S.A.C.

PROCEDIMIENTO DE CALIBRACIÓN

La calibración se efectuó por comparación directa, se utilizó patrones trazables a las unidades de longitud del Sistema Internacional de Undidades (S.I.) Calibrados por el DM - INACAL.

CONDICIONES AMBIENTALES

MAGNITUD	INICIAL	FINAL
TEMPERATURA	19,3 °C	19,5 °C
HUMEDAD RELATIVA	72,5%	71,9%

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

Página : 1 de 2

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nícolás Ramos Paucar

GERENTE TECNICO est & Contro

CFP: 0316 Vº Bº

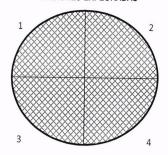
Jr. Condesa de Lemos № 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

Certificado : LD-1038-2018

Página : 2 de 2

TRAZABILIDAD

Trazabilidad	Patrón utilizado	Certificado de calibración
Patrones de referencia del DM - INACAL	Retícula de Medición Mitutoyo	LLA - 387 -2017


RESULTADOS DE LA CALIBRACIÓN

REGIÓN Nº	VALOR NOMINAL mm	VALOR HALLADO mm	ERROR mm	Variación permisible mm
1	2,360	2,365	-0,005	0,080
2	2,360	2,365	-0,005	0,080
3	2,360	2,362	-0,002	0,080
4	2,360	2,363	-0,003	0,080

Incertidumbre de Medición

0,008 mm

REGIONES EXPLORADAS

OBSERVACIONES

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva de color verde. Se realizó una exploración por regiones, se obtuvo un 95 % de exploración.

INCERTIDUMBRE

La incertidumbre de medición reportada se denomina Incertidumbre Expandida de medida (U) se ha obtenido multiplicación la incertidumbre Estándar Combinada (u) por el Factor de Cobertura (k = 2) que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%

FIN DEL DOCUMENTO

Jr. Condesa de Lemos № 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

PROHIBIDA LA REPRODUCCION TOTAL O PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACION ESCRITA DE TEST & CONTROL S.A.C.

CERTIFICADO DE CALIBRACIÓN LD-1033-2018

O.T.: 1026-1221

Fecha de emisión : 2018-05-28

Página : 1 de 2

SOLICITANTE: UNIVERSIDAD NACIONAL DE INGENIERIA

Dirección : Centro Industrial Mza. B Lote 5-6 Las Praderas de Lurin, Lima - Lima - Lurin

 INSTRUMENTO DE MEDICIÓN : TAMIZ

 Marca
 : FORNEY

 Modelo
 : No Indica

 N° de serie
 : 16BS8F781395

 N° de tamiz
 : N° 16

 Tamaño de abertura
 : 1,18 mm

 Identificación
 : MVAF-3

 Procedencia
 : U.S.A.

 Ubicación
 : No Indica

 Fecha de Calibración
 : 2018-05-23

LUGAR DE MEDICIÓN

Laboratorio de TEST & CONTROL S.A.C.

PROCEDIMIENTO DE CALIBRACIÓN

La calibración se efectuó por comparación directa, se utilizó patrones trazables a las unidades de longitud del Sistema Internacional de Undidades (S.I.) Calibrados por el DM - INACAL.

CONDICIONES AMBIENTALES

MAGNITUD	INICIAL	FINAL
TEMPERATURA	19,1 °C	19,2 °C
HUMEDAD RELATIVA	78,3%	77,6%

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic Nicolás Ramos Paucar
GERENTE TEONICO & Contro
CFP: 0316 V° B°

RAMIA

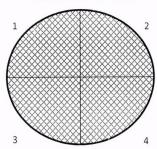
Jr. Condesa de Lemos N° 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

Certificado : LD-1033-2018

Página : 2 de 2

TRAZABILIDAD

Trazabilidad	Patrón utilizado	Certificado de calibración
Patrones de referencia del DM - INACAL	Retícula de Medición Mitutoyo	LLA - 387 -2017


RESULTADOS DE LA CALIBRACIÓN

REGIÓN Nº	VALOR NOMINAL mm	VALOR HALLADO mm	ERROR mm	Variación permisible mm
1	1,180	1,178	0,002	0,450
2	1,180	1,178	0,002	0,450
3	1,180	1,177	0,003	0,450
4	1,180	1,178	0,002	0,450

Incertidumbre de Medición

0,005 mm

REGIONES EXPLORADAS

OBSERVACIONES

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva de color verde. Se realizó una exploración por regiones, se obtuvo un 95 % de exploración.

INCERTIDUMBRE

La incertidumbre de medición reportada se denomina Incertidumbre Expandida de medida (U) se ha obtenido multiplicación la incertidumbre Estándar Combinada (u) por el Factor de Cobertura (k = 2) que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%

FIN DEL DOCUMENTO

Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

CERTIFICADO DE CALIBRACIÓN LD-1036-2018

O.T.: 1026-1221

Fecha de emisión : 2018-05-28

Página : 1 de 2

SOLICITANTE: UNIVERSIDAD NACIONAL DE INGENIERIA

Dirección : Centro Industrial Mza. B Lote 5-6 Las Praderas de Lurin, Lima - Lima - Lurin

 INSTRUMENTO DE MEDICIÓN
 : TAMIZ

 Marca
 : FORNEY

 Modelo
 : No Indica

 N° de serie
 : 30BS8F766626

 N° de tamiz
 : N° 30

 Tamaño de abertura
 : 600 µm

 Identificación
 : MVAF-4

Identificación : MVAF-4
Procedencia : U.S.A.
Ubicación : No Indica
Fecha de Calibración : 2018-05-23

LUGAR DE MEDICIÓN

Laboratorio de TEST & CONTROL S.A.C.

PROCEDIMIENTO DE CALIBRACIÓN

La calibración se efectuó por comparación directa, se utilizó patrones trazables a las unidades de longitud del Sistema Internacional de Undidades (S.I.) Calibrados por el DM - INACAL.

CONDICIONES AMBIENTALES

MAGNITUD	INICIAL	FINAL
TEMPERATURA	19,2 °C	19,4 °C
HUMEDAD RELATIVA	70,2%	69,5%

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos, Paucar
GERENTE TECNICOST & Control
CFP: 0316

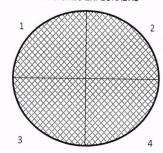
Jr. Condesa de Lemos N° 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

Certificado ; LD-1036-2018

Página : 2 de 2

TRAZABILIDAD

Trazabilidad	Patrón utilizado	Certificado de calibración
Patrones de referencia del DM - INACAL	Retícula de Medición Mitutoyo	LLA - 387 -2017


RESULTADOS DE LA CALIBRACIÓN

REGIÓN Nº	VALOR NOMINAL μm	VALOR HALLADO µm	ERROR µm	Variación permisible µm
1	600	599,600	0,400	0,025
2	600	600,000	0,000	0,025
3	600	601,000	-1,000	0,025
4	600	601,800	-1,800	0,025

Incertidumbre de Medición

2,0976 μm

REGIONES EXPLORADAS

OBSERVACIONES

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva de color verde. Se realizó una exploración por regiones, se obtuvo un 95 % de exploración.

INCERTIDUMBRE

La incertidumbre de medición reportada se denomina Incertidumbre Expandida de medida (U) se ha obtenido multiplicación la incertidumbre Estándar Combinada (u) por el Factor de Cobertura (k = 2) que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%

FIN DEL DOCUMENTO

Jr. Condesa de Lemos N° 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

CERTIFICADO DE CALIBRACIÓN LD-1035-2018

O.T.: 1026-1221

Fecha de emisión : 2018-05-28

Página : 1 de 2

SOLICITANTE: UNIVERSIDAD NACIONAL DE INGENIERIA

Dirección : Centro Industrial Mza. B Lote 5-6 Las Praderas de Lurin, Lima - Lima - Lurin

INSTRUMENTO DE MEDICIÓN : TAMIZ
Marca : FORNEY

 Marca
 FORNET

 Modelo
 : No Indica

 N° de serie
 : 50BS8F786266

 N° de tamiz
 : N° 50

 Tamaño de abertura
 : 300 μm

 Identificación
 : MVAF-5

 Procedencia
 : U.S.A.

 Ubicación
 : No Indica

 Fecha de Calibración
 : 2018-05-23

LUGAR DE MEDICIÓN

Laboratorio de TEST & CONTROL S.A.C.

PROCEDIMIENTO DE CALIBRACIÓN

La calibración se efectuó por comparación directa, se utilizó patrones trazables a las unidades de longitud del Sistema Internacional de Undidades (S.I.) Calibrados por el DM - INACAL.

CONDICIONES AMBIENTALES

MAGNITUD	INICIAL	FINAL
TEMPERATURA	19,4 °C	19,2 °C
HUMEDAD RELATIVA	66,1%	65,8%

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

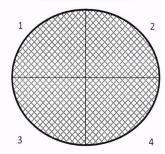
Lic. Nicolás Ramos Paucar
GERENTE TECNICO
CFP: 0316

Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

Certificado : LD-1035-2018 Página : 2 de 2

TRAZABILIDAD

Trazabilidad	Patrón utilizado	Certificado de calibración
Patrones de referencia del DM - INACAL	Retícula de Medición Mitutoyo	LLA - 387 -2017


RESULTADOS DE LA CALIBRACIÓN

REGIÓN Nº	VALOR NOMINAL μm	VALOR HALLADO μm	ERROR µm	Variación permisible mm
1	0,3	0,302	-0,0024	0,014
2	0,3	0,302	-0,0024	0,014
3	0,3	0,302	-0,0020	0,014
4	0,3	0,301	-0,0014	0,014

Incertidumbre de Medición

0,0042 µm

REGIONES EXPLORADAS

OBSERVACIONES

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva de color verde. Se realizó una exploración por regiones, se obtuvo un 95 % de exploración.

INCERTIDUMBRE

La incertidumbre de medición reportada se denomina Incertidumbre Expandida de medida (U) se ha obtenido multiplicación la incertidumbre Estándar Combinada (u) por el Factor de Cobertura (k = 2) que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%

FIN DEL DOCUMENTO

Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

CERTIFICADO DE CALIBRACIÓN LD-1034-2018

O.T.: 1026-1221

Fecha de emisión : 2018-05-28

Página : 1 de 2

SOLICITANTE: UNIVERSIDAD NACIONAL DE INGENIERIA

Dirección : Centro Industrial Mza. B Lote 5-6 Las Praderas de Lurin, Lima - Lima - Lurin

INSTRUMENTO DE MEDICIÓN : TAMIZ

Marca : FORNEY

Modelo : No Indica N° de serie : 100BS8F786130

N° de tamiz : N° 100
Tamaño de abertura : 0,150 µm
Identificación : MVAF-6

Procedencia : U.S.A.
Ubicación : No Indica
Fecha de Calibración : 2018-05-23

LUGAR DE MEDICIÓN

Laboratorio de TEST & CONTROL S.A.C.

PROCEDIMIENTO DE CALIBRACIÓN

La calibración se efectuó por comparación directa, se utilizó patrones trazables a las unidades de longitud del Sistema Internacional de Undidades (S.I.) Calibrados por el DM - INACAL.

CONDICIONES AMBIENTALES

MAGNITUD	INICIAL	FINAL
TEMPERATURA	19,2 °C	19 °C
HUMEDAD RELATIVA	74,5%	74,2%

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

URAMIEN

Vo Bo

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello

Lic. Nicolás Ramos Paucar

GERENTE TECNICO est & Contro

CFP: 0316

Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

Certificado : LD-1034-2018

Página : 2 de 2

TRAZABILIDAD

Trazabilidad	Patrón utilizado	Certificado de calibración
Patrones de referencia del DM - INACAL	Retícula de Medición Mitutoyo	LLA - 387 -2017


RESULTADOS DE LA CALIBRACIÓN

REGIÓN Nº	VALOR NOMINAL μm	NOMINAL HALLADO		Variación permisible mm
1	0,150	0,150	0,0002	0,008
2	0,150	0,150	0,0002	0,008
3	0,150	0,150	0,0002	0,008
4	0,150	0,150	0,0002	0,008

Incertidumbre de Medición

 $0,0004~\mu m$

REGIONES EXPLORADAS

OBSERVACIONES

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva de color verde. Se realizó una exploración por regiones, se obtuvo un 95 % de exploración.

INCERTIDUMBRE

La incertidumbre de medición reportada se denomina Incertidumbre Expandida de medida (U) se ha obtenido multiplicación la incertidumbre Estándar Combinada (u) por el Factor de Cobertura (k = 2) que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%

FIN DEL DOCUMENTO

Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

METROLOGIA E INGENIERIA LINO S.A.C.

Av. Venezuels № 2070 Lims 01- Lims - Perû **Central Telef.**; (611) 713-9080 / (611) 713-5656 / 999 072 127 **Consulta Técnics**; (611) 713-5610 / 975 432 445 / RPM #956 436 704 **E-mail:** vertas@metroll.com.pe / **Web:** www.netroll.com.pe

CERTIFICADO DE CALIBRACIÓN Nº CMV-0227-2018

Fecha de emisión: 2018-12-17 EXP: 75044

Página 1 de 1

: UNIVERSIDAD NACIONAL DE INGENIERÍA - FACULTAD DE INGENIERÍA CIVIL 1. SOLICITANTE

2. DIRECCIÓN : Av. Túpac Amaru N° 210 Rímac - Lima - Lima

INSTRUMENTO DE MEDICIÓN : BALDE DE MEDICIÓN PARA PESO UNITARIO

: 1/10 ft³ : PyS Equipos Valor nominal Código de identif. : BALD-1 Temperatura ref. : 20 °C : Aluminio : IN Material Tipo

: 116 Serie Procedencia : Perú

FECHA Y LUGAR DE LA CALIBRACIÓN

Calibrado el 2018 - 12 - 11 en el Laboratorio de Volumen y Densidad de METROIL S.A.C.

MÉTODO DE CALIBRACIÓN 5.

La calibración se efectuó por determinación del volumen del líquido usando el método gravimétrico.

Los resultados de la calibración realizada tienen trazabilidad a los patrones nacionales del INACAL - DM, en concordancia con el Sistema Internacional de Unidades de Medida (SI) y el Sistema Legal de Unidades de Medida del Perú (SLUMP).

Código	Instrumento Patrón	Certificado de Calibración
IM-1096	Balanza Analítica Clase : II	MC-1010-2018 / METROIL S.A.C.
IT-431	Termómetro Digital con U= 0,07 °C	T-2469-2018 / METROIL S.A.C.

RESULTADOS

Indicación	Volumen Contenido	Corrección	Incertidumbre
ml	ml	ml	ml
2831,68	2834,97	3,29	

CONDICIONES DE CALIBRACIÓN

Inicio : 21,2 °C ; Final Inicio : 50,4 %H.R. ; Final Temperatura Ambiental : 21,5 °C Humedad Relativa : 52,3 %H.R.

Presión Ambiental 1000 mbar

OBSERVACIONES

- Se colocó una etiqueta autoadhesiva en el instrumento con la indicación "CALIBRADO" y con identificación Nº A-12380.
- La masa del recipiente vacio es: 2257,3 g .
- · Para la determinación del volumen se ha considerado un coeficiente de expansión cúbica del aluminio de 0,000069 / °C .
- El valor nominal es 1/10 ft³ equivalente a 2831,68 ml .
- Los resultados están dados a la temperatura de referencia de 20 °C
- La incertidumbre de la medición ha sido calculada con un factor de cobertura k=2 para un nivel de confianza de aproximadamente 95 %.

MÓNICA Á. SALAZAR RODRÍGUEZ Jefe del Laboratorio Volumen, Densidad y Fisicoquímico

Este documento al ser emitido sin el simbolo de acreditación, no se encuentra dentro del marco de la acreditación otorgada por INACAL-DA

METROLOGIA E INGENIERIA LINO S.A.C.

Av. Venezuels NF 2040 Lims 01- Lima - Perú **Central Telef.**; (611) 713-9080 / (611) 713-5656 / 999 072 124 **Consulta Técnics**: (611) 713-5610 / 975 432 445 / RPM #956 436 704 **E-mail**: vertas@metroil.com.pe / **Web**: www.netroil.com.pe

CERTIFICADO DE CALIBRACIÓN Nº CMV-0228-2018

Fecha de emisión : 2018-12-17 EXP.: 75044

Página 1 de 1

1. SOLICITANTE : UNIVERSIDAD NACIONAL DE INGENIERÍA - FACULTAD DE INGENIERÍA CIVIL

2. DIRECCIÓN : Av. Túpac Amaru Nº 210 Rímac - Lima - Lima

3. INSTRUMENTO DE MEDICIÓN : BALDE DE MEDICIÓN PARA PESO UNITARIO

 Marca
 : PyS Equipos
 Valor nominal
 : 1/3 ft³

 Código de identif.
 : BALD-2
 Temperatura ref.
 : 20 °C

 Material
 : Aluminio
 Tipo
 : IN

Serie : 118 Procedencia : Perú

4. FECHA Y LUGAR DE LA CALIBRACIÓN

Calibrado el 2018 - 12 - 11 en el Laboratorio de Volumen y Densidad de METROIL S.A.C.

5. MÉTODO DE CALIBRACIÓN

La calibración se efectuó por determinación del volumen del líquido usando el método gravimétrico.

6. TRAZABILIDAD

Los resultados de la calibración realizada tienen trazabilidad a los patrones nacionales del INACAL - DM, en concordancia con el Sistema Internacional de Unidades de Medida (SI) y el Sistema Legal de Unidades de Medida del Perú (SLUMP).

Código	Instrumento Patrón	Certificado de Calibración
IM-1096	Balanza Analítica Clase : II	MC-1010-2018 / METROIL S.A.C.
IT-431	Termómetro Digital con U= 0,07 °C	T-2469-2018 / METROIL S.A.C.

7. RESULTADOS

Indicación	Volumen Contenido	Corrección	Incertidumbre
ml	ml	ml	ml
9344,559	9424,35	79,791	

CONDICIONES DE CALIBRACIÓN

 Temperatura Ambiental
 :
 Inicio
 : 20,9 °C
 ; Final
 : 20,7 °C

 Humedad Relativa
 :
 Inicio
 : 54,2 %H.R.
 ; Final
 : 55,2 %H.R.

Presión Ambiental : 1000 mbar

8. OBSERVACIONES

- Se colocó una etiqueta autoadhesiva en el instrumento con la indicación "CALIBRADO" y con identificación Nº A-12381.
- La masa del recipiente vacio es: 4351,6 g .
- Para la determinación del volumen se ha considerado un coeficiente de expansión cúbica del aluminio de 0,000069 / °C.
- El valor nominal es 1/3 ft³ equivalente a 9344,559 ml .
- Los resultados están dados a la temperatura de referencia de 20 °C
- La incertidumbre de la medición ha sido calculada con un factor de cobertura k=2 para un nivel de confianza de aproximadamente 95 %.

MÓNICA Á. SALAZAR RODRÍGUEZ Jefe del Laboratorio Volumen, Densidad y Fisicoquímico

Este documento al ser emitido sin el simbolo de acreditación, no se encuentra dentro del marco de la acreditación oto gada por INACAL-DA

CERTIFICADO DE CALIBRACIÓN TC - 2574 - 2019

PROFORMA : 1181A : 2019-05-30 Fecha de emisión Página : 1 de 3

SOLICITANTE: UNIVERSIDAD NACIONAL DE INGENIERIA Dirección : Av. Tupac Amaru Nro. 210 Lima - Lima - Rimac

INSTRUMENTO DE MEDICIÓN : TAMIZ

Marca : GILSON COMPANY Modelo : TSA - 100 3/4" N° de serie : 3/4" - 001231 - 17

: 3/4" N° de tamiz Tamaño de abertura : 19 mm Identificación : MVAG-2 Procedencia : U.S.A.

Ubicación : ÁREA DE MATERIALES

Fecha de Calibración : 2019-05-30

LUGAR DE CALIBRACIÓN

Laboratorio de TEST & CONTROL S.A.C.

MÉTODO DE CALIBRACIÓN

CONDICIONES AMBIENTALES

La calibración se realizó por comparación directa utilizando patrones calibrados y trazables al sistema internacional de medida, tomando como referencia la norma

ASTM E11.

MAGNITUD	INICIAL	FINAL
TEMPERATURA	19,9 °C	19,9 °C
HUMEDAD RELATIVA	58,3%	59,3%

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IFC 17025

TEST & CONTROL S.A.C. brinda los servicios de calibración instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales 0 internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicólas Ramos Paucar Gerente Técnico CFP: 0316

Certificado : TC - 2574 - 2019

Página : 2 de 3

TRAZABILIDAD

Trazabilidad	Patrón utilizado	Certificado de calibración
Bloques de Longitud Grado 0 METROSYSTEMS	Pie de Rey 0 mm a 300 mm	MS-0709-2018

RESULTADOS DE MEDICIÓN

MEDICIONES PARA LA ABERTURA

		Valor Nominal (mm)	Promedio (mm)	Error (mm)	Incertidumbre (mm)	E.M.P. ^(*) (mm)
	Horizontal	19,00	19,02	-0,02	0,03	0,52
ſ	Vertical		19,03	-0,03	0,03	0,52

(*) Error máximo permitido según norma ASTM E11

	Abertura Máxima Nominal (mm)	Abertura Máxima Encontrada (mm)	Desviación Estandar Nominal (mm)	Desviación Estandar Encontrada (mm)
Horizontal	20.01	19,08	0.39	0,04
Vertical	20,01	19,07	0,39	0,04

MEDICIONES PARA EL DIAMETRO

	Valor Nominal (mm)	Promedio (mm)	Error (mm)	Incertidumbre (mm)
Horizontal	3.15	3,65	-0,50	0,16
Vertical	3,15	3,54	-0,39	0,03

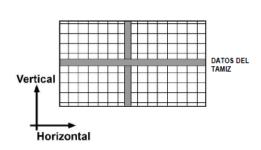
	Diametro Máximo Nominal (mm)	Diametro Máximo Encontrado (mm)	Diametro Mínimo Nominal (mm)	Diametro Mínimo Encontrado (mm)
Horizontal	3.60	5,56	2.70	3,56
Vertical	3,00	3,55	2,70	3,52

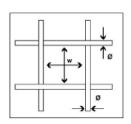
OBSERVACIONES

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

INCERTIDUMBRE

La incertidumbre expandida de medida se ha obtenido multiplicando la incertidumbre típica de medición por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.


Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe



Certificado : TC - 2574 - 2019

Página : 3 de 3

GRAFICOS DE LAS MEDICIONES

- w : Es el tamaño de la abertura
- Ø : Es el diámetro del alambre

FIN DEL DOCUMENTO

CERTIFICADO DE CALIBRACIÓN TC - 2575 - 2019

PROFORMA: 1181A Fecha de emisión: 2019-05-30 Página: 1 de 3

SOLICITANTE: UNIVERSIDAD NACIONAL DE INGENIERIA

Dirección : Av. Tupac Amaru Nro. 210 Lima - Lima - Rimac

INSTRUMENTO DE MEDICIÓN : TAMIZ

 Marca
 : GILSON COMPANY

 Modelo
 : TSA - 100 3/8"

 N° de serie
 : 3/8" - 001250 - 17

 N° de tamiz
 : 3/8"

 Tamaño de abertura
 : 9,5 mm

 Identificación
 : MVAG-4

 Procedencia
 : U.S.A.

Ubicación : ÁREA DE MATERIALES

Fecha de Calibración : 2019-05-30

LUGAR DE CALIBRACIÓN

Laboratorio de TEST & CONTROL S.A.C.

MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa utilizando patrones calibrados y trazables al sistema internacional de medida, tomando como referencia la norma ASTM E11.

CONDICIONES AMBIENTALES

MAGNITUD	INICIAL	FINAL
TEMPERATURA	20 °C	20,2 °C
HUMEDAD RELATIVA	59,3%	59,3%

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI)

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicólas Ramos Paucar Gerente Técnico CFP : 0316

Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

Certificado : TC - 2575 - 2019

Página : 2 de 3

TRAZABILIDAD

Trazabilidad	Patrón utilizado	Certificado de calibración
Bloques de Longitud Grado 0 METROSYSTEMS	Pie de Rey 0 mm a 300 mm	MS-0709-2018

RESULTADOS DE MEDICIÓN

MEDICIONES PARA LA ABERTURA

	Valor Nominal (mm)	Promedio (mm)	Error (mm)	Incertidumbre (mm)	E.M.P. ^(*) (mm)
Horizontal	9.50	9,48	0,02	0,03	0,27
Vertical	9,50	9,49	0,01	0,03	0,27

(*) Error máximo permitido según norma ASTM E11

	Abertura Máxima Nominal (mm)	Abertura Máxima Encontrada (mm)	Desviación Estandar Nominal (mm)	Desviación Estandar Encontrada (mm)
Horizontal	10.11	9,55	0.21	0,04
Vertical	10,11	9,54	0,21	0,03

MEDICIONES PARA EL DIAMETRO

	Valor Nominal (mm)	Promedio (mm)	Error (mm)	Incertidumbre (mm)
Horizontal	2.24	2,35	-0,11	0,03
Vertical	2,24	2,36	-0,12	0,03

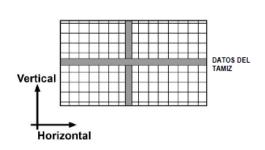
	Diametro	Diametro	Diametro	Diametro
	Máximo	Máximo	Mínimo	Mínimo
	Nominal	Encontrado	Nominal	Encontrado
	(mm)	(mm)	(mm)	(mm)
Horizontal	2.60	2,36	1.90	2,33
Vertical	2,00	2,39	1,90	2,33

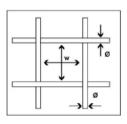
OBSERVACIONES

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

INCERTIDUMBRE

La incertidumbre expandida de medida se ha obtenido multiplicando la incertidumbre típica de medición por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%


Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe



Certificado : TC - 2575 - 2019

Página : 3 de 3

GRAFICOS DE LAS MEDICIONES

- w : Es el tamaño de la abertura
- Ø: Es el diámetro del alambre

FIN DEL DOCUMENTO

CERTIFICADO DE CALIBRACIÓN TC - 2576 - 2019

PROFORMA : 1181A : 2019-05-30 Fecha de emisión Página : 1 de 3

SOLICITANTE: UNIVERSIDAD NACIONAL DE INGENIERIA Dirección : Av. Tupac Amaru Nro. 210 Lima - Lima - Rimac

INSTRUMENTO DE MEDICIÓN : TAMIZ

Marca · GILSON COMPANY Modelo : TSA - 100 1/2" N° de serie : 1/2" - 001233 - 17

· 1/3" N° de tamiz : 12,5 mm Tamaño de abertura Identificación · MVAG-3 Procedencia : U.S.A.

Ubicación : ÁREA DE MATERIALES

Fecha de Calibración : 2019-05-30

LUGAR DE CALIBRACIÓN

Laboratorio de TEST & CONTROL S.A.C.

MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa utilizando patrones calibrados y trazables al sistema internacional de medida, tomando como referencia la norma

ASTM E11.

CONDICIONES AMBIENTALES

MAGNITUD	INICIAL	FINAL
TEMPERATURA	20 °C	19,9 °C
HUMEDAD RELATIVA	59,3%	59,3%

TEST & CONTROL S.A.C. es un Laboratorio de Calibración Certificación de equipos de medición basado a la Norma Técnica Peruana

ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de

nuestros clientes

Este certificado de calibración documenta la trazabilidad a los patrones nacionales internacionales, de acuerdo con el Sistema Internacional de Unidades

(SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados como una certificación conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicólas Ramos Paucar Gerente Técnico CFP: 0316

Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

Certificado : TC - 2576 - 2019

Página : 2 de 3

TRAZABILIDAD

Trazabilidad	Patrón utilizado	Certificado de calibración
Bloques de Longitud Grado 0 METROSYSTEMS	Pie de Rey 0 mm a 300 mm	MS-0709-2018

RESULTADOS DE MEDICIÓN

MEDICIONES PARA LA ABERTURA

	Valor Nominal (mm)	Promedio (mm)	Error (mm)	Incertidumbre (mm)	E.M.P. ^(*) (mm)
Horizontal	12,50	12,40	0,10	0,03	0,35
Vertical	12,50	12,40	0,10	0,03	0,35

(*) Error máximo permitido según norma ASTM E11

	Abertura Máxima Nominal (mm)	Abertura Máxima Encontrada (mm)	Desviación Estandar Nominal (mm)	Desviación Estandar Encontrada (mm)
Horizontal	13.25	12,44	0.27	0,02
Vertical	13,23	12,44	0,27	0,02

MEDICIONES PARA EL DIAMETRO

	Valor Nominal (mm)	Promedio (mm)	Error (mm)	Incertidumbre (mm)
Horizontal	2.50	2,84	-0,34	0,03
Vertical	2,50	2,84	-0,34	0,03

	Diametro Máximo Nominal (mm)	Diametro Máximo Encontrado (mm)	Diametro Mínimo Nominal (mm)	Diametro Mínimo Encontrado (mm)
Horizontal	2.90	2,85	2.10	2,82
Vertical	2,90	2,85	2,10	2,82

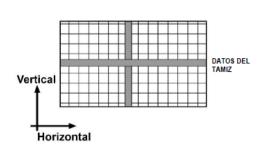
OBSERVACIONES

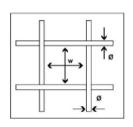
Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

INCERTIDUMBRE

La incertidumbre expandida de medida se ha obtenido multiplicando la incertidumbre típica de medición por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe


PROHIBIDA LA REPRODUCCION TOTAL O PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACION ESCRITA DE TEST & CONTROL S.A.C.



Certificado : TC - 2576 - 2019

Página : 3 de 3

GRAFICOS DE LAS MEDICIONES

- w : Es el tamaño de la abertura
- Ø : Es el diámetro del alambre

FIN DEL DOCUMENTO

CERTIFICADO DE CALIBRACIÓN TC - 2577 - 2019

PROFORMA : 1181A Fecha de emisión : 2019-05-30 Página : 1 de 3

SOLICITANTE: UNIVERSIDAD NACIONAL DE INGENIERIA

Dirección : Av. Tupac Amaru Nro. 210 Lima - Lima - Rimac

INSTRUMENTO DE MEDICIÓN : TAMIZ

 Marca
 : GILSON COMPANY

 Modelo
 : TSA - 100 1"

 N° de serie
 : 1" - 001118 - 17

 N° de tamiz
 : 1"

 Tamaño de abertura
 : 25 mm

 Identificación
 : MVAG-1

 Procedencia
 : U.S.A.

Ubicación : ÁREA DE MATERIALES

Fecha de Calibración : 2019-05-30

LUGAR DE CALIBRACIÓN

Laboratorio de TEST & CONTROL S.A.C.

MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa utilizando patrones calibrados y trazables al sistema internacional de medida, tomando como referencia la norma ASTM F11

CONDICIONES AMBIENTALES

MAGNITUD	INICIAL	FINAL
TEMPERATURA	19,9 °C	20 °C
HUMEDAD RELATIVA	58,3%	59,3%

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicólas Ramos Paucar Gerente Técnico CFP : 0316

Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

Certificado : TC - 2577 - 2019

Página : 2 de 3

TRAZABILIDAD

Trazabilidad	Patrón utilizado	Certificado de calibración
Bloques de Longitud Grado 0 METROSYSTEMS	Pie de Rey 0 mm a 300 mm	MS-0709-2018

RESULTADOS DE MEDICIÓN

MEDICIONES PARA LA ABERTURA

	Valor Nominal (mm)	Promedio (mm)	Error (mm)	Incertidumbre (mm)	E.M.P. ^(*) (mm)
Horizonta	25.00	24,97	0,03	0,03	0,68
Vertical	25,00	25,02	-0,02	0,03	0,68

(*) Error máximo permitido según norma ASTM E11

	Abertura Máxima Nominal (mm)	Abertura Máxima Encontrada (mm)	Desviación Estandar Nominal (mm)	Desviación Estandar Encontrada (mm)
Horizontal	26.24	24,98	_	0,01
Vertical	20,24	25,03		0,01

MEDICIONES PARA EL DIAMETRO

	Valor Nominal (mm)	Promedio (mm)	Error (mm)	Incertidumbre (mm)
Horizontal	2.55	3,86	-0,31	0,03
Vertical	3,55	3,84	-0,29	0,03

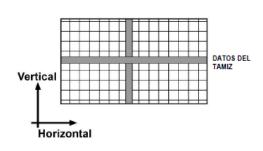
	Diametro	Diametro	Diametro	Diametro
	Máximo	Máximo	Mínimo	Mínimo
	Nominal	Encontrado	Nominal	Encontrado
	(mm)	(mm)	(mm)	(mm)
Horizontal	4.10	3,88	3.00	3,85
Vertical	4,10	3,85	3,00	3,82

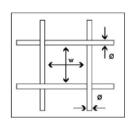
OBSERVACIONES

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

INCERTIDUMBRE

La incertidumbre expandida de medida se ha obtenido multiplicando la incertidumbre típica de medición por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%


Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe



Certificado TC - 2577 - 2019

Página : 3 de 3

GRAFICOS DE LAS MEDICIONES

- w : Es el tamaño de la abertura
- Ø : Es el diámetro del alambre

FIN DEL DOCUMENTO

CERTIFICADO DE CALIBRACIÓN

TC - 0952 - 2019

O.T: 0509 - 0683 Fecha de emisión: 2019 - 04 - 17 Página : 1 de 3

SOLICITANTE: UNIVERSIDAD NACIONAL DE INGENIERIA
Dirección : Av. Tupac Amaru Nro. 210 Lima - Lima - Rimac

INSTRUMENTO DE MEDICIÓN : BALANZA ELECTRÓNICA Tipo Marca : OHAUS Modelo : T32 MC : 713121945 N° de Serie Capacidad Máxima : 100 kg : 0,01 kg División de Escala (d) División de Verificación (e) : 0,01 kg Clase de Exactitud : 111 : 0,2 kg Capacidad Minima[1] : CHINA Procedencia Identificación : BLZA - 6 Intervalo de AT Local

Intervalo de ΔT Local : 18 °C hasta 30 °C Fecha de Calibración : 2019 - 04 - 16 Ubicación : AREA DE AGREGADOS

LUGAR DE CALIBRACIÓN

Instalaciones de UNIVERSIDAD NACIONAL DE INGENIERIA

MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa entre las indicaciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones según procedimiento PC-001 "Procedimiento para la Calibración de Balanzas de Funcionamiento No Automático Clase III y IIII". Tercera Edición - Enero 2009. SNM - INDECOPI.

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucas Gerente Técnico CFP: 0316

Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

Certificado : TC - 0952 - 2019

Página : 2 de 3

TRAZABILIDAD

Patrón de Referencia	Patrón de Trabajo	Certificado de Calibración
Juego de Pesas 1 mg a 1 kg	Juego de Pesas	
Clase de Exactitud M1	100 mg a 1 kg	LMA-0072-2018
DM-INACAL	Clase de Exactitud M2	
Juego de Pesas	Juego de Pesas	
1 kg a 5 kg	5 kg	LMA-0075-2018
Clase de Exactitud M1	Clase de Exactitud M2	
Pesa	Juego de Pesas	
10 kg	10 kg	LMA-0076-2018
Clase de Exactitud M1	Clase de Exactitud M2	
Pesa	Juego de Pesas	
20 kg	20 kg	LMA-0066-2018
Clase de Exactitud M1	Clase de Exactitud M2	

RESULTADOS DE MEDICIÓN

INSPECCION VISUAL

Ajuste de Cero	Tiene
Oscilación Libre	Tiene
Plataforma	Tiene
Sistema de Traba	No Tiene

Escala	No Tiene
Cursor	No Tiene
Nivelación	Tiene

ENSAYO DE REPETIBILIDAD

Magnitud	Inicial	Final
Temperatura	25,99 °C	26,09 °C
Humedad Relativa	60,76 %	60,00 %

Medición	Carga	I	ΔL	E
N°	(kg)	(kg)	(g)	(g)
1		50,00	8	-3
2		50,01	7	8
3		50,01	8	7
4	50,00	50,00	7	-2
5		50,00	7	-2
6	30,00	50,00	7	-2
7		50,00	7	-2
8		50,01	8	7
9		50,01	8	7
10		50,00	7	-2
	E _{máx} - E _{mín}			g
error máximo permitido			± 3	0 g

Medición	Carga	I	ΔL	E
N°	(kg)	(kg)	(g)	(g)
1		100,00	8	-3
2	i i	100,00	8	-3
3		100,01	7	8
4	100,00	100,00	8	-3
5		100,01	8	7
6		100,00	8	-3
7		100,00	8	-3
8		100,00	7	-2
9		100,01	7	8
10		100,00	7	-2
	E _{máx} - E _{min}			g
error ma	áximo perm	itido	± 3	0 g

Certificado : TC - 0952 - 2019

Página : 3 de 3

2 5 1 3 4

ENSAYO DE EXCENTRICIDAD

Magnitud	Inicial	Final
Temperatura	26,09 °C	26,09 °C
Humedad Relativa	59,81 %	59,81 %

NI O	De	eterminació	n de Error I	E0	Determinación de Error Corregido Ec			e.m.p.		
IN	Carga (kg)	I (kg)	∆L (g)	Eo (g)	Carga (kg)	I (kg)	∆L (g)	E (g)	Ec (g)	(±g)
1		0,10	8	-3		35,00	7	-2	1	
2		0,10	8	-3	1	35,01	7	8	11	
3	0,10	0,10	7	-2	35,00	35,01	7	8	10	30
4		0,10	7	-2	1	35,00	7	-2	0	
5		0,10	7	-2	1	35,00	7	-2	0	

ENSAYO DE PESAJE

Magnitud	Inicial	Final
Temperatura	27,18 °C	27,38 °C
Humedad Relativa	59,81 %	58,86 %

Carga		Creci	entes			Decre	ientes		e.m.p.
(kg)	I (kg)	∆L (g)	E (g)	Ec (g)	I (kg)	∆L (g)	E (g)	Ec (g)	(±g)
0,10	0,10	8	-3						
0,20	0,20	8	-3	0	0,20	6	-1	2	10
1,00	1,00	8	-3	0	1,00	8	-3	0	10
5,00	5,00	7	-2	1	5,00	8	-3	0	10
10,00	10,00	7	-2	1	10,00	7	-2	1	20
20,00	20,00	7	-2	1	20,00	7	-2	1	20
35,00	35,00	8	-3	0	35,00	6	-1	2	30
50,00	50,00	6	-1	2	50,00	6	-1	2	30
60,00	60,00	6	-1	2	60,01	6	9	12	30
80,00	80,01	7	8	11	80,00	7	-2	1	30
100,00	100,00	8	-3	0	100,01	6	9	12	30

Donde: I : Indicación de la balanza R : Lectura de la balanza posterior a la calibración ΔL : Carga adicional Eo : Error en cero E : Error del instrumento Ec : Error corregido

Lectura Corregida : R_{corregida} = R - 4,73 x 10⁻⁵ x R

Incertidumbre de Medición : $U_R = 2 \times \sqrt{5,40 \times 10^{-6} \text{ kg}^2 + 1,10 \times 10^{-6} \times R^2}$

OBSERVACIONES

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado. [1] Calculada según la NMP 003-2009

INCERTIDUMBRE

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

FIN DEL DOCUMENTO

CERTIFICADO DE CALIBRACIÓN

TC - 2958 - 2019

O.T: 0509 - 0683 Fecha de emisión: 2019 - 04 - 17 Página : 1 de 3

SOLICITANTE: UNIVERSIDAD NACIONAL DE INGENIERIA

Dirección : AV. TUPAC AMARU NRO. 210 LIMA - LIMA - RIMAC

: BALANZA INSTRUMENTO DE MEDICIÓN : ELECTRÓNICA Tipo Marca AND EK - 15KL Modelo : 6A6601112 N° de Serie Capacidad Máxima : 15000 q División de Escala (d) : 0,1 g División de Verificación (e) : 1 g Clase de Exactitud^[1] : 11 Capacidad Mínima^[1] : 5 g : JAPON Procedencia : BLZA - 2/1196 Identificación

Fecha de Calibración : 2019 - 04 - 16 Ubicación : AREA DE CEMENTO

LUGAR DE CALIBRACIÓN

Intervalo de AT Local

Instalaciones de UNIVERSIDAD NACIONAL DE INGENIERIA

MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa entre las indicaciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones según procedimiento PC-011 "Procedimiento para la Calibración de Balanzas de Funcionamiento No Automático Clase I y II". Cuarta Edición - Abril 2010. SNM - INDECOPI.

: 18 °C hasta 30 °C

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico CFP: 0316

Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

Certificado : TC - 2958 - 2019

Página : 2 de 3

TRAZABILIDAD

Patrón de Referencia	Patrón de Trabajo	Certificado de Calibración
Juego de Pesas 1 mg a 1 kg	Juego de Pesas	
Clase de Exactitud E2	1 mg a 1 kg	IP-119-2018
LO JUSTO S.A.C.	Clase de Exactitud F1	
Pesa	Pesa	
2 kg	2 kg	LM-330-2018
Clase de Exactitud E1	Clase de Exactitud F1	
Pesa	Pesa	
5 kg	5 kg	LM-332-2018
Clase de Exactitud E1	Clase de Exactitud F1	
Pesa	Pesa	
10 kg	10 kg	LM-333-2018
Clase de Exactitud E2	Clase de Exactitud F1	

RESULTADOS DE MEDICIÓN

INSPECCION VISUAL

Ajuste de Cero	Tiene
Oscilación Libre	Tiene
Plataforma	No Tiene
Sistema de Traba	No Tiene

Escala	No Tiene
Cursor	No Tiene
Nivelación	No Tiene
Dispositivo Indicador Auxiliar	No Tiene

ENSAYO DE REPETIBILIDAD

Magnitud	Inicial	Final	
Temperatura	25,09 °C	25,09 °C	
Humedad Relativa	67,06 %	67,06 %	

Medición	Carga		ΔL	Е
N°	(g)	(g)	(mg)	(mg)
1	7 500.0	7 500,0	70	-20
2		7 500,1	70	80
3		7 500,1	70	80
4		7 500,0	70	-20
5		7 500,0	80	-30
6	7 500,0	7 500,1	70	80
7		7 500,1	70	80
8		7 500,0	80	-30
9		7 500,0	70	-20
10		7 500,1	70	80
	E _{máx} - E _{mín}			mg
error	máximo pern	nitido	± 200	00 mg

Medición	Carga	- I	ΔL	E			
N°	(g)	(g)	(mg)	(mg)			
1		15 000,1	80	70			
2		15 000,1	80	70			
3		15 000,1	80	70			
4	15 000.0	15 000,1	80	70			
5		15 000,0	80	-30			
6	15 000,0	15 000,0	80	-30			
7		15 000,1	80	70			
8		15 000,1	80	70			
9		15 000,0	80	-30			
10		15 000,1	80	70			
E _{máx} - E _{mín} 100 mg							
error ma	áximo perm	itido	± 200	00 mg			

Certificado : TC - 2958 - 2019

Página : 3 de 3

ENSAYO DE EXCENTRICIDAD

Magnitud	Inicial	Final
Temperatura	26,00 °C	26,10 °C
Humedad Relativa	57,56 %	55,21 %

ΝIO		eterminaciór)	n de Error E	0	D	Determinación de Error Corregido Ec						
IN	Carga (g)	I (g)	∆L (mg)	Eo (mg)	Carga (g)	I (g)	∆L (mg)	E (mg)	Ec (mg)	(±mg)		
1		10,0	70	-20		5 000,1	60	90	110			
2		10,0	70	-20		5 000,0	60	-10	10			
3	10,0	10,0	80	-30	5 000,0	5 000,0	80	-30	0	1 000		
4		10,0	70	-20		5 000,1	70	80	100			
5		10,0	70	-20		5 000,0	60	-10	10			

ENSAYO DE PESAJE

Magnitud	Inicial	Final
Temperatura	26,41 °C	26,30 °C
Humedad Relativa	47,09 %	44,79 %

Carga		Crecie	entes			e.m.p.			
(g)	I (g)	∆L (mg)	E (mg)	Ec (mg)	I (g)	∆L (mg)	E (mg)	Ec (mg)	(±mg)
1,0	1,0	60	-10						
5,0	5,0	60	-10	0	5,0	80	-30	-20	1 000
10,0	10,0	60	-10	0	10,0	70	-20	-10	1 000
100,0	100,0	70	-20	-10	100,0	70	-20	-10	1 000
500,0	500,0	70	-20	-10	500,0	70	-20	-10	1 000
1 000,0	1 000,0	70	-20	-10	1 000,0	70	-20	-10	1 000
2 000,0	2 000,0	80	-30	-20	2 000,0	80	-30	-20	1 000
5 000,0	5 000,0	80	-30	-20	5 000,1	60	90	100	1 000
7 500,0	7 500,1	70	80	90	7 500,1	60	90	100	2 000
10 000,0	10 000,0	60	-10	0	10 000,1	60	90	100	2 000
15 000,0	15 000,1	60	90	100	15 000,1	70	80	90	2 000

I : Indicación de la balanza

Eo : Error en cero

R : Lectura de la balanza posterior a la calibración

ΔL : Carga adicional E : Error del instrumento Ec : Error corregido

= R - 4,47 x 10⁻⁸ x R Lectura Corregida

Incertidumbre de Medición : $2 \times \sqrt{5,88 \times 10^{-3} g^2 + 1,26 \times 10^{-9} \times R^2}$

OBSERVACIONES

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado. [1] Calculada según la NMP 003-2009

INCERTIDUMBRE

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

FIN DEL DOCUMENTO

Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

CERTIFICADO DE CALIBRACIÓN

TC - 2959 - 2019

O.T.: 0509-0683 Fecha de emisión: 2019 - 04 - 17 Página : 1 de 5

SOLICITANTE: UNIVERSIDAD NACIONAL DE INGENIERIA
Dirección: Av. Tupac Amaru Nro.210 Lima - Lima - Rimac

 EQUIPO
 : HORNO

 Marca
 : HUMBOLT

 Modelo
 : 21-350-ER-1

 N° de Serie
 : B231ER-00077

 Tipo de Ventilación
 : Natural

 Procedencia
 : No Indica

 Identificación
 : HORN - 4

INSTRUMENTO DE MEDICIÓN : TERMÓMETRO DIGITAL

 Marca
 : TZN4S

 Alcance
 : -20 °C a 300 °C

 Resolución
 : 1 °C

 TIPO DE CONTROLADOR
 : DIGITAL

 Marca
 : TZN4S

 Alcance
 : -20 °C a 300 °C

 Resolución
 : 1 °C

Fecha de Calibración : 2019 - 04 - 16
Ubicación : ENSAYO DE CEMENTO

LUGAR DE CALIBRACIÓN

Instalaciones de UNIVERSIDAD NACIONAL DE INGENIERIA

MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa con nuestro sistema de medición de temperatura patrón según procedimiento PC- 018 "Procedimiento de calibración o caracterización de medios isotermos con aire como medio termostático". Segunda Edición - Junio 2009. SNM - INDECOPI.

CONDICIONES AMBIENTALES

Magnitud	Inicial	Final
Temperatura	26,1 °C	26,0 °C
Humedad Relativa	60.1 %	60.6 %

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades

Con el fin de asegurar la calidad de sus mediciones se le recomienda al

usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

CFP: 0316

Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

Certificado : TC - 2959 - 2019

Página : 2 de 5

TRAZABILIDAD

Patrón de Referencia	Patrón de Trabajo	Certificado de Calibración
Dos Termómetros Digitales Incertidumbre 0,007 °C DM - INACAL	Termómetro Digital -200 °C a 400 °C	LT-247-2018

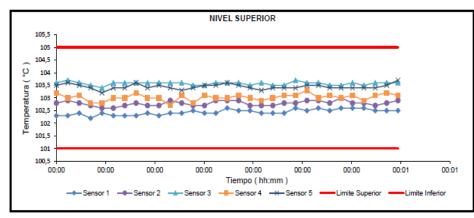
RESULTADOS DE MEDICIÓN

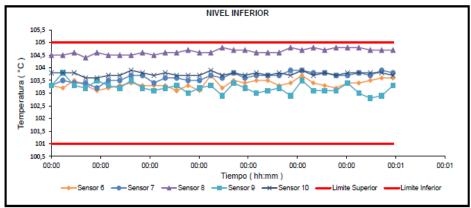
Temperatura de Trabajo	Posición del Controlador	Tiempo de Calentamiento	Tiempo de Estabilización	Porcentaje de carga	Tipo de Carga / Muestra
103 °C ± 2 °C	103	30 min	120 min	30 %	BLOQUES DE CEMENTO

Ti	Termómetro			Temper	aturas er	ı las Pos	iciones (de Medic	ión (°C)			Tprom ^[2]	Tmax - Tmi
Tiempo (hh:mm)	Horno		Ni	vel Supe	ior			N	ivel Inferi	ior		ipioni	Illiax - Illi
(,	(°C)	1	2	3	4	5	6	7	8	9	10	(°C)	(°C)
0:00	103	102,3	102,8	103,6	103,2	103,5	103,3	103,3	104,5	103,3	103,8	103,4	2,2
0:02	103	102,3	102,9	103,7	103,0	103,6	103,2	103,5	104,5	103,8	103,8	103,4	2,2
0:04	103	102,4	102,8	103,6	103,1	103,5	103,5	103,4	104,6	103,3	103,8	103,4	2,2
0:06	103	102,2	102,7	103,5	102,8	103,4	103,3	103,4	104,4	103,2	103,6	103,3	2,2
0:08	103	102,4	102,6	103,4	102,8	103,2	103,1	103,2	104,6	103,5	103,6	103,2	2,2
0:10	103	102,3	102,6	103,6	103,0	103,4	103,2	103,5	104,5	103,3	103,7	103,3	2,2
0:12	103	102,3	102,7	103,6	103,0	103,4	103,3	103,5	104,5	103,2	103,7	103,3	2,2
0:14	103	102,3	102,8	103,6	103,2	103,6	103,4	103,7	104,5	103,5	103,9	103,5	2,2
0:16	103	102,4	102,7	103,6	103,0	103,4	103,3	103,7	104,6	103,2	103,8	103,4	2,2
0:18	103	102,3	102,7	103,6	103,0	103,5	103,3	103,4	104,5	103,1	103,7	103,3	2,2
0:20	103	102,4	102,9	103,6	102,7	103,4	103,3	103,6	104,6	103,2	103,8	103,4	2,2
0:22	103	102,4	102,8	103,6	103,1	103,3	103,1	103,6	104,6	103,3	103,7	103,4	2,2
0:24	103	102,5	102,7	103,5	102,8	103,4	103,3	103,5	104,7	103,0	103,7	103,3	2,2
0:26	103	102,4	102,7	103,5	103,1	103,5	103,1	103,5	104,6	103,2	103,7	103,3	2,2
0:28	103	102,4	102,9	103,6	103,0	103,5	103,7	103,7	104,6	103,3	103,9	103,5	2,2
0:30	103	102,6	102,9	103,6	103,0	103,6	103,2	103,6	104,8	102,9	103,7	103,4	2,2
0:32	103	102,5	102,9	103,6	103,1	103,5	103,5	103,8	104,7	103,4	103,8	103,5	2,2
0:34	103	102,5	102,7	103,5	103,0	103,4	103,4	103,6	104,7	103,2	103,7	103,4	2,2
0:36	103	102,4	102,7	103,6	102,9	103,3	103,5	103,7	104,6	103,0	103,8	103,4	2,2
0:38	103	102,4	102,7	103,5	103,0	103,4	103,5	103,7	104,6	103,1	103,7	103,4	2,2
0:40	103	102,4	102,8	103,5	103,1	103,4	103,3	103,7	104,6	103,2	103,8	103,4	2,2
0:42	103	102,6	102,8	103,7	103,1	103,4	103,4	103,9	104,8	102,9	103,7	103,4	2,2
0:44	103	102,5	102,9	103,6	103,3	103,5	103,7	103,9	104,7	103,5	103,9	103,6	2,2
0:46	103	102,6	102,9	103,6	103,0	103,5	103,4	103,8	104,8	103,1	103,7	103,4	2,2
0:48	103	102,5	102,8	103,5	103,1	103,4	103,3	103,8	104,7	103,1	103,8	103,4	2,2
0:50	103	102,6	103,0	103,5	103,0	103,4	103,2	103,7	104,8	103,1	103,7	103,4	2,2
0:52	103	102,6	102,8	103,6	103,1	103,4	103,4	103,7	104,8	103,4	103,8	103,5	2,2
0:54	103	102,6	102,8	103,5	102,9	103,4	103,4	103,8	104,8	103,0	103,8	103,4	2,2
0:56	103	102,5	102,7	103,6	103,1	103,4	103,5	103,7	104,7	102,8	103,8	103,4	2,2
0:58	103	102,5	102,8	103,6	103,2	103,5	103,6	103,9	104,7	102,9	103,8	103,5	2,2
1:00	103	102,5	102,9	103,6	103,1	103,7	103,6	103,8	104,7	103,3	103,7	103,5	2,2
T. PROM ⁽¹⁾	103,0	102,4	102,8	103,6	103,0	103,4	103,4	103,6	104,6	103,2	103,8		
T. MAX ^[3]	103,0	102,6	103,0	103,7	103,3	103,7	103,7	103,9	104,8	103,8	103,9		
T. MIN ^[4]	103,0	102,2	102,6	103,4	102,7	103,2	103,1	103,2	104,4	102,8	103,6		
DTT ⁽⁵⁾	0.0	0.4	0.4	0.3	0.6	0.5	0.6	0.7	0.4	1.0	0.3		

Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

PROHIBIDA LA REPRODUCCION TOTAL O PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACION ESCRITA DE TEST & CONTROL S.A.C.

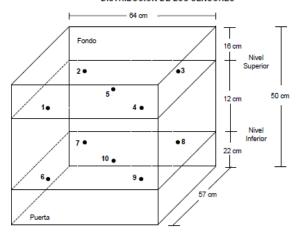

Certificado : TC - 2959 - 2019


Página : 3 de 5

RESULTADOS DE MEDICIÓN

Parámetro	Valor (°C)	Incertidumbre Expandida (°C)
Máxima Temperatura Medida	104,8	0,3
Mínima Temperatura Medida	102,2	0,4
Desviación Temperatura en el Tiempo	1,0	0,1
Desviación Temperatura en el Espacio	2,2	0,2
Estabilidad Medida (±)	0,50	0,04
Uniformidad Medida	2,2	0,2

GRAFICO DE TEMPERATURA DE LOS SENSORES



Durante la calibración y bajo las condiciones en que ésta ha sido hecha, el medio isotermo CUMPLE con los limites especificados de temperatura

Certificado : TC - 2959 - 2019 Página : 4 de 5

DISTRIBUCIÓN DE LOS SENSORES

Los sensores 5 y 10 están ubicados en el centro de sus respectivos niveles.

Los sensores del 1 al 5 están ubicados a 0 cm por encima de la parrilla superior.

Los sensores del 6 al 10 están ubicados a 1,5 cm por debajo de la parrilla inferior.

Los sensores del 1 al 4 y del 6 al 9 están ubicados a 6 cm de las paredes laterales y a 5 cm del frente y fondo del equipo.

FOTOGRAFÍA DEL MEDIO ISOTERMO

Jr. Condesa de Lemos Nº 117 - San Miguel - Lima / Teléfono: 262-9536 / E-mail: informes@testcontrol.com.pe

Certificado : TC - 2959 - 2019 Página : 5 de 5

OBSERVACIONES

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

[1] T. PROM: Promedio de las temperaturas en una posición de medición durante el tiempo de calibración.

[2] T prom: Promedio de las temperaturas en las doce posiciones de medición para un instante dado.

[3] Tmax: Temperatura máxima.

[4] Tmin: Temperatura mínima.

[5] DTT: Desviación de Temperatura en el Tiempo.

Para cada posición de medición su "desviación de temperatura en el tiempo" DTT está dada por la diferencia entre la máxima y la mínima temperatura registradas en dicha posición.

Entre dos posiciones de medición su "desviación de temperatura en el espacio" está dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.

Incertidumbre expandida de las indicaciones del termómetro propio de Medio Isotermo: 0,6 °C

La Uniformidad es la máxima diferencia medida de temperatura entre las diferentes posiciones espaciales para un mismo instante de tiempo.

La Estabilidad es considerada igual a ± ½ máx. DTT.

INCERTIDUMBRE

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

FIN DEL DOCUMENTO

CERTIFICADO DE CALIBRACIÓN CMC-020-2020

Peticionario : Universidad Nacional de Ingeniería

Atención : LEM - FIC - Universidad Nacional de Ingeniería

Lugar de calibración : Laboratorio Nº 1 de Ensayo de Materiales " Ing. Manuel Gonzales de la Cotera "

FIC - UNI Av. Túpac Amaru Nº 210 Rimac - Lima.

Tipo de equipo : Máquina de Compresión Axial Eléctro-hidráulica

Capacidad del equipo : 1,112 kN (250,000 lbf. ó 113 TN)

División de escala : 0.1 kN

Marca : ELE - INTERNATIONAL

Modelo : 36-0650/06

Nº de serie del equipo : 9913 Código UNI : PHEC-4

Lector digital : ADR TOUCH ELE-INTERNATIONAL

N° de serie lector digital : 1887-1-00089

Procedencia : USA

Método de calibración : ASTM E-4 "Standard Practices for Force Verification of Testing Machines"

Temp.(°C) y H.R.(%) inicial : 27.2°C / 61%

Temp.(°C) y H.R.(%) final : 27.2°C / 61%

Patrón de referencia : Trazabilidad NIST (United States National Institute of Standards &

Technology), patrón utilizado Morehouse, N° de serie C-8294, clase A, calibrado de acuerdo a la norma ASTM E74-18, certificado de calibración

reporte N° C-8294(ASRET)K0518

Número de páginas : 2

Fecha de calibración : 2020-02-25

Este certificado de calibración sólo puede ser difundido sin modificaciones y en su totalidad. Las modificaciones y extractos del certificado necesitan autorización de CELDA EIRL.

El presente certificado sin firmas y sellos carece de validez.

Sello Fecha

CELEGUIPOS OF THE PART OF THE

2020-02-27

Hecho por

Vladimir Tello To

Revisado por

JORGE FRANCISCO RÁMIREZ JAPAJA INGENIERO CIVIL Reg. del CIP N° 84286

....

CMC-020-2020 Página 1 de 2

Av. Circunvalación s/n Mz. B Lt. 1 Urb. Praderas de Huachipa Lurigancho - Chosica Telf.: (01) 540 7661 e-mail: servicios/a celda.com.pe

Dirección de carga

: Compresión

Indicación de fuerza de la máquina de ensayo		Indicación d	le fuerza en la	celda patrón	Promedio	Error	Incertidumbre
		1º ascenso	2º ascenso	3º ascenso	-		K=2
(%)	(kN) (kN)		(kN)	(kN)	(kN)	(%)	U (%)
0	0	0	0	0	0	0.0	0.1
9	100	100.23	100.52	100.24	100.33	-0.3	0.1
18	200	200.09	200.97	200.51	200.52	-0.3	0.1
27	300	299.74	300.25	299.77	299.92	0.0	0.1
36	400	400.00	399.61	399.75	399.79	0.1	0.1
45	500	500.78	501.36	501.37	501.17	-0.2	0.1
54	600	600.85	600.88	601.04	600.92	-0.2	0.1
63	700	701.68	701.54	700.93	701.38	-0.2	0.1
72	800	800.61	801.20	800.91	800.91	-0.1	0.1
81	900	900.61	901.28	901.21	901.03	-0.1	0.1
90	1000	1000.85	1001.37	1001.28	1001.17	-0.1	0.1

Incertidumbre

La incertidumbre reportada en el presente certificado es la Incertidumbre Expandida de medición, que resulta de multiplicar la Incertidumbre estándar por el factor de cobertura k=2 y ha sido determinada de acuerdo a la "Guía para la expresión de la Incertidumbre en la medición".

Notas

El usuario esta obligado a tener el equipo calibrado en intervalos apropiados de tiempo de acuerdo al uso, mantenimiento y conservación que este expuesto.

El equipo se encuentra calibrado y cumple con los requisitos de la norma ASTM C-39.

CMC-020-2020

Página 2 de 2

CERTIFICADO DE CALIBRACIÓN CMC-021-2020

Peticionario

: Universidad Nacional de Ingeniería

Atención

: LEM - FIC - Universidad Nacional de Ingeniería

Lugar de calibración

: Laboratorio Nº 1 de Ensayo de Materiales " Ing. Manuel Gonzales de la Cotera "

FIC - UNI Av. Túpac Amaru Nº 210 Rimac - Lima.

Tipo de equipo

: Máquina de Compresión Axial Eléctro-hidráulica

Capacidad del equipo

: 1,112 kN (250,000 lbf. ó 113 TN)

División de escala

: 0.1 kN

Marca

: ELE - INTERNATIONAL

Modelo

: 36-0650/06

Nº de serie del equipo

: No Indica.

Lector digital

: ADR TOUCH ELE-INTERNATIONAL

N° de serie lector digital

Procedencia

: USA

Método de calibración

: ASTM E-4 "Standard Practices for Force Verification of Testing Machines"

Temp.(°C) y H.R.(%) inicial

: 27.4°C / 60%

: 1887-1-00626

Temp.(°C) y H.R.(%) final

: 27.4°C / 60%

Patrón de referencia

: Trazabilidad NIST (United States National Institute of Standards & Technology), patrón utilizado Morehouse, N° de serie C-8294, clase A, calibrado de acuerdo a la norma ASTM E74-18, certificado de calibración

reporte N° C-8294(ASRET)K0518

Número de páginas

: 2

Fecha de calibración

: 2020-02-25

Este certificado de calibración sólo puede ser difundido sin modificaciones y en su totalidad. Las modificaciones y extractos del certificado necesitan autorización de CELDA EIRL.

El presente certificado sin firmas y sellos carece de validez.

Sello

Fecha

Hecho por

Revisado por

REGUIPOS OF THE PRACTICAL PROPERTY OF THE PR

2020-02-27

Vladimir Tello Torre

E FRANCISCO RAMIREZ JAPAJA INGENIERO CIVIL Reg. del CIP N° 84286

CMC-021-2020

Página 1 de 2

Av. Circunvalación s/n Mz. B Lt. 1 Urb. Praderas de Huachina Lurigancho - Chosica Telf.: (01) 540 7661 e-mail: servicios@celda.com.ne

Dirección de carga

: Compresión

Indicación de fuerza de la máquina de ensayo		Indicación o	le fuerza en la	celda patrón	Promedio	Error	Incertidumbre
		1º ascenso	2º ascenso	3º ascenso			K=2
(%)	(kN)	(kN)	(kN)	(kN)	(kN)	(%)	U (%)
0	0	0	0	0	0	0	0.1
4	50.0	49.63	49.77	49.55	49.7	0.6	0.1
9	100.0	100.56	100.48	99.75	100.3	-0.3	0.1
13	150.0	149.71	149.84	150.02	149.9	0.1	0.1
18	200.0	199.56	199.49	199.17	199.4	0.3	0.1
27	300.0	300.14	299.79	299.14	299.7	0.1	0.1
36	400.0	400.48	400.57	399.84	400.3	-0.1	0.1
45	500.0	499.56	500.38	499.88	499.9	0.0	0.1
54	600.0	599.75	599.66	599.47	599.6	0.1	0.1
63	700.0	699.92	699.66	699.29	699.6	0.1	0.1
72	800.0	799.89	799.58	799.51	799.7	0.0	0.1

Incertidumbre

La incertidumbre reportada en el presente certificado es la Incertidumbre Expandida de medición, que resulta de multiplicar la Incertidumbre estándar por el factor de cobertura k=2 y ha sido determinada de acuerdo a la "Guía para la expresión de la Incertidumbre en la medición".

Notas

El usuario esta obligado a tener el equipo calibrado en intervalos apropiados de tiempo de acuerdo al uso, mantenimiento y conservación que este expuesto.

El equipo se encuentra calibrado y cumple con los requisitos de la norma ASTM C-39.

CMC-021-2020

Página 2 de 2

CERTIFICADO DE CALIBRACIÓN CMC-046-2020

Peticionario

: Universidad Nacional de Ingeniería

Atención

: LEM - FIC - Universidad Nacional de Ingeniería

Lugar de calibración

: Laboratorio N° 1 de Ensayo de Materiales " Ing. Manuel Gonzales de la Cotera "

FIC - UNI Av. Túpac Amaru Nº 210 Rimac - Lima.

Tipo de equipo

: Máquina Universal Nº 2

Capacidad del equipo

: 20,000 kgf ; 50,000 kgf; 10,000 kgf ; 5,000 kgf ; 100,000 kgf.

División de escala

: 20 kgf; 100 kgf; 10 kgf; 10 kgf; 100 kgf.

Marca

: TOKYOKOKI SEIZOSHO

Nº de serie del equipo

: 177 T 128

Código Interno UNI

: MUNV-2

Panel digital

: Analógico.

Número serie panel digital

; N.I.

Procedencia

: JAPAN.

Método de calibración

: ASTM E-4 "Standard Practices for Force Verification of Testing machines"

Temp.(°C) y H.R.(%) inicial

: 18,4°C / 74%

Temp.(°C) y H.R.(%) final

: 18.4°C / 74%

Patrón de referencia

: Trazabilidad NIST (United States National Institute of Standards & Technology), patrón utilizado Morehouse, N° de serie C-8294, clase A, calibrado de acuerdo a la norma ASTM E74-18, certificado de calibración

reporte N° C-8294(ASRET)K0518

Número de páginas

: 4

Fecha de calibración

: 2020-08-24

Este certificado de verificación sólo puede ser difundido sin modificaciones y en su totalidad. Las modificaciones y extractos del certificado necesitan autorización de CELDA EIRL.

El presente certificado sin firmas y sellos carece de validez.

Sello

Fecha

Hecho por

Revisado por

au

CAN BRADON

2020-08-31

Vladimir Tello Torre

JORGE FRANCISCO RAMIREZ JAPAJA INGENIERO CIVIL

Reg. del CIP N° 84286

CMC-046-2020

Página 1 de 4

Av. Circunvalación s/n Mz. B Lt. 1 Urb. Praderas de Huachipa Lurigancho - Chosica Telf.: (01) 540 7661 e-mail: servicios@celda.com.pe

Dirección de carga

: Compresión

Escala : 20000 kg

Indicación de fuerza de la máquina de ensayo		Indicación d	le fuerza en la	celda patrón	Promedio	Error	Incertidumbre K=2
		1º ascenso	2º ascenso	3º ascenso			
(%)	(kgf)	(kgf)	(kgf)	(kgf)	(kgf)	(%)	U (%)
0	0	0	0	0	0	0.0	0.1
10	2000	2042	2044	2042	2043	-2.1	0.3
20	4000	4029	4037	4040	4035	-0.9	0.1
30	6000	6026	6000	6017	6014	-0.2	0.1
40	8000	8013	7997	8004	8005	-0.1	0.1
50	10000	10030	10015	10038	10028	-0.3	0.1
60	12000	12054	11970	11988	12004	0.0	0.1
70	14000	14014	14006	14033	14018	-0.1	0.1
80	16000	15999	16002	15999	16000	0.0	0.1

Dirección de carga

: Compresión

Escala : 50000 kg

Indicación de fuerza de la máquina de ensayo		Indicación d	le fuerza en la	celda patrón	Promedio	Error	Incertidumbre K=2
		1º ascenso	2º ascenso	3º ascenso			
(%)	(kgf)	(kgf)	(kgf)	(kgf)	(kgf)	(%)	U (%)
0	0	0	0	0	0	0.0	0.1
10	5000	4956	4925	4940	4940	1.2	0.2
20	10000	9924	9920	9931	9925	0.8	0.1
30	15000	14989	15050	15038	15026	-0.2	0.1
40	20000	20026	19953	20064	20014	-0.1	0.1
50	25000	25175	25254	25191	25207	-0.8	0.1
60	30000	30226	30198	30189	30204	-0.7	0.1
70	35000	35254	35239	35279	35257	-0.7	0.1
80	40000	40262	40305	40258	40275	-0.7	0.1

CMC-046-2020

Página 2 de 4

Dirección de carga

: Compresión

Escala : 10000 kg

Indicación de fuerza de la máquina de ensayo		Indicación de fuerza en la celda patrón			Promedio	Error	Incertidumbre
		1º ascenso	2º ascenso	3º ascenso			K=2
(%)	(kgf)	(kgf)	(kgf)	(kgf)	(kgf)	(%)	U (%)
0	0	0	0	0	0	0.0	0.1
10	1000	1016	1024	1011	1017	-1.7	0.3
20	2000	1993	1993	1983	1990	0.5	0.1
30	3000	3006	2999	2983	2996	0.1	0.1
40	4000	4002	3996	3991	3996	0.1	0.1
50	5000	4960	4987	4975	4974	0.5	0.1
60	6000	5993	5957	5974	5975	0.4	0.1
70	7000	6992	6994	6977	6988	0.2	0.1
80	8000	7994	7965	7967	7975	0.3	0.1

Dirección de carga

: Compresión

Escala : 5000 kg

Indicación de fuerza de la		Indicación de fuerza en la celda patrón			Promedio	Error	Incertidumbre
máquina	máquina de ensayo		2º ascenso	3º ascenso			K=2
(%)	(kgf)	(kgf)	(kgf)	(kgf)	(kgf)	(%)	U (%)
0	0	0	0	0	0	0.0	0.1
10	500	505	512	510	509	-1.8	0.3
20	1000	1006	1006	1002	1005	-0.5	0.1
30	1500	1501	1500	1497	1499	0.0	0.1
40	2000	2005	2000	1994	2000	0.0	0.1
50	2500	2503	2499	2491	2498	0.1	0.1
60	3000	2997	2994	2981	2991	0.3	0.1
70	3500	3494	3493	3508	3498	0.0	0.1
80	4000	3995	3994	3999	3996	0.1	0.1

CMC-046-2020

Página 3 de 4

Av. Circunvalación s/n Mz. B Lt. 1 Urb. Praderas de Huachipa Lurigancho - Chosica Telf.: (01) 540 7661 e-mail: servicios@celda.com.pe

Dirección de carga

: Compresión

Escala : 100000 kg

Indicación de fuerza de la máquina de ensayo		Indicación de fuerza en la celda patrón			Promedio	Error	Incertidumbre
		1º ascenso	2º ascenso	3º ascenso	5 / 10 / 10 / 10 / 10 / 10 / 10 / 10 / 1		K=2
(%)	(kgf)	(kgf)	(kgf)	(kgf)	(kgf)	(%)	U (%)
0	0	0	0	0	0	0.0	0.1
10	10000	9996	10024	10068	10029	-0.3	0.1
20	20000	19963	19873	19882	19906	0.5	0.1
30	30000	29887	29892	29906	29895	0.4	0.1
40	40000	39712	39673	39791	39725	0.7	0.1
50	50000	49716	50491	49807	50005	0.0	0.1
60	60000	59559	59474	59684	59572	0.7	0.1
70	70000	69555	69461	69536	69517	0.7	0.1
80	80000	79398	79281	79400	79360	0.8	0.1

Incertidumbre

La incertidumbre reportada en el presente certificado es la Incertidumbre Expandida de medición, que resulta de multiplicar la Incertidumbre estándar por el factor de cobertura k=2 y ha sido determinada de acuerdo a la "Guía para la expresión de la Incertidumbre en la medición".

Notas

El usuario esta obligado a tener el equipo verificado en intervalos apropiados de tiempo de acuerdo al uso, mantenimiento y conservación que este expuesto.

El equipo se encuentra calibrado

CMC-046-2020

Página 4 de 4

Av. Circunvalación s/n Mz. B Lt. 1 Urb. Praderas de Huachipa Lurigancho - Chosica Telf.: (01) 540 7661 e-mail: servicios@celda.com.pe