

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

"Metodología integrada para el diseño de tuberías en proceso de transporte de vapor saturado para asegurar la efectividad operacional para Centros Hospitalarios"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERO MECÁNICO ELECTRICISTA

AUTORES:

Lozano Huangal, Gelber Paolo (ORCID: 0000-0002-1278-731X) Medina Rivadeneira, Daniel Eduardo (<u>ORCID: 0000-0003-38</u>35-9118)

ASESOR:

Mg. Paredes Rosario, Raúl Rosali (ORCID: 0000-0002-3032-3527)

LÍNEA DE INVESTIGACIÓN:

Generación, Transmisión y Distribución de Energía

TRUJILLO – PERÚ

2020

DEDICATORIA

"El peor fracaso de tu vida es no hacer realidad tus sueños"

Dedico esta tesis a mis padres y hermanos por brindarme su tiempo y mostrarme el camino hacia la superación, muchos de mis logros se los debo a ustedes, me motivaron constantemente para alcanzar mis anhelos.

"Los sueños no se cumplen se trabajan"

A mis padres por haberme forjado como la persona que soy en la actualidad, a la familia que pertenezco orgullosamente, que me apoyaron incondicionalmente en la parte moral y económica para poder llegar a ser profesional.

.

AGRADECIMIENTO

Queremos agradecer primero a Dios porque nos dio el don de la perseverancia para alcanzar nuestra meta. A la universidad que nos abrió sus puertas para ser mejores personas y profesionales. A los profesores que con el pasar de los años se convirtieron en nuestro ejemplo a seguir. A nuestros compañeros ya que con ellos vivimos los buenos y malos momentos que solo se viven en la universidad y que con algunos más que compañeros fuimos verdaderamente amigos.

INDICE DE CONTENIDO

Dedicatoria I
AgradecimientoII
Indice de contenidoIV
Índice de tablas
Índice de figurasVI
Resumen
AbstractIX
I. INTRODUCCIÓN
II. MARCO TEÓRICO
III. METODOLOGÍA18
3.1. Tipo y diseño de investigación18
3.2. Variables y operacionalización19
3.3. Población, muestra y muestreo19
3.4. Técnicas e instrumentos de recolección de datos20
3.5. Procedimiento21
3.6. Método de análisis de datos22
3.7. Aspectos éticos
IV. RESULTADOS
V. DISCUSIÓN62
VI. CONCLUSIONES
VII. RECOMENDACIONES
REFERENCIAS
ANEXOS75

ÍNDICE DE TABLAS

Tabla 1: Técnicas e instrumentos de recolección de datos 20
Tabla 2: Validación de instrumentos mediante expertos 21
Tabla 3: Resultados de la evaluación al dimensionamiento de las tuberías actual25
Tabla 4: Resultados de la evaluación a las válvulas reductoras de presión26
Tabla 5: Rendimiento térmico del aislante para cada operación de caldera26
Tabla 6: Rendimiento térmico total del estado actual 27
Tabla 7: Resultados del análisis de flexibilidad del estado actual en la tubería TP1 y TP2
Tabla 8: Resultados del análisis de flexibilidad del estado actual en las tuberías TS1, TS2 y TS328
Tabla 9: Parámetros requeridos para la evaluación de la velocidad del fluido en tuberíasprincipales
Tabla 10: Parámetros requeridos para la evaluación de la velocidad del fluido en tuberíassecundarias
Tabla 11: Material de tuberías y numero de cedula45
Tabla 12: Dimensionamiento de las tuberías principales y verificación TP1 y TP245
Tabla 13: Dimensionamiento de las tuberías secundarias y verificación TS1, TS2 y TS345
Tabla 14: Accesorios de tubería y vapor para las tuberías principales TP1 y TP246
Tabla 15: Accesorios de tubería y vapor para la tubería secundaria TS146
Tabla 16: Accesorios de tubería y vapor para las tuberías secundarias47
Tabla 17: Accesorios y vapor para las estaciones reductoras de presión49
Tabla 18: Espesores del aislante térmico para las tuberías de la red de transporte devapor
Tabla 19: Análisis de flexibilidad en las tuberías TP1 y TP2 del nuevo diseño50
Tabla 20: Análisis de flexibilidad en las tuberías TS1, TS2 Y TS3 del nuevo diseño51
Tabla 21: Rendimiento térmico del proceso de transporte de vapor sin aislamiento52
Tabla 22: Rendimiento térmico del proceso de transporte de vapor con aislamiento52
Tabla 23: Costos por perdidas de calor en la red de transporte de vapor con aislamiento

Tabla 24: Comparación de especificaciones para las tuberías principales	53
Tabla 25: Comparación de especificaciones para TS1	54
Tabla 26: Comparación de especificaciones para TS2 y TS3	55
Tabla 27: Comparación de las dimensiones de la efectividad operacional	56

ÍNDICE DE FIGURAS

Figura 1: Diseño de la investigación19
Figura 2: Diagrama general de la distribución de las tuberías actual en el Hospital Virgen de la Puerta
Figura 3: Comparación entre el flujo másico suministrado y el requerido en los puntos de consumo
Figura 4: Comparación entre las presiones de operación y requeridas en los puntos de consumo
Figura 5: Secuencia de pasos para el dimensionamiento de la tubería principal33
Figura 6: Secuencia de pasos para el dimensionamiento de la tubería secundaria35
Figura 7: Secuencia de pasos para el dimensionamiento del espesor del aislante de fibra de vidrio
Figura 8: Distancias entre puntos fijos o guías y el compensador41
Figura 9: Secuencia de pasos para el análisis de flexibilidad42
Figura 10: Diseño de la estación reductora de presión del vapor para el área Esterilización48
Figura 11: Ingreso de datos y condiciones generales al modelo en Excel
Figura 12: Resultados del dimensionamiento y su verificación de la tubería principal mediante el modelo en Excel
Figura 13: Dimensionamiento y verificación de la tubería secundaria sin estación reductora de presión mediante el modelo en Excel
Figura 14: Dimensionamiento y verificación de la tubería secundaria TS3 con estación reductora mediante el modelo en Excel60
Figura 15: Dimensionamiento del espesor del aislante termico mediante el modelo en Excel

RESUMEN

La presente tesis tuvo como objetivo general elaborar una metodología para el diseño de tuberías en proceso de transporte de vapor saturado para asegurar la efectividad operacional en Centros Hospitalarios. El tipo de investigación es aplicada y el diseño de investigación es no experimental transversal. La población en esta investigación son los sistemas de tuberías de transporte de vapor saturado de hospitales del departamento de la Libertad y se tomó como muestra de estudio el Hospital de Alta Complejidad Virgen de la Puerta por conveniencia. Primero se realizó el diagnostico al hospital mencionado donde se logró identificar los aspectos de mal diseño desde el punto de vista hidráulico, térmico y flexibilidad. Estas etapas de diseño fueron integradas en una secuencia de pasos, además de aspectos importantes en el diseño de tuberías en proceso de transporte de vapor saturado. Después se realizó el nuevo diseño utilizando la secuencia de pasos mencionada anteriormente. Se determinaron las dimensiones de la efectividad operacional obteniendo un alto rendimiento y bajos costos en operación. Luego se realizó una comparación entre las especificaciones del estado actual y el nuevo diseño, donde se observó concordancia y discrepancia en ciertos aspectos, uno de ellos es el aumento del rendimiento térmico y la reducción de costos en operación, de esta manera la metodología planteada se validó. Por último, se elaboró un modelo de cálculo en Excel para el dimensionamiento de tuberías y del espesor del aislante siguiendo la secuencia lógica en las etapas de diseño hidráulico y térmico de la nueva metodología.

Palabras claves: metodología, tuberías, vapor saturado, efectividad operacional, diseño.

ABSTRACT

The general objective of this thesis was to develop a methodology for the design of pipes in the process of transporting saturated steam to ensure operational effectiveness in Hospital Centers. The type of research is applied and the research design is nonexperimental transversal. The population in this research are the systems of saturated steam transport pipes of hospitals of the Department of La Libertad and was taken as a sample study the Hospital de Alta Complejidad Virgen de la Puerta de for convenience. First the diagnosis was made to the hospital mentioned where it was possible to identify the aspects of bad design from the hydraulic, thermal and flexibility point of view. These design stages were integrated into a sequence of steps, in addition to important aspects in the design of pipes in the process of transporting saturated steam. The new design was then carried out using the sequence of steps mentioned above. The dimensions of operational effectiveness were determined, obtaining high performance and low operating costs. A comparison was then made between the specifications of the current state and the new design, where concordance and discrepancy were observed in certain aspects, one of them is the increase of thermal performance and the reduction of costs in operation, in this way the proposed methodology was validated. Finally, a calculation model was developed in Excel for the dimensioning of pipes and the thickness of the insulator following the logical sequence in the hydraulic and thermal design stages of the new methodology.

Keywords: methodology, pipes, saturated steam, operational effectiveness, design.

I. INTRODUCCIÓN

Ante todo, la idealización del calor por las personas simboliza un suceso interesante y trascendente en la historia de la ciencia y, definitivamente, para el desarrollo de la ingeniería es una de las más importantes (Moreno y López, 2012). La historia del estudio del calor y sus propiedades es seguida desde la revolución industrial por grandes ingenieros, como James Watt (1736-1819), Sadi Carnot (1796-1832), entre otros, quienes concibieron y estudiaron distintas formas de uso del vapor para realizar algún tipo de trabajo, trasformando energía térmica en energía potencial, incluyendo energía eléctrica (Ruiz y García, 2016).

Hoy en día la utilización del vapor se ha extendido en varios sectores industriales. Las aplicaciones más comunes son en proceso de calentamiento, esterilización, limpieza, hidratación y humificación, además para impulsión o movimiento. El calentamiento con vapor se emplea en plantas procesadoras de alimentos, hospitales, ingenios, plantas químicas y refinerías. En estos procesos se utiliza el vapor saturado como principio de calentamiento de fluidos en intercambiadores de calor, reactores, pre calentadores de aire de combustión y más equipos que apliquen la trasferencia de calor (Cardona, 2018). La distribución del fluido hasta los puntos de consumo se realiza mediante tuberías transportadoras, estas son el enlace más importante entre la fuente generadora del vapor y las diversas aplicaciones o usuarios (Cengel y Boles, 2015).

En España, el diseño e instalación de tuberías se realizan bajo normativas, pero en algunos casos estas guías no son aplicadas completamente, por ejemplo, en la refinería Repsol de la Coruña se produjo una aparatosa fuga de vapor a elevada temperatura y presión en la puesta en marcha tras la parada técnica, esta falla provoco contusiones leves en tres trabajadores de la planta. Al término del análisis de la falla, se concretó que se produjo debido a malas prácticas de diseño de flexibilidad, el cambio de temperatura en el material de las tuberías provoco dilataciones afectando las uniones soldadas en las tuberías (La voz de Galicia, 21 de mayo del 2019).

Las líneas de distribución del vapor de las industrias constituyen amplios metros de tuberías las cuales necesitan accesorios como reductores, reguladores de presión, trampas de vapor, válvulas de bola, etc., para un mejor traslado del vapor a los equipos (Rodríguez y Rubio, 2014). Es por ello que la necesidad de un buen diseño de tuberías de una red de distribución de vapor saturado debe cumplir con las normas técnicas correspondiente, la ausencia de estas al diseñar o instalar ocasionan accidentes, como en Ecuador, la empresa Petroecuador realizo reparaciones en la Refinería de Esmeraldas por fuga de vapor en tuberías producidas por roturas es las bridas y uniones con soldadura. La empresa pública de hidrocarburos asegura que los problemas producidos fueron ocasionados porque las tuberías no soportaban las capacidades del vapor (El Universo, 28 de enero del 2018).

En la región de La Libertad su principal cultivo es la caña de azúcar, del cual se deriva el bagazo, este es utilizado como el principal combustible para generar vapor en los ingenios azucareros, tales como Casa Grande S.A, Cartavio S.A y Agroindustrial Laredo. La energía del vapor aprovechado para la producción de energía eléctrica y formar parte del proceso de elaboración de productos derivados de la caña de azúcar. Los ingenieros de producción y mantenimiento en las centrales térmicas cuentan con programas de mantenimiento para la maquinaria, accesorios y equipos, entre estos se encuentran las tuberías para vapor. Su control de operación es exhaustivo, ya que una falla de estos puede ocasionar paros en la producción y si no son detectados a tiempo, la falla puede repercutir en otros elementos, generando un problema mayor, con un alto costo de reparación. El mantenimiento general de los principales ingenios en la región se realiza de forma anual, durando aproximadamente un mes. Los problemas más cotidianos y difíciles de solucionar en este tiempo son las fallas en tuberías transportadoras de vapor, provocando el aumento de días de mantenimiento. (Oficina de mantenimiento de Agroindustria Cartavio).

Debido a que el Ministerio de Energías Y Minas del Perú, declaro el uso eficiente de la energía, para asegurar el suministro y reducir el impacto ambiental negativo del uso y consumo de los energéticos (Ley No. 27345), la mayoría de hospitales cuentan con sistemas de generación y distribución de vapor saturado debido al requerimiento de energía calorífica en algunos de sus procesos, tales como limpieza, lavandería, rehabilitación y esterilización. Algunas de estas

instituciones cuentan con instalaciones antiguas y de bajo rendimiento debido a problemas de incorrecto diseño y falta de mantenimiento, por ejemplo, en el Hospital Regional Ramiro Prialé, ubicado en el Distrito de El Tambo, provincia de Huancayo y departamento de Junín, cuenta con tres calderas pirotubulares, las cuales operan alternadamente para proporcionar al hospital la demanda de vapor requerida, la cual se incrementó debido al aumento de los equipos en los sectores de consumo energético, esto produjo un rediseño de las redes de distribución de vapor, ya que el primer diseño no considero el aumento de la demanda. (Yauri, 2018)

En las instalaciones industriales del Perú, las líneas de transporte de fluidos térmicos, en muchos casos los diseños e instalaciones se realizan sin respetar las normativas nacionales e internacionales. En estas guías se encuentran pautas adecuadas para el diseño ingenieril, como, diseño mecánico, diseño hidráulico, diseño elástico y diseño termino. El no obedecer las normas con lleva a un funcionamiento ineficiente de las instalaciones de transporte de vapor, puede que se encuentren sub o sobredimensionadas, generando caídas de presión y perdidas térmicas en el recorrido del fluido, finalmente la perdida de equipos debido a las dilataciones. Estas malas prácticas de diseño representan pérdidas económicas, daño en equipos costosos, fallas en las tuberías de costosa reparación y gastos en equipos que compensen las pérdidas de calor (Yauri, 2018).

Derivado de la realidad problemática se formula el siguiente problema que se procura resolver en el presente trabajo de investigación: ¿En qué medida la aplicación y elaboración de una metodología integrada para el diseño de tuberías en proceso de transporte de vapor saturado permitirá asegurar la efectividad operacional en Hospitales?

Para dar solución al problema formulado se traza la siguiente hipótesis de la investigación: La aplicación y elaboración de una metodología integrada para el diseño de tuberías en proceso de transporte de vapor saturado permite asegurar la efectividad operacional.

11

El diseño correcto de tuberías de vapor es uno de los aspectos más importantes en las industrias, ya que de estos sistemas depende el adecuado funcionamiento de la instalación en general. Un diseño ineficiente provoca una reducción significativa de la inversión inicial y pérdidas económicas en el futuro de la instalación.

Sobredimensionar implica que las tuberías serán más costosas de lo necesario, debido al mayor diámetro que poseen. Además, se genera un mayor volumen de condensado, lo que implica un menor tiempo de vida útil de las tuberías y los equipos de utilización.

Es primordial un dimensionamiento y selección óptimo de los aislantes térmicos, ya que no es muy económico, pero a la vez el uso de estos elementos sale a cuenta para la economía de las empresas, porque si no se dispones de ellos la temperatura del fluido transportado no serán las esperadas, y se tendrá que disponer de equipos de frio o calentamiento para regular la temperatura específica para el proceso. El correcto dimensionamiento y selección de aislante térmico es muy importante ya permite disminuir las pérdidas de calor emitidas al ambiente, además permite la reducción de CO2 y reducir la contaminación acústica. Desde el punto de vista de seguridad en operación, previenen el contacto directo del operador con las tuberías que se encuentra a temperaturas elevadas, evitando riesgos de quemadoras graves.

Para resolver el problema encontrado se propone como objetivo general de la investigación: Elaborar una metodología integrada para el diseño de tuberías en proceso de transporte de vapor saturado para asegurar la efectividad operacional en Centros Hospitalarios.

Para alcanzar el objetivo principal de la investigación se trazan los siguientes objetivos específicos:

- Realizar el diagnóstico del estado actual del sistema de transporte de vapor saturado en el Hospital Virgen de la Puerta.
- Elaborar las secuencias de pasos para el diseño de tuberías en proceso de transporte de vapor saturado.

- Desarrollar el nuevo diseño del sistema de trasporte de vapor saturado del Hospital Virgen de la Puerta mediante la secuencia de pasos previamente elaborada.
- Determinar las dimensiones de la efectividad operacional del nuevo diseño del sistema de transporte de vapor saturado.
- Realizar una comparación entre resultados del nuevo diseño y la condición actual en la que encuentra el sistema de transporte de vapor saturado en el Hospital Virgen de la Puerta.
- Elaborar un modelo de cálculo para el dimensionamiento de tuberías y aislamiento térmico basado en la nueva metodología en Excel.

II. MARCO TEÓRICO

Por lo tanto, se presentan los antecedentes existentes que corroboran el problema en mención: Yauri (2018), realizo la evaluación de la red de distribución de vapor en el hospital Regional Ramiro Prialé de Huancayo con la necesidad de elevar su capacidad, ya que actualmente han aumentado los equipos que requieren vapor para su operación. El método de la investigación utilizado es análisis y síntesis, el diseño de investigación es pre experimental y los instrumentos de recolección de datos utilizados fueron del tipo documental y empírico. La evaluación del sistema actual del hospital se realizó mediante ecuaciones de mecánica de fluido y transferencia de calor, además de utilizar los software AISLAM y TLV Ingeniería de Vapor. Habiendo analizado el sistema se encontró una descompensación de flujo de vapor en el área de lavandería ya que se suministra 1298.13 kg/h y el flujo requerido es 1390 kg/h, para dar solución se propuso instalar una nueva tubería de transporte de vapor de 3 ½ pulg, para suplantar a la tubería de 3 pulg actual, además se seleccionó un aislante de lana de vidrio de 1 pulg, la cual disminuirá la transferencia de calor de 86.64 W/m°C hasta 65.5 W/m°C.

Popayán (2016), realizo el mejoramiento de las líneas de distribución de vapor en el Hospital Regional Eleazar Guzmán Barrón de nuevo Chimbote. El tipo de investigación es aplicada y de nivel descriptivo. En esta investigación se realizó un balance térmico para determinar los indicadores de operación y

mediante técnicas de ingeniería se evaluó y se recalculo los parámetros operativos. Como resultado del redimensionamiento de la red de vapor, el cual incluye el cambio de trampas termodinámicas, mejora de líneas de retorno de condensado y aislamiento térmico se redujeron las pérdidas por transferencia de calor en un 36 %, además, la eficiencia del aislamiento térmico de la red aumento a un 96 %.

Vargas (2016), realizo el análisis de la eficiencia energética aplicándolo al mantenimiento del sistema de generación y distribución de vapor para la empresa "La Ibérica" en Riobamba, Ecuador. El propósito de la investigación es identificar las perdidas energéticas que se están generando en el sistema de vapor de la empresa. El análisis se realizó mediante un estudio termográfico. Se concluyó que los sistemas no funcionaban en base a normativas. Los sistemas de distribución no cuentan con aislamiento térmico lo que generaban perdidas energéticas y económicas bastante altas, siendo el 17.6% de la cantidad pagada por el combustible. Para la solución al problema se generó una propuesta de mejora de los sistemas y un plan de mantenimiento basado en la eficiencia energética.

Chango (2017), realizo un análisis térmico en el sistema de generación y distribución de vapor del Hospital General Provincial Latacunga de Ambato, Ecuador. Con el objetivo de determinar las pérdidas en todo el sistema de vapor. El diseño de la investigación es experimental. Para obtener datos que servirán para el análisis térmico se utilizó un termómetro infrarrojo. Las pérdidas de calor totales en el sistema de distribución son de 4111.749 W por convección y radiación. Se concluyó que las pérdidas son generadas debido al mal estado del aislante térmico y falta del mismo en algunos tramos de las líneas de vapor. La alternativa de solución planteada es el recubrimiento térmico de la red, lo que disminuirá las pérdidas de calor con un 1230,145 W.

Rentería (2014), realizo el diseño de una metodología para el análisis de flexibilidad en sistemas de tuberías. El diseño de investigación es experimental. De esta investigación resulto un modelo matemático para el análisis de deformación térmica o análisis de flexibilidad para diferentes gradientes de temperatura en las líneas de vapor.

Rodríguez y Rubio (2014), realizaron el diseño del sistema de distribución de vapor y la selección del caldero para el Hospital San Juan de Dios de Cuenca, Ecuador. El tipo de investigación es aplicada y de nivel descriptivo. Se emplearon fórmulas matemáticas de mecánica de fluido para dimensionar las tuberías y accesorios, además para determinar el espesor de aislante se utilizó las sugerencias del Reglamento de Instalaciones Térmicas en Edificios (RITE). Se utilizaron software libre como TLV, para la simulación de las tuberías y el software libre llamado AISLAM, para dimensionar el aislante térmico.

Fonseca (2017), indica que el vapor saturado es aquel vapor a temperatura de ebullición del agua, que se libera cuando el líquido hierve. Al generarse vapor empleando una caldera, generalmente contiene humedad, la cual proviene de las partículas de agua que no se vaporizan, estas son arrastradas por el flujo de vapor hacia las líneas de distribución. Incluso las calderas modernas pueden descargar vapor con un contenido de 3 % hasta un 5 % de humedad, su condición puede modificarse fácilmente por la alteración de sus propiedades de equilibrio: temperatura o presión (Sosa, 2013).

La red de transporte de vapor saturado es la conexión fundamental entre la fuente generadora de vapor (Caldera) y las aplicaciones. Está compuesta principalmente por tuberías y accesorios, tales como, separadores humedad, purgadores o trampas y eliminadores de aire, además, estos sistemas deben estar provisto de aislamiento térmico debido a las temperaturas elevadas del fluido (Rodríguez y Rubio, 2014). Las tuberías normalmente utilizadas en redes de distribución de vapor saturado y retorno del condensado son fabricadas según normas American Society of Testing Materials (ASTM) y American Petroleum Institute (API) (Popayán, 2016).

Para un correcto dimensionamiento de las tuberías en proceso de transporte de vapor saturado en Hospitales se tiene que tener estos parámetros fundamentales: flujo de vapor de operación, diámetro nominal, espesor mecánico, tipo de fluido, presiones y temperaturas nominales y de operación (Yauri, 2018).

Para asegurar la funcionalidad de la red de transporte de vapor se deben definir los accesorios de vapor y de recorrido del sistema, estos garantizan que el fluido sea transportado de manera correcta y con los parámetros requeridos (Yauri, 2018)

Un elemento de considerable importancia en una red de distribución de vapor es el aislamiento térmico, este es el recubrimiento de una superficie con un componente aislador con el objetivo de dotar de una resistencia al flujo de calor y disminuir la transferencia del mismo. Con este método se quiere reducir las pérdidas de energía, además, resguardar los equipos, al operario y el medio ambiente. Entre las tareas de un sistema de aislamiento instalado en tuberías de vapor, se presentan las siguientes: conservar y controlar la temperatura del fluido, aumentar a la eficiencia en el transporte del vapor, prevenir corrosión y condensación, por último, aumentar la seguridad en operación, protegiendo a los operarios del contacto directo con zonas de altas temperaturas (Popayán, 2016).

Otro aspecto importante a tener en cuenta es la flexibilidad, la cual es la capacidad de la tubería para consentir deformaciones provocadas por las dilataciones térmicas sin comprometer su integridad. El análisis de flexibilidad de sistemas de tubería se efectúa en la fase final de diseño y abarca el estudio de auto compensación, esfuerzos, dilataciones térmicas, selección de soluciones para aliviar las tensiones generadas y proporcionarle elasticidad al sistema (Rentería, 2014).

El diseño de una red de vapor comprende los aspectos mencionados anteriormente para garantizar su funcionalidad. Es necesario llevar un control de los parámetros de operación que indiquen el estado en el que encuentra (Popayán, 2016). El sistema es efectivo cuando trabaja bajo condiciones de operación establecidas y satisface la necesidad de manera correcta (Sols, 2000).

Para Hill (2005), la efectividad es la relación entre las prestaciones reales de un sistema y las que se había propuesto de él. En cuanta superior medida satisface un sistema lo que de él se ha necesitado, más efectivo es para los usuarios. La efectividad operacional es el resultado de un esquema operativo que incluye el más alto rendimiento y mejora continua del proceso, y administración correcta de los costos de diseño y operación (Sols, 2000).

Hill (2005), alega en su investigación que existen tres dimensiones para conseguir eficacia operativa en una instalación, entre los cuales se nombran los costos, fiabilidad, y rendimiento.

Para obtener una ventaja notable en costos se deben llevar a cabo actividades de operación de forma mucho más eficiente (Hill, 2005). La eficiencia en los costos se refiere al equilibrio de alcanzar los objetivos o metas de operación a precios bajos (Sols, 2000).

Un factor clave para beneficiarse de una reducción de costos continua en una instalación de vapor es monitorear el gasto de combustible. Para lograr este beneficio es importante mitigar o eliminar las pérdidas de calor. En los sistemas de vapor se pierde gran cantidad de energía debido al deterioro o ausencia de aislamiento térmico esto resulta en pérdidas de recursos económicos. En muchos casos representa una cantidad significativa de costos, por ello, es indispensable la instalación de elementos aislantes, el buen diseño y la selección del material permiten reducir dichos consumos, por ende, el ahorro de costos (Aristizabal, Schafer y Zapata, 2014).

El rendimiento es la capacidad de un equipo o sistema para realizar o cumplir de manera adecuada su función con el mínimo de recursos o en el menor tiempo posible (Sols, 2000).

Para calcular el rendimiento térmico del proceso de transporte de vapor saturado se puede utilizar el método indirecto obteniéndose del balance de energía, considerando la energía aprovechada en los puntos de consumo y le energía entregada donde se tiene que evaluar todas las pérdidas fijas y variables de calor en la red de vapor (Chango, 2017).

17

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

Tipo de investigación

El tipo de investigación es aplicada, el cual tiene como propósito la solución de un problema o satisfacer una necesidad conocida por el investigador, mediante la aplicación o utilización de conocimientos válidos o generales (Tam, Vera y Oliveros, 2008).

Para realizar la metodología integrada se recolectará y aplicará conocimientos generales, como teorías, principios, normas y supuestos basados en el diseño de tuberías de vapor. El diseño de estos sistemas comprende cálculo hidráulico o mecánica de fluidos, cálculo mecánico, análisis térmico y pérdidas de calor, cálculo estructural, análisis de deformaciones térmicas, entre otros. Además, se obtuvo información sobre los objetivos, dimensiones y métodos que debe lograr una instalación para alcanzar la efectividad operacional.

Diseño de investigación

El diseño de investigación es no experimental, la cual es aquella que no puede controlar, manipular o alterar a los sujetos de manera física, lo que se hace es observar los fenómenos de interés en su ambiente natural, para posteriormente realizar un análisis e interpretación para llegar a una conclusión (Sampieri, Collado y Lucio, 2010).

La presente investigación es no experimental transversal, y de correlaciones, la cual mide las relaciones entre las variables de estudio en un tiempo específico (Sampieri, Collado y Lucio, 2010). En la investigación no se manipulará de manera física las variables, en cambio utilizaremos un modelo en Excel para examinar detalladamente el comportamiento del dimensionamiento de las tuberías a distintos parámetros de funcionamiento, de esta manera asegurar la efectividad operacional.

Figura 1

Diseño de la investigación

3.2. Variables y operacionalización

La operacionalización de las variables se muestra en el Anexo 3.

Variable independiente

Metodología integrada

Variable dependiente

- Efectividad operacional

3.3. Población, muestra y muestreo

Población

La población en esta investigación son los sistemas de tuberías de transporte de vapor saturado de hospitales del departamento de la Libertad.

Muestra

La muestra en esta investigación es el sistema de tuberías de transporte de vapor saturado del Hospital de Alta Complejidad Virgen de la Puerta.

Muestreo

Se optó por la técnica de muestreo no probabilístico y por conveniencia para determinar la muestra en esta investigación.

3.4. Técnicas e instrumentos de recolección de datos

Para realizar los objetivos específicos utilizo las técnicas e instrumentos de recolección de datos que se muestran en la tabla 1.

Tabla 1

Técnicas e instrumentos de recolección de datos

Objetivo	Técnica	Instrumento
		Ficha de observación estructurada 1 para datos técnicos y operación de los equipos en las áreas de consumo Ver Anexo 4.
Realizar el diagnóstico del estado actual del		Ficha de observación estructurada 2 para datos técnicos y de operación de los equipos de generación de vapor. Ver Anexo 5.
sistema de transporte de vapor saturado en el Hospital Virgen de	Observación	Ficha de observación estructurada 3 para los datos de las presiones en operación. Ver Anexo 6
la Puerta.		Ficha de observación estructurada 4 para las mediciones de temperatura. Ver Anexo 7.
		Ficha de observación estructurada 5 para datos de los accesorios de tubería y vapor. Ver Anexo 8.
Elaborar las secuencias de pasos para el diseño de tuberías en proceso de transporte de vapor saturado	Análisis documental	Ficha documental para teorías, principios, normas que integran el diseño de tuberías en proceso de transporte de vapor saturado. Ver Anexo 9.
Elaborar el nuevo		Ficha de observación estructurada para datos técnicos y operación de los equipos en las áreas de consumo
transporte de vapor saturado	Observación	Ficha de observación estructurada para datos técnicos y de operación de los equipos de generación de vapor.
		Ver Anexo 5. Fuente: Elaboración propia
saturado		datos técnicos y de operación de los equipos de generación de vapor. Ver Anexo 5.

Validez y confiabilidad del instrumento

Para Corral (2016), la validez de un instrumento determina la revisión del contenido, el contraste de los indicadores con los ítems que permiten medir para el desarrollo de los objetivos. Se estima la validez como el hecho de que un instrumento sea elaborado y aplicado de tal modo que permita evaluar lo que se requiere medir.

La validez de contenido indica el rango que el instrumento refleja un dominio propio del contenido que se requiere medir. El instrumento es validado mediante de un grupo de expertos, los cuales aseguran si las cuestiones y criterios del instrumento poseen coherencia con la investigación (Corral, 2016).

La evaluación de validez utilizada en el presente trabajo es de tipo validez de contenido, la cual consiste en el análisis de los instrumentos de recolección de datos mediante el juicio de expertos. La tabla 2, muestra los encargados de validar los instrumentos de recolección de datos.

Tabla 2

Validación de instrumentos mediante expertos

Expertos	Instrumento aplicable
Ing. Inciso Vásquez, Jorge A.	Si
Ing. Paredes Rosario, Raúl R.	Si

Fuente: Elaboración propia

3.5. Procedimiento

Para realizar el diagnóstico del estado actual de la red transporte de vapor saturado del Hospital Virgen de la Puerta se utilizó la técnica de la observación directa donde se obtuvo datos acerca del proceso de generación y distribución de vapor, para ello se empleó las fichas de registro de datos de la tabla 1. Algunas muestras de datos fueron manipuladas mediante el software Excel, para posteriormente utilizar esta información para el desarrollo del objetivo.

Para elaborar la secuencia de pasos para el diseño de tuberías en proceso de transporte de vapor que incluyen la nueva metodología se utilizó la técnica del análisis documental donde se obtuvo información sobre las teorías, principios,

normal, entre otros, acerca del objetivo. El contenido textual recolectado se resumió a una cantidad manejable, para luego proceder con el desarrollo del segundo objetivo.

El desarrollo del nuevo diseño de la red de transporte de vapor saturado se efectuó utilizando la información ordenada de los objetivos anteriores. Una vez elaborado el nuevo diseño se precedió a calcular las dimensiones que rigen la efectividad operacional.

3.6. Método de análisis de datos

Uno de los métodos de análisis de datos utilizados es el método analítico, el cual, según Lopera, Ramírez, Zuluaga y Ortiz (2010), es un camino para llegar a un resultado mediante la desmembración de un fenómeno en sus elementos constituidos. En la investigación, el método analítico consiste en descomponer y ordenar las teorías relacionadas con el diseño de tuberías de vapor saturado según las leyes, principios, normas y supuestos que la integran. Se utilizará un análisis de contenido para registrar y disminuir considerables cantidades de contenido textual recolectado mediante las fichas documentales a información manejable y relevante para el desarrollo de la investigación.

Se utilizará el método descriptivo para resumir la información contenida en las muestras de datos. Este análisis estadístico se realizará mediante hojas de cálculo en Excel. Este software también se utilizará para resolver sistemas de operaciones matemáticas de nivel básico hasta complejo, de manera organizada.

3.7. Aspectos éticos

En el presente trabajo de investigación se respeta la propiedad intelectual del autor, citando a los autores al momento de incluir contenido textual en la investigación, las referencias utilizadas es de estilo APA (American Psychological Association), además se utilizó el Manual de Estilo de Referencias de la Universidad Cesar Vallejo.

IV. RESULTADOS

4.1. Diagnóstico del estado actual de la red de transporte de vapor saturado del Hospital Virgen de la Puerta

Figura 2

Diagrama general de la distribución de las tuberías actual en el Hospital Virgen de la Puerta

En esta etapa se realizó la evaluación de la red de transporte de vapor saturado del Hospital Virgen de la Puerta, se incluye la evaluación del dimensionamiento de las tuberías, análisis térmico y de flexibilidad.

4.1.1. Evaluación del dimensionamiento de tuberías

Mediante un gráfico de barras, figura 3, se realizó una comparación entre el flujo de vapor calculado que se suministra (Anexo 11), y el flujo de vapor requerido en los puntos de consumo (Anexo 4). Se observa que no existe descompensación de flujo de vapor en ninguna de las áreas de consumo.

Figura 3

Comparación entre el flujo másico suministrado y el requerido en los puntos de consumo

La evaluación se realiza a las tuberías principales, TS1 y TS2, de caldera hacia el manifold, y las tuberías secundarias, TS1, desde el manifold hacia lavandería y TS2 y TS3, desde el manifold hasta Esterilización y Calentadores, respectivamente, estas tuberías se muestran en la figura 2.

Luego de determinar los flujos másicos suministrados a las áreas de consumo, se obtuvo las velocidades y las caídas de presión del fluido, el detalle de cálculo se muestra en el Anexo 11 El diagnóstico del dimensionamiento se basa en los rangos de velocidades permisibles, de 20 - 35 m/s, y las caídas de presión admisibles, del 5 – 7 % de la presión inicial, (Anexo 10), Los resultados de esta evaluación se muestran en la tabla 3.

Fuente: Elaboración propia

Tabla 3

Tubería	DN	Flujo de vapor suministrado	Velocidad	Caída de presión	Diagnostico
-	Pulg	kg/h	m/s	Psi	-
TP1	4	1879.2	18.6167	0.2750	Dimensionamiento correcto
TP2	4	1879.2	18.6167	0.37042	Dimensionamiento correcto
TS1	2	840.9190	32.7004	5.8848	Dimensionamiento correcto
TS2	1 ½	596.3789	67.0684	16.7566	Subdimensionamiento
TS3	1 ½	438.8245	79.6604	13.1967	Subdimensionamiento
					Fuente: Elaboración propia

Resultados de la evaluación al dimensionamiento de las tuberías actual

La figura 4, muestra la comparación entre la presión de vapor inicial, presión de vapor suministrado y la presión de vapor requerida en los puntos de consumo (Anexo 4). Este grafico demuestra la descompensación en presión que existe en los puntos de consumo de Esterilización y Calentadores ya que la presión del vapor que llega a estos se encuentra por debajo de lo requerido.

Figura 4

Comparación entre las presiones de operación y requeridas en los puntos de consumo

Fuente: Elaboración propia

4.1.2. Evaluación a las válvulas reductoras de presión

Para la evaluación se calculó el coeficiente de flujo Kv en cada válvula reductora de presión (Anexo 11). Luego se obtuvo el DN actual y su capacidad (Anexo 22). La tabla 4 muestra los resultados del análisis a las válvulas reductoras de presión.

Tabla 4

Estación de	Kv	DN VRP	Capacidad de VRP actual	Flujo de vapor suministrado	Diagnostico	
de presión	m ³ /h	actual	Kg/h	Kg/h	-	
ERP1	6.9408	DN20	508	596.3789	Subdimensionamient o	
ERP2	4.1175	DN20	508	438.8245	Dimensionamiento correcto	
					Fuente: Elaboración propia	

Resultados de la evaluación a las válvulas reductoras de presión

La capacidad de la válvula reductora de presión de la ERP1 se encuentra bajo los valores de flujo de vapor que se suministra, por tal razón se establece que hubo un sub dimensionamiento.

4.1.3. Evaluación de pérdidas de calor y rendimiento térmico

Se determino las pérdidas por transferencia de calor y el rendimiento térmico del aislante de la red de transporte de vapor, el detalle de cálculo se muestra en el Anexo 11. La tabla 5 muestra las pérdidas de calor y el rendimiento térmico del aislante con cada operación de las calderas.

Tabla 5

Rendimiento térmico del aislante para cada operación de caldera

Operación	Perdidas de calor	Rendimiento térmico del aislante		
	W	%		
Operación de la caldera 1	8360.2949	99.42		
Operación de la caldera 2	8613.7877	99.40		
		Fuente: Elaboración propia		

Para calcular el rendimiento térmico total de la red de transporte de vapor se definieron las pérdidas de calor fijas y en accesorios de vapor no aislados, ver el

detalle en el Anexo 11. La tabla 6, muestra los resultados del análisis térmico total del estado actual de la instalación de vapor en el Hospital.

Tabla 6

Rendimiento térmico total del estado actual

Rendimiento térmico total	94.92	%
Perdidas de calor en válvulas no aisladas	36.0454	kW
Perdidas de calor fijas	28.8363	kW
Perdidas de calor en tubería aislada	8.3602	kW

Fuente: Elaboración propia

Un rendimiento bajo implica mayores pérdidas de energía, por ende, una pérdida económica.

Análisis de flexibilidad en el sistema de distribución de vapor saturado

El análisis de flexibilidad se realizó a las tuberías mencionadas en la evaluación anterior. Esta evaluación determino que tramos de las tuberías se encuentran en condición de fatiga, la compensación consiste en que el tramo de tubería posee la suficiente longitud para adsorber la dilatación, en caso contrario el tramo estaría descompensado, por ende, en sobreesfuerzos.

La tabla 7 muestra los resultados del análisis de elasticidad en la tubería TP1 y TP2 (Anexo 11).

Tabla 7

Resultados del análisis de flexibilidad del estado actual en la tubería TP1 y TP2

Segmentos	Longitud M	Dilatación total mm	Longitud necesaria para auto compensación M	Esfuerzo causado por la dilatación kg/mm ²	Diagnostico		
Tubería TP1							
AB	1.10	2.33	0.5262	2.4939	Autocompensado		
BC	2.10	4.0293	1.5671	5.8471	Autocompensado		
CD	2.45	5.19	1.0192	1.3310	Autocompensado		
Condi	ción de elasti	cidad	0.7516 ≤	2.08	Autocompensado		

Tubería TP2							
AB		1.10	2.33	0.3946	1.3517	Autocompensado	
BC		0.45	0.945	0.6965	25.0901	No autocompensado	
CD		5.40	11.4526	1.3611	0.66711	Autocompensado	
DE		2.45	5.1961	1.7849	5.5682	Autocompensado	
Condición de elasticidad 0.					2.08	Autocompensado	

Fuente: Elaboración propia

La tabla 8 muestra los resultados del análisis de elasticidad en la tubería TS1, TS2 y TS3 (Anexo 11)

Tabla 8

Resultados del análisis de flexibilidad del estado actual en las tuberías TS1, TS2 y TS3

Segmentos	Longitud	Dilatación total	Longitud necesaria para auto compensación	Esfuerzo causado por la dilatación	Diagnostico			
	m	mm	mm	kg/mm ²				
Tubería TS1								
AB	2	4.2417	0.6044	0.9588	Autocompensado			
BC	2	4.2417	1.2483	2.1580	Autocompensado			
CD	0.5	1.0660	0.8853	26.8564	No autocompensado			
DE	5.5	11.6647	0.5582	0.05706	Autocompensado			
EF	0.6	0.8483	1.3797	13.3217	No autocompensado			
FG	3	6.3625	3.3232	12.8740	No autocompensado			
GH	30	63.6259	1.0192	0.00639	Autocompensado			
Tubería TS2								
AB	0.4	0.7495	0.9511	59.3145	No autocompensado			
BC	7	13.1101	0.4250	0.03875	Autocompensado			
CD	0.6	0.5621	1.1242	36.9786	No autocompensado			
DE	2.8	5.2467	2.8996	10.8848	No autocompensado			
EF	30	56.2147	0.6010	0.004220	Autocompensado			
Tubería TS3								

	No
BC 0.6 1.0012 0.6355 14.7408 a	autocompensado
CD 2.6 4.7354 2.6464 13.6099 a	No autocompensado
DE 30 50.3579 0.5482 0.004387 A	Autocompensado

Fuente: Elaboración propia

4.2. Secuencia de pasos para el diseño de tuberías en proceso de transporte de vapor saturado.

En esta etapa se desarrolló la secuencia de pasos para el diseño de tuberías en proceso de transporte de vapor, para ello se utilizó métodos basados en el diseño mecánico, hidráulico, térmico y flexibilidad y otros aspectos importantes, recolectados mediante la ficha de registro documental.

4.2.1. Datos generales y condiciones

Es conveniente conocer ciertos datos generales del sistema de generación y distribución de vapor saturado para facilitar el proceso de diseño.

- Cantidad de equipos de generación.
- Cantidad de áreas o puntos de consumo de vapor saturado.

Es necesario realizar un esquema general de la distribución de la red de vapor saturado, donde se representará las trayectorias y las longitudes.

Es preciso saber las condiciones o parámetros nominales y de operación para realizar el diseño.

- Potencia de la caldera, BHP
- m_M =Flujo de vapor nominal, kg/h
- P_M=Presión máxima del vapor nominal, psi
- P_{max}= Presión máxima de operación, psi
- P_{min}= Presión máxima de operación, psi

Las propiedades del vapor saturado bajo los parámetros mencionados anteriormente.

- T_M= Temperatura a presión nominal, °C

- T_{max}= Temperatura a presión máxima de operación, °C
- T_{min}= Temperatura a presión mínima de operación, °C
- ρ_M = Densidad del fluido a presión nominal kg/m³
- ρ_{max} = Densidad del fluido a presión máxima de operación, kg/m³
- ρ_{min} = Densidad del fluido a presión mínima de operación, kg/m³

4.2.2. Diseño mecánico

Paso 1: Se determinan los criterios de selección del material para la tubería.

- Tipo de fluido de trabajo
- Presión nominal del fluido
- Temperatura nominal del fluido

Paso 2: Se calcula el número de cedula NC mediante la ecuación 1, para ello se debe conocer el esfuerzo admisible del material seleccionado σ , expresado en kg/cm² y la presión nominal p, expresada en bar. El valor del factor de servicio F.S. se recomienda 1.2. El resultado calculado se aproxima a un valor de cedula estándar.

$$NC = F.S.* \frac{1000*p}{\sigma}$$
(1)

Paso 3: Se especifica los datos técnicos y propiedades del material seleccionado, las cuales ayudaran a la evaluación de flexibilidad, estas especificaciones son:

- σ_{ROT} = Límite de rotura, kg/mm²
- σ_E = Limite elástico, kg/mm²
- σ_{adm} =Esfuerzo admisible, kg/mm²
- E=Modulo de Young, kg/mm²

4.2.3. Dimensionamiento de la tubería principal de vapor

El método utilizado para el dimensionamiento del diámetro de la tubería principal está basado en la velocidad recomendada.

Paso 1: En caso de no conocer el flujo de vapor nominal, se calcula mediante la ecuación 2. Para conocer el valor del flujo de vapor en operación \dot{m}_{T} , se utiliza la

ecuación 3, donde C es la carga de operación de la caldera. Los flujos de vapor calculados se expresan en kg/h.

$$\dot{m}_{\rm M} = \rm BHP * 15.66$$
 (2)

$$\dot{\mathbf{m}}_{\mathrm{T}} = \dot{\mathbf{m}}_{\mathrm{M}} * \mathrm{C} \tag{3}$$

Paso 2: Se establece la velocidad permisible para fluido, expresada en m/s, esta se selecciona utilizando las tablas del Anexo 12, se recomienda utilizar una velocidad entre 20 – 35 m/s. Luego utilizando la ecuación 5, se calcula el diámetro interior de la tubería, expresada en pulg. Para la tubería principal, el primer diámetro calculado se encuentra en función de los parámetros nominales, ρ_M y el flujo \dot{m}_M . El segundo diámetro se calcula en función de ρ_{max} y \dot{m}_T . El tercer diámetro se calcula en función de ρ_{min} y \dot{m}_T . El ultimo diámetro calculado se encuentra en flujo de operación con aumento de la demanda de vapor \dot{m}_D , se calcula mediante la ecuación 4, donde C_D es la carga de operación aumentada, considerar que no es recomendable que el equipo de generación trabaje a su carga total. Se recomienda elevar la carga de 5 – 10 %.

$$\dot{m}_{\rm D} = \dot{m}_{\rm M} * C_{\rm D} \tag{4}$$

$$D = \sqrt{\frac{4 * \frac{m/3600}{\rho * v}}{\pi}} * 39.37$$
(5)

Paso 3: Se selecciona el diámetro nominal estandarizado, se recomienda elegir en base al valor mayor calculado. Mediante el Anexo 13 se determina las dimensiones de la tubería seleccionada, tales como:

- D_E=Diámetro exterior, mm
- D_I=Diámetro interior, mm
- δ =Espesor, mm

Paso 4: Se evalúa el dimensionamiento calculando las velocidades del fluido utilizando el diámetro interior de la tubería seleccionada. Para ello se utiliza la ecuación 6. Las evaluaciones se realizan utilizando los parámetros mostrados en la tabla 9.

Tabla 9

Parámetros requeridos para la evaluación de la velocidad del fluido en tuberías principales

Velocidad a presión máxima de operación	ρ _{max}	m _т
Velocidad a presión mínima de operación	$ ho_{min}$	ḿ _т
Velocidad con aumento de la demanda	$ ho_{min}$	

Fuente: Elaboración propia

$$U = \frac{\dot{m}_{\rm v}/3600}{\frac{\pi}{4} * (D_{\rm I} * 10^{-3})^2 * \rho}$$
(6)

Si las velocidades calculadas son menores a las permisibles, la selección es correcta. En caso contrario, seleccionar una tubería de mayor diámetro.

Paso 5: Utilizando el esquema inicial de la distribución de las tuberías, seleccionar los tipos de accesorios que posee el tramo de tubería, luego se calcula la longitud equivalente expresada en m mediante la ecuación 7. Donde, N es el número de accesorios y Lq_{acces} es la longitud equivalente unitaria, del Anexo 21 y ΣL_{Lineal} es la sumatoria de las longitudes líneas del tramo.

$$L_{q} = \Sigma(N * Lq_{acces.}) + \Sigma L_{Lineal}$$
(7)

Paso 6: Se determina el coeficiente de fricción λ , para cada velocidad calculada (paso 4), para ello se utiliza la ecuación 8.

$$\lambda = 0.0144 + 0.00947 / \sqrt{v} \tag{8}$$

Paso 7: Se calcula la caída de expresión expresada en bar, mediante la ecuación9. La evaluación se realiza para cada valor de velocidad de la tabla 9.

$$\Delta P = \lambda * \frac{L_q}{D_{I*} 10^{-3}} * \frac{v^2}{2 * 10^5} * \rho * 14.504$$
(9)

El dimensionamiento de la tubería es correcto, si la caída de presión calculada para cada etapa de evaluación es menor a la admisible, de 5 a 7% de la presión inicial. En caso contrario seleccionar un diámetro mayor y realizar nuevamente la evaluación mediante los pasos anteriores.

La figura 5 muestra la secuencia de pasos para el dimensionamiento de la tubería principal.

Figura 5

Fuente: Elaboración propia

4.2.4. Dimensionamiento de tuberías secundarias

Para el dimensionamiento de las tuberías secundarias es conveniente saber ciertas condiciones, las cuales son las siguientes:

- Demanda de flujo de vapor de cada área de consumo, m
 ₁
- Presiones requeridas de cada área de consumo

Paso 1: Se determina el flujo de vapor requerido para cada área de consumo, para ello se puede utilizar la ficha de recolección de datos mostradas en el Anexo 4.

Paso 2: Se aumenta el 20 % más a la demanda de vapor de cada área de consumo, \dot{m}_D .

Paso 3: Se calcula el diámetro de la tubería utilizando la ecuación 5. El primer diámetro se calcula utilizando ρ_{min} y \dot{m}_1 . El segundo diámetro se calcula utilizando ρ_{min} y \dot{m}_D .

Paso 4: Se selecciona el diámetro nominal estandarizado, se recomienda seleccionar en base al valor mayor calculado. Mediante el Anexo 13 se determinan las dimensiones de la tubería seleccionada.

Paso 4: Se evalúa el dimensionamiento calculando las velocidades del fluido utilizando el diámetro interior de la tubería seleccionada. Para ello se utiliza la ecuación 6. Los parámetros para la evaluación se encuentran la tabla 10.

Tabla 10

Parámetros requeridos para la evaluación de la velocidad del fluido en tuberías secundarias

Velocidad a presión máxima de operación	ρ _{max}	m ₁
Velocidad a presión mínima de operación	ρ _{min}	m ₁
Velocidad con aumento de la demanda	ρ_{min}	

Fuente: Elaboración propia

Si las velocidades calculadas son menores a las permisibles, la selección del diámetro es correcta, en caso contrario seleccionar un diámetro mayor y realizar nuevamente la evaluación.

Paso 5: Determinar la caída de presión utilizando los pasos 5, 6 y 7 del apartado (4.2.3.). Los parámetros para evaluar se muestran en la tabla 10.

El dimensionamiento de la tubería es correcto, si la caída de presión calcula para cada etapa de evaluación es menor a la admisible, de 5 a 7% de la presión inicial.

La figura 6 muestra la secuencia de pasos para el dimensionamiento de la tubería secundaria.

Figura 6

Secuencia de pasos para el dimensionamiento de la tubería secundaria

Fuente: Elaboración propia
4.2.5. Selección de válvulas de vapor

Selección de válvula reductora de presión

Pasó 1: Para seleccionar la válvula reductora de presión se determina el coeficiente de flujo Kv, expresado en kg/m³. Existen dos condiciones para elegir la ecuación para determinar el Kv, la primera es $\Delta p > P1/2$, donde Δp es la diferencia de presiones P1-P2, estas son las presiones de entrada y salida de la válvula, respectivamente, si cumple este criterio se calcula el Kv mediante la ecuación 10. La segunda condición es $\Delta p < P1/2$, si se cumple este criterio se utiliza la ecuación 11.

$$K_{V} = \frac{\dot{m}_{v}}{461} \sqrt{\frac{t_{1} + 273}{\Delta p \times p_{2}}}$$
(10)

$$K_{\rm V} = \frac{\dot{m}_{\rm v}}{230 \times p_1} \sqrt{t_1 + 273}$$
(11)

Paso 2: Con el resultado del Kv seleccionamos las válvulas reductoras de presión de los catálogos del fabricante, entre las principales características que tenemos que tener en cuenta de este elemento está el DN, diámetro nominal y la capacidad máxima de la válvula.

Selección de válvulas esféricas

Paso 1: Para seleccionar la válvula esférica se determina el Kv, expresado en kg/m³. Si se conoce el valor del caudal Q, expresado en ft³/h, y Δp se utiliza la ecuación 12, donde Gr es la gravedad específica basada en el aire es 1, Δp es la variación de presiones P1- P2, entrada y salida de la válvula, ambas expresadas en psia, respectivamente, T es la temperatura del fluido al interior de la tubería, expresado en °F + 460 y Cv es la coeficiencia de caudal, expresado en gpm.

$$Q = 1360 * Cv * \sqrt{\frac{\Delta p * P1}{Gr * T}}$$
(12)

Paso 2: Para convertir el Cv calculado en gpm a kg/m³, para el Kv, se utiliza la ecuación 13.

$$Kv = \frac{Cv}{0.963}$$
(13)

Paso 3: Con el resultado del Kv seleccionamos las válvulas reductoras de presión de los catálogos del fabricante, entre las principales características que tenemos que tener en cuenta de este elemento está el DN, diámetro nominal y la capacidad máxima de la válvula.

4.2.6. Dimensionamiento del espesor del aislante térmico de fibra de vidrio

Paso 1: Se calcula el calor inicial del vapor de salida de caldera, expresado en kW, mediante la ecuación 14. Donde h_{vo} es la entalpia del vapor, expresado en kJ/kg. El \dot{m}_v es el flujo de vapor a una carga aumentada. Se recomienda de 5-10% de aumento.

$$\dot{Q}_{o} = \dot{m}_{v} * h_{vo} \tag{14}$$

Paso 2: Se establece el rendimiento del aislante térmico requerido o recomendado por el fabricante η_{aisl} , expresado en %. Utilizando la ecuación 15, se calcula la perdida de energía \dot{Q}_{P} , expresado en kW.

$$\dot{Q}_{P} = (1 - \eta_{aisl}/100) * \dot{Q}_{o}$$
 (15)

Paso 3: Se calcula la perdida especifica de calor de la red de vapor, expresado en W/m, utilizando la ecuación 16. Donde Lt es la longitud total de la tubería.

$$q_{\rm L} = \frac{\dot{Q}_{\rm P}}{Lt} \tag{16}$$

Paso 6: Se determina la relación de diámetros del aislante térmicos $d_{ext,aisl}/d_{int,aisl}$, mediante la ecuación 17. Donde k_{aisl} , es el coeficiente de transferencia para el material aislante seleccionado y $T_1 - T_2$, es la diferencia de temperaturas entre la capa exterior e interior del material aislante, expresada en °C. Posteriormente, se obtiene el diámetro exterior del aislante $d_{ext,aisl}$, las unidades son según su conveniencia, este se encuentra en función del $d_{int,aisl}$, siendo el diámetro interior de la tubería, expresado en las mismas unidades, para ello se utiliza la ecuación 18.

$$\frac{d_{ext,aisl}}{d_{int,aisl}} = e^{\left[\frac{2*\pi * k_{aisl} * (T_1 - T_2)}{q_L}\right]}$$
(17)

$$d_{ext,aisl} = d_{int,aisl} * e^{\left[\frac{2*\pi * k_{aisl} * (T_1 - T_2)}{q_L}\right]}$$
(18)

Paso 7: Mediante la expresión No. 19, se determina el espesor del aislante térmico.

$$\delta_{aisl} = \frac{d_{ext,aisl} - d_{ext,tub}}{2}$$
(19)

Figura 7

Secuencia de pasos para el dimensionamiento del espesor del aislante de fibra de vidrio

Fuente: Elaboración propia

4.2.7. Análisis de flexibilidad

Paso 1: Mediante el esquema inicial separar los tramos de tuberías, principales y secundarias, para su análisis individual.

Paso 2: Se debe conocer las especificaciones técnicas del material de tubería seleccionado, Apartado (4.2.2). **Paso 3:** Se realiza un diagrama de cada tramo de tubería, donde se debe incluir las longitudes, diámetros y las proyecciones de la

dilatación en cada segmento del tramo de tubería, además de los puntos fijos iniciales, conexión a equipos.

Paso 4: Mediante la ecuación 20 se determina las dilataciones en cada segmento del tramo de tubería, donde T_{sat} la temperatura del fluido interior a una presión determinada, T_o temperatura en el ambiente, ambas expresadas en °C. La longitud de cada segmento se representa por L, y se expresa en m.

$$\Delta L = \alpha * L * (T_{sat} - T_o)$$
⁽²⁰⁾

Las dilataciones se descomponen proporcionalmente a los brazos que hay en cada lado.

Paso 5: Se calcula la longitud necesaria de cada segmento para adsorber las dilataciones Ln utilizando la ecuación 21, donde se limita el esfuerzo en la tubería, reemplazando σ por σ_{adm} , expresado en kg/mm². El radio de la tubería R se representa por Dexterior/2.

$$\sigma = \frac{\Delta L * E}{Ln} * \frac{3R}{Ln}$$
(21)

Si Ln < L, significa que es capaz de adsorber las dilataciones, por ende, el tramo es autocompensado. Si Ln > L, por lo tanto, es insuficiente para absorber las dilataciones, por lo que se debe aumentar L, a una cantidad mayor o igual a Ln. Con este valor se tendrá una nueva dilatación en L, la cual se tendrá que evaluar nuevamente con la ecuación No. 20 y 21.

Paso 6: Las tensiones σ que se generan en cada segmento del tramo debido a las dilataciones se calculan mediante la ecuación 21. El esfuerzo resultante debe ser menor σ_{adm} , en caso contrario el segmento del tramo estaría en un estado de fatiga. Este proceso de evaluación se debe realizar a cada segmento del tramo.

Paso 7: Asimismo se calcula la fuerza involucrada al esfuerzo calculado anteriormente, mediante la ecuación 22, donde S es la sección interior de la tubería, expresada en mm².

$$F = \sigma * S \tag{22}$$

Este proceso de evaluación se debe realizar a cada segmento del tramo.

Soluciones al efecto de dilatación térmica en tuberías rectas

Si el tramo de tubería no tiene suficiente capacidad para absorber la dilatación se le proporciona mayor elasticidad de manera artificial, la solución constructiva que se utilizara es la compensación mediante fuelle.

Compensación con fuelles compensadores de dilatación térmica

Paso 1: Se calcula la dilatación del segmento donde se requiere la instalación del fuelle compensador, utilizando la ecuación 20.

Paso 2: Se selecciona el tipo de compensador, en base a las características requeridas (axiales, laterales, angulares). Para comprobar la correcta selección se utilizan dos condiciones, la primera se muestra en la ecuación 23, donde PN pertenece al compensador seleccionado y PT es la presión de trabajo del fluido. El valor de kp y kc de los catálogos del fabricante, ingresando con T_M .

$$PN * kp > PT$$
(23)

En caso de no cumplir la condición se debe seleccionar un PN mayor.

La segunda condición se muestra en la ecuación 24, donde C es la carrera del compensador seleccionada y ΔL es la dilatación del segmento de tubería.

$$C * kc > \Delta L \tag{24}$$

En caso de no cumplir con la condición se debe seleccionar un compensador con carrera mayor a C, si no existe una carrera mayor, utilizar más de uno de estos componentes.

Paso 3: Se calcula la fuerza F_i, expresada en kg, la cual se produce sobre el compensador de dilatación térmica para provocar un desplazamiento, se utiliza la ecuación 25, donde R es la rigidez del elemento seleccionado, expresado en kg/mm, tablas proporcionadas por el fabricante.

$$F_i = \frac{1}{2} * R * \Delta L \tag{25}$$

Paso 4: Se calcula la fuerza total ejercida por la presión del fluido F_j , expresada en kg, mediante la ecuación 26, donde P es la presión de trabajo en condiciones

más severas, expresada en bar@ y S es la sección interior de la tubería, expresada en cm².

$$F_i = P * S \tag{26}$$

Asimismo, la fuerza total F_T que se ejerce es la sumatorio de ambas fuerzas, ecuación 27.

$$F_{\rm T} = F_{\rm i} + F_{\rm j} \tag{27}$$

Paso 5: El esfuerzo generado en la tubería debido a la fuerza total F_T se determina mediante la ecuación 28. Donde S es la sección interior de la tubería expresada en mm².

$$\sigma = \frac{F_{\rm T}}{\rm s} \tag{28}$$

Puntos fijos y puntos guías para el elemento compensador

Paso 1: En la instalación de un compensador de dilatación se debe incluir elementos que limiten el movimiento de la tubería. Se debe colocar puntos fijos en los extremos del segmento del tramo y puntos guías entre los extremos para permitir el movimiento axial de la tubería. Mediante la figura 8, se determina las distancias entre puntos fijos y guías.

Figura 8

Distancias entre puntos fijos o guías y el compensador

Fuente: Elemento de diseño para el cálculo de flexibilidad en tuberías y aplicación de compensadores de dilatación. Coraci S.A

La junta de dilatación debe ir 4 veces el diámetro exterior de la tubería de distancia hacia el punto fijo. La segunda guía debe ir 20 veces el diámetro exterior de la tubería.

Figura 9

Secuencia de pasos para el análisis de flexibilidad

Fuente: Elaboración propia

4.2.8. Tasa de condensado en tuberías de vapor

Paso 1: Definir los pesos de la tubería y de todos los accesorios en esta, se expresa en kg, para ello se utiliza las especificaciones proporcionadas por el fabricante.

Paso 2: Se determina el flujo másico de condensado Q en el arranque, expresado en kg/h, mediante la ecuación 29, donde W es el peso encontrado en el paso 1, T-t, es la diferencia de temperaturas del vapor y el aire, respectivamente, expresadas ambas en °C, Cp es el calor especifico del acero, expresado en kJ/kg, L, es el calor latente del vapor, expresado en kJ/kg, por ultimo n es el tiempo de calentamiento y se encuentra en minutos.

$$Q = \frac{W \times (T - t) \times Cp \times 60}{L \times n}$$
(29)

Paso 3: Se determina el flujo másico de condensado por pérdidas de radiación Qr, expresado en kg/h, mediante la ecuación 30, donde E es el calor perdido especifico, se expresa en W/m, I, es la longitud equivalente de la tubería, expresado en m y L es el calor latente del vapor, expresado en kJ/kg.

$$Qr = \frac{E * I * 0.9}{L}$$
(30)

Paso 4: Para seleccionar una trampa de vapor con los valores calculados, se tiene que multiplicar Q y Qr por un factor de seguridad, se recomienda el valor de 3. Se utiliza el valor mayor para la selección de la trampa de vapor.

4.2.9. Procedimiento recomendado de soldadura para la unión de tuberías y accesorios

El procedimiento es recomendado para materiales de acero al carbono con espesores de 1.5 a 15 mm.

El proceso sugerido es SMAW (Soldadura por arco eléctrico), con la técnica de progresión vertical ascendente.

Previo a la aplican de la soldadura se debe saber las características del material a soldar. Tales como: Porcentaje máximo de carbono, magnesio, fosforo, azufre; límite de fluencia y máxima resiste a la tracción del material.

Electrodos para el procedimiento recomendado

Primera pasada de soldadura, pase de raíz, con electrodo E-6011 de 1/8". Se seleccionó este electrodo debido a la alta penetración y un relleno más completo.

Pases de relleno y presentación con electrodo E 7018 de 1/8". Se seleccionó este electrodo debido a su alto porcentaje de cromo, el cual eleva la dureza y maleabilidad de la soldadura.

Operación

Para la soldadura en vertical ascendente se utiliza la técnica de arrastre, conservando el electrodo dentro de la unión, de manera que se provoque una penetración que avanza con el electrodo dentro del biselado. Es importante limpiar bien las escorias entre pasadas.

Utilizar rangos de corriente indicador para cada diámetro del electrodo.

El ángulo del electrodo debe ser de 70° a 80°.

Posición para la aplicación de la soldadura en la fase de raíz para unión de dos tramos de tubería: 2G, 5G o 6G.

Posición para la aplicación de la soldadura en la fase de relleno o acabado para unión de dos tramos de tubería: 2G, 5G.

Posición para la aplicación de la soldadura en la fase de raíz y relleno o acabado para unión tubería con accesorios: 5G

4.3. Nuevo diseño del sistema de trasporte de vapor saturado del Hospital Virgen de la Puerta aplicando la secuencia de pasos previamente elaborada

El nuevo diseño está basado en la secuencia de pasos desarrollada anteriormente. Para el diseño se utilizó los datos nominales y de operación de la instalación actual que posee el Hospital Virgen de la Puerta para el transporte de vapor saturado, estos se encuentran en el Anexo11.

Se inicio realizando un esquema general de la distribución de la red de vapor saturado, donde se representó las trayectorias, longitudes y segmentos de cada

tubería (Anexo 11). Luego se seleccionó el material de las tuberías y se calculó el número de cedula, los cuales se muestran en la tabla 11, el detalle de selección y cálculo se muestra en el Anexo 11.

Tabla 11

Material de tuberías y numero de cedula

Material de tuberías	ASTM A53, grado B, sin costura
Numero de cedula	SCH 40
	Euente: Elaboración propia

La tabla 12 muestra el dimensionamiento de las tuberías principales y su verificación con parámetros de operación en condiciones más severas, tales como el aumento del 10 % del flujo de vapor de trabajo y la densidad mínima, el cálculo se especifica en el Anexo 11.

Tabla 12

Dimensionamiento de las tuberías principales y verificación TP1 y TP2

Tubería	DN	Flujo de DN vapor de Velocidad C diseño I		Caída de presión	Verificación
	pulg	kg/h	m/s	psi	
TP1	3 ½	2114.1	31.4565	0.5176	Dimensionamiento correcto
TP2	3 1⁄2	2114.1	31.4565	0.8626	Dimensionamiento correcto
					Eucato: Eleboración propio

Fuente: Elaboración propia

La tabla 13 muestra el dimensionamiento de las tuberías secundarias y su verificación, para ello se utilizó la demanda de vapor de cada área de consumo (Anexo 4) aumentada un 20%, el cálculo se especifica en el Anexo 11.

Tabla 13

Dimensionamiento de las tuberías secundarias y verificación TS1, TS2 y TS3

Tubería	DN	Flujo de vapor de diseño	Flujo de vapor de Velocidad Caída de diseño presión		Verificación
	pulg	kg/h	m/s	Psi	
TS1	2 1⁄2	840.919	30.5518	2.9500	Dimensionamiento correcto
TS2.1	1 ½	596.3789	33.6886	0.9537	Dimensionamiento correcto

TS2	2 1⁄2	596.3789	27.6178	1.4951	Dimensionamiento correcto
TS3.1	1 ½	438.8245	29.8635	0.8432	Dimensionamiento correcto
TS3	2 1⁄2	438.8245	31.9582	1.2305	Dimensionamiento correcto

Fuente: Elaboración propia

Después de la verificación del dimensionamiento se evaluó la selección del material y numero de cedula, donde resulto que la presión máxima permitida del material es mucho menor a la presión nominal de diseño, el detalle se muestra en el Anexo 11.

La tabla 14 muestra los accesorios de tubería y vapor para las tuberías principales, el detalle de selección se encuentra en el Anexo 24, 25 y 26.

Tabla 14

Accesorios de tubería y vapor para las tuberías principales TP1 y TP2

Accesorio	Tipo Matorial		Lq	- Conovión	DN
Accesono	про	Material	m	Conexion	Pulg
Válvula de cierre	Compuerta Clase 200	Hierro fundido ASTM A126	0.6	Bridado	4
Válvula de retención	Clapeta	Acero al carbono ASTM A216	6.7	Bridado	4
Codo 90°	Radio corto	Acero al carbono ASTM A234	3.1	Soldada	3.5
				E (·

Fuente: elaboración propia

La tabla 15 muestra los accesorios de tubería y vapor para la tubería secundaria TS1 el detalle de selección se encuentra en el Anexo 24 y 25.

Tabla 15

Accesorios de tubería y vapor para la tubería secundaria TS1

Accesorio	Tino	Matorial	Lq	Conevión	DN
Accesono	про	Waterial	m	CONEXION	Pulg
Válvula de cierre	Compuerta Clase 200	Hierro fundido ASTM A126	0.3	Bridado	2 1⁄2
Codo 90°	Radio largo	Acero al carbono ASTM A234	1.2	Soldada	2 1⁄2

La tabla 16 muestra los accesorios de tubería y vapor para las tuberías secundarias TS2, TS2.1, TS3 y TS3.1, el detalle de selección se encuentra en el Anexo 24 y 25.

Tabla 16

Accesorios de tubería y vapor para las tuberías secundarias

Accesorio	Tino	Tipo Material –		— Conexión	DN		
A00030110	Tipo	material	Μ	OULCAION	Pulg		
		Tuberías TS2 y TS3					
Válvula de cierre	Compuerta Clase 200	Hierro fundido ASTM A126	0.3	Bridado	1 ½		
Codo 90°	Radio largo	Acero al carbono ASTM A234	0.6	Soldada	1 ½		
Tuberías TS2.1 y TS3.1							
Codo 90°	Radio largo	Acero al carbono ASTM A234	0.6	Soldada	2 ½		
				Fuente: Elabora	ción propia		

La figura 10 muestra el nuevo diseño de la estación reductora de presión de vapor para el área de esterilización, el cual cuenta con dos circuitos de reducción de presión en paralelo y otro de bypass.

Figura 10

Diseño de la estación reductora de presión del vapor para el área Esterilización

Fuente: Elaboración propia

El diseño de la estación reductora de presión de vapor para el área de esterilización se muestra en el Anexo 11.

La tabla 17 muestra los accesorios y vapor de las dos estaciones reductoras de presión. El detalle de la selección se muestra en el Anexo 11, 24, 25, 26, 27, 28, 30 y 31.

Tabla 17

Accesorio	Tipo/modelo	Material	Cantidad	Conexión	DN
		ERP1			Fulg
Separador de humedad	S2 horizontal	Hierro fundido	1	Roscada	1 ½
Válvula esférica	M10F2FB	Acero al carbono	2	Roscada	1 ½
Válvula esférica	M10F2FB	Acero al carbono	2	Roscada	2 1⁄2
Filtro	Filtro en Y modelo IT	Hierro fundido	2	Roscada	1 ½
Válvula bypass	A3S	Acero forjado	1	Roscada	1 ½
Válvula reductora	25 P	Hierro fundido	2	Roscada	1
Válvula de seguridad	SV615	Bronce	1	Roscada	1
		ERP2			
Separador de humedad	S2 horizontal	Hierro fundido	1	Roscada	1 ½
Válvula esférica	M10F2FB	Acero al carbono	2	Roscada	1 ½
Válvula esférica	M10F2FB	Acero al carbono	2	Roscada	2 1⁄2
Filtro	Filtro en Y modelo IT	Hierro fundido	2	Roscada	1 ½
Válvula bypass	A3S	Acero forjado	1	Roscada	1 ½
Válvula reductora	25 P	Hierro fundido	2	Roscada	1
Válvula de seguridad	SV615	Bronce	1	Roscada	1

Accesorios y vapor para las estaciones reductoras de presión

Los espesores del aislante térmico de fibra de vidrio y las especificaciones de su protección, para cada tubería se detallan en la tabla 18, el dimensionamiento se muestra en el Anexo 11.

Tabla 18

Diámetro nominal de tubería	Espesor de aislante	Tipo de material	Espesor de la protección	Tipo de material	η del aislante térmico
Pulg	Mm		mm		%
3 1⁄2	2 1⁄2	Fibra de vidrio	0.8	Acero galvanizado	99.65
1 ½	1 ½	Fibra de vidrio	0.8	Acero galvanizado	99.65
2 1⁄2	2	Fibra de vidrio	0.8	Acero galvanizado	99.65
				Fuente: Elab	oración propia

Espesores del aislante térmico para las tuberías de la red de transporte de vapor

La tabla 19 muestra el análisis de flexibilidad en las tuberías principales del nuevo diseño, el detalle se muestra en el Anexo 11.

Tabla 19

Análisis de flexibilidad en las tuberías TP1 y TP2 del nuevo diseño

Segmentos	Longitud	Dilatación total	Longitud necesaria para absorber la dilatación	Esfuerzo causado por la dilatación	Verificación
	m	mm	m	kg/mm ²	
		Tu	bería TP1		
A1-B1	1.10	2.33	0.4961	2.1336	Autocompensado
B1-C1	2.10	4.0293	1.4778	5.1974	Autocompensado
C1-D1	2.45	5.19	0.9609	0.4306	Autocompensado
		Tu	bería TP2		
A2-B2	1.10	2.33	0.4472	1.6361	Autocompensado
B2-C2	0.65	1.378	0.6558	10.68	Autocompensado
C2-D2	5.40	11.4526	1.3079	0.6151	Autocompensado
D2-E2	2.45	5.1961	1.6828	4.9539	Autocompensado

La tabla 20 muestra el análisis de flexibilidad en las tuberías secundarias del nuevo diseño, el detalle se muestra en el Anexo 11.

Tabla 20

Análisis de flexibilida	d en las tuberías	TS1. TS2	Y TS3 del i	nuevo diseño
	a on lao tabonao	101, 102	1 100 0011	

Segmentos	Longitud	Dilatación total	Longitud necesaria para absorber la dilatación	Esfuerzo causado por la dilatación	Verificación
	m	mm	m	kg/mm²	
		Tu	bería TS1		
A1-B1	2.5	5.3021	0.5449	0.5946	Autocompensado
B1-C1	1.6	3.3933	1.5254	9.5283	Autocompensado
C1-D1	5.5	1.6966	0.7583	0.1996	Autocompensado
D1-E1	1	5.8323	1.3713	5.8078	Autocompensado
E1-F1	3	6.3625	0.4702	0.2580	Autocompensado
F1-G1	28	63.6259	-	0.2396	< σadm
		Tu	bería TS2		
A2-B2	7	13.1101	0.4421	0.0678	Autocompensado
B2-C2	1	1.8738	0.9124	8.6104	Autocompensado
C2-D2	2.8	5.2647	0.442	0.2617	Autocompensado
D2-E2	30	56.2147	-	0.2007	< σadm
		Tu	bería TS3		
A3-B3	0.9	1.5019	0.4185	2.2607	Autocompensado
B3-C3	1	1.6789	0.7751	7.9313	Autocompensado
C3-D3	2.6	4.3652	0.4185	0.2719	Autocompensado
D3-E3	32	20.3579	-	0.2224	< σadm

4.4. Dimensiones de la efectividad operacional del nuevo diseño del sistema de transporte de vapor saturado.

4.4.1. Rendimiento del proceso de transporte de vapor

La tabla 21 muestra el rendimiento del proceso de transporte de vapor sin aislamiento, el detalle del cálculo se muestra en el Anexo 11.

Tabla 21

Rendimiento térmico del proceso de transporte de vapor sin aislamiento

Perdidas de calor fijas	28.8363	kW
Perdidas de calor en válvulas aisladas	7.2090	kW
Perdidas de calor en tubería aislada	5.0469	kW
Rendimiento térmico del proceso de transporte de vapor	97.5	%

Fuente: Elaboración propia

La tabla 22 muestra el rendimiento del proceso de transporte de vapor sin aislamiento, el detalle del cálculo se muestra en el Anexo 11.

Tabla 22

Rendimiento térmico del proceso de transporte de vapor con aislamiento

Perdidas de calor fijas	28.8363	kW
Perdidas de calor en válvulas no aisladas	50.4635	kW
Perdidas de calor en tubería desnuda	228.6504	kW
Rendimiento térmico del proceso de transporte de vapor	74.46	%

Fuente: Elaboración propia

4.4.2. Reducción de costos en el proceso de transporte de vapor

La tabla 23 muestra los costos por perdidas de calor en el proceso de transporte de vapor saturado con el sistema aislado y desnudo, además del beneficio económico que conlleva aislar este sistema, el detalle del cálculo se muestra en el Anexo 11.

Tabla 23

Costos por perdidas de calor en la red de transporte de vapor con aislamiento

Pérdidas totales en el sistema aislado	41.0922	kW
Perdidas de calor en el sistema desnudo	307.9502	kW

Costos de pérdidas de calor en tubería aislada	38644.3294	S./año
Costos de pérdidas de calor en tubería desnuda	289724.885	S./año
Ahorro bruto por aislamiento térmico	251080.556	S./año

Fuente: Elaboración propia

4.5. Comparación entre resultados del nuevo diseño y la condición actual en la que encuentra el sistema de transporte de vapor saturado en el Hospital Virgen de la Puerta.

La metodología elaborada se valida mediante la siguiente comparación entre las especificaciones del nuevo diseño y estado actual del sistema de transporte de vapor, además de conocer las semejanzas, discrepancias y mejoras.

Las especificaciones del nuevo diseño se obtuvieron de los resultados del apartado (4.3. y 4.4.) y las especificaciones de la condición actual se consiguieron del apartado (4.1.), además de utilizar la data de las fichas de recolección de datos (Anexo 4, 5, 6, 7 y 8). Es preciso señalar que las velocidades y caída de presión en comparación se calcularon a los mismos parámetros de operación.

La tabla 24 muestra la comparación del nuevo diseño y estado actual de las tuberías principales.

Tabla 24

Comparación de especificaciones para las tuberías principales

Especificaciones	Nuevo diseño	Estado actual
Material de tuberías	ASTM A53, grado B,	ASTM A53, grado B,
Numero de cedula	SIN COSTURA	SIN COSTURA SCH 40
Tu	bería principal 1	
Diámetro de tubería	3 ½ pulg	4 pulg
Velocidad del fluido	22.6445 m/s	18.6167 m/s
Caída de presión	0.4118 psi	0.2750 psi
Tipo de válvulas de cierre	Válvula compuerta	Válvula compuerta
Tipo de válvula de retención	Válvula Check	Válvula Check
Tipo de accesorio de tuberías	Codo de 90° radio corto	Codo de 90° radio corto
Espesor de aislante	2 ½ pulg	2 pulg
Auto compensación		
Segmento A-B	Autocompensado	Autocompensado
Segmento B-C	Autocompensado	Autocompensado
Segmento C-D	Autocompensado	Autocompensado

Esfuerzos

Segmento A-B	2.1336 kg/mm ²	2.4939 kg/mm ²
Segmento B-C	5.1974 kg/mm ²	5.8471 kg/mm ²
Segmento C-D	0.4306 kg/mm ²	1.3310 kg/mm ²

Tubería principal 2

Diámetro de tubería	3 ½ pulg	4 pulg
Velocidad del fluido	22.6445 m/s	18.6167 m/s
Caída de presión	0.5622 psi	0.37041 psi
Tipo de válvulas de cierre	Válvula compuerta	Válvula compuerta
Tipo de válvula de retención	Válvula Check	Válvula Check
Tipo de accesorio de tuberías	Codo de 90° radio corto	Codo de 90° radio corto
Espesor de aislante	2 ½ pulg	2 pulg
Auto compensación		
Segmento A-B	Autocompensado	Autocompensado
Segmento B-C	Autocompensado	Autocompensado
Segmento C-D	Autocompensado	No autocompensado
Segmento D-E	Autocompensado	Autocompensado
Esfuerzos		
Segmento A-B	1.6361 kg/mm ²	1.3517 kg/mm ²
Segmento B-C	0.6558 kg/mm ²	25.0901 kg/mm ²
Segmento C-D	1.3070 kg/mm ²	0.66711 kg/mm ²
Segmento D-E	1.6828 kg/mm ²	5.5682 kg/mm ²
		Fuente: Elaboración propia

La tabla 25 muestra la comparación del nuevo diseño y estado actual de la tubería que conecta el manifold de vapor y el área de consumo.

Tabla 25

Comparación de especificaciones para TS1

Especificaciones	Nuevo diseño	Estado actual
Material de tuberías	ASTM A53, grado B, sin	ASTM A53, grado B, sin
Material de taberias	costura	costura
Numero de cedula	SCH 40	SCH 40
	Tubería secundaria 1	
Diámetro de tubería	2 ½ pulg	2 pulg
Velocidad del fluido	20.5891 m/s	32.7004 m/s
Caída de presión	1.2741 psi	5.8848 psi
Tipo de válvulas de cierre	Válvula compuerta	Válvula compuerta
Tipo de accesorio de tuberías	Codos de 90 [°] radio largo	Codo de 90° radio corto
Espesor de aislante	2 pulg	1 ½ pulg

Auto compensación

Segmento A-B Segmento B-C Segmento C-D Segmento D-E Segmento E-F Segmento F-G Segmento G-H		Autocompensado Autocompensado Autocompensado Autocompensado -	Autocompensado Autocompensado No autocompensado Autocompensado No autocompensado No autocompensado Autocompensado
	Esfuerzos		
Segmento A-B Segmento B-C Segmento C-D Segmento D-E Segmento E-F Segmento F-G Segmento G-H		0.5946 kg/mm ² 9.5283 kg/mm ² 0.1996 kg/mm ² 5.8078 kg/mm ² 0.2580 kg/mm ² 0.2396 kg/mm ²	0.9588 kg/mm ² 2.1580 kg/mm ² 26.856 kg/mm ² 0.05706 kg/mm ² 13.3217 kg/mm ² 12.8740 kg/mm ² 0.00639 kg/mm ²

La tabla 26 muestra la comparación del nuevo diseño y estado actual de la tubería que conecta el manifold de vapor y el área de consumo.

Tabla 26

Comparación de especificaciones para TS2 y TS3

	Tubería secundaria 2	
Diámetro de tubería en TS2.1	1 ½ pulg	1 ½ pulg
Espesor de aislante en TS2.1	1 ½ pulg	1 ½ pulg
Diámetro de tubería en TS2	2 ½ pulg	1 ½ pulg
Espesor de aislante en TS2	2 pulg	1 ½ pulg
Velocidad del fluido	23.0148 m/s	67.0684 m/s
Caída de presión	1.0493 psi	16.7566 psi
Tipo de válvulas de cierre	Válvula compuerta	Válvula compuerta
Tipo de válvula reductora	25P 1 pulg	25 P ¾ pulg
Tipo de accesorio de tuberías	Codo de 90 ° radio largo	Codo de 90° radio corto
Auto compensación		
Segmento A-B	Autocompensado	Autocompensado
Segmento B-C	Autocompensado	No autocompensado
Segmento C-D	Autocompensado	No autocompensado
Segmento D-E	-	Autocompensado
Esfuerzos		
Segmento A-B		
Segmento B-C	0.0678	0.03875
Segmento C-D	8.6104	36.9786
Segmento D-E	0.2617	10.8848
	0.2007	0.00422

Tubería secundaria 3 Diámetro de tubería en TS3.1 1 ½ pulg 1 ½ pulg Espesor de aislante en TS23.1 $1\frac{1}{2}$ pulg $1\frac{1}{2}$ pulg 2 ¹/₂ pulg 1 ½ pulg Diámetro de tubería en TS3 Espesor de aislante en TS3 2 pulg $1\frac{1}{2}$ pulg 26.63 m/s Velocidad del fluido 79.6605 m/s 13.1967 psi Caída de presión 0.8630 psi Tipo de válvulas de cierre Válvula compuerta Válvula compuerta 25P 1 pulg Tipo de válvula reductora 25 P ³/₄ pulg Codo de 90 ° radio Codo de 90° radio corto Tipo de accesorio de tuberías largo Auto compensación Segmento A-B Autocompensado Autocompensado Segmento B-C Autocompensado No autocompensado Segmento C-D Autocompensado No autocompensado Segmento D-E Autocompensado **Esfuerzos** Segmento A-B 2.2607 1.1180 Segmento B-C 7.9313 14.7508 Segmento C-D 0.2719 13.6099 Segmento D-E 0.2224 0.004387

Fuente: Elaboración propia

La tabla 27 muestra la comparación entre las dimensiones que rigen la efectividad operación según los resultados del nuevo diseño y el estado actual.

Tabla 27

Comparación de las dimensiones de la efectividad operacional

Especificaciones	Nuevo diseño	Estado actual
Rendimiento térmico	97.5 %	94.92 %
Costos por perdidas de calor	38644.3294 S./año	68878.8653 S./año
		Euente: Elaboración propia

4.6. Modelo de cálculo en Excel para el dimensionamiento de tuberías y aislamiento térmico

En esta etapa se desarrolló un modelo de cálculo en Excel para el dimensionamiento de tuberías y aislamiento térmico, para ayudar a corroborar la validez de estas etapas de diseño y la exactitud del cálculo realizado.

La secuencia lógica para el método de cálculo en Excel está basada en la secuencia de pasos de los apartados (4.3.3, 4.3.4 y 4.3.5.)

La primera etapa de diseño en el software consta del ingreso de datos y condiciones nominales, además de datos de operación y de las propiedades del fluido.

Figura 11

Ingreso de datos y condiciones generales al modelo en Excel

DISEÑO DE TUBERIAS EN PROCESO DE TRANSPORTE DE VAPOR SATURADO

Datos de caldera y propiedades de	I fluido generado	
Potencia de caldera	150	[BHP]
Presion maxima del fluido	150	[psi]
Densidad del fluido a presion maxima de caldera	5.3133	[kg/m^3]
Datos de operació	n	
Presion maxima de operación	100	[psi]
Presion minima de operación	80	[psi]
Densidad del fluido a máxima presión de operación	3.614	[kg/m]
Densidad del fluido a mínima presión de operación	2.9268	[kg/m^3]
Carga de operación	80	[%]
Carga de aumento de demanda	90	[%]
Velocidad permisible del fluido en tuberías	35	[m/s]
Numero de cedula	SCH 40	

Los resultados del software para el dimensionamiento y su verificación para la tubería TP2 son iguales a los calculados en el nuevo de diseño, en ambos resulto una tubería de DN 3 ½ pulg.

Figura 12

Resultados del dimensionamiento y su verificación de la tubería principal mediante el modelo en Excel

		D	IMENSIO	NAMIENT	O DE TUBERIA	PRINCIPAI	L		
		Re	sultados d	el dimensio	onamiento de la tul	bería princip	al		
Flujo de vapo	or a carga tota	al			2349	[kg/h]			
Fluo de vapor a carga con aumento de demanda					2114.1		Diámetro es	standarizado	
Flujo de vapo	or a carga de	operación			1879.2	[kg/h]			
Diámetro a p	arámetros no	minales			2.6315	[pulg]	3	[pulg]	
Diámetro a parámetros máximos de operación					2.8539	[pulg]	3	[pulg]	
Diámetro a parámetros mínimos de operación					3.1713	[pulg]	3 1/2	[pulg]	
Diámetro con demanda aumentada					3.1910	[pulg]	3 1/2	[pulg]	
Diámetro nominal estandarizado					3 1/2	[pulg]	Se recomient	da el diámetro	
Diámetro exterior 101.6 [mm]					ma	iyor			
Espesor			5.74	[mm]					
Diámetro inte	erior		90.12	[mm]					
		Veri	ficación de	dimension	namiento por veloc	idad permis:	ible		
Sección trans	sversal de la t	ubería princip	bal		0.006379	[m^2]		Velocidad	permisible
Velocidad a presion maxima de operación				22.6445	[m/2]	<			
Velocidad a presion minima de operación				27.9613	[m/2]	<	35	[m/s]	
Velocidad con aumento de la demanda			31.4565	[m/2]	<				
			Verificació	n dimensio	namiento por caída	a de presión			
Accesorio	Longitud U	Cantidad	Longitud q	Longitud Q	23	[m]			
Codo 90 RC	2.4	3	7.2	Longitua L	9.4	լոյ			
V.C.	0.3	2	0.6						
V.R.	5.8	1	5.8						
Codo 90 RC	2.4	0	0						
Codo 90 RC	2.4	0	0						
Codo 90 RC	2.4	0	0						
Codo 90 RL	1.5	0	0	J					
Outline da					0.5000	1 7		Calda de pl	resion adm.
Caida de presion a presion maxima de operación				0.5622	[psi]	<	-	feeil	
Calda de presion a presion maxima de operación				0.0857	[psi]	<	э	[psi]	
Caida de presion con aumento de la demanda				0.8624	[psi]	<			

El modelo cuenta con una etapa de dimensionamiento para tubería secundarias que no poseen una estación reductora de presión. Los resultados de la tubería TS1 coinciden con los calculados en el nuevo diseño, en ambas resulto 2 ½ pulg.

Figura 13

Dimensionamiento y verificación de la tubería secundaria sin estación reductora de presión mediante el modelo en Excel

DIMEN	ISIONAM	IENTO D	E TUBERIAS SE	CUNDAR	RIAS				
Τι	uberías s	in estaci	ión reductora de	presión					
Flujo de vapor requerido o demanda Flujo de vapor con aumento del 20 % de la Presión máxima del fluido en operación Presión mínima del fluido en operación Densidad del fluido a presión máxima en op Velocidad permisible	a demanda peración peración	Ingre	so de datos 826.5381 991.8457 100 80 3.6140 2.9226 35	[kg/h] [kg/h] [psi] [kg/m^3] [kg/m^3] [m/s]					
Resultados									
Diámetro con el flujo requerido Diámetro con aumento del 20 % de la dema Diámetro nominal estandarizado	anda		2.1047 2.3056 2 1/2	(pulg) (pulg) (pulg)					
Diámetro exterior Espesor Diámetro interior	73 5.16 62.68	[mm] [mm] [mm]	•		Se recomier	ida el mayor			
Verifica	ación del d	limension	amiento por veloci	dad permis	sible				
Velocidad con aumento de la demanda Velocidad a presión maxima de operación Velocidad a presion minima de operación	30.5518 20.5891 25.4599	[m/s] [m/s] [m/s]	< < <	35	Velocidad permisible				
Ver	rificación d	limension	amiento por caída	de presión	1				
Accesorio Longitud U Cantidad Longitud U V.C. 0.3 1 Codo 90 RL 1.2 10 Codo 90 RC 1.8 0 Codo 90 RC 1.8 0	ongitud q Lo 0.3 L 12 0 0	ongitud Q .ongitud L	43.6 48.7						
Caída de presión con aumento de la demar Caida de presion a presion maxima de oper Caida de presion a presion minima de oper	2.2174 1.2742 1.5555	(psi) (psi) (psi)	< < <	5	Caida de presion adm.				

Además, el modelo de cálculo cuenta con una etapa adicional para el dimensionamiento y verificación de tuberías secundarias que si poseen estación reductora. Los resultados mediante el software son iguales a los calculados en el nuevo diseño, en ambos casos el DN de la tubería resulta 2 ½ pulg.

Figura 14

Dimensionamiento y verificación de la tubería secundaria TS3 con estación reductora mediante el modelo en Excel

Tuberías con estación reductora de presión							
		Ingreso de	e datos generales				
Flujo de vapor requerido o demanda			344.6701	[kg/h]			
Flujo de vapor con aumento del 20 % de	la demanda		413.60412	[kg/h]			
Velocidad permisible			35	[m/s]			
	D	atos en la e	etapa de alta presión	1			
Presión máxima del fluido en operación			100	[psi]			
Presión mínima del fluido en operación			80	[DSI]			
Densidad dei fluido a presión máxima de operación			3.6140	[kg/m^3]			
Densidad del fluido a presión mínimo de	operación		2.9226	[kg/m^3]			
		Re	esultados				
Diámetro con el flujo requerido			1.2222	[pulg]			
Diámetro con aumento del 20 % de la demanda			1.3389	[pulg]			
Diámetro nominal estandarizado			1 1/2	[pulg]			
Diametro exterior 48.3 [mm]			•		Se recomien	ida el mayor	
Espesor	3.68	[mm]					
Diâmetro Interior	40.94	[mm]					
Veri	finanián de	Idimonsion	amiente nerveleci		ible		
Velocidad con sumento de la demanda	neacion de	amension	24 1502	inisi	sible		
Velocidad con aumento de la demanda	10		24.1002	[m/s]	-	35	Velocidad
Velocidad a presión maxima de operación			24,9952	[m/s]			permisible
velocidad a presión minima de operación			24.0002	lunel	-		
	D	atos en la e	tapa de baja presió:	n			
Presión máxima del fluido en operación			30	[psl]			
Densidad del fluido			1.1651	[kg/m^3]			
Diferentes and al Ruis as a solida		Re	esultados				
Diametro con el flujo requendo			2.1526	[puig]			
Diametro con aumento del 20 % de la de	emanua		2.3500	[puig]			r
Diametro nominal estandarizado			↓ 2 1/2	[puig]	Co recomion	and a second second	
Espace	6 1 E	[mm]			Selecomien	ida el mayor	L
Diametro Interior	62.68	[mm]					
oranical interior	02.00	from					
Verit	ficación de	l dimension	amiento por velocio	dad permis	ible		
Velocidad con aumento de la demanda			31.9583	[m/s]	<	35	Velocidad
Velocidad a presion maxima de operació	n		26.6319	[m/s]	<		permisible
Association Longitud II Confident	Longitud c	Caida Longitud C	a de presion				
Code 00 RL 1.2 10	Longitud q	Longitud Q	33.0				
C000 90 RL 1.2 10	12	Longitua L	43.6				
V.C. 0.3 0							
V.G. 0.3 0	0						
v.c. 0.3 0	U	L					Calda da
Calda de presión con aumento de la den	1 2205	Incil			calda de		
Calda de presión con aumento de la den		0.9530	[psi]	•	1.5	adm	
Calua de presión a presión maxima de operación u.0000 [psi] < auni.							

La etapa última del modelo en Excel pertenece al dimensionamiento del espesor del aislamiento térmico. Los resultados del software son iguales a los del nuevo diseño, en ambos casos resulta un espesor de aislante térmico de 2 ½ para un rendimiento térmico de 99.65 % en las tuberías principales.

Figura 15

Dimensionamiento del espesor del aislante térmico mediante el modelo en Excel

DIMENSIONAMIENT	O DEL ESPESOR		O TERMIC	:O (Fibra de vidrio)				
In								
Flujo de vapor nominal Presion maxima de operación Entalpia de vapor a presion maxima de o Temperatura del fluido dentro de la tuberi Temperatura asumida de la pared del ais Longitud total de la red de tuberias Rendimiento de aislamiento estimado	peración a lante	2114.1 100 2762 164 40 164 99.65	[kg/h] [psi] [°C] [°C] [°C] [m]					
	Tube	ría principal						
Diametro exterior de tuberia	Ingreso d	e datos generales 3.5	[pulg]	Guardar resultado TP1	s [pulg]			
Espesor del aislante	Resultados	2.4890	[pulg]	TP2 TP3	[pulg] [pulg]			
Tuberías secundarias								
Diametro exterior de tuberia	Pesultados	2.5	[pulg]	Guardar resultado TP1 TP2	s [pulg]			
Espesor del aislante	Resultatos	1.7778	[pulg]	TP3	[pulg] [pulg]			
	Perdi	das de calor						
Perdidas de calor con tuberias aisladas Perdida unitaria de calor		5.6769 34.6155	[kW] [W/m]					

V. DISCUSIÓN

Yauri, D. (2018), en su tesis titulada "Evaluación de la red de distribución de vapor en el hospital regional Ramiro Prialé de Huancayo", determino mediante un análisis hidráulico concluye que, incrementando el diámetro a la tubería, esta transportaría mayor flujo de vapor, además de reducir la velocidad, ya que se encontró en límites permisibles. Esta conclusión se dio debido a que se entró una descompensación de flujo de vapor para el área de lavandería, la propuesta fue instalar una tubería de 3 ¹/₂ pulg para reemplazar a la tubería de 3 pulg actual, esto redujo la velocidad a 29 m/s con un flujo de 1390 kg/h. Esto en ciertos aspectos concuerda con la presente tesis, en nuestro diagnostico al estado actual del sistema de transporte de vapor saturado del Hospital virgen de la Puerta se determinó que no existe una descompensación de flujo de vapor para los puntos de consumo, pero si existe un problema de elevada velocidad del fluido, los cuales se encuentran por encima de los valores permisibles. En el nuevo diseño existe semejanza a lo presentado por Yauri, ya que se optó por aumentar el diámetro en las tuberías que se encontraban bajo altas velocidades, lo que resulto una disminución de la velocidad del fluido, siendo la tubería capaz de trabajar bajo distintas condiciones manteniendo los parámetros de operación, tales como velocidad y caída de presión, entre los rangos permisibles.

Vargas, M. (2016), en su tesis "Mejoramiento de la eficiencia energética aplicado al mantenimiento del sistema y distribución de vapor para la empresa La Ibérica, concluyo que las pérdidas de calor en las líneas de vapor aumentan si estas no poseen aislamiento térmico o este se encuentra deteriorado. Como mejora se planteó la instalación de aislamiento térmico, bajo condiciones de diseño normadas, además de un plan de mantenimiento centrado en la eficiencia energética, lo que reduciría las pérdidas de calor. Esto se asemeja a los resultados de la presente tesis que se concluye que, dimensionando de manera correcta el aislamiento térmico, además de aumentar el espesor del aislante en los espacios de las líneas de mayor influencia a perdidas, se produce una disminución de las perdidas energéticas.

Popayán, A. (2016) en su tesis "Mejoramiento de las líneas de distribución de vapor mediante la reingeniería al área de esterilización, cocina y lavandería del Hospital Regional Eleazar Guzmán Barrón", concluye que aplicando métodos de reingeniería se reducen las perdidas energéticas en los sistemas de distribución de vapor, en su caso se redujeron un 36 %, provocando un cambio en el rendimiento térmico de 94 % en el estado actual a un 96 % en la mejora del diseño. Este cambio se logró con el redimensionamiento de las tuberías de transportes de vapor, espesor del aislante térmico y sustitución de trampas, en este análisis se verifico las velocidades y las pérdidas de presión para garantizar una operación bajo los valores permitidos. Estas conclusiones concuerdan a la presente tesis que concluye que, aplicando métodos de reingeniería, diseño térmico, se pueden reducir las pérdidas de calor y aumentar el rendimiento térmico. En el estado actual el rendimiento térmico es de 94.2 % y el rendimiento en el nuevo diseño es de 97.5 % lo que implica la reducción de costos por estas pérdidas de calor. Además, se rescató la importancia de la verificación de las velocidades y caídas de presión que aseguran la vida útil de los elementos de las líneas de vapor, evitando problemas de desgaste, choques térmicos, entre otros, y que los equipos de consumo operen bajo condiciones requeridas.

Rentería, M. (2014), en su tesis "Diseño de metodología para el análisis de flexibilidad en sistemas de tuberías" concluye que los esfuerzos debido a las dilataciones térmicas en tuberías dependen directamente del material, longitud y diámetro exterior de la tubería. Para aminorar el esfuerzo flector es más efectivo modificar las longitudes de tubería, ya que las especificaciones del material y diámetro permanecen constantes. Esta conclusión concuerda con los resultados de la presente tesis, ya que se modificaron las longitudes de algunos segmentos de las tuberías para lograr establecer los esfuerzos dentro de los valores admisibles, de esta manera las tuberías no se encuentren en estado de fatiga.

Chango, A. (2017), en su tesis "Diagnostico térmico del sistema de generación y distribución de vapor en el área de lavandería y esterilización del Hospital General Provincial Latacunga" concluye que las pérdidas de calor por purga se pueden disminuir mediante la implementación de un sistema de recuperación de vapor "flash", en su caso represento un 28 % del vapor generado, siendo un 521.63 kg/h

63

de flujo de vapor que se aportó al sistema. En comparación con la presente tesis que no se realizó una evaluación del flujo de vapor perdido por purgas, el cual representa pérdidas de calor si estas no son recuperadas mediante el sistema de retorno de condensado, en esta investigación se incluyó las perdidas por purgas en las perdidas fijas de calor, siendo de orden del 2 % del calor total (Popayán, 2016).

Rodríguez, C. y Rubio, O. (2014), en su tesis "Diseño del sistema de distribución de vapor y selección del caldero para el Hospital San Juan de Dios" desarrollaron el diseño utilizando valores nominales, asumiendo que estos valores permanecen constantes durante la operación, el dimensionamiento de las tuberías se efectuó mediante el uso de software como TLV. A diferencia de esta tesis que, en la nueva metodología, para el dimensionamiento de las tuberías utiliza los valores nominales y de operación, tales como la presión y temperatura, ya que en Hospitales estos valores se encuentran en un rango establecido, estos cambios repercuten en la variación de los parámetros de operación, como el aumento o disminución de la velocidad y perdida de presión. La ventaja de esta etapa de diseño mediante la nueva metodología es que la tubería se encuentra preparada para trabajar bajo las distintas condiciones de operación sin perjudicar su integridad, manteniendo estos parámetros entre los valores permitidos. Además, en la tesis de Rodríguez, C. y Rubio, O. carece de un análisis de flexibilidad para su nuevo diseño, se estableció las trayectorias y longitudes de las tuberías sin tener en cuenta los esfuerzos y dilataciones. En esta tesis se toma en cuenta con estos aspectos importantes, mediante un método manual para determinar la auto compensación y esfuerzos en las tuberías, esto se incluye en la nueva metodología.

VI. CONCLUSIONES

Habiendo evaluado el sistema de distribución de vapor saturado del Hospital Virgen de la Puerta primero se determinó que el flujo suministrado de 1879.2 kg/h es suficiente para cubrir la demanda vapor de 1652.08 kg/h que requieren los equipos de las áreas de consumo. Se determinó que el dimensionamiento de las tuberías principales de 4 pulg es correcto, estas operan a una velocidad promedio de 18.61 m/s, este valor es menor a lo recomendado. La tubería secundaria de 2 1/2 pulg que transporta el vapor hacia lavandería esta correctamente dimensionada, aunque esta ópera cerca de su capacidad limite ya que el flujo que se suministra a al punto de consumo es de 840.92 kg/h y el requerido 8226.54 kg/h, en caso de aumentar la demanda, la tubería estaría trabajando sobre su capacidad, lo que provocaría la elevación de la velocidad, por otro lado la caída de presión en esta tubería es 5.8848 psi, valor que se encuentra entre el rango admisible. Las tuberías secundarias de 1 ½ pulg que conectan las estaciones de reducción de presión hacia las áreas de esterilización y calentadores, trabajan a una velocidad de 67.0684 m/s y 79.6606 m/s, respectivamente, estas son mayores a los valores permisibles, del mismo modo la caída de presión en cada tubería supera estos valores, por consiguiente, la presión de vapor que llega a esterilización es 33.4 psi, este valor es menor al que se requiere, de 35 psi, de la misma manera la presión que llega a calentadores es 14,87 psi, el cual es menor a la presión requerida de 20psi. En las dos estaciones de reducción de presión se encuentran instaladas válvulas reductoras de un DN20 la cual tiene una capacidad máxima de 508 kg/h mientras que la estación reductora de esterilización pasa un flujo de vapor de 596.3789 kg/h, es decir opera bajo su capacidad, así mismo pasa un flujo de 438.8245 kg/h para el área de calentadores. El aislante térmico tiene un rendimiento de 99.42 % con una pérdida de calor de 8360.2949kw en operación de la caldera 1, mientras que con la caldera 2 en operación el aislante térmico tiene un rendimiento de 99.40% con una pérdida de calor de 8613.7877kw. El rendimiento térmico total incluyendo las perdidas fijas y variables es de 94.92%. Del análisis de flexibilidad, la tubería principal 1 cumplen con las condiciones de elasticidad, mientras que en la tubería principal 2 un segmento de 0.45 m no es autocompensado, ya que la longitud actual es menor a la necesaria para adsorber la dilatación, por ende, los

esfuerzos son mayores a los admisibles. En la tubería secundaria 1 del área de lavandería cuenta con tres segmentos de 0.5m, 0.6m y 3m que no son auto compensados, superando el límite admisible del esfuerzo. En la red de tuberías de esterilización existen tres segmentos de 0.4m, 0.6m y 2.8m al igual que los segmentos de 0.6m y 2.6m de calentadores, por lo tanto, las tensiones en estas tuberías sobrepasan el esfuerzo admisible.

Se eléboro la secuencia de pasos que permite el dimensionamiento de tuberías principales y secundarias y su verificación mediante el método la velocidad permisible y la caída de presión, además de la los pasos para determinar el aislante térmico para reducir las pérdidas de calor y el análisis de flexibilidad para conocer si operan a bajo los límites de esfuerzos admisibles o si existe auto compensación de las tuberías, también los pasos para seleccionar los accesorios de tubería y vapor.

Con la secuencia de pasos definida se elaboró el nuevo diseño de la red de transporte de vapor saturado del Hospital Virgen de la Puerta donde se dimensiono las tuberías principales y las tuberías secundarias obteniendo las dimensionamiento a distintos parámetros de operación y aumento de la demanda, también se diseñó las estaciones reductoras de presión para el abastecimiento de flujo para esterilización y calentadores. También se dimensiono el aislamiento térmico para toda la red con una eficiencia de 99.65 %. Luego se realizó el análisis de flexibilidad donde se determinó las nuevas longitudes de algunos segmentos de tubería que permiten que las tuberías sean auto compensadas, así los esfuerzos internos están bajo los valores admisibles, y se integró un sistema de compensación por fuelles a los segmentos de mayor longitud, para terminar, se elaboró un plan de mantenimiento con el fin de sostener el proceso.

Del nuevo diseño del sistema de trasporte de vapor saturado se obtuvo un rendimiento térmico total de 97.5 % con la red aislada y un 74.46% sin aislamiento, además se obtuvo la pérdida total de calor del sistema aislado de 17.0306 kW siendo mucho menor en comparación con las pérdidas de calor en el sistema desnudo de 314.410 kW. También se obtuvo los costos por perdidas de calor de 38644.32 S./año con el sistema aislado y 289724.885 S./año con el

66

sistema desnudo, asimismo la reducción de costos en operación es de 251080.55 S./año.

Se determinó que la metodología elaborada para el diseño y asegurar la efectividad operacional es válido ya que, al comparar los resultados del diagnóstico y las especificaciones de la condición actual y los resultados del nuevo diseño, muestran concordancia. En cuanto a los resultados de la las dimensiones de las tuberías se observan diferencias en las tuberías principales y los diámetros obtenidos fueron menores, de 4 pulg a 3.5 pulg manteniendo los parámetros de operación dentro de los rangos admisibles, en cuanto a los tipos de accesorios son iguales. El espesor del aislante aumento en 0.5 pulg, en cambio al material se mantuvo igual, ambos resultados de análisis de flexibilidad mostraron autocompensado y por ende los esfuerzos se mantuvieron bajo los regímenes admisibles del material. El material y el número de cedula se mantuvieron iguales. Las dimensiones de la tubería secundaria de lavandería son similares, en el nuevo diseño las velocidades y la caída de presión se mantiene bajo rango permisible en cambio en el diseño actual estos parámetros están trabajando al límite admisible. En lo que respecta a accesorios las válvulas de cierre son iguales y los accesorios de tubería para el nuevo diseño son codos de 90°son de radio largo a comparación del diseño actual que utiliza codos de 90° radio corto. El resultado del análisis de flexibilidad para esta tubería en el nuevo diseño los segmentos son auto compensados, además posee un sistema compensador de elasticidad, en cambio algunos segmentos de la instalación actual no son auto compensados y están sufriendo esfuerzos elevados. En lo relativo a las tuberías secundarias para esterilización y calentadores, en las tuberías de alta presión se mantuvieron con las mismas dimensiones, en cambio en las tuberías en etapa de menor presión existe una diferencia significativa de 1.5" a 2.5", en consecuencia, los parámetros de operación del fluido cambiaron, las velocidades se redujeron de 67 m/s 23m/s en TS2 y de 79 m/s a 26 m/s en TS3. Hubo cambio del diámetro nominal de las válvulas reductoras de presión de 3/ 4" a 1", en cuanto a los accesorios las válvulas se mantuvieron iguales, asimismo cambiaron codos de 90° de radio corto a radio largo. Con respecto a las condiciones de flexibilidad en estas tuberías, para TS2 en la instalación actual se hallaron segmentos no auto compensados, en cambio en el nuevo diseño puesto que se modificaron las trayectorias y se incluyó un sistema compensador de elasticidad, ahora todos los segmentos se encuentran auto compensados.

Se utilizó del software Excel para elaborar un modelo de cálculo basado en la nueva metodología para el dimensionamiento de tuberías de vapor saturado y el espesor de aislamiento térmico para fibra de vidrio. El modelo cuenta con una etapa de ingreso de datos nominales y de operación, los cuales permiten obtener resultados en la etapa de dimensionamiento de tubería principal aplicando las verificaciones de velocidad permisible y modificando la cantidad de accesorios de tubería para verificar la caída de presión, También se puede dimensionar el diámetro del distribuidor de vapor para el flujo de vapor a carga total, con la variación de la velocidad del fluido. Para las tuberías secundarias se brinda dos tipos de cálculo una sin estación reductora y la otra con estación reductora con etapas de alta y baja presión, además cuenta con etapas de verificación del aislamiento térmico para las tuberías principales y secundarias.

VII. RECOMENDACIONES

Realizar un análisis de desgaste de las tuberías secundarias del Hospital Virgen de la Puerta, ya que las altas velocidades de operación pueden reducir el espesor de la tubería.

Realizar un análisis de soportes para sistema en Hospitales ya que estos elementos son el apoyo de más de una tubería.

Para una mayor especificación de selección de accesorios de vapor, referirse a las fichas técnicas del fabricante.

REFERENCIAS

- Albuja Coello, M. N. (2010). Mejoramiento del sistema de vapor y condensado en una industria cartonera (Tesis de pregrado, Escuela Superior Politécnica del Litoral).
- Álvarez Cevallos, I. A. (2014). Diseño del sistema de distribución de vapor en el hospital León Becerra de Guayaquil (Tesis de pregrado, Universidad Politécnica Salesiana sede Guayaquil).
- Aristizábal, C., Schäfer, G., & Zapata, R. B. (2014). Análisis de pérdidas energéticas y económicas por transporte de vapor en tuberías sin un adecuado aislamiento térmico. Redes de ingeniería, 5(1), 17-25.
- Armstrong. (1998). Guía para la conservación de vapor en el drenado de condensados: Evaluación y selección de trampa de vapor. (Manual).
- Barrera Puigdollers, M. C., Betoret Valls, N., Castelló Gómez, M. L., & Pérez Esteve, E. (2019). Aspectos básicos de diseño y cálculo de redes de vapor.
- Caballé Planas, R. (2019). Estudio y dimensionamiento del sistema de generación y distribución de vapor en un buque tipo (Tesis de pregrado, Universidad Politécnica de Catalunya).
- Cardona, R. (2018). Análisis de sensibilidad del intercambiador de calor de tubo y coraza del laboratorio de plantas térmicas de la universidad libre. (Tesis de pregrado, Universidad libre de Bogotá)
- Carrasco, F. C., Porta, C. R., Carrió, J. G., & Mariottoni, C. A. (2012). El diseño de planta industrial basado en la fiabilidad, mantenibilidad, eficiencia energética y compromiso medio-ambiental: Estudio casos en industria alimentaria.
- Carmilema Tonato, R. A., & Erazo Zaldumbide, F. X. (2014). Rediseño de la red de vapor del área subcentral de esterilización y quirófanos del hospital Carlos Andrade Marín (Tesis de pregrado).

Cengel, Y. A., & Boles, M. A. (2015). Termodinámica (8a. McGraw Hill). México.

- Cengel, Y., & Cimbala, J. (2006). Mecánica de Fluidos. (1 ra Edición). Editorial Mc. Graw-Hill.
- Chango Cañaveral, Á. F. (2017). Diagnóstico térmico del sistema de generación y distribución de vapor en el área de lavandería y esterilización del "Hospital General Provincial Latacunga" (Tesis de pregrado, Universidad Técnica de Ambato).
- Coraci S.A. (2008). Compensadores de Dilatación, programa de aplicaciones industriales. España.
- Coraci S.A. (2008). Elementos de diseño para el cálculo de flexibilidad y aplicación de compensadores de dilatación. Barcelona, España.
- Corral, Y. (2016). Validez y fiabilidad de las investigaciones cuantitativas. Revista Arjé, 196-209.
- CRANE, C. (1987). Flujo de fluidos: en válvulas, accesorios y tuberías/Crane (No. TC174. F58 1987.).
- De Franco, C., & Josefina, Y. (2009). Validez y confiabilidad de los instrumentos de investigación para la recolección de datos.
- Díaz Andrade, G. (2007). Elementos de diseño para el cálculo de flexibilidad en tuberías y aplicación de compensadores de dilatación. Corasi S.A.

Didtek Valve (2013). Catálogo técnico de válvulas, Zhejiang, China.

- Duffuaa, R., Raouf, A., & Campbell, J. D. (2004). Sistemas de Mantenimiento, Planeamiento y Control. Editorial Limusa SA México, 419.
- Fonseca, L. (2017). Estudio comparativo entre tecnologías de combustión directa y gasificación de residuos sólidos brasileños en la generación de vapor para electricidad en calderas acuatubulares.
- F. P. Incropera y D. P. De Witt (2000). Fundamentos de Transferencia de Calor,4a Ed, Pearson Educación, México,

Gaffert, G. A. (1981). Centrales de vapor. Reverte.
Grupo Vemacero (2010). Catálogo de tuberías de acero al carbono, Venezuela.

- Grupo Almesa (2015). Catálogo Técnico de tuberías y accesorios de Acero al carbono. España
- Guambaña, J. (28 de enero de 2018). Petroecuador realiza reparación en la Refinería de Esmeraldas por fuga de vapor en unidad FCC. El Universo. Recuperado de https://www.eluniverso.com/
- Hill, T. (2005). Jefe de operaciones. Revista de la Sociedad de Investigación Operativa. Editado por U Aickelin.
- JOSE, P., YANES, M., & FERNANDEZ, G. (1998). Aislamiento térmico de tuberías con acompañamiento de vapor. Ingeniería química, 161.
- Li, T.L., & Takakuwa, R. (2016). Análisis de confiabilidad y validez de un instrumento de medición de la sociedad del conocimiento y su dependencia en las tecnologías de la información y comunicación. Revista de iniciación Científica, 2(2), 64-75
- Lopera Echavarría, J. D., Ramírez Gómez, C. A., Zuluaga Aristizabal, M. U., & Ortiz Vanegas, J. (2010). El método analítico como método natural.
- Llanos Cabrera, G. J. (2011). Diseño de un sistema de distribución de vapor para una planta de la industria farmacéutica.
- Maldonado, P. J. F. DISEÑO DE LA RED DE DISTRIBUCIÓN DE VAPOR PARA UNA LAVANDERÍA INDUSTRIAL.
- MONTES PITA, M., MUÑOZ DOMÍNGUEZ, M., & ROVIRA DE ANTONIO, A. J. (2014). Ingeniería térmica.
- Moreno Gómez, E., & López Sancho, J. M. (2012). Breve historia de la máquina de vapor.
- Mott, R. L. (1996). Mecánica de fluidos aplicada. Pearson Educación.
- PDVSA, N. 90616.1. 024 "Dimensionamiento de Tuberías de Proceso". Manual de Ingeniería de Diseño, 13.

- Peña Vera, T., & Pirela Morillo, J. (2007). La complejidad del análisis documental. Información, cultura y sociedad, (16), 55-81.
- Piping, P. (2010). ASME B31. 3. La Sociedad Americana de Ingenieros Mecánicos: Nueva York, NY, EE.UU.
- Popayán Villanueva, A. M. (2016). Mejoramiento de las líneas de distribución de vapor mediante la reingeniería al área de esterilización, cocina y lavandería del Hospital Regional Eleazar Guzmán Barrón (Tesis de pregrado, Universidad Nacional del Santa).
- Raffo Pizzorni, G. (2000). Dimensionamiento de la red de vapor y condensación de la planta de envasado de Barriles-Chopp de una cervecería.
- Rentería Vidaurre, M. (2014). Diseño de metodología para el análisis de flexibilidad en sistemas de tuberías (Tesis de pregrado, Universidad Católica del Perú).
- Rodríguez Chica, D. F., & Rubio Sarmiento, O. A. (2014). Diseño del sistema de distribución de vapor y selección del caldero para el hospital San Juan de Dios (Tesis de pregrado, Universidad Politécnica Salesiana).
- Ruiz, K. y García, F. (2016). Máquina de vapor.
- Sampieri, R., Collado, C. F., & Lucio, P. B. (2010). Diseño de investigación.
- Silva, T. (21 de mayo de 2019). Un fallo en una tubería causa una aparatosa fuga de vapor de agua a alta presión en la refinería. La Voz de Galicia. Recuperado de https://www.lavozdegalicia.es/
- Spirax Sarco. (1999). Guía de referencia técnica Distribución del Vapor.
- Spirax Sarco. (2015). Catálogo de accesorios de vapor.
- Soler, C., & Esteban, R. (2018). Análisis De Sensibilidad Del Intercambiador De Calor De Tubo Y Coraza Del Laboratorio De Plantas Térmicas De La Universidad Libre.
- Sols, A. (2000). Fiabilidad, mantenibilidad, efectividad: un enfoque sistémico (Vol. 12). Univ. Pontifica Comillas.

- Sosa Daza, J. A. (2013). Recuperación de condensados generados en el sistema de drenaje de cabezales de vapor y venas de calentamiento en el área de setil (servicios auxiliares) de la refinería estatal de esmeraldas (Tesis de pregrado, Universidad de Guayaquil).
- Tam, J., Vera, G., & Oliveros, R. (2008). Tipos, métodos y estrategias de investigación científica. Pensamiento y acción, 5(1), 145-154.

Válvulas Industriales (2015). Catálogo de válvulas, cañerías y accesorios, Chile.

- Vargas León, M. D. R. (2016). Análisis de la eficiencia energética aplicado al mantenimiento del sistema de generación y distribución de vapor para la empresa "LA IBÉRICA (Tesis de pregrado).
- Velásquez Arredondo, H. I. Principios básicos para el diseño de líneas de vapor.
- Yauri Callupe, D. G. (2018). Evaluación de la red de distribución de vapor en el Hospital Regional Ramiro Prialé de Huancayo (Tesis de pregrado, Universidad Nacional del Centro de Perú).
- Yépez, V., & Vargas, Á. (2011). Selección e Instalación de un sistema de vapor para una fábrica de sardinas.

ANEXOS

ANEXO 1:

Declaratoria de Originalidad del Autor / Autores

Yo (Nosotros), DANIEL EDUARDO MEDINA RIVADENEIRA, GELBER PAOLO LOZANO HUANGAL estudiante(s) de la FACULTAD DE INGENIERÍA Y ARQUITECTURA y Escuela Profesional de INGENIERÍA MECÁNICA ELÉCTRICA de la UNIVERSIDAD CÉSAR VALLEJO, declaro (declaramos) bajo juramento que todos los datos e información que acompañan al Trabajo de Investigación / Tesis titulado: "METODOLOGÍA INTEGRADA PARA EL DISEÑO DE TUBERÍAS EN PROCESO DE TRANSPORTE DE VAPOR SATURADO PARA ASEGURAR LA EFECTIVIDAD OPERACIONAL PARA CENTROS HOSPITALARIOS", es de mi (nuestra) autoría, por lo tanto, declaro (declaramos) que el :

- 1. No ha sido plagiado ni total, ni parcialmente.
- He (Hemos) mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- No ha sido publicado ni presentado anteriormente para la obtención de otro grado académico o título profesional.
- 4. Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumo (asumimos) la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Apellidos y Nombres del Autor	Firma			
DANIEL EDUARDO MEDINA RIVADENEIRA	Firmado digitalmente por:			
DNI: 45845040	MEDINARIVAD el 02 Mar			
ORCID 0000-0003-3835-9118	2021 20:31:38			
GELBER PAOLO LOZANO HUANGAL	Firmado digitalmente por:			
DNI: 73887458	GLOZANOH el 02 Mar 2021			
ORCID 0000-0002-1278-731X	19:50:52			

ANEXO 2:

Declaratoria de Autenticidad del Asesor

Yo, INCISO VASQUEZ JORGE ANTONIO, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA MECÁNICA ELÉCTRICA de la UNIVERSIDAD CÉSAR VALLEJO SAC - TRUJILLO, asesor de Tesis titulada: "METODOLOGÍA INTEGRADA PARA EL DISEÑO DE TUBERÍAS EN PROCESO DE TRANSPORTE DE VAPOR SATURADO PARA ASEGURAR LA EFECTIVIDAD OPERACIONAL PARA CENTROS HOSPITALARIOS", cuyos autores son LOZANO HUANGAL GELBER PAOLO, MEDINA RIVADENEIRA DANIEL EDUARDO, constato que la investigación cumple con el índice de similitud establecido, y verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

TRUJILLO, 24 de Febrero del 2021

Apellidos y Nombres del Asesor:	Firma
INCISO VASQUEZ JORGE ANTONIO	Firmado digitalmente por:
DNI: 26695389	JINCISO el 24-02-2021
ORCID 0000-0001-8798-1283	10:19:08

ANEXO 3:

Operacionalización de las variables

Variable	Tipo de variable	Definición conceptual	Categorías o dimensiones	Definición Operacional	Escala de medición	Indicador
Efectividad operacional		Resultado de un esquema operativo cuyo propósito es hacer posible el más alto rendimiento y	Reducción de costos en el proceso de transporte de vapor saturado	Sumatoria de costos mínimos en el proceso del transporte de vapor saturado.	De razón	[S./año]
	Variable dependiente	mejora continua del proceso, administrando correctamente los costos de diseño, instalación y operación, Hill (2005).	Rendimiento del proceso de transporte de vapor saturado	Sumatoria de perdidas fijas y variables de energía térmica en el proceso de transporte de vapor entre la cantidad de energía contenida en el flujo de vapor de salida de caldera.	Intervalo	[%]

ANEXO 4: Ficha de observación estructurada 1

Objetivo: Recolectar datos técnicos y operación de los equipos de las áreas de servicio de consumo de vapor									
Servicio	Equipos	Marca	Modelo	Flujo de vapor [lb/h]	Presión nominal [psi]				
Calentadores	Calentador de agua No. 1	INGEVAP	CA-650	380	20				
Calentadores	Calentador de agua No. 2	INGEVAP	CA-650	380	20				
	Secadora a vapor de 50 kg	SAILSTAR	GZZ500-1	250	50-70				
	Secadora a vapor de 50 kg	SAILSTAR	GZZ50D-1	250	60-70				
	Secadora a vapor de 30 kg	SAILSTAR	GZZ30D-1	200	60-70				
	Lavadora centrifuga a vapor de 100 kg	SAILSTAR	BW100-I	300	40-60				
Lavandería	Lavadora centrifuga a vapor de 100 kg	SAILSTAR	BW100-I	300	40-60				
	Lavadora centrifuga a vapor de 50 kg	SAILSTAR	BW50-I	170	35-45				
	Planchador de rodillo a vapor	SAILSTAR	YC8-1R- 30-I	150	50				
	Prensa de planchado a vapor No. 1	SAILSTAR	SAU-45	100	40				
	Prensa de planchado a vapor No. 2	SAILSTAR	SAU-45	100	40				
	Autoclave No. 1	TUTTNAUER	2545E	300	30				
Ectorilización	Autoclave No. 1	CASTLE	23-ER	300	35				
ESTELIIZACION	Autoclave No. 1	CONSOLIDATED	G-23	230	30				
	Autoclave No. 1	CONSOLIDATED	G-23	230	30				

ANEXO 5: Ficha de observación estructurada 2

Objetivo: Recolectar datos nominales y parámetros de funcionamiento de las calderas pirotubulares de generación de vapor.							
Empresa: EsSalud Hospital Virgen de la Puerta							
Lugar:	la	Libertad Tr	uiillo La Esperanza				
Fecha de registro de datos:	La	23	(11/2019				
	OTUBUL	AR 1 Cleave	erBrooks				
Modelo			8-200-150-150ST				
Serie		0	T3412-1-3				
Fecha			2012				
Pa	rámetros (de diseño	2012				
Potencia		150	BHP				
Presión		150	Psi				
Fluio másico		2350	kg/h				
Tipo de vapor			Saturado				
Combustible		(I P / Petróleo B5				
Pará	metros de	e operación					
Presión de trabaio máxima		100	Psi				
Presión de trabaio mínima		75	Psi				
Carga de operación		80	%				
Flujo másico de operación		1880	kg//h				
Temperatura de agua de alimen	tación	100	⊃°C				
Temperatura de aire	22	°C					
Temperatura de gases de comb	200	°C					
Consumo de combustible		2,94	GPH/h				
CALDERA PIR	OTUBUL	AR 2 Cleave	erBrooks				
Modelo		C8-200-150-150ST					
Serie		T3412-1-2					
Fecha		2012					
Pa	rámetros o	de diseño					
Potencia		150	BHP				
Presión		150	Psi				
Flujo másico		2350	kg/h				
Tipo de vapor			Saturado				
Combustible			SLP / Petróleo B5				
Pará	metros de	operación					
Presión de trabajo máxima		100	Psi				
Presión de trabajo mínima		75	Psi				
Carga de operación		80	%				
Flujo másico de operación		1880	kg/h				
Temperatura de agua de alimen	tación	100	°C				
Temperatura de aire		22	°C				
Temperatura de gases de comb	ustión	205	°C				
Consumo de combustible	2,94	GPH/h					

ANEXO 6:	Ficha de	observación	estructurada 3
----------	----------	-------------	----------------

OBJETIVO:	OBJETIVO: Recolectar datos de las presiones en distintos puntos de medicion de la red de distribucion de vapor								
N° de medición	Presión de salida de vapor [psi]	Presión en manifold [psi]	Presión de entrada VRP (esterilización) [psi]	Presión de salida VRP (esterilización) [psi]	Presión de entrada VRP (Calentadores) [psi]	Presión de salida VRP (Calentadores) [psi]	Presión (Lavandería) [psi]	Hora	
1	90	88	86	50	86	30	88	9:00 a.m.	
2	95	89	86	50	85	30	89	9:15 a.m.	
3	95	89	85	50	86	30	89	9:30 a.m.	
4	95	90	85	50	85	30	90	9:45 a.m.	
5	98	95	90	50	90	30	95	10:00 a.m.	
6	99	95	90	50	90	29	95	11:15 a.m.	
8	97	95	88	50	88	30	95	11:30 a.m	
9	100	96	88	50	90	8	96	11:45 a.m	
10	99	95	90	50	90	30	95	12:00 p.m	
11	95	90	90	50	90	30	90	12:15 p.m	
12	85	90	88	50	85	30	90	12:30 p.m	
13	90	88	86	50	80	30	88	12:45 p.m	
14	90	90	90	50	80	30	90	1:00 p.m	
15	83	80	80	50	80	30	80	1:30 p.m	
16	85	85	85	50	84	30	85	2:00 p.m	
17	90	90	88	50	84	30	90	2:15 p.m	
18	95	85	80	50	80	30	85	2:30 p.m	
19	95	91	90	50	90	30	91	2:45 p.m	
20	98	95	90	49	90	30	95	3:00 p.m	
21	98	95	90	50	90	30	95	3:15 p.m	
22	100	94	90	50	90	30	94	3:30 p.m	
23	100	95	90	50	90	30	95	3:45 p.m	
24	95	90	85	50	85	30	90	4:00 p.m	
25	93	90	80	50	80	30	90	4:20 p.m	
Promedio	94.1667	90.8333	87.0833	49.9583	86.1667	29.0417	90.8333		

ANEXO 7: Fichas de observación estructurada 4

temperatura de su entorno.								
Tubería principal No. 1.								
No. de medición	Temperatura superficial [°C]	Temperatura superficial [K]	Temperatura ambiente [°C]	Temperatura ambiente [K]	Temperatura media [K]	Hora		
1	44.7	317.85	23	296.15	307	9:15 a.m.		
2	49	322.15	22.4	295.55	308.85	9:30 a.m.		
3	48	321.15	22.6	295.75	308.45	9:48 a.m.		
4	46.8	319.95	23	296.15	308.05	10:05a.m.		
5	58	331.15	24	297.15	314.15	10:25 a.m.		
6	53	326.15	24.5	297.65	311.9	10:35 a.m.		
7	52	325.15	24	297.15	311.15	10:48 a.m.		
8	50.9	324.05	24.6	297.75	310.9	11:05 a.m.		
9	44.9	318.05	25	298.15	308.1	11:14 a.m.		
10	43.8	316.95	25	298.15	307.55	11:36 a.m.		
11	48	321.15	24.5	297.65	309.4	12:02 p.m.		
12	46.8	319.95	24.5	297.65	308.8	12:02 p.m.		
13	51	324.15	23	296.15	310.15	12:12 p.m.		
14	55.9	329.05	23	296.15	312.6	12:22 p.m.		
15	48.5	321.65	24	297.15	309.4	12:33 p.m.		
16	47.9	321.05	24.5	297.65	309.35	12:40 p.m.		
17	48	321.15	25.3	298.45	309.8	12:55 p.m.		
18	44	317.15	25	298.15	307.65	1:08 p.m.		
19	49	322.15	24.4	297.55	309.85	1:18 p.m.		
20	49	322.15	23	296.15	309.15	1:40 p.m.		
Promedio	48.96	322.11	23.965	297.115	309.6125			

Objetivo: Recolectar datos de la temperatura superficial de la tubería principal No.1 y la temperatura de su entorno.

Tubería principal No. 2.								
No. de medición	Temperatura superficial [°C]	Temperatura superficial [K]	Temperatura ambiente [°C]	Temperatura ambiente [K]	Temperatura media [K]	Hora		
1	49.9	323.05	25	298.15	310.6	3		
2	48	321.15	24.7	297.85	309.5	9:15 a.m.		
3	49	322.15	24	297.15	309.65	9:15 a.m.		
4	46.8	319.95	24	297.15	308.55	9:15 a.m.		
5	49.8	322.95	23.9	297.05	310	9:15 a.m.		
6	53	326.15	24.5	297.65	311.9	9:15 a.m.		
7	52.5	325.65	24	297.15	311.4	9:15 a.m.		
8	50.9	324.05	24.6	297.75	310.9	9:15 a.m.		
9	45.9	319.05	25	298.15	308.6	9:15 a.m.		
10	43.8	316.95	25	298.15	307.55	9:15 a.m.		
11	42.9	316.05	24.5	297.65	306.85	9:15 a.m.		
12	48.9	322.05	24.5	297.65	309.85	9:15 a.m.		
13	51.3	324.45	24	297.15	310.8	9:15 a.m.		
14	49.9	323.05	23	296.15	309.6	9:15 a.m.		
15	48.9	322.05	24	297.15	309.6	9:15 a.m.		
16	48.7	321.85	25	298.15	310	9:15 a.m.		
17	48	321.15	24.9	298.05	309.6	9:15 a.m.		
18	46	319.15	25	298.15	308.65	9:15 a.m.		
19	48.9	322.05	24.4	297.55	309.8	9:15 a.m.		
20	46	319.15	23	296.15	307.65	9:15 a.m.		
Promedio	48.455	321.605	24.35	297.5	309.5525			

Objetivo: Recolectar datos de la temperatura superficial de la tubería principal No.2 y la temperatura de su entorno.

Objetivo: Recolectar datos de la temperatura superficial de la tubería de distribución de vapor a lavandería y la temperatura de su entorno.

Tubería secundaria No. 1 (Lavandería)						
No. de medición	Temperatura superficial [°C]	Temperatura superficial [K]	Temperatura ambiente [°C]	Temperatura ambiente [K]	Temperatura media [K]	Hora
1	48	321.17	24	297.17	309.17	9:15 a.m.
2	48	321.17	22.4	295.57	308.37	9:30 a.m.
3	40	313.17	22.6	295.77	304.47	9:48 a.m.
4	40	313.17	23	296.17	304.67	10:05a.m.
5	38	311.17	24	297.17	304.17	10:25 a.m.
6	39.56	312.73	24.5	297.67	305.2	10:35 a.m.
7	43	316.17	24	297.17	306.67	10:48 a.m.
8	40	313.17	24.6	297.77	305.47	11:05 a.m.
9	41	314.17	25	298.17	306.17	11:14 a.m.
10	42	315.17	25	298.17	306.67	11:36 a.m.
11	46	319.17	24.5	297.67	308.42	12:02 p.m.
12	46	319.17	24.5	297.67	308.42	12:02 p.m.
13	38.9	312.07	23	296.17	304.12	12:12 p.m.
14	42	315.17	23	296.17	305.67	12:22 p.m.
15	44	317.17	24	297.17	307.17	12:33 p.m.
16	48	321.17	24.5	297.67	309.42	12:40 p.m.
17	42	315.17	25.3	298.47	306.82	12:55 p.m.
18	48	321.17	25	298.17	309.67	1:08 p.m.
19	48	321.17	24.4	297.57	309.37	1:18 p.m.
20	48	321.17	23.5	296.67	308.92	1:40 p.m.
Promedio	43.523	316.693	24.04	297.21	306.9515	

Tubería secundaria No. 2 (Esterilización)							
No. de medición	Temperatura superficial [°C]	Temperatura superficial [K]	Temperatura ambiente [°C]	Temperatura ambiente [K]	Temperatura media [K]	Hora	
1	49	322.15	23	296.15	309.15	9:15 a.m.	
2	50	323.15	22.4	295.55	309.35	9:30 a.m.	
3	44.5	317.65	22.6	295.75	306.7	9:48 a.m.	
4	48.9	322.05	23	296.15	309.1	10:05a.m.	
5	50	323.15	24	297.15	310.15	10:25 a.m.	
6	52	325.15	24.5	297.65	311.4	10:35 a.m.	
7	50.4	323.55	24	297.15	310.35	10:48 a.m.	
8	48	321.15	24.6	297.75	309.45	11:05 a.m.	
9	46	319.15	25	298.15	308.65	11:14 a.m.	
10	43.89	317.04	25	298.15	307.595	11:36 a.m.	
11	42.01	315.16	24.5	297.65	306.405	12:02 p.m.	
12	40	313.15	24.5	297.65	305.4	12:02 p.m.	
13	45	318.15	23	296.15	307.15	12:12 p.m.	
14	45	318.15	23	296.15	307.15	12:22 p.m.	
15	45	318.15	24	297.15	307.65	12:33 p.m.	
16	40.3	313.45	24.5	297.65	305.55	12:40 p.m.	
17	40.4	313.55	25.3	298.45	306	12:55 p.m.	
18	49	322.15	25	298.15	310.15	1:08 p.m.	
19	48.9	322.05	24.4	297.55	309.8	1:18 p.m.	
20	49	322.15	23	296.15	309.15	1:40 p.m.	
Promedio	46.365	319.515	23.965	297.115	308.315		

Objetivo: Recolectar datos de la temperatura superficial de la tubería de distribución de vapor a esterilización y la temperatura de su entorno.

		Tubería secur	ndaria No. 3 (C	alentadores)			
No. de medición	Temperatura superficial [°C]	Temperatura superficial [K]	Temperatura ambiente [°C]	Temperatura ambiente [K]	Temperatura media [K]	Hora	
1	48	321.15	23	296.15	308.65	9:15 a.m.	
2	46.8	319.95	22.4	295.55	307.75	9:30 a.m.	
3	45	318.15	22.6	295.75	306.95	9:48 a.m.	
4	43	316.15	23	296.15	306.15	10:05a.m.	
5	46	319.15	24	297.15	308.15	10:25 a.m.	
6	43.88	317.03	24.5	297.65	307.34	10:35 a.m.	
7	42.01	315.16	24	297.15	306.155	10:48 a.m.	
8	48	321.15	24.6	297.75	309.45	11:05 a.m.	
9	46.9	320.05	25	298.15	309.1	11:14 a.m.	
10	43.89	317.04	25	298.15	307.595	11:36 a.m.	
11	42.01	315.16	24.5	297.65	306.405	12:02 p.m.	
12	43	316.15	24.5	297.65	306.9	12:02 p.m.	
13	42	315.15	23	296.15	305.65	12:12 p.m.	
14	44	317.15	23	296.15	306.65	12:22 p.m.	
15	45.9	319.05	24	297.15	308.1	12:33 p.m.	
16	48	321.15	24.5	297.65	309.4	12:40 p.m.	
17	49.6	322.75	25.3	298.45	310.6	12:55 p.m.	
18	44	317.15	25	298.15	307.65	1:08 p.m.	
19	46	319.15	24.4	297.55	308.35	1:18 p.m.	
20	48	321.15	23	296.15	308.65	1:40 p.m.	
Promedio	45.2995	318.4495	23.965	297.115	307.78225		

Objetivo: Recolectar datos de la temperatura superficial de la tubería de distribución de vapor a los calentadores y la temperatura de su entorno.

ANEXO 8: Fichas de observación estructurada 5

Objetivo: Recolectar información de los accesorios de tubería y vapor de la red de					
vapor					
Tubería principal 1					
Accesorio de vapor	cantidad	DN	Descripción		
Válvula de corte	2	4"	De tipo compuerta, Spirax Sarco		
Válvula Check	1	4"	De tipo clapeta, Spirax Sarco		
	•	Tubería pri	ncipal 2		
Válvula de corte	2	4"	De tipo compuerta, Spirax Sarco		
Válvula anti retorno	1	4"	De tipo clapeta, Spirax Sarco		
	Т	ubería secu	Indaria 1		
Válvula de corte	1	2"	De tipo compuerta, Spirax Sarco		
	Т	ubería secu	Indaria 2		
Válvula de corte	Válvula de corte 1 1 ½" De tipo compuerta, Spirax Sarco				
Tubería secundaria 3					
Válvula de corte 1 1 ½" De tipo compuerta, Spirax Sarco					

Objetivo: Recolectar información de los accesorios de tubería de la red de vapor					
Tubería principal 1					
Accesorio de vapor	cantidad	DN	Descrinción		
	Jantidad	DN	Description		
Codo 90° radio corto	2	4"	-		
	Т	ubería prir	icipal 2		
Codo 90° radio corto 9.4 4" -					
	Tu	bería secu	ndaria 1		
Codo 90° radio corto	10	2"	-		
	Tu	bería secu	ndaria 2		
Codo 90° radio corto	Codo 90° radio corto 12 1 1/2" -				
Tubería secundaria 2					
Codo 90° radio corto	10	1 1⁄2"	-		

ANEXO 9: Ficha de registro documental

Objetivo: Recolectar información sobre el diseño de tuberías en proceso de transporte de vapor saturado.						
Ítems	Autor	Titulo	Teoría y principios relevantes	Ecuaciones involucradas	Referencia	Fecha de revisión
Condiciones de diseño	The American Society of Mechanical Engineers	Código ASME para tuberías de presión B31.1 B31.3	Código con estadales de fabricación y selección de tuberías Condiciones de diseño Clasificación de válvulas		ASME (2012). Código para Tuberías de presión B31	5/05/2020
Flujo másico	Cengel, Y. y Boles, M	Termodinámica Séptima edición	Flujo másico es el flujo de energía asociado al flujo del fluido	$\dot{m} = \rho A_t v_{prom}$	Cengel, Y. y Boles, M. (2012). Termodinámica Séptima edición	10/05/2020
Balance de Energía	Cengel, Y. y Boles, M.	Termodinámica Séptima edición	Balance de energía es la diferencia entre la energía de entrada y de salida	$E_{ent} - E_{sal} = \Delta E_{sist}$	Cengel, Y. y Boles, M. (2012). Termodinámica Séptima edición	18/05/2020
Diámetro interno	Cengel, Y. y Boles, M.	Termodinámica Séptima edición	Diámetro interior de tubería	$d_{int} = \sqrt{\frac{4A_t}{\pi}}$	Cengel, Y. y Boles, M. (2012). Termodinámica Séptima edición	29/05/2020
Trasferencia de calor	Cengel, Y. y Boles, M.	Termodinámica Séptima edición	Trasferencia de calor es la cantidad transferida durante un proceso entre dos estados	$q = \frac{Q}{m}$	Cengel, Y. y Boles, M. (2012). Termodinámica Séptima edición	2/06/2020

Expansión térmica	Rentería, M.	Diseño de metodología para el análisis de flexibilidad en sistemas de tuberías.	Coeficiente de expansión lineal es el cambio de longitud de la materia con respecto a la temperatura	$\Delta x = L. \alpha. (\Delta T)$	Rentería, M. (2014). Diseño de metodología para el análisis de flexibilidad en sistemas de tuberías. (Tesis de pregrado, Universidad Católica del Perú)	4/06/2020
Numero de Reynolds	Robert. Mott	Mecánica de fluidos aplicada	Describe la apariencia de un flujo laminar o turbulento	$Re = \frac{\rho VD}{\mu}$	Robert. Mott (2006). Mecánica de fluido aplicada, cuarta edición. Pearson Educación de México	4/06/2020
Análisis de flexibilidad	CORACI S.A.	Elementos de diseño para el cálculo de flexibilidad en tuberías y aplicación de compensadores de dilatación	Determinar la tensión que es sometida la tubería por la dilatación	$\sigma = E.\frac{\Delta L}{L}$	CORACI (2008). Elementos de diseño para el cálculo de flexibilidad en tuberías y aplicación de compensadores de dilatación. Barcelona. España	8/06/2020
Distribución de vapor	Spirax Sarco	Guía de referencia técnica	Cálculo de generación de condensado en tuberías	$\dot{M} = \frac{Q \times L \times 3.6}{h_{fg}} \times f$	Spirax Sarco (1999) Guía de referencia técnica en distribución de vapor. Barcelona. España.	8/06/2020

ANEXO 10: Base teórica

Principio de conservación de la masa

Esta ley se define como la cantidad de materia antes y después de un proceso de transformación se mantiene la misma (Cengel y Boles, 2015). El principio de conservación de la masa para un sistema de flujo permanente y con múltiples entradas y salidas se expresa mediante la ecuación 31.

$$\Sigma \dot{m}_{entrada} = \Sigma \dot{m}_{salida}$$
(31)

Caudal volumétrico

Es el paso de un volumen de un fluido por unidad de tiempo por una sección transversal (Cengel y Boles, 2015). Se define por la ecuación 32.

$$Q = V * A = \dot{m} * v \tag{32}$$

Donde:

V= Velocidad del fluido, m/s

A=Area, m²

 ν =Volumen especifico, m³/kg

Flujo masico

La cantidad de masa que pasa por unidad de tiempo en una sección transversal se le conoce como flujo masico (Cengel y Boles, 2015). Esta definición se utiliza tanto para flujos incompresibles como para los compresibles.

$$\dot{\mathbf{m}} = \boldsymbol{\rho} * \mathbf{A} * \mathbf{V} \tag{33}$$

Donde:

ρ=Densidad del fluido, kg/m³

Velocidad y caída de presión admisible

Velocidad y presión admisible

Según el Manual de Ingeniería de Diseño (PDVSA), en las normas para el diseño se recomiendan las velocidades de flujo, entre 20-35 m/s y las caídas máximas de presión, entre 5 - 7% de la presión inicial para tuberías menores a 100 m, siendo fundamental para mantener la temperatura de vapor y evitar problemas de vibración, desgaste o erosión. El dimensionamiento de tuberías basadas en ambos cálculos garantiza que no supere los límites permisibles.

Transferencia de calor por convección

Es la interacción de un cuerpo sólido y un fluido líquido o gas en movimiento, la transferencia de calor aumenta mientras mayor sea el movimiento del fluido (Cengel y Boles, 2015). Se define mediante la ecuación 34.

$$\dot{Q}_{conv} = h_{conv} * A_{conv} * (T_{sup.} - T_{\infty})$$
(34)

Dónde:

h_{conv} =Coeficiente de transferencia de calor por convección, W/m². K

 $A_{conv} =$ Área de transferencia de calor, m².

T_{sup.} =Temperatura de la superficie, K.

 T_{∞} =Temperatura del fluido exterior, K.

Numero de Grashof

Cifra adimensional que explica la correlación entre la flotabilidad y viscosidad dentro de un fluido (Cengel y Boles, 2015). Se calcula mediante la ecuación 35.

$$Gr = \frac{g \times \beta \times ((T_{Sup.} - T_{amb.}) \times L^3)}{v^2}$$
(35)

Dónde:

 υ =Viscosidad cinemática del aire, m²/s.

g = Gravedad, m/s^2 .

 β =Expansión volumétrica, 1/Tm.

 $T_{sup.} =$ Temperatura de la superficie, K.

 $T_{amb.} = Temperatura ambiente, K.$

L=Longitud característica, m.

Numero de Rayleigh

Este número adimensional explica la relación de la difusividad de momento y la difusividad térmica (Montes, Muñoz y Domínguez, 2014). Se define por la ecuación 36.

$$Ra = \frac{g \times \beta \times ((T_{S} - T_{amb}) \times L^{3})}{v^{2}} \times Pr$$
(36)

Dónde:

Pr =Número de Prandtl.

Numero de Nusselt:

Es el número adimensional que simboliza la mejora de la trasferencia de calor en una capa de fluido como producto de la convención (Montes, Muñoz y Domínguez, 2014). Se define por la ecuación 37.

$$Nu = \left[0.6 + \frac{0.387 \times Ra^{1/6}}{(1 + [0.559/Pr]^{9/16})^{8/27}}\right]^2$$
(37)

Dónde:

Ra =Número de Rayleigh.

Pr =Número de Prandtl.

Coeficiente de trasferencia de calor:

Es la velocidad de transferencia de calor entre una superficie sólida y un fluido (Montes, Muñoz y Domínguez, 2014). Se define por la ecuación 38.

$$h_{\rm conv} = \frac{k}{D} \times Nu$$
(38)

Dónde:

Nu =Número de Nusselt.

k = Conductividad térmica, W/m * K.

D = Diámetro exterior de la tubería aislada, m.

Transferencia de calor por radiación

Para este mecanismo de trasferencia de calor no necesita un contacto entre cuerpos, esta radiación térmica se produce por la emisión de energía del fluido que se encuentra temperatura finita, esta energía es transportada por ondas electromagnéticas (Chango, 2017). Se define por la ecuación 39

$$\dot{Q}_{rad} = \epsilon \times A_s \times \sigma \times (T_S^4 - T_{alred}^4)$$
 (39)

Dónde:

 A_s =Area de la superficie, m².

 ϵ =Emisividad de la superficie.

 σ = Constante de Boltzman, 5.67 $\times \, 10^{-8} \ \text{W}/\text{m}^2.\,\text{K}^4$

 T_{S} = Temperatura superficial, K.

 T_{alred} = Temperatura de los alrededores, K

Rendimiento térmico

Del principio de la conservación de la energía, se define el rendimiento térmico como la cantidad de energía aprovechada entre la energía inicial aportada, se expresa mediante la siguiente ecuación:

Rendimiento =
$$\frac{\text{EnergiaUtil}}{\text{Energia incial aportada}} * 100$$
 (40)

Dilatación térmica

La dilatación térmica es la alteración de sus dimensiones que experimenta la tubería cuando varia la temperatura a la que se expone (Rentería, 2014). La deformación de provocada por una carga térmica se puede determinar mediante la ecuación 41.

$$\Delta L = \alpha * L * \Delta T \tag{41}$$

Donde:

 α =Coeficiente de expansión térmica, mm/m°C.

L =Longitud de la tubería, m.

 $\Delta T = Variación de temperatura, °C.$

Análisis formal no obligatorio

La norma ASME B31.3, proporciona un método para el análisis de flexibilidad para sistemas que no poseen cambios significativos en sus ramales y que no tienen más de dos puntos de sujeción intermedia. La condición de elasticidad se calcula mediante la ecuación 38.

$$\frac{D * \Delta L_{\rm T}}{U^2 * ({\rm R} - 1)} \le 2.08 \tag{42}$$

Donde:

D =Diámetro exterior de la tubería, mm.

 ΔL_T =Resultante de las dilataciones totales, mm.

U =Distancia entre puntos fijos, m.

R =Relación entre la longitud total del ramal y la distancia entre puntos fijos, m.

Esfuerzo en tubería

Para tramos no rectos, se puede aplicar la auto compensación de la misma tubería (Diaz, 2007). Para determinar el esfuerzo en la tubería σ , provocado por la dilatación se utiliza la ecuación 43.

$$\sigma = \frac{\Delta L * E}{Ln} * \frac{3R}{Ln}$$
(43)

Donde:

- E =Módulo de elasticidad, kg/mm².
- L =Longitud de la tubería, m.
- ΔL =Dilatación a la que está sometida la tubería, mm.
- D =Diámetro exterior de la tubería, mm.

Diseño de tuberías en proceso de transporte de vapor

El diseño de sistemas de tuberías comprende un conjunto de especialidades para asegurar la funcionalidad del mismo. Un completo diseño de estos sistemas comprende cálculos hidráulicos, donde se incluye el dimensionamiento de tuberías y selección de accesorios, calculo mecánico donde se determina y verifica el material y especificaciones, calculo estructural de soportes, análisis térmico, análisis de flexibilidad, entre otro. Las consideraciones de estos aspectos importantes para el diseño evitan las fallas en el sistema, asegurando el proceso y su funcionalidad (Rentería, 2014).

Los códigos proporcionan pasos y condiciones para el diseño de estos sistemas. Los utilizados en esta investigación son los siguientes:

- ASME B31.1 Power Piping.
- ASME B31.3 Process Piping.

De estos códigos se rescata las condiciones iniciales y de verificación para establecer el dimensionamiento correcto de las tuberías. Las etapas involucradas para el análisis de flexibilidad, este estudio es importante ya que permite conocer bajo qué condiciones se encontraría nuestro sistema durante la operación, para así evitar fallas en la estructura y en los equipos debido a las deformaciones causadas por la dilatación térmica (Rentería, 2014).

Así también se considera el diseño hidráulico y mecánico con la finalidad de determinar las especificaciones de las tuberías estandarizadas, entre las normas más comunes están, American Petroleum Institute (API) y American Society of Testing Materials (ASTM). Estas propiedades están directamente relacionadas con la presión y velocidad del fluido, estos deben permanecer dentro de valores permitidos, estos aspectos son importantes ya que evitan posibles fallas tales como el desgaste y golpes de ariete, además de permitir a los equipos trabajar bajo sus condiciones de diseño. (Distribución de vapor-Spirax Sarco).

Dado a la alta temperatura del vapor saturado que atraviesa la tuberia se da una trasferencia de energía térmica en tres métodos siendo la radiación, conducción y convección, consideradas pérdidas de energía, es por ello la importancia de considerar un análisis termico donde se determina la selección de aislantes térmicos con baja conductividad térmica ayudara a minimizar las pérdidas de calor y el costo de generación de vapor saturado esto ayudara a aumentar el rendimiento termico del sistema (Chango , 2017).

ANEXO 11: Calculo y detalles de ingeniería

Diagnóstico del estado actual de la red de transporte de vapor saturado del Hospital Virgen de la Puerta

Flujo másico suministrado a las áreas de consumo

Utilizando la figura 2, se deduce que el flujo total se representa mediante la ecuación 44.

$$\dot{m}_{T1} = \dot{m}_{T2} = \dot{m}_T = \dot{m}_1 + \dot{m}_2 + \dot{m}_3$$
 (44)

Del anexo 4:

 $\dot{m}_{T} = 1872.2 \text{ [kg/h]}$ Del anexo 19: $\upsilon_{T} = 0.2929 \text{ [m}^{3}/\text{kg]}$ $\upsilon_{1} = 0.3875 \text{ [m}^{3}/\text{kg]}$ $\upsilon_{2} = 0.5317 \text{ [m}^{3}/\text{kg]}$ $\upsilon_{3} = 1.2543 \text{ [m}^{3}/\text{kg]}$

$$\dot{m}_{\rm T} * \upsilon_{\rm T} = (\dot{m}_{\rm T} - \dot{m}_2) * \upsilon_1$$
 (45)

Reemplazando la ecuación 45 en la 44.

$$\dot{m}_{\rm T} * \upsilon_{\rm T} = (\dot{m}_1 + \dot{m}_3) * \upsilon_1$$
 (46)

$$1420.43 = \dot{m}_1 + \dot{m}_3 \tag{47}$$

$$\dot{m}_{\rm T} * \upsilon_{\rm T} = (\dot{m}_{\rm T} - \dot{m}_{\rm 1}) * \upsilon_2$$
 (48)

Reemplazando la ecuación 48 en la 44.

$$\dot{m}_{\rm T} * \upsilon_{\rm T} = (\dot{m}_2 + \dot{m}_3) * \upsilon_2$$
 (49)

$$1035.2034 = \dot{m}_2 + \dot{m}_3 \tag{50}$$

$$\dot{m}_{\rm T} * v_{\rm T} = (\dot{m}_{\rm T} - \dot{m}_2 - \dot{m}_1) * v_3$$
 (51)

Reemplazando la ecuación 51 en la 44.

$$\dot{m}_{T} * \upsilon_{T} = \dot{m}_{3} * \upsilon_{3}$$

$$\dot{m}_{3} = \frac{(1879.2 * 0.2929)}{1.2543} = 438.8245 \left[\frac{\text{kg}}{\text{h}}\right]$$
(52)

Reemplazando el resultado de la ecuación 52 en la 47 y 50.

$$\dot{m}_1 = 1420.43 - 438.8245 = 981.6055 \text{ [kg/h]}$$

$$\dot{m}_2 = 1035.2034 - 438.8245 = 596.3789 [kg/h]$$

Flujos másicos suministrados a cada área de consumo de vapor

Áreas de servicio	Flujo de vapor suministrado		
operativas	[lb/h]	[kg/h]	
Lavandería (m ₁)	2135.84	840.9190	
Esterilización (m ₂)	1059.56	596.3789	
Calentadores (m ₃)	976.34	438.8245	
Total	4171.74	1876.1179	

Cálculo de velocidades y caída de presión en tramos de la red de vapor

Del anexo 19:

 $\rho TP1_{(94.16 \text{ psi})}$ =3.4142 [kg/m³]

 $\rho TP2_{(94.16 \text{ psi})}$ =3.4142 [kg/m³]

 $\rho TS1_{(90.83 \text{ psi})}$ =3.2998 [kg/m³]

 $\rho TS2_{(50 \text{ psi})}$ =1.8807 [kg/m³]

 $\rho TS3_{(30 \text{ psi})} = 1.1651 \text{ [kg/m^3]}$

Velocidad en la tubería TP1: Para determinar la velocidad se utilizó la ecuación 6.

$$U = \frac{1872.2 / 3600}{0.00821 * 3.614} = 18.6167 [m/s]$$

Caída de presión en la tubería

$$\Sigma L_{\text{Lineal}} = 1.10 + 2.10 + 2.45 = 5.65 [m]$$

La longitud equivalente unitaria de los accesorios se encuentra en el Anexo 21.

$$L_{q} = (2 * 0.6) + (2 * 3.1) + 9.4 = 19.9[m]$$

$$\lambda = 0.0144 + 0.00947 / \sqrt{U} = 0.016389$$

$$\Delta P = 0.016389 * \frac{19.75}{0.09011} * \frac{22.649^{2}}{2 * 10^{5}} * 3.614 = 0.03353 \text{ [bar]}$$

$$\Delta Padm = 5 - 7\% \text{ de P} = 4.66 - 6.52 \text{ [psi]}$$

Tubería	Longitud equivalente	Diámetro interior	Sección	Velocidad	Caída de presión	Caída de presión admisible
	Μ	Μ	m ²	m/s	psi	psi
TP1	19.75	0.1022	0.00821	18.6167	0.2750	4.66 - 6.52
TP2	26.6	0.1022	0.00821	18.6167	0.37042	4.66 - 6.52
TS3	75.2	0.05248	0.00391	32.7004	5.8848	4.38 – 6.13
TS2	71.8	0.04094	0.00368	67.0684	16.7566	2.50 - 3.50
TS3	65.1	0.04094	0.00368	79.6604	13.1967	1.50 – 2.10

Velocidades y caídas de presión en tramos de la red de distribución de vapor actual

Cálculo de la evaluación de válvula reductora

Del anexo 19

 $T1_{(114psia)} = 169.68 [°C]$

$$50 \le 50 \quad K_{V}Est. = \frac{596.3789}{230 \times 7.86} * \sqrt{169.68 + 273} = 6.9408 \text{ [m}^{3}/\text{h]}$$

$$70 > 50 \quad K_{V}Cal. = \frac{438.8245}{461} * \sqrt{\frac{169.68 + 273}{5.7916 * 3.03}} = 4.7809 \text{ [m}^{3}/\text{h]}$$

Cálculo de las pérdidas de calor y rendimiento total de la red vapor

Perdida de calor por convección en tuberías aisladas

Las temperaturas medias, superficial y del ambiente se obtuvieron del Anexo 7. Para determinar las propiedades del aire se utilizó el Anexo 20. Propiedades del aire a la temperatura media en los tramos de la red de distribución actual

	Temperatura	Numero de	Viscosidad	Conductividad
Tubería	media	Prandt	cinemática	térmica
-	К	Adimensional	m ² /s	W/m*K
TP1	309.613	0.7264	0.0000166	0.0263
TP2	309.550	0.7264	0.0000166	0.0263
TS1	306.952	0.7271	0.0000165	0.0261
TS2	308.315	0.7267	0.0000165	0.0262
TS3	307.782	0.7269	0.0000165	0.0262

Perdidas de calor en TP1

Para determinar el número de Rayleigh se utilizó la ecuación 36.

$$Ra = \frac{9.8 \times (1/309.613) \times (322.11 - 297.115) \times 5.65^3}{0.0000166^2} * 0.7264 = 9522687.8$$

Para determinar el Nusselt se utilizó la ecuación 37.

Nu =
$$\left[0.6 + \frac{0.387 \times 9522687.8^{1/6}}{(1 + [0.559/0.7264]^{9/16})^{8/27}}\right]^2 = 27.4163$$

Para determinar el Nusselt se utilizó la ecuación 38.

$$h_{conv} = \frac{0.0263}{0.1656} \times 27.4163 = 4.3463 \left[\frac{W}{m^2} * K\right]$$

Para determinar el Nusselt se utilizó la ecuación 34.

$$\dot{Q}_{conv} = 4.3463 * 7.8176 * (322.11 - 297.115) = 849.2691 [W]$$

Tubería	Diámetro exterior de tubería recubierta	Área de transferencia de calor	Rayleigh	Nusselt	Coeficiente de convección	Perdidas por convección
-	Μ	m ²	adimensional	adimensional	$W/m^2 * K$	W
TP1	0.1656	7.8176	9522687.8	27.4163	4.3463	849.2691
TP2	0.1656	10.4235	9183561.2	27.1257	4.3002	1080.2399
TS1	0.09922	27.7427	1642789.5	16.5106	4.3429	2347.3966
TS2	0.08716	20.8089	1258399.03	55.7844	4.6033	2145.7624
TS3	0.08716	24.0956	1200918.66	15.1145	4.5434	2335.5350

Perdidas por convención en tuberías de la red de transporte de vapor

Las pérdidas de calor por radiación se determinaron mediante la ecuación 39. La emisividad del protector de acero galvanizado de 0.5mm es 0.06.

$$\dot{Q}_{rad} = 0.06 \times 7.9176 \times 5.67 * 10^{-8} \times (322.11^4 - 297.115^4) = 79.0469 [W]$$

Tubería	Área de transferencia de calor	Temperatura superficial	Temperatura ambiente	Perdidas de calor por radiación
	m ²	adimensional	m^2/s	W
TP1	7.8176	322.110	297.115	79.0469
TP2	10.4235	321.600	297.500	101.5488
TS1	27.7427	316.693	297.210	212.9339
TS2	20.8098	319.515	297.115	186.1516
TS3	24.0956	318.449	297.115	204.1994

Pérdidas de calor por radiación en la red de distribución de vapor saturado actual

El rendimiento térmico del aislamiento se determinó mediante la ecuación 40.

Rendimiento térmico con tubería aislada en cada periodo de operación

Oneración	Perdidas de calor	Rendimiento térmico
	W	%
Operación de la caldera 1	8360.2949	99.42
Operación de la caldera 2	8613.7877	99.40

Del anexo 19

h_(100psi)=2762.1 [kJ/kg]

Perdidas fijas de calor

$$\dot{Q}_{F} = \dot{Q}_{T} * 2 \% = \frac{1879.2}{3600} * 2762.1 * 0.02 = 28.8363 \text{ [kW]}$$

Perdidas de calor en válvulas no aisladas

$$\dot{Q}_{v} = \dot{Q}_{T} * 1.25\% = \left(\frac{1879.2}{3600} * 2762.1 * 0.025\right) * 2 = 36.0454 \text{ [kW]}$$

El rendimiento térmico total se determina mediante la ecuación 15.

$$\eta = 1 - \frac{28.8363 + 36.0454 + 8.3602}{1441.8162} * 100 = 94.92\%$$

Análisis de flexibilidad

Características del material de las tuberías actuales del sistema de distribución actual

Material de tubería	ASTM A53 Grado B sin costura		
Carbono	0.30	%	
Coeficiente de dilatación (a)	0.0149	mm/m * °C	
Límite de rotura (σ_{R0T})	43.33	kg/mm ²	
Limite elástico (σ_E)	24.48	kg/mm ²	
Esfuerzo admisible (σ_{adm})	10.5	kg/mm ²	
Módulo de Young (E)	20000	kg/mm ²	

Tuberías principales en la red de distribución de vapor actual

Para el análisis de flexibilidad ASME B31.1 en TP1 se utilizó la ecuación 42

$$\begin{split} \Delta L_Y &= 0.0149 * (2.45 - 1.10) * (164.34 - 22) = 2.8055 \text{ [mm]} \\ \Delta L_Z &= 0.0149 * 2.10 * (164.34 - 22) = 4.45 \text{ [mm]} \\ \Delta L &= \sqrt{2.8055^2 + 4.45^2} = 5.2605 \text{ [mm]} = 0.5260 \text{ [cm]} \\ U &= \sqrt{(2.45 - 1.10)^2 + 2.10^2} = 2.4964 \text{ [m]} \\ R &= \frac{2.15 + 1.10 + 2.10}{2.4964} = 2.1408 \\ \frac{10.16 * 0.5260}{2.4964^2 * (2.1408 - 1)} = 0.7516 \le 2.08 \end{split}$$

Las dilataciones de cada segmento de TP1 se calcularon mediante la ecuación 20

$$\Delta L_{ABy} = \alpha * L_{AB} * (T_{sat} - T_{amb}) = 0.0149 * 1.10 * (164.34 - 22) = 2.33[mm]$$

$$\Delta L_{BCz} = \alpha * L_{BC1} * (T_{sat} - T_{amb}) = 0.0149 * 0.40 * (164.34 - 22) = 0.8481 [mm]$$

$$\Delta L_{BC-z} = \alpha * L_{BC2} * (T_{sat} - T_{amb}) = 0.0149 * 1.50 * (164.34 - 22) = 3.1812[mm]$$

$$\Delta L_{CDy} = \alpha * L_{CD} * (T_{sat} - T_{amb}) = 0.0149 * 2.45 * (164.34 - 22) = 5.19[mm]$$

Las longitudes necesarias de los segmentos de TP1 para absorber las dilataciones se calcularon mediante la ecuación 21.

$$10.5 = \frac{0.8481 * 20000}{L_{AB} * 10^3} * \frac{3(114.3/2)}{L_{AB} * 10^3} = 0.5262[m]$$

$$10.5 = \frac{(2.33 + 5.19) * 20000}{L_{BC} * 10^3} * \frac{3\left(\frac{114.3}{2}\right)}{L_{BC} * 10^3} = 1.5671[m]$$

$$10.5 = \frac{3.1812 * 20000}{L_{CD} * 10^3} * \frac{3(114.3/2)}{L_{CD} * 10^3} = 1.0192[m]$$

Los esfuerzos internos causados por las dilataciones se calcularon mediante la ecuación 21.

$$\sigma_{AB} = \frac{0.8481 * 20000 * 3(114.3/2)}{(1.10 * 10^3)^2} = 2.4934 \text{ [kg/mm^2]}$$

$$\sigma_{BC} = \frac{4.0293 * 20000 * 3(114.3/2)}{(2.10 * 10^3)^2} = 5.8471 \text{ [kg/mm^2]}$$

$$\sigma_{CD} = \frac{0.8481 * 20000 * 3(114.3/2)}{(2.45 * 10^3)^2} = 1.3310 \text{ [kg/mm^2]}$$

Para el análisis de flexibilidad ASME B31.1 en TP2 se utilizó la ecuación 42

.

.

$$\begin{split} \Delta L_X &= 0.0149 * 5.40 * (164.34 - 22) = 11.4526 [mm] \\ \Delta L_Y &= 0.0149 * (2.45 - 1.10) * (164.34 - 22) = 2.8055 [mm] \\ \Delta L_Z &= \alpha * L_{BC} * (T_{sat} - T_{amb}) = 0.0149 * 0.45 * (164.34 - 22) = 0.9543 [mm] \\ \Delta L &= \sqrt{2.8055^2 + 11.4526^2 + 0.9543^2} = 11.8297 [mm] = 1.18297 [cm] \\ U &= \sqrt{(2.45 - 1.10)^2 + 0.45^2 + 5.40^2} = 5.5843 [m] \\ R &= \frac{2.45 + 1.10 + 0.45 + 5.40}{5.5843} = 1.6832 \\ \frac{10.16 * 1.18297}{5.5843^2 * (1.6832 - 1)} = 0.5641 \le 2.08 \end{split}$$

Las dilataciones de cada segmento de TP2 se calcularon mediante la ecuación 20.

$$\begin{split} \Delta L_{AB} &= \alpha * L_{AB} * (T_{sat} - T_{amb}) = 0.0149 * 1.10 * (16.34 - 22) = 2.33 \text{ [mm]} \\ \Delta L_{BC} &= \alpha * L_{BC} * (T_{sat} - T_{amb}) = 0.0149 * 0.45 * (164.34 - 22) = 0.954 \text{ [mm]} \\ \Delta L_{BCx} &= 0.477 \text{ [mm]} \qquad \Delta L_{BC-x} = 0.477 \text{ [mm]} \\ \Delta L_{CDz} &= \alpha * L_{CD1} * (T_{sat} - T_{amb}) = 0.0149 * 0.40 * (164.34 - 22) = 0.8483 \text{ [mm]} \\ \Delta L_{CD-z} &= \alpha * L_{CD2} * (T_{sat} - T_{amb}) = 0.0149 * 4.6 * (164.34 - 22) = 9.7559 \text{ [mm]} \\ \Delta L_{DE} &= \alpha * L_{DE} * (T_{sat} - T_{amb}) = 0.0149 * 2.45 * (164.34 - 22) = 5.1961 \text{ [mm]} \end{split}$$

Las longitudes necesarias de los segmentos de TP2 para absorber las dilataciones se calcularon mediante la ecuación 21

$$10.5 = \frac{0.477 * 20000}{L_{AB} * 10^3} * \frac{3(114.3/2)}{L_{AB} * 10^3} = 0.3946[m]$$

$$10.5 = \frac{(1.4817) * 20000}{L_{BC} * 10^3} * \frac{3(114.3/2)}{L_{BC} * 10^3} = 0.6965[m]$$

$$10.5 = \frac{(0.477 + 5.1961) * 20000}{L_{CD} * 10^3} * \frac{3\left(\frac{114.3}{2}\right)}{L_{CD} * 10^3} = 1.3611 [m]$$

$$10.5 = \frac{9.7559 * 20000}{L_{DE} * 10^3} * \frac{3(114.3/2)}{L_{DE} * 10^3} = 1.7849[m]$$

Los esfuerzos internos causados por las dilataciones se calcularon mediante la ecuación 21

$$\sigma_{AB} = \frac{0.477 * 20000 * 3\left(\frac{114.3}{2}\right)}{(1.10 * 10^3)^2} = 1.3517 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$
$$\sigma_{BC} = \frac{(1.4817) * 20000 * 3\left(\frac{114.3}{2}\right)}{(0.45 * 10^3)^2} = 25.0901 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$
$$\sigma_{CD} = \frac{(0.477 + 5.1961) * 20000 * 3(114.3/2)}{(5.40 * 10^3)^2} = 0.6671 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

$$\sigma_{DE} = \frac{9.7559 * 20000 * 3(114.3/2)}{(2.45 * 10^3)^2} = 5.5682 \, \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

Tubería secundaria TS1

Representación gráfica de las dilataciones en tubería TS1

Las dilataciones de cada segmento de TS1 se calcularon mediante la ecuación 20

$$\Delta L_{AB} = \alpha * L_{AB} * (T_{sat} - T_{amb}) = 0.0149 * 2 * (164.34 - 22) = 4.2417[mm]$$

$$\Delta L_{BC} = \alpha * L_{BC} * (T_{sat} - T_{amb}) = 0.0149 * 2 * (164.34 - 22) = 4.2417[mm]$$

$$\Delta L_{CD} = \alpha * L_{CD} * (T_{sat} - T_{amb}) = 0.0149 * 0.5 * (164.34 - 22) = 1.0604[mm]$$

$$\Delta L_{DE} = \alpha * L_{DE} * (T_{sat} - T_{amb}) = 0.0149 * 5.5 * (164.34 - 22) = 11.6647[mm]$$

$$\Delta L_{EF} = \alpha * L_{EF} * (T_{sat} - T_{amb}) = 0.0149 * 0.4 * (164.34 - 22) = 0.8483[mm]$$

$$\Delta L_{FG} = \alpha * L_{FG} * (T_{sat} - T_{amb}) = 0.0149 * 3 * (164.34 - 22) = 6.3625[mm]$$

$$\Delta L_{GH} = \alpha * L_{AB} * (T_{sat} - T_{amb}) = 0.0149 * 30 * (164.34 - 22) = 63.6259 [mm]$$

Las longitudes necesarias de los segmentos de TS1 para absorber las dilataciones se calcularon mediante la ecuación 21

$$10.5 = \frac{2.1208 * 20000}{L_{AB} * 10^3} * \frac{3\left(\frac{60.3}{2}\right)}{L_{AB} * 10^3} = 0.6044[m]$$

$$10.5 = \frac{(4.2417 + 0.5302) * 20000}{L_{BC} * 10^3} * \frac{3\left(\frac{60.3}{2}\right)}{L_{BC} * 10^3} = 1.2483[m]$$

$$10.5 = \frac{(3.7115) * 20000}{L_{CD} * 10^3} * \frac{3\left(\frac{60.3}{2}\right)}{L_{CD} * 10^3} = 0.8853[m]$$

$$10.5 = \frac{(0.4241 + 0.5302) * 20000}{L_{DE} * 10^3} * \frac{3\left(\frac{60.3}{2}\right)}{L_{DE} * 10^3} = 0.5582[m]$$

$$10.5 = \frac{(5.8323 + 3.1812) * 20000}{L_{EF} * 10^3} * \frac{3\left(\frac{60.3}{2}\right)}{L_{EF} * 10^3} = 1.3797 [m]$$

$$10.5 = \frac{(63.6259 + 0.4241) * 20000}{L_{FG} * 10^3} * \frac{3\left(\frac{60.3}{2}\right)}{L_{FG} * 10^3} = 3.3232 [m]$$

$$10.5 = \frac{3.1812 * 20000}{L_{GH} * 10^3} * \frac{3\left(\frac{60.3}{2}\right)}{L_{GH} * 10^3} = 1.0192 [m]$$
Los esfuerzos internos causados por las dilataciones se calcularon mediante la ecuación 21

$$\begin{split} \sigma_{AB} &= \frac{2.1208 * 20000 * 3 \left(\frac{60.3}{2}\right)}{(2 * 10^3)^2} = 0.9588 \left[\frac{kg}{mm^2}\right] \\ \sigma_{BC} &= \frac{(4.2417 + 0.5302) * 20000 * 3 \left(\frac{60.3}{2}\right)}{(2 * 10^3)^2} = 2.1580 \left[\frac{kg}{mm^2}\right] \\ \sigma_{CD} &= \frac{3.7115 * 20000 * 3 \left(\frac{60.3}{2}\right)}{(0.5 * 10^3)^2} = 26.8564 \left[\frac{kg}{mm^2}\right] \\ \sigma_{DE} &= \frac{0.9543 * 20000 * 3 \left(\frac{60.3}{2}\right)}{(5.5 * 10^3)^2} = 0.05706 \left[\frac{kg}{mm^2}\right] \\ \sigma_{EF} &= \frac{2.6511 * 20000 * 3 \left(\frac{60.3}{2}\right)}{(0.6 * 10^3)^2} = 13.3217 \left[\frac{kg}{mm^2}\right] \\ \sigma_{FG} &= \frac{(63.6259 + 0.4241) * 20000 * 3 \left(\frac{60.3}{2}\right)}{(3 * 10^3)^2} = 12.8740 \left[\frac{kg}{mm^2}\right] \\ \sigma_{GH} &= \frac{3.1812 * 20000 * 3 \left(\frac{60.3}{2}\right)}{(30 * 10^3)^2} = 0.00639 \left[\frac{kg}{mm^2}\right] \end{split}$$

Representación gráfica de las dilataciones en tubería TS2 actual

Fuente: Elaboración propia

Las dilataciones de cada segmento de TS2 se calcularon mediante la ecuación 20.

$$\begin{split} \Delta L_{AB} &= \alpha * L_{AB} * (T_{sat} - T_{amb}) = 0.0149 * 0.4 * (147.76 - 22) = 0.7495 [mm] \\ \Delta L_{BC} &= \alpha * L_{BC} * (T_{sat} - T_{amb}) = 0.0149 * 7 * (147.76 - 22) = 13.1101 [mm] \\ \Delta L_{BCz} &= 6.5550 [mm] \\ \Delta L_{BC-z} &= 6.5550 [mm] \\ \Delta L_{CD} &= \alpha * L_{CD} * (T_{sat} - T_{amb}) = 0.0149 * 0.6 * (147.76 - 22) = 1.1242 [mm] \\ \Delta L_{CDy} &= 0.5621 [mm] \\ \Delta L_{DE} &= \alpha * L_{DE} * (T_{sat} - T_{amb}) = 0.0149 * 2.8 * (147.76 - 22) = 5.2467 [mm] \\ \Delta L_{DEx} &= 2.6233 [mm] \\ \end{split}$$

$$\Delta L_{EF} = \alpha * L_{EF} * (T_{sat} - T_{amb}) = 0.0149 * 30 * (147.76 - 22) = 56.2147[mm]$$

Las longitudes necesarias de los segmentos de TS2 para absorber las dilataciones se calcularon mediante la ecuación 21.

$$10.5 = \frac{6.5550 * 20000}{L_{AB} * 10^3} * \frac{3\left(\frac{48.26}{2}\right)}{L_{AB} * 10^3} = 0.9511[m]$$

$$10.5 = \frac{1.3116 * 20000}{L_{BC} * 10^3} * \frac{3\left(\frac{48.26}{2}\right)}{L_{BC} * 10^3} = 0.4250[m]$$

$$10.5 = \frac{9.1783 * 20000}{L_{CD} * 10^3} * \frac{3\left(\frac{48.26}{2}\right)}{L_{CD} * 10^3} = 1.1242[m]$$

$$10.5 = \frac{56.7768 * 20000}{L_{DE} * 10^3} * \frac{3\left(\frac{60.3}{2}\right)}{L_{DE} * 10^3} = 2.8962[m]$$

$$10.5 = \frac{2.6233 * 20000}{L_{EF} * 10^3} * \frac{3\left(\frac{60.3}{2}\right)}{L_{EF} * 10^3} = 0.6010[m]$$

Los esfuerzos internos causados por las dilataciones se calcularon mediante la ecuación 21,.

$$\sigma_{AB} = \frac{6.5550 * 20000 * 3\left(\frac{48.26}{2}\right)}{(0.4 * 10^3)^2} = 59.3145 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

$$\sigma_{BC} = \frac{1.3116 * 20000 * 3\left(\frac{48.26}{2}\right)}{(7 * 10^3)^2} = 0.03875 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

$$\sigma_{CD} = \frac{9.1783 * 20000 * 3\left(\frac{48.26}{2}\right)}{(0.6 * 10^3)^2} = 236.9120 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

$$\sigma_{DE} = \frac{56.7768 * 20000 * 3\left(\frac{48.26}{2}\right)}{(2.8 * 10^3)^2} = 10.8848 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

$$\sigma_{EF} = \frac{2.6233 * 20000 * 3\left(\frac{48.26}{2}\right)}{(30 * 10^3)^2} = 0.004220 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

Representación gráfica de las dilataciones en TS3 actual

Longitud inicial del compensador 316 mm > longitud actual 390 mm

Las dilataciones de cada segmento de TS1 se calcularon mediante la ecuación 20.

$$\begin{split} \Delta L_{AB} &= \alpha * L_{AB} * (T_{sat} - T_{amb}) = 0.0149 * 0.9 * (134.68 - 22) = 1.5019 \text{ [mm]} \\ \Delta L_{ABz} &= 0.7509 \text{ [mm]} \qquad \Delta L_{AB-z} = 0.5006 \text{ [mm]} \\ \Delta L_{BC} &= \alpha * L_{BC} * (T_{sat} - T_{amb}) = 0.0149 * 0.6 * (164.34 - 22) = 1.0012 \text{ [mm]} \\ \Delta L_{BCy} &= 0.5006 \text{ [mm]} \qquad \Delta L_{BC-y} = 0.5006 \text{ [mm]} \\ \Delta L_{CD} &= \alpha * L_{CD} * (T_{sat} - T_{amb}) = 0.0149 * 2.6 * (134.68 - 22) = 4.73652 \text{ [mm]} \\ \Delta L_{CDx} &= 2.1826 \text{ [mm]} \qquad \Delta L_{BC-x} = 2.1826 \text{ [mm]} \\ \Delta L_{DE} &= \alpha * L_{DE} * (T_{sat} - T_{amb}) = 0.0149 * 30 * (134.68 - 22) = 50.3579 \text{ [mm]} \end{split}$$

Las longitudes necesarias de los segmentos de TS2 para absorber las dilataciones se calcularon mediante la ecuación 21.

$$10.5 = \frac{0.5006 * 20000}{L_{AB} * 10^3} * \frac{3\left(\frac{48.26}{2}\right)}{L_{AB} * 10^3} = 0.2625[m]$$

$$10.5 = \frac{(2.9335) * 20000}{L_{BC} * 10^3} * \frac{3\left(\frac{48.26}{2}\right)}{L_{BC} * 10^3} = 0.6355[m]$$

$$10.5 = \frac{50.8585 * 20000}{L_{CD} * 10^3} * \frac{3\left(\frac{48.26}{2}\right)}{L_{CD} * 10^3} = 2.6464[m]$$

$$10.5 = \frac{2.1826 * 20000}{L_{DE} * 10^3} * \frac{3\left(\frac{60.3}{2}\right)}{L_{DE} * 10^3} = 0.5482[m]$$

Los esfuerzos internos causados por las dilataciones se calcularon mediante la ecuación 21.

$$\sigma_{AB} = \frac{0.5006 * 20000 * 3\left(\frac{60.3}{2}\right)}{(0.9 * 10^3)^2} = 1.1180 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

$$\sigma_{BC} = \frac{(2.9335) * 20000 * 3\left(\frac{60.3}{2}\right)}{(0.6 * 10^3)^2} = 14.7408 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

$$\sigma_{CD} = \frac{50.8585 * 20000 * 3\left(\frac{60.3}{2}\right)}{(2.6 * 10^3)^2} = 13.6099 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

$$\sigma_{DE} = \frac{2.1826 * 20000 * 3\left(\frac{60.3}{2}\right)}{(30 * 10^3)^2} = 0.004387 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

Nuevo diseño del sistema de trasporte de vapor saturado del Hospital Virgen de la Puerta aplicando la secuencia de pasos previamente elaborada

El diseño se realizó utilizando la secuencia de pasos elaborada en el objetivo 2

Condiciones, datos nominales y operación

- Cantidad de equipos de generación: 2 calderas pirotubulares
- Cantidad de áreas o puntos de consumo de vapor saturado: 3 áreas (lavandería, esterilización y calentadores)
- Potencia de la caldera=150 BHP
- P_M=Presión máxima del vapor nominal= 150 psi
- P_{max}= Presión máxima de operación =100 psi
- P_{min}= Presión mínima de operación=80 psi
- T_M= Temperatura a presión nominal=181.35 °C
- T_{max}= Temperatura a presión máxima de operación=164.35 °C
- T_{min} = Temperatura a presión mínima de operación=155.57 °C
- ρ_M = Densidad del fluido a presión nominal=5.3133 kg/m³
- ρ_{max} =Densidad del fluido a presión máxima de operación=3.614 kg/m³
- ρ_{min} = Densidad del fluido a presión mínima de operación=2.9268 kg/m³

Esquema inicial de las tuberías principales para el nuevo diseño

Tuk	pería TP1
A1-B1	1.10 m
B1-C1	2.10 m
C1-D1	2.14 m
Tubería TP2	
A2-B2	1.10 m
B2-C2	0.65 m
C2-D2	5.40 m
D2-E2	2.45 m

Esquema ir	nicial de las tubería	as secundarias para el nuevo diseño	F1	<	C1
			rs1	E1	B1
Tub	pería TS1		131		
A1-B1	2.5 m	G1			. 1
B1-C1	1.6 m			וט	
C1-D1	5.5 m				Manifold
D1-E1	1 m				
E1-F1	3 m				A2
F1-G1	28 m		_		
Tub	pería TS2				
A2-B2	7 m			. /	
B2-C2	1 m			\mathbf{i}	
C2-D2	2.8m		TOO		
D2-E2	30m		152		
Tub	pería TS3		8	B2	
A3-B3	0.9 m	E2		0	
B3-C3	1 m				
C3-D3	2.6 m			_	
D3-E3	32 m				ERP1
			/	/ 63	
		D3	TS3	B3 A3	
					r errz

Requerimientos de selección del material de tubería

- Tipo de fluido: Vapor de agua saturado
- Sin costura
- Presión: 164.7 psia * F.S. = 197.64 psia
- Temperatura: 185.49 °C* F.S. = 222.588 °C

Especificaciones del material seleccionado: ASTM A53 Grado B sin costura

- σ_{ROT} = Límite de rotura=43.33 kg/mm²
- σ_E = Limite elástico=224.48 kg/mm²
- σ_{adm} =Esfuerzo admisible=10.5 kg/mm²
- E=Modulo de Young=20000 kg/mm²

Numero de cedula

 σ =Fatiga admisible del material seleccionado, kg/cm²

Nr. Ced. = F. S *
$$\frac{P(bar)}{\sigma\left(\frac{kg}{cm^2}\right)}$$
 * 1000 = 1.2 * $\frac{11.456}{840}$ * 1000 = 16.3657

Numero de cedula normalizado 40

Flujo de vapor en operación y aumento de demanda

$$\begin{split} \dot{m}_{M} &= 150 * 15.66 = 2349 \ [kg/h] \\ \dot{m}_{T} &= 2349 * 0.8 = 1879.2 \ [kg/h] \\ \dot{m}_{D} &= 2349 * 0.9 = 2114.1 \ [kg/h] \end{split}$$

Dimensionamiento y verificación de la tubería principal

Del Anexo 12.

U_{perm.} = velocidad máxima permisible 35 [m/s]

Diámetro 1: Diámetro a parámetros nominales

D1 =
$$\sqrt{\frac{4 * \frac{2349/3600}{5.3133 * 35}}{\pi}} * 39.37 = 2.6311$$
[pulg]

Diámetro 2: Diámetro a parámetros máximos de operación

$$D2 = \sqrt{\frac{4 * \frac{1879.2/3600}{3.614 * 35}}{\pi}} * 39.37 = 2.8539[pulg]$$

Diámetro 3: Diámetro a parámetros mínimos de operación

D3 =
$$\sqrt{\frac{4 * \frac{1879.2/3600}{2.9268 * 35}}{\pi}} * 39.37 = 3.1713$$
 [pulg]

Diámetro 4: Diámetro con aumento de demanda

$$D4 = \sqrt{\frac{4 * \frac{2114.1/3600}{2.9268 * 35}}{\pi}} * 39.37 = 3.1910 \text{ [pulg]}$$

Diámetro estandarizado = 3 ½ pulg

Del Anexo 13

Dimensiones de TP1 y TP2 del nuevo diseño

TP1 (Caldera 1 – Distribuidor)		
-	TP2 (Caldera 2 – Distribuidor)	
Diámetro nominal	3 1/2	[pulg]
Diámetro exterior	101.6	[mm]
Diámetro interior	90.12	[mm]
Espesor de tubería	5.74	[mm]

Verificación del diámetro por la velocidad del fluido.

Verificación 1: Velocidad a presión máxima de operación

$$U1 = \frac{1879.2/3600}{\frac{\pi}{4} * (90.12 * 10^{-3})^2 * 3.614} = 22.6445 \text{ [m/s]}$$

Verificación 2: Velocidad a presión mínima de operación

$$U2 = \frac{1879.2/3600}{\frac{\pi}{4} * (90.12 * 10^{-3})^2 * 2.9268} = 27.9613 \text{ [m/s]}$$

.

Verificación 3: Velocidad con aumento de la demanda

$$U2 = \frac{2114.1/3600}{\frac{\pi}{4} * (90.12 * 10^{-3})^2 * 2.9268} = 31.4565 \text{ [m/s]}$$

Verificación del diámetro por caída de presión

 $\Sigma L_{\text{Lineal}} = 1.1 + 2.10 + 2.45 = 5.65[\text{m}]$

$$L_q = (\Sigma No * Lq_{acces.}) + \Sigma L_{Lineal} = (2 * 0.6) + (2 * 3.1) + 5.8 + 5.65 = 16.85 [m]$$

Verificación 1: Caída de presión a presión máxima de operación

 $\lambda = 0.0144 + 0.00947 / \sqrt{22.6445} = 0.01639$

$$\Delta P1 = 0.01639 * \frac{16.85}{90.12 * 10^{-3}} * \frac{22.6445^2}{2 * 10^5} * 3.614 * 14.504 = 0.4118 \text{ [psi]}$$

Verificación 2: Caída de presión mínima de operación

$$\lambda = 0.0144 + 0.00947 / \sqrt{27.9613} = 0.01619$$
$$\Delta P1 = 0.01619 * \frac{16.85}{90.12 * 10^{-3}} * \frac{22.649^2}{2 * 10^5} * 2.9268 * 14.504 = 0.5024 \text{ [psi]}$$

Verificación 3: Caída de presión con aumento de la demanda

$$\lambda = 0.0144 + 0.00947 / \sqrt{31.4565} = 0.01608$$

$$\Delta P3 = 0.01608 * \frac{16.85}{90.12 * 10^{-3}} * \frac{31.4565^{2}}{2 * 10^{5}} * 2.9268 * 14.504 = 0.6318 \text{ [psi]}$$

Verificación del dimensionamiento de TP1 del nuevo diseño

Velocidad a presión máxima de operación	22.6445	[m/s]	~35
Velocidad a presión mínima de operación	27.9613	[m/s]	_ <33
Velocidad con demanda aumentada	31.4565	[m/s]	_ [11/3]
Caída de presión a presión máxima de operación	0.4118	[psi]	
Caída de presión a presión mínima de operación	0.5024	[psi]	- <5 [psi]
Caída de presión con aumento de la demanda	0.6318	[psi]	_ [p3i]

Verificación del dimensionamiento de TP2 del nuevo diseño

Velocidad a presión máxima de operación	22.6445	[m/s]	<35
Velocidad a presión mínima de operación	27.9613	[m/s]	[m/s]
Velocidad con demanda aumentada	31.4565	[m/s]	_ [
Caída de presión a presión máxima de operación	0.5622	[psi]	.5
Caída de presión a presión mínima de operación	0.6857	[psi]	- <5 [psi]
Caída de presión con aumento de la demanda	0.8626	[psi]	•

Verificación del número de cedula y material

Del Anexo 18

Para 4 pulg la máxima presión permitida 12464 psi > 197.64 psi

Dimensionamiento de la tubería secundaria

Parámetros de diseño para las tuberías secundarias

Áreas de servicio	Presiones requeridas	Demanda de vapor o flujo de vapor requerido	Aumento de demanda
Operativas	[psi]	[kg/h]	kg/h]
Lavandería	70	826.5381	991.8457
Esterilización	30	480.8079	576.9601
Calentadores	20	344.7300	413.604

Diámetro 1: Diámetro con el flujo de vapor requerido

$$D1 = \sqrt{\frac{4 * \frac{826.5381/3600}{2.9226 * 35}}{\pi} * 39.37} = 2.1047[pulg]$$

Diámetro 2: Diámetro a parámetros máximos de operación

$$D2 = \sqrt{\frac{4 * \frac{991.8457/3600}{2.9226 * 35}}{\pi}} * 39.37 = 2.3056[pulg]$$

Diámetro estandarizado = 3 ½ pulg

Del Anexo 13

Dimensiones de la tubería TS1 del nuevo diseño

Tubería secundaria 1 (Distribuidor – Lavandería)		
Diámetro nominal	2 1⁄2	[pulg]
Diámetro exterior	73.01	[mm]
Diámetro interior	62.68	[mm]
Espesor de tubería	4.16	[mm]

Verificación del dimensionamiento por la velocidad del fluido

Verificación 1: Velocidad a presión máxima de operación

$$U1 = \frac{826.5381/3600}{\frac{\pi}{4} * (6268 * 10^{-3})^2 * 3.614} = 20.5891 \text{ [m/s]}$$

Verificación 2: Velocidad a presión mínima de operación

$$U2 = \frac{826.5381/3600}{\frac{\pi}{4} * (62.68 * 10^{-3})^2 * 2.9268} = 25.4599 \text{ [m/s]}$$

Verificación 3: Velocidad con aumento de demanda

$$U2 = \frac{991.8457/3600}{\frac{\pi}{4} * (62.68 * 10^{-3})^2 * 2.9268} = 30.5518 \text{ [m/s]}$$

Verificación del dimensionamiento por caída de presión

$$\Sigma L_{\text{Lineal}} = 43.6[\text{m}]$$

$$L_{q} = (\Sigma No * Lq_{acces.}) + \Sigma L_{Lineal} = (1.2 * 10) + (1 * 0.3) + 43.6 = 48.7[m]$$

Verificación 1: Caída de presión a presión máxima de operación

$$\lambda = 0.0144 + 0.00947 / \sqrt{20.5891} = 0.01648$$

$$\Delta P1 = 0.01648 * \frac{48.7}{62.68 * 10^{-3}} * \frac{20.5891^2}{2 * 10^5} * 3.614 * 14.504 = 1.2742[psi]$$

Verificación 2: Caída de presión a presión mínima de operación

$$\lambda = 0.0144 + 0.00947 / \sqrt{25.4599} = 0.01627$$

$$\Delta P1 = 0.01627 * \frac{48.7}{62.68 * 10^{-3}} * \frac{22.649^2}{2 * 10^5} * 2.9268 * 14.504 = 1.5555 \text{ [psi]}$$

Verificación 3: Caída de presión con aumento de la demanda

$$\lambda = 0.0144 + 0.00947 / \sqrt{30.5518} = 0.01611$$

$$\Delta P3 = 0.01611 * \frac{48.7}{62.68 * 10^{-3}} * \frac{31.4565^{2}}{2 * 10^{5}} * 2.9268 * 14.504 = 2.2174 \text{ [psi]}$$

Verificación del dimensionamiento de la tubería TS1 del nuevo diseño

Velocidad a presión máxima de operación	20.5891	[m/s]	<35
Velocidad a presión mínima de operación	25.4599	[m/s]	[m/s]
Velocidad con demanda aumentada	30.5518	[m/s]	_
Caída de presión a presión máxima de operación	1.2742	[psi]	<5 [poil
Caída de presión a presión mínima de operación	1.5555	[psi]	- [psi]
Caída de presión con aumento de la demanda	2.2174	[psi]	-

Dimensiones de la tubería TS2.1 y TS3.1 etapa de alta presión del nuevo diseño

TuberíaTS2.1 y TS3.1 (Distribuidor – V.R.P)		
Diámetro nominal	1 1⁄2	[pulg]
Diámetro exterior	48.3	[mm]
Diámetro interior	40.94	[mm]
Espesor de tubería	3.68	[mm]

Verificación del dimensionamiento con la velocidad del fluido de la tubería TS2.1 y TS3.1 del nuevo diseño

TS2.1				
Velocidad a presión máxima de operación	28.0738	[m/s]		
Velocidad a presión mínima de operación	34.7152	[m/s]	<35	[m/s]
Velocidad con demanda aumentada	33.6891	[m/s]	•	
TS3.1				
Velocidad a presión máxima de operación	20.1252	[m/s]		
Velocidad a presión mínima de operación	24.8862	[m/s]	<35	[m/s]
Velocidad con demanda aumentada	29.8635	[m/s]	-	

Del Anexo 13

Dimensiones de la tubería TS2 y TS3 etapa de baja presión del nuevo diseño

TuberíaTS2 y TS (V.R.P áreas de consumo)		
Diámetro nominal	2 1⁄2	[pulg]
Diámetro exterior	73	[mm]
Diámetro interior	62.68	[mm]
Espesor de tubería	5.16	[mm]

Verificación del dimensionamiento con la velocidad del fluido de la tubería TS2 y TS3 del nuevo diseño

Tubería TS2				
Velocidad a presión máxima de operación	23.0148	[m/s]	<35	
Velocidad con demanda aumentada	27.6178	[m/s]	[m/s]	
Caída de presión a presión máxima de operación	1.0493	[psi]	<1.5	
Caída de presión con aumento de la demanda	1.4951	[psi]	[psi]	
Tubería TS3				
Velocidad a presión máxima de operación	26.6319	[m/s]	<35	
Velocidad con demanda aumentada	31.9582	[m/s]	[m/s]	
Caída de presión a presión máxima de operación	0.8630	[psi]	<1.5	
Caída de presión con aumento de la demanda	1.2305	[psi]	[psi]	

Diseño de la estación reductora de presión para el área de calentadores

Selección de accesorios de estación reductora de presión

Selección de válvula reductora de presión

P1=114, psia =7.89, bar

Del anexo 19

T1(P1) =169.68, °C

Para esterilización:

$$Kv = \frac{596.3789}{230 \times 7.89} * \sqrt{169.68 + 273} = 6.9145 \text{ [m}^3\text{/h]}$$

Para calentadores:

ΔP=P1-P2=70, psia = 4.8263, psia

P2= 44, psia =

$$Kv = \frac{438.8245}{461} * \sqrt{\frac{169.68 + 273}{4.8263 \times 3.0337}} = 5.2340 \text{ [m}^3\text{/h]}$$

Para la selección de la válvula reguladora debemos determinar el diámetro nominal para ello debemos convertir a Cv

Para esterilización:

$$C_V = 6.9145 \times 1.156 = 7.9931$$
 [gpm]

Para calentadores:

$$C_V = 5.2340 \times 1.156 = 6.0505$$
 [gpm]

Tipo de válvula seleccionada: Válvula reductora de presión serie 25P pilotada con, resorte azul.

Se determinó el valor del DN, diámetro nominal

Diámetro nominal de las válvulas reductoras de presión serie 25P

Diámetro	DN15	DN	DN	DN	DN	DN	DN	DN
nominal	LC	15	20	25	32	40	50	80
Cv	1.0	2.8	5.5	8.1	12.0	17.0	28.0	64.0

Fuente: Ficha técnica válvula reductora de presión 25P, Spirax Sarco

Mediante el Anexo 22 se determinó las capacidades de cada válvula reductora de presión.

Para esterilización la válvula 25P de DN25 de presión de entrada 7 bar y presión de salida de 3.4 – 5.2 bar, con una capacidad de 789 kg/h.

Para calentadores la válvula 25P de DN25 de presión de entrada 7 bar y presión de salida de 0 - 3.4 bar, con una capacidad de 826 kg/h.

Separador de humedad

Mediante el Anexo 33 se determinó el diámetro nominal para los siguientes parámetros:

ERP1: P1=114 psia y m₂= 596.3789, kg/h

ERP2: P1=114 psia y m₃= 438.8245, kg/h

Diámetros nominales de los separadores de humedad para la selección del separador de humedad 1

Fuente: Distribución de vapor, Spirax Sarco.

Diámetros nominales de los separadores de humedad para la selección del separador de humedad 2

Fuente: Distribución de vapor, Spirax Sarco.

Para ERP1: Separador de humedad Tipo S2 Horizontal de DN 40

Para ERP2: Separador de humedad Tipo S2 Horizontal de DN 40

Selección de filtro (Anexo 28)

Para ERP1: Se selecciona el filtro en Y modelo IT de 1 ½ pulg, de acero inoxidable AISI 304 y presión máxima del vapor saturado permisible 17 bar.

Para ERP2: Se selecciona el filtro en Y modelo IT de 1 ½ pulg, de acero inoxidable AISI 304 y presión máxima del vapor saturado permisible 17 bar.

Selección de válvulas esféricas (Anexo 27)

Para ERP1

Q=596.3789 * 0.2443= 145.6,m³/h= 5141.8155, ft³/h

T=169.68, °C=337.4, °F

5141.8155 = 1360 * Cv *
$$\sqrt{\frac{1 * 114}{1 * (337.4 + 460)}}$$
 = 9.9991

$$Kv = 9.9991 * 1.1556 = 11.55 [m^3/h]$$

Para ERP

 $Q=438.8245 * 0.2443 = 107.20, m^3/h = 3785.7323, ft^3/h$

$$3785.7323 = 1360 * \text{Cv} * \sqrt{\frac{1 * 114}{1 * (337.4 + 460)}} = 7.3605$$

$$Kv = 7.3605 * 1.1556 = 8.5087 [m3/h]$$

Mediante el Anexo 27 se selecciona el DN de las válvulas esféricas

Valores K_V

Tamaño	1⁄4"	3∕8 [∥]	1⁄2"	3∕4"	1"	1 ¼"	1 ½"	2"	2½ "
Paso reducido	5	6,8	6	10	27	49	70	103	168
Paso total	5	6,8	17	36	58	89	153	205	-

Fuente: Ficha técnica M10F, Spirax Sarco.

Para ERP1 Válvula esférica M10Hi ISO, de DN de 1 pulg

Para ERP2 Válvula esférica M10Hi ISO, de DN de 1 pulg

Dimensionamiento del espesor del aislante

- Flujo de vapor total = 2349 kg/h
- Carga de operación de aumento de la demanda 0.90
- Presión máxima de operación =100 psi

Cálculo de la perdida unitaria de calor

$$\begin{split} \dot{Q}_{o} &= \dot{m}_{v} * h_{vo} = \left(\frac{2349 * 0.9}{3600}\right) * 2762 = 1621.9845 [kW] \\ \eta_{aisl} &= 1 - \frac{\dot{Q}_{P}}{\dot{Q}_{o}} \\ \dot{Q}_{P} &= (1 - \eta_{aisl}) * \dot{Q}_{o} \\ \dot{Q}_{P} &= (1 - 0.9965)(1621.9845) = 5.6769 \ [kW] \\ q_{L} &= \frac{\dot{Q}_{P}}{Lt} = \frac{5.6769 * 10^{3}}{164} = 34.61 \ [W/m] \end{split}$$

Determinamos la temperatura absoluta de las capas del aislante

$$\overline{T} = \frac{(T_1 - T_2)}{2} = \frac{164.34 + 40}{2} = 102.17 \ [^{\circ}C]$$

$$k = 0.0043525 + 0.0003427 * 102.17 \ [^{\circ}C] = 0.03936$$

$$\frac{d_{ext,aisl}}{d_{int,aisl}} = e^{\left[\frac{2*\pi*0.03936*(164.34-40)}{34.61}\right]}$$

$$\frac{d_{ext,aisl}}{d_{int,aisl}} = 2.43$$

$$d_{ext,aisl} = 2.43 * 3.5 = 8.505$$

$$\delta_{aisl} = \frac{d_{ext,aisl} - d_{ext,tub}}{2} = \frac{8.505 - 3.5}{2} = 2.5025 \ [pulg]$$

Los espesores de aislante para las demás tuberías se encuentran en la tabla 18.

Análisis de flexibilidad

Se utilizó el esquema inicial de tuberías primarias para el nuevo diseño para realizar el análisis

Cálculo del análisis de flexibilidad el TP1

Dilaciones individuales:

$$\Delta L_{ABy} = \alpha * L_{AB} * (T_{sat} - T_{amb}) = 0.0149 * 1.10 * (164.34 - 22) = 2.33[mm]$$

$$\Delta L_{BCz} = \alpha * L_{BC1} * (T_{sat} - T_{amb}) = 0.0149 * 0.40 * (164.34 - 22) = 0.8481 [mm]$$

$$\Delta L_{BC-z} = \alpha * L_{BC2} * (T_{sat} - T_{amb}) = 0.0149 * 1.50 * (164.34 - 22) = 3.1812[mm]$$

$$\Delta L_{CDy} = \alpha * L_{CD} * (T_{sat} - T_{amb}) = 0.0149 * 2.45 * (164.34 - 22) = 5.19[mm]$$

Longitud necesaria para auto compensación:

$$10.5 = \frac{0.8481 * 20000}{L_{AB} * 10^3} * \frac{3(101.6/2)}{L_{AB} * 10^3} = 0.4961[m]$$

$$10.5 = \frac{(2.33 + 5.19) * 20000}{L_{BC} * 10^3} * \frac{3\left(\frac{101.6}{2}\right)}{L_{BC} * 10^3} = 1.478[m]$$

$$10.5 = \frac{3.1812 * 20000}{L_{CD} * 10^3} * \frac{3\left(\frac{101.6}{2}\right)}{L_{CD} * 10^3} = 0.9609[m]$$

Esfuerzos internos ocasionados por la dilatación

$$\sigma_{AB} = \frac{0.8481 * 20000 * 3(101.6/2)}{(1.10 * 10^3)^2} = 2.1336 \, [kg/mm^2]$$

$$\sigma_{BC} = \frac{7.52 * 20000 * 3(101.1/2)}{(2.10 * 10^3)^2} = 5.1974 \text{ [kg/mm^2]}$$
$$\sigma_{CD} = \frac{0.8481 * 20000 * 3(101.6/2)}{(2.45 * 10^3)^2} = 0.4306 \text{ [kg/mm^2]}$$

Cálculo del análisis de flexibilidad el TP2

Dilaciones individuales:

$$\Delta L_{AB} = \alpha * L_{AB} * (T_{sat} - T_{amb}) = 0.0149 * 1.10 * (16.34 - 22) = 2.33 \text{ [mm]}$$

$$\Delta L_{BC} = \alpha * L_{BC} * (T_{sat} - T_{amb}) = 0.0149 * 0.65 * (164.34 - 22) = 1.3785 \text{ [mm]}$$

$$\Delta L_{BCx} = 0.6892 \text{ [mm]} \qquad \Delta L_{BC-x} = 0.6892 \text{ [mm]}$$

$$\Delta L_{CDz} = \alpha * L_{CD1} * (T_{sat} - T_{amb}) = 0.0149 * 0.40 * (164.34 - 22) = 0.8483 \text{ [mm]}$$

$$\Delta L_{CD-z} = \alpha * L_{CD2} * (T_{sat} - T_{amb}) = 0.0149 * 4.6 * (164.34 - 22) = 9.7559 \text{ [mm]}$$

$$\Delta L_{DE} = \alpha * L_{DE} * (T_{sat} - T_{amb}) = 0.0149 * 2.45 * (164.34 - 22) = 5.1961 \text{ [mm]}$$

Longitud necesaria para auto compensación

$$10.5 = \frac{0.6892 * 20000}{L_{AB} * 10^3} * \frac{3\left(\frac{101.6}{2}\right)}{L_{AB} * 10^3} = 0.4472[m]$$

$$10.5 = \frac{(1.4817) * 20000}{L_{BC} * 10^3} * \frac{3\left(\frac{101.6}{2}\right)}{L_{BC} * 10^3} = 0.6558[m]$$

$$10.5 = \frac{(0.6892 + 5.1961) * 20000}{L_{CD} * 10^3} * \frac{3\left(\frac{101.6}{2}\right)}{L_{CD} * 10^3} = 1.3079[m]$$

$$10.5 = \frac{9.7559 * 20000}{L_{DE} * 10^3} * \frac{3\left(\frac{101.6}{2}\right)}{L_{DE} * 10^3} = 1.6828[m]$$

Esfuerzos internos causados por la dilatación

$$\sigma_{AB} = \frac{0.6892 * 20000 * 3\left(\frac{101.6}{2}\right)}{(1.10 * 10^3)^2} = 1.6361 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$
$$\sigma_{BC} = \frac{(1.4817) * 20000 * 3\left(\frac{101.6}{2}\right)}{(0.65 * 10^3)^2} = 10.68 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$
$$\sigma_{CD} = \frac{(0.6892 + 5.1961) * 20000 * 3(101.6/2)}{(5.40 * 10^3)^2} = 0.6151 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

$$\sigma_{\rm DE} = \frac{9.7559 * 20000 * 3(101.6/2)}{(2.45 * 10^3)^2} = 4.9539 \left[\frac{\rm kg}{\rm mm^2}\right]$$

Cálculo del análisis de flexibilidad el TS1

Se utilizó el esquema inicial de tuberías secundarias para el nuevo diseño para realizar el análisis

Dilaciones individuales:

$$\begin{split} \Delta L_{AB} &= \alpha * L_{AB} * (T_{sat} - T_{amb}) = 0.0149 * 2.5 * (164.34 - 22) = 5.3021 [mm] \\ \Delta L_{BC} &= \alpha * L_{BC} * (T_{sat} - T_{amb}) = 0.0149 * 1.6 * (164.34 - 22) = 3.3933 [mm] \\ \Delta L_{BCx} &= 1.6966 [mm] \\ \Delta L_{BC-x} &= 1.6966 [mm] \\ \Delta L_{CD} &= \alpha * L_{DE} * (T_{sat} - T_{amb}) = 0.0149 * 5.5 * (164.34 - 22) = 11.6647 [mm] \\ \Delta L_{CDz} &= 5.8323 [mm] \\ \Delta L_{DE} &= \alpha * L_{CE} * (T_{sat} - T_{amb}) = 0.0149 * 1 * (164.34 - 22) = 2.1208 [mm] \\ \Delta L_{DEy} &= 1.060 [mm] \\ \Delta L_{DE-y} &= 1.060 [mm] \\ \Delta L_{EF} &= \alpha * L_{FG} * (T_{sat} - T_{amb}) = 0.0149 * 3 * (164.34 - 22) = 6.3625 [mm] \\ \Delta L_{EFx} &= 3.1812 [mm] \\ \end{split}$$

$$\Delta L_{FG} = \alpha * L_{AB} * (T_{sat} - T_{amb}) = 0.0149 * 28 * (164.34 - 22) = 63.6259 \text{ [mm]}$$

Longitud necesaria para auto compensación

$$10.5 = \frac{1.6966 * 20000}{L_{AB} * 10^3} * \frac{3\left(\frac{73.025}{2}\right)}{L_{AB} * 10^3} = 0.5449[m]$$

$$10.5 = \frac{(5.3021 + 5.8323) * 20000}{L_{BC} * 10^3} * \frac{3\left(\frac{73.025}{2}\right)}{L_{BC} * 10^3} = 1.5254[m]$$

$$10.5 = \frac{(1.060 + 1.6966) * 20000}{L_{CD} * 10^3} * \frac{3\left(\frac{73.025}{2}\right)}{L_{CD} * 10^3} = 07583[m]$$

$$10.5 = \frac{(3.1812 + 5.8323) * 20000}{L_{DE} * 10^3} * \frac{3\left(\frac{73.025}{2}\right)}{L_{DE} * 10^3} = 1.3713[m]$$

$$10.5 = \frac{(1.060) * 20000}{L_{EF} * 10^3} * \frac{3\left(\frac{73.025}{2}\right)}{L_{EF} * 10^3} = 0.4702[m]$$

Esfuerzos internos causados por la dilatación

$$\sigma_{AB} = \frac{1.6966 * 20000 * 3\left(\frac{73.025}{2}\right)}{(2.5 * 10^3)^2} = 0.5946 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

$$\sigma_{BC} = \frac{(5.3021 + 5.8323) * 20000 * 3\left(\frac{48.26}{2}\right)}{(1.6 * 10^3)^2} = 9.5283 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

$$\sigma_{CD} = \frac{(1.060 + 1.6966) * 20000 * 3\left(\frac{48.26}{2}\right)}{(5.5 * 10^3)^2} = 0.1996 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

$$\sigma_{DE} = \frac{(3.1812 + 5.8323) * 20000 * 3\left(\frac{48.26}{2}\right)}{(1 * 10^3)^2} = 5.8078 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

$$\sigma_{EF} = \frac{1.060 * 20000 * 3\left(\frac{48.26}{2}\right)}{(3 * 10^3)^2} = 0.2580 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

Selección de compensadores

Para segmento F1-G1 $\Delta L = 63.6259 \text{ mm}$

Selección preliminar PN16

DN80 mm

C=45mm

No es suficiente

Se selecciono dos compensadores de C=45 mm

CT = 34.965 * 2 = 69.93 [mm]

Esfuerzos en F1-G1 compensadas

Los datos técnicos del compensador se encuentran en el Anexo 32

$$F_{i} = \frac{1}{2} * 8 * 31.8129 = 127.25 \text{ [kg]}$$

$$F_{j} = 7.86 * \frac{\pi}{4} * 6.268^{2} = 242.5327 \text{ [kg]}$$

$$F_{T} = 127.25 + 242.5327 = 369.7827 \text{ [kg]}$$

$$\sigma = \frac{369.7827}{\frac{\pi}{4} * 62.68^{2}} = 0.1198 \left[\frac{\text{kg}}{\text{mm}^{2}}\right] < \sigma \text{adm}$$

Diseño del sistema de auto compensación para el tramo C2-D2 de la tubería TS1

Inclinación de tubería = 40 mm por cada 10 m en la dirección al flujo

Dirección del vapor	↓
Punto figo	l
Punto guía	

Cálculo del análisis de flexibilidad el TS2

Dilataciones individuales:

$$\begin{split} \Delta L_{AB} &= \alpha * L_{AB} * (T_{sat} - T_{amb}) = 0.0149 * 7 * (147.76 - 22) = 13.1101 [mm] \\ \Delta L_{BCz} &= 6.5550 [mm] & \Delta L_{BC-z} = 6.5550 [mm] \\ \Delta L_{BC} &= \alpha * L_{BC} * (T_{sat} - T_{amb}) = 0.0149 * 1 * (147.76 - 22) = 1.8738 [mm] \\ \Delta L_{CDy} &= 0.9369 [mm] & \Delta L_{BC-y} = 0.9369 [mm] \\ \Delta L_{CD} &= \alpha * L_{CD} * (T_{sat} - T_{amb}) = 0.0149 * 2.8 * (147.76 - 22) = 5.2467 [mm] \\ \Delta L_{DEx} &= 2.6233 [mm] & \Delta L_{DE-x} = 2.6233 [mm] \end{split}$$

 $\Delta L_{DE} = \alpha * L_{DE} * (T_{sat} - T_{amb}) = 0.0149 * 30 * (147.76 - 22) = 56.2147[mm]$

Longitudes necesarias para auto compensación

$$10.5 = \frac{0.9369 * 20000}{L_{AB} * 10^3} * \frac{3\left(\frac{73}{2}\right)}{L_{AB} * 10^3} = 0.44212[m]$$

$$10.5 = \frac{(6.5550 + 2.6233) * 20000}{L_{BC} * 10^3} * \frac{3\left(\frac{73}{2}\right)}{L_{BC} * 10^3} = 0.9124[m]$$

$$10.5 = \frac{0.9369 * 20000}{L_{CD} * 10^3} * \frac{3\left(\frac{73}{2}\right)}{L_{CD} * 10^3} = 0.44212[m]$$

Esfuerzos internos provocados por la dilatación

$$\sigma_{AB} = \frac{0.9369 * 20000 * 3\left(\frac{73}{2}\right)}{(5.5 * 10^3)^2} = 0.0678 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$
$$\sigma_{BC} = \frac{6.5550 + 2.6233 * 20000 * 3\left(\frac{73}{2}\right)}{(1 * 10^3)^2} = 8.6104 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$
$$\sigma_{CD} = \frac{0.9369 * 20000 * 3\left(\frac{73}{2}\right)}{(2.8 * 10^3)^2} = 0.2617 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

Diseño del sistema de auto compensación para el tramo C2-D2 de la tubería TS2

Direction del vapor	•
Punto figo	L
Punto guía	

Selección de compensadores

Para segmento D2-E2 $\Delta L = 56.2147 \text{ mm}$

Selección preliminar PN16

DN80 mm C=70mm

$$16 * 0.75 = 12 > 4.41$$
 [bar]

No es suficiente

Se selecciono dos compensadores de C=45 mm

2 * 45 * 0.777 = 69.93 < 56.2147 [mm]

Esfuerzos en F1-G1 compensadas

Los datos técnicos del compensador se encuentran en el Anexo 32

$$\begin{split} F_i &= \frac{1}{2} * 8 * 28.1073 = 112.4292 \ [kg] \\ F_j &= 7.86 * \frac{\pi}{4} * 6.268^2 = 242.5327 \ [kg] \\ F_T &= 112.4292 + 242.5327 = 354.9619 \ [kg] \\ \sigma &= \frac{354.9619}{\frac{\pi}{4} * 62.68^2} = 0.1150 * 2 = 0.2007 \left[\frac{kg}{mm^2}\right] < \sigma adm \end{split}$$

Cálculo del análisis de flexibilidad el TS3

Dilataciones individuales

$$\Delta L_{AB} = \alpha * L_{AB} * (T_{sat} - T_{amb}) = 0.0149 * 0.9 * (134.68 - 22) = 1.5019 \text{ [mm]}$$

$$\Delta L_{ABz} = 0.7509 \text{ [mm]} \qquad \Delta L_{AB-z} = 0.7509 \text{ [mm]}$$

$$\Delta L_{BC} = \alpha * L_{BC} * (T_{sat} - T_{amb}) = 0.0149 * 1 * (134.68 - 22) = 1.6789 \text{ [mm]}$$

$$\Delta L_{BCy} = 0.8395 \text{ [mm]} \qquad \Delta L_{BC-y} = 0.8395 \text{ [mm]}$$

$$\Delta L_{CD} = \alpha * L_{CD} * (T_{sat} - T_{amb}) = 0.0149 * 2.6 * (134.68 - 22) = 4.3652 \text{ [mm]}$$

$$\Delta L_{CDx} = 2.1826 \text{ [mm]} \qquad \Delta L_{BC-x} = 2.1826 \text{ [mm]}$$

 $\Delta L_{DE} = \alpha * L_{DE} * (T_{sat} - T_{amb}) = 0.0149 * 32 * (134.68 - 22) = 50.3579[mm]$

Longitud necesaria para adsorber la dilatación

$$10.5 = \frac{0.8395 * 20000}{L_{AB} * 10^3} * \frac{3\left(\frac{73}{2}\right)}{L_{AB} * 10^3} = 0.4185[m]$$

$$10.5 = \frac{(0.7509 + 2.1826) * 20000}{L_{BC} * 10^3} * \frac{3\left(\frac{73}{2}\right)}{L_{BC} * 10^3} = 0.77517[m]$$
$$10.5 = \frac{0.8395 * 20000}{L_{CD} * 10^3} * \frac{3\left(\frac{73}{2}\right)}{L_{CD} * 10^3} = 0.4185[m]$$

Esfuerzos internos provocados por la dilatación

$$\sigma_{AB} = \frac{0.8395 * 20000 * 3\left(\frac{73}{2}\right)}{(0.9 * 10^3)^2} = 2.2697 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$
$$\sigma_{BC} = \frac{(0.7509 + 2.1826) * 20000 * 3\left(\frac{73}{2}\right)}{(1 * 10^3)^2} = 7.9313 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$
$$\sigma_{CD} = \frac{0.8395 * 20000 * 3\left(\frac{73}{2}\right)}{(2.6 * 10^3)^2} = 0.2719 \left[\frac{\text{kg}}{\text{mm}^2}\right]$$

Selección de compensadores

Para segmento C3-D3 $\Delta L = 50.3579 mm$

Selección preliminar PN16

DN80 mm C=45mm

$$16 * 0.75 = 12 > 3.03$$
 [bar]

No es suficiente Se seleccionó dos compensadores de C=50 mm

CT = 34.965 * 2 = 69.93 [mm]

Esfuerzos en F1-G1 compensadas

Los datos técnicos del compensador se encuentran en el Anexo 32

$$F_{i} = \frac{1}{2} * 8 * 25.1789 = 100.7158 \text{ [kg]}$$

$$F_{j} = 7.86 * \frac{\pi}{4} * 6.268^{2} = 242.5327 \text{ [kg]}$$

$$F_{T} = 100.7158 + 242.5327 = 343.2485 \text{ [kg]}$$

$$\sigma = \frac{343.2485}{\frac{\pi}{4} * 62.68^{2}} = 0.1112 * 2 = 0.2224 \left[\frac{\text{kg}}{\text{mm}^{2}}\right] < \sigma \text{adm}$$

Diseño del sistema de auto compensación para el tramo C2-D2 de la tubería TS3

Dirección del vaporPunto figoPunto guía

Formación de condensado

Formación de condensado por puesta en macha

	TS1	TS2	TS3
Longitud	41.6	40.8	36.5
No. De codos R.L.	10	10	10
L _{equiv.} codos90°	1.2 m	1.2 m	1.2 m
L _{equiv.} V. Compuerta	0.3 m	0.3 m	0.3 m
DN tubería	2.5"	2.5"	2.5"
Presión	100 psi	50 psi	30 psi
Peso de tubería (kg/m)	8.63	8.63	8.63
Peso de codo 90° R.L (kg)	1.33	1.33	1.33
Peso de V. Compuerta (kg)	26	26	26
Temperatura vapor	164.34 °C	138.33 °C	121.28 °C
h _{fg} (kj/kg)	2067.76	2149.24	2198.52
Emotividad de calor (W/m)		30.7661 (W/m)

De los datos que se encuentran en los anexos 18, 21, 24, 25, 26.

En las tuberías secundarias

$$Q = \frac{398.308 \times (164.34 - 21) \times 0.49 \times 60}{2067.76 \times 30} = 27.0590 \text{ kg/h}$$

Para selección de la trampa se multiplica por un F.S. 3

TS1 Q = 81.1771 kg/h

TS2	Q = 62.8198 kg/	h
102	Q = 02.0170 Kg/	I

TS3 Q = 47.5112 kg/h

Formación de condensado por radiación

$$Q = \frac{30.7661 \times 53.9 \times 0.9}{2067.76} = 0.7217 \,\text{kg/h}$$

Para selección de la trampa se multiplica por un F.S. 3

En las tuberías secundarias

TS1	Q = 2.1653	kg/h
-----	------------	------

TS2 Q = 2.0523 kg/h

TS3 Q = 1.8438 kg/h

Trampa de vapor selecciona para cada tubería: Trampa de vapor de cubeta invertida Serie 1800, modelo 1810.

Selección de trampa de vapor

*NOTA: Debido a que el orificio está localizado en la parte superior, las tram-The superior, a que el ornico esta localizado en la parte superior, las tram-pas de cubeta invertida manejan mejor la suciedad y la escoria que otras trampas. Sin embargo, en aplicaciones donde existen condiciones extremas de suciedad, debe observarse sumo cuidado en el uso de todos los tipos de trampas de orifi-cios restringidos y capacidad reducida.

Capacidad del Modelo 1822

Orificios disponibles únicamente con conexiones de 3/4.

Disparador por Baja Presión para Protección contra el Congelamiento En general, una trampa Armstrong apropiadamente seleccionada e instalada no se congelará, siempre y cuando llegue vapor a ella. Si la línea de alimentación ha sido interrumpida, debe instalarse un disparador para drenar la trampa auto-máticamente. Hay un disparador en acero inoxidable disponible para los Mo-delos 1811 y 1822.

Condiciones Máximas de Operación Presión: 600 lb/pulg² m. (41 bar m.) Temperatura: 350°F (177°C)

insu-Pak™

Ahora puede aislar térmicamente las trampas en línea sin complicar el mantenimiento regular de las mismas. Insu-Pak, un simple paquete de aislamiento térmico reusable, reduce el tiempo y el costo de aislamiento: se coloca y se retira rápida y fácilmente. El Insu-Pak evita que la trampa se enfrie cuando se usa con un colector de distribución múltiple diseñado adecuadamente. Esta opción está diseñada para ser usada con trampas Modelos 1810 v 1811.

Conexiones para prueba disponibles para verificación visual de operación de trampas en los Modelos 1811 y 1822.

Armstrong[®]

Fuente: Guía para la conservación de vapor en el drenado de condensados

Armstrong (1998).

Sostenibilidad del proceso

Componentes con posibles problemas y mantenimiento preventivo

Componente	Problemas	Componente	Problemas	
	Válvula no corta el paso		No deja pasar el fluido	
Válvula de corte	Válvula con fuga en conexión roscada	Filtro de vanor	Deja pasar suciedad u otras partículas	
tipo compuerta	Fuga en el vástago	en Y	Fuga entre la tapadera y el cuerpo del filtro	
	Fuga en el cuerpo de válvula		Fuga en la conexión roscada	
	Fuga en el vástago de la válvula	Accesorios de	Fuga en cuerpos del accesorio	
Válvula de bola	Fugas en la conexión roscada	tubería	Fuga en la conexión roscada	
	Válvula no corta el paso del flujo por causa del asiento		Presión de salida baja o nula	
Válvula de retención o anti	Válvula no corta el paso del flujo por causa de la clapeta	reguladora de	Presión de salida demasiada alta	
retornó	Fuga en conexión con bridas	presion	Fuga en conexión roscada	
	Fugas entre la tapadera y el cuerpo de la válvula		Presión de salida baja o nula	
Separador de	No retiene la humedad		Fuga en la conexión roscada	
humedad	Fugas en conexión con brida	Manómetro	Fuga en el cuerpo	
	No descarga al condensado]	Sin funcionamiento	

Fuente: Elaboración propia

DESCRIPCION	Diario	1 mes	3 meses
Línea principal			
Presión de vapor en la salida de caldera	Х		
Revisar que las válvulas de compuerta se encuentren totalmente abiertas o cerradas.	Х		
Revisar fugas existentes en las conexiones de válvula de compuerta	Х		
Realizar limpieza externa de válvula compuerta		Х	
Mantenimiento de válvula de compuerta			Х
Revisar si existen fugas en las conexiones de válvula Check.	Х		
Revisar si existen fugas en la tapa de válvula Check.	Х		
Realizar limpieza externa de válvula Check		Х	
Mantenimiento de válvula Check			Х
Revisar fugas existentes en las conexiones tubería y codo	Х		
Revisar el aislamiento por erosión o desprendimiento		Х	
Línea secundaria- alta presión			
Verificar presión de vapor en el manifold	Х		
Revisar que las válvulas de compuerta se encuentren totalmente abiertas o cerradas.	Х		
Revisar fugas existentes en las conexiones de válvula de compuerta	Х		
Realizar limpieza externa de válvula compuerta		Х	
Mantenimiento de válvula de compuerta			Х
Revisar el aislamiento por erosión o desprendimiento		Х	
Revisar fugas existentes en las conexiones tubería y codo	Х		
Estación reductora de presión			
Limpieza externa de separador de humedad	Х		
Revisar fugas existentes en las conexiones del separador de humedad	Х		
Comprobar que el área de accionamiento de la palanca se encuentre libre.	х		
Revisar que las válvulas de bola se encuentren totalmente abiertas o cerradas.	х		
Revisar fugas existentes en las conexiones o vástago.	х		
Revisar la existencia de fugas en las conexiones roscadas y en el cuerpo.	х		
Limpiar regularmente el manómetro, así evitar lecturas erróneas.	x		
Revisar funcionamiento del manómetro con el corte de la presión.		х	

Fuente: Elaboración propia

DESCRIPCION	Diario	1 Mes	3 meses
Estación reductora de presión			
Revisar fugas existentes en las conexiones, tapa y cuerpo del filtro	Х		
Limpiar regularmente el tamiz del filtro, así evitar obstrucciones.	Х		
Limpiar regularmente la salida de purga si no tiene tubería de descarga de condensado.		Х	
Revisar la existencia de fugas en las conexiones roscadas y en el cuerpo en válvula reductora de presión	Х		
Realizar limpieza de recamara de presión, pistón piloto y diafragmas en válvula reductora de presión			Х
Realizar limpieza de partículas extrañas en el mecanismo de regulación y el cuerpo de válvula reductora de presión		х	
Revisar el estado de los diafragmas y resortes.			Х
Revisar regularmente fugas en las conexiones roscadas o de bridas codos y tee's	Х		
Mantener limpias de polvo o partículas extrañas, evitando la formación de óxido en codos y tee's		х	
Revisar el aislamiento por erosión o desprendimiento		Х	
Revisar que las válvulas Bypass se encuentren totalmente abiertas o cerradas.	Х		
Revisar fugas existentes en las conexiones de válvula de Bypass	Х		
Realizar limpieza externa de válvula Bypass		Х	
Mantenimiento de válvula de Bypass			Х
Tubería secundaria – baja presión			
Revisar el aislamiento por erosión o desprendimiento		Х	
Revisar fugas existentes en las conexiones tubería y codo	Х		
Limpieza de partículas extrañas de fuelle de dilatación		Х	
Revisar fugas existentes en las conexiones de trampa de vapor	Х		
Limpieza de polvo de trampa de vapor		Х	
Mantenimiento de trampa de vapor			Х

Fuente: Elaboración propia

Dimensiones de la efectividad operacional del nuevo diseño del sistema de transporte de vapor saturado.

Calor perdido y rendimiento térmico en la red aislada

Perdidas por aislamiento = 5.0469, kW

Rendimiento del aislamiento=99.65%

Perdidas fijas de calor: Las perdidas fijas son de orden del 2 % del calor inicial \dot{Q}_T

$$\dot{Q}_{T} = \frac{1879.2}{3600} * 2762.1 = 1441.8162 \text{ [kW]}$$

$$\dot{Q}_{F} = \dot{Q}_{T} * 2 \% = 1441.8162 * 0.02 = 28.8363 \text{ [kW]}$$

Perdidas de calor en válvulas: Las pérdidas fijas son de orden del 0.5% del calor inicial $\dot{Q}_{\rm T}$

$$\dot{Q}_{v} = \dot{Q}_{T} * 0.5\% = (1441.8162 * 0.005) = 7.2090 \text{ [kW]}$$

El calor perdido total es la sumatoria de las pérdidas de calor calculadas

$$\dot{Q}_{TP} = 5.0469 + 28.8363 + 7.2090 = 41.0922 \text{ [kW]}$$

El rendimiento térmico total se determina mediante la ecuación 15

$$\eta = 1 - \frac{41.0922}{1441.8162} * 100 = 97.5 \%$$

Calor perdido y rendimiento térmico en tuberías desnudas

$$Q_p = h * S * (Ep - E\infty)$$

h = 9.6 + 6.96 * $\sqrt{6.2}$ = 26.9004 [W/m² * K]
 $Q_p = 26.9004 * 58.8854 * (164.34 - 20) = 228.6404$ [kW]

Perdidas de calor en válvulas no aisladas

N=número de válvulas

$$\dot{Q}_{v} = \dot{Q}_{T} * 0.5\% * N = (1441.8162 * 0.005) * 7 = 50.4635 [kW]$$

El rendimiento térmico total se determina mediante la ecuación 15

$$\eta = 1 - \frac{28.8363 + 228.6404 + 50.6404}{1441.8162} * 100 = 74.46\%$$

Costos por perdidas de calor

Costos por perdidas en el nuevo diseño

PCI=47750, kJ/kg

Costo del combustible=2.24, S./kJ

Pérdidas totales de calor=41.0922, kW

Costo unitario del combustible

Cunitario =
$$\frac{\text{Cble}}{\text{PCI}} = \frac{2.012}{47750} = 4.21 \times 10^{-5}$$

Costo por perdidas de calor al año

Tiempo de operación: 6205 horas/año

Costo por perdidas de calor en el aislante al año

$$CT_p = 5.0469 * (4.21 * 10^{-5}) * 6205 * 3600 = 4746.2551 [S./año]$$

Costo total por perdidas de calor al año

$$CT_p = 41.0922 * (4.21 * 10^{-5}) * 6205 * 3600 = 38644.3294 [S./año]$$

Costo total por perdidas de calor en tubería desnuda al año

$$CT_p = 308.0771 * (4.21 * 10^{-5}) * 6205 * 3600 = 289724$$
 [S./año]

Costos por perdidas en el estado actual

Costo total por perdidas de calor en la red de transporte de vapor del Hospital Virgen de la Puerta

$$CT_p = 73.2419 * (4.21 * 10^{-5}) * 6205 * 3600 = 68878.8653 [S./año]$$
Velocidades recomendadas para el vapor de agua

Tipo de vapor	Práctica Americana m/s	Práctica Francesam/s
Vapor sobrecalentado	40 a 75	30 a 35
Vapor saturado	25 a 35	20 a 25
Vapor de escape	30 a 45	20 a 30
Vapor de los evaporadores	35 a 50	25 a 30
Vapor al vacío	45 a 60	40 a 50

Fuente: Perdidas de presión en tuberías de vapor, 2007

	VELOC	IDAD
NATURALEZA DEL SERVICIO	pies/min	m/s
Calentadores de aire	1000 - 5000	5 - 25
Aire comprimido	1500 - 2000	8 - 10
Ducto de tiro forzado	1500 - 3600	8 - 18
Ducto de ventilación	1000 - 3000	5 -15
Petróleo crudo (DB-5): 6" a 30" diám.	60 - 360	0,3 - 1,8
Chimeneas	2000 - 5000	10 - 25
Vapor Saturado (BP): 50 PSIG	4000 - 6000	20 - 30
Vapor Saturado (AP): 50 a 600 PSIG	6000 a 10000	30 - 50
Vapor Sobrecalentado: 200 PSIG o más	10000 a 15000	50 - 75
Vapor de escape - vacío	20000 - 40000	100 - 200
Agua en economizadores	150 - 300	0,8 - 1,5
Agua en general	500 - 750	2,5 - 4

Fuente: Evaluación de la red de distribución de vapor en el Hospital

Regional Ramiro Priale de Huancayo, 2018.

Tam Nomin Tubo	año Ial del (NPS)	Diámetro Exterior (pulgada)							Tubo	os Cédu	ıla / Pij	pe Sche	edule						
NPS	DN	OD	SCH 5s	SCH IOs	SCH 10	SCH 20	SCH 30	SCH 40s	SCH STD	SCH 40	SCH 60	SCH 80s	SCH XS	SCH 80	SCH 100	SCH 120	SCH 140	SCH 160	SCH XXS
1/8	6	0.405		1.240				0.068	0.068	0.068		0.095	0.095	0.095					
1/4	8	0.540		1.650				0.088	0.088	0.088		0.119	0.119	0.119					
3/8	10	0.675		1.650		i i	1	0.091	0.091	0.091		0.126	0.126	0.126					
1/2	15	0.840	0.065	2.110				0.109	0.109	0.109		0.147	0.147	0.147				0.188	0.294
3/4	20	1.050	0.065	2.110				0.113	0.113	0.113		0.154	0.154	0.154				0.219	0.308
1	25	1.315	0.065	2.770				0.133	0.133	0.133		0.179	0.179	0.179				0.250	0.358
1 1/4	32	1.660	0.065	2.770				0.140	0.140	0.140		0.191	0.191	0.191				0.250	0.382
1 1/2	40	1.900	0.065	2.770				0.145	0.145	0.145		0.200	0.200	0.200		I I		0.281	0.400
2	50	2.375	0.065	2.770				0.154	0.154	0.154		0.218	0.218	0.218				0.344	0.436
2 1/2	65	2.875	0.083	3.050				0.203	0.203	0.203		0.276	0.276	0.276				0.375	0.552
3	80	3.500	0.083	3.050				0.216	0.216	0.216		0.300	0.300	0.300				0.438	0.600
3 1/2	90	4.000	0.083	3.050				0.226	0.226	0.226		0.318	0.318	0.318					
4	100	4.500	0.083	3.050				0.237	0.237	0.237		0.337	0.337	0.337		0.438		0.531	0.674
5	125	5.563	0.109	3.400				0.258	0.258	0.258		0.375	0.375	0.375		0.500		0.625	0.750
6	150	6.625	0.109	3.400				0.280	0.280	0.280		0.432	0.432	0.432		0.562		0.719	0.864
8	200	8.625	0.109	3.760		0.250	0.277	0.322	0.322	0.322	0.406	0.500	0.500	0.500	0.594	0.719	0.812	0.906	0.875
10	250	10.750	0.134	4.190		0.250	0.307	0.365	0.365	0.365	0.500	0.500	0.500	0.594	0.719	0.844	1.000	1.125	1.000
12	300	12.750	0.156	4.570		0.250	0.330	0.375	0.375	0.406	0.562	0.500	0.500	0.688	0.844	1.000	1.125	1.312	1.000
14	350	14.000	0.156	4.780	0.250	0.312	0.375		0.375	0.438	0.594		0.500	0.750	0.938	1.094	1.250	1.406	
16	400	16.000	0.165	4.780	0.250	0.312	0.375		0.375	0.500	0.656		0.500	0.844	1.031	1.219	1.438	1.594	
18	450	18.000	0.165	4.780	0.250	0.312	0.438		0.375	0.562	0.750		0.500	0.938	1.156	1.375	1.562	1.781	
20	500	20.000	0.188	5.540	0.250	0.375	0.500		0.375	0.594	0.812		0.500	1.031	1.281	1.500	1.750	1.969	
22		22.000	0.188	5.540	0.250	0.375	0.500		0.375		0.875		0.500	1.125	1.375	1.625	1.875	2.125	
24	600	24.000	0.218	6.350	0.250	0.375	0.562		0.375	0.688	0.969		0.500	1.219	1.531	1.812	2.062	2.344	
26		26.000			0.312	0.500	0.000		0.375				0.500						
28	700	28.000			0.312	0.500	0.625		0.375				0.500						
30		30.000	0.250	7.920	0.312	0.500	0.625		0.375				0.500						
32	800	32.000			0.312	0.500	0.625		0.375	0.688			0.500						
34		34.000			0.312	0.500	0.625		0.375	0.688			0.500						
36	900	36.000			0.312	0.500	0.625		0.375	0.750			0.500						
38		38.000							0.375				0.500						
40	1000	40.000						0.375											
42		42.000				0.500			0.375	0.750			0.500						
44	1100	44.000							0.375				0.500						
46		46.000							0.375				0.500						
48	1200	48.000							0.375			0.500							

Dimensiones de tubos de acero ASTM A106 - A53

Fuente: Catalogo General Tubacero S.A.

Diámetro	Nominal	Diámetro	Exterior	Espesor	de Pared	Identi	ficación	Peso del Tubo		ACTM A 52 PDECION DE PDUEDA			
NPS	DN	R	eal	Pulgadas	Milímetros			Peso de	1 Tubo	AST	A A53 PRES	ION DE PI	CUEBA
Pulgadas	Milimetros			. ungarante		Weight	Schedule			Gra	do A	Gra	do B
in.	mm.	(in.)	mm.	(in.)	(mm.)	Class		Ib/pie	kg/m	psi	Kg/cm2	psi	Kg/cm2
1/2	15	0.840	21.2	0.109	2.77	STD	40	0.85	1.27	700	49	700	49
1/2	15	0.840	21.5	0.147	3.73	XS	80	1.09	1.62	850	60	850	60
	1	1		0.113	2.87	STD	40	1.13	1.69	700	49	700	49
3/4	20	1,050	26.7	0.154	3.01	XS	80	1.47	2.20	850	60	850	60
				0.1.04	5.71			1.47	2.20	0.00	00	0.70	00
1	25	1.315	33.4	0.133	3.38	STD	40	1.68	2.50	700	49	700	49
	1000	0010000	1280349	0.179	4.55	XS	80	2.17	3.24	850	60	850	60
1.10	22	1.660	42.2	0.140	3.56	STD	40	2.27	3.39	1200	84	1300	91
1-1/4	32	1.000	42.2	0.191	4.85	XS	80	3.00	4.47	1800	127	1900	134
	1			0.145	3.69	STD	40	2.72	1.05	1200	84	1300	01
1-1/2	40	1.900	48.3	0.145	5.08	VS	80	3.63	5.41	1200	127	1000	134
	<u></u>			0.200	5.06	1.0	00	5.05	3.41	1000	127	1900	1.54
2	50	2.375	60.3	0.154	3.91	STD	40	3.65	5.44	2300	162	2500	176
				0.218	5.54	XS	80	5.02	7.48	2500	176	2500	176
	1			0.203	5.16	STD	40	5.79	8.63	2500	176	2500	176
		0.076		0.276	7.01	XS	80	7.66	11.41	2500	176	2500	176
2-1/2	60	2,875	13	0.375	9.52		160			2500	176	2500	176
				0.552	14.02	XXS				2500	176	2500	176
	<u> </u>	-		0.125	2.19			4.61	6.72	1200	01	1500	105
				0.125	3.16			4.51	0.72	1290	91	1500	103
	1			0.150	3.90		•	5.57	0.02	1000	112	2260	150
3	80	3 500	88.9	0.166	5.40	STD	40	7.58	11.20	2220	156	2200	139
ೆ	00	arianony.	00,5	0.250	6.35	310	40	868	12.03	2500	176	2500	176
	1			0.230	7.14			9.66	14.40	2500	176	2500	176
	1			0.201	7.62	YS	80	10.25	15.27	2500	176	2500	176
	<u></u>			0.500	7.02	~~	80	10.20	15.27	2,00	170	4.000	170
				0.125	3.18	- 55		5.84	8.71	1000	70	1170	82
				0.156	3.96		10	7.24	10.78	1250	88	1460	103
	1			0.188	4.78			8.66	12.91	1500	105	1750	123
	1			0.219	5.56	1		10.01	14.91	1750	123	2040	143
	1			0.237	6.02	STD	40	10.79	16.07	1900	134	2210	155
4	100	4,500	114.3	0.250	6.35	1	-	11.35	16.90	2000	141	2330	164
	1000			0.281	7.14	<u></u>		12.66	18.87	2250	158	2620	184
	1			0.312	7.92			13.98	20.78	2500	176	2800	197
	1			0.337	8.56	XS	80	14.98	22.32	2700	190	2800	197
	1			0.438	11.13		120	19.00	28.32	2800	197	2800	197
	1			0.531	13.49	1/1/0	160	22.51	35.54	2800	197	2800	197
				0.674	17.12	AXS	•	27.54	41.03	2800	197	2800	197
				0.188	4.78	12		10.79	16.09	1220	86	1420	100
				0.219	5.56			12.50	18.61	1420	100	1650	116
25	200025	0.0000	100000000	0.258	6,55	STD	40	14.62	21.77	1670	117	1950	137
5	125	5.563	141,3	0.281	7.14	- 25		15.85	23.62	1820	128	2120	149
	1			0.312	7.92	14		17.50	26.05	2020	142	2360	166
	1			0.344	8.74	- 3	•	19.17	28.57	2230	157	2600	183
				0.375	9.52	XS	80	20.78	30.94	2430	171	2800	197
				0.188	4.78	- 24		12.92	19.27	1020	72	1190	84
				0.219	5.56	18		14.98	22.31	1190	84	1390	98
				0.250	6.35	14		17.02	25.36	1360	96	1580	111
				0.280	7.11	STD	40	18.97	28.26	1520	107	1780	125
				0.312	7.92			21.04	31.32	1700	120	1980	139
6	150	6.625	168,3	0.344	8.74	1.1		23.08	34.39	1870	131	2180	153
				0.375	9.52	24	•	25.02	37.28	2040	143	2380	167
				0.432	10.97	XS	80	28.57	42.56	2350	165	2740	193
				0.562	14.27		120	36.39	54.20	2800	197	2800	197
				0.719	18.26	1.54	160	45.35	67.56	2800	197	2800	197
	L			0.864	21.95	XXS		53.16	79.22	2800	197	2800	197

Especificaciones de tubos ASTM A53

Fuente: Catálogo General Vemacero S.A.

Esfuerzos admisibles en tuberías según especificación ASTM

Material		Fatigas	admisible	s en Kg/c	m2, hast	a las sigu	ientes ter	mperatur	as, °C	
	Especificación ASTM	65°	232°	316°	399°	427°	482°	538°	566*	593°
Acero sin costura:				-						-
Grado A, al Si	A-106	840	840	840	749	630	350			
Grado B, al Si	A-106	1050	1050	1050	905	760	350			
Grado A, al Si	A-53	840	840	\$40	749	630	350			
Grado B, al Si	A-53	1050	1050	1050	905	760	350			
Acero soldado por fusión eléctrica	,									
Grado A, al Si	A-155				530	480	353	126		
Grado B, al Si	A-155				567	522	353	126	•	
Grado C, al Si	A-155				600	557	353	126		
Acero soldado por resistencia eléctrica:										
Grado A	A-135	715	627	585	400					
Grado B	A-135	890	785	735	592					
Hierro forjado con soldadura a recubrimiento	A-72	560	495	460	385					
Hierro forjado con soldadura al tope	A-72	, 420	368	343	290					
Acero con soldadura a recubrimiento	A-53	660	570	530	437					
Acero con soldadura al tope.	A-53	472	417	390	330					
Acero al cromo (1 a 1,5) molibdeno (0,5)	A-158 Grado P-II			1		1050	920	545	385	280
Acero al cromo (2 a 2,5) molibdeno (1) sin costura	A-213 Grado T-22					1050	920	545	407	295

IERZOS ADMISIBLES EN TUBERIAS DE NORMALIZACIÓN AMERICANA EN FUNCIÓN DE LA TEMPERATURA

No debe usarse ningún tubo con temperatura superior a la indicada para la tensión de trabajo. —
Para temperaturas intermedias pueden deducirse las fatigas por interpolación. —
Extracto del "Code for pressure piping" de lá A. S. A.

Fuente: Código para tuberías de presión de la A.S.A

Propiedades Mecánicas de tuberia de acero al carbono ASTM A53

			13	Chemical (Composition	ł				
Constraints		1		.	iviax, %				1	
Grade	Carbon	Manganese	Phosphorus	Sulfur	Copper	Nickel	Chromium	Molybdenum	Vanadium	
			-	Type S (sea	amless pipe)		**			
Grade A	0.25	0.95	0.05	0.045	0.4	0.4	0.4	0.15	0.08	
Grade B	0.3	1.2	0.05	0.045	0.4	0.4	0.4	0.15	0.08	
			Type E	(electric-r	esistance-w	elded)				
Grade A	0.25	0.95	0.05	0.045	0.4	0.4	0.4	0.15	0.08	
Grade B	0.3	1.2	0.05	0.045	0.4	0.4	0.4	0.15	0.08	
			Тур	e F (furnad	e-welded pi	pe)				
Grade A	0.3	1.2	0.05	0.045	0.4	0.4	0.4	0.15	0.08	
_			- 7		1.5					
				Mechanica	Il Properties					
	S	trength			Grade A			Grade B		
T	ensile stren	gth, min, psi [l	MPa]		48 000 [330]	60 000 [415]			
	Vield streng	th. min. psi [N	1Pal		30 000 [205	1		35 000 [240]		

ASTM A53 Grade A & B Steel Pipe Chemical Composition and Mechanical Properties

Elongation in 2 in. or 50 mm

e = 625 000 [1940] A^{0.2}/U^{0.9}

OCTAL

www.octalsteel.com

Fuente: Propiedades mecánicas de ASTM A53, Octalacero

Propiedades termofílicas de solidos metálicos

Propiedades termofísicas de sólidos metálicos	
---	--

	ρ	c _p	k	$\alpha \cdot 10^{6}$
Descripción	(kg/m^3)	(J/kg·K)	$(W/m \cdot K)$	(m^2/s)
Acero puro	7870	447	80.2	23.1
Acero al carbono	7854	434	60.5	17.7
Acero al carbono-silicio	7817	446	51.9	14.9
Acero al carbono-Manganeso-silicio	8131	434	41.0	11.6
Acero con cromo (bajo)	7822	444	37.7	10.9
Acero inoxidable, AISI 302	8055	480	15.1	3.9
Acero inoxidable, AISI 304	7900	477	14.9	3.9
Acero inoxidable, AISI 316	8238	468	13.4	3.5
Acero inoxidable, AISI 347	7978	480	14.2	3.7
Aluminio puro	2702	903	237.0	97.1
Aluminio, aleación 2024-T6	2770	875	177.0	73.0
Aluminio, aleación 195, vaciado	2790	883	168.0	68.2
Armco (99.75% puro)	7870	447	72.7	20.7
Berilio	1850	1825	200.0	59.2
Bismuto	9780	122	7.86	6.6
Boro	2500	1107	27.0	9.8
Cadmio	8650	231	96.8	48.4
Cinc	7140	389	116.0	41.8
Circonio	6570	278	22.7	12.4
Cromo	7160	449	93.7	29.1
Cobalto	8862	421	99.2	26.6
Cobre puro	8933	385	401.0	117.0
Bronce comercial (90% Cu, 10% Al)	8800	420	52.0	14.0
Bronce fosforoso (89% Cu, 11% Sn)	8780	355	54.0	17.0
Latón (70% Cu, 30% Zn)	8530	380	110.0	33.9
Constantan (55% Cu, 45% Ni)	8920	384	23.0	6.7
Estaño	7310	227	66.6	40.1
Germanio	5360	322	59.9	34.7
Iridio	22500	130	147.0	50.3
Magnesio	1740	1024	156.0	87.6
Molibdeno	10240	251	138.0	53.7
Níquel puro	8900	444	90.7	23.0
Nicromio (80% Ni, 20% Cr)	8400	420	12.0	3.4
Inconel X-750	8510	439	11.7	3.1
Niobio	8570	265	53.7	23.6
Oro	19300	129	317.0	127.0
Paladio	12020	244	71.8	24.5
Plata	10500	235	429.0	174.0
Platino puro	21450	133	71.6	25.1
Platino, aleación (60% Pt, 40% Rh)	16630	162	47.0	17.4
Plomo	11340	129	35.3	24.1
Renio	21100	136	47.9	16.7
Rodio	12450	243	150.0	49.6
Silicio	2330	712	148.0	89.2
Tantalio	16600	140	57.5	24.7
Titanio	4500	522	21.9	9.3
Torio	11700	118	54.0	39.1
Tungsteno	19300	132	174.0	68.3
Uranio	19070	116	27.6	12.5
Vanadio	6100	489	30.7	10.3

Fuente: Frank P. Incropera y David P. De Witt

Presiones máximas permitidas para tubos al carbono ASTM A106-A53

Tubos	de acero al o	carbor	no sir	n costura ASTM	A106, A	API 5L y	ASTM	A53 – (Clasifica	acione	s de p	resión	
				Presión má	áxima pe	rmitida	(kPa)						
Mec	lida nominal			Espesor de			Te	emperatu	ura (°C)				
				pared	-67	205	260	350	370	400	430 ¹⁾	450	
Pulg.	(mm)	Sche	dule	(mm)	Tensión máxima permitida (kPa)								
-					1E+05	1E+05	1E+05	1E+05	1E+05	89570	74412	59943	
		STD	40	2.77	34416	34416	32528	29255	28910	22372	18589	14972	
1/01	15	XS	80	3.73	48092	48092	45466	40878	40396	31260	25969	20918	
1/2**	15		160	4.78	62830	62830	59378	53404	52777	40837	33929	27333	
		XXS		7.47	98245	98245	92836	83507	82522	63857	53053	42739	
		STD	40	2.87	28070	28070	26526	23860	23578	18245	15158	12209	
0/41	00	XS	80	3.91	39418	39418	37247	33506	33106	25617	21283	17142	
3/4	20		160	5.56	58152	58152	54955	49429	48843	37799	31398	25293	
		XXS		7.82	83107	83107	78539	70643	69809	54024	44881	36152	
		STD	40	3.38	26251	26251	24804	22310	22048	17060	14173	11417	
4.0	25	XS	80	4.55	36283	36283	34285	30862	30474	23584	19595	15785	
'	20		160	6.35	52481	52481	49594	44606	44082	34112	28339	22827	
		XXS		9.09	77030	77030	72793	65476	64704	50070	115158 1220 21283 1714 31398 2529 44881 3615 14173 1141 19595 1578 28339 2282 41595 3500 11672 9404 16295 1312 21924 1765 34884 2809 10550 845- 14800 1191 21483 1730	33506	
		STD	40	3.56	21614	21614	20421	18369	18155	14049	11672	9404	
11/41	32	XS	80	4.85	30178	30178	28518	25651	25348	19616	16295	13125	
11/4	02		160	6.35	40596	40596	38364	34505	34099	26389	21924	17659	
		XXS		9.70	64601	64601	61045	54906	54266	41988	34884	28097	
		STD	40	3.68	19444	19444	18375	16529	16329	12636	10550	8454	
11/01	40	XS	80	5.08	27402	27402	25900	23295	23019	17811	14800	11919	
11/2	40		160	7.14	39738	39738	37599	33816	33416	25858	21483	17308	
		XXS		10.16	58779	58799	55547	49966	49374	38205	31742	25569	
		STD	40	3.91	16378	16378	15468	13925	13759	10645	8847	7124	
211	50	XS	80	5.54	23653	23653	22351	20105	19871	15378	12774	10287	
2	50		160	8.74	38866	38866	36731	33037	32652	25266	20987	16908	
		XXS		11.07	50793	50793	48003	43173	42670	33017	27429	22096	
		STD	40	5.16	17914	17914	16929	15227	15048	11644	9674	7793	
21/2"	65	XS	80	7.01	24818	24818	23447	21097	20849	16129	13401	10797	
21/2	05		160	9.53	34615	34615	32714	29420	29076	22503	18693	15055	
		XXS		14.02	53081	53081	50159	45116	44585	34498	28662	23088	
		STD	40	5.49	15558	15558	14969	13222	13063	10108	8399	6766	
2"	80	XS	80	7.62	21986	21968	20780	18693	18472	14290	11871	9563	
0	80		160	11.13	33079	33079	31253	28111	27780	21497	17859	14386	
		XXS		15.24	46976	46976	44392	39928	39459	30536	25369	20436	

Fuente: Código ASME para tuberías de presión, B31. 3.

Tubos	de acero al	carbor	no sir	n costura ASTM	A106, A	API 5L y	ASTM	A53 – (Clasifica	acione	s de pi	resión
				y i	tempera	itura	(10)					
				Presión má	axima pe	rmitida	(kPa)		(0.0)			
Med	ida nominal	-		Espesor de	07	0.05	le	emperatu	ira (°C)	10.0		150
		Schee	dule	pared	-67	205	260	350	370	400	430''	450
Pulg.	(mm)			(mm)	15.05	15.05	ensión n	náxima p	permitida	a (kPa)	74440	500.40
		070	10	0.00	1E+05	1E+05	1E+05	1E+05	1E+05	89570	74412	59943
		SID	40	6.02	13187	13187	12464	11210	11079	8571	7124	5739
411	100	XS	80	8.56	19058	19058	18010	16198	16012	12388	12094	8289
4	100		120	11.13	25190	25190	23805	21407	21159	16371	13601	10995
		VIVO	160	13.49	31019	31019	29310	26368	26058	20160	16750	13208
		XXS	10	17.12	40348	40348	38129	34298	33892	26230	21786	17549
		SID	40	6.55	11561	11561	10921	9825	9708	/510	6243	5038
E 11	105	XS	80	9.53	17060	17060	16122	14503	14331	11093	9212	7421
5	125		120	12.70	23130	23130	21855	19657	19430	15034	12492	10059
			160	15.88	29407	29407	27787	24997	24701	19113	15881	12795
		XXS		19.05	35897	35897	33926	30516	30158	23337	19388	15620
		STD	40	7.11	10550	10550	9928	8924	8819	6828	5370	4568
6''	150	XS	80	10.97	16474	16474	15571	14007	13842	10707	8895	7165
			120	14.27	21745	21745	20553	18448	18265	14138	11747	9460
		XXS	160	18.26	28325	28325	26768	24074	23784	18410	15296	12319
			20	6.35	7138	7138	6745	6063	5994	4637	3852	3100
			30	7.04	7924	7924	7489	6732	6656	5147	4279	3445
		STD	40	8.18	9246	9246	8737	7855	7765	6008	4995	4024
			60	10.31	11741	11741	11093	9977	9860	7627	6339	5105
8''	200	XS	80	12.70	14572	14572	13766	12388	12237	9474	7868	6338
U	200		100	150.9	17452	17452	16488	14834	14655	11341	9426	7593
			120	18.26	21345	21345	20174	18148	17935	13876	11527	9288
			140	20.62	24308	24308	22971	20656	20415	15799	13125	10569
		XXS		22.23	26334	26334	24877	22386	22124	17115	14221	11458
			160	23.01	27340	27340	25838	23240	22964	17769	14765	11892
			20	6.35	5698	5698	5388	4844	4789	3707	3080	2480
			30	7.8	7028	7028	6642	5974	5905	4568	3796	3059
		STD	40	9.27	8385	8385	7923	7131	7048	5450	4527	3652
		XS	60	12.7	11596	11596	10955	9853	9736	7538	6263	5043
10''	250		80	15.09	13863	13863	13098	11781	11644	9012	7483	6028
			100	18.26	16922	16922	15992	14386	14214	10996	9136	7359
			120	21.44	20036	20036	18934	17032	16825	13022	10817	8716
		XXS	140	25.4	23998	23998	16474	20394	20153	15599	12960	10438
			160	28.58	27229	27229	25734	23143	22875	17700	14703	11844

Fuente: Código ASME para tuberías de presión, B31. 3.

Propiedades del vapor saturado

		Volumei I	n específico, n³/kg	E	nergía in kJ/kg	terna, ç		Entalpí kJ/kg	а,	Entropía, kJ/kg · K			
Temp., <i>T</i> °C	Pres. sat., <i>P_{sat}</i> kPa	Líq. sat., v _f	Vapor sat., v _g	Líq. sat., u _f	Evap., <i>u_{fg}</i>	Vapor sat., <i>u_g</i>	Líq. sat., <i>h_f</i>	Evap., h _{fg}	Vapor sat., <i>h_g</i>	Líq. sat., <i>s_f</i>	Evap., <i>s_{fg}</i>	Vapor sat., <i>s</i> g	
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9	0.0000	9.1556	9.1556	
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1	0.0763	8.9487	9.0249	
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2	0.1511	8.7488	8.8999	
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3	0.2245	8.5559	8.7803	
20	2.3392	0.001002	57.762	83.913	2318.4	2402.3	83.915	2453.5	2537.4	0.2965	8.3696	8.6661	
25	3.1698	0.001003	43.340	104.83	2304.3	2409.1	104.83	2441.7	2546.5	0.3672	8.1895	8.5567	
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9	125.74	2429.8	2555.6	0.4368	8.0152	8.4520	
35	5.6291	0.001006	25.205	146.63	2276.0	2422.7	146.64	2417.9	2564.6	0.5051	7.8466	8.3517	
40	7.3851	0.001008	19.515	167.53	2261.9	2429.4	167.53	2406.0	2573.5	0.5724	7.6832	8.2556	
45	9.5953	0.001010	15.251	188.43	2247.7	2436.1	188.44	2394.0	2582.4	0.6386	7.5247	8.1633	
50	12.352	0.001012	12.026	209.33	2233.4	2442.7	209.34	2382.0	2591.3	0.7038	7.3710	8.0748	
55	15.763	0.001015	9.5639	230.24	2219.1	2449.3	230.26	2369.8	2600.1	0.7680	7.2218	7.9898	
60	19.947	0.001017	7.6670	251.16	2204.7	2455.9	251.18	2357.7	2608.8	0.8313	7.0769	7.9082	
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5	0.8937	6.9360	7.8296	
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	0.9551	6.7989	7.7540	
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	1.0158	6.6655	7.6812	
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0	1.0756	6.5355	7.6111	
85	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4	1.1346	6.4089	7.5435	
90	70.183	0.001036	2.3593	376.97	2117.0	2494.0	377.04	2282.5	2659.6	1.1929	6.2853	7.4782	
95	84.609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2269.6	2667.6	1.2504	6.1647	7.4151	
100	101.42	0.001043	1.6720	419.06	2087.0	2506.0	419.17	2256.4	2675.6	1.3072	6.0470	7.3542	
105	120.90	0.001047	1.4186	440.15	2071.8	2511.9	440.28	2243.1	2683.4	1.3634	5.9319	7.2952	
110	143.38	0.001052	1.2094	461.27	2056.4	2517.7	461.42	2229.7	2691.1	1.4188	5.8193	7.2382	
115	169.18	0.001056	1.0360	482.42	2040.9	2523.3	482.59	2216.0	2698.6	1.4737	5.7092	7.1829	
120	198.67	0.001060	0.89133	503.60	2025.3	2528.9	503.81	2202.1	2706.0	1.5279	5.6013	7.1292	
125	232.23	0.001065	0.77012	524.83	2009.5	2534.3	525.07	2188.1	2713.1	1.5816	5.4956	7.0771	
130	270.28	0.001070	0.66808	546.10	1993.4	2539.5	546.38	2173.7	2720.1	1.6346	5.3919	7.0265	
135	313.22	0.001075	0.58179	567.41	1977.3	2544.7	567.75	2159.1	2726.9	1.6872	5.2901	6.9773	
140	361.53	0.001080	0.50850	588.77	1960.9	2549.6	589.16	2144.3	2733.5	1.7392	5.1901	6.9294	
145	415.68	0.001085	0.44600	610.19	1944.2	2554.4	610.64	2129.2	2739.8	1.7908	5.0919	6.8827	
150	476.16	0.001091	0.39248	631.66	1927.4	2559.1	632.18	2113.8	2745.9	1.8418	4.9953	6.8371	
155	543.49	0.001096	0.34648	653.19	1910.3	2563.5	653.79	2098.0	2751.8	1.8924	4.9002	6.7927	
160	618.23	0.001102	0.30680	674.79	1893.0	2567.8	675.47	2082.0	2757.5	1.9426	4.8066	6.7492	
165	700.93	0.001108	0.27244	696.46	1875.4	2571.9	697.24	2065.6	2762.8	1.9923	4.7143	6.7067	
170	792.18	0.001114	0.24260	718.20	1857.5	2575.7	719.08	2048.8	2767.9	2.0417	4.6233	6.6650	
175	892.60	0.001121	0.21659	740.02	1839.4	2579.4	741.02	2031.7	2772.7	2.0906	4.5335	6.6242	
180	1002.8	0.001127	0.19384	761.92	1820.9	2582.8	763.05	2014.2	2777.2	2.1392	4.4448	6.5841	
185	1123.5	0.001134	0.17390	783.91	1802.1	2586.0	785.19	1996.2	2781.4	2.1875	4.3572	6.5447	
190	1255.2	0.001141	0.15636	806.00	1783.0	2589.0	807.43	1977.9	2785.3	2.2355	4.2705	6.5059	
195	1398.8	0.001149	0.14089	828.18	1763.6	2591.7	829.78	1959.0	2788.8	2.2831	4.1847	6.4678	
200	1554.9	0.001157	0.12721	850.46	1743.7	2594.2	852.26	1939.8	2792.0	2.3305	4.0997	6.4302	

Fuente: Termodinámica, Cengel, Y. A., & Boles, M. A. (2015)

Propiedades del aire a 1 atm de presión

Temp. <i>T</i> , °C	Densidad $ ho,~kg/m^3$	Calor específico c_p J/kg · K	Conductividad térmica <i>k</i> , W/m · K	Difusividad térmica α, m²/s	Viscosidad dinámica µ, kg/m · s	Viscosidad cinemática ν, m²/s	Número de Prandtl Pr
-150 -100 -50 -40 -30	2.866 2.038 1.582 1.514 1.451	983 966 999 1002 1004	0.01171 0.01582 0.01979 0.02057 0.02134	$\begin{array}{l} 4.158 \times 10^{-6} \\ 8.036 \times 10^{-6} \\ 1.252 \times 10^{-5} \\ 1.356 \times 10^{-5} \\ 1.465 \times 10^{-5} \end{array}$	$\begin{array}{c} 8.636\times10^{-6}\\ 1.189\times10^{-6}\\ 1.474\times10^{-5}\\ 1.527\times10^{-5}\\ 1.579\times10^{-5} \end{array}$	$\begin{array}{c} 3.013 \times 10^{-6} \\ 5.837 \times 10^{-6} \\ 9.319 \times 10^{-6} \\ 1.008 \times 10^{-5} \\ 1.087 \times 10^{-5} \end{array}$	0.7246 0.7263 0.7440 0.7436 0.7425
-20 -10 0 5 10	1.394 1.341 1.292 1.269 1.246	1005 1006 1006 1006 1006	0.02211 0.02288 0.02364 0.02401 0.02439	$\begin{array}{c} 1.578 \times 10^{-5} \\ 1.696 \times 10^{-5} \\ 1.818 \times 10^{-5} \\ 1.880 \times 10^{-5} \\ 1.944 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.630 \times 10^{-5} \\ 1.680 \times 10^{-5} \\ 1.729 \times 10^{-5} \\ 1.754 \times 10^{-5} \\ 1.778 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.169 \times 10^{-5} \\ 1.252 \times 10^{-5} \\ 1.338 \times 10^{-5} \\ 1.382 \times 10^{-5} \\ 1.426 \times 10^{-5} \end{array}$	0.7408 0.7387 0.7362 0.7350 0.7336
15 20 25 30 35	1.225 1.204 1.184 1.164 1.145	1007 1007 1007 1007 1007	0.02476 0.02514 0.02551 0.02588 0.02625	$\begin{array}{l} 2.009 \times 10^{-5} \\ 2.074 \times 10^{-5} \\ 2.141 \times 10^{-5} \\ 2.208 \times 10^{-5} \\ 2.277 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.802 \times 10^{-5} \\ 1.825 \times 10^{-5} \\ 1.849 \times 10^{-5} \\ 1.872 \times 10^{-5} \\ 1.895 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.470 \times 10^{-5} \\ 1.516 \times 10^{-5} \\ 1.562 \times 10^{-5} \\ 1.608 \times 10^{-5} \\ 1.655 \times 10^{-5} \end{array}$	0.7323 0.7309 0.7296 0.7282 0.7268
40 45 50 60 70	1.127 1.109 1.092 1.059 1.028	1007 1007 1007 1007 1007	0.02662 0.02699 0.02735 0.02808 0.02881	$\begin{array}{c} 2.346 \times 10^{-5} \\ 2.416 \times 10^{-5} \\ 2.487 \times 10^{-5} \\ 2.632 \times 10^{-5} \\ 2.780 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.918 \times 10^{-5} \\ 1.941 \times 10^{-5} \\ 1.963 \times 10^{-5} \\ 2.008 \times 10^{-5} \\ 2.052 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.702\times10^{-5}\\ 1.750\times10^{-5}\\ 1.798\times10^{-5}\\ 1.896\times10^{-5}\\ 1.995\times10^{-5} \end{array}$	0.7255 0.7241 0.7228 0.7202 0.7177
80 90 100 120 140	0.9994 0.9718 0.9458 0.8977 0.8542	1008 1008 1009 1011 1013	0.02953 0.03024 0.03095 0.03235 0.03374	$\begin{array}{l} 2.931 \times 10^{-5} \\ 3.086 \times 10^{-5} \\ 3.243 \times 10^{-5} \\ 3.565 \times 10^{-5} \\ 3.898 \times 10^{-5} \end{array}$	$\begin{array}{l} 2.096 \times 10^{-5} \\ 2.139 \times 10^{-5} \\ 2.181 \times 10^{-5} \\ 2.264 \times 10^{-5} \\ 2.345 \times 10^{-5} \end{array}$	$\begin{array}{c} 2.097 \times 10^{-5} \\ 2.201 \times 10^{-5} \\ 2.306 \times 10^{-5} \\ 2.522 \times 10^{-5} \\ 2.745 \times 10^{-5} \end{array}$	0.7154 0.7132 0.7111 0.7073 0.7041
160 180 200 250 300	0.8148 0.7788 0.7459 0.6746 0.6158	1016 1019 1023 1033 1044	0.03511 0.03646 0.03779 0.04104 0.04418	$\begin{array}{l} 4.241 \times 10^{-5} \\ 4.593 \times 10^{-5} \\ 4.954 \times 10^{-5} \\ 5.890 \times 10^{-5} \\ 6.871 \times 10^{-5} \end{array}$	$\begin{array}{c} 2.420 \times 10^{-5} \\ 2.504 \times 10^{-5} \\ 2.577 \times 10^{-5} \\ 2.760 \times 10^{-5} \\ 2.934 \times 10^{-5} \end{array}$	$\begin{array}{c} 2.975 \times 10^{-5} \\ 3.212 \times 10^{-5} \\ 3.455 \times 10^{-5} \\ 4.091 \times 10^{-5} \\ 4.765 \times 10^{-5} \end{array}$	0.7014 0.6992 0.6974 0.6946 0.6935
350 400 450 500 600	0.5664 0.5243 0.4880 0.4565 0.4042	1056 1069 1081 1093 1115	0.04721 0.05015 0.05298 0.05572 0.06093	$\begin{array}{l} 7.892 \times 10^{-5} \\ 8.951 \times 10^{-5} \\ 1.004 \times 10^{-4} \\ 1.117 \times 10^{-4} \\ 1.352 \times 10^{-4} \end{array}$	$\begin{array}{l} 3.101 \times 10^{-5} \\ 3.261 \times 10^{-5} \\ 3.415 \times 10^{-5} \\ 3.563 \times 10^{-5} \\ 3.846 \times 10^{-5} \end{array}$	$\begin{array}{c} 5.475 \times 10^{-5} \\ 6.219 \times 10^{-5} \\ 6.997 \times 10^{-5} \\ 7.806 \times 10^{-5} \\ 9.515 \times 10^{-5} \end{array}$	0.6937 0.6948 0.6965 0.6986 0.7037
700 800 900 1000 1500 2000	0.3627 0.3289 0.3008 0.2772 0.1990 0.1553	1135 1153 1169 1184 1234 1264	0.06581 0.07037 0.07465 0.07868 0.09599 0.11113	$\begin{array}{c} 1.598 \times 10^{-4} \\ 1.855 \times 10^{-4} \\ 2.122 \times 10^{-4} \\ 2.398 \times 10^{-4} \\ 3.908 \times 10^{-4} \\ 5.664 \times 10^{-4} \end{array}$	$\begin{array}{c} 4.111 \times 10^{-5} \\ 4.362 \times 10^{-5} \\ 4.600 \times 10^{-5} \\ 4.826 \times 10^{-5} \\ 5.817 \times 10^{-5} \\ 6.630 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.133 \times 10^{-4} \\ 1.326 \times 10^{-4} \\ 1.529 \times 10^{-4} \\ 1.741 \times 10^{-4} \\ 2.922 \times 10^{-4} \\ 4.270 \times 10^{-4} \end{array}$	0.7092 0.7149 0.7206 0.7260 0.7478 0.7539

Fuente: Termodinámica, Cengel, Y. A., & Boles, M. A. (2015)

Accesorios y válvulas e	expresac	los en m	equivalen	te de tub	ería		
	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2	3"
Accesorios y válvulas	20 mm	25 mm	32 mm	40 mm	50 mm	65 mm	80 mm
Codo a 45°	(0,3	0,3)	(0,3)	(0,6)	(0,6)	(0,9)	(0,9)
Codo normalizado a 90°	(0,6)	(0,6)	(0,9)	(1,2)	(1,5)	(1,8)	(2,1)
Codo de gran radio a 90°	(0,3)	(0,6)	(0,6)	(0,6)	(0,9)	(1,2)	(1,5)
T o cruz (corriente que gira 90°)	(1,2)	(1,5)	(1,8)	(2,4)	(3,1)	(3,7)	(4,6)
Válvula de compuerta					(0,3)	(0,3)	(0,3)
Válvula de mariposa					(1,8)	(2,1)	(3,1)
Válvula de retención con clapeta oscilante*	4 (1,2)	5 (1,5)	7 (2,1)	9 (2,7)	(3,4)	(4,3)	(4,9)
	3 1/2"	4"	5"	6"	8"	10"	12"
Accesorios y válvulas	90	100	125	150	200	250	300
Codo a 45°	(0,9)	(1,2)	(1,5)	(2,1)	(2,7)	(3,4)	(4,0)
Codo normalizado a 90°	(2,4)	(3,1)	(3,7)	(4,3)	(5,5)	(6,7)	(8,2)
Codo de gran radio a 90°	(1,5)	(1,8)	(2,4)	(2,7)	(4,0)	(4,9)	(5,5)
T o cruz (corriente que gira 90°)	(5,2)	(6,1)	(7,6)	(9,2)	(10,7)	(15,3)	(18,3)
Válvula de compuerta	(0,3)	(0,6)	(0,6)	(0,9)	(1,2)	(1,5)	(1,8)
Válvula de mariposa		(3,7)	(2,7)	(3,1)	(3,7)	(5,8)	(6,4)
Válvula de retención con clapeta oscilante*	(5,8)	(6,7)	(8,2)	(9,8)	(13,7)	(16,8)	(19,8)

Longitudes equivalentes de accesorios de tubería y vapor

Fuente: Flujo de fluidos en válvulas, accesorios y tuberias.Crane

Capacidades de la válvula reductora de presión 25P

Válvulas Auto-operadas

Válvula Reguladora de Presión 25P y 25PE Dimensionamiento para Vapor Saturado

PRESION	PRESION				MED						
ENTRADA	SALIDA										
Kg/cm ²	Kg/cm ²	½″ S*	1⁄2"	3⁄4"	1"	1 1⁄4 "	11⁄2"	2"	2 ½ "	3"	4"
	0,7	14	43	79	130	173	245	431	680	907	1406
1,1	0.35	20	70	131	211	243	400	703	1120	1470	2300
	0,8	18	54	104	168	224	319	557	889	1175	1830
1,4	0,6	23	70	132	214	284	406	709	1130	1500	2340
	0-0,35	28	82	152	246	328	469	819	1320	1720	2700
1.8	1,1	23	66 80	125	198	263	379	660 885	1050	1393	2170
1,0	0-0,5	32	93	177	282	374	535	937	1499	1978	3080
	1,4	23	70	132	214	284	406	714	1143	1510	2350
2,1	1,1	34	100	188	303	404	576	1008	1610	2130	3310
	0-0,8	36	104	194	313	419	597	1043	1670	2210	3440
2.8	2,1	23	113	150	243	323	461	806	1290	2/18	2650
2,0	0-1,3	43	127	239	385	513	733	1284	2050	2710	4220
	2,8	30	86	161	261	349	499	873	1397	1845	2870
3,5	2,1	48	143	266	431	572	826	1445	2311	3055	4750
	0-1,5	52	159	295	476	635	907	1588	2540	3357	5270
4.2	3,2	43	127	239	396	515	735	1286	2050 2617	2685	3230
4,2	0-1,9	59	175	329	531	708	1010	1769	2480	3740	5850
	4,2	43	127	238	286	515	735	1286	2040	2710	4200
5,3	3,5	64	188	352	567	758	1080	1891	3023	3992	6200
	0-2,5	70	213	400	645	858	1225	2145	3400	4531	7040
60	4,9	45 75	132	245 415	395 671	526 896	753	1318	2109	2785	4330
0,0	0-3,0	77	234	435	703	937	1339	2343	3750	4990	7710
	5,6	54	168	313	506	674	962	1683	2692	3558	5530
7,0	5,2	86	263	490	789	1055	1506	2635	4216	5572	8660
	0-3,4	91	272	508	826	1093	1565	2740	4370	5800	8900
8.8	7,0	66 104	200	374	606 037	807 1247	1152	2016	3225	4264	6620
0,0	0-4,4	111	331	620	998	1333	1905	3338	5334	7049	10950
	8,8	73	222	413	667	889	1270	2223	3558	4699	7300
10,6	7,0	120	363	672	1089	1451	2068	3620	5800	7600	11900
	0-5,3	129	390	726	1179	1569	2245	3928	6273	8292	12880
12.3	10,6	75	222	415	671	896 1594	1279	2238	3581	4733	7360
12,5	0-6,1	150	447	835	1347	1796	2567	4491	7189	9503	14760
	10,6	129	381	726	1168	1563	2195	3842	6146	8119	12620
14,1	8,8	163	488	908	1470	1964	2790	4899	7800	10300	16000
	0-7,2	170	511	948	1538	2050	2926	5126	8160	10800	16800
15.9	12,3	132	381	748	1211	1615	2304	4032	6452	8528	13250
10,8	0-8,2	191	567	1061	1715	2132	3266	5715	9144	12000	18780
	14.0	141	420	785	1266	1687	2413	4218	6759	8927	13890
17,6	10,6	204	608	1134	1837	2449	3493	6124	9750	12900	20100
	0-9,2	209	629	1175	1896	2531	3611	6328	10200	13400	20750

Las capacidades están basadas en una precisión de regulación de 0,07 kg/c m^2

* Capacidades de vapor del tipo 25P de 1/2" con pasaje restringido para condiciones de cargas reducidas

En beneficio del desarrollo y mejora del producto, nos reservamos el derecho de cambiar la especificación.

Fuente: Ficha técnica Válvula reguladora 25P. Spirax Sarco

Especificaciones del codo 90° radio corto de acero al carbono ASTM

Accesorio acero al carbono ASTM

Codos 90º Radio Corto según ASME/ANSI B16.28

Dimensiones según: ASME/ANSI B16.28 - ASME/ANSI B16.9.

Material según ASTM A-234 WPB

Diámetro nominal [pulg.]	DN [mm]	Diámetro ext. en bisel D	Radio (Centro a fin) A	Espesor STD	Peso aprox. STD (kg.)	Espesor XS	Peso aprox. XS (kg.)
1"	25	33,4	25	3,38	0,104	4,55	-
1 1⁄4"	32	42,2	32	3,56	0,172	4,85	-
1 1⁄2"	40	48,3	38	3,68	0,249	5,08	0,3
2"	50	60,3	51	3,91	0,449	5,54	0,62
2 1/2"	65	73	64	5,16	0,875	7,01	1,19
3"	80	88,9	76	5,49	1,38	7,62	1,9
3 1/2"	90	101,6	89	5,74	1,93	8,08	2,65
4"	100	114,3	102	6,02	2,62	8,56	3,71
5"	125	141,3	127	6,55	4,42	9,53	6,44
6"	150	168,3	152	7,11	6,89	10,97	10,58
8"	200	219,1	203	8,18	13,8	12,7	21,61
10"	250	273	254	9,27	24,5	12,7	34,06
12"	300	323,8	305	9,53	36,1	12,7	48,6
14"	350	355,6	356	9,53	46,3	12,7	63,11
16"	400	406,4	406	9,53	61,2	12,7	82,63
18"	450	457	457	9,53	77,6	12,7	104,87
20"	500	508	508	9,53	96,2	12,7	129,54
22"	550	559	559	9,53	-	12,7	-
24"	600	610	610	9,53	138,3	12,7	188,41

Consultar disponibilidad en otros materiales.
 Disponible gama espesores (SCH.) según ASME B36.10.
 Dimensiones en milímetros (mm.)

Tolerancias según ASME B16.28

Tolerancias										
Diámetro nominal [pulg.]	Diámetro ext. en bisel D	Radio (Centro a fin) A	Espeso de pared							
1/2 - 2 1/2	1	2								
3 - 31/2	1	2	Espesor mínimo no							
4	2 / -1	2	debe estar en nin-							
5-6	3 / -1	2	gún pto, por debajo							
8	2	2	del 12.5 % del espe							
10-12	4 / -3	3	der 12,5 % der espe-							
14-18	4 / -3	3	sor especificado							
20-24	6 / -5	3								

Fuente: Catalogo Técnico, Grupo ALMESA (2015)

Especificaciones del codo 90° radio corto de acero al carbono ASTM

Accesorio acero al carbono ASTM

Codos 90° Radio Largo según ASME/ANSI B16.9

CODOS 90° RL

Dimensiones según ASME/ANSI B16.9 Material según ASTM A-234 WPB

nominal [pulg.]	DN [mm]	en bisel D	(Centro a fin) A	Espesor STD	Peso aprox. STD (kg.)	Espesor XS	XS (kg.)
1/2	15	21,3	38	2,77	0,004	3,73	0,28
3/4	20	26,7	38	2,87	0,077	3,91	0,33
1	25	33,4	38	3,38	0,154	4,55	0,4
1¼	32	42,2	48	3,56	0,263	4,85	0,049
1 ½	40	48,3	57	3,68	0,376	5,08	0,6
2	50	60,3	76	3,91	0,676	5,54	0,94
2 1/2	65	73	95	5,16	1,33	7,01	1,79
3	80	88,9	114	5,49	2,08	7,62	2,87
3 1/2	90	101,6	133	5,74	2,92	8,08	3,9
4	100	114,3	152	6,02	3,95	8,56	5,65
5	125	141,3	190	6,55	6,67	9,53	9,7
6	150	168,3	229	7,11	10,4	10,97	16
8	200	219,1	305	8,18	20,9	12,7	32,2
10	250	273	381	9,27	37	12,7	50,8
12	300	323,8	457	9,53	54	12,7	73,4
14	350	355,6	533	9,53	69,9	12,7	94,3
16	400	406,4	610	9,53	91,2	12,7	123,7
18	450	457	686	9,53	116,1	12,7	159
20	500	508	762	9,53	143,8	12,7	195
22	550	559	838	9,53	174,6	12,7	238
24	600	610	914	9,53	207,7	12,7	281
26	650	660	991	9,53	244,5	12,7	331,4
28	700	711	1067	9,53	-	12,7	-
30	750	762	1143	9,53	326,6	12,7	441,3
32	800	813	1219	9,53	-	12,7	-
34	850	864	1295	9,53	420	12,7	558,5
36	900	914	1372	9,53	-	12,7	-

Fuente: Catalogo Técnico, Grupo ALMESA (2015)

Especificaciones de la válvula compuerta ANSI B16.5

VALVULA DE COMPUERTA

PIEZA	MATERIALES
CUERPO	Hierro fundido ASTM A126 G°B
VASTAGO	Acero al 13% cromo
CUÑA	Anillos de bronce ASTM B62
ASIENTO	Bronce ASTM B62
EMPAQUE	Grafito
VOLANTE	Hierro maleable
EXTREMOS	Flange ANSI B16.5
MARCA	Crane
FIGURA	F58
PROCEDENCIA	Inglaterra

							DIN	1ENS	SION	ES
MEDIDAS	DN	50	65	80	100	125	150	200	250	300
PESO	Kg.	17	20	28	38	56	60	112	185	242
DIMENSIONES	Α	178	190	203	229	254	267	292	330	356
DIMENSIONES	В	365	448	481	622	672	835	989	1208	1469
	н	152	152	203	229	254	254	305	356	406

Fuente: Catalogo Técnico, Válvulas Industriales S.A

VALVULA DE COMPUERTA

PIEZA	MATERIALES
CUERPO	Hierro fundido ASTM A126 G°B
VASTAGO	Bronce ASTM B16
CUÑA	Anillos de bronce ASTM B62
ASIENTO	Bronce ASTM B62
EMPAQUE	Grafito
VOLANTE	Hierro maleable
EXTREMOS	Flange ANSI B16.5
MARCA	Visa
FIGURA	C5-FB
PROCEDENCIA	China

VALVULA COMPUERTA HIERRO FUNDIDO 125 LBS. VAPOR - 200 LBS. WOG VASTAGO ASCENDENTE, BONETE APERNADO LINEA ECONOMICA

															DIM	IENS	SION	ES
DIAMETRO	Pulg.	1 1/2	2	2 1/2	3	4	5	6	8	10	12	14	16	18	20	24	30	36
PESO	Kg.	16	19	26	29	50	71	88	136	214	294	450	580	760	935	1230	2510	3980
	L	165	178	191	203	229	254	267	292	330	356	381	406	432	457	508	610	711
	D	127	152	178	191	229	254	279	343	406	483	533	597	635	699	813	984	1168
DIMENSIONES	D 1	98.6	121	140	152	191	216	241	298	362	432	476	540	578	635	749	914	1086
	b	14.3	16	18	19	24	24	25.4	29	30.2	32	35	36.5	39.7	42.9	47.6	54	60.3
	Z- d	4-16	4-19	4-19	4-19	8-19	8-22	8-22	8-22	12-25	12-25	12-29	16-29	16-32	20-32	20-35	28-35	32-42
	D0	180	200	200	200	260	300	300	350	400	450	508	558	610	610	762	762	762
	н	290	320	345	387	490	576	680	808	1010	1080	1640	1804	2090	2490	2960	3340	3680

Fuente: Catalogo Técnico, Válvulas Industriales S.A

Especificaciones de la válvula Check ANSI B16.5

Fuente: Catalogo de válvulas de retención, Ditek

Especificaciones de la válvula de esfera M10F

TI-P133-07 ST Issue 9

Descripción

La M10F es una válvula de esfera de tres piezas diseñada como válvula de interrupción, no de control. Es antiestática y a prueba de fuego y además puede ser revisada sin desmontar las conexiones con la tubería. La M10F está diseñada para servicios de vapor y otros fluidos industriales, abancando desde vacío hasta altas pres y temperaturas.

Diseño a prueba de fuego ("firesafe") Durante condiciones normales de trabajo, la esfera descansa contra los asientos de R-PTFE, garantizando un cierre total. Nota: R-PTFE es PTFE reforzado con carbono y grafito. Cuando la válvula está sometida a temperaturas superiores a las que el R-PTFE reforzado puede soportar, el asiento se funde y se aplasta. Una vez que éste ha sido totalmente destruido, la esfera queda firmemente apoyada contra el asiento de metal del extremo de conexión, produciento un cierre metal-metal. Este asiento secundario en el extremo de la válvula, que ha sido mecanizado con el mismo radio que la esfera, permitiendo que la válvula trabaie seaún el mismo radio que la esfera, permitiendo que la válvula trabaje según las normas internacionales API Spec 6FA y BS 6755 parte 2.

Tipos disponibles

M10F2RB Cuerpo de acero al carbono cincado, paso reducido. M10F2FB Cuerpo de acero al carbono cincado, paso total. Nota: Versiones en acero inoxidable disponibles bajo pedido.

Normativas

Este producto cumple totalmente con los requisitos de la Directiva Europea de Equipos a Presión 97/23/EC y lleva la marca € cuando lo precisa.

Certificados

Dispone de certificado EN 10204 3.1. como estándar. Nota: Los certificados/requerimientos de inspección deben solicitarse con el pedido.

Opciones

Esfera con alivio.

Tamaños y conexiones ¼*, ¾*, ½*, ¾*, 1*, 1¼*, 1½*, 2*, (2½* solo M10F2RB). Rosca BSP, BSPT, NPT, BW, SW paso reducido y paso total. Nota: Bajo pedido conexiones con bridas ANSI clase 150, ANSI clase 300 y EN 1092 PN40.

Datos técnicos

Característica	de flujo Lineal modificado
Paso	Versiones de paso total o reducido
Estanqueidad	Según ISO 5208 (Rate A) / EN 12266-1 (Rate A
Antiestática	Según norma ISO 7121 y BS 5351
Firesafe	Diseñado a estándar BS 6755 part 2 y API Spec 6FA

Fuente: Ficha técnica de válvula de esfera M10F. Spirax Sarco

Especificaciones de los filtros serie IT

Fuente: Ficha técnica filtro IT. Spirax Sarco

Especificaciones de la válvula reductora de presión 25P

Válvula reguladora de presión Serie 25P

Descripción

La serie 25P es una valvula reguladora de presión.

La presión aguas abalo se realimenta a través de un tubo sensor conectado al piloto de presión que controla la apertura de la valvula principal para mantener la presión reducida en el valor deseado. La valvula principal cierra el paso herméticamente cuando no se necesita vapor.

Tamaños y conexiones

1/2" a 2" Roscas NPT, BSP, BSPT 1/2" a 4" Bridas ANSI125, ANSI250

Condiciones límite

Condiciones de diseño del cuerpo Presión máxima 17 barg Tem

peratura máxima	232°(

Rangos de presión aguas abajo

Para las siguientes presiones aguas abajo se dispone de tres resortes de ajuste de presión de color:

Amarillo	0,2	а	2,1 barg
Azul	1,4	a	7,0 barg
Rojo	5,6	a	14,0 barg

Cómo especificar

Ejemplo: 1 Válvula reguladora de presión serie 25P, ANSI125, fluido vapor, 1", resorte azul.

Aplicaciones típicas

La 25P es una válvula reductora de presión fiable y precisa para reducir la presión del vapor a un valor más bajo y eficiente, y proteger equipos costosos de altas presiones.

Capacidades

Para selección y dimensionado ver hoja técnica:

TIS 3.030 AR para vapor saturado

- TIS 3.031 AR para aire comprimido
- TIS 3.032 AR para gas

Dimensiones / pesos (aproximados) en mm y kg

Tamaño	Roscada	Brida A1	в	С	D	E	Peso
1/2"	140	161	193	309	157	466	14
3/4"	140	160	193	309	157	466	14
1"	152	168	219	308	171	479	17
11/4"	184	206	219	322	179	501	20
11/2"	184	218	219	322	179	501	20
2"	216	242	269	338	208	546	31
21/2"		292	346	297	354	651	71
3"	-	318	346	294	367	660	85
4"	1	368	397	325	410	735	129

Fuente: Ficha técnica Válvula reguladora 25P. Spirax Sarco

Especificaciones de la válvula Bypass modelo A3S y A3SS

TI-P132-09 ST Issue 6

Válvulas de interrupción de fuelle A3S y A3SS

Descripción

Válvula de interrupción con fuelle y conexiones roscadas o preparadas para soldar, para usar en sistemas de vapor, condensado y líquidos.

Normativas

Este producto cumple con los requisitos de la Directiva Europea de Equipos a Presión 97/23 / EC (PED). Fatiga del fuelle según ISO 15761 para válvulas de globo.

Fuga del asiento Pérdida entre disco/asiento según API 598 y DIN 3230 tasa de pérdida B01.

Certificados

Materiales

Dispone de certificado EN 10204 3.1.B. Nota: Los certificados/requerimientos de inspección deben solicitarse con el pedido.

Tamaños y conexiones ½*. ½*. 1*. 1½*. 1½* y 2* Roscadas BSP (BS 21 Paralela), NPT Preparadas para soldar SW BS 3799/ANSI B16.11

La válvula no puede trabajar en esta zona. Limitaciones de trabajo según ISO 15761.

Condiciones de diseño del cuerpo

PMA Presión máxima admisible

Temperatura minima admisible

Prueba hidráulica (sin fuelle):

PMO Presión máxima de trabajo Presión máxima de trabajo para alargar vida de fuelle

TMA Temperatura máxima admisible

TMO Temperatura maxima de trabajo para alargar vida de fuelle

Temperatura máxima de trabajo

Condiciones límite (Clase 800)

300		-			
200		Curv	a de	- 3	
100	3 J	del v	abor		

No.	Parte		Mater	ial	23-23-23-23-43-23-
1	Cuerpo		Acero	forjado	ASTM A105
2	Cabezal	2	Acero	forjado	ASTM A105
3	Brida pren	15885.	Acero	forjado	ASTM A105
4	Asiento in	tegral	Estelli	tado	Gr.6
-	-	135	Acero	ero inoxidable	ASTM A276 Tipo 410
5	Disco	355	Acero	inoxidable	ASTM A276 Tipo 410 + estellita Gr.6
6	Fuelle		Acero	inoxidable	ASTM A479 Tipo 321
7	Juntas		Spiron Grafite	netálica de laminado	acero inoxidable y grafito / con refuerzo de acero inox.
8	Tornillos c	uerpo	Acero	6	ASTM A276 B7
9	Tuercas p	rensa	Acero	í.	ASTM A194 2H
10	Espárrag.	pren	Acero	inoxidable	AISI 410
11	Empaquet	adura	Grafit	0	
12	Prensaes	topas	Acero	inoxidable	ASTM A276 Tipo 410
13	Volante		Acero	6	
14	Tuerca vo	olante	Acero	ê.	
15	Placa		Acero	inoxidable	2
16	Vástago	1 0	Acero	inoxidable	ASTM A276 Tipo 410
17	Tuerca	-	Acero	inoxidable	ASTM A582 Tipo 410
19	Engrasad	lor	Acero	al carbond	>

En beneficio del desarrollo y mejora del producto, nos reservamos el derecho de cambiar la especificación.

Clase 800

136 bar r

99 bar r a 360°C 40 bar r a 400°C

400°C a 40 bar r

425°C

-29°C

425°C

212 bar r

Copyright 2009

Fuente: Ficha técnica Válvula de interrupción A3S. Spirax Sarco

Especificaciones de la válvula de seguridad SV615

õ

Válvula de seguridad SV615

Descripción

La SV615 es una válvula de seguridad de tobera total diseñada para el uso con vapor, aire, gases industriales inertes y líquidos no peligrosos

Aplicaciones

La SV615 es adecuada para la protección de calderas de vapor o agua caliente, generadores, recipientes, calderines y compresores de aire, autoclaves, aguas abajo de válvulas reductoras de presión y para aplicaciones de alivio general de presión.

Tipos disponibles

Se dispone de válvulas de tamaños DN15 a DN50 y tienen el cuerpo de bronce con conexiones roscadas hembra y tobera en acero inoxidable. También existe una opción de conexión de entrada sanitaria en los tamaños pequeños. Todas las válvulas tienen el cuerpo cerrado con palanca o cabezal cerrado. Se dispone de una versión con asiento blando de nitrilo, EPDM o Vitón. En aplicaciones con frecuentes lavados o cuando la apariencia estética es importante se puede suministrar con acabado niquelado (ELNP) del cuerpo, cabezal y palanca. También disponible con placa de características en acero inoxidable.

Normativas y aprobaciones

La SV615 cumple con los requisitos de EN ISO 4126:2004 y lleva la marca (€ indicando que cumple totalmente con los requisitos de la Directiva Europea de Equipos a Presión 97/23/EC (PED). La Autoridad de Aprobación y Cuerpo de Notificación es SAFed TAS. Estanqueidad del asiento según ANSI/API STD 527- Revisión 2002.

Certificados

Esta disponible con un informe típico de pruebas que incluyen la tara y prueba hidráulica. También, bajo pedido, certificación de material de acuerdo con EN 10204 3.1.

 \Rightarrow

6

Versión roscada hembra

Tamaños y conexiones DN15, DN20, DN25, DN32, DN40 y DN50.

BS 4825 / ISO 2852 / DIN 32676.

Conexiones de entrada Rosca BSP (BS 21 paralelo) macho y hembra. Rosca NPT hembra. Conexión sanitaria (Solo tamaños DN15, DN20 y DN25)

Conexiones de salida Rosca hembra BSP (BS 21 paralelo) o hembra NPT.

Õ

Versión clamp sanitario

Condiciones límite Condiciones de diseño del cuerpo **PN25** 1⁄2" a 11⁄4' 18 bar r Α 230 Rangos de Máximo 200 11⁄2" y 2' 14 bar r ပ္ В presión de tara Mínimo 0,3 bar r 150 Temperatura 120 100 Mínima -90°C Asiento metal metal Steam Máxima +230°C 50 saturation Mínima -30°C curve Asiento Nitrilo Rango de 0 Máxima +120°C Temperatura -90 Mínima -50°C 15 20 Asiento EPDM 5 10 25 +150°C Máxima Presión bar r 18 14 Máxima presión de tarado para SV615 de 11/2" y 2" Máxima presión de tarado para SV615 de ½" a 11⁄4" Mínima -20°C Asiento Viton Máxima +200°C Vapor Sobrepresión Gas 10% Líquidos 10 a 25% Esta válvula no puede trabajar en esta zona. 10% Vapor, gas Límites de Datos de Blowdown Líquidos 2,5 a 20% Máxima temperatura de trabajo con asiento de metal Máxima temperatura de trabajo con asiento de Viton Máxima temperatura de trabajo con asiento de EPDM Máxima temperatura de trabajo con asiento de Nitrilo A - A B - B C - C D - D rendimiento 0,71 Coeficiente reducido Vapor, gas de descarga Líquidos 0,52 Contrapresón máxima permisible 10% de la presión de tara Prueba hidráulica 37,5 bar r *Nota: Los asientos blandos no son adecuados para usar con vapor.

En beneficio del desarrollo y mejora del producto, nos reservamos el derecho de cambiar la especificación.

© Copyright 2008

5%

Fuente: Ficha técnica Válvula seguridad SV615. Spirax Sarco

Tabla 1 - SV615 Capacidades de descarga de vapor saturado en kilos por hora (kg/h) (calculado de acuerdo con EN ISO 4126:2004 en una acumulación del 5%) Coeficiente reducido de descarga (Kdr) = 0,71

Tamaño válvula DN	15/20	20/32	25/40	32/50	40/65	50/80				
Área (mm²)	113	314	452	661	1075	1 662				
Presión de tara (bar r)		Ca	pacidades de des	carga de vapor ko	g/h					
0,5	71	198	285	417	678	1 049				
1,0	95	263	379	554	901	1 393				
1,5	118	328	472	690	1 122	1 734				
2,0	141	392	564	824	1341	2073				
2,5	164	455	655	959	1 559	2410				
3,0	187	519	747	1 092	1776	2746				
3,5	209	582	838	1 225	1 993	3081				
4,0	232	645	929	1 358	2 008	3414				
4,5	255	708	1019	1 490	2 4 2 4	3747				
5,0	277	771	1 1 0 9	1 622	2638	4079				
5,5	300	833	1 1 9 9	1754	2853	4 4 1 0				
6,0	322	896	1 289	1 886	3067	4741				
6,5	345	958	1 379	2017	3280	5071				
7,0	367	1020	1 469	2148	3 4 9 4	5 401				
7,5	390	1083	1 559	2279	3707	5731				
8,0	412	1145	1 648	2410	3920	6 0 6 0				
8,5	434	1 207	1 737	2541	4 132	6389				
9,0	457	1 269	1 827	2672	4345	6717				
9,5	479	1 331	1916	2802	4 557	7 046				
10,0	501	1 393	2 005	2933	4 769	7 374				
11,0	546	1517	2184	3 1 9 4	5 194	8 0 3 0				
12,0	591	1641	2362	3 4 5 4	5618	8 685				
13,0	635	1 765	2540	3715	6042	9340				
14,0	680	1 888	2718	3975	-	-				
15,0	724	2012	2897	4236	-	-				
16,0	769	2 1 3 6	3075	4 4 9 6	-	-				
17,0	813	2260	3253	4757	-	-				
18,0	858	2384	3431	5018	-	-				

Fuente: Ficha técnica Válvula seguridad SV615. Spirax Sarco

Especificaciones de compensadores de dilatación Coraci serie H

							L.		-	L	-	-	L	
PNIC	•													
	Car	rera/ti	ravel			н	M-HM			HE-HEC	1	HE	B-HEF	20
DN	+	-	Total	R	Am	Ref.	L	Peso	Ref.	L	Peso	Ref.	L	Peso
	mm	mm	mm	Nganin	Citi		mm	Kg		mm	Kg		mm	Kg
	6	14	20	10	25	5124	244	0,8	5124	124	4,2	5124	125	4,5
40	10	20	30	12	25	5224	316	1,3	5224	196	4,7	5224	198	5,0
	15	21	40	15	20	5524	410	2,5	3324	290	5,7	5524	500	0,0
	6	14	20	11	37	5126	239	1,1	5126	123	5,5	5126	124	5,9
50	10	20	30	13	37	5226	312	1,7	5226	196	6,1	5226	198	6,5 7.8
	10	-1	40	10		0020	412	0,0	0020	200	1,4	0020	000	1,0
	8	17	25	12	58	5128	235	1,8	5128	119	6,8	5128	121	7,3
65	13	27	40	9	58	5228	299	2,4	5228	183	7,4	5228	284	8,0
		01				0020	000	1,0	0020	2.0	0,0	- OOLO	201	10,1
	10	20	30	13	81	5130	269	2,4	5130	119	8,7	5130	121	9,4
80	15	30	45	13	81	5230	319	3,0	5230	261	9,3	5230	266	10,0
	20		10	10	01	0000		0,0	0000	201	11,0	0000	200	12,0
10000	10	20	30	14	127	5132	273	3,4	5132	127	9,9	5132	129	10,7
100	16	34	50	9	127	5232	312	3,9	5232	166	10,5	5232	168	11,3
	20	47	10	14	167	0002	400	1.1	0002	207	10,1	0002	LUL	14,0
	11	24	35	14	186	5134	262	4,4	5134	120	13,3	5134	122	14,3
125	20	40	60	8	186	5234	317	5,2	5234	175	14,1	5234	177	15,1
	20	54	00	14	100	5554	334	9,0	0004	202	17,5	5554	201	13,0
	10	20	30	31	264	5136	270	6,1	5136	128	16,1	5136	131	17,3
150	15	30	45	19	264	5236	316	7,3	5236	174	17,3	5236	177	18,5
	33	67	100	25	264	5436	548	20,7	5436	406	30,7	5436	412	32,0
					100									
	10	20	30 50	36	438	5140	261	9,0	5140	123	21,6	5140	126	23,3
200	23	47	70	14	438	5340	363	12,8	5340	225	25,3	5340	228	27,0
	36	74	110	22	438	5440	542	27,5	5440	404	40,0	5440	410	41,7
	11	24	35	35	668	5142	267	14.2	5142	141	31.1	5142	144	33.2
250	20	40	60	20	668	5242	324	16,5	5242	198	33,4	5242	201	35,5
250	26	54	80	14	668	5342	380	19,0	5342	254	35,8	5342	257	37,9
	40	00	120	20	000	0442	340	37,0	0442	420	55,9	5442	420	50,0
	10	20	30	45	929	5144	253	15,0	5144	127	46,0	5144	133	48,46
300	20	40	60	22	929	5244	314	17,5	5244	188	48,5	5244	194	50,96
	20	54	00	15	929	5544	315	21,0	5544	249	52,0	5544	200	54,40
	10	20	30	43	1110	5146	256	19,0	5146	138	68,0	5146	144	71,59
350	20	40	80	16	1110	5246	320	22,5	5246	202	71,0	5246	208	74,59
	8	17	25	84	1425	5148	260	23,0	5148	146	83,0	5148	152	87,28
400	23	34	50 70	31	1425	5248	328	32.0	5248	214	86,5	5248	220	90,78
-											(UO YOR SHI)			
450	10	20	30	88	1802	5150	300	29,0	5150	148	92,0	5150	154	96,76
430	23	47	70	33	1802	5350	418	38,0	5350	266	101,0	5350	272	105,76
	Contractor				-	and the second second		regeren -		Cy torior	1.0000000000000000000000000000000000000	a contract of the		
500	10	20	30	120	2206	5152	304	35,0	5152	160	119,0	5152	166	124,24
500	26	54	80	43	2206	5352	427	48,0	5352	283	132,0	5352	289	137,24
			00	400	0407		0.05	10.0		400	170.0			170.17
600	10	20	30 50	120	3137	5156 5256	305	42,0 48.0	5156	165	173,0	5156 5256	171	179,17
000	23	47	70	52	3137	5356	405	58,0	5356	265	187,0	5356	271	193,17
	1000000	2007/7	10/15/25/2	194520		B0005300300		10000000000	14000000	- ME2.58	EX.14.212.004	0.0000000000000000000000000000000000000		154342404244424

coraci sa – design, production, technical support, service

Fuente: Compensadores de Dilatación Axiales. Coraci S.A

Gráfico de dimensionado de separador de humedad

Fuente: Distribución de vapor, Spirax Sarco

Evidencias de visita a las instalaciones de Hospital de Alta Complejidad Virgen de la Puerta

Recolección de datos

Estación Reductora de presión del área de Estilización

Manifold de vapor saturado

Caldera Pirotubular N°1 de 150 BPH

Tuberías secundarias de vapor saturado

Tuberías secundarias de vapor saturado de 30 metros

Alumnos Tesistas