FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Evaluación de superficie de rodadura para mejorar Transitabilidad de Carretera San Alejandro – Alto Shiringal, aplicando Metodología PCI, Ucayali 2020"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTORES:

Bach. Cáceres Ruiz, María Elena (ORCID: 0000-0002-3840-7784)

Bach. Sáenz Samamé, Javier (ORCID: 0000-0002-3462-7624)

ASESOR:

Ms. Ing. Aybar Arriola, Gustavo Adolfo (ORCID: 0000-0003-2450-9883)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LIMA – PERÚ

2021

Dedicatorias

Dedico este trabajo, en primer lugar, a Dios por permitirme realizar mis metas y por tener buena salud.

A mis padres Ciro y Nenita que siempre han estado para apoyarme y motivarme con sus consejos y a mi abuelita Martha por creer siempre en mí y por siempre decirme que puedo lograr muchas cosas.

A mis hermanos mayores por las palabras de aliento y a mis hermanos menores para demostrarles que el esfuerzo vale la pena, a mis sobrinos para que se sientan orgullosos y a mi Cirito por motivarme con su sonrisa y sus pequeños esfuerzos que me dicen que hay muchas esperanzas para todo en esta vida.

M. Cáceres

Dedico este trabajo a la mujer más sabia que conozco, mi madre Sonia, por siempre estar en el momento preciso y con las palabras adecuadas, por inspirarme a ser mejor persona y dar siempre lo mejor de mí.

A mi hermano Rubén, porque me ha enseñado el valor del esfuerzo y dedicación sin decir una sola palabra.

A mi nona Carmen, que en todo momento me ha enseñado con la palabra de Dios.

Ellos son mi orgullo y tienen mi eterna admiración.

J. Sáenz

Agradecimientos

En primer lugar, agradecerle a Dios, por rodearnos de personas motivadoras, que nos han inspirado a seguir y no flaquear hasta el último minuto.

Al Mg. Gustavo Aybar por guiarnos en cada paso, por su paciencia y dedicación.

A todos aquellos ingenieros que de forma desinteresada nos han brindado información

necesaria para el desarrollo de este trabajo.

Índice de contenido

Dedicatorias	ii
Agradecimientos	iii
Índice de contenido	iv
Índice de tablas	v
Índice de figuras	vii
Resumen	xii
Abstract	xiii
I. INTRODUCCIÓN	14
II. MARCO TEÓRICO	19
III. METODOLOGÍA	83
3.1. Tipo y diseño de investigación.	83
3.2. Variables y operacionalización.	83
3.3. Población (criterios de selección), muestra, muestreo y unidad de anális	is 84
3.4. Técnicas e instrumentos de recolección de datos	86
3.5. Procedimientos.	87
3.6. Método de análisis de datos.	87
3.7. Aspectos éticos.	89
IV. RESULTADOS	90
V. DISCUSIÓN DE RESULTADOS	110
VI. CONCLUSIONES	117
VII. RECOMENDACIONES	120
REFERENCIAS	122
ANTENOO	101

Índice de tablas

Tabla N°	1 Escalas de Rangos del PCI	29
Tabla N°	2 Formato de Inventario de Daños.	29
Tabla N°	3 Longitudes de Unidades de Muestreo	30
Tabla N°	4 Formato para Máximos Valores Reducidos Corregidos	32
Tabla N°	5 Tipos de Fallas en Pavimentos Flexibles	34
Tabla N°	6 Niveles de Severidad para Calidad de Conducción	35
Tabla N°	7 Niveles de Severidad para Piel de Cocodrilo	36
Tabla N°	8 Niveles de Severidad para Exudación.	39
Tabla N°	9 Niveles de Severidad para Agrietamiento en Bloque	11
Tabla N°	10 Niveles de Severidad para Abultamientos y Hundimientos	14
Tabla N°	11 Niveles de Severidad para Corrugación	16
Tabla N°	12 Niveles de Severidad para Depresión	18
Tabla N°	13 Niveles de Severidad para Grietas de Borde	50
Tabla N°	14 Niveles de Severidad para Grietas de Reflexión de Juntas	53
Tabla N°	15 Niveles de Severidad para Desnivel Carril / Berma	56
Tabla N°	16 Niveles de Severidad para Grietas Longitudinales y Transversales 5	59
Tabla N°	17 Niveles de Severidad para Parcheo y Acometidas de Servicio	52
Tabla N°	18 Niveles de Severidad para Pulimento de agregados	54
Tabla N°	19 Niveles de Severidad para Huecos	56
Tabla N°	20 Niveles de Severidad para Huecos	56
Tabla N°	21 Niveles de Severidad para Cruce de Vía Férrea	59
Tabla N°	22 Niveles de Severidad para Ahuellamiento.	71
Tabla N°	23 Niveles de Severidad para Desplazamiento.	74
Tabla N°	24 Niveles de Severidad para Grietas Parabólicas o Por Desplazamiento. 7	76
Tabla N°	25 Niveles de Severidad para Hinchamiento	78
Tabla N°	26 Niveles de Severidad para Desprendimiento de Agregados	79
Tabla N°	27 Niveles de Severidad para Meteorización	31
Tabla N°	28 Localización de Secciones y conteo de unidades de muestreo	35
Tabla N°	29 Participantes del Juicio de Expertos	36
Tabla N°	30 Metrado de fallas encontradas) 1
Tabla N°	31 Tabla de fallas encontradas - Carril Derecho)2
Tabla N°	32 Fallas encontradas por Niveles de Severidad en carril derecho)3
Tabla N°	33 Tabla de fallas encontradas - Carril Izquierdo9)4

Tabla N°	34 Fallas encontradas por Niveles de Severidad en carril izquierdo	. 95
	35 Resumen de valores PCI por Sección y Unidad de Muestreo para el echo.	. 96
	36 Resumen de valores PCI por Sección y Unidad de Muestreo para el uierdo.	100
Tabla N°	37 Matriz de intervenciones propuestas	106

Índice de figuras

Figura N° 1Carril colapsado en sentido NE-SO.	15
Fuente: Elaboración propia	15
Figura N° 2 Comportamiento de Pavimentos Flexibles y Rígidos	26
Fuente: Elaboración propia	26
Figura N° 3 Piel de Cocodrilo	37
Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.4	37
Figura N° 4 Nivel Bajo (1L)	37
Fuente: Elaboración propia	37
Figura N° 5 Nivel Medio (1M).	38
Fuente: Elaboración propia	38
Figura N° 6 Nivel Alto (1H).	38
Fuente: Elaboración propia	38
Figura N° 7 Nivel Bajo (2L)	40
Fuente: FHWA-HRT-13-092, 2014, p.26.	40
Figura N° 8 Nivel Medio (2M).	40
Fuente: FHWA-HRT-13-092, 2014, p.26.	40
Figura N° 9 Nivel Alto (2H).	40
Fuente: FHWA-HRT-13-092, 2014, p.26	40
Figura $ m N^{\circ}$ 10 Agrietamiento en Bloque.	42
Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.6	42
Figura N° 11 Nivel Bajo (3L)	42
Fuente: Elaboración propia	42
Figura N° 12 Nivel Medio (3M).	43
Fuente: FHWA-HRT-13-092, 2014, p.6	43
Figura N° 13 Nivel Alto (3H).	43
Fuente: FHWA-HRT-13-092, 2014, p.6	43
Figura N° 14 Nivel Bajo (4L)	45
Fuente: Elaboración propia	45
Figura N° 15 Nivel Medio (4M).	45
Fuente: ASTM D-6433.	45
Figura N° 16 Nivel Alto (4H).	45
Fuente: Shahin, M. Y., 2005, p.361.	45
Figure Nº 17 Nivel Reio (51)	16

Fuente: Shahin, M. Y., 2005, p.363	. 46
Figura N° 18 Nivel Medio (5M).	. 47
Fuente: Shahin, M. Y., 2005, p.363.	. 47
Figura N° 19 Nivel Alto (5H).	. 47
Fuente: Shahin, M. Y., 2005, p.363	. 47
Figura N° 20 Nivel Bajo (6L).	. 48
Fuente: Elaboración propia	. 48
Figura N° 21 Nivel Medio (6M)	. 49
Fuente: Elaboración propia	. 49
Figura N° 22 Nivel Alto (6H).	. 49
Fuente: Shahin, M. Y., 2005, p.365	. 49
Figura N° 23 Grietas de Borde	. 51
Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.6	.51
Figura N° 24 Nivel Bajo (7L).	. 51
Fuente: Elaboración propia	. 51
Figura N° 25 Nivel Medio (7M)	. 52
Fuente: Elaboración propia	. 52
Figura N° 26 Nivel Alto (7H).	. 52
Fuente: Shahin, M. Y., 2005, p.367	. 52
Figura N° 27 Grieta de Reflexión de Juntas.	. 54
Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.10	. 54
Figura N° 28 Nivel Bajo (8L)	. 54
Fuente: Shahin, M. Y., 2005, p.369	. 54
Figura N° 29 Nivel Medio (8M)	. 55
Fuente: Shahin, M. Y., 2005, p.369	. 55
Figura N° 30 Nivel Alto (8H).	. 55
Fuente: Shahin, M. Y., 2005, p.369	. 55
Figura N° 31 Desnivel Carril / Berma	. 57
Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.30	. 57
Figura N° 32 Nivel Bajo (9L).	. 57
Fuente: FHWA-HRT-13-092,2014, p.30	. 57
Figura N° 33 Nivel Medio (9M)	. 58
Fuente: Shahin, M. Y., 2005, p.371	. 58
Figure No 34 Nivel Alte (OH)	50

Fuente: Elaboracion propia	58
Figura N° 35 Grietas Longitudinales y Transversales	60
Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.08 y p.12	60
Figura N $^\circ$ 36 Nivel Bajo (10L).	60
Fuente: Elaboración propia	60
Figura N $^\circ$ 37 Nivel Medio (10M)	61
Fuente: Elaboración propia	61
Figura N $^{\circ}$ 38 Nivel Alto (10H).	61
Fuente: Elaboración propia	61
Figura ${f N}^\circ$ 39 Parcheo y Acometidas de Servicio	62
Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.16	62
Figura N $^\circ$ 40 Nivel Bajo (11L).	63
Fuente: Elaboración propia	63
Figura N° 41 Nivel Medio (11M)	63
Fuente: Elaboración propia	63
Figura N° 42 Nivel Alto (11H).	63
Fuente: Elaboración propia	63
Figura $ m N^\circ$ 43 Pulimento de Agregados.	65
Fuentes: Elaboración propia	65
Figura N $^\circ$ 44 Pulimento de Agregados	65
Fuente: Shahin M. Y., 2005, p.377.	65
Figura N° 45 Huecos.	67
Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.18	67
Figura N $^{\circ}$ 46 Nivel Bajo (13L).	67
Fuente: Elaboración propia	67
Figura N° 47 Nivel Medio (13M)	68
Fuente: Elaboración propia	68
Figura N° 48 Nivel Alto (13H).	68
Fuente: Elaboración propia	68
Figura N° 49 Nivel Bajo (14L).	69
Fuente: Shahin, M. Y., 2005, p.381.	69
Figura N° 50 Nivel Medio (14M)	70
Fuente: Shahin, M. Y., 2005, p.381.	70
Figure N° 51 Nivel Alta (14H)	70

Fuente: Shahin, M. Y., 2005, p.381
Figura N° 52 Ahuellamiento
Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.22
Figura N° 53 Nivel Bajo (15L).
Fuente: Elaboración propia
Figura N° 54 Nivel Medio (15M)
Fuente: Elaboración propia
Figura N° 55 Nivel Alto (15H).
Fuente: Elaboración propia
Figura N° 56 Desplazamiento
Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.23
Figura N $^{\circ}$ 57 Nivel Bajo (16L)
Fuente: Shahin, M. Y., 2005, p.385
Figura N° 58 Nivel Medio (16M)
Fuente: Shahin, M. Y., 2005, p.385
Figura N° 59 Nivel Alto (16H).
Fuente: Shahin, M. Y., 2005, p.385
Figura N $^{\circ}$ 60 Nivel Bajo (17L).
Fuente: Shahin, M. Y., 2005, p.387
Figura N° 61 Nivel Medio (17M)
Fuente: Shahin, M. Y., 2005, p.387
Figura N $^{\circ}$ 62 Nivel Alto (17H).
Fuente: Shahin, M. Y., 2005, p.387
Figura N° 63 Hinchamiento
Fuente: Shahin, M. Y., 2005, p.389
Figura N $^{\circ}$ 64 Nivel Bajo (19L).
Fuente: FHWA-HRT-13-092, 2014, p.28
Figura N $^{\circ}$ 65 Nivel Medio (19M)
Fuente: FHWA-HRT-13-092, 2014, p.28
Figura N $^{\circ}$ 66 Nivel Alto (19H).
Fuente: FHWA-HRT-13-092, 2014, p.28
Figura N $^{\circ}$ 67 Nivel Bajo (20L).
Fuente: Elaboración propia
Figure N° 68 Nivel Media (20M)

Fuente: Elaboración propia	82
Figura N $^\circ$ 69 Nivel Alto (20H)	82
Fuente: ASTM D6433-18, 2018, p.24	82
Figura ${f N}^\circ$ 70 Secuencia de pasos para la evaluación, según metodología PCI	87
Fuente: Elaboración propia	87
Figura ${f N}^\circ$ 71 Ejemplo de registro de datos para una unidad de muestreo	88
Fuente: Software EvalPavCar	88
Figura N $^\circ$ 72 Frecuencia de fallas (Incidencias)	91
Fuente: Elaboración propia	91
Figura N $^\circ$ 73 Incidencias de fallas en carril derecho	92
Fuente: Elaboración propia	92
Figura ${f N}^\circ$ 74 Gráficos de resultados por niveles de severidad en carril derecho	93
Fuente: Elaboración propia	93
Figura N $^\circ$ 75 Incidencias de fallas en carril izquierdo	94
Fuente: Elaboración propia	94
Figura N° 76 Gráficos de resultados por niveles de severidad en carril izquierda.	95
Fuente: Elaboración propia	95
Figura N $^\circ$ 77 Gráfica de valores PCI del carril derecho	99
Fuente: Reporte de gráfico EvalPavCar	99
Figura N $^\circ$ 78 Gráfica de valores PCI del carril izquierdo	102
Fuente: Reporte gráfico del EvalPavCar	102
Figura N $^\circ$ 79 Ubicación de fallas no catalogadas ubicadas en carril derecho	103
Fuente: Elaboración propia	103
Figura N $^\circ$ 80 Gráfico de fallas no catalogadas en carril derecho	104
Fuente: A partir del modelo del reporte del EvalPavCar	104
Figura ${f N}^\circ$ 81 Ubicación de fallas no catalogadas ubicadas en carril izquierdo	104
Fuente: Elaboración propia	104
Figura N $^\circ$ 82 Gráfico de fallas no catalogadas en carril izquierdo	105
Fuente: A partir del modelo del reporte del EvalPavCar	105

Resumen

La investigación realizada tiene como principal problema el mejorar el nivel de la transitabilidad de la carretera PE-5N, tramo San Alejandro – Alto Shiringal (desde el km 355+000 hasta el km 365+000, un total de 10 km). Para resolver esta problemática los objetivos fueron identificar los tipos de fallas, determinar la condición operacional aplicando la metodología PCI y proponer las intervenciones más adecuadas con la finalidad de mejorar el nivel de servicio y transitabilidad de la calzada y berma para dicho tramo de la carretera.

El tipo de investigación es de orientación aplicada y hace uso de método descriptivo no experimental, con diseño tipo observacional y teniendo en cuenta el estándar ASTM D6433 como guía para la identificación de las fallas.

En los resultados de la investigación, identificamos 10 tipos de fallas para cada carril, siendo la Piel de Cocodrilo (41.16%) y las Grietas Longitudinales y Transversales (34.41%) las que se presentan con mayor frecuencia. El índice PCI asciende a 87 catalogando al tramo como "Excelente", cabe recalcar que en este índice no se están considerando las fallas encontradas que no cuentan con una clasificación para la metodología PCI, dichas fallas se encuentran colapsadas, por tener una estructura severamente dañada o inexistente.

Palabras Claves: PCI, fallas, estándar ASTM D6433, intervenciones, nivel de servicio y transitabilidad.

Abstract

The main problem of the research is to improve the level of passability of the PE-5N road, san Alejandro – Alto Shiringal stretch (from km 355+000 to km 365+000, a total of 10 km). To solve this problem the objectives were to identify the types of failures, determine the operational condition applying the PCI methodology and propose the most appropriate interventions in order to improve the level of service and passability of the roadway and berm for that stretch of the road.

The type of research is of applied orientation and makes use of a descriptive non-experimental method, with observational type design and taking into account the ASTM D6433 standard as a guide for the identification of faults.

In the research results, we identified 10 types of faults for each lane, with Crocodile Skin (41.16%) Longitudinal and Transverse Cracks (34.41%) the most frequently presented ones. The PCI index amounts to 87 cataloguing the section as "Excellent", it should be emphasized that this index is not considering faults found that do not have a classification for the PCI methodology, such failures are collapsed, because they have a severely damaged or non-existent structure.

Keywords: PCI, failures, ASTM D6433 standard, interventions, service level and passability.

I. INTRODUCCIÓN

La carretera PE-5N es un corredor vial importante, que conecta la parte central Norte de la selva con las ciudades de la sierra y costa del Perú, el trayecto de la misma ha sido pavimentado por tramos utilizando asfalto caliente, la vida útil de este se ha visto afectado por una serie de factores tales como su diseño, el proceso constructivo, la carga vehicular que soporta, falta de conservación y mantenimiento, desastres naturales etc.

El zona analizada, de la carretera PE – 5N, tramo San Alejandro – Alto Shiringal, hace más de una década desde su puesta en funcionamiento y ha contribuido enormemente en el proceso económico y social de los caseríos y comunidades asentados alrededor de esta y de su zona de influencia, desde su puesta en uso ésta vía ha permitido que se reduzcan los tiempos de viaje entre una comunidad y otra, como también se redujeron los costos de transporte de pasajeros y cargas, además de mejorar la calidad de vida de la población.

En la Figura N° 1 se puede apreciar que el deterioro de algunas zonas es tan grave que ha dejado inutilizado un carril en el sentido NE – SO, y que obliga a los vehículos en sentido contrario a reducir considerablemente la velocidad y en otros casos a detenerse para dar pase.

Figura Nº 1 Carril colapsado en sentido NE-SO. Fuente: Elaboración propia.

Además, se pudo observar a lo largo de todo el tramo a estudiar, distintos tipos de fallas en diferentes niveles de severidad, estos se traducen a una dificultad para la calidad de conducción, que afecta también la seguridad del transporte de los vehículos que utilizan dicha carretera.

En tal sentido, los conceptos de la norma ASTM D-6433 hablan de la metodología PCI, detallan claramente los tipos de fallas y sus características que ayudaron a identificarlas, así mismo se detalla el proceso necesario para la calificación de las zonas de estudio. Finalmente, dicha calificación ayudó a determinar las intervenciones necesarias para la restauración de la carretera. Por todo lo expuesto, se formuló el siguiente problema general:

- ¿Cómo mejorar la transitabilidad de la carretera aplicando la metodología PCI?
 Del problema general, se determinaron los siguientes problemas específicos:
- ¿Cuáles son los tipos de fallas y sus frecuencias, presentes en el pavimento flexible de la carretera PE-5N, tramo San Alejandro-Alto Shiringal?

- ¿Cuál será el índice de condición operacional, de acuerdo al método PCI, del pavimento flexible de la carretera PE-5N, tramo San Alejandro-Alto Shiringal?
- ¿Qué tipos de intervenciones se pueden proponer para prolongar la vida útil del pavimento flexible de la carretera PE-5N, tramo San Alejandro-Alto Shiringal?

La justificación que respaldo la presente investigación tiene diferentes aspectos:

• En el aspecto técnico, es fundamental realizar un análisis de las fallas y deterioros del pavimento utilizando la metodología PCI, identificar los mismos, calcular el índice de condición operacional y finalmente proponer intervenciones para el mantenimiento de la vía, que permita la circulación continua del tránsito vehicular en la zona.

Los deterioros o fallas empiezan a aparecer, producto de diversas circunstancias, ya sea por fallas en el proceso constructivo, por el uso de la misma o por condiciones climáticas, geográficos particulares de cada zona del país; de ahí la necesidad de realizar la identificación de los mismos para mantener la transitabilidad y garantizar la vida útil de la vía.

- En el aspecto social, la presente investigación sentó la base, de forma directa, para otorgar beneficios a la población como un menor tiempo en la movilización de sus habitantes y de sus productos, obteniendo un efecto positivo en el desarrollo de la población y su calidad de vida.
- En el aspecto económico, la población aprovecha mejor los recursos financieros otorgados por el gobierno local; en este momento se emplea tecnología media en cultivos para los Programas de Desarrollo Alternativo para cultivos perennes, tales

como: Palma Aceitera, Algodón, Cacao, Piña y Café. Con una carretera en buen estado, la población logra un considerable ahorro en el combustible, mantenimiento, tiempo y facilidad de transporte de sus productos a las zonas de comercialización.

En lo que refiere al aspecto ambiental, se debe tener en cuenta algunas recomendaciones para tener un impacto ambiental bajo en el proceso de ejecución de reparaciones, considerar el clima de la zona y sus épocas de lluvia, haciendo programaciones en fechas secas para optimizar el tiempo de uso de las maquinarias y su combustible. Por otro lado, el beneficio de mantener la carretera en óptimas condiciones es tener un menor tiempo de recorrido lo que se traduce en una menor polución; se evitan posibles accidentes de tránsito; se evitan posibles inundaciones focalizadas y deterioros de la estructura del pavimento al tener un buen sistema de evacuación de aguas.

Por lo mencionado líneas arriba es trascendental tener una vía íntegramente operante que responda a una mejor transitabilidad y mejor calidad de vida de los pobladores; considerando además el problema general detallado anteriormente, se pudo desprender el siguiente objetivo general:

- Mejorar la transitabilidad ante el deterioro, en el pavimento flexible de la carretera
 PE 5N, tramo San Alejandro-Alto Shiringal.
 - Anteriormente se detallaron los problemas específicos, y a partir de ellos se plantearon los siguientes objetivos específicos:
- Identificar los tipos de fallas y sus frecuencias, presentes en el pavimento flexible de la carretera PE-5N, tramo San Alejandro-Alto Shiringal.
- Determinar el índice de condición operacional, de acuerdo al método PCI, del pavimento flexible de la carretera PE-5N, tramo San Alejandro-Alto Shiringal.

- Evaluar qué tipos de intervenciones se pueden proponer para prolongar la vida útil
 del pavimento flexible de la carretera PE-5N, tramo San Alejandro-Alto Shiringal.
 Una vez planteados el problema y objetivo general, fue necesario corroborar la
 hipótesis general en esta investigación, la cual se detalla a continuación:
- Si evaluamos el deterioro en la superficie de rodadura, entonces se podrá mejorar la transitabilidad de la carretera PE 5N, tramo San Alejandro-Alto Shiringal.
 De la misma forma se desprendieron las siguientes hipótesis específicas que se corroboraron para la presente investigación:
- Si identificamos cuáles son los tipos de fallas presentes y sus frecuencias, entonces se podrá mejorar la transitabilidad de la carretera PE-5N, tramo San Alejandro-Alto Shiringal.
- Si determinamos el índice de condición operacional, de acuerdo al método PCI, entonces se podrá mejorar la transitabilidad de la carretera PE-5N, tramo San Alejandro-Alto Shiringal.
- Si determinamos los tipos de intervenciones, entonces se podrá mejorar la transitabilidad de la carretera PE-5N, tramo San Alejandro-Alto Shiringal.

II. MARCO TEÓRICO

Enmarcamos la presente investigación con ayuda de los siguientes antecedentes internacionales, que analizan también el estado del pavimento mediante la metodología PCI.

PARRA Hernandez, Ingred Julieth. Procedimiento estratégico para la detección de daños en pavimento flexible en la infraestructura vial del municipio de Fusagasugá mediante las metodologías VIZIR y PCI. Tesis (Título de Ingeniero Civil). Bogotá: Universidad Piloto de Colombia, 2018; en sus conclusiones indica que se determina mediante las dos metodologías que el principal daño en el tramo evaluado es la PIEL DE COCODRILO, su porcentaje (11.77%) del área total del tramo no es alto, sin embargo, es importante tener en cuenta que las causas de este tipo de daño son diversas a considerar, pero las causas más comunes son, el sometimiento del pavimento asfáltico a altas cargas, o el espesor de la estructura poco eficiente. Dado que en el tramo de vía mencionado es característico el flujo vehicular de carga pesada, se concluye que la falla de piel de cocodrilo se da por esta causa. Además, analizando a fondo cada una de las dos metodologías se observa que la Metodología PCI es más completa pues como se enunció anteriormente abarca la totalidad de los daños sin importar si estos son estructurales o funcionales, su clasificación al tener un rango de evaluación más amplio (0-100) y más niveles de clasificación (7) permite tener información más precisa de la calidad del tramo evaluado. Sin embargo, el método de análisis es más complejo, debido al uso de gráficas para determinar el valor deducido de cada daño y la posterior iteración que se debe realizar para obtener el máximo valor deducido por tramo, estas operaciones hacen que el análisis sea más tedioso y convierten la metodología PCI en un análisis más técnico.

BUITRAGO Hernandez, Karoll Lisseth. Auscultación, calificación del estado superficial y evaluación económica de la carretera sector del municipio de Neiva en el proyecto de la ampliación y rehabilitación de la calle 6 (huila). Tesis (Título de Ingeniero Civil) Huila: Universidad Cooperativa de Colombia, 2019; en sus conclusiones indica que ejecutando la inspección vial para realizar el informe del tramo de la calle 6, se registraron las fallas del pavimento con su respectivo dato de georreferenciación, para así ayudar a su alcaldía a ubicar donde se encuentran estas fallas, implementando la metodología PCI. Se han recopilado datos de las condiciones superficiales del pavimento, donde se obtuvo:

- CALLE 6 ENTRE CARRERA 8 A LA 15: REGULAR.
- CALLE 6 ENTRE CARRERA 16 A LA 18: MUY MALA.
- CALLE 6 ENTRE CARRERA 18 A LA 21: REGULAR.
- PAR VIAL: REGULAR.

Haciendo una comparación de metodologías (VIZIR y PCI), se llegó a una conclusión: que la más conservadora es (PCI) debido que contiene siete rangos para clasificar desde "0", considerando ambos tipos de daños: estructurales y superficiales. Finalmente concluye que existen drenajes en la vía que son regulares, como también existen tramos que no tienen cunetas y el sistema de drenaje se hace insuficiente.

GUZMÁN Ordóñez, Gonzalo Andrés, Gestión sostenible del pavimento rígido, flexible y articulado del centro urbano del cantón girón. Tesis (Magíster en Ingeniería Vial y Transportes) Cuenca: Universidad de Cuenca, 2017; en sus conclusiones indica que la presentación de los valores PCI e ICP, indican un nivel de

servicio actual de la vía en estudio con la finalidad de elegir el mejor procedimiento técnico para mantener o elevar así el nivel de servicio en la urbanización Cantón Girón. Por lo que mediante la metodología del ICP y usando la teoría de la cadena de Markov obtiene niveles de servicio en el tiempo para las vías investigadas, contrasta los resultados de nivel de servicio actuales logrando así que se puedan tomar las acciones oportunas para los mantenimientos viales y planificarlos con antelación, determinando el nivel de mantenimiento (preventivo o correctivo o reconstructivo). Los resultados finales indican que el pavimento estudiado tiene una buena calificación y que los mantenimientos requeridos son solo del tipo preventivo, sin embargo, recalca que existen zonas focalizadas donde el tipo de mantenimiento sea de reconstrucción. Por último, recomienda hacer lo que se conoce como catastro vial, actualizando los niveles de servicio constantemente para tomar las decisiones de mantenimiento de forma oportuna.

SIERRA Diaz, Cristian Camilo y RIVAS Quintero, Andres Felipe, Aplicación y comparación de las diferentes metodologías de diagnóstico para la conservación y mantenimiento del tramo pr 00+000 – pr 01+020 de la vía al llano (dg 78 bis sur – calle 84 sur) en la upz yomasa. Tesis (Título de Ingeniero Civil). Bogotá: Universidad Católica de Colombia, 2016; en sus conclusiones indica que los datos obtenidos en campo, entre las progresivas estudiadas, según la metodología PCI obtiene un resultado de 89 (Excelente) mientras que para la metodología VIZIR el resultado es de 2 (Bueno), lo que concluye que no se necesita ningún tipo de intervención. Cabe mencionar que la metodología VIZIR tiene una calificación más inclinada a los fallos estructurales mientras que la metodología PCI evalúa e inspecciona los daños tanto de origen estructural como superficial. Siendo además esta última, más completa y detallada.

Por otro lado, las investigaciones nacionales contribuyen de igual forma la presente investigación.

CÁRDENAS Riveros, Juan Rubén, Determinación y Evaluación de las Patologías del Pavimento Flexible, Para Obtener el Índice de Integridad Estructural del Pavimento Flexible y Condición Operacional de la Superficie de Rodadura de la Avenida Carlos La Torre Cortéz, Distrito de Huanta, Provincia de Huanta, Región Ayacucho. Tesis (Título de Ingeniero Civil). Ayacucho: Universidad Católica de los Ángeles Chimbote, 2016; en sus conclusiones y recomendaciones indica que las fallas encontradas en las unidades muestrales son equivalentes, con una acontecimiento constante primordial de pérdida de materiales gruesos y finos en el 95% de las muestras, huellas ocasionadas por neumáticos al 60%, baches al 40% y grietas en bloques al 60%, con presencia de bacheos al 40% en condición regular a mala, que crean malestar durante el transporte a aceleraciones superiores a 30 km/hora, estableciendo la presencia de un desperfecto en el funcionamiento recalcado, lo que incentivó el presente estudio de investigación en el asfalto dúctil del trecho designado en los primeros 500 metros de la avenida en estudio. Finalmente, los cómputos de valoración, deberán ser tomados como un instrumento indefectible para la toma de disposiciones en el mediano plazo y programar estudios de inversión para tener la continuación y generación de contextos de serviciabilidad imponderables en vías principales dentro y fuera del ámbito urbano.

HILIQUÍN Brañez, Mariana Lucía, Evaluación del estado de Conservación del Pavimento, Utilizando el Método PCI, en la Av. Jorge Chávez del Distrito de Pocollay en el año 2016. Tesis (Título de Ingeniero Civil). Tacna: Universidad Privada de Tacna, 2016; en sus conclusiones indica que, utilizando el Método del

PCI, hay garantía de conseguir resultados similares, al igual que con una metodología frecuentemente utilizada en el País, como el de la Viga Benkelman estandarizada por la ASTM 4695. Y que, además, el método del PCI, está estandarizado por la ASTM D6433, y es una metodología de cómoda ejecución que no demanda de aparatos caros, pero sí de material humano competente y con el discernimiento preciso para identificar y evaluar la severidad, dimensión y tipo de deterioros que se hallan en el asfalto a valorar. Se ultima que por el estado en que se halla el asfalto precisa una recuperación del mismo, para responder que su periodo de vida proyectada remanente sea seguro.

LEGUÍA Loarte, Paola Beatriz y PACHECO Risco, Hans Fernando, Evaluación Superficial del Pavimento Flexible por el Método Pavement Condition Index (PCI) en Las Vías Arteriales: Cincuentenario, Colón y Miguel Grau (Huacho-Huaura-Lima). Tesis (Título de Ingeniero Civil). Lima: Universidad de San Martin de Porres, 2016; en sus recomendaciones dice que cuando se efectúa el acopio de información y estudio de pavimentos, corresponderá realizar una central de estimación que valga de ayuda al experto o ayudante, además que presente la metodología a emplearse en la realización del estudio. Para la estimación superficial es indispensable contar con el consejo y guía de especialistas competentes; así mismo, son necesarios los dispositivos de seguridad obligatorios que faciliten la estimación de campo. Finalmente, la apreciación del asfalto flexible de las vías ensayadas, se convendrá verificar en etapas de 6 a 12 meses, preferentemente entre noviembre y mayo para evadir la época de precipitaciones, con el propósito de saber de primera mano, si la fase de preservación de la vía se mantiene la identificación o presencia nuevos daños y el análisis del progreso de los deterioros preexistentes. Se logrará empleando uno de los diversos métodos, siendo la metodología VIZIR que más se recomienda.

AGUILERA Chinchay, Andrés, Evaluación de las Patologías Existentes en el Pavimento Flexible de la Avenida don Bosco, Cuadras 28, 29,30 y 31 del AA-HH. Santa Rosa, Distrito Veintiséis de Octubre, Departamento de Piura, Octubre – 2017. Tesis (Título de Ingeniero Civil). Piura: Universidad Católica Los Ángeles de Chimbote, 2017; en sus conclusiones indica que los deterioros que se presentan mayoritariamente: Pulimiento de materiales 9.361%, desprendimiento de materiales agregados. 10.328%, baches 4.46%, piel de cocodrilo, 1.768%, inclinación carril/ berma.0.948%, exudación 5.238%, concavidad 4.213%, fisura longitudinal y transversal. 0.601%. El desperfecto que se presenta con mayor frecuencia es el desprendimiento de materiales agregados con 10.328%. La categoría de gravedad que muestra en la zona de evaluación es alta, el valor promediado del PCI es 42.33, lo que significa que el índice de la avenida estudiada resulta la calificación: Regular. ORTIZ Marín, Elizabeth Jaqueline, Evaluación y Comparación del Estado de Conservación de la Carretera Baños del Inca-Llacanora Utilizando los Métodos de Índice de Conservación del Pavimento Y VIZIR. Tesis (Título de Ingeniero Civil). Cajamarca: Universidad Nacional de Cajamarca, 2018; en sus conclusiones y recomendaciones detalla que el catálogo de fallas, se completó con la inspección de un total de 135 unidades de unidades muestrales para cada metodología, concluyendo de esta forma: Utilizando la metodología PCI se hallaron 501 fallas, y se distingue con más frecuencia a la peladura por intemperismo y desprendimiento de material agregado con un 54.89%. o usando la metodología VIZIR se hallaron 494 fallas, y se distingue con más frecuencia a la pérdida de material agregado con un 28.54%. Finalmente se hace la recomendación de hacer un monitoreo más continuo, pero analizando todas las unidades muestrales, aludiendo que así se lograra una mejor evaluación y se prevea con anticipación las necesidades de rehabilitación.

ZEVALLOS Gamarra, Rafael Ernesto, Identificación y Evaluación de las fallas superficiales en los pavimentos flexibles de algunas vías de la ciudad de Barranca – 2017. Tesis (Maestro en ingeniería Civil con Mención en Dirección de Empresas de la Construcción). Lima: Universidad Cesar Vallejo, 2017; en sus conclusiones detalla que se determina que en la vía estudiada prepondera la existencia de las siguientes fallas: Baches, Piel de Cocodrilo y Agrietamientos Longitudinales, Transversales y en bloque. Aplicando la metodología del PCI se determinó que la avenida analizada, tiene un PCI de entre 47 y 49, teniendo así la calificación: "Regular". Se deberá analizar para controlar los daños y así establecer las rehabilitaciones periódicas necesarias. Finalmente menciona la importancia del análisis cuantitativo que otorga la metodología del PCI para conseguir políticas de conservación y/o estrategias de inversión adecuadas que tenga por propósito minimizar el deterioro de forma prematura.

Pavimento.

Desde un punto de vista estructural, se le puede definir como el elemento vial preferente conformado por la capa o capas compuestas de materiales rigurosamente seleccionados, traslapándose una sobre otra de acuerdo a un diseño específico, con la finalidad de soportar la carga vehicular constante a la que se le someterá, además de soportar el intemperismo de la zona y finalmente transmitir los esfuerzos y deformaciones a la superficie de fundación (Buitrago, J.A. y Cano, D. P., 2017)

La clasificación de los pavimentos obedece a su composición estructural, esta disposición de las capas que la conforman define su comportamiento frente a las cargas a las que será expuesta y cómo interactúa finalmente con la superficie de fundación. Es así que se definen dos principales tipos de pavimentos: pavimentos rígidos y pavimentos flexibles, cuyos comportamientos se pueden apreciar en la siguiente figura.

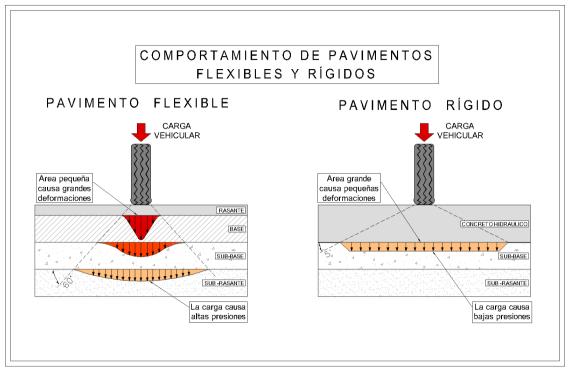


Figura N° 2 Comportamiento de Pavimentos Flexibles y Rígidos. Fuente: Elaboración propia.

Pavimento flexible.

La composición de este tipo de estructura vial es similar en casi todos los casos, pero el diseño puede variar en espesores y cantidades de capas de acuerdo a las particularidades de cada obra. Hallaremos principalmente, una carpeta asfáltica, una base y una sub-base. La función principal es la de distribuir y atenuar la carga vehicular conforme se vaya transmitiendo entre las capas que conforman la estructura del pavimento. Sin embargo, esta estructura no absorbe completamente las cargas, haciendo que la capa de la sub-rasante sea el receptor de todas estas.

Es conocido que este tipo de pavimentos sea el más económico en su construcción inicial, teniendo un periodo de vida de entre 10 a 20 años, pero tienen la desventaja de requerir mantenimiento periódico con el fin de cumplir los años de servicio para la que fue construida (Tacza, E. B. y Rodriguez, B. O., 2018).

Pavimentos rígidos.

La composición de este tipo de estructuras viales es más simple, por lo que hallaremos principalmente que esta se compone de una sola capa (Sub-base) entre la rasante y la sub-rasante que otorga básicamente homogeneidad entre estas, esto se debe a que la capa de rodadura es rígida, absorbiendo las cargas vehiculares en mayor grado que el pavimento flexible, distribuyéndose más eficientemente y reduciendo así los esfuerzos a los que se expone la sub-rasante.

Está compuesto de losas de hormigón hidráulico que en ciertas ocasiones ostenta una parrilla de acero, lo que hace que el precio inicial sea más elevado. Sin embargo, la vida útil varía entre los 20 y 40 años de servicio y con un mínimo mantenimiento (Tacza, E. B. y Rodriguez, B. O., 2018).

Nótese que existen otras clases de pavimento que las ya mencionadas líneas arriba. El pavimento semi-rígido, cuenta con una capa rigidizada de forma artificial gracias

a algún aditivo con el fin de mejorar las propiedades mecánicas y el pavimento articulado, caracterizado por tener una capa de rodadura compuesta por bloques prefabricados con medidas y volúmenes uniformes, conocidos también como adoquines (Tacza, E. B. y Rodriguez, B. O., 2018).

Metodología PCI (*Pavement Condition Index*), significa índice de condición del pavimento, tiene la metodología más completa para la calificación y evaluación de pavimentos rígidos y flexibles. Tiene una fácil implementación de acuerdo con la metodología y el sistema no requiere de herramientas especializadas de lo que ya está constituido (Vásquez, L. R., 2002, p.2).

De acuerdo a la función del deterioro de la estructura se puede ver la clase de daño, también su cantidad, severidad o densidad. Encontrar una formulación para un índice que contenga los tres factores mencionados ha sido incierto ya que hay un gran número de esta índole. Para este inconveniente se definen los "valores deducidos", como un prototipo de factor de ponderación, para poder indicar el grado de afectación que tiene cada clase de daño, densidad y severidad del PCI (Vásquez, L. R., 2002, p.2).

El índice varía entre cero (0), en un pavimento en mal estado con fallas, hasta cien (100) en pavimento en buen estado; Para el cálculo del PCI se hace un inventario para fundamentar los resultados del estado de los pavimentos donde se puede establecer la severidad, cantidad y clase del daño. El índice se desarrolló para saber el nivel en el que se encuentra la integridad de la estructura del asfalto y de la funcionalidad de la superficie de rodadura (Vásquez, L. R., 2002, p.2).

Con los resultados obtenidos como parte de un inventario, se pueden observar con más detalle las causas de fallas y la relación con el clima o las cargas (Vásquez, L. R., 2002, p.2).

Tabla N° 1 Escalas de Rangos del PCI

RANGOS DE CALIFICACIÓN DEL PCI								
Rang	0	Clasificación						
100	85	Excelente						
85	70	Muy Bueno						
70	55	Bueno						
55	40	Regular						
40	25	Malo						
25	10	Muy Malo						
10	0	Fallado						

Fuente: Adaptado de Manual PCI, Vásquez, L. R., 2002, p.2.

En la primera etapa del Procedimientos de Evaluación de la Condición del Pavimento, se identifican las fallas dependiendo de la severidad, extensión y clase obtenidos de campo, para ello se utilizan los formatos adecuados. En la tabla se presenta el formato conseguido para este trabajo.

Tabla N° 2 Formato de Inventario de Daños.

TIPO DE DAÑO	SEVERIDAD	ANCHO (M)	LONGITUD (M)	AREA (M2)	DENSIDAD (%)	VR DEDUCIDO	сот	CDV	PCI	CLASIFICACIÓ N	INTERVEN CIÓN	No. Fotografia

Fuente: *Pavement Condition Index* (PCI) Para Pavimentos Asfálticos y de Concreto en Carreteras, traducido por el Ing. Luis Ricardo Vásquez, Abril de 2006.

Luego, se divide la vía en partes o "unidades de muestreo", de acuerdo a los tipos de vía y capa de rodadura tienen una variación de las dimensiones: En una carretera de ancho de 5.5m con capa de rodadura asfáltica, el muestreo es de un rango de 41.8m2.

La tabla presenta algunas longitudes relacionadas, con el ancho de calzada que este pavimentada.

Tabla N° 3 Longitudes de Unidades de Muestreo

Ancho de calzada (m)	Longitud de la unidad de muestreo (m)
5	46
5.5	41.8
6	38.3
6.5	35.4
7.3	31.5

Fuente: *Pavement Condition Index* (PCI) Para Pavimentos Asfálticos y de Concretos en Carreteras, traducido por el Ing. Luis Ricardo Vásquez, Abril de 2006.

Lo más recomendable es tomar un promedio de los rangos y no definir unidades fuera de estos. Por cada parte del pavimento que se inspeccione tiene que tener esquemas donde se pueda mostrar la localización y el tamaño de sus unidades ya que servirá para futuras referencias.

Al completar la información de campo sobres las fallas encontradas para el cálculo del PCI, esta puede ser computarizada o manual siguiendo los "valores deducidos" de acuerdo a la severidad y cantidad proporcionadas.

El cálculo para carreteras con Capa de Rodadura Asfáltica tiene las siguientes etapas:

Etapa 1. Cálculo de valores deducidos

- Recolectar todos los tipos y nivel de severidad de fallas para poder colocarlo en la columna total en el inventario de daños. La falla se puede medir la longitud, área o por número según su tipo.
- Dividir cada cantidad de clase de falla, en cada nivel de severidad, entre el área total de la unidad de muestreo y expresar el resultado en porcentaje. Este

resultado es la densidad de la falla, con nivel de severidad especificado, la unidad está dentro del análisis de estudio.

 Determinar para que valor deducido pertenece cada tipo de falla y el nivel de severidad, mediante curvas denominadas "Valor Deducido de la falla "que se adjuntara al final según el tipo de pavimento estudiado.

Etapa 2. Cálculo del Número Máximo Admisible de valores Deducidos (m)

- Si alguno o ninguno es "Valores Deducidos" es mayor que 2, se utilizara el "valor Deducido Total" en lugar del mayor "Valor Deducido Corregido",
- Hacer una lista de valores individuales deducidos de mayor a menor.
- Se puede determinar el "Número Máximo Admisible de Valores Deducidos"
 (m), con la ecuación:

$$m_i = 1.00 + \frac{9}{98} (100 - HDVi)$$

mi: Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDVi: El mayor valor deducido individual para la unidad de muestreo i.

 El número de valores individuales deducidos se reduce a m, inclusive la parte fraccionaria. Si se dispone de menos valores deducidos que m se utilizan todos los que se tengan.

Etapa 3. Cálculo del "Máximo valor Deducido Corregido", CDV.

El máximo CDV se determina mediante el siguiente proceso iterativo:

- Establecer el número de valores deducidos, q, mayores que 2.0

- Establecer el "valor deducido total" sumando todos los valores deducidos individuales.
- Establecer el CDV con q y el "valor deducido total" en la curva de corrección pertinente al tipo de pavimento.
- Reducir a 2.0 el menor de los "valores deducidos" individuales que sea mayor que 2.0 y repita las etapas 3.
- El máximo CDV es el mayor de los CDV obtenidos en este proceso

Etapa 4. Cálculo del PCI de la unidad restando de 100 el máximo CDV obtenido en la etapa 3.

En el cuadro está el formato del proceso iterativo de obtención del "Máximo Valor Deducido Corregido", CDV.

Tabla N° 4 Formato para Máximos Valores Reducidos Corregidos.

No.	Valores Deducidos												CDV
1													
2													
3													
4													

Fuente: *Pavement Condition Index* (PCI) Para Pavimentos Asfálticos y de Concretos en Carreteras, traducido por el Ing. Luis Ricardo Vásquez, Abril de 2006.

Para una sección se puede obtener varias unidades de muestreo. Si todos los muestreos son inventariados, la sección será el promedio de los PCI obtenidos en el muestreo. Si se va a utilizar la técnica del muestreo, podemos optar por otro procedimiento, si la sección que se inspeccionó se realizó con la técnica aleatoria-sistemática o base para representar la sección, el PCI será el promedio de los PCI de las unidades de muestreo. Si usaron unidades de muestreo complementario se utilizará un promedio ponderado, que se puede calcular de esta manera.

$$PCI_{s} = \frac{\left[\left(N - A\right) * PCI_{R}\right] + \left(A * PCI_{A}\right)}{N}$$

Dónde:

PCIS: PCI de la sección del pavimento

PCIR: PCI promedio de las unidades de muestreo aleatorias o representativas

PCIA: PCI promedio de las unidades de muestreo adicionales.

N: Número total de unidades de muestreo en la sección.

A: Número adicional de unidades de muestreo inspeccionadas.

Al completar la información de campo sobres las fallas encontradas para el cálculo

del PCI, esta puede ser computarizada o manual siguiendo los "valores deducidos"

de acuerdo a la severidad y cantidad proporcionadas.

En la presente investigación, el cálculo de los valores PCI se hicieron mediante el

uso del Software EvalPavCar - Calculo de PCI, esta versión del programa

computacional EvalPav sirve para evaluación de vías con pavimentos flexibles, esta

versión utiliza las fallas estipuladas en el ASTM D6433-03. Este software nos

permite optimizar el procesamiento de datos de campo y análisis de resultados. Cabe

recalcar que el software EvalPav fue creado por el Ing. Gerber Zabala Ascaño para

la Dirección de estudio Especiales en la Dirección General de Caminos y

Ferrocarriles del MTC.

Recordemos que hemos partido de la norma del ASTM estándar D-6433, a partir de

la 11ava versión se consideran 20 fallas o deterioros.

33

Tabla N° 5 Tipos de Fallas en Pavimentos Flexibles.

Tabla de Tipos de Fallas en Pavimentos Flexibles									
N°	Nombre de la falla o deterioro	Distress name	Unidad de Medida	Niveles de Severidad definidos.	Causa				
01	Piel de Cocodrilo	Alligator Cracking	$[m^2]/[ft^2]$	Sí	Carga Vehicular				
02	Exudación	Bleeding	$[m^2]/[ft^2]$	Sí	Otro				
03	Agrietamiento en Bloque	Block Cracking	$[m^2]/[ft^2]$	Sí	Clima				
04	Abultamientos y Hundimientos	Bumps and Sags	[m] / [ft]	No	Otro				
05	Corrugación	Corrugation	$[m^2]/[ft^2]$	No	Otro				
06	Depresión	Depression	$[m^2]/[ft^2]$	Sí	Otro				
07	Grietas de Borde	Edge Cracking	[m] / [ft]	Sí	Carga Vehicular				
80	Grieta de Reflexión de Junta	Joint Reflection Cracking	[m] / [ft]	Sí	Clima				
09	Desnivel Carril / Berma	Lane / Shoulder Drop Off	[m] / [ft]	Sí	Otro				
10	Grietas Longitudinales y Transversales	Longitudinal & Transversal Cracking	[m] / [ft]	Sí	Clima				
11	Parcheo y Acometidas de Servicios	Patching & Utility Patching	$[\text{m}^2]/[\underline{ft}^2]$	No	Otro				
12	Pulimento de Agregados	Polished Agregates	$[m^2]/[ft^2]$	N/A	Otro				
13	Huecos	Potholes	$[m^2]/[ft^2]$	Sí	Carga Vehicular				
14	Cruce de Vía Férrea	Railroad Crossing	$[m^2]/[ft^2]$	No	Otro				
15	Ahuellamiento	Rutting	$[m^2]/[ft^2]$	Sí	Carga Vehicular				
16	Desplazamiento	Shoving	$[m^2]/[ft^2]$	No	Carga Vehicular				
17	Grietas Parabólicas o por Desplazamiento	Slippage Cracking	$[m^2]/[ft^2]$	Sí	Otro				
18	Hinchamiento	Swell	$[m^2]/[ft^2]$	No	Otro				
19	Desprendimiento de Agregados	Raveling	$[m^2]/[ft^2]$	Sí	Clima				
20	Meteorización	Weathering	$[m^2]/[ft^2]$	Sí	Clima				

Fuente: Elaboración propia.

Antes de continuar con la descripción detallada de cada daño o deterioro, describiremos un concepto necesario para la determinación de ciertos niveles de severidad, los cuales serán medidos respecto de este concepto.

Calidad de Conducción (*Ride Quality*): Para realizar completamente el inventario de daños o deterioros, se recomienda analizar la calidad de conducción, la cual nos ayudará a establecer el nivel de gravedad de algunos tipos de daños, debido que no están definidos concretamente, sino que dependen de variables como la comodidad del viaje y deben realizarse con un vehículo de tamaño estándar y a la velocidad señalizada (Shahin, M. Y., 2005, p.352).

Tabla N° 6 Niveles de Severidad para Calidad de Conducción.

Severidad	Severidad Cód. Descripción		Reparación
Bajo (Low)	L	Las vibraciones vehiculares son notorias, pero no incomodan.	N/A
Medio (Medium)	M	Las vibraciones vehiculares son significativas y ciertamente incomodas, se reduce ligeramente la velocidad para mantener la comodidad y seguridad.	
Alto (High)		Las vibraciones vehiculares crean mucha incomodidad, se requiere reducir considerablemente la velocidad del vehículo.	
Unidad de Medida		N/A	

Fuente: Elaboración propia.

Piel de Cocodrilo (*Alligator Cracking*): Este tipo de falla está generado por la fatiga de la carpeta de rodadura que está expuesta continuamente a cargas vehiculares, y se origina en la cara interior que está en contacto con la base. En su primera etapa esta se muestra como una serie de grietas paralelas de forma longitudinal, para posteriormente unirse por medio de grietas transversales y formando polígonos de lado menor a los 50 cm. Se caracteriza por formarse en las huellas de los vehículos en el pavimento y suele presentar cierto nivel de ahuellamiento (Shahin, M. Y., 2005, p.354).

Tabla N° 7 Niveles de Severidad para Piel de Cocodrilo.

Severidad	Cód.	Descripción	Reparación	
Bajo (Low)	L	Grietas capilares muy finas en forma paralela, algunas se conectan de forma transversal, no presenta descascaramiento en los bordes de las grietas.	a. Sello con tratamiento superficial.b. Colocación de Sobrecarpeta.	
Medio (Medium)	M	Las grietas forman patrones de red conectadas, presentan ligero descascaramiento.	 a. Parcheo parcial o profundo (<i>Full Depth</i>). b. Colocación de Sobrecarpeta. c. Tratamiento reconstructivo. 	
Alto (High)	Н	Red bien definida de grietas y con bordes descascarados.	 a. Parcheo parcial o profundo (<i>Full Depth</i>). b. Colocación de Sobrecarpeta. c. Tratamiento reconstructivo. 	
Unidad de Medida		$[\mathbf{m}^2] / [ft^2]$		

Fuente: Elaboración propia.

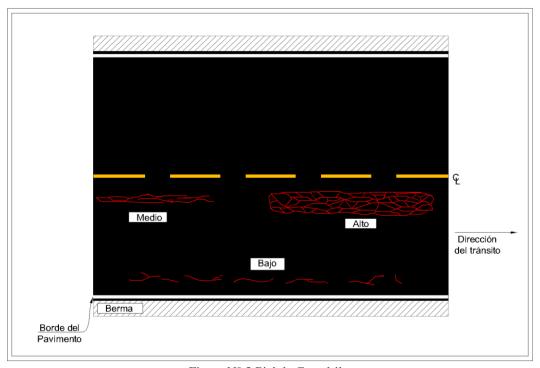


Figura N° 3 Piel de Cocodrilo. Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.4.

Figura N° 4 Nivel Bajo (1L) Fuente: Elaboración propia.

Figura N° 5 Nivel Medio (1M). Fuente: Elaboración propia.

Figura N° 6 Nivel Alto (1H). Fuente: Elaboración propia.

Exudación (*Bleeding*): Se muestra como una película superficial brillante, lisa y reflectora, la cual suele ser pegajosa si la severidad es media o alta. Se origina inicialmente en el proceso constructivo, cuando se tiene un exceso de material bituminoso o asfalto en la mezcla, llenando los vacíos de aire de la mezcla a altas temperaturas ambientales, expandiéndose así en la superficie. También se podrá exteriorizar esta falla cuando se utiliza excesivamente un sellante asfáltico en reparaciones (Shahin, M. Y., 2005, p.356).

Tabla N° 8 Niveles de Severidad para Exudación.

Severidad	Cód.	Descripción	Reparación
Bajo (Low)	L	Superficie detectable solo en días calurosos, no presenta superficie pegajosa.	-
Medio (Medium)	M	Detectable pocas semanas al año, la superficie es pegajosa.	a. Aplicación de agregados sobre superficie y pasada de rodillo.
Alto (High)	Н	Superficie extensa y pegajosa, se manifiesta varias semanas al año.	a. Aplicación de agregados sobre superficie, se calienta la superficie si es necesario y pasada de rodillo.
Unidad de Med	ida	$[\mathbf{m}^2]$ / $[ft]$	^{,2}]

 $\label{eq:Figura N^o 7 Nivel Bajo (2L)} Fuente: FHWA-HRT-13-092, 2014, p.26.$

 $\label{eq:figura} Figura~N^\circ~8~Nivel~Medio~(2M).$ Fuente: FHWA-HRT-13-092, 2014, p.26.

 $\label{eq:FiguraN} Figura~N^\circ~9~Nivel~Alto~(2H).$ Fuente: FHWA-HRT-13-092, 2014, p.26.

Agrietamiento en Bloque (*Block Cracking*): Son grietas interconectadas que forman figuras rectangulares de tamaño entre 0.30x0.30m2 hasta los 3.00x3.00m2 y que se desarrollan fuera del área de tránsito de vehículos. Su origen, no está asociado a las cargas como en el caso de la piel de cocodrilo, sino por el endurecimiento significativo del pavimento originado por los ciclos diarios de contracción, provocado a su vez por el clima al que se expone (Shahin, M. Y., 2005, p.358).

Tabla N° 9 Niveles de Severidad para Agrietamiento en Bloque.

Severidad	Cód.	Descripción	Reparación	
Bajo (Low)	L	Figuras bien definidas marcadas por grietas longitudinales y transversales no severas	 a. Tratamiento en grietas con sello, si ancho ≥3.0mm. b. Tratamiento de riego con material asfáltico. 	
Medio (Medium)	М	Figuras bien definidas y marcadas por grietas longitudinales y transversales de severidad media.	recapeo in situ.	
Alto (High)	Н	Figuras bien definidas y marcadas por grietas longitudinales y transversales de severidad alta.	recapeo in situ.	
Unidad de Med	lida	[m ²] /	•	

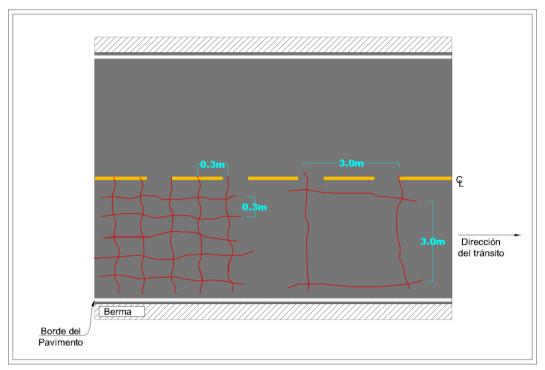


Figura N° 10 Agrietamiento en Bloque. Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.6.

Figura N° 11 Nivel Bajo (3L). Fuente: Elaboración propia.

Figura N° 12 Nivel Medio (3M). Fuente: FHWA-HRT-13-092, 2014, p.6.

 $\label{eq:figura} Figura~N^\circ~13~Nivel~Alto~(3H).$ Fuente: FHWA-HRT-13-092, 2014, p.6.

Abultamientos y Hundimientos (*Bumps and Sags*): Se manifiestan como leves abultamientos o desplazamientos por encima de la rasante, causados por distintos factores, como pueden ser: los levantamientos de losas de concreto con una Sobrecarpeta de concreto asfáltico; crecimiento de lentes de hielo en épocas de friaje, bajo la capa de la rasante provocando una expansión de la misma; *tenting* o infiltración de material por medio de alguna grieta en la superficie acompañado de la carga vehicular. Por otro lado, los hundimientos se manifiestan como fuertes desplazamientos por bajo la cota de la rasante y en zonas focalizadas y puntuales. En caso de encontrarse con más de uno de forma seguida a menos de 3 metros, pasa a otra categoría, conocida como ondulaciones (Shahin, M. Y., 2005, p.360).

Tabla N° 10 Niveles de Severidad para Abultamientos y Hundimientos.

Severidad	Cód.	Descripción	Reparación
Bajo (Low)	L	Dan como resultado una baja severidad en calidad de transido.	-
Medio (Medium)	М	Dan como resultado media severidad en calidad de transido.	 a. Tratamiento de reciclaje en frio: fresado y recapeo. b. Instalación de parche total o parcial.
Alto (High)	Н	Dan como resultado una alta severidad en calidad de transido.	 a. Tratamiento de reciclaje en frio: fresado y recapeo. b. Instalación de parche total o parcial. c. Sobrecarpeta.
Unidad de Med	lida	[m]/[f	t]

Figura N° 14 Nivel Bajo (4L). Fuente: Elaboración propia.

Figura N $^{\circ}$ 15 Nivel Medio (4M). Fuente: ASTM D-6433.

Figura N° 16 Nivel Alto (4H). Fuente: Shahin, M. Y., 2005, p.361.

Corrugación (*Corrugation*): Se manifiesta como una agrupación continua de abultamientos y hundimientos con una separación no mayor a los 3.0m entre cada uno, siendo los abultamientos perpendiculares al sentido del tránsito vehicular. El origen de esta falla se da usualmente por la combinación de una base poco estable y las cargas de origen vehicular (Shahin, M. Y., 2005, p.362).

Tabla N° 11 Niveles de Severidad para Corrugación.

Severidad	Cód.	Descripción	Reparación
Bajo (Low)	L	Dan como resultado una baja severidad en calidad de transido.	_
Medio (Medium)	M	Dan como resultado media severidad en calidad de transido.	10001156161011
Alto (High)	Н	Dan como resultado una alta severidad en calidad de transido.	
Unidad de Med	lida	$[\mathbf{m}^2]$ / $[ft^2]$	

Fuente: Elaboración propia.

Figura N° 17 Nivel Bajo (5L). Fuente: Shahin, M. Y., 2005, p.363.

Figura N° 18 Nivel Medio (5M). Fuente: Shahin, M. Y., 2005, p.363.

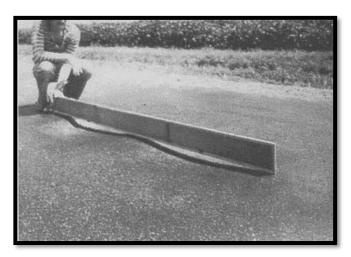


Figura N $^{\circ}$ 19 Nivel Alto (5H). Fuente: Shahin, M. Y., 2005, p.363.

Depresión (*Depression*): Se manifiestan como suaves desniveles por debajo de la cota de la rasante en áreas focalizadas, se les conoce coloquialmente como ducha de aves (*Bird Bath*). Se presentan a causa del asentamiento de la capa sub-rasante o por un mal proceso constructivo, lo que puede que, la película de agua que se acumula por una lluvia, provoque que un neumático se deslice sobre ella (Shahin, M. Y., 2005, p.364).

Tabla N° 12 Niveles de Severidad para Depresión.

Severidad	Cód.	Descripción	Reparación
Bajo (Low)	L	Medida entre los 13mm y 25mm de profundidad.	-
Medio (Medium)	M	Medida entre los 25mm y 51mm de profundidad.	a. Reparación con parche superficial, medio o profundo.
Alto (High)	Н	Medida de profundidad mayor a los 51mm.	a. Reparación con parche superficial, medio o profundo.
Unidad de Medida		$[\mathbf{m}^2] / [ft^2]$	

Figura N° 20 Nivel Bajo (6L). Fuente: Elaboración propia.

Figura N° 21 Nivel Medio (6M). Fuente: Elaboración propia.

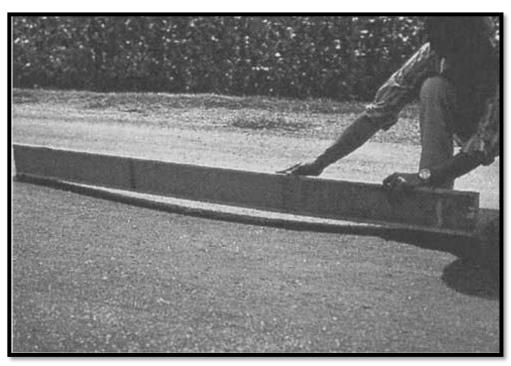


Figura N° 22 Nivel Alto (6H). Fuente: Shahin, M. Y., 2005, p.365.

Grietas de Borde (Edge Cracking): Se presentan como grietas longitudinales y paralelas al borde, que suelen ubicarse entre en la zona central de la berma. Su origen radica en el debilitamiento de la capa base o de la capa subrasante, en el área exterior de la calzada, y se intensifica por la carga vehicular presente. Puede presentar cierto nivel de desprendimiento de la capa de rodadura (Shahin, M. Y., 2005, p.366).

Tabla N° 13 Niveles de Severidad para Grietas de Borde.

Severidad	Cód.	Descripción		Reparación
Bajo (Low)	L	Presenta grietas leves, sin descascaramiento de los bordes de estas.		Solo para grietas con más de 3mm de ancho, se recomienda tratamiento con sello.
Medio (Medium)	M	Presenta grietas medianas con algo de descascaramiento de los bordes de estas.		Tratamiento con sello asfáltico. Colocación de Parche de forma media o profunda.
Alto (High)	Н	Presenta grietas mayores, con descascaramiento a lo largo de estas.		Colocación de Parche de forma media o profunda.
Unidad de Medida [m] / [ft]				

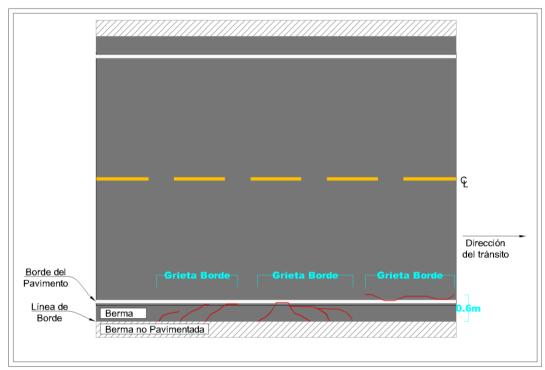
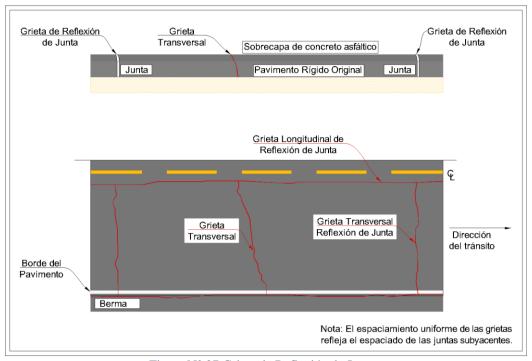


Figura N° 23 Grietas de Borde. Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.6.

Figura N° 24 Nivel Bajo (7L). Fuente: Elaboración propia.

Figura N° 25 Nivel Medio (7M). Fuente: Elaboración propia.


Figura N° 26 Nivel Alto (7H). Fuente: Shahin, M. Y., 2005, p.367.

Grieta de Reflexión de Junta (Joint Reflection Cracking): Estas grietas se manifiestan exclusivamente en pavimentos con carpeta asfáltica sobre losa de concreto, y excluyen aquellas en pavimentos con clasificación de capa base distinta al cemento portland. Su origen radica en el desplazamiento o movimiento de la capa base causado por temperatura o humedad bajo la superficie de concreto asfáltico, por lo que se entiende que la causa principal del deterioro es el clima, por otro lado, es la carga vehicular la que causa la rotura por el debilitamiento del concreto (Shahin, M. Y., 2005, p.368).

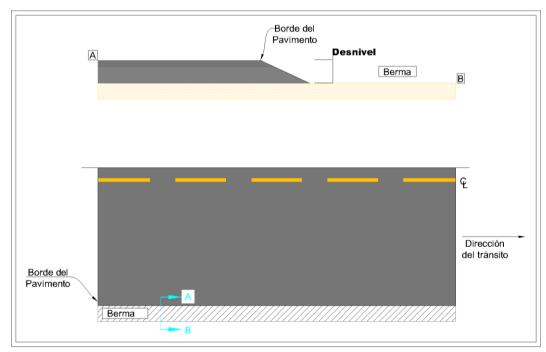
Tabla N° 14 Niveles de Severidad para Grietas de Reflexión de Juntas

Severidad	Cód.	Descripción		Reparación
Bajo (Low)	L	Grieta menor a 10mm de ancho sin relleno / de cualquier ancho con relleno.	a.	Tratamiento con sello asfáltico para grietas mayores a 3mm de ancho.
Medio (Medium)	M	Grieta de 10mm a 76mm de ancho sin relleno / grieta menor a 76mm de ancho sin relleno / de cualquier ancho con relleno.		Tratamiento con sello asfáltico. Colocación de Parche de profundidad media.
Alto (High)	Н	Grieta rellena o no, de alta o media severidad / Grietas mayores a 76mm de ancho sin relleno / Agrietamiento severo de ancho variable.	b.	Colocación de Parche de profundidad media. Se recomienda reconstruir la junta afectada.
Unidad de Medida		[m] / [fi	<i>t</i>]	

 $Figura\ N^{\circ}\ 27\ Grieta\ de\ Reflexión\ de\ Juntas.$ Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.10.

Figura N° 28 Nivel Bajo (8L). Fuente: Shahin, M. Y., 2005, p.369.

Figura N° 29 Nivel Medio (8M). Fuente: Shahin, M. Y., 2005, p.369.


Figura N $^{\circ}$ 30 Nivel Alto (8H). Fuente: Shahin, M. Y., 2005, p.369.

Desnivel Carril / **Berma** (*Lane* / *Shoulder Drop Off*): Se manifiesta como un desnivel en el borde entre la berma y la calzada. Las causas que la provocan son la posible erosión de las capas inferiores a la berma o el asentamiento de estas, también lo provocan procesos constructivos que omiten la nivelación de la berma y que afectan al confinamiento del pavimento y a la circulación segura de los vehículos (Shahin, M. Y., 2005, p.370).

Tabla N° 15 Niveles de Severidad para Desnivel Carril / Berma.

Severidad	Cód.	Descripción		Reparación
Bajo (Low)	L	El desnivel oscila entre los 25mm y 51mm.	a.	Procedimiento de nivelación de bermas.
Medio (Medium)	M	El desnivel oscila entre los 51mm y 102mm.	a.	Procedimiento de nivelación de bermas.
Alto (High)	Н	El desnivel es mayor a los 102mm.	a.	Procedimiento de nivelación de bermas.
Unidad de Medida		[m]/	[ft]	

 $\label{eq:figura} Figura~N^\circ~31~Desnivel~Carril~/~Berma.$ Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.30.

 $\label{eq:figura} Figura~N^\circ~32~Nivel~Bajo~(9L).$ Fuente: FHWA-HRT-13-092,2014, p.30.

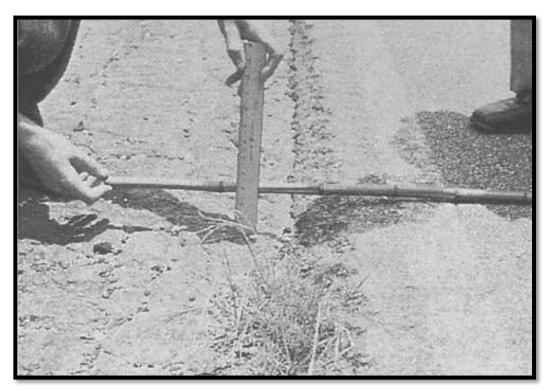


Figura N° 33 Nivel Medio (9M). Fuente: Shahin, M. Y., 2005, p.371.

Figura N° 34 Nivel Alto (9H). Fuente: Elaboración propia.

Grietas Longitudinales y Transversales (Longitudinal & Transversal Cracking):

Las grietas longitudinales se manifiestan de forma paralela al sentido vehicular, entre las posibles causas tenemos: una junta débil debido al mal proceso constructivo; temperaturas que facilitan el endurecimiento de la superficie asfáltica sumado a la carga vehicular; agrietamientos en las capas inferiores que se manifiestan en la superficie como grietas de reflexión (que no son en juntas).

Por otro lado, las grietas transversales son perpendiculares al eje de la vía o de forma diagonal, estas no se las asocia con las cargas vehiculares (Shahin, M. Y., 2005, p.372).

Tabla N° 16 Niveles de Severidad para Grietas Longitudinales y Transversales.

Severidad	Cód.	Descripción		Reparación
Bajo (Low)	L	Grieta menor a 10mm de ancho sin relleno / de cualquier ancho con relleno.	a.	Tratamiento con sello asfáltico para grietas mayores a 3mm de ancho.
Medio (Medium)	M	Grieta de 10mm a 76mm de ancho sin relleno / grieta menor a 76mm de ancho sin relleno / de cualquier ancho con relleno.		Tratamiento con sello asfáltico.
Alto (High)	Н	Grieta rellena o no, de alta o media severidad / Grietas mayores a 76mm de ancho sin relleno / Agrietamiento severo de ancho variable.	a.	Tratamiento con sello asfáltico. Colocación de Parche de profundidad media.
Unidad de Med	ida	[m] / [fi	t]	

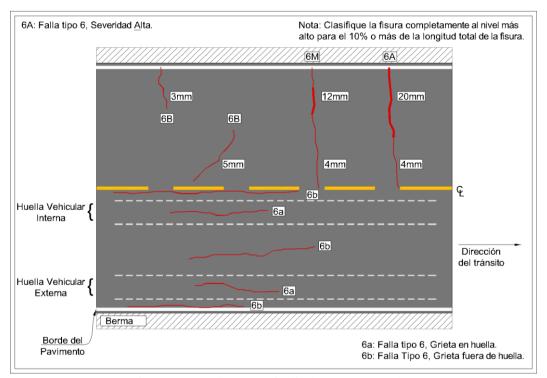


Figura N° 35 Grietas Longitudinales y Transversales. Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.08 y p.12.

Figura N° 36 Nivel Bajo (10L). Fuente: Elaboración propia.

Figura N° 37 Nivel Medio (10M). Fuente: Elaboración propia.

Figura N° 38 Nivel Alto (10H). Fuente: Elaboración propia.

Parcheo y Acometidas de Servicios (*Patching & Utility Patching*): Zona expuesta a aun tratamiento constructivo para reemplazar el pavimento existente por uno nuevo o revitalizado, al margen de su comportamiento o estética, estas zonas afectadas son consideradas fallas o deterioros. Las razones más comunes son las reparaciones a fallas encontradas en el pavimento con el fin de mejorar su serviciabilidad o la instalación de servicios básicos (Shahin, M. Y., 2005, p.374).

Tabla N° 17 Niveles de Severidad para Parcheo y Acometidas de Servicio.

Severidad	Cód.	Descripción	Reparación
Bajo (Low)	L	Dan como resultado una baja severidad en calidad de transido.	-
Medio (Medium)	M	Dan como resultado media severidad en calidad de transido.	a. –b. Se recomienda sustituir el material de la zona parchada.
Alto (High)	Н	Dan como resultado una alta severidad en calidad de transido.	a. Se recomienda sustituir el material de la zona parchada.
Unidad de Medida [m²		[m ²] /	[ft ²]

Fuente: Elaboración propia.

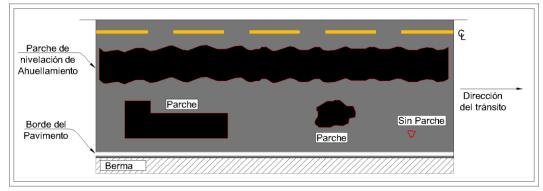


Figura N° 39 Parcheo y Acometidas de Servicio. Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.16.

Figura N° 40 Nivel Bajo (11L). Fuente: Elaboración propia.

Figura N° 41 Nivel Medio (11M). Fuente: Elaboración propia.

Figura N° 42 Nivel Alto (11H). Fuente: Elaboración propia.

Pulimento de Agregados (*Polished Aggregates*): Se manifiesta cuando la superficie analizada es suave al tacto por la baja densidad de agregado, la cual se expone al desgaste por la carga vehicular, resultando finalmente en la reducción del índice de rugosidad lo que se traduce finalmente en poco agarre de la superficie con los neumáticos (Shahin, M. Y., 2005, p.376).

Tabla N° 18 Niveles de Severidad para Pulimento de agregados.

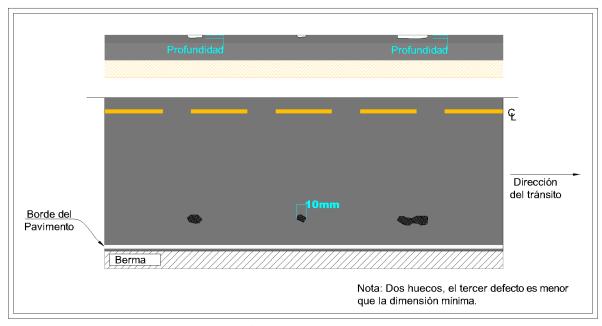
Severidad	Cód.	Descripción	Reparación
No aplica	•	Sin niveles de severidad, pero solo puede considerarse si el pulimento es significativo.	 a. – b. Se aplica tratamiento leve. c. Colocación de Sobrecarpeta. d. Retiro de carpeta por fresado e instalación de Sobrecarpeta.
Unidad de Medi	ida	[m ²]/	[ft ²]

Figura N° 43 Pulimento de Agregados. Fuentes: Elaboración propia.

 $\begin{array}{c} \mbox{Figura N}^{\circ} \mbox{ 44 Pulimento de Agregados.} \\ \mbox{Fuente: Shahin M. Y., 2005, p.377.} \end{array}$

Huecos (*Potholes*): Se muestran como depresiones acompañadas de desprendimientos de la carpeta asfáltica debido a las cargas vehiculares constantes, antes de ser catalogadas como tales estas son conocidas como piel de cocodrilo con un alto nivel de deterioro. En este tipo de deterioros o daños, una variable que juega a favor del detrimento del pavimento es el agua acumulada dentro de ellas. Las causas de este tipo de desintegración del pavimento radican en la mezcla pobre en la carpeta asfáltica y en posibles zonas debilitadas de la capa base o capa subrasante, por lo tanto, los huecos se asocian a problemas estructurales (Shahin, M. Y., 2005, p.378).

Tabla N° 19 Niveles de Severidad para Huecos.


Severidad	Cód.	Descripción	Reparación
Bajo (Low)	L	Severidad de acuerdo al cuadro.	a. Tratamiento con parches parciales o profundos.
Medio (Medium)	M	Severidad de acuerdo al cuadro.	a. Tratamiento con parches parciales o profundos.
Alto (High)	Н	Severidad de acuerdo al cuadro.	a. Tratamiento con parches profundos.
Unidad de Medida [m²] / [ft²]		t ²]	

Fuente: Elaboración propia.

Tabla N° 20 Niveles de Severidad para Huecos.

Profundidad Máxima del Hueco	Diámetro promedio (mm)			
Frotundidad Maxima dei Flueco	100 a 200 mm	200 a 450 mm	450 a 750 mm	
13 a 25 mm	L	L	M	
> 25 a 50 mm	L	M	Н	
> 50 mm	M	Н	Н	

Fuente: Shahin M. Y., 2005, p.378.

 $Figura\ N^{\circ}\ 45\ Huecos.$ Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.18.

Figura N° 46 Nivel Bajo (13L). Fuente: Elaboración propia.

Figura N° 47 Nivel Medio (13M). Fuente: Elaboración propia.

Figura N° 48 Nivel Alto (13H). Fuente: Elaboración propia.

Cruce de Vía Férrea (*Railroad Crossing*): Se manifiestan con desniveles en áreas muy cercanas a los rieles, sin embargo, solo lo consideraremos si se ve afectada de forma considerable la calidad de tránsito vehicular (Shahin, M. Y., 2005, p.380).

Tabla N° 21 Niveles de Severidad para Cruce de Vía Férrea.

Severidad	Cód.	Descripción	Reparación	
Bajo (Low)	L	Dan como resultado una baja severidad en calidad de transido.	-	
Medio (Medium)	M	Dan como resultado media severidad en calidad de transido.	 a. Tratamiento con parches en aproximaciones. b. Tratamiento reconstructivo de las zonas de cruce. 	
Alto (High)	Н	Dan como resultado una alta severidad en calidad de transido.	 a. Tratamiento con parches en aproximaciones. b. Tratamiento reconstructivo de las zonas de cruce. 	
Unidad de Medida [m²] / [ft²]		$[ft^2]$		

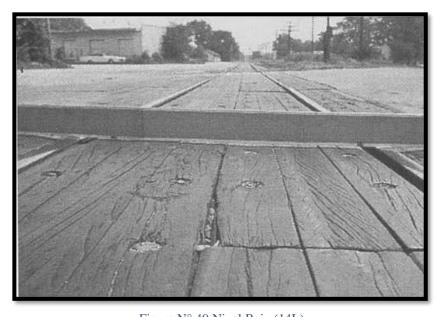


Figura N° 49 Nivel Bajo (14L). Fuente: Shahin, M. Y., 2005, p.381.

 $\label{eq:figura_N^o 50 Nivel Medio (14M).} Fuente: Shahin, M. Y., 2005, p.381.$

 $\label{eq:figura_N^o_51 Nivel Alto (14H).} Fuente: Shahin, M. Y., 2005, p.381.$

Ahuellamiento (*Rutting*): Marcaran principalmente las huellas debido a la carga vehicular, con un desnivel que recorre en forma paralela al eje de la vía, también podría presentarse un levantamiento a los lados del deterioro. Estas son provocadas por la carga vehicular y el movimiento lateral provocado podría causar fallas estructurales muy importantes para el pavimento (Shahin, M. Y., 2005, p.382).

Tabla N° 22 Niveles de Severidad para Ahuellamiento.

Severidad	Cód.	Descripción	Reparación
Bajo (Low)	L	Profundidad media entre los 6mm y 13mm.	 a. – b. Tratamiento con fresado y colocación de Sobrecarpeta asfáltica.
Medio (Medium)	M	Profundidad media entre los 13mm y 25mm.	 a. Tratamiento con parches superficiales a profundos. b. Tratamiento con fresado y colocación de Sobrecarpeta asfáltica.
Alto (High)	Н	Profundidad media mayor a los 25mm.	 a. Tratamiento con parches superficiales a profundos. b. Tratamiento con fresado y colocación de Sobrecarpeta asfáltica.
Unidad de Med	ida	$[m^2]/[ft^2]$	

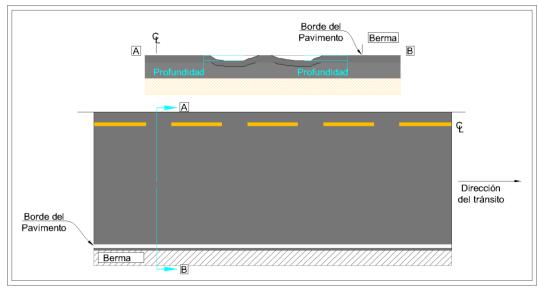


Figura N° 52 Ahuellamiento. Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.22.

Figura N° 53 Nivel Bajo (15L). Fuente: Elaboración propia.

Figura N° 54 Nivel Medio (15M). Fuente: Elaboración propia.

 $\begin{array}{c} Figura~N^{\circ}~55~Nivel~Alto~(15H).\\ Fuente:~Elaboración~propia. \end{array}$

Desplazamiento (*Shoving*): Ubicadas en áreas focalizadas donde la superficie sufre un desplazamiento longitudinal, causado por el empuje contra el pavimento y las cargas vehiculares a las que se le expone. Es común determinar que el origen del daño lo provocan las mezclas inestables de asfalto colocadas (Shahin, M. Y., 2005, p.384).

Tabla N° 23 Niveles de Severidad para Desplazamiento.

Severidad	Cód.	Descripción	Reparación
Bajo (Low)	L	Dan como resultado una baja severidad en calidad de transido.	
Medio (Medium)	M	Dan como resultado media severidad en calidad de transido.	************************************
Alto (High)	Н	Dan como resultado una alta severidad en calidad de transido.	a. Fresado.b. Tratamiento con parche de forma leve o profunda.
Unidad de Med	ida	[m ²] / [fi	<i>t</i> ²]

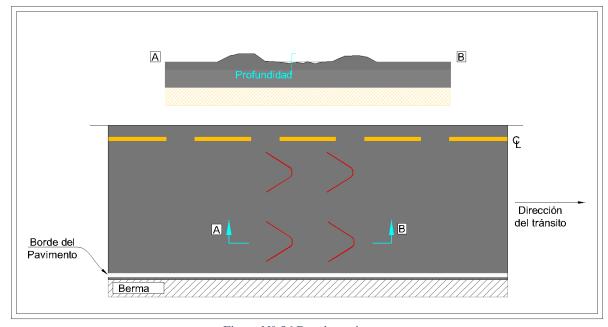


Figura N° 56 Desplazamiento. Fuente: Redibujado de FHWA-HRT-13-092, 2014, p.23.

Figura N° 57 Nivel Bajo (16L). Fuente: Shahin, M. Y., 2005, p.385.

Figura N° 58 Nivel Medio (16M). Fuente: Shahin, M. Y., 2005, p.385.

Figura N° 59 Nivel Alto (16H). Fuente: Shahin, M. Y., 2005, p.385.

Grietas Parabólicas o por Desplazamiento (*Slippage Cracking*): Se manifiesta como grietas que se dibujan una tras otra en forma de media-luna. Producidas principalmente por la fricción generada en el frenado de los vehículos provocando una deformación en la capa de rodadura. La falla la origina la baja resistencia de la mezcla o en su defecto la pobre cantidad de material ligante entre la capa superficial y la capa base, o combinación de ambas. Cabe recalcar que no se le asocia con inestabilidades geotécnicas (Shahin, M. Y., 2005, p.386).

Tabla N° 24 Niveles de Severidad para Grietas Parabólicas o Por Desplazamiento.

Severidad	Cód.	Descripción		Reparación
Bajo (Low)	L	Presentan grietas con anchos medios menores a 10mm.	a. b.	Tratamiento con parche leve o parcial.
Medio (Medium)	M	Presentan grietas con anchos medios entre 10mm a 38mm, con fracturas circundantes y abultamientos.		Tratamiento con parche leve o parcial.
Alto (High)	Н	Presenta grietas con anchos medios mayores a 38mm y el área circundante tiene fracturas importantes y desprendimientos de la carpeta asfáltica.		Tratamiento con parche leve o parcial.
Unidad de Medida		$[\mathbf{m}^2]$ / $[ft^2]$		



Figura N $^{\circ}$ 60 Nivel Bajo (17L). Fuente: Shahin, M. Y., 2005, p.387.

Figura N° 61 Nivel Medio (17M). Fuente: Shahin, M. Y., 2005, p.387.

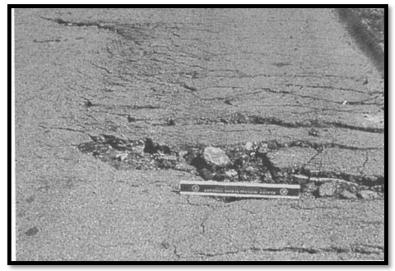


Figura N $^{\circ}$ 62 Nivel Alto (17H). Fuente: Shahin, M. Y., 2005, p.387.

Hinchamiento (*Swell*): Se manifiesta como un pandeo suave y gradual, por encima de la cota de la rasante, tiene una envergadura mínima de 3.00m y puede o no presentar agrietamientos. La principal causa de este fallo se origina en la capa subrasante debido al congelamiento de ésta, por otro lado, si el suelo es expansivo también podría provocarlo (Shahin, M. Y., 2005, p.388).

Tabla N° 25 Niveles de Severidad para Hinchamiento.

Severidad	Cód.	Descripción	Reparación
Bajo (Low)	L	Dan como resultado una baja severidad en calidad de transido.	-
Medio (Medium)	M	Dan como resultado media severidad en calidad de transido.	
Alto (High)	Н	Dan como resultado una alta severidad en calidad de transido.	a. Tratamiento reconstructivo de la zona afectada.
Unidad de Medida		[m ²] / [fi	ℓ^2]

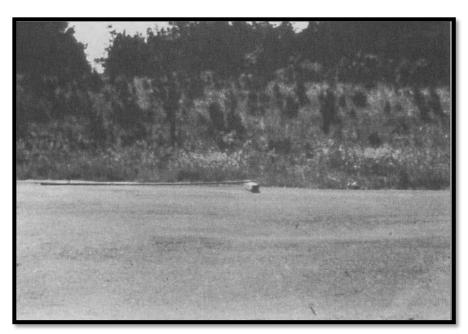


Figura N° 63 Hinchamiento. Fuente: Shahin, M. Y., 2005, p.389.

Desprendimiento de Agregados (*Raveling*): Es la pérdida o detrimento de cantidad de agregado grueso en la capa superficial, debido a la baja relación de ligante asfáltico en la capa de rodadura, calidad reducida de la mezcla asfáltica, bajo nivel de homogeneidad, insuficiente compactación en el proceso constructivo o altos niveles de humedad en la mezcla asfáltica (*stripping*) (FHWA-HRT-13-092, 2014, p.28.).

Tabla № 26 Niveles de Severidad para Desprendimiento de Agregados.

Severidad	Cód.	Descripción	Reparación			
Bajo (Low)	L	Bajo número de grupo de agregados en 1.00m2 analizado.	a. – b. Tratamiento con sellamiento leve en superficie.			
Medio (Medium)	M	Pérdida de al menos 20 grupos de agregado en 1.00m2 analizado.	 a. Tratamiento con sellamiento leve en superficie. b. Sobrecarpeta. 			
Alto (High)	Н	Presenta una superficie con agujeros casi desprovista de agregados.	 a. Tratamiento con sellamiento leve en superficie. b. Sobrecarpeta. c. Reciclamiento y Tratamiento reconstructivo. 			
Unidad de Med	ida	[m ²] / [ft²]			

Figura N° 64 Nivel Bajo (19L). Fuente: FHWA-HRT-13-092, 2014, p.28.

 $\label{eq:figura_N^o 65 Nivel Medio (19M).} Fuente: FHWA-HRT-13-092, 2014, p.28.$

Figura N° 66 Nivel Alto (19H). Fuente: FHWA-HRT-13-092, 2014, p.28.

Meteorización (*Weathering*): Es la pérdida del agregado fino en la mezcla asfáltica y al detrimento del ligante en la superficie de ésta. Las causas principales se deben al clima, sobre todo en lugares con altos niveles de radiación solar. Otros motivos radican por ejemplo en: una inadecuada compactación de la capa rasante en el proceso constructivo, contenido insuficiente de asfalto en la mezcla o excesivo uso de agregado fino (ASTM D6433-18, 2018, p.23).

Tabla N° 27 Niveles de Severidad para Meteorización.

Severidad	Cód.	Descripción	Reparación	
Bajo (<i>Low</i>)	L	Presenta características de pavimento envejecido: color desvanecido, superficie sin agregado fino, se descubre cada vez más al agregado grueso hasta 1mm; todo empeorado por el clima.	a. – b. Tratamiento o sellamiento levemente superficie.	con en
Medio (Medium)	M	Se aprecia aún más el detrimento del agregado fino, dejando al descubierto el agregado grueso hasta una cuarta parta del mismo.	a. Tratamiento o sellamiento levemente superficie.b. Sobrecarpeta.	en
Alto (High)	Н	Se aprecia un detrimento considerable del agregado fino y se expone más de la carta parte del agregado grueso.	 a. Tratamiento o sellamiento levemente superficie. b. Sobrecarpeta. c. Reciclamiento Tratamiento reconstructivo. 	en y
Unidad de Med	ida	$[\mathbf{m}^2]$ / $[ft^2]$		

Figura N° 67 Nivel Bajo (20L). Fuente: Elaboración propia.

Figura N° 68 Nivel Medio (20M). Fuente: Elaboración propia.

 $\label{eq:figura_N^o 69 Nivel Alto (20H).} Fuente: ASTM D6433-18, 2018, p.24.$

III. METODOLOGÍA

3.1. Tipo y diseño de investigación.

Enfoque de Investigación.

El enfoque adoptado por la presente investigación es cuantitativo, debido a que se representa por un proceso secuencial, sin saltarse ninguna etapa y probatorio (Hernandez Sampieri, Fernández Collado, Baptista Lucio, 2014, p.4)

Tipo de Investigación.

El tipo de investigación es aplicada, debido a que tiene como objetivo resolver un delimitado problema, el cual debemos conocer el estado de preservación de la vía y describe los hechos que hemos observado (Leguía, P. B. y Pacheco, H.P. 2016).

Diseño de Investigación.

La presente investigación es no experimental debido a que no existe una manipulación deliberada de la variable independiente, es decir solo se observan los fenómenos para analizarlos (Hernandez Sampieri *et al*, 2014, p.154).

Nivel de Investigación.

Esta investigación es transeccional descriptivo, debido a que se investigan sobre los niveles de deterioros de las fallas localizadas en la zona de estudio (Hernández Samperio *et al*, 2014, p.155).

3.2. Variables y operacionalización.

Variable Independiente

• Evaluación de superficie de rodadura.

Variable dependiente

Mejorar transitabilidad de la carretera PE-5N.

La matriz de operacionalización se presenta en el anexo 02 del presente documento.

3.3. Población (criterios de selección), muestra, muestreo y unidad de análisis.

Población.

La población para este trabajo de tesis estuvo dada por los carriles derecho e izquierdo (ida y vuelta), de la carretera PE-5N, desde la progresiva 355+000 hasta el 365+000 tramo San Alejandro hasta Alto Shiringal, Distrito de Irazola, Provincia de Padre Abad, Departamento de Ucayali, lo que constituye 10 km de pavimento flexible, sin tomar en cuenta los accesos y/o carreteras transversales a esta.

Muestra.

La metodología PCI nos requirió establecer las Unidades de Muestra (UM), las cuales están inscritas en las Secciones, éstas a su vez se encuentran dentro del tramo comprendido para el estudio, tanto en el lado derecho como en el izquierdo. Las UM solo podrán tener un área en el rango de 225 ± 90 m².

Muestreo.

De acuerdo al nivel de detalle requerido se hizo una inspección en el nivel de red, lo que quiere decir que se requería información para calificar de forma general la vía e identificar trabajos específicos. Además, la cantidad de UM analizadas fueron representativas, para este trabajo se seleccionaron 5 Secciones de 1 km cada una y todas las UM de cada Sección, por lo que nos da un total del 50% de todas las UM en el tramo.

Tabla N° 28 Localización de Secciones y conteo de unidades de muestreo.

PROGRESIVA	SECCION	COORDENADA HITO	CANTIDAD UM	TRAMO	
255 000		E: 474,617		GAN ALEKANDRO	
355+000	NTO 1	N: 9,024,279	LADO IZQ= 20 UM	SAN ALEJANDRO	
27.000	N° 1	E: 473,986	LADO DER= 20 UM		
356+000		N: 9,023,793			
256+000		E: 473,986		1	
356+000		N: 9,023,793			
277 000	-	E: 473,118	-		
357+000		N: 9,023,501			
2 000		E: 473,118		1	
357+000	N10 2	N: 9,023,501	LADO IZQ= 20 UM		
250,000	N° 2	E: 472,392	LADO DER= 20 UM		
358+000		N: 9,023,006			
250.000		E: 472,392			
358+000		N: 9,023,006			
250,000	-	E: 471,856	1 -		
359+000		N: 9,022,329			
250 000		E: 471,856		1	
359+000		N: 9,022,329	LADO IZQ= 20 UM		
260,000	N° 3	E: 470,974	LADO DER= 20 UM		
360+000		N: 9,021,907			
250,000		E: 470,974		1	
360+000		N: 9,021,907			
251 000	-	E: 470,974	-		
361+000		N: 9,021,907			
261 000		E: 470,974			
361+000	270.4	N: 9,021,907	LADO IZQ= 20 UM		
262 000	N° 4	E: 469,117	LADO DER= 20 UM		
362+000		N: 9,021,669			
262 000		E: 469,117		1	
362+000		N: 9,021,669			
262,000	-	E: 468,325	1 -		
363+000		N: 9,021,136			
252 000		E: 468,325		1	
363+000	NIO F	N: 9,021,136	LADO IZQ= 20 UM		
264 000	N° 5	E: 467,626	LADO DER= 20 UM		
364+000		N: 9,020,755			
264,000		E: 467,626			
364+000		N: 9,020,755			
265,000	-	E: 467,237		ALTO CHIDING AL	
365+000		N: 9,019,923		ALTO SHIRINGAL	

Fuente: Elaboración propia.

Unidad de análisis.

Las dimensiones de las UM para la presente investigación son: Largo de 50.0 m. y ancho de 4.5 m. (3.3 m de calzada y 1.2 m. de berma lateral).

3.4. Técnicas e instrumentos de recolección de datos.

Técnicas.

Para el desarrollo de esta tesis se utilizó la técnica de la observación o auscultación, que permite la identificación, conteo y calificación de las severidades, de las fallas o deterioros presentes en la capa de rodadura. Finalmente se obtendrá la calificación o condición operacional de la vía y de acuerdo a ello se preparan las mejoras con las que se intervendrá la vía.

Instrumentos.

Los instrumentos utilizados para la observación fueron:

- Manual de fallas detalladas por el ASTM D-6433 18.
- Formato de recolección de datos (ver anexo 05).
- Wincha.
- Perfil rectangular de aluminio de 2m de largo.
- GPS, Marca: GARMIN, Modelo: Etrex-20.

Validación del instrumento.

Se refiere al grado de veracidad que tiene todo instrumento al medir la variable involucrada en el estudio (Hernandez Sampieri *et al*, 2014, p.200). Para el presente estudio la validación del instrumento utilizado en campo, se basó en el juicio de expertos. Cabe recalcar que el instrumento en cuestión nace de la norma ASTM D6433.

Tabla N° 29 *Participantes del Juicio de Expertos.*

Ingenieros	Código CIP
Jose Castillo Rivadeneyra	29702
Victor Guillermo Prieto Castillo	47898
Victor David Salvatierra Cordova	70101

Confiabilidad del instrumento.

Se refiere al grado en que la aplicación repetida de la medición al mismo objeto de estudio, obtiene resultados iguales (Hernandez Sampieri *et al*, 2014, p.200). Cabe recalcar que el instrumento en cuestión nace de la norma ASTM D6433.

Los formularios de juicio de expertos completados se detallan en el anexo 6 de la presente investigación.

3.5. Procedimientos.

En la figura N° 70, se detallan los pasos que se siguieron para las evaluaciones del PCI de cada sección, con la finalidad de obtener los resultados de la condición del pavimento en el tramo analizado.

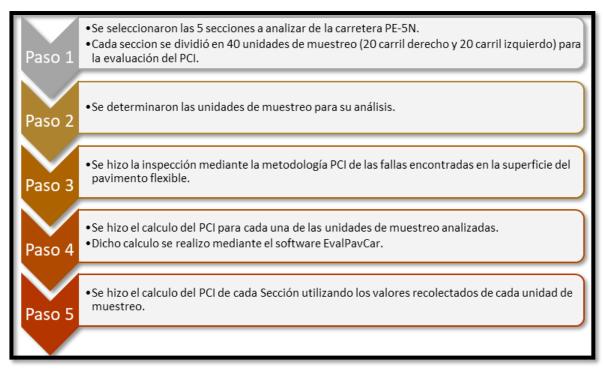


Figura Nº 70 Secuencia de pasos para la evaluación, según metodología PCI. Fuente: Elaboración propia.

3.6. Método de análisis de datos.

El procesamiento de los datos para el inventario de fallas, se dividió en dos etapas detalladas a continuación.

Procesamiento y análisis de datos en campo.

Los datos recolectados en la auscultación de la carretera se analizaron en cada unidad de muestreo, se utilizó el formato para su registro, se detallaron según el tipo de falla y su severidad y tomaron las medidas.

Procesamiento y análisis de datos en gabinete.

Cada registro de unidad de muestreo, en la que se detallaban los datos de las fallas encontradas, se registró en el software EvalPavCar para su análisis y cálculo del PCI.

A su vez se obtuvieron los índices para cada Sección.

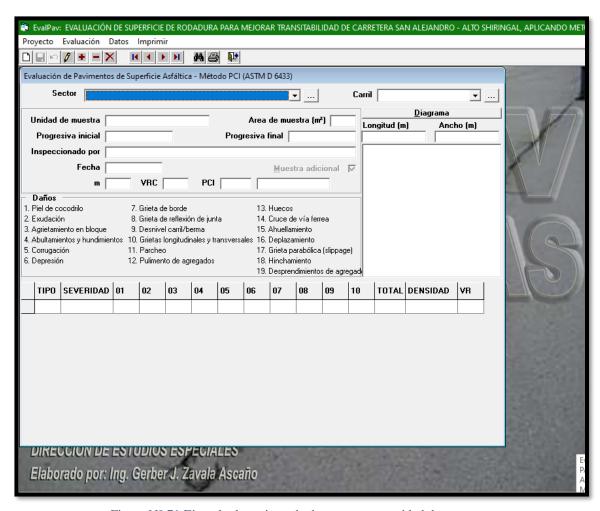


Figura N° 71 Ejemplo de registro de datos para una unidad de muestreo. Fuente: Software EvalPavCar.

3.7. Aspectos éticos.

Los investigadores han respetado los principios y veracidad que están establecidos por la Universidad Cesar Vallejo, lo cual, en primer lugar, salvaguarda las propiedades intelectuales de los autores, respecto a los conocimientos y teorías, indicando donde se encuentran referenciadas en la bibliografía y citando adecuadamente, dando credibilidad a los datos obtenidos y procesados con transparencia, de manera que la información obtenida por los investigadores deba ser confiable.

IV. RESULTADOS.

Luego de haber aplicado la metodología del PCI, se presentaron las fallas encontradas en campo y sus posibles alternativas de reparación, con la finalidad última de determinar el actual estado de la vía y conocer un adecuado tratamiento para mejorar la transitabilidad de la carretera estudiada.

La presentación de los resultados seguirá el orden de los objetivos de la presente investigación. Inicialmente se resumen las fallas encontradas en las secciones analizadas y sus frecuencias. Posteriormente se dan a conocer los índices PCI de las unidades de muestreo y las secciones, en las gráficas analizamos las unidades de muestreo incluyendo las fallas no catalogadas, debido a su alta influencia en la transitabilidad de la carretera. Finalmente, se proponen diferentes alternativas de intervención necesarias para mejorar el nivel de servicio de la carretera en el tramo estudiado.

Fallas y niveles de severidad encontrados.

Como se puede observar en la tabla N° 30, se identificaron las fallas existen en la carretera PE-5N, se detallaron los metrados según su unidad de medida correspondiente a cada falla, mientras que en el gráfico N° 72 se presentaron las frecuencias de las fallas como porcentajes (incidencias). Los 311 registros de fallas representan el resultado del análisis de las 5 secciones analizadas o 5km, divididos en unidades de muestreo de 225.0 m2.

Tabla N° 30 Metrado de fallas encontradas.

	Tabla de Tipos de Fallas en Pavimentos Flexibles							
N°	Nombre de la falla o deterioro	Distress name	Unidad de Medida	Metrado	Frecuencia	Porcentaje		
01	Piel de Cocodrilo	Alligator Cracking	$[m^2]$	845.10	128.00	41.16%		
02	Exudación	Bleeding	$[m^2]$	0.00	0.00	0.00%		
03	Agrietamiento en Bloque	Block Cracking	$[m^2]$	285.20	21.00	6.75%		
04	Abultamientos y Hundimientos	Bumps and Sags	[m]	339.00	7.00	2.25%		
05	Corrugación	Corrugation	$[m^2]$	0.00	0.00	0.00%		
06	Depresión	Depression	$[m^2]$	0.00	0.00	0.00%		
07	Grietas de Borde	Edge Cracking	[m]	24.50	6.00	1.93%		
08	Grieta de Reflexión de Junta	Joint Reflection Cracking	[m]	0.00	0.00	0.00%		
09	Desnivel Carril / Berma	Lane / Shoulder Drop Off	[m]	5.00	1.00	0.32%		
10	Grietas Longitudinales y Transversales	Longitudinal & Transversal Cracking	[m]	383.00	107.00	34.41%		
11	Parcheo y Acometidas de Servicios	Patching & Utility Patching	$[m^2]$	42.20	4.00	1.29%		
12	Pulimento de Agregados	Polished Agregates	$[m^2]$	0.00	0.00	0.00%		
13	Huecos	Potholes	$[m^2]$	1.90	14.00	4.50%		
14	Cruce de Vía Férrea	Railroad Crossing	$[m^2]$	0.00	0.00	0.00%		
15	Ahuellamiento	Rutting	$[m^2]$	437.50	11.00	3.54%		
16	Desplazamiento	Shoving	$[m^2]$	0.00	0.00	0.00%		
17	Grietas Parabólicas o por Desplazamiento	Slippage Cracking	$[m^2]$	6.50	2.00	0.64%		
18	Hinchamiento	Swell	$[m^2]$	0.00	0.00	0.00%		
19	Desprendimiento de Agregados	Raveling	$[m^2]$	0.00	0.00	0.00%		
20	Meteorización	Weathering	$[m^2]$	15.60	10.00	3.22%		

Fuente: Elaboración propia.

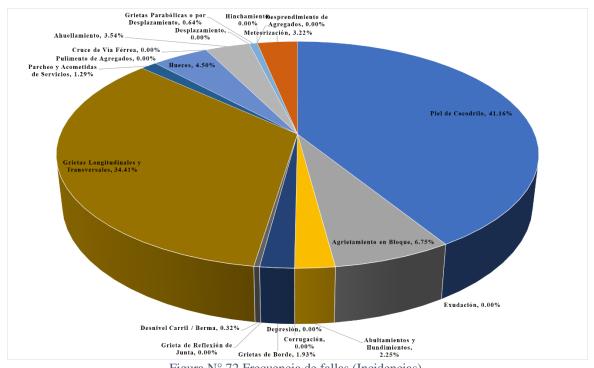


Figura N° 72 Frecuencia de fallas (Incidencias).

En la tabla N° 31 se detallaron las fallas encontradas en el carril derecho (Ida) con sus frecuencias de aparición e incidencias. En la figura N° 73 se representaron de forma gráfica las fallas encontradas en el carril estudiado.

Tabla N° 31 Tabla de fallas encontradas - Carril Derecho

N°	Nombre de la falla o deterioro	Frecuencia	Incidencia
01	Piel de Cocodrilo	60	37.04%
03	Agrietamiento en Bloque	11	6.79%
04	Abultamientos y Hundimientos	06	3.70%
07	Grietas de Borde	03	1.85%
09	Desnivel Carril / Berma	01	0.62%
10	Grietas Longitudinales y Transversales	62	38.27%
11	Parcheo y Acometidas de Servicios	01	0.62%
13	Huecos	05	3.09%
15	Ahuellamiento	06	3.70%
20	Meteorización	07	4.32%

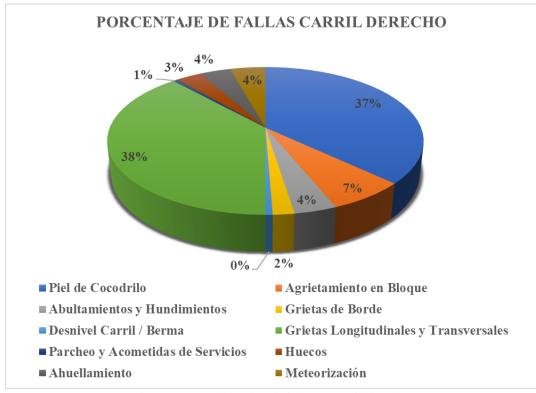


Figura N° 73 Incidencias de fallas en carril derecho. Fuente: Elaboración propia.

Asimismo, se presentaron la tabla N° 32 y la figura N° 74 con los resultados de acuerdo al nivel de severidad y sus frecuencias e incidencias en el carril derecho (Ida).

Tabla N° 32 Fallas encontradas por Niveles de Severidad en carril derecho.

N°	Nombre de la falla o deterioro	Bajo (L)	Medio (M)	Alto (H)	Bajo (L)	Medio (M)	Alto (H)
01	Piel de Cocodrilo	50	10	0	83.3%	16.7%	0.0%
03	Agrietamiento en Bloque	5	6	0	45.5%	54.5%	0.0%
04	Abultamientos y Hundimientos	1	4	1	16.7%	66.7%	16.7%
07	Grietas de Borde	1	1	1	33.3%	33.3%	33.3%
09	Desnivel Carril / Berma	1	0	0	100.0%	0.0%	0.0%
10	Grietas Longitudinales y Transversales	56	6	0	90.3%	9.7%	0.0%
11	Parcheo y Acometidas de Servicios	1	0	0	100.0%	0.0%	0.0%
13	Huecos	4	1	0	80.0%	20.0%	0.0%
15	Ahuellamiento	1	5	0	16.7%	83.3%	0.0%
20	Meteorización	5	2	0	71.4%	28.6%	0.0%

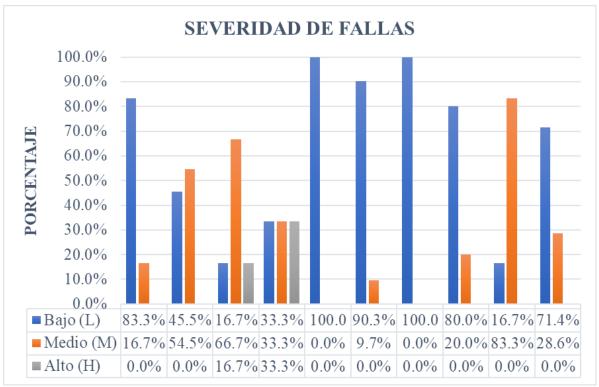


Figura N° 74 Gráficos de resultados por niveles de severidad en carril derecho. Fuente: Elaboración propia.

En la tabla N° 33 se detallaron las fallas encontradas en el carril izquierdo (Vuelta) con sus frecuencias de aparición e incidencias. En la figura N° 75 se representaron de forma gráfica las fallas encontradas en el carril estudiado.

Tabla N° 33 Tabla de fallas encontradas - Carril Izquierdo

N°	Nombre de la falla o deterioro	Frecuencia	Incidencia
01	Piel de Cocodrilo	68	45.64%
03	Agrietamiento en Bloque	10	6.71%
04	Abultamientos y Hundimientos	01	0.67%
07	Grietas de Borde	03	2.01%
10	Grietas Longitudinales y Transversales	45	30.20%
11	Parcheo y Acometidas de Servicios	03	2.01%
13	Huecos	09	6.04%
15	Ahuellamiento	05	3.36%
17	Grietas Parabólicas o por Desplazamiento	02	1.34%
20	Meteorización	03	2.01%

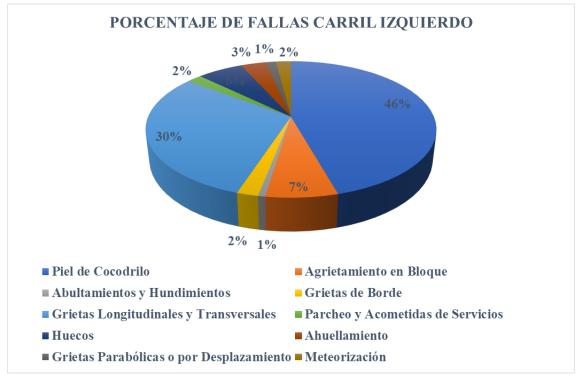


Figura N° 75 Incidencias de fallas en carril izquierdo. Fuente: Elaboración propia.

Asimismo, se presentaron la tabla N° 34 y la figura N° 76 con los resultados de acuerdo al nivel de severidad y sus frecuencias e incidencias en el carril izquierda (Vuelta).

Tabla N° 34 Fallas encontradas por Niveles de Severidad en carril izquierdo.

N°	Nombre de la falla o deterioro	Bajo (L)	Medio (M)	Alto (H)	Bajo (L)	Medio (M)	Alto (H)
01	Piel de Cocodrilo	54	14	0	79.4%	20.6%	0.0%
03	Agrietamiento en Bloque	8	2	0	80.0%	20.0%	0.0%
04	Abultamientos y Hundimientos	0	1	0	0.0%	100.0%	0.0%
07	Grietas de Borde	2	1	0	66.7%	33.3%	0.0%
10	Grietas Longitudinales y Transversales	40	5	0	88.9%	11.1%	0.0%
11	Parcheo y Acometidas de Servicios	2	1	0	66.7%	33.3%	0.0%
13	Huecos	2	5	2	22.2%	55.6%	22.2%
15	Ahuellamiento	1	4	0	20.0%	80.0%	0.0%
17	Grietas Parabólicas o por Desplazamiento	0	2	0	0.0%	100.0%	0.0%
20	Meteorización	1	2	0	33.3%	66.7%	0.0%

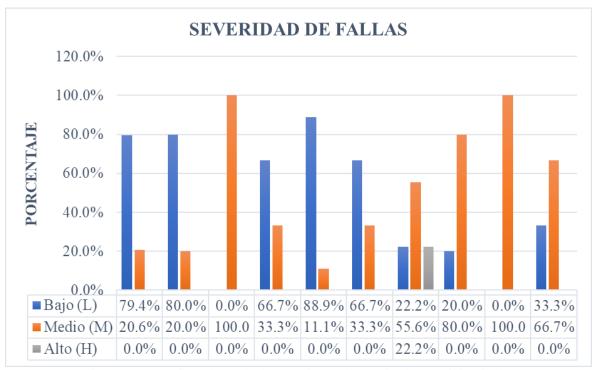


Figura N° 76 Gráficos de resultados por niveles de severidad en carril izquierdo. Fuente: Elaboración propia.

Valores PCI por carril.

Como se tiene definido cada falla encontrada y sus niveles de severidad ahora se muestran los resultados de los valores de PCI para cada unidad de muestreo (UM), existen 40 UM por cada sección, 20 UM por carril, y son 5 secciones de 1km cada uno. Los resultados mostrados son parte de los reportes del software EvalPavCar.

Resultados para carril derecho.

Tabla N° 35 Resumen de valores PCI por Sección y Unidad de Muestreo para el carril derecho.

Sección	U. Muestra	Área	P. inicial	P. final	m	PCI	Condición
	UM-D-01	225.0	355+000	355+050	0.0	100	Excelente
	UM-D-02	225.0	355+050	355+100	0.0	100	Excelente
	UM-D-03	225.0	355+100	355+150	0.0	95	Excelente
	UM-D-04	225.0	355+150	355+200	0.0	97	Excelente
	UM-D-05	225.0	355+200	355+250	0.0	100	Excelente
	UM-D-06	225.0	355+250	355+300	0.0	100	Excelente
	UM-D-07	225.0	355+300	355+350	8.5	74	Muy Bueno
	UM-D-08	225.0	355+350	355+400	0.0	99	Excelente
	UM-D-09	225.0	355+400	355+450	8.7	80	Muy Bueno
01	UM-D-10	225.0	355+450	355+500	0.0	87	Excelente
01	UM-D-11	225.0	355+500	355+550	0.0	100	Excelente
	UM-D-12	225.0	355+550	355+600	0.0	100	Excelente
	UM-D-13	225.0	355+600	355+650	8.6	80	Muy Bueno
	UM-D-14	225.0	355+650	355+700	0.0	93	Excelente
	UM-D-15	225.0	355+700	355+750	0.0	100	Excelente
	UM-D-16	225.0	355+750	355+800	0.0	96	Excelente
	UM-D-17	225.0	355+800	355+850	0.0	100	Excelente
	UM-D-18	225.0	355+850	355+900	0.0	100	Excelente
	UM-D-19	225.0	355+900	355+950	0.0	98	Excelente
	UM-D-20	225.0	355+950	356+000	0.0	89	Excelente

Sección	U. Muestreo	Área	P. inicial	P. final	m	PCI	Condición
	UM-D-01	225.0	357+000	357+050	0.0	100	Excelente
	UM-D-02	225.0	357+050	357+100	2.8	12	Muy Pobre
	UM-D-03	225.0	357+100	357+150	2.8	12	Muy Pobre
	UM-D-04	225.0	357+150	357+200	2.8	12	Muy Pobre
	UM-D-05	225.0	357+200	357+250	0.0	100	Excelente
	UM-D-06	225.0	357+250	357+300	0.0	96	Excelente
	UM-D-07	225.0	357+300	357+350	0.0	100	Excelente
	UM-D-08	225.0	357+350	357+400	0.0	96	Excelente
	UM-D-09	225.0	357+400	357+450	0.0	84	Muy Bueno
02	UM-D-10	225.0	357+450	357+500	0.0	92	Excelente
02	UM-D-11	225.0	357+500	357+550	0.0	100	Excelente
	UM-D-12	225.0	357+550	357+600	0.0	94	Excelente
	UM-D-13	225.0	357+600	357+650	0.0	96	Excelente
	UM-D-14	225.0	357+650	357+700	0.0	100	Excelente
	UM-D-15	225.0	357+700	357+750	0.0	81	Muy Bueno
	UM-D-16	225.0	357+750	357+800	0.0	98	Excelente
	UM-D-17	225.0	357+800	357+850	0.0	94	Excelente
	UM-D-18	225.0	357+850	357+900	0.0	96	Excelente
	UM-D-19	225.0	357+900	357+950	0.0	95	Excelente
	UM-D-20	225.0	357+950	358+000	0.0	96	Excelente

Sección	U. Muestreo	Área	P. inicial	P. final	m	PCI	Condición
	UM-D-01	225.0	359+000	359+050	0.0	100	Excelente
	UM-D-02	225.0	359+050	359+100	0.0	100	Excelente
	UM-D-03	225.0	359+100	359+150	0.0	100	Excelente
	UM-D-04	225.0	359+150	359+200	0.0	96	Excelente
	UM-D-05	225.0	359+200	359+250	0.0	92	Excelente
	UM-D-06	225.0	359+250	359+300	8.4	79	Muy Bueno
	UM-D-07	225.0	359+300	359+350	0.0	79	Muy Bueno
	UM-D-08	225.0	359+350	359+400	0.0	96	Excelente
	UM-D-09	225.0	359+400	359+450	0.0	94	Excelente
02	UM-D-10	225.0	359+450	359+500	0.0	95	Excelente
03	UM-D-11	225.0	359+500	359+550	0.0	71	Muy Bueno
	UM-D-12	225.0	359+550	359+600	0.0	100	Excelente
	UM-D-13	225.0	359+600	359+650	0.0	96	Excelente
	UM-D-14	225.0	359+650	359+700	0.0	95	Excelente
	UM-D-15	225.0	359+700	359+750	4.7	38	Pobre
	UM-D-16	225.0	359+750	359+800	0.0	100	Excelente
	UM-D-17	225.0	359+800	359+850	0.0	96	Excelente
	UM-D-18	225.0	359+850	359+900	0.0	75	Muy Bueno
	UM-D-19	225.0	359+900	359+950	0.0	93	Excelente
	UM-D-20	225.0	359+950	360+000	0.0	63	Bueno

Sección	U. Muestreo	Área	P. inicial	P. final	m	PCI	Condición
	UM-D-01	225.0	361+000	361+050	0.0	100	Excelente
	UM-D-02	225.0	361+050	361+100	0.0	92	Excelente
	UM-D-03	225.0	361+100	361+150	0.0	96	Excelente
	UM-D-04	225.0	361+150	361+200	0.0	99	Excelente
	UM-D-05	225.0	361+200	361+250	9.1	86	Excelente
	UM-D-06	225.0	361+250	361+300	0.0	91	Excelente
	UM-D-07	225.0	361+300	361+350	0.0	100	Excelente
	UM-D-08	225.0	361+350	361+400	0.0	93	Excelente
	UM-D-09	225.0	361+400	361+450	0.0	100	Excelente
	UM-D-10	225.0	361+450	361+500	0.0	96	Excelente
04	UM-D-11	225.0	361+500	361+550	0.0	100	Excelente
	UM-D-12	225.0	361+550	361+600	0.0	93	Excelente
	UM-D-13	225.0	361+600	361+650	0.0	95	Excelente
	UM-D-14	225.0	361+650	361+700	0.0	92	Excelente
	UM-D-15	225.0	361+700	361+750	0.0	89	Excelente
	UM-D-16	225.0	361+750	361+800	0.0	100	Excelente
	UM-D-17	225.0	361+800	361+850	7.1	56	Bueno
	UM-D-18	225.0	361+850	361+900	0.0	96	Excelente
	UM-D-19	225.0	361+900	361+950	0.0	95	Excelente
	UM-D-20	225.0	361+950	362+000	8.0	64	Bueno

Sección	U. Muestreo	Área	P. inicial	P. final	m	PCI	Condición
	UM-D-01	225.0	363+000	363+050	0.0	74	Muy Bueno
	UM-D-02	225.0	363+050	363+100	0.0	74	Muy Bueno
	UM-D-03	225.0	363+100	363+150	5.9	46	Regular
	UM-D-04	225.0	363+150	363+200	0.0	96	Excelente
	UM-D-05	225.0	363+200	363+250	8.2	76	Muy Bueno
	UM-D-06	225.0	363+250	363+300	0.0	96	Excelente
	UM-D-07	225.0	363+300	363+350	9.7	93	Excelente
	UM-D-08	225.0	363+350	363+400	5.0	42	Regular
	UM-D-09	225.0	363+400	363+450	0.0	96	Excelente
0.7	UM-D-10	225.0	363+450	363+500	0.0	65	Bueno
05	UM-D-11	225.0	363+500	363+550	0.0	72	Muy Bueno
	UM-D-12	225.0	363+550	363+600	7.6	64	Bueno
	UM-D-13	225.0	363+600	363+650	5.1	43	Regular
	UM-D-14	225.0	363+650	363+700	8.6	76	Muy Bueno
	UM-D-15	225.0	363+700	363+750	0.0	76	Muy Bueno
	UM-D-16	225.0	363+750	363+800	0.0	80	Muy Bueno
	UM-D-17	225.0	363+800	363+850	0.0	77	Muy Bueno
	UM-D-18	225.0	363+850	363+900	0.0	48	Regular
	UM-D-19	225.0	363+900	363+950	0.0	95	Excelente
	UM-D-20	225.0	363+950	364+000	0.0	84	Muy Bueno

Fuente: A partir del reporte de datos del EvalPavCar.

La figura N° 77 muestra la gráfica de los valores PCI para en carril derecho de las 5 secciones analizadas, la menor calificación a nivel se sección es PCI=74.

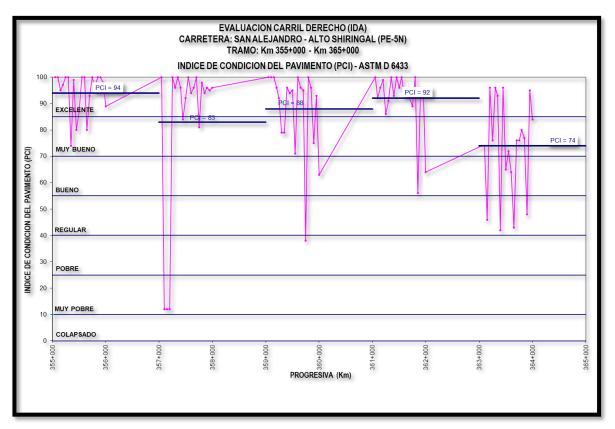


Figura N° 77 Gráfica de valores PCI del carril derecho. Fuente: Reporte de gráfico EvalPavCar.

Resultados para carril izquierdo.

Tabla N° 36 Resumen de valores PCI por Sección y Unidad de Muestreo para el carril izquierdo.

Sección	U. Muestreo	Área	P. inicial	P. final	m	PCI	Condición
	UM-I-01	225.0	355+000	355+050	0.0	91	Excelente
	UM-I-02	225.0	355+050	355+100	0.0	92	Excelente
	UM-I-03	225.0	355+100	355+150	0.0	96	Excelente
	UM-I-04	225.0	355+150	355+200	0.0	100	Excelente
	UM-I-05	225.0	355+200	355+250	7.5	69	Bueno
	UM-I-06	225.0	355+250	355+300	0.0	92	Excelente
	UM-I-07	225.0	355+300	355+350	0.0	96	Excelente
	UM-I-08	225.0	355+350	355+400	0.0	95	Excelente
	UM-I-09	225.0	355+400	355+450	0.0	100	Excelente
1	UM-I-10	225.0	355+450	355+500	0.0	70	Muy Bueno
1	UM-I-11	225.0	355+500	355+550	0.0	96	Excelente
	UM-I-12	225.0	355+550	355+600	0.0	100	Excelente
	UM-I-13	225.0	355+600	355+650	0.0	95	Excelente
	UM-I-14	225.0	355+650	355+700	0.0	96	Excelente
	UM-I-15	225.0	355+700	355+750	0.0	99	Excelente
	UM-I-16	225.0	355+750	355+800	0.0	97	Excelente
	UM-I-17	225.0	355+800	355+850	0.0	86	Excelente
	UM-I-18	225.0	355+850	355+900	0.0	84	Muy Bueno
	UM-I-19	225.0	355+900	355+950	0.0	42	Regular
	UM-I-20	225.0	355+950	356+000	0.0	100	Excelente

Sección	U. Muestreo	Área	P. inicial	P. final	m	PCI	Condición
	UM-I-01	225.0	357+000	357+050	0.0	100	Excelente
	UM-I-02	225.0	357+050	357+100	0.0	96	Excelente
	UM-I-03	225.0	357+100	357+150	0.0	98	Excelente
	UM-I-04	225.0	357+150	357+200	0.0	100	Excelente
	UM-I-05	225.0	357+200	357+250	0.0	100	Excelente
	UM-I-06	225.0	357+250	357+300	7.2	65	Bueno
	UM-I-07	225.0	357+300	357+350	0.0	100	Excelente
	UM-I-08	225.0	357+350	357+400	0.0	97	Excelente
	UM-I-09	225.0	357+400	357+450	0.0	96	Excelente
2	UM-I-10	225.0	357+450	357+500	0.0	96	Excelente
2	UM-I-11	225.0	357+500	357+550	0.0	100	Excelente
	UM-I-12	225.0	357+550	357+600	0.0	100	Excelente
	UM-I-13	225.0	357+600	357+650	0.0	98	Excelente
	UM-I-14	225.0	357+650	357+700	0.0	96	Excelente
	UM-I-15	225.0	357+700	357+750	0.0	100	Excelente
	UM-I-16	225.0	357+750	357+800	0.0	96	Excelente
	UM-I-17	225.0	357+800	357+850	0.0	98	Excelente
	UM-I-18	225.0	357+850	357+900	0.0	96	Excelente
	UM-I-19	225.0	357+900	357+950	0.0	96	Excelente
	UM-I-20	225.0	357+950	358+000	0.0	96	Excelente

Sección	U. Muestreo	Área	P. inicial	P. final	m	PCI	Condición
	UM-I-01	225.0	359+000	359+050	0.0	96	Excelente
	UM-I-02	225.0	359+050	359+100	5.3	32	Pobre
	UM-I-03	225.0	359+100	359+150	0.0	93	Excelente
	UM-I-04	225.0	359+150	359+200	0.0	100	Excelente
	UM-I-05	225.0	359+200	359+250	0.0	96	Excelente
	UM-I-06	225.0	359+250	359+300	0.0	95	Excelente
	UM-I-07	225.0	359+300	359+350	0.0	96	Excelente
	UM-I-08	225.0	359+350	359+400	8.5	76	Muy Bueno
	UM-I-09	225.0	359+400	359+450	8.1	72	Muy Bueno
3	UM-I-10	225.0	359+450	359+500	0.0	74	Muy Bueno
	UM-I-11	225.0	359+500	359+550	0.0	84	Muy Bueno
	UM-I-12	225.0	359+550	359+600	0.0	87	Excelente
	UM-I-13	225.0	359+600	359+650	0.0	83	Muy Bueno
	UM-I-14	225.0	359+650	359+700	0.0	78	Muy Bueno
	UM-I-15	225.0	359+700	359+750	0.0	96	Excelente
	UM-I-16	225.0	359+750	359+800	0.0	100	Excelente
	UM-I-17	225.0	359+800	359+850	0.0	93	Excelente
	UM-I-18	225.0	359+850	359+900	0.0	100	Excelente
	UM-I-19	225.0	359+900	359+950	0.0	86	Excelente
	UM-I-20	225.0	359+950	360+000	0.0	93	Excelente

Sección	U. Muestreo	Área	P. inicial	P. final	m	PCI	Condición
	UM-I-01	225.0	361+000	361+050	0.0	93	Excelente
	UM-I-02	225.0	361+050	361+100	0.0	94	Excelente
	UM-I-03	225.0	361+100	361+150	0.0	96	Excelente
	UM-I-04	225.0	361+150	361+200	0.0	99	Excelente
	UM-I-05	225.0	361+200	361+250	0.0	100	Excelente
	UM-I-06	225.0	361+250	361+300	0.0	88	Excelente
	UM-I-07	225.0	361+300	361+350	0.0	96	Excelente
	UM-I-08	225.0	361+350	361+400	0.0	88	Excelente
	UM-I-09	225.0	361+400	361+450	0.0	94	Excelente
	UM-I-10	225.0	361+450	361+500	0.0	96	Excelente
4	UM-I-11	225.0	361+500	361+550	0.0	88	Excelente
	UM-I-12	225.0	361+550	361+600	0.0	100	Excelente
	UM-I-13	225.0	361+600	361+650	0.0	93	Excelente
	UM-I-14	225.0	361+650	361+700	0.0	39	Pobre
	UM-I-15	225.0	361+700	361+750	0.0	100	Excelente
	UM-I-16	225.0	361+750	361+800	0.0	99	Excelente
	UM-I-17	225.0	361+800	361+850	0.0	95	Excelente
	UM-I-18	225.0	361+850	361+900	0.0	96	Excelente
	UM-I-19	225.0	361+900	361+950	0.0	100	Excelente
	UM-I-20	225.0	361+950	362+000	0.0	98	Excelente

Sección	U. Muestreo	Área	P. inicial	P. final	m	PCI	Condición
	UM-I-01	225.0	363+000	363+050	0.0	100	Excelente
	UM-I-02	225.0	363+050	363+100	0.0	96	Excelente
	UM-I-03	225.0	363+100	363+150	4.6	37	Pobre
	UM-I-04	225.0	363+150	363+200	9.2	87	Excelente
	UM-I-05	225.0	363+200	363+250	0.0	95	Excelente
	UM-I-06	225.0	363+250	363+300	0.0	63	Bueno
	UM-I-07	225.0	363+300	363+350	7.9	65	Bueno
	UM-I-08	225.0	363+350	363+400	6.8	58	Bueno
	UM-I-09	225.0	363+400	363+450	0.0	70	Muy Bueno
5	UM-I-10	225.0	363+450	363+500	0.0	100	Excelente
3	UM-I-11	225.0	363+500	363+550	0.0	95	Excelente
	UM-I-12	225.0	363+550	363+600	0.0	69	Bueno
	UM-I-13	225.0	363+600	363+650	0.0	77	Muy Bueno
	UM-I-14	225.0	363+650	363+700	8.4	78	Muy Bueno
	UM-I-15	225.0	363+700	363+750	7.4	52	Regular
	UM-I-16	225.0	363+750	363+800	7.0	51	Regular
	UM-I-17	225.0	363+800	363+850	7.5	66	Bueno
	UM-I-18	225.0	363+850	363+900	6.2	25	Pobre
	UM-I-19	225.0	363+900	363+950	7.8	61	Bueno
	UM-I-20	225.0	363+950	364+000	6.1	44	Regular

Fuente: A partir del reporte de datos del EvalPavCar

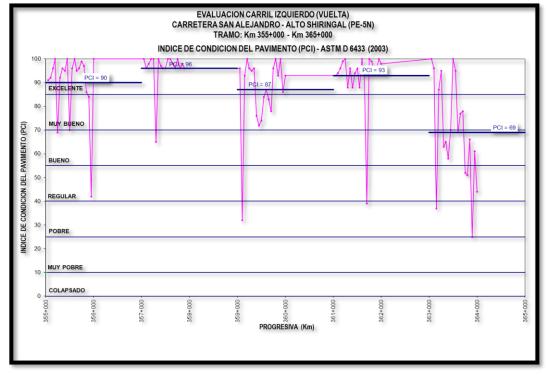


Figura N° 78 Gráfica de valores PCI del carril izquierdo. Fuente: Reporte gráfico del EvalPavCar.

Fallas no catalogadas por la metodología PCI.

Dentro de las áreas analizadas para la presente investigación, se ha podido localizar y cuantificar 8 fallas que carecen de alguna categoría clara, dentro de la metodología del PCI.

Sin embargo, la severidad de estas fallas sí se podría identificar dentro de los niveles de severidad de la metodología del PCI, como colapsadas, debido a su alta influencia en la comodidad de viaje y en el flujo continuo vehicular.

Cabe recalcar que estas zonas tienen comprometidas, muy severamente, la estructura del pavimento flexible por debajo de la capa de rodadura, que en muchas situaciones es inexistente.

En la figura N° 79, se localizan 4 fallas no catalogadas por el PCI, en el carril derecho dentro del tramo San Alejandro – Alto Shiringal.

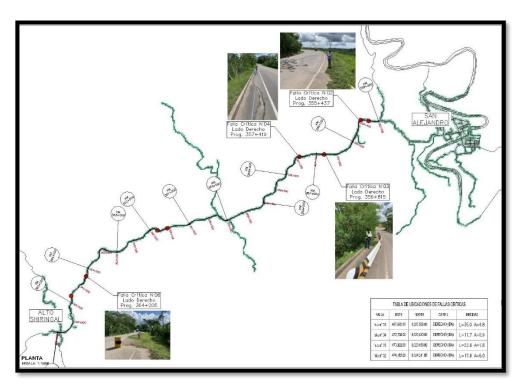


Figura N° 79 Ubicación de fallas no catalogadas ubicadas en carril derecho. Fuente: Elaboración propia.

En la figura N° 80 se muestra la gráfica con el nivel de severidad para las fallas no catalogadas del carril derecho, dentro del tramo estudiado.

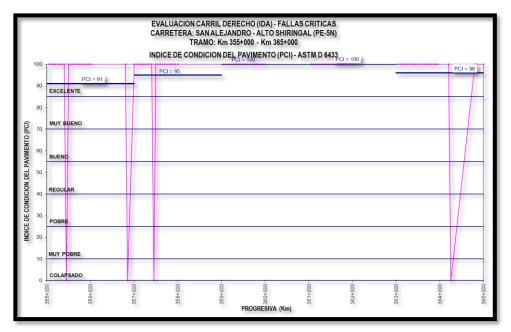


Figura N° 80 Gráfico de fallas no catalogadas en carril derecho. Fuente: A partir del modelo del reporte del EvalPavCar.

En la figura N° 81, se localizan 4 fallas no catalogadas por el PCI, en el carril izquierdo dentro del tramo San Alejandro – Alto Shiringal.

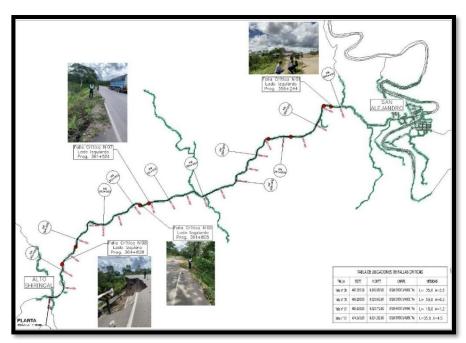


Figura N° 81 Ubicación de fallas no catalogadas ubicadas en carril izquierdo. Fuente: Elaboración propia.

En la figura N° 82 se muestra la gráfica con el nivel de severidad para las fallas no catalogadas del carril izquierdo, dentro del tramo estudiado.

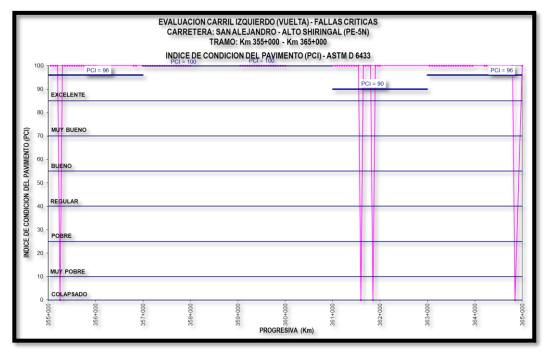


Figura N° 82 Gráfico de fallas no catalogadas en carril izquierdo. Fuente: A partir del modelo del reporte del EvalPavCar.

Propuestas de intervenciones.

Dentro del marco teórico se presentaron las Tablas desde la N°7 a la N°27, con las distintas opciones de reparaciones de acuerdo al nivel de severidad de cada tipo de falla. Las distintas propuestas obedecen a niveles de reparaciones del tipo menor, en las que se incluyen áreas reducidas o con trabajos puntuales.

Es por ello que se presenta la siguiente tabla N° 37 con la matriz detallada de intervenciones que se proponen para las fallas encontradas, de acuerdo a la metodología del PCI, cabe recalcar que en cualquiera de las reparaciones propuestas es necesario un análisis de la estructura del pavimento flexible, para así, asegurar la eficacia de la medida tomada.

Tabla N° 37 Matriz de intervenciones propuestas.

N°	Nombre de la falla o deterioro	Severidad (Severity)	Cód.	Tipo de Reparación.	Imágenes Representativas
01	Piel de Cocodrilo	Bajo (Low)	L	Tratamiento en grietas con sello superficial	
		Medio (Medium)	M	Parcheo parcial o profundo (Bacheo profundo).	
	A	Bajo (Low)	L	Tratamiento en grietas con sello superficial	
02	Agrietamiento en Bloque	Medio (<i>Medium</i>)	M	Tratamiento en grietas con sello o reciclaje: fresado y recapeo in situ.	
		Bajo (Low)	L	-	
03	Abultamientos y Hundimientos	Medio (Medium)	M	Tratamiento de reciclaje en frio: fresado y recapeo	
		Alto (High)	Н	(Bacheo Profundo)	

		Bajo (Low)	L	Tratamiento en grietas con sello superficial	
04	Grietas de Borde	Medio (Medium)	M	seno supernetar	
		Alto (High)	Н	Colocación de Parche de forma media o profunda	
05	Desnivel Carril / Berma	Bajo (Low)	L	Procedimiento de nivelación de bermas	
		Bajo (Low)	L		
06	Grietas Longitudinales y Transversales	Medio (Medium)	М	Tratamiento en grietas con sello superficial	

07	Parcheo y Acometidas de Servicios	Bajo (Low)	L	-	
		Medio (Medium)	M		
08	Huecos	Bajo (Low)	L	Tratamiento con parches parciales.	
		Medio (Medium)	M		
		Alto (High)	Н	Tratamiento con parches profundos	
09	Ahuellamiento	Bajo (Low)	L	Tratamiento con fresado y colocación de Sobrecarpeta asfáltica	
		Medio (Medium)	M		

10	Grietas Parabólicas o por Desplazamiento	Medio (Medium)	М	Tratamiento con parche de forma leve o profunda	
11	Meteorización	Bajo (Low)	L	Tratamiento con sellamiento	
	to: Elaboración propia	Medio (Medium)	М	levemente en superficie	

Fuente: Elaboración propia.

V. DISCUSIÓN DE RESULTADOS

 Hipótesis general: Si evaluamos el deterioro en la superficie de rodadura, entonces se podrá mejorar la transitabilidad de la carretera PE – 5N, tramo San Alejandro-Alto Shiringal.

Según los datos recopilados en campo y procesados con el software EvalPavCar, se puede analizar los resultados obtenidos y determinar el estado en que se encuentra el pavimento flexible, lo cual nos arroja que tipos de fallas que se encuentran con más frecuencia y nos permite evaluar las posibles intervenciones que puedan ser aplicados para mejorar la transitabilidad.

En primer lugar, la Tabla N° 30 Metrado de fallas encontradas., se muestran principalmente las 20 clasificaciones de fallas estipuladas por el ASTM D6433 del 2018, y se observa que hemos encontrado 11 tipos fallas a lo largo de toda la zona de estudio. En segundo lugar, las Gráficas N°77 y 78, nos muestran los valores PCI de cada UM y Sección analizada, mientras que las Gráficas N°80 y 82 nos muestra los valores PCI adoptados para las fallas críticas identificadas. En tercer lugar, en la tabla N°37 (p.107) podemos encontrar el resumen de los posibles tratamientos que corresponden a cada falla de acuerdo al nivel de severidad, con ambas informaciones en conjunto se pueden plantear planificaciones oportunas de mejoramiento que ayudarán a elevar el nivel de transitabilidad de la carretera.

Según los estipulado en el capítulo 1.3 desarrollado por Tacza y Rodriguez (2018), las intervenciones necesarias se dan de acuerdo al valor PCI calculado, pudiendo ser intervenciones del tipo menor o mayor. Las intervenciones del tipo menor son aplicadas a áreas menores a los 300 m2. En tal sentido, el valor PCI

calculado para la vía es de 87, lo que nos ubica en la zona "A" que requeriría mantenimientos del tipo menor para control de deterioros, sin embargo, debemos considerar que las fallas presentadas en la Tabla N°30, algunas de estas presentan áreas mayores a 300 m2 como lo son la piel de cocodrilo, abultamientos, ahuellamiento y grietas longitudinales y transversales, que requerirán intervenciones mayores como las detalladas en la Tabla N°37.

 Primera hipótesis específica: Si identificamos cuáles son los tipos de fallas presentes y sus frecuencias, entonces se podrá mejorar la transitabilidad de la carretera PE-5N, tramo San Alejandro-Alto Shiringal.

La primera falla con mayor incidencia y frecuencia son: Piel de Cocodrilo, cubre un área de 845.10 m² (128 repeticiones); el segundo es el Ahuellamiento con 437.50 m² (11 repeticiones), el tercero son las Grietas Longitudinales y Transversales con 383.00 m (107 repeticiones) el cuarto son los Abultamientos y Hundimientos con 339.00 m² (7 repeticiones) el quinto es el Agrietamiento en Bloque con 285.20 m² (21 repeticiones). Las otras 6 fallas restantes suman 37 repeticiones, las cuales cubren áreas y longitudes pequeñas.

La Tabla N° 31 (p.95) Tabla de falla encontradas en el carril derecho (ida) observamos que se encontraron 10 tipos de fallas, las de mayor frecuencia son: Grietas Longitudinales y Transversales (62 repeticiones) con 38.27% de incidencia, Piel de Cocodrilo (60 repeticiones) con 37.04% y Agrietamiento en Bloque (11 repeticiones) con 6.79% y el resto de las fallas encontradas se presentan con incidencias menores al 5.0%.

Con mayor detalle, respecto del nivel de severidad de cada falla, en el carril derecho encontramos la Tabla N° 32 (p.96) y veremos que las Grietas

Longitudinales y Transversales tienen un 90.3% de fallas en nivel Bajo y 9.7% en nivel Medio; la Piel de Cocodrilo tiene un 83.3% en nivel Bajo y 16.7% en nivel Medio; el Agrietamiento en Bloque tienen un 45.5% en nivel Bajo y 54.5% en nivel Medio; sin embargo, también podremos observar que se encontraron dos fallas con nivel Alto, entre ellas están el Abultamiento y Hundimiento y Grieta de Borde.

En la Tabla N° 33 (p.97) se detallan las fallas encontradas en el carril izquierdo (vuelta), donde también se encontraron 10 tipos de fallas, las de mayor frecuencia son: Piel de Cocodrilo (68 repeticiones) con 45.64% de incidencia; Grietas Longitudinales y Transversales (45 repeticiones) con 30.20%; Agrietamiento en bloque (10 repeticiones) con 6.71% y Huecos (09 repeticiones) con 6.04% y el resto de las fallas encontradas se presentan con incidencias menores al 4.0%.

Respecto a la severidad para cada falla en el carril izquierdo, lo encontramos en la Tabla N°34 (p.98), las fallas como Piel de cocodrilo con 79.4% en nivel Bajo y 20.6% en nivel Medio; Grietas Longitudinales y transversales con 88,9% en nivel Bajo y 11.1% en nivel Medio; Agrietamiento en Bloque con 80.0% en nivel bajo y 20.0% en nivel Medio; y Huecos con 22.2% en nivel Bajo, 55.6% en nivel medio y 22.2% en nivel Alto, siendo esta última, la única falla con severidad Alta. Observando la Tabla N°31 y Tabla N°33, encontramos que las fallas con más índice de frecuencia son Piel de Cocodrilo y Grietas Longitudinales y Transversales, pero también encontramos fallas con mayor nivel de severidad que deben ser atendidas a la brevedad, es posible una mejoraría en el nivel de transitabilidad de la carretera considerando las posibles intervenciones detalladas en la norma ASTM D6433 para cada una de las fallas detalladas líneas arriba.

De lo anteriormente descrito en la investigación hecha por Tacza y Rodriguez (2018), en el capítulo 3.3, el parámetro que define el tipo de intervención, para el mejoramiento de la transitabilidad, es el área de 300 m2, solamente 4 tipos de fallas encontradas en esta investigación superan dicho valor requiriendo así intervenciones del tipo mayor, sin embargo, estas cantidades por sí solas no podrían ayudarnos a programar adecuadamente los recursos necesarios para la reparación de la vía, pero sí a vislumbrar los trabajos más urgentes para el mejoramiento de la vía.

Segunda hipótesis específica: Si determinamos el índice de condición operacional, de acuerdo al método PCI, entonces se podrá mejorar la transitabilidad de la carretera PE-5N, tramo San Alejandro-Alto Shiringal. Los valores del PCI reportados por el software EvalPavCar para el carril derecho que se muestran en la Tabla N° 35 (p.99) y es calculado para cada unidad de muestra obteniendo la condición del pavimento. Observamos que las unidades de muestreo 02, 03 y 04 del 2do sector presentan condiciones de Muy Pobres, seguido de la unidad de muestreo 15 del 3er sector que presenta una condición de Pobre y finalmente las unidades de muestreo 03, 08, 13 y 18 del 5to sector que presentan una condición de Regular.

Los promedios PCI para las 5 secciones analizadas, se muestran en la Figura N° 77 (p.102), obteniendo los siguientes valores: 94 (Excelente), 83 (Muy Bueno), 88 (Excelente), 92 (Excelente) y 74 (Muy Bueno) respectivamente. Así mismo, se visualiza mejor la ubicación de las unidades de muestra con los valores PCI más bajos, que requerirán de mayor atención y priorizar sus intervenciones.

Por otro lado, los valores del PCI reportados para el carril izquierdo se muestran en la Tabla N° 36 (p.103) y es calculado para cada unidad de muestra obteniendo la condición del pavimento. La unidad de muestreo 19 del 1er sector tiene la condición Regular, seguido de la unidad de muestreo 02 del 3er sector con una condición de Pobre, luego la unidad de muestreo 14 del 4to sector con condición de Pobre, finalmente las unidades de muestro 03 y 18 del 5to sector, con condición de Pobre y las unidades de muestreo 15, 16 y 20 con condición de Regular.

Los promedios PCI de las 5 secciones analizadas se muestran en la Figura N° 78 (p.105) son: 90 (Excelente), 96 (Excelente), 87 (Excelente), 93 (Excelente) y 69 (Bueno) respectivamente. Así mismo la gráfica se visualiza mejor la ubicación de las unidades de muestreo con los valores PCI más bajos, que requerirán de mayor atención y priorizar sus intervenciones.

En el tramo de los 10 km en observación se encontraron 8 fallas no catalogadas para la metodología del PCI, sin embargo, se les dio el nivel de Colapsado (PCI=0), por tener un nivel de severidad muy alto, al grado de comprometer por completo la estructura del pavimento.

En la Figura N°79 (p.106) se muestra las ubicaciones en planta con coordenadas UTM de 4 fallas en las progresivas: km 355+437, km 356+815, km 357+419 y km 364+205, que afectan de forma significativa la Calidad de Conducción. La Figura N° 80 muestra la gráfica referencial de valores PCI del carril Derecho (Ida), para una mejor visualización.

Por otro lado, la Figura N°81 (p.107) se muestran las ubicaciones en planta con coordenadas UTM de 4 fallas en las progresivas: km 355+244, km 361+551, km

361+805 y km 364+828, que afectan de forma significativa la Calidad de Conducción. La Figura N° 82 muestra la gráfica referencial de valores PCI del carril Izquierdo (Vuelta), para una mejor visualización.

El resultado promedio del tramo en evaluación nos arroja el PCI =87 "Excelente", lo que requeriría a lo mucho un mantenimiento preventivo o superficial y no se está teniendo en cuenta que hay tramos donde se encontró áreas colapsadas que impiden y obstruyen el tránsito continuo de los vehículos evitando una mejor transitabilidad de la carretera.

La investigación desarrollada por Tacza y Rodriguez (2018), en el capítulo 1.3 se estipula que las intervenciones necesarias para el mejoramiento de la transitabilidad se dan de acuerdo al valor PCI calculado, el valor de 87, ubicando a la vía en la zona "A" que requeriría mantenimientos del tipo menor, sin embargo, debemos considerar que existen Secciones con valores PCI, que podrían ubicar a la vía en la zona "B" que requiere de intervenciones del tipo menor y/o mayor y otras, como las ubicaciones de las fallas críticas que ubicarían a la vía en la zona "C", que requieren de intervenciones mayores, como reconstrucciones completas.

 Tercera hipótesis específica: Si determinamos los tipos de intervenciones, entonces se podrá mejorar la transitabilidad de la carretera PE-5N, tramo San Alejandro-Alto Shiringal.

Como se ha mencionado anteriormente, en la Tabla N° 37 (p.107) Matriz de intervenciones propuestas, se dan a conocer las posibles intervenciones de acuerdo a las fallas encontradas y sus niveles de severidad, resumidas para este tramo de la carretera analizada. En la mayoría de los casos, sobre todo para fallas

de nivel Bajo y Medio, se plantean reparaciones con sellos superficiales. Por otro lado, para las fallas con niveles Medios y Altos, es más común la reparación por bacheo superficial o profundo, dado según la tipología de la falla localizada.

Las intervenciones que se detallan en la Tabla N°37 según la severidad de las fallas, no mejoran por sí mismos el nivel de transitabilidad de la carretera, sin tomar en cuenta los hallazgos en campo de las fallas.

De acuerdo al capítulo 3.3 de la investigación desarrollada por Tacza y Rodriguez (2018), se proponen diferentes intervenciones del tipo menores y/o mayores, de la misma forma en la que se detalla en la Tabla N°37 de la presente investigación con la finalidad de mejorar la transitabilidad.

VI. CONCLUSIONES

- 1. De nuestro objetivo general tenemos que, si evaluamos el deterioro en la superficie de rodadura, entonces se podrá mejorar la transitabilidad de la carretera PE 5N, tramo San Alejandro-Alto Shiringal., luego de observar los resultados llegamos a una conclusión que para mejorar la transitabilidad en la superficie de rodadura se proponen diferentes tipos de reparaciones que atiendan a cada falla encontrada. Lo cual se debe priorizar las intervenciones necesarias para los puntos más bajos de las Figuras N°77 y N°78, ya que estas fallas son de más gravedad.
- 2. De nuestro primer objetivo específicos nos pide, identificar los tipos de fallas y sus frecuencias, presentes en el pavimento flexible de la carretera PE-5N, tramo San Alejandro-Alto Shiringal, luego de obtener los resultados llegamos a la conclusión que los tipos de fallas encontradas y sus frecuencias son un total de 311 en el tramo de evaluación entre San Alejandro Alto Shiringal y se detallan a continuación:
- o Piel de Cocodrilo con una frecuencia de 128 ó 41.16%.
- o Agrietamiento en Bloque con una frecuencia de 21 ó 6.75%.
- o Abultamientos y Hundimientos con una frecuencia de 07 ó 2.25%.
- o Grietas de Borde con una frecuencia de 06 ó 1.93%.
- o Desnivel Carril / Berma con una frecuencia de 01 ó 0.32%.
- o Grietas Longitudinales y Transversales con una frecuencia 107 ó 34.41%.
- o Parcheo y Acometidas de servicios con una frecuencia de 04 ó 1.29%.
- Huecos con una frecuencia de 14 ó 4.5%.
- o Ahuellamientos con una frecuencia de 11 ó 3.54%.

- Grietas Parabólicas o por desplazamiento con una frecuencia de 02 ó 0.64%.
- o Meteorización con una frecuencia de 10 ó 3.22%.

Por lo detallado, se puede concluir que las fallas más recurrentes son la Piel de Cocodrilo con un 41.16% y las Grietas Longitudinales y Transversales con un 34.41%, ambas representan el 75.57% del total de fallas. La primera falla se origina principalmente por la repetida sobrecarga vehicular, e inicia en la cara interior de la superficie asfáltica, y se encuentran comúnmente en las zonas de huellas vehiculares y las segundas se originan por los ciclos de temperatura de la zona ya que son expuestos a altos niveles de radiación y elevadas temperaturas, pero también podría atribuírsele a un mal proceso constructivo en las juntas o empalmes.

3. De nuestro segundo objetivo específico nos pide, determinar el índice de condición operacional, de acuerdo al método PCI, del pavimento flexible de la carretera PE-5N, tramo San Alejandro-Alto Shiringal, lo cual llegamos a la conclusión que mediante los cálculos realizados se obtiene un valor promedio PCI=87 (Excelente) para todo el tramo, lo que nos indica que solo se requeriría de intervenciones superficiales. Sin embargo, existen zonas focalizadas donde los valores de PCI decaen por debajo de la calificación "Bueno" hasta "Muy Pobre", que sí requerirían de intervención más profunda. Así mismo, existen zonas con fallas no catalogadas para la metodología del PCI, y que debido a la alta influencia en la Calidad de Conducción son catalogadas como colapsadas, además estas zonas presentan daños severos en su estructura al grado de no existir

la superficie asfáltica de un carril, comprometiendo así la seguridad y confort en el recorrido de dicho tramo.

4. Según nuestro tercer objetivo específico nos pide, evaluar qué tipos de intervenciones se pueden proponer para prolongar la vida útil del pavimento flexible de la carretera PE-5N, tramo San Alejandro-Alto Shiringal, lo cual concluimos que el tipo de falla encontrada y su nivel de severidad se ha podido proponer intervenciones o reparaciones, detalladas en la Tabla N° 37, que atiendan a la necesidad de mejorar la transitabilidad de la carretera PE-5N, tramo San Alejandro – Alto Shiringal.

VII. RECOMENDACIONES

- 1. Nuestro objetivo general nos habla que, si evaluamos el deterioro en la superficie de rodadura, entonces se podrá mejorar la transitabilidad de la carretera PE 5N, tramo San Alejandro-Alto Shiringal., lo cual se recomienda priorizar las intervenciones en las unidades de muestreo detalladas cuyo índice PCI está por debajo de la categoría "Bueno" (PCI<55), lo que evitaría se acelere la severidad de la falla en la superficie de rodadura y dificulte la transitabilidad de la carretera.</p>
- 2. Nuestro primer objetivo específicos nos pide, identificar los tipos de fallas y sus frecuencias, presentes en el pavimento flexible de la carretera PE-5N, tramo San Alejandro-Alto Shiringal, lo cual se recomiendan para las identificaciones que se hagan inspecciones constantes, y acompañadas de una base de datos, que ayude a visualizar la evolución de las fallas inventariadas inicialmente, así como la aparición de nuevas, de esta forma poder priorizar las intervenciones de las fallas de alta severidad, a corto plazo, como lo son: Abultamientos y Hundimientos, Grietas de Borde y Huecos y ubicados en los sectores 2 y 5, hasta el momento en que se realizó la inspección de la presente investigación.
- 3. Nuestro segundo objetivo específico nos pide, determinar el índice de condición operacional, de acuerdo al método PCI, del pavimento flexible de la carretera PE-5N, tramo San Alejandro-Alto Shiringal, el valor promedio final según la metodología del PCI para el tramo en estudio es de 87 lo que significa que teóricamente la carretera cuenta con una calificación de "Excelente", sin embargo, se recomienda que las fallas no catalogadas detalladas en este trabajo, que no están consideradas en la metodología del PCI, puedan contar con una clasificación de

falla o deterioro dentro de la metodología, para tener un cálculo e índice que refleje la realidad de las secciones y unidades de muestreo analizadas. En ese sentido para atender a estas fallas, se recomienda la reconstrucción de toda la estructura de las áreas afectadas, que a nuestro criterio se deben calcificar con un valor PCI=0 ó "colapsado" debido a que interfieren con la transitabilidad de la carretera por contar con un solo carril útil en dichos sectores.

4. Nuestro tercer objetivo específico nos pide, evaluar qué tipos de intervenciones se pueden proponer para prolongar la vida útil del pavimento flexible de la carretera PE-5N, tramo San Alejandro-Alto Shiringal, recomendamos tener en cuenta la Tabla N° 37, además de los resultados de los hallazgos de las fallas y los gráficos obtenidos por el software EvalPavCar para determinar las unidades de muestreo que requieren de mayor atención para sus respectivas intervenciones y realizar mantenimientos preventivos o correctivos, los cuales evitarían futuros accidentes de tránsito, mejoraría el tiempo de recorrido utilizado para dicho tramo, aumentaría la calidad de vida y seguridad de los pobladores de la zona. Por otro lado, las propuestas para las fallas no catalogadas no están detalladas en esta tabla, sin embargo, es más factible la reconstrucción de toda la estructura del pavimento, después de un análisis estructural de dichas zonas.

REFERENCIAS

Tesis:

AGUILERA Chinchay, Andrés. Evaluación de las Patologías Existentes en el Pavimento Flexible de la Avenida don Bosco, Cuadras 28, 29,30 y 31 del AA- HH. Santa Rosa, Distrito Veintiséis de Octubre, Departamento de Piura, Octubre – 2017. Tesis (Título de Ingeniero Civil). Piura: Universidad Católica Los Ángeles de Chimbote, 2017.

Disponible en:

http://repositorio.uladech.edu.pe/bitstream/handle/123456789/3342/ESTUDIO_VISUAL_
PATOLOGIAS_AV_DON_BOSCO_AGUILERA_CHINCHAY_ANDRES.pdf?sequence
=1&isAllowed=y

AUCCAHUAQUI Yanque, Irvin Kenyo y CORAHUA Hilaquita, Ronald Yuseut. Evaluación del sistema de pavimentos flexibles en la prolongación de la av. la cultura tramo (4to paradero de San Sebastián – grifo mobil de San Jerónimo). Tesis (Título de Ingeniero Civil). Cusco: Universidad Andina del Cusco, 2016. Disponible en http://repositorio.uandina.edu.pe/handle/UAC/347

BUITRAGO Velandia, Johanna Astrid y CANO Osorio, Diana Patricia. Análisis Comparativo de Metodologías de Auscultación de Pavimentos Flexibles. Tesis (Especialista en Ingeniería de Pavimentos). Bogotá: Universidad Militar Nueva Granada, 2011.

Disponible en

https://repository.unimilitar.edu.co/bitstream/handle/10654/3655/BuitragoVelandiaJohana Astrid2011.pdf?sequence=2

CANTUARIAS Cepeda, Luis Carlo y WATANABE Ibañez, Jorge Rolando. Aplicación del Método PCI para la Evaluación Superficial del Pavimento Flexible de la Avenida Camino

Real de la Urbanización la Rinconada del Distrito de Trujillo. Tesis (Título de Ingeniero Civil). Trujillo: Universidad Privada Antenor Orrego, 2017.

Disponible en http://repositorio.upao.edu.pe/handle/upaorep/3589

CÁRDENAS Riveros, Juan Rubén, Determinación y Evaluación de las Patologías del Pavimento Flexible, Para Obtener el Índice de Integridad Estructural del Pavimento Flexible y Condición Operacional de la Superficie de Rodadura de la Avenida Carlos La Torre Cortéz, Distrito de Huanta, Provincia de Huanta, Región Ayacucho. Tesis (Título de Ingeniero Civil). Ayacucho: Universidad Católica de los Ángeles Chimbote, 2016.

Disponible en http://repositorio.uladech.edu.pe/handle/123456789/1289

HILIQUÍN Brañez, Mariana Lucía, Evaluación del estado de Conservación del Pavimento, Utilizando el Método PCI, en la Av. Jorge Chávez del Distrito de Pocollay en el año 2016. Tesis (Título de Ingeniero Civil). Tacna: Universidad Privada de Tacna, 2016.

Disponible en http://repositorio.upt.edu.pe/bitstream/UPT/157/1/Hilliquin-Bra%C3%B1ez-Mariana.pdf

HUMPIRI Pineda, Katia. Análisis superficial de pavimentos flexibles para el mantenimiento de vías en la Región de Puno. Tesis (Magister en Ingeniería Civil). Puno: Universidad Andina Néstor Cáceres Velásquez, 2015.

Disponible en https://repositorio.uancv.edu.pe/bitstream/handle/UANCV/426/P31-003.pdf

LEGUÍA Loarte, Paola Beatriz y PACHECO Risco, Hans Fernando, Evaluación Superficial del Pavimento Flexible por el Método Pavement Condition Index (PCI) en Las Vías Arteriales: Cincuentenario, Colón y Miguel Grau (Huacho-Huaura-Lima). Tesis (Título de Ingeniero Civil). Lima: Universidad de San Martin de Porres, 2016.

Disponible en

http://repositorio.usmp.edu.pe/bitstream/handle/20.500.12727/2311/leguia_pacheco.pdf?sequence=1&isAllowed=y

ORTIZ Marín, Elizabeth Jaqueline, Evaluación y Comparación del Estado de Conservación de la Carretera Baños del Inca-Llacanora Utilizando los Métodos de Índice de Conservación del Pavimento Y VIZIR. Tesis (Título de Ingeniero Civil). Cajamarca: Universidad Nacional de Cajamarca, 2018.

Disponible en https://repositorio.unc.edu.pe/handle/UNC/1833

PANTA Abel, German Abel. Determinación y evaluación de las patologías del pavimento flexible de la av. Chulucanas entre las progresivas km. 0+000 al km. 0+670 del distrito veintiséis de octubre, Provincia de Piura y departamento de Piura, octubre 2017. Tesis (Título de Ingeniero Civil). Piura: Universidad Católica de los Ángeles Chimbote, 2017.

Disponible en https://repositorio.uladech.edu.pe/handle/123456789/1856

PARRA Hernandez, Ingred Julieth. Procedimiento estratégico para la detección de daños en pavimento flexible en la infraestructura vial del municipio de Fusagasugá mediante las metodologías VIZIR y PCI. Tesis (Título de Ingeniero Civil). Bogotá: Universidad Piloto de Colombia, 2018.

Disponible en

http://repository.unipiloto.edu.co/bitstream/handle/20.500.12277/4853/Trabajo%20de%20 grado.pdf?sequence=1&isAllowed=y

PÉREZ León, José Feler y RAMÍREZ Leyva, Jhonel Kenedy. Evaluación y Determinación de las Patologías del Pavimento Asfáltico en la Av. Los Tréboles – Distrito de Chiclayo – Provincia de Chiclayo - Departamento Lambayeque. Tesis (Título de Ingeniero Civil). Lambayeque: Universidad Señor de Sipán, 2018.

Disponible en http://renati.sunedu.gob.pe/handle/sunedu/1250224

PEREDA Huamán, Cinthia Vanessa. Índice de condición de pavimento de la carretera Cajamarca - La Colpa. Tesis (Título de Ingeniero Civil). Cajamarca: Universidad Nacional de Cajamarca, 2014.

Disponible en

http://repositorio.unc.edu.pe/bitstream/handle/UNC/498/T%20625.8%20P434%202014.pd f?sequence=1&isAllowed=y

RODAS Montenegro, Juan de Dios e YBARRA Chauca, Lesly Jaqueline. Análisis Comparativo de Daños en el Pavimento con Tecnología LCMS y Método Semiautomatizado para Determinar PCI Tramo Morropón – Puente La Gallega (Piura). Tesis (Título de Ingeniero Civil). Piura: Universidad de San Martin De Porres, 2018

Disponible en http://repositorio.usmp.edu.pe/handle/20.500.12727/3924

TORRES Ccoyllar, Juscel Kriss. Evaluación de la Condición Actual del Pavimento Flexible de la Av. Calmell del Solar e Incidencia del Geotextil no Tejido en su Rehabilitación Como Alternativa de Solución – Huancayo 2016. Tesis (Título de Ingeniero Civil). Huancayo: Universidad Peruana los Andes, 2017.

Disponible en http://repositorio.upla.edu.pe/handle/UPLA/273

ZEVALLOS Gamarra, Rafael Ernesto. Identificación y Evaluación de las fallas superficiales en los pavimentos flexibles de algunas vías de la ciudad de Barranca – 2017. Tesis (Maestro en ingeniería Civil con Mención en Dirección de Empresas de la Construcción). Lima: Universidad Cesar Vallejo, 2017.

Disponible en

https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/16979/Zevallos_GRE.pdf?sequence=1&isAllowed=y

PORTA Romero, Soledad Yanina. Evaluación y comparación de metodologías índice de condición de pavimento (PCI) y visión e inspección de zonas e itinerarios en riesgo (VIZIR) en la avenida Mariscal Castilla tramo: Fundo el Provenir - La Victoria. Tesis (Título de Ingeniero Civil). Huancayo: Universidad Nacional Del Centro Del Perú, 2016.

Disponible en http://repositorio.uncp.edu.pe/handle/UNCP/432

PACHAY Parrales, Isaac Saul. Evaluación de la condición del pavimento flexible vía de acceso a la parroquia la Unión (0+000+0+966) aplicando el método PCI. Tesis (Título de Ingeniero Civil). Manabí: Universidad Estatal del Sur de Manabí, 2017.

Disponible en http://repositorio.unesum.edu.ec/handle/53000/929

ESTEBAN Rojas, Wilson. Comparación de las metodologías VIZIR y PCI con fines de intervención en la carretera PE-18A tramo KM 15+000-KM 25+306. Tesis (Título de Ingeniero Civil). Huánuco: Universidad Nacional "Hermilio Valdizan", 2016.

Disponible en http://repositorio.unheval.edu.pe/handle/UNHEVAL/1283

CONDORI Miranda, Amilcar Pedro y CALLAHUANCA Sucari, Niwton. Evaluación y comparación de la condición superficial del pavimento a través de la aplicación de las metodologías PCI y VIZIR en el pavimento flexible de la avenida Huancané (km 0+000 – 3+000) de la ciudad de Juliaca 2013". Tesis (Título de Ingeniero Civil). JULIACA: Universidad Andina "Néstor Cáceres Velásquez". 2015.

Disponible en http://repositorio.uancv.edu.pe/handle/UANCV/720

TINEO Oropeza, Ivellise Leonor. Evaluación del estado del pavimento asfáltico aplicando los métodos PCI y VIZIR para proponer alternativas de mantenimiento – AV. Canto Grande. Tesis (Título de Ingeniero Civil). Lima: Universidad Ricardo Palma. 2019.

Disponible

https://repositorio.urp.edu.pe/bitstream/handle/URP/2584/CIV_Tineo%20Oropeza%20Ivel lise_Tesis%20Final.pdf?sequence=1&isAllowed=y

GARCIA Shito, Emily Zumiko y RIVAS Cano, Elisa. Evaluación superficial del pavimento flexible mediante el método del PCI en la carretera industrial conache, provincia de Trujillo, La Libertad 2019. Tesis (Título de Ingeniero Civil). Trujillo: Universidad Privada Anterior Orrego. 2019.

Disponible en http://repositorio.upao.edu.pe/handle/upaorep/5652

ORDINOLA Enríquez, Luis Enrique. Determinación del índice de integridad estructural y condición operacional superficial de las vías PE1NN y PI-103; aplicando la metodología PCI, Sullana Piura. Tesis (Título de Maestro en transportes y conservación vial). Trujillo: Universidad Privada Antenor Orrego. 2015.

Disponible en http://repositorio.upao.edu.pe/handle/upaorep/2546

MEDINA Palacios, Armando y DE LA CRUZ Puma, Marcos. Evaluación superficial del pavimento flexible del Jr. José Gálvez del distrito de Lince aplicando el método del PCI. Tesis (Título de Ingeniero Civil). Lima: Universidad Peruana de Ciencias Aplicadas. 2015.

Disponible en http://hdl.handle.net/10757/581505

SÁNCHEZ Ramírez, Jenny Carolina. Evaluación del estado del pavimento de la Av. Ramón Catilla, Chulucanas, mediante el método PCI. Tesis (Título de Ingeniero Civil). Piura: Universidad de Piura. 2017.

Disponible en https://hdl.handle.net/11042/2919

ALLENDE García, Fabrizio. Evaluación comparativa de la servicialidad de las vías: SAPHI-SAQSAYWAMAN, SAQSAYWAMAN-ABRA CCORAO, ABRA CCORAO-CCORAO y CCORAO-RAYANIYOC; según la determinación del índice de condición del pavimento (PCI) y el índice de rugosidad internacional (IRI). Tesis (Título de Ingeniero Civil). Cusco: Universidad Andina Del Cusco. 2017.

Disponible en http://repositorio.uandina.edu.pe/handle/UAC/1245

DIAZ Cárdenas, Juan Manuel. Evaluación de la metodología PCI como herramienta para la toma de decisiones en las intervenciones a realizar en los pavimentos flexibles. Tesis (Título de Ingeniero civil). Bogotá: Universidad Militar Nueva Granada. 2014.

Disponible en http://hdl.handle.net/10654/12102

AMAYA Camargo, Andrés Fernando y ROJAS Guavita, Efraín Esteban. Análisis comparativo entre metodologías VIZIR y PCI para la auscultación visual de pavimentos flexibles en la cuidad de Bogotá. Tesis (Título de Ingeniero Civil). Bogotá: Universidad Santo Tomas (Primer Claustro Universitario de Colombia). 2017.

Disponible en http://hdl.handle.net/11634/4566

AMAYA Diaz, Estephania, BETANCOUR Cárdenas, Carlos Javier y ZORRO Castro, OscarJavier. Análisis del desempeño mecánico de las mezclas asfálticas tipo Stone Mastic (SMA) para aplicación como capa de rodadura en pavimentos de alto volumen de tránsito en Colombia. Especialización (Especialización en Ingeniería de Pavimentos). Bogotá: Universidad Católica de Colombia. 2019.

Disponible en https://hdl.handle.net/10983/23401

KAN, Wu. Development of PCI-based Pavement Performance Model for Management of Road Infrastructure System. Thesis (Degree Master of Science), Arizona: Arizona State University, 2015.

Disponible en:

https://repository.asu.edu/attachments/163996/content/Wu asu 0010N 15506.pdf

FLINTSCH, Gerardo W., DE LEON, Edgar, MCGHEE, Kevin K., AL-QADI, Imad L. Pavement Surface Macrotexture Measurement and Applications. Thesis (Degree Master of Science), Blacksburg: Virginia Polytechnic Institute and State University, 2003.

Disponible en: <u>10.3141/1860-19</u>

PROZZI, Jorge Alberto. Modeling Pavement Performance by Combining Field and Experimental Data. Dissertation (Degree of Doctor of Philosophy in Engineering). Berkeley: University of California. 2001.

Disponible en:

https://escholarship.org/content/qt1gx2425x/qt1gx2425x_noSplash_ee0a99b9abdffa62281 bf624ea309714.pdf UNIVERSIDAD CÉSAR VALLEJO

BARRET, Timothy P. Comparison of PASER and PCI Pavement Distress Indices. Report

(Degree of Master of Science Civil Engineering) Houghton: Michigan Technological

University. 2011.

Disponible en: https://doi.org/10.37099/mtu.dc.etds/502

Normas:

Reglamento Nacional de Edificaciones, Norma CE.010, 2010: "Pavimentos Urbanos", Lima

– Perú (Primera Edición)

Ministerio de transportes y comunicaciones-MTC. (2018). "Glosario de términos de uso

frecuente en proyectos de infraestructura vial".

American Society of Testing Materials (ASTM). Standard practice for Roads and Parking

Lots Condition Index Surveys. D6433-18. United States, 2018. 47 pp.

Libros:

HERNÁNDEZ, Roberto, FERNÁNDEZ, Carlos y BAPTISTA, Pilar. Metodología de la

Investigación. 6ta ed. México: Mc Graw-Hill, 2014. 600 pp.

ISBN: 978-1-4562-2396-0

SHAHIN, M. Y. Pavement Management for Airports, Roads, and Parking Lots. 2nd Edition.

New York: Springer, 2002. 572 pp.

ISBN: 978-0387-23464-9

130

VIVAR Romero, German. Diseño y construcción de pavimentos. 6ta ed. Lima. Consejo Departamental de lima, 1995.

KHON, S. D. y SHAHIN, M.Y. Evaluation of the Pavement Condition Index for Use on Porous Friction Surfaces. Illinois: US Army Construction Engineering Research Laboratory, 1984.

Technical Report No. M-351,

MILLER, John S. y BELLINGER, William Y. Distress Identification Manual for the Long-Term Pavement Performance Program. 5th Revised Edition. Office of Infrastructure Research and Development, 2014. 142 pp.

VÁSQUEZ Varela, Luis Ricardo. Pavement Condition Index (PCI) para pavimentos asfálticos y de concreto en carreteras. 2da edición. Manizales: Universidad Nacional de Colombia, 2006. 90 pp.

MANUAL de Carreteras – Conservación Vial. Lima: Ministerio de Transportes y Comunicaciones, 2013. 1154 pp.

MANUAL de Mantenimiento y Rehabilitación de Pavimentos Flexibles. Rev.2005. Caracas, 1993. 34 pp.

PAVER Distress Identification Manual – Asphalt Surfaced Airfields. United States: US Army Corps of Engineers, 2009. 48 pp.

GARBER, Nicholas J., HOEL, Lester A. Traffic & Highways Engineering. 3th Edition. United States: Brooks Cole, 2002. 874 pp.

ISBN: 0-534-38743-8

ANDREAS Loizos, Holds. Bearing Capacity of Roads, Railways and Airfields. 10va. ed.

California: Tom Scarpas Editors. 2017. 364pp.

ISBN: 9781351585781.

Publicaciones y Revistas:

RICO Rodriguez, Alfonso, TÉLLEZ Gutierrez, Rodolfo y GARNICA Anguas, Paul.

Pavimentos Flexibles. Problemática, Metodologías de diseño y tendencias. Publicación

técnica No.104. Sanfandila, Qro, 1998.

ISSN: 0188-7297

GUPTA, Ankit, KUMAR, Praveen, RASTOGI, Rajat. Critical Review of Flexible Pavement

Performance Models. KSCE Journal of Civil Engineering, Korea. November 11, 2014. 142-

148.

ISSN: 1226-7988

Diagnóstico de las características superficiales de los pavimentos. Publicación técnica

No.111. Sanfandila, Qro, 1998.

ISSN: 0188-7297

Lecciones del Mantenimiento de Carreteras en el Perú, 1992-2007. Instituto Peruano de

Economía (IPE). Lima, mayo 2008.

QIAO, Yaning, DAWSON, Andrew, PARRY, Tony, FLINTSCH, Gerardo y WANG

Wenshun. Flexible Pavements and Climate Change: A Comprehensive Review and

Implications. Sustainability.(1):21, 2020

132

ISSN: 2071-1050

JUANG, C. H., AMIRKHANIAN, S. N. Unified Pavement Distress Index for Managing Flexible Pavements [en línea]. Journal of Transportation Engineering. September 01, 1992. [Fecha de consulta: 15 de diciembre 2020].

Disponible en: https://doi.org/10.1061/(ASCE)0733-947X(1992)118:5(686)

GHARAIBEH, Nasir G., ZOU, Yajie, SALIMINEJAD, Siamk. Assessing the Agreement among Pavement Condition Indexes [en línea]. Journal of Transportation Engineering. December 28, 2009. [Fecha de consulta: 21 de diciembre 2020].

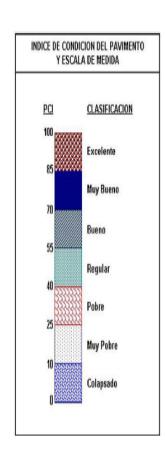
Disponible en: https://doi.org/10.1061/(ASCE)TE.1943-5436.0000141

BIANCHINI, Alessandra, BANDINI, Paola, SMITH, David W. Interrater Reliability of Manual Pavement Distress Evaluations [en línea]. Journal of Transportation Engineering. January 15, 2010. [Fecha de consulta: 06 de enero 2021].

Disponible en: https://doi.org/10.1061/(ASCE)0733-947X(2010)136:2(165)

Software:

ZABALA Ascaño, Gerber J. EvalPavCar. [Aplicación]. Ver.1.01.0001. Lima. Dirección General de Caminos y Ferrocarriles – MTC, Dirección de estudios especiales.



ANEXO 1

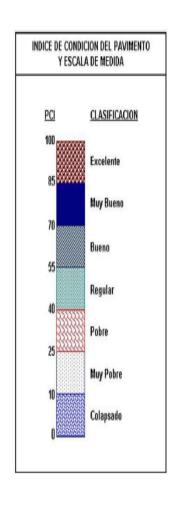
EVALUACIÓN DE SUPERFICIE DE RODADURA PARA MEJORAR TRANSITABILIDAD DE CARRETERA SAN ALEJANDRO -ALTO SHIRINGAL, APLICANDO METODOLOGIA PCI, UCAYALI 2020

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTIM D 6433 (2003)

			TRAMO: KM 35	5+000 - KM 3	56+000 / CAR	RIL DERECH/	1	
N°	AREA (m²)	UNIDAD DE MUESTREO	PROGRI	ESIVA FINAL	m	VDC	PCI	CLASIFICACION
01	225.0	001	355+000 -	355+050		0	100	Excelente
02	225.0	002	355+050 -	355+100		0	100	Excelente
03	225.0	003	355+100 -	355+150		5	95	Excelente
04	225.0	004	355+150 -	355+200		3	97	Excelente
05	225.0	005	355+200 -	355+250		0	100	Excelente
06	225.0	006	355+250 -	355+300		0	100	Excelente
07	225.0	007	355+300 -	355+350	8.5	26	74	Muy Bueno
08	225.0	008	355+350 -	355+400		1	99	Excelente
09	225.0	009	355+400 -	355+450	8.7	20	80	Muy Bueno
10	225.0	010	355+450 -	355+500		13	87	Excelente
11	225.0	011	355+500 -	355+550		0	100	Excelente
12	225.0	012	355+550 -	355+600		0	100	Excelente
13	225.0	013	355+600 -	355+650	8.6	20	80	Muy Bueno
14	225.0	014	355+650 -	355+700		7	93	Excelente
15	225.0	015	355+700 -	355+750		0	100	Excelente
16	225.0	016	355+750 -	355+800		4	96	Excelente
17	225.0	017	355+800 -	355+850		0	100	Excelente
18	225.0	018	355+850 -	355+900		0	100	Excelente
19	225.0	019	355+900 -	355+950		2	98	Excelente
20	225.0	020	355+950 -	356+000		11	89	Excelente
			PROMEDIO				94	Excelente

Validado por:

Ing. Victor Guillermo Rristo Castillo


AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

EVALUACIÓN DE SUPERFICIE DE RODADURA PARA MEJORAR TRANSITABILIDAD DE CARRETERA SAN ALEJANDRO -ALTO SHIRINGAL, APLICANDO METODOLOGIA PCI, UCAYALI 2020

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTIM D 6433 (2003)

			TRAMO: KM 355+000 - K	M 356+000 / CAR	RIL IZQUIERD	A	
N°	AREA (m²)	UNIDAD DE	PROGRESIVA	m	VDC	PCI	CLASIFICACION
"	()	MUESTREO	INICIAL - FINAL	"	""	101	02/0//0//0/
01	225.0	001	355+000 - 355+0	0	9	91	Excelente
02	225.0	002	355+050 - 355+10	10	8	92	Excelente
03	225.0	003	355+100 - 355+15	0	4	96	Excelente
04	225.0	004	355+150 - 355+20	10	0	100	Excelente
05	225.0	005	355+200 - 355+25	0 7.5	31	69	Bueno
06	225.0	006	355+250 - 355+30	0	8	92	Excelente
07	225.0	007	355+300 - 355+35	0	4	96	Excelente
08	225.0	008	355+350 - 355+40	10	5	95	Excelente
09	225.0	009	355+400 - 355+4	0	0	100	Excelente
10	225.0	010	355+450 - 355+50	10	30	70	Muy Bueno
11	225.0	011	355+500 - 355+5	0	4	96	Excelente
12	225.0	012	355+550 - 355+60	10	0	100	Excelente
13	225.0	013	355+600 - 355+65	0	5	95	Excelente
14	225.0	014	355+650 - 355+70	10	4	96	Excelente
15	225.0	015	355+700 - 355+75	0	1	99	Excelente
16	225.0	016	355+750 - 355+80	10	3	97	Excelente
17	225.0	017	355+800 - 355+85	0	14	86	Excelente
18	225.0	018	355+850 - 355+90	10	16	84	Muy Bueno
19	225.0	019	355+900 - 355+95	0	58	42	Regular
20	225.0	020	0	100	Excelente		
			PROMEDIO			90	Excelente

Validado por:

Ing. Victor Guillermo Rristo Castillo

AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP N° 47898

EVALUACIÓN DE SUPERFICIE DE RODADURA PARA MEJORAR TRANSITABILIDAD DE CARRETERA SAN ALEJANDRO -ALTO SHIRINGAL, APLICANDO METODOLOGIA PCI, UCAYALI 2020

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 355+000 - KM 356+000 km 355+000 001 AREA DE MUESTREO CARRIL PROGRESIVA FINAL 10L DERECHA km 355+050 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 25 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 17. Grieta parabólica (slippage) Corrugación 11. Parcheo 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO **SEVERIDAD** CANTIDAD TOTAL DENSIDAD DEDUCIDO

94

Excelente

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO 10L KM 355+000 - KM 356+000 km 355+000 001 CARRIL PROGRESIVA FINAL AREA DE MUESTREO IZQUIERDA km 355+050 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 25 - Enero - 2021 40M DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 7L 2. Exudación 8. Grieta de reflexión de iuntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados Hinchamiento Desprendimiento de agregados VALOR DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD DEDUCIDO 9.0 10 40.8 40.8 18.1 L 10 M 1.3 0.6 1.3 7 0.6 0.6 0.3 PROMEDIO 90 Excelente

Validado por:

0.4

PROMEDIO

L

10

Ing. Victor Guillermo Rristo Castillo

ADOLFO

AYBAR ARRIOLA INGENIERO CIVIL

0.4

02

SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 355+000 - KM 356+000 km 355+050 002 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 355+100 225 m² INSPECCIONADO POR FECHA TESISTAS MECR - JSS 25 - Enero - 2021

DAÑOS

Piel de cocodrilo
 Exudación
 Agrietamiento en bloque
 Abultamientos y hundimientos
 Corrugación

6. Depresión

7. Grieta de borde
8. Grieta de reflexión de juntas
9. Desnivel carril / berma
10. Grietas longitudinales y transversales

11. Parcheo 12. Pulimento de agregados 13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento

16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento

19. Desprendimiento de agregados

10L

DAÑO	SEVERIDAD		CANTIDAD										DENSIDAD	VALOR DEDUCIDO
10	L	1.8	1.8								1.8	0.8		
	PROMEDIO								Excelente					

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

" -			_		VALOR
	ón 8. Grieta niento en bloque 9. Desniv ientos y hundimientos 10. Grietas ción 11. Parche	de reflexión de juntas /el carril / berma s longitudinales y transversales	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados	/ 7M	
	SPECCIONADO POR SISTAS MECR - JSS		FECHA 25 - Enero - 2021	10L	
INC	IZQUIERDA	km 355+100	225 m²	Į1	0L
CAF	RRIL	PROGRESIVA FINAL	AREA DE MUESTREO	la.	
	KM 355+000 - KM 356+000	km 355+050	002		
SEC	CCION	PROGRESIVA INICIAL	UNIDAD DE MUESTREO		

DAÑO	SEVERIDAD					CANT	ΠDAD			TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	3.1	4.0							7.1	3.2	2.0
7	М	3.4								3.4	1.5	6.0
	BROWERIO											

PROMEDIO 90 Excelente

Validado por:

Ing. Victor Guillermo Rristo Custillo

AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

							ASTM D 6	433 (2003)						
SE	CCION				PROGR	ESIVA INICIA	AL .	UNID	AD DE MUES	STREO				
	KM 355+00	0 - KM 356+	000		kn	n 355+100			003					
CA	RRIL			_	PROGR	ESIVA FINAL	_	AREA	DE MUESTI	REO				
	DE	RECHA			kn	n 355+150			225 m²					
INS	SPECCIONADO P	OR						FECH	Α				10L	
TE	SISTAS MECR - J	SS						25 - Enero - 2021						
Exudacio Agrietan Abultam	DAÑOS DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 2. Exudación 8. Grieta de reflexión de juntas 3. Agrietamiento en bloque 9. Desnivel carril / berma 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 5. Corrugación 11. Parcheo 6. Depresión 12. Pulimento de agregados						13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento						10L 40M	
0. Depresio	JII .		12.170	ilinento de a	regados				ndimiento de	agregados				
DAÑO	DAÑO SEVERIDAD CANTIDAD								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				DENSIDAD	VALOR DEDUCIDO
10	L	3.3	6.9									10.2	4.5	5.0
10	М	1.3										1.3	0.6	
		-	PROMEDIO					94	Excelente					

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							ACTION DO	100 2000						
CA	RRIL		000]	kn PROGRI	ESIVA INICIA n 355+100 ESIVA FINAL n 355+150		AREA	003 DE MUESTR 225 m ² A	REO				
	DAÑOS													
	ón niento en bloque ientos y hundimien ción	tos	8. Gri 9. De 10. Gri 11. Pa	eta de borde ieta de reflexi snivel carril / ietas longitudi rcheo limento de ag	ón de juntas berma nales y tran			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	e vía ferrea miento amiento arabólica (sli				T	
DAÑO	SEVERIDAD					CANT	ΠDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.3										0.3	0.1	4.0
	PROMEDIO 90 Excelente													

Validado por:

Ing. Victor Guillermo Rristo Castillo

138

GUSTAVO ADOLFO AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

UNIDAD DE MUESTREO SECCION PROGRESIVA INICIAL KM 355+000 - KM 356+000 km 355+150 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 355+200 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 25 - Enero - 2021

DAÑOS

1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento

4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 17. Grieta parabólica (slippage) 11. Parcheo

6. Depresión 12. Pulimento de agregados 18. Hinchamiento

								19. Desprei	ndimiento de	agregados			
DAÑO	SEVERIDAD					CANT	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	0.8						0.8	0.4				
10	М	2.3									2.3	1.0	2.0
15	L	0.1						0.1	0.1	1.0			
	PROMEDIO								Excelente				

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 355+000 - KM 356+000 km 355+150 CARRIL PROGRESIVA FINAL AREA DE MUESTREO IZQUIERDA km 355+200 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 25 - Enero - 2021 10L DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 17. Grieta parabólica (slippage) 5. Corrugación 11. Parcheo 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados

VALOR DAÑO **SEVERIDAD** CANTIDAD TOTAL DENSIDAD DEDUCIDO 1.6 10 PROMEDIO Excelente

Validado por:

no Rristo Custillo Ing. Victor Guil

15L

10L

10M

PROMEDIO

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SECCION		PROGRESIVA INICIA	L	UNID	AD DE MUES	TREO			
KM 355+000 - KM 35	6+000	km 355+200			005				
CARRIL		PROGRESIVA FINAL		AREA	DE MUESTR	E0			
DERECHA		km 355+250			225 m²				
INSPECCIONADO POR			_	FECH	A				
TESISTAS MECR - JSS				25	- Enero - 202	1			
		DAÑOS							
Piel de cocodrilo Exudación Agrietamiento en bloque Abultamientos y hundimientos Corrugación Depresión	 Grieta de borde Grieta de reflexi Desnivel carril / Grietas longitudi Parcheo Pulimento de ag 	ón de juntas berma inales y transversales		15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	e vía ferrea miento amiento arabólica (slip			40L	
DAÑO SEVERIDAD		IDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO	
10 L 1.2							1.2	0.5	

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

Excelente

Excelente

SE	CCION				PROGR	ESIVA INICIA	\L	UNID	AD DE MUES	STREO			15L	
	KM 355+00	0 - KM 356+	000	7	kn	n 355+200			005					
CA	RRIL			_	PROGR	ESIVA FINAL	_	AREA	DE MUESTF	REO				
	IZQ	UIERDA		7	kn	n 355+250			225 m²					10M
INS	SPECCIONADO P	OR		_				FECH	IA					
TES	SISTAS MECR - J	SS						2	5 - Enero - 20	21				
Exudació Agrietam Abultami Corrugad	Piel de cocodrilo 7. Grieta de borde Exudación 8. Grieta de reflexi Agrietamiento en bloque 9. Desnivel carril / Abultamientos y hundimientos 10. Grietas longitud Corrugación 11. Parcheo Depresión 12. Pulimento de ag							15. Ahuella 16. Despla 17. Grieta (18. Hincha	de vía ferrea miento zamiento parabólica (sli				'10L	
DAÑO	DAÑO SEVERIDAD						CANTIDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	0.6 0.8									1.4	0.6		

Validado por:

M

11.4

18.0

PROMEDIO

10

15

Ing. Victor Guillermo Rristo Castillo

140

12.0

29.0

11.4

18.0

5.1

8.0

GUSTAVO ADOLFO AYBAF ARRIOLA INGENERO CIVIL Reg. CIP Nº 47898

							ASTM D 6	433 (2003)						
SE	CCION				PROGR	ESIVA INICIA	\L	UNID	AD DE MUES	STREO				
	KM 355+00	0 - KM 356+	000		kn	1 355+250			006					
CA	ARRIL				PROGR	ESIVA FINAL		AREA	DE MUESTI	REO				
	DE	RECHA			kn	n 355+300			225 m²					
INS	SPECCIONADO P	OR						FECH	IA				10L	
TE	TESISTAS MECR - JSS								- Enero - 20	21				
					DAÑOS								10L	
Exudaci Agrietan Abultam Corruga	DANOS 1. Piel de cocodrilo 2. Exudación 3. Agrieta de borde 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 10. Grietas longitudinales y transversales 11. Parcheo 6. Depresión 12. Pulimento de agregados								le vía ferrea miento zamiento parabólica (sli miento ndimiento de				3L	
DAÑO	SEVERIDAD					CANT	ΠDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	0.6	0.6									1.2	0.5	
3	L	1.5										1.5	0.7	
	•		PROMEDIO					94	Excelente		•			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

	A31111 D 9432 (2003)													
SE	CCION		PROGRESIVA INICIAL	UNIC	AD DE MUESTREO									
	KM 355+00	0 - KM 356+000	km 355+250		006									
CA	RRIL		PROGRESIVA FINAL	ARE	AREA DE MUESTREO									
	IZQ	UIERDA	km 355+300											
INS	SPECCIONADO PO	OR		FECI	1A									
TE	SISTAS MECR - JS	SS		2	5 - Enero - 2021									
1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 6. Depresión 7. Grieta de borde 8. Grieta de reflexión de juntas 9. Desnivel carril / berma 10. Grietas longitudinales y transversales 11. Parcheo 12. Pulimento de agregados				15. Ahuella 16. Despla 17. Grieta 18. Hincha	de vía ferrea amiento izamiento parabólica (slippage)			3M						
DAÑO	DAÑO SEVERIDAD CANTIDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO					

3 M 5.3 5.3 2.4 8.0 PROMEDIO 90 Excelente

Validado por:

Ing. Victor Guillermo Rristo Castillo

	SECCION KM 355+000 - KM 356+000 CARRIL DERECHA INSPECCIONADO POR TESISTAS MECR - JSS					ESIVA INICI/ n 355+300 ESIVA FINAI n 355+350		AREA FECH	007 DE MUEST 225 m ² IA	REO	10M 10L 10L			
2. Exuda 3. Agriet 4. Abulta 5. Corru	1. Piel de cocodrilo 7. Grieta de borde 2. Exudación 8. Grieta de reflexión de 3. Agrietamiento en bloque 9. Desnivel carril / berrr 4. Abultamientos y hundimientos 10. Grietas longitudinale: 5. Corrugación 11. Parcheo 6. Depresión 12. Pulimento de agrega					S		15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sl			10L 3M		
DAÑO	DAÑO SEVERIDAD CANTIDAD								TOTAL	DENSIDAD	VALOR DEDUCIDO			
10	L	1.7	16.2	27.6							45.5	20.2	10.0	
10	м	20.0									20.0	0.0	10.0	

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA

Excelente

94

							ASTM D 6	433 (2003)						
SE	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUES	TREO				
	KM 355+00	0 - KM 356+	000	7	km 355+300 007									
CA	ARRIL	PROGRESIVA FINAL AREA DE MUESTREO												
	IZQUIERDA					km 355+350 225 m²								
INS	INSPECCIONADO POR							FECH	IA					
TE	TESISTAS MECR - JSS 25 - Enero - 2021													
	DAÑOS													
1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 6. Depresión 7. Grieta de borde 8. Grieta de reflexión de juntas 9. Desnivel carril / berma 10. Grietas longitudinales y transversal 11. Parcheo 12. Pulimento de agregados							15. Ahuella 16. Despla 17. Grieta 18. Hincha	de vía ferrea miento zamiento parabólica (sli				T		
DAÑO	SEVERIDAD	DAD CANTIDAD									TOTAL	DENSIDAD	VALOR DEDUCIDO	
1	1	0.6										0.6	0.3	4.0

PROMEDIO Excelente

Validado por:

3

14.5

PROMEDIO

Ing. Victor Guilermo Rristo Castillo

GUSTAVO ADOLFO AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP N° 47898

14.5

6.5

15.0

CA	CCION KM 355+00 RRIL DE SPECCIONADO PO SISTAS MECR - J	RECHA DR	000		PROGRESIVA INICIAL UNIDAD DE MUESTREO km 355+350 008 PROGRESIVA FINAL AREA DE MUESTREO km 355+400 225 m² FECHA 25 - Enero - 2021							hoL		
	ón niento en bloque ientos y hundimien ción	snivel carril / ietas longitudi rcheo	flexión de juntas 14. Cruce de vía ferrea							Чом				
DAÑO	SEVERIDAD		CANTIDAD										DENSIDAD	VALOR DEDUCIDO
10	L	2.5										2.5	1.1	
10	M 1.5										1.5	0.7	1.0	
	PROMEDIO							94	Excelente					

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							ASTINIDO	433 (2003)									
SE	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUES	STREO							
	KM 355+00	0 - KM 356+	000		kn	n 355+350			008								
CA	CARRIL PROGRESI							AREA DE MUESTREO									
IZQUIERDA						km 355+400 225 m ²											
INS	INSPECCIONADO POR							FECHA									
TES	TESISTAS MECR - JSS							2	- Enero - 20	21							
	DAÑOS																
Exudació Agrietam Abultami	1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 7. Grieta de borde 8. Grieta de reflexión de juntas 9. Desnivel carril / berma 10. Grietas longitudinales y transversales 11. Parcheo						15. Ahuella 16. Despla	le vía ferrea miento zamiento parabólica (sli	ppage)			11.	_				
or Depresio	A1		12.170	ilimento de a	gregados				ndimiento de	agregados							
DAÑO	SEVERIDAD	IDAD CANTIDAD										TOTAL	DENSIDAD	VALOR DEDUCIDO			
1	L	1.0										1.0	0.4	5.0			
	PROMEDIO 90 Excelente								•								

Validado por:

Ing. Victor Guillermo Rristo Castillo

AYBAR ARRIOLA
INGENIERO CIVIL
Reg CIP Nº 47898

SECCION		PROGRESIVA INICIAL	_	UNIDAD DE MUESTREO		
KM 355+000 - KM 356	+000	km 355+400		009		
CARRIL	PROGRESIVA FINAL		AREA DE MUESTREO			
DERECHA		km 355+450]	225 m²		
INSPECCIONADO POR	_			FECHA		,
TESISTAS MECR - JSS				25 - Enero - 2021		10M
				10L		
Piel de cocodrilo Exudación Agrietamiento en bloque	Exudación 8. Grieta de reflexión de juntas					
Abultamientos y hundimientos Corrugación	11. Parcheo	finales y transversales	15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage)			3M
6. Depresión	12. Pulimento de ag	gregados		Hinchamiento Desprendimiento de agregados		

DAÑO	SEVERIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO						
10	L	10.8									10.8	4.8	5.0
10	М	4.3									4.3	1.9	5.0
3	М	16.0									16.0	7.1	16.0
PROMEDIO							94	Excelente					

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

	ASTM D 6433 (2003)																
SE	CCION			_	PROGR	ESIVA INICIA	L_	UNID	AD DE MUES	TREO							
	KM 355+00	0 - KM 356+	000		kn	km 355+400 009											
CA	RRIL			_	PROGRESIVA FINAL AREA DE MUESTREO												
	IZQUIERDA					km 355+450 225 m ²						leas					
INS	INSPECCIONADO POR							FECH	IA			HOL					
TE	TESISTAS MECR - JSS							2	5 - Enero - 20	21							
	DAÑOS																
1. Piel de cocodrilo 7. Grieta de borde 2. Exudación 8. Grieta de reflexió 3. Agrietamiento en bloque 9. Desnivel carril / t 4. Abultamientos y hundimientos 10. Grietas longitudio 5. Corrugación 11. Parcheo 6. Depresión 12. Pulimento de agri					ión de junta: / berma dinales y trar			15. Ahuella 16. Despla 17. Grieta ; 18. Hincha	de vía ferrea miento zamiento parabólica (sli								
DAÑO	SEVERIDAD CANTIDAD									TOTAL	DENSIDAD	VALOR DEDUCIDO					
40		2.0										2.0	0.0				

Excelente

Validado por:

Ing. Victor Guillermo Bristo Castillo

144

SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 355+000 - KM 356+000 km 355+450 010 CARRIL PROGRESIVA FINAL AREA DE MUESTREO 3M DERECHA km 355+500 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 25 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 13. Huecos 7. Grieta de borde 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión 18. Hinchamiento 12. Pulimento de agregados 19. Desprendimiento de agregados VALOR DAÑO **SEVERIDAD** CANTIDAD TOTAL DENSIDAD **DEDUCIDO**

3	М	2.4	7.9						10.3	4.6	13.0
			PROMEDIO			94	Excelente				

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 355+000 - KM 356+000 km 355+450 010 PROGRESIVA FINAL AREA DE MUESTREO CARRIL IZQUIERDA km 355+500 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 25 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 10L_{1M} 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 12. Pulimento de agregados 18. Hinchamiento 6. Depresión 19. Desprendimiento de agregados

DAÑO	SEVERIDAD				CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	М	5.9								5.9	2.6	30.0
10	L	1.3								1.3	0.6	
			PROMEDIO				90	Excelente				

Validado por:

Ing. Victor Guillermo Rristo Custillo

145

AYBAR ARRIOLA INGENERO CIVIL

PROMEDIO

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SE	CCION			_	PROGR	ESIVA INICIA	AL_	UNID	AD DE MUES	STREO			
	KM 355+00	0 - KM 356+	-000		kr	n 355+500			011				
CA	RRIL			_	PROGR	ESIVA FINAL	_	AREA	DE MUESTI	REO			
	DE	RECHA			kr	n 355+550			225 m²				
INS	SPECCIONADO P	OR		_			_	FECH	Α				
TE	SISTAS MECR - J	SS						26	- Enero - 20	21			
					DAÑOS								
	ón niento en bloque		8. Gr 9. De	ieta de borde ieta de reflex esnivel carril	ión de junta / berma			13. Huecos 14. Cruce d 15. Ahuella	le vía ferrea miento				
 Abultami Corruga Depresió 		tos	11. Pa	ietas longituo ircheo ilimento de a	•	nsversales		18. Hinchar	arabólica (sli			40L	
DAÑO	SEVERIDAD					CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
10	ı	13									13	0.6	

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

9	ECCION			_	PROGR	ESIVA INICIA	AL_	UNID	AD DE MUES	STREO			
	KM 355+00	0 - KM 356+	000		kr	n 355+500			011				
0	ARRIL				PROGR	ESIVA FINAL		AREA	DE MUESTF	REO			
	IZQ	UIERDA			kr	n 355+550			225 m²			40L	
I	NSPECCIONADO P	OR						FECH	IA			102	
I	ESISTAS MECR - J	SS						2	5 - Enero - 20	21		3L	
	e cocodrilo			ieta de borde				13. Huecos					
	amiento en bloque mientos y hundimien pación	tos	9. De 10. Gri 11. Pa	ieta de reflex esnivel carril ietas longitud rcheo limento de a	/ berma dinales y trar			15. Ahuella 16. Despla 17. Grieta j 18. Hincha	zamiento parabólica (sli		3L		
DAÑO	SEVERIDAD					CAN	ΓΙDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
10	1	1.4									1.4	0.6	

Excelente

DAÑO	SEVERIDAD				CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	1.4								1.4	0.6	
3	L	4.6	5.5							10.1	4.5	4.0
			PROMEDIO				90	Excelente				

Validado por:

Ing. Victor Guillermo Rristo Castillo

PROGRESIVA INICIAL UNIDAD DE MUESTREO SECCION KM 355+000 - KM 356+000 km 355+550 012 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 355+600 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 26 - Enero - 2021 DAÑOS 10L 1. Piel de cocodrilo 13. Huecos 7. Grieta de borde 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 10L 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 10L 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO **SEVERIDAD** CANTIDAD TOTAL DENSIDAD DEDUCIDO 10 2.6 5.8 6.5 14.9 L

94

Excelente

Excelente

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

PROMEDIO

							//4////	100 2000						
0.5	COLON				DDOOD	FORM BUCK		LIMIT	AD DE MUE	OTDEO.				
SE	CCION			_	PROGR	ESIVA INICIA	AL_	UNIL	AD DE MUE	STREO				
	KM 355+00	00 - KM 356+	000		kr	n 355+550			012					
CA	RRIL				PROGR	ESIVA FINAI	L	ARE	A DE MUEST	REO				
	IZQ	UIERDA			kr	n 355+600			225 m²					
INS	PECCIONADO P	OR		_				FECI	łA Ał					
TE	SISTAS MECR - J	SS						2	6 - Enero - 20	121				
					DAÑOS									
1. Piel de c	ocodrilo		7. G	rieta de borde	е			13. Huecos	3					
2. Exudació	ón		8. G	rieta de reflex	xión de junta	S		14. Cruce	de vía ferrea					
	niento en bloque		9. De	esnivel carril	/ berma			15. Ahuella	miento					
4. Abultami	ientos y hundimien	ntos	10. G	rietas longitu	dinales y trar	nsversales		16. Despla	zamiento				kai	
5. Corrugad	ción		11. Pa	archeo					parabólica (sl	ippage)			10L	
6. Depresió	ón		12. Pt	ılimento de a	gregados			18. Hincha	miento					
								19. Despre	ndimiento de	agregados				
24/10	AEI/EDIDAD					0.415	TID AD					TOTAL	DEMOID 4D	VALOR
DAÑO	SEVERIDAD					CAN	TIDAD					TOTAL	DENSIDAD	DEDUCIDO
40				I			I		T		I		2.4	
10	L	0.9	1		1	1		1		1		0.9	0.4	

Validado por:

PROMEDIO

Ing. Victor Guillermo Rristo Custillo

147

AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

SECCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO	
KM 355+000 - KM 356	+000	km 355+600	013	
CARRIL		PROGRESIVA FINAL	AREA DE MUESTREO	
DERECHA		km 355+650	225 m²	
INSPECCIONADO POR	_		FECHA	l
TESISTAS MECR - JSS			26 - Enero - 2021	10L
		DAÑOS		<u>'</u>
Piel de cocodrilo Exudación Agrietamiento en bloque Abultamientos y hundimientos Corrugación Depresión	 Grieta de borde Grieta de reflexi Desnivel carril / Grietas longitud Parcheo Pulimento de ag 	ión de juntas berma inales y transversales	 13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados 	10 <u> </u>

DAÑO	SEVERIDAD				CANT	ΓΙDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	4.0	5.7							9.7	4.3	5.0
3	L	4.3								4.3	1.9	1.0
3	М	37.6								37.6	16.7	17.0
			PROMEDIO				94	Excelente				

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SECCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO			
KM 355+000 - KM 35	6+000	km 355+600	013			
CARRIL		PROGRESIVA FINAL	AREA DE MUESTREO			
IZQUIERDA		km 355+650	225 m²			
INSPECCIONADO POR			FECHA			
TESISTAS MECR - JSS			26 - Enero - 2021			
		DAÑOS				
Piel de cocodrilo Exudación Agrietamiento en bloque Abultamientos y hundimientos Corrugación Depresión	 Grieta de borde Grieta de reflexi Desnivel carril / Grietas longitud Parcheo Pulimento de ag 	ón de juntas berma inales y transversales	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados		1	
DAÑO SEVERIDAD		CANTIDAL)	TOTAL	DENSIDAD	VALOR

 DAÑO
 SEVERIDAD
 CANTIDAD
 TOTAL
 DENSIDAD
 VALOR DEDUCIDO

 1
 L
 0.9
 0.4
 5.0

 PROMEDIO
 90
 Excelente

Validado por:

Ing. Victor Guillermo Rristo Castillo

. . .

SE	CCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO			
	KM 355+00	0 - KM 356+000	km 355+650	014			
CA	ARRIL		PROGRESIVA FINAL	AREA DE MUESTREO			
	DE	RECHA	km 355+700	225 m²			
INS	SPECCIONADO PO	DR .		FECHA			
TE	SISTAS MECR - JS	SS		26 - Enero - 2021			
			DAÑOS			10L	
	ón niento en bloque iientos y hundimien ción	9. Desnivel tos 10. Grietas k 11. Parcheo	le reflexión de juntas el carril / berma longitudinales y transversales	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados		3L 3L	=
DAÑO	SEVERIDAD		CANTIDA)	TOTAL	DENSIDAD	VALOR DEDUCIDO

DAÑO	SEVERIDAD				CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	19.8								19.8	8.8	8.0
3	L	0.5	0.5							0.9	0.4	(1)
			PROMEDIO				94	Excelente				

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SE	CCION			_	PROGRI	ESIVA INICIA	AL_	UNID	AD DE MUE	STREO				
	KM 355+00	0 - KM 356+	000		kn	n 355+650			014					
CA	ARRIL			_	PROGR	ESIVA FINAL	_	ARE	A DE MUESTI	REO				
	IZQ	UIERDA		7	kn	n 355+700			225 m²					
IN:	SPECCIONADO P	OR		_			_	FECI	łA A					
TE	SISTAS MECR - J	SS						2	6 - Enero - 20	21				
					DAÑOS									
1. Piel de	cocodrilo		7. Gr	ieta de borde				13. Huecos	3					
2. Exudaci				ieta de reflexió	•	S			de vía ferrea					
	niento en bloque nientos y hundimien	toe		snivel carril / k ietas longitudir		neverealee		 Ahuella Despla 						
5. Corruga		105	11. Pa		iaics y irai	isversaics			zamiento parabólica (sli	ippage)			-	1
6. Depresi			12. Pu	limento de agr	egados			18. Hincha		FF-3-/			1L	
								19. Despre	ndimiento de	agregados				
DAÑO	SEVERIDAD					CAN	ΠDAD					TOTAL	DENSIDAD	VALOR
DANO	SEVERIDAD					CAN	IIDAD					TOTAL	DENSIDAD	DEDUCIDO
1	L	0.6										0.6	0.3	4.0
	•		PROMEDIO			•	•	90	Excelente		•	•		

Validado por:

Ing. Victor Guillermo Rristo Castillo

Si	ECCION				PROGR	ESIVA INICIA	AL .	UNID	AD DE MUES	STREO			
	KM 355+00	0 - KM 356+	000		kn	n 355+700			015				
C	ARRIL				PROGR	ESIVA FINAL		AREA	DE MUESTI	REO			
	DE	RECHA			kn	n 355+750			225 m²				
IN	SPECCIONADO P	OR						FECH	Α				
TE	ESISTAS MECR - J	SS						26	6 - Enero - 20	21			
		DAÑOS											
Exudac Agrietar	Piel de cocodrilo R. Grieta d Exudación R. Grieta d Agrietamiento en bloque Abultamientos y hundimientos							15. Ahuella	le vía ferrea miento				
Abultan Corruga Corruga Corruga Corruga	ación	tos	11. Pa	ietas longitudi rcheo limento de ag		isversales		18. Hinchar	arabólica (sli			'10L	
DAÑO										TOTAL	DENSIDAD	VALOR DEDUCIDO	
10 L 0.6											0.6	0.3	
				94	Excelente								

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							ASTIVIDO	100 (2000)						
SE	CCION				PROGR	ESIVA INICIA	\L	UNID	AD DE MUES	STREO				
	KM 355+00	0 - KM 356+	000		kn	n 355+700			015					
CA	RRIL			_	PROGR	ESIVA FINAL	_	AREA	DE MUESTI	REO				
	IZQ	UIERDA			kn	n 355+750			225 m²					
INS	PECCIONADO P	OR .						FECH	IA .					
TE:	SISTAS MECR - J	SS						2	3 - Enero - 20	21				
	DAÑOS													
2. Exudació 3. Agrietam	de cocodrilo 7. Grieta de borde 13. Huecos										10	DL		
5. Corruga	ción		11. Pa	rcheo	-				oarabólica (sli	ppage)			10L ^{'10L}	
6. Depresió	on		12. Pu	limento de ag	regados				miento ndimiento de	agregados			1	
DAÑO	SEVERIDAD					CANT	TIDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	0.8	0.9	4.6								6.3	2.8	1.0
	L 0.8 0.9 4.6													

Validado por:

Ing. Victor Guillermo Rristo Castillo

150

PROGRESIVA INICIAL UNIDAD DE MUESTREO SECCION KM 355+000 - KM 356+000 km 355+750 016 AREA DE MUESTREO CARRIL PROGRESIVA FINAL DERECHA km 355+800 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 26 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 18. Hinchamiento 6. Depresión 12. Pulimento de agregados 19. Desprendimiento de agregados VALOR

DANO	SEVERIDAD				CANI	IIDAD				TOTAL	DENSIDAD	DEDUCIDO
1	L	0.8								0.8	0.4	4.0
			PROMEDIO				94	Excelente				

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

	SECCION			PROGRESIVA INICIAL		UNIDAD DE MUESTREO				
	KM 355+00	00 - KM 356+000		km 355+750		016				
	CARRIL			PROGRESIVA FINAL		AREA DE MUESTREO				
	IZQ	UIERDA		km 355+800		225 m²				
	INSPECCIONADO P	OR			•	FECHA				
	TESISTAS MECR - J	SS				26 - Enero - 2021				
									10L	
				DAÑOS					IVL	
	Piel de cocodrilo 7. Grieta Exudación 8. Grieta					Huecos				
	acion etamiento en bloque		a de reflexión nivel carril / b			Cruce de vía ferrea Ahuellamiento			10L QL	
	tamientos y hundimier			ales y transversales		Desplazamiento			10E 0E	
5. Com		,		Grieta parabólica (slippage)				3L		
6. Depr	6. Depresión 12. Pulimento de agregado			egados		Hinchamiento				
					19. [Desprendimiento de agrega	dos			
DAÑO	SEVEDIDAD			CANTIDA	n			TOTAL	DENSIDAD	VALOR

DAÑO	SEVERIDAD					CANT	ΠDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	0.5	0.8									1.3	0.6	
3	L	3.8	3.8 4.3									8.1	3.6	3.0
			PROMEDIO					90	Excelente					

Validado por:

Ing. Victor Guillermo Rristo Castillo

SECCION	PROGRESIVA INICIAL	UNIDAD DE MUESTREO
KM 355+000 - KM 356+000	km 355+800	017
CARRIL	PROGRESIVA FINAL	AREA DE MUESTREO
DERECHA	km 355+850	225 m²
INSPECCIONADO POR		FECHA
TESISTAS MECR - JSS		26 - Enero - 2021

DAÑOS

1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación

6. Depresión

- 7. Grieta de borde 8. Grieta de reflexión de juntas 9. Desnivel carril / berma
- 10. Grietas longitudinales y transversales 11. Parcheo 12. Pulimento de agregados
- 13. Huecos
- 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage)
- 18. Hinchamiento

19. Desprendimiento de agregados

10L

DAÑO	SEVERIDAD				CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	0.7								0.7	0.3	
			PROMEDIO				94	Excelente				

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

	SECCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO		
	KM 355+000 - KM 356+000		km 355+800	017		
	CARRIL		PROGRESIVA FINAL	AREA DE MUESTREO		
	IZQUIERDA		km 355+850	225 m²		
	INSPECCIONADO POR			FECHA		
	TESISTAS MECR - JSS			26 - Enero - 2021		
			DAÑOS		1L	7
2. Exud 3. Agrid 4. Abul	etamiento en bloque tamientos y hundimientos ugación	7. Grieta de borde 8. Grieta de reflexión 9. Desnivel carril / b 10. Grietas longitudin 11. Parcheo 12. Pulimento de agre	erma ales y transversales	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados	10L 10L 3L	_

DAÑO	SEVERIDAD				CANT	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	3.5								3.5	1.6	15.0
10	L	0.6	0.7							1.3	0.6	
3	L	0.9								0.9	0.4	(1)
			PROMEDIO				90	Excelente				

Validado por:

Ing. Victor Guillermo Rristo Castillo

AYBAR ARRIOLA INGENERO CIVIL Reg. CIP N° 47898

ASTM D 6433 (2003)

	KM 355+00	RECHA DR	-000		PROGR	ESIVA INICI/ n 355+850 ESIVA FINAI n 355+900		UNID AREA	AD DE MUESTI 225 m ² IA	REO				
1. Piel de coco 2. Exudación 3. Agrietamient 4. Abultamient 5. Corrugación 6. Depresión	drilo to en bloque os y hundimient		8. Gr 9. De 10. Gr 11. Pa	rieta de borde rieta de reflex esnivel carril rietas longitud archeo ulimento de a	ión de junta: / berma dinales y trar			13. Huecos 14. Cruce o 15. Ahuella 16. Despla: 17. Grieta p 18. Hinchai	le vía ferrea miento zamiento arabólica (sli	ippage)			40L	
DAÑO S	SEVERIDAD				CANTIDAD								DENSIDAD	VALOR DEDUCIDO
10	L	1.5										1.5	0.7	
			PROMEDIO					94	Excelente					

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

		<u> </u>								
<u> </u>	SECCION			PROGRESIVA INICIAL		UNIDAD DE MUESTREO				
	KM 355+00	0 - KM 356+000		km 355+850		018				
(CARRIL			PROGRESIVA FINAL	-	AREA DE MUESTREO				
	IZQ	UIERDA]	km 355+900]	225 m²				
	INSPECCIONADO P	OR	•		•	FECHA				
l F	TESISTAS MECR - J	SS]	26 - Enero - 2021				
			,				44			
			DAÑOS							
1. Piel d	le cocodrilo		13.	Huecos						
2. Exuda	ación	8. Grie	ta de reflexió	n de juntas	14.	Cruce de vía ferrea			21	
	tamiento en bloque		nivel carril / b	erma	15.	Ahuellamiento			3L	
	amientos y hundimien		-	ales y transversales		Desplazamiento			10L	
	. Corrugación 11. Parcheo					Grieta parabólica (slippage)			IUL	
6. Depre	Depresión 12. Pulimento de agregados			egados	-	Hinchamiento			1	
					19.	Desprendimiento de agregad	08		IL.	
DAÑO	DAÑO SEVERIDAD			CANTIDA	D			TOTAL	DENSIDAD	VALOR DEDUCIDO

DAÑO	SEVERIDAD				CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.4	3.8							4.3	1.9	17.0
10	L	0.8								0.8	0.4	
3	L	1.4								1.4	0.6	(1)
			PROMEDIO				90	Excelente				

Validado por:

Ing. Victor Guillermo Rristo Castillo

GUSTAVO ADOLFO AYBAR ARRIOLA INGENERO CIVIL

						CARRETER	ASTM D 6		HOFALTICA					
SE	CCION				PROGR	ESIVA INICIA	\L	UNID	AD DE MUES	STREO				
	KM 355+00	0 - KM 356+	000		kn	n 355+900			019					
CA	ARRIL				PROGR	ESIVA FINAL		AREA	DE MUESTI	REO				
	DE	RECHA			kn	n 355+950			225 m²					
INS	SPECCIONADO P	OR						FECH	IA					
TE	SISTAS MECR - J	SS						26	6 - Enero - 20	21			h	
					DAÑOS								3L 110L	
	ón niento en bloque nientos y hundimien ción	tos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflex esnivel carril ietas longitud archeo ulimento de a	ción de juntas / berma dinales y tran			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sli				¹ 10L	
DAÑO	SEVERIDAD					CANT	ΠDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	0.5	6.9									7.4	3.3	2.0
3	L	2.8										2.8	1.2	
	•		PROMEDIO					94	Excelente		•			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

			AOII	VI D 6433 (2003)			
SE	CCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO			
	KM 355+00	0 - KM 356+000	km 355+900	019			
CA	RRIL		PROGRESIVA FINAL	AREA DE MUESTREO			
	IZQ	UIERDA	km 355+950	225 m²			
INS	PECCIONADO P	OR		FECHA			
TE	SISTAS MECR - J	SS		26 - Enero - 2021			
			DAÑOS				
1. Piel de c		7. Grieta de borde		13. Huecos			
Exudació		Grieta de reflexión	•	14. Cruce de vía ferrea			
	niento en bloque	Desnivel carril / b		15. Ahuellamiento		15M	
	ientos y hundimien		nales y transversales	16. Desplazamiento			
Corruga		11. Parcheo		17. Grieta parabólica (slippage)			
Depresió	on	12. Pulimento de agre	egados	18. Hinchamiento			
				19. Desprendimiento de agregados			
DAÑO	SEVERIDAD		CANTIDAD		TOTAL	DENSIDAD	VALOR DEDUCIDO

 DAÑO
 SEVERIDAD
 CANTIDAD
 TOTAL
 DENSIDAD
 VALOR DEDUCIDO

 15
 M
 62.1
 27.6
 58.0

 PROMEDIO
 90
 Excelente

Validado por:

Ing. Victor Guilermo Rristo Castillo

AYBAR ARRIOLA

KM 355+000 - KM 356+000 km 355+950 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 356+000 INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 26 - Enero - 2021

DAÑOS

PROGRESIVA INICIAL

1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación

SECCION

6. Depresión

7. Grieta de borde 8. Grieta de reflexión de juntas 9. Desnivel carril / berma

10. Grietas longitudinales y transversales 11. Parcheo 12. Pulimento de agregados

13. Huecos

14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage)

18. Hinchamiento

UNIDAD DE MUESTREO

020

225 m²

19. Desprendimiento de agregados

DAÑO	SEVERIDAD				CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.7	1.7							2.4	1.0	11.0
		-	PROMEDIO				94	Excelente				_

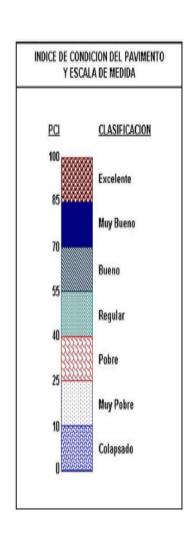
METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SE	ECCION				PROGR	ESIVA INICIA	L_	UNID	AD DE MUES	STREO			
	KM 355+00	0 - KM 356+	000		kr	n 355+950			020				
C/	ARRIL			_	PROGR	ESIVA FINAL		AREA	A DE MUESTI	REO			
	IZQ	UIERDA			kr	n 356+000			225 m²				
IN	SPECCIONADO P	OR		_				FECH	IA A				
TE	SISTAS MECR - J	SS						2	6 - Enero - 20	21			
					DAÑOS								
	ión niento en bloque	e ción de junta / berma dinales y trar			13. Huecos 14. Cruce o 15. Ahuella 16. Despla	de vía ferrea miento			40L				
5. Corruga	4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 5. Corrugación 11. Parcheo 6. Depresión 12. Pulimento de agregados							17. Grieta (18. Hincha	parabólica (sli			110L	
DAÑO	NO SEVERIDAD CANTIDAD									TOTAL	DENSIDAD	VALOR DEDUCIDO	
10	L	1.2	2.4								3.6	1.6	

90

Excelente

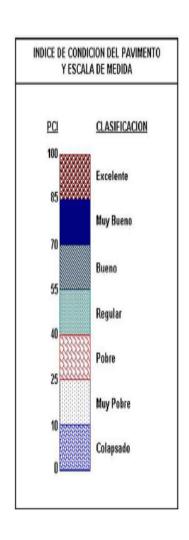
Validado por:


PROMEDIO

Ing. Victor Guillermo Rristo Castillo

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

			TRAMO: KM 35	7 + 000 - KM 3	58+000 / CAR	RIL DERECH/	1	
Nº	AREA (m²)	UNIDAD DE	PROGRE	ESIVA	m	VDC	PCI	CLASIFICACION
IN.	(111)	MUESTREO	INICIAL -	FINAL		VUC	ru	CLASIFICACION
01	225.0	001	357+000 -	357+050		0	100	Excelente
02	225.0	002	357+050 -	357+100	2.8	88	12	Muy Pobre
03	225.0	003	357+100 -	357+150	2.8	88	12	Muy Pobre
04	225.0	004	357+150 -	357+200	2.8	88	12	Muy Pobre
05	225.0	005	357+200 -	357+250		0	100	Excelente
06	225.0	006	357+250 -	357+300		4	96	Excelente
07	225.0	007	357+300 -	357+350		0	100	Excelente
08	225.0	008	357+350 -	357+400		4	96	Excelente
09	225.0	009	357+400 -	357+450		16	84	Muy Bueno
10	225.0	010	357+450 -	357+500		8	92	Excelente
11	225.0	011	357+500 -	357+550		0	100	Excelente
12	225.0	012	357+550 -	357+600		6	94	Excelente
13	225.0	013	357+600 -	357+650		4	96	Excelente
14	225.0	014	357+650 -	357+700		0	100	Excelente
15	225.0	015	357+700 -	357+750		19	81	Muy Bueno
16	225.0	016	357+750 -	357+800		2	98	Excelente
17	225.0	017	357+800 -	357+850		6	94	Excelente
18	225.0	018	357+850 -	357+900		4	96	Excelente
19	225.0	019	357+900 -	357+950		5	95	Excelente
20	225.0	020	357+950 -	358+000		4	96	Excelente
			PROMEDIO				83	Muy Bueno


Validado por:

Ing. Victor Guillermo Rristo Castillo

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

			TRAMO: KM 357	7 + 000 - KM 35	8+000 / CAR	RIL IZQUIERD	A	
No	AREA (m²)	UNIDAD DE	PROGRE	ESIVA	m	VDC	PCI	CLASIFICACION
		MUESTREO	INICIAL -	FINAL				
01	225.0	001	357+000 -	357+050		0	100	Excelente
02	225.0	002	357+050 -	357+100		4	96	Excelente
03	225.0	003	357+100 -	357+150		2	98	Excelente
04	225.0	004	357+150 -	357+200		0	100	Excelente
05	225.0	005	357+200 -	357+250		0	100	Excelente
06	225.0	006	357+250 -	357+300	7.2	35	65	Bueno
07	225.0	007	357+300 -	357+350		0	100	Excelente
08	225.0	008	357+350 -	357+400		3	97	Excelente
09	225.0	009	357+400 -	357+450		4	96	Excelente
10	225.0	010	357+450 -	357+500		4	96	Excelente
11	225.0	011	357+500 -	357+550		0	100	Excelente
12	225.0	012	357+550 -	357+600		0	100	Excelente
13	225.0	013	357+600 -	357+650		2	98	Excelente
14	225.0	014	357+650 -	357+700		4	96	Excelente
15	225.0	015	357+700 -	357+750		0	100	Excelente
16	225.0	016	357+750 -	357+800		4	96	Excelente
17	225.0	017	357+800 -	357+850		2	98	Excelente
18	225.0	018	357+850 -	357+900		4	96	Excelente
19	225.0	019	357+900 -	357+950		4	96	Excelente
20	225.0	020	357+950 -	358+000		4	96	Excelente
			PROMEDIO				96	Excelente

Validado por:

Ing. Victor Guillermo Rristo Castillo

			METO	O ESTAND				PERFICIE	NDICION SU Asfaltica		DEL PAVII	MENTO		
SE	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUES	STREO				
	KM 357+00	00 - KM 358+	000	7	kr	n 357+000			001					
CA	RRIL			_	PROGR	ESIVA FINAL		AREA	DE MUESTI	REO				
	DERECHA km 357+050 225 m ²													
INS	INSPECCIONADO POR													
TES	SISTAS MECR - J	SS												
					DAÑOS									
	ón niento en bloque ientos y hundimier ción	itos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflex esnivel carril / ietas longitud rcheo limento de a	ión de junta berma linales y trar			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sli miento					
DAÑO												TOTAL	10L DENSIDAD	VALOR DEDUCIDO
10	L	0.6										0.6	0.3	

Muy Bueno

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

PROMEDIO

							ASTM D 6	433 (2003)					
CA	RRIL		000]	kn PROGRI	ESIVA INICIA n 357+000 ESIVA FINAL n 357+050		AREA	001 .DE MUESTI .225 m ² A	REO			
	ón niento en bloque ientos y hundimien ción	tos	8. Gri 9. De 10. Gri 11. Pa	eta de borde eta de reflexi snivel carril / etas longitud rcheo imento de ag	ón de juntas berma inales y tran			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	e vía ferrea miento amiento arabólica (sli				'10L
DAÑO	SEVERIDAD			TOTAL	DENSIDAD	VALOR DEDUCIDO							
10	L	0.8		0.8	0.4								
			PROMEDIO					96	Excelente				

Validado por:

Ing. Victor Guillermo Rristo Castillo

Nº 47898

							ACTIVID O						
SE	ECCION					ESIVA INICIA	L_	UNID	AD DE MUES	STREO		15M	
	KM 357+00	0 - KM 358+0	000	_	kn	n 357+050			002				
CA	ARRIL				PROGR	ESIVA FINAL		AREA	DE MUESTI	REO			
	DE	RECHA		7	kn	n 357+100			225 m²				
IN:	SPECCIONADO PO	OR		_				FECH	Α				
TE	SISTAS MECR - J	SS						26	- Enero - 20	21			
					DAÑOS								
	ión miento en bloque nientos y hundimien ación	tos	8. Gri 9. De 10. Gri 11. Pa	eta de borde eta de reflexio snivel carril / l etas longitudi rcheo imento de ag	ón de junta: berma inales y trar			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento arabólica (sli				
DAÑO	SEVERIDAD					CANT	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
15	М	45.0									45.0	20.0	54.0
4	М	100.0								·	100.0	44.4	80.0
		F	ROMEDIO					83	Muy Buen	0			•

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							740111111111111111111111111111111111111						
CA	RRIL		000		PROGR	ESIVA INICI/ n 357+050 ESIVA FINAI n 357+100		AREA FECH	AD DE MUEST 002 A DE MUEST 225 m ² IA 6 - Enero - 20	REO			
DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos													
Exudació Agrietam	ón niento en bloque ientos y hundimien ción	tos	8. Gr 9. De 10. Gr 11. Pa	rieta de borde rieta de reflex esnivel carril rietas longitue archeo ulimento de a	ión de junta / berma dinales y trar			15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sl			T	
DAÑO	DAÑO SEVERIDAD CANTIDAD									TOTAL	DENSIDAD	VALOR DEDUCIDO	
1	L	0.6									0.6	0.2	4.0

Validado por:

PROMEDIO

Ing. Victor Guillermo Bristo Castillo

Excelente

GUSTAVO ADOLFO AYBAR ARRIOLA INGENIERO CIVIL

							ASTIN D 6	433 (2003)					
SE	CCION				PROGRI	ESIVA INICIA	AL.	UNID	AD DE MUES	STREO		15M	
	KM 357+00	0 - KM 358+	000]	kn	n 357+100			003				
CA	ARRIL				PROGRI	ESIVA FINAL		AREA	DE MUESTF	REO			
	DE	RECHA]	kn	n 357+150			225 m²				
INS	SPECCIONADO P	OR		_				FECH	Α				
TE	SISTAS MECR - J	SS						26	- Enero - 20	21			
					DAÑOS								
Exudació Agrietan Abultami	Piel de cocodrilo 7. Grieta de borde Exudación 8. Grieta de reflexión de juntas Agrietamiento en bloque 9. Desnivel carril / berma Abultamientos y hundimientos 10. Grietas longitudinales y transversales Corrugación 11. Parcheo								le vía ferrea miento camiento arabólica (sli niento ndimiento de				
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
15	М	45.0									45.0	20.0	54.0
4	М	100.0									100.0	44.4	80.0
			PROMEDIO					83	Muy Buen	0	•		

Dea CID NO 47000

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							ASTM D 64	433 (2003)						
SE	CCION				PROGRI	ESIVA INICIA	AL.	UNID	AD DE MUES	STREO				
	KM 357+00	0 - KM 358+	000		kn	n 357+100			003					
CA	RRIL			_	PROGRI	ESIVA FINAL		AREA	DE MUESTI	REO				
	IZQ	UIERDA			kn	n 357+150			225 m²					
INS	PECCIONADO P	OR						FECH	Α					
TES	SISTAS MECR - J	SS						26	- Enero - 20	21				
	DAÑOS													
	ón niento en bloque ientos y hundimien ción	tos	 Gri De Gri Pa 	ieta de reflex esnivel carril / ietas longitud	ión de juntas / berma dinales y tran			14. Cruce d 15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	e vía ferrea miento amiento arabólica (sli				Чом	
DAÑO												TOTAL	DENSIDAD	VALOR DEDUCIDO
10	0 M 2.1											2.1	0.9	2.0
			PROMEDIO					96	Excelente					

Validado por:

Ing. Victor Guillermo Rristo Castillo

160

[CARRIL DE	00 - KM 358+ RECHA	000]	kr PROGR	ESIVA INICIA n 357+150 ESIVA FINAL n 357+200		AREA	AD DE MUES 004 DE MUESTI 225 m ²			15M	
	INSPECCIONADO P TESISTAS MECR - J							FECH 20	A - Enero - 20	21			
					DAÑOS								
2. Exuda 3. Agrie	tamiento en bloque amientos y hundimien gación	itos	8. Gri 9. De: 10. Gri 11. Par	eta de borde eta de reflexi snivel carril / etas longitudi cheo imento de ag	ón de junta: berma inales y trar			15. Ahuella 16. Despla 17. Grieta (18. Hincha	le vía ferrea miento zamiento arabólica (sli				
DAÑO	SEVERIDAD					CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
15	М	45.0									45.0	20.0	54.0
4	М	100.0									100.0	44.4	80.0
			PROMEDIO					83	Muy Buen	0			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							ASTIVIDO	433 (2003)					
CA	RRIL		-000		kr PROGR	ESIVA INICI, n 357+150 ESIVA FINAI n 357+200	AL	UNID AREA	AD DE MUESTO 225 m ² IA 3 - Enero - 20	REO			
	ón niento en bloque ientos y hundimien ción	tos	8. Gi 9. De 10. Gi 11. Pa	ieta de bordo ieta de refle: esnivel carril ietas longitu ircheo dimento de a	ción de junta / berma dinales y trar			15. Ahuella 16. Despla: 17. Grieta p 18. Hincha	le vía ferrea miento zamiento parabólica (sli			ĝ <u>L</u>	
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
3	L	2.0									2.0	0.9	
			PROMEDIO					96	Excelente				

Validado por:

Ing. Victor Guillermo Rristo Castillo

161

							ASTM D 6	433 (2003)						
SECCION					PROGR	ESIVA INICIA	AL	UNID	AD DE MUES	STREO				
K	KM 357+000) - KM 358+	000		kn	n 357+200			005					
CARRIL					PROGR	ESIVA FINAL	_	AREA	DE MUESTI	REO				
	DEF	RECHA			kn	n 357+250			225 m²					
INSPECCIO	ONADO PO)R						FECH	A					
TESISTAS	MECR - JS	S						26	- Enero - 20	21				
					DAÑOS									
Piel de cocodrilo Exudación Agrietamiento er Abultamientos y Corrugación Depresión	n bloque	08	8. Gr 9. De 10. Gr 11. Pa	snivel carril	ión de juntas / berma dinales y tran			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	e vía ferrea miento amiento arabólica (sli				40L	
DAÑO SEVE	ERIDAD					CANT	TIDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	1.2										1.2	0.5	
			PROMEDIO				•	83	Muy Buen	0	•	•		

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

						/							
ECCION			_	PROGR	ESIVA INICIA	AL_	UNID	AD DE MUES	STREO				
KM 357+00	0 - KM 358+	000		kn	n 357+200			005					
ARRIL			_	PROGR	ESIVA FINAL	_	ARE	A DE MUESTI	REO				
IZQ	UIERDA		7	kn	n 357+250			225 m²					
SPECCIONADO P	OR		_				FECH	IA .					
ESISTAS MECR - J	SS						2	6 - Enero - 20	21				
				DAÑOS									
cocodrilo													
				•	3								
	tos				sversales							401	
ación		11. Pa	rcheo	•			17. Grieta	parabólica (sli	ppage)			106	
ión		12. Pu	limento de ag	regados					agregados				
SEVERIDAD					CAN	ΠDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
L	1.1										1.1	0.5	
		PROMEDIO					96	Excelente					
r	KM 357+00 ARRIL IZQ SPECCIONADO PI ESISTAS MECR - JS cocodrilo ión miento en bloque nientos y hundimien ación ión	KM 357+000 - KM 358+ ARRIL IZQUIERDA SPECCIONADO POR ESISTAS MECR - JSS coccodrilo ión miento en bloque nientos y hundimientos ación ión SEVERIDAD L 1.1	KM 357+000 - KM 358+000 ARRIL IZQUIERDA SPECCIONADO POR ESISTAS MECR - JSS cocodrilo 7. Gr ión 8. Gr miento en bloque 9. De nientos y hundimientos 10. Gr ación 11. Pa ión 12. Pu	KM 357+000 - KM 358+000 ARRIL IZQUIERDA SPECCIONADO POR ESISTAS MECR - JSS cocodrilo ión 8. Grieta de borde ión 8. Grieta de reflexi miento en bloque 9. Desnivel carril / 10. Grietas longitudi ación 11. Parcheo ión 12. Pulimento de ag	KM 357+000 - KM 358+000	KM 357+000 - KM 358+000 ARRIL IZQUIERDA SPECCIONADO POR ESISTAS MECR - JSS DAÑOS cocodrilo ión 8. Grieta de borde ión 8. Grieta de reflexión de juntas miento en bloque nientos y hundimientos ación 11. Parcheo ión 12. Pulimento de agregados SEVERIDAD CANT	KM 357+000 - KM 358+000 ARRIL IZQUIERDA SPECCIONADO POR ESISTAS MECR - JSS DAÑOS cocodrilo ión 8. Grieta de borde ión 8. Grieta de reflexión de juntas miento en bloque nientos y hundimientos ación 10. Grietas longitudinales y transversales 11. Parcheo ión 12. Pulimento de agregados SEVERIDAD CANTIDAD	RM 357+000 - KM 358+000 Rm 357+200 RRIL PROGRESIVA FINAL REAL RM 357+250 RECHONADO POR PROGRESIVA FINAL RA FECH RECHONADO POR PROGRESIVA FINAL RA FECH RECHONADO POR PROGRESIVA FINAL RA FECH RECHONADO POR RECHONADO POR PROGRESIVA FINAL RA FECH RECHONADO POR PROGRESIVA FINAL RECHONADO POR PROGRESIVA FINAL RA FECH RECHONADO POR PROGRESIVA FINAL PROGRESIVA FINAL	KM 357+000 - KM 358+000 ARRIL PROGRESIVA FINAL IZQUIERDA SPECCIONADO POR ESISTAS MECR - JSS DAÑOS Coccodrilo ión 8. Grieta de borde ión 8. Grieta de reflexión de juntas miento en bloque 9. Desnivel carril / berma 15. Ahuellamiento nientos y hundimientos 10. Grietas longitudinales y transversales ación 11. Parcheo 17. Grieta parabólica (sli 16. Desplazamiento 17. Grieta parabólica (sli 18. Hinchamiento 19. Desprendimiento de SEVERIDAD CANTIDAD	KM 357+000 - KM 358+000 ARRIL PROGRESIVA FINAL IZQUIERDA SPECCIONADO POR SISTAS MECR - JSS DAÑOS Coccodrilo ión 8. Grieta de borde ión 8. Grieta de reflexión de juntas miento en bloque nientos y hundimientos ación 10. Grietas longitudinales y transversales ación 11. Parcheo ión 12. Pulimento de agregados SEVERIDAD CANTIDAD AREA DE MUESTREO 225 m² FECHA 26 - Enero - 2021 13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados	KM 357+000 - KM 358+000 ARRIL PROGRESIVA FINAL IZQUIERDA SPECCIONADO POR SISTAS MECR - JSS DAÑOS Coccodrilo ión 8. Grieta de borde ión 8. Grieta de reflexión de juntas miento en bloque nientos y hundimientos ación 10. Grietas longitudinales y transversales ación 11. Parcheo ión 12. Pulimento de agregados SEVERIDAD CANTIDAD AREA DE MUESTREO 225 m² FECHA 26 - Enero - 2021 13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados	KM 357+000 - KM 358+000 ARRIL PROGRESIVA FINAL IZQUIERDA km 357+250 SPECCIONADO POR SISTAS MECR - JSS DAÑOS DAÑOS DAÑOS TOTAL L 1.1 DOS AREA DE MUESTREO 225 m² FECHA 225 m² FECHA 26 - Enero - 2021 13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados TOTAL	KM 357+000 - KM 358+000 ARRIL PROGRESIVA FINAL IZQUIERDA Km 357+250 SPECCIONADO POR SISISTAS MECR - JSS DAÑOS Coccodrilo ión 8. Grieta de borde ión 8. Grieta de reflexión de juntas miento en bloque 9. Desnivel carril / berma 15. Ahuellamiento hientos y hundimientos ación 11. Parcheo 17. Grieta parabólica (slippage) ión 12. Pulimento de agregados REVERIDAD CANTIDAD AREA DE MUESTREO 225 m² FECHA 26 - Enero - 2021 13. Huccos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados TOTAL DENSIDAD

Validado por:

Ing. Victor Guillermo Bristo Custillo

162

AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

							ASTINIDA	433 (2003)					
	RRIL	10 - KM 358+ RECHA	000]	kr PROGR	ESIVA INICIA n 357+250 ESIVA FINAI n 357+300	AL	UNID	AD DE MUES 006 A DE MUESTI 225 m²				
_	SPECCIONADO P SISTAS MECR - J							FECH 26	A 6 - Enero - 20	21			
4 Dial da a	a a a deila		7.0	ista da hand	DAÑOS			42 Husses					
	ón iiento en bloque entos y hundimien ción	itos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde rieta de reflex esnivel carril rietas longitud archeo ulimento de a	ción de junta / berma dinales y trar			15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sli			fL -	
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.8									0.8	0.4	4.0
			PROMEDIO					83	Muv Buen	0			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

CA	RRIL		000		kr PROGR	ESIVA INICIA n 357+250 ESIVA FINAL n 357+300		AREA FECH	AD DE MUESTO 225 m ² A B - Enero - 20	REO		1L	
	ón niento en bloque ientos y hundimien ción	tos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflex esnivel carril ietas longitud rcheo ulimento de a	ión de junta / berma dinales y trar			15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sli			10L	
DAÑO	SEVERIDAD					CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	23.1									23.1	10.3	33.0

Validado por:

15.4

PROMEDIO

10

Ing. Victor Guillermo Rristo Castillo

Excelente

163

15.4

6.8

GUSTAVO ADOLFO AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898 7.0

							MALIII P.A.	100 2000					
CA	CCION KM 357+00 RRIL DE SPECCIONADO PI SISTAS MECR - J	RECHA OR	-000		kn PROGR	ESIVA INICI/ n 357+300 ESIVA FINAL n 357+350		AREA FECH	007 DE MUESTI 225 m ² IA 3 - Enero - 20	REO			
	ón niento en bloque ientos y hundimien ción	tos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflex esnivel carril / ietas longitud ircheo alimento de a	ión de junta: / berma linales y trar	8		15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sli			['] 10L	
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	0.6									0.6	0.3	
			PROMEDIO					83	Muy Buen	0			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

CA	RRIL		000		PROGR	ESIVA INICIA n 357+300 ESIVA FINAL n 357+350		AREA	007 DE MUESTF 225 m² A	REO			
1. Piel de c	ocodrilo		7 Gri	ieta de borde	DAÑOS			13. Huecos					
2. Exudació 3. Agrietam	ón iiento en bloque ientos y hundimien ción	tos	8. Gri 9. De 10. Gri 11. Pa	ieta de reflex snivel carril / ietas longitud	ión de junta: / berma linales y trar			14. Cruce d 15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	e vía ferrea miento amiento arabólica (sli			hoL	
DAÑO	SEVERIDAD					CANT	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
10		26									26	12	

Excelente

Validado por:

PROMEDIO

Ing. Victor Guillermo Bristo Castillo

164

PROGRESIVA INICIAL UNIDAD DE MUESTREO SECCION KM 357+000 - KM 358+000 km 357+350 008 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 357+400 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 26 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados

DAÑO	SEVERIDAD				CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.4								0.4	0.2	4.0
			PROMEDIO				83	Muv Buen	0			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

CA	RRIL		000		kr PROGR	ESIVA INICIA n 357+350 ESIVA FINAL n 357+400		AREA FECH	008 008 DE MUESTF 225 m ² IA 3 - Enero - 20	REO			
	ón niento en bloque ientos y hundimien ción	itos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflex snivel carril ietas longitud rcheo limento de a	ión de junta / berma dinales y trar	S		15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sli			10L	
DAÑO	SEVERIDAD					CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
10	1	0.4									0.1	3.6	3.0

Validado por:

PROMEDIO

Ing. Victor Guillermo Rristo Castillo

Excelente

165

PROMEDIO

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

PROGRESIVA INICIAL UNIDAD DE MUESTREO SECCION KM 357+000 - KM 358+000 km 357+400 009 CARRIL PROGRESIVA FINAL AREA DE MUESTREO 225 m² DERECHA km 357+450 INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 26 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 17. Grieta parabólica (slippage) 11. Parcheo 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO **SEVERIDAD** CANTIDAD TOTAL DENSIDAD DEDUCIDO 7 Н 11.7 11.7 5.2 16.0

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

Muy Bueno

							ASTIVIDE	433 (2003)						
SE	CCION				PROGR	ESIVA INICIA	\L	UNID	AD DE MUE	STREO				
	KM 357+00	0 - KM 358+	000		kn	n 357+400			009					
CA	RRIL			_	PROGR	ESIVA FINAL	_	AREA	DE MUEST	REO				
	IZQ	UIERDA			kn	n 357+450			225 m²					
INS	PECCIONADO P	OR						FECH	IA					
TES	SISTAS MECR - J	SS						20	6 - Enero - 20	21				
					DAÑOS									
	ón iiento en bloque entos y hundimien ción	tos	8. Gr 9. De 10. Gr 11. Pa	snivel carril	ción de junta: / berma dinales y trar			15. Ahuella 16. Despla	le vía ferrea miento zamiento parabólica (sli	ppage)			T	
					, , ,			19. Despre	ndimiento de	agregados				
DAÑO	SEVERIDAD					CAN	ΠDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.2										0.2	0.1	4.0
			PROMEDIO				•	96	Excelente		•	•		

Validado por:

Ing. Victor Guillermo Rristo Castillo

SE	CCION				PROGR	ESIVA INICIA	AL_	UNID	AD DE MUE	STREO			
	KM 357+00	0 - KM 358+	000		kr	n 357+450			010				
CA	RRIL			_	PROGR	ESIVA FINAL	_	AREA	A DE MUEST	REO			
	DE	RECHA			kr	n 357+500			225 m²				
INS	SPECCIONADO P	OR		_			_	FECH	ΗA				
TE	SISTAS MECR - J	SS						2	6 - Enero - 20	21			
					DAÑOS								
1. Piel de c 2. Exudació				ieta de borde ieta de reflex				13. Huecos	s de vía ferrea				
	niento en bloque			snivel carril		5		15. Ahuella					
4. Abultami	ientos y hundimien	itos		ietas longitud	dinales y trar	nsversales		16. Despla					
 Corrugado Depresió 			11. Pa	rcheo limento de a	aroandon			17. Grieta 18. Hincha	parabólica (sl miento	ippage)		1M	
o, Depresio	л		12.70	iiiiiciiio de a	yicyauos				ndimiento de	agregados			
DAÑO	SEVERIDAD					CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	М	0.3									0.3	0.1	8.0
	•		PROMEDIO					83	Muy Buen	0	•		

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							ASTM D 6	433 (2003)					
SE	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUE	STREO			
	KM 357+00	0 - KM 358+	000		kr	n 357+450			010				
CA	ARRIL			_	PROGR	ESIVA FINAL	_	AREA	A DE MUEST	REO			
	IZQ	UIERDA			kr	n 357+500			225 m²				
INS	SPECCIONADO P	OR						FECH	łΑ				
TE	SISTAS MECR - J			2	6 - Enero - 20	021							
		DAÑOS											
-	ón niento en bloque iientos y hundimien ción	tos	8. Gr 9. De 10. Gr 11. Pa	rieta de borde rieta de refle: esnivel carril rietas longitu archeo ulimento de a	xión de junta / berma dinales y trar			15. Ahuella 16. Despla 17. Grieta ; 18. Hincha	de vía ferrea imiento zamiento parabólica (si	lippage)		īL TL	=
DAÑO	SEVERIDAD					CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.5									0.5	0.2	4.0

Validado por:

PROMEDIO

Ing. Victor Guillermo Bristo Custillo

Excelente

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 357+000 - KM 358+000 km 357+500 011 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 357+550 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 26 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15, Ahuellamiento 10. Grietas longitudinales y transversales 4. Abultamientos y hundimientos 16. Desplazamiento 10L 5. Corrugación 17. Grieta parabólica (slippage) 11. Parcheo 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO **SEVERIDAD** CANTIDAD TOTAL DENSIDAD DEDUCIDO 2.4 2.4 1.1 L **PROMEDIO** 83 Muy Bueno METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA

							ASTM D 6	433 (2003)					
CA	RRIL		000		kn PROGR	ESIVA INICIA n 357+500 ESIVA FINAL n 357+550	AL	UNID AREA	AD DE MUESTI 225 m ² A B - Enero - 20	REO			
	ón niento en bloque ientos y hundimien ción	tos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflexi esnivel carril / ietas longitud rcheo limento de aç	ión de junta: berma inales y trar			15. Ahuella 16. Despla: 17. Grieta p 18. Hincha	le vía ferrea miento zamiento arabólica (sli			10L	
DAÑO	SEVERIDAD		CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO			
10	L	0.7									0.7	0.3	
			PROMEDIO					96	Excelente				

Validado por:

Ing. Victor Guillermo Rristo Castillo

SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 357+000 - KM 358+000 km 357+550 012 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 357+600 $225\,\mathrm{m}^2$ INSPECCIONADO POR FECHA TESISTAS MECR - JSS 26 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea Exudación 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 17. Grieta parabólica (slippage) 11. Parcheo 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados

DAÑO	SEVERIDAD				CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	1.1								1.1	0.5	6.0
			PROMEDIO				83	Muy Buen	0			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA

							ASTINI D 64	+33 (2003)					
\$E	CCION				PROGRI	ESIVA INICIA	\L	UNID	AD DE MUES	TREO			
	KM 357+00	0 - KM 358+	000		kn	n 357+550			012				
CA	RRIL				PROGRI	ESIVA FINAL		AREA	DE MUESTF	REO			
	IZQ	UIERDA			kn	n 357+600			225 m²				
INS	PECCIONADO P	OR						FECH	A				
TES	SISTAS MECR - J	SS						26	- Enero - 20	21			
					DAÑOS								
	in iento en bloque entos y hundimien ción	tos	8. Gri 9. De 10. Gri 11. Pa	ieta de borde ieta de reflex snivel carril i ietas longitud rcheo limento de a	ión de juntas berma linales y tran			18. Hinchar	e vía ferrea miento amiento arabólica (sli			40L	
DAÑO	SEVERIDAD CANTIDAD										TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	1.1									1.1	0.5	
			DDOMEDIO					90	Evenlente				

Validado por:

Guillermo Rristo Castillo CIP 107797 Ing. Victor Guille

169

0.1

PROMEDIO

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 357+000 - KM 358+000 km 357+600 013 AREA DE MUESTREO CARRIL PROGRESIVA FINAL km 357+650 DERECHA 225 m² INSPECCIONADO POR FECHA TESISTAS MECR - JSS 26 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea <u>1L</u> 9. Desnivel carril / berma 3. Agrietamiento en bloque 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 17. Grieta parabólica (slippage) 5. Corrugación 11. Parcheo 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD DEDUCIDO

0.1

4.0

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) PROGRESIVA INICIAL UNIDAD DE MUESTREO SECCION KM 357+000 - KM 358+000 km 357+600 CARRIL PROGRESIVA FINAL AREA DE MUESTREO IZQUIERDA km 357+650 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 26 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 14. Cruce de vía ferrea 8. Grieta de reflexión de juntas Exudación 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 10M 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 12. Pulimento de agregados 18. Hinchamiento 6. Depresión 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD DEDUCIDO M 2.2 2.2 1.0 2.0 PROMEDIO 96 Excelente

Muy Bueno

Validado por:

Ing. Victor Guiller no Rristo Castillo

170

ADOLFO

SE	CCION				PROGR	ESIVA INICIA	\L	UNID	AD DE MUES	STREO			
	KM 357+00	0 - KM 358+	000]	kn	n 357+650			014				
CA	ARRIL				PROGR	ESIVA FINAL		AREA	DE MUESTI	REO			
	DE	RECHA			kn	n 357+700			225 m²				
INS	SPECCIONADO P	OR						FECH	IA				
TE	SISTAS MECR - J	SS						20	6 - Enero - 20	21			
					DAÑOS								
1. Piel de c				eta de borde				13. Huecos					
Exudació Agrietan	on niento en bloque			eta de reflexi snivel carril /		8		14. Cruce o	le vía ferrea miento				
4. Abultami	ientos y hundimien	tos		etas longitud		nsversales		16. Despla	zamiento				
5. Corruga			11. Par					17. Grieta p 18. Hincha	arabólica (sli	ppage)		10L	
6. Depresió	on		12. Pul	imento de ag	regados				niento ndimiento de	agregados			
DAÑO	SEVERIDAD			CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO		
10	L	0.8									0.8	0.4	
		ı	PROMEDIO	·				83	Muy Buen	0			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							MOTIVIDO	100 (2000)					
CA	RRIL		000		kr PROGR	ESIVA INICIA n 357+650 ESIVA FINAI n 357+700		AREA	O14 DE MUESTI 225 m² A - Enero - 20	REO			
	ón niento en bloque ientos y hundimien ción	itos	8. Gi 9. De 10. Gi 11. Pa	rieta de borde rieta de reflex esnivel carril rietas longitu archeo ulimento de a	ción de junta / berma dinales y trar	S		15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sli			T	
DAÑO	SEVERIDAD		CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO			
1	L	0.2									0.2	0.1	4.0
			PROMEDIO					96	Excelente		•		

Validado por:

Ing. Victor Guillermo Rristo Castillo

171

AYBAR ARRIOLA INGENERO CIVIL Reg. CIP Nº 47898

							ASTM D 6	433 (2003)					
	RRIL	0 - KM 358+ RECHA	000]	kn PROGR	ESIVA INICI/ n 357+700 ESIVA FINAI n 357+750			AD DE MUES 015 A DE MUESTE 225 m²				
	SPECCIONADO P SISTAS MECR - J	OR			KII	1337+730		FECH 2		21			
	ón niento en bloque ientos y hundimien ción	tos	8. Gri 9. De: 10. Gri 11. Par	eta de borde eta de reflexi snivel carril / etas longitudi cheo imento de ag	ón de junta: berma inales y trar			15. Ahuella 16. Despla 17. Grieta (18. Hincha	le vía ferrea miento zamiento parabólica (sli			4H	
DAÑO	SEVERIDAD			CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO		
4	Н	0.6									0.6	0.3	19.0
			PROMEDIO					83	Muy Buen	0			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6422 (2002)

							ASTM D 6	433 (2003)					
SE	CCION				PROGR	ESIVA INICIA	AL_	UNID	AD DE MUES	STREO			
	KM 357+00	00 - KM 358+	000		kr	n 357+700			015				
CA	RRIL				PROGR	ESIVA FINAL		AREA	A DE MUESTI	REO			
	IZQ	UIERDA			kr	n 357+750			225 m²				
INS	SPECCIONADO P	OR						FECH	IA				
TE	SISTAS MECR - JSS 26 - Enero - 2021												
					DAÑOS								
	ón niento en bloque ientos y hundimier ción	ntos	 Gri De Gri Pa 	snivel carril etas longitud	ión de junta: / berma dinales y trar			15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	de vía ferrea miento zamiento parabólica (sli			40L	
DAÑO	SEVERIDAD					CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	1.1									1.1	0.5	

Validado por:

PROMEDIO

Ing. Victor Guillermo Bristo Castillo

Excelente

USTAVO ADOLFO YBAF ARRIOLA NGENJERO CIVIL JEG. CIP Nº 47898

							ASTIN D 6	433 (2003)					
CA	ARRIL		000		kn PROGRI	ESIVA INICIA n 357+750 ESIVA FINAI n 357+800	AL	UNID. AREA	O16 DE MUESTI 225 m² A 6 - Enero - 20	REO			
1. Piel de c 2. Exudacio 3. Agrietan	cocodrilo ón niento en bloque ientos y hundimien ción		8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflex esnivel carril / ietas longitud ircheo limento de aq	ión de juntas berma linales y tran			13. Huecos 14. Cruce o 15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento arabólica (sli	ippage)		9L	
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
9	L	5.0									5.0	2.2	2.0
			PROMEDIO					83	Muy Buen	0			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							ASTM D 64	133 (2003)					
SE	CCION				PROGRI	ESIVA INICIA	\L	UNID	AD DE MUES	STREO			
	KM 357+00	0 - KM 358+	000		kn	n 357+750			016				
CA	RRIL				PROGRI	ESIVA FINAL		AREA	DE MUESTI	REO			
	IZQ	UIERDA			kn	n 357+800			225 m²				
INS	SPECCIONADO P	OR						FECH	Α				
TE	SISTAS MECR - J	SS						26	- Enero - 20	21			
					DAÑOS								
_	ón niento en bloque ientos y hundimien ción	tos	8. Gri 9. De: 10. Gri 11. Par	eta de borde eta de reflexi snivel carril / etas longitudi rcheo limento de ag	ón de juntas berma nales y tran			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento arabólica (sli			1	
DAÑO	SEVERIDAD					CANT	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.5									0.5	0.2	4.0
			PROMEDIO					96	Excelente				

Validado por:

Ing. Victor Guillermo Bristo Custillo

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) PROGRESIVA INICIAL UNIDAD DE MUESTREO

							ASTM D 6	433 (2003 <u>)</u>					
SE	CCION				PROGR	ESIVA INICIA	AL	UNIC	AD DE MUE	S TRE0			
	KM 357+00	0 - KM 358+	000	7	kn	n 357+800			017				
CA	RRIL			_	PROGR	ESIVA FINAL		ARE	A DE MUEST	REO			
	DE	RECHA		7	kn	n 357+850			225 m²				
INS	PECCIONADO P	OR		_				FEC	НА				
TES	SISTAS MECR - J	SS						2	6 - Enero - 20	021			
	DAÑOS												
1. Piel de o				ieta de borde				13. Hueco					
2. Exudació	ón niento en bloque			ieta de reflex snivel carril /		8		14. Cruce 15. Ahuell	de vía ferrea				
	ientos y hundimien	tos		ietas longitud		sversales		16. Despla					
5. Corrugad				rcheo					parabólica (sl	lippage)		1L	
6. Depresió	ón		12. Pu	limento de ag	gregados			18. Hincha					
								19. Despre	endimiento de	agregados			
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	VALOR
27.110													DEDUCIDO
1	L	1.1			·						1.1	0.5	6.0
			PROMEDIO					83	Muy Buer	10			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

	SECCION			PROGRESIVA INICIAL		UNIDAD DE MUESTREO				
	KM 357+000	- KM 358+000		km 357+800		017				
	CARRIL			PROGRESIVA FINAL		AREA DE MUESTREO				
	IZQU	IERDA		km 357+850		225 m²				
	INSPECCIONADO POR	R			•	FECHA				
	TESISTAS MECR - JSS	3				26 - Enero - 2021				
				DAÑOS						
2. Exud 3. Agrid 4. Abul 5. Corn	etamiento en bloque tamientos y hundimiento ugación	8. Griet 9. Desr s 10. Griet 11. Pard	heo	erma ales y transversales	14. 15. 16. 17.	Huecos Cruce de vía ferrea Ahuellamiento Desplazamiento Grieta parabólica (slippage) Hinchamiento		11	DL 15M	
6. Depr	esion	12. Pulin	nento de agre	egados		ninchamiento Desprendimiento de agrega	dos			
DAÑO	SEVEDIDAD			CANTIDA	n			TOTAL	DENSIDAD	VALOR

L															
	DAÑO	DAÑO SEVERIDAD CANTIDAD											TOTAL	DENSIDAD	VALOR DEDUCIDO
	10	L	2.6										2.6	1.2	
	15	М	0.1										0.1		2.0
Ī	PROMEDIO									Excelente		•			

Validado por:

Ing. Victor Guillermo Rristo Castillo

174

	70 THE W 9700 (2000)													
SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 357+000 - KM 358+000 km 357+850 018 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 357+900 225 m² INSPECCIONADO POR FECHA TESISTAS MECR - JSS 26 - Enero - 2021														
	ón niento en bloque ientos y hundimien ción	ntos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflexi esnivel carril / ietas longitud ircheo llimento de aç	ón de junta berma inales y trar			15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sli				īL	
DAÑO	DAÑO SEVERIDAD CANTIDAD											TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L								0.1	0.1	4.0			
	PROMEDIO 83 Muy Bueno													

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

MOTHED 0400 (2000)														
SE	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUES	STREO				
	KM 357+00	0 - KM 358+	000	7	kr	km 357+850 018								
CARRIL						PROGRESIVA FINAL AREA DE MUESTREO								
IZQUIERDA						km 357+900 225 m²								
INSPECCIONADO POR						FECHA								
TES	SISTAS MECR - J	SS						26	3 - Enero - 20	21				
_	ón niento en bloque ientos y hundimien ción	itos	8. Gr 9. De 10. Gr 11. Pa	snivel carril ietas longitu	kión de junta: / berma dinales y trar	S		15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sli miento				1L	
DAÑO	SEVERIDAD					19. Desprendimiento de agregados CANTIDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L								0.6	0.3	4.0			

Excelente

Validado por:

PROMEDIO

Ing. Victor Guillermo Bristo Castillo

PROGRESIVA INICIAL UNIDAD DE MUESTREO SECCION KM 357+000 - KM 358+000 km 357+900 019 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 357+950 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 26 - Enero - 2021 DAÑOS 7 M 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 17. Grieta parabólica (slippage) 11. Parcheo 6. Depresión 18. Hinchamiento 12. Pulimento de agregados 19. Desprendimiento de agregados VALOR **SEVERIDAD** DAÑO CANTIDAD TOTAL DENSIDAD DEDUCIDO 7 M 2.7 2.7 1.2 5.0 **PROMEDIO** Muy Bueno

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

	ASTM D 6433 (2003)													
\$E	CCION													
	KM 357+00	00 - KM 358+	000		kn	n 357+900			019					
CA	RRIL			_	PROGR	ESIVA FINAL		AREA	DE MUEST	REO				
	IZQUIERDA km 357+950								225 m²					
INS	INSPECCIONADO POR								Α					
TES	TESISTAS MECR - JSS									21				
	DAÑOS													
Exudació Agrietam Abultami Corrugaci	1. Piel de cocodrilo 7. Grieta de borde 2. Exudación 8. Grieta de reflexión de juntas 3. Agrietamiento en bloque 9. Desnivel carril / berma 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 5. Corrugación 11. Parcheo 6. Depresión 12. Pulimento de agregados							15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	e vía ferrea miento camiento arabólica (sli				T	
DAÑO	DAÑO SEVERIDAD CANTIDAD											TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.6										0.6	0.3	4.0
	PROMEDIO								Excelente		•			

Validado por:

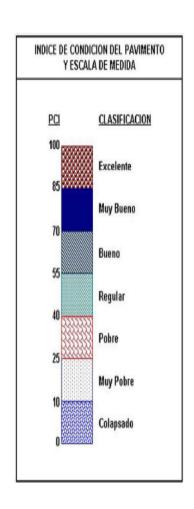
Ing. Victor Guillermo Rristo Castillo

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) PROGRESIVA INICIAL UNIDAD DE MUESTREO SECCION KM 357+000 - KM 358+000 km 357+950 020 PROGRESIVA FINAL AREA DE MUESTREO CARRIL DERECHA km 358+000 225 m² INSPECCIONADO POR FECHA TESISTAS MECR - JSS 26 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos π 8. Grieta de reflexión de juntas 2. Exudación 14. Cruce de vía ferrea 15. Ahuellamiento 3. Agrietamiento en bloque 9. Desnivel carril / berma 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento T 17. Grieta parabólica (slippage) 5. Corrugación 11. Parcheo 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD DEDUCIDO 1 L 0.2 0.3 0.4 0.2 4.0 PROMEDIO Muy Bueno

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 357+000 - KM 358+000 km 357+950 020 CARRIL PROGRESIVA FINAL AREA DE MUESTREO IZQUIERDA km 358+000 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 26 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 2. Exudación 3. Agrietamiento en bloque 15, Ahuellamiento 9. Desnivel carril / berma 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 1 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 18. Hinchamiento 6. Depresión 12. Pulimento de agregados 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD DEDUCIDO 0.5 0.5 0.2 4.0 1 L PROMEDIO 96 Excelente

Validado por:

Ing. Victor Guiller no Rristo Custillo

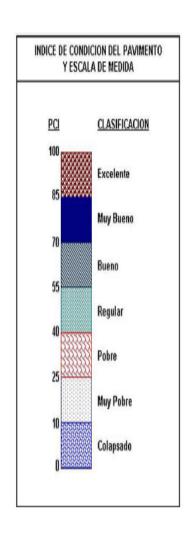

177

AYBAR ARRIOLA

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

	TRAMO: KM 359+000 - KM 360+000 / CARRIL DERECHA													
N°	AREA (m²)	UNIDAD DE	PROGRE	ESIVA	m	VDC	PCI	CLASIFICACION						
		MUESTREO	INICIAL -	FINAL										
01	225.0	001	359+000 -	359+050		0	100	Excelente						
02	225.0	002	359+050 -	359+100		0	100	Excelente						
03	225.0	003	359+100 -	359+150		0	100	Excelente						
04	225.0	004	359+150 -	359+200		4	96	Excelente						
05	225.0	005	359+200 -	359+250		8	92	Excelente						
06	225.0	006	359+250 -	359+300	8.4	21	79	Muy Bueno						
07	225.0	007	359+300 -	359+350		21	79	Muy Bueno						
08	225.0	008	359+350 -	359+400		4	96	Excelente						
09	225.0	009	359+400 -	359+450		6	94	Excelente						
10	225.0	010	359+450 -	359+500		5	95	Excelente						
11	225.0	011	359+500 -	359+550		29	71	Muy Bueno						
12	225.0	012	359+550 -	359+600		0	100	Excelente						
13	225.0	013	359+600 -	359+650		4	96	Excelente						
14	225.0	014	359+650 -	359+700		5	95	Excelente						
15	225.0	015	359+700 -	359+750	4.7	62	38	Pobre						
16	225.0	016	359+750 -	359+800		0	100	Excelente						
17	225.0	017	359+800 -	359+850		4	96	Excelente						
18	225.0	018	359+850 -	359+900		25	75	Muy Bueno						
19	225.0	019	359+900 -	359+950		7	93	Excelente						
20	225.0	020	63	Bueno										
			PROMEDIO				88	Excelente						

Validado por:


Ing. Victor Guillermo Rristo Castillo

178

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

	TRAMO: KM 359+000 - KM 360+000 / CARRIL IZQUIERDA													
N°	AREA (m²)	UNIDAD DE MUESTREO	PROGRI	ESIVA FINAL	m	VDC	PCI	CLASIFICACION						
01	225.0	001	359+000 -	359+050		4	96	Excelente						
02	225.0	002	359+050 -	359+100	5.3	68	32	Pobre						
03	225.0	003	359+100 -	359+150		7	93	Excelente						
04	225.0	004	359+150 -	359+200		0	100	Excelente						
05	225.0	005	359+200 -	359+250		4	96	Excelente						
06	225.0	006	359+250 -	359+300		5	95	Excelente						
07	225.0	007	359+300 -	359+350		4	96	Excelente						
08	225.0	008	359+350 -	359+400	8.5	24	76	Muy Bueno						
09	225.0	009	359+400 -	359+450	8.1	28	72	Muy Bueno						
10	225.0	010	359+450 -	359+500		26	74	Muy Bueno						
11	225.0	011	359+500 -	359+550		16	84	Muy Bueno						
12	225.0	012	359+550 -	359+600		13	87	Excelente						
13	225.0	013	359+600 -	359+650		17	83	Muy Bueno						
14	225.0	014	359+650 -	359+700		22	78	Muy Bueno						
15	225.0	015	359+700 -	359+750		4	96	Excelente						
16	225.0	016	359+750 -	359+800		0	100	Excelente						
17	225.0	017	359+800 -	359+850		7	93	Excelente						
18	225.0	018	359+850 -	359+900		0	100	Excelente						
19	225.0	019	359+900 -	359+950		14	86	Excelente						
20	225.0	020	7	93	Excelente									
				86	Excelente									

Validado por:

Ing. Victor Guillermo Rristo Custillo

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO
CARRETERAS CON SUPERFICIE ASFALTICA
ASTM D 6433 (2003)

	SECCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO	
	KM 359+000 - KM 360+000		km 359+000	001	
	CARRIL		PROGRESIVA FINAL	AREA DE MUESTREO	
	DERECHA		km 359+050	225 m²	
	INSPECCIONADO POR			FECHA	
	TESISTAS MECR - JSS			26 - Enero - 2021	
			DAÑOS		
 Exu Agri Abu 	dación etamiento en bloque Itamientos y hundimientos rugación	7. Grieta de borde 8. Grieta de reflexió 9. Desnivel carril / k 10. Grietas longitudii 11. Parcheo 12. Pulimento de agr	perma nales y transversales	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados	19L 13L 10L

DAÑO	SEVERIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO						
	L	0.7									0.7	0.3	
13	L	0.1									0.1		
19	L	0.6									0.6	0.3	
	PROMEDIO								Excelente				

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

	A5 III D 6433 (2003)													
CAI	CCION KM 359+00 RRIL IZQ PECCIONADO PE	000		PROGR	ESIVA INICI/ n 359+000 ESIVA FINAI n 359+050	UNID AREA FECH	AD DE MUESTI 225 m ²	REO						
1. Piel de α 2. Exudació 3. Agrietam	ocodrilo ón niento en bloque entos y hundimien		8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflex esnivel carril / ietas longitud archeo ulimento de a	ión de juntas berma linales y tran			13. Huecos 14. Cruce o 15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento arabólica (sli	ippage)			ΉL	
DAÑO	SEVERIDAD			CAN	TIDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO		
1	1 L 0.8											0.8	0.4	4.0
	PROMEDIO													

Validado por:

Ing. Victor Guillermo Bristo Castillo

YBAR ARRIOLA GENERO CIVIL 99. CIP Nº 47898

SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 359+000 - KM 360+000 km 359+050 002 AREA DE MUESTREO CARRIL PROGRESIVA FINAL DERECHA km 359+100 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 26 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 8. Grieta de reflexión de juntas 2. Exudación 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 10L 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento

L								19. Despre	ndimiento de	agregados			
	DAÑO	SEVERIDAD				CANT	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
	10	L	1.5			1.5	0.7						
Γ				PROMEDIO				88	Excelente				

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SECCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO	4M
KM 359+000 - KM 360	+000	km 359+050	002	
CARRIL		PROGRESIVA FINAL	AREA DE MUESTREO	
IZQUIERDA		km 359+100	225 m²	
INSPECCIONADO POR			FECHA	
TESISTAS MECR - JSS			26 - Enero - 2021	
1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 6. Depresión	7. Grieta de borde 8. Grieta de reflexi 9. Desnivel carril / 10. Grietas longitud 11. Parcheo 12. Pulimento de ag	ión de juntas berma inales y transversales	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados	1M 1L

DAÑO	SEVERIDAD				CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.6								0.6	0.3	4.0
1	M	27.5								27.5	12.2	53.0
17	М	3.2								3.2	1.4	14.0
4	М	18.5								18.5	8.2	36.0
			PROMEDIO				86	Excelente				

Validado por:

Ing. Victor Guillermo Rristo Castillo

GUSTAVO ADOLFO AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

SE	CCION				PROGRE	ESIVA INICIA	AL .	UNID	AD DE MUES	STREO			
	KM 359+00	0 - KM 360+0	000		km	359+100			003				
CA	ARRIL				PROGRE	ESIVA FINAL		AREA	DE MUESTI	REO			
	DE	RECHA			km	359+150			225 m²				
IN:	SPECCIONADO P	OR						FECH	Α				
TE	SISTAS MECR - J	SS						26	- Enero - 20	21			
					DAÑOS								
Exudaci Agrietan Abultam Corruga	Piel de cocodrilo 7. Grieta de la Exudación 8. Grieta de la Agrietamiento en bloque 9. Desnivel de Abultamientos y hundimientos 10. Grietas lor Corrugación 11. Parcheo 12. Pulimento				ón de juntas berma inales y tran			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	e vía ferrea miento amiento arabólica (sli			10L	
DAÑO SEVERIDAD CANTIDAD											TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L												
		F	ROMEDIO					88	Excelente		•		

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SECCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO			
KM 359+000 - KM 360	+000	km 359+100	003			
CARRIL		PROGRESIVA FINAL	AREA DE MUESTREO			
IZQUIERDA		km 359+150	225 m²			
INSPECCIONADO POR	_		FECHA			
TESISTAS MECR - JSS			26 - Enero - 2021			
		DAÑOS				
Piel de cocodrilo Exudación Agrietamiento en bloque Abultamientos y hundimientos Corrugación Depresión	7. Grieta de borde 8. Grieta de reflex 9. Desnivel carril / 10. Grietas longitud 11. Parcheo 12. Pulimento de ag	ción de juntas / berma dinales y transversales	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados		T	
DAÑO SEVERIDAD		CANTIDAD		TOTAL	DENSIDAD	VALOR DEDUCIDO

7.0 PROMEDIO Excelente

Validado por:

Guillermo Rristo Custillo CIP. 107797 Ing. Victor Guiller

UNIDAD DE MUESTREO SECCION PROGRESIVA INICIAL KM 359+000 - KM 360+000 km 359+150 004 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 359+200 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 26 - Enero - 2021

π DAÑOS

1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación

6. Depresión

7. Grieta de borde 8. Grieta de reflexión de juntas 9. Desnivel carril / berma

10. Grietas longitudinales y transversales 11. Parcheo 12. Pulimento de agregados

17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados

10L

DAÑO	SEVERIDAD				CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.2	0.2							0.4	0.2	4.0
10	L	0.3								0.3	0.1	
	•		PROMEDIO		•		88	Excelente				

13. Huecos

14. Cruce de vía ferrea

15. Ahuellamiento

16. Desplazamiento

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SE	CCION		PROGRESIVA INICIAL	U	NIDAD DE MUESTREO			
	KM 359+00	0 - KM 360+000	km 359+150		004			
CA	ARRIL		PROGRESIVA FINAL	A	REA DE MUESTREO			
	IZQ	UIERDA	km 359+200		225 m²			
INS	SPECCIONADO P	OR		F	ECHA			
TE	SISTAS MECR - J	SS			26 - Enero - 2021			
			DAÑOS					
	ón niento en bloque nientos y hundimien ción	9. Desnivel of tos 10. Grietas lor 11. Parcheo	reflexión de juntas	15. Ahu 16. Des 17. Grid 18. Hin	ecos ce de vía ferrea lellamiento splazamiento eta parabólica (slippage) chamiento sprendimiento de agregados		TOL	
DAÑO	SEVERIDAD		CANTIDAD)		TOTAL	DENSIDAD	VALOR DEDUCIDO

10 0.8 0.8 0.4 PROMEDIO Excelente

Validado por:

Guillermo Rristo Custillo CHP. 107797 Ing. Victor Guiller

PROMEDIO

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							AOTHED 0	100 2000					
SE	CCION				PROGR	ESIVA INICIA	NL	UNID	AD DE MUES	STREO			
	KM 359+00	0 - KM 360+	000	7	kr	n 359+200			005				
CA	RRIL			_	PROGR	ESIVA FINAL	_	AREA	DE MUESTI	REO			
	DE	RECHA		7	kr	n 359+250			225 m²				
INS	PECCIONADO P	OR		_				FECH	IA				
TES	SISTAS MECR - J	SS						26	6 - Enero - 20	21			
	2,522												
	DAÑOS												
1. Piel de o				rieta de borde	_			13. Huecos					
2. Exudació	ón iiento en bloque			rieta de refle) esnivel carril		S		14. Cruce of 15. Ahuella	le vía ferrea			T	
	entos y hundimien	itos		rietas longitu		nsversales		16. Despla:				16	
5. Corrugad	ción		11. Pa	archeo	-			17. Grieta p	oarabólica (sli	ippage)		41	
6. Depresió	6. Depresión 12. Pulimento de agregados							18. Hinchar	miento ndimiento de	anrenados		-	
						.or boopie	Transfer do	agrogadoo			VALOR		
DAÑO	DAÑO SEVERIDAD						ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1 L 0.3 1.3											1.6	0.7	8.0

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

88

Excelente

							ASTM D 6	433 (2003)					
CA	CCION KM 359+00 RRIL IZQ SPECCIONADO PO SISTAS MECR - JS		kn PROGRI	ESIVA INICIA n 359+200 ESIVA FINAI n 359+250		AREA FECH	ODS A DE MUESTI 225 m ² IA 3 - Enero - 20	REO		T			
	ón niento en bloque ientos y hundimien ción	tos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflex esnivel carril / ietas longitud ircheo llimento de a	ión de juntas berma linales y tran			15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sli				
DAÑO	DAÑO SEVERIDAD CANTIDAD										TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L 0.3										0.3	0.2	4.0
			PROMEDIO					86	Excelente				

Validado por:

Ing. Victor Guillermo Rristo Castillo

SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 359+000 - KM 360+000 km 359+250 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 359+300 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 26 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 9. Desnivel carril / berma 15. Ahuellamiento 16. Desplazamiento

2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 5. Corrugación 11. Parcheo

6. Depresión

10

L

0.4

17. Grieta parabólica (slippage) 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados

VALOR DAÑO **SEVERIDAD** CANTIDAD TOTAL DENSIDAD DEDUCIDO 0.4 0.4 4.0 1 L 0.2 M 1.7 1.7 0.8 19.0 1

PROMEDIO Excelente

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

S	ECCION			PROGRESIVA INICIAL		UNIDAD DE MUESTREO				
	KM 359+00	0 - KM 360+000		km 359+250		006				
С	ARRIL			PROGRESIVA FINAL		AREA DE MUESTREO				
	IZQ	UIERDA		km 359+300]	225 m²				
IN	ISPECCIONADO P	OR				FECHA				
T	ESISTAS MECR - J	SS				26 - Enero - 2021				
				DAÑOS						
1. Piel de 2. Exudad	ión	8. Grie	ta de borde ta de reflexió	•	14.	Huecos Cruce de vía ferrea				
		nivel carril / b tas longitudin heo nento de agr	nales y transversales	16. 17. 18.	Ahuellamiento Desplazamiento Grieta parabólica (slippage) Hinchamiento Desprendimiento de agregad	los		TL.		
DAÑO	DAÑO SEVERIDAD CAN							TOTAL	DENSIDAD	VALOR DEDUCIDO

1.0 1.0 0.5 5.0 PROMEDIO 86 Excelente

Validado por:

Ing. Victor Guillermo Rristo Castillo CIP. 107797

AYBAR ARRIOLA

10L

0.2

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) PROGRESIVA INICIAL UNIDAD DE MUESTREO SECCION KM 359+000 - KM 360+000 km 359+300 007 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 359+350 225 m² INSPECCIONADO POR FECHA TESISTAS MECR - JSS 26 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 10L 8. Grieta de reflexión de juntas 2. Exudación 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD DEDUCIDO 1 6.6 6.6 2.9 21.0 10 L 1.9 1.9 0.8 PROMEDIO 88 Excelente

			METO	O ESTANI				JPERFICIE /	IDICION SU Asfaltica		DEL PAVII	MENTO		
SE	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUES	STREO				
	KM 359+00	0 - KM 360+	000		kn	n 359+300			007					
CA	RRIL				PROGR	ESIVA FINAL		AREA	DE MUESTI	REO				
	IZQ	UIERDA			kn	n 359+350			225 m²					
INS	SPECCIONADO PO	OR						FECH	Α					
TES	SISTAS MECR - JS	SS						26	- Enero - 20	21				
	ón niento en bloque ientos y hundimien ción	tos	8. Gri 9. De 10. Gri 11. Pa	snivel carril etas longitu	ción de juntas / berma dinales y trar			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	e vía ferrea miento amiento arabólica (sli				T	
DAÑO	SEVERIDAD					CANT	ΠDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.4										0.4	0.2	4.0
		F	PROMEDIO											

Validado por:

Ing. Victor Guillermo Rristo Castillo

186

ADOLFO AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

SE	CCION			_	PROGR	ESIVA INICIA	AL_	UNID	AD DE MUE	STREO			
	KM 359+00	0 - KM 360+	000		kn	n 359+350			008				
CA	RRIL			_	PROGR	ESIVA FINAL		AREA	DE MUEST	REO			
	DE	RECHA		7	kn	n 359+400			225 m²				
INS	SPECCIONADO P	OR		_				FECH	Α				
TE	SISTAS MECR - J	SS						26	6 - Enero - 20	21			
					DAÑOS								
	ón niento en bloque ientos y hundimien ción	tos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflex esnivel carril / ietas longitud rcheo limento de a	ión de junta: / berma linales y trar			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sli			1L	-
DAÑO SEVERIDAD CANTIDAI											TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.6		·	·						0.6	0.3	4.0
	•		PROMEDIO			•		88	Excelente				•

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

		AUI	III D 0400 (2000)			
SECCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO			
KM 359+000 - KM 36	0+000	km 359+350	008			
CARRIL		PROGRESIVA FINAL	AREA DE MUESTREO			
IZQUIERDA		km 359+400	225 m²			
INSPECCIONADO POR			FECHA			
TESISTAS MECR - JSS			26 - Enero - 2021		17M	
		DAÑOS				
Piel de cocodrilo Exudación Agrietamiento en bloque Abultamientos y hundimientos Corrugación Depresión	 Grieta de borde Grieta de reflexió Desnivel carril / I Grietas longitudi Parcheo Pulimento de agi 	ón de juntas berma nales y transversales	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados		1L	
DAÑO SEVERIDAD		CANTIDAD		TOTAL	DENSIDAD	VALOR DEDUCIDO

DAÑO	SEVERIDAD					CAN	ΠDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.6	6 4.3									4.9	2.2	18.0
17	М	3.3	3									3.3	1.5	15.0
PROMEDIO 86 Excelente														

Validado por:

Ing. Victor Guillermo Rristo Castillo

SUSTAVO ADOLFO AYBAF ARRIOLA INGENIERO CIVIL

PROGRESIVA INICIAL UNIDAD DE MUESTREO SECCION KM 359+000 - KM 360+000 km 359+400 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 359+450 INSPECCIONADO POR TESISTAS MECR - JSS 26 - Enero - 2021

DAÑOS

- 1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque
- 4. Abultamientos y hundimientos 5. Corrugación
- 7. Grieta de borde
- 8. Grieta de reflexión de juntas 9. Desnivel carril / berma
- 10. Grietas longitudinales y transversales
- 11. Parcheo
- 12. Pulimento de agregados
- 13. Huecos
- 14. Cruce de vía ferrea
- 15. Ahuellamiento 16. Desplazamiento
- 17. Grieta parabólica (slippage)
- 18. Hinchamiento

6. Depresion			12. Pu	ulimento de a	gregados			18. Hinchar	niento ndimiento de				
DAÑO	SEVERIDAD					CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	1.2									1.2	0.5	6.0
		PROMEDIO						88	Excelente				

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SECCION KM 359+000 - KM 360+00 CARRIL IZQUIERDA		PROGRESIVA INICIAL km 359+400 PROGRESIVA FINAL km 359+450	UNIDAD DE MUESTREO 009 AREA DE MUESTREO 225 m²		
INSPECCIONADO POR TESISTAS MECR - JSS		DAÑOS	FECHA 26 - Enero - 2021	1L	
Piel de cocodrilo Exudación Agrietamiento en bloque Abultamientos y hundimientos Corrugación Depresión	7. Grieta de borde 8. Grieta de reflexió 9. Desnivel carril / I 10. Grietas longitudi 11. Parcheo 12. Pulimento de agr	ón de juntas berma nales y transversales	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados	1M IL	
					VALOR

DAÑO	SEVERIDAD					CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	3.7	4.1								7.7	3.4	23.0
1	М	1.0									1.0	0.4	15.0
	PROMEDIO							86	Excelente	•			

Validado por:

Ing. Victor Guillermo Rristo Castillo

AYBAR ARRIOLA INGENERO CIVIL Reg. CIP N° 47898

							HOTHING V	100 (2000)					
CA	RRIL		-000]	kn PROGR	ESIVA INICIA n 359+450 ESIVA FINAL n 359+500		AREA	010 010 DE MUESTR 225 m ² A 3 - Enero - 20	REO			
					DAÑOS								
Exudació Agrietam Abultami Corrugad	1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippag 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agre										 		
DAÑO	SEVERIDAD					CANT	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.9									0.9	0.4	5.0
			PROMEDIO					88	Excelente				

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SECCION			PROGRESIVA INICIAL		UNIDAD DE MUESTREO			
KM	359+000 - KM 360+000)	km 359+450		010			
CARRIL			PROGRESIVA FINAL	•	AREA DE MUESTREO			
	IZQUIERDA		km 359+500]	225 m²			
INSPECCION	IADO POR			•	FECHA			
TESISTAS ME	ECR - JSS]	26 - Enero - 2021		1L	
			DAÑOS					
1. Piel de cocodrilo		7. Grieta de borde		13.	Huecos			
2. Exudación		 Grieta de reflexió 	•		Cruce de vía ferrea		44	
Agrietamiento en bl		Desnivel carril / b			Ahuellamiento		1L	_
4. Abultamientos y hui	indimientos	•	nales y transversales		Desplazamiento	1	L	
5. Corrugación		11. Parcheo			Grieta parabólica (slippage)	Ŀ		
6. Depresión		12. Pulimento de agr	egados		Hinchamiento Desprendimiento de agregados			
DAÑO SEVERI	IDAD		CANTIDA	D		TOTAL	DENSIDAD	VALOR DEDUCIDO

DAÑ	0 9	SEVERIDAD					CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1		L	1.3	4.6	5.0							10.9	4.9	26.0
				PROMEDIO 86 Excelente										

Validado por:

Ing. Victor Guillermo Rristo Castillo

GUSTAVO ADOLFO AYBAR ARRIOLA INGENERO CIVIL Reg. CIP Nº 47898

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 359+000 - KM 360+000 km 359+500 011 PROGRESIVA FINAL AREA DE MUESTREO CARRIL DERECHA km 359+550 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 26 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 14. Cruce de vía ferrea 2. Exudación 8. Grieta de reflexión de juntas 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 16. Desplazamiento 10. Grietas longitudinales y transversales 5. Corrugación 17. Grieta parabólica (slippage) 11. Parcheo 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD DEDUCIDO 5.2 5.2 2.3 29.0 PROMEDIO 88 Excelente METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 359+000 - KM 360+000 km 359+500 011 CARRIL PROGRESIVA FINAL AREA DE MUESTREO IZQUIERDA km 359+550 INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 26 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 17. Grieta parabólica (slippage) 5. Corrugación 11. Parcheo 10L 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD DEDUCIDO 1 4.0 4.0 1.8 16.0 1.7 0.8 10 L 1.7 **PROMEDIO** 86 Excelente

Validado por:

Reg.

AYBAR ARRIOLA INGENERO CIVIL

Ing. Victor Guillermo Rristo Castillo

CA	ARRIL	0 - KM 360+000 RECHA DR		PROGR	ESIVA INICIA n 359+550 ESIVA FINAI n 359+600			O12 A DE MUESTI 225 m ²				
TE	SISTAS MECR - J	SS					2	3 - Enero - 20	21			
				DAÑOS								
1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 6. Depresión 7. Grieta de borde 8. Grieta de reflexión de juntas 9. Desnivel carril / berma 10. Grietas longitudinales y transversales 11. Parcheo 12. Pulimento de agregados								de vía ferrea miento zamiento parabólica (sli miento ndimiento de			10L	
DAÑO SEVERIDAD CANTIDAD										TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	0.9								0.9	0.4	
PROMEDIO							88	Excelente				

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SECCION KM 359+000 - KM 360+	000	PROGRESIVA INICIAL km 359+550	UNIDAD DE MUESTREO 012			
CARRIL IZQUIERDA INSPECCIONADO POR		PROGRESIVA FINAL km 359+600	AREA DE MUESTREO 225 m² FECHA			
TESISTAS MECR - JSS		DAÑOS	26 - Enero - 2021	_	1L	
Piel de cocodrilo Exudación Agrietamiento en bloque	7. Grieta de borde 8. Grieta de reflex 9. Desnivel carril /	ión de juntas / berma	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento		10L	
Abultamientos y hundimientos Corrugación Depresión	10. Grietas longitud 11. Parcheo 12. Pulimento de ag	dinales y transversales gregados	16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados		1	

DAÑO	SEVERIDAD					CANT	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.8	2.2								3.0	1.3	13.0
10	L	3.2									3.2	1.4	
	PROMEDIO							86	Excelente				

Validado por:

Ing. Victor Guillermo Rristo Castillo

PROMEDIO

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 359+000 - KM 360+000 km 359+600 013 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 359+650 225 m² INSPECCIONADO POR **FECHA** 26 - Enero - 2021 TESISTAS MECR - JSS DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 9. Desnivel carril / berma 3. Agrietamiento en bloque 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 1 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO **SEVERIDAD** CANTIDAD TOTAL DENSIDAD DEDUCIDO 0.3 0.3 4.0 0.1 1 L

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO	
CARRETERAS CON SUPERFICIE ASFALTICA	
ASTM D 6/22 (2002)	

88

Excelente

	A	3 HVI D 6433 (2003)	
SECCION	PROGRESIVA INICIAL	UNIDAD DE MUESTREO	
KM 359+000 - KM 360+00	00 km 359+600	013	
CARRIL	PROGRESIVA FINAL	AREA DE MUESTREO	
IZQUIERDA	km 359+650	225 m²	
INSPECCIONADO POR		FECHA	
TESISTAS MECR - JSS		26 - Enero - 2021	
Piel de cocodrilo	DAÑOS 7. Grieta de borde	13. Huecos	
2. Exudación	Grieta de reflexión de juntas	14. Cruce de vía ferrea	
Agrietamiento en bloque Abultamientos y hundimientos	Desnivel carril / berma Grietas longitudinales y transversales	15. Ahuellamiento 16. Desplazamiento	13M
Abultamientos y nunuimientos Corrugación	11. Parcheo	17. Grieta parabólica (slippage)	4M
6. Depresión	12. Pulimento de agregados	18. Hinchamiento 19. Desprendimiento de agregados	

DAÑO	SEVERIDAD					CANT	ΠDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
1	М	1.4	4										0.6	17.0
13	М													
	PROMEDIO								Excelente					

Validado por:

Ing. Victor Guillermo Rristo Castillo

192

AYBAR ARRIOLA INGENERO CIVIL Reg. CIP Nº 47898

PROMEDIO

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

UNIDAD DE MUESTREO SECCION PROGRESIVA INICIAL KM 359+000 - KM 360+000 km 359+650 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 359+700 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 28 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 8. Grieta de reflexión de juntas 2. Exudación 14. Cruce de vía ferrea 3. Agrietamiento en bloque 15. Ahuellamiento 9. Desnivel carril / berma 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 17. Grieta parabólica (slippage) 5. Corrugación 11. Parcheo 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO **SEVERIDAD** CANTIDAD TOTAL DENSIDAD DEDUCIDO 1.0 5.0 1.0 0.5 L

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

Excelente

SECCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO			
KM 359+000 - I	KM 360+000	km 359+650	014			
CARRIL		PROGRESIVA FINAL	AREA DE MUESTREO			
IZQUIE	RDA	km 359+700	225 m²			
INSPECCIONADO POR			FECHA			
TESISTAS MECR - JSS			28 - Enero - 2021			
				4M		
Piel de cocodrilo Exudación Agrietamiento en bloque Abultamientos y hundimientos Corrugación Depresión	 Grieta de bord Grieta de refle Desnivel carri Grietas longitu Parcheo Pulimento de a 	xión de juntas I / berma udinales y transversales	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados		13L	
DAÑO SEVERIDAD		CANTIDAD		TOTAL	DENSIDAD	VALOR DEDUCIDO

Validado por:

1.4

1.6

PROMEDIO

1

13

M

L

Ing. Victor Guillermo Rristo Castillo

86

Excelente

193

1.3

AYBAR ARRIOLA INGENERO CIVIL Reg. CIP Nº 47898

23.0

(1)

78.8

PROMEDIO

15

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SE	CCION				PROGR	ESIVA INICIA	L	UNID	AD DE MUES	STREO	<u> </u>	15M	
	KM 359+00	0 - KM 360+	000		kr	m 359+700			015				
CA	RRIL				PROGR	ESIVA FINAL		AREA	DE MUESTI	REO			
	DE	RECHA			kr	m 359+750			225 m²				
INS	SPECCIONADO P	OR					_	FECH	IA				
TES	TESISTAS MECR - JSS							28	3 - Enero - 20	21			
	n.//oc												
	DAÑOS												
Exudació Agrietam Abultami Corrugaci	1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 6. Depresión 7. Grieta de borde 8. Grieta de reflexión de juntas 9. Desnivel carril / berma 10. Grietas longitudinales y transversales 11. Parcheo 12. Pulimento de agregados							15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sli		7	<u> </u>	
DAÑO	DAÑO SEVERIDAD CANTIDA						IDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.5	5.7								6.2	2.8	21.0

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

88

Excelente

						CARRETER	AS CON SU ASTM D 6		ASFALTICA					
SE	CCION				PROGR	ESIVA INICIA	AL	UNID	AD DE MUES	STREO				
	KM 359+00	0 - KM 360+	000		kn	n 359+700			015					
CA	RRIL				PROGR	ESIVA FINA	L	AREA	DE MUESTI	REO				
	IZQUIERDA km 359+750 225 m ²													
INS	INSPECCIONADO POR FECHA													
TE	TESISTAS MECR - JSS 28 - Enero - 2021													
Exudació Agrietam Abultami	DAÑOS Piel de cocodrilo 7. Grieta de borde 13. Huecos Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento Corrugación 11. Parcheo 17. Grieta parabólica (slippage)												¶	
DAÑO	DAÑO SEVERIDAD CANTIDAD										TOTAL	DENSIDAD	VALOR DEDUCIDO	
1	L	0.6										0.6	0.3	4.0
	PROMEDIO 86 Excelente													

Validado por:

Ing. Victor Guillermo Rristo Castillo

194

35.0

60.0

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 359+000 - KM 360+000 km 359+750 016 PROGRESIVA FINAL AREA DE MUESTREO CARRIL DERECHA km 359+800 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 28 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 13. Huecos 7. Grieta de borde 14. Cruce de vía ferrea 8. Grieta de reflexión de juntas 2. Exudación 10L 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 10. Grietas longitudinales y transversales 4. Abultamientos y hundimientos 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD DENSIDAD CANTIDAD TOTAL DEDUCIDO 0.3 10 0.6 0.6 PROMEDIO 88 Excelente METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 359+000 - KM 360+000 km 359+750 016 CARRIL PROGRESIVA FINAL AREA DE MUESTREO IZQUIERDA km 359+800 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 28 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 2. Exudación 10L 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 10L 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR SEVERIDAD DAÑO DENSIDAD CANTIDAD TOTAL DEDUCIDO

Validado por:

10

1.0

PROMEDIO

no Rristo Castillo Ing. Victor Guile

86

Excelente

195

0.4

S	ECCION			_	PROGR	ESIVA INICIA	AL _	UNID	AD DE MUES	STREO				
	KM 359+00	0 - KM 360+	000		kn	n 359+800			017					
С	ARRIL			_	PROGR	ESIVA FINAI	_	AREA	DE MUESTI	REO				
	DE	RECHA			kn	n 359+850			225 m²					
II	ISPECCIONADO P	OR						FECH	Α					
Т	ESISTAS MECR - J	SS						28	- Enero - 20	21				
	DAÑOS													
	DANOS													
1. Piel de cocodrilo 7. Grieta de borde 2. Exudación 8. Grieta de reflexión de ju 3. Agrietamiento en bloque 9. Desnivel carril / berma 4. Abultamientos y hundimientos 10. Grietas longitudinales y 5. Corrugación 11. Parcheo 6. Depresión 12. Pulimento de agregado								15. Ahuella 16. Despla	le vía ferrea miento zamiento arabólica (sli	ppage)			TL-	
or Doproc	1011		1211 0	minorito do ag	roguado				ndimiento de	agregados				
DAÑO										<u>, , , , , , , , , , , , , , , , , , , </u>		TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.5										0.5	0.2	4.0
PROMEDIO 88 Excelent											•			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

	SECCION			PROGRESIVA INICIAL UNIDAD DE MUESTREO										
	KM 359+00	0 - KM 360+	000		kn	n 359+800			017					
	CARRIL			-	PROGRE	ESIVA FINAL	_	AREA	DE MUEST	REO				
	IZQ	UIERDA			kn	n 359+850			225 m²					
]	NSPECCIONADO P	OR						FECH	IA					
[TESISTAS MECR - J	SS						28	3 - Enero - 20	021				
					,,									
	DAÑOS													
	e cocodrilo			eta de borde				13. Huecos						
Exudación R. Grieta de rei Agrietamiento en bloque P. Desnivel cal													1M	
_	Agrietamiento en bloque Abultamientos y hundimientos Desnivel car Abultamientos y hundimientos 10. Grietas longi					nales y transversales 16. De								
5. Corru			11. Par					17. Grieta parabólica (slippage)				10L		
6. Depre	sion		12. Puli	imento de agi	regados			 Hinchar Despre 	miento ndimiento de	agregados				
														VALOR
DAÑO	SEVERIDAD	CANTIDAD										TOTAL	DENSIDAD	DEDUCIDO
1	М	0.3										0.3	0.1	7.0
10	L	0.3	0.3									0.3	0.1	
13	M		0.0											

Excelente

Validado por:

PROMEDIO

Ing. Victor Guillermo Rristo Castillo

Reg. CIP Nº 4789

SECCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO	
KM 359+000 - KM 360	+000	km 359+850	018	
CARRIL		PROGRESIVA FINAL	AREA DE MUESTREO	
DERECHA		km 359+900	225 m²	
INSPECCIONADO POR			FECHA	
TESISTAS MECR - JSS			28 - Enero - 2021	
		DAÑOS		l las
1. Piel de cocodrilo 7. Grieta de borde 2. Exudación 8. Grieta de reflexió 3. Agrietamiento en bloque 9. Desnivel carril / 1 4. Abultamientos y hundimientos 10. Grietas longitudis 5. Corrugación 11. Parcheo 6. Depresión 12. Pulimento de agr		berma nales y transversales	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento	10L 10L 1M

DAÑO	SEVERIDAD					CAN	TIDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
1	М	3.6	.6									3.6	1.6	25.0
10	L	0.8	0.8 1.1										0.8	
	PROMEDIO							88	Excelente			•		

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SE	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUES	STREO				
	KM 359+00	0 - KM 360+	000		kn	n 359+850			018					
CA	RRIL				PROGR	ESIVA FINAI		AREA	DE MUESTI	REO				
	IZQ	UIERDA			kn	n 359+900			225 m²					
INS	SPECCIONADO PO	OR		_				FECH	IA					
TES	SISTAS MECR - JS	SS						2	3 - Enero - 20	21				
	DAÑOS													
2. Exudació	1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento													
Agnetamiento en bioque A. Abultamientos y hundimientos Corrugación Depresión Depresión Depresión Depresión Depresión Depresión Depresión Depresión Depresión Depresión								18. Hincha	arabólica (sli				40L	
DAÑO SEVERIDAD CANTIDAD											TOTAL	DENSIDAD	VALOR DEDUCIDO	
10	L	1.0										1.0	0.4	
	PROMEDIO								Excelente					

Validado por:

Ing. Victor Guillermo Rristo Castillo

1.4

0.7

PROMEDIO

10

L

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

			ASTN	1 D 6433 (2003)			
SE	CCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO			
	KM 359+000 - KM 36	0+000	km 359+900	019			
CA	ARRIL		PROGRESIVA FINAL	AREA DE MUESTREO			
	DERECHA		km 359+950	225 m²			
INS	SPECCIONADO POR	_		FECHA			
TE	SISTAS MECR - JSS			28 - Enero - 2021			
-	ón niento en bloque nientos y hundimientos cción	Desnivel ca	eflexión de juntas arril / berma gitudinales y transversales	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados		¹ 10L	
DAÑO	SEVERIDAD		CANTIDAD		TOTAL	DENSIDAD	VALOR DEDUCIDO

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA

88

Excelente

							ASTM D 6	433 (2003)					
CA	RRIL		000]	kn PROGR	ESIVA INICIA n 359+900 ESIVA FINAL n 359+950	AL .	UNID AREA	O19 ADE MUESTI 225 m ² IA 3 - Enero - 20	REO			
DAÑOS 1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 6. Depresión DAÑOS 7. Grieta de borde 8. Grieta de reflexión de juntas 9. Desnivel carril / berma 10. Grietas longitudinales y transversales 11. Parcheo 12. Pulimento de agregados								15. Ahuella 16. Despla: 17. Grieta p 18. Hincha	le vía ferrea miento zamiento parabólica (sli			™	
DAÑO	SEVERIDAD	CANTIDAD								TOTAL	DENSIDAD	VALOR DEDUCIDO	
1	M	0.9									0.9	0.4	14.0
	PROMEDIO 86 Excelente												

Validado por:

Ing. Victor Guillermo Bristo Castillo

AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

1.4

0.7

0.6

0.3

PROMEDIO

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							ASTIN D 6	133 (2003)					
SE	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUES	STREO			
	KM 359+00	00 - KM 360+	000		kn	n 359+950			020				
CA	RRIL			_	PROGR	ESIVA FINAL		ARF/	DE MUEST	REO			
		RECHA				n 360+000	_	7.1.2	225 m²				
INC	PECCIONADO P							FECH					
							\neg			24			
IE:	SISTAS MECR - J	55						20	3 - Enero - 20	21			_
					54000							1M	
					DAÑOS								
1. Piel de o	ocodrilo		7. G	rieta de borde	,			13. Huecos	,			1M	
2. Exudació	ón		8. Gr	rieta de reflex	ión de juntas	3		14. Cruce o	le vía ferrea				
	iento en bloque		9. De	esnivel carril /	berma			15. Ahuella	miento				
	entos y hundimien	itos		rietas longitud	finales y trar	isversales		16. Despla				10M	
5. Corrugad				archeo					oarabólica (sl	ppage)		TUW	
6. Depresió	on		12. Pt	ulimento de a	gregados			18. Hinchai					
		19. Desprendi							naimiento de	agregados			
DAÑO SEVERIDAD CAI							TIDAD				TOTAL	DENSIDAD	VALOR
D/IIIO	JETEIND/ID					- OAII					101/12	DENOIDAD	DEDUCIDO
1	М	3.8	6.3								10.1	4.5	38.0
10	М	0.7									0.7	0.3	(1)

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

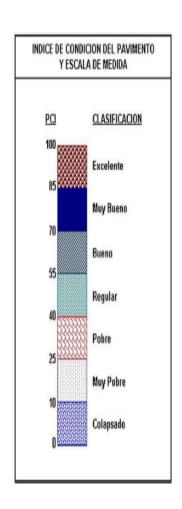
88

Excelente

							ASTINIDA	433 (2003)						
SE	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUES	STREO				
	KM 359+00	0 - KM 360+	-000	7	kı	m 35+950			020					
CA	RRIL			_	PROGR	ESIVA FINAL		AREA	DE MUESTI	REO				
	IZQ	UIERDA		7	kn	n 360+000			225 m²					
INS	PECCIONADO P	OR		_			_	FECH	Α					
TES	SISTAS MECR - J	SS						28	3 - Enero - 20	21				
	DAÑOS												10L	
	ón iiento en bloque ientos y hundimien ción	e ión de junta: / berma dinales y trar gregados			15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento arabólica (sli				IUL				
DAÑO	DAÑO SEVERIDAD CANTIDAD											TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L 14.9											14.9	6.6	7.0
	•		PROMEDIO			•	•	86	Excelente		•	•		

Validado por:

Ing. Victor Guillermo Rristo Castillo

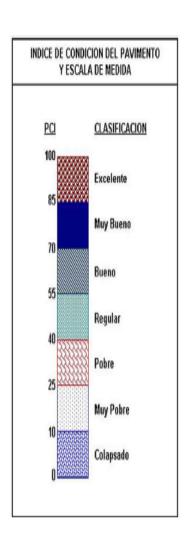

AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

EVALUACIÓN DE SUPERFICIE DE RODADURA PARA MEJORAR TRANSITABILIDAD DE CARRETERA SAN ALEJANDRO -ALTO SHIRINGAL, APLICANDO METODOLOGIA PCI, UCAYALI 2020

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

			TRAMO: KM 361	1+000 - KM 30	62+000 / CAR	RIL DERECH/	1	
N°	AREA (m²)	UNIDAD DE MUESTREO	PROGRE		m	VDC	PCI	CLASIFICACION
01	225.0	001	361+000 -	361+050		0	100	Excelente
02	225.0	002	361+050 -	361+100		8	92	Excelente
03	225.0	003	361+100 -	361+150		4	96	Excelente
04	225.0	004	361+150 -	361+200		1	99	Excelente
05	225.0	005	361+200 -	361+250	9.1	14	86	Excelente
06	225.0	006	361+250 -	361+300		9	91	Excelente
07	225.0	007	361+300 -	361+350		0	100	Excelente
08	225.0	008	361+350 -	361+400		7	93	Excelente
09	225.0	009	361+400 -	361+450		0	100	Excelente
10	225.0	010	361+450 -	361+500		4	96	Excelente
11	225.0	011	361+500 -	361+550		0	100	Excelente
12	225.0	012	361+550 -	361+600		7	93	Excelente
13	225.0	013	361+600 -	361+650		5	95	Excelente
14	225.0	014	361+650 -	361+700		8	92	Excelente
15	225.0	015	361+700 -	361+750		11	89	Excelente
16	225.0	016	361+750 -	361+800		0	100	Excelente
17	225.0	017	361+800 -	361+850	7.1	44	56	Bueno
18	225.0	018	361+850 -	361+900		4	96	Excelente
19	225.0	019	361+900 -	361+950		5	95	Excelente
20	225.0	020	361+950 -	362+000	8.0	36	64	Bueno
			PROMEDIO				92	Excelente

Validado por:


Ing. Victor Guillermo Rristo Custillo

EVALUACIÓN DE SUPERFICIE DE RODADURA PARA MEJORAR TRANSITABILIDAD DE CARRETERA SAN ALEJANDRO -ALTO SHIRINGAL, APLICANDO METODOLOGIA PCI, UCAYALI 2020

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

			TRAMO: KM 361	+000 - KM 36	2+000 / CAR	RIL IZQUIERD	A	
N°	AREA (m²)	UNIDAD DE MUESTREO	PROGRE		m	VDC	PCI	CLASIFICACION
01	225.0	001	361+000 -	361+050		7	93	Excelente
02	225.0	002	361+050 -	361+100		6	94	Excelente
03	225.0	003	361+100 -	361+150		4	96	Excelente
04	225.0	004	361+150 -	361+200		1	99	Excelente
05	225.0	005	361+200 -	361+250		0	100	Excelente
06	225.0	006	361+250 -	361+300		12	88	Excelente
07	225.0	007	361+300 -	361+350		4	96	Excelente
08	205.0	008	361+350 -	361+400		12	88	Excelente
09	225.0	009	361+400 -	361+450		6	94	Excelente
10	225.0	010	361+450 -	361+500		4	96	Excelente
11	225.0	011	361+500 -	361+550		12	88	Excelente
12	225.0	012	361+550 -	361+600		0	100	Excelente
13	225.0	013	361+600 -	361+650		7	93	Excelente
14	225.0	014	361+650 -	361+700		61	39	Pobre
15	225.0	015	361+700 -	361+750		0	100	Excelente
16	225.0	016	361+750 -	361+800		1	99	Excelente
17	225.0	017	361+800 -	361+850		5	95	Excelente
18	225.0	018	361+850 -	361+900		4	96	Excelente
19	225.0	019	361+900 -	361+950		0	100	Excelente
20	225.0	020	361+950 -	362+000		2	98	Excelente
			PROMEDIO				93	Excelente

Validado por:

Ing. Victor Guillermo Rristo Castillo

GUSTAVO ADOLFO AYBAFARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

EVALUACIÓN DE SUPERFICIE DE RODADURA PARA MEJORAR TRANSITABILIDAD DE CARRETERA SAN ALEJANDRO -ALTO SHIRINGAL, APLICANDO METODOLOGIA PCI, UCAYALI 2020

			METO	DO ESTANI				JPERFICIE	NDICION SU ASFALTICA	JPERFICIAL \	DEL PAV	IMENTO		
] [CARRIL		000		PROGR	ESIVA INICI, n 361+000 ESIVA FINAI n 361+050		AREA FECH	AD DE MUE 001 A DE MUEST 225 m ² HA 7 - Enero - 20	REO				
2. Exud 3. Agrie	tamiento en bloque		8. G 9. D	rieta de borde rieta de refle esnivel carril	ión de junta: / berma	S		15. Ahuella	de vía ferrea miento				['] 10L	
5. Corn 6. Depr		itos	11. Pa	rietas longitu archeo ulimento de a	•	nsversales		18. Hinchar	oarabólica (s				'10L	
DAÑO	SEVERIDAD					CAN	TIDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	0.4	0.7									1.1	0.5	

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 361+000 - KM 362+000 km 361+000 CARRIL PROGRESIVA FINAL AREA DE MUESTREO IZQUIERDA km 361+050 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 26 - Enero - 2021 10L DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 2. Exudación 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 1L 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 17. Grieta parabólica (slippage) 11. Parcheo 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO **SEVERIDAD** TOTAL DENSIDAD CANTIDAD DEDUCIDO 1.2 1.2 0.6 7.0 L 10 0.5 0.5 0.2 L PROMEDIO Excelente

Validado por:

Ing. Victor Guillermo Rristo Castillo

GUSTAVO ADOLFO AYBAF ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

Si	ECCION				PROGR	ESIVA INICIA	\L	UNID	AD DE MUE	STREO			
	KM 361+00	0 - KM 362+	000		kn	n 361+050			002				
C	ARRIL				PROGR	ESIVA FINAL		AREA	DE MUEST	REO			
	DE	RECHA			kn	n 361+100			225 m²				
IN	SPECCIONADO P	OR						FECH	IA				
TE	ESISTAS MECR - J	SS						27	7 - Enero - 20	21			
					DAÑOS							_ 🖵	
		tos	8. Gr 9. De	ieta de borde ieta de reflex esnivel carril / ietas longitud	ión de junta: berma			13. Huecos 14. Cruce d 15. Ahuella 16. Desplaz	le vía ferrea miento			11	
5. Corruga 6. Depresi			11. Pa 12. Pu	rcheo ilimento de ag	gregados			18. Hinchar	oarabólica (sl miento ndimiento de			10L	
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.7	0.9								1.6	0.7	8.0
10	L	0.5									0.5	0.2	

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

	ECCION				PROGR	ESIVA INICIA	L	UNID	AD DE MUES	STREO			
	KM 361+00	00 - KM 362+	000		kr	n 361+050			002				
(ARRIL			_	PROGR	ESIVA FINAL		AREA	DE MUESTI	REO			
	IZC	UIERDA			kr	n 361+100			225 m²				
ī	NSPECCIONADO P	OR		_			_	FECH	IA				
	ESISTAS MECR - J	SS						27	7 - Enero - 20	21			
					DAÑOS								
2. Exuda 3. Agriet 4. Abulta 5. Corrug	Piel de cocodrilo 7. Grieta de borde Exudación 8. Grieta de reflexión de juntas Agrietamiento en bloque 9. Desnivel carril / berma Abultamientos y hundimientos 10. Grietas longitudinales y transversales Corrugación 11. Parcheo Depresión 12. Pulimento de agregados								le vía ferrea miento zamiento parabólica (sli miento ndimiento de			41	1
DAÑO	SEVERIDAD					CANT	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	1.1									1.1	0.5	6.0
	•	•	PROMEDIO			•		93	Excelente				

Validado por:

Ing. Victor Guillermo Rristo Castillo

. CIP Nº 47898

PROGRESIVA INICIAL UNIDAD DE MUESTREO SECCION KM 361+000 - KM 362+000 km 361+100 003 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 361+150 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 1L DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 10L 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 19L Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados

DAÑO	SEVERIDAD			CAN	ΠDAD			TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.3						0.3	0.2	4.0
10	L	0.7					·	0.7	0.3	
19	L									

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SE	CCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO			
	KM 361+00	00 - KM 362+000	km 361+100	003			
CA	RRIL		PROGRESIVA FINAL	AREA DE MUESTREO			
	IZQ	UIERDA	km 361+150	225 m²			
INS	SPECCIONADO P	OR		FECHA			
TE	SISTAS MECR - J	SS		27 - Enero - 2021			
			DAÑOS				
1. Piel de d		7. Grieta d		13. Huecos			
2. Exudaci			de reflexión de juntas	14. Cruce de vía ferrea			
	niento en bloque		el carril / berma	15. Ahuellamiento			
	ientos y hundimien		longitudinales y transversales	16. Desplazamiento		1	
5. Corruga		11. Parcheo	-	17. Grieta parabólica (slippage)		16	
6. Depresion	on	12. Pulimen	nto de agregados	18. Hinchamiento			
				19. Desprendimiento de agregados			
DAÑO	SEVERIDAD		CANTIDAD		TOTAL	DENSIDAD	VALOR DEDUCIDO

DAÑO	SEVERIDAD					CANT	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.7									0.7	0.3	4.0
			PROMEDIO	•	•			93	Excelente		•		

Validado por:

Ing. Victor Guillermo Rristo Castillo

GUSTAVO ADOLFO

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) UNIDAD DE MUESTREO SECCION PROGRESIVA INICIAL KM 361+000 - KM 362+000 km 361+150 004 CARRIL PROGRESIVA FINAL AREA DE MUESTREO

225 m²

27 - Enero - 2021

10L

FECHA

DERECHA km 361+200 INSPECCIONADO POR TESISTAS MECR - JSS DAÑOS 1. Piel de cocodrilo 7. Grieta de borde

13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 15. Ahuellamiento 9. Desnivel carril / berma 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión

12. Pulimento de agregados 18. Hinchamiento

or Doprodic	,,,		12.11	allinorito do d	grogados			19. Desprer	ndimiento de	agregados			
DAÑO	SEVERIDAD					CANT	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	0.8									0.8	0.3	
3	L	4.3									4.3	1.9	1.0

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

CA	RRIL		-000]	kn PROGRI	ESIVA INICIA n 361+150 ESIVA FINAL n 361+200		AREA	AD DE MUEST 004 DE MUESTR 225 m ² A	REO				
	DAÑOS 7. Cristo de levelo 42 blueses													
	ón niento en bloque ientos y hundimien ción	tos	8. Gri 9. De 10. Gri 11. Pa	eta de borde eta de reflexi snivel carril / etas longitudi rcheo imento de ag	ón de juntas berma inales y tran			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento arabólica (sli				3L	
DAÑO	SEVERIDAD					CAN	ΠDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
3	L	4.6							4.6	2.1	1.0			
			PROMEDIO					93	Excelente					

Validado por:

Ing. Victor Guillermo Rristo Castillo

							AUTHER	100 (2000)					
CA INS	RRIL		-000		kr PROGR	ESIVA INICI/ n 361+200 ESIVA FINAI n 361+250		AREA FECH	O05 A DE MUESTI 225 m² HA 7 - Enero - 20	REO			
					DAÑOS							1L	
	ón niento en bloque ientos y hundimier ción	rieta de borde rieta de refle; esnivel carril rietas longitu archeo ulimento de a	xión de junta: / berma dinales y trar			15. Ahuella 16. Despla: 17. Grieta p 18. Hincha	de vía ferrea miento zamiento parabólica (sl		7	'L			
DAÑO	SEVERIDAD	CANTI									TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	1.3	1.4								2.6	1.2	12.0
			1		1	1			1				1

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) PROGRESIVA INICIAL UNIDAD DE MUESTREO SECCION KM 361+000 - KM 362+000 km 361+200 005 CARRIL PROGRESIVA FINAL AREA DE MUESTREO IZQUIERDA km 361+250 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos

				33			19. Despre	ndimiento de	agregados			
DAÑO	SEVERIDAD				CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	0.6								0.6	0.3	
			PROMEDIO				93	Excelente				

8. Grieta de reflexión de juntas

10. Grietas longitudinales y transversales

9. Desnivel carril / berma

12. Pulimento de agregados

11. Parcheo

Validado por:

2. Exudación

5. Corrugación

6. Depresión

Agrietamiento en bloque
 Abultamientos y hundimientos

Ing. Victor Guillermo Rristo Castillo

14. Cruce de vía ferrea

17. Grieta parabólica (slippage)

15. Ahuellamiento

18. Hinchamiento

16. Desplazamiento

206

2.7

10L

SE	CCION			_	PROGR	ESIVA INICIA	AL_	UNID	AD DE MUES	STREO			
	KM 361+00	0 - KM 362+	000		kn	n 361+250			006				
CA	RRIL			_	PROGR	ESIVA FINAL	_	AREA	DE MUESTI	REO			
	DE	RECHA			kn	n 361+300			225 m²				
INS	PECCIONADO P	OR		_			_	FECH	Α				
TES	SISTAS MECR - J	SS						27	- Enero - 20	21			
												10L	
					DAÑOS							IUL	
1. Piel de o	ocodrilo		7. Gr	ieta de borde				13. Huecos					
2. Exudació	ón		8. Gr	ieta de reflex	ión de junta	S		14. Cruce d	le vía ferrea			41	
-	niento en bloque			esnivel carril /				15. Ahuella				¶ _	
Abultami Corrugac	ientos y hundimien	itos		ietas longitud ircheo	linales y trar	nsversales		16. Desplaz	zamiento arabólica (sli	innage)			
6. Depresió				ilimento de a	gregados			18. Hinchar		ippaye)		10L	
					3 3				ndimiento de	agregados			
2400	AFI/FDIDAD					0.410	TID AD				TOTAL	DEMOIDAD	VALOR
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	DEDUCIDO
1	L	1.7									1.7	0.8	9.0
10	1	12									12	0.5	

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							ASTINIDE	433 (2003)					
SE	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUE	STREO			
	KM 361+00	0 - KM 362+	000	7	kn	n 361+250			006				
CA	RRIL			_	PROGR	ESIVA FINAL	_	AREA	DE MUEST	REO			
	IZQ	UIERDA		7	kn	n 361+300			225 m²				
INS	PECCIONADO P	OR						FECH	A				
TES	SISTAS MECR - J	SS						27	7 - Enero - 20)21			
					DAÑOS								
Exudació Agrietam Abultami	Piel de cocodrilo 7. Grieta de borde Exudación 8. Grieta de reflexión de juntas Agrietamiento en bloque 9. Desnivel carril / berma Abultamientos y hundimientos 10. Grietas longitudinales y transversales Corrugación 11. Parcheo							15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sl			1L	
DAÑO	SEVERIDAD		CANT	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO			
1	L	2.7									2.7	1.2	12.0
	PROMEDIO								Excelente		•		

Validado por:

Ing. Victor Guillermo Rristo Castillo

207

GUSTAVO ADOLFO AYBAF ARRIOLA INGENERO CIVIL Reg. CIP Nº 47898

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 361+000 - KM 362+000 km 361+300 007 AREA DE MUESTREO CARRIL PROGRESIVA FINAL DERECHA km 361+350 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 DAÑOS 13L 1. Piel de cocodrilo 13. Huecos 7. Grieta de borde 8. Grieta de reflexión de juntas 2. Exudación 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 19L 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 10L 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD DENSIDAD CANTIDAD TOTAL DEDUCIDO 0.4 0.2 10 L 0.4 13 L

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) PROGRESIVA INICIAL UNIDAD DE MUESTREO SECCION KM 361+000 - KM 362+000 km 361+300 007 CARRIL PROGRESIVA FINAL AREA DE MUESTREO IZQUIERDA km 361+350 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 1L 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD DEDUCIDO 1 L 0.5 0.5 0.2 4.0 PROMEDIO 93 Excelente

0.2

0.1

Validado por:

19

L

0.2

Ing. Victor Guillermo Rristo Castillo

UNIDAD DE MUESTREO SECCION PROGRESIVA INICIAL KM 361+000 - KM 362+000 km 361+350 008 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 361+400 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021

DAÑOS

Piel de cocodrilo
 Exudación
 Agrietamiento en bloque
 Abultamientos y hundimientos

5. Corrugación

6. Depresión

7. Grieta de borde
8. Grieta de reflexión de juntas
9. Desnivel carril / berma

Grietas longitudinales y transversales
 Parcheo
 Pulimento de agregados

13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento

16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento

19. Desprendimiento de agregados

10L

DAÑO	SEVERIDAD			CANT	TIDAD			TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	1.3						1.3	0.6	7.0
10	L	0.8						0.8	0.4	

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

DAÑO	SEVERIDAD				CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	2.3								2.3	1.1	12.0
			PROMEDIO				93	Excelente				

Validado por:

Ing. Victor Guillermo Bristo Castillo

YBAR ARRIOLA NGENIERO CIVIL leg. CIP Nº 47898

								122					
	ARRIL		000		kr PROGR	ESIVA INICIA n 361+400 ESIVA FINAL n 361+450		ARE	009 A DE MUEST 225 m² HA 27 - Enero - 20	REO			
2. Exuda 3. Agrieta	amiento en bloque mientos y hundimien pación	itos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflex esnivel carril ietas longitud archeo ulimento de a	ión de junta / berma linales y trar	S		15. Ahuell 16. Despla 17. Grieta 18. Hincha	de vía ferrea amiento azamiento parabólica (sl			101 10L 10L	
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	0.2	0.3	0.4	·						0.9	0.4	

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							ASTM D 6	433 (2003)					
SE	CCION				PROGRI	ESIVA INICIA	AL.	UNID	AD DE MUES	STREO			
	KM 361+00	0 - KM 362+	000		kn	n 361+400			009				
CA	RRIL				PROGRI	ESIVA FINAL		AREA	DE MUESTF	REO			
	IZQ	UIERDA			kn	n 361+450			225 m²				
INS	PECCIONADO P	OR						FECH	A				
TES	SISTAS MECR - J	SS						27	- Enero - 20	21			
					DAÑOS								
	ón iiento en bloque ientos y hundimien ción	tos	8. Gri 9. De 10. Gri 11. Pa	ieta de borde ieta de reflex snivel carril / ietas longitud rcheo limento de ag	ión de juntas berma inales y tran			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	e vía ferrea miento amiento arabólica (sli			IL	
DAÑO	AÑO SEVERIDAD CANTII						TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L 1.1										1.1	0.5	6.0
	PROMEDIO							93	Excelente				

Validado por:

Ing. Victor Guillermo Rristo Castillo

DAÑO

10

SEVERIDAD

L

0.1

0.4

0.1

0.2

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) PROGRESIVA INICIAL SECCION UNIDAD DE MUESTREO KM 361+000 - KM 362+000 km 361+450 010 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 361+500 225 m² 10L INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 DAÑOS ፐ 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 15. Ahuellamiento 9. Desnivel carril / berma 1 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) Ħ 18. Hinchamiento 6. Depresión 12. Pulimento de agregados 19. Desprendimiento de agregados

CANTIDAD

	METODO ESTA	CARRETERAS CO	DICE DE LA CONDICION SUPERFICIAL DEL PA N SUPERFICIE ASFALTICA I D 6433 (2003)	VIMENTO		
SECCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO			
KM 361+000 - KM 36	52+000	km 361+450	010			
CARRIL		PROGRESIVA FINAL	AREA DE MUESTREO			
IZQUIERDA		km 361+500	225 m²			
INSPECCIONADO POR			FECHA			
TESISTAS MECR - JSS			27 - Enero - 2021			
		DAÑOS				
Piel de cocodrilo Exudación Agrietamiento en bloque Abultamientos y hundimientos Corrugación Depresión	Desnivel car	flexión de juntas ırril / berma gitudinales y transversales	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados		1	
DAÑO SEVERIDAD		CANTIDAD		TOTAL	DENSIDAD	VALOR DEDUCIDO

93

Excelente

Validado por:

PROMEDIO

Ing. Victor Guillermo Rristo Castillo

GUSTAVO ADOLFO AYBAP ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

4.0

VALOR

DEDUCIDO

4.0

TOTAL

0.5

0.4

DENSIDAD

0.2

11. Parcheo

12. Pulimento de agregados

5. Corrugación

6. Depresión

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) PROGRESIVA INICIAL UNIDAD DE MUESTREO SECCION KM 361+000 - KM 362+000 km 361+500 011 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 361+550 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 15. Ahuellamiento 9. Desnivel carril / berma 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento

	DAÑO	SEVERIDAD					CAN	ΠDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
	13	L													
_															
METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO															

17. Grieta parabólica (slippage)

19. Desprendimiento de agregados

18. Hinchamiento

			METOL	JO EGIAND		CARRETER	AS CON SU				LDELFAVIII	MENTO		
SE	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUES	STREO				
	KM 361+00	0 - KM 362+	000		kr	n 361+500			011					
CA	RRIL				PROGR	ESIVA FINAL		AREA	DE MUEST	REO				
	IZQ	UIERDA			kr	n 361+550			225 m²					
INS	PECCIONADO P	OR						FECH	Α					
TES	SISTAS MECR - J	SS						27	- Enero - 20	121				
						19M	7							
		e tión de junta: / berma dinales y trar			13. Huecos 14. Cruce d 15. Ahuella 16. Despla	le vía ferrea miento				ISW				
Corrugac Depresió	ción	gregados	isversales		17. Grieta p 18. Hinchar	arabólica (sl				19M				
DAÑO	SEVERIDAD					CAN	ΠDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
19	М	1.1	9.6									10.6	4.7	12.0
	•		PROMEDIO				•							

Validado por:

Ing. Victor Guillermo Rristo Castillo

212

AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

13L

2.5

L

10

11.4

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 361+000 - KM 362+000 km 361+550 012 PROGRESIVA FINAL AREA DE MUESTREO CARRIL DERECHA km 361+600 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 DAÑOS 10L 13L 7. Grieta de borde 13. Huecos 1. Piel de cocodrilo 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 15. Ahuellamiento 9. Desnivel carril / berma 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) HOL 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD DEDUCIDO

13.9

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) PROGRESIVA INICIAL UNIDAD DE MUESTREO SECCION KM 361+000 - KM 362+000 km 361+550 012 CARRIL PROGRESIVA FINAL AREA DE MUESTREO IZQUIERDA km 361+600 225 m² INSPECCIONADO POR FECHA TESISTAS MECR - JSS 27 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 15. Ahuellamiento 9. Desnivel carril / berma 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 10L 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD DEDUCIDO 10 1.0 1.0 L PROMEDIO 93 Excelente

Validado por:

Ing. Victor Guillermo Rristo Custillo

213

AYBAR ARRIOLA

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 361+000 - KM 362+000 km 361+600 013 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 361+650 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 16. Desplazamiento Grietas longitudinales y transversales 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD DEDUCIDO 1 L 1.0 1.0 0.5 5.0

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) UNIDAD DE MUESTREO PROGRESIVA INICIAL SECCION KM 361+000 - KM 362+000 km 361+600 CARRIL PROGRESIVA FINAL AREA DE MUESTREO IZQUIERDA km 361+650 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 19M DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 19M 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 16. Desplazamiento 10. Grietas longitudinales y transversales 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 191 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD DEDUCIDO 19 L 0.1 0.1 19 M 1.0 1.1 2.2 1.0 7.0 PROMEDIO 93 Excelente

Validado por:

Ing. Victor Guillermo Rristo Castillo

AYBAR ARRIOLA

SECCION KM 361+000 - KM 362+000 CARRIL DERECHA INSPECCIONADO POR TESISTAS MECR - JSS					kr PROGR	ESIVA INICIA n 361+650 ESIVA FINAL n 361+700		UNIDAD DE MUESTREO 014 AREA DE MUESTREO 225 m² FECHA 27 - Enero - 2021					
2. Exudación 8. Grie 3. Agrietamiento en bloque 9. Des 4. Abultamientos y hundimientos 10. Grie 5. Corrugación 11. Par			snivel carril ietas longitu	kión de junta / berma dinales y trar			15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	de vía ferrea miento zamiento parabólica (sl			ΊL		
DAÑO	SEVERIDAD	CANTIDAD									TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	1.6									1.6	0.7	8.0

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							AUTINIDO	100 (2000)						
SECCION					PROGRESIVA INICIAL UNIDAD DE MUESTI					STREO			15M	
KM 361+000 - KM 362+000					kı	km 361+650 014								
CARRIL						PROGRESIVA FINAL AREA DE MUESTREO								
IZQUIERDA						km 361+700 225 m ²								
INSPECCIONADO POR								FECH	A					
TESISTAS MECR - JSS 27 - Enero - 2021														
DAÑOS														
	Piel de cocodrilo 7. Grieta de bord													
Exudación Registra de reflexión Agrietamiento en bloque Desnivel carril / be					•	•								
Agrietamiento en bloque Desnivel carril / berma Abultamientos y hundimientos 10. Grietas longitudinales y														
5. Corrugación 11. Parcheo					,	17. Grieta parabólica (slippage)								
6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados														
								19. Desprei	naimiento ae	agregados				
DAÑO	SEVERIDAD		CANTIDAD								TOTAL	DENSIDAD	VALOR DEDUCIDO	
15	М	85.8				T						85.8	38.1	61.0

Excelente

Validado por:

PROMEDIO

Ing. Victor Guillermo Rristo Castillo

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 361+000 - KM 362+000 km 361+700 015 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 361+750 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 DAÑOS 13. Huecos 1. Piel de cocodrilo 7. Grieta de borde 14. Cruce de vía ferrea 8. Grieta de reflexión de juntas 2. Exudación 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO **SEVERIDAD** CANTIDAD TOTAL DENSIDAD DEDUCIDO 24 11 1 METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 361+000 - KM 362+000 km 361+700 015 AREA DE MUESTREO CARRIL PROGRESIVA FINAL IZQUIERDA km 361+750 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 DAÑOS 10L 1. Piel de cocodrilo 7. Grieta de borde 13 Hueros 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 10L 15. Ahuellamiento 3. Agrietamiento en bloque 9. Desnivel carril / berma 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento ħL 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD **DEDUCIDO** 10 L 1.8 2.4 4.2 1.9

Validado por:

PROMEDIO

L

7

Ing. Victor Guillermo Rristo Castillo

93

Excelente

							AOTIVIDO	100 (2000)						
SE	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUES	STREO				
	KM 361+00	0 - KM 362+	000		kr	n 361+750			016					
CA	ARRIL			_	PROGR	ESIVA FINAL		ARE/	DE MUESTI	REO				
	DE	RECHA			kr	n 361+800			225 m²					
IN:	SPECCIONADO P	OR						FECH	IA					
TE	TESISTAS MECR - JSS 27 - Enero - 2021													
	DAÑOS													
1. Piel de				ieta de borde				13. Huecos						
2. Exudaci				ieta de refle: snivel carril	xión de junta / bormo	S		14. Cruce of 15. Ahuella	le vía ferrea					
	niento en bloque nientos y hundimien	itos			<i>r</i> berna dinales y trar	nsversales		16. Despla					L	
5. Corruga	ición		11. Pa	rcheo	•			17. Grieta	oarabólica (sli	ippage)			10L	
6. Depresi	ón		12. Pu	limento de a	igregados			18. Hinchai						
	19. Desprendimiento de agregados													
DAÑO SEVERIDAD CANTIDAD												TOTAL	DENSIDAD	VALOR DEDUCIDO
														DEDOGIDO
10	L	0.9										0.9	0.4	

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SECCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO			
KM 361+000 - KM 362+00	0	km 361+750	016			
CARRIL		PROGRESIVA FINAL	AREA DE MUESTREO			
IZQUIERDA		km 361+800	225 m²			
INSPECCIONADO POR			FECHA			
TESISTAS MECR - JSS			27 - Enero - 2021			
		DAÑOS				
Piel de cocodrilo Exudación Agrietamiento en bloque Abultamientos y hundimientos	 Grieta de borde Grieta de reflexió Desnivel carril / k Grietas longitudir 	•	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento	1	10M	
5. Corrugación 6. Depresión	11. Parcheo 12. Pulimento de agr	regados	17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados		40L	
						VALOR

DA	ιÑΟ	SEVERIDAD				CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
	10	L	1.5								1.5	0.7	
4	10	М	1.6								1.6	0.7	1.0
				PROMEDIO				93	Excelente				

Validado por:

Ing. Victor Guillermo Rristo Castillo

GUSTAVO ADOLFO AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

							ASTIN D 6	33 (2003)						
SE	CCION				PROGR	ESIVA INICIA	\L	UNIDA	AD DE MUES	STREO				
	KM 361+00	0 - KM 362+	000	7	kn	n 361+800			017					
CA	RRIL				PROGR	ESIVA FINAL	_	AREA	DE MUESTI	REO		4M		
	DE	RECHA		7	kn	n 361+850			225 m²					
INS	PECCIONADO P	OR		_				FECH	A					
TES	SISTAS MECR - J	SS						27	- Enero - 20	21				
	DAÑOS													
	DAÑOS													
1. Piel de cocodrilo 7. Grieta de 2. Exudación 8. Grieta de 3. Agrietamiento en bloque 9. Desnivel 4. Abultamientos y hundimientos 10. Grietas l 5. Corrugación 11. Parcheo 6. Depresión 12. Puliment					ión de junta: / berma dinales y trar			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	e vía ferrea miento amiento arabólica (sli				1L ₁ 10L	
DAÑO	SEVERIDAD					CANT	ΠDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	9.7										9.7	4.3	25.0
10	L	0.8										0.8	0.4	
4	M	16.5										16.5	7.4	34.0

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							ASTM D 6	433 (2003)						
SEC	CCION KM 361+00	0 - KM 362+	000	7		ESIVA INICIA n 361+800	AL	UNID	AD DE MUES	STREO				
CAI	RRIL	0 - KWI 302+	000	_		ESIVA FINAL		AREA	DE MUEST	REO				
	IZQ	UIERDA			kn	n 361+850			225 m²					
INS	PECCIONADO P	OR						FECH	Α					
TES	TESISTAS MECR - JSS 27 - Enero - 2021													
	DAÑOS													
	ón iiento en bloque ientos y hundimien ción	itos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflex snivel carril ietas longitud rcheo limento de a	ción de junta: / berma dinales y trar			15. Ahuella 16. Despla: 17. Grieta p 18. Hincha	le vía ferrea miento zamiento parabólica (sli				IL	
DAÑO SEVERIDAD CANTIDAD										TOTAL	DENSIDAD	VALOR DEDUCIDO		
1	L 1.0											1.0	0.4	5.0

93

Excelente

Validado por:

PROMEDIO

Ing. Victor Guillermo Rristo Castillo

218

GUSTAVO ADOLFO AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

KM 361+000 - KM 362+000 km 361+850 018 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 361+900 225 m² INSPECCIONADO POR FECHA TESISTAS MECR - JSS 27 - Enero - 2021	
DERECHA km 361+900 225 m² INSPECCIONADO POR FECHA	
INSPECCIONADO POR FECHA	
TESISTAS MECR - JSS 27 - Enero - 2021	
DAÑOS	19L
1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 10. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados	
DAÑO SEVERIDAD CANTIDAD TOTAL DEN	DENSIDAD VALOR DEDUCIDO

DAÑO	SEVERIDAD			CANT	TIDAD			TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.2						0.2	0.1	4.0
10	L	0.7						0.7	0.3	
19	L	0.5						0.5	0.2	

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

S	ECCION				PROGR	ESIVA INICIA	AL .	UNIE	AD DE MUE	STREO			
	KM 361+00	00 - KM 362+	000		kn	n 361+850			018				
0	ARRIL				PROGR	ESIVA FINAI		ARE	A DE MUEST	REO			
	IZQ	UIERDA			kn	n 361+900			225 m²				
_II	ISPECCIONADO P	OR						FEC	ΗA				
I	ESISTAS MECR - J	SS						2	7 - Enero - 20	21			
					DAÑOS								
2. Exuda 3. Agrieta 4. Abulta 5. Corrug	1. Piel de cocodrilo 7. Grieta de 2. Exudación 8. Grieta de 3. Agrietamiento en bloque 9. Desnivel 4. Abultamientos y hundimientos 10. Grietas lo 5. Corrugación 11. Parcheo 6. Depresión 12. Pulimento							15. Ahuella 16. Despla 17. Grieta 18. Hincha	de vía ferrea amiento zamiento parabólica (sl miento			T	
								19. Despre	ndimiento de	agregados			
DAÑO SEVERIDAD CANTIDAD									TOTAL	DENSIDAD	VALOR DEDUCIDO		
1 L 0.4											0.4	0.2	4.0
			PROMEDIO					93	Excelente				

Validado por:

Ing. Victor Guillermo Bristo Castillo

Note														
CARRIL DERECHA INSPECCIONADO POR TESISTAS MECR - JSS DAÑOS T9M 1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 11. Parcheo 6. Depresión DAÑO CANTIDAD AREA DE MUESTREO 225 m² FECHA 27 - Enero - 2021 13. Huecos 14. Cruce de via ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados TOTAL DENSIDAD VALOR DEDUCIDO	SE	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUES	STREO			
DERECHA INSPECCIONADO POR TESISTAS MECR - JSS DAÑOS 1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 11. Parcheo 6. Depresión DAÑO CANTIDAD TOTAL DENSIDAD TOTAL DENSIDAD VALOR DEDUCIDO		KM 361+00	00 - KM 362+	000		kn	n 361+900			019				
INSPECCIONADO POR TESISTAS MECR - JSS DAÑOS 1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 11. Parcheo 12. Pulimento de agregados DAÑO SEVERIDAD TOTAL TOTAL DENSIDAD T9M FECHA 27 - Enero - 2021 13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19 Desprendimiento de agregados	CA	RRIL				PROGR	ESIVA FINAL		AREA	A DE MUEST	REO			
TESISTAS MECR - JSS DAÑOS 1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 6. Depresión DAÑO SEVERIDAD DAÑO SEVERIDAD DAÑO DENSIDAD DAÑO DAÑO DAÑO DAÑO SEVERIDAD DAÑO DAÑO		DE	RECHA			kn	n 361+950			225 m²				
DAÑOS 1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 6. Depresión 7. Grieta de borde 13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados 10. Grieta parabólica (slippage) 10. Desprendimiento de agregados 10. Parcheo 11. Parcheo 12. Pulimento de agregados 13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 19. Desprendimiento de agregados	INS	SPECCIONADO P	OR						FECH	IA				
1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 6. Depresión 7. Grieta de borde 13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados TOTAL DENSIDAD VALOR DEDUCIDO	TE	SISTAS MECR - J	SS						27	7 - Enero - 20	21			
2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 6. Depresión DAÑO SEVERIDAD 8. Grieta de reflexión de juntas 9. Desnivel carril / berma 15. Ahuellamiento 16. Desplazamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados TOTAL DENSIDAD VALOR DEDUCIDO												19M		
DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD VALOR DEDUCIDO	Exudació Agrietam Abultami Corruga	2. Exudación 8. Grieta d 3. Agrietamiento en bloque 9. Desnive 4. Abultamientos y hundimientos 10. Grietas 5. Corrugación 11. Parcheo							14. Cruce o 15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	de vía ferrea miento zamiento parabólica (sli miento				
19 M 0.1 0.4 0.5 1 1.0 0.5 5.0	DAÑO SEVERIDAD						CANT	TIDAD	19. Despre	ndimiento de	agregados	TOTAL	DENSIDAD	
	19	19 M 0.1 0.4 0.5										1.0	0.5	5.0

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6423 (2003)

						OAKKETEK	ASTM D 6		AUI ALIIUA					
SEC	CCION				PROGR	ESIVA INICIA	AL	UNID	AD DE MUE	STREO				
	KM 361+00	0 - KM 362+	-000		kn	n 361+900			019					
CAF	RRIL				PROGR	ESIVA FINAI		ARE	A DE MUEST	REO				
	IZQ	UIERDA			kn	1 361+950			225 m²					
INS	PECCIONADO PO	OR						FECI	łΑ					
TES	SISTAS MECR - JS	SS						2	7 - Enero - 20)21				
	DAÑOS													
Exudació Agrietami Abultamie Corrugac	1. Piel de cocodrilo 7. Grieta de borde 2. Exudación 8. Grieta de reflexión de juntas 3. Agrietamiento en bloque 9. Desnivel carril / berma 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 5. Corrugación 11. Parcheo 6. Depresión 12. Pulimento de agregados							15. Ahuella 16. Despla 17. Grieta 18. Hincha	de vía ferrea miento zamiento parabólica (sl				40L	
DAÑO	SEVERIDAD CANTIDAD											TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	1.8										1.8	0.8	
			PROMEDIO		•		•	93	Excelente		•	•		

Validado por:

Ing. Victor Guillermo Rristo Castillo

	SECCION		PROGRESIVA INICIAL		UNIDAD DE MUESTREO			
	KM 361+000 - KM 362+000		km 361+950		020			
	CARRIL	_	PROGRESIVA FINAL		AREA DE MUESTREO		1L	
	DERECHA		km 362+000		225 m²			
	INSPECCIONADO POR				FECHA			
	TESISTAS MECR - JSS				27 - Enero - 2021			
			DAÑOS			\dashv		
			DANO5					
2. Exud 3. Agrid 4. Abul	etamiento en bloque 9. I tamientos y hundimientos 10. 0 ugación 11. F	ón de juntas berma nales y transversales regados	14. 15. 16. 17. 18.	Huecos Cruce de vía ferrea Ahuellamiento Desplazamiento Grieta parabólica (slippage) Hinchamiento Desprendimiento de agregados		11L 1M		
								VALOR

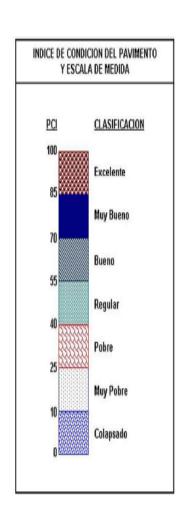
DAÑO	SEVERIDAD			CANT	TIDAD			TOTAL	DENSIDAD	VALOR DEDUCIDO
	L	8.9						8.9	4.0	24.0
1	M	3.1						3.1	1.4	24.0
11	L	15.6						15.6	6.9	13.0

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SE	CCION			PROGRI	ESIVA INICIA	L	UNID	AD DE MUES	STREO				
	KM 361+00	0 - KM 362+000	7	kn	n 361+950			020					
CA	RRIL		_	PROGRI	ESIVA FINAL	_	AREA	DE MUEST	REO				
	IZQ	UIERDA		kn	n 362+000			225 m²					
INS	SPECCIONADO P	OR					FECH	Α					
TE	SISTAS MECR - J	SS					27	' - Enero - 20	21				
	DAÑOS												
2. Exudaci	DAÑOS Piel de cocodrilo 7. Grieta de borde 13. Huecos Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento												
	ientos y hundimier		ietas longitudir		sversales		16. Desplaz						
5. Corruga		11. Pa						arabólica (sl	ippage)				
6. Depresion	on	12. Pu	limento de agr	egados			18. Hinchar 19. Desprei	niento ndimiento de	agregados			13M	
DAÑO	SEVERIDAD				CANT					TOTAL	DENSIDAD	VALOR DEDUCIDO	
13	М												2.0
	•	PROMEDIO					93	Excelente		•	•		

Validado por:

Ing. Victor Guillermo Rristo Castillo


AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

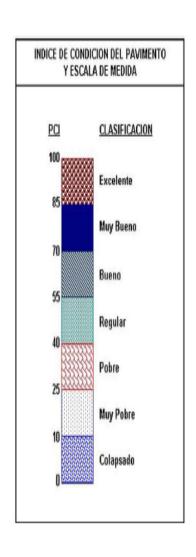
EVALUACIÓN DE SUPERFICIE DE RODADURA PARA MEJORAR TRANSITABILIDAD DE CARRETERA SAN ALEJANDRO -ALTO SHIRINGAL, APLICANDO METODOLOGIA PCI, UCAYALI 2020

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTIN D 6433 (2003)

			TRAMO: KM 363+000 - KM 3	64+000/ CAR	RIL DERECH/	1	
Nº	AREA (m²)	UNIDAD DE	PROGRESIVA	m	VDC	PCI	CLASIFICACION
		MUESTREO	INICIAL - FINAL				
01	225.0	001	363+000 - 363+050		26	74	Muy Bueno
02	225.0	002	363+050 - 363+100		26	74	Muy Bueno
03	225.0	003	363+100 - 363+150	5.9	54	46	Regular
04	225.0	004	363+150 - 363+200		4	96	Excelente
05	225.0	005	363+200 - 363+250	8.2	24	76	Muy Bueno
06	225.0	006	363+250 - 363+300		4	96	Excelente
07	225.0	007	363+300 - 363+350	9.7	7	93	Excelente
08	225.0	008	363+350 - 363+400	5.0	58	42	Regular
09	225.0	009	363+400 - 363+450		4	96	Excelente
10	225.0	010	363+450 - 363+500		35	65	Bueno
11	225.0	011	363+500 - 363+550		28	72	Muy Bueno
12	225.0	012	363+550 - 363+600	7.6	36	64	Bueno
13	225.0	013	363+600 - 363+650	5.1	57	43	Regular
14	225.0	014	363+650 - 363+700	8.6	24	76	Muy Bueno
15	225.0	015	363+700 - 363+750		24	76	Muy Bueno
16	225.0	016	363+750 - 363+800		20	80	Muy Bueno
17	225.0	017	363+800 - 363+850		23	77	Muy Bueno
18	225.0	018	363+850 - 363+900		52	48	Regular
19	225.0	019	363+900 - 363+950		5	95	Excelente
20	225.0	020	363+950 - 364+000		16	84	Muy Bueno
			PROMEDIO			74	Muy Bueno

Validado por:

Ing. Victor Guillermo Rristo Custillo


g. CIP Nº 47898

EVALUACIÓN DE SUPERFICIE DE RODADURA PARA MEJORAR TRANSITABILIDAD DE CARRETERA SAN ALEJANDRO -ALTO SHIRINGAL, APLICANDO METODOLOGIA PCI, UCAYALI 2020

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

			TRAMO: KM 363	+000 - KM 36	4+000 / CARI	RIL IZQUIERD	A	
N°	AREA (m²)	UNIDAD DE MUESTREO	PROGRE		m	VDC	PCI	CLASIFICACION
		MUESIKEU	INICIAL -	FINAL				
01	225.0	001	363+000 -	363+050		0	100	Excelente
02	225.0	002	363+050 -	363+100		4	96	Excelente
03	225.0	003	363+100 -	363+150	4.6	63	37	Pobre
04	225.0	004	363+150 -	363+200	9.2	13	87	Excelente
05	225.0	005	363+200 -	363+250		5	95	Excelente
06	225.0	006	363+250 -	363+300		37	63	Bueno
07	225.0	007	363+300 -	363+350	7.9	35	65	Bueno
08	225.0	008	363+350 -	363+400	6.8	42	58	Bueno
09	225.0	009	363+400 -	363+450		30	70	Muy Bueno
10	225.0	010	363+450 -	363+500		0	100	Excelente
11	225.0	011	363+500 -	363+550		5	95	Excelente
12	225.0	012	363+550 -	363+600		31	69	Bueno
13	225.0	013	363+600 -	363+650		23	77	Muy Bueno
14	225.0	014	363+650 -	363+700	8.4	22	78	Muy Bueno
15	225.0	015	363+700 -	363+750	7.4	48	52	Regular
16	225.0	016	363+750 -	363+800	7.0	49	51	Regular
17	225.0	017	363+800 -	363+850	7.5	34	66	Bueno
18	225.0	018	363+850 -	363+900	6.2	75	25	Pobre
19	225.0	019	363+900 -	363+950	7.8	39	61	Bueno
20	225.0	020	363+950 -	364+000	6.1	56	44	Regular
			PROMEDIO				69	Bueno

Validado por:

Ing. Victor Guillermo Bristo Castillo CIP. 107797 GUSTAVO ADOLFO AYBAR ARRIOLA INGENERO CIVIL Reg. CIP Nº 47898

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 363+000 - KM 364+000 km 363+050 002 10L PROGRESIVA FINAL AREA DE MUESTREO CARRIL DERECHA km 363+100 225 m² INSPECCIONADO POR FECHA TESISTAS MECR - JSS 27 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 9. Desnivel carril / berma 15. Ahuellamiento 3. Agrietamiento en bloque 1L 10. Grietas longitudinales y transversales 16. Desplazamiento 4. Abultamientos y hundimientos 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 19L 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DEDUCIDO DAÑO **SEVERIDAD** CANTIDAD TOTAL DENSIDAD 0.1 0.8 1.0 2.6 2.6 11.1 4.9 26.0 2.8 2.8 1.2 10 L 19 L 0.2 0.2 0.1 METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO

						CARRETER		JPERFICIE 433 (2003)	ASFALTICA				
SE	CCION				PROGR	ESIVA INICIA	AL	UNID	AD DE MUE	STREO			
	KM 363+00	0 - KM 364+	000		kr	n 363+000			001			1L	
CA	RRIL				PROGR	ESIVA FINA	L	AREA	DE MUEST	REO			
	DE	RECHA			kr	n 363+050			225 m²			11_	
INS	SPECCIONADO P	OR											
TE	SISTAS MECR - J	SS				21							
					DAÑOS			1					
	ón niento en bloque ientos y hundimien ción	tos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de refle: esnivel carril ietas longitu archeo alimento de a	xión de junta / berma dinales y trar			15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sli		ā		
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.2	0.5	1.0	1.4	1.5	7.2				11.8	5.2	26.0
	•		PROMEDIO					74	Muv Buen	0			•

Validado por:

Ing. Victor Guillermo Rristo Castillo

224

ADOLFO

SE	CCION			_	PROGR	ESIVA INICIA	AL	UNIC	AD DE MUE	STREO			
	KM 363+00	0 - KM 364+	000		kn	n 363+050			002				
CA	RRIL			_	PROGR	ESIVA FINAL	_	ARE	A DE MUEST	REO			
	IZQ	UIERDA			kr	n 363+100			225 m²				
INS	PECCIONADO P	OR		_				FECI	ΗA				
TES	SISTAS MECR - J	SS						2	7 - Enero - 20	021			
	DAÑOS												
1. Piel de c				ieta de borde		,		13. Huecos	s de vía ferrea				
	2. Exudación 8. Grieta de reflexión de juntas 3. Agrietamiento en bloque 9. Desnivel carril / berma								miento				
	entos y hundimien	tos		ietas longitud	inales y trar	sversales		16. Despla				1L	
 Corrugado Depresió 			11. Pa	rcheo limento de ac	rogodoo			17. Grieta 18. Hincha	parabólica (si	ippage)			
o. Depresio	Л		12.70	iiinenio de ag	regauos				ndimiento de	agregados			
DAÑO.											TOTAL	DENOIDAD	VALOR
DANO	DAÑO SEVERIDAD CANT										TOTAL	DENSIDAD	DEDUCIDO
1	L	0.6									0.6	0.2	4.0
					69	Bueno							

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SEC	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUES	STREO			
	KM 363+00	0 - KM 364+	000		kn	n 363+000			001				
CA	RRIL				PROGR	ESIVA FINAL		AREA	DE MUESTI	REO			
	IZQ	UIERDA			kn	n 363+050			225 m²				
INS	SPECCIONADO PO	OR					_	FECH	Α				
TES	SISTAS MECR - JS	SS						27	- Enero - 20	21			
	DAÑOS												
	Piel de cocodrilo Revidación Revidación Revidación Revidación Revidación Revidación Revidación Revidación Revidación								le vía ferrea				
	niento en bloque			esnivel carril /		,		15. Ahuella					
	ientos y hundimien	tos		ietas longitud	linales y tran	sversales		16. Desplaz		\			
 Corrugado Depresió 				rcheo ilimento de ac	aregados			17. Gneta p 18. Hinchar	arabólica (sli niento	ippage)		13L	
o, Doprosio					grogation				ndimiento de	agregados			
DAÑO	DAÑO SEVERIDAD CANTII										TOTAL	DENSIDAD	VALOR DEDUCIDO
13	L												
					69	Bueno							

Validado por:

Ing. Victor Guillermo Rristo Castillo

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 363+000 - KM 364+000 km 363+100 003 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 363+150 225 m² 1L INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO **SEVERIDAD** CANTIDAD TOTAL DENSIDAD DEDUCIDO 1 L 2.0 2.2 13.8 18.0 8.0 30.0 18.4 18.4 8.2 47.0 PROMEDIO Muy Bueno 74

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO 1M KM 363+000 - KM 364+000 km 363+100 003 CARRIL PROGRESIVA FINAL AREA DE MUESTREO IZQUIERDA km 363+150 225 m² 10L INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 10L DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3L 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD DEDUCIDO М 99.5 99.5 44.2 61.0 1 10 5.1 2.2 1.6 3.5 16.0 35.9 3 L 35.9 12.0

Bueno

Validado por:

PROMEDIO

Ing. Victor Guillermo Rristo Castillo

AYBAR ARRIOLA

PROMEDIO

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) UNIDAD DE MUESTREO SECCION PROGRESIVA INICIAL KM 363+000 - KM 364+000 km 363+150 004 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 363+200 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 1L DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 17. Grieta parabólica (slippage) 5. Corrugación 11. Parcheo 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 10L 19. Desprendimiento de agregados VALOR DAÑO SEVERIDAD CANTIDAD TOTAL DENSIDAD DEDUCIDO 0.1 0.1 4.0 0.1 1.3 1.3 0.6 10 L

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

74

Muy Bueno

Bueno

SE(CCION				PROGRI	ESIVA INICIA	AL.	UNID	AD DE MUES	STREO			
	KM 363+00	0 - KM 364+	000		kn	n 363+150			004				
CA	RRIL			_	PROGRI	ESIVA FINAL		AREA	DE MUESTI	REO			
	IZQ	UIERDA		7	kn	n 363+200			225 m²				
INS	PECCIONADO PO	OR		_				FECH	A				
TES	SISTAS MECR - JS	SS						27	- Enero - 20	21		11. 1	_
	DAÑOS												
_	ón niento en bloque ientos y hundimien ción	tos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflex esnivel carril / ietas longitud ircheo limento de aç	ión de juntas berma linales y tran			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	e vía ferrea miento amiento arabólica (sli		1	40L M 40L	
DAÑO	SEVERIDAD					CANT	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.5	1.9								2.3	1.0	11.0
1	М	0.1									0.1	0.1	6.0
10	L	0.8	1.7								2.5	1.1	

Validado por:

PROMEDIO

Ing. Victor Guillermo Rristo Castillo

227

GUSTAVO ADOLFO AYBAP ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

0.1

PROMEDIO

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

C/	ARRIL		000		kn PROGR	ESIVA INICIA n 363+200 ESIVA FINAL n 363+250		AREA	005 DE MUESTO 225 m ² A	REO		13M E.	
	DAÑOS fiel de cocodrilo 7. Grieta de borde											13W 1L	
Exudac Agrietar Abultan Corruga	2. Exudación 8. Grieta de 8. Agrietamiento en bloque 9. Desnivel 1. Abultamientos y hundimientos 10. Grietas k 5. Corrugación 11. Parcheo							15. Ahuellar 16. Desplaz 17. Grieta p	e vía ferrea miento amiento arabólica (sli	ppage)		13M	
6. Depresi	on		12. Pulimento de agregados					18. Hinchar 19. Desprer	niento ndimiento de	agregados		102	
DAÑO							ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	6.7						·		·	6.7	3.0	22.0
45	1 .		1	l .	1	1	I		ı	1			

Muy Bueno

74

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							ASTM D 6	433 (2003)					
SE	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUE	STREO			
	KM 363+00	0 - KM 364+	000		kr	n 363+200			005				
CA	RRIL			_	PROGR	ESIVA FINAL		AREA	DE MUEST	REO			
	IZQ	UIERDA			kr	n 363+250			225 m²				
INS	PECCIONADO P	OR		_				FECH	Α				
TES	SISTAS MECR - J	SS						2	' - Enero - 20)21			
					DAÑOS							13M	
Exudació Agrietam Abultami Corrugad	DAÑOS Piel de cocodrilo Piel de cocodrilo Sexudación S							15. Ahuella 16. Despla 17. Grieta p	le vía ferrea miento zamiento parabólica (sl	ippage)		13M	
6. Depresió	ón		12. Pu	limento de a	gregados			 Hincha Despre 	niento ndimiento de	agregados		13M	
DAÑO	DAÑO SEVERIDAD CANT										TOTAL	DENSIDAD	VALOR DEDUCIDO
13	М			0.1	·						0.2	0.1	5.0
		-	PROMEDIO					69	Bueno				

Validado por:

13

Ing. Victor Guillermo Rristo Castillo

0.1

4.0

							MOTIVID 0						
CA INS	ARRIL		000]	PROGRE	ESIVA INICIA 1 363+250 ESIVA FINAL 1 363+300		AREA	AD DE MUEST 006 DE MUEST 225 m ² A	REO			
	DAÑOS												
Exudaci Agrietan Abultam Corruga	DAÑOS 1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 6. Depresión 7. Grieta de borde 8. Grieta de reflexión de juntas 9. Desnivel carril / berma 10. Grietas longitudinales y trans 11. Parcheo 12. Pulimento de agregados							15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	e vía ferrea miento amiento arabólica (sli			79M '10L 79M	
DAÑO	SEVERIDAD					CANT	TDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	0.6									0.6	0.3	
19	M	0.1	0.2		·						0.3	0.1	4.0

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							ASTINID 6	433 (2003)					
SE	CCION				PROGR	ESIVA INICIA	AL	UNID	AD DE MUE	STREO			
	KM 363+00	0 - KM 364+	000		kr	n 363+250			006				
CA	RRIL				PROGR	ESIVA FINAI		AREA	DE MUEST	REO		1L	
	IZQ	UIERDA		7	kr	n 363+300			225 m²			IL	
INS	PECCIONADO P	OR		_			_	FECH	IA				
TES	SISTAS MECR - J	SS						27	7 - Enero - 20)21		1L	
					DAÑOS							IL.	
1. Piel de o	ocodrilo		7. Gr	ieta de bord	е				41				
2. Exudació	ón				xión de junta	S			le vía ferrea			1	
	niento en bloque			snivel carril				15. Ahuella				1L	
	ientos y hundimien	tos			dinales y trar	nsversales		16. Despla:		:\			
 Corrugado Depresió 			11. Pa	roneo limento de a	areaadoe			17. Grieta p	parabólica (sl	ippage)			
o. Depresio	//I		12.170	iiinenio de a	igregados				ndimiento de	agregados			
								,					VALOR
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	DEDUCIDO
1	L	4.0	4.4	5.8	17.6						31.8	14.1	37.0
			PROMEDIO		<u> </u>	<u> </u>		69	Bueno				

Validado por:

Guillermo Rristo Castillo CIP. 107797 Ing. Victor Guil

GUSTAVO ADOLFO AYBAP ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

3.3

PROMEDIO

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SE	CCION				PROGR	ESIVA INICIA	AL .	UNID	AD DE MUES	STREO			
	KM 363+00	0 - KM 364+	000		kn	n 363+300			007				
CA	RRIL				PROGR	ESIVA FINAL		AREA	DE MUEST	REO			
	DE	RECHA			kn	n 363+350			225 m²				
INS	PECCIONADO P	OR						FECH	IA				
TES	SISTAS MECR - J	SS						27	7 - Enero - 20	21			
		DAÑOS 43 University										<u>1L</u>	
Exudació Agrietam Abultami Corrugaci	Piel de cocodrilo 7. Grieta de b Exudación 8. Grieta de ro Agrietamiento en bloque 9. Desnivel co Abultamientos y hundimientos 10. Grietas lon Corrugación 11. Parcheo Depresión 12. Pulimento of							15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sli			4L	
DAÑO	AÑO SEVERIDAD CANTIDA										TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.4	0.6								1.0	0.4	5.0

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

74

Muy Bueno

3.3

1.5

3.0

							ASTM D 6	433 (2003)					
SE	ECCION KM 363±00	IO - KM 364+	000	7		ESIVA INICIA n 363+300	AL	UNID	AD DE MUES	STREO			
	ARRIL	IU - KIVI 304+	000	_		ESIVA FINAL		ADEA	DE MUESTI	DEO			
"		UIERDA		٦		n 363+350	_	ARLA	225 m²	NLO			
IN	SPECCIONADO P			_				FECH					
-	ESISTAS MECR - J								' - Enero - 20	121			15M
					DAÑOS							10L	
	ión miento en bloque nientos y hundimien ación	tos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflexi snivel carril / ietas longitud rcheo limento de ag	ón de juntas berma inales y tran			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento arabólica (sli		11.	¶L	
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	1.0	8.7								9.7	4.3	25.0
10	L	0.7									0.7	0.3	
15	М	3.4									3.4	1.5	22.0
	•	ı	PROMEDIO					69	Bueno				

Validado por:

Ing. Victor Guillermo Rristo Castillo

230

GUSTAVO ADOLFO AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

74

Muy Bueno

54.2

24.1

56.0

SECCION KM 363+000 - KM 364+000 CARRIL	km PROGRE	SIVA INICIAL 363+350 SIVA FINAL	UNIDAD DE MUESTREO 008 AREA DE MUESTREO		ΊL	1
IZQUIERDA INSPECCIONADO POR TESISTAS MECR - JSS		363+400	225 m² FECHA 27 - Enero - 2021		-	
1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 6. Depresión	DAÑOS 7. Grieta de borde 8. Grieta de reflexión de juntas 9. Desnivel carril / berma 10. Grietas longitudinales y trans 11. Parcheo 12. Pulimento de agregados		13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados		1M	
DAÑO SEVERIDAD		CANTIDAD		TOTAL	DENSIDAD	VALOR

DAÑO	SEVERIDAD				CANT	IIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	32.9								32.9	14.6	37.0
1	М	1.9								1.9	0.9	20.0
			PROMEDIO				69	Bueno				

Validado por:

15

M

54.2

PROMEDIO

Ing. Victor Guillermo Rristo Castillo

231

GUSTAVO ADOLFO AYBAF ARRIOLA INGENIERO CIVIL Reg. CIP N° 47898

							AOTHE O	100 (2000)					
CA	RRIL		000		kn PROGR	ESIVA INICI/ n 363+400 ESIVA FINAI n 363+450		AREA FECH	AD DE MUESTI 225 m ² HA 7 - Enero - 20	REO			
1 Dial da c	xudación 8. (grietamiento en bloque 9. I			rieta de borde	DAÑOS			13. Huecos				10L	
Exudacio Agrietan	ón niento en bloque		8. Gr	rieta de porde rieta de reflex esnivel carril /	ión de junta	S			de vía ferrea			1L _{10L}	
Abultami Corruga Depresió		itos	11. Pa	rietas longitud archeo ulimento de ag		nsversales		16. Despla: 17. Grieta p 18. Hincha	oarabólica (sl	ippage)			
o. Depresio	JII .		12.170	miliento de a	gregados				ndimiento de	agregados			
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.2	0.2	0.3							0.7	0.3	4.0
10	L	0.3	0.7								1.0	0.4	
			PROMEDIO					74	Muy Buen	10			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							AOTHED 0	100 (2000)						
	SECCION			_	PROGR	ESIVA INICIA	AL_	UNID	AD DE MUE	STREO				
	KM 363+00	00 - KM 364+	-000		kn	n 363+400			009					
	CARRIL				PROGR	ESIVA FINAL		ARE	A DE MUEST	REO				
	IZC	UIERDA		7	kn	n 363+450			225 m²					
	INSPECCIONADO P	OR		_				FECH	łA					
	TESISTAS MECR - J	SS						2	7 - Enero - 20	21				
<u> </u>								1L						
1. Piel d	e cocodrilo		7. Gr	ieta de borde										
2. Exud	ación			ieta de reflexi		S		14. Cruce	de vía ferrea					
_	tamiento en bloque			snivel carril / I				15. Ahuella					1L	
	amientos y hundimier	ntos	10. Gr 11. Pa	ietas longitudi	nales y trar	nsversales		16. Despla		innago)				
5. Corru 6. Depre				rcneo limento de ag	enhener			18. Hincha	parabólica (sl miento	ippage)				
or Dopi	201011		1211 0	illinonio de ag	ogados				ndimiento de	agregados				
DAÑO	AEVEDID 15					0.110	TIDAD					TOTAL	DENGIDAD	VALOR
DAÑO	SEVERIDAD					CAN	TIDAD					TOTAL	DENSIDAD	DEDUCIDO
1	L	2.6	14.8									17.4	7.7	30.0
			PROMEDIO				•	69	Bueno		•	•		

Validado por:

Ing. Victor Guillermo Rristo Castillo

							ACTION D	(2000)					
CA	RRIL		000		kr PROGR	ESIVA INICIA n 363+450 ESIVA FINAI n 363+500		AREA FECH	010 A DE MUESTR 225 m ² IA 7 - Enero - 20	REO		1L 10L	DL.
	ón niento en bloque ientos y hundimien ción	tos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflex esnivel carril ietas longitud ircheo ilimento de a	ión de junta / berma dinales y trar	S		15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sli			10L 10L 1L	1L
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	1.1	11.0	15.7							27.8	12.4	35.0
10	L	0.1	0.3	0.3	1.8						2.5	1.1	
			PROMEDIO					74	Muy Buen	0			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							ASTIVIDO	455 (2005)						
SE	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUE	STREO				
	KM 363+00	0 - KM 364+	000	7	kr	n 363+450			010					
CA	RRIL			_	PROGR	ESIVA FINAL	_	AREA	DE MUEST	REO				
	IZQ	UIERDA		7	kr	n 363+500			225 m²					
INS	SPECCIONADO P	OR		_			_	FECH	Α					
TES	SISTAS MECR - J	SS						27	' - Enero - 20)21				
Exudació Agrietam	DAÑOS Piel de cocodrilo 7. Grieta de borde Exudación 8. Grieta de reflexión de juntas Agrietamiento en bloque 9. Desnivel carril / berma 10. Grietas longitudinales y transversales								le vía ferrea miento zamiento					
5. Corrugado 6. Depresió	ción		11. Pa	_	•	10401001100		17. Grieta p 18. Hinchar	arabólica (sl		i		10L	
DAÑO	SEVERIDAD					CANT	ΠDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO
10	L	0.8										0.8	0.4	
	•		PROMEDIO			•	•	69	Bueno	•	•	•	•	

Validado por:

Ing. Victor Guillermo Rristo Castillo

UNIDAD DE MUESTREO SECCION PROGRESIVA INICIAL KM 363+000 - KM 364+000 km 363+500 011 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 363+550 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 8. Grieta de reflexión de juntas 2. Exudación 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 17. Grieta parabólica (slippage) 5. Corrugación 11. Parcheo 6. Depresión 12. Pulimento de agregados 18, Hinchamiento 19. Desprendimiento de agregados

DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.7	1.0	1.1	5.4	6.2		14.4	6.4	28.0			
10	L	0.4	2.9								3.3	1.5	·
		ı	PROMEDIO					74	Muy Buen	0			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

CA	ARRIL IZQ SPECCIONADO P		000		PROGR	ESIVA INICIA n 363+500 ESIVA FINAL n 363+550		AREA FECH	AD DE MUES 011 DE MUESTR 225 m ² A ' - Enero - 202	REO			
Exudacio Agrietan Abultami	Agrietamiento en bloque 9. Desnivel car Abultamientos y hundimientos 10. Grietas longi Corrugación 11. Parcheo							15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento arabólica (slip			₩	
DAÑO	SEVERIDAD					CANT	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
4	1	4.0									4.0	0.4	

1.0 0.4 5.0 PROMEDIO

Validado por:

Ing. Victor Guillermo Rristo Castillo

SECCION		PROGRESIVA INICIAL		UNIDAD DE MUESTREO	
KM 363+000 - KM 364+000		km 363+550		012	10L
CARRIL		PROGRESIVA FINAL		AREA DE MUESTREO	41
DERECHA		km 363+600		225 m²	16
INSPECCIONADO POR				FECHA	
TESISTAS MECR - JSS				27 - Enero - 2021	
			•		 π
		DAÑOS			
1. Piel de cocodrilo	7. Grieta de borde			Huecos	1L
2. Exudación	Grieta de reflexió	•		Cruce de vía ferrea	
Agrietamiento en bloque Abultamiento en bloque	Desnivel carril / I Criston langitudi			Ahuellamiento	1M
Abultamientos y hundimientos Corrugación	11. Parcheo	nales y transversales		Desplazamiento Grieta parabólica (slippage)	1L
6. Depresión	12. Pulimento de agr	regados		Hinchamiento	<u> </u>
ai makisaisii	izir amilono do agi	- ogusoo		Desprendimiento de agregados	

								TOT DOOPTO	idililionto do	agrogadoo			
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.1	0.9	2.4	2.9						6.3	2.8	21.0
1	М	4.9									4.9	2.2	28.0
10	L	3.8									3.8	1.7	
			PROMEDIO					74	Muy Buen	10			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

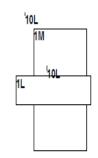
							ASTIVIUS	100 (2000)						
SEC	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUES	STREO				
	KM 363+00	0 - KM 364+	000		kn	n 363+550			012					
CAR	RRIL			_	PROGR	ESIVA FINAL	_	AREA	DE MUESTI	REO				
	IZQ	UIERDA			kn	n 363+600			225 m²					
INS	PECCIONADO P	OR						FECH	Α					
TES	SISTAS MECR - J	SS						27	' - Enero - 20	21				
							1L							
_	n iento en bloque entos y hundimien ión	e ión de junta / berma dinales y trar gregados			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	e vía ferrea miento amiento arabólica (sli								
DAÑO												TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	19.7										19.7	8.8	31.0
			PROMEDIO					69	Bueno		•	•		

Validado por:

Ing. Victor Guillermo Rristo Castillo

SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 363+000 - KM 364+000 km 363+600 013 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 363+650 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 DAÑOS 7. Grieta de borde 13. Huecos 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea

 1. Piel de cocodrilo
 7. Grieta de borde
 13. Huecos


 2. Exudación
 8. Grieta de reflexión de juntas
 14. Cruce de vía ferrea

 3. Agrietamiento en bloque
 9. Desnivel carril / berma
 15. Ahuellamiento

 4. Abultamientos y hundimientos
 10. Grietas longitudinales y transversales
 16. Desplazamiento

 5. Corrugación
 11. Parcheo
 17. Grieta parabólica (slippage)

 6. Depresión
 12. Pulimento de agregados
 18. Hinchamiento

							19. Desprei	ndimiento de	agregados			
DAÑO	SEVERIDAD				CANT	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	11.4								11.4	5.1	26.0
1	М	34.7								34.7	15.4	55.0
10	L	0.7	1.0							1.7	0.8	
			PROMEDIO				74	Muy Buen	10			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							ASTIN D 6	433 (2003)					
SE	CCION				PROGR	ESIVA INICIA	AL	UNID	AD DE MUE	STREO			
	KM 363+00	0 - KM 364+	000		kn	n 363+600			013				
CA	RRIL			_	PROGR	ESIVA FINAL		AREA	DE MUEST	REO			
	IZQ	UIERDA			kn	n 363+650			225 m²				
INS	SPECCIONADO P	OR						FECH	Α				
TES	SISTAS MECR - J	SS						27	' - Enero - 20)21			
					DAÑOS							1L	
Piel de c Exudació Agrietam			8. Gr	eta de borde eta de reflex snivel carril	ión de junta:	S		13. Huecos 14. Cruce d 15. Ahuella	e vía ferrea			1 <u>L</u>	
 Abultami Corrugad Depresió 		tos	11. Pa	_	dinales y trar gregados	nsversales		18. Hinchar	arabólica (sl			11	
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	1.3	3.1	3.2							7.7	3.4	23.0
	•		PROMEDIO				•	69	Bueno				

Validado por:

Ing. Victor Guillermo Rristo Castillo

AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

							ASTINIDA	433 (2003)					
CA	RRIL		000		PROGR	ESIVA INICIA 1 363+650 ESIVA FINAL 1 363+700	AL	AREA FECH	AD DE MUESTI 225 m ² A 7 - Enero - 20	REO		'10L	
Piel de c Exudació Agrietam	cocodrilo ón niento en bloque ientos y hundimien		8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflex esnivel carril / ietas longitud rcheo dimento de a	ión de junta: / berma dinales y trar			13. Huecos 14. Cruce d 15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento arabólica (sli	ppage)		TL 1L	ΊL
DAÑO	SEVERIDAD					CANT	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.2	1.0	3.1							4.2	1.9	17.0
10	L	0.7									0.7	0.3	
3	М	17.3									17.3	7.7	16.0
			PROMEDIO					74	Muy Buen	0			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SE	CCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO			
	KM 363+00	0 - KM 364+000	km 363+650	014			
CA	RRIL		PROGRESIVA FINAL	AREA DE MUESTREO			
	IZQI	UIERDA	km 363+700	225 m²			
INS	SPECCIONADO PO	DR .		FECHA			
TE	SISTAS MECR - JS	SS		27 - Enero - 2021			
			DAÑOS				
	ón niento en bloque ientos y hundimient ción	7. Grieta de boro 8. Grieta de refle 9. Desnivel carri tos 10. Grietas longit 11. Parcheo 12. Pulimento de	exión de juntas il / berma udinales y transversales	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados		1M	
DAÑO	SEVERIDAD		CANTIDAD		TOTAL	DENSIDAD	VALOR DEDUCIDO

DAÑO	SEVERIDAD				CANT	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.4								0.4	0.2	4.0
1	М	1.9								1.9	0.8	20.0
			PROMEDIO				69	Bueno				

Validado por:

Ing. Victor Guillermo Rristo Castillo

PROMEDIO

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							AUTINIDO	100 (2000)					
CAI	RRIL	0 - KM 364+ RECHA OR	000		PROGR	ESIVA INICIA n 363+700 ESIVA FINAL n 363+750	AL	UNID	AD DE MUEST 015 A DE MUESTF 225 m ²				
TES	SISTAS MECR - J	SS						27	7 - Enero - 20	21		1L]
_	ón niento en bloque ientos y hundimien ción	tos	8. Gi 9. De 10. Gi 11. Pa	ieta de borde ieta de refle: esnivel carril ietas longitu ircheo ilimento de a	ción de junta: / berma dinales y trar			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento parabólica (sli			1L	
DAÑO	SEVERIDAD					CAN	ΠDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.8	2.7	5.6							9.1	4.0	24.0

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

Muy Bueno

KM 363+000 - KM 364+000	SECCION		PROGRESIVA INICIAL	UNIDAD DE MUESTREO		
IZQUIERDA km 363+750	KM 363+000 - KM 364+00	0	km 363+700	015	-	
INSPECCIONADO POR TESISTAS MECR - JSS DAÑOS 1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 11. Parcheo 12. Evaldación 13. Huecos 15. Ahuellamiento 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento	CARRIL		PROGRESIVA FINAL	AREA DE MUESTREO	1	1M
TESISTAS MECR - JSS DAÑOS 1. Piel de cocodrilo 2. Exudación 3. Agrietamiento en bloque 4. Abultamientos y hundimientos 5. Corrugación 11. Parcheo 12. Evalogación 13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento	IZQUIERDA		km 363+750	225 m²		
DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berna 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento	INSPECCIONADO POR	-		FECHA	1L	
1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento	TESISTAS MECR - JSS			27 - Enero - 2021		
2. Exudación 8. Grieta de reflexión de juntas 14, Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15, Ahuellamiento 4. Abultamientos y hundimientos 10, Grietas longitudinales y transversales 16, Desplazamiento 5. Corrugación 11, Parcheo 17, Grieta parabólica (slippage) 6. Depresión 12, Pulimento de agregados 18, Hinchamiento			DAÑOS		1L_	
	Exudación Agrietamiento en bloque Abultamientos y hundimientos Corrugación	 Grieta de reflexió Desnivel carril / la Grietas longitudio Parcheo 	berma nales y transversales	 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 		

DAÑO	SEVERIDAD				CANT	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	1.5	13.7							15.2	6.8	29.0
11	М	21.8								21.8	9.7	30.0
3	М	26.2								26.2	11.7	16.0
			PROMEDIO				69	Bueno				

Validado por:

Ing. Victor Guillermo Bristo Custillo

							ASTM D 6	433 (2003)					
CA	RRIL		-000		PROGR	ESIVA INICIA n 363+750 ESIVA FINAL n 363+800		AREA FECH	016 016 DE MUESTI 225 m ² A	REO			
	ón niento en bloque ientos y hundimien ción	tos	8. Gr 9. De 10. Gr 11. Pa	ieta de borde ieta de reflex esnivel carril / ietas longitud rcheo limento de a	ión de junta: berma linales y trar			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento arabólica (sli			1L	
DAÑO	SEVERIDAD					CANT	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	5.6									5.6	2.5	20.0
			PROMEDIO					74	Muy Buen	10	•		

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

							AO I WI D O	433 (2003)					
SE	CCION				PROGR	ESIVA INICIA	AL.	UNID	AD DE MUE	STREO			
	KM 363+00	0 - KM 364+	000	\neg	kr	m 363+750			016				
CA	ARRIL				PROGR	ESIVA FINAL	_	AREA	DE MUEST	REO		T	7
	IZQ	UIERDA		7	kr	m 363+800			225 m²				- ¬
INS	SPECCIONADO P	OR		_			_	FECH	Α			1L	1L
TE	SISTAS MECR - J	SS						27	' - Enero - 20	021			
					DAÑOS							1L	
	ón niento en bloque nientos y hundimien ción	tos	8. Gr 9. De 10. Gr 11. Pa	rieta de borde rieta de reflex esnivel carril rietas longitu archeo ulimento de a	ción de junta / berma dinales y trar			15. Ahuella 16. Desplaz 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento arabólica (sl	lippage)	1	M1L	
DAÑO	SEVERIDAD					CANT	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.4	4.8	5.7	12.4						23.3	10.3	33.0
1	М	8.6									8.6	3.8	35.0
11	L	0.3									0.3	0.1	

Bueno

Validado por:

PROMEDIO

Ing. Victor Guillermo Rristo Castillo

CA	CCION KM 363+00 RRIL DE SPECCIONADO PO SISTAS MECR - JS	RECHA DR	000]	kn PROGRI	ESIVA INICIA 1 363+800 ESIVA FINAL 1 363+850		AREA FECH	O17 DE MUESTR 225 m ² A - Enero - 20	REO		3М	
	on iiento en bloque ientos y hundimien ción	tos	8. Gri 9. De 10. Gri 11. Pa	ieta de borde ieta de reflexió snivel carril / l ietas longitudi rcheo limento de ag	berma nales y tran			15. Ahuella 16. Despla: 17. Grieta p 18. Hinchar	le vía ferrea miento zamiento arabólica (sli				
DAÑO	SEVERIDAD					CANT	IIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
3	М	71.3									71.3	31.7	23.0
			PROMEDIO	·				74	Muy Buen	0			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SE	CCION				PROGR	ESIVA INICIA	AL_	UNID	AD DE MUES	STREO		1L	
	KM 363+00	0 - KM 364+	+000		kn	n 363+800			017				
CA	RRIL			_	PROGR	ESIVA FINAL		AREA	DE MUEST	REO		3L	1
	IZQ	UIERDA			kn	n 363+850			225 m²			1L	
INS	SPECCIONADO P	OR						FECH	Α			41	
TE	SISTAS MECR - J	SS						27	' - Enero - 20)21		IL	
					DAÑOS								_
1. Piel de c	cocodrilo		7. G	rieta de bord	e			13. Huecos	i			11L	
2. Exudació				rieta de refle		S			le vía ferrea				
	niento en bloque ientos y hundimier	tos		esnivel carril rietas longitu		nsversales		15. Ahuella 16. Desplaa				11L	
5. Corruga				archeo	anialog y a ai			17. Grieta p	arabólica (sli	ippage)			
6. Depresió	ón		12.P	ulimento de a	gregados			18. Hinchar 19. Despre	miento ndimiento de	agregados			
DAÑO	SEVERIDAD					CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	3.3	5.8	7.2							16.3	7.2	29.0
11	L	2.3	17.8								20.1	8.9	15.0

	DAÑO	SEVERIDAD				CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
	1	L	3.3	5.8	7.2						16.3	7.2	29.0
	11	L	2.3	17.8							20.1	8.9	15.0
	3	L	9.9								9.9	4.4	4.0
Γ				PROMEDIO				69	Bueno				

Validado por:

Ing. Victor Guillermo Bristo Castillo

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) PROGRESIVA INICIAL SECCION UNIDAD DE MUESTREO KM 363+000 - KM 364+000 km 363+850 018 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 363+900 225 m² INSPECCIONADO POR **FECHA** TESISTAS MECR - JSS 27 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados VALOR DAÑO **SEVERIDAD** CANTIDAD TOTAL DENSIDAD DEDUCIDO М 26.3 26.3 11.7 52.0 PROMEDIO Muy Bueno METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003) UNIDAD DE MUESTREO SECCION PROGRESIVA INICIAL 13H KM 363+000 - KM 364+000 km 363+850 018 CARRIL PROGRESIVA FINAL AREA DE MUESTREO 225 m² IZQUIERDA km 363+900 INSPECCIONADO POR **FECHA** 13M TESISTAS MECR - JSS 27 - Enero - 2021 DAÑOS 1. Piel de cocodrilo 7. Grieta de borde 13. Huecos 2. Exudación 8. Grieta de reflexión de juntas 14. Cruce de vía ferrea 3. Agrietamiento en bloque 9. Desnivel carril / berma 15. Ahuellamiento 4. Abultamientos y hundimientos 10. Grietas longitudinales y transversales 16. Desplazamiento 5. Corrugación 11. Parcheo 17. Grieta parabólica (slippage) 6. Depresión 12. Pulimento de agregados 18. Hinchamiento 19. Desprendimiento de agregados

									-99			
DAÑO	SEVERIDAD				CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	2.7	49.0							51.7	23.0	43.0
1	М	9.7								9.7	4.3	37.0
13	Н	0.4	0.7							1.1	0.5	39.0
13	М	0.1								0.1	0.1	4.0
			PROMEDIO				69	Bueno				

Validado por:

no Rristo Castillo Ing. Victor Gu CIP 107797

241

ADOLFO

AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

SE	ECCION				PROGRI	ESIVA INICIA	L	UNID	AD DE MUES	STREO			
	KM 363+00	0 - KM 364+	000	7	kn	n 363+900			019				
C	ARRIL			_	PROGRI	ESIVA FINAL		ARE	A DE MUESTR	REO			
	DE	RECHA			kn	n 363+950			225 m²				
IN	ISPECCIONADO P	OR						FECI	łΑ				
TE	ESISTAS MECR - J	SS						2	7 - Enero - 20	21			
					DAÑOS								
	ión miento en bloque nientos y hundimien ación	tos	8. Gri 9. De 10. Gri 11. Pa	ieta de borde ieta de reflexió snivel carril / k ietas longitudir rcheo limento de agr	erma nales y tran			15. Ahuella 16. Despla 17. Grieta 18. Hincha	de vía ferrea miento zamiento parabólica (sli			¶	
DAÑO	SEVERIDAD			CANT	TDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO		
1	L 0.9										0.9	0.4	5.0
			PROMEDIO					74	Muy Buen	0			

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SE	CCION			_	PROGR	ESIVA INICIA	L	UNID	AD DE MUES	STREO			
	KM 363+00	0 - KM 364+	000		kn	n 363+900			019				
CA	RRIL			_	PROGRI	ESIVA FINAL		AREA	A DE MUESTI	REO		10L	
	IZQ	UIERDA			kn	n 363+950			225 m²			10L	
INS	SPECCIONADO P	OR		_				FECH	łA			IVL	10L
TE	SISTAS MECR - J	SS						27	7 - Enero - 20)21		₹	
					DAÑOS							" IL_	
	ón niento en bloque ientos y hundimien	itos	8. Gr 9. De 10. Gr	ieta de borde ieta de refle esnivel carril ietas longitue rcheo	ión de juntas berma			15. Ahuella 16. Despla	de vía ferrea miento	innane)		TL .	
6. Depresió				limento de a	gregados			18. Hinchar				13H	
DAÑO	AÑO SEVERIDAD					CANT	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	0.2	3.3	8.5							11.9	5.3	26.0
10	L	0.5	0.6	0.7							1.8	0.8	

Validado por:

13

0.5

PROMEDIO

Ing. Victor Gullermo Rristo Castillo

69

Bueno

. CIP Nº 47898

26.0

SECCION PROGRESIVA INICIAL UNIDAD DE MUESTREO KM 363+000 - KM 364+000 km 363+950 020 CARRIL PROGRESIVA FINAL AREA DE MUESTREO DERECHA km 364+000 225 m² INSPECCIONADO POR **FECHA** 27 - Enero - 2021 TESISTAS MECR - JSS DAÑOS

- 1. Piel de cocodrilo 2. Exudación
- 3. Agrietamiento en bloque
- 4. Abultamientos y hundimientos 5. Corrugación
- 6. Depresión

- 7. Grieta de borde
- 8. Grieta de reflexión de juntas
- 9. Desnivel carril / berma
- 10. Grietas longitudinales y transversales
- 11. Parcheo
- 12. Pulimento de agregados
- 13. Huecos
- 14. Cruce de vía ferrea
- 15. Ahuellamiento
- 16. Desplazamiento
- 17. Grieta parabólica (slippage)
- 18. Hinchamiento
- 19. Desprendimiento de agregados

DAÑO	SEVERIDAD				CAN	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	3.8								3.8	1.7	16.0
			PROMEDIO				74	Muy Buen	0			-

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

SECCION KM 363+000 - KM 364 CARRIL IZQUIERDA INSPECCIONADO POR	+000	PROGRESIVA INICIAL km 363+950 PROGRESIVA FINAL km 364+000	UNIDAD DE MUESTREO 020 AREA DE MUESTREO 225 m² FECHA	1L 11	1M
TESISTAS MECR - JSS		DAÑOS	27 - Enero - 2021	11.	
Piel de cocodrilo Exudación Agrietamiento en bloque Abultamientos y hundimientos Corrugación Depresión	7. Grieta de borde 8. Grieta de reflex 9. Desnivel carril i 10. Grietas longitud 11. Parcheo 12. Pulimento de a	ión de juntas / berma dinales y transversales	13. Huecos 14. Cruce de vía ferrea 15. Ahuellamiento 16. Desplazamiento 17. Grieta parabólica (slippage) 18. Hinchamiento 19. Desprendimiento de agregados	1L	
					VALOR

DAÑO	SEVERIDAD					CANT	TIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO
1	L	4.9	5.3	8.4	10.4						29.0	12.9	36.0
1	M	5.4	9.8								15.2	6.8	44.0
			DDOMEDIO			•		60	Rueno				

Validado por:

Ing. Victor Guillermo Bristo Castillo

243

AYBAR ARRIOLA INGENIERO CIVIL Reg. CIP Nº 47898

MATRIZ DE OPERACIONALIZACIÓN DE VARIABLES

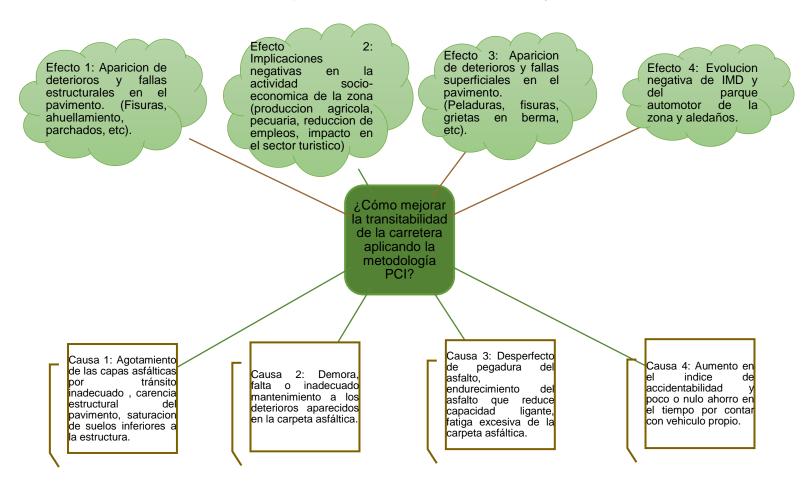
"EVALUACIÓN DE SUPERFICIE DE RODADURA PARA MEJORAR TRANSITABILIDAD DE CARRETERA SAN ALEJANDRO – ALTO SHIRINGAL, APLICANDO METODOLOGÍA PCI, UCAYALI 2020."

VARIABLES DE ESTUDIO	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIÓN	INDICADORES	ESCALA DE MEDICIÓN
Variable independiente: Evaluación de superficie de rodadura.	Procedimiento técnico que proporciona una base racional para calificar la calidad del pavimento e identificar alternativas viables de mantenimiento y reparación (Shahin, M. Y., 2005, p.242).		Metodología PCI	CLASIFICACIÓN	Bajo (Low) Medio (Medium) Alto (High) 100-85 (Excelente) 85-70 (Muy Bueno) 70-55 (Bueno) 55-40 (Regular) 40-25 (Pobre) 25-10 (Muy Pobre) 10-0 (Colapsado)

VARIABLES DE ESTUDIO	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIÓN	INDICADORES	ESCALA DE MEDICIÓN
	"Nivel de servicio de la infraestructura vial que asegura un estado			MANTTO. PREVENTIVO	100-80 (PCI)
Variable dependiente: Mejorar transitabilidad de	vehicular regular durante un	Procedimiento de análisis de calificación del pavimento y evaluación de	ACTIVIDADES VIABLES DE	MANTTO. CORRECTIVO	80-60 (PCI)
la carretera PE-5N	determinado periodo" (Glosario de Términos de uso frecuente en	intervenciones para mantenimiento y reparación.	MANTTO.	REHABILITACIÓN	60-40 (PCI)
	proyectos de infraestructura vial, 2018, p.22).			NUEVA CONSTRUCCIÓN	40-0 (PCI)

MATRIZ DE CONSISTENCIA PROYECTO DE INVESTIGACIÓN

"EVALUACIÓN DE SUPERFICIE DE RODADURA PARA MEJORAR TRANSITABILIDAD DE CARRETERA SAN ALEJANDRO – ALTO SHIRINGAL, APLICANDO METODOLOGÍA PCI, UCAYALI 2020."


Problema	Objetivos	Hipótesis	Variables	Metodología de Investigación	Población	Técnicas e Instrumentos
P. General	O. General	H. General	Independiente	Tipo	Universo	Técnicas
¿Cómo tener una mejor transitabilidad de la carretera aplicando la metodología PCI?	Mejorar la transitabilidad ante el deterioro, en el pavimento flexible de la carretera PE – 5N, tramo San Alejandro-Alto Shiringal.	Si evaluamos el deterioro en la superficie de rodadura, entonces se podrá mejorar la transitabilidad de la carretera PE – 5N, tramo San Alejandro-Alto Shiringal.	Evaluación de superficie de rodadura.	El tipo de investigación es aplicada y descriptiva.	derecho e izquierdo (ida y vuelta), de la carretera PE-5N, desde la progresiva	identificación, conteo y calificación de las severidades, de las fallas. Calificación o condición operacional de la vía y Propuestas de intervención.
P. Especifico	O. Especifico	H. Especifico	Dependiente	Método	Muestra	Instrumentos
de fallas y sus frecuencias, presentes en el pavimento flexible de la carretera	fallas y sus frecuencias, presentes	Si identificamos cuáles son los tipos de fallas presentes y sus frecuencias, entonces se podrá mejorar la transitabilidad de la carretera PE-5N, tramo San Alejandro-Alto Shiringal.	3	La investigación se realizó haciendo uso del método descriptivo, no experimental.	Unidades de Muestra (UM), las cuales están inscritas en las Secciones, éstas a su vez se encuentran dentro del tramo comprendido para el estudio.	Manual de Fallas según ASTM D-6433, Formato de recolección de datos, wincha, perfil rectangular, GPS y registro.

P. Especifico	O. Especifico	H. Especifico	Método	Instrumentos
¿Cuál será el índice de condición operacional, de acuerdo al método PCI, del pavimento flexible de la carretera PE-5N, tramo San Alejandro-Alto Shiringal?	flexible de la carretera	operacional, de acuerdo al método PCI, entonces se podrá mejorar la transitabilidad de la	Diseño	Método de análisis de datos
intervenciones se pueden proponer para prolongar la vida útil del pavimento flexible de la carretera PE-5N,	Evaluar qué tipos de intervenciones se pueden proponer para prolongar la vida útil del pavimento flexible de la carretera PE-5N, tramo San Alejandro-Alto Shiringal.	intervenciones, entonces se podrá	El diseño del presente trabajo se realizó utilizando la metodología del PCI (Pavement Condition Index).	En campo: recolección de datos según tipo de falla. En gabinete: registro de fallas en EvalPavCar y cálculo de PCI.

ÁRBOL DEL PROBLEMA PROYECTO DE INVESTIGACIÓN

"EVALUACIÓN DE SUPERFICIE DE RODADURA PARA MEJORAR TRANSITABILIDAD DE CARRETERA SAN ALEJANDRO – ALTO SHIRINGAL, APLICANDO METODOLOGÍA PCI, UCAYALI 2020."

FORMATO DE RECOLECCIÓN DE DATOS

"EVALUACIÓN DE SUPERFICIE DE RODADURA PARA MEJORAR TRANSITABILIDAD DE CARRETERA SAN ALEJANDRO – ALTO SHIRINGAL, APLICANDO METODOLOGÍA PCI, UCAYALI 2020."

CON	HALT SUIDITION	SURVE			ARKING	LOTS		s	КЕТСН:				
BRANCH SURVEY	ED BY	SEC	TION	s	AMPLE UN	IIT							
2. Blee 3. Bloc 4. Bum	k Crackin	g ags	7. Edge (8. Jt. Ref 9. Lane/		DIOP OII		lished tholes ilroad	Agg	Jtil Cut Pa gregate ssing	tching	18. Swe	oage Cracki	1
DISTRESS SEVERITY					QUANTITY	•					TOTAL	DENSITY %	DEDUCT VALUE

Fuente: ASTM D-6433 - 18, p.3

JUICIO DE EXPERTOS

"EVALUACIÓN DE SUPERFICIE DE RODADURA PARA MEJORAR TRANSITABILIDAD DE CARRETERA SAN ALEJANDRO – ALTO SHIRINGAL, APLICANDO METODOLOGÍA PCI, UCAYALI 2020."

VALIDACIÓN DE INSTRUMENTOS DE LA INVESTIGACIÓN

- INTRODUCCIÓN:

Agradecemos su gentil participación en la presente investigación aplicada - descriptivo, para obtener información sobre la evaluación de la transitabilidad de la carretera.

- 1 = nunca
- 2 = casi nunca
- 3 = alguna vez
- 4 = casi siempre
- 5 = siempre

- DATOS GENERALES:

Llenar los datos personales.

- 1. Apellidos y Nombres:
- 2. Código CIP:

- INDICACIONES:

Lea usted con atención y conteste marcando con una "X" en un solo recuadro, considerando la siguiente escala:

Proyecto Experto 01	Validación y Confiabilidad "EVALUACIÓN DE SUPERFICIE DE ROMEJORAR TRANSITABILIDAD DE CA ALEJANDRO – ALTO SHIRINGAL METODOLOGÍA PCI, UCAYALI 2020." Ing. Jose Castillo Rivadeneyra	RR	DU ETI		PA	
Experto 01	METODOLOGÍA PCI, UCAYALI 2020."	,		ERA		RA AN
Experto 01	Ing. Jose Castillo Rivadenevra		AI	PLIC	CAN	DO
	Ingeniero Civil CIP 29702					
Autores	Cáceres Ruiz María Elena Sáenz Samamé Javier					
ÍTEM		Grado de valoración				
		1	2	3	4	5
ficha de	se a su experiencia, cree usted que es necesario la e la ASTM D-6433 para la recolección de datos de las encontradas en la superficie del pavimento e?					X
 ¿En base a su experiencia, se recomienda el uso del software EvalPavCar para la calificación de las unidades de muestra? 					X	
• ¿En base a su experiencia, considera que la Metodología PCI es la más recomendable para la evaluación superficial del pavimento flexible?						X
• ¿En base a su experiencia, considera que la norma ASTM D-6433 conceptualiza todas fallas o deterioros encontrados en los pavimentos flexibles del país actualmente?					X	
PCI deb	se a su experiencia, considera que la metodología pería considerar agregar fallas que se manifiestan destrucción parcial o total de la estructura del nto?					X
•	se a su experiencia, considera necesario o útil el GPS para la localización de las fallas?					X
Observaciones	s y recomendaciones:					
Es un método s	sencillo y abarca de manera completa los temas de la	a tes	sis			

Valoración general del cuestionario

Por favor, marque con una X la respuesta escogida de entre las opciones que se presentan:

	sí	no
El instrumento contiene instrucciones claras y precisas para poder recopilar información tomada de campo.	X	
El número de preguntas del cuestionario es excesivo.		X
Las preguntas constituyen un riesgo para el resultado de la investigación. (en el supuesto de contestar SÍ, por favor, indique inmediatamente abajo cuáles)		X

Preguntas que el experto considera que pudieran ser un riesgo para los resultados:		
Motivos por los que se considera que pudiera ser un riesgo		
Propuestas de mejora (modificación, sustitución o supresión)		

	Evaluación general del cuestionario			
	Excelente	Buena	Regular	Deficiente
Validez de contenido del cuestionario	X			

Observaciones y recomendaciones en general del cuestionario:		
Motivos por los que se considera no adecuada		
Motivos por los que se considera no pertinente		
Propuestas de mejora (modificación, sustitución o supresión)		

Identificación del experto

Filiación INGENIERO CIVIL – CIP 29702

(ocupación, grado académico y lugar de ALFONZO UGARTE 246 – CALERÍA- PUCALLPA

e-mail josecastillor21@hotmail.com

Teléfono o celular 990 593 307

Fecha de la validación 14 de marzo 2021

(día, mes y año):

Firma

trabajo):

Ing. José M. Castillo Rivadeneyr
CIP. N- 29702
JEFE DE SUPERVISION

Muchas gracias por su valiosa contribución a la validación de este cuestionario.

	JUICIO DE EXPERTOS Validación y Confiabilidad					
Proyecto	"EVALUACIÓN DE SUPERFICIE DE ROMEJORAR TRANSITABILIDAD DE CA ALEJANDRO – ALTO SHIRINGAL METODOLOGÍA PCI, UCAYALI 2020."	RR	ET	ERA		AN
Experto 02	Ing. Victor Guillermo Prieto Castillo Ingeniero Civil CIP 47898					
Autores	Cáceres Ruiz María Elena Sáenz Samamé Javier					
	ÍTEM			rado lora	de ción	
		1	2	3	4	5
ficha	ase a su experiencia, cree usted que es necesario la de la ASTM D-6433 para la recolección de datos de las encontradas en la superficie del pavimento le?					X
softw	ase a su experiencia, se recomienda el uso del are EvalPavCar para la calificación de las unidades sestra?				X	
PCI e	ase a su experiencia, considera que la Metodología s la más recomendable para la evaluación ficial del pavimento flexible?					X
D-643 encon	ase a su experiencia, considera que la norma ASTM 33 conceptualiza todas fallas o deterioros trados en los pavimentos flexibles del país mente?				X	
• ¿En base a su experiencia, considera que la metodología PCI debería considerar agregar fallas que se manifiestan con la destrucción parcial o total de la estructura del pavimento?					X	
	ase a su experiencia, considera necesario o útil el el GPS para la localización de las fallas?					X
uso d						

Valoración general del cuestionario

Por favor, marque con una X la respuesta escogida de entre las opciones que se presentan:

	sí	no
El instrumento contiene instrucciones claras y precisas para poder recopilar información tomada de campo.	X	
El número de preguntas del cuestionario es excesivo.		X
Las preguntas constituyen un riesgo para el resultado de la investigación. (en el supuesto de contestar SÍ, por favor, indique inmediatamente abajo cuáles)		X

Preguntas que el experto considera que pudieran ser un riesgo para los resultados:				
Motivos por los que se considera que pudiera ser un riesgo				
Propuestas de mejora (modificación, sustitución o supresión)				

	Evaluación general del cuestionario		tionario	
	Excelente	Buena	Regular	Deficiente
Validez de contenido del cuestionario	X			

Observaciones y reco	Observaciones y recomendaciones en general del cuestionario:			
Motivos por los que se considera no adecuada				
Motivos por los que se considera no pertinente				
Propuestas de mejora (modificación, sustitución o supresión)				

Identificación del experto

Nombre y apellidos VICTOR GUILLERMO PRIETO CASTILLO

14 de marzo 2021

INGENIERO CIVIL - CIP 47898 Filiación

(ocupación, grado académico y lugar de

trabajo):

e-mail

victorprietoc81@outlook.com

Teléfono o celular 970 510 039

Fecha de la validación

(día, mes y año):

Firma

Muchas gracias por su valiosa contribución a la validación de este cuestionario.

	JUICIO DE EXPERTOS Validación y Confiabilidad					
Proyecto	"EVALUACIÓN DE SUPERFICIE DE ROMEJORAR TRANSITABILIDAD DE CA ALEJANDRO – ALTO SHIRINGAL METODOLOGÍA PCI, UCAYALI 2020."	RR	ET	ERA		AN
Experto 03	Ing. Victor David Salvatierra Cordova Ingeniero Civil CIP 70101					
Autores	Cáceres Ruiz María Elena Sáenz Samamé Javier					
	ÍTEM			rado lora	de ción	
		1	2	3	4	5
ficha	ase a su experiencia, cree usted que es necesario la de la ASTM D-6433 para la recolección de datos de las encontradas en la superficie del pavimento le?					X
softw	ase a su experiencia, se recomienda el uso del are EvalPavCar para la calificación de las unidades estra?				X	
PCI e	ase a su experiencia, considera que la Metodología s la más recomendable para la evaluación ficial del pavimento flexible?					X
D-643 encon	ase a su experiencia, considera que la norma ASTM 33 conceptualiza todas fallas o deterioros trados en los pavimentos flexibles del país mente?				X	
PCI d	ase a su experiencia, considera que la metodología ebería considerar agregar fallas que se manifiestan destrucción parcial o total de la estructura del ento?					X
	ase a su experiencia, considera necesario o útil el el GPS para la localización de las fallas?					X
uso u						

Valoración general del cuestionario

Por favor, marque con una X la respuesta escogida de entre las opciones que se presentan:

	sí	no
El instrumento contiene instrucciones claras y precisas para poder recopilar información tomada de campo.	X	
El número de preguntas del cuestionario es excesivo.		X
Las preguntas constituyen un riesgo para el resultado de la investigación. (en el supuesto de contestar SÍ, por favor, indique inmediatamente abajo cuáles)		X

Preguntas que el experto considera que pudieran ser un riesgo para los resultado			
Motivos por los que se considera que pudiera ser un riesgo			
Propuestas de mejora (modificación, sustitución o supresión)			

	Evaluación general del cuestionario			tionario
	Excelente	Buena	Regular	Deficiente
Validez de contenido del cuestionario		X		

Observaciones y reco	Observaciones y recomendaciones en general del cuestionario:			
Motivos por los que se considera no adecuada				
Motivos por los que se considera no pertinente				
Propuestas de mejora (modificación, sustitución o supresión)				

Identificación del experto

Nombre y apellidos VICTOR DAVID SALVATIERRA CORDOVA

Filiación INGENIERO CIVIL – CIP 70101

(ocupación, grado académico y lugar de trabajo):

e-mail

Teléfono o celular 961 098 989

Fecha de la validación

(día, mes y año):

Firma

14 de marzo 2021

Victor Deeld Schodierre Corde on INGENIERO' CIVIL Reg. CIP. 70101

Muchas gracias por su valiosa contribución a la validación de este cuestionario.

ANEXO 7

PANEL FOTOGRÁFICO

"EVALUACIÓN DE SUPERFICIE DE RODADURA PARA MEJORAR TRANSITABILIDAD DE CARRETERA SAN ALEJANDRO – ALTO SHIRINGAL, APLICANDO METODOLOGÍA PCI, UCAYALI 2020."

Ilustración 1: Inicio de Tramo San Alejandro.

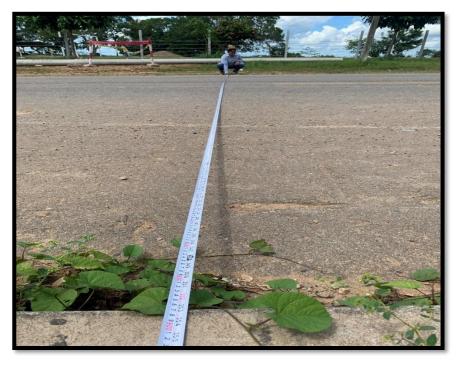


Ilustración 2: Medición del pavimento.

Ilustración 3: Final de tramo Alto Shiringal



Ilustración 4: Punto de Ubicación del Pueblo Alto Shiringal

Ilustración 5: Ubicación de hito de inicio 355+000.

Ilustración 6: Ubicación con GPS punto de inicio.

Ilustración 7: Ubicación de Hito Final 365+000.

Ilustración 8: Ubicación con GPS punto final.

Fallas Encontradas.

Ilustración 9: Piel de Cocodrilo

Ilustración 10: Agrietamiento en Bloque

Ilustración 11: Abultamientos y Hundimientos

Ilustración 12: Depresión

Ilustración 13: Grietas de Borde

Ilustración 14: Desnivel Carril – Berma

Ilustración 15: Grietas Longitudinales y Transversales

Ilustración 16: Parcheo y Acometidas de Servicio.

Ilustración 17: Pulimento de Agregados

Ilustración 18: Huecos.

Ilustración 19: Ahuellamiento

Ilustración 20:Grietas Parabólicas o por Desplazamiento.

Ilustración 21: Meteorización

Fallas Críticas

Ilustración 22: Primera Falla Crítica - Falla no catalogada por el PCI.

Ilustración 23: Segunda Falla Crítica - Falla no catalogada por el PCI.

Ilustración 24: Tercera Falla Crítica - Falla no catalogada por el PCI.

Ilustración 25: Cuarta Falla Crítica - Falla no catalogada por el PCI.

Ilustración 26: Quinta Falla Crítica - Falla no catalogada por el PCI.

Ilustración 27: Sexta Falla Crítica - Falla no catalogada por el PCI.

Ilustración 28: Séptima Falla Crítica - Falla no catalogada por el PCI.

Ilustración 29: Octava Falla Crítica - Falla no catalogada por el PCI.