

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Diseño de red de Agua y Alcantarillado empleando Paneles Fotovoltaicos en el distrito de Oronccoy – La Mar – Ayacucho 2020"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL

AUTORES:

Contreras Cuadros, Jeferson (Código ORCID 0000-0002-9406-2338)
Pérez Rafael, Jonatan Felipe (Código ORCID 0000-0001-5698-4828)

ASESOR:

Mag. Cesar Augusto Paccha Rufasto (Código ORCID 0000-0003-2085-3046)

LÍNEA DE INVESTIGACIÓN:

Diseño de Obras Hidráulicas y Saneamiento

LIMA ESTE - PERÚ

2020

Dedicatoria

En gratitud a todas esas personas que nos apoyaron para poder culminar nuestra carrera y principalmente a Dios por darnos sabiduría para seguir adelante.

Agradecimiento

A nuestros familiares que nos apoyaron para a lograr nuestros objetivos.

A todos aquellos docentes que nos acompañaron durante el periodo de educación, que nos brindaron sus conocimientos para nuestra formación.

Índice de contenidos

Dedicatoria	ii
Agradecimiento	iii
Índice de tablas	vii
Índice de figuras	viii
Índice de anexos	xi
RESUMEN	xiii
ABSTRACT	xiv
I. INTRODUCCIÓN	1
1.1. Realidad Problemática	2
1.2. Formulación del Problema	4
Problema general	4
Problemas específicos	4
1.3. Justificación de la investigación	4
Teórica	4
Práctica	4
Metodológica	4
1.4. Objetivo	4
Objetivo general	5
Objetivos específicos	5
1.5 Hipótesis	5
Hipótesis general	5
Hipótesis especificas	5
II. MARCO T EÓ RICO	6
2.1. Trabajos Previos	7
Antecedentes Internacionales	7
Antecedentes Nacionales	8

	2.2. Teor	ías relacionadas al tema	12
	Variabl	e independiente: Paneles Fotovoltaicos	12
	Variabl	e dependiente: Diseño de red de Agua y Alcantarillado	16
Ш	. MET	ODOLOGÍA	22
	3.1. Tipo	y diseño de investigación	23
	Tipo de	e investigación	23
	Diseño	de investigación	24
	3.2. Varia	ables y operacionalización	24
	Operac	cionalización de Variables	24
	Matriz	de operacionalización de las variables	25
	3.3. Pobla	ación, muestra y muestreo	26
	Poblac	ión	26
	Muestr	a	26
	Muestr	eo	26
	3.4. Técn	icas e instrumentos de recolección de datos	26
	Instrum	nento	27
	Validez	<u> </u>	27
	Confial	bilidad	27
	3.5. Proc	edimientos	28
	3.6. Méto	do de análisis de datos	29
	3.7. Aspe	ectos éticos	29
١V	. RES	ULTADOS	30
	4.1. Estud	dios Básicos	31
	4.1.1.	Topografía	31
	4.1.2.	Estudio de mecánica de suelos	41
	4.1.3.	Parámetros de diseño	46
	4.2. Pará	metros Hidráulicos de Agua	47

	4.2.1.	Caudal de Diseño (Q) en:	.50
	4.2.2.	Velocidades (V) en:	.53
	4.2.3.	Presión (P) en:	.54
	4.2.4	Diámetros (D) en:	.57
4	.3. Parár	metros Hidráulicos de Alcantarillado	.58
	4.3.1.	Tensión Tractiva	.58
	4.3.2.	Pendiente	.59
	4.3.3.	Tirante	.59
	4.3.4.	Cámaras de Inspección	.59
4	.4. Equip	oo de Bombeo	.60
	4.4.1.	Caudal de Bombeo	.60
	4.4.2.	Altura Dinámica	.64
	4.4.3.	Potencia de Electrobomba	.65
4	.5. Pane	l Fotovoltaico	.65
	4.5.1.	Clasificación	.65
	4.5.2.	Tipos	.65
	4.5.3.	Elementos de Instalación	.66
4	.6. Costo	os Presupuestos	.71
	4.6.1.	Metrados	.71
	4.6.2.	Presupuesto	.72
•	DISCU	SIÒN	.75
Ί.	CON	CLUSIONES	.81
II.	REC	OMENDACIONES	.83
Έ	FERENC	CIAS	.85
N	FXOS		80

Índice de tablas

Tabla 1. Cuadro de Operacionalización de Variables	25
Tabla 2. Ubicación Geográfica	32
Tabla 3. Trabajos realizados por etapas	33
Tabla 4. Puntos de control	37
Tabla 5. Cuadro de coordenadas UTM de los BM y Punto Geodésico	39
Tabla 6. Registro de sondaje	42
Tabla 7. Resultado de ensayo de contenido de humedad	43
Tabla 8. Resultado de ensayos estándar	43
Tabla 9. Resultado de ensayo de Corte Directo	44
Tabla 10. Unidades de Gasto	61

Índice de figuras

Figura 1. Estructura del panel solar	13
Figura 2. Diferencias de acuerdo a su fabricación	15
Figura 3. Instalaciones solares fotovoltaicas	16
Figura 4. Ubicación del distrito	32
Figura 5. Google Earth. Altura de toma 4.80 Km	33
Figura 6. Reconocimiento de campo de estructuras existentes	34
Figura 7. Reconocimiento de campo de estructuras existentes	34
Figura 8. GPS Diferencial	35
Figura 9. GPS Navegador	35
Figura 10. Drone RPAS	36
Figura 11. Ubicación de los puntos geodésicos en placas de bronce	37
Figura 12. Ubicación de los puntos geodésicos en placas de bronce	37
Figura 13. Ubicación de los puntos de control antes de realizar el vuelo con e	
Figura 14. Ubicación de los puntos de control antes de realizar el vuelo con e	
Figura 15. Ortofoto del Distrito de Oronccoy	40
Figura 16. Plano urbanístico del distrito de Oronccoy	40
Figura 17. Vista de la Geomorfología de la zona de estudio – Fuente Google	
Figura 18. Perfil Estratigráfico C - 1	45
Figura 19. Perfil Estratigráfico C - 2	46
Figura 20. Padrón de la comunidad de Oronccoy	48
Figura 21. Tasa de crecimiento anual de Oronccoy	48
Figura 22. Dotación de agua según opción tecnología y región (l/hab. d) - Seç	gún 49

Figura 23. Dotación de agua para centros educativos - Según RM Nº192-2018-
VIVIENDA49
Figura 24. Valores guía de coeficiente- Según RM Nº192-2018-VIVIENDA49
Figura 25. Criterios de Estandarización de Componentes Hidráulicos - Según RM
Nº192-2018-VIVIENDA
Figura 26. Aforamiento método de volumétrico - Según RM Nº192-2018- VIVIENDA50
Figura 27. Corte transversal51
Figura 28. Corte transversal52
Figura 29. Velocidades en Conducción y Aducción53
Figura 30. Velocidades en Redes de Distribución54
Figura 31. Presión en la red de Aducción54
Figura 32. Presión Dinámica y Presión Estática55
Figura 33. Gradiente Hidráulico56
Figura 34. GH Dinámica y GH Estática56
Figura 35. Resultados de la Perdida de Carga57
Figura 36. Diámetros en la Línea de Conducción, Aducción y Redes de
Distribución58
Figura 37. Distancia máxima entre buzones por diámetro de tubería60
Figura 38. Gastos probables para la aplicación del método de Hunter - RNE -
IS.010 Instalaciones Sanitarias61
Figura 39. Predimensionamiento de Cámara de Bombeo de Desagüe63
Figura 40. Irradiancia media diaria66
Figura 41. Perfil de temperatura media67
Figura 42. Esquema de panel Solar68
Figura 43. Características69
Figura 44. Metrado de tuberías de 1" agua potable72
Figura 45. Metrado de tuberías de 160mm de diámetro alcantarillado72

Figura 47. Presupuesto de tuberías PVC	74
Figura 48. Cuadro Comparativo de Presupuestos	74

Índice de anexos

Anexo N° 1: Matriz de operacionalización de variables90
Anexo N° 2: Puntos BMS - Puntos de control91
Anexo N° 3: Puntos del levantamiento topográfico92
Anexo N° 4: Calculo de la Capacidad de Carga Admisible del Terreno100
Anexo N° 5: Calculo de la Capacidad Admisible de Carga Admisible del Terreno101
Anexo N° 6: Calculo de la Capacidad Admisible de Carga Admisible del Terreno102
Anexo N° 7: Calculo de la Capacidad Admisible de Carga Admisible del Terreno103
Anexo N° 8: Calculo de la Capacidad Admisible de Carga Admisible del Terreno104
Anexo N° 9: Ensayo de Corte Directo
Anexo N° 10: Ensayo de Corte Directo106
Anexo N° 11: Parámetros de diseño en la red de alcantarillado (SEWER CAD) - Velocidad máxima y mínima107
Anexo N° 12: Parámetros de diseño en la red de alcantarillado (SEWER CAD) - Cubertura mínima y máxima108
Anexo N° 13: Parámetros de diseño en la red de alcantarillado (SEWER CAD) - Pendiente mínimo y máximo
Anexo N° 14: Parámetros de diseño en la red de alcantarillado (SEWER CAD) - Pendiente mínimo y máximo - Tensión tractiva y tirante de agua110
Anexo N° 15: Reporte de diseño de la red de alcantarillado111
Anexo N° 16: Reporte de diseño de la red de alcantarillado112
Anexo N° 17: Reporte de diseño de la red de alcantarillado113
Anexo N° 18: Reporte de diseño Buzones114
Anexo N° 19: Reporte de diseño Buzones115
Anexo N° 20: Reporte de diseño Buzones116

Anexo N° 21: Metrado de tuberías	117
Anexo N° 22: Perfil de cuarto de bombeo hacia buzón cercano	118
Anexo N° 23: Irradiancia Mensual	119
Anexo N° 24: Irradiancia Mensual	120
Anexo N° 25: Temperatura media Mensual	121
Anexo N° 26: Ficha técnica de Panel Solar	122
Anexo N° 27: Ficha técnica de Controlador de Carga	123
Anexo N° 28: Ficha técnica de Batería	124
Anexo N° 29: Ficha técnica de Inversor	125
Anexo N° 30: Ficha técnica de Bomba Sumergible	126
Anexo N° 31: Ficha técnica de Bomba Sumergible	127
Anexo N° 32: Ficha técnica de Bomba Sumergible	128
Anexo N° 33: Ficha técnica de Bomba Sumergible	129
Anexo N° 37: perfiles de alcantarillado de desagüe	133
Anexo N° 38: perfiles de alcantarillado de desagüe	134
Anexo N° 39: perfiles de alcantarillado de desagüe	135
Anexo N° 40: perfiles de alcantarillado de desagüe	136
Anexo N° 41: perfiles de alcantarillado de desagüe	137
Anexo N° 42: perfiles de alcantarillado de desagüe	138
Anexo N° 43: perfiles de alcantarillado de desagüe	139
Anexo N° 44: perfiles de alcantarillado de desagüe	140
Anexo N° 45: perfiles de alcantarillado de desagüe	141
Anexo N° 46: perfiles de alcantarillado de desagüe	142
Anexo N° 47: perfiles de alcantarillado de desagüe	143

RESUMEN

La presente de investigación consta con la realización del Diseño de red de Agua y Alcantarillado empleando Paneles Fotovoltaicos en el distrito de Oronccoy – La Mar – Ayacucho 2020" el objetivo principal es dar solución a la falta de abastecimiento de la red de agua y la red de alcantarillado y la implementación de paneles fotovoltaicos para la eliminación de las aguas servidas del centro educativo, y así satisfacer las necesidades básicas de la población.

La presente investigación está determinada por el método científico con enfoque cuantitativo ya que se identificó el problema de falta de una red de agua y alcantarillado y se resolverá mediante la investigación. El tipo de investigación será aplicada dado que usaremos investigaciones ya realizadas recopilación de datos, levantamientos topográficos, estudio de mecánica de suelos, parámetros hidráulicos de agua y alcantarillado para determinar el diseño del proyecto. El nivel de investigación, será descriptivo porque verifica las características, propiedades, perfiles, desarrollo, ente u otro elemento que se someta a un estudio, como cálculo de urbe futura, demanda de agua. El diseño de la investigación será no experimental en la clasificación de corte transversal porque recolectan datos para hacer una sola medición en un determinado tiempo por única vez.

Se concluyó que los resultados indican que se necesitara un reservorio de 10 m3 para una población de 239 habitantes y 50 lotes proyectada a 20 años. Todo el diseño se realizó de acuerdo a los parámetros necesarios para satisfacer las necesidades de la población. A su vez de acuerdo a los resultados se implementará un sistema fotovoltaico para la eliminación de la de las aguas servidas de la cámara de bombeo de desagüe llevándolo al buzón más próximo para ello se utilizará 2 paneles solares. El sistema de agua será de tubería HDPE ya que es más económica y la implementación de paneles fotovoltaicos reducirá los costos de energía eléctrica y mantenimiento.

Palabras clave: Red de agua potable, Red de alcantarillado, Sistema Fotovoltaicos.

ABSTRACT

The present investigation consists of carrying out the Design of the Water and Sewerage network using Photovoltaic Panels in the district of Oronccoy - La Mar -Ayacucho 2020 "the main objective is to solve the lack of supply of the water network and the network sewerage and the implementation of photovoltaic panels for the elimination of sewage from the educational center, and thus satisfy the basic needs of the population. The present investigation is determined by the scientific method with a quantitative approach since the problem of lack of a water and sewerage network was identified and will be solved through the investigation. The type of investigation will be applied since we will use investigations already carried out, data collection, topographic surveys, study of soil mechanics, hydraulic parameters of water and sewerage to determine the design of the project. The research level will be descriptive because it verifies the characteristics, properties, profiles, development, entity or other element that is subjected to a study, such as future city calculation, water demand. The research design will be non-experimental in the cross-sectional classification because they collect data to make a single measurement at a certain time for a single time. It was concluded that the results indicate that a 10 m3 reservoir will be needed for a population of 239 inhabitants and 50 lots projected for 20 years. All the design was carried out according to the parameters necessary to satisfy the needs of the population. In turn, according to the results, a photovoltaic system will be implemented to eliminate the wastewater from the drainage pumping chamber, taking it to the nearest mailbox. 2 solar panels will be used. The water system will be made of HDPE pipe since it is more economical and the implementation of photovoltaic panels will reduce the costs of electricity and maintenance.

Keywords: Water network, Sewage network, Photovoltaic system.

.

I. INTRODUCCIÓN

1.1. Realidad Problemática

Sabemos que el líquido elemento es un bien esencial para el ser humano, tanto para la salud, la irrigación de plantas, el saneamiento de las ciudades y otros. Es así que en estas últimas décadas el incremento de las personas en las ciudades y poblaciones rurales en el mundo ha crecido enormemente y nuestro país no es ajeno a esta coyuntura, esto conlleva a la alta demanda del agua y la optimización de nuevos sistemas de red de agua y red de desagüe. Para ello todos tenemos que tener en cuenta el desarrollo de nuevas estrategias para la mejor optimización de los recursos hídricos actuales y con proyección a futuro. Por ello De Albuquerque (2014), nos menciona que:

Mientras progresivamente la falta de agua y la higiene repercutía en los últimos años del nuevo siglo, trajo como consecuencia enfermedades y agudizo la crisis económica, por ello todas instituciones de derechos y desarrollo humano pronunciaron que es importante la distribución y saneamiento del agua. (p.24).

Este incremento masivo de la poblacional ha generado una problemática que crece diariamente, las enfermedades y la contaminación derivada de la falta de un sistema de agua y alcantarillado es preocupante debido a que no tienen servicios básicos adecuados.

La buena entrega del agua y la implementación del desagüe son ejemplos en las cuales pueden ser las mejores opciones para evitar las enfermedades y la contaminación. Por lo tanto, Jiménez (2010), afirma:

La implementación de redes de agua y desagües son sumamente para la prevención y reducción de afecciones dadas por la falta del líquido elemento que además deben ser apropiados de acuerdo a su cantidad y calidad, fiable y disponible para ser beneficioso y esencialmente tiene que ser usados. (p. 14).

Teniendo en cuenta que un sistema de red de agua es aquella que permite el abastecimiento del líquido elemento para consumo humano a través de un lugar de captación distribuida por medio de tuberías garantizando cantidad y calidad adecuada para satisfacer las necesidades de los habitantes que presentan problemas de accesibilidad de agua segura.

Desde esta visión los poderes gubernamentales que estandarizan el ordenamiento urbano nos dicta los parámetros políticos, tácticos, objetivos, procedimientos para la ejecución y contribución a la mejora sostenible del distrito, aprovechando racionalmente la distribución de los recursos para el bienestar para la comunidad actual.

Por ello cabe mencionar, que este proyecto de investigación tendrá como área desarrollo en el distritito de Oronccoy provincia de La Mar, región de Ayacucho, a una distancia de 538 kilómetros de la urbe de Ayacucho, su posición geográfica esta entre las coordenadas UTM, 8519880.25 Norte y 669119.31 Sur con una altitud de 3731 m.s.n.m. En la actualidad el distrito carece con sistema de red de agua y red de desagüe adecuado.

Según los representantes del puesto de Oronccoy, para el primer semestre del 2018 las afecciones respiratorias agudas, las afecciones del estómago produciendo diarreas dada por la insalubridad en la ingesta de alimento, la anemia, la alta desnutrición, los organismos presentes en el agua no tratada y ser consumida sin ser potabilizada, siguen teniendo repercusión en la población.

Asimismo, los encargados del puesto de salud, mencionan que actualmente producto de la contaminación en la zona y no disponer de un lugar adecuado para la evacuación de los desperdicios, también la carencia de servicios higiénicos promueve que las calles estén permanentemente sucias, debido a que la población deje sus necesidades en el entorno, por falta de servicios básicos.

Finalmente, el distrito de Oronccoy carece de un sistema de red agua y red de desagüe por ello con fines de revertir esta problemática se propone que con el desarrollo de este trabajo de investigación se plantee un diseño de una red de Agua y red de Alcantarillado empleando Paneles Fotovoltaicos, donde los paneles fotovoltaicos serán empleados para el bombeo de aguas servidas que serán generadas del centro educativo, así poder aumentar el aprovechamiento del agua que pasa por la comunidad y esta a su vez permitirá mejorar la calidad de vida de los pobladores y disminuir las enfermedades generadas por la falta de servicios básicos.

1.2. Formulación del Problema

Problema general

¿De qué manera mejoraría el diseño de la red de agua y alcantarillado empleando Paneles Fotovoltaicos en el distrito de Oronccoy - La Mar - Ayacucho 2020?

Problemas específicos

- ¿Cómo influye el Equipo de Bombeo en el diseño de la red de alcantarillado en el distrito de Oronccoy - La Mar- Ayacucho 2020?
- ¿De qué manera influye la implementación de los Paneles Fotovoltaicos en el diseño de la red de alcantarillado en el distrito de Oronccoy - La Mar-Ayacucho 2020?
- ¿Cómo influye el uso de Paneles Fotovoltaicos en los Costos y Presupuestos del diseño de la red de agua y alcantarillado en el distrito de Oronccoy – La Mar - Ayacucho?

1.3. Justificación de la investigación

Teórica

Proyectándonos que en la actualidad hay pocas investigaciones que hablen sobre la implementación de paneles fotovoltaicos en los diseños de agua y alcantarillado se podrá ampliar el conocimiento acerca de la implementación de ellos.

Práctica

El proyecto de red de agua y desagüe promoverá la mejora de los servicios necesarios en la población, a su vez la incorporación de paneles fotovoltaicos para la eliminación de las aguas servidas permitirá que el centro educativo reduzca los costos de mantenimiento, también ofrece mejores resultados, usa menos energía natural, preserva los recursos escasos, mejora la calidad de vida.

Metodológica

La presente investigación es importante y necesaria porque nos permitirá ampliar nuestro entendimiento en la parte teórica y práctica sobre el diseño de agua y

alcantarillado empleando paneles fotovoltaicos para la cual se obtendrán resultados que podrán ser utilizadas por nuevos investigadores como base para la realización de sus futuras investigaciones.

1.4. Objetivo

Objetivo general

Realizar un diseño de la red de agua y alcantarillado empleando Paneles Fotovoltaicos en el distrito de Oronccoy - La Mar - Ayacucho 2020.

Objetivos específicos

- Determinar la influencia del Equipo de Bombeo en el diseño de la red de alcantarillado en el distrito de Oronccoy - La Mar- Ayacucho 2020.
- Establecer la influencia de la implementación de los Paneles Fotovoltaicos en el diseño de la red de alcantarillado en la capital del distrito de Oronccoy
 La Mar- Ayacucho 2020.
- Determinar la influencia de los Costos y Presupuestos en el diseño de la red de agua y alcantarillado en el distrito de Oronccoy - La Mar- Ayacucho 2020.

1.5 Hipótesis

Hipótesis general

La implementación de los Paneles Fotovoltaicos mejora el diseño de la red de agua y alcantarillado, en el distrito de Oronccoy - La Mar - Ayacucho 2020.

Hipótesis especificas

- El Equipo de Bombeo influye en el diseño de la red de alcantarillado en el distrito de Oronccoy - La Mar- Ayacucho 2020.
- Los Paneles Fotovoltaicos influyen en el diseño de la red alcantarillado en el distrito de Oronccoy - La Mar- Ayacucho 2020.
- Los Costos y Presupuestos influyen en el diseño de la red de agua y alcantarillado en el distrito de Oronccoy - La Mar- Ayacucho 2020.

II. MARCO TEORICO

2.1. Trabajos Previos

Este proyecto de investigación se apoyará en estudios realizados anteriormente ya sean internacionales, nacionales y locales; estos trabajos de investigación aplican todos los conocimientos basados en la ingeniería tales como: mecánica de suelos topografía, diseño de obras hidráulicas entre otros.

Antecedentes Internacionales

Según Celleri y Peñafiel (2017) en su tesis titulada Diseño de red de distribución de Agua Potable para el recinto Las Margaritas del Cantón Samborondon en la Provincia del Guayas. Para la adquisición del título de Ingeniero Civil, propuso resolver la problemática por la carencia de agua potable en esta ciudad de dicho nombre Las Margaritas, en este trabajo se concluye que con la implementación del trabajo se pudo ayudar a dar una solución para satisfacer la calidad de vida de la población, afectada en la ciudad de La Margarita, también esta investigación fueron positivos ya que beneficio a la mejoría y reducción de afecciones dadas por las enfermedades provenientes por la falta de servicios.

El autor nos menciona que al realizar el diseño de red de agua potable mejorara la calidad de vida de la población de la zona ya que esta podría mitigar las enfermedades que las aquejan por la falta de agua potable.

Igualmente, Amaya (2019) en su tesis titulada Diseño del Abastecimiento de Agua Potable para las comunidades de Sarar Alto y Buena Vista, Parroquia Ludo, Cantón Sigsig, provincia del Azuay. Investigación previa a la adquisición del título de Ingeniero Civil con énfasis en Dirección en Construcciones. En la Universidad del Azuay. Tiene como objetivo Diseñar la distribución del agua en la urbe del nombre ya indicado, esta tendrá los trabajos respectivos y necesarios que están determinados para la asignación y las construcciones sanitarias. Donde concluyo que el diseño de la distribución se procedió a realizar adoptando las mejores opciones de mercado y tener una alternativa económica para el trabajo, a su vez este diseño no tendrá ninguna repercusión con algún incumplimiento de las

normativas actuales en la nación para el tratado de implementación de agua y desagüe en sus zonas rurales.

Este antecedente quiere decir que para la presente investigación de la red de agua promueve la reducción de costos en el presupuesto y que tengan la misma finalidad sin que trasgreda las normas vigentes de construcción.

Campos (2016) en su tesis titulada Tecnologías de la Información y Comunicación aplicadas al diseño de redes de agua potable con sistema Solar Fotovoltaico para el Bombeo. Para adquirir el título profesional de Master en energías renovables y medio ambiente, propuso como meta facilitar el uso de herramientas Tecnológicas de información y Comunicación para la determinación y planeamiento de las redes de agua empleando la energía resultante de un sistema fotovoltaico aplicado al bombeo de agua en comunidades rurales, concluye que como producto del proceso utilizando las TIC's en la aplicación del diseño, se creó una propuesta de red de agua para las comunidades Barro y El Caracol, con una longitud de 4439.04m de línea de distribución, 388m de línea de conducción, 10 ramales secundarios, con un caudal de 1.07 lts/s, para satisfacer la necesidad del consumo de agua a 271 personas en 58 familias, proyectado el sistema a 20 años, dos tanques de almacenamiento que suman 64 m³ que garantizan un gasto diario total de 37.01 m³ con una reserva de dos días de agua para consumo; dos sistemas de bombeo con una potencia fotovoltaica de 4.56KW, distribuido en cuatro estructuras, sin hacer uso de baterías e inversores, haciendo uso de tecnologías limpia asegura no emitir 5.04 Ton CO2e. Igualmente, el desarrollo de las tecnologías en fotovoltaica habilita diseñar sistemas de bombeo sin hacer uso de baterías e inversores los que hace más robusto el sistema y con menor inversión económica.

Según el autor la aplicación de la Tecnología de comunicación aplicada al diseño de red de agua empleando paneles fotovoltaicos pudo sugerir la implementación de líneas de distribución, línea de conducción, ramales secundarios para que la población pueda acceder a los servicios básicos, mediante el abastecimiento del agua impulsada por dos bombas que serán energizadas por el sistema solar fotovoltaicos.

Antecedentes Nacionales

Santos y Jara (2014) según la tesis de nombre Diseño de Abastecimiento de Agua Potable y el diseño de Alcantarillado de las localidades: El Calvario y Rincón de Pampa Grande del distrito de Curgos – La Libertad. Para conseguir el título profesional de Ingeniero Civil, propuso como mejorar el proyecto de implementación de red de agua y red de alcantarillado de la comunidad de nombre mencionadas en su tesis. Concluye que los relieves de dicha región es escarpado, mediante el computo de la comunidad y crecimiento urbanístico, mostrado para año dos mil treinta y cuatro es de dos mil seiscientos nueve personas; con el estudio realizado sobre las construcciones nuevas de saneamiento se podrá mejorar la calidad y salud de vida de la población; también el crecimiento de las labores; de ahí que el presente proyecto tiene una comunidad beneficiaria de unos mil setecientos pobladores; Las poblaciones estudiadas con esto dan un salto considerable en el curso de su desarrollo; los parámetros hidráulicos de la red de agua y red de desagüe han sido revisados y trabajados a través de un algoritmo implementado por FONCODES y con bastante utilidad en nuestra realidad; del estudio realizado se obtuvo los diámetros a usar en líneas del agua en la conducción, diámetros de 4"en Aducción de clase A-7.5 y para el desagüe diámetro de 6".

El autor pudo concluir que mediante los estudios topográficos el área era escabrosa, también estimo la cantidad de población futura con esa estimación pudo concluir la suma de agua necesaria para la comunidad, mediante programas determinados por el FONCODES y obtuvo los diámetros necesarios para la distribución del agua en la población.

Navarrete, E. (2017) en la tesis titulada **Diseño del sistema de Agua Potable y Alcantarillado en el centro poblado de El Charco, distrito de Santiago de Cao, Provincia de Ascope, región La Libertad.** Para conseguir el título de Ingeniero Civil, dispuso realizar un proyecto sobre el sistema de red de agua y red de desagüe en dicha ciudad. Este proyecto fue tipo no experimental, usando un estudio descriptivo. Verifica que según las acciones realizada mediante la topografía en campo se encontraron pendientes poco inclinadas, casi horizontales

para la red de agua y en el poblado, las variaciones de alturas están entre cinco y seis metros sobre el nivel del mar; se practicó la mecánica de suelos en campo, se obtuvo cinco calicatas con un fondo de un metro y medio y mediante estos estudios se determinó que clase de suelo se trabajara. Para las calicatas uno, dos, tres y cuatro, las particularidades del suelo son limo arenoso, en este sector se definirá la red principal de agua y construirá la sala de bombeo de aguas residuales, hacia la calicata cinco presenta resultados de suelo areno limo con capacidad portante admisible de 1.04kg/cm2 donde se realizará la ejecución de el reservorio elevado; el proyecto de distribución de agua, adquiriendo e agua subterránea. La comunidad se suministra de un tanque elevado que tiene un volumen de setenta metros cúbicos para la distribución de agua considerando una estimación proyectada parta el sector turístico; en el proyecto de la red de desagüe se encontraron diámetros de la tubería a usar de 200mm, cuidando las normas que están vigentes en la actualidad dictadas en el Reglamento Nacional de Edificaciones. Los buzones con fondos que están entre 1.20m hasta 5.20m. Toda la eliminación de aguas servidas están conectadas a una cámara de bombeo de desagüe ya que las plantas de tratamiento de aguas residuales están muy por encima de la red y con una diferencia de 3m con respecto que se encuentra la red Las aguas residuales van a una cámara de bombeo primero debido a que las lagunas de oxidación existente se encuentran por encima del terreno con una diferencia de cota de 3m.

Este antecedente también nos indica que los estudios que se realizaron le permitieron obtener resultados necesarios para la construcción de un reservorio elevado que tomara el agua de una fuente subterránea y así abastecer de agua a la población a su vez el sistema de red de desagüe propone un cuarto de aguas servidas dado que las plantas de tratamiento tienen una diferencia de cota.

Flores y Changanaqui (2019) en su tesis titulada **Estudios y diseños del sistema** de agua potable y alcantarillado para el centro poblado Madean, distrito de Madean, provincia de Yauyos, región Lima. Para adquirir el título profesional Ingeniero Civil, propuso realizar los estudios previos y diseños de la implementación de la red de agua y red de desagüe para la comunidad de Madean – Yauyos - Lima. El tipo de proyecto es aplicado, el nivel del proyecto es

descriptiva – explicativa, el proyecto es no experimental transversal descriptivo y aplicativo. Concluye que en los estudios topográficos, el relieve del terreno es muy escarpada; en los estudios de suelos, para la cimentación se recomienda tener una profundidad mínima de Df = 2.00m y un ancho para la cimentación de 1.00m; según estos valores la capacidad portante de carga admisible en proyecto se mostraran en el cuadro de estudios de suelos, se recomienda el uso de los cálculos obtenidos de la capacidad portante de cada calicata; se infiere que la capa del terreno donde se las bases tienen moderadas concentraciones de sales totales, sulfatos y además cloruros, que podrían dañar la armadura el concreto de la cimentación. Se recomienda que en la cimentación del proyecto usar el cemento tipo 1(uno); A su vez no se encontró ningún tipo de napa freática en las calicatas a una profundidad de 8.00m; en los estudios de fuentes de calidad de agua, los efectos de los análisis microbiológicos, químicos y físicos realizados al agua de la captación existente y proyectada para el Centro Poblado Madean cumplen con los parámetros de la normativa DSNº 004-2017-MINAN. Estándares para agua. Categoría A1; de acuerdo a los diseños hidráulicos y estructurales del proyecto de agua y desagüe para la población de Madean, se podrá mejorar el nivel de vida y salud de los pobladores, así también elevará la economía, por ello con esta investigación se realizada se habrá colaborado en gran manera para la población mencionada, dando un paso importante en el desarrollo.

Este antecedente nos indica que los estudios químicos realizados muestran sulfatos y cloruros bajos en proporción que para fines de construcción de estructuras se podrá utilizar el cemento convencional tipo uno a su vez estos estudios determinar que el agua podrá ser tratada con desinfectantes de acuerdo a los estándares que indican las normas vigentes, realizado este proyecto la calidad de la población y su economía mejorara.

Zambrano, J. (2019) en esta tesis titulada "Sistema de Bombeo de Agua utilizando Paneles Solares en el sector Boyero – C.P. Porcón Alto". Para adquirir el título profesional Ingeniero Civil, propuso determinar la factibilidad energética e hidráulica, de un proyecto de bombeo de agua utilizando paneles solares en el Sector Boyero, Porcón Alto. El tipo de investigación del proyecto fue descriptiva comparativa. Concluye que si es factible energéticamente e

hidráulicamente el proyecto de bombeo de agua utilizando paneles solares en el sector Boyero Centro Poblado - Porcón Alto, ya que, el sistema de bombeo puede

ser abastecida de manera satisfactoria por los recursos a utilizar, encontrando un

caudal de la fuente de 1.232 l/s el cual es mayor al caudal máximo diario de 0.101

l/s requerido para abastecer a la población, de la misma manera se tiene una

radiación de 6.22 kwh/m2, mayor al requerido de 3 kwh/m. también nos indica que

según el diseño del arreglo fotovoltaico utilizar 4 paneles solares monocristalinos

de la marca BAUER modelo BSP370M los cuales serán instalados 2 en serie y 2

en forma paralela, de la misma manera una bomba sumergible monofásica de 1HP

de potencia de la marca Lorentz modelo PS 150 C-SJ5-8/1HP, el cual tiene un

buen porcentaje de eficiencia.

En este antecedente el autor nos indica que la instalación del sistema de paneles

fotovoltaicos puede generar un buen caudal para el abastecimiento de la

población, y que la radiación solar requerida es suficiente para abastecer la

potencia de la bomba sumergible.

2.2. Teorías relacionadas al tema

Variable independiente: Paneles Fotovoltaicos.

Definición

Teniendo en consideración que la luz solar es totalmente renovable, se ha

considerado la implementación de paneles fotovoltaicos para el desarrollo de la

investigación. Para Carmona y Díaz (2018).

El módulo fotovoltaico, panel fotovoltaico o panel solar no importa el nombre dado

estos siempre están compuestos por células, apiladas eléctricamente, hermetizadas y sujetadas en un sistema con un marco o soporte. Este sistema da una salida

eléctrica continua, y tiene como nomenclaturas disponibles de 6v, 12v, 24v y más

que determinaran la energía eléctrica a la que trabajara dicho sistema voltaico.

(p.13).

12

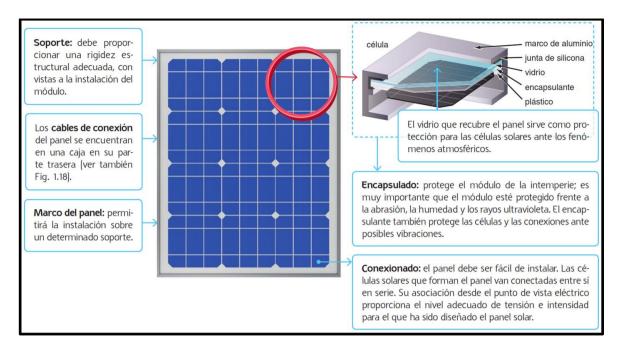


Figura 1. Estructura del panel solar.

Caudal

El caudal es la suma o volumen de agua transportada en un tiempo dado dependiendo del sistema que se utilice (tuberías, oleoductos, cañerías, ríos, canales), en específico el caudal en tuberías está afectado por la fricción que existente entre el agua y la superficie áspera del material en contacto. Perpiñán (2018), nos menciona.

Para la altura total de un sistema de bombeo permanente, se produce cuando las pérdidas de carga y fricción son mínimas y a su vez cuando el agua en el tanque permanece en un nivel adecuado. Se puede asumir diámetros elevados para asegurar reducción de la fricción en tuberías, esto se da porque se requiere la eficiencia del uso de los sistemas de bombeo y no necesiten un costo mayor para las futuras reparaciones por dichos problemas. (p. 120).

El caudal de la cámara de bombeo esta requerido de acuerdo al abastecimiento de los servicios del sistema de alcantarillado.

$$Q = \frac{V}{T}$$

Donde Q es caudal de bombeo, V es Volumen y T es tiempo.

Altura dinámica

Según el autor Perpiñán (2018, p. 120) nos menciona que.

Es la altura total que deberá impulsar la bomba donde el agua tendrá que pasar obstáculos para poder llegar al punto específico que se requiera.

$$H_d = H_g + H_f + P_s$$

Donde H_d es la altura dinámica, H_g representa la altura geométrica, H_f representa la perdida de carga, P_s presión de salida del pozo.

Potencia electrobomba

Según el autor Perpiñán (2018, p. 119) nos menciona que.

La potencia es la cantidad de trabajo que deberá tener la bomba durante un tiempo específico de funcionamiento.

$$P_b = \frac{Q_b x H_d}{75 x n}$$

Donde P_b es la potencia de la electrobomba, Q_b es caudal de bombeo, H_d es la altura dinámica, n eficiencia de la bomba.

Clasificación

La clasificación de las instalaciones solares fotovoltaicas podemos realizarla en función de la aplicación a la que están destinadas. Para Carmona y Díaz (2018, pp. 9-10).

- Aplicaciones autónomas: Sirven para proporcionar energía, con el fin de distribuir energía a la zona requerida estas pueden ser de dos tipos:
 - Comunicación.
 - > Electrificación.
 - Señal.
 - Iluminación.
 - > Bombeo de aguas.
 - Redes.
 - Telemetría.

- Aplicaciones conectadas en red: Estas son cuando la energía puede ser usada directamente de los sistemas fotovoltaicos. Pueden ser:
 - Centrales fotovoltaicas y huertos solares.
 - Edificios fotovoltaicos.

Tipos

Todos los tipos de paneles tienen tecnología diferente y están de acuerdo a la cantidad de células. Para Carmona y Díaz (2018, p.14).

- Silicio cristalino (monocristalino y multicristalino).
- Silicio amorfo.

Célula	Silicio	Rendimiento laboratorio	Rendimiento directo	Características	Fabricación
	Monocristalino	24%	15-18 %	Son típicos los azules homogé- neos. Sus cantos son redondea- dos, debido al proceso de fabri- cación.	Se obtiene de silicio puro fundido y dopado con boro.
	Policristalino	19-20%	12-14 %	La superficie está estructurada en cristales y contiene distintos tonos de azul.	Igual que el del monocristalino, pero se disminuye el número de fases de cristalización.
	Amorfo	16 %	< 10 %	Tiene un color homogéneo (marrón), pero no existe conexión visible entre las células.	Tiene la ventaja de ser semiflexi- ble, y poder depositarse en forma de lámina delgada y sobre un sustrato, como vidrio o plástico.

Figura 2. Diferencias de acuerdo a su fabricación

Elementos de instalación

Módulo fotovoltaico: transforma la energía solar en energía eléctrica. Es una agrupación de varios paneles fotovoltaicos, satisfaciendo de la potencia necesaria a la instalación. Componente de una instalación solar fotovoltaica. (Carmona y Díaz, 2018, p.11).

Regulador de carga: es la conexión que hay entre los paneles solares y todos los accesorios de la instalación. Este regulador provee protección a las baterías. Da energía eléctrica continua en la salida. Regula la energía para la cual trabajara la instalación. Destina el valor de la tensión nominal a la que trabaja la instalación. (Carmona y Díaz, 2018, p.11).

Batería: es el acumulador de energía y solo será instalada en instalaciones de tipo autónoma. Ella provee energía acumulada en su interior cuando no hay presencia

de luz solar o poca luz. Proporciona energía a la instalación durante los periodos sin luz solar o sin luz solar suficiente. (Carmona y Díaz, 2018, p.11).

Inversor 12 CC/AA: cambia la energía continua a una alterna de 220v para el trabajo destinado y en una frecuencia de 50Hz, parecida a la energía eléctrica. Provee de energía a los aparatos que trabajan con corriente alterna. (Carmona y Díaz, 2018, p.11).

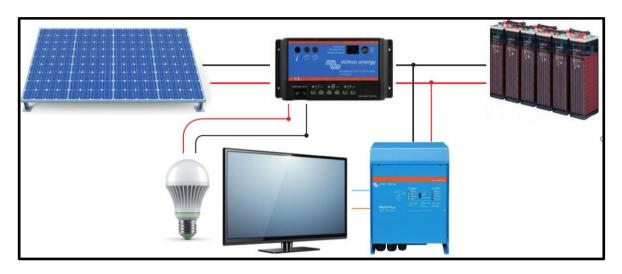


Figura 3. Instalaciones solares fotovoltaicas.

Metrados

Los metrados según CAPECO nos menciona que.

Esta se determina así al grupo ordenado de todos los datos adquiridos o logrados a través de mediciones que están a escalas [...]. Esto se da con el motivo de mostrar la suma necesaria de trabajos a realizar y cuando este es multiplicado por su costo unitario se obtendrá el costo directo del trabajo. (p. 10).

Presupuesto

El presupuesto es el cálculo anticipado para presentar un costo ya sea de una obra o la realización de un servicio. Según Villajuana (2013), nos menciona que.

En consecuencia, el presupuesto verifica la cantidad de trabajo y los trabajos a realizar mediante una gestión, con la finalidad que todos los trabajos a realizar puedan ser presupuestados objetivamente y poder asumir la toma de decisiones requeridas inmediatas para la prevención y corrección. Por ello el presupuesto

verifica la suma de trabajos programados y diseña las estrategias de operación, conociendo con anticipación los posibles resultados que arrojen, se determinan las exigencias necesarias para cubrir las metas y proyectar la mejora de resultados. Todo presupuesto será proyectado en unidades de dinero. (p. 550).

Variable dependiente: Diseño de red de Agua y Alcantarillado.

Definición

Nuestro objetivo principal es definir los requerimientos ínfimos para la realización del proyecto detallado de las redes de agua y desagüe.

Para la obtención del agua es necesario delimitar de donde será captada el agua, para la distribución al ser humano, para esto será necesario obtener los resultados de todos los estudios realizados en la zona y que aseguren su cantidad y calidad de agua necesaria, estos estudios verificaran todas las alternativas de fuentes, la topografía, la ubicación, los requerimientos mínimos, y todos los demás estudios correspondientes. (RNE OS.010, p. 33)

Topografía

Según Mendoza (2013), "la topografía es una rama de la ingeniería con el propósito de recopilar, procesar y representar las partes físicas del geoide. En otras palabras, la topografía realiza estudio sobre el relieve de un lugar determinado, define los desniveles, las distancias horizontales y verticales mediante el levantamiento topográfico" (p.7).

Planimetría

Es la encargada de presentar mediante gráficos la zona de trabajo sin tomar en cuenta la variación de niveles y alturas que podrían estar presentes en la zona de trabajo. (Mendoza, 2013, p.11).

Altimetría

La altimetría a diferencia de la planimetría proyecta mediante gráficos la diferencia de alturas con respecto a los puntos del área referenciada en la superficie del terreno, en la mayoría de casos se toma como nivel 0.00 al mar (Mendoza, 2013, p. 12).

17

Estudio de mecánica de suelos

Los estudios de suelos deberán contener los trabajos realizados en la zona, los trabajos realizados en laboratorio y un grupo de persona que evaluaran y establecerán lo necesario dentro de lo físico – mecánico de los suelos que comprenda el proyecto. (DG, 2018, p. 279).

Parámetros de diseño

La determinación de los parámetros de son la población proyectada, el tiempo de diseño, la dotación de agua y variaciones de consumo. Según el PNSR (2004).

- Población de Diseño: El proyectista tendrá en cuenta como determinara la población proyectada ha cierto tiempo, conociendo los datos de los censos tomados por la base de dato según el registro del país, donde se vea el crecimiento de los habitantes, estos datos deben estar justificados. El diseño deberá reflejarse en un periodo de 20 años. (p. 7).
- Periodos de diseño: Para el tiempo de diseño se tendrá en cuenta los diferentes factores tales como: (p. 8).

El tiempo recomendable máximo de diseño será:

- a) Capacidad de las fuentes de abastecimiento: 20años.
- b) Obras de captación: 20 años.
- c) Pozos: 20 años.
- d) Plantas de tratamiento de agua de consumo humano, reservorio: 20 años.
- e) Tuberías de conducción, impulsión, distribución: 20años.
- f) Equipos de bombeo: 10años.
- g) Caseta de bombeo: 20añox.

Dotación de agua

➤ Sistemas Convencionales: Cuando no se encuentren estudios de dotaciones, se podrá tomar en cuenta las referencias indicadas en este párrafo, pero teniendo en cuenta la georeferencia de lugar, el clima, nivel de función entre otros: (p. 8).

a) Costa: 50 – 60 lt/hab/día

b) Sierra: 40 – 50 lt/hab/día

c) Selva: 60 – 70 lt/hab/día

Según las actividades socioeconómicas, y de acuerdo a las características socioeconómicas, concentración de habitantes y requisitos técnicos que ayuden a la implementar actividades de sanidad con disposición de redes se utilizara una dotación de hasta 100 lt/habt/día. (p. 8).

- Sistemas no convencionales: Cuando la solución a emplearse son bombas manuales, o haciendo funcionar a través de otros sistemas, redes de agua de lluvia pozos y manantiales con el uso de una bomba de mano se considera dotaciones mínimas 20 lt/habt/día. (p. 8).
- Variaciones de Consumo: En el gasto máximo diario, se tendrá en consideración el valor de 1.3 veces el consumo promedio diario anual. (p. 8).

En el gasto máximo horario, tendrá un valor de dos veces el consumo promedio diario anual. (p. 8).

En el caudal para la bomba tendrá un valor de veinte entre N veces el gasto máximo diario, asumiendo que N es el número de horas de bombeo. (p. 8).

Parámetros hidráulicos de agua

La norma determina los parámetros mínimos que deben tener todos los diseños de repartición de redes de agua para el consumo de la población en zonas de más de 2000 pobladores. Para los diseños condominiales se podrá utilizar en cualquier zona urbana y/o rural, demostrando beneficio. (RNE OS.050, p. 51).

Caudal de diseño

Según el (RNE OS.050) nos menciona que "Para la repartición se medirá con el resultado mayor al comparar el consumo máximo horario con la

adición del consumo máximo diario más el consumo de contra incendio ya sea el caso que tenga demanda contra incendio" (p. 51).

Diámetros mínimos

El mínimo diámetro para el uso en viviendas es de 75mm y el diámetro para industria será de 150mm. (RNE OS.050, p. 52).

En casos excepcionales, debidamente fundamentados, podrá aceptarse tramos de tuberías de 50 mm de diámetro, con una longitud máxima de 100 m si son alimentados por un solo extremo ó de 200 m si son alimentados por los dos extremos, siempre que la tubería de alimentación sea de diámetro mayor y dichos tramos se localicen en los límites inferiores de las zonas de presión. (RNE OS.050, p. 52)

En los casos de abastecimiento por piletas el diámetro mínimo será de 25 mm. (RNE OS.050, p. 52).

Velocidades

En el caso de velocidades será máximo de 3 m/s.

Y en ciertas situaciones se podrá aceptarse una velocidad máxima de 5 m/s. (RNE OS.050, p. 52).

Presiones

De acuerdo a la presión estática está determinada que no sobre pase más de 50 m en cualquier punto de la red. Y para el requerimiento de consumo máximo horario, la presión dinámica estará por debajo de 10 m. En caso de abastecimiento de agua por piletas, la presión mínima será 3,50 m a la salida de la pileta. (RNE OS.050, p. 52).

Parámetros hidráulicos de desagüe

Tensión Tractiva

Según el (RNE OS.050) nos menciona que "Todos los tramos deben ser confirmar el principio de Tensión Tractiva Media (σ t) y una estimación mínima de σ t = 1,0 Pa, este valor calculado para el caudal inicial (Qi), y valor correspondiente para el coeficiente de Manning n = 0,013" (p. 78).

A su vez el (RNE OS.050) nos menciona que "Es el esfuerzo tangencial unitario asociado al escurrimiento por gravedad en la tubería de alcantarillado, ejercido por el líquido sobre el material depositado" (p. 80).

Pendiente

Según el (RNE OS.050) nos menciona que "La pendiente máxima necesaria será de acuerdo a la velocidad final de Vf = 5m/s; en otros casos serán sustentados debidamente" (p. 78).

A su vez el (RNE OS.050) nos menciona que el "El mínimo valor de una pendiente está determinada mediante el criterio de la tensión tractiva esto garantiza la autolimpieza de dicha tubería" (p. 80).

Tirante

Según el (RNE OS.050, p. 78)

Cuando la velocidad (Vf) es superior a la velocidad critica (Vc), la mayor altura de lámina de agua admisible debe ser de 502 % del diámetro del colector, asegurando la ventilación del tramo. La velocidad critica es definida por la siguiente expresión

$$Vc = 6.\sqrt{g.Rh}$$

Donde:

g = Aceleración de la gravedad (m/s2).

Rh = Radio hidráulico (m)

La altura de la lámina de agua debe ser siempre calculada admitiendo un régimen de flujo uniforme y permanente, siendo el valor máximo para el caudal (Qf), igual o inferior a 75% del diámetro del colector.

Cámaras de inspección

Según el (RNE OS.050, p. 78) nos menciona:

Las cámaras de inspección podrán ser buzonetas y buzones de inspección. Las buzonetas se utilizarán en vías peatonales cuando la profundidad sea menos de 1.00 m sobre la clave del tubo. Se proyectarán solo para colectores de hasta 200 m de diámetro.

Los buzones de inspección se usan cuando la profundidad sea mayor de 1.0 m sobre la clave de la tubería.

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

Para determinar el diseño del proyecto se deberá definir el enfoque de la investigación a realizar. Según H, F, Baptista (2014) sostienen:

El enfoque cuantitativo [...] es secuencial y probatorio. Cada etapa precede a la siguiente y no podemos brincar o eludir pasos. El orden es riguroso. Aunque desde luego, podemos redefinir alguna fase. Parte de una idea que va acotándose y, una vez delimitada, se derivan objetivos y preguntas de investigación, se revisa literatura y construye un marco o una perspectiva teórica, de las preguntas se establecen hipótesis y determinan variables; se traza un plan para probarla(diseño); se miden las variables en un determinado contexto; se analizan las mediciones obtenidas utilizando métodos estadísticos, y se extrae una serie de conclusiones. (p. 4).

Se definió que este enfoque del proyecto será cuantificado dado que se medirá y estimara los fenómenos que afectan al problema de nuestra investigación.

Tipo de investigación

Después de definir el proyecto determinaremos el tipo de proyecto a realizar. Por ello CONCYTEC (2017) nos menciona que el "proyecto será aplicada: está destinada a conocer mediante el conocimiento científico, todos los medios para la cual se empleará para una necesidad determinada" (p. 135).

Según lo expuesto por el autor, podemos definir que nuestra investigación será de tipo aplicativa dado que usaremos investigaciones ya realizadas para determinar la mejor solución al problema.

A su vez la investigación tendrá el nivel descriptivo, por ende, Hernández et al. (2014) nos menciona que "para los estudios descriptivos se tiene que buscar las especificaciones necesarias, las cualidades y las características de las personas, comunidades, grupos y todos los tipos procesos y cualquier fenómeno que esté sometido a un estudio previo" (p. 92).

Con esto el proyecto será de tipo aplicada en un nivel descriptivo por lo anteriormente expuesto.

Diseño de investigación

El proyecto de investigación también está determinado debido al planteamiento del proyecto por ello Hernández et al. (2014) nos indica que.

Podría definirse como la investigación que se realiza sin manipular deliberadamente variables. Es decir, se trata de estudios en los que no hacemos variar en forma intencional las variables independientes para ver su efecto sobre otras variables. Lo que hacemos en la investigación no experimental es observar fenómenos tal como se dan en su contexto natural, para analizarlos. (p.128).

Se concluye que el diseño del proyecto será no experimental en la de corte transversal dado que recolectan datos hacer una sola medición en un determinado tiempo por única vez.

3.2. Variables y operacionalización

Se trabaja con dos variables para esta investigación estas son:

• Variable independiente: Paneles Fotovoltaicos.

• Variable dependiente: Diseño de red de Agua y Alcantarillado.

Operacionalización de Variables

Con la operacionalización realizaremos la medición de nuestras variables que están dentro de nuestro proyecto de investigación. Nuestro cuadro determinará nuestras variables, dimensiones e indicadores, también se mostrará nuestros problemas, objetivos e hipótesis de nuestro proyecto de investigación.

Matriz de operacionalización de las variables

Tabla 1. Cuadro de Operacionalización de Variables

	C	DPERACIONALIZACION	DE VARIABLES	
VARIABLE	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES
				Topografia.
			Estudios Basicos	Estudio de Mecanica de Suelos.
		Se obtendrán datos de		Parámetros de Diseño
	Es un componente del sistema de agua potable,	las fuentes primarias, usando la técnica de la		Caudal de diseño
DISEÑO DE RED DE LA	el mismo que permite llevar el agua tratada	recolección de datos, estudios básicos,	Parámetros	Diametros minimos
RED DE AGUA POTABLE Y ALCANTARILLADO	hasta cada vivienda a través de tuberías,	parámetros hidráulicos de agua y alcantarillado mediante	Hidráulicos de Agua	Velocidades
ALCANTARILLADO	accesorios y conexiones domiciliarias. (MVCS, p. 127)	sus respectivos indicadores aplicables al diseño de agua y alcantarillado.		Presiones
			Parámetros Hidráulicos de Alcantarillado	Tension tractiva
				Pendiente
				Tirante
				Camaras de inspeccion
				Caudal
	La energía solar fotovoltaica (ESFV)	Se obtendrán datos de para poner en funcionamiento un equipo de Bombeo	Equipo de Bombeo	Altura dinamica
	constituye una Fuente de energía renovable, la cual puede usarse en la			Potencia electrobomba
PANELES	generación de electricidad mediante el uso de paneles solares	que será abastecidas por energía eléctrica proveniente de paneles		Clasificacion
FOTOVOLTAICOS	fotovoltaicos (PSFV) que convierten la radiación	fotovoltaicos identificando los costos	Panel Fotovoltaico	Tipos
	solar en electricidad, haciéndola aplicables a	y presupuestos para la implementación en el diseño de la red de		Elementos de instalación
	múltiples actividades de vida. (REDVET, 2016, pp. 1-4)	agua y alcantarillado.	Costos y	Metrados
	,		Presupuestos	Presupuesto

Fuente: Elaboración propia

3.3. Población, muestra y muestreo

Población

"De forma genérica, en la estadística; una población se denomina al conjunto de elementos ya sean objetos, personas etc. con características observables de una naturaleza cuantitativa y cualitativa que puedan ser medidas (Córdova, 2003, p. 2).

Para nuestra investigación la población será el distrito de Oronccoy – La Mar – Ayacucho 2020.

Muestra

Hernández et al. (2014) nos menciona.

Para el proceso cuantitativo, la muestra es un subgrupo de la población de interés sobre el cual se recolectarán datos, y que tiene que definirse y delimitarse de antemano con precisión, además de que debe ser representativo de la población. El investigador pretende que los resultados encontrados en la muestra se generalicen o extrapolen a la población (en el sentido de la validez externa que se comentó al hablar de experimentos). El interés es que la muestra sea estadísticamente representativa. (p.173).

En nuestro proyecto de investigación la muestra estará dada por la población del distrito de Oronccoy – La Mar – Ayacucho 2020.

Muestreo

Ñaupas, Valdivia, Palacios, Romero (2018) definen que "El muestreo es un procedimiento que permite la selección de las unidades de estudio que van a conformar la muestra, con la finalidad de recoger los datos requeridos por la investigación que se desea realizar" (p. 336).

En el presente trabajo consistirá en un muestreo no probabilístico ya que se tomará la recolección de datos de estudios ya realizados.

3.4. Técnicas e instrumentos de recolección de datos

Carrasco (2006) "Las técnicas para la investigación constituye un grupo de reglas y patrones que guían los trabajos que se tienen que realizar todos los investigadores en nada etapa de una investigación" (p.274).

La técnica principal que se hará presente en este estudio será la observación directa, levantamientos topográficos, estudio de suelos, recolección de datos poblacional y demanda de agua, parámetros de agua y desagüe.

Instrumento

Carrasco (2006) "Los materiales de recolección de data son mecanismos que se emplean para recoger datos y luego almacenarlas, ejemplo: afiches, modelos de cuestionarios, guías, etc." (p.38),

Los instrumentos que aplicaremos en nuestro proyecto de investigación será:

- Cuaderno de campo.
- Plantillas para obtención de data.
- Equipos de topografía.
- Reglamento nacional de edificaciones, Programa Nacional de Saneamiento Rural, libros, tesis.
- Computadoras.
- Programas para diseño y modelamientos.

Validez

Según Hernández et al. (2014) nos menciona que "hace referencia al grado en que un material puede medir realmente y que pueda obtener evidencias variadas" (p.200).

Confiabilidad

Según Hernández et. al. (2014) nos menciona que "La confiabilidad es la manera que un instrumento da un efecto coherente y confiable; ya que si se midiera la

temperatura ambiental con un termómetro cada cierto minuto y este daría resultados muy distintos dichos termómetros no sería confiable" (p.200).

Nuestro proyecto de investigación cuenta con instrumentos para recolectar datos en campo y de laboratorio, estos estarán ejecutados por personal técnico y supervisión de ingenieros capacitados, así mismo se solicitará certificado post ejecución de los ensayos en campo de las pruebas realizadas.

3.5. Procedimientos

El Proyecto de investigación, "Diseño de red de Agua y Alcantarillado empleando Paneles Fotovoltaicos en el distrito de Oronccoy – La Mar – Ayacucho 2020" trata de dotar de información básica para el desarrollo de la investigación. En el inicio del proyecto se obtuvo el levantamiento topográfico de la zona obteniendo el plano general donde se y las curvas de nivel donde se hará la distribución de las redes de agua y desagüe, también se ubicó las obras importantes que son Reservorio y PETAR, estos estudios topográficos se requieren para la proyección de futuras ampliaciones donde se aprecia las calles con sus respectivos nombres.

Se tomó el estudio de mecánica de suelos, el objetivo es realizar la investigación de suelos para identificar el perfil granulométrico de las distintas capas granulares que constará la cimentación a nivel del suelo de fundación y la capacidad portante del área en estudio para presentar recomendaciones de diseño y construcción.

Con el propósito de conocer la capacidad de soporte del material de relleno y del terreno de fundación, se realizó el ensayo de Proctor Modificado de la muestra extraída en las Calicatas.

Luego se idéntico los parámetros de diseño de la red de agua y alcantarillado donde se realizó el periodo de diseño que será de acuerdo al tipo de sistema y este será por gravedad, luego se calculó la población actual y futura con la respectiva información se realizara la dotación de agua y los cálculos de los caudales.

También se determinaron los parámetros hidráulicos de agua y alcantarillado, para el agua se consideró el caudal de diseño, diámetros mínimos, velocidades y presiones; y para la red de alcantarillado se consideró la tensión tractiva, pendientes, tirantes y las cámaras de inspección.

Obteniendo toda esta información se procedió a utilizar los programas de diseño como WaterCad, y definir la distribución de la red de agua y alcantarillado obteniendo datos exactos de diseño.

También se implementó un equipo de bombeo para la eliminación de las aguas negras del centro educativo Jorge Basadre utilizando paneles fotovoltaicos, para el equipo de bombeo se calculó el caudal, la altura dinámica para para definir la potencia de la bomba.

Con calculo la potencia de la bomba se identificará la clasificación de sistema fotovoltaico se utilizará, el tipo de panel fotovoltaicos y los elementos de la instalación.

Por último, con todos los datos obtenidos se procederá hacer una comparación de acuerdo al tipo de material a usar para el diseño de agua y alcantarillado, para ello se realizar los metrados y su respectivo presupuesto.

Finalmente se plasmará los resultados de los cálculos obtenidos para la discusión y plantear las conclusiones y recomendaciones.

3.6. Método de análisis de datos

Para nuestro análisis de datos obtenidos con los ensayos en laboratorio y en campo se realizará lo siguiente:

- Recolección de información.
- Observación del comportamiento y ensayos de mecánica de suelos.
- Tabulación de los cuadros y tablas comparativos (Excel).
- Representación de los resultados en gráficos estadísticos (Excel).
- Programas de ingeniería Autocad Civil3D, SewerCad, Watercad.

3.7. Aspectos éticos

Para el desarrollo de nuestro proyecto, consideramos como investigadores del tema presentado a respetar normas y métodos establecidos necesarios así también respetar los resultados obtenidos en el laboratorio y campo para la transparencia del desarrollo del proyecto.

IV. RESULTADOS

4.1. Estudios Básicos

4.1.1. Topografía

La morfología de su relieve es variada, compleja y muy accidentada en ciertos tramos vitales, está formada por cadenas de montañas que se formaron después de plegada la Cordillera de los Andes, por acción erosiva de algunos agentes geográficos como el agua de lluvia, el viento, etc. Presenta una configuración topográfica irregular y está ubicada dentro de las cotas 2,000 a 4,500 metros sobre el nivel del mar. El Anexo Oronccoy cuenta con una lotización indefinida, y un área de expansión Urbana dirigida hacia las zonas de expansión adyacentes; las calles se encuentran sin pavimentar y tienen un ancho promedio de 5m, algunos pasajes se encuentran en una pendiente pronunciada que solo permite la circulación de personas y animales. Las pendientes son variadas en la zona de intervención de proyecto van de 2% a 7% en promedio con ondulaciones geomorfológicas semi-pronunciadas.

Actividades económicas

La alimentación de las familias del distrito de Oronccoy proviene principalmente de la actividad agrícola y pecuaria. Las zonas productoras de los distintos cultivos se encuentran ubicadas entre los 2000 a 4600 m.s.n.m., donde es trabajado por pequeñas unidades agropecuarias de forma tradicional, que cultivan entre 1 a 2 yugadas en promedio.

Recursos hídricos

En cuanto a su hidrografía, los pobladores de Oronccoy disponen del recurso hídrico provienen de los manantiales y ojos de agua que se ubican en la parte superior de dichas localidades.

Ubicación y Descripción del Área de Estudio

Al respecto se presentará el estudio donde se desarrollaron tareas diversas del Levantamiento Topográfico, y georreferenciación necesaria para la obtención de datos necesarios en el "Diseño de la red de Agua y Alcantarillado empleando Paneles Fotovoltaicos en el distrito de Oronccoy – La Mar – Ayacucho 2020".

El área de trabajo políticamente se ubica en La Mar, distrito de Oronccoy, departamento de Ayacucho, puntualmente se encuentra en el sector dieciocho sur, de la respectiva zona horaria, en detalle se verá a continuación.

Tabla 2. Ubicación Geográfica

	COOF	RDENADAS UTI	/I- DATUM V	VGS84
Punto	Norte	Este	Altitud	Descripción
1	8520225.7340	669365.2160	3720.420	PARQUE PRINCIPAL

Fuente: Elaboración Propia

Figura 4. Ubicación del distrito

Figura 5. Google Earth. Altura de toma 4.80 Km

Recopilación de Información

En el estudio y su elaboración se obtuvo información como:

- √ Vistas aéreas del área del estudio topográfico mediante imágenes satelitales. Utilizando programas como: Google Earth Pro, Global Mapper, Geocatmin-WGS84.
- ✓ Apoyo del GPS navegador GARMIN OREGON 300- setas.

Zona de Trabajos y Duración

Las zonas de trabajo en campo que se realizaron son:

- > AREA DE INFLUENCIA DEL PUEBLO ACTUAL
- > AREA DE INFLUENCIA DE LA ZONA A URBANIZAR

El tiempo de duración del trabajo topográfico se dio de acuerdo a lo siguiente:

El tiempo total del trabajo de campo se dio 01 etapa y con un total de 02 cuadrillas denominados: cuadrilla N°01 (GPS DIFERENCIAL), cuadrilla N°02 (Drone) que se detalla en la siguiente:

Tabla 3. Trabajos realizados por etapas

FECHA	N° DE	N° DE	DESCRIPCION	N°
FECHA	ETAPA	DIAS	DESCRIPCION	CUADRILLAS
05/07/2020	1° ETAPA	1	Trabajo con GPS DIFERENCIAL	1
06 y 07/07/2020	2° ETAPA	1	Trabajo Con Drone	1

Fuente: Elaboración propia.

Figura 6. Reconocimiento de campo de estructuras existentes

Figura 7. Reconocimiento de campo de estructuras existentes

Equipo de Ingeniería empleado

Cuadrilla N° 01 (GPS DIFERENCIAL)

> GPS DIFERENCIAL

✓ Marca: TRIMBLE

✓ Modelo: TRIMBLE R6 GNSS

Figura 8. GPS Diferencial

> GPS NAVEGADOR

✓ Marca: GARMIN

✓ Modelo: OREGON 300-SETAS

✓ Serie: 1E5104185

Figura 9. GPS Navegador

> DRONE RPAS

✓ MARCA: DJI Phantom

✓ Modelo: 4 Pro

Figura 10. Drone RPAS

Recursos Empleados:

- ✓ 01 GPS DIFERENCIAL TRIMBLE R6
- ✓ GPS Navegador
- ✓ Drone Phantom 4 pro
- ✓ También diferentes materiales como baterías, pinturas, wincha, cemento, trípode, etc.
- ✓ Placas de Bronce para los puntos de control.

Procedimiento y Ejecución

Planeamiento

Se juntó diversa información de campo como las condiciones terreno, ubicación de proyecto, evaluaciones preliminares de población.

Trabajos de Campo

Los trabajos se iniciaron en 01 etapa: Primera etapa de reconocimiento de campo los días 05 de julio del 2020, segunda etapa el día 05, 06, 07 del 2020,

Se tomaron los puntos base con coordenadas UTM con GPS diferencia, primer punto en placa de bronce adosado en concreto y segundo punto de la misma forma mencionado, ambos puntos ubicados en la zona del proyecto.

Control Horizontal

Para el control Horizontal, se utilizó el método Diferencial o Estático, el cual consiste en colocar, en dos puntos conocido con coordenadas conocidas en

sistema **WGS84** en este caso (BM01 Y BM02 ubicados en la placa de bronce). Los valores de las coordenadas reales (BM01 Y BM02) y se detallan a continuación:

Tabla 4. Puntos de control

PUNTO	NORTE	ESTE	ALTURA	DESCRIPCION
1	8520038.4	669415.39	3733.97	G-01 (placa de bronce)
2	8520372.2	669528.3	3764.2	G-02 (placa de bronce)

Fuente: Elaboración propia.

Figura 11. Ubicación de los puntos geodésicos en placas de bronce

Figura 12. Ubicación de los puntos geodésicos en placas de bronce

Objetivo del levantamiento topográfico

El levantamiento topográfico tiene como consecuencia proporcionar información necesaria basándose en datos obtenidos y evaluados, desarrollada por un grupo de personas especialistas en diversas ramas afines a la topografía así poder dar una proyección correcta de la zona.

Se obtendrá puntos de control en una suma suficiente para el desarrollo del trabajo y así verificar las cotas del terreno entre ellas la sub-rasante y también tener puntos de referencia.

El objetivo de un levantamiento topográfico es la determinación, tanto en planimetría como en altimetría, de puntos del terreno necesarios para la representación fidedigna de un determinado sector del terreno a fin de:

Metodología

Se tomará medidas para metodológicas para cumplir los objetivos necesarios como:

- ✓ Para el levantamiento topográfico del área de estudio se estableció la poligonal básica: que sirvió de apoyo para el levantamiento de los detalles propios del presente estudio.
- ✓ Se empleó en el levantamiento topográfico un 01 UN GPS diferencial para monumentacion de los BM, así como levantamiento de los puntos de control para el vuelo el drone.

Trabajos de Campo

Para los de levantamiento topográfico dado por trabajos de campo, esto hace referencia a los puntos de control colocados y que tienen que estar codificados entre ellos para poder plasmarlos en los planos, después de haber culminado el trabajo de campo.

Ubicación del Punto de Control

En primer lugar, se ubicó los Puntos de Control enumerados y marcados con yeso para su respectiva toma de coordenadas con el GPS diferencial, cuyos puntos de control serán necesario para el procesamiento de datos y obtener la ortofoto.

Figura 13. Ubicación de los puntos de control antes de realizar el vuelo con el Drone

Figura 14. Ubicación de los puntos de control antes de realizar el vuelo con el Drone

Tabla 5. Cuadro de coordenadas UTM de los BM y Punto Geodésico

PUNTO	NORTE	ESTE	ALTURA	DESCRIPCION
1	8520038.4	669415.39	3733.97	G 01 (placa de bronce)
2	8520372.2	669528.3	3764.2	G02 (placa de bronce)
3	8520117.8	669529.82	3750.1	BM01 - SOBRE CONCRETO
4	8520225.7	669365.22	3720.42	BM 02 - SOBRE CONCRETO
5	8520280.5	669382.52	3723.8	BM 03 - SOBRE CONCRETO
6	8520449.1	669457.26	3747.09	BM 04 - SOBRE CONCRETO
7	8520182.3	669230.69	3698.05	BM 05 - SOBRE CONCRETO

Fuente: Elaboración propia.

Plano Topográfico Georreferenciado en tiempo real

La georreferencia es la táctica de localización espacial de un plano topográfico en una zona geográfica única y definida en un sistema de coordenadas específicas. El plano georreferenciado es en tiempo real en vista ortofoto utilizando el drone Phantom 4 pro.

Figura 15. Ortofoto del Distrito de Oronccoy

Plano topográfico a curvas de nivel

El plano topográfico obtenido en el programa civil 3D a curvas de nivel detallando toda la estructura existente en situación actual, además se muestran las curvas menores a 1m. y las curvas mayores cada 5m.

Figura 16. Plano urbanístico del distrito de Oronccoy

4.1.2. Estudio de mecánica de suelos

El presente proyecto servirá para exponer los resultados del Estudio de Suelos para el proyecto: "Diseño de la red de Agua Potable y Alcantarillado empleando Paneles Fotovoltaicos en el distrito de Oronccoy – La Mar – Ayacucho 2020".

Ubicación del área en Estudio

La zona de estudio está ubicada en el terreno destinado para la institución educativa secundaria Jorge Basadre de Oronccoy del distrito de Oronccoy, Provincia de La Mar, Región Ayacucho.

El área en estudio se encuentra en las coordenadas DATUM WGS 84 ZONA 18 HUSO L, coordenada Este = 669117m y coordenada Norte = 8519912m.

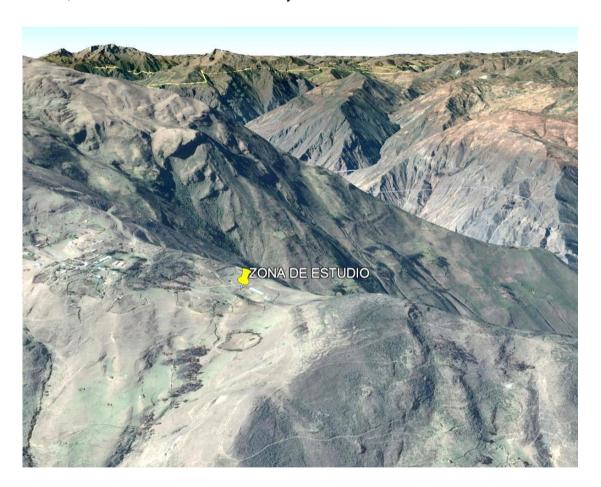


Figura 17. Vista de la Geomorfología de la zona de estudio – Fuente Google Earth

Calicatas de exploración

Se procedió hacer las excavaciones de las dos calicatas a cielo abierto, donde se apreció el perfil estratigráfico del lugar Se realizó la excavación de 02 calicatas de exploración a cielo abierto, por lo cual se pudo apreciar directamente el perfil estratigráfico de la zona. Se proyectó las futuras cimentaciones adecuadas de acuerdo a los datos obtenidos.

Se sacó diversas muestras para poder determinar las características del sub suelo.

Así se determinó que los suelos en el lugar son depósitos residuales conformados por materiales granulares de cementación baja y cohesión de nula a media. Se ha encontrado al terreno húmedo sin presencia visible de agua.

Tabla 6. Registro de sondaje

EXPLORACION	ESTRATO/ MUESTRA	PROFUNDIDAD (m)	ESPESOR	TIPO DE SUELO
C 01	E1/M1	0.00 - 0.40	0.4	TERRENO DE COBERTURA
C - 01	E2/M2	0.40 - 3.00	2.6	GRAVA LIMOSA CON ARENA
C 02	E1/M1	0.00 - 0.30	0.3	TERRENO DE COBERTURA
C - 02	E2/M2	0.30 - 3.00	2.7	ARENA LIMOSA CON GRAVA

Fuente: Elaboración propia.

Toma de Muestras en Campo.

De la excavación se extrajo muestras de los estratos más desfavorables, según la inspección visual realizada en campo, se obtuvo muestras alteradas de las calicatas para los ensayos estándares y especiales las cuales fueron remodeladas en laboratorio para simular las condiciones de campo, así como muestras para el contenido de humedad en recipientes herméticamente cerrados.

Ensayos de laboratorio

Ensayos estándares.

Se efectuaron los siguientes ensayos estándar de Laboratorio, para la clasificación de suelos y determinar las propiedades físicas, siguiendo las Normas establecidas por la American Society for Testing Materials (ASTM) de los Estados Unidos de Norte América.

- ✓ Peso unitario de Suelos (ASTM C-29)
- ✓ Límites de Consistencia de Atterberg (ASTM D-4318)
- ✓ Análisis Granulométrico por Tamizado (ASTM D-422)
- ✓ Ensayo de Clasificación de Suelos (ASTM D-2487)

A la muestra extraída de la calicata C - 02 se le realizo el ensayo para la obtención de densidad natural representativa del suelo mediante el uso del método del peso unitario para suelos, obteniendo los siguientes valores:

Tabla 7. Resultado de ensayo de contenido de humedad

EXPLORACION	ESTRATO	DENSIDAD HUMEDAD (gr/cm3)	CONTENIDO DE HUMEDAD (%)	DENSIDAD SECA (gr/cm3)
C - 02	E - 02	1.395	17.94	1.183

Fuente: Elaboración propia.

Tabla 8. Resultado de ensayos estándar

CALICATA	% GRAVA	% ARENA	% FINOS	LL %	LP %	IP %	AASHT - 248		SUCS (ASTM 2000)	CLASIFICACION
C - 01	44.9	19.02	36.08	34.79	24.05	10.74	A-6	(0)	GM	GRAVA LIMOSA CON ARENA
C - 02	32.5	33.91	33.59	NP	NP	NP	A-2-4	(0)	SM	ARENA LIMOSA CON GRAVA

Fuente: Elaboración propia.

Ensayos Especiales

Los ensayos especiales ejecutados son:

✓ Ensayo de Corte Directo (ASTM D-3080)

Tabla 9. Resultado de ensayo de Corte Directo

Sondaje	Cohesión C' (kg/cm2)	Angulo de fricción efectiva Φ' (°)
C - 02 (M2/E2)	0.03	25.0°

Fuente: Elaboración propia.

Con respecto a la parte química del suelo (contenido de sulfatos, cloruros, SST, Ph), el suelo está dentro del rango "No Agresivo", lo cual indica que no habrá problemas de ataque de sulfatos al concreto de la cimentación, no habrá ataque de los cloruros al acero de la armadura, ni problemas asociados a lixiviación del terreno de cimentación.

Descripción del perfil estratigráfico

Basándose en las exploraciones de campo:

Hacia la Calicata C - 01

De 0.00m a 0.30m, terreno de cobertura, color pardo negruzco, conformado por arcillas orgánicas con bastante arena y pequeña cantidad de grava, con presencia de raíces insipientes, material suelto, no adecuado para desplante de cimentación, estrato que se recomienda eliminar.

De 0.30m a 3.00m, depósitos residuales, terreno de color beige oscuro, conformados por una Grava Limosa con Arena que se clasifica en el sistema unificado de clasificación de suelos SUCS como un GM y el sistema de Clasificación del AASHTO como un A-6(0), presenta mucha cantidad de Grava (44.90%), pequeña cantidad de arena (19.02%) y mucha cantidad de finos (36.08%), la fracción que pasa la malla Nº 40 es de plasticidad media (limite liquido de 34.79%, Índice plástico 10.74%; lo que indica que la fracción fina es arcillosa), húmedo sin presencia visible de agua, con una cementación nula y cohesión media, la compacidad en el momento de auscultación es casi firme (LP<w), el terreno se podría considerar una estructura homogénea, tiene una resistencia a la excavación manual baja cuando está húmedo, de talud vertical con un grado de estabilidad de paredes estable.

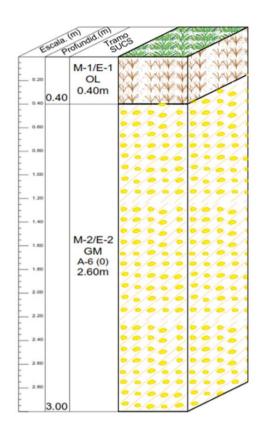


Figura 18. Perfil Estratigráfico C - 1

Hacia la Calicata C - 02

De 0.00m a 0.40m, terreno de cobertura, color pardo negruzco, conformado por arcillas orgánicas con bastante arena y pequeña cantidad de grava, con presencia de raíces insipientes, material suelto, no adecuado para desplante de cimentación, estrato que se recomienda eliminar.

De 0.40m a 3.00m, depósitos residuales, terreno de color beige oscuro, conformados por una Arena Limosa con Grava que se clasifica en el sistema unificado de clasificación de suelos SUCS como un SM y el sistema de Clasificación del AASHTO como un A-2-4(0), presenta mucha cantidad de Grava (32.50%), mucha cantidad de arena (33.91%) y mucha cantidad de finos (33.59%), la fracción que pasa la malla Nº 40 es de plasticidad nula (no presenta limite líquido, no presenta Índice plástico; lo que indica que la fracción fina está exenta de arcilla), húmedo sin presencia visible de agua, con una cementación nula y cohesión media, la compacidad en el momento de auscultación es casi firme (LP<w), el terreno se podría considerar una

estructura homogénea, tiene una resistencia a la excavación manual baja cuando está húmedo, de talud vertical con un grado de estabilidad de paredes estable.

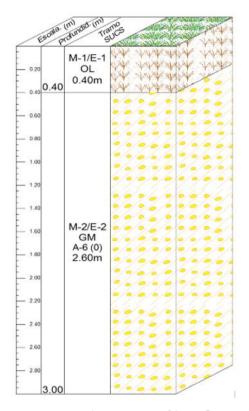


Figura 19. Perfil Estratigráfico C - 2

4.1.3. Parámetros de diseño

Los parámetros de diseño, los periodos de diseño, las dotaciones de agua y variaciones de consumo se determinaron según la población futura del distrito de Oronccoy – La Mar – Ayacucho 2020.

Periodos de diseño: Se determinan mediante las siguientes:

✓ Capacidad de las fuentes de abastecimiento: 20 años.

✓ Obras de captación: 20años.

✓ Reservorio: 20 años.

✓ Pozos: 20 años.

✓ Tuberías de conducción, impulsión, distribución: 20 años.

✓ Equipos de bombeo: 10 años.

✓ Caseta de bombeo: 20 años.

• Dotación de agua

> Sistemas Convencionales: Cuando no se encuentren estudios de

dotaciones, se podrá tomar en cuenta las referencias indicadas en

este párrafo, pero teniendo en cuenta la georeferencia de lugar, el

clima, nivel de función entre otros: (p. 8).

a) Costa: 50 - 60 lt/hab/día

b) Sierra: 40 - 50 lt/hab/día

c) Selva: 60 - 70 lt/hab/día

> Sistemas no convencionales: Cuando la solución a emplearse son

bombas manuales, o haciendo funcionar a través de otros sistemas,

redes de agua de lluvia pozos y manantiales con el uso de una

bomba de mano se considera dotaciones mínimas 20 lt/habt/día. (p.

8).

4.2. Parámetros Hidráulicos de Agua

Según RM Nº192-2018-VIVIENDA:

Periodo de diseño:

Para las líneas de distribución, impulsión, aducción y conducción, de

acuerdo a la resolución son de 20 años.

Población de diseño (método aritmético):

 $Pd = Pi * (1 + \frac{r * t}{100})$

Pi : Población inicial (habitantes)

Pd : Población futura o de diseño (habitantes)

R : Tasa de crecimiento anual (%)

T : Periodo de diseño (años)

		Νº		TIPO DE
OD.PREDIO	NOMBRES Y APELLIDOS	HAB/FAM	DNI	CONECCION
MDO-001	ALTAMIRANO TALAVERANO AURIA	4	80857125	DOMICILIARI
MDO-002	ANA HUAMAN CARRASCO	3	41658522	DOMICILIARI
MDO-003	ANASTACIA DE OROSCO HUARACA	5	31299373	DOMICILIARI
MDO-004	ANDY ALEXIS TRINIDAD ASPUR	4	62066695	DOMICILIARI
MDO-005	ARACELI LIZETH AGUILAR ORTIZ	4	72503444	DOMICILIARI
MDO-006	CEFERINA PEREZ LEGUIA	4	31167037	DOMICILIARI
MDO-007	CLEOFE LIZARBE ROMAN	3	80857159	DOMICILIARI
MDO-008	CRISTOFER GONZALES OROSCO	5	63796921	DOMICILIARI
MDO-009	DAMARIS LIZETH CHUNGANO ALARCON	4	81278321	DOMICILIARI
MDO-010	DIGNA NORMA RIVAS GONZALES	6	31185181	DOMICILIARI
MDO-011	EDITH LIDIA ARIAS CCOYCCA	4	81414396	DOMICILIARI
MDO-012	ERIKA VASQUEZ OROSCO	5	45856535	DOMICILIARI
MDO-013	FLOR KELY ROMAN CHUI	4	77077660	DOMICILIARI
MDO-014	FLOR KARINA MUNARES ROMAN	4	80531104	DOMICILIARI
MDO-015	FOLRCITA ROMAN HUACHO	5	80531104	DOMICILIARI
MDO-016	FRANCISCA HUAMAN ALARCON	8	31122296	DOMICILIARI
MDO-017	GUEVARA ALTAMIRANO JJHON	4	28712940	DOMICILIARI
MDO-018	JHASMIN SAFIRA AREVALO OROSCO	3	78563021	DOMICILIARI
MDO-019	JHEFERSON ALARCON BAUTISTA	5	61636726	DOMICILIARI
MDO-020	JHON SMITH OROSCO QUIJANO	6	81364883	DOMICILIARI
MDO-021	JHOSEP JHOEL LIZARBE	4	28712806	DOMICILIARI
MDO-022	JHYNER JHAIR TRINIDAD ALARCON		63342338	DOMICILIARI
MDO-023	JOSEFA ACUÑA OSCCO	5	28695106	DOMICILIARI
MDO-024	JOSEFA ACUÑA OSCCO	4	28693106	DOMICILIARI
MDO-025	JUANA MAYTAN DIAZ	7	80857111	DOMICILIARI
MDO-026	JULIA CASTRO RIVAS	8	31182102	DOMICILIAR
MDO-027	KENYE MEN DOZA OROSCO	5	78676086	DOMICILIAR
MDO-028	LUIS GABRIEL CCORA DIAZ	6	28712911	DOMICILIAR
MDO-029	MARIA AREVALO AGUILAR	4	72445287	DOMICILIARI
MDO-030	MARIA DAMIANO LEGUIA	4	31185520	DOMICILIARI
MDO-031	MARIA RIVAS LEGUIA	5	62066686	DOMICILIARI
MDO-032	MARIBEL SOLEDAD HUAYANA AREVALO	4	42648712	DOMICILIARI
MDO-033	MARINA DIAZ MAITAN	8	79518271	DOMICILIARI
MDO-034	MARYBEL CHIUI GUZMAN	4	63176759	DOMICILIARI
MDO-035	NELIDA ZUÑIGA NIEVE	5	70094507	DOMICILIARI
MDO-036	OLGA LEGUIA TRINIDAD	4	41126154	DOMICILIARI
MDO-037	RIDER MUNARES ROMAN	5	80531104	DOMICILIARI
MDO-038	RINA CCOICCA LEGUIA	5	44715409	DOMICILIARI
MDO-039	ROOUS ANGIETENORIO DIAZ	4	28712923	DOMICILIARI
MDO-040	ROSARIO DEL PILAR OROSCO ALARCON	4	72445181	DOMICILIARI
MDO-041	ROYER LEGUIA OROSCO	5	90423601	DOMICILIARI
MDO-042	RUTH SAYURI NIEVE ANCA	5	78515517	DOMICILIARI
MDO-043	RUTH FANY OROSCO TRINIDAD	4	81278345	DOMICILIARI
MDO-044	SARA AURORA LEGIA HUAMAN	5	78676086	DOMICILIARI
MDO-045	SEBASTIANA ALARCON RIVAS	5	31121607	DOMICILIARI
MDO-046 MDO-047	VICTORIA CARBINAS LEGUIA	4	48693211	DOMICILIARI
	VICTORIA CARHUAS LEGUIA	6	31127550	
MDO-048 MDO-049	VIDALINA LEGUIA TRINIDAD VILMA GUILLEN OROSCO	6 4	31186520 43506756	DOMICILIARI DOMICILIARI
MDO-049	YORCH DANIELO ROMAN ARIAS	4	44759018	DOMICILIARI
MDO-050	IE-INICIAL	3	44755018	DOMICIEIAKI
MDO-051				
MDO-052	IE- SEGUNDARIA			
MDO-054	PUESTO DE SALUD			
MDO-054	CASA COMUNAL			
MDO-056	MUNICIPALIDAD			
MDO-056	IGLESIA			
VIDO-057	POBLACION	234		
	I ODDACION	4.54		

Figura 20. Padrón de la comunidad de Oronccoy

	Crec		Tasa Crec.	AÑOS				
2	017		Anual (%)	2019	2020	2023	2025	2030
Población	1020	Distri.	-0.40	1012	1008	996	988	968
		Prov.	-1.74	984	966	93	894	804
		Dep.	0.10	1022	1023	1025	1027	1032

Figura 21. Tasa de crecimiento anual de Oronccoy

Donde:

Cantidad de población: 234

Tasa de crecimiento: 0.1

$$Pd = 234 * \left(1 + \frac{0.1 * 20}{100}\right) = 238.68$$

Población de diseño:

Dotación:

	DOTACIÓN SEGÚN TIPO DE OPCION TECNOLÓGICA (I/hab.d)					
REGIÓN	SIN ARRASTRE HIDRÁULICO (COMPOSTERA Y HOYO SECO VENTILADO)	CON ARRASTRE HIDRÁULICO (TANQUE SÉPTICO MEJORADO)				
COSTA	60	90				
SIERRA	50	80				
SELVA	70	100				

Figura 22. Dotación de agua según opción tecnología y región (l/hab. d) - Según RM Nº192-2018-VIVIENDA

DESCRIPCIÓN	DOTACIÓN (I/alumno.d)
Educación primaria e inferior (sin residencia)	20
Educación secundaria y superior (sin residencia)	25
Educación en general (con residencia)	50

Figura 23. Dotación de agua para centros educativos - Según RM №192-2018-VIVIENDA

Caudal promedio:

$$Qp = \frac{Dot * Pd}{86400} = \frac{100 * 239}{86400} = 0.277 \ l/s$$

A.8	Valores guía de coeficientes	
	De no existir datos locales comprobados a través de inve adoptados los siguientes valores	estigaciones, pueden ser
A.8.1	C , coeficiente de retorno	0,8
A.8.2	k ₁ , coeficiente de caudal máximo diario	1,3
A.8.3	k ₂ , coeficiente de caudal máximo horario	1.8-2.5
A.8.4	k ₁ , coeficiente de caudal mínimo horario	0,5

Figura 24. Valores guía de coeficiente- Según RM Nº192-2018-VIVIENDA

Consumo máximo diario:

$$Qmd = Qp * K2 = 0.277 * 2 = 0.553 l/s$$

Consumo máximo horario:

$$Qmh = Qp * K1 = 0.277 * 1.3 = 0.36 l/s$$

ITEM	COMPONENTE HIDRÁULICO	CRITERIO PRINCIPAL	CRITERIOS SECUNDARIOS	DESCRIPCIÓN
		PRINCIPAL	SECUNDARIOS	
9	Línea de Conducción		X	
15	Línea de Aducción			Para un caudal máximo diario "Q _{md} " menor o igual a 0,50 l/s, se diseña con 0,50 l/s, para un "Q _{md} " mayor a 0,50 l/s y hasta 1,00 l/s, se diseña con 1,00 l/s y así sucesivamente.
16	Red de Distribución y Conexión Domiciliaria			

Figura 25. Criterios de Estandarización de Componentes Hidráulicos - Según RM Nº192-2018-VIVIENDA

4.2.1. Caudal de Diseño (Q) en:

Reservorio

El volumen para almacenar debe ser como mínimo de 25% de la demanda diaria promedio anual (Qp), esto cuando el abastecimiento de agua sea continuo.

Vr: Volumen de reservorio predimensionado m³

Qp: Caudal promedio

$$Vr = Qp * 25\% = 0.277 * 25\% * 86.4 = 5.98 m3$$

Volumen de reservorio adoptado $5.98 m3 \approx 10 m3$

Manantial: OCCORO	NUMERO DE PRUEBAS	VOLUMEN (Litros)	TIEMPO (SEG)	CAUDAL (LT/SEG)	Qaforo
	1	4.00	5.15	0.777	0.777
Q=V/T	2	4.00	5.20	0.769	0.769
Q= Caudal en lt./seg.	3	4.00	5.05	0.792	0.792
V= Volumen de Recipiente en litros	4	4.00	4.85	0.825	0.825
t= Tiempo promedio en seg	5	4.00	5.76	0.694	0.694
				0.771	0.771

I				
Captacion № 01	Qaforo=	0.771	I/seg.	Propio existente
Debe cumplir: Qaforo	> Qmd	OK CUMPLE		RM-192-2018-VIVIENDA
Volumen de Reservorio P	redimensionado	5.975	m3	RM-192-2018-VIVIENDA
Volumen de Reservori	o Adoptado	10.00	m3	RM-192-2018-VIVIENDA

Figura 26. Aforamiento método de volumétrico - Según RM Nº192-2018-VIVIENDA

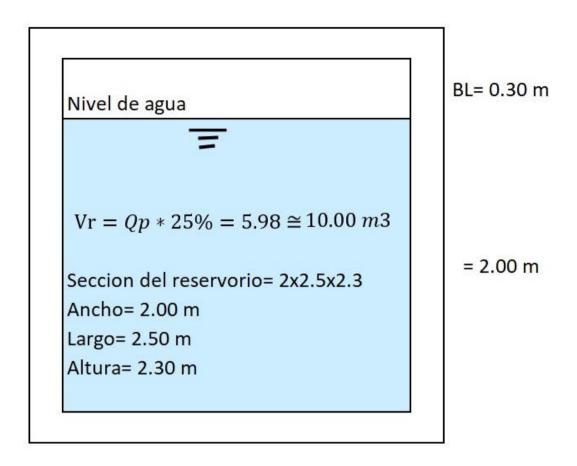


Figura 27. Corte transversal

➤ La línea de conducción si es continuo se debe trabajar con el caudal máximo diario (Qmd) y si es discontinuo con el caudal máximo horario (Qmh). En este caso la línea de conducción presenta una longitud de 7,000.00 metros lineales, cota de captación 3914 msnm, cota de reservorio 3,797.032 msnm y según la diferencia de altitud se considera en su diseño 03 válvulas reductoras de presión cada 50 metros de desnivel.

Como la línea de conducción es continua se trabajará con el caudal máximo diario:

Caudal Maximo Diario Qmd= 0.553 I/seg. RM-192-2018-VIVIENDA

➤ La línea de aducción deberá diseñarse para transporta como mínimo el caudal máximo horario además de ello se considera los criterios de Figura 25.

Qmh = Qp * K1 = 0.277 * 1.3 = 0.36 l/s + Caudal no doméstico, 0.074 = 0.434 l/s.

- Las redes de distribución: existen dos tipos de redes
 - a) Redes malladas. Esta red se debe diseñar para el caudal máximo horario.

$$Qi = Qp * Pi$$

Qi: caudal en el nudo "i" en l/s

Qp: caudal unitario poblacional en l/s.hab.

Pi: Población de área de influencia del nudo "i" en hab

$$Qp = \frac{Qt}{Pt} = \frac{0.360}{50} = 0.00719213 \frac{l}{s} * viv.$$

Qt: Caudal máximo horario

Qp: Población total del proyecto en hab.

	Q unitario		Q unitario
Conecciones	poblacional	Conecciones	poblacional
5511253151125	(I/s)		(I/s)
IE-PRIMARIA	0.0097	VIV-29	0.0072
IE-INICIAL	0.0042	VIV-30	0.0072
VIV-03	0.0013	VIV-31	0.0072
VIV-04	0.0072	VIV-32	0.0072
VIV-05	0.0072	VIV-33	0.0072
VIV-06	0.0072	VIV-34	0.0072
VIV-07	0.0072	VIV-35	0.0072
VIV-08	0.0072	VIV-36	0.0072
VIV-09	0.0072	VIV-37	0.0072
VIV-10	0.0072	VIV-38	0.0072
VIV-11	0.0072	VIV-39	0.0072
VIV-12	0.0072	VIV-40	0.0072
VIV-13	0.0072	VIV-41	0.0072
VIV-14	0.0072	VIV-42	0.0072
VIV-15	0.0072	VIV-43	0.0072
VIV-16	0.0072	VIV-44	0.0072
VIV-17	0.0072	VIV-45	0.0072
VIV-18	0.0072	VIV-46	0.0072
VIV-19	0.0072	VIV-47	0.0072
VIV-20	0.0072	VIV-48	0.0072
VIV-21	0.0072	VIV-49	0.0072
VIV-22	0.0072	VIV-50	0.0072
VIV-23	0.0072	VIV-51	0.0072
VIV-24	0.0072	VIV-52	0.0072
VIV-25	0.0072	IE SECUNDARIA	0.0231
VIV-26	0.0072	VIV-54	0.0072
VIV-27	0.0072	MUNICIPALIDAD	0.0181
VIV-28	0.0072	IGLESIA	0.0014
PUESTO DE SALUD	0.0162		

Figura 28. Caudal Unitario por Vivienda

b) Redes ramificadas. Este sistema se utiliza para conexiones domiciliarias que no superan 30 viviendas.

Caudal en el ramal:

$$Qramal = K * \sum Qg$$

Qramal: Caudal de cada ramal en l/s.

K: Coeficiente de simultaneidad, entre 0,2 y 1

$$k = \frac{1}{\sqrt{(x-1)}}$$

X: número total de grifos en el área que abastece cada ramal.

Qg: Caudal por grifo (l/s)>0,10l/s.

4.2.2. Velocidades (V) en:

a. Línea de conducción: la velocidad mínima no debe ser inferior a 0.60 m/s, la velocidad máxima admisible debe ser de 3m/s, pudiendo alcanzar los 5m/s si se justifica razonadamente.

Label	Length (3D) (m)	Start Node	Stop Node	Material	Hazen-Williams C	Diameter (mm)	Flow (L/s)	Velocity (m/s)	Headloss (m)	Hydraulic Grade (Start, ♥ (m)
CONDUCCION1	82.03	R-2	J-44	PVC	150.0	29.4	1.106	1.63	7.89	3,807.419
CONDUCCION2	55.66	J-44	J-49	PVC	150.0	29.4	0.553	0.81	1.48	3,799.525
ADUCCION01	58.11	RESERVORIO	J-1	PVC	150.0	29.4	0.434	0.64	0.88	3,797.032
ADUCCION02	100.48	J-1	PRV-3	PVC	150.0	29.4	0.434	0.64	1.67	3,796.153

Figura 29. Velocidades en Conducción y Aducción

b. Red de distribución: la velocidad mínima no debe ser menor de 0.60 m/s, en ningún caso puede ser inferior a 0.30m/s y la velocidad máxima admisible debe ser de 3m/s.

Label	Length (3D) (m)	Start Node	Stop Node	Material	Hazen- Williams C	Diameter (mm)	Flow (L/s)	Velocity (m/s)	Headloss (m)	Hydraulic Grade (m)
T-06	167.9	J-2	J-3	PVC	150.0	29.4	0.007	2.41	0	3,746.71
T-07	61.19	J-2	J-4	PVC	150.0	29.4	0.223	0.33	0.3	3,746.71
T-08	105.25	J-2	J-14	PVC	150.0	29.4	0.19	0.38	0.39	3,746.71
T-09	45.35	J-4	J-5	PVC	150.0	29.4	0.001	0.31	0	3,746.40
T-10	42.65	J-4	J-6	PVC	150.0	29.4	0.118	0.37	0.06	3,746.40
T-11	94.85	J-4	J-13	PVC	150.0	29.4	0.089	0.34	0.09	3,746.40
T-12	48.32	J-6	J-7	PVC	150.0	29.4	0.007	0.60	0	3,746.34
T-13	67.68	J-6	J-8	PVC	150.0	29.4	0.051	0.83	0.02	3,746.34
T-15	61.39	J-14	J-13	PVC	150.0	29.4	0.004	0.45	0	3,746.32
T-17	29.77	J-14	J-17	PVC	150.0	29.4	0.103	0.64	0.04	3,746.32
T-14	42.85	J-13	J-12	PVC	150.0	29.4	0.01	0.65	0	3,746.32
T-16	47.12	J-13	J-15	PVC	150.0	29.4	0.047	0.55	0.01	3,746.32
T-18	49.88	J-8	J-9	PVC	150.0	29.4	0.029	0.98	0.01	3,746.32
T-19	65.35	J-8	J-10	PVC	150.0	29.4	0.007	1.00	0	3,746.32
T-20	75.68	J-8	J-11	PVC	150.0	29.4	0.008	0.71	0	3,746.32
T-21	86.08	J-12	J-6	PVC	150.0	29.4	0.045	1.32	0.02	3,746.32
T-22	65.07	J-11	J-12	PVC	150.0	29.4	0.006	2.75	0	3,746.32
T-23	53.8	J-20	J-12	PVC	150.0	29.4	0.042	0.34	0.01	3,746.30
T-24	64.01	J-20	J-21	PVC	150.0	29.4	0.014	0.64	0	3,746.30
T-25	61.71	J-15	J-16	PVC	150.0	29.4	0.046	0.36	0.02	3,746.30
T-26	40.35	J-15	J-20	PVC	150.0	29.4	0.006	0.51	0	3,746.30
T-27	58.37	J-21	J-22	PVC	150.0	22.9	0.007	0.56	0	3,746.30
T-28	44.63	J-16	J-14	PVC	150.0	29.4	0.075	0.39	0.03	3,746.29
T-29	107.12	J-16	J-32	PVC	150.0	29.4	0.011	1.37	0	3,746.29
T-30	28.86	J-16	J-24	PVC	150.0	29.4	0.076	0.35	0.02	3,746.29
T-31	106.88	J-17	J-23	PVC	150.0	29.4	0.014	0.87	0	3,746.28
T-32	48.12	J-17	J-24	PVC	150.0	29.4	0.048	0.96	0.01	3,746.28
T-33	52.47	J-24	J-25	PVC	150.0	29.4	0.073	0.67	0.03	3,746.27
T-34	110.31	J-24	J-48	PVC	150.0	29.4	0.014	0.35	0	3,746.27
T-35	55.34	J-25	J-26	PVC	150.0	29.4	0.059	0.31	0.02	3,746.24
T-36	50.38	J-25	J-33	PVC	150.0	29.4	0.007	0.91	0	3,746.24
T-37	27.5	J-26	PRV-6	PVC	150.0	29.4	0.052	0.44	0.01	3,746.21
T-38	29.32	PRV-6	J-27	PVC	150.0	29.4	0.052	0.54	0.01	3,692.00
T-39	93.91	J-27	J-28	PVC	150.0	29.4	0.045	0.61	0.02	3,691.99
T-40	102.24	J-28	J-29	PVC	150.0	29.4	0.038	0.36	0.02	3,691.97
T-41	78.09	J-29	J-30	PVC	150.0	29.4	0.03	0.89	0.01	3,691.95
T-42	132.65	J-30	J-31	PVC	150.0	29.4	0.03	0.33	0.02	3,691.94

Figura 30. Velocidades en Redes de Distribución

4.2.3. Presión (P) en:

- a. La conducción la presión estática máxima de la tubería no debe de ser mayor al 75% de la presión de trabajo especificada por el fabricante, debiendo ser compatibles con las presiones de servicio de los accesorios y válvula a utilizarse.
- b. La aducción la carga estática aceptable será de 50m y la carga dinámica mínima será de 1m.

Figura 31. Presión en la red de Aducción

La red de distribución la presión mínima de servicio en cualquier punto de la red o línea de alimentación de agua no debe de ser menor de 5m.c.a y la presión estática no debe ser mayor de 60 m.c.a.

Presión Dinámica

Presión Estática

	Label 📤	Pressure (m H2O)		Label 📤	Pressure (m H2O)
90: J-1	J-1	8.466	90: 3-1	J-1	9.934
92: J-2	J-2	29.045	92: 3-2	3-2	32.026
94: 3-3	3-3	36.922	94: 3-3	3-3	39.904
96: 3-4	J-4	27.977	96: 3-4	3-4	30.954
98: J-5	J-5	14.788	98: 3-5	3-5	17.765
100: J-6	J-6	22.465	100: J-6	3-6	25.419
102: J-7	3-7	5.593	102: 3-7	3-7	8.548
104: J-8	J-8	9.427	104: J-8	J-8	10.409
106: J-9	3-9	5. 183	106: J-9	3-9	5.166
108: J-10	J-10	8.075	108: J-10	J-10	9.057
110: J-11	J-11	11.953	110: J-11	J-11	13.991
112: J-12	J-12	19.677	112: J-12	J-12	22.555
115: J-13	J-13	28.031	115: J-13	J-13	31.020
118: J-14	J-14	35.672	118: J-14	3-14	38.765
121: J-15	J-15	37.732	121: J-15	J-15	40.726
123: J-16	J-16	38.754	123: J-16	J-16	41.827
126: J-17	J-17	36.364	126: J-17	J-17	39.556
132: J-20	J-20	34.738	132: 3-20	J-20	37.699
135: J-21	J-21	30.488	135: J-21	J-21	33,450
137: J-22	J-22	32.902	137: 3-22	J-22	35.866
139: J-23	J-23	28.292	139: J-23	J-23	31.487
142: J-24	J-24	39.269	142: 3-24	3-24	42.541
146: J-25	J-25	52.057	146: 3-25	J-25	55.361
148: J-26	3-26	56.557	148: J-26	J-26	59.861
150: J-27	3-27	9.499	150: 3-27	3-27	9.517
152: J-28	J-28	24.752	152: 3-28	J-28	24.793
154: J-29	3-29	32.322	154: 3-29	J-29	32.382
156: J-30	J-30	46.368	156: J-30	J-30	46.438
158: J-31	J-31	47.133	158: J-31	J-31	47.219
160: J-32	J-32	50.808	160: J-32	J-32	53.883
162: J-33	3-33	55.320	162: J-33	J-33	58.624
312: J-48	J-48	56.081	312: J-48	J-48	59.394

Figura 32. Presión Dinámica y Presión Estática

Gradiente hidráulico (GH)

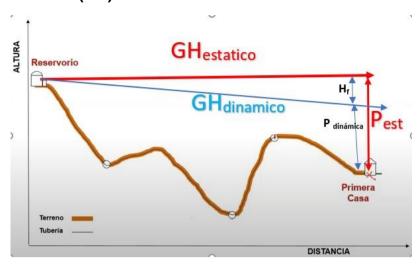


Figura 33. Gradiente Hidráulico

GH Dinámica

GH Estática

	Label 🔺	Hydraulic Grade (m)		Label 🔺	Hydraulic Grade (m)
90: J-1	J-1	3,795.560	90: J-1	J-1	3,797.031
92: J-2	J-2	3,758.122	92: J-2	J-2	3,761.109
94: J-3	J-3	3,758.121	94: J-3	J-3	3,761.109
96: J-4	3-4	3,758.126	96: J-4	3-4	3,761.109
98: J-5	3-5	3,758.126	98: J-5	J-5	3,761.109
100: J-6	J-6	3,758.149	100: J-6	J-6	3,761.109
102: J-7	3-7	3,758.148	102: J-7	3-7	3,761.109
104: J-8	J-8	3,760.126	104: J-8	J-8	3,761.110
106: J-9	J-9	3,760.126	106: J-9	3-9	3,761.110
108: J-10	J-10	3,760.126	108: J-10	J-10	3,761.110
110: J-11	J-11	3,759.068	110: J-11	J-11	3,761.110
112: J-12	J-12	3,758.226	112: J-12	J-12	3,761.109
115: J-13	J-13	3,758.114	115: J-13	J-13	3,761.109
118: J-14	J-14	3,758.010	118: J-14	J-14	3,761.109
121: J-15	J-15	3,758.109	121: J-15	J-15	3,761.109
123: J-16	J-16	3,758.030	123: J-16	J-16	3,761.109
126: J-17	J-17	3,757.911	126: J-17	J-17	3,761.109
132: J-20	3-20	3,758.143	132: J-20	J-20	3,761.109
135: J-21	J-21	3,758.141	135: J-21	J-21	3,761.109
137: J-22	J-22	3,758.139	137: 3-22	J-22	3,761.109
139: J-23	J-23	3,757.908	139: J-23	J-23	3,761.109
142: J-24	J-24	3,757.831	142: J-24	J-24	3,761.109
146: J-25	J-25	3,757.799	146: J-25	J-25	3,761.109
148: J-26	J-26	3,757.798	148: J-26	J-26	3,761.109
150: J-27	3-27	3,700.461	150: J-27	J-27	3,700.479
152: J-28	1-28	3,700.438	152: J-28	J-28	3,700.479
154: J-29	J-29	3,700.419	154: J-29	J-29	3,700.479
156: J-30	J-30	3,700.410	156: J-30	J-30	3,700.479
158: J-31	J-31	3,700.393	158: J-31	J-31	3,700.479
160: J-32	J-32	3,758.028	160: J-32	J-32	3,761.109
162: J-33	J-33	3,757.798	162: J-33	J-33	3,761.109
312: J-48	J-48	3,757.789	312: J-48	J-48	3,761.109

Figura 34. GH Dinámica y GH Estática

Ecuaciones de perdida de carga:

■
$$Hf = \frac{LV^2}{D2g}$$
 Darcy – Weisbach

•
$$Hf = 6.824 \frac{L}{D^{1.156}} (\frac{V}{C})^{1.852}$$
 Hazen – Williams

•
$$Hf = 6.354 \frac{L*n^2*V^2}{D^{1.33}}$$
 Manning

Label	Headloss (m)	Label	Headloss (m)
ADUCCION03	0.98	T-16	0.01
T-22	0.84	T-07	0.00
T-14	0.11	T-31	0.00
T-15	0.10	T-34	0.00
T-17	0.10	T-29	0.00
T-23	0.08	T-24	0.00
T-32	0.08	T-06	0.00
T-25	0.08	T-27	0.00
T-21	0.08	T-19	0.00
T-26	0.03	T-36	0.00
T-33	0.03	T-35	0.00
T-39	0.02	T-12	0.00
T-10	0.02	T-09	0.00
T-28	0.02	P-89	0.00
T-40	0.02	P-90	0.00
P-88	0.02	P-91	0.00
T-42	0.02	P-92	0.00
T-11	0.01	P-94	0.00
T-41	0.01	P-95	0.00
P-87	0.01		
T-18	0.01		

Figura 35. Resultados de la Perdida de Carga

4.2.4 Diámetros (D) en:

- a. La línea de conducción deberá tener como mínimo 25mm de diámetro (1").
- b. La línea de aducción se deberá diseñarse como mínimo de 25mm de diámetro (1").

c. La red de distribución de redes cerradas deberá ser de 25 mm y para redes abiertas se admite un diámetro de 20 mm.

Pipes Laterals									
	Diameter (mm)	Length (PVC) (m)	Length (All Materials) (m)	Volume (ML)					
29.4 (mm)	29.4	2,901.58	2,901.58	0.00					
All Diameters	All Diameters	2,901.58	2,901.58	0.00					

Figura 36. Diámetros en la Línea de Conducción, Aducción y Redes de Distribución

4.3. Parámetros Hidráulicos de Alcantarillado

Periodo de diseño

De acuerdo a la RM-192-2018-VIVIENDA el periodo de diseño para el sistema de alcantarillado es de 20 años.

Caudal de Contribución al Alcantarillado

$$Qalc = Qmh * C = 0.360 * 0.80 = 0.288 lt/seg$$

Qalc: Caudal de contribución al alcantarillado en l/s

C: coeficiente de retorno 80% (RNE OS.070-4.4)

Criterios de diseño

Caudal de diseño (Q)

El diseño de esta red de alcantarillado se realizó con el valor del caudal máximo horario (RNE OS.070-4.5).

Para el dimensionamiento de la red de alcantarillado en sus ramales se consideró un caudal mínimo de 1.5 lt/seg (RNE OS.070-4.6).

4.3.1. Tensión Tractiva

Las pendientes de las tuberías deben cumplir de la condición de autolimpiarse aplicando la tensión tractiva, la tensión tractiva mínima que se considero es st=1.0

Pa.

$$t = p * g * Rh * S$$

t: Tensión Tractiva (Pa)

p: Densidad del agua (1000 Kg/m3)

g: Aceleración de la gravedad (9.80m/s2)

Rh: Radio Hidráulico (m)

S: Pendiente

4.3.2. Pendiente

$$Smin = 0.0055Qi^{-0.47}$$

Smin: Mínima pendiente en m/m

Qi: Caudal inicial en l/s

4.3.3. Tirante

Para el tirante el flujo de agua fue uniforme y permanente con estos datos la altura de la lámina de agua fue calculada tomando un valor máximo para el caudal final (Qf), igual o más baja de 75% del diámetro del colector.

4.3.4. Cámaras de Inspección

Buzoneta

Las buzonetas se utilizaron en las tuberías principales en vías peatonales cuando la profundidad sea menor de 1.00 sobre la clave del tubo, se aplicarán para las tuberías de hasta 200 mm de espesor, teniendo un diámetro de Buzoneta de 0.60 m.

Buzón

Son buzones para una profundidad mayor a 1.00mm, diámetro interior de 1.20 m para tuberías de hasta 800 mm de diámetro y superado esta medida se adoptará diámetro interior de 1.50m.

Los techos de los buzones contaran con una tapa de acceso de 0.60 m de diámetro.

ALCANCES PARA EL DISEÑO DE ALCANTARILLADO

Velocidad

La velocidad mínima se determina cuando se cumple el criterio de la tensión tractiva.

La velocidad máxima será Vf=5 m/s en el punto final.

La velocidad critica se calculará con la siguiente expresión:

$$Vc = 6\sqrt{g * Rh}$$

Además, cumpliendo que solo circulando a un 50 % del diámetro de la tubería.

Recubrimientos de tuberías

Los recubrimientos en las vías vehiculares serán como mínimo 1.00m desde la cota terreno natural hasta la clave de la tubería, en las vías peatonales se admiten un recubrimiento mínimo de 0.30 m.

DIÁMETRO NOMINAL DE LA TUBERÍA (mm)	DISTANCIA (m)
100-150	60
200	8o
250 a 300	100
Diámetros mayores	150

Figura 37. Distancia máxima entre buzones por diámetro de tubería

4.4. Equipo de Bombeo

4.4.1. Caudal de Bombeo

Considerando la vida útil de la institución proyectada de 20 años, de acuerdo los cálculos la población demandante futura para la I.E. Jorge Basadre de Oronccoy.

Según las instalaciones sanitarias del anteproyecto del I.E. Secundaria Jorge Basadre.

Tabla 10. Unidades de Gasto

Demanda Máxima de Agua							
Servicios	Inodoros	Lavatorios	Urinarios				
Baño Mujeres	5	8	0				
Baño Hombres	5	4	1				
Total de Aparatos	10	12	1				
Und. Hunter	3	1	3				
Total UH	30	12	3				
UH Totales	45 UH						
DMS (maxima Dem	1.02 lps						

Fuente: Elaboración propia

N° de unidades		robable Válvula	N° de unidades		robable Válvula		Gasto Proba- ble
3 4 5 6 7 8 9 10 12 14 16 18 22 24 26 8 32 34 36 8 40 24 46	0,12 0,16 0,23 0,25 0,28 0,32 0,43 0,43 0,46 0,50 0,54 0,61 0,75 0,75 0,82 0,85 0,95 1,00 1,03	0,91 0,94 0,97 1,00 1,03 1,06 1,12 1,17 1,22 1,45 1,51 1,55 1,63 1,67 1,74 1,74 1,74 1,74 1,74 1,82 1,84	120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 320 340 380 390 400 420 440	1,83 1,91 1,98 2,04 2,122 2,37 2,45 2,65 2,65 2,75 2,65 2,91 2,99 3,07 3,37 3,52 3,97 3,97 3,97 4,27	2,72 2,80 2,95 3,04 3,25 3,25 3,36 3,41 3,58 3,79 3,87 4,04 4,24 4,35 4,46 4,60 4,72 4,96	1100 1200 1300 1400 1500 1600 1700 1800 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3300 3100 3200 3300 3400 3500	8,27 8,70 9,15 9,56 9,90 10,42 10,85 11,25 11,71 12,14 12,57 13,42 13,86 14,29 14,71 15,53 17,85 16,20 16,51 17,23 17,85 18,40 18,91

Aparato	Tipo	Unidades de gasto			
sanitario		Total	Agua fría	Agua caliente	
Inodoro	Con tanque – descarga reducida.	1,5	1,5	-	
Inodoro	Con tanque.	3	3	-	
Inodoro	Con válvula semiautomática y automática.	6	6	-	
Inodoro	Con válvula semiautomática y automática de descarga reducida.	3	3	-	
Bidé	Ţ	1	0,75	0,75	
Lavatorio		1	0,75	0,75	
Lavadero		3	2	2	
Ducha		2	1,5	1,5	
Tina		2	1,5	1,5	
Urinario	Con tanque	3	3	-	
Urinario	Con válvula semiautomática y automática.	5	5	-	
Urinario	Con válvula semiautomática y automática de descarga reducida.	2,5	2,5	-	
Urinario	Múltiple (por m)	3	3	-	

Figura 38. Gastos probables para la aplicación del método de Hunter - RNE - IS.010 Instalaciones Sanitarias.

Según la Tabla 10 el caudal de contribución al desagüé de 1.02 lps.

1) Consideraciones:

- ✓ Caudal Máximo de Contribución de Desagüe Qmáxc = 1.02 lt/seg
- ✓ Caudal Mínimo de Contribución de Desagüe Qmínc = 0.26 lt/seg (25% Qmaxc)

Asumiendo que:

- ✓ Período de Retención Mínimo T = 5.00 min Asumido
- ✓ Período de Retención Máximo T1 = 25.00 min Asumido
- ✓ Qmínc = Q
- ✓ Qmáxc = K x Q
- ✓ Qb = K1 x Qmaxc

2) Cálculo de las constantes "K" y "a"

$$K = \frac{Qm\acute{a}xc}{Qm\acute{n}c}$$

$$a=\frac{T1}{T}$$

Reemplazando valores, tendremos que

$$K = 4.00 a = 5.00$$

Para considerar dichos valores de las constantes como "correctos", debemos verificar mediante la siguiente ecuación:

$$(a - K^2)^2 > 4 x (K - a) x K x (K - 1) x (1 + a)$$

Reemplazando los valores, tendremos que

$$(a - K^2)^2 = 121.00$$

$$4 \times (K - a) \times K \times (K - 1) \times (1 + a) = -288.00$$

Luego, comparando los resultados tendremos que **se cumple la relación de la fórmula**,

3) Cálculo de la constante "K1"

$$K^{2} x (K - a) + K1 x (a - K^{2}) + K x (K - 1) x (1 + a) = 0$$

Reemplazando el valor de las constantes "K" y "a"

$$(K-a) = -1.00$$

$$(a-K^2) = -11.00$$

$$Kx(K-1)x(1+a) = 72.00$$

Despejando "K1" tendremos que

$$K1 = -15.61$$

$$K1 = 4.61$$

4) Cálculo del volumen de la "CBD"

$$Vc = \frac{[T \times Q \times K \times (K1 - 1)]}{[(K1 + K - 1)]}$$

Reemplazando valores, tendremos que:

Para K1 =
$$-15.61$$
 Tendremos Vc = 1.61 m³

$$K1 = 4.61$$
 Tendremos $Vc = 0.58$ m³

Luego, elegimos el valor más económico o coherente.

Adoptando
$$K1 = 4.61$$
 Obtenemos $Vc = 0.58$ m³

5) Cálculo del caudal de bombeo

Sabemos que
$$Qb = K1 x Qmaxc$$

Reemplazando valores, tendremos que

Qb = 4.70 lps

6) Dimensionamiento de "CBD"

Vc = Altura x Largo x Ancho

Largo =
$$1.00 \text{ m}$$
.

Reemplazando valores:

Altura =
$$Hu = 0.74$$
 m.

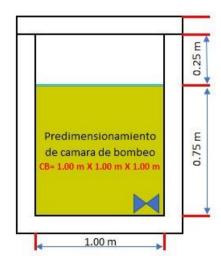


Figura 39. Predimensionamiento de Cámara de Bombeo de Desagüe.

7) Cálculo del tiempo de llenado y vaciado mínimo y máximo

Tmín II = Vc / Qmáxc	Reemplazando	Tmín II =	9.49	min
Tmáx II = Vc / Qmínc	Reemplazando	Tmáx II =	37.96	min
Tmín v = Vc / (Qb - Qmínc)	Reemplazando	Tmín v =	2.18	min
Tmáx v = Vc / (Qb - Qmáxc)	Reemplazando	Tmáx v =	2.63	min

8) Cálculo del diámetro de la tubería de impulsión

$$D(impulsion) = 1.30 x \frac{N^{0.25}}{24} x Qb^{0.5}$$

Dónde: Qb Caudal de Bombeo (m3/seg)

Dimp Diámetro de la tubería de impulsión (mt)

N Número de horas de Bombeo (horas)

Asumiendo N = 2.5 horas

Reemplazando valores, tendremos que

Dimp = 0.05 mt

Dimp = 1.99 pulg

4.4.2. Altura Dinámica

$$HDT = Hg \, succ + Hg \, imp + Hf \, succ + Hf \, imp + Ps$$

Donde:

√ Hg succ Altura geométrica en la succión (mt)

✓ Hg imp Altura geométrica en la impulsión (mt)

✓ Hf succ Pérdida de carga en la succión (mt)

✓ Hf imp Pérdida de carga en la impulsión (mt)

✓ Ps Presión de Salida a la llegada al Buzón de Descarga

(mt)

De acuerdo a la topografía del terreno y el diseño del Anteproyecto:

Cota de la Electrobomba en la CBD Cbs = -1.00 mt Cota de la tub. Imp. A la llegada al Buzón Cing =7.86 mt Calculando valores, tendremos que:

Hg succ = -1.00 mt (Se trata de una Bomba)

Hg imp = 8.86 mt

Hf succ = 0.00 mt (Bomba Sumergible)

Hf imp = 0.00043 mt

Ps = 5.00 mt

Luego, reemplazando valores tendremos que HDT =12.86 mt

4.4.3. Potencia de Electrobomba

La potencia es la cantidad de trabajo que deberá tener la bomba durante un tiempo específico de funcionamiento.

$$P_b = \frac{Q_b x H_d}{75 x n} = \frac{4.06 x 12.86}{75 x 0.75} = 0.9282 \ Hp$$

Donde P_b es la potencia de la electrobomba en Hp, Q_b es caudal de bombeo, H_d es la altura dinámica, n eficiencia de la bomba.

Entonces se tomará como potencia de bomba el siguiente superior comercial de 1 Hp.

Convirtiendo a kilowatts es de 0.7457 kw o 745.7 w.

Para nuestro diseño de bombeo se utilizará una bomba según el Reglamento nacional de Edificaciones Norma OS.080

4.5. Panel Fotovoltaico

4.5.1. Clasificación

Para la definir los sistemas fotovoltaicos se realizará en función de la aplicación a la que están proyectadas. En este caso se utilizará:

Aplicaciones autónomas: ya que están dentro de las características deseadas que se necesita para la proporción de energía eléctrica de la electrobomba.

4.5.2. Tipos

El tipo de panel fotovoltaico que se utilizará será Monocristalino y constara de 2 paneles que nos darán la energía suficiente para el arranque de la bomba. Asi tendremos que el Panel Solar 400W PERC Monocristalino ERA. Tiene un rendimiento elevado gracias a sus células monocristalinas, obteniendo un 25% más de eficiencia tendremos casi un 25% más de producción. Contiene 72 células, a su vez indica que es de 24 v para la cual se utilizara un convertidor de AC corriente continua - DC corriente alterna.

4.5.3. Elementos de Instalación

Irradiación:

Según la aplicación web PVGIS en línea que ha sido desarrollado en el sitio del JRC en Ispra, Italia desde 2001. El enfoque de PVGIS es la investigación en evaluación de recursos solares, estudios de desempeño fotovoltaico (PV) y la difusión de conocimiento y datos sobre energía solar. radiación y rendimiento fotovoltaico.

Conociendo estos datos tenemos que:

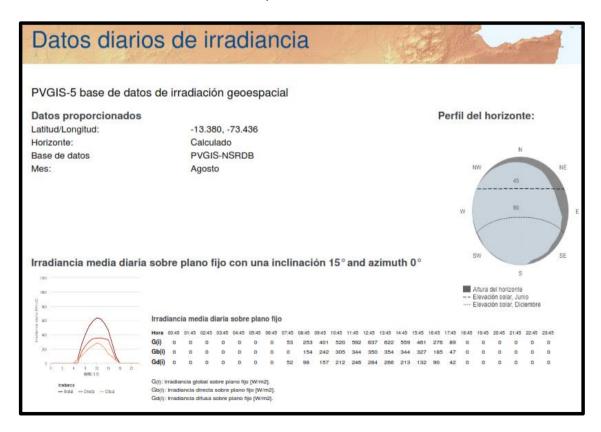


Figura 40. Irradiancia media diaria

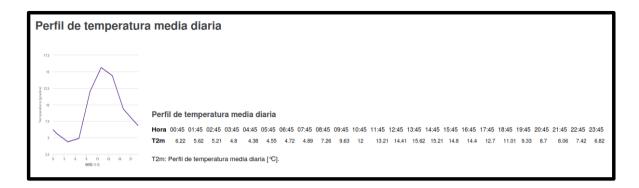


Figura 41. Perfil de temperatura media

4.5.3.1 Módulo fotovoltaico

Transforma la irradiancia solar en electricidad. Está conformada por agrupación de varios paneles fotovoltaicos, para abastecer de la potencia necesaria a la instalación.

Para el funcionamiento de nuestra bomba nuestro sistema fotovoltaico constara de 2 paneles.

Rendimiento Panel Solar 400W Perc Monocristalino ERA

La palabra PERC es un acrónimo en inglés derivado de *Passivated Emitter Rear Cell* lo que significa que una célula PERC dispone de una capa reflectante en su parte trasera dispuesta entre el silicio y el aluminio. Con ello conseguimos que parte de la radiación no penetre en la capa de aluminio final y sea reflejada a la capa de silicio para que se pueda absorber su energía. Gracias a esta reflexión, la propia célula es capaz de absorber más energía y menos temperatura, con lo que conseguimos una temperatura de trabajo inferior frente a otras tecnologías de células fotovoltaicas.

Características Físicas Panel Solar 400W Perc Monocristalino ERA

- ✓ Dimensiones de 1979 x 1002 x 40 mm.
- ✓ Peso 22.5 kg.
- ✓ Tiene 72 células.
- ✓ Marco de aluminio anodizado.
- ✓ Protección para conexiones IP68.

✓ Cable con conector tipo MC4.

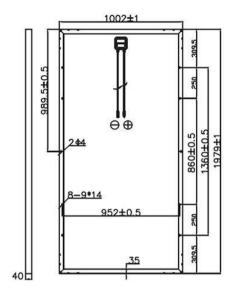


Figura 42. Esquema de panel Solar

Mantenimiento Panel Solar 400W Perc Monocristalino ERA

Solo requiere limpieza de los paneles y verificar el correcto funcionamiento de los conectores y cableados. Verificar también que ningún objeto tape el panel solar y produzca sombra hacia el panel.

4.5.3.2. Regulador de carga

Estos aparatos son unos dispositivos que son básicos para integrar en cualquier instalación fotovoltaica. Los reguladores de carga solar son unos aparatos que consiguen hacer que la carga de las baterías se mantenga estable y de tal manera dan una importante información de cómo están trabajando las placas solares.

Estos reguladores son la pieza que se encuentra entre las baterías y las placas solares. Los controladores de carga tienen la capacidad de proporcionar un control sobre el voltaje y sobre la corriente que va desde los paneles solares hasta las baterías.

Para el panel se utilizará el controlador MPPT que son más eficientes cuando se necesita la máxima potencia de la instalación, regulando el voltaje de la batería y el panel solar. También corta la energía producida por los paneles cuando las baterías ya están cargadas.

Panel de 24V + batería de 12v= controlador MPPT

Tomaremos 2 paneles solares de 400W que deberá tener la capacidad necesaria que se requiere para la potencia de que dispone de **745.7 w.**

Nuestro panel solar no supera el amperaje máximo de carga, para nuestro caso el amperaje del panel solar es de **9.6 A**.

Entonces se utilizará el Controlador MPPT de marca "Blue Solar 75V 15A VICTRON" que tiene una capacidad de energía de hasta 15 A y un voltaje de 75 V.

MPPT 75/15	MPPT 100/15			
ión automática: 12/	'24 V			
15A	15A			
145W 220W				
440W	440W			
15A	15A			
, carga máxima 15A				
	100V			
98%				
: 20 mA 24V: 10 m	nA.			
4V / 28,8V (ajustable	e)			
8V / 27,6V (ajustable	2)			
ariable multietapas				
2mV / °C resp.				
15A/50A				
11,1V / 22,2V o 11,8V / 23,6V o algoritmo de BatteryLife				
13,1V / 26,2V o 14V / 28V o algoritmo de BatteryLife				
nversa de la batería de salida / sobrecal				
cia nominal comple	ta hasta los 40°C)			
%, sin condensación	n			
VE.Direct obre comunicación o web	de datos en nuestro sit			
Azul (RAL 5012)				
6 mm ² / AWG10				
lectrónicos), IP22 (á	área de conexiones)			
0,5 kg				
100 x 113 x 40mm				
2109-1, UL 1741, CS	A C22.2			
ntrac jue a				

Figura 43. Características

El Controlador se acondiciona automáticamente a la tensión de la batería ya sea 12 o 24 V, cuando el clima sea adverso el controlador puede adaptarse a las condiciones que en ese momento se presenten. Cuando hay poca luz o no sea constante el controlador ayudara en un 30% para recoger energía.

Características técnicas MPPT Blue Solar 75V 15A VICTRON

- Limitación de la potencia fotovoltaica para batería de 12V: 220W y para batería a 24V: 440W.
- Tensión máxima del circuito abierto fotovoltaico: 75V.
- Consumo propio de 10mA.
- Temperatura de trabajo entre -30 y +60°C. Corriente de salida completa hasta los 40°C. Protección IP22
- Protección polaridad inversa de baterías (fusible).
- Protección contra sobrecalentamiento.
- Protección de cortocircuito en salida de corriente continua.
- 0.5Kg de peso y dimensiones de 100x113x40mm.

4.5.3.3. Batería

Para nuestra instalación fotovoltaica se considerará la implementación de la batería de Ciclo Profundo de marca "Ultracell UCG-22-12" con 12 V y 22 Ah que en el mercado son de buena calidad dentro de la familia de baterías de Gel, ya que cuenta con una vida útil mayor que otras, tiene más peso y densidad.

Mantenimiento Baterías de Ciclo Profundo GEL

Las Batería GEL 12V 22Ah Ultracell UCG-22-12 al tratarse de baterías monoblock no requieren de mantenimiento ni emiten gases este tipo de baterías son una excelente opción para nuestra instalación fotovoltaica porque no se desea estar pendiente del estado interno de las baterías o su nivel de ácido.

Su implementación debe hacerse en un sitio cerrado y protegido de las altas temperaturas y la irradiación solar directa para optimizar su buen funcionamiento y su tiempo de vida útil.

Descripción Batería GEL 12V 22Ah Ultracell UCG-22-12

La Batería GEL 12V 22Ah Ultracell UCG-22-12 tiene unas dimensiones de 181,5 x 77 x 168 mm y un peso de 6,2 Kg.

Características técnicas Batería GEL 12V 22Ah Ultracell UCG-22-12

La Batería GEL 12V 22Ah Ultracell UCG-22-12 trabaja en C20 A 22,85Ah y en C10 a 22 Ah de ahí el modelo de batería. La vida útil de la batería en estado de flotación a 20°C es de 1 año. Las baterías Ultracell pueden almacenarse hasta 6 meses a 25 ° C (77 ° F) y luego se requiere una carga de actualización, para temperaturas más altas el intervalo de tiempo será más corto.

El ciclo de vida de la batería a un 30% de capacidad es de 2400 ciclos, lo que se convierte en una batería de unas competitivas características y vida útil.

4.5.3.4 Inversor 12 CC/AA

Para nuestra instalación fotovoltaica se utilizará un inversor cargador Must Solar de 800W 12V de baja frecuencia. Se trata de un inversor de onda senoidal pura con bobinado de cobre, con una potencia máxima de 800W, capaz de trabajar con baterías de 12V. El cargador de baterías que incorpora de 25A, puede servir para cargar las baterías desde una fuente de 230V, ya sea la red eléctrica o un grupo electrógeno eléctrico. Es un equipo que integra ambas funciones, el cargador de baterías y el inversor, de manera que puede gestionar todo lo necesario en cualquier instalación solar aislada, únicamente añadiendo un regulador de carga para los paneles solares.

Configuración del Inversor cargador 800W 12V 25A Must Solar

No necesita realizar una configuración, Lo que se tiene que tener en cuenta es las características de la batería, el inversor se ajusta automáticamente o en todo caso sea necesario hacer una configuración.

4.6. Costos Presupuestos

4.6.1. Metrados

		Tuberia de red de Agua				
	[Diametro (mm) Diametro (pulg)		Longitud PVC (m)		
Red de distribucion		29.4		1"		2,901.58
Conexciones domiciliarias	y no domiciliarias	12.7		1/2" y /o 3	3/4" 478.28	
	Diameter (mm)	Leng (PV) (m			(A	Length Il Materials) (m)
29.4 (mm)	29	9.4	2,901			2,901.58
All Diameters	All Diamet	ters 2,901.58			2,901.58	

Figura 44. Metrado de tuberías de 1" agua potable

			Tuberia de red de Alcantarillado					
		Diam	etro (mm)	Diametro (p	ulg)	Longitud PVC (m)		
Conexciones domiciliarias	nexciones domiciliarias y no domiciliarias 101.6 4"			677.6				
Redes principiales y secur	ndarias		153.6	6" 3,833.60				
	Conduit Description		Count	Length (PVC) (m)		Length (All Materials) (m)		
Circle - 153.6 m	Circle - 153.6 mm		151	3,83	3.6	3,833.6		
Total Length	Total Length		151	3,83	3.6	3,833.6		

Figura 45. Metrado de tuberías de 160mm de diámetro alcantarillado

4.6.2. Presupuesto

S10 Página 1

Presupuesto C. HDPE

Presupuesto 1101001 "Diseño de red de Agua y Alcantarillado empleando Paneles Fotovoltaicos en el distrito de Oronccoy - La Mar-

Ayacucho 2020"

Subpresupuesto 001 Red de agua potable y alcantarillado

Cliente UNIVERSIDAD CESAR VALLEJO Costo al 01/12/2020
Lugar AYACUCHO - LA MAR - ORONCCOY

ltem	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
01	OBRAS PROVISIONALES				5,024.89
01.01	CAMPAMENTOS EN GENERAL	glb	1.00	270.00	270.00
01.02	CARTEL DE OBRA	und	1.00	3,022.55	3,022.55
01.03	INSTALACION PROVISIONAL DE AGUA	glb	1.00	1,128.18	1,128.18
01.04	INSTALACION PROVISIONAL DE ENERGIA ELECTRICA	glb	1.00	604.16	604.16
02	OBRAS PRELIMINARES				5,740.00
02.01	CORTE DE MATERIAL ALRBOLES Y ARBUSTOS EN LA LINEA DE CONDUCCION	m	7,000.00	0.82	5,740.00
03	REDES DE AGUA POTABLE				4,640,506.85
03.01	TRAZO Y REPLANTEO	m	9,901.58	242.61	2,402,222.32
03.02	EXCAVACION A MANO EN TERRENO NORMAL	m3	9,901.58	33.97	336,356.67
03.03	PERFILADO Y COMPACTADO SUPERFICIE DE ZANJA	m2	9,901.58	4.33	42,873.84
03.04	TRASLADO DE TUBERIAS A LA LINEA DE CONDUCCION	und	100.00	5.39	539.00
03.05	CAMA DE APOYO	m	9,901.58	117.12	1,159,673.05
03.06	TUBERIA DE PVC 1" (5 m de longitud)	und	0.10	28.00	2.80
03.07	TUBERIA DE HDPE 1" (100 m de longitud)	und	100.00	100.00	10,000.00
03.08	CAMARA DE ROMPEPRESIONES	und	6.00	517.32	3,103.92
03.09	TENDIDO DE TUBERIAS Y UNION DE TUBERIAS EN LA LINEA DE CONDUCCION	m	1,981.00	2.13	4,219.53
03.10	INSTALACION DE TUBERIAS EN LA RED DE AGUA POTABLE	m	57.00	189.17	10,782.69
03.11	CUBIERTO DE TUBERIA Y APISONADO	m	9,901.58	67.74	670,733.03
04	REDES DE ALCANTARILLADO				3,665,237.76
04.01	TRAZO Y REPLANTEO	m	3,833.60	242.61	930,069.70
04.02	EXCAVACION CON MAQUINARIA	m	3,833.60	185.93	712,781.25
04.03	PERFILADO DE LA ZANJA	m	3,833.60	62.15	238,258.24
04.04	TENDIDO DE TUBERIA DE 6"	und	3,833.60	108.85	417,287.36
04.05	TUBERA DE 6*	und	640.00	153.00	97,920.00
04.06	TUBERIA DE 4"	und	678.00	90.00	61,020.00
04.07	CAMA DE ARENA	m	3,833.60	133.72	512,628.99
04.08	RELLENO Y APISONADO	m	3,833.60	177.24	679,467.26
04.09	INSTALACION DE LATERALES (conexiones domiciliaria)	m	57.00	277.28	15,804.96
05	CUARTO DE MAQUINA DE BOMBEO				12,868.60
05.01	INSTALACION DE BOMBA	und	1.00	400.00	400.00
05.02	EXCAVACION DE CAMARA DE BOMBEO	und	1.00	550.72	550.72
05.03	IMPLEMENTACION DE CAMARA DE BOMBEO	glb	1.00	2,100.00	2,100.00
05.04	IMPLEMENTACION DEL SISTEMA FOTOVOLTAICO	glb	1.00	2,718.98	2,718.98
05.05	INSTALACION DE TUBERIA DE 2" EN LA LINEA DE IMPULSION	m	30.00	12.43	372.90
05.06	CAMA DE ARENA EN LA LINEA DE IMPULSION	m	30.00	193.29	5,798.70
05.07	RELLENO DE LA LINEA DE IMPULSION	m	30.00	30.91	927.30
	Costo Directo				8,329,378.10

SON: OCHO MILLONES TRESCIENTOS VEINTINUEVE MIL TRESCIENTOS SETENTIOCHO Y 10/100 NUEVOS SOLES

Figura 46. Presupuesto de tuberías HDPE

S10 Página

Presupuesto C. PVC

1101001 "Diseño de red de Agua y Alcantarillado empleando Paneles Fotovoltaicos en el distrito de Oronccoy - La Mar -

Red de agua potable y alcantarillado

Costo Directo

Lugar

UNIVERSIDAD CESAR VALLEJO 01/12/2020 Cliente Costo al AYACUCHO - LA MAR - ORONCCOY

CAMPAIENTOS IN GENERAL gb 1.00 270.00	Item	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
10.02 CAPTEL DE CBRA	01	OBRAS PROVISIONALES				5,024.89
1,128,153 RISTALACION PROVISIONAL DE AGUA glb 1,00 1,128,18 1,128	01.01	CAMPAMENTOS EN GENERAL	glb	1.00	270.00	270.00
STALACION PROVISIONAL DE ENERGIA ELECTRICA gb 1.00 604.16	01.02	CARTEL DE OBRA	und	1.00	3,022.55	3,022.55
CORTE DE MATERIAL ALEBOLES Y ARBUSTOS EN LA LINEA DE CONDUCCIÓN m 7,000.00 0.82 5,740	01.03	INSTALACION PROVISIONAL DE AGUA	glb	1.00	1,128.18	1,128.18
COUNTE DE MATERIAL, ALRBOLES Y ARRUSTOS EN LA LINEA DE CONDUCCION m 7,000.00 0.82 5,740	01.04	INSTALACION PROVISIONAL DE ENERGIA ELECTRICA	glb	1.00	604.16	604.16
REDES DE AGUA POTABLE AA96,120 303 REDES DE AGUA POTABLE TRAZÓ Y REPLANTEO TRASLADO DE TUBERRAS A LA LINEA DE CONDUCCION TUBERRA DE POC I (5 m de longitud) TUBERRA DE POC I (5 m de longitud) TUBERRA DE POC I (5 m de longitud) TUBERRA DE HOPE I" (10 m de longitud) TUBERRA DE POC I" (5 m de longitud) TUBERRA DE HOPE I" (10 m de longitud) TUBERRA DE POC I UBERRAS Y UNION DE TUBERRAS EN LA LINEA DE CONDUCCION TUBERRA DE ROMPEPRESIONES TUBERRA DE LA RO	02	OBRAS PRELIMINARES				5,740.00
193.01 TRAZOY REPLANTEO	02.01	CORTE DE MATERIAL ALRBOLES Y ARBUSTOS EN LA LINEA DE CONDUCCION	m	7,000.00	0.82	5,740.00
EXCAVACION A MANO EN TERRENO NORMAL m3 9,901.58 33.97 339.556	03	REDES DE AGUA POTABLE				4,696,120.64
PERFILADO Y COMPACTADO SUPERFICIE DE ZANJA m2 9,001.58 4.33 42,273	03.01	TRAZO Y REPLANTEO	m	9,901.58	242.61	2,402,222.32
10.30.4 TRASLADO DE TUBERIAS A LA LINEA DE CONDUCCION und 1,981.00 5.39 10,977 103.05 CAMA DE APOYO m 9,901.58 117.12 1,159,673 103.05 CAMA DE APOYO m 9,901.58 117.12 1,159,673 103.06 TUBERIA DE PLOT 1' (5 m de longitud) und 1,981.00 28.00 55,488 103.07 TUBERIA DE HOPE 1' (100 m de longitud) und 0,10 100.00 10 103.08 CAMARA DE ROMPEPRESIONES und 6,00 517.32 3,103 103.09 TENDIDO DE TUBERIAS Y LINION DE TUBERIAS EN LA LINEA DE CONDUCCION m 1,981.00 2,13 4,219 103.10 INSTALACION DE TUBERIAS Y LINION DE TUBERIAS EN LA LINEA DE CONDUCCION m 9,901.58 67.74 670,733 103.11 CUBIERTO DE TUBERIA Y APISONADO m 9,901.58 67.74 670,733 104 REDES DE ALCANTARILLADO m 9,901.58 67.74 670,733 105.01 TRAZO Y REDATION MAQUINARIA m 3,833.60 242.61 930,000 104.01 TRAZO Y REDATION MAQUINARIA m 3,833.60 168.59 712,781 105.04 TENDIDO DE TUBERIA DE 6' und 4,000 153.00 67,920 105.04 TUBERIA DE 6' und 6,700 90.00 61,200 105.04 TUBERIA DE 6' und 6,700 90.00 61,200 105.05 TUBERIA DE 6' und 6,700 90.00 61,200 105.06 TUBERIA DE 6' und 7,700 90.00 61,200 105.07 CAMA DE ARENA m 3,833.60 177,72 4 79,867 105.07 CAMA DE ARENA m 3,833.60 177,72 4 79,867 105.09 INSTALACION DE LATERALES (conexiones domicillaris) m 57,00 277.28 15,804 105.00 INSTALACION DE CAMARA DE BOMBEO und 11.00 400.00 400.00 105.00 EXCAVACION DE CAMARA DE BOMBEO und 11.00 2,719,89 2,718 105.00 CUARTO DE MAQUINA DE BOMBEO und 11.00 2,719,89 2,718 105.00 CAMA DE ARENA DE BOMBEO und 11.00 2,719,89 2,718 105.00 CAMA DE ARENA DE BOMBEO und 11.00 2,719,89 2,718 105.00 CAMA DE ARENA DE BOMBEO und 11.00 2,719,89 2,718 105.00 CAMA DE ARENA DE BOMBEO und 2,719,89 2,718 105.00 CAMA DE ARENA DE BOMBEO UND 2,719,89 2,718 105.00 CAMA DE ARENA DE BOMBEO UND 2,719,89 2,718 105.00 CAMA DE ARENA DE BOMBEO UND 2,719,89 2,718	03.02	EXCAVACION A MANO EN TERRENO NORMAL	m3	9,901.58	33.97	336,356.67
03.05 CAMA DE APOYO m 9,901.58 117.12 1,199,973 03.06 TUBERIA DE PYC 1" (5m de longitud) und 1,981.00 28.00 55,468 03.07 TUBERIA DE HOPE 1" (100 mé longitud) und 0,10 100.00 10 03.08 CAMARA DE ROMPEPRESIONES und 6,00 517.32 3,103 03.09 TENDIDO DE TUBERIAS Y UNION DE TUBERIAS EN LA LINEA DE CONDUCCION m 1,981.00 2.13 4,219 03.11 CUBIERTO DE TUBERIAS EN LA RED DE AGUA POTABLE m 67.00 189.17 10.723 03.11 CUBIERTO DE TUBERIAS PURA ARED m 9,901.58 67.74 670.733 04.01 TRAZO Y REPLANTEO m 3,833.60 242.61 900,069 04.02 EXCAVACION CON MAQUINARIA m 3,833.60 62.15 282,526 04.03 PERRILADO DE LA ZANIA m 3,833.60 62.15 282,526 04.05 TUBERIA DE 6" und 640.00 153.00 61,220 04.07 CAM	03.03	PERFILADO Y COMPACTADO SUPERFICIE DE ZANJA	m2	9,901.58	4.33	42,873.84
TUBERIA DE PVC 1" (5 m de longitud)	03.04	TRASLADO DE TUBERIAS A LA LINEA DE CONDUCCION	und	1,981.00	5.39	10,677.59
TUBERIA DE HOPE 1" (100 m de longitud) Und 0.10 100.00 100.00 100.00 30.00 CAMARA DE ROMPEPRESIONES Und 6.00 517.32 3.100 30.00 TENDIDO DE TUBERIAS Y UNION DE TUBERIAS EN LA LINEA DE CONDUCCION m 1,981.00 2.13 4.219 30.10 INSTALACION DE TUBERIAS EN LA RED DE AGUA POTABLE m 57.00 189.17 10,782 3.655.37	03.05	CAMA DE APOYO	m	9,901.58	117.12	1,159,673.05
03.08 CAMARA DE ROMPEPRESIONES und 6.00 517.32 3,103 03.09 TENDIDO DE TUBERIAS Y UNION DE TUBERIAS EN LA LINEA DE CONDUCCION m 1,981.00 2.13 4,219 03.10 INSTALACION DE TUBERIAS EN LA RED DE AGUA POTABLE m 57.00 189.17 10,782 03.11 CUBIERTO DE TUBERIA Y APISONADO m 9,901.58 67.74 670,733 04.01 TRAZO Y REPLANTEO m 3,833.60 242.61 990,099 04.02 EXCAVACION CON MAQUINARIA m 3,833.60 185.93 712.781 04.03 PERFILADO DE LA ZANJA m 3,833.60 62.15 238,258 04.04 TENDIDO DE TUBERIA DE 6° und 3,833.60 108.85 417,287 04.05 TUBERA DE 6° und 640.00 153.00 97,920 04.05 TUBERA DE 6° und 676.00 90.00 61,020 04.07 CAMA DE ARENA m 3,833.60 177.24 679,467 04.09 INSTALACION DE LA TERALES (c	03.06	TUBERIA DE PVC 1" (5 m de longitud)	und	1,981.00	28.00	55,468.00
TENDIDO DE TUBERIAS Y UNION DE TUBERIAS EN LA LINEA DE CONDUCCION m 1,981.00 2.13 4,219	03.07	TUBERIA DE HDPE 1" (100 m de longitud)	und	0.10	100.00	10.00
INSTALACION DE TUBERIAS EN LA RED DE AGUA POTABLE m 57.00 189.17 10,782	03.08	CAMARA DE ROMPEPRESIONES	und	6.00	517.32	3,103.92
Description	03.09	TENDIDO DE TUBERIAS Y UNION DE TUBERIAS EN LA LINEA DE CONDUCCION	m	1,981.00	2.13	4,219.53
REDES DE ALCANTARILLADO DELO TRAZO Y REPLANTEO M. M. 3,833.60 242.61 930,069 DELO DELO MAQUINARIA M. 3,833.60 185.93 712,781 DELO DELO DELO DELO MAQUINARIA M. M. 3,833.60 62.15 238,258 DELO DELO DELO DELO DELO DELO DELO DELO	03.10	INSTALACION DE TUBERIAS EN LA RED DE AGUA POTABLE	m	57.00	189.17	10,782.69
04.01 TRAZO Y REPLANTEO	03.11	CUBIERTO DE TUBERIA Y APISONADO	m	9,901.58	67.74	670,733.03
D4.02 EXCAVACION CON MAQUINARIA m 3,833.60 185.93 712,781 D4.03 PERFILADO DE LA ZANJA m 3,833.60 62.15 238,258 D4.04 TENDIDO DE TUBERIA DE 6° und 3,833.60 108.85 417,287 D4.05 TUBERA DE 6° und 640.00 153.00 97,920 D4.06 TUBERIA DE 4° und 678.00 90.00 61,020 D4.07 CAMA DE ARENA m 3,833.60 133.72 512,828 D4.08 RELLENO Y APISONADO m 3,833.60 177.24 679,467 D4.09 INSTALACION DE LATERALES (conexiones domiciliaria) m 57.00 277.28 15,804 D5.01 INSTALACION DE BOMBEO 12,868 D5.01 INSTALACION DE CAMARA DE BOMBEO und 1.00 400.00 400 D5.02 EXCAVACION DE CAMARA DE BOMBEO und 1.00 550.72 550 D5.03 IMPLEMENTACION DE CAMARA DE BOMBEO glib 1.00 2,100.00 2,100 D5.04 IMPLEMENTACION DEL SISTEMA FOTOVOLTAICO glib 1.00 2,718.98 2,718 D5.05 CAMA DE ARENA EN LA LINEA DE IMPULSION m 30.00 193.29 5,798	04	REDES DE ALCANTARILLADO				3,665,237.76
PERFILADO DE LA ZANJA	04.01	TRAZO Y REPLANTEO	m	3,833.60	242.61	930,069.70
D4.04 TENDIDO DE TUBERIA DE 6" und 3,833.60 108.85 417,287 D4.05 TUBERA DE 6" und 640.00 153.00 97,920 D4.06 TUBERIA DE 4" und 678.00 90.00 61,020 D4.07 CAMA DE ARENA m 3,833.60 133.72 512,628 D4.08 RELLENO Y APISONADO m 3,833.60 177.24 679,467 D4.09 INSTALACION DE LATERALES (conexiones domiciliaria) m 57.00 277.28 15,804 D5.01 INSTALACION DE BOMBA und 1.00 400.00 400 D5.02 EXCAVACION DE CAMARA DE BOMBEO und 1.00 550.72 550 D5.03 IMPLEMENTACION DE CAMARA DE BOMBEO glb 1.00 2,100.00 2,100 D5.04 IMPLEMENTACION DEL SISTEMA FOTOVOLTAICO glb 1.00 2,718.98 2,718 D5.05 CAMA DE ARENA EN LA LINEA DE IMPULSION m 30.00 193.29 5,798	04.02	EXCAVACION CON MAQUINARIA	m	3,833.60	185.93	712,781.25
04.05 TUBERA DE 6° und 64.00 153.00 97,920 04.06 TUBERIA DE 4° und 678.00 90.00 61,020 04.07 CAMA DE ARENA m 3,833.60 133.72 512,628 04.08 RELLENO Y APISONADO m 3,833.60 177.24 679,467 04.09 INSTALACION DE LATERALES (conexiones domiciliaria) m 57.00 277.28 15,804 05 CUARTO DE MAQUINA DE BOMBEO und 1.00 400.00 400 05.01 INSTALACION DE BOMBA und 1.00 400.00 400 05.02 EXCAVACION DE CAMARA DE BOMBEO und 1.00 550.72 550 05.03 IMPLEMENTACION DE CAMARA DE BOMBEO gib 1.00 2,100.00 2,100 05.04 IMPLEMENTACION DEL SISTEMA FOTOVOLTAICO gib 1.00 2,718.98 2,718 05.05 INSTALACION DE TUBERIA DE 2° EN LA LINEA DE IMPULSION m 30.00 193.29 5,798	04.03	PERFILADO DE LA ZANJA	m	3,833.60	62.15	238,258.24
04.06 TUBERIA DE 4* und 678.00 90.00 61,020 04.07 CAMA DE ARENA m 3,833.60 133.72 512,628 04.08 RELLENO Y APISONADO m 3,833.60 177.24 679,467 04.09 INSTALACION DE LATERALES (conexiones domiciliaria) m 57.00 277.28 15,804 05 CUARTO DE MAQUINA DE BOMBEO 12,868 05.01 INSTALACION DE BOMBA und 1.00 400.00 400 05.02 EXCAVACION DE CAMARA DE BOMBEO und 1.00 550.72 550 05.03 IMPLEMENTACION DE CAMARA DE BOMBEO gib 1.00 2,100.00 2,100 05.04 IMPLEMENTACION DEL SISTEMA FOTOVOLTAICO gib 1.00 2,718.98 2,718 05.05 INSTALACION DE TUBERIA DE 2" EN LA LINEA DE IMPULSION m 30.00 193.29 5,798 05.06 CAMA DE ARENA EN LA LINEA DE IMPULSION m 30.00 193.29 5,798	04.04	TENDIDO DE TUBERIA DE 6"	und	3,833.60	108.85	417,287.36
D4.07 CAMA DE ARENA m 3,833.60 133.72 512,628 D4.08 RELLENO Y APISONADO m 3,833.60 177.24 679,467 D4.09 INSTALACION DE LATERALES (conexiones domiciliaria) m 57.00 277.28 15,804 D5 CUARTO DE MAQUINA DE BOMBEO 12,868 D5.01 INSTALACION DE BOMBA und 1.00 400.00 400 D5.02 EXCAVACION DE CAMARA DE BOMBEO und 1.00 550.72 550 D5.03 IMPLEMENTACION DE CAMARA DE BOMBEO glib 1.00 2,100.00 2,100 D5.04 IMPLEMENTACION DEL SISTEMA FOTOVOLTAICO glib 1.00 2,718.98 2,718 D5.05 INSTALACION DE TUBERIA DE 2º EN LA LINEA DE IMPULSION m 30.00 193.29 5,798	04.05	TUBERA DE 6*	und	640.00	153.00	97,920.00
D4.08 RELLENO Y APISONADO m 3,833.60 177.24 679,467 D4.09 INSTALACION DE LATERALES (conexiones domiciliaria) m 57.00 277.28 15,804 D5 CUARTO DE MAQUINA DE BOMBEO 12,868 D5.01 INSTALACION DE BOMBA und 1.00 400.00 400 D5.02 EXCAVACION DE CAMARA DE BOMBEO und 1.00 550.72 550 D5.03 IMPLEMENTACION DE CAMARA DE BOMBEO glb 1.00 2,100.00 2,100 D5.04 IMPLEMENTACION DEL SISTEMA FOTOVOLTAICO glb 1.00 2,718.98 2,718 D5.05 INSTALACION DE TUBERIA DE 2º EN LA LINEA DE IMPULSION m 30.00 193.29 5,798	04.06	TUBERIA DE 4"	und	678.00	90.00	61,020.00
04.09 INSTALACION DE LATERALES (conexiones domiciliaria) m 57.00 277.28 15,804 05 CUARTO DE MAQUINA DE BOMBEO 12,868 05.01 INSTALACION DE BOMBA und 1.00 400.00 400 05.02 EXCAVACION DE CAMARA DE BOMBEO und 1.00 550.72 550 05.03 IMPLEMENTACION DE CAMARA DE BOMBEO glb 1.00 2,100.00 2,100 05.04 IMPLEMENTACION DEL SISTEMA FOTOVOLTAICO glb 1.00 2,718.98 2,718 05.05 INSTALACION DE TUBERIA DE 2º EN LA LINEA DE IMPULSION m 30.00 193.29 5,798 05.06 CAMA DE ARENA EN LA LINEA DE IMPULSION m 30.00 193.29 5,798	04.07	CAMA DE ARENA	m	3,833.60	133.72	512,628.99
D5 CUARTO DE MAQUINA DE BOMBEO 12,868 D5.01 INSTALACION DE BOMBA und 1.00 400.00 400 D5.02 EXCAVACION DE CAMARA DE BOMBEO und 1.00 550.72 550 D5.03 IMPLEMENTACION DE CAMARA DE BOMBEO glb 1.00 2,100.00 2,100 D5.04 IMPLEMENTACION DEL SISTEMA FOTOVOLTAICO glb 1.00 2,718.98 2,718 D5.05 INSTALACION DE TUBERIA DE 2º EN LA LINEA DE IMPULSION m 30.00 193.29 5,798 D5.06 CAMA DE ARENA EN LA LINEA DE IMPULSION m 30.00 193.29 5,798	04.08	RELLENO Y APISONADO	m	3,833.60	177.24	679,467.26
05.01 INSTALACION DE BOMBA und 1.00 400.00 400 05.02 EXCAVACION DE CAMARA DE BOMBEO und 1.00 550.72 550 05.03 IMPLEMENTACION DE CAMARA DE BOMBEO glb 1.00 2,100.00 2,100 05.04 IMPLEMENTACION DEL SISTEMA FOTOVOLTAICO glb 1.00 2,718.98 2,718 05.05 INSTALACION DE TUBERIA DE 2º EN LA LINEA DE IMPULSION m 30.00 12.43 372 05.06 CAMA DE ARENA EN LA LINEA DE IMPULSION m 30.00 193.29 5,798	04.09	INSTALACION DE LATERALES (conexiones domiciliaria)	m	57.00	277.28	15,804.96
05.02 EXCAVACION DE CAMARA DE BOMBEO und 1.00 550.72 550 05.03 IMPLEMENTACION DE CAMARA DE BOMBEO glb 1.00 2,100.00 2,100 05.04 IMPLEMENTACION DEL SISTEMA FOTOVOLTAICO glb 1.00 2,718.98 2,718 05.05 INSTALACION DE TUBERIA DE 2º EN LA LINEA DE IMPULSION m 30.00 12.43 372 05.06 CAMA DE ARENA EN LA LINEA DE IMPULSION m 30.00 193.29 5,798	05	CUARTO DE MAQUINA DE BOMBEO				12,868.60
05.03 IMPLEMENTACION DE CAMARA DE BOMBEO glb 1.00 2,100.00 2,100 05.04 IMPLEMENTACION DEL SISTEMA FOTOVOLTAICO glb 1.00 2,718.98 2,718 05.05 INSTALACION DE TUBERIA DE 2º EN LA LINEA DE IMPULSION m 30.00 12.43 372 05.06 CAMA DE ARENA EN LA LINEA DE IMPULSION m 30.00 193.29 5,798	05.01	INSTALACION DE BOMBA	und	1.00	400.00	400.00
05.04 IMPLEMENTACION DEL SISTEMA FOTOVOLTAICO glb 1.00 2,718.98 2,718 05.05 INSTALACION DE TUBERIA DE 2º EN LA LINEA DE IMPULSION m 30.00 12.43 372 05.06 CAMA DE ARENA EN LA LINEA DE IMPULSION m 30.00 193.29 5,798	05.02	EXCAVACION DE CAMARA DE BOMBEO	und	1.00	550.72	550.72
05.05 INSTALACION DE TUBERIA DE 2º EN LA LINEA DE IMPULSION m 30.00 12.43 372 05.06 CAMA DE ARENA EN LA LINEA DE IMPULSION m 30.00 193.29 5,798	05.03	IMPLEMENTACION DE CAMARA DE BOMBEO	glb	1.00	2,100.00	2,100.00
05.06 CAMA DE ARENA EN LA LINEA DE IMPULSION m 30.00 193.29 5,798	05.04	IMPLEMENTACION DEL SISTEMA FOTOVOLTAICO	glb	1.00	2,718.98	2,718.98
	05.05	INSTALACION DE TUBERIA DE 2º EN LA LINEA DE IMPULSION	m	30.00	12.43	372.90
15.07 RELLENO DE LA LINEA DE IMPULSION m 30.00 30.91 927	05.06	CAMA DE ARENA EN LA LINEA DE IMPULSION	m	30.00	193.29	5,798.70
	05.07	RELLENO DE LA LINEA DE IMPULSION	m	30.00	30.91	927.30

SON: OCHO MILLONES TRESCIENTOS OCHENTICUATRO MIL NOVECIENTOS NOVENTIUNO Y 89/100 NUEVOS SOLES

Figura 47. Presupuesto de tuberías PVC

CUADRO COMPARATIVO DE PRECIOS						
PRESUPUESTO	PRESUPUESTO	DIFERENCIA				
TUBERIA PVC	TUBERIA HDPE	(%)				
55,468.00	10,000.00	18.03%				

Figura 48. Cuadro Comparativo de Presupuestos

8,384,991.89

V. DISCUSIÒN

Discusión 01:

El trabajo realizado nos permito conocer la longitud de nuestra línea de conducción que fue de 7,000.00 metros lineales y un caudal máximo diario de 0.553 l/seg; 284 metros lineales en la red de aducción con un caudal máximo horario 0.434 l/seg; 2617.58 metros lineales en la red de distribución con un caudal 0.0072 l/s demanda por vivienda, para 50 viviendas una población beneficiaria de 239 proyecta a 20 años, con un reservorio de 10.00 m³, para el sistema de bombeo de la cámara de desagüe implementado en el centro educativo Jorge Basadre se utilizó un sistema fotovoltaico de 0.7457 Kw, usando baterías e inversores económicos teniendo en cuenta que esta implementación también podría usarcé para cualquier tipo de uso que requiere el centro educativo Jorge Basadre economizando el uso de energía eléctrica proveniente de una central o de cualquier equipo que use energía no renovable

Campos (2016) en su tesis titulada Tecnologías de la Información y Comunicación aplicadas al diseño de redes de agua potable con sistema Solar Fotovoltaico para el Bombeo. Para adquirir el título profesional de Master en energías renovables y medio ambiente, propuso como meta facilitar el uso de herramientas Tecnológicas de información y Comunicación para la determinación y planeamiento de las redes de agua empleando la energía resultante de un sistema fotovoltaico aplicado al bombeo de agua en comunidades rurales, concluye que como producto del proceso utilizando las TIC's en la aplicación del diseño, se creó una propuesta de red de agua para las comunidades Barro y El Caracol, con una longitud de 4439.04m de línea de distribución, 388m de línea de conducción, 10 ramales secundarios, con un caudal de 1.07 lts/s, para satisfacer la necesidad del consumo de agua a 271 personas en 58 familias, proyectado el sistema a 20 años, dos tanques de almacenamiento que suman 64 m³ que garantizan un gasto diario total de 37.01 m³ con una reserva de dos días de agua para consumo; <mark>dos</mark> <mark>sistemas de bombeo con una potencia fotovoltaica de 4.56KW</mark>, distribuido en cuatro estructuras, sin hacer uso de baterías e inversores, haciendo uso de tecnologías limpia asegura no emitir 5.04 Ton CO₂e. Igualmente, el desarrollo de las tecnologías en fotovoltaica habilita diseñar sistemas de bombeo sin hacer uso de baterías e inversores los que hace más robusto el sistema y con menor inversión económica.

Igualmente, Amaya (2019) en su tesis titulada Diseño del Abastecimiento de Agua Potable para las comunidades de Sarar Alto y Buena Vista, Parroquia Ludo, Cantón Sigsig, provincia del Azuay. Investigación previa a la adquisición del título de Ingeniero Civil con énfasis en Dirección en Construcciones. En la Universidad del Azuay. Tiene como objetivo Diseñar la distribución del agua en la urbe del nombre ya indicado, esta tendrá los trabajos respectivos y necesarios que están determinados para la asignación y las construcciones sanitarias. Donde concluyo que el diseño de la distribución se procedió a realizar adoptando las mejores opciones de mercado y tener una alternativa económica para el trabajo, a su vez este diseño no tendrá ninguna repercusión con algún incumplimiento de las normativas actuales en la nación para el tratado de implementación de agua y desagüe en sus zonas rurales.

Discusión 02:

Nuestro método de investigación fue científico con enfoque cuantitativo ya que se identificó un problema y se resolverá mediante la investigación. El tipo de investigación fue aplicada dado que usamos investigaciones ya realizadas para determinar la mejor solución de nuestro problema. Nuestro nivel de investigación fue descriptivo porque verificamos las características, propiedades, perfiles, procesos, objetos o cualquier otro fenómeno que se someta a un análisis. Nuestro diseño de la investigación fue no experimental en la clasificación de corte transversal porque recolectamos datos para hacer una sola medición en un determinado tiempo por única vez.

Nuestro estudio topográfico nos dice que la morfología de su relieve es variada, compleja y muy accidentada en ciertos tramos vitales. Presenta una configuración topográfica irregular y está ubicada dentro de las cotas 2,000 a 4,500 metros sobre el nivel del mar. Las pendientes son variadas en la zona de intervención de proyecto van de 2% a 7% en promedio con ondulaciones geomorfológicas semi-pronunciadas.

En el estudio de mecánica de suelos realizados nos indica realizar una profundidad de cimentación DF = 1.50 m, base de cimentación B = 1.00 m y longitud de cimentación L = 1.00 m, el valor de carga admisible final con factor de seguridad FS =3.00 será de qu = 4.81 kg/cm² donde la gad = qu/FS entonces gad = 1.60 kg/cm². Nuestros ensayos muestran que Hacia la Calicata C – 01 **de 0.00m** a 0.30m, terreno de cobertura, color pardo negruzco, conformado por arcillas orgánicas con bastante arena y pequeña cantidad de grava, con presencia de raíces insipientes, material suelto, no adecuado para desplante de cimentación, estrato que se recomienda eliminar. De 0.30m a 3.00m, depósitos residuales, terreno de color beige oscuro, conformados por una Grava Limosa, presenta mucha cantidad de Grava (44.90%), pequeña cantidad de arena (19.02%) y mucha cantidad de finos (36.08%), la fracción que pasa la malla Nº 40 es de plasticidad media (limite liquido de 34.79%, Índice plástico 10.74%; lo que indica que la fracción fina es arcillosa), húmedo sin presencia visible de agua, con una cementación nula y cohesión media, la compacidad en el momento de auscultación es casi firme (LP<w), el terreno se podría considerar una estructura homogénea, tiene una resistencia a la excavación manual baja cuando está húmedo, de talud vertical con un grado de estabilidad de paredes estable. Hacia la Calicata C – 02 de 0.00m a 0.40m, terreno de cobertura, color pardo negruzco, conformado por arcillas orgánicas con bastante arena y pequeña cantidad de grava, con presencia de raíces insipientes, material suelto, no adecuado para desplante de cimentación, estrato que se recomienda eliminar. De 0.40m a 3.00m, depósitos residuales, terreno de color beige oscuro, conformados por una Arena Limosa con Grava, presenta mucha cantidad de Grava (32.50%), mucha cantidad de arena (33.91%) y mucha cantidad de finos (33.59%), la fracción que pasa la malla Nº 40 es de plasticidad nula (no presenta limite líquido, no presenta Índice plástico; lo que indica que la fracción fina está exenta de arcilla), húmedo sin presencia visible de agua, con una cementación nula y cohesión media, la compacidad en el momento de auscultación es casi firme (LP<w), el terreno se podría considerar una estructura homogénea, tiene una resistencia a la excavación manual baja cuando está húmedo, de talud vertical con un grado de estabilidad de paredes estable.

Flores y Changanaqui (2019) en su tesis titulada Estudios y diseños del sistema de agua potable y alcantarillado para el centro poblado Madean, distrito de Madean, provincia de Yauyos, región Lima. Para adquirir el título profesional Ingeniero Civil, propuso realizar los estudios previos y diseños de la implementación de la red de agua y red de desagüe para la comunidad de Madean - Yauyos - Lima. El tipo de proyecto es aplicado, el nivel del proyecto es descriptiva - explicativa, el proyecto es no experimental transversal descriptivo y aplicativo. Concluye que en los estudios topográficos, el relieve del terreno es muy escarpada; en los estudios de suelos, para la cimentación se recomienda tener una profundidad mínima de Df = 2.00m y un ancho para la cimentación de 1.00m; según estos valores la capacidad portante de carga admisible en proyecto se mostraran en el cuadro de estudios de suelos, se recomienda el uso de los cálculos obtenidos de la capacidad portante de cada calicata; se infiere que la capa del terreno donde se las bases tienen moderadas concentraciones de sales totales, sulfatos y además cloruros, que podrían dañar la armadura el concreto de la cimentación. Se recomienda que en la cimentación del proyecto usar el cemento tipo 1(uno); A su vez no se encontró ningún tipo de napa freática en las calicatas a una profundidad de 8.00m; en los estudios de fuentes de calidad de agua, los efectos de los análisis microbiológicos, químicos y físicos realizados al agua de la captación existente y proyectada para el Centro Poblado Madean cumplen con los parámetros de la normativa DSNº 004-2017-MINAN.

Discusión 03:

Para la determinación del tipo de bomba se ha considerado la vida útil de la institución proyectada de 20 años, de acuerdo los cálculos la población demandante futura para la I.E. Jorge Basadre de Oronccoy. Los resultados de contribución al desagüe fueron de 0.88 lps. Y se tiene una radiación de 6.37 Kwh/m2 y se necesitará para los paneles solares 0.74 Kwh/m. se implementará 2 paneles solares Perc Monocristalino ERA de 400 w y una bomba sumergible monofásica de 1Hp – 0.75 KW y diámetro de impulsión de 2" marca Pedrollo Bc10/50 5M

Zambrano, J. (2019) en esta tesis titulada "Sistema de Bombeo de Agua utilizando Paneles Solares en el sector Boyero - C.P. Porcón Alto". Para adquirir el título profesional Ingeniero Civil, propuso determinar la factibilidad energética e hidráulica, de un provecto de bombeo de agua utilizando paneles solares en el Sector Boyero, Porcón Alto. El tipo de investigación del proyecto fue descriptiva comparativa. Concluye que si es factible energéticamente e hidráulicamente el proyecto de bombeo de agua utilizando paneles solares en el sector Boyero Centro Poblado - Porcón Alto, ya que, el sistema de bombeo puede ser abastecida de manera satisfactoria por los recursos a utilizar, encontrando un caudal de la fuente de 1.232 l/s el cual es mayor al caudal máximo diario de 0.101 l/s requerido para abastecer a la población, de la misma manera se tiene una radiación de 6.22 kwh/m2, mayor al requerido de 3 kwh/m. también nos indica que según el diseño del arreglo fotovoltaico utilizar 4 paneles solares monocristalinos de la marca BAUER modelo BSP370M los cuales serán instalados 2 en serie y 2 en forma paralela, de la misma manera una bomba sumergible monofásica de 1HP de potencia de la marca Lorentz modelo PS 150 C-SJ5-8/1HP, el cual tiene un buen porcentaje de eficiencia.

VI. CONCLUSIONES

- En síntesis, se realizó el diseño de la red de agua y alcantarillado en el distrito de Oronccoy teniendo en cuenta la implementación de los paneles fotovoltaicas.
- Se determinó la influencia de la potencia del equipo de bombeo en el diseño de la red de alcantarillado en el distrito de Oronccoy. La potencia necesaria para impulsar las aguas servidas producidas por la institución educativa secundario Jorge Basadre es de 01 HP.
- La implementación de los paneles fotovoltaicos si influyen en el diseño de la red de alcantarillado en el distrito de Oronccoy, ya que disminuye el costo de operación del equipo de bombeo al usar energía producida por los paneles.
- De acuerdo a los cálculos de costos y presupuestos, se deduce que, si influye en el diseño de la red de agua en el distrito de Oronccoy, ya que el en cuadro comparativo de precios según el tipo de material usado, el más conveniente es la tubería HDPE que defiere en su costo de 18.03% respecto a la tubería PVC.

VII. RECOMENDACIONES

- Se recomienda que para la implementación de la red de agua se utilice tubería HDPE para reducir los costos del presupuesto ya que dicho material en adquisición por cantidad es más económico y además es más resistente que la tubería convencional PVC.
- Se sugiere que para los cálculos de diseño del sistema de saneamiento se utilice software adecuados tales como el SewerCad y WaterCAD ya que con estos programas nos facilitaran obtener los resultados hidráulicos de acuerdo a las normativas vigentes.
- Se sugiere que para los cálculos de la bomba deben conocer las características de la zona, para así poder hacer un adecuado diseño de bombeo que esté acorde con la necesidad de la población y siempre proyectándose a futuro.
- Se recomienda que para la implementación de sistemas fotovoltaicos tener en cuenta el lugar donde serán implementados. Asu vez obtener los datos necesarios para hacer el requerimiento de los componentes de acuerdo a la necesidad requerida.

REFERENCIAS

- Amaya, P. (2019). Diseño del Abastecimiento de Agua Potable para las comunidades de Sarar Alto y Buena Vista, Parroquia Ludo, Cantón Sigsig, provincia del Azuay. (Tesis de Grado, Universidad del Azuay). Recuperada de http://dspace.uazuay.edu.ec/handle/datos/9493
- Arencibia, G. (septiembre, 2016). La importancia del uso de paneles solares en la generación de energía eléctrica REDVET. Revista Electrónica de Veterinaria. Recuperado de https://www.redalyc.org/pdf/636/63647456002.pdf
- Campos, Y. (2016). Tecnologías de la Información y Comunicación aplicadas al diseño de redes de agua potable con sistema Solar Fotovoltaico para el Bombeo. (Tesis Master, Universidad Nacional Autónoma de Nicaragua, León). Recuperada de http://riul.unanleon.edu.ni:8080/jspui/bitstream/123456789/7133/1/240786.pdf
- CAPECO (2013). Costos y Presupuestos en Edificaciones. Lima. Perú.
- Carrasco D., S. 2006. *Metodología de la investigación científica: Pautas para diseñar y elaborar un Proyecto de Investigación*. Lima. Perú: San Marcos, 2006.
- Carmona, G. y Díaz, T. (2018). *Instalaciones Solares Fotovoltaicas*.

 Recuperado de https://www.mheducation.es/bcv/guide/capitulo/8448614488.pdf
- Celleri, C. y Peñafiel, A. (2017). Diseño de red de distribución de Agua Potable para el recinto Las Margaritas del Cantón Samborondon en la Provincia del Guayas. (Tesis de Grado, Escuela Superior Politécnica del Litoral). Recuperada de http://www.dspace.espol.edu.ec/xmlui/handle/123456789/38822
- Córdova Z., M. (2003). Estadística Descriptiva e Inferencial. (5.ª. ed.). Lima, Perú: MOSHERA S.R.L.
- Cunia, G. (2012) Diseño y evaluación económica comparativa del Sistema de Agua Potable en la comunidad Nuevo Arica de Cachiyacu utilizando Energía solar y Energía Térmica en el año 2016. (Tesis Grado, Universidad Nacional de San Martin). Recuperada de http://hdl.handle.net/11458/303

- Dirección general de caminos y ferrocarriles. (2018). Manual de carreteras: Diseño geométrico DG-2018. Lima, Perú: Ministerio de transporte y comunicaciones. Mendoza d., J. (2015). Topografía Técnicas Modernas. (2.a ed.). Lima Perú: Gráfica SEGRIN EIRL.
- Flores, R. y Changanaqui, M. (2019). Estudios y diseños del sistema de agua potable y alcantarillado para el centro poblado Madean, distrito de Madean, provincia de Yauyos, región Lima. (Tesis de Grado, Universidad Nacional José Faustino Sánchez Carrión). Recuperada de http://repositorio.unjfsc.edu.pe/handle/UNJFSC/3091
- Hernández, R., Fernández, C., y Baptista, M. (2014) Metodología de la Investigación. (6.a ed.). México: Editorial Mc. Graw Hill Interamericana Editores, SA.
- Jara, F. y Santos, K. (2014). Diseño de Abastecimiento de Agua Potable y el diseño de Alcantarillado de las localidades: El Calvario y Rincón de Pampa Grande del distrito de Curgos La Libertad. (Tesis de Grado, Universidad Privada Antenor Orrego). Recuperada de http://repositorio.upao.edu.pe/handle/upaorep/689
- Jiménez T., J. (2010). *Manual para el diseño de sistemas de agua potable y alcantarillado.* México: Universidad Veracruzana.
- MVCS (2018). Norma técnica de Diseño: Opciones Tecnológicas para Sistema de Saneamiento en el Ámbito Rural. Lima, Perú: Gobierno del Perú.

 Recuperado de

 https://www.gob.pe/institucion/vivienda/normas-legales/275920-192-2018-vivienda
- Navarrete, E. (2017). Diseño del sistema de Agua Potable y Alcantarillado en el centro poblado de El Charco, distrito de Santiago de Cao, Provincia de Ascope, región La Libertad. (Tesis Grado, Universidad Cesar Vallejo). Recuperada de https://hdl.handle.net/20.500.12692/11743

- Ñaupas, H., Valdivia, M., Palacios, J. y Romero, H. (2018). Metodología de investigación Cuantitativa Cualitativa y Redacción de Tesis. (5ª ed.). Bogotá: Ediciones de U.
- Perpiñán L., O. (2018). *Energía Solar Fotovoltaica. (9ª ed.)*. España: Creavite Commons.

Recuperado de https://oscarperpinan.github.io/esf/ESF.pd

PNSR (2004). Parámetros de Diseño de Infraestructura de agua y Saneamiento para Centros Poblados Rurales. Lima, Perú: Gobierno del Perú.

Recuperado de

https://www.mef.gob.pe/contenidos/inv publica/docs/instrumentos metod/sanea miento/ 3 Parametros de dise de infraestructura de agua y saneamiento CC_PP_rurales.pdf

- Reglamento de calificación y registro de investigadores en ciencia y tecnología del sistema nacional de ciencia, tecnología SINACYT (30 de diciembre de 2017). El Peruano, pág. 135.
- Reglamento Nacional de Edificaciones (2006). Norma OS. 050 Redes de distribución de agua para consumo humano. Lima, Perú: diario oficial El Peruano.
- Roaf, V. et al. (2014). Manual prático para la realización de los derechos humanos al agua y saneamiento de la Relatora Especial de la ONU, Catarina de Albuquerque. Portugal: Relatora Especial de la ONU sobre el derecho humano al agua potable y al saneamiento. Portugal.

Recuperado de

https://www.ohchr.org/_layouts/15/WopiFrame.aspx?sourcedoc=/Documents/Iss ues/Water/Handbook/Book1_intro_sp.pdf&action=default&DefaultItemOpen=1

- Villajuana, C. (2013). Costos y Presupuestos Paso a Paso. Tacna, Perú: Editorial Neumann.
- Zambrano, J. (2019). Sistema de Bombeo de Agua utilizando Paneles Solares en el sector Boyero C.P. Porcón Alto". (Tesis de Grado, Universidad Privada del Norte). Recuperada de http://hdl.handle.net/11537/23578

ANEXOS

Anexo N° 1: Matriz de operacionalización de variables

	DISEÑO DE RED DE AGUA Y ALCANTARILLADO EMPLEANDO PANELES FOTOVOLTAICOS EN EL DISTRITO DE ORONCCOY - LA MAR - AYACUCHO 2020										
Problema General	Objetivo General	Hipótesis General	VD	Definición Conceptual	Definición operacional	Dimensiones	Indicadores	Metodología de investigación			
¿De qué manera mejoraría el diseño de	Realizar un diseño de la red de La imple	Realizar un diseño de la red de	La implementación de los Paneles	de Agua tarillado	Es un componente del sistema de agua	Se obtendrán datos de las fuentes primarias, usando la técnica de la recoleccion de datos,	Estudios Basicos	Topografia. Estudio de Mecanica de Suelos. Parametros de Diseño	El método de investigación: Será de método científico con		
la red de agua y alcantarillado empleando Paneles Fotovoltaicos en el distrito de Oronccoy - La Mar - Ayacucho 2020?	agua y alcantarillado empleando Paneles Fotovoltaicos en el distrito de Oronccoy - La Mar - Ayacucho 2020.	Fotovoltaicos mejora el diseño de la red de alcantarillado, en el distrito de Oronccoy - La Mar - Ayacucho 2020.	o de la red de ole y Alcantari	hasta cada vivienda a través de tuberías,	estudios basicos, parametros hidraulicos de agua y alcantarillado mediante sus	Parametros Hidraulicos de Agua	Diametros minimos Velocidades Presiones	enfoque cuantitativo ya que se identificó un problema y se resolverá mediante la			
Ayacucno 2020?	·	Ayacucho 2020. Ayacucho 2020.	7 yadda 8 2020.	7,9000010 2020.	1,920010 2020		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	respectivos indicadores	Parametros Hidraulicos de Alcantarillado	Pendiente Tirante	investigación. El tipo de investigación: Será aplicada dado que usaremos investigaciones ya realizadas
Problemas Especificos	Objetivos Especificos	Hipótesis Especificas	VI	Definición Conceptual	Definición	Dimensiones		para determinar la mejor			
¿Cómo influye el Equipo de Bombeo en el diseño de la red de alcantarillado en el distrito de Oronccoy - La Mar- Ayacucho 2020?	Determinar la influencia del Equipo de Bombeo en el diseño de la red de alcantarillado en el distrito de Oronccoy - La Mar-	El Equipo de Bombeo influye en el diseño de la red de alcantarillado en el distrito de Oronccoy - La Mar- Ayacucho 2020.		La energía solar fotovoltaica (ESFV) constituye una Fuente de energía renovable, la	Se obtendrán datos de	Equipo de Bombeo	Altura dinamica	solución al problema. El nivel de investigación: Será descriptivo porque verifica las características propiedades			
¿De qué manera influye la implementación de los Paneles	Ayacucho 2020. Establecer la influencia de la implementación de los Paneles	Los Paneles Fotovoltaicos influyen	oltaicos	cual puede usarse en la generación de electricidad mediante el	las fuentes primarias, usando la técnica de la recolección de datos,		Clasificacion	perfiles, procesos, objetos o cualquier otro fenómeno que se someta a un análisis. El			
Fotovoltaicos en el diseño de la red alcantarillado en el distrito de Oronccoy -	Fotovoltaicos en el diseño de la red de alcantarillado en la capital orde del distrito de Oronccoy - La Mar- Ayacucho oroncos (PSFV)	Fotov	uso de paneles solares	estudios básicos, parámetros hidráulicos de agua y alcantarillado	Panel Fotovoltaico	ripos	diseño de la investigación: Será no experimental en la clasificación de corte				
La Mar- Ayacucho 2020?	Ayacucho 2020.	2020.	anel	radiación solar en	mediante sus respectivos indicadores			transversal porque recolectan			
 ¿Cómo influye el uso de Paneles Fotovoltaicos en los Costos y Presupuestos del diseño de la red de 	 Determinar la influencia de los Costos y Presupuestos en el diseño de la red de agua y 	Los Costos y Presupuestos influyen en el diseño de la red de agua y alcantarillado en el distrito	P	electricidad, haciéndola aplicables a múltiples actividades de vida.	aplicables al diseño de agua y alcantarillado.	Costos y		datos para hacer una sola medición en un determinado tiempo por única vez.			
agua y alcantarillado en el distrito de Oronccoy – La Mar - Ayacucho?	alcantarillado en el distrito de Oronccoy - La Mar- Ayacucho 2020.	de Oronccoy - La Mar- Ayacucho 2020.		(REDVET, 2016, pp. 1-4)		Presupuestos	Presupuesto				

Anexo N° 2: Puntos BMS - Puntos de control

1	669404.688	8520037.04	3732.730	punto1
2	669516.422	8520084.974	3750.833	punto2
3	669581.978	8520191.466	3759.684	punto3
4	669509.064	8520339.405	3752.091	punto4
5	669455.855	8520454.345	3746.433	punto5
6	669417.695	8520245.76	3723.510	punto6
7	669253.648	8520160.479	3706.572	punto7
8	669126.485	8519984.75	3663.213	punto8
9	668981.471	8519882.859	3644.018	punto9
10	668820.185	8519971.33	3639.948	punto10
11	669350.532	8520211.754	3718.963	punto12
12	669415.394	8520038.419	3733.974	geo1
13	669528.297	8520372.186	3764.198	geo2
14	669529.815	8520117.832	3750.096	bm1
15	669365.216	8520225.734	3720.421	bm2
16	669382.521	8520280.457	3723.838	bm3
17	669457.261	8520449.094	3747.087	bm4
18	669230.691	8520182.327	3698.049	bm5
19	668969.349	8519880.11	3644.675	bm6

Fuente: Elaboración propia.

Anexo N° 3: Puntos del levantamiento topográfico

Р	E	N	Z	D
1	669352.8814	8520166.9599	3715.250	tn
2	669491.8587	8520017.2624	3724.750	tn
3	669485.5347	8520017.7487	3724.750	tn
4	669490.4433	8520012.6108	3724.750	tn
5	669480.8522	8520017.7988	3725.250	tn
6	669486.2334	8520011.8646	3725.250	tn
7	669509.2929	8520010.8011	3724.250	tn
8	669506.2809	8520018.5820	3724.500	tn
9	669504.2287	8520020.7076	3724.750	tn
10	669503.5127	8520022.3854	3725.250	tn
11	669500.1903	8520024.3807	3724.750	tn
12	669497.6996	8520032.0775	3725.250	tn
13	669496.9235	8520032.4451	3725.500	tn
14	669496.4959	8520034.0340	3725.750	tn
15	669497.8201	8520017.2784	3724.750	tn
16	669499.7278	8520020.0809	3724.750	tn
17	669501.3597	8520021.6589	3724.750	tn
18	669503.3532	8520018.6730	3724.500	tn
19	669502.4009	8520016.3575	3724.500	tn
20	669499.8790	8520015.3969	3724.500	tn
21	669497.7417	8520012.9182	3724.500	tn
22	669510.6154	8520012.2505	3724.250	tn
23	669508.7583	8520014.3997	3724.250	tn
24	669512.8817	8520016.5686	3724.250	tn
25	669517.5844	8520016.1121	3724.250	tn
26	669517.8205	8520015.2611	3724.000	tn
27	669514.5215	8520014.6617	3724.000	tn

28	669514.0244	8520012.5531	3724.000	tn
29	669514.7520	8520010.3735	3724.000	tn
30	669522.5308	8520009.3337	3723.500	tn
31	669523.8912	8520012.0745	3723.500	tn
32	669529.3079	8520011.7995	3723.500	tn
33	669529.6968	8520012.6379	3724.000	tn
34	669524.0521	8520014.4645	3724.000	tn
35	669523.0904	8520015.0860	3724.250	tn
36	669523.0757	8520015.5319	3724.500	tn
37	669523.2655	8520015.8637	3724.750	tn
38	669523.3848	8520016.3543	3725.250	tn
39	669523.0370	8520016.5645	3725.500	tn
40	669523.6906	8520016.8797	3726.000	tn
41	669530.8580	8520012.6423	3724.250	tn
42	669530.4790	8520012.9654	3724.500	tn
43	669530.7356	8520013.0870	3724.750	tn
44	669530.5520	8520013.4689	3725.250	tn
45	669530.6787	8520013.7256	3725.750	tn
46	669530.7194	8520013.8975	3726.000	tn
47	669483.9410	8520020.5454	3725.250	tn
48	669489.6211	8520019.3073	3725.250	tn
49	669493.4887	8520023.8794	3725.250	tn
50	669497.3300	8520028.2783	3725.250	tn
51	669498.1574	8520026.8391	3724.750	tn
52	669498.1902	8520024.4999	3724.750	tn
53	669499.9213	8520026.6150	3724.750	tn
54	669503.2801	8520024.6595	3725.250	tn
55	669502.1089	8520026.9076	3725.250	tn
56	669501.2768	8520028.8609	3725.250	tn
57	669499.6706	8520030.2495	3725.250	tn

58	669490.9440	8520025.8676	3725.500	tn
59	669495.0963	8520029.2267	3725.500	tn
60	669480.5069	8520023.6165	3725.750	tn
61	669485.9766	8520026.6723	3725.750	tn
62	669488.7601	8520027.5496	3725.750	tn
63	669488.5980	8520029.6312	3725.750	tn
64	669489.3265	8520032.3294	3725.750	tn
65	669493.3404	8520031.8936	3725.750	tn
66	669495.7833	8520033.9943	3726.000	tn
67	669491.5423	8520033.3160	3726.000	tn
68	669487.2167	8520034.1814	3726.000	tn
69	669483.4825	8520033.1844	3726.000	tn
70	669485.3613	8520030.3642	3726.000	tn
71	669482.1224	8520030.1687	3726.000	tn
72	669478.7276	8520028.2645	3726.000	tn
73	669473.4770	8520027.8786	3726.000	tn
74	669497.3520	8520034.9895	3726.000	tn
75	669496.9352	8520036.4736	3726.500	tn
76	669494.9402	8520034.5033	3726.500	tn
77	669487.9679	8520035.2960	3726.500	tn
78	669482.3552	8520037.9557	3726.500	tn
79	669479.6579	8520039.8910	3726.500	tn
80	669492.0361	8520034.5909	3726.500	tn
81	669495.7212	8520036.5708	3726.750	tn
82	669494.1723	8520034.6972	3726.750	tn
83	669491.4311	8520035.1149	3726.750	tn
84	669487.7340	8520035.7260	3726.750	tn
85	669484.4501	8520036.9303	3726.750	tn
86	669482.8176	8520038.2997	3726.750	tn
87	669480.1379	8520040.3593	3726.750	tn

88	669480.4299	8520040.8191	3727.000	tn
89	669480.8217	8520041.2497	3727.250	tn
90	669483.5785	8520038.7742	3727.250	tn
91	669485.1896	8520037.5233	3727.250	tn
92	669487.7943	8520036.2668	3727.250	tn
93	669491.3542	8520035.4453	3727.000	tn
94	669491.5847	8520035.8805	3727.250	tn
95	669494.9397	8520035.8931	3727.000	tn
96	669494.2269	8520036.7883	3727.000	tn
97	669492.7094	8520037.0245	3727.000	tn
98	669491.4259	8520038.1624	3727.000	tn
99	669489.5636	8520038.2983	3727.000	tn
100	669487.3350	8520039.3161	3727.000	tn
101	669486.3580	8520040.3232	3727.000	tn
102	669485.9716	8520039.9948	3727.250	tn
103	669487.3856	8520038.8335	3727.250	tn
104	669490.0999	8520037.4657	3727.250	tn
105	669491.8168	8520036.8739	3727.250	tn
106	669494.7881	8520037.3639	3726.750	tn
107	669493.4328	8520037.4186	3726.750	tn
108	669491.6606	8520038.9725	3726.750	tn
109	669489.8600	8520038.5650	3726.750	tn
110	669491.2848	8520039.8774	3726.500	tn
111	669489.1888	8520039.6183	3726.500	tn
112	669487.2148	8520041.2515	3726.500	tn
113	669487.5682	8520042.2244	3726.500	tn
114	669489.5869	8520041.0707	3726.500	tn
115	669496.0318	8520040.0501	3726.750	tn
116	669494.4228	8520039.2314	3726.750	tn
117	669496.1124	8520037.2851	3726.750	tn

118	669492.5946	8520040.5012	3726.750	tn
119	669490.5050	8520041.8658	3726.750	tn
120	669495.9956	8520040.6514	3727.000	tn
121	669494.6216	8520041.2741	3727.000	tn
122	669492.4334	8520041.5764	3727.000	tn
123	669489.9742	8520042.5776	3727.000	tn
124	669487.5985	8520043.1702	3727.000	tn
125	669486.7484	8520042.7922	3727.000	tn
126	669486.7673	8520043.6600	3727.750	tn
127	669488.4287	8520043.9988	3727.750	tn
128	669490.3680	8520044.0112	3728.250	tn
129	669487.6930	8520044.5914	3728.500	tn
130	669493.1834	8520042.9631	3728.500	tn
131	669493.1034	8520042.6263	3728.000	tn
132	669491.8412	8520042.8794	3727.750	tn
133	669495.7961	8520041.8773	3728.500	tn
134	669498.1389	8520040.7868	3728.500	tn
135	669501.0355	8520040.0298	3728.500	tn
136	669505.2119	8520039.0318	3728.500	tn
137	669497.8586	8520040.6131	3728.250	tn
138	669497.8105	8520040.3736	3728.000	tn
139	669497.7430	8520040.1806	3727.750	tn
140	669497.3863	8520039.9922	3727.250	tn
141	669497.3474	8520039.6218	3727.000	tn
142	669497.0705	8520039.3585	3726.750	tn
143	669497.2769	8520037.8390	3727.000	tn
144	669498.4680	8520037.8209	3727.250	tn
145	669499.4816	8520038.6743	3727.750	tn
146	669500.5298	8520039.1259	3728.000	tn
147	669501.0758	8520039.5592	3728.250	tn

148	669503.7479	8520038.5971	3728.250	tn
149	669503.2993	8520038.2757	3728.000	tn
150	669502.5851	8520037.7784	3727.750	tn
151	669500.9074	8520037.0279	3727.250	tn
152	669499.1667	8520036.2838	3727.250	tn
153	669499.1294	8520035.4433	3726.500	tn
154	669501.4030	8520036.0527	3727.000	tn
155	669502.2738	8520035.0329	3726.750	tn
156	669502.6555	8520034.1910	3726.500	tn
157	669503.0898	8520035.2909	3727.000	tn
158	669504.8496	8520037.0510	3727.750	tn
159	669504.7375	8520035.7411	3727.250	tn
160	669508.0491	8520038.2600	3728.500	tn
161	669506.6638	8520037.4509	3728.250	tn
162	669510.5494	8520035.6706	3728.000	tn
163	669511.9583	8520037.2896	3728.500	tn
164	669512.4044	8520035.5480	3728.250	tn
165	669508.5601	8520033.7559	3727.250	tn
166	669507.8853	8520036.0623	3727.750	tn
167	669509.8774	8520032.0004	3727.000	tn
168	669505.7996	8520034.6090	3727.000	tn
169	669506.4671	8520031.8117	3726.500	tn
170	669508.8069	8520031.3236	3726.750	tn
171	669505.1550	8520033.5023	3726.750	tn
172	669459.7369	8520037.3598	3726.500	tn
173	669461.0249	8520042.1954	3726.500	tn
174	669463.8255	8520044.9102	3726.500	tn
175	669474.2207	8520040.5134	3726.500	tn
176	669403.2427	8520131.9440	3723.000	tn
177	669403.5429	8520129.6553	3722.750	tn

178	669398.2165	8520126.1464	3722.250	tn
179	669392.0626	8520134.5600	3721.500	tn
180	669394.6598	8520132.0717	3721.750	tn
181	669397.1598	8520139.7186	3721.500	tn
182	669392.9585	8520147.5261	3720.500	tn
183	669394.5368	8520145.3361	3721.000	tn
184	669383.2115	8520146.5850	3720.250	tn
185	669385.3634	8520141.6186	3720.750	tn
186	669387.6928	8520138.9874	3721.000	tn
187	669398.7299	8520133.6452	3721.750	tn
188	669400.7412	8520131.8753	3722.250	tn
189	669397.2497	8520135.8958	3721.500	tn
190	669393.1578	8520140.6729	3721.000	tn
191	669389.1283	8520145.5198	3720.500	tn
192	669386.9606	8520148.5528	3720.250	tn
193	669401.6669	8520134.5044	3723.000	tn
194	669400.0739	8520138.1813	3722.750	tn
195	669398.6948	8520140.5552	3722.250	tn
196	669397.0596	8520145.6934	3722.250	tn
197	669396.3107	8520145.2645	3722.000	tn
198	669398.9821	8520136.7589	3722.250	tn
199	669398.0784	8520141.2595	3722.000	tn
200	669395.6358	8520142.8642	3721.500	tn
201	669404.4326	8520133.5056	3724.000	tn
202	669406.0793	8520133.6177	3724.500	tn
203	669407.4752	8520133.5460	3724.750	tn
204	669409.9615	8520134.4816	3725.250	tn
205	669402.6028	8520133.2162	3723.250	tn
206	669412.5302	8520131.5373	3724.750	tn
207	669413.0168	8520132.1500	3725.250	tn

208	669412.9566	8520133.0919	3725.750	tn
209	669413.0757	8520133.7724	3726.000	tn
210	669411.3647	8520134.0737	3725.500	tn
211	669413.2463	8520128.1906	3724.750	tn
212	669415.4984	8520125.7071	3726.500	tn
213	669416.4261	8520124.5996	3727.250	tn
214	669414.7621	8520126.8009	3726.000	tn
215	669415.2317	8520132.2795	3727.250	tn
216	669414.5338	8520131.9303	3726.500	tn
217	669414.1206	8520131.5193	3725.750	tn
218	669415.1802	8520141.6249	3727.250	tn
219	669413.6102	8520141.2221	3726.000	tn
220	669411.6866	8520141.9840	3725.250	tn
221	669409.8006	8520142.1234	3724.750	tn
222	669407.4106	8520141.3107	3724.250	tn
223	669403.7527	8520140.6884	3723.500	tn
224	669406.9338	8520143.0291	3724.000	tn
225	669404.1987	8520136.2230	3724.000	tn
226	669401.3318	8520142.0430	3722.750	tn
227	669395.8642	8520148.8619	3721.500	tn
228	669399.3438	8520148.7906	3722.000	tn
229	669396.9561	8520149.1514	3721.750	tn
230	669402.4382	8520147.5995	3722.750	tn
231	669404.4753	8520148.1551	3723.250	tn
232	669407.4730	8520148.6087	3724.000	tn
233	669406.0185	8520149.0741	3723.500	tn
234	669409.2081	8520147.5973	3724.500	tn
235	669412.7015	8520148.2811	3725.250	tn
236	669410.1767	8520144.3583	3724.750	tn
237	669408.6974	8520145.2576	3724.500	tn

Anexo N° 4: Calculo de la Capacidad de Carga Admisible del Terreno

MGEPHERIA SECTEBUISA AL MAXIMO ESPECIALISTAS EN STELIS, CONSTITO Y ANALISIS DE CIMENTACION CALCULO DE CAPACIDAD DE CARGA ADMISIBLE DEL TERRENO

PROYECTO

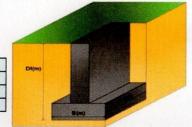
: "MEJORAMIENTO DEL SERVICIO EDUCATIVO EN LAS INSTITUCIONES EDUCATIVAS DEL NIVEL SECUNDARIO JORGE BASADRE DE ORONCCOY Y CHARLES ROBERT DARWIN DE PUTUCUNAY, DISTRITO DE ORONCCOY - LA MAR - AYACUCHO"

LOCALIZACION: C - 02 (ZAPATAS) / I.E. NIVEL SECUNDARIO JORGE BASADRE DE ORONCCOY

FECHA

: NOVIEMBRE DE 2018

DATOS DEL SUELO PARA CALCULAR:


Angulo De Fricción φ ^{ιο}	25.00
Cohesión C' (KN/m2)	2.94
Peso especifico γ (KN/m3)	13.68
Peso especifico saturado ysat (KN/m3)	

DATOS PRELIMINARES DE CALCULO:

El esfuerzo efectivo en la base de cimentación:

a' =	20.53	KN/m ²	

Profundidad De Cimentacion Df	1.50
Base De Cimentacion B (m)	1.00
Longitud De Cimentacion L (m)	1.00
Altura del nivel Freático (hw)	

10.69

0.00

13.68

El peso especifico efectivo del suelo en la base de la cimentación:

- Caso I (0≤hw≥Df)
- Caso II (Df≤hw≤Df+B)

• Caso III (hw>Df+B)

y' = ysat -		
d = hw - [)f =	
y' = ysat -	yw + d/B (y -	ysat + yw) =
y' =		
	40.00	1011 2

Calculo de la capacidad de carga por la formula de Terzaghi.

La capacidad de carga ultima se calcula por la siguiente expresión:

qu = c'Nc dc Sc + q'Nq Sq + 0.5y'BNy Sy

Los factores de capacidad de carga, recomendados para la formula son:			Influencia de la forma de la cimentación, recomendados para la formula: Influencia de la profundio cimentación, recomendados formula:					
Nq	No	Ny	Sc	Sq	Sy	dc	705 <u>-</u>	
(1-senφ')/(1-senφ')*eπtanφ'	(Nq - 1)cotφ'	1.5 (Nq - 1)*tan φ'	1 + 0.2*B/L	1 + 1.5* tan Ø** B/L	1 -0.1* B/L	Según Skempton	φ' corregido	C' corregido
10.66	20.72	6.76	1.20	1.70	0.90	1.20	25.00	1.96

· Por lo tanto :

qu = Capacidad Ultima de carga en la base de la cimentación según TERZAGUI

qu =	472.12	KN/m2	
qu =	4.81	kg/cm2	

Anexo N° 5: Calculo de la Capacidad Admisible de Carga Admisible del Terreno

INGENIERIA GEOTECNICA AL MAXIMO especialistas en suelos, comeneto y

ANALISIS DE CIMENTACION CALCULO DE CAPACIDAD DE CARGA ADMISIBLE DEL **TERRENO**

Calculo de la capacidad de carga por la formula de Vesic.

La capacidad de carga ultima se calcula por la siguiente expresión:

qu = c'NcFcsFcdFcc + q'NqFqsFqdFqc + 0.5y'BNyFysFydFyc

donde:

Nc,Nq,Ny = Factores de capacidad de carga

Fcs,Fqs,Fys = Factores de forma Fcd,Fqd,Fyd = Factores de profundidad Fcc,Fqc,Fyc = Factores de compresibilidad

y' = peso específico efectivo del suelo en la base de la cimentación

q' = esfuerzo efectivo vertical en la base de la cimentación

Los factores de capacidad de carga, según Vesic Los factores de 1973 es:				Los factores de corrección por forma por De Beer 1970 son:			s por correccion de profui Hanzen 1970 son:	ndidad por
Nq	No	Ny	Fcs	Fqs	Fys	Fod	Fqd	Fyd
tan ² (45+φ'/2)*e ^{πtanφ'}	(Nq - 1)cotp ^t	2(Nq + 1) * tan φ'	1 + B*Nq / (L*Nc)	1 + B/L *tanφ'	1 -(0.4* B/L)	1 + 0.4*Df / B	1 + 2tanφ' (1-senφ')² Df/B	
10.66	20.72	10.88	1.51	1.47	0.60	1.60	1.47	1.00

1. Calcule el índice de rigidez critica como:

Irc = 0.5 (exp((3.3-0.45 B/L)cot(45- ϕ '/2)))

13 57

Variaci	ón de Irc con φ'	y B/L
p' grados	B/L = 0	B/L = 1
0	13	8
10	25	15
15	37	20
20	55	30
25	89	44
30	152	70
35	283	120
40	592	225

44.00

Por lo tanto:

2. Calcule el índice de rigidez como:

 $Ir = Es/(2(1+us)(c' + g'tan\phi'))$

Donde:

Es = Modulo de elasticidad del suelo drenado.

Donde:

Pa = presión atmosférica (≈100KN/m² o 2000lb/pie²)

100 a 200 para suelos sueltos 200 a 500 para suelo medio denso 500 a 1000 para suelo denso

m = 180.00

Es = m * Pa= 1834.86 tn/m2 = 18000.00 KN/m2

µs = relación de poisson del suelo drenado μ s = 0.1 + 0.3(ϕ '-25)/20 para 25° <= ϕ ' <= 45° 0.30

Por lo tanto:

625,27

Anexo N° 6: Calculo de la Capacidad Admisible de Carga Admisible del Terreno

GEMIERIA GEOTEGNICA AL MAXIMO Especialistas es suelos, consciero y pavimentos ANALISIS DE CIMENTACION
CALCULO DE CAPACIDAD DE CARGA ADMISIBLE DEL
TERRENO

3. Si Irc <= Ir, entonces :

Fcc =	1.00
Fqc =	1.00
Fyc =	1.00

· Por lo tanto :

qu = Capacidad Ultima de carga en la base de la cimentación según VESIC

qu =	613.76	Kn/m2	
qu =	6.26	kg/cm2	

SABIENDO QUE:

Capacidad de	Capacidad de carga última			
Terzagul	Vesic	seguridad FS		
4.81	6.26	3.00		

• La Capacidad de carga admisible por resistencia al corte escogida sera:

Anexo N° 7: Calculo de la Capacidad Admisible de Carga Admisible del Terreno

Asentamiento elástico:

El asentamiento elástico , bajo una carga de trabajo vertical esta dado por: Se(flexible) = q B(1-µs²)lf/Es

Donde:

qo = Presión neta aplicada sobre la cimentación

us = Relación de Poisson del suelo

Es = Módulo de elasticidad del suelo bajo la cimentación.

B = base de la cimentación

If = factor en cm/m

Para cimientos cuadrados:

• La Capacidad de carga admisible por resistencia al corte es:

qad = 1.60		kg/cm2		
Se (rígido)	=	0.65	cm	
Se (flexible centro)	=	0.89	cm	ОКІІ

La Capacidad de carga admisible por Asentamiento escogida sera:

qad = 1.60	kg/cm2		
Se (rígido) =	0.65	cm	
Se (flexible centro) =	0.89	cm	OKII

• La Capacidad de carga admisible escogida para la cimentación sera:

qad = 1.60 kg/cm2		ad =	1.60	kg/cm2	
-------------------	--	------	------	--------	--

Cimentación	Ve	lores de If (cn	n/m)
	Ríg	ida	82
Cuadrada		Centro	112
Cuauraua	Flexible	Esquina	56
		Medio	95
	Rígi	da	88
Circular		Centro	100
	Flexible	Esquina	64
		Medio	85
Corrida	Rígi	da	210
		Centro	254
(L/B =>10)	=>10) Flexible Esquina Medio	Esquina	127
		Medio	225
Rectangular	Rígi	da	120
		Centro	153
5=>L/B =>2)	Flexible	Esquina	77
		Medio	130

Anexo N° 8: Calculo de la Capacidad Admisible de Carga Admisible del Terreno

NGENIERIA GEOTEONICA AL MAXIMO Espesialistas en suelos, consceto y ANALISIS DE CIMENTACION CALCULO DE CAPACIDAD DE CARGA ADMISIBLE DEL TERRENO

Asentamiento elástico:

El asentamiento elástico , bajo una carga de trabajo vertical esta dado por:

Se(flexible) = q B(1-µs2)If/Es

Donde:

qo = Presión neta aplicada sobre la cimentación

us = Relación de Poisson del suelo

Es = Módulo de elasticidad del suelo bajo la cimentación.

B = base de la cimentación

If = factor en cm/m

Para cimientos cuadrados:

La Capacidad de carga admisible por resistencia al corte es:

qad =	1.60	kg/cm2		
S	e (rígido) =	0.65	cm	
Se (flexible		0.89	cm	

• La Capacidad de carga admisible por Asentamiento escogida sera:

qad =	1.60	kg/cm2			
Se (rígido) =	= 0.	65 c	m	
Se (flexible o	entro) =	0.8	39 cı	m	OKII

• La Capacidad de carga admisible escogida para la cimentación sera:

positive and the second section	A STATE OF THE RESIDENCE OF THE STATE OF THE			
	qad =	1.60	kg/cm2	

Cimentación	Va	lores de If (cn	n/m)
	Ríg	ida	82
Cuadrada		Centro	112
Cuadrada	Flexible	Esquina	56
		Medio	95
	Rígi	da	88
Circular		Centro	100
	Flexible	Esquina	64
		Medio	85
Corrida	Rígi	da	210
		Centro	254
(L/B =>10)	Flexible	Esquina	127
		Medio	225
Rectangular	Rígi	da	120
		Centro	153
(5=>L/B =>2)	Flexible	Esquina	77
		Medio	130

Anexo N° 9: Ensayo de Corte Directo

02654

omixam la acincetoed aireinedhi especialistas em suelos, gongreto y pavimentos

ENSAYO DE CORTE DIRECTO (ASTM D 3080, AASHTO T 236, MTC E 123)

: "MEJORAMIENTO DEL SERVICIO EDUCATIVO EN LAS INST∤TUCIONES EDUCATIVAS DEL NIVEL SECUNDARIO JORGE BASADRE DE ORONCCOY Y CHARLES ROBERT DARWIN DE PUTUCUNAY, Proyecto DISTRITO DE ORONCCOY : MUNICIPALIDAD DISTRITAL DE ORONCCOY Región : AYACUCHO

Solicitante Calicata : C - 02 Provincia : LAR MAR Estrato : E - 02 Distrito : ORONCCOY Fecha : OCTUBRE DE 2018 : I.E.S. JORGE BASADRE DE OROC Lugar

DATOS

Especimen : REMOLDEADO (MATERIAL < MALLA Nº 4)

Profundidad

Tipo de Celda : CUADRADA

> Lado o Diametro Celda: 63.69 mm

Espesor de muestra en celda:

21.55 mm

CONSOLIDADO DRENADO Tipo de ensayo:

Especimen N°	1	2	3
A particular security of	lea co	63.69	63.69
Lado o Diametro de la muestra (mm) :	63.69		
Altura inicial de la muestra (mm) :	21.55	21.55	21.55
Densidad Humeda Inicial (tn/m3):	1.395	1.395	1.395
Contenido de Humedad (%) :	17.94%	17.94%	17.94%
Densidad Seca Inicial (tn/m3) :	1.183	1.183	1.183
Deformacion vertical despues de la consolidacion (mm) :	2,300	3.440	4.050
Altura de la muestra antes de aplicar el esfuerzo de corte (mm) :	19.25	18.11	17.5
Esfuerzo Normal (kg/cm2) :	1	2	4
Esfuerzo de Corte Maximo (Kpa) :	51.35	89.61	186.84
Esfuerzo de Corte Maximo (kg/cm2) :	0.52	0.91	1.90

the confidence of the contract			
Angulo de friccion interna φ' (°) :	25.0	Cohesion C' (kg/cm2):	0.03
	CONTRACTOR OF THE PROPERTY OF		

Ing. Makwil A Arias

DIRECCION, JR. JOSE SANTOS CHOCANO Nº 104 - BARRIO LA MAGDALENA, CEU 999526400, RPM: #999526400, CORI

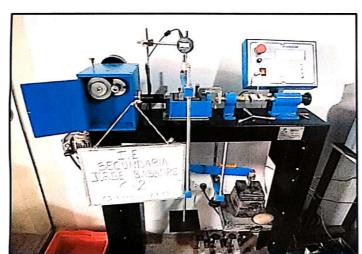
Anexo N° 10: Ensayo de Corte Directo

Estrato

ENSAYO DE CORTE DIRECTO (ASTM D 3080, AASHTO T 236, MTC E 123)

: "MEJORAMIENTO DEL SERVICIO EDUCATIVO EN LAS INSTITUCIONES EDUCATIVAS DEL NIVEL SECUNDARIO JORGE BASADRE DE ORONCCOY Y CHARLES ROBERT Proyecto DARWIN DE PUTUCUNAY, DISTRITO DE ORONCCOY"

: MUNICIPALIDAD DISTRITAL DE ORONCCOY Sollcitante : C - 02 Callcata

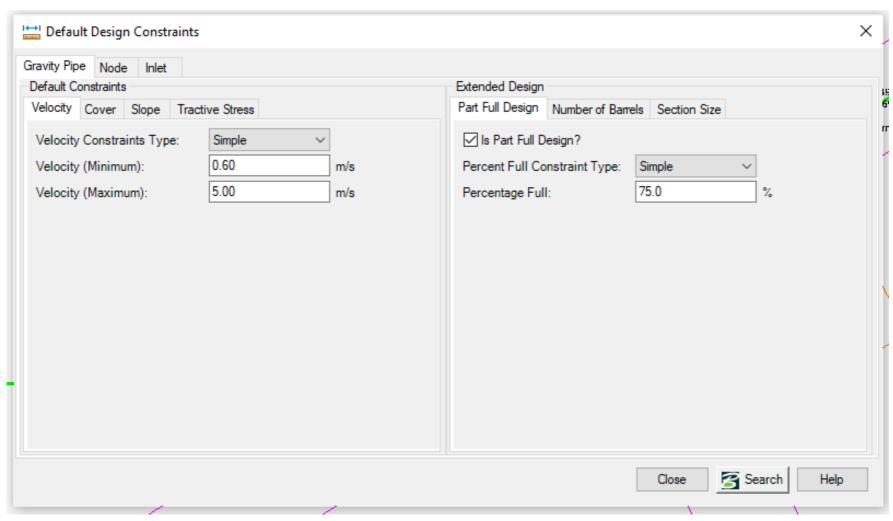

: E - 02

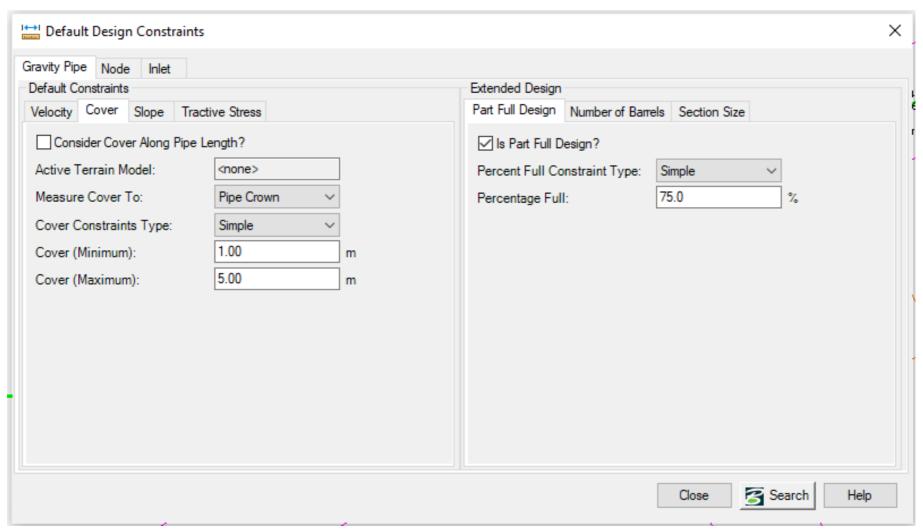
: OCTUBRE DE 2018 Fecha

Región : AYACUCHO : LAR MAR

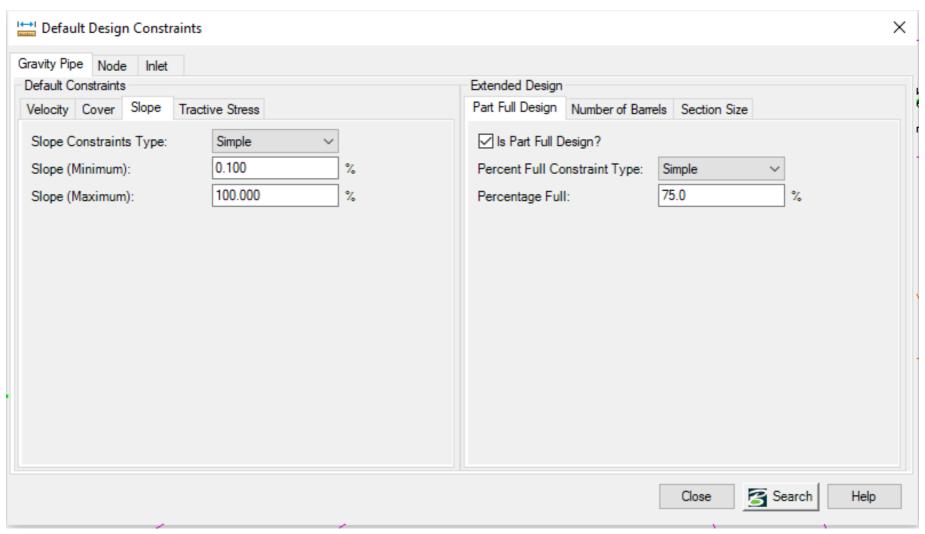
Provincia Distrito : ORONCCOY

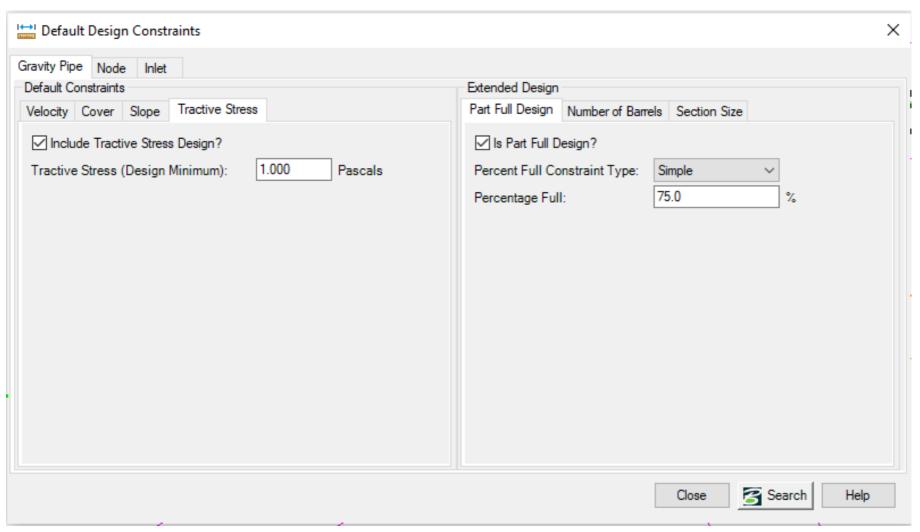
: I.E.S. JORGE BASADRE DE OROCCOY Lugar




Ing. Maxwil Anthony Morote Arias O

DIRECCION: JR. JOSE SANTOS CHOCANO Nº 104 - BARRIO LA MAGDALENA, CEL: 999526400, RPM: #999526400. CORREOS: Ingeomax@hotmail.com. leboratorio ingeomax@gmail.com


Anexo N° 11: Parámetros de diseño en la red de alcantarillado (SEWER CAD) - Velocidad máxima y mínima


Anexo N° 12: Parámetros de diseño en la red de alcantarillado (SEWER CAD) - Cubertura mínima y máxima

Anexo N° 13: Parámetros de diseño en la red de alcantarillado (SEWER CAD) - Pendiente mínimo y máximo

Anexo N° 14: Parámetros de diseño en la red de alcantarillado (SEWER CAD) - Pendiente mínimo y máximo - Tensión tractiva y tirante de agua

Anexo N° 15: Reporte de diseño de la red de alcantarillado

Label 4	Material	Manning's n	Diameter (mm)	Size (Display)	Length (3D) (m)	Start Node	Elevation Crown (Start) (m)	Stop Node	Elevation Ground (Stop) (m)	Flow (L/s)	Velocity (m/s)	Depth (Maximum) / Rise (%)	Slope (Calculated) (%)	Tractive Stress (Calculated) (Pascals)
T-01	PVC	0.010	153.6	160 mm	20.4	Bz-52	3,643.33	Bz-53	3,639.56	1.50	2.02	15.4	24.370	19.658
T-02	PVC	0.010	153.6	160 mm	13.6	Bz-53	3,638.51	Bz-54	3,635.47	1.50	2.22	15.1	31.542	23.940
T-03	PVC	0.010	153.6	160 mm	34.0	Bz-54	3,634.42	Bz-55	3,626.46	1.50	2.11	15.2	27.512	21.568
T-04	PVC	0.010	153.6	160 mm	24.5	Bz-55	3,625.41	Bz-56	3,619.47	1.50	2.17	15.2	29.765	22.904
T-05	PVC	0.010	153.6	160 mm	24.7	Bz-56	3,618.42	Bz-57	3,613.63	1.50	2.02	15.4	24.321	19.627
T-06	PVC	0.010	153.6	160 mm	26.5	Bz-57	3,612.58	Bz-58	3,607.33	1.50	2.03	15.4	24.500	19.738
T-07	PVC	0.010	153.6	160 mm	18.4	Bz-58	3,606.28	Bz-59	3,603.27	1.50	1.97	15.4	22.590	18.549
T-08	PVC	0.010	153.6	160 mm	15.0	Bz-59	3,602.22	Bz-60	3,600.20	1.50	1.92	15.5	20.968	17.518
T-09	PVC	0.010	153.6	160 mm	17.0	Bz-60	3,599.15	Bz-61	3,597.49	1.50	1.76	15.8	16.152	14.259
T-10	PVC	0.010	153.6	160 mm	10.3	Bz-61	3,596.44	Bz-62	3,595.33	1.50	1.93	15.5	21.493	17.854
T-11	PVC	0.010	153.6	160 mm	5.7	Bz-62	3,594.28	Bz-63	3,594.36	1.50	1.78	15.7	17.221	15.066
T-12	PVC	0.010	153.6	160 mm	10.2	Bz-63	3,593.31	Bz-64	3,592.86	1.50	1.71	15.9	14.867	13.375
T-13	PVC	0.010	153.6	160 mm	13.2	Bz-64	3,591.81	Bz-65	3,589.31	1.50	2.12	15.2	27.979	21.847
T-14	PVC	0.010	153.6	160 mm		Bz-65	3,588.26		3,586.27	1.50	2.10	15.2	27,226	21.396
T-15	PVC	0.010	153.6	160 mm	20.1	Bz-66	3,585.22		3,581.61	1.50	2.00	15.4	23.809	19.310
T-16	PVC	0.010	153.6	160 mm		Bz-67	3,580.56		3,578.16	1.50	1.92	15.5	21, 121	17.616
T-17	PVC	0.010	153.6	160 mm		Bz-68	3,577.11		3,574.24	1.50	1.87	15.6	19.662	16.674
T-18	PVC	0.010	153.6			Bz-69	3,573.19		3,569.21	1.50	2.03	15.3	24.755	19.895
T-19	PVC	0.010	153.6			Bz-70	3,568.16		3,567.38	1.50	1.71	15.9	15.484	13.931
T-20	PVC	0.010	153.6	160 mm		Bz-71	3,566.33		3,566.81	1.50	1.14	17.4	4.690	5.494
T-21	PVC	0.010	153.6	160 mm		Bz-29	3,682.45		3,676.43	1.50	1.83	15.7	18.410	15.851
T-22	PVC	0.010	153.6			Bz-124	3,720.35		3,717.43	1.50	1.60	16.1	12,572	11.825
T-23	PVC	0.010	153.6	160 mm		Bz-125	3,716.38		3,715,76	1.50	1.38	16.6	8,228	8,506
T-24	PVC	0.010	153.6			Bz-126	3,714.71		3,712.61	1.50	1.78	15.7	17.207	15.057
T-25	PVC	0.010	153.6	160 mm		Bz-127	3,711.56		3,709.52	1.50	1.71	15.9	15.234	13.705
T-26	PVC	0.010	153.6			Bz-128	3,708.47		3,705.48	1.50	2.09	15.3	26.802	21,141
T-27	PVC	0.010	153.6	160 mm		Bz-129	3,704.43		3,698.38	1.50	2.50	14.8	46, 192	32.417
T-28	PVC	0.010	153.6	160 mm		Bz-130	3,697.33		3,696.30	1.50	2.03	15.3	24.669	19.842
T-29	PVC	0.010	153.6			Bz-131	3,695.25		3,692.63	1.50	2.05	15.3	25,409	20.296
T-30	PVC	0.010	153.6			Bz-132	3,691.58		3,690.37	1.50	1.46	16.4	9,749	9,698
T-31	PVC	0.010	153.6	160 mm		Bz-133	3,689.32		3,687.69	1.50	1.66	16.0	13.658	12.527
T-32	PVC	0.010	153.6	160 mm		Bz-134	3,686.64		3,684.60	1.50	1.99	15.4	23,224	18,946
T-33	PVC	0.010	153.6			Bz-135	3,683.55		3,676.43	1.50	2.64	14.7	53.620	36.385
T-34	PVC	0.010	153.6			Bz-30	3,675.38		3,667.64	1.50	2.33	15.0	35.970	26,462
T-35	PVC	0.010	153.6			Bz-31	3,666.59		3,654.42	1.50	2.08	15.3	26.370	20.880
T-36	PVC	0.010	153.6	160 mm		Bz-32	3,653.37		3,646.46	1.50	2.03	15.3	24.716	19.871
T-37	PVC	0.010	153.6			Bz-136	3,645.41		3,637.90	1.50	1.87	15.6	19,485	16.559
T-38	PVC	0.010	153.6	160 mm		Bz-33	3,636.85		3,622.42	1.50	2.55	14.8	48,589	33.713
T-39	PVC	0.010	153.6	160 mm		Bz-137	3,621.37		3,612.54	1.50	2.36	14.9	37.317	27.214
T-40	PVC	0.010	153.6			Bz-34	3,611.49		3,603.18	1.50	2.52	14.8	47.058	32.887
T-41	PVC	0.010	153.6			Bz-35	3,602.13		3,596.94	1.50	2.59	14.7	51,207	35,111
T-42	PVC	0.010	153.6	160 mm		Bz-36	3,595.89		3,592.01	1.50	2.28	15.0	33.914	25.301
T-43	PVC	0.010	153.6	160 mm		Bz-37	3,590.96		3,588.67	1.50	1.97	15.4	22,841	18.706
T-44	PVC	0.010	153.6			Bz-38	3,587.62		3,576.87	1.50	2.62	14.7	52.813	35.960
T-45	PVC	0.010	153.6	160 mm		Bz-39	3,575.82		3,569.21	1.50	2.02	15.0	34.539	25.656
T-46	PVC	0.010	153.6			Bz-40	3,568.16		3,566.81	1.50	1.61	16.1	13.067	12.202
T-47	PVC	0.010	153.6	160 mm		Bz-41	3,565.76		3,565.09	1.50	1.35	16.7	7.716	8.093
T-48	PVC	0.010	153.6			Bz-42	3,564.04		3,562.12	1.50	1.55	16.7	11.414	10.956
T-49	PVC	0.010	153.6	160 mm		Bz-43	3,561.07		3,559.86	1.50	1.68	15.9	14.377	13.065
							· ·		-					12,040
T-50	PVC	0.010	153.6	160 mm	20.0	Bz-44	3,558.81	Bz-45	3,557.31	1.50	1.61	16.1	12.855	

Anexo N° 16: Reporte de diseño de la red de alcantarillado

Label 4	Material	Manning's n	Diameter (mm)	Size (Display)	Length (3D) (m)	Start Node	Elevation Crown (Start) (m)	Stop Node	Elevation Ground (Stop) (m)	Flow (L/s)	Velocity (m/s)	Depth (Maximum) / Rise (%)	Slope (Calculated) (%)	Tractive Stress (Calculated) (Pascals)
T-51	PVC	0.010	153.6	160 mm	18.3	Bz-45	3,556.26	Bz-46	3,553.32	1.50	1.96	15.4	22.375	18.413
T-52	PVC	0.010	153.6	160 mm	17.8	Bz-46	3,552.27	Bz-47	3,549.03	1.50	2.04	15.3	24.847	19.952
T-53	PVC	0.010	153.6	160 mm	18.0	Bz-47	3,547.98	Bz-48	3,543.75	1.50	2.20	15.1	30.645	23.419
T-54	PVC	0.010	153.6	160 mm	15.7	Bz-48	3,542.70	Bz-49	3,538.84	1.50	2.25	15.1	32.824	24.678
T-55	PVC	0.010	153.6	160 mm	11.6	Bz-49	3,537.79	Bz-50	3,535.56	1.50	2.17	15.2	29.608	22.811
T-56	PVC	0.010	153.6	160 mm	19.9	Bz-50	3,534.51	Bz-51	3,529.30	1.50	2.26	15.1	33.189	24.888
T-57	PVC	0.010		160 mm	14.4	Bz-51	3,528.25	Bz-26	3,524.88	1.50	2.24	27.6	32.181	24.309
T-58	PVC	0.010	153.6	160 mm	25.8	Bz-01	3,720.23	Bz-02	3,720.39	1.50	1.02	17.9	3.455	4.339
T-59	PVC	0.010	153.6	160 mm	38.0	Bz-02	3,719.34	Bz-143	3,726.30	1.50	1.74	15.8	15.754	14.015
T-60	PVC	0.010	153.6	160 mm	20.0	Bz-02	3,719.34	Bz-144	3,712.69	1.50	2.42	14.9	41.811	30.007
T-61	PVC	0.010	153.6	160 mm	21.9	Bz-144	3,711.64		3,709.52	1.50	1.68	15.9	14.614	13.281
T-62	PVC	0.010	153.6	160 mm	48.3	Bz-145	3,708.47	Bz-146	3,708.43	1.50	0.88	18.6	2.257	3.121
T-63	PVC	0.010	153.6	160 mm	25.8	Bz-146	3,707.38		3,703.42	1.50	1.88	15.6	19.767	16.742
T-64	PVC	0.010		160 mm		Bz-148	3,702.37		3,699.24	1.50	2.48	14.8	45.048	31.793
T-65	PVC	0.010		160 mm		Bz-149	3,698.19		3,692.60	1.50	2.38	14.9	38.144	27.672
T-66	PVC	0.010		160 mm		Bz-150	3,691.55		3,689.81	1.50	1.74	15.8	16.301	14.499
T-67	PVC	0.010		160 mm		Bz-151	3,688.76		3,684.31	1.50	2.03	15.3	24.801	19.923
T-68	PVC	0.010		160 mm		Bz-72	3,717.48		3,711.28	1.50	1.71	15.9	15.056	13.546
T-69	PVC	0.010		160 mm		Bz-73	3,710.23		3,700.39	1.50	2.19	15.1	30.257	23.192
T-70	PVC	0.010		160 mm		Bz-74	3,699.34		3,684.31	1.50	2.64	14.7	54.071	36.621
T-71	PVC	0.010		160 mm		Bz-75	3,683.26		3,682.40	1.50	1,47	16.4	9.850	9.776
T-72	PVC	0.010		160 mm		Bz-76	3,681.35		3,678.31	1.50	1.91	15.5	20,901	17,476
T-73	PVC	0.010		160 mm		Bz-77	3,677.26		3,668.32	1.50	2.22	15.1	31,427	23.873
T-74	PVC	0.010		160 mm		Bz-78	3,667.27		3,656.06	1.50	2.19	15.1	30.268	23,199
T-75	PVC	0.010		160 mm		Bz-147	3,655.01		3,648.81	1.50	2.13	15.0	35.236	26.050
T-76	PVC	0.010		160 mm		Bz-91	3,702.50		3,696.25	1.50	1.89	15.6	20.128	16.977
T-77	PVC	0.010		160 mm		Bz-92	3,695.20		3,691,43	1.50	2.01	15.4	23,919	19.378
T-78	PVC	0.010		160 mm		Bz-93	3,690.38		3,686.55	1.50	2.16	15.2	29.348	22.658
T-79	PVC	0.010		160 mm		Bz-93	3,685.50		3,681.75	1.50	2.10	15.4	23,788	19.298
T-80	PVC	0.010		160 mm		Bz-95	3,680.70		3,674.27	1.50	2.31	15.0	35.226	26.044
T-81	PVC	0.010		160 mm		Bz-96	3,673.22		3,668.40	1.50	2.32	15.0	35.476	26, 185
T-82	PVC	0.010		160 mm		Bz-90	3,667.35		3,660.53	1.50	2.60	14.7	51.566	35.301
T-83	PVC	0.010		160 mm		Bz-98	3,659.48		3,654.82	1.50	2.51	14.8	46.518	32.594
T-84	PVC	0.010		160 mm		Bz-99	3,653.77		3,648.81	1.50	2.59	14.7	50.744	34.865
T-85	PVC	0.010		160 mm		Bz-79	3,647.76		3,633.15	1.50	2.59	14.7	53.857	36.509
T-86	PVC	0.010		160 mm		Bz-80	3,632.10		3,623.24	1.50	2.55	14.8	48,700	33.773
T-87	PVC	0.010		160 mm						1.50	2.46	14.8	43.888	31.157
T-88		0.010				Bz-81	3,622.19		3,613.57					
T-89	PVC			160 mm		Bz-82	3,612.52		3,605.11	1.50 1.50	2.44	14.9 14.9	43.112	30.728 27.255
T-90	PVC	0.010	153.6			Bz-83	3,604.06		3,596.61	1,50	2.36	14.5	37.391 64.541	
	-			160 mm		Bz-84	3,595.56		3,589.65		2.81			41.989
T-91	PVC	0.010		160 mm		Bz-85	3,588.60		3,585.39	1.50	2.28	15.0	34.061	25.385
T-92	PVC	0.010		160 mm		Bz-86	3,584.34		3,578.46	1.50	2.34	15.0	38.490	28.219
T-93	PVC	0.010		160 mm		Bz-87	3,577.41		3,574.37	1.50	2.35	15.0	38.856	28.425
T-94 T-95	PVC	0.010		160 mm		Bz-88	3,573.32		3,572.25	1.50	2.10	15.3 15.2	27.170 29.220	21.363
				160 mm		Bz-89	3,571.20		3,568.30	1.50	2.16			22.583
Γ-96 - 07	PVC	0.010		160 mm		Bz-90	3,567.25		3,562.05	1.50	2.27	24.9	33.558	25.098
Γ-97 - 00	PVC	0.010		160 mm		Bz-03	3,728.29		3,728.19	1.50	0.97	18.1	3.076	3.975
Γ-98 - 00	PVC	0.010		160 mm		Bz-04	3,727.14		3,725.69	1.50	1.40	16.6	8.584	8.789
Г-99	PVC	0.010		160 mm		Bz-142	3,724.64		3,721.54	1.50	1.53	16.2	10.998	10.646
Γ-100	PVC	0.010	153.6	160 mm	49.1	Bz-05	3,720.49	Bz-06	3,718.45	1.50	1.26	17.0	6.305	6.922

Anexo N° 17: Reporte de diseño de la red de alcantarillado

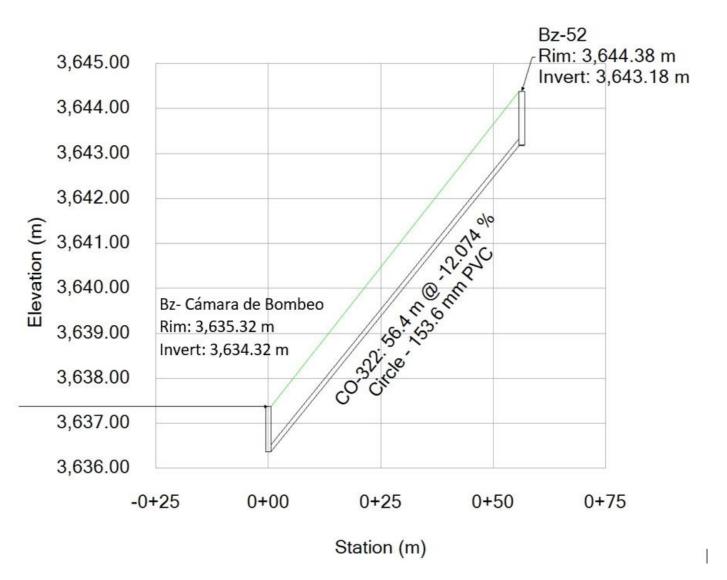
Label	Material	Manning's n	Diameter (mm)	Size (Display)	Length (3D) (m)	Start Node	Elevation Crown (Start) (m)	Stop Node	Elevation Ground (Stop) (m)	Flow (L/s)	Velocity (m/s)	Depth (Maximum) / Rise (%)	Slope (Calculated) (%)	Tractive Stress (Calculated) (Pascals)
Γ-101	PVC	0.010	153.6	160 mm	50.8	Bz-06	3,717.40	Bz-07	3,705.83	1.50	2.06	15.3	25.647	20.441
Γ-102	PVC	0.010	153.6	160 mm	57.5	Bz-07	3,704.78	Bz-08	3,703.48	1.50	1.08	17.6	4.094	4.947
Γ-103	PVC	0.010	153.6	160 mm	47.6	Bz-112	3,742.40	Bz-113	3,740.13	1.50	1.30	16.8	6.989	7.497
Γ-104	PVC	0.010	153.6	160 mm	35.6	Bz-113	3,739.08	Bz-114	3,734.49	1.50	1.75	15.8	16.034	14.187
Γ-105	PVC	0.010	153.6	160 mm	20.6	Bz-114	3,733.44	Bz-115	3,729.21	1.50	2.08	15.3	26.472	20.942
Γ-106	PVC	0.010	153.6	160 mm	19.4	Bz-115	3,728.16	Bz-110	3,727.47	1.50	1.42	16.5	9.022	9.134
Γ-107	PVC	0.010	153.6	160 mm	56.5	Bz-110	3,726.42	Bz-111	3,723.44	1.50	1.31	16.8	7.146	7.627
Γ-108	PVC	0.010	153.6	160 mm	40.7	Bz-111	3,722.39	Bz-106	3,720.24	1.50	1.36	16.7	7.883	8.228
Γ-109	PVC	0.010	153.6	160 mm	35.6	Bz-116	3,738.10	Bz-117	3,730.43	1.50	2.05	15.3	25.293	20.225
Γ-110	PVC	0.010	153.6	160 mm	45.3	Bz-117	3,729.38	Bz-105	3,729.92	1.50	0.69	19.9	1.127	1.817
Γ-111	PVC	0.010	153.6	160 mm	14.8	Bz-100	3,761.30	Bz-101	3,758.60	1.50	2.07	15.3	26.191	20.772
Γ-112	PVC	0.010	153.6	160 mm	49.5	Bz-101	3,757.55	Bz-102	3,750.66	1.50	1.74	15.8	16.237	14.459
Γ-113	PVC	0.010		160 mm		Bz-102	3,749.61		3,751.00	1.50	0.64	20.4	0.934	1.574
Γ-114	PVC	0.010	153.6			Bz-140	3,749.25		3,747.25	1.50	1.40	16.5	8.616	8.815
Γ-115	PVC	0.010		160 mm		Bz-103	3,746.20		3,742.63	1.50	1.66	16.0	13.719	12.573
Γ-116	PVC	0.010	153.6	160 mm	32.2	Bz-139	3,741.58		3,737.96	1.50	1.68	15.9	14.680	13,340
Γ-117	PVC	0.010		160 mm		Bz-104	3,736.91		3,729.92	1.50	1.86	15.6	19.265	16.415
Γ-118	PVC	0.010		160 mm		Bz-105	3,728.87		3,720.24	1.50	1.90	15.5	20.605	17,285
Γ-119	PVC	0.010	153.6			Bz-106	3,719.19		3,719.02	1.50	1.08	17.6	4.116	4.967
Γ-120	PVC	0.010	153.6			Bz-138	3,717.97		3,719.19	1.50	0.67	20.1	0.721	1.700
Γ-121	PVC	0.010		160 mm		Bz-118	3,744.43		3,735.60	1.50	2.39	14.9	40.482	29,264
Γ-122	PVC	0.010		160 mm		Bz-119	3,734.55		3,729.60	1.50	1.67	15.9	14.074	12.837
Γ-123	PVC	0.010	153.6			Bz-120	3,728.55		3,726.05	1.50	1.57	16.1	12.006	11.393
Γ-124	PVC	0.010		160 mm		Bz-141	3,725.00		3,726.52	1.50	0.68	20.0	1.086	1.766
Γ-125	PVC	0.010	153.6			Bz-121	3,724.67		3,723.83	1.50	1.06	17.7	3.850	4.717
Γ-126	PVC	0.010		160 mm		Bz-122	3,722.78		3,722.25	1.50	0.97	18.1	3.018	3,920
Γ-127	PVC	0.010	153.6			Bz-123	3,721.20		3,719.19	1.50	1,36	16.7	7,667	8,233
Γ-128	PVC	0.010		160 mm		Bz-107	3,717.74		3,708.67	1.50	1.80	15.7	17.856	15.364
Γ-129	PVC	0.010		160 mm		Bz-108	3,707.62		3,707.05	1.50	1.00	18.0	3.258	4,147
Γ-130	PVC	0.010		160 mm		Bz-109	3,706.00		3,703.48	1.50	1.60	16.1	12,746	11.957
Γ-131	PVC	0.010	153.6			Bz-08	3,702.43		3,696.20	1.50	2.17	15.2	29.676	22.852
Γ-132	PVC	0.010		160 mm		Bz-09	3,695.15		3,689.62	1.50	2.19	15.1	30.286	23,209
Γ-133	PVC	0.010		160 mm		Bz-10	3,688.57		3,681.30	1.50	2.34	15.0	38.457	28.201
Γ-134	PVC	0.010		160 mm		Bz-11	3,680.25		3,668.89	1.50	2.49	14.8	45.330	31,947
Γ-135	PVC	0.010		160 mm		Bz-12	3,667.84		3,658.54	1.50	2.49	14.8	45.685	32.141
Γ-136	PVC	0.010	153.6	160 mm		Bz-13	3,657.49		3,648.00	1.50	2,54	14.8	48.101	33,450
Γ-137	PVC	0.010		160 mm		Bz-14	3,646.95		3,633.13	1.50	2.67	14.6	55,433	37.333
Γ-138	PVC	0.010	153.6			Bz-15	3,632.08		3,620.70	1.50	2.64	14.7	53.662	36.406
Γ-139	PVC	0.010		160 mm		Bz-16	3,619.65		3,611.55	1.50	2,54	14.8	48.034	33.414
Γ-140	PVC	0.010		160 mm		Bz-17	3,610.50		3,605.52	1.50	2,34	14.9	38.291	27,754
Γ-141	PVC	0.010		160 mm		Bz-17	3,604.47		3,596.48	1.50	2.36	14.9	39.318	28,683
Г-142	PVC	0.010	153.6			Bz-19	3,595.43		3,588.41	1.50	2.30	15.0	34.642	25.714
Γ-142 Γ-143	PVC	0.010		160 mm		Bz-19	3,587.36		3,581.45	1.50	2.38	22.4	38.272	27.743
Γ-143 Γ-144	PVC	0.010		160 mm		Bz-20	3,580.40		3,573.14	1.52	2.26	22.4	32.708	24.767
Γ-145	PVC	0.010	153.6			Bz-21	3,572.09		3,562.05	1.54	2.20	25.0	37.005	27.381
Γ-145 Γ-146	PVC	0.010		160 mm		Bz-23	3,561.00		3,548.95	2.24	2.57	27.4	32.601	29.626
Γ-1 40 Γ-147	PVC	0.010	153.6			Bz-24	3,547.90		3,539.70	2.24	2.51	27.4	31.195	28.533
Γ-147 Γ-148	PVC	0.010	153.6			Bz-24 Bz-25	'			2.25	2.50	30.3	32.386	29.563
							3,538.65		3,524.88					
Γ-149 Γ-450	PVC	0.010	153.6			Bz-26	3,523.83		3,514.45	3.19	2.80	32.9	32.533	34.668
Γ-150	PVC	0.010	153.6	160 mm	24.7	Bz-27	3,513.40	Bz-28	3,505.94	3.20	2.92	33.0	36.698	38.110

Anexo N° 18: Reporte de diseño Buzones

Label	Diameter (mm)	Elevation (Ground) (m)	Elevation (Rim) (m)	Elevation (Invert) (m)	Depth (Structure) (m)	X (m)	Y (m)	Hydraulic Grade Line (In) (m)
Bz-01	1,200.0	3,721.28	3,721.28	3,720.08	1.20	850.10	730.26	3,720.11
Bz-02	1,200.0	3,720.39	3,720.39	3,719.19	1.20	856.54	705.32	3,719.22
Bz-03	1,200.0	3,729.34	3,729.34	3,728.14	1.20	882.20	646.99	3,728.17
Bz-04	1,200.0	3,728.19	3,728.19	3,726.99	1.20	849.97	628.04	3,727.02
Bz-05	1,200.0	3,721.54	3,721.54	3,720.34	1,20	791.91	594.90	3,720.37
Bz-06	1,200.0	3,718.45	3,718.45	3,717.25	1.20	749.83	569.77	3,717.28
Bz-07	1,200.0	3,705.83	3,705.83	3,704.63	1.20	707.09	545.39	3,704.66
Bz-08	1,200.0	3,703.48	3,703.48	3,702.28	1,20	657.80	515.98	3,702.31
Bz-09	1,200.0	3,696,20	3,696,20	3,695.00	1,20	643.83	536,14	3,695.03
Bz-10	1,200.0	3,689.62	3,689.62	3,688.42	1,20	622,27	538.89	3,688.45
Bz-11	1,200.0	3,681,30	3,681.30	3,680.10	1.20	600.83	541.78	3,680,13
Bz-12	1,200.0	3,668.89	3,668.89	3,667.69	1.20	573.66	545.09	3,667.72
Bz-13	1,200.0	3,658.54	3,658.54	3,657.34	1.20	551.12	547.41	3,657.37
Bz-14	1,200.0	3,648.00	3,648.00	3,646.80	1.20	529.38	550.17	3,646.83
Bz-15	1,200.0	3,633.13	3,633.13	3,631.93	1.20	502.74	553.29	3,631.96
Bz-16	1,200.0	3,620.70	3,620.70	3,619.50	1.20	479.67	555.41	3,619.53
Bz-17	1,200.0	3,611.55	3,611.55	3,610.35	1.20	460.85	558.33	3,610.38
Bz-18	1,200.0	3,605.52	3,605.52	3,604.32	1.20	449.71	569,46	3,604.35
Bz-19	1,200.0	3,596.48	3,596.48	3,595.28	1.20	432,56	584.77	3,595,31
Bz-20	1,200.0	3,588.41	3,588.41	3,587.21	1.20	415.06	600.15	3,587.24
		-	-	-	1.20			
Bz-21 Bz-22	1,200.0	3,581.45	3,581.45	3,580.25	1.20	400.57	611.14	3,580.28
Bz-22 Bz-23	1,200.0	3,573.14	3,573.14	3,571.94		381.57	628.00	3,571.97
	1,200.0	3,562.05 3,548.95	3,562.05	3,560.85	1.20	363.01 327.44	651.53	3,560.89
Bz-24	1,200.0		3,548.95	3,547.75	1.20		670.22	3,547.79
Bz-25	1,200.0	3,539.70	3,539.70	3,538.50	1.20	301.26	684.14	3,538.54
Bz-26	1,200.0	3,524.88	3,524.88	3,523.68	1.20	260.27	704.49	3,523.73
Bz-27	1,200.0	3,514.45	3,514.45	3,513.25	1.20	231.27	718.16	3,513.30
Bz-28	1,200.0	3,505.94	3,505.94	3,504.74	1.20	210.48	728.44	3,504.79
Bz-29	1,200.0	3,683.50	3,683.50	3,682.30	1.20	613.63	506.97	3,682.33
Bz-30	1,200.0	3,676.43	3,676.43	3,675.23	1.20	599.71	471.18	3,675.26
Bz-31	1,200.0	3,667.64	3,667.64	3,666.44	1.20	576.85	462.56	3,666.47
Bz-32	1,200.0	3,654.42	3,654.42	3,653.22	1.20	534.09	436.38	3,653.25
Bz-33	1,200.0	3,637.90	3,637.90	3,636.70	1.20	470.42	394.64	3,636.73
Bz-34	1,200.0	3,612.54	3,612.54	3,611.34	1.20	438.58	443.52	3,611.37
Bz-35	1,200.0	3,603.18	3,603.18	3,601.98	1.20	429.89	461.41	3,602.01
Bz-36	1,200.0	3,596.94	3,596.94	3,595.74	1.20	425.25	472.68	3,595.77
Bz-37	1,200.0	3,592.01	3,592.01	3,590.81	1.20	419.29	485.94	3,590.84
Bz-38	1,200.0	3,588.67	3,588.67	3,587.47	1.20	410.23	497.42	3,587.50
Bz-39	1,200.0	3,576.87	3,576.87	3,575.67	1.20	398.30	516.31	3,575.70
Bz-40	1,200.0	3,569.21	3,569.21	3,568.01	1.20	383.76	533.06	3,568.04
Bz-41	1,200.0	3,566.81	3,566.81	3,565.61	1.20	371.85	547.04	3,565.64
Bz-42	1,200.0	3,565.09	3,565.09	3,563.89	1.20	360.46	566.20	3,563.92
Bz-43	1,200.0	3,562.12	3,562.12	3,560.92	1.20	347.00	588.47	3,560.95
Bz-44	1,200.0	3,559.86	3,559.86	3,558.66	1.20	336.26	599.95	3,558.69
Bz-45	1,200.0	3,557.31	3,557.31	3,556.11	1.20	326.73	617.35	3,556.14
Bz-46	1,200.0	3,553.32	3,553.32	3,552.12	1.20	317.62	632.68	3,552.15
Bz-47	1,200.0	3,549.03	3,549.03	3,547.83	1.20	308.92	647.59	3,547.86
Bz-48	1,200.0	3,543.75	3,543.75	3,542.55	1.20	301.21	663.00	3,542.58
Bz-49	1,200.0	3,538.84	3,538.84	3,537.64	1.20	291.76	674.59	3,537.67
Bz-50	1,200.0	3,535.56	3,535.56	3,534.36	1.20	285.25	683.55	3,534.39

Anexo N° 19: Reporte de diseño Buzones

Label	Diameter (mm)	Elevation (Ground) (m)	Elevation (Rim) (m)	Elevation (Invert) (m)	Depth (Structure) (m)	X (m)	Y (m)	Hydraulic Grade Line (In) (m)
Bz-51	1,200.0	3,529.30	3,529.30	3,528.10	1.20	270.99	695.91	3,528.13
Bz-52	1,200.0	3,644.38	3,644.38	3,643.18	1.20	411.15	240.72	3,643.21
Bz-53	1,200.0	3,639.56	3,639.56	3,638.36	1.20	398.12	255.59	3,638.39
Bz-54	1,200.0	3,635.47	3,635.47	3,634.27	1.20	390.41	266.02	3,634.30
Bz-55	1,200.0	3,626.46	3,626.46	3,625.26	1.20	371.95	293.07	3,625.29
Bz-56	1,200.0	3,619.47	3,619.47	3,618.27	1.20	358.89	312.58	3,618.30
Bz-57	1,200.0	3,613.63	3,613.63	3,612.43	1.20	349.44	334.66	3,612.46
Bz-58	1,200.0	3,607.33	3,607.33	3,606.13	1.20	348.19	360.34	3,606.16
Bz-59	1,200.0	3,603.27	3,603.27	3,602.07	1.20	345.86	378.16	3,602.10
Bz-60	1,200.0	3,600.20	3,600.20	3,599.00	1.20	345.44	392.80	3,599.03
Bz-61	1,200.0	3,597.49	3,597.49	3,596.29	1.20	346.29	409.55	3,596.32
Bz-62	1,200.0	3,595.33	3,595.33	3,594.13	1.20	347.56	419.52	3,594.16
Bz-63	1,200.0	3,594.36	3,594.36	3,593.16	1.20	353.09	420.60	3,593.19
Bz-64	1,200.0	3,592.86	3,592.86	3,591.66	1.20	354.58	430.58	3,591.69
Bz-65	1,200.0	3,589.31	3,589.31	3,588.11	1.20	351.29	442.83	3,588.14
Bz-66	1,200.0	3,586.27	3,586.27	3,585.07	1.20	354.70	453.47	3,585.10
Bz-67	1,200.0	3,581.61	3,581.61	3,580.41	1.20	364.31	470.51	3,580.44
Bz-68	1,200.0	3,578.16	3,578.16	3,576.96	1,20	370.28	485.72	3,576.99
Bz-69	1,200.0	3,574.24	3,574.24	3,573.04	1.20	377.16	504.43	3,573.07
Bz-70	1,200.0	3,569.21	3,569.21	3,568.01	1.20	380.07	524.54	3,568.04
Bz-71	1,200.0	3,567.38	3,567.38	3,566.18	1,20	376.48	535.80	3,566.21
Bz-72	1,200.0	3,718.53	3,718.53	3,717.33	1.20	745.97	576.79	3,717.36
Bz-73	1,200.0	3,711.28	3,711.28	3,710.08	1,20	719,44	616,97	3,710.11
Bz-74	1,200.0	3,700.39	3,700.39	3,699.19	1.20	699.52	646.95	3,699.22
Bz-75	1,200.0	3,684.31	3,684.31	3,683.11	1,20	684.10	672,38	3,683.14
Bz-76	1,200.0	3,682,40	3,682.40	3,681.20	1,20	666.56	664.11	3,681.23
Bz-77	1,200.0	3,678.31	3,678,31	3,677,11	1,20	648.89	655,71	3,677,14
Bz-78	1,200.0	3,668.32	3,668.32	3,667.12	1.20	620.37	641.66	3,667.15
Bz-79	1,200.0	3,648.81	3,648.81	3,647.61	1.20	564.53	616.90	3,647.64
Bz-80	1,200.0	3,633.15	3,633.15	3,631.95	1,20	535.60	619.81	3,631.98
Bz-81	1,200.0	3,623.24	3,623,24	3,622.04	1,20	515.39	622,13	3,622.07
Bz-82	1,200.0	3,613.57	3,613.57	3,612.37	1.20	493.51	624.78	3,612.40
Bz-83	1,200.0	3,605.11	3,605.11	3,603.91	1.20	473.96	626.43	3,603.94
Bz-84	1,200.0	3,596.61	3,596.61	3,595.41	1,20	451,42	629.42	3,595,44
Bz-85	1,200.0	3,589.65	3,589.65	3,588.45	1.20	440.65	629.85	3,588.48
Bz-86	1,200.0	3,585.39	3,585.39	3,584.19	1.20	428.45	632.63	3,584.22
Bz-87	1,200.0	3,578.46	3,578.46	3,577.26	1,20	410.78	636.08	3,577.29
Bz-88	1,200.0	3,574.37	3,574.37	3,573.17	1.20	400.51	638.39	3,573.20
Bz-89	1,200.0	3,572.25	3,572.25	3,571.05	1.20	392.78	639.42	3,571.08
Bz-90	1,200.0	3,568.30	3,568.30	3,567.10	1.20	380.32	644.65	3,567.13
Bz-91	1,200.0	3,703.55	3,703.55	3,702.35	1,20	696.99	559.82	3,702.38
Bz-91	1,200.0	3,696.25	3,696.25	3,695.05	1,20	678.11	590.78	3,695.08
Bz-93	1,200.0	3,691.43	3,691.43	3,690.23	1.20	660.85	580.38	3,690.26
Bz-94	1,200.0	3,686.55	3,686.55	3,685.35	1.20	647.17	589.83	3,685.38
Bz-95	1,200.0	3,681.75	3,681.75	3,680.55	1.20	641.25	609.12	3,680.58
Bz-96	1,200.0	3,674.27	3,674.27	3,673.07	1.20	620.04	610.13	3,673,10
Bz-90	1,200.0	3,668.40	3,668.40	3,667.20	1.20	603.58	611.82	3,667.23
DZ-97 Bz-98	1,200.0	3,660.53	3,660.53	3,659.33	1.20	588.47	614.03	3,659.36
Bz-90 Bz-99	1,200.0	3,654.82	3,654.82	3,653.62	1.20	576.26	615.22	3,653.65
Bz-100	1,200.0	3,762.35	3,762.35	3,761.15	1.20	1,020,28	496.43	3,761.18


Anexo N° 20: Reporte de diseño Buzones

Label	Diameter (mm)	Elevation (Ground) (m)	Elevation (Rim) (m)	Elevation (Invert) (m)	Depth (Structure) (m)	X (m)	Y (m)	Hydraulic Grade Line (In) (m)
Bz-102	1,200.0	3,750.66	3,750.66	3,749.46	1.20	965.14	465.55	3,749.49
Bz-103	1,200.0	3,747.25	3,747.25	3,746.05	1.20	900.37	429.91	3,746.08
Bz-104	1,200.0	3,737.96	3,737.96	3,736.76	1.20	862.78	483.53	3,736.79
Bz-105	1,200.0	3,729.92	3,729.92	3,728.72	1.20	839.99	518.49	3,728.75
Bz-106	1,200.0	3,720.24	3,720.24	3,719.04	1.20	799.32	494.96	3,719.07
Bz-107	1,200.0	3,719.19	3,719.19	3,717.59	1.60	766.40	546.95	3,717.52
Bz-108	1,200.0	3,708.67	3,708.67	3,707.47	1.20	717.27	518.68	3,707.50
Bz-109	1,200.0	3,707.05	3,707.05	3,705.85	1.20	674.43	493.44	3,705.88
Bz-110	1,200.0	3,727.47	3,727.47	3,726.27	1.20	847.43	410.74	3,726.30
Bz-111	1,200.0	3,723.44	3,723.44	3,722.24	1.20	819.31	459.62	3,722.27
Bz-112	1,200.0	3,743.45	3,743.45	3,742.25	1.20	968.10	402.34	3,742.28
Bz-113	1,200.0	3,740.13	3,740,13	3,738.93	1.20	920.60	403.21	3,738.96
Bz-114	1,200.0	3,734.49	3,734.49	3,733.29	1.20	885.47	401.58	3,733.32
Bz-115	1,200.0	3,729.21	3,729.21	3,728.01	1.20	865.78	404.80	3,728.04
Bz-116	1,200.0	3,739.15	3,739.15	3,737.95	1.20	901.77	506.24	3,737.98
Bz-117	1,200.0	3,730.43	3,730.43	3,729.23	1.20	882.25	534.67	3,729.26
Bz-118	1,200.0	3,745.48	3,745.48	3,744.28	1,20	960.22	538.22	3,744.31
Bz-119	1,200.0	3,735.60	3,735.60	3,734.40	1.20	938.50	527.09	3,734.43
Bz-120	1,200.0	3,729.60	3,729.60	3,728.40	1.20	920.81	565.88	3,728.43
Bz-121	1,200.0	3,726.52	3,726.52	3,724.52	2.00	893.81	619.40	3,724.55
Bz-122	1,200.0	3,723.83	3,723.83	3,722.63	1.20	851.16	595.09	3,722.66
Bz-123	1,200.0	3,722.25	3,722,25	3,721.05	1.20	805.62	569.26	3,721.08
Bz-124	1,200.0	3,721.40	3,721.40	3,720.20	1.20	780.08	404.79	3,720.23
Bz-125	1,200.0	3,717.43	3,717.43	3,716.23	1.20	748.66	401.62	3,716.26
Bz-125	1,200.0	3,715.76	3,715.76	3,714.56	1.20	728.53	399.05	3,714.59
Bz-127	1,200.0	3,712.61	3,712.61	3,711.41	1.20	710.49	395.93	3,711.44
Bz-127	1,200.0	3,709.52	3,709.52	3,708.32	1.20	695.04	409.07	3,708.35
Bz-129	1,200.0	3,705.48	3,705.48	3,704.28	1.20	683.23	418.44	3,704.31
Bz-130	1,200.0	3,698.38	3,698.38	3,697.18	1.20	671.15	427.94	3,697.21
Bz-130	1,200.0	3,696.30	3,696.30	3,695,10	1.20	672.09	436.32	3,695.13
Bz-131	1,200.0	3,692.63	3,692.63	3,691.43	1.20	661.56	446.20	3,691.46
Bz-132	1,200.0	3,690.37	3,690.37	3,689.17	1.20	643.29	460.48	3,689.20
Bz-134	1,200.0	3,687.69	3,687.69	3,686.49	1.20	627.98	472.75	3,686.52
Bz-135	1,200.0	3,684.60	3,684,60	3,683,40	1.20	614.72	473.82	3,683,43
	-	-		-		507.16	418.72	
Bz-136	1,200.0	3,646.46	3,646.46	3,645.26	1.20	452,98		3,645.29
Bz-137 Bz-138	1,200.0	3,622.42	3,622.42	3,621.22	1.20	783.45	421.30 519.99	3,621.25
	1,200.0	3,719.02	3,719.02	3,717.82				3,717.85
Bz-139	1,200.0	3,742.63	3,742.63	3,741.43	1.20	880.93	457.40	3,741.46
Bz-140	1,200.0	3,751.00	3,751.00	3,749.10	1.90	931.39	446.97	3,749.13
Bz-141	1,200.0	3,726.05	3,726.05	3,724.85	1.20	907.49	592.28	3,724.88
Bz-142	1,200.0	3,725.69	3,725.69	3,724.49	1.20	824.67	613.62	3,724.52
Bz-143	1,200.0	3,726.30	3,726.30	3,725.10	1.20	871.57	670.95	3,725.13
Bz-144	1,200.0	3,712.69	3,712.69	3,711.49	1.20	840.64	696.02	3,711.52
Bz-145	1,200.0	3,709.52	3,709.52	3,708.32	1.20	822.00	684.92	3,708.35
Bz-146	1,200.0	3,708.43	3,708.43	3,707.23	1.20	774.91	674.22	3,707.26
Bz-147	1,200.0	3,656.06	3,656.06	3,654.86	1.20	583.33	625.28	3,654.89
Bz-148	1,200.0	3,703.42	3,703.42	3,702.22	1.20	749.62	675.85	3,702.25
Bz-149	1,200.0	3,699.24	3,699.24	3,698.04	1.20	740.44	677.24	3,698.07
Bz-150	1,200.0	3,692.60	3,692.60	3,691.40	1.20	723.33	674.04	3,691.43
Bz-151	1,200.0	3,689.81	3,689.81	3,688.61	1.20	706.27	672.64	3,688.64

Anexo N° 21: Metrado de tuberías

Anexo N° 22: Perfil de cuarto de bombeo hacia buzón cercano

Anexo N° 23: Irradiancia Mensual

Datos mensuales de irradiación

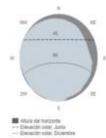
PVGIS-5 base de datos de irradiación geoespacial

Datos proporcionados

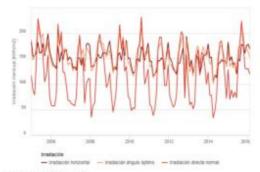
 Latitud/Longitud:
 -13.380, -73.436

 Horizonte:
 Calculado

 Base de datos
 PVGIS-NSRDB


 Año Inicial:
 2005

 Año final:
 2015


 Variables incluidas en este Informe:

Irradiación global horizontal: Si Irradiación directa normal: Si Irradiación global con el ángulo óptimo: Si Irradiación global con el ángulo ⁹ No Ratio ditusa/global Si Temperatura media Si

Perfil del horizonte:

Irradiación solar mensual


	lobsit	

Mex	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Eners	185.34	152.22	149.36	133.51	159.77	134.87	145.47	146.45	147,42	152.95	153.93
Pebrero	154.82	140.27	121.58	135.31	127.54	121.65	117.00	133.37	121.29	105.31	135.48
Marzu	155.09	135.4	134.75	140.12	134.82	123.95	119.91	125.69	138.9	118.01	142.76
Abril	162.76	131.01	127.77	148.26	128.23	148.05	124.19	120.02	156.64	112.91	120,44
Mayo	101.50	174.18	151.97	158.98	156.15	149.86	145.01	140.25	150.6	139.52	148,34
Junio	160.95	143.9	150.56	151.80	161.91	144.18	145.93	141.74	119.52	141.79	145.66
Julio	162,44	162.53	137.4	151.94	146.71	173.79	151.63	156.57	134.52	147.67	176.05
Agosto	179.78	148.32	152.06	162.18	173.25	185.5	147.42	170.66	155,87	145.31	175.71
Septiembre:	155.36	165.38	126.49	161.18	150.3	146.98	129.11	89.78	157.2	145.25	161.21
Odubre	174.55	168,02	177.84	158.73	186.22	164.55	156.63	193.7	159.59	139.05	175,87
Noviembre	198.64	147.17	180.38	171.62	150,67	180.53	182.04	165.14	178.95	182.27	178.48
Diciembre	165.92	153.31	176.11	154.55	151.41	144.79	151.24	134.7	152.27	146.42	169.25

Direct Normal bradiation

Mex	2005	2006	2007	2005	2009	2010	2011	2012	2013
Energ	117.41	58.67	61.91	35.44	76.66	48.49	55.3	66.62	64.97
Pebrero	87.75	56.99	40.2	58.18	45.59	53.69	38,82	55.05	51.79
Marzu	79.41	57.67	57.74	63.85	63.32	52.4	50.17	59.02	61.87
Abril	140.44	78.64	74.56	125.27	91.23	121.14	82.16	77.02	152.53
Mayo	228.32	210.35	156.92	177.18	109	100.33	172.97	145.57	188.74
Junio	207,37	177.07	196.21	196.32	216.82	183.11	192.64	152.99	110.15
Julio	180.33	202.44	143.37	174.95	155.57	231.59	191.77	203.03	161.71
Agosto	155.41	124.07	144.72	165.2	188,00	164.62	144.2	198.25	159.66
Septiembre	105	122.68	63.25	131.27	125.94	100.65	97.02	73.31	135.18
Odubre	116.26	98.25	99.66	93.82	135,03	113,04	98.17	156.92	100,58
Noviembre	156.85	68.61	109.75	101.94	77.03	129.38	137,72	101.33	123.45
Diciembre	77.61	67.57	111.1	122.12	71.49	61.14	77.39	59.97	78.45

Anexo N° 24: Irradiancia Mensual

Anexo N° 25: Temperatura media Mensual

Temperatura media mensual

Month	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Enero	10.1	9.2	9.8	9.1	9.2	9.5	9.1	9.1	9.2	9.3	8.8
Febrero	9.7	9.5	9.4	9	9.3	10.1	9	8.6	9.5	9.4	9.3
Marzo	9.4	9.3	9.1	8.5	9	9.9	8.8	8.5	9.3	9.1	9
Abril	8.8	8.4	8.6	8.1	8.4	9	8.4	8.4	8.6	8.6	8.3
Mayo	8	7.1	7.5	6.9	7.2	8.1	7.5	7.5	7.8	7.6	7.5
Junio	6.8	6.8	7.1	6.3	6.6	7.1	6.6	6.3	6.4	7.5	7.1
Julio	6.4	6.3	6	6.2	6.2	6.7	6	6.4	6	6	6.2
Agosto	7.2	7.2	6.9	7.2	7	7.5	7	6.8	7	6.8	7.2
Septiembre	7.1	7.9	7.5	7.6	8.3	8.1	7.7	7.9	7.5	7.9	8.2
Octubre	8.6	9	8.4	8.7	9.2	8.5	8.6	8.5	8.6	8.6	8.9
Noviembre	9.1	9.1	9	9.3	9.7	9.2	9.5	9.3	9.2	9.6	9.4
Diciembre	9.4	9.6	9	9.1	9.6	9.3	9.1	9.3	9.3	9.5	9

Anexo N° 26: Ficha técnica de Panel Solar

Anexo N° 27: Ficha técnica de Controlador de Carga

Anexo N° 28: Ficha técnica de Batería

Anexo N° 29: Ficha técnica de Inversor

Anexo N° 30: Ficha técnica de Bomba Sumergible

CAMPO DE PRESTACIONES

- Caudal harts 750 limin (45 m/h)
- Altura manométrica hanta 15 m

LIMITES DE UTILIZO

- Profundidad máxima de utilizo hasta 5 m (con cable de alimentación de longitud adecuada)
- Temperatura máxima del fluido hasta +40 °C
- Pasaje de cuerpos sólidos en suspensión hasta Ø 50 mm
- Fara servicio continuo nivel minimo de inmension: 300 mm

EJECUCION Y NORMAS DE SEGURIDAD

- · Cable de alimentación de longitud:
 - 5 m para 8C10/50-N
 - 10 m para 8C15/50-N
- Interruptor con flotador externo para versiones monofásicas

EN 60335-1 EN 60034-1 IEC 60335-1 IEC 60034-1 CEI 61-150 CEI 2-3

CERTIFICACIONES

Empresa con sistema de gestión certificado DNV ISO 9001: CALIDAD ISO 14001: AMBIENTE

UTILIZOS E INSTALACIONES

Las bombas sumergibles BC son aconsejables para el drenaje de aguas inmundas y cargadas en los sectores doméntico, civil e industrial. Están equipadas con rodete BCANAL en acero inoxidable que permite el bombeo de liquidos con presencia de cuerpos sótidos en suspensión de dimensiones hasta 50 mm de fibra corta. Es aconsejable para el bombeo de aguas de descarga y purines, aguas de superficie, agua mista con fango y utilizos varios como: casas de verano, pequeñas viviendas individuales, habitaciones unifamiliares.

Estas bombas se caracterizan por su fisbilidad en las instalaciones fijas con funcionamiento automático.

PATENTES - MARCAS - MODELOS

Patente Pendierte n' 602015A000116

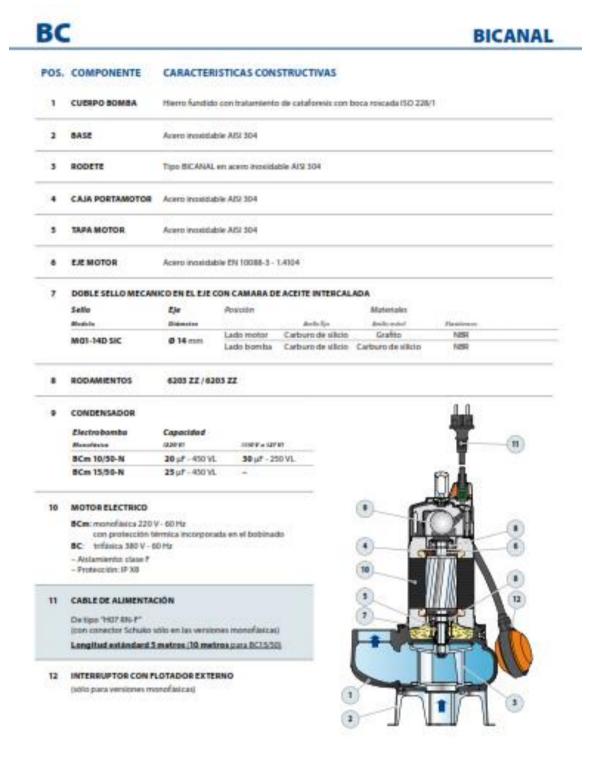
EJECUCION BAJO PEDIDO

- Electrobombas BC10/50-N con cable de alimentación de 10 m.
 N.S.: el cable de alimentación de 10 m en obligatorio para el utilizo externo según la normativa EN 60535-2-41
- Dectrobombas monofásicas sin interruptor y flotador externo
- Otros voltajes

GARANTIA

2 años según nuestras condiciones generales de venta

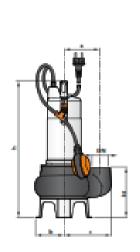
Anexo N° 31: Ficha técnica de Bomba Sumergible

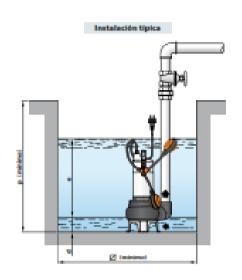


MO	DELO	POTEN	CIA (Pa)	_ mi/h	0	3	6	12	18	24	30	36	42	45
Monofásica	Triffásica	kW	HP	Q (/min	0	50	100	200	300	400	500	600	700	750
BCm 10/50-N	BC 10/50-N	0.75	1	H metro.	12	111	10	8.3	7	5	3.5	2		
BCm 15/50-N	BC 15/50-N	ш	1.5	H metro.	15	14	13	11.5	9.7		6.3	4.5	3	2

Q - Caudal H - Albuna manuscrifts a total

Televancia de las cursos de prestación según IN HOFEM Grado III.


Anexo N° 32: Ficha técnica de Bomba Sumergible

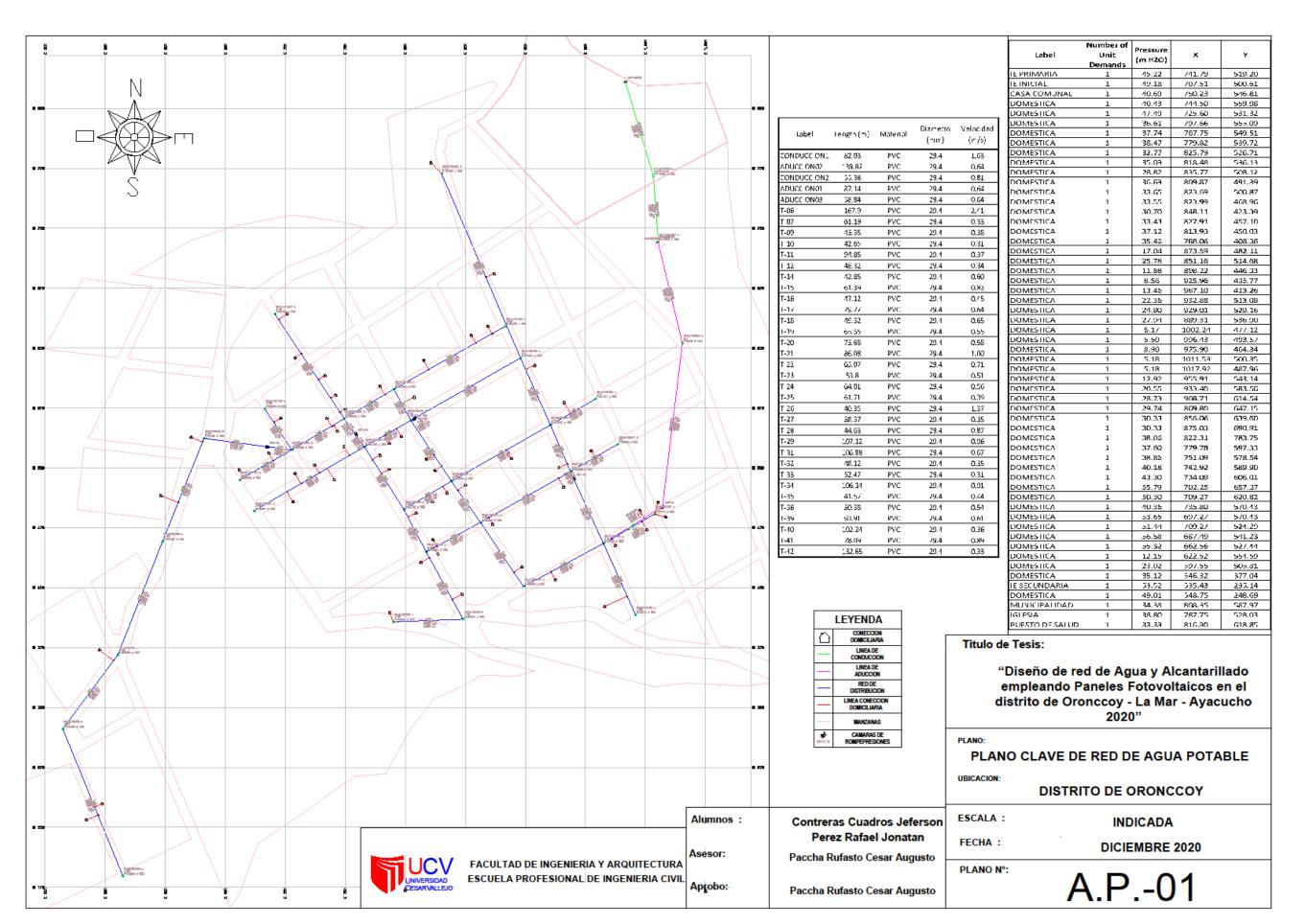


Anexo N° 33: Ficha técnica de Bomba Sumergible

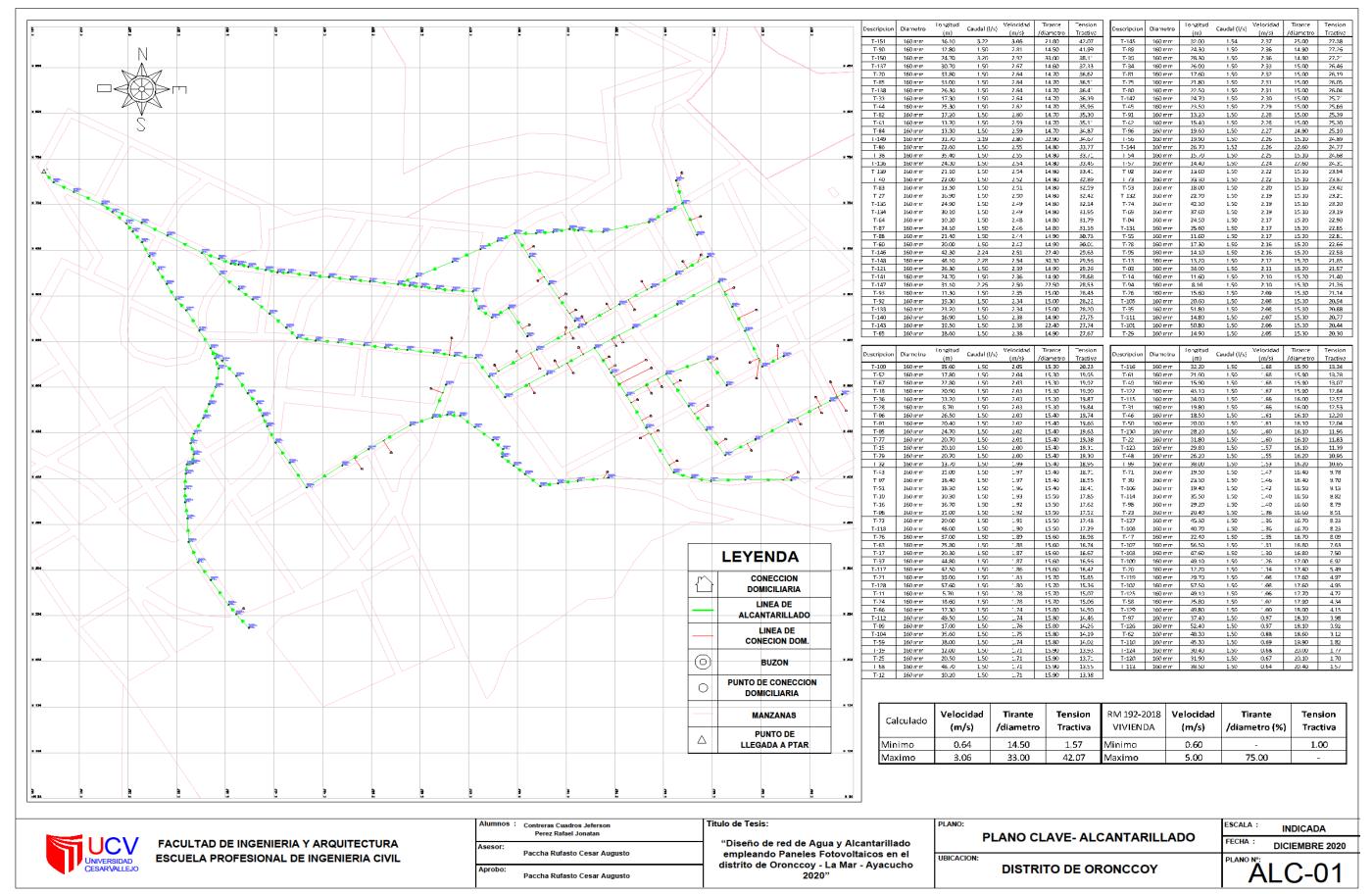
DIMENSIONES Y PESOS

MODELO		BOCA	Paso de	DIMENSIONES mm						kg				
Monoffisica	Trittinica	DN	cuerpos sólidos		ь	c	h	М	d		p	123	1m	3~
8Cm 10/50-N	BC 10/50-N	r	Ø 50 mm	115	95	155	431	164	60	ajustable	500	500	14.9	15.6
BCm 15/50-N	BC 15/50-N						446						16.5	15.5

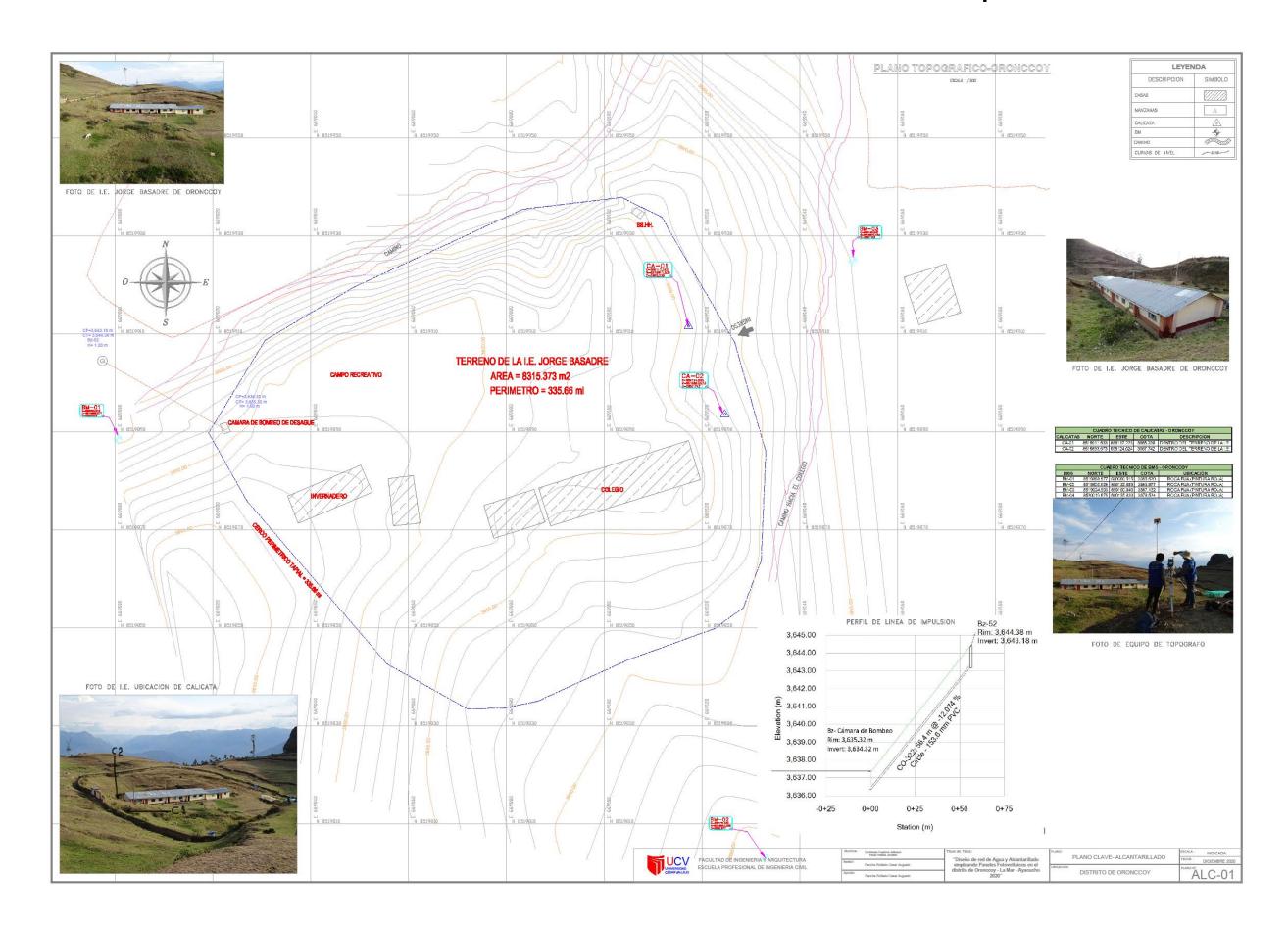
CONSUMO EN AMPERIOS

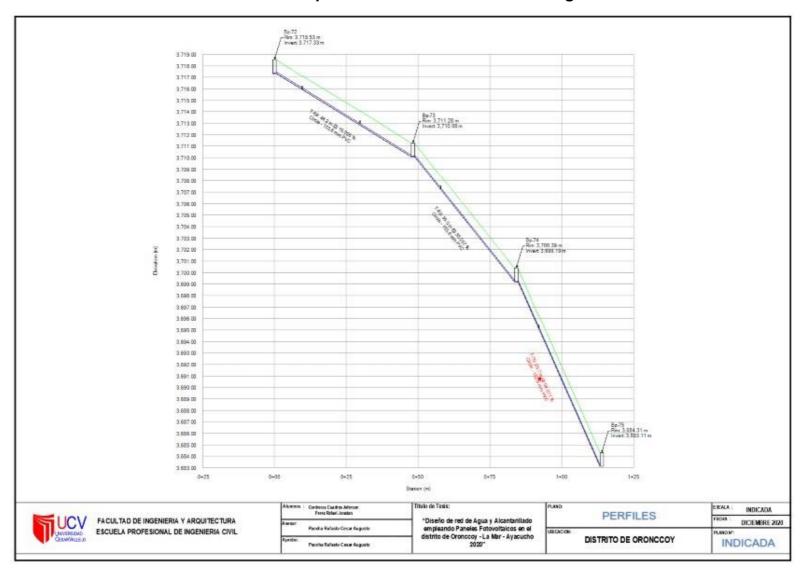

MODELO	TENSION				
Monofficia	220 V	mov	127 V		
BCm 10/50-N	5.6 A	11.2 A	10.3 A		
8Cm 15/50-N	8.8.A	-	-		

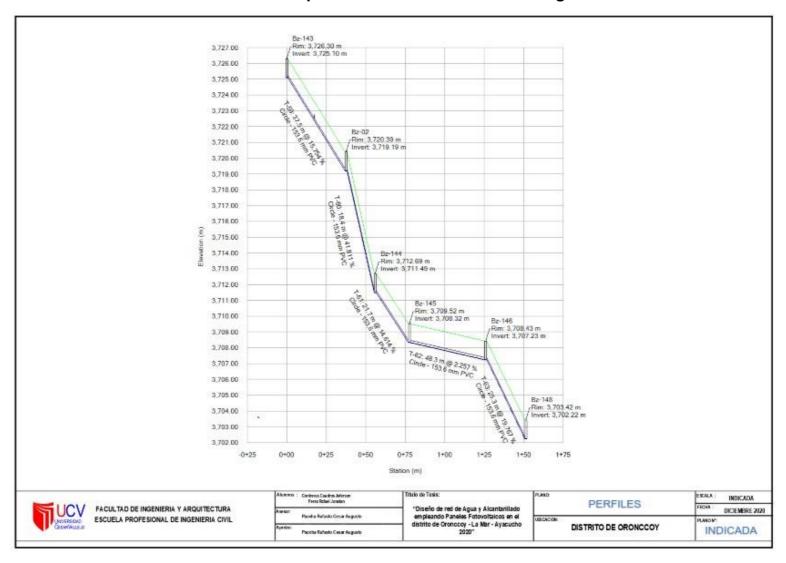
MODELO	TENSION				
Triffinica	220 V	380V	440 V		
BC 10/50-N	4.2A	2.4 A	2.1 A		
8C 15/50-N	6.6 A	3.8 A	3.3 A		

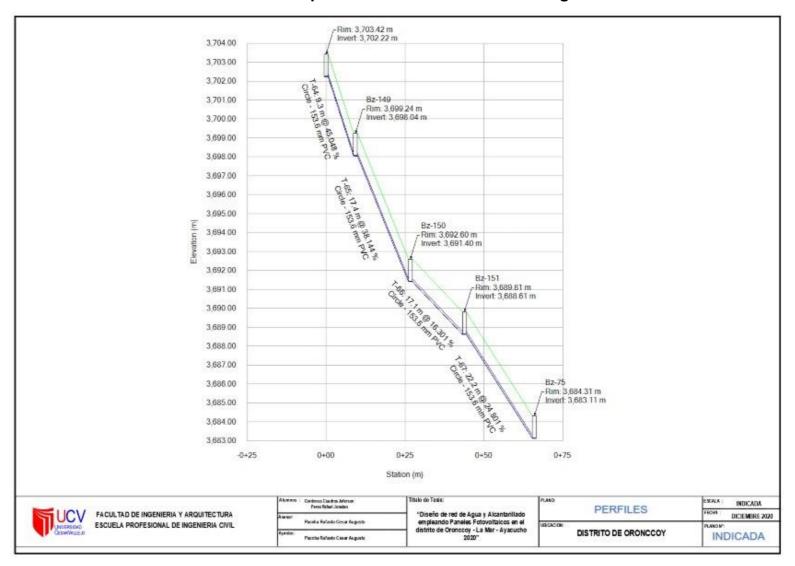

PALETIZADO

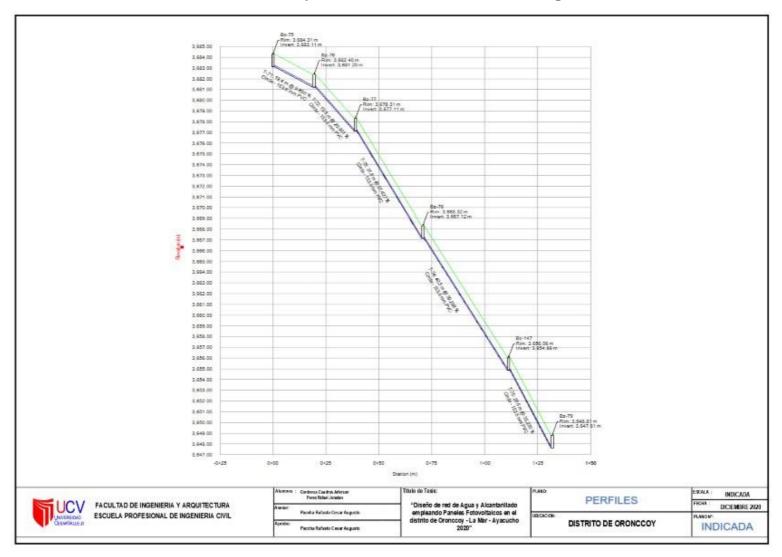
MOD	elo	PARA GRUPAJE	PARA CONTAINER		
Monottisica	Triffinka	n' bombus	n' bombias		
5Cm 10/50-N	BC 10/50-N	34	72		
8Cm 15/50-N	BC 15/50-N	34	72		

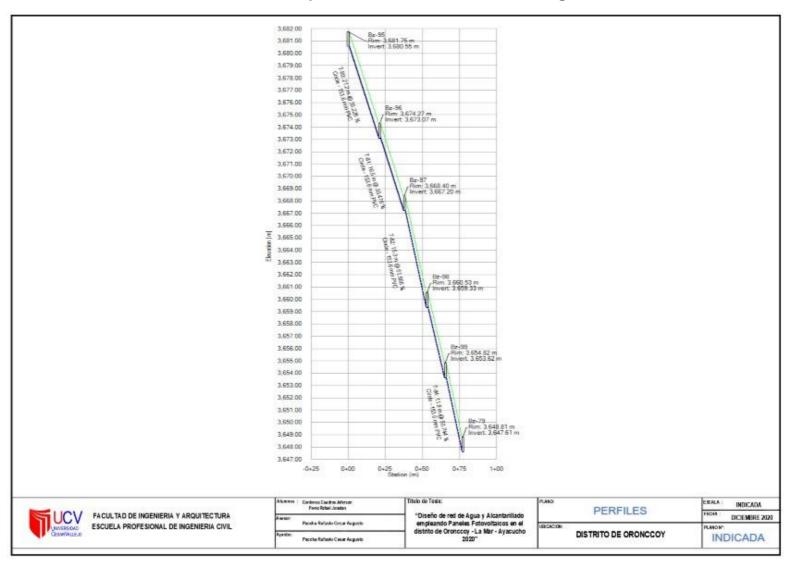

Anexo N° 34: Plano de red de Agua en Planta – Clave

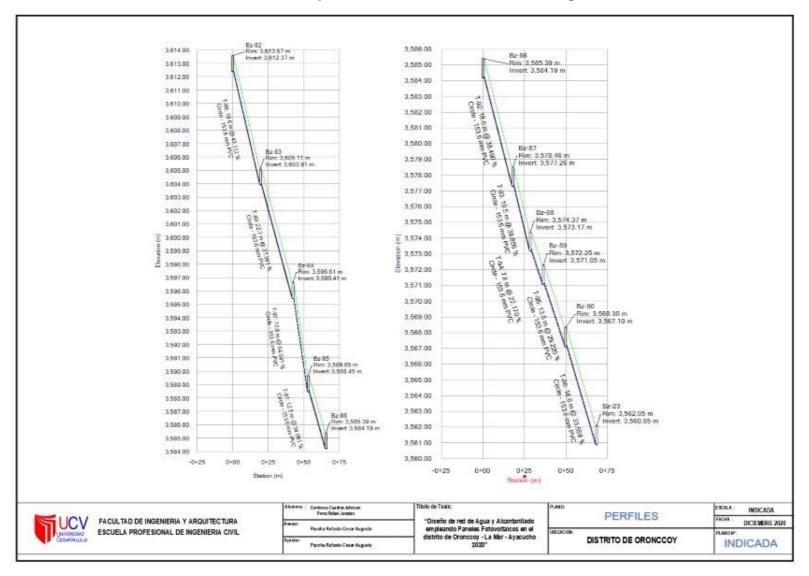

Anexo N° 35: Plano – Clave de Alcantarillado

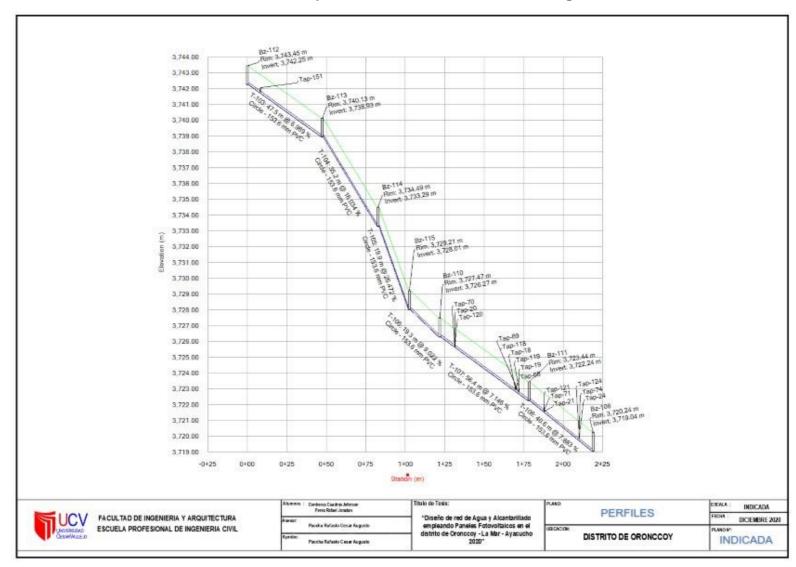

Anexo N° 36: Plano de SS.HH. ubicación de cámara de bombeo e impulsión

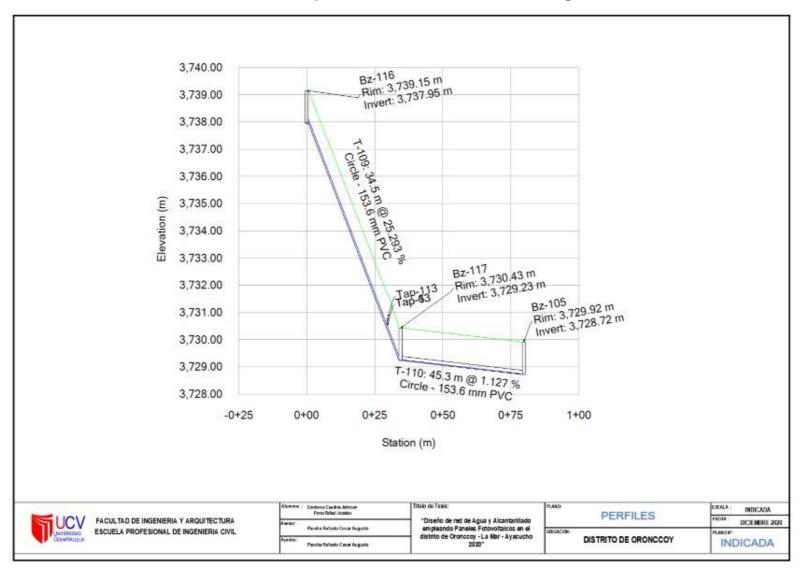

Anexo N° 37: perfiles de alcantarillado de desagüe

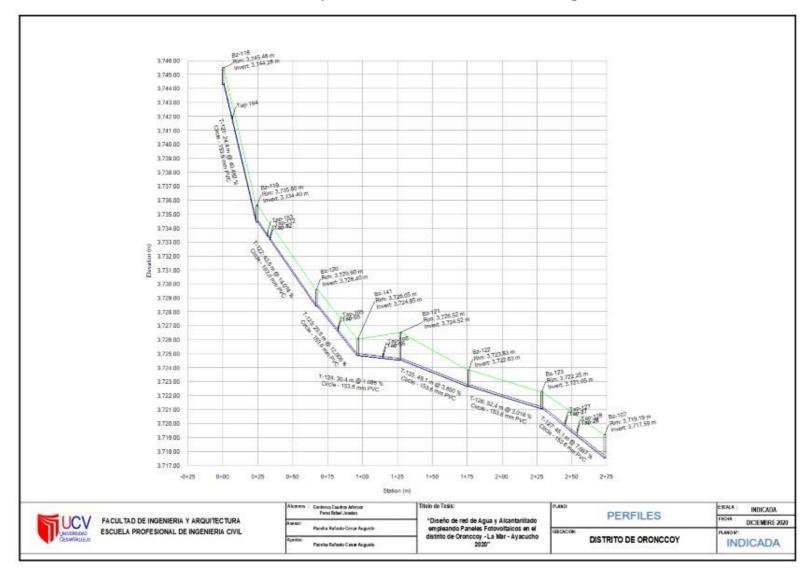

Anexo N° 38: perfiles de alcantarillado de desagüe

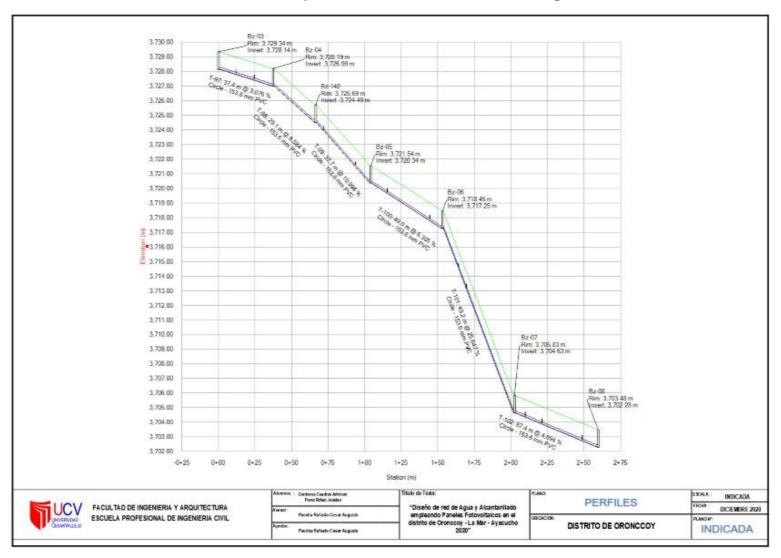

Anexo N° 39: perfiles de alcantarillado de desagüe

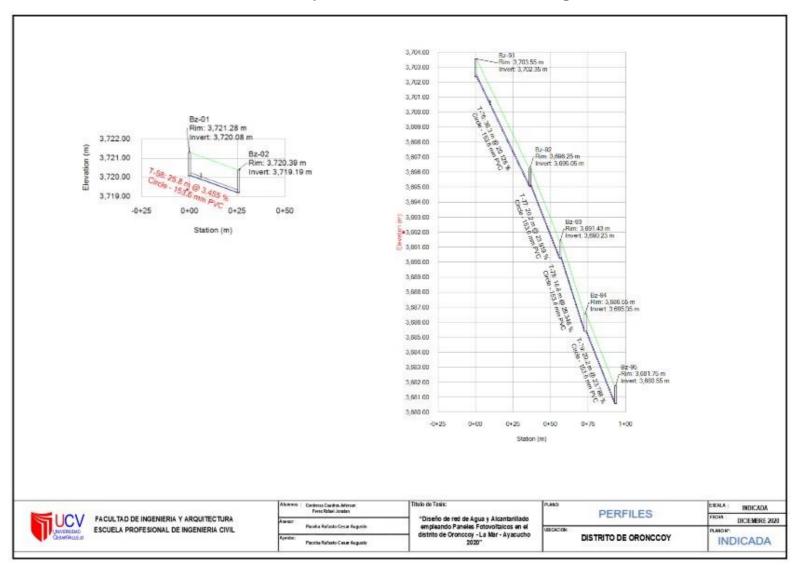

Anexo N° 40: perfiles de alcantarillado de desagüe


Anexo N° 41: perfiles de alcantarillado de desagüe


Anexo N° 42: perfiles de alcantarillado de desagüe


Anexo N° 43: perfiles de alcantarillado de desagüe


Anexo N° 44: perfiles de alcantarillado de desagüe


Anexo N° 45: perfiles de alcantarillado de desagüe

Anexo N° 46: perfiles de alcantarillado de desagüe

Anexo N° 47: perfiles de alcantarillado de desagüe

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Originalidad de los Autores

Nosotros, CONTRERAS CUADROS JEFERSON, PEREZ RAFAEL JONATAN FELIPE estudiantes de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - LIMA ESTE, declaramos bajo juramento que todos los datos e información que acompañan la Tesis titulada: "DISEÑO DE RED DE AGUA Y ALCANTARILLADO EMPLEANDO PANELES FOTOVOLTAICOS EN EL DISTRITO DE ORONCCOY – LA MAR – AYACUCHO 2020"", es de nuestra autoría, por lo tanto, declaramos que la Tesis:

- 1. No ha sido plagiada ni total, ni parcialmente.
- 2. Hemos mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- 3. No ha sido publicada, ni presentada anteriormente para la obtención de otro grado académico o título profesional.
- 4. Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumimos la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de la información aportada, por lo cual nos sometemos a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Nombres y Apellidos	Firma
PEREZ RAFAEL JONATAN FELIPE DNI: 42440534 ORCID 0000-0001-5698-4828	Firmado digitalmente por: JPEREZR30 el 24-12-2020 11:21:19
CONTRERAS CUADROS JEFERSON DNI: 72175368 ORCID 0000-0002-9406-2338	Firmado digitalmente por: JCONTRERASC5 el 24-12- 2020 11:30:01

Código documento Trilce: INV - 0241741

