

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

Diagnóstico energético para reducir el consumo de energía del sistema eléctrico del Hospital de Alta complejidad Virgen de la Puerta

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Mecánico Electricista

AUTORA:

Mozo Ruiz, Claudia Lorena (ORCID: 0000-0001-8026-3342)

ASESOR:

Mg. Tejeda Ponce, Alex (ORCID: 0000-0001-9844-1100)

LÍNEA DE INVESTIGACIÓN:

Generación, ransmisión y distribución

TRUJILLO - PERÚ

2021

DEDICATORIA

A mí padre, Ernesto Mozo, por darme siempre su confianza en mís decisiones y apoyo en cada paso de mí vida.

A mi madre, Gladys Ruiz, por su ejemplo de mujer virtuosa, real e independiente y hacer de mi su mejor versión.

A mi hermano, Rafael, quien llego a mi vida a darme alegrías y convertirse en mi complemento perfecto.

AGRADECIMIENTO

A Dios, por la vida y la fortaleza.

Agradecimiento a mi docente, director de escuela, desde el inicio de mi etapa universitaria, Jorge Inciso.

Al Ing. Alex Tejeda por su guía y disposición en cada especialidad que desempeña en la carrera de ingeniería mecánica eléctrica.

Al Ing. Edmundo Gamarra, jefe de ingeniería del hospital Virgen de la Puerta por su tiempo, paciencia y sus mejores enseñanzas ingenieriles y de la vida. Y al Ing. Josué Bernaqué, residente del servicio de electromecánicos por su disposición en el desarrollo de nuestras actividades.

A los técnicos electromecánicos del hospital, por compartir sus conocimientos prácticos y sus experiencias.

A mis tíos Orlando Rojas y Samuel Mozo, los mejores técnicos, electrónico y mecánico para mí, quienes de una u otra forma me apoyaron en mis actividades durante mi etapa universitaria, y a Samuel por inspirarme a estudiar esta especialidad.

A mis amigos, Anajulia, Roy, Jorge y Santiago por su sincero cariño y sus buenos deseos.

ÍNDICE

D	EDIC	CATORIA .		ii
A	GRA	DECIMIE	NTO	iii
R	ESU	MEN		vii
Α	BSTI	RACT		viii
l.		INTRODU	JCCIÓN	1
11.		MARCO	TEÓRICO	4
Ш	l.	METODO	DLOGÍA	14
	3.1.	Tipo y	Diseño de investigación	14
	3.3.	Poblac	ión, muestra y muestreo	15
	3.4.	Técnica	as e instrumentos de recolección de datos	16
	3.5.	Proced	imiento	16
	3.6.	Método	de análisis de datos	17
	3.7.	Aspect	os éticos	17
I۱	/ .	RESULT	ADOS	18
	4.1. Com		ar un diagnóstico de consumo energético de la facturación	•
	4.2. Com		s de la calidad de energía y el sistema eléctrico del l /irgen de la Puerta	•
	4.3.	Identific	car el consumo energético por servicios e iluminación exte	rior27
	4.4. sens	-	sta de alternativas de mejoras técnicas en las instalacione n en hábitos de uso adecuado de la energía	•
	4.5. eléc		s económico de la mejora de la calidad y eficiencia del cons Hospital de Alta Complejidad Virgen de la Puerta	•
5	-	DISCUSI	ÓN	33
6	-	CONCLU	SIONES	35
7		RECOME	NDACIONES	37
R	EFE	RENCIAS		38
^	NIE V	00		

ÍNDICE DE FIGURAS

Figura 1. Consumo por sectores	1
Figura 2. Niveles de atención, complejidad y categorías de establecimient	o del
sector salud	6
Figura 3. Hospital de Alta Complejidad Virgen de la Puerta	7
Figura 4.Etapas del diagnóstico energético	9
Figura 5.Estrategias de la eficiencia energética	10
Figura 6.Onda de corriente típica para una carga trifásica	12
Figura 7. Energía activa total	18
Figura 8. Energía activa en hora punta (HP) y fuera de punta (FP)	19
Figura 9. Costo de energía activa HP y FP	19
Figura 10. Costo total de facturación	20
Figura 11. Gráfico de voltaje mínimo y máximo	21
Figura 12. Armónicos de tensión	22
Figura 13. Armónicos de tensión	22
Figura 14. Triangulo de potencias actual del SEP	23
Figura 15. Distribución simplificada de los tableros finales	24
Figura 16. Caída de tensión en los tableros finales	25
Figura 17. Potencia de los principales servicios	27
Figura 18. Tecnologías para el ahorro, datos de encuesta	28
Figura 19. Situación actual de la caída de tensión	29
Figura 20. Situación con 20%+ de la caída de tensión	29

ÍNDICE DE TABLAS

Tabla 1. Resumen de voltajes mínimo y máximo de las líneas	20
Tabla 2. Corriente mínima y máxima de las líneas	21
Tabla 3. Análisis general de los parámetros eléctricos	23
Tabla 4. Estrategias de ahorro energético del personal medico	28
Tabla 5. Detallas de iluminación de pasillos técnicos con detectores de	
movimiento	30
Tabla 6. Consumo de energía utilizando temporizadores	30
Tabla 7. Iluminación exterior con nueva bombilla led	31
Tabla 8. Ahorro de energía con el nuevo horario	31
Tabla 9. Ahorro de energía en Fancoils con nuevo horario	32
Tabla 10. SEER actual de los equipos de aire acondicionado	32

RESUMEN

En esta investigación se presenta la propuesta de un diagnostico energético para reducir el consumo de energía eléctrica del Hospital de Alta Complejidad Virgen de la Puerta. Para hacer posible este estudio se usó la metodología correspondiente desde la etapa de mediciones, recopilación de información, análisis mediante un balance de energía y finaliza con la propuesta de mejoras. Asimismo, abarca la evaluación de su facturación; análisis de la calidad de energía, con parámetros eléctricos; comprende el consumo energético de los servicios considerando el índice de conocimiento de eficiencia energética del personal médico.

El sistema eléctrico tiene una potencia activa de 1191,50kw, un factor de potencia de 0.96. El hospital tiene 5 años de funcionamiento puede presentar ciertas distorsiones en su red eléctrica, armónicos y caída de tensión en sus tableros finales que serán analizadas con la NTCSE. Su consumo promedio mensual es de 292104.578 kW/h.

Al final de investigación se establecerán medidas de mejora, como filtro de armónicos que inyectarán corriente para reducir la distorsión armónica, dimensionamiento de conductores con seccionamiento superior, además de las medidas técnicas y de sensibilización con una reducción mensual de 9760.32 kW y 29159.542kw respectivamente.

Palabras clave: Diagnostico energético, calidad de energía eléctrica, sistema eléctrico de potencia.

ABSTRACT

This research presents an energy's diagnosis to reduce the consumption of electrical energy at the Hospital de Alta Complejidad Virgen de la Puerta. To do this study, that use the corresponding methodology from the measurement, information's compilation, analisis through energy balance, and finally with the proposed improvements. This study includes evaluating the electric billing; analysis of the quality of energy, with electrical parameters; also it include the energy consumption of services and the knowledge of energy efficiency of medical staff.

The electrical system has an active power of 1,191.50 kW, power factor of 0.96. The hospital has been operating for 5 years and exhibits certain differences in its red electric, harmonics, and voltage drop in their end electrical boards that will be analyzed with NTCSE.

At the end of the investigation, will establish measures of better, such as harmonic filters that inject current to reduce harmonic distortion, conductor sizing, in addition to technical and awarenes measures with a monthly reduction of 9760.32 kW and 29159.542kw respectively.

Keywords: Energy diagnosis, quality of electrical energy, electrical power system.

I. INTRODUCCIÓN

Según estudios de la IEA, la perspectiva tecnología de la energía en el año 2017 son, edificaciones atiende el sector residencial (22%) y de servicios (8.6%) que juntos establecieron un porcentaje de consumo energético final mucho mayor (30.6%) que de la industria (28.6%) y de transporte (26.6%), y una de las energías primarias que influyeron en el consumo energético final de las edificaciones es la electricidad (31%). Ahmad, M., Mourshed, M., Mundow, D., Sisinni, M. y Rezgui, Y (2016) las construcciones son responsables del 40% de energía global. Brett Singer and William Tschudi (2009) delimitaron que los hospitales se ubican como los edificios con elevado consumo de energía de los EE. UU, además los centros de salud tienen peculiaridades especiales que conducen a mayor consumo de energía, pero con un adecuado discernimiento del uso de energía se puede reducir crucialmente con un beneficio económico neto para la industria.

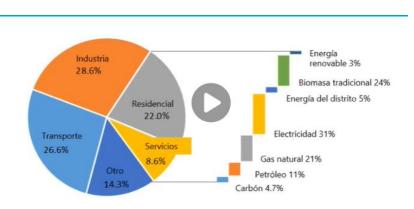


Figura 1. Consumo por sectores

Fuente: IEA,2017

El hospital de Alta Complejidad Virgen de la Puerta (HACVP) está dentro de las edificaciones que brindan servicio primordial que es la salud de la mano de la red eléctrica, que es fundamental en su funcionamiento. El HACVP pertenece a la red asistencial de La Libertad del seguro social, EsSalud del Perú, de nivel III, es el más sofisticado y el primero del norte del país que tiene equipos como angiógrafo, cámara gamma spect, Litotriptor, resonador magnético, tomógrafo, todos estos son equipos moderno para el tratamiento de enfermedades complejas, además de atender a la población del norte del país, lo que conlleva un gran consumo de la

energía; y por el mismo servicio que brinda es que su consumo de energía es constante e ininterrumpido (365 días/año, 24 horas/día) además de garantizar el cuidado, confort y seguridad a sus 240 aprox. pacientes al mes, además de su personal médico, administrativo y de mantenimiento.

Este centro hospitalario tiene un promedio de consumo mayor de 50,000 kW/h de energía activa total (Oficina de Facturación, 2019). Según el Organismo Supervisor de la Inversión en Energía y Minería (Osinerming) la facturación de energía reactiva se aplica si excede el 30 % de la energía activa total. Mencionado esto, en el hospital en los tres últimos meses la energía reactiva ha sido un 25% de la activa, la cual ha venido en aumento en variaciones de 2 a 3%, en comparación de meses anteriores. Manescu Geo y Rusinaru (2012) resumen que la potencia reactiva es el inconveniente de las redes eléctricas de corriente alterna. Este tipo de energía es la encargada de generar el campo magnético que se necesita para el funcionamiento de los equipos eléctricos como motores en su sala de bombas y transformadores de su subestación de 10 KV-0.38 KV y en gran parte también los equipos de alta tecnología, que pueden ocasionar distorsión armónica en la red. Este cambio de energía entre los receptores y la fuente provoca pérdidas en los conductores, caídas de tensión y un consumo de energía que no es aprovechable directamente por los consumidores finales.

Este gran centro de salud viene acogiendo a más pacientes con el transcurso del tiempo, desde el inicio de sus actividades en el año 2014, por lo que su demanda de energía eléctrica viene en aumento, y actualmente la eficiencia energética es una de las principales preocupaciones de todos los países, implicando tanto a administraciones como empresas y ciudadanos. Implica factores económicos, políticos y sociales, como son: la escasez de recursos naturales, aumento de la demanda. En el hospital no se cuenta con una administración de regulación de energía, es decir no cuenta con la elaboración de indicadores de consumo de energía para que sirvan de orientación para el uso eficiente de la energía como dice el capítulo III del decreto supremo Nº053-2007-EM de la Ley N.º 27345, Ley de Promoción del Uso Eficiente de la Energía, en la cual se evidencia el interés nacional la promoción del Uso Eficiente de la Energía (UEE) para ratificar el suministro de energía, proteger al consumidor, fomentar la competitividad de

la economía y disminuir el impacto ambiental negativo del consumo de los energéticos. Es necesaria una inversión sostenida en energía renovable, eficiencia energética y desarrollo de talento en estas nuevas tecnologías para el futuro de nuestra civilización (Wang, Ajayi, Biresaw, Cao, Hua, Lapatovich, Liu, Majumdar, Qureshi, y Zhu, 2011). Ascione, Bianco, De Masi y Vanoli (2013) es notable distinguir las condiciones de confort interior, así como la reducción de las demandas de energía, dependiendo del sistema que tenga el hospital. Además de promover una cultura presidida al empleo racional de los recursos energéticos para incitar el desarrollo sostenible buscando un equilibrio entre la conservación del medio ambiente y el desarrollo económico, llevando al hospital, a una cultura que involucre buenas prácticas de ahorro y uso correcto de energía eléctrica por parte del cuerpo médico, así como el uso correcto de equipos por parte de los especialistas ya que el desconocimiento del cuerpo médico, administrativo y técnico sobre una buena política energética, la falta de programas, adecuados procesos, tecnologías conlleva a un pago económico innecesario.

¿Se puede reducir el reducir el consumo de energía eléctrica en el HACVP mediante un diagnóstico energético?

Esta investigación se justifica en que el edificio hospitalario se debe de dar solución al equilibrio entre funcionalidad y consumo energético, con la aplicación de tecnología, normativas y un plan estricto con las mejoras correspondientes, para beneficio de los usuarios y servicios que ofrece el HACVP. Es importante reducir los costos de energía, ya que el hospital consume una importante cantidad de energía eléctrica (iluminación, ventilación, equipos de alta tecnología, electromecánicos, entre otros), al reducir estos costos se puede disponer de mejor manera los excedentes económicos, los cuales pueden traer un beneficio adicional como los costes de mantenimiento, en general se tendrá un ahorro para la administración del hospital. Mediante la adecuada gestión energética de todo el personal del hospital permitirá obtener ahorros al hospital además de promoverles una cultura de ahorro energético y que la prestación del servicio no pierda su confort para los pacientes, así como la calidad del servicio. Y reducir la polución, preservar nuestro medio ambiente y así evitar el agotamiento de las fuentes de energía no renovables, son algunas de las razones por las que comenzamos a familiarizarnos

con el término eficiencia energética mediante una adecuada gestión sobre todo si se considera que la energía utilizada en nuestro país proviene de fuentes no renovables.

Lo presentado anteriormente conlleva a proponer el siguiente objetivo general, realizar un diagnóstico energético en el Hospital de Alta Complejidad Virgen de la Puerta para reducir el consumo de energía eléctrica. Como objetivos específicos se plantean los siguientes: realizar un diagnóstico de consumo energético de la facturación del Hospital de Alta Complejidad, analizar la calidad de energía y el sistema eléctrico interno del hospital, identificar el consumo energético por servicios e iluminación exterior, proponer alternativas de mejoras técnicas en las instalaciones eléctricas y sensibilización en hábitos de uso adecuado de la energía eléctrica, y por ultimo evaluar el costo beneficio del diagnóstico energético.

El consumo de energía es indispensable para las actividades cotidianas y reducirla es un tema estudiado últimamente, por eso la hipótesis propuesta es: Se puede reducir el consumo de energía eléctrica en el Hospital de Alta Complejidad Virgen de la Puerta mediante un diagnostico energético.

II. MARCO TEÓRICO

Ttaca y Mostajo (2017) establecieron la relación entre la eficiencia energética con los sistemas hospitalarios de salud teniendo como muestra el Hospital II Ayaviri, Puno; para ello tuvieron que determinar la relación del consumo energético con los hospitales, así como el rendimiento de los equipos de producción con los mismos, donde especificaron las características y consumos de la red de media tensión del hospital, banco de condensadores, energía reactiva, interruptores diferenciales, iluminación, equipos hospitalarios, sistema de bombas, sistema de climatización para su evaluación de cada sistema y propusieron mejoras con inversión; así establecieron la relación especifica de los sistemas mecánicos y eléctricos con los hospitales; y estos sistemas son los ascensores, calentadores de agua, sistema de bombeo, iluminación y equipamiento médico.

También Araya (2018) realizó una auditoria energética para la reducción de consumo de energía sin afectar la calidad del servicio la cual logro la reducción del

consumo energético en un 12,58%, además con un cálculo energético de los consumidores de energía se realizó un plan de acción: cambios en la iluminación, instalación de variadores de frecuencia en motores y bombas, instalación de paneles fotovoltaicos y sustitución de bombas de calor con refrigerante R22, así mismo propuestas de ahorro económico para la determinación del retorno de la inversión del proyecto.

A su vez, Aguilar (2012) realizo una auditoria energética en el Hospital Julius Doepfner, evaluando cuantitativamente y cualitativamente el consumo de energía, tomando como conceptos claves el índice energético, calidad de energía, perdidas en transformadores y así determinar la eficiencia energética, así como perdidas de energía en equipos, lo que permitió identificar sus potenciales de ahorro energético y económico para establecer sus indicadores de control y estrategias de operación y mantenimiento en un plan de mejoras.

Además Pedrajas (2017) realizo una auditoria energética de un hospital en Madrid el cual tenía un consumo actual 7,509.077 kWh anual ,para identificar medidas y acciones encaminadas a contribuir a mejorar la eficiencia del hospital y la optimización de sus recursos, consiguiendo así un ahorro energético y económico; siguiendo de los pasos de la normativa se recopilo datos de las instalaciones y equipos del hospital para tener una visión general del consumo energético del hospital, clasificando los consumos y obteniendo un balance detallado por área de consumo así mismo detectó áreas o máquinas de uso ineficiente de la energía. Para así evaluar el potencial de mejora de ahorro energético del hospital y determino que el área de mayor consumo es la de climatización. Además, elaboró una lista de 11 medidas de ahorro energético, suponiendo un ahorro energético anual de 978.508 kWh.

Ibarra (2015). Realizo un levantamiento de todos los sistemas eléctricos del hospital IESS Ibarra, teniendo como resultado que la iluminación representa un 60.08%, equipos electromecánicos en un 41.9%, ascensores en 35.8% y aire comprimido en un 8.8%. Una vez tenido el panorama energético, se implementaron alternativas de eficiencia energética en el sistema eléctrico como un estudio de compensación de reactivos para mejorar el factor de potencia, estrategias sin

inversión para el ahorro energético, así como cambios en la iluminación. Teniendo como resultado un 29.89% lo que representa 257.06Mwh, que son 12853 dólares.

Dentro de esta investigación tenemos las siguientes teorías relacionadas que justifican el tema de investigación: Para los establecimientos de salud, un país que tiene su sistema de salud, asume un tema de gran relevancia para las comunidades de su territorio. Son espacios altamente eficientes para satisfacer las necesidades de las personas en cada localidad menor (Hildebrandt gruppe ,2015).

Papadopoulos (2016) determina que los hospitales son edificaciones interesantes y muy complejos, ya que abarcan una amplia gama de servicios de salud y unidades funcionales. Las condiciones interiores importantes deben garantizar el confort térmico, la calidad del aire y el confort visual, a fin de tener un efecto curativo en los pacientes. Ahmad M., Mourshed M., Mundow D., Sisinni M. y Rezgui Y. (2016) califican como los responsables a los edificios, del 40% de empleo global de energía y asiste al 30% de las emisiones totales de CO2.

Nivel de complejidad, para aportar una perfecta jerarquía a los servicios de salud se establecen las siguientes categorías, una de ellas es el grado de diferenciación y desarrollo de los servicios de salud, consiguiendo un beneficio a la especialización y tecnificación de sus recursos, (NTS- Categorías de establecimientos del sector salud)

Figura 2. Niveles de atención, complejidad y categorías de establecimiento del sector salud.

NIVELES DE ATENCION	NIVELES DE COMPLEJIDAD	CATEGORIAS DE ESTABLECIMIENTOS DE SALUD
	1° Nivel de Complejidad	I- 1
Primer Nivel de	2° Nivel de Complejidad	1- 2
Atención	3° Nivel de Complejidad	I - 3
	4° Nivel de Complejidad	I - 4
Segundo Nivel de	5° Nivel de Complejidad	II - 1
Atención	6° Nivel de Complejidad	II - 2
Tercer Nivel de	7° Nivel de Complejidad	III -1
Atención	8° Nivel de Complejidad	III - 2

Fuente: NTS N° 021-MINSA -Categorías de Establecimientos del Sector Salud

Hospital de alta complejidad Virgen de la Puerta Trujillo La Libertad

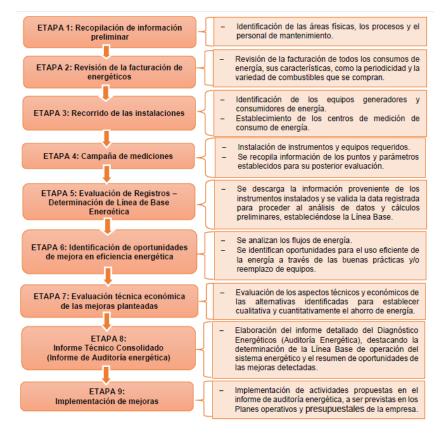
Seguro Social de Salud (2016), el Hospital de Alta Complejidad de La Libertad "Virgen de la Puerta", cuenta con modernas instalaciones de siete pisos y está al servicio de los asegurados de la Red Asistencial La Libertad. Teke y Timur (2014) muestran que los hospitales representan relativamente el 6% del consumo total de energía en el sector de edificios de servicios públicos. Chung y Park (2015) por lo tanto determinaron que el consumo de electricidad y combustible se establecen en cuatro tipos de cargas de construcción: electricidad, calefacción, agua caliente y energía de refrigeración, semejante al HACVP. El centro cuenta con personal médico especializado y equipos de alta tecnología para el diagnóstico y tratamiento del cáncer. Del mismo modo, el hospital cuenta con un amplio Servicio de Medicina Nuclear, que incluye una Cámara Gamma, también este hospital es especializado en el tratamiento del cáncer y atiende a los pacientes referidos de la Macro región Norte, cuyos casos sean de alta complejidad. EsSalud (2014). Ver el Anexo 1.

Figura 3. Hospital de Alta Complejidad Virgen de la Puerta

Fuente: EsSalud

Auditorías energéticas

Auditoría energética es una sucesión sistemática por medio el cual se contraer un conocimiento suficientemente seguro del consumo energético de la empresa y así situar los factores que perjudican el consumo de energía. (Ministerio


de Energía y Minas, 2007). MahdY, A. (2018) precisa que las auditorías regulares de consumo de energía ayudan a identificar el desperdicio intencional y no intencional de energía eléctrica. También ayuda a identificar oportunidades de racionamiento de energía y prácticas para racionalizar el consumo.

Aedah MJ Mahdi (2018) detalla que una auditoría integral provee un proyecto especificado para perfeccionar el consumo de energía del edificio. Así pues, luego de evaluar los principales sistemas de energía en el edificio, se alinea a realizar una estimación concisa de los ahorros de energía y costos. Es importante la consideración de los impactos mutuos de todos los proyectos, y el uso de energía en todos los equipos de construcción, se mide para afianzar cálculos detallados de ahorros óptimos de los costos de energía y, por lo tanto, el costo del proyecto. Esa revisión integral es un componente clave del balance energético. La revisión exhaustiva se basa en un inventario de sistemas de energía asumiendo las condiciones de operación actuales. Una vez de realizados cálculos de energía del actual uso se compara con el costo estimado y la factura de la instalación. (Principi, Fioretti, Carbonari y Lemma (2016) incluyeron que un análisis del consumo exacto durante tiempos anteriores y evaluación actual de los perfiles de uso, sirve para el desarrollo de modelos para estimar los ahorros potenciales desglosar el consumo general. Moya, Torres y Stegen (2016) exponen una práctica internacional de auditoría energética con una instruida en políticas gubernamentales, modelos de auditoría energética, herramientas y técnicas aplicadas en sistemas de calefacción, ventilación y aire acondicionado, iluminación y aislamiento.

Diagnostico energético

González, Morales, Valdés (2018) escribió que el diagnóstico de energía es un mecanismo que se utiliza para indagar la mejora de las medidas de ahorro de energía, conservación ambiental y eficiencia energética, haciendo notable su puesta en marcha en cualquier tipo de edificios. El Diagnóstico Energético o auditoría energética, nos atribuye el examen sobre el uso de la energía eléctrica, ya sea en una planta con un área la cual, es indispensable para el desarrollo de sus procesos, lo cual nos permitirá conocer: las principales áreas consumidoras de energía y la cuantía de energía desperdiciada (Guía de Orientación del Uso Eficiente de la Energía y de Diagnóstico Energético, 2017).

Figura 4. Etapas del diagnóstico energético

Fuente: FONAM

Eficiencia energética

Se define a la eficiencia energética como el decrecimiento del consumo de energía, siempre y cuando preservando iguales servicios energéticos, sin reducir ni cambiar el confort y calidad de vida, resguardando el medio ambiente, afianzando el abastecimiento e incitando un sostenible y correcto comportamiento en su uso. (Ministerio de Energía y Minas, 2007). Gillingham (2009) resalta a la eficiencia energética como los medios clave para disminuir las emisiones de gases de efecto invernadero, pudiendo alcanzar así objetivos de política energética. Según Optimagrid, el camino para lograr la eficiencia energética en las empresas debe de acogerse adoptando estrategias encaminadas como:

Figura 5. Estrategias de la eficiencia energética.

Fuente: Optimagrid

Se entiende por eficiencia energética eléctrica, a la disminución de las potencias y energías que el sistema eléctrico demandada, sin que afecte a las actividades normales que se realizan en edificios, industrias o cualquier empresa de transformación. Además, una instalación eléctricamente eficiente admite su optimización técnica y económica. Es decir, la reducción de sus costes técnicos y económicos de explotación. (Serra, 2009). Eric Masanet, Adrian Brush, Ernst Worrell (2014) definen a como una lista de mejoras en la eficiencia energética son una configuración crítica para las plantas o empresas de distinto rubro, en reducir sus costos, disminuir las emisiones de contaminantes relacionados con la energía y reducir la susceptibilidad a los precios cambiantes de la energía.

Abergel, T., Brown, A., Cazzola, P., Dockweiler, S., Dulac, J., Fernández Pales, A., Gorner, M., Malischek, R., Masanet, ER, McCulloch, S., Munera, L., Remme, U., Schuitmaker, R., Stanley, T., Teter, J. y West, K. (2017). Resalta el valor de examinar la manera en que se viene produciendo una revolución tecnológica energética, así mismo las tecnologías son la clave que están apareciendo, los costos y beneficios de estas tecnologías y las nuevas políticas que son necesarias para fomentar su uso.

Ahorro energético

Fiestas (2011). Ahorro energético es la adecuada administración del gasto

de los diferentes tipos de energía, además su desarrollo se puede realizar de dos

maneras similares: reduciendo la potencia consumida por el consumidor o disminuir

el tiempo de trabajo; esto trae consigo dos ventajas relevantes, las cuales son la

disminución de la emisión de los gases de efecto invernadero y por ende también

de los costos por consumo de energía. Endesa (2020) acota que, al realizar un

consumo responsable de la energía, se fomenta consecuentemente el ahorro

energético y de ese modo se contribuye a la conservación del medioambiente y el

desarrollo sostenible, por consiguiente, existen numerosas acciones que se pueden

tener en cuenta para fomentar el ahorro energético, pero las más sencillas se

encuentran en pequeñas actividades rutinarias diarias.

Potencia eléctrica

Potencia activa, Schneider electric (2019) determina que todas las máquinas

eléctricamente alimentadas en corriente alternan convierten el suministro de

energía eléctrica en trabajo mecánico y calor, esta energía se mide en kWh y se

denomina energía activa. Los receptores resistivos son los que absorben este tipo

de energía. En consecuencia, este tipo de potencia es la contratada con la empresa

concesionaria distribuidora de electricidad y se distribuye hasta el consumidor a

través de la red de distribución eléctrica. Se aplica la siguiente ecuación, para

sistemas eléctricos trifásicos:

 $P = \sqrt{3} * U * I * \cos \varphi$

Dónde:

P: Potencia activa (W)

U: Voltaje de línea (V).

I: Corriente de línea (A)

Cosφ: factor de potencia

Potencia reactiva (Q) consideran a los motores, transformadores y los dispositivos

eléctricos que poseen bobinas, necesitan energía reactiva para establecer campos

11

magnéticos necesarios para su operación. Geo Manescu (2012) expone que la potencia reactiva es el primordial impedimento de las redes eléctricas de corriente alterna. Se usa la siguiente ecuación:

$$Q = \sqrt{3} * U * I * sen\varphi$$

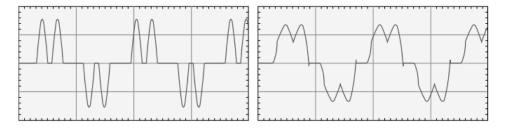
Dónde:

Q: Potencia reactiva (Var).

U: Voltaje de línea (V).

I: Corriente de línea (A).

Senφ: Factor reactivo.


Potencia aparente (S), se resumen como la suma vectorial, potencia activa y la reactiva. Es la potencia total que se toma de la red de distribución eléctrica. Se denomina así por consiguiente la potencia debería ser el producto voltaje- corriente.

$$S = \sqrt{3} * V * I$$

Armónicos

Arghandeh, Onen, Jung y Broadwater (2013) precisan que los armónicos influyen en las distorsiones en los voltajes y corrientes de la red del sistema eléctrico. Por otro lado, los problemas de calidad de la energía, la pérdida y las fallas de los componentes, los armónicos pueden tener un impacto económico en las redes de distribución. Schneider electric (2019) explica que la presencia de armónicos en los sistemas eléctricos ocasiona que la corriente y la tensión se distorsionen y se desvíen de la típica representación de una onda sinusoidal.

Figura 6. Onda de corriente típica para una carga trifásica.

Fuente: Schneider electric

Los principales problemas planteados por los armónicos son los siguientes, los equipos que emplean electrónica de potencia como motores de velocidad variable, rectificadores estáticos, los balastos de tubos fluorescentes, son responsables de la circulación de armónicos en la red. Dichos armónicos perturban de una manera u otra el funcionamiento de máquinas o aparatos electrónicos.

En una forma particular, los condensadores son terminantemente sensibles a ellos por su impedancia misma que disminuye proporcionalmente al rango normal de los armónicos presentes (frecuencia). Tanto como la frecuencia misma del conjunto que es condensador y la red está próxima al rango de un armónico, ocasionará en tal caso una resonancia que amplificará el armónico propio. Sobrescrito los condensadores, son determinados por la disminución de la impedancia del propio condensador con la elevación de la frecuencia, causando el envejecimiento prematuro, amplificación de los armónicos ya existentes. (Schneider electric, 2019)

Para el conocimiento real de la situación en las instalaciones igualmente el grado de contaminación armónica, los valores de trabajo son:

- La tasa de distorsión armónica en tensión THD(U) precisa que la deformación de la onda de tensión, e indica existencia de la relación entre la adición conjunta de las tensiones de los armónicos y la tensión de la fundamental, expresándose en %
- La tasa de distorsión armónica en corriente THD(I) establece la deformación de la onda de corriente, e indica el contacto que existe entre la suma de las corrientes de los armónicos y la corriente de la fundamental, expresándose en %

III. METODOLOGÍA

3.1. Tipo y Diseño de investigación

Tipo de investigación

Aplicada: Murillo (2008) describe que la investigación aplicada recibe el nombre de "investigación práctica o empírica", denominada así ya que busca la aplicación o utilización de los conocimientos adquiridos, y que a la vez que se adquieren otros, luego de ejecutar y estructurar la práctica basada en investigación. El manejo del conocimiento, así como los resultados de la investigación que facilita el resultado una manera precisa, organizada y sistemática de conocer la realidad.

Se considera una investigación aplicada porque implica unos procedimientos de búsqueda, consolidación de conocimientos para lograr resolver el problema por el cual se realiza la investigación, el cual lo hemos encontrado en el uso y consumo energético del hospital Virgen de La Puerta; llevar a la práctica las teorías y aplicaciones de ingeniería adquiridas, así como los conocimientos técnicos para dar solución a nuestra problemática y así lograr nuestro objetivo, el de reducir los niveles de energía eléctrica.

Diseño de investigación

Investigación pre experimental: Hernández (2014), define al diseño de investigación preexperimental, guarda relación con el diseño experimental, ya que manipula la variable independiente intencionalmente; para así medir el efecto que tiene sobre la variable dependiente, para el diseño preexperimental el grado de control es mínimo.

G = Situacion actual de la energia electrica del hospital

X = Mejoras tecnicas

O = Proyeccion de reduccion de consumo de energia electrica.

Se considera una investigación preexperimental, porque se administró unas medidas técnicas de reducción de consumo, después realizar una medición de los niveles actuales de consumo de energía eléctrica en el hospital y así conocer su consumo de los principales servicios, además del análisis del consumo general del hospital y de su equipamiento hospitalario y electromecánico.), nuestro control solo sería la proyección.

3.2. Variables y operacionalización

Variables

Variable dependiente: Consumo de energía eléctrica.

Variable independiente: Diagnóstico energético.

Operacionalización de variables

Cuadro de operacionalización de variables. Anexo 1

3.3. Población, muestra y muestreo Población

En esta investigación la población está conformada por la red de energía eléctrica de los hospitales de tipo I, II, III y de Alta Complejidad de la Región La Libertad

Muestra

Se tomarán como muestra la red de energía eléctrica del hospital de Alta Complejidad Virgen de la Puerta.

Muestro

Técnica no probabilístico intencionado.

3.4. Técnicas e instrumentos de recolección de datos

Tabla 1. Técnicas e instrumentos de recolección de datos.

TECNICA	INSTRUMENTOS	VALIDEZ
Encuesta	Encuesta online	Ing. Alex Tejeda
	Anexo 2	
Observación	Ficha de registro	Ing. Alex Tejeda
	Anexo 3	
Análisis	Ficha de registro	Ing. Alex Tejeda
documental	Anexo 4	

3.5. Procedimiento

Para realizar la investigación se recopilo los actuales niveles de consumo energético en el HACVP con el propósito de fijar un punto de partida para plantear estrategias características al ahorro energético. El diagnostico energético realizado se conformó de cuatro pasos: análisis de facturación, medición de parámetros eléctricos de los principales servicios y de la red interna del hospital indicadores de conocimiento de la eficiencia energética y planteamiento de medidas correctivas. A continuación, se desglosa cada paso: Análisis de facturación eléctrica de los meses de enero a julio del año 2019, además de anteriores años (2017 y 2018) para tener una variación de consumo energético, diagnósticos energéticos realizados previamente a la institución y a sus principales servicios, para eso se diseñó un formato de llenado donde se obtuvo los parámetros eléctricos de los equipos: iluminación, aire acondicionado, equipos biomédicos, electromecánicos y otros equipos de oficina; luego de eso se realizó una estimación de la demanda instalada y la medición de parámetros eléctricos, mediante el uso de un analizador de redes para conocer la situación de la red interna del hospital, también se identificó el conocimiento de eficiencia energética del personal médico, por último planteamiento de medidas correctivas con y sin inversión. Una vez caracterizados los patrones de consumo energético actuales se propusieron diversas medidas

correctivas, así mismo como su beneficio económico. El diagrama simplificado del procedimiento está en el anexo 05.

3.6. Método de análisis de datos

El consumo de energía eléctrica del Hospital de Alta Complejidad Virgen de la Puerta, se analizarán por el método analítico, conjuntamente con la observación y la elaboración de graficas con la recopilación de datos actuales y mediciones de variables eléctricas las cuales se realizarán en resumen de cuadros y tablas comparativos, gráficas de Excel. Además de cálculos matemáticos para determinar el índice de consumo de energía eléctrica mediante un balance energético entre las mediciones de los tableros generales y de los respectivos servicios, y así aumentar la eficiencia energética del hospital mediante la elaboración de las medidas correctivas.

3.7. Aspectos éticos

Toda la información necesaria se encuentra citada, la información de análisis de recolección de datos y toma de muestras es exclusiva para el proceso de investigación. Las mediciones de parámetros eléctricos incluidos en la investigación son verídicos y confiables los cuales fueron tomados de una muestra real de los servicios.

IV. RESULTADOS

4.1. Realizar un diagnóstico de consumo energético de la facturación Hospital de Alta Complejidad.

Descripción del hospital

Para empezar, se hizo un recorrido por las instalaciones del hospital, desde el punto de suministro de energía hasta los distintos servicios a los que se puso tener acceso. La distribución del centro hospitalario está en el anexo 06.

Suministro eléctrico

Se recurrió al régimen de libertad de precios para usuarios libres, en el anexo 07 se encuentra las especificaciones de la facturación del HACVP. Hidrandina es la empresa distribuidora, tiene un contrato de suministro no regulado, anexo 08, con estos datos principales: potencia contratada: 660 kW y nivel de tensión: 10kV.

Características de funcionamiento normal promedio del sistema eléctrico

Para conocer los datos de su facturación final, se aplicó el instrumento de recolección de datos, anexo 09, de los recibos, anexo 10.

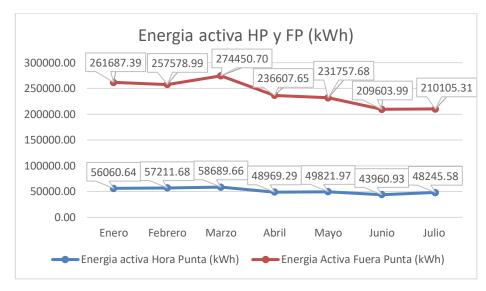
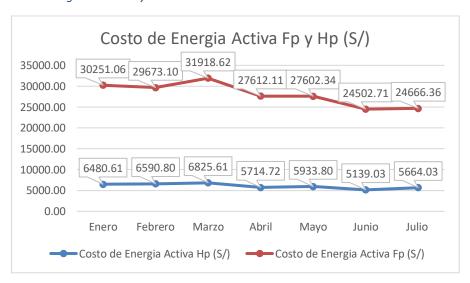

Energia Activa Total (kWh) 350000.0000 300000.0000 333140.3600 317748.0200 250000.0000 281579.6500 314790.6700 285576.9400 258331.4800 200000.0000 253564.9300 150000.0000 100000.0000 50000.0000 0.0000 Enero Febrero Marzo Abril Mayo Junio Julio

Figura 7. Energía activa total

Nota: El consumo promedio mensual de la energía activa es $292104.578 \, kWh$. Su consumo de energía activa total en hora punta es y en hora fuera punta es la suma de ambas es la energía activa total.

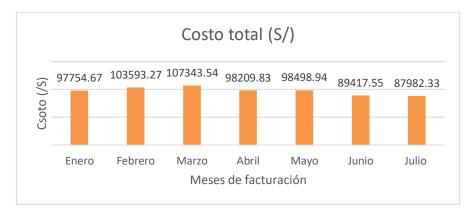
Fuente. Elaboración propia


Figura 8. Energía activa en hora punta (HP) y fuera de punta (FP)

El consumo promedio de la energía activa en Hp es $51851.3929 \, kWh$ y el consumo promedio de la energía activa Fp es $240255.9586 \, kWh$.Coincidentemente los precios de energía Hp y Fp son los mismos de acuerdo a su modalidad de cliente libre.

Fuente: Elaboración propia

Figura 9. Costo de energía activa HP y FP



El costo promedio de la energía activa en Hp es 6049.80 soles y la energía activa Fp es 28032.33 soles .

El objetivo lucrativo para la empresa distribuidora es el monto que pagara el cliente a fin de cada mes, el monto es independiente de los costos de energía activa, ya que hay costos fijos entre otros.

Fuente. Elaboración propia.

Figura 10. Costo total de facturación.

Nota: El precio promedio mensual del centro hospitalario es 97542.88 *soles*.

Fuente. Elaboración propia.

4.2. Análisis de la calidad de energía y el sistema eléctrico del Hospital de Alta Complejidad Virgen de la Puerta.

Análisis de la calidad de energía

El hospital cuenta con su subestación de transformación de 10kv a 380, que cuenta con cuatro transformadores como se muestra en el diagrama unifilar, anexo 11. Se coloco el analizador de redes en la barra compartida de los tableros para tener un consumo general promedio.

Tensión

La medición de la tensión en la subestación de transformación de 10kV/230 V, anexo 11, para conocer si cumplen con la NTCSE, anexo 12.

Tabla 2. Resumen de voltajes mínimo y máximo de las líneas.

LINEA	U MIN	U MAX
L1	217	229,7
L2	216	231,6
L3	216,7	231,4
PROM	216	231,6
Δ%	6,09	0,7

Nota: La tensión, se encuentra en el 6 % de variación, esta fuera del nivel permitido y en tensión máxima 0.7 %, nivel adecuado.

Fuente: Elaboración propia.

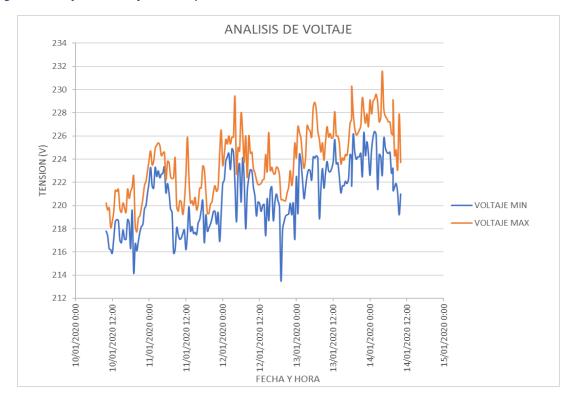


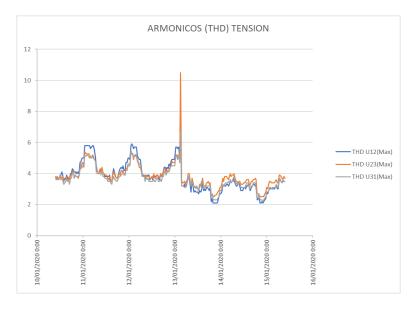
Figura 11. Gráfico de voltaje mínimo y máximo

Fuente: Elaboración propia.

Corriente

De la tabla se observa niveles máximos y mínimos, como medios de las corrientes que circulan por cada línea, las mediciones están en el anexo 13.

Tabla 3. Corriente mínima y máxima de las líneas.

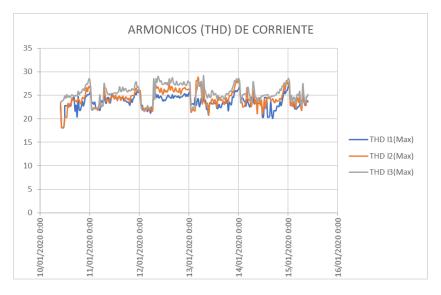

LINEA	I MIN	IMAX
L1	594	686,55
L2	585,63	686,04
L3	577,63	670,8
PROM	577,63	686,55

Fuente: Elaboración propia.

Armónicos de tensión

En la Figura 12 se observa el comportamiento de los armónicos totales en tensión, la medición de los armónicos tensión están en el anexo 14 y en las tres fases

Figura 12. Armónicos de tensión


Nota: Se puede observar que el valor de THD-U es 10%, que superan el 8% de acuerdo a norma.

Fuente: Elaboración propia.

Armónicos de corriente

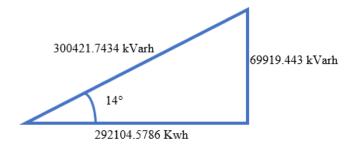
Se observa el comportamiento de los armónicos en corriente, en el anexo 15 las mediciones, se observa que no están dentro de los valores permisibles que superan el 20%, se puede observar que llegan casi al 30% de THDi.

Figura 13. Armónicos de tensión.

Fuente: Elaboración propia.

Tabla 4. Análisis general de los parámetros eléctricos.

PARAMETI	RO	VALOR MIN	VALOR MAX	PERMITIDOS
TENSION	U1	217	229,7	218,5-241,5
	U2	216,3	231,6	_
	U3	216,7	231,4	_
CORRIENTE	I1	594	686,55	-
	12	585,63	686,04	_
	13	577,35	670,8	_
ARMONICOS DE	U1	-	7,6	Límite máximo
TENSION	U2	-	10,5	permisible 8%
	U3	-	6,7	_
ARMONICOS DE	I1	-	27,02	Límite máximo
CORRIENTE	12	-	28,91	permisible 20%
	I3	-	29,11	_


Nota: Al tener los resultados de los parámetros eléctricos, se puede concluir que las caídas del voltaje no están dentro de los valores, es decir cae en 1% de error. Los armónicos de tensión sobrepasan un 2%. Lo que sí es un valor muy elevado dentro de sus parámetros son los armónicos de corriente, es por ello que se propone dimensionar un filtro de armónicos como una medida técnica, más adelante.

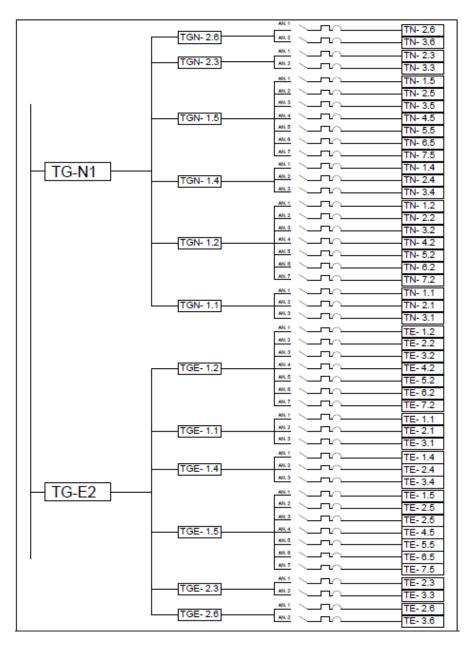
Fuente: Elaboración propia.

Análisis del sistema eléctrico

De los datos de recibo de facturación proporcionado por hidrandina, se calculó la energía aparente, $\cos \varphi$ y su angulo de desfase, como se muestra a tabla en el anexo 16. A continuación se muestra los promedios de los parámetros.

Figura 14. Triangulo de potencias actual del SEP

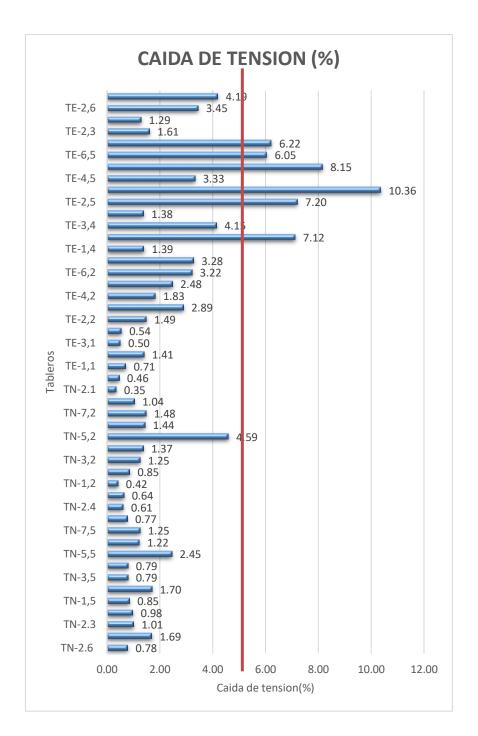
Fuente: Elaboración propia.


En el anexo 17, está la tabla de la relación entre la energía activa y reactiva. De la tabla del anexo 18, se puede evidenciar la variación de energía reactiva del 2018 y 2019. Están cerca al límite según norma para su facturación, entre 25 hasta 29%.

La energía reactiva promedio de los primeros siete meses del año 2019, de los cuales fueron nuestros registros, se evidencia que es de 285 KVAR. Anexo 19.

En la subestación, está el banco de condensadores de 800 KVAR, compuesta por 36 condensadores de 24 KVAR cada uno. El cálculo del banco de condensadores actual se encuentra en el anexo 20, aún puede compensar la energía reactiva, conforme aumente la energía activa también aumentara la reactiva.

Análisis de la situación de los tableros internos finales de los gabinetes de los siete pisos del hospital


Figura 15. Distribución simplificada de los tableros finales

Fuente: Elaboración propia.

La demanda de los 48 tableros finales se encuentra en el anexo 21. Luego se calculó la caída de tensión de los tableros, anexo 22. Y en el anexo 23 se encuentra el resumen de los parámetros eléctricos.

Figura 16. Caída de tensión en los tableros finales.

Nota: se puede observar que los tableros TN-5,2, TE-2,4, TE-2,5, TE-3,5, TE-6,5, TE-5.5, TE-7,5, TE-3,6 sobrepasan o están cerca a sobrepasar el 5% de caída de tensión permitido.

Fuente: Elaboración propia.

La demanda en el hospital aumentará, en equipos y población, el consumo de energía aumentará. Se realizo una variación de consumo del año 2017 y 2018, resultando un 4% anual, anexo 24. Se determino la demanda dentro 5 años, con un incremento de 20% en su demanda actual por ende la caída de tensión aumenta,

anexo 25. Se calcula los parámetros eléctricos con el aumento de la potencia en el anexo 26 y en el anexo 27 se muestran los resultados.

4.3. Identificar el consumo energético por servicios e iluminación exterior Se realizó mediante nuestras fichas de registro, observación y la encuesta virtual.

Datos de consumo de los principales servicios: de las tablas del anexo 28, se construye la tabla resumen del anexo 29.

Figura 17. Potencia de los principales servicios.

Nota: De los servicios diagnosticados, se tuvo los siguientes resultados:

■ ILUMINACION ■ E. BIOMEDICOS ■ E. ELECTROMECANICOS ■ DE OFICINA ■ OTROS EQUIPOS

Iluminación: 60

Equipos biomédicos: 557

Equipos electromecánicos: 315

Equipos de oficina: 22

Otros equipos: 23

Lo que hace un total de 976.5 kW, en el siguiente gráfico se muestra.

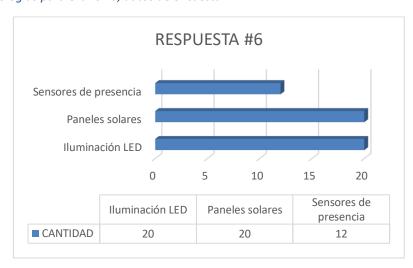
Fuente. Elaboración propia

Datos de consumo de iluminación exterior

El hospital cuenta con lámparas de vapor de sodio, de 70W, sus características, cantidad, ubicación y consumo mensual 6904.8 kW, están en el anexo 31.

Nivel de conocimiento de eficiencia energética del personal medico

Para conocer el nivel de conciencia energética, se realizó una encuesta al personal médico, 39 personas, anexo 33, los principales datos son: El 90 % considera la importancia del ahorro energía.


Tabla 5. Estrategias de ahorro energético del personal medico

Estrategias	Cantidad	%
A. Desconectar los artefactos que no se estén utilizando	27	44
B. Apagando el aire acondicionado cuando no es necesario	6	10
C. Suspender las computadoras cuando no están en uso	8	13
 D. Apagar las luces cuando no están en la sala o ambiente 	13	21
E. Realizar un cambio de luminarias	27	13

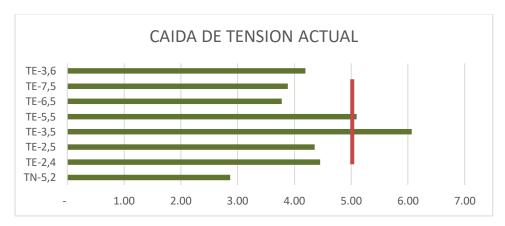
Fuente: Elaboración propia.

El 77% hace un buen uso de la energía eléctrica. El 59% trabaja entre 6-8 h en su servicio, (7-2) y (2-8). El 14% conoce el concepto de eficiencia energética.

Figura 18. Tecnologías para el ahorro, datos de encuesta

Fuente: Elaboración propia.

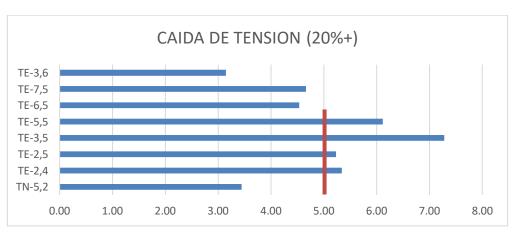
4.4. Propuesta de alternativas de mejoras técnicas en las instalaciones eléctricas y de sensibilización en hábitos de uso adecuado de la energía


4.4.1. Dimensionamiento de filtro de armónicos

Previa evaluación de la calidad de energía, se dimensiono un filtro de armónicos, anexo 34, lo que reduce aproximadamente el 22% de la energía reactiva.

4.4.2. Cambio de sección transversal del cable

En el anexo 34, esta las tablas con el cambio de la sección transversal y datos del cable, FREETOX NHX-90(LSOHX-90) 16 mm2.


Figura 19. Situación actual de la caída de tensión

Nota: Cambiando la sección transversal de los tableros, se puede disminuirá la caída de tensión, pero es importante evaluar las cargas del tablero TE-3.5

Fuente: Elaboración propia.

Figura 20. Situación con 20%+ de la caída de tensión.

Nota: Cambiando la sección transversal de los tableros, se puede disminuirá la caída de tensión, pero con una proyección a futuro y un posible aumento de carga en los tableros, los tableros TE-3.5, TE-5.5 y TE-2.4 TE-2.5 en poca variación de aumento.

Fuente: Elaboración propia.

4.4.3. Eliminación de equipos innecesarios del servicio de la salud

Esta potencia se especifica en el anexo 35, el ahorro mensual es de 4021.56kW.

4.4.4. Adquisición de sensores de presencia en los pasillos técnicos

La iluminación son los tubos fluorescentes TL-D 18W/54-76 Philips, se realizará el cambio a Philips Bombilla LED E27, 18W. Los detalles de la iluminación actual de los pasillos y fichas técnicas está en anexo 36 y de los detectores de movimiento.

Tabla 6. Detallas de iluminación de pasillos técnicos con detectores de movimiento

PASILLOS					
DETALLES	PRIMER PISO	SEGUNDO PISO	TERCER PISO		
Longitud de pasillo(m)	77	108	108		
N° de detectores	9	12	12		
Potencia total(kW)	1.566	2.088	2.088		
Tiempo(hora)	8	8	8		
Consumo de energía	375.84	501.12	501.12		
mensual (KW/h)					

Nota: Con el uso de detectores de presencia en los tres pasillos técnicos, se reduce el consumo de energía eléctrica a 3443.04 kW al mes.

Fuente: Elaboración propia.

4.4.5. Timers para las zonas de consulta externa

Consulta externa atiende, de 9am a 6pm. El uso de "timers" está en el anexo 37.

Tabla 7. Consumo de energía utilizando temporizadores

	CONSULTA EXTERN	IA
DETALLES	PRIMER PISO	SEGUNDO PISO
Área (m2)	377	377
Perímetro (m)	125	125
Pantallas ilum.	29	41
N° de luminarias	183	183
N° de horas	12	12
Potencia total(kW)	3,294	3,294
Mensual (KW/h)	1185,84	1185,84

Nota: Utilizando los timers para iluminación, se reduce a 2371.68 kW mensual.

Fuente: Elaboración propia.

4.4.6. Cambio de luminarias en la iluminación exterior

Propuesta de cambio de luminarias exteriores del hospital de lámparas de vapor de sodio por bombilla led philips, está en el anexo 38, se reduce a 3945.6kw mensual.

Tabla 8. Iluminación exterior con nueva bombilla led

ILUMINACION EXTERNA				
DETALLES BOMBILLA LED				
Postes	137			
Flujo luminoso (lm)	3450			
N° de luminarias	274			
Horario de 7pm a 7am	12			
Potencia total(kW)	8,22			
Mensual (KW/h)	2959,2			

Nota: La disminución de energía mensual es 3945.6 kW.

Fuente: Elaboración propia.

4.4.7. Cambio de horario en el aire acondicionado

Los equipos de aire acondicionado tipo Split decorativo están en el anexo 39, hacen un total de 212,726 kW. En el anexo 40 se expone la situación actual y restricciones.

Tabla 9. Ahorro de energía con el nuevo horario.

Consumo de energía actual						
Potencia (kW)	Horas/mensual	Consumo total (kW)				
166.518	420	69937.56				
46.062	720	33164.64				
C	onsumo de energía pr	opuesto				
Potencia (kW)	Horas/mes	Consumo total (kW)				
166.518	270	44959.86				
Ahorro de energía						
C. actual (kW)	C. propuesto (kW) Total (kW)					
69937.56	44959.86 2497					

Nota: Esta oportunidad de ahorro no necesita inversión, solo de ajustar el horario del sistema de climatización, se logrará reducir a 24977.7 kW.

Fuente: Elaboración propia.

Se realiza el mismo procedimiento para los Fancoil, el listado y descripción está en el anexo 42, así como la situación actual, el cambio de horario y las restricciones.

Tabla 10. Ahorro de energía en Fancoils con nuevo horario

Consumo de energía actual						
Potencia (kW)	Horas/años	Consumo total (kW)				
37,95	420	191268				
12,65	720	109296				
Co	nsumo de energía propu	iesto				
Potencia (kW)	Horas/años	Consumo total (kW)				
37,95	240	109296				
Ahorro de energía						
C. actual (kW)	C. propuesto (kW)	Total (kW)				
159.39	9.108	150.282				

Nota: Esta oportunidad de ahorro no necesita inversión, solo de ajustar el horario del sistema de climatización (Fancoil), se logrará reducir a 150.282 kW.

Fuente: Elaboración propia.

Para el correcto funcionamiento de los equipos de aire acondicionado, se debe hacer las actividades del anexo 41, la ficha de OTM propuesta.

4.4.8. Sustitución de equipos de climatización de baja eficiencia por equipos de alta eficiencia

El estudio del SEER se realizó de acuerdo al RTEEE, a todos los equipos de climatización, anexo 42 Aplicamos para todos los equipos de aire acondicionado:

Tabla 11. SEER actual de los equipos de aire acondicionado.

EQUIPOS DE A. A	CAPAC	IDAD	#	POTENCIA (kW)	P. TOTAL (KW)	P. DE REFR.	SEER
	18000	btu/h r	65	1,87	122	5,3	2,82
Equipo de aire a tipo	60000	btu/h r	12	4,255	51	17,6	4,13
Split decorativo	36000	btu/h r	10	3,63	36	10,6	2,91
	24000	btu/h r	18	2,2	40	7,0	3,20
	12000	btu/h r	2	1,323	3	3,5	2,66
TOTAL	-		107	13,278	251	44,0	

Fuente: Elaboración propia.

4.5. Análisis económico de la mejora de la calidad y eficiencia del consumo de energía eléctrica en el Hospital de Alta Complejidad Virgen de la Puerta.

En las tablas del anexo 43, se puede observar claramente el ahorro económico anual es mucho mayor que la inversión inicial. En solo un año se recupera casi el 100% de la inversión inicial, y se tendrá los ahorros esperados, contando también el costo por mantenimiento propuesto. El retorno de inversión (R.O.I) es de 1 año.

5. DISCUSIÓN

Para realizar el diagnóstico de consumo energético general del Hospital de Alta Complejidad Virgen de la Puerta, se realizó una visita para identificar y describir las instalaciones eléctricas del hospital, se revisó las facturas emitidas por la empresa comercializadora de energía, donde se evidenció que el hospital pertenece al régimen de usuarios libres y el precio de energía en hora punta y fuera de punta es el mismo, desde el mes de enero a julio hubo un incremento en el consumo de energía y costo promedio de consumo de energía mensual en gráficas. En sus tesis Aguilar (2012), en su primer resultado describió al Hospital Julius Doepfner de la ciudad de Zamora, en su número de camas, consultorios y sus diversos servicios que se encuentran distribuidos en sus instalaciones, realizó un cuadro de gastos por consumo globales de portadores energéticos de electricidad, Diesel, GLP y de agua, siendo la electricidad el principal consumidor de energía eléctrica (68%).

Analizar la calidad del servicio y el sistema eléctrico interno del hospital. Se realizo un análisis de la energía activa, reactiva y del factor de potencia, estudiando la energía reactiva, tema analizado en la teoría por ser inductivos y generar un gasto innecesario y , donde se obtuvo un nivel de 285kvar mensual promedio, el banco de condensadores tiene la capacidad de 800kvar, quiere decir que aún es capaz de compensar, se implementara un filtro de armónicos para mejorar la calidad de energía y así reducir los armónicos de corriente que están presentes en la red (29%), sobrepasan los niveles permitidos, los armónicos de la red se originan por los equipos biomédicos y de alta tecnología, al implementar el filtro de armónicos también se reduce la energía reactiva, lo que es aún más beneficioso.

En sus tesis Ttaca y Mostajo (2017) se hizo una compensación de energía reactiva para mejorar su factor de potencia de 0.85 a 0.96, dimensionando así un banco de condensadores para reducir el pago de energía reactiva en las instalaciones del hospital II Ayaviri y reducir su facturación.

Identificar el consumo energético de los principales servicios, iluminación exterior y el conocimiento de eficiencia energética del personal. Para realizar el diagnostico energético fue necesario visitar los principales servicios y tener una clasificación en: iluminación: 60kw, equipos biomédicos: 557kw, equipos electromecánicos: 315kw, equipos de oficina: 22kw, otros equipos: 23kw; además de evaluar la iluminación exterior de los alrededores del centro hospitalario e identificar el conocimiento de eficiencia energética en el cuerpo médico. Pedrajas (2017) en sus tesis, auditoria energética de un hospital, realizo un detalle y clasificación de las instalaciones del hospital, teniendo una clasificación similar: climatización, refrigeración, iluminación, y otros equipos; la diferencia es que fue en forma general, en este estudio se hizo por servicios a los que se tuvo acceso y se pudo corroborar la existencia de los equipos contabilizados. Esta investigación adiciona el estudio de la iluminación exterior (lámparas de vapor de sodio), además de realizar una encuesta para el personal médico y así conocer previamente si es posible implementar medidas de sensibilización.

Aplicación de medidas técnicas y de sensibilización en los potenciales de ahorro energético. Las propuestas de sensibilización son: eliminación de equipos innecesarios en los servicios, el cambio de horario del aire de acondicionado y el cambio de horario de equipos de Fancoils. La medida técnica es: adquisición de sensores de presencia en los tres pasillos técnicos y el cambio de luminarias, adquisición de temporizadores para iluminación, la propuesta de cambio de luminarias de vapor de Na por la bombilla led philips, además se realizó un estudio de eficiencia energética de los equipos de climatización. Las propuestas técnicas particulares que se implementaron en esta investigación es el filtro de armónicos para mejorar la calidad de energía y reducir la energía reactiva, y se propone un cambio de sección transversal de cable para algunos tableros que sobrepasan los niveles de caída tensión. Olman (2018) en su tesis auditoria energética de un hospital, propuso 8 medidas de eficiencia energética que consistieron en el cambio

de toda su iluminación tradicional, por iluminación led; coincidentemente esta la adquisición de detectores de presencia; adquisición de variadores de frecuencia nos fue necesario en nuestra investigación puesto que las bombas presentan sus variadores de frecuencia.

6. CONCLUSIONES

Se realizó un diagnóstico de consumo energético general del Hospital de Alta Complejidad Virgen de la Puerta, determinando que la tarifa aplicada al hospital es de usuario libre, lo que significa que paga el mismo precio de energía en hora punta y fuera de punta. Su consumo de energía activa promedio mensual es de 292104.578 kWh. Energia en hora punta es 51851.3929 kWh. Energia fuera de punta es 240255.9586 kWh. El costo aproximado mensual es de 97542.88 soles.

Se analizó la calidad de energía, teniendo como resultado que las tasas de distorsión armónica en las ondas eléctricas sobrepasan los niveles normados: Tasa de distorsión armónica en tensión, THD-V: 6.7-10.5 %, Limite permisible = 8%, tasa de distorsión armónica en intensidad, THD-I: 27.02-29.11%, Limite permisible= 20%. Se realizó un balance de potencia y energía del sistema eléctrico de potencia del hospital de alta complejidad, determinando: Potencia activa promedio: 1191.50 kW, potencia reactiva promedio: 285.040 KVAR. factor de potencia promedio: 0.96. Se analizaron los parámetros eléctricos de los tableros finales del hospital, encontrando algunos que sobrepasan el 5% de caída de tensión permitida (TN-5,2, TE-2,4, TE-2,5, TE-3,5, TE-6,5, TE-5.5, TE-7,5, TE-3,6)

Identificando el consumo energético de los principales servicios, iluminación exterior y el conocimiento de eficiencia energética del personal, se examinó los 12 servicios, su consumo es de 976.5 kW donde se realizó una clasificación de los consumidores energéticos: Iluminación: 60KW, Equipos biomédicos: 557KW, Equipos electromecánicos: 315KW, Equipos de oficina: 22KW, Otros equipos: 23KW. La iluminación exterior tiene un consumo de 6904.8 kW. De la encuesta realizada se puede resaltar que la mayoría de personal médico considera que es importante ahorrar energía y conoce sobre tecnologías led para el ahorro, además de conocer su jornada diaria entre 6 a 8 horas.

Con las propuestas de medidas técnicas y de sensibilización en los potenciales de ahorro energético, se pudo dimensionar un filtro de armónicos que reducirá el 22% de la energía reactiva, se propone cambiar la sección de cable de 10 mm2 a 16mm2 para los tableros que superaron el 5% de caída de tensión. Con la eliminación de equipos innecesarios en los servicios, se consigue un ahorro mensual de 4021.56Kw, al implementar sensores de presencia en los tres pasillos técnicos y el cambio de luminarias, se consigue un ahorro 3443.04Kw, con la adquisición de temporizadores para iluminación, se consigue un ahorro mensual de 2371.68kw y con el cambio de luminarias de vapor de Na por la bombilla led philips, se consigue un ahorro mensual de 3945.6kw. Cambiando el horario de encendido y apagado del aire de acondicionado tipo Split decorativo teniendo en cuenta la planificación mencionada en el anexo 40 y 41 se consigue un ahorro de 24977.7kw y el cambio de horario de equipos de Fancoils se logrará reducir 150.282kw mensual; además se hizo un estudio de eficiencia energética de los equipos de climatización, obteniendo la clase G (<3.10) de eficiencia energética, nivel más bajo. Teniendo una reducción de el 13% mensual de energía eléctrica.

Análisis económico de la mejora de la calidad y eficiencia del consumo de energía eléctrica en el Hospital de Alta Complejidad Virgen de la Puerta teniendo como ahorro económico anual de 56030.04 soles, con una inversión de 120249.74; y el R.O.I. es de 2.4 años, al finalizar el primer año se recupera el 50% de la inversión.

7. RECOMENDACIONES

Es importante tener en cuenta la capacidad de carga de los tableros TE-5.5 y TE-3.5, que, a pesar de dimensionar el cable a uno superior, aún hay una variación no permitida de 1%+, y dentro de cinco años, los tableros TE-2.4, TE-2.5, TE-3.5 y TE-6.5 tendrán una variación no permitida de 2%+.

Se recomienda realizar un estudio para la instalación de baterías con filtros de rechazo FRE, las cuales están diseñadas y construidas para compensar la energía reactiva en sistemas en los cuales los valores de las cargas fluctúan y la cantidad de ondas armónicas es alta y puede existir resonancia.

Prever el aumento de potencia de los tableros finales, ya que, con un aumento de demanda, el dimensionamiento de los cables estaría fuera de la intensidad permitida.

Es importante cumplir con las ordenes de trabajo de mantenimiento para los equipos de aire acondicionado Split decorativo y los Fancoils, propuesto en el anexo 41.

Al adquirir nuevos equipos de aire acondicionado, en especial los Split decorativo, tener en cuenta la norma técnica de eficiencia energética del anexo 42, puesto que los actuales se encuentran en el nivel más bajo.

REFERENCIAS BIBLIOGRÁFICAS

Araya, O. (2018). *Auditoria energética de un hospital* (tesis de maestría) Universidad politécnica de Madrid. España.

Arellano, O. (2015). Estudio y análisis de eficiencia energética del sistema eléctrico del hospital IESS-Ibarra (tesis de maestría). Universidad de las fuerzas armadas. Ecuador.

Ahmad, M. W.; Mourshed, M.; Mundow, D.; Sisinni, M.; Rezgui, Y. (2016) Building energy metering and environmental monitoring—A state-of-the-art review and directions for future research. *Energy and Buildings*, *120*, 85-102. https://doi.org/10.1016/j.enbuild.2016.03.059.

Arghandeh R., Onen A., Jung J. y Broadwater R., (2013). Harmonic interactions of multiple distributed energy resources in power distribution networks. *Electric Power Systems Research*. 105. 124-133. 10.1016/j.epsr.2013.07.018.

Abergel, T., Brown, A., Cazzola, P., Dockweiler, S., Dulac, J., Fernandez Pales, A., Gorner, M., Malischek, R., Masanet, E. R., McCulloch, S., Munera, L., Remme, U., Schuitmaker, R., Stanley, T., Teter, J., & West, K. (2017). Energy Technology Perspectives 2017: Catalysing Energy Technology Transformations. OECD.

Ahmad, Muhammad & Mourshed, Monjur & Mundow, David & Sisinni, Mario & Rezgui, Yacine. (2016). Building energy metering and environmental monitoring – A state-of-the-art review and directions for future research. *Energy and Buildings*. 120. 85-102. 10.1016/j.enbuild.2016.03.059.

Ascione F., Bianco N., De Masi R.F. y Peter Vanoli G. P. (2013) Rehabilitation of the building envelope of hospitals: Achievable energy savings and microclimatic control on varying the HVAC systems in Mediterranean climates. *ScienceDirect*. 60,125-138. https://doi.org/10.1016/j.enbuild.2013.01.021

Báez, S. (2011) *Análisis del Consumo Energético-Eléctrico de la Universidad* San Francisco de Quito (tesis de pre grado). Universidad San Francisco de Quito. Ecuador.

Banda, I. y Castro, T. *Consumo responsable y ahorro energético*. España. Recuperada de: https://datos.redomic.com/Archivos/GuiasUtiles/G11.pdf

Bustamante C. y Hernández C. (2013) *Análisis energético y propuesta de ahorro para la Universidad Tecnológica de Salamanca*. (tesis de maestría) Centro de investigación en materiales avanzados, S.C.

Brown, A., Landolina, S., Masanet, E. R., & Sung, J. (2016). The Clean Energy Technology Assessment Methodology: A Methodology for Assessing Renewable Energy and Energy Efficiency Technology Market. *International Energy Agency*.https://www.iea.org/publications/insights/insightpublications/TheCleanEnergyTechnologyAssessmentMethodology.pdf

International Energy Agency (2017) Energy Technology Perspectives 2017 *IEA*, https://www.iea.org/reports/energy-technology-perspectives-2017

Castro, M. (2015). Diseño de iluminación con luminarias tipo led basado en el concepto eficiencia energética y conforto visual, implementación de estructura para pruebas (tesis de pregrado). Universidad Politécnica Salesiana. Guayaquil.

Chung, Y. W., Wang, J., Ajayi, O., Biresaw, G., Cao, J., Hua, D., Lapatovich, W., Liu, W. K., Majumdar, A., Qureshi, F., & Zhu, D. (2011). Transformative research issues and opportunities in energy efficiency. Current Opinion in Solid State and Materials Science, 15(1), 8-15. https://doi.org/10.1016/j.cossms.2010.09.001

Chung M. y Park H.C (2015) Comparison of building energy demand for hotels, hospitals, and offices in Korea. *ScienceDirect*.92(3), 383-393. https://doi.org/10.1016/j.energy.2015.04.016

EsSalud (2014). Hospital de alta complejidad de Alta Complejidad de La Libertad "Virgen de la Puerta". Perú. Disponible en: http://www.essalud.gob.pe

Fiestas, B. (2001) Ahorro energético en el sistema eléctrico de la universidad de Piura - campus Piura (tesis de pregrado) Universidad de Piura. Perú.

Gillingham, Kenneth y Newell, Richard G. y Palmer, Karen, Economía y política de eficiencia energética. Revisión anual de la economía de recursos.1(1),

597-620, 2009, disponible en SSRN: https://ssrn.com/abstract=1602754 o http://dx.doi.org/10.1146/annurev.resource.102308.124234.

Gonzales O., Morales M., Seefó C., Morillon D. y Valdés H. (19 de julio 2018). Energy diagnosis of university buildings: Renewable Energy Institute from UNAM. *Preprints*, 1, https://doi.org/10.20944/preprints201807.0358.

Geo Manescu L. y Rusinaru D. (2012). Loss based performance index for the reactive power control. Proceedings of the International Conference on Optimisation of Electrical and Electronic Equipment.1, 307-312. https://10.1109/OPTIM.2012.6231932.

Hildebrandt gruppe (2015). *Criterios de clasificación de complejidad de establecimientos hospitalarios*. Disponible en: http://www.hildebrandt.cl/criterios-de-clasificacion-de-complejidad-de-establecimientos-hospitalarios

MINEM (2014). *Plan energético nacional 2014-2025*, resumen ejecutivo. Recuperado de: https://deltavolt.pe/documentos/Resumen2014-2025Vf.pdf

Ministerio de Minas y Energía (2007). *Guía didáctica para el desarrollo de auditorías energéticas.* (Primera edición). Colombia. Recuperado de : https://bdigital.upme.gov.co/bitstream/001/902/1/upme_217_auditorias_energetica s_2007.pdf

Masanet, E., Brush, A., & Worrell, E. (2014). Energy efficiency opportunities in the U.S. dairy processing industry. *Energy Engineering: Journal of the Association of Energy Engineering*, 111(5), 7-34. https://doi.org/10.1080/01998595.2014.10876999

Moya D., Torres R., Stegen S. (2016) Analysis of the Ecuadorian energy audit practices: A review of energy efficiency promotion. *ScienceDirect*. 62, 289-296. https://doi.org/10.1016/j.rser.2016.04.052

MahdY A. (2018). Energy Audit a step to effective Energy Management. 5. *International Journal of Trend in Research and Development*. 5(2)521-525.

Ministerio de energía y minas (2017). Guía de Orientación del Uso Eficiente de la Energía y de Diagnóstico Energético. Dirección general de eficiencia energética. file:///C:/Users/%7D/Downloads/Guia%20Edificios%20Publicos.pdf

Ministerio de Salud (2011). *Categorías de establecimientos del sector salud*. Norma técnica de salud. file:///C:/Users/%7D/Downloads/PNCEV02%20(1).pdf

Oficina de facturación (2019). Facturación mensual del Hospital de Alta Complejidad Virgen de la Puerta.

OptimaGrid (2011) Buenas prácticas para el ahorro de energía en la empresa. Recuperado de https://4.interreg-sudoe.eu/contenido-dinamico/libreria-ficheros/11268EB8-CE46-5D93-D5CC-6F82D70A6841.pdf

Principi P., Fioretti R., Alessandro Carbonari A. y Lemma M. Evaluation of energy conservation opportunities through Energy Performance Contracting: A case study in Italy. *ScienceDirect*. 128, 886-899. https://doi.org/10.1016/j.enbuild.2016.06.068

Papadopoulos, Agis. (2016). Energy Efficiency in Hospitals: Historical Development, Trends and Perspectives. *Electric Power Systems Research*. 10.1007/978-3-319-20831-2_11.

Pedrajas, J. (2017). *Auditoria energética de un hospital* (tesis de maestría) Escuela técnica superior de ingeniería. España.

Ramírez, A. y Mendoza V. (2014) Sistema para evaluar la eficiencia y el ahorro energético de un servicio eléctrico residencial (tesis de pre grado) Universidad Autónoma de México. México.

Serra, J (2009) *Guía técnica de eficiencia energética eléctrica*. (3° edición). España: Circuitor. Recuperado en : http://circutor.com/docs/GUIA_EEE_SP-LR.pdf

Tardillo (2012). Auditoria energética. Perú: Guzlop Editores. Primera edición.

Recuperado de: https://guzlop-editoras.com/web_des/ener01/solarvolta/pld0536.pdf

Ttaca, J. y Mostajo A. (2017) Estudio de la eficiencia energética en los sistemas hospitalarios de salud- Hospital II Ayaviri (tesis de pregrado) Universidad nacional del Altiplano. Perú.

Teke A. y Timur O. (2014) Assessing the energy efficiency improvement potentials of HVAC systems considering economic and environmental aspects at the hospitals. *ScienceDirect*. 33,224-235. https://doi.org/10.1016/j.rser.2014.02.002

Vera, R. (2008). Aplicación metodológica para la determinación del desempeño energético en hospitales de la región metropolitana (tesis de pregrado). Universidad de Chile. Chile.

Vilarrasa, J y Gago, A. (2012). *Iluminación con tecnología Led*. (Primera edición). Paraninfo. Recuperado de: https://www.paraninfo.es/catalogo/9788428333689/iluminacion-con-tecnologia-led

Zagal, R. y Ortega J. (2012). El ahorro de energía, un beneficio económico para tu empresa. Programa de ahorro y eficiencia energética empresarial (PAEEM). México. Recuperado de: https://energypedia.info/images/c/ce/El ahorro de energ%C3%ADa%2C un beneficio econ%C3%B3mico para tu empresa 2012.pdf

ANEXOS: Anexo 1: Cuadro de operacionalización de variables.

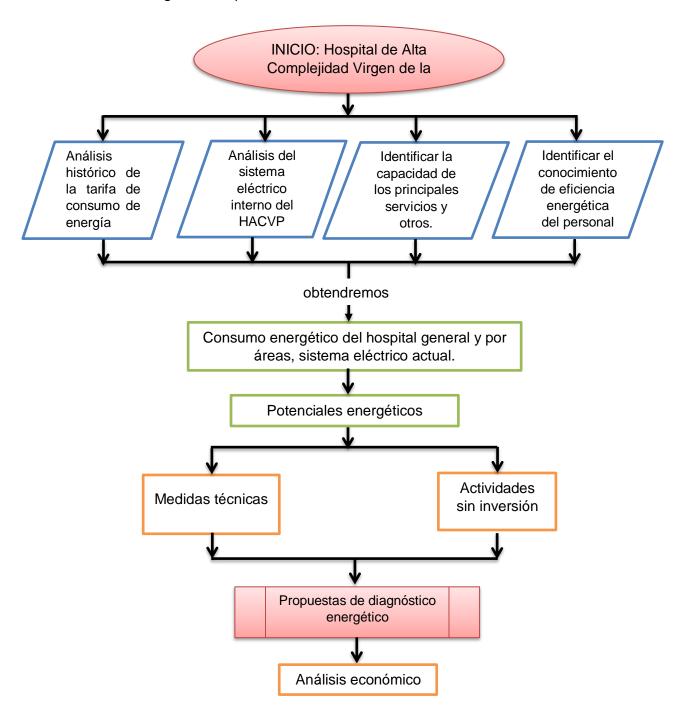
VARIABLES	DEFINICION CONCEPTUAL	DEFINICION OPERACIONAL	INDICADORES	ESCALA
V 1: Consumo de energía eléctrica	Cantidad de energía eléctrica medida en Kwh que se utiliza de manera eficiente u optima a costos y gastos mínimos (Optimagrid, 2011)	Reducción de la facturación mensual, y eficiencia energética en los procesos de distribución y suministro de electricidad.	Energía eléctrica Potencia eléctrica Voltaje Intensidad	Razón
V 2: Diagnóstico	Mecanismo que se utiliza para indagar la mejora de las medidas	Opciones factibles para disminuir el consumo	Medidas técnicas	Razon
energético	de ahorro de energía, conservación ambiental y eficiencia energética, haciendo notable su puesta en marcha en cualquier tipo de edificios. González, Morales, Valdés (2018)	energético, mediante actuaciones que favorecen además la reducción de gastos, el aumento de la competitividad y la innovación tecnológica	Medidas de sensibilización.	Nominal

Anexo 02. Encuesta online

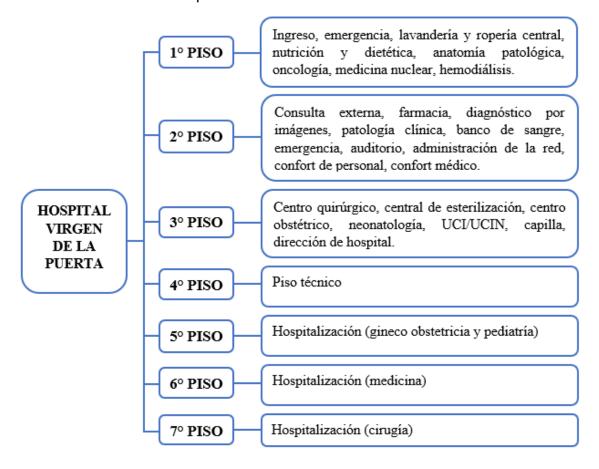
Anexo 03. Fichas de registro 1

SERVICIO DE MEDICINA FISICA				
CLASIFICACION	NOMBRE	POTENCIA (W)	CANTIDAD	P. TOTAL (W)
ILUMINACION				
		SUBTOTAL		0
E. BIÓMEDICOS				
		SUBTOTAL		0
E. ELECTROMECANICOS				
		SUBTOTAL		0
E. DE OFICINA				
		SUBTOTAL		0
OTROS EQUIPOS				
		SUBTOTAL		0
	TOTAL			0

DATOS DE RECIBOS DEL HOSPITAL DE ALTA COMPLEJIDAD


I. Consumo de energía eléctrica

Periodo	Energía Activa Total (kWh)	Energía activa Hora Punta (kWh)	Energía Activa Fuera Punta (kWh)	Energia Reactiva (kVarh)	Potencia Hora Punta (kW)	Potencia Fuera Punta (kW)
Enero						
Febrero						
Marzo						
Abril						
Mayo						
Junio						
Julio						


II. Precio total del consumo de energía eléctrica

Periodo	Energía Activa Fp	Energia Activa Hp	Costo total
Enero			
Febrero			
Marzo			
Abril			
Mayo			
Junio			
Julio			

Anexo 05. Diagrama de procedimiento

Anexo 06. Distribución de planta del HACVP

Anexo 07. Reglamento de usuarios libres de electricidad.

El Reglamento de Usuarios Libres de Electricidad, en el DECRETO SUPREMO N.º 022-2009-EM en el cual en su Título II art. 3 indica los siguiente:

- Los Usuarios cuya máxima demanda anual sea igual o menor a 200kW, tienen la condición de Usuario Regulado
- Los Usuarios cuya máxima demanda anual sea mayor de 200kW, hasta 2500 kW, tienen derecho a elegir entre la condición de Usuario Regulado o de Usuario Libre
- Los Usuarios cuya máxima demanda anual sea mayor a 2500kW, tienen la condición de Usuarios Libres.

Anexo 08. Contrato de suministro de electricidad entre Hidrandina y el Seguro Social de Salud.

CONTRATO DE SUMINISTRO DE ELECTRICIDAD NO REGULADO ENTRE HIDRANDINA S.A. Y SEGURO SOCIAL DE SALUD

Conste por el presente instrumento el Contrato para el Suministro de Electricidad que celebran:

EMPRESA REGIONAL DE SERVICIO PUBLICO DE ELECTRICIDAD ELECTRONORTE MEDIO SOCIEDAD ANONIMA — HIDRANDINA S.A., con RUC 20132023540, con domicilio en Av. Camino Real N° 348 Torre El Pilar, Oficina 1302, San Isidro, provincia y departamento de Lima, Perú; debidamente representada por su Gerente General (e), señor Javier Alexander Muro Rosado, identificado con D.N.I. N° 16739162, y por su Gerente Regional (e) señor Justo Leandro Fermín Estrada León, identificado con DNI N° 06711122, según poderes inscritos en la Partida Electrónica N° 11000323 del Registro de Personas Jurídicas de la Zona Registral V de La Libertad, a quien en adelante se le denominará LA DISTRIBUIDORA;

Y de la otra parte, SEGURO SOCIAL DE SALUD con RUC 20131257750, con domicilio en Av. Reactivación 2007 Nº predio 2 Urb. Parque Industrial 1era Etapa, distrito de La Esperanza, departamento de La Libertad; debidamente representada por su Gerente de Red Asistencial La Libertad José Luis Carranza Castillo, identificado con DNI Nº 17897151, con facultades inscritas en la Partida Electrónica Nº 11008571 del Registro de Personas Jurídicas de Lima, a quien en adelante se le denominará EL CLIENTE; en los términos siguientes:

CLÁUSULA PRIMERA: MARCO LEGAL Y DEFINICIONES

- 1.1 El presente Contrato se celebra dentro del siguiente marco legal:
 - Ley Nº 28832, Ley para Asegurar el Desarrollo Eficiente de la Generación Eléctrica;
 - (ii) Decreto Ley Nº 25844, Ley de Concesiones Eléctricas (LCE) y su Reglamento;
 - (iii) Norma Técnica de Calidad de los Servicios Eléctricos, aprobada por Resolución Directoral Nº 020-97-EM/DGE (NTCSE);
 - (iv) Norma Técnica para la Coordinación de la Operación en Tiempo Real de los Sistemas Interconectados, aprobada mediante Resolución Directoral Nº 014-2005-EM/DGE (NTOTR);
 - (v) D.S. N° 022 2009/EM; Reglamento de Clientes Libres.

Así como sus modificatorias, complementarias y supletorias.

- 1.2 Supletoriamente, la relación entre las Partes creada por este Contrato se regirá por las demás leyes aplicables, especialmente por el Código Civil Peruano.
- 1.3 Los términos en mayúsculas, tal y como se utilizan en el presente Contrato, tendrán los significados que se describen en el Anexo A, ya sea que se utilicen en singular o plural. Los términos en mayúscula que no se hayan definido de otro modo en el presente Contrato, tendrán el significado dispuesto por el marco legal señalado en la presente cláusula.

CLÁUSULA SEGUNDA: CONDICIONES DE LOS CONTRATANTES

 LA DISTRIBUIDORA es una empresa concesionaria de distribución del servicio público de electricidad.

CONTRATO DE SUMINISTRO DE ELECTRICIDAD

ANEXO B

PUNTO DE SUMINISTRO, TENSIÓN DE OPERACIÓN, PUNTO DE MEDICIÓN Y POTENCIA CONTRATADA:

Barra de Referencia de Generación, Punto de Suministro y Medición y Tensión de Operación:

BRG

: S.E. TRUJILLO NORTE 220 kV

Barra de Referencia de Generación

1.2 Potencia Contratada en kW

	9	La		
	٠.	7	6	
-	ij	30	煄	
	P	•	5	
			-	
ļ	٠	0		
	v	•		

Punto de Suministro	Suministro N° 59561100	Suministro Nº 47318302
Potencia Contratada (PC)	660 kW	450 kW
Potencia Variable (PV)	220 kW	150 kW
Potencia Fija (PMF)	440 kW	300 kW
Serie Medidor	16151891	16225658
Punto de Medición	00160567	00166465
Punto Entrega	0090649	0060944
Nivel de tensión	10 kV	10 KV

Los valores de potencia y energía cumplirán con lo establecido:

- a. Potencia Variable (PV) equivalente al 50% de la Potencia Fija (PF). Considerar que Potencia Variable (PV) más Potencia Fija (PF) es igual a la Potencia Contratada (PC). La Potencia Fija es la potencia mínima facturable.
- b. Excesos sobre la Potencia Contratada se penalizan con un 20% de los precios de Potencia en Hora Punta.
- c. La Potencia Contratada se liquida en fecha y hora con la Máxima Demanda del SEIN (Demanda Coincidente).

II. PRECIOS:

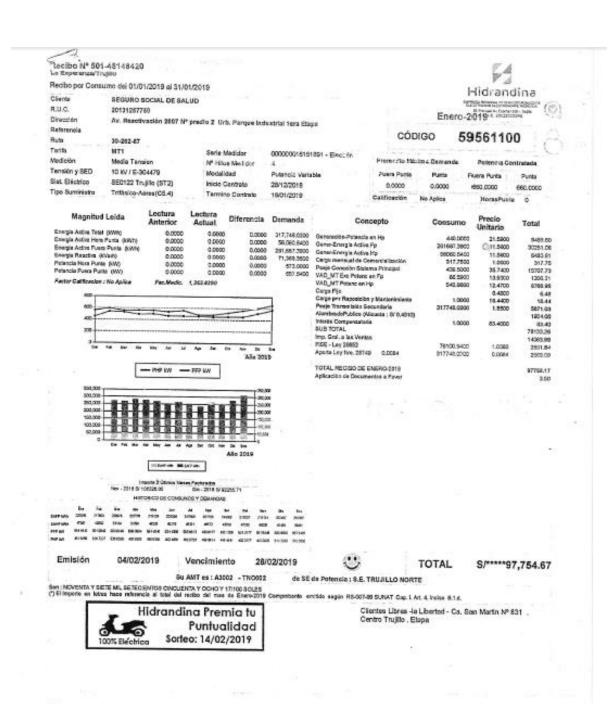
2.1. Precios de energía de Generación

- 2.1.1 Precio Potencia en horas punta: Es el Precio en Barra de la Potencia de Punta a Nivel de Generación en la BRG fijado y actualizado por OSINERGMIN, reflejado hasta el punto de suministro.
- 2.1.2 Los precios unitarios de energía activa en la BRG, serán los siguientes:

	Precio Energía en Hora Punta y Fuera	32.0 US\$/MWh
--	--------------------------------------	---------------

Anexo 9. Ficha de recolección con los datos de los meses de facturación.

DATOS DE RECIBOS DEL HOSPITAL DE ALTA COMPLEJIDAD


I. Consumo de energía eléctrica

Periodo	Energía Activa Total (kWh)	Energía activa Hora Punta (kWh)	Energía Activa Fuera Punta (kWh)	Energía Reactiva (kVarh)	Potencia Hora Punta (kW)	Potencia Fuera Punta (kW)
Enero	317748,0200	56060,6400	261687,3900	71369,3500	573,0000	657,5400
Febrero	314790,6700	57211,6800	257578,9900	79126,8600	647,4500	712,5000
Marzo	333140,3600	58689,6600	274450,7000	89374,9900	615,0000	701,0400
Abril	285576,9400	48969,2900	236607,6500	73893,3700	549,2700	636,1400
Mayo	281579,6500	49821,9700	231757,6800	68771,9300	491,3200	606,1400
Junio	253564,9300	43960,9300	209603,9900	54236,8800	478,5000	587,5900
Julio	258331,4800	48245,5800	210105,3100	52662,7200	462,2700	563,9100

II. Precio total del consumo de energía eléctrica

Periodo	Energía	Energía	Costo total
Periodo	Activa Fp	Activa Hp	Costo total
Enero	30251,06	6480,61	97754,67
Febrero	29673,10	6590,80	103593,27
Marzo	31918,62	6825,61	107343,54
Abril	27612,11	5714,72	98209,83
Мауо	27602,34	5933,80	98498,94
Junio	24502,71	5139,03	89417,55
Julio	24666,36	5664,03	87982,33

Anexo 10. Recibos emitidos por Hidrandina.

F3 Hidrandina LAC DELIBORAT Facturación: Enero-2019 SEGURO SOCIAL DE SALUD Surinistro 59561100

Recibo Nº 501-48148420

La Esperance/Tripido

TOTAL A PAGAR S/ *****97,754.67

Recibo Nº 501-48405329

La Esperanza/Trujillo

Recibo por Consumo del 01/02/2019 al 28/02/2019

Clante

SEGURO SOCIAL DE SALUD

R.U.C. Dirección

20131257750 Av. Reactivación 2007 Nº predio 2 Urb. Parque Industrial 1ero Etapa - La Espera

Lectura Diferencia Demanda

Referencia Rute

Tipo Suministro

MT1 Tarifa Media Tension Medición. Tensión y SED 10 kV / E-304479 SE0122 Trujilo (ST2) Sist, Electrico

Magnitud Leida

30-262-87

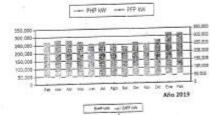
Saria Medidor Nº Hilos Medidor Modalidad Inicio Contrato Termino Contrato 15/01/2019 Tritásica-Aérea (C5.4)

Lectura Anterior

000000016151891 - Electron. Potencia Variable 28/12/2018

Concepto

Febrero-2019


59561100 CÓDIGO

Promedio Máxima Demanda Potencia Contratada Fuera Punta Punte Punta Fuera Punta 660.0000 660,0000 0.0000 0.0000 Horas Punta D No Aplica

Consumo Precio Unitario

Total

Magnitud Leida	Anterior	Actual	Districte					
Energia Activa Total (MMH) Energia Activa Hera Punta (MMH) Energia Activa Hera Punta (MMH) Energia Recolva (Math) Potentia Hera Punta (MM) Potentia Hera Punta (MM) F "Castifeedins (MM) F "Castifeedins (MA)	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	5,0000 5,0000 5,0000 0,0000 0,0000 0,0000 1,363,6350	0000.0 0000.0 0000.0 0000.0	314,790,6700 57,211,6600 257,578,9900 79,125,8600 647,4500 712,5000	Generación-Potambia en Hp Gener-Energia Activa En Gener-Energia Activa Hp Gener-Energia Activa Hp Cargo mensual de Comendal tración Pagle de Conceión Sistema Pracipal VAD_MT En Potano en Hp VAD_MT En Potano en Hp	319.0000 257578.9900 57211.8800 314.7900 519.0000 74.8000 610.2300	21,5000 11,5200 11,5200 0,9600 36,9600 13,9900 12,4700 6,4900	11205.20 29673.10 8590.80 311.80 16718.20 1041.80 7609.50 6.50
P Catronion : No Apres		1000		-	Cargo Pijo Cargo por Reposición y Mantanimiento de la	1,0000	18,4400	18.40
600 600				-	Conedith Peoje Transmalde, Berundaris Aumbrade Público (Allcucta : SI 0.4783) SUB TOTAL Imp. Crail, a lice Ventue FISE - Ley 20007	314790.6700 81003.4500	1,0380	5855.10 1913.20 62941.60 14929.47 9078.10 ==
				700	Apone Ley Nrs. 28748	314790.8700	0.0084	2644-20 "
FAC AND ACT THE	Con N A	0 Dec 020	Año 201		TOTAL RECIBO DE FEBRERO-2019			103503.27

Linguisa 2 Dilmos Meses Facturados Dio - 2018 Al 2020 71 Ene - 2018 SI 97758.17 HISTORICO DE CONSURADO V CEMANDARI

ALTA COMPLEJIDAD

-1 5,422.30 d 97,870.67

Emisión

04/03/2019

TOTAL

S/****103,593.27

Vencimiento 31/03/2019

Su AMT es : A3092 - TNO002 de SE de Potencia : S.E. TRUJILLO NORTE

Son: CIENTO TRES ME. DUNIENTOS NOVENTA Y TRES Y 27/100 SOLES
(*) El importe en laties hace referencia al lotal del recibio del res de Fabrero-2019 Comprobatés articlo según RS-007-89 SUNAT Cap. I. Ar. 4, Inciso 6.1.0.

Si maliza el pego via transferencia bancaria deba envier un comeo a: pagostrón a@distriuz.com. pa Revise el estaco co cuenta de su motibo en: www.ue.su recooler: http://www.distriuz.com.pe/ConsurtaRecibos/JonsuitaRecibo.asp x?empraam3

Recibo Nº 501-48661169 La Esperanza/Trujillo

Magnitud Leida

Recibe por Consumo del 01/03/2019 al 31/03/2019

Cliente R.U.C.

Torifa

Madicin's

Tension y SED

Sist Eléctrico

Tipo Suministro

SEGURO SOCIAL DE SALUD

20131257750

Dirección Referencia Ruts

Av. Resotivoción 2007 Nº predio 2 Urb. Parque industrial tera Etapa 39-262-67

MT1 Media Tension 10 KV / E-304479 SE0122 Trujitle (ST2)

Triffésion-Aérea (05.4)

Lectura Anterior

Serie Medidor Nº Hilos Musidan Modelidad Inicio Contrata

Lectura Actual

28/12/2018 Yermino Contrato 16/01/2019

Diferencia Demanda

00000001611 . dpt - Electron.

Concepto

Generación-Polanda en Hip Gener-Energia Activa Vip Gener-Energia Activa Vip Gener-Energia Activa Vip Cargo mesessad de Comaccial itación Períja Corsulás Sistema Polacipal WAD_MT Sur Polance en Fip WAD_MT polace en Hip

XAU_MIT Protect on His Cargo Paja Cargo Paja Cargo Paja Perapusiking Microstalia Abuntunde Publico (Microsta : SY 0.4716) Sila TOTAL Insp. Cest. in bia Verdisa Pitti - Luy 2015 - 1,000 0.0084

TOTAL RECIBIO DE MARZO-2019 Balde de Departentos e Fanos

Fuere Funja Punte 0,0000 0.0000 Calificación No Aplico

CÓDIGO

Consumo

517,3600 274450,7000 50009,6600 333,1400 517,3000 75,5500 631,2300

1,0000 3321 40,3600

DITA COMPLETIONS

Potencia democrateda Fuere Punta Punta 660,0000 660,0000 0

Total

11109.86

11109.80 31016.82 8025.81 330.14 18094.80 1041.77 7795.65 5.45 15.20

4001.41 1887.60

85890.13 15400.78

3101.27 2790.38

107348.64

-4

Hidrandina

SATISFACE OF STREET, SALES OF STREET, SA

Marzo-2019

59561100

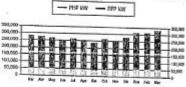
Precio Unitario

21,5900

11,8300 11,8900

36,1400

13,7900


12,3500 6,4900

1,8600

1,0360 0,0084

8

			Ant	erior		Actual	Direcencia	Demanda
Energia Antivo Tota Finergia Activo Han Energia Activo Fue	Ports (M	Ving Who		0.000	00	0.000	0.0000	58,689,660
Energie Reactivo (Polessia Hora Pun Polessia Fuero Pu	KVarb) to (WO			0.000	00	0.0000 0.0000 0.0000	0.0000	69,374,980 616,000
*Hitter Calificación	: На Арбол		F	no.Medi		363,6350	0.0000	701,040
600	41	-		-				3
300		******						

LINE DOUBLES - MICHIGAN imende 2 (Rimos Maces Pertynella. The - 2016 of 97745, 17 Pet - 2019 for 103400, 27 натокко ос со AVOS Y DISHAVORE

A1 2788

Emisión 04/04/2019 Vencimiento

30/04/2019

TOTAL

5989.65

101353.89

S/****107,343.54

Su AMT es : A3002 - TNO002 de SE de Potencia : S.E. TRUJILLO NORTE Son : CIENTO SIETE ML TRESCIENTOS CLARENTA Y TRES Y 5U 190 SCLES () El Impede en Johns hace rofarantia el John del seutro del mas de Marco

Si resiza el pago vio transferencia benceria debe envier un correo e: pagos idea@clastikaz.com.pe Reviso el estado de cunnita de su recibo es; http://www.distrikiz.com.pe/ConsultaResibos/ConsultaResibo.ms x?empresa=3

stante ovelicio saglio RS-007-00 SUNAY Cap. L.A.R. 4, Inciso G.1.A. Clientes Libres -la Libertad - Ca, Sen Martin Nº 831 . Centro Trujillo , Etapa

Ed Hidrandina NA E 20120113549

Recibo Nº 501-48918976 La Esperanza/Trojito Reciho por Consumo del 01/04/2019 al 30/04/2019 SEGURO SOCIAL DE SALUD R.U.C. 20131257750 Av. Reactivación 2007 Nº predio 2 Urb. Parque Industrial 1era Etapa - La Espera Dirección Referencia 30-262-87 Tarifa MT1 Media Tension Medición Tensión y SED 10 kV / E-304479 Sist, Eléctrico SE0122 Trujillo (ST2) Tipo Suministro Triffssica-Aérea(C5.4) Lectura Anterior Lectura Diferencia Demanda Magnitud Leida Energia Active Total (XMN) Energia Active Hore Purts (XMN) Energia Active Purts (XMN) Energia Reactive (XMS) Potancia Force Purts (XM) Potancia Force Purts (XM) 0.0000 0.0000 Factor Ca

Abril-2019

CÓDIGO 59561100

Precia Unitario

Total

10799.86

Consumo

500.0400

Serie Medidor 000000016151891 - Electrón, Promedio Máxima Demanda Potencia Contratada Nº Hilos Medidor Fuora Punta Punta Fuera Funta Punta Modelidad Potencia Variable 0.0000 0.0000 660,0000 600,0000 Inicio Contreta 28/12/2018 16/01/2019 Termino Contrato Calificación No Aplica HorasPunta 0

Active Total (kWh)	0.0000	0.0000	0.0000	285,576.9400	Generación-Potensia en Hp	500.0400	21.5900	10795.55
Active Hore Punter (MAth.)	0.0006	0.0000	0.0000 #	48,999,2000	Gener-Energia Activa Fp	+ 236607,6500	11,6700	27612.11
Active Puere Purts (M/h)	0.0000	0,0000	0.0000 -	236,607,0539	Gener-Energie Active Hp	+ 48909,2000	11,6700	6714.72
Reactive (Marh)	0.0000	0.0000	0.0000	73,868,3700	Cargo monocal de Comercialización	285,5800	0.9900	282.72
Hors Punta (kW)	0.0000	0.0000	0.0000	549.2700	Peale de Conexión Sistema Principal	500,0400	36,1400	18070.95
Fuera Punta (KR)	0.0000	0.0000	0.0000	636.1400	VAD MT Dac Potencien Fp	75.6900	13,7800	1041.02
Catificacion : No Aplica	Fac Modio.	1,263,4360			YAD_MT Polanc on Hip	631,2300	12,3400	7799.34
					Cargo File		4.4500	6.45
800			-	1000	Cango por Reposición y Mantanimanto de la Conseión	1,000	18.2000	10,26
600 400 208	>				Peace Transmisión Socundaria Alumbrado Público (Alicunta : Sr 0.5202) SUB TOTAL Imp. Gral, a las Vanza	285576,9400	1,8500	5316.01 2060.80 78728.24 14171.08
12.00 THE RESIDENCE OF THE PERSON AND THE PERSON AN					FISE - Lay 25652	79622,7300	1,0380	2911.66
407 100 AU AU	Aut tie 0	o Har the the	fee the	Au .	Apone Ley No. 207-99	209575400	0.0084	2795.55
			Año 2019		TOTAL RECHO DE ABRIL-2019			98205.23

0.0003 285,576,9400 Generación-Potessia en Hp 0.0005 + 48,599,2900 Gener-Energia Activa Fp

Concepto

Año 2019 Science Street en

HISTORICO DE CONSUMOS Y DESMNOAS

Vencimiento

\$/****98,209.83 TOTAL

ALTA COMPLET

Su AMT es : A3002 - TNO002

04/05/2019

Emisión

de SE de Potencia : S.E. TRUJELLO NORTE

Son: NOVENTA Y CICHO MR. DOSCIENTOS MUEVE Y 60150 SONES
(*) El Importe en fairas hace referenta al lotal del molto del mosto del mosto del comprehense amilido según RS-007-69 SUNAT. Cap. I.Ant. 4, Indiano S.1.4.

31/05/2019

Si maliza el pago via transferencia bencaria deba enviar un como a: pagoshdna@distribuz.com.pe Revise el estado de cuanta de su recibo es: http://www.distribuz.com.pe/Consulta/Recibos/Consulta/Recibo.asp x?emprese=3

Recibo Nº 501-49177450

La Esperenza/Trujillo

Repbo por Consumo del 01/05/2019 al 31/05/2019

· Ruc.

SUGURO SOCIAL DE SALUD 10131257750

Direction

Slot. Electrico

Tipo Suministro

Av. Reactivesión 2007 Nº predio 3: Uris. Parque industrial tera Etaps - La Espera

Reteranda Ruta

10-262-87 Tarifa MF1 Media Termion Modelan Tension y SEO 10 KV / E-334479 500122 Trujilis (ST2)

Trifasics-Aerea(05.4)

Saria Medidor Nº Hilley Much ter Medalidad

Inicio Contrato

Territo Contrata

Goeoccocherstast - Blectron. Potencia Virtubia 28/12/2018 16/01/2019

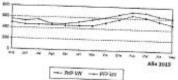
Mayo-2019

CÓDIGO 59561100

Promodio Ma	eines Cuesanda	Petencia Cuntrati da			
Fuera Punta	Perio	Fuere Page	Partie		
0.0000	0.0000	566,0000	660,0000		
Calificación	Ма Аркев	Horaskus	to a		

Consumo

482,7300


482,7350 231757,0820 48821,5400 281,5600 400,7308 76,5000 631,2360


1,0000

TV118,1400 261579,6600

DITE COMPLETIBLE

Magnitud Leida	Lecture Anterior	Lectura Actual	Difarencia	Demanda	Concepto
Emiglio Allien Total (1974) Emiglio Allien Tema (1974) Emiglio Artin Filman Pintas (1974) Emiglio Activa Filman Pintas (1974) Emiglio Reaches (1974) Pintenda Halle Pintas (1977) Pintenda Filman Pintas (1977) Emiliar	0,0800 0,0800 0,0800 0,0800 0,0800 6,0800 Fac.Weets	9.00en 9.00e 9.00e 9.00e 0.00e 0.00e 0.00e 1,362,8380	0 000E	201 A79 0500 45 231 90ye 201 207 A809 98 271 800 98 220 666 1485	
			48. 444		

04/06/2019

Vencimiento

30/05/2019

TOTAL

\$/****98,498.94

Total

\$1,5000 15,9100

11,9166 1,9169 1,9169 30,4560 14,4560 12,9190 6,4500

3 \$300

1.0088 0.0084

18379.73 27502.34 5933.80 184.40 17587.44 1665.36 8349.14 5.46 18,26

55458.94

Su AMT os : A3002 - TNO002

de SE de Polancia : S.E. TRUULLO NORTE

TOTAL RECIBO DE MAYO-2019

San HOVENTA Y OCHO SIS. CURTIFICIDENTOS NOVENTA Y COMO Y SANTIS EDUDE. O El finación en inicia taxa richisecta al bela del intilio del sino de Mayocetto Comprehens. amilida según Risidendo Sunatir Cap. L. Art. 4, Indiao S. Let.

Si nealiza el pago via iransferencia humonia activa de Mayvegino comiso a pagoulalma@distribuccom pe Plasson el colado de cuanta de su medio est historiaves del sirva com pe/Consulta/Recibes/Consulta/Recibe asp. X/Mappesso-3

Facturación: Mayo-2019 SESURO SOCIAL DE SALLID

Suministro

59561100 Av. Reactivación 2007 Nº predio 2 30-262-87

Ruta Emisión 04/06/2019 30/06/2019 Vencimiento

Recibo No

501-49177450

La Esperanza/Trojišo

TOTAL A PAGAR S/ ****98,498.94

Recibo Nº 501-49436494

Magnitud Leida

Le Esperanza/Truji lo

Recibo por Consumo del 01/00/2019 el 30/06/2019

33,362,87

Cliente R.U.C.

Rutz

SEGURO SOCIAL DE SALUO 201312577:10

Anterior

Ovrección Referencia Av. Reactivación 2007 Nº predio 2 Urb. Parque industrial tora Etapa

Actual

Hidrandina

Junio-2019

Precio

cónico

Concepto

59561100

Tatte	MT1	for the second			oldo ;	95611	00
Medición Tension y SED	Heda Tersion 10 kV / E-304479	N° I fos Medidor	occoccoratoraet - Brande.	Promedio Ma	reima Demanda	Potencia C	entrateda
Sixt Elèctrico Tipo Suministro	SE0122 Tru No (SY2)	Mox stided Into a Contrato Ten stino Contrato	Potencia Variable 28/12/2018 18/01/2019	Fixera Punta 0.0000	Puris 0.0000	Fuera Porta 880,0000	Purta 860.0000
Magnitud	Leida Lectura	Lectura		Calificación	No Aglica	HorasPun	0 0

Diferencia Demanda

Energia Active Total protess	Antenor	Actual	Directional	vemanoa	Concepto	Consumo	Precio	Total	
Emerga Activa Heria Punta (AMP) Emerga Activa Fuera Punta (AMP) Emergia Rosseino (Krigary) Emergia Rosseino (Ma) Emergia Rosseino			0.0000 0.0000 0.0000 0.0000	259, 564 9300 45, 960, 9300 309, 803, 9909 54, 236, 8809 476, 8000 887, 8000	Opport distance Amino No.	440,0000 39960,5000 43960,930 253,5450 431,860 75,560 631,300 1,000 253864,6300	21 4900 11 8900 11 8900 11 8900 9 8900 90 8500 14 4900 12 9700 6 4600 18 2600 2 6600	\$455.60 \$450,71 \$138.03 \$5710.10 15710.10 1594.05 \$187.01 6.45 18.25 \$180.51	
	Oil les its	Bra 144 W	Afio 2019		Fig. Crel. a to Ventes Fig Ley 28852 Acorde Ley Nrc. 25T49 © 0064 TOTAL RECIBIO DEL JUNIO-2819 Salos de Occumentos a Favor	68536,8400 263564 0000	1.006e 0.0064	71733.15 12911.07 / 2542.69 2139.65 88417.65 / 3 52	

Mer an Año 2019

PERC DE COMMUNICA Y DEMANDO

HISTORICO DE COMMUNICA Y DEMANDO 3

She'll ages.	inter	2194	001/01	History.	1800	No.	1000						
hear	NO ME	40,040	4000	wheel	4138	40.00	triant.	Mark.	100	WHEN !	55576	500 No.	10.00

Emisión 04/07/2019

Vencimie ato

31/07/2019

TOTAL

Alto Complejisas

84 645 12

4972.43

\$/****89,417.55

Su AMT es : At 102 - TNG002

San GOHENDA Y NUENE NEL CHATROZIGNITOS DIECENETE Y 557 30.50LES IT El Impone en local hace misennos el troi del recipo se me o de June-2019 Comprehense envisos según HS-000/49 SUNAT Cop. (Art. 4, Inciso 5.1.4.

Si realiza el pago via trimiterencia hancarla debe invier un correo al pago trimitario com de Revise al el cado de cuenta de su recibo en: http://www.cientra.com.pe/Consulta/Recibos/Core.ga/Recibo.asp.c/Persponders)

Clentes Libres «la Libertad » Ca. San Martin M* 831 . Centro Trujilo . Etapa

Facturación: Junio-2013 SEGURO SOCIAL DE SALUO

Recto Nº

501-49436494

Anexo 11. Mediciones de los voltajes de las tres líneas

Hora [UTC]	U1(Min) [V]	U1(Max) [V]	U2(Min) [V]	U2(Max) [V]	U3(Min) [V]	U3(Max) [V]	V min	V máx.
10/01/2020 10:00	218,5	220,2	217,8	219,3	218,4	220	217,8	220,2
10/01/2020 10:30	217,9	219,6	217,4	218,9	217,5	219,3	217,4	219,6
10/01/2020 11:00	218	219,6	216,9	219	217,7	219,8	216,9	219,8
10/01/2020 11:30	217	218,1	217,1	217,3	217,3	218,1	217	218,1
10/01/2020 12:00	217,8	218,6	217,1	218,1	217,4	218,5	217,1	218,6
10/01/2020 12:30	217,6	219,5	217,2	219,1	217,5	219,3	217,2	219,5
10/01/2020 13:00	219,2	221,3	218,6	220,9	218,9	221	218,6	221,3
10/01/2020 13:30	219,4	221,1	218,8	220,7	219,3	221,2	218,8	221,2
10/01/2020 14:00	219,7	221,4	218,7	220,7	219,4	221,1	218,7	221,4
10/01/2020 14:30	217,6	219,7	217	219,3	217,6	219,6	217	219,7
10/01/2020 15:00	217,6	219,4	216,8	218,7	217,5	219,3	216,8	219,4
10/01/2020 15:30	218,3	220,2	217,9	219,9	218	220,2	217,9	220,2
10/01/2020 16:00	217,9	219,8	217,1	219,3	217,9	219,7	217,1	219,8
10/01/2020 16:30	217,8	219,4	217,1	218,9	217,4	219,3	217,1	219,4
10/01/2020 17:00	219,3	221,4	218,8	221	219,2	221,1	218,8	221,4
10/01/2020 17:30	219,2	220,6	218,5	220	218,6	220,2	218,5	220,6
10/01/2020 18:00	218,2	221,2	216,3	220,4	216,7	220,8	216,3	221,2
10/01/2020 18:30	220,5	221,6	219,6	220,7	220,4	221,3	219,6	221,6
10/01/2020 19:00	217,9	221,3	216,9	221	216,7	222,5	216,7	222,5
10/01/2020 19:30	218	218,2	216,8	217,4	217,2	218,1	216,8	218,2
10/01/2020 20:00	217,9	217,7	216,9	217,2	217,2	217,5	216,9	217,7
10/01/2020 20:30	218,2	218,9	216,9	218,3	217,3	218,8	216,9	218,9
10/01/2020 21:00	218	219,1	217,7	218,7	217,7	218,9	217,7	219,1
10/01/2020 21:30	218,8	219,8	218,3	219,3	218,2	219,4	218,2	219,8
10/01/2020 22:00	218,9	220,6	218,4	220,1	218,4	220,2	218,4	220,6
10/01/2020 22:30	220,3	221,7	219,8	221,1	219,7	221,4	219,7	221,7

10/01/2020 23:00	220,8	222,1	220	221,4	220	221,7	220	222,1
10/01/2020 23:30	221,3	223	221,3	222,8	221,1	222,8	221,1	223
11/01/2020	222,3	223,8	222	223,7	222,3	223,9	222	223,9
11/01/2020 0:30	223,7	224,6	223,3	224,2	223,6	224,7	223,3	224,7
11/01/2020 1:00	222,2	223,4	221,7	223,3	222,2	223,5	221,7	223,5
11/01/2020 1:30	221,8	223,8	221,5	223,7	221,8	223,8	221,5	223,8
11/01/2020 2:00	223,7	224,9	223,3	224,6	223,5	224,6	223,3	224,9
11/01/2020 2:30	223,1	225,2	222,5	224,9	222,6	224,9	222,5	225,2
11/01/2020 3:00	223,6	225,4	223,2	224,8	223	225	223	225,4
11/01/2020 3:30	223,3	225,2	222,4	224,9	223,2	225,2	222,4	225,2
11/01/2020 4:00	223,1	224,1	222,7	223,9	223,1	224,3	222,7	224,3
11/01/2020 4:30	223,2	224,4	222,8	223,9	222,9	224,5	222,8	224,5
11/01/2020 5:00	223,5	224,6	223,3	224,5	223,3	224,6	223,3	224,6
11/01/2020 5:30	221,4	222,2	221,1	222	221,3	222,1	221,1	222,2
11/01/2020 6:00	222,2	223,8	221,9	223,3	222	223,8	221,9	223,8
11/01/2020 6:30	221,4	223,7	221,1	223,2	221,2	223,2	221,1	223,7
11/01/2020 7:00	220,2	222,5	219,7	222,1	219,9	222,2	219,7	222,5
11/01/2020 7:30	219,4	222,3	219,4	221,8	219,4	222,1	219,4	222,3
11/01/2020 8:00	219	222,4	219,5	221,8	218,8	221,8	218,8	222,4
11/01/2020 8:30	219	224,1	218,2	222,3	218,2	220,6	218,2	224,1
11/01/2020 9:00	218,2	219,9	218,1	219,6	218,4	219,7	218,1	219,9
11/01/2020 9:30	218	219,5	217,8	219,2	217,5	219,2	217,5	219,5
11/01/2020 10:00	217,5	220,4	217,1	220,1	217,3	219,9	217,1	220,4
11/01/2020 10:30	218,2	220,3	217,2	219,8	217,6	220	217,2	220,3
11/01/2020 11:00	218,1	219,2	217,6	218,9	217,9	219,2	217,6	219,2
11/01/2020 11:30	218,4	220,2	217,9	220	218,2	220,3	217,9	220,3
11/01/2020 12:00	217,8	221,8	217,5	222,6	217,3	220,6	217,3	222,6
11/01/2020 12:30	219,3	225,9	217,6	224,4	217,9	224,6	217,6	225,9
11/01/2020 13:00	220,3	222,4	219,9	222,1	220	222,1	219,9	222,4

11/01/2020 13:30	218,4	220,2	217,8	219,6	218,1	219,9	217,8	220,2
11/01/2020 14:00	218,4	220,4	218,2	220,2	218,2	220,2	218,2	220,4
11/01/2020 14:30	218	220	217,6	219,5	217,7	219,8	217,6	220
11/01/2020 15:00	218,2	220,7	217,7	219,8	218	220,7	217,7	220,7
11/01/2020 15:30	217,8	219,6	217,5	219,2	217,7	219,5	217,5	219,6
11/01/2020 16:00	218,9	220,1	218,6	219,9	218,5	220	218,5	220,1
11/01/2020 16:30	219,2	221,4	219,1	221	218,8	221,5	218,8	221,5
11/01/2020 17:00	220,3	221,5	219,6	220,9	220,1	221,3	219,6	221,5
11/01/2020 17:30	221	223,4	220,4	223	220,9	223,3	220,4	223,4
11/01/2020 18:00	218	223	217,8	222,8	216,8	223,1	216,8	223,1
11/01/2020 18:30	219,9	221,2	219,2	220,5	219,3	220,6	219,2	221,2
11/01/2020 19:00	218,4	219,3	217,8	219	218,2	219,2	217,8	219,3
11/01/2020 19:30	218,3	219,3	218,1	218,9	218,1	219,3	218,1	219,3
11/01/2020 20:00	218,7	220,1	218,5	219,8	218,4	220	218,4	220,1
11/01/2020 20:30	219,2	220,3	218,9	219,9	219,1	220,2	218,9	220,3
11/01/2020 21:00	219,9	221,2	219,5	220,9	219,6	221	219,5	221,2
11/01/2020 21:30	220	221,7	219,5	221,1	219,7	221,5	219,5	221,7
11/01/2020 22:00	218,9	221,2	218,4	220,8	218,8	221	218,4	221,2
11/01/2020 22:30	219,8	221,4	219,4	221,2	219,4	221,5	219,4	221,5
11/01/2020 23:00	217,9	223,9	217,6	223,7	218,9	224,4	217,6	224,4
11/01/2020 23:30	220,6	226,5	219,3	225	220,8	225,1	219,3	226,5
12/01/2020 0:00	222,2	223,5	221,9	223,1	221,9	223,2	221,9	223,5
12/01/2020 0:30	222,8	224,4	222,2	223,9	222,3	224	222,2	224,4
12/01/2020 1:00	224,2	225,7	223,8	225,4	223,8	225,4	223,8	225,7
12/01/2020 1:30	224,3	225,3	224,2	225,2	224,3	225,3	224,2	225,3
12/01/2020 2:00	224,8	226	224,5	225,5	224,5	225,6	224,5	226
12/01/2020 2:30	223,9	225,3	223,2	225,2	223,1	225,2	223,1	225,3
12/01/2020 3:00	225	225,9	224,9	225,8	224,9	225,6	224,9	225,9
12/01/2020 3:30	224,8	225,9	224,6	225,7	224,7	225,9	224,6	225,9

12/01/2020 4:00	224	228,4	222,5	229,4	221,9	228,1	221,9	229,4
12/01/2020 4:30	219,2	222,4	219,2	222,8	218,6	222,5	218,6	222,8
12/01/2020 5:00	223,1	225	222,8	224,8	222,9	224,6	222,8	225
12/01/2020 5:30	224,1	224,7	223,8	224,5	223,6	224,4	223,6	224,7
12/01/2020 6:00	222,8	228	220,3	226,2	222	226,7	220,3	228
12/01/2020 6:30	224,8	226,2	224,1	226,1	224,3	225,8	224,1	226,2
12/01/2020 7:00	222,6	223,7	222,4	223,3	222,2	223,4	222,2	223,7
12/01/2020 7:30	219,2	224,8	218	224,8	219,3	226	218	226
12/01/2020 8:00	221,6	222,4	221,3	222,1	221,2	222	221,2	222,4
12/01/2020 8:30	222,9	226	222,5	225,3	222,4	225,6	222,4	226
12/01/2020 9:00	223,6	224,5	223,1	223,9	223,2	224,1	223,1	224,5
12/01/2020 9:30	223,5	224,6	223	224	223,2	224,3	223	224,6
12/01/2020 10:00	222,3	223,2	221,6	222,5	221,7	222,7	221,6	223,2
12/01/2020 10:30	221,1	222,8	220,8	222,4	220,8	222,5	220,8	222,8
12/01/2020 11:00	220,6	222,2	219,1	221,5	220,2	222,2	219,1	222,2
12/01/2020 11:30	220,9	221,8	220,3	221,1	220,8	221,6	220,3	221,8
12/01/2020 12:00	220,9	221,8	220,2	221,2	220,6	221,4	220,2	221,8
12/01/2020 12:30	220,6	221,9	219,5	220,9	220	221,6	219,5	221,9
12/01/2020 13:00	221	222,2	220	221,4	220,6	221,9	220	222,2
12/01/2020 13:30	220,6	222,3	220,1	221,4	220,4	221,9	220,1	222,3
12/01/2020 14:00	218,5	224,4	217,4	224	219,8	223,9	217,4	224,4
12/01/2020 14:30	221,6	222,9	220,7	222	220,6	222,4	220,6	222,9
12/01/2020 15:00	219,6	226,3	220,6	226,2	218,7	225	218,7	226,3
12/01/2020 15:30	221,7	223	221,3	222,5	221,3	222,7	221,3	223
12/01/2020 16:00	222,2	223,3	221,6	222,6	221,7	222,9	221,6	223,3
12/01/2020 16:30	219,8	222,8	218,7	221,9	219,3	222,5	218,7	222,8
12/01/2020 17:00	220,9	222,7	220,3	221,9	220,3	222,2	220,3	222,7
12/01/2020 17:30	221,6	223,3	221,1	222,6	221	222,8	221	223,3
12/01/2020 18:00	221,6	223,2	220,4	222,2	220,8	222,4	220,4	223,2

12/01/2020 18:30	220,5	222,6	219,9	221,7	220,6	221,8	219,9	222,6
12/01/2020 19:00	220	220,1	218,1	220,4	219	220,5	218,1	220,5
12/01/2020 19:30	218,6	220,5	217,9	220,1	218,2	220,3	217,9	220,5
12/01/2020 20:00	219,3	220,4	218,6	219,7	218,9	220,1	218,6	220,4
12/01/2020 20:30	219,6	220,4	219,1	219,9	219,3	220,3	219,1	220,4
12/01/2020 21:00	220,2	221,1	219,2	220,6	219,2	220,9	219,2	221,1
12/01/2020 21:30	220,2	221,5	219,3	220,8	220,2	221,6	219,3	221,6
12/01/2020 22:00	221	223	220,2	222,2	220,3	222,5	220,2	223
12/01/2020 22:30	220,1	221,7	219,2	220,6	219,5	221,3	219,2	221,7
12/01/2020 23:00	221	222,9	220,2	222,1	220,4	222,5	220,2	222,9
12/01/2020 23:30	218,8	224,9	217,1	224	219	225,4	217,1	225,4
13/01/2020 0:00	223,3	224,1	222,5	223,6	222,9	223,9	222,5	224,1
13/01/2020 0:30	220,9	226,2	219,3	225,6	221	226,8	219,3	226,8
13/01/2020 1:00	224,9	226,3	224,4	225,7	224,5	225,9	224,4	226,3
13/01/2020 1:30	224,5	225,8	223,8	225,3	224	225,5	223,8	225,8
13/01/2020 2:00	222,8	224,1	222,2	223,6	222,5	224,2	222,2	224,2
13/01/2020 2:30	221,2	223,2	221,4	223,2	220,6	222,9	220,6	223,2
13/01/2020 3:00	223,3	224,1	223	223,8	222,9	223,7	221,6	224,1
13/01/2020 3:30	222,6	225,7	224,1	226,9	223,7	226,1	222,6	226,9
13/01/2020 4:00	223,1	225,5	224,1	226,6	223,6	225,9	223,1	226,6
13/01/2020 4:30	223	225,1	224	226,4	223	225,6	223	226,4
13/01/2020 5:00	222,2	224,8	223,7	225,9	222,5	225,1	222,2	225,9
13/01/2020 5:30	224,3	227,5	226	228,5	224,2	227,8	224,2	228,5
13/01/2020 6:00	224,1	227,7	225,4	228,9	224,1	228,1	224,1	228,9
13/01/2020 6:30	224,3	226,8	225,4	228,2	224,7	227,4	224,3	228,2
13/01/2020 7:00	224,1	225,2	225,3	226,4	224,6	225,7	224,1	226,4
13/01/2020 7:30	218,9	225,7	219,2	224,5	219,2	224,8	218,9	225,7
13/01/2020 8:00	221,5	223,6	222,5	224,6	221,6	223,8	221,5	224,6
13/01/2020 8:30	223,2	224,6	224	225,4	223,3	224,6	223,2	225,4

13/01/2020 9:00	221,5	223,1	222,5	223,9	221,5	223,1	221,5	223,9
13/01/2020 9:30	222,9	224,7	223,7	225,5	222,8	224,8	222,8	225,5
13/01/2020 10:00	223,8	225,8	224,8	226,8	223,8	226	223,8	226,8
13/01/2020 10:30	223,2	225,2	224,2	225,9	223	225,2	223	225,9
13/01/2020 11:00	222,9	225,5	223,8	226,2	222,9	225,4	222,9	226,2
13/01/2020 11:30	223,3	225	224,1	225,8	223,2	225,1	223,2	225,8
13/01/2020 12:00	223,9	225,2	224,5	225,9	223,8	225,3	223,8	225,9
13/01/2020 12:30	225,8	227,2	226,7	228,1	225,7	227,2	225,7	228,1
13/01/2020 13:00	223,6	225	224,5	226	223,6	225,1	223,6	226
13/01/2020 13:30	223,9	225,4	224,7	226	223,7	225,1	223,7	226
13/01/2020 14:00	222,8	224,3	223,3	225,4	222,5	224,2	222,5	225,4
13/01/2020 14:30	221,4	222,9	222,1	223,6	221,1	222,8	221,1	223,6
13/01/2020 15:00	222	223,4	222,8	224,1	221,7	223	221,7	224,1
13/01/2020 15:30	221,7	223,1	222,5	223,9	221,7	223,1	221,7	223,9
13/01/2020 16:00	222,2	223,6	223,1	224,4	222,1	223,6	222,1	224,4
13/01/2020 16:30	222,1	223,7	222,9	224,3	221,9	223,5	221,9	224,3
13/01/2020 17:00	222,3	224,4	223	225,4	222,5	224,4	222,3	225,4
13/01/2020 17:30	224,4	225,9	225,7	227,1	224,6	225,9	224,4	227,1
13/01/2020 18:00	224	226,1	225,4	227,5	224,5	226,4	224	227,5
13/01/2020 18:02	221,7	227	224,3	230,1	222,5	230,3	221,7	230,3
13/01/2020 18:30	226,1	227,3	227,1	228,1	226,1	227,4	226,1	228,1
13/01/2020 19:00	224,7	225,8	225,7	226,7	224,9	225,9	224,7	226,7
13/01/2020 19:30	224	225,1	225	226,1	224	225,2	224	226,1
13/01/2020 20:00	224,2	225,2	225,1	226,2	224,4	225,4	224,2	226,2
13/01/2020 20:30	224,2	225,4	225,3	226,5	224,4	225,6	224,2	226,5
13/01/2020 21:00	224,5	225,9	225,5	226,9	224,6	226,1	224,5	226,9
13/01/2020 21:30	222,7	227,4	222,5	229,3	222,6	229,3	222,5	229,3
13/01/2020 22:00	226,3	227,1	227,4	228,2	226,5	227,4	226,3	228,2
13/01/2020 22:30	224,3	225,9	225,4	227,1	224,4	226,1	224,3	227,1

13/01/2020 23:00	225,5	227	226,7	227,9	225,7	227,1	225,5	227,9
13/01/2020 23:30	224,4	225,8	225,8	226,8	224,7	225,9	224,4	226,8
14/01/2020 0:00	222,6	227,7	224,5	229,1	222,7	228,8	222,6	229,1
14/01/2020 0:30	225,2	226,8	226,4	227,9	224,8	227	224,8	227,9
14/01/2020 1:00	225,9	227,8	227,5	229	226,4	227,9	225,9	229
14/01/2020 1:30	226,4	228,1	227,7	229,2	226,5	228,5	226,4	229,2
14/01/2020 2:00	226,1	228,5	226,9	229,6	226,4	228,9	226,1	229,6
14/01/2020 2:30	222,1	227,4	221,4	228,9	222,2	228,2	221,4	228,9
14/01/2020 3:00	224,4	225,9	225,8	227,2	224,7	226,4	224,4	227,2
14/01/2020 3:30	224,2	226,3	225,8	227,6	224,8	226,7	224,2	227,6
14/01/2020 4:00	224,7	229,2	224,6	231,6	222,6	229,1	222,6	231,6
14/01/2020 4:30	225,8	227,1	227,1	228,3	226,3	227,5	225,8	228,3
14/01/2020 5:00	225,2	226,7	226,4	227,7	225	226,7	225	227,7
14/01/2020 5:30	224,6	226,3	225,7	227,5	224,6	226,5	224,6	227,5
14/01/2020 6:00	224,5	226,2	225,7	227,2	224,8	226,2	224,5	227,2
14/01/2020 6:30	224,6	225,8	226	227,2	224,9	226,2	224,6	227,2
14/01/2020 7:00	222,9	225	223,8	226,2	222,8	225,4	222,8	226,2
14/01/2020 7:30	223,2	225	224,2	226,1	223,3	225,3	223,2	226,1
14/01/2020 7:32	221,8	225,3	222,2	229,1	221,3	228,1	221,3	229,1
14/01/2020	221,6	223,4	222,6	224,3	222,1	223,4	221,6	224,3
14/01/2020 8:30	221,9	223,8	222,8	224,8	221,9	223,7	221,9	224,8
14/01/2020 9:00	221,1	222,2	222,1	223,1	221,2	222,3	221,1	223,1
14/01/2020 9:30	219,2	225,7	220,9	227,9	219,4	224,9	219,2	227,9
14/01/2020 10:00	221	222,8	221,8	223,7	221,2	222,8	221	223,7
14/01/2020 10:30	221	222,2	221,6	222,9	220,8	222,2	220,8	222,9
14/01/2020	222,9	224,1	223,6	224,9	222,6	223,9	222,6	224,9
14/01/2020 11:30	222	227,6	221,8	228,2	221,6	229	221,6	229
14/01/2020 12:00	221,4	225,5	220,7	227,7	220	225,3	220	227,7
14/01/2020 12:30	223,7	225,6	224,7	226,3	223,7	225,6	223,7	226,3

14/01/2020 13:00	225,1	226,5	226	227,3	225,1	226,9	225,1	227,3
14/01/2020 13:30	219,2	226,7	221,4	228,2	220,1	226,7	219,2	228,2
14/01/2020 14:00	221,3	223,4	222,2	224,3	221,1	223,2	221,1	224,3
14/01/2020 14:30	220,1	221,6	221	222,3	219,8	223,4	219,8	223,4
14/01/2020 15:00	223,1	225	223,9	225,7	222,9	224,5	222,9	225,7
14/01/2020 15:30	223,7	225,4	224,5	226,1	223,4	225,2	223,4	226,1
14/01/2020 16:00	223,8	225	224,7	225,9	223,6	224,9	223,6	225,9
14/01/2020 16:30	223,9	225,2	224,6	226,1	223,9	228,3	223,9	228,3
14/01/2020 17:00	223,2	229,7	223,3	230,4	223,3	231,4	223,2	231,4
14/01/2020 17:30	221,3	225,9	221,9	227	221,3	226,1	221,3	227
14/01/2020 18:00	224,6	225,9	225,7	226,8	224,7	226	224,6	226,8
14/01/2020 18:30	224,3	226,1	225,3	227,1	224,5	226,2	224,3	227,1
14/01/2020 19:00	223,5	224,5	224,5	225,5	223,8	224,8	223,5	225,5
14/01/2020 19:30	222,7	224,1	223,9	225,3	222,8	224,3	222,7	225,3
14/01/2020 20:00	223,7	225	224,4	225,9	223,6	225,1	223,6	225,9
14/01/2020 20:30	223,6	224,8	224,6	225,9	223,7	225	223,6	225,9
14/01/2020 21:00	221,7	227,9	221,3	228,2	221,6	227,5	221,3	228,2
14/01/2020 21:30	225,1	226,3	226,1	227,3	224,9	226,2	224,9	227,3
14/01/2020 22:00	224,5	226,4	225,3	227,7	224,3	226,6	224,3	227,7
14/01/2020 22:30	224,4	226	225,3	226,8	224,2	226,1	224,2	226,8
14/01/2020 23:00	225,1	227,1	226,4	228,4	225,1	227,3	225,1	228,4
14/01/2020 23:30	225,8	227,3	227,2	228,6	226,4	227,7	225,8	228,6
15/01/2020 0:00	226,5	227,5	227,7	228,6	226,9	227,8	226,5	228,6
15/01/2020 0:30	226,5	228,2	227,5	229,1	226,6	228,5	226,5	229,1
15/01/2020 1:00	224,8	226,4	226,1	227,5	225,2	226,7	224,8	227,5
15/01/2020 1:30	223,1	228,6	223,9	231,1	223,7	227,6	223,1	231,1
15/01/2020 2:00	224,6	226	225,8	227,4	224,7	226,4	224,6	227,4
15/01/2020 2:30	224,8	225,9	226,1	227,3	225	226,3	224,8	227,3
15/01/2020 3:00	225,5	226,5	226,7	227,8	225,7	226,8	225,5	227,8

15/01/2020 3:30	225,5	226,6	226,7	227,8	225,8	226,9	225,5	227,8
15/01/2020 4:00	222,1	229,3	225,7	231,5	223,8	230,2	222,1	231,5
15/01/2020 4:30	225,5	227	226,5	228,5	225,7	227,5	225,5	228,5
15/01/2020 5:00	224,6	226,8	226,1	227,9	224,6	226,7	224,6	227,9
15/01/2020 5:30	225,1	226	226,4	227,4	225,4	226,4	225,1	227,4
15/01/2020 6:00	224	225,6	225,3	226,8	224,1	225,9	224	226,8
15/01/2020 6:30	222,9	227,1	223,3	229,2	220,5	227	220,5	229,2
15/01/2020 7:00	223,5	224,6	224,7	225,8	223,6	224,9	223,5	225,8
15/01/2020 7:30	223	224,6	224	225,6	223	224,4	223	225,6
15/01/2020 8:00	220,8	223,1	222	223,8	220,6	222,9	220,6	223,8
15/01/2020 8:30	221,2	224	222,5	224,9	221,8	223,9	221,2	224,9
15/01/2020 9:00	219,7	224,3	220,3	224,9	219,4	224,1	219,4	224,9
15/01/2020 9:30	221,6	223,6	222,4	224,2	221,6	223,4	221,6	224,2

Anexo 12. Norma técnica de la calidad de energía.

5.1 TENSIÓN 11

5.1.1 Indicador De Calidad.- El indicador para evaluar la tensión de entrega, en un intervalo de medición (k) de quince (15) minutos de duración, es la diferencia (ΔV_k) entre la media de los valores eficaces (RMS) instantáneos medidos en el punto de entrega (V_k) y el valor de la tensión nominal (V_N) del mismo punto. Este indicador esta expresado como un porcentaje de la tensión nominal del punto:

$$\Delta V_k$$
 (%) = ($V_k - V_N$) / V_N . 100%; (expresada en: %)......(Fórmula Nº 1)

5.1.2 Tolerancias.- Las tolerancias admitidas sobre las tensiones nominales de los puntos de entrega de energía, en todas las Etapas y en todos los niveles de tensión, es de hasta el $\pm 5.0\%$ de las tensiones nominales de tales puntos. Tratándose de redes secundarias en servicios calificados como Urbano-Rurales y/o Rurales, dichas tolerancias son de hasta el $\pm 7.5\%$.

Se considera que la energía eléctrica es de mala calidad, si la tensión se encuentra fuera del rango de tolerancias establecidas en este literal, por un tiempo superior al cinco por ciento (5%) del período de medición. 12

Anexo 13. Mediciones de la corriente en las tres líneas.

Hora [UTC]	I1(Min)	I1(Max)	I2(Min)	I2(Max)	I3(Min)	I3(Max)
14/09/2019 10:30	[A] 642,09	[A] 670,32	[A] 640,62	[A] 657,09	[A] 613,59	[A] 645,81
14/09/2019 10:30	641,34	669,36	631,65	662,28	611,04	644,25
14/09/2019 11:30	643,74	664,59	639,66	657,81	614,82	646,71
14/09/2019 12:00	645,3	673,65	633,09	659,73	606,54	639,39
14/09/2019 12:30	642,9	675,06	639,66	661,71	610,5	647,67
14/09/2019 13:00	649,38	672,84	634,2	654,51	616,71	653,67
14/09/2019 13:30	639	661,02	621,36	651,12	614,58	651,57
14/09/2019 14:00	635,37	655,98	621,24	644,55	621,75	662,43
14/09/2019 14:30	638,94	660,42	620,82	646,47	620,7	661,65
14/09/2019 15:00	620,4	648,87	604,08	630,21	612,81	631,68
14/09/2019 15:30	638,97	658,5	621,51	642,03	617,76	638,52
14/09/2019 16:00	619,26	651,96	615,63	647,13	625,53	663,66
14/09/2019 16:30	627,48	649,14	618,09	658,17	624,75	664,92
14/09/2019 17:00	624,48	652,08	612,63	640,05	620,64	661,65
14/09/2019 17:30	621,09	643,95	614,37	652,41	624,96	657,24
14/09/2019 18:00	623,64	649,8	612,57	637,23	622,86	660,81
14/09/2019 18:30	627,3	652,14	617,85	647,97	624,54	655,68
14/09/2019 18:59	645,12	662,4	627,81	656,31	622,77	659,16
14/09/2019 19:29	637,35	661,35	625,32	652,77	629,61	657,66
14/09/2019 19:59	631,62	651,39	623,67	650,37	637,02	662,67
14/09/2019 20:29	632,82	652,11	621,12	647,22	636,99	648,63
14/09/2019 20:59	631,62	663,39	626,79	654,81	639,69	660
14/09/2019 21:29	648,9	666,72	639,78	659,82	643,5	661,83
14/09/2019 21:59	637,32	655,5	640,11	657,78	644,88	664,35
14/09/2019 22:29	638,16	656,31	640,14	659,64	648,66	666,69
14/09/2019 22:59	638,28	657,84	642,75	661,23	648,39	666,75
14/09/2019 23:29	641,61	659,22	644,37	660,69	649,5	667,26
14/09/2019 23:59	638,82	658,5	642,75	664,02	647,19	669,27
15/09/2019 0:29	643,17	662,55	647,43	666,3	653,79	669,21
15/09/2019 0:59	645,6	663	648,51	664,95	650,7	667,47
15/09/2019 1:29	647,58	665,76	642,03	664,05	645,63	666,24
15/09/2019 1:59	647,73	664,83	634,71	665,43	649,14	668,67
15/09/2019 2:29	649,23	666,81	642,81	663,57	644,82	664,65
15/09/2019 2:59	651,96	669,93	641,46	666,18	643,17	667,41
15/09/2019 3:29	650,88	668,16	639,12	665,1	643,44	664,83
15/09/2019 3:59	652,62	669	645,06	665,13	645,45	663,51
15/09/2019 4:29	647,82	667,17	628,02	659,67	623,85	660,33
15/09/2019 4:59	653,61	668,58	648,63	667,95	650,79	667,89
15/09/2019 5:29	649,68	656,1	640,29	655,44	647,4	660,57
15/09/2019 5:59	648,3	665,1	646,89	665,13	646,62	667,32
15/09/2019 6:29	644,82	663,33	646,11	667,29	645,84	664,98
15/09/2019 6:59	594	640,74	585,63	653,88	581,48	649,05
15/09/2019 7:29	624,09	659,43	619,68	662,94	586,41	658,44

15/09/2019 7:59	626,7	654,12	621,24	661,23	610,83	661,11
15/09/2019 8:29	616,83	655,44	613,2	658,23	593,04	655,71
15/09/2019 8:59	610,32	655,68	609,36	659,67	597,81	663,45
15/09/2019 9:29	615,6	648,42	618,27	662,52	616,98	662,76
15/09/2019 9:59	613,29	647,73	595,68	659,82	588,36	658,59
15/09/2019 10:29	615,75	653,88	614,64	659,07	591,69	657,9
15/09/2019 10:59	614,34	640,38	623,28	653,37	610,77	655,44
15/09/2019 11:29	613,38	649,92	625,14	660,9	611,94	660,48
15/09/2019 11:59	606,48	654,06	611,7	657,27	595,05	658,05
15/09/2019 12:29	606,66	653,16	604,59	663,03	577,35	660
15/09/2019 12:59	604,17	645,27	600,39	659,04	591,36	657,81
15/09/2019 13:29	608,34	656,82	601,77	663,12	581,19	658,77
15/09/2019 13:59	609,39	640,02	616,29	662,82	597,39	660,12
15/09/2019 14:29	605,76	639,81	599,67	663,03	586,11	659,61
15/09/2019 14:59	604,65	639,39	599,91	659,49	587,1	657,36
15/09/2019 15:29	607,89	634,35	594,57	660,45	593,61	657,57
15/09/2019 15:59	604,29	642,3	602,85	660,15	587,79	657,54
15/09/2019 16:29	611,73	638,28	621,99	662,25	607,71	665,61
15/09/2019 16:59	612,33	646,38	602,01	659,34	594,27	656,85
15/09/2019 17:29	610,71	643,89	612,12	661,47		· · · · · · · · · · · · · · · · · · ·
15/09/2019 17:59	610,71				590,49	661,2 658,11
15/09/2019 17:39	611,97	639,15 635,28	613,2 629,94	658,5 647,52	591,66 603,78	640,38
15/09/2019 18:59	630,21	658,08	623,1	654,66	618,57	658,5
15/09/2019 19:29	623,46	656,76	626,28	655,14	642,57	663,3
15/09/2019 19:59	627,48	648,72	624,12	642,3	622,44	647,46
15/09/2019 20:29	630,66	656,94	631,65	653,01	639,54	661,2
15/09/2019 20:59	628,86	661,2	628,14	657,72	641,04	662,91
15/09/2019 21:29	646,44	663,39	643,5	658,68	647,85	665,85
15/09/2019 21:59	640,08	655,62	645	660,3	646,5	667,14
15/09/2019 22:29	639,42	657,39	644,13	658,89	648,78	667,95
15/09/2019 22:59	643,23	657,6	647,76	662,01	650,49	669,84
15/09/2019 23:29	642,9	659,16	646,41	664,35	648,84	669,75
15/09/2019 23:59	641,34	657,33	647,13	663,78	650,82	669,93
16/09/2019 0:29	643,8	662,67	650,22	665,88	649,92	668,22
16/09/2019 0:59	645,12	654,18	650,28	655,59	651,06	658,44
16/09/2019 1:29	643,5	659,04	645,6	665,58	647,25	670,8
16/09/2019 1:59	649,5	664,59	651,48	667,71	653,76	669,78
16/09/2019 2:29	647,73	661,89	641,4	665,58	640,59	664,65
16/09/2019 2:59	649,41	665,19	646,11	664,11	648,09	664,26
16/09/2019 3:29	648,39	664,02	644,22	667,68	645,27	667,32
16/09/2019 3:59	646,08	669,57	636,99	666,3	634,41	664,41
16/09/2019 4:29	656,7	671,37	649,8	668,85	647,04	664,17
16/09/2019 4:59	653,46	668,16	640,05	666,12	637,86	661,98
16/09/2019 5:29	652,14	668,46	646,95	667,59	642,03	662,22
16/09/2019 5:59	643,08	659,4	647,04	666,81	646,53	665,07
16/09/2019 6:29	635,16	656,13	643,62	662,31	648,18	667,71
16/09/2019 6:59	606,42	659,7	598,77	653,67	584,16	660,66
10,00,2010 0.00	550,72	000,1	555,11	555,07	557,10	000,00

16/09/2019 7:29	640,17	656,97	633,3	650,55	633,24	663,78
16/09/2019 7:59	642,63	670,17	638,94	654,81	620,85	652,32
16/09/2019 8:29	656,73	682,53	653,4	672,6	618,57	645,21
16/09/2019 8:59	667,89	685,62	640,92	676,68	623,88	650,79
16/09/2019 9:29	669,06	684,12	649,11	675,09	627,81	646,92
16/09/2019 9:59	668,7	684,6	654,03	681,24	629,13	655,8
16/09/2019 10:29	673,17	686,4	648,78	681,48	634,8	655,92
16/09/2019 10:59	663,3	685,53	653,04	683,4	623,91	650,67
16/09/2019 11:29	668,91	685,14	657,21	682,83	624,66	651,27
16/09/2019 11:59	667,29	684,18	659,64	680,52	625,53	647,34
16/09/2019 12:29	670,32	685,41	648,9	681,69	625,74	652,29
16/09/2019 12:59	665,94	686,55	657,03	683,88	626,61	649,53
16/09/2019 13:29	662,97	684,9	658,26	680,91	623,43	647,28
16/09/2019 13:59	661,89	684,33	653,01	677,31	621,84	649,38
16/09/2019 14:29	653,25	682,05	646,56	672,6	622,65	647,16
16/09/2019 14:59	653,01	681,51	647,19	673,05	625,62	651,12
16/09/2019 15:29	647,07	675,75	647,04	668,61	625,11	648,24
16/09/2019 15:59	652,35	678,21	646,5	665,64	629,31	649,11
16/09/2019 16:29	650,16	676,86	639,99	662,73	624,48	646,11
16/09/2019 16:59	648,57	671,1	644,07	658,35	621,06	642,99
16/09/2019 17:29	641,13	661,98	629,85	654,81	616,02	651,69
16/09/2019 17:59	653,61	680,34	637,08	670,26	615,6	659,01
16/09/2019 18:29	655,08	673,02	643,44	663,48	628,44	656,4
16/09/2019 18:59	656,16	674,04	652,08	664,38	634,44	660,03
16/09/2019 19:29	650,52	665,25	641,31	659,58	627,75	652,2
16/09/2019 19:59	643,08	662,04	633,48	658,8	627,42	652,86
16/09/2019 20:29	634,08	655,05	630,36	654,72	627,75	655,44
16/09/2019 20:59	647,58	669,63	642,18	666,63	641,97	662,52
16/09/2019 21:29	650,49	666,09	642,42	657,18	645,66	654,54
16/09/2019 21:59	645,33	657,3	641,58	659,25	644,01	662,07
16/09/2019 22:29	649,8	661,83	647,67	660,69	649,14	663,69
16/09/2019 22:59	646,92	661,5	646,41	660,3	650,67	664,44
16/09/2019 23:29	646,56	662,85	645,06	662,07	648,51	667,14
16/09/2019 23:59 17/09/2019 0:29	650,01 650,37	664,98	651,87	664,53	653,88	667,53 665,07
17/09/2019 0:59	649,47	660,21 665,52	653,85 647,91	662,1 664,8	649,92 646,11	666,24
17/09/2019 1:29	651,57	666,9	647,91	667,86	651,42	669,51
17/09/2019 1:59	650,79	658,35	642,57	660,06	648,54	660,39
17/09/2019 2:29	654,27	666,75	651,24	666,54	649,8	666,33
17/09/2019 2:59	654,33	667,86	643,5	667,86	645,6	665,91
17/09/2019 3:29	656,31	667,59	641,55	663,27	642,78	661,2
17/09/2019 3:59	657	669,27	649,74	667,95	644,43	661,5
17/09/2019 4:29	656,49	668,04	649,29	666,39	643,71	659,04
17/09/2019 4:59	656,94	668,43	642,21	664,35	645,93	660,81
17/09/2019 5:29	654,3	667,86	646,8	668,94	643,08	661,95
17/09/2019 5:59	648,09	663,63	650,31	664,86	644,34	660,63
17/09/2019 6:29	641,37	652,74	647,73	655,8	648,99	659,55
	, • .	, • •	, . •	; -	,	,

17/09/2019 6:59	621,06	650,43	607,95	647,01	594,57	663,96
17/09/2019 7:29	635,91	655,5	624,33	647,94	628,02	661,53
17/09/2019 7:59	647,01	678,27	640,26	664,68	622,29	652,29
17/09/2019 8:29	661,44	683,52	650,67	677,64	624,81	651,81
17/09/2019 8:59	657,09	682,29	649,47	679,29	630,9	652,08
17/09/2019 9:29	676,71	686,07	667,32	683,7	639,87	660,66
17/09/2019 9:59	671,28	685,83	664,86	686,04	635,67	653,04
17/09/2019 10:29	674,97	685,11	661,53	683,67	635,43	655,65
17/09/2019 10:59	669,93	683,4	661,77	683,25	630,99	653,19
17/09/2019 11:29	666,42	683,37	653,76	682,53	624,18	650,25
17/09/2019 11:59	663,6	681,78	653,16	678,9	621,72	645,15
17/09/2019 12:29	666,66	682,71	643,86	680,94	623,94	641,7
17/09/2019 12:59	671,67	683,07	647,67	674,13	624,54	645,84
17/09/2019 13:29	667,5	684,75	648,06	675,15	625,32	648,36
17/09/2019 13:59	661,14	684,24	637,29	660,9	622,35	649,68
17/09/2019 14:29	656,82	681,99	639,06	667,14	621,36	648,03
17/09/2019 14:59	666,39	686,31	652,14	674,43	624,48	651,15
17/09/2019 15:29	659,4	678,57	644,1	662,61	615,96	642,36
17/09/2019 15:59	650,31	680,52	637,71	659,91	621,96	646,32
17/09/2019 16:29	648,63	683,49	636,72	660,15	622,8	644,07
17/09/2019 16:59	649,29	676,71	637,71	652,62	617,76	648,57
17/09/2019 17:29	643,11	673,14	627,66	649,92	619,44	648,78
17/09/2019 17:59	642,78	672,54	632,31	653,94	616,83	647,4
17/09/2019 18:29	651,45	671,91	643,35	658,41	627	649,62
17/09/2019 18:59	650,94	670,35	636,06	656,4	623,04	653,85
17/09/2019 19:29	644,91	660,87	636,84	658,53	631,38	663
17/09/2019 19:59	636,99	655,89	625,89	653,4	628,11	656,85
17/09/2019 20:29	630,72	657,24	627,9	654,51	624,24	655,74
17/09/2019 20:59	637,17	665,82	629,85	661,95	632,52	660,87
17/09/2019 21:29	655,23	667,62	643,41	662,82	643,62	663,21
17/09/2019 21:59	645,03	660,45	642,87	659,37	644,73	662,28
17/09/2019 22:29	645,66	662,4	640,8	658,47	645,75	662,19
17/09/2019 22:59	645,36	660,57	648,66	660,78	651,06	665,61
17/09/2019 23:29	645,06	659,61	643,77	661,08	641,97	663,63
17/09/2019 23:59	648,72	663,63	652,77	665,94	651,12	666,6
18/09/2019 0:29	650,46	665,25	651,12	666,12	651,36	669,21
18/09/2019 0:59	651,78	657,33	651,27	656,91	647,91	658,08
18/09/2019 1:29	649,74	665,82	647,34	666,21	648,15	667,89
18/09/2019 1:59	652,2	665,85	648,84	665,16	647,01	665,19
18/09/2019 2:29	653,94	666,33	648,06	667,29	644,1	666,42
18/09/2019 2:59	651,75	663,78	639,57	657,72	641,91	655,08
18/09/2019 3:29	657,33	668,28	649,59	667,59	650,07	667,95
18/09/2019 3:59	656,79	668,07	651,12	667,29	643,23	662,52
18/09/2019 4:29	656,19	667,74	633,3	659,28	638,19	661,26
18/09/2019 4:59	656,16	668,07	635,88	660,21	645,06	663,36
18/09/2019 5:29	655,83	666,57	646,11	664,26	643,86	661,68
18/09/2019 5:59	647,46	665,01	652,29	666,03	645,12	666,42

18/09/2019 6:29	643,86	660,63	647,01	664,86	640,38	662,76
18/09/2019 6:59	608,43	650,49	598,41	654,96	579,9	657,51
18/09/2019 7:29	645,12	664,71	628,29	649,17	626,61	660,09
18/09/2019 7:59	643,17	677,61	628,38	651,03	626,73	648,45
18/09/2019 8:29	672,3	683,7	653,52	671,82	629,76	651,63
18/09/2019 8:59	665,4	683,25	657	680,76	632,28	656,52
18/09/2019 9:29	668,67	683,07	659,73	680,61	627,24	646,32
18/09/2019 9:59	678	685,29	666,12	681,39	635,88	660,87
18/09/2019 10:29	675,21	684,75	659,28	680,82	636,78	656,34
18/09/2019 10:34	676,89	684,87	651,69	678,75	633,57	653,52
18/09/2019 10:39	674,55	684,27	656,91	681,33	637,56	657,48
18/09/2019 10:44	676,17	684,66	657,93	682,65	635,85	652,86
18/09/2019 10:49	674,25	684,09	651,75	681,72	635,37	653,1
18/09/2019 10:54	676,38	683,52	665,01	680,76	635,82	655,68
18/09/2019 10:59	675,03	684,18	652,92	678,84	634,32	659,07
18/09/2019 11:04	677,7	684,48	660,39	681,06	633,33	656,04
18/09/2019 11:09	677,1	684	658,14	679,68	633,78	655,8
18/09/2019 11:14	669,36	683,52	651,93	680,1	633,78	656,55
18/09/2019 11:19	662,04	682,14	646,77	676,89	628,05	653,4
18/09/2019 11:24	662,28	682,56	646,32	673,77	628,44	658,53
18/09/2019 11:29	668,88	683,4	654,96	681,12	637,83	656,37
18/09/2019 11:34	671,85	684,84	659,37	684,87	634,11	657,57
18/09/2019 11:39	667,23	684,15	652,23	682,35	635,28	657,24
18/09/2019 11:44	674,19	683,43	663,45	680,61	629,85	657,39
18/09/2019 11:49	673,35	684,45	653,76	680,73	633,3	656,85
18/09/2019 11:54	669,42	683,34	648,72	673,92	625,92	650,52
18/09/2019 11:59	670,65	681,81	650,25	672,66	631,26	653,31
18/09/2019 12:29	672,15	682,44	651,84	680,76	627,57	658,35
18/09/2019 12:59	673,59	685,62	647,28	675,27	635,28	657,66
18/09/2019 13:29	660,3	683,79	635,34	660,96	626,73	654,42
18/09/2019 13:59	670,17	685,17	646,38	668,7	634,8	658,5
18/09/2019 14:29	663,96	684,99	645,24	675,15	633,78	657,93
18/09/2019 14:59	655,62	686,01	644,34	667,62	624,54	654,9
18/09/2019 15:29	657,24	682,74	646,65	667,44	630,72	655,17
18/09/2019 15:59	649,83	678,54	647,19	671,76	626,37	649,2
18/09/2019 16:29	647,73	681,33	642,87	667,41	619,29	643,23
18/09/2019 16:59	641,58	679,47	642,96	659,19	616,68	652,62
18/09/2019 17:29	644,1	673,32	644,94	660,99	627,09	653,55
18/09/2019 17:59	633,57	674,34	637,35	674,94	614,73	646,68
18/09/2019 18:29	647,64	665,49	641,4	658,23	622,53	653,85
18/09/2019 18:59 18/09/2019 19:29	644,88	658,38	636,39	652,56	621,36	649,68
18/09/2019 19:59	636,21 647,46	659,01 662,34	636,21 639,72	652,38 663,51	623,58 632,37	653,4 663,96
18/09/2019 19:59	631,56	651,03	630,78	655,29	630,36	
18/09/2019 20:59	632,37	664,8	627,99	661,95	629,22	656,52 662,34
18/09/2019 20:39	653,82	669,54	644,01	665,52	644,7	660,39
18/09/2019 21:59	642,42	661,11	643,44	659,01	644,25	660,48
10/03/2013 21.33	042,42	001,11	043,44	009,01	044,20	000,40

18/09/2019 22:29 645,66 661	,26 645,6	658,71 646	5,11 661,59
18/09/2019 22:59 640,71 657	,84 645,72	659,43 646	5,56 663,27
18/09/2019 23:29 647,01 661	,44 647,19	661,77 650	,37 665,67
18/09/2019 23:59 645,93 662	,64 649,2	662,25 649	,14 666,99
19/09/2019 0:29 647,16 663	,96 653,04	667,14 648	,87 667,26
19/09/2019 0:59 646,59 663	,72 650,4	665,46 649	,38 667,44
19/09/2019 1:29 653,31 665	,85 650,73	664,11 650	,52 665,85
19/09/2019 1:59 651 656	,88 643,59	657,24 645	,78 656,16
19/09/2019 2:29 653,46 667	,14 644,04	667,5 647	7,49 669,33
19/09/2019 2:59 652,08 666	,78 651,48	665,7 648	,39 668,25
19/09/2019 3:29 652,92 664	,89 643,14	665,13 637	7,32 656,19
19/09/2019 3:59 656,49 668	,58 644,16	665,94 648	,51 664,74
19/09/2019 4:29 654,42 667	7,8 639,51	664,68 641	,28 662,97
19/09/2019 4:59 653,22 669	,06 644,61	668,7 643	3,8 668,91
19/09/2019 5:29 651,81 665	,82 641,37	666,48 639	,36 660,48
19/09/2019 5:59 649,23 663	,54 645,66	663,9 643	,56 662,13
19/09/2019 6:29 644,19 662	,37 651,27	664,56 652	,35 668,19
19/09/2019 6:59 608,49 652	,08 602,58	658,35 594	,63 663,27
19/09/2019 7:29 633,12 655	,83 626,25	655,92 634	,26 662,34
19/09/2019 7:59 642,36 665	,19 629,91	650,91 618	8,3 660,96
19/09/2019 8:29 651,42 680	,16 648,27	680,37 624	,48 648,99
19/09/2019 8:59 655,41 680),4 656,88	679,29 635	,22 654,87
19/09/2019 9:29 659,64 680	,01 652,53	670,92 628	,89 649,62
19/09/2019 9:59 657,69 680	,25 654,57	679,74 627	7,75 655,14
19/09/2019 10:29 663,21 679	,77 659,37	680,07 628	8,5 653,28
594 686	,55 585,63	686,04 577	,35 670,8

Anexo 14. Medición de armónicos de tensión.

Hora [UTC]	THD	THD	THD
	U12(Max)	U23(Max)	U31(Max)
10/01/2020 9:50	3,8	3,8	3,7
10/01/2020 10:00	3,6	3,6	3,6
10/01/2020 10:30	3,7	3,8	3,6
10/01/2020 11:00	3,7	3,7	3,6
10/01/2020 11:30	3,7	3,7	3,6
10/01/2020 12:00	3,9	3,9	3,9
10/01/2020 12:30	3,9	3,8	3,6
10/01/2020 13:00	4,1	3,7	3,7
10/01/2020 13:30	3,8	3,8	3,5
10/01/2020 14:00	3,5	3,5	3,3
10/01/2020 14:30	3,7	3,6	3,4
10/01/2020 15:00	3,7	3,6	3,5
10/01/2020 15:30	3,9	3,8	3,7
10/01/2020 16:00	3,6	3,8	3,5
10/01/2020 16:30	3,7	3,7	3,6
10/01/2020 17:00	3,7	3,6	3,3
10/01/2020 17:30	4	3,9	3,7
10/01/2020 18:00	4	3,9	3,7
10/01/2020 18:30	4,3	4,1	4
10/01/2020 19:00	4,2	4,2	4,1
10/01/2020 19:30	4,1	3,7	3,7
10/01/2020 20:00	4,1	3,9	3,9
10/01/2020 20:30	4	3,8	3,8
10/01/2020 21:00	4,1	3,8	3,8
10/01/2020 21:30	4	3,7	3,8
10/01/2020 22:00	4,2	3,9	3,9
10/01/2020 22:30	4,7	4,3	4,3
10/01/2020 23:00	4,8	4,3	4,6
10/01/2020 23:30	5	4,7	4,4
11/01/2020 0:00	5	4,7	4,5
11/01/2020 0:30	5	4,5	4,4
11/01/2020 1:00	5,8	5,4	5,2
11/01/2020 1:30	5,8	5,3	5,1
11/01/2020 2:00	5,8	5,3	5,2
11/01/2020 2:30	5,8	5,2	5,2
11/01/2020 3:00	5,8	<u>5,1</u>	5,3
11/01/2020 3:30	5,8	5	5,2
11/01/2020 4:00	5,6	<u>5,1</u>	5,1
11/01/2020 4:30	5,7	5	5
11/01/2020 5:00	5,8	5,2	<u>5,1</u>
11/01/2020 5:30	5,8	5,1	5
11/01/2020 6:00	<u>5,5</u>	4,9	4,9
11/01/2020 6:30	5	4,8	4,8

11/01/2020 7:00	4,5	4,3	4,1
11/01/2020 7:30	4,1	4	4,1
11/01/2020 8:00	4,1	4	4,1
11/01/2020 8:30	4,1	4	4,1
11/01/2020 9:00	4,3	4,3	4,1
11/01/2020 9:30	4	4,1	3,9
11/01/2020 10:00	4,3	4,4	4,2
11/01/2020 10:30	4	4	3,8
11/01/2020 11:00	4	4	3,8
11/01/2020 11:30	3,8	3,9	3,7
11/01/2020 12:00	3,8	3,9	3,7
11/01/2020 12:30	3,8	3,9	3,7
11/01/2020 13:00	3,8	3,7	3,5
11/01/2020 13:30	3,8	3,6	3,5
11/01/2020 14:00	3,9	3,8	3,6
11/01/2020 14:30	3,5	3,5	3,4
11/01/2020 15:00	3,5	3,5	3,3
11/01/2020 15:30	3,9	3,9	3,6
11/01/2020 16:00	4,3	4,1	3,8
11/01/2020 16:30	4	3,9	3,6
11/01/2020 17:00	3,8	3,8	3,6
11/01/2020 17:30	3,7	3,7	3,5
11/01/2020 17:30	3,7	3,7	3,5
11/01/2020 18:30	3,9	· · · · · · · · · · · · · · · · · · ·	
11/01/2020 19:00	4,2	3,9 4	3,7
11/01/2020 19:30			3,8
11/01/2020 19:30	4,3 4,4	3,9 4,2	3,9
11/01/2020 20:30	4,4	4,2	4
11/01/2020 20:30			
11/01/2020 21:30	4,5	4,2 3,9	4,1
11/01/2020 21:30	4,2		3,9
11/01/2020 22:30	4,2 4,7	4,3	4,2
11/01/2020 22:30	4,7	4,3	4,2
11/01/2020 23:30	5	4,6	4,5
12/01/2020 0:00	<u>5</u>	4,6	4,5
12/01/2020 0:30	4,9	4,6	4,5
12/01/2020 0:30	5,8	5,3	5,5
12/01/2020 1:30	5,9	5,3	5,3
12/01/2020 1:30	5,8	5,2	5,3
12/01/2020 2:30	5,6	4,9	5
12/01/2020 3:00	5,7	5,2	5,2
12/01/2020 3:30	5,7	5,2 5,1	5,2
12/01/2020 3:30	5,7	5,1 5,1	5,2
12/01/2020 4:30	5, <i>1</i>	4,8	4,9
12/01/2020 4:30	5	4,6	4,7
12/01/2020 5:30	4,9	4,4	4,6
12/01/2020 5:30	4,9	4,4	4,6
12/01/2020 0.00	ਾ ,ਹ	7,7	7,0

12/01/2020 6:30	4,3	4,1	4,1
12/01/2020 7:00	3,9	3,8	3,8
12/01/2020 7:30	3,9	3,8	3,8
12/01/2020 8:00	3,9	3,9	3,8
12/01/2020 8:30	3,8	3,7	3,5
12/01/2020 9:00	3,9	3,9	3,8
12/01/2020 9:30	3,8	3,8	3,6
12/01/2020 10:00	3,9	3,8	3,7
12/01/2020 10:30	3,9	3,8	3,5
12/01/2020 11:00	3,6	3,7	3,5
12/01/2020 11:30	3,7	3,7	3,5
12/01/2020 12:00	3,8	3,8	3,5
12/01/2020 12:30	3,6	3,7	3,5
12/01/2020 13:00	3,9	4	3,6
12/01/2020 13:30	3,8	3,7	3,5
12/01/2020 14:00	3,8	3,7	3,5
12/01/2020 14:30	3,9	3,9	3,7
12/01/2020 15:00	3,9	3,9	3,7
12/01/2020 15:30	3,7	3,8	3,5
12/01/2020 16:00	3,6	3,7	3,5
12/01/2020 16:30	4	4	3,6
12/01/2020 17:00	3,9	3,8	3,5
12/01/2020 17:30	3,9	3,9	3,8
12/01/2020 18:00	4,2	4,1	3,8
12/01/2020 18:30	4,4	4,3	4,1
12/01/2020 19:00	4,4	4,3	4,1
12/01/2020 19:30	4,2	3,9	3,9
12/01/2020 20:00	4,4	4,2	4,1
12/01/2020 20:30	4,3	4,1	4,1
12/01/2020 21:00	4,6	4,2	4,1
12/01/2020 21:30	4,5	4,4	4,3
12/01/2020 22:00	4,8	4,5	4,5
12/01/2020 22:30	4,9	4,8	4,5
12/01/2020 23:00	4,9	4,7	4,5
12/01/2020 23:30	4,9	4,7	4,5
13/01/2020 0:00	5	4,7	4,5
13/01/2020 0:30	5,7	5,2	5,1
13/01/2020 1:00	5,7	5,2	5,1
13/01/2020 1:30	5,6	5,1	4,9
13/01/2020 2:00	5,7	5,2	5,2
13/01/2020 2:30	5	4,7	4,7
13/01/2020 3:00	7,6	10,5	6,7
13/01/2020 3:30	3,2	3,6	3,2
13/01/2020 4:00	3,2	3,4	3,2
		2/	マク
13/01/2020 4:30	3,2	3,4	3,2
13/01/2020 4:30 13/01/2020 5:00 13/01/2020 5:30	3,2 3,3 3,1	3,5	3,1 3,1

13/01/2020 6:00	3,2	3,5	3,3
13/01/2020 6:30	3,5	3,6	3,5
13/01/2020 7:00	3,7	4	3,8
13/01/2020 7:30	3,7	4	3,8
13/01/2020 8:00	3,2	3,5	3,4
13/01/2020 8:30	2,8	3,2	3,2
13/01/2020 9:00	3,5	3,7	3,5
13/01/2020 9:30	3,2	3,4	3,3
13/01/2020 10:00	2,8	3,1	3,1
13/01/2020 10:30	2,9	3,1	3,2
13/01/2020 11:00	2,8	3,1	3
13/01/2020 11:30	2,8	3,2	3,2
13/01/2020 11:00	2,8	3	3
13/01/2020 12:30	2,7	2,9	2,9
13/01/2020 12:30		3,3	
13/01/2020 13:30	2,9		3,1
	2,8	3,2	3,3
13/01/2020 14:00	2,9	3,3	3,5
13/01/2020 14:30	3,4	3,7	3,5
13/01/2020 15:00	2,9	3,2	3
13/01/2020 15:30	3	3,2	3,1
13/01/2020 16:00	2,9	3,2	3,1
13/01/2020 16:30	3,1	3,4	3,2
13/01/2020 17:00	3,1	3,4	3,2
13/01/2020 17:30	3	3,5	3,2
13/01/2020 18:00	2,9	3,3	3,2
13/01/2020 18:30	3,1	3,4	3,3
13/01/2020 19:00	2,2	2,6	2,5
13/01/2020 19:30	2,4	2,7	2,7
13/01/2020 20:00	2,1	2,5	2,3
13/01/2020 20:30	2,1	2,5	2,3
13/01/2020 21:00	2,1	2,6	2,3
13/01/2020 21:30	2,1	2,6	2,3
13/01/2020 22:00	2,1	2,7	2,3
13/01/2020 22:30	2,2	2,8	2,4
13/01/2020 23:00	2,5	2,9	2,5
13/01/2020 23:30	2,7	3,1	2,9
14/01/2020 0:00	2,7	3,1	2,9
14/01/2020 0:30	2,8	3,3	3
14/01/2020 1:00	3,2	3,7	3,3
14/01/2020 1:30	3,2	3,5	3,2
14/01/2020 2:00	3,2	3,8	3,3
14/01/2020 2:30	3,2	3,8	3,4
14/01/2020 3:00	3,3	3,8	3,4
14/01/2020 3:30	3,3	3,7	3,4
14/01/2020 4:00	3,2	3,6	3,5
14/01/2020 4:30	3,3	3,8	3,4
14/01/2020 5:00	3,6	4	3,6
	-,-	•	

14/01/2020 5:30	3,4	3,8	3,4
14/01/2020 6:00	3,5	3,9	3,5
14/01/2020 6:30	3,7	3,9	3,7
14/01/2020 7:00	3,5	4	3,8
14/01/2020 7:30	3,4	3,7	3,5
14/01/2020 8:00	3,2	3,5	3,3
14/01/2020 8:30	3,2	3,5	3,4
14/01/2020 9:00	3,3	3,4	3,3
14/01/2020 9:30	3,4	3,5	3,4
14/01/2020 10:00	3,2	3,5	3,4
14/01/2020 10:30	2,9	3,3	3,1
14/01/2020 10:30	2,9	3,3	3,1
14/01/2020 11:30			
14/01/2020 12:00	2,9	3,3	3,1
	3,1	3,4	3,1
14/01/2020 12:30	3,1	3,4	3,1
14/01/2020 13:00	3	3,5	3,2
14/01/2020 13:30	3,2	3,6	3,4
14/01/2020 14:00	3,2	3,6	3,4
14/01/2020 14:30	3,3	3,6	3,4
14/01/2020 15:00	3	3,2	3
14/01/2020 15:30	2,9	3,3	3
14/01/2020 16:00	3,1	3,5	3,2
14/01/2020 16:30	3,2	3,5	3,2
14/01/2020 17:00	3,3	3,6	3,4
14/01/2020 17:30	3,3	3,6	3,4
14/01/2020 18:00	3,2	3,7	3,4
14/01/2020 18:30	3,1	3,6	3,1
14/01/2020 19:00	2,3	2,7	2,4
14/01/2020 19:30	2,4	2,7	2,5
14/01/2020 20:00	2,4	2,7	2,7
14/01/2020 20:30	2,1	2,5	2,3
14/01/2020 21:00	2,1	2,5	2,3
14/01/2020 21:30	2,2	2,5	2,3
14/01/2020 22:00	2,1	2,5	2,2
14/01/2020 22:30	2,2	2,5	2,3
14/01/2020 23:00	2,3	2,7	2,4
14/01/2020 23:30	2,4	2,8	2,5
15/01/2020 0:00	2,8	3,1	2,8
15/01/2020 0:30	2,7	3	2,8
15/01/2020 1:00	2,9	3,3	2,9
15/01/2020 1:30	3	3,5	3,1
15/01/2020 2:00	3	3,5	3,1
15/01/2020 2:30	3	3,4	3
15/01/2020 3:00	3	3,4	3,1
15/01/2020 3:30	3	3,4	3,1
15/01/2020 4:00	3	3,4	3,1
15/01/2020 4:30	3,1	3,5	3,1
10/0//2020 7.00	٥, ١	5,5	J, i

15/01/2020 5:00	3,2	3,6	3,3
15/01/2020 5:30	3	3,4	3,1
15/01/2020 6:00	3	3,4	3,1
15/01/2020 6:30	3,6	3,9	3,7
15/01/2020 7:00	3,6	3,9	3,7
15/01/2020 7:30	3,5	3,8	3,5
15/01/2020 8:00	3,4	3,7	3,4
15/01/2020 8:30	3,5	3,6	3,6
15/01/2020 9:00	3,5	3,8	3,5
15/01/2020 9:30	3,5	3,7	3,5
	7,6	10,5	6,7

Anexo 15. Medición de armónicos de corriente.

Fecha y Hora	THD	THD	THD
	I1(Max)	I2(Max)	I3(Max)
10/01/2020 10:00	22,87	23,45	23,45
10/01/2020 10:30	18,08	18,08	23,71
10/01/2020 11:00	18,08	18,08	23,77
10/01/2020 11:30	18,08	18,08	24,12
10/01/2020 12:00	20,25	20,28	24,82
10/01/2020 12:02	22,78	20,28	24,56
10/01/2020 12:30	22,78	20,28	24,34
10/01/2020 13:00	22,78	20,34	25,12
10/01/2020 13:30	22,78	23,24	24,54
10/01/2020 14:00	22,78	22,42	24,83
10/01/2020 14:30	22,78	23,24	24,51
10/01/2020 15:00	22,78	23,09	24,81
10/01/2020 15:30	24,43	24,43	25,06
10/01/2020 16:00	23,93	23,93	24,95
10/01/2020 16:30	24,8	24	24,6
10/01/2020 17:00	21,64	23,79	24,94
10/01/2020 17:30	22,89	23,89	24,87
10/01/2020 18:00	20,37	23,53	24,88
10/01/2020 18:30	24,74	24,3	25,84
10/01/2020 19:00	21,89	23,95	25,1
10/01/2020 19:30	21,78	23,43	25,55
10/01/2020 20:00	22,57	23,18	25,54
10/01/2020 20:30	23,77	24,55	26,08
10/01/2020 21:00	22,73	24,33	26,33
10/01/2020 21:30	23,48	24,48	25,98
10/01/2020 22:00	24,65	25,17	26,97
10/01/2020 22:30	24,81	26,64	27,37
10/01/2020 23:00	25,17	25,79	27,33

10/01/2020 23:30	25,12	26,89	28,17
11/01/2020 0:00	25,35	26,62	28,46
11/01/2020 0:30	25,78	26,88	26,75
11/01/2020 1:00	23,4	22,2	21,86
11/01/2020 1:30	23,5	22,08	21,84
11/01/2020 2:00	23,11	22,33	22,05
11/01/2020 2:30	23,55	22,27	22,16
11/01/2020 3:00	22,38	22,35	22,02
11/01/2020 3:30	22,22	22,16	22,16
11/01/2020 4:00	22,32	21,83	22,27
11/01/2020 4:30	22,12	22,79	22,91
11/01/2020 5:00	21,8	24,36	25,06
11/01/2020 5:30	23,37	22,56	22,5
11/01/2020 6:00	23,86	22,72	22,83
11/01/2020 6:30	23,44	22,76	22,84
11/01/2020 7:00	24,97	26,38	27,43
11/01/2020 7:30	23,93	25,29	26,59
11/01/2020 8:00	23,27	23,73	26,36
11/01/2020 8:30	24,4	24,08	25,5
11/01/2020 9:00	24,55	23,95	25,13
11/01/2020 9:30	23,8	23,43	25,3
11/01/2020 10:00	23,38	24,52	24,96
11/01/2020 10:30	24,59	24,47	25,35
11/01/2020 11:00	25,22	24,91	25,25
11/01/2020 11:30	24,66	25,03	25,41
11/01/2020 12:00	24,64	24,19	25,46
11/01/2020 12:30	24,57	25	25,47
11/01/2020 13:00	24,34	24,43	25,27
11/01/2020 13:30	24,46	23,87	25,57
11/01/2020 14:00	24,67	24,65	25,71
11/01/2020 14:30	24,73	24,8	26,79
11/01/2020 15:00	24,44	23,94	25,83
11/01/2020 15:30	24,31	24,38	25,8
11/01/2020 16:00	24,63	24,8	26,69
11/01/2020 16:30	23,86	24,42	25,94
11/01/2020 17:00	23,87	24,01	26,34
11/01/2020 17:30	23,84	24,67	26,34
11/01/2020 18:00	23,56	24,39	25,82
11/01/2020 18:30	23,59	24,11	25,68
11/01/2020 19:00	23,33	24,37	26,08
11/01/2020 19:30	22,9	23,44	25,94
11/01/2020 20:00	24,21	24,88	25,93
11/01/2020 20:30	23,49	24,93	26,38
11/01/2020 21:00	24,22	25	26,12

11/01/2020 21:30	24,59	24,98	26,15
11/01/2020 22:00	25,53	25,98	27,36
11/01/2020 22:30	25,14	26,55	27,82
11/01/2020 23:00	25,98	25,94	26,68
11/01/2020 23:30	25,65	26,13	26,8
12/01/2020 0:00	25,68	26,15	25,88
12/01/2020 0:30	25,46	25,98	24,05
12/01/2020 1:00	22,6	22,27	22,28
12/01/2020 1:30	22,88	22,53	21,78
12/01/2020 2:00	21,81	22,21	21,78
12/01/2020 2:30	21,77	21,91	21,5
12/01/2020 3:00	22,12	22,33	21,85
12/01/2020 3:30	21,88	21,71	21,91
12/01/2020 4:00	21,56	22,45	22,76
12/01/2020 4:30	22,26	22,28	22,26
12/01/2020 5:00	21,8	21,73	22,32
12/01/2020 5:30	21,2	22,14	22,36
12/01/2020 6:00	22,5	21,84	22,58
12/01/2020 6:30	22,69	21,63	22,54
12/01/2020 7:00	26,36	27,12	28,49
12/01/2020 7:30	25,62	25,56	24,06
12/01/2020 8:00	25,28	27,09	28,39
12/01/2020 8:30	24,53	26,54	27,67
12/01/2020 9:00	25,13	26,8	28,95
12/01/2020 9:30	24,44	26,27	28,52
12/01/2020 10:00	24,68	25,65	27,86
12/01/2020 10:30	24,83	26,54	28,05
12/01/2020 11:00	24,27	25,7	27,38
12/01/2020 11:30	23,78	25,25	27,26
12/01/2020 12:00	24,06	26,31	27,41
12/01/2020 12:30	23,87	25,72	27,67
12/01/2020 13:00	24,25	26,01	27,29
12/01/2020 13:30	24,77	25,69	27,67
12/01/2020 14:00	25,06	26,33	27,11
12/01/2020 14:30	24,66	27,42	28,47
12/01/2020 15:00	24,57	26,09	27,55
12/01/2020 15:30	24,42	26,88	28,04
12/01/2020 16:00	25,14	26,61	28,69
12/01/2020 16:30	24,4	25,8	27,56
12/01/2020 17:00	24,83	25,85	27,26
12/01/2020 17:30	24,86	26,6	27,19
12/01/2020 18:00	24,74	25,99	27,94
12/01/2020 18:30	24,6	25,76	27,21
12/01/2020 19:00	24,88	25,73	27,08

12/01/2020 19:30	24,44	26,52	27,39
12/01/2020 20:00	24,67	25,3	27,55
12/01/2020 20:30	24,68	25,9	27,4
12/01/2020 21:00	24,87	26,43	27,17
12/01/2020 21:30	25,14	26,47	27,85
12/01/2020 22:00	25,37	26,68	27,33
12/01/2020 22:30	24,79	26,31	27,01
12/01/2020 23:00	25,19	26,24	27,26
12/01/2020 23:30	24,82	26,23	28
13/01/2020 0:00	25,55	26,34	27,64
13/01/2020 0:30	25,54	25,81	27,64
13/01/2020 1:00	23,15	21,39	22
13/01/2020 1:30	23,14	21,72	21,97
13/01/2020 2:00	23,22	22,21	22,51
13/01/2020 2:30	23,01	21,69	22,42
13/01/2020 3:00	24,6	21,69	22,42
13/01/2020 3:30	22,88	28,11	25,53
13/01/2020 4:00	23,78	28,06	26,49
13/01/2020 4:30	24,29	28,91	28,03
13/01/2020 5:00	22,59	26,94	27,12
13/01/2020 5:30	23,25	27,74	27,53
13/01/2020 6:00	24,43	25,82	27,89
13/01/2020 6:30	23,65	23,16	24,2
13/01/2020 7:00	24,95	27,67	29,11
13/01/2020 7:30	23,5	24,09	26,52
13/01/2020 8:00	23,96	23,14	25,69
13/01/2020 8:30	22,02	23,17	24,81
13/01/2020 9:00	22,02	23,3	24,4
13/01/2020 9:30	20,77	20,77	25,18
13/01/2020 10:00	23,36	23,12	24,71
13/01/2020 10:30	23,42	23,33	24,47
13/01/2020 11:00	23,19	24,16	25,94
13/01/2020 11:30	23,19	24,09	25,84
13/01/2020 12:00	23,29	23,15	25,04
13/01/2020 12:30	23,29	24,07	25,29
13/01/2020 13:00	23,29	23,62	25,27
13/01/2020 13:30	22,23	22,53	24,28
13/01/2020 14:00	22,23	24,92	24,82
13/01/2020 14:30	23,11	23,96	24,55
13/01/2020 15:00	22,47	24,59	24,19
13/01/2020 15:30	22,41	23,91	24,52
13/01/2020 16:00	23,12	24,05	24,74
13/01/2020 16:30	23,55	23,69	24,61
13/01/2020 17:00	23,55	23,03	24,08

13/01/2020 17:30	23,41	23,49	24,66
13/01/2020 18:00	23,37	24,47	25,27
13/01/2020 18:30	24,01	23,48	25,3
13/01/2020 19:00	21,66	23,66	25,1
13/01/2020 19:30	23,51	24,88	25,71
13/01/2020 20:00	23,22	24,98	25,9
13/01/2020 20:30	23	24,97	25,83
13/01/2020 21:00	24,65	25,85	26,57
13/01/2020 21:30	24,55	25,62	27,11
13/01/2020 22:00	25,64	26,64	28,06
13/01/2020 22:30	26,04	27,49	27,81
13/01/2020 23:00	25,81	27,99	28,48
13/01/2020 23:30	26,05	27,69	28,01
14/01/2020 0:00	26,35	28,15	28,55
14/01/2020 0:30	26,73	27,37	27,89
14/01/2020 1:00	24,3	23,4	23,5
14/01/2020 1:30	24,33	23,67	24,36
14/01/2020 2:00	24,41	22,53	25,09
14/01/2020 2:30	23,87	22,54	25,09
14/01/2020 3:00	23,72	22,95	25,32
14/01/2020 3:30	22,67	23,36	25,32
14/01/2020 4:00	24,1	26,66	25,52
14/01/2020 4:30	23,54	24,13	26,71
14/01/2020 5:00	22,87	23,98	25,53
14/01/2020 5:30	22,54	24,22	24,67
14/01/2020 6:00	24,58	22,58	23,92
14/01/2020 6:30	24,3	23,39	24,11
14/01/2020 7:00	24,53	26,07	27,8
14/01/2020 7:30	23,21	24,57	26,43
14/01/2020 8:00	23,29	23,23	24,51
14/01/2020 8:30	23,29	24,13	24,58
14/01/2020 9:00	23,29	21,04	23,55
14/01/2020 9:30	23,29	24,4	24,38
14/01/2020 10:00	23,29	24,18	24,48
14/01/2020 10:30	23,29	22,87	24,2
14/01/2020 11:00	23,29	23,98	24,82
14/01/2020 11:30	20,33	21	24,75
14/01/2020 12:00	20,33	22,38	24,93
14/01/2020 12:30	24,53	24,25	24,99
14/01/2020 13:00	24,53	22,16	25,02
14/01/2020 13:30	24,53	24,05	25,02
14/01/2020 14:00	20,33	24,48	25,11
14/01/2020 14:30	20,33	24,34	24,68
14/01/2020 15:00	20,55	24,65	24,56

14/01/2020 15:30	23,64	23,94	24,54
14/01/2020 16:00	20,9	24,01	24,8
14/01/2020 16:30	20,07	24,27	24,76
14/01/2020 17:00	21,71	23,6	24,8
14/01/2020 17:30	21,71	23,43	24,93
14/01/2020 18:00	21,71	24,1	25,06
14/01/2020 18:30	22,64	23,72	25,48
14/01/2020 19:00	22,71	23,81	25,63
14/01/2020 19:30	22,61	23,94	25,4
14/01/2020 20:00	23,68	24,36	26,25
14/01/2020 20:30	22,8	24,07	26
14/01/2020 21:00	23,67	24,89	26,84
14/01/2020 21:30	24,81	25,78	27,02
14/01/2020 22:00	25,93	27,08	27,63
14/01/2020 22:30	25,38	26,22	27,19
14/01/2020 23:00	25,98	28,11	27,67
14/01/2020 23:30	26,12	27,43	27,99
15/01/2020 0:00	27,02	27,52	28,55
15/01/2020 0:02	26,97	27,78	28,35
15/01/2020 0:30	26,78	26,73	28,15
15/01/2020 1:00	22,93	22,84	24,05
15/01/2020 1:30	23,07	23,57	24,94
15/01/2020 2:00	23,2	22,64	23,47
15/01/2020 2:30	23,14	23,55	24,5
15/01/2020 3:00	22,23	23,48	24,45
15/01/2020 3:30	22,07	22,22	23,21
15/01/2020 4:00	22,1	23,82	24,83
15/01/2020 4:30	22,54	24,48	25,2
15/01/2020 5:00	22,55	23,43	24,81
15/01/2020 5:30	23,05	24,7	25,8
15/01/2020 6:00	23,92	22,54	23,36
15/01/2020 6:30	23,58	21,83	22,63
15/01/2020 7:00	24	26,16	27,44
15/01/2020 7:30	23,67	23,96	25,01
15/01/2020 8:00	22,9	22,98	23,58
15/01/2020 8:30	22,9	23,8	23,96
15/01/2020 8:32	22,9	23,69	24,21
15/01/2020 8:34	23,71	23,71	24,11
15/01/2020 8:36	23,72	23,76	24,63
15/01/2020 8:38	23,41	23,45	24,08
15/01/2020 8:40	23,57	23,56	24,36
15/01/2020 9:00	23,89	23,56	24,55
15/01/2020 9:30	23,75	23,56	25,15
	27,02	28,91	29,11

Anexo 16: Resumen de parámetros eléctrico de SEP en base a energías.

Periodo	Energía Activa Total	Energía Reactiva	Energía Aparente	cosφ	Angulo de
	(kWh)	(kVarh)	(kVAh)		desfase
Enero	317748,0200	71369,3500	325664,5334	0,98	12,65
Febrero	314790,6700	79126,8600	324583,1571	0,97	14,10
Marzo	333140,3600	89374,9900	344920,8435	0,97	15,01
Abril	285576,9400	73893,3700	294982,0652	0,97	14,50
Mayo	281579,6500	68771,9300	289856,3052	0,97	13,72
Junio	253564,9300	54236,8800	259300,6226	0,98	12,07
Julio	258331,4800	52662,7200	263644,6769	0,98	11,52

Fuente: Elaboración propia.

Anexo 17. Relación de energía activa y reactiva.

Periodo		E. Activa Total (kWh)	E. Reactiva (kVarh)	Representación de energía reactiva en %
Año	Enero	223350,8600	56137,8500	25
2018	Febrero	267742,5100	64317,0700	24
	Marzo	281178,8100	71531,5200	25
	Abril	279469,0800	81322,6900	29
	Mayo	268698,4100	51699,2200	19
	Junio	255482,7400	39688,8700	16
	Julio	264249,0100	40266,6400	15
Año	Enero	317748,0200	71369,3500	22
2018	Febrero	314790,6700	79126,8600	25
	Marzo	333140,3600	89374,9900	27
	Abril	285576,9400	73893,3700	26
	Mayo	281579,6500	68771,9300	24
	Junio	253564,9300	54236,8800	21
	Julio	258331,4800	52662,7200	20

Fuente: Elaboración propia.

Anexo 18. Variación de la energía reactiva, año 2018 y 2019.

Per	iodo	Representación de energía reactiva en %
Año	Enero	25
2018	Febrero	24
	Marzo	25
	Abril	29
	Mayo	19
	Junio	16
	Julio	15
Año	Enero	22
2019	Febrero	25
	Marzo	27
	Abril	26
	Mayo	24
	Junio	21
	Julio	20

Fuente: Elaboración propia.

Anexo 19. Promedio de la energía reactiva.

Periodo	Energia	Energia	Potencia	horas	Potencia
	Activa Total	Reactiva	activa		reactiva
	(kWh)	(kVarh)	total (KW)		(KVAR)
Enero	317748,0200	71369,3500	1230,54	258	276,391
Febrero	314790,6700	79126,8600	1359,95	231	341,842
Marzo	333140,3600	89374,9900	1316,04	253	353,068
Abril	285576,9400	73893,3700	1185,38	241	306,718
Мауо	281579,6500	68771,9300	1097,46	257	268,039
Junio	253564,9300	54236,8800	1066,09	238	228,034
Julio	258331,4800	52662,7200	1085,02	238	221,189
Promedio	292104,579	69919,4429	1191,50	245	285,040

Fuente: Elaboración propia.

Anexo 20. Cálculo del banco de condensadores actuales.

Cálculo de banco de condensadores con valores actuales promedio.

El bando de condensadores del hospital está instalado a su barra de 380 V, a las salidas de sus transformadores de su subestación.

Potencia activa total, $P = 1191.50 \ kW$

Factor de potencia, $cos \varphi = 0.96$

Angulo de desfase, $\varphi = 14$

Potencia reactiva absorbida:

$$Q_t = P_t * tang \varphi$$

$$Q_t = 1191.50 * tang (14)$$

$$Q_t = 297.07 \ Kvar$$

Se puede evidenciar la semejanza de la energía reactiva absorbida, mediante la fórmula y los promedios de esta por los recibos.

Anexo 21. Demanda de los tableros finales del HACVP

TA	TABLEROS DE DISTRIBUCION FINAL DEL HACVP			
N	TABLERO	POTENCIA (kW)		
1	TN-2.6	10,716		
2	TN-3.6	11,602		
3	TN-2.3	8,730		
4	TN-3.3	8,318		
5	TN-1,5	11,640		
6	TN-2.5	15,122		
7	TN-3,5	10,404		
8	TN-4,5	6,796		
9	TN-5,5	19,764		
10	TN-6,5	9,552		
11	TN-7,5	9,552		
12	TN-1,4	10,492		
13	TN-2.4	8,272		
14	TN-3,4	8,336		
15	TN-1,2	5,693		
16	TN-2.2	11,254		

17	TN-3,2	16,166
18	TN-4,2	11,752
19	TN-5,2	37,000
20	TN-6,2	11,260
21	TN-7,2	11,260
22	TN-1,1	13,788
23	TN-2.1	9,476
24	TN-3,1	11,708
25	TE-1,1	9,440
26	TE-2,1	38,530
27	TE-3,1	12,788
28	TE-1,2	7,452
29	TE-2,2	19,620
30	TE-3,2	37,392
31	TE-4,2	15,638
32	TE-5,2	20,573
33	TE-6,2	26,254
34	TE-7,2	26,254
35	TE-1,4	19,100
36	TE-2,4	96,628
37	TE-3,4	54,636
38	TE-1,5	18,914
39	TE-2,5	62,484
40	TE-3,5	88,702
41	TE-4,5	28,546
42	TE-6,5	65,722
43	TE-6,5	47,345
44	TE-7,5	47,345
45	TE-2,3	13,934
46	TE-3,3	10,968
47	TE-2,6	47,300
48	TE-3,6	57,476

Anexo 22. Cálculo de caída de tensión en conductores.

1) Tablero TN-2.6

Tensión en bornes de cargas: 220 V

Factor de potencia: 0.97

Potencia activa en bornes de entrada: 10.716 kW

Distancia desde bornes de cargas a barra de distribución: 100 m

Cable: LSOH 80 °C, 3x 10 mm2

Intensidad de fase en conductor

$$I_{n1} = \frac{P(w)}{U(V) * cos\varphi}$$

$$I_{n1} = \frac{10716 \, w}{220(V) * 0.97} = 16.98$$

Resistencia de línea:

$$R_L = \rho_{cu} * \frac{L_{linea}}{S_{linea}}$$

$$R_L = 0.0175 * \frac{100 \, m}{10 \, mm^2} = 0.175$$

Caída de tensión en línea monofásica:

$$\Delta U1 = R_L * I_{n1}[V]$$

$$\Delta U1 = 0.175 * 16.98[V] = 2.971 V$$

Perdida de potencia en conductor de alimentación al tablero TN-2.6:

$$P_{P1}=\Delta U1*I_1*cos\varphi*10^{-3}[kw]$$

$$P_{P1} = 9.61V * 54.90 * 0.97 * 10^{-3} = 0.512 \; kw$$

Temperatura de conductor:

$$T_{cd} = T_0 + (T_{max} - T_0) * \alpha^2$$

$$T_{cd} = 30 + (80 - 30) * 0.34^2 = 35.78$$

Se realiza el mismo procedimiento para los 47 tableros restantes.

Anexo 23. Parámetros de operación actual de los tableros.

			PAI	RAMETRO	OS DE	OPER	ACIÓN A	CTUAL			
TABLERO	POTENCIA	NOMINAL	POTENCIA FACTOR DE	OPERACIÓN DE INTENSIDAD	BARRA 380 DISTANCIA A	TRANS. SECCION	OHMNICA R.	TENSION CAIDA DE		PERDIDA POTENCIA	
Ü	Pins	Un		ı	L	St	R	Δ \		Pp- cond	
	kw	V	-	Α	m	mm2	Ω	V	%	W	PPcd
TN-2.6	10,716	380	0,96	16,98	100	10	0,175	2,971	0,78	83,795	0,15
TN-3.6	11,602	380	0,96	18,38	200	10	0,350	6,434	1,69	196,449	0,35
TN-2.3	8,730	380	0,96	13,83	158	10	0,277	3,825	1,01	87,870	0,16
TN-3.3	8,318	380	0,96	13,18	161	10	0,282	3,713	0,98	81,286	0,15
TN-1,5	11,640	380	0,96	18,44	100	10	0,175	3,228	0,85	98,869	0,18
TN-2.5	15,122	380	0,96	23,96	154	10	0,270	6,458	1,70	256,976	0,46
TN-3,5	10,404	380	0,96	16,49	104	10	0,182	3,000		82,146	
TN-4,5	6,796	380	0,96	10,77	160	10	0,280	3,015	0,79	53,924	0,15
TN-5,5	19,764	380	0,96	31,32	170	10	0,298	9,317	0,79	484,565	0,10
TN-6,5	9,552	380	0,96	15,14	175	10	0,306	4,635	2,45	116,515	0,88
TN-7,5	9,552	380	0,96	15,14	180	10	0,315	4,768	1,22	119,844	0,21
TN-1,4	10,492	380	0,96	16,62	100	10	0,175	2,909	1,25	80,329	0,22
TN-2.4	8,272	380	0,96	13,11	101	10	0,177	2,317	0,77	50,431	0,15
TN-3,4	8,336	380	0,96	13,21	105	10	0,184	2,427	0,61	53,242	0,09
TN-1,2	5,693	380	0,96	9,02	100	10	0,175	1,579	0,64	23,650	0,10
TN-2.2	11,254	380	0,96	17,83	104	10	0,182	3,245	0,42	96,117	0,04
TN-3,2	16,166	380	0,96	25,62	106	10	0,186	4,752	0,85	202,146	0,17
TN-4,2	11,752	380	0,96	18,62	160	10	0,28	5,214	1,25	161,249	0,37
TN-5,2	37,000	380	0,96	58,63	170	10	0,298	17,442	1,37	1698,267	0,29
TN-6,2	11,260	380	0,96	17,84	175	10	0,306	5,464	4,59	161,908	3,07
								· 	1,44		0,29
TN-7,2	11,260	380	0,96	17,84	180	10	0,315	5,620	1,48	166,534	0,30

TN-1,1	13,788	380	0,96	21,85	103	10	0,180	3,938	4.04	142,887	0.00
TN-2.1	9,476	380	0,96	15,01	50	10	0,088	1,314	1,04	32,762	0,26
11N-Z.1	9,470	300	0,90	13,01	30	10	0,000	1,314	0,35	32,702	0,06
TN-3,1	11,708	380	0,96	18,55	54	10	0,095	1,753		54,015	
									0,46		0,10
TE-1,1	9,440	380	0,96	14,96	103	10	0,180	2,696	0.71	66,978	0.42
TE-2,1	38,530	380	0,96	61,05	50	10	0,088	5,342	0,71	541,653	0,12
, .	00,000	000	0,00	01,00	00		0,000	0,012	1,41	011,000	0,98
TE-3,1	12,788	380	0,96	20,26	54	10	0,095	1,915		64,440	
TE 4.0	7.450	200	0.00	44.04	400	40	0.475	0.000	0,50	40.500	0,12
TE-1,2	7,452	380	0,96	11,81	100	10	0,175	2,066	0,54	40,523	0,07
TE-2,2	19,620	380	0,96	31,09	104	10	0,182	5,658	0,01	292,136	0,01
			•						1,49		0,53
TE-3,2	37,392	380	0,96	59,25	106	10	0,186	10,991	0.00	1081,476	4.05
TE-4,2	15,638	380	0,96	24,78	160	10	0,28	6,938	2,89	285,520	1,95
16-4,2	13,030	300	0,30	24,70	100	10	0,20	0,930	1,83	200,020	0,52
TE-5,2	20,573	380	0,96	32,60	165	10	0,289	9,413		509,604	
				44.00				40.000	2,48	211221	0,92
TE-6,2	26,254	380	0,96	41,60	168	10	0,294	12,230	2 22	844,994	1,53
TE-7,2	26,254	380	0,96	41,60	171	10	0,299	12,449	3,22	860,083	1,55
, _	20,20	000	0,00	,00		. 0	0,200	,	3,28	000,000	1,55
TE-1,4	19,100	380	0,96	30,26	100	10	0,175	5,296		266,207	
TE-2,4	96,628	380	0,96	153,11	101	10	0,177	27,062	1,39	6881,465	0,48
I ⊏- ∠,4	90,020	360	0,90	133,11	101	10	0,177	27,002	7,12	0001,400	12,43
TE-3,4	54,636	380	0,96	86,57	104	10	0,182	15,756		2265,399	
TE-1,5	18,914	380	0,96	29,97	100	10	0,175	5,245	4,15	261,048	4,09
16-1,5	10,914	300	0,90	29,91	100	10	0,173	3,243	1,38	201,040	0,47
TE-2,5	62,484	380	0,96	99,01	158	10	0,277	27,376		4501,407	
TE-3,5	88,702	380	0,96	140,55	160	10	0,28	39,354	7,20	9186,294	8,13
1 =-3,5	00,702	300	0,90	140,55	100	10	0,20	39,354	10,36	9100,294	16,59
TE-4,5	28,546	380	0,96	45,23	160	10	0,28	12,665		951,402	
TE 5 5	05.700	000	0.00	40444	470	40	0.000	00.004	3,33	5050.000	1,72
TE-5,5	65,722	380	0,96	104,14	170	10	0,298	30,981	8,15	5358,262	9,68
TE-6,5	47,345	380	0,96	75,02	175	10	0,306	22,975		2862,463	
TC 7.5	47.045	200	0.00	75.00	400	10	0.245	00.004	6,05	2044.247	5,17
TE-7,5	47,345	380	0,96	75,02	180	10	0,315	23,631	6,22	2944,247	5,32
TE-2,3	13,934	380	0,96	22,08	158	10	0,277	6,105		223,853	
									1,61		0,40
TE-3,3	10,968	380	0,96	17,38	161	10	0,282	4,897	1 20	141,330	0.06
TE-2,6	47,300	380	0,96	74,95	100	10	0,175	13,116	1,29	1632,585	0,26
,0	,000	550	5,50	. 1,55	. 00	10	5,175	13,110	3,45	1002,000	2,95
TE-3,6	57,476	380	0,96	91,07	100	10	0,175	15,938		2410,608	
									4,19		4,35

Anexo 24. Variación en porcentaje de la energía activa (año 2017-2018-2019)

Variación en porcentaje de la energía activa total (año 2017-2018)

ΑÑ	AÑO 2017		O 2018	VARIACION	PROMEDIO	
Abril	278171,59	Abril	279469,08	0%		
Mayo	280512,95	Mayo	268698,41	-4%		
Junio	249351,57	Junio	255482,74	2%	2%	
Julio	249661,11	Julio	264249,01	6%		
Agosto	Agosto 243203,89		254300,88	4%		
			E1.1			

Fuente: Elaboración propia.

Variación en porcentaje de la energía activa total (año 2017-2018)

AÑO	O 2018	ΑÑ	O 2019	VARIACION	PROMEDIO
Enero	223350,86	86 Enero 317748,0200 30%			
Febrero	267742,51	Febrero	314790,6700	15%	
Marzo	281178,81	Marzo	333140,3600	16%	
Abril	279469,08	Abril	285576,9400	2%	6%
Mayo	268698,41	Mayo	281579,6500	5%	
Junio	255482,74	Junio	253564,9300	-1%	
Julio	264249,01	Julio	258331,4800	-2%	

Fuente: Elaboración propia.

Anexo 25. Nueva potencia, con aumento de 20%

	TABLERO	S DE DISTRIE	BUCION FINAL DE	EL HACVP
N	TABLERO	POTENCIA (kw)	INCREMENTO DE POTENCIA (kw)	POTENCIA PROYECTADA EN 5 AÑOS
1	TN-2.6	10,716	2,1432	12,859
2	TN-3.6	11,602	2,3204	13,922
3	TN-2.3	8,730	1,746	10,476
4	TN-3.3	8,318	1,6636	9,982
5	TN-1,5	11,640	2,328	13,968
6	TN-2.5	15,122	3,0244	18,146
7	TN-3,5	10,404	2,0808	12,485
8	TN-4,5	6,796	1,3592	8,155
9	TN-5,5	19,764	3,9528	23,717

10	TN-6,5	9,552	1,9104	11,462
11	TN-7,5	9,552	1,9104	11,462
12	TN-1,4	10,492	2,0984	12,590
13	TN-2.4	8,272	1,6544	9,926
14	TN-3,4	8,336	1,6672	10,003
15	TN-1,2	5,693	1,1386	6,832
16	TN-2.2	11,254	2,2508	13,505
_17	TN-3,2	16,166	3,2332	19,399
18	TN-4,2	11,752	2,3504	14,102
19	TN-5,2	37,000	7,4	44,400
20	TN-6,2	11,260	2,252	13,512
21	TN-7,2	11,260	2,252	13,512
22	TN-1,1	13,788	2,7576	16,546
23	TN-2.1	9,476	1,8952	11,371
24	TN-3,1	11,708	2,3416	14,050
25	TE-1,1	9,440	1,888	11,328
26	TE-2,1	38,530	7,706	46,236
27	TE-3,1	12,788	2,5576	15,346
28	TE-1,2	7,452	1,4904	8,942
29	TE-2,2	19,620	3,924	23,544
30	TE-3,2	37,392	7,4784	44,870
31	TE-4,2	15,638	3,1276	18,766
32	TE-5,2	20,573	4,1146	24,688
33	TE-6,2	26,254	5,2508	31,505
34	TE-7,2	26,254	5,2508	31,505
35	TE-1,4	19,100	3,82	22,920
36	TE-2,4	96,628	19,3256	115,954
37	TE-3,4	54,636	10,9272	65,563
38	TE-1,5	18,914	3,7828	22,697
39	TE-2,5	62,484	12,4968	74,981
40	TE-3,5	88,702	17,7404	106,442
41	TE-4,5	28,546	5,7092	34,255
42	TE-6,5	65,722	13,1444	78,866
43	TE-6,5	47,345	9,469	56,814
44	TE-7,5	47,345	9,469	56,814
45	TE-2,3	13,934	2,7868	16,721
46	TE-3,3	10,968	2,1936	13,162
47	TE-2,6	47,300	9,46	56,760
48	TE-3,6	57,476	11,4952	68,971
	TOTAL	_, POTENCIA A	CTIVA	1394,033

Anexo 26. Cálculo de caída tensión con la nueva potencia.

En tablero TN-2.6

Tensión en bornes de cargas: 220 V

Factor de potencia: 0.97

Potencia activa en bornes de entrada: 11.716 kW

Distancia desde bornes de cargas a barra de distribución: 100 m

Cable: LSOH 80 °C, 3x 10 mm2

Intensidad total a absorber por el TN-2.6:

$$I = \frac{P_2}{\sqrt{3} * U * cos\varphi}$$

$$I = \frac{14059}{220 * 0.99} = 64.55 A$$

Parámetros necesarios del conductor

Caída de tensión proyectada:

$$\Delta U_2 = R_L * I_2$$

$$\Delta U_2 = 0.175 * 64.55 = 11.29$$

Caída de tensión (%):

$$\Delta U_2 = \frac{11.29}{220} * 100 = 5.13$$

Potencia perdida proyectada en el conductor en los 5 años:

$$Pp_2 = \Delta U_2 * I_2 * 10^{-3}$$

$$Pp_2 = 11.29 * 64.55 * 10^{-3} = 0.729 \, kw$$

Realizando el mismo procedimiento con los 47 tableros.

Anexo 27. Parámetros de operación con potencia proyectada.

	PARAMETROS DE OPERACIÓN PROYECTADA											
TABLERO	POTENCIA	TENSION	FACTOR DE POTENCIA	INTENSIDAD	DISTANCIA	SECCION TRAN.	R. OHMNICA	CAIDA DE TENSION		POTENCIA PERDIDA		
	Pins	Un		ı	L	St	R	Δ\	/	Pp- cond	uctor	
	kW	V	-	Α	m	mm2	Ω	V	%	W	PPcd	
TN-2.6	12,859	380	0,96	20,38	100	10	0,175	3,566	0,94	120,665	0,22	
TN-3.6	13,922	380	0,96	22,06	200	10	0,350	7,721	2,03	282,886	0,51	
TN-2.3	10,476	380	0,96	16,60	158	10	0,277	4,590	1,21	126,532	0,23	
TN-3.3	9,982	380	0,96	15,82	161	10	0,282	4,456	1,17	117,052	0,21	
TN-1,5	13,968	380	0,96	22,13	100	10	0,175	3,873	1,02	142,371	0,26	
TN-2.5	18,146	380	0,96	28,75	154	10	0,270	7,749	2,04	370,046	0,67	
TN-3,5	12,485	380	0,96	19,78	104	10	0,182	3,600	0,95	118,291	0,21	
TN-4,5	8,155	380	0,96	12,92	160	10	0,280	3,618	0,95	77,650	0,14	
TN-5,5	23,717	380	0,96	37,58	170	10	0,298	11,180	2,94	697,774	1,26	
TN-6,5	11,462	380	0,96	18,16	175	10	0,306	5,562	1,46	167,781	0,30	
TN-7,5	11,462	380	0,96	18,16	180	10	0,315	5,721	1,51	172,575	0,31	
TN-1,4	12,590	380	0,96	19,95	100	10	0,175	3,491	0,92	115,673	0,21	
TN-2.4	9,926	380	0,96	15,73	101	10	0,177	2,780	0,73	72,620	0,13	
TN-3,4	10,003	380	0,96	15,85	105	10	0,184	2,912	0,77	76,669	0,14	
TN-1,2	6,832	380	0,96	10,82	100	10	0,175	1,894	0,50	34,056	0,06	
TN-2.2	13,505	380	0,96	21,40	104	10	0,182	3,895	1,02	138,409	0,25	
TN-3,2	19,399	380	0,96	30,74	106	10	0,186	5,702	1,50	291,090	0,53	
TN-4,2	14,102	380	0,96	22,35	160	10	0,280	6,257	1,65	232,199	0,42	
TN-5,2	44,400	380	0,96	70,35	170	10	0,298	20,930	5,51	2445,504	4,42	
TN-6,2	13,512	380	0,96	21,41	175	10	0,306	6,557	1,73	233,148	0,42	
TN-7,2	13,512	380	0,96	21,41	180	10	0,315	6,744	1,77	239,809	0,43	
TN-1,1	16,546	380	0,96	26,22	103	10	0,180	4,726	1,24	205,758	0,37	
TN-2.1	11,371	380	0,96	18,02	50	10	0,088	1,577	0,41	47,178	0,09	
TN-3,1	14,050	380	0,96	22,26	54	10	0,095	2,104	0,55	77,781	0,14	
TE-1,1	11,328	380	0,96	17,95	103	10	0,180	3,235	0,85	96,449	0,17	
TE-2,1	46,236	380	0,96	73,26	50	10	0,088	6,410	1,69	779,981	1,41	
TE-3,1	15,346	380	0,96	24,32	54	10	0,095	2,298	0,60	92,793	0,17	
TE-1,2	8,942	380	0,96	14,17	100	10	0,175	2,480	0,65	58,353	0,11	
TE-2,2	23,544	380	0,96	37,31	104	10	0,182	6,790	1,79	420,676	0,76	
TE-3,2	44,870	380	0,96	71,10	106	10	0,186	13,189	3,47	1557,325	2,81	

TE-4,2	18,766	380	0,96	29,73	160	10	0,280	8,326	2,19	411,148	0,74
TE-5,2	24,688	380	0,96	39,12	165	10	0,289	11,295	2,97	733,830	1,33
TE-6,2	31,505	380	0,96	49,92	168	10	0,294	14,677	3,86	1216,792	2,20
TE-7,2	31,505	380	0,96	49,92	171	10	0,299	14,939	3,93	1238,520	2,24
TE-1,4	22,920	380	0,96	36,32	100	10	0,175	6,356	1,67	383,339	0,69
TE-2,4	115,954	380	0,96	183,73	101	10	0,177	32,475	8,55	9909,309	17,90
TE-3,4	65,563	380	0,96	103,89	104	10	0,182	18,907	4,98	3262,174	5,89
TE-1,5	22,697	380	0,96	35,96	100	10	0,175	6,294	1,66	375,909	0,68
TE-2,5	74,981	380	0,96	118,81	158	10	0,277	32,851	8,64	6482,026	11,71
TE-3,5	106,442	380	0,96	168,66	160	10	0,280	47,225	12,43	13228,263	23,89
TE-4,5	34,255	380	0,96	54,28	160	10	0,280	15,198	4,00	1370,019	2,47
TE-6,5	78,866	380	0,96	124,97	170	10	0,298	37,177	9,78	7715,898	13,94
TE-6,5	56,814	380	0,96	90,02	175	10	0,306	27,570	7,26	4121,946	7,45
TE-7,5	56,814	380	0,96	90,02	180	10	0,315	28,357	7,46	4239,716	7,66
TE-2,3	16,721	380	0,96	26,49	158	10	0,277	7,326	1,93	322,348	0,58
TE-3,3	13,162	380	0,96	20,85	161	10	0,282	5,876	1,55	203,515	0,37
TE-2,6	56,760	380	0,96	89,94	100	10	0,175	15,739	4,14	2350,922	4,25
TE-3,6	68,971	380	0,96	109,29	100	10	0,175	19,125	5,03	3471,276	6,27

Anexo 28. Fichas de registro por servicio.

	SERVICIO DE I				
CLASIFICACION	NOMBRE	POTENCIA (W)	CANTIDAD	P. TOTAL (Kw)	
ILUMINACION	Fluorescentes		244	4392	
		18,00		4000	
		SUBTOTAL		4392	
E. BIOMEDICOS	Electrocardiógrafo de 3 canales	40	1	40	
	Aspirador de secreción rodable	85	1	85	
	Equipo de osmosis inversa portátil	248	2	496	
	Refrigeradora para laboratorio	341	1	341	
	Máquina de una bomba de hemodiálisis	1760	16	28160	
		SUBTOTAL		29122	
E. ELECTROMECANICOS	Extractor helico centrifugo EHC- 126,EHC-134- 138, EHC-160	80,5	7	563,5	
	Fancoil FC- 106,FC-106-2, FC-107-2,FC-107	1150	4	4600	
	Extractor helico centrifugo EHC- 128,EHC- 129,EHC-130-133	80,5	6	483	
		SUBTOTAL	5646,5		
E. DE OFICINA	PC	300	4	1200	
		SUBTOTAL		1200	
OTROS EQUIPOS	Microondas	1100	2	2200	
	Refrigeradora	350	2	700	
	TV	120	5	600	
		SUBTOTAL		5900	
	TOTAL			46260,5	

CLASIFICACION	NOMBRE	POTENCIA (W)	CANTIDAD	P. TOTAL (W)
ILUMINACION	Fluorescentes	18	416	7488
	SUBTO	DTAL		7488
E. BIOMEDICOS	Baño maría (10 a 15 lt)	1200	2	240
	Esterilizador con generador eléctrico de vapor (50 a 85 lt.)	9000	1	900
	Microscopio binocular	3	13	3
	Sistema para pruebas de Elisa en placas	110	2	22
	Centrifuga de mesa (750 a 1100 ml)	1230	7	861
	Refrigeradora para laboratorio (15 a 25 pies cúbicos)	1725	11	1897
	Incubadora de cultivo (35 a 60 lt.)	1600	3	480
	Campana de flujo laminar vertical	990	4	396
	Agitador orbital	13200	2	2640
	Congelador vertical de -30c	1840	1	184
	Lavador ultrasonido para instrumental	1840	2	368
	Congelador vertical de -70c	2760	4	1104
	Rotador de plaquetas a temperatura	57,5	1	57,
	Esterilizador con generador eléctrico de vapor una puerta (100 a 150 lt.)	2100	2	420
	Microscopio binocular	3	2	
	Criostato para cortes por congelación	860	1	86
	Sistema para inclusión de parafina	792	1	79
	Microtomo de rotación	20	1	2
	Procesador automático de tejidos	374	1	37
	Cito centrifuga	440	2	88
	Destilador de agua	3000	1	300
	Descongelados de plasma	1380	1	138

	SUBTO	ΓAL		102533,5
E. ELECTROMECANICOS	Equipo de aire acondicionado tipo Split decorativo 18,000 btu/hr	1870	1	1870
	Equipo de aire acondicionado tipo Split decorativo 60,000 btu/hr	3455	1	3455
	Unidad manejadora de aire uma-201	3730	1	3730
	Extractor helico centrifugo EHC-202, EHC-208, EHC- 210, EHC-211, EHC-226, EHC-209, EHC-615, EHC- 224, EHC-413, EHC- 2125.EHC-412, EHC-225, EHC-227	80,5	13	1046,5
	Equipo de aire acondicionado tipo split decorativo 24,000 btu/hr	2500	1	2500
	Fancoil FC-204, FC-206, FC-203, FC-202, FC-207, FC-205, FC-209	1150	7	8050
	Inyector helico centrifugo IHC-209	22,08	1	22,08
	Compresor de aire	1200	1	1200
	SUBTO	ΓAL		21873,58
E. DE OFICINA	PC	300	6	1800
	Impresora	200	3	600
	SUBTO	ΓAL		2400
OTROS EQUIPOS	Microondas	1100	2	2200
	Refrigeradora	350	2	700
	Frigobar	159	1	159
	Cafetera	900	1	900
	TV	120	5	600
	SUBTOT TOTAL	ΓAL		4559
	IOIAL			138854,08

CLASIFICACION	NOMBRE	POTENCIA (KW)	CANTIDA D	P. TOTAL (KW)
ILUMINACION	Fluorescentes	18	224	4032
		SUBTOTAL		4032
E DIOMEDICOS	Cámara		5000	
E. BIOMEDICOS	Cámara Gamma	1	5000	5000
	Spect			
	Орсск	SUBTOTAL		5000
E.	Equipo de	1870	3	5610
ELECTROMECANICO	aire	1070	O .	0010
S	acondicionad			
	o tipo Split			
	decorativo			
	18,000 btu/hr			
	Inyector	22,098	1	22,098
	helico			
	centrifugo			
	IHC-108			
	Extractor	80,5	1	80,5
	helico			
	centrifugo			
	EHC-176	4450	4	4450
	Fancoil FC- 109	1150	1	1150
	Fancoil FC-	1150	1	1150
	102	1130	'	1130
	Extractor	80,5	1	80,5
	helico	00,0	•	00,0
	centrifugo			
	EHC-177			
	Extractor	80,5	1	80,5
	helico			
	centrifugo			
	EHC-177			
	Extractor	80,5	1	80,5
	helico			
	centrifugo			
	EHC-111			
	Extractor	80,5	1	80,5
	helico			
	centrifugo			
	EHC-112 Extractor	80,5	1	00 5
	helico	00,5	ı	80,5
	centrifugo			
	EHC-114			

	Extractor	80,5		1 80,5
	helico centrifugo EHC-115	·		·
	Extractor helico centrifugo EHC-116	80,5	,	1 80,5
	Extractor helico centrifugo EHC-113	80,5	,	1 80,5
	Extractor helico centrifugo EHC-119	80,5	,	1 80,5
	Extractor helico centrifugo EHC-120	80,5	•	1 80,5
	Extractor helico centrifugo EHC-121	80,5	,	1 80,5
	Extractor helico centrifugo EHC-118	80,5	,	1 80,5
		SUBTOTAL		8978,598
E. DE OFICINA	PC	300	5	1500
	IMPRESORA	200	1	200
	SUBTOTAL			1700
OTROS EQUIPOS	TV	120	9	1080
	Cafetera	800	1	800
	Olla arrocera	1000	1	1000
		SUBTOTAL		2880
	TOTAL			22590,598

	SERVICIO DE O	NCOLOGIA		
CLASIFICACION	NOMBRE	POTENCIA (W)	CANTIDAD	P. TOTAL (W)
ILUMINACION	Fluorescentes	18	244	4392
	5		4392	
E. BIOMEDICOS	Bomba de infusión	186,5	14	2611
	Campana de flujo laminar vertical	1265	1	1265
	Aspirador de secreción rodable	85	1	85
	Electrocardiógrafo de 3 canales	40	1	40
	Pulsioxímetro	5	1	5
			4006	
E. ELECTROMECANICOS	Extractor helico centrifugo EHC-122,123,124,125,127	80,5	5	402,5
	Extractor helico centrifugo EHC-117	149,5	1	149,5
	Extractor helico centrifugo EHC-160A	363,4	1	363,4
	Inyector helico centrifugo IHC-109	22,08	1	22,08
	Extractor helico centrifugo EHC-178	149,5	1	149,5
	Fancoil FC-104	1150	1	1150
	Fancoil FC-102	1150	1	1150
	Fancoil FC-103	1150	1	1150
	Refrigeradora de 12 pies3	690	1	690
	S	SUBTOTAL		5226,98
E. DE OFICINA	PC	400	2	800
	IMPRESORA	200	1	200
		SUBTOTAL		1000
OTROS EQUIPOS	TV	120	10	1200
	TOTAL	SUBTOTAL		1200
QED\/I	CIO DE LAVANDERIA	V DODEDIA CEI	NTD A I	15824,98
CLASIFICACION	NOMBRE		CANTIDAD	P. TOTAL (W)
ILUMINACION	Fluorescentes	18	31	558

	Fluorescentes G	36	88	3168
		SUBTOTAL		3168
E.	Extractor helico	80,5	4	322
ELECTROMECANICOS	centrifugo ehc-			
	145,146,147,148			
	Inyector helico	22,08	2	44,16
	centrifugo ihc-			
	110,113			
	Extractor helico	80,5	2	161
	centrifugo ehc-			
	180,179	F000	4	5000
	Secadora de ropa	5000	1	5000
	a vapor de 50kg	2400	1	2400
	lavadora centrifuga a vapor-barr./sanit.	2400	ı	2400
	100kg.			
	Lavadora	1200	1	1200
	centrifuga a vapor-	1200	•	1200
	barr. /sanit. 50kg.			
	Planchador de	3500	1	3500
	rodillo a vapor de			
	1000 mm			
	Prensa de	2499	2	4998
	planchado a vapor			
	Secadora de ropa	3500	1	3500
	a vapor de 30kg			
	Secadora de ropa	5000	1	5000
	a vapor de 50kg			
	Inyector helico	80,5	1	80,5
	centrifugo ihc-111			
	Lavadora	2400	1	2400
	centrifuga a vapor-			
	barr. /sanit. 100kg.	FF0		
	Máquina de coser	550	1	550
		SUBTOTAL		28605,66
E. DE OFICINA	PC	200	2	400
	Impresora	300	1	300
		SUBTOTAL		700
OTROS EQUIPOS	Plancha	1000	5	5000
	SUBTOTAL			5000
	TOTAL			37473,66

CLASIFICACION	NOMBRE	POTENCI A (W)	CANTIDA D	P. TOTAL (W)
ILUMINACION	Fluorescentes	18	168	3024
	Fluorescentes L	36	6	216
	SU	BTOTAL		3240
E. BIOMEDICOS	Bomba de infusión	186,5	14	261
	Espectrofotometro	836	3	2508
	Contador de células	3	1	3
	Esterilizador con generador eléctrico de vapor (50 a 85 lt.)	1800	3	5400
	Sistema purificador de agua tipo I	600	1	600
	PH metro digital	12	1	12
	Destilador de agua de 4 lph	3000	1	3000
	Congelador vertical de -30®c	1840	3	5520
	Balanza analítica (100 a 210g.)	1200	2	2400
	Baño maría (10 a 15 lt)	1200	3	3600
	Equipo destructor de agujas	220	1	220
	Centrifuga de mesa (750 a 1100 ml)	1200	6	7200
	Incubadora de cultivo (35-60 lt.)	600	5	3000
	Microscopio binocular	30	14	420
	Microscopio para inmunología y contraste de fase	30	3	90
	Campana de flujo laminar vertical	226	1	226
	Agitador orbital	220	1	220
	SU	BTOTAL		37030

E. ELECTROMECANIC OS	Cámara de conservación de cadáveres		1	0
03	Mesa de autopsia	80,5	1	80,5
	Extractor helico centrifugo ehc-	80,5	1	80,5
	Extractor helico centrifugo ehc-	80,5	1	80,5
	Extractor centrifugo ec- 154	80,5		0
	Inyector helico centrifugo ihc-162	22,08	1	22,08
	Inyector helico centrifugo ihc-150	22,08	1	22,08
	Extractor helico centrifugo ehc- 152, EHC-157, EHC-151, EHC- 149, EHC-158, EHC-155, EHC- 156	80,5	7	563,5
		BTOTAL		849,16
E. DE OFICINA	PC	200	10	2000
	Impresora	300	4	1200
	Teléfono	10	1	10
	SUE	BTOTAL		3210
OTROS EQUIPOS	Cafetera	800	2	1600
	Ventilador	50	4	200
	Refrigeradora	350	1	350
	SUE	BTOTAL		2150
	TOTAL			46479,1 6

	SERVICIO DE I	FARMACIA		
CLASIFICACION	NOMBRE	POTENCIA (W)	CANTIDAD	P. TOTAL (W)
ILUMINACION	Fluorescentes	18	244	4392
	•	SUBTOTAL		4392
E. BIOMEDICOS	Refrigeradora para laboratorio (15 a 25 pies cúbicos)	970	5	4850
	Campana de flujo laminar horizontal		1	0
		SUBTOTAL		4850
E. ELECTROMECANICOS	Extractor helico centrifugo EHC-2105	80,5	1	80,5
	Extractor helico centrifugo EHC-2104	80,5	1	80,5
	Fancoil FC- 231-1,231- 2,232	1150	3	3450
	Equipo de aire acondicionado tipo Split decorativo 18,000 btu/hr	1870	1	1870
	Extractor helico centrifugo ehc-2102	80,5		0
		SUBTOTAL		5481
E. DE OFICINA	PC	200	8	1600
	Impresora Teléfono	300	4	1200
		SUBTOTAL	[2810
OTROS EQUIPOS	Laptop	JUDIUIAL	1	2010
JJJ E4511 JJ	Cafetera	800	1	800
	Microondas	1100	1	1100
		SUBTOTAL		1900
	TOTAL			19433

SERVICIO DE DIAGNOSTICO POR IMÁGENES					
CLASIFICACION	NOMBRE	POTENCIA (W)	CANTIDAD	P. TOTAL (W)	
ILUMINACION	Fluorescentes	18	220	3960	
	SUB TOTAL			3960	
E. BIOMEDICOS	Equipo de rayos x rodable potencia media	32000	1	32000	
	Tomógrafo computarizado de 06 cortes	3200	1	3200	
	Ecógrafo de uso general	751	1	751	
	Monitor portátil de 04 parámetros	280	1	280	
	Aspirador de secreción rodable	250	1	250	
	Pulsioxímetro	25	1	25	
	Selladora para bolsas de sangre	300	1	300	
	Equipo de resonancia magnética de 1.5 tesla	3500	1	3500	
	Equipo digital de rayos x estacionario fluoroscopia digital	3200	1	3200	
	Angiografo universal	100000	1	100000	
	Monitor de funciones vitales de 05 parámetros	3000	1	3000	
	Monitor de funciones vitales de 08 parámetros	3000	1	3000	
	Monitor de funciones vitales de 05 parámetros	3000	1	3000	
	Aspirador de secreción rodable	250	1	250	
	Coche de paro	0	1	0	
	Litotriptor extracorpóreo	2400	1	2400	
	Densitómetro óseo	4000	1	4000	
	Mamógrafo digital	22000	1	22000	
	Ecógrafo Doppler a color	1250	1	1250	
	Equipo de mamografía con mesa de stereotaxia	3000	1	3000	
	Cama camilla para recuperación	20	1	20	
	Aspirador de secreción rodable	250	1	250	

	Tomógrafo computarizado de 160 cortes - aquilion	135000	1	135000
	prime y perifericos SUB TOTAL			320676
<u>-</u>		4000		
E. ELECTROMECANICOS	Equipo de aire acondicionado tipo Split decorativo 36,000 btu/hr	1323	4	5292
	Equipo de aire acondicionado tipo Split decorativo 24,000 btu/hr	2200	7	15400
	Extractor helico centrifugo EHC-236-EHC-238 (3), EHC-255 - EHC-259 (5), EHC-111-EHC-120 (10),	80,5	21	1690,5
	Extractor helico centrifugo ehc-255-259	80,5	47	3783,5
	Extractor helico centrifugo ehc-111-121	80,5	11	885,5
	Fancoil fc-109	1150	1	1150
	Inyector helico centrifugo IHC-208, IHC-108	22,08	2	44,16
	Equipo de aire acondicionado tipo Split decorativo 18,000 btu/hr	1880	7	13160
	Equipo de aire acondicionado tipo Split decorativo 60,000 btu/hr	2510	3	7530
	Equipo de aire acondicionado tipo Split decorativo 12,000 btu/hr	1323	1	1323
	SUB TOTAL			50258,66
E. DE OFICINA	PC	200	7	1400
	Impresora	300	3	900
	Teléfono	10	3	30
	SUBTO			2330
OTROS EQUIPOS	Refrigeradora	350	1	350
	TV	120	6	720
	SUBTO			1070
	TOTAL		3	374334,66

	SERVICIO DE PATOLOGIA (CLINICA		
CLASIFICACION	NOMBRE	POTEN CIA (W)	CANTID AD	P. TOTA L (W)
ILUMINACION	Fluorescentes	18	172	3096
	SUBTOTA	۱L		3096
E. BIOMEDICOS	Bomba de infusión	186,5	14	2611
	Espectrofotómetro	836	3	2508
	Contador de células	3	1	3
	Esterilizador con generador eléctrico de vapor (50 a 85 lt.)	1800	3	5400
	Sistema purificador de agua tipo I	600	1	600
	PH metro digital	12	1	12
	Destilador de agua de 4 lph	3000	1	3000
	Congelador vertical de -30 c	1840	3	5520
	Balanza analítica (100 a 210g.)	1200	2	2400
	Baño maría (10 a 15 lt)	1200	3	3600
	Equipo destructor de agujas	220	1	220
	Centrifuga de mesa (750 a 1100 ml)	1200	6	7200
	Incubadora de cultivo (35-60 lt.)	600	5	3000
	Microscopio binocular	30	14	420
	Microscopio para inmunología y contraste de fase	30	3	90
	Campana de flujo laminar vertical	226	1	226
	Agitador orbital	220	1	220
	SUBTOTA	\L		3703 0
E. ELECTROMECA	Extractor helico centrifugo EHC-204	80,5	1	80,5
NICOS	Extractor helico centrifugo EHC-206	80,5	1	80,5
	Fancoil FC-212	1150	1	1150
	Extractor helico centrifugo EHC-205	80,5	1	80,5
	Fancoil FC-221	1150	9	1035 0

	TOTAL			5572 7,5
	Refrigeradora SUBTOTAL	350	1	350 1200
LQUII OS	Ventilador	50	1	50
OTROS EQUIPOS	Cafetera	800	1	800
	SUBTOTAL			1510
	Teléfono	10	1	10
	Impresora	300	3	900
E. DE OFICINA	PC	200	3	600
	SUBTOTAL			1289 1,5
	EHC-2112, EHC-212-223			5
	Extractor helico centrifugo	80,5	15	1207,
	Inyector helico centrifugo EHC-213	22,08	1	22,08
	Extractor helico centrifugo EHC-2113	80,5	1	80,5
	Fancoil FC-216	1150	1	1150
	215,211,218,219,234,213,21 7,214,208			
	Fancoil FC-	1150	1	1150

CLASIFICACION	ERVICIO DE MED NOMBRE	POTENCI	CANTIDA	Р.
	TOMBILE	A (W)	D	TOTAL (W)
ILUMINACION	Fluorescentes	18	588	10584
	S	UBTOTAL		10584
	Equipo de	200	3	600
	terapia con			
	onda corta			
	Electromiografí	250	1	250
	a y potenciales			
	evocados			
	Bicicleta	200	8	1600
	ergométrica			
	Equipo de	750	5	3750
	tracción cervical			
	- lumbar	90	10	000
	Equipo de	90	10	900
	terapia combinada			
	Equipo de	130	5	650
	terapia con	130	3	000
	láser			
	Equipo de	500	1	500
	ultrasonido	000	•	000
	terapéutico			
	Tanque	1600	1	1600
	Hubbard			
	Tanque	1500	2	3000
	Whirlpool			
	estacionario			
	Tanque de	120	2	240
	parafina			
	Caminadora	120	2	240
	Equipo de magnetoterapia	230	2	460
	Tanque de	1000	2	2000
	compresas	1000	2	2000
	calientes			
	Equipo de	130	4	520
	ultrasonido	100	т	020
		UBTOTAL		16310
E.	Extractor helico	80,5	10	805
ELECTROMECANICO S	centrifugo EHC- 101-111	,-	- 3	
3	Inyector helico centrifugo IHC- 101-107	363,4	7	2543,8

		SUBTOTAL		3348,8
E. DE OFICINA	PC	300	7	2100
	Teléfono	9,5	2	19
	Impresora	200	7	1400
		SUBTOTAL		3519
OTROS EQUIPOS	Equipo de	120	1	120
	sonido			
	TV	120	2	240
	Ventilador	50	1	50
		SUBTOTAL		240
TOTAL			30482,8	

CLASIFICACION	SERVICIO DE N NOMBRE	POTENCI A (W)	CANTIDA D	P. TOTAL (W)
ILUMINACION	Fluorescentes	18	268	482
	Fluorescentes	36	142	511
	S	SUBTOTAL		993
E.	Congelador	1983	1	198
ELECTROMECANICO S	vertical de 20 pies cubicos	1000	•	100
	Extractor helico centrifugo ehc-	756	7	529
	Extractor helico centrifugo	350	3	10
	Marmita a gas propano de 150 litros	100	3	30
	Licuadora eléctrica 2000 cc	4500	3	1350
	Batidora	350	1	3
	Maquina eléctrica para preparar café	2800	1	280
	Moledora de carne	1050	1	10
	Procesador de alimentos	1050	2	21
	Freidora de papas	3250	2	65
	Lavador automático de vajilla	3500	1	350
	Tabola calda conservador de alimentos cocido	1300	1	130
	Cocina a gas propano de 4 hornillas y horno	1250	1	12
	Horno vaporizador a gas	700	1	70
	Peladora de papas	350	1	35

	Trituradores de desechos alimenticios	380	5	1900
	Campana extractora	380	3	1140
	Conservador de alimentos	3250	2	6500
	Vitrina exhibición refrigeradora	1300	1	1300
	Licuadora eléctrica de 20 litros	1300	2	2600
	Pre cámara	250	1	250
	Cámara de congelador	1300	2	2600
	Cámara de conservador de alimentos	5600	1	5600
	Exprimidor de cítricos	350	1	350
	Cocina a gas propano de 6 hornillas y horno	3000	1	3000
	Trituradores de desperdicios	380	5	1900
	Cocina eléctrica de 2 hornillas para mesa	2500	39	97500
	Carro térmico para transporte de comida	110	11	1210
	SL	JBTOTAL		167875
EQUIPOS DE	PC	300	4	1200
OFICINA	Impresora	200	4	800
		JBTOTAL		2000
OTROS EQUIPOS	Microondas	120	2	240
	Laptop	120	3	360
	Ventilador	50	2	100
	TV	120	2	240
	SL	JBTOTAL		940
	TOTAL			180751

Anexo 29: Consumo de los principales servicios

SERVICIO	S	ILUMINACIÓN	E. BIOMÉDICOS	E. ELECTROMECÁNICOS	E. DE OFICINA	OTROS EQUIPOS	TOTAL
ONCOLOGIA	POT (kW)	4,4	4,0	5,2	1,0	1,2	15,8
	%	28%	25%	33%	6%	8%	100%
LAVANDERIA	POT (kW)	3,2		28,6	0,7	1,4	33,8
	%	9%	0%	85%	2%	4%	100%
IMÁGENES	POT (kW)	4,0	320,7	45,9	2,3	1,1	373,9
	%	1%	86%	12%	1%	0%	100%
FARMACIA	POT (kW)	4,4	4,9	5,5	2,8	1,9	19,4
	%	23%	25%	28%	14%	10%	100%
PATOLOGÍA CLÍNICA	POT (kW)	4,0	37,0	12,9	1,5	1,2	56,6
	%	7%	65%	23%	3%	2%	100%
NUTRICIÓN	POT (kW)	9,9		167,9	2,0	0,9	180,8
	%	5%	0%	93%	1%	1%	100%
ANATOMIA PATOLÓGICA	POT (kW)	3,2	37,0	8,5	3,2	2,2	54,1
	%	6%	68%	16%	6%	4%	100%
MEDICINA FÍSICA	POT (kW)	10,6	16,3	3,3	3,5	0,2	34,0

	%	31%	48%	10%	10%	1%	100%
HEMODIÁLISIS	POT (kW)	4,4	29,1	5,6	1,2	5,9	46,3
	%	9%	63%	12%	3%	13%	100%
BANCO DE SANGRE	POT (kW)	7,5	102,5	22,2	2,4	4,6	139,1
	%	5%	74%	16%	2%	3%	100%
MEDICINA NUCLEAR	POT (kW)	4,0	5,0	9,0	1,7	2,9	22,6
	%	18%	22%	40%	8%	13%	100%

Anexo 30. Ficha técnica de las lámparas de vapor de Na

Lámparas de vapor de Na- 70W CODENSA S.A. solicita el diseño de un kilómetro típico y los cálculos deben realizarse de acuerdo con la metodología descrita en la Norma CIE-140 (2000), aclarando en su propuesta la información relevante al diseño. Para efectos del diseño de iluminación y el cálculo de los parámetros correspondientes, el Oferente debe tener en cuenta entre otros, los siguientes aspectos: Las luminarias deben ser adecuadas para utilizarse en los siguientes tipos de vías: V9 Unilateral Ver normas AP162 y AP328 Ver norma y AP328 Ver norma y AP328 V7 Unilateral 7 2,5 > V8 Unilateral 5 2,5 >= 3 V9 Unilateral Ver normas AP162 y AP328 >= 3 V4 Unilateral 7 2,5 >= 3 V5 Unilateral 9 2,5 >= 3 V5 Unilateral 2 2 5 V9 Unilateral 6 a 9 Sodio 100 W 8,4 Sodio 150 W >= 35 V6 Unilateral 10 4 12 4 20 V2 Unilateral Sodio 250 W >= 40 12 V3 Unilateral V1 Unilateral >= 45 Sodio 400 W 14 V0 Unilateral Las secciones transversales de vías son las siguientes: - V0 Norma AP154 - V1 Norma AP155 - V2 Norma AP158 - V3 Norma AP157 - V4 Norma AP158 - V5 Norma AP159 - V6 Norma AP160 - V7 Norma AP161 V8 Norma AP161 V9 Norma AP162 Las bombillas deben ser adecuadas para ser instaladas en el tipo de luminaria que exige la presente especificación; el flujo luminoso de la bombilla para realizar los cálculos fotométricos, debe ser: Bombillas de sodio HID POTENCIA (W) FLUJO (Lumen) 6 500 100 10 000 150 17 500

Anexo 31. Cantidad y ubicación de las lámparas exteriores

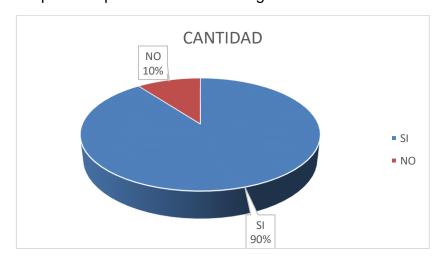
33 000

250

400

ZONA	TOTAL
HELIPUERTO	156
PUERTA PRINCIPAL	50
PUERTA N° 03	26
GRUPO	18
ELECTROGENO	
ZONA DE PARQUE	22
EXTERNO	
TOTAL	272

Anexo 32. Consumo de las luminarias exteriores


ZONA DE	Cantidad	Cantidad	Cantidad	Horas	Potencia	Consumo
REFERENCIA	de	de	total de	programadas	de cada	mensual
	postes	Iuminarias	Iuminarias	de trabajo de	Iuminaria	(KW)
		por poste		7pm a 7am	(kW)	
HELIPUERTO Y	78	2	156	12	0.070	3931.2
EMERGENCIA						
PUERTA	25	2	50	12	0.070	1260
PRINCIPAL N°01						
PUERTA	14	2	28	12	0.070	705.6
PRINCIPAL N°03						
GRUPO	9	2	18	12	0.070	453.6
ELECTROGENO						
PARQUE	11	2	22	12	0.070	554.4
EXTERIOR						
TOTAL	137		274			6904.8

Fuente: Elaboración propia.

Anexo 33. Resultados de encuesta

La encuesta realizada se aplicó de manera virtual al cuerpo médicos del hospital, 39 personas fueron las encuestadas.

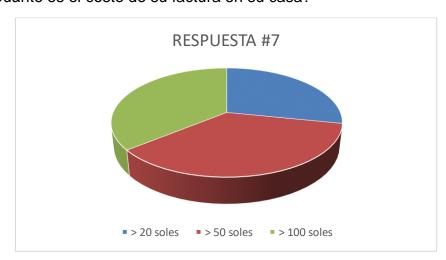
1. ¿Crees que es importante ahorrar energía?

2. ¿Qué estrategias de ahorro de energía utiliza?

Estrategias	Cantidad	%
F. Desconectar los artefactos que no se estén utilizando	27	44
G. Apagando el aire acondicionado cuando no es necesario	6	10
H. Suspender las computadoras cuando no están en uso	8	13
I. Apagar las luces cuando no están en la sala o ambiente	13	21
J. Realizar un cambio de luminarias	27	13

3. ¿Considera que hace un buen uso de la energía?

4. ¿Cuántas horas trabaja su servicio por día?


5. ¿Conoce sobre eficiencia energética?

6. ¿Qué tecnología conoce para el ahorro de energía?

7. ¿Cuánto es el costo de su factura en su casa?

Anexo 34. Dimensionamiento de filtro de armónicos.

Dimensionamiento de filtro de armónicos

Datos iniciales

Tensión del sistema: 380 V

Intensidad promedio del sistema eléctrico, Irms = 681 A

Tasa de distorsión armónica en corriente, THD-i: 29.11 (%)

Potencia promedio reactiva consumida, tableros finales: 297.07kVAR

Potencia activa promedio consumida: 1191.50 kW

Intensidad de corriente armónica

$$I_H = \frac{I_{RMS}}{\sqrt{\frac{1}{THD_i^2} + 1}}$$

$$I_H = \frac{681}{\sqrt{\frac{1}{0.2911^2} + 1}} = 190.34 \, A$$

 $I_{RMS} = Corriente total de carga promedio$

 $I_H = Corriente\ efectiva\ armonica$

El filtro de armónicos activo, va a compensar los armónicos y los reactivos por la inyección dinámica de corriente.

Capacidad del filtro.

$$I_{FILTRO} = \sqrt{{I_H}^2 + {I_R}^2}$$

 I_{FILTRO} : Capacidad requerida del filtro activo

 I_H : Corriente efectiva armonica requerida

 I_R : Corriente efectiva reactiva requerida

Estimar la corriente equivalente necesaria para compensar la potencia reactiva, en Kvar; que absorberá la carga, para eso se asumió un factor de potencia:

$$I_R(A) = \frac{Q_{carga}}{\sqrt{3} * U_L}$$

$$I_R(A) = \frac{297070}{\sqrt{3} * 220 * 1} = 451.35 A$$

Se calcula la capacidad del filtro requerido:

$$I_{PROMEDIO}(A) = \sqrt{190.34^2 + 451.35^2} = 489.84$$

Se paso a seleccionar el filtro en función a la corriente normalizada con los datos de la marca Accusine.

Figura 8: Elección de filtro

Corriente nominal	Máxima potencia reactiva (kVAR)		reactiva	Referencia	Encerramiento	Dimensiones	Peso												
(rms)	208 V	208 V 400 V 480 V		O V Clase		Figura#	Lbs (kg)												
50	18	34,8 41,8	410	PCS050D5N126S	NEMA 12	1	661(700)												
50	ю		34,0 41,0	34,0 41,0	34,0 41,0	34,0 41,0	34,0 41,0	34,0 41,0	34,0 41,0	41,8	41,8	÷ 1,8	41,0	+,0 +1,0	34,0 41,0	34,0 41,0	PCS050D5IP306S	IP30	'
100	38	88.2	071	PCS100D5N126S	NEMA 12	2	771(350)												
100	30 88,	38	00,2 00,1	00,2 00,1	00,2	00,2	83,1	0-3,1	0-3,1	,∠ 00,1	PCS100D5IP306S	IP 30	2	771(350)					
700	100	207.8	2404	PCS300D5N126S	NEMA 12	3	1212 (550)												
300	108	207,6	249,4	PCS300D5N126S	IP30	3	1212 (550)												

Fuente: Schneider Electric

Figura 9: Transformadores de corriente

Capacidad en	Catálogo No.	Dimen	siones	Peso (lb)	Precisión	Capacidad de	Corriente
Amp		A (ID)	D (OD)			carga	secundaria
500	CT500SC	4.0	6.5	3.5	2%	3 VA	5 A
1000	CT1000SC	4.0	6.5	3.5	1%	10 VA	5 A
3000	CT3000SC	6.0	8.5	4.25	1%	45 VA	5 A
5000	CTFCL5000	8.0	10.5	5.5	1%	45 VA	5 A
5000	CTFCL5000	8.0	10.5	5.5	1%	45 VA	

Fuente: Schneider Electric

De las tablas presentadas se selecciona dos filtros de 300 A cada uno, Qmáx = 108 KVAR, referencia: PCS300D5N1265.Ficha técnica, a continuación.

El transformador de corriente es el de 500 A, serie CT500SC, Isec = 5 A

La intensidad de corriente promedio total disminuye, eliminándose la componente adicional que genera las ondas de armónicos, reduciéndose también, las pérdidas por efecto Joule, como es el calentamiento en cables y bobinas, y las pérdidas en

el Hierro, obteniéndose importantes ahorros de energía eléctrica. Así el sistema cumple con los requisitos de compatibilidad electromagnética y normas que se aplican a la contaminación armónica y el desempeño del equipo es independiente de la carga del sistema.

Citamos los parámetros con la instalación de filtros activo de acuerdo a Schneider Electric, cuando se instalan filtros activos de armónicos se obtiene, normalmente:

- ✓ La tasa de distorsión armónica, THD de intensidad de corriente se reduce hasta el 5% del total
- ✓ El factor de potencia, $cos \varphi$ se corrige hasta 0.96, normalmente.
- ✓ La intensidad efectiva de armónicos se reduce en 6.25 veces

Debemos resaltar que el factor de potencia del sistema eléctrico es de 0.96, se mantendrá el mismo. Solo hará efecto en la reducción de los armónicos.

Entonces, obtenemos la nueva intensidad de armónicos:

$$I_{H-con\ filtro} = \frac{I_{H-\sin\ filtro}}{6.25} = \frac{190.34}{6.25} = 30.45$$

Nueva intensidad de línea, seria para THDi con filtro =5%

$$I_{H-con\,filtro}*\sqrt{\frac{1}{THD_{CFi}^2}+1}=I_{con\,filtro}$$

$$30.45 * \sqrt{\frac{1}{0.05^2} + 1} = 609.76 = I_{con\ filtro}$$

Se calculo la nueva potencia activa del sistema:

$$\begin{split} P_{con\,filtro} &= \sqrt{3} * U_L * cos \varphi * I_L * 10^{-3} \ [kW] \\ P_{con\,filtro} &= \sqrt{3} * 380 * 0.96 * 609.76 * 10^{-3} \ [kW] \\ P_{con\,filtro} &= 385.27 \ [kW] \end{split}$$

Reducción de la potencia activa:

$$\Delta P = P_1 - P_2$$

$$\Delta P = 1191.50 - 385.27 = 806.23 \, kW$$

Potencia reactiva absorbida nueva:

$$Q_2 = P_2 * tg \varphi_2 [Kvar]$$

$$Q_2 = 806.23 * tg 16 = 231.18 [Kvar]$$

Reducción de potencia reactiva absorbida, con filtros de armónicos:

$$\Delta Q = Q_1 - Q_2$$

$$\Delta Q = 297.07 - 231.18$$

$$\Delta Q = 65.89 Kvar$$

Reduce aprox. El 22% de la energía reactiva. Y reducción de horas.

Ficha técnica del producto PCSP300D5IP31 Características

Active harmonic filter - 300 A 380..480 V AC -IP31 enclosure

Principal

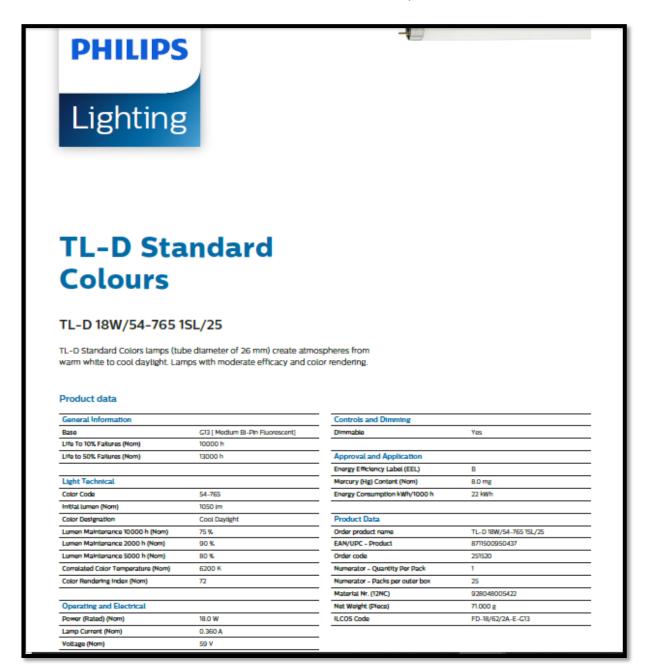
Gama de producto	AccuSine
Nombre del producto	AccuSine PCS+
Tipo de producto o componente	Active harmonic filter

Complementano	
Network t∮pe	3P
Network configuration	3 o 4 cables
Tensión de red	380480 V CA
Frecuencia asignada de empleo	60/60 Hz +/- 3 Hz detección automática
Tensión máxima admisible	1,1 x Un
Neutral correction	Not provided
RMS output current rating	300 A
Potencia reactiva	249 kvar 480 V CA 60/60 Hz
Operating modes	Mains current balancing Power factor correction Harmonic cancellation
Installation location	Interior
Montaje de armario	De suelo
Tipo de protección	Protección interrupt, autorn,
Disconnect type	Door-interlocked with rotary handle
Interrupt capacity	200 kA
Heat dissipation	Rear plenum with forced ventilation for high heat flow
Compatibilidad electromagnética	EMC conducida, Clase A acorde a EN 61000-6-4
Accesibilidad para funcionamiento	Parte frontal
•	

Anexo 35. Otros equipos de los servicios

SERVICIO	POTENCIA(W)
ONCOLOGIA	1200
LAVANDERIA	1900
IMÁGENES	1373
ANATOMIA P.	2150
PAT. CLINICA	1200
MEDICINA	240
FISICA	
NUTRICION	940
HEMODIALISIS	5900
B. DE SANGRE	4559
MED. NUCLEAR	2880
TOTAL	22342
	1.7

Fuente: Elaboración propia.

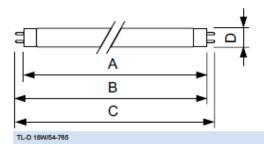

El mensual con los turnos que es de 12 horas

Consumo de energía total en un mes:

 $(22.342\,kW/h*12h*30d/m) - (22.342\,kW/h*6h*30d/m) = 4021.56k$

Anexo 36. Datos técnicos y cálculos de la adquisición de sensores de movimiento.

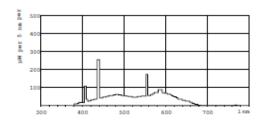
Ficha técnica de los fluorescentes leds actuales en los pasillos técnicos.

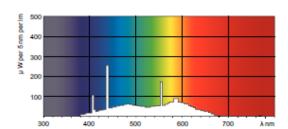


TL-D Standard Colours

Warnings and Safety

A lamp breaking is extremely unlikely to have any impact on your health. If a lamp breaks, ventilate the room for 30 minutes and remove the parts, preferably with gloves. Put them in a sealed plastic bag and take it to your local waste facilities for recycling. Do not use a vacuum cleaner.


Dimensional drawing



 Product
 D
 A
 B
 B
 C

 TL-D 18W/54-765 18L/25
 28 mm
 589.8 mm
 596.9 mm
 594.5 mm
 604 mm

Photometric data

PHILIPS

Ficha técnica de nueva bombilla led 14.5 w

Detalles técnicos

Marca	AmazonBasics
Peso del producto	259 g
Dimensiones del producto	5 x 9,5 x 13,7 cm
Número de modelo del producto	929001804604
Identificador de producto del fabricante	929001804604
Peso	259 gramos
Unidades	2
Estilo	100W
Color	Blanco Cálido
Forma	Globo
Material	Plástico
Número de bombillas	2
Voltaje	230 voltios
Usos específicos	Indoor use only
Características del producto	CRI alto
Tipo de bombilla	LED
Tipo de casquillo	E27
Etiqueta energética de la UE	A+
Flujo luminoso	1521
Potencia eléctrica	14.5 vatios
Potencia eléctrica	14.5 vatios
Equivalente incandescente	100 vatios
Temperatura de color	2700 Kelvin
Índice de reproducción cromática (IRC)	80
Durabilidad media	15000
Switching Cycles	15000 cycles
Diámetro de la bombilla	95 milímetros
Longitud de la bombilla	137 milímetros
Ángulo de haz de luz	150 grados
Tiempo de encendido	<0.5 s

Detalles de la iluminación actual de los pasillos técnicos

		PASILLOS	
DETALLES	PRIMER PISO	SEGUNDO PISO	TERCER PISO
Área (m2)	242,2125	242,2125	242,2125
Perímetro (m)	219,8	219,8	219,8
Pantallas de	29	41	30
iluminación			
N° de luminarias	116	128	128
N° lúmenes (lm)	1050	1050	1050
Vida útil (h)	10000	10000	10000
Potencia total(kW)	2.088	2.304	2.304
Consumo de energía	1503.36	1658.88	1658.88
mensual (KW/h)			

Fuente: Elaboración propia.

Especificaciones importantes en los pasillos.

- Distancia longitudinal de los pasillos son de 77, 108, 108 metros respectivamente.
- Cada detector trabajara con 12 bombillas LED de 14.5 watts cada uno
- Se programará 1 minuto como tiempo de conexión.

Datos técnicos de los detectores de presencia.

DETECTOR DE MOVIMIENTO EMPOTRABLE, INTERIOR, LED ADECUADO, MONTAJE EN PARED, PROGRAMABLE, SENSOR DE INFRARROJOS, ALCANCE 9M / 160°

Descripción general:

- Detector de movimiento para espacios interiores y para montaje empotrado y en pared, dimensiones de montaje 80x80x30mm.
- El detector de movimiento tiene un consumo de potencia máximo de 500W con bombillas incandescentes y 200W con bombillas LED u otras bombillas de bajo consumo y una carga mínima de 5W para las lámparas LED.
- El área de detección de este sensor infrarrojo es de 9m y 160°. El tiempo de conexión es de 10 segundos hasta 7 minutos o permanentemente encendido o apagado.
- El detector de movimiento empotrado también puede ajustarse según la luz ambiental (en un intervalo entre 3 y 2.000 LUX).

Detalles técnicos:

Identificador de producto del fabricante	2_X_IR_WAL_A
Peso del producto	159 g
Dimensiones del paquete	17 x 8,8 x 6,4 cm
Referencia del fabricante	2_X_IR_WAL_A
Tamaño	Confezione da 2
Voltaje	220 voltios
Potencia eléctrica	200 vatios
Número de productos	1
Incluye baterías	No
Necesita baterías	No

Disponible en : https://www.amazon.es/Detector-Movimiento-empotrable-programable-Infrarrojos/dp/B07LG55XMG/ref=pd lpo 201 t 0/261-6070853
8975002? encoding=UTF8&pd rd i=B07LG55XMG&pd rd r=bd807dca-88ab-45cf-9a0d-ffe5add512f6&pd rd w=xDNqL&pd rd wg=pPkAO&pf rd p=4221015a-01c7-4a3d-a84d-985d938e9995&pf rd r=5MX6YBMXVSBSVE0MNAJ0&refRID=5MX6YBMXVSBSVE0MNAJ0&th=1

Anexo 37. Datos técnicos para la selección de temporizadores.

Teniendo en cuenta la capacidad máxima de operación de 16A del timer analógico seleccionado, se puede usar normalmente un timer para la potencia total de 3294 de las luminarias, en cada piso.

Consumo actual de energía eléctrica por iluminación en consulta externa.

CONSULTA EXTERNA				
DETALLES	PRIMER	SEGUNDO		
	PISO	PISO		
Área (m2)	377	377		
Perímetro (m)	125	125		
Pantallas de	29	41		
iluminación				
N° de luminarias	183	183		
N° de horas	24	24		
Potencia	3,294	3,294		
total(kW)				
Consumo de	2371,68	2371,68		
energía mensual				
(KW/h)				

Fuente: Elaboración propia

Especificaciones técnicas del temporizador

Anexo 38. Datos y especificación de cambio de lámparas de vapor de Na

La cantidad de lúmenes se reduce aproximadamente a la mitad, el consumo de energía se reduce en un 58%, además de que cuenta con la clase A+ de eficiencia energética.

Datos técnicos de bombilla LED.

Philips LED, 3450 Lumen, matt Lámpara, 30 W, mate [Clase de eficiencia energética A+]

Luz blanca cálida (2700 K) como en las bombillas incandescentes/halógenas gracias a la tecnología LED.

Producto con sello EyeComfort. Desarrollado para proteger tus ojos.

Bajo consumo de energía, hasta un 90 % de ahorro de energía en comparación con las bombillas convencionales.

Larga vida útil de hasta 15 años.

Datos técnicos:

Marca	Philips
Peso del producto	218 g
Dimensiones del producto	19,4 x 11 x 11 cm
Número de modelo del producto	8718699662240
Identificador de producto del fabricante	8718699662240
Peso	218 gramos
Unidades	1
Color	Mate
Material	Plástico
Número de bombillas	1
Componentes incluídos	1 lámpara LED.
Voltaje	240 voltios
Características del producto	Bajo consumo de energía
Fuente de alimentación	Corriente alterna.
Necesita baterías	No
Tipo de bombilla	LED
Tipo de casquillo	E27
Etiqueta energética de la UE	a_plus
Flujo luminoso	3450 lm
Potencia eléctrica	30 vatios
Equivalente incandescente	200 vatios
Características de la bombilla	Nicht Dimmbar
Temperatura de color	2700 Kelvin
Durabilidad media	15000 horas

Proveedor: Amazon

Anexo 39. Listado de equipos de aire acondicionado.

EQUIPOS DE AIRE	CAPACIDAD	CANTIDAD	ENERGIA(KW)	E. TOTAL(KW)
ACONDICIONADO			, ,	, ,
Equipo de aire	18,000	65	1.870	121.55
acondicionado	btu/hr			
tipo Split				
decorativo				
Equipo de aire	60,000	12	3.455	41.46
acondicionado	btu/hr			
tipo Split				
decorativo				
Equipo de aire	36,000	10	1.323	13.230
acondicionado	btu/hr			
tipo Split				
decorativo				
Equipo de aire	24,000	18	1.880	33.84
acondicionado	btu/hr			
tipo Split				
decorativo				
Equipo de aire	12,000	2	1.250	2.5
acondicionado	btu/hr			
tipo Split				
decorativo				
TOTAL	-	107	17056	212.726

Fuente: Elaboración propia.

Anexo 40. Situación actual y restricciones para AC- Split decorativo.

Situación actual:

Se utiliza un aire acondicionado (AA) de forma continua en los servicios y los que se encuentran en las salas de espera del centro hospitalario.

La demanda total por los equipos de climatización es de 212.726 kW, el tiempo de trabajo son 5,040 horas al año, tomando en cuenta las dos jornadas de la mañana y de la tarde que son 14 horas.

Es necesario tener en cuenta de los equipos que tiene ciertas restricciones para acatar el nuevo horario por la función que desempeñan y las áreas en las que se encuentran como las que necesitan funcionar las 24 horas del día que se encuentran en el

- Servicio de banco de sangre, hay dos equipos de aire acondicionado de capacidad de 60000 BTU/HR, dos de 24000 BTU/HR y uno de 18000BTU/HR.
- Almacén de farmacia de capacidad de 60000 BTU/HR.
- Diagnóstico de imágenes que deben mantenerse encendidas porque la instalación de equipos de alta tecnología lo exige y son 4 de 36000 BTU/HR,
 7 de 24000 BTU/HR, 3 de 60000BTU/HR y 1 de 12000BTU/HR.

Medidas correctivas:

Proponer un horario de apagado y encendido de estas unidades en horas no laborables o en los intervalos de receso, reduciendo el tiempo de uso de horas al año. El nuevo horario seria encenderlo desde las 8am-1pm (5 horas) y desde las 2pm-6pm (4 horas), haciendo un total de 9 horas diarias, al año son 3240 horas.

Anexo 41: Situación actual y listado de los Fancoils

Estas unidades reciben agua fría del chiller y lo hacen circular por unos tubos o serpentines. El ventilador impulsa el aire y lo hace pasar por los tubos donde circula el agua, produciéndose así la termo transferencia; el aire pasa por un filtro y sale a la estancia que se está climatizando, en forma de aire frío.

Anexo 41. Listado de equipos de climatización (Fancoil)

EQUIPO	POTENCIA(W)	CANTIDAD	P. TOTAL
			(W)
Fancoil	1150	44	50600

Fuente: Elaboración propia.

Situación actual:

Se utiliza los equipos Fancoil de forma continua en los servicios.

La demanda total por los equipos de climatización es de 50.600 kW, el tiempo de trabajo son 5,040 horas al año, tomando en cuenta las dos jornadas de la mañana y de la tarde que son 14 horas.

Se debe de tener en cuenta el funcionamiento las 24 horas en los servicios de:

- Emergencia tiene 2 Fancoil, 7 en banco de sangre y
- Unidad de cuidados intensivos tiene 2.

Medidas correctivas:

Proponer un horario de apagado y encendido de estas unidades en horas no laborables o en los intervalos de receso, reduciendo el tiempo de uso de horas al año. El nuevo horario seria encenderlo desde las 9am-1pm (4 horas) y desde las 2pm-6pm (4 horas), haciendo un total de 8 horas diarias, al año son 3240 horas.

Anexo 42. OTM propuestas para mantenimiento.

OTM para equipos Fancoil

	ORDEN DE TRABAJO DE MANTENIMIENTO				
LUGA	LUGAR: HAC - HOSPITAL DE ALTA COMPLEJIDAD DE LA LIBERTAD VIRGEN DE LA PUERTA				EN DE LA PUERTA
	UBICACION PISO: X BLOQUE: X				
	MINACION ESPECÍFIC			.FC-XXX	
	A: JOHSON CONTROL				RIE:
	O PATRIMONIAL: XXX	XXX	TI	PO DE EQUIPAMIENT	0:
	ROMECANICO RTURA: TALLER ELEC	TDOMECÁNICO	TÉDN	MCO.	
	DE MANTENIMIENTO:			CUTOR DE LA ACTIVI	DAD:
	IDAD: NORMAL	PREVENTIVO		DALIDAD DE EJECUC	
	DE OBRA		IVIC	DALIDAD DE ESECUC	JON. SERVICIO -
		DESCRIPCIÓ	N DE I	A SOLICITUD DE TRA	BAJO O FALLA DE
FE	ECHA DE SOLICITUD			EQUIPO	
			MAN	TENIMIENTO PREVEN	TIVO
				DIAGNOSTICO	
			MAN	TENIMIENTO PREVEN	TIVO
	Firma y Sello			T	T
_	OO INICIAL DEL BIEN: (OPERATIVO			OTROS
BUENC		DESCRIPCION D	ΕΙΔΔ	<u> </u> CTIVIDAD EJECUTAD <i>I</i>	Δ
1	VERIFICACION Y LIMPI				
2	VERIFICACION DE PRE				
3	LUBRICACION DE MOT				
4	AJUSTE DE BORNES Y				
5	LAVADO DE BANDEJA I				
6					
7			VOLTA	JE DE OPERACIÓN DE M	OTOR
				ADO ELECTRICO Y LLAV	
0	(DE SER NECESARIO)				
9	CHEQUEO Y VERIFICA	CION DEL SISTEMA	AUTO	MATIZADO (TERMOSTAT	OS)
ESTAD	ESTADO FINAL DEL BIEN: OPERATIVO BUENO GARANTÍA DE TRABAJO (meses): FECHA INICIO: hora:				
FECHA Progran	PROGRAMADA (Solo pa nados):	ra Trabajos		TOTAL H.H. PROGRAMADAS:	FECHA TÉRMINO: hora:

OTM para equipos de aire acondicionado tipo Split decorativo.

	ORDEN DE TRABAJO DE MANTENIMIENTO				
LUGA	LUGAR: HAC - HOSPITAL DE ALTA COMPLEJIDAD DE LA LIBERTAD VIRGEN DE LA PUERTA				
UBICA	BICACION PISO: X BLOQUE: X				
DENO	MINACION ESPECÍ	ÍFICA: EQUIPO DE AIRE	ACONDICIO	NADO TIPO SPLIT DEC	CORATIVO
MARC	A: LG	MODELO:	SERIE:		
CODIC	O PATRIMONIAL:	XXXXX	TIPO DE EC	QUIPAMIENTO: ELECT	ROMECANICO
COBE	RTURA: TALLER E	LECTROMECÁNICO - TÉ	RMICO		
	DE MANTENIMIENT			E LA ACTIVIDAD:	
PRIOF OBRA	RIDAD: NORMAL	MC	DDALIDAD D	PE EJECUCION: SERVI	CIO - MANO DE
FI SOLIC	ECHA DE CITUD	DESCRIPCIÓN DE I	LA SOLICITU	JD DE TRABAJO O FAL	LA DE EQUIPO
		N	MANTENIMIE	ENTO PREVENTIVO	
			DIAC	GNOSTICO	
		N	//ANTENIMIE	ENTO PREVENTIVO	
	Firma y Sello		T	,	
	DO INICIAL DEL BIE	N: OPERATIVO BUENO			OTROS
N°		DESCRIPCION DE			
1	REVISION Y LIMPIEZ	ZA DE UNIDAD EVAPORADO	DRA (FILTRO,	MASCAR Y DRENAJE)	
2	LIMPIEZA Y REVISIO	N DEL FUNCIONAMIENTO	DEL VENTILA	DOR	
3	TOMAR MEDICIONE	S DE AMPERAJE			
4	4 REVISION Y LIMPIEZA DE UNIDAD CONDENSADORA (CONDENSADOR, COMPRENSOR Y SEPARADOR DE ACEITE)				
5	5 AJUSTAR BORNES Y LIMPIEZA DEL SISTEMA ELECTRICO.				
6	6 VERIFICAR PRESIIONES DE ALTA Y BAJA (POSIBLES FUGAS)				
7					
ESTAD	ESTADO FINAL DEL BIEN: OPERATIVO BUENO GARANTÍA DE TRABAJO (meses): FECHA INICIO: hora:				
	A PROGRAMADA (Solo mados):	o para Trabajos		TOTAL H.H. PROGRAMADAS:	FECHA TÉRMINO: hora:

Anexo 43. Evaluación del SEER en los equipos de aire acondicionado.

Según el Reglamento Técnico sobre el Etiquetado de Eficiencia Energética (RTEEE), en su anexo 8-A. Equipos de Aire Acondicionado, este estudio se puede aplicar a los aparatos de aire acondicionado conectados a la red eléctrica con una potencia nominal de refrigeración, o de calefacción si el producto no dispone de una función de refrigeración, de 12 kW como máximo. Y en el anexo 8-B. Método de cálculo para aparatos de aire acondicionado, para aparatos de conducto único y de conducto doble.

Situación actual: La mayoría de equipos que se encuentran en funcionamiento, tiene el factor de eficiencia energética estacional SEER de 3.2

$$EER = \frac{P_R}{P_F}$$

 $P_R = Potencia de enfriamiento \left(\frac{BTU}{H} \circ kW\right)$

 $P_E = Potencia\ electrica\ (kW)$

Anexo 44. Tablas de análisis económico

Inversión inicial

Costo inicial de la inversión					
Ítem	Descripción	Cantidad	Costo unitario (S/)	Subtotal (S/)	
1	Filtro de 300 A / PCSP300D5IP31	2	20160	40320	
2	Transformador de corriente de 500A	1	4800	4800	
3	Detectores de movimiento	33	48,08	1586,64	
4	Temporizadores	2	150	300	
5	Bombilla LED	274	98,25	26920,5	
6	Bombilla Led globoE27	372	32.05	11922.6	
7	Cable FREETOX NHX- 90(LSOHX-90) 16 mm2	1640	10	16400	
8	Mantenimiento de equipos de aire acondicionado	1	18000	18000	
	Total			120249,74	

Ahorro económico

Ahorro económico de las propuestas (s/ por mes)					
Ítem	Descripción				
1	Detectores de movimiento- bombilla led globo	413.16	4957.92		
3	Temporizadores	284.60	3415.2		
4	Philips LED (A+)	473.47	5681.64		
5	Eliminación de equipos innecesarios	482.59	5791.08		
6	Cambio de horario de Split decorativo y Fancoils	3015.35	36184.2		
	Total	4669.17	56030.04		

El retorno de inversión (R.O.I) es de 2 años aproximadamente.

Al finalizar el primer año se recupera casi el 50% de la inversión.