

# FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Generación de máximas avenidas en la sub cuenca Torococha empleando métodos hidrológicos, para diseño del puente Torococha, Juliaca, Puno, 2020"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

#### **AUTOR:**

Flores Palomino, Victor Raul (ORCID: 0000-0001-8445-0006)

#### ASESOR:

Dr. Ing. Muñiz Paucarmayta, Abel Alberto (ORCID: 0000-0002-1968-9122)

# LÍNEA DE INVESTIGACIÓN:

Diseño de Obras Hidráulicas y Saneamiento

LIMA – PERÚ 2020

# **DEDICATORIA**

# A DIOS.

Por guiarme en el sendero correcto de la vida, además brindarme sabiduría, salud, paciencia, sapiencia y proseguir con mis ideales, objetivos, metas y luchar por el bienestar familiar.

#### **A MI MADRE**

Candelaria Palomino Chahuares, por sus valiosos consejos, principios éticos, valores morales que la identifica, además de ser inspiración para seguir adelante.

# A REYNA GUISELA.

Mi esposa por el apoyo absoluto en todo momento y la ejecución de la presente tesis de investigación.

#### **AGRADECIMIENTO**

A mis parientes y amistades por su aliento y comprensión durante la ejecución de la presente tesis de investigación, ellos son la razón de superación y orgullo.

Al Dr. Abel Muñiz Paucarmayta, por el adiestramiento y recomendaciones brindados para la ejecución de la presente tesis de investigación.

Al SENAMHI (Servicio Nacional de Meteorología e Hidrología), por facilitarme información necesaria para la realización de la presente tesis.

# ÍNDICE DE CONTENIDOS

| CA   | \RÁTUL <i>A</i> | <b>.</b>                                        | i   |
|------|-----------------|-------------------------------------------------|-----|
| DE   | DICATO          | RIA                                             | ii  |
| AG   | RADECI          | MIENTO                                          | iii |
| ÍNE  | DICE DE         | CONTENIDOS                                      | iv  |
| ÍNE  | DICE DE         | TABLAS                                          | vi  |
| ÍNE  | DICE DE         | FIGURAS                                         | vii |
| RE   | SUMEN           |                                                 | X   |
| ΑB   | STRACT          | -                                               | xi  |
| l.   | INTRO           | DUCCIÓN                                         | 1   |
| II.  | MARCO           | ) TEÓRICO                                       | 5   |
| III. | METOD           | OCLOGÍA                                         | 18  |
| 3    | 3.1. Tipo       | o y Diseño de Investigación                     | 18  |
|      | 3.1.1.          | Método: Científico                              | 18  |
|      | 3.1.2.          | Tipo: Aplicada                                  | 18  |
|      | 3.1.3.          | Nivel: Explicativo                              | 19  |
|      | 3.1.4.          | Diseño:                                         | 19  |
| 3    | 3.2. Var        | iable y Operacionalización                      | 19  |
|      | 3.2.1.          | Variable 1: Métodos hidrológicos                | 19  |
|      | 3.2.2.          | Variable 2:                                     | 20  |
|      | 3.2.3.          | Operacionalización de Variables                 | 20  |
| 3    | 3.3. Pob        | olación, Muestra, Muestreo y Unidad de Análisis | 22  |
|      | 3.3.1.          | Población                                       | 22  |
|      | 3.3.2.          | Muestra                                         | 22  |
|      | 3.3.3.          | Muestreo                                        | 22  |
|      | 3.3.4.          | Unidad de análisis                              | 22  |
| 3    | 3.4. Téc        | cnicas e Instrumentos de Recolección de Datos   | 22  |
|      | 3.4.1.          | Técnicas: observación directa                   | 22  |
|      | 342             | Instrumentos                                    | 23  |

| 3.5. Pr         | ocedimientos                                                                                    |
|-----------------|-------------------------------------------------------------------------------------------------|
| 3.5.1.          | Estudios previos                                                                                |
| 3.5.2.          | Procesamiento de la información                                                                 |
| 3.6. M          | étodos de Análisis de Datos40                                                                   |
| 3.6.1.<br>métod | Determinación de la máxima avenida de diseño, empleando el o del hidrograma unitario de Clark40 |
|                 | Cálculo de la máxima avenida de diseño, aplicando el método del rama unitario triangular SCS41  |
|                 | Estimación de la máxima avenida de diseño, utilizando el método del rama unitario de Snyder     |
|                 | Generación de máximas avenidas de diseño empleando métodos egicos                               |
| 3.7. As         | spectos Éticos                                                                                  |
| IV. RESU        | LTADOS 43                                                                                       |
|                 | eterminación de la máxima avenida de diseño, empleando el método del ma unitario de Clark       |
| V. DISCU        | JSIÓN50                                                                                         |
| VI. CONC        | ELUSIONES                                                                                       |
| VII. RECO       | MENDACIONES53                                                                                   |
| REFEREN         | ICIAS:54                                                                                        |
| ANEXOS:         | 57                                                                                              |
| Anexo 1.        | Matriz de consistencia 57                                                                       |
| Anexo 2.        | Instrumentos de Investigación 58                                                                |
| Anexo 3.        | Memoria de cálculo61                                                                            |
| Anexo 4.        | Información pluviométrica85                                                                     |
| Anexo 5.        | Planos94                                                                                        |

# **ÍNDICE DE TABLAS**

| Tabla 1 valores extremos de riesgo admisible para proyectos de drenaje        |      |
|-------------------------------------------------------------------------------|------|
| Tabla 2 Operacionalización de variables                                       |      |
| Tabla 3 Valores o rango de interpretación de validez                          | . 23 |
| Tabla 4 Validez de contenido del instrumento de las variables: V1 métodos     |      |
| hidrológicos y V2 máximas avenidas                                            | . 23 |
| Tabla 5 Interpretación de la confiabilidad según rango y magnitud             | . 24 |
| Tabla 6 Estaciones pluviométricas consideradas                                | . 25 |
| Tabla 7 Parámetros geomorfológicos de las microcuencas W40, W50 y W60.        | . 26 |
| Tabla 8 Análisis de datos dudosos para las 8 estaciones pluviométricas        | . 27 |
| Tabla 9 Precipitaciones máximas anuales en 24 horas                           | . 28 |
| Tabla 10 Nomenclatura, área y perímetro de las microcuencas                   | . 29 |
| Tabla 11 Precipitaciones máximas para distintos tiempos de retorno, estación  |      |
| Juliaca (mm)                                                                  | . 30 |
| Tabla 12 Intensidades máximas para distintos tiempos de retorno, estación     |      |
| Juliaca (mm/h)                                                                | . 30 |
| Tabla 13 Intensidades de diseño para duraciones inferiores a 24 horas, estaci | ón   |
| Juliaca                                                                       | . 31 |
| Tabla 14 Valores del hietograma de diseño T=140 años, estación Juliaca        | . 32 |
| Tabla 15 Valores de hietograma de diseño T=500 años, estación Juliaca         | . 33 |
| Tabla 16 Número de curva CN para la microcuenca W40                           | . 34 |
| Tabla 17 Número de curva CN para la microcuenca W50                           | . 35 |
| Tabla 18 Número de curva CN para la microcuenca W60                           | . 35 |
| Tabla 19 Parámetros del hidrograma unitario de Clark, tiempo de concentració  | n y  |
| coeficiente de almacenamiento                                                 | . 35 |
| Tabla 20 Parámetros del hidrograma unitario del SCS, tiempo de retardo        | . 36 |
| Tabla 21 Parámetros del hidrograma unitario de Snyder, tiempo de retardo de   | la   |
| cuenca y coeficiente pico de la cuenca                                        | . 36 |
| Tabla 22 Valores de K y X, método Instituto Flumen, España                    | . 40 |
| Tabla 23 Máximas avenidas determinados a partir del hidrograma unitario de    |      |
| Clark en la sub cuenca Torococha T=140 años                                   | . 44 |
| Tabla 24 Máximas avenidas a partir del hidrograma unitario de Clark en la sub | )    |
| cuenca Torococha T=500 años                                                   |      |
| Tabla 25 Máximas avenidas calculados a partir del hidrograma unitario del SC  | S    |
| en la sub cuenca Torococha T=140 años                                         | . 46 |
| Tabla 26 Máximas avenidas calculados a partir del hidrogrma unitario de SCS   | en   |
| la subcuenca Torococha T=500 años                                             |      |
| Tabla 27 Máxima avenida estimados a partir del hidrograma unitario de Snyde   | r    |
| en la subcuenca Torococha T=140 años                                          | . 48 |
| Tabla 28 Máximas avenidas estimados a partir del hidrograma unitario de Sny   | der  |
| en la sub cuenca Torococha T=500 años                                         |      |
| Tabla 29 Resumen de máximas avenidas de diseño para distintos tiempos de      |      |
| retorno                                                                       |      |

# **ÍNDICE DE FIGURAS**

| Figura 1 Vista satelital del punto de interés                                    | 2   |
|----------------------------------------------------------------------------------|-----|
| Figura 2 Punto de interés, se aprecia relleno y estrechamiento en el cauce por e | el  |
| pontón                                                                           | 2   |
| Figura 3 Esquema donde se muestran las partes de una cuenca hidrográfica         |     |
| Figura 4 Modelo del hidrograma unitario de Clark                                 | 10  |
| Figura 5 Hidrograma Unitario Sintético triangular                                | 11  |
| Figura 6 Hidrograma unitario de Snyder. a) hidrograma unitario estándar          |     |
| (tp=5.5tr). b) hidrograma unitario requerido (tpr ≠ 5.5tr)                       | 13  |
| Figura 7 Almacenamientos por prisma y por cuña en un tramo de cauce              | 15  |
| Figura 8 Riesgo de por lo menos una excedencia de diseño de vida útil            | 17  |
| Figura 9 Discretización de la sub cuenca del rio Torococha en microcuencas Wa    | 40, |
| W50 y W60                                                                        |     |
| Figura 10 Curvas I.D.F para la estación Juliaca                                  | 31  |
| Figura 11 Hietograma de tormenta de diseño para T=140 años                       |     |
| Figura 12 Hietograma de tormenta de diseño para T=500 años                       | 33  |
| Figura 13 Mapa números de curva CN, sub cuenca Rio Torococha Juliaca             | 34  |
| Figura 14 Hidrograma unitario determinado con el método de Clark T=140 años      |     |
| microcuenca W40                                                                  |     |
| Figura 15 Resumen de la simulación método de Clark T=140 años, microcuenca       |     |
| W40                                                                              |     |
| Figura 16 Hidrograma unitario determinado con el método de Clark T=140 años      |     |
| microcuenca W50                                                                  |     |
| Figura 17 Resumen de la simulación método de Clark T=140 años, microcuenca       |     |
| W50                                                                              |     |
| Figura 18 Hidrograma unitario determinado con el método de Clark T=140 años      | ·,  |
| microcuenca W60                                                                  |     |
| Figura 19 Resumen de la simulación método de Clark T=140 años, microcuenca       |     |
| W60                                                                              |     |
| Figura 20 Hidrograma unitario de salida de Clark para T=140 años                 |     |
| Figura 21 Hidrograma unitario de salida de Clark para T=500 años                 |     |
| Figura 22 Hidrograma unitario de salida del SCS para T=140 años                  |     |
| Figura 23 Hidrograma unitario de salida SCS para T=500 años                      |     |
| Figura 24 Hidrograma unitario de salida de Snyder para T=140 años                |     |
| Figura 25 Hidrograma unitario de salida de Snyder T=500 años                     |     |
| Figura 26 Hidrograma unitario determinado con el método de Clark T=500 años      |     |
| microcuenca W40                                                                  |     |
| Figura 27 Resumen de la simulación método de Clark T=500 años, microcuenca       |     |
| W40                                                                              |     |
| Figura 28 Hidrograma unitario determinado con el método de Clark T=500 años      |     |
| microcuenca W50                                                                  |     |
| Figura 29 Resumen de la simulación método de Clark T=500 años, microcuenca       |     |
| W50                                                                              | 11  |

| Figura 30 Hidrograma unitario determinado con el método de Clark T=500 años                    | s,   |
|------------------------------------------------------------------------------------------------|------|
| microcuenca W60                                                                                | . 72 |
| Figura 31 Resumen de la simulación método de Clark T=500 años, microcueno W60                  |      |
| Figura 32 Hidrograma unitario determinado con el método SCS, T=140 años, microcuenca W40       | . 73 |
| Figura 33 Resumen de la simulación método SCS, T=140 años, microcuenca W40.                    |      |
| Figura 34 Hidrograma unitario determinado con el método SCS, T=140 años,                       |      |
| microcuenca W50Figura 35 Resumen de la simulación método SCS, T=140 años, microcuenca          |      |
| W50Figura 36 Hidrograma unitario determinado con el método SCS, T=140 años,                    |      |
| microcuenca W60<br>Figura 37 Resumen de la simulación método SCS, T=140 años, microcuenca      |      |
| W60Figura 38 Hidrograma unitario determinado con el método SCS, T=500 años,                    | . 75 |
| microcuenca W40Figura 39 Resumen de la simulación método SCS, T=500 años, microcuenca          | . 76 |
| W40Figura 40 Hidrograma unitario determinado con el método SCS, T=500 años,                    | . 76 |
| microcuenca W50                                                                                | . 77 |
| Figura 41 Resumen de la simulación método SCS, T=500 años, microcuenca W50                     | . 77 |
| Figura 42 Hidrograma unitario determinado con el método SCS, T=500 años, microcuenca W60       | . 78 |
| Figura 43 Resumen de la simulación método SCS, T=500 años, microcuenca W60                     | . 78 |
| Figura 44 Hidrograma unitario determinado con el método de Snyder, T=140 años, microcuenca W40 |      |
| Figura 45 Resumen de la simulación método de Snyder, T=140 años,                               |      |
| microcuenca W40<br>Figura 46 Hidrograma unitario determinado con el método de Snyder, T=140    |      |
| años, microcuenca W50Figura 47 Resumen de la simulación método de Snyder, T=140 años,          | . 80 |
| microcuenca W50Figura 48 Hidrograma unitario determinado con el método de Snyder, T=140        | . 80 |
| años, microcuenca W60Figura 49 Resumen de la simulación método de Snyder, T=140 años,          | . 81 |
| microcuenca W60                                                                                | . 81 |
| Figura 50 Hidrograma unitario determinado con el método de Snyder, T=500 años, microcuenca W40 | . 82 |
| Figura 51 Resumen de la simulación método de Snyder, T=500 años, microcuenca W40               | . 82 |
| Figura 52 Hidrograma unitario determinado con el método de Snyder, T=500 años, microcuenca W50 | . 83 |
| ,                                                                                              |      |

| Figura 53 Resumen de la simulación método de Snyder, T=500 años,<br>microcuenca W50            | . 83 |
|------------------------------------------------------------------------------------------------|------|
| Figura 54 Hidrograma unitario determinado con el método de Snyder, T=500 años, microcuenca W60 |      |
| Figura 55 Resumen de la simulación método de Snyder, T=500 años,<br>microcuenca W60            |      |
| microcuenca vvoo                                                                               | . 07 |

#### RESUMEN

La presente investigación titula "Generación de Máximas Avenidas en la sub cuenca Torococha empleando métodos hidrológicos, para diseño del puente Torococha, Juliaca, Puno, 2020" se fijó por objetivo: Generar máximas avenidas de diseño empleando métodos hidrológicos en la sub cuenca del rio Torococha, como metodología se aplicó el método científico, del tipo aplicada, del nivel explicativo y diseño no experimental, los resultados obtenidos fueron: según el hidrograma unitario de Clark 34.90 m3/s para T=140 años, asimismo 53.60 m3/s para T=500 años, por otro lado empleando el hidrograma unitario SCS fue 49.80 m3/s y 76.60 m3/s para T=140 años y T=500 años respectivamente, además aplicando el hidrograma unitario de Snyder se obtuvieron caudales de 32.10 m3/s, 49.20 m3/s para T=140 años, T=500 años correspondientemente, se concluye que los caudales generados presentan variaciones en los resultados obtenidos entre un método y otro, por consiguiente estará a decisión de cada especialista elegir la máxima avenida de diseño y un método definido, sin embargo para el dimensionamiento del puente Torococha se recomienda emplear caudales generados a partir del hidrograma unitario de Clark, ya que en investigaciones realizadas según antecedentes, los resultados de dicho método se ajustaron eficientemente a los caudales máximos registrados hidrométricamente.

**Palabras clave:** métodos hidrológicos, máximas avenidas, escorrentía superficial, precipitación máxima en 24 horas.

#### **ABSTRACT**

The present research entitled "Generation of Maximum Avenues in the Torococha sub-basin using hydrological methods, for the design of the Torococha bridge, Juliaca, Puno, 2020" was set as an objective: To generate maximum design floods using hydrological methods in the Torococha river sub-basin As a methodology, the scientific method was applied, of the applied type, of the explanatory level and nonexperimental design, the results obtained were: according to the Clark unit hydrograph 34.90 m3 / s for T = 140 years, also 53.60 m3 / s for T = 500 years, on the other hand using the SCS unit hydrograph it was 49.80 m3 / s and 76.60 m3 / s for T = 140 years and T = 500 years respectively, in addition, applying the Snyder unit hydrograph, flows of 32.10 m3 / s, 49.20 m3 were obtained / s for T = 140 years, T = 500 years correspondingly, it is concluded that the flows generated present variations in the results obtained between one method and another, consequently it will be up to the decision of each specialist and To choose the maximum design avenue and a defined method, however for the dimensioning of the Torococha bridge it is recommended to use flows generated from the Clark unit hydrograph, since in other investigations carried out according to antecedents, the results of said method were efficiently adjusted to the maximum flow rates recorded hydrometrically.

**Keywords:** hydrological methods, maximum floods, surface runoff, maximum rainfall in 24 hours.

# I. INTRODUCCIÓN

De acuerdo a estudios realizados por la American Association of State Highway and Transportation Officials (AASHTO), se conoce que la mayoria de los puentes que han colapsado en norteamerica y el resto del planeta, fueron a raiz de la socavacion por presencia de maximas avenidas Rocha (2013).

Según las investigaciones de Smith (1976), realizados a 143 puentes, afirma que casi lamitad de las fallas fueron a causa de las grandes descargas, asimismo Wardhana & Hadipriono (2003) estudiaron 500 fallas suscitadas entre 1989 y 2000 en puentes de norteamerica, donde mostraron que el 53 % se presentó a causa de las avenidas y socavación.

En nuestro país estos eventos extremos máximos se presentaron en los fenómenos de El Niño, ocurridos en los años 1983 y 1998 respectivamente; en donde causaron daños considerables a la infraestructura hidráulica, es así que, en el año 1983, 55 puentes fueron afectados o destruidos, en el año 1998 existió 58 puentes arruinados Colegio de ingenieros del Perú (1998).

La experiencia mundial y nacional indican que la acción de las máximas avenidas es el origen fundamental de las fallas que acontecen en los puentes.

En consecuencia, el análisis de las máximas avenidas es primordial para el planteamiento y detalle de los puentes y por consiguiente la prevención de fallas de los mismos.

Las máximas avenidas son acontecimientos producidos por el aspecto eventual de las descargas de los cursos de agua, es decir, que cada crecida va agrupada a una posibilidad de suceso y son muy variables en el tiempo.

El sistema hidrológico del rio Torococha en la coyuntura actual no cuenta con investigaciones referente a aspectos hidrológicos e hidráulicos, por otro lado, no se cuenta con información hidrométrica, en tal sentido, dado que no se tiene medición de caudales en el área de estudio, estas serán estimadas a partir de métodos hidrológicos lluvia-escorrentía-caudal.

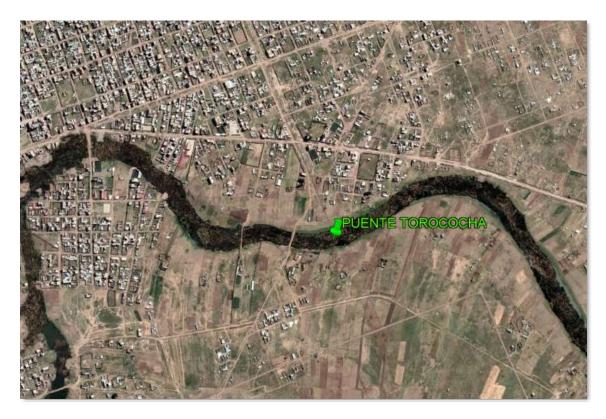



Figura 1 Vista satelital del punto de interés.



Figura 2 Punto de interés, se aprecia relleno y estrechamiento en el cauce por el pontón.

En nuestro territorio peruano y a nivel mundial se presentaron máximas avenidas en los últimos cinco siglos, los cuales fueron muy destructivos, especialmente en materia de puentes.

En lo que respecta a la variable **métodos hidrológicos** se tienen: el hidrograma unitario de Clark, hidrograma unitario triangular SCS, hidrograma unitario de Snyder, estos métodos son los más empleados para estimar máximas avenidas de diseño en cuencas, se basan en que la cuenca actúa como un operador que transforma la precipitación en escorrentía y finalmente a caudal.

En cuanto a la variable **máximas avenidas** de diseño se ha empleado el método lluvia – escurrimiento – caudal, en vista de que en el área de estudio no existen mediciones hidrométricas, para lo cual se analizaron la precipitación, los métodos empleados y se obtuvieron los hidrogramas de crecidas para los distintos tiempos de retorno.

Para la generación de máximas avenidas de diseño es necesario enunciar el problema, fundamentando como **problema general**: ¿Cuánto es la máxima avenida de diseño, empleando métodos hidrológicos en la sub cuenca del rio Torococha?, como problemas específicos; la **primera** ¿Cuánto es la máxima avenida de diseño, empleando el método del hidrograma unitario de Clark en la sub cuenca del rio Torococha?; la **segunda** ¿Cuánto es la máxima avenida de diseño, empleando el método del hidrograma unitario triangular SCS en la sub cuenca del rio Torococha?; y la **tercera** ¿Cuánto es la máxima avenida de diseño, utilizando el método del hidrograma unitario de Snyder en la sub cuenca del rio Torococha?.

Prosiguiendo el orden del reciente modelo de tesis se tiene la justificación del problema; a partir del enfoque **teórico** es de que en la tesis se consigna la teoría de transformación lluvia-escorrentía-caudal, tal conjetura o teoría permite conocer la relación existente entre la respuesta hidrológica de la hoya hidrográfica y los parámetros morfométricos y físicos de la misma. Desde la perspectiva **práctica** los resultados de la investigación facilitarán en brindar datos para probabilidades de ocurrencias necesarias para el diseño del puente Torococha. posteriormente, en lo **metodológico**, en la presente tesis se recurre a la variable independiente "métodos hidrológicos" y su influencia en la variable dependiente "máximas avenidas".

La investigación fijó como **objetivo general**: Generar máximas avenidas de diseño empleando métodos hidrológicos en la sub cuenca del rio Torococha, como **objetivos específicos**: la **primera** Determinar la máxima avenida de diseño, empleando el método del hidrograma unitario de Clark en la sub cuenca del rio Torococha; la **segunda** Calcular la máxima avenida de diseño, aplicando el método del hidrograma unitario triangular SCS en la sub cuenca del rio Torococha; y la **tercera** Estimar la máxima avenida de diseño, utilizando el método del hidrograma unitario de Snyder en la sub cuenca del rio Torococha.

Proyectado los problemas y precisado los objetivos se enuncia la hipótesis, asumiendo como hipótesis general: Se generan máximas avenidas de diseño, a partir de métodos hidrológicos en la sub cuenca del rio Torococha; las hipótesis especificas: la primera Se determina la máxima avenida de diseño, empleando el método del hidrograma unitario de Clark en la sub cuenca del rio Torococha; la segunda Se calcula la máxima avenida de diseño, aplicando el método del hidrograma unitario triangular SCS en la sub cuenca del rio Torococha, la tercera Se puede estimar la máxima avenida de diseño, utilizando el método del hidrograma unitario de Snyder en la sub cuenca del rio Torococha.

# II. MARCO TEÓRICO

En el Perú se realizaron estudios de acontecimientos hidrológicos intensos y sus efectos. En seguida, se describen cinco de estos estudios ejecutados en el medio nacional.

Avellaneda y Montalvo (2019) en el trabajo de tesis de grado titulado "Análisis comparativo de los métodos Racional modificado Témez, Hidrogramas unitarios SCS, Clark y Snyder en la obtención de caudales máximos para las subcuencas Cañad y Alto Chancay Lambayeque – Cuenca Chancay Lambayeque", fijó como **objetivos** realizar un análisis comparativo de cuatro métodos, para obtener caudales máximos, para las sub cuencas Cañad y Alto Chancay Lambayeque, para obtener los hidrogramas unitarios emplearon métodos hidrológicos calculados a partir del software HEC HMS, por otro lado aplicando **métodos** estadísticos con los datos registrados en la estación hidrométrica Cirato se calcularon caudales máximos, los cuales sirvieron de base para la comparación de los resultados, finalmente fija como **conclusiones** que, los métodos del hidrograma unitario SCS y Racional modificado Témez, sobreestimaron los caudales, el método de Snyder es el que genero caudales intermedios en comparación al resto de métodos, y el método de Clark, genero menores caudales, pero es el método que mejor se ajusta en periodos de retorno mayores.

Diaz (2019) en la tesis de grado "Modelamiento Hidrológico e Hidráulico del Rio San Ramon para el Diseño del Puente Evitamiento, Provincia de Satipo, Junín", fijo como **objetivos** determinar el caudal de diseño, mediante **métodos** de conversión de lluvias a escurrimiento superficial, los **resultados** obtenidos de creciente máxima para el diseño es de 389 m3/s, 487.50 m3/s para tiempos de retorno de 175 y 500 años correspondientemente, por otro lado los parámetros hidráulicos estimados son: ancho definido del rio 75 m, galibo 11.00 m, el calado máximo 2.41 m, y una socavación total de 3.28 m.

Portuguéz (2017) en su tesis de maestria titulado "Aplicación de la geoestadística a modelos hidrológicos en la cuenca del rio Cañete" fijó como **objetivos** determinar el escurrimiento directo para varios tiempos de retorno, empleando modelos hidrológicos, para tal efecto empleo el **método** de transformación lluvia en escorrentía, el **resultado** de la simulación hidrológica obtuvo la escorrentía directa, además **concluye** que la simulación con el

hidrograma unitario de Clark, obtiene valores apropiados, además obtienen mínimos errores en cuanto a porcentajes, por lo que indica que es el más eficiente y que sus resultados son confiables en comparación a los caudales registrados hidrométricamente.

Autoridad Administrativa del Agua (2017) los **objetivos** del estudio fueron: delimitar el ancho de la faja marginal de las quebradas Puruchaca, Macahuasi, Colcaqui, Sahuanay, Ullpuhuayco y Ñacchero afluentes del rio Mariño, en una longitud de 16.96 Km, correspondiente al sector urbano de la ciudad de Abancay, en donde generaron caudales de crecidas máximas de los eventos hidrológicos y su periodicidad, para un tiempo de retorno de 100 años, para tal efecto emplearon **métodos** estadísticos, cuyos resultados han sido comparados con el modelo hidrológico HEC HMS y el modelo de simulación hidráulica IBER, los **resultados** de caudales que obtuvieron son: quebrada Puruchaca 33.95 m3/s, quebrada Marcahuasi 7.67 m3/s, quebrada Colcaqui 11.95 m3/s, quebrada Sahuanay 8.81 m3/s, quebrada Ullpuhuaycco 3.20 m3/s, quebrada Ñacchero 4.94 m3/s, el presente estudio. **Concluye** que con el presente estudio se logrará conservar y preservar los recursos hídricos y sus bienes asociados, así mismo prevenir el desborde de las quebradas que pudieran afectar a varias viviendas aledaños al cauce.

Ayala (2012) establece el cálculo de las avenidas máximas sobre la cuenca lchu, en el artículo "Hidrología determinística para la estimación de avenidas máximas en la cuenca del Rio Ichu", cuyo **objetivo** es calcular el caudal de la máxima crecida extraordinaria (NAME) para 50, 100, 200 y 500 años de periodos de retorno, la **metodología** es mediante el modelo determinístico HEC - 1, transformación lluvia - escorrentía, que de acuerdo a sus características geomorfológicas de la cuenca permitieron calcular los caudales máximos, cuyos **resultados** obtenidos fueron; 280 m3/s, 355.70 m3/s, 435.70 m3/s y 553.80 m3/s correspondientemente. **Concluye** que los caudales de máximas avenidas obtenidos en el artículo se emplearan para el proyecto de un puente vehicular situado en la comunidad de Pucarumi.

En las actividades precedentes como referencia internacional se tienen:

Bermeo et al (2018) trabajo realizado para ostentar el grado de especialista en Recursos Hídricos, en el trabajo de grado titulado "Estimación de los Caudales

Máximos y Caracterización Morfométrica de la Subcuenca del Cauce en el Sector Hidrodependiente del Municipio de San Francisco – Cundimarca", fijó como **objetivo**: calcular caudales máximos empleando modelización hidrológica con la herramienta computacional HEC HMS e instrumento SIG, de la subcuenca San Francisco, Cundimarca, para lo cual se emplearon **métodos** de los hidrogramas sintéticos de Clark, Snyder y SCS fija como **conclusiones** que los métodos empleados para la obtención de caudales máximos demuestran que no existen variaciones significativas de los resultados.

Preciado (2018) para optar el grado de maestro en ingeniería en la Universidad Autónoma de Chihuahua, en la tesis "Metodología para el Pronóstico del Caudal en Cuencas no Aforadas", estableció como **objetivo** desarrollar una metodología para el pronóstico del caudal en cuencas no aforadas, empleó la **metodología** de elaboración de hietogramas de diseño en base a las relaciones IDF (intensidad, duración y frecuencia) y procedimientos propuestos por la SCS para determinar la lluvia en exceso e hidrogramas de diseño, además propone el método de Muskingum para el tránsito de hidrogramas, como **resultado** se obtiene un modelo hidrológico que nos permite simular un sistema hidrológico y obtener hidrogramas de diseño, **concluye** que mediante la metodología propuesta es posible realizar un modelo hidrológico para el pronóstico de crecientes en cuencas no aforadas considerando distintas condiciones del suelo.

Arteaga (2017) para ostentar el título de magister en recursos hídricos, en el proyecto "Evaluación del Modelo Hidrológico HEC – HMS para la Predicción Hidrológica y Crecidas, en la Cuenca Baja del Rio Cañar", fijó como **objetivos** calibrar el modelo Hidrológico HEC HMS, para su apreciación en la predicción de avenidas del rio Cañar, empleó los **métodos** hidrogramas sintéticos SCS, Clark y Snyder para la estimación de la lluvia - escurrimiento, y Muskingum para el tránsito de avenidas. Obtuvo como **resultados** que el 50 % de los eventos de máximas crecidas observados fueron generados satisfactoriamente por el modelo HEC HMS en la cuenca Cañar, **Concluye** que el método que mejor se ajusta al caudal generado con datos hidrométrico fue el hidrograma sintético de Clark.

Duque et al (2019) en el artículo "Evaluación del Sistema de Modelamiento Hidrológico HEC-HMS para Simulación Hidrológica de una Microcuenca Andina Tropical", establecieron como **objetivos** la simulación del procedimiento hidrológico

de la microcuenca Chaquilcay situado en los andes Ecuatorianos, la **metodología** empleada para la estimación de sus caudales, procedieron a: 1) caracterizar las abstracciones iniciales con el hidrograma SCS, obtuvieron el CN para la zona alta y zona baja de la hoya, 2) transformación de la lluvia efectiva en caudal, 3) tránsito de avenidas con el método de Muskingum Cunge. Logran obtener como **resultados** caudales pico de 1.7 m3/s, 1.8 m3/s y 1.9 m3/s para (T=25, T=50 y T=100 años) correspondientemente, **concluyen** que, la información obtenida puede ser utilizada para hoyas en la zona de estudio.

Garcia & Conesa (2011) en el artículo "Estimación de Caudales de Avenida y Delimitación de Áreas Inundables Mediante Métodos Hidrometeorológicos e hidráulicos y Técnicas SIG, estudio Aplicado al Litoral Sur de la Región Murcia", fijaron como objetivos estimar caudales de avenidas y delimitación de áreas de inundación mediante el uso variado de datos de lluvias, patrones hidrológicos, hidráulicos y herramientas SIG, la metodología que emplearon fueron métodos de conversión precipitación - escurrimiento superficial. En el estudio han logrado estimar y cuantificar satisfactoriamente los parámetros hidrológicos necesarios para determinar las crecidas y la delimitación de áreas inundables. Concluyeron que, la metodología propuesta es adecuado para el proceso de caracterización y simulación hidrológica en cuencas pequeñas como es el caso de estudio, los resultados se encuentran altamente condicionadas por la escala de tormenta analizada, calidad de datos pluviométricos y la calidad de resolución de los modelos de elevación digital.

Referente a las teorías concernientes a la temática se revisaron concepciones pertinentes a las variables y sus correspondientes dimensiones.

Respecto a la variable **máximas avenidas**, según Rocha (2013) indica que una crecida es fruto de la conjunción de algunas situaciones hidrometeorológicas y no se puede hacer ninguna acción para impedir su ocurrencia.

Similarmente, Monsalve (1999), define la **maxima avenida** o crecida como un "fenomeno de ocurrencia de caudales relativamente grande" (p.225)

Esta variable a su vez estructurada mediante sus dimensiones, como dimension 1, se tiene la **cuenca** de acuerdo a Aparicio (1999) define como un espacio geografico en donde las particulas de agua precipitan sobre ella y yacen

a ser desaguadas por medio de curso de agua hacia un mismo lugar de desembocadura.



Figura 3 Esquema donde se muestran las partes de una cuenca hidrográfica.

Según Gutiérrez (2014) define la **precipitación** como fragmentos de agua, con tamaños mayores a 0.5 mm o de partículas de gotas menores, pero bastante esparcidas.

Finalmente se tiene la **respuesta hidrológica** definido por Cabrera (2006) indica que las unidades de respuesta hidrológica son espacios de una hoya de similares características en expresiones de resultado hidrológico y particularidades geográficas y meteorológicas.

En cuanto a la teoría relacionada a los métodos que se emplearon para la estimación de máximas avenidas se tienen **métodos hidrológicos**:

Para Campos (1982) los métodos hidrológicos tienen el propósito de reproducir el proceso de formación de la crecida, es decir deduce la lluvia de duración y tiempo de retorno definido intrínsicamente factible y se calcula la escorrentía en un sitio del afluente estudiado hasta trazar el probable hidrograma de crecida.

La variable métodos hidrológicos está estructurada mediante sus dimensiones que en este caso resultan ser los tipos y parámetros; como dimensión 1, se tiene el **método del hidrograma unitario de Clark**, dicho método toma en consideración el tránsito de avenidas por medio de una hoya empleando las curvas isócronas. Las curvas articulan lugares de la hoya que presentan similar periodo de desagüe (CAHUANA, y otros, 2009).

$$q = \frac{2.78 * A}{\Delta t} \tag{1}$$

#### Donde:

q : Caudal, en (m<sup>3</sup>/s.cm)

A : Superficie de la hoya, en (km²)

 $\Delta t$ : Intervalo de tiempo, en (horas)

Clark indica que este hidrograma sea transitado por alguna metodología de acumulación, recomienda que el hidrograma sea transitado de acuerdo a alguna metodología de almacenamiento.

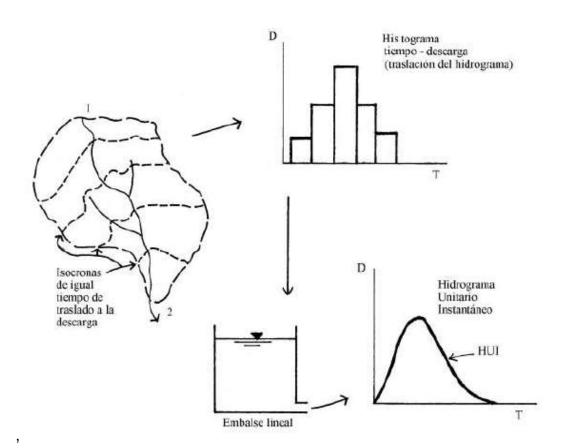



Figura 4 Modelo del hidrograma unitario de Clark.

En seguida se considera la dimensión 2, **método del hidrograma unitario triangular de la SCS**, Aparicio (1999) indican que esta metodología fue inicialmente investigada por Mockus y a continuación adoptado por el servicio de conservación de suelo (SCS). Suministra parámetros principales del hidrograma, como: caudal Pico (Q<sub>p</sub>); tiempo base (t<sub>b</sub>) y tiempo en el que se produce el pico (t<sub>p</sub>).

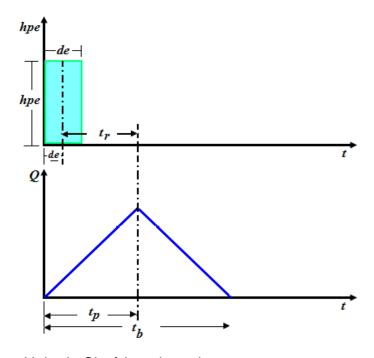



Figura 5 Hidrograma Unitario Sintético triangular.

De la comparación de diversos estudios, Mockus culminó que el tiempo base y el tiempo pico se determinan según las siguientes expresiones:

$$t_b = 2.67t_p$$
 (2)

De los cuales Qp es:

$$Q_{\rm p} = 0.208 \frac{A * P_{\rm e}}{t_{\rm p}} \tag{3}$$

#### Donde:

Q<sub>p</sub> : Caudal máximo, en (m<sup>3</sup>/s)

A : Superficie de hoya, en (km²)

Pe : Altura de lluvias efectivas, en (mm)

t<sub>p</sub>: Duración máxima, en (horas)

t<sub>b</sub>: Duración base, en (horas)

El tiempo pico se expresa como:

$$t_{p} = \frac{t_{b}}{2} + d_{e} \tag{4}$$

#### Donde:

t<sub>p</sub>: Duración máxima, en (horas)

t<sub>b</sub>: Duración base, en (horas)

de : Duración en exceso, en (horas)

La duración en exceso, d<sub>e</sub>, se puede estimar mediante las siguientes expresiones:

Para cuencas grandes:

$$d_{e} = 2\sqrt{t_{c}} \tag{5}$$

Para cuencas pequeñas:

$$d_{e} = t_{c} \tag{6}$$

Donde:

de : Duración en exceso, en (horas)

t<sub>c</sub>: Tiempo de concentración, en (horas)

El tiempo de retraso, tr, se puede calcular empleando las ecuaciones siguientes:

$$t_{\rm r} = 0.6t_{\rm c} \tag{7}$$

$$t_{\rm r} = 0.005 \left(\frac{L}{\sqrt{\rm S}}\right)^{0.64} \tag{8}$$

Donde:

t<sub>r</sub>: Tiempo de retraso, en (horas)

t<sub>c</sub>: Tiempo de concentración, en (horas)

L : Longitud del rio principal, en (m)

S : Pendiente del rio, en (%)

La lluvia efectiva se determina aplicando las siguientes ecuaciones:

$$P = P_{24h} \left(\frac{D}{1440}\right)^{0.25} \tag{9}$$

$$P_{e} = \frac{(P - I_{a})^{2}}{P + 0.8S} = \frac{(P - 0.20S)^{2}}{P + 0.8S}$$
(10)

$$S = \frac{1000}{CN} - 10 \tag{11}$$

Donde:

P<sub>24h</sub>: Precipitación máxima en 24 horas, en (mm)

D : Duración, en (minutos)

Pe : Precipitación efectiva, en (pulg)

S : Abstracción inicial (adimensional)

CN: Numero de curva (adimensional)

Finalmente se tiene la dimensión 3, que corresponde al **método del hidrograma unitario de Snyder**, Chow, et al (1994) manifiesta que, Snyder encontró en el año 1938 relaciones sintéticas, aplicados en los montes Apalaches, para ciertas particularidades del hidrograma estándar.

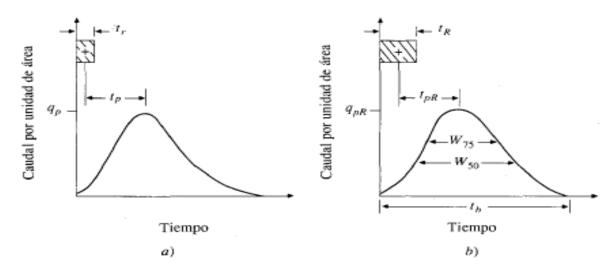



Figura 6 Hidrograma unitario de Snyder. a) hidrograma unitario estándar (tp=5.5tr). b) hidrograma unitario requerido (tpr ≠ 5.5tr).

Snyder define que el hidrograma unitario estándar como: un hidrograma cuyo tiempo de lluvia  $t_r$  está conexa con el tiempo de retardo  $t_p$  por:

$$t_p = 5.5 * t_r$$
 (12)

$$t_{p} = C_{1} * Ct * (L * L_{c})^{0.3}$$
 (13)

#### Donde:

t<sub>p</sub> : Tiempo de retraso de la cuenca en horas

tr : Duración de la lluvia a intensidad constante.

L : longitud de la corriente principal desde la salida hasta la divisoria de aguas (millas o Km)

 L<sub>c</sub> : Longitud a lo largo del canal principal desde la salida hasta el punto más cercano al centroide de la cuenca (millas).

Ct : Coeficiente que varía entre 1.8 a 2.2 en los montes Apalaches. Por lo tanto,
 es un coeficiente basado en instrumentación.

c1 : 0.75 (1 para el sistema ingles)

El caudal pico por unidad de área de drenaje en m3/s\*km2 del hidrograma unitario estándar es:

$$q_p = \frac{2.75 * Cp}{tp} \tag{14}$$

Si  $t_{pR}=5.5*t_r\,,$  entonces se comporta como un hidrograma unitario estándar.

Pero si resulta muy diferente, el retardo de la cuenca estándar es:

$$t_{p} = t_{pR} + \frac{t_{r} - t_{R}}{4} \tag{15}$$

La relación del caudal pico  $q_p$  entre caudal pico por unidad de área de drenaje  $q_{pR}$  del hidrograma unitario requerido es:

$$q_{pR} = \frac{q_p * t_p}{t_{pR}}$$
 (16)

Por otro lado, para generar caudales de crecida o máximas avenidas, se ha empleado el **tránsito de hidrograma** de salida mediante afluentes; Barrientos (2020), menciona que el tránsito de hidrogramas es un método hidrológico empleado para estimar la acumulación en un cauce sobre la forma y corriente de una onda de avenida.

Cuando el cauce principal ocupa una superficie apreciable, tiene capacidad para almacenar agua y donde la pendiente es pequeña, entonces se debe tomar en cuenta que cambia la forma del hidrograma de la avenida o caudal máximo, según éste se desplaza hacia aguas abajo.

Entre los métodos hidrológicos, probablemente el más empleado es el de Muskingum.

El almacenamiento (S) en una determinada longitud del rio se pueden bifurcar.

El estancamiento en prisma, yacería igual al caudal de salida (Q) y el encharcamiento en cuña, que sería función de la diferencia entre el caudal de ingreso y el de desembocadura (I-Q), sabiendo que cuanto mayor sea la variación, más cargada será la cuña:

$$S_{prisma} = KQ \tag{17}$$

$$S_{cuña} = KX(I - Q) \tag{18}$$

Sumando las dos expresiones anteriores, se obtiene:

$$S_{t} = KQ_{t} + KX(I_{t} - Q_{t}) = K(XI_{t} + (1 + X)Q_{t})$$
(19)

#### Donde:

S = Estancamiento en un tramo del rio (m3)

I = Caudal de ingreso en un tramo del rio (m3/s)

Q = Caudal de desembocadura en ese tramo (m3/s)

K = Tiempo de tránsito de la onda de avenida a través del tramo (h)

 $X = Factor de ponderación (0 \le X \le 0.5) en función de la forma de almacenamiento en cuña.$ 

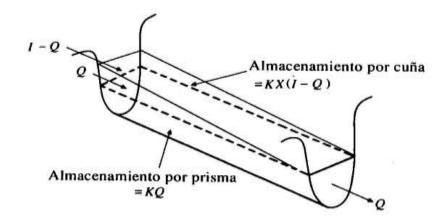



Figura 7 Almacenamientos por prisma y por cuña en un tramo de cauce.

Existen métodos para obtener los parámetros K y X en cauces cuyas avenidas han sido aforadas en los extremos del tramo de interés, sin embargo, en la mayoría de los casos no se cuenta con los datos de aforo por lo cual es necesario emplear métodos simplificados para estimar dichos parámetros.

Para el tema particular de la tesis, se aplicó el método del Instituto en Dinámica Fluvial e Ingeniería Hidrológica, Universidad Politécnica de Cataluña, España, (FLUMEN, 2004 pág. 19).

$$K = 0.18 \left(\frac{\Delta_X}{S^{0.25}}\right)^{0.76} \tag{20}$$

Dónde:

 $\Delta x$  = Distancia del rio en km.

S = Pendiente máxima de la subcuenca en m/m.

Otra opción sería:

$$K = 0.6 * T_C$$
 (21)

Dónde:

Tc = Tiempo de concentración en horas.

El parámetro X, en España utilizan valores de 0.2 para inclinación o pendientes llanas y 0.35 para fuertes inclinaciones.

Los parámetros de K y X seleccionados deben cumplir la condición:

$$\Delta_{t} > 2 * K * X \tag{22}$$

Si no se ajusta a esta limitación se busca entonces el número de subtramos N.

$$N = \frac{2 * K * X}{\Delta_{t}} \tag{23}$$

Donde  $\Delta_t$  es el aumento de la duración que se utilizó para determinar los resultados.

Por otro lado, para tomar el **periodo de retorno** a emplear en el diseño de un proyecto hidráulico como es el caso de un puente, es oportuno contemplar la dependencia que existe entre la probabilidad de excedencia de un suceso, la vida útil de la infraestructura y el riesgo admisible (MTC, 2012 pág. 18).

El riesgo admisible en función del periodo de retorno y vida útil esta dado por:

$$R = 1 - \left(1 - \frac{1}{T}\right)^n \tag{24}$$

Donde:

R = Riesgo admisible en %

T = Tiempo de retorno en años

n = Vida útil de la obra hidráulica en años

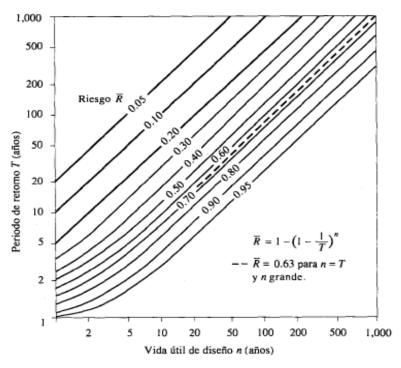



Figura 8 Riesgo de por lo menos una excedencia de diseño de vida útil.

Asimismo, en la siguiente tabla se consignan valores del riesgo admisible para proyectos de drenaje.

Tabla 1 Valores extremos de riesgo admisible para proyectos de drenaje.

| TIPO DE OBRA                                                          | RIESGO ADMISIBLE (**)<br>( %) |  |  |
|-----------------------------------------------------------------------|-------------------------------|--|--|
| Puentes (*)                                                           | 25                            |  |  |
| Alcantarillas de paso de quebradas importantes y<br>badenes           | 30                            |  |  |
| Alcantarillas de paso quebradas menores y descarga de agua de cunetas | 35                            |  |  |
| Drenaje de la plataforma (a nivel longitudinal)                       | 40                            |  |  |
| Subdrenes                                                             | 40                            |  |  |
| Defensas Ribereñas                                                    | 25                            |  |  |

Fuente: MTC (2012)

# III. METODOLOGÍA

# 3.1. Tipo y Diseño de Investigación

#### 3.1.1. Método: Científico

El método científico forma parte de una secuencia de pasos, métodos, herramientas, actos, tácticas para solucionar problemas de investigación, así como para comprobar la hipótesis planteada Carrasco (2006).

Se indica que la tesis de investigación es el método científico, ya que se realiza un conjunto de pasos ordenados, que empieza con la observación directa verificadas en la zona de estudio; marcas de nivel de avenidas máximas de gran importancia, evidenciar el comportamiento hidráulico de las infraestructuras presentes e identificación del punto de interés, enseguida se realiza el enunciado del problema, la postulación de las hipótesis de si se determina, calcula o estima las máximas avenidas mediante métodos hidrológicos y concluyendo con los resultados.

De acuerdo a estos argumentos, en esta investigación se aplicó el método científico.

# 3.1.2. Tipo: Aplicada

La investigación aplicada persigue solucionar inconvenientes prácticos, con un margen de generalidad definida. asimismo, es insuficiente el aporte al conocimiento científico desde una perspectiva teórica (MARTINEZ, 2012).

Conforme a lo anterior, al calcular, determinar o estimar la máxima avenida de diseño, se buscará la generación de conocimientos con aplicación a problemas reales el cual es la crecida o máxima avenida que se puede presentar en el rio Torococha, cuyo propósito es conocer los caudales máximos de diseño para el dimensionamiento adecuado del puente a proyectarse en la Av. Circunvalación II de la Ciudad de Juliaca.

En base a la proposición evidenciada, esta investigación se compone del tipo *aplicada*.

### **3.1.3. Nivel:** Explicativo

El nivel explicativo está orientado a contestar el principio de los acontecimientos y sucesos físicos o sociales, es decir su utilidad se ajusta en explicar por qué ocurre un fenómeno y en qué circunstancias se presenta o por qué se relacionan dos o más variables Hernandez, et al (2014).

Referente a la tesis de investigación, aparte de detallar las particularidades de las variables de investigación, se buscará calcular, determinar y estimar la máxima avenida de diseño empleando tres métodos.

De acuerdo a este análisis y argumentación la tesis corresponde al nivel **explicativo.** 

#### 3.1.4. Diseño: No experimental

De acuerdo a Flores (2017) la investigación no experimental es donde no existe maniobra de variables independientes, es decir se fundamenta en variables que ya acontecieron en el entorno sin la participación clara del investigador.

Según la descripción anterior, el diseño de la tesis corresponde a no experimental de corte transeccional, pues no se manipulará intencionalmente las variables y la toma de datos se realizará en un solo momento.

Conforme a este estudio, el diseño empleado en la tesis fue diseño **no experimental**.

# 3.2. Variable y Operacionalización

#### 3.2.1. Variable 1: Métodos hidrológicos

#### Definición conceptual:

García (1989) señala que los "métodos hidrológicos intentan establecer una relación entre el volumen de precipitación y el volumen de escorrentía. La cuenca actuaría como un operador que transforma un input, precipitación, en un output, escorrentía" (p.29).

#### Definición operacional:

Los métodos hidrológicos aplicados para la generación de máximas avenidas se operacionalizan mediante la aplicación del método del hidrograma unitario de Clark, hidrograma unitario SCS y el hidrograma unitario de Snyder, dichos métodos tienen la virtud de acceder aceptablemente el acontecimiento, en

base a la determinación de diferentes medidas; precipitaciones máximas y las características geomorfológicas de la hoya hidrográfica.

#### 3.2.2. Variable 2: Máximas avenidas

# Definición conceptual:

De acuerdo a Rocha (2013) indica que las avenidas son "fenómenos naturales que suelen causar grandes daños en todo el mundo".

# Definición operacional:

Las máximas avenidas de diseño se operacionalizan mediante el empleo de la técnica de transformación de lluvia – escurrimiento - caudal, para lo cual se analizaron la cuenca, la precipitación máxima en 24 horas y finalmente la respuesta hidrológica de la cuenca.

## 3.2.3. Operacionalización de Variables

La operacionalización de variables radica en establecer el procedimiento mediante el cual las variables fueron estimados o desarrollados.

Ríos (2017) afirma que el procedimiento de operacionalizar variables, "consiste en ubicar las variables de estudio en un plano de entendimiento concreto y preciso para su estudio significativo y real" (p.75).

Tabla 2 Operacionalización de variables

| VARIABLE                       | DEFINICIÓN<br>CONCEPTUAL                                                                                                                                                                | DEFINICION OPERACIONAL                                                                                                                                                                                                       | DIMENSIÓN                                                                                 | INDICADOR                                                                                                | INSTRUMENTO                           | ESCALA          |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|
|                                | Para Campos (1982) los métodos hidrológicos tienen el propósito de reproducir el proceso de formación de la crecida, es decir deduce la lluvia de duración y tiempo de retorno definido | Los métodos hidrológicos aplicados para la generación de máximas avenidas se operacionalizan mediante la aplicación del método del hidrograma unitario de Clark, hidrograma unitario SCS y el hidrograma unitario de Snyder. | D1:<br>Método del<br>Hidrograma<br>Unitario de Clark<br>D2:                               | I1: Tiempo de concentración I2: Coeficiente de almacenamiento I3: Velocidad de propagación I1: tiempo de |                                       | Razón           |
| V1:<br>Métodos<br>Hidrológicos |                                                                                                                                                                                         |                                                                                                                                                                                                                              | Método del<br>Hidrograma<br>Unitario Triangular                                           | concentración 12: Tiempo base 13: Tiempo pico                                                            | Ficha de recopilación de información. | Razón           |
|                                |                                                                                                                                                                                         |                                                                                                                                                                                                                              | de la SCS<br>D3:<br>Método del<br>Hidrograma<br>Unitario de Snyder                        | I1: Tiempo de retardo I2: Coeficiente pico de la cuenca I3: Flujo base                                   |                                       | Razón           |
|                                | Rocha (2013), indica que                                                                                                                                                                | ·                                                                                                                                                                                                                            | D1:<br>Cuenca                                                                             | I1: Características<br>morfométricas<br>I2: Características<br>físicas<br>I3: Red de drenaje             |                                       | Razón           |
| V2:<br>Máxima<br>avenida       | ima tenomenos naturales que lluvia – escurrimiento - caudal,                                                                                                                            | lluvia – escurrimiento - caudal, para lo cual se analizaron la                                                                                                                                                               | D2:<br>Precipitación                                                                      | <ul><li>I1: Intensidad</li><li>I2: Duración</li><li>I3: Frecuencia</li></ul>                             | Ficha de recopilación de información. | Razón/intervalo |
|                                |                                                                                                                                                                                         | D3:<br>Respuesta<br>hidrológica de la<br>cuenca                                                                                                                                                                              | I1: Parámetros<br>geomorfológicos<br>I2: Parámetros<br>topológicos<br>I3: Precipitaciones |                                                                                                          | Razón                                 |                 |

Fuente: Elaboración propia

# 3.3. Población, Muestra, Muestreo y Unidad de Análisis

#### 3.3.1. Población

Para Tamayo (2003) la población es un "conjunto o la totalidad de un grupo de elementos, casos u objetos que se quiere investigar" (p.176).

La población de esta investigación estará conformada por la *cuenca del rio*Coata.

#### 3.3.2. Muestra

Según Cruz et al (2014) la muestra es una disgregación de los miembros de una población.

La muestra elegida para esta tesis es la sub cuenca del rio Torococha.

#### 3.3.3. Muestreo

De acuerdo a Ñaupas et al (2013) afirma que el tipo de **muestreo no probabilísticos** es cuando no se puede conocer el nivel de certeza de los resultados de la investigación, ya que este tipo de muestreo no emplea leyes del azar mucho menos el cálculo de probabilidades, por lo cual las muestras obtenidas son sesgadas.

De acuerdo a la clasificacion, la investigacion ha empleado el *muestreo no probabilistico intencional*.

#### 3.3.4. Unidad de análisis

Fuentes et al (2020) sostiene que "la unidad de análisis representa a los sujetos o al objeto concreto en quienes será aplicado el estudio: pueden ser personas, organizaciones y/o naciones" (p.38).

De lo anterior, la unidad de análisis de la investigación es el *rio Torococha*.

#### 3.4. Técnicas e Instrumentos de Recolección de Datos

#### **3.4.1. Técnicas:** observación directa

La observación, es un procedimiento estricto que nos facilita saber de forma clara la finalidad del estudio, enseguida proceder a detallar y examinar acontecimiento sobre el escenario estudiado (BERNAL, 2010 pág. 257).

La técnica empleada para esta tesis es es la *observación directa*.

#### 3.4.2. Instrumentos:

Para Carrasco (2006) afirma que se tiene la ficha de observación, de manipulación sencilla, pero de mucha ventaja, el cual se utiliza para recopilar datos que se estiman como resultado de la relación directa entre el observador y la situación contemplada (p.313).

En la presente tesis se ha utilizado como instrumento la *ficha de* recolección de datos.

#### 3.4.3. Validez:

Como indica Hernandez et al (2014), la validez de expertos es el valor en que una herramienta evalua la variable en cuestion, conforme a expertos en el tema (p.204).

Tabla 3 Valores o rango de interpretación de validez.

| Rango        | Interpretación    |
|--------------|-------------------|
| 0.53 a menos | Validez nula      |
| 0.54 a 0.59  | Validez baja      |
| 0.60 a 0.65  | Valida            |
| 0.66 a 0.71  | Muy Valida        |
| 0.71 a 0.99  | Excelente validez |
| 1.00         | Validez perfecta  |

Fuente: Oseda et al (2011)

Tabla 4
Validez de contenido del instrumento de las variables: V1 métodos hidrológicos y
V2 máximas avenidas.

| N° | Grado<br>académico | Nombres y Apellidos      | CIP.   | Validez |
|----|--------------------|--------------------------|--------|---------|
| 1  | Dr.                | German Belizario Quispe  | 80986  | 0.80    |
| 2  | Ing.               | Federico D. Condori Cayo | 117989 | 0.77    |
| 3  | Ing.               | Hugo Tarqui Cruz         | 162740 | 0.84    |

Fuente: Elaboración Propia.

La validez promedio es 0.80, de acuerdo a la tabla 3, rango de interpretación de validez se tiene excelente validez.

#### 3.4.4. Confiabilidad:

Hernández (2014) manifiesta que la confiabilidad de un instrumento de medición es el grado en que su aplicación sucesiva a un mismo individuo u objeto produce resultados similares (p.200).

Tabla 5 Interpretación de la confiabilidad según rango y magnitud

| Rango de confiabilidad | Interpretación |
|------------------------|----------------|
| 0.81 – 1.00            | Muy alta       |
| 0.61 - 0.80            | Alta           |
| 0.41 - 0.60            | Moderada       |
| 0.21 - 0.40            | Baja           |
| 0.001 – 0.20           | Muy baja       |

Fuente: Lao & Takakuwa (2017)

#### 3.5. Procedimientos

# 3.5.1. Estudios previos.

#### 3.5.1.1. Ubicación

El área de estudio políticamente se ubicada en el distrito de Juliaca, provincia de San Román, departamento y región de Puno, esta región se encuentra en la parte sur del territorio nacional.

Geográficamente el área de interés, está comprendida entre las siguientes coordenadas: Latitud Sur: 13° 22' 44.5" a 13° 26' 39" y Longitud Oeste: 71° 58' 06.6" a 72° 03' 55.6", con una variación altitudinal de 3824 m.s.n.m. en la zona del Aeropuerto y a 4139 m.s.n.m. en la cima del cerro Monos.

La zona de interés hidrográficamente es parte conformante de la cuenca Coata, perteneciente al Sistema Hidrográfico del Titicaca.

#### 3.5.1.2. Data histórica hidrológica

Se solicitó al SENAMHI (Servicio Nacional de Meteorología e Hidrología) la data histórica de precipitación máxima en 24 horas de las estaciones pluviométricas: Juliaca, Cabanillas, Lampa, Mañazo, Pucara, Capachica, Puno y Taraco.

Tabla 6
Estaciones pluviométricas consideradas

| Estación   | Latitud      | Longitud    | Altitud<br>(msnm) | Período de registros        | Tipo de Registro                    |
|------------|--------------|-------------|-------------------|-----------------------------|-------------------------------------|
| Juliaca    | 15°28'28"    | 70°10'10"   | 3820              | 1961 - 1995,<br>2001 - 2019 | Precipitación máxima<br>en 24 horas |
| Cabanillas | 15°10'10.5"  | 69°58'11.6" | 3920              | 1964 - 1979,<br>1985 - 2016 | Precipitación máxima<br>en 24 horas |
| Lampa      | 15°40'24.4"  | 70°22'19.6" | 3892              | 1963 - 2019                 | Precipitación máxima<br>en 24 horas |
| Capachica  | 15'36'22.9"  | 69°49'55.7" | 3828              | 1960 -1978,<br>1985 - 2019  | Precipitación máxima<br>en 24 horas |
| Mañazo     | 14°48'02"    | 70°03'59.7" | 3910              | 1960 - 1977,<br>1994 - 2019 | Precipitación máxima<br>en 24 horas |
| Pucara     | 15°02'.44.4" | 70°21'59.9" | 3877              | 1965 - 2019                 | Precipitación máxima<br>en 24 horas |
| Puno       | 15°49'34.5"  | 70°00'43.5" | 3812              | 1966 - 2003,<br>2007 - 2019 | Precipitación máxima<br>en 24 horas |
| Taraco     | 15°10'.10.5" | 69°58'11.6" | 3849              | 1964 - 2014,<br>2017 - 2019 | Precipitación máxima en 24 horas    |

Fuente: Elaboración propia

# 3.5.1.3. Recopilación de mapas cartográficos e imágenes satelitales

Los mapas cartográficos necesarios para el procesamiento de información fueron:

- Carta Nacional 1/100,000; Instituto Geográfico Nacional. Hojas de restitución
   31 v Juliaca; 32 v Puno, zona 19 L.
- Imágenes ASTER GDEM (Aster Global Digital Elevation Model), con resolución espacial de 30 metros y hace referencia al geoide WGS84/EGM96, formato GeoTIFF (MINAM).
- Mapa temático de cobertura vegetal y uso, formato digital shapefile, fuente ministerio del ambiente (MINAM), a una escala de 1/100 000.
- Mapa temático de suelo, formato digital shapefile, fuente FAO y UNESCO a una escala de 1:5 000 000.

#### 3.5.2. Procesamiento de la información

# 3.5.2.1. Caracterización geomorfológica de la sub cuenca Torococha

Los parámetros geomorfológicos de las subcuencas se obtuvieron mediante modelos digitales de elevación (DEM), calculados empleando la herramienta computacional ArcGIS 10.4.1. y su extensión HEC - GeoHMS.

El resumen de los parámetros geomorfológicos obtenidos para la Subcuenca Torococha, se muestran en la Tabla 7 y su desarrollo se encuentra en el Anexo 3.1.

Tabla 7
Parámetros geomorfológicos de las microcuencas W40, W50 y W60.

| Parámetros Geomorfológico                      | s de las | Microcu | iencas |          |
|------------------------------------------------|----------|---------|--------|----------|
| Parámetro                                      | W40      | W50     | W60    | Unidad   |
| Área                                           | 31.32    | 11.12   | 18.33  | Km2      |
| Perímetro                                      | 41.14    | 27.98   | 24.38  | Km       |
| Longitud de máximo recorrido                   | 13.65    | 8.26    | 9.78   | Km       |
| Índice de Gravelius                            | 2.06     | 2.35    | 1.59   |          |
| Factor de forma                                | 0.17     | 0.16    | 0.19   |          |
| Pendiente de laderas de la cuenca              | 3 %      | 8 %     | 13 %   | %        |
| Altitud media de la cuenca                     | 3843     | 3871    | 3891   | msnm     |
| Ancho promedio                                 | 2.29     | 1.35    | 1.87   | Km       |
| Coeficiente de masividad                       | 0.12     | 0.35    | 0.21   |          |
| Coeficiente orográfico                         | 0.47     | 1.35    | 0.83   |          |
| Rectángulo equivalente                         | 1.66     | 0.85    | 1.76   | Km       |
| Nectangulo equivalente                         | 18.91    | 13.14   | 10.43  | Km       |
| Relación de confluencias                       | 1.38     | 2.00    | 1.50   |          |
| Relación de longitudes                         | 0.481    | 0.224   | 0.552  |          |
| Densidad de drenaje                            | 0.615    | 0.571   | 0.592  | Km / Km2 |
| Frecuencia de ríos                             | 0.607    | 0.540   | 0.546  |          |
| Cota máxima                                    | 3977     | 3841    | 3983   | msnm     |
| Cota mínima                                    | 3821     | 3828    | 3828   | msnm     |
| Pendiente del cauce principal                  | 1.14     | 0.16    | 1.59   | %        |
| Pendiente del cauce principal                  | 0.0114   | 0.0016  | 0.0159 | m/m      |
| Tiempo de concentración (Témez)                | 5.11     | 5.09    | 3.73   | Horas    |
| Tiempo de concentración (Bransby-<br>Williams) | 5.70     | 5.68    | 4.03   | Horas    |
| Tiempo de concentración (Clark)                | 5.73     | 5.61    | 4.04   | Horas    |
| Promedio Geométrico del Tc                     | 5.51     | 5.46    | 3.94   | Horas    |

Fuente: Elaboración propia

#### 3.5.2.2. Prueba de datos dudosos

Se realizó este análisis con el propósito de identificar valores de precipitación máxima en 24 horas, que se alejen demasiado de la tendencia general del registro histórico de cada estación pluviométrica considerada.

Esta prueba se realizó para cada una de las Estaciones pluviométricas en consideración, del análisis resulta que las estaciones Juliaca, Cabanillas, Lampa, Capachica, Mañazo, y Taraco, no presentan anomalías en su registro histórico, es decir, estos datos están entre los rangos permisibles tanto superiores como inferiores estimados.

Tabla 8
Análisis de datos dudosos para las 8 estaciones pluviométricas.

|            | Max Min Prec. Max. P |       |                          |            |                                   |
|------------|----------------------|-------|--------------------------|------------|-----------------------------------|
| Estación   |                      |       | Prec. Min.<br>Perm. (mm) | Evaluación |                                   |
| Juliaca    | 63.30                | 19.40 | 74.62                    | 14.32      | los datos cumplen                 |
| Cabanillas | 67.80                | 15.50 | 77.70                    | 14.60      | los datos cumplen                 |
| Lampa      | 64.00                | 20.50 | 68.60                    | 17.30      | los datos cumplen                 |
| Capachica  | 63.20                | 20.80 | 68.60                    | 16.00      | los datos cumplen                 |
| Mañazo     | 57.40                | 19.80 | 70.40                    | 15.90      | los datos cumplen                 |
| Pucará     | 76.40                | 20.40 | 76.70                    | 15.80      | No cumple el dato<br>del año 1969 |
| Puno       | 71.60                | 23.60 | 72.70                    | 18.10      | No cumple el dato<br>del año 2010 |
| Taraco     | 68.80                | 20.00 | 81.70                    | 13.30      | los datos cumplen                 |

Fuente: Elaboración propia.

De la evaluación realizada se pudo identificar qué; el dato de precipitación máxima en 24 horas de la estación Pucará del año 1969 y estación Puno del año 2010 no cumplen con el rango permisible, por lo que se tuvo que descartar dichos datos atípicos.

#### 3.5.2.3. Cálculo de las precipitaciones máximas.

Para la determinación de las precipitaciones máximas, se utilizaron las distribuciones teóricas: Normal, Log-Normal, Pearson tipo III, Log-Pearson tipo III, y Gumbel; de los cuales se seleccionó la distribución con excelente ajuste en cada estación, y a partir de estas se realizaron las representaciones de precipitaciones máximas para distintos tiempos de retorno (2, 5, 10, 20, 25, 50, 100, 140, 500 y 1000 años); los resultados se consignan en la Tabla 9.

Tabla 9 Precipitaciones máximas anuales en 24 horas.

| Estación   | Distribución de Mayor     |       |       |       | Perio | dos de | Retorno | (Años) |       |        |        |
|------------|---------------------------|-------|-------|-------|-------|--------|---------|--------|-------|--------|--------|
|            | Ajuste                    | 2     | 5     | 10    | 20    | 25     | 50      | 100    | 140   | 500    | 1000   |
| Juliaca    | Distribución Log Pearson  | 36.35 | 47.08 | 54.40 | 61.59 | 63.92  | 71.23   | 78.73  | 82.45 | 97.18  | 105.68 |
|            | Tipo III                  |       |       |       |       |        |         |        |       |        |        |
| Cabanillas | Distribución Gumbel       | 37.83 | 48.76 | 55.99 | 62.93 | 65.13  | 71.91   | 78.64  | 81.90 | 94.19  | 100.88 |
| Lampa      | Distribución Pearson Tipo | 38.69 | 47.94 | 53.64 | 58.81 | 60.40  | 65.15   | 69.69  | 71.84 | 79.67  | 83.79  |
|            | III                       |       |       |       |       |        |         |        |       |        |        |
| Capachica  | Distribución Log Pearson  | 36.06 | 45.60 | 52.34 | 59.14 | 61.36  | 68.46   | 75.88  | 79.62 | 94.72  | 103.66 |
|            | Tipo III                  |       |       |       |       |        |         |        |       |        |        |
| Mañazo     | Distribución Gumbel       | 37.41 | 47.15 | 53.60 | 59.78 | 61.74  | 67.79   | 73.78  | 76.69 | 87.64  | 93.60  |
| Pucara     | Distribución Log Pearson  | 38.32 | 49.35 | 57.22 | 65.21 | 67.84  | 76.25   | 85.10  | 89.58 | 107.78 | 118.62 |
|            | Tipo III                  |       |       |       |       |        |         |        |       |        |        |
| Puno       | Distribución Gumbel       | 40.40 | 50.60 | 57.35 | 63.83 | 65.89  | 72.22   | 78.50  | 81.54 | 93.02  | 99.26  |
| Taraco     | Distribución Log Pearson  | 36.11 | 48.29 | 57.21 | 66.41 | 69.48  | 79.37   | 89.94  | 95.34 | 117.62 | 131.12 |
|            | Tipo III                  |       |       |       |       |        |         |        |       |        |        |

Fuente: Elaboración propia

#### 3.5.2.4. División del área de estudio

A fin de obtener resultados adecuados y óptimos, la sub cuenca del rio Torococha se ha dividido en tres microcuencas denominados W40, W50 y W60.

La discretización de las microcuencas o unidades hidrológicas se muestran a continuación:

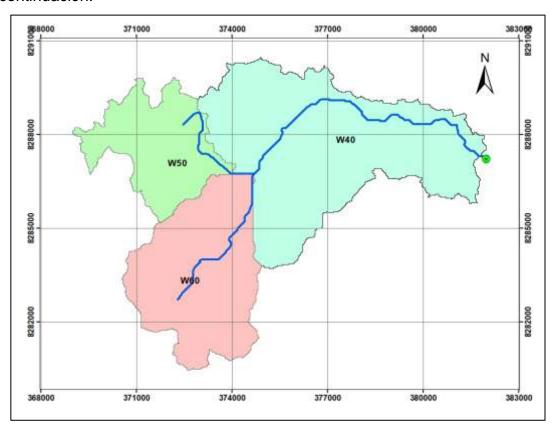



Figura 9 Discretización de la sub cuenca del rio Torococha en microcuencas W40, W50 y W60.

En la Tabla 10, se aprecia el resumen de área y perímetro de las microcuencas, los cuales conforman la sub cuenca del rio Torococha.

Tabla 10 Nomenclatura, área y perímetro de las microcuencas.

| Nombre | Área (Km2) | Perímetro (Km) |
|--------|------------|----------------|
| W40    | 31.32      | 41.14          |
| W50    | 11.12      | 27.98          |
| W60    | 18.33      | 24.38          |

Fuente: Elaboración propia.

#### 3.5.2.5. Elección de los periodos de retorno (T).

Según el manual del MTC (2012) para la obtención de la longitud del puente, el galibo y el NAME, se tiene que al reemplazar los datos de riesgo admisible 25 % y vida útil de 40 años en la ecuación (24) se obtuvo T= 140 años.

Por otro lado, según MTC (2012) también sugiere emplear un tiempo de retorno de 500 años para determinar la socavación en puentes.

#### 3.5.2.6. Curva de intensidad, duración y frecuencia – hietogramas.

Con los valores anuales de lluvias máximas en 24 horas, se determinó las curvas IDF, por regresiones matemáticas para distintos tiempos de retorno, empleando el método Dick y Peschke.

Tabla 11
Precipitaciones máximas para distintos tiempos de retorno, estación Juliaca (mm)

| Т    | Prec.<br>Máx. | Duración (minutos) |       |       |       |       |       |
|------|---------------|--------------------|-------|-------|-------|-------|-------|
| años | 24 horas      | 5                  | 10    | 15    | 20    | 30    | 60    |
| 500  | 97.18         | 23.59              | 28.05 | 31.05 | 33.36 | 36.92 | 43.91 |
| 100  | 78.73         | 19.11              | 22.73 | 25.15 | 27.03 | 29.91 | 35.57 |
| 50   | 71.23         | 17.29              | 20.56 | 22.76 | 24.45 | 27.06 | 32.18 |
| 25   | 63.92         | 15.52              | 18.45 | 20.42 | 21.94 | 24.28 | 28.88 |
| 20   | 61.59         | 14.95              | 17.78 | 19.68 | 21.14 | 23.40 | 27.83 |
| 10   | 54.40         | 13.21              | 15.70 | 17.38 | 18.68 | 20.67 | 24.58 |
| 5    | 47.08         | 11.43              | 13.59 | 15.04 | 16.16 | 17.89 | 21.27 |
| 2    | 36.35         | 8.82               | 10.49 | 11.61 | 12.48 | 13.81 | 16.42 |

Fuente: Elaboración propia

Tabla 12
Intensidades máximas para distintos tiempos de retorno, estación Juliaca (mm/h)

| Т    | Prec.<br>Máx. |        | Di     | uración (m | ninutos) |       |       |
|------|---------------|--------|--------|------------|----------|-------|-------|
| años | 24 horas      | 5      | 10     | 15         | 20       | 30    | 60    |
| 500  | 97.18         | 283.10 | 168.30 | 124.20     | 100.10   | 73.80 | 43.90 |
| 100  | 78.73         | 229.30 | 136.40 | 100.60     | 81.10    | 59.80 | 35.60 |
| 50   | 71.23         | 207.50 | 123.40 | 91.00      | 73.40    | 54.10 | 32.20 |
| 25   | 63.92         | 186.20 | 110.70 | 81.70      | 65.80    | 48.60 | 28.90 |
| 20   | 61.59         | 179.40 | 106.70 | 78.70      | 63.40    | 46.80 | 27.80 |
| 10   | 54.40         | 158.50 | 94.20  | 69.50      | 56.00    | 41.30 | 24.60 |
| 5    | 47.08         | 137.10 | 81.50  | 60.20      | 48.50    | 35.80 | 21.30 |
| 2    | 36.35         | 105.90 | 63.00  | 46.50      | 37.40    | 27.60 | 16.40 |

Fuente: Elaboración propia

La ecuacion para generar la curva intensidad, duracion y frecuencia IDF.

$$I = \frac{10^{2.54} * T^{0.17}}{t^{0.75}}$$

Tabla 13 Intensidades de diseño para duraciones inferiores a 24 horas, estación Juliaca.

| Dui  | ración | Período de Retorno (años) |       |       |        |        |        |        |        |        |        |
|------|--------|---------------------------|-------|-------|--------|--------|--------|--------|--------|--------|--------|
| h    | min    | 2                         | 5     | 10    | 20     | 30     | 35     | 50     | 140    | 200    | 500    |
| 0.17 | 10.00  | 68.81                     | 80.67 | 90.98 | 102.61 | 110.09 | 113.07 | 120.29 | 143.83 | 153.01 | 179.39 |
| 0.33 | 20.00  | 40.91                     | 47.97 | 54.10 | 61.01  | 65.46  | 67.24  | 71.53  | 85.52  | 90.98  | 106.67 |
| 0.50 | 30.00  | 30.19                     | 35.39 | 39.91 | 45.01  | 48.30  | 49.61  | 52.77  | 63.10  | 67.13  | 78.70  |
| 0.67 | 40.00  | 24.33                     | 28.52 | 32.17 | 36.28  | 38.92  | 39.98  | 42.53  | 50.85  | 54.10  | 63.43  |
| 0.83 | 50.00  | 20.58                     | 24.13 | 27.21 | 30.69  | 32.93  | 33.82  | 35.98  | 43.02  | 45.76  | 53.65  |
| 1.00 | 60.00  | 17.95                     | 21.04 | 23.73 | 26.77  | 28.72  | 29.50  | 31.38  | 37.52  | 39.92  | 46.80  |
| 1.50 | 90.00  | 13.24                     | 15.53 | 17.51 | 19.75  | 21.19  | 21.76  | 23.15  | 27.68  | 29.45  | 34.53  |
| 2.00 | 120.00 | 10.67                     | 12.51 | 14.11 | 15.92  | 17.08  | 17.54  | 18.66  | 22.31  | 23.73  | 27.83  |

Fuente: Elaboración propia.

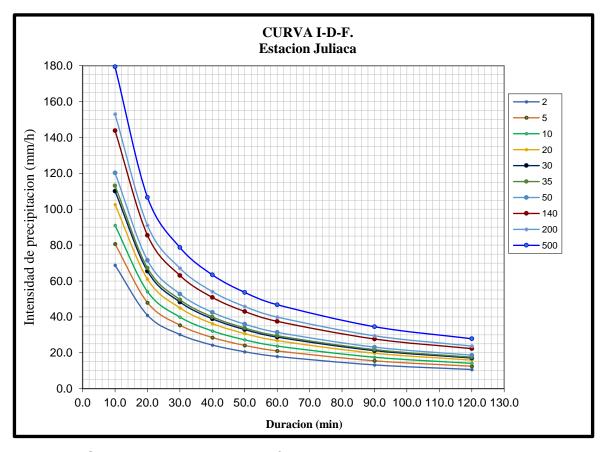



Figura 10 Curvas I.D.F para la estación Juliaca.

Una vez obtenidos las intensidades de diseño mediante la ecuación IDF se han definido los hietogramas de diseño para tiempos de retorno de 140 años y 500 años respectivamente, para tal efecto se ha empleado el método de bloque alterno.

Tabla 14 Valores del hietograma de diseño T=140 años, estación Juliaca.

| Duración | Intensidad | Profundidad<br>Acumulada | Profundidad<br>Incremental | Tiempo  | Precipitación |
|----------|------------|--------------------------|----------------------------|---------|---------------|
| min      | mm/h       | mm                       | mm                         | min     | mm            |
| 20       | 85.5       | 28.5                     | 28.5                       | 0-30    | 0.91          |
| 40       | 50.9       | 33.9                     | 5.4                        | 20-40   | 1.01          |
| 60       | 37.5       | 37.5                     | 3.6                        | 40-60   | 1.14          |
| 80       | 30.2       | 40.3                     | 2.8                        | 60-80   | 1.32          |
| 100      | 25.6       | 42.6                     | 2.3                        | 80-100  | 1.57          |
| 120      | 22.3       | 44.6                     | 2.0                        | 100-120 | 1.99          |
| 140      | 19.9       | 46.4                     | 1.8                        | 120-140 | 2.80          |
| 160      | 18.0       | 47.9                     | 1.6                        | 140-160 | 5.39          |
| 180      | 16.5       | 49.4                     | 1.4                        | 160-180 | 28.51         |
| 200      | 15.2       | 50.7                     | 1.3                        | 180-200 | 3.62          |
| 220      | 14.2       | 51.9                     | 1.2                        | 200-220 | 2.31          |
| 240      | 13.3       | 53.1                     | 1.1                        | 220-240 | 1.75          |
| 260      | 12.5       | 54.1                     | 1.1                        | 240-260 | 1.43          |
| 280      | 11.8       | 55.1                     | 1.0                        | 260-280 | 1.22          |
| 300      | 11.2       | 56.1                     | 1.0                        | 280-300 | 1.07          |
| 320      | 10.7       | 57.0                     | 0.9                        | 300-320 | 0.96          |
| 340      | 10.2       | 57.9                     | 0.9                        | 320-340 | 0.91          |
| 360      | 9.8        | 58.7                     | 0.8                        | 340-360 | 0.87          |

Fuente: Elaboración propia.

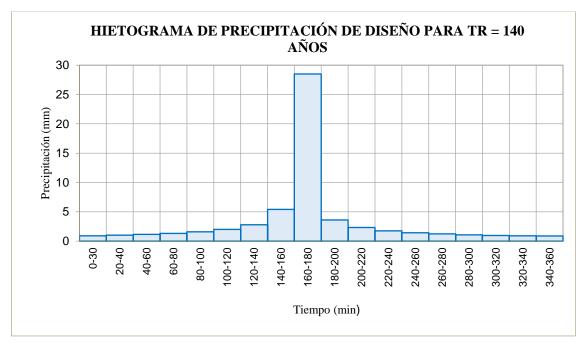



Figura 11 Hietograma de tormenta de diseño para T=140 años.

Tabla 15
Valores de hietograma de diseño T=500 años, estación Juliaca

| Duración | Intensidad | Profundidad<br>Acumulada | Profundidad<br>Incremental | Tiempo  | Precipitación |
|----------|------------|--------------------------|----------------------------|---------|---------------|
| min      | mm/h       | mm                       | mm                         | min     | mm            |
| 20       | 106.7      | 35.6                     | 35.6                       | 0-30    | 1.14          |
| 40       | 63.4       | 42.3                     | 6.7                        | 20-40   | 1.26          |
| 60       | 46.8       | 46.8                     | 4.5                        | 40-60   | 1.42          |
| 80       | 37.7       | 50.3                     | 3.5                        | 60-80   | 1.64          |
| 100      | 31.9       | 53.2                     | 2.9                        | 80-100  | 1.96          |
| 120      | 27.8       | 55.7                     | 2.5                        | 100-120 | 2.48          |
| 140      | 24.8       | 57.8                     | 2.2                        | 120-140 | 3.49          |
| 160      | 22.4       | 59.8                     | 2.0                        | 140-160 | 6.73          |
| 180      | 20.5       | 61.6                     | 1.8                        | 160-180 | 35.56         |
| 200      | 19.0       | 63.2                     | 1.6                        | 180-200 | 4.51          |
| 220      | 17.7       | 64.8                     | 1.5                        | 200-220 | 2.89          |
| 240      | 16.5       | 66.2                     | 1.4                        | 220-240 | 2.19          |
| 260      | 15.6       | 67.5                     | 1.3                        | 240-260 | 1.79          |
| 280      | 14.7       | 68.8                     | 1.3                        | 260-280 | 1.52          |
| 300      | 14.0       | 70.0                     | 1.2                        | 280-300 | 1.34          |
| 320      | 13.3       | 71.1                     | 1.1                        | 300-320 | 1.20          |
| 340      | 12.7       | 72.2                     | 1.1                        | 320-340 | 1.14          |
| 360      | 12.2       | 73.2                     | 1.0                        | 340-360 | 1.09          |

Fuente: Elaboración propia

HIETOGRAMA DE PRECIPITACIÓN DE DISEÑO PARA TR = 500 **AÑOS** 40 35 Precipitación (mm) 20 15 10 5 0 40-60 100-120 120-140 140-160 160-180 180-200 200-220 220-240 240-260 260-280 280-300 Tiempo (min)

Figura 12 Hietograma de tormenta de diseño para T=500 años.

#### 3.5.2.7. Numero de curva.

Los números de curva (CN), se obtuvieron en base a la información de mapas de uso de suelo, mapa de cobertura vegetal y modelo de elevación digital DEM, información que fue aplicada al área de interés, obteniendo los datos de números de curva lo cual se verifica en la siguiente figura:

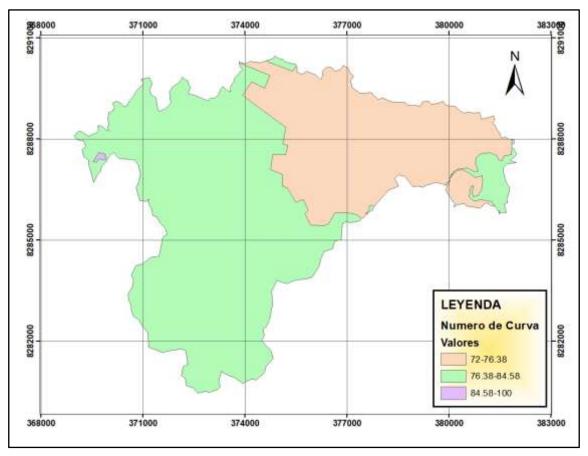



Figura 13 Mapa números de curva CN, sub cuenca Rio Torococha Juliaca.

Los datos ponderados de números de curva se aprecian en las siguientes tablas:

Tabla 16 Número de curva CN para la microcuenca W40.

| Área        | Rango         | CN medio | Área x CN |
|-------------|---------------|----------|-----------|
| 20.92       | 72 - 76.38    | 74.19    | 1552.05   |
| 10.40       | 76.38 - 84.58 | 80.48    | 836.99    |
| 31.32       |               |          | 2389.05   |
| CN promedio | W40           |          | 76.28     |

Fuente: Elaboración propia

Tabla 17 Número de curva CN para la microcuenca W50.

| Área        | Rango         | CN medio | Área x CN |
|-------------|---------------|----------|-----------|
| 11.06       | 76.38 - 84.58 | 80.48    | 890.11    |
| 0.06        | 84.58 - 100   | 92.29    | 5.26      |
| 11.12       |               |          | 895.37    |
| CN promedio | W50           |          | 80.54     |

Fuente: Elaboración propia.

Tabla 18 Número de curva CN para la microcuenca W60.

| Área        | Rango         | CN medio | Área x CN |
|-------------|---------------|----------|-----------|
| 18.33       | 76.38 - 84.58 | 80.48    | 1475.20   |
| 18.33       |               |          | 1475.20   |
| CN promedio | W60           |          | 80.48     |

Fuente: Elaboración propia.

## 3.5.2.8. Parámetros de los métodos empleados, H.U. Clark, H.U. SCS, H.U. Snyder.

El desarrollo de los métodos de hidrograma unitario se realiza empleando la herramienta computacional HEC HMS, para tal efecto fue necesario determinar los parámetros que cada método exige para su ejecución y funcionamiento, el resumen de los resultados de dichos parámetros se consigna a continuación:

Tabla 19
Parámetros del hidrograma unitario de Clark, tiempo de concentración y coeficiente de almacenamiento.

| Nombre | Área<br>(Km2) | L (Km) | S (m/m) | Tc (h) | Coeficiente de almacenamiento (h) |
|--------|---------------|--------|---------|--------|-----------------------------------|
| W40    | 31.32         | 13.65  | 0.0114  | 5.73   | 4.59                              |
| W50    | 11.12         | 8.26   | 0.0016  | 5.61   | 4.49                              |
| W60    | 18.33         | 9.78   | 0.0159  | 4.04   | 3.23                              |

Fuente: Elaboración propia.

Tabla 20 Parámetros del hidrograma unitario del SCS, tiempo de retardo.

| Nombre | Área<br>(Km2) | L<br>(Km) | S<br>(m/m) | S<br>(%) | Temez<br>tc (h) | Bransby-<br>Williams<br>tc (h) | Clark<br>tc (h) | Promedio<br>(h) | T. Lag<br>(min) |
|--------|---------------|-----------|------------|----------|-----------------|--------------------------------|-----------------|-----------------|-----------------|
| W40    | 31.32         | 13.65     | 0.0114     | 1.14     | 5.11            | 5.70                           | 5.73            | 5.51            | 198.54          |
| W50    | 11.12         | 8.26      | 0.0016     | 0.16     | 5.09            | 5.68                           | 5.61            | 5.46            | 196.56          |
| W60    | 18.33         | 9.78      | 0.0159     | 1.59     | 3.73            | 4.03                           | 4.04            | 3.94            | 141.69          |

Fuente: Elaboración propia

Tabla 21
Parámetros del hidrograma unitario de Snyder, tiempo de retardo de la cuenca y coeficiente pico de la cuenca.

| Nombre | Área<br>(Km2) | L<br>(Km) | Lc<br>(km) | Ct    | Tp (h) | S (%) | Ср   |
|--------|---------------|-----------|------------|-------|--------|-------|------|
| W40    | 31.32         | 13.65     | 11.81      | 1.609 | 5.54   | 1.14  | 0.60 |
| W50    | 11.12         | 8.26      | 4.72       | 2.344 | 5.28   | 0.16  | 0.60 |
| W60    | 18.33         | 9.78      | 4.36       | 1.512 | 3.50   | 1.59  | 0.60 |

Fuente: Elaboración propia

#### 3.5.2.9. Modelización hidrológica

La modelización hidrológica reside en la obtención de la máxima avenida para el periodo de retorno elegido, en este caso utilizaremos tiempos de retorno de 140 años y 500 años, dichos resultados se utilizarán en el diseño del puente Torococha.

Se hizo la modelización hidrológica mediante la herramienta computacional HEC-HMS y la extensión HEC GeoHMS, para esto se emplearon métodos de pérdida y transformación lluvia - escurrimiento, para lo cual se utilizaron tres métodos: hidrograma unitario de Clark, hidrograma unitario SCS e hidrograma unitario de Snyder.

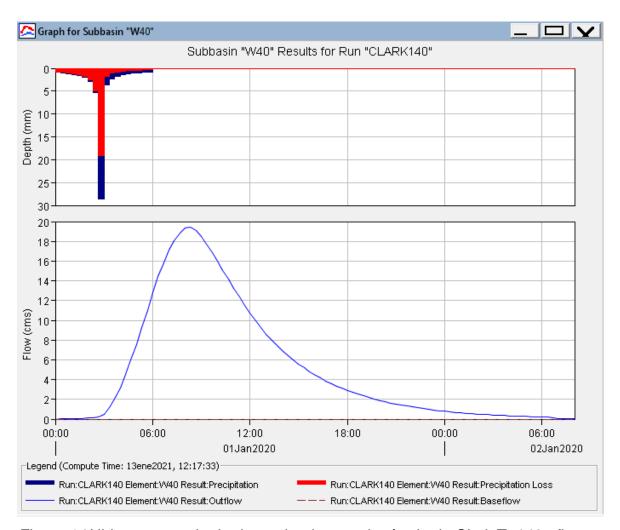



Figura 14 Hidrograma unitario determinado con el método de Clark T=140 años, microcuenca W40.

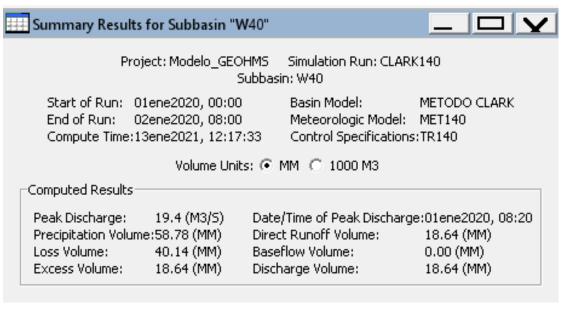



Figura 15 Resumen de la simulación método de Clark T=140 años, microcuenca W40.

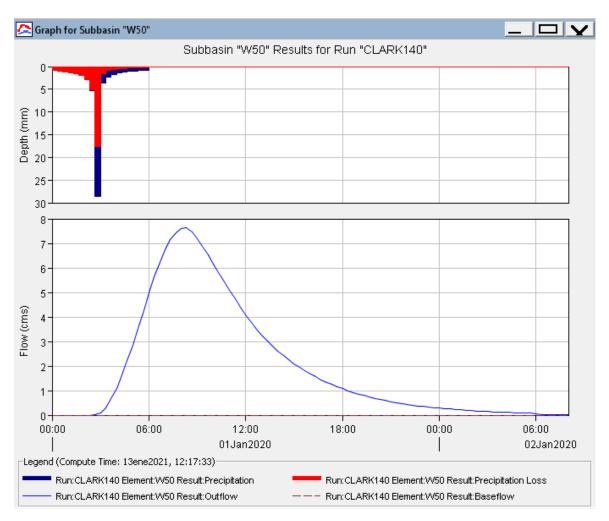



Figura 16 Hidrograma unitario determinado con el método de Clark T=140 años, microcuenca W50.

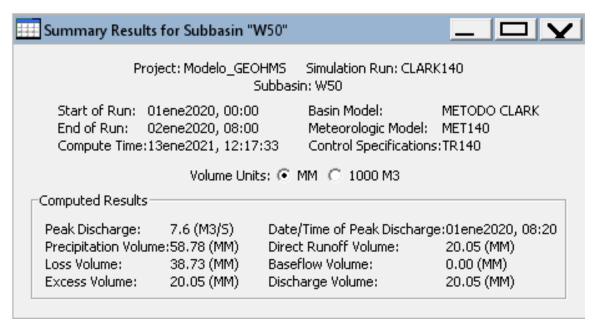



Figura 17 Resumen de la simulación método de Clark T=140 años, microcuenca W50.

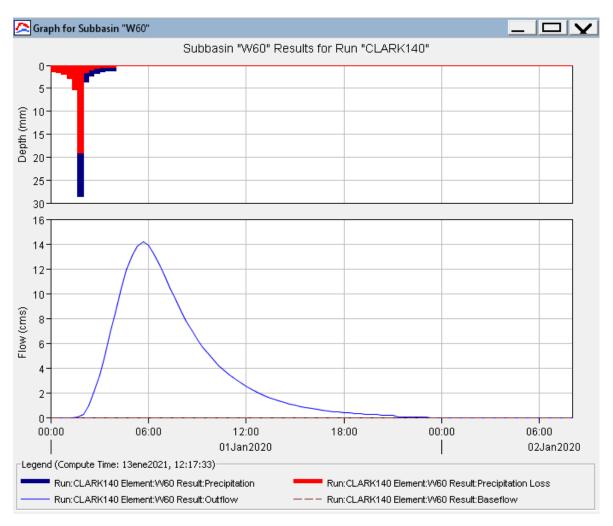



Figura 18 Hidrograma unitario determinado con el método de Clark T=140 años, microcuenca W60.

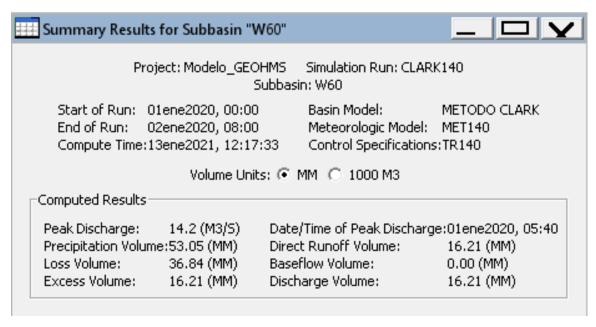



Figura 19 Resumen de la simulación método de Clark T=140 años, microcuenca W60.

La simulación y los hidrogramas unitarios de Clark, para un tiempo de retorno de T=500 años, para las microcuencas W40, W50 y W60, así como la simulación e hidrogramas unitarios SCS y Snyder, para periodos de retorno T=140 años y T=500 años respectivamente, se muestran en el Anexo 3.4.

#### 3.5.2.10. Tránsito de hidrogramas

Para la determinación de los parámetros K y X necesarios para el tránsito de hidrogramas se consideraron el método propuesto por el Instituto Flumen de España, cuyos valores obtenidos se consignan a continuación.

Tabla 22 Valores de K y X, método Instituto Flumen, España.

| Nombre | Área<br>(Km2) | L<br>(Km) | S (m/m) | Тс   | K (h) | K (h) | Promedio<br>K (h) | Х    |
|--------|---------------|-----------|---------|------|-------|-------|-------------------|------|
| W40    | 31.32         | 13.65     | 0.0114  | 5.51 | 3.068 | 3.31  | 3.19              | 0.20 |
| W50    | 11.12         | 8.26      | 0.0016  | 5.46 | 3.053 | 3.28  | 3.16              | 0.20 |
| W60    | 18.33         | 9.78      | 0.0159  | 3.94 | 2.238 | 2.36  | 2.30              | 0.20 |

Fuente: Elaboración propia

#### 3.6. Métodos de Análisis de Datos

# 3.6.1. Determinación de la máxima avenida de diseño, empleando el método del hidrograma unitario de Clark.

- Caracterización geomorfológica de la subcuenca del rio Torococha.
   Los parámetros geomorfológicos de las subcuencas en estudio, se obtuvieron a partir del modelo de elevación digital (DEM), para tal efecto se ha utilizado la herramienta ArcGIS 10.4.1.
- 2. Pruebas o análisis de datos dudosos.

Se realizó este análisis con la finalidad de identificar valores de precipitación máxima en 24 horas, que se alejen demasiado de la tendencia general del registro histórico de la estación, para lo cual se empleó el método Water Resources Council.

3. Análisis de precipitaciones extremas.

Para el análisis de precipitación extrema, en las estaciones de Juliaca, Cabanillas, Lampa, Capachica, Mañazo, Pucara, Puno y

Taraco se consideraron 05 distribuciones teóricas: Normal, Log Normal, Gumbel, Pearson III y Log Pearson III.

4. Ajuste de función de distribución de probabilidad.

Los registros de precipitación máxima en 24 horas, de las ocho estaciones, fueron estimados a partir del modelo Smirnov – Kolmogorov, a fin de comprobar las distribuciones teóricas a las que se ajustan sus registros.

5. Curva de intensidad duración y frecuencia

Las estaciones pluviométricas de la zona, no tienen registros de pluviógrafos que ayuden a obtener intensidades máximas, no obstante, pueden estimarse con datos de precipitaciones máximas en 24 horas, utilizando la metodología de Dick Peschke.

6. Numero de curva (CN).

El número de curva CN, se realiza mediante el método propuesto por la Autoridad Nacional de Agua, donde emplea modelo de elevación digital, mapa de uso de suelo y mapa de cobertura vegetal.

- 7. Parámetros del método del hidrograma unitario de Clark
  - Tiempo de concentración de la cuenca.
  - Coeficiente de almacenamiento de la cuenca
- 8. Modelización hidrológica.

Para generar máximas avenidas se ha empleado el sistema de modelado hidrológico (HEC HMS), cuyo modelo es lineal y semidistribuido, el cual ha permitido simular acontecimientos de crecidas asociado a un modelo de tormenta de diseño para un cierto tiempo de retorno.

9. Tránsito de avenidas

El método utilizado es el de Muskingum, el cual al ser incorporado en la herramienta HEC-HMS, solicita información de: coeficiente de proporcionalidad (K) y el factor de ponderación (X).

## 3.6.2. Cálculo de la máxima avenida de diseño, aplicando el método del hidrograma unitario triangular SCS.

- 1. Caracterización geomorfológica de la subcuenca del rio Torococha.
- 2. Pruebas o análisis de datos dudosos.

- 3. Análisis de precipitaciones extremas.
- 4. Ajuste de función de distribución de probabilidad.
- 5. Curva de intensidad duración y frecuencia
- 6. Numero de curva (CN).
- 7. Parámetros del hidrograma unitario triangular SCS.
  - Tiempo de retardo de la cuenca
- 8. Modelización hidrológica.
- 9. Tránsito de avenidas

## 3.6.3. Estimación de la máxima avenida de diseño, utilizando el método del hidrograma unitario de Snyder.

- 1. Caracterización geomorfológica de la subcuenca del rio Torococha.
- 2. Pruebas o análisis de datos dudosos.
- 3. Análisis de precipitaciones extremas.
- 4. Ajuste de función de distribución de probabilidad.
- 5. Curva de intensidad duración y frecuencia
- 6. Numero de curva (CN).
- 7. Parámetros del método del hidrograma unitario de Snyder.
  - Tiempo de retardo de la cuenca
  - Coeficiente pico de la cuenca
- 8. Modelización hidrológica.
- 9. Tránsito de avenidas

# 3.6.4. Generación de máximas avenidas de diseño empleando métodos hidrológicos.

 Selección de la máxima avenida de diseño generado mediante métodos hidrológicos.

### 3.7. Aspectos Éticos

Se consideró la autenticidad de los resultados, el compromiso social, el cuidar la identidad de las personas que colaboraron en el estudio, el respeto a la propiedad pensadora y por el ecosistema.

Los criterios éticos que se tomaron en cuenta son: privacidad, integridad, peculiaridad y el consenso informado de los individuos participes en la información.

#### IV. RESULTADOS

En el capítulo anterior se examinó la información obtenida durante el estudio, de tal forma que nos permitió obtener los parámetros necesarios para el cálculo de máximas avenidas mediante los métodos hidrológicos. Los procedimientos para la obtención de los resultados con los métodos estudiados se efectuaron mediante herramientas básicas de modelización hidrológica.

Para concluir con los propósitos de la presente tesis de investigación, se realiza la modelización Hidrológica con la herramienta HEC-HMS; a partir de este software se desarrollaron los métodos de Hidrogramas Unitarios SCS, Clark y Snyder.

Los resultados que a continuación se presentan están en el orden de los objetivos (específicos y general).

# 4.1. Determinación de la máxima avenida de diseño, empleando el método del hidrograma unitario de Clark.

En la Figura 20, Figura 21, Tabla 23 y Tabla 24 se muestran los caudales máximos determinados por el método del hidrograma unitario de Clark, para los tiempos de retorno de 140 y 500 años respectivamente.

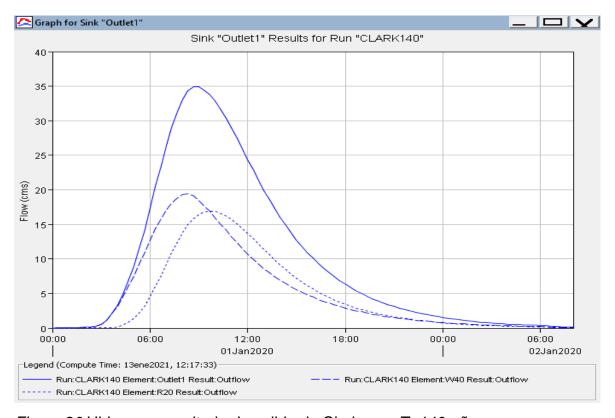



Figura 20 Hidrograma unitario de salida de Clark para T=140 años.

Según la figura 20 se aprecia que los valores de la crecida máxima medido para los hidrogramas calculados, empleando el hidrograma unitario de Clark para un tiempo de retorno de 140 años el valor de la crecida máxima determinado es 34.90 m3/s, registrado a las 8:40 a 9:00 horas.

Tabla 23

Máximas avenidas determinados a partir del hidrograma unitario de Clark en la sub cuenca Torococha T=140 años

| Elemento Hidrológico | Área de drenaje (Km2) | Descarga máxima<br>(m3/s) |
|----------------------|-----------------------|---------------------------|
| W60                  | 18.33                 | 14.20                     |
| W50                  | 11.12                 | 7.60                      |
| W40                  | 31.32                 | 19.40                     |
| J14                  | 29.45                 | 18.90                     |
| R20                  | 29.45                 | 16.90                     |
| Puente               | 60.77                 | 34.90                     |

Fuente: Elaboración propia.

De acuerdo a la tabla 21, los valores de las descargas máximas de los hidrogramas simulados son directamente proporcionales al área de drenaje de cada microcuenca considerada, es evidente que a mayor área de drenaje el caudal máximo de diseño será mayor.

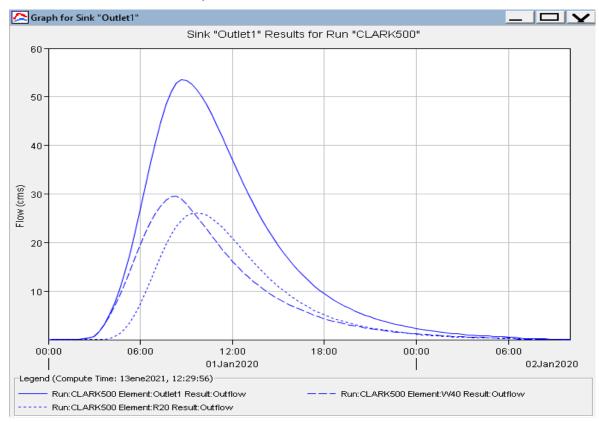



Figura 21 Hidrograma unitario de salida de Clark para T=500 años.

Según la figura 21 la máxima avenida determinada para un tiempo de retorno de 500 años es registrada a las 9:00 horas, el hidrograma de salida presenta un valor de crecida máxima igual a 53.50 m3/s.

Tabla 24

Máximas avenidas a partir del hidrograma unitario de Clark en la sub cuenca

Torococha T=500 años.

| Elemento Hidrológico | Área de drenaje (Km2) | Descarga máxima<br>(m3/s) |
|----------------------|-----------------------|---------------------------|
| W60                  | 18.33                 | 21.10                     |
| W50                  | 11.12                 | 11.60                     |
| W40                  | 31.32                 | 29.50                     |
| J14                  | 29.45                 | 29.30                     |
| R20                  | 29.45                 | 26.10                     |
| Puente               | 60.77                 | 53.50                     |

Fuente: Elaboración propia.

# 4.2. Cálculo de la máxima avenida de diseño, aplicando el método del hidrograma unitario triangular SCS.

En la Figura 22, Figura 23 y Tabla 25, Tabla 26 se muestran los caudales máximos calculados por el hidrograma unitario de SCS, para los tiempos de retorno de 140 y 500 años, para la subcuenca del rio Torococha.

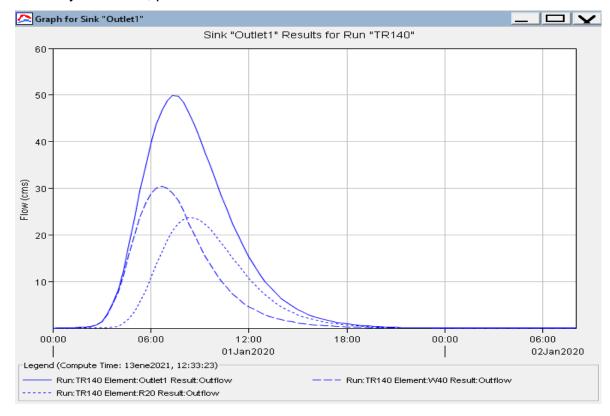



Figura 22 Hidrograma unitario de salida del SCS para T=140 años.

Según la figura 22 se evidencia que, los valores de las máximas avenidas registrado para los hidrogramas simulados, utilizando el hidrograma unitario SCS para un tiempo de retorno de 140 años la cantidad de la crecida máxima alcanzó a 49.80 m3/s, registrado a las 7:20 a 7:40 horas.

Tabla 25
Máximas avenidas calculados a partir del hidrograma unitario del SCS en la sub cuenca Torococha T=140 años.

| Elemento Hidrológico | Área de drenaje (Km2) | Descarga máxima (m3/s) |
|----------------------|-----------------------|------------------------|
| W60                  | 18.33                 | 21.80                  |
| W50                  | 11.12                 | 11.90                  |
| W40                  | 31.32                 | 30.40                  |
| J14                  | 29.45                 | 28.80                  |
| R20                  | 29.45                 | 23.70                  |
| Puente               | 60.77                 | 49.80                  |

Fuente: Elaboración propia.

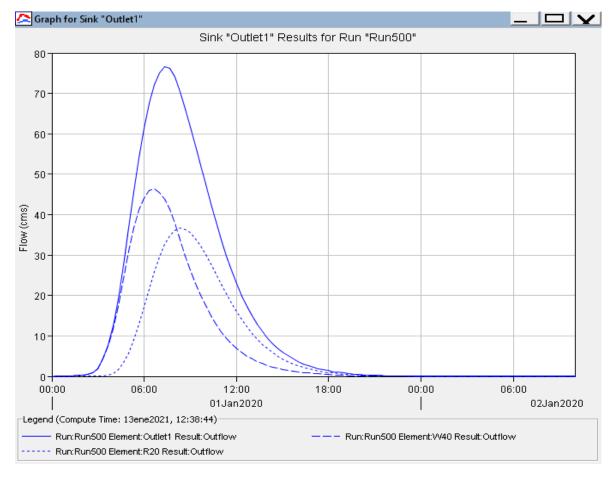



Figura 23 Hidrograma unitario de salida SCS para T=500 años.

De acuerdo a la figura 23 se evidencia que, los valores de las máximas avenidas registrado para los hidrogramas simulados, empleando el hidrograma unitario SCS para un tiempo de retorno de 500 años la crecida máxima alcanzada es 76.60 m3/s, registrado a las 7:40 horas.

Tabla 26

Máximas avenidas calculados a partir del hidrogrma unitario de SCS en la subcuenca Torococha T=500 años.

| Elemento Hidrológico | Área de drenaje (Km2) | Descarga máxima (m3/s) |
|----------------------|-----------------------|------------------------|
| W60                  | 18.33                 | 33.90                  |
| W50                  | 11.12                 | 18.20                  |
| W40                  | 31.32                 | 46.30                  |
| J14                  | 29.45                 | 44.60                  |
| R20                  | 29.45                 | 36.70                  |
| Puente               | 60.77                 | 76.60                  |

Fuente: Elaboración propia.

## 4.3. Estimación de la máxima avenida de diseño, utilizando el método del hidrograma unitario de Snyder.

En la Figura 24, Figura 25 y Tabla 27, Tabla 28 se muestran los caudales máximos estimados desde el hidrograma unitario de Snyder, para los tiempos de retorno de 140 y 500 años correspondientemente.

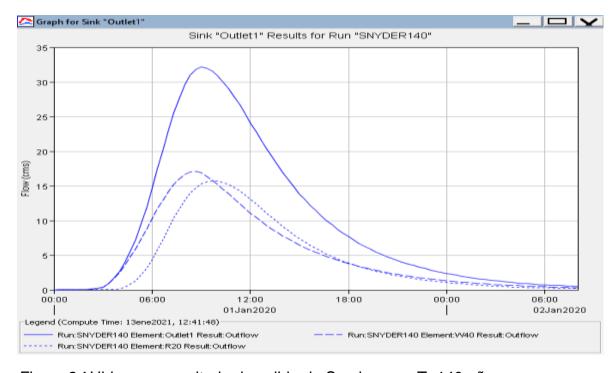



Figura 24 Hidrograma unitario de salida de Snyder para T=140 años.

De acuerdo a la figura 24 se observa que, los valores de las máximas avenidas registrado para los hidrogramas simulados, empleando el hidrograma unitario de Snyder para un tiempo de retorno de 140 años la crecida máxima el estimada es 32.10 m3/s, cuyo registro se ha dado a las 9:20 horas.

Tabla 27

Máxima avenida estimados a partir del hidrograma unitario de Snyder en la subcuenca Torococha T=140 años.

| Elemento Hidrológico | Área de drenaje (Km2) | Descarga máxima (m3/s) |
|----------------------|-----------------------|------------------------|
| W60                  | 18.33                 | 13.60                  |
| W50                  | 11.12                 | 6.90                   |
| W40                  | 31.32                 | 17.10                  |
| J14                  | 29.45                 | 17.40                  |
| R20                  | 29.45                 | 15.70                  |
| Puente               | 60.77                 | 32.10                  |

Fuente: Elaboración propia.

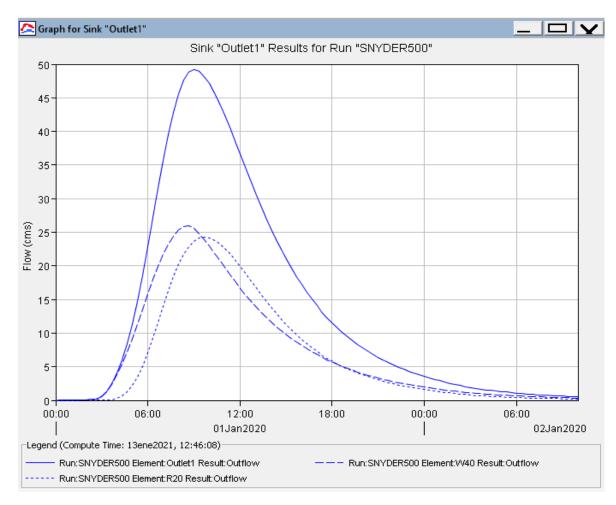



Figura 25 Hidrograma unitario de salida de Snyder T=500 años.

Según la figura 25 se aprecia que, los valores de las máximas avenidas registrado para los hidrogramas simulados, aplicando el hidrograma unitario de Snyder, para un tiempo de retorno de 500 años la máxima avenida estimada es 49.20 m3/s, registrado a las 9:00 a 9:20 horas.

Tabla 28

Máximas avenidas estimados a partir del hidrograma unitario de Snyder en la sub cuenca Torococha T=500 años.

| Elemento Hidrológico | Área de drenaje (Km2) | Descarga máxima (m3/s) |
|----------------------|-----------------------|------------------------|
| W60                  | 18.33                 | 21.10                  |
| W50                  | 11.12                 | 10.40                  |
| W40                  | 31.32                 | 26.00                  |
| J14                  | 29.45                 | 27.00                  |
| R20                  | 29.45                 | 24.30                  |
| Puente               | 60.77                 | 49.20                  |

Fuente: Elaboración propia

# 4.4. Generación de máximas avenidas de diseño empleando métodos hidrológicos.

En la Tabla 29 se consigna los resultados de máximas avenidas obtenidos a partir de los métodos hidrológicos, para periodos de retorno T=140 años y T=500 años respectivamente.

Tabla 29
Resumen de máximas avenidas de diseño para distintos tiempos de retorno.

|                               | Máximas avenida de diseño |                    |  |  |
|-------------------------------|---------------------------|--------------------|--|--|
| Modelización Hidrológica      | T=140 años<br>m3/s        | T=500 años<br>m3/s |  |  |
| Hidrograma unitario de Clark  | 34.90                     | 53.50              |  |  |
| Hidrograma unitario de SCS    | 49.80                     | 76.60              |  |  |
| Hidrograma Unitario de Snyder | 32.10                     | 49.20              |  |  |

Fuente: Elaboración propia

Como se puede apreciar los valores de los resultados obtenidos por los métodos hidrológicos para tiempos de retorno de 140 años y 500 años, el método de Clark y Snyder presentan valores muy similares, lo cual nos indica que son los más idóneos para el diseño del puente Torococha de la avenida circunvalación II de la ciudad de Juliaca.

#### V. DISCUSIÓN

#### Discusión 1:

La máxima avenida determinada bajo el enfoque del método del hidrograma unitario de Clark, mostrados en la tabla 23 y tabla 24 para tiempos de retorno de T=140 años y T=500 años, y representados en los hidrogramas de las figuras 20 y 21, de la sub cuenca Torococha tienen las peculiaridades siguientes: para una máxima avenida con tiempo de retorno de 140 años, el caudal pico alcanzado es de 34.90 m3/s, asimismo para una máxima avenida con tiempo de retorno de 500 años, la máxima avenida determinada es 53.50 m3/s.

Al respecto Avellaneda y Montalvo (2019), citado como antecedente nacional encontraron que el método del hidrograma unitario de Clark, es el que menor valor de caudales máximos genera, en comparación a la estación hidrométrica hasta un periodo de retorno de 200 años, a partir de ahí los valores se acercan favorablemente a los obtenidos por la estación hidrométrica. Asimismo, Arteaga (2017) citado como antecedente internacional encontró que de los hidrogramas sintéticos de Snyder, Clark y SCS, el hidrograma de salida que mejor se ajusta al hidrograma real, ha sido el hidrograma unitario de Clark.

#### Discusión 2:

La máxima avenida calculada mediante el hidrograma unitario SCS, mostrados en la tabla 25 y tabla 26, para tiempos de retorno de 140 años y 500 años, descritos en los hidrogramas de las figuras 22 y 23 de la subcuenca Torococha tiene las siguientes particularidades: para una avenida máxima con tiempo de retorno de 140 años, la descarga máxima determinada es 49.80 m3/s, de la misma forma para una descarga máxima con tiempo de retorno de 500 años, la máxima avenida calculada es 76.60 m3/s.

Al respecto Avellaneda y Montalvo (2019), citado como antecedente nacional encontró que el método del hidrograma unitario SCS, genera caudales máximos sobreestimados, aunque su utilización podría ser aceptable para periodos de retorno de hasta 10 años. Asimismo, Bermeo et al (2018), citado como antecedente internacional nos muestra que los caudales máximos obtenidos con los métodos SCS y Snyder tienen resultados muy similares para los distintos tiempos de retorno.

#### Discusión 3:

La máxima avenida estimada aplicando e hidrograma unitario de Snyder, mostrados en la tabla 27 y tabla 28, para tiempos de retorno de 140 años y 500 años, descritos en los hidrogramas de las figuras 24 y 25 de la subcuenca Torococha tiene las peculiaridades siguientes: para una crecida con periodo de retorno de 140 años, el caudal pico estimado es de 32.10 m3/s, igualmente para una crecida con tiempo de retorno de 500 años, la máxima avenida estimada es 49.20 m3/s.

Al respecto Avellaneda y Montalvo (2019), citado como antecedente nacional encontró que el método del hidrograma unitario de Snyder, es el que genera valores intermedios de caudales máximos, teniendo mayores diferencias en los periodos de retorno de valores extremos, con caudales menores hasta el tiempo de retorno de 25 años, y mayores desde el tiempo de retorno de 200 años. Asimismo, Bermeo et al (2018), citado como antecedente internacional manifiesta que el método SCS y Snyder muestran resultados similares para distintos tiempos de retorno, por lo que indican que son los más adecuados para la estimación de caudales máximos para la sub cuenca de interés.

#### Discusión 4:

De la tabla 29 se demuestran que los resultados obtenidos por los métodos Clark y Snyder son parecidos, cabe indicar que el resultado obtenido con el método SCS existe diferencias significativas con respecto a las anteriores.

Al respecto Portuguez (2017) citado como antecedente nacional revela que el hidrograma unitario sintético de Clark arroja resultados adecuados y menores errores porcentuales, por lo que para la generación de máximas avenidas es el más eficiente y sus resultados representan confiabilidad. Asimismo, Arteaga (2017) citado como antecedente internacional indican que el hidrograma generado con el método de Clark es el que se ajusta adecuadamente al hidrograma estimado por los registros observados.

#### VI. CONCLUSIONES

#### Conclusión 1:

La máxima avenida de diseño determinada mediante el hidrograma unitario de Clark en la sub cuenca del rio Torococha es 34.90 m3/s para (T=140 años) y 53.50 m3/s para (T=500 años).

#### Conclusión 2:

La máxima avenida de diseño calculado aplicando el hidrograma unitario SCS en la sub cuenca del rio Torococha es 49.80 m3/s para (T=140 años), y 76.60 m3/s para (T=500 años).

#### Conclusión 3:

La máxima avenida de diseño estimada utilizando el hidrograma unitario de Snyder en la sub cuenca del rio Torococha es 32.10 m3/s para (T=140 años), y 49.20 m3/s para (T=500 años).

#### Conclusión 4:

Las máximas avenidas generados empleando métodos hidrológicos, en la sub cuenca del rio Torococha es 34.90 m3/s para (T=140 años) asimismo 53.50 m3/s para (T=500 años), dichos valores se pueden emplear para el diseño del puente Torococha, vía de evitamiento Circunvalación II de la ciudad de Juliaca.

#### VII. RECOMENDACIONES

#### Recomendación 1:

Para el diseño del puente Torococha se recomienda emplear la máxima avenida de diseño obtenida mediante el hidrograma unitario de Clark, es decir 34.90 m3/s para (T=140 años) y 53.50 m3/s para (T=500 años).

#### Recomendación 2:

Para el uso adecuado del método del hidrograma unitario SCS, se recomienda actualizar cada cierto periodo de tiempo los mapas temáticos de cobertura vegetal y uso de suelo, ya que dichas variables cambian constantemente en el tiempo y espacio, de tal manera obtener resultados confiables.

#### Recomendación 3:

Para la presente tesis de investigación se recomienda descartar el uso del hidrograma unitario de Snyder, ya que este método tiene limitaciones en cuencas pequeñas, de acuerdo al Manual de Hidrología, Hidráulica y Drenaje del Ministerio de Transportes y Comunicaciones el rango de empleo para este método es de 30 km2 a 30,000 km2.

#### Recomendación 4:

Para establecer el nivel de aguas máximas extraordinarias (NAME) y el galibo para el tablero del puente, se recomienda utilizar una máxima avenida de diseño de 34.90 m3/s, asimismo para estimar la socavación potencial total del puente emplear una máxima avenida de diseño de 53.50 m3/s, ya que dichos resultados han sido generados a partir del método del hidrograma de Clark.

#### **REFERENCIAS:**

**APARICIO, Francisco J. 1999.** Fundamentos de Hidrologia de Superficie. Mexico, D.F.: LIMUSA, 1999. 9681830148.

**ARTEAGA, Miguel Oswaldo. 2017.** Evaluacion del Modelo HIdrologico HEC HMS para la Prediccion Hidrologica y de Crecidas, en la Cuenca Baja del Rio Cañar (Tesis de Post Grado). Quito, Ecuador : s.n., 2017.

**AUTORIDAD ADMINISTRATIVA DEL AGUA. 2017.** Estudio hidrologico de maximas avenidas. Abancay: s.n., 2017.

AVELLANEDA, Anavella Del Pilar y MONTALVO, Kevin Mario. 2019. Analisis Comparativo de los Metodos Racional Modificado Temez, Hidrogramas Unitarios SCS, Clark y Snyder en la Obtencion de Caudales Maximos para las Subcuencas Cañad y Alto Chancay Lambayeque-Cuenca Chancay Lambayeque (Tesis de Pregrado). Lambayeque-Peru: s.n., 2019.

**AYALA, Ivan Arturo. 2012.** Hidrologia Deterministica para la Estimacion de Avenidas Maximas en la Cuenca del Rio Ichu. Huancavelica, Peru: s.n., 2012.

**BARRIENTOS, KENNY WILSON. 2020.** *Hidologia Aplicada.* Potosi - Bolivia : s.n., 2020.

**BERMEO, Sergio Andres, LEON, Adriana Rocio y LOPEZ, Heidy Esperanza. 2018.** *Estimacion de los Caudales Maximos y Caracterizacion Morfometrica de la Subcuenca dek Cauce en el Sector Hidrodependiente del Municipio de San Francisco-Cundinamarca.* Bogota D.C.: s.n., 2018.

**BERNAL**, **Cesar A. 2010.** *Metologia de la investigacion.* Bogota: PEARSON, 2010. 9789586991292.

**CABRERA**, **Juan. 2006.** Unidad de respuesta hidrologica (U.R.H.). Lima: s.n., 2006.

**CAHUANA, Agustin y YUGAR, Weimar. 2009.** *Material de Apoyo Didactico para la Enseñanza y Aprendizaje de la Asignatura de Hidrologia.* Cochabamba: Universidad Mayor de San Simon, 2009.

**CAMPOS, Daniel Francisco. 1982.** Manual para la estimacion de avenidas maximas en cuencas y presas pequeñas. Mexico: SARH, 1982.

**CARRASCO, Sergio. 2006.** *Metodologia de la investigacion cientifica.* Lima : San Marcos, 2006. 9972342425.

CHOW, Ven, MAIDMENT, David R. y MAYS, Larry W. 1994. Hidrologia Aplicada. Bogota-Colombia: McGRAW-HILL, 1994. 9586001717.

CRUZ, Cinthia, OLIVARES, Socorro y GONZALEZ, Martin. 2014. *Metodologia de la investigacion*. Mexico: PATRIA S.A., 2014. 978-607-438-876-3.

**DIAZ, Gerry Saul. 2019.** Modelamiento Hidrologico e Hidraulico del Rio San Ramon para el Diseño del Puente Evitamiento, Provincia de Satipo, Junin (Tesis de Pregrado). Lima, Peru: s.n., 2019.

**DUQUE, Paola, PATIÑO, Daysi M. y LOPEZ, Xavier E. 2019.** Evaluación del Sistema de Modelamiento Hidrológico HEC-HMS para la Simulación Hidrológica de una Microcuenca Andina Tropical. *Informacion tecnologica*. 2019. Vol. 30, 6, págs. 351-382.

**FLORES, Eduardo. 2017.** *Metodologia de la investigacion cientifica para ingenieros.* Puno : MERU E.I.R.L., 2017.

**FLUMEN, INSTITUTO. 2004.** *Manual de utilizacion del programa HEC HMS.* Cataluña - España : s.n., 2004.

**FUENTES DORIA, Deivi David, y otros. 2020.** *Metodologia de la Investigacion.* Medellin, Colombia : Universidad Pontificia Bolivariana, 2020. 9789587648799.

**GARCIA RODRIGUEZ, JOSE LUIS. 1989.** Riesgos Extraordinarios: Inundaciones. Madrid, España : Escuela Superior de Ingenieros de Montes, 1989.

**GARCIA, Rafael y CONESA, Carmelo. 2011.** Estimacion de caudales de avenida y delimitacion de areas inundables medainte metodos hidrometeorologicos e hidraulicos y tecnicas SIG. *Papeles de geografia.* 2011. 53-54, págs. 107-123.

**GUTIERREZ CAIZA, Carlos. 2014.** *Hidrologia basica y aplicada.* Quito, Ecuador : Universidad Politecnica Salesiana, 2014. 9789978101698.

HERNANDEZ, Roberto, FERNANDEZ, Carlos y BAPTISTA, Maria. 2014. *Metodologia de la investigacion*. Mexico: Mc Graw Hill, 2014. 9781456223960.

**LAO**, **Li y TAKAKUWA**, **R. 2017.** Análisis de Confiabilidad y Validez de un Instrumento de Medición de la Sociedad del Conocimineto y su Dependencia en las Tecnologias de la Informacion y Comunicacion. *Revista de Iniciacion Cientifica*. 2017. Vol. 2, N° 2.

**MARTINEZ, Hector. 2012.** *Metodologia de la Investigacion.* Mexico : CENGAGE Learning, 2012. 139786074817669.

MEJIA, Abel. 2006. Hidrologia Aplicada. Lima: UNALM, 2006.

**MONSALVE, German. 1999.** *Hidrologia en la Ingenieria.* Mexico : Escuela Colombiana de Ingenieria, 1999. 9701504046.

**MTC. 2012.** *Manual de hidrologia, hidraulica y drenaje.* Lima Peru : ICG, 2012. BNP N° 201205861.

**ÑAUPAS, Humberto, y otros. 2013.** *Metodologia de la investigacion cuantitativa - cualitativa y redaccion de la tesis.* Bogota : Ediciones de la U, 2013. 978958762188-4.

**OSEDA, Dulio, y otros. 2011.** ¿Como aprender y enseñar investigacion cientifica? Huacavelica, Peru: Universidad Nacional de Huancavelica, 2011. 9786124601903.

**PERU, COLEGIO DE INGENIEROS DEL. 1998.** Informe del fenomeno del Niño 1997 - 1998. Lima : Consejo nacional Lima, 1998.

**PORTUGUEZ, Domingo Marcelo. 2017.** Aplicacion de la geoestadistica a modelos hidrologicos en la cuenca del rio Cañete. Lima, Peru : s.n., 2017.

**PRECIADO, Jose Arnulfo. 2018.** *Metodologia para el Pronostico del Caudal en Cuencas no Aforadas.* Chihuahua, Mexico : s.n., 2018.

**RIOS RAMIREZ, Roger Ricardo. 2017.** *Metodologia para la investigacion y redaccion.* Malaga, España: Servicios Academicos Intercontinentales S.L., 2017. 9788417211233.

**ROCHA, Arturo. 2013.** *Introduccion a la Hidraulica de las Obras Viales.* Lima : ICG, 2013.

**SMITH, D.W. 1976.** Bridge Failures. s.l.: Proceedings Institution Of Civil Ingenieers, 1976. Vol. 1.

**TAMAYO Y TAMAYO, Mario. 2003.** *El proceso de la investigacion cientifica.* Mexixo: Limusa S.A., 2003. 9681858727.

**WARDHANA, Kumalasari y HADIPRIONO, Fabian . 2003.** Analysis of Recent Bridge Failures in the United States. s.l.: Journal of Performance of Constructed Facilities ASCE, 2003.

### **ANEXOS:**

### Anexo 1. Matriz de consistencia

Título: Generación de máximas avenidas en la sub cuenca Torococha empleando métodos hidrológicos, para diseño del puente

Torococha, Juliaca, Puno, 2020.

**Autor: Victor Raul Flores Palomino** 

| PROBLEMAS                                                                                                          | OBJETIVOS                                                                                                         | HIPOTESIS                                                                                                                                           | VARIABLES                      | DIMENSIONES                                        | INDICADORES                                                                                                                                                                                               | METODOLOGIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| avenida de diseño,<br>empleando métodos                                                                            | OBJETIVO GENERAL Generar máximas avenidas de diseño empleando métodos hidrológicos en la cuenca del rio Torococha | avenidas de diseño                                                                                                                                  |                                | D1:<br>Hidrograma Unitario<br>de Clark             | la cuenca                                                                                                                                                                                                 | Método: Método científico Carrasco (2006) indica que el método científico realiza una secuencia de pasos, métodos, herramientas, tácticas para solucionar problemas de investigación, así como para comprobar la hipótesis comprobada. Tipo: Aplicada Martínez (2012), manifiesta que la investigación aplicada                                                                                                                                                                                     |
| Torococha?  PROBLEMAS ESPECIFICOS                                                                                  | OBJETIVOS<br>ESPECIFICOS                                                                                          | HIPOTESIS ESPECIFICAS Se determina la máxima                                                                                                        | V1:<br>Métodos<br>Hidrológicos | D2:<br>Hidrograma Unitario<br>Triangular de la SCS | I1: Tiempo de concentración de<br>la cuenca<br>I2: Tiempo base<br>I3: Tiempo pico                                                                                                                         | persigue solucionar inconvenientes prácticos, con un margen de generalidad definida.  Nivel: Explicativo Hernández et al (2014) el nivel explicativo está orientado a contestar el principio de los acontecimientos y sucesos                                                                                                                                                                                                                                                                       |
| ¿Cuánto es la máxima<br>avenida de diseño,<br>empleando el método del<br>hidrograma unitario de                    | Determinar la máxima<br>avenida de diseño,<br>empleando el método del                                             | avenida de diseño,<br>empleando el método del<br>hidrograma unitario de Clark<br>en la Sub cuenca del rio                                           |                                | D3:<br>Hidrograma Unitario<br>de Snyder            | cuenca<br>I3: Flujo base                                                                                                                                                                                  | físicos o sociales.  Diseño: No experimental Flores (2017) la investigación no experimental es donde no existe maniobra de variables independientes, es decir se fundamenta en variables que ya acontecieron en el entorno sin la participación clara del investigador.                                                                                                                                                                                                                             |
| avenida de diseño,<br>empleando el método del<br>hidrograma unitario<br>triangular SCS en la Sub<br>cuenca del rio | de diseño, empleando el<br>método del hidrograma                                                                  | unitario triangular SCS en la                                                                                                                       | V2:<br>Máximas                 | D1:<br>Cuenca                                      | <ul> <li>11: Características morfométricas</li> <li>12: Características físicas</li> <li>13: Red de drenaje</li> <li>11: Intensidad de precipitación</li> <li>12: Duración de la precipitación</li> </ul> | Población: Cuenca del rio Coata Flores (2017) indica que la población es un grupo de miembros de la misma categoría, definida por el estudio.  Muestra: Sub cuenca del rio Torococha Cruz et al (2014) manifiesta que la muestra es una disgregación de los miembros de una población Técnica: Observación directa Bernal (2010) indica que la observación, es un                                                                                                                                   |
| utilizando el método del                                                                                           | de diseño, utilizando el<br>método del hidrograma<br>unitario de Snyder en la                                     | Se puede estimar la máxima<br>avenida de diseño, utilizando<br>el método del hidrograma<br>unitario de Snyder en la Sub<br>cuenca del rio Torococha | avenidas                       | D3: Respuesta hidrológica de la cuenca             | <ul> <li>I3: Frecuencia de la precipitación</li> <li>I1: Parámetros geomorfológicos de cuenca</li> <li>I2: Parámetros topológicos</li> <li>I3: Precipitaciones</li> </ul>                                 | procedimiento estricto que nos facilita saber de forma clara la finalidad del estudio, enseguida proceder a detallar y examinar acontecimiento sobre el escenario estudiado (p.257).  Instrumento: Ficha de recolección de datos Carrasco (2006) afirma que se tiene la ficha de observación, de manipulación sencilla, pero de mucha ventaja, el cual se utiliza para recopilar datos que se estiman como resultado de la relación directa entre el observador y la situación contemplada (p.313). |

### Anexo 2. Instrumentos de Investigación

## SIMULACION DE ANALISIS DE VALIDEZ DE FICHA DE RECOPILACION DE DATOS

PROYECTO: Generacion de maximas avenidas en la subcuenca Torococha, empleando metodos hidrologicos, para diseño del puente Torococha, Juliaca, Puno, 2020.

Valoracion de

AUTOR: Victor Raul Flores Palomino

|                                                                                                                                                                                                                                                                                                                        | INFORMACION GENERA                                                                                                                                                                                                                                                                             | M.S                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                      | 0.9      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------|----------------------|----------|
| -                                                                                                                                                                                                                                                                                                                      | UBICACIÓN:                                                                                                                                                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                      |          |
| _                                                                                                                                                                                                                                                                                                                      | DISTRITO: Juliaca                                                                                                                                                                                                                                                                              |                    | ALTITUD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 362       | 3824 m.s.n.m.                     |                      |          |
| -                                                                                                                                                                                                                                                                                                                      | PROVINCIA:                                                                                                                                                                                                                                                                                     | San Roman          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LATITUD:  | 15                                | 29'22.39"            |          |
| -                                                                                                                                                                                                                                                                                                                      | REGION: Pune                                                                                                                                                                                                                                                                                   |                    | The second secon | LONGITUD: | 70"6"1.26"                        |                      |          |
|                                                                                                                                                                                                                                                                                                                        | HIDROGRAMA UNITARIO DE CLARK                                                                                                                                                                                                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                      | 0.8      |
|                                                                                                                                                                                                                                                                                                                        | Se procedera a recolectar informacion de registros pluviometricos de las estaciones parcanas al area de estudio del SENAMHI, esimismo el modelo de elevacion digital (DEM) ASTER GDEM, de la misma fonsa mapas termalicos de cobertura vegetal y uso MINAM, mapa termalico de suelo de la FAO. |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                      |          |
|                                                                                                                                                                                                                                                                                                                        | Tiempo de concentracion<br>de la cuenca                                                                                                                                                                                                                                                        | Und                | Coeficiente de<br>almaceramiento de la<br>cuenca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Und       | Velocidad de<br>propagación       | Und                  |          |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                      | 00       |
| ķ.                                                                                                                                                                                                                                                                                                                     | HIDROGRAMA UNITARI                                                                                                                                                                                                                                                                             | O DE LA SCS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                      | 0.6      |
|                                                                                                                                                                                                                                                                                                                        | Se procedera a recolectar informacion de registros pluviometricos de las estaciones cercanas al area de estudio del SENAMHI, asimismo el modelo de elevacion digital (DEM) ASTER GDEM, de la misma forma mapas termaticos de cobertura vegetal y uso MINAM, mapo ternatico de suelo de la FAD. |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                      |          |
|                                                                                                                                                                                                                                                                                                                        | Tiempo de concentracion<br>de la cuenca                                                                                                                                                                                                                                                        | Und                | Tiempo base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Und       | Tiempo pico                       | Und                  | 41       |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                      | 0.7      |
| ٧.                                                                                                                                                                                                                                                                                                                     | HIDROGRAMA UNITAR                                                                                                                                                                                                                                                                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   | 1100000000           | 0. 5-    |
| Se procedera a recolectar informacion de registros pluviometricos de las estaciones cercarias al area de estudio del SENAMHI, asimismo el modelo de elevacion digital (DEM) ASTER GDEM, de la misma forma mapas tematicos de cobertura vegetal y uso MNAMI, mapa tematico de suelo de la FAO.  Tiempo de retardo de la |                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   | DOMESTICAL OF SECULO | 41       |
|                                                                                                                                                                                                                                                                                                                        | Tiempo de retardo de la<br>cuenca                                                                                                                                                                                                                                                              | Und                | cuenca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Und       | Flujo base                        | Und                  |          |
| V                                                                                                                                                                                                                                                                                                                      | CUENCA                                                                                                                                                                                                                                                                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                      | 0.9      |
|                                                                                                                                                                                                                                                                                                                        | De la modelizacion carto                                                                                                                                                                                                                                                                       | grafica e imagen s | satelital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                   |                      |          |
|                                                                                                                                                                                                                                                                                                                        | Caracteristicas<br>morfometricas                                                                                                                                                                                                                                                               | Und                | Características físicas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Und       | Red de drensje                    | Und                  |          |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   | _                    | 0.8      |
| VL-                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                      |          |
|                                                                                                                                                                                                                                                                                                                        | De la modelizacion mete<br>intensidad de<br>precipitacion                                                                                                                                                                                                                                      | Und                | Duracion de la<br>precipitacion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Und       | Frecuencia de la<br>precipitación | Und                  |          |
| VIII -                                                                                                                                                                                                                                                                                                                 | L- RESPUESTA HIDROLOGICA                                                                                                                                                                                                                                                                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                      | 0.7      |
|                                                                                                                                                                                                                                                                                                                        | De la Modelizacion hidro                                                                                                                                                                                                                                                                       |                    | niento de información                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                   |                      | _        |
|                                                                                                                                                                                                                                                                                                                        | Parametros<br>geomofiológicos de la<br>cuenca                                                                                                                                                                                                                                                  | Und                | Parametros topologicos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Und       | Precipitaciones                   | Und                  |          |
| ABI                                                                                                                                                                                                                                                                                                                    | LIDOS Y NOMBRES                                                                                                                                                                                                                                                                                | 85/17/             | PLO DUISDE 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHOIL     |                                   |                      | -        |
| -                                                                                                                                                                                                                                                                                                                      | APELLIDOS Y NOMBRES: BEYZARO QUISPE, GERHAN. PROFESION INC. CIVIL                                                                                                                                                                                                                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                      |          |
|                                                                                                                                                                                                                                                                                                                        | OFESION CONTRACT                                                                                                                                                                                                                                                                               | 20005              | -1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                   |                      | 71       |
| _                                                                                                                                                                                                                                                                                                                      | ISTRO CIP No:                                                                                                                                                                                                                                                                                  | 80986              | ( hotmail.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                                   |                      | 71       |
| EM                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                | 20190 27           | NOTHING! LOTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                                   |                      | $\neg$ 1 |
| TEL                                                                                                                                                                                                                                                                                                                    | TELEFONO: 95/5/ 0005                                                                                                                                                                                                                                                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                      |          |

#### Según Oseda (2011):

| 0               | 0,5               | - 1 |
|-----------------|-------------------|-----|
| 0,53 a suence   | Validez mits      |     |
| 0,54 a 0,59     | Validaz baja      |     |
| 0.60 a 0.63     | Stitlidie         |     |
| $0.66 \pm 0.71$ | May willida       |     |
| 0,72 8 0,99     | Excelmite valider |     |
| 1.0             | Villidez prefecta |     |
|                 |                   |     |

### SIMULACION DE ANALISIS DE VALIDEZ DE FICHA DE RECOPILACION DE DATOS

PROYECTO: Generación de maximas avenidas en la subcuenca Torococha, empleando metodos hidrológicos, para diseño del puente Torococha, Juliaca, Puno, 2029.

| -       | INFORMACION GENER                                                                                                                                                                                                                                        | AL                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                                                      |                                                                      |                                                  | 0A1 |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|-----|--|
|         | UBICACIÓN                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                                      |                                                                      |                                                  |     |  |
| _       | DISTRITO:                                                                                                                                                                                                                                                | Misca                                                                                                                                                                                                                                                                                        |                                                                                                                                          | ALTITUD:                                             | 1 3                                                                  | 3824 m.s.n.m.                                    |     |  |
|         | PROVINCIA:                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                              | San Roman                                                                                                                                | LATITUD:                                             |                                                                      | 5'29'22 39"                                      | -11 |  |
| _       | REGION:                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                              | Pung                                                                                                                                     | LONGITUD:                                            |                                                                      | 70"61.26"                                        | 4 I |  |
| II      | HIDROGRAMA UNITAR                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                          | portor ou.                                           |                                                                      | 70.01.20                                         |     |  |
|         | Se procedera a recolecta<br>elevacion digital (DEM) A                                                                                                                                                                                                    | procedera a recolectar información de registros pluviométricos de las estaciones cercanas al area de estudio del SENAMHI,<br>vación digital (DEM) ASTER GDEM, de la misma forma mapas tematicos de cobertura vegetal y uso MINAM, mapa tematico                                              |                                                                                                                                          |                                                      | L asimismo el modelo de<br>to de suelo de la FAO.                    | 0.7                                              |     |  |
|         | Tiempo de concentracion<br>de la cuenca                                                                                                                                                                                                                  | Und                                                                                                                                                                                                                                                                                          | Coeficiente de<br>almacenamiento de la<br>cuenca                                                                                         | Und                                                  | Velocidad de<br>propagacion                                          | Und                                              | 11  |  |
| 2.      | HIDROGRAMA UNITARI                                                                                                                                                                                                                                       | O DE LA SCS                                                                                                                                                                                                                                                                                  |                                                                                                                                          |                                                      |                                                                      |                                                  | ]   |  |
|         |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                              | misture all signaturos do los colo                                                                                                       | rioner commune of a                                  |                                                                      |                                                  | 0.8 |  |
|         | elevacion digital (DEM) A                                                                                                                                                                                                                                | Se proceders a recolectar informacion de registros pluviometricos de las estaciones concanas al area de estudio del SENAMHI, asimismo el modelo de elevacion digital (DEM) ASTER GDEM, de la misma forma mapás tematicos de cobertura vegetal y uso MINAM, mapa tematico de suelo de la FAO. |                                                                                                                                          |                                                      |                                                                      |                                                  |     |  |
|         | Tiempo de concentración<br>de la cuenca                                                                                                                                                                                                                  | Unit                                                                                                                                                                                                                                                                                         | Tiempo base                                                                                                                              | Und                                                  | Tiempo pico                                                          | Und                                              | ]   |  |
| 1,-     | HIDROGRAMA UNITARI                                                                                                                                                                                                                                       | O DE SNYDER                                                                                                                                                                                                                                                                                  |                                                                                                                                          |                                                      |                                                                      |                                                  | 0.7 |  |
|         | Tiempo de retardo de la                                                                                                                                                                                                                                  | r informacion de re<br>STER GDEM, de l<br>Und                                                                                                                                                                                                                                                | gistros pluviometricos de las esta<br>e misma forea mapas tematicos<br>Coeficiente pico de la                                            | ciones corcanas al ar<br>de cobertura vegetal<br>Und | sa de estudio del SENAMHI<br>y uso MINAM, mapa tematic<br>Fluio base | , asimismo el modelo de<br>o de suelo de la FAO. |     |  |
|         | cuenca                                                                                                                                                                                                                                                   | 100                                                                                                                                                                                                                                                                                          | cuenca.                                                                                                                                  | Onu.                                                 | Livido nese                                                          | ruid                                             | 11  |  |
| ٧,-     | CUENCA                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                                      |                                                                      |                                                  |     |  |
| *       | CUENCA                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                                      |                                                                      |                                                  | 00  |  |
|         | 2000 (100)                                                                                                                                                                                                                                               | grafica e imagen sa                                                                                                                                                                                                                                                                          | otelital                                                                                                                                 |                                                      |                                                                      |                                                  | 0.8 |  |
| 4       | CUENCA  De la modelizacion cartos  Caracteristicas  morfometricas                                                                                                                                                                                        | grafica e imagen si<br>Und                                                                                                                                                                                                                                                                   | ceracteristicas físicas                                                                                                                  | Und                                                  | Rad de drenaje                                                       | Und                                              | 0.8 |  |
|         | De la modelizacion cartos<br>Características<br>inorfometricas                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                              |                                                                                                                                          | Und                                                  | Red de drensije                                                      | Und                                              |     |  |
|         | De la modefización cartos<br>Características<br>morfometricas<br>PRECIPITACIÓN                                                                                                                                                                           | Und                                                                                                                                                                                                                                                                                          | Características físicas                                                                                                                  | Und                                                  | Red de drenaje                                                       | Und                                              | 0.8 |  |
|         | De la modelizacion cartos<br>Características<br>inorfometricas                                                                                                                                                                                           | Und                                                                                                                                                                                                                                                                                          | Características fisicas  ción de las curvas IDF.  Duración de la                                                                         | Und                                                  | Frecuencia de la                                                     | Und                                              |     |  |
| L       | De la modelizacion cartos<br>Caracteristicas<br>morfometricas<br>PRECEPITACION<br>De la modelizacion meter<br>Interesidad de<br>precipitacion                                                                                                            | Und<br>orologica-construc<br>Und                                                                                                                                                                                                                                                             | Características físicas<br>ción de las curvas IDF.                                                                                       |                                                      |                                                                      |                                                  |     |  |
| L.      | De la modelizacion cartos<br>Caracteristicas<br>morfometricas<br>PRECEPITACION<br>De la modelizacion meter<br>Interesidad de<br>precipitacion                                                                                                            | Und<br>orologica-construc<br>Und                                                                                                                                                                                                                                                             | Características físicas<br>ción de las curvas IDF<br>Duración de la<br>precipitación                                                     |                                                      | Frecuencia de la                                                     |                                                  |     |  |
| L.      | De la modelizacion cartos Caracteristicas morfometricas  PRECEPITACION De la modelizacion meter Intensidad de precipitacion  RESPUESTA HIDROLOG De la Modelizacion hidrol                                                                                | Und<br>orologica-construc<br>Und                                                                                                                                                                                                                                                             | Características físicas<br>ción de las curvas IDF<br>Duración de la<br>precipitación                                                     |                                                      | Frecuencia de la                                                     |                                                  | 0.7 |  |
| L.      | De la modelizacion cartos<br>Caracteristicas<br>morfometricas<br>PRECEPITACION<br>De la modelizacion meter<br>Interesidad de<br>precipitacion                                                                                                            | Und<br>orologica-construc<br>Und                                                                                                                                                                                                                                                             | Características físicas<br>ción de las curvas IDF<br>Duración de la<br>precipitación                                                     |                                                      | Frecuencia de la                                                     |                                                  | 0.7 |  |
| L-      | De la modelizacion cartos Caracteristicas monfometricas  PRECEPITACION De la modelizacion meter Intensidad de precipitacion  RESPUESTA HIDROLOG De la Modelizacion hidrol Parametrus geomorfologicos de la cuenca                                        | Und  Orologica-construc  Und  SICA  ogica y procesamie  Und                                                                                                                                                                                                                                  | Características físicas  ción de las curvas IDF.  Duración de la precipitación  ento de información.  Parametros topológicos             | Und                                                  | Frecuencia de la precipitacion  Precipitaciones                      | Und                                              | 0.7 |  |
| L-      | De la modelizacion cartos Caracteristicas morfometricas  PRECEPITACION De la modelizacion meter Intensidad de precipitacion  RESPUESTA HIDROLOG De la Modelizacion hidrol Parametrus geomorfologicos de la cuenca                                        | Und  Orologica-construc  Und  SICA  ogica y procesamie  Und  CCN DCIZI                                                                                                                                                                                                                       | Caracteristicas físicas  ción de las curvas IDF.  Duración de la precipitación  ento de información  Parametros topológicos  CAYO FEDER  | Und                                                  | Frecuencia de la precipitacion  Precipitaciones                      | Und                                              | 0.7 |  |
| IL-     | De la modelizacion cartos Caracteristicas morfometricas  PRECEPITACION De la modelizacion meter Intensidad de precipitacion  RESPUESTA HIDROLOG De la Modelizacion hidrol Parametros geomorfologicos de la cuenca                                        | Und  Und  Und  Und  Und  Und  Und  Und                                                                                                                                                                                                                                                       | Características físicas  ción de las curvas IDF.  Duración de la precipitación  ente de información.  Parametros topológicos  CAYO FEDER | Und                                                  | Frecuencia de la precipitacion  Precipitaciones                      | Und                                              | 0.7 |  |
| PEL ROI | De la modelizacion cartos Caracteristicas monfometricas  PRECIPITACION De la modelizacion meter Intensidad de precipitacion  RESPUESTA HIDROLOG De la Modelizacion hidrol Parametrus geomorfologicos de la cuenca  LIDOS Y NOMBRSS: FESION  STRO CIP No: | Und  Orologica-construct  Und  SACA ogica y procesamie  Und  CON DORL  INFO                                                                                                                                                                                                                  | Características físicas  ción de las curvas IDF.  Duración de la precipitación  ente de información.  Parametros topológicos  CAYO FEDER | Und Und                                              | Frecuencia de la precipitacion  Precipitaciones                      | Und                                              | 0.7 |  |

### Según Oseda (2011):





## SIMULACION DE ANALISIS DE VALIDEZ DE FICHA DE RECOPILACION DE DATOS

PROYECTO: Generación de maximas avenidas en la subcuenca Torococha, empleando metodos hidrologicos, para diseño del puente Torococha, Juliaca, Puno, 2020.

| AUI  | OR: Victor Raul Flores                                                                                                                                                                                                                                                                          | - aumino                    |                                                  |           |                                                     |              | Valoración de<br>0 A 1 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------|-----------|-----------------------------------------------------|--------------|------------------------|
| _    | INFORMACION GENERA                                                                                                                                                                                                                                                                              | M.                          |                                                  |           |                                                     |              | 1.0                    |
| _    | UBICACIÓN:                                                                                                                                                                                                                                                                                      |                             |                                                  |           |                                                     |              |                        |
| Т    | DISTRITO:                                                                                                                                                                                                                                                                                       |                             | Juliace                                          | ALTITUD:  | 3                                                   | 824 m.s.n.m. | ] [                    |
| Т    | PROVINCIA:                                                                                                                                                                                                                                                                                      |                             | San Roman                                        | LATITUD:  |                                                     | 15"29'22.39" |                        |
| Т    | REGION:                                                                                                                                                                                                                                                                                         |                             | Puno                                             | LONGITUD: |                                                     | 70'61.26'    |                        |
| -    | HIDROGRAMA UNITARI                                                                                                                                                                                                                                                                              | HDROGRAMA UNITARIO DE CLARK |                                                  |           |                                                     |              | 0.9                    |
|      | se procedera a recolectar informacion de registros pluviometricos de las estaciones concanas al area de estudio del SENAVIHI, aximismo el modelo de<br>Revacion digital (DEM) ASTER GDEM, de la misma forma mapas tematicas de cobertura vegetal y uso MINAM, mapa tematico de sualo de la FAC. |                             |                                                  |           | il, asimismo el modelo de<br>co de suelo de la FAO. |              |                        |
|      | Tiempo de concentracion<br>de la cuenca                                                                                                                                                                                                                                                         | Und                         | Coeficiente de<br>almacensmiento de la<br>cuenca | Und       | Velocidad de<br>propagacion                         | Und          | ]                      |
|      |                                                                                                                                                                                                                                                                                                 |                             |                                                  |           |                                                     |              | 1                      |
| Щ    | HIDROGRAMA UNITARI                                                                                                                                                                                                                                                                              |                             |                                                  |           |                                                     |              | 0, 9                   |
|      | Se procedera a recolectar información de registros pluviometricos de las estaciones cercanas al area de estudio del SENAMHI, asimismo el modelo de elevación digital (DEM) ASTER GDEM, de la misma forma mapas termaticos de cobertura vegetal y uso MINAM, mapa termatico de suelo de la FAO.  |                             |                                                  |           |                                                     |              |                        |
|      | Tiempo de concentracion<br>de la cuenca                                                                                                                                                                                                                                                         | Und                         | Tiempo base                                      | Und       | Tiempo pico                                         | Und          |                        |
| Ņ.   |                                                                                                                                                                                                                                                                                                 |                             |                                                  |           |                                                     |              | -                      |
| N    | HIDROGRAMA UNITARI                                                                                                                                                                                                                                                                              | O DE SNYDER                 |                                                  |           |                                                     |              | 0.7                    |
|      | Se procedera a recolectar informacion de registros pluviometricos de las estaciones percanas al area de estudio del SENAMHI, asimilamo el modelo de elevacion digital (DEM) ASTER GDEM, de la misma forma mapas tematicos de cobertura vegetal y uso MINAM, mapa tematico de suelo de la FAO.   |                             |                                                  |           |                                                     |              |                        |
|      | Tiempo de retardo de la<br>cuenca                                                                                                                                                                                                                                                               | Und                         | Coeficiente pico de la<br>cuenca                 | Und       | Flujo base                                          | Und          | ]                      |
| V-   | CUENCA                                                                                                                                                                                                                                                                                          | -                           |                                                  |           |                                                     |              | 0,9                    |
|      | De la modelizacion cartografica e imagen satelital                                                                                                                                                                                                                                              |                             |                                                  |           |                                                     |              |                        |
|      | Características<br>moflometricas                                                                                                                                                                                                                                                                | Und                         | Caravderisticas fisicas                          | Und       | Red de drenaje                                      | Und          | ]                      |
| VL-  | PRECIPITACION                                                                                                                                                                                                                                                                                   |                             | 10000                                            |           |                                                     | - L          | 0.8                    |
|      | De la modelización meterorologica-construcción de las curvas IDF                                                                                                                                                                                                                                |                             |                                                  |           |                                                     |              |                        |
|      | Intensidad de<br>precipitacion                                                                                                                                                                                                                                                                  | Und                         | Duracion de la<br>precipitacion                  | Und       | Frequencia de la<br>precipitacion                   | Und          | 41                     |
| VII. | RESPUESTA HIDROLO                                                                                                                                                                                                                                                                               | GICA                        |                                                  | 10000     |                                                     |              | 0.7                    |
|      | De la Modelizacion hidrologica y procesamiento de informacion                                                                                                                                                                                                                                   |                             |                                                  |           |                                                     |              |                        |
|      | Parametros<br>geomorfologicos de la<br>cuenca                                                                                                                                                                                                                                                   | Und                         | Parametros topologicos                           | Und       | Precipitaciones                                     | Und          |                        |
|      |                                                                                                                                                                                                                                                                                                 |                             |                                                  | 77.12     |                                                     |              |                        |
| -    | PELLIDOS Y NOMBRES: TAROUT CROZ HUYD                                                                                                                                                                                                                                                            |                             |                                                  |           |                                                     |              |                        |
| 100  | OFESION                                                                                                                                                                                                                                                                                         |                             | NUGENUERO CLUIT                                  |           |                                                     |              |                        |
| -    | RISTRO CIP No:                                                                                                                                                                                                                                                                                  |                             | 18274                                            | 1,77      |                                                     |              | -  I                   |
| EM   | A/L:                                                                                                                                                                                                                                                                                            | 1                           | Y MANTON, TARWU                                  | 1 & GHAIL | MON.                                                |              |                        |
|      |                                                                                                                                                                                                                                                                                                 |                             |                                                  |           |                                                     |              |                        |

#### Según Oseda (2011):

| 0               | 0,5               | - 1 |
|-----------------|-------------------|-----|
| 0,53 a menos.   | Validez mula      |     |
| 0.54 a 0.59     | Valider baja      |     |
| $0.60 \pm 0.65$ | Valida            |     |
| 0,66 ± 0,71     | Muy válida        |     |
| 0,72 ± 0,99     | Excelente validez |     |
| 1.0             | Validez perfects  |     |



#### Anexo 3. Memoria de cálculo.

### Anexo 3.1 Parámetros Geomorfológicos

Los parámetros geomorfológicos se han determinado empleando la herramienta computacional ARC GIS 10.4.1.

Parámetros geomorfológicos de la microcuenca W40.

### **ÁREA DE LA CUENCA (Ac)**

Superficie drenada por la red hidrográfica aguas arriba del punto emisor.

$$Ac = 31.32 \text{ km}^2$$

### PERÍMETRO (Pc)

Longitud de la línea de divortio aquarum

### **ÍNDICE DE COMPACIDAD (Kc)**

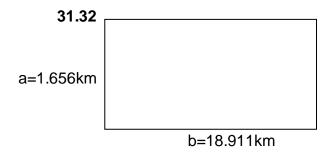
O índice de Gravelius, mide el grado de circularidad de la cuenca.

$$K_{C} = \frac{0.2821 \times P}{\sqrt{A}}$$

Kc= 
$$0.28x(41.14)x(31.32)^{(-1/2)}$$

Por lo tanto tenemos una Cuenca Alargada

### **FACTOR DE FORMA (F)**


Parámetro adimensional que relaciona el ancho promedio y la longitud del cauce principa<sup>1</sup>

$$F = \frac{A}{Lcp^{-2}}$$

#### **RECTANGULO EQUIVALENTE**

$$a = \frac{Kc \times A^{\frac{1}{2}}}{1.12} \times \left(1 - \frac{1.12}{Kc} \times \sqrt{\left(\frac{Kc}{1.12}\right)^{2} - 1}\right)$$

$$b = \frac{Kc \times A^{\frac{1}{2}}}{1.12} \times \left(1 + \frac{1.12}{Kc} \times \sqrt{\left(\frac{Kc}{1.12}\right)^{2} - 1}\right)$$



## PENDIENTE DE LA CUENCA (Sc)

Es el promedio de las pendientes de la cuenca. Esta relacionada con el coeficiente de escorrentía y la grado de erosión de la cuenca.

## Según Alvord:

$$Sc = \frac{E \times \sum Lcn}{A}$$

Donde: E : equidistancia entre curvas de nivel (km)

A: área de la cuenca (km²)

Lcd: longitud de cada curva de nivel (km)

$$E = 0.020$$
  
 $A = 31.320$ 

Suma Lcn = 
$$42.26$$

$$Sc = (0.02)x(42.26)/(31.32)$$

## LONGITUD DEL CAUCE PRINCIPAL (Lcp)

$$Lcp = 13.650 \text{ Km}$$

### LONGITUD AL CENTROIDE

## LONGITUD DE MÁXIMO RECORRIDO

$$Lmax = 13.650 Km$$

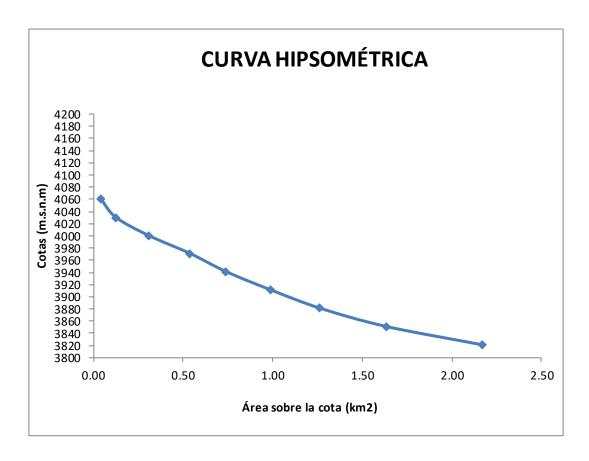
## **ALTITUD MEDIA (H)**

Este parámetro es de suma utilidad para la generación de datos en regiones sin información.

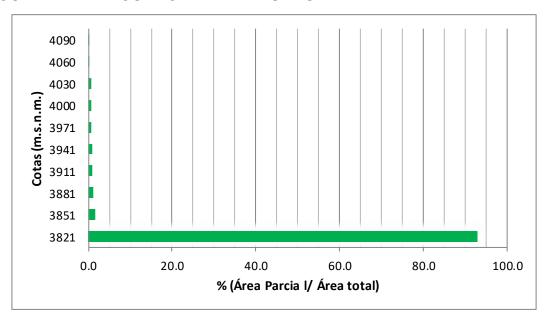
$$\stackrel{-}{H} = \frac{Hi \, A}{A}$$

hi = Altura correspondiente al área parcial Ai

Ai = Áreas parciales Ac = Área de la cuenca


| Cota   | a    | Area<br>Parcial<br>(km2) | hi*Ai     | Area sobre cota | %(Ai/At) |
|--------|------|--------------------------|-----------|-----------------|----------|
| 3821 - | 3850 | 29.15                    | 111823.16 | 31.322          | 93.1     |
| 3851 - | 3880 | 0.53                     | 2067.98   | 2.17            | 1.7      |
| 3881 - | 3910 | 0.37                     | 1443.63   | 1.63            | 1.2      |
| 3911 - | 3940 | 0.27                     | 1079.21   | 1.26            | 0.9      |
| 3941 - | 3970 | 0.25                     | 988.26    | 0.99            | 0.8      |
| 3971 - | 3999 | 0.20                     | 806.87    | 0.74            | 0.6      |
| 4000 - | 4029 | 0.23                     | 917.24    | 0.53            | 0.7      |
| 4030 - | 4059 | 0.18                     | 743.79    | 0.31            | 0.6      |
| 4060 - | 4089 | 0.08                     | 340.59    | 0.12            | 0.3      |
| 4090 - | 4119 | 0.04 156.30 0.04         |           |                 | 0.1      |
| Sumat  | oria | 31.322                   | 120367.03 | - 1             | -        |

H = 120367.028/31.322


H = **3842.89** m

**ALTITUD MAS FRECUENTE** 3843

### **CURVA HIPSOMETRICA**



## **CURVA DE FRECUENCIA DE ALTITUDES**



#### PENDIENTE DEL CAUCE PRINCIPAL (S)

La pendiente del cauce principal está dada por la relación de la diferencia de cotas entre la longitud. Para determinar una pendiente promedio se realizó por tramos.

$$S = \left(\frac{\sum_{i} L_{i}}{\sum_{i} \frac{Li}{\sqrt{Si}}}\right)^{2}$$

Donde:

Li : Longitud de cualquier tramo (m) Si : Pendiente de cualquier tramo

$$S = 0.011433$$
  
 $S = 1.14\%$ 

#### **RELIEVE DE LA CUENCA**

### Coeficiente de masividad (Cm)

Es la relación entre la altitud media del relieve y el la superficie proyectada.

Coef. de masividad = 
$$\frac{\bar{H}}{A}$$

$$Cm = 0.1227 1/Km$$

## Coeficiente orográfico (Co)

Es el producto entre la altitud media y el coeficiente de masividad

Coef . orográfico 
$$=\frac{\bar{H}^2}{A}$$

#### **ANCHO PROMEDIO (B)**

Es la razón entre el área de la cuenca y la longitud del cauce principal

$$B = \frac{A}{L \text{ max}}$$

$$B = 2.29 \text{ Km}$$

## **RELACION DE CONFLUENCIA (Rc)**

$$r_c = \frac{n_i}{n_{i+1}}$$

 $r_c = \frac{n_i}{n_{i+1}}$   $n_i = \text{número total de cursos } i$  $n_{i+1} = \text{número de cursos de orden inmediatamente superior, i+1}$ 

| Orden | Nº de<br>Drenajes | Relacion de<br>Confluencias |
|-------|-------------------|-----------------------------|
| 1     | 11                |                             |
| 2     | 8                 | 1.38                        |
|       |                   |                             |
|       |                   |                             |
|       | Rc pr =           | 1.38                        |

**Rc** = 1.375

## **RELACION DE LONGITUDES (RL)**

 $r_{L} = \frac{L_{i}}{L_{i-1}}$   $L_{i}$  = longitud media de todos los ríos de orden i  $L_{i+1}$  = longitud media de todos los ríos de orden i -1

|   | O d e c | Nº de<br>Drenajes | Long. Total | Relacion de<br>Longitudes |
|---|---------|-------------------|-------------|---------------------------|
| - | n       |                   | <u> </u>    | L                         |
|   | 1       | 11                | 9.820       |                           |
|   | 2       | 8                 | 9.440       | 0.961                     |
|   |         |                   |             | 0.000                     |
|   |         |                   |             |                           |
|   |         |                   |             | 0.481                     |

RL = 0.481

#### **DENSIDAD DE DRENAJES (Dd)**

$$D = \frac{\sum\limits_{i=1}^{N} L_i}{A} \quad \begin{array}{l} \textbf{D} \\ \textbf{L}_i \\ \textbf{N} \end{array} \quad \begin{array}{l} = \text{densidad de drenaje } (\textit{Km/Km2}) \\ = \text{longitud total de los cursos de cada orden} \\ = \text{area de la cuenca} \\ = \text{orden del cauce principal} \end{array}$$

 $\Sigma L =$ 19.260

Dd = 0.615 Km/Km2

Anexo 3.2 Análisis de datos dudosos (Método Water Resources Council)

Prueba de datos dudosos para la estación Juliaca

| Nº | AÑO  | ORDEN | P24  | log(P24) |
|----|------|-------|------|----------|
| 1  | 1961 | 49    | 21.8 | 1.3385   |
| 2  | 1962 | 40    | 26.0 | 1.4150   |
| 3  | 1963 | 34    | 29.0 | 1.4624   |
| 4  | 1964 | 11    | 42.0 | 1.6232   |
| 5  | 1965 | 35    | 29.0 | 1.4624   |
| 6  | 1966 | 33    | 29.2 | 1.4654   |
| 7  | 1967 | 8     | 48.2 | 1.6830   |
| 8  | 1968 | 15    | 38.0 | 1.5798   |
| 9  | 1969 | 45    | 24.3 | 1.3856   |
| 10 | 1970 | 38    | 28.4 | 1.4533   |
| 11 | 1971 | 5     | 51.3 | 1.7101   |
| 12 | 1972 | 21    | 36.2 | 1.5587   |
| 13 | 1973 | 43    | 25.2 | 1.4014   |
| 14 | 1974 | 31    | 30.0 | 1.4771   |
| 15 | 1975 | 44    | 25.2 | 1.4014   |
| 16 | 1976 | 50    | 21.5 | 1.3324   |
| 17 | 1977 | 16    | 37.4 | 1.5729   |
| 18 | 1978 | 23    | 34.0 | 1.5315   |
| 19 | 1979 | 42    | 25.7 | 1.4099   |
| 20 | 1980 | 29    | 30.3 | 1.4814   |
| 21 | 1981 | 41    | 26.0 | 1.4150   |
| 22 | 1982 | 7     | 49.0 | 1.6902   |
| 23 | 1983 | 39    | 26.5 | 1.4232   |
| 24 | 1984 | 4     | 52.0 | 1.7160   |
| 25 | 1985 | 18    | 36.7 | 1.5647   |
| 26 | 1986 | 14    | 38.6 | 1.5866   |
| 27 | 1987 | 13    | 38.8 | 1.5888   |
| 28 | 1988 | 25    | 33.0 | 1.5185   |
| 29 | 1989 | 26    | 33.0 | 1.5185   |
| 30 | 1990 | 52    | 20.0 | 1.3010   |
| 31 | 1991 | 22    | 35.0 | 1.5441   |
| 32 | 1992 | 48    | 22.0 | 1.3424   |
| 33 | 1993 | 6     | 50.0 | 1.6990   |
| 34 | 1994 | 46    | 24.0 | 1.3802   |
| 35 | 1995 | 32    | 30.0 | 1.4771   |
| 36 | 2001 | 53    | 19.4 | 1.2878   |
| 37 | 2002 | 1     | 63.3 | 1.8014   |
| 38 | 2003 | 20    | 36.5 | 1.5623   |
| 39 | 2004 | 27    | 32.8 | 1.5159   |
| 40 | 2005 | 9     | 47.4 | 1.6758   |
| 41 | 2006 | 30    | 30.3 | 1.4814   |
| 42 | 2007 | 12    | 39.3 | 1.5944   |
| 43 | 2008 | 10    | 45.0 | 1.6532   |
| 44 | 2009 | 36    | 28.9 | 1.4609   |
| 45 | 2010 | 51    | 20.2 | 1.3054   |
| 46 | 2011 | 3     | 55.4 | 1.7435   |
| 47 | 2012 | 47    | 23.0 | 1.3617   |
| 48 | 2013 | 37    | 28.5 | 1.4548   |
| 49 | 2014 | 17    | 37.0 | 1.5682   |
| 50 | 2015 | 24    | 33.6 | 1.5263   |
| 51 | 2016 | 19    | 36.6 | 1.5635   |
| 52 | 2017 | 2     | 61.8 | 1.7910   |
| 53 | 2018 | 28    | 32.6 | 1.5132   |
| 54 | 2019 | 45    | 25.5 | 1.4065   |

| Numero de datos n        | 54      | 54      |
|--------------------------|---------|---------|
| Suma ∑                   | 1844.4  | 81.7782 |
| Máximo                   | 63.3    | 1.8014  |
| Mínimo                   | 19.4    | 1.2878  |
| Promedio <del>x</del>    | 34.2    | 1.5144  |
| Desviación estándar s    | 10.6071 | 0.1281  |
| Coeficiente asimetría Cs | 0.9442  | 0.3283  |
| Cs/6 k                   | 0.1574  | 0.0547  |

Fuente: Elaboración propia

$$n = 54$$
 $Kn = 2.797$ \*

Kn: valor recomendado, varía según el valor de n (significancia:10%)

Umbral de datos dudosos altos (xH: unid. logaritmicas)

$$x_H = x + Kn \cdot s \qquad \text{xH} = 1.8$$

Precipitación máxima aceptada

$$PH = 10^{xH}$$
 PH = 74.62 mm

Umbral de datos dudosos bajos (xL: unid. logaritmicas)

Precipitación mínima aceptada

$$PH = 10^{xL}$$
 PL = 14.32 mm

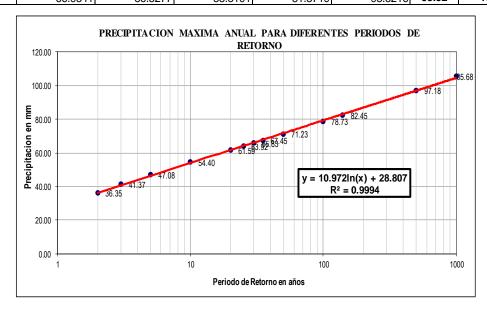
Nota: Se observa que los valores de 'P24' está dentro de los límites PH y PL, es decir se encuentran entre 74.62 y 14.32mm.

Valores Kn para la prueba de datos dudosos Tamaño **Tamaño** Tamaño Tamaño Kn de Kn de Kn de Kn de Muestra n Muestra n Muestra n Muestra n 10 2.036 24 2.467 38 2.661 60 2.837 11 2.088 25 2.486 39 2.671 65 2.866 12 2.134 26 2.502 40 2.682 70 2.893 13 2.175 27 2.519 41 2.692 75 2.917 14 2.213 28 2.534 42 2.700 80 2.940 15 2.247 29 2.549 43 2.710 85 2.961 16 2.279 30 2.563 44 2.719 90 2.981 17 2.309 31 2.577 45 2.727 95 3.000 18 2.335 32 2.591 46 2.736 100 3.017 19 2.361 33 2.604 47 2.744 110 3.049 20 2.385 34 2.616 48 2.753 120 3.078 21 2.408 35 2.628 49 2.760 130 3.104 140 3.129 22 2.429 36 2.639 50 2.768 23 2.448 37 2.650 55 2.804

Fuente: U.S. Water Resources Council,1981. Esta tabla contiene valores de Kn de un lado con un nivel de significancia de 10% para la distribución normal.

<sup>\*</sup> Referencia: Tabla 12.5.3 - Hidrología Aplicada, Ven Te Chow

# Anexo 3.3 Precipitaciones máximas


Precipitaciones máximas para la estación Juliaca.

|                             | Hydrognomon | Hidroesta 2 |
|-----------------------------|-------------|-------------|
| FUNCION                     | DMax        | DMax        |
| DISTRIB.<br>NORMAL          | 0.11461     | 0.1146      |
| DISTRIB.<br>LOGNORMAL       | 0.06873     | 0.0742      |
| DISTRIB.<br>GUMBELL         | 0.06402     | 0.0641      |
| DISTRIB.<br>PEARSON III     | 0.06221     | 0.0622      |
| DISTRIB. LOG<br>PEARSON III | 0.05531     | 0.0553      |

#### PRECIPITACIONES MÁXIMAS ANUALES EN 24 HORAS

Coeficiente de corrección de Pmax por Nº de lecturas (OMM)

| T<br>(años) | DISTRIB.<br>NORMAL | DISTRIB.<br>GUMBELL | DISTRIB.<br>LOGNORMAL | DISTRIB.<br>PEARSON III | DISTRIB. LOG<br>PEARSON III | P <sub>MAX</sub><br>mm | P <sub>MAX</sub><br>(corregida) |
|-------------|--------------------|---------------------|-----------------------|-------------------------|-----------------------------|------------------------|---------------------------------|
| 2           | 34.1556            | 32.4124             | 32.6188               | 32.5102                 | 32.167                      | 32.17                  | 36.35                           |
| 3           | 38.7243            | 36.8488             | 37.1731               | 37.1916                 | 36.6121                     | 36.61                  | 41.37                           |
| 5           | 43.0828            | 41.7899             | 42.1092               | 42.2596                 | 41.6597                     | 41.66                  | 47.08                           |
| 10          | 47.7492            | 47.9986             | 48.1228               | 48.3657                 | 48.1373                     | 48.14                  | 54.40                           |
| 20          | 51.6028            | 53.9542             | 53.7312               | 53.9567                 | 54.508                      | 54.51                  | 61.59                           |
| 25          | 52.7253            | 55.8434             | 55.4847               | 55.6809                 | 56.5657                     | 56.57                  | 63.92                           |
| 30          | 53.6082            | 57.3803             | 56.9037               | 57.0675                 | 58.2541                     | 58.25                  | 65.83                           |
| 35          | 54.3326            | 58.6759             | 58.0954               | 58.2257                 | 59.6879                     | 59.69                  | 67.45                           |
| 50          | 55.9400            | 61.6630             | 60.829                | 60.861                  | 63.0326                     | 63.03                  | 71.23                           |
| 100         | 58.8315            | 67.4397             | 66.0744               | 65.8318                 | 69.6685                     | 69.67                  | 78.73                           |
| 140         | 60.1430            | 70.2355             | 68.6006               | 68.1851                 | 72.9672                     | 72.97                  | 82.45                           |
| 500         | 64.6846            | 80.7888             | 78.118                | 76.8163                 | 86.0019                     | 86.00                  | 97.18                           |
| 1000        | 66.9341            | 86.5277             | 83.3101               | 81.3719                 | 93.5216                     | 93.52                  | 105.68                          |



1.13

## Anexo 3.4 Modelización hidrológica mediante HEC HMS 4.0.

Simulación e hidrogramas unitarios por el método de Clark, para un periodo de retorno de T=500 años, para las microcuencas W40, W50 y W60.

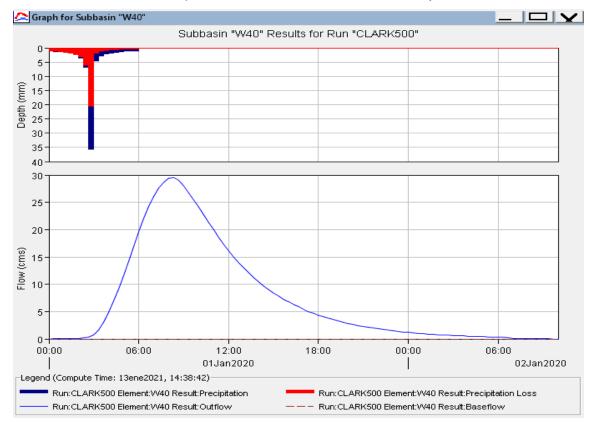



Figura 26 Hidrograma unitario determinado con el método de Clark T=500 años, microcuenca W40.

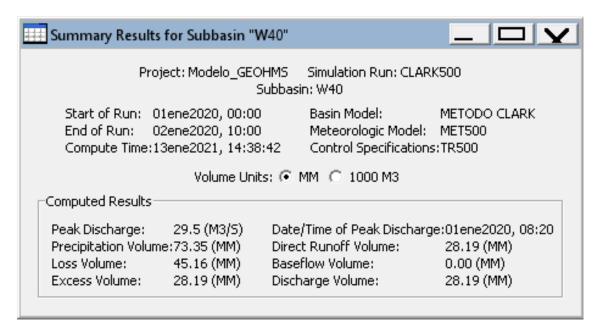



Figura 27 Resumen de la simulación método de Clark T=500 años, microcuenca W40.

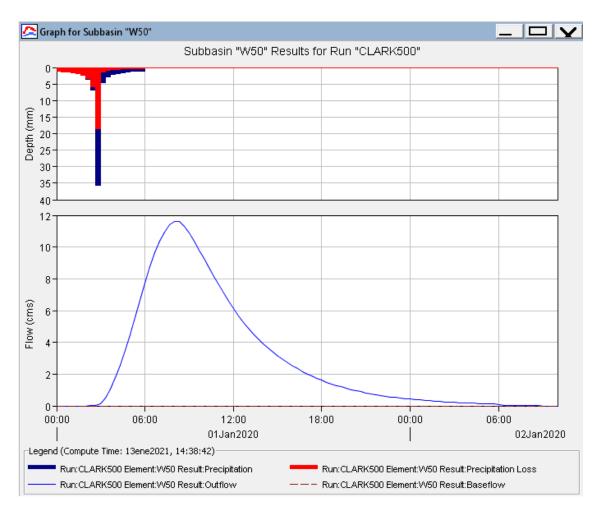



Figura 28 Hidrograma unitario determinado con el método de Clark T=500 años, microcuenca W50.

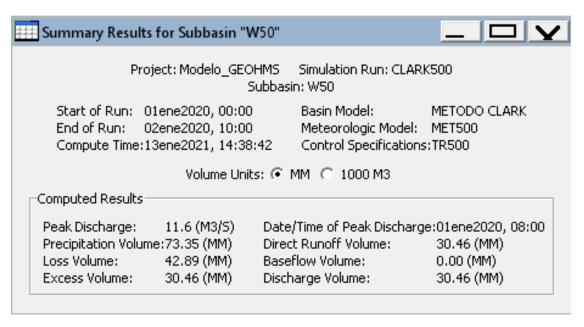



Figura 29 Resumen de la simulación método de Clark T=500 años, microcuenca W50.

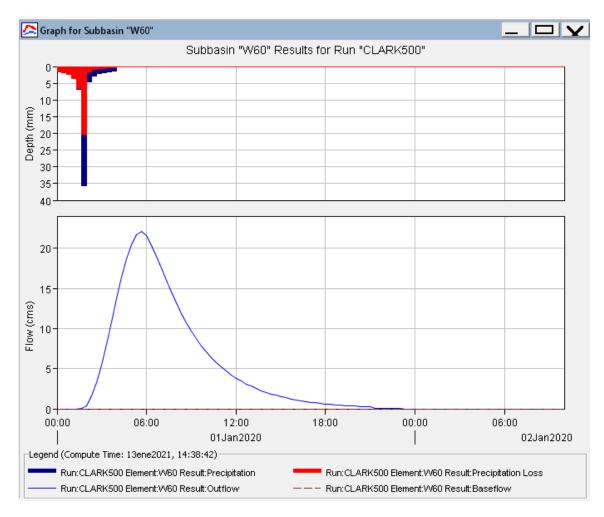



Figura 30 Hidrograma unitario determinado con el método de Clark T=500 años, microcuenca W60.

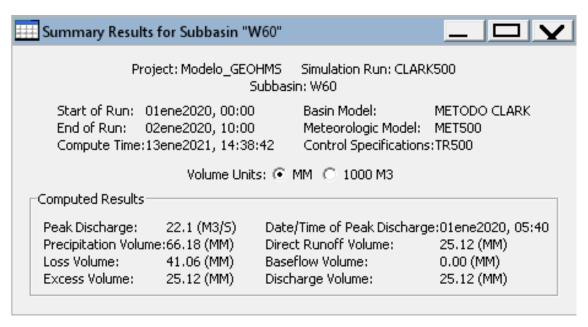



Figura 31 Resumen de la simulación método de Clark T=500 años, microcuenca W60.

Simulación e hidrogramas unitarios por el método SCS, para un periodo de retorno de T=140 años, T=500 años, para las microcuencas W40, W50 y W60.

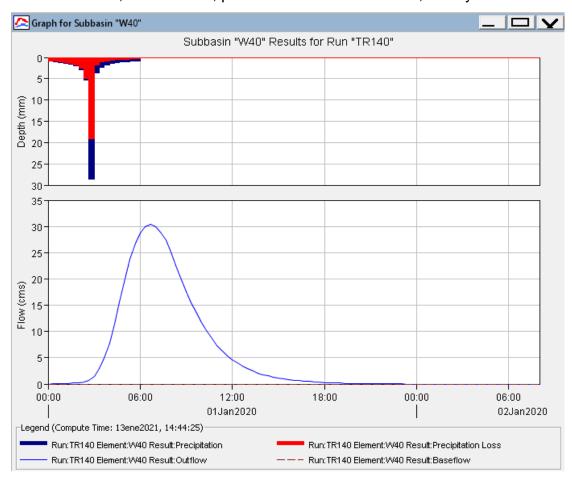



Figura 32 Hidrograma unitario determinado con el método SCS, T=140 años, microcuenca W40.

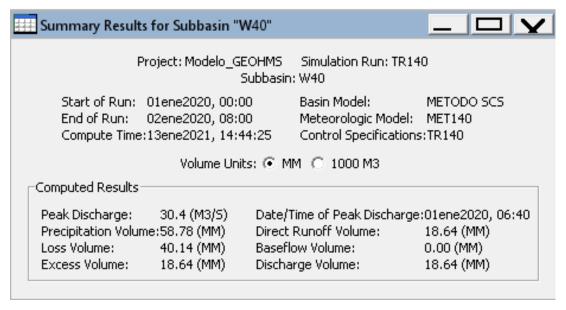



Figura 33 Resumen de la simulación método SCS, T=140 años, microcuenca W40.

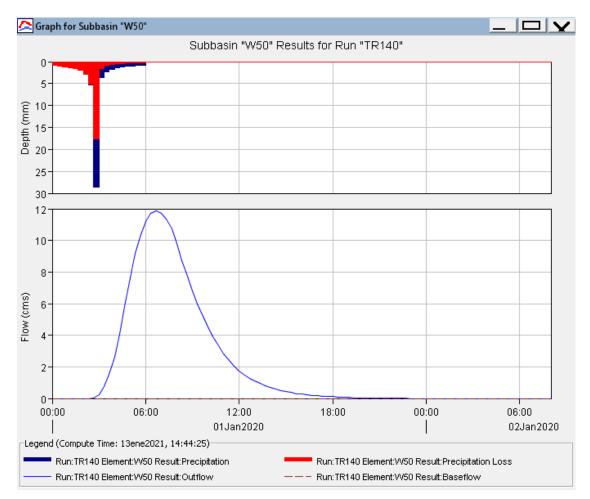



Figura 34 Hidrograma unitario determinado con el método SCS, T=140 años, microcuenca W50.



Figura 35 Resumen de la simulación método SCS, T=140 años, microcuenca W50.

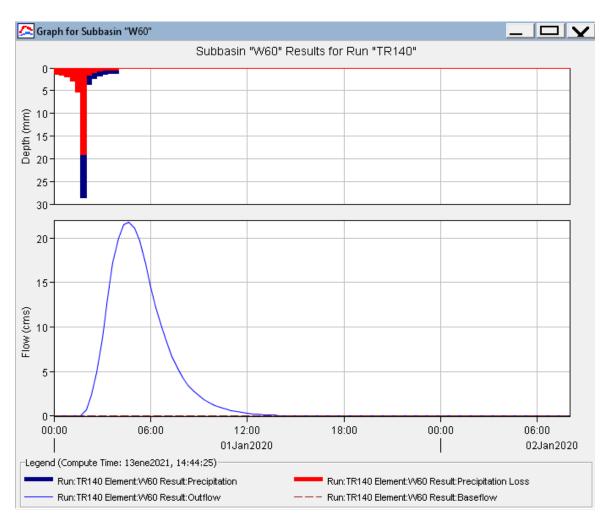



Figura 36 Hidrograma unitario determinado con el método SCS, T=140 años, microcuenca W60.

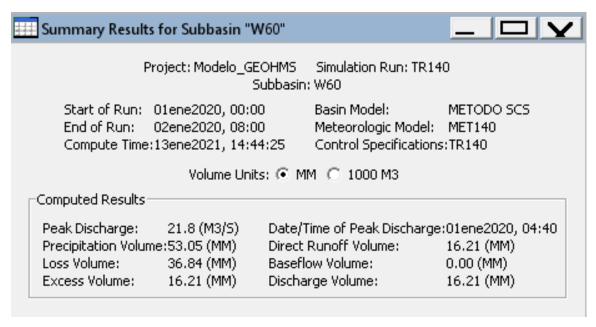



Figura 37 Resumen de la simulación método SCS, T=140 años, microcuenca W60.

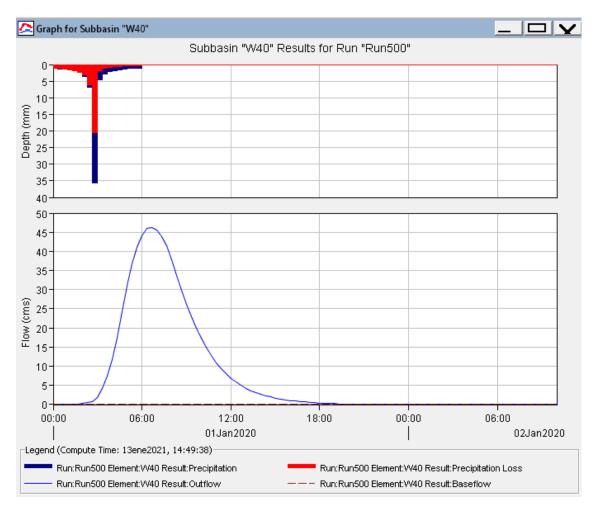



Figura 38 Hidrograma unitario determinado con el método SCS, T=500 años, microcuenca W40.

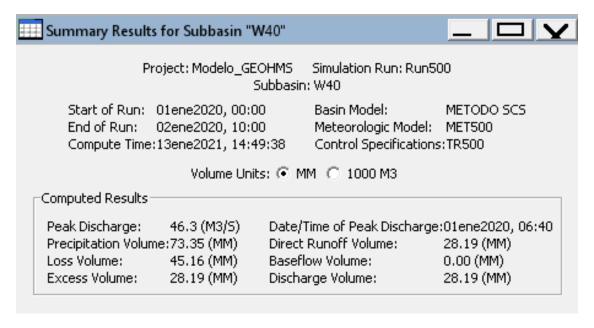



Figura 39 Resumen de la simulación método SCS, T=500 años, microcuenca W40.

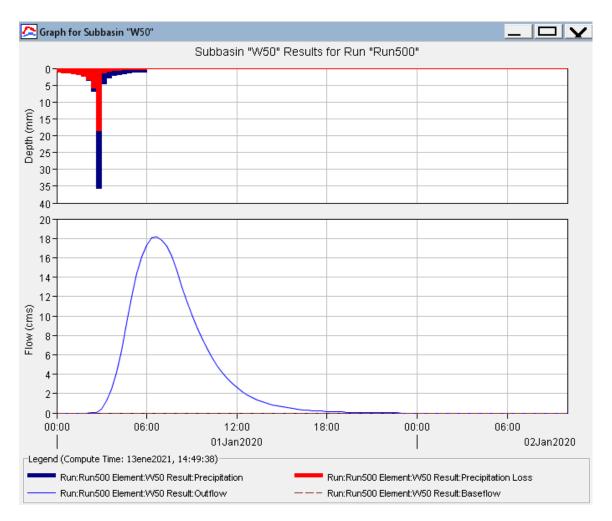



Figura 40 Hidrograma unitario determinado con el método SCS, T=500 años, microcuenca W50.

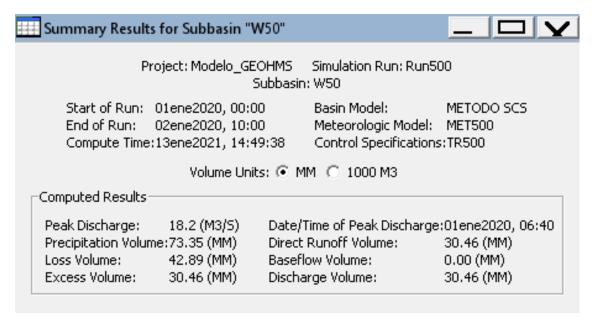



Figura 41 Resumen de la simulación método SCS, T=500 años, microcuenca W50.

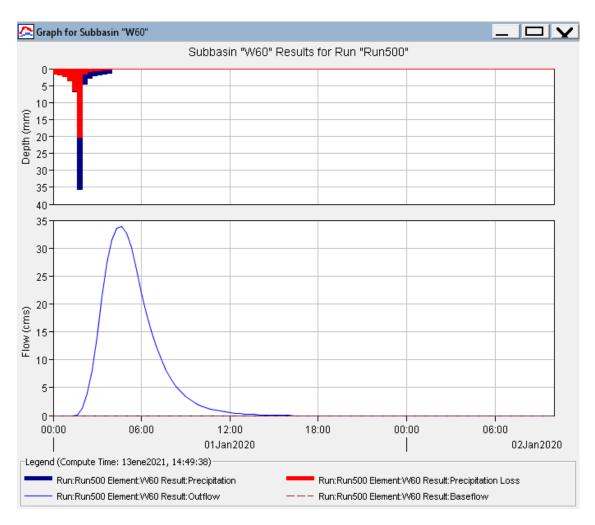



Figura 42 Hidrograma unitario determinado con el método SCS, T=500 años, microcuenca W60.

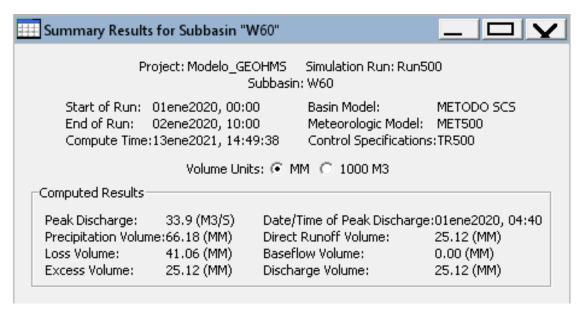



Figura 43 Resumen de la simulación método SCS, T=500 años, microcuenca W60.

Simulación e hidrogramas unitarios por el método de Snyder, para un periodo de retorno de T=140 años, T=500 años, para las microcuencas W40, W50 y W60.

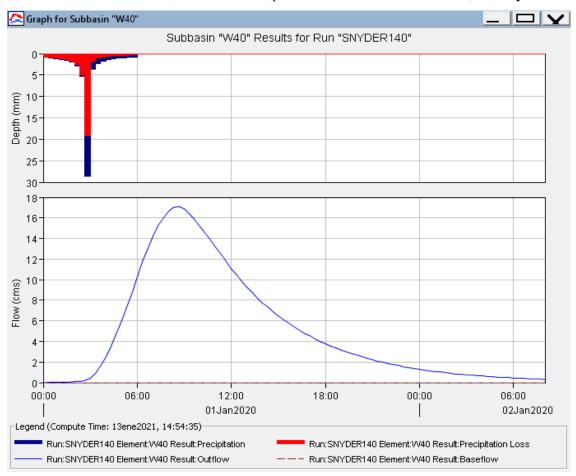



Figura 44 Hidrograma unitario determinado con el método de Snyder, T=140 años, microcuenca W40.

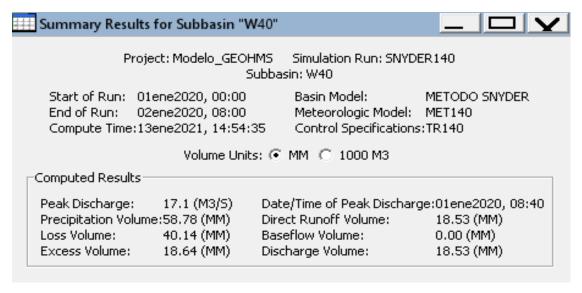



Figura 45 Resumen de la simulación método de Snyder, T=140 años, microcuenca W40.

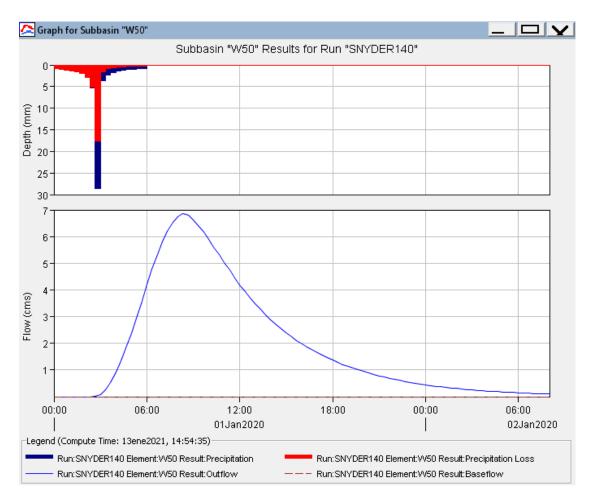



Figura 46 Hidrograma unitario determinado con el método de Snyder, T=140 años, microcuenca W50.

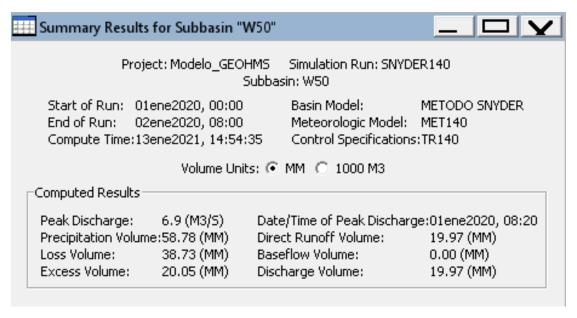



Figura 47 Resumen de la simulación método de Snyder, T=140 años, microcuenca W50.

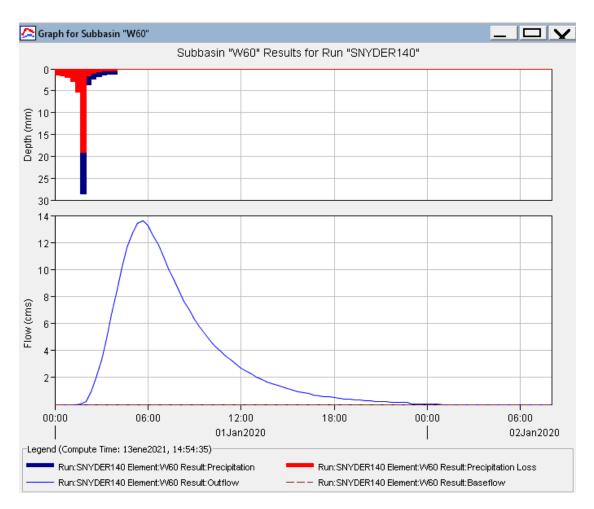



Figura 48 Hidrograma unitario determinado con el método de Snyder, T=140 años, microcuenca W60.

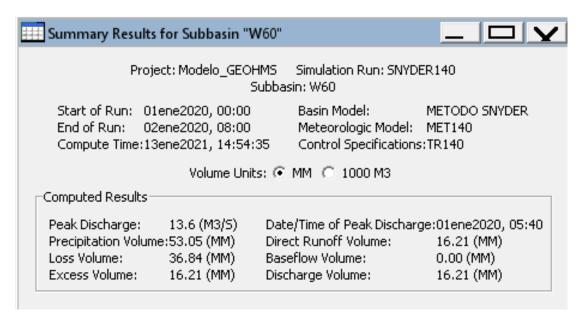



Figura 49 Resumen de la simulación método de Snyder, T=140 años, microcuenca W60.

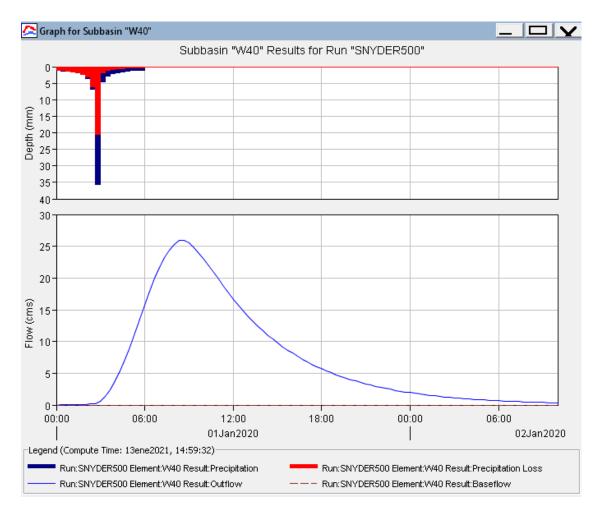



Figura 50 Hidrograma unitario determinado con el método de Snyder, T=500 años, microcuenca W40.

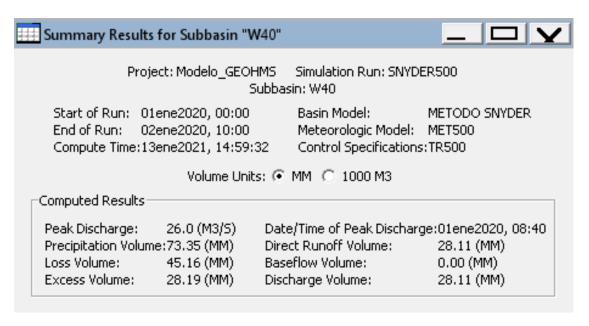



Figura 51 Resumen de la simulación método de Snyder, T=500 años, microcuenca W40.

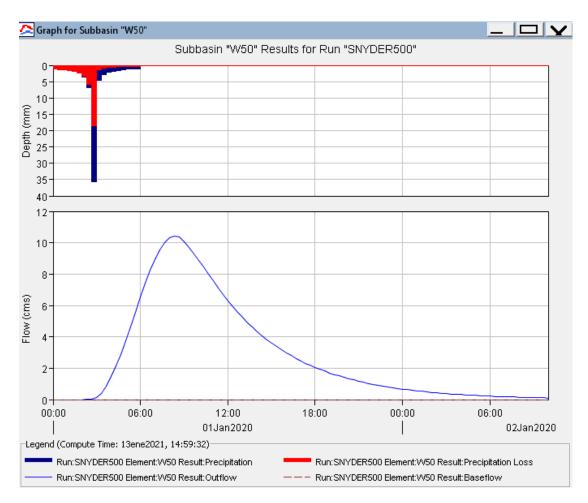



Figura 52 Hidrograma unitario determinado con el método de Snyder, T=500 años, microcuenca W50.

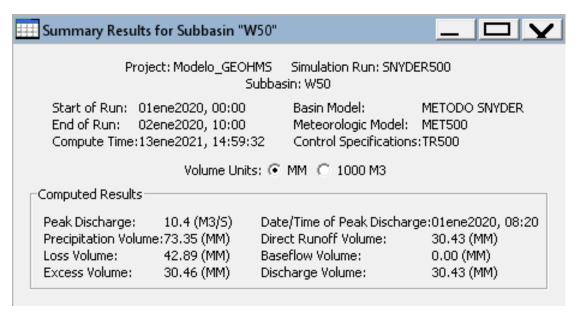



Figura 53 Resumen de la simulación método de Snyder, T=500 años, microcuenca W50.

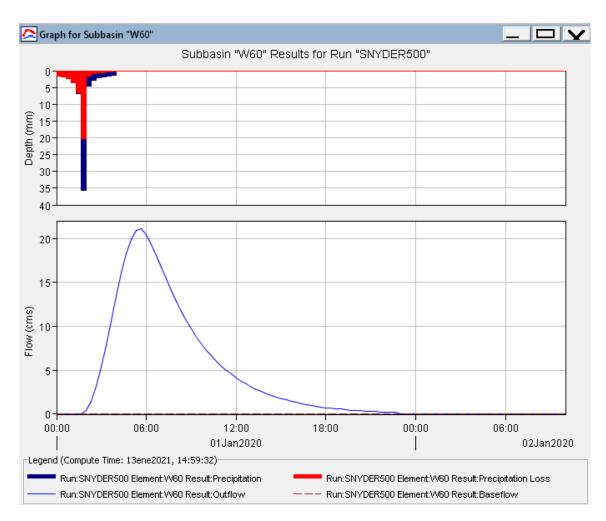



Figura 54 Hidrograma unitario determinado con el método de Snyder, T=500 años, microcuenca W60.

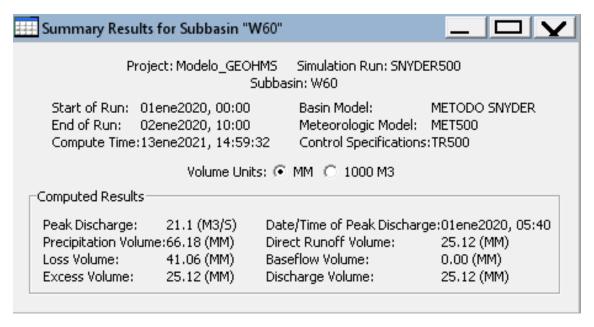



Figura 55 Resumen de la simulación método de Snyder, T=500 años, microcuenca W60.

# Anexo 4. Información pluviométrica Anexo 4.1. Carta de presentación



Los Olivos, 30 de noviembre del 2020

#### CARTA N°532-2020/EP-ING-CIV-UCV

Señor Ing. José Percy Barrón López Gerente General SENAMHI -Puno

De mi consideración:

Por medio de la presente, es grato dirigirme a usted a fin de saludario muy cordialmente y a la vez presentar al estudiante FLORES PALOMINO, VICTOR RAUL con código de matricula N°7002555900 quien en el 2020-li se encuentra en la etapa de desarrollo de la tesis en la Escuela Profesional de Ingeniería Civil de la Universidad César Vallejo, asimismo, nuestro estudiante requiere información de los datos hidrometeorológicos, de las estaciones: JULIACA, CABANILLAS, LAMPA, CAPACHICA, MAÑAZO, PUCARA, PUNO Y TARACO para realizar el desarrolla de la tesis títulada "GENERACIÓN DE MÁXIMAS AVENIDAS EN LA SUB CUENCA TOROCOCHA, EMPLEANDO MÉTODOS HIDROLÓGICOS, PARA DISEÑO DEL PUENTE TOROCOCHA, JULIACA, PUNO, 2020".

Agradezco anticipadamente su gentil atención y su apoyo a favor del dicho alumno.

En tal sentido, si fuera posible de remitirle la información al correo electrónico flores151180@gmeil.com

Segura de contar con su apoyo, aprovecho la oportunidad para expresarie las muestras de mil especial consideración y estima.

Cordialmente,

Mg. Doris Lina Huamán Baldeón Coordinadora EP de Ingeniería Civil

Yanet

# Anexo 4.2. Información pluviométrica

# **UNIDAD DE ATENCION AL CIUDADANO Y GESTION DOCUMENTAL**

ESTACIÓN: JULIACA/007454/DZ13 ALT: 3820 MSNM LONG: 70° 10' 10"

LAT: 15° 28' 28" DPTO: PUNO

PT202 PRECIPITACION MAXIMA EN 24 HORAS (mm)

| CODIGO | PLANILLA | VARIABLE | AÑO  | ENE  | FEB  | MAR  | ABR  | MAY  | JUN | JUL  | AGO | SET  | ОСТ  | NOV  | DIC  |
|--------|----------|----------|------|------|------|------|------|------|-----|------|-----|------|------|------|------|
| 7454   | 52       | PT202    | 2001 |      |      |      |      |      |     |      |     | 5.7  | 19.4 | 7.4  | 12.5 |
| 7454   | 52       | PT202    | 2002 | 10.8 | 32.7 | 16.7 | 13.4 | 12.4 | 1.6 | 8    | 6.1 | 10.6 | 63.3 | 12.6 | 19   |
| 7454   | 52       | PT202    | 2003 | 29   | 18.9 | 22.3 | 1.7  | 2.9  | 4.4 | 0.5  | 0.3 | 16.8 | 5    | 17.6 | 36.5 |
| 7454   | 52       | PT202    | 2004 | 32.8 | 15.9 | 17.9 | 7.8  | 0    | 0.2 | 0.7  | 15  | 22.5 | 2.8  | 6.8  | 20.5 |
| 7454   | 52       | PT202    | 2005 | 16.4 | 47.4 | 41   | 18.7 | 0    | 0   | 0    | 1.8 | 11.3 | 23.7 | 15.2 | 15   |
| 7454   | 52       | PT202    | 2006 | 23.3 | 23.2 | 30.3 | 4.4  | 0.8  | 2   | 0    | 0.7 |      | 24.2 | 21.4 | 23.5 |
| 7454   | 52       | PT202    | 2007 | 14.4 | 19.4 | 39.3 | 24.9 |      | 0.1 | 5.9  | 0.8 | 5.7  |      | 33.5 |      |
| 7454   | 52       | PT202    | 2008 | 45   | 11.1 | 11   |      | 0.4  | 0.6 |      | 0.9 | 1.1  | 25.2 | 13.8 | 33.6 |
| 7454   | 52       | PT202    | 2009 | 27.9 | 28.9 | 27.5 |      | 0    | 0   | 1    |     | 6.1  |      | 18.3 |      |
| 7454   | 52       | PT202    | 2010 | 20.2 | 17.1 | 12.5 | 4.8  | 10   | 0.4 | 0.4  | 0   | 0.2  | 9.4  | 11.9 | 10.9 |
| 7454   | 52       | PT202    | 2011 | 6.9  | 55.4 | 12.9 | 7.3  | 4.8  | 0   | 3.6  | 2.5 | 4.3  | 7.5  | 21   |      |
| 7454   | 52       | PT202    | 2012 | 22.1 | 23   | 20.7 | 14   | 0    |     |      | 20  | 0.3  | 7.1  |      |      |
| 7454   | 52       | PT202    | 2013 |      | 27.9 | 11.6 | 6.6  | 2.6  | 3.8 | 2.1  | 3.8 |      | 11.6 | 12.4 | 28.5 |
| 7454   | 52       | PT202    | 2014 | 37   | 15.8 | 22.2 | 9.1  | 0.3  | 0.1 | 4.5  | 3.3 | 24.8 | 23.5 | 5.3  | 16.6 |
| 7454   | 52       | PT202    | 2015 | 17.3 | 17.5 | 17.6 | 33.6 | 2.3  | 0.6 | 2    | 6.3 | 24.2 | 12.7 | 8.7  | 20.8 |
| 7454   | 52       | PT202    | 2016 | 15.7 | 36.6 |      | 11.7 | 0    | 1.8 | 4.2  | 0   | 0.4  | 10.4 | 9    | 19.7 |
| 7454   | 52       | PT202    | 2017 | 24   | 12.7 | 36.7 | 9    | 10   | 0   | 5.1  | 0   | 8.3  | 26.9 | 19.1 | 61.8 |
| 7454   | 52       | PT202    | 2018 | 19.9 | 32.6 | 22.2 | 16.3 | 10.7 | 9   | 15.8 | 0   | 0.2  | 22.4 | 20.4 | 22.2 |
| 7454   | 52       | PT202    | 2019 | 22.1 |      | 24.2 | 17   | 7.1  | 2.8 | 8.9  | 0   | 10.3 | 25.5 | 23.7 | 17.3 |
| 7454   | 52       | PT202    | 2020 | 13.5 | 33.5 |      |      |      |     |      |     | 10.9 | 8.2  | 9.3  |      |

ESTACIÓN: CABANILLAS/000780/DZ13

ALT: 3,920 MSNM LAT: 15° 10' 10.5" LONG: 69° 58′ 11.6′′ DPTO: PUNO

PT202 PRECIPITACION MAXIMA EN 24 HORAS (mm)

| CODIGO     | PLANILLA | VARIABLE       | AÑO          | ENE          | FEB          | MAR          | ABR  | MAY  | JUN  | JUL  | AGO         | SET         | ОСТ         | NOV        | DIC          |
|------------|----------|----------------|--------------|--------------|--------------|--------------|------|------|------|------|-------------|-------------|-------------|------------|--------------|
| 780        | 52       | PT202          | 1963         | LIVE         | LEB          | WAN          | ADIN | IVIA | 3014 | 301  | AGO         | JLI         | 001         | NOV        | 26           |
| 780        | 52       | PT202          | 1964         | 8            | 25           | 18.5         | 21   | 6.5  | 0    | 0    | 0           | 1.5         | 17.8        | 36.1       | 22           |
| 780        | 52       | PT202          | 1965         | 26.6         | 27.4         | 25           | 36.6 | 3    | 0    | 0    | 0           | 5.1         | 11.2        | 22         | 31.5         |
| 780        | 52       | PT202          | 1966         | 16.1         | 30           | 19           | 1.8  | 15   | 0    | 0    | 1           | 4           | 6.7         | 22         | 30           |
| 780        | 52       | PT202          | 1967         | 12.5         | 20.1         | 31.2         | 5.4  | 6.8  | 0.6  | 3.3  | 7           | 12.1        | 12.1        | 4.2        | 25.7         |
| 780        | 52       | PT202          | 1968         | 13           | 22.2         | 10           | 4    | 8    | 3.1  | 2.2  | 0           |             | 9           | 18         | 25.6         |
| 780        | 52       | PT202          | 1969         | 27.2         |              | 7.2          | 10.4 | 0    | 0.6  | 2.2  | 0           | 2.4         | 8.4         | 19         | 10           |
| 780        | 52       | PT202          | 1970         | 11.8         | 16.8         | 24           | 10   | 3.6  | 0    | 0    | 0           | 5.8         | 6.3         | 6.1        | 20.2         |
| 780        | 52       | PT202          | 1971         | 18.8         | 30.8         | 12.4         | 6.2  | 5.8  | 0    | 0    | 4           | 0           | 6.5         | 25         | 17           |
| 780        | 52       | PT202          | 1972         | 31.8         | 20           | 20.7         | 16.9 | 6.2  | 0    | 0    | 0.6         | 12.2        | 17.9        | 7.2        | 13.9         |
| 780        | 52       | PT202          | 1973         | 27.8         | 30           | 24.4         | 22   | 11.2 | 0    | 2.1  | 0.8         | 15.9        | 2.4         | 8.5        | 40           |
| 780        | 52       | PT202          | 1974         | 33.7         | 43.6         | 19.1         | 18   | 0    | 0    | 0    | 12.1        | 11.4        | 10.2        | 22         | 18           |
| 780        | 52       | PT202          | 1975         | 26           | 30.4         | 11.5         | 6.2  | 13.9 | 0    | 0    | 0           | 5.5         | 9.2         | 6          | 36           |
| 780        | 52       | PT202          | 1976         | 38.2         | 23.8         | 15           | 9.1  | 2    | 1.9  | 1.3  | 1.8         | 7.2         | 4.1         | 6.1        | 13           |
| 780        | 52       | PT202          | 1977         | 35.4         | 28.2         | 36.7         | 9    | 0    | 0    | 0    | 0           | 7.1         | 12.6        | 26.8       | 27.9         |
| 780        | 52       | PT202          | 1978         | 25.9         | 20.3         | 24.6         | 11.6 | 0    | 0    | 0    | 0           | 1.6         | 6.1         | 15.8       | 21.5         |
| 780        | 52       | PT202          | 1979         | 20.2         | 31.8         | 13.3         | 26.3 | 2.8  | 0    | 0.6  | 1.2         | 1.7         | 10.8        | 17.4       | 29.8         |
| 780        | 52       | PT202          | 1980         | 10           | 16.4         | 33.2         | 4.6  | 2.1  | 0    | 1    |             |             | 30.5        | 16.8       |              |
| 780        | 52       | PT202          | 1981         | 14.6         | 18.3         | 26.2         |      | 0    |      |      | 10.8        |             | 4.8         | 10.8       |              |
| 780        | 52       | PT202          | 1982         |              | 14.5         | 13.1         | 11   | 3    | 1    | 1    |             | 7           | 7           |            |              |
| 780        | 52       | PT202          | 1983         | 6            |              | 6.5          | 2    | 3    | 2.8  | 0    | 2           | 4.5         | 6           |            | 21           |
| 780        | 52       | PT202          | 1984         |              | 28.2         |              |      | 14.4 |      |      | 2.5         | 2.5         |             | 11.9       |              |
| 780        | 52       | PT202          | 1985         | 17.5         | 19           | 12.5         | 13   | 5    | 16   | 0    | 2           | 9           | 9.5         | 14         | 20.5         |
| 780        | 52       | PT202          | 1986         | 54.2         | 47.5         | 27.2         | 20   | 1.3  | 0    | 10.5 | 1           | 10          | 4           | 7.3        | 30           |
| 780        | 52       | PT202          | 1987         | 16           | 25.4         | 15           |      |      | 0.7  | 6    | 1.5         | 6.4         | 7.3         | 29         | 17.8         |
| 780        | 52       | PT202          | 1988         | 25.8         | 25.8         | 21.4         | 10   | 7.6  | 0    | 0    | 0           | 14.2        | 19.7        |            | 46           |
| 780        | 52       | PT202          | 1989         | 29.5         | 18           | 20.2         | 15.4 | 0    | 1.4  | 0    | 4           | 5           | 2.5         | 11         | 22.2         |
| 780        | 52       | PT202          | 1990         | 19.8         | 9.6          | 8.4          | 7.5  |      | 21.6 | 0    | 3.8         | 0.5         |             | 25.7       | 11           |
| 780        | 52       | PT202          | 1991         | 14.4         | 16.7         | 14.4         | 20.2 | 5.8  | 16.8 | 0    | 0           | 4.6         | 7           | 12         | 10.8         |
| 780        | 52       | PT202          | 1992         | 12.2         | 10.4         | 4.4          | 2.6  | 0    | 2.2  | _    | 21.2        | 7.4         | 13.4        | 5          | 13           |
| 780        | 52       | PT202          | 1993         | 16.8         | 22.4         | 17           | 17.3 | 3    | 0    | 0    | 0           | 7.4         | 11.6        | 22.4       | 12.1         |
| 780        | 52       | PT202          | 1994         | 18.8         | 12.8         | 54.6         | 24.8 | 0    | 0    | 0    | 0           | 5.3         | 11.6        | 12.6       | 12.4         |
| 780        | 52       | PT202          | 1995         | 15.4         | 14.2         | 15.5         | 3.2  | 0    | 0    | 0    | 0.2         | 10.8        | 6.7         | 13.6       | 10.7         |
| 780        | 52<br>52 | PT202<br>PT202 | 1996<br>1997 | 42.7         | 14.4<br>44.6 | 24.8<br>34.5 | 26.8 | 2.5  | 0    | 0    | 12.8<br>6.8 | 4.8<br>23.3 | 6.3<br>14.4 | 20<br>28.2 | 28.7         |
| 780<br>780 | 52       | PT202          | 1997         | 17.5<br>22.1 | 39.2         | 34.5         | 6.1  | 0    | 0    | 0    | 5.5         | 0           | 17.8        | 20.2       | 35.6<br>11.1 |
| 780        | 52       | PT202          | 1999         | 23           | 21.4         | 18.3         | 18.2 | 5.4  | 0    | 1.8  | 1.8         | 10.6        | 26.2        | 2.4        | 34.9         |
| 780        | 52       | PT202          | 2000         | 17.5         | 31.2         | 31.6         | 21.8 | 0.4  | 0    | 0    | 3.1         | 15.8        | 23.1        | 6.6        | 30.3         |
| 780        | 52       | PT202          | 2001         | 32.2         | 44.2         | 20.9         | 26.6 | 7    | 0.8  | 0.4  | 7.5         | 6           | 32          | 16.6       | 10           |
| 780        | 52       | PT202          | 2002         | 15.5         | 21.7         | 21.1         | 30.5 | 10   | 4.2  | 12.5 | 10.4        | 2.5         | 23.1        | 27.2       | 23.7         |
| 780        | 52       | PT202          | 2003         | 30.3         | 12.4         | 24.6         | 8    | 5.6  | 2.6  | 0    | 0.5         | 12.2        | 6.1         | 42.3       | 36.6         |
| 780        | 52       | PT202          | 2004         | 16.4         | 29.6         | 15.8         | 10.8 | 8.5  | 0.5  | 5.3  | 6           | 6           | 1           | 10.1       | 15.5         |
| 780        | 52       | PT202          | 2005         | 15.2         | 66           | 36.6         | 26.4 | 0    | 0.5  | 0    | 0.5         | 3.8         | 11.2        | 22.7       | 13.8         |
| 780        | 52       | PT202          | 2006         | 19.5         | 35.2         | 26           | 20.2 | 0    | 0.7  | 0    | 0.7         | 32          | 9.2         | 12.5       | 24.3         |
| 780        | 52       | PT202          | 2007         | 18.4         | 24.2         | 37.5         | 18.3 | 1.2  | 0    | 0.8  | 0           | 17.8        | 12.7        | 46.4       | 14.5         |
| 780        | 52       | PT202          | 2008         | 44.1         | 22.4         | 25.2         | 5.1  | 0    | 0.2  | 0    | 0.6         | 1           | 16.2        | 21.9       | 31.5         |
| 780        | 52       | PT202          | 2009         | 14.3         | 22.9         | 25           | 10.8 | 0    | 0    | 1.6  | 0.5         | 0.5         | 19.4        | 35.6       | 21.5         |
| 780        | 52       | PT202          | 2010         | 25.1         | 17.3         | 18           | 8.3  | 5.8  | 0    | 0.5  | 0           | 2.1         | 6.3         | 14.2       | 27.3         |
| 780        | 52       | PT202          | 2011         | 17.7         | 23.2         | 35.2         | 14.9 | 0.8  | 0    | 3.4  | 4.1         | 10.4        | 21          | 16.3       |              |
| 780        | 52       | PT202          | 2012         | 20.3         | 32.6         | 21.7         | 18.9 | 0    | 0    | 0    | 2.9         | 1.9         | 8.4         | 14.8       | 22.3         |
| 780        | 52       | PT202          | 2013         | 16.1         | 54.3         | 5.9          | 5.3  | 3.4  | 6    | 5.4  | 4           | 5.7         | 23.2        | 19.4       | 29.8         |
| 780        | 52       | PT202          | 2014         | 33           | 12           | 12.7         | 9.2  | 0    | 0    | 2.2  | 12.2        | 8.2         | 18.5        | 17.4       | 32.6         |
| 780        | 52       | PT202          | 2015         | 21.2         | 21.8         | 13.4         | 22.4 |      |      | 3.7  | 2.3         | 17.3        | 11.6        | 28.9       | 30.2         |
| 780        | 52       | PT202          | 2016         | 16.5         | 32.7         | 17.1         | 33.3 | 0.6  | 3.5  | 4.4  | 0           | 1.4         | 22.7        | 4.5        |              |
| 780        | 52       | PT202          | 2017         | 22.9         | 19.3         | 29.2         | 11.2 | 3.2  | 3    | 3    | 0           | 15          | 29          | 19.2       | 31.6         |
| 780        | 52       | PT202          | 2018         | 39.6         | 23.6         | 67.8         | 18.2 | 2.8  | 9.3  | 16.9 | 0.8         | 0           | 10.4        | 25         | 22           |
| 780        | 52       | PT202          | 2019         | 22.6         | 13           | 12.9         | 22.3 | 9.9  | 0.5  | 4.3  | 0           | 7.5         | 16          | 19         | 15.5         |
| 780        | 52       | PT202          | 2020         | 28           | 22.1         |              | 17.6 | 5.7  | 0    | 0    | 0           |             |             |            |              |

ESTACIÓN: LAMPA/000779/DZ13

ALT: 3,892 MSNM LAT: 15° 40' 24.4" LONG: 70° 22' 19.6" DPTO: PUNO

PT202 PRECIPITACION MAXIMA EN 24 HORAS (mm)

| CODIGO     | PLANILLA | VARIABLE       | AÑO          | ENE          | FEB          | MAR          | ABR          | MAY        | JUN        | JUL      | AGO         | SET        | ОСТ          | NOV          | DIC          |
|------------|----------|----------------|--------------|--------------|--------------|--------------|--------------|------------|------------|----------|-------------|------------|--------------|--------------|--------------|
| 779        | 52       | PT202          | 1963         | LIVE         | 1120         | 30           | 17           | 1.5        | 0          | 0        | 0.2         | 13         | 49.5         | 11           | 23.2         |
| 779        | 52       | PT202          | 1964         | 10           | 20           | 26           | 15.5         | 10         | 0          | 0        | 0           | 10         | 10.2         | 15           | 12.6         |
| 779        | 52       | PT202          | 1965         | 20.1         | 18           | 15.5         | 11           | 0          | 0          | 0        | 0           | 6          | 13           | 17           | 41           |
| 779        | 52       | PT202          | 1966         | 15           | 24           | 10           | 7            | 20.5       | 0          | 0        | 0           | 16.1       | 6.1          | 11.4         | 21           |
| 779        | 52       | PT202          | 1967         | 18.8         | 22           | 36.1         | 8.2          | 6.5        | 0.6        | 3.3      | 3.2         | 14.4       | 16.9         | 2.1          | 29.1         |
| 779        | 52       | PT202          | 1968         | 16.5         | 18.8         | 21.5         | 18.5         | 1.6        | 2.2        | 5.8      | 3           | 13.5       | 20           | 22.9         | 16.5         |
| 779        | 52       | PT202          | 1969         | 38.7         | 15.2         | 8            | 16           | 0          | 2.8        | 1.5      | 0           | 3.6        | 31.5         | 24.4         | 14.9         |
| 779        | 52       | PT202          | 1970         | 20.1         | 16.5         | 32.5         | 8.1          | 3.8        | 0          | 0        | 1.3         | 2.2        | 15.2         | 9            | 24.7         |
| 779        | 52       | PT202          | 1971         | 16           | 19.8         | 11           | 11.8         | 0          | 0          | 0        | 8.4         | 0.5        | 20.1         | 11.1         | 24.5         |
| 779        | 52       | PT202          | 1972         | 53.3         | 17.5         | 27.8         | 5.1          | 0.8        | 0          | 0        | 0           | 9.5        | 2.8          | 20.6         | 14           |
| 779        | 52       | PT202          | 1973         | 18.5         | 32.2         | 38.8         | 22.7         | 2.5        | 0          | 2        | 1           | 13.2       | 22.4         | 16           | 26           |
| 779        | 52       | PT202          | 1974         | 35.8         | 20.1         | 14.1         | 8.5          | 0          | 4          | 0.8      | 27.5        | 6.2        | 40.5         | 21.4         | 31.8         |
| 779        | 52       | PT202          | 1975         | 21.8         | 31.5         | 16           | 10.5         | 12         | 0.8        | 0        | 2.8         | 7.5        | 12.5         | 5            | 23           |
| 779<br>779 | 52<br>52 | PT202<br>PT202 | 1976<br>1977 | 30<br>22.5   | 35<br>35     | 13<br>29     | 6<br>8.5     | 12         | 0          | 0.3      | 5<br>0      | 21<br>16.5 | 0<br>17.5    | 6<br>19.5    | 17<br>30.2   |
| 779        | 52       | PT202          | 1977         | 40           | 44           | 32           | 14.5         | 0          | 1.5        | 0        | 3.5         | 9.5        | 10.6         | 26.1         | 39           |
| 779        | 52       | PT202          | 1979         | 19           | 14.5         | 23.3         | 15.3         | 2          | 0          | 0        | 3.8         | 0          | 18.5         | 26.4         | 21           |
| 779        | 52       | PT202          | 1980         | 19           | 17           | 31           | 3            | 3.9        | 0          | 0        | 10          | 33         | 14           | 40           | 9.5          |
| 779        | 52       | PT202          | 1981         | 49           | 25           | 21.1         | 11           | 0          | 0          | 0        | 11          | - 55       |              | 16.5         | 27           |
| 779        | 52       | PT202          | 1982         | 25           | 17           | 21           | 64           | 0          | 2          | 0        | 2           | 22         | 20           | 26           | 22           |
| 779        | 52       | PT202          | 1983         |              |              | 12           | 7            | 4          | 4.5        | 0        | 4.5         | 9.5        | 24.5         | 14.5         | 12.5         |
| 779        | 52       | PT202          | 1984         | 44.5         | 25           | 19           | 40           | 12         | 0          | 0        | 6           | 0          | 35.8         | 38.5         | 50.4         |
| 779        | 52       | PT202          | 1985         | 28.6         | 48.3         | 32           | 30.5         | 4          | 15         | 0        | 9.5         | 7          | 22.5         | 24.6         | 33           |
| 779        | 52       | PT202          | 1986         | 34.5         | 37           | 21           | 10.4         | 3.4        | 0          | 1.4      | 9.3         | 9.8        | 6            | 11.4         | 33           |
| 779        | 52       | PT202          | 1987         | 36.6         | 20.4         | 15.5         | 10.2         | 3          | 1.5        | 11.2     | 0           | 2.9        | 10.9         | 26.6         | 30.9         |
| 779        | 52       | PT202          | 1988         | 21           | 8.4          | 21.7         | 35.7         | 13         | 0          | 0.1      | 0           | 7.2        | 28.7         | 2.1          | 31.4         |
| 779        | 52       | PT202          | 1989         | 19           | 15           | 22.2         | 21.4         | 0.5        | 2.4        | 0.8      | 2.4         | 1.2        | 4.2          | 14.5         | 12.2         |
| 779        | 52       | PT202          | 1990         | 16.7         | 12.8         | 14.2         | 4.6          | 6          |            | 0        | 3.2         | 2.1        | 16.4         | 26.8         | 30.3         |
| 779        | 52       | PT202          | 1991         | 28.8         | 24.3         | 22.4         | 12.5         | 22.5       | 2.0        | 0.8      | 0           | 7          | 26.4         | 10.8         | 24.1         |
| 779<br>779 | 52<br>52 | PT202<br>PT202 | 1992<br>1993 | 12.8<br>29.9 | 4.2          | 14.8<br>22.4 | 16.7<br>11.1 | 0<br>1.9   | 2.8<br>0.2 | 1.4<br>0 | 39.3<br>9.4 | 0.5<br>5.1 | 20.8<br>16.8 | 16.7<br>14.4 | 19.2<br>23.7 |
| 779        | 52       | PT202          | 1994         | 18.7         | 33.7         | 35.2         | 7.9          | 1.3        | 0.2        | 0        | 0           | 2.5        | 11           | 15.5         | 13.4         |
| 779        | 52       | PT202          | 1995         | 21.5         | 24.7         | 14.1         | 8.4          | 0.5        | 0.7        | 0        | 5.6         | 11.6       | 13.9         | 13.8         | 17.3         |
| 779        | 52       | PT202          | 1996         | 42.7         | 30.7         | 22.4         | 7.5          | 8.6        | 0          | 1.8      | 1.4         | 7.2        | 2.4          | 19.1         | 27.2         |
| 779        | 52       | PT202          | 1997         | 30.7         | 23.8         | 31.4         | 21.4         | 2.6        | 0          | 0        | 4.9         | 21.4       | 11.3         | 28.6         | 28.6         |
| 779        | 52       | PT202          | 1998         | 18.5         | 32.8         | 24.3         | 21.3         | 0          | 0.8        | 0        | 0           | 0.2        | 22.5         | 16.4         | 21.8         |
| 779        | 52       | PT202          | 1999         | 32.7         | 13           | 30.3         | 27           | 4.5        | 1.8        | 0        | 0.8         | 22.4       | 31.7         | 13.2         | 15           |
| 779        | 52       | PT202          | 2000         | 21.2         | 33.4         | 26.8         | 27.7         | 6.3        | 4.4        | 0        | 2.7         | 14.5       | 16.3         | 4.1          | 16.1         |
| 779        | 52       | PT202          | 2001         | 28.1         | 38.1         | 21.8         | 12.2         | 5.4        | 2.9        | 1.8      | 6.1         | 1.8        | 22           | 20.7         | 12.4         |
| 779        | 52       | PT202          | 2002         | 18.2         | 22.5         | 24.5         | 16.6         | 13.2       | 1.9        | 8.9      | 4.9         | 10.4       | 36.9         | 16.1         | 34.8         |
| 779        | 52       | PT202          | 2003         | 26           | 22.3         | 20.2         | 5.9          | 3          | 3.2        | 0        | 0.9         | 18.7       | 5.1          | 8.8          | 36.7         |
| 779        | 52       | PT202          | 2004         | 43.8         | 32.1         | 25           | 12.5         | 2.3        | 2          | 1.6      | 11.6        | 11.6       | 15.1         | 8            | 15           |
| 779        | 52<br>52 | PT202          | 2005         | 28           | 39.4         | 49.6         | 17.4         | 0          | 1.2        | 0        | 0           | 20.2       | 28.8         | 15.1         | 30.8         |
| 779<br>779 | 52<br>52 | PT202<br>PT202 | 2006<br>2007 | 26.2<br>14   | 27.1<br>35.6 | 22.2<br>28.4 | 5.4<br>28.4  | 0.7<br>7.4 | 1.3<br>0.5 | 0<br>6.1 | 0.2<br>10   | 5.4        | 14.5<br>13.7 | 18.3<br>26.1 | 19.4<br>21.4 |
| 779        | 52       | PT202<br>PT202 | 2007         | 26.8         | 14           | 12.8         | 0.8          | 7.4        | 1.2        | 0.1      | 1.4         | 2.8        | 30.6         | 9.7          | 34.7         |
| 779        | 52       | PT202          | 2009         | 22.7         | 54.7         | 39.8         | 13.6         | 0.8        | 0          | 0        | 0           | 2.0        | 17.1         | 20.8         | 16           |
| 779        | 52       | PT202          | 2010         | 21           | 21.2         | 14.8         | 8.8          | 0.0        | 0          | 0        | 0           | 0          | 13.5         | 3.6          | 25.6         |
| 779        | 52       | PT202          | 2011         | 11.4         |              | 29.4         | 4.7          | 2.7        | 0          | 2.6      | 4.3         | 20.2       | 21.7         | 22.3         | 33.2         |
| 779        | 52       | PT202          | 2012         | 15           | 15.4         | 14.8         | 17.3         | 0          | 0          | 1.7      | 8.3         | 1.4        | 7.7          | 15           | 27.4         |
| 779        | 52       | PT202          | 2013         | 15.3         | 9.5          | 35.4         | 11.3         | 9.1        | 5.3        | 1.3      | 4.9         | 6.7        | 14.3         | 16.9         | 29.1         |
| 779        | 52       | PT202          | 2014         | 28.5         | 22.1         | 16.8         | 8.1          | 0          | 0          | 3.6      | 4.5         | 13.2       | 21.8         | 21.3         | 24.1         |
| 779        | 52       | PT202          | 2015         | 21.5         | 22.7         | 8.7          | 17.1         | 3.6        | 1.6        | 1.6      | 3.7         | 34.9       | 23.3         | 15.3         | 17.2         |
| 779        | 52       | PT202          | 2016         | 14.9         | 31.2         | 19           | 24.7         | 0.1        | 0.4        | 7.3      | 2.1         | 8.2        | 11.4         | 9.1          | 9.9          |
| 779        | 52       | PT202          | 2017         | 22.4         | 20.1         | 21.3         | 14.2         | 7.6        | 0.1        | 5.1      | 0.2         | 13.8       | 26           | 14.3         | 35.6         |
| 779        | 52       | PT202          | 2018         | 13.9         | 18.9         | 17.8         | 9.7          | 2.5        | 13.8       | 21.2     | 9.7         | 0.9        | 23.9         | 19.1         | 29.8         |
| 779        | 52       | PT202          | 2019         | 17.5         | 17.8         | 20.2         | 15.8         | 4.5        | 4.7        | 6.8      | 0           | 20.5       | 16.9         | 44.0         | 19.3         |
| 779        | 52       | PT202          | 2020         | 15.7         | 23           |              |              |            |            | 0.4      | 0           | 12.2       | 17.7         | 11.9         |              |

ESTACIÓN: MAÑAZO/000820/DZ13

ALT: 3910 MSNM LAT: 14° 48' 2" LONG: 70° 3' 59.7" DPTO: PUNO

PT202 PRECIPITACION MAXIMA EN 24 HORAS (mm)

| CODIGO | PLANILL<br>A | VARIABLE | AÑO  | ENE  | FEB  | MAR  | ABR  | MAY  | JUN      | JUL  | AGO  | SET  | ОСТ  | NOV  | DIC  |
|--------|--------------|----------|------|------|------|------|------|------|----------|------|------|------|------|------|------|
| 820    | 52           | PT202    | 1960 | 17.6 | 17.7 | 6.7  | 17.7 | 0.8  | 0        | 0    | 1.6  | 19.8 | 19   | 15.4 | 9.6  |
| 820    | 52           | PT202    | 1961 | 42.6 | 23.6 | 21.6 | 14   | 21.4 | 7.3      | 0    | 6.2  | 6.8  | 12.5 | 9.4  | 20.4 |
| 820    | 52           | PT202    | 1962 | 19.5 | 41.4 | 6.6  | 4.8  | 0    | 0        | 0    | 0    | 9    | 6.4  | 13   | 19.2 |
| 820    | 52           | PT202    | 1963 | 21.2 | 16   | 11.1 | 22.1 | 1.9  | 0        | 0    | 2.8  | 4    | 17.8 | 18.4 | 12.4 |
| 820    | 52           | PT202    | 1964 | 15   | 13   | 19.2 | 27.9 | 7    | 0        | 0    | 0.3  | 6.2  | 8    | 13.6 | 12.5 |
| 820    | 52           | PT202    | 1965 | 10.9 | 14.3 | 13.1 | 0.8  | 6    | 0.2      | 1    | 0.5  | 2.6  | 1.6  | 5.6  | 21.1 |
| 820    | 52           | PT202    | 1966 | 7.2  | 26.9 | 7.9  | 2.2  | 7.4  | 0        | 0    | 0    | 3    | 3.6  | 12.4 | 12.2 |
| 820    | 52           | PT202    | 1967 | 6.7  | 7.2  | 27.8 | 1.1  | 3.6  | 0        | 3.2  | 0    | 4.4  | 13.4 | 0.5  | 15.6 |
| 820    | 52           | PT202    | 1968 | 7    | 14.5 | 20.6 | 2.2  |      |          | 0.4  | 0    | 10.1 | 8.8  | 30   | 20.9 |
| 820    | 52           | PT202    | 1969 | 35.5 | 27.8 | 8.6  | 2.5  | 0    | 0        | 2.1  | 0    | 5.9  | 20.9 | 21.6 | 20.5 |
| 820    | 52           | PT202    | 1970 | 16.9 | 18.5 | 29.1 | 2.8  | 5.2  | 0        | 0    | 0    | 3.2  | 10.5 | 2.5  | 36.6 |
| 820    | 52           | PT202    | 1971 | 20.2 | 33.7 | 12.9 | 14.4 | 2.9  | 0.9      | 0    | 0.1  | 0    | 8.4  | 15.7 | 24.1 |
| 820    | 52           | PT202    | 1972 | 24.2 | 31.2 | 27.4 | 8.8  | 4.1  | 0        | 0    | 0    | 8.7  | 11.8 | 10.2 | 21.9 |
| 820    | 52           | PT202    | 1973 | 36.5 | 27.2 | 43.2 | 10.5 | 6.4  | 1.2      | 2.2  | 2.9  | 14.9 | 6.3  | 17.7 | 35.6 |
| 820    | 52           | PT202    | 1974 | 40.5 | 42.9 | 19.3 | 12   | 0.3  | 8.7      | 1    | 14.5 | 11.2 | 11.3 | 11.8 | 11.2 |
| 820    | 52           | PT202    | 1975 | 33.7 | 49.2 | 22.7 | 4.5  | 15.5 | 0.2      | 0    | 0.3  | 9.2  | 23.6 | 20.5 | 35.9 |
| 820    | 52           | PT202    | 1976 | 30.2 | 28.8 | 51.5 | 15.6 | 2.3  | 0.2      | 2.6  | 8.9  | 16.6 | 2.1  | 10.6 | 20.6 |
| 820    | 52           | PT202    | 1977 | 16.8 | 57.4 | 23.7 | 10.8 | 3.8  | 0        | 5.2  | 0    | 0    | 0    | 16.4 |      |
| 820    | 52           | PT202    | 1978 |      |      |      |      |      |          |      |      |      | 6    | 17.5 | 20.8 |
| 820    | 52           | PT202    | 1979 | 22   | 13.1 | 30.2 | 14.7 | 0    | 0        | 0    | 6.8  | 0    | 13.5 | 9.3  | 11.4 |
| 820    | 52           | PT202    | 1980 | 16.6 | 12.4 | 16.5 | 1.3  | 0    | 0        | 0    | 1.5  | 8.1  |      |      |      |
| 820    | 52           | PT202    | 1990 |      | 31.5 | 8    | 11   | 7.5  | 17.7     |      |      |      |      |      |      |
| 820    | 52           | PT202    | 1993 |      |      |      | 23.4 | 0.9  | 0        | 0    | 7.2  |      | 24.3 | 16.8 | 24.8 |
| 820    | 52           | PT202    | 1994 | 26.6 | 22   | 49   | 32.6 | 3.5  | 0.9      | 0    | 0    | 1.9  | 1.3  | 22   | 15.9 |
| 820    | 52           | PT202    | 1995 | 30.9 | 28.6 | 17   | 2.8  | 0    | 0        | 0    | 0    | 8.7  | 4.2  | 6.1  | 27   |
| 820    | 52           | PT202    | 1996 | 53   | 43.3 | 14.2 | 14.6 | 1.2  | 0        | 0.5  | 6.4  | 1.7  | 5.1  | 18.3 | 20.6 |
| 820    | 52           | PT202    | 1997 | 20.1 | 21.3 | 28.6 | 16.4 | 0.8  | 0        | 0    | 14   | 14.6 | 10.9 | 29.1 | 10.8 |
| 820    | 52           | PT202    | 1998 | 29.1 | 43.8 | 17.3 | 13.4 | 0    | 1.7      | 0    | 1.9  | 0    | 12.8 | 33.1 | 9    |
| 820    | 52           | PT202    | 1999 | 31.9 | 26.9 | 20.1 | 24   | 9.3  | 0        | 0    | 2.9  | 10.7 | 21.3 | 4.7  | 24.7 |
| 820    | 52           | PT202    | 2000 | 19.5 | 21.1 | 11.1 | 10.1 | 3.5  | 0        | 0    | 1.1  | 4.5  | 19.2 | 7.5  | 24.6 |
| 820    | 52           | PT202    | 2001 | 37.1 | 54   | 23.6 | 27.4 | 2.7  | 0        | 1.2  | 6.2  | 1.3  | 10.2 | 22   | 18.1 |
| 820    | 52           | PT202    | 2002 | 17.7 | 22.8 | 16.8 | 20.5 | 12.9 | 3        | 7.2  | 2.8  | 8.2  | 30.1 | 26.1 | 16.1 |
| 820    | 52           | PT202    | 2003 | 22.4 | 16   | 24.1 | 6.8  | 7.9  | 3.7      | 0    | 1.6  | 11   | 6.7  | 16.5 | 15.4 |
| 820    | 52           | PT202    | 2004 | 19.7 | 24.3 | 23.6 | 14.5 | 0    | 1.1      | 7.8  | 8.9  | 7.5  | 2.9  | 9.3  | 9.3  |
| 820    | 52           | PT202    | 2005 | 18.1 | 45.1 | 17.8 | 21.9 | 0    | 0        | 0    | 0    | 3.5  | 8    | 29   | 19.8 |
| 820    | 52           | PT202    | 2006 | 29.9 | 30.4 | 14.2 | 10.8 | 1.2  | 0        | 0    | 1.8  | 20.9 | 8.6  | 11.9 | 39.9 |
| 820    | 52           | PT202    | 2007 | 29.2 | 18.8 | 30.2 | 22.5 | 11.4 | 0        | 2.5  | 6.7  | 6.8  | 9.7  | 26.2 | 21.5 |
| 820    | 52           | PT202    | 2008 | 23.3 | 18.2 | 13.8 | 0    | 5.5  | 0        | 0    | 1.2  | 1.2  | 8    | 1.9  | 27   |
| 820    | 52           | PT202    | 2009 | 25   | 27.1 | 14.6 | 7.9  | 1.5  | 0        | 3    | 0    | 1.9  | 5.3  | 11.1 | 29.8 |
| 820    | 52           | PT202    | 2010 | 14.6 | 27.9 | 23.1 | 12.4 | 11.8 | 0        | 0    | 0    | 0    | 17.9 | 10.7 | 28.8 |
| 820    | 52           | PT202    | 2011 | 32.8 | 23.6 | 20.9 | 12.1 | 2.1  | 0        | 2.7  | 0    | 1.5  | 4.2  | 28.7 | 35.5 |
| 820    | 52           | PT202    | 2012 | 23.7 | 26.8 | 23.5 | 18.5 | 0    | 0        | 0    | 2.2  | 1.5  | 2.3  | 28.1 | 24.6 |
| 820    | 52           | PT202    | 2013 | 19.2 | 24.7 | 24.6 | 8.2  | 1.5  | 4.6      | 6.2  | 0.8  | 6.2  | 8.1  | 23.2 | 21.2 |
| 820    | 52           | PT202    | 2014 | 26.2 | 7.5  | 12.5 | 14   | 1.2  | 0.2      | 0.5  | 15.8 | 19.9 | 15.2 | 44.4 | 29.1 |
| 820    | 52           | PT202    | 2015 | 24.4 | 15.7 | 18.2 | 27.5 | 1    | 0        | 5.8  | 4    | 10.4 | 12.1 | 15   | 7.8  |
| 820    | 52           | PT202    | 2016 | 5.4  | 39.3 | 11.8 | 19   | 1.4  | 1.5      | 4.1  | 0    | 2.4  | 24.9 | 6.8  | 26.8 |
| 820    | 52           | PT202    | 2017 | 22.9 | 25.4 | 17.8 | 7.7  | 6.6  | 7.1      | 6.1  | 0    | 18.8 | 18.4 | 24.8 | 26   |
| 820    | 52           | PT202    | 2018 | 34.9 | 15   | 19.9 | 27.6 | 0    | 11.5     | 17.7 | 0    | 15.0 | 11   | 12.5 | 23.8 |
| 820    | 52           | PT202    | 2019 | 16.4 | 22.3 | 22.7 | 8.6  | 8.1  | 6.1      | 1.5  | 0    | 15.8 | 9.2  | 30.5 | 25.5 |
| 820    | 52           | PT202    | 2020 | 19.5 | 23.3 | l    |      |      | <u> </u> | l    |      | l    |      |      |      |

ESTACIÓN: CAPACHICA/000788/DZ13

ALT: 3828 MSNM LAT: 15°36'22.9" LONG: 69°49'55.7" DPTO: PUNO

PT202 PRECIPITACION MAXIMA EN 24 HORAS (mm)

| CODIGO     | PLANILLA | VARIABLE       | AÑO          | ENE          | FEB        | MAR       | ABR  | MAY  | JUN  | JUL      | AGO  | SET  | ОСТ        | NOV      | DIC      |
|------------|----------|----------------|--------------|--------------|------------|-----------|------|------|------|----------|------|------|------------|----------|----------|
| 788        | 52       | PT202          | 1960         | 28.2         | 18.3       | 17        | 7.5. |      | 30.1 |          | 7.00 | 18.6 | 19.5       | 22.8     | 18.6     |
| 788        | 52       | PT202          | 1961         | 29.1         | 17.1       | 12.3      | 35   | 11.4 | 0    | 0        | 3.9  | 11.9 |            | 18.5     | 22.2     |
| 788        | 52       | PT202          | 1962         | 35.5         | 58.2       | 20        | 16   | 1.1  | 0    | 0        | 0    | 9.5  |            | 27.1     | 23.7     |
| 788        | 52       | PT202          | 1963         | 24.4         | 24         | 24.7      | 13.5 | 4.5  | 0    | 0        | 4.1  | 13.8 |            | 12.2     | 17.8     |
| 788        | 52       | PT202          | 1964         | 25.1         | 20.4       | 63.2      | 32.1 | 54.7 | 0    | 0        | 1.5  | 16.5 |            | 32.8     | 39.1     |
| 788        | 52       | PT202          | 1965         | 25.6         | 38.5       | 52.8      | 29.8 |      | 0    | 4.4      | 0    |      | 15.5       |          | 42.7     |
| 788        | 52       | PT202          | 1966         | 21.7         | 20.6       | 10.4      | 4.3  | 20.4 | 0    | 0.9      | 0    | 10.1 | 6          |          | 23.2     |
| 788        | 52       | PT202          | 1967         | 10.5         |            | 33        | 27.9 |      | 1    | 3.7      | 6    |      |            | 11.1     | 26.5     |
| 788        | 52       | PT202          | 1968         | 14.9         | 19.4       | 23.5      | 19.5 | 8.8  | 9    | 1.8      | 2.1  | 17.5 |            |          | 19.4     |
| 788        | 52       | PT202          | 1969         | 15.2         | 20.3       | 20.8      | 15.8 | 0    | 0.4  | 17.8     | 0.7  | 4.7  | 11.3       | 8.9      | 12.4     |
| 788        | 52       | PT202          | 1970         | 16.9         | 22.2       | 17        | 22.3 | 7.9  | 0.2  | 0        | 1.3  | 15.9 | 10.6       | 10.6     | 14.1     |
| 788        | 52       | PT202          | 1971         | 17.5         | 25.7       | 23.8      | 29.9 | 0.5  | 0    | 0        | 3    | 0.2  | 9.5        | 19.8     | 9.2      |
| 788        | 52       | PT202          | 1972         | 35.4         | 27.1       | 22.8      | 1.6  | 0.8  | 0    | 0.2      | 1    | 3.8  | 4.3        | 21.2     | 21.1     |
| 788        | 52       | PT202          | 1973         | 28.9         | 26.6       | 27.8      | 10.7 | 7.2  | 5    | 14.4     | 7.3  | 14.9 | 14.5       | 15.9     | 14.3     |
| 788        | 52       | PT202          | 1974         | 24.3         | 30.9       | 12.4      | 11   | 0    | 6    | 7.6      | 8.7  | 10.5 | 11.9       | 19.4     | 15       |
| 788        | 52       | PT202          | 1975         | 40.6         | 32.2       | 16.4      | 9.1  | 21   | 5.5  | 0        | 0.7  | 11.5 | 16.9       | 7        | 20       |
| 788        | 52       | PT202          | 1976         | 20           | 26.5       | 17.3      | 14.3 | 15   | 2.9  | 0.2      | 6.7  | 12   | 3.3        | 0        | 16.4     |
| 788        | 52       | PT202          | 1977         | 20.3         | 40         | 17        | 4.2  | 4    | 0    | 0.8      | 0    | 14.7 | 18         | 14.1     | 17       |
| 788        | 52       | PT202          | 1978         | 23.8         | 18.8       | 20        | 13   | 0    | 4.2  |          |      |      |            | 29.5     | 28.8     |
| 788        | 52       | PT202          | 1979         | 20.8         | 18.9       | 29.5      | 13   | 4    | 0    | 0        |      |      |            |          |          |
| 788        | 52       | PT202          | 1980         |              | 8          | 14        | 2.2  |      |      | 0        | 5.6  | _    |            |          |          |
| 788        | 52       | PT202          | 1984         |              |            |           |      |      |      | 0        | 0    | 0    | 11.7       | 15.8     | 17.5     |
| 788        | 52       | PT202          | 1985         | 11.8         | 21.8       |           | 13   | 10.2 | 3.6  | 4.8      | 0    | 2.1  | 11.3       |          | 15.9     |
| 788        | 52       | PT202          | 1986         | 18.1         | 28.4       | 25.3      | 14.2 | 0.4  | 0    | 0        | 8.5  | 9    | 7.1        |          | 13.2     |
| 788        | 52       | PT202          | 1987         | 32.4         | 4.8        | 23.3      | 9.2  | 2.2  | 7.8  | 9.6      | 0    | 6.1  | 4.2        | 4.7      | 7.2      |
| 788        | 52       | PT202          | 1988         | 17.3         | 27         | 445       | 42   | 18.9 | 0    | 2.5      | 0    | 9.3  | 15         | 11       | 14.7     |
| 788        | 52       | PT202          | 1989         | 18.4         | 15.5       | 14.5      | 12   | 4.0  | 24.0 | 0        | 47.5 |      | 23.9       | 23.3     | 45       |
| 788        | 52       | PT202          | 1990         | 31           | 16.4       | 22.9      | 19.5 | 4.9  | 21.8 | 0        | 17.5 | 5.5  | 19.1<br>22 | 12.7     | 26.8     |
| 788<br>788 | 52<br>52 | PT202<br>PT202 | 1991<br>1992 | 15.5<br>28.5 | 32.2<br>32 | 31.4<br>9 | 27   | 0    | 12   | 0.5<br>4 | 50   | 0.5  | 9          | 38<br>28 | 35<br>12 |
| 788        | 52       | PT202          | 1993         | 40           | 50         | 52        | 19   | 1    | 0.5  | 0        | 26.5 | 6    | 16         | 29.5     | 36       |
| 788        | 52       | PT202          | 1994         | 46           | 49         | 28        | 29.5 | 3.5  | 0.5  | 2.7      | 4.5  | 2.7  | 7.8        | 11.4     | 31       |
| 788        | 52       | PT202          | 1995         | 21           | 31.3       | 23.1      | 0.8  | 6.2  | 0    | 0.5      | 4.5  | 5.2  | 13         | 19.3     | 33.4     |
| 788        | 52       | PT202          | 1996         | 51           | 11.5       | 14.8      | 14.1 | 10.4 | 0    | 4.4      | 8.5  | 2.2  | 13.8       | 14.6     | 16.4     |
| 788        | 52       | PT202          | 1997         | 22.4         | 21         | 30.5      | 24.7 | 2.5  | 0    | 0        | 9.3  | 18.9 | 12.7       | 37.3     | 15.5     |
| 788        | 52       | PT202          | 1998         | 16.1         | 26.3       | 41        | 8.6  | 0    | 5.9  | 0        | 0    | 1.2  | 3.8        | 16.3     | 6.7      |
| 788        | 52       | PT202          | 1999         | 30.2         | 32.9       | 23.7      | 18.1 | 0.9  | 0    | 0        | 0    | 8.1  | 14.3       |          | 18       |
| 788        | 52       | PT202          | 2000         | 20.6         | 23.4       | 25.6      | 4.4  | 8.4  | 0    | 1        | 21   | 7.1  | 14.8       | 0        | 16       |
| 788        | 52       | PT202          | 2001         | 16.4         | 17.9       | 45.6      | 15.8 | 4.4  | 2.6  | 4.8      | 12.5 | 10.6 | 19.7       | 21.1     | 25.1     |
| 788        | 52       | PT202          | 2002         | 20.5         | 30.5       | 21.2      | 11.3 | 6.6  | 1.5  | 8.6      | 6.4  | 15.1 | 21         | 21.2     |          |
| 788        | 52       | PT202          | 2003         | 27.9         | 35.3       | 27.6      | 10   | 7.8  | 6.8  | 2.4      | 2.4  | 23.3 | 13.5       | 16.2     | 31       |
| 788        | 52       | PT202          | 2004         | 29.2         | 25.7       | 22.2      | 16.5 | 6.2  | 0.4  | 3.8      | 12   | 13.4 | 10.2       | 15.7     | 16.8     |
| 788        | 52       | PT202          | 2005         | 21.4         | 20.3       | 27        | 9.9  | 0    | 0    | 0        | 2.6  | 21.4 | 22.8       | 24.9     | 15.6     |
| 788        | 52       | PT202          | 2006         | 27.6         | 13.9       | 17.2      | 11.4 | 1.2  | 6.2  | 0        | 5.2  |      | 10.5       | 18       | 16.2     |
| 788        | 52       | PT202          | 2007         | 18.2         | 10         | 31.2      | 14.9 | 4.2  | 0    | 3.2      | 3.8  | 11.6 | 3.8        | 18.4     | 21.8     |
| 788        | 52       | PT202          | 2008         | 33.2         | 18.6       | 19.8      | 0    | 0    | 0    | 0        | 0    | 0    | 33.4       | 4.6      | 21       |
| 788        | 52       | PT202          | 2009         | 14.1         | 22.4       | 20.8      | 18.2 | 0.8  | 0    | 2.4      | 0    | 2.2  | 10.4       | 14.8     | 15.5     |
| 788        | 52       | PT202          | 2010         | 28.4         | 18.4       | 11.4      | 7.2  | 5    | 0    | 0        | 3.2  | 3.2  | 14.4       |          | 20.8     |
| 788        | 52       | PT202          | 2011         | 17           | 20.3       | 20.1      | 8.5  | 2.3  | 0    | 3.4      | 0    | 5    | 2          | 19.4     | 30.5     |
| 788        | 52       | PT202          | 2012         | 22.1         | 29.8       | 22.5      | 6.8  | 0    | 3.4  | 0        | 12.6 | 1.2  | 3.4        | 16.5     | 19.6     |
| 788        | 52       | PT202          | 2013         | 22           | 29.6       |           | 9.1  | 3.1  | 3.1  | 3.9      | 4.5  | 9.2  | 15.3       | 11.4     | 34.1     |
| 788        | 52       | PT202          | 2014         | 31.6         | 12.5       | 23.6      | 16.7 | 0    | 0    | 1.2      | 16.5 | 26.4 | 21.3       | 7.7      | 25.4     |
| 788        | 52       | PT202          | 2015         | 20           | 33.3       | 29.1      | 15.7 |      |      |          | 1.8  | 26.1 | 16.9       |          | 13.3     |
| 788        | 52       | PT202          | 2016         | 22.4         | 33         | 12.1      | 10.6 | 1.9  | 0.4  | 3.6      | 0    | 14.2 | 14.2       | 6.1      |          |
| 788        | 52       | PT202          | 2017         | 22           | 19.5       | 23        | 20.4 | 12.3 | 0    | 6.7      | 0    | 17.6 | 22.2       | 20.4     | 19.9     |
| 788        | 52       | PT202          | 2018         | 28.2         | 21.2       | 30.4      | 20.6 | 8.5  | 12   | 17.3     | 4.2  | 8    | 34.6       | 13.4     | 17.3     |
| 788        | 52       | PT202          | 2019         | 21.2         | 23.9       | 28.1      | 16.1 | 5.2  | 13.2 | 11.3     | 0    | 10.1 | 22.9       | 27.8     | 18.6     |
| 788        | 52       | PT202          | 2020         | 13           | 40.5       |           |      |      |      |          |      |      |            |          |          |

ESTACIÓN: TARACO/000816/DZ13

ALT: 3849 MSNM LAT: 15°18'42" LONG: 69°58'20.9" DPTO: PUNO

PT202 PRECIPITACION MAXIMA EN 24 HORAS (mm)

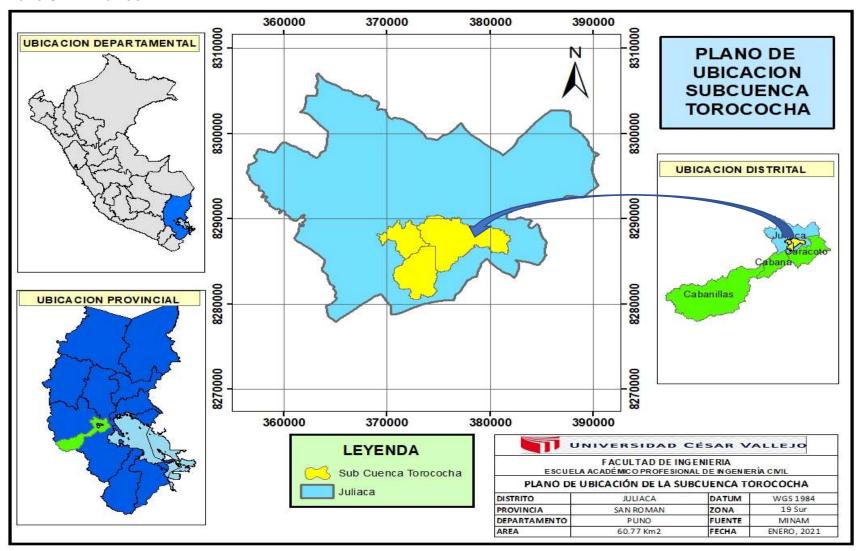
| CODIGO     | PLANILLA | 1/ADIADIE      | AÑO          | ENE          | FEB        | MAR        | ABR       | MAY      | JUN  | JUL  | 460        | SET        | ОСТ     | NOV          | DIC        |
|------------|----------|----------------|--------------|--------------|------------|------------|-----------|----------|------|------|------------|------------|---------|--------------|------------|
| 816        | 52       | PT202          | 1963         | EINE         | FEB        | IVIAR      | ADR       | IVIAT    | JUN  | JOL  | AGO        | 4.3        | 15.6    | 10.3         | 23.5       |
| 816        | 52       | PT202          | 1963         | 13           | 18.8       | 21.1       | 18        | 8.6      | 0    | 0    | 0          | 24.6       | 8.2     | 16.8         | 8.4        |
| 816        | 52       | PT202          | 1965         | 43.4         | 33.7       | 24.3       | 15.7      | 8.0      | U    | 0    | 0          | 4          | 10.3    | 17.6         | 24.6       |
| 816        | 52       | PT202          | 1966         | 24.8         | 20         | 10.4       | 4.5       | 15.6     | 0    | 0    | 0          | 3          | 8.9     | 5.2          | 15.8       |
| 816        | 52       | PT202          | 1967         | 9.8          | 31         | 20         | 2.5       | 3.7      | 0    | 3.1  | 3.8        | 13.1       | 20.7    | 3.2          | 22.5       |
| 816        | 52       | PT202          | 1968         | 4.7          | 22.1       | 16         | 7.3       | 6.5      | 4.5  | 4.3  | 17         | 5.7        | 14.1    | 24.3         | 8.5        |
| 816        | 52       | PT202          | 1969         | 25.4         | 14.3       | 18.2       | 6         | 0.5      | 0.9  | 2.2  | 0          | 4.9        | 8.3     | 10.5         | 18.5       |
| 816        | 52       | PT202          | 1970         | 24.3         | 15.8       | 13         | 15.9      | 3.7      | 0.5  | 0    | 0          | 6.8        | 14.6    | 17.4         | 25.6       |
| 816        | 52       | PT202          | 1971         | 18.3         | 31.8       | 9          | 8.1       | 0        | 0    | 0    | 0          | 1          | 9.3     | 25.8         | 10.2       |
| 816        | 52       | PT202          | 1972         | 30           | 15.2       | 33.3       | 8.4       | 4.2      | 0    | 0    | 1          | 5.6        | 10.9    | 28           | 31.7       |
| 816        | 52       | PT202          | 1973         | 25.3         | 16.2       | 17         | 24.5      | 1.5      | 0    | 2.1  | 1.3        | 3.4        | 6.4     | 27           | 16.4       |
| 816        | 52       | PT202          | 1974         | 22.5         | 20.9       | 21.8       | 11.3      | 0        | 3.5  | 0    | 6.4        | 2.1        | 9.5     | 18.5         | 28.3       |
| 816        | 52       | PT202          | 1975         | 18.3         | 14.8       | 20.1       | 12.4      | 12.5     | 1.3  | 0    | 0          | 9.9        | 16.2    | 4.6          | 28         |
| 816        | 52       | PT202          | 1976         | 35           | 19.9       | 13         | 0         | 5.2      | 0    | 0    | 6.4        | 10.1       | 0       | 0            | 21.1       |
| 816        | 52       | PT202          | 1977         | 18.1         | 29.6       | 16.3       | 8         | 0        | 0    | 0    | 0          | 11.3       | 18.2    | 29.2         | 36.6       |
| 816        | 52       | PT202          | 1978         | 31.3         | 21.4       | 17         | 20        | 0        | 0    | 0    | 0          | 9          | 4.6     | 12.2         | 19.4       |
| 816        | 52       | PT202          | 1979         | 23.4         | 14.5       | 22.3       | 9.7       | 0        | 0    | 5.8  | 10         | 0.7        | 8.5     | 10.5         | 24         |
| 816        | 52       | PT202          | 1980         | 16           | 18.9       | 17.2       | 12.5      | 0        | 0    | 0.2  | 12         | 20         | 14.1    | 7.6          | 10.1       |
| 816        | 52       | PT202          | 1981         | 20           | 19.4       | 18.4       | 14.2      | 0.3      | 0    | 0    | 9.3        | 9          | 24.2    | 19.8         | 15.2       |
| 816        | 52       | PT202          | 1982         | 26.7         | 21.3       | 19.7       | 16        | 0        | 0    | 0    | 3.8        | 14         | 15.5    | 28           | 23         |
| 816        | 52       | PT202          | 1983         | 25           | 9.4        | 12.5       | 17.1      | 0.2      | 0    | 0    | 0          | 10.5       | 16.8    | 23.3         | 25         |
| 816        | 52       | PT202          | 1984         | 39.5         | 22.5       | 35         | 15.8      | 6        | 38   | 8    | 10         | 0          | 35.5    | 13.5         | 39.5       |
| 816        | 52       | PT202          | 1985         | 47           | 17         | 24.7       | 37.6      | 8        | 13.4 | 0    | 4.7        | 24         | 19      | 49.5         | 44         |
| 816        | 52       | PT202          | 1986         | 31.5         | 53         | 40.5       | 31.4      | 0        | 0    | 0    | 18.4       | 12.2       | 10.6    | 21.7         | 22.5       |
| 816        | 52       | PT202          | 1987         | 40           | 30         | 15         | 17        | 2.7      | 0.8  | 13.4 | 3          | 6          | 9.6     | 22.9         | 17.6       |
| 816        | 52       | PT202          | 1988         | 14           | 17.5       | 31.5       | 30        | 19.5     | 0    | 0    | 0          | 0          | 19.5    | 3            | 20.5       |
| 816        | 52       | PT202          | 1989         | 19.4         | 21.5       | 17.7       | 36        | 0.4      | 12   | 0    | 6          | 5.2        | 8.2     | 11           | 13         |
| 816        | 52       | PT202          | 1990         | 28           | 48.1       | 18.2       | 8.7       | 3        | 28   | 0    | 6.8        | 4.5        | 29      | 13.8         | 34.6       |
| 816        | 52       | PT202          | 1991         | 26.8         | 25.4       | 17.3       | 12        | 15       | 24   | 3.5  | 0          | 6.3        | 8.5     | 10.6         | 21.8       |
| 816        | 52       | PT202          | 1992         | 29.2         | 20.9       | 6.5        | 9.3       | 0        | 0    | 6    | 43         | 2.1        | 16.2    | 18           | 22         |
| 816        | 52       | PT202          | 1993         | 19.5         | 15.8       | 17.2       | 14.1      | 11.5     | 4.6  | 0    | 4.3        |            | 8.4     | 15           | 20.4       |
| 816        | 52       | PT202          | 1994         | 25           | 33.2       | 16.4       | 12.4      | 6.8      | 0    | 0    | 0          | 2.4        | 4.2     | 5.4          | 34.2       |
| 816        | 52       | PT202          | 1995         | 45.2         | 66.4       | 28.4       | 9         | 3.2      | 0    | 0    | 0          | 12.6       | 18.4    | 12.8         | 32.8       |
| 816<br>816 | 52<br>52 | PT202<br>PT202 | 1996<br>1997 | 22.4<br>31.8 | 14<br>52.2 | 14<br>30.2 | 10<br>6.4 | 3.8<br>0 | 0    | 0    | 7.6<br>6.6 | 14.8<br>14 | 20<br>9 | 10.4<br>15.8 | 16.8<br>19 |
| 816        | 52       | PT202          | 1998         | 40.2         | 21.2       | 21.4       | 55.8      | 0        | 4.8  | 0    | 0.0        | 0          | 9       | 13.6         | 15         |
| 816        | 52       | PT202          | 1999         | 23.6         | 13.8       | 16         | 12.4      | 5.8      | 0    | 0    | 0          | 11.6       | 11.8    | 15.6         | 15.2       |
| 816        | 52       | PT202          | 2000         | 20.8         | 16.8       | 20.2       | 2.4       | 8        | 15.8 | 0    | 4.4        | 3.2        | 26      | 1.8          | 14.4       |
| 816        | 52       | PT202          | 2001         | 22.4         | 14.6       | 28         | 7.4       | 5.2      | 2.8  | 0    | 2.2        | 4.2        | 12.8    | 14.8         | 20.2       |
| 816        | 52       | PT202          | 2002         | 20.2         | 20.2       | 20.4       | 10.4      | 4.4      | 0    | 8.8  | 0          | 15.8       | 18.4    | 11.8         | 9.8        |
| 816        | 52       | PT202          | 2003         | 24.6         | 24.4       | 15.4       | 4.4       | 4.4      | 4.8  | 0    | 2          | 10         | 7.6     | 12.2         | 13.2       |
| 816        | 52       | PT202          | 2004         | 19.2         | 22         | 43         | 11.4      | 5.6      | 3    | 2.4  | 12         | 8.4        | 6.4     | 18.2         | 12         |
| 816        | 52       | PT202          | 2005         | 20.2         | 15         | 64         | 13.2      | 0        | 0    | 0    | 1          | 9.2        | 13.4    | 22.2         | 18         |
| 816        | 52       | PT202          | 2006         | 32.4         | 19.4       | 20.4       | 7.4       | 0.8      | 2    | 0    | 1.4        |            | 28.4    | 9.4          | 48.8       |
| 816        | 52       | PT202          | 2007         | 23.4         | 10.2       | 19.4       | 16.6      | 3.4      | 1.2  | 0.4  | 1.8        | 10         | 10.4    | 46.8         | 16         |
| 816        | 52       | PT202          | 2008         | 28.6         | 14.8       | 15.4       | 0         | 1.4      | 0    | 0    | 0          | 3.8        | 10.2    | 16.2         | 24.2       |
| 816        | 52       | PT202          | 2009         | 22.6         | 50.2       | 18.8       | 4         | 0        | 0    | 3    | 0          | 10         | 10.2    | 16.2         | 12.2       |
| 816        | 52       | PT202          | 2010         | 13.4         | 21.4       | 16.4       | 19.2      | 13       | 0    | 0    | 0          | 2.4        | 9.6     | 7.4          | 19.6       |
| 816        | 52       | PT202          | 2011         | 12.2         | 23.6       | 15.2       | 1.2       | 6.4      | 1.2  | 5.4  | 4.4        | 8.4        | 12.4    | 10.8         | 23.2       |
| 816        | 52       | PT202          | 2012         | 18           | 21.8       | 28.4       | 10.4      | 0        | 0    | 0    | 1.8        | 5          | 13.4    | 19.4         | 18.8       |
| 816        | 52       | PT202          | 2013         | 22.6         | 23.8       | 23.4       | 10.6      | 6        | 1.8  | 11.8 | 7.8        | 2.2        | 15.2    | 8.8          | 32.6       |
| 816        | 52       | PT202          | 2014         | 36.8         | 32.4       | 13.2       | 6.2       | 1.6      | 0    | 15.4 | 17.4       | 22.4       | 8.8     | 10.6         | 32.4       |
| 816        | 52       | PT202          | 2015         | 28.4         | 21.4       | 22.4       | 10.2      | 4.2      |      |      | 2.8        | 18.4       |         |              |            |
| 816        | 52       | PT202          | 2016         | 33.2         | 30.4       | 22.8       | 14.4      | 0        | 0    | 4.4  | 2.2        | 3          | 9.4     | 6            |            |
| 816        | 52       | PT202          | 2017         | 10.4         | 34         | 17.2       | 18.2      | 25.2     | 0    | 4.4  | 0          | 13.2       | 30.2    | 4.6          | 13.2       |
| 816        | 52       | PT202          | 2018         | 18           | 18.2       | 36.4       | 24.6      | 4        | 11.6 | 14   | 0.8        | 9.8        | 12.8    | 10.4         | 20         |
| 816        | 52       | PT202          | 2019         | 22           | 17.2       | 68.8       | 19.8      | 12.4     | 0    | 9.8  | 0          | 10.4       | 17.4    |              | 24.6       |
| 816        | 52       | PT202          | 2020         | 20           | 18         | ]          |           | ]        |      |      |            |            |         |              |            |

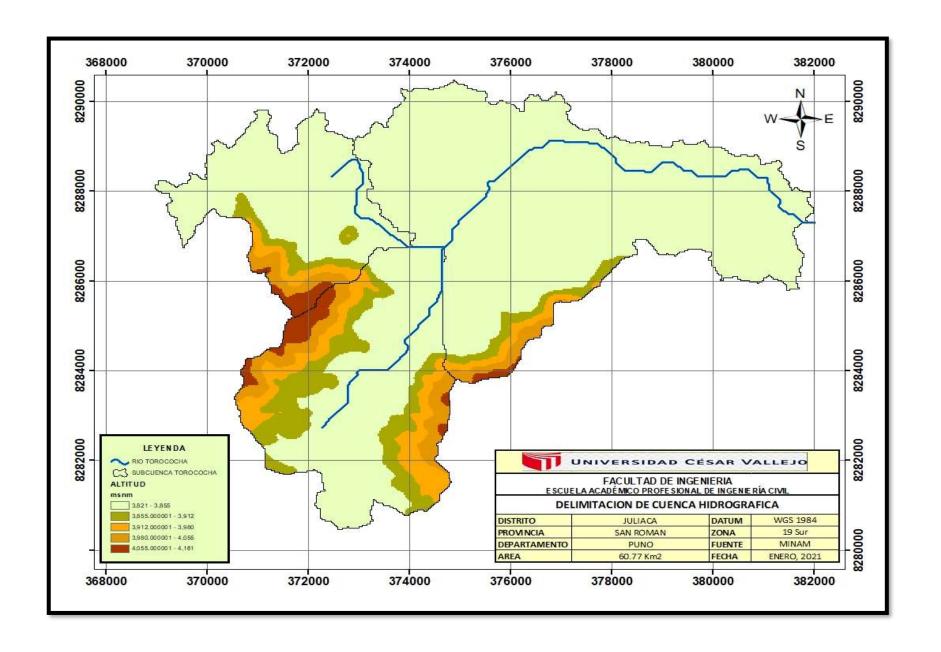
ESTACIÓN: PUNO/000708/DZ13

ALT: 3812 MSNM LAT: 15° 49' 34.5" LONG: 70° 0' 43.5" DPTO: PUNO

PT202 PRECIPITACION MAXIMA EN 24 HORAS (mm)

| CODIGO     | PLANILLA | VARIABLE       | AÑO          | ENE         | FEB          | MAR          | ABR        | MAY      | JUN        | JUL        | AGO      | SET        | ОСТ          | NOV        | DIC       |
|------------|----------|----------------|--------------|-------------|--------------|--------------|------------|----------|------------|------------|----------|------------|--------------|------------|-----------|
| 708        | 52       | PT202          | 1964         |             | 39.7         | 20.2         | 24         | 6.7      | 0          | 0          | 3.7      | 8.4        | 13.9         | 16.6       | 15        |
| 708        | 52       | PT202          | 1965         | 24.7        | 56.5         | 7            | 7.1        |          |            | 0.5        | 4.2      | 16.2       | 7            |            |           |
| 708        | 52       | PT202          | 1966         | 15.9        | 18.2         | 46           | 4.7        |          |            |            |          | 0.5        | 10.6         | 17.8       | 7.1       |
| 708        | 52       | PT202          | 1967         | 29.5        | 13.6         | 33.6         | 5.2        | 7.5      | 0          | 5          | 20.6     | 21.8       | 13.1         | 2.7        | 20.9      |
| 708        | 52       | PT202          | 1968         | 28          | 17.2         | 18.8         | 21.1       | 5.7      | 8.9        | 3.7        | 2        | 12.4       | 27.6         | 13.5       | 14.5      |
| 708        | 52       | PT202          | 1969         | 16.1        | 26.7         | 14.3         | 6.4        | 0        | 0.2        | 2.3        | 0.9      | 1.8        | 17.7         | 29.9       | 21.9      |
| 708        | 52       | PT202          | 1970         | 24.5        | 10.4         | 31.7         | 7          |          | 0          | 0          | 0.9      | 3.7        | 8.2          | 9          | 13.4      |
| 708        | 52       | PT202          | 1971         | 29.7        | 45.2         | 7.4          | 6.3        | 0        | 1.4        | 0          | 7.9      | 1.2        | 7            | 40.4       | 24.3      |
| 708        | 52       | PT202          | 1972         | 25.4        | 36.8         | 36           | 15.5       | 5.5      | 0          | 0          | 0        | 13.9       | 9.2          | 26.1       | 29.1      |
| 708        | 52       | PT202          | 1973         | 29.6        | 24           | 41           | 22.4       | 8        | 0          | 1.5        | 5        | 9.8        | 5.8          | 7.8        | 20.5      |
| 708        | 52       | PT202          | 1974         | 40.2        | 39           | 16.1         | 11.3       | 0.1      | 2.5        | 0.2        | 9.7      | 9          | 4.9          | 16         | 11.2      |
| 708        | 52       | PT202          | 1975         | 23.5        | 28.6         | 26.1         | 14.5       | 16.8     | 0.7        | 0.1        | 6.5      | 14.9       | 14.9         | 8.8        | 33.7      |
| 708        | 52       | PT202          | 1976         | 26.6        | 30.2         | 33.4         | 15.2       | 5        | 0.2        | 0.8        | 6.6      | 11.2       | 8.6          | 5.1        | 31.3      |
| 708        | 52       | PT202          | 1977         | 11.6        | 36.9         | 31.7         | 2.5        | 8.8      | 0          | 2.3        | 0        | 29         | 14.6         | 12.5       | 31.4      |
| 708        | 52       | PT202          | 1978         | 34.5        | 30.1         | 26.1         | 7.1        | 0.4      | 0          | 3.2        | 0.2      | 10.2       | 22.4         | 18.1       | 24.6      |
| 708        | 52       | PT202          | 1979         | 26.4        | 8.4          | 16.6         | 14.1       | 1.4      | 0          | 0.5        | 1.2      | 7.4        | 12.2         | 9.9        | 11        |
| 708        | 52       | PT202          | 1980         | 18.2        | 15.4         | 25           | 13.4       | 0.9      | 0.1        | 2.2        | 8.5      | 15.6       | 16.8         | 12.2       | 13.4      |
| 708        | 52       | PT202          | 1981         | 20.6        | 27.6         | 19.3         | 21.1       | 4.7      | 0          | 0          | 21       | 6.3        | 5.9          | 21.8       | 21.8      |
| 708<br>708 | 52<br>52 | PT202<br>PT202 | 1982<br>1983 | 51.8<br>6.9 | 22.4<br>16.7 | 19.8<br>19.2 | 20.5<br>14 | 2.5<br>9 | 3.8<br>2.3 | 1.9<br>1.5 | 0<br>2.7 | 16<br>19.7 | 23.5<br>10.8 | 19.5<br>22 | 7<br>38.6 |
| 708        | 52       | PT202          | 1984         | 31.4        | 39.1         | 24.9         | 11.5       | 7.5      | 3.8        | 3.7        | 15.8     | 0          | 71.6         | 16.7       | 26.9      |
| 708        | 52       | PT202          | 1985         | 48.5        | 30.3         | 17.1         | 13         | 10.9     | 11.8       | 0          | 7        | 20.7       | 15           | 14.4       | 22.7      |
| 708        | 52       | PT202          | 1986         | 21.5        | 38.7         | 27.1         | 14.3       | 0.1      | 0          | 5.1        | 3.3      | 10.5       | 1.7          | 3.5        | 15.9      |
| 708        | 52       | PT202          | 1987         | 55.7        | 17.9         | 19.5         | 21.8       | 0.6      | 2.1        | 4.6        | 0        | 3.5        | 11.4         | 25.4       | 14.6      |
| 708        | 52       | PT202          | 1988         | 30.6        | 20.2         | 22           | 23.7       | 13.9     | 0          | 0.3        | 0        | 7.9        | 17.9         | 31.4       | 20.2      |
| 708        | 52       | PT202          | 1989         | 24.3        | 12.9         | 21.4         | 24.5       | 0        | 0.2        | 1.7        | 12.3     | 8.9        | 6            | 7.6        | 10.5      |
| 708        | 52       | PT202          | 1990         | 23.6        | 6.1          | 16           | 12.6       | 6.5      | 20.4       | 0          | 6.3      | 7.2        | 20.6         | 13.6       | 13.2      |
| 708        | 52       | PT202          | 1991         | 20.2        | 18.4         | 22           | 13         | 4.8      | 24.2       | 0          | 2.2      | 7.2        | 5.6          | 15.4       | 14.2      |
| 708        | 52       | PT202          | 1992         | 9.4         | 16.6         | 9.9          | 24         | 0        | 0          | 2.3        | 35.8     | 0          | 7.2          | 9.5        | 12.2      |
| 708        | 52       | PT202          | 1993         | 24          | 46.1         | 25.4         | 15.8       | 5.7      | 1.1        | 0          | 17.6     | 8          | 14           | 26         | 26.8      |
| 708        | 52       | PT202          | 1994         | 26.3        | 27.3         | 24.2         | 15.6       | 29.9     | 0.4        | 0          | 0        | 9.7        | 17.9         | 15.2       | 9.5       |
| 708        | 52       | PT202          | 1995         | 19.4        | 29           | 15.6         | 2          | 3.8      | 0          | 0          | 3        | 10.3       | 9.3          | 10.3       | 25.4      |
| 708        | 52       | PT202          | 1996         | 36.9        | 18.7         | 16.8         | 20.4       | 0        | 0          | 2.9        | 4.4      | 0.8        | 8.6          | 18.6       | 18.4      |
| 708        | 52       | PT202          | 1997         | 29.1        | 32.4         | 23.2         | 19.5       | 0.9      | 0          | 0          | 12.5     | 28.8       | 12.8         | 11.2       | 9.7       |
| 708        | 52       | PT202          | 1998         | 42.9        | 25.7         | 24.1         | 7.1        | 0        | 4.9        | 0          | 4.3      | 4.5        | 14.7         | 11.7       | 21.3      |
| 708        | 52       | PT202          | 1999         | 36.1        | 27.5         | 36           | 33.5       | 7.5      | 0          | 0          | 1.5      | 5.6        | 38.2         | 10.8       | 11.4      |
| 708        | 52       | PT202          | 2000         | 19          | 31.6         | 13.5         | 22.2       | 0.4      | 1.4        | 3.1        | 8        | 6.2        | 31.4         | 6.6        | 14.9      |
| 708        | 52       | PT202          | 2001         | 25.7        | 37.7         |              | 17         | 8.4      | 2.2        | 0          | 7        | 8.4        | 14           | 23         | 23.3      |
| 708        | 52       | PT202          | 2002         | 36.1        | 23.7         | 22.8         | 18.7       | 12       | 9.6        | 12.8       | 18.4     | 4.2        | 18.2         | 11         | 29        |
| 708        | 52       | PT202          | 2003         | 35.6        | 23.2         | 12.1         | 28         | 14.7     | 4.8        | 0.2        | 4        | 24.8       | 11.1         | 2.9        | 26.2      |
| 708        | 52       | PT202          | 2004         | 27.8        | 24.7         | 30.4         | 9.2        | 5.4      | 0          | 3.6        | 25.9     | 12         |              |            |           |
| 708        | 52       | PT202          | 2005         |             | 22.2         | 26.8         | 16.9       | 0.4      | 0          | 0          | 0        | 3          | 18           | 24.4       |           |
| 708        | 52       | PT202          | 2006         | 40.9        |              | 28.7         | 13         | 0.9      | 0          | 0          | 0.6      |            | 9.4          | 15.8       | 28.3      |
| 708        | 52       | PT202          | 2007         | 23.8        | 38.8         | 67.2         | 15.7       | 7.2      | 0          | 2.9        | 1.6      | 13.5       | 40.2         | 11.7       | 11.6      |
| 708        | 52       | PT202          | 2008         | 38.5        | 18           | 27           | 2.7        | 6.2      | 1.4        | 0.2        | 0.8      | 1.3        | 34.6         | 9.5        | 16.6      |
| 708        | 52       | PT202          | 2009         | 31          | 16           | 40.2         | 16.2       | 0.4      | 0          | 1.8        | 0        | 5.2        | 18.4         | 24.2       | 9.9       |
| 708        | 52       | PT202          | 2010         | 23.6        | 78.2         | 12.4         | 7.2        | 10.6     | 0          | 0          | 7.1      | 1.5        | 8.6          | 5.2        | 21        |
| 708        | 52       | PT202          | 2011         | 25.4        | 28.2         | 14.8         | 14.2       | 2.6      | 0          | 5.3        | 0.2      | 17.3       | 15.6         | 13.2       | 20.6      |
| 708        | 52       | PT202          | 2012         | 28.7        | 34           | 27.5         | 15.4       | 0        | 0.2        | 0          | 5.6      | 6.8        | 4.5          | 44.4       | 44        |
| 708        | 52       | PT202          | 2013         | 16.2        | 28.7         | 32.6         | 7.8        | 7.8      | 6.2        | 0.9        | 4.3      | 7.8        | 11.3         | 26         | 41        |
| 708        | 52       | PT202          | 2014         | 22.3        | 31.8         | 25.8         | 10         | 0.1      | 0          | 0.2        | 11       | 15.8       | 10.3         | 17.8       | 16        |
| 708        | 52       | PT202          | 2015         | 12          | 25.2         | 21.6         | 19         | 0.2      | 0          | 1.8        | 1.8      | 20.4       | 13.4         | 8.3        | 14        |
| 708        | 52       | PT202          | 2016         | 15.2        | 36.8         | 4.8          | 16.8       | 10 5     | 1          | 2.8        | 0        | 0.2        | 26.3         | 20.4       | 19        |
| 708        | 52<br>52 | PT202          | 2017         | 55.5        | 25.6         | 38.3         | 11.6       | 10.5     | 10.6       | 1.6        | 0        | 20.4       | 29.4         | 11         | 25        |
| 708        | 52<br>52 | PT202          | 2018         | 42.7        | 22.8         | 22.5         | 18.9       | 7.1      | 10.6       | 18.7       | 0        | 2.6        | 26.2         | 9.4        | 25        |
| 708        | 52       | PT202          | 2019         | 22.2        | 15.9         | 8.1          | 29.2       | 7.6      | 1.1        | 6.3        | U        | 8          | 17.6         | 23.3       | 15.4      |
| 708        | 52       | PT202          | 2020         | 19.6        | 34.4         | l            |            | l        |            |            | l        |            |              |            |           |


ESTACIÓN: PUCARA/000815/DZ13


ALT: 3877 MSNM LAT: 15°2'44.4" LONG: 70°21'59.9" DPTO: PUNO

PT202 PRECIPITACION MAXIMA EN 24 HORAS (mm)

| CODIGO     | PLANILLA | VARIABLE       | AÑO          | ENE          | FEB          | MAR         | ABR          | MAY      | JUN  | JUL      | AGO       | SET        | ОСТ          | NOV      | DIC          |
|------------|----------|----------------|--------------|--------------|--------------|-------------|--------------|----------|------|----------|-----------|------------|--------------|----------|--------------|
| 815        | 52       | PT202          | 1963         |              |              |             |              |          |      |          |           |            | 18.2         | 30.9     | 28.3         |
| 815        | 52       | PT202          | 1964         | 10.8         | 17.3         | 20.6        | 19.9         | 4.3      | 0    | 0        | 2.5       |            |              |          |              |
| 815        | 52       | PT202          | 1965         | 34.3         | 18.8         | 32.4        | 18           | 0        | 0    | 0        | 0         | 7.2        | 33           | 19.8     | 37.8         |
| 815        | 52       | PT202          | 1966         | 11.4         | 32.2         | 22.7        | 2            | 16.8     | 0    | 0        | 0         | 0.1        | 13.7         | 12.1     | 16.2         |
| 815        | 52       | PT202          | 1967         | 11.2         | 55.1         | 22.7        | 0.9          | 12.7     | 0    | 6.5      | 4.3       | 8.5        | 18.9         | 14.5     | 34.1         |
| 815        | 52       | PT202          | 1968         | 19.6         | 20.8         | 12.9        | 8.1          | 4        | 0    | 8.5      | 7.1       | 8.4        | 11.1         | 23.9     | 25.9         |
| 815        | 52       | PT202          | 1969         | 13.8         | 13.9         | 4.1         | 6.7          | 0        | 0    | 2        | 0         | 4.8        | 2.9          | 10.1     | 13.1         |
| 815        | 52       | PT202          | 1970         | 12.1         | 8.2          | 19.9        | 15           | 0        | 0    | 0        | 0         | 18.1       | 8.2          | 11.5     | 29.8         |
| 815        | 52       | PT202          | 1971         | 14.5         | 34.5         | 15.2        | 22.6         | 1.2      | 0    | 0        | 3.2       | 1.4        | 10.9         | 17.3     | 15.3         |
| 815        | 52       | PT202          | 1972         | 22.1         | 19.8         | 13.5        | 29.4         | 0        | 0    | 0        | 2.1       | 8.7        | 4.9          | 6.2      | 28           |
| 815        | 52       | PT202          | 1973         | 37.4         | 23           | 37.9        | 26           | 0        | 0    | 5.1      | 2.7       | 11.7       | 19.6         | 24.7     | 19           |
| 815        | 52       | PT202          | 1974         | 26.9         | 14.8         | 17.4        | 9.6          | 0.9      | 7.1  | 3.8      | 9         | 6.2        | 13.1         | 13.5     | 21           |
| 815        | 52       | PT202          | 1975         | 15.6         | 39.3         | 21.3        | 4.2          | 7.2      | 3    | 0        | 1.3       | 19.2       | 23.4         | 13.9     | 17.9         |
| 815        | 52       | PT202          | 1976         | 25.7         | 37.6         | 12.2        | 27           | 5        | 0    | 2.1      | 1.9       | 26.8       | 1.8          | 9.7      | 19.3         |
| 815        | 52       | PT202          | 1977         | 29.4         | 37.9         | 43.7        | 6            | 0.9      | 0    | 0.9      | 0         | 9.3        | 15           | 22.8     | 17.3         |
| 815        | 52       | PT202          | 1978         | 31.9         | 31.8         | 38.6        | 19.4         | 8.3      | 0    | 0        | 0         | 4.6        | 29.9         | 26.2     | 23.1         |
| 815        | 52       | PT202          | 1979         | 15.3         | 13.5         | 23.9        | 7.9          | 5.3      | 0    | 0.2      | 0         | 7.2        | 33.5         | 26       | 16           |
| 815        | 52       | PT202          | 1980         | 21.9         | 25.5         | 17.7        | 3.5          | 5.1      | 0    | 2.8      | 2.9       | 12.3       | 19.8         | 16.4     | 15.4         |
| 815        | 52       | PT202          | 1981         | 37.3         | 15.2         | 36.4        | 36.4         | 4.7      | 2.5  | 0        | 11.6      | 17.1       | 28.2         | 19.5     | 20.8         |
| 815<br>815 | 52<br>52 | PT202<br>PT202 | 1982<br>1983 | 25<br>20.3   | 26.8<br>19.1 | 40.7<br>7.7 | 16.5<br>14.3 | 0<br>5.2 | 3.1  | 0<br>1.9 | 13.9<br>0 | 14<br>13.3 | 16.8<br>16.5 | 17<br>14 | 29.3<br>23.9 |
| 815        | 52       | PT202          | 1984         | 42.1         | 32.8         | 27          | 9            | 3.7      | 5.4  | 6.1      | 9.5       | 2.2        | 43.4         | 26.9     | 40.8         |
| 815        | 52       | PT202          | 1985         | 25.5         | 22.3         | 11.2        | 28.7         | 8.2      | 4.2  | 0.1      | 1.7       | 22.5       | 8.3          | 27.7     | 23.2         |
| 815        | 52       | PT202          | 1986         | 21.2         | 27.6         | 21.1        | 11.5         | 8        | 0    | 1.9      | 4.1       | 9.7        | 5            | 14.5     | 23.9         |
| 815        | 52       | PT202          | 1987         | 33.8         | 17.6         | 10.1        | 13.1         | 2.1      | 5.5  | 14.7     | 6.2       | 3.1        | 11.9         | 22.3     | 18.1         |
| 815        | 52       | PT202          | 1988         | 20.2         | 25.4         | 36          | 29.4         | 7.9      | 0    | 0        | 0.2       | 3.6        | 14.7         | 6.1      | 24.3         |
| 815        | 52       | PT202          | 1989         | 16.3         | 15.8         | 33.1        | 12.2         | 4.9      | 1.1  | 1.3      | 5.9       | 4.4        | 21.9         | 10.3     | 13.6         |
| 815        | 52       | PT202          | 1990         | 20.3         | 33.4         | 19          | 7.5          | 6.9      | 24.4 | 0        | 4.4       | 13.4       | 22.2         | 16       | 14.7         |
| 815        | 52       | PT202          | 1991         | 33.1         | 21.1         | 31.1        | 12           | 18       | 27.1 | 5.6      | 4.5       | 3.9        | 19.8         | 8.5      | 13           |
| 815        | 52       | PT202          | 1992         | 26.5         | 15.8         | 16.1        | 8.1          | 0.6      | 6.7  | 0        | 23        | 2.6        | 10.4         | 12       | 29.4         |
| 815        | 52       | PT202          | 1993         | 38.2         | 7.2          | 35.5        | 13.5         | 3.8      | 0.5  | 0        | 10.5      | 14.5       | 19.5         | 23       | 33.6         |
| 815        | 52       | PT202          | 1994         | 31           | 35.9         | 18.6        | 12.8         | 0        | 0    | 0        |           |            | 6.3          | 17.2     | 18.3         |
| 815        | 52       | PT202          | 1995         | 19.5         | 18.4         | 15.9        | 4            | 1.8      | 0    | 0.2      | 0.5       | 6.2        | 8.5          | 22.7     | 26           |
| 815        | 52       | PT202          | 1996         | 14.6         | 11.4         | 46.6        | 20.1         | 13.3     | 0    | 0.5      | 3.5       | 9.5        | 8.8          | 11.5     | 12.6         |
| 815        | 52       | PT202          | 1997         | 15.6         | 15.2         | 30.4        | 6.5          | 1.5      | 0    | 0        | 9.8       | 8.6        | 15           | 28       | 32.4         |
| 815        | 52       | PT202          | 1998         | 10.6         | 37           | 20.2        | 27           | 0        | 4.5  | 0        | 1         | 1.5        | 26.8         | 14.6     | 21           |
| 815        | 52       | PT202          | 1999         | 14           | 19.4         | 22.6        | 22           | 7        | 0    | 1        | 5         | 5          | 16.8         | 8.4      | 12.6         |
| 815        | 52       | PT202          | 2000         | 28.6         | 18.2         | 19          | 9.2          | 3        | 2.1  | 0.1      | 17.4      | 0.2        | 18.4         | 14.8     | 21           |
| 815        | 52       | PT202          | 2001         | 27.2         | 16.2         | 68          | 17.8         | 10.4     | 1.8  | 4.4      | 5.2       | 1.4        | 9.5          | 13.2     | 24.4         |
| 815        | 52       | PT202          | 2002         | 40.2         | 34.4         | 28.6        | 14.2         | 7.4      | 2.7  | 6.4      | 8.8       | 15.8       | 28.6         | 14.9     | 32.8         |
| 815        | 52       | PT202          | 2003         | 20           | 15.6         | 30          | 14.2         | 4.2      | 6.8  | 0        | 7.2       | 16         | 18.4         | 13.4     | 40.5         |
| 815        | 52       | PT202          | 2004         | 76.4         | 49.6         | 27          | 20.4         | 3.2      | 3.2  | 5.6      | 13.4      | 11.8       | 4.4          | 21       | 44           |
| 815        | 52       | PT202          | 2005         | 10           | 19.6         | 55.6        | 12.3         | 0        | 0    | 0        | 14.6      | 5          | 25.8         | 19.2     | 27.4         |
| 815        | 52       | PT202          | 2006         | 47.8         | 21           | 35.4        | 11.6         | 0        | 0.2  | 0        | 0.6       | _          | 16.6         | 22.8     | 27           |
| 815        | 52       | PT202          | 2007         | 13.6         | 14.5         | 25.7        | 16.8         | 5.3      | 0    | 2.5      | 0         | 8          | 7            | 17.2     | 18           |
| 815        | 52       | PT202          | 2008         | 20.3         | 23           | 14.4        | 1            | 1.9      | 0    | 0        | 0.9       | 18.6       | 20.2         | 21       | 22.2         |
| 815<br>815 | 52<br>52 | PT202          | 2009         | 18.8         | 16           | 45          | 9.7          | 2.2      | 0    | 0        | 0.1       | 5.8        | 9            | 17.1     | 24           |
|            | 52<br>52 | PT202          | 2010         | 20.6         | 17.8         | 20.4        | 18.2         | 2.2      | 0.2  |          | 0.2       | 0.8        | 14.6<br>15.4 | 8.4<br>9 | 24<br>19.6   |
| 815<br>815 | 52<br>52 | PT202<br>PT202 | 2011         | 17.4<br>23.2 | 17.6<br>36.5 | 20.4<br>16  | 10.2<br>10.8 | 9.8<br>0 | 0.2  | 4.2<br>0 | 0<br>4.6  | 7.8<br>3.4 | 8.4          | 9.6      | 18.6<br>49.2 |
| 815        | 52       | PT202          | 2012         | 18.1         | 27           | 35          | 8.4          | 24       | 6.4  | 0.4      | 8.8       | 4.8        | 12.2         | 11.5     | 23.8         |
| 815        | 52       | PT202          | 2013         | 25           | 31.6         | 18.2        | 13.8         | 1        | 0.4  | 6.4      | 9.2       | 13.4       | 24.2         | 14.2     | 20.8         |
| 815        | 52       | PT202          | 2014         | 24.4         | 22.8         | 14.6        | 14           | 2.6      | 0.6  | 3.4      | 5         | 8          | 16.8         | 39.8     | 21.6         |
| 815        | 52       | PT202          | 2016         | 8.4          | 29.4         | 10.2        | 19           | 1.8      | 0.4  | 4.4      | 3.4       | 15         | 6.8          | 33.0     | 16.6         |
| 815        | 52       | PT202          | 2017         | 12.8         | 20.4         | 14.8        | 17.8         | 20       | 0.4  | 11.2     | 5.7       | 23.8       | 18.2         | 19.6     | 21.4         |
| 815        | 52       | PT202          | 2018         | 17.6         | 28.8         | 26.8        | 27.0         | 0        | 13.4 | 16       | 3         | 3.6        | 21           | 3.6      | 15.6         |
| 815        | 52       | PT202          | 2019         | 60           | 20.6         | 46.4        | 17.6         | 11       | 1.2  | 7.6      | 0         | 3.2        | 35.2         | 22.6     | 27.6         |
| 815        | 52       | PT202          | 2020         | 23           | 26.4         | · •         |              |          |      |          |           |            |              |          |              |
|            | <u> </u> |                |              |              |              | 1           |              | 1        |      | 1        | L         |            | 1            |          |              |

Anexo 5. Planos



