

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA AMBIENTAL

Relación entre la dosis de cloro y cloro residual libre en el sistema de agua potable en la ciudad de Huancavelica -2021

TESIS PARA OBTENER EL TITULO PROFESIONAL DE: Ingeniero Ambiental

AUTOR(ES):

Huayllani Laurente, Nestor Mike (ORCID: 0000-0002-7486-3955)
Zevallos Salvatierra, Anali (ORCID: 0000-0003-1648-8381)

ASESOR:

Dr. Juan Julio, Ordoñez Gálvez (ORCID: 0000-0002-3419-7361)

LÍNEA DE INVESTIGACIÓN:

Calidad y Gestión de los Recursos Naturales

LIMA – PERÚ 2021

DEDICATORIA

A Dios, por cuidar de mi familia y llenar de bendiciones mi hogar, ya que sin el nada sería posible.

A mis queridos padres Honorata Laurente Espinoza y Francisco Huayllani Echavigurín, por su apoyo y consejos que me brindaron para seguir adelante haciendo que sea una persona de bien.

A mi hijo Jeik Huayllani Zevallos, que con tan solo su mirada llenarme de fortaleza para seguir adelante.

Huayllani Laurente, Nestor Mike

DEDICATORIA

A Dios, por haberme guardado durante toda la vida y más aún en esta difícil situación en que todas las personas la estamos viviendo.

A mis queridos padres Clodoalda Salvatierra Aparco y Gerardo Zevallos Yauri, por haber confiado en mí durante mi formación profesional, por su apoyo y consejos que me brindaron para seguir adelante haciendo que sea una persona de bien.

Zevallos Salvatierra, Anali

AGRADECIMIENTO

Agradecemos a la universidad Cesar Vallejo por habernos permitido formar parte de ella y vernos salir como profesionales para enfrentar los diferentes retos en la vida

Al Dr. Juan Julio Ordoñez Gálvez por su apoyo y dedicación para con nosotros.

Índice de contenidos

	Pág.
Carátula	i
Dedicatoria	ii
Agradecimiento	iv
Índice de contenidos	V
Índice de tablas	vi
Índice de figuras	vii
Resumen	viii
Abstrac	ix
I. INTRODUCCIÓN	1
II. MARCO TEÓRICO	5
III. METODOLOGÍA	20
3.1. Tipo y diseño de investigación	
3.2. Variables y operacionalización	20
3.3. Población muestra, muestreo y unidades de análisis	21
3.4. Técnicas e instrumentos de recolección de datos	22
3.5. Procedimiento	23
3.6. Métodos y análisis de datos	39
3.7. Aspectos éticos	40
IV. RESULTADOS	41
V. DISCUSIÓN	71
VI. CONCLUSIONES	77
VII. RECOMENDACIONES	78
REFERENCIAS	79
ANEXOS	87

- Anexo 1. Declaratoria de Originalidad de los(as) Autores(as)
- Anexo 2. Declaratoria de Autenticidad del Asesor
- Anexo 3. Matriz de operacionalización de variables
- Anexo 4. Instrumentos de recolección de datos
- Anexo 5. Validación de instrumentos
- Anexo 6. Identificación de puntos.
- Anexo 7. Base de datos obtenidos.
- Anexo 8. Datos de campo
- Anexo 9. "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".
- Anexo 10. Solicitud de autorización de recojo de datos y trabajos en la EPS EMAPA Huancavelica.
- Anexo 11. Captura de pantalla del Turnitin.

Índice de tablas

	Pág.
Tabla 1. Valores de PH versus Temperatura en la destrucción de v	•
Tabla 2. Características de derivados de cloro	15
Tabla 3. Clasificación de equipos más usados en la dosificación	16
Tabla 4. Resistencia de algunos de los materiales comunes al cloro	16
Tabla 5. Variables de investigación	19
Tabla 6. Fichas de recolección de datos	20
Tabla 7. Validación de instrumentos	21
Tabla 8. Cloración planta Millpo	24
Tabla 9. Cloración planta Ichu	24
Tabla 10. Pruebas de normalidad de Shapiro-Wilk	41
Tabla 11. Correlación de Pearson entre la dosis de cloro y cloro residual libro	2 42

Índice de gráficos y figuras

	Pág.
Figura 1. Equivalencia de la dosis de cloro	15
Figura 2. Diagrama para determinar la relación entre la dosis de c	loro y cloro
residual libre	21
Figura 3. Sectores de evaluación de cloro residual libre	22
Figura 4. Redes de distribución de agua potable de la PTAP	23
Figura 5. Puntos de evaluación de cloro residual libre	23
Figura 6. Lectura de caudal de producción PTAP Ichu	25
Figura 7. Punto georreferencial C1 Millpo y C2 Ichu, para medición de t	urbidez26
Figura 8. Encendido y calibración del equipo	27
Figura 9. Recolección de muestra	27
Figura 10. limpieza de celdas para una buena lectura	
Figura 11. Lectura y registro de turbidez a la salida de la planta	28
Figura 12. Encendido del multiparámetro para medir PH a la salida de la	
Figura 13. Enjuague del electrodo para eliminar el agua del electrodo	20
Figura 14. Introducción del electrodo en la muestra a medir	
rigura 14. Introducción del electrodo en la muestra a medir	29
Figura 15. Lectura y registro del PH a la salida de la planta	30
Figura 16 Caseta y equipos de cloración	30
Figura 17. Dosificadores de cloración (ECOMETRIC Y HIDRO)	31
Figura 18. lectura del rotámetro las lb/24hrs	31
Figura 19. Calibración de colorímetro	32
Figura 20. Toma de muestra para medición de cloro residual a la planta	
Figura 21. Uso de 1.5 mg (DPD) en el frasco con la muestra tomada	33
Figura 22. Lectura y registro de cloro residual a la salida de la planta	33
Figura 23. Punto georreferencial R1 Millpo y R2 Ichu	34

Figura 24. Calibración del colorímetro y toma de muestra34
Figura 25. Uso de 1.5 mg (DPD) en el frasco con la muestra y lectura de cloro residual en el reservorio
Figura 26. Ubicación de los puntos georreferenciados de monitoreo de cloro residual libre
Figura 27. Calibración del colorímetro y toma de muestra en las redes intradomiciliarias
Figura 28. Uso de 1.5 mg de (DPD) para medir el cloro residual libre36
Figura 29. Lectura y registro de cloro residual libre en las redes intradomiciliarias36
Figura 30. Encendido y calibración del turbidímetro37
Figura 31. Toma de muestra y lectura de la turbidez del agua en las redes intradomiciliarias
Figura 32. Encendido del multiparámetro para medir PH en las redes intradomiciliarias
Figura 33. Introducción del electrodo en la muestra a medir38
Figura 34. Lectura y registro del PH en las redes intradomiciliarias
Figura 35. Comportamiento diario del caudal de la PTAP – ICHU – enero43
Figura 36. Comportamiento diario de la turbidez de la PTAP – ICHU – enero43
Figura 37. Comportamiento diario del pH de la PTAP – ICHU – enero44
Figura 38. Comportamiento diario de la cloración de la PTAP – ICHU – enero45
Figura 39. Comportamiento diario del cloro residual a la salida de la PTAP – ICHU – enero45
Figura 40. Comportamiento diario del cloro residual a la salida del reservorio de la PTAP – ICHU – enero46
Figura 41. Comportamiento diario del caudal de la PTAP – ICHU – febrero47
Figura 42. Comportamiento diario de la turbidez de la PTAP – ICHU – febrero47

Figura 43. Comportamiento diario del pH de la PTAP – ICHU – febrero48
Figura 44. Comportamiento diario de la cloración de la PTAP – ICHU – febrero48
Figura 45. Comportamiento diario del cloro residual a la salida de la PTAP – ICHU – febrero49
Figura 46. Comportamiento diario del cloro residual a la salida del reservorio de la PTAP – ICHU – febrero49
Figura 47. Comportamiento diario del caudal de la PTAP – ICHU – marzo50
Figura 48. Comportamiento diario de la turbidez de la PTAP – ICHU – marzo50
Figura 49. Comportamiento diario del pH de la PTAP – ICHU – marzo51
Figura 50. Comportamiento diario de la cloración de la PTAP – ICHU – marzo51
Figura 51. Comportamiento diario del cloro residual a la salida de la PTAP – ICHU – marzo52
Figura 52. Comportamiento diario del cloro residual del reservorio de la PTAP – ICHU – marzo
Figura 53. Comportamiento diario del caudal de la PTAP – MILLPO – enero53
Figura 54. Comportamiento diario de la turbidez de la PTAP – MILLPO – enero53
Figura 55. Comportamiento diario del pH de la PTAP – MILLPO – enero54
Figura 56. Comportamiento diario de la cloración de la PTAP – MILLPO – enero54
Figura 57. Comportamiento diario del cloro residual a la salida de la PTAP – MILLPO – enero55
Figura 58. Comportamiento diario del cloro residual a la salida del reservorio de la PTAP – MILLPO – enero55
Figura 59. Comportamiento diario del caudal de la PTAP – MILLPO – febrero56
Figura 60. Comportamiento diario de la turbidez de la PTAP – MILLPO – febrero56
Figura 61. Comportamiento diario del pH del PTAP – MILLPO – febrero57

Figura 62. Comportamiento diario de la cloración del agua de la PTAP – MILLPO –
febrero57
Figura 63. Comportamiento diario del cloro residual a la salida de la PTAP – MILLPO – febrero58
Figura 64. Comportamiento diario del cloro residual a la salida del reservorio de la PTAP – MILLPO – febrero58
Figura 65. Comportamiento diario del caudal de la PTAP – MILLPO – marzo59
Figura 66. Comportamiento diario de la turbidez de la PTAP – MILLPO – marzo60
Figura 67. Comportamiento diario del pH de la PTAP – MILLPO – marzo60
Figura 68. Comportamiento diario de la cloración del agua de la PTAP – MILLPO – marzo61
Figura 69. Comportamiento diario del cloro residual a la salida de la PTAP – MILLPO – marzo61
Figura 70. Comportamiento diario del cloro residual a la salida del reservorio de la PTAP – MILLPO – marzo62
Figura 71. Diagrama de cajas de la variabilidad del cloro residual libre diario por sector poblacional de Huancavelica – enero62
Figura 72. Diagrama de dispersión de la variabilidad del cloro residual libre diario por cota en Huancavelica – enero63
Figura 73. Diagrama de dispersión de la variabilidad de la turbidez diaria por sector poblacional de Huancavelica – enero64
Figura 74. Diagrama de dispersión de la variabilidad del pH diaria por sector poblacional de Huancavelica – enero64
Figura 75. Diagrama de cajas de la variabilidad del cloro residual libre diario por sector poblacional de Huancavelica – febrero65
Figura 76. Diagrama de dispersión de la variabilidad del cloro residual libre diario por cota en Huancavelica – febrero

Figura 77. Diagrama de dispersión de la variabilidad de la turbidez diaria por sector poblacional de Huancavelica – febrero66
Figura 78. Diagrama de dispersión de la variabilidad del pH diaria por sector poblacional de Huancavelica – febrero67
Figura 79. Diagrama de cajas de la variabilidad del cloro residual libre diario por sector poblacional de Huancavelica – marzo68
Figura 80. Diagrama de dispersión de la variabilidad del cloro residual libre diario por cota en Huancavelica – marzo69
Figura 81. Diagrama de dispersión de la variabilidad de la turbidez diaria por sector poblacional de Huancavelica – marzo69
Figura 82. Diagrama de dispersión de la variabilidad del pH diaria por sector poblacional de Huancavelica – marzo70

RESUMEN

El objetivo de La investigación fue determinar la relación entre la dosis de cloro y cloro residual libre en el sistema de agua potable de la ciudad de Huancavelica -2021, para la determinación de la dosis de cloro se tomó en cuenta el manual de operaciones de planta de tratamiento de agua potable EMAPA Huancavelica en donde se determina la dosificación optima que debe ser aplicada durante el tratamiento del agua además, se evaluó factores que influyen directamente en la dosificación como: caudal, cloración, PH, turbiedad y cloro residual a las salida de la planta. Para la determinación del cloro residual libre se monitoreo en 62 puntos durante los meses de enero, febrero y marzo, además, se evaluaron factores como: altitud, PH y turbiedad, ya que estos podrían explicar el comportamiento de las variables. La investigación se concluyó que no existe una relación significativa entre la dosis de cloro y cloro residual libre, en el sistema de agua potable en la ciudad de Huancavelica -2021. El valor de la significancia obtenido fue de 0,958. Al ser superior a 0,05 se aceptó la H0, las variables fueron sometidos a la prueba de normalidad Shapiro-Wilk y a la prueba de hipótesis de Pearson en donde se concluyó que existiría otros factores que estarían influyendo para el comportamiento de ambas variables.

Palabras claves: Dosis de cloro, Cloro residual libre, sistema de agua potable.

ABSTRAC

The objective of the research was to determine the relationship between the dose of chlorine and free residual chlorine in the drinking water system of the city of Huancavelica -2021, for the determination of the dose of chlorine the plant operations manual was taken into account of drinking water treatment EMAPA Huancavelica where the optimal dosage that should be applied during the water treatment is determined. In addition, factors that directly influence the dosage were evaluated such as: flow, chlorination, PH, turbidity and residual chlorine at the outlet of plant. To determine the free residual chlorine, 62 points were monitored during the months of January, February and March, in addition, factors such as: altitude, PH and turbidity were evaluated, since these could explain the behavior of the variables. The investigation concluded that there is no significant relationship between the dose of chlorine and free residual chlorine in the drinking water system in the city of Huancavelica -2021. The significance value obtained was 0.958. Being higher than 0.05, the H0 was accepted, the variables were subjected to the Shapiro-Wilk normality test and the Pearson hypothesis test, where it was concluded that there would be other factors that would be influencing the behavior of both variables.

Keywords: Chlorine dose, Free residual chlorine, drinking water system.

I. INTRODUCCIÓN:

El agua es un recurso primordial y de los más insuficientes que tienen las personas en el mundo, nuestra nación no es ajena ante este hecho; una gran cantidad de las ciudades del Perú están obligados a consumir agua de mala calidad que podría producirles enfermedades.

La calidad del agua ha generado una gran importancia por lo que sean ideado diferentes maneras de tratarlo, con el propósito de garantizar su potabilidad para consumo humano. Para poder garantizar la calidad del agua potable generalmente el tratamiento debe ser aplicado al final del proceso Reglamento de la calidad del agua para consumo humano (2011).

"La calidad del agua potable podría cumplir con la normativa pertinente en la planta de tratamiento, pero, al transportarse a través de las diferentes redes de distribución, la calidad puede deteriorarse" CLARK (2011), Es por ello que evaluar las características del agua potable durante su distribución es reto para aquellas empresas que se encargan de suministrar agua potable.

La condición del agua de consumo humano es muy preocupante para el gobierno de nuestro país. Según, (OMS, 2006), "la cloración puede cambiar su composición microbiológica dejando así un agua libre de patógenos, Todo esto si los niveles de cloro residual libre sean por lo menos mayores a 0.5 mg/L en un tiempo de contacto mínimo de 30 minutos"

La OMS (2006), establece 0.2 mg/L residual de cloro libre como mínimo para las redes de distribución. Además, establece que el agua para consumo humano está regulada para garantizar la seguridad de todos los consumidores, ya que las enfermedades a causa del agua representan un 80% del total de las enfermedades en los países en vías de desarrollo.

Teniendo en cuenta estos datos que preocupan a la población, las redes de distribución de agua potable son importantes para el bienestar de la población de Huancavelica, es por ello que se debe garantizar la presencia de cloro residual libre para saber la calidad de agua que se consume, ya que existen diversos estudios

sobre el tema donde concluyen que el comportamiento del cloro tiende a disminuir durante su recorrido por las redes de distribución.

Hoy en día existe la necesidad de mejorar el servicio de la EPS EMAPA Huancavelica a causa de: la escasez, las bajas presiones en los puntos más desfavorables. Todo esto ha generado un gran reto en la que se tienen que asumir, por ello es importante obtener diferentes conocimientos acerca del comportamiento del cloro residual libre en los diferentes puntos de la ciudad para garantizar un agua de calidad.

El mayor problema según datos del ministerio de salud el 79% de sistemas de abastecimiento de agua en la región de Huancavelica, no contiene cloro, el 9 % con exceso y déficit de cloro y el 12 % restante es agua para consumo humano. Todo ello estaría afectando la calidad del agua en las redes de distribución de agua potable con una escasa o excesiva concentración de cloro residual libre, MINSA (2017).

Habiendo observado esta situación tenemos como problema general: ¿Cuál es la relación entre la dosis de cloro y cloro residual libre en el sistema de agua potable de la ciudad de Huancavelica -2021?, y como problemas específicos: ¿Cuál es la dosis de cloro, en el sistema de agua potable suministrada por la EPS EMAPA-en la ciudad de Huancavelica -2021?, ¿Cuáles son los niveles de cloro residual libre en las redes de distribución de agua potable, suministrada por la EPS EMAPA-Huancavelica en la ciudad de Huancavelica -2021?, ¿Cuál es el comportamiento espacial y temporal del cloro residual libre en las redes de distribución de agua potable de la ciudad de Huancavelica?

La justificación ambiental, correspondió debido a que en la ciudad de Huancavelica se presenta múltiples problemas como: desabastecimiento, presiones bajas, fugas, efervescencia del agua al momento de consumo y olores poco irritantes hechos que se podrá demostrar con el desarrollo de la investigación.

Asimismo, se tiene como justificación social, ya que se desarrolló en la ciudad y por consiguiente afecta directamente a los pobladores de la ciudad de Huancavelica, además con el desarrollo de la investigación se pretendió mostrar la calidad de agua que vienen consumiendo los pobladores de la ciudad de Huancavelica. Teóricamente, se justificó con la información recolectada y obtenida en la investigación, por lo que permitió aportar conocimientos referidos a los niveles de cloro residual libre presente en las redes de distribución de agua potable suministrada la EPS EMAPA Huancavelica, así mismo será un aporte para otros trabajos relacionados al tema.

De esta manera la EPS EMAPA Huancavelica, logró avanzar en cuanto a la información obtenida en la investigación para actuar frente a los resultados en los puntos monitoreados. Desde el punto de vista económico es un aporte importante para la EPS EMAPA Huancavelica, puesto que ayudará en la toma de decisiones para evitar gastos en mantenimiento de redes y otros aspectos que podrían estar incluidos por lo que se estaría más bien apoyando a las muchas familias a las que se le niega el derecho a este recurso a causa de su condición económica y situación geográfica de sus viviendas debido al incremento de la demanda a este recurso.

Además, respondiendo a las preguntas de investigación, se formuló como objetivo general: determinar la relación entre la dosis de cloro y cloro residual libre en el sistema de agua potable den la ciudad de Huancavelica -2021; como objetivos específicos: determinar la dosis de cloro, en el sistema de agua potable suministrada por la EPS EMAPA en la ciudad de Huancavelica -2021; determinar los niveles de cloro residual libre en las redes de distribución de agua potable, suministrada por la EPS EMAPA-Huancavelica en la ciudad de Huancavelica -2021 y determinar el comportamiento espacial y temporal del cloro residual libre en las redes de distribución de agua potable de la ciudad de Huancavelica-2021.

A lo ya mencionado, se adiciona la **hipótesis general**: existe una relación significativa entre la dosis de cloro y cloro residual libre, en el sistema de agua potable en la ciudad de Huancavelica -2021 . Y como **hipótesis específicas**: la dosis de cloro, en el sistema de agua potable suministrada por la EPS EMAPA-

Huancavelica cumple con el "Reglamento de la Calidad del Agua para Consumo Humano – DS N° 031-2010-SA". en la ciudad de Huancavelica -2021; Los niveles de cloro residual libre en las redes de distribución de agua potable, suministrada por la EPS EMAPA-Huancavelica cumple con el "Reglamento de la Calidad del Agua para Consumo Humano – DS N° 031-2010-SA". en la ciudad de Huancavelica -2021; el comportamiento espacial y temporal del cloro residual libre en las redes de distribución de agua potable se encuentra dentro de los LMP según el "Reglamento de la Calidad del Agua para Consumo Humano – DS N° 031-2010-SA", en la ciudad de Huancavelica.

I. MARCO TEÓRICO.

En el desarrollo de investigación se revisaron diferentes artículos, revistas e investigaciones de pensadores que guardan relación con el presente trabajo. Seguidamente, se exhiben los trabajos previos con similitud:

GARCIA (2019), elaboró un modelo hidráulico para poder determinar la caída de cloro residual luego determinó cuál es la relación del cloro libre en la corrosión en una RDAP usando EPANET. Para poder determinar la corrosión se usaron tuberías de las mismas que usa la EMAPAL. Luego fueron instaladas en agua con concentraciones diferentes de cloro durante 30, 60, 90 y 180 días, la corrosión se determinó por pérdida de peso. Después de terminar la simulación se concluye que el cloro influye en la corrosión de las tuberías hechas de cobre. También gracias a la simulación se pudo determinar las dosis correctas de cloro para mantener las mínimas concentraciones de cloro residual libre en la RDAP.

TINOCO y CASTRO (2019), tuvieron como objetivo describir los niveles de cloro residual libre en la RDAP, se evaluó en cuatro puntos estratégicos dentro de la RDAP, se obtuvieron los valores promedio de cloro residual libre de: 1.1, 1.0, 0.99, 0.90, mg/L partiendo desde el punto de la red interna más cercano a la entrada de alimentación, hasta los puntos más lejanos, respectivamente. Finalmente, que según norma establece que los niveles de CRL deben encontrarse entre 0,3 y 2 mg /L, se concluyó que los valores obtenidos en el presente estudio sí pertenecen a dicho rango.

ROSHANI, ANURUDDHIKA, CHARMALIE, y ABAYASEKERA (2017), el objetivo fue determinar cuan eficaz es la utilización del hipoclorito de calcio y la irradiación ultravioleta (UV) en la eliminación de microbacterias como M. marinum y M. fortuitum. Luego de concluido la investigación sugieren que la utilización de estos dos métodos de desinfección reduciría la propagación de estas microbacterias en un nivel doméstico.

GUANUCHI y ORDÓNEZ (2017), monitorearon el cloro residual en una RDAP en 30 puntos por un periodo de 6 meses durante las épocas de avenida y

estiaje, 20 puntos fueron en las zonas altas de la RDAP. Los resultados de la concentración de cloro residual libre en 27 puntos monitoreados se ubican entre los valores de 0.39 - 1.17 mg/L, los 3 puntos restantes no cumplen con límite permisible según la norma establecida.

ZHENG (2015), tuvo como objetivo determinar el decaimiento del CRL en 3 tipos de materiales: cobre, hierro galvanizado y cloruro de polivinilo (PVC), En donde el decaimiento de CRL en las tuberías de cobre fue más rápido que las tuberías de hierro galvanizado y cloruro de polivinilo (PVC), lo que se concluye que la utilización de tuberías como: hierro galvanizado y cloruro de polivinilo (PVC) tendrían una ventaja para el mantenimiento del CRL.

CAMPOVERDE (2015), tuvo como objetivo analizar datos de cloro libre residual de las RDAP para luego relacionarlos con los efectos que causan en la salud, se tomó el informe de la dirección provincial de salud de Azuay, los datos demuestran la ausencia de cloro libre residual, el 90 % de las muestras de agua no contiene cloro libre residual, luego de analizar estos datos convierten al agua en un potencial riesgo toxicológico, también se recolectó datos de su informe de Enfermedades Inmune Prevenibles, para relacionar, analizar y evaluar las enfermedades que se dan por el consumo de agua tratada no apta para consumo humano.

CEPEDA (2015), se evaluó el decaimiento del cloro residual en la RDAP. Se monitorearon 20 puntos por un periodo de 18 días seguidos. Los resultados obtenidos fueron de 0.7 mg/L de cloro libre residual al ingreso de ciudad, 0.3 mg/L de cloro libre residual en el trayecto y valores mucho más menores a este último en las últimas viviendas, por lo que no se estaría cumpliendo según la "Norma Ecuatoriana INEN1108 el rango admisible en el parámetro de cloro residual es 0.3-1.5 mg/L".

AZIZ, MANDI, BOUSSAID, BORAAM, y OUAZZANI (2013), el objetivo fue evaluar la calidad del agua en seis embalses tradicionales (R1 a R6). Para determinar dicha evaluación del agua de los embalses se aplicó los métodos de

cloración y desinfección solar este último se realizó en botellas. Los resultados obtenidos nos demuestran que después de la cloración y en un tiempo de 1 hora se pudo eliminar todos los gérmenes estudiados, mientras que con la desinfección solar que se realizó por un tiempo de 3 horas, se eliminó casi todas las bacterias excepto a la (Clostridia).

RODRÍGUEZ (2012), el objetivo fue determinar la calidad del agua potable, se realizaron análisis de las concentraciones de cloro residual, Fe, Cu y Mn durante la temporada de lluvias y secas, con la finalidad de conocer la variabilidad temporal de dichos elementos en la red de distribución. Se tomaron un total de 17 muestras directamente de tomas domiciliarias; se trabajó en zonas se presenta mayores deficiencias en el suministro de agua. La mayor variación de cloro se registró durante la temporada de secas, y aunque entre temporadas las variaciones no fueron significativas, en sitios puntuales se observó que los niveles de cloro rebasaron los límites permisibles (0.2-1.00 mg/l) "Norma Oficial Mexicana NOM-127-SSA-1-1994".

CHAUCA y OROSCO (2012), diseñó un sistema automático con sensores amperométricos que indica la cantidad de desinfectante necesario para asegurar permanentemente la potabilidad del agua. Se monitoreo el cloro residual por un tiempo de 2 meses. Los resultados indican que la automatización es una alternativa confiable si se trata para procesos de cloración donde nos ayudaría a comprender el comportamiento de la demanda del cloro residual en una red de distribución, además se podría tener una independencia del operador durante la dosificación.

JARAMILLO (2011), el estudio tuvo como objetivo estudiar diferentes tipos de desinfectantes y sus aplicaciones, durante el estudio se encontraron tecnologías nuevas en donde reducen la inversión en labores y mantenimiento durante la desinfección del agua, luego se procedió a realizar un estudio comparativo. Mediante esta investigación se concluye que: PTAP grandes el uso será de dióxido de cloro, hipoclorito de calcio y cloro gas y, PTAP medianas el uso será de cloro gas, hipoclorito de calcio y PTAP pequeñas el uso será de hipoclorito de calcio.

AGUIAR (2010), evaluó la concentración de cloro residual en la RDAP, el monitoreo de cloro residual se realizó en 12 sectores abastecidos por la PTAP "La Mora". los datos obtenidos después de la evaluación del cloro residual en la RDAP se encuentran entre 0.5 a 0.9 mg/L, valores que se encuentran dentro. según la "Norma Bolivariana de Venezuela" 0.3 a 1.0 mg/L. Por lo que se concluye la dosis que aplica la PTAP "La Mora" es la adecuada.

SALDARRIAGA et al. (2014), el objetivo de la investigación fue desarrollar una metodología para escoger puntos de monitoreo de calidad de agua en las RDAP, para garantizar la calidad del agua medidas por un residual de cloro, se usó el software TEVA-SPOT para detectar problemas de coloración del agua ya que el agua que llega a cada usuario tiene un color diferente a causa del desprendimiento de biopelículas este software también tiene múltiples objetivos. Esta metodología se aplicó en 37 sectores hidráulicos en el que se divide las RDAP con una población de 8 millones de habitantes. Los resultados indican que el uso de esta metodología es confiable y que el uso de los sensores depende del objetivo que se busca.

SORIA (2018), el objetivo fue determinar si el uso de cisternas afectaría los niveles de CLR., el estudio se realizó en 5 sectores donde se tomaron muestras de agua que llegan a la cisterna y del agua que llega a las viviendas, luego se comparó según la "Norma Técnica Ecuatoriana INEN 1108". Los resultados indican que en, los sectores de Las Acacias, La Saiba, La Primavera y La Atarazana se encontraron niveles de CLR por debajo de la Norma, solo en el sector los Jardines se obtuvo resultados que se encuentran dentro de la NTE INEN 1108. Después del estudio se concluye que las cisternas y su mantenimiento afecta, los niveles de CLR.

BONIFAZ (2018), El objetivo fue evaluar la relación de la variación de la tasa de corrosión en el interior de las tuberías de cobre entre la concentración de cloro residual en el agua potable. Se aplicó distintas cantidades de dosis de cloro a cupones de cobre, luego se determinó la corrosión de la tubería por pérdida de peso, luego se concluyó que a mayor de cloro en el agua la tasa de corrosión será mayor.

SILVA, NASCIMIENTO, SANZ, y SÉRGIO (2016), la investigación tuvo como objetivo evaluar dos métodos para medir el CLR, el dispositivo visual y digital con DPD en polvo y tableta donde se recopilaron 40 muestras. Los resultados indican que los valores del DPD en polvo son más altos que el de las tabletas y que los datos encontrados en el dispositivo digital fueron menores que el dispositivo visual.

PERALES (2020), la investigación consistió en determinar la dosis óptima de cloro en relación con cloro residual en el tratamiento de agua para consumo humano libre de agentes patógenos, se realizaron dos ensayos de demanda de cloro, con una serie de dosis crecientes luego del tiempo de contacto se midió el cloro residual y se comparó con el "Reglamento de Calidad de Agua para Consumo Humano D.S. N° 031-2010-SA", Los resultados indica una dosis óptima en el primer ensayo de 2.7 mg/L de cloro con una demanda de 1.55mg/L, en el segundo ensayo se determinó una dosis de 3.0 mg/L de cloro para una demanda de 1.78mg/L.

CASTRO (2002), en el desarrollo de su investigación tuvo como objetivo obtener un modelo matemático donde presente la conducta de las variables en el proceso de dosificación, durante la elaboración del modelo matemático utilizo variables como: PH, cloro residual libre, tiempo de contacto, dosis de cloro en la planta, caudal y entre otros Durante las pruebas en laboratorio realizo 2 ensayos de demanda de cloro obteniendo como resultado en ambos ensayos una dosis de aplicación de 2mg/l con un PH de 7.2, por lo que estaría asegurando la desinfección del agua.

SOTOMAYOR (2010), la finalidad de la investigación fue evaluar las variables que influyen en el proceso de cloración, luego de la investigación concluyo que existiría una relación estadísticamente significativa entre el cloro libre residual y estos dos parámetros físico-químicos el potencial de hidrógeno y la turbiedad. Donde la correspondencia es efectiva para pH inferiores a 6.5, y para 5 NTU de turbidez, una turbidez elevada impediría el buen contacto entre cloro y microorganismos con lo que se reduciría la efectividad del cloro.

CASTILLA y CORCUERA (2020, el objetivo de la investigación fue evaluar el nivel de turbiedad y cloro residual en las RDAP, se recolecto datos de las concentraciones de turbiedad y cloro residual, luego se promedió los datos mensualmente por cada parámetro para luego compararlos de acuerdo al D.S. N°031-2010-SA. Los resultados de los promedios obtenidos indican niveles de turbiedad de 3.48 NTU y 2.98 NTU, donde podemos mencionar que se cumple según la Norma establecida, sin embargo, las concentraciones de cloro residual no cumplieron con los LMP, según la normativa, ya que establece 0.5 a 1.0 mg/L, por lo que se hace un llamado a la municipalidad mejorar el sistema de cloración para garantizar un agua de calidad.

REYES y NICASIO (2016), el fin de la investigación fue evaluar la cantidad de CRL en el agua de 8 bebederos, abastecidos por acuíferos con 137 pozos brindando agua gratuita a la ciudad. Luego del análisis se determinó que el agua proporcionada en 5 de los bebederos se encuentra dentro del rango según la Norma establecida, sin embargo, las muestras de los otros 3 bebederos se determinaron que después de reposar por un periodo de 2 minutos entran en el rango según la Norma establecida.

MURILLO (2015), la investigación tuvo como finalidad principal, evaluar el cloro residual y la turbidez a través de un control estadístico del agua de la PTAP de la EPS SEDANJULIACA S.A. la metódica que se aplicó durante la investigación fue las cartas de control de Shewhart para variables cuantitativas. Los resultados obtenidos en el proceso son capaces de cumplir con las normas del MINSA, "Reglamento de la Calidad del Agua para Consumo Humano – DS N° 031-2010-SA". Datos que son 0,5 a 5 mg/l para cloro residual y 0 a 5 UNT para turbiedad.

DIAZ (2002), la investigación tuvo como objetivo mostrar un análisis técnico respecto a las concentraciones de cloro residual en el agua, con el almacenamiento en tanques en los domicilios en relación con la concentración de cloro residual en las RDAP, además de que cuales serían los factores que afecten la calidad del agua. durante la investigación se evaluó los niveles de CRL en las RDAP, teniendo como resultados valores aceptables que se encuentran dentro de los rangos establecidos, afirmando que la calidad de agua es muy alta, luego del análisis técnico se determinó que el factor importante en el decaimiento del CRL es el

tiempo de retención hidráulico, ya que el estancamiento del agua ocasionaría la perdida de cloro por medio de la volatilización.

SOSSAI (2019), el trabajo de investigación ciño como objetivo realizar una evaluación de los niveles de CRL en las RDAP, el análisis se realizó en diferentes lugares de la red de distribución de agua. Se obtuvo resultados donde indican que la calidad del agua se encuentra dentro de los LMP recomendados ya que el 100% de las muestras evaluadas cumplen con los límites máximos y mínimos establecidos para cloro residual.

ALVA y DIAZ (2019), la investigación ciño como objetivo determinar la calidad de agua potable, para la recolección de las muestras se analizaron en los grifos para incendios y en las redes domiciliarias de los usuarios. El lugar de evaluación estuvo dividido en tres lugares, Zona A, Zona 1B y Zona 1C. El monitoreo se realizó durante los meses de marzo y abril. Los parámetros que se evaluaron son: coliformes termotolerantes, coliformes totales, temperatura color, solidos totales disueltos, pH, turbidez, conductividad, hierro, manganeso, aluminio y cloro residual. El resultado de los análisis indicó que las muestras tomadas se encuentran dentro de los límites máximos permisibles según el "Decreto Supremo N° 031-2010-SA, por lo que se consideran aptas para el consumo humano".

GALLO (2015), el objetivo de la investigación fue evaluar la calidad de agua que consume el asentamiento minero Suyamarca de acuerdo al "Reglamento de la Calidad del Agua para Consumo Humano D.S. N° 031-2010-SA". Las muestras fueron tomadas en 4 puntos importantes utilizando métodos y técnicas sugeridas por instituciones como: "Dirección General de Asuntos Ambientales Mineros (DGAAM) y Ministerio del Ambiente (MINAM)". Los resultados obtenidos de la investigación indican que el agua que se consume en el asentamiento minero es aceptable según la norma establecida.

FERRO, FERRÓ, y FERRÓ (2019), el objetivo fue evaluar la causa de las EDAs y la correspondencia entre la temperatura y cloro residual del agua potable. Los resultados indican que el cloro residual presente en las redes de distribución de agua se encuentra por encima de 0.5 mg/l. por lo que se indica que la causa de las variaciones históricas de las EDAs es producida a causa de la temperatura. Se

concluyó que, las EDAs no son ocasionadas por el agua distribuida por la EPS, por lo que existe otros factores que ocasionarían este problema endémico.

PÉREZ y ROMERO (2017), tuvieron como objetivo evaluar los niveles de Cloro Residual y trihalometanos (THM'S), además de medir la influencia en la salud. Se evaluó el cloro residual en 3 sectores de la ciudad por un periodo de 8 meses, obteniendo los siguientes resultados, Rumiyacu promedio de valores entre 0,74 mg/l- 0,78 mg/l, Juninguillo 0,80 mg/l- 0,85 mg/l, Almendra 0,82 mg/L-0,85 mg/L. luego se realizó una comparación de los datos adquiridos se concluye que existe una mayor exposición al cloro residual en el sector de Almendra. Respecto a los niveles de concentración de trihalometanos se determinó que en los 3 sectores evaluados de la ciudad no se excede el LMP, en tanto se concluye que existe una baja toxicidad y una mínima influencia en la salud de los pobladores.

PÉREZ y RAMOS (2018), tuvieron como objetivo determinar la dosis de cloro que se encuentra en el reservorio además de evaluar los niveles de cloro residual libre presente en las redes domiciliarias. Los datos que se obtuvieron después de la evaluación indican que la dosis empleada por parte de la junta que suministra no es la adecuada para cubrir la demanda de los usuarios, ya que se encontraron valores entre 0.4 mg/L - 0.5 mg/L en el reservorio, en cuanto las redes los valores encontrados son entre 0 mg/L - 0.39 mg/L, por lo tanto, se concluyeron que no se estaría cumpliendo con el "Reglamento de la Calidad del Agua para Consumo Humano D.S. N° 031-2010-SA".

Luego de revisar los antecedentes a continuación se presenta los siguientes conceptos como: El agua potable, "es aquel que cumple con las características físicas, químicas y microbiológicas, de manera que no generen ningún riesgo para la salud, donde debe de ser transparente, sin color ni sabor, y no debe tener sólidos suspendidos" (Rivera, 2018).

Así mismo el agua de consumo de agua potable (inocuo), no ocasiona ningún riesgo de manera significativa en la salud durante el consumo de toda una vida, cabe resaltar que existe diferentes causas que podrían presentar las personas

durante las etapas de su vida. El uso del agua potable está presente de manera general en actividades domésticos frecuentes, incluyendo la higiene personal.

Además, el estado peruano establece según el "Reglamento de la calidad del agua para consumo humano (D.S. N° 031-2010-SA)", el agua potable no deberá contener valores < de 0.5 mg/L de cloro residual libre en el noventa por ciento (90 %) del total de muestras tomadas durante un mes y el diez por ciento (10 %) restante ninguna debe contener valores < de 0.3 mg/L, la turbiedad deberá ser menor a 5 UNT y el valor del PH deberá encontrarse entre 6.5-8.5.

Por otra parte, (CARE INTERNACIONAL, 2014), indica que el sistema de abastecimiento de agua potable está conformado por instalaciones y equipos que se utilizan con el fin de brindar agua de manera continua, en cantidad, calidad y la presión necesaria. Estos sistemas de abastecimiento son: Fuente de agua lugar donde se captará ciertos caudales para la demanda de los usuarios donde deberá de mantener su continuidad, Captación, infraestructura que se utiliza para recolectar agua, donde puede ser un manantial, pozo, río o lago esto dependerá de la zona, Conducción viene hacer la red de tuberías que se encargara de conducir el agua cruda hasta la planta de tratamiento. Planta de tratamiento se entiende a todo el grupo de estructuras que se utilizan en los diferentes procesos de tratamiento del agua para obtener agua apta para el consumo humano, Tanque de almacenamiento es una estructura hidráulica que deberá ser cerrada de diferentes formas que cumple la función de compensar las variaciones de consumo y presiones en la red, Red de distribución, son todas las conexiones de tuberías y estructuras por donde se transporta el agua hasta los domicilios de los usuarios en todo el tiempo con la calidad requerida.

Por otra parte, "La desinfección del agua es aquel en el cual se aplica de forma instantánea sustancias químicas y alguna utilización de medios físicos al agua y descartar los agentes patógenos, capaces de producir una enfermedad o infección en el hombre" (Vargas, 1996). También, "Es la acción que se realiza para la toma de medidas de protección y evitar riesgos de contaminación del recurso hídrico, y así garantizar la permanencia de dicho elemento cumpliendo su potabilidad en toda la red de distribución" (Bonnefoy, 2004).

Por otro lado, existen múltiples variables que influyen en el proceso de cloración como: el pH y la turbiedad. Donde la correlación de estos parámetros físico-químicos se vería influenciada en el proceso de cloración reduciendo la efectividad del cloro (Sotomayor, 2010). Otra de las investigaciones sostiene que la acción de los diferentes desinfectantes usados se podría ver influenciado por el PH del agua, ya que cada desinfectante tiene un rango de efectividad según el valor del PH del agua, en cuanto más alcalina sea el agua se necesitará una mayor dosis del desinfectante (Arvoleda, 1992).

La variación de inactivación de virus y protozoarios con relación al pH y la temperatura (Tabla 1). Se podrá notar que para el pH de 7,0 - 7,5 y a las temperaturas mayores existe una mayor inactivación de estos.

Tabla 1. Valores de PH versus Temperatura en la destrucción de virus y protozoarios.

PH	VIRUS		PROTOZOARIOS		
	0-5°C	10°C	5°C	15°C	25°C
6,0	-	-	80	25	15
7,0	-	-	100	-	35
7,0-7,5	12	8	-	-	-
7,5-8,0	20	15	-	-	-
8,0	-	-	150	50	15
8,0-8,5	30	20	-	-	-
8,5-9,0	35	22	-	-	-

Fuente: Vargas. 1996; CEPIS/OPS

Por otra parte, las Variables controlables en la desinfección son: La dosis de concentración del desinfectante, El grado de movimiento entre el agua y el desinfectante. El tiempo de exposición del desinfectante y los microorganismos (Azevedo, 1984).

Por otro lado, "el cloro es el desinfectante de mayor efectividad para la destrucción de las bacterias, protozoarios y virus así también porque deja un efecto residual después de la desinfección que puede y debe durar hasta las conexiones de cada domicilio" (Álvarez, 2009).

Para determinar la dosis de cloro se deberá tener en cuenta las características físico-químicas del agua a tratar, por lo que se recomienda usar equipos adecuados y un personal que conozca al respecto la (Figura 1), nos muestra la equivalencia de la dosis de cloro.

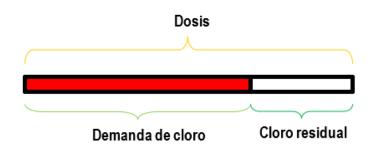


Figura 1. Equivalencia de la dosis de cloro.

Según el "Reglamento de Calidad de Agua para Consumo Humano D.S. N° 031-2010-SA" establece que la concentración de cloro residual libre no debe ser menos de 0,50 mg/L. en cuanto al utilizar la equivalencia de dosis de cloro se tendrá que: Dosis cloro (mg/l) = Demanda de cloro (mg/l) + 0,50 mg/l.

Por otro lado, se menciona las características del cloro (Tabla 2). Donde Siendo el cloro gas (Cl2) el desinfectante usado por la EPS EMAPA-Huancavelica.

Tabla 2. Características de derivados de cloro.

NOMBRE Y	NOMBRE	CARACTERÍSTI	% CLORO	ESTABILIDAD	SEGURIDAD	ENVASE
FORMULA	COMERCIAL O	CAS	ACTIVO	EN EL TIEMPO		USUAL
Cloro gas Cl2	Cloro licuado	Gas licuado a	99.5%	Muy buena.	Gas altamente	Cilindros de 40 a
	Cloro gaseoso	presión			tóxico	70 kg.
						Recipientes de 1
						a 5 toneladas

Fuente: Chistman (2007) - CEPIS.

También manifiesta que el caudal de agua podría condicionar la cuantía de cloro a dosificar, recomienda utilizar el tipo de equipo que se acomode mejor a la necesidad. Ya que existe una amplia diferencia al utilizar un equipo de inyección de gas cloro en la desinfección contra un tanque dosificador de hipoclorito de sodio

con un caudal 1 L/s (Chistman, 2007), tal como se observa en la Tabla 3. Además, en la Tabla 4, se muestran algunos materiales resistentes al cloro.

Tabla 3. Clasificación de equipos más usados en la dosificación.

Clasificación	Equipo dosificador	Producto	Rango de servicio (habitantes)
Cloro gaseoso	A presión (directo)	Gas Cloro	5.000 habitantes a grandes
	Al vacío (Venturi o eyector)	Gas Cloro	ciudades
	Bajo presión atmosférica, d	e carga constante	
	Tanque con válvula de	Hipoclorito de Na o Ca	< 20.000
	flotador		
	Tubo con orificio en flotador	Hipoclorito de Na o Ca	
	Sistema vaso /botella		
		Hipoclorito de Na o Ca	
Solución	Bajo presión positiva o negativa		
	Bomba de	Hipoclorito de Na o Ca	[2.000 - 300.000]
	diafragma(positiva)		
	Dosificador por	Hipoclorito de Na o Ca	
	succión(negativa)		
	Generador de hipoclorito de	< 5.000 hab.	
Sólido	Dosificador de erosión	Hipoclorito de Calcio Cal	[2.000 - 50.000] < 2.000
	Otros dosificadores	clorada	

Fuente: Rojas y Guevarra (1999).

Tabla 4. Resistencia de algunos de los materiales comunes al cloro.

Resistencia de algunos materiales a las diferentes formas de cloro					
	Acero	Acero	Cobre	PVC	Teflón
	macizo	inoxidable			(PTFE)
Cloro	Buena hasta				
gaseoso	120°C	150°C	200°C	40°C	200°C
seco					
Cloro	Nula	Nula	Nula	Buena hasta	Buena hasta
gaseoso				40°C	200°C
húmedo					
Cloro líquido	Buena	Buena	Buena	Nula	Aceptable

Fuente: OPS. La desinfección del agua. 1999.

Por otro lado, está el Cloro residual libre, "es inestable en solución acuosa, siendo el cloro elemental que no es combinado con nitrógeno, tiene buenas

propiedades de germicida (35 veces mejor que el cloro combinado), pero no permanecen en solución por mucho tiempo" (Alcocer & Tzatchkov, 2007).

"El cloro libre en forma de ácido hipocloroso contiene mayor capacidad bactericida que el ácido hipoclorito, dependiendo la temperatura y del pH del agua" (OMS, 1998). Es por ello que, para determinar la concentración de cloro libre, es recomendable hacerlas de manera inmediata y no guardarlas para su evaluación.

Y por último está el método colorimétrico con DPD, Actualmente es el método más aceptable, "basado en la intensidad de color de una solución obtenida por la reacción de cloro libre con el reactivo DPD, formando un compuesto de color rosado violeta, cuya intensidad estará en función a la concentración de cloro" (Arboleda, 2000).

II. METODOLOGÍA

2.1 . Tipo y diseño de investigación

El presente estudio de investigación empleo un enfoque cuantitativo, con un tipo de estudio de investigación aplicada puesto que, gracias a la determinación de la dosis del cloro y cloro residual libre en las redes de distribución de agua potable, abastecida por la EPS EMAPA-Huancavelica, se evaluará si cumple con el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA". Según (Bernal, 2006), mencionan que el enfoque de investigación cuantitativo consiste en la acción de medir y valorar magnitudes de la investigación, así como también recolectar datos y realizar un análisis de estos. Barroso (2018).

El diseño de investigación para obtener la relación de dosis de cloro con el cloro residual libre en el sistema de agua potable en la ciudad de Huancavelica - 2021, tiene un diseño no experimental- transversal descriptivo, ya que la investigación consistió en observar el fenómeno como tal sin manipular las variables estudiadas para luego ser evaluados y caracterizados en un momento dado y tiempo único. (Hernández, Fernández, & Baptista, 1997).

El proyecto de estudio de investigación es de nivel correlacional, ya que evaluará el nivel de dos o más variables, a través de diferentes pruebas de hipótesis correlaciónales con la aplicación de técnicas estadísticas. (Hernández, Fernández, y Baptista, 1997)

2.2. Variables y operacionalización

Las variables de investigación se muestran en la Tabla 5 y en el anexo 3 se presenta la operacionalización de dichas variables.

Tabla 5. Variables de Investigación

Variables de Investigación			
Dosis De Cloro	Independiente		
Cloro Residual Libre	Dependiente		

2.3 . Población, muestra y muestreo

La población de estudio fueron los 9 sectores que se encuentran suministradas por las redes de distribución de agua potable de la PTAP Ichu y la PTAP Millpo de la ciudad de Huancavelica, (San Cristóbal, Puyhuán, Santa Ana, Santa Inés Pata, Cercado, Santa Barbara, Yananaco, Ascensión y Pucarumi).

La muestra tomada para este proyecto fue de un total de 66 puntos, 62 puntos en los 9 sectores y 2 por cada PTAP Ichu y Millpo. 1 a la salida de planta, 1 a la salida del reservorio de la PTAP Millpo y 1 a la salida de planta, 1 a la salida del reservorio de la PTAP Ichu).

En el estudio de investigación se empleó la técnica de muestreo no probabilístico puesto que se escogió las muestras en base a un conocimiento y juicio del investigador.

Para la consideración de los puntos a monitorear se tomó los criterios establecidos por el Ministerio de Salud, en donde menciona que los puntos a evaluar se deben realizar en: salida de la planta de tratamiento, reservorio, primera vivienda de la red de distribución, áreas intermedias, sectores con riesgo ante posible contaminación del agua. zonas de bajas presiones, zonas con problemas frecuentes de fallas de servicio ya sea a causa de roturas de tuberías, antigüedad de estas y en la última vivienda de red de distribución.

La distribución en sectores para la ubicación de puntos de muestreo de cloro residual libre se debe a que existe una matriz principal que abastece a cada sector en la ciudad de Huancavelica. Además autores como: (Soria, 2018), (Aguiar, 2010),

(Saldarriaga, y otros, 2014), (Alva & Diaz, 2019) y (Monteza & Mejia, 2017), realizan esta distribución para la toma de muestras.

3.4. Técnicas e instrumentos de recolección de datos

La técnica aplicada en el estudio de investigación fue la observación, puesto que nos ayudó a recolectar y organizar información acerca de los diferentes parámetros estudiados en los 9 sectores de la ciudad de Huancavelica.

En la toma de muestra para su próxima evaluación se aplicó la técnica de muestreo puntual, puesto que se dio en un tiempo determinado.

Se empleo como instrumento dos fichas de recolección de datos (Tabla 6), que se muestra en el anexo 4, y se mencionan a continuación:

Tabla 6. Fichas de recolección de datos:

Ficha 1	Fichas de campo para monitoreo de dosis de cloro			
Ficha 2	Fichas de campo para el monitoreo de cloro residual libre en las conexiones intradomiciliarias y ubicación de puntos de monitoreo.			

La validez del instrumento de investigación de las fichas de campo nos ayudó a corroborar la correlación entre los indicadores y las dimensiones y a la vez a que estos tengan una relación con las variables de estudio. La opinión de los juicios de expertos nos confirmó que los instrumentos son válidos.

La confiabilidad del estudio de investigación es importante puesto que gracias a ella la recolección de datos a evaluar tendrán una base científica para luego ser comparado con las hipótesis del estudio de la investigación.

La confiabilidad del instrumento fue validada y tuvo una aprobación por tres especialistas (Tabla 7), los especialistas son ingenieros colegiados que conocen del tema. La confiabilidad queda demostrada con las fichas de campo para la recolección de los datos y así tener un sustento a la investigación.

Tabla 7. Validación de instrumentos:

Especialista	Profesión	Numero de	% de
		colegiatura	validación
Dr. Ordoñez Galvez, Juan Julio	Ing. Mecánica de fluidos	89972	90%
Dr. Acosta Suasnabar, Eusterio Horacio	Ing. Químico	25450	85%
Mg. Ing. Silvestre Soto, Nelson	Ing. Ambiental sanitario	249113	90%
Promedio total de validación			

3.5. Procedimientos

El procedimiento para determinar la relación entre la dosis de cloro y cloro residual libre (Figura 2), se observa en el siguiente diagrama.

ETAPA I

Ubicación y delimitación del área de estudios.

ETAPA II

Evaluación de dosis de cloro a la salida de la planta.

ETAPA III

Evaluación de cloro residual libre en las RDAP.

Figura 2. Diagrama para determinar la relación entre la dosis de cloro y cloro residual libre.

Etapa I: Ubicación y localización del área de estudios.

El estudio de investigación se desarrolló en la ciudad de Huancavelica, para el estudio se ubicó y dividió en 9 sectores a la ciudad (Figura 3), donde actualmente estos sectores son abastecidos por la PTAP Ichu y la PTAP Millpo, también se identificó las redes de distribución el cual abastece a los sectores mencionados (Figura 4), además se identificó los 66 puntos (Figura 5 y Anexo 2) de monitoreo donde fueron evaluados durante los meses de enero, febrero y marzo del presente año, también se evaluó otros cuatro puntos 1 a la salida de la planta de tratamiento, 1 a la salida del reservorio de la PTAP Millpo y 1 a la salida de la planta de tratamiento, 1 a la salida del reservorio de la PTAP Ichu)

Los puntos de monitoreo fueron georreferenciados con un GPS Garmin con coordenadas cartográficas PSAD 56, con un error de precisión de +-3 metros, luego se descargó la información registrada en campo con el GPS, se utilizó el software Excel 2016, y AutoCAD 2020 para la elaboración de los mapas, donde fueron evaluados durante los meses de enero, febrero y marzo del presente año, también se evaluó otros cuatro puntos (uno a la salida de la planta de tratamiento y otro a la salida del reservorio de la PTAP Millpo y Ichu).

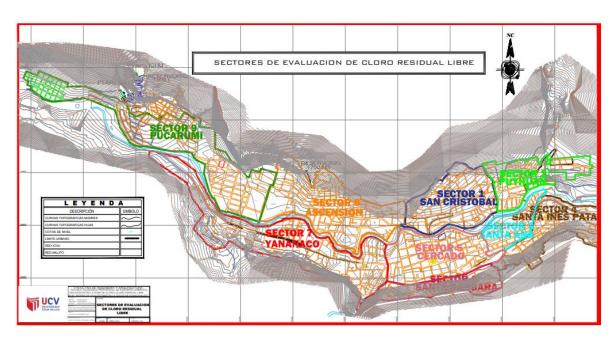


Figura 3. Sectores de evaluación de cloro residual libre

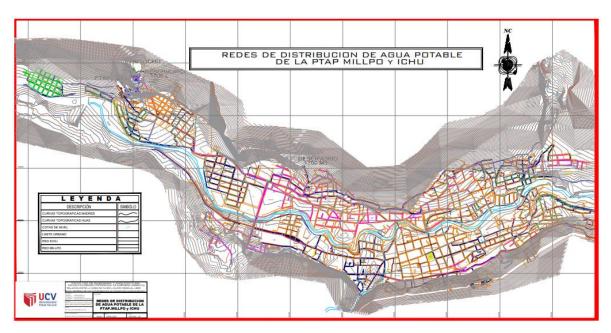


Figura 4. Redes de distribución de agua potable de la PTAP

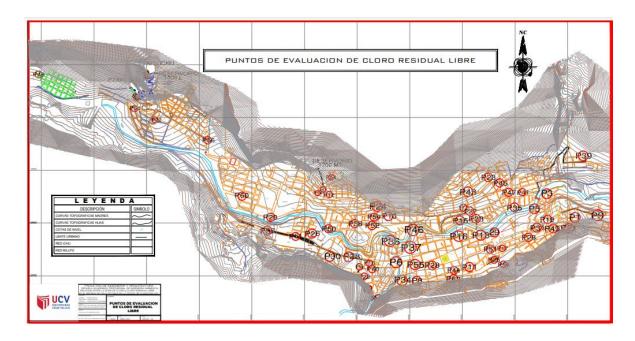


Figura 5. Puntos de evaluación de cloro residual libre.

Etapa II. Evaluación de dosis de cloro a la salida de la planta.

La dosis de cloro que debe ser aplicada en el proceso de desinfección debe ser de 2.00 mg/l, en donde el cloro residual libre a la salida de la cámara de contacto debe ser de 1.5 mg/l de cloro residual con el que el punto más alejado de la red

mantiene no menos de 0.5 ppm, las Tablas (8 y 9), nos muestran la dosis de cloro para la planta Millpo y Ichu respectivamente.

Tabla 8. Cloración planta Millpo.

CLORACIÓN PLANTA DE 100 L/S						
VERTEDERO	LB/24HRS				VERTEDERO	
cm	M3/24h	1PPM	1.5PPM	2PPM	3РРМ	L/S
10	2618	5.8	8.7	11.6	17.4	30.3
11	3015	6.6	9.9	13.2	19.8	34.9
12	3421	7.5	11.2	15.0	22.5	39.6
13	3053	8.5	12.7	17.0	25.5	44.6
14	4285	9.4	14.1	18.8	28.2	49.6
15	4752	10.4	15.6	20.8	31.2	55
16	5219	11.5	17.2	23.0	34.5	60.4
17	5711	12.6	18.9	25.2	37.8	66.1
18	6212	13.7	20.5	27.4	41.1	71.9
19	6722	14.8	22.2	29.6	44.4	77.8
20	7240	15.9	23.8	31.8	47.7	83.8
21	7793	17.1	25.6	34.2	51.3	90.2
22	8346	18.4	27.6	36.8	55.2	96.6
23	8916	19.6	29.4	39.2	58.8	103.2
24	9665	20.9	31.3	41.8	62.7	109.9

Fuente: EMAPA - Huancavelica (2017)

Tabla 9. Cloración planta Ichu.

CLORACIÓN PLANTA DE 50 L/S						
VERTEDERO	LB/24HRS				VERTEDERO	
cm	M3/24h	1PPM	1.5PPM	2PPM	3PPM	L/S
5	959	2.1	3.2	4.2	6.3	30.3
6	1244	2.7	4.1	5.4	8.1	34.9
7	1564	3.4	5.1	6.8	10.2	39.6

8	1892	4.2	6.3	8.4	12.6	44.6
9	2255	5.0	7.5	10.0	15	49.6
10	2618	5.8	8.7	11.6	17.4	55
11	3015	6.6	9.9	13.2	19.8	60.4
12	3421	7.5	11.2	15.0	22.5	66.1
13	3853	8.5	12.7	17	25.5	71.9
14	4285	9.4	14.1	18.8	28.2	77.8
15	4752	10.4	15.6	20.8	31.5	83.8
16	5219	11.5	17.2	23.0	34.5	90.2

Fuente: EMAPA – Huancavelica (2017)

Para la evaluación de la dosis de cloro se tuvo en cuenta algunos indicadores que tienen influencia en la dosificación que a continuación mencionaremos:

a) Determinación del caudal de producción.

Para determinar el caudal de producción se hizo la lectura del equipo digital Hach SC200, el cual nos indica el caudal de manera precisa en un tiempo real, luego se pasó a registrar la lectura, el caudal de producción de la PTAP Millpo tiene una capacidad de 100 l/s y el caudal de producción de la PTAP Ichu tiene una capacidad de 50 l/s (Figura 6).

Figura 6. Lectura de caudal de producción PTAP Ichu.

b) Evaluación de la turbiedad.

La turbiedad fue considerada como un indicador en el proceso de cloración puesto que este podría influenciar en el proceso de cloración, además existiría una relación significativa, donde la correlación es positiva para valores de 5 NTU de turbidez, una turbidez elevada impediría el buen contacto entre cloro y microorganismos con lo que se reduciría la efectividad del cloro (Sotomayor, 2010). Además, Según el "Reglamento de Calidad de Agua para Consumo Humano D.S. N° 031-2010-SA", establece como LMP 5NTU. Para medir la turbiedad se estableció un punto de monitoreo C1 con coordenadas UTM, y=8587917.0900; x=499986.8400 a una altitud de 3728.00 msnm a la salida de la planta Millpo y un punto de monitoreo C2 con coordenadas UTM, y=8588149.4000; x=500079.6000 a una altitud de 3796.00 msnm a la salida de la planta Ichu, tal como se aprecia en la Figura 7.

Figura 7. Punto georreferencial C1 Millpo y C2 Ichu, para medición de turbidez.

Para medir la turbidez se utilizó el equipo digital portátil de marca HACH 2100Q el cual ofrece resultados confiables en todo momento en tiempo real, para la medición fue necesario desarrollar un proceso continuo que se puede evidencia en las Figuras 8 a la 11:

Figura 8. Encendido y calibración del equipo.

Figura 9. Recolección de muestra.

10. limpieza de celdas para una buena lectura.

Figura 11. Lectura y registro de turbidez a la salida de la planta.

c) Evaluación del PH.

El potencial de hidrogeno (PH) fue considerada como un indicador en el proceso de cloración puesto que este podría influenciar en el proceso de cloración, además existiría una relación significativa, donde la correlación es positiva para valores de 6.5 de PH, además el "Reglamento de Calidad de Agua para Consumo Humano D.S. N° 031-2010-SA" establece los LMP de 6.5 - 8.5 de PH. Para medir el PH se estableció en el mismo de la turbidez, punto de monitoreo A1 a la salida de la planta Millpo y un punto de monitoreo A2 a la salida de la planta Ichu.

Para determinar el potencial de hidrogeno (pH), se utilizó el multiparámetro digital portátil HQ40d Hach el multiparámetro se encuentra

calibrado, luego se realizó una serie de proceso continuo como se detalla en las evidencias representadas en las Figuras 12 hasta la 15.

Figura 12. Encendido del multiparámetro para medir PH a la salida de la planta.

Figura 13. Enjuague del electrodo para eliminar el agua del electrodo.

Figura 14. Introducción del electrodo en la muestra a medir.

Figura 15. Lectura y registro del PH a la salida de la planta.

d) Cloración del agua.

La planta de Millpo y Ichu, cuenta con un depósito para el almacenamiento de botellas de cloro una sala de cloradores y un tanque de contacto, el punto de aplicación se encuentra al inicio de la cámara de contacto donde se encuentra un difusor de la solución clorada, la cámara de contacto tiene una retención de 20 min para el caudal de 100 l/s y 50 l/s.

La sala de cloradores trabaja con una botella de 150 libras de cloro líquido, una balanza y dos dosificadores de cloro marca ECOMETRICS para la planta Millpo y marca HIDRO para la planta Ichu, una bomba de agua y un inyector, como se muestra en la Figura 16 y 17.

Figura 16. Caseta y equipos de cloración.

Figura 17. Dosificadores de cloración (ECOMETRIC Y HIDRO).

Para controlar el proceso de cloración, se debe determinar con el caudal de tratamiento de volúmenes de lb/24hrs el cual se encuentran en las tablas (9) y (10) de las plantas Millpo y Ichu. Para determinar la cloración se dio lectura del rotámetro las lb/24hrs y luego se tomó nota de la lectura en la ficha de registro correspondiente. Como se aprecia en la Figura 18.

Figura 18. lectura del rotámetro las lb/24hrs.

e) Cloro residual a la salida de la cámara de contacto.

Se utilizó el método colorimétrico con DPD, Actualmente es el método más aceptable, "basado en la intensidad de color de una solución obtenida por la reacción de cloro libre con el reactivo DPD, formando un compuesto de color rosado violeta, cuya intensidad estará en función a la concentración de cloro" (Arboleda, 2000).

Para la evaluación se utilizó el equipo digital portátil colorímetro marca HACH POCKET COLORIMETER II y se siguió los siguientes pasos, como se detalla en las evidencias representadas en las Figuras 19 hasta la 22.

Figura 19. Calibración del colorímetro.

Figura 20. Toma de muestra para medición de cloro residual a la salida de la planta.

Figura 21. Uso de 1.5 mg (DPD) en el frasco con la muestra tomada.

Figura 22. Lectura y registro de cloro residual a la salida de la planta.

f) Cloro residual a la salida del reservorio.

Actualmente se cuenta con dos reservorios de agua una de 1700m3 que pertenece a la planta Millpo y la otra de 1000m3 que pertenece a la planta Ichu, los reservorios fueron identificados con los puntos de muestreo R1 con coordenadas UTM, y=8587044.8300; x=501758.1900 a una altitud de 3736.00 msnm y R2 con coordenadas UTM, y=8588120.3000; x=500072.0200 a una altitud de 3804.00 msnm, como se observa en la Figura 23.

Figura 23. Punto georreferencial R1 Millpo y R2 Ichu.

Para medir el cloro residual en los puntos R1 y R2, se procedió con los siguientes pasos que se presentan en las Figuras 24 y 25.

Figura 24. Calibración del colorímetro y toma de muestra.

Figura 25. Uso de 1.5 mg (DPD) en el frasco con la muestra y lectura de cloro residual en el reservorio.

Etapa III. Evaluación de cloro residual libre en las RDAP

En esta etapa se llevó a cabo los pasos que se detallan en las Figuras 26 hasta la 29.:

Figura 26. Ubicación de los puntos georreferenciados de monitoreo de cloro residual libre.

Figura 27. Calibración del colorímetro y toma de muestra en las redes intradomiciliarias.

Figura 28. Uso de 1.5 mg de (DPD) para medir el cloro residual libre.

Figura 29. Lectura y registro de cloro residual libre en las redes intradomiciliarias.

Para la evaluación de la dosis de cloro residual libre se tuvo en cuenta algunos indicadores que tienen influencia en la dosificación que a continuación mencionaremos:

a) Evaluación de la turbiedad.

Se siguió los pasos que se detallan de manera pictográfica en las **Figuras 30 y 31.**

Figura 30. Encendido y calibración del turbidímetro.

Figura 31. Toma de muestra y lectura de la turbidez del agua en las redes intradomiciliarias.

g) Evaluación del PH.

Para determinar el potencial de hidrogeno (pH), se utilizó el multiparámetro digital portátil HQ40d Hach el multiparámetro se encuentra calibrado, luego se realizó los pasos que se muestran en las **Figuras 32, 33 y 34**:

Figura 32. Encendido del multiparámetro para medir PH en las redes intradomiciliarias.

Figura 33. Introducción del electrodo en la muestra a medir.

Figura 34. Lectura y registro del PH en las redes intradomiciliarias.

3.6. Método de análisis de datos

3.6.1. Análisis de correlación de variables

Después de haber generado toda la información a través de la fase de campo, se desarrolló una base de datos utilizando el software Excel, mediante el cual se realizó la estadística descriptiva para ambas variables, para determinar la correlación se utilizó la prueba de normalidad de Shapiro Wilk (aplicado para muestras menores a 50), si es el caso que el valor de los datos fuera mayor a 5% (p>0.05), se acepta la H0, se utilizó la prueba paramétrica de correlación de Pearson para la contrastación de la hipótesis general ya que existe una distribución normal para ambas variables, por tanto se acepta la H0, establecido para un margen de error de 5%.

3.6.2. Análisis de dosis de cloro.

En el análisis de la dosis de cloro se utilizó el software Excel para promedio de cloro residual a la salida de la planta evaluados durante los meses de enero, febrero y marzo, entendiéndose que la dosis de clorador debe ser 2.00 mg/l, dosis que viene siendo aplicado después de una prueba en laboratorio por parte de la EPS EMAPA-Huancavelica. El uso de la dimensión (cloro residual a la salida de planta), fue fundamental ya que para la dosis de 2.00 mg/l, se debe tener 1.5 mg/l de cloro residual a la salida de planta con lo que el punto más alejado de la red mantiene no menos de 0.5 mg/l (Manual de operaciones de planta de tratamiento de agua potable EMAPA Huancavelica), también se utilizó las **tablas 9 y 10**, para la cloración en ambas plantas. Para finalizar el análisis los datos obtenidos fueron relacionados según los Límites Máximos Permisibles según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA"

3.6.2. Análisis de cloro residual libre

En el análisis se utilizó el software Excel para obtener promedios, concentraciones mínimas, máximas de cloro residual libre, los datos

obtenidos fueron relacionados según los Límites Máximos Permisibles según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA"

Se utilizó el software AutoCAD 2020 para la elaboración de los mapas donde nos permitió diseñar los mapas de ubicación - localización de las áreas de estudio, los puntos de monitoreo fueron georreferenciados con coordenadas cartográficas PSAD 56, con un error de precisión de +-3 metros, finalmente nos permitió interpretare el comportamiento espacial y temporal del cloro residual libre dentro de los Límites Máximos Permisibles según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA"

3.7. Aspectos éticos

El trabajo de investigación titulado "Relación de dosis de cloro y cloro residual libre en el sistema de agua potable en la ciudad de Huancavelica -2021.", fue auténtico, basado en el principio de honestidad en cuanto a todo el y en cumplimiento del código de ética en la resolución del consejo universitario N°0126 - 2017. Como también en el uso de la resolución del consejo universitario N°0200 - 2018 de la Universidad Cesar Vallejo, para la guía de las líneas de investigación, seguido del reglamento N° 0089-2019, el cual nos brindó los pasos detallados para la elaboración del trabajo con relación al uso adecuado de las informaciones disponibles y derecho de autor y finalmente, en el Turnitin el cual no debe exceder del 30% de similitud con los trabajos utilizados como fuente de investigación para la elaboración de este proyecto.

III. RESULTADOS

4.1. Análisis de correlación

Para este análisis se utilizó el promedio el cloro residual a la salida de las dos plantas entre el promedio de cloro residual libre en las conexiones intradomiciliarias evaluadas en los meses enero, febrero y marzo. Tal como se muestra en el **Anexo** 7. Los datos fueron sometidos a las siguientes pruebas:

4.1.1. Prueba de normalidad

H1: La distribución de valores sobre el cloro no posee distribución normal.

H0: La distribución de valores sobre el cloro posee distribución normal.

Nivel de significancia o margen de error

Se tomó el nivel de 0,05 o margen de error del 5%.

Regla de decisión

Si Sig. $<0,05 \rightarrow$ la H1 se acepta; Si Sig. $>0,05 \rightarrow$ la H0 se acepta.

Prueba estadística

Tabla 10. Pruebas de normalidad de Shapiro-Wilk

	Shapiro-Wilk			
	Estadístico	gl	Sig.	
Promedio de cloro desde enero hasta marzo en las dos plantas	0,980	31	0,805	
Promedio de cloro desde enero hasta marzo en las Redes	0,967	31	0,441	

Según la **Tabla 10**. La significancia resultante dio valores superiores al nivel de significancia de 0,05. Por lo cual para ambas variables se acepta la H0 y se puede indicar que las distribuciones de valores sobre el cloro de ambas variables poseen distribución normal. Por ello se debe emplear la

prueba paramétrica de Pearson para realizar la contrastación de las hipótesis de investigación.

4.1.2. Prueba de hipótesis

H1. Existe una relación significativa entre la dosis de cloro y cloro residual libre, en el sistema de agua potable en la ciudad de Huancavelica -2021.

H0. No existe una relación significativa entre la dosis de cloro y cloro residual libre, en el sistema de agua potable en la ciudad de Huancavelica -2021.

Nivel de significancia o margen de error

Se tomó el nivel de 0,05 o margen de error del 5%.

Regla de decisión

Si Sig. $<0,05 \rightarrow$ la H1 se acepta; Si Sig. $>0,05 \rightarrow$ la H0 se acepta.

Prueba estadística

Tabla 11. Correlación de Pearson entre la dosis de cloro y cloro residual libre

		Promedio de cloro desde enero hasta marzo en las dos plantas	Promedio de cloro desde enero hasta marzo en las Redes
Promedio de cloro	Correlación de Pearson	1	0,010
desde enero hasta marzo en las dos plantas	Sig. (bilateral)		0,958
	N	31	31
Promedio de cloro	Correlación de Pearson	0,010	1
desde enero hasta marzo en las Redes	Sig. (bilateral)	0,958	
	N	31	31

Según la **Tabla 11.** El valor de la significancia fue de 0,958. Al ser superior a 0,05 se acepta la H0; por tanto, no existe una relación significativa

entre la dosis de cloro y cloro residual libre, en el sistema de agua potable en la ciudad de Huancavelica -2021.

4.2. Análisis descriptivo del comportamiento del agua potable en la PTAP ICHU en el mes de enero, 2021

Figura 35. Comportamiento diario del caudal de la PTAP - ICHU - enero.

En la Figura 35. Se muestra que el caudal de producción de la PTAP – ICHU adquiere un valor mínimo en el día 5 de enero (36,99 l/s) y un valor máximo en el día 22 (50,38 l/s). Asimismo, el promedio del caudal durante el mes de enero fue de 42,45 l/s.

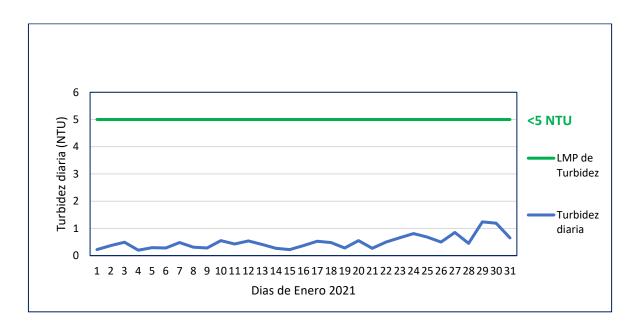


Figura 36. Comportamiento diario de la turbidez de la PTAP - ICHU - enero.

En la **Figura 36**. Se aprecia que la salida del agua de la PTAP – ICHU presenta una turbidez mínima en el día 4 de enero (0,2 NTU), y una turbidez máxima en el día 29 (1,24 NTU). De manera que estos valores cumplen con el LMP de la turbidez según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

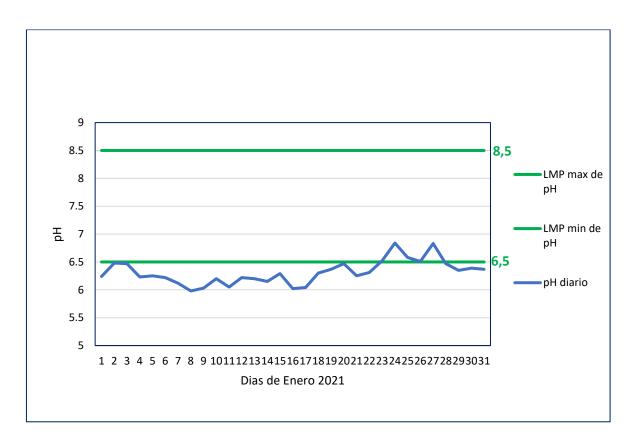


Figura 37. Comportamiento diario del pH de la PTAP – ICHU – enero.

En la **Figura 37**. Se evidencia que la salida del agua de la PTAP – ICHU presenta varios días valores por debajo del LMP mínimo de PH de 6,5, siendo el día 8 de enero el día en que el agua adopta un comportamiento más ácido (5,98). Por lo cual estos valores no cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA"

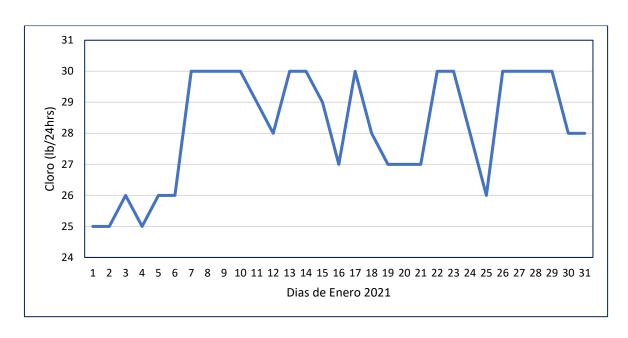


Figura 38. Comportamiento diario de la cloración de la PTAP - ICHU - enero.

En la **Figura 38**. Se muestra que la cloración del agua de la PTAP – ICHU adquiere un valor mínimo en el día 1, 2, y 4 de enero (25 lb/24hrs) y un valor máximo en el día 7, 8, 9, 10, 13, 14, 17, 22, 23, 26, 27, 28, y 29 (30 lb/24hrs). Asimismo, el promedio del cloro a la salida del agua del PTAP – ICHU durante el mes de enero fue de 28,23 lb/24hrs

Figura 39. Comportamiento diario del cloro residual a la salida de la PTAP – ICHU – enero.

En la **Figura 39**. Se muestra que el cloro residual a la salida de la I PTAP – ICHU adquiere un valor mínimo en el día 3 y 4 de enero (1,49 mg/l) y un valor máximo en el día 26 (2,8 mg/l). Por su parte, el promedio del cloro residual a la salida del agua del PTAP – ICHU durante el mes de enero fue de 1,77 mg/l. Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA"

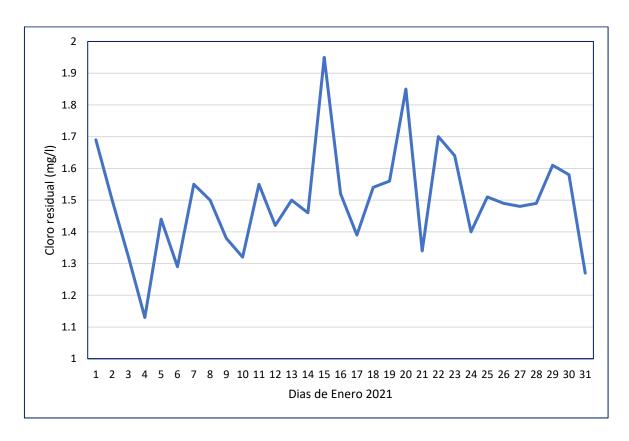


Figura 40. Comportamiento diario del cloro residual a la salida del reservorio de la PTAP – ICHU – enero.

En la **Figura 40**. Se muestra que el cloro residual a la salida del reservorio de la PTAP – ICHU adquiere un valor mínimo en el día 4 de enero (1,13 mg/l) y un valor máximo en el día 15 (1,95 mg/l). Por su parte, el promedio del cloro residual a la salida del agua del reservorio del PTAP – ICHU durante el mes de enero fue de 1,50 mg/l. Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA"

4.3. Análisis descriptivo del comportamiento del agua potable en la PTAP ICHU en el mes de febrero, 2021

Figura 41. Comportamiento diario del caudal de la PTAP – ICHU – febrero.

En la **Figura 41.** Se muestra que el caudal de la PTAP – ICHU adquiere un valor mínimo en el día 16 de febrero (39,10 l/s) y un valor máximo en el día 25 (46,47 l/s). Asimismo, el promedio del caudal durante el mes de febrero fue de 41,98 l/s.

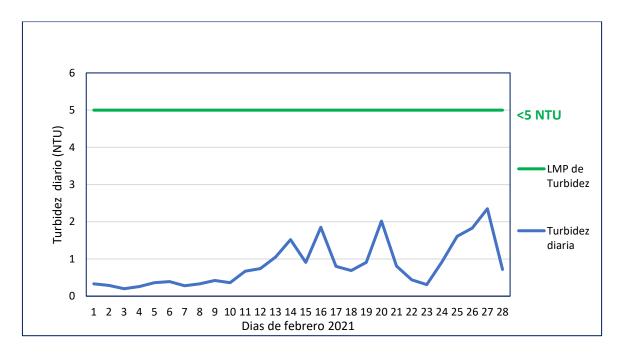


Figura 42. Comportamiento diario de la turbidez de la PTAP – ICHU – febrero.

En la **Figura 42**. Se aprecia que la salida del agua de la PTAP – ICHU presenta una turbidez mínima en el día 3 de febrero (0,20 NTU), y una turbidez máxima en el día 27 (2,35 NTU). Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA"

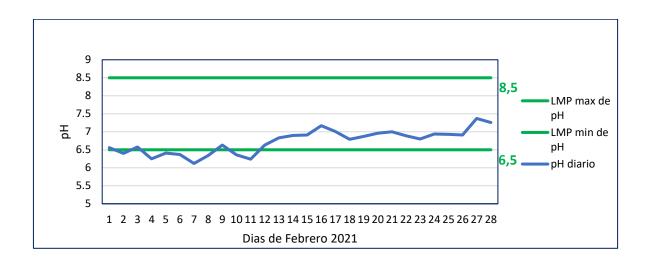


Figura 43. Comportamiento diario del pH de la PTAP – ICHU – febrero.

En la **Figura 43**. Se aprecia que la salida del agua de la PTAP – ICHU presenta varios días valores por debajo del LMP mínimo de PH de 6,5, siendo el día 7 de febrero el día en que el agua adopta un comportamiento más ácido (6,12). De manera que estos valores no cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

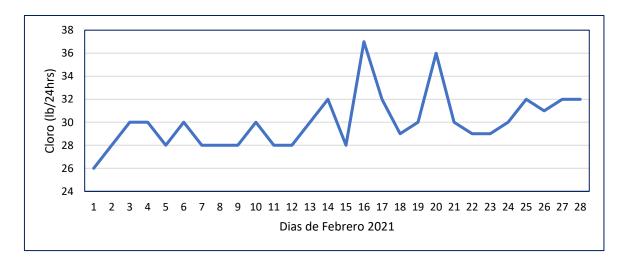


Figura 44. Comportamiento diario de la cloración de la PTAP – ICHU – febrero.

En la **Figura 44**. Se muestra que la cloración del agua de la PTAP – ICHU adquiere un valor mínimo en el día 1 de febrero (26 lb/24hrs) y un valor máximo en el día 16 (37 lb/24hrs). Asimismo, el promedio del cloro a la salida del agua del PTAP – ICHU durante el mes de febrero fue de 30,04 lb/24hrs

Figura 45. Comportamiento diario del cloro residual a la salida de la PTAP – ICHU – febrero.

En la **Figura 45**. Se muestra que el cloro residual a la salida de la PTAP – ICHU adquiere un valor mínimo en el día 13 de febrero (1,64 mg/l) y un valor máximo en el día 8 (2,15 mg/l). Por su parte, el promedio del cloro residual a la salida del agua del PTAP – ICHU durante el mes de febrero fue de 1,84 mg/l. Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA"

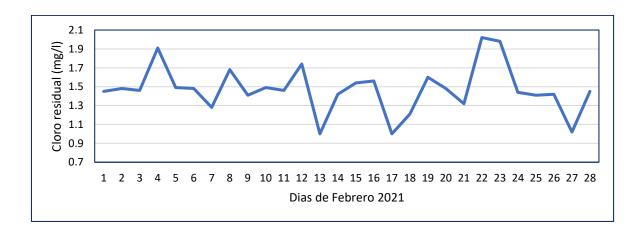


Figura 46. Comportamiento diario del cloro residual a la salida del reservorio de la PTAP – ICHU – febrero.

En la **Figura 46**. Se muestra que el cloro residual a la salida del reservorio de la PTAP – ICHU adquiere un valor mínimo en el día 13 y 17 de febrero (1,00 mg/l) y un valor máximo en el día 22 (2,02 mg/l). Por su parte, el promedio del cloro residual a la salida del agua del reservorio del PTAP – ICHU durante el mes de febrero fue de 1,47 mg/l. Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA"

4.4. Análisis descriptivo del comportamiento del agua potable en la PTAP ICHU en el mes de marzo, 2021

Figura 47. Comportamiento diario del caudal de la PTAP – ICHU – marzo.

En la **Figura 47.** Se muestra que el caudal de la PTAP – ICHU adquiere un valor mínimo en el día 23 de marzo (38,90 l/s) y un valor máximo en el día 14 (46,44 l/s). Asimismo, el promedio del caudal durante el mes de marzo fue de 41,43 l/s.



Figura 48. Comportamiento diario de la turbidez de la PTAP – ICHU – marzo.

En la **Figura 48.** Se aprecia que la salida del agua de la PTAP – ICHU presenta una turbidez mínima en el día 17 de marzo (0,23 NTU), y una turbidez máxima en el día 22 (2,22 NTU). De manera que estos valores cumplen con el LMP de la turbidez según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA"

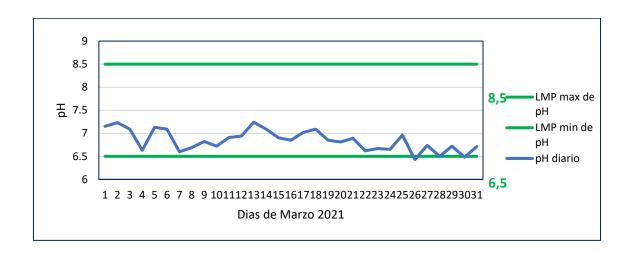


Figura 49. Comportamiento diario del pH de la PTAP – ICHU – marzo.

En la **Figura 49**. Se evidencia que la salida del agua de la PTAP – ICHU presenta dos días en los cuales existe valores por debajo del LMP mínimo de PH de 6,5, los días 26 y el 30 de marzo, siendo el día 26 de marzo el día en que el agua adopta un comportamiento más ácido (6,43). Por lo cual estos valores no cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA"

Figura 50. Comportamiento diario de la cloración de la PTAP – ICHU – marzo.

En la **Figura 50**. Se muestra que la cloración del agua del PTAP – ICHU adquiere un valor mínimo en el día 2, 8, 9, 10, 12, 13, 29 y 30 de marzo (26 lb/24hrs) y un valor máximo en el día 21 (31 lb/24hrs). Asimismo, el promedio del cloro a la salida del agua del PTAP – ICHU durante el mes de marzo fue de 27,87 lb/24hrs.

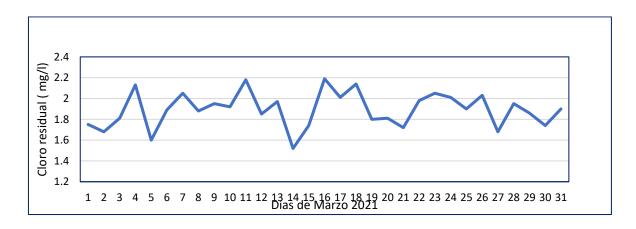


Figura 51. Comportamiento diario del cloro residual a la salida de la PTAP – ICHU – marzo.

En la **Figura 51.** Se muestra que el cloro residual a la salida de la PTAP – ICHU adquiere un valor mínimo en el día 14 de marzo (1,52 mg/l) y un valor máximo en el día 16 (2,19 mg/l). Por su parte, el promedio del cloro residual a la salida del agua del PTAP – ICHU durante el mes de marzo fue de 1,89 mg/l. Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

Figura 52. Comportamiento diario del cloro residual del reservorio de la PTAP – ICHU – marzo.

En la **Figura 52**. Se muestra que el cloro residual a la salida del reservorio de la PTAP – ICHU adquiere un valor mínimo en el día 7 de marzo (1,14 mg/l) y un valor máximo en el día 29 (1,74 mg/l). Por su parte, el promedio del cloro residual a la salida del agua del reservorio del PTAP – ICHU durante el mes de marzo fue de 1,48 mg/l. Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

4.5. Análisis descriptivo del comportamiento del agua potable en la PTAP MILLPO en el mes de enero, 2021

Figura 53. Comportamiento diario del caudal de la PTAP – MILLPO – enero.

En la **Figura 53**. Se muestra que el caudal de la PTAP – MILLPO adquiere un valor mínimo en el día 27 de enero (83,54 l/s) y un valor máximo en el día 17 (92,98 l/s). Asimismo, el promedio del caudal durante el mes de enero fue de 86,95 l/s.

Figura 54. Comportamiento diario de la turbidez de la PTAP – MILLPO – enero.

En la **Figura 54**. Se aprecia que la salida del agua de la PTAP – MILLPO presenta una turbidez mínima en el día 21 de enero (0,20 NTU), y una turbidez máxima en el día 13 (2,20 NTU). De manera que estos valores cumplen con el LMP de la turbidez según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA"



Figura 55. Comportamiento diario del pH de la PTAP – MILLPO – enero.

En la **Figura 55**. Se evidencia que la salida del agua de la PTAP – MILLPO presenta un PH mínimo en el día 15 (7,13) y un PH máximo en el día 14 y 30 (8,17). Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

Figura 56. Comportamiento diario de la cloración de la PTAP – MILLPO – enero.

En la **Figura 56**. Se muestra que la cloración del agua de la PTAP – MILLPO adquiere un valor mínimo en el día 1, 2,3, 4, 15, 18 de enero (30 lb/24hrs) y un valor máximo en el día 23 (43 lb/24hrs). Asimismo, el promedio del cloro a la salida del agua del PTAP – MILLPO durante el mes de enero fue de 36,35 lb/24hrs

Figura 57. Comportamiento diario del cloro residual a la salida de la PTAP – MILLPO – enero.

En la **Figura 57**. Se muestra que el cloro residual a la salida de la PTAP – MILLPO adquiere un valor mínimo en el día 18 de enero (1,25 mg/l) y un valor máximo en el día 29 (2,14 mg/l). Por su parte, el promedio del cloro residual a la salida del agua del PTAP – MILLPO durante el mes de enero fue de 1,76 mg/l. Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

Figura 58. Comportamiento diario del cloro residual a la salida del reservorio de la PTAP – MILLPO – enero.

En la **Figura 58**. Se muestra que el cloro residual a la salida del reservorio de la PTAP – MILLPO adquiere un valor mínimo en el día 1 de enero (0,91 mg/l) y un valor máximo en el día 17 (1,91 mg/l). Por su parte, el promedio del cloro residual a la salida del agua del reservorio del PTAP – MILLPO durante el mes de enero fue de 1,36 mg/l. Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

4.6. Análisis descriptivo del comportamiento del agua potable en la PTAP MILLPO en el mes de febrero, 2021

Figura 59. Comportamiento diario del caudal de la PTAP – MILLPO – febrero.

En la **Figura 59.** Se muestra que el caudal de la PTAP – MILLPO adquiere un valor mínimo en el día 9 de febrero (83,01 l/s) y un valor máximo en el día 20 (98,17 l/s). Asimismo, el promedio del caudal durante el mes de febrero fue de 87,67 l/s.

Figura 60. Comportamiento diario de la turbidez de la PTAP – MILLPO – febrero.

En la **figura 60**. Se aprecia que la salida del agua de la PTAP – MILLPO presenta una turbidez mínima en el día 12 de febrero (0,20 NTU), y una turbidez máxima en el día 4 (2,02 NTU). Por lo cual estos valores cumplen con el LMP de la turbidez según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

Figura 61. Comportamiento diario del pH del PTAP – MILLPO – febrero.

En la **Figura 61**. Se evidencia que la salida del agua del PTAP – MILLPO presenta un PH mínimo en el día 9 de febrero (7,41) y un PH máximo en el día 27 (8,29). Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

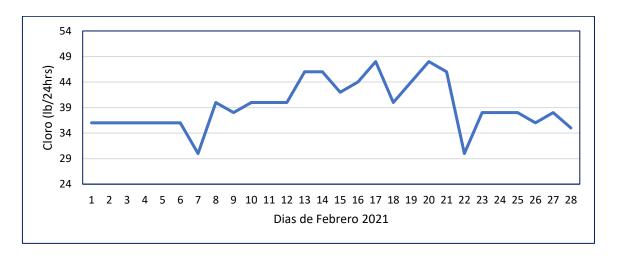


Figura 62. Comportamiento diario de la cloración del agua de la PTAP – MILLPO – febrero.

En la **Figura 62.** Se muestra que la cloración del agua de la PTAP – MILLPO adquiere un valor mínimo en el día 7 y 22 de febrero (30 lb/24hrs) y un valor máximo en el día 17 y 20 (48 lb/24hrs). Asimismo, el promedio del cloro a la salida del agua del PTAP – MILLPO durante el mes de febrero fue de 39,32 lb/24hrs

Figura 63. Comportamiento diario del cloro residual a la salida de la PTAP – MILLPO – febrero.

En la **Figura 63**. Se muestra que el cloro residual a la salida de la PTAP – MILLPO adquiere un valor mínimo en el día 4 de febrero (1,12 mg/l) y un valor máximo en el día 11 (2,5 mg/l). Por su parte, el promedio del cloro residual a la salida del agua del PTAP – MILLPO durante el mes de febrero fue de 1,81 mg/l. Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

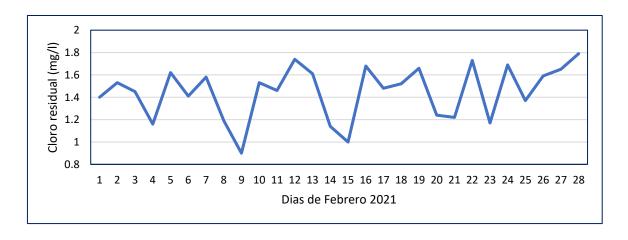


Figura 64. Comportamiento diario del cloro residual a la salida del reservorio de la PTAP – MILLPO – febrero.

En la **Figura 64**. Se muestra que el cloro residual a la salida del reservorio de la PTAP – MILLPO adquiere un valor mínimo en el día 9 de febrero (0,90 mg/l) y un valor máximo en el día 28 (1,79 mg/l). Por su parte, el promedio del cloro residual a la salida del agua del reservorio de la PTAP – MILLPO durante el mes de febrero fue de 1,45 mg/l. Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

4.7. Análisis descriptivo del comportamiento del agua potable en la PTAP MILLPO en el mes de marzo, 2021

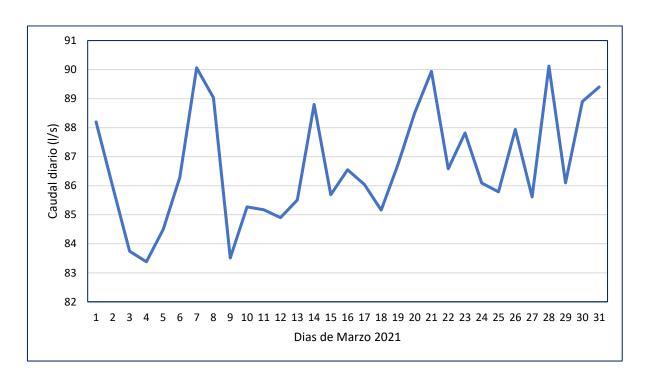


Figura 65. Comportamiento diario del caudal de la PTAP – MILLPO – marzo.

En la **Figura 65**. Se muestra que el caudal de la PTAP – MILLPO adquiere un valor mínimo en el día 4 de marzo (83,38 l/s) y un valor máximo en el día 28 (90,12 l/s). Asimismo, el promedio del caudal durante el mes de marzo fue de 86,69 l/s.

Figura 66. Comportamiento diario de la turbidez de la PTAP – MILLPO – marzo.

En la **Figura 66**. Se aprecia que la salida del agua de la PTAP – MILLPO presenta una turbidez mínima en el día 5 de marzo (0,17 NTU), y una turbidez máxima en el día 24 (1,45 NTU). Por lo cual estos valores cumplen con el LMP de la turbidez según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

Figura 67. Comportamiento diario del pH de la PTAP – MILLPO – marzo.

En la **Figura 67**. Se evidencia que la salida del agua de la PTAP – MILLPO presenta un PH mínimo en el día 10 de marzo (7,19) y un PH máximo en el día 23 (8,26). Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

Figura 68. Comportamiento diario de la cloración del agua de la PTAP – MILLPO – marzo.

En la **Figura 68**. Se muestra que la cloración del agua de la PTAP – MILLPO adquiere un valor mínimo en el día 1, 3, 4, 13, 15, 23, 24, 31 de marzo (30 lb/24hrs) y un valor máximo en el día 11, 16, 20, 21, 25, 27 y 28 (40 lb/24hrs). Asimismo, el promedio del cloro a la salida del agua de la PTAP – MILLPO durante el mes de marzo fue de 34,94 lb/24hrs

Figura 69. Comportamiento diario del cloro residual a la salida de la PTAP – MILLPO – marzo.

En la **Figura 69**. Se muestra que el cloro residual a la salida del agua de la PTAP – MILLPO adquiere un valor mínimo en el día 13 de marzo (1,30 mg/l) y un valor máximo en el día 1 (2,44 mg/l). Por su parte, el promedio del cloro residual a la salida del agua de la PTAP – MILLPO durante el mes de marzo fue de 1,75 mg/l.

Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

Figura 70. Comportamiento diario del cloro residual a la salida del reservorio de la PTAP – MILLPO – marzo.

En la **Figura 70**. Se muestra que el cloro residual a la salida del agua del reservorio de la PTAP – MILLPO adquiere un valor mínimo en el día 8 de marzo (0,95 mg/l) y un valor máximo en el día 7 (1,90 mg/l). Por su parte, el promedio del cloro residual a la salida del agua del reservorio del PTAP – MILLPO durante el mes de marzo fue de 1,41 mg/l. Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

4.8. Análisis descriptivo del comportamiento del agua potable en las redes de Huancavelica en el mes de enero, 2021.

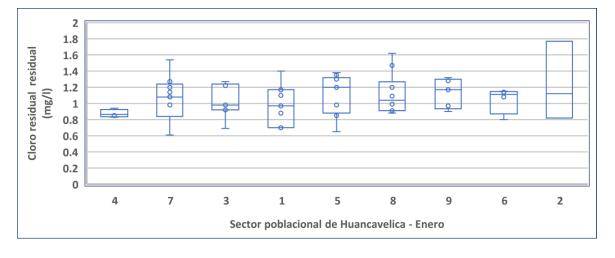


Figura 71. Diagrama de cajas de la variabilidad del cloro residual libre diario por sector poblacional de Huancavelica – enero.

En la **Figura 71**. De acuerdo al diagrama de cajas diario por sector poblacional, se aprecia que en el sector 7 hubo mayor variabilidad de presencia de cloro residual libre. Mientras que en el sector 4 hubo menor variabilidad. Además, se muestra que en el sector 7 se adquiere un valor mínimo de cloro libre residual (0.61 mg/l), mientras que en el sector 2 se adquiere un valor máximo de cloro residual (1,77 mg/l). Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

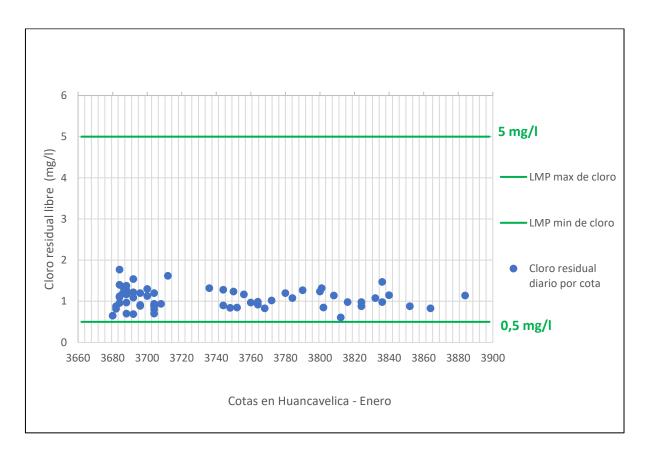


Figura 72. Diagrama de dispersión de la variabilidad del cloro residual libre diario por cota en Huancavelica – enero.

En la **Figura 72.** De acuerdo al diagrama de dispersión del cloro residual diario por cota, se aprecia que en la cota 3684 hubo mayor presencia de cloro residual libre (1,77 mg/l). Por su parte, se muestra que en la cota 3812 hubo menor presencia de cloro residual (0,61 mg/l). En ambos casos se cumple según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

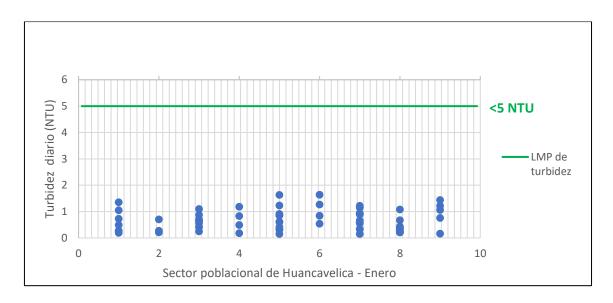


Figura 73. Diagrama de dispersión de la variabilidad de la turbidez diaria por sector poblacional de Huancavelica – enero.

Según la **Figura 73.** el diagrama de dispersión diario por sector poblacional, se aprecia que en el sector 5 hubo mayor variabilidad de turbidez. Mientras que en el sector 2 hubo menor variabilidad. En todos los sectores se cumple según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

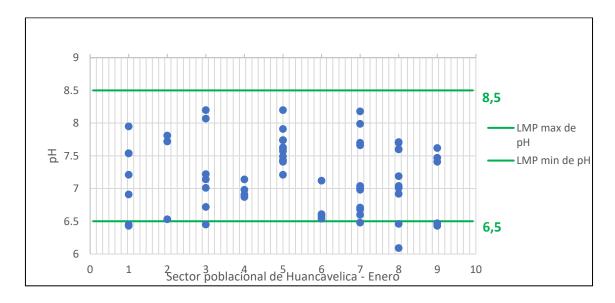


Figura 74. Diagrama de dispersión de la variabilidad del pH diaria por sector poblacional de Huancavelica – enero.

Según la **Figura 74.** De acuerdo al diagrama de dispersión diario por sector poblacional, se aprecia que en el sector 8 hubo mayor variabilidad de pH. Mientras que en el sector 6 hubo menor variabilidad. A su vez se aprecia que en el sector 1, 3, 7, 8, y 9 no se cumple según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

4.9. Análisis descriptivo del comportamiento del agua potable en las redes de Huancavelica en el mes de febrero, 2021

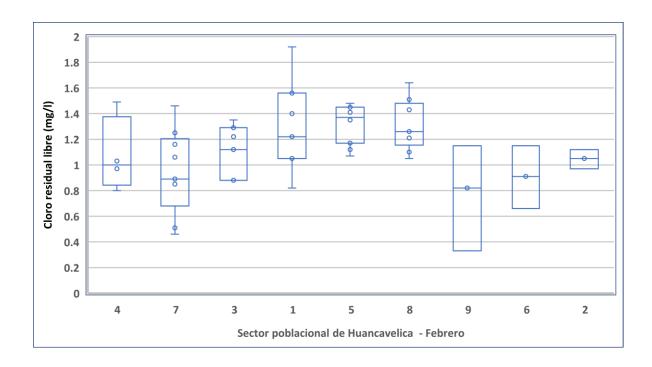


Figura 75. Diagrama de cajas de la variabilidad del cloro residual libre diario por sector poblacional de Huancavelica – febrero.

Según la **Figura 75.** De acuerdo al diagrama de cajas diario por sector poblacional, se aprecia que en el sector 7 hubo mayor variabilidad de presencia de cloro residual libre. Mientras que en el sector 2 hubo menor variabilidad. Además, se muestra que en los sectores 9 y 7 se adquiere valores mínimos de cloro libre residual (0.33 mg/l) y (0.46 mg/l) respectivamente, mientras que en el sector 1 se adquiere un valor máximo de cloro residual (1,92 mg/l). Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

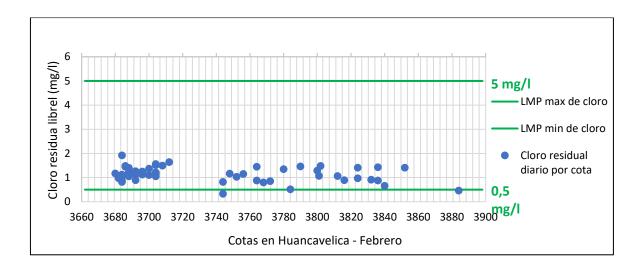


Figura 76. Diagrama de dispersión de la variabilidad del cloro residual libre diario por cota en Huancavelica – febrero.

Según la **Figura 76.** De acuerdo al diagrama de dispersión del cloro residual libre diario por cota, se muestra que en la cota 3684 hubo mayor presencia de cloro residual libre (1,92 mg/l). Por su parte, se muestra que en la cota 3744 hubo menor presencia de cloro residual (0,33 mg/l). De hecho, en esta última cota (además de la cota 3884). Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

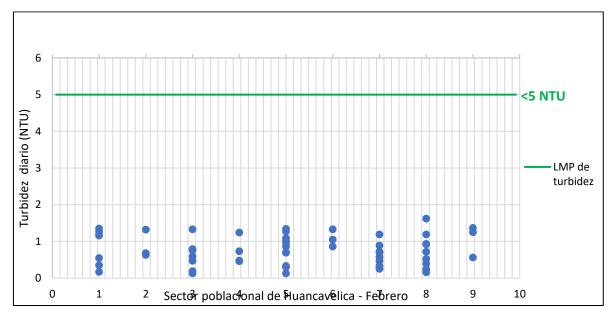


Figura 77. Diagrama de dispersión de la variabilidad de la turbidez diaria por sector poblacional de Huancavelica – febrero.

Según la **Figura 77.** El diagrama de dispersión diario por sector poblacional, se aprecia que en el sector 8 hubo mayor variabilidad de turbidez. Mientras que en el sector 6 hubo menor variabilidad. En todos los sectores se cumple según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

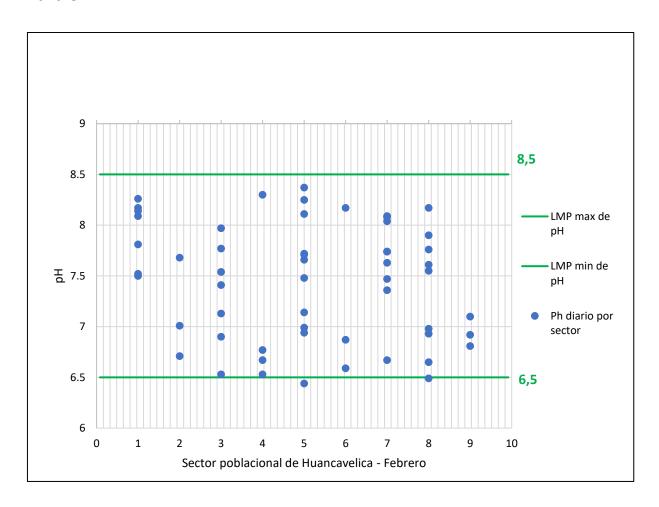


Figura 78. Diagrama de dispersión de la variabilidad del pH diaria por sector poblacional de Huancavelica – febrero.

Según la **Figura 78.** De acuerdo al diagrama de dispersión diario por sector poblacional, se aprecia que en el sector 5 hubo mayor variabilidad de pH. Mientras que en el sector 9 hubo menor variabilidad. A su vez se aprecia que en el sector 5 y 8 no se cumple según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

4.10. Análisis descriptivo del comportamiento del agua potable en las redes de Huancavelica en el mes de marzo, 2021

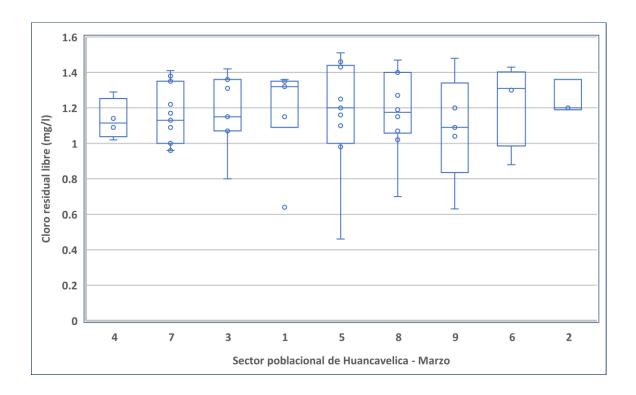


Figura 79. Diagrama de cajas de la variabilidad del cloro residual libre diario por sector poblacional de Huancavelica – marzo.

Según la **Figura 79.** De acuerdo al diagrama de cajas diario por sector poblacional, se aprecia que en el sector 5 hubo mayor variabilidad de presencia de cloro residual libre. Mientras que en el sector 2 hubo menor variabilidad. Además, se muestra que en el sector 5 se adquiere un valor mínimo de cloro libre residual (0.46 mg/l), mientras que en el sector 5 se adquiere un valor máximo de cloro residual (1,51 mg/l). Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

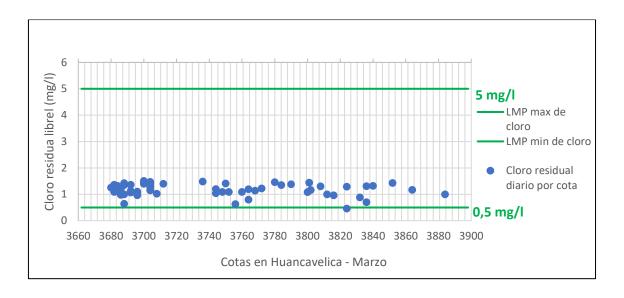


Figura 80. Diagrama de dispersión de la variabilidad del cloro residual libre diario por cota en Huancavelica – marzo.

Según la **Figura 80.** De acuerdo al diagrama de dispersión del cloro residual libre diario por cota, se muestra que en la cota 3700 hubo mayor presencia de cloro residual (1,51 mg/l). Por su parte, se muestra que en la cota 3824 hubo menor presencia de cloro residual (0,46 mg/l). Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

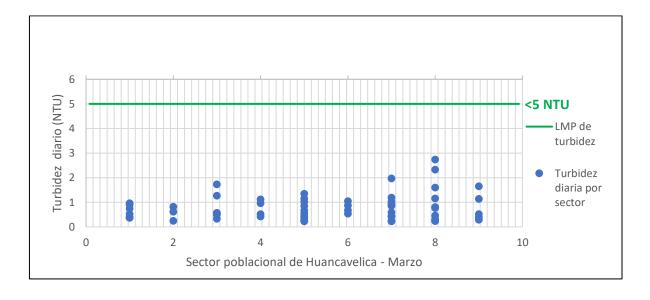


Figura 81. Diagrama de dispersión de la variabilidad de la turbidez diaria por sector poblacional de Huancavelica – marzo.

Según la **Figura 81.** De acuerdo al diagrama de dispersión diario por sector poblacional, se aprecia que en el sector 8 hubo mayor variabilidad de turbidez. Mientras que en el sector 6 hubo menor variabilidad. En todos los sectores se cumple con el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

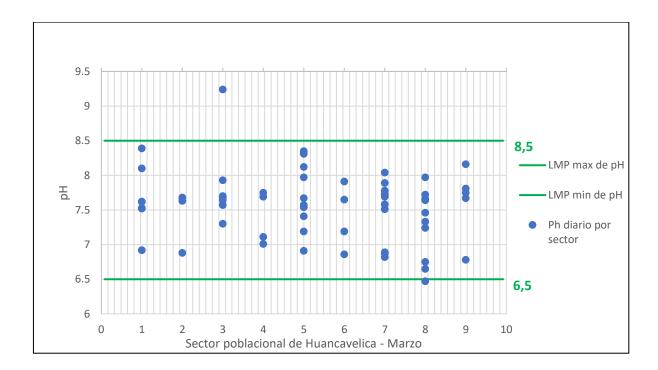


Figura 82. Diagrama de dispersión de la variabilidad del pH diaria por sector poblacional de Huancavelica – marzo.

Según la **Figura 82.** De acuerdo al diagrama de dispersión diario por sector poblacional, se aprecia que en el sector 3 hubo mayor variabilidad de pH. Mientras que en el sector 4 hubo menor variabilidad. A su vez se aprecia que en el sector 8 no se cumple con el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

IV. Discusión

En el trabajo la investigación realizada con respecto a la relación se concluyó que no existe no existe una relación significativa entre la dosis de cloro y cloro residual libre, en el sistema de agua potable en la ciudad de Huancavelica -2021. El valor de la significancia obtenido fue de 0,958. Al ser superior a 0,05 se aceptó la H0, las variables fueron sometidos a la prueba de normalidad Shapiro-Wilk y a la prueba de hipótesis de Pearson en donde se concluyó que existiría otros factores que estarían influyendo para el comportamiento de la dispersión de ambas variables tal como se muestra en las tablas 10 y 11.

Por otra parte, se evaluaron parámetros físico-químicos como PH y Turbiedad ya que diferentes autores mencionan a estos como factores responsables del comportamiento de la dosis para la cloración en relación con el cloro residual, luego de obtener los resultados se observó que para la PTAP ICHU la dosis de cloración en función al PH fue mayor debido a que el promedio encontrado fue de: 5.98, 6.12 y 6.43 durante los tres meses evaluados, tal como se puede observar en las figuras 37, 43 y 49 respectivamente, mientras que para la PTAP MILLPO la dosis de cloración en función al PH fue menor debido a que el promedio encontrado fue de 7.13, 7.41 y 7.19 tal como se puede observar en las figuras 55, 61 y 67 respectivamente.

Mientras que para la turbiedad los valores promedios para la PTAP ICHU estuvieron entre (1.24 NTU - 2.35 NTU) tal como se puede observar las figuras 36 y 42, mientras que para la PTAP MILLPO estuvieron entre (0.17 NTU - 2.20 NTU) tal como se puede observar las figuras 67 y 54. Llegando también a la conclusión que a mayor turbiedad mayor dosis de cloración y a menor turbiedad menor dosis de cloración. Por consiguiente, estos dos parámetros físico-químicos son algunos de los responsables del comportamiento de la relación entre la dosis de cloración y el cloro residual libre.

Por su parte Sotomayor (2010) concluyo que existiría una relación estadísticamente significativa entre el cloro libre residual y estos dos parámetros físico-químicos el potencial de hidrógeno y la turbiedad. Donde la correspondencia es efectiva para pH inferiores a 6.5, y para 5 NTU de turbidez. Es por ello que

evaluar las características del agua potable durante su distribución producto de su inestabilidad, es reto para aquellas empresas que se encargan de suministrar agua potable. También CASTRO (2002), en el desarrollo de su investigación para determinar la conducta de las variables en el proceso de dosificación, elaboro un modelo matemático utilizo variables como: PH, cloro residual libre, tiempo de contacto, dosis de cloro en la planta, caudal y entre otros.

Para la determinación de la dosis optima se utilizó las tablas 8 y 9, tablas que vienen siendo utilizadas para una dosificación optima es por ello que en la investigación se utilizaron indicadores como: caudal de producción, cloración, cloro residual a la salida de la planta y a la salida del reservorio, la EPS EMAPA Huancavelica en su manual de operaciones de planta de tratamiento de agua potable Anexo 09, indica que la dosis del clorador debe ser de 2.00 mg/l, el cloro residual a la salida de la cámara de contacto debe tener 1.5 mg/l de cloro residual con lo que el punto más alejado de la red mantiene no menos de 0.5 mg/l, haciendo la evaluación respecto a la dosis se utilizó las tablas 8 y 9, en donde indica que para el valor de dosificación de 2 mg/l se deberá tener en cuenta los indicadores de cloración, y caudal de producción.

Según los datos obtenidos en la investigación durante los tres meses evaluados el cloro residual promedio a la salida de la cámara de contacto (salida de la planta) presentan valores promedios superiores a los indicados en el manual de operaciones de plantas de tratamiento,1.77 mg/l de cloro residual en el mes de enero, 1.84 mg/l de cloro residual en el mes de febrero y 1.89 mg/l de cloro residual en el mes de marzo para la PTAP ICHU tal como se puede observar en las figuras 39, 45 y 51 respectivamente, y valores de 1.76 mg/l de cloro residual en el mes de enero, 1.81 mg/l de cloro residual en el mes de febrero y 1.75 mg/l de cloro residual en el mes de marzo para la PTAP MILLPO tal como se puede observar en las figuras 57, 63 y 69 respectivamente.

Además, según el manual de operaciones de planta de tratamiento de agua potable EMAPA Huancavelica, en las tablas 8 y 9 indican valores establecidos para la dosis de 2 mg/l teniendo en cuenta el caudal de producción y cloración, luego de

realizar una evaluación de estos indicadores se observó que la cloración para los caudales de producción de ambas plantas no se estaría cumpliendo según el manual. En las figuras: 35, 38; 41, 44; y 47, 50 evaluados en la PTAP ICHU, los valores obtenidos nos indican que la dosis que viene siendo aplicada serian > 3.00 mg/l comparándolo con la tabla 9, sin embargo, en las figuras: 53, 56; 59, 62; y 65, 68 evaluados en la PTAP MILLPO los valores obtenidos nos indican que la dosis que viene siendo aplicada serian > 2.00 mg/l y < 3 mg/l comparándolo con la tabla 8. Y por último se realizó una evaluación del cloro residual en la salida de los reservorios de ambas PTAP, encontrando un valor mínimo de 1.36 mg/l de cloro residual en el reservorio de la PTAP MILLPO y 1.5 mg/l en el reservorio de la PTAP ICHU. Por lo tanto, pese a no cumplir con los valores para la dosificación optima establecidos en el manual de operaciones de planta de tratamiento EMAPA Huancavelica, la dosis aplicada en amabas plantas son las adecuadas ya que cumplen con los valores establecidos según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

Por su parte, PERALES (2020), realizó dos ensayos de demanda de cloro. con una serie de dosis crecientes luego del tiempo de contacto se midió el cloro residual y se comparó con el "Reglamento de Calidad de Agua para Consumo Humano D.S. N° 031-2010-SA", Los resultados indica una dosis óptima en el primer ensayo de 2.7 mg/L de cloro con una demanda de 1.55mg/L, en el segundo ensayo se determinó una dosis de 3.0 mg/L de cloro para una demanda de 1.78mg/L. De la misma manera, PÉREZ y RAMOS (2018), Los datos que obtuvieron después de la evaluación indican que la dosis empleada por parte de la junta que suministra no es la adecuada para cubrir la demanda de los usuarios, ya que se encontraron valores entre 0.4 mg/L - 0.5 mg/L en el reservorio, en cuanto las redes los valores encontrados son entre 0 mg/L - 0.39 mg/L, por lo tanto, se concluyeron que no se estaría cumpliendo con el "Reglamento de la Calidad del Agua para Consumo Humano D.S. N° 031-2010-SA". También, AGUIAR (2010), después de la evaluación del cloro residual en la RDAP se encuentran entre 0.5 a 0.9 mg/L, valores que se encuentran dentro. según la "Norma Bolivariana de Venezuela" 0.3 a 1.0 mg/L. Por lo que se concluye la dosis que aplica la PTAP "La Mora" es la adecuada.

Durante la determinación del cloro residual libre en las redes intradomiciliarias los resultados obtenidos fueron: durante el mes de enero se registró un valor mínimo de cloro libre residual (0.61 mg/l), y un valor máximo de cloro residual (1,77 mg/l). En el mes de febrero se registró valores mínimos de cloro libre residual (0.33 mg/l) y (0.46 mg/l), y un valor máximo de cloro residual (1,92 mg/l). En el mes de marzo se registró un valor mínimo de cloro libre residual (0.46 mg/l), y un valor máximo de cloro residual (1,51 mg/l), tal como se puede observar en las figuras 71, 75 y 79 respectivamente. Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA", como se muestra en el Anexo 9, además, al no contener valores < de 0.5 mg/L de cloro residual libre en el noventa por ciento (90 %) del total de muestras tomadas durante un mes y el diez por ciento (10 %) restante ninguna contiene valores < de 0.3 mg/L.

Además, se evaluaron los parámetros de turbidez y PH en donde los valores de turbidez son de 0.15 NTU como valor mínimo y 2.74 NTU como valor máximo, tal como se puede observar en las figuras 73, 77 y 81, encontrándose estos dentro de los valores que cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA". Por otra parte, respecto a los valores de PH obtenidos fueron de 6.09 como valor mínimo y 9.24 como valor máximo, durante el mes de enero se registró 5 puntos monitoreados fuera de los rangos permisibles, en el mes de febrero 2 puntos y en el mes de marzo 2 puntos, tal como se muestran en la figura 74, 78 y 82 respectivamente, respecto a los resultados obtenidos el reglamento manifiesta que el 90% de las muestras tomadas no deberán estar fuera del rango de estas, mientras que el 10% restante deberá de evaluar las causas que originan el incumplimiento y tomará medidas para cumplir con los valores establecidos en el reglamento, tal como se puede observar en las figuras del Anexo 9. Por lo tanto, se cumple con el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

Por otro lado, durante la determinación del comportamiento espacial temporal del cloro residual libre se obtuvo los siguientes resultados: durante el mes de enero, de acuerdo al diagrama de dispersión del cloro residual diario por cota, se aprecia que en la cota 3684 hubo mayor presencia de cloro residual libre (1,77 mg/l). Por

su parte, se muestra que en la cota 3812 hubo menor presencia de cloro residual (0,61 mg/l). en el mes de febrero, de acuerdo al diagrama de dispersión del cloro residual libre diario por cota, se muestra que en la cota 3684 hubo mayor presencia de cloro residual libre (1,92 mg/l). Por su parte, se muestra que en la cota 3744 hubo menor presencia de cloro residual (0,33 mg/l), y en el mes de marzo de acuerdo al diagrama de dispersión del cloro residual libre diario por cota, se muestra que en la cota 3700 hubo mayor presencia de cloro residual (1,51 mg/l). Por su parte, se muestra que en la cota 3824 hubo menor presencia de cloro residual (0,46 mg/l). tal como se puede observar en las figuras 72, 76 y 80 respectivamente. Por lo cual estos valores cumplen según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA". Como también podemos observar en el Anexo 9. Además, se puede afirmar que los niveles de cloro residual libre van bajando según la altitud va aumentando.

Por su parte, TINOCO y CASTRO (2019), obtuvieron los valores promedio de cloro residual libre de: 1.1, 1.0, 0.99, 0.90, mg/L partiendo desde el punto de la red interna más cercano a la entrada de alimentación, hasta los puntos más lejanos, respectivamente. Finalmente, que según norma establece que los niveles de CRL deben encontrarse entre 0,3 y 2 mg/L, se concluyó que los valores obtenidos en el presente estudio sí pertenecen a dicho rango. Del mismo modo, GUANUCHI y ORDÓNEZ (2017), monitorearon el cloro residual en una RDAP en 30 puntos. los resultados de la concentración de cloro residual libre en 27 puntos monitoreados se ubican entre los valores de 0.39 - 1.17 mg/L, los 3 puntos restantes no cumplen con límite permisible según la norma establecida. Por otro lado, CEPEDA (2015), los resultados obtenidos fueron de 0.7 mg/L de cloro libre residual al ingreso de ciudad, 0.3 mg/L de cloro libre residual en el trayecto y valores mucho más menores a este último en las últimas viviendas, por lo que no se estaría cumpliendo según la "Norma Ecuatoriana INEN1108 el rango admisible en el parámetro de cloro residual es 0.3-1.5 mg/L". Sin embargo, SOSSAI (2019), obtuvo resultados donde indican que la calidad del agua se encuentra dentro de los LMP recomendados ya que el 100% de las muestras evaluadas cumplen con los límites máximos y mínimos establecidos para cloro residual. Por su parte, GALLO (2015), de acuerdo al "Reglamento de la Calidad del Agua para Consumo Humano D.S. Nº 031-2010-

SA". Las muestras fueron tomadas en 4 puntos importantes utilizando métodos y técnicas sugeridas por instituciones como: "Dirección General de Asuntos Ambientales Mineros (DGAAM) y Ministerio del Ambiente (MINAM)". Los resultados obtenidos de la investigación indican que el agua que se consume en el asentamiento minero es aceptable según la norma establecida. Por su parte, MURILLO (2015), Los resultados obtenidos en el proceso fueron capaces de cumplir con las normas del MINSA, "Reglamento de la Calidad del Agua para Consumo Humano – DS N° 031-2010-SA". Datos que son 0,5 a 5 mg/l para cloro residual y 0 a 5 UNT para turbiedad. Por su lado, CASTILLA y CORCUERA (2020, de acuerdo al D.S. N°031-2010-SA. Los resultados de los promedios obtenidos indican niveles de turbiedad de 3.48 NTU y 2.98 NTU, donde podemos mencionar que se cumple según la Norma establecida, sin embargo, las concentraciones de cloro residual no cumplieron con los LMP, según la normativa, ya que establece 0.5 a 1.0 mg/L. Por su parte, ALVA y DIAZ (2019), luego de la investigación de los parámetros coliformes termotolerantes, coliformes totales, temperatura color, solidos totales disueltos, pH, turbidez, conductividad, hierro, manganeso, aluminio y cloro residual. El resultado de los análisis indicó que las muestras tomadas se encuentran dentro de los límites máximos permisibles según el "Decreto Supremo N° 031-2010-SA, por lo que se consideran aptas para el consumo humano".

V. Conclusiones

- 1. Luego de que las variables fueron sometidos a la prueba de normalidad Shapiro-Wilk y a la prueba de hipótesis de Pearson el valor de la significancia obtenido fue de 0,958, al ser superior a 0,05 se acepta la H0; por tanto, no existe una relación significativa entre la dosis de cloro y cloro residual libre, en el sistema de agua potable en la ciudad de Huancavelica -2021.
- 2. Luego de la evaluación de la dosis de cloro a la salida de la PTAP y la evaluación del cloro residual libre en las redes y al encontrarse estas dentro de los valores según el reglamento, la dosis de cloro en el sistema de agua potable suministrada por la EPS EMAPA-Huancavelica cumple con el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".
- 3. Los niveles de cloro residual libre en las redes de distribución de agua potable, suministrada por la EPS EMAPA-Huancavelica cumple con el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA". Luego de obtener valores de entre (0.33 mg/l) y (1,92 mg/l) de cloro residual libre, además, al no contener valores < de 0.5 mg/L de cloro residual libre en el noventa por ciento (90 %) del total de muestras tomadas durante un mes y el diez por ciento (10 %) restante ninguna contiene valores < de 0.3 mg/L.
- 4. El comportamiento espacial y temporal del cloro residual libre en las redes de distribución de agua potable se encuentra dentro de los LMP según el "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA". Luego de ser evaluados en diferentes altitudes y tiempos, en donde se observó que los niveles de cloro residual libre van bajando según la altitud va aumentando.

VI. Recomendaciones

Para la realización de otras investigaciones en cuanto a cloración y determinación de la dosis de cloro que se aplica en la EPS EMAPA Huancavelica, actualizar el manual para operaciones de planta de tratamiento de agua potable puesto que ya tiene una vigencia de 4 años por lo que recomiendan algunos investigadores que para la evaluación de las características del agua y determinación de dosis se debería de realizar cada 2 años como máximo.

Para futuras investigaciones tener en cuenta la distribución de redes para cada planta de tratamiento que viene siendo abastecida a la ciudad de Huancavelica.

Para aquellos que quieran realizar investigaciones referentes al tema, evaluar los factores que influyen en el comportamiento de las variables estudiadas en la presente investigación.

Para futuras investigaciones realizar investigaciones en los lugares o sectores de mayores incidencias o problemas evaluándolos en más puntos de muestreo para fortalecer los resultados obtenidos.

REFERENCIAS

AGUIAR, J., AGUILERA, E., FIGUEROA, L., OROPESA, I., PÉREZ, A., & SANTANA, N. Evaluación de los Niveles de Cloro Residual en la Red de Distribución de Agua Potable del Sistema Valle Hondo, Municipio Palavecino, Estado Lara. [En línea] Unidad Educativa Colegio San Vicente de Paúl, 2010. [Fecha de consulta: 03 de febrero del 2021]. Disponible en: file:///C:/Users/Dell/Downloads/Dialnet-

EvaluacionDelSistemaDeAguasNegrasDelMunicipioPalav-6521647.pdf.

ALCOCER, V. H., & TZATCHKOV, V. Modelación Hidráulica y de Calidad del Agua en Redes de Agua Potable. *Revista Iberoamericana de ciencias*. [en línea], abril 2017, 4(2), pp.120-132. [consulta: 01 de febrero del 2021]. ISSN: 2334-2501. Disponible en: http://www.reibci.org/publicados/2017/abr/2200106.pdf.

ALVA, J.N., & DIAZ, P. B. Evaluación de la calidad del agua en las redes de distribución secundaria y domiciliaria, abastecidas por la planta de tratamiento de agua potable de EMAPACOP S.A., Calería, coronel portillo, Ucayali, 2018. [En línea] [tesis para optar grado de ingeniero ambiental]. Universidad Nacional De Ucayali, Pucallpa, Perú, 2019. [Fecha de consulta: 02 de febrero del 2021]. Disponible en: http://repositorio.unu.edu.pe/bitstream/handle/UNU/4232/000004218T-AMBIENTAL.pdf?sequence=1&isAllowed=y.

ÁLVAREZ, F.J. Manual de Tratamientos del Agua de Consumo Humano. [En línea]. Junta de Castilla y León. Consejería de Sanidad, 2009. [Fecha de consulta: 03 de febrero del 2021]. Disponible en: https://www.saludcastillayleon.es/es/aguasdeconsumo/manual-tratamientos-aguaconsumo-humano.ficheros/111473-Manual%20de%20Tratamientos%20del%20Agua%20de%20Consumo%20Human o.pdf.

ARBOLEDA, J. *Teoría y Práctica de la Purificación del Agua*. [En línea]. Editado por Acodal 1992, [Fecha de consulta: 22 de enero del 2021]. Disponible en: https://cidta.usal.es/cursos/etap/modulos/libros/teoria.pdf.

AZEVEDO, J.M. Desinfeção de águas. *Revista DAE*. [en línea], junio de 1984, 44(137), pp. 106-111. [consulta: 03 de febrero del 2021]. Disponible en: http://revistadae.com.br/artigos/artigo_edicao_137_n_1175.pdf.

Aziz, F., MANDI, L., BOUSSAID, A., BORAAM, F & OUAZZANI, N. Quality and disinfection trials of consumption water in storage reservoirs for rural area in the Marrakech region (Assif El Mal). *Journal of Water and Health*. [en línea], 11 (1): 146–160. [consulta: 08 de febrero del 2021]. DOI: https://doi.org/10.2166/wh.2013.027.

RODRÍGUEZ, E. Variabilidad Temporal de Cloro Residual y Presencia de Fe, Cu y Mn en una Red de Distribución de Agua Potable en la Ciudad del Carmen, Campeche. [En línea] [tesis para optar grado de ingeniero químico]. Universidad Autónoma del Carmen, Campeche, México, 2012. [Fecha de consulta: 02 de febrero del 2021]. DOI:10.13140/RG.2.2.27644.03208. Disponible en:https://www.researchgate.net/publication/318710859_VARIABILIDAD_TEMPO RAL_DE_CLORO_RESIDUAL_Y_PRESENCIA_DE_Fe_Cu_Y_Mn_EN_UNA_RE D_DE_DISTRIBUCION_DE_AGUA_POTABLE_EN_CIUDAD_DEL_CARMEN_CA MPECHE.

BONIFAZ, G. A. Efecto del cloro en las tuberías domiciliarias de cobre expuestas al agua potable. [En línea] [Trabajo de titulación previo a la obtención del Título de Ingeniero Ambiental]. Universidad de Cuenca, Ecuador, 2018. [Fecha de consulta: 02 de febrero del 2021]. Disponible en:https://dspace.ucuenca.edu.ec/bitstream/123456789/28843/1/TESIS.pdf. BONNEFOY, x. Inadequate housing and health: an overview. International Journal of Environment and Pollution (IJEP), Vol. 30, No. 3/4, 2007. [consulta: 08 de febrero del 2021]. DOI: https://doi.org/10.1504/IJEP.2007.014819.

CAMPOVERDE, J.A. Análisis del Efecto Toxicológico que Provoca el Consumo Humano de Agua no Potable, Mediante la Determinación de Cloro Libre Residual en Aguas Tratadas de las Parroquias Rurales del Cantón Cuenca, Ecuador. [En línea]. [Tesis de grado: Magister en Toxicología Industrial y Ambiental]. Universidad Estatal de Cuenca – Ecuador; 2015. [Fecha de consulta: 05 de febrero del 2021]. Disponible en : http://dspace.ucuenca.edu.ec/handle/123456789/21794

CARE International. Fortaleciendo capacidades para un mejor acceso al agua potable y al saneamiento. [en línea]. Unificado / Felipe Toledo – Lil Soto, Fundación Avina, 2014. [Fecha de consulta: 19 de enero del 2021]. Disponible en: https://www.care.org.ec/wp-content/uploads/2014/06/Libro%20Fortaleciendo%20Capacidades%2011-04-

2014.pdf

CASTILLA, C.A & CORCUERA, E.F. Análisis de la turbiedad y cloro residual en el sistema de potabilización del agua en el distrito de Baños del inca – Cajamarca. [En línea]. [Tesis para opta título de ingeniero Ambiental]. Universidad Privada del Norte. Cajamarca, Perú, 2020. [Fecha de consulta: 05 de febrero del 2021]. Disponible en: https://hdl.handle.net/11537/25574

CASTRO, L. Modelo de dosificación de cloro en la planta de tratamiento de agua Francisco Wierner de la empresa de acueducto y alcantarillado de Bogotá- EAAB. [En línea]. [proyecto de grado para optar título de ingeniera química]. Universidad de los Andes, Santa Fe, Bogotá,2002. [Fecha de consulta: 05 de febrero del 2021]. Disponible

https://repositorio.uniandes.edu.co/bitstream/handle/1992/15728/u236792.pdf?sequence=1&isAllowed=y

CEPEDA, J. L. Disminución de la Calidad de Agua por Variaciones del Cloro Libre Residual entre la Red de Distribución y la Red Interna de los Usuarios en Urbanización Ciudad Verde de Machala, Provincia de El Oro. [En línea] [tesis de pregrado para optar título de ingeniera civil]. Universidad Técnica de Machala, Ecuador, 2015. [Fecha de consulta: 01 de febrero del 2021]. Disponible en: http://repositorio.utmachala.edu.ec/handle/48000/2956

CHAUCACHICAIZA, A.F., & OROZCO, L.S. Diseño e Implementación de un Sistema Automatizado Para la Dosificación de Cloro en el Tratamiento de Agua Potable en la Comunidad San Vicente de Lacas, Riobamba. [En línea] [tesis de pregrado para optar título de ingeniero mecánico]. Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador; 2012. [Fecha de consulta: 20 de enero del 2021]. Disponible en: http://dspace.espoch.edu.ec/handle/123456789/1888

CHRISTMAN, K.; Guía para la selección de Sistema de Desinfección. *Organización Panamericana de la Salud (OPS) COSUDE.* [En línea]. Oficina Regional de la Salud, Lima 2007. [Fecha de consulta: 01 de febrero del 2021] Disponible en: https://sswm.info/sites/default/files/reference_attachments/OPS-COSUDE%202007.%20Gu%C3%ADa%20selecci%C3%B3n%20del%20sistema %20desinfecci%C3%B3n.pdf

CLARK, R. Drinking Water Distribution Systems: Their Role in Reducing Risks and Protecting *Public Health*. [En línea]. *Encyclopedia of Environmental Health* 14(2011): pp.158-166. [Fecha de consulta: 05 de febrero del 2021]. DOI: https://doi.org/10.17226/11728

- DIAZ, B.E. Decaimiento de la calidad del agua por variaciones de cloro residual entre la red de distribución distrital y la red de distribución interna de los usuarios. [En línea] [tesis de pregrado para optar título de ingeniera civil]. Universidad de los Andes, Bogotá, 2002. [Fecha de consulta: 18 de enero del 2021]. Disponible en: file:///C:/Users/Dell/Downloads/Calidadagua_clororesidual%20(1).pdf
- FERRO, F., FERRÓ, P. F., & FERRÓ, A. L. (2019). Distribución Temporal de las Enfermedades Diarreicas Agudas, su Relación con la Temperatura y Cloro Residual del Agua Potable en la Ciudad de Puno, Perú. *Revista de Investigaciones Altoandinas*. [en línea], 2019, vol.21, n.1, pp.69-80. ISSN 2313-2957. [consulta: 10 de febrero del 2021]. Disponible en: http://dx.doi.org/10.18271/ria.2019.446.
- GALLO, I.A. Monitoreo de la calidad de agua de consumo de las instalaciones del proyecto Inmaculada-Minera Suyamarca. [En línea] [tesis de pregrado para optar título de ingeniera química]. universidad Nacional del Callao, 2015. [Fecha de consulta: 19 de enero del 2021]. Disponible en: http://repositorio.unac.edu.pe/handle/UNAC/1032
- GARCIA, F.F. Modelo de decaimiento de cloro libre en la red de distribución de agua potable en la ciudad de Azogues, Ecuador. [En línea] [tesis para optar el grado de doctor doctoris philosophiae en ingeniería y ciencias ambientales]. universidad Nacional la Agraria la Molina, lima, Perú, 2019. [Fecha de consulta: 17 de enero del 2021]. Disponible en: http://repositorio.lamolina.edu.pe/handle/UNALM/3845
- GUANUCHI, C. M., & ORDÓÑEZ, J. A. Evaluación del Cloro Residual en la Red de Distribución de Agua Potable del Cantón Azogues a través de un Modelo Experimental. [En línea] [tesis para optar el grado de ingeniero ambiental]. Universidad de Cuenca, Ecuador, 2017. [Fecha de consulta: 17 de enero del 2021]. Disponible en: http://dspace.ucuenca.edu.ec/handle/123456789/28012
- HERNANDEZ, R.; FERNANDEZ, C. & BAPTISTA, P. *Metodología de la investigación*. [En línea]. McGraw Hill Interamericana de México, S.A, de C.V, 1997. [Fecha de consulta: 15 de enero del 2021]. Disponible en: https://www.uv.mx/personal/cbustamante/files/2011/06/Metodologia-de-la-Investigaci%C3%83%C2%B3n_Sampieri.pdf
- JARAMILLO, C.N. Desinfección del Agua Para Uso Humano. [En línea] [tesis para optar el grado de ingeniero civil]. Escuela Politécnica Nacional, Quito-Ecuador;

2011. [Fecha de consulta: 12 de enero del 2021]. Disponible en: https://bibdigital.epn.edu.ec/bitstream/15000/2134/1/CD-2893.pdf

EMAPA HUANCAVELICA. *Manual de operaciones de planta de tratamiento de agua potable MILLPO.2017* [Fecha de consulta: 13 de enero del 2021].

EMAPA HUANCAVELICA. *Manual de operaciones de planta de tratamiento de agua potable ICHU.2017* [Fecha de consulta: 13 de enero del 2021].

Ministerio de Salud. *Guía Técnica: Guía de Práctica Clínica para el Diagnóstico y Tratamiento de la Enfermedad Diarreica Aguda en la niña y el niño.* [En línea]. Resolución Ministerial N° 755-2017-MINSA.Gobierno del Perú. [Fecha de consulta: 13 de enero del 2021]. Disponible en: file:///C:/Users/Dell/Downloads/RM%20755-2017-MINSA%20-%20GT%20Guia%20practica%20clinica%20diagnostico%20y%20tratamiento%20 EDA%20ni%C3%B1o%20y%20ni%C3%B1a.pdf

Ministerio de Salud. Reglamento de la calidad del agua para consumo humano. [En línea]. DS N° 031-2010-SA. Dirección General de Salud Ambiental Ministerio de Salud Lima – Perú 2011. [Fecha de consulta: 13 de enero del 2021]. Disponible en: http://www.digesa.minsa.gob.pe/publicaciones/descargas/Reglamento_Calidad_A qua.pdf

MURILLO, Y.B. Control estadístico de la calidad del agua respecto al Cloro Residual y Turbidez en la Planta de tratamiento seda Juliaca de 2015. [En línea] [tesis para optar el grado de ingeniero estadístico e informático]. Universidad Nacional del Altiplano, Puno, Perú, 2015. [Fecha de consulta: 21 de enero del 2021]. Disponible en: http://repositorio.unap.edu.pe/handle/UNAP/2378

Organización Mundial de la Salud. *Guías para la Calidad del Agua Potable.* [En línea]. Tercera edición, Vol. 1. 2006. [Fecha de consulta: 21 de enero del 2021]. ISBN 92 4 154696 4. Disponible en: https://www.who.int/water_sanitation_health/dwq/gdwq3_es_fulll_lowsres.pdf?ua= 1

PERALES, E.N. Determinación de la dosificación óptima de cloro en relación con cloro residual en el tratamiento de agua para consumo en la Urbanización Santa Lucia – Morales. [En línea] [tesis para optar el grado de ingeniera ambiental].

Universidad Peruana Unión, Tarapoto, Perú, 2020. [Fecha de consulta: 21 de enero del 2021]. Disponible en: http://repositorio.upeu.edu.pe/handle/UPEU/4252

PÉREZ, R.E & RAMOS, G. Dosis de cloro y cloro residual libre en el sistema de agua potable del sector de Puyhúan grande del distrito y provincia de Huancavelica – 2018. En línea] [tesis para optar el grado de ingeniera ambiental] sanitario]. Universidad Nacional de Huancavelica, Perú, 2018. [Fecha de consulta: 20 de enero del 2021]. Disponible en: http://repositorio.unh.edu.pe/handle/UNH/2181

PÉREZ, J. & ROMERO, M. Determinación de la concentración de Cloro Residual y Trihalometanos (Thm's) y su impacto en la salud según sectores de abastecimiento de agua potable en la ciudad de Moyobamba – 2015. [En línea] [tesis para optar el grado de ingeniero Sanitario]. Universidad Nacional de San Martín- Tarapoto, Moyobamba, 2017. [Fecha de consulta: 21 de enero del 2021]. Disponible en: file:///C:/Users/Dell/Downloads/SANITARIA%20-%20Jenry%20Perez%20y%20Miller%20Romero.pdf

REYES, U.F & NICASIO, D.A. Análisis de la cantidad de Cloro Residual Libre en el agua de los Bebederos Públicos en La zona Centro de la Ciudad De León, Guanajuato. *Jóvenes en la ciencia, Revista de divulgación Científica*. [En línea]. Vol. 2 no. 1, Verano de la Investigación Científica, 2016. [Fecha de consulta: 25 de enero del 2021]. ISSN:2448-5144. Disponible en: http://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/1102/735

RIVERA A.L. Calidad de Agua. *Revista Ingenierías Universidad de Medellín*, Colombia, [En línea]. vol. 8, No. 15 especial, pp. 79-94.2018. [Fecha de consulta: 30 de enero del 2021]. ISSN: 1692-3324. Disponible en: https://dialnet.unirioja.es/servlet/revista?codigo=13858

ROJAS, R & GUEVARA, S. *Celdas electrolíticas para producción in situ de Hipoclorito de Sodio*. [En línea] CEPIS/GTZ; 1999. [Fecha de consulta: 31 de enero del 2021]. Disponible en: https://upcommons.upc.edu/bitstream/handle/2099/1205/16_Sistema.pdf

ROSHANI E.A., ANURUDDHIKA D.R, CHARMALIE L. & ABAYASEKERA A. Efficacy of calcium hypochlorite and ultraviolet irradiation against *Mycobacterium* fortuitum and *Mycobacterium marinum*. Artículo científico. Veterinaria, Centro de Diagnóstico e Investigación de Enfermedades de Animales Acuáticos, Facultad de Medicina Veterinaria y Ciencia Animal, Universidad de Peradeniya, Peradeniya, Sri

Lanka- India. [En línea]. Jul-Sep 2017;6(3):311-314. [Fecha de consulta: 31 de enero del 2021]. DOI: 10.4103/ijmy.ijmy_88_17

SALDARRIAGA, J.G., HERNÁNDEZ, M.X., PRIETO, C., JURADO, M., GACHARNÁ, S. & PÁEZ, D. Location of water quality monitoring points in distribution systems. *Tecnología y Ciencias del Agua*. [En línea]. Vol. V, núm. 2, marzo-abril de 2014, pp. 39-53. [Fecha de consulta: 05 de febrero del 2021]. ISSN electrónico: 2007-2422. Disponible en: http://www.revistatyca.org.mx/ojs/index.php/tyca/article/view/463

SILVA, NASCIMIENTO, SANZ, & SÉRGIO. Avaliação de métodos para determinação de cloro residual livre em águas de abastecimento público. *Semina: Ciências Exatas e Tecnológicas*. [En línea]. Capa > v. 37, n. 1 (2016) > Soares. [Fecha de consulta: 05 de febrero del 2021]. DOI: http://dx.doi.org/10.5433/1679-0375.2016v37n1p119 Disponible en: http://www.uel.br/revistas/uel/index.php/semexatas/article/view/21599

SORIA, O.A. Análisis cuantitativo de la cantidad de cloro antes y después de la cisterna en 5 sectores de la ciudad de Guayaquil. [En línea] [tesis para optar el grado de ingeniero civil]. Universidad Católica de Santiago de Guayaquil, Ecuador, 2018. [Fecha de consulta: 25 de enero del 2021]. Disponible en: http://repositorio.ucsg.edu.ec/handle/3317/10145

SOSSAI, M. Análise da concentração de cloro residual livre na rede de distribuição de água do município de São Jorge do Ivaí/pr. [En línea] [tesis para optar el grado de ingeniero ambiental y sanitario]. UNICESUMAR - CENTRO UNIVERSITÁRIO DE MARINGÁ, PR. 2019 [Fecha de consulta: 25 de enero del 2021]. Disponible en: https://repositorio.utfpr.edu.br/jspui/bitstream/1/8025/2/CT_EC_2014_2_07.pdf

SOTOMAYOR, P.Á. Sistema de abstecimieto de aguas en nucleos rurales, variables que influyen en la cloración. [En línea] [tesis doctoral]. Universidad de Granada, España, 2010. [Fecha de consulta: 30 de enero del 2021]. Disponible en: https://digibug.ugr.es/bitstream/handle/10481/15445/19594355.pdf;jsessionid=3B2 C95D41E605CCF004C543A20F13B3A?sequence=1

TINOCO, J., & CASTRO, Á. Niveles de cloro residual libre en la red de distribución de agua potable en una institución de educación superior en la ciudad de cali en el año 2019. [En línea] [Especializacion en gerencia en salud y seguridad en el

trabajo]. Universidad Santiago de Cali, 2019. [Fecha de consulta: 30 de enero del 2021]. Disponible en: https://repository.usc.edu.co/bitstream/handle/20.500.12421/3262/NIVELES%20D E%20CLORO.pdf?sequence=1&isAllowed=y

VARGAS, C. Control de la calidad del agua en la red de distribución. [En línea]. *CEPIS. Reunión Regional sobre Calidad del Agua Potable*. Lima, Perú; 1996. [Fecha de consulta: 05 de febrero del 2021]. Disponible en: http://cidbimena.desastres.hn/pdf/spa/doc14574/doc14574-contenido.pdf

ZHENG M. Fate of free chlorine in drinking water during distribution in premise plumbing. *Artículo científico Ecotoxicology*. [En línea]. 24, 2151–2155 (2015); 2015. [Fecha de consulta: 15 de febrero del 2021]. DOI: https://doi.org/10.1007/s10646-015-1544-3.

ANEXOS

Anexo 1. Declaratoria de Originalidad de los Autores

Declaratoria de Originalidad de Autores

Nosotros(as), Huayllani Laurente, Nestor Mike y Zevallos Salvatierra, Anali, egresadas de la Facultad de Ingeniería y Arquitectura y Escuela Profesional de Ingeniería Ambiental de la Universidad César Vallejo sede Lima norte, declaramos bajo juramento que todos los datos e información que acompañan a la Tesis titulada: "Relación entre la dosis de cloro y cloro residual libre en el sistema de agua potable en la ciudad de Huancavelica -2021", es de nuestra autoría, por lo tanto, declaramos que la Tesis:

- 1. No ha sido plagiado ni total, ni parcialmente.
- 2. Hemos mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- 3. No ha sido publicado ni presentado anteriormente para la obtención de otro grado académico o título profesional.
- 4. Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumimos la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Lima 1 de mayo, 2021

Huayllani Laurente, Nestor Mike D.N.I. 42802536

ORCID: 0000-0002-7486-3955

Zevallos Salvatierra, Anali D.N.I. 47494110

ORCID: 0000-0003-1648-8381

Anexo 2. Declaratoria de Autenticidad del Asesor

Declaratoria de Autenticidad del Asesor

Yo, Ordoñez Galvez, Juan Julio, docente de la facultad de Ingeniería y Arquitectura y Escuela Profesional de Ingeniería Ambiental de la Universidad César Vallejo sede Lima norte, revisor del trabajo de Tesis titulada "Relación entre la dosis de cloro y cloro residual libre en el sistema de agua potable en la ciudad de Huancavelica -2021" de los estudiantes Huayllani Laurente, Nestor Mike (ORCID:0000-0002-7486-3955) y Zevallos Salvatierra, Anali (ORCID:0000-0003-1648-8381), constato que la investigación tiene un índice de similitud de 14% verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituye plagio. A mi leal saber y entender el trabajo de tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Atentamente,

Lima 05 de mayo, 2021

tran Julio Oldoneix Galvez

DNI: 08447308

Anexo 3. Matriz de operacionalización de variables

Variables	Definición conceptual	Definición operacional	Dimensión	Indicadores	Escala/unidades
	La cantidad del compuesto químico para la desinfección del agua durante un periodo de tiempo para la acción germicida. (Fustamante, 2017)	Para la obtención de la dosis de cloro, se monitoreará los niveles de características físico - químicas del agua a la	lectura electromecánica.	caudal	(L/s) (Lb/24hrs)
Independiente:	También se define como el suministro de cloro en cantidad de	salida de la planta de tratamiento. lectura electromecánica de cloración, y caudal.		Potencial de hidrogeno.	1-14
	(mg/L) que reacciona químicamente. Cuando la demanda sea satisfecha,		Características	turbiedad	NTU
Dosis de cloro	no será usado más cloro de lo necesario, ya que la cantidad de cloro agregada de más formará un residual. (V. Alcocer y Tzatchkov, 2007)	Entiéndase que la dosis de cloro establecida es de 2.00mg/l para garantizar los LMP según el (D.S. N°031.2010-SA).	físico – químicas	Cloro residual	mg/L
		Se obtuvo realizando las mediciones "in situ" en los 9 sectores de la ciudad con mediciones de 2 puntos	características	Turbiedad	NTU
Dependiente	La concentración de cloro residual	diarios en diferentes horarios durante los meses de enero,	físico – químicas.	Potencial de hidrogeno.	1-14
Cloro residual	libre es un indicador para garantizar	febrero y marzo en las		Cloro residual libre.	mg/L
libre	la calidad microbiológico del agua potable (Hamdy et al., 2014).	conexiones intradomiciliarias abastecidas por las plantas de tratamiento de agua potable Ichu y Millpo, características físico – químicas.	Comportamiento espacial y temporal del cloro residual libre y en las redes de distribución de agua potable.	Variabilidad espacial de CRL Variabilidad temporal del CRL	mg/L

Anexo 4. Instrumentos de recolección de datos

			Ficha 1 M	onitoreo	de dosis de	cloro					
Título	Título del Relación entre la dosis de cloro y cloro residual libre en el sistema de agua										
proyec		potable en la ciudad de Huancavelica -2021									
Respo	nsable	Huayllani Laurente, Nestor Mike									
S		Zevallos Salvatierra, Anali									
Asesor	r	Dr. Ordoñez Gálvez, Juan Julio									
Lugar				Mes		PTAP					
			Sa	alida de l	a PTAP		Salida de				
							reservorio				
Día	Hora	Caudal	Turbiedad	PH	Cl	oración					
		(L/s)	NTU	1-14	Cloro	Cloro residual	Cloro residual				
					(lb/24hrs)	(mg/L)	(mg/L)				
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
31											
	L		1	l	l						

Titulo del proyecto: Palación entre la dosis de cloro y cloro residual libre en el sistema de agua potable en la ciudad de Huancavelica -2021		Ficha	2. Monitoreo de	cloro res	sidual libre	en las con	exiones	intradomi	ciliarias			
Proyecto: Potable en la ciudad de Huancavelica -2021	Título		Relación entre la dosis de cloro y cloro residual libre en el sistema de agua									
S			potable en la ciudad de Huancavelica -2021									
Asesor Lugar Mes PTAP	Resp	onsable										
Dia	S											
Dia	Ases	or										
Dia Hora de monitoreo N/E Cota msnm Av, Jr, Psje, Calle, etc. Sector Ibre residual (mg/l) Turbiedad NTU 1-14 1-15 1-14 1-14 1-14 1-15 1-14 1-14 1-15 1-14 1-15 1-14 1-15 1-14 1-15 1-14 1-15	Lugai	ŗ							T			
2 3 3 4 5 6 7 8 9 9 10 11 11 11 12 13 13 14 15 16 17 18 19 20 21 22 23 23 24 25 26 27 28 29 30 9	Dia		UTM					libre residual				
3 4 5 6 7 8 9 9 10 11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 24 25 26 27 28 29 30 8	1											
4 5 6 7 8 9 10 11 10 11 12 13 13 14 15 16 16 17 18 19 19 20 20 21 22 23 24 25 26 27 28 29 30 8 9 9 10 10 10 10 10 11 13 11 11 11 11 11 11 11 11 11 12 <t< td=""><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	2											
5 6 7 8 9 9 10 11 11 12 13 14 15 16 17 18 19 10 20 10 21 10 22 10 23 10 24 10 25 10 26 10 27 10 28 10 30 10	3											
6 0	4											
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	5											
8 9 10 11 11 12 13 14 15 16 17 18 19 19 20 21 21 22 23 24 25 26 27 28 29 30	6											
9	7											
10 11 12 13 13 14 15 16 17 18 19 19 20 10 21 10 22 10 23 10 24 10 25 10 26 10 27 10 28 10 30 10	8											
11 12 13 14 15 16 17 18 19 19 20 10 21 10 22 10 23 10 24 10 25 10 26 10 27 10 28 10 30 10	9											
12 13 14 15 16 17 18 19 20 21 21 22 23 24 25 26 27 28 29 30	10											
13 14 15 16 17 18 19 19 20 19 21 19 22 19 23 19 24 19 25 19 26 19 27 19 28 19 30 10	11											
14 15 16 17 18 19 <td< td=""><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	12											
15 16 17 18 19 19 20 19 21 19 22 19 23 19 24 19 25 19 26 19 27 19 28 19 30 10	13											
16 17 18 19 <td< td=""><td>14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	14											
17 18 19 20 21 22 23 24 25 26 27 28 30	15											
18 9 20 9 21 9 22 9 23 9 24 9 25 9 30 9	16											
19	17											
20 1 21 1 22 2 23 2 24 2 25 2 26 2 27 2 28 29 30 30	18											
21 22 23 24 25 26 27 28 29 30	19											
22	20											
23	21											
24	22											
25 26 27 28 29 30	23											
26	24											
27 28 29 30	25											
28 29 30	26											
29 30	27											
30	28											
	29											
31	30											
	31											

			Ficha 1 M	onitoreo	de dosis de o	cloro					
Título	del	Relación e				ual libre en el siste	ema de agua				
proyec		potable en la ciudad de Huancavelica -2021									
Respoi	nsable	Huayllani I									
S		Zevallos Salvatierra, Anali									
Asesor	•	Dr. Ordoñez Gálvez, Juan Julio									
Lugar				Mes		PTAP					
			Sa	alida de l	a PTAP		Salida de				
							reservorio				
Día	Hora	Caudal	Turbiedad	PH	Clo	oración					
		(L/s)	NTU	1-14	Cloro	Cloro residual	Cloro residual				
					(lb/24hrs)	(mg/L)	(mg/L)				
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
31											

	Ficha	2. Monitoreo de	cloro res	sidual libre	en las con	exiones	intradomi	ciliarias			
Título	del .	Relación entre la dosis de cloro y cloro residual libre en el sistema de agua									
proye		potable en la ciudad de Huancavelica -2021									
-	onsable	Huayllani Laurente, Nestor Mike									
S		Zevallos Salvatierra, Anali									
Ases		Dr. Ordoñez Gálvez, Juan Julio									
Lugai	ugar Mes				PTAP	01					
Dia	Hora de monitoreo	Coordenadas UTM N/E	Cota msnm	Dirección Av, Jr, Psje, Calle, etc.		Sector 1-9	Cloro libre residual (mg/l)	Turbiedad NTU	PH 1-14		
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
31											

			Ficha 1 M	onitoreo	de dosis de	cloro					
Título	del	Relación e				ual libre en el siste	ema de agua				
proyec		potable en la ciudad de Huancavelica -2021									
Respo	nsable	Huayllani I									
S		Zevallos Salvatierra, Anali									
Asesor	ſ	Dr. Ordoñez Gálvez, Juan Julio									
Lugar				Mes		PTAP					
			Sa	alida de l	a PTAP		Salida de				
							reservorio				
Día	Hora	Caudal	Turbiedad	PH	Clo	oración					
		(L/s)	NTU	1-14	Cloro	Cloro residual	Cloro residual				
					(lb/24hrs)	(mg/L)	(mg/L)				
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
31											

Titulo del proyecto: Palación entre la dosis de cloro y cloro residual libre en el sistema de agua potable en la ciudad de Huancavelica -2021		Ficha	2. Monitoreo de	cloro res	sidual libre	en las con	exiones	intradomi	ciliarias					
Proyecto: Potable en la ciudad de Huancavelica -2021	Título									a				
S			potable en la c	iudad de	Huancave	lica -2021								
Asesor Lugar Mes PTAP PTAP PTAP PTAP PTAP PTAP PTAP PTAP	Resp	onsable	-											
Dia	S													
Dia	Ases	or	Dr. Ordoñez G	álvez, Jua			_	•						
Dia Hora de monitoreo N/E Cota msnm Av, Jr, Psje, Calle, etc. Sector Ibre residual (mg/l) Turbiedad NTU 1-14 1-15 1-14 1-14 1-14 1-15 1-14 1-14 1-15 1-14 1-15 1-14 1-15 1-14 1-15 1-14 1-15	Lugai	ŗ			Mes		PTAP		T	ı				
2 3 3 4 5 6 7 8 9 9 10 11 11 11 12 13 13 14 15 16 17 18 19 20 21 22 23 23 24 25 26 27 28 29 30 9	Dia		UTM					libre residual						
3 4 5 6 7 8 9 9 10 9 11 11 12 11 13 14 15 16 17 18 19 19 20 21 21 22 23 24 24 25 26 27 28 29 30 9	1													
4 5 6 7 8 9 10 11 10 11 12 13 13 14 15 16 16 17 18 19 19 20 20 21 22 23 24 25 26 27 28 29 30 8 9 9 10 10 10 10 10 11 13 11 11 11 11 11 11 11 11 11 12 <t< td=""><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	2													
5 6 7 8 9 9 10 11 11 12 13 14 15 16 17 18 19 10 20 10 21 10 22 10 23 10 24 10 25 10 26 10 27 10 28 10 30 10	3													
6 0	4													
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	5													
8 9 10 11 11 12 13 14 15 16 17 18 19 19 20 21 21 22 23 24 25 26 27 28 29 30	6													
9	7													
10 11 12 13 13 14 15 16 17 18 19 19 20 10 21 10 22 10 23 10 24 10 25 10 26 10 27 10 28 10 30 10	8													
11 12 13 14 15 16 17 18 19 19 20 10 21 10 22 10 23 10 24 10 25 10 26 10 27 10 28 10 30 10	9													
12 13 14 15 16 17 18 19 20 21 21 22 23 24 25 26 27 28 29 30	10													
13 14 15 16 17 18 19 19 20 19 21 19 22 19 23 19 24 19 25 19 26 19 27 19 28 19 30 10	11													
14 15 16 17 18 19 <td< td=""><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	12													
15 16 17 18 19 19 20 19 21 19 22 19 23 19 24 19 25 19 26 19 27 19 28 19 30 10	13													
16 17 18 19 <td< td=""><td>14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	14													
17 18 19 20 21 22 23 24 25 26 27 28 30	15													
18 9 20 9 21 9 22 9 23 9 24 9 25 9 30 9	16													
19	17													
20 1 21 1 22 2 23 2 24 2 25 2 26 2 27 2 28 29 30 30	18													
21 22 23 24 25 26 27 28 29 30	19													
22	20													
23	21													
24	22													
25 26 27 28 29 30	23													
26	24													
27 28 29 30	25													
28 29 30	26													
29 30	27													
30	28													
	29													
31	30													
ı 	31													

Anexo 5. Validación de instrumentos

SOLICITUD: Validación de instrumentos de recojo de

información.

Dr. ACOSTA SUASNABAR, EUSTERIO HORACIO

Yo Nestor Mike Huayllani Laurente y Anali Zevallos Salvatierra identificados con DNI No 42802536 y 47494110 respectivamente; alumno(a) de la EAP de Ingeniería Ambiental, a usted con el debido respeto me presento y le manifiesto:

Que siendo requisito indispensable el recojo de datos necesarios para la tesis que vengo elaborando titulada: "Relación de dosis de cloro y cloro residual libre en el sistema de agua potable en la ciudad de Huancavelica -2021", solicito a Ud. Se sirva validar el instrumento que le adjunto bajo criterios académicos correspondientes. Para este efecto adjunto los siguientes documentos:

- Instrumentos
- ficha de validación
- Matriz de operacionalización de variables

Por tanto:

A usted, ruego acceder mi petición.

Lima, 09 de abril del 2021

Huayllani Laurente Nestor Mike

D.N.I 42802536

Anali Zevallos Salvatierra

D.N.I 47494110

I. DATOS GENERALES

- 1.1. Apellidos y Nombres: Dr. ACOSTA SUASNABAR, EUSTERIO HORACIO
- 1.2. Cargo e institución donde labora: Docente e Investigador/ UCV Lima Norte
- 1.3. Especialidad o línea de investigación: Calidad Y Gestión De Los Recursos Naturales.
- 1.4. Nombre del instrumento motivo de evaluación: Monitoreo De Dosis de cloro Residual.
- 1.5. Autores del Instrumento: Nestor Mike Huayllani Laurente y Anali Zevallos Salvatierra

II. ASPECTOS DE VALIDACIÓN

CRITERIOS	INDICADORES	INACEPTABLE						MAME EPTAI		ACEPTABLE				
		40	45	50	55	60	65	70	75	80	85	90	95	100
1. CLARIDAD	Esta formulado con lenguaje comprensible.										Х			
2. OBJETIVIDAD	Esta adecuado a las leyes y principios científicos.										Х			
3. ACTUALIDAD	Esta adecuado a los objetivos y las necesidades reales de la investigación.										Х			
4. ORGANIZACIÓN	Existe una organización lógica.										Х			
5. SUFICIENCIA	Toma en cuenta los aspectos metodológicos esenciales										Х			
6.INTENCIONALIDAD	Esta adecuado para valorar las variables de la Hipótesis.										Х			
7. CONSISTENCIA	Se respalda en fundamentos técnicos y/o científicos.										Х			
8. COHERENCIA	Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores.										X			
9. METODOLOGÍA	La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis.										Х			
10. PERTINENCIA	El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico.										X			

III. OPINIÓN DE APLICABILIDAD

- El Instrumento cumple con los Requisitos para su aplicación	Х
- El Instrumento no cumple con los requisitos para su aplicación	

IV. PROMEDIO DE VALORACIÓN

85% Lima, 09 de abril del 2021.

Dr. HORACIO ACOSTAS CIPNº 25450

I. DATOS GENERALES

- 1.1. Apellidos y Nombres: Dr. ACOSTA SUASNABAR, EUSTERIO HORACIO
- 1.2. Cargo e institución donde labora: Docente e Investigador/ UCV Lima Norte
- 1.3. Especialidad o línea de investigación: Calidad Y Gestión De Los Recursos Naturales.
- **1.4.** Nombre del instrumento motivo de evaluación: **Monitoreo de cloro residual libre en las conexiones intradomiciliarias.**
- 1.5. Autores del Instrumento: Nestor Mike Huayllani Laurente y Anali Zevallos Salvatierra

II. ASPECTOS DE VALIDACIÓN

CRITERIOS	INDICADORES	INACEPTABLE					MINIMAMENTE ACEPTABLE			ACEPTABLE				
		40	45	50	55	60	65	70	75	80	85	90	95	100
1. CLARIDAD	Esta formulado con lenguaje comprensible.										Х			
2. OBJETIVIDAD	Esta adecuado a las leyes y principios científicos.										Х			
3. ACTUALIDAD	Esta adecuado a los objetivos y las necesidades reales de la investigación.										Х			
4. ORGANIZACIÓN	Existe una organización lógica.										Х			
5. SUFICIENCIA	Toma en cuenta los aspectos metodológicos esenciales										Х			
6.INTENCIONALIDAD	Esta adecuado para valorar las variables de la Hipótesis.										Х			
7. CONSISTENCIA	Se respalda en fundamentos técnicos y/o científicos.										Х			
8. COHERENCIA	Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores.										X			
9. METODOLOGÍA	La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis.										Х			
10. PERTINENCIA	El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico.										X			

III. OPINIÓN DE APLICABILIDAD

- El Instrumento cumple con los Requisitos para su aplicación	Х
- El Instrumento no cumple con los requisitos para su aplicación	

IV. PROMEDIO DE VALORACIÓN

85%

Lima, 09 de abril del 2021.

Dr. HORACIO ACOSTAS. CIPNº 25450

SOLICITUD: Validación de instrumentos de recojo de información.

Dr. ORDOÑEZ GALVEZ, JUAN JULIO

Yo Nestor Mike Huayllani Laurente y Anali Zevallos Salvatierra identificados con DNI No 42802536 y 47494110 respectivamente; alumno(a) de la EAP de Ingeniería Ambiental, a usted con el debido respeto me presento y le manifiesto:

Que siendo requisito indispensable el recojo de datos necesarios para la tesis que vengo elaborando titulada: "Relación de dosis de cloro y cloro residual libre en el sistema de agua potable en la ciudad de Huancavelica -2021", solicito a Ud. Se sirva validar el instrumento que le adjunto bajo criterios académicos correspondientes. Para este efecto adjunto los siguientes documentos:

- Instrumentos
- ficha de validación
- Matriz de operacionalización de variables

Por tanto:

A usted, ruego acceder mi petición.

Lima, 09 de abril del 2021

Huayllani Laurente Nestor Mike

D.N.I 42802536

Anali Zevallos Salvatierra

D.N.I 47494110

DATOS GENERALES

- 1.1. Apellidos y Nombres: Dr. ORDOÑEZ GALVEZ, JUAN JULIO
- 1.2. Cargo e institución donde labora: Docente e Investigador/ UCV Lima No
- 1.3. Especialidad o línea de investigación: Calidad Y Gestión De Los Recurs
- 1.4. Nombre del instrumento motivo de evaluación: Monitoreo De Dosis de cloro Residual.
- 1.5. Autores del Instrumento: Nestor Mike Huayllani Laurente y Anali Zevallos Salvatierra

ASPECTOS DE VALIDACIÓN

CRITERIOS INDICADORES	INDICADORES		IN	ACE	PTAE	BLE		MINIMAMENTE ACEPTABLE			ACEPTABLE			
		40	45	50	55	60	65	70	75	80	85	90	95	100
1. CLARIDAD	Esta formulado con lenguaje comprensible.											Х		
2. OBJETIVIDAD	Esta adecuado a las leyes y principios científicos.	,										X		
3. ACTUALIDAD	Esta adecuado a los objetivos y las necesidades reales de la investigación.											X		
4. ORGANIZACIÓN	Existe una organización lógica.											X		
5. SUFICIENCIA	Toma en cuenta los aspectos metodológicos esenciales	6										Х		
6.INTENCIONALIDAD	Esta adecuado para valorar las variables de la Hipótesis.	5										Х		
7. CONSISTENCIA	Se respalda en fundamentos técnicos y/o científicos.											Х		
8. COHERENCIA	Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores.											X		
9. METODOLOGÍA	La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis.											X		
10. PERTINENCIA	El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico.											X		

	Gierianies.											İ
III.	OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con los requisitos para su aplicación	SI			Atent	amen	ite,			, ,		
IV.	PROMEDIO DE VALORACIÓN	90)%	,	Juan	Julio	Oldor	ide G	llez	K		

DNI: 08447308 Lima, 09 de abril de 2021.

I. DATOS GENERALES

- 1.1. Apellidos y Nombres: Dr. ORDOÑEZ GALVEZ, JUAN JULIO
- 1.2. Cargo e institución donde labora: Docente e Investigador/ UCV Lima Norte
- 1.3. Especialidad o línea de investigación: Calidad Y Gestión De Los Recursos Naturales.
- 1.4. Nombre del instrumento motivo de evaluación: Monitoreo de cloro residual libre en las conexiones intradomiciliarias.
- 1.5. Autores del Instrumento: Nestor Mike Huayllani Laurente y Anali Zevallos Salvatierra

II. ASPECTOS DE VALIDACIÓN

CRITERIOS			INACEPTABLE						MINIMAMENTE ACEPTABLE			ACEPTABLE			
		40	45	50	55	60	65	70	75	80	85	90	95	100	
1. CLARIDAD	Esta formulado con lenguaje comprensible.											X			
2. OBJETIVIDAD	Esta adecuado a las leyes y principios científicos.											X			
3. ACTUALIDAD	Esta adecuado a los objetivos y las necesidades reales de la investigación.											X			
4. ORGANIZACIÓN	Existe una organización lógica.											X			
5. SUFICIENCIA	Toma en cuenta los aspectos metodológicos esenciales											X			
6.INTENCIONALIDAD	Esta adecuado para valorar las variables de la Hipótesis.											X			
7. CONSISTENCIA	Se respalda en fundamentos técnicos y/o científicos.											X			
8. COHERENCIA	Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores.											X			
9. METODOLOGÍA	La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis.											X			
10. PERTINENCIA	El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico.											X			

III.	OPINION	DE APLIC	CABILIDAD
------	---------	----------	-----------

 El Instrumento cumple con los Requisitos para su aplicación

- El Instrumento no cumple con los requisitos para su aplicación

IV. PROMEDIO DE VALORACIÓN

SI	

90%

DNI: 08447308

Atentamente

Lima, 09 de abril de 2021.

SOLICITUD: Validación de instrumentos de recojo de información.

Mg. Ing. SILVESTRE SOTO, NELSON.

Yo Nestor Mike Huayllani Laurente y Anali Zevallos Salvatierra identificados con DNI No 42802536 y 47494110 respectivamente; alumno(a) de la EAP de Ingeniería Ambiental, a usted con el debido respeto me presento y le manifiesto:

Que siendo requisito indispensable el recojo de datos necesarios para la tesis que vengo elaborando titulada: "Relación de dosis de cloro y cloro residual libre en el sistema de agua potable en la ciudad de Huancavelica -2021", solicito a Ud. Se sirva validar el instrumento que le adjunto bajo criterios académicos correspondientes. Para este efecto adjunto los siguientes documentos:

- Instrumentos
- ficha de validación
- Matriz de operacionalización de variables

Por tanto:

A usted, ruego acceder mi petición.

Lima, 09 de abril del 2021

Huayllani Laurente Nestor Mike

D.N.I 42802536

Anali Zevallos Salvatierra

D.N.I 47494110

DATOS GENERALES

- 1.1. Apellidos y Nombres: Mg. Ing. SILVESTRE SOTO, NELSON
- 1.2. Cargo e institución donde labora: Docente e Investigador/ Universidad Nacional de Huancavelica.
- 1.3. Especialidad o línea de investigación: Calidad Y Gestión De Los Recursos Naturales.
- 1.4. Nombre del instrumento motivo de evaluación: Monitoreo De Dosis de cloro Residual.
- 1.5. Autores del Instrumento: Nestor Mike Huayllani Laurente y Anali Zevallos Salvatierra

ASPECTOS DE VALIDACIÓN II.

CRITERIOS	CRITERIOS INDICADORES		INACEPTABLE						MINIMAMENTE ACEPTABLE			ACEPTABLE			
		40	45	50	55	60	65	70	75	80	85	90	95	100	
1. CLARIDAD	Esta formulado con lenguaje comprensible.											Х			
2. OBJETIVIDAD	Esta adecuado a las leyes y principios científicos.	,										Х			
3. ACTUALIDAD	Esta adecuado a los objetivos y las necesidades reales de la investigación.											X			
4. ORGANIZACIÓN	Existe una organización lógica.											Х			
5. SUFICIENCIA	Toma en cuenta los aspectos metodológicos esenciales	6										Х			
6.INTENCIONALIDAD	Esta adecuado para valorar las variables de la Hipótesis.	6										Х			
7. CONSISTENCIA	Se respalda en fundamentos técnicos y/o científicos.	5										Х			
8. COHERENCIA	Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores.											X			
9. METODOLOGÍA	La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis.											X			
10. PERTINENCIA	El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico.											Х			

III.	OPINION DE APLICABILIDAD
	El Instrumento cumple con

 El Instrumento cumple con los Requisitos para su aplicación

- El Instrumento no cumple con los requisitos para su aplicación

IV. PROMEDIO DE VALORACIÓN

	SI	
ļ		
	90%	

Huancavelica, 09 de abril de 2021.

I. DATOS GENERALES

- 1.1. Apellidos y Nombres: Mg. Ing. SILVESTRE SOTO, NELSON
- 1.2. Cargo e institución donde labora: Docente e Investigador/ Universidad Nacional de Huancavelica
- 1.3. Especialidad o línea de investigación: Calidad Y Gestión De Los Recursos Naturales.
- **1.4.** Nombre del instrumento motivo de evaluación: **Monitoreo de cloro residual libre en las conexiones intradomiciliarias.**
- 1.5. Autores del Instrumento: Nestor Mike Huayllani Laurente y Anali Zevallos Salvatierra

II. ASPECTOS DE VALIDACIÓN

CRITERIOS	INDICADORES	INACEPTABLE				MINIMAMENTE ACEPTABLE			ACEPTABLE					
		40	45	50	55	60	65	70	75	80	85	90	95	100
1. CLARIDAD	Esta formulado con lenguaje comprensible.											X		
2. OBJETIVIDAD	Esta adecuado a las leyes y principios científicos.	,										X		
3. ACTUALIDAD	Esta adecuado a los objetivos y las necesidades reales de la investigación.											X		
4. ORGANIZACIÓN	Existe una organización lógica.											X		
5. SUFICIENCIA	Toma en cuenta los aspectos metodológicos esenciales	3										X		
6.INTENCIONALIDAD	Esta adecuado para valorar las variables de la Hipótesis.	6										X		
7. CONSISTENCIA	Se respalda en fundamentos técnicos y/o científicos.	5										X		
8. COHERENCIA	Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores.											X		
9. METODOLOGÍA	La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis.											X		
10. PERTINENCIA	El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico.											X		

٧.	OPINION	DE APL	.ICABILIDAD)
----	---------	--------	-------------	---

El Instrumento cumple con los Requisitos para su aplicación
El Instrumento no cumple con

 El Instrumento no cumple con los requisitos para su aplicación

VI. PROMEDIO DE VALORACIÓN

SI

90%

TELSON SILVESTRE SOTO
FIG. AMBIENTAL Y SANITARIO
CIP. 249113

Huancavelica, 09 de abril de 2021.

Anexo 6. Identificación de puntos.

PUNTOS DE MUESTREO	Coordenadas UTM N/E	Cota msnm	Dirección Av, Jr, Psje, Calle, etc.	Sector 1-9
PM01	8586777.9300	3768.00	Jr. Santa Inés Pata- Santa Inés Pata	4
PM02	504149.9100	2740.00	Jr. Belén Pata - Yananaco	7
PIVIU2	8586103.9000	3748.00	Jr. Belen Pata - Yananaco	/
PM03	502181.0800	2004.00	Psje. Mariano Girón – Santa	3
PIVIUS	8587003.8500	3684.00	Ana	3
PM04	503880.4600	2042.00	Jr. 20 de enero - Yananaco	7
PIVIU4	8586310.8600	3812.00	Jr. 20 de enero - Yananaco	7
PM05	502101.4900	2000.00	Malecón Santa Rosa – Santa	3
PIVIUS	8586860.9800	3688.00	Malecon Santa Rosa – Santa Ana	3
PM06	503763.2800	2000.00	AV. Andrés Avelino Cáceres –	7
PIVIUG	8586354.2700	3696.00	Yananaco	_ ′
DMOZ	502451.3900	0004.00		4
PM07	8586871.60	3684.00	Jr. Inca Roca – San Cristóbal	1
DMOO	503088.3000	0050.00	In Caraía da las Cadas	
PM08	8586179.1600	3852.00	Jr. García de los Godos – Cercado	5
D1400	502645.8500	2024.22		
PM09	8586799.3500	3824.00	Prolg. Manchego Muñoz – Santa Inés Pata	4
D1440	504365.4800			_
PM10	8586788.3400	3696.00	Av. Ernesto Morales - Ascensión	8
	502377.1600			_
PM11	8586309.0800	3824.00	Jr. Sebastián Barranca –	5
	503145.5500		Cercado	
PM12	8586995.9900	3704.00	Jr. Los Libertadores – Ascensión	8
	501815.5000			
PM13	8586610.8200	3688.00	Jr. Daniel Hernández - Cercado	5
	503254.2200			
PM14	8587009.8800	3704.00	Jr. Alberto Mendoza - Ascensión	8
	501706.0600			
PM15	8586751.3900	3688.00	Jr. Huayna Cápac – San	1
	503056.4400		Cristóbal	
PM16	8586600.9400	3686.00	Jr. Victoria Garma Este -	5
	503044.5900		Cercado	
PM17	8586485.1500	3764.00	Jr. Francisco de Angulo – Santa	3
	503457.8700		Ana	
PM18	8586345.5000	3816.00	Jr. Mariano Solís - Yananaco	7
	502193.6200			
PM19	8586760.5400	3708.00	Av. Los Incas - Santa Inés Pata	4
	503888.4500			
PM20	8586779.8000	3764.00	Av. Félix Crispín Vargas -	8
	501259.2100		Essalud	
PM21	8586675.8500	3800.00	Jr. José Gálvez C – Santa Ana	3
	504090.5100			
PM22	8586222.3800	3772.00	Jr. Augusto B Leguía -	7
	502148.2700	2	Yananaco	
PM23	8587158.6400	3688.00	Jr. Mariscal Castilla – San	1
	503324.0800	3333.00	Cristóbal	l .
PM24	8586883.4800	3700.00	Av. Santos Villa - Ascensión	8
	502270.6200	2. 22.00		
PM25	8586376.7600	3836.00	Jr. Huancayo – Santa Ana	3
	503381.5300	2200.00		
PM26	8586626.0700	3884.00	Jr. 8 de octubre- Yananaco	7
5	501652.2600	JUU-1.00	2 2.25 cottage of tarrando	'
PM27	8586839.7600	3684.00	Jr. Tupac Amaru – San Cristóbal	1
	503147.4700	JUU-T.UU	on rapas rinara Gan Onstobal	'
PM28		5		
I IVIZO	· · · · · · · · · · · · · · · · · · ·		3	
PM29	502792.7900	3603.00	Psje. Angamos – Santa Ana	3
FIVI∠9	8586637.0800	3692.00	rsje. Angamos – Santa Ana	3
	503385.8500 8586408.2400	3784.00	Jr. José Carlos Mariátegui-	-
PM30			IL IUGO LATING MATIATORIII-	7

PM31	8596681.4500 503786.0600	3692.00	Jr. O 'Dónovan – Santa Ana	3
PM32	8587704.2600 500158.9700	3744.00	Jr. Daniel Cunyas Ramos - Pucarumi	9
PM33	8586766.8300 503207.4600	3704.00	Jr. Sinchi Roca - San Cristóbal	1
PM34	8586180.6700 502508.4200	3704.00	Av. Augusto B Leguía – Santa Barbara	6
PM35	8586874.7300 503575.3500	3684.00	Psje. Sucre - Puyhuan	2
PM36	8586556.0200 502391.6700	3692.00	Jr. Acobamba - Yananaco	7
PM37	8586495.3500 502584.2700	3700.00	Jr. Victoria Garma Oeste - Cercado	5
PM38	8586719.8600 502057.0000	3712.00	Jr. San Francisco de Asís - Ascensión	8
PM39	8587363.0900 504227.8000	3682.00	Jr. Agricultura - Puyhuan	2
PM40	8586288.9100 502223.0300	3790.00	Jr. Ricardo Palma - Yananaco	7
PM41	8587018.6300 503649.1000	3684.00	Jr. José Olaya - Puyhuan	2
PM42	8586009.6300 502278.1500	3840.00	Jr. Mercurio – Santa Barbara	6
PM43	8587021.7600 503131.5300	3688.00	Plaza de San Cristóbal	1
PM44	8586277.8400 502999.9500	3780.00	Jr., Manco Cápac - Cercado	5
PM45	8587106.6200 503433.8200	3682.00	Jr. Toparpa - San Cristóbal	1
PM46	8586659.8800 502611.1300	3696.00	Jr. Tambo de Mora - Cercado	5
PM47	8587016.1400 503518.7100	3686.00	Av. 28 de abril – San Cristóbal	5
PM48	8588134.0300 499053.5200	3756.00	Callqui Grande - Pucarumi	9
PM49	8586673.8700 503942.9600	3752.00	Prolg. Francisco Pizarro – Santa Inés Pata	4
PM50	8586672.0300 501808.3700	3836.00	Jr. Córdova – Ascensión.	8
PM51	8586478.8900 503344.7800	3802.00	Psje. Tumbes - Cercado	5
PM52	8586702.8000 502220.7400	3692.00	Av. San Juan Evangelista - Ascensión	8
PM53	8586334.0900 503470.1700	3832.00	Av. Los Chancas – Santa Barbara	6
PM54	8587160.4900 501835.9900	3704.00	Psje. Boquerón - Ascensión	8
PM55	8586332.3600 502630.6300	3801.00	Jr. García de los Godos - Cercado	5
PM56	8587509.8500 500661.1000	3744.00	Jr. Tupac Amaru - Pucarumi	9
PM57	8586652.3000 501225.8900	3750.00	Av. Andrés Avelino Cáceres - Yananaco	7
PM58	8587811.0900 499966.0100	3736.00	Prolg. Santos Villa - Pucarumi	9
PM59	8586782.1500 502239.2800	3704.00	Jr. Hildauro Castro - Ascensión	8
PM60	8586980.1600 500985.8400	3760.00	Jr. Santa Rosa - Pucarumi	9
PM61	8586599.1900 501495.7700	3864.00	Av. Andrés Avelino Cáceres - Yananaco	7
PM62	8586197.7600 509993.6300	3808.00	Jr. Mercurio – Santa Bárbara	6

Anexo 7. Base de datos obtenidos.

CLORO LIB	RE SALIDA DE PI	LANTA CHU	CLORO LIBRE SALIDA DE PLANTA MILLPO					
ENERO	FEBRERO	MARZO	ENERO	FEBRERO	MARZO			
1.750	1.790	1.750	1.550	2.070	2.440			
1.620	1.730	1.680	2.010	2.040	2.010			
1.490	1.830	1.810	1.660	1.890	1.860			
1.490	2.120	2.130	1.360	1.120	1.970			
1.680	1.850	1.600	1.430	2.000	2.050			
1.640	1.930	1.890	1.920	1.800	1.900			
1.740	1.820	2.050	1.730	1.680	1.560			
1.800	2.150	1.880	1.680	1.880	1.720			
1.780	1.760	1.950	1.910	1.670	1.510			
1.680	1.830	1.920	1.600	1.480	1.800			
1.750	1.810	2.180	1.700	2.500	1.740			
1.610	1.780	1.850	1.540	1.540	1.480			
1.770	1.640	1.970	1.860	1.450	1.300			
1.810	1.960	1.520	1.840	1.690	1.800			
1.960	1.730	1.740	1.800	1.470	1.390			
1.750	1.820	2.190	1.400	1.900	2.200			
1.880	1.660	2.010	1.360	1.840	1.650			
1.970	1.810	2.140	1.250	1.700	1.820			
1.680	1.720	1.800	2.020	1.740	1.640			
1.900	1.640	1.810	1.990	1.700	1.810			
1.880	1.770	1.720	1.850	2.070	1.860			
1.730	2.050	1.980	1.780	1.790	1.690			
1.710	2.000	2.050	2.110	2.000	1.630			
1.770	1.850	2.010	1.850	1.980	1.360			
1.760	2.040	1.900	2.030	1.800	1.730			
2.180	1.870	2.030	1.830	2.160	1.750			
2.050	1.670	1.680	1.680	1.840	1.710			
1.900	1.970	1.950	1.820	1.950	1.780			
1.760		1.860	2.140		1.890			
1.730		1.740	1.870		1.800			
1.580		1.900	1.840		1.390			

CLORO RES	IDUAL LIBRE	EN REDES	PROM	EDIO DE LAS 2	2 PLANTAS	PROMED CORREI	
ENERO	FEBRERO	MARZO	ENERO	FEBRERO	MARZO	PLANTAS	REDES
0.835	0.980	1.115	1.650	1.930	2.095	1.892	0.977
0.785	0.970	1.075	1.815	1.885	1.845	1.848	0.943
1.235	1.300	1.190	1.575	1.860	1.835	1.757	1.242
1.140	1.665	1.290	1.425	1.620	2.050	1.698	1.365
0.895	1.100	1.155	1.555	1.925	1.825	1.768	1.050
0.945	1.460	0.865	1.780	1.865	1.895	1.847	1.090
1.290	1.195	1.080	1.735	1.750	1.805	1.763	1.188
1.260	1.350	0.920	1.740	2.015	1.800	1.852	1.177
0.950	0.885	0.880	1.845	1.715	1.730	1.763	0.905
0.965	1.470	1.105	1.640	1.655	1.860	1.718	1.180
1.130	1.070	1.150	1.725	2.155	1.960	1.947	1.117
0.915	1.075	1.375	1.575	1.660	1.665	1.633	1.122
1.060	0.670	1.155	1.815	1.545	1.635	1.665	0.962
0.875	0.995	1.285	1.825	1.825	1.660	1.770	1.052
0.885	0.815	1.210	1.880	1.600	1.565	1.682	0.970
1.060	0.775	1.200	1.575	1.860	2.195	1.877	1.012
0.750	1.355	1.380	1.620	1.750	1.830	1.733	1.162
1.655	0.970	1.160	1.610	1.755	1.980	1.782	1.262
1.460	1.505	1.455	1.850	1.730	1.720	1.767	1.473
1.045	1.215	1.370	1.945	1.670	1.810	1.808	1.210
1.135	0.890	1.260	1.865	1.920	1.790	1.858	1.095
1.085	1.375	1.410	1.755	1.920	1.835	1.837	1.290
0.885	1.095	1.095	1.910	2.000	1.840	1.917	1.025
1.185	1.300	0.805	1.810	1.915	1.685	1.803	1.097
1.160	1.230	0.895	1.895	1.920	1.815	1.877	1.095
0.970	1.370	1.115	2.005	2.015	1.890	1.970	1.152
1.010	0.980	1.015	1.865	1.755	1.695	1.772	1.002
1.300	0.945	1.320	1.860	1.960	1.865	1.895	1.188
1.280		1.445	1.950		1.875	1.913	1.363
0.925		1.280	1.800		1.770	1.785	1.103
0.985		1.235	1.710		1.645	1.678	1.110
	-				PROMEDIO	1.802	1.128

Anexo 8. Datos de campo

	Ficha 1. Monitoreo de dosis de cloro										
Título						ual libre en el siste	ema de agua				
proyec		•	la ciudad de								
Respo	nsables	•	aurente, Nes		!						
			ilvatierra, An								
Asesor	•		ez Gálvez, Jua	1	1	Γ	1				
Lugar	ı	HUANCAV		Mes	ENERO	PTAP	ICHU				
			Sa	alida de l	a PTAP		Salida de				
_,			T	Г	T .		reservorio				
Día	Hora	Caudal	Turbiedad	PH	Cloración						
		(I/s)	NTU	1-14			Cloro residual				
					(lb/24hrs)	(mg/l)	(mg/l)				
1	8:00	41.44	0.22	6.24	25	1.75	1.69				
2	8:30	39.98	0.37	6.48	25	1.62	1.50				
3	7:00	45.08	0.49	6.47	26	1.49	1.32				
4	7:07	39.81	0.20	6.23	25	1.49	1.13				
5	8:00	36.99	0.29	6.25	26	1.68	1.44				
6	7:10	40.48	0.28	6.22	26	1.64	1.29				
7	8:05	41.78	0.48	6.12	30	1.74	1.55				
8	7:20	41.77	0.31	5.98	30	1.80	1.50				
9	7:15	46.55	0.28	6.03	30	1.78	1.38				
10	7:29	44.51	0.55	6.20	30	1.68	1.32				
11	8:08	38.07	0.43	6.05	29	1.75	1.55				
12	7:25	41.53	0.54	6.22	28	1.61	1.42				
13	8:00	41.44	0.41	6.20	30	1.77	1.50				
14	8:30	40.52	0.27	6.15	30	1.81	1.46				
15	7:00	40.72	0.22	6.29	29	1.96	1.95				
16	7:07	41.24	0.37	6.02	27	1.75	1.52				
17	8:00	43.85	0.53	6.04	30	1.88	1.39				
18	7:10	41.89	0.48	6.30	28	1.97	1.54				
19	7:02	41.15	0.28	6.37	27	1.68	1.56				
20	7:16	41.92	0.55	6.47	27	1.90	1.85				
21	7:46	43.65	0.27	6.25	27	1.88	1.34				
22	7:50	50.38	0.50	6.31	30	1.73	1.70				
23	7:22	44.66	0.66	6.52	30	1.71	1.64				
24	7:51	45.75	0.81	6.84	28	1.77	1.40				
25	7:26	41.67	0.68	6.58	26	1.76	1.51				
26	7:44	42.91	0.50	6.51	30	2.18	1.49				
27	7:28	42.86	0.85	6.83	30	2.05	1.48				
28	7:20	46.57	0.45	6.47	30	1.90	1.49				
29	7:10	41.67	1.24	6.35	30	1.76	1.61				
30	7:32	41.37	1.19	6.39	28	1.73	1.58				
31	7:29	43.68	0.65	6.37	28	1.58	1.27				

	Ficha 1. Monitoreo de dosis de cloro										
Título o			ntre la dosis la ciudad de			ual libre en el siste	ema de agua				
Respor	nsables	Huayllani L	aurente, Nes	tor Mike	!						
Zevallos Salvatierra, Anali											
Asesor Dr. Ordoñez Gálvez, Juan Julio											
Lugar		HUANCAVI	ELICA	Mes	FEBRERO	PTAP	ICHU				
				Salida de							
							reservorio				
Día	Hora	Caudal	Turbiedad	PH	Cl	oración					
		(l/s)	NTU	1-14	Cloro	Cloro residual	Cloro residual				
					(lb/24hrs)	(mg/l)	(mg/l)				
1	7:00	41.04	0.33	6.56	26	1.79	1.45				
2	8:05	40.96	0.29	6.40	28	1.73	1.48				
3	7:30	41.62	0.20	6.58	30	1.83	1.46				

			Ficha 1. M	onitoreo	de dosis de	cloro	
Título (ual libre en el siste	ema de agua
proyec			la ciudad de				
Respor	nsables	Huayllani L					
		Zevallos Sa	ilvatierra, Ana	ali			
Asesor	•	Dr. Ordoñe	ez Gálvez, Jua	n Julio			
Lugar		HUANCAV	ELICA	Mes	MARZO	PTAP	ICHU
			Sa	alida de l	a PTAP		Salida de
							reservorio
Día	Hora	Caudal	Turbiedad	PH	Cl	oración	
		(l/s)	NTU	1-14	Cloro	Cloro residual	Cloro residual
					(lb/24hrs)	(mg/l)	(mg/l)
1	7:00	41.60	0.51	7.15	28	1.75	1.38
2	7:07	41.02	0.85	7.23	26	1.68	1.20
3	8:00	40.43	0.42	7.09	28	1.81	1.50
4	7:10	40.75	0.55	6.63	28	2.13	1.70
5	8:05	40.41	0.30	7.13	28	1.60	1.51
6	7:25	40.84	0.28	7.09	28	1.89	1.57
7	7:36	39.62	0.26	6.60	27	2.05	1.14
8	8:00	41.11	0.44	6.69	26	1.88	1.62
9	7:15	40.88	0.29	6.82	26	1.95	1.56
10	7:36	40.47	0.47	6.72	26	1.92	1.48
11	7:56	41.23	0.66	6.91	27	2.18	1.43
12	7:15	41.93	0.32	6.94	26	1.85	1.51
13	7:17	41.07	0.53	7.24	26	1.97	1.42

14 7:50 46.44 0.41 7.09 27 1.52 1.47 15 7:13 41.38 0.34 6.90 30 1.74 1.66 16 7:29 40.60 0.51 6.85 30 2.19 1.45 17 7:31 42.03 0.23 7.02 29 2.01 1.53 18 7:19 42.19 0.35 7.09 30 2.14 1.49 19 7:29 40.50 0.44 6.85 29 1.80 1.52 20 7:31 40.65 0.60 6.81 27 1.81 1.46 21 7:20 44.95 0.89 6.89 31 1.72 1.47 22 7:31 41.03 2.22 6.62 28 1.98 1.54 23 7:21 38.90 0.82 6.67 28 2.05 1.58 24 7:19 41.62 0.99 6.65								
16 7:29 40.60 0.51 6.85 30 2.19 1.45 17 7:31 42.03 0.23 7.02 29 2.01 1.53 18 7:19 42.19 0.35 7.09 30 2.14 1.49 19 7:29 40.50 0.44 6.85 29 1.80 1.52 20 7:31 40.65 0.60 6.81 27 1.81 1.46 21 7:20 44.95 0.89 6.89 31 1.72 1.47 22 7:31 41.03 2.22 6.62 28 1.98 1.54 23 7:21 38.90 0.82 6.67 28 2.05 1.58 24 7:19 41.62 0.99 6.65 30 2.01 1.23 25 7:26 42.68 0.86 6.96 30 1.90 1.47 26 7:20 42.34 0.71 6.43	14	7:50	46.44	0.41	7.09	27	1.52	1.47
17 7:31 42.03 0.23 7.02 29 2.01 1.53 18 7:19 42.19 0.35 7.09 30 2.14 1.49 19 7:29 40.50 0.44 6.85 29 1.80 1.52 20 7:31 40.65 0.60 6.81 27 1.81 1.46 21 7:20 44.95 0.89 6.89 31 1.72 1.47 22 7:31 41.03 2.22 6.62 28 1.98 1.54 23 7:21 38.90 0.82 6.67 28 2.05 1.58 24 7:19 41.62 0.99 6.65 30 2.01 1.23 25 7:26 42.68 0.86 6.96 30 1.90 1.47 26 7:20 42.34 0.71 6.43 28 2.03 1.51 27 7:21 43.75 1.69 6.74	15	7:13	41.38	0.34	6.90	30	1.74	1.66
18 7:19 42.19 0.35 7.09 30 2.14 1.49 19 7:29 40.50 0.44 6.85 29 1.80 1.52 20 7:31 40.65 0.60 6.81 27 1.81 1.46 21 7:20 44.95 0.89 6.89 31 1.72 1.47 22 7:31 41.03 2.22 6.62 28 1.98 1.54 23 7:21 38.90 0.82 6.67 28 2.05 1.58 24 7:19 41.62 0.99 6.65 30 2.01 1.23 25 7:26 42.68 0.86 6.96 30 1.90 1.47 26 7:20 42.34 0.71 6.43 28 2.03 1.51 27 7:21 43.75 1.69 6.74 28 1.68 1.48 28 7:00 40.95 0.48 6.50	16	7:29	40.60	0.51	6.85	30	2.19	1.45
19 7:29 40.50 0.44 6.85 29 1.80 1.52 20 7:31 40.65 0.60 6.81 27 1.81 1.46 21 7:20 44.95 0.89 6.89 31 1.72 1.47 22 7:31 41.03 2.22 6.62 28 1.98 1.54 23 7:21 38.90 0.82 6.67 28 2.05 1.58 24 7:19 41.62 0.99 6.65 30 2.01 1.23 25 7:26 42.68 0.86 6.96 30 1.90 1.47 26 7:20 42.34 0.71 6.43 28 2.03 1.51 27 7:21 43.75 1.69 6.74 28 1.68 1.48 28 7:00 40.95 0.48 6.50 30 1.95 1.37 29 7:19 41.32 0.45 6.72 26 1.86 1.74 30 7:45 41.20 0.82	17	7:31	42.03	0.23	7.02	29	2.01	1.53
20 7:31 40.65 0.60 6.81 27 1.81 1.46 21 7:20 44.95 0.89 6.89 31 1.72 1.47 22 7:31 41.03 2.22 6.62 28 1.98 1.54 23 7:21 38.90 0.82 6.67 28 2.05 1.58 24 7:19 41.62 0.99 6.65 30 2.01 1.23 25 7:26 42.68 0.86 6.96 30 1.90 1.47 26 7:20 42.34 0.71 6.43 28 2.03 1.51 27 7:21 43.75 1.69 6.74 28 1.68 1.48 28 7:00 40.95 0.48 6.50 30 1.95 1.37 29 7:19 41.32 0.45 6.72 26 1.86 1.74 30 7:45 41.20 0.82 6.48	18	7:19	42.19	0.35	7.09	30	2.14	1.49
21 7:20 44.95 0.89 6.89 31 1.72 1.47 22 7:31 41.03 2.22 6.62 28 1.98 1.54 23 7:21 38.90 0.82 6.67 28 2.05 1.58 24 7:19 41.62 0.99 6.65 30 2.01 1.23 25 7:26 42.68 0.86 6.96 30 1.90 1.47 26 7:20 42.34 0.71 6.43 28 2.03 1.51 27 7:21 43.75 1.69 6.74 28 1.68 1.48 28 7:00 40.95 0.48 6.50 30 1.95 1.37 29 7:19 41.32 0.45 6.72 26 1.86 1.74 30 7:45 41.20 0.82 6.48 26 1.74 1.41	19	7:29	40.50	0.44	6.85	29	1.80	1.52
22 7:31 41.03 2.22 6.62 28 1.98 1.54 23 7:21 38.90 0.82 6.67 28 2.05 1.58 24 7:19 41.62 0.99 6.65 30 2.01 1.23 25 7:26 42.68 0.86 6.96 30 1.90 1.47 26 7:20 42.34 0.71 6.43 28 2.03 1.51 27 7:21 43.75 1.69 6.74 28 1.68 1.48 28 7:00 40.95 0.48 6.50 30 1.95 1.37 29 7:19 41.32 0.45 6.72 26 1.86 1.74 30 7:45 41.20 0.82 6.48 26 1.74 1.41	20	7:31	40.65	0.60	6.81	27	1.81	1.46
23 7:21 38.90 0.82 6.67 28 2.05 1.58 24 7:19 41.62 0.99 6.65 30 2.01 1.23 25 7:26 42.68 0.86 6.96 30 1.90 1.47 26 7:20 42.34 0.71 6.43 28 2.03 1.51 27 7:21 43.75 1.69 6.74 28 1.68 1.48 28 7:00 40.95 0.48 6.50 30 1.95 1.37 29 7:19 41.32 0.45 6.72 26 1.86 1.74 30 7:45 41.20 0.82 6.48 26 1.74 1.41	21	7:20	44.95	0.89	6.89	31	1.72	1.47
24 7:19 41.62 0.99 6.65 30 2.01 1.23 25 7:26 42.68 0.86 6.96 30 1.90 1.47 26 7:20 42.34 0.71 6.43 28 2.03 1.51 27 7:21 43.75 1.69 6.74 28 1.68 1.48 28 7:00 40.95 0.48 6.50 30 1.95 1.37 29 7:19 41.32 0.45 6.72 26 1.86 1.74 30 7:45 41.20 0.82 6.48 26 1.74 1.41	22	7:31	41.03	2.22	6.62	28	1.98	1.54
25 7:26 42.68 0.86 6.96 30 1.90 1.47 26 7:20 42.34 0.71 6.43 28 2.03 1.51 27 7:21 43.75 1.69 6.74 28 1.68 1.48 28 7:00 40.95 0.48 6.50 30 1.95 1.37 29 7:19 41.32 0.45 6.72 26 1.86 1.74 30 7:45 41.20 0.82 6.48 26 1.74 1.41	23	7:21	38.90	0.82	6.67	28	2.05	1.58
26 7:20 42.34 0.71 6.43 28 2.03 1.51 27 7:21 43.75 1.69 6.74 28 1.68 1.48 28 7:00 40.95 0.48 6.50 30 1.95 1.37 29 7:19 41.32 0.45 6.72 26 1.86 1.74 30 7:45 41.20 0.82 6.48 26 1.74 1.41	24	7:19	41.62	0.99	6.65	30	2.01	1.23
27 7:21 43.75 1.69 6.74 28 1.68 1.48 28 7:00 40.95 0.48 6.50 30 1.95 1.37 29 7:19 41.32 0.45 6.72 26 1.86 1.74 30 7:45 41.20 0.82 6.48 26 1.74 1.41	25	7:26	42.68	0.86	6.96	30	1.90	1.47
28 7:00 40.95 0.48 6.50 30 1.95 1.37 29 7:19 41.32 0.45 6.72 26 1.86 1.74 30 7:45 41.20 0.82 6.48 26 1.74 1.41	26	7:20	42.34	0.71	6.43	28	2.03	1.51
29 7:19 41.32 0.45 6.72 26 1.86 1.74 30 7:45 41.20 0.82 6.48 26 1.74 1.41	27	7:21	43.75	1.69	6.74	28	1.68	1.48
30 7:45 41.20 0.82 6.48 26 1.74 1.41	28	7:00	40.95	0.48	6.50	30	1.95	1.37
	29	7:19	41.32	0.45	6.72	26	1.86	1.74
31 7:50 40.40 0.51 6.71 27 1.90 1.61	30	7:45	41.20	0.82	6.48	26	1.74	1.41
	31	7:50	40.40	0.51	6.71	27	1.90	1.61

			Fishe 1 M	onitoroo	do docio do	oloro	
Título	401	Dologión o			de dosis de		omo do ogua
proyec			la ciudad de			ual libre en el siste	ema de agua
	nsables	•	aurente, Nes				
respoi	isables				•		
			lvatierra, An				
Asesor			ez Gálvez, Jua	ı	1	Г	1
Lugar		HUANCAVI	ELICA	Mes	ENERO	PTAP	MILLPO
			Sa	alida de l	a PTAP		Salida de
							reservorio
Día	Hora	Caudal	Turbiedad	PH	Cl	oración	
		(I/s)	NTU	1-14	Cloro	Cloro residual	Cloro residual
					(lb/24hrs)	(mg/l)	(mg/l)
1	8:00	86.80	1.38	7.51	30	1.55	0.91
2	8:09	85.90	1.00	7.54	30	2.01	1.05
3	8:15	87.21	0.97	7.33	30	1.66	0.95
4	7:30	85.29	1.07	7.36	30	1.36	1.08
5	7:22	84.30	0.71	7.44	32	1.43	1.25
6	8:15	84.94	0.92	7.61	36	1.92	1.04
7	7:20	86.96	1.30	7.47	38	1.73	1.39
8	8:12	85.99	1.48	7.50	34	1.68	1.24
9	7:50	86.26	0.68	7.48	36	1.91	1.16
10	8:00	88.45	1.47	7.56	36	1.60	1.23
11	8:10	86.20	1.15	7.62	34	1.70	1.02
12	7:15	86.65	1.20	7.95	34	1.54	1.31
13	8:10	85.14	2.20	8.16	38	1.86	1.50

14	7:42	85.15	2.10	8.17	34	1.84	1.43
15	8:00	85.88	0.25	7.13	30	1.80	1.51
16	7:44	90.62	0.97	7.65	42	1.40	1.33
17	8:02	92.98	0.60	7.56	36	1.36	1.91
18	8:15	85.28	0.53	7.52	30	1.25	1.83
19	8:14	85.15	0.55	7.50	38	2.02	1.69
20	7:53	85.76	0.24	7.58	40	1.99	1.14
21	7:22	85.37	0.20	7.68	36	1.85	1.86
22	8:01	88.05	0.40	7.37	36	1.78	1.41
23	7:50	89.04	0.23	7.61	43	2.11	1.31
24	7:51	88.63	0.21	7.59	42	1.85	1.37
25	8:03	86.99	0.36	7.58	40	2.03	1.63
26	7:33	85.78	0.21	7.64	42	1.83	1.18
27	7:54	83.54	0.25	7.58	40	1.68	1.80
28	8:11	88.48	0.20	7.52	42	1.82	1.60
29	7:21	86.55	1.07	7.92	40	2.14	1.48
30	8:12	91.02	1.80	8.17	38	1.87	1.25
31	7:10	91.05	1.05	8.14	40	1.84	1.24

			Ficha 1. Monitoreo de dosis de cloro									
Título (del	Relación e	elación entre la dosis de cloro y cloro residual libre en el sistema de agua									
proyec	to:	potable en	la ciudad de	Huancav	/elica -2021		_					
Respoi	nsables	Huayllani L	aurente, Nes	tor Mike	<u> </u>							
		Zevallos Sa	evallos Salvatierra, Anali									
Asesor	•	Dr. Ordoñe	r. Ordoñez Gálvez, Juan Julio									
Lugar		HUANCAVI	HUANCAVELICA Mes FEBRERO PTAP									
		Salida de la PTAP					Salida de					
							reservorio					
Día	Hora	Caudal	Turbiedad	PH	Cl	oración						
		(l/s)	NTU	1-14	Cloro	Cloro residual	Cloro residual					
		(lb/24hrs) (mg/l)				(mg/l)	(mg/l)					
1	8:00	85.89	0.94	8.21	36	2.07	1.40					
2	8:15	84.98	1.08	8.27	36	2.04	1.53					
3	8:00	84.66	1.20	8.17	36	1.89	1.45					

	Ficha 1. Monitoreo de dosis de cloro							
Título del proyecto:		Relación entre la dosis de cloro y cloro residual libre en el sistema de agua potable en la ciudad de Huancavelica -2021						
Responsables	Huayllani Laurente, Nes	Huayllani Laurente, Nestor Mike						
	Zevallos Salvatierra, An	ali						
Asesor	Dr. Ordoñez Gálvez, Juan Julio							
Lugar	HUANCAVELICA Mes MARZO PTAP MILLPO							

			Salida de la PTAP						
							reservorio		
Día	Hora	Caudal	Turbiedad	PH	Cl	oración			
		(l/s)	NTU	1-14	Cloro	Cloro residual	Cloro residual		
					(lb/24hrs)	(mg/l)	(mg/l)		
1	8:00	88.20	0.26	7.63	30	2.44	1.38		
2	8:05	85.96	1.42	8.11	34	2.01	1.19		
3	8:05	83.74	0.27	7.74	30	1.86	1.27		
4	8:15	83.38	0.26	7.54	30	1.97	1.47		
5	7:18	84.49	0.17	7.50	36	2.05	1.31		
6	8:01	86.29	0.35	7.42	34	1.90	1.25		
7	8:10	90.06	0.28	7.41	34	1.56	1.90		
8	7:50	89.03	0.41	7.43	36	1.72	0.95		
9	8:05	83.51	0.27	7.48	34	1.51	1.81		
10	7:29	85.27	0.30	7.19	38	1.80	1.26		
11	7:20	85.17	0.31	7.53	40	1.74	1.02		
12	7:41	84.90	0.27	7.60	34	1.48	1.21		
13	8:12	85.51	0.30	7.69	30	1.30	1.34		
14	7:22	88.80	0.26	7.51	36	1.80	1.37		
15	7:10	85.69	0.24	7.59	30	1.39	1.60		
16	7:46	86.55	0.46	8.01	40	2.20	1.57		
17	8:10	86.04	0.33	7.46	34	1.65	1.51		
18	7:10	85.16	0.54	7.53	36	1.82	1.02		
19	7:35	86.73	0.20	7.57	35	1.64	1.79		
20	7:15	88.50	0.29	7.69	40	1.81	1.72		
21	7:26	89.94	0.80	7.86	40	1.86	1.45		
22	8:01	86.58	1.14	8.19	32	1.69	1.40		
23	7:10	87.82	1.32	8.26	30	1.63	1.42		
24	7:28	86.09	1.45	8.21	30	1.36	1.21		
25	7:38	85.79	1.08	7.62	40	1.73	1.85		
26	7:35	87.94	0.47	7.27	38	1.75	1.22		
27	7.30	85.61	0.25	7.64	40	1.71	1.17		
28	8:00	90.12	0.34	7.70	40	1.78	1.39		
29	7:10	86.10	0.30	7.56	36	1.89	1.38		
30	7:15	88.90	0.52	7.58	36	1.80	1.60		
31	7:26	89.40	0.40	7.40	30	1.39	1.56		

		Ficha 2. Mor	nitoreo de	cloro re	esidual libre en las conexior	nes intrad	domiciliarias	S	
Título	del .	Relación entre la	dosis de	cloro y	cloro residual libre en el sis	tema de	agua potab	ole en la ciud	lad de
proye	ecto:	Huancavelica -20)21						
Resp	onsables	Huayllani Lauren	te, Nesto	r Mike					
•		Zevallos Salvatie	rra. Anali						
Ases	or	Dr. Ordoñez Gálv							
			/CZ, Juan .		ENERG	DTAD	I CLUL NAI	1100	
Luga	r	HUANCAVELICA		Mes	ENERO	PTAP	ICHU - MI	LLPO	
Dia	Hora de monitoreo	Coordenadas UTM N/E	Cota msnm		Dirección Av, Jr, Psje, Calle, etc.	Sector 1-9	Cloro libre residual (mg/l)	Turbiedad NTU	PH 1-14
1	9:05	8586777.9300 504149.9100	3768.00	Jr. S	Santa Inés Pata-Santa Inés Pata	4	0.83	1.18	6.98
	10:48	8586103.9000 502181.0800	3748.00)	Jr. Belén Pata - Yananaco	7	0.84	0.91	6.48
2	9:03	8587003.8500 503880.4600	3684.00) Ps	je. Mariano Girón – Santa Ana	3	0.96	0.56	6.72
	10:00	8586310.8600 502101.4900	3812.00)	Jr. 20 de enero - Yananaco	7	0.61	0.60	7.01
3	9:00	8586860.9800 503763.2800	3688.00) Ma	lecón Santa Rosa – Santa Ana	3	1.27	0.87	7.14
	10:12	8586354.2700 502451.3900	3696.00) Α	V. Andrés Avelino Cáceres – Yananaco	7	1.20	0.89	7.04
4	9:15	8586871.60 503088.3000	3684.00)	Ir. Inca Roca – San Cristóbal	1	1.40	1.35	7.54
	9:50	8586179.1600 502645.8500	3852.00	Jr.	García de los Godos – Cercado	5	0.88	1.63	7.49

		Ficha 2. Moi	nitoreo de	cloro re	esidual libre en las conexior	nes intrad	domiciliaria	S	
Título proye		Relación entre la Huancavelica -20		cloro y	cloro residual libre en el sis	tema de	agua potak	ole en la ciud	dad de
Resp	onsables	Huayllani Lauren	te, Nesto	r Mike					
		Zevallos Salvatie							
Ases	or	Dr. Ordoñez Gálv		Julio					
Luga	r	HUANCAVELICA	,	Mes	FEBRERO	PTAP	ICHU - MI	LLPO	
8									
Dia	Hora de monitoreo	Coordenadas UTM N/E	Cota msnm		Dirección Av, Jr, Psje, Calle, etc.	Sector 1-9	Cloro libre residual (mg/l)	Turbiedad NTU	PH 1-14
1	9:05	8586777.9300 504149.9100	3768.00	Jr. S	anta Inés Pata- Santa Inés Pata	4	0.80	1.24	8.30
	10:00	8586103.9000 502181.0800	3748.00		Jr. Belén Pata - Yananaco	7	1.16	0.58	6.67
2	9:03	8587003.8500 503880.4600	3684.00		je. Mariano Girón – Santa Ana	3	0.88	0.79	7.41
	9:44	8586310.8600 502101.4900	3812.00		Jr. 20 de enero - Yananaco	7	1.06	0.70	7.74
3	9:36	8586860.9800 503763.2800	3688.00	Ma	lecón Santa Rosa – Santa Ana	3	1.35	0.76	7.97
	10:15	8586354.2700 502451.3900	3696.00	Α	V. Andrés Avelino Cáceres – Yananaco	7	1.25	0.33	8.08
4	10:00	8586871.60 503088.3000	3684.00		lr. Inca Roca – San Cristóbal	1	1.92	1.27	8.26
	10:44	8586179.1600 502645.8500	3852.00		García de los Godos – Cercado	5	1.41	1.27	8.37
5	9:36	8586799.3500 504365.4800	3824.00	Prolg	. Manchego Muñoz – Santa Inés Pata	4	0.97	0.46	6.67
	10:20	8586788.3400 502377.1600	3696.00		. Ernesto Morales - Ascensión	8	1.23	0.72	6.65
6	9:02	8586309.0800 503145.5500	3824.00		Sebastián Barranca – Cercado	5	1.41	0.30	7.14
	9:41	8586995.9900 501815.5000	3704.00		Los Libertadores – Ascensión	8	1.51	0.39	6.98
7	9:06	8586610.8200 503254.2200	3688.00		. Daniel Hernández - Cercado	5	1.18	0.69	6.99
	9:54	8587009.8800 501706.0600	3704.00	Jr.	Alberto Mendoza - Ascensión	8	1.21	0.93	7.61
8	9:08	8586751.3900 503056.4400	3688.00		Huayna Cápac – San Cristóbal	1	1.22	0.17	7.81
	10:00	8586600.9400 503044.5900	3686.00		Victoria Garma Este - Cercado	5	1.48	0.33	6.44
9	10:00	8586485.1500 503457.8700	3764.00		rancisco de Angulo – Santa Ana	3	0.88	0.59	7.13
	10:52	8586345.5000	3816.00		Ir. Mariano Solís - Yananaco	7	0.89	0.27	7.36

		502193.6200						
10	9:05	8586760.5400 503888.4500	3708.00	Av. Los Incas - Santa Inés Pata	4	1.49	0.48	6.53
	10:10	8586779.8000 501259.2100	3764.00	Av. Félix Crispín Vargas - Essalud	8	1.45	0.52	6.49
11	9:07	8586675.8500 504090.5100	3800.00	Jr. José Gálvez C – Santa Ana	3	1.29	0.47	6.53
	10:15	8586222.3800 502148.2700	3772.00	Jr. Augusto B Leguía - Yananaco	7	0.85	0.25	7.47
12	9:36	8587158.6400 503324.0800	3688.00	Jr. Mariscal Castilla – San Cristóbal	1	1.05	0.35	7.50
	10:55	8586883.4800 502270.6200	3700.00	Av. Santos Villa - Ascensión	8	1.10	1.19	6.93
13	9:40	8586376.7600 503381.5300	3836.00	Jr. Huancayo – Santa Ana	3	0.88	0.13	7.54
	11:02	8586626.0700 501652.2600	3884.00	Jr. 8 de octubre- Yananaco	7	0.46	0.89	7.63
14	9:12	8586839.7600 503147.4700	3684.00	Jr. Tupac Amaru – San Cristóbal	1	0.82	0.55	7.52
	10:15	8586323.6700 502792.7900	3680.00	Jr. Guillermo Molloy - Cercado	5	1.17	0.86	6.94
15	9:15	8586637.0800 503385.8500	3692.00	Psje. Angamos – Santa Ana	3	1.12	0.19	7.77
	10:20	8586408.2400 501819.4000	3784.00	Jr. José Carlos Mariátegui- Yananaco	7	0.51	0.72	8.04
16	9:09	8596681.4500 503786.0600	3692.00	Jr. O 'Dónovan – Santa Ana	3	1.22	1.33	6.90
	11:00	8587704.2600 500158.9700	3744.00	Jr. Daniel Cunyas Ramos - Pucarumi	9	0.33	1.25	7.10
17	9:05	8586766.8300 503207.4600	3704.00	Jr. Sinchi Roca - San Cristóbal	1	1.56	1.16	8.09
	10:10	8586180.6700 502508.4200	3704.00	Av. Augusto B Leguía – Santa Barbara	6	1.15	1.05	8.17
18	9:05	8586874.7300 503575.3500	3684.00	Psje. Sucre - Puyhuan	2	1.05	1.32	7.01
	9:53	8586556.0200 502391.6700	3692.00	Jr. Acobamba - Yananaco	7	0.89	1.19	8.09
19	9;03	8586495.3500 502584.2700	3700.00	Jr. Victoria Garma Oeste - Cercado	5	1.37	1.34	8.11
	10:12	8586719.8600 502057.0000	3712.00	Jr. San Francisco de Asís - Ascensión	8	1.64	1.62	8.17
20	9:25	8587363.0900 504227.8000	3682.00	Jr. Agricultura - Puyhuan	2	0.97	0.68	6.71
	10:04	8586288.9100 502223.0300	3790.00	Jr. Ricardo Palma - Yananaco	7	1.46	0.47	7.74
21	9:10	8587018.6300 503649.1000	3684.00	Jr. José Olaya - Puyhuan	2	1.12	0.63	7.68
	9:54	8586009.6300 502278.1500	3840.00	Jr. Mercurio – Santa Barbara	6	0.66	1.33	6.59
22	10:00	8587021.7600 503131.5300	3688.00	Plaza de San Cristóbal	1	1.40	1.18	8.17
	10:59	8586277.8400 502999.9500	3780.00	Jr., Manco Cápac - Cercado	5	1.35	0.96	8.25
23	9:05	8587106.6200 503433.8200	3682.00	Jr. Toparpa - San Cristóbal	1	1.07	1.35	8.14
	9:47	8586659.8800 502611.1300	3696.00	Jr. Tambo de Mora - Cercado	5	1.12	1.02	7.72
24	9:23	8587016.1400 503518.7100	3686.00	Av. 28 de abril – San Cristóbal	5	1.45	0.70	7.66
	10:35	8588134.0300 499053.5200	3756.00	Callqui Grande - Pucarumi	9	1.15	0.56	6.92

25	9:20	8586673.8700	3752.00	Prole	g. Francisco Pizarro – Santa Inés	4	1.03	0.73	6.77
25	0.20	503942.9600	0702.00	1101	Pata		1.00	0.70	0.77
	10:31	8586672.0300	3836.00		Jr. Córdova – Ascensión.	8	1.43	0.16	7.76
	0.00	501808.3700			D: T 0		4.40	0.40	7.74
26	9:20	8586478.8900	3802.00		Psje. Tumbes - Cercado	5	1.48	0.13	7.71
	10:38	503344.7800	3692.00	۸,, ۵	San Juan Evangelista - Ascensión	8	1.26	0.24	7.90
	10.30	8586702.8000 502220.7400	3692.00	Αν. ς	ball Suall Evallyelista - Ascelision	0	1.20	0.24	7.90
27	9:23	8586334.0900	3832.00	Av	. Los Chancas – Santa Barbara	6	0.91	0.86	6.87
21	0.20	503470.1700	0002.00	'	- 200 Changas Gama Zanzara		0.0.	0.00	0.0.
	10:39	8587160.4900	3704.00		Psje. Boquerón - Ascensión	8	1.05	0.92	7.55
		501835.9900							
28	9:09	8586332.3600	3801.00	Jr.	García de los Godos - Cercado	5	1.07	1.09	7.48
		502630.6300							
	9:50	8587509.8500	3744.00		Jr. Tupac Amaru - Pucarumi	9	0.82	1.37	6.81
		500661.1000			· · · · · · · · · · · · · · · · · · ·	<u> </u>			
- (.)					esidual libre en las conexion				
Título				cloro y	cloro residual libre en el sist	ema de	agua potat	oie en la ciu	dad de
proye		Huancavelica -20		B 611					
Respo	onsables	Huayllani Laurent		rivlike					
		Zevallos Salvatier	-						
Aseso	or	Dr. Ordoñez Gálv	ez <u>, Ju</u> an J	ulio					
Lugar	-	HUANVCAVELICA		Mes	MARZO	PTAP	ICHU - MI	LLPO	
		<u> </u>						,	
Dia	Lloro do	Coordenadas	Coto		Dirección	Contor	Cloro libre	Turbiodod	PH
Dia	Hora de monitoreo	UTM N/E	Cota msnm		Av, Jr, Psje, Calle, etc.	Sector 1-9	residual (mg/l)	Turbiedad NTU	1-14
	111011110100	14/2			7 tv, 01, 1 0j0, 0allo, 0t0.		, ,		
1	9:06	8586777.9300	3768.00	Jr. S	Santa Inés Pata- Santa Inés Pata	4	1.14	1.12	7.01
	10.00	504149.9100						07.1	
	10:02	8586103.9000	3748.00		Jr. Belén Pata - Yananaco	7	1.09	074	6.87
	9:26	502181.0800	3684.00	Do	sje. Mariano Girón – Santa Ana	3	1.15	1.27	7.93
2	9.20	8587003.8500 503880.4600	3684.00	F8	ije. Manano Gilon – Santa Ana	3	1.15	1.27	7.93
	10:38	8586310.8600	3812.00		Jr. 20 de enero - Yananaco	7	1.00	1.03	8.04
		502101.4900	0012.00			-			
3	9:03	8586860.9800	3688.00	Ma	alecón Santa Rosa – Santa Ana	3	1.42	0.33	9.24
		503763.2800							
	10:10	8586354.2700	3696.00	P	AV. Andrés Avelino Cáceres –	7	0.96	0.24	7.78
		502451.3900			Yananaco				
4	9:21	8586871.60	3684.00	,	Jr. Inca Roca – San Cristóbal	1	1.15	0.53	7.52
	40.45	503088.3000	2050.00	1	Caraía da las Cadas - Caraada	E	4 40	0.05	7 57
	10:15	8586179.1600 502645.8500	3852.00	Jr.	García de los Godos – Cercado	5	1.43	0.25	7.57
Г	9:02	8586799.3500	3824.00	Prol	g. Manchego Muñoz – Santa Inés	4	1.29	0.42	7.69
5	0.02	504365.4800	JU27.UU	1 .01	Pata	,	1.20	U. 12	
	10:28	8586788.3400	3696.00	A۱	v. Ernesto Morales - Ascensión	8	1.02	0.46	7.24
		502377.1600							
6	10:00	8586309.0800	3824.00	Jr.	Sebastián Barranca – Cercado	5	0.46	1.02	7.19
		503145.5500							
	11:35	8586995.9900	3704.00	Jr.	. Los Libertadores – Ascensión	8	1.27	2.33	7.72
	0.00	501815.5000	0000.00	-	Doniel Hernfades Court	-	4.00	0.00	7 11
7	9:09	8586610.8200	3688.00	JI	. Daniel Hernández - Cercado	5	1.00	0.29	7.41
	10:00	503254.2200 8587009.8800	3704.00	lr.	. Alberto Mendoza - Ascensión	8	1.16	0.24	7.33
	10.00	501706.0600	J1 U4.UU				1.10	J.27	7.00
8	9:23	8586751.3900	3688.00	Jr.	Huayna Cápac – San Cristóbal	1	0.64	0.38	7.53
	-	503056.4400			•				•
	10:19	8586600.9400	3686.00	Jr.	Victoria Garma Este - Cercado	5	1.20	0.44	7.54
		503044.5900							
9	9:26	8586485.1500	3764.00	Jr. F	Francisco de Angulo – Santa Ana	3	0.80	1.73	7.30
		503457.8700							
		· · · · · · · · · · · · · · · · · · ·			•				

	10:36	8586345.5000 502193.6200	3816.00	Jr. Mariano Solís - Yananaco	7	0.96	1.97	6.82
10	9:05	8586760.5400 503888.4500	3708.00	Av. Los Incas - Santa Inés Pata	4	1.02	0.52	7.11
-	10:02	8586779.8000 501259.2100	3764.00	Av. Félix Crispín Vargas - Essalud	8	1.19	1.60	6.47
11	9:23	8586675.8500 504090.5100	3800.00	Jr. José Gálvez C – Santa Ana	3	1.08	0.50	7.57
-	10:50	8586222.3800 502148.2700	3772.00	Jr. Augusto B Leguía - Yananaco	7	1.22	0.43	7.58
12	9:20	8587158.6400 503324.0800	3688.00	Jr. Mariscal Castilla – San Cristóbal	1	1.35	0.75	7.62
-	10:12	8586883.4800 502270.6200	3700.00	Av. Santos Villa - Ascensión	8	1.40	0.81	7.46
13	9:10	8586376.7600 503381.5300	3836.00	Jr. Huancayo – Santa Ana	3	1.31	0.57	7.70
-	10:35	8586626.0700 501652.2600	3884.00	Jr. 8 de octubre- Yananaco	7	1.00	0.86	7.72
14	9:36	8586839.7600 503147.4700	3684.00	Jr. Tupac Amaru – San Cristóbal	1	1.32	0.37	6.92
-	10:58	8586323.6700 502792.7900	3680.00	Jr. Guillermo Molloy - Cercado	5	1.25	0.67	7.97
15	9:35	8586637.0800 503385.8500	3692.00	Psje. Angamos – Santa Ana	3	1.07	0.56	7.64
-	10:39	8586408.2400 501819.4000	3784.00	Jr. José Carlos Mariátegui- Yananaco	7	1.35	0.59	7.69
16	9:05	8596681.4500 503786.0600	3692.00	Jr. O 'Dónovan – Santa Ana	3	1.36	0.51	7.68
	10:49	8587704.2600 500158.9700	3744.00	Jr. Daniel Cunyas Ramos - Pucarumi	9	1.04	0.52	7.67
17	9:35	8586766.8300 503207.4600	3704.00	Jr. Sinchi Roca - San Cristóbal	1	1.33	0.40	7.62
-	10:15	8586180.6700 502508.4200	3704.00	Av. Augusto B Leguía – Santa Barbara	6	1.43	0.87	7.65
18	9:21	8586874.7300 503575.3500	3684.00	Psje. Sucre - Puyhuan	2	1.19	0.82	7.63
	10:35	8586556.0200 502391.6700	3692.00	Jr. Acobamba - Yananaco	7	1.13	0.92	7.51
19	9:20	8586495.3500 502584.2700	3700.00	Jr. Victoria Garma Oeste - Cercado	5	1.51	0.23	7.54
	10:35	8586719.8600 502057.0000	3712.00	Jr. San Francisco de Asís - Ascensión	8	1.40	0.24	7.64
20	9:25	8587363.0900 504227.8000	3682.00	Jr. Agricultura - Puyhuan	2	1.36	0.25	7.68
	10:15	8586288.9100 502223.0300	3790.00	Jr. Ricardo Palma - Yananaco	7	1.38	0.23	7.89
21	9:23	8587018.6300 503649.1000	3684.00	Jr. José Olaya - Puyhuan	2	1.20	0.62	6.88
	10:20	8586009.6300 502278.1500	3840.00	Jr. Mercurio – Santa Barbara	6	1.32	0.68	7.19
22	9:10	8587021.7600 503131.5300	3688.00	Plaza de San Cristóbal	1	1.36	0.96	8.39
	10:03	8586277.8400 502999.9500	3780.00	Jr., Manco Cápac - Cercado	5	1.46	0.85	8.35
23	9:15	8587106.6200 503433.8200	3682.00	Jr. Toparpa - San Cristóbal	1	1.09	0.90	8.10
	9:58	8586659.8800 502611.1300	3696.00	Jr. Tambo de Mora - Cercado	5	1.10	1.15	8.31
24	9:45	8587016.1400 503518.7100	3686.00	Av. 28 de abril – San Cristóbal	5	0.98	1.35	8.12
	11:00	8588134.0300 499053.5200	3756.00	Callqui Grande - Pucarumi	9	0.63	1.14	8.16

25	9:43	8586673.8700	3752.00	Prolg. Francisco Pizarro – Santa Inés	4	1.09	0.96	7.75
		503942.9600		Pata				
	11:21	8586672.0300	3836.00	Jr. Córdova – Ascensión.	8	0.70	2.74	6.75
		501808.3700						
26	9:41	8586478.8900	3802.00	Psje. Tumbes - Cercado	5	1.16	0.55	7.67
		503344.7800						
	11:11	8586702.8000	3692.00	Av. San Juan Evangelista - Ascensión	8	1.07	1.16	7.97
		502220.7400						
27	9:23	8586334.0900	3832.00	Av. Los Chancas – Santa Barbara	6	0.88	0.54	6.86
		503470.1700						
	11:52	8587160.4900	3704.00	Psje. Boquerón - Ascensión	8	1.15	0.77	7.66
		501835.9900						
28	9:20	8586332.3600	3801.00	Jr. García de los Godos - Cercado	5	1.44	0.39	6.91
		502630.6300						
	11:41	8587509.8500	3744.00	Jr. Tupac Amaru - Pucarumi	9	1.20	1.65	6.78
		500661.1000						
29	9:20	8586652.3000	3750.00	Av. Andrés Avelino Cáceres -	7	1.41	0.43	7.73
		501225.8900		Yananaco				
	11:10	8587811.0900	3736.00	Prolg. Santos Villa - Pucarumi	9	1.48	0.29	7.81
		499966.0100						
30	9:00	8586782.1500	3704.00	Jr. Hildauro Castro - Ascensión	8	1.47	0.31	6.65
		502239.2800						
	10:15	8586980.1600	3760.00	Jr. Santa Rosa - Pucarumi	9	1.09	0.40	7.75
		500985.8400						
31	9:10	8586599.1900	3864.00	Av. Andrés Avelino Cáceres -	7	1.17	1.19	6.89
		501495.7700		Yananaco				
	10:02	8586197.7600	3808.00	Jr. Mercurio – Santa Bárbara	6	1.30	1.05	7.91
		509993.6300						

Anexo 9. "Reglamento de la calidad del agua para consumo humano según el D.S. N°031-2010-SA".

ANEXO III

LÍMITES MÁXIMOS PERMISIBLES DE
PARÁMETROS QUÍMICOS INORGÁNICOS Y ORGÁNICOS

Parámetros Inorgánicos	Unidad de medida	Límite máximo permisible
1. Antimonio	mg Sb L-1	0,020
2. Arsénico (nota 1)	mg As L-1	0,010
3. Bario	mg Ba L ⁻¹	0,700
4. Boro	mg B L-1	1,500
5. Cadmio	mg Cd L-1	0,003
6. Cianuro	mg CN ⁻ L ⁻¹	0,070
7. Cloro (nota 2)	mg L-1	5
8. Clorito	mg L-1	0,7
9. Clorato	mg L-1	0,7
10. Cromo total	mg Cr L-1	0,050
11. Flúor	mg F- L-1	1,000
12. Mercurio	mg Hg L-1	0,001
13. Niquel	mg Ni L-1	0,020
14. Nitratos	mg NO₃ L-1	50,00
15. Nitritos	mg NO ₂ L ⁻¹	3,00 Exposición corta
		0,20 Exposición larga
16. Plomo	mg Pb L-1	0,010
17. Selenio	mg Se L-1	0,010
18. Molibdeno	mg Mo L-1	0,07
19. Uranio	mg U L-1	0,015
Parámetros Orgánicos	Unidad de medida	Límite máximo permisible

Nota 2: Para una desinfección eficaz en las redes de distribución la concentración residual libre de cloro no debe ser menor de 0,5 mgL⁻¹.

Artículo 66°.- Control de desinfectante

Antes de la distribución del agua para consumo humano, el proveedor realizará la desinfección con un desinfectante eficaz para eliminar todo microorganismo y dejar un residual a fin de proteger el agua de posible contaminación microbiológica en la distribución. En caso de usar cloro o solución clorada como desinfectante, las muestras tomadas en cualquier punto de la red de distribución, no deberán contener menos de 0.5 mgL⁻¹⁾ de cloro residual libre en el noventa por ciento (90%) del total de muestras tomadas durante un mes. Del diez por ciento (10%) restante, ninguna debe contener menos de 0.3 mgL⁻¹⁾ y la turbiedad deberá ser menor de 5 unidad nefelométrica de turbiedad (UNT).

ANEXO II

LÍMITES MÁXIMOS PERMISIBLES DE PARÁMETROS DE

CALIDAD ORGANOLÉPTICA

	Parámetros	Unidad de medida	Límite máximo permisible
1.	Olor		Aceptable
2.	Sabor		Aceptable
3.	Color	UCV escala Pt/Co	15
4.	Turbiedad	UNT	5
5.	рН	Valor de pH	6,5 a 8,5
6.	Conductividad (25°C)	μmho/cm	1 500
7.	Sólidos totales disueltos	mgL-1	1 000
8.	Cloruros	mg CI - L-1	250
9.	Sulfatos	mg SO ₄ * L-1	250
10.	Dureza total	mg CaCO ₃ L ⁻¹	500
11.	Amoniaco	mg N L-1	1,5
12.	Hierro	mg Fe L-1	0,3
13.	Manganeso	mg Mn L ⁻¹	0,4
14.	Aluminio	mg Al L-1	0,2
15.	Cobre	mg Cu L-1	2,0
16.	Zinc	mg Zn L-1	3,0
17.	Sodio	mg Na L-1	200

UCV = Unidad de color verdadero UNT = Unidad nefelométrica de turbiedad

Artículo 61°.- Parámetros de calidad organoléptica

El noventa por ciento (90%) de las muestras tomadas en la red de distribución en cada monitoreo establecido en el plan de control, correspondientes a los parámetros químicos que afectan la calidad estética y organoléptica del agua para consumo humano, no deben exceder las concentraciones o valores señalados en el Anexo II del presente Reglamento. Del diez por ciento (10%) restante, el proveedor evaluará las causas que originaron el incumplimiento y tomará medidas para cumplir con los valores establecidos en el presente Reglamento.

Anexo 10. Autorización de recojo de datos.

067 451167.

SOLICITUD: Autorización para recojo de datos.

SEÑOR GERENTE GENERAL DE LA EPS-EMAPA HVCA.

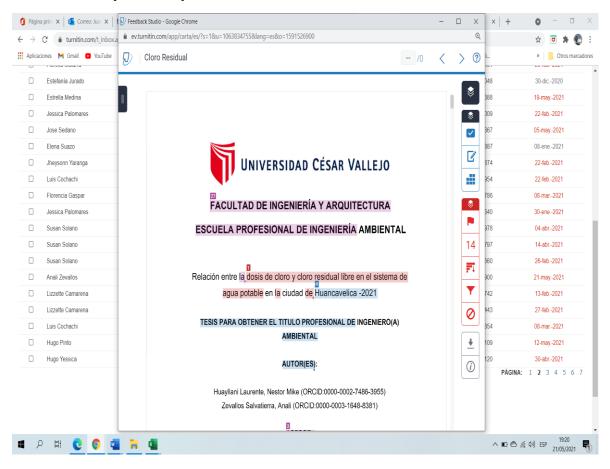
Yo, Nestor Mike, Huayllani Laurente y Anali, Zevallos Salvatierra, identificados con DNI No 42802536 y 47494110 respectivamente; bachilleres de la carrera de Ingeniería Ambiental, a usted con el debido respeto me presento y le manifiesto:

Que siendo requisito indispensable el recojo de datos necesarios para la tesis que venimos elaborando titulada: "Relación entre la dosis de cloro y cloro residual libre en el sistema de agua potable en la ciudad de Huancavelica - 2021", solicito a Ud. Se sirva por favor autorizarme el recojo de datos para poder desarrollar la tesis.

Por tanto:

A usted, ruego acceder mi petición.

Huancavelica, 29 de marzó del 2021


Huayllani Laurente, Nestor Mike

DNI: 42802536

Zevallos Salvatierra, Anali

DNI:47494110

Anexo 11. Captura de pantalla Turnitin.

