

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Diseño de infraestructura vial en las comunidades La Floresta-Shumba Alto-Ayabaquita-Pueblo Nuevo y cruce San Agustin Huabal, distrito de Bellavista, Jaén"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTOR:

Díaz Vergara, José Edwin (ORCID: 0000-0002-3888-1689)

ASESOR:

Mgtr. Ordinola Luna, Efrain (ORCID: 0000-0002-5358-4607)

LÍNEA DE INVESTIGACIÓN:

Diseño de infraestructura vial

CHICLAYO - PERÚ

2021

Dedicatoria

A mi familia mis padres Lizandro y Elena, mi esposa Edixabeth, mis niños Leonel Y Sophía, y a todos los que luchan día a día por buscar el bien común.

José Edwin

Agradecimiento

A Dios por la salud y la vida que es un regalo maravilloso.

A Mis padres Lizandro y Elena mis hermanos, mi esposa Edixabeth, Leonel Y Sophía por soportarme en todo momento.

A mi asesor de tesis, Ing. Efraín Ordinola Luna, por su apoyo y motivación perseverante para con nosotros en ayudarnos a culminar el presente y en mi formación profesional.

A mis profesores por sus consejos y compartir conocimientos y experiencias en mi formación personal y profesional.

José Edwin

Índice de contenidos

Dedicatoria	ii
Agradecimiento	iii
Índice de contenidos	iv
Índice de tablas	V
Índice de figuras	vi
Resumen	vii
Abstract	viii
I. INTRODUCCIÓN	1
II. MARCO TEÓRICO	5
II. METODOLOGÍA	11
3.1. Tipo y diseño de investigación	11
3.2. Operacionalización de variables	11
3.3. Población, muestra, muestreo, unidad de análisis	13
3.4. Técnicas e instrumentos de recolección de datos	13
3.5. Procedimientos	13
3.6. Métodos de análisis de datos	13
3.7. Aspectos éticos	14
IV. RESULTADOS	15
v. discusión	23
VI. CONCLUSIONES	25
VII. RECOMENDACIONES	27
REFERENCIAS	28
ANEXOS	34

Índice de tablas

Tabla 01:	: Operacionalización de variables	12
Tabla 02:	Cuadro de coordenadas de bms (utm)	15
Tabla 03:	: Resultados de conteo de tráfico	16
Tabla 04:	: Resultados ensayo de compactación	17
Tabla 05:	: Resultados de valores de ensayo CBR	17
Tabla 06:	Resumen de los resultados de calicatas	18
Tabla 07:	: Resumen de características geométricas de diseño	20
Tabla 08:	: Espesores del pavimento	21
Tabla 09:	: Presupuesto total de la obra	22

Índice de figuras

Figura 01: Ubicación del proyecto	18
Figura 02: Esquema de pavimento a usar	21
Figura 03: Señalización vial	22

Resumen

Este estudio fue desarrollado en el distrito de Bellavista, Provincia de Jaén,

Departamento de Cajamarca, durante los años 2019 y 2020, con el fin de mejorar

las la transitabilidad entre las comunidades de La Floresta, Shumba Alto,

Ayabaquita, Pueblo Nuevo hasta el cruce de la vía San Agustín. Huabal.

Elaborando un expediente técnico teniendo como base los estudios de topografía,

mecánica de suelos, los diseños geométricos, lo que estuvieron en concordancia

con el Manual de Diseño de Geométrico 2018, del MTC - PERU.

La vía empieza en la comunidad de La Floresta en el km 00+000 hasta el km

05+518 el cruce de la vía San Agustín- Huabal, mejorando la transitabilidad de la

vía en las comunidades implicadas en el proyecto. Se obtuvieron datos de campo,

utilizando una variedad de Instrumentos, para poder cumplir los objetivos

propuestos en el presente estudio. Se realizó la tabulación de los datos con los

programas computacionales de dibujo AutoCAD, Civil 3D 2018, y de presupuestos

S-10, entre otros. De acuerdo a la geometría de terreno se obtuvieron resultados

de velocidad de diseño es de 30 km/h, con pendientes máximas de 8%, una capa

de 20 cm, sub base de 20 cm mientras que la capa asfáltica resulta 5 cm de

espesor, que sirve para mejorar la calidad de vida de la comunidad involucrada en

el proyecto.

Palabras claves: Diseño, infraestructura vial, carreteras, pavimento.

νii

Abstract

This study was developed in the district of Bellavista, Province of Jaén, Department

of Cajamarca, during the years 2019 and 2020, in order to improve the walkability

between the communities of La Floresta, Shumba Alto, Ayabaquita, Pueblo Nuevo

until the crossing. from Via San Agustin. Huabal. Elaborating a technical file based

on the studies of topography, soil mechanics, geometric designs, which were in

accordance with the Geometric Design Manual 2018, of the MTC - PERU.

The road begins in the community of La Floresta at km 00 + 000 until km 05 + 518,

the intersection of the San Agustin-Huabal road, improving the walkability of the

road in the communities involved in the project. Field data were obtained, using a

variety of instruments, in order to meet the objectives proposed in the present study.

The data was tabulated with the computer programs for drawing AutoCAD, Civil 3D

2018, and S-10 budgets, among others. According to the geometry of the terrain,

the design speed results were 30 km / h, with maximum slopes of 8%, a layer of 20

cm, a sub-base of 20 cm, while the asphalt layer was 5 cm thick, which serves to

improve the quality of life of the community involved in the project.

Keywords: Design, road infrastructure, roads, pavement.

viii

I. INTRODUCCIÓN

La humanidad a lo largo de la historia ha tenido que tender vías de comunicación tal es caso de la experiencia de los incas (Marcone, 2020) se pregunta la manera en la que han podido trascender en el tiempo las construcciones incas en el territorio peruano, muchas de ellas en procesos de declarar patrimonios mundiales ante la UNESCO, el autor entiende a los caminos como infraestructura construidas por estados o imperios o en su defecto por el caminar diario de las personas que lo utilizan.

El crecimiento económico de los países se debe a una relación siempre buena del transporte y las condiciones que deben de tener las carreteras para un mejor crecimiento económico de regiones y países (Sanchez y Wilmsmeier, 2005).

En Colombia, según el diario (Tiempo, 2019) informa que despues de haberse paralizado el tránsito de la carretera Bogotá Villavicencio, debido al deslizamiento de tierras, se empezará con un plan de recuperación de la transitabilidad, contado con estructuras metalicas, concreto hileras de tuberías entre otros elementos a fin de asegurar las condiciones optimas de la via, asi generar el dinamismo económico. nivel de Latinoamérica Chile es el país que lidera en las condiciones de infraestructura vial, sin embargo, como lo menciona (Kohon, 2011) menciona que en América Latina uno de los obstáculos para la calidad de las carreteras, tiene que ver con las condiciones ambientales como deslizamientos de tierras, inundaciones, terremotos implican graves pérdidas, así como el incremento de gastos en el transporte.

El Perú en este bicentenerio, tiene retos que asumir como la unión de los pueblos de una manera mas articuada a la rede de infraestructura vial, uir las comunidades alejadas de nuestro pais con vias optimas para asegurar la trasitiabilidad de las personas, en este proceso de crecimiento que según (Quequezana, 2020) indica que el Perú se encuentra en las últimas posiciones en el ranking de infraestructura y servicios logisticos, menciona que los indices de desempeños logisticos en inraestructura, se percibe que las carreteras son persibidas como mala calidad, encontrandose en las carreteras un congestionamiento vehicular, analizando

atender las carreteras de menor nivel como las departamentales, provinciales y distritales que es un tema a atender.

El diario (La Republica, 2019) Perú, indica que el Perú retrocede dos lugares en el ranking mundial de competitividad, entre otros indicadores, debido a la carencia de infraestructura vial, aparece por debajo de la ubicación 100, eso quiere decir que Colombia nos lleva ventaja en cuanto a políticas de infraestructura vial, índice de red vial y la calidad de las carreteras, por lo que es un indicador que se debe de analizar para que se mejore la transitabilidad de los ciudadanos peruanos y empresas, a fin de que los costos sean reducidos, por lo que mejorará un ahorro en las economías de las familias peruanas.

En las diferentes regiones del país, las lluvias ocasionan fuertes deslizamientos de tierras bloqueando las vías de comunicación que unen los pueblos de nuestra patria, de acuerdo a un informe de prensa en (Marañon, 2019) informó que 24 distritos ubicados en las regiones de Amazonas, Huánuco, Loreto, Pasco y San Martín tienen un riesgo alto de movimiento de masas (huaycos y deslizamientos) por las lluvias pronosticadas por el Servicio Nacional de Meteorología e Hidrología, desde el lunes 11 hasta el miércoles 13 de noviembre, en (CENEPRED) instó a las autoridades competentes tomar precauciones para evitar pérdidas de vida y salud en las personas, así como la infraestructura que pueden verse afectadas por las lluvias.

A nivel regional, es de mucha prioridad terminar con la carretera longitudinal de la sierra, puesto que muchas de las vías de transporte están en estado de afirmado, generando un rápido deterioro de las vías de comunicación debido a las constantes lluvias.

En un documento encontrado en el portal de Provias Descentralizado indica que la provincia de Jaén presenta desfragmentación en sus espacios debido a los terrenos accidentados que presenta, su única vía de acceso es un ramal que sale de la carretera Olmos-Corral Quemado, en Chamaya empieza el IV eje vial con una vía estrategia de categoría internacional, debido a que conecta con la frontera Ecuador en la provincia de San Ignacio, que abastece el mercado interno provenientes de la Costa con un rol extra provincial.

La red vial vecinal es de aproximadamente 1,243 Km la única vía en perfectas condiciones en la actualidad es la vía Jaén. Bellavista, mientras que las demás necesitan ser reconstruidas puesto que por falta de mantenimiento están en estado crítico, con huecos, baches, sin cunetas debido a las lluvias en la zona que produce deslizamiento de tierras y derrumbes que dañan considerablemente a las vías de comunicación limitando la transitabilidad entre las comunidades. (S.f.)

Las comunidades de Shumba Alto, Ayabaquita, Pueblo Nuevo, pertenecen al distrito de Bellavista en la provincia de Jaén, están conectadas por una trocha carrozable que parte desde el caserío La Floresta, uniendo las comunidades de Shumba Alto, Ayabaquita, Pueblo Nuevo, cuya ruta de la vuelta en la carretera que une Bellavista (partiendo de la comunidad de San Agustín) con el distrito de Huabal. En épocas de lluvias, las comunidades sufren los embates de la naturaleza, la vía se vuelve intransitable, se llena de agua, barro, generando malestar en los pobladores, así como dificultades de accesibilidad y comunicación.

Por ello, se requiere atender a esta necesidad de transitabilidad a la mejora de la infraestructura vial con alternativas técnicas en pavimentos y sistemas de drenaje cuyo propósito se pretende conseguir.

Formulación del problema

¿Cuál será el adecuado diseño de la infraestructura vial entre las comunidades de La Floresta, Shumba Alto, Ayabaquita, Pueblo Nuevo y cruce San Agustin - Huabal, en el distrito de Bellavista, Jaén?

Justificación del estudio

Justificación Técnica: Se justifica técnicamente porque aportará información aplicada al proyecto a ejecutar mediante un expediente técnico de construcción, donde están las memorias descriptivas del proyecto, para mejorar la transitabilidad entre las comunidades del Cruce la Floresta, Shumba Alto, Ayabaquita, Pueblo Nuevo hasta el cruce con la vía San Agustin-Huabal.

Justificación Socio-económica: Porque beneficiará a la población de las comunidades en mención en cuanto a la optimización del tiempo, costos y salud con una ruta confiable para el normal tránsito, así como comercializar sus productos con el objetivo de mejorar las condiciones de comodidad de las comunidades de implicancia del proyecto.

Justificación Ambiental: Permitirá reducir y minimizar el impacto negativo en el proceso constructivo y operacional del proyecto como el ruido, el polvo la alteración del habitad para la flora y la fauna.

Hipótesis

Debido que el proyecto se trata de un diseño de investigación, este no puede presentar hipótesis

Objetivos

Objetivo General:

Realizar el diseño de la infraestructura vial en las comunidades La Floresta
 Shumba Alto – Ayabaquita – Pueblo Nuevo y cruce San Agustín Huabal,
 Distrito de Bellavista, Jaén.

Objetivos Específicos

- Determinar la el estado situacional del proyecto en a diseñar.
- Realizar el Estudio Topográfico tramo La Floresta Shumba Alto –
 Ayabaquita Pueblo Nuevo y cruce San Agustín Huabal.
- Elaborar Estudios de Mecánica de Suelos, Topográficos, Estudio de Trafico, Estudio de Hidrología y Drenaje, y evaluar el impacto ambiental.
- Diseñar la los componentes de que conforman la Infraestructura vial, a nivel de estudios definitivos, que comprende: Diseño geométrico, Memorias descriptivas, memorias de cálculo, especificaciones técnicas, metrados, costos, presupuesto, análisis de cotos unitarios, cronograma y programación de obra, valorizaciones y planos, para la alternativa técnica y económica de mejor aplicación.

II. MARCO TEÓRICO

(Rodriguez, 2015) En su tesis considero criterios técnicos de acuerdo a la normatividad vigente que es utilizado para el diseño de vías urbanas, donde a la vez considera los impactos socioeconómicos, concluye que se ha desarrollado un diseño de la estructura mediante el método Racional, debido a que el suelo es limoso y arcillosos de mediana resistencia, con CBR de 3%, así como los contenidos del agua están entre el 7% y 50% sin presentar nivel freático, así como permiten desarrollar un solo tramo a considerarse para el diseño de la vía.

La relevancia de este trabajo, brinda información experimentada sobre el diseño de la vía, utilizando normatividad tecnica.

Mientras que (Taopanta y Valle, 2018) en su tesis realizo una propuesta de diseño de la vía en mención, concluye que para el diseño de pavimento se utilizó el método AASHTO 93, determinando espesor de la carpeta asfáltica con un tratamiento superficial, entre otras consideraciones técnicas.

En cuanto a las recomendaciones, sugiere que se debe socializar con los pobladores involucrados en el proyecto, a fin de comunicar el diseño y los procesos constructivos con la intención de prever conflictos sociales. Además, sugiere que los procesos de construcción, mantenimiento y operación deben cumplir con las normas viales ecuatorianas, así como una evaluación rigurosa del estudio de impacto ambiental según las normas del país, puesto que se encuentra en una zona de abundante flora. La relevancia radica en cuanto al aporte del diseño de una infraestructura vial, respetando el medio ambiente, considerando además la metodología AASHTO 93.

Por su parte, (Robalino, 2016) en su trabajo de investigación hizo mención los tipos de estudio, así como la proposición de un diseño para la infraestructura vial que conectarán habitantes del sector Teligote San Francisco Mazabacho la parroquia Benitez, Cantón Pelileo, provincia de Tungurahua.

Así como la propuesta de un diseño de infraestructura vial, que sea capaz de integrar económicamente a los sectores mencionados. El Concluye que las vías

que disponen en el sector de Teligote y San Francisco, se encuentran en mal estado debido a las lluvias que no permiten que estos accedan al servicio de transitabilidad adecuada, lo cual evita que estos habitantes del sector gocen de un servicio adecuado, además que mediante un estudio topográfico la zona presenta pendientes pronunciadas, los estudios de suelos ha determinado que es arena limosa con CBR que varían entre 13% y 16% considerando una buena sub-rasante con un pavimento flexible con un ancho de vía de 6.00 m.

El investigador recomienda que se debe de cumplir con las especificaciones técnicas de acuerdo a los estudios realizados para garantizar el desarrollo al máximo la eficiencia vial, especificaciones de acuerdo a las normas del país, en la construcción se cause el menos daño posible en los límites de la vía y las viviendas vecinas, así como los materiales deben de ser de calidad así como los lineamientos ambientales para respetar la biodiversidad y mitigar el impacto ambiental que se genere, la relevancia de este trabajo para la presente investigación consiste en la muestra de los estudios en campo de la vía, mitigar el impacto ambiental, considerar las especificaciones de acuerdo a las normas del país.

(Chamaya y Villar, 2018), en su tesis concluyo que las necesidades de la población en cuanto a transitabilidad se refiere y los beneficios a los pobladores, así como realizar los estudios básicos de ingeniería; tráfico, mecánica de suelos, topografía, para pavimentación, en el marco normativo del MTC.

En las recomendaciones considera hacer las vistas de campo para determinar la realidad situacional, así como aplicar instrumentos de recolección de datos para un acercamiento a la población, así como elaborar estudios básicos de ingeniería, considerando las normas del MTC. Y el diseño de la infraestructura vial a nivel de expediente técnico. La relevancia para el presente trabajo de investigación consiste en que se han realizado los estudios de ingeniería, con la finalidad de que se cuente con un diseño de la vía, considerando que no existe un diseño en estos tramos además que se puede contrastar con los datos encontrados en el presente trabajo.

Por su parte (Puccio y Tocto, 2018) en su trabajo de investigación considero el diseño de la infraestructura vial para la transitabilidad entre localidades mencionadas, concluye que en el estudio topográfico se ha encontrado un terreno plano tipo 1.

La pendiente máxima es de 0.50%, además los resultados de estudio de mecánica de suelos arroja que el tramo predominante es arena limosa (SM), concediendo 09 alcantarillas de paso y 1 puente gracias a los estudios hidrológicos; en el diseño geométrico de la vía, el investigador ha cumplido con lo establecido en la norma DG-2018, donde recomienda realizar el reconocimiento de campo antes de iniciar el trabajo de campo y utilizar equipos topográficos calibrados con la finalidad de evitar errores en la toma de datos, la consideración de la utilización de mano de obra local, esta trabajo tiene relevancia, puesto que nos menciona sobre el estudio de campo, así como los estudios a considerar para logra un buen diseño de la infraestructura.

Luego de haber realizado los estudios básicos de ingeniería que la demanda al 2028 es de 45veh/día, la pendiente no supera el 3%, además el suelo pobre contiene arcilla y limos inorgánicos pasticos; la trocha tendrá un ancho de 4.00 m de calzada, velocidad de diseño de 30 Km/h, las alturas correspondientes de acuerdo a los estudios arrojados, un sistema de drenaje a través de bombeo, 11 alcantarillas, así como 98 señales verticales. En cuanto a las sugerencias, considera realizar una reunión y/o junta con las autoridades de las comunidades, así como con toda la población sobre el inicio del trabajo, ejecutar el proyecto en épocas que no sean de lluvia o cosechas de la zona, así como respetar los estudios y diseños en la propuesta.

Es relevante en nuestro trabajo por cuanto nos asegura como los proyectos precedentes realizar y respetar los resultados que arrojen los estudios básicos de ingeniería, así como las coordinaciones con los ciudadanos de las comunidades beneficiadas.

(Chávarry y Angulo, 2019) en su tesis concluyo que el terreno es accidentado de tipo 3, fijando pendientes transversales, el estudio hidrológico se considera el diseño de cunetas de 0.4mx1.00m, 17 alcantarillas y un badén, la carretera es de

clase 3 con una velocidad de 30Km/h, los estudios de impacto ambiental considera que estos deben de ser mitigados en la ejecución, además habrá impactos positivos en las comunidades, y mejora de la calidad de vida.

El investigador, recomienda ejecutar el proyecto entre los meses de junio y octubre debido a las lluvias para evitar posibles derrumbes de taludes, colocar la señalización vertical para minimizar accidentes, así como utilizar material de relleno proveniente de los mismos cortes que no tengan restos orgánicos. Esta investigación es relevante por cuanto tiene un acercamiento más real al ámbito de incidencia de nuestro proyecto, por lo que servirá de guía y comparación en todo el proceso de nuestra investigación.

En esa misma línea de investigación, hemos considerado a (Sanchez, y Zamora, 2019) en su tesis quienes determinaron terrenos de tipo 4 con pendientes que sobrepasan el 100% además la consideración de cunetas y alcantarillas, el suelo presenta arcillas de baja plasticidad, así como los valores de CBR varían entre 3.9% y 6.4% (Sub rasante pobre), considera el Manual de Diseño geométrico 2018 y el Manual de Diseño de Carreteras del Ministerio de Transporte y Comunicaciones.

El investigador recomienda que la construcción de la obra se realice en los meses de mayo a diciembre debido a la época de lluvias, además sugiere que se debe utilizar maquinaria e buen estado con una antigüedad no mayor a 5 años, para que alcance los rendimientos que se ha considerado; las coordinaciones con las autoridades para evitar posibles molestias y oposición con los pobladores de las comunidades implicadas en el proyecto, así como los trabajadores debe de contar con todo el equipo de protección personal. Esta investigación tiene relevancia, por cuanto considera los estudios básicos, así como la importancia en coordinación con las autoridades de la zona para evitar posibles conflictos sociales.

Por su parte, (Saucedo, 2018) en su tesis concluyo que la vía tiene CBR entre el 11.50% y el 15.20%, utilizando en sus estudios la norma DG-2018, cuyo radio mínimo es de 15 m mientras que el radio máximo es de 50m, indicando que la velocidad de diseño es de 30Km/h. entre las recomendaciones, el investigador sugiere respetar los estudios realizados de topografía, así como respetar la norma

DG -2018 y los estudios económicos realizados, así mismo sugiere ejecutar el proyecto en épocas de sequía.

Este trabajo es de relevancia en nuestra investigación, puesto que siempre sugiere respetar las normas técnicas vigentes, las mismas que guiaran nuestra investigación.

Las teorías que sustentan esta investigación se basan en los reglamentos y normas del estado peruano como el Manual de Diseño Geométrico de carreteras DG-2018 del Ministerio de Transportes y Comunicaciones (MTC) a fin de cumplir con los procesos reglamentarios para la proyección de desarrollo de carreteras en el Perú. Entre los principales conceptos se ha considerado:

Levantamiento topográfico

(Navarro, 2008) Considera la topografía como el estudio de los procedimientos que se deben realizar de manera conjunta y ordenada de datos, para obtener de manera exacta la posición y ubicación de un punto en la superficie terrestre, utilizando los elementos; distancia, elevación y dirección, es el levantamiento de puntos de un terreno, además de poseer componentes de edición y redacción de la cartografía. (p.09), además considera que el levantamiento topográfico es aquello que producen mapas y planos con algunas características naturales hechas por el hombre.

Estudio de mecánica de suelos

(Duque y Escobar, 2002) los estudios de suelos estudian las propiedades mecánicas y comportamiento de este, así como su comportamiento del suelo como material estructural, por lo que permite conocer el comportamiento de los materiales sea por el movimiento de tierras, cargas, y otros agentes. Considera las condiciones físicas y químicas del subsuelo y su comportamiento en estado seco, humedad, proponiendo alternativas de cimentación convenientes.

Estudio hidrológico.

Según la Federal Council for Science and tehnology (Como se citó en (Puelles, 2015) considera la hidrología como la disciplina con la cual se determinan, que procesos y como es que generan el agotamiento o la recuperación de aguas en la tierra, así como en las diversas fases del ciclo hidrológico. El estudio hidrológico por lo tanto sirve entre otras cosas para el diseño de estructuras viales a fin de determinar la capacidad de diseño en puentes, alcantarillas para analizar su diseño.

Estudio de Impacto Ambiental.

Este estudio, muy importante hoy en día, que agrupa a varias disciplinas de la ingeniería y las ciencias sociales se utiliza para observar los cambios en el medioambiente por lo que se predice, identifica, valora y nos detalla que medidas preventivas se deben implementar a fin de mitigar las consecuencias de los efectos ambientales debido a los eventos antrópicos causan sobre la habitabilidad de las personas y su entorno.

Diseño Geométrico.

(Cardenas, 2013) El arte del Diseño Geométrico en carreteras, así como el proceso de correlación entre sus elementos físicos y las características de la operación de vehículos debe ser muy minucioso, y se deben utilizar materias como las matemáticas, física y geometría a fin de que la carretera pueda ser definida por medio de un trazo de su eje de planta, perfil en relación a su sección transversal (p.38).

II. METODOLOGÍA

3.1. Tipo y diseño de investigación

Según. (Hernández, Fernández, y Baptista, 2006). El tipo de investigación es descriptivo en la que se acopia e indaga información a fin de logra un mayor entendimiento y descripción de la misma.

El esquema es:

M - O

Dónde:

M: Diseño de infraestructura vial comunidades La Floresta-Shumba Alto- Ayabaquita-Pueblo nuevo Cruce San Agustín Huabal, distrito de Bellavista, Jaén.

O: Representa la búsqueda información para el proyecto.

3.2. Operacionalización de variables

Diseño de infraestructura vial

Tabla 01: Operacionalización de variables

Variable	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Escala de medición
				Estudio de trafico	Nominal
				Estudio topográfico	Nominal
Diseño de		Proceso de construcción en base al tráfico que soporta el	Estudios básicos	Estudio de mecánica de suelos	Nominal
infraestructura vial tramo la Floresta, y sus soportes que sur conforman la estructura de Ayabaquita, Pueblo las carreteras y caminos, Nuevo Y Cruce San Agustin - Huabal, Distrito Bellavista, Provincia de Jaén, Cajamarca Nueva construcción de vía alineamic agrupam caracterís seguridad para el tropeatonal una gesti (Ministerio de Transportes (Ministerio de Transportes)		alineamiento de su eje, un agrupamiento de		Estudio hidrológico e hidráulico	Nominal
	características técnicas y de seguridad que debe reunir para el tránsito vehicular y peatonal formando parte de una gestión inteligente		Estudio de impacto ambiental	Nominal	
			Geométrico	Nominal	
		Diseño	Pavimento	Nominal	
		(Ministerio de Transportes y Comunicaciones 2018)	Disello	Obras de arte	Nominal
				Seguridad y señalización	Nominal
			Costos	Costos y presupuestos	Nominal
			Tiempos de ejecución	Cronograma de obra	Intervalo

3.3. Población, muestra, muestreo, unidad de análisis

Población

La población y muestra es el área de estudio del tramo La Floresta en el Km 0+000 hasta el cruce San Agustín – Huabal hasta el punto final Km 05+518.

Mientras que la unidad de análisis tiene que ver con el que o quiénes son los que se van a abarcan en la investigación, por consiguiente, la unidad de análisis tiene que ver con el diseño de la infraestructura vial entre las comunidades de La Floresta, Shumba Alto, Ayabaquita, Pueblo Nuevo hasta el cruce en la vía San Agustin Huabal

3.4. Técnicas e instrumentos de recolección de datos

La observación ayudó a recoger las evidencias de la situación real que se encuentra la vía, los estudios básicos sirven para el diseño de la vía considerando la normativa peruana para su diseño. Consultando a la vez con un ingeniero civil experto en el tema.

3.5. Procedimientos

El proyecto inicia en la comunidad de La Floresta en el distrito de Bellavista, deja la carretera a San Ignacio para tomar el tramo que une las comunidades de Shumba Alto-Ayabaquita-Pueblo Nuevo hasta el cruce de la vía San Agustin-Huabal en el distrito de Bellavista, provincia de Jaén. Obteniendo los datos gracias a la colaboración de los moradores de la zona que nos apoyaron cuan información y apoyo se requería. La observación de la zona de influencia del proyecto permitió analizar las implicancias del proyecto, así como el registro natural de las mismas para luego llevarlo al análisis y con ayuda especializada se ha procedido con generar la idea del proyecto

3.6. Métodos de análisis de datos

Se realizó el diseño de la carretera tramo La Floresta – Shumba Alto – Ayabaquita – Pueblo Nuevo y cruce San Agustín Huabal, Distrito de Bellavista, Jaén, con la información que se recogió de en el campo y las

características físico mecánicas del suelo (CBR, Granulometría, Próctor modificado, límite líquido y límite plástico).

Después de la tabulación y reconocimiento de las propiedades del terreno, Se precedió con el diseño de la Infraestructura Vial, así como el diseño geométrico, con el levantamiento topográfico, para luego procesar los datos en los programas AutoCAD, Civil 3D 2018 para hacer el diseño geométrico de la carretera, así como los programas S10 para analizar los costos y presupuestos y MS Project

3.7. Aspectos éticos.

El proceso de la investigación se está respetando los lineamientos de la Universidad con respecto a las líneas de investigación, que ha normado la Universidad César Vallejo. Debido a ello esta investigación ha cumplido con los requisitos de originalidad, ética y objetividad.

IV. RESULTADOS

Topografía

El proyecto inicia en la comunidad de La Floresta (Km 0+000), ubicado en el Km 40.5 de la carretera Jaén-San Ignacio, pasando por el centro Poblado de Shumba Alto, continuando con la comunidad de Ayabaquita, la comunidad de Pueblo Nuevo para terminar en el cruce de la vía San Agustín - Huabal en el distrito de Bellavista, provincia de Jaén, región Cajamarca.

Las coordenadas se identificaron por medio de un punto inicial de la carretea coordenadas UTM. E9383740; N9383738; Altitud 699.

Se procedió con el estudio topográfico por medio de la estación total Trimble modelo M3DR2, georreferenciada con un GPS Garmin a través del uso de estaciones se procedió al levantamiento del terreno a lo largo de una trocha carrozable existente, se fijan en el terreno referencias topográficas permanentes, relacionados con el BM (Bench Mark's), cuya distancia desde el Km 0+000 hasta el cruce de vía San Agustín- Huabal Km 5+518 se cuenta con 12 BM que son los siguientes:

Tabla 02: Cuadro de coordenadas de BMS (UTM)

Punto	Norte	Este	Cota	Referencia
BM – 01	9383731.41	742953.813	699.222	Poste de Luz cerca de casa
BM - 02	9383850.96	742501.402	706.546	Portón parcela arroz
BM - 03	9384258.92	742272.936	697.966	Base Canal
BM – 04	9384112.72	741926.253	694.885	Base casa
BM - 05	9383718.78	741723.622	695.852	Plataforma Base canal
BM - 06	9383253.42	741708.714	707.337	Base puerta ingreso campo
				santo
BM – 07	9383217.91	741236.148	708.25	Base eje carretera
BM – 08	9383369.69	740735.557	708.113	Base IE N° 16008 Ayabaquita
BM - 09	9382874.06	740615.093	707.798	Base plataforma Luz
BM – 10	9382537.44	740371.98	710.573	Vereda casa Pueblo Nuevo
BM – 11	9382005.57	740421.96	752.094	Punto en zona accidentada.
BM – 12	9381729.07	740182.486	783.578	Punto final vía proyecto

Fuente: Elaboración propia.

Estudio de Tráfico

Se realizó el estudio de tráfico con la finalidad de cuantificar, clasificar por tipos de vehículos y conocer el volumen diario de los vehículos que transitan por dicha trocha carrozable existente, materia de estudio.

Tabla 03: Resultados de conteo de tráfico

Tipo de Vehículo	Lun.	Mar.	Miér.	Jue.	Vie.	Sab.	Dom.
Automóvil	4	4	8	8	6	15	28
Station Wagon	19	17	18	20	22	23	15
Pick Up	15	10	11	6	13	7	19
Combi	6	7	4	8	4	6	4
Ómnibus 2E	0	0	0	0	0	0	0
Camión 2E	6	4	6	5	4	8	0
Camión 3E	2	3	2	2	2	2	0
TOTAL	52	45	49	49	51	61	66

Fuente: Elaborado propia

El IMDA calculado es 57 Veh. /día. para lo cual el más predominante e influyente en la carretera son los vehículos livianos Station Wagon y Pick Up debido a la transitabilidad de la vía con comunidades cercanas.

El IMDA proyectado al 2040 es de 68 vehículos/día

Estudio de Mecánica de Suelos

Se realizó trabajos de campo de estudio de mecánica de suelos, realizando perforaciones de calicatas a 1.5m de profundidad a cielo abierto comprendida en 07 calicatas, obteniendo muestras para granulometría, limites, sales y CBR, los cuales son fundamentales para el diseño de una vía. A continuación, se muestra resultados obtenidos.

Los resultados de ensayo de compactación – Proctor Modificado Método ASTM D 1557

Tabla 04: Resultados ensayo de compactación

Método de compactación							
Calicata	C-1	C-03	C-05	C-07			
Estrato	E-01	E-01	E-01	E-01			
Máxima Densidad Seca	2.081	2.056	1.863	1.902			
(gr./cm3) al 100%							
Óptimo Contenido de	8.20%	8.80%	13.80%	12.40%			
Humedad	·						

Fuente: Elaboración propia

Resultados de valores del ensayo del CBR (California Bearing Ratio – Relación de Rodamiento de California

Tabla 05: Resultados de valores de ensayo CBR

Valor del C.B.R al 100% y al 95%						
Carga de Penetración Calicata	Penetración 0.1"	Penetración 0.2"				
Calicata C-01						
C.B.R. al 100% de la Máxima Densidad Seca	21.5 %	23.3%				
C.B.R al 95% de la Máxima Densidad Seca 13.5% 14.7%						
Calicata C-03						
C.B.R. al 100% de la Máxima Densidad Seca	14.9%	17.7%				
C.B.R. al 95% de la Máxima Densidad Seca	9.5%	10.8%				
Calicata C-05						
C.B.R. al 100% de la Máxima Densidad Seca	11.0%	12.5%				
C.B.R. al 95% de la Máxima Densidad Seca 7.1% 8.0%						
Calicata C-07						
C.B.R. al 100% de la Máxima Densidad Seca	13.5%	14.9%				
C.B.R. al 95% de la Máxima Densidad Seca	9.4%	10.5%				

Fuente: Elaboración propia

Tabla 06: Resumen de los resultados de calicatas

Calicata	Contenido Humedad (%)	Límite Líquido (LL)	Límite Plástico (LP)	Índice Plástic o (IP)	sucs	AASTH O	Descripción	Obs. AASTHO
C-01	9.61	20.20	15.56	4.64	SC - SM	A-2- 4(0)	Arena arcillosa con lim	Malo
C-02	16.82	29.10	17.90	11.20	CL	A-6(5)	Arcilla inorgánica de baja plasticidad	Malo
C-03	15.30	27.30	15.40	11.90	CL	A-6(7)	Arcilla inorgánica de baja plasticidad	Malo
C-04	11.50	31.90	17.40	14.50	SC	A-6(1)	Arena arcillosa medianamente compacto	Regular
C-05	15.40	41.20	23.40	17.80	CL	A-7- 6(11)	Arcilla inorgánica de baja plasticidad	Malo
C-06	13.10	30.20	16.60	13.60	CL	A-6(7)	Arcilla inorgánica de baja plasticidad	Malo
C-07	14.33	41.10	21.45	19.65	CL	A-7- 6(12)	Arcilla inorgánica de baja plasticidad	Malo

Fuente: Elaboración propia

Estudio de Impacto vial

El propósito del estudio de impacto vial es ver cómo será afectado el tránsito en el distrito con la puesta en operación de la nueva vía. Identificar todos los elementos involucrados que pueden aplicarse y lo más importante es garantizar la seguridad vial en toda la zona de influencia.

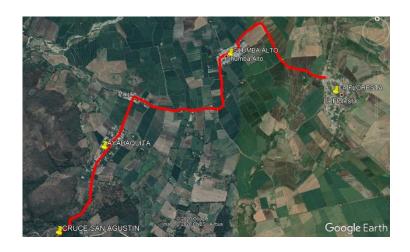


Figura 01: Ubicación del proyecto

La ruta planteada, permitirá a los vehículos ir desde la parte norte hacia otros caseríos y centros poblados tanto del distrito de Bellavista como de las comunidades del distrito de Huabal, debido al proceso constructivo, habrá momentos que la vía se interrumpirá, esta vía permitirá el incremento del parque automotor en el distrito, así como las señales de tránsito ayudarán a los vehículos circular con seguridad.

Estudio Impacto ambiental

Realizando el recorrido de la carretera tramo la Floresta- Shumba Alto – Ayabaquita – Pueblo Nuevo y Cruce San Agustín Huabal, para su elaboración se tenido que obtener la información de campo de las actividades más importantes que afectan al medio ambiente. Lo que me ha Permitido hacer un mejor diagnóstico del medio biótico y abiótico que será afectado. Llegando a las siguientes conclusiones:

El proyecto tiene un área de influencia de 6.48 Km2, mientras que las acciones con mayor impacto son: el desbroce y la tala de árboles, el movimiento de tierras, el transporte de materiales, la construcción del pavimento y las obras de arte.

En cuanto al impacto negativo del proyecto, podemos mencionar que son el cambio de uso en el suelo agrícola para la construcción del pavimento asi como la tala de árboles y vegetación natural existente dentro del derecho de la vía de la carretera. Mientras que el impacto positivo es la generación de empleo durante la construcción de la vía.

Estudio Hidrológico y Drenaje

En cuanto a la información, se ha considerado la estación hidrometeorológica de Jaén, sugiere una cuneta triangular, con medidas 1.10m y de 0.60 m de profundidad las mismas que estarán a lo largo de toda la vía. Se ha analizado la información del SENAMHI en los últimos 20 años de las precipitaciones pluviales, considerando la máxima 130.00 mm.

Se recomienda la sección de la cuneta rectangular a lo largo de toda la vía. Se ha propuesto 12 alcantarillas con un diseño de TMC de ø 36"

Diseño de Infraestructura vial

Diseño Geométrico

La carretera contará según su Demanda y Orografía, a su demanda la carretera será de 3° clase cumpliendo según N.T.P. de D.G - 2018 y además será pavimentada, se considera por orografía como terreno Accidentado (Tipo 3) y con un IMDA <200 Veh. /día. La carretera se diseñó con una velocidad de diseño de 30 Km/h, el ancho de la superficie de rodadura es de 6.00 metros, las pendientes longitudinales se encuentran entre 6% y 7% por lo que se requiere importante movimiento de tierras. El resumen queda de la siguiente manera:

Tabla 07: Resumen de características geométricas de diseño

Descripción	Valor
IMD	57veh/día
Clasificación vial	Tercera clase
Longitud total	5 + 518 Km
Orografía tipo	Tipo 3 y 4
Ancho de calzada	6.00 m
Vehículo de diseño	C 2
Velocidad directriz	30 km/h
Ancho de berma	0.50 m c/lado
Bombeo de calzada	2%
Radio mínimo	25 m
Pendiente máxima	8.00%
Pendiente mínima	0.50%
K min. Convexo	1.9
K min. Cóncavo	6
Longitud mínima	FO
De la curva vertical	50 m
Peralte máximo	8.00%
Talud de corte	Variable H.V
Talud de relleno	1.5.1 H:V
Superficie de rodadura	Carpeta asfáltica
Tipo de cuneta	Triangular

Fuente: Elaboración propia

Diseño del Pavimento

Se considera el tipo de pavimento flexible, longitud de 5.518 km., categoría de 3° clase con de 02 carriles, ancho de la calzada de 6.00 m ESAL de diseño es de 462296.08 con un factor de confiabilidad de 75% por ser caminos de bajo volumen de tránsito. Se encontró que la tasa de desviación estándar es de -0.674 mientras que la serviciabilidad inicial es de 3.800 la serviciabilidad final es de 2.000, el módulo de resiliencia (Mr (ksi)) es de 8.51

La velocidad de diseño es de 30km/h en la siguiente tabla se presenta los espesores de la capa asfáltica.

Tabla 08: Espesores del pavimento

CAPAS	Espesor Calculado en	Espesor Planteado		
CAPAS	pulgadas	en Pulgadas	en Cm	
Carpeta Asfáltica	2.5 "	2 "	5.00	
Base Granular	4 "	8 "	20.00	
Sub base granular	4 "	8 "	20.00	
	TOTAL	18 "	45.00	

Fuente: Elaboración propia

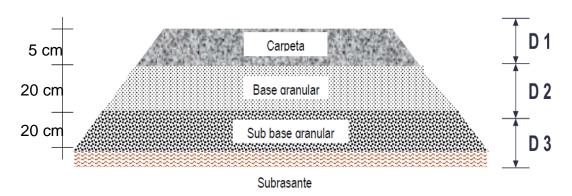


Figura 02: Esquema de pavimento a usar

Diseño de Obras de Arte

Se realizará cunetas para evacuación de aguas de terrenos colindantes y 12 Alcantarillas de 4 m de longitud, altura 1.00 m. y ancho 1.20 m.

Metrados, Presupuestos y Cronograma de Obra

Los metrados están dados por partidas (ver anexo de metrados), El presupuesto estimado es de 6,049,123.16 soles y El tiempo estimado es la ejecución del proyecto es de ocho (08) meses

Señalización Vial

La señalización como parte del proyecto vial es muy importante tanto en el proceso constructivo como informar al usuario de la vía, tenemos las señales regulativas, preventivas, reglamentarias, informativas.

Figura 03: Señalización vial

Planos de Obra

Se realizaron planos de: Plano de ubicación, plano clave, planos de Planta y Perfil, plano de Sección Típica, planos de Secciones Transversales, planos de Alcantarillas y planos de Señalización

Presupuesto del proyecto

Tabla 09: Presupuesto total de la obra

Costo Directo	4,304,984.51
Gastos Generales (12.91%)	606,141.82
Utilidad (10%)	215,249.23
Sub Total	5,126,375.56
IGV (18%)	922,747.60
Presupuesto Total	6,049,123.16

Fuente: Elaboración propia

V. DISCUSIÓN

La elaboración de los estudios topográficos se realizaron mediante métodos tradicionales en la que se utilizaron, una estación total marca Topcon ES-105, GPS navegador, Wincha, se ha notado que el geomorfología presenta un terreno tipo 3 y 4, con respecto a la carretera, esta tiene una pendiente máxima es de 8%, que se enmarca dentro los parámetros que dicta la norma EG2018, respetando los lineamientos de diseño, como puntos de control se han determinado puntos que podrán ser fácilmente ubicados ya que estos han sido monumentados en campo para su fácil ubicación, cuando se ejecute el proyecto, además se han dejado marcado en el campo, esta ubicación corresponde a 7 BM´s, los que están distribuidos en una longitud total de 05+518 km.

En el estudio se suelos, se hizo calicatas de un metro por un metro contando una profundidad de 1.5 m, teniendo como resultado en el laboratorio de R&R CONSULTORES CBR al 95% como menor valor 7.10%, mientras que el valor máximo es de 13.50%, en la realización de los diseños del espesor del pavimento, los suelos que predominan en la sub rasante arcilla inorgánica nos arrojó suelo regular malo y suelo malo, por lo que se ha considerado el suelo más desfavorable.

En cuanto al estudio hidrológico se ha realizado a fin de evaluar las obras de arte, así como determinar las precipitaciones pluviales de la zona considerando las máximas y promedios precipitaciones de la estación de Jaén. Se cuenta con las obras de arte cunetas a lo largo de la carretera, así como la construcción de 12 alcantarillas TMC de ø 36"

Para el diseño geométrico de la carretera, La Floresta, Shumba Alto, Ayabaquita, Pueblo Nuevo y Cruce San Agustín-Huabal, en el estudio de transito arroja una circulación de 57 veh/día, la actual vía es una trocha carrozable que dificulta una buena transitabilidad en los pobladores de las comunidades involucradas en el proyecto, sobre todo en épocas lluviosas. Se ha considerado un ancho de 6.00 metros, las bermas serán de 0.50 metros por lado, cuya pendiente máxima es de 8%, con una velocidad de diseño de 30 km/h.

Sobre el los resultados de Estudio de Impacto ambiental, este se realizó con la aplicación normativa de la Ley N° 27446 y demás normas donde se debe de guiar en los criterios de la protección de la salud de las personas, y tenido especial énfasis en la protección de la calidad ambiental (aire, agua, suelo, ruido), protección de los recursos naturales, ecosistemas, espacios urbanos, a fin de mitigar los aspectos negativos que provocarán los trabajos en el momento de la ejecución del proyecto, contando con un buen PAMA (Plan de manejo ambiental).

En cuanto al presupuesto del proyecto, se ha considerado los costos y materiales de la zona, así como la mano de obra y maquinaria de acuerdo a CAPECO, arrojando un presupuesto total de S/.6,049,123.16, para una longitud de 5+518 km.

VI. CONCLUSIONES

- 1) Se ha diseñado para radios entre 15m 20m en la mayor parte de la carretera, en los kilómetros 02+000 al 2+218; 03+000 al 04+000; 5+500, sobre las pendientes mínimas se han determinado puntos críticos en los las progresivas 04+00 al 04+220 con pendiente de 0.16%., la pendiente máxima se han encontrado puntos críticos en los kilómetros: 00+200 al 00+843, cuidando que no exceda del 8.00%.
- 2) En cuanto a los estudios de mecánica de suelos, se han realizado 7 calicatas, teniendo los resultados realizados en el laboratorio de "R&R CONSULTORES" los resultados del CBR al 95% son el menor valor 7.10% mientras que el valor máximo es de 13.50%, los suelos que predominan en la sub rasante son arcilla inorgánica de baja plasticidad cuyo suelo es malo.
- 3) En cuanto al estudio hidrológico y drenaje se ha hecho con los datos de la estación de Jaén, haciendo un análisis de las precipitaciones máximas anuales cuyo promedio es de 130.80 mm y el de 54.37 mm es el promedio de 24 horas, estos resultados ayudaron en el diseño de 12 alcantarillas de TMC, así como el diseño triangular de las cunetas que permiten evacuar las aguas de la plataforma teniendo las dimensiones de 1m x 1m., de ancho por 0.60m de profundidad.
- 4) En el diseño del pavimento se ha utilizado el método AASTHO 93, el cual nos arrojó la estructura con los siguientes espesores: Sub base 0.20 m, base de 0.20 m y la carpeta asfáltica de 0.05m.
- 5) El diagnostico que se ha hecho en el área donde se proyecta el estudio de la carretera tramo La Floresta - Shumba Alto – Ayabaquita – Pueblo Nuevo y cruce San Agustin – Huabal se hizo una descripción de la flora y la fauna, suelo y agua,a fin de determinar cuáles son los aspectos negativos que provocarán la ejecución de los trabajos en el momento de la ejecución del proyecto, por lo que se ha realizado un plan de manejo ambiental que mitigara cualquier daños que se ocasionen al medio ambiente y también se

hará la compensación de estos daños que no se pueden mitigar y para compensar los daños ocasionados al medio ambiente se están aplicando medias para esta labor.

6) El costo total de la carretera asfaltada es de S/. 6,049,123.16 y el plazo para realizar su ejecución del proyecto es de 150 días calendario.

VII. RECOMENDACIONES

- 1) Se recomienda tener en cuenta el plazo del proyecto y los puntos de control dejados en el campo para el trabajo de replanteo.
- 2) Se recomienda tener en cuenta que por resultados de laboratorio el tipo de suelo predominante en la zona es arcilla inorgánica de baja plasticidad (CL) y según la clasificación de AASTHO, sería un suelo malo. Por tal motivo se recomienda el mejoramiento del terreno con over de ø 6", porque el suelo del terreno de fundación tiene un CBR muy bajo; es por eso se está considerando una capa de 0.20m.
- 3) Respetar el diseño de las alcantarillas en los tramos de la carretera.
- 4) Respetar el diseño de la estructura del pavimento.
- 5) Respetar el plan de manejo ambiental puesto que los daños pueden ser los mínimos tanto la flora, fauna aire como en el agua.
- 6) La ejecución del proyecto sea en temporadas de verano a fin de lograr los plazos planificados.

REFERENCIAS

Andina. 2017. Invertirán más de S/ 6 mllns en mantenimiento de vías dañadas por lluvias en Lambayeque. 8 de marzo de 2017.

Baltodano, Wilman. 2017. modelo de gestión de conservación vial basado en criterios de sostenibilidad para reducir los costos de mantenimiento vial en la carretera. Trujillo: s.n., 2017.

Cardenas, J. 2013. Diseño Geométrico de Carreteras. Bogotá: Ecoe ediciones, 2da edicion, 2013. pág. 544. 978-958-648-859-4.

Carpio, Patricio. 2017. "Sistema Institucional Para La Gestión De Estrategias De Planificación Y Conservación De Caminos Rurales En La Provincia Del Azuay". Ecuador: s.n., 2017.

Castope, Miguel. 2017. estudio definitivo de la carretera cp. insculas – cp. el faique, distrito de olmos, provincia Lambayeque, región Lambayeque. Lambayeque: s.n., 2017.

Chamaya, J.M. y Villar, E.A. 2018. Diseño de infraestructura vial para accesibilidad entre Centros Poblados Pajaritos Km.0+000, Centro Poblado de Urban Km. 2+500, Canoas de Punta Sal, Tumbes 2018. Chiclayo: (Tesis de pregrado) Universidad Cesar Vallejo, 2018.

Chávarry, R.B. y Angulo, L.D. 2019. Diseño del mejoramiento de la carretera entre los caseríos de Chilal y Pucará, distrito Pulán, Provincia Santa Cruz, Departamento Cajamarca, 2018. Trujillo- Perú: (Tesis pregrado) Universidad Cesar Vallejo, 2019.

Comunicaciones, Ministerio de Transportes y. 2018. Manual de carreteras: Diseño Geométrico. Lima: s.n., 2018.

Consorcio de Investigación Económica y Social - CIES. 2008. ensayos sobre el Rol de la infraestructura vial en el crecimiento económico del Perú. 2008.

Coria, I.D. 2008. El estudio de impacto ambiental: Características y metodologías. Rosario: s.n., 2008. págs. 125-135. 0329-3475.

Correo. 2019. Comisión multisectorial plantea paro regional por carretera central. 29 de 10 de 2019.

De la Cruz. 2018. Estudio Definitivo de la Carretera CP. El Mango – CP. El Redondo, Distrito Olmos, Provincia Lambayeque, Región Lambayeque. Olmos: s.n., 2018.

Duque, G. y Escobar, C.E. 2002. Mecanice de suelos. Manizales: (Textos para la asignatura de suelos I) Universidad Nacional de Colombia, 2002.

El Comercio. 2017. Más de 75 vías a nivel nacional continúan afectadas por lluvias. 16 de abril de 2017.

—. 2018. Se manifiestan en la Panamericana Norte contra la Nueva Ciudad de Olmos. 16 de mayo de 2018.

El país. 2018. Plan Bachetón busca intervenir 320 kilómetros de vías en mal estado en Cali. El país. 05 de febrero de 2018.

Gonzales, J. 2018. Colombia ocupa el puesto 97 en conectividad de carreteras según el Foro Económico Mundial. Especial, 2018, págs. https://www.larepublica.co/especiales/especial-infraestructura/colombia-ocupa-el-puesto-97-en-conectividad-de-carreteras-segun-el-foro-economic.

Hernández, Gino. 2016. EVALUACIÓN ESTRUCTURAL Y PROPUESTA DE REHABILITACIÓN DE LA INFRAESTRUCTURA VIAL DE LA AV. FITZCARRALD, TRAMO CARRETERA POMALCA – AV. VICTOR RÁUL HAYA DE LA TORRE. Pimentel: s.n., 2016.

Hernández, R. Fernández, C y Baptista, P. 2006. Metodología de la investigación. 4ta Edición. México: McGraw-Hill, 2006. 970-10-5753-8.

Kohon, J. 2011. La infraestructura en el Desarrollo Integral de América Latina. Diagnostico estratégico y propuesta para una agenda prioritaria, transporte. Asunción, Paraguay: CAF en su presentación en la XXI Cumbre Iberoamericana de Jefes de Estado y de Gobierno., 2011.

La República. 2017. Lambayeque: Panamericana Norte Antigua se encuentra bloqueada por mal estado de la vía. 7 de febrero de 2017.

La República. 2018. OLMOS: un pueblo que padece el olvido del Estado. 23 de marzo de 2018.

Manual de trabajos de investigación. Universidad César Vallejo. 2015. 2015.

Marañón, Radio. 2019. Radio Marañón. Por lluvias en la selva existe un alto riesgo de huaycos en 24 distritos. [En línea] 12 de 11 de 2019. [Citado el: 12 de 12 de 2019.] https://radiomaranon.org.pe/por-lluvias-en-la-selva-existe-muy-alto-riesgo-de-huaicos-en-24-distritos/.

Marcone, G. 2020. Por las rutas del Qhapaq Ñan: el rol de los caminos en la construcción de la gistoria y territorio peruano. [En línea] Chungará (Arica), 2020. [Citado el: 15 de 12 de 2020.] http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-73562020000300411&lng=es&nrm=iso. 0717-7356.

Martínez, Everardo. 2016. Se estanca calidad de carreteras en México, pese a mayor inversión. 15 de agosto de 2016.

Ministerio de Transporte y Comunicaciones. 2018. Glosario de términos de uso frecuente en proyectos de infraestructura vial. Lima: s.n., 2018.

Ministerio de Transportes y Comunicaciones. 2008. Manual para el diseño de carreteras no pavimentadas de bajo volumen de tránsito. 2008.

Ministerio de Transportes y Comunicaciones. 2006. Proyecto de Reglamento Nacional de Infraestructura Vial. Lima: s.n., 2006.

Navarro, S. J. 2008. Manual de Topografía - Planimetría. [En línea] 2008. [Citado el: 05 de 11 de 2019.] https://sjnavarro.files.wordpress.com/2011/08/apuntes-topografia-i.pdf.

Perez. 2016. Diseño de la Carretera C.P. Cucufana – C.P. Tranca Sasape, Distrito de Morrope, Provincia Lambayeque, Región Lambayeque. Lambayeque: s.n., 2016.

Perú 21. 2017. El 70% de las carreteras de Lambayeque deben ser reparadas. 16 de julio de 2017.

Puccio, C.A. y Tocto, E.G. 2018. Diseño de infraestructura vial para transitabilidad entre localidades Mórrope Km0+000 y Monteverde Km15+680, Mórrope, Lambayeque - 2018. Chiclayo: (Tesis pre grado) Universidad Cesar Vallejo, 2018.

Puelles, J.C. 2015. Estudio hidráulico e hidrológico de la Cuenca Alto Perú y el Porvenir en el asentamiento humano Las Mercedes Alto Perú, distrito de la Oroya, Provincia de Yauli - Junín para la construcción futura de obras de arte ante amenazas de derrumbe. Lima: (Tesis pregrado) Universidad Peruana de Ciencias Aplicadas, 2015.

Quenaya, X. X. y Tarrillo, F. E. 2018. Diseño de infraestructura vial para accesibilidad del tramo C.P.U. Capote Km 0+000 al C.P.R. Pancal Km 7+000, Picsi, Lambayeque. Pimentel: (tesis pregrado) Universidad Señor de Sipán, 2018.

Quequezana, P. D. 2020. Motores recientes y cuellos de botella del crecimiento económico en el Perú. Lima: (Documento de suficiencia profesional para optar el título profesional de Licenciado en Economía), Universidad del Pacifico, 2020.

Radio Programas del Perú. 2018. Ministro de Transportes inspeccionó infraestructura de la Carretera Centra. 07 de abril de 2018.

Robalino, J. L. 2016. La Infraestructura vial en el sector Teligote San Francisco Mazabacho de la parroquia Benitez, canton Pelileo, provincia de Tungurahua y su incidencia en el desarrollo local. Ambato, Ecuador: (proyecto de investigación pregrado) Universidad Tecnica de Ambato, 2016.

Rodríguez. 2015. Estudio y diseño del sistema vial de la "Comuna San Vicente de Cucupuro" de la parroquia rural del quinche del distrito metropolitano de Quito,

provincia de Pichincha. Quito: Universidad Internacional del Ecuador: Tesis (Ingeniero Civil), 2015.

Rojas, Faustino. 2017. mejoramiento de la transitabilidad vehicular y peatonal de la av. césar vallejo, tramo cruce con la av. separadora industrial hasta el cruce con el cementerio, en el distrito de villa el salvador, provincia de lima, departamento de lima. Lima: s.n., 2017.

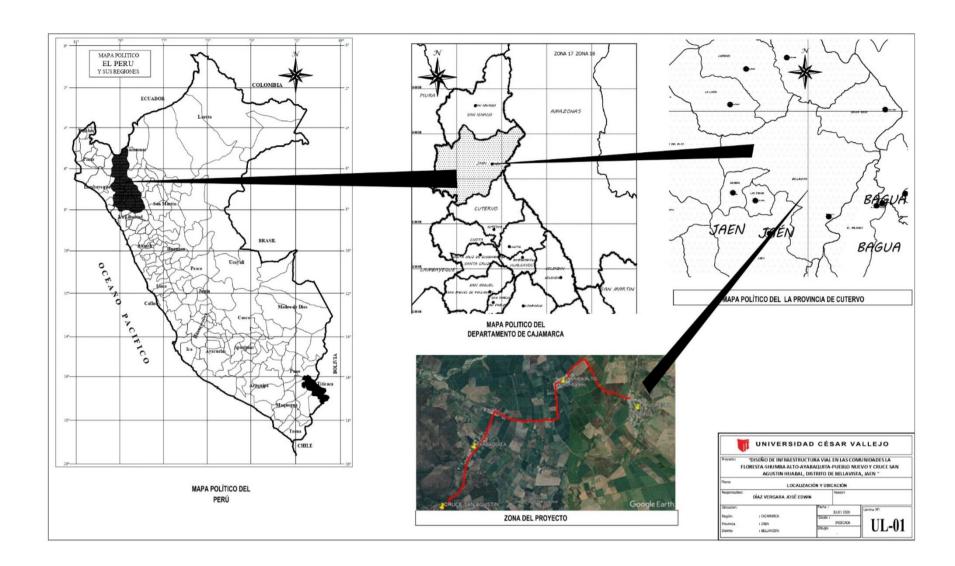
Sanchez, R. y Wilmsmeier, G. 2005. Provisión de infraestructura de transporte en America Latina: experiencias recientes y problemas observados. CEPAL- Naciones Unidas. [En línea] 2005. [Citado el: 15 de 11 de 2020.] https://repositorio.cepal.org/bitstream/handle/11362/6290/S057544_es.pdf?seque nce=1&isAllowed=y. 1680-9017.

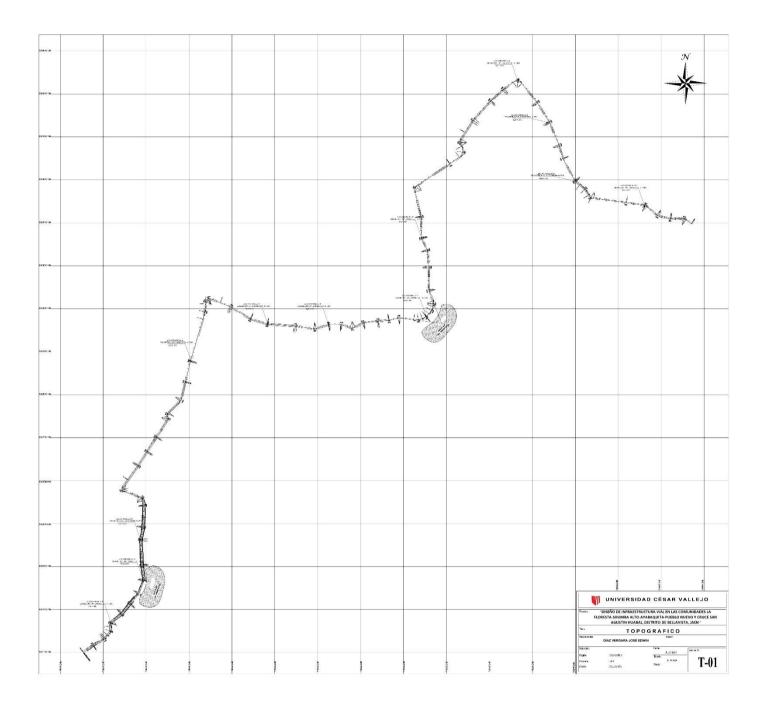
Sanchez, W. A. y Zamora, J. D. 2019. Diseño de la carretera Mamaruribamba bajo - Las Palmas de Tinyayoc - Rambrán, distrito y provincia de Cutervo, Cajamarca, 2016. Chiclayo: (Tesis de pregrado) Universidad Católica Santo Toribio de Mogrovejo, 2019.

Saucedo, J. D. 2018. Diseño definitivo de la carretera desde la ciudad de Bambamarca hasta el caserío Chilcapapma, provincia de Hualgayoc, Cajamarca - 2018. Chiclayo- Perú: (Tesis pre grado) Universidad Cesar Vallejo, 2018.

Taopanta, D.P. y Valle. V.I. 2018. Diseño de la vía canelos-San Eusebio- El Carmen, de 6 Km de longitud ubicada en la provincia de canelos, Canton Pastaza, provincia de Pastaza. Quito: (Tesis pregrado) Universidad Central del Ecuador, 2018.

Tiempo, El. 2019. Así será la reapertura de la vía al Llano que comienza este martes. Economía y negocios. 2019.


Toapanta, Dina. 2018. Diseño de la vía Canelos – San Eusebio – El Carmen, de 6 km de longitud ubicada en la parroquia Canelos, cantón Pastaza, provincia de Pastaza. 2018.


Universidad Autónoma de Barcelona. 2002. Libro verde. Barcelona: s.n., 2002.

Valverde, Alyssa. 2017. diseño geométrico a nivel de afirmado del camino vecinal san juan de pamplona – santa clara – villa hermosa, l=11 km, distrito de Yurimaguas – provincia de alto amazonas – región Loreto. Tarapoto: s.n., 2017

Anexo 01: Matriz de consistencia

Formulación del problema de investigación	Objetivo general	Indicadores	Técnicas de recolección de información	Método de análisis de datos	Tipo y diseño de investigación
	Realizar el diseño de la infraestructura vial en las comunidades La Floresta – Shumba Alto – Ayabaquita – Pueblo Nuevo y cruce San Agustín Huabal, Distrito de Bellavista, Jaén.	Diseño de la infraestructura vial	Métodos de diseño	Revisión documentaria	El diseño será Investigación n o Experimental ; Investigación aplicada
	Objetivos específicos		Instrumentos de levantamiento de información	Variable	Población y muestra
	Determinar la el estado situacional del proyecto a diseñar.	Diagnostico situacional	Ficha de observación		
¿Cuál será el adecuado	Realizar el Estudio Topográfico tramo La Floresta – Shumba Alto – Ayabaquita – Pueblo Nuevo y cruce San Agustín Huabal.	Topografía	Estudio topográfico	Diseño de la infraestructura vial tramo La Floresta, Shumba Alto, Ayabaquita, Pueblo Nuevo y Cruce San Agustin, Hubal, distrito	Población y muestra: Tramo La floresta en el Km 0+000 hasta el cruce San Agustín – Huabal hasta el punto final Km 05+518.
diseño de la infraestructura vial entre las comunidades de La Floresta, Shumba Alto, Ayabaquita, Pueblo Nuevo y cruce San Agustin- Huabal, en el		Tráfico	Estudio de transitabilidad	- Bellavista, provincia de Jaén, Cajamarca	
	Elaborar Estudios de Mecánica de Suelos, Topográficos, Estudio de Trafico, Estudio de Hidrología y Drenaje, y evaluar el impacto	Mecánica de suelos	Estudio de mecánica de suelos		
distrito de Bellavista,	ambiental	Hidrológico	Estudio hidrológico	-	
¿Jaén?		Impacto ambiental	Estudio de impacto ambiental	_	
	Diseñar la los componentes de que conforman la Infraestructura vial, a nivel de estudios definitivos, que comprende: Diseño geométrico, Memorias descriptivas, memorias de cálculo, especificaciones técnicas, metrados, costos, presupuesto, análisis de cotos unitarios, cronograma y programación de obra, valorizaciones y planos, para la alternativa técnica y económica de mejor aplicación.	Diseño	Normatividad Nacional	Financiamiento: Propia	Cronograma de ejecución 5 meses 150 dias

PERUTEST S.A.C.

CALIBRACIÓN, MANTENIMIENTO Y VENTAS DE EQUIPOS E INSTRUMENTOS DE LABORATORIO
SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA
RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 061 - 2019

Área de Metrología

Laboratorio de Temperatura

Página 1 de S

1. Expediente 955-2019

2. Solicitante R&R CONSULTORES S.R.L.

3. Dirección Jr. Leoncio Prado Nro 1091 - Tarapoto San Martin - SAN MARTIN

4. Equipo HORNO

Alcance Máximo 300 °C

Marca A&A INSTRUMENTS

Modelo STHX-3A

Número de Serie 5 14415

Procedencia CHINA

Identificación NO INDICA

Ubicación LABORATORIO DE SUELO CONCRETO Y

Descripción	Controlador 9 Selector	Instrumento de medición
Alcance	30 °C a 300 °C	30 °C a 300 °C
División de escala / Resolución	0.1°C	O.1°C OFF SA
ATIPO TIPO	CONTROLADOR ELECTRONICO	TERMÓMETRO DIGITAL

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

5. Fecha de Calibración 2019-10-22

Fecha de Emisión Jefe del Laboratorio de Metrología

Sello

2019-10-22

MANUEL ALEJANDRO ALIAGA TORRES

LABORATORIO

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martín de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 764 5730 E-mail: ventas@perutest.com.pe Web: www.perutest.com.pe

PERUTEST S.

CALIBRACIÓN, MANTENIMIENTO Y VENTAS DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

> CERTIFICADO DE CALIBRACIÓN PT - LT - 061 - 2019

Laboratorio de Temperatura

S EQUIPOS E INSTRUMENTOS

PERUIES

SAC

2 horas praultest s.A.

Doordend	trología e Temperatura	5	St. C. B	S. A.C.	of AC.	Ci	P.C. P.	TE	60	E.P.O	15	CRUTEST'S	Pagina 3 de
Resultad	os de Medició tura ambienta de calentamier lador se seteo	. O.	15	OUTE	0. 7	S.P.	5000	ERUTE'S P	C. RUHES	S.A. PER	2, 6	ERUTE ALLES	Pagina 3 de
Tempera	tura ambienta	prom	edio	21	°C/S	Still	0.	5	STV.	C. X.	S.A.C.	REST PERSON	C.P. C
Nempo	le calentamier	ito y es	tabiliza	acion d	el equi	po	5 2h	oras	5.8	169	OFF	0.	Sale
El Contro	lador se seteo	en III	(87)	6,	195	The .	80	0.	6	all.	0.	S.A. WIE	get as
S ALL	C. X. X.S.	100	80	PARA	LA TEN	APERA	TURA	E 110	°C	1,58	15	Off C	5 5
Tiempo	Termómetro	7	EMPER	RATUR	AS EN I	LASPO	SICION	IES DE	MEDIC			Tprom	Fmax-Tm
45	del equipo	So.	NIVE	L SUPE	RIOR	7 .5	2.	NIVE	LINFE	RIOR	195	162 6	0
(min)	(c) (150	2	3	(A)	5	× 8	KA-	28	29	S 10 0	(°C)	3.cm
000	5110,0	0,0	107.1	111.0	115.1	112.4	104.2	109.0	C.	1	109.7	310.4	11.7
1502	110.0	107.3	0	- Pre	115.7	113.0	104.0	108.6	113.0	(115.5	109.7	110.4	011.7
04	9 110.0	107.0	106.9	1	115.4	- 1	104.2	4	Day.	116.1	. Colone	110.4 6	11.9
02 04 06 08 10 12 14	110.0	106.9		111.0	Dr.	112.6	104.0	108.6	112.4	2~/	109.7	110.4	11.7
10	110.0		107.0	109.7			104.0	108.6	112.6	115.5	109.7	110.4	11.6
10 12 14 16	110.0	107.0	107.1	111.0	1.	112.6	104.0	0~		,)	141 9	110.4	12.19
- V	110.0	D.		109.7	1	a K	104.1	109,0	113.0	115.7	109.7	110.3	11.6
×16 0	190.0	106.9	107.0	111.3	115.1	112.4	104.2	1 4	112.6	1	Cy.	110.4	₹11.7€
18	9110.0	107.3	107.1	110.5	115.7	113.0	104.0	109.0	113.0	115.5	109.7	110.5	11.7
920	110.0	107.0	107.1	111.3	115.4	112.6	104.2	108.6	112.6	116.1	109.7	110.5	Q11.9
14 16 18 20 22	0.110.0	107.4	107.1	110.5	115.1	112.6	104.0	108.6	112.6	115,9	109.6	110.3	11.9
24	110.0	106.9	106.9	111.0	115.7	112.6	104.2	108.6	K	115.5	109.7	110.4	11.5
22 24 26 28 30 32	110.0	107.3	107.0	OY C	115.4	2 00	104.0	All the second	11	116.1	109.7	110.3	12,1
28	110.0	106.9	106.9	111.3		112	104.2	108.6	113.0	115.7	109.6	110.4	c11.5
30 0.	110.0	107.3	107.0	11	115.4		104.0	-	112.4	1/1		110.3	11.5
34	110.0	107.4	107.1	111.0	115.3	1.1	104.0	108,6	113.0	115.9	109.7	110.2	11.9
28 30 32 34 36	110.0			111.3	A 4	(17)			112.6	116.1	200	110.5	11.9
	110.0	106.9	107.1				104.0		The !	20	S. Area	110.4	11.7
S 40 5	110.0						104.0				4 4 4	110.4	117
40 42 44 46 48 50 52	110.0	107.0	107.0	109.7	115.4	112.4	104.2	108.6	112.6	116.1		110.3	A11.9
2 445 F	110.0						104.0	108.6	112.4	115.7	109.7	410.4	11.9
46	110.0	106.9	107.1	109.7	115.1	112.6	104.2		113.0			110.3	11.7
J 48	9110.09	107.3	107.1	111.3	115.7	112.6	104.1		112.6	115.5		110.5	11.6
50	6 110.0		106.9	110.5	115.4	112.4	104.2	108.6	113.0	116.1	109.7	110.4	11.9
44 46 48 50 52 54 56	110.0	107,0	107.0	111.3	115.3		a Care		112.6			110.4	Q 11.75
54	0 110.0	107.4		111.0			104.0	108.6		115.9		Q110.4	11.9
()	110.0	106.9	107.1		115.7				112.6			110.2	J 11.70
58	110.0) _/) (115.4				112.6			110.5	11.9
60	110.0	106.9		110.5	145.3						109.6	110.3	STATI
54 56 58 60 T.PROM T.MAX T.MIN DTT	110.0	107.1	of the last of the	_	115.4	-			112.7	- Carlotte Contractor	109.7	110.4	11.7 11.9 11.7 11.9 11.7
T.MAX	110.0	107.4	107.1 106.9	1200	115.7	113.0	104.2	109.0 108,6	113.0	116.1	109.7	PERUS	PAR
T.MIN	9 0.0	0.5	0.25	THE RESERVE AND PERSONS NAMED IN	Name and Address of the Owner, where	0.6	0.2	0.4	0.6	0.6	0.1	OTHEST'S	LABOR

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martin de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 764 5730 E-mail: ventas@perutest.com.pe Web: www.perutest.com.pe

PERUTEST S.

CALIBRACIÓN, MANTENIMIENTO Y VENTAS DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

> CERTIFICADO DE CALIBRACIÓN PT - LT - 061 - 2019

Laboratorio de Temperatura

S EQUIPOS E INSTRUMENTOS

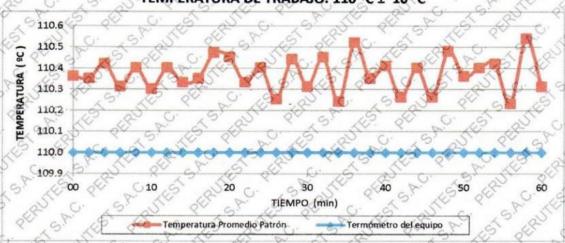
PERUIES

SAC

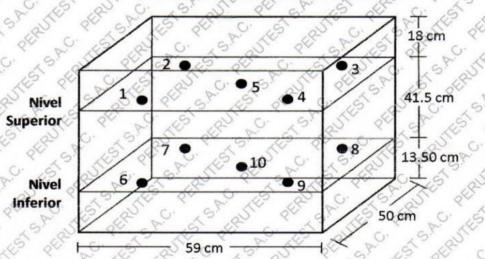
2 horas praultest s.A.

Doordend	trología e Temperatura	5	St. C. B	S. A.C.	of AC.	Ci	P.C. P.	TE	60	E.P.O	15	CRUTEST'S	Pagina 3 de
Resultad	os de Medició tura ambienta de calentamier lador se seteo	. O.	15	OUTE	0. 7	S.P.	5000	ERUTE'S P	C. RUHES	S.A. PER	2, 6	ERUTE ALLES	Pagina 3 de
Tempera	tura ambienta	prom	edio	21	°C/S	Still	0.	5	STV.	C. X.	S.A.C.	REST PERSON	C.P. C
Nempo	le calentamier	ito y es	tabiliza	acion d	el equi	po	5 2h	oras	5.8	169	OFF	0.	Sale
El Contro	lador se seteo	en III	CON	6,	195	The .	80	0.	6	all.	0.	S.A. WIE	get as
S ALL	C. X. X.S.	100	80	PARA	LA TEN	APERA	TURA	E 110	°C	1,58	15	Off C	5 5
Tiempo	Termómetro	7	EMPER	RATUR	AS EN I	LASPO	SICION	IES DE	MEDIC			Tprom	Fmax-Tm
45	del equipo	So.	NIVE	L SUPE	RIOR	7 .5	2.	NIVE	LINFE	RIOR	195	162 6	0
(min)	(c) (150	2	3	(A)	5	× 8	KA-	28	29	S 10 0	(°C)	3.cm
000	5110,0	0,0	107.1	111.0	115.1	112.4	104.2	109.0	C.	1	109.7	310.4	11.7
1502	110.0	107.3	0	- Pre	115.7	113.0	104.0	108.6	113.0	(115.5	109.7	110.4	011.7
04	9 110.0	107.0	106.9	1	115.4	- 1	104.2	4	Day.	116.1	. Colone	110.4 6	11.9
02 04 06 08 10 12 14	110.0	106.9		111.0	Dr.	112.6	104.0	108.6	112.4	2~/	109.7	110.4	11.7
10	110.0		107.0	109.7			104.0	108.6	112.6	115.5	109.7	110.4	11.6
10 12 14 16	110.0	107.0	107.1	111.0	1.	112.6	104.0	0~		,)	141 9	110.4	12.19
- V	110.0	D.		109.7	1	a K	104.1	109,0	113.0	115.7	109.7	110.3	11.6
×16 0	190.0	106.9	107.0	111.3	115.1	112.4	104.2	1 4	112.6	1	Cy.	110.4	₹11.7€
18	9110.0	107.3	107.1	110.5	115.7	113.0	104.0	109.0	113.0	115.5	109.7	110.5	11.7
920	110.0	107.0	107.1	111.3	115.4	112.6	104.2	108.6	112.6	116.1	109.7	110.5	Q11.9
14 16 18 20 22	0.110.0	107.4	107.1	110.5	115.1	112.6	104.0	108.6	112.6	115,9	109.6	110.3	11.9
24	110.0	106.9	106.9	111.0	115.7	112.6	104.2	108.6	K	115.5	109.7	110.4	11.5
22 24 26 28 30 32	110.0	107.3	107.0	OY C	115.4	2 00	104.0	All the second	11	116.1	109.7	110.3	12,1
28	110.0	106.9	106.9	111.3		112	104.2	108.6	113.0	115.7	109.6	110.4	c11.5
30 0.	110.0	107.3	107.0	11	115.4		104.0	-	112.4	1/1		110.3	11.5
34	110.0	107.4	107.1	111.0	115.3	1.1	104.0	108,6	113.0	115.9	109.7	110.2	11.9
28 30 32 34 36	110.0			111.3	A 4	(17)			112.6	116.1	200	110.5	11.9
	110.0	106.9	107.1				104.0		The !	20	S. Area	110.4	11.7
S 40 5	110.0						104.0				4 4 4	110.4	117
40 42 44 46 48 50 52	110.0	107.0	107.0	109.7	115.4	112.4	104.2	108.6	112.6	116.1		110.3	A11.9
2 445 F	110.0						104.0	108.6	112.4	115.7	109.7	410.4	11.9
46	110.0	106.9	107.1	109.7	115.1	112.6	104.2		113.0			110.3	11.7
J 48	9110.09	107.3	107.1	111.3	115.7	112.6	104.1		112.6	115.5		110.5	11.6
50	6 110.0		106.9	110.5	115.4	112.4	104.2	108.6	113.0	116.1	109.7	110.4	11.9
44 46 48 50 52 54 56	110.0	107,0	107.0	111.3	115.3		a Contract		112.6			110.4	Q 11.75
54	0 110.0	107.4		111.0			104.0	108.6		115.9		Q110.4	11.9
()	110.0	106.9	107.1		115.7				112.6			110.2	J 11.70
58	110.0) _/) (115.4				112.6			110.5	11.9
60	110.0	106.9		110.5	145.3						109.6	110.3	STATI
54 56 58 60 T.PROM T.MAX T.MIN DTT	110.0	107.1	of the last of the	_	115.4	-			112.7	- Carlotte Contractor	109.7	110.4	11.7 11.9 11.7 11.9 11.7
T.MAX	110.0	107.4	107.1 106.9	1200	115.7	113.0	104.2	109.0 108,6	113.0	116.1	109.7	PERUS	PAR
T.MIN	9 0.0	0.5	0.25	THE RESERVE AND PERSONS NAMED IN	Name and Address of the Owner, where	0.6	0.2	0.4	0.6	0.6	0.1	OTHEST'S	LABOR

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martin de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 764 5730 E-mail: ventas@perutest.com.pe Web: www.perutest.com.pe



CALIBRACIÓN, MANTENIMIENTO Y VENTAS DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA PERUTEST S.A.C. RUC N° 20602182721 EQUIPOS E INSTRUMENTOS


> CERTIFICADO DE CALIBRACIÓN PT - LT - 061 - 2019

Area de Metrología Laboratorio de Temperatura

DISTRIBUCIÓN DE TEMPERATURAS EN EL EQUIPO TEMPERATURA DE TRABAJO: 110 °C ± 10 °C

DISTRIBUCIÓN DE LOS TERMOPARES

Los sensores 5 y 10 están ubicados en el centro de sus respectivos niveles.

Los sensores del 1 al 4 y del 6 al 9 se colocaron a 9 cm de las paredes laterales y a 9 cm del fondo y frente del equipo a

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estandar por el factor de cobertura k-2 al accert confianza de aproximadamente 95%.

Fin del documento.

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martín de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 764 5730 Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 764 5730 E-mail: ventas@perutest.com.pe Web: www.perutest.com.pe

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

PROV. JAEN SOLICITADO: DIAZ VERGARA, JOSÉ EDWIN. UBICACIÓN : DIST. BELLAVISTA

REG. CAJAMARCA

FECHA: may.-20

														0
						CUADRO	RO DE RESUMEN	IEN						
CALICATA	PROGRESIVA	MUESTRA	PRUFNDIDAD	HUMEDAD	LIMITE	LIMITE	INDICE	PORCENTAJE	M.D.S	0.С.Н	C.B.R. 100%	C.B.R. 95%	CLASIFICACION	CLASIFICACION
Ş	W.S.	9	Ĩ	NATURAL	Odinon	PLASTICO	PLASTICIDAD	MALLA N° 200	(GR/CC3)	(%)	M.D.S.	M.D.S.	S.U.C.S.	A.S.S.H.I.O.
2 5	KM. 00+000	W-1	0.20 - 1.50	19.6	20.20	15.56	4.64	28.89	2.081	8.20	21.50	13.50	SC -SM	A-2-4(0)
C-5	KM. 01+000	M-1	0.20 - 1.50	16.82	29.10	17.90	11.20	60.20	1.854	13.80	12.70	7.80	CL	A-6(5)
	KM. 02+000	M-1	0.20 - 1.50	15.30	27.30	15.40	11.90	69.70	2.056	8.80	14.90	9.50	CL	A-6(7)
	000160	M-1	0.20 - 1.20	14.20	45.50	25.15	20.35	68.10	C	ſ,	ı	L	CL	A-7-6(11)
3	NM. 03+000	M-2	1.20 - 1.50	11.50	31.90	17.40	14.50	39.20	1.932	9.50	15.30	9.90	SC	A-6(1)
ű	000770	M-1	0.20 - 0.50	16.90	38.30	18.45	19.85	79.45	Û	C	E	t	CL	A-6(12)
ŝ	WW. 04+000	M-2	0.50-1.50	15.40	41.20	23.40	17.80	96.94	1.863	13.80	11.00	7.10	CL	A-7-6(11)
i	000730 747	M-1	0.20 - 0.80	14.70	38.20	23.05	15.15	77.20	Ð	0	1	ū	CL	A-6(10)
ŝ	MM. 03-000	M-2	0.80 - 1.50	13.10	30.20	16.60	13.60	64.10	1.929	13.50	14.50	11.00	CL	A-6(7)
C-7	KM. 05+500	M-1	0.20 - 1.50	14.33	41.10	21.45	19.65	79.50	1.902	12.40	13.50	9.40	TO	A-7-6(12)

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

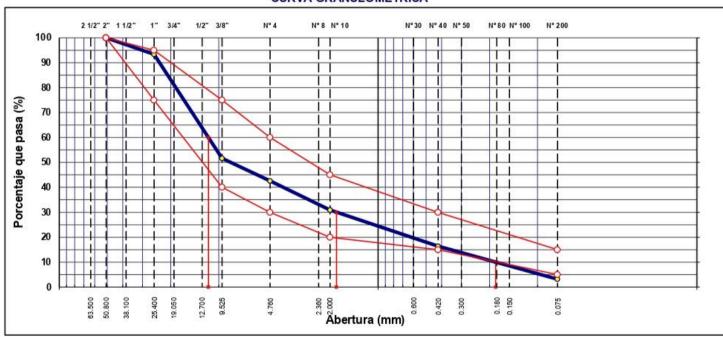
MTC E 107, E 204 - ASTM D 422 - AASHTO T-11, T-27 Y T-88

PROYECTO : "DISEÑO DE INFRAESTRUCTURA VIAL COMUNIDADES LA FLORESTA - SHUMBA ALTO - AYABAQUITA - PUEBLO NUEVO Y CRUCE

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

UBICACIÓN : PROV. JAEN DIST. BELLAVISTA REG. CAJAMARCA

MUESTRA : MEZCLA FISICA.


CANTERA : RIO AMOJU: PIEDRA CHANCADA + ARENA GRUESA RIO AMOJU (A 12,300 M. DEL INICIO DE TRAMO)

 MATERIAL
 DISEÑO DE MEZCLA BASE GRANULAR
 TÉCNICO : G.R.P

 TESISTA : DIAZ VERGARA, JOSÉ EDWIN.
 FECHA : may-20

TAMIZ	ABERT. mm.	PESO RET.	%RET. PARC.	%RET. AC.	% Q' PASA	HUSO B	DE	SCRIPCIÓN	DE LA MUES	TRA
3"	76.200						PESO TOTAL	=	24,900.0	gr
2 1/2"	63.500						PESO LAVADO	=	24114.6	gr
2"	50.800		······································		100.0	100 - 100	PESO FINO	=	500.0	gr
1 1/2"	38.100				100.0		LÍMITE LÍQUIDO	=	N.P.	%
1"	25.400	1,643.0	6.6	6.6	93.4	75 - 95	LÍMITE PLÁSTICO	=	N.P.	%
3/4"	19.050	1,860.0	7.47	14.1	85.9		ÍNDICE PLÁSTICO	=	N.P.	%
1/2"	12.700	3,633.0	14.6	28.7	71.3		CLASF. AASHTO	=	A-1-a	[0]
3/8"	9.525	4,897.0	19.7	48.3	51.7	40 - 75	CLASF, SUCCS	=	GW	
1/4"	6.350						Ensayo Malla #200	P.S.Seco.	P.S.Lavado	% 200
#4	4.760	2,254.0	9.1	57.4	42.6	30 - 60		24900.0	24114.6	3.2
#8	2.360						% Grava =	57.4	%	
# 10	2.000	138.0	11.8	69.1	30.9	20 - 45	%Arena =	39.5	%	
# 30	0.600						% Fino =	3.2	%	
# 40	0.420	170.0	14.5	83.6	16.4	15 - 30	% HUMEDAD	P.S.H.	P.S.S	% Humedad
# 50	0.300		i i							Ī
# 80	0.180						OBSERVACIONES: A	rena Chanc	ada Rio Amojuc	12.0%
# 100	0.150	7					Arena Zarandeada I	Rio Amojuc	:	30.0%
# 200	0.075	155.0	13.2	96.8	3.2	5 - 15	Grava Chancada Ar		/2"- 3/16"	36.0%
< # 200	FONDO	37.0	3.2	100.0	0.0	***************************************	Grava Chancada Ar	nojuc	1 "-3/4"	22.0%
RACCIÓN	(20)	500.0					Coef. Uniformidad	63	Índice d	le Consistencia
TOTAL		24,900.0					Coef. Curvatura	1.6		878
scripción s	uelo:	Grava bien gi	adada con arei	na			Pot. de Expansión	Bajo		92

CURVA GRANULOMÉTRICA

Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS

Ing. Francisco Grández Rengifo
INGENERO CIVIL
GIP 1 101293

EQUIVALENTE DE ARENA

MTC E 114 - ASTM D 2419 - AASHTO T-176

PROYECTO : "DISEÑO DE INFRAESTRUCTURA VIAL COMUNIDADES LA FLORESTA - SHUMBA ALTO - AYABAQUITA - PUEBLO NUEVO Y CRUCE

: SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

UBICACIÓN : PROV. JAEN DIST. BELLAVISTA REG. CAJAMARCA

MUESTRA : MEZCLA FISICA.

CANTERA

: RIO AMOJU: PIEDRA CHANCADA + ARENA GRUESA RIO AMOJU (A 12,300 M. DEL INICIO DE TRAMO)

 MATERIAL
 : DISEÑO DE MEZCLA BASE GRANULAR
 TECNICO
 : G.R.P

 TESISTA
 : DIAZ VERGARA, JOSÉ EDWIN.
 FECHA : May. 20

			IDI	ENTIFICACIÓN	
		1	2	3	4
Hora de entrada a saturación		13:50	13:52	13:44	
Hora de salida de saturación (más 10')		14:00	14:02	13:54	
Hora de entrada a decantación		14:02	14:04	14:06	
Hora de salida de decantación (más 20')		14:22	14:24	14:26	
Altura máxima de material fino	cm	8.40	8.50	8.30	
Altura máxima de la arena	cm	5.20	5.10	5.30	
Equivalente de arena	%	62	60	64	
Equivalente de arena promedio	%			62.0	
Resultado equivalente de arena	%			62	

Observaciones:	
8	

Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS

Ing. Francisco Grández Rengifo
INGENIERO CIVILI
CIP Nº 161293

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

UBICACIÓN : PROV. JAEN DIST. BELLAVISTA REG. CAJAMARCA.

CANTERA : RIO AMOJU: PIEDRA CHANCADA + ARENA GRUESA RIO AMOJU (A 12,300 M. DEL INICIO DE TRAMO)

 MATERIAL
 : DISEÑO DE MEZCLA BASE GRANULAR
 TECNICO: G.R.P.

 TESISTA
 : DIAZ VERGARA, JOSÉ EDWIN.
 FECHA : may-20

ENSAYO DE CBR

MTC E 132 - ASTM D 1883 - AASHTO T-193

Molde N°		3	3	7		8	3
N° Capa		5		5			5
Golpes por capa N°		5	6	2	5	1	2
Cond. de la muestra		NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO
Peso molde + suelo húmedo	(gr)	9125		8874		8515	
Peso de molde	(gr)	4120		4120		4117	
Peso del suelo húmedo	(gr)	5005		4754		4398	
Volumen del molde	(cm3)	2123		2123		2068	
Densidad húmeda	(gr/cm3)	2.358		2.239		2.127	
Humedad	(%)	6.55		6.26		6.76	
Densidad seca	(gr/cm3)	2.213		2.107		1.992	
Tarro N°		3		7		2	
Tarro + Suelo húmedo	(gr)	654.00		565.00		578.00	
Tarro + Suelo seco	(gr)	618.00		537.00		549.00	
Peso del Agua	(gr)	36.00		28.00		29.00	
Peso del tarro	(gr)	68.00		90.00		120.00	
Peso del suelo seco	(gr)	550.00		447.00		429.00	
Humedad	(%)	6.6		6.3		6.8	
Promedio de Humedad	(%)	6.55		6.26		6.76	

EXPANSIÓN

ECHA	HORA	TIEMPO	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN
LCHA	HORA	Hr.	DIAL	mm	%	DIAL	mm	%	DIAL	mm	%
					W E			65			
					16						
					A.S						10
					77						75
					9						10-
1				1 1	15						0

	CARGA		MOLDE N	o	3		MOLDE N	No.	7		MOLDE	Nº	8
PENETRACIÓN	STAND.	CA	RGA	CORRI	CCIÓN	CA	RGA	CORRE	CCIÓN	CA	RGA	CORRE	CCIÓN
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	%	Dial (div)	kg/cm2	kg/cm2	%	Dial (div)	kg/cm2	kg/cm2	%
0.000		0	0			0	0			0	0		
0.025		165	8.4			123	6.3			89	4.5		
0.050		587	29.9			298	15.2			187	9.5		
0.075		865	44.1			543	27.7			311	15.8		
0.100	70.31	1267	64.5	59.58	84.7	834	42.5	38.55	54.8	456	23.2	21.97	31.2
0.150		1811	92.3			1143	58.2			666	33.9		
0.200	105.46	2156	109.8	110.32	104.6	1456	74.2	72.87	69.1	987	50.3	49.35	46.8
0.300		3145	160.2			1987	101.2			1543	78.6		2
0.400	1	4116	209.7			2654	135.2			2145	109 3		

3211

163.6

4890

0.500

249.1

135.2

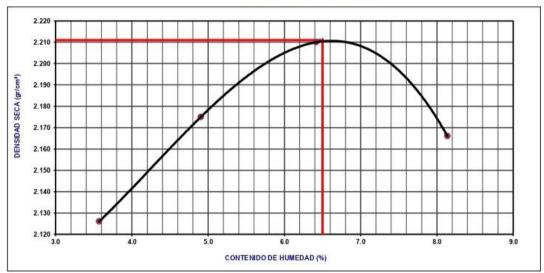
2654

ENSAYO PRÓCTOR MODIFICADO

PROYECTO : "DISEÑO DE INFRAESTRUCTURA VIAL COMUNIDADES LA FLORESTA - SHUMBA ALTO - AYABAQUITA - PUEBLO NUEVO Y CRUCE

: SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

UBICACIÓN : PROV. JAEN DIST. BELLAVISTA REG. CAJAMARCA


MUESTRA : MEZCLA FISICA.

CANTERA : RIO AMOJU: PIEDRA CHANCADA + ARENA GRUESA RIO AMOJU (A 12,300 M. DEL INICIO DE TRAMO)

MATERIAL: DISEÑO DE MEZCLA BASE GRANULARTECNICO: G.R.PTESISTA: DIAZ VERGARA, JOSÉ EDWIN.FECHA : Mayo 20.

		COMPAC	TACION		
MÉTODO DE COMPACTACIÓN :	"C"				
NUMERO DE GOLPES POR CAPA :	56				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	7934	8105	8256	8234	
PESO DE MOLDE (gr) PESO SUELO HUMEDO (gr) VOLUMEN DEL MOLDE (cm²)	3220	3220	3220	3220	
PESO SUELO HÚMEDO (gr)	4714	4885	5036	5014	
VOLUMEN DEL MOLDE (cm³)	2141	2141	2141	2141	
DENSIDAD HUMEDA (gr/cm³)	2.202	2.282	2.352	2.342	
DENSIDAD SECA (gr/cm³)	2.126	2.175	2.210	2.166	
		CONTENIDO D	E HUMEDAD		
RECIPIENTE N°	5	6	7	9	
PESO (SUELO HÚMEDO + TARA) (gr)	645.00	567.00	568.00	678.00	
PESO (SUELO SECO + TARA) (gr)	625.00	544.00	540.50	633.00	
PESO (SUELO SECO + TARA) (gr) PESO DE LA TARA (gr)	65.00	75.00	112.00	80.00	
PESO DE AGUA (gr)	20.00	23.00	27.50	45.00	
PESO DE SUELO SECO (gr)	560.00	469.00	428.50	553.00	
CONTENIDO DE HUMEDÃD (%)	3.57	4.90	6.42	8.14	
MÁXIMA DENSIDAD SECA (gr/cm³)	2.211	ÓPTIMO CONTEN	IIDO DE HUMEDAD	(%)	6.50

CURVA DE COMPACTACIÓN

Genis Ramirez Pinedo TEC SVELOS Y PAVIMENTOS

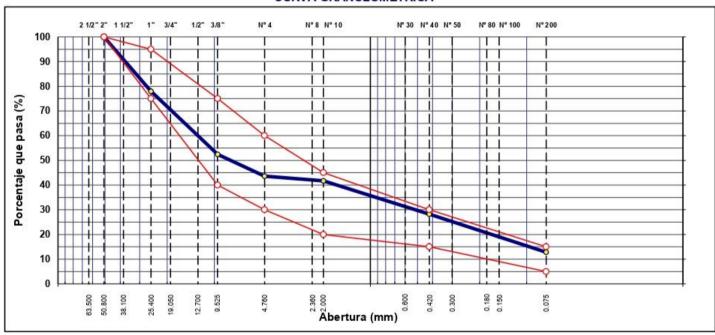
ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

MTC E 107, E 204 - ASTM D 422 - AASHTO T-11, T-27 Y T-88

PROYECTO : "DISEÑO DE INFRAESTRUCTURA VIAL COMUNIDADES LA FLORESTA - SHUMBA ALTO - AYABAQUITA - PUEBLO NUEVO Y CRUCE

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

UBICACIÓN : PROV. JAEN DIST. BELLAVISTA REG. CAJAMARCA


CANTERA : HORMIGÓN RIO SHUMBA (A 1,100 M. DEL TRAMO)

CAPA : SUB BASE GRANULAR

TESISTA : DIAZ VERGARA, JOSÉ EDWIN. FECHA : may-20

TAMIZ	ABERT. mm.	PESO RET.	%RET. PARC.	%RET. AC.	% Q' PASA	HUSO B	DI	ESCRIPCIÓN	DE LA MUES	STRA
3"	76.200						PESO TOTAL	=	19,880.0	gr
2 1/2"	63.500	•••••	Ì				PESO LAVADO	=	17332.2	gr
2"	50.800	***************************************	i i		100.0	100 - 100	PESO FINO	=	500.0	gr
1 1/2"	38.100	1,765.0	8.9	8.9	91.1		LÍMITE LÍQUIDO	=	20.49	%
1"	25.400	2,621.0	13.2	22.1	77.9	75 - 95	LÍMITE PLÁSTICO	=	14.82	%
3/4"	19.050	1,678.0	8.4	30.5	69.5		ÍNDICE PLÁSTICO	=	5.67	%
1/2"	12.700	2,154.0	10.8	41.3	58.7		CLASF. AASHTO	=	A-1-a	(0)
3/8"	9.525	1,244.0	6.3	47.6	52.4	40 - 75	CLASF, SUCCS	=	GC - GM	
1/4"	6.350	***************************************	Ì				Ensayo Malla #200	P.S.Seco		% 200
# 4	4.760	1,746.0	8.8	56.4	43.6	30 - 60		19880.0	17332.2	12.8
# 8	2.360	•••••	Ì				% Grava	= 56.4	%	
# 10	2.000	21.9	1.9	58.3	41.7	20 - 45	%Arena	= 30.8	%	
# 30	0.600		Ì				% Fino	= 12.8	%	
# 40	0.420	154.0	13.4	71.7	28.3	15 - 30	% HUMEDAD	P.S.H.	P.S.S	% Humeda
# 50	0.300		Ì							
# 80	0.180	•••••					OBSERVACIONES:			··· ! ······
# 100	0.150	•••••	<u> </u>							
#200	0.075	177.2	15.5	87.2	12.8	5 - 15				
<# 200	FONDO	146.9	12.8	100.0	0.0		1			
FRACCIÓN	•	500.0					Coef. Uniformidad	141	Índice	e de Consistencia
TOTAL		19,880.0					Coef. Curvatura	970		#¡VALOR!
escripción s	uelo:	Grava limo ar	cillosa con arei	na			Pot. de Expansión	Bajo	1	#¡VALOR!

CURVA GRANULOMÉTRICA

Genis Ramirez Pinedo

Ing. Francisco Grandez Rengifo
INGENIERO CIVIL
CIP N 101283

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

UBICACIÓN : PROV. JAEN DIST. BELLAVISTA REG. CAJAMARCA.

CANTERA : HORMIGÓN RIO SHUMBA (A 1,100 M. DEL TRAMO)

MATERIAL SUB BASE GRANULAR FECHA may.-20

TESISTA : DIAZ VERGARA, JOSÉ EDWIN.

			ENSAYO	DE CBR			
Molde N°		1		2		,	3
N° Capa		5	;	5		5	
Golpes por capa N°		5	6	25		12	
Cond. de la muestra		NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO
Peso molde + suelo húmedo	(gr)	9023		8770		8512	
Peso de molde	(gr)	4112		4120		4100	
Peso del suelo húmedo	(gr)	4911		4650		4412	
Volumen del molde	(cm3)	2105		2105		2105	
Densidad húmeda	(gr/cm3)	2.333		2.209		2.096	
Humedad	(%)	7.43		7.17		7.33	
Densidad seca	(gr/cm3)	2.172		2.061		1.953	
Tarro N°		9		2		3	
Tarro + Suelo húmedo	(gr)	673.00		613.00		597.00	
Tarro + Suelo seco	(gr)	632.00		578.00		561.00	
Peso del Agua	(gr)	41.00		35.00		36.00	
Peso del tarro	(gr)	80.00		90.00		70.00	
Peso del suelo seco	(gr)	552.00		488.00		491.00	
Humedad	(%)	7.4		7.2		7.3	
Promedio de Humedad	(%)	7.43		7.17		7.33	

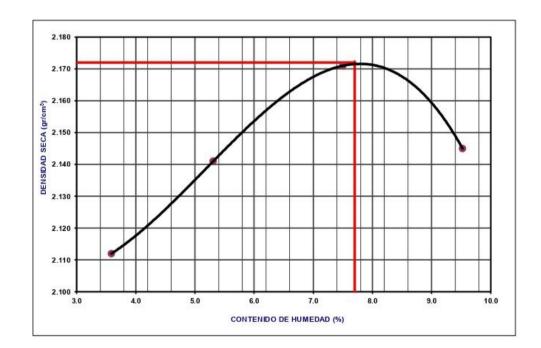
	CARGA		MOLDE N	0	1		MOLDE N	No.	2		MOLDE N	lo	3
PENETRACIÓN	STAND.	CA	RGA	CORRE	CCIÓN	CA	RGA	CORRE	CCIÓN	CA	RGA	CORR	ECCIÓN
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	%	Dial (div)	kg/cm2	kg/cm2	%	Dial (div)	kg/cm2	kg/cm2	%
0.000		0	0		2	0	0			0	0		
0.025		182	9.3			82	4.2			53	2.7		
0.050		373	19.0			226	11.5			144	7.3		
0.075		623	31.7			430	21.9			345	17.6		
0.100	70.31	823	41.9	40.45	57.5	634	32.3	31.06	44.2	352	17.9	18.93	26.9
0.150		1175	59.9		-1.	965	49.2		8	571	29.1	4	
0.200	105.46	1587	80.8	81.50	77.3	1253	63.8	62.04	58.8	762	38.8	39.43	37.4
0.300		2401	122.3			1782	90.8		,	1182	60.2	3 9	
0.400		3174	161.7			2354	119.9		,	1502	76.5		
0.500		3887	198.0			2893	147.4			1770	90.2		

Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS

Ing. Francisco Gréndez Rengifo
INGENERO CIVIL
CIP Nº 101293

ENSAYO PRÓCTOR MODIFICADO

PROYECTO : "DISEÑO DE INFRAESTRUCTURA VIAL COMUNIDADES LA FLORESTA - SHUMBA ALTO - AYABAQUITA - PUEBLO NUEVO Y CRUCE


SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

UBICACIÓN : PROV. JAEN DIST. BELLAVISTA REG. CAJAMARCA FECHA : may-20

CANTERA : HORMIGÓN RIO SHUMBA (A 1,100 M. DEL TRAMO)

MATERIAL : SUB BASE GRANULAR
TESISTA : DIAZ VERGARA, JOSÉ EDWIN.

		COMPACTACIÓN			
MÉTODO DE COMPACTACIÓN :	"C"				
NUMERO DE GOLPES POR CAPA :	56				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	10172	10311	10480	10511	
PESO DE MOLDE (gr)	5566	5566	5566	5566	
PESO SUELO HÚMEDO (gr)	4606	4745	4914	4945	
VOLUMEN DEL MOLDE (cm³)	2105	2105	2105	2105	
DENSIDAD HÚMEDA (gr/cm³)	2.188	2.254	2.334	2.349	
DENSIDAD SECA (gr/cm³)	2.112	2.141	2.171	2.145	
	CON	ITENIDO DE HUMEDA	D		
RECIPIENTE №	8	3	1	4	
PESO (SUELO HÚMEDO + TARA) (gr)	675.00	665.00	643.00	632.00	
PESO (SUELO SECO + TARA) (gr)	654.00	635.00	603.00	584.00	
PESO DE LA TARA (gr)	69.00	70.00	70.00	80.00	
PESO DE AGUA (gr)	21.00	30.00	40.00	48.00	
PESO DE SUELO SECO (gr)	585.00	565.00	533.00	504.00	
CONTENIDO DE HUMEDAD (%)	3.59	5.31	7.50	9.52	
MÁXIMA DENSIDAD SECA (gr/cm³)	2.172	ÓPTIMO CONTEN	IDO DE HUMEDAD (%)	7.70

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

PROGRESIVA : KM. 00+000

UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA

TESISTA : DIAZ VERGARA, JOSÉ EDWIN. may.-20

	COMPA	CTACION			
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5	2200		50	
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	6125	6211	6280	6278	
PESO DE MOLDE (gr)	4205	4205	4205	4205	
PESO SUELO HÚMEDO (gr)	1920	2006	2075	2073	
VOLUMEN DEL MOLDE (cm³)	921	921	921	921	
DENSIDAD HÚMEDA (gr/cm³)	2.085	2.178	2.253	2.251	
DENSIDAD SECA (gr/cm³)	2.003	2.054	2.081	2.044	
	CONTENIDO	DE HUMEDAD			
RECIPIENTE N°	2	3	4	5	
PESO (SUELO HÚMEDO + TARA) (gr)	452.30	411.50	425.80	442.70	
PESO (SUELO SECO + TARA) (gr)	434.50	388.00	393.30	402.00	
PESO DE LA TARA (gr)	0.00	0.00	0.00	0.00	
PESO DE AGUA (gr)	17.80	23.50	32.50	40.70	
PESO DE SUELO SECO (gr)	434.50	388.00	393.30	402.00	
CONTENIDO DE HUMEDAD (%)	4.10	6.06	8.26	10.12	en 2000 et 000 et 0
MÁXIMA DENSIDAD SECA (gr/cm³)	2.081	ÓPTIMO CONTEN	IDO DE HUMEDAD	(%)	8.20

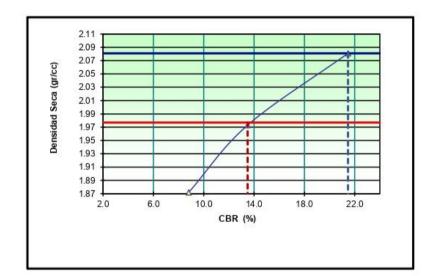
2.090 2.080 2.080 2.090 2.000

Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS

Ing. Francisco Grández Rengifo
INGENERO CIVIL
CIP Nº 101293

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

PROGRESIVA : KM. 00+000


UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA

TESISTA : DIAZ VERGARA, JOSÉ EDWIN. FECHA may.-20

ENSAYO DE CBR

MTC E 132 - ASTM D 1883 - AASHTO T-193

GRAFICO DE PENETRACIÓN DE CBR

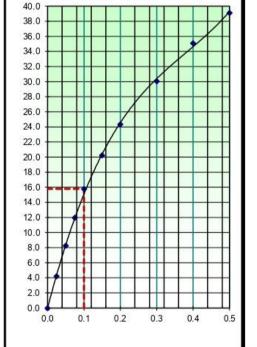
C.B.R. AL 100% DE M.D.S. (%)	0.1":	21.5	
C.B.R. AL 95% DE M.D.S. (%)	0.1":	13.5	

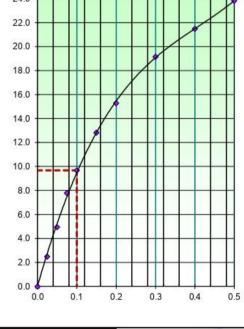
Datos del Proctor		
Densidad Seca	2.081	gr/cc
Óptima Humedad	8.20	%

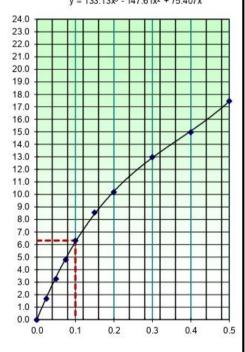
OBSERVACIONES:

EC = 56 GOLPES EC = 12 GOLPES

y = 335.67x² - 382.45x² + 185.86x


y = 191.08x³ - 232.56x² + 116.2x


y = 133.13x³ - 147.61x² + 75.407x


24.0

24.0

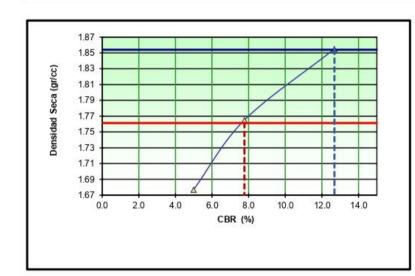
23.0

Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS

Ing. Francisco Gréndez Rengifo
INGENIERO CIVIL
CIP N 101293

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

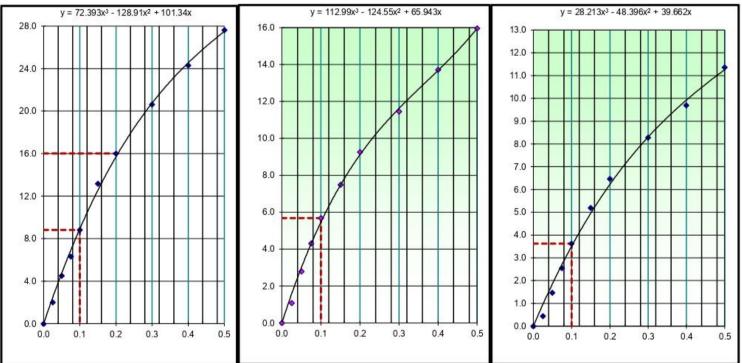
PROGRESIVA : KM. 01+000


UBICACIÓN : DIST. BELLAVISTA. PROV. JAÉN REG. CAJAMARCA

SOLICITADO : DIAZ VERGARA, JOSÉ EDWIN. FECHA may.-20

ENSAYO DE CBR

MTC E 132 - ASTM D 1883 - AASHTO T-193


GRAFICO DE PENETRACIÓN DE CBR

C.B.R. AL 100% DE M.D.S. (%)	0.1":	12.7	
C.B.R. AL 95% DE M.D.S. (%)	0.1":	7.8	

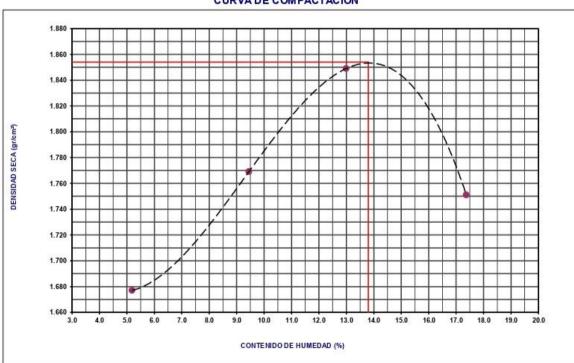
Datos del ProctorDensidad Seca1.854gr/ccÓptima Humedad13.80%

OBSERVACIONES:

Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS

Ing. Francisco Grández Rengifo
INGENIERO CIVIL
CIP N 101283

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.


PROGRESIVA : KM. 01+000

UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA

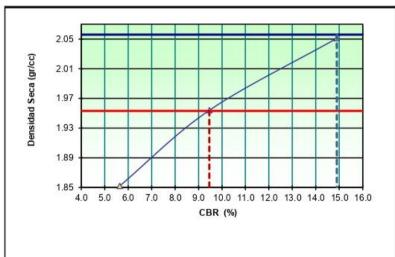
SOLICITADO : DIAZ VERGARA, JOSÉ EDWIN. may.-20

o fav					may20
	COM	MPACTACION			
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	3490	3650	3792	3760	
PESO DE MOLDE (gr)	1851	1851	1851	1851	
PESO SUELO HÚMEDO (gr)	1639	1799	1941	1909	
VOLUMEN DEL MOLDE (cm³)	929	929	929	929	
DENSIDAD HÚMEDA (gr/cm³)	1.764	1.936	2.089	2.055	
DENSIDAD SECA (gr/cm³)	1.677	1.769	1.849	1.751	
	CONTENII	DO DE HUMEDAD			
RECIPIENTE N°	6	7	9	2	
PESO (SUELO HÚMEDO + TARA) (gr)	203.14	206.55	166.58	155.32	
PESO (SUELO SECO + TARA) (gr)	195.24	192.35	152.60	138.25	
PESO DE LA TARA (gr)	43.00	42.00	45.00	40.00	
PESO DE AGUA (gr)	7.90	14.20	13.98	17.07	
PESO DE SUELO SECO (gr)	152.24	150.35	107.60	98.25	
CONTENIDO DE HUMEDAD (%)	5.19	9.44	12.99	17.37	
MÁXIMA DENSIDAD SECA (gr/cm³)	1.854	ÓPTIMO CONTEN	IDO DE HUMEDAD	(%)	13.80

CURVA DE COMPACTACIÓN

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

PROGRESIVA : KM. 02+000


UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA

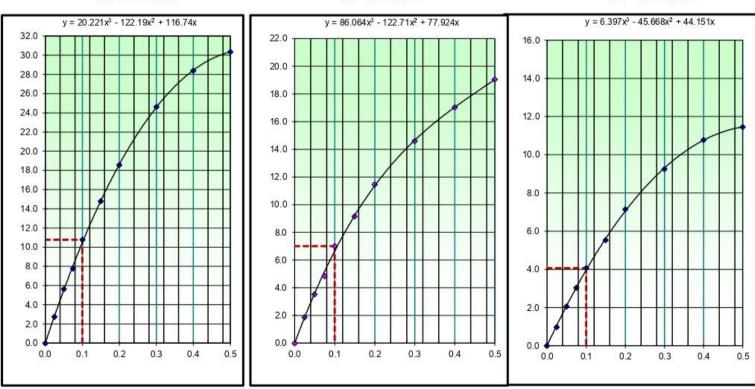
SOLICITADO : DIAZ VERGARA, JOSÉ EDWIN. FECHA: may.-20

ENSAYO DE CBR

MTC E 132 - ASTM D 1883 - AASHTO T-193

GRAFICO DE PENETRACIÓN DE CBR

C.B.R. AL 100% DE M.D.S. (%)	0.1":	14.9	
C.B.R. AL 95% DE M.D.S. (%)	0.1":	9.5	


Datos del ProctorDensidad Seca2.056gr/ccÓptima Humedad8.80%

OBSERVACIONES:

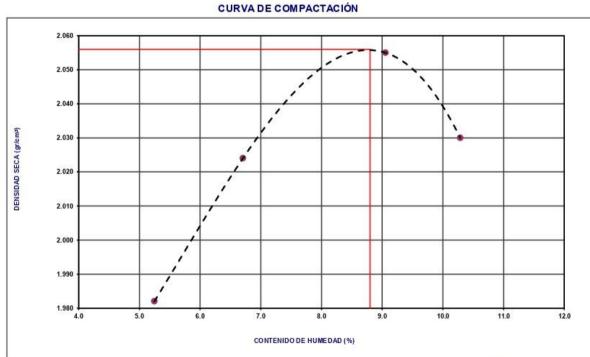
EC = 56 GOLPES

EC = 25 GOLPES

EC = 12 GOLPES

Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS

Ing. Francisco Grández Rengifo
INGENIERO GIVIL
GIP Nº 161293



SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

PROGRESIVA : KM. 02+000

UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA

SOLICITADO : DIAZ VERGARA, JOSÉ EDWIN.	COMPA	ACTACION		FECHA	: may20
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5			_	
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5544	5613	5689	5687	
PESO DE MOLDE (gr)	3585	3585	3585	3585	
PESO SUELO HÚMEDO (gr)	1959	2028	2104	2102	
VOLUMEN DEL MOLDE (cm³)	939	939	939	939	
DENSIDAD HÚMEDA (gr/cm³)	2.086	2.160	2.241	2.239	
DENSIDAD SECA (gr/cm³)	1.982	2.024	2.055	2.030	
	CONTENIDO	DE HUMEDAD			
RECIPIENTE Nº	7	8	9	10	
PESO (SUELO HÚMEDO + TARA) (gr)	421.00	478.00	345.00	456.00	
PESO (SUELO SECO + TARA) (gr)	404.00	455.00	323.00	420.00	
PESO DE LA TARA (gr)	80.00	112.00	80.00	70.00	
PESO DE AGUA (gr)	17.00	23.00	22.00	36.00	
PESO DE SUELO SECO (gr)	324.00	343.00	243.00	350.00	
CONTENIDO DE HUMEDAD (%)	5.25	6.71	9.05	10.29	
MÁXIMA DENSIDAD SECA (gr/cm³)	2.056	ÓPTIMO CONTEN	IDO DE HUMEDAD	(%)	8.80

Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS

Ing. Francisco Grández Rengifo
INGENIERO CIVIL
CIP Nº 101293

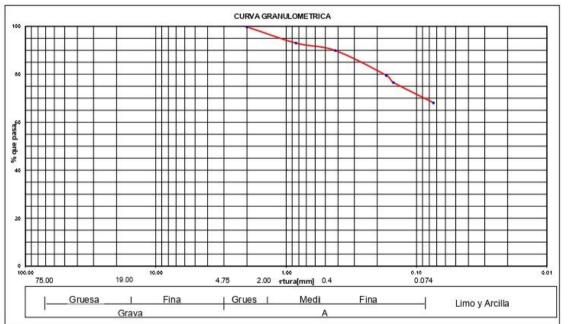
SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

PROGRESIVA : KM. 03+000

Peso Inicial Seco, [gr]

UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA

200.00


TESISTA : DIAZ VERGARA, JOSÉ EDWIN. FECHA may.-20

ENSAYOS ESTANDAR DE CLASIFICACION. NORMAS ASTM D422 - D2216 - D854 - D4318 - D427 - D2487

1. ANALISIS GRANULOMETRICO POR TAMIZADO

Mallas	Abertura [mm]	Peso retenido [grs]	Porcentaje Ret. [%]	Porcentaje Ret. Acumulado [%]	Porcentaje Acum Pasante [%]
2"	50.800				
1 1/2"	38.100				7
1"	25,400				1
3/4"	19.050				Š.
3/8"	9.525				
N° 4	4.760				100.00
N° 10	2.000	0.50	0.25	0.25	99.75
N° 20	0.840	13.50	6.75	7.00	93.00
N° 40	0.420	6.20	3.10	10.10	89.90
N° 80	0.170	20.80	10.40	20.50	79.50
N° 100	0.150	5.90	2.95	23.45	76.55
N° 200	0.074	16.90	8.45	31.90	68.10
< N° 200	0.000	136.20	68.10	100.00	0.00

	CARACTE	RISTICAS FISIC	AS		l
IDENTIFICACIO	N : CALICATA	Nº/MUESTRA Nº		C-04/	M-01
PROFUNDIDAD [m]					1.20
P. E. RELAT. DE	SOLIDOS [corre	gido por to]	[gr/cc]		
HUMEDAD NAT	URAL		[%]	14.	.20
LIMITE LIQUIDO [%]				45.	.50
LIMITE PLASTIC	00		[%]	25.	15
INDICE PLASTICO [%]					35
MATERIAL MENOR TAMIZ # 200 [%]				68.	.10
LIMITE DE CON	TRACCION		[%]		
POTENCIAL DE	EXPASION			Me	dio
CLASIFICACION	S.U.C.S.			C	L
CLASIFICACION	A.S.S.H.T.O.			A-7-6	[11]
INDICE DE CON	ISISTENCIA			Estable	1.5
D10 [mm]		Cu	V		
D30 [mm]	0.022	Cc			
D60 [mm]					
% Grava	%Arena	%Fino			
0.00	31.90	68.10			

2. LIMITES DE CONSISTENCIA (ASTM D 4318)

_			
A.	LIMITE	LIQ	JIDO

Procedimiento		Tara Nº			
		30	33		
	34	25	16		
	36.51	11.54	18.17		
	43.23	18.28	35.76		
	41.16	16.17	30.15		
(3)-(4)	2.07	2.11	5.61		
(4)-(2)	4.65	4.63	11.98		
(5)/(6)×100	44.52	45.57	46.83		
	(4)-(2)	36.51 43.23 41.16 (3)(4) 2.07 (4)(2) 4.65	34 25 36.51 11.54 43.23 18.28 41.16 16.17 (3)(4) 2.07 2.11 (4)(2) 4.65 4.63		

4. CONTENIDO DE HUMEDAD (ASTM D 2216)

4. CONTENIDO DE HOMEDA	LD (ASTIML	2210)
Procedimiento	Tara Nº	
riocedimento		s/n
1. Peso Tara, [gr]		0.00
2. Peso Tara + Suelo Húmedo, [gr]	500.00
3. Peso Tara + Suelo Seco, [gr]		438.00
4. Peso Agua, [gr]	(3)-(4)	62.00
5. Peso Suelo Seco, [gr]	(4)-(2)	438.00
6. Contenido de Humedad, [%]	(5)/(6)%100	14.20

B. LIMITE PLASTICO

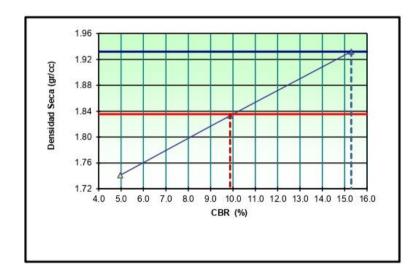
Procedimiento		Tara Nº		
Procedimento		4	21	
1. Peso Tara, [gr]		23.86	24.66	
2. Peso Tara + Suelo Húmedo, [gr]		28.06	29.27	
3. Peso Tara + Suelo Seco, [gr]		27.21	28.35	
4. Peso Agua, [gr]	(2)-(3)	0.85	0.92	
5. Peso Suelo Seco, [gr]	(3)(1)	3.35	3.69	
6. Contenido de Humedad, [%]	(4)/(5)X100	25.40	24.90	
7. Contenido de Humedad Promedio, [%]		25	.15	

3. PESO ESPECIFICO (NORMA ASTM D 854-58)

Procedimiento	Prueba Nº 01	Prueba Nº 02
Peso del frasco + peso suelo seco, [gr]		
2. Peso del frasco volumétrico Nº 01, [gr]		
3. Peso del Suelo Seco, [gr] (1)(2)		
4. Peso del fr. + peso suelo s. + peso agua [gr]		
5. Peso del frasco + peso agua, [gr/cc]	9	
6. $Gs = 3/13+51-141$, $[gr./cc.]$		

Genis Ramirez Pinedo

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

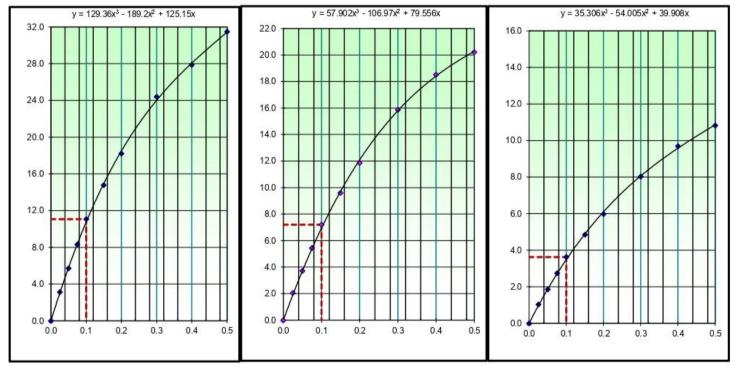

PROGRESIVA : KM. 03+000

UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA

SOLICITADO : DIAZ VERGARA, JOSÉ EDWIN. FECHA may.-20

ENSAYO DE CBR MTC E 132 - ASTM D 1883 - AASHTO T-193

GRAFICO DE PENETRACIÓN DE CBR



C.B.R. AL 100% DE M.D.S. (%)	0.1":	15.3	
C B B AL 95% DE M D S (%)	0.4".	9.9	

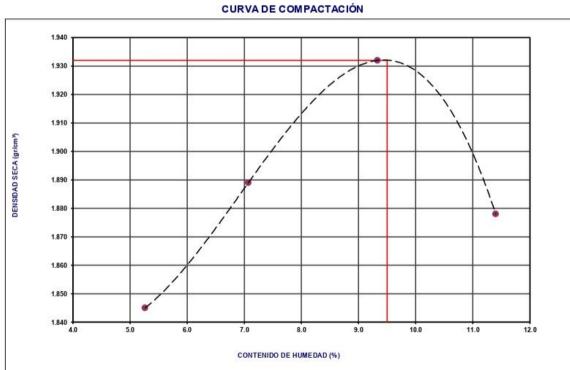
Datos del Proctor	93	200
Densidad Seca	1.932	gr/cc
Óptima Humedad	9.50	%

OBSERVACIONES:

EC = 56 GOLPES EC = 25 GOLPES EC = 12 GOLPES

Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS

Ing. Francisco Grández Rengifo
INGENERO CIVIL
CIP Nº 101293



SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

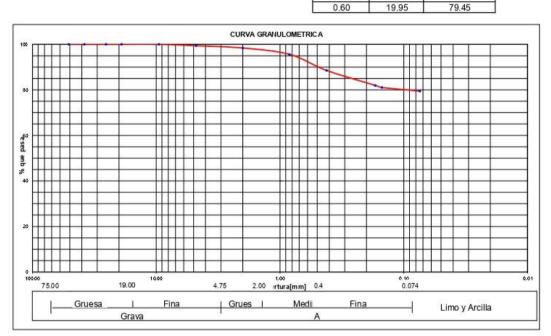
PROGRESIVA : KM. 03+000

UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA

SOLICITADO : DIAZ VERGARA, JOSÉ EDWIN.			FECHA May-20)	
	Co	OMPACTACION			
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	3660	3735	3818	3800	
PESO DE MOLDE (gr)	1856	1856	1856	1856	
PESO SUELO HÚMEDO (gr)	1804	1879	1962	1944	
VOLUMEN DEL MOLDE (cm³)	929	929	929	929	
DENSIDAD HÚMEDA (gr/cm³)	1.942	2.023	2.112	2.093	
DENSIDAD SECA (gr/cm³)	1.845	1.889	1.932	1.878	
	CONTEN	IIDO DE HUMEDAD			
RECIPIENTE Nº	9	10	11	13	
PESO (SUELO HÚMEDO + TARA) (gr)	365.00	378.00	455.00	432.00	
PESO (SUELO SECO + TARA) (gr)	350.00	357.00	423.00	397.00	
PESO DE LA TARA (gr)	65.00	60.00	80.00	90.00	
PESO DE AGUA (gr)	15.00	21.00	32.00	35.00	
PESO DE SUELO SECO (gr)	285.00	297.00	343.00	307.00	
CONTENIDO DE HUMEDAD (%)	5.26	7.07	9.33	11.40	
MÁXIMA DENSIDAD SECA (gr/cm³) 1.932		ÓPTIMO CONTEN	IDO DE HUMEDAD	(%)	9.50

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

PROGRESIVA : KM. 04+000


UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA

: DIAZ VERGARA, JOSÉ EDWIN. FECHA may.-20 ENSAYOS ESTANDAR DE CLASIFICACION. NORMAS ASTM D422 - D2216 - D854 - D4318 - D427 - D2487

1. ANALISIS GRANULOMETRICO POR TAMIZADO

Mallas	Abertura [mm]	Peso retenido [grs]	Porcentaje Ret. [%]	Porcentaje Ret. Acumulado [%]	Porcentaje Acum Pasante [%]
2"	50.800				
1 1/2"	38.100				
1"	25.400	×			7
3/4"	19.050	7	7		8
3/8"	9.525				100.00
N° 4	4.760	4.65	0.60	0.60	99.40
N° 10	2,000	8.05	1.01	1.61	98.39
N° 20	0.840	22.19	2.79	4.40	95.60
N° 40	0.420	56.22	7.07	11.48	88.52
N° 80	0.170	52.05	6.55	18.03	81.97
N° 100	0.150	7.50	0.94	18.97	81.03
N° 200	0.074	12.51	1.57	20.55	79.45
< N° 200	0.000	631.48	79.45	100.00	0.00

	CARACTER	RISTICAS FISIC	AS		
IDENTIFICACIO	N : CALICATA	Nº/MUESTRA Nº		C-05/N	1-01
PROFUNDIDAD		C-115	[m]	0.20 -	0.50
P. E. RELAT. DE	SOLIDOS [correc	gido por to]	[gr/cc]		
HUMEDAD NAT	URAL	N 25777	[%]	16.9	00
LIMITE LIQUID	0		[%]	38.3	0
LIMITE PLASTIC	CO		[%]	18.4	5
INDICE PLASTICO [%]					35
MATERIAL MENOR TAMIZ # 200 [%]				79.45	
LIMITE DE CON	TRACCION		[%]		
POTENCIAL DE	EXPASION			Med	io
CLASIFICACION	S.U.C.S.			CL	Q.
CLASIFICACION	A.S.S.H.T.O.			A-6	[12]
INDICE DE CON	NSISTENCIA				10000
D10 [mm]	1929	Cu	N 5000		95
D30 [mm]		Cc			
D60 [mm]					
% Grava	%arena	%fino	·		
			-		

2. LIMITES DE CONSISTENCIA (ASTM D 4318)

Procedimiento		Tara No		
		2	5	6
1. No de Golpes		35	25	15
2. Peso Tara, [gr]		13.46	10.8	11.73
Peso Tara + Suelo Húmedo, [gr]		56.88	55.25	56.2
4. Peso Tara + Suelo Seco, [gr]		45.2	42.95	43.39
5. Peso Agua, [gr]	(3)-(4)	11.68	12.3	12.81
6. Peso Suelo Seco, [gr]	(4)-(2)	31.74	32.15	31.66
7. Contenido de Humedad, [%]	(5)/(6)×100	36.80	38.26	40.46

Procedimiento		Tara No
Procedimento		s/n
1. Peso Tara, [gr]		
2. Peso Tara + Suelo Húmedo, [gr]	1,050.00
3. Peso Tara + Suelo Seco, [gr]		898.00
4. Peso Agua, [gr]	(3)(4)	152.00
5. Peso Suelo Seco, [gr]	(4)-(2)	898.00
6. Contenido de Humedad, [%]	(5)/(6)×100	16.90

B. LIMITE PLASTICO

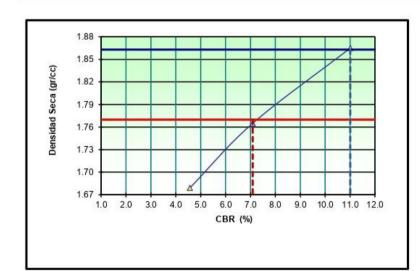
Procedimiento		Tara Nº		
		5	6	
1. Peso Tara, [gr]		14.06	13.98	
2. Peso Tara + Suelo Húmedo, [gr]		51.60	54.09	
3. Peso Tara + Suelo Seco, [gr]		45.74	47.85	
4. Peso Agua, [gr]	(2)-(3)	5.86	6.24	
5. Peso Suelo Seco, [gr]	(3)-(1)	31.68	33.87	
6. Contenido de Humedad, [%] (4)/(5)x100		18.50	18.40	
7. Contenido de Humedad Promedio, [%]		18	.45	

3. PESO ESPECIFICO (NORMA ASTM D 854-58)

Procedimiento	Prueba Nº 01	Prueba Nº 02
1. Peso del frasco + peso suelo seco, [gr]		
2. Peso del frasco volumétrico Nº 01, [gr]		
3. Peso del Suelo Seco, [gr] (1)(2)		
4. Peso del fr. + peso suelo s. + peso agua [gr]	1	
5. Peso del frasco + peso agua, [gr/cc]		
6. Gs = 3/(3+5)-(4), [gr./cc.]		

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

PROGRESIVA : KM. 04+000

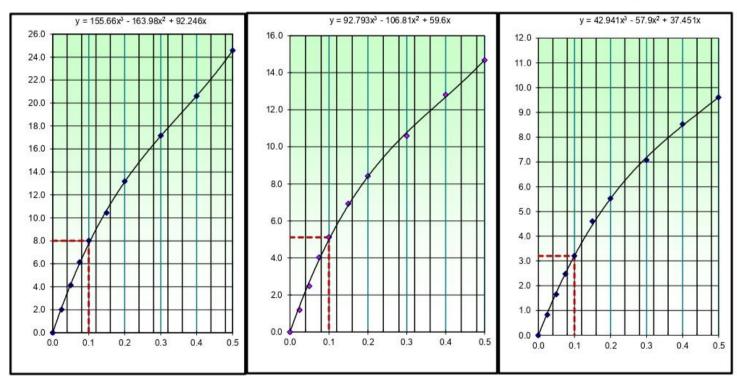

UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA

SOLICITADO : DIAZ VERGARA, JOSÉ EDWIN. FECHA may.-20

ENSAYO DE CBR

MTC E 132 - ASTM D 1883 - AASHTO T-193

GRAFICO DE PENETRACIÓN DE CBR



C.B.R. AL 100% DE M.D.S. (%)	0.1":	11.0	
C.B.R. AL 95% DE M.D.S. (%)	0.1":	7.1	

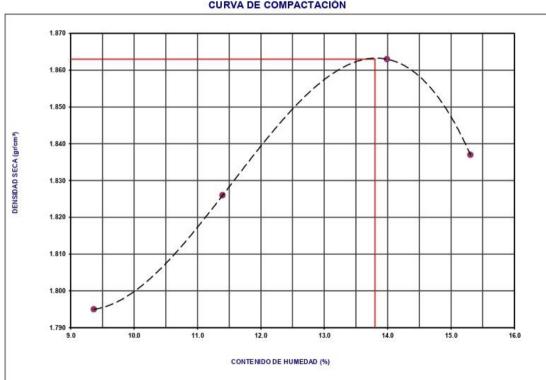
Datos del ProctorDensidad Seca1.863gr/ccÓptima Humedad13.80%

OBSERVACIONES:

EC = 56 GOLPES EC = 25 GOLPES EC = 12 GOLPES

Genis Ramirez Pinedo

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.


PROGRESIVA : KM. 04+000

: DIST. BELLAVISTA UBICACIÓN PROV. JAÉN REG. CAJAMARCA

SOLICITADO : DIAZ VERGARA, JOSÉ EDWIN. FECHA May-20

	CO	MPACTACION			
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	3594	3660	3743	3738	
PESO DE MOLDE (gr)	1772	1772	1772	1772	
PESO SUELO HÚMEDO (gr)	1822	1888	1971	1966	
VOLUMEN DEL MOLDE (cm³)	928	928	928	928	
DENSIDAD HÚMEDA (gr/cm³)	1.963	2.034	2.124	2.119	
DENSIDAD SECA (gr/cm³)	1.795	1.826	1.863	1.837	
	CONTENI	DO DE HUMEDAD			
RECIPIENTE N°	7	18	19	25	
PESO (SUELO HÚMEDO + TARA) (gr)	432.00	378.00	443.00	421.00	
PESO (SUELO SECO + TARA) (gr)	401.00	347.00	396.00	376.00	
PESO DE LA TARA (gr)	70.00	75.00	60.00	82.00	
PESO DE AGUA (gr)	31.00	31.00	47.00	45.00	
PESO DE SUELO SECO (gr)	331.00	272.00	336.00	294.00	
CONTENIDO DE HUMEDAD (%)	9.37	11.40	13.99	15.31	
MÁXIMA DENSIDAD SECA (gr/cm³)	1.863	ÓPTIMO CONTEN	IDO DE HUMEDAD	(%)	13.80

CURVA DE COMPACTACIÓN

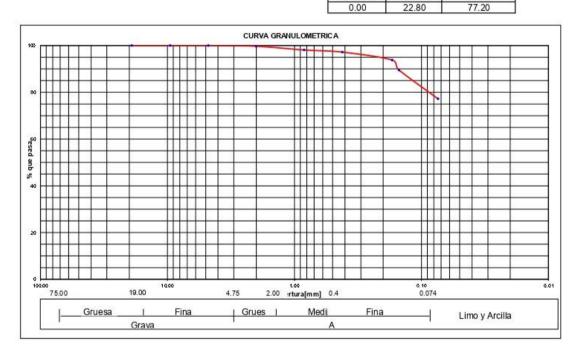
Genis Rumirez Pinedo

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

PROGRESIVA : KM. 05+000

UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA

TESISTA : DIAZ VERGARA, JOSÉ EDWIN. FEC


ENSAYOS ESTANDAR DE CLASIFICACION. NORMAS ASTM D422 - D2216 - D854 - D4318 - D427 - D2487 1. ANALISIS GRANULOMETRICO POR TAMIZADO

Peso Inicial Seco, [gr]	500.00
Peso Lavado y Seco. [gr]	114.00

Mallas	Abertura [mm]	Peso retenido [grs]	Porcentaje Ret. [%]	Porcentaje Ret. Acumulado [%]	Porcentaje Acum. Pasante [%]
2"	50.800				
1 1/2"	38.100				
1"	25.400				Ĭ.
3/4"	19.050				
3/8"	9.525				
N° 4	4.760				100.00
N° 10	2.000	1.50	0.30	0.30	99.70
N° 20	0.840	8.00	1.60	1.90	98.10
N° 40	0.420	4.50	0.90	2.80	97.20
N° 80	0.170	17.00	3.40	6.20	93.80
N° 100	0.150	21.50	4.30	10.50	89.50
N° 200	0.074	61.50	12.30	22.80	77.20
< N° 200	0.000	386.00	77.20	100.00	0.00

	CARACTER	CISTICAS FISIC	AS		- 0
IDENTIFICACIO	ON : CALICATA	Nº/MUESTRA Nº		C-06/N	VI-01
PROFUNDIDAD	0.20 -	0.80			
P. E. RELAT. DE	SOLIDOS [correc	gido por to]	[gr/cc]		
HUMEDAD NAT	URAL		[%]	14.7	70
LIMITE LIQUID	0		[%]	38.2	20
LIMITE PLASTI	co		[%]	23.0)5
INDICE PLASTI	15.15				
MATERIAL MEN	77.2	20			
LIMITE DE CON	TRACCION		[%]		
POTENCIAL DE	EXPASION				
CLASIFICACION S.U.C.S.					- Jamines
CLASIFICACION	N A.S.S.H.T.O.			A-6	[10]
INDICE DE CON	NSISTENCIA				
D10 [mm]		Cu			377
D30 [mm]		Cc			
D60 [mm]			1999		
% Grava	%arena	%fino	1		
0.00	22.00	77.20	7		

may.-20

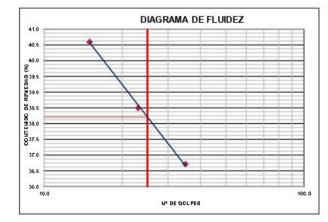
2. LIMITES DE CONSISTENCIA (ASTM D 4318)

A. LIMITE LIQUIDO

Procedimiento			Tara Nº	
		23	24	25
1. No de Golpes		35	23	15
2. Peso Tara, [gr]		17.9	18.13	18.22
3. Peso Tara + Suelo Húmedo, [gr]		43.82	44.61	45.41
4. Peso Tara + Suelo Seco, [gr]		36.86	37.25	37.56
5. Peso Agua, [gr]	(3)-(4)	6.96	7.36	7.85
6. Peso Suelo Seco, [gr]	(4)-(2)	18.96	19.12	19.34
7. Contenido de Humedad, [%]	(5)/(6)×100	36.71	38.49	40.59

4. CONTENIDO DE HUMEDAD (ASTM D 2216)

Procedimiento		Tara No
		s/n
1. Peso Tara, [gr]		
2. Peso Tara + Suelo Húmedo, [gr		980.40
3. Peso Tara + Suelo Seco, [gr]		855.00
4. Peso Agua, [gr]	(3)-(4)	125.40
5. Peso Suelo Seco, [gr]	(4)-(2)	855.00
6. Contenido de Humedad, [%]	(5)/(6)×100	14.70


B. LIMITE PLASTICO

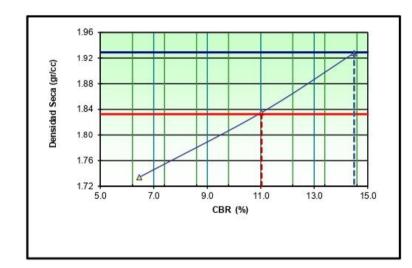
Procedimiento		Tara Nº	
		19	31
1. Peso Tara, [gr]		8.12	8.15
Peso Tara + Suelo Húmedo, [gr]		15.66	15.78
Peso Tara + Suelo Seco, [gr]		14.25	14.35
4. Peso Agua, [gr]	(2)-(3)	1.41	1.43
5. Peso Suelo Seco, [gr]	(3)-(1)	6.13	6.20
6. Contenido de Humedad, [%] (4)/(5)x100		23.00	23.10
7. Contenido de Humedad Promedio, [%]		23	.05

3. PESO ESPECIFICO (NORMA ASTM D 854-58)

Procedimiento	Prueba Nº 01	Prueba Nº 02
1. Peso del frasco + peso suelo seco, [gr]		
2. Peso del frasco volumétrico Nº 01, [gr]		
3. Peso del Suelo Seco, [gr] (1)(2)		
4. Peso del fr. + peso suelo s. + peso agua [gr]		
5. Peso del frasco + peso agua, [gr/cc]		
6. Gs = 3/[3+5]-[4], [gr./cc.]		

Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS

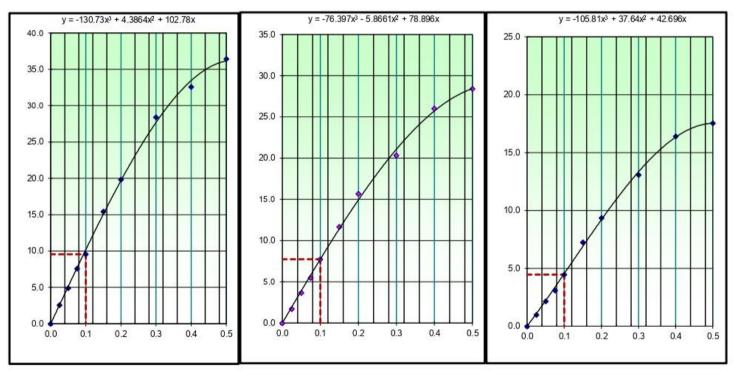
SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.


PROGRESIVA : KM. 05+000

UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA

TESISTA: DIAZ VERGARA, JOSÉ EDWIN. FECHA: may.-20

ENSAYO DE CBR MTC E 132 - ASTM D 1883 - AASHTO T-193


GRAFICO DE PENETRACIÓN DE CBR

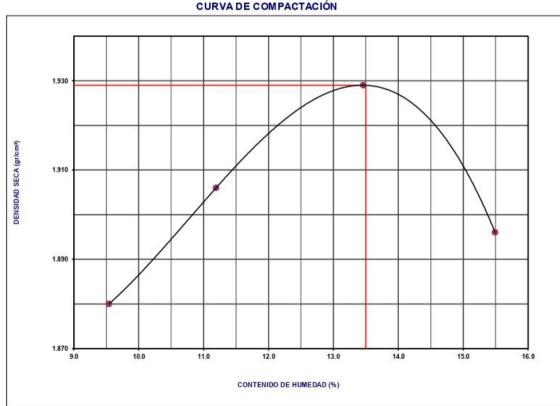
C.B.R. AL 100% DE M.D.S. (%) C.B.R. AL 95% DE M.D.S. (%)		0.1":	14.5	
		0.1":	11.0	
Datos del Proctor				
Datos del Proctor Densidad Seca	1.929	gr/cc		

OBSERVACIONES:

EC = 56 GOLPES EC = 25 GOLPES EC = 12 GOLPES

Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS ting. Francisco Grández Rengito
INGENIERO CIVIL
CIP Nº 181293

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.


PROGRESIVA : KM. 05+000

UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA

TESISTA : DIAZ VERGARA, JOSÉ EDWIN. may.-20

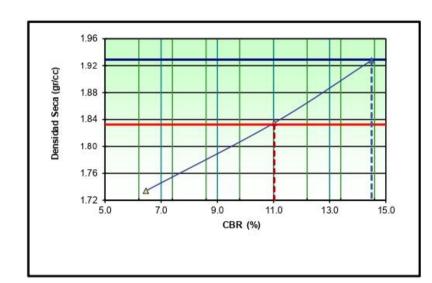
	COMPA	CTACION			
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	6245	6300	6364	6365	
PESO DE MOLDE (gr)	4348	4348	4348	4348	
PESO SUELO HÚMEDO (gr)	1897	1952	2016	2017	
VOLUMEN DEL MOLDE (cm³)	921	921	921	921	
DENSIDAD HÚMEDA (gr/cm³)	2.060	2.119	2.189	2.190	
DENSIDAD SECA (gr/cm³)	1.880	1.906	1.929	1.896	35, 844, 55, 544, 64, 11, 35, 564, 6, 576, 6, 6
	CONTENIDO	DE HUMEDAD			
RECIPIENTE N°	5	8	13	1	
PESO (SUELO HÚMEDO + TARA) (gr)	344.00	378.00	367.00	412.00	
PESO (SUELO SECO + TARA) (gr)	321.00	347.00	332.00	368.00	
PESO DE LA TARA (gr)	80.00	70.00	72.00	84.00	
PESO DE AGUA (gr)	23.00	31.00	35.00	44.00	
PESO DE SUELO SECO (gr)	241.00	277.00	260.00	284.00	
CONTENIDO DE HUMEDAD (%)	9.54	11.19	13.46	15.49	
MÁXIMA DENSIDAD SECA (gr/cm³)	1.929	ÓPTIMO CONTEN	IDO DE HUMEDAD	(%)	13.50

CURVA DE COMPACTACIÓN

Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS

Ing. Francisco Grández Rengifo
INGENIERO CIVIL
CIP Nº 161293

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

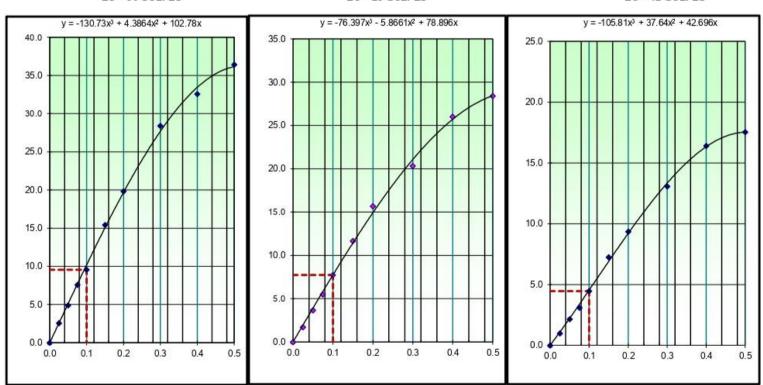

PROGRESIVA : KM. 05+000

UBICACIÓN BELLAVISTA PROV. JAÉN : DIST. REG. CAJAMARCA

TESISTA FECHA: may.-20 : DIAZ VERGARA, JOSÉ EDWIN.

ENSAYO DE CBR MTC E 132 - ASTM D 1883 - AASHTO T-193

GRAFICO DE PENETRACIÓN DE CBR



C.B.R. AL 100% DE M.D.S. (%)	0.1":	14.5	
C.B.R. AL 95% DE M.D.S. (%)	0.1":	11.0	

Datos del Proctor			
Densidad Seca	1.929	gr/cc	
Óptima Humedad	13.50	%	

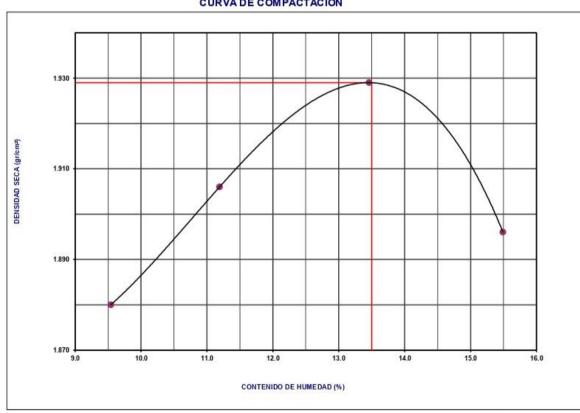
OBSERVACIONES:

EC = 56 GOLPES EC = 25 GOLPES EC = 12 GOLPES

Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS

PROYECTO : "DISEÑO DE INFRAESTRUCTURA VIAL COMUNIDADES LA FLORESTA - SHUMBA ALTO - AYABAQUITA - PUEBLO NUEVO Y CRUCE

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.


PROGRESIVA : KM. 05+000

UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA

TESISTA : DIAZ VERGARA, JOSÉ EDWIN. may.-20

	COMPA	CTACION			
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	6245	6300	6364	6365	
PESO DE MOLDE (gr)	4348	4348	4348	4348	
PESO SUELO HÚMEDO (gr)	1897	1952	2016	2017	
VOLUMEN DEL MOLDE (cm³)	921	921	921	921	
DENSIDAD HÚMEDA (gr/cm³)	2.060	2.119	2.189	2.190	
DENSIDAD SECA (gr/cm³)	1.880	1.906	1.929	1.896	esta, presponde e esta foto de presido, fotogrado e estador de ele-
	CONTENIDO	DE HUMEDAD			
RECIPIENTE N°	5	8	13	1	
PESO (SUELO HÚMEDO + TARA) (gr)	344.00	378.00	367.00	412.00	
PESO (SUELO SECO + TARA) (gr)	321.00	347.00	332.00	368.00	
PESO DE LA TARA (gr)	80.00	70.00	72.00	84.00	
PESO DE AGUA (gr)	23.00	31.00	35.00	44.00	
PESO DE SUELO SECO (gr)	241.00	277.00	260.00	284.00	
CONTENIDO DE HUMEDAD (%)	9.54	11.19	13.46	15.49	
MÁXIMA DENSIDAD SECA (gr/cm³)	1.929	ÓPTIMO CONTEN	IDO DE HUMEDAD	(%)	13.50

CURVA DE COMPACTACIÓN

Ing. Francisco Grández Rengifo

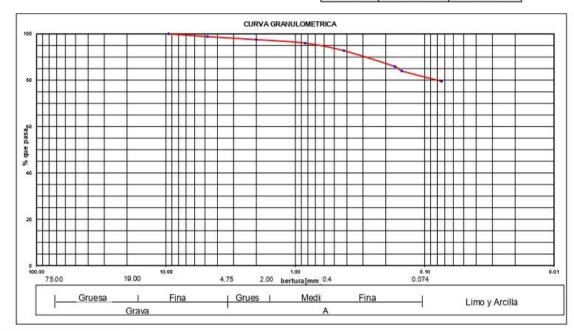
Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS

PROYECTO : "DISEÑO DE INFRAESTRUCTURA VIAL COMUNIDADES LA FLORESTA - SHUMBA ALTO - AYABAQUITA - PUEBLO NUEVO Y CRUCE

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

PROGRESIVA : KM. 05+500

UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA


TESISTA : DIAZ VERGARA, JOSÉ EDWIN. FECHA may.-20

ENSAYOS ESTANDAR DE CLASIFICACION. NORMAS ASTM D422 - D2216 - D854 - D4318 - D427 - D2487 1. ANALISIS GRANULOMETRICO POR TAMIZADO

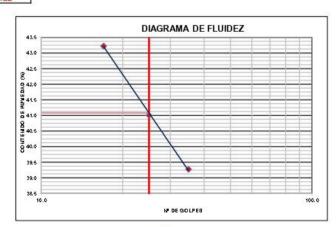
Peso Inicial Seco, [gr]	760.00
Peso Lavado y Seco, [gr]	

Mallas	Abertura	Peso retenido	Porcentaje Ret.	Porcentaje Ret.	Porcentaje Acum
	[mm]	[grs]	[%]	Acumulado [%]	Pasante [%]
2"	50.800		E .	8	
1 1/2"	38.100	í.		2	
1"	25.400				
3/4"	19.050		U		
3/8"	9.525	1000000			100.00
N° 4	4.760	9.01	1.20	1.20	98.80
N° 10	2,000	10.24	1.30	2.50	97.50
N° 20	0.840	11.03	1.50	4.00	96.00
N° 40	0.420	24.90	3.30	7.30	92.70
N° 80	0.170	51.58	6.80	14.10	85.90
N° 100	0.150	14.16	1.90	16.00	84.00
N° 200	0.074	34.01	4.50	20.50	79.50
< N° 200	0.000	604.10	79.50	100.00	0.00

	CARACTER	ISTICAS FISICAS]
IDENTIFICACIO	N : CALICATA Nº	/MUESTRA Nº			C-07/M	-01
PROFUNDIDAD		8	[m]	0.20 - 1	1.50
P. E. RELAT. DE	SOLIDOS [corregide	por to]	[gr/c	[2		
HUMEDAD NATU	HUMEDAD NATURAL [%]				14.3	3
LIMITE LIQUIDO)		[0	%]	41.1	0
LIMITE PLASTICO [%]				21.4	5	
INDICE PLASTICO [%]				19.65		
MATERIAL MENOR TAMIZ # 200 [%]				79.50		
LIMITE DE CONTRACCION [%]						
POTENCIAL DE I	EXPASION		,0,00	22.00	Medi	0
CLASIFICACION	S.U.C.S.				CL	
CLASIFICACION	A.S.S.H.T.O.				A-7-6	[12]
INDICE DE CON	SISTENCIA		N:	- 0	Estable	1.4
D10 [mm]		Cu				
D30 [mm]		Cc		Ţ,		
D60 [mm]						
% Grava	%Arena	%Fino				
1.20	19.30	79.50	1			

2. LIMITES DE CONSISTENCIA (ASTM D 4318)

A. LIMITE LIQUIDO		20			
Procedimiento		Tara Nº			
		10	11	12	
1. No de Golpes		35	25	17	
2. Peso Tara, [gr]		11.71	13.99	13.69	
3. Peso Tara + Suelo Húmedo, [gr]		58.63	61.31	64.69	
4. Peso Tara + Suelo Seco, [gr]		45.40	47.55	49.30	
5. Peso Agua, [gr]	(3)-(4)	13.23	13.76	15.39	
6. Peso Suelo Seco, [gr]	(4)-(2)	33.69	33.56	35.61	
7. Contenido de Humedad, [%]	(5)/(6)×100	39.27	41.00	43.22	


4. CONTENIDO DE HUMEDAD	(ASTM D 22	16)
Procedimiento	Tara Nº	
Procedimento	s/n	
1. Peso Tara, [gr]	1	34.04
2. Peso Tara + Suelo Húmedo, [gr]		768.00
3. Peso Tara + Suelo Seco, [gr]		676.00
4. Peso Agua, [gr]	(3)-(4)	92.00
5. Peso Suelo Seco, [gr]	(4)-(2)	641.96
6 Contenido de Humedad [%]	/EW/655100	14 33

B. LIMITE PLASTICO

Procedimiento		Tara No		
		11	12	
1. Peso Tara, [gr]		11.28	14.72	
Peso Tara + Suelo Húmedo, [gr]		49.27	48.98	
3. Peso Tara + Suelo Seco, [gr]		42.65	42.85	
4. Peso Agua, [gr]	(2)-(3)	6.62	6.13	
5. Peso Suelo Seco, [gr]	(3)(1)	31.37	28.13	
6. Contenido de Humedad, [%]	(4)/(5)×100	21.10	21.79	
7. Contenido de Humedad Promedio,	[%]	21	.45	

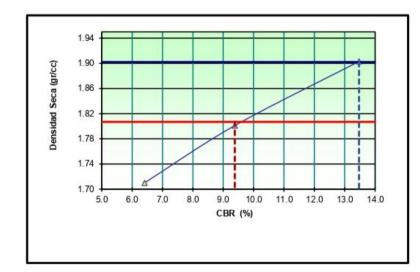
3. PESO ESPECIFICO	(NORMA ASTM D 854-58)

Procedimiento	Prueba Nº 01	Prueba Nº 02
1. Peso del frasco + peso suelo seco, [gr]		
2. Peso del frasco volumétrico Nº 01, [gr]		
3. Peso del Suelo Seco, [gr] (1)(2)	0	
4. Peso del fr. + peso suelo s. + peso agua [gr]		
5. Peso del frasco + peso agua, [gr/cc]		
6. Gs = 3/[3+5]-[4], [gr./cc.]		

PROYECTO : "DISEÑO DE INFRAESTRUCTURA VIAL COMUNIDADES LA FLORESTA - SHUMBA ALTO - AYABAQUITA - PUEBLO NUEVO Y CRUCE

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

PROGRESIVA : KM. 05+500

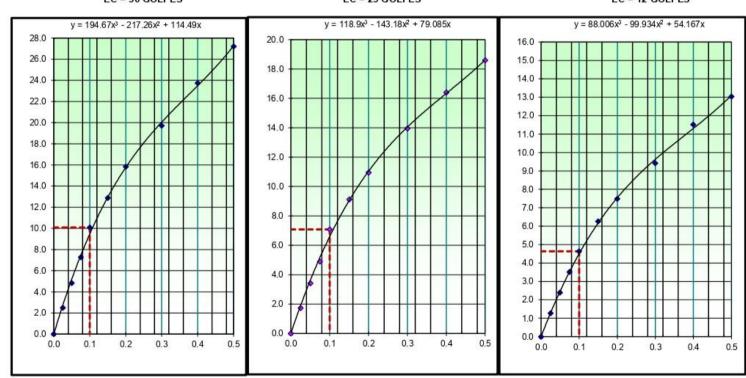

UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA

TESISTA : DIAZ VERGARA, JOSÉ EDWIN. FECHA may.-20

ENSAYO DE CBR

MTC E 132 - ASTM D 1883 - AASHTO T-193

GRAFICO DE PENETRACIÓN DE CBR



C.B.R. AL 100% DE M.D.S. (%)	0.1":	13.5	
C.B.R. AL 95% DE M.D.S. (%)	0.1":	9.4	

Datos del Proctor		
Densidad Seca	1.902	gr/cc
Óptima Humedad	12.40	%

OBSERVACIONES:

EC = 56 GOLPES EC = 25 GOLPES EC = 12 GOLPES

Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS

PROYECTO : "DISEÑO DE INFRAESTRUCTURA VIAL COMUNIDADES LA FLORESTA - SHUMBA ALTO - AYABAQUITA - PUEBLO NUEVO Y CRUCE

SAN AGUSTÍN HUABAL, DISTRITO DE BELLAVISTA, JAEN, CAJAMARCA.

PROGRESIVA : KM. 05+500

UBICACIÓN : DIST. BELLAVISTA PROV. JAÉN REG. CAJAMARCA

TESISTA : DIAZ VERGARA, JOSÉ EDWIN. FECHA May-20

	COMPA	CTACIÓN			
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	6042	6109	6180	6165	
PESO DE MOLDE (gr)	4205	4205	4205	4205	
PESO SUELO HÚMEDO (gr)	1837	1904	1975	1960	
VOLUMEN DEL MOLDE (cm³)	921	921	921	921	
DENSIDAD HÚMEDA (gr/cm³)	1.995	2.067	2.144	2.128	
DENSIDAD SECA (gr/cm³)	1.842	1.874	1.900	1.865	
	CONTENIDO	DE HUMEDAD	310		
RECIPIENTE Nº	14	15	16	17	
PESO (SUELO HÚMEDO + TARA) (gr)	320.60	368.50	352.10	333.20	
PESO (SUELO SECO + TARA) (gr)	296.00	334.00	312.00	292.00	
PESO DE LA TARA (gr)	0.00	0.00	0.00	0.00	
PESO DE AGUA (gr)	24.60	34.50	40.10	41.20	
PESO DE SUELO SECO (gr)	296.00	334.00	312.00	292.00	
CONTENIDO DE HUMEDAD (%)	8.31	10.33	12.85	14.11	
MÁXIMA DENSIDAD SECA (gr/cm³)	1.902	ÓPTIMO CONTEN	IDO DE HUMEDAD	(%)	12.40

1.850 1.850 9.0 10.0 11.0 12.0 13.0 14.0 15.0 CONTENDO DE HUMEDAD (%)

Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS

Página Página

Presupuesto

Presupuesto 0401007 TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL EN LAS COMUNIDADES LA FLORESTA-SHUMBA

ALTO-AYABAQUITA-PUEBLO NUEVO Y CRUCE SAN AGUSTIN HUABAL, DISTRITO DE BELLAVISTA, JAEN"

Subpresupuesto 001 "DISEÑO DE INFRAESTRUCTURA VIAL EN LAS COMUNIDADES LA FLORESTA-SHUMBA ALTO-AYABAQUITA-PUEBLO

NUEVO Y CRUCE SAN AGUSTIN HUABAL, DISTRITO DE BELLAVISTA, JAEN"

Cliente UNIVERSIDAD CESAR VALLEJO Costo al

Lugar LAMBAYEQUE - CHICLAYO - CHICLAYO

Item	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
1	TRABAJOS PRELIMINARES				139,890.91
1.01	MOVILIZACION Y DESMOVILIZACION DE EQUIPOS Y MAQUINARIA	glb	1.00	123,025.37	123,025.37
1.02	TOPOGRAFÍA Y GEOREFERENCIACIÓN	km	5.85	1,416.65	8,287.40
1.03	CAMPAMENTO Y PATIO DE MAQUINAS	m2	96.00	64.02	6,145.92
1.04	CARTEL DE OBRA	u	2.00	1,216.11	2,432.22
2	MOVIMIENTO DE TIERRAS				2,777,219.43
2.01	DESBROCE Y LIMPIEZA EN ZONAS NO BOSCOSAS	ha	6.00	2,744.62	16,467.72
2.02	EXCAVACIÓN PARA EXPLANACIONES EN MATERIAL SUELTO	m3	95,820.26	4.68	448,438.82
2.03	PERFILADO Y COMPACTADO DE SUB-RASANTE	m2	38,387.00	2.75	105,564.25
2.04	CONFORMACIÓN DE BASE GRANULAR e=0.20 m.	m3	7,802.95	87.84	685,411.13
2.05	SUB-BASE GRANULAR e=0.20 m.	m3	12,546.33	75.55	947,875.23
2.06	BASE GRANULAR e=0.20 m	m3	7,590.50	75.55	573,462.28
3	SEGURIDAD EN OBRA Y SALUD OCUPACIONAL				120,850.00
3.01	ELABORACIÓN, IMPLEMENTACIÓN Y ADMINISTRACIÓN DEL PLAN DE SEGURIDAD Y SALUD OCUPACIONAL				120,850.00
3.01.01	EQUIPO DE PROTECCIÓN INDIVIDUAL	mes	5.00	5,900.00	29,500.00
3.01.02	EQUIPO DE PROTECCIÓN COLECTIVA	mes	5.00	1,080.00	5,400.00
3.01.03	SEÑALIZACIÓN TEMPORAL DE SEGURIDAD	mes	5.00	2,290.00	11,450.00
3.01.04	RECURSOS PARA RESPUESTA ANTE EMERGENCIAS EN SEGURIDAD Y SALUD OCUPACIONAL	u	1.00	3,000.00	3,000.00
3.01.05	CAPACITADOR	mes	5.00	14,300.00	71,500.00
	PAVIMENTO				421,302.77
4.01	PAVIMENTOS				421,302.77
1.01.01	IMPRIMACION ASFALTICA	m2	39,291.54	8.55	335,942.67
1.01.02	TRATAMIENTO SUPERFICIAL	m3	2,414.03	35.36	85,360.10
5	DRENAJE				529,655.96
5.01	CUNETAS				350,430.30
5.01.01	CUNETAS TRIANGULARES				350,430.30
5.01.01.01	CUNETAS REVESTIDAS EN CONCRETO	m3	5,130.00	68.31	350,430.30
5.02	ALCANTARILLAS				179,225.66
5.02.01	ALCANTARILLA TMC Ø 24"				179,225.66
5.02.01.01	MOVIMIENTO DE TIERRAS				15,064.53
5.02.01.01.01	EXCAVACIÓN NO CLASIFICADA C/EQUIPO PARA ESTRUCTURAS	m3	1,540.34	9.78	15,064.53
5.02.01.02	OBRAS DE CONCRETO SIMPLE				2,795.05
5.02.01.02.01	SOLADO DE CONCRETO fc=140 kg/cm2	m3	9.20	303.81	2,795.05
5.02.01.03	OBRAS DE CONCRETO ARMADO				156,997.66
5.02.01.03.01	ENCOFRADO Y DESENCOFRADO - ALCANTARILLAS	m2	440.86	51.63	22,761.60
5.02.01.03.02	ACERO fy=4200 kg/cm2 GRADO 60	kg	6,804.21	7.70	52,392.42
5.02.01.03.03	CONCRETO f 'c=210 kg/cm2	m3	93.06	375.37	34,931.93
5.02.01.03.04	EMBOQUILLADO DE PIEDRA CONCRETO F'C=140KG/CM2 +70% PM (5" TAM. MAX)	m3	290.20	159.74	46,356.55
5.02.01.03.05	CURADO DE CONCRETO	m2	165.72	3.35	555.16
5.02.01.04	RELLENO COMPACTADO CON AFIRMADO	m3	47.55	91.87	4,368.42
3	TRANSPORTE				122,034.83
5.01	TRANSPORTE DE MATERIAL SUB RASANTE OVER A HASTA DE 5 KM	m3k	7,802.95	4.60	35,893.57
3.02	TRANSPORTE DE MATERIAL GRANULAR PARA SUB BASE HASTA 5 KM	m3k	11,065.80	4.60	50,902.68
5.03	TRANSPORTE DE MATERIAL GRANULAR PARA BASE HASTA 5 KM	m3k	7,660.56	4.60	35,238.58
	SEÑALIZACION Y SEGURIDAD VIAL				48,087.64
7.01	SEÑALES PREVENTIVAS	u	19.00	226.93	4,311.67
7.02	SEÑALES INFORMATIVAS	u	10.00	898.74	8,987.40
7.03	SEÑALES REGLAMENTARIAS	u	12.00	325.34	3,904.08

Fecha: 26/07/2020 01:57:50p.m.

26/07/2020

Presupuesto

Presupuesto 0401007 TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL EN LAS COMUNIDADES LA FLORESTA-SHUMBA

ALTO-AYABAQUITA-PUEBLO NUEVO Y CRUCE SAN AGUSTIN HUABAL, DISTRITO DE BELLAVISTA, JAEN"

Subpresupuesto 001 "DISEÑO DE INFRAESTRUCTURA VIAL EN LAS COMUNIDADES LA FLORESTA-SHUMBA ALTO-AYABAQUITA-PUEBLO

NUEVO Y CRUCE SAN AGUSTIN HUABAL, DISTRITO DE BELLAVISTA, JAEN"

Cliente UNIVERSIDAD CESAR VALLEJO Costo al 26/07/2020

Lugar LAMBAYEQUE - CHICLAYO - CHICLAYO

Item	Descripción		Und.	Metrado	Precio S/.	Parcial S/.
7.04	POSTES DE KIL	.OMETRAJE	u	6.00	106.68	640.08
7.05	POSTES DELIN	EADORES	u	45.00	138.34	6,225.30
7.06	MARCAS EN EL	PAVIMENTO	m2	3,099.24	7.75	24,019.11
8	FLETE					145,942.97
8.01	FLETE		gib	291,885.94	0.50	145,942.97
	Costo Directo					4,304,984.51
	Gastos Generales	s (14.08%)				606,141.82
	Utilidad	(5.00%)				215,249.23
	Sub Total					5,126,375.56
	IGV	(18.00%)				922,747.60
	Valor Referencial					6,049,123.16
	-344 (1444)					
	COSTO TOTAL D	EL PROYECTO				6,049,123.16

SON: SEIS MILLONES CUARENTINUEVE MIL CIENTO VEINTITRES Y 16/100 NUEVOS SOLES

Fecha: 26/07/2020 01:57:50p.m.

Página: 11

Presupuesto	0401007 TESIS : "DISEÑO DE INFR NUEVO Y CRUCE SAN AGU		L EN LAS CON	IUNIDADES LA	FLORESTA-SHU	MBA ALTO-AYABAQ	UITA-PUEBLO
Subpresupuesto		TRUCTURA VIAL -Ayabaquita-Puee	EN LAS	COMUNIDADES		Fecha presupuesto	26/07/2020
Partida	7.04 POSTES DE KILOME						
Rendimiento	u/DIA MO. 30.0000	EQ. 30.0000			Costo unitario	directo por : u	106.68
Código	Descripción Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	Mano de Obra OPERARIO		hh	1.0000	0.2667	21.88	5.84
0147010004	PEON		hh	10.0000	2.6667	15.79	42.11
							47.95
0000000015	Materiales		100		0.5700	4.00	0.00
0202000015	ALAMBRE NEGRO # 8	-0	kg		0.5700	4.60	2.62
02030200030008 0230670014	ACERO CORRUGADO 3/8" fy=4200 kg/cn PINTURA REFLECTIVA	nz	kg		1.8500 0.0150	2.85 44.50	5.27 0.67
0254010001	PINTURA ESMALTE SINTETICO		gal gal		0.0130	31.10	4.67
0254010001	TINTOKA ESWAETE SINTETIOS		gui		0.1300	31.10	13.23
	Subpartidas						17570.00000
900510010609	CONCRETO F'C=175 kg/cm2.		m3		0.0300	378.20	11.35
909701045001	CONCRETO F'C=140 KG/CM2 + 30%PM		m3		0.1300	262.71	34.15 45.50
Partida	7.05 POSTES DELINEADO	ORES					1865-307-0
Rendimiento	u/DIA MO. 25.0000	EQ. 25.0000			Costo unitario	directo por : u	138.34
Código	Descripción Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	OPERARIO		hh	0.1000	0.0320	21.88	0.70
0147010003	OFICIAL		hh	1.0000	0.3200	17.52	5.61
0147010004	PEON		hh	1.0000	0.3200	15.79	5.05
	1000100 PM OF						11.36
0220060006	Materiales PEGAMENTO EPOXICO		ad		0.0240	60.84	1.46
0230060005 0230670015	LAMINA REFLECTIVA PRISMATICO ALT.	A INTENSIDAD	gal p2		0.0240 0.3200	13.36	1.46 4.28
0257000002	PLANCHA ACERO LAMINADA AL FRIO	A INTENSIDAD	kg		0.5600	4.07	2.28
020700002	TEMOTIVINOERO EMININADATAET RIO		"g		0.0000	4.07	8.02
0007040004	Equipos		0/110		5,0000	11.00	0.57
0337010001	HERRAMIENTAS MANUALES		%MO		5.0000	11.36	0.57 0.57
	Subpartidas						
900304090108	ACERO CORRUGADO Fy=4200 Kg/cm2.		kg		2.0600	4.87	10.03
900305090247	ENCOFRADO Y DESENCOFRADO P/SEI	VALES	m2		0.5500	51.63	28.40
900322010207	PINTADO DE POSTES DELINEADORES		u		1.0000	35.66	35.66
909701043802	CONCRETO f'c=175 kg/cm2 P/SEÑALES		m3		0.0170	345.86	5.88
909701044802 909701045002	EXCAVACIÓN MANUAL CONCRETO f'c=140 KG/CM2 + 30%PG		m3 m3		0.1250 0.1200	42.32 276.08	5.29 33.13
303701043002	CONCRETO IC-140 KG/CIVIZ + 30%PG		111.3		U. LZUU	7.10.00	33.13

Presupuesto		TESIS : "DISEÑO DE NUEVO Y CRUCE SAN	AGUSTIN HUABAL, DIST					OIII OLDE
Subpresupuesto	001		AESTRUCTURA VIAL LTO-AYABAQUITA-PUE BELLAVISTA, JAEN"		COMUNIDADES CRUCE SAN AG		Fecha presupuesto	26/07/202
Partida	7.02	SEÑALES INFO						
Rendimiento	u/DIA	MO. 30.0000	EQ. 30.0000			Costo unitario o	directo por : u	898.74
Código	Descripcio	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010002	OPERARIO			hh	1.0000	0.2667	21.88	5.8
0147010004	PEON			hh	10.0000	2.6667	15.79	42.1 47.9
		Materiales						
02021100170004		SO DE 1/4" fy=4200kg/cm2	2	kg		4.6870	10.50	49.2
0202510103		5/8" X 14" C/T Y .A		jgo		7.2000	9.80	70.5
02030200030008		ORRUGADO 3/8" fy=4200		kg		7.8400	2.85	22.3
0212100104		E FIBRA DE VIDRIO E=4m	m	m2		1.3850	167.03	231.3
0230670014		REFLECTIVA		gal		0.0540	44.50	2.4
0251040130		5/8" Base del poste/ Tope d		m2		0.0800	5.86	0.4
0251040131		3/8" Cartel en base de post	e	m2		0.0290	6.35	0.18
0251040132		3/16" Anclaje para cartel		m2		0.0210	3.25	0.0
0252150117		1 1/2 x 3/16"		m		2.9200	35.60	103.9
0254010001		ESMALTE SINTETICO		gal		0.0240	31.10	0.7
0254060000		ANTICORROSIVA		gal		0.0780	35.17	2.7
0265220008	TUBO DE	FIERRO GALVANIZADO Ø	J=3"	m		8.5200	21.59	183.9
		Subpartidas						667.9
900510010609	CONCRET	ГО F'C=175 kg/cm2.		m3		0.1500	378.20	56.7
909701045001	CONCRET	TO F'C=140 KG/CM2 + 30%	6PM	m3		0.4800	262.71	126.1
25				30000				182.8
Partida	7.03	SEÑALES REGI	AMENTARIAS					
Rendimiento	u/DIA	MO. 30.0000	EQ. 30.0000			Costo unitario o	directo por : u	325.34
Código	Descripcio	ón Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010002	OPERARIO	Mano de Obra		hh	1.0000	0.2667	21.88	5.8
0147010004	PEON			hh	10.0000	2.6667	15.79	42.1
		12215 12121						47.9
0202510104	PERNOS 3	Materiales				5.0000	8.00	40.0
0212100104		576 X 4 E FIBRA DE VIDRIO E=4mi	m	u m2		0.5400	167.03	90.2
0230670014		REFLECTIVA	п			0.5400	44.50	0.8
0251040128		DE ACERO 2" X 1/8"		gal m		2.9700	3.25	9.6
0254010001		ESMALTE SINTETICO		gal		0.0090	31.10	0.2
0254060000		ANTICORROSIVA		gal		0.0030	35.17	0.9
0265020110		RRO GALVANIZADO Ø 3/8	Į"	m gai		4.0000	21.59	86.3
0200020110	TODOTIL	THE CALVANIZADO D 3/0	•	***		4,0000	21.03	228.2
		Subpartidas						
900510010606	CONCRET	ΓΟ f'c=140 kg/cm2		m3		0.1500	327.64	49.1
								49.1

Análisis de precios unitarios

Subpresupuesto	001		AESTRUCTURA VIAL Lto-ayabaquita-pueb	EN LAS	COMUNIDADES		Fecha presupuesto	26/07/2020
Partida	6.01		E MATERIAL SUB RASAI	NTE OVER A H	ASTA DE 5 KM			
Rendimiento	m3k/DIA	MO. 360.0000	EQ. 360.0000			Costo unitario dir	ecto por : m3k	4.60
Código	Descripció	ón Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010023	CONTROL	Mano de Obra ADOR OFICIAL		hh	0.2500	0.0056	18.02	0.10 0.1 0
0348040037	CAMION V	Equipos OLQUETE 6 X 4 330 HP 18	5 m3	hm	1.0000	0.0222	144.10	3.2
0349040096		OR SOBRE LLANTAS 200-2		hm	0.3429	0.0076	170.70	1.3 4.5
Partida	6.02	TRANSPORTE D	E MATERIAL GRANULAR	PARA SUB BA	ASE HASTA 5 KN	l		
Rendimiento	m3k/DIA	MO. 360.0000	EQ. 360.0000			Costo unitario dir	ecto por : m3k	4.60
Código	Descripció	ón Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010023	CONTROL	Mano de Obra ADOR OFICIAL		hh	0.2500	0.0056	18.02	0.10 0.1 0
0348040037	CAMIONIV	Equipos OLQUETE 6 X 4 330 HP 1	5 m2	hm	1.0000	0.0222	144.10	2.2
0349040096		OR SOBRE LLANTAS 200-2		hm	0.3429	0.0076	170.70	3.2 1.3 4.5
Partida	6.03	TRANSPORTE D	E MATERIAL GRANULAR	PARA BASE H	HASTA 5 KM			
Rendimiento	m3k/DIA	MO. 360.0000	EQ. 360.0000			Costo unitario dir	ecto por : m3k	4.60
Código	Descripció	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010023	CONTROL	ADOR OFICIAL		hh	0.2500	0.0056	18.02	0.1 0.1
		Equipos						0.1
0348040037		OLQUETE 6 X 4 330 HP 1		hm	1.0000	0.0222	144.10	3.2
0349040096	CARGADO	OR SOBRE LLANTAS 200-2	250 HP 4.1 yd3	hm	0.3429	0.0076	170.70	1.3 4.5
Partida	7.01	SEÑALES PREV	ENTIVAS					
Rendimiento	u/DIA	MO. 30.0000	EQ. 30.0000			Costo unitario	directo por : u	226.93
Código	Descripció	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010002	OPERARIO			hh	1.0000	0.2667	21.88	5.8
0147010004	PEON			hh	10.0000	2.6667	15.79	42.1 47.9
		Materiales						47.0
0202510104	PERNOS 3			u		2.0000	8.00	16.0
0212100104		FIBRA DE VIDRIO E=4mn	n	m2		0.3600	167.03	60.1
0230670014		REFLECTIVA		gal		0.1650	44.50	7.3
0251040128		DE ACERO 2" X 1/8"		m aal		1.6000	3.25	5.20
0254010001		ESMALTE SINTETICO		gal		0.0750	31.10	2.3
0254060000		ANTICORROSIVA	2"	gal		0.2410	35.17	8.4
0265220008	I ORO DE I	FIERRO GALVANIZADO Ø	=3	m		3.5000	21.59	75.5 175.0
900510010606	CONCRET	Subpartidas O f'c=140 kg/cm2		m3		0.0120	327.64	3.9
								3.9

Análisis de precios unitarios

Particle S.02.01.03.04 EMBOQUILLADO DE PIEDRA CONCRETO FC-140KG/CM2 +70% PM (6*TAM. MAX) Precio S/. Parcial S/	Presupuesto Subpresupuesto		NUEVO Y CRUCE SAN "DISEÑO DE INFE	INFRAESTRUCTURA VIA AGUSTIN HUABAL, DISTI RAESTRUCTURA VIAL ALTO-AYABAQUITA-PUEB BELLAVISTA, JAEN"	RITO DE BELLA EN LAS	VISTA, JAEN" COMUNIDADES	S LA	MBA ALTO-AYABAQ Fecha presupuesto	26/07/2020
	Partida	5.02.01.03.0			F'C=140KG/CI	/12 +70% PM (5"	TAM. MAX)		
Mano de Obra Mano	Rendimiento	m3/DIA	MO. 24.0000	EQ. 24.0000			Costo unitario di	recto por : m3	159.74
OHATOROOZ OPERADOR DE EQUIPO LIVIANO hh 1,0000 0,3333 21,88 7,25 10,170 10,155 10,	Código	Descripció			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
1017010004 PEON	0147000022	OPERADO			hh	1.0000	0.3333	21.88	7.29
Subpartidas	0147010004		•		hh	2.0000	0.6667	15.79	
17.00 HERRAMIENTAS MANUALES %MO 3.000 17.82 0.55									17.82
Subpartidas									
Subpartidas									
Subpartidas 9005100110606 CONCRETO fc-140 kg/cm2 m3 0.3000 327.64 98.25 909801010419 PIEDRA MEDIANA m3 0.7000 50.03 35.06 33.33	0349030001	COMPACT	ADOR VIBRATORIO TIP	O PLANCHA 4 HP	hm	1.0000	0.3333	24.25	
900510010606 CONCRETO fc-140 kg/cm2 m3 0.3000 327.64 98.25 909801010419 PIEDRA MEDIANA m3 0.7000 50.03 35.03			0.1						8.61
Partida S.02.01.03.05 CURADO DE CONCRETO	900510010606	CONCRETO			m3		0.3000	327 64	98 20
Particla			· ·						
Rendimiento m2/DIA MO. 50.000 EQ. 50.0000 Costo unitario directo por : m2 3.35	000001010110	1120101111					017000	00.00	
Código Descripción Recurso Mano de Obra Materiales Mano de Obra Materiales Mano de Obra Mano de	Partida	5.02.01.03.0	05 CURADO DE C	ONCRETO					
Mano de Obra Nh	Rendimiento	m2/DIA	MO. 50.0000	EQ. 50.0000			Costo unitario di	recto por : m2	3.35
O147010003	Código	Descripció	n Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
Materiales Gain G						0/20/20/20/20	vi sanarovna	007100	(27)(24)
Materiales Gal	0147010003	OFICIAL			hh	1.0000	0.1600	17.52	
0230190000 ADITIVO CURADOR gal 0.0200 23.73 0.47 0.47 Equipos %MO 3.0000 2.80 0.00 Partida 5.02.01.04 RELLENO COMPACTADO CON AFIRMADO Costo unitario directo por : m3 91.87 Código Descripción Recurso Mano de Obra Unidad Cuadrilla Cantidad Precio S/. Parcial S/ 0147000022 OPERADOR DE EQUIPO LIVIANO hh 1.0000 1.2308 21.88 26.93 0147010004 PEON hh 1.0000 1.2308 21.80 29.84 0337010001 HERRAMIENTAS MANUALES %MO 3.0000 46.36 1.33 0349030001 COMPACTADOR VIBRATORIO TIPO PLANCHA 4 HP hm 1.0000 1.2308 24.25 29.88 31.24 Subpartidas Subpartidas m3 1.0000 12.84 12.84 909801010410 AGUA PARA LA OBRA m3 0.1000 14.26 1.43			Materiales						2.80
Partida S.02.01.04 RELLENO COMPACTADO CON AFIRMADO	0230190000	ADITIVO C			gal		0.0200	23.73	0.47
Partida 5.02.01.04 RELLENO COMPACTADO CON AFIRMADO Rendimiento m3/DIA MO. 6.5000 EQ. 6.5000 Costo unitario directo por : m3 91.87 Código Descripción Recurso Mano de Obra Unidad Cuadrilla Cantidad Precio S/. Parcial S/ 0147000022 OPERADOR DE EQUIPO LIVIANO hh 1.0000 1.2308 21.88 26.93 0147010004 PEON hh 1.0000 1.2308 15.79 19.43 46.36 ***					3-				
Partida 5.02.01.04 RELLENO COMPACTADO CON AFIRMADO Rendimiento m3/DIA MO. 6.5000 EQ. 6.5000 Costo unitario directo por : m3 91.87 Código Descripción Recurso Unidad Cuadrilla Cantidad Precio S/. Parcial S/ Mano de Obra 0147000022 OPERADOR DE EQUIPO LIVIANO hh 1.0000 1.2308 21.88 26.93 0147010004 PEON hh 1.0000 1.2308 15.79 19.43 Equipos 0337010001 HERRAMIENTAS MANUALES %MO 3.0000 46.36 1.39 0349030001 COMPACTADOR VIBRATORIO TIPO PLANCHA 4 HP hm 1.0000 1.2308 24.25 29.85 31.24 Subpartidas 909701022001 MATERIAL DE AFIRMADO m3 1.0000 12.84 12.84 909801010410 AGUA PARA LA OBRA m3 0.1000 14.26 1.43	0337010001	HERRAMIE	Equipos ENTAS MANUALES		%MO		3.0000	2.80	0.08
Rendimiento m3/DIA MO. 6.5000 EQ. 6.5000 Costo unitario directo por : m3 91.87 Código Descripción Recurso Mano de Obra 0147000022 OPERADOR DE EQUIPO LIVIANO hh 1.0000 1.2308 21.88 26.93 0147010004 PEON hh 1.0000 1.2308 15.79 19.43 Equipos 46.36 0337010001 HERRAMIENTAS MANUALES %MO 3.0000 46.36 1.39 0349030001 COMPACTADOR VIBRATORIO TIPO PLANCHA 4 HP hm 1.0000 1.2308 24.25 29.85 31.24 Subpartidas 909701022001 MATERIAL DE AFIRMADO m3 1.0000 12.84 12.84 909801010410 AGUA PARA LA OBRA m3 0.1000 14.26 1.43									0.08
Código Descripción Recurso Unidad Cuadrilla Cantidad Precio S/. Parcial S/. 0147000022 OPERADOR DE EQUIPO LIVIANO hh 1.0000 1.2308 21.88 26.93 0147010004 PEON hh 1.0000 1.2308 15.79 19.43 46.36 Equipos 0337010001 HERRAMIENTAS MANUALES %MO 3.0000 46.36 1.39 0349030001 COMPACTADOR VIBRATORIO TIPO PLANCHA 4 HP hm 1.0000 1.2308 24.25 29.85 Subpartidas 909701022001 MATERIAL DE AFIRMADO m3 1.0000 12.84 12.84 909801010410 AGUA PARA LA OBRA m3 0.1000 14.26 1.43	Partida	5.02.01.04	RELLENO CON	IPACTADO CON AFIRMAD	0				
Mano de Obra 0147000022 OPERADOR DE EQUIPO LIVIANO hh 1.0000 1.2308 21.88 26.93 0147010004 PEON hh 1.0000 1.2308 15.79 19.43 46.36 Equipos 0337010001 HERRAMIENTAS MANUALES %MO 3.0000 46.36 1.38 0349030001 COMPACTADOR VIBRATORIO TIPO PLANCHA 4 HP hm 1.0000 1.2308 24.25 29.85 Subpartidas 909701022001 MATERIAL DE AFIRMADO m3 1.0000 12.84 12.84 909801010410 AGUA PARA LA OBRA m3 0.1000 14.26 1.43	Rendimiento	m3/DIA	MO. 6.5000	EQ. 6.5000			Costo unitario di	recto por : m3	91.87
0147000022 OPERADOR DE EQUIPO LIVIANO hh 1.0000 1.2308 21.88 26.93 0147010004 PEON hh 1.0000 1.2308 15.79 19.43 Equipos 0337010001 HERRAMIENTAS MANUALES %MO 3.0000 46.36 1.39 0349030001 COMPACTADOR VIBRATORIO TIPO PLANCHA 4 HP hm 1.0000 1.2308 24.25 29.85 Subpartidas 909701022001 MATERIAL DE AFIRMADO m3 1.0000 12.84 12.84 909801010410 AGUA PARA LA OBRA m3 0.1000 14.26 1.43	Código	Descripció			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010004 PEON hh 1.0000 1.2308 15.79 19.43 46.36 Equipos 0337010001 HERRAMIENTAS MANUALES %MO 3.0000 46.36 1.39 0349030001 COMPACTADOR VIBRATORIO TIPO PLANCHA 4 HP hm 1.0000 1.2308 24.25 29.85 31.24 Subpartidas 909701022001 MATERIAL DE AFIRMADO m3 1.0000 12.84 12.84 909801010410 AGUA PARA LA OBRA m3 0.1000 14.26 1.43	0147000022	OPERADO			hh	1.0000	1.2308	21.88	26.93
46.36 Equipos 0337010001 HERRAMIENTAS MANUALES %MO 3.0000 46.36 1.39 0349030001 COMPACTADOR VIBRATORIO TIPO PLANCHA 4 HP hm 1.0000 1.2308 24.25 29.85 Subpartidas 909701022001 MATERIAL DE AFIRMADO m3 1.0000 12.84 12.84 909801010410 AGUA PARA LA OBRA m3 0.1000 14.26 1.43	0147010004								
Equipos 0337010001 HERRAMIENTAS MANUALES %MO 3.0000 46.36 1.39 0349030001 COMPACTADOR VIBRATORIO TIPO PLANCHA 4 HP hm 1.0000 1.2308 24.25 29.85 Subpartidas 909701022001 MATERIAL DE AFIRMADO m3 1.0000 12.84 12.84 909801010410 AGUA PARA LA OBRA m3 0.1000 14.26 1.43		o eranalitä			(223-50)	307.75.7	415555	adula	
0337010001 HERRAMIENTAS MANUALES %MO 3.0000 46.36 1.39 0349030001 COMPACTADOR VIBRATORIO TIPO PLANCHA 4 HP hm 1.0000 1.2308 24.25 29.85 Subpartidas 909701022001 MATERIAL DE AFIRMADO m3 1.0000 12.84 12.84 909801010410 AGUA PARA LA OBRA m3 0.1000 14.26 1.43									
31.24 Subpartidas 909701022001 MATERIAL DE AFIRMADO m3 1.0000 12.84 12.84 909801010410 AGUA PARA LA OBRA m3 0.1000 14.26 1.43	0337010001								
Subpartidas 909701022001 MATERIAL DE AFIRMADO m3 1.0000 12.84 12.84 909801010410 AGUA PARA LA OBRA m3 0.1000 14.26 1.43	0349030001	COMPACT	ADOR VIBRATORIO TIP	D PLANCHA 4 HP	hm	1.0000	1.2308	24.25	
909701022001 MATERIAL DE AFIRMADO m3 1.0000 12.84 12.84 909801010410 AGUA PARA LA OBRA m3 0.1000 14.26 1.43									31.24
909801010410 AGUA PARA LA OBRA m3 0.1000 14.26 1.43	909701022001	MATEDIAL	Subpartidas DE AFIRMADO		m?		1 0000	12 0/	120/
	000001010410	AGOAT AN	TI COIVI		IIIJ		0.1000	14.20	14.27

Análisis de precios unitarios

Presupuesto		NUEVO Y CRUCE SAN	INFRAESTRUCTURA VIA AGUSTIN HUABAL, DISTI	RITO DE BELLA	VISTA, JAEN"			
Subpresupuesto	001		RAESTRUCTURA VIAL Alto-ayabaquita-pueb Ebellavista, Jaen''		COMUNIDADES CRUCE SAN AC	Sterring and Control of the Control	Fecha presupuesto	26/07/202
Partida	5.02.01.03.		DESENCOFRADO - ALCA	NTARILLAS				
Rendimiento	m2/DIA	MO. 14.0000	EQ. 14.0000			Costo unitario di	recto por : m2	51.6
Código	Descripció	on Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010002	OPERARIO			hh	1.0000	0.5714	21.88	12.5
0147010003	OFICIAL			hh	1.0000	0.5714	17.52	10.0
								22.5
		Materiales						
0202000015		NEGRO # 8		kg		0.2000	4.60	0.9
0202010005		ARA MADERA CON CAE	EZA DE 3"	kg		0.1300	4.00	0.5
0243040000	MADERA 1	TORNILLO		p2		4.5000	6.00	27.0
		U285 18						28.4
0227010001	HEDDAMII	Equipos Entas manuales		%MO		2 0000	22.51	0.6
0337010001	HERRAIVIII	ENTAS MANUALES		%IVIO		3.0000	22.51	0.60
								0.68
Partida	5.02.01.03.	02 ACERO fy=420	0 kg/cm2 GRADO 60					
Rendimiento	kg/DIA	MO. 350.0000	EQ. 350.0000			Costo unitario d	irecto por : kg	7.70
Código	Descripció	on Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010002	OPERARIO	Mano de Obra		hh	1.0000	0.0229	21.88	0.50
0147010002	OFICIAL	,		hh	1.0000	0.0229	17.52	0.30
0147010003	OFICIAL			31118	1.0000	0.0229	17.32	0.4
		Materiales						0.5
0202000007	ALAMBRE	NEGRO RECOCIDO # 10	i	kg		1.0500	3.65	3.83
0203020003		ORRUGADO fy=4200 kg/d		kg		1.0700	2.73	2.93
		J		5				6.7
		Equipos						
0337010001	HERRAMII	ENTAS MANUALES		%MO		5.0000	0.90	0.0
								0.0
Partida	5.02.01.03.	03 CONCRETO f'o	:=210 kg/cm2					
Rendimiento	m3/DIA	MO. 16.0000	EQ. 16.0000			Costo unitario di	recto por : m3	375.37
Código	Descripció	in Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010001	CADATAZ	Mano de Obra		hh	1 0000	0.5000	24.24	10.4
0147010001	CAPATAZ			hh bb	1.0000	0.5000	24.21	12.1
0147010002	OPERARIO	,		hh	3.0000	1.5000	21.88	32.8
0147010003	OFICIAL			hh	3.0000	1.5000	17.52	26.2
0147010004	PEON			hh	6.0000	3.0000	15.79	47.3
		Metariolog						118.5
0205010004	ARENA GF	Materiales RUESA		m3		0.4700	60.00	28.20
0221000001		PORTLAND TIPO I (42.5	ka)	bls		8.5000	22.34	189.89
	O LINEIVI O		···ə/	515		0.000	LLIUT	218.0
		Equipos						
0337010001		ENTAS MANUALES		%MO		3.0000	118.58	3.50
0349070006	VIBRADOF	R DE CONCRETO 3/4" - 2	2"	hm	1.0000	0.5000	2.50	1.2
0349100023	MEZCLAD	ORA DE CONCRETO TR	OMPO 18HP 11 - 13 p3	hm	1.0000	0.5000	12.63	6.3
								11.13
000704044404	DIEDDA O	Subpartidas		D		0.0700	07.00	05.00
909701044401	PIEDRA CI			m3		0.6700	37.32	25.00
909801010410	AGUA PAF	RA LA OBRA		m3		0.1800	14.26	2.5° 27.5 °

Presupuesto			D DE INFRAESTRUCTURA VI. ESAN AGUSTIN HUABAL, DIST			FLORESTA-SHU	MBA ALTO-AYABAQ	UITA-PUEBLO
Subpresupuesto			INFRAESTRUCTURA VIAL MBA ALTO-AYABAQUITA-PUE TO DE BELLAVISTA, JAEN"		COMUNIDADES CRUCE SAN AC		Fecha presupuesto	26/07/202
Partida	5.01.01.01	CUNETAS	REVESTIDAS EN CONCRETO)				
Rendimiento	m3/DIA	MO. 1.0000	EQ. 1.0000			Costo unitario di	recto por : m3	68.3
Código	Descripción	n Recurso Subpartidas		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
900305090248	ENCOFRAD	O Y DESENCOFF	RADO	m2		0.0493	51.63	2.5
909701021502	PERFILADO	Y COMPACTADO	MANUAL	m2		1.5700	13.23	20.7
909701043803	CONCRETO) f'c=175 kg/cm2		m3		0.1177	382.23	44.99 68.3 °
Partida	5.02.01.01.0	1 EXCAVAC	CIÒN NO CLASIFICADA C/EQU	IPO PARA ESTR	UCTURAS			.110.598.3
Rendimiento	m3/DIA	MO. 120.0000	EQ. 120.0000			Costo unitario di	recto por : m3	9.7
Código	Descripción	n Recurso Mano de Obra	1	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010001	CAPATAZ			hh	0.1000	0.0067	24.21	0.1
0147010004	PEON			hh	1.0000	0.0667	15.79	1.05 1.2 1
0337010001	HEDDAMIE	Equipos NTAS MANUALES		%MO		3.0000	1.21	0.0
0349060055			E LLANTAS 62 HP 1 yd3	hm	1.0000	0.0667	127.88	8.5
0349000033	KLIKOLAG	AVADORA SOBRI	ELLANTAS OZ FIF T YUS	11111	1.0000	0.0007	127.00	8.5
Partida	5.02.01.02.0	1 SOLADO	DE CONCRETO f'c=140 kg/cm/	2				
Rendimiento	m3/DIA	MO. 15.0000	EQ. 15.0000			Costo unitario di	recto por : m3	303.8
Código	Descripción	n Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010002	OPERARIO			hh	1.0000	0.5333	21.88	11.6
0147010003	OFICIAL			hh	1.0000	0.5333	17.52	9.3
0147010004	PEON			hh	6.0000	3.2000	15.79	50.53 71.5 4
0205000004	DIEDDA CH	Materiales ANCADA DE 3/4"		m3		0.8900	60.00	53.4
0205010004	ARENA GRI			m3		0.5200	60.00	31.2
0221000001		PORTLAND TIPO	I (42.5 kg)	bls		6.3000	22.34	140.7
0239050000	AGUA		J	m3		0.2100	0.50	0.1
		Equipos				0.0000	74.54	225.4
0007040004	LIEDDALLE	AITAC BAABILIAL CO						
0337010001 0349100007		NTAS MANÚALES	O TAMBOR 18 HP 11 p3	%MO hm	0.8000	2.0000 0.4267	71.54 12.63	1.43 5.39

Análisis de precios unitarios

Presupuesto Subpresupuesto	001	NUEVO Y CRUCE "DISEÑO DE FLORESTA-SHUI HUABAL, DISTRI	O DE INFRAESTRUCTURA VIAI E SAN AGUSTIN HUABAL, DISTR INFRAESTRUCTURA VIAL VIBA ALTO-AYABAQUITA-PUEB TO DE BELLAVISTA, JAEN"	RITO DE BELLA EN LAS LO NUEVO Y (VISTA, JAEN" COMUNIDADES	S LA	Fecha presupuesto	26/07/2020
Partida	3.01.03	SEÑALIZ	ACIÓN TEMPORAL DE SEGURID	AD				
Rendimiento	glb/DIA	MO.	EQ.			Costo unitario d	irecto por : glb	2,290.00
Código	Descripcio	ón Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0239010102	SEÑALIZA	Materiales CIÓN TEMPORAL I	DE SEGURIDAD	glb		1.0000	2,290.00	2,290.00 2,290.00
Partida	3.01.04	RECURS	OS PARA RESPUESTA ANTE EN	IERGENCIAS E	N SEGURIDAD	Y SALUD OCUPA	CIONAL	
Rendimiento	glb/DIA	MO.	EQ.			Costo unitario d	irecto por : glb	3,000.00
Código	Descripcio	ón Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0239900103			TA ANTE EMERGENCIAS EN	glb		1.0000	3,000.00	3,000.00
	SEGURID/	AD Y SALUD						3,000.00
Partida	3.01.05	CAPACIT	ADOR					
Rendimiento	glb/DIA	MO.	EQ.			Costo unitario d	irecto por : glb	14,300.00
Código	Descripcio	on Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0239900104	CAPACITA	Materiales ACIÓN		glb		1.0000	14,300.00	14,300.00 14,300.00
Partida	4.01.01	IMPRIMA	CION ASFALTICA					
Rendimiento	m2/DIA	MO. 3,200.000	0 EQ. 3,200.0000			Costo unitario d	irecto por : m2	8.55
Código	Descripcio	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	OPERARIO			hh	1.0000	0.0025	21.88	0.05
0147010004	PEON			hh	6.0000	0.0150	15.79	0.24 0.29
0204000011	ΔΡΕΝΔ ΕΙΙ	Materiales NA ZARANDEADA		m3		0.0057	110.00	0.63
0213000023		LIQUIDO MC-30		gal		0.3307	20.41	6.75
		F						7.38
0337010001	HERRAMII	Equipos Entas manuales	i .	%MO		5.0000	0.29	0.01
0349010002	COMPRES	SORA NEUMATICA	250-330 PCM, 87 HP	hm	1.0000	0.0025	77.62	0.19
0349040097		ADOR 70 HP 0.5YI		hm	1.0000	0.0025	120.00	0.30
0349310003	CAMION II	MPRIMADOR DE 18	300 gl	hm	1.0000	0.0025	150.00	0.38 0.88
Partida	4.01.02	TRATAMI	ENTO SUPERFICIAL					
Rendimiento	m3/DIA	MO. 1.0000	EQ. 1.0000			Costo unitario d	irecto por : m3	35.36
Código	Descripcio	ón Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0213000024	EMULSIÓN	Materiales N ASFÁLTICA		gal		0.7011	20.41	14.31 14.31
		Claid						14.51
		Subpartidas						
909701043602 909701043603		CAPA DE TS		m2 m2		1.2500 1.2500	8.41 8.43	10.51 10.54

Página: 4

Análisis de precios unitarios

Subpresupuesto		"DISEÑO DE INFRA	AGUSTIN HUABAL, DISTRIT AESTRUCTURA VIAL LTO-AYABAQUITA-PUEBLO	TO DE BELLA En las	VISTA, JAEN" COMUNIDADES	LA	Fecha presupuesto	26/07/2020
Partida	2.05	SUB-BASE GRA	NULAR e=0.20 m.					
Rendimiento	m3/DIA	MO. 412.0000	EQ. 412.0000			Costo unitario d	irecto por : m3	75.55
Código	Descripció	on Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	OPERARIO	Mano de Obra		hh	1.0000	0.0194	21.88	0.42
0147010004	PEON			hh	4.0000	0.0777	15.79	1.23
								1.65
		Materiales						
0205300080	MATERIAL	GRANULAR PARA SUBB	ASE	m3		1.2500	50.36	62.95
								62.95
0007040004	UEDDAAN	Equipos		0/140		2 2222	4.05	0.01
0337010001		ENTAS MANÚALES	DODUI CA DO 101 12511D	%MO	1 0000	3.0000	1.65	0.05
0349030007	10-12 ton	LISO VIBRATORIO AUTOF	PROPULSADO 101-135HP	hm	1.0000	0.0194	220.00	4.27
0349090000		ELADORA DE 125 HP		hm	1.0000	0.0194	260.00	5.04
001000000	mo rom.	EB ID OTOT DE TEOTH			1.0000	0.0101	200,00	9.36
		Subpartidas						
900304090107	AGUA PAF	ra la obra		m3		0.1200	13.28	1.59
								1.59
Partida	2.06	BASE GRANULA	AR e=0.20 m					
Rendimiento	m3/DIA	MO. 412.0000	EQ. 412.0000			Costo unitario d	irecto por : m3	75.55
Código	Descrinció	on Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
oungo	Descripcio	Mano de Obra		Omada	ouduma	Ouridada	1100000	r uroitar or
0147010002	OPERARIO)		hh	1.0000	0.0194	21.88	0.42
0147010004	PEON			hh	4.0000	0.0777	15.79	1.23
								1.65
		Materiales	7227	121			20122	00000
0205300080	MATERIAL	. GRANULAR PARA SUBB	ASE	m3		1.2500	50.36	62.95
		(622200 100 400						62.95
0337010001	неррами	Equipos ENTAS MANUALES		%MO		3.0000	1.65	0.05
0349030007			PROPULSADO 101-135HP	hm	1.0000	0.0194	220.00	4.27
0343030007	10-12 ton	LISO VIDIONI ONIO NOTOI	KOT OLSADO 101-133111		1.0000	0.0154	220.00	7.27
0349090000	MOTONIVI	ELADORA DE 125 HP		hm	1.0000	0.0194	260.00	5.04
								9.36
		Subpartidas						
900304090107	AGUA PAF	ra la obra		m3		0.1200	13.28	1.59
¥								1.59
Partida	3.01.01	EQUIPO DE PRO	OTECCIÓN INDIVIDUAL					
Rendimiento	glb/DIA	MO.	EQ.			Costo unitario d	irecto por : glb	5,900.00
Código	Descripció	on Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0222070000	EOUIDO D	Materiales	IAI	alb		1 0000	E 000 00	E 000 00
0232970009	EQUIPO D	E PROTECCIÓN INDIVIDU	JAL	glb		1.0000	5,900.00	5,900.00 5,900.0 0
Partida	3.01.02	EQUIPO DE PRO	OTECCIÓN COLECTIVA					
Rendimiento	glb/DIA	MO.	EQ.			Costo unitario d	irecto por : qlb	1,080.00
Código		ón Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
codigo		Materiales						
0232000060	EQUIPO D	Materiales E PROTECCIÓN COLECT	IVA	glb		1.0000	1,080.00	1,080.00

Análisis de precios unitarios

Presupuesto	040 1007		INFRAESTRUCTURA VIAL Agustin Huabal, distri1			LOKESTA-SHU	WIDA ALTU-ATADAQ	OIIM-PUEDL
Subpresupuesto	001	"DISEÑO DE INFR	AESTRUCTURA VIAL LTO-AYABAQUITA-PUEBLO	EN LAS	COMUNIDADES		Fecha presupuesto	26/07/2020
Partida	2.03		OMPACTADO DE SUB-RAS	ANTE				
Rendimiento	m2/DIA	MO. 2,000.0000	EQ. 2,000.0000			Costo unitario di	recto por : m2	2.75
Código	Descripció	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010003	OFICIAL	mano de obra		hh	1.0000	0.0040	17.52	0.07
0147010004	PEON			hh	5.0000	0.0200	15.79	0.32
		Equipos						0.39
0337010001	HERRAMII	ENTAS MANUALES		%MO		3.0000	0.39	0.01
0349030007	RODILLO I 10-12 ton	LISO VIBRATORIO AUTOI	PROPULSADO 101-135HP	hm	1.0000	0.0040	220.00	0.88
0349090000		Eladora de 125 hp		hm	1.0000	0.0040	260.00	1.04
		Subpartidas						1.93
909801010410	AGUA PAF	RA LA OBRA		m3		0.0300	14.26	0.43 0.4 3
Partida	2.04	CONFORMACIÓ	N DE BASE GRANULAR e=	0.20 m.				
Rendimiento	m3/DIA	MO. 357.0000	EQ. 357.0000			Costo unitario di	recto por : m3	87.84
Código	Descripció	ón Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	OPERARIO	Mano de Obra		hh	1.0000	0.0224	21.88	0.49
0147010002	PEON			hh	4.0000	0.0896	15.79	1.41
								1.90
0205300079	MATERIAL	Materiales . GRANULAR PARA BASE	2	m3		1.2500	58.83	73.54
								73.54
0337010001	HERRAMII	Equipos ENTAS MANUALES		%MO		3.0000	1.90	0.06
0349030007	RODILLO I	LISO VIBRATORIO AUTOI	PROPULSADO 101-135HP	hm	1.0000	0.0224	220.00	4.93
0349090000		ELADORA DE 125 HP		hm	1.0000	0.0224	260.00	5.82
		Subpartidas						10.81
900304090107	AGUA PAF	RA LA OBRA		m3		0.1200	13.28	1.59
								1.59

Presupuesto			Anansis de p Infraestructura via Agustin Huabal, dist	AL EN LAS CON	IUNIDADES LA	FLORESTA-SHU	MBA ALTO-AYABAQI	UITA-PUEBLO
Subpresupuesto	FL	ORESTA-SHUMBA A	RAESTRUCTURA VIAL ALTO-AYABAQUITA-PUEI EBELLAVISTA, JAEN''		COMUNIDADES CRUCE SAN AG		Fecha presupuesto	26/07/2020
Partida	1.04	CARTEL DE OB						
Rendimiento	u/DIA	MO. 1.5000	EQ. 1.5000			Costo unitario	directo por : u	1,216.11
Código	Descripción R	ecurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	OPERARIO			hh	1.0000	5.3333	21.88	116.69
0147010004	PEON			hh	2.0000	10.6667	15.79	168.43
		Materiales						285.12
0202010003	CLAVOS PARA	A MADERA CON CAB	EZA DE 2"	kg		1.0000	4.00	4.00
0202810006	GIGANTOGRA	FIA (3.6x2.4)		u		1.0000	350.00	350.00
0243600000	MADERA EUC	ALIPTO (p2)		p2		102.2410	3.50	357.84
0244030007	TRIPLAY LUPU	JNA DE 4' X 8' X 8 mr	n	pl		3.0000	63.20	189.60
0266320002	PERNOS DE 1	/2 x 8"		u		6.0000	3.50	21.00
		Farrings						922.44
0337010001	HERRAMIENTA	Equipos AS MANUALES		%MO		3.0000	285.12	8.55
Xi.								8.55
Partida	2.01	DESBROCE Y L	LIMPIEZA EN ZONAS NO I	BOSCOSAS				
Rendimiento	ha/DIA	MO. 0.2500	EQ. 0.2500			Costo unitario d	irecto por : ha	2,744.62
Código	Descripción R	ecurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	OPERARIO			hh	0.1250	4.0000	21.88	87.52
0147010004	PEON			hh	5.0000	160.0000	15.79	2,526.40 2,613.92
		Equipos						2,013.32
0337010001	HERRAMIENT	AS MANUALES		%MO		5.0000	2,613.92	130.70 130.7 0
Partida	2.02	EXCAVACIÓN I	PARA EXPLANACIONES E	EN MATERIAL SI	IFI TO			130.70
				IN WATERIAL S	DELTO			
Rendimiento	m3/DIA	MO. 500.0000	EQ. 500.0000			Costo unitario di	recto por : m3	4.68
Código	Descripción R	ecurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010003	OFICIAL			hh	0.5000	0.0080	17.52	0.14
0147010004	PEON			hh	2.0000	0.0320	15.79	0.51
		Equipes						0.65
0337010001	HERRAMIENTA	Equipos AS MANUALES		%MO		3.0000	0.65	0.02
			IO UD	hm	1.0000	0.0160	250.35	4.01
0349040095	TRACTOR SOL	BRE ORUGAS 190-24	HU FIP	11111	1.0000	0.0100	230.33	4.01

Análisis de precios unitarios

Subpresupuesto		NUEVO Y CRUCE SAN "DISEÑO DE INFE FLORESTA-SHUMBA	S LA	Fecha presupuesto	QUITA-PUEBLO 26/07/2020			
Partida	1.01	HUABAL, DISTRITO DE	BELLAVISTA, JAEN"					
Paruua	1.01	MOVILIZACION	Y DESMOVILIZACION DE	EQUIPOS Y MA	IQUINARIA			
Rendimiento	glb/DIA	MO. 1.0000	EQ. 1.0000			Costo unitario di	irecto por : glb	123,025.37
Código	Descripci	ón Recurso Materiales		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0232970006	MOVILIZA MAQUINA	CION Y DESMOVILIZACIO	ON DE EQUIPOS Y	glb		1.0000	123,025.37	123,025.3
		(page 2012)						123,025.3
Partida	1.02	TOPOGRAFÍA '	Y GEOREFERENCIACIÓN					
Rendimiento	km/DIA	MO. 0.7500	EQ. 0.7500			Costo unitario di	irecto por : km	1,416.6
Código	Descripci	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147000032	TOPOGR/			hh	1.0000	10.6667	24.07	256.7
0147010001	CAPATAZ			hh	0.1000	1.0667	24.21	25.8
0147010004	PEON			hh	5.0000	53.3333	15.79	842.1
								1,124.7
		Materiales						
0202170001	CLAVOS F	PARA CALAMINA		kg		0.4300	0.18	0.0
0229060001	YESO			kg		5.6000	0.25	1.4
0244010002	ESTACA D	DE MADERA EUCALIPTO	DE 2x1Px0.50m.	u		10.0000	1.00	10.0
0254010001	PINTURA	ESMALTE SINTETICO		gal		0.0900	31.10	2.8
		700 (20		Ü				14.2
0337010001	НЕВВАМІ	Equipos ENTAS MANUALES		%MO		3.0000	1,124.70	33.7
0349190003		POGRAFICO CON TRIPO	DE	he	1.0000	10.6667	6.25	66.6
0349190006		N TOTAL CON TRIPODE	DL	he	1.0000	10.6667	16.25	173.3
0349190000	LSTACIO	N TOTAL CON TRIF ODL		iic	1.0000	10.0007	10.23	273.7
900510010606	CONCRET	Subpartidas FO f'c=140 kg/cm2		m3		0.0120	327.64	3.9
								3.9
Partida	1.03	CAMPAMENTO	Y PATIO DE MAQUINAS					
Rendimiento	m2/DIA	MO. 120.0000	EQ. 120.0000			Costo unitario di	recto por : m2	64.02
Código	Descripci	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010002	OPERARI			hh	1.0000	0.0667	21.88	1.4
0147010004	PEON			hh	2.0000	0.1333	15.79	2.1
								3.5
0202010005	CLAVOS	Materiales PARA MADERA CON CAB	F74 DF 3"	kg		0.1090	4.00	0.4
0226080003		DE FIERRO DE 3"	LEN DE U	u		0.0980	3.50	0.3
0226080094		PUERTAS		u		0.0330	2.90	0.3
02435000094	POSTES	JULINIA				0.0330	5.00	0.6
0243600002		EUCALIPTO (p2)		u n2		9.7390	3.50	34.0
		EUCALIPTO (p2) LUPUNA DE 4' X 8' X 8 mr	n	p2		0.3040		
0244030007			ii.	pl			63.20	19.2
0246910004		DE PUAS		m		0.1830	2.43	0.4
0256900012	CALAMINA	A 1.83 m X 0.85 m X 0.25	TIM	u		0.4770	10.70	5.1 60.3
		Equipos						00.3
0337010001	HERRAMI	ENTAS MANUALES		%MO		3.0000	3.56	0.1

Análisis de precios unitarios

Presupuesto	0401007	0401007 TESIS : "DISEÑO DE INFRAESTRUCTURA VIAL EN LAS COMUNIDADES LA FLORESTA-SHUMBA ALTO-AYABAQUITA-PUEBLO NUEVO Y CRUCE SAN AGUSTIN HUABAL, DISTRITO DE BELLAVISTA, JAEN"								
Subpresupuesto	001 "DISEÑO DE INFRAESTRUCTURA VIAL EN LAS FLORESTA-SHUMBA ALTO-AYABAQUITA-PUEBLO NUEVO Y HUABAL, DISTRITO DE BELLAVISTA, JAEN"						COMUNIDADES LA Fecha presupuesto			26/07/2020
Partida	7.06		MARCAS EN EL							
Rendimiento	m2/DIA	MO.	1,000.0000	EQ.	1,000.0000			Costo unitario d	recto por : m2	7.75
Código	Descripció		so no de Obra			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010001	CAPATAZ	Iviar	no de Obra			hh	0.2000	0.0016	24.21	0.04
0147010002	OPERARIO)				hh	2.0000	0.0160	21.88	0.35
0147010004	PEON					hh	6.0000	0.0480	15.79	0.76
										1.15
			lateriales							
0229200012	SOLVENT					gal		0.0067	25.45	0.17
0254450076	PINTURA PARA TRAFICO					gal		0.1333	42.40	5.65
0279120004	MICROESI	FERAS D	E VIDRIO			kg		0.1312	4.75	0.62
		22								6.44
0337010001	HEDDAMIE		Equipos			%MO		3.0000	1.15	0.03
0348110006	HERRAMIENTAS MANUALES MAQUINARIA PARA PINTAR MARCAS EN PAVIMENTO					hm	1.0000	0.0080	16.64	0.03
0340110000	WAQUINA	NA FARA	A FINTAK WAKCA	HS EN FAVIIV	LINTO	11111	1.0000	0.0000	10.04	0.16
The state of the s			OSTATORIO DOSSO							0.10
Partida	8.01		FLETE							
Rendimiento	glb/DIA MO. 1.0000 EQ. 1.0000				1.0000			Costo unitario d	0.50	
Código	Descripción Recurso					Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0232000059	FLETE	М	lateriales			glb		1.0000	0.50	0.50
	a label to					3.0		110000	0.00	0.50

MUNICIPALIDAD DISTRITAL DE

BELLAVISTA

JAÉN - CAJAMARCA ALCALDÍA

RUC: 20215745032

Correo Institucional: alcaldía@munibellavistajaen.gob.pe

"AÑO DE LA LUCHA CONTRA LA CORRUPCIÓN Y LA IMPUNIDAD"

Bellavista, 12 de noviembre del 2019

CARTA Nº 093-2019-MDB/A

Señor (a):
Mg. Victoria de los Ángeles Agustín Díaz
Coordinadora de CP – Ingeniería Civil
Universidad Cesar Vallejo – Chiclayo - UCV

Presente.-

ASUNTO: Autoriza permiso para desarrollo de Proyecto de Tesis

REF. : CARTA N° 0327-2019-UCV-CPIC.

De mi mayor consideración:

Mediante la presente me dirijo a usted, para expresarle mi cordial y atento saludo a nombre propio y de la Municipalidad Distrital de Bellavista, Provincia de Jaén, Departamento Cajamarca, que represento; a la vez hacer de su conocimiento que, se le OTORGA El PERMISO, al estudiante JOSÉ EDWIN DÍAZ VERGARA, identificado con DNI N° 41133125, con Código Universitario N° 7000961896, del IX Ciclo de la Escuela Profesional de Ingeniería Civil, de la Institución Educativa que usted dignamente Representa, a fin que desarrollen el Proyecto de Tesis Denominado: "Diseño de Infraestructura Vial, Comunidades la Floresta - Shumba Alto - Ayabaquita - Pueblo Nuevo y Cruce San Agustín Huabal, Distrito de Bellavista, Jaén, Cajamarca".

Es propicia la ocasión para renovarle las muestras de mi consideración y estima personal.

Atentamente,

CORONA

ALCALDE

RECIBIDO

1 6 NOV 2017

Exp. N°

C. c Archivo WGCC/A Nah/SG

Anexo 07: panel de imágenes de campo

Reconocimiento del terreno trocha carrozable así como captura de puntos por medio de GPS

Imagen 02

Reconocimiento de la trocha carrozable La Floresta-Sumba Alto-Ayabaquita-Puebo Nuevo hasta el cruce San Agustín Huabal

Marcación de BM en el proceso de levantamiento topográfico de la vía

Personal de apoyo en el levantamiento topográfico

Punto BM 06 levantamiento topográfico del proyecto