

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Diseño de infraestructura vial, caserío El Alto - cruce carretera Ferreñafe – Pitipo, Progresivo km 1+490, distrito Manuel Antonio Mesones Muro – Ferreñafe, Lambayeque"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTOR:

Fernández Huamán, Carlos Antonio (ORCID: 0000-0003-1247-0010)

ASESOR:

Mg. Ordinola Luna, Efraín (ORCID: 0000-0002-5358-4607)

LÍNEA DE INVESTIGACIÓN:

Diseño de infraestructura vial

CHICLAYO-PERÚ

2021

Dedicatoria

Para mi madre y mis abuelos, gracias a su apoyo incondicional, consejos y motivación constante, he llegado a este punto en la formación profesional.

Carlos Antonio

Agradecimiento

A Dios por la vida, por la bendición de darme una familia unida y por darme en el tiempo las herramientas y el camino que me permite triunfar en la vida.

A mi madre y abuelos porque siempre me apoyan en mis sueños con su apoyo incondicional, el cual me permite llegar hasta este momento.

A los catedráticos de la Universidad Cesar Vallejo por compartir sus experiencias y sus enseñanzas en la formación profesional.

Carlos Antonio

Índice de contenidos

C	arátu	ıla	i
D	edica	atoria	ii
Α	.grade	ecimiento	iii
Ír	ndice	de contenidos	iv
Ír	ndice	de tablas	V
Ír	ndice	de figuras	vi
R	esum	nen	vii
Α	.bstra	act	viii
I.	INT	roducción	1
II.	MA	ARCO TEÓRICO	5
III.	ME	TODOLOGÍA	13
	3.1	Tipo y diseño de investigación	13
	3.2	Variables y operacionalización	13
	3.3	Población y muestra	13
	3.4	Técnicas e instrumentos de recolección de datos	14
	3.5	Procedimientos	14
	3.6	Método de análisis de datos	15
	3.7	Aspectos éticos	15
IV.	RE	SULTADOS	16
٧.	DIS	SCUSIÓN	22
VI	. co	ONCLUSIONES	24
VI	I. RE	ECOMENDACIONES	25
RE	FERE	ENCIAS	26
ΔN	FXO:	S	32

Índice de tablas

Tabla 1: Resultados de IMD	16
Tabla 2: Cuadro de BMS	17
Tabla 3: Resultados del estudio de mecánica de suelos	18
Tabla 4: Cuadro de características básicas de diseño	19

Índice de figuras

Figura 1: Componentes del pavimento flexible	10
Figura 2: Pronóstico hidrológico mensual	19
Figura 3: Sección típica del pavimento de diseño	20

Resumen

El objetivo principal del proyecto es diseñar la infraestructura vial de la casa rural El

Alto-Cruce Carretera Ferreñafe-Pitipo. La distancia es de 5 + 730 km. El período de

investigación duró 7 meses. Como la parte actual no cumple con las condiciones de

diseño, seguridad y señalización vial, Por lo tanto, el vehículo se desarrolló para

mejorar el tráfico de vehículos y peatones. Esta investigación propone adoptar un

método cuantitativo para satisfacer las necesidades de Caseríos en su superficie

de influencia. De acuerdo con el "Estándar de Diseño Geométrico de Carreteras"

(DG-2018), se propone el plan de diseño de infraestructura vial. Los datos

recopilados se pasarán a través de El programa especializado y para garantizar la

validez y fiabilidad, habrá un consultor experto en el tema. La conclusión a la que

se llegó es que, al diseñar la infraestructura vial, habrá mejoras en el flujo de

vehículos, lo que beneficiará a la población de todos los caseríos, a los

transportistas y a la vez su comercio.

Palabras claves: Diseño, infraestructura vial, suelos

vii

Abstract

The main objective of the project is to design the road infrastructure of the rural house

El Alto-Cruce Carretera Ferreñafe-Pitipo. The distance is 5 + 730 km. The investigation

period lasted 7 months. As the current part does not comply with the design, safety and

road marking conditions, therefore, the vehicle was developed to improve vehicleand

pedestrian traffic. This research proposes to adopt a quantitative method to satisfythe

needs of Caseríos in its area of influence. In accordance with the "Standard for

Geometric Design of Roads" (DG-2018), the road infrastructure design plan is

proposed. The data collected will be passed through the specialized program and to

guarantee validity and reliability, there will be an expert consultant on the subject. The

conclusion that was reached is that when designing the road infrastructure, there will

be improvements in the flow of vehicles, which will benefit the population of all the

hamlets, the transporters and at the same time their trade.

Keywords: Design, road infrastructure, soils

viii

I. INTRODUCCIÓN

En ciudad Bolivia, es considerada como uno de los países, más perjudicados en el crecimiento de la construcción vial, esto por la crisis económica que vive el país vecino siendo sus carreteras bloqueadas en su vía principal denominada el alto, siendo esta vía la más importante, esto porque los pobladores trasladan sus productos comerciales, sus alimentos, se dirigen a sus puestos laborales, esta notica nos muestra la necesidad de una infraestructura vial, porque ante un bloqueo de protestas, los alimentos se llegan a escasear, producto de estas protestas, rescatando la importancia de una vía, con buenas condiciones, con un adecuado diseño, que cuente con planes de mantenimiento, y seguridad vial, añadiendo que ante una falta de estabilidad política, podría perjudicar a miles de personas en la necesidad de cubrir sus alimentos básicos, es necesario que los acuerdos por las autoridades regionales y locales, se basen en el beneficio de toda la población. (RT en español, 2019).

En Madrid, España encontramos otro problema, donde la carretera está bloqueada esto por la nieve y el cambio de clima, son más de 41 carreteras perjudicadas, dentro de estas dieciséis se ha cortado la comunicación, estos son datos brindados por la dirección general de tráfico D.G.T., esto sucede por la falta de un plan de contingencia por el gobierno actual, siendo sus planes de acción muy lentos, este caso el gobierno tiene que actuar inmediatamente para que la comunicación no se pierda, y no afecte el comercio y la economía de los habitantes. (Agencia EFE, 2019)

En la ciudad de Guayaquil se va visto fortalecida en el tema logístico, ya que tiene una inversión de 4,200 millones de dólares, esto con la finalidad de brindar apoyo a las empresas para que puedan enrumbar su capacidad económica, sean competentes y activen toda su economía, lo privilegiado es que las empresas privadas tendrían que invertir más del 95% de su capital, para que se ejecuten obras de infraestructura vial, esto con la prioridad de mejorar su economía de la comunidad. (Primicias, 2019).

En la ciudad de Piura, vemos que las carreteras siguen en pésimo estado, poniendo en peligro a todos los habitantes de la zona, perjudicando la transitabilidad vehicular

y peatonal, teniendo que todas maneras emplear estas vías, para que puedan trasladar sus productos agropecuarios y realizar su mercado comercial, el fenómeno del niño costero ha dejado muchos estragos, daños a mucha gente y a sus vías principales, esto ocurre muchas veces por una mal diseño, los pésimos materiales que se emplean, de deficiencia de los estudios básicos de ingeniería y cuando las autoridades locales no realizan un eficiente plan de contingencia para iniciar una reconstrucción, a la brevedad posible, esto invita a la autoridades fiscales, a la defensoría a tomar cartas en el asunto, esto nos brinda una expectativa importante cuando las autoridades no muestran la atención adecuada y oportuna para la reconstrucción y construcciones de obras viales. (La República, 2019)

En Juliaca en el año 2019, sus carreteras están en peor de los estados específicamente en los tramos de Juliaca a la localidad de Lampa, sus vías están siendo ineficientes, con huecos, agrietados, con basura, donde la misma población que se traslada por esas vías manifiesta su malestar e indignación esto porque se observa que las autoridades no le toman la atención adecuada, no gestionando para su reconstrucción o mantenimiento, llevando a poner en peligro la vida de muchos ciudadanos, donde nos hemos dado cuenta la gran importancia que tiene una carretera vial en mantenerla, llevar a cabo un plan de prevención en el periodo de vida de una vía. (El Correo, 2019).

En la ciudad de Lima, el anterior alcalde Luis Castañeda Lossio, ha llegado inaugurar obras inconclusas, es decir como el puente bella unión, la línea amarilla, donde actualmente estas obras no están funcionando, estas no cuentan con la señalización correspondiente, recalcando que esta obra se llegó a valorizar más de lo adecuado, costos muy elevados, donde este alcalde esta investigado por la pésima gestión realizada, mostrando de esta manera que las obras que inician mal, terminaran mal, es decir no existe el cumplimento de especificaciones técnicas de acuerda a norma, la proyección de las obras, tiene que ejecutarse con responsabilidad, todas las obras tienen que ser pensando en el desarrollo de una comunidad, donde los habitantes queden satisfechos, con su obra principal ya que les ayudara económicamente. (El comercio, 2019)

Se formula la problemática por medio de una pregunta: ¿Cuál es el óptimo diseño de infraestructura vial en el Caserío El Alto – Cruce carretera Ferreñafe – Pitipo, Progresiva Km 1+490 Distrito Manuel Antonio Mesones Muro – Ferreñafe,

Lambayeque?

Y es por ello que nuestro trabajo se justifica por 5 causas científica, técnica, económica, social y ambiental.

Justificación técnica: La razón técnica se incluye porque el Manual de Diseño de la Carretera Nacional del Perú del Director General No. 03-2018-MTC / 14 implementará el diseño geométrico de la DG 2018 a través de parámetros y adoptará los procedimientos de diseño de infraestructura correctos. Esto requiere una cierta estructura de diseño combinado para la ingeniería vial.

Desde el punto de vista socioeconómico está justificado porque involucra el desarrollo de una comunidad mejorando la comunicación terrestre, cambiando el estado de terreno natural por uno pavimentando, también permite activar el comercio en la agricultura específicamente en el Caserío El Alto y es una fuente de ingresos para los trabajos de ejecución y mantenimiento de carretera.

Ambiental: Desde un punto de vista ambiental, este trabajo es razonable porque cumple con las disposiciones del DECRETO SUPREMO N ° 008-2019-MTC aprobado por D.S.-el más alto decreto para modificar las regulaciones de protección ambiental del departamento de transporte. N ° 004-2017-MTC prioriza reducir o reducir el daño que el terreno natural puede causar un daño a nuestra salud y a su vez una mejora continua a nuestra calidad de vida. este trabajo también determinará cuáles son los aspectos ambientales positivos y negativos y afectará a la comunidad.

En base a esta justificación se determinó un objetivo general: Diseñar la infraestructura vial, caserío El Alto - Cruce Carretera Ferreñafe – Pitipo, progresivo km 1+490 distrito Manuel Antonio Mesones Muro – Ferreñafe, Lambayeque.

Pero para llevar a este objetivo general se programó 04 objetivos específicos, el primero consistió en realizar un reconocimiento de campo sobre el estado en que se encuentra, el segundo fue realizar estudios básicos como mecánica de suelos, topográficos e impacto ambiental, el tercero fue realizar un diseño para infraestructura vial urbano y el cuarto fue el presupuesto para la ejecución, operación y mantenimiento del proyecto.

Para así encontrar solución a la siguiente hipótesis:

Diseño de infraestructura vial, caserío El Alto - Cruce Carretera Ferreñafe — Pitipo, progresivo km 1+490 distrito Manuel Antonio Mesones Muro — Ferreñafe, Lambayeque.

II. MARCO TEÓRICO

Palacios (2017), Quito, Ecuador, en relación a los métodos sistemáticos para el diseño estructural de la Vía Mulateé - La florida de acuerdo a AASTHO 2008 y AASTHO 93, nos menciona que siempre utilizan esto método ya que se tiene mayor confiabilidad, en realizar un diseño vial, esto por ser una versión avanzada, logrando los parámetros establecidos en el diseño, y el éxito de una obra, el autor emplea este manual de diseño de un pavimento mecanicista y empírico, empleando los elementos en humedad, temperatura, trafico, entre otros estudios básicos, la finalidad del presente proyecto es lograr el mejor método AASTHO, para el diseño respectivo de un proyecto, las conclusiones que se espera con esta metodología es mantener un diseño adecuado, con un periodo de vida, para evitar costos innecesarios, esto les brinda a los proyectistas e ingenieros civiles en la ciudad del ecuador una mejor seguridad en ejecutar un proyecto vial

Álvarez (2008), Chile: Santiago, Chile, su trabajo "Uso del sistema informático dtims para diseñar y estudiar la red de carreteras pavimentadas en esta área". Nos mencionan que para emplear el diseño de un red vial, no es un trabajo fácil y sencillo, es un trabajo que requiere de esfuerzo, donde las comunidades logren avanzar y crecer económicamente, en mundo globalizado, generando que por cada año que se avance, construyan nuevas ciudades, provincias y distritos, siendo necesario ejecutar y diseñar proyectos viales eficientes, para dar paso a las conexiones entre otras ciudades, pero de igual forma muchos sueños se quedan sin ser realidad proyectos que pasarían décadas y que los sueños de mucha gente no se cumpla, por la falta de gestión de autoridades, porque muchas veces el dinero llegado, no se ejecuta de manera correcta, este estudio está basado en cumplir un objetivo direccional que es el correcto mantenimiento de pistas y veredas, y no solo eso, que se cumplan con todos los procedimientos técnicos, prácticos, siendo muy importante el desarrollo de un país mediante sus carreteras pavimentadas, permitiendo ser un ejemplo de cómo se realizan los mantenimiento y construcción de vías, aclarando el autor que se necesita de estos proyectos en las zonas más necesitadas, pero siempre teniendo en cuenta el plan de contingencia que ayude a la reconstrucción de una vía.

para las zonas más necesitadas se deben generar programas de contingencia en el que contribuyan con la reconstrucción.

Fontalba (2015) Valdivia, Chile. En su tesis de licenciatura "Diseño de pavimento alternativo para la primera fase de la carretera de circunvalación de Guacamayo". El autor del proyecto intentó especificar el diseño correcto del pavimento para la primera etapa de la carretera de circunvalación de Guacamayo., haciendo referencia que actualmente las necesidades de pavimentos están inmersas en las afueras de las grandes ciudades, así como también para las que están emergiendo en el desarrollo, los pavimentos son importantes porque garantizan parte del desarrollo económico. El objetivo del autor es utilizar el método AASHTO 93 para diseñar un método de implementación de pavimento alternativo para el área de estudio, donde el trabajo comienza desde el diseño del pavimento anterior y enfatiza que este es el método oficial en Chile. Para el diseño detallado de la acera, se deben realizar análisis e investigaciones regionales del tráfico, al mismo tiempo, se deben considerar diferentes camiones livianos y pasados, y también se deben realizar investigaciones previas sobre el terreno mecánico del suelo. Las conclusiones del autor son muy importantes ya que se basan en los estudios previos de visualización de humedales en el suelo, esto antes de comenzar los trabajos previos remarcando específicamente en el análisis de la sub-rasante, el autor recomienda que el diseño correcto de un pavimento alternativo tiene como finalidad la seguridad vehicular.

Humpiri (2015), Puno, Perú, tesis "Diseño de capa superficial de pavimento flexible para mantenimiento de carreteras en Puno". Se presenta una pésima pavimentación en las pistas y veredas en la gran mayoría de la región de Puno, es decir en la localidad de Laraqueri, Juliaca y Llave, esto porque no se realiza el mantenimiento de sus vías, esto por la mala elaboración de su diseño vial, donde se señala el autor que es necesario respetar los lineamientos técnicos de la norma vigente de carreteras, asegurando un mantenimiento correctivo y preventivo, este que este proyectado, para un tiempo determinando, la finalidad es analizar todas las fallas de un pavimento, señalando el estado climático de la zona, ya sea ambiental, es necesario realizar una evaluación superficial , para calcular el desgaste y la exudación del asfalto esto con la finalidad de realizar los procedimientos necesarios para el mantenimiento periódico y rutinario de la vía, concluyendo de esta manera

que el diseño va influir en un aspecto negativo si dentro de la obra se generan deficiencias dentro de la construcción, repercutiendo en la entrega final delproyecto.

Escobar y Huincho (2017), Huancavelica, Perú, "Debido a la degradación del pavimento Santa Rosa-Sachapite, Huncavelica-2017, el diseño del pavimento flexible se ve afectado por los parámetros de diseño". Es necesario mencionar que un pavimento flexible está siendo afectado por las características de un diseño vial, los autores del presente estudio señalan que es importante para una comunidad la ejecución de proyectos viales, pero también refiere la preocupación que se tiene por nuestro país es que no se está diseñando como debe de ser, planteando como objetivo principal diseñar de manera correcta un pavimento flexible en el área a intervenir, donde considera el autor que el mejor método para tener una eficiente carretera es el diseño AASHTO 93, donde recalca que cumpliendo con estemétodo, tendremos un adecuado diseño vial, de igual manera se tiene que cumplircon todos los estudios básicos, el estudio hidrológico, mecánica de suelos, levantamiento topográfico, para que el proyecto sea totalmente viable.

Bellido y Ochoa (2017), Huancavelica, Perú: "El diseño de pavimento flexible bajo la influencia de los parámetros de diseño debido a la degradación de la acera-Huancavelica, Acápite, 2017". El autor señaló que, en este trabajo, buscaron hacer pavimento flexible para las aceras el diseño de En Santa Rosa-Sachapite, busque los parámetros que permiten el desarrollo de la ecuación del método AASHTO 93. Los parámetros de diseño deben cumplir con los estándares del manual del camino de tierra., Geología, ingeniería geotécnica y aceras del Perú. El objetivo general es determinar los parámetros para un diseño de pavimento flexible mediante la recopilación de datos en el área de estudio. Los autores concluyeron que el diseño actual de la acera en el área de estudio no cumple con las especificaciones técnicas aplicables a la norma, por lo que es importante aumentar la capa de la banda de rodadura de 11.5 cm a 30.5 cm.

Torres (2018), Chiclayo, Perú, su obra "2017, Diseño de la autopista Tunaspampa-El Chito-El Chileno-Cantera La Colorada en Santa Cruz, provincia de Cajamarca". El autor de este trabajo se basa en el diseño de la carretera de 9.941 km entre Tunaspampa, que pasa por El Chito y El Chileno, incluidas La Colorada y Polul. El autor señaló que, para llevar a cabo este diseño, los datos de campos como la investigación de rutas y tráfico, la investigación de la mecánica del terreno y del suelo, y la investigación sobre el agua, la hidrología y la geometría deben usarse en el manual de diseño de carreteras geométricas. 2018. El autor tiene como objetivo diseñar carreteras en su área de investigación. A través del trabajo de campo mencionado anteriormente, el autor concluye que es muy importante utilizar el índice promedio diario y la investigación hidrológica con m3 / s como la unidad para realizar la investigación de tráfico, y recomienda el análisis de beneficios y costos del proyecto.

Chamaya y Villar (2018) Pimentel, Perú, "Proporcionan diseño de infraestructura vial para el centro densamente poblado Pajaritos Km. 0 + 000, y el centro de la ciudad densamente poblada Km. 2 + 500, Canoas de Punta Sal, Tumbes 2018", autor Se refiere al centro de población de Pajaritos, el estado actual del centro de población urbana, los cuales cuentan con diseños que no cumplen con los requisitos mínimos de diseño, mencionando que también es un problema que surgepor todo el Perú en donde los proyectistas no respetan las especificacionestécnicas. El objetivo general que se plantean los autores se basa en elaborar el diseño que cumpla con las especificaciones técnicas y requisitos mínimos establecidos en la (DG-2018) Norma de Diseño de carreteras, al realizar los estudios y trabajos de campo el autor llega a la conclusión que debe elaborar un plan de mantenimiento de carretera en el diseño de infraestructura también se debetomar en consideración el correcto diseño de topográfica, hidrología, mecánica de suelos, y los demás estudios que deben ser llevados a nivel de ingeniería.

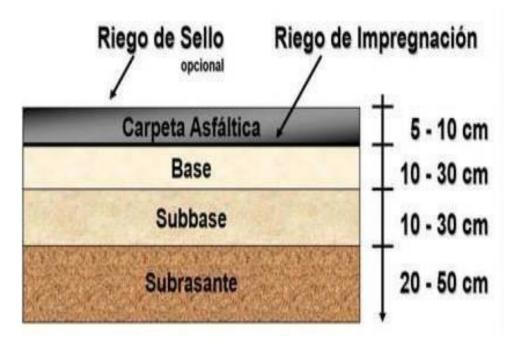
Suelo: Terreno el cual está en una zona determinada en donde se pretende ejecutar el desarrollo de un proyecto, en cualquiera de sus dimensiones, donde se ejecutan carreteras, pistas y veredas, teniendo en cuenta las propiedades mecánicas del terreno, en nuestro país se diseña pavimentos a través del método AASTHO 93, asimismo los tipos de terreno varía desde el tipo A1 hasta el A7. (Ministerio de Transportes y comunicaciones. MTC (2013).

Pavimento: Si nos referimos a un pavimento, nos hace mención al conjunto de procedimientos que realiza un proyectista para ejecutar un adecuado diseño de infraestructura vial, en base a las necesidades de las localidades a intervenir, o por la cantidad vehicular, esto por la carga que lleva y el esfuerzo por el tráfico vehicular.

Becerra (2012) Nuestro país, se ha visto influido por la ejecución de obras viales,

mediante un pavimento rígido, y en la ejecución de una obra con un pavimento flexible, hay mucha inexperiencia para elaborar un pavimento flexible, esto por la falta de conocimientos técnicos o por el conjunto de capaz que están se enlazan un tras otra, en donde la capa de rodadura, será donde los vehículos transiten sobreella, ya sea de carga pesada o ligera.

COMPONENTES DEL PAVIMENTO FLEXIBLE:


Sub rasante: Es la capa que soporta en la profundidad el diseño de carga, y está formado por relleno o corte, en donde es compactado de forma transversal y de pendiente. (Gómez, 2014)

Sub base: Es el componente del pavimento flexible que tiene por función soportar, transmitir y distribuir las vibraciones que provienen de la base con el fin de absorberlas (Gómez, 2014).

Base: La base es la parte del pavimento flexible que se ubica por abajo de la capa de rodadura, y tiene la función principal de transmitir y distribuir las vibraciones que provienen de la capa de rodadura pasando estas cargas a la sub-base. (Gómez, 2014).

Capa de rodadura: Torres y Pérez (2017). La capa superior o capa de rodadura es la estructura final superior del pavimento flexible, está compuesta porMezcla asfáltica en caliente (HMA), también se le puede llamar como concreto asfaltico, la función primordial que tiene la capa de rodadura resistir el paso de losvehículos o carga.

Figura 1: Componentes del pavimento flexible

Fuente: Giordani & Leone (2014)

Topografía: La topografía es una ciencia, basada en principios, métodos e instrumentos, puede presentar gráficamente las formas y estructuras naturales que se encuentran en una parte de la superficie de la tierra, y determinar las posiciones tridimensionales de estos puntos en la tierra. (Jiménez, 2007)

Estudios ambientales: Nuestro país tiene varios climas tropicales, siendo un país rico en su variedad, tiene cambios de temperatura variados, siendo presencia a la humedad en algunas regiones de nuestro país, afectado directamente a la estructura del pavimento, es por eso que es necesario realizar los mejoramientos de los suelos, tener materiales necesarios, adecuados y de calidad, llevar a cabo un plan ambiental, para mitigar aspectos negativos dentro de la ejecución de una obra, esto para que el proyecto termine siendo viable. [MTC], 2013).

Evaluación de impactos ambientales en ejecución de obra:

Los estudios ambientales en campo en la ejecución de obra son muy importantes ya que nos permiten tener a primera mano el comportamiento del cambio climático y con ello tener un mejor panorama o perspectiva de cómo vamos a realizar el avance del trabajo, en el diseño también es importante porque nos muestra sobre que vamos a realizar un trabajo en el área de estudio que se está afectando en lo que respecta flora y fauna, para mitigar los daños y para determinar los beneficios

cuantitativos y cualitativos que va representar el proyecto. Una manera de evaluarlos es por medio de matrices de impacto ambiental que se utilizar para determinar un panorama general ambiental de la zona en el diseño y para tener de referencia de cambio del comportamiento de temperatura y clima del área de ejecución de obra. Debe recordarse que, en la etapa de revisión, diferentes participantes principales (titulares, autoridades públicas, expertos, ciudadanos y otras partes interesadas) deben participar de manera activa y directa de acuerdo con estándares y formas predeterminadas. (De la Maza, 2007)

Capas de protección de los pavimentos:

Capas de protección de los pavimentos no pueden exceder los 3 cm de espesor y debe ser para la protección mediante las técnicas de riegos asfálticos, de riego asfalto en granular, sellos de mezcla, de sellos de fricción y de Lechadas. (Zúñiga, 2015)

Riego asfáltico:

Se agrega una mescla asfáltica liquida sobre una capa granular con la final de garantizar la adherencia necesaria con el fin de asegurar la estructura y que estaa su vez actúe en conjunto como un solo sistema de transmisión de las cargas proveniente de los vehículos. (Zúñiga, 2015).

Riego asfalto granular:

Es un proceso mediante en la cual se agrega una cubertura de o una capa de arena, pueden ser una o varias para garantizar la protección del pavimento. Si es de arena fina la protección será por corta estadía iniciando a corto plazo el mantenimiento de pavimento, por otro lado, si la cobertura es de grava los tratamientos superficiales son simples (Zúñiga, 2015).

ETAPA DEL INICIO DE DISEÑO

Planeación:

Primera parte de la etapa de diseño en donde se busca establecer un plan de diseño mediante la consideración de los factores políticos, ambientales, geográficos, características poblacionales, entre otros teniendo como objetivo el diseño de infraestructura que beneficie o mejore la calidad de vida de las personas. (Sánchez, 2006)

Proyecto:

Al realizar la etapa de planeación se hace el diseño de proyecto para la estructura comenzando con los estudios topográficos, geológicos, mecánica de suelos y diseño de estructura. (Sánchez, 2006)

Trazo preliminar:

Parte en donde se marca el punto de partida del diseño, se establecen los kilometrajes, cotas de punto de partida, notas de campo y la nivelación preliminar. Ante esto hay que tener algunas precauciones generales como: colocar estacas cada 20m, hacer observaciones solares cada 10Km, evitar hacer daños como por ejemplo a los sembradíos o frutales, y precaución al realizar cualquier tipo de lectura. (Sánchez, 2006).

Etapa definitiva (línea definitiva):

En esta etapa se anotan las longitudes, rumbos, kilometrajes, deflexión, grado de curvatura, radio y subtangente. (Sánchez, 2006).

Método AASHTO 93:

Este método es elaborado en Estados Unidos, tomando en consideración todos los tipos de suelo, clasificando desde el A1 – A7, existiendo siete grupos, la cual este método consiste en determinar las características del suelo, su plasticidad mediante la comprensión y el líquido asfaltico o una mezcla asfáltica en caliente, estas clasificaciones son necesarias, siempre cuando se respete el parámetro de calidad del material del suelo, que están en la base, sub base , el índice de grupos se muestra cunando hay una reducción en la carga de soporte en el diseño. Chávez (2015).

III.METODOLOGÍA

3.1 Tipo y diseño de investigación

Este tipo de investigación es aplicada porque busca dar solución al problema del estudio, cual es diseñar infraestructura vial urbana para el distrito Sector 2, Zona Nor Este, distrito Cayalti-Chiclayo-Lambayeque.

Según el diseño será (Borja, 2012) Cuasi Experimental – Descriptiva, necesario a que el estudio está basado en la compilación de información a través de la elaboración de ensayos de laboratorio sin manipulación alguna de las variables, a fin de determinar las propiedades y características más típico de las cuestiones estudiados.

$$U \longrightarrow E \longrightarrow x$$

U: Unidad de análisis

E: Estímulo a la variable independiente

X: Evaluación a la variable independiente

3.2 Variables y Operacionalización

Variable independiente

Diseño de infraestructura vial.

3.3 Población y muestra

Población

Engloba a todas las diferentes infraestructuras viales que se encuentren dentro del caserío El Alto – Cruce carretera Ferreñafe – Pitipo, Progresiva Km 1+490 Distrito Manuel Antonio Mesones Muro – Ferreñafe, Lambayeque

Muestra

La muestra del trabajo está comprendida entre el Cruce de la carretera Ferreñafe – Pitipo, Progresiva Km 1+490 – Progresiva Km 1+490 hasta el caserío El Alto.

3.4 Técnicas e instrumentos de recolección de datos

Técnicas:

Observación directa:

La observación se basa en una técnica para recopilar datos que involucran realizar unas observaciones de todos los objetos de la indagación, ya sea en circunstancias específicas utilizándolas en un orden cronológico y de acuerdo a los elementos empleados.

Análisis de documentos:

Utilizado para analizar un proyecto de características cualitativas el cual tiene como objetivo examinar una data o documentación empírica o bibliográfica de manera semántica para la búsqueda de resultados.

Instrumentos:

Guía de análisis de documentos:

Es un acumulado de tareas y operaciones que estima para encontrar información necesaria de todos los papeles que se van a sistematizar, analizando las representaciones claves,

Ficha técnica:

Para especificar varias operaciones que se van a contar, se tiene que adaptar de acuerdo al modelo del M.T.C. esta se desarrolla en base de la normativa del país.

3.5 Procedimientos

Se realizan los estudios necesarios para posteriormente realizar el diseño adecuado para la infraestructura de acuerdo a la D.G 2018. programa Excel; (Regalado, 2011).

3.6 Método de análisis de datos

Por la cual el proyecto de tesis se basó en el análisis de los datos trabajados mediante el software: 3D Civil, S10, Costos y presupuestos, etc.

Lugar: Caserío El Alto – Cruce carretera Ferreñafe – Pitipo, Progresiva Km 1+490 Distrito Manuel Antonio Mesones Muro – Ferreñafe, Lambayeque

3.7 Aspectos éticos

Estos aspectos se utilizan para validar la información y los resultados propios del investigador y la información extraída de otras fuentes, a través de sus citas bibliográficas, esta recopilación de algunas fuentes servirá para llevar una eficiente investigación, en este trabajo se consideró el decreto Nro. 822 y sus modificaciones Nro. 30276, el derecho de autor y la ley universitaria Nro. 30220.

IV. RESULTADOS

4.1 Realidad situacional

La característica principal de la carretera que se ha estudiado es que está hecha de materiales (determinados) tomados de la cantera y tiene unespesor de 20 cm. El terreno básico es CL y SC, y su CBR es 7.20%. La presentación actual no es buena, por lo que se deben considerar los datos yse debe mejorar el terreno

Estudios Básicos

Estudio de Trafico

Para determinar el índice promedio diario (IMD), el tipo de vehículos que pasan la carretera y la carga en la carretera, se llevó a cabo un estudio de tráfico en el área afectada de la carretera para determinar el método de espesor de pista suficiente para soportar su carga.

Tabla 1: Resultados de IMD

Tipo de	Tráfico Vehicular en dos Sentidos por Día						TOTAL	IMDs	FC	IMDa	
Vehículo	Lune s	Martes	Miércole s	Jueve s	Vierne s	Sábad o	Doming o	SEMAN A	IIVIDS		IIVIDa
Automovil	13	12	13	17	16	15	16	102	15	1.017294 0	15
Station Wagon	2	-	-	-	-	-	-	2	0	1.017294 0	0
Camioneta	17	19	20	11	19	20	20	126	18	1.017294 0	18
Combi Rural	2	2	2	2	4	2	4	18	3	1.017294 0	3
Micro	-	-	-	-	-	-	-	0	0	1.017294 0	0
Omnibus 2E	-	-	-	-	-	-	-	0	0	1.014015 8	0
Camión 2E	18	15	27	18	23	19	27	147	21	1.014015 8	21
Camión 3E	2	-	-	-	-	-	-	2	1	1.014015 8	1
TOTAL	54	48	62	48	62	56	67	397	57		58

Fuente: Ministerio de Transportes y Comunicaciones (MTC).

El IMDA calculado es 58 Veh. /día. En el camino, los más importantes e influyentes son los vehículos ligeros, que representan el 50% del IMD total. Según la investigación de tráfico, se espera que el proyecto básico de IMDA sea de 10 años y 77 vehículos por día.

4.2 Estudio Topográfico

Se realizó un trabajo de campo para obtener datos geo-referenciados en el sistema de posicionamiento UTM WGS84, y se preparó un mapa topográfico, y se proporcionó información básica para la investigación y las características de la topografía natural, de modo que la posición y el tamaño de los elementos estructurales se puedan definir con precisión. ; Establecer un punto de referencia (BM) para replanteo durante la construcción.

Tabla 2: Cuadro de BMS

CUADRO DE BM's						
ITEM	COORDENA	СОТА	CODIGO			
II LIVI	NORTE	ESTE	COIA	CODIGO		
1	9270821.799	638226.096	67.724	BM-01		
2	9270289.549	638256.55	68.89	BM-02		
3	9269857.229	638261.357	69.32	BM-03		
4	9269505.701	638249.487	69.612	BM-04		
5	9269258.359	637798.683	67.042	BM-05		
6	9269023.659	637360.306	63.422	BM-06		
7	9268843.512	636930.361	59.694	BM-07		
8	9268752.767	636440.948	58.017	BM-08		
9	9268647.824	635941.977	56.342	BM-09		
10	9268535.737	635406.875	54.851	BM-10		
11	9268430.726	634951.146	53.527	BM-11		
12	9268340.726	634478.506	51.632	BM-12		

Fuente: Elaboración Propia

Se desarrolló y dibujó un mapa topográfico relacionado con las características geométricas de las carreteras, ejes, bordes, cultivos y ubicaciones actuales mediante procedimientos técnicos. El resultado es un dibujo representativo del mapa, perfil longitudinal, sección transversal y volumen de corte y relleno.

4.3 Estudio de Mecánica de Suelos

Se realizó el trabajo correspondiente al estudio de la mecánica del suelo. En una mina a cielo abierto que consta de 7 pozos, las muestras se perforaron a una profundidad de 1,5 m para obtener muestras para análisis de tamaño de partículas, límite, salinidad y CBR, lo que es útil para diseñar el depósito. Muy importante. Por. Los resultados obtenidos se muestran a continuación.

Tabla 3: Resultados del Estudio de Mecánica de Suelos

CALICATA	PROFUNDIDAD	sucs	% DE HUMEDAD	C.B.R. (95%)
C- 01 - Km 0+000	1.50 m	CL	23.35	6.25 %
C - 02 - Km 1+000	1.50 m	CL	21.28	6.80 %
C - 03 – Km 2+000	1.50 m	CL	22.28	6.50 %
C- 04 - Km 3+000	1.50 m	SC	18.87	8.55 %
C- 05 – Km 4+000	1.50 m	SC	20.57	8.10 %
C - 06 – Km 5+000	1.50 m	CL	20.57	6.70 %
C- 07 – Km 5+730	1.50 m	CL	13. 28	7.75 %
Promedio a	7.24 %			

Fuente: Elaboración Propia

4.4 Estudio de Impacto Ambiental

Dentro de su objetico es lograr evaluar sus principales impactos negativos y positivos de las actividades de reparación de carreteras, así como sus posibles acciones secundarias sobre el medio ambiente, así como la identificación y evaluación del impacto, incluidas las acciones de seguimiento y las acciones de control en la implementación de las actividades de reparación de carreteras. Recomendaciones dadas en el plan de gestión ambiental.

4.5 Estudios Hidrológicos y Drenaje

> Estudio hidráulico

Se realizó la inspección ocular ínsito en la vía del caserío El Alto en el tramo km 0+000 hasta el km 5+730, el cual cuenta con cruces de alcantarillas que su función que realizan es de ser pases de agua con fines agrícolas. Se ha encontrado 6 pontones como estructuras de cruce vehicular, 2 de los cuales en el km 0+210.83 y en el km 1+266,67 se realizarán demolición y reemplazo.

> Estudio hidrológico

En la zona de estudio existe un canal revestido al margen derecho de la vía, este tramo de la carretera es atravesado por 6 pontones de fines agrícolas y cruces vehiculares a los cuales se les realizará mantenimiento.

Pronóstico Hidrológico Mensual 2019-2020

Estación Racarumi - Río Chancay-Lambayeque

100

Caudal medio mensual observado Promedio historico mensual Rango del caudal pronosticado (SMN)
Mediana del caudal pronosticado (SMN)
Mediana del caudal pronosticado (SMN)

Figura 2: Pronóstico hidrológico mensual

La condición hidrológica más probable a presentarse en Junio 2020 para el Río Chancay-Lambayeque - Estación Racarumi se encontraria entre "normal a sobre lo normal", respecto su promedio histórico

Fuente Senamhi 2019 - 2020

4.7 Diseño de Infraestructura Vía

Diseño Geométrico

Oct.-19

Tabla 4: Cuadro de características básicas de diseño

Características básicas de diseño					
Clasificación según su Demanda	Carretera de tercera clase				
Clasificación según su Orografía	Terreno plano – tipo 1				
Índice medio Diario	< 400 veh/día				
Disc	eño geométrico				
Distancia de visibilidad	Pendiente de bajada: 3 % = 50 m; 6 % = 50 m; 9 % = 53 m Pendiente de subida: 3 % = 45 m; 6 % =44 m; 9 % = 43 m				
Velocidad de adelanto	Redondeada = 270 metros				
Tramos en tangente	L min s = 56 metros; L min o = 111 metros-Lmax = 668 metros				
Peralte máximo	P (max) = 8% absoluta y 6% normal				
Radio mínimo	R min = 50 metros				
Pendientes	I min = 0.5 %; I max = 8 %				
Sección transversal	Calzada = 6.00 metros				
Berma	1.20 metros				
Bombeo	2.00 %				
Taludes	Corte (v:h) = 1:1				
I aluues	Relleno (v:h) = 1:1.5				

Fuente: Elaboración Propia

4.8 Diseño del Pavimento

El tipo de carretera flexible, la longitud es de 5 + 730 kilómetros. H categoría de tres niveles de 02 carriles, el ancho de la carretera es de 6.00 mi la base es de 0.25 m. La base es de 20 cm, la alcantarilla rectangular, las señales se llevan a cabo según lo planeado, el tiempo de uso esperado es de 10 años y se diseñará a una velocidad de 40 km / h.

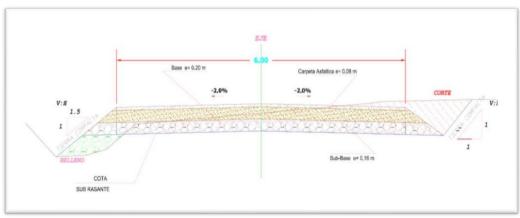


Figura 3: Sección típica del pavimento de diseño

Fuente: Elaboración Propia

4.9 Diseño de Obras de Arte

Se realizará la demolición y reemplazo de 2 pontones que nos permitirán como pase sobre el canal existente en el margen derecho del tramo de estudio.

4.10 Especificaciones Técnicas

Se basan en cada una de las partidas de la carretera, su descripción, ejecución, ubicación, método de medición, bases de pago de la obra.

4.11 Metrados, Presupuesto y Cronograma de Obra

El metrado se basa en las partidas (anexo de metrados), el presupuesto se estima en S/. 5,711,757.02 nuevos soles y con un tiempo de ejecución proyectado de 04 meses.

4.12 Señalización Vial

La señalización de la vía se muestra en los planos (Plano S -01, Plano S - 03)

4.13 Plano de Obra

Se diseñaron los planos de: Plano de ubicación – Localización, plano clave, sección típica, planos de planta y perfil, plano se secciones transversales, señalización, plano de ubicación de cantera, plano de inventario vial de obras de arte.

4.14 Propuesta

Inversión Económica para Ejecución

La propuesta económica asciende a los S/. 5, 711,757.02 nuevos soles y con un costo directo de S/. 4, 102,094.95 nuevos soles; resultado de los metrados y análisis de precios unitarios de la obra.

Manual de Operación y Mantenimiento

Se realizará con respecto a las actividades que sean requeridas, rutinarias en forma periódica.

V. DISCUSIÓN

. Sus problemas en la ruta de transporte en el pequeño pueblo de El Alto en la región de Manuel Antonio Mesones Muro-Ferreñafe han empeorado. Además de esta ruta, la ruta Los transportistas y los residentes también tienen dificultades para caminar. Los materiales dispersos o finamentedivididos dañan la salud de la población rural; en este camino, sus obras dearte existentes deben mantenerse porque no han llevado a cabo ningún tipode limpieza y mantenimiento regular durante muchos años.

Es por ello que enfoco mi investigación en una propuesta de solución a las condiciones actuales de la trocha carrozable del caserío El ALTO, del distritode Manel Antonio Mesones Muro – Ferreñafe. Se plantea que el beneficio del proyecto en esta zona de estudio se plantea la continuidad del tránsito, un mejor flujo comercial para los usuarios de la vía y para la población del caserío El ALTO.

Para la zona se plantea una alternativa de solución, por el tipo de tráfico dela vía, realizar un diseño de infraestructura vial cumpliendo las normas técnicas actuales del ministerio de transportes y comunicaciones y la DG – 2018.

Se realizó un estudio básico para el diseño de la infraestructura vial en el pequeño pueblo de Al Alto, que cruza la carretera Ferreñafe-Pitipo, que se encuentra en el kilómetro progresivo 1 + 490 área de Manuel Antonio Mesones Muro en Lambayeque-Ferreñafe, centrándose en la corriente Reglas de diseño de carreteras geométricas. (DG-2018), organizado por el Ministerio de Transporte; la ruta de investigación será el tercer tipo de caminocon pavimento de asfalto, y la investigación básica que se ha llevado a cabo para el proyecto incluye: investigación de tráfico, topografía, investigación de mecánica de suelos, hidrología, hidráulica, La señalización, la investigacióndel impacto ambiental, a través de estas investigaciones básicas, determinanel mejor diseño del programa de infraestructura vial.

El diseño de la infraestructura vial del cortijo El Alto en el área de Manuel Antonio Mesones Muro-Ferreñafe está clasificado como un camino terciariodebido a su topografía e índice de demanda, y se está diseñando Casi no hay precipitaciones en la zona. Por eso es necesario determinar el pavimento flexible para obtener el mejor rendimiento de diseño.

El caserío el Alto es un sector muy importante del distrito de Manuel Antonio Mesones Muro y sus principales actividades económicas son las agriculturay la ganadería, es por ello que este proyecto tiene como propuesta poner encirculación los vehículos e interconectar al Caserío el Alto con la provincia de Ferreñafe y el distrito de Pitipo, ya sea para trasladar su producción de laagricultura y ganadería a un mercado de mayor demanda; además mejorar la transitabilidad de los pobladores de la zona hacia sus lugares de trabajo yestudios que se encuentra en la Ciudad de Chiclayo y Lambayeque.

Se opto por pavimento flexible teniendo en cuenta los resultados de estudios básicos, además el pavimento flexible su reparación es relativamente sencilla y este diseño tiene el criterio que satisface la necesidad del tráfico del caserío; el pavimento flexible tiene como objetivo que la probabilidad seala óptima y lograr este objetivo de su periodo de diseño.

La propuesta económica asciende a un valor referencial de **S/. 5, 711,757.02** (Cinco millones setecientos once mil setecientos cincuenta y siete con02/100 Nuevos Soles).

También se propuso un plan de mantenimiento para garantizar el funcionamiento normal de la infraestructura vial de Caserío El Alto.

VI. CONCLUSIONES

- En el área de estudio, puede ver las verdaderas condiciones de los senderos mal acondicionados, que han dañado la salud y el medio ambiente de la misma. El distrito de Manuel Mesones Antonio, dentro de las características no cumplen normativas de diseño geométrico y de carreteras.
- 2. En la investigación de tráfico, actualmente es posible determinar que los vehículos que pasan por esta carretera han deteriorado los carriles de tráfico y es difícil que las personas en las granjas circulen normalmente, porque esta es una de las principales formas de producción de cultivos. Se dedicana la ganadería y la agricultura. Para mejorar el diseño de la infraestructura vial, se está considerando una carretera de tres niveles, que tiene un anchode 6.00 m, un ancho de berma de 1.20 m, un radio mínimo de 50.00 en unatasa de bombeo de 2.00%.
- El método AASHTO 93 se ha utilizado en el diseño de pavimento flexible.
 Este grosor determina el grosor: capa de base inferior granular de 20 cm;
 material de base granular de 25 cm; lima rodante de 7 cm.
- La propuesta económica estimada a Julio del año 2020 es de S/.
 5,711,757.02 (Cinco millones setecientos once mil setecientos cincuenta y siete con 02/100 Nuevos Soles).

VII. RECOMENDACIONES

- Mediante la elaboración de este proyecto se logra satisfacer las necesidades de los beneficiarios de manera adecuada, se recomienda dar un buen uso de la vía y realizar un convenio con la municipalidad provincial de Ferreñafe para los mantenimientos periódicos en épocas que se requieran.
- 2. De acuerdo con las especificaciones establecidas en la DG-2018, se recomienda que el camino tenga un diseño geométrico y cumpla con los parámetros de diseño del aglomerante de asfalto AASHTO 93 y el pavimento agregado, y cumpla con el período de diseño. Ha sido predicho. Los planes y acciones de gestión deben formularse para reducir y minimizar el impacto en el medio ambiente.
- Se recomienda realizar para el buen funcionamiento de la vía una limpieza y mantenimiento periódico en toda la carretera después de cada temporada de lluvia o cuando esta la requiera.
- 4. Se debe realizar la estructura vial de la misma logrando cumplir el cronograma de obra establecido (04 meses) en entrar en servicio la vía a cargo de la Municipalidad distrital de Manuel Antonio Mesones Muro – Ferreñafe.

REFERENCIAS

- Antolí., N. (2014). El Plan de Accesibilidad: un marco de ordenación de las actuaciones públicas para la eliminación de barreras. En N. Antolí., & 1. e. 2002 (Ed.), El Plan de Accesibilidad: un marco de ordenación de las actuaciones públicas para la eliminación de barreras (pág. 341). Barcelona: Instituto de Migraciones y Servicios Sociales (IMSERSO.
- Arévalo, M & Chávez, O.; (2015) Diseño de Pavimento en la urbanización Santa María distrito de José Leonardo Ortiz - Chiclayo – Lambayeque. (Tesis de pregrado) Universidad Nacional Pedro Ruiz Gallo: UNPRG. Lambayeque, Lambayeque.
- Alvarez, I (2008). Utilice el sistema informático dtims para diseñar y estudiar la red de carreteras pavimentadas en esta área. (Tesis de licenciatura). Universidad de Chile: Santiago, Chile, Departamento de Física y Ciencias Matemáticas, Departamento de Ingeniería Civil.
- Becerra, S. M. (2012). Tópicos de Pavimentos de Concreto. En Becerra, *Tópicos de pavimentos de concreto*. Perú, Peru. Recuperado el 13 de julio de 2018, de https://es.scribd.com/document/249786256/Pavimentos-de-Concreto: https://es.scribd.com/document/249786256/Pavimentos-de-Concreto
- Bellido, L., & Ochoa, J., (2017). Diseño de pavimento flexible, bajo influencia de parámetros de diseño debido al deterioro del pavimento En Santa Rosa Sachapite, Huancavelica 2017. (Tesis de pregrado). Universidad de Huancavelica. Huancavelica, Perú. Obtenido de: http://repositorio.unh.edu.pe/handle/UNH/1388.
- Brazales, H. D. (2016). Estimación de costos de construcción por kilómetro de vía, considerando las variables propias de cada región. Tesis, Pontificia Universidad Católica del Ecuador, Ecuador. Recuperado el 2 de julio de 2018, de
 - http://repositorio.puce.edu.ec/bitstream/handle/22000/11071/tesis%20Diego%2 0Brazales%20DEFINITIVA%2012-02-2016.pdf?sequence=1&isAllowed=y
- Cajaruro, M. D. (2018). "Mejoramiento del camino vecinal Naranjitos, La Libertad,
 El Triunfo, El Tesoro, Madre de Dios, Cruce Sirumbache, Distrito de Cajaruro,
 Utcubamba, Amazonas". Cajaruro, Utcubamba, Region Amazonas.

- Chura, Z. F. (2014). Mejoramiento de la Infraestructura Vial a nivel de Pavimento
 Flexible de la Avenida Simón Bolívar de la Ciudad de ARAPA Provincia de
 Azángaro Puno. Tesis, Puno. Recuperado el 21 de 06 de 2018, de
 http://repositorio.unap.edu.pe/bitstream/handle/UNAP/1951/Chura_Zea_Fredy_
 Aurelio.pdf?sequence=1&isAllowed=y
- Colegio de Ingenieros del Perú. (2018). http://www.cip.org.pe/. Recuperado el 01 de julio de 2018, de http://cdlima.org.pe/wp-content/uploads/2018/04/C%C3%93DIGO-DE-%C3%89TICA-REVISI%C3%93N-2018.pdf
- Cruzado, A. M., & Tenorio, C. A. (02 de junio de 2018). (R. N. Sánchez Vega, Entrevistador)
- Dirección Regional de Transportes y Comunicaciones. (11 de marzo de 2017).
 Asociación de Transportistas de diversos Distritos de Rodríguez de Mendoza hicieron una protesta por el mal estado de las carreteras. Recuperado el 12 de julio de 2018, de Dirección Regional de Trasportes y Comunicaciones de Amazonas.
- El País. (23 de mayo de 2018). Infraestructura: puente y vía para el desarrollo.
 (E. País, Ed.) América Latina y el Caribe necesita multiplicar su inversión en edificaciones para suplir el retraso y las deficiencias actuales. Recuperado el 20 de junio de 2018, de https://elpais.com/elpais/2018/05/18/planeta_futuro/1526649693_551565.html
- Esfera Radio. (27 de octubre de 2016). Avanza asfaltado de carretera a Lonya Grande. Recuperado el 25 de junio de 2018, de Avanza asfaltado de carretera a Lonya Grande: http://www.esferaradio.net/noticias/avanza-asfaltado-de-carretera-a-Lonya-Grande/
- Hernández, S. R., Fernández, C. C., & Baptista, L. P. (2014). Metodología de la Investigación (Sexta ed.). México: McGrawHill. Recuperado el 20 de junio de 2018,
 de file:///C:/Users/Stany/Downloads/Metodolog%C3%ADa%20de%20la%20Investi gaci%C3%B3n%20-sampieri-%206ta%20EDICION%20(1).pdf
- Innovación en Ingeniería. (19 de Julio de 2016). Diseño de la carretera San Bartolo, Maraypata, Agua Santa, Distrito de Santo Tomas- Provincia de Luya -Amazonas. Revista de Investigación de Estudiantes de Ingeniería, 1(1), 6.

- Recuperado el 25 de Junio de 2018, de http://revistas.ucv.edu.pe/index.php/INNOVACION/article/view/884/690
- Jesús, H. G. (2011). ACCESIBILIDAD UNIVERSAL Y DISEÑO PARA TODOS.
 En H. G. Jesús, & E. d. Arquitectura (Ed.), ACCESIBILIDAD UNIVERSAL Y DISEÑO PARA TODOS (pág. 272). Madrid: 1a edición junio 2011. Recuperado el 25 de 07 de 2018
- Koenig, L. A., Zehnpfennig, Z. M., & Luis, F. P. (2012). Fundamentos de Topografía. Paraná, Brasil: Engenharia Cartográfica e de Agrimensura Universidade Federal do Paraná. Recuperado el 14 de julio de 2018, de file:///C:/Users/Natalí/Downloads/FUNDAMENTOS%20DE%20TOPOGRAFIA% 20(1).pdf
- La Secretaría de Tránsito y Seguridad Vial. (31 de Julio de 2018).
 http://www.barranquilla.gov.co/transito/index.php?option=com_content&view=ar ticle&id=5507&Itemid=12.
 Recuperado el 28 de Julio de 2018, de http://www.barranquilla.gov.co/transito/index.php?option=com_content&view=ar ticle&id=5507&Itemid=12:
 - http://webcache.googleusercontent.com/search?q=cache:52bPZyl_pHUJ:www.barranquilla.gov.co/transito/index.php%3Foption%3Dcom_content%26view%3Darticle%26id%3D5507%26Itemid%3D12+&cd=1&hl=es&ct=clnk&gl=pe
- M. Miranda, A. V. (08 de enero de 2017). El 60% de los caminos en Chile no está pavimentado y regiones VIII y IX lideran déficit. (La tercera) Recuperado el 20 de junio de 2018, de El 60% de los caminos en Chile no está pavimentado y regiones VIII y IX lideran déficit: http://www2.latercera.com/noticia/60-los-caminos-chile-no-esta-pavimentado-regiones-viii-ix-lideran-déficit/
- Metrados para Obras de Edificaciones. (2015). Norma Técnica (Segunda ed.).
 Lima, Perú: Macro. Recuperado el 13 de julio de 2018
- Ministerio de Transportes y Comunicaciones. (enero de 2018). Glosario de términos. Obtenido de Glosario de Términos de uso frecuente en Proyectos de Infraestructura

 Vial:
 - http://transparencia.mtc.gob.pe/idm_docs/normas_legales/1_0_4032.pdf
- Ministerio de Transportes y Comunicaciones. (2018). *Manual de carreteras:* Diseño Geométrico DG. Lima. Recuperado el 05 de agosto de 2018, de

- https://es.slideshare.net/castilloaroni/manual-de-carreteras-diseo-geomtrico-dq2018
- Ministerio de **Trasportes** У Comunicaciones. (2018).http://transparencia.mtc.gob.pe/idm_docs/P_recientes/12636.pdf. Recuperado el 31 de julio de 2018. de http://transparencia.mtc.gob.pe/idm_docs/P_recientes/12636.pdf: http://transparencia.mtc.gob.pe/idm_docs/P_recientes/12636.pdf
- Ministerio de Vivienda, construcción y Saneamiento. (2018). http://www3.vivienda.gob.pe/oggrh/Documentos/Personal/RSG-024-2018-VIVIENDA-SG%20-%20PDP%202018%20MVCS.pdf. Recuperado el 31 de julio de 2018, de http://www3.vivienda.gob.pe/oggrh/Documentos/Personal/RSG-024-2018-VIVIENDA-SG%20-%20PDP%202018%20MVCS.pdf: http://www3.vivienda.gob.pe/oggrh/Documentos/Personal/RSG-024-2018-VIVIENDA-SG%20-%20PDP%202018%20MVCS.pdf
- Miñano, A. M. (2017). Diseño de la Carretera Cruce Huamanmarca Loma Linda,
 Distrito de Mache, Provincia Otuzco, Departamento La Libertad. Tesis,
 Universidad Cesar Vallejo, Trujillo. Recuperado el 13 de julio de 2018
- Municipalidad Distrital de Cajaruro. (2018). http://municajaruro.gob.pe/. Obtenido de http://municajaruro.gob.pe/.
- Municipalidad Distrital de Cajaruro. (2018). https://www.deperu.com/gobierno/municipalidad/municipalidad-distrital-de-cajaruro-utcubamba-3535. Obtenido de https://www.deperu.com/gobierno/municipalidad/municipalidad-distrital-de-cajaruro-utcubamba-3535: https://www.deperu.com/gobierno/municipalidad/municipalidad-distrital-de-cajaruro-utcubamba-3535
- Municipalidad Provincial de Moquegua. (25 de abril de 2018). Construcción de la interconexión vial entre el Centro Poblado de Chen Chen y Centro Poblado de San Antonio. (MUNINCIPALIDAD PROVINCIAL DE MOQUEGUA) Recuperado el 15 de JUNIO de 2018, de Construcción de la interconexión vial entre el Centro Poblado de Chen Chen y Centro Poblado de San Antonio: http://www.munimoquegua.gob.pe/noticia/alcalde-busca-financiamiento-paraconstrucción-de-la-interconexión-vial-entre-el-centro

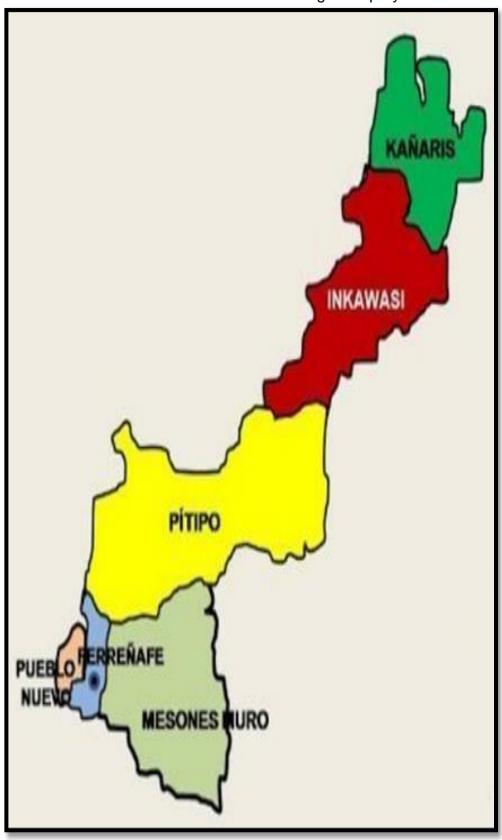
- Ninaraqui, T. C. (2016). DIRECCIÓN DE PROYECTOS DE INFRAESTRUCTURA VIAL BAJO EL ENFOQUE DEL PMBOK® QUINTA EDICIÓN. Tesis, Moquegua. Recuperado el 10 de 05 de 2018, de http://repositorio.ujcm.edu.pe/bitstream/handle/ujcm/100/Tony_Tesis_titulo_201 6.pdf?sequence=1&isAllowed=y
- Red de Comunicación Regional. (05 de enero de 2018). Cajamarca solo tiene dos carreteras asfaltadas mientras el resto de vías están Afirmadas. (RCR (Red de comunicación regional)) Recuperado el 15 de junio de 2018, de Cajamarca solo tiene dos carreteras asfaltadas mientras el resto de vías están Afirmadas: https://rcrperu.com/cajamarca-solo-tiene-dos-carreteras-asfaltadas-mientras-elresto-de-vías-están-afirmadas/
- República. (22 de abril de 2018). Carreteras en provincias carecen de mantenimiento y pueden causar accidentes. *República*, 15. Recuperado el 24 de julio de 2018, de https://larepublica.pe/sociedad/1230895-carreteras-enprovincias-carecen-de-mantenimiento-y-pueden-causar-accidentes
- Revista Vial. (01 de marzo de 2018). Los caminos rurales en la Provincia de Buenos Aires. Vial. Recuperado el 10 de junio de 2018, de Deficiencias en la infraestructura vial: http://revistavial.com/los-caminos-rurales-en-la-provincia-debuenos-aires/
- Rojas, M. (05 de diciembre de 2016). República Bolivariana de Venezuela: Ministerio del Poder Popular para la Educación Universitaria. Recuperado el 07 de agosto de 2018, de https://es.scribd.com/document/333230187/Criterios-y-Normas-Para-El-Diseño-de-Pavimento
- Salamanca, N. M., & Zuluaga, B. S. (2014). Diseño de la Estructura de Pavimento
 Flexible por medio de los Métodos Invias, Aashto 93 E Instituto del Asfalto para
 la Vía la Ye. Tesis, Universidad Católica de Colombia, Colombia, Bogotá.
 Obtenido de file:///C:/Users/USUARIO/Downloads/Dise%C3%B1o-estructurapavimento-flexible-Aashto-Invias-Insituto-Asfalto-Barranca_Lebrija%20(3).pdf
- Sánchez, V. N. (2018). Recuperado el 18 de 05 de 2018
- Suarez, R. C., & Vera, T. A. (2015). ESTUDIO Y DISEÑO DE LA VÍA EL SALADO MANANTIAL DE GUANGALA DEL CANTÓN SANTA ELENA. Tesis, Universidad Estatal Península de Santa Elena, Ecuador. Recuperado el 15 de junio de 2018,

- de http://repositorio.upse.edu.ec/xmlui/bitstream/handle/46000/2273/UPSE-TIC-2015-010.pdf?sequence=1&isAllowed=y
- Supo. (2013). Diseño de Pavimentos. En Supo, Diseño de Pavimentos (pág. 2y7). Peru, Peru: Universidad Andina Néstor Cacedes. Recuperado el 28 de julio de 2018, de file:///C:/Users/Rusbel/Downloads/UD_I%20INTRODUCCION%20AL%20DISE%C3%91O%20ESTRUCTURAL%20DE%20PAVIMENTOS%20v2013-2.pdf: file:///C:/Users/Rusbel/Downloads/UD_I%20INTRODUCCION%20AL%20DISE%C3%91O%20ESTRUCTURAL%20DE%20PAVIMENTOS%20v2013-2.pdf
- Universidad César Vallejo. (2015). https://www.ucv.edu.pe/. Obtenido de https://www.ucv.edu.pe/.
- Universidad César Vallejo. (2017). https://www.ucv.edu.pe. Recuperado el 01 de julio de 2018, de https://www.ucv.edu.pe/datafiles/C%C3%93DIGO%20DE%20%C3%89TICA.pd f
- Zarate, G. M. (2016). Modelo de Gestión de Conservación Vial para Reducir Costos de Mantenimiento Vial y Operación Vehicular del Camino Vecinal. Tesis, Trujillo. Recuperado el 04 de 05 de 2018, de http://repositorio.upao.edu.pe/bitstream/upaorep/2544/1/RE_MAEST_ING_GIO VANA.ZARATE_MODELO.DE.GESTION.DE.CONSERVACION.VIAL.PARA.R EDUCIR.COSTOS DATOS.PDF

ANEXOS

Anexo 1: Matriz de operacionalización de variables

VARIABLES	DEFINICIÓN	DIMENSION		INDICADORES	ESCALA DE
DE ESTUDIO	CONCEPTUAL	OPERACION AL			MEDICIÓN
	Es el conjunto de	Se realiza mediante los	Diagnóstico	Contexto social y	NOMINAL
	componentes físicos que	cálculos de topografía la	situacional	Localización	
Variable	interrelacionados entre si	aplicación de software de	Estudios básicos	• Tráfico, Topografía,	• RAZÓN
independiente:	de manera coherente y	análisis topográficos y		Mecánica de suelos y	
Diseño de	bajo cumplimiento de	aplicación de métodos de		cantera, Hidrología,	
Infraestructura	ciertas especificaciones	análisis de suelos, cálculo		Impacto ambiental	
vial	técnicas de diseño y	estructural de pavimento,		Afectaciones prediales	
	construcción, ofrecen	elaboración de costos y	Diseño estructural	Pavimentos, Obras de	• RAZÓN
	condiciones cómodas y	presupuestos.		arte	
	seguras para la			Señalización, geométrico	
	circulación de los				
	usuarios que hacen uso		presupuesto	PartidasMetrados	• RAZÓN
	de ella			 Costos unitarios 	
				Mano de obra Maguinaria	
				MaquinariaEquipos	


Fuente: Elaboración Propia

Anexo 2: Matriz de consistencia

Título: "Diseño o	Título: "Diseño de infraestructura vial, caserío El Alto - cruce carretera Ferreñafe – Pitipo, progresivo km 1+490, distrito Manuel Antonio Mesones Muro – Ferreñafe, Lambayeque"								
PROBLEMAS Problema general	OBJETIVOS Objetivo general	HIPÓTESIS Hipótesis general	VARIABLES Variable	DIMENSIONES	INDICADORES	METODOLOGÍA			
¿Cuál es el óptimo diseño de	Diseñar la	Diseño de		Diagnóstico situacional	Contexto social y Localización	Diseño de investigación			
infraestructura vial en el Caserío El Alto – Cruce carretera Ferreñafe –	infraestructura vial, caserío El Alto - Cruce Carretera Ferreñafe – Pitipo,	infraestructura vial, caserío El Alto - Cruce Carretera Ferreñafe –	Diseño de infraestructura vial	Estudios básicos	•Tráfico, Topografía, Mecánica de suelos y cantera, Hidrología, Impacto ambiental •Afectaciones prediales	Experimental Tipo de Investigación Aplicada Nivel de			
Pitipo, Progresiva Km 1+490 Distrito Manuel Antonio Mesones Muro	progresiva km 1+490 distrito Manuel Antonio Mesones Muro – Ferreñafe,	Pitipo, progresiva km 1+490 distrito Manuel Antonio Mesones	progresiva km 1+490 distrito Manuel Antonio Mesones	490 distrito progresiva km nuel 1+490 distrito tonio Manuel esones Muro Antonio Ferreñafe, Mesones	m	Diseño estructural	PavimentosObras de arteSeñalizacióngeométrico	Investigación Explicativo Enfoque de Investigación	
– Ferreñafe, Lambayeque?	Lambayeque	Muro – Ferreñafe, Lambayeque		Presupuesto	PartidasMetradosCostos unitariosMano de obraMaquinariaEquipos	Cuantitativo Técnica Observación sistemática			

Fuente: Elaboración propia

Anexo 3: Ubicación del lugar del proyecto

Fuente: Google mapas

Fuente: Google Hearth

Anexo 5: Estudio de la Topografía

CERTIFICADO DE CALIBRACIÓN DE EQUIPOS

Certificado de Operatividad

SANTANA REYES E.I.R.L.

No. Certificado:

Revisión:

19-OG0157

Equipo:

RECEPTOR GNSS SP60

Fecha de Certificado:

03/05/2019 03/05/2020

Marca:

SPECTRA PRECISION

Fecha de Vencimiento:

P.N.:

104234-00

Número de Serie: 5908550018

GEO SYSTEMS S.A.C. certifica que el equipo arriba descrito cumple con las especificaciones técnicas de la fábrica y los estándares internacionales establecidos.

En las pruebas efectuadas en Tiempo Real, los equipos se encuentran dentro de las tolerancias del fabricante.

PRECISIÓN MODO ESTATICO DE ALTA PRECISION (POST PROCESO)

HORIZONTAL	3 mm + 0.1 ppm RMS
VERTICAL	3.5 mm + 0.4 ppm RMS

03.05.2019

Wiston Pari Rendon

- Este Certificado no atribuye al equipo otras características que las indicadas por los datos aquí contenidos. Los resultados se refieren al momento y condiciones en que se efectuaron las mediciones. Se garantiza la trazabilidad a los patrones nacionales.

 No se permite la reproducción parcial de este documento sin autorización expresa para ello.

GEO SYSTEMS S.A.C.

Telf. +51.1 315 2910

Telf. +51.1 315 2910 soporte@geosystemsperu.com Av. Javier Prado Este 1402, Of.201, Urb. Córpac, San Isidro, Lima 027 - Perú

www.geosystemsperu.com

Gerente General	778 067 883
Jefe Técnico	700 406 644

CERTIFICADO DE CALIBRACIÓN CALIBRATION CERTIFICATE

N 2946/EM

IDENTIFICACION BIEL CLIENTE

Subores : PIERO ARTEAGA GONZALEZ

Ruc & Dai 10490937939

Calibración

IDENTIFICACION DEL INSTRUMENTO

± ESTACION TOTAL Instrumento

LUCA Marca Modelo : TN 66 PLUS 1066552

Código de Cliente : ET-04

CONDICIONES DE VERIFICACION Y CONDICIONES AMBIENTALES

: Talleme de mecanica de Precisión y Óptica GEODISO S.A.C. Lugar de Calibracion

Vencindento de Garantia Temperatura 9 de mayo de 2020

1 20 °C one variaciones que no escadiense a 0.5 °C

ESPECIFICACIONES DE FABRICACIÓN DEL INSTRUMENTO Lecture on pertuits

Incertiductive estandar segus DIN 18723 1

Procision del distanzionetro 2(3+2)ppm z D)mm

TRAZABILIDAD DE LA PERIFICACION

Set Colimados Marca SOUTEL Modelo (920-3), son Certificado de Calibración Nº 423-69-0019. Equipo patrin utilizado

RESULTADOS DEL ARISTE Y VENEFICACION

PERFECICION DE REFACION TOTAL

Error vertical 1 05 / Alumato 1 Verticalidad del telescopio f. OK / Alpentake Doble centre 1 / OK / Aprendix Plomade option + EDE / Alumbels

Exempticidad circuis vertical y horizontal

Lecturar Ang Perticul Toquierdo Derecha

Ass. Ib.

511

270	170	00"	90"
-30"	120	f	30*
-807	109f	51"	90*
- 1	3595	59"	60*
1 (1800	800	-00"

Vertical (OE) 3 err. centrado) Harizonal (OE) 6 err. centrado)

PERSPICACION DEL DISTANCIONISTRO

Midde Paled (Married	Difference Medide Patron Medide Inicial	Medica patrice (perions)	htedsia (Cerregida (particos)	Differencia Modida Patrus Modid Corregida
4.7938	4.	4.7906	- T	
6.8638	6,8962	#.agsz		(4)
73,5513	6,8007	13:334	100	

Observaciones:

1. Antes del spata el instrumento indicaba : Aug Verbal 5" Ang. Hortsonal

El cliente se responsable de recellbrar el instrumento a intervalor que settore apropisados. Este documento no pasde sur reproducido se forme papsial el total sin la actorización de CIEGONSO S. a.C.

Opto, de Servicio Técnico	Gerencia	Fecha de Calibracion	Contral Lima	
@ GEOINSO	@ GEOINSO	89 de Noviembre de 2019	Jr. Genton 766, Urb. Marcarta.	
ALBERTO HARVAEZ	ENRIQUE MONTENO	Fecha de Veneimiento	Los Otivos	
1879 TREATE	7	9 de mayo de 2020	Treat: Germanibusell.com	

Este documento sein certifica y ofince garantia per la califerción de el agripo.

GEOINSO S.A.C. 20003134081

Cuadro N° 2. Cuadro de BMs.

	CUADRO DE BMS								
ÍTEM	COORDENA		СОТА	CÓDIGO					
TT EIVI	NORTE	ESTE	00171	CODICO					
1	9270821.799	638226.096	67.724	BM-01					
2	9270289.549	638256.55	68.89	BM-02					
3	9269857.229	638261.357	69.32	BM-03					
4	9269505.701	638249.487	69.612	BM-04					
5	9269258.359	637798.683	67.042	BM-05					
6	9269023.659	637360.306	63.422	BM-06					
7	9268843.512	636930.361	59.694	BM-07					
8	9268752.767	636440.948	58.017	BM-08					
9	9268647.824	635941.977	56.342	BM-09					
10	9268535.737	635406.875	54.851	BM-10					
11	9268430.726	634951.146	53.527	BM-11					
12	9268340.726	634478.506	51.632	BM-12					

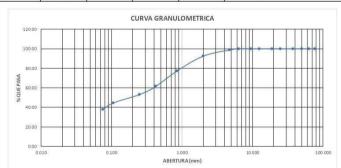
Fuente: Elaboracion propia

Anexo 6: Estudio de mecánica de suelos

LABORATORIO GEOTECNICO, PROYECTOS E **INGENIERÍA**

ANALISIS MECANICO POR TAMIZADO

ASTM D-422 / MTC E 107


TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE" PROYECTO

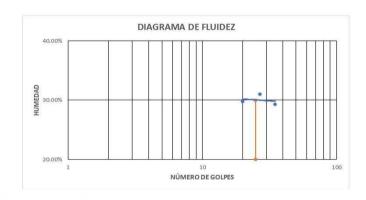
SOLICITANTE RESPONSABLE UBICACIÓN FECHA EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

DATOS DEL ENSAYO

CALICATA	C-01	PROGRESIVA	0+000	PESO INICIAL	1228.93 gr
ESTRATO	E-01	FECHA	JUNIO DEL 2020	PESO LAVADO SECO	1077.43 gr
POLINDIDAD	0.00 1.50	1			

Tamices	Abertura	Peso	%Retenido	%Retenido	% que	DESCRIPCION DE LA MUESTRA		
ASTM	en mm.	Retenido	Parcial	Acumulado	Pasa			
3"	76.200	0.00	0.00	0.00	100.00	Peso de Tara	11.70	11.70
2 1/2"	63.500	0.00	0.00	0.00	100.00	Sh + Tara	207.80	209.60
2"	50.000	0.00	0.00	0.00	100.00	Ss + Tara	170.50	172.32
1 1/2"	37.500	0.00	0.00	0.00	100.00	Peso Suelo Seco	158.80	160.62
1"	25.000	0.00	0.00	0.00	100.00	Peso del agua	37.30	37.28
3/4"	19.000	0.00	0.00	0.00	100.00	Contenido de Humedad (%)	23.35%	
1/2"	12.500	0.00	0.00	0.00	100.00	Límite Líquido (LL)	29.97%	
3/8"	9.525	0.00	0.00	0.00	100.00	Límite Plástico (LP)	17.32%	
1/4"	6.350	0.00	0.00	0.00	100.00	Índice Plástico (IP)	12.66%	
No4	4.750	14.90	1.21	1.21	98.79	Clasificación SUCS :	CL	
10	2.000	77.50	6.31	7.52	92.48	Clasificación AASHTO	A-6 (14)	
20	0.850	185.70	15.11	22.63	77.37	Descripción:	TOUR PROPERTY OF THE PARTY OF T	
40	0.425	194.32	15.81	38.44	61.56		ARENA ARCILLOSA	
60	0.250	103.40	8.41	46.86	53.14	Observación AASTHO:	MALO	
140	0.106	106.00	8.63	55.48	44.52	Bolonería > 3°		
200	0.075	82.54	6.72	62.20	37.80	Grava 3°-N°4	1.21	%
< 200		464.57	37.80	100.00	0.00	Arena N*4 - N*200	60.98	96
Total		1228.93	100.00			Finos < N*200	37.80	96

LÍMITES DE CONSISTENCIA


PROYECTO : TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO,
PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE"

SOLICITANTE

RESPONSABLE :
UBICACIÓN : EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE

FECHA : JUNIO DEL 2020

CALICATA	C - 01	E:	STRATO	E-01			
LIMITES DE CONSISTENCIA			LIMITE LIQUIDO			LIMITE PLASTICO	
N° de golpes			20	27	35		175
Peso tara		(g)	11.82	14.08	10.83	14.39	13.63
Peso tara + suelo húmedo		(g)	18.85	21.99	17.28	15.48	14.71
peso tara + suelo seco		(g)	17.24	20.12	15.82	15.33	14.54
Humedad (%	6)		29.70%	30.96%	29.26%	15.96%	18.68%
Limites				29.97%		17.	32%

ANALISIS MECANICO POR TAMIZADO ASTM D-422 / MTC E 107

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA KM 1+490 DISTRITO MANUEL
ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE"

SOLICITANTE

RESPONSABLE

EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE UBICACIÓN

FECHA JUNIO DEL 2020

DATOS DEL ENSAYO

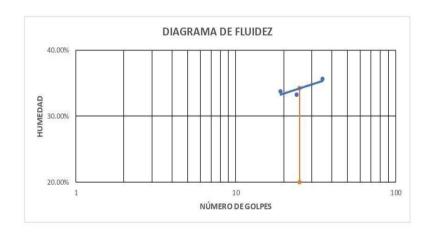
CALICATA	C-02	PROGRESIVA	1+000	PESO INICIAL	754.50 gr
ESTRATO	E-01	FECHA	JUNIO DEL 2020	PESO LAVADO SECO	713.4 gr
PROFUNDIDAD	0.00 - 1.50]			

Tamices	Abertura	Peso	%Retenido	%Retenido	% que	DESCRIPCION DE LA	A BALLECTO A	
ASTM	en mm.	Retenido	Parcial	Acumulado	Pasa	DESCRIPCION DE LA	AWUESTKA	
3"	76.200	0.00	0.00	0.00	100.00	Peso de Tara	9.20	9.20
2 1/2"	63.500	0.00	0.00	0.00	100.00	Sh + Tara	106.30	105.90
2"	50.000	0.00	0.00	0.00	100.00	Ss + Tara	86.90	91.43
11/2"	37.500	0.00	0.00	0.00	100.00	Peso Suelo Seco	77.70	82.23
1"	25.000	0.00	0.00	0.00	100.00	Peso del agua	19.40	14.47
3/4"	19.000	0.00	0.00	0.00	100.00	Contenido de Humedad (%) :	21.28%	
1/2"	12.500	0.00	0.00	0.00	100.00	Límite Líquido (LL) :	34.20%	
3/8"	9.525	0.00	0.00	0.00	100.00	Límite Plástico (LP) :	21.08%	
1/4"	6.350	0.00	0.00	0.00	100.00	Índice Plástico (IP)	13.13%	
No4	4.750	1.20	0.16	0.16	99.84	Clasificación SUCS :	CL	
10	2.000	36.50	4.84	5.00	95.00	Clasificación AASHTO :	A-6 (11)	
20	0.850	84.70	11.23	16.22	83.78	Descripción:	14 4BCU LOGA	
40	0.425	88.20	11.69	27.91	72.09	AKEN	IA ARCILLOSA	
60	0.250	80.50	10.67	38.58	61.42	Observación AASTHO:	MALO	
140	0.106	154.00	20.41	58.99	41.01	Bolonería > 3° :	3133 76 77 33	
200	0.075	35.40	4.69	63.68	36.32	Grava 3°-N°4 :	0.16	%
< 200		274.00	36.32	100.00	0.00	Arena N°4 - N°200 :	63.53	%
Total		75.4.50	100.00			Finos < Nº200	26.22	9/4

LÍMITES DE CONSISTENCIA

PROYECTO : TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO,

PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE"


SOLICITANTE

RESPONSABLE :

UBICACIÓN : EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE

FECHA : JUNIO DEL 2020

CALICATA	C - 02	E	STRATO	E-01			
LIMITES DE CONSISTENCIA				LIMITE LIQUIDO	104.E	LIMITE P	LASTICO
N° de golpes			19	24	35	*	3-1
Peso tara		(g)	9.29	11.68	11.87	14.3	14.09
Peso tara + suelo húmedo		(g)	16.7	22.55	20.47	16.48	16.22
peso tara + suelo seco		(g)	14.83	19.84	18.21	16.11	15.84
Humedad (9	6)		33.75%	33.21%	35.65%	20.44%	21.71%
Limites				34.20%		21.0	08%

Luis Invinata José Condré Bermejo Invinata CVIII. R. CIP. N° 218000

ANALISIS MECANICO POR TAMIZADO ASTM D-422/ MTC E 107

PROYECTO

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE"

SOLICITANTE RESPONSABLE UBICACIÓN FECHA

EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

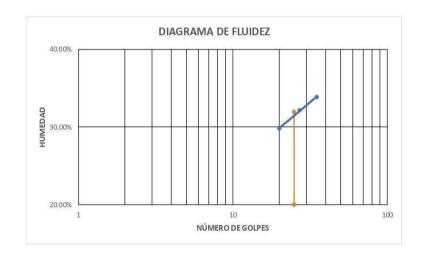
DATOS DEL ENSAYO

CALICATA	C-03	PROGRESIVA	2+000	PESO INICIAL	576.24 gr
ESTRATO	E-01	FECHA	JUNIO DEL 2020	PESO LAVADO SECO	494.74 gr
PROFUNDIDAD	0.00 - 1.50]			

Tamices	Abertura	Peso	%Retenido	%Retenido	% que	DESCRIPCION DE L	A BALIFETDA	
ASTM	en mm.	Retenido	Parcial	Acumulado	Pasa	DESCRIPCION DE L	AWUESTKA	
3"	76.200	0.00	0.00	0.00	100.00	Peso de Tara	7.90	7.90
2 1/2"	63.500	0.00	0.00	0.00	100.00	Sh + Tara	100.84	103.40
2"	50.000	0.00	0.00	0.00	100.00	Ss + Tara	84.75	85.15
1 1/2"	37.500	0.00	0.00	0.00	100.00	Peso Suelo Seco	76.85	77.25
1"	25.000	0.00	0.00	0.00	100.00	Peso del agua	16.09	18.25
3/4"	19.000	0.00	0.00	0.00	100.00	Contenido de Humedad (%) :	22.28%	
1/2"	12.500	0.00	0.00	0.00	100.00	Límite Líquido (LL) :	31.92%	
3/8"	9.525	0.00	0.00	0.00	100.00	Límite Plástico (LP) :	17.03%	
1/4"	6.350	0.00	0.00	0.00	100.00	Índice Plástico (IP) :	14.89%	
No4	4.750	0.00	0.00	0.00	100.00	Clasificación SUCS :	CL	
10	2.000	2.40	0.42	0.42	99.58	Clasificación AASHTO :	A-6 (14)	
20	0.850	1.10	0.19	0.61	99.39	Descripción:		
40	0.425	15.30	2.66	3.26	96.74	AREN	IA ARCILLOSA	
60	0.250	173.50	30.11	33.37	66.63	Observación AASTHO:	MALO	
140	0.106	153.90	26.71	60.08	39.92	Bolonería > 3° :		
200	0.075	14.40	2.50	62.58	37.42	Grava 3°-N°4 :	0.00	%
< 200		215.64	37.42	100.00	0.00	Arena N°4 - N°200 :	62.58	%
Total		576.24	100.00			Finos < N°200	37.42	%

LÍMITES DE CONSISTENCIA

PROYECTO : TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO,


PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE"

SOLICITANTE : RESPONSABLE :

UBICACIÓN : EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE

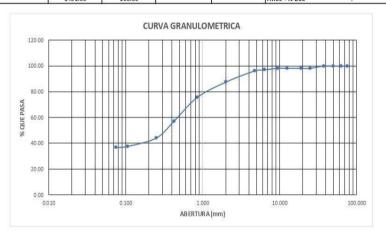
FECHA : JUNIO DEL 2020

CALICATA	C - 03	ES	STRATO	E-01		***	
LIMITES DE CONSISTENCIA				LIMITE LIQUIDO		LIMITE P	LASTICO
N° de golpes			20	27	35		2
Peso tara		(g)	11.74	15.42	11.42	15.74	13.45
Peso tara + suelo húmedo		(g)	21.85	22.45	18.54	16.54	14.24
peso tara + suelo seco		(g)	19.53	20.74	16.74	16.4	14.15
Humedad (9	6)		29.78%	32.14%	33.83%	21.21%	12.86%
Limites				31.92%		17.0)3%

ANALISIS MECANICO POR TAMIZADO ASTM D-422 / MTC E 107

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO — CRUCE CARRETERA FERREÑAFE — PITIPO, PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO — FERREÑAFE, LAMBAYEQUE" PROYECTO

SOLICITANTE RESPONSABLE


EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020 UBICACIÓN FECHA

DATOS DEL ENSAYO

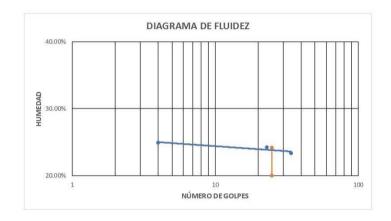
CALICATA	C-04	PROGRESIVA	3+000	PESO INICIAL	1431.53 gr
ESTRATO	E-01	FECHA	JUNIO DEL 2020	PESO LAVADO SECO	1336.53 gr

PROFUNDIDAD	0.00 - 1.50

Tamices	Abertura	Peso	%Retenido	%Retenido	% que	DESCRIPCION DE L	A BAUECTDA	
ASTM	en mm.	Retenido	Parcial	Acumulado	Pasa	DESCRIPCION DE L	A WIUESTRA	
3"	76.200	0.00	0.00	0.00	100.00	Peso de Tara	14.30	14.40
2 1/2"	63.500	0.00	0.00	0.00	100.00	Sh + Tara	90.80	91.70
2"	50.000	0.00	0.00	0.00	100.00	Ss + Tara	78.98	79.11
1 1/2"	37.500	0.00	0.00	0.00	100.00	Peso Suelo Seco	64.68	64.71
1"	25.000	25.20	1.76	1.76	98.24	Peso del agua	11.82	12.59
3/4"	19.000	0.00	0.00	1.76	98.24	Contenido de Humedad (%) :	18.87%	
1/2"	12.500	0.00	0.00	1.76	98.24	Límite Líquido (LL) :	24.14%	
3/8"	9.525	0.00	0.00	1.76	98.24	Límite Plástico (LP) :	11.52%	
1/4"	6.350	17.30	1.21	2.97	97.03	Índice Plástico (IP) :	12.62%	
No4	4.750	11.90	0.83	3.80	96.20	Clasificación SUCS :	SC	
10	2.000	124.60	8.70	12.50	87.50	Clasificación AASHTO :	A-4 (2)	
20	0.850	170.50	11.91	24.41	75.59	Descripción:		
40	0.425	264.50	18.48	42.89	57.11	AREI	NA ARCILLOSA	
60	0.250	185.90	12.99	55.88	44.12	Observación AASTHO:	REGULAR	
140	0.106	92.50	6.46	62.34	37.66	Bolonería > 3° :		
200	0.075	12.40	0.87	63.21	36.79	Grava 3°-N°4 :	3.80	%
< 200		526.73	36.79	100.00	0.00	Arena N°4 - N°200 :	59.40	%
Total		1431.53	100.00			Finos < N°200 :	36.79	%

LÍMITES DE CONSISTENCIA

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE" PROYECTO


SOLICITANTE RESPONSABLE

UBICACIÓN

EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE

FECHA JUNIO DEL 2020

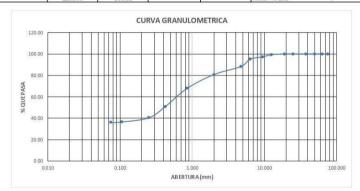
CALICATA	C - 04	E	STRATO	E-01			
LIMITES DE CONSI	LIMITES DE CONSISTENCIA			LIMITE LIQUIDO		LIMITE P	LASTICO
N° de golpes			4	23	34		-
Peso tara		(g)	15.07	13.74	20.09	7.21	7.23
Peso tara + suelo húmedo		(g)	23.04	24.21	18.82	8.7	8.64
peso tara + suelo seco		(g)	21.45	22.17	19.06	8.52	8.52
Humedad (9	6)		24.92%	24.20%	23.30%	13.74%	9.30%
Limites				24.14%	*	11.5	2%

Dirección: Calle Pancho Fierro Mz. I Lt 27 - Trujillo - La libertad

ANALISIS MECANICO POR TAMIZADO

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERIO EL ALTO — CRUCE CARRETERA FERREÑAFE — PITIPO, PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO — FERREÑAFE, LAMBAYEQUE"

SOLICITANTE RESPONSABLE UBICACIÓN FECHA


EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

DATOS DEL ENSAYO

CALICATA	C-05	PROGRESIVA	4+000	PESO INICIAL	1288.79 gr
ESTRATO	E-01	FECHA	JUNIO DEL 2020	PESO LAVADO SECO	1287.59 gr

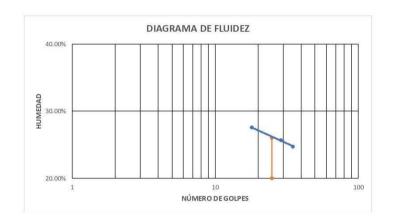
PROFUNDIDAD 0.00 - 1.50

Tamices	Abertura	Peso	%Retenido	%Retenido	% que	DESCRIPCION DE	A MALIFOTOA	
ASTM	en mm.	Retenido	Parcial	Acumulado	Pasa	DESCRIPCION DE	LA MUESTRA	
3"	76.200	0.00	0.00	0.00	100.00	Peso de Tara	11.30	14.40
2 1/2"	63.500	0.00	0.00	0.00	100.00	Sh + Tara	213.90	214.10
2"	50.000	0.00	0.00	0.00	100.00	Ss + Tara	180.45	178.95
1 1/2"	37.500	0.00	0.00	0.00	100.00	Peso Suelo Seco	169.15	164.55
1"	25.000	0.00	0.00	0.00	100.00	Peso del agua	33.45	35.15
3/4"	19.000	0.00	0.00	0.00	100.00	Contenido de Humedad (%) :	20.57%	
1/2"	12.500	9.00	0.70	0.70	99.30	Límite Líquido (LL) :	25.97%	
3/8"	9.525	25.50	1.98	2.68	97.32	Límite Plástico (LP) :	9.28%	
1/4"	6.350	29.30	2.27	4.95	95.05	Índice Plástico (IP) :	16.68%	
No4	4.750	86.90	6.74	11.69	88.31	Clasificación SUCS :	SC	
10	2.000	97.60	7.57	19.27	80.73	Clasificación AASHTO :	A-6 (2)	
20	0.850	166.00	12.88	32.15	67.85	Descripción:		
40	0.425	218.50	16.95	49.10	50.90	ARE	NA ARCILLOSA	
60	0.250	134.50	10.44	59.54	40.46	Observación AASTHO:	REGULAR	
140	0.106	49.80	3.86	63.40	36.60	Bolonería > 3° :		
200	0.075	6.50	0.50	63.90	36.10	Grava 3°-N°4 :	11.69	%
< 200		465.19	36.10	100.00	0.00	Arena N°4 - N°200 :	52.21	%
Total		1288.79	100.00			Finos < N°200 :	36.10	%

LÍMITES DE CONSISTENCIA

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROYECTO

PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE"


SOLICITANTE

RESPONSABLE

UBICACIÓN EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE

FECHA

CALICATA	C - 05	E	STRATO	E-01			
LIMITES DE CONSI	LIMITES DE CONSISTENCIA			LIMITE LIQUIDO		LIMITE P	LASTICO
N° de golpes			18	29	35	Ħ	-
Peso tara		(g)	14.43	15.47	14.36	8.34	8.35
Peso tara + suelo húmedo		(g)	21.98	23.11	21.83	9.64	9.75
peso tara + suelo seco		(g)	20.35	21.55	20.35	9.54	9.62
Humedad (9	6)		27.53%	25.66%	24.71%	8.33%	10.24%
Limites				25.97%		9.2	8%

Dirección: Calle Pancho Fierro Mz. I Lt 27 - Trujillo - La libertad

ASTM D-422 / MTC E 107

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE" PROYECTO

SOLICITANTE RESPONSABLE UBICACIÓN FECHA

EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

DATOS DEL ENSAYO

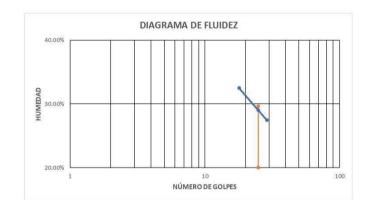
CALICATA	C-06	PROGRESIVA	5+000	PESO INICIAL	1963.92 gr
ESTRATO	E-01	FECHA	JUNIO DEL 2020	PESO LAVADO SECO	973.81 gr
PROFUNDIDAD	0.00 - 1.50]			

Tamices	Abertura	Peso	%Retenido	%Retenido	Retenido % que	DESCRIPCION DE LA MUESTRA			
ASTM	en mm.	Retenido	Parcial	Acumulado	Pasa	DESCRIPCION DE LA MOESTRA			
3"	76.200	0.00	0.00	0.00	100.00	Peso de Tara	30.68 31.1		
2 1/2"	63.500	0.00	0.00	0.00	100.00	Sh + Tara	215.21 247.0		
2"	50.000	0.00	0.00	0.00	100.00	Ss + Tara	194.02 222.2		
1 1/2"	37.500	0.00	0.00	0.00	100.00	Peso Suelo Seco	163.34 191.1		
1"	25.000	204.46	10.41	10.41	89.59	Peso del agua	21.19 24.7		
3/4"	19.000	42.80	2.18	12.59	87.41	Contenido de Humedad (%)	12.97%		
1/2"	12.500	118.76	6.05	18.64	81.36	Limite Liquido (LL)	29.60%		
3/8"	9.525	40.53	2.06	20.70	79.30	Límite Plástico (LP)	22.44%		
1/4"	6.350	79.02	4.02	24.72	75.28	Índice Plástico (IP)	7.17%		
No4	4.750	57.79	2.94	27.67	72.33	Clasificación SUCS	CL		
10	2.000	24.03	1.22	28.89	71.11	Clasificación AASHTO :	A-4(2)		
20	0.850	38.22	1.95	30.84	69.16	Descripción:			
40	0.425	30.39	1.55	32.38	67.62	7	ARENA ARCILLOSA		
60	0.250	10.93	0.56	32.94	67.06	Observación AASTHO:	BUENO		
140	0.106	11.28	0.57	33.52	66.48	Bolonería > 3°			
200	0.075	42.52	2.17	35.68	64.32	Grava 3°-N°4	27.67 %		
< 200		1263.19	64.32	100.00	0.00	Arena N°4 - N°200	8.01 %		
Total		1963.92	100.00			Finos < N°200	64.32 %		

Dirección: Calle Pancho Fierro Mz. I Lt 27 - Trujillo - La libertad

LÍMITES DE CONSISTENCIA

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE" PROYECTO


SOLICITANTE

RESPONSABLE

EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE UBICACIÓN

FECHA JUNIO DEL 2020

CALICATA	C - 06	STRATO	E-01			
LIMITES DE CONSISTENCIA			LIMITE LIQUIDO		LIMITE F	PLASTICO
N° de golpes		18	25	29		184
Peso tara	(g)	12.66	10.10	13.83	11.28	10.81
Peso tara + suelo húmedo	(g)	19.15	16.38	19.64	12.81	11.90
peso tara + suelo seco	(g)	17.56	14.97	18.39	12.53	11.70
Humedad (9	6)	32.45%	28.95%	27.41%	22.40%	22.47%
Limites			29.60%		22.	44%

Dirección: Calle Pancho Fierro Mz. I Lt 27 - Trujillo - La libertad

ANALISIS MECANICO POR TAMIZADO ASTM D-422 / MTC E 107

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE" PROYECTO

SOLICITANTE RESPONSABLE UBICACIÓN FECHA

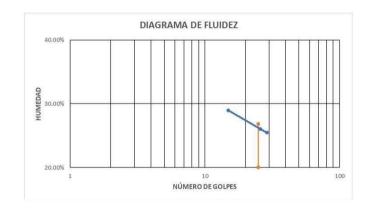
EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

DATOS DEL ENSAYO

CALICATA	C-07	PROGRESIVA	5+730.16	PESO INICIAL	2088.46 gr
ESTRATO	E-01	FECHA	JUNIO DEL 2020	PESO LAVADO SECO	1946.18 gr
PROFUNDIDAD	0.00 - 1.50				

Tamices	Abertura	Peso	%Retenido	%Retenido	% que	DESCRIPCION DE LA MUESTRA		
ASTM	en mm.	Retenido	Parcial	Acumulado	Pasa	DESCRIPCION DE L	AWOESTRA	
3"	76.200	0.00	0.00	0.00	100.00	Peso de Tara	29.60	30.03
2 1/2"	63.500	0.00	0.00	0.00	100.00	Sh + Tara	315.72	362.41
2"	50.000	0.00	0.00	0.00	100.00	Ss + Tara	300.03	344.19
1 1/2"	37.500	0.00	0.00	0.00	100.00	Peso Suelo Seco	270.43	314.16
1"	25.000	0.00	0.00	0.00	100.00	Peso del agua	15.69	18.22
3/4"	19.000	291.36	13.95	13.95	86.05	Contenido de Humedad (%)	5.80%	
1/2"	12.500	253.85	12.15	26.11	73.89	Límite Líquido (LL)	26.78%	
3/8"	9.525	280.77	13.44	39.55	60.45	Límite Plástico (LP)	22.44%	
1/4"	6.350	270.78	12.97	52.52	47.48	Índice Plástico (IP)	4.34%	
No4	4.750	205.66	9.85	62.36	37.64	Clasificación SUCS	GP - GM	
10	2.000	141.30	6.77	69.13	30.87	Clasificación AASHTO	A-1-a (0)	
20	0.850	94.78	4.54	73.67	26.33	Descripción:		
40	0.425	84.48	4.05	77.71	22.29	GRAV	A MAL GRADUADA	
60	0.250	19.26	0.92	78.63	21.37	Observación AASTHO:	BUENO	
140	0.106	56.45	2.70	81.34	18.66	Bolonería > 3° :		
200	0.075	247.49	11.85	93.19	6.81	Grava 3°-N°4	62.36	5 %
< 200		142.28	6.81	100.00	0.00	Arena N*4 - N*200	30.82	2 %
Total		2088.46	100.00			Finos < N*200	6.81	1 %

LÍMITES DE CONSISTENCIA


PROYECTO TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE"

SOLICITANTE RESPONSABLE UBICACIÓN

EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE

FECHA JUNIO DEL 2020

CALICATA	C - 07 ES	TRATO	E-01				
LIMITES DE CONSISTEN	CIA		LIMITE LIQUIDO	·.()	LIMITE PLASTICO		
N° de golpes		15	26	29		(#2	
Peso tara	(g)	9.47	8.08	8.69	11.28	10.81	
Peso tara + suelo húmedo	(g)	20.97	21.02	18.02	12.81	11.90	
peso tara + suelo seco	(g)	18.39	18.35	16.13	12.53	11.70	
Humedad (%)	20 0	28.92%	26.00%	25.40%	22.40%	22.47%	
Limitee			26 79%		22	11%	

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO METODO C

ASTM D-1557

PROYECTO

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO — CRUCE CARRETERA FERREÑAFE — PITIPO, PROGRESIVA KM 1+490
DISTRITO MANUEL ANTONIO MESONES MURO — FERREÑAFE, LAMBAYEQUE"

SOLICITANTE

RESPONSABLE UBICACIÓN

EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

CALICATA	C - :

Molde N°	S - 124
Peso de Molde (gr.)	5875
Volumen del Molde (cm3)	2119
N° de Capas	5
N° de Golpes por capa	56

MUESTRA N°	1	2	3	4	5	6
Peso de Suelo hùmedo + Molde (gr.)	9930.00	10115.00	10235.00	10210.00		
Peso de Molde (gr.)	5875.00	5875.00	5875.00	5875.00		
Peso del suelo Húmedo (gr.)	4055.00	4240.00	4360.00	4335.00		G G
Densidad Húmeda (gr/cm3)	1.91	2.00	2.06	2.05		
CAPSULA Nº	I-01	I-02	1-03	I-04	I-05	1-06
Peso de suelo Húmedo + Cápsula (gr.)	101.45	105.62	100.85	99.78		8
Peso de suelo seco + Cápsula (gr.)	96.77	98.97	92.96	90.48		i i
Peso de Agua (gr.)	4.68	6.65	7.89	9.3		
Peso de Cápsula (gr.)	9.98	10.14	10.17	10.16		
Peso de Suelo Seco (gr.)	86.79	88.83	82.79	80.32		
% de Humedad	5.39	7.49	9.53	11.58		
Densidad de Suelo Seco (gr/cm3)	1.82	1.86	1.88	1.83		

MAXIMA DENSIDAD SECA (gr/cm3)
1.88

ÓPTIMO CONTENIDO DE HUMEDAD (%) 9.20

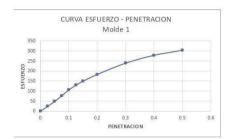
ENSAYO DE CBR

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE"

SOLICITANTE RESPONSABLE UBICACIÓN FECHA

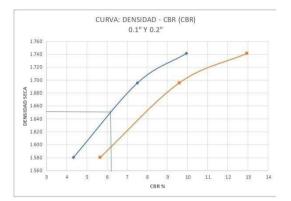
EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

ENSAYO DE COMPACTACIÓN CBR


ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOLDE 1		MOL	MOLDE 2		DE 3
Nª DE GOLPES POR CAPA	5	6	2	5	12	
SOBRECARGA (gr.)	45	30	45	30	45	30
Peso de Suelo hùmedo + Molde (gr.)	11061		12045		11825	
Peso de Molde (gr.)	6800		7960		8015	
Peso del suelo Hùmedo (gr.)	4261		4085		3810	
Volumen de Molde	2143		2143		2143	
Volumen del Disco Espaciador (cm3)	1085		1085		1085	
Densidad Hùmeda (gr/cm3)	1.988		1.906		1.778	
CAPSULA Nº	1		3		5	
Peso de suelo Húmedo + Cápsula (gr.)	89.62		92.15		90.02	
Peso de suelo seco + Cápsula (gr.)	79.75		83.16		81.14	
Peso de Agua (gr.)	9.87		8.99		8.88	
Peso de Cápsula (gr.)	10.14		10.8	· ·	10.16	
Peso de Suelo Seco (gr.)	69.61		72.36		70.98	
% de Humedad	14.18%		12.42%		12.51%	
Densidad de Suelo Seco (gr/cm3)	1.74		1.70		1.58	

ENSAYO DE CARGA PENETRACION

PENETRACION	LECTURA	MOLDE 1	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
pulg.	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2
0	0	0	0	0	0	0	0	0	0
0.025	5	69.6	23.2	3	52.8	17.6	1	36.1	12
0.05	14	145.1	48.4	9	103.1	34.4	5	69.6	23.2
0.075	24	229	76.3	17	170.2	56.7	10	107.3	35.8
0.1	35	317.1	105.7	24	229	76.3	14	140.9	47
0.125	43	388.5	129.5	31	287.7	95.9	17	170.2	56.7
0.15	50	447.3	149.1	37	338.1	112.7	20	195.4	65.1
0.2	62	548.1	182.7	46	413.7	137.9	26	245.8	81.9
0.3	82	716.3	238.8	59	522.9	174.3	35	321.3	107.1
0.4	96	834.1	278	68	598.6	199.5	41	371.7	123.9
0.5	105	909.8	303.3	73	640.6	213.5	46	413.7	137.9



MOLDE N°	PENETRACIÓN (pulg)	I ADLICADA I		CBR %	DENSIDAD SECA (gr/cm3)
1	1 0.1 129.5 2 0.1 95.9		1000	12.95	1.741
2			1000	9.59	1.696
3	0.1	56.7	1000	5.67	1.580

MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)
1	0.2	149.1 1500		9.94	1.741
2 0.2 112.7	112.7	112.7 1500		1.696	
3	0.2	65.1	1500	4.34	1.580

Máxima Densidad Seca (gr/cm3)	1.741
Máxima Densidad Seca (gr/cm3) al 95%	1.654
ÓPTIMO Contenido de Humedad	9.20

VALOR DEL C.B.R. AL 100 Y 95%		
C.B.R. AL 100% de la Máxima Densidad Seca	0.1"	12.95
C.B.R. AL 95% de la Máxima Densidad Seca	0.1"	6.25

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO меторо с ASTM D-1557

PROYECTO SOLICITANTE TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA

RESPONSABLE

EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE UBICACIÓN

FECHA JUNIO DEL 2020

CALICATA	C - 2
ESTRATO	F-01

Molde N°	S - 124
Peso de Molde (gr.)	2620
Volumen del Molde (cm3)	2119
N° de Capas	5
N° de Golpes por capa	56

MUESTRA N°	1	2	3	4	5	6
Peso de Suelo hùmedo + Molde (gr.)	6685.00	6973.00	6946.00	6940.00		
Peso de Molde (gr.)	2620.00	2620.00	2620.00	2620.00		
Peso del suelo Húmedo (gr.)	4065.00	4353.00	4326.00	4320.00		
Densidad Húmeda (gr/cm3)	1.92	2.05	2.04	2.04		
CAPSULA №	I-01	1-02	1-03	1-04	1-05	1-06
Peso de suelo Húmedo + Cápsula (gr.)	66.73	65.64	68.62	71.22		
Peso de suelo seco + Cápsula (gr.)	64.11	62.09	64.5	66.01		
Peso de Agua (gr.)	2.62	3.55	4.12	5.21		
Peso de Cápsula (gr.)	21.77	21.83	20.33	20.89		
Peso de Suelo Seco (gr.)	42.34	40.26	44.17	45.12		
% de Humedad	6.19	8.82	9.33	11.55		
Densidad de Suelo Seco (gr/cm3)	1.81	1.89	1.87	1.83		

MA	XIMA DENSIDAD SECA
	(gr/cm3)
	1.91

ÓPTIMO CONTENIDO DE	
HUMEDAD (%)	
9.20	

ENSAYO DE CBR

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA

PROYECTO SOLICITANTE RESPONSABLE UBICACIÓN FECHA

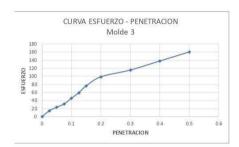
EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE

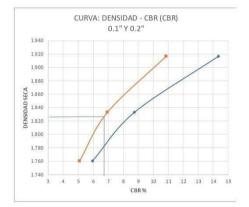
JUNIO DEL 2020

ENSAYO DE COMPACTACIÓN CBR

ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOLDE 1		MOLDE 2		MOLDE 3	
Nª DE GOLPES POR CAPA	56		25			12
SOBRECARGA (gr.)	45	30	4530		4530	
Peso de Suelo hùmedo + Molde (gr.)	8826		8646		8453	
Peso de Molde (gr.)	4383		4420		4398	
Peso del suelo Hùmedo (gr.)	4443	4443		4226		
Volumen de Molde	2143		2143		2143	
Volumen del Disco Espaciador (cm3)	1085		1085		1085	
Densidad Hùmeda (gr/cm3)	2.073		1.972		1.892	
CAPSULA Nº	1		3		5	
Peso de suelo Húmedo + Cápsula (gr.)	ıla (gr.) 72.27 78.23		78.23		63.58	
Peso de suelo seco + Cápsula (gr.)	68.93	68.93		74.23		
Peso de Agua (gr.)	3.34	3.34 4			2.94	
Peso de Cápsula (gr.)	22.36		21.47		21.46	
Peso de Suelo Seco (gr.)	46.57		52.76		39.18	
% de Humedad	7.17%		7.58%		7.50%	
Densidad de Suelo Seco (gr/cm3)	1.92		1.83		1.76	

ENSAYO DE CARGA PENETRACION


PENETRACION	LECTURA	MOLDE 1	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
pulg.	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2
0	0	0	0	0	0	0	0	0	0
0.025	5	78	26	4	61.2	20.4	2	44.4	14.8
0.05	14	153.5	51.2	7	86.4	28.8	5	69.6	23.2
0.075	24	245.8	81.9	13	136.7	45.6	8	94.8	31.6
0.1	35	363.3	121.1	21	203.8	67.9	13	136.7	45.6
0.125	43	430.5	143.5	28	262.6	87.5	18	178.6	59.5
0.15	50	489.3	163.1	34	312.9	104.3	24	229	76.3
0.2	62	598.6	199.5	42	380.1	126.7	32	296.1	98.7
0.3	82	716.3	238.8	53	472.5	157.5	38	346.5	115.5
0.4	96	808.8	269.6	63	556.5	185.5	46	413.7	137.9
O.E.	105	0016	204.0	72	622.2	210.7	EA	490.0	160.2



MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)
1 0.1		143.5	1000	14.35	1.917
2	2 0.1 87.5		1000	8.75	1.833
3	0.1	59.5	1000	5.95	1.760

MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)
1	0.2	163.1	1500	10.87333333	1.917
2	0.2	104.3	1500	6.95	1.833
3	0.2	76.3	1500	5.086666667	1.760

METODO DE COMPACTACION	
Máxima Densidad Seca (gr/cm3)	1.917
Máxima Densidad Seca (gr/cm3) al 95%	1.821
ÓPTIMO Contenido de Humedad	9.20

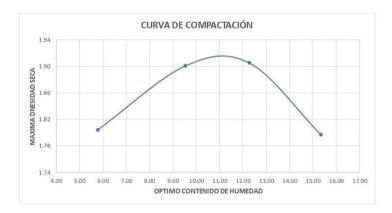
C.B.R. AL 100% de la Máxima Densidad Seca	0.1"	14.35
C.B.R. AL 95% de la Máxima Densidad Seca	0.1"	6.8

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO METODO C ASTM D-1557

PROYECTO :

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO,

SOLICITANTE RESPONSABLE UBICACIÓN


EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE

FECHA : JUNIO DEL 2020

CALICATA	C - 3

Molde N°	S - 124	_
Peso de Molde (gr.)	6710	
Volumen del Molde (cm3)	2123	
N° de Capas	5	
N° de Golpes por capa	56	

MUESTRA N°	1	2	3	4	5	6
Peso de Suelo hùmedo + Molde (gr.)	10761.40	11129.80	11250.70	11108.50		
Peso de Molde (gr.)	6709.70	6709.70	6709.70	6709.70		
Peso del suelo Húmedo (gr.)	4051.70	4420.10	4541.00	4398.80		
Densidad Húmeda (gr/cm3)	1.91	2.08	2.14	2.07	İ	
CAPSULA №	I-01	1-02	1-03	1-04	1-05	1-06
Peso de suelo Húmedo + Cápsula (gr.)	129.9	168.1	145	150		
Peso de suelo seco + Cápsula (gr.)	123.4	154.4	130.3	131.1		
Peso de Agua (gr.)	6.5	13.7	14.7	18.9		
Peso de Cápsula (gr.)	9.98	10.8	10.17	8		
Peso de Suelo Seco (gr.)	112.2	143.6	119.6	123.1		
% de Humedad	5.79	9.54	12.29	15.35		
Densidad de Suelo Seco (gr/cm3)	1.80	1.90	1.90	1.80		

MAXIMA DENSIDAD SECA
(gr/cm3)
1.91

ÓPTIMO CONTENIDO DE HUMEDAD (%) 11.10

Luis Jing-fatan Joel Constr Bermejo ING CIVIL R. CIP. N° 218000

ENSAYO DE CBR

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO,

PROYECTO SOLICITANTE RESPONSABLE UBICACIÓN

EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE

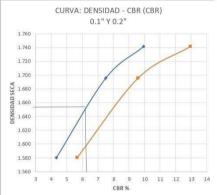
FECHA

ENSAYO DE COMPACTACIÓN CBR

ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOL	DE 1	MOL	DE 2	МО	LDE 3
Nª DE GOLPES POR CAPA	56		25			12
SOBRECARGA (gr.)	4530		4530		4530	
Peso de Suelo hùmedo + Molde (gr.)	10385		10672		10145	
Peso de Molde (gr.)	5632		6052		5713	
Peso del suelo Hùmedo (gr.)	4753		4620		4432	
Volumen de Molde	2143		2143		2143	i.
Volumen del Disco Espaciador (cm3)	1085		1085		1085	
Densidad Hùmeda (gr/cm3)	2.218		2.156		2.068	
CAPSULA Nº	1		3		5	
Peso de suelo Húmedo + Cápsula (gr.)	262.88		273.24		257.55	
Peso de suelo seco + Cápsula (gr.)	233.08		241.73		228.52	
Peso de Agua (gr.)	29.8		31.51		29.03	
Peso de Cápsula (gr.)	18.56		21.52	ĵ	20.69	
Peso de Suelo Seco (gr.)	214.52		220.21		207.83	
% de Humedad	13.89%		14.31%		13.97%	
Densidad de Suelo Seco (gr/cm3)	1.95		1.89		1.81	

ENSAYO DE CARGA PENETRACION


PENETRACION	LECTURA	MOLDE 1	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
pulg.	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2
0	0	0	0	0	0	0	0	0	0
0.02	8.2	96	32	5.9	69	23	3.6	42	14
0.04	17.2	201	67	12.6	147	49	6.8	80	27
0.06	25.1	294	98	18.2	213	71	11	129	43
0.08	33.1	387	129	24.1	282	94	14.4	169	56
0.1	41.3	483	161	30	351	117	17.9	209	70
0.2	67.2	786	262	49	573	191	29.2	342	114
0.3	85.4	999	333	62.1	727	242	37.2	435	145
0.4	99	1158	386	72.1	844	281	43.1	504	168
0.5	103.3	1209	402	75.1	879	293	44.9	525	175



MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)
1	0.1	161	1000	16.1	1.746
2	0.1	117	1000	11.7	1.886
3	0.1	70	1000	7	1.815

MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)
1	0.2	262	1500	17.47	1.746
2	0.2	191	1500	12.73	1.886
3	0.2	114	1500	7.6	1.815

METODO DE COMPACTACION	
Máxima Densidad Seca (gr/cm3)	1.746
Máxima Densidad Seca (gr/cm3) al 95%	1.659
ÓPTIMO Contenido de Humedad	11.10

VALOR DEL C.B.R. AL 100 Y 95%		
C.B.R. AL 100% de la Máxima Densidad Seca	0.1"	16.1
C.B.R. AL 95% de la Máxima Densidad Seca	0.1"	6, 25

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO меторо с ASTM D-1557

PROYECTO SOLICITANTE


TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA

RESPONSABLE UBICACIÓN FECHA

EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

Molde N°	S - 124
Peso de Molde (gr.)	6435
Volumen del Molde (cm3)	2119
N° de Capas	5
N° de Golpes por capa	56

MUESTRA N°	1	2	3	4	5	6
Peso de Suelo hùmedo + Molde (gr.)	10381.00	10937.00	10987.00			
Peso de Molde (gr.)	6435.00	6435.00	6435.00			
Peso del suelo Húmedo (gr.)	3946.00	4502.00	4552.00			
Densidad Húmeda (gr/cm3)	1.86	2.12	2.15			
CAPSULA №	I-01	1-02	1-03	I-04	1-05	1-06
Peso de suelo Húmedo + Cápsula (gr.)	99.98	89.63	93.84			
Peso de suelo seco + Cápsula (gr.)	96.67	83.95	85.28			
Peso de Agua (gr.)	3.31	5.68	8.56			
Peso de Cápsula (gr.)	9.98	10.14	10.17			
Peso de Suelo Seco (gr.)	86.69	73.81	75.11			
% de Humedad	3.82	7.70	11.40			
Densidad de Suelo Seco (gr/cm3)	1.79	1.97	1.93			

N	at visce staw overview outsi
MAXIMA	DENSIDAD SECA
	(gr/cm3)
	1.98

ÓPTIMO CONTENIDO DE HUMEDAD (%)

ENSAYO DE CBR

PROYECTO

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA

SOLICITANTE RESPONSABLE UBICACIÓN

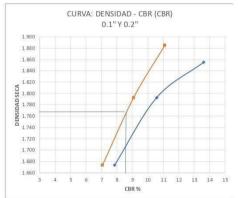
EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

ENSAYO DE COMPACTACIÓN CBR

ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOLDE 1		MOLE	MOLDE 2		LDE 3
Nª DE GOLPES POR CAPA	56		25		12	
SOBRECARGA (gr.)	45	30	4530		4530	
Peso de Suelo hùmedo + Molde (gr.)	11125		12108		11895	
Peso de Molde (gr.)	6695		7960		8015	(a)
Peso del suelo Hùmedo (gr.)	4430		4148		3880	
Volumen de Molde	2137		2137		2137	
Volumen del Disco Espaciador (cm3)	1085		1085		1085	
Densidad Hùmeda (gr/cm3)	2.073		1.941		1.816	
CAPSULA №	1		3		5	17
Peso de suelo Húmedo + Cápsula (gr.)	98.56		95.63		101.25	
Peso de suelo seco + Cápsula (gr.)	90.6		89.15		94.12	
Peso de Agua (gr.)	7.96	Ĭ	6.48		7.13	
Peso de Cápsula (gr.)	10.16 10.82		10.18			
Peso de Suelo Seco (gr.)	80.44 78.33			83.94		
% de Humedad	9.90%	9.90% 8.27%		8.49%		
Densidad de Suelo Seco (gr/cm3)	1.86		1.79		1.67	

ENSAYO DE CARGA PENETRACION

PENETRACION	LECTURA	MOLDE 1	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
pulg.	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2
0	0	0	0	0	0	0	0	0	0
0.025	4	8.8	2.9	5	17	5.7	4	7.9	2.6
0.05	17	126.4	42.1	10	62.6	20.9	7	35.2	11.7
0.075	24	190.2	63.4	18	135.5	45.2	12	80.8	26.9
0.1	35	290.5	96.8	27	217.5	72.5	20	153.7	51.2
0.125	48	409	136.3	38	317.8	105.9	29	235.8	78.6
0.15	58	500.1	166.7	48	409	136.3	38	317.8	105.9
0.2	72	627.7	209.2	64	554.8	184.9	55	472.8	157.6
0.3	103	910.3	303.4	86	755.4	251.8	79	691.5	230.5
0.4	119	1056.2	352.1	98	864.7	288.2	93	819.2	273.1
0.5	128	1138.2	379.4	107	946.8	315.6	101	892.1	297.4



MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)
1	0.1	136.3	1000	13.63	1.855
2	0.1	105.9	1000	10.59	1.793
3	0.1	78.6	1000	7.86	1.673

MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)
1	0.2	166.7	1500	11.11	1.885
2	0.2	136.3	1500	9.09	1.793
3	0.2	105.9	1500	7.06	1.673

 METODO DE COMPACTACION
 1.855

 Máxima Densidad Seca (gr/cm3)
 1.855

 Máxima Densidad Seca (gr/cm3) al 95%
 1.762

 ÓPTIMO Contenido de Humedad
 8.80

VALOR DEL C.B.R. AL 100 Y 95%		
C.B.R. AL 100% de la Máxima Densidad Seca	0.1"	13.63
C.B.R. AL 95% de la Máxima Densidad Seca	0.1"	8.55

Liss shoylatan Joel Condor Bermejo ING CIVIL R. CIP. N° 218000

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO меторо с ASTM D-1557

PROYECTO

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA

SOLICITANTE RESPONSABLE

UBICACIÓN EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE

FECHA JUNIO DEL 2020

CALICATA	C - 5
ESTRATO	E-01

Molde N°	S - 124
Peso de Molde (gr.)	5875
Volumen del Molde (cm3)	2119
N° de Capas	5
N° de Golpes por capa	56

MUESTRA N°	1	2	3	4	5	6
Peso de Suelo hùmedo + Molde (gr.)	9930.00	10115.00	10235.00	10210.00		
Peso de Molde (gr.)	5875.00	5875.00	5875.00	5875.00		
Peso del suelo Húmedo (gr.)	4055.00	4240.00	4360.00	4335.00		
Densidad Húmeda (gr/cm3)	1.91	2.00	2.06	2.05		
CAPSULA №	I-01	1-02	I-03	I-04	1-05	1-06
Peso de suelo Húmedo + Cápsula (gr.)	101.45	105.62	100.85	99.78		
Peso de suelo seco + Cápsula (gr.)	96.77	98.97	92.96	90.48		
Peso de Agua (gr.)	4.68	6.65	7.89	9.3		
Peso de Cápsula (gr.)	9.98	10.14	10.17	10.16		
Peso de Suelo Seco (gr.)	86.79	88.83	82.79	80.32		
% de Humedad	5.39	7.49	9.53	11.58		
Densidad de Suelo Seco (gr/cm3)	1.82	1.86	1.88	1.83		

MAXIMA	DENSIDAD SECA
	(gr/cm3)
	1.88

ÓPTIMO CONTENIDO DE	
HUMEDAD (%)	
9.20	

ENSAYO DE CBR

PROYECTO : TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA

PROYECTO :
SOLICITANTE :
RESPONSABLE :
UBICACIÓN :
FECHA :

EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

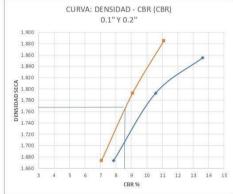
ECHA : JUNIO DEL 20

ENSAYO DE COMPACTACIÓN CBR

ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOLDE 1		MOL	MOLDE 2		LDE 3
Nª DE GOLPES POR CAPA	5	6	25	i		12
SOBRECARGA (gr.)	45	30	453	80	4530	
Peso de Suelo hùmedo + Molde (gr.)	11125		12108		11895	
Peso de Molde (gr.)	6695		7960		8015	(a)
Peso del suelo Hùmedo (gr.)	4430		4148		3880	
Volumen de Molde	2137		2137		2137	
Volumen del Disco Espaciador (cm3)	1085	1	1085		1085	
Densidad Hùmeda (gr/cm3)	2.073		1.941		1.816	
CAPSULA №	1		3		5	17 15k
Peso de suelo Húmedo + Cápsula (gr.)	98.56		95.63		101.25	
Peso de suelo seco + Cápsula (gr.)	90.6		89.15		94.12	
Peso de Agua (gr.)	7.96	Ĭ	6.48		7.13	
Peso de Cápsula (gr.)	10.16		10.82		10.18	
Peso de Suelo Seco (gr.)	80.44		78.33		83.94	
% de Humedad	9.90%		8.27%		8.49%	
Densidad de Suelo Seco (gr/cm3)	1.86		1.79		1.67	

ENSAYO DE CARGA PENETRACION

PENETRACION	LECTURA	MOLDE 1	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
pulg.	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2
0	0	0	0	0	0	0	0	0	0
0.025	4	8.8	2.9	5	17	5.7	4	7.9	2.6
0.05	17	126.4	42.1	10	62.6	20.9	7	35.2	11.7
0.075	24	190.2	63.4	18	135.5	45.2	12	80.8	26.9
0.1	35	290.5	96.8	27	217.5	72.5	20	153.7	51.2
0.125	48	409	136.3	38	317.8	105.9	29	235.8	78.6
0.15	58	500.1	166.7	48	409	136.3	38	317.8	105.9
0.2	72	627.7	209.2	64	554.8	184.9	55	472.8	157.6
0.3	103	910.3	303.4	86	755.4	251.8	79	691.5	230.5
0.4	119	1056.2	352.1	98	864.7	288.2	93	819.2	273.1
0.5	120	1120.2	270 /	107	046.9	215.6	101	902.1	207.4



MOLDE N°	MOLDE N° PENETRACIÓN (pulg) (lbs/p 1 0.1 13		PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)	
1			1000	13.63	1.855	
2	0.1	105.9	1000	10.59	1.793	
3	0.1	78.6	1000	7.86	1.673	

MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)
1	1 0.2 166.7		1500	11.11	1.885
2	0.2	136.3	1500	9.09	1.793
3	0.2	105.9	1500	7.06	1.673

2 0.2 136.3 1500 9.09 1.793
3 0.2 105.9 1500 7.06 1.673

METODO DE COMPACTACION

Máxima Densidad Seca (gr/cm3)
Máxima Densidad Seca (gr/cm3) 1.762

ÖPTIMO Contenido de Humedad 8.80

VALOR DEL C.B.R. AL 100 Y 95%		
C.B.R. AL 100% de la Máxima Densidad Seca	0.1"	13.63
C.B. R. Al. 95% de la Máxima Densidad Seca	0.1"	8.55

Liris Ingristan José Condro Bermajo ING. CIVIII. R. CIP. N° 218000

ENSAYO DE CBR

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA

PROYECTO SOLICITANTE RESPONSABLE UBICACIÓN FECHA

EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE

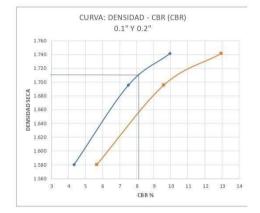
JUNIO DEL 2020

ENSAYO DE COMPACTACIÓN CBR

ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOLDE 1		MOLI	DE 2	МО	LDE 3
Nª DE GOLPES POR CAPA	5	6	25	i		12
SOBRECARGA (gr.)	45	30	453	30	45	530
Peso de Suelo hùmedo + Molde (gr.)	11061		12045		11825	
Peso de Molde (gr.)	6910		7960		8015	
Peso del suelo Hùmedo (gr.)	4151		4085		3810	
Volumen de Molde	2119		2119		2119	
Volumen del Disco Espaciador (cm3)	1085		1085		1085	
Densidad Hùmeda (gr/cm3)	1.959		1.928		1.798	
CAPSULA №	1		3		5	
Peso de suelo Húmedo + Cápsula (gr.)	89.92		92.15		90.02	13
Peso de suelo seco + Cápsula (gr.)	83.55		85.16		83.14	
Peso de Agua (gr.)	6.37		6.99		6.88	
Peso de Cápsula (gr.)	10.14		10.8		10.16	
Peso de Suelo Seco (gr.)	73.41		74.36		72.98	
% de Humedad	8.68%		9.40%		9.43%	
Densidad de Suelo Seco (gr/cm3)	1.80		1.76		1.64	

ENSAYO DE CARGA PENETRACION

PENETRACION	NETRACION LECTURA MOLD	TRACION LECTURA MOLDE 1 56 G	56 GOLPES	56 GOLPES LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
pulg. DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2	
0	0	0	0	0	0	0	0	0	0
0.025	5	69.6	23.2	3	52.8	17.6	1	36.1	12
0.05	14	145.1	48.4	9	103.1	34.4	5	69.6	23.2
0.075	24	229	76.3	17	170.2	56.7	10	107.3	35.8
0.1	35	312.9	104.3	24	229	76.3	14	140.9	47
0.125	43	388.5	129.5	31	287.7	95.9	17	170.2	56.7
0.15	50	447.3	149.1	37	338.1	112.7	20	195.4	65.1
0.2	62	548.1	182.7	46	413.7	137.9	26	245.8	81.9
0.3	82	716.3	238.8	59	522.9	174.3	35	321.3	107.1
0.4	96	834.1	278	68	598.6	199.5	41	371.7	123.9
0.5	105	909.8	303.3	73	640.6	213.5	46	413.7	137.9



MOLDE N°	MOLDE N° PENETRACIÓN (pulg)		PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)	
1	0.1	129.5	1000	12.95	1.803	
2	0.1	95.9	1000	9.59	1.762	
3	0.1	56.7	1000	5.67	1.643	

MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)	
1	0.2	149.1	1500	9.94	1.803	
2	0.2	112.7	1500	7.51	1.762	
3	0.2	65.1	1500	4.34	1.643	

Luis Ingristan Joe Condor Bermaio ING. CIVIL R. CIP. N° 218000

METOD	O DE COMP	ACTACION

Máxima Densidad Seca (gr/cm3)	1.803
Máxima Densidad Seca (gr/cm3) al 95%	1.712
ÓPTIMO Contenido de Humedad	9.20

VALOR DEL C.B.R. AL 100 Y 95%

C.B.R. AL 100% de la Máxima Densidad Seca	0.1"	12.95
C.B.R. AL 95% de la Máxima Densidad Seca	0.1"	8.1

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO METODO C ASTM D-1557

PROYECTO

TESIS: "DISEÑO DE INFRAESTRUCTURA MAL, CASERÍO EL ALTO — CRUCE CARRETERA FERREÑAFE — PITIPO, PROGRESIVA KM 1+490
DISTRITO MANUEL ANTONIO MESONES MURO — FERREÑAFE, LAMBAYEQUE"

SOLICITANTE RESPONSABLE UBICACIÓN FECHA

CASERIO EL ALTO, DISTRITO DE MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

CALICATA	C - 6
----------	-------

Molde N°	S - 124
Peso de Molde (gr.)	4280
Volumen del Molde (cm3)	933
N° de Capas	5
N° de Golpes por capa	25

MUESTRA N°	1	2	3	4	5	6
Peso de Suelo hùmedo + Molde (gr.)	5795.00	6245.00	6270.00	6160.00		
Peso de Molde (gr.)	4280.00	4280.00	4280.00	4280.00		
Peso del suelo Húmedo (gr.)	1515.00	1965.00	1990.00	1880.00		
Densidad Húmeda (gr/cm3)	1.62	2.11	2.13	2.02		
CAPSULA №	I-01	1-02	1-03	1-04	1-05	I-06
Peso de suelo Húmedo + Cápsula (gr.)	98.22	111.52	96.46	125.71		
Peso de suelo seco + Cápsula (gr.)	91.73	100.36	85.24	107.67		
Peso de Agua (gr.)	6.49	11.16	11.22	18.04		
Peso de Cápsula (gr.)	9.76	10.43	10.68	10.69		
Peso de Suelo Seco (gr.)	81.97	89.93	74.56	96.98		
% de Humedad	7.92	12.41	15.05	18.60		
Densidad de Suelo Seco (gr/cm3)	1.50	1.87	1.85	1.70		

MAXIMA DENSIDA	AD SECA (gr/cm3)
1.8	38

ÓPTIMO CONTENIDO DE HUMEDAD (%) 13.28

ENSAYO DE CBR

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA KM 1+490
DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE"

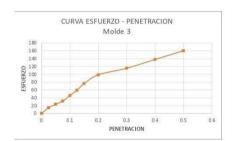
SOLICITANTE RESPONSABLE UBICACIÓN FECHA

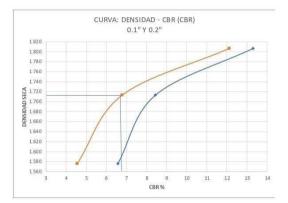
CASERIO EL ALTO, DISTRITO DE MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

ENSAYO DE COMPACTACIÓN CBR

ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOL	DE 1	MOL	DE 2	MOL	DE 3
Nª DE GOLPES POR CAPA	56		25		12	
SOBRECARGA (gr.)	45	30	45	30	45	30
Peso de Suelo hùmedo + Molde (gr.)	11880		11690		11340	
Peso de Molde (gr.)	7555		7555		7555	
Peso del suelo Hùmedo (gr.)	4325		4135		3785	
Volumen de Molde	2119		2119		2119	
Volumen del Disco Espaciador (cm3)	1085		1085		1085	
Densidad Hùmeda (gr/cm3)	2.041		1.951		1.786	
CAPSULA №	1		3		5	
Peso de suelo Húmedo + Cápsula (gr.)	96.04		101.65		88.59	
Peso de suelo seco + Cápsula (gr.)	86.23		90.5		79.35	
Peso de Agua (gr.)	9.81		11.15		9.24	
Peso de Cápsula (gr.)	10.67		10.39		10.08	
Peso de Suelo Seco (gr.)	75.56		80.11		69.27	
% de Humedad	12.98%		13.92%		13.34%	
Densidad de Suelo Seco (gr/cm3)	1.807		1.713		1.576	

ENSAYO DE CARGA PENETRACION


PENETRACION	LECTURA	MOLDE 1	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
pulg.	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2
0	0	0	0	0	0	0	0	0	0
0.025	5	78	26	4	61.2	20.4	2	44.4	14.8
0.05	14	153.5	51.2	7	86.4	28.8	5	69.6	23.2
0.075	24	245.8	81.9	13	136.7	45.6	8	94.8	31.6
0.1	35	363.3	121.1	21	203.8	67.9	13	136.7	45.6
0.125	43	430.5	143.5	28	262.6	87.5	18	178.6	59.5
0.15	50	489.3	163.1	34	312.9	104.3	24	229	76.3
0.2	62	598.6	199.5	42	380.1	126.7	32	296.1	98.7
0.3	82	716.3	238.8	53	472.5	157.5	38	346.5	115.5
0.4	96	808.8	269.6	63	556.5	185.5	46	413.7	137.9
0.5	105	884.6	294.9	72	632.2	210.7	54	480.9	160.3



MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg 2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)	
1	0.1	121.1	1000	12.11	1.807	
2	0.1	67.9	1000	6.79	1.713	
3	3 0.1		1000	4.56	1.576	

MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg 2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)	
1	0.2	199.5	1500	13.3	1.807	
2	0.2	126.7	1500	8.45	1.713	
3	0.2	98.7	1500	6.58	1.576	

Liss Incolation José Condor Bermajo ING. CIVIL R. CIP. N° 218000

Máxima Densidad Seca (gr/cm3)	1.807
Máxima Densidad Seca (gr/cm3) al 95%	1.716
ÓPTIMO Contenido de Humedad	13.28

VALOR DEL C.B.R. AL 100 Y 95%		
C.B.R. AL 100% de la Máxima Densidad Seca	0.1"	12.11
C.B.R. Al. 95% de la Máxima Densidad Seca	0.1"	6.7

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO METODO C ASTM D-1557

TESIS: "DISEÑO DE INFRAESTRUCTURA MAL, CASERÍO EL ALTO — CRUCE CARRETERA FERREÑAFE — PITIPO, PROGRESIVA KM 1+490
DISTRITO MANUEL ANTONIO MESONES MURO — FERREÑAFE, LAMBAYEQUE" PROYECTO


SOLICITANTE RESPONSABLE UBICACIÓN FECHA

CASERIO EL ALTO, DISTRITO DE MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

CALICATA	C - 6
ESTRATO	F 04

Molde N°	5 - 124
Peso de Molde (gr.)	4280
Volumen del Molde (cm3)	933
N° de Capas	5
N° de Golpes por capa	25

MUESTRA N°	1	2	3	4	5	6
Peso de Suelo hùmedo + Molde (gr.)	5795.00	6245.00	6270.00	6160.00		
Peso de Molde (gr.)	4280.00	4280.00	4280.00	4280.00		
Peso del suelo Húmedo (gr.)	1515.00	1965.00	1990.00	1880.00		
Densidad Húmeda (gr/cm3)	1.62	2.11	2.13	2.02		
CAPSULA №	I-01	1-02	1-03	1-04	I-05	1-06
Peso de suelo Húmedo + Cápsula (gr.)	98.22	111.52	96.46	125.71		
Peso de suelo seco + Cápsula (gr.)	91.73	100.36	85.24	107.67		
Peso de Agua (gr.)	6.49	11.16	11.22	18.04		
Peso de Cápsula (gr.)	9.76	10.43	10.68	10.69		
Peso de Suelo Seco (gr.)	81.97	89.93	74.56	96.98		
% de Humedad	7.92	12.41	15.05	18.60		
Densidad de Suelo Seco (gr/cm3)	1.50	1.87	1.85	1.70		

MAXIMA DENSIDAD SECA (gr/cm3
1.88

ÓPTIMO CONTENIDO DE HUMEDAD (%) 13.28

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO

METODO C ASTM D-1557

PROYECTO

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA KM 1+490

DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE"

SOLICITANTE

RESPONSABLE UBICACIÓN

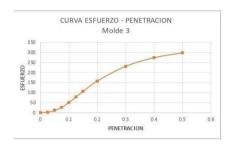
CASERIO EL ALTO, DISTRITO DE MANUEL ANTONIO MESONES MURO - FERREÑAFE

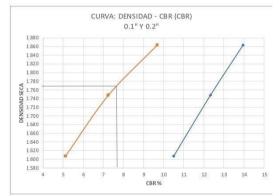
FECHA JUNIO DEL 2020

CALICATA	C - 7
STRATO	E-01

Molde N°	S - 124
Peso de Molde (gr.)	5800
Volumen del Molde (cm3)	2098
N° de Capas	5
N° de Golpes por capa	56

MUESTRA N°	1	2	3	4	5	6
Peso de Suelo hùmedo + Molde (gr.)	9160.00	10075.00	10090.00	9800.00		
Peso de Molde (gr.)	5800.00	5800.00	5800.00	5800.00		
Peso del suelo Húmedo (gr.)	3360.00	4275.00	4290.00	4000.00		
Densidad Húmeda (gr/cm3)	1.60	2.04	2.04	1.91		
CAPSULA Nº	I-01	1-02	1-03	I-04	1-05	1-06
Peso de suelo Húmedo + Cápsula (gr.)	155.25	179.91	155.23	200		
Peso de suelo seco + Cápsula (gr.)	149.55	169.72	144.91	183.37		
Peso de Agua (gr.)	5.7	10.19	10.32	16.63		
Peso de Cápsula (gr.)	15.42	16.82	17.19	17.01		
Peso de Suelo Seco (gr.)	134.13	152.9	127.72	166.36		
% de Humedad	4.25	6.66	8.08	10.00		
Densidad de Suelo Seco (gr/cm3)	1.54	1.91	1.89	1.73		


MAXIMA DENSIDAD SECA (gr/cm3)
1.02


ÓPTIMO CONTENIDO DE HUMEDAD
(%)
7.13

MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg 2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)
1	0.1	96.8	1000	9.68	1.864
2	0.1	72.5	1000	7.25	1.748
3	0.1	51.2	1000	5.12	1.607

MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg 2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)
1	0.2	209.2	1500	13.94666667	1.864
2	0.2	184.9	1500	12.33	1.748
3	0.2	157.6	1500	10.50666667	1.607

/	/ 1
Ver	A
Luis Jhonatan	icel Condor Berme
R. CIP	N° 218000

Máxima Densidad Seca (gr/cm3)	1.864
Máxima Densidad Seca (gr/cm3) al 95%	1.771
ÓPTIMO Contenido de Humedad	7.13

VALOR DEL C.B.R. AL 100 Y 95%		
C.B.R. AL 100% de la Máxima Densidad Seca	0.1"	9.68
C.B.R. AL 95% de la Máxima Densidad Seca	0.1"	7.75

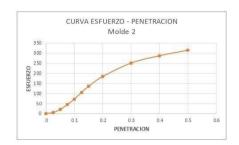
ENSAYO DE CBR

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA KM 1+490
DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE"

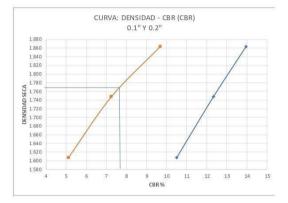
SOLICITANTE RESPONSABLE UBICACIÓN FECHA

CASERIO EL ALTO, DISTRITO DE MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

ENSAYO DE COMPACTACIÓN CBR


ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
TOLDE MOL		DLDE 1 MOLDE 2		DE 2	MOLDE	
Nª DE GOLPES POR CAPA	56		25		12	
SOBRECARGA (gr.)	45	30	45	30	45	30
Peso de Suelo hùmedo + Molde (gr.)	11780		11535		11205	
Peso de Molde (gr.)	7555		7555		7555	
Peso del suelo Hùmedo (gr.)	4225		3980		3650	
Volumen de Molde	2119		2119		2119	
Volumen del Disco Espaciador (cm3)	1085		1085		1085	
Densidad Hůmeda (gr/cm3)	1.994		1.878		1.723	
CAPSULA №	1		3		5	
Peso de suelo Húmedo + Cápsula (gr.)	94.84		100.3		87.54	
Peso de suelo seco + Cápsula (gr.)	89.34		94.04		82.35	
Peso de Agua (gr.)	5.5		6.26		5.19	
Peso de Cápsula (gr.)	10.54		10.25		9.96	
Peso de Suelo Seco (gr.)	78.81		83.79		72.39	
% de Humedad	6.98%		7.47%		7.17%	
Densidad de Suelo Seco (gr/cm3)	1.864		1.748		1.607	

ENSAYO DE CARGA PENETRACION


PENETRACION	LECTURA	MOLDE 1	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
pulg.	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2
0	0	0	0	0	0	0	0	0	0
0.025	4	8.8	2.9	5	17	5.7	4	7.9	2.6
0.05	17	126.4	42.1	10	62.6	20.9	7	35.2	11.7
0.075	24	190.2	63.4	18	135.5	45.2	12	80.8	26.9
0.1	35	290.5	96.8	27	217.5	72.5	20	153.7	51.2
0.125	48	409	136.3	38	317.8	105.9	29	235.8	78.6
0.15	58	500.1	166.7	48	409	136.3	38	317.8	105.9
0.2	72	627.7	209.2	64	554.8	184.9	55	472.8	157.6
0.3	103	910.3	303.4	86	755.4	251.8	79	691.5	230.5
0.4	119	1056.2	352.1	98	864.7	288.2	93	819.2	273.1
0.5	128	1138.2	379.4	107	946.8	315.6	101	892.1	297.4

MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg 2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)
1	0.1	96.8	1000	9.68	1.864
2	0.1	72.5	1000	7.25	1.748
3	0.1	51.2	1000	5.12	1.607

MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg 2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)
1	0.2	209.2	1500	13.94666667	1.864
2	0.2	184.9	1500	12.33	1.748
3	0.2	157.6	1500	10.50666667	1.607

Luis Ingristian Joel Condor Bermajo ING. CIVIL /R. CIP. N° 218000

Máxima Densidad Seca (gr/cm3)	1.864
Máxima Densidad Seca (gr/cm3) al 95%	1.771
ÓPTIMO Contenido de Humedad	7.13

VALOR DEL C.B.R. AL 100 Y 95%		
C.B.R. AL 100% de la Máxima Densidad Seca	0.1"	9.68
C.B.R. AL 95% de la Máxima Densidad Seca	0.1"	7.75

ENSAYO DE ESTUDIO DE CANTERA

ANALISIS MECANICO POR TAMIZADO ASTM D-422 / MTC E 107

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FEBREÑAFE – PITIPO, PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO
MESONES MURO – FERREÑAFE, LAMBAYEQUE"

PROYECTO SOLICITANTE RESPONSABLE UBICACIÓN FECHA

EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

DATOS DEL ENSAYO

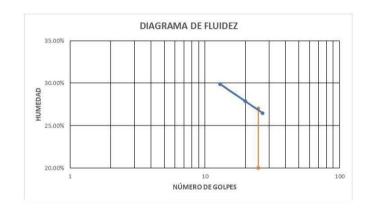
MUESTRA	M1	
PESO DE MUESTRA	3672	

Tamices	Abertura	Peso	%Retenido	%Retenido	% que			
ASTM	en mm.	Retenido	Parcial	Acumulado	Pasa		HUMEDAD NAT	URAL
3"	76.200	0.00	0.00	0.00	100.00			0.00
2 1/2"	63.500	0.00	0.00	0.00	100.00	Sh + Tara		220.66
2"	50.000	0.00	0.00	0.00	100.00	Ss + Tara		209.04
1 1/2"	37.500	524.00	14.27	14.27	85.73	Tara		32.78
1"	25.000	263.00	7.16	21.43	78.57	Peso del agua		11.62
3/4"	19.000	369.00	10.05	31.48	68.52	Peso Suelo Seco		176.26
1/2"	12.500	415.00	11.30	42.78	57.22	Humedad (%)		6.59
3/8"	9.525	185.00	5.04	47.82	52.18	LÍMITES E INDICES DE CONSISTENCIA		ONGETENCIA
1/4"	6.350	163.00	4.44	52.26	47.74		LIMITES E INDICES DE CI	UNSISTENCIA
No4	4.750	241.00	6.56	58.82	41.18			
8	2.360	202.00	5.50	64.32	35.68	L. liquido	1	27
10	2.000	132.00	3.59	67.92	32.08	L. Plastico		20
16	1.180	158.00	4.30	72.22	27.78	Ind. Plastico	d	7
20	0.850	163.00	4.44	76.66	23.34	Clas. SUCS	2	GW - GM
30	0.600	102.00	2.78	79.44	20.56	Clas. AASHTO		A-2-4 (0)
40	0.420	100.00	2.72	82.16	17.84		DESCRIPCION DE LA	MUSETRA
50	0.300	126.00	3.43	85.59	14.41		DESCRIPCION DE LA	MIDESTRA
60	0.250	0.00	0.00	85.59	14.41	20.004		DAVIA ADENIA VIVIA
80	0.180	96.00	2.61	88.21	11.79	GRAVAS LIMOSAS, MEZCLA DE GRAVA, ARENA Y LIMO		KAVA, AKENA T LIMO
100	0.150	95.00	2.59	90.80	9.20		200000000000000000000000000000000000000	NO.55
200	0.075	124.00	3.38	94.17	5.83		OBSERVACION	NES
< 200		214.00	5.83	100.00	0.00			
Total		3672.00	100.00			MATERIAL SUB BASE Y BASE CANTERA		ASE CANTERA

LÍMITES DE CONSISTENCIA

PROYECTO TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO,

PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE"


SOLICITANTE

RESPONSABLE UBICACIÓN

EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE

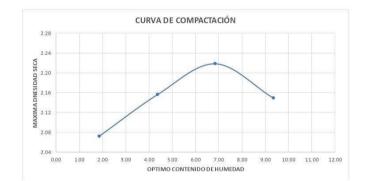
FECHA

LIMITES DE CONSISTENCIA			LIMITE LIQUIDO	LIMITE PLASTICO		
N° de golpes	0:	13	20	27		(4)
Peso tara	(g)	12.28	14.03	12.59	11.21	
Peso tara + suelo húmedo	(g)	35.63	39.94	41.19	18.24	
peso tara + suelo seco	(g)	30.26	34.29	35.21	17.05	
Humedad (%)		29.87%	27.89%	26.44%	20.38%	
Limites		27.00%			20.00%	

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO меторо с ASTM D-1557

PROYECTO

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO — CRUCE CARRETERA FERREÑAFE — PITIPO, PROGRESIVA KM 1+490
DISTRITO MANUEL ANTONIO MESONES MURO — FERREÑAFE, LAMBAYEQUE"


SOLICITANTE RESPONSABLE UBICACIÓN FECHA

EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

11

Molde N°	S - 124
Peso de Molde (gr.)	2650
Volumen del Molde (cm3)	2115
N° de Capas	5
N° de Golpes por capa	56

MUESTRA N°	1	2	3	4	5	6
Peso de Suelo hùmedo + Molde (gr.)	7113.00	7409.00	7663.00	7620.00	7	
Peso de Molde (gr.)	2650.00	2650.00	2650.00	2650.00		
Peso del suelo Húmedo (gr.)	4463.00	4759.00	5013.00	4970.00		
Densidad Húmeda (gr/cm3)	2.11	2.25	2.37	2.35		
CAPSULA Nº	I-01	I-02	1-03	1-04	I-05	1-06
Peso de suelo Húmedo + Cápsula (gr.)	195.16	192.39	194.08	205.18		
Peso de suelo seco + Cápsula (gr.)	192.16	185.4	182.9	189.83	1.9	
Peso de Agua (gr.)	3	6.99	11.18	15.35		
Peso de Cápsula (gr.)	30.02	25.14	19.63	25.7		
Peso de Suelo Seco (gr.)	162.14	160.26	163.27	164.13	1	
% de Humedad	1.85	4.36	6.85	9.35		
Densidad de Suelo Seco (gr/cm3)	2.07	2.16	2.22	2.15		

ÓPTIMO CONTENIDO DE HUMEDAD
(%)
7.25

ENSAYO DE CBR

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO – CRUCE CARRETERA FERREÑAFE – PITIPO, PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO – FERREÑAFE, LAMBAYEQUE"

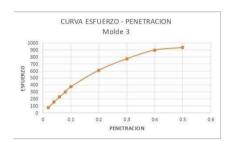
SOLICITANTE RESPONSABLE UBICACIÓN FECHA

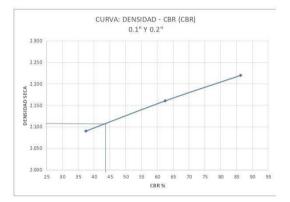
EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE JUNIO DEL 2020

ENSAYO DE COMPACTACIÓN CBR

ESTADO	S IN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOL	DE 1	MOL	DE 2	MOL	DE 3
Nº DE GOLPES POR CAPA	5	6	2:	5	1	2
SOBRECARGA (gr.)	45	30	45	30	45	30
Peso de Suelo hùmedo + Molde (gr.)	10336	10422	9967	10084	9843	10083
Peso de Molde (gr.)	5234	5234	4982	4982	5036	5036
Peso del suelo Hùmedo (gr.)	5102	5188	4985	5102	4807	5047
Volumen de Molde	2143	2143	2143	2143	2143	2143
Volumen del Disco Espaciador (cm3)	1085	1085	1085	1085	1085	1085
Densidad Hùmeda (gr/cm3)	2.381	2.421	2.326	2.381	2.243	2.355
CAPSULA №	1	1	1	1	1	1
Peso de suelo Húmedo + Cápsula (gr.)	254.02	266.45	260.4	263.05	241.85	274.65
Peso de suelo seco + Cápsula (gr.)	238.48	247.54	243.52	241.66	226.63	247.1
Peso de Agua (gr.)	15.54	18.91	16.88	21.39	15.22	27.55
Peso de Cápsula (gr.)	24.12	26.58	23.47	21.58	18.96	20.17
Peso de Suelo Seco (gr.)	214.36	220.96	220.05	220.08	207.67	226.93
% de Humedad	7.25%	8.56%	7.67%	9.72%	7.33%	12.14%
Densidad de Suelo Seco (gr/cm3)	2.22	2.23	2.16	2.17	2.09	2.10

ENSAYO DE CARGA PENETRACION


PENETRACION	LECTURA	MOLDE 1	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
pulg.	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2	DIAL	lbs.	Lbs/pulg2
0.02	44	519	173	32	375	125	19	225	75
0.04	92	1080	360	67	780	260	40	468	156
0.06	135	1578	526	98	1143	381	59	684	228
0.08	177	2070	690	128	1500	500	77	897	299
0.1	221	2589	863	160	1875	625	96	1122	374
0.2	361	4221	1407	261	3057	1019	156	1830	610
0.3	458	5358	1786	332	3882	1294	199	2322	774
0.4	531	6213	2071	385	4500	1500	230	2694	898
0.5	553	6474	2158	401	4689	1563	240	2805	935



MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)
1	0.1	863	1000	86.3	2.220
2	0.1	625	1000	62.5	2.160
3	0.1	374	1000	37 A	2.090

MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)
1	0.2	1407	1500	93.8	2.220
2	0.2	1019	1500	67.93	2.160
3	0.2	610	1500	40.66666667	2.090

	1	
	// 1	
mejo	nonatan Joel Condor Be	ï
	R. CIP. N° 218000	

METODO DE COMPACTACION Máxima Densidad Seca (gr/cm3)	2.220
Máxima Densidad Seca (gr/cm3) al 95%	2.109
ÓPTIMO Contenido de Humedad	7.25
C.B.R. AL 100% de la Máxima Densidad Seca	86.3
C.D.D. Al OEW do lo Máximo Donoidad Cons	

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO МЕТОВО С

ASTM D-1557

TESIS: "DISEÑO DE INFRAESTRUCTURA VIAL, CASERÍO EL ALTO — CRUCE CARRETERA FERREÑAFE — PITIPO, PROGRESIVA KM 1+490 DISTRITO MANUEL ANTONIO MESONES MURO — FERREÑAFE, LAMBAYEQUE" PROYECTO

SOLICITANTE

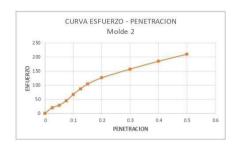

RESPONSABLE UBICACIÓN EL ALTO, PITIPO - MANUEL ANTONIO MESONES MURO - FERREÑAFE

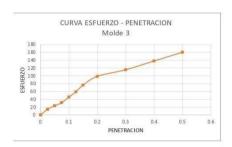
FECHA

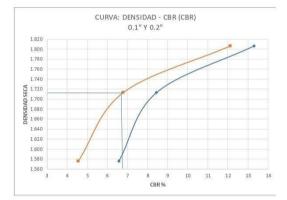
AUTECTDA	8.44
VIUESTRA I	IVII

Molde N°	S - 124
Peso de Molde (gr.)	2650
Volumen del Molde (cm3)	2115
N° de Capas	5
N° de Golpes por capa	56

MUESTRA N°	1	2	3	4	5	6
Peso de Suelo hùmedo + Molde (gr.)	7113.00	7409.00	7663.00	7620.00)
Peso de Molde (gr.)	2650.00	2650.00	2650.00	2650.00		
Peso del suelo Húmedo (gr.)	4463.00	4759.00	5013.00	4970.00		
Densidad Húmeda (gr/cm3)	2.11	2.25	2.37	2.35	1	51
CAPSULA Nº	I-01	I-02	1-03	1-04	I-05	1-06
Peso de suelo Húmedo + Cápsula (gr.)	195.16	192.39	194.08	205.18	*	
Peso de suelo seco + Cápsula (gr.)	192.16	185.4	182.9	189.83		
Peso de Agua (gr.)	3	6.99	11.18	15.35		
Peso de Cápsula (gr.)	30.02	25.14	19.63	25.7		
Peso de Suelo Seco (gr.)	162.14	160.26	163.27	164.13		
% de Humedad	1.85	4.36	6.85	9.35		
Densidad de Suelo Seco (gr/cm3)	2.07	2.16	2.22	2.15		


Contract of the Contract of th
MAXIMA DENSIDAD SECA (gr/cm3)
2.22


ÓPTIMO CONTENIDO DE HUMEDAD



MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)
1	0.1	121.1	1000	12.11	1.807
2	0.1	67.9	1000	6.79	1.713
3	0.1	45.6	1000	4.56	1.576

MOLDE N°	PENETRACIÓN (pulg)	PRESION APLICADA (lbs/pulg 2)	PRESIÓN PATRÓN (lb/pulg2)	CBR %	DENSIDAD SECA (gr/cm3)
1	0.2	199.5	1500	13.3	1.807
2	0.2	126.7	1500	8.45	1.713
3	0.2	98.7	1500	6.58	1.576

| Dulg2 | 1.807 | 1.80

Máxima Densidad Seca (gr/cm3)		1.807			
Máxima Densidad Seca (gr/cm3) al 95%					
ÓPTIMO Contenido de Humedad		13.28			
VALOR DEL C.B.R. AL 100 Y 95%					
VALOR DEL C.B.R. AL 100 Y 95% C.B.R. AL 100% de la Máxima Densidad Seca	0.1"	12.11			

Dirección: Calle Pancho Fierro Mz. I Lt 27 – Trujillo – La libertad E-mail: geotecnia@livingenieros.com / Cel. 983 547 622

Anexo 7: Estudio de tráfico

TRAMO DE LA	CARRETERA	KM. 4 + 400)											ESTACIO	ON	E1				
SENTIDO		EL ALTO - F	PITIPO											DIA		LUNES				
UBICACIÓN		Progresiva k	m 1+490 Di	strito Manuel	Antonio Me	esones Mu	ro							FECHA		06/03/2020				
				CAMIONETAS	1		В	US		CAMION			SEMIT	RAYLER			TRAY	1 FR		
	AUTO	STATION WAGON	PICK UP	PANEL	RURAL	MICRO	2 E	3 E	2 E	3 E	4 E	2S1/2S2		3S1/3S2	>= 3S3	2T2	2T3	3T2	3T3	
HORA					All the same of	0 0		00000	₹			****	- 	 			***	******	eo e oe	TOTAL
0-1																				0
1-2																				0
2-3																				0
3-4																				0
4-5																				0
5-6																				0
6-7																				0
7-8																				0
8-9									1											1
9-10			1						1	1										3
10-11	1		1		1				1											4
11-12	1	1	1						1											4
12-13	1								1											2
13-14									1											1
14-15	1		1						1											3
15-16	1		1						1											3
16-17	1		1						1											3
17-18			1						1											2
18-19																				0
19-20			1																	1
20-21																				0
21-22					1					1										0
22-23					1					1			1							0
23-24					<u> </u>					<u> </u>								_		0
TOTALES	6	1	8	0	1	0	0	0	10	1	0	0	0	0	0	0	0	0	0	27.00

Conteo vehicular (VUELTA)

TRAMO DE LA C	CARRETERA	KM. 4 + 40	0											ESTACI	ON	E1					
SENTIDO		PITIPO - EI	L ALTO							ĺ				DIA		LUNES					
UBICACIÓN		Progresiva	km 1+490 Di	strito Manue	el Antonio M	lesones M	uro							FECHA		06/03/2020					
		STATION	C	AMIONETA	s		В	US		CAMION		SEMI TRA		RAYLER			TRAY	LER			
HORA	AUTO	WAGON	PICK UP	PANEL	RURAL Combi	MICRO	2 E	3 E	2 E	3 E	4 E	2S1/2S2	283	3S1/3S2	>= 3S3	2T2	2T3	3T2	3T3	TOTAL	
HORA					-0-0	ō ō	0 0	0000	~ ♣			****	~~ ₹ Å		~~ 				· · · · ·	IOTAL	
0-1																				0	
1-2																				0	
2-3																				0	
3-4																				0	
4-5																				0	
5-6																				0	
6-7			1																	1	
7-8	1																			1	
8-9									1											1	
9-10			1						1											2	
10-11	1		1						1											3	
11-12	1		1						1											3	
12-13	1								1											2	
13-14			1						1											2	
14-15	1	1	1						1											4	
15-16	1				1				1											3	
16-17	1		1							1										3	
17-18			1																	1	
18-19																				0	
19-20			1																	1	
20-21																				0	
21-22																				0	
22-23 23-24																				0	
TOTALES	7	1	9	0	1	0	0	0	8	1	0	0	0	0	0	0	0	0	0	27	
IOIALES) /	1	9	U	I	U	U	U	0	I	U	U	U	U	U	U	U	U	U	21	

Conteo vehicular (IDA)

TRAMO DE LA	CARRETERA	KM. 4 + 4	00											ESTACIO)N	E1						
SENTIDO		EL ALTO -	PITIPO											DIA		MARTES						
UBICACIÓN		Progresiva	a km 1+490	Distrito Ma	nuel Antor	nio Mesone	s Muro							FECHA		07/03/2020						
		STATION	(AMIONETA			В	US		CAMION SEMITRA			RAYLER			TRA	YLER					
HORA	AUTO		PICK UP	PANEL	RURAL Combi	MICRO	2 E	3 E	2 E	3 E	4 E	2S1/2S2	283	3S1/3S2	>= 3S3	2T2	2T3	3T2	3T3	TOTAL		
HOKA					0.0	**************************************	0 0	0000	₽ ₽	∞ •		***	~~ ₹ Å		~~ *		 ₽	- 66 - 6	***************************************	TOTAL		
0-1																				0		
1-2																				0		
2-3			1																	1		
3-4																				0		
4-5			1																	1		
5-6	1																			1		
6-7			1																	1		
7-8	1																			1		
8-9									1											1		
9-10			1																	1		
10-11	1				1				1											3		
11-12	1		1						1											3		
12-13	1																			1		
13-14	1								1											2		
14-15			1																	1		
15-16									1											1		
16-17	1		1																	2		
17-18			1																	1		
18-19																				0		
19-20			1																	1		
20-21																				0		
21-22																				0		
22-23		1																	 	0		
23-24	7	_		_	4	_	_	_	-	_	_		_	_	_	_	_	_		0		
TOTALES	7	0	9	0	T	0	0	0	5	0	0	0	0	0	0	0	0	0	0	22		

Conteo vehicular (VUELTA)

TRAMO DE LA O	CARRETERA	KM. 4 + 4	00											ESTACIO	N	E1				1
SENTIDO		PITIPO - E	L ALTO											DIA		MARTES				
UBICACIÓN		Progresiva	km 1+490	Distrito Ma	anuel Anton	io Mesones	Muro							FECHA		07/03/202				
				AMIONET	100		В	US		CAMION			CEMI T	RAYLER			TDA	YLER		
İ	AUTO	STATION			RURAL	MICRO													Ī	-
HORA		WAGON		PANEL	Combi		2 E	3 E	2 E	3 E	4 E	2S1/2S2	2S3	3S1/3S2	>= 3S3	2T2	2T3	3T2	3T3	TOTAL
					0.0		0 0	00 00	₽	∞ ♣		****	~~ ♣		~~~		***		≈ • •	IOIAL
0-1																				0
1-2																				0
2-3			1																	1
3-4																				0
4-5			1																	1
5-6	1																			1
6-7			1																	1
7-8	1								2											3
8-9									1											1
9-10			1						1											2
10-11																				0
11-12	1		1						1											3
12-13	1								2											3
13-14	1		1						1											3
14-15			1		1				1											3
15-16									1											1
16-17			1																	1
17-18			1																	1
18-19																			<u> </u>	0
19-20		1	1																	1
20-21		1																	_	0
21-22																			 	0
22-23 23-24		1			-	-								-	-	-	-		 	0
TOTALES	5	0	10	0	1	0	0	0	10	0	0	0	0	0	0	0	0	0	0	26

Anexo 8: Estudio de impacto ambiental

Denominación	Equivalencia	Descripción
Leptosol itilico , afloramiento lítico	VII	Tierras marginales para fines agrícolas, aparentes solo para pastoreo extensivo y frutales. No arables
Regosol eútrico – combisol- eútrico	IV	Tierras marginales para cultivos intensivos. Arables
Regosol districo – afloramiento Litico	VII	Tierras no apropiadas para cultivos agropecuarios ni forestales
Regosol districo, afloramiento ilitlico	III	Tierras moderadamente buenas para cultivos intensión y otros usos. Arrabales

Anexo 9: Componente ambiental

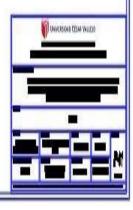
MEDIO	COMPONENTE AMBIENTAL	FACTORES AMBIENTALES Y SOCIALES	
	Aire	Calidad de aire	
Medio físico	Ruido	Nivel de ruido y vibraciones	
	Suelo	Calidad de suelo	
	Agua	Calidad de agua superficial	
Medio Biológico	Vegetación	Pérdida de vegetación	
	Fauna	Migración de fauna	
	Aspectos económicos	Generación del empleo	
Medio social	Seguridad y salud	Seguridad del personal de	
		obra	
	Aspectos culturales	Restos arqueológicos	

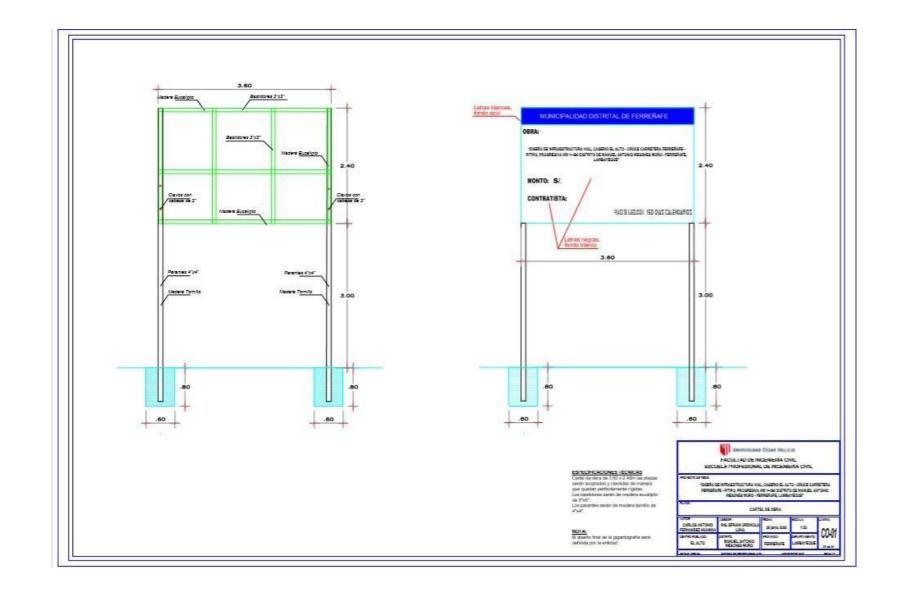
Anexo 10: Simbología de manifestación cualitativa

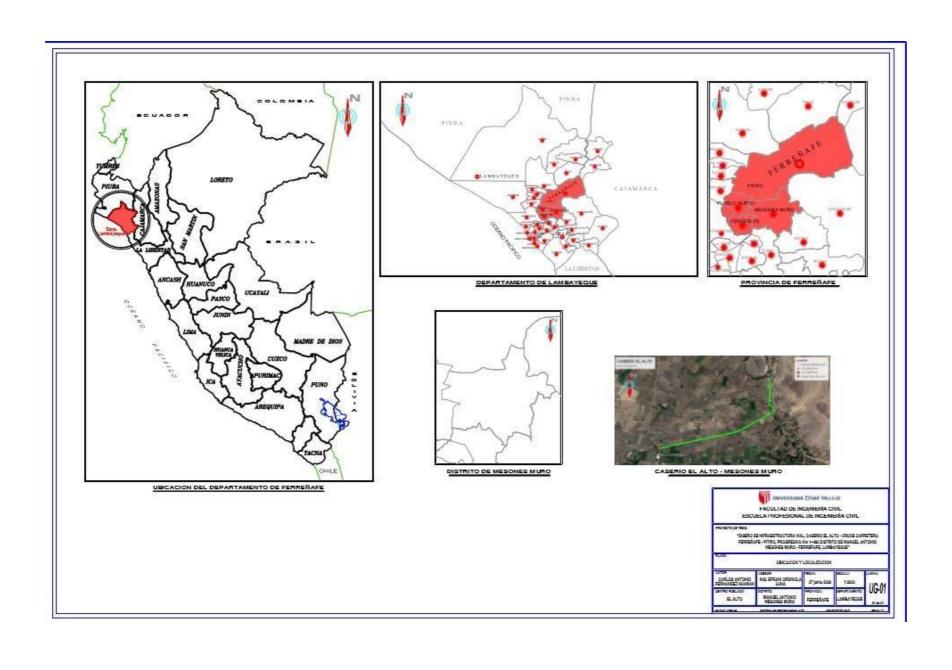
GRADO DE MANIFESTACIÓN CUALITATIVA Y SIMBOLÓGICA							
Carácter o naturaleza	N						
Intensidad	I						
Extensión	EX						
Plazo de manifestación o momento	MO						
Persistencia	PE						
Reversibilidad	RV						
Recuperabilidad	RC						
Sinergia	SI						
Acumulación	AC						
Efecto	EF						
Periodicidad	PR						

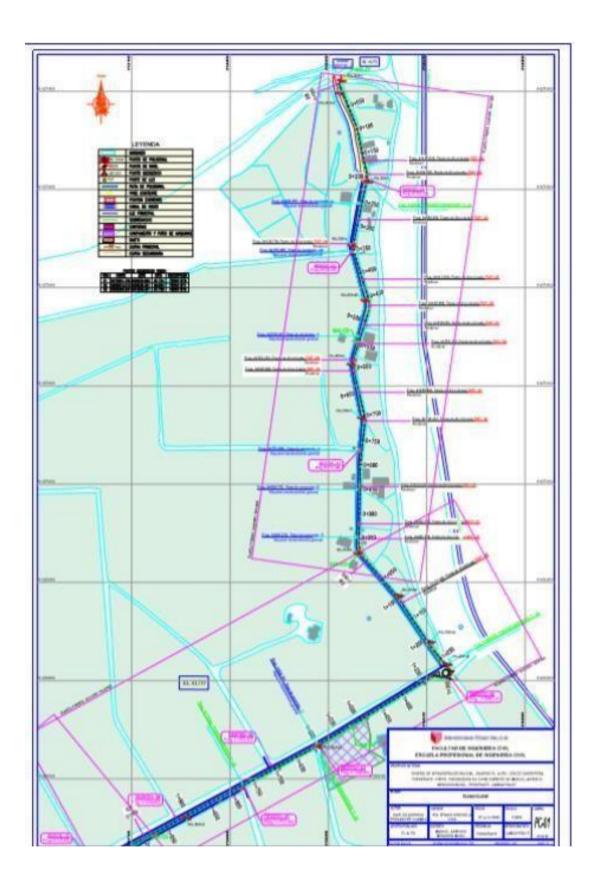
Anexo 11: Planos del proyecto

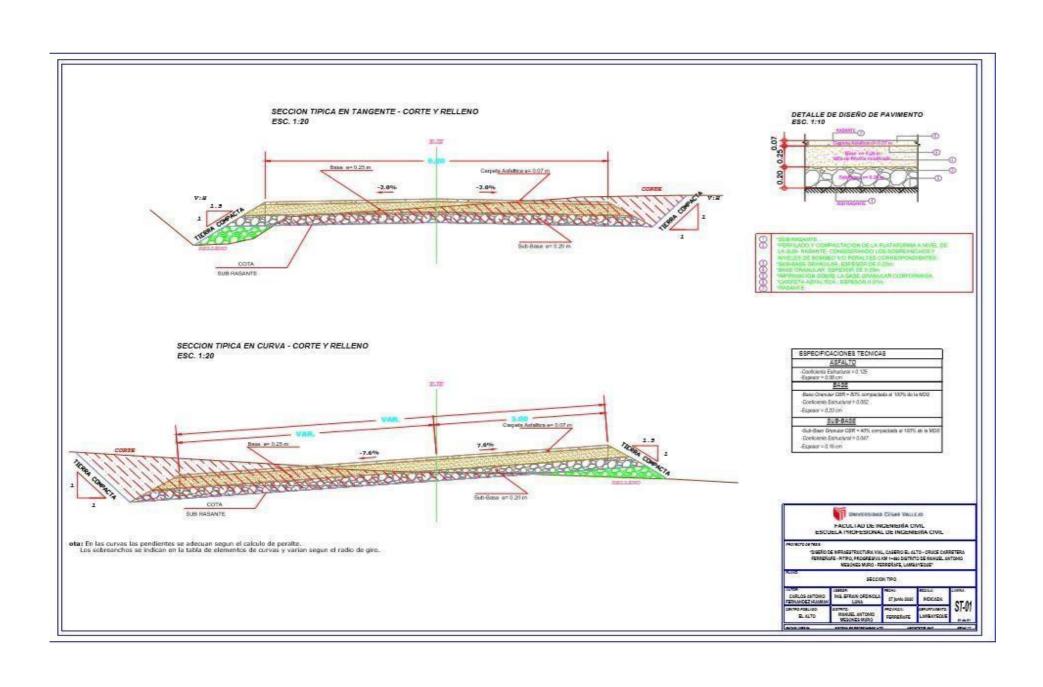
FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL


PROYECTO DE TITULACION




*DISEÑO DE INFRAESTRUCTURA VIAL, CASERIO EL ALTO - CRUCE CARRETERA FERREÑAFE - PITIPO, PROGRESIVA KM 1+490 DISTRITO DE MANUEL ANTONIO MESONES MURO - FERREÑAFE, LAMBAYEQUE


INDICE


* INFORMACION E INDICE DE PLANOS	IP-01
 UBICACION GEOGRAFICA DEL PROYECTO 	UG-01
* PLANO CLAVE	PC-01 a PC-04
* SECCIONES TIPO	ST-01
* PLANTA Y PERFIL DEL PROYECTO	PP-01 a PP-06
* SECCIONES TRANSVERSALES	SE-01 a SE-104
* SERALIZACION VIAL	
* PLANTA DE SERALIZACION	S-01 a S-03
DETAILES	DS-01 a DS-03
* CARTEL DE OBRA	CO-01
* PLANOS DE UBICACION DE CANTERAS, PUNTOS DE AGUA, DEPOSITOS DE	
MATERIAL EXCEDENTE (DME), CAMPAMENTO Y PATIO DE MAQUINAS.	
* PLANO DB CANTERA	C-01 a C-04
* PLANO DE FUENTES DE AGUA	FA-01
 PLANO DE DEPOSITO DE MATERIALES EXCEDENTE 	B-01 a B-02
* PLANO DE CAMPAMENTO Y PATIO DE MAQUINAS	CP-01
PIANO DE EXPROPIACIONES	
* PLANO DE REUBICACION DE POSTES	EX-01
* PLAND DE INVENTARIO VIAL	RP-01
The same of the sa	IV-01

Anexo 12: Presupuesto

03	MOVIMIENTO DE TIERRAS				405,185.40
03.01	CORTE EN MATERIAL SUELTO A NIVEL DE SUBRASANTE	m3	3,625.14	6.06	21,968.35
03.02	RELLENO CON MATERIAL PROPIO	m3	855.44	15.88	13,584.39
03.03	CONFORMACIÓN Y COMPACTACIÓN DE SUBRASANTE EN TERRENO NATURAL CIEQUIPO	m2	34,380.96	3.29	113,113.36
03.04	ELIMINACION DE MATERIAL EXCEDENTE C/ESPONJAMIENTO	m3	15,962.62	16.07	256,519.30
04	ESTRUCTURA DE PAVIMENTO				3,301,947.40
04.01	SUB BASE DE MATERIAL GRANULAR (HORMIGON) E=0.20 m. COMPACTADO	m2	34,380.96	30.61	1,052,401.19
04.02	BASE DE MATERIAL GRANULAR (AFIRMADO) E=0.25 m. COMPACTADO	m2	34,380.96	15.56	534,967.74
04.03	IMPRIMACIÓN ASFALTICA CON FLUIDIFICANTE MC-30 C/MAQUINARIA	m2	34,380.96	5.88	202,160.04
04.04	COLOCACIÓN DE PAVIMENTO ASFALTICO EN FRIO E=7 cm	m2	34,380.96	43.99	1,512,418.43
05	ALCANTARILLA TIPO MARCO DE CONCRETO				81,592.47
05.01	EXCAVACION DE TERRENO PARA ESTRUCTURAS	m3	77.01	39.74	3,060.38
05.02	RELLENO COMPACTADO MANUAL C/MATERIAL DE AFIRMADO	m3	34.56	82.06	2,835.99
05.03	ELIMINACION DE MATERIAL EXCEDENTE	m3	33,81	20.38	689.05
05.04	ACERO CORRUGADO F'Y=4200 KG/CM2 GRADO 60	kg	4,597.02	5.38	24,731.97
05.05	ENCOFRADO Y DESENCOFRADO TIPO CARAVISTA	m2	232.04	92.01	21,350.00
05.06	CONCRETO F'C= 280 KG/CM2	m3	12.96	551.05	7,141.61
05.07	CONCRETO F'C= 210 KG/CM2	m3	42.11	429.20	18,073.61
05.08	CONCRETO CICLOPEO PARA UÑAS Y LOSA DE FONDO F'C=175 KG/CM2 + 40% PM	m3	3.86	342.76	1,323.05
05.09	EMBOQUILLADO DE PIEDRA 6" ASENTADA CON CONCRETO, F'C=175KG/CM2	m3	8.19	291.43	2,386.81
	SEÑALIZACIÓN				24,285.42
06.01	SEÑALES VERTICALES (PREVENTIVAS Y REGLAMENTARIAS)	und	10.00	659.04	6,590.40
06.02	SEÑALES VERTICALES (INFORMATIVAS)	und	24,00	685.04	16,440.96
06.03	POSTES DE KILOMETRAJE	und	6.00	209.01	1,254.06
07	MARCAS EN EL PAVIMENTO				36,634.29
07.01	PINTURA DE PAVIMENTOS (LINEAS DISCONTINUAS)	m2	358.00	26,59	9,519.22
07.02	PINTURA DE PAVIMENTOS (LINEAS CONTINUAS)	m2	1,146.03	23.66	27,115.07
08	SEGURIDAD, SALUD, RIESGO Y MEDIO AMBIENTE				65,000.00
08.01	CAPACITACIONES EN SEGURIDAD Y SALUD	glb	1.00	11,410.00	11,410.00
08.02	PLAN DE PREVENCION DE RIESGOS	glb	1.00	11,780.00	11,780.00
08.03	PLAN DE MANEJO DE MITIGACIÓN AMBIENTAL	glb	1.00	17,210.00	17,210.00
08.04	EQUIPOS DE PROTECCION INDIVIDUAL Y COLECTIVA	glb	1.00	24,600.00	24,600.00

S10 Página 1

Presupuesto

1301007 "DISEÑO DE INFRAESTRUCTURA VIAL, CASERIO EL ALTO - CRUCE CARRETERA FERREÑAFE - PITIPO, PROGRESIVA KM 1-490 DISTRITO MANUEL ANTONIO MESONES MURO - FERREÑAFE, LAMBAYEQUE"

001 "DISEÑO DE INFRAESTRUCTURA VIAL, CASERIO EL ALTO - CRUCE CARRETERA FERREÑAFE - PITIPO, PROGRESIVA KM 1-490 DISTRITO MANUEL ANTONIO MESONES MURO - FERREÑAFE, LAMBAYEQUE"

MUNICIPALIDAD PROVINCIAL DE FERREÑAFE
LAMBAYEQUE - FERREÑAFE - MANUEL ANTONIO MESONES MURO

25/05/2020 Presupuesto Subpresupuesto

Cliente Lugar

ltem	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
01	OBRAS PROVISIONALES				42,617.61
01.01	CARTEL DE IDENTIFICACION DE LA OBRA DE 3.60M X 2.40 m.	und	1.00	1,453.40	1,453.40
01.02	FLETE TERRESTRE	glb	1.00	19,434.00	19,434.00
01.03	MOVILIZACIÓN Y DESMOVILIZACIÓN DE MAQUINARIA	glb	1.00	18,095.61	18,095.61
01.04	CASETA PARA GUARDIANIA DE OBRA Y ALMACEN	m2	36.00	53.80	1,936.80
01.05	TRANQUERAS DE MAD. 1.20X1.10 m P/DESVIO TRANSITO VEHICULAR	und	5.00	339.56	1.697.80
02	OBRAS PRELIMINARES				55,994.73
02.01	TRAZO NIVELACION Y REPLANTEO	m2	34,380.96	1.27	43,663.82
02.02	MANTENIMIENTO DE TRANSITO TEMPORAL Y SEGURIDAD VIAL	glb	1.00	12,330.91	12,330.91
03	MOVIMIENTO DE TIERRAS	3			494,023.03
03.01	CORTE EN MATERIAL SUELTO A NIVEL DE SUBRASANTE	m3	14.695.32	6.06	89.053.64
03.02	RELLENO CON MATERIAL PROPIO	m3	792.90	15.88	12,591.25
03.03	CONFORMACIÓN Y COMPACTACIÓN DE SUBRASANTE EN TERRENO NATURAL CIEQUIPO	m2	34,380.96	3.29	113,113.36
03.04	ELIMINACION DE MATERIAL EXCEDENTE C/ESPONJAMIENTO	m3	17,378.02	16.07	279,264.78
04	ESTRUCTURA DE PAVIMENTO				3,301,947.40
04.01	SUB BASE DE MATERIAL GRANULAR (HORMIGON) E=0.16 m. COMPACTADO	m2	34,380.96	30.61	1,052,401.19
04.02	BASE DE MATERIAL GRANULAR (AFIRMADO) E=0.20 m. COMPACTADO	m2	34,380.96	15.56	534,967.74
04.03	IMPRIMACIÓN ASFALTICA CON FLUIDIFICANTE MC-30 C/MAQUINARIA	m2	34,380.96	5.88	202,160.04
04.04	COLOCACIÓN DE PAVIMENTO ASFALTICO EN FRIO E=8 cm	m2	34,380.96	43.99	1,512,418.43
05	ALCANTARILLA TIPO MARCO DE CONCRETO				81,592.47
05.01	EXCAVACION DE TERRENO PARA ESTRUCTURAS	m3	77.01	39.74	3,060.38
05.02	RELLENO COMPACTADO MANUAL C/MATERIAL DE AFIRMADO	m3	34.56	82.06	2,835.99
05.03	ELIMINACION DE MATERIAL EXCEDENTE	m3	33.81	20.38	689.05
05.04	ACERO CORRUGADO F Y=4200 KG/CM2 GRADO 60	kg	4,597.02	5.38	24,731.97
05.05	ENCOFRADO Y DESENCOFRADO TIPO CARAVISTA	m2	232.04	92.01	21,350.00
05.06	CONCRETO F'C= 280 KG/CM2	m3	12.96	551.05	7.141.61
05.07	CONCRETO F'C= 210 KG/CM2	m3	42.11	429.20	18,073.61
05.08	CONCRETO CICLOPEO PARA UÑAS Y LOSA DE FONDO F'C=175 KG/CM2 + 40% PM	m3	3,86	342.76	1,323.05
05.09	EMBOQUILLADO DE PIEDRA 6" ASENTADA CON CONCRETO, F'C=175KG/CM2	m3	8.19	291.43	2,386.81
	SEÑALIZACIÓN				24,285.42
06.01	SEÑALES VERTICALES (PREVENTIVAS Y REGLAMENTARIAS)	und	10.00	659.04	6,590.40
06.02	SEÑALES VERTICALES (INFORMATIVAS)	und	24.00	685.04	16,440.96
06.03	POSTES DE KILOMETRAJE	und	6.00	209.01	1,254.06
07	MARCAS EN EL PAVIMENTO				36,634.29
07.01	PINTURA DE PAVIMENTOS (LINEAS DISCONTINUAS)	m2	358.00	26.59	9,519.22
07.02	PINTURA DE PAVIMENTOS (LINEAS CONTINUAS)	m2	1,146.03	23.66	27,115.07
08	SEGURIDAD, SALUD, RIESGO Y MEDIO AMBIENTE				65,000.00
08.01	CAPACITACIONES EN SEGURIDAD Y SALUD	glb	1.00	11,410.00	11,410.00
08.02	PLAN DE PREVENCION DE RIESGOS	glb	1.00	11,780.00	11,780.00
08.03	PLAN DE MANEJO DE MITIGACIÓN AMBIENTAL	glb	1.00	17,210.00	17,210.00
08.04	EQUIPOS DE PROTECCION INDIVIDUAL Y COLECTIVA	glb	1.00	24,600.00	24,600.00
	COSTO DIRECTO				4,102,094.95
	GASTOS GENERALES 10%				410,209.50
	UTILIDADES 8 %				328,167.60
	SUB TOTAL				4,840,472.05
	IGV 18%				871,284.97
	VALOR REFENCIAL.				5,711,757.02

SON: CUATRO MILLONES CIENTO DOS MIL NOVENTICUATRO Y 95/100 NUEVOS SOLES

29/06/2020 12:45:55 Fecha:

Anexo 13: Precios Unitarios

S10	Página:	1

				An	álisis de pre	cios un	itarios			
Presupuesto	1301007	"DISE	ÑO DE INFRAE ITO MANUEL A	ESTRUCTUR Antonio M	RA VIAL, CASERÍO IESONES MURO - F	EL ALTO - C ERREÑAFE.	RUCE CARRET	ERA FERREÑAFI	E - PITIPO, PROGRES	SIVA KM 1+490
Subpresupuesto	001	"DISE	NO DE INFRA EÑAFE - PITI	ESTRUCTU IPO, PROG	RA VIAL, CASERÍO RESIVA KM 1+49 E, LAMBAYEQUE"	EL ALTO -	CRUCE CARR	ETERA	Fecha presupuesto	25/05/2020
Partida	01.01	WESO			CION DE LA OBRA	DE 3.60M X	2.40 m.			-
Rendimiento	und/DIA	MO.	1.0000	E	Q. 1.0000			Costo unitario di	ecto por : und	1,453.40
Código	Descripcio		rso no de Obra			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002	CAPATAZ	ivia	no de Obia			hh	0.1000	0.8000	23.20	18.56
0101010003	OPERARIO)				hh	1.0000	8.0000	21.01	168.08
0101010005	PEON					hh	2.0000	16.0000	15.33	245.28
										431.92
		1000	Nateriales							
0204120022			ADERA C/C 2"-	2 1/2"-3"		kg		0.3500	3.39	1.19
0207010005	PIEDRA M					m3		0.2000	80.00	16.00
0207030002			STO EN OBRA			m3		0.3500	100.00	35.00
0213010007		PORTL	AND TIPO MS	(42.5 kg)		bol		1.2000	21.45	25.74
0218030003	GRAPAS					cja		0.5550	8.50	4.72
0222080022	PEGAMEN					und		1.0000	11.87	11.87
0231010001	MADERA					p2		95.0000	6.20	589.00
0231010007			PTO ROLLIZO			und		3.0000	25.00	75.00
0240070008	GIGANTO	GRAFIA	DIGITAL TIPO	BANNER D	E 3.60M X 2.40 M	und		1.0000	250.00	250.00
			18 000							1,008.52
0001010000	HEDDAM		Equipos			0/		2.0000	404.00	10.00
0301010006	HERRAINII	ENIASI	MANUALES			%mo		3.0000	431.92	12.96 12.96
Partida	01.02		FLETE TERR	ESTRE						
Rendimiento	qlb/DIA	МО	1.0000		Q. 1.0000			Costo unitario d	rosto por callo	19,434.00
Rendimiento	gib/DIA	WO.	1.0000		Q. 1.0000			Costo unitario u	recto por : gib	19,434.00
Código	Descripcio		rso Materiales			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0203020035	FLETE TE					qlb		1.0000	19,434.00	19,434.00
						860				19,434.00
Partida	01.03		MOVILIZACIO	ÓN Y DESM	OVILIZACIÓN DE M	AQUINARIA				
Rendimiento	glb/DIA	MO.	1.0000	E	Q. 1.0000			Costo unitario d	recto por : glb	18,095.61
Código	Descripcio					Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0203020051	MOVIL 17 A		Materiales	CION DE M	AQUINARIA PESAD	A alb		1.0000	18,095.61	18,095.61
0203020031	WOVILIZA	CION Y	DESINOVILIZA	CION DE MA	AQUINAKIA PESADI	4 Gin		1.0000	10,083.01	18,095.61

Fecha: 31/05/2020 02:42:40

S10 Página: 2

Análisis de precios unitarios

Presupuesto Subpresupuesto	1301007	DISTR	TO MANUEL A	STRUCTURA VIAL, CASER NTONIO MESONES MURO STRUCTURA VIAL, CASE	- FERREÑAFE,	LAMBAYEQUE"		- PITIPO, PROGRES Fecha presupuesto	IVA KM 1+490 25/05/2020
ouspi osupuosto		FERRE	ŇAFE - PITIP	O, PROGRESIVA KM 1 RREÑAFE, LAMBAYEQUI	+490 DISTRITO			r cond presupuesto	200012020
Partida	01.04	WESO		GUARDIANIA DE OBRA					
Rendimiento	m2/DIA	MO.	60.0000	EQ. 60.0000			Costo unitario di	ecto por : m2	53.80
Código	Descripció		rso no de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002	CAPATAZ		no de obra		hh	0.2000	0.0267	23.20	0.62
0101010003	OPERARIO)			hh	1.0000	0.1333	21.01	2.80
0101010005	PEON				hh	2.0000	0.2667	15.33	4.09
0101030000	TOPOGRA	FO			hh	1.0000	0.1333	23.69	3.16
									10.67
000 4000005	DI AMOULA		lateriales		- 1		0.1000	50.00	00.40
0204020035			ROCEMENTO 2		pln		0.4000	56.00	22.40
0204120022			DERA C/C 2"-2	1/2"-3"	kg		0.0750	3.39	0.25
02130300010003	YESO BOL		Warner or an artist of the second		bol .		0.0200	8.00	0.16
0231040001	ESTACAS				und		0.0800	1.50	0.12
0231050007	TRIPLAY L	UPUNA	DE 4'X8'X4 mm.		pln		0.7500	26.50	19.88 42.81
		3	Equipos						42.01
0301010006	HERRAMIE		MANUALES		%mo		3.0000	10.67	0.32
									0.32
Partida	01.05		TRANQUERAS	DE MAD. 1.20X1.10 m P/I	DESVIO TRANSI	TO VEHICULAR			
Rendimiento	und/DIA	MO.	1.0000	EQ. 1.0000			Costo unitario dir	ecto por : und	339.56
Código	Descripció		rso no de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010003	OPERARIO				hh	1.0000	8.0000	21.01	168.08
0101010005	PEON				hh	0.5000	4.0000	15.33	61.32
									229.40
02041200010007	CLAVOC D		lateriales	ADEZA DE 2/4"	i.		0.2000	24.20	6.04
02041200010007			MENTO CON CA		kg		0.2000	34.20	6.84
0204120004 0231010001	MADERA T		A DE 2 1/2", 3" \	4	kg		0.1000 9.8000	4.20 6.20	0.42 60.76
0231010001			DE 4'X8'X6MM		p2 pln		0.7000	42.60	29.82
0240020015	PINTURA E				pin qal		0.7000	42.60 68.00	5.44
0240020013	INTORAT	ARA II	VAI ICU		yaı		0.0000	00.00	103.28
			Equipos						103.20
0301010006	HERRAMIE		MANUALES		%mo		3.0000	229.40	6.88
									6.88

Fecha: 31/05/2020 02:42:40

S10 Página: 1

Análisis de precios unitarios

Subpresupuesto	001 "DIS FER	eño de infraes Reñafe - Pitip	ITONIO MESONES MURO - FI Structura Vial, caserío O, progresiva km 1+49 Rreñafe, lambayeque"	EL ALTO -	CRUCE CARR	RETERA	Fecha presupuesto	25/05/2020
Partida	01.01		ENTIFICACION DE LA OBRA	DE 3.60M X	2.40 m.			
Rendimiento	und/DIA M	O. 1.0000	EQ. 1.0000			Costo unitario dir	ecto por : und	1,453.40
Código	Descripción Re	curso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0101010002	CAPATAZ	nano de Obra		hh	0.1000	0.8000	23.20	18.56
0101010002	OPERARIO			hh	1.0000	8.0000	21.01	168.08
0101010005	PEON			hh	2.0000	16.0000	15.33	245.28
0101010000	1 LOIV			Maria Maria	2.0000	10.0000	10.00	431.92
		Materiales						
0204120022	CLAVOS PARA	MADERA C/C 2"-2	1/2"-3"	kg		0.3500	3.39	1.19
0207010005	PIEDRA MEDIAN	NA .		m3		0.2000	80.00	16.00
0207030002	HORMIGON (PU	ESTO EN OBRA)		m3		0.3500	100.00	35.00
0213010007	CEMENTO POR	TLAND TIPO MS (4	2.5 kg)	bol		1.2000	21.45	25.74
0218030003	GRAPAS			cja		0.5550	8.50	4.72
0222080022	PEGAMENTO x	1/8 GAL.		und		1.0000	11.87	11.87
0231010001	MADERA TORN	ILLO		p2		95.0000	6.20	589.00
0231010007	MADERA EUCAI	LIPTO ROLLIZO 5"		und		3.0000	25.00	75.00
0240070008	GIGANTOGRAF	IA DIGITAL TIPO B	ANNER DE 3.60M X 2.40 M	und		1.0000	250.00	250.00
								1,008.52
		Equipos						
0301010006	HERRAMIENTA:	S MANUALES		%mo		3.0000	431.92	12.96
£								12.96
Partida	01.02	FLETE TERRE	STRE					
Rendimiento	glb/DIA M	O. 1.0000	EQ. 1.0000			Costo unitario di	recto por : glb	19,434.00
Código	Descripción Re	curso Materiales		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0203020035	FLETE TERRES			glb		1.0000	19,434.00	19,434.00 19,434.0 0
Partida	01.03	MOVILIZACIÓN	I Y DESMOVILIZACIÓN DE MA	AQUINARIA				
Rendimiento	glb/DIA M	O. 1.0000	EQ. 1.0000			Costo unitario di	recto por : glb	18,095.61
Código	Descripción Re			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0203020051	MOVILIZACION	Materiales Y DESMOVILIZACI	ON DE MAQUINARIA PESADA	glb		1.0000	18,095.61	18,095.61 18,095.6 1

S10 Página: 3

Análisis de precios unitarios

Rendimiento	02.01			O, PROGRESIVA KM 1+ RREÑAFE, LAMBAYEQUE	490 DISTRITO	CRUCE CARRE MANUEL AN		Fecha presupuesto	25/05/2020
		WILSO		ACION Y REPLANTEO					
Código	m2/DIA	MO.	500.0000	EQ. 500.0000			Costo unitario di	recto por : m2	1.27
	Descripció				Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0101010004	OFICIAL	ivia	no de Obra		hh	0.1000	0.0016	17.03	0.03
	PEON				hh	1.0000	0.0160	15.33	0.25
0101030000	TOPOGRA	FO			hh	1.0000	0.0160	23.69	0.38
									0.66
			Materiales .						
	YESO BOL		Chromite transfer and transfer and		bol		0.0100	10.68	0.11
		E MADE	RA TORNILLO	TRATADA	p2		0.0200	3.00	0.06
0270120042	WINCHA				und		0.0030	11.78	0.04
			LOWER DESIGNATION AND ADDRESS OF THE PARTY O						0.21
0301000011	TEODOLIT		Equipos		hm	1.0000	0.0160	15.00	0.24
			TICO CON TRIP	DDE.	nm he			8.00	0.24
			FICO CON TRIPO	JUE	6950	1.0000	0.0160	17757	
0301010006	HERRAINIE	INTAST	MANUALES		%mo		5.0000	0.66	0.03 0.4 0
Partida	02.02		MANTENIMIEN	ITO DE TRANSITO TEMPOI	RAL Y SEGURII	DAD VIAL			0.40
Rendimiento	qlb/DIA	MO	0.2600	EQ. 0.2600			Costo unitario di	recto por : alb	12,330.91
	FED. 16					- 170		95 97	Keese 19
Código	Descripcio		rso no de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0101010004	OFICIAL	IVIG	no de Obia		hh	3.0000	92.3077	17.03	1,572.00
0101010005	PEON				hh	8.0000	246.1538	15.33	3,773.54
									5,345.54
		N	Materiales .						
02051000020040	MALLA DE	SEGUE	RIDAD		rll		15.0000	75.00	1,125.00
0205270074	SOPORTE	PARA (CINTA SEÑALIZA	ADORA	und		25.0000	120.00	3,000.00
0276030042	CINTA DE	SEÑALA	ADORA AMARILI	LA	pza		30.0000	90.00	2,700.00
			100 mm - 100						6,825.00
0204040000	LIEDDAMI		Equipos		%mo		3.0000	504554	160.37
0301010006	HERRAMII	INTAST	MANUALES		76IIIO		3.0000	5,345.54	160.37
Partida	03.01		CODTE EN MA	ITERIAL SUELTO A NIVEL	DE CURDACAN	TF			100.37
Рапиа	03.01		CORTE EN MA	ITERIAL SUEL TO A NIVEL	JE SUBRASAN	ILE			
Rendimiento	m3/DIA	MO.	400.0000	EQ. 400.0000			Costo unitario di	recto por : m3	6.06
Código	Descripcio		rso no de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
	OPERARIO)			hh	1.0000	0.0200	21.01	0.42
	OFICIAL				hh	1.0000	0.0200	17.03	0.34
0101010005	PEON				hh	5.0000	0.1000	15.33	1.53
									2.29
0204040000	HEDE		Equipos		00		0.0000		
			MANUALES	LID 2 Cd2	%mo	4 0000	3.0000	2.29	0.07
0301160008	CARGADO	K SOBI	RE LLANTAS 12	0 HP 2.5 Ya3	hm	1.0000	0.0200	185.00	3.70 3.77

Fecha: 31/05/2020 02:42:40

Anexo 14: Panel Fotográfico

Foto N° 1: Colocación de Bm's

Fuente: Elaboración propia

Foto N 2. Estacionando Equipo Topogranco

Foto N° 2: Estacionando Equipo Topográfico

Foto N° 3: Referenciando Equipo Topográfico

Foto N°4: Colecta de datos Topográficos

Foto N° 5: Vista de la Calicata C-1

Foto N° 6: Vista de la Calicata C-3

Foto N° 7: Vista de la Calicata C-4

Foto N° 8: Clasificación de suelos por muestra

Foto N° 9: Muestras al horno para clasificación SUCS y AASTHO

Foto N° 10: Ensayo Granulométrico por tamizado

Foto N° 11: Realizando ensayo para encontrar límites de consistencia

Foto N° 12: Realizando ensayo para Proctor modificado

Foto N° 13: Pesando para Proctor modificado

Foto N° 14: Ensayo de Proctor modificado

