

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Diseño Sísmico de un edificio de 5 pisos con el uso del CYPECAD y ETABS en Villa María del Triunfo - Lima 2019"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL

AUTORES:

Febres Silva, Keveen Alonso (ORCID: 0000-0001-5902-0557)

Ñahuis Suyon, Rony (ORCID: 0000-0001-5829-7597)

ASESOR:

Msc° Díaz Huiza, Luis Humberto (ORCID: 0000-0003-1304-5008)

LÍNEA DE INVESTIGACIÓN:

DISEÑO SISMICO Y ESTRUCTURAL

LIMA – PERÚ

2019

Dedicatoria:

Esta Tesis se la dedico a todas las personas el cual confiaron y estuvieron pertinentes conmigo, a mis padres por las lecciones de vida y la educación que me brindaron. Gracias por haberme dado lo necesario para seguir con mis estudios a través de sus esfuerzos laborales. A mi hermano Hans Ñahuis Suyón, el cual, a pesar de las discrepancias, siempre me brindó consejos el cual me formaron como persona. Y por último a la persona más especial que me acompañó en los últimos años de mi carrera de ingeniería Civil, mi novia Vanesa Román Mateo, que siempre me brindó apoyo emocional, estuvo en mis momentos más difíciles brindándome tiempo y a la vez espacio para la finalización de la tesis. Gracias por todo.

Esta tesis va dedicada principalmente a mis padres Don Hermógenes Vicente ; (Hervic) Febres y a Doña Gloria Silva y mi hermano Alonso Febres Silva que me apoyaron mi etapa de formación y durante secundariamente dedico este proyecto a mis grandes amigos : Jair Lapa Figueroa, Axel Rodríquez Trujillo, Rony Ñahuis Suyon, ,Brayan Ortega Mendoza, Jhonny C., Andersson Cabrera , Cristhian Quispe, Alvaro Agreda a Claudia Flores Susanibar que me apoyo en cuanto pudo, Juan Frisancho, Jordán Fretel, Handy V., Leslie M. Renzo Huaman, como también a los ingenieros que me apoyaron brindándome sus conocimientos: Ing. Amador, Ing. Humberto ,Ing. Alvaro ,Ing. Cesar, Ing. Jorge ,Ing. Joel, Sergio, Ing Enrique; porque en algún punto me apoyaron para lograr culminar este proyecto. Finalmente decirles que este éxito no es mío si no fuera de ustedes. Gracias.

Rony Nahuis Suyón

Keveen A. Febres Silva

Agradecimiento

Al Msc. Luis Humberto Díaz Huiza, por todo su apoyo, conocimiento y recomendaciones para la culminación del proyecto.

Al Mgtr. Cesar Augusto Paccha Rufasto por brindarnos los conocimientos básicos sobre el diseño sismorresistente en la carrera de Ing. civil, y por su amistad en el transcurso de los ciclos.

Al ingeniero Jesús Cristian Bautista Ñaupari, por apoyarnos en el transcurso de la tesis, brindándonos los elementos suficientes para la elaboración del proyecto. Por su apoyo y gran amistad en los días laborales.

A nuestro querido amigo y hermano Herbert Brayan Ortega Mendoza, el cual siempre estuvo ahí para apoyarnos no solo con el proyecto, sino también en toda la cerrera de ingeniería civil. Por el cual pasamos una vida universitaria increíble. Gracias amigo.

A todos nuestros amigos de la carrera de ingeniería civil, en especial a Noé Jhonny Cisneros Presentación, por compartir sus conocimientos con nosotros y por los consejos dados como una persona de buena moral. A Jordan Jamil Fretel Escobar, por su gran amistad y compartir momentos de risas con nosotros. A Andersson Cabrera Maguiña y a Cristhian Quispe Diaz fundadores de los Chipis, Handy Vallejos

Al sociólogo Daniel Flores Alvarado y su esposa, por su apoyo en un momento oportuno y su gran empatía con nosotros.

Los autores se agradecen mutuamente por la colaboración habiendo existido el respeto mutuo en todo momento, por el aprendizaje adquirido e información compartida sin egoísmo alguno, deseándose lo mejor en sus vidas profesional.

ÍNDICE GENERAL

Dedicatoria	ii
Agradecimiento	iii
I. INTRODUCCIÓN	1
II. MARCO TEÓRICO	5
III. METODOLOGÍA	21
3.1 Tipo de investigación	
3.2 Diseño de la investigación	
3.3 Variable y operacionalización	
3.4 Población y muestra	
3.5 Técnicas de recolección de información	
IV. RESULTADOS	32
V. DISCUCIÓN	127
VI. CONCLUSIONES	131
VII. RECOMENDACIONES	134
REFERENCIAS	136
ANEXOS	153

ÍNDICE DE TABLAS

Tabla 1. Valores de Z según la zonificación, 2018	.2
Tabla 2. Operacionalización de la variable independiente. 2	26
Tabla 3. Operacionalización de la variable dependiente. 2	27
Tabla 4. Cuadro de recolección de información	29
Tabla 5. Clasificación de los factores Z, U, S y Sistema estructural	33
Tabla 6. Valor de los factores según su clasificación según el RNE – E030 – 201	8
	33
Tabla 7. Datos del Espectro en la dirección X	\$4
Tabla 8. Datos del Espectro en la dirección Y	\$6
Tabla 9. Factores de P y n según la ubicación de la columna y su tipo	1
Tabla 10. Pesos específicos de los materiales según el reglamento E-020	2
Tabla 11. Pesos de la carga viva a utilizar – RNE E-020	2
Tabla 12. Cuadro de predimensionamiento inicial de columnas	2
Tabla 13. Cuadro de predimensionamiento de vigas	3
Tabla 14. Metrado de cargas muertas para las Columnas Centrales C3	3
Tabla 15. Metrado de cargas vivas para las Columnas Centrales C3	3
Tabla 16. Metrado de cargas muertas para las Columnas Esquineras C1	4
Tabla 17. Metrado de cargas vivas para las Columnas Esquineras C1	5
Tabla 18. Metrado de cargas muertas para las Columnas Perimetrales C2	5
Tabla 19. Metrado de cargas vivas para las Columnas Perimetrales C2	6
Tabla 20. Cuadro de valores de la masa y el peso de la estructura	8
Tabla 21. Cuadro de valores sobre las distorsiones máximas por material8	34
Tabla 22. Cuadro de datos sobre la verificación de las derivas de la estructura8	35
Tabla 23. Cuadro de datos sobre los periodos reales	37
Tabla 24. Cuadro de datos sobre los valores de TP, TL, R0 y R	38
Tabla 25. Fuerza cortante de las columnas en el eje X)1
Tabla 26. Fuerza cortante de los muros estructurales en el eje X)3
Tabla 27. Fuerza cortante de las columnas en el eje Y)4
Tabla 28. Fuerza cortante de los muros estructurales en el eje Y	97
Tabla 29. Cuadro de porcentajes de las cortantes en las Columnas y Muros en X	٢.
	98

Tabla 30. Cuadro de porcentajes de las cortantes en las Columnas y Muros en Y. Tabla 31. Cuadro de desplazamientos máximos de X e Y en cada piso de la estructura......113 Tabla 32. Cuadro de los porcentajes de columnas y muros ante la fuerza cortante. Tabla 33. Cuadro de porcentaje de diferencia entre los programas ETABS y Tabla 34. Cuadro de porcentaje de diferencia en las derivas de X e Y de los programas Etabs y Cypecad del Piso N°5.117 Tabla 35. Cuadro de porcentaje de diferencia en las derivas de X e Y de los Tabla 36. Cuadro de porcentaje de diferencia en las derivas de X e Y de los programas Etabs y Cypecad del Piso N°3.117 Tabla 37. Cuadro de porcentaje de diferencia en las derivas de X e Y de los programas Etabs y Cypecad del Piso N°2.117 Tabla 38. Cuadro de porcentaje de diferencia en las derivas de X e Y de los

INDICE DE FIGURAS

Figura 1. Zonificaciones sísmicas, Ministerio de vivienda, construcción	У
saneamiento, 2016	.12
Figura 2. Espectro de pseudoaceleraciones en la dirección X	.36
Figura 3. Espectro de pseudoaceleraciones en la dirección Y	.38
Figura 4. Fórmulas para el peralte de losas macizas según su luz.	.39
Figura 5. Separación de luz de las vigas en el plano	.40
Figura 6. Fórmulas para el peralte de losas macizas según su luz.	.40
Figura 7. Cargas repartidas en kPa (kgf/m2) según su uso	.40
Figura 8. Dimensión de la zapata	.50
Figura 9. Programa ETABS	.52
Figura 10. Ventana de inicio ETABS	.52
Figura 11. Ventana para crear el tipo de Grid en el programa.	.53
Figura 12. Ventana de introducción de datos en planta para los Grid	.54
Figura 13. Ventana de introducción de datos de elevación por piso para los Grid	54
Figura 14. Área de trabajo, vista en planta y vista en 3D	.54
Figura 15. Opción de creación de materiales	.55
Figura 16. Ventana de materiales creados en el programa	.56
Figura 17. Ventana de datos sobre el peso específico y módulo de elasticidad	del
concreto	.56
Figura 18. Propiedad del material creado – datos de diseño	.57
Figura 19. Ventana de datos sobre el peso específico y módulo de elasticidad o	del
acero	.58
Figura 20. Propiedades del material de acero	.58
Figura 21. Menú de herramienta para la creación de estructuras	.59
Figura 22. Ventana de formas estructurales	.59
Figura 23. Ventana de creación de elementos estructurales con sus respectiv	/as
dimensiones	.60
Figura 24. Ventana de selección de acero de refuerzo para columnas	.61
Figura 25. Ventana de selección de acero de refuerzo para vigas	.61
Figura 26. Menú de herramientas para la creación de losas	.62

Figura 27	. Ventana de las propiedades y espesor de la losa a crear en el programa	э.
		2
Figura 28	. Ventana para la creación de muros tanto estructural como de albañilería	
•••••		3
Figura 29	. Ventana para la elección del material y espesor del muro6	3
Figura 30	. Área dibujada y sección de herramientas de dibujo6	4
Figura 31	. Menú de herramientas para la creación del Mesh.	5
Figura 32	. Ventana de las dimensiones a discretizar6	5
Figura 33	. Menú de herramientas para la asignación de brazos rígidos6	6
Figura 34	. Ventana donde se aplica el factor de brazo rígido para la estructura6	6
Figura 35	. Vista del modelo con la asignación de brazos rígidos6	7
Figura 36	. Menú de herramientas para la asignación de diafragmas6	8
Figura 37	. Creación del diafragma a definir para cada piso6	8
Figura 38	. Vista de la losa una vez asignado el diafragma6	9
Figura 39	. Menú de herramientas para la asignación de las restricciones de apoyo	••
	7	0
Figura 40	. Ventana para la selección de restricción de apoyo7	0
Figura 41	. Menú para la definición de patrones de carga7	1
Figura 42	. Ventana para definir las cargas estáticas7	1
Figura 43	. Menú Define en el cual se asignan los Piers para las placas7	2
Figura 44	. Ventana en el cual se crean los Piers7	2
Figura 45	. Menú de herramientas para la introducción del espectro respuesta7	3
Figura 46	5. Ventana en el cual se introduce y visualiza la función del espectr	0
respuesta	a7	4
Figura 47	. Menú de herramientas para la definición de casos dinámicos7	5
Figura 48	. Ventana en el cual se crean los casos de carga7	6
Figura 49	. Ventana en el que se ingresan los datos de los casos de carga tanto e	n
X como e	n Y7	6
Figura 50	. Ventana para la introducción de la excentricidad7	7
Figura 51	. Menú para insertar las cargas vivas y muertas en la losa7	8
Figura 52	. Ventana donde se define el valor de la carga viva7	8
Figura 53	. Ventana donde se define el valor de la carga muerta7	9
Figura 54	. Ventana para la creación de masas7	9

Figura 55. Ventana para la introducción del factor para la carga viva y muerta	80
Figura 56. Menú para agregar las combinaciones de carga	80
Figura 57. Ventana para la introducción de los valores del combo	81
Figura 58. Ventana de creación de los combos	81
Figura 59. Ventana de creación de la envolvente	82
Figura 60. Menú de verificación de errores en el programa	82
Figura 61. Ventana donde se verificará los errores cometidos en el programa.	83
Figura 62. Ventana de aceptación del programa, mostrando que no hay error.	83
Figura 63. Visualización en 3D sobre las deformaciones de la estructura	84
Figura 64. Visualización de las cargas máximas del sismo en X e Y por piso	85
Figura 65. Visualización de los periodos de la estructura	87
Figura 66. Ventana donde se corrige el coeficiente de basal con los perio	odos
reales	89
Figura 67. Ventana de datos sobre la resistencia máxima en X ejercida por	r las
columnas	90
Figura 68. Ventana de datos sobre las resistencias máximas ejercidas en los m	uros
estructurales.	90
Figura 69. Ícono del programa CYPE	100
Figura 70. Ventana de datos generales de Cypecad	100
Figura 71. Ventana de estados de límites del proyecto	101
Figura 72. Ventana de verificación de los estados de límite	102
Figura 73. Definición de los valores del coeficiente de basal	102
Figura 74. Definición del espectro respuesta	103
Figura 75. Definición de las alturas de los pisos	104
Figura 76. Introducción de las cargas gravitacionales por piso	104
Figura 77. Introducción de dimensión de las columnas	105
Figura 78. Ventana de tipo de sección de las columnas	105
Figura 79. Menú Vigas/Muros para la introducción de vigas o muros	106
Figura 80. Ventana de tipo y predimensionamiento de las vigas	106
Figura 81. Introducción de las dimensiones de los muros estructurales	107
Figura 82. Menú Paños para la introducción de losas y huecos	108
Figura 83. Ventana de creación del tipo de losas e introducción de	sus
dimensiones	108

Figura 84. Área de dibujo del programa Cypecad109
Figura 85. Visualización de la estructura en 3D110
Figura 86. Menú de cálculo del programa Cypecad111
Figura 87. Herramienta de listado111
Figura 88. Opciones de listados sobre las hojas de cálculo112
Figura 89. Hoja de cálculo de los desplazamientos máximos113
Figura 90. Hoja de cálculo de los porcentajes de cortante sísmicos máximos
resistidos por las columnas y muros114
Figura 91. Hoja de cálculo de ETABS115
Figura 92. Hoja de cálculo de Cypecad116
Figura 93. Ventana de momentos y esfuerzos de Cypecad119
Figura 94. Ventana de momentos y esfuerzos de Etabs119
Figura 95. Momentos y esfuerzos de un pórtico en Cypecad120
Figura 96. Momentos y esfuerzos de un pórtico en Etabs121
Figura 97. Desplazamientos ejercidos por el modal 1 (Y) en Etabs122
Figura 98. Desplazamientos ejercidos por el modal 1 (Y) en Cypecad122
Figura 99. Desplazamientos ejercidos por el modal 2 (X) en Etabs123
Figura 100. Desplazamientos ejercidos por el modal 2 (X) en Cypecad123
Figura 101. Normativa usada en el Cypecad para estructuras de hormigón124
Figura 102. Normas de Cypecad para estructuras de acero laminado y armado.
Figura 103. Normativa usada en el Cypecad para las acciones en las estructuras,
viento126
Figura 104. Normativa usada en el Cypecad para las acciones en las estructuras,
sismo. /

RESUMEN

El propósito de la investigación fue verificar si el programa estructural Cypecad es factible en la validez de sus resultados comparándolo con otro programa muy usado y conocido en el mercado ingenieril que es el Etabs. Para ello la investigación tiene un alcance exploratorio, comparativo y explicativo. Se diseñarán en ambos programas tanto el análisis estático y dinámico para la comparación de datos y verificación de resultados en base a la norma peruana, a través. Se calcularán el porcentaje de diferencia de los resultados y se discutirá con otros investigadores sobre los análisis de dichos programas. Las conclusiones fueron las siguientes: (1) Cypecad, trabaja con el espectro elástico en cambio el programa Etabs trabaja con un espectro inelástico siendo necesario multiplicar la carga espectral por la aceleración de la gravedad, (2) el análisis estático de los programas estructurales, tienen como resultados un porcentaje de diferencia del 4.87%. Por el cual si es efectivo el análisis estático en Cypecad., (3) en la participación de resistencia de la fuerza cortante sobre la base, en ambos programas, tienen una regular diferencia debido a que los resultados de los programas varían por la manera de cálculo que tiene. Sin embargo, ambos porcentajes de resistencia en los muros estructurales de Etabs y Cypecad sobrepasan el 70%, el cual se toman como datos confiables debido a que ambos cumplen con el sistema estructural indicado., (4) Para las derivas de piso analizadas por el análisis dinámico modal espectral en ambos programas, se obtuvieron datos con una diferencia máxima en sus derivas de 7.09%. Gracias a la similitud de datos se afirma que Cypecad es viable para el análisis dinámico, (5) De los resultados de los esfuerzos cortantes y momentos de los valores obtenidos por ambos programas, se tiene que Cypecad es ligeramente mayor el cual produce que para el cálculo de refuerzo se incrementen las secciones de los elementos estructurales., (6) Cypecad muestra una hoja de cálculo muy detallado para el cálculo del análisis estático, en cambio el Etabs no tiene esa modalidad de hoja de cálculo, por lo que uno debe interpretar los resultados dados por el programa. (7) Cypecad tiene la opción de edición muy amplia una vez calculado los resultados, ya que nos permite, por criterio del diseñador, modificar las dimensiones de las estructuras que nos ayudan a optimizar recursos., y (8) En caso que se requiera un análisis más detallado donde las no lineales son muy esenciales se requiere un modelamiento estructural mediante Etabs

Para futuras investigaciones, se recomienda lo siguiente: (1) Evaluar los programas mediante otro tipo de edificaciones como losas aligeradas, uso de tabiquería considerando la densidad de los muros u otros sistemas estructurales para validar en su totalidad el programa Cypecad; (2) Incorporar la nueva norma de diseño RNE E.030 – 2018., (3) recomienda como fuente la tesis de Román Medina, el cual tiene una comparación muy detallada acerca del uso del Cypecad., (4) Tener conocimientos básicos a cerca del diseño estructural para tener certeza de una buena realización de diseño en Cypecad., y (5) Se recomienda el uso del programa Cypecad para realizar proyectos no muy complejos.

Palabras clave: Diseño sísmico, análisis estático, análisis dinámico, Etabs, Cypecad.

ABSTRACT

The purpose of the investigation was to verify if the Cypecad structural program is feasible in the validity of its results by comparing it with another program that is widely used and known in the engineering market, which is the Etabs. For this, the research has an exploratory, comparative and explanatory scope. Both static and dynamic analysis for data comparison and verification of results based on the Peruvian standard will be designed in both programs. The percentage of difference in the results will be calculated and other analyzes will be discussed with other researchers. The conclusions were the following: (1) Cypecad, works with the elastic spectrum instead the Etabs program works with an inelastic spectrum being necessary to multiply the spectral load by the acceleration of gravity, (2) the static analysis of the structural programs, they have a difference of 4.87% as a result Therefore, if the static analysis in Cypecad is effective, (3) in the participation of resistance of the shear force on the basis, in both programs, they have a regular difference because the results of the programs vary by the way calculation you have. However, both resistance percentages in the structural walls of Etabs and Cypecad exceed 70%, which are taken as reliable data because both comply with the indicated structural system., (4) For floor drifts analyzed by the Dynamic modal spectral analysis in both programs, data were obtained with a maximum difference in their drifts of 7.09%. Thanks to the similarity of data, it is stated that Cypecad is viable for dynamic analysis, (5) From the results of the shear forces and moments of the values obtained by both programs, Cypecad is slightly larger which produces than for the Reinforcement calculation sections of the structural elements are increased., (6) Cypecad shows a very detailed spreadsheet for the calculation of static analysis, however the Etabs does not have that spreadsheet modality, so one must interpret the results given by the program. (7) Cypecad has the option of very wide editing once the results have been calculated, since it allows us, at the discretion of the designer, to modify the dimensions of the structures that help us optimize resources., And (8) If required a more detailed analysis where non-linear ones are very essential requires structural modeling through Etabs

For future research, the following is recommended: (1) Evaluate the programs through other types of buildings such as lightened slabs, use of partition walls

considering the density of the walls or other structural systems to fully validate the Cypecad program; (2) Incorporate the new design standard RNE E.030 - 2018., (3) recommends as a source the thesis of Román Medina, which has a very detailed comparison about the use of Cypecad., (4) Have basic knowledge to close to the structural design to be sure of a good design realization in Cypecad., and (5) The use of the Cypecad program is recommended for not very complex projects.

Keywords: Seismic design, static analysis, dynamic analysis, Etabs, Cypecad

I. INTRODUCCIÓN

En la actualidad los países subdesarrollados optan por la expansión territorial para su crecimiento, y la demanda de construcciones a nivel horizontal es algo que siempre será un tema a tratarse, debido a que el hombre opta por abarcar todo el ámbito territorial, mientras que esto no se aplica en lugares centrales donde la expansión horizontal es algo que ya no abarca por la sobrepoblación existente, por lo que se opta por construcciones a nivel vertical. Esto exige a que los ingenieros civiles estructurales tengan una buena orientación y estudios de diseño sísmico estructural.

Asimismo, uno de los eventos naturales más devastadores que causan pérdidas de vida y bienes materiales, son los terremotos. Éstos, debido al gran movimiento ondulatorio de tierras que producen por el choque de placas, afectan las estructuras de las edificaciones u obras civiles. En Sudamérica se encuentran países con alto riesgo sísmico como Chile, Ecuador y Perú que se encuentran cerca de las placas tectónicas de Nazca y Sudamericana, el cual son más afectados por estos movimientos de tierra. En promedio, 1000 personas son afectadas por estos fenómenos, Afectando tanto económicamente a familias y empresas, esto presenta un porcentaje elevado del presupuesto nacional de los países (Elnashai & Di Sarno, 2008).

Por consecuencia, como una forma de reducir los daños y pérdidas socioeconómicas por los terremotos, nace la ingeniería sísmica como una rama de la ingeniería civil. La ingeniería sísmica estudia el comportamiento de los edificios y estructuras sujetas a cargas sísmicas la cual tiene como objetivo de entender la interacción de los edificios y la infraestructura con el subsuelo; diseñando, construyendo y manteniendo que la estructura resista ante la exposición de un terremoto.

Según Barbat (2005) indica que:

Es importante resaltar la manera que uno hace uso de las normativas de diseño, ya que puede reducir el riesgo sísmico en las zonas urbanas. Por lo general en las zonas sísmicas existen edificios la cual han sido construidos en diferentes épocas, diversas formas y distintos tipos en el tema estructural. Obviamente, mediante la aplicación de las normas es que se consigue

disminuir el riesgo de los edificios actuales, que son muy pocos si comparamos con la gran cantidad de edificios existentes en cada sector. (p.8)

Por consiguiente, la aparición de nuevas tecnologías es algo que revolucionó el análisis estructural para las edificaciones u obras civiles, haciendo que muestre grandes avances para el desarrollo de un país en el lado ingenieril, esto se puede ver en el campo de la construcción, que es un ámbito que no deja de evolucionar con el pasar del tiempo, por lo que se busca nuevas maneras de mejorar, utilizar e innovar el uso tanto de materias primas como los diferentes software para el diseño, control y manejo de un proyecto. Este software ayuda a la elaboración de planos, diseño estructural, programación del proyecto, costos y entre otros. Según Huapaya (2017) dice que:

La evolución, tanto la ciencia como la tecnología, ha permitido desarrollar diferentes métodos para evaluar, calcular y diseñar las estructuras frente a un movimiento sísmico. Sin embargo, a ciencia cierta, no es posible conocer el resultado real que tienen las estructuras frente a un sismo por lo que es recomendable seguir con el estudio sobre dicho tema. (p.1)

Lo que el investigador indica es que el estudio para el diseño sísmico de una estructura debe seguir desarrollándose, ya que permitirá menores pérdidas y riesgo ante un sismo.

Una de las empresas que creadoras de los programas para el análisis sísmico es la empresa CYPECAD Ingenieros S.A. la cual en su software CYPECAD nos permiten diseñar estructuras de diversos materiales como ver el comportamiento sísmico de éstos. CYPECAD ha adaptado de una forma eficiente para modelar, diseñar y analizar las estructuras debido a que permite la importación automática de planos el cual reduce el tiempo en la modelación de los proyectos, así como también permite una variada gama de formatos en los que se puede exportar (Román, 2016). Por lo que este trabajo tiene como finalidad de realizar un diseño sísmico con el software CYPECAD y ETABS de una vivienda de 5 pisos en Villa María del Triunfo, Lima – 2019 para dar comparar la eficacia de los resultados y la manera de usar el programa, también ver sus funciones ya que gracias a las normativas implementadas dentro de los software, sean nacionales o internacionales, se aplican para un buen cálculo estructural, para realizar la

dimensión de las estructuras y comprobar los resultados de los análisis estructurales de hormigón, acero y madera, la cual serán sometidas a las diversas cargas sísmicas, viento y nieve, disminuyendo el tiempo de la elaboración de los proyectos.

II. MARCO TEÓRICO

Según Román (2016) en su tesis, Diseño sismorresistente de un edificio de hormigón armado con el sistema de losa prefabricada con vigas peraltadas utilizando el programa sap2000 y comparación de resultados con el programa CYPECAD desarrollada para optar el título de ingeniero civil, tuvo como objetivo principal el analizar los resultados y comparar el cálculo estructural; siendo el programa SAP 2000 versión 16.0.1 y el programa CYPECAD versión 2015. El cual concluyo en ambos programas como SAP 2000 y CYPECAD, son excelentes para el análisis estructural; sin embargo, si se requiere de un modelamiento estructural muy preciso donde el cálculo estructural requiere tener en cuenta el proceso constructivo por fases, la indiscutible elección es usar SAP 2000; pero si este no fuera el caso y se quiere realizar un proyecto con un complejo menor, de forma práctica, donde la optimización y productividad del tiempo sean primordiales, el programa CYPECAD es el indicado.

Por otro lado, Jurado (2016) en su trabajo de investigación para obtener el título de ingeniero, Comparación entre la norma ecuatoriana de la construcción 2015 aplicadas al análisis estructural mediante el uso del programa CYPECAD, definió que la NEC 2015 da resultados menos exigentes que la NEC 2011, por lo que concluyo que los resultados en el tiempo de ejecución de diseño y análisis entre CYPECAD y otro software especializado, es extremadamente superior al tiempo de ejecución el CYPECAD, esto se debe a que realiza el concreto armado de la estructura tomando en cuenta todas las consideraciones de las normas aplicadas; por consiguiente, ambos programas se pueden dar por validos ya que no tiene mayor diferencia en los resultados de análisis, excepto en el diseño de los elementos, debido a que CYPECAD trabaja con áreas de acero definitivas las cuales dependen del criterio profesional.

Otro de los trabajos sobre el diseño estructural usando el programa CYPECAD es de Vilema (2014) que en su tesis, Análisis del factor de reducción de las fuerzas sísmicas (R) en un edificio de hormigón armado de 5 pisos con CYPECAD para garantizar el cálculo y seguridad de sus habitantes ubicado en el barrio El Dorado, ciudad de Puyo, desarrollada para obtener el título de ingeniero civil, el cual analizó que sucede con el factor de reducción de las fuerzas sísmicas, diseñando el edificio

con CYPECAD para garantizar la seguridad del cálculo, tomando en cuenta que el programa tiene cargado en NEC-2011 y EL CEC-2001. La cual su investigación concluyó que el programa CYPECAD ayudó a agilitar varios procesos de cálculo y obtener datos confiables y aceptables, la cual demuestra comodidad y garantía en la modelación y cálculo de la estructura.

Antecedentes Nacionales

Según Huapaya (2017) en su tesis que lleva el título de Evaluación de los indicadores de comportamiento sísmico de edificios con un sistema aporticado a través del método estático no lineal, desarrollada para obtener el título de ingeniero civil, evaluó la resistencia y ductilidad aplicada en edificios aporticados, utilizando el método estático no lineal y comparar su capacidad con la norma E030, con el fin de dar conocimiento a un comportamiento más real de una edificación realizando un análisis estático no lineal a través del programa ETABS. El cual el investigador concluyó que el valor del sobre – resistencia, depende del periodo fundamental de la estructura. Tal y como que el periodo fundamental de la estructura aumenta, el valor se incrementa también. Como también el espectro de capacidad de las estructuras, supera al espectro que aparece en la norma de diseño de sismo E-30, notando que estos valores se hallan mediante el programa ETABS en la opción (ASCE 41-13NSP).

Otro de los trabajos presentados a nivel nacional es de Mendoza y Rodas (2015) en su tesis de "Análisis de interacción suelo estructura de centros educativos con zapatas corridas en la Urb. Nicolás Gareta – Nuevo Chimbote" desarrollada para optar el título profesional de ingeniero civil, la cual analizó la interacción sísmica suelo – estructura con zapatas corridas, mediante la evaluación de las características geotécnicas del suelo, un adecuado modelo dinámico de interacción de suelo-estructura en las zapatas corridas, evaluando la estructura con el método estático y con el método modal – espectral mediante el software CYPECAD. La cual concluyeron que dicho software en el instante de idealizar las pantallas matemáticamente, toma en cuenta estas como elemento finito de lámina gruesa, por el cual es incompatible con el comportamiento real de algunas secciones, mientras que ETABS, cuando ejecuta las combinaciones de carga, considera el mayor negativo como mínimo y el mayor positivo como máximo.

Por último, en Ing. Casimiro (2012) en su tesis "Desempeño sísmico de edificaciones bajo el sismo de nivel ocasional" la cual fue desarrollada para optar el grado de magister en referencia de ingeniería estructural, tuvo como objetivos principales de caracterizar el movimiento sísmico ocasional mediante los parámetros de ingeniería, utilizando en la evaluación y diseño la aceleración máxima del suelo. Para ello caracteriza el movimiento sísmico de diseño usando el intervalo de recurrencia ocasional del sismo mediante el software ETABS, el cual tomó en cuenta los periodos de retorno que propuso para estructuras distintas en las edificaciones. La cual, con respecto al desempeño sísmico, concluyó que el comportamiento de un edificio de 8 pisos con muros estructurales, está bajo la acción de un movimiento sísmico ocasional (periodo de retorno: 72 años), la evaluación tuvo como fin en verificar que un edificio diseñado con el programa ETABS, siguiendo todos los procedimientos de la norma E-060 (concreto armado) y la norma E-030 (sismorresistente), sea capaz de comportarse apropiadamente bajo la fuerza del sismo ocasional.

Diseño Sísmico

Según Nilson (2001) las estructuras, para el diseño sísmico, se clasifican en: estructuras esenciales como grupo "A" el cual lo conforman las estructuras que atienden por su importancia a la población después de haber ocurrido un desastre, es necesario que permanezcan operativas los hospitales, comisarias, edificios del gobierno, estaciones de bomberos, escuelas, etc. También se encuentran las estructuras cuyo fallo parcial o total esté representando un riesgo a la población, ellos encontramos a los templos, estadios, depósitos de sustancias tóxicas, gasolineras, salas de espectáculos, otros. Asimismo, las estructuras que ocasionen pérdidas culturales o económicas, como monumentos, registros y archivos públicos, puentes, museos, otros. Otra de las clasificaciones son las estructuras de normal importancia, llamado también grupo "B" que son aquellas que tienen como grado de seguridad un nivel intermedio, en las que se encuentran los locales, centros comerciales, industrias, hoteles, viviendas, edificios de oficinas, estructuras urbanas que no se consideran esenciales, depósitos y entre otros. Y por último la clasificación de grupo "C" que se consideran estructuras de importancia menor, definiendo que son aquellas estructuras aisladas en donde la falla, sea parcial o total, no pone en riesgo la vida humana; en ella se encuentran los cercos de altura menor a los 2.5 m, los barandales y entre otros (p.23).

Por otro lado, Bazan y Meli (2002) menciona que el Diseño de las estructuras no solamente resiste los sismos, sino que también tiene una diversidad de razones. Lo peculiar no solo radica en la respuesta estructural a los efectos dinámicos de un sismo, sino que deriva el fenómeno, que es poco prescindible, y de las intensidades extraordinarias el cual puede alcanzar sus efectos (p.13).

Normas Técnicas de Estructuras de Concreto Armado (Perú)

Uno de los reglamentos para el diseño de estructuras armadas es la NTE E.060 2009 la cual nos especifica los detalles del concreto armado como los materiales, los requisitos de durabilidad, la calidad del concreto, el mezclado, la colocación, entre otros. A la vez nos explica el análisis y diseño para las columnas, vigas, losas, muros y cimentaciones.

Normas Técnicas de Estructuras de Acero (Perú)

El Perú tiene como reglamento el NTE E.090. Esta norma se clasifica en 3 diferentes tipos de aceptables construcciones, la primera clasificación es el pórtico rígido, el cual asume las conexiones de las columnas y vigas como suficientemente rígidas, así no tiene cambios de los ángulos entre los elementos estructurales, la segunda clasificación son los pórticos simples, en el cual la condición de apoyo simple se asume en sus extremos a través de conexiones solo por corte y que éstos se encuentran libres de rotar por las cargas gravitatorias; y por último tenemos a la tercera clasificación, que son los pórticos semirrígidos, en el que asumen las conexiones entre los elementos que poseen una capacidad conocida de rotación que se encuentra entre la conexión rígida de la primera clasificación y la conexión rígida de la segunda clasificación (NTE E.090, 2004). Con esas condiciones es que uno puede diseñar en base al reglamento.

Normas Técnicas de Cargas (Perú)

Cuando se habla de cargas, se establece la NTE E.020. la cual nos habla acerca de los diversos tipos de cargas que podemos encontrar en una edificación.

Cargas Muertas

Para el diseño sísmico se considera como cargas muertas a lo que vendría a ser el peso de todos los elementos que estarán en una posición permanente durante toda la vida útil de una obra civil. En estos elementos encontramos a las estructuras, los acabados, entre otros. Cuando se evalúa las cargas muertas, se emplean los pesos unitarios de los elementos y las dimensiones especificadas, con sus respectivos materiales, también se considera el peso de todos los artefactos de servicio en la edificación, la cual incluye las instalaciones sanitarias y eléctricas, ductos y equipos de aire acondicionado, dispositivos fijos, ascensores y otros. El peso de todos los materiales se incluye en la carga muerta mientras que el peso de los instrumentos con el que se amuebla una zona, se le considera como carga viva. Tal como se muestra en el RTE E-020 la cual establece algunos pesos reales de los elementos estructura. Mientras que, para otros productos, se puede utilizar como dato el peso que especifica el fabricante.

Cargas Vivas

Se denomina carga viva al peso de los elementos o personas que se mantendrán en movimiento dentro de la estructura. Se usa como mínimo los valores que están representadas en el NTE E.020 para los distintos tipos según la ocupación o uso.

Cargas viento internas

Cuando se va a diseñar elementos de cierre como pórticos, la cual restringe el nivel analizado en cualquier dirección, en el que se encuentran los paneles de vidrio, las coberturas u otros elementos de que producen el cerramiento por el cual se adicionarán a las cargas exteriores, las cargas interiores el cual han sido cuantificadas con los factores de forma, para la presión de interiores.

Cargas viento externas

En las edificaciones, la carga exterior que se genera ya sea por succión o presión que ejerce el viento, se deducirá estáticamente y perpendicularmente a la superficie la cual se hallará por la fórmula.

$$P_h = 0.005 CV_h^2$$

El cual:

 P_h = presión del viento a una altura, (kgf/m2)

C = Factor de forma adimensional

V_h = Velocidad de diseño a una altura, (Km/h)

Cargas Sismo

Por otro lado, tenemos las cargas sismo a la cual nos ayudan a ver el comportamiento de nuestra estructura. En el Perú el reglamente que se generó para el diseño sísmico es la NTE E.030 (2006) modificada con el Decreto Supremo N°002-2014-Vivienda en el cual debe tomarse en cuenta los siguientes aspectos para las estructuras sismorresistentes: el peso mínimo, la simetría para la distribución de rigideces y masas, la continuidad estructural, la resistencia, la ductilidad, el uso adecuado de materiales y las deformaciones laterales limitadas (NTE E.030, 2018).

Empuje horizontal (carga sísmica reactiva)

Para el diseño sísmico se debe tener en cuenta las cargas muertas y vivas de la estructura, así obtendremos la carga sísmica (W) la cual a ambas cargas se les multiplica por un factor de sobrecarga. Si se considera como carga sísmica reactiva a toda la carga muerta de la estructura, ya sea el peso de las vigas, losas, columnas, etc. y la carga muerta adicional, (peso de paredes y recubrimientos), éstas se ingresan a los softwares como cargas distribuidas aplicadas en las losetas de compresión. Zonificación Sísmica

Según el MVCS, considera que el Perú está dividido en 4 zonas que por norma toman distintos valores, el cual están representadas en el NTE-E060.

Figura 1. Zonificaciones sísmicas, Ministerio de vivienda, construcción y saneamiento, 2016.

Por cada zona el MVCS determina un factor que es interpretada como aceleración horizontal máxima el cual es aplicada en el suelo teniendo una probabilidad de 10% (Román 2016).

VALOR (Z)		
ZONA	Z	
1	0.1	
2	0.25	
3	0.35	
4	0.45	

Tabla 1. Valores de Z según la zonificación, 2018.

Fuente: https://cdn.www.gob.pe/

Perfil de suelo

Con el tiempo han sido clasificados los perfiles de suelo según la velocidad promedio de las ondas de corte, y en el caso de los suelos granulares se usa el promedio de los N60 mediante los ensayos de penetración estándar. Estos perfiles los consideran la norma técnica de edificaciones E.030

Parámetros de sitio (s, t_p y t_l)

Para el diseño sísmico se debe de considerar el tipo de perfil el cual describa de mejor forma las condiciones que se tiene del terreno, utilizando los valores del factor que intervienen en la acción sísmica aplicada en el análisis estructural.

Factores de amplificaciones sísmicas (c)

El factor de amplificación sísmica se define con respecto a la aceleración del suelo. Éstas se encuentran representadas en expresiones dadas por la NTE – E.030.

Donde según el MVCS (2018), indica que el valor de C_T tendrá una variación dependiendo de los siguientes casos:

- Para edificaciones que tengan solamente como elementos resistentes pórticos de concreto armado sin muros y pórticos dúctiles de acero cuya unión resisten a momentos, sin arriostramiento, se considerará C_T = 35.
- Para edificaciones que tengan solamente como elementos resistentes pórticos de concreto armado con muros en las cajas de ascensores y escaleras o en el caso de que sean pórticos de acero arriostrados se tomará el valor de C_T = 45.
- Para edificaciones que son de albañilería y para todos los edificios de concreto armado duales, con muros de ductilidad limitada y muros estructurales, se considera C_T = 60.

Factor de uso

En base a la edificación es que se determina el factor de uso o importancia (U). Para los edificios que cuenten con aislamiento sísmico en su base, se puede considerar el valor de U = 1. Sin embargo, la NTE muestra las condiciones y categorías para la definición del factor U.

Factores de irregularidad ia, ip

Para determinar el factor (la) se toma en cuenta las irregularidades estructurales por la altura que tiene la edificación, para ambas direcciones que se analizará. Así mismo, para el factor (lp), el cual se determina como el menor valor, corresponde a las irregularidades estructurales vistas en la planta de la edificación, también por ambas direcciones que se analizará. Si al momento de emplear la NTE. E.030 se obtienen valores diferentes de los factores la o lp, para ambas direcciones de análisis, se debe tomar el valor menor entre éstos y aplicarla para las direcciones de cada factor.

Coeficiente de reducción de la fuerza sísmica r

Este coeficiente es determinado como el producto de los factores de la, lp y el coeficiente R0, el cual se determina a través de la norma técnica de edificaciones, la cual son usadas en la siguiente fórmula.

$$R = I_a * I_P * R_0$$

Modelo de análisis sísmico estático

Se debe analizar estáticamente dos fuerzas equivalentes que sean estáticos, para el análisis dinámico se efectúa el modal espectral considerando un comportamiento elástico y lineal con las instigaciones sísmicas reducidas. El UBC (University of British Columbia) clasifica entre dos métodos de carga estática equivalente usando el criterio de cargas o fuerzas laterales mínimas de diseño, mientras que el método más complejo de carga estática equivalente, se detalla bajo los procedimientos de carga lateral dinámica (Nilson, 2001). Para el resultado final de la fuerza cortante

ubicada en la base de la estructura, para cada dirección, se infiere por la fórmula siguiente:

$$V = \frac{Z * U * C * S}{R} * P$$

En la cual el valor (C/R) no se considerará menor igual a 0.11.

Modelo de análisis sísmico dinámico

Para el caso del análisis dinámico, cualquier estructura puede ser diseñada en base a los resultados de la combinación modal espectral. Según Nilson (2001) dice:

En los métodos de carga lateral dinámica del UBC, integran la utilización de la respuesta espectral, la cual da la máxima respuesta (usualmente aceleración) como una funcionalidad de periodos de la estructura; o análisis de respuesta estructural en el tiempo, basados en un desplazamiento de diseño supuesto para el lugar en particular (p.670).

Para ello se determina los modos de vibración mediante un procedimiento analítico que considere las características tanto de la distribución de masas como la rigidez. Se utilizará un espectro inelástico de supuestas aceleraciones que están definidas, para cada dirección horizontal analizada, por la fórmula:

$$V = \frac{Z * U * C * S}{R} * g$$

Para ejecutar el análisis dinámico efectuado en la dirección vertical, va a poder usarse un espectro con valores equivalentes a los 2/3 del espectro, el cual se empleará para las direcciones horizontales tomando en cuenta los valores de C, la cual están definidas en la NTE E.030; en excepción de las zonas con periodos muy cortos, en el cual se considera:

$$T < 0.2 T_P \qquad \qquad C = 1 + 7.5 \left(\frac{T}{T_P}\right)$$

Por otro lado, para los criterios de las combinaciones se podrá obtener la respuesta máxima elástica esperada (r) tanto para los parámetros a nivel global de la edificación, sea fuerza cortante, momentos de volteo, etc. y para las fuerzas internas de cada elemento estructural (Ministerio de vivienda, 2016).

Entonces la respuesta elástica máxima esperada (r) que corresponde al efecto grupo de los diferentes modos de vibración empleados (ri) se podrá definir utilizando la combinación cuadrática siguiente:

$$r = \sqrt{\sum \sum r_i \, \rho_{ij} \, r_j}$$

En la cual *r* representa las fuerzas, los desplazamientos o respuestas modales.

Diseño sísmico de estructuras metálicas

Para el diseño estructural de elementos metálicos del Tipo 2, se debe tener en cuenta los criterios mencionados en la cual las conexiones y los elementos conectados serán ajustados como vigas simplemente apoyadas, con la finalidad de resistir las cargas de gravedad. Como también los elementos y conexiones serán adecuados para soportar las cargas horizontales. Y las conexiones tendrán una capacidad de rotación inelástica que se adecue para evitar sobrecargar a las soldaduras o conectores frente a la combinación de fuerzas verticales y horizontales. Mientras que las construcciones del Tipo 3 deberán necesitar una deformación inelástica en el acero estructural.

Por consiguiente, la construcción de estructuras metálicas para edificios, se clasifican de acuerdo con al tipo de la siguiente manera: Estructura apoyada en muros de carga, construcción reticular, estructuras de acero para grandes claros y estructuras combinadas de acero y concreto. Estos 4 tipos de

clasificación se pueden dar en un mismo edificio la cual pueden ser estudiadas (McCormac & Csernak, 2012).

Tipos de acero estructurales usados para el diseño

Para el diseño de las estructuras metálicas se debe cumplir según la NTE E.090 con algunas normas designadas por el ASTM (American Society for Testing and Materials), la cual nos permite adecuar las normas al diseño de estructuras de acero en el Perú.

Diseño de miembros

Para cada uno de los miembros estructurales, se deberá diseñar todas las cargas muertas que el elemento soporta, pero es posible también que se diseñe algunos miembros para cargas vivas, el cual son menores que sus valores teóricos total (McCormac & Csernak, 2012). También es necesario dibujar el diagrama de momentos en ambos casos (cargas laterales y de gravedad), la cual serán sumadas para obtener el momento positivo máximo del claro. Estos valores pueden guiar en el diseño de las dimensiones de las trabes, pero en algunos de los miembros.

Combinaciones de carga

Para las combinaciones de cargas y cargas nominales, se tomarán como mínimas de diseño establecidos por la NTE E.020.

Diseño sísmico de cimentación

Para el diseño de la cimentación es necesario el cálculo de las fuerzas ejercidas de la estructura para la subbase, para su diseño uno debe saber la profundidad de cimentación tato de cimientos como de zapatas, que son las distancias desde el nivel de la superficie a la base de la cimentación. La profundidad será definida por el PR y está condicionada por la estratigrafía del suelo (Ministerio de Vivienda, Construcción y Saneamiento, 2018).

Para las presiones de contacto admisible, se debe determinar las bases del estudio de mecánica de suelos, con respecto a los ensayos de carga y otras determinaciones experimentales. Para las presiones de cargas admisibles (qa) para cargas de servicio se escogen teniendo en cuenta un factor de seguridad entre 2.5 a 3.0 para que no se exceda la capacidad portante de los asentamientos y suelo, de tal manera se mantengan dentro de unos límites admisibles.

Para las zapatas concéntricamente cargadas, el área se determinará a partir de

$$A_{req} = \frac{D+L}{q_a}$$

Cuando se incluye los efectos de Viento (W) o de sismo (E), se permiten un incremento en la presión admisible en un 33%. Cuyo caso sería:

$$A_{req} = \frac{D+L+W}{1.33q_a} \qquad \qquad \frac{D+L+E}{1.33q_a}$$

Combinaciones de cargas

Una vez determinada el área para las zapatas, se procederá a diseñarse la capacidad necesaria para resistir todos las cortantes, momentos y otras acciones que se manifiestan por las cargas de sobrepeso. De esta forma para el diseño a la resistencia de las zapatas se verá con la siguiente expresión:

$$U = 1.4 CM + 1.7 CV$$

$$U = 1.25 (CM + CV \pm CV_i)$$

 $U = 0.9 CM \pm 1.25 CV_i$

$$U = 1.25 (CM + CV) \pm CS$$
$$U = 0.9 CM \pm CS$$
$$U = 1.4 CM + 1.7 CV + 1.7 CE$$
$$U = 0.9 CM \pm 1.7 CE$$
$$U = 1.4 CM + 1.7 CV + 1.4 CL$$
$$U = 1.05 CM + 1.25 CV + 1.05 CT$$
$$U = 1.4 CM + 1.4 CT$$

En el cual *CM* es la carga muerta, *CV* la carga viva, *CS* la carga sismo, CV_i la carga viento, *CE* el empuje lateral de los suelos, *CL* el peso y presión de líquidos con densidades definidas y el factor de *CT*.

CYPECAD

CYPECAD es un programa estructural que fue creado en España en la década de los 80 por la empresa CYPE Ingenieros S.A., para realizar el análisis de cada elemento estructural de hormigón armado, edificios y proyectos de obra civil que pueden ser sometidos a fuerzas tanto horizontal como vertical. La cual permite a un ingeniero con conocimientos básicos en el diseño estructural, un análisis tridimensional de la estructura, de forma muy detallada junto con su respectiva memoria de cálculo; ambos en formato de uso convencional (Vilema, 2014, p.38). Ofrece también una gran variedad de herramientas y opciones para la producción de proyectos de consultoría u otras plataformas. Este software ha sido utilizado en diversos países debido a que cuenta con criterios en base a los reglamentos de algunos países como Estados Unidos, Francia, España, Colombia, Chile, Bulgaria, Brasil, Bélgica, Argentina, Perú, India, Italia, Portugal, México y entre otros. La cual facilita el diseño estructural de viviendas, ya que, a su fácil uso, nos permite modular y analizar con mayor rapidez una estructura.

Introducción de datos

La introducción de datos para el diseño estructural es muy eficaz en el programa ya que permite importar planos en formato AutoCad (DWG) como Revit (IFC), por otro lado, también la persona que ejecute el programa podrá introducir la dimensión de sus columnas, vigas, muros de corte, losas, y sobrecargas adicionales.

Análisis estructural

Los análisis que te calcula el programa son el medio estático y dinámico la cual se guía de las normas implementadas en su sistema. Esto permite realizar el dimensionamiento, cálculo y diseño de los elementos estructurales de hormigón armado y metálicos para una edificación u obra civil, sometidas a acciones tanto horizontales, verticales y bajo la acción del fuego. Ya sea que estén conformada por columnas (mixtos, acero y hormigón), pantallas y muros; vigas metálicas, mixtas y de hormigón; viguetas (genéricas, armadas, pretensadas, entre otros), como también placas aligeradas, reticulares, losas macizas y losas mixtas; cimentaciones por losas, zapatas, encepados y vigas de cimentación. También dimensiona y comprueba uniones metálicas soldadas y atornilladas.

Exportación de resultados

Ya que este programa va de la mano con CYPECAD, nos permite exportar en los formatos ya mencionados, la cual nos daría una documentación sobre el plano, los listados (en la que se detallan las comprobaciones de los estados límite últimos y la justificación de la acción viento) Medición y presupuesto como también sistemas de protección colectiva y memoria del proyecto de edificación. Nos brinda también un uso del programa más detallado como pandeo lateral, limitaciones de desviación, ajustes, desplazamientos, rotaciones, coeficientes de fijeza y rigidez rotacional. Como para estructuras metálicas que sería el detalle de las uniones soldadas y atornilladas, tipos de nodos, estructuras tipo genérico, corbata, columna, viga, entre otros. Facilitando el uso del programa sin la necesidad de profundizar tanto en la línea estructural.

III. METODOLOGÍA

Formulación del problema

Problema general

¿Es factible el programa estructural CYPECAD en comparación de ETABS en el cálculo de diseño sísmico de una vivienda de 5 pisos en Villa María del Triunfo, LIMA - 2019?

Problemas específicos

¿Qué normativas están implementadas en el software CYPECAD para el diseño sísmico de una vivienda de 5 pisos en Villa María del Triunfo, Lima - 2019?

¿Es viable el uso del software CYPECAD y ETABS para el diseño de análisis estático de una vivienda de 5 pisos en Villa María del Triunfo, LIMA - 2019?

¿Es viable el uso del software CYPECAD y ETABS para el diseño de análisis dinámico de una vivienda de 5 pisos en Villa María del Triunfo, LIMA - 2019?

JUSTIFICACIÓN

Justificación científica

En nuestro país son pocas las personas especialistas en el lado estructural la cual tienen manejo completo de los programas usados para el cálculo de las estructuras, esto exige a que los ingenieros civiles se preparen para la demanda de trabajo en la actualidad, debido a que se necesita trabajadores cuyas habilidades disminuyan el tiempo de producción en la ejecución de proyectos y conlleven a la disminución de costos en su elaboración. Por lo que es indispensable llevar cursos para tener conocimiento de estos programas que nos ayudan al diseño y análisis estructural. Una de los programas vendría a ser ETABS cuya aplicación en el ámbito laboral es muy usada debida facilidad de acceso de sus herramientas que facilitan el diseño estructural. Pero, por otro lado, se encuentra la empresa CYPECAD de origen español, la cual cuenta con programas de análisis estructural cuyo manejo no necesita un ser especialista en estructuras, si no que cuentes con los criterios básicos para el pre dimensionamiento y uso de datos. Este programa es muy fácil de usar, permite la importación de planos de AutoCAD y REVIT la cual nos disminuye el diseño de la estructura, nos permite modular de forma específica cada
estructura tridimensional, no da las memorias de cálculo y especificaciones técnicas hasta el mismo presupuesto de la estructura, sin dejar de lado la seguridad del programa. Por lo que justifica el diseño a través de este programa para ser comparado con uno del software más usado en el ámbito ingenieril.

HIPÓTESIS

Hipótesis general:

El software CYPECAD es más factible que el software ETABS en el diseño sísmico de una vivienda de 5 pisos en Villa María del Triunfo, LIMA – 2019.

Hipótesis específica:

El software CYPECAD cumple con las normativas que se dan para el diseño sísmico de una vivienda de 5 pisos en Villa María del Triunfo, Lima - 2019.

Es viable el uso del software CYPECAD y ETABS para el diseño de análisis estático de una vivienda de 5 pisos en Villa María del Triunfo, LIMA - 2019.

Es viable el uso del software CYPECAD y ETABS para el diseño de análisis dinámico de una vivienda de 5 pisos en Villa María del Triunfo, LIMA - 2019.

OBJETIVOS

Objetivo General:

Realizar un diseño sísmico con el software CYPECAD y ETABS de una vivienda de 5 pisos en Villa María del Triunfo, LIMA – 2019.

Objetivo Específico:

Aplicar las normas técnicas peruanas implementadas en el software CYPECAD para el diseño sísmico de una vivienda de 5 pisos en Villa María del Triunfo, Lima – 2019.

Utilizar el software CYPECAD y ETABS para realizar el diseño de análisis estático para una vivienda de 5 pisos en Villa María del Triunfo, LIMA – 2019.

Utilizar el software CYPECAD y ETABS para realizar el diseño de análisis dinámico para una vivienda de 5 pisos en Villa María del Triunfo, LIMA – 2019.

Método

Tipo de investigación

Para este trabajo de investigación, el estudio que se está llevando a cabo es cuantitativo, ya que analizaremos el funcionamiento de los programas CYPECAD y ETABS a través de un diseño sísmico por la cual se hará comparativas en base a los análisis de cálculo de las estructuras y comparación de resultados. Según Hernández, Fernández y Baptista (2014) indica que:

Si se habla del enfoque cuantitativo, es un trabajo de investigación justificativo y secuencial. Ya que al culminar con una etapa precede a la siguiente sin eludir pasos para seguir con la investigación. El orden de este tipo es riguroso, debido a que podemos redefinir alguna fase. También se parte de un proyecto que va desarrollándose y, una vez delimitada, se origina preguntas de investigación para obtener hipótesis, determinar las variables y sacar nuestros propios objetivos; se procede a trazar un plan de diseño para poder probarlas y medir las variables en un contexto determinado. Por último, se analizan las mediciones de los resultados utilizando métodos estadísticos, y a su vez extraer una serie de conclusiones acompañadas de recomendaciones (p.37).

Infiriendo el contexto, se entiende que la presente investigación cuenta con los requisitos de una investigación cuantitativa por lo que se tiene variables cuya dependiente será estudiada y analizada para brindar una información detallada del uso y beneficios de los programas de diseño estructural.

Diseño de la investigación

El diseño de la presente investigación es no experimental Con un alcance investigativo de carácter exploratorio, comparativo y explicativo. Cuando se habla de un diseño experimental, en lo general se refiere a realizar una acción de un objeto para luego observar las consecuencias y analizar los resultados. Este término es bastante común; para el nacimiento de un experimento se requiere la manipulación intencional mediante una acción para analizar sus posibles resultados (Hernández, Fernández y Baptista, 2014). Por la cual el diseño experimental tiene como requisito de manipular las variables independientes, el cual la variable independiente se le considera como supuesta causa con relación a las variables, y la otra parte que es la condición de antecedente y efecto provocado por dicha causa, al cual se le denomina variable dependiente.

Variable y operacionalización

Variable independiente: Diseño Sísmico

Variable dependiente: Software CYPECAD y ETABS

Tabla 2. Operacionalización de la variable independiente.

Variable	Def. Conceptual	Def. Operacional	Dimensiones	Indicadores
DISEÑO SISMICO	Históricamente, en Norteamérica el diseño sísmico ha hecho realce en el movimiento del terreno debido a que el componente horizontal de un terremoto excede en general la componente vertical y a que las estructuras son por lo general mucho más resistentes para la respuesta ante cargas verticales en comparación con las cargas horizontales (Nilson, p.648)	Esta variable será medida con 3 dimensiones: criterios para el diseño sísmico de estructuras de tierra, hormigón armado, metálicas y madera	NORMAS TÉCNICAS DE EDIFICACIONES EN EL PERÚ DISEÑO DE ANALISIS ESTATICO DISEÑO DE ANALISIS DINAMICO	Normas técnicas de estructuras de concreto armado Normas técnicas de estructuras de acero Normas técnicas de cargas Factores de coeficiente de basal Factor de amplificación y reducción sísmica Fuerza cortante Espectro de respuesta Distorsiones máximas
	(Mison, p.646)			

OPERACIONALIZACION DE VARIABLES

Restricciones de irregularidad Tabla 3. Operacionalización de la variable dependiente.

Variable	Def. Conceptual	Def. Operacional	Dimensiones	Indicadores
	Es un software			Introducción de datos
	creado en España en la los años 80s por la empresa Cype Ingenieros S.A., para una mejor		CYPECAD	Análisis estructural
SOFTWARE CYPECAD y FTABS	disponibilidad de realizar el el dimensionamiento y cálculo de las	Esta variable será medida con 2 dimensiones: Uso del software		Exportación de resultados
	estructuras de hormigón armado, viviendas, edificios y proyectos de obra	CYPECAD y ETABS		Introducción de datos
	sometidos a acciones horizontales y		ETABS	Análisis estructural
	verticales de cargas. (Santos, p.7).			Exportación de resultados

OPERACIONALIZACION DE VARIABLES

Población y muestra Población

El proyecto de investigación tiene una tipología cuasiexperimental, porque no se llega a realizar un muestreo ya que la población es igual a la muestra. Según Hernández, Fernández & Baptista (2014) describieron:

Los diseños cuasiexperimentales además manipulan deliberadamente, por lo menos, una variable independiente para mirar su impacto sobre una o más variables dependientes, únicamente que difieren de los experimentos "puros" en el nivel de estabilidad que logre tenerse sobre la equivalencia inicial de los equipos. En los diseños cuasiexperimentales, los sujetos no se asignan al azar a los equipos ni se emparejan, sino que éstos ya están conformados anteriormente del experimento (p. 151).

Por la que la población está conformada por la misma muestra de selección la cual es un edificio de 5 niveles destinado para oficinas en el Distrito de Villa María del Triunfo.

Muestra

Según Behar (2008) nos indica que: "La muestra es esencialmente un subgrupo poblacional. Puede decirse que es un subconjunto de recursos que pertenecen a aquel grupo determinado en sus necesidades al que llamamos población" (p. 51). El autor nos indica que la muestra es el subconjunto de la población a tomar, esta tendrá que recopilar información para la obtención de resultados.

La muestra del presente proyecto de investigación es no probabilística – convencional o accidental y por la cual se considerará un edificio de 5 niveles destinado para oficinas en el Distrito de Villa María del Triunfo.

Técnicas de recolección de información

Tabla 4. Cuadro de recolección de información

Tipo de Documento	Documentos referidos a	Cantid ad	Palabras claves	Criterio de inclusión	Criterio de exclusión
Libros	Análisis sísmico de estructuras	21	Estructuras de concreto armado, metálicas y cimentación	Textos que se refieren al diseño de estructuras metálicas, hormigón armado y cimentaciones	Textos que no se refieran al tema o sean textos de antigüedad mayor a 10 años.
Tesis	Programa CYPECAD Programa ETABS	10	Diseño estructural con CYPECAD y ETABS	Textos que se dirijan al uso de los programas y su comparativos no menor a 5 años	Textos que no tienen que ver con el diseño estructural con los programas
Artículos Científicos	Manual CYPECAD Manual ETABS	7	Uso del Software CYPECAD Uso del Software ETABS	Textos referidos al uso detallado del Software CYPECAD y ETABS sobre sus herramientas de cálculo	Textos que no se refieran al diseño de los objetivos.

Para la recolección de datos se llevó a cabo la búsqueda de libros, tesis y artículos científicos cuya información sean necesarias para el proyecto de investigación, tomando en cuenta el grado científico del contenido.

Instrumento de recolección de datos

Por otro lado, como instrumento se realizará una ficha de cálculo para la comparación de resultados de los programas a utilizarse en el diseño sísmico, como también se usarán los equipos necesarios para obtener los datos que ayudarán en el diseño, como el estudio de suelos, entre otros.

Validez y confiabilidad

Cuando la validez de ese proyecto se optó por la información de expertos, ingenieros especializados en el rubro u otros investigadores. Según Hernández (2014): "La validez hace referencia al nivel en que una herramienta mide realmente la variable que pretende medir. Asimismo, hay autores que comentan que la validez de profesionales es el nivel en que un instrumento mide la variable de interés" (p.200).

La confiabilidad es el grado en que un instrumento produce resultados consistentes y coherentes" (Hernández, 2014). Para el grado de confiabilidad se usará una ficha técnica peruana usada en programas para validar la seguridad de los resultados.

Método de análisis de datos

Para el proyecto de investigación se usará el método estadístico descriptivo, debido a que se usará unos cuadros de cálculo para el resumen de los resultados, que ayudarán a la comparación entre programas, vinculadas a gráficos y tablas, y ver la similitud entre éstos. (Hernández, Fernández y Baptista, 2014)

Aspectos Éticos

Para la autenticidad del proyecto de investigación, los investigadores se responsabilizan sobre la confiabilidad de los datos que se obtengan de los trabajos a realizar.

Por consiguiente, esta investigación pretende dar conocimiento acerca de la factibilidad de los softwares para el diseño estructural, la cual ayuda a facilitar el trabajo de un ingeniero. Por lo que guarda relación con (Jurado, 2016) y (Román, 2016) el cual hacen una comparativa de softwares de diseño estructural, en la cual ambos realizan un diseño estructural con el CYPECAD y lo comparan con otro programa, tanto ETABS como SAP2000, para ver la validez de sus resultados. Tanto de un sistema de concreto armado como la aplicación de la norma ecuatoriana en el programa.

Otro de los trabajos por el investigador Saavedra, (2017) utiliza el programa CYPECAD para la gestión de proyectos en edificaciones; el cual, mediante cuadros estadísticos, hace una comparación de diseño del SAP2000 y CYPECAD. Opto por un estudio cuantitativo y realizo tablas comparativas de tiempo de diseño tanto en la introducción de datos y diseño estructural, memorias de cálculo, elaboración de planos estructurales. En esta investigación se optará por una comparativa de resultados y calidad en los análisis estructurales entre el ETABS y CYPECAD, demostrando que tan versátiles y confiables son estos programas.

IV. RESULTADOS

Cálculo del espectro respuesta según E-030 – 2018

Se calcula el espectro a usar en el diseño sísmico, para ello utilizamos los factores ZUCS según el Reglamento Nacional de Edificaciones E-030. Para la categoría U se sabe que la estructura tendrá una utilidad de Oficinas por el cual se considera de categoría C, en base al estudio de suelo dados por la empresa JFA.SAC tenemos el valor de suelo S2 y consideraremos un sistema estructural de concreto armado tipo Dual.

Tabla 5. Clasificación de los factores Z, U, S y Sistema estructural.

Zona (z):	4
Categoría (u):	Edificaciones Comunes- C
Factor de suelo (s):	S2
Sistema Estructurales:	Concreto Armado De Muros Estructurales

Tabla 6. Valor de los factores según su clasificación según el RNE – E030 – 2018

=	0.45
=	1.00
=	1.05
=	6.00
=	6.00
=	0.60
=	2.00
=	1
=	1

Para el análisis dinámico usaremos el análisis por espectro de respuesta el cual determina estadísticamente la respuesta probable de una estructura a la carga

sísmica. Este análisis de tipo lineal utiliza la respuesta de espectro registros de aceleraciones del suelo basados en la carga sísmica y las condiciones del lugar. Este tipo de método es demasiado eficiente y tiene en cuenta el comportamiento dinámico de la estructura, para ello se dará a conocer los datos del espectro a usar.

Т	С	ZUCS/R	Sa*g
0,00	2,5	0,196875	1,93134375
0,02	2,5	0,196875	1,93134375
0,04	2,5	0,196875	1,93134375
0,06	2,5	0,196875	1,93134375
0,08	2,5	0,196875	1,93134375
0,1	2,5	0,196875	1,93134375
0,12	2,5	0,196875	1,93134375
0,14	2,5	0,196875	1,93134375
0,16	2,5	0,196875	1,93134375
0,18	2,5	0,196875	1,93134375
0,2	2,5	0,196875	1,93134375
0,25	2,5	0,196875	1,93134375
0,3	2,5	0,196875	1,93134375
0,35	2,5	0,196875	1,93134375
0,4	2,5	0,196875	1,93134375
0,45	2,5	0,196875	1,93134375
0,5	2,5	0,196875	1,93134375
0,55	2,5	0,196875	1,93134375
0,6	2,5	0,196875	1,93134375
0,65	2,307692308	0,181730769	1,782778846
0,7	2,142857143	0,16875	1,6554375
0,75	2	0,1575	1,545075
0,8	1,875	0,14765625	1,448507813
0,85	1,764705882	0,138970588	1,363301471
0,9	1,666666667	0,13125	1,2875625
0,95	1,578947368	0,124342105	1,219796053

Tabla 7. Datos del Espectro en la dirección X

1	1,5	0,118125	1,15880625
1,1	1,363636364	0,107386364	1,053460227
1,2	1,25	0,0984375	0,965671875
1,3	1,153846154	0,090865385	0,891389423
1,4	1,071428571	0,084375	0,82771875
1,5	1	0,07875	0,7725375
1,6	0,9375	0,073828125	0,724253906
1,7	0,882352941	0,069485294	0,681650735
1,8	0,833333333	0,065625	0,64378125
1,9	0,789473684	0,062171053	0,609898026
2	0,75	0,0590625	0,579403125
2,1	0,680272109	0,053571429	0,525535714
2,2	0,619834711	0,048811983	0,478845558
2,3	0,56710775	0,044659735	0,438112004
2,4	0,520833333	0,041015625	0,402363281
2,5	0,48	0,0378	0,370818
2,6	0,443786982	0,034948225	0,342842086
2,7	0,411522634	0,032407407	0,317916667
2,8	0,382653061	0,030133929	0,295613839
2,9	0,356718193	0,028091558	0,275578181
3	0,3333333333	0,02625	0,2575125
4	0,1875	0,014765625	0,144850781
5	0,12	0,00945	0,0927045
6	0,083333333	0,0065625	0,064378125
7	0,06122449	0,004821429	0,047298214
8	0,046875	0,003691406	0,036212695
9	0,037037037	0,002916667	0,0286125
10	0,03	0,0023625	0,023176125

Figura 2. Espectro de pseudoaceleraciones en la dirección X

С	ZUCS/R	Sa*g
1	0,07875	0,7725375
1,15	0,0905625	0,888418125
1,3	0,102375	1,00429875
1,45	0,1141875	1,120179375
1,6	0,126	1,23606
1,75	0,1378125	1,351940625
1,9	0,149625	1,46782125
2,05	0,1614375	1,583701875
2,2	0,17325	1,6995825
2,35	0,1850625	1,815463125
2,5	0,196875	1,93134375
2,5	0,196875	1,93134375
2,5	0,196875	1,93134375
2,5	0,196875	1,93134375
2,5	0,196875	1,93134375
2,5	0,196875	1,93134375
2,5	0,196875	1,93134375
	C 1 1,15 1,3 1,45 1,6 1,75 1,9 2,05 2,2 2,35 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,	CZUCS/R10,078751,150,09056251,30,1023751,450,11418751,60,1261,750,13781251,90,1496252,050,16143752,20,173252,350,18506252,50,196875

Tabla 8. Datos del Espectro en la dirección Y

-

_

0,55	2,5	0,196875	1,93134375
0,6	2,5	0,196875	1,93134375
0,65	2,307692308	0,181730769	1,782778846
0,7	2,142857143	0,16875	1,6554375
0,75	2	0,1575	1,545075
0,8	1,875	0,14765625	1,448507813
0,85	1,764705882	0,138970588	1,363301471
0,9	1,666666667	0,13125	1,2875625
0,95	1,578947368	0,124342105	1,219796053
1	1,5	0,118125	1,15880625
1,1	1,363636364	0,107386364	1,053460227
1,2	1,25	0,0984375	0,965671875
1,3	1,153846154	0,090865385	0,891389423
1,4	1,071428571	0,084375	0,82771875
1,5	1	0,07875	0,7725375
1,6	0,9375	0,073828125	0,724253906
1,7	0,882352941	0,069485294	0,681650735
1,8	0,833333333	0,065625	0,64378125
1,9	0,789473684	0,062171053	0,609898026
2	0,75	0,0590625	0,579403125
2,1	0,680272109	0,053571429	0,525535714
2,2	0,619834711	0,048811983	0,478845558
2,3	0,56710775	0,044659735	0,438112004
2,4	0,520833333	0,041015625	0,402363281
2,5	0,48	0,0378	0,370818
2,6	0,443786982	0,034948225	0,342842086
2,7	0,411522634	0,032407407	0,317916667
2,8	0,382653061	0,030133929	0,295613839
2,9	0,356718193	0,028091558	0,275578181
3	0,3333333333	0,02625	0,2575125
4	0,1875	0,014765625	0,144850781
5	0,12	0,00945	0,0927045
6	0,083333333	0,0065625	0,064378125

7	0,06122449	0,004821429	0,047298214
8	0,046875	0,003691406	0,036212695
9	0,037037037	0,002916667	0,0286125
10	0,03	0,0023625	0,023176125

Figura 3. Espectro de pseudoaceleraciones en la dirección Y.

Predimensionamiento de elementos estructurales

Plano a diseñar:

Predimensión de la loza maciza:

Para predimensionar la losa se debe conocer la Luz máxima libre en metros y aplicar la fórmula según el RNE.

Losa maciza en dos direcciones		
Mayor luz (m)	Peralte	
Entre 4 a 5.5 m	L/40	
Entre 5.5 a 6.5 m	L/35	
Entre 6.5 a 7.5 m	L/30	

Figura 4. Fórmulas para el peralte de losas macizas según su luz.

En base al plano de arquitectura, se sabe que la Luz es de 6m por lo que se usará la fórmula L/35.

Figura 5. Separación de luz de las vigas en el plano.

```
Espesor de losa = L/35
= 0,17 m
```

Predimensión de las vigas principales:

Figura 6. Fórmulas para el peralte de losas macizas según su luz.

Factores para pre dimensionamiento de vigas		
Ws/c	α	
S/C ≤ 200 kg/m ²	12	
$200 < S/C \le 350 \text{ kg/m}^2$	11	
$350 < S/C \le 600 \text{ kg/m}^2$	10	
$600 < S/C \le 750 \text{ kg/m}^2$	9	

Donde el valor de S/C esta dado en el RNE E-020 en base a su ocupación o uso.

Figura 7. Cargas repartidas en kPa (kgf/m2) según su uso.

Oficinas (*)	
Exceptuando salas de archivo y computación	2,5 (250)
Salas de archivo	5,0 (500)
Salas de computación	2,5 (250) Ver 6.4
Corredores y escaleras	4,0 (400)

Ya que la estructura está destinada para oficinas considerando las salas de archivos y computación se toma como **S/C = 250 kgf/m2.** Por lo tanto, el valor de

α = 11 h = ln/α = 0.55 b = h/2 = 0.275 ≥ 0.25

Por lo que se usará las dimensiones de las vigas principales:

b * h = 30.00 * 0.60 m2

Predimensión de las vigas secundarias

h = ln/α = 0.55 b = h/2 = 0.275 ≥ 0,25

Al igual que en el anterior se usará para las vigas secundarias:

b * h = 30.00 * 0.60 m2

Predimensión de las

Para diseñar las dimensiones de las columnas se utiliza la siguiente fórmula

• •

$$A_{col} = \frac{\lambda P_G}{nF'c}$$

Donde:

 $A_{col} =$ Área de Columna $P_G =$ Carga por Gravedad

 $\boldsymbol{\lambda}, \boldsymbol{n} =$ Factores que dependen de la ubicación de la columna

Tabla 9. Factores de P y n según la ubicación de la columna y su tipo.

TIPO DE COLUMNA	UBICACIÓN	Р	ESO "P"
Tipo C1, (Para los Primeros	Columna Interior	P =	1,10 * PG
Pisos)	N < 3 Pisos	n =	0,3

Tipo C1, (Para los 4 ultimos	Columna Interior	P =	1,10 * PG
pisos superiores)	Columna Interior	n =	0,25
	Columnas Extremas de	P =	1,25 * PG
TIPO C2 y C3	Porticos Interiores	n =	0,25
Tipo C4	Columna do Ecquina	P =	1,50 * PG
TIPO C4		n =	0,2

Para el cálculo de (P_G) Cargas de gravedad, se realizará el metrado para una columna central.

Metrado de peso tributario inicial (WD + WL)

Tabla 10. Pesos específicos de los materiales según el reglamento E-020.

(WD)							
Concreto armado	2,40 ton/m3						
Losa maciza	0,48 ton/m2						
Acabados	0,10 ton/m2						
Tabiquería	0,15 ton/m2						

Tabla 11. Pesos de la carga viva a utilizar – RNE E-020.

(WL)					
Utilidad	0,25 Ton/m2				
Azotea	0,13 Ton/m2				

Tabla 12. Cuadro de predimensionamiento inicial de columnas.

Predimensionamiento	Predimensionamiento Inicial Columnas								
b h									
Columna Centrada	0,40 m	0,40 m							
Columna Lateral	0,35 m	0,35 m							
Columna Esquinada	0,35 m	0,35 m							

Tabla 13. Cuadro de predimensionamiento de vigas.

Predimensionamiento de Vigas					
	b	h			
Viga Principal	0,30 m	0,60 m			

Tabla 14. Metrado de cargas muertas para las Columnas Centrales C3.

METRADOS DE CARGAS MUERTAS (WD)									
Dimensiones									
Descrinción	#Pisos	Áre	ea	Longitud	Carga	Carga	Peso		
Descripcion		b	h	L					
	(Und)	(m)	(m)	(m)	(Ton/m3)	(Ton/m2)	(Ton)		
VP. en X	5	0,30	0,60	5,60	2,40		12,10		
VP. en Y	5	0,30	0,60	5,60	2,40		12,10		
Colum. (2° al últ.	4	0,40	0,40	3,50	2,40		5.38		
P.)		,	,	,	,		,		
Colum. (1er Piso)	1	0,40	0,40	4,00	2,40		1,54		
Losa Maciza	5	32,	48			0,48	77,95		
Acabados	5	35,84				0,10	17,92		
Tabiquería	5	35,	84			0,15	26,88		
							153,86		

Tabla 15. Metrado de cargas vivas para las Columnas Centrales C3.

METRADOS DE CARGA VIVA (WL)									
Dimensiones									
Descripción	#Pisos	Ár	ea	Longitud	Carga	Carga	Peso		
		b	h	L					
	(Und)	(m)	(m)	(m)	(Ton/m3)	(Ton/m2)	(Ton)		
Sobr. Típica	4	35,	84			0,25	35,84		
Sobr. Ult. Nivel	1	35,	84			0,13	4,48		
							40,32		

Peso Tributario C3 (WD + WL) 194,18

Tabla 16. Metrado de cargas muertas para las Columnas Esquineras C1.

	METRADOS DE CARGAS MUERTAS (WD)								
Dimensiones									
Dosorinción	#Pisos	Ár	ea	Longitud	Carga	Carga	Peso		
Description		b	h	L					
	(Und)	(m)	(m)	(m)	(Ton/m3)	(Ton/m2)	(Ton)		
VP. en X	5	0,30	0,60	2,83	2,40		6,10		
VP. en Y	5	0,30	0,60	2,83	2,40		6,10		
Colum. (2° al últ.	1	0.25	0.25	2 50	2.40		4 1 2		
P.)	4	0,35	0,35	3,50	2,40		4,12		
Colum. (1er Piso)	1	0,35	0,35	4,00	2,40		1,18		
Losa Maciza	5	8,7	12			0,48	19,49		
Acabados	5	9,82				0,10	4,91		
Tabiquería	5	9,8	32			0,15	7,36		
							49,26		

METRADOS DE CARGA VIVA (WL)									
Dimensiones									
_ /	#Pisos	Área		Longitud	Carga	Carga	Peso		
Descripcion		b	h	L					
	(Und)	(m)	(m)	(m)	(Ton/m3)	(Ton/m2)	(Ton)		
Sobr. Típica	4	9,8	82			0,25	9,82		
Sobr. Ult. Nivel	1	9,8	82			0,13	1,23		
							11,04		
		6	0,30						

Tabla 17. Metrado de cargas vivas para las Columnas Esquineras C1.

Tabla 18. Metrado de cargas muertas para las Columnas Perimetrales C2.

METRADOS DE CARGAS MUERTAS (WD)									
Dimensiones									
Doscrinción	#Pisos	Ár	ea	Longitud	Carga	Carga	Peso		
Description		b	h	L					
	(Und)	(m)	(m)	(m)	(Ton/m3)	(Ton/m2)	(Ton)		
VP. en X	5	0,30	0,60	5,65	2,40		12,20		
VP. en Y	5	0,30	0,60	2,83	2,40		6,10		
Colum. (2° al últ. P.)	4	0,35	0,35	3,50	2,40		4,12		
Colum. (1er Piso)	1	0,35	0,35	4,00	2,40		1,18		
Losa Maciza	5	16,	24			0,48	38,99		
Acabados	5	18,	78			0,10	9,39		
Tabiquería	5	18,	78			0,15	14,09		
							86,06		

METRADOS DE CARGA VIVA (WL)							
Dimensiones							
Descripción	#Pisos	Área		Longitud	Longitud Carga		Peso
		b	h	L			
	(Und)	(m)	(m)	(m)	(Ton/m3)	(Ton/m2)	(Ton)
Sobr. Típica	4	18,	78			0,25	18,78
Sobr. Ult. Nivel	1	18,	78			0,13	2,35
							21,13

Tabla 19. Metrado de cargas vivas para las Columnas Perimetrales C2.

Peso Tributario C1 (WD + WL) 107,19

Obteniendo los Pesos Tributarios por columnas se predimensiona las columnas con la fórmula:

Columna Central (C3):

 $A_{col} = \frac{P_{servicio}}{0.45 \, F'c} \qquad \Longrightarrow \qquad 2054,772487 \qquad \text{cm2}$

C3				
b	h			
25	82,191			
30	68,492			
35	58,708			
40	51,369			
45	45,662			
50	41,095			

Usar:	50,00 x	45,00	cm2

Columna Esquinera (C1):

$$A_{col} = \frac{P_{servicio}}{0.35 \, F'c} \qquad \Longrightarrow \qquad 820,464966 \qquad \text{cm2}$$

C1				
b	h			
25	32,819			
30	27,349			
35	23,442			
40	20,512			

Usar:	40,00	25.00	cm2	
	X	25,00	UIIE	

Columna Perimetral (C2):

$$A_{col} = \frac{P_{servicio}}{0.35 \, F'c} \qquad \Longrightarrow \qquad 1458,314286 \qquad \text{cm2}$$

	C2				
b	h				
25	58,333		45.00		
30	48,610	Usar:	43,00 V	35,00	cm2
35	41,666		~		
40	36,458				
45	32,407				
50	29,166]			

Predimensionamiento del Muro estructural

Para el predimensionamiento de los muros estructurales, haremos el metrado de cargas de toda la estructura. Para ello usaremos los programas a comparar. Por ello asumimos las placas con un espesor de 40 cm.

N° Piso	Gravedad	Masa	Pi
	m/s2	(Ton.s²/m)	(Ton)
5	9,8067	45,63542	447,53
4	9,8067	49,38986	484,35
3	9,8067	49,38986	484,35
2	9,8067	49,38986	484,35
1	9,8067	49,90502	489,40
			2.389,99

Tabla 20. Cuadro de valores de la masa y el peso de la estructura.

Estimación del valor (T). Teniendo en cuenta que hn es la altura neta de la estructura y Ct es el valor dado por el RNE E.030 2018 que se encuentra en la imagen 54545.

Ct	=	45	(opción	a)	T= hn/Ct = 0,40 seg
hn =	18				

TP	=	0.60
TL	=	2.00

Por lo tanto, $T < TP \rightarrow C = 2.5$

Aplicando la fórmula de basal:

$$V = \frac{Z.U.S.C}{R} * P$$

$$R$$

$$V = \frac{0.45 * 1 * 2.5 * 1.05}{6} * 2.389,99$$

Para cumplir con el sistema estructural **Muros Estructurales** se tiene que las acciones sísmicas son resistidas por una combinación de pórticos y muros estructurales. Según el RNE E.030 se tiene que la fuerza de los muros estructurales debe por lo menos soportar el 70% del cortante de la base de la estructura.

Para el predimensionamiento del área de planta de los muros, las placas tomaran un valor de 60% de la cortante de basal, el cual está entre los valores del sistema **Muros Estructurales.** Por lo que el valor se la cortante será:

V = 60% (470, 53t) = 282.32

Por consiguiente, se aplicará la siguiente fórmula para el área de los muros:

$$A_c = \frac{V}{\emptyset \mathbf{0.53}\sqrt{f'c}} \qquad ; \quad \emptyset = \mathbf{0.85}$$

$$A_c = \frac{282.32}{0.85 * 0.53\sqrt{210}}$$

$$A_c = 4.324 m^2$$

Debido al plano de arquitectura, tenemos que en el eje X entran 2 placas de 6 metros y para el eje Y tenemos 6 placas, 2 placas de 6 metros y 4 placas de 3 metros. Por lo tanto, la repartición de áreas será del 33.33% para X y 66.67% para Y

$$A_c X = 0.71 \ m^2$$
 $A_c Y = 1.43 \ m^2$

Considerando lo anterior dicho se tendrá las placas de 0.25 metros de espesor.

$$A_{placas} = 6(0.25x6) = 9 m^2$$

 $9 m^2 \ge 4.324 m^2$

Tomando en cuenta la relación: R% = Área de muros estructurales / Área de losa

$$R\% = \frac{4.324 \ m^2}{1260 \ m^2} * 100\% = 0.34\%$$

Ahora se ingresará el área real de muro estructural que se aplicará

$$R\% = \frac{9 \ m^2}{1260 \ m^2} * 100\% = \ 0.71\%$$

Predimensionamiento de la zapata

Predimensión de la zapata para la columna (C2).

Por el estudio de suelo se da que la capacidad portante es de σ n = 13.6 Tn/m2. Por lo que se determina los lados L y S de la zapata.

Figura 8. Dimensión de la zapata Fuente: Propia

$L = ((Az) \land (1/2)) + ((t-b)/2) =$	2,8071338	≈	2,85	m
$S = ((Az) \wedge (1/2)) + ((b-t)/2) =$	2,8071338	≈	2,85	m

Donde el valor de Az = P/ σ n = 7.88 m2 t y b = dimensiones de la columna P = 107.19 Tn

Se usará una zapata de 2.85 m x 2.85 m

Para el valor de Lv1 y Lv2 se resta el valor L o S con la dimensión de la columna.

Lv1 = 1,43 mLv2 = 1,43 m

Predimensión de la zapata para la columna (C3).

Por el estudio de suelo se da que la capacidad portante es de σ n = 13.6 Tn/m2. Por lo que se determina los lados L y S de la zapata.

 $L = ((Az) \land (1/2)) + ((t-b)/2) = 3,7788887 \approx 3,8 m$ $S = ((Az) \land (1/2)) + ((b-t)/2) = 3,7788887 \approx 3,8 m$

Donde el valor de Az = P/ σ n = 14,28 m2

P = 194.18 Tn

Se usará una zapata de 3.8 m x 3.8 m

Para el valor de Lv1 y Lv2 se resta el valor L o S con la dimensión de la columna.

Lv1 = 1,7 mLv2 = 1,7 m

Modelamiento Estático y Dinámico con el programa ETABS

Introducción de dimensiones del proyecto al programa:

Una vez ejecutado el programa, pasaremos a modificar las unidades en el sistema internacional, daremos en la opción OK y se nos abrirá la ventana en donde se insertará las dimensiones que tendrá lugar el proyecto. Se insertará los Grid tanto en planta como elevación.

Figura 9. Programa ETABS, 2016. Fuente: Propia

Model Initialization	×
Initialization Options	
O Use Saved User Default Settings	0
O Use Settings from a Model File	0
Use Built-in Settings With:	
Display Units	Metric SI
Steel Section Database	AISC14 ~
Steel Design Code	AISC 360-10 🗸 🚺
Concrete Design Code	ACI 318-14 🗸 🚺
ОК	Cancel

Figura 10. Ventana de inicio ETABS. Fuente: Propia

New Model Quick Templates			×
Grid Dimensions (Plan)		Story Dimensions	
Uniform Grid Spacing		Simple Story Data	
Number of Grid Lines in X Direction	4	Number of Stories	4
Number of Grid Lines in Y Direction	4	Typical Story Height	3 m
Spacing of Grids in X Direction	6 m	Bottom Story Height	3 m
Spacing of Grids in Y Direction	6 m		
Specify Grid Labeling Options	Grid Labels		
O Custom Grid Spacing		O Custom Story Data	
Specify Data for Grid Lines	Edit Grid Data	Specify Custom Story Data	Edit Story Data
Add Structural Objects			
Blank Grid Only Steel Deck	Staggered Truss	Flat Slab Flat Slab with Perimeter Beams	Waffle Slab Ribbed Slab
	ОК	Cancel	

Figura 11. Ventana para crear el tipo de Grid en el programa. *Fuente: Propia*

Según la geometría del proyecto tenemos que sus dimensiones son 42 m x 30 m y están repartidas cada 6 metros, por parte de sus elevaciones, el primer piso corresponde de 4 metros de altura, mientras que los otros 4 pisos son de 3.5 metros de altura.

EDIFICIO DE S NIVELES <pre> Ordaut Outors Stoy Stoy Stoy Stoy</pre>		m Name		Story	Range Option		Click to Mod	lify/Show:			
stem Origin Global X 0 m Global Y 0 m Rotation 0 deg © Display Grid Data as Spacing X Grid Data S Grid D X Spacing (m) Velble B G Yes End D G Yes End D G Yes End E 6 Yes Stat E 7 Yes St	EDIFIC	IO DE 5 NI	/ELES		Default			Reference Points		0.0	
Global X 0 m Bottom Story Bubble Size 1250 Bubble Size 1250 Global X 0 Bottom Story Bubble Size Bubble Size 1250 Grid Data Osplay Grid Data as Spacing V Grid Data Y Grid Data Grid ID X Spacing (m) Vable Bubble Loc Add C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 7 C 6 C 7 C 7 C 6	System Or	iain			User Specified			Reference Planes		0 1	
Global Y 0 m Bottom Story Bubble Size 1250 mm Rotation 0 deg Grid Color Grid Color Cond Display Grid Data as Ordinates Image: Color Story Quick Stat New Rectangular Grids X Grid Data Y Grid Data as Spacing Quick Stat New Rectangular Grids X Grid Data Y Grid Data Grid ID X Spacing (m) Vable Bubble Loc A 6 Yes End C 6 Yes End D 6 Yes End E 6 Yes Stat E Cod Yes E Cod Yes B Cod Yes B Cod Yes B Cod Yes B Cod Yes C <td>Global</td> <td>× 0</td> <td>n</td> <td></td> <td>Top Story</td> <td></td> <td>Options</td> <td></td> <td></td> <td>0</td> <td></td>	Global	× 0	n		Top Story		Options			0	
Grid ID X Spacing Mable Bubble Loc Y Grid Data Grid ID X Spacing Yes End Image: Control of the set of th	Global Y 0 m			Bottom Story		Bubble Size 1250 mm			0		
International and the second secon	Rotatio	n 0		eq			Grid Colo	r		0 U	
b b res End J 5 6 Yes Start Delete C 6 Yes End 4 6 Yes Start E Delete 5 6 Yes Start E E 6 0 Yes Start E F	X Grid	Data irid ID	X Spacing (m)	Visible	Bubble Loc	•	Y Grid Data Grid ID	Y Spacing (m)	Visible	Bubble Loc	
C 6 7es End D 6 Yes End E 6 Yes End E 6 Yes Start C 6 0 Yes	-X Grid G	Data irid ID A	X Spacing (m) 6	Visible Yes	Bubble Loc End	Add	Y Grid Data Grid ID 2	Y Spacing (m) 6	Visible Yes	Bubble Loc Start	Add
E 6 Yes End C 6 0 Yes Stat	X Grid	Data ind ID A B	X Spacing (m) 6 6	Visible Yes Yes	Bubble Loc End End	Add Delete	Y Grid Data Grid ID 2 3	Y Spacing (m) 6 6	Visible Yes Yes	Bubble Loc Start Start	Add Delete
E 6 Yee End *	X Grid	Data irid ID A B C D	X Spacing (m) 6 6 6	Visible Yes Yes Yes Yes	Bubble Loc End End End End	Add Delete	Y Grid Data Grid ID 2 3 4 5	Y Spacing (m) 6 6 6 6	Visible Yes Yes Yes Yes	Bubble Loc Start Start Start Start	Add E Delete
	G	Data Data A B C D E	X Spacing (m) 6 6 6 6 6 6	Visible Yes Yes Yes Yes Yes	Bubble Loc End End End End End End	Add E Delete	Y Grid Data Grid ID 2 3 4 5 6	Y Spacing (m) 6 6 6 6 0	Visible Yes Yes Yes Yes Yes	Bubble Loc Start Start Start Start Start	Add Delete
	X Grid	Data ind ID A B C D E F	X Spacing (m) 6 6 6 6 6 6 6 6 6 6	Visible Yes Yes Yes Yes Yes Yes	Bubble Loc End End End End End End End	Add Delete	Y Grid Data Grid ID 2 3 4 5 6	Y Spacing (m) 6 6 6 6 0	Visible Yes Yes Yes Yes Yes	Bubble Loc Start Start Start Start Start	Add Delete

Figura 12. Ventana de introducción de datos en planta para los Grid. Fuente: Propia

	Story	Height m	Elevation m	Master Story	Similar To	Splice Story	Splice Height m	Story Color
	Piso 5	3,5	18	No	Piso 1	No	0	
	Piso 4	3,5	14,5	No	Piso 1	No	0	
	Piso 3	3,5	11	No	Piso 1	No	0	
	Piso 2	3,5	7,5	No	Piso 1	No	0	
	Piso 1	4	4	Yes	None	No	0	
	Base		0					
te: Rig	ht Click on Gird for Onti							
ote: Rig	ht Click on Grid for Opti	ons						

Figura 13. Ventana de introducción de datos de elevación por piso para los Grid. *Fuente: Propia*

Figura 14. Área de trabajo, vista en planta y vista en 3D. *Fuente: Propia*

Introducción de materiales:

Por defecto el programa designa materiales con un esfuerzo a la compresión de f'c=4000Psi el cual son equivalentes a 280 kgf/cm2 pero en este caso usaremos un concreto de valor f'c = 210 kgf/cm2 y un módulo de elasticidad de Ec= $15000 \sqrt{f'c}$. Y un acero de valor Fy= 42000 kgf/cm2 y con un módulo de elasticidad Ea= 2100000 kgf/cm2.

Figura 15. Opción de creación de materiales.

Fuente: Propia

P Define Materials	×
Materials	Click to:
A992Fy50	Add New Material
4000Psi A615Gr60	Add Copy of Material
A416Gr270	Modify/Show Material
	Delete Material
	OK Cancel

Figura 16. Ventana de materiales creados en el programa. *Fuente: Propia.*

A continuación, se pasa a introducir el peso específico y el módulo de elasticidad del concreto, como también la propiedad del material.

0.10.			
General Data	Courses for	- 210 h-/2	
Material Turne	Concreto to	- 2 TO kg/dm2	
Directional Summatry Type	Concrete		•
Metazial Disalau Calas	Isotropic	Channel	▼
Material Display Color			
Matenal Notes		ry/Snow Notes	
Material Weight and Mass			
Specify Weight Density	Spectrum	ecify Mass Density	
Weight per Unit Volume		2.4	tonf/m ³
Mass per Unit Volume		0.244732	tonf-s²/mª
Mechanical Property Data			
Modulus of Elasticity, E		2173706.51	tonf/m ²
Poisson's Ratio, U		0.2	
Coefficient of Thermal Expansion, A	Ą	0.0000099	1/C
Shear Modulus, G		905711.05	tonf/m ²
Design Property Data			
Modify/Show Ma	aterial Propert	y Design Data]
Advanced Material Property Data			
Nonlinear Material Data		Material Damping P	roperties
Time De	ependent Prop	perties	
		Canaal	
OK		Cancel	

Figura 17. Ventana de datos sobre el peso específico y módulo de elasticidad del

concreto. Fuente: Propia.

Material Property Design Data	
Material Name and Type Material Name Material Type Design Properties for Concrete Materials Specified Concrete Compressive Strength, Lightweight Concrete Shear Strength Reduction Factor	Concreto fc= 210 kg/cm2 Concrete, Isotropic f'c 2100 tonf/m²
ОК	Cancel

Figura 18. Propiedad del material creado – datos de diseño. Fuente: Propia.

Naterial Property Data			
General Data			
Material Name	Acero Fy=	4200 kgf/cm2	
Material Type	Rebar		•
Directional Symmetry Type	Uniaxial		_
Material Display Color		Change	
Material Notes	Mod	lify/Show Notes	
Material Weight and Mass			
Specify Weight Density	🔘 Sp	ecify Mass Density	
Weight per Unit Volume		7,849	tonf/m ³
Mass per Unit Volume		0,80038	tonf-s²/mª
Mechanical Property Data			
Modulus of Elasticity, E		21000000	tonf/m ²
Coefficient of Thermal Expansion	. A	0,0000117	1/C
Design Property Data			
Modify/Show	Material Proper	ty Design Data]
Advanced Material Property Data			
Nonlinear Material Data		Material Damping P	roperties
Time	Dependent Pro	perties	
ОК		Cancel	

Figura 19. Ventana de datos sobre el peso específico y módulo de elasticidad del

acero.

Material Property Design Data	X
Material Name and Type	
Material Name	Acero Fy= 4200 kgf/cm2
Material Type	Rebar, Uniaxial
Design Properties for Rebar Materials	
Minimum Yield Strength, Fy	\$2000 tonf/m ²
Minimum Tensile Strength, Fu	63000 tonf/m ²
Expected Yield Strength, Fye	46200 tonf/m ²
Expected Tensile Strength, Fue	69300 tonf/m ²
ОК	Cancel

Fuente: Propia.

Figura 20. Propiedades del material de acero. Fuente: Propia.

Ingreso de datos del Pre Diseño:

A continuación, se pasará al menú Define – Section Properties – Frame Section y seleccionaremos las secciones de las vigas y columnas a crear en el programa. Para cada parte de la estructura se modificará el tipo de material que ingresa el programa por defecto al material creado tanto en concreto armado como en acero de refuerzo. Se ingresará las dimensiones de las columnas, vigas, losas y muro estructural que se calculó anteriormente. Si vemos en la ventana de concreto, se observa que hay una gran variedad de formas, tanto tipo circular, rectangular, forma de T, entre otros. Como también formas para las estructuras metálicas.
i i i E	TABS 2016 Ultima	te 16.2	.1 - DISEÑO) DE CON	CRETO AF	RMADO						
File	Edit View	Defin	e Draw	Select	Assign	Analyze	Displ	lay	Design	Detailing	Options	Т
	🂊 💾 🛛	ľ.	Material Pr	operties			11	3-d	p a e e	361	• ₹ 5	
	Model Exp	IJ	Section Pro	perties		•	1	Fran	me Sectio	ons		
	Model Display	944-9 144-9 144-9	Spring Prop	perties		•	۲	Ten	don Sect	tions		
$\overline{\mathbf{n}}$			Diaphragm	s			8	Slab	Section	5		
\mathbf{N}		ls.	Pier Labels					Dec	k Sectior	ns		
[I]		\$2	Spandrel La	abels				Wal	Section	5		
	toad ter Design	7.	Group Defi	nitions			1	Reir	nforcing	Bar Sizes		2
\mathbb{X}	Table Sets	BB	Section Cu	ts			ĸ×Ĕ	Link	c/Suppor	t Properties		
D		f_x	Functions			•	25	Fran	me/Wall	Nonlinear Hi	nges	

Figura 21. Menú de herramienta para la creación de estructuras. Fuente: Propia.

Shape Type	Section Shape	Concrete Rectangular 🔻
Frequently Used Shape Types Concrete		Steel
Special Section Designer	Alls Start Lift	Steel Composite
	ОК	Cancel

Para las columnas, el ingreso de datos es manual, se hace el cambio de material a concreto f'c = 210 kgf/cm2 debido a que el programa designa un material por defecto. Se designa las dimensiones tanto de la base como la altura en planta, como columna C1 tenemos 40 x 25 cm2, como columna C2 tenemos 45 x 35 cm2 y como columna C3 50 x 45 cm2. Posteriormente se asigna el acero de refuerzo Fy = 4200 kgf/cm2 marcando como opción en el Check/Design – Reinforcement to be Designed para que el programa calcule la cuantía de acero requerida para la sección de la columna ingresada al programa.

ame section Property Data	2			
General Data				
Property Name	C1 40x25			
Material	Concreto fo= 2	10 kgf/cm2	▼	2
Notional Size Data	Modify/Sho	w Notional Size		
Display Color		Change		
Notes	Modify	Show Notes		• • •
Shape				
Section Shape	Concrete Rect	angular	•	
Section Dimensions		0.25		Modify/Show Modifiers Currently Default
Depth		0,25	m	Reinforcement
Width		0,4	m	Modify/Show Rebar
	Show Section Properties			Cancel

Figura 23. Ventana de creación de elementos estructurales con sus respectivas

dimensiones.

)esign Type	Rebar Material	
P-M2-M3 Design (Column)	Longitudinal Bars	Acero Fy= 4200 kgf/cm2 🔹 🛄
M3 Design Only (Beam)	Confinement Bars (Ties)	Acero Fy= 4200 kgf/cm2
Reinforcement Configuration	Confinement Bars	Check/Design
Rectangular	Ties	Reinforcement to be Checked
Circular	O Spirals	Reinforcement to be Designed
ongitudinal Bars		
Clear Cover for Confinement Bars		0,04 m
Number of Longitudinal Bars Along	3-dir Face	3
Number of Longitudinal Bars Along	2-dir Face	5
Longitudinal Bar Size and Area	20	▼ 0,000314 m ²
Corner Bar Size and Area	20	▼ 0,000314 m ²
Confinement Bars		
Confinement Bar Size and Area	10	▼ 0,000079 m ²
Longitudinal Spacing of Confinemen	t Bars (Along 1-Axis)	0,15 m
Number of Confinement Bars in 3-dir		3
Number of Confinement Bars in 2-dir		3
		al

Figura 24. Ventana de selección de acero de refuerzo para columnas. Fuente: Propia.

Para el caso de las vigas cuando se cambiará el acero de refuerzo, se tomará la opción en Design Type – M3 Design Only (Beam) para que tome el comportamiento de una viga estructural.

Top Bars 0.06 m Top Bars at I-End 0 m² Bottom Bars 0.06 m Top Bars at I-End 0 m² Bottom Bars 0.06 m Top Bars at I-End 0 m² Bottom Bars 0.06 m Top Bars at I-End 0 m²	 P-M2-M3 Design (Column) M3 Design Only (Beam) 			Longitudinal Bars Acero Fy= 4200 kgf/cm2 ▼ Confinement Bars (Ties) Acero Fy= 4200 kgf/cm2 ▼			
Top Bars 0.06 m Top Bars at I-End 0 m² Bottom Bars 0.06 m Top Bars at J-End 0 m² Bottom Bars at I-End 0 m² Bottom Bars at I-End 0 m²	overto Longitudinal F	Rebar Group Cer	ntroid	Reinforcement A	vea Overwri	tes for Ductile Bea	ims
Bottom Bars 0,06 m Top Bars at J-End 0 m ² Bottom Bars at I-End 0 m ² Bottom Bars at I-End 0 m ²	Top Bars	0,06	m	Top Bars at I-	End	0	m²
Bottom Bars at I-End 0 m ²	Bottom Bars	0,06	m	Top Bars at J	-End	0	m²
Bottom Bare at LEnd 0 m ²				Bottom Bars a	at I-End	0	m²
bottom bars at 5-210				Bottom Bars a	at J-End	0	m²

Figura 25. Ventana de selección de acero de refuerzo para vigas.

Fuente: Propia.

Para el caso de la losa maciza cuyo valor es de espesor = 17 cm se pasará al menú Define – Section Properties – Slab Sections, en el cual agregaremos una nueva propiedad la cual será la losa maciza con un concreto de f'c= 210 kgf/cm2 e ingresaremos el dato de su espesor.

🐴 E	TABS 2016 Ultima	te 16.2	2.1 - DISEÑO	D DE CON	CRETO AF	RMADO					
<u>F</u> ile	<u>E</u> dit <u>V</u> iew	<u>D</u> efin	e D <u>r</u> aw	<u>S</u> elect	<u>A</u> ssign	A <u>n</u> alyze	D <u>i</u> spl	ay Desi <u>g</u> n	Detai <u>l</u> ing	<u>O</u> ptions	I
	🂊 💾 🖌	I.	Material P	operties			28	3-d P a e v	361	🖢 🐳 📑	i D
	Model Exp	IJ	Section Pro	operties		•	F	<u>F</u> rame Section	ons		
	Model Display	² ² ² ² ×	Sp <u>r</u> ing Pro	perties		•	۲	Tendon Sec	tions		
$\overline{\mathbf{x}}$	⊡ · Analysis		<u>D</u> iaphragn	15			7	<u>Slab</u> Section	5		
5		R.	Pier Labels				m	Deck Section	ns		
[I]	⊞ · Respi ⊕ · Time	\$2	_ Spandrel L	abels				Wall Section	15		_
	⊕ · Load ⊕ · Design	7.	<u>G</u> roup Def	nitions			1	<u>R</u> einforcing	Bar Sizes		
\mathbb{X}	Table Sets	ø	Sect <u>i</u> on Cu	ts			ĸ	Link/Suppor	t Properties		

Figura 26. Menú de herramientas para la creación de losas. Fuente: Propia.

Slab Property Data	×
General Data Property Name Slab Material Notional Size Data Modeling Type Modfiers (Currently Default) Display Color Property Notes	Losa maciza e= 17 Concreto fc= 210 kgf/cm2 Modify/Show Notional Size Shell-Thin Modify/Show Change Modify/Show
Property Data Type Thickness	Slab v 0,17 m
ОК	Cancel

Para el muro estructural se ingresará al menú Section Properties – Section Properties – Wall Sections, para este caso se introducirá

山 山 王 王	TABS 2016 Ultima	te 16.	2.1 - DISEÑO DE (ONCRETO A	RMADO					
<u>F</u> ile	<u>E</u> dit <u>V</u> iew	<u>D</u> efi	ne D <u>r</u> aw <u>S</u> ele	ct <u>A</u> ssign	A <u>n</u> alyze	Displa	ıy Design	Detailing	<u>O</u> ptions	I
	🌒 💾 🕫	É.	Material Propert	es		22	3-d pla ele	361	🖢 🐳 🔛	
	Model Exp	IJ	Section Properti	25	•	F	<u>F</u> rame Section	ons		
-2-	Model Display	14 14 14 14	Spring Propertie	;	•	۲	Tendon Sec	tions		
$\overline{\overline{\ }}$			<u>D</u> iaphragms			a	Slab Section	5		
$\mathbf{\nabla}$		ß	<u>P</u> ier Labels			(nnn)	Deck Section	ns		
[]		192	Spandrel Labels.				Wall Section	IS		_
	i±∾ Load ter Design	7.	Group Definition	s		1	<u>R</u> einforcing	Bar Sizes		
\mathbb{X}	Table Sets	00	Section Cuts			ĸ	Link/Suppor	rt Properties		
		f_x	<u>F</u> unctions		•	12	Frame/Wall	Nonlinear <u>H</u> i	nges	
		~	Generalized Disp	lacements		(i	Panel <u>Z</u> one.			

Figura 28. Ventana para la creación de muros tanto estructural como de

albañilería.

Fuente: Propia.

Wall Property Data	X
General Data]
Property Name	Muro e=25
Property Type	Specified 💌
Wall Material	Concreto fic= 210 kgf/cm2 🔹
Notional Size Data	Modify/Show Notional Size
Modeling Type	Shell-Thin 🔻
Modifiers (Currently Default)	Modify/Show
Display Color	Change
Property Notes	Modify/Show
Property Data	
Thickness	0,25 m
ОК	Cancel

Figura 29. Ventana para la elección del material y espesor del *muro. Fuente: Propia.*

Dibujo de las estructuras

El programa Etabs tiene las opciones <u>3-d Pla elç</u> en la parte superior del menú de herramientas para cambiar el tipo de vista tanto en 3D, planta y elevación. Por otro lado, en la parte lateral izquierda también se tiene una serie de opciones para dibujar tanto las columnas, vigas, muros y losas. Por la que se pasará a dibujar pada sección del proyecto.

Figura 30. Área dibujada y sección de herramientas de dibujo. Fuente: Propia.

Creación de elementos finitos (Mesh).

Para ingresar en esta opción se ingresará al menú Assign – Shell – Wall Auto Mesh Options, la creación de malla de elementos finitos sirve para discretizar la geometría del área de algunos elementos, en este caso el muro estructural, para ello depende del criterio del diseñador ingresar los valores de las áreas adecuadas para que el programa lo pueda interpretar para una mejor entrega de los resultados reales.

Handreite 16.2.1 - DISEÑO DE CON	CRETC	ARMADO		Without State
File Edit View Define Draw Select	Assi	gn Analyze Display Desig	n D	etailing Options Tools Help
🛯 🗋 🏷 💾 🤌 🐼 🖌 🗎 🕨 🔍 🤅	*	Joint •	3	60 🛧 🐳 🔛 🗹 🗗 • 🗊 • 🗆
Model Explorer 🗸 🗙	1	Frame •		
Model Display Tables Reports Detailing	Ď	Shell •	è	Slab Section
Rev Model	×	Link •		Deck Section
- Structure Layout	~*	Tendon •	Ð	Wall Section
Structural Objects	٠.	Joint Loads	Q	Openings
LT: ⊞-Groups ==a ⊕-Loads	<u>in</u>	Frame Loads		Stiffness Modifiers
Area Named Output Items	ŵ	Shell Loads	☑	Thickness Overwrites
X	**	Tendon Loads	÷	Insertion Point
		Assign Objects to Group		Diaphragms
	×	Clear Display of Assigns	<>	Edge Releases
<u></u>		Copy Assigns	<\$	Local Axes
	iß	Paste Assigns	ħ	Area Springs
		J J J J J J J J J J J J J J J J J J J	2	Additional Mass
			5	Pier Label
X	E		5	Spandrel Label
田	P		1	Wall Hinge
A	E		1.	Reinforcement for Wall Hinge
~	IF		1	Floor Auto Mesh Options
			1	Wall Auto Mesh Options
		TTTT	X	Auto Edge Constraint

Figura 31. Menú de herramientas para la creación del Mesh. Fuente: Propia.

Shell Assignment - Wall Auto M	esh Options		1	100	
Wall Meshing Options Default: No Meshing for Mesh Object into Auto Rectangular Mesh Add Restraints on Edge 	r Straight Walls and 3 if Comers have Rea	Auto Rectangu Vertical and straints	ılar Meshing for Cun 2	ved Walls Horizontal	
Adva	anced - Modify/Show	w Auto Rectang Close	gular Mesh Settings. Apply		

Figura 32. Ventana de las dimensiones a discretizar.

Fuente: Propia.

Asignación de brazos rígidos en la estructura.

Seleccionaremos en el menú Assign – Frame – End Length Offsets, por el cual pasaremos a introducir el valor de 0.75, esto se debe a que el grado de rigidez nunca trabaja al 100%, en otros casos se puede tomar como dato 0.50 que vendría

a ser criterio del diseñador. Siguiendo con la introducción de datos, en la opción Rigid-zone factor se colocará el valor dado para este diseño.

J	CRETC) ARMADO				The second second
	Assi	gn Analyze	Display	Design	De	etailing Options Tools Help
(*	Joint		•	Э	60 🛧 🐺 🖾 🗊 • 🗊 • 🗖 🗸 🖂)
k	1	Frame		•	1 .	Section Property
		Shell		•	%	Property Modifiers
	×	Link		•	d'a	Releases/Partial Fixity
l	~*	Tendon		•	ц.	End Length Offsets
l	٠.	Joint Loads		•	1.	Insertion Point
	<u>in</u>	Frame Loads		•	\times	Local Axes
	<u>i</u>	Shell Loads		•	~	
	**	Tendon Loads		•	¥*	Output Stations

Figura 33. Menú de herramientas para la asignación de brazos rígidos.

Fuente: Propia.

Frame Assignment - End Length Offsets	
End Offset Along Length	
 Automatic from Connectivity 	
Define Lengths	
End-I	m
End-J	m
Rigid-zone factor 0.75	
Frame Self Weight Option	
Auto	
Weight Based on Full Length	
Weight Based on Clear Length	
OK Close A	\pply

Figura 34. Ventana donde se aplica el factor de brazo rígido para la estructura.

Figura 35. Vista del modelo con la asignación de brazos rígidos. *Fuente: Propia.*

Asignación de diafragmas

Una de las condiciones de los diafragmas rígidos es garantizar la transferencia de las cargas desde el diafragma a todos los elementos portantes. Esto se da para el caso de las losas. Para ello nos dirigiremos al menú de herramientas Assign – Joint – Diaphragms, iremos a la vista en planta y seleccionaremos todos los puntos del dibujo y aplicamos el diafragma a cada piso.

Figura 36. Menú de herramientas para la asignación de diafragmas. Fuente: Propia.

P Define Diaphragm	×
Diaphragms	Click to:
	Add New Diaphragm Modify/Show Diaphragm
	Delete Diaphragm
	ОК
	Cancel

Figura 37. Creación del diafragma a definir para cada piso. Fuente: Propia.

Figura 38. Vista de la losa una vez asignado el diafragma. *Fuente: Propia.*

Asignación de condiciones de apoyo en la estructura

Entramos al menú Assign – Joint – Restraints, seleccionamos todos los nudos de la base y aplicaremos la restricción de todos los ejes como empotramiento.

<u>A</u> ssi	gn	A <u>n</u> alyze	D <u>i</u> splay	Design	De	tai <u>l</u> ing	<u>O</u> ptions	<u>T</u> ools	<u>H</u> elp
(*	Joi	int		•	5*	<u>R</u> estrai	nts		
< 🔨	<u>F</u> ra	ame		•	* !	<u>S</u> prings			
	<u>S</u> h	ell		•	č.	<u>D</u> iaphra	agms		
×	<u>L</u> ir	nk		•	ē	<u>P</u> anel Z	one		
~*	<u>T</u> e	ndon		•	•.*	<u>A</u> dditio	nal Mass		
٠.	J <u>o</u> i	int Loads		•	1	Joint Fl	oor <u>M</u> eshin	g Option	s
1 m	F <u>r</u> a	ame Loads		•	_		Cur-	~~~~	- B
ц ц	S <u>h</u>	ell Loads		•		q			

Figura 39. Menú de herramientas para la asignación de las restricciones de

apoyo.

Fuente: Propia.

Joint	t Assignment - Restraints	
	Restraints in Global Directions	ור
	✓ Translation X ✓ Rotation about X	
	✓ Translation Y ✓ Rotation about Y	
	☑ Translation Z ☑ Rotation about Z	
N Hart Jo	Fast Restraints	
LA DAY	OK Close Apply	

Figura 40. Ventana para la selección de restricción de apoyo.

Fuente: Propia.

Asignación del sistema de cargas estáticas en el proyecto

Menú Define – Load Patterns, al igual que en ciertos casos el programa tiene por defecto las cargas vivas y muertas por lo que se definirá a las cargas estaticas tanto en X como en Y.

Figura 41. Menú para la definición de patrones de carga. Fuente: Propia.

Se asignará en tipo de carga, el valor de sismo (Seismic) y en la opción Auto Lateral Load asignaremos la opción User Coefficient el cual se le aplicará más adelante al optener los periodos de la estructura.

Loads		Self Weight	Auto	Click To:
Load	Туре	Multiplier	Lateral Load	Add New Load
Dead	Dead	→ 1		Modify Load
Dead Live S_Est X	Dead Live Seismic		User Coefficient	Modify Lateral Load
5_Est 1	Seismic		User Coemcient	Delete Load
][][OK Cancel

Figura 42. Ventana para definir las cargas estáticas.

Asignación de los Piers para los muros estructurales.

Los piers nos ayudan para tener los esfuerzos por cada muro estructural en el programa, para ello vamos al menú Define – Pier Labels, para este caso se creará 8 Piers Label para cada placa del eje X e Y. Después se seleccionará cada muro estructural y se les asignará el Pier correspondiente por eje.

Defi	ne	Draw	Select	Assign	Analyze
ŀ£,	Ma	aterial Pro	operties		
ļ	Section Properties				
¥₹	Sp	ring Prop	oerties		•
	Dia	aphragm	s		
b	Pie	er Labels.			
Ŵ	Sp	andrel La	ıbels		
7.	Gr	oup Defi	nitions		
ØØ	Se	ction Cut	is		
f_x	Fu	nctions			•
~	Ge	neralized	Displace	ments	

Figura 43. Menú Define en el cual se asignan los Piers para las placas.

Figura 44. Ventana en el cual se crean los Piers. Fuente: Propia.

Definición de las cargas dinámicas.

Se ingresará para este caso el espectro de respuesta del eje X e Y, por lo que iremos a la opción Define – Functions – Response Spectrum. Una vez abierto la ventana, ingresaremos los datos de las aceleraciones en formato (*.txt) el cual el programa usará para el análisis dinámico.

Figura 45. Menú de herramientas para la introducción del espectro respuesta.

Function Name SDINAM_X	Function Name SDINAM_Y
0.05 Values are: 0.05 Period vs Value	Function Damping Ratio Values are: 0.05 © Frequency vs Value © Period vs Value
ction File	Function File
e Name	File Name
:\Users\Kony\Desktop\ESPECTKU(X).bt	C. Jusers (horry Desktop / ESPECT ho(1).00
eader Lines to Skip 0	Header Lines to Skip 0
Convert to User Defined View File	Convert to User Defined View File
ction Graph	Function Graph
2,10 1,80 1,20 0,80 0,60 0,00 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0	2,10 1,80 1,20 0,00
OK Cancel	OK Cancel

Figura 46. Ventana en el cual se introduce y visualiza la función del espectro

respuesta.

Ahora definiremos los casos dinámicos que se analizarán. Iremos al menú Define - Load Case.

Figura 47. Menú de herramientas para la definición de casos dinámicos. Fuente: Propia.

En esta ventana se agregará los nuevos casos dinámicos y los demás datos tales como las aceleraciones y el tipo de caso. También se le ingresará una excentricidad del 5% en la opción Diaphragm Eccentricity – Modify/Show.

Load Case Name	Load Case Type		Add New Case
Dead	Linear Static		Add Copy of Case
Live	Linear Static		Modify/Show Case
5_Est X	Linear Static		Delete Case
S_Est Y	Linear Static	~	
		×	Show Load Case Tree
			OK

Figura 48. Ventana en el cual se crean los casos de carga. *Fuente: Propia.*

Load Case Name		S_Dinm X		Design
Load Case Type		Response Spect	rum 🔻	Notes
Exclude Objects in thi	is Group	Not Applicable		
Mass Source		Previous (MsSrc	:1)	
oads Applied				
Load Type	Load Name	Function	Scale Factor	0
Acceleration	U1	SDINAM_X	1	Add
Acceleration	U3	SDINAM_X	0,6667	Delete
ther Parameters Modal Load Case Modal Combination M	lethod	Modal CQC	•	Advanced
ther Parameters Modal Load Case Modal Combination M Include Rigi	lethod id Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Diricit Ture		Advanced
her Parameters Modal Load Case Modal Combination M Include Rigi Earthquake Du	lethod id Response iration, td	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type		Advanced
ther Parameters Modal Load Case Modal Combination M Include Rigi Earthquake Du Directional Combinatio	lethod iid Response iration, td on Type	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS		Advanced
her Parameters Modal Load Case Modal Combination M Include Rigi Earthquake Du Directional Combinatio Absolute Direct	lethod id Response iration, td on Type tional Combination Scal	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS e Factor		Advanced
her Parameters Modal Load Case Modal Combination M Include Rigi Earthquake Du Directional Combinati Absolute Direct Modal Damping	lethod id Response iration, td on Type itonal Combination Scal Constant at 0,05	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS e Factor	Modify/Show	Advanced

Figura 49. Ventana en el que se ingresan los datos de los casos de carga tanto en

X como en Y.

Default Eccentricity for Response Spec Eccentricity Ratio (Applies to All Diag	trum Analysis ohragms Except those Overw	ritten Below) 0.05	
Overwrites at Specific Diaphragms			
Story	Diaphragm	Eccentricity (m) m [At	Delete
			Sort
	OK Canc	el	

Figura 50. Ventana para la introducción de la excentricidad. Fuente: Propia.

Asignación de Cargas Vivas y Cargas Muertas en la losa

Para saber el valor diferencial de la carga muerta pasaremos a tomar el peso de la tabiquería y acabados (0.15 y 0.10 consecutivamente) Por el cual tendremos como Carga muerta el valor de 0.25. En el caso de la Carga Viva ya está definida por el RNE – E 030 2018. Tomando como valor 0.25. y en la azotea el valor de 0.13. Estas cargas se ingresan en el menú Assign – Shell Loads – Uniform, una vez abierto la ventana podremos escoger entre los tipos de carga y el dato a ingresar, esté dato va en cada piso de la losa.

Figura 51. Menú para insertar las cargas vivas y muertas en la losa. Fuente: Propia.

Shell Load Assignment - Uniform	0	0 0	×
Load Pattern Name	Live	•	
Uniform Load Load 0,25 Direction Gravity	tonf/m² ▼	Options Add to Existing Loads Replace Existing Loads Delete Existing Loads	
ОК	Close	Apply	

Figura 52. Ventana donde se define el valor de la carga viva.

Shell Load Assignment - Uniform	
Load Pattern Name Uniform Load	Dead
Load 0,25 t Direction Gravity -	onf/m ² Add to Existing Loads Replace Existing Loads Delete Existing Loads
ОК	Close Apply

Figura 53. Ventana donde se define el valor de la carga muerta. *Fuente: Propia.*

Asignación de las masas de la estructura

Para tener el cálculo de las masas por piso, se define en el menú Define – Mass Source, por el cual para la carga muerta se multiplicará por el factor 1 y para la carga viva el factor de 0.25 según el RNE E. 020.

Mass Source		
Mass Sources	Click to:	
MsSrc1	Add New M	lass Source
	Add Copy of	f Mass Source
	Modify/Show	/ Mass Source
	Delete M	ass Source
	Default Mass Sour	rce
	OK Cancel	

Figura 54. Ventana para la creación de masas.

		Mass Multipliers for	Load Patterns	
Mass Source Name MsSrc1		Load Patte	rn Multiplier	
Mana Sauraa		Dead	 1	Add
Element Self Mass		Dead Live	1 0,25	Modify
Additional Mass				Delete
Specified Load Patterns				
Adjust Diaphragm Lateral Mass to Move Mass Centroid by	y:	Mass Options		
This Ratio of Diaphragm Width in X Direction		Include Lateral	Mass	
This Ratio of Diaphragm Width in Y Direction		Include Vertica	l Mass	
	,	Lump Lateral N	lass at Story Levels	

Figura 55. Ventana para la introducción del factor para la carga viva y muerta.

Fuente: Propia.

Asignación de las combinaciones de carga

Por lo visto el RNE E 060 nos da una serie de combinaciones para el cual se usa para el análisis dinámico de la estructura. Para insertar dichos combos pasaremos al menú Define – Load Combination, en la ventana se introduce los combos a utilizar en la estructura.

Figura 56. Menú para agregar las combinaciones de carga. Fuente: Propia.

aeneral Data		
Load Combination Name	Comb2	
Combination Type	Linear Add	•
Notes	Modify/Show No	otes
Auto Combination	No	
Live S Dinm X	1,25	Delete
5_0mm X	1	

Figura 57. Ventana para la introducción de los valores del combo. *Fuente: Propia.*

Load Combinations	
Combinations	Click to:
Comb1	Add New Combo
Comb2 Comb3	Add Copy of Combo
Comb4 Comb5 Comb6	Modify/Show Combo
Comb7 Comb8 Comb9	Delete Combo
Combo	Add Default Design Combos
	Convert Combos to Nonlinear Cases
	OK Cancel

Figura 58. Ventana de creación de los combos. *Fuente: Propia.*

Load Combination Name	ENVOLVENTE		
Load Combination Name			
Combination Type	Envelope		•
Notes	Modify/Sho	ow Note:	S
Auto Combination	No		
Comb 2	1	=	Delete
Comb 1	1		Add
Comb2	1	Ε	Delete
Comb3	1		
Comb4	1		
Comb5	1		
Comb6	1	-	

Figura 59. Ventana de creación de la envolvente. Fuente: Propia.

Análisis de la estructura en Etabs

Para iniciar el análisis, verificamos que no haya ningún error en el diseño para ello se utiliza la opción Check Model del menú Analyze, luego se revisará si estamos cumpliendo con las distorsiones que nos da la norma E.030, caso contrario se tendrá que hacer cambios en las dimensiones de las columnas, vigas o muros estructurales hasta mostrar cumplimiento con RNE.

Figura 60. Menú de verificación de errores en el programa. Fuente: Propia.

Check Model
Length Tolerance for Checks
Length Tolerance for Checks 0.001 m
Joint Checks
Joints/Joints within Tolerance
Joints/Frames within Tolerance
Joints/Shells within Tolerance
Frame Checks
Frame Overlaps
Frame Intersections within Tolerance
Frame Intersections with Area Edges
Shell Checks
Shell Overlaps
Other Checks
Check Meshing for All Stories
Check Loading for All Stories
Check for Duplicate Self Mass
Fix
Trim or Extend Frames and Move Joints to Fix Problems
Joint Story Assignment
Check Selected Objects Only
Select/Deselect All
OK

Figura 61. Ventana donde se verificará los errores cometidos en el programa. Fuente: Propia.

Figura 62. Ventana de aceptación del programa, mostrando que no hay error. Fuente: Propia.

Figura 63. Visualización en 3D sobre las deformaciones de la estructura. Fuente: Propia.

Verificación de los resultados en Etabs

Según el Reglamento Nacional de Edificaciones nos muestra una tabla de distorciones que no se debe exceder, dependiendo del material predominante.

Tabla 21. C	<i>Suadro de</i>	valores sobi	e las	distorsiones	máximas	por	material.
-------------	------------------	--------------	-------	--------------	---------	-----	-----------

Límites de dezplazamiento lateral según la norma E,030 -						
2018						
Material predominante	Δi/hei					
Concreto Armado	0,007					
Acero	0,01					
Albañilería	0,005					
Madera	0,01					
Edificios de concreto armado con muros	0.005					
de ductilidad limitada	0,005					

Para ver los desplazamientos laterales se calcularán multiplicando los resultados obtenidos por el análisis con el factor 0.75R. Para ello se exportan las distorsiones que se encuentran en el menú Display – Show Tables. Una vez abierto la ventana nos vamos a la opción Tables – Analysis – Result – Displacements – Story Drifts, seleccionamos las cargas máximas del sismo en X e Y y los exportamos en Excel.

Figura 64. Visualización de las cargas máximas del sismo en X e Y por piso. Fuente: Propia.

Tabla 22. Cuadro de datos sobre la verificación de las derivas de la estructura.

Story	Load	Direction	Drift	Drift X	Drift Y	Límite
Slory	Case/Combo		Drift	(0,75RxDriftX)	(0,75RxDriftY)	∆i/hei
Piso 5	S_Dinm X	X	0 000739	0.00333		0.007
1 130 0	Max	Λ	0,000700	0,00000		0,007
	S_Dinm Y	V	0 001120		0.00510	0.007
P150 D	Max	ř	0,001138		0,00512	0,007

Piso 4	S_Dinm Max	Х	Х	0,000838	0,00377		0,007
Piso 4	S_Dinm Max	Y	Y	0,001221		0,00549	0,007
Piso 3	S_Dinm Max	Х	Х	0,000842	0,00379		0,007
Piso 3	S_Dinm Max	Y	Y	0,001183		0,00532	0,007
Piso 2	S_Dinm Max	Х	Х	0,000751	0,00338		0,007
Piso 2	S_Dinm Max	Y	Y	0,000989		0,00445	0,007
Piso 1	S_Dinm Max	Х	Х	0,000522	0,00235		0,007
Piso 1	S_Dinm Max	Y	Y	0,000546		0,00246	0,007

Por consiguiente, se verificará primero los periodos que nos servirán para el cálculo del coeficiente de basal real para las cargas estáticas. Para ello nos dirigimos en el Menú Display – Show Tables – Analysis – Result – Modal Result – Modal Participating Mass Ratios, se tomará los tres primeros periodos que son del Eje X, Y y Z para pasar a calcular el coeficiente de basal para el eje X e Y.

	ETABS 2016 Ultimate 16.2.1 - DISEÑO DE CONCRI	TO ARMADO							_		- 0 -	x
File	e Edit View Define Draw Select A	ssign Analyze	Display Design I	Detailing Options	Tools Help							
	े 🔪 💾 🖉 🗞 🖉 🔒 🕨 🔍 🍳	Q. C. Q. [2]	🕂 3-d Plå elę 🔮	6) 📥 🐳 🍕	la 🔽 🗊 - 🏮	- 🗆 😪 📖 j	1 h h	💽 nd 🗏 I 🛛 [I -	∞ • C • <u>/</u>	- 🗊 -	
-	All Model Explorer	Has 3-D View	<u>ר הייני הייני</u>									• ×
R	Model Display Tables Reports Detailing	134- 5										
1	Tables											
-	Model											
\mathbf{i}	i⊟- Analysis				A	SK X		\square				
\sum	B- Options B- Response Spectrum Functions				The t			K				
111	Time History Functions				A		- ALK	\square				
558	Load Cases											
13					Call a							
X	Displacements				C C C							
m	B Reactions				0	At						
_	Modal Results Modal Resolds and Frequencia				0.	RE	\times					
_	- Modal Participating Mass Rati					A A						
	Modal Load Participation Ratio											
-	- Modal Participation Factors					BN X	\sim \sim \sim					
	- Response Spectrum Modal Inf	Modal Partic	ipating Mass Ratios	Story Drifts							•	• ×
E.	B Structure Results	4 4 1	de 12 📔 🕨 📔 🛛 Rel	oad Apply								
	Frame Results Shell Results	Case	The mo	de number. riod	UX	UY	117	Sum UX	Sum UY	0 m 117		R) ^
	H- Wall Results									SUM UZ		
8				sec						Sum UZ		- 11
1	Energy/Virtual Work Design	▶ Modal	1	0,495	0	0,7613	0	0	0,7613	0	0,2525	
× III	 Energy/Virtual Work ⊡ Design Table Sets 	Modal Modal	1 2	0,495	0 0.7882	0,7613 0	0	0 0,7882	0,7613 0,7613	0	0,2525	
	Energy/Virtual Work Design Table Sets	Modal Modal Modal	1 2 3	0,495 0,461 0,445	0 0,7882 0	0.7613 0 0	0 0 0	0 0,7882 0,7882	0.7613 0.7613 0.7613	0 0 0	0,2525	
× 田 単	⊕-Energy/Vitual Work ⊕-Design — Table Sets	Modal Modal Modal Modal Modal Modal	1 2 3 4	0,495 0,461 0,445 0,135	0 0.7882 0 0,1669	0,7613 0 0 0	0 0 0 0 0	0 0,7882 0,7882 0.9551	0.7613 0.7613 0.7613 0.7613	0 0 0 0 0	0,2525 0 0 0	
×	Energy/Virtual Work - Design - Table Sets	Modal Modal Modal Modal Modal Modal Modal	1 2 3 4 5	0,495 0,461 0,445 0,135 0,131	0 0,7882 0 0,1669 0	0,7613 0 0 0 0 0,1739	0 0 0 0 0 0	0 0,7882 0,7882 0,9551 0,9551	0.7613 0.7613 0.7613 0.7613 0.9353	0 0 0 0 0 0 0	0,2525 0 0 0 0 0 0 0,5343	
× 田 傘 ~	⊕ Energy/Virtual Work ⊕ Design — Table Sets	Modal Modal Modal Modal Modal Modal Modal Modal	1 2 3 4 5 6	0,495 0,461 0,445 0,135 0,131 0,117	0 0.7882 0 0,1669 0 0	0.7613 0 0 0 0 0.1739 0	0 0 0 0 0 0 0	0 0.7882 0.7882 0.9551 0.9551 0.9551	0,7613 0,7613 0,7613 0,7613 0,9353 0,9353	0 0 0 0 0 0 0	0,2525 0 0 0 0 0,5343 0	
× 田 傘 ~	⊕ Energy/Virtual Work ⊕ Design ⊡ Table Sets	Modal	1 2 3 4 5 6 7	0.495 0.461 0.445 0.135 0.131 0.117 0.076	0 0.7882 0 0.1669 0 0 0 0 0.031	0.7613 0 0 0 0 0.1739 0 0	0 0 0 0 0 0 0 0	0 0,7882 0,7882 0,9551 0,9551 0,9551 0,9551 0,9562	0,7613 0,7613 0,7613 0,7613 0,9353 0,9353 0,9353	0 0 0 0 0 0 0 0	0,2525 0 0 0 0 0 0,5343 0 0	
× 田 夆 ~	Energy/Vitual Work Er Design Table Sets	Modal	1 2 3 4 5 6 7 8	0,495 0,461 0,445 0,135 0,131 0,117 0,076 0,071	0 0,7882 0 0,1669 0 0 0 0,031 0	0.7613 0 0 0 0 0.1739 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0,7882 0,7882 0,9551 0,9551 0,9551 0,9551 0,9862 0,9862	0.7613 0.7613 0.7613 0.7613 0.9353 0.9353 0.9353 0.9353 0.9353	0 0 0 0 0 0 0 0 0 0 0 0 0	0,2525 0 0 0 0,5343 0 0 0 0 0	m
メ 田 4 ~	⊞ Energy/Vitual Work ⊕ Design □ Table Sets	Modal	1 2 3 4 5 6 7 8 9	0.495 0.461 0.445 0.135 0.131 0.117 0.076 0.071 0.071	0 0.7882 0 0,1669 0 0 0 0,031 0 0 0,0004	0.7613 0 0 0 0 0,1739 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0.7882 0.7882 0.9551 0.9551 0.9551 0.9862 0.9862 0.9865	0.7613 0.7613 0.7613 0.7613 0.9353 0.9353 0.9353 0.9353 0.9353 0.9353	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,2525 0 0 0 0 0 0,5343 0 0 0 0 0 0 0 0 0	111 III
×	⊕ Energy/Mtual Work ⊕ Design ☐ Table Sets	Modal	1 2 3 4 5 6 7 7 8 9 9 10	0,495 0,461 0,445 0,135 0,131 0,117 0,076 0,071 0,071 0,066	0 0.7882 0 0.1669 0 0 0.031 0 0 0.0004 0 0	0.7613 0 0 0 0 0.1739 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0.7882 0.7882 0.9551 0.9551 0.9551 0.9862 0.9862 0.9865 0.9865	0.7613 0.7613 0.7613 0.7613 0.9353 0.9353 0.9353 0.9353 0.9353 0.9353 0.9353	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2525 0 0 0 0 0 0.5343 0 0 0 0 0 0 0 0 0 0 0 0 0.1397	m
× × ×	Energy/Vitual Work Ei-Design Table Sets	Modal	1 2 3 4 5 6 7 8 9 9 10 11	9405 0.4695 0.461 0.135 0.131 0.117 0.076 0.071 0.071 0.066 0.066	0 0.7882 0 0.1669 0 0 0.031 0 0.0004 0 0 0	0.7613 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0,7882 0,9551 0,9551 0,9551 0,9551 0,9862 0,9865 0,9865 0,9865 0,9865	0,7613 0,7613 0,7613 0,7613 0,9353 0,9353 0,9353 0,9353 0,9353 0,9353 0,9353 0,9353 0,9353 0,9353	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2525 0 0 0.5343 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11
× III 🗠 🗧 📥 🐴 🖧	Energy/Mtual Work	 Modal 	1 2 3 4 5 6 7 7 8 9 10 10 11	960 0.495 0.495 0.135 0.135 0.131 0.117 0.076 0.071 0.071 0.066 0.066	0 0,7882 0 0,1669 0 0 0,001 0 0,001 0 0 0 0	0.7613 0 0 0 0 0 0.1739 0 0 0 0 0 0.0459 0 0 0	0 0	0 0,7882 0,7882 0,9551 0,9551 0,9551 0,9652 0,9862 0,9865 0,9865 0,9865	0,7613 0,7613 0,7613 0,7613 0,9353 0,9353 0,9353 0,9353 0,9353 0,9353 0,9353 0,9353 0,9812 0,9812	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2525 0 0 0 0.5343 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
× IIII 🖛 🖇 🐴 🖧 🖧	Energy/Mtual Work D Mark	 Modal 	1 2 3 4 5 6 7 8 9 10 11 11 2 7	960 0.495 0.445 0.135 0.131 0.177 0.076 0.071 0.071 0.066 0.064 	0 0.7882 0 0.1669 0 0 0.031 0 0 0.0004 0 0 0 0 0 0	0.7613 0 0 0.1739 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.7882 0.9551 0.9551 0.9551 0.9862 0.9862 0.9865 0.9865 0.9865	0,7613 0,7613 0,7613 0,7613 0,9353 0,9353 0,9353 0,9353 0,9353 0,9353 0,9353 0,9353 0,9353 0,9353		0.2525 0 0 0.5343 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 III

Figura 65. Visualización de los periodos de la estructura.

Fuente: Propia.

Cálculo de los coeficientes de Basal para el análisis estático de X e Y

Dado el periodo en X tenemos que Tx < TP por lo tanto C = 2.5

Tabla 23. Cu	adro de datos	sobre los pe	eriodos reales.
--------------	---------------	--------------	-----------------

Periodo Calculado en Etabs									
modo 2	x	0,506							
	A	seg							
modo 1	V	0,436							
modeli	у	seg							
modo 3	7	0,433							
11000 3	2	seg							

Τ _Ρ	=	0,60
ΤL	=	2,00
R ₀	=	6,00
R	=	6,00

Tabla 24. Cuadro de datos sobre los valores de TP, TL, R0 y R.

Para el cálculo de la amplificación sísmica para X e Y tenemos:

$$T_X < T_P$$
 $T_Y < T_P$
0.506 < 0.60 0.436 < 0.60

Por lo tanto, el valor de C para ambos casos se tomará:

CX = 2.5	CY = 2.5
$\frac{C}{R} \geq 0.125$	$\frac{C}{R} \geq 0.125$
$2.5 \geq 0.125$	$2.5 \ge 0.125$

Siendo los valores 2.5 se cumple con el factor de amplificación sísmica requerida. Por lo que los coeficientes de Basal para ambos casos serán:

$$\frac{ZUC_XS}{R_X} = \frac{ZUC_YS}{R_Y} = \frac{0.45 \times 1 \times 2.5 \times 1.05}{6} = 0.196875$$

Ingresamos estos valores para el análisis estático del programa en la ventana Seismic Load Patter – User Defined, y volvemos a calcular con los periodos reales tanto en el eje X como en el eje Y con una excentricidad de 5%.

irection and Eccentricity	Factors	
X Dir	(Dir Base Shear C	oefficient, C 0,197
ע X Dir + Eccentricity ע	Dir + Eccentricity Building Heigh	nt Exp., K 1
X Dir - Eccentricity Control (All Diaph.)	05 Top Story	Piso 5 v
Overwrite Eccentricities	Overwrite Bottom Story	Base 💌

Figura 66. Ventana donde se corrige el coeficiente de basal con los periodos

reales.

Fuente: Propia.

Verificación sobre la configuración estructural

Una vez verificada la estructura por los periodos, pasaremos a la configuración estructural, para saber si nuestra edificación trabaja a través de un sistema de muros estructurales se pasa a calcular la fuerza que soportan tanto nuestras columnas como los muros. Como se sabe por reglamento, para que se considere un sistema de muros estructurales, la resistencia sísmica predominantemente por los muros estructurales es de 70% de la fuerza cortante de la base como mínimo. (V > 70%).

Para obtener las fuerzas ejercidas en las columnas, nos dirigimos al menú Display – Show Tables – Analysis – Result – Frame Results – Column Forces, obtendremos solo los resultados de las columnas del primer piso y los exportaremos a un Excel. Por otro lado, para obtener las fuerzas de los muros estructurales una vez ingresado a la opción tablas ingresaremos a Analysis – Results – Wall Results – Pier Forces, se exporta los datos a un Excel y se pasa a la comprobación dl sistema estructural.

File Edit View Define Draw Select Assign Analyze Display Design Design Display Display<		• ×
Image: Start Forces Image: Start Forces<	∑ • <u> </u>	• ×
Image: Story Forces Alge Diverse Alge D		• ×
Image: Story Forces Base Reactions Image: Performance Story Image: Story Drifts		
Note: Note: <th< th=""><th></th><th></th></th<>		
Status Page 1 Class Code Status Page 7 Logg Logg Colema 1 Class Code Status Page 7 Logg Logg Colema 1 Class Code Colema 1 Class Code Colema 1 Class Code Colema 1 Colema 1 Class Code Colema 1 Colema 1 <th></th> <th></th>		
Image: Start Star		
Story Forces Base Reactions Bit Pier Forces Column Forces Bastory Drifts Centers of Mass and Column Forces Column Forces Image: Story Forces Image Reactions Image Pier Forces Image Reactions Image Pier Forces Image Reactions		
Story Column Income Story Processor Processor <th></th> <th></th>		
Image: State in the		
Story Forces Pay Base Reactions Pay Pier Forces Pay Column Forces Pay Story Drifts Pay Centers of Mass and Pay Centers of Mass and <th< th=""><th></th><th></th></th<>		
Story Forces Pig Base Reactions Pig Pier Forces Pig Column Forces Pig Story Drifts Pig Centers of Mass and Pig Centers of Mass and Pig Modal Participating I 1 de 40 Image Name Column Forces Pig Story Drifts Pig Centers of Mass and Pig Modal Participating Image Name Column Forces Pig Story Drifts Pig Centers of Mass and Pig Modal Participating Image Name Column Forces Pig Story To the Story Story Drifts Pig Centers of Mass and Pig Modal Participating Image Name Column Concest Column Forces Column Forces Column Forces Image Name Column Concest Column Forces Column Forces Column Forces Image Name Column Store Story Column Forces Column Forces Image Name Column Store Story Column Forces Column Forces Image Name Column Store Store Column Forces Column Forces Image Name Column Forces Column Forces Column Forces Column Forces Image Name		
Story Column Column Column Proces Page Stars Column Proces Page Stars Page Sta		
Res Column Ungue Name Calumn Forces Pag Story Drifts Pag Centers of Mass and		
Res Column Figh Centers Figh Centers <t< th=""><th></th><th></th></t<>		
Int Int <th></th> <th>- ×</th>		- ×
Part 1 Column Ungue Name Load Station P V2 V3 T M2 M3 Paol C1 621 Spmx Max 0 7.8757 1.022 0.0185 0.0008 0.0321 2.088 Paol C2 622 Spmx Max 0 7.8757 1.0282 0.0185 0.0008 0.0321 2.088 Paol C3 623 S,Dmx Max 0 7.8757 1.0282 0.0185 0.0008 0.0321 2.088 Paol C3 623 S,Dmx Max 0 7.8757 1.0282 0.0185 0.0008 0.0321 2.088 Paol C3 623 S,Dmx Max 0 7.8757 1.0282 0.0185 0.0008 0.0321 2.088 Paol C5 624 S,Dmx Max 0 7.8757 1.0282 0.0185 0.0008 0.0321 2.088 Paol C5 625 S,Dmx Max 0 1.2116 .7226 </th <th></th> <th></th>		
Story Column Unque Name Case.Comb Total Variable		
Pito 1 C1 S21 S_Dmx XMax 0 7.977 1.0282 0.0185 0.0008 0.0321 2.088 Pito 1 C2 622 S_Dimx XMax 0 7.8777 1.0282 0.0185 0.0008 0.0321 2.088 Pito 1 C2 622 S_Dimx XMax 0 7.8777 1.0282 0.0185 0.0008 0.0321 2.088 Pito 1 C3 623 S_Dimx XMax 0 7.8797 1.0282 0.0185 0.0008 0.0321 2.088 Pito 1 C4 624 S_Dimx XMax 0 7.8797 1.0282 0.0185 0.0008 0.0321 2.088 Pito 1 C5 625 S_Dimx XMax 0 7.8797 1.0282 0.0185 0.0008 0.0321 2.088 Pito 1 C8 625 S_Dimx XMax 0 12116 1.7226 0.0623 0.0021 0.1055 3.7218 Pito 1 C9 629 S_Dimx XMax 0	Element	
Pieo 1 C2 622 S_Drim X Max 0 7.8797 1.0282 0.0185 0.0008 0.0321 2.088 Pieo 1 C3 623 S_Drim X Max 0 7.8797 1.0282 0.0185 0.0008 0.0321 2.088 Pieo 1 C3 624 S_Drim X Max 0 7.8797 1.0282 0.0185 0.0008 0.0321 2.088 Pieo 1 C4 624 S_Drim X Max 0 7.8797 1.0282 0.0185 0.0008 0.0321 2.088 Pieo 1 C5 625 S_Drim X Max 0 17.216 1.726 0.623 0.0021 0.1055 3.7218 Pieo 1 C8 628 S_Drim X Max 0 11.2116 1.726 0.623 0.0021 0.1055 3.7218 Pieo 1 C9 630 S_Drim X Max 0 2.4497 2.173 0.0474 0.0021 0.0438 4.3111	621	0
Pieo 1 C3 623 5_Dmm X Max 0 7.8797 1.0282 0.0185 0.0008 0.0321 2.088 Pieo 1 C4 624 5_Dmm X Max 0 7.8797 1.0282 0.0185 0.0008 0.0321 2.088 Pieo 1 C5 625 5_Dmm X Max 0 7.8797 1.0282 0.0185 0.0008 0.0321 2.088 Pieo 1 C5 625 5_Dmm X Max 0 112116 1.226 0.0623 0.0021 0.1055 3.7218 Pieo 1 C8 628 5_Dmm X Max 0 112116 1.7266 0.0623 0.0021 0.1055 3.7218 Pieo 1 C5 629 5_Dmm X Max 0 0.6244 2.0707 0.0239 0.0021 0.0488 4.18 Pieo 1 C10 G30 5_Dmm X Max 0 2.4477 2.737 0.4744 0.0211 0.719 4.3111	622	0 =
Image Piso 1 C4 624 S_Dimn X Max 0 7.979 1.0282 0.0185 0.0008 0.0321 2.088 Piso 1 C5 625 S_Dimn X Max 0 11.2116 1.7226 0.0623 0.0021 0.1055 3.7218 Piso 1 C8 628 S_Dimn X Max 0 11.2116 1.7226 0.0623 0.0021 0.1055 3.7218 Piso 1 C9 629 S_Dimn X Max 0 0.6624 2.0707 0.0239 0.0021 0.0488 4.18 Piso 1 C10 630 S_Dimn X Max 0 2.4497 2.173 0.0474 0.0021 0.0719 4.3111	623	0
Pieo 1 C5 625 S_Dmm X Max 0 11.2116 1.7226 0.0623 0.0021 0.1055 3.7218 Pieo 1 C8 628 S_Dmm X Max 0 11.2116 1.7226 0.0623 0.0021 0.1055 3.7218 Pieo 1 C9 629 S_Dmm X Max 0 11.2116 1.7226 0.0623 0.0021 0.1055 3.7218 Pieo 1 C9 629 S_Dmm X Max 0 0.6624 2.0707 0.0229 0.0021 0.0488 4.18 Pieo 1 C10 630 S_Dmm X Max 0 2.4497 2.173 0.0474 0.0021 0.0719 4.3111	624	0
Pieo 1 C8 628 S_Dmm X Max 0 11.2116 1.7226 0.0623 0.0021 0.1055 3.7218 Pieo 1 C9 629 S_Dmm X Max 0 0.6624 2.0707 0.0239 0.0021 0.0488 4.18 Pieo 1 C10 630 S_Dmm X Max 0 2.475 2.173 0.0474 0.0021 0.0719 4.3111	625	0
Piso 1 C9 629 S_Dimn X Max 0 0.6624 2.0707 0.0239 0.0021 0.0488 4.18 Piso 1 C10 630 S_Dimn X Max 0 2.4497 2.173 0.0474 0.0021 0.0719 4.3111	020	
Piso 1 C10 630 S_Dinm X Max 0 2,4497 2,173 0,0474 0,0021 0,0719 4,3111	628	0
	628 629	0
Piso 1 C11 631 S_Dinm X Max 0 15.8231 2.0206 0.3282 0.0021 0.427 4.1156	628 629 630	0
Piso 1 C12 632 S_Dinm X Max 0 15.8231 2.0206 0.3282 0.0021 0.427 4.1156	628 629 630 631	0 0 0 0 0
al ² Piso 1 C13 633 S_Dinm X Max 0 2,4497 2,173 0,0474 0,0021 0,0719 4,3111	628 629 630 631 632	0 0 0 0 0 0 0 0
rs ^b Piso 1 C14 634 S_Dinm X Max 0 0.6624 2.0707 0.0239 0.0021 0.0488 4.18	628 629 630 631 632 633	0 0 0 0 0 0 0 0 0 0 0
Pieo 1 C15 635 S Dinm X Max 0 11.2116 1.7226 0.0523 0.0021 0.1055 3.7218	628 629 630 631 632 633 634	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Let 0	628 629 630 631 632 633 634 635	
ngrit uick on etry roris tor aspisacement values Statt Animation (</th <th>628 629 630 631 632 633 634 635</th> <th></th>	628 629 630 631 632 633 634 635	

Figura 67. Ventana de datos sobre la resistencia máxima en X ejercida por las columnas. Fuente: Propia.

	at View Def	ne Draw Selec	t Assign Anal	yze Display D	esign Detailing	options roc	ols Help					
	199	/ 🔒 🕨 🛛		💓 🕂 🛛 3-d P	n els 🌖 66	♠ 🐳 💀 🗹	🗊 • 🗊 • 🗖	.∨∭⊯h	4. 😽 💽 no	I - 🛛 - 🛨 - 🔳] • ∞ • 🖸 • ⊿	<u>-</u> [0 -]
(F	3-D View - Dis	lacements (Dead)	[m]									
							-12-					
						-	SAZ III					
						-CAL	XX	2				
					2	XX	X TOPA	Al -				
					1	1 that	XX					
						A AN	AN					
						AR	SAX					
						X MAY	XXX ×					
						No the						
						· · · · · · · · · · · · · · · · · · ·						
	a Story Forces	Base Reactio	ns Na Pier For	rces J 🖓 Colu	mn Forces	Story Drifts	Centers of Ma	iss and	ers of Mass and	Modal Participating	٦	
	Story Forces	Base Reactio	ns Pier For	rces	mn Forces	Story Drifts	Centers of Ma	iss and 🏾 🙀 Cent	ers of Mass and	Modal Participating]	
1	Story Forces	Base Reactio	ns Pier For d Apply	rces Colu	mn Forces	Story Drifts	Centers of Ma	ss and 🏾 🙀 Cent	ers of Mass and	M3]	
■	Story Forces	Base Reactio	d Apply Load Case/Combo	Location	mn Forces	Story Drifts V2 torf	Centers of Ma	ss and) 👔 Cent T tonf-m	ers of Mass and M2 torf-m	Modal Participating M3 tonf-m]	
4	Story Forces	Base Reactio	d Apply Load Case/Combo	Location Bottom	P tonf	Story Drifts V2 torf 395,1208	V3 1,42E-06	ss and T tonf-m 0,7692	ers of Mass and M2 tonf-m 1.307E-06	Modal Participating M3 tonfm 1410,909]	
■	Story Forces Story Piso 1 Piso 1	Base Reaction B Reloa Pier P1X P2X	ns Pier For d Apply Load Case/Combo S_Dinm X Max S_Dinm X Max	Location Bottom Bottom	P tonf 0	V2 395.1208 395.1208	V3 tonf 1,42E-06 0	tss and T T tonf-m 0.7692 0.7692	M2 tonfm 1,307E-06 0	M3 torfm 1410,909 1410,909]	
14	Story Forces Story Forces 8 de Story Story Piso 1 Piso 1	Pier P1X P2X P3Y	ns Pier For d Apply Load Case/Combo S_Dinm X Max S_Dinm X Max S_Dinm X Max	Location Bottom Bottom Bottom	P tonf 0 0 15,1366	V2 tonf 395,1208 395,1208 5,7632	V3 tonf 1,42E-06 0 2,6934	T tonf-m 0.7692 0.7692 0.068	M2 tonfm 1,307E-06 0 8,0632	Modal Participating M3 torf m 1410,909 1410,909 52,4139]	
4	Story Forces Story Forces Story Piso 1 Piso 1 Piso 1 Piso 1	Image: Base Reaction B B Pler P1X P2X P3Y P4Y	ns Pier For d Apply S_Dinm X Max S_Dinm X Max S_Dinm X Max S_Dinm X Max	Location Bottom Bottom Bottom Bottom Bottom	P tonf 0 15,1366 472,4266	V2 tonf 395,1208 395,1208 5,7632 45,6023	V3 tonf 1,42E-06 0 2,6934 4,2793	tss and) T torf-m 0.7692 0.7692 0.068 3.0734	ers of Mass and M2 torf-m 1.307E-06 0 8,0632 6,3545	M3 Modal Participating M3 torfm 1410,909 52,4139 22,2585]	
4	Story Forces Story Piso 1 Piso 1	Pier Pier P1X P2X P3Y P4Y P5Y	ns Capely Load Case/Combo S_Dinm X Max S_Dinm X Max S_Dinm X Max S_Dinm X Max S_Dinm X Max	Location Bottom Bottom Bottom Bottom Bottom	P tonf 0 0 15,1366 472,4266 472,4266	\$ Story Drifts V2 395,1208 395,1208 5,7632 45,6023 45,6023	V3 tonf 1.42E-06 0 2.6934 4.2793 4.2793	ss and T Cent T T 0.7692 0.7692 0.068 3.0734 3.0734	ers of Mass and Mass and.	M3 torfm 1410.909 52.4139 22.2585 22.2585]	
4	Story Forces Story Forces Image: Story Piso 1 Piso 1 Piso 1 Piso 1 Piso 1 Piso 1	Image: Place Reaction Place Reaction </td <td>ns Cad Pier For d Appy S_Dinn X Max S_Dinn X Max S_Dinn X Max S_Dinn X Max S_Dinn X Max S_Dinn X Max</td> <td>Location Bottom Bottom Bottom Bottom Bottom Bottom</td> <td>P tonf 0 0 15,1366 472,4266 472,4266 472,4266</td> <td>\$ Story Drifts V2 torf 395,1208 5,7632 45,6023 45,6023 45,6023</td> <td>V3 tonf 1.42E-06 0 2.6934 4.2793 4.2793 4.2793</td> <td>ss and) (1) Cent Tonf-m 0.7692 0.669 0.068 3.0734 3.0734 3.0734</td> <td>ers of Mass and M2 torf-m 1.307E-06 0 8.0632 6.3545 6.3545 6.3545</td> <td>M3 borf-m 1410.909 52.4139 22.2585 22.2585 22.2585</td> <td>]</td> <td></td>	ns Cad Pier For d Appy S_Dinn X Max S_Dinn X Max S_Dinn X Max S_Dinn X Max S_Dinn X Max S_Dinn X Max	Location Bottom Bottom Bottom Bottom Bottom Bottom	P tonf 0 0 15,1366 472,4266 472,4266 472,4266	\$ Story Drifts V2 torf 395,1208 5,7632 45,6023 45,6023 45,6023	V3 tonf 1.42E-06 0 2.6934 4.2793 4.2793 4.2793	ss and) (1) Cent Tonf-m 0.7692 0.669 0.068 3.0734 3.0734 3.0734	ers of Mass and M2 torf-m 1.307E-06 0 8.0632 6.3545 6.3545 6.3545	M3 borf-m 1410.909 52.4139 22.2585 22.2585 22.2585]	
14	Story Forces 8 de 8 de 9so 1 Piso 1 Piso 1 Piso 1	Image: Place Reaction Place Reaction </td <td>ns Cod d Apply Case/Combo S_Dinm X Max S_Dinm X Max</td> <td>Location Bottom Bottom Bottom Bottom Bottom Bottom Bottom</td> <td>P tonf 0 15,1366 472,4266 472,4266 472,4266 472,4266 472,4266</td> <td>V2 torf 395,1208 395,1208 5,7632 45,6023 45,6023 45,6023 45,6023</td> <td>V3 torf 1.42E-06 0 2.6934 4.2793 4.2793 4.2793 4.2793</td> <td>ss and 7 (1) Cent Torf-m 0.7692 0.068 3.0734 3.0734 3.0734 3.0734</td> <td>ers of Mass and M2 torf-m 1.307E-06 0 8.0632 6.3545 6.3545 6.3545 6.3545</td> <td>Modal Participating M3 torf m 1410,909 1410,909 52,4139 22,2585 22,2585 22,2585 22,2585 22,2585</td> <td>]</td> <td></td>	ns Cod d Apply Case/Combo S_Dinm X Max S_Dinm X Max	Location Bottom Bottom Bottom Bottom Bottom Bottom Bottom	P tonf 0 15,1366 472,4266 472,4266 472,4266 472,4266 472,4266	V2 torf 395,1208 395,1208 5,7632 45,6023 45,6023 45,6023 45,6023	V3 torf 1.42E-06 0 2.6934 4.2793 4.2793 4.2793 4.2793	ss and 7 (1) Cent Torf-m 0.7692 0.068 3.0734 3.0734 3.0734 3.0734	ers of Mass and M2 torf-m 1.307E-06 0 8.0632 6.3545 6.3545 6.3545 6.3545	Modal Participating M3 torf m 1410,909 1410,909 52,4139 22,2585 22,2585 22,2585 22,2585 22,2585]	

Figura 68. Ventana de datos sobre las resistencias máximas ejercidas en los

muros estructurales.

Ctom	Column	Unique	Load	Station	Р	V2	V3
Story	Column	Name	Case/Combo	m	tonf	tonf	tonf
Piso 1	C1	621	S_Dinm X Max	0	7,8797	1,0282	0,0185
Piso 1	C2	622	S_Dinm X Max	0	7,8797	1,0282	0,0185
Piso 1	C3	623	S_Dinm X Max	0	7,8797	1,0282	0,0185
Piso 1	C4	624	S_Dinm X Max	0	7,8797	1,0282	0,0185
Piso 1	C5	625	S_Dinm X Max	0	11,2116	1,7226	0,0623
Piso 1	C6	626	S_Dinm X Max	0	11,2116	1,7226	0,0623
Piso 1	C7	627	S_Dinm X Max	0	0,6624	2,0707	0,0239
Piso 1	C8	628	S_Dinm X Max	0	2,4497	2,173	0,0474
Piso 1	C9	629	S_Dinm X Max	0	15,8231	2,0206	0,3282
Piso 1	C10	630	S_Dinm X Max	0	15,8231	2,0206	0,3282
Piso 1	C11	631	S_Dinm X Max	0	2,4497	2,173	0,0474
Piso 1	C12	632	S_Dinm X Max	0	0,6624	2,0707	0,0239
Piso 1	C13	633	S_Dinm X Max	0	11,2116	1,7226	0,0623
Piso 1	C14	634	S_Dinm X Max	0	11,2116	1,7226	0,0623

Tabla 25. Fuerza cortante de las columnas en el eje X.

Piso 1	C15	635	S_Dinm X Max	0	0,5395	3,1604	0,0547
Piso 1	C16	636	S_Dinm X Max	0	0,6624	2,0707	0,0239
Piso 1	C17	637	S_Dinm X Max	0	4,7372	2,972	0,0745
Piso 1	C18	638	S_Dinm X Max	0	4,7372	2,972	0,0745
Piso 1	C19	656	S_Dinm X Max	0	0,5395	3,1604	0,0547
Piso 1	C20	639	S_Dinm X Max	0	8,2337	3,5108	0,0499
Piso 1	C21	655	S_Dinm X Max	0	8,2337	3,5108	0,0499
Piso 1	C22	654	S_Dinm X Max	0	0,5395	3,1604	0,0547
Piso 1	C23	653	S_Dinm X	0	4,7372	2,972	0,0745
Piso 1	C24	652	S_Dinm X	0	4,7372	2,972	0,0745
Piso 1	C25	651	S_Dinm X	0	0,5395	3,1604	0,0547
Piso 1	C26	650	S_Dinm X	0	0,6624	2,0707	0,0239
Piso 1	C27	649	S_Dinm X	0	2,4497	2,173	0,0474
Piso 1	C28	648	S_Dinm X	0	15,8231	2,0206	0,3282
Piso 1	C29	647	Max S_Dinm X	0	15,8231	2,0206	0,3282
Piso 1	C30	646	Max S_Dinm X	0	2,4497	2,173	0,0474
			Max				

	004	0.45	S_Dinm X	0	0.0007	0 5400	0.0400
PISO 1	C31	645	Max	0	8,2337	3,5108	0,0499
Dicc 1	C^{22}	644	S_Dinm X	0	0 5062	2 2044	0.0617
FISU I	032	044	Max	0	0,5965	3,2044	0,0017
Piso 1	C33	643	S_Dinm X	0	0 5963	3 2044	0.0617
1 130 1	000	040	Max	Ū	0,0000	0,2044	0,0017
Piso 1	C34	642	S_Dinm X	0	5.7385	3.1411	0.2937
1 100 1		0.2	Max	Ū	0,1000	0,111	0,2001
Piso 1	C35	641	S_Dinm X	0	5,7385	3,1411	0,2937
			Max		,	,	,
Piso 1	C36	640	S_Dinm X	0	0,5963	3,2044	0,0617
			Max				
Piso 1	C37	657	S_Dinm X	0	0,5963	3,2044	0,0617
			Max				
Piso 1	C38	658	S_Dinm X	0	8,2337	3,5108	0,0499
			Max				
Piso 1	C39	659	S_DINM X	0	5,7385	3,1411	0,2937
			Niax S Dinm X				
Piso 1	C40	660	S_DIIIII A Max	0	5,7385	3,1411	0,2937
			Ινιαλ			100,0152	

Tabla 26. Fuerza cortante de los muros estructurales en el eje X

<u>Ctom</u>	Diam	Load	Lootion	Р	V2	V3
Story	Pier	Case/Combo	Location	tonf	tonf	tonf
Piso 1	P1X	S_Dinm X	Bottom	0	395 1208	1 42E-06
11301	ΠΛ	Max	Dottom	0	000,1200	1,420 00
Dicc 1	DOV	S_Dinm X	Pottom	0	205 1209	0
PISO I	PZA	Max	DOILOIN	0	395,1206	0

Piso 1	D 3V	S_Dinm X	Bottom	15 1366	5 7632	2 60E±00
1 130 1	101	Max	Dottom	10,1000	5,7052	2,032+00
Diag 1		S_Dinm X	Dottom	470 4066	45 6000	4 0700
F150 1	F41	Max	DOILOIN	472,4200	43,0023	4,2795
Diag 1		S_Dinm X	Dottom	470 4066	45 6000	4 0700
PISU I	PDT	Max	DOLLOIN	472,4200	43,0023	4,2793
		S_Dinm X	Detters	470 4000	45 6000	4 0700
PISU I	POT	Max	DOLLOIN	472,4200	43,0023	4,2793
Diag 1		S_Dinm X	Dottom	470 4066	45 6000	4 0700
PISU I	P/T	Max	DOLLOIN	472,4200	43,0023	4,2793
		S_Dinm X	Detters	45 4000	E 7000	
PISO I	Por	Max	Bollom	15,1300	5,7632	2,69E+00
					984,1772	

Tabla 27. Fuerza cortante de las columnas en el eje Y.

Story	Column	Unique	Load	Station	Р	V2	V3
Story	Column	Name	Case/Combo	m	tonf	tonf	tonf
Piso 1	C1	621	S_Dinm Y	0	6 0827	0.0376	0 5009
1 150 1	U1	021	Max	0	0,0027	0,0070	0,0000
Dico 1			S_Dinm Y	0	6 0827	0.0376	0 5000
F 150 T	02	022	Max	0	0,0027	0,0370	0,5009
Dico 1	Ca	622	S_Dinm Y	0	6 0927	0.0276	0 5000
F150 1	03	023	Max	0	0,0027	0,0370	0,5009
Diag 1	C1	624	S_Dinm Y	0	6 0927	0.0276	0 5000
PISO I	64	024	Max	0	6,0827	0,0376	0,5009
Diag 1	<u>OF</u>	60F	S_Dinm Y	0	40.0766	0.057	1 7500
PISO 1	65	625	Max	0	13,3766	0,057	1,7569
	00	000	S_Dinm Y	0	40.0700	0.057	4 7500
PISO 1	C6	626	Max	U	13,3766	0,057	1,7569
		_					
-----	---	--	---	--	--	---	
C7	627	S_Dinm Y Max	0	13,1676	0,0556	1,1955	
C8	628	S_Dinm Y Max	0	16,9448	0,1483	1,2134	
C9	629	S_Dinm Y Max	0	56,77	0,1644	2,0176	
C10	630	S_Dinm Y Max	0	56,77	0,1644	2,0176	
C11	631	S_Dinm Y	0	16,9448	0,1483	1,2134	
C12	632	S_Dinm Y	0	13,1676	0,0556	1,1955	
C13	633	S_Dinm Y	0	13,3766	0,057	1,7569	
C14	634	S_Dinm Y	0	13,3766	0,057	1,7569	
C15	635	S_Dinm Y	0	3,0333	0,0844	2,6633	
C16	636	S_Dinm Y	0	13,1676	0,0556	1,1955	
C17	637	S_Dinm Y	0	4,4526	0,3169	2,5971	
C18	638	S_Dinm Y	0	4,4526	0,3169	2,5971	
C19	656	S_Dinm Y	0	3,0333	0,0844	2,6633	
C20	639	S_Dinm Y	0	0,9219	0,178	2,5391	
C21	655	S_Dinm Y	0	0,9219	0,178	2,5391	
C22	654	Max S_Dinm Y	0	3,0333	0,0844	2,6633	
	C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C16 C17 C18 C19 C19 C20 C21	C7 627 C8 628 C9 629 C10 630 C11 631 C12 632 C13 633 C14 634 C15 635 C16 636 C17 637 C18 638 C19 656 C20 639 C21 655	C7627MaxC8 628 $S_Dinm Y$ C9 629 $S_Dinm Y$ C10 630 $S_Dinm Y$ C11 631 $S_Dinm Y$ C12 632 $S_Dinm Y$ C13 633 $S_Dinm Y$ C14 634 $S_Dinm Y$ C15 635 $S_Dinm Y$ C16 636 $S_Dinm Y$ C17 637 Max C18 638 $S_Dinm Y$ C19 656 $S_Dinm Y$ C20 639 $S_Dinm Y$ Max $C21$ 655 $S_Dinm Y$ Max C22 654 $S_Dinm Y$	C7627Max0C8628 S_{\perp} Dinm Y Max0C9629 S_{\perp} Dinm Y Max0C10630 S_{\perp} Dinm Y Max0C11631 S_{\perp} Dinm Y Max0C12632 S_{\perp} Dinm Y Max0C13633 S_{\perp} Dinm Y Max0C14634 S_{\perp} Dinm Y Max0C15635 S_{\perp} Dinm Y Max0C16636 S_{\perp} Dinm Y Max0C17637 S_{\perp} Dinm Y Max0C18638 S_{\perp} Dinm Y Max0C19656 S_{\perp} Dinm Y Max0C20639 S_{\perp} Dinm Y Max0C21655 S_{\perp} Dinm Y Max0C22654 S_{\perp} Dinm Y Max0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7 627 Max 0 13,1676 0,0556 C8 628 $S_Dinm Y$ 0 16,9448 0,1483 C9 629 $S_Dinm Y$ 0 56,77 0,1644 C10 630 $S_Dinm Y$ 0 56,77 0,1644 C10 630 $S_Dinm Y$ 0 56,77 0,1644 C11 631 $S_Dinm Y$ 0 16,9448 0,1483 C12 632 $S_Dinm Y$ 0 16,9448 0,1483 C12 632 $S_Dinm Y$ 0 13,1676 0,0556 C13 633 $S_Dinm Y$ 0 13,3766 0,057 C14 634 $S_Dinm Y$ 0 13,3766 0,057 C15 635 $S_Dinm Y$ 0 3,0333 0,0844 C16 636 $S_Dinm Y$ 0 3,0333 0,0844 C16 636 $S_Dinm Y$ 0 4,4526 0,3169 C17 637 $S_Dinm Y$ 0 3,0333 0,0844 C19	

Piso 1	C23	653	S_Dinm Y Max	0	4,4526	0,3169	2,5971
Piso 1	C24	652	S_Dinm Y Max	0	4,4526	0,3169	2,5971
Piso 1	C25	651	S_Dinm Y Max	0	3,0333	0,0844	2,6633
Piso 1	C26	650	S_Dinm Y Max	0	13,1676	0,0556	1,1955
Piso 1	C27	649	S_Dinm Y Max	0	16,9448	0,1483	1,2134
Piso 1	C28	648	S_Dinm Y Max	0	56,77	0,1644	2,0176
Piso 1	C29	647	S_Dinm Y Max	0	56,77	0,1644	2,0176
Piso 1	C30	646	S_Dinm Y Max	0	16,9448	0,1483	1,2134
Piso 1	C31	645	S_Dinm Y Max	0	0,9219	0,178	2,5391
Piso 1	C32	644	S_Dinm Y Max	0	1,5927	0,0225	2,6694
Piso 1	C33	643	S_Dinm Y	0	1,5927	0,0225	2,6694
Piso 1	C34	642	S_Dinm Y	0	7,4588	0,0444	2,8531
Piso 1	C35	641	S_Dinm Y	0	7,4588	0,0444	2,8531
Piso 1	C36	640	S_Dinm Y	0	1,5927	0,0225	2,6694
Piso 1	C37	657	S_Dinm Y	0	1,5927	0,0225	2,6694
Piso 1	C38	658	S_Dinm Y	0	0,9219	0,178	2,5391
			iviax				

Piso 1	C39	659	_ Max S Dinm Y	0	7,4588	0,0444	2,8531
Piso 1	C40	660	Max	0	7,4588	0,0444 4,4364	2,8531

Tabla 28. Fuerza cortante de los muros estructurales en el eje Y.

Story	Diar	Load	Location	Р	V2	V3	
Story	Flei	Case/Combo	LUCATION	tonf	tonf	tonf	
Piso 1	D1Y	S_Dinm Y	Bottom	102 5276	5 0313	1 35E±00	
1 130 1		Max	Dottom	492,0270	5,0515	4,332+00	
Dico 1	DOV	S_Dinm Y	nm Y Bottom ax	102 5276	5 0212	1 25 1 2	
F150 1	ΓΖΛ	Max		492,5270	5,0515	4,3545	
Dico 1	עכם	S_Dinm Y	Dettem	0	2 155 .02	1 705 06	
F150 1	FJI	Max	DOLLOITI			1,790-00	
Diag 1		S_Dinm Y	Dottom	010 1710	90 5272	0.160	
PISO I	P41	Max	DOILOIN	210,1713	09,5373	0,169	
Diag 1		S_Dinm Y	Dottom	010 1710	90 5272	0.160	
PISO I	Por	Max	DOILOIN	210,1713	09,5373	0,169	
		S_Dinm Y	Detter	040 4740	00 5070	0.460	
PISO I	POT	Max	Bollom	218,1713	89,5373	0,169	
	עדם	S_Dinm Y	Detter	040 4740	00 5070	0.460	
PISO 1	P/Y	Max	Bottom	218,1713	89,5373	0,169	
		S_Dinm Y	Detterre	0	0.455.00		
PISO 1	POT	Max	Bottom	U	2,15E+02	6,37E-06	
					797,9022		

Por lo diferido en las tablas, se obtiene que:

 $VX_{columnas} = 100,0152$

$$VX_{muros \ estr.} = 984, 1772$$

Por lo que el porcentaje estará dado en:

Tabla 29. Cuadro de porcentajes de las cortantes en las Columnas y Muros en X.

	VX	%VX
COLUMNAS	100,0152	9,22
MUROS ESTRUCTURALES	984,1772	90,78
	1084,1924	100

Por lo tanto, tendremos que los muros estructurales soportan 90.78% de la fuerza cortante en la base.

```
VX > 70%
90.78% > 70%
```

Cumple con el sistema de muros estructurales en X.

Ahora para el eje Y:

$$VY_{columnas} = 4,4364$$

 $VY_{muros \ estr.} = 797,9022$

Por lo que el porcentaje estará dado en:

Tabla 30. Cuadro de porcentajes de las cortantes en las Columnas y Muros en Y.

	VY	%VY
COLUMNAS	4,4364	0,55
MUROS	797.9022	99.45
ESTRUCTURALES	,	,
	802,3386	100,00

Por lo tanto, tendremos que los muros estructurales soportan 99.45% de la fuerza cortante en la base.

$$VY > 70\%$$

99.45% > 70%

Cumple con el sistema de muros estructurales en Y.

Modelamiento Estático y Dinámico con el programa CYPECAD

Ingreso de datos generales

Pasaremos a diseñar en el programa Cypecad, el cual es uno de los programas que conforma Cype, en la primera ventana nos permitirá introducir el nombre del proyecto, descripción de las normas de cálculo tanto para el análisis dinámico y estático. En la figura 70 se ve el tipo de concreto que entrará tanto a los forjados, cimentación, columnas y muros. Para el tema de las barras de acero, el programa las estima por grados tanto de 40° con FY= 2800 kgf/cm2, 60° con FY= 4200 kgf/cm2 y 75° con FY= 5100 kgf/cm2.

Figura 69. Ícono del programa CYPE

🛃 Datos generales							
Clave: TESIS RNS - KAFS					0		
Descripción: Oficina 5 pisos							
Normas: NTE E 060: 2	2009 4151 5100-2007	(LRED) ANSI/A	ISC 360-10 (LRED) CTE DR	SE-M v Eurocódigo 9			
	2003, 7431 3 100 2007 ((2141 27), 74431774	30 300 10 (EN D), CTE DD	SE My Ediocodigo S			
Hormigón armado Hormigón			Perfiles Acero				
Forjados	f'c=210 -		Laminados y armados	A36	•		
Cimentación	f'c=210 🔹	*	Conformados	ASTM A 36 36 ksi	•		
Pilares	Fc=210 -	2	Madera 🗼				
Muros	f'c=210 🔹	🛃 📰	Aserrada, procedente	e de coníferas o chopos C	:14		
Características del árido	15 mm		Aluminio extruido 其	3			
Acero	(<u> </u>		EN	AW-5083 - F			
Barras	Grado 60 🔻	**					
Pemos	A-307 -	E					
Acciones			Coeficientes de pande	80			
Carga permanente y sobrecarga	de uso		Pilares de hormigón y mixtos				
Con acción de viento			Bx 1.000 By 1.00 Pilares de acero	00 🛃			
Con acción sísmica	ma Técnica E.030 (20	14) (Perú)	Bx 1.000 By 1.00	00 🛃			
Elementos constructivos	No se consid	leran					
Comprobar resistencia al fuego	Comprobar resistencia al fuego						
Estados límite (combinacion	Estados límite (combinaciones)						
Hipótesis adicionales (cargas es	Hipótesis adicionales (cargas especiales)						
		Aceptar)				

Figura 70. Ventana de datos generales de Cypecad. Fuente: Propia.

Estado de límite y combinaciones

El programa Cypecad en la opción estado de límite y combinaciones, lo verifica por las normas establecidas por el RNE E.060 referente al análisis de carga para el tema de elementos de hormigón armado. Para el resto de materiales, se aprecia por defecto las normas internacionales.

🛃 Estados límite	23
Hormigón: NTE E.060: 2009 Hormigón en cimentaciones: NTE E.060: 2009	0
	3
E.L.U. de rotura. Acero conformado: AISI S100-2007 (LRFE))
	3
E.L.U. de rotura. Acero Iaminado: ANSI/AISC 360-10 (LRFL))
	3
E.L.U. de rotura. Madera: CTE DB SE-M	_
Cota de nieve Altitud inferior o igual a 1000 m 💌	3
E.L.U. de rotura. Aluminio: Eurocódigo 9	
Nieve Altitud inferior o igual a 1000 m 👻	3
Tensiones sobre el terreno	
[3
Desplazamientos	
Acciones características	3
Configurar combinaciones para cada estado límite	
Aceptar	

Figura 71. Ventana de estados de límites del proyecto. Fuente: Propia.

👼 Estados límite a verificar		x
Homigón	NTE E.060: 2009	Ø
Cimentación	NTE E.060: 2009	
Acero conformado	AISI/NASPEC-2007 (LRFD) - ASCE 7	
Acero laminado	AISC 360-10 (LRFD) - ASCE 7	
Madera	CTE - Altitud inferior o igual a 1000 m	
Aluminio	EC - Altitud inferior o igual a 1000 m	
Tensiones sobre el terreno	NTE E.060: 2009	
Desplazamientos	Acciones características	
Aceptar	Cancelar]

Figura 72. Ventana de verificación de los estados de límite. Fuente: Propia.

Selección de los datos del coeficiente de basal para el cálculo del análisis dinámico.

Se tomará en cuenta las cargas sísmicas, con los factores de coeficiente de basal ya expuestos en diseño anterior:

Figura 73. Definición de los valores del coeficiente de basal. Fuente: Propia.

A comparación del espectro que por defecto toma la norma E.030 – 2014, se sabe que en el reglamento actualizado del 2018, para el cálculo del espectro se toma la fórmula ya aplicada; la cual se ingresará en el programa, para ello se pasará a la opción Definición del Espectro – Especificado por el usuario.

Introducción de cargas muertas y vivas por piso

Antes de introducir las cargas vivas y muertas a cada piso de la estructura, se diseña la altura y el número de pisos que tendrá el proyecto, para ello se abre la opción Introducir plantas la cual nos abrirá una ventana donde se introducirá la altura en metros.

Figura 75. Definición de las alturas de los pisos. Fuente: Propia.

Una vez proyectada la altura, en la opción editar grupos, se introducirán las cargas gravitatorias tanto vivas como muertas obtenidas del análisis de cargas para cada piso, de esta manera introducimos las cargas para el proyecto tomando en cuenta la categoría de uso.

🧱 Editar gru	pos				
Nombre	Categoría de uso	Q (t/m²)	CM (t/m²)	Proceso constructivo	(2
Piso5	Uso 1	0.13	0.25	Editar	
Piso4	Uso 1	0.25	0.25	Editar	
Piso3	Uso 1	0.25	0.25	Editar	
Piso2	Uso 1	0.25	0.25	Editar	
Piso1	Uso 1	0.25	0.25	Editar	
Cimentación	Uso 1	0.00	0.00		
					0 00
Categorías 1. Genera	de uso				 <u> </u>
<u>A</u> ceptar					Cancelar

Figura 76. Introducción de las cargas gravitacionales por piso. Fuente: Propia.

Introducción de los elementos estructurales

El programa tiene una facilidad de uno a cerca de la introducción de elementos estructurales, para ello en la pestaña columnas, ubicada en la parte inferior, se ingresa al menú Pilares- Nuevo Pilar, el cual una vez en la ventana a continuación se procede a introducir la dimensión de las columnas, por el cual pondremos una referencia por el tipo de columna que tenemos tanto en columnas centrales, esquineras y excéntricas.

😥 Nuevo pilar		_				x
Grupo final: Piso5 Grupo inicial: Cimentación						0
Referencia C1-5 Ángulo 0.0 grados	 Sin vinculación exterior Con vinculación ext Desnivel de apoyo Canto de apoyo 	erior 0.00 m 0.00 m	Coeficier Coeficier Coeficier Recubrir	ntes de pandeo ntes de empotr nte de rigidez a niento	amiento	
			Resisten	icia del normigo	on 🕒	
				Ancho X (cm)	Ancho Y (cm)	
Pis <mark>o</mark> 5	18.00 m	Piso5	1.1	30	30	
		Piso4		30	30	
Pis <mark>i</mark> 04	14.50 m	Piso3		30	20	
		Piso2		30	30	
Pis o3	11.00 m	PISO I		55	30	
Pis 02	7.50 m					
Pis <mark>o1</mark>	4.00 m					
	0.00 m					
Aceptar	Copiar de			(Cancelar	

Figura 77. Introducción de dimensión de las columnas. Fuente: Propia.

🔂 Tipo de sección		
Material		0
		\$
Тіро		
	Dimensión X 📴 cm	
	Dimensión Y 30 cm	

Figura 78. Ventana de tipo de sección de las columnas. Fuente: Propia.

Para la introducción de vigas o muros, tenemos el menú Vigas/Muros – Entrar viga o Entrar muro – Por el cual para la viga se tiene una ventana en la que se introduce el tipo de viga y las dimensiones para la estructura, tenemos también una gran variedad de secciones tanto para vigas cortas, vigas peraltadas, vigas peraltadas hacia arriba, entre otras como también la familia en la cual proviene.

Figura 79. Menú Vigas/Muros para la introducción de vigas o muros. Fuente: Propia.

😥 Viga actual		- 1		×
Fanilia				
		Ar Ca	ncho (b) 30.0 cm anto (a) 60.0 cm Viga bajo forjado	
Aceptar	Copiar	de viga		Cancelar

Figura 80. Ventana de tipo y predimensionamiento de las vigas. Fuente: Propia.

Una vez introducida las vigas, se pasará a los muros estructurales, el cual se presenta una ventana en la que se modifica los esperores tanto del eje X e Y ya que el programa Cypecad considera los espesores del muro desde su centro. Para obtener un espesor de 0.25 m, se divide tanto para X e Y un espesor de 0.125 m. Definimos hasta que piso irá el muro estructural y se pasará a dibujarlo en el programa.

Referencia Hasta: Pir Desde: Cir	e hormigón armado		 1 2 3 4 4
Planta	Espesor a la izquierda	Espesor a la derecha	
Piso5	0.125	0.125	
Piso4	0.125	0.125	
Piso3	0.125	0.125	
Piso2	0.125	0.125	
Piso1	0.125	0.125	
Empujes Con cou Cimentac O Con vi Sin vince Aceptar	Sin empujes eficiente de rigidez axil difer sión - Empotramiento inculación exterior culación exterior	rente 🖻	

Figura 81. Introducción de las dimensiones de los muros estructurales. Fuente: Propia.

Siguiendo con la introducción de elementos estructurales, pasaremos a introducir las losas, a medida que se van insertando las vigas y muros, aparecerá una imagen de signo de interrogación, la cual indica que en esa zona no se ha insertado una losa o definido como zona hueca, para ello pasaremos a crear la losa maciza e introducirlos en el programa, como también definir las partes huecas de la estructura.

Figura 82. Menú Paños para la introducción de losas y huecos. Fuente: Propia.

Figura 83. Ventana de creación del tipo de losas e introducción de sus dimensiones.

Fuente: Propia.

Una vez introducidas las los elementos estructurales, visualizaremos el modelo en 3D mediante la opción Vista 3D del edificio.

Figura 84. Área de dibujo del programa Cypecad. Fuente: Propia.

Figura 85. Visualización de la estructura en 3D. Fuente: Propia.

Análisis de la estructura en Cypecad

Una vez acabado la modelación e introducción de datos del proyecto, se pasará al cálculo estructural, para ello Cypecad define el cálculo a través de las opciones por estructura sin obtener el armado de acero, sin dimensionar la cimentación o con la cimentación ya aplicada. Por otro lado, se comprueba la geometría de los grupos actuales de la estructura para ver si no hay ningún error. Como primer caso pasaremos a calcular la estructura sin obtener armado. Una vez calculada la estructura, el programa botará una ventana de errores que se debe modificar, el cual si figurará un error ya sea por geometría u otro se debe rectificar dichos elementos. Una vez finalizada las correcciones, pasaremos a la pestaña de resultados.

Figura 86. Menú de cálculo del programa Cypecad. Fuente: Propia.

Verificación de la estructura en Cypecad

Se pasará a verificar las derivas de la estructura para ver si cumplen con los máximos desplazamientos según el RNE E.030 2018. Para ello se observará los desplazamientos de la estructura en la opción Listados – Distorsiones de pilares, extraeremos la hoja de cálculo a un formato Word y se pasa a verificar.

Figura 87. Herramienta de listado. Fuente: Propia.

Figura 88. Opciones de listados sobre las hojas de cálculo. Fuente: Propia.

Verificación de los desplazamientos máximos de la estructura.

En la parte de Distorsiones de pilares se muestra una hoja de cálculo detallada sobre las distorsiones máximas en cada uno de las columnas ya sea por situaciones persistentes o transitorias o por situaciones sísmicas, en la parte final de la hoja de cálculo se ve los máximos desplomes en dirección de X e Y por piso. El programa Cypecad ya calcula los desplazamientos por la fórmula 0.75R * los resultados del análisis lineal y elásticos para estructuras regulares.

Distorsiones de pilares		100	_	_		-					
🚯 Vista preliminar 🛞 Conf	figuración 💾 Ir	mprimir 🙀 Buscar								V 🛃 Co	mpartir 🆆 Exportar 🕶 🞵 Cerrar
		Total		17.70	0.0559	h / 317		0.0770	h / 230		*
	C3-24	Piso 5	17.70	3.50	0.0116	h / 302		0.0186	h/189		
		Piso4	14.20	3.50	0.0124	h / 283		0.0187	h / 188		
		Piso3	10.70	3.50	0.0124	h / 283		0.0175	h / 200		
		Piso2	7.20	3.50	0.0110	h / 319		0.0142	h / 247		
		Piso1	3.70	3.70	0.0087	h / 426		0.0089	h/416		
		Cimentación	0.00								
		Total		17.70	0.0559	h / 317		0.0777	n / 228		
	Notas: (1)	Las distorsiones están i	mayoradas p	or la ductilida	id.						
Valores máximos											
			Des	splome lo	cal máxim	o de los pilar	res (ð / h)			
	Planta	Site	uaciones p	ersistente	istentes o transitorias		Situaciones sísmicas ⁽¹⁾				
		Direcci	ón X		Dire	ección Y		Dirección X	Direc	ción Y	
	Piso5		-					1 / 295	1/	187	
	Piso4		-					1/276	1/	186	
	Piso3		-					1/276	1/	199	
	Piso2		-					1/310	1/	244	
	Piso1		-					1/421	1/	416	
	Notas: (1)	Los desplazamientos es	tán mayorad	los por la duc	tilidad.						
			Des	splome to	tal máxim	o de los pilar	es (<u>) /</u> H	I)			
		Situaciones	persistent	es o transi	torias			Situaciones si	smicas ⁽¹⁾		
		Dirección X			Dirección Y		Dire	cción X	Direcci	ón Y	
							1,	/ 309	1/2	26	
	Notas: (1)	Los desplazamientos es	tán mayorad	los por la duc	tilidad.						
			,								=
L											

Figura 89. Hoja de cálculo de los desplazamientos máximos. Fuente: Propia.

Tabla 31. Cuadro de desplazamientos máximos de X e Y en cada piso de la estructura.

	Desplome local máximo de los pilares (d / h)									
Planta	Situaciones	sísmicas ⁽¹⁾	Situaciones	Situaciones sísmicas (1)						
Planta	Dirección X	Dirección Y	Dirección X	Dirección Y	Δi/hei					
Piso5	1/295	1/187	0,00339	0,00535	0,007					
Piso4	1/276	1/186	0,00362	0,00538	0,007					
Piso3	1/276	1/199	0,00362	0,00503	0,007					
Piso2	1/310	1/244	0,00323	0,00410	0,007					
Piso1	1 / 421	1/416	0,00238	0,00240	0,007					

Por lo visto en la tabla tanto los desplazamientos en X como en Y no sobrepasan el valor límite dado por la norma; por lo tanto, cumple con Desplazamientos Laterales Relativos Admisibles.

Verificación del sistema estructural

Para verificar el porcentaje que soporta los muros con las columnas iremos a la opción de Listados – Justificación de la acción sísmica, por la que en la parte inferior de la hoja de cálculo el programa calcula ya mediante la cortante en la base de la estructura, el porcentaje absorbido por las columnas y muros estructurales.

Justificación de la acción sísmica	666251		1				
🖹 Vista preliminar 🛞 Configuración 畠 Imprimir 🙌	Buscar d D						🎦 Compartir 🖆 Exportar
1.6.2 Porcentaje de cortante sísmi	ico resistido por	tipo de soport	e y por plan	ta			
El porcentaje de cortante sísmico de la	columna 'Muros'	ncluye el cortan	te resistido p	or muros, p	antallas y el	ementos de a	arriostramiento.
Hipótesis sísmica: Sismo X1							
		0/	0		94.0		1
	Planta	70	N _X		70QY		-
	Die - E	Pilares	Muros	Pila	ares	Muros	-
	PISO5 Dico4	20.87	/9.13	26	.02	73.38	
	Piso3	16.02	83.98	20	31	78.69	
	Piso2	13.59	86.41	11	.88	88.12	
	Piso1	14.19	85.81	7.	99	92.01	
Hipotesis sismica: Sismo Y1	Planta	%	Q _X		%Q _Y		1
	Fiditid	Pilares	Muros	Pila	ares	Muros	-
	Piso 5	23.77	76.23	31	.66	68.34	
	Piso4	22.71	77.29	27	.38	72.62	
	Piso3	21.37	78.63	20	.87	79.13	
	Piso2	19.19	80.81	16	.38	83.62	
	PISOI	27.40	72.54	11	.43	88.57	
1.6.3 Porcentaje de cortante sísmi	ico resistido por	tipo de soport	e en arranq	ues			
El porcentaje de cortante sísmico de la	columna 'Muros'	ncluye el cortan	te resistido p	or muros, p	antallas y el	ementos de a	arriostramiento.
	111-64		%	Q _x	9	6Q _Y]
	Hipotesi	s sismică	Pilares	Muros	Pilares	Muros	1
	Sism	o X1	14.19	85.81	7.99	92.01	1
	Sism	o Y1	27.46	72.54	11.43	88.57	E

Figura 90. Hoja de cálculo de los porcentajes de cortante sísmicos máximos resistidos por las columnas y muros. Fuente: Propia.

Tabla 32. Cuadro de los porcentajes de columnas y muros ante la fuerza cortante.

Hipótesis	%(Q _X	%Q _Y		
sísmica	Pilares	Muros	Pilares	Muros	
Sismo X1	14.19	85.81	7.99	92.01	
Sismo Y1	27.46	72.54	11.43	88.57	

Tanto en el eje X e Y se define con claridad que los muros soportan un 85.81% y 92.01% para el sismo en X1 el cual son mayores que el 70% de la fuerza cortante. Al igual que en el sismo Y1. Por consiguiente, se cumple con el sistema de muros estructurales.

Análisis comparativo de ETABS y CYPECAD

Comparación del análisis estático

En el programa Etabs se verá el peso sísmico obtenido por el programa al igual que en el Cypecad, a su vez se comparará la fuerza cortante de ambos programas estructurales.

	Story Forces Base Reactions Pier Forces Column Forces								
I I I I I I I I I I I I I I I I I I I									
	Load Case/Combo	FX tonf	FY tonf	FZ tonf	MX tonf-m	MY tonf-m	MZ tonf-m		
	S_Est X	-1126,9803	0	0	0	-14686,4159	17327,3707		
	S_Est Y	0	-1126,9803	0	14686,4159	0	-24258,319		
	S_Dinm X Max	903,7967	2,929E-06	0	3,518E-06	11823,6176	13895,2428		
	S_Dinm Y Max	6,378E-06	858,8292	0	11525,7247	4,951E-06	18485,0374		
Þ	ENVOLVENTE Min	-903,7967	-858,8292	6072,3432	79559,4233	-206564,2992	-18485,0374		

Figura 91. Hoja de cálculo de ETABS Fuente: Propia.

Jus Oficina 5 pisos	stificación o	le la acción sísmica	Fecha: 04/12/19					
++1.5.2 Cortante basal es	tático							
El cortante sísmico en la ba direcciones de análisis:	se de la estructura s	e determina para cada una de las						
M_5.x: Cortante sísmico en la V _{e.x} = MAX(S _s (T _{e.x}) · P;	y _{six} : Cortante sísmico en la base (X) (Norma Técnica E.030 (2014), Artículo 4.5.2) V _{Lx} = MAX(S _z (T _{x,x}) · P; 0.125 · Z · U · S · P)							
<mark>Stax(</mark> T∎): Aceleración e J∎x: Periodo fund:	espectral horizontal o amental aproximado	le diseño (X) (X)	Ş_{d.x}(T₂) : 0.322 g J₂x : 0.33 s					
X_{5∈X} ; Cortante sísmico en la V _{s.γ} – MAX(S _d (T _{s.γ})·P;	i base (Y) (Norma Té 0.125 · Z · U · S · P)	écnica E.030 (2014), Artículo 4.5.2)	⊻s.x : <u>1181.8376</u> t					
Stax(T.): Aceleración e Jax: Periodo fund:	espectral horizontal o amental aproximado	le diseño (Y) (Y)	S_{el.x}.(T₀): 0.322 g J∞x: 0.38 s					
 P: Peso sísmico total de la e El peso sísmico total de la e plantas. P - ∑_{i=1}ⁿ p_i p_i: Peso sísmico total de 	estructura estructura es la suma de la planta "i"	a de los pesos sísmicos de todas las	P: <u>6002.9846</u> t					
Suma de la totalidad d uso considerada en el d	e la carga permanen cálculo de la acción s	ite y de la fracción de la sobrecarga de sísmica.						
	Planta	pi (t)						
	Piso5	1090.2406						
	Piso4	1225.4829						
	Piso3	1225.4829						
	Piso2	1225.4829						
	Piso1 P=Σpi	1236.2954 6002.9846						

Figura 92. Hoja de cálculo de Cypecad.

Fuente: Propia.

Tabla 33. Cuadro de porcentaje de diferencia entre los programas ETABS y CYPECAD.

	Cortante de basal ETABS	Cortante de basal CYPECAD	DIFERENCIA %
CORTANTE EN X	1126,9803	1181,8376	4,8676
CORTANTE EN Y	1126,9803	1181,8376	4,8676

Comparación del análisis dinámico

Para la comparación del análisis dinámico de ETABS y CYPECAD, se verán los desplazamientos en X e Y el cual ya se ha calculado para la verificación de la estructura.

Tabla 34. Cuadro de porcentaje de diferencia en las derivas de X e Y de los programas Etabs y Cypecad del Piso N°5.

	Derivas e	n ETABS	Derivas en	CYPECAD		
Piso	Dirocción V	Dirección V	Dirección	Dirección	DIF. X %	DIF. Y %
			X	Y		
Piso5	0,00333	0,00512	0,00339	0,00535	1,797	4,445

Tabla 35. Cuadro de porcentaje de diferencia en las derivas de X e Y de los programas Etabs y Cypecad del Piso N°4.

	Derivas e	n ETABS	Derivas en	CYPECAD		
Piso	Dirocción V	Dirocción V	Dirección	Dirección	DIF. X %	DIF.Y%
		Direction	Х	Y		
Piso4	0,00377	0,00549	0,00362	0,00538	3,894	2,07

Tabla 36. Cuadro de porcentaje de diferencia en las derivas de X e Y de los programas Etabs y Cypecad del Piso N°3.

	Derivas e	n ETABS	Derivas en	CYPECAD		
Piso	Dirección V	Dirección V	Dirección	Dirección	DIF. X %	DIF.Y%
	Direction X	Direction f	Х	Y		
Piso3	0,00379	0,00532	0,00362	0,00503	4,401	5,543

Tabla 37. Cuadro de porcentaje de diferencia en las derivas de X e Y de los programas Etabs y Cypecad del Piso N°2.

	Derivas en ETABS		Derivas en CYPECAD			
Piso	Dirección X	Dirección Y	Dirección	Dirección	DIF. X %	DIF. Y %
			Х	Y		
Piso2	0,00338	0,00445	0,00323	0,00410	4,562	7,902

Tabla 38. Cuadro de porcentaje de diferencia en las derivas de X e Y de los programas Etabs y Cypecad del Piso N°1.

	Derivas en ETABS		Derivas en CYPECAD			
Piso	Dirección X	Dirección Y	Dirección	Dirección	DIF. X %	DIF. Y %
			Х	Y		
Piso1	0,00235	0,00246	0,00238	0,00240	1,076	2,283

Basándonos a las tablas, las derivas ambos programas varían en milésimas para todos los pisos, el mayor porcentaje de error entre los programas lo presentamos en la deriva Y del segundo piso con una diferencia de 7.9% y la mínima diferencia en la deriva X para el primer piso con 1.07%.

Comparación de los momentos máximos.

Para el tema de Cypecad se muestra una ventana en la que se aprecia los momentos dados por los pórticos, piso por piso. Mientras que el Etabs muestra un gráfico general de los esfuerzos.

Figura 93. Ventana de momentos y esfuerzos de Cypecad. Fuente: Propia

Figura 94. Ventana de momentos y esfuerzos de Etabs. Fuente: Propia

Para un el momento dado por la carga viva en el segundo piso de un pórtico en el eje X, se tiene un valor de -0.78 ton*m en Cypecad mientras que en Etbas se tiene -0.6884 ton*m en el parte lateral izquierdo, mientras que en su eje central Cypecad muestra un momento de 0.951 ton*m con una cortante de 0.01 ton, y Etabs un momento de 0.8235 ton*m con una cortante de 0.1142 ton, siendo muy poco la variación de resultados.

Figura 95. Momentos y esfuerzos de un pórtico en Cypecad. Fuente: Propia

Figura 96. Momentos y esfuerzos de un pórtico en Etabs. Fuente: Propia

Para el tema de distorsiones en la estructura, se puede verificar ya sea mediante una animación o un gráfico de la estructura siendo afectada por un análisis modal espectral dinámico.

TRABS 2016 Ultimate 16.21 - DISEÑO DE CONCRETO ARMADO	
Eile Edit View Define Draw Select Assign Analyze Display Design Detailing Options Iools <u>H</u> elp	٤
□♥ ▋ ◇ ◇ / ≧ ▶ Q Q Q Q Q () / 34 08 08 06 0 € 5 15 0 1 • 0 • 1 ∨ 11 ↓ 17 10 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1	C • 🗹 • 间 •
Deformed Shape	• ×
Model Load Case / Load Combination/Model Case Case Combo Mode Scaling Adomatic Case Contour Renge Contour Options Contour Sono Places Contour Options Contour Sono Places Contour Component Spalecement UX Show Contours for Deplacement UX Maximum Value for Contour Range m	
Options Hings State Colored Data are For	////
Wire Snadow We St. C. Uand E Forms Different Forms Different Forms Different Forms Different Forms	1//
	1//
OK Close Apply	
s 🙀 Modal Participating Mass Ratios	• ×
al ^k go Wall Heads	
m ² / ₂ ⊕: heregy/whusi Work Story Lad Location P VX VY T MX 0:: Design - Cese/Combo tonf tonf </td <td>MY *</td>	MY *
Image: Market State Image: Market State	\$86,4159 -
Max = 0.000024 at [0, 19.2, 14.5]: Min = -0.00021 at [42, 15.5, 18]	Global

Figura 97. Desplazamientos ejercidos por el modal 1 (Y) en Etabs. Fuente: Propia.

Figura 98. Desplazamientos ejercidos por el modal 1 (Y) en Cypecad. Fuente: Propia.

ITABS 2016 Ultimate 16.2.1 - DISEÑO DE CONCRETO ARMADO	
Eile Edit View Define Draw Select Assign Analyze Display Design Detailing Options Iools Help	٠.
□ ◆	nd I • 🔲 • 🝸 • 🔟 • 🚥 • 🖸 • 🚣 • 🔟 •
Deformed Shape	▼ ×
Mode Indexer/Load Combination/Modal Case Case © Corbo Image: Control Combination/Modal Case Image: Control Combination/Modal Case Image: Control Combination/Modal Case Image: Control Control Control Image: Control Control Control Image: Control Control Control Control Image: Control Control Control Image: Control Image	
OK Close Apply is july Modal Participating Mass Ratios	• ×
al Apply	
PS Energy/Virtual Work Story Load Location P VX VY	T MX MY
cl ^b Case/Combo tont tonf tonf	tont-m tont-m tont-m
Max = 0.000004 at [25,2, 25, 14,5]; Min = -0.000021 at [0, 15, 18]	Start Animation C < S Global Units

Figura 99. Desplazamientos ejercidos por el modal 2 (X) en Etabs. Fuente: Propia.

Figura 100. Desplazamientos ejercidos por el modal 2 (X) en Cypecad. Fuente: Propia.

Normas usadas en el programa estructural Cypecad

Podemos darnos cuenta en los datos generales de la obra que trabaja con la norma de concreto armado RNE E.060 – 2009, el cual calcula la geometría de elementos estructurales. Por consiguiente, para las cargas empleadas y combinaciones de cargas usa el RNE E.020 – 2006 y para el análisis estático y dinámico utiliza el RNE E.030 2014 (decreto n°003-2016). Por otro lado, tiene un cuadro general de las normas usadas en los diversos países sudamericanos como también las normas ACI (American Concrete Institute). Acá se muestran otras normas las cuales están implementadas en el programa Cypecad.

Estructuras de hormig	jón		
🔁 Argentina	CIRSOC 201-2005CIRSOC 201-1982	🛨 India	IS 456: 2000NTC 14/01/2008
Bélgica	 Eurocódigo 2 (Bélgica) NB 1225001 CBH 87 	México D.F.	 NTC: 2017 NTCRC: 2004 NTCRC
📷 Brasil	 ABNT NBR 6118:2014 ABNT NBR 6118:2007 ABNT NBR 6118:2003 ABNT NB-1 	Perú 📑 Portugal	 NTE E.060: 2009 Eurocódigo 2 (Portugal) REBAP
Bulgaria	 Eurocódigo 2 (Bulgaria) NCh430.Of2008 	Rumanía	 Eurocódigo 2 (Rumanía) SP 63.13330.2012
Colombia	ACI 318-99 (Chile) NSR-10	Sudáfrica USA - Internacional	SABS 0100 ACI 318M-11 ACI 318M-08
Espana	 EHE-08 EHE-98 EH-91 		• ACI 318M-99
EU Internacional	 Eurocódigo 2 BAEL-91 (R-99) Eurocódigo 2 (Francia) 		

Figura 101. Normativa usada en el Cypecad para estructuras de hormigón. Fuente: http://normativa.cype.es/

Estructuras de acero laminado y armado				
📩 Alemania	• DIN 18800:2008-11	ా India	• IS 800: 2007	
📷 Brasil	ABNT NBR 8800:2008ABNT NBR 8800:1986	Italia	 Eurocódigo 3 (Italia) NTC 14/01/2008 	
📕 Bulgaria	 Eurocódigo 3 (Bulgaria) 	México D.F.	NTCRC Estruct.Metal.	
时 Canadá	• CAN/CSA S16-01	📴 Portugal	REAE Eurocódigo 3 (Portugal)	
💶 Chile	• NCh427			
💼 España	• EAE	ह Sudáfrica	 SANS 10162-1:2011 	
	CTE DB SE-A	USA 🔤	AISC ASD 89	
	• EA-95 (MV103)		AISC LRFD 86	
📷 EU Internacional	Eurocódigo 3	USA - Internacional	 ANSI/AISC 360-10 (LRFD) 	
Francia	 Eurocódigo 3 (Francia) 		ANSI/AISC 360-05 (LRFD)	

Figura 102. Normas de Cypecad para estructuras de acero laminado y armado. Fuente: http://normativa.cype.es/

	 CYS EN 1991-1-4:2005 (Eurocódino 1 - Chipre) 	🔁 Paraguay	• NBR
Colombia			Norma Técnica E.020
Colombia	• NSR-10	Portugal	• RSA
Costa Rica	• RC80		Eurocódigo 1 (Portugal)
🔁 Cuba	• NC 285:2003	册 Reino Unido	• BS 6399-2:1997
Ecuador	• NEC - 11		 Eurocódigo 1 (Reino Unido)
💳 España	CTE DB SE-AE	República	• Boletín nº 9/80
	• NTE	Dominicana	CUMP 2 01 07 05*
EU Internacional	Eurocódigo 1		• CHUIT 2.01.07-85*
Francia	Eurocódigo 1 (Francia)	<u> </u> Singapur	Eurocódigo 1 (Singapur)
	• NV 65:2009	🔚 Sudáfrica	• SANS 10160-3:2011
📊 Guatemala	• NSE2	🔚 Uruguay	• UNIT 50-84
	• CHOC-04	USA	ASCE/SEI 7-10
			ASCE/SEI 7-05
		Uenezuela	COVENIN 2003-89

Figura 103. Normativa usada en el Cypecad para las acciones en las estructuras,

viento.

Fuente: http://normativa.cype.es/

Colombia	 NSR-10 (Decreto 945 de 5 de junio de 2017) NSR-10 Microzonificación de Bogotá (NSR-10) Microzonificación de Cali - 2014 (NSR-10) Microzonificación de Cali - 2005 (NSR-10) Microzonificación de Pereira (NSR-10) NSR-98 	 México D.F. Nicaragua Panamá Perú 	 NTC: 2017 NTC - 2004 NTC - 95 RNC-07 REP 2014 REP-04 Norma Técnica E.030 2014 (decreto nº003- 2016) Nerres Técnica E.020
Costa Rica	CSCR 2010 CSCR-2002	Portugal	Eurocódigo 8 (Portugal)
🛌 Cuba	• NC 46:1999		RSA - Modal espectral
Ecuador	 NEC-SE-DS 2014 NEC-11 	Puerto Rico	• 2011 PRBC
	CPE INEN 5:2001	República Dominicana	R-001 2011M-001 1979
👥 El Salvador	 NTDS. Norma Técnica para Diseño por Sismo 	Rumanía	 P100-1/2013 P100-1/2006
👝 España	NCSE-02		- F100 1/ 2000
	• NCSE-94	E Rusia	• СНиП II-7-81*
📷 EU Internacional	Eurocódigo 8	对 Sudáfrica	• SANS 10160-4:2011
📊 Francia	 PS 92 (version révisée 2010) PS 92 Eurocódigo 8 (Francia) 	USA - Internacional	 ASCE 7-10 2009 IBC ASCE 7-05 1997 UBC
🔐 Guatemala	• NSE-10	🔤 Venezuela	• COVENIN 1756-1:2001

Figura 104. Normativa usada en el Cypecad para las acciones en las estructuras,

sismo.

Fuente: http://normativa.cype.es/

V. DISCUCIÓN

Para la investigación desarrollada se dispuso del uso de dos programas estructurales para verificar la variación de resultados entre ambos, por el cual se utilizó el programa ETABS (2016) cuyo uso a nivel sudamericano fue muy usado debido a la gran variedad de herramientas de cálculo el cual brinda gran asertividad en sus resultados, también es muy usada por los ingenieros estructurales para el diseño sísmico de una edificación. Por otro lado, se encuentra el programa estructural CYPECAD (2016) el cual se propone como manera de uso para los diseños sísmicos de edificaciones debido a que tiene gran facilidad de uso y presenta una reducción de tiempo de diseño para los ingenieros estructurales. Por ende, se desarrolló el análisis estático y dinámico de la estructura mediante el uso del Reglamento Nacional de Edificaciones E.030 – 2018, el cual es la última norma actualizada para el diseño sismorresistente de edificaciones.

Para el análisis estático, Jurado Amaluisa realiza un análisis estructural para el edificio "Manuela Sáenz" para verificar la norma ecuatoriana actualizada (NEC-SE-DS 2015) utilizando el programa Cypecad, por el cual, en el diseño estructural estático, para la obtención del coeficiente de basal, en los resultados de los periodos por modal, calcula la diferencia entre los periodos del programa estructural Cypecad con otro software especializado, teniendo una diferencia máxima del 29%. Por la que concluye que para los tres primeros periodos de Cypecad le da menor valor en los periodos teniendo en cuenta una diferencia máxima de 29% en el modal 3. Los resultados obtenidos por ambos programas se pueden por válidos, ya que no tienen mayor diferencia en los resultados de análisis. Para la investigación se obtienen una variación de los periodos en ambos programas de un 35%, con los periodos reales se rectifica el factor de amplificación sísmica (C). A diferencia de Jurado, se define que los datos serán válidos siempre y cuando se respete las normas empleadas para cada país. Siguiendo con el análisis estático, el factor de amplificación nos ayuda para el cálculo de los coeficientes de basal tanto en X como en Y el cual se usa en la obtención de las fuerzas cortantes. Luego se toman en cuenta la diferencia de las cortantes de ambos programas, el cual tienen una diferencia de 4.86%, por lo que su variación es mínima. Se pasa a la verificación del sistema estructural teniendo en cuenta las resistencias absorbidas tanto en las columnas como en los muros estructurales, por el cual, en ambos programas, los muros estructurales resisten en ambos ejes, el 70% más de la fuerza cortante en la base.

Como segunda fase, para el cálculo del análisis dinámico, Román Medina, en su investigación el cual están detalladas las herramientas del programa CYPECAD y del programa SAP2000, que es uno de los programas cuyo cálculo son más exactos; utiliza una edificación de losa aligerada con un sistema estructural pórticos de concreto armado, obtiene como resultados que sus derivas varían por milésimas respetando la NEC-SE-DS 2015. (Norma Ecuatoriana de Construcción) sobre los desplazamientos máximos. Por el cual se obtiene una diferencia de resultados el cual varía en milésimas, la mayor diferencia se encuentra en la Deriva Y con una diferencia de 42.85% entre las derivas 0.007 y 0.010 que se encuentran a una altura de 9.54 m (para este caso se determinó el porcentaje de diferencia entre ambos datos). Mientras que, en los resultados de la investigación, la mayor diferencia se encuentra en la Deriva Y con una diferencia de 7.902% entre las derivas 0.00445 y 0.00410 del Piso 2. Esto se debe a la exactitud de los programas tanto del Sap2000, Etabs y Cypecad. Por otro lado, cabe resaltar que las normas empleadas por Román Medina es la NEC-SE-DS 2015 y las usadas en esta investigación es el RNE – E.030 – 2018. Debido a la mínima diferencia del cálculo en ambos prográmas, Román acepta la validez de los resultados de Cypecad y lo define como un programa de un gran ayuda para la disminución del tiempo en diseño con datos confiables.

También se acepta la definición de Jurado para el tema de la geometría de los elementos estructurales, el cual indica que, para el diseño de los elementos con acero de refuerzo, Cypecad trabaja con áreas de acero definitivas las cuales dependen del criterio profesional. El cual, a la investigación dada, se concreta dicha afirmación debido a que el programa Cypecad tiene un menú de cálculo muy diverso, tanto para el análisis solamente de la estructura, el análisis de la estructura y cimentación, y el análisis con acero de refuerzo, el cual emplea y verifica la cantidad de acero dado para cada predimensionamiento de las columnas.

Por último, si se habla a cerca de la gestión del tiempo de diseño, los investigadores antecesores al trabajo de investigación están de acuerdo en que el programa Cypecad es uno software estructural con buena gestión de tiempo y facilidad de uso. Saavedra (2017) indica en sus conclusiones que Cypecad disminuye en la gestión del tiempo en el diseño de un edificio de cinco niveles, Vilema (2014) indica que con el programa Cypecad agilizó varios procesos de cálculo obteniendo datos confiables y aceptables, demostrando comodidad y garantía en el cálculo y Jurado (2016) indica que la estructura con Cypecad es extremadamente superior al tiempo de ejecución proporcionado por otro software especializado ya que toma en cuenta las consideraciones tomadas por las normas.
VI. CONCLUSIONES

- I. En la presente investigación, para el ingreso del espectro respuesta en Cypecad, trabaja con el espectro elástico en cambio el programa Etabs trabaja con un espectro inelástico siendo necesario multiplicar la carga espectral por la aceleración de la gravedad (9.81m/s2). Por el cual, para el diseño de Cypecad se introdujo el espectro respuesta inelástico calculado.
- II. Por consiguiente, en el análisis estático de los programas estructurales, tienen como resultados una fuerza cortante para X e Y, de 1126.98 Ton (Etabs) y 1181.84 Ton (Cypecad). Demostrando la validez de sus resultados debido a la proximidad de los datos el cual fue calculado por el coeficiente de basal y el peso de la estructura, con un porcentaje de diferencia del 4.87%. Por el cual si es efectivo el análisis estático en Cypecad.
- III. Otra de las conclusiones es que, en la participación de resistencia de la fuerza cortante sobre la base, en ambos programas, tienen una regular diferencia. El porcentaje en Etabs para un sismo en X es de 9.22% en columnas y 90.78% en muros estructurales; para un sismo en Y es de 0.55% en columnas y 99.45% en muros. Para el caso de Cypecad se tiene una resistencia para un sismo en X de 7.99% en columnas y 92.01% en muros; para un sismo en Y de 11.43% en columnas y 88.57% en muros. La diferencia de ellos es notable debido a que los resultados de los programas varían por la manera de cálculo que tiene. Sin embargo, ambos porcentajes de resistencia en los muros estructurales de Etabs y Cypecad sobrepasan el 70%, el cual se toman como datos confiables debido a que ambos cumplen con el sistema estructural indicado.
- IV. Para las derivas de piso analizadas por el análisis dinámico modal espectral en ambos programas, se obtuvieron datos muy similares, variando en solo milésimas y cumpliendo el límite máximo para concreto armado de 0.007, con una diferencia máxima en sus derivas de 7.09%. Gracias a la similitud de datos se afirma que Cypecad es viable para el análisis dinámico.
- V. De los resultados de los esfuerzos cortantes y momentos de los valores obtenidos por ambos programas, se tiene que Cypecad es ligeramente

mayor el cual produce que para el cálculo de refuerzo se incrementen las secciones de los elementos estructurales.

- VI. La gran diferencia entre Etabs y Cypecad se basa en la hoja de cálculo que te da cada programa. En el caso de Cypecad, su hoja de cálculo es tan detallado que para el cálculo del análisis estático te muestra los datos generales tomados para el coeficiente de basal, el gráfico del espectro usado para el análisis dinámico y las verificaciones que se debe tomar en cuenta en base al reglamento definido. En cambio, el Etabs no tiene esa modalidad, por lo que uno debe interpretar los resultados dados por el programa y exportarlo a una hoja de Excel para la creación de la hoja de cálculo; el cual, si no tienes conocimientos acerca del análisis estructural, no podrás interpretar dichos datos.
- VII. Por otro lado, Cypecad tiene la opción de edición muy amplia una vez calculado los resultados, debido a que en el diseño del acero de refuerzo, te muestra una ventana en el cual uno puede disminuir o aumentar las dimensiones tanto de los elementos estructurales como para el armado de las estructuras, el cuál por criterio del diseñador puede modificar para disminuir los recursos, dándote a conocer también las fallas, las verificaciones y todas las fórmulas que se utilizan para el cumplimiento de diseño de estructuras. También considera el uso de cuantía mínima el cual Etabs no realiza debido a que no toma un margen de espesores de acero.
- VIII. Por último, se concluye que en caso que se requiera un análisis más detallado donde las no lineales son muy esenciales o se debe tener en cuenta el proceso constructivo de estructuras muy esenciales, se requiere un modelamiento estructural mediante Etabs; sin embargo, si es un proyecto no muy complejo y sobre todo que se prime la optimización en el tiempo, se requiere el modelamiento estructural mediante Cypecad.

VII. RECOMENDACIONES

- I. Los resultados del proyecto tuvieron un análisis estático y dinámico el cual se tomaron datos correspondientes únicamente a la edificación planteada, para ampliar la investigación sería conveniente evaluar los programas mediante otro tipo de edificaciones como losas aligeradas, uso de tabiquería considerando la densidad de los muros u otros sistemas estructurales para validar en su totalidad el programa Cypecad.
- II. El programa Cypecad 2016 el cual fue utilizada en la investigación, tiene un uso de la norma de diseño sismorresistente E.030 – 2014, sería de gran utilidad que para futuras actualizaciones del programa se incorpore la norma E.030 – 2018 ya que en las últimas versiones del Cypecad 2019 aún se trabaja con la norma E.030 – 2016.
- III. Para futuras investigaciones se recomienda como fuente la tesis de Román Medina, el cual tiene una comparación muy detallada acerca del uso del Cypecad, por el cual brinda con buena información y temas a discutir para un buen uso del programa estructural, tomando siempre en cuenta las normas dadas a cada país.
- IV. Como deber de profesional, es necesario familiarizarse con la interpretación de los resultados que nos brindan los programas, el cual nos ayuda para la elaboración de tablas de cálculo, facilitando el proceso y comprobación de resultados. Por ende, para el uso del Cypecad se debe tener conocimientos básicos a cerca del diseño estructural para tener certeza de una buena realización de diseño. Para el caso de Etabs, debes tener un buen criterio y conocimientos sobre el análisis estático y dinámico, debido a que es un programa más complejo para el diseño estructural.
- V. Por último, se recomienda el uso del programa Cypecad para realizar proyectos no muy complejos, ya que se aprovecha las memorias de cálculo brindada por el programa como a su vez los planos y los detalles de las estructuras, como sus especificaciones técnicas. Optimizando sobre todo el tiempo de diseño.

REFERENCIAS

- CYPE Ingenieros. (2019). Página oficial de CYPE Ingenieros. Obtenido de http://normativa.cype.es/#programas_normas_licencia.
- CYPE Ingenieros, S.A. (2019). CYPECAD Memoria de Cálculo. Alicante, España. Obtenido de www.cype.com
- Guerra, M. (2010). Manual Para el Diseño Sismorresistente de Edificios. Utilizando el Programa ETABS. Quito Ecuador: Universidad Católica del Ecuador.
- Ingenieros CYPE. (2015). Cálculos de estructura de hormigón. *Manual CYPECAD*. 2-280.
- Jurado, L.A. (2016). Comparación entre la norma ecuatoriana de la construcción 2011 y la norma ecuatoriana de la construcción 2015 aplicadas al análisis estructural del edificio "Manuela Sáenz" mediante el uso del programa CYPECAD. *Trabajo experimental previo a la obtención del título de ingeniero civil.* 1-202.
- Nilson, A. (2000). Diseño de Estructuras de Concreto 12va Edición. México: *McGraw Hill.*1-458.
- Nilson, A. Darwin, D. Yamin, L. E. (2001). Diseño de estructuras de concreto. *McGraw-Will Interamericana, S.A.* Colombia. 4-738.
- Marte, C. J. (2014). Calibración de umbrales de daño sísmico para el análisis de fragilidad sísmica de estructuras de hormigón armado mediante análisis estático no lineal. *Departamento de Ingeniería de la Construcción.* 1-154.
- Ministerio de Vivienda, Construcción y Saneamiento. (2018). Diseño sismoresistente. *Norma técnica E.030.* Lima: El Peruano.
- Ministerio de Vivienda, Construcción y Saneamiento. (2009). Concreto Armado. Norma técnica E.060. Lima: Sencico.
- Ministerio de Vivienda, Construcción y Saneamiento. (2006). Cargas. Norma técnica E.020. Lima: Sencico.
- Ministerio de Vivienda, Construcción y Saneamiento. (2006). Estructuras Metálicas. Norma técnica E.090. Lima: Sencico.

- Ministerio de Vivienda, Construcción y Saneamiento. (2018). Suelos y Cimentación. Norma técnica E.050. Lima: Sencico.
- Rivas, C. (2017). Utilización del software Cypecad en el diseño sismo resistente de un edificio de cinco pisos utilizando como material el hormigón armado. *Escuela Superior Politécnica del Litoral (ESPOL)*. 1-7.
- Vilema, C.D. (2014). Análisis del factor de reducción de las fuerzas sísmica (r) en un edificio de hormigón armado de 5 pisos con CYPECAD para garantizar el cálculo y seguridad de sus habitantes ubicado en el barrio el dorado, ciudad de puyo, provincia de Pastaza. *Trabajo estructurado de manera independiente*. 2-284.
- Torres, I. (2015). Análisis y Diseño de Estructuras con SAP2000 v.15. Lima Perú: MACRO.

ANEXOS

Más opciones de Cypecad.

EDICIÓN DE ACERO DE REFUERZO EN ELEMENTOS ESTRUCTURALES

EDICIÓN DEL ACERO TRANSVERSAL EN VIGAS, TANTO EL TAMAÑO COMO LA SEPARACIÓN

CUADRO DE GRAFICAS PARA VIGAS TANTO MOMENTOS COMO LA SEPARACIÓN

	3Ø1/2" L=675	
2Ø3/4" L=240		Editar armaduras Disponer armadura en este tramo Disposición de la armadura transversal a La misma que la del armado de montaje Específica para este intervalo
	2x(1Ø6) A. Piel L=660 1Ø5/8" L=64	Diámetro de los estribos Ø3/8" ▼ Separación entre armaduras 26.0 cm Número de cercos agrupados 1 Aceptar Cancelar

CUADRO DE GRAFICAS PARA VIGAS TANTO MOMENTOS COMO FUERZAS

Gráficas de esfuerzos				
Visible	Esfuerzo	Escala		
~	My	0.100		
	N	0.100		
	Mt	0.100		
	Vz	0.100		

VENTANA DE VISUALIZACIÓN DE LOS GRAFICOS EN LAS VIGAS

CUADRO DE HOJA DE CÁLCULO PARA LA VERIFICACIÓN DE LAS VIGAS

Effetdo Too Zona Comprobación Effetdo Too Zona Comprobación Image Resistences (23-1150n, Negative: Editado zone) Depociones relitivas a las amaduras (NTE E 080.2009, Arliculas 155, 110.32) (05.37) (0.31) Image Resistences (23-1150n, Negative: Editado linte da agatametria fortes a contra (contracorera simucas) (NTE E 060.2009, Arlicula 110, 110, 110, 110, 110, 110, 110, 110	😥 Comproba	ciones E.L.U.	y E.L.S. (Viga)		
Endo Top Zone Corporebación Image: Anticolar Selections Corporebacións Corporebacións Corporebacións Image: Anticolar Selections Corporebacións Corporebacións Corporebacións Image: Anticolar Selections Corporebacións Corporebacións Corporebacións Corporebacións Corporebacións Corporebaciónse<					📰 Ver el listado completo
V Emple Presenteroda C23-1150m Negatives Papochonese metatives as lase amenators (NTE E 690 2009, Acticulas 10, 11, 1052, 1053, 1103.1) V Dample Presenteroda C23-1150m Negatives Estado linete de appraemento firete a contarte (continuaciones a simicas) (NTE E 600 2009, Acticula 11) Image: Presenteroda C23-1150m Negatives Estado linete de appraemento firete a contarte (continuaciones a simicas) (NTE E 600 2009, Acticula 10) Image: Presenteroda C23-1150m Negatives Estado linete de appraemento firete a contarte (continuaciones a simicas) (NTE E 600 2009, Acticula 10) Image: Presenteroda C23-1150m Negatives Estado linete de appraemento firete a contarte (continuaciones a simicas) (NTE E 600 2009, Acticula 10) Image: Presenteroda C23-1150m Negatives Estado linete de appraemento firete a sociatories continuaciones resinuas) (NTE 1060 2009, Acticula 10) Image: Presenteroda Contage:	Estado	Тіро	Zona	Comprobación	A
Y Comple Presence 223-1150m. Negatives A maxium initinary unders NTEE E002 2009, Articula 103, 11032, 1053, 11032, 1053, 11032, 1053, 1103, 1104, 110, 1104,	✓ Cumple	Resistencia	C2-3 - 1.150 m, Negativos	Disposiciones relativas a las armaduras (NTE E.060:2009, Artículos 7.6 y 7.10)	
Y Comple Peatercol C23-1150 m, Ngatava Endo limite de agatamento frete a contacte combinaciones no silinica) (NTE E 0602.009, Articulo 11) Y Comple Peatercol C23-1150 m, Ngatava Endo limite de agatamento frete a contacte combinaciones initica) (NTE E 0602.009, Articulo 10) Image: Statu Stat	✓ Cumple	Resistencia	C2-3 - 1.150 m, Negativos	Armadura mínima y máxima (NTE E.060:2009, Artículos 10.5.1, 10.5.2, 10.5.3 y 10.9.1)	
✓ Comple Peasternos C23-1150m. Negativos Estado limite de agotamento frete a coldacionera normes (DBC2003, Arlicula 10) ✓ Comple Peasternos C23-1150m. Negativos Estado limite de agotamento frete a coldacionera normes (DBC2003, Arlicula 10) ✓ Comple Peasternos C23-1150m. Negativos Estado limite de agotamento frete a coldacionera normes (DBC2003, Arlicula 10) ✓ Comple Peasternos C23-1150m. Negativos Estado limite de agotamento portonión. Compresión deloca. (NTE E 062:2003, Arlicula 10) ✓ Surgues Resaternos C23-1150m. Negativos Estado limite de agotamento portonión. Compresión deloca. (NTE E 062:2003, Arlicula 10) ✓ Surgues Resaternos C23-1150m. Negativos Estado limite de agotamento portonión. Compresión deloca. (NTE E 062:2003, Arlicula 10) ✓ Surgues Resaternos Contiguación Immonif ME Baccar Baccar Disposicioners relativos a las armaduras (NTE E.060:2009, Artículos 7.6 y 7.10) Armadura Ibitro minima entre barras paralelas de una capa no debe ser menor de s _{1, min} (Artículo 7.6.1): <td>✓ Cumple</td> <td>Resistencia</td> <td>C2-3 - 1.150 m, Negativos</td> <td>Estado límite de agotamiento frente a cortante (combinaciones no sísmicas) (NTE E.060:2009, Attículo 11)</td> <td></td>	✓ Cumple	Resistencia	C2-3 - 1.150 m, Negativos	Estado límite de agotamiento frente a cortante (combinaciones no sísmicas) (NTE E.060:2009, Attículo 11)	
Y Curpa Peatencia C23-1150 m. Hogatova Eacdo limite de agotamento forter a adotacores normades combinaciones a limicadi (NTE E 060 2009, Articulo 10) Image: Status a status status a status a status a status a status a status a	✓ Cumple	Resistencia	C2-3 - 1.150 m, Negativos	Estado límite de agotamiento frente a cortante (combinaciones sísmicas) (NTE E.060:2009, Artículo 11)	
✓ Curple Restencia (23-1 190 m, Negativos Etado limte de aptamento portexio. Compresón oblicus. NTE E 060:2009, Artículo 1163.1) ↓ ◆ Curple Restencia (23-1 190 m, Negativos Etado limte de aptamento portexio. Compresón oblicus. NTE E 060:2009, Artículo 1163.1) ↓ ◆ Curple Securitada las compresón oblicus. NTE E 060:2009, Artículos 7.6 y 7.10)	✓ Cumple	Resistencia	C2-3 - 1.150 m, Negativos	Estado límite de agotamiento frente a solicitaciones normales (combinaciones no sísmicas) (NTE E.060:2009, Artículo 10)	
✓ Curple Restancia C23-1190m, Negativos Estado líméte de apdramento portorsón. Compresón debuas. (NTE E 060 2009, Artículos 116.3.1) ▼	✓ Cumple	Resistencia	C2-3 - 1.150 m, Negativos	Estado límite de agotamiento frente a solicitaciones normales (combinaciones sísmicas) (NTE E.060:2009, Artículo 10)	
Be currylen todas las comprobaciones. The productiones relativas a las armaduras (NTE E.060.2009, Articulos 7.6 y 7.10) Temposticiones relativas a las armaduras (NTE E.060:2009, Articulos 7.6 y 7.10) Armadura longitudinal La distancia libre minima entre barras paralelas de una capa no debe ser menor de s _{1,min} (Artículo 7.6.1):	✓ Cumple	Resistencia	C2-3 - 1.150 m, Negativos	Estado límite de agotamiento por torsión. Compresión oblicua. (NTE E.060:2009, Artículo 11.6.3.1)	•
Disposiciones relativas a las amaduras (NTE E.060:2009, Artículos 7.6 y 7.10)	G Se cumple	en todas las co	mprobaciones.		
Nota pretention: We compare: Despositiones Compare: Despositiones Dispositiones: relativas a las armaduras (NTE E.060:2009, Artículos 7.6 y 7.10) Armadura longitudinal Image: Strand	Disposicione	es relativas a	a las armaduras (NTE E.O	60:2009, Art ículos 7.6 y 7.10)	
Disposiciones relativas a las armaduras (NTE E.060:2009, Articulos 7.6 y 7.10) Armadura longitudinal La distancia libre mínima entre barras paralelas de una capa no debe ser menor de $s_{l,min}$ (Articulo 7.6.1): $s_1 \ge s_{toma}$ Donde: $s_1 \ge s_{toma}$ Donde: $s_1 \ge s_{toma}$ Sl,min: 25 mm $s_1 = d_1$ $s_1 = d_1$ $s_1 = 25 mm$ $s_2 = 25 mm$ $s_3 = 1.33 d_{s_2}$ d_b : Diámetro de la barra más gruesa. d_b : Diámetro de la barra más gruesa.	🗟 Vista pre	eliminar 🛞 (Configuración 🖹 Imprimir	Buscar	📌 Compartir 🏥 Exportar 🗸 I
Disposiciones relativas a las armaduras (NTE E.060:2009, Artículos 7.6 y 7.10) Armadura longitudinal La distancia libre mínima entre barras paralelas de una capa no debe ser menor de $s_{l,min}$ (Artículo 7.6.1): $s_{1, 25 \text{ t_{cmk}}}$ Donde: $s_{1, 25 \text{ t_{cmk}}}$ $s_{1, min}$: Valor máximo de $s_{1, 1}, s_{2, 2}, s_{3}$. $s_{1, min}$: Valor máximo de $s_{1, 1}, s_{2, 2}, s_{3}$. $s_{1, 25 \text{ mm}}$ $s_{2} = 25 \text{ mm}$ $s_{2} = 25 \text{ mm}$ $s_{3} = 1.33 \text{ d}_{a}$ Siendo: d_{b} : Diámetro de la barra más gruesa. d_{b} : <u>19.1 mm</u>					<u>^</u>
Armadura longitudinal La distancia libre mínima entre barras paralelas de una capa no debe ser menor de $s_{l,min}$ (Artículo 7.6.1): $s_i \ge s_{s_{min}}$ 31 mm ≥ 25 mm \checkmark $s_i \ge s_{s_{min}}$ Valor máximo de s_1 , s_2 , s_3 . $s_{l,min} : _25 mm$ $s_i = d_i$ $s_1 = 19 mm$ $s_i = d_i$ $s_1 : _19 mm$ $s_2 = 25 mm$ $s_2 : _25 mm$ $s_1 = 1.33 \cdot d_{s_1}$ $s_3 : _20 mm$ Siendo: d_b : Diámetro de la barra más gruesa. d_b : Diámetro de la barra más gruesa. $d_b : _19.1 mm$	Disposic	ciones rela	ativas a las armadur	ras (NTE E.060:2009, Articulos 7.6 y 7.10)	1
La distancia libre minima entre barras paralelas de una capa no debe ser menor de $s_{l,min}$ (Articulo 7.6.1): $s_i \ge s_{com}$ Donde: $s_i \ge t_{i,min}$: Valor máximo de $s_{1'} \cdot s_{2'} \cdot s_{3'}$. $s_i = d,$ $s_i = d,$ $s_i = d,$ $s_i = 25 \text{ mm}$ $s_i = 25 \text{ mm}$ $s_i = 25 \text{ mm}$ $s_i = 1.33 \cdot d_{s_i}$. Siendo: d_b : Diámetro de la barra más gruesa. d_b : <u>19.1</u> mm $<$ Constar	Armad	ura longi	tudinal		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	La dista	ncia libre	minima entre barras	s paralelas de una capa no debe ser menor de s _{l,min} (Articulo 7.6.1):	
Donde: s1,min: Valor máximo de s1, s2, s3. S1,min: 25 mm s1 s1 <td></td> <td>s,≥s_{tm}</td> <td>in .</td> <td></td> <td>31 mm≥ 25 mm 🖌</td>		s,≥s _{tm}	in .		31 mm≥ 25 mm 🖌
si,min: Valor máximo de s ₁ , s ₂ , s ₃ . si,min:25mm si = d, si:19mm si = 25 mm s2:25mm si = 1.33 da, s3:20mm Siendo: db: Diámetro de la barra más gruesa. db:19.1mm		Donde	:		
i, min			s,:: Valor m	iáximo de s., s., s.,	Station 25 mm
s. = d, s1:19mm s. = 25 mm s2:25mm s. = 1.33. d. s3:20mm Siendo: db: Diámetro de la barra más gruesa. db: Diámetro de la barra más gruesa. db:19.1mm			1,11111	1. 2. 3	1,000 0
s1 - d1			e - d		F F
s, = 25 mm s2: 25 mm s, = 1.33. des s3: 20 mm Siendo: db: Diámetro de la barra más gruesa. db: Diámetro de la barra más gruesa. db: 19.1 mm			$S_1 = O_0$		°1 : <u>19</u> mm
s1 = 25 mm s2 :25 mm s3 = 1.33 · due s3 :20 mm Siendo: db :19.1 mm Acceptar					
s, = 25 mm s2 :25 mm s, = 1.33. dg. s3 :20 mm Siendo: db:19.1 mm Cooptar Cooptar					
s, = 1.33. d _{es} S ₃ : <u>20</u> mm Siendo: d _b : Diámetro de la barra más gruesa. d _b : <u>19.1</u> mm -			s ₂ = 25 mm		⁵₂ : 25 mm
s, = 1.33 · des Signal Signal Signal Signal Mail Siendo: db: 19.1 mm mm - Acceptar Acceptar - -					
s, = 1.33. d _a S ₃ : <u>20</u> mm Siendo: d _b : Diámetro de la barra más gruesa. Aceptar					
Siendo: d _b : Diámetro de la barra más gruesa. Aceptar			s ₃ = 1.33 · d _{ec}		53: 20 mm □
Siendo: d_b: Diámetro de la barra más gruesa. Acestar					
db: Diámetro de la barra más gruesa. db:mm			Siendo:		
Aceptar			d _թ ։	Diámetro de la barra más gruesa.	d _b . 19.1 mm
Aceptar	1		U		D . <u>15.1</u>
				Aceptar	

Estado límite de agotamiento frente a cortante (combinaciones sísmicas) (NTE E.060:2009, Artículo 11)

Se debe satisfacer:

$$\eta = \frac{V_{u,y}}{\phi \cdot V_{n,y}} \le 1$$

Donde:

Xuri	Esfuerzo	cortante	efectivo	de	cálculo.	

♦•Yex: Esfuerzo cortante de agotamiento por tracción en el alma.

Los esfuerzos solicitantes de cálculo pésimos se producen en '0.013 m', para la combinación de <u>binótesis</u> "1.25·PP+1.25·CM+1.25·Qa+SX".

```
Esfuerzo cortante de agotamiento por tracción en el 
alma.
```

Cortante en la dirección Y:

Resistencia nominal a cortante en piezas que requieren refuerzos de cortante, obtenida de acuerdo con el Artículo 11.1.1:

 $V_n = V_c + V_s$ $y_0 : 46.945$ t

Resistencia al cortante proporcionada por el concreto en elementos no preesforzados sometidos a compresión axial (Artículo 11.2.2.2):

$$\mathbf{V}_{c} = \left(0.16 \cdot \sqrt{f_{c}} + 17 \cdot \rho_{w} \cdot \frac{V_{u} \cdot d}{M_{m}}\right) \cdot b_{w} \cdot d \qquad \qquad \mathbf{V}_{c} : \underline{14.470} t$$

([MPa] 🛵)

Sin embargo, 🏒 no debe tomarse mayor que:

([MPa] №/A₀ y 🛵)

Yux: 14.014 t

∲.∭....: 39.903 t

η: *0.351*

÷‡

Donde:

f_c: Resistencia especificada a la compresión del concreto.

f.c: 210.00 kp/cm²

, <mark>f</mark>. > 8.3 MPa

ρ_w: 0.006

Siendo:

As: Área de refuerzo longitudinal no <u>preesforzado</u> a tracción.

b_w: Ancho del alma, o diámetro de la sección circular.

 d: Distancia desde la fibra extrema en compresión hasta el centroide del refuerzo longitudinal en tracción.

As :	9.50	cm²
<mark>b</mark> :	300	_mm

d: 542 mm

$$\mathbf{M}_{\mathbf{m}} = \mathbf{M} - \mathbf{N}_{\mathbf{i}} \cdot \frac{(4 \cdot \mathbf{h} - \mathbf{d})}{8}$$

Mm	:	5.152	tim
----	---	-------	-----

Donde:

M u: Momento amplificado en la		
sección. Mu:	-5.152	t:m
		-
normal a la sección transversal. 🛛 🔉 🛼	0.000	t
h: Altura de un elemento. h :	600.00	mm
Ag: Área total de la sección de		-
hormigón. Ag :	1800.00	cm²
l cortante proporcionada por el		-

Resistencia al cortante proporcionada por refuerzo de cortante (Artículo 11.5.7):

^ £ ∽ V₅: <u>32.475</u> t

En ningún caso se debe considerar V_s mayor que (Artículo 11.5.7.9):

V s: 50.174 t	$V_{\bullet} = 0.66 \cdot \sqrt{f_{e}} \cdot b_{w} \cdot d$
Vs: 50.174	$V_{\bullet} = 0.66 \cdot \sqrt{f_{e}} \cdot b_{w} \cdot d$

([MPa] 🛵)

Donde:

Ax: Área de refuerzo para cortante dentro			
del espaciamiento s.	A:	1.43	cm²
🛵: Resistencia especificada a la fluencia	-		_
del refuerzo transversal.	f _{vt} :	4200.00	kp/cm²
f _{yt} ≯ 420 MPa			-
d: Distancia desde la fibra extrema en			
compresión hasta el centroide del			
refuerzo longitudinal en tracción.	d :	542	mm
s: Espaciamiento medido centro a centro	-		-
del refuerzo transversal, en la dirección			
paralela al refuerzo longitudinal.	s :	100	mm
£: Resistencia especificada a la	-		-
compresión del concreto.	f:	210.00	kp/cm²

 $\sqrt{f_{\rm c}}$ eq 8.3 MPa

b_w: Ancho del alma, o diámetro de la sección circular.

🏎 : 300 mr	n
------------	---

Separación de las armaduras transversales

Cortante en la dirección Y:

El espaciamiento del refuerzo de cortante colocado perpendicularmente al eje del elemento no debe exceder sorta. (Artículo 11.5.5):

$s \leq s_{max}$	100 mm ≤	275 mm	\checkmark
Donde:			
Smax : Valor mínimo de s1, s2.	Smax	275	mm
s ₁ = d/2	s ₁ :	275	mm
s₂ = 600 mm	S ₂ :	600	mm
Siendo: du Distancia dando la fibra extrema en			
O: Distancia desde la fibra extrema en compresión basta el centroide del refuerzo.			
longitudinal en tracción.	d :	543	mm
Cuantía mecánica mínima de la armadura transversal.			
Cortante en la dirección Y:			
Debe colocarse un área mínima de refuerzo para cortante,			
Avurovar en todo elemento de concreto armado sometido a flexión (preesforzado y no preesforzado) (Artículo 11.5.6):			
$A_v \ge A_{v,min}$	1.43 cm² ≥	0.25 cm²	~

Donde:

$$\mathbf{A}_{v,min} = 0.062 \cdot \sqrt{f_e} \cdot \frac{\mathbf{b}_w \cdot \mathbf{s}}{f_{vt}}$$

([MPa] 🛵 y 🛵

Pero no debe ser menor que:

 ${\bf f}_{\rm cc}$: Resistencia especificada a la compresión del concreto.

bu: Ancho del alma, o diámetro de la sección circular.

 s: Espaciamiento medido centro a centro del refuerzo transversal, en la dirección paralela al refuerzo longitudinal.

f_{vt}: Resistencia especificada a la fluencia del refuerzo transversal.

f_{vt} ≯ 420 MPa

Armadura mínima y máxima (NTE E.060:2009, Artículos 10.5.1, 10.5.2, 10.5.3 y 10.9.1)

Flexión positiva alrededor del eje X:

La cuantía de refuerzo longitudinal, A_s , no debe ser menor que $A_{s,mo}$. Los requisitos no necesitan ser aplicados si el A_s proporcionado es al menos un tercio superior al requerido por análisis (Artículos 10.5.2 y 10.5.3):

$$\mathbf{A}_{\mathbf{s}} \geq \frac{4}{3} \mathsf{A}_{\mathbf{s}, \mathsf{req}}$$

5.97 cm² ≥ 2.41 cm² 🧹

Acces: Área de refuerzo longitudinal a tracción requerida por análisis.

As.189 : 1.81 cm²

Flexión negativa alrededor del eje X:

La cuantía de refuerzo longitudinal (A_s) no debe ser menor que $A_{service}$ (Artículos 10.5.2 y 10.5.3):

$$A_{x} \ge A_{x,\min}$$
 9.37 cm² \ge 3.96 cm² \checkmark

Donde:

 $A_{s,min} = \frac{0.22 \cdot \sqrt{l_c}}{f_y} \cdot b_w \cdot d \qquad \qquad A_{s,min} : 3.96 \text{ cm}^2$

Siendo:

f. .: Resistencia especificada a la compresión del concreto.	f.c.:	210.00	kp/cm²
$\mathbf{f}_{\mathbf{x}}$: Resistencia especificada a la fluencia del refuerzo.	f *:	4200.00	kp/cm²
b: Ancho del alma. d: Canto útil de la sección.	bwu∶ d:	300 544	mm mm

CUADRO DE CORRECCIÓN EN COLUMNAS, TANTO DIMENSION COMO HACER DE REFUERZO

Edición d	lel armad	о																					
			Dim	nensión						Armado lor	ngitudinal						Armado transversal				*		
			X (cm)	Y (cm)		Es	quinas			Cara X			Cara Y			C	Cercos	Separaciór	(%)				
Piso5	18 m		50	45	4	1	Ø3/4"		2	Ø	3/4"		2	Ø3/4	. 1	° (Ø3/8"	18	1	¥			
Piso4	14.5 m		50	45	4	1	Ø1"		4	ø	3/4"		2	Ø5/8	. 1	0	Ø3/8"	15	1.6	4	=		
Piso3	11 m		50	45	4	1	Ø1"		4	ø	3/4"		2	Ø5/8	·	° (Ø3/8"	15	1.6	¥			
Piso2	7.5 m		50	45	4	t i	Ø1"		6	Ø	5/8"		2	Ø5/8	. 1	و م	Ø3/8"	15	1.6	¥			
Piso 1	4 m		50	45	4	1	Ø1"		8	Ø	5/8"		2	Ø5/8	•	م ا	Ø3/8"	15	1.8	¥	Ш		
Cimentación	n Om						/X111		r		(E /0"			/XE /0		1	an FT	1 -	1.0	4	Ŧ		
Resumen	de las c	ompi	robacio	nes																			
C3-7	11.5				07.0	<i>m</i>			07.2	0.9·PP	Q S.	49.67	13.20	-5.65	3.83	8.82	12.84	-5.65 🛛	8	* *	*		
	11.5 m		×	¥	67.2	62.4		× .		1.25·P	N,M S.	65.64	14.11	-6.45	4.38	9.34	13.61	-6.45	¥.				
	Pie				cc 0	C1 7				0.9·PP	QS.	51.14	-13.10	5.47	3.83	8.82	-12.74	5.47	¥.				
			•	- T	00.0	01.7		· •		1.25·P	N,M S.	67.68	-14.01	6.25	4.38	9.34	-13.49	6.25	X				
	Cabeza		~	~	41.1	45.2				0.9·PP	QS.	51.03	-10.70	0.17	-0.12	-7.17	-10.40	0.17 🛛	X.				
					41.1	43.2		· ·		1.25·P	N,M S.	88.57	-11.06	0.25	-0.17	-7.26	-10.53	0.25 🖉	¥.		Ξ		
	13.4 m		~	~	37.0	45.6	1 v	_		0.9·PP	Q S.	52.50	10.69	-0.17	-0.12	-7.17	10.39	-0.17 🛛	Š.				
C3-8	13.411		•	•	57.0	45.0	· ·	· ·	45.6	1.25·P	N,M S.	90.61	11.07	-0.25	-0.17	-7.26	10.52	-0.25 🙎	š	1			
000	11.5 m		~	_	37.0	45.6	1	_	40.0	0.9·PP	Q S.	52.50	10.69	-0.17	-0.12	-7.17	10.39	-0.17 🛛	<u> </u>	× 1			
	11.911				57.5	40.0		· ·		1.25·P	N,M S.	90.61	11.07	-0.25	-0.17	-7.26	10.52	-0.25	X				
	Pie	Pie	Pie		~	×	37.0	45.6	V	~		0.9·PP	Q S.	52.50	10.69	-0.17	-0.12	-7.17	10.39	-0.17),		
			•	•	07.0	10.0	· ·	· ·		1.25·P	N,M S.	90.61	11.07	-0.25	-0.17	-7.26	10.52	-0.25	1				
	Cabeza		¥	¥	41.1	45.2	×	V .		0.9·PP	QS.	51.03	-10.70	-0.18	0.12	-7.17	-10.40	-0.18 🛛	7				
										1.25·P	N,M S.	88.57	-11.06	-0.25	0.18	-7.26	-10.53	-0.25 📝) (
	13.4 m		¥	¥	37.0	45.6	¥	¥ .		0.9·PP	Q S.	52.50	10.69	0.17	0.12	-7.17	10.39	0.17	7				
C3-11									45.6	1.25·P	N,M S.	90.61	11.07	0.26	0.18	-7.26	10.52	0.26) —	1			
	11.5 m		¥	¥	37.0	45.6	¥	¥		0.9·PP	QS.	52.50	10.69	0.17	0.12	-7.17	10.39	0.17	7	^			
										1.25·P	N,M S.	90.61	11.07	0.26	0.18	-7.26	10.52	0.26	7		-		
										0 9-PP	05	52 50	10.69	0 17	0 12	-7 17	10.39	0.17 1			NI.		
																			-	1			

CUADRO DE EDICIÓN DE ESTRIBOS PARA COLUMNAS

HOJA DE CALCULO PARA LA VERIFICACIÓN DE COLUMNAS

ſ	_				
1		Comprobaciónes del pirar CZ-11		Ver el lie	
				Ver et lis	tado completo
	Estado				ñ
ų.	V Cumple	Disposiciones relativas a las amaduras (N LE E.UBU.2009, Articulos /.6 y /.10)			
	V Cumple	Amadura minima y maxima (NTE E. 160/2009, Articulo 10.9.1)			=
Å	V Cumple	Estado limite de agotamiento trente a contante (combinaciones no sismicas) (NT E = L/06/2/UJ9, Articulor 11)			
R	✓ Cumple	Estado límite de agoramiento trente a contante (combinaciones sismicas) (VI E E UDU/2UU, ANTULIO II)			
C	V Cumple	Estado límite de agoramiento trente a solicitaciones normales (combinaciones no sismicas) (NTE E 0.002.000, Africula 10)			
C	✓ Cumple	Estado Intre de agolamiento inerte a solicitaciónes normales (combinaciónes sistincas) (nº E E. 060, 2005, Articulo 10)			
C	 Cumple 	Citerios de diserio por sistilo (141 E E.060, 2005, Articulo 21)			
C	Se cumple	n todas las comprobaciones.			
0	Disposicion	s relativas a las armaduras (NTE E.060:2009, Artículos 7.6 y 7.10)			
C	🗟 Vista pre	iminar 🛞 Configuración 🚇 Imprimir 🏟 Buscar	P.	Compartir	🗗 Exportar 🕶
C					*
d	Disposio	iones relativas a las armaduras (NTE E.060:2009, Artículos 7.6 y 7.10)			
C	Armad	ira longitudinal			
Q	En elem	entos a compresión reforzados transversalmente con espirales o estribos, la distancia libre entre barras longitudinales no debe			=
-	ser mer	or de s _{l,min} (Articulo 7.6.3):			
N		$\mathbf{S}_{i} \geq \mathbf{S}_{Lrein}$	98 mm≥	40 mm	 ✓
4		Donde:			
1		s_{l,min}: Valor máximo de s ₁ , s ₂ , s ₃ .	s _{l,min} :_	40	_mm
		$\mathbf{s}_{i} = 1.5 \cdot \mathbf{d}_{i}$	s 1:_	24	_mm
c		s ₂ = 40 mm	^s 2:_	40	_mm
с с		$s_{y} = 1.33 \cdot d_{z}$	s _{3:_}	20	_mm
		Siendo:	А		-
l		Aceptar			

Estado límite de agotamiento frente a solicitaciones normales (combinaciones no sísmicas) (NTE E.060:2009, Artículo 10)

Los esfuerzos solicitantes de cálculo pésimos se producen en 'Pie', para la combinación de <u>hipótesis</u> "1.4·PP+1.4·CM+1.7·Qa". Se debe satisfacer:

÷‡•

Comprobación de resistencia de la sección (n1)

Ru Mu son los esfuerzos de cálculo de primer orden.

Pu: Esfuerzo normal de cálculo.	Pu :	14.017	t
Mu: Momento de cálculo de primer orden.	Mux :	-0.084	t:m
	Mare :	0.738	t:m
$\varphi{\cdot} P_{\!\!\!\! a \nu} \varphi{\cdot} M_n$ son los esfuerzos que producen el agotamiento	-		-
de la sección con las mismas excentricidades que los			
esfuerzos solicitantes de cálculo pésimos.			
∲∙₽₀: Axil de agotamiento.	∲ <mark>₽</mark>₀ :	179.326	t
∲·M n: Momentos de agotamiento.	o Max :	-1.069	t:m
	o Marx :	9.446	t:m
	-		-

Comprobación del estado limite de inestabilidad (n2)

Rue esfuerzos solicitantes de cálculo pésimos obtenidos a partir de los de primer orden incrementados para tener en cuenta los efectos de segundo orden a causa de la esbeltez.

C3DCITC2.			
Pu: Axil solicitante de cálculo pésimo.	Pu :	14.017	t
Mc: Momento flector solicitante de cálculo pésimo.	Me.x :	-0.364	t:m
	Max :	0.746	t:m
$\begin{split} &\varphi \cdot g_{\text{ev}} \varphi \cdot M_n \text{ son los esfuerzos que producen el agotamiento} \\ &\text{de la sección con las mismas excentricidades que los } \\ &\text{esfuerzos solicitantes de cálculo pésimos.} \end{split}$	-		_
♦ P₀: Axil de agotamiento.	∲∙₽₀ :	163.923	t
∲·M n: Momentos de agotamiento.	\$ Max :	-4.257	t:m
	0. Wax :	8.730	t:m
En el eje x:			_
No se permite ignorar los efectos de esbeltez en elementos a compresión que satisfacen (Artículo 10.12.2):			
Ϊ	28.7 >	22.0	
Donde:			
kl u: Longitud efectiva.	<mark>։ հետ</mark>	2.900	m
 r: Radio de giro de la sección transversal de un elemento en compresión. 	r:	10.10	cm
Los elementos a compresión deben diseñarse para la fuerza axial amplificada P_c y el momento amplificado M_u , magnificado por los efectos de curvatura (efectos de segundo orden) del elemento, M_c (Artículo 10.12.3):			
$\mathbf{P}_{\mathbf{u}} = \mathbf{P}_{\mathbf{u}}$	P _u :	14.017	_t
$M_c = \bar{o}_{ns} \cdot M_2$	Mc :	-0.364	_ <mark>t:m</mark>
Donde:			
$M_2 = M_u \ge M_{2,min}$	M2 :	-0.357	t:m

Siendo:

$$\begin{split} \mathbf{M}_{\mathbf{2},\min} &= \mathbf{P}_{u} \cdot \begin{pmatrix} 0.015 + 0.03 \cdot h \end{pmatrix} \qquad \mathbf{M}_{\mathbf{2},\min}: \underbrace{0.357 \quad \text{turn}}_{h: \text{ Altura de un elemento.}} & \mathbf{h}: \underbrace{350.00 \quad \text{mm}}_{h: \text{ M}} \end{split}$$

δος: 1.018

 $\boldsymbol{\delta}_{m} = \frac{1}{1 - \frac{P_{u}}{0.75 \cdot P_{e}}} \ge 1$

Siendo:

$$\mathbf{P}_{c} = \frac{n - 0.25 \, \mathbf{L}_{c} - \mathbf{I}_{q}}{\left(\mathbf{k} \cdot \mathbf{l}_{u}\right)^{2}} \qquad \qquad \mathbf{P}_{c} : 1036.305 \, \mathrm{t}$$

Donde:

Ę	Ec: Módulo de elasticidad del concreto.		219689.00	kp/cm²
J. d p	a: Momento de inercia de la sección bruta el elemento con respecto al eje que pasa or el centroide, sin tener en cuenta el			
n	efuerzo.	I.	160781.25	cm4
k	ա։ Longitud efectiva.	<mark>եկ</mark> ս :	2.900	m
En el eje y:				
No se permite ig a compresión qu	norar los efectos de esbeltez en elementos Je satisfacen (Artículo 10.12.2):			
k·l _{u ⊂ ۲۲}		22.3 >	22.0	
Donde:				
klu: Lo	ongitud efectiva.	<mark>kl.</mark> .:	2.900	m
r: Rad	lio de giro de la sección transversal de un			
eleme	nto en compresión.	r:	12.99	cm
Los elementos fuerza axial am magnificado po segundo orden)	a compresión deben diseñarse para la plificada P _c y el momento amplificado M _u , r los efectos de curvatura (efectos de del elemento, M _c (Artículo 10.12.3):			

 $\mathbf{P}_{u} = \mathbf{P}_{u}$

Pu: 14.017 t

$M_c = \delta_{ns} \cdot M_2$	Mc :	0.746	tim
Donde:			
$\boldsymbol{M_{2}}=\boldsymbol{M}_{u}\geq\boldsymbol{M}_{2,\min}$	M ₂ :	0.738	t:m
Siendo:			
$\boldsymbol{M}_{\boldsymbol{z,min}} = \boldsymbol{P}_{\!\boldsymbol{u}} \cdot \left(\boldsymbol{0.015} + \boldsymbol{0.03} \cdot \boldsymbol{h}\right)$	M _{2.min} :	0.399	tim
h: Altura de un elemento.	h :	450.00	mm
$\delta_{ns} = \frac{1}{1 - \frac{P_u}{0.75 \cdot P_c}} \ge 1$ Siendo:	δ _{ος} .:	1.011	
$\mathbf{P}_{e} = \frac{\pi^{2} \cdot 0.25 \cdot E_{e} \cdot I_{e}}{\left(k \cdot l_{e}\right)^{2}}$	Pc: 1	713.075	t
Donde: E c: Módulo de elasticidad del concreto. I o: Momento de inercia de la sección bruta del elemento con respecto al eje que pasa por el centroide, sin tener en cuenta el	Ec: 21	19689.00	kp/cm²
refuerzo. klu: Longitud efectiva.	յը։ 26 klu:	55781.25 2.900	cm4 m

Comprobación de resistencia axial de diseño

La fuerza axial mayorada P_u de elementos en compresión no debe exceder de ϕ · $P_{Purpose}$ (Artículo 10.3.6).

$$\phi \cdot \mathsf{P}_{\mathsf{n},\mathsf{max}} = 0.80 \cdot \phi \cdot \left[0.85 \cdot \mathsf{f}_{\mathsf{c}} \cdot \left(\mathsf{A}_{\mathsf{c}} - \mathsf{A}_{\mathsf{st}} \right) + \mathsf{f}_{\mathsf{v}} \cdot \mathsf{A}_{\mathsf{st}} \right]$$

Siendo:

 \mathbf{f}_{cc} : Resistencia especificada a la compresión del concreto.

 $\mathbf{f}_{\mathbf{x}}$: Resistencia especificada a la fluencia del refuerzo transversal.

Ac: Área total de la sección de hormigón.

Ast: Área total de refuerzo longitudinal no preesforzado.

Cálculo de la capacidad resistente

El cálculo de la capacidad resistente última de las secciones se efectúa a partir de las <u>hipótesis</u> generales siguientes (Artículo 10.2):

(a) El diseño por resistencia de elementos sometidos a flexión y carga axial debe satisfacer las condiciones de equilibrio y de compatibilidad de deformaciones.

f. .:	210.00	kp/cm²
f: A₀:	4200.00 1575.00	kp/cm² cm²
Ast :	17.01	cm²

- (b) Las deformaciones unitarias en el refuerzo y en el concreto deben suponerse directamente proporcionales a la distancia desde el eje neutro.
- (c) La máxima deformación unitaria utilizable del concreto, 201, en la fibra extrema sometida a compresión, se asumirá igual a 0.003.
- (d) El esfuerzo en el refuerzo deberá tomarse como E_s veces la deformación unitaria del acero. Para deformaciones unitarias en el refuerzo mayores que las correspondientes a f_w, el esfuerzo se considerará independiente de la deformación unitaria e igual a f_w.
- (e) La resistencia a la tracción del concreto no debe considerarse en los cálculos de elementos de concreto reforzado sometidos a flexión y a carga axial.
- (f) La relación entre la distribución de los esfuerzos de compresión en el concreto y la deformación unitaria del concreto se debe suponer rectangular, trapezoidal, parabólica o de cualquier otra forma que permita una predicción de la resistencia que coincida con los resultados de ensayos de laboratorio representativos.

El diagrama de cálculo tensión-deformación del hormigón es del tipo parábola rectángulo. No se considera la resistencia del hormigón a tracción.

Equilibrio de la sección para los esfuerzos de agotamiento, calculados con las mismas excentricidades que los esfuerzos de cálculo pésimos:

Barra	Designación	Coord. X (mm)	Coord. Y (mm)	f₅ (kp/cm²)	ε
1	Ø5/8"	-169.06	119.06	-363.26	-0.000178
2	Ø1/2"	-56.35	120.65	+744.99	+0.000365

B -1447	Docienación	Coord. X	Coord. Y	f.	-
Darra	Designation	(mm)	(mm)	(kp/cm²)	ε
3	Ø1/2"	56.35	120.65	+1866.88	+0.000916
4	Ø5/8"	169.06	119.06	+3002.42	+0.001472
5	Ø5/8"	169.06	0.00	+4025.65	+0.001974
6	Ø5/8"	169.06	-119.06	+4200.00	+0.002476
7	Ø1/2"	56.35	-120.65	+3940.64	+0.001933
8	Ø1/2"	-56.35	-120.65	+2818.74	+0.001382
9	Ø5/8"	-169.06	-119.06	+1683.21	+0.000826
10	Ø5/8"	-169.06	0.00	+659.97	+0.000324

	Resultante	s.x	e.x
	(t)	(mm)	(mm)
SC	196.018	46.93	-23.87
Cs	38.880	81.00	-33.86
Т	0.723	-169.06	119.06

 $\mathsf{P_n}=\mathsf{C_t}+\mathsf{C_s}-\mathsf{T}$

₽₀: 234.175 t

$M_{n,x} = C_{c} \cdot e_{cc,y} + C_{s} \cdot e_{cc,y} - T \cdot e_{T,y}$	Max :	-6.081	t:m
$M_{n,y} = C_{c} \cdot e_{cc,x} + C_{s} \cdot e_{cc,x} - T \cdot e_{T,x}$	Mare :	12.471	tim
Donde:			
Cc: Resultante de compresiones en el hormigón.	C :	196.018	t
Cs: Resultante de compresiones en el acero.	C₅ :	38.880	t
T: Resultante de tracciones en el acero.	Т:	0.723	t
	Scc.x :	46.93	mm

$\mathbf{g}_{\mathbf{cc}}$: Excentricidad de la resultante de compresiones en el				
hormigón en la dirección de los ejes X e Y.				
$\mathbf{g}_{\mathbf{cc}}$: Excentricidad de la resultante de compresiones en el acero				
en la dirección de los ejes X e Y.	Cost.			
$\mathbf{g}_{\mathbf{z}}$: Excentricidad de la resultante de tracciones en el acero en				
la dirección de los ejes X e Y.				
ε _{συνακ} : Deformación de la fibra más comprimida de hormigón.				
ε _{συακ} : Deformación de la barra de acero más traccionada.	Esouax.	(
σ _{σσιακ} : Tensión de la fibra más comprimida de hormigón.	σ _{conax} :	1		
σ_{emax} : Tensión de la barra de acero más traccionada.	Gemax :	- 3		

θcc....: -23.87 mm θcc....: 81.00 mm θcc....: -33.86 mm θcc....: -169.06 mm θct...: 119.06 mm θct...: 0.0030 εcmax: 0.0002 σcmax: 178.50 kp/cm² σcmax: 363.26 kp/cm²

Equilibrio de la sección para los esfuerzos solicitantes de cálculo pésimos:

εmin = -0.01 ‰

Barra	Decignación	Coord. X	Coord. Y	f.	-
Darra Designación		(mm)	(mm)	(kp/cm²)	٤
1	Ø5/8"	-169.06	119.06	+15.77	+0.000008
2	Ø1/2"	-56.35	120.65	+47.42	+0.000023
3	Ø1/2"	56.35	120.65	+79.43	+0.000039
4	Ø5/8"	169.06	119.06	+111.81	+0.000055
5	Ø5/8"	169.06	0.00	+139.61	+0.000068
6	Ø5/8"	169.06	-119.06	+167.41	+0.000082
7	Ø1/2"	56.35	-120.65	+135.76	+0.000067
8	Ø1/2"	-56.35	-120.65	+103.75	+0.000051
9	Ø5/8"	-169.06	-119.06	+71.37	+0.000035

Barra	Designación	Coord. X (mm)	Coord. Y (mm)	f. (kp/cm²)	ε
10	Ø5/8"	-169.06	0.00	+43.57	+0.000021

	Resultante	с.х	e.x
	(t)	(mm)	(mm)
SC	12.459	51.77	-25.72
Cs	1.558	65.16	-27.97
Т	0.000	0.00	0.00

 $\mathsf{P}_{_{\!\!U}}=\mathsf{C}_{_{\!\!E}}+\mathsf{C}_{_{\!\!S}}-\mathsf{T}$

P⊔: 14.017 t

$M_{c, x} = C_{t} \cdot e_{ec, y} + C_{s} \cdot e_{cs, y} - T \cdot e_{T, y}$	Max: -0.364 tim

$M_{e,v} = C_e \cdot e_{ee,v} + C_a \cdot e_{ea,v} - T \cdot e_{T,v} \qquad \qquad M_{e,v}: 0.746 \text{ tim}$
--

Donde:

🕵: Resultante de compresiones en el hormigón.	Ç. :	12.459	t
Cs: Resultante de compresiones en el acero.	Cs :	1.558	t
T: Resultante de tracciones en el acero.	Т:	0.000	t
$\mathbf{g}_{\mathbf{cc}}$: Excentricidad de la resultante de compresiones en el	Eccar :	51.77	mm
hormigón en la dirección de los ejes X e Y.	eccar :	-25.72	mm
$\mathbf{g}_{\mathbf{ccs}}$: Excentricidad de la resultante de compresiones en el acero	Caracter :	65.16	mm
en la dirección de los ejes X e Y.	CLARK :	-27.97	mm
$\ensuremath{\mathfrak{g}}_{\!\!\mathfrak{c}\!\!\mathfrak{c}}$: Excentricidad de la resultante de tracciones en el acero en la			-
dirección de los ejes X e Y.	S . :	0.00	mm
ε _{conas} : Deformación de la fibra más comprimida de hormigón.	Econax :	0.0001	-
ε _{σπακ} : Deformación de la barra de acero más traccionada.	E <mark>60148.</mark> :	0.0000	-
σ _{cmax} : Tensión de la fibra más comprimida de hormigón.	σ _{сплаж} :	16.78	kp/cm²

ÍNDICE

1 VERSIÓN DEL PROGRAMA Y NÚMERO DE LICENCIA	—
2 DATOS GENERALES DE LA ESTRUCTURA	
3 NORMAS CONSIDERADAS	
4 ACCIONES CONSIDERADAS	
4.1 Gravitatorias	
4.2 Viento	
4.3 Sismo	_
4.3.1 Datos generales de sismo	
4.4 <u>Hinótesis</u> de carga	
4.5 Empujes en muros	
5 ESTADOS LÍMITE	_
6 SITUACIONES DE PROYECTO	_
6.1 Coefficientes parciales de seguridad (7) y coefficientes de	
6.2 - Combinaciones	_
7 DATOS GEOMÉTRICOS DE GRUPOS Y PLANTAS	—
8 DATOS GEOMÉTRICOS DE PILARES, PANTALLAS Y MUROS	
8.1 Pilares	
8.2 - Muroc	

LISTADOS PARA OBTENCION DATOS DE CÁLCULO

1.- VERSIÓN DEL PROGRAMA Y NÚMERO DE LICENCIA

Versión: 2016

Número de licencia: 20161

2.- DATOS GENERALES DE LA ESTRUCTURA

Proyecto: Oficina 5 pisos Clave: CIMENTACIÓN

3.- NORMAS CONSIDERADAS

Hormigón: NTE E.060: 2009 Aceros conformados: AISI S100-2007 (LRFD) Aceros laminados y armados: ANSI/AISC 360-10 (LRFD)

4.- ACCIONES CONSIDERADAS

4.1.- Gravitatorias

Planta	S.C.U (t/m²)	Cargas muertas (t/m²)
Piso5	0.13	0.25
Piso4	0.25	0.25
Piso3	0.25	0.25
Piso2	0.25	0.25
Piso1	0.25	0.25
Cimentación	0.00	0.00

4.2.- Viento

Sin acción de viento

4.3.- Sismo

Norma utilizada: Norma Técnica E.030 (2014)

Norma Técnica E.030 (2014) Diseño Sismorresistente

Método de cálculo: Análisis modal espectral (Norma Técnica E.030 (2014), Artículo 4.6)

4.3.1.- Datos generales de sismo

Caracterización del emplazamiento

Zona sísmica (Norma Técnica E.030 (2014), Fig. 1 y Anexo 1): Zona 4 Tipo de perfil de suelo (Norma Técnica E.030 (2014), 2.3.1): S2

Sistema estructural

Rox: Coeficiente de reducción (X) (Norma Técnica E.030 (2014), Tabla 7)	Rox : 6.00
Rox: Coeficiente de reducción (Y) (Norma Técnica E.030 (2014), Tabla 7)	Box: 6.00
Ja; Factor de irregularidad en altura (Norma Técnica E.030 (2014), Tabla 8)	J. : 1.00
J., Factor de irregularidad en planta (Norma Técnica E.030 (2014), Tabla 9)	I.00
Geometría en altura (Norma Técnica E.030 (2014), Artículo 3.5): Regular	

Estimación del periodo fundamental de la estructura: Especificado por el	
usuario	
J _{ax} : Periodo fundamental aproximado (X)	J_{ax}: 0.33 s
🚛: Periodo fundamental aproximado (Y)	J _{ax} : 0.38 s

Importancia de la obra (Norma Técnica E.030 (2014), Artículo 3.1 y

Tabla 5): C: Edificaciones comunes

Parámetros de cálculo

Número de modos de vibración que intervienen en el análisis: Según norma	
Fracción de sobrecarga de uso	: 0.50
Fracción de sobrecarga de nieve	: 0.50

: 1.00

Factor multiplicador del espectro

Verificación de la condición de cortante basal: Según norma

No se realiza análisis de los efectos de 2º orden

Criterio de armado a aplicar por ductilidad: Requisitos especiales para elementos resistentes a fuerzas de sismo según la NTE.060

Direcciones de análisis

Acción sísmica según X Acción sísmica según Y

Proyección en planta de la obra

4.4.- Hipótesis de carga

Automáticas	Peso propio
	Cargas muertas
	Sobrecarga de uso
	Sismo X
	Sismo Y

4.5.- Empujes en muros

5.- ESTADOS LÍMITE

E.L.U. de rotura. Hormigón	NTE E.060: 2009
E.L.U. de rotura. Hormigón en cimentaciones	
Tensiones sobre el terreno	
Desplazamientos	Acciones características

6.- SITUACIONES DE PROYECTO

Para las distintas situaciones de proyecto, las combinaciones de acciones se definirán de acuerdo con los siguientes criterios:

- Situaciones persistentes o transitorias

 $\sum \gamma_{ci} G_{ii} + \gamma_{ii} P_{ii} + \sum \gamma_{ci} Q_{ii}$

- Situaciones sísmicas

$$\sum_{j \geq 1} \gamma_{Qj} G_{kj} + \gamma_{P} P_{k} + \gamma_{A_{E}} A_{E} + \sum_{j \geq 1} \gamma_{Qj} Q_{k1}$$

- Donde:

- G Acción permanente
- R. Acción de pretensado
- 🗛 Acción variable
- A_E Acción sísmica
- yg Coeficiente parcial de seguridad de las acciones permanentes
- yp Coeficiente parcial de seguridad de la acción de pretensado
- yq,1 Coeficiente parcial de seguridad de la acción variable principal
- ريم Coeficiente parcial de seguridad de las acciones variables de acompañamiento
- YAE Coeficiente parcial de seguridad de la acción sísmica
6.1.- Coeficientes parciales de seguridad (γ) y coeficientes de combinación (ψ)

Para cada situación de proyecto y estado límite los coeficientes a utilizar serán:

E.L.U. de rotura. Hormigón: NTE E.060: 2009

E.L.U. de rotura. Hormigón en cimentaciones: NTE E.060: 2009

NTE.060 2009 (9.2.1)						
	Coeficientes parciales de seguridad (y)					
	Favorable Desfavorable					
Carga permanente (G)	1.400	1.400				
Sobrecarga (Q)	0.000	1.700				

NTE.060 2009 (9.2.2)						
	Coeficientes parciales de seguridad (γ)					
	Favorable Desfavorable					
Carga permanente (G)	0.900	1.250				
Sobrecarga (Q)	0.000	1.250				

NTE.060 2009 (9.2.3)						
	Coeficientes parciales de seguridad (y)					
	Favorable Desfavorable					
Carga permanente (G)	0.900	1.250				
Sobrecarga (Q)	0.000	1.250				
Sismo (E)	-1.000	1.000				

NTE.060 2009 (9.2.5)					
	Coeficientes parciales de seguridad (y)				
	Favorable	Desfavorable			
Carga permanente (G)	0.900	1.400			
Sobrecarga (Q)	0.000	1.700			

Tensiones sobre el terreno

Acciones variables sin sismo					
	Coeficientes parciales de seguridad (y) Favorable Desfavorable				
Carga permanente (G)	1.000	1.000			
Sobrecarga (Q)	0.000 1.000				

Sísmica						
	Coeficientes parciales de seguridad (y)					
	Favorable Desfavorable					
Carga permanente (G)	1.000	1.000				
Sobrecarga (Q)	0.000	1.000				
Sismo (E)	-0.800	0.800				

Desplazamientos

Acciones variables sin sismo						
	Coeficientes parciales de seguridad (y)					
	Favorable Desfavorable					
Carga permanente (G)	1.000	1.000				
Sobrecarga (Q)	0.000	1.000				

Sísmica						
	Coeficientes parciales de seguridad (y)					
	Favorable Desfavorable					
Carga permanente (G)	1.000	1.000				
Sobrecarga (Q)	0.000	1.000				
Sismo (E)	-1.000	1.000				

6.2.- Combinaciones

- Nombres de las hipótesis
- PP Peso propio
- CM Cargas muertas
- Qa, Sobrecarga de uso
- SX Sismo X
- SY Sismo Y

E.L.U. de rotura. Hormigón

E.L.U. de rotura. Hormigón en cimentaciones

E.L.U. de rotura. Hormigón

E.L.U. de rotura. Hormigón en cimentaciones

Comb.	PP	СМ	Qa	SX	SY
1	1.400	1.400			
2	1.400	1.400	1.700		
3	0.900	0.900		-1.000	
4	1.250	1.250		-1.000	
5	0.900	0.900	1.250	-1.000	
6	1.250	1.250	1.250	-1.000	
7	0.900	0.900		1.000	
8	1.250	1.250		1.000	
9	0.900	0.900	1.250	1.000	
10	1.250	1.250	1.250	1.000	

Comb.	PP	СМ	Qa	SX	SY
11	0.900	0.900			-1.000
12	1.250	1.250			-1.000
13	0.900	0.900	1.250		-1.000
14	1.250	1.250	1.250		-1.000
15	0.900	0.900			1.000
16	1.250	1.250			1.000
17	0.900	0.900	1.250		1.000
18	1.250	1.250	1.250		1.000

Tensiones sobre el terreno

Comb.	PP	СМ	Qa	SX	SY
1	1.000	1.000			
2	1.000	1.000	1.000		
3	1.000	1.000		-0.800	
4	1.000	1.000	1.000	-0.800	
5	1.000	1.000		0.800	
6	1.000	1.000	1.000	0.800	
7	1.000	1.000			-0.800
8	1.000	1.000	1.000		-0.800
9	1.000	1.000			0.800
10	1.000	1.000	1.000		0.800

Desplazamientos

Comb.	PP	СМ	Qa	SX	SY
1	1.000	1.000			
2	1.000	1.000	1.000		
3	1.000	1.000		-1.000	
4	1.000	1.000	1.000	-1.000	
5	1.000	1.000		1.000	

Comb.	PP	СМ	Qa	SX	SY
6	1.000	1.000	1.000	1.000	
7	1.000	1.000			-1.000
8	1.000	1.000	1.000		-1.000
9	1.000	1.000			1.000
10	1.000	1.000	1.000		1.000

7.- DATOS GEOMÉTRICOS DE GRUPOS Y PLANTAS

Grupo	Nombre del grupo	Planta	Nombre planta	Altura	Cota
5	Piso5	5	Piso5	3.50	18.00
4	Piso4	4	Piso4	3.50	14.50
3	Piso3	3	Piso3	3.50	11.00
2	Piso2	2	Piso2	3.50	7.50
1	Piso1	1	Piso1	4.00	4.00
0	Cimentación				0.00

8.- DATOS GEOMÉTRICOS DE PILARES, PANTALLAS Y MUROS

8.1.- Pilares

GI: grupo inicial

GF: grupo final

Ang: ángulo del pilar en grados sexagesimales

Referencia	Coord(P.Fijo)	GI- GF	Vinculación exterior	Ang.	Punto fijo	Canto de apoyo
C1-1	(0.00, 0.00)	0-5	Con vinculación exterior	0.0	Centro	0.45
C1-2	(0.00, 30.00)	0-5	Con vinculación exterior	0.0	Centro	0.45
C1-3	(42.00, 30.00)	0-5	Con vinculación exterior	0.0	Centro	0.45
C1-4	(42.00, 0.00)	0-5	Con vinculación exterior	0.0	Centro	0.45
C2-1	(0.00, 6.00)	0-5	Con vinculación exterior	0.0	Centro	0.70
C2-2	(0.00, 12.00)	0-5	Con vinculación exterior	0.0	Centro	0.50

Datos de los pilares

Referencia	Coord(P.Fijo)	GI- GF	Vinculación exterior	Ang.	Punto fijo	Canto de apoyo
C2-3	(0.00, 24.00)	0-5	Con vinculación exterior	0.0	Centro	0.70
C2-4	(0.00, 18.00)	0-5	Con vinculación exterior	0.0	Centro	0.50
C2-5	(42.00, 24.00)	0-5	Con vinculación exterior	0.0	Centro	0.70
C2-6	(42.00, 18.00)	0-5	Con vinculación exterior	0.0	Centro	0.50
C2-7	(42.00, 12.00)	0-5	Con vinculación exterior	0.0	Centro	0.50
C2-8	(42.00, 6.00)	0-5	Con vinculación exterior	0.0	Centro	0.70
C2-9	(6.00, 0.00)	0-5	Con vinculación exterior	0.0	Centro	0.65
C2-10	(12.00, 0.00)	0-5	Con vinculación exterior	0.0	Centro	0.65
C2-11	(18.00, 0.00)	0-5	Con vinculación exterior	0.0	Centro	1.00
C2-12	(24.00, 0.00)	0-5	Con vinculación exterior	0.0	Centro	1.00
C2-13	(30.00, 0.00)	0-5	Con vinculación exterior	0.0	Centro	0.65
C2-14	(36.00, 0.00)	0-5	Con vinculación exterior	0.0	Centro	0.65
C2-15	(6.00, 30.00)	0-5	Con vinculación exterior	0.0	Centro	0.65
C2-16	(12.00, 30.00)	0-5	Con vinculación exterior	0.0	Centro	0.65
C2-17	(18.00, 30.00)	0-5	Con vinculación exterior	0.0	Centro	1.00
C2-18	(24.00, 30.00)	0-5	Con vinculación exterior	0.0	Centro	1.00
C2-19	(30.00, 30.00)	0-5	Con vinculación exterior	0.0	Centro	0.65
C2-20	(36.00, 30.00)	0-5	Con vinculación exterior	0.0	Centro	0.65
C3-1	(6.00, 24.00)	0-5	Con vinculación exterior	0.0	Centro	1.00
C3-2	(12.00, 24.00)	0-5	Con vinculación exterior	0.0	Centro	0.95
C3-3	(18.00, 24.00)	0-5	Con vinculación exterior	0.0	Centro	0.50
C3-4	(24.00, 24.00)	0-5	Con vinculación exterior	0.0	Centro	0.50
C3-5	(30.00, 24.00)	0-5	Con vinculación exterior	0.0	Centro	0.95
C3-6	(36.00, 24.00)	0-5	Con vinculación exterior	0.0	Centro	1.00
C3-7	(36.00, 18.00)	0-5	Con vinculación exterior	0.0	Centro	0.80
C3-8	(30.00, 18.00)	0-5	Con vinculación exterior	0.0	Centro	0.95
C3-9	(24.00, 18.00)	0-5	Con vinculación exterior	0.0	Centro	0.95
C3-10	(18.00, 18.00)	0-5	Con vinculación exterior	0.0	Centro	0.95
C3-11	(12.00, 18.00)	0-5	Con vinculación exterior	0.0	Centro	0.95
C3-12	(6.00, 18.00)	0-5	Con vinculación exterior	0.0	Centro	0.80
C3-13	(6.00, 12.00)	0-5	Con vinculación exterior	0.0	Centro	0.80
C3-14	(12.00, 12.00)	0-5	Con vinculación exterior	0.0	Centro	0.95
C3-15	(18.00, 12.00)	0-5	Con vinculación exterior	0.0	Centro	0.95
C3-16	(24.00, 12.00)	0-5	Con vinculación exterior	0.0	Centro	0.95
C3-17	(30.00, 12.00)	0-5	Con vinculación exterior	0.0	Centro	0.95
C3-18	(36.00, 12.00)	0-5	Con vinculación exterior	0.0	Centro	0.80

Referencia	Coord(P.Fijo)	GI- GF	Vinculación exterior	Ang.	Punto fijo	Canto de apoyo
C3-19	(36.00, 6.00)	0-5	Con vinculación exterior	0.0	Centro	1.00
C3-20	(30.00, 6.00)	0-5	Con vinculación exterior	0.0	Centro	0.95
C3-21	(24.00, 6.00)	0-5	Con vinculación exterior	0.0	Centro	0.50
C3-22	(18.00, 6.00)	0-5	Con vinculación exterior	0.0	Centro	0.50
C3-23	(12.00, 6.00)	0-5	Con vinculación exterior	0.0	Centro	0.95
C3-24	(6.00, 6.00)	0-5	Con vinculación exterior	0.0	Centro	1.00

8.2.- Muros

- Las coordenadas de los vértices inicial y final son absolutas.

- Las dimensiones están expresadas en metros.

Referenci	Tipo muro	GI-	Vér	tices	Plant	Dimensiones
а		GF	Inicial	Final	а	Izquierda+Derecha=Tota
						I
M1	Muro de hormigón armado	0-5	(0.00, 12.00)	(0.00, 18.00)	5	0.125+0.125=0.25
					4	0.125+0.125=0.25
					3	0.125+0.125=0.25
					2	0.125+0.125=0.25
					1	0.125+0.125=0.25
M2	Muro de hormigón armado	0-5	(42.00, 12.	00) (42.00,	5	0.125+0.125=0.25
			18.	00)	4	0.125+0.125=0.25
					3	0.125+0.125=0.25
					2	0.125+0.125=0.25
					1	0.125+0.125=0.25
M3	Muro de hormigón armado	0-5	(18.00, 24	00) (24.00,	5	0.125+0.125=0.25
			24	00)	4	0.125+0.125=0.25
					3	0.125+0.125=0.25
					2	0.125+0.125=0.25
					1	0.125+0.125=0.25
M4	Muro de hormigón armado	0-5	(18.00, 24	00) (18.00,	5	0.125+0.125=0.25
			27.	00)	4	0.125+0.125=0.25
					3	0.125+0.125=0.25
					2	0.125+0.125=0.25
					1	0.125+0.125=0.25
M5	Muro de hormigón armado	0-5	(24.00, 24.	00) (24.00,	5	0.125+0.125=0.25
			27.	00)	4	0.125+0.125=0.25
					3	0.125+0.125=0.25
					2	0.125+0.125=0.25
					1	0.125+0.125=0.25

Referenci	Tipo muro	GI-	Vértices	3	Plant	Dimensiones
а		GF	Inicial	Final	а	Izquierda+Derecha=Tota
						I
M6	Muro de hormigón armado	0-5	(18.00, 6.00) (24	4.00, 6.00)	5	0.125+0.125=0.25
					4	0.125+0.125=0.25
					3	0.125+0.125=0.25
					2	0.125+0.125=0.25
					1	0.125+0.125=0.25
M7	Muro de hormigón armado	0-5	(18.00, 3.00) (18	3.00, 6.00)	5	0.125+0.125=0.25
					4	0.125+0.125=0.25
					3	0.125+0.125=0.25
					2	0.125+0.125=0.25
					1	0.125+0.125=0.25
M8	Muro de hormigón armado	0-5	(24.00, 3.00) (24	4.00, 6.00)	5	0.125+0.125=0.25
					4	0.125+0.125=0.25
					3	0.125+0.125=0.25
					2	0.125+0.125=0.25
					1	0.125+0.125=0.25

Empujes y zapata del muro

Referencia	Empujes	Zapata del muro
M1	Empuje izquierdo:	Zapata corrida: 1.250 x 0.500
	Sin empujes	Vuelos: izq.:0.50 der.:0.50 canto:0.50
	Empuje derecho:	
	Sin empujes	
M2	Empuje izquierdo:	Zapata corrida: 1.250 x 0.500
	Sin empujes	Vuelos: izq.:0.50 der.:0.50 canto:0.50
	Empuje derecho:	
	Sin empujes	
M3	Empuje izquierdo:	Zapata corrida: 1.250 x 0.500
	Sin empujes	Vuelos: izq.:0.50 der.:0.50 canto:0.50
	Empuje derecho:	
	Sin empujes	
M4	Empuje izquierdo:	Zapata corrida: 1.250 x 0.500
	Sin empujes	Vuelos: izq.:0.50 der.:0.50 canto:0.50
	Empuje derecho:	
	Sin empujes	
	Sin empujes	

Referencia	Empujes	Zapata del muro
M5	Empuje izquierdo:	Zapata corrida: 1.250 x 0.500
	Sin empujes	Vuelos: izq.:0.50 der.:0.50 canto:0.50
	Empuje derecho:	
	Sin empujes	
M6	Empuje izquierdo:	Zapata corrida: 1.250 x 0.500
	Sin empujes	Vuelos: izq.:0.50 der.:0.50 canto:0.50
	Empuje derecho:	
	Sin empujes	
M7	Empuje izquierdo:	Zapata corrida: 1.250 x 0.500
	Sin empujes	Vuelos: izq.:0.50 der.:0.50 canto:0.50
	Empuje derecho:	
	Sin empujes	
M8	Empuje izquierdo:	Zapata corrida: 1.250 x 0.500
	Sin empujes	Vuelos: izq.:0.50 der.:0.50 canto:0.50
	Empuje derecho:	
	Sin empujes	

9.- DIMENSIONES, COEFICIENTES DE EMPOTRAMIENTO Y COEFICIENTES DE PANDEO PARA CADA PLANTA

Pilar	Plant	Dimensione s	Coeficiente empotrami	Coefici pan	ente de Ideo	Coeficiente de rigidez	
	a	(cm)	Cabeza	Pie	Х	Y	axii
	5	35x25	0.30	1.00	1.00	1.00	2.00
	4	40x25	1.00	1.00	1.00	1.00	2.00
C1-4	3	40x25	1.00	1.00	1.00	1.00	2.00
-	2	40x25	1.00	1.00	1.00	1.00	2.00
	1	40x25	1.00	1.00	1.00	1.00	2.00
	5	40x35	0.30	1.00	1.00	1.00	2.00
C2 4 C2 2 C2 5	4	40x35	1.00	1.00	1.00	1.00	2.00
C2-8	3	40x35	1.00	1.00	1.00	1.00	2.00
	2	45x35	1.00	1.00	1.00	1.00	2.00
	1	45x35	1.00	1.00	1.00	1.00	2.00
	5	40x35	0.30	1.00	1.00	1.00	2.00
C2-2, C2-4, C2-6,	4	40x35	1.00	1.00	1.00	1.00	2.00
C2-7	3	40x35	1.00	1.00	1.00	1.00	2.00
	2	50x40	1.00	1.00	1.00	1.00	2.00

Pilar	Plant	t S Coeficiente de empotramiento		Coefici pan	ente de deo	Coeficiente de rigidez	
	a	(cm)	Cabeza	Pie	х	Y	axii
	1	60x60	1.00	1.00	1.00	1.00	2.00
	5	45x35	0.30	1.00	1.00	1.00	2.00
C2-9, C2-10, C2-11,	4	45x35	1.00	1.00	1.00	1.00	2.00
C2-12, C2-13, C2-14, C2-15, C2-16, C2-17,	3	45x35	1.00	1.00	1.00	1.00	2.00
C2-18, C2-19, C2-20	2	45x35	1.00	1.00	1.00	1.00	2.00
	1	45x35	1.00	1.00	1.00	1.00	2.00
C3-1, C3-2, C3-3,	5	50x45	0.30	1.00	1.00	1.00	2.00
C3-4, C3-5, C3-6,	4	50x45	1.00	1.00	1.00	1.00	2.00
$C_{3-7}, C_{3-8}, C_{3-9}, C_{3-10}, C_{3-11}, C_{3-12}, C_{3-12$	3	50x45	1.00	1.00	1.00	1.00	2.00
C3-13, C3-14, C3-15,	2	50x45	1.00	1.00	1.00	1.00	2.00
C3-16, C3-17, C3-18,							
C3-19, C3-20, C3-21, C3-22, C3-23, C3-24	1	50x45	1.00	1.00	1.00	1.00	2.00

10.- LOSAS Y ELEMENTOS DE CIMENTACIÓN

-Tensión admisible en situaciones persistentes: 1.36 kp/cm²

-Tensión admisible en situaciones accidentales: 2.04 kp/cm²

11.- MATERIALES UTILIZADOS

11.1.- Hormigones

Elemento	Hormigón	f _{ck} (kp/cm²)	□c	Tamaño máximo del árido (mm)	E _c (kp/cm²)
Todos	f'c=210	210	1.00	15	219689

11.2.- Aceros por elemento y posición

11.2.1.- Aceros en barras

Elemento	Acero	f _{yk} (kp/cm²)	□s
Todos	Grado 60	4200	1.00

11.2.2.- Aceros en perfiles

Tipo de acero para perfiles	Acero		Límite elástico (kp/cm ²)	Módulo de elasticidad (kp/cm²)
Acero conformado	ASTM A 36	36 ksi	2548	2069317
Acero laminado	ASTM A 36	36 ksi	2548	2038736

- h: Altura del nivel respecto al inmediato inferior
- Distorsión:

Absoluta: Diferencia entre los desplazamientos de un nivel y los del inmediatamente inferior Relativa: Relación entre la altura y la distorsión absoluta

Origen:

G: Sólo gravitatorias GV: Gravitatorias + viento

Nota:

Las diferentes normas suelen limitar el valor de la distorsión relativa entre plantas y de la distorsión total (desplome) del edificio.

El valor absoluto se utilizará para definir las juntas sísmicas. El valor relativo suele limitarse en función de la altura de la planta 'h'. Se comprueba el valor 'Total' tomando en ese caso como valor de 'h' la altura total.

	Situaciones persistentes o transitorias											
		Cota	h	Di	storsión X	<	Di	Distorsión Y				
Pilar	Planta	(m)	(m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen			
C1-1	Piso5	17.70	3.50	0.0000		G	0.0000		G			
	Piso4	14.20	3.50	0.0000		G	0.0000		G			
	Piso3	10.70	3.50	0.0000		G	0.0000		G			
	Piso2	7.20	3.50	0.0000		G	0.0000		G			
	Piso1	3.70	3.70	0.0000		G	0.0000		G			
	Cimentación	0.00										
	Total		17.70	0.0000		G	0.0000		G			
C1-2	Piso5	17.70	3.50	0.0000		G	0.0000		G			
	Piso4	14.20	3.50	0.0000		G	0.0000		G			
	Piso3	10.70	3.50	0.0000		G	0.0000		G			
	Piso2	7.20	3.50	0.0000		G	0.0000		G			
	Piso1	3.70	3.70	0.0000		G	0.0000		G			
	Cimentación	0.00										
	Total		17.70	0.0000		G	0.0000		G			
C1-3	Piso5	17.70	3.50	0.0000		G	0.0000		G			
	Piso4	14.20	3.50	0.0000		G	0.0000		G			
	Piso3	10.70	3.50	0.0000		G	0.0000		G			
	Piso2	7.20	3.50	0.0000		G	0.0000		G			
	Piso1	3.70	3.70	0.0000		G	0.0000		G			
	Cimentación	0.00										
	Total		17.70	0.0000		G	0.0000		G			
C1-4	Piso5	17.70	3.50	0.0000		G	0.0000		G			
	Piso4	14.20	3.50	0.0000		G	0.0000		G			
	Piso3	10.70	3.50	0.0000		G	0.0000		G			
	Piso2	7.20	3.50	0.0000		G	0.0000		G			
	Piso1	3.70	3.70	0.0000		G	0.0000		G			
	Cimentación	0.00										
	Total		17.70	0.0000		G	0.0000		G			
C2-1	Piso5	17.70	3.50	0.0000		G	0.0000		G			
	Piso4	14.20	3.50	0.0000		G	0.0000		G			
	Piso3	10.70	3.50	0.0000		G	0.0000		G			
	Piso2	7.20	3.50	0.0000		G	0.0000		G			

Situaciones persistentes o transitorias											
		Coto	Ь	Di	storsión >	(Distorsión Y				
Pilar	Planta	(m)	(m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-2	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-3	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-4	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-5	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-6	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		

Situaciones persistentes o transitorias											
		Cata	h	Di	Distorsión X			Distorsión Y			
Pilar	Planta	(m)	n (m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-7	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-8	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-9	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-10	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-11	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		

Situaciones persistentes o transitorias											
		0-1-	Ŀ	Di	storsión >	<	Di	storsión Y	'		
Pilar	Planta	(m)	n (m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-12	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-13	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-14	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-15	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-16	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		

Situaciones persistentes o transitorias											
		Onte	Ŀ	Di	storsión >	(Di	storsión Y	'		
Pilar	Planta	(m)	n (m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-17	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-18	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-19	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C2-20	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-1	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		

Situaciones persistentes o transitorias											
		Coto	h	Di	storsión >	<	Distorsión Y				
Pilar	Planta	(m)	(m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-2	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-3	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-4	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-5	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-6	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		

Situaciones persistentes o transitorias											
		Cata	h	Di	storsión >	<	Distorsión Y				
Pilar	Planta	(m)	n (m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-7	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-8	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-9	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-10	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-11	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		

Situaciones persistentes o transitorias											
		Onte	Ŀ	Di	storsión >	(Distorsión Y				
Pilar	Planta	(m)	n (m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-12	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-13	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-14	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-15	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-16	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		

Situaciones persistentes o transitorias											
		Onte	Ŀ	Di	storsión >	<	Di	storsión Y	/		
Pilar	Planta	(m)	n (m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-17	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-18	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-19	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-20	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		
	Piso1	3.70	3.70	0.0000		G	0.0000		G		
	Cimentación	0.00									
	Total		17.70	0.0000		G	0.0000		G		
C3-21	Piso5	17.70	3.50	0.0000		G	0.0000		G		
	Piso4	14.20	3.50	0.0000		G	0.0000		G		
	Piso3	10.70	3.50	0.0000		G	0.0000		G		
	Piso2	7.20	3.50	0.0000		G	0.0000		G		

	Situaciones persistentes o transitorias												
		Coto	h	Di	storsión X	<	Di	storsión Y	/				
Pilar	Planta	(m)	(m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen				
	Piso1	3.70	3.70	0.0000		G	0.0000		G				
	Cimentación	0.00											
	Total		17.70	0.0000		G	0.0000		G				
C3-22	Piso5	17.70	3.50	0.0000		G	0.0000		G				
	Piso4	14.20	3.50	0.0000		G	0.0000		G				
	Piso3	10.70	3.50	0.0000		G	0.0000		G				
	Piso2	7.20	3.50	0.0000		G	0.0000		G				
	Piso1	3.70	3.70	0.0000		G	0.0000		G				
	Cimentación	0.00											
	Total		17.70	0.0000		G	0.0000		G				
C3-23	Piso5	17.70	3.50	0.0000		G	0.0000		G				
	Piso4	14.20	3.50	0.0000		G	0.0000		G				
	Piso3	10.70	3.50	0.0000		G	0.0000		G				
	Piso2	7.20	3.50	0.0000		G	0.0000		G				
	Piso1	3.70	3.70	0.0000		G	0.0000		G				
	Cimentación	0.00											
	Total		17.70	0.0000		G	0.0000		G				
C3-24	Piso5	17.70	3.50	0.0000		G	0.0000		G				
	Piso4	14.20	3.50	0.0000		G	0.0000		G				
	Piso3	10.70	3.50	0.0000		G	0.0000		G				
	Piso2	7.20	3.50	0.0000		G	0.0000		G				
	Piso1	3.70	3.70	0.0000		G	0.0000		G				
	Cimentación	0.00											
	Total		17.70	0.0000		G	0.0000		G				

	Situaciones sísmicas ⁽¹⁾											
		Cota	h	Di	storsión X	<	Distorsión Y					
Pilar	Planta	(m)	(m)	Absoluta	Relativa	Origen	Absoluta	Relativa	Origen			
				(m)		- 5-	(m)		5			
C1-1	Piso5	17.70	3.50	0.0119	h / 295		0.0188	h / 187				
	Piso4	14.20	3.50	0.0127	h / 276		0.0189	h / 186				
	Piso3	10.70	3.50	0.0127	h / 276		0.0176	h / 199				

Situaciones sísmicas ⁽¹⁾											
		Coto	ĥ	Di	storsión >	<	Di	storsión Y	/		
Pilar	Planta	(m)	(m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso2	7.20	3.50	0.0112	h / 313		0.0144	h / 244			
	Piso1	3.70	3.70	0.0088	h / 421		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0572	h / 310		0.0785	h / 226			
C1-2	Piso5	17.70	3.50	0.0119	h / 295		0.0188	h / 187			
	Piso4	14.20	3.50	0.0127	h / 276		0.0189	h / 186			
	Piso3	10.70	3.50	0.0127	h / 276		0.0176	h / 199			
	Piso2	7.20	3.50	0.0113	h / 310		0.0144	h / 244			
	Piso1	3.70	3.70	0.0088	h / 421		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0573	h / 309		0.0785	h / 226			
C1-3	Piso5	17.70	3.50	0.0119	h / 295		0.0188	h / 187			
	Piso4	14.20	3.50	0.0127	h / 276		0.0189	h / 186			
	Piso3	10.70	3.50	0.0127	h / 276		0.0176	h / 199			
	Piso2	7.20	3.50	0.0113	h / 310		0.0144	h / 244			
	Piso1	3.70	3.70	0.0088	h / 421		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0573	h / 309		0.0785	h / 226			
C1-4	Piso5	17.70	3.50	0.0119	h / 295		0.0188	h / 187			
	Piso4	14.20	3.50	0.0127	h / 276		0.0189	h / 186			
	Piso3	10.70	3.50	0.0127	h / 276		0.0176	h / 199			
	Piso2	7.20	3.50	0.0112	h / 313		0.0144	h / 244			
	Piso1	3.70	3.70	0.0088	h / 421		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0572	h / 310		0.0785	h / 226			
C2-1	Piso5	17.70	3.50	0.0116	h / 302		0.0188	h / 187			
	Piso4	14.20	3.50	0.0124	h / 283		0.0189	h / 186			
	Piso3	10.70	3.50	0.0124	h / 283		0.0176	h / 199			
	Piso2	7.20	3.50	0.0110	h / 319		0.0144	h / 244			
	Piso1	3.70	3.70	0.0087	h / 426		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0559	h / 317		0.0785	h / 226			
C2-2	Piso5	17.70	3.50	0.0112	h / 313		0.0188	h / 187			
	Piso4	14.20	3.50	0.0121	h / 290		0.0189	h / 186			
	Piso3	10.70	3.50	0.0121	h / 290		0.0176	h / 199			

Situaciones sísmicas ⁽¹⁾											
		0-1-	L.	Di	storsión >	<	Di	storsión Y	/		
Pilar	Planta	(m)	n (m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso2	7.20	3.50	0.0108	h / 325		0.0144	h / 244			
	Piso1	3.70	3.70	0.0085	h / 436		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0545	h / 325		0.0785	h / 226			
C2-3	Piso5	17.70	3.50	0.0116	h / 302		0.0188	h / 187			
	Piso4	14.20	3.50	0.0124	h / 283		0.0189	h / 186			
	Piso3	10.70	3.50	0.0124	h / 283		0.0176	h / 199			
	Piso2	7.20	3.50	0.0110	h / 319		0.0144	h / 244			
	Piso1	3.70	3.70	0.0087	h / 426		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0559	h / 317		0.0785	h / 226			
C2-4	Piso5	17.70	3.50	0.0112	h / 313		0.0188	h / 187			
	Piso4	14.20	3.50	0.0121	h / 290		0.0189	h / 186			
	Piso3	10.70	3.50	0.0121	h / 290		0.0176	h / 199			
	Piso2	7.20	3.50	0.0108	h / 325		0.0144	h / 244			
	Piso1	3.70	3.70	0.0085	h / 436		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0546	h / 325		0.0785	h / 226			
C2-5	Piso5	17.70	3.50	0.0116	h / 302		0.0188	h / 187			
	Piso4	14.20	3.50	0.0124	h / 283		0.0189	h / 186			
	Piso3	10.70	3.50	0.0124	h / 283		0.0176	h / 199			
	Piso2	7.20	3.50	0.0110	h / 319		0.0144	h / 244			
	Piso1	3.70	3.70	0.0087	h / 426		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0559	h / 317		0.0785	h / 226			
C2-6	Piso5	17.70	3.50	0.0112	h / 313		0.0188	h / 187			
	Piso4	14.20	3.50	0.0121	h / 290		0.0189	h / 186			
	Piso3	10.70	3.50	0.0121	h / 290		0.0176	h / 199			
	Piso2	7.20	3.50	0.0108	h / 325		0.0144	h / 244			
	Piso1	3.70	3.70	0.0085	h / 436		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0546	h / 325		0.0785	h / 226			
C2-7	Piso5	17.70	3.50	0.0112	h / 313		0.0188	h / 187			
	Piso4	14.20	3.50	0.0121	h / 290		0.0189	h / 186			
	Piso3	10.70	3.50	0.0121	h / 290		0.0176	h / 199			

Situaciones sísmicas ⁽¹⁾											
		Onte	L.	Di	storsión >	<	Di	storsión Y	,		
Pilar	Planta	(m)	n (m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso2	7.20	3.50	0.0108	h / 325		0.0144	h / 244			
	Piso1	3.70	3.70	0.0085	h / 436		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0545	h / 325		0.0785	h / 226			
C2-8	Piso5	17.70	3.50	0.0116	h / 302		0.0188	h / 187			
	Piso4	14.20	3.50	0.0124	h / 283		0.0189	h / 186			
	Piso3	10.70	3.50	0.0124	h / 283		0.0176	h / 199			
	Piso2	7.20	3.50	0.0110	h / 319		0.0144	h / 244			
	Piso1	3.70	3.70	0.0087	h / 426		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0559	h / 317		0.0785	h / 226			
C2-9	Piso5	17.70	3.50	0.0119	h / 295		0.0186	h / 189			
	Piso4	14.20	3.50	0.0127	h / 276		0.0187	h / 188			
	Piso3	10.70	3.50	0.0127	h / 276		0.0175	h / 200			
	Piso2	7.20	3.50	0.0112	h / 313		0.0142	h / 247			
	Piso1	3.70	3.70	0.0088	h / 421		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0572	h / 310		0.0777	h / 228			
C2-10	Piso5	17.70	3.50	0.0119	h / 295		0.0184	h / 191			
	Piso4	14.20	3.50	0.0127	h / 276		0.0185	h / 190			
	Piso3	10.70	3.50	0.0127	h / 276		0.0173	h / 203			
	Piso2	7.20	3.50	0.0112	h / 313		0.0141	h / 249			
	Piso1	3.70	3.70	0.0088	h / 421		0.0088	h / 421			
	Cimentación	0.00									
	Total		17.70	0.0572	h / 310		0.0770	h / 230			
C2-11	Piso5	17.70	3.50	0.0119	h / 295		0.0183	h / 192			
	Piso4	14.20	3.50	0.0127	h / 276		0.0184	h / 191			
	Piso3	10.70	3.50	0.0127	h / 276		0.0172	h / 204			
	Piso2	7.20	3.50	0.0112	h / 313		0.0140	h / 250			
	Piso1	3.70	3.70	0.0088	h / 421		0.0087	h / 426			
	Cimentación	0.00									
	Total		17.70	0.0572	h / 310		0.0764	h / 232			
C2-12	Piso5	17.70	3.50	0.0119	h / 295		0.0183	h / 192			
	Piso4	14.20	3.50	0.0127	h / 276		0.0184	h / 191			
	Piso3	10.70	3.50	0.0127	h / 276		0.0172	h / 204			

Situaciones sísmicas ⁽¹⁾											
		Onte	L.	Di	storsión >	<	Di	storsión Y	,		
Pilar	Planta	(m)	n (m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso2	7.20	3.50	0.0112	h / 313		0.0140	h / 250			
	Piso1	3.70	3.70	0.0088	h / 421		0.0087	h / 426			
	Cimentación	0.00									
	Total		17.70	0.0572	h / 310		0.0764	h / 232			
C2-13	Piso5	17.70	3.50	0.0119	h / 295		0.0184	h / 191			
	Piso4	14.20	3.50	0.0127	h / 276		0.0185	h / 190			
	Piso3	10.70	3.50	0.0127	h / 276		0.0173	h / 203			
	Piso2	7.20	3.50	0.0112	h / 313		0.0141	h / 249			
	Piso1	3.70	3.70	0.0088	h / 421		0.0088	h / 421			
	Cimentación	0.00									
	Total		17.70	0.0572	h / 310		0.0770	h / 230			
C2-14	Piso5	17.70	3.50	0.0119	h / 295		0.0186	h / 189			
	Piso4	14.20	3.50	0.0127	h / 276		0.0187	h / 188			
	Piso3	10.70	3.50	0.0127	h / 276		0.0175	h / 200			
	Piso2	7.20	3.50	0.0112	h / 313		0.0142	h / 247			
	Piso1	3.70	3.70	0.0088	h / 421		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0572	h / 310		0.0777	h / 228			
C2-15	Piso5	17.70	3.50	0.0119	h / 295		0.0186	h / 189			
	Piso4	14.20	3.50	0.0127	h / 276		0.0187	h / 188			
	Piso3	10.70	3.50	0.0127	h / 276		0.0175	h / 200			
	Piso2	7.20	3.50	0.0113	h / 310		0.0142	h / 247			
	Piso1	3.70	3.70	0.0088	h / 421		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0573	h / 309		0.0777	h / 228			
C2-16	Piso5	17.70	3.50	0.0119	h / 295		0.0184	h / 191			
	Piso4	14.20	3.50	0.0127	h / 276		0.0185	h / 190			
	Piso3	10.70	3.50	0.0127	h / 276		0.0173	h / 203			
	Piso2	7.20	3.50	0.0113	h / 310		0.0141	h / 249			
	Piso1	3.70	3.70	0.0088	h / 421		0.0088	h / 421			
	Cimentación	0.00									
	Total		17.70	0.0573	h / 309		0.0770	h / 230			
C2-17	Piso5	17.70	3.50	0.0119	h / 295		0.0183	h / 192			
	Piso4	14.20	3.50	0.0127	h / 276		0.0184	h / 191			
	Piso3	10.70	3.50	0.0127	h / 276		0.0172	h / 204			

Situaciones sísmicas ⁽¹⁾											
		Onte	L.	Di	storsión >	<	Di	storsión Y	/		
Pilar	Planta	(m)	n (m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso2	7.20	3.50	0.0113	h / 310		0.0140	h / 250			
	Piso1	3.70	3.70	0.0088	h / 421		0.0087	h / 426			
	Cimentación	0.00									
	Total		17.70	0.0573	h / 309		0.0764	h / 232			
C2-18	Piso5	17.70	3.50	0.0119	h / 295		0.0183	h / 192			
	Piso4	14.20	3.50	0.0127	h / 276		0.0184	h / 191			
	Piso3	10.70	3.50	0.0127	h / 276		0.0172	h / 204			
	Piso2	7.20	3.50	0.0113	h / 310		0.0140	h / 250			
	Piso1	3.70	3.70	0.0088	h / 421		0.0087	h / 426			
	Cimentación	0.00									
	Total		17.70	0.0573	h / 309		0.0764	h / 232			
C2-19	Piso5	17.70	3.50	0.0119	h / 295		0.0184	h / 191			
	Piso4	14.20	3.50	0.0127	h / 276		0.0185	h / 190			
	Piso3	10.70	3.50	0.0127	h / 276		0.0173	h / 203			
	Piso2	7.20	3.50	0.0113	h / 310		0.0141	h / 249			
	Piso1	3.70	3.70	0.0088	h / 421		0.0088	h / 421			
	Cimentación	0.00									
	Total		17.70	0.0573	h / 309		0.0770	h / 230			
C2-20	Piso5	17.70	3.50	0.0119	h / 295		0.0186	h / 189			
	Piso4	14.20	3.50	0.0127	h / 276		0.0187	h / 188			
	Piso3	10.70	3.50	0.0127	h / 276		0.0175	h / 200			
	Piso2	7.20	3.50	0.0113	h / 310		0.0142	h / 247			
	Piso1	3.70	3.70	0.0088	h / 421		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0573	h / 309		0.0777	h / 228			
C3-1	Piso5	17.70	3.50	0.0116	h / 302		0.0186	h / 189			
	Piso4	14.20	3.50	0.0124	h / 283		0.0187	h / 188			
	Piso3	10.70	3.50	0.0124	h / 283		0.0175	h / 200			
	Piso2	7.20	3.50	0.0110	h / 319		0.0142	h / 247			
	Piso1	3.70	3.70	0.0087	h / 426		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0559	h / 317		0.0777	h / 228			
C3-2	Piso5	17.70	3.50	0.0116	h / 302		0.0184	h / 191			
	Piso4	14.20	3.50	0.0124	h / 283		0.0185	h / 190			
	Piso3	10.70	3.50	0.0124	h / 283		0.0173	h / 203			

Situaciones sísmicas ⁽¹⁾											
		0-1-	L.	Di	storsión >	<	Di	storsión Y	/		
Pilar	Planta	(m)	n (m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso2	7.20	3.50	0.0110	h / 319		0.0141	h / 249			
	Piso1	3.70	3.70	0.0087	h / 426		0.0088	h / 421			
	Cimentación	0.00									
	Total		17.70	0.0559	h / 317		0.0770	h / 230			
C3-3	Piso5	17.70	3.50	0.0116	h / 302		0.0183	h / 192			
	Piso4	14.20	3.50	0.0124	h / 283		0.0184	h / 191			
	Piso3	10.70	3.50	0.0124	h / 283		0.0172	h / 204			
	Piso2	7.20	3.50	0.0110	h / 319		0.0140	h / 250			
	Piso1	3.70	3.70	0.0087	h / 426		0.0087	h / 426			
	Cimentación	0.00									
	Total		17.70	0.0559	h / 317		0.0764	h / 232			
C3-4	Piso5	17.70	3.50	0.0116	h / 302		0.0183	h / 192			
	Piso4	14.20	3.50	0.0124	h / 283		0.0184	h / 191			
	Piso3	10.70	3.50	0.0124	h / 283		0.0172	h / 204			
	Piso2	7.20	3.50	0.0110	h / 319		0.0140	h / 250			
	Piso1	3.70	3.70	0.0087	h / 426		0.0087	h / 426			
	Cimentación	0.00									
	Total		17.70	0.0559	h / 317		0.0764	h / 232			
C3-5	Piso5	17.70	3.50	0.0116	h / 302		0.0184	h / 191			
	Piso4	14.20	3.50	0.0124	h / 283		0.0185	h / 190			
	Piso3	10.70	3.50	0.0124	h / 283		0.0173	h / 203			
	Piso2	7.20	3.50	0.0110	h / 319		0.0141	h / 249			
	Piso1	3.70	3.70	0.0087	h / 426		0.0088	h / 421			
	Cimentación	0.00									
	Total		17.70	0.0559	h / 317		0.0770	h / 230			
C3-6	Piso5	17.70	3.50	0.0116	h / 302		0.0186	h / 189			
	Piso4	14.20	3.50	0.0124	h / 283		0.0187	h / 188			
	Piso3	10.70	3.50	0.0124	h / 283		0.0175	h / 200			
	Piso2	7.20	3.50	0.0110	h / 319		0.0142	h / 247			
	Piso1	3.70	3.70	0.0087	h / 426		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0559	h / 317		0.0777	h / 228			
C3-7	Piso5	17.70	3.50	0.0112	h / 313		0.0186	h / 189			
	Piso4	14.20	3.50	0.0121	h / 290		0.0187	h / 188			
	Piso3	10.70	3.50	0.0121	h / 290		0.0175	h / 200			

Situaciones sísmicas ⁽¹⁾											
		Coto	ĥ	Di	storsión >	<	Di	storsión Y	/		
Pilar	Planta	(m)	(m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso2	7.20	3.50	0.0108	h / 325		0.0142	h / 247			
	Piso1	3.70	3.70	0.0085	h / 436		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0546	h / 325		0.0777	h / 228			
C3-8	Piso5	17.70	3.50	0.0112	h / 313		0.0184	h / 191			
	Piso4	14.20	3.50	0.0121	h / 290		0.0185	h / 190			
	Piso3	10.70	3.50	0.0121	h / 290		0.0173	h / 203			
	Piso2	7.20	3.50	0.0108	h / 325		0.0141	h / 249			
	Piso1	3.70	3.70	0.0085	h / 436		0.0088	h / 421			
	Cimentación	0.00									
	Total		17.70	0.0546	h / 325		0.0770	h / 230			
C3-9	Piso5	17.70	3.50	0.0112	h / 313		0.0183	h / 192			
	Piso4	14.20	3.50	0.0121	h / 290		0.0184	h / 191			
	Piso3	10.70	3.50	0.0121	h / 290		0.0172	h / 204			
	Piso2	7.20	3.50	0.0108	h / 325		0.0140	h / 250			
	Piso1	3.70	3.70	0.0085	h / 436		0.0087	h / 426			
	Cimentación	0.00									
	Total		17.70	0.0546	h / 325		0.0764	h / 232			
C3-10	Piso5	17.70	3.50	0.0112	h / 313		0.0183	h / 192			
	Piso4	14.20	3.50	0.0121	h / 290		0.0184	h / 191			
	Piso3	10.70	3.50	0.0121	h / 290		0.0172	h / 204			
	Piso2	7.20	3.50	0.0108	h / 325		0.0140	h / 250			
	Piso1	3.70	3.70	0.0085	h / 436		0.0087	h / 426			
	Cimentación	0.00									
	Total		17.70	0.0546	h / 325		0.0764	h / 232			
C3-11	Piso5	17.70	3.50	0.0112	h / 313		0.0184	h / 191			
	Piso4	14.20	3.50	0.0121	h / 290		0.0185	h / 190			
	Piso3	10.70	3.50	0.0121	h / 290		0.0173	h / 203			
	Piso2	7.20	3.50	0.0108	h / 325		0.0141	h / 249			
	Piso1	3.70	3.70	0.0085	h / 436		0.0088	h / 421			
	Cimentación	0.00									
	Total		17.70	0.0546	h / 325		0.0770	h / 230			
C3-12	Piso5	17.70	3.50	0.0112	h / 313		0.0186	h / 189			
	Piso4	14.20	3.50	0.0121	h / 290		0.0187	h / 188			
	Piso3	10.70	3.50	0.0121	h / 290		0.0175	h / 200			

Situaciones sísmicas ⁽¹⁾											
		0	Ŀ	Di	storsión >	<	Di	storsión Y	/		
Pilar	Planta	(m)	n (m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso2	7.20	3.50	0.0108	h / 325		0.0142	h / 247			
	Piso1	3.70	3.70	0.0085	h / 436		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0546	h / 325		0.0777	h / 228			
C3-13	Piso5	17.70	3.50	0.0112	h / 313		0.0186	h / 189			
	Piso4	14.20	3.50	0.0121	h / 290		0.0187	h / 188			
	Piso3	10.70	3.50	0.0121	h / 290		0.0175	h / 200			
	Piso2	7.20	3.50	0.0108	h / 325		0.0142	h / 247			
	Piso1	3.70	3.70	0.0085	h / 436		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0545	h / 325		0.0777	h / 228			
C3-14	Piso5	17.70	3.50	0.0112	h / 313		0.0184	h / 191			
	Piso4	14.20	3.50	0.0121	h / 290		0.0185	h / 190			
	Piso3	10.70	3.50	0.0121	h / 290		0.0173	h / 203			
	Piso2	7.20	3.50	0.0108	h / 325		0.0141	h / 249			
	Piso1	3.70	3.70	0.0085	h / 436		0.0088	h / 421			
	Cimentación	0.00									
	Total		17.70	0.0545	h / 325		0.0770	h / 230			
C3-15	Piso5	17.70	3.50	0.0112	h / 313		0.0183	h / 192			
	Piso4	14.20	3.50	0.0121	h / 290		0.0184	h / 191			
	Piso3	10.70	3.50	0.0121	h / 290		0.0172	h / 204			
	Piso2	7.20	3.50	0.0108	h / 325		0.0140	h / 250			
	Piso1	3.70	3.70	0.0085	h / 436		0.0087	h / 426			
	Cimentación	0.00									
	Total		17.70	0.0545	h / 325		0.0764	h / 232			
C3-16	Piso5	17.70	3.50	0.0112	h / 313		0.0183	h / 192			
	Piso4	14.20	3.50	0.0121	h / 290		0.0184	h / 191			
	Piso3	10.70	3.50	0.0121	h / 290		0.0172	h / 204			
	Piso2	7.20	3.50	0.0108	h / 325		0.0140	h / 250			
	Piso1	3.70	3.70	0.0085	h / 436		0.0087	h / 426			
	Cimentación	0.00									
	Total		17.70	0.0545	h / 325		0.0764	h / 232			
C3-17	Piso5	17.70	3.50	0.0112	h / 313		0.0184	h / 191			
	Piso4	14.20	3.50	0.0121	h / 290		0.0185	h / 190			
	Piso3	10.70	3.50	0.0121	h / 290		0.0173	h / 203			

Situaciones sísmicas ⁽¹⁾											
		Onte	L.	Di	storsión >	<	Di	storsión Y	,		
Pilar	Planta	(m)	n (m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso2	7.20	3.50	0.0108	h / 325		0.0141	h / 249			
	Piso1	3.70	3.70	0.0085	h / 436		0.0088	h / 421			
	Cimentación	0.00									
	Total		17.70	0.0545	h / 325		0.0770	h / 230			
C3-18	Piso5	17.70	3.50	0.0112	h / 313		0.0186	h / 189			
	Piso4	14.20	3.50	0.0121	h / 290		0.0187	h / 188			
	Piso3	10.70	3.50	0.0121	h / 290		0.0175	h / 200			
	Piso2	7.20	3.50	0.0108	h / 325		0.0142	h / 247			
	Piso1	3.70	3.70	0.0085	h / 436		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0545	h / 325		0.0777	h / 228			
C3-19	Piso5	17.70	3.50	0.0116	h / 302		0.0186	h / 189			
	Piso4	14.20	3.50	0.0124	h / 283		0.0187	h / 188			
	Piso3	10.70	3.50	0.0124	h / 283		0.0175	h / 200			
	Piso2	7.20	3.50	0.0110	h / 319		0.0142	h / 247			
	Piso1	3.70	3.70	0.0087	h / 426		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0559	h / 317		0.0777	h / 228			
C3-20	Piso5	17.70	3.50	0.0116	h / 302		0.0184	h / 191			
	Piso4	14.20	3.50	0.0124	h / 283		0.0185	h / 190			
	Piso3	10.70	3.50	0.0124	h / 283		0.0173	h / 203			
	Piso2	7.20	3.50	0.0110	h / 319		0.0141	h / 249			
	Piso1	3.70	3.70	0.0087	h / 426		0.0088	h / 421			
	Cimentación	0.00									
	Total		17.70	0.0559	h / 317		0.0770	h / 230			
C3-21	Piso5	17.70	3.50	0.0116	h / 302		0.0183	h / 192			
	Piso4	14.20	3.50	0.0124	h / 283		0.0184	h / 191			
	Piso3	10.70	3.50	0.0124	h / 283		0.0172	h / 204			
	Piso2	7.20	3.50	0.0110	h / 319		0.0140	h / 250			
	Piso1	3.70	3.70	0.0087	h / 426		0.0087	h / 426			
	Cimentación	0.00									
	Total		17.70	0.0559	h / 317		0.0764	h / 232			
C3-22	Piso5	17.70	3.50	0.0116	h / 302		0.0183	h / 192			
	Piso4	14.20	3.50	0.0124	h / 283		0.0184	h / 191			
	Piso3	10.70	3.50	0.0124	h / 283		0.0172	h / 204			

Situaciones sísmicas ⁽¹⁾											
		Cota	h	Di	storsión X	<	Distorsión Y				
Pilar	Planta	(m)	(m)	Absoluta (m)	Relativa	Origen	Absoluta (m)	Relativa	Origen		
	Piso2	7.20	3.50	0.0110	h / 319		0.0140	h / 250			
	Piso1	3.70	3.70	0.0087	h / 426		0.0087	h / 426			
	Cimentación	0.00									
	Total		17.70	0.0559	h / 317		0.0764	h / 232			
C3-23	Piso5	17.70	3.50	0.0116	h / 302		0.0184	h / 191			
	Piso4	14.20	3.50	0.0124	h / 283		0.0185	h / 190			
	Piso3	10.70	3.50	0.0124	h / 283		0.0173	h / 203			
	Piso2	7.20	3.50	0.0110	h / 319		0.0141	h / 249			
	Piso1	3.70	3.70	0.0087	h / 426		0.0088	h / 421			
	Cimentación	0.00									
	Total		17.70	0.0559	h / 317		0.0770	h / 230			
C3-24	Piso5	17.70	3.50	0.0116	h / 302		0.0186	h / 189			
	Piso4	14.20	3.50	0.0124	h / 283		0.0187	h / 188			
	Piso3	10.70	3.50	0.0124	h / 283		0.0175	h / 200			
	Piso2	7.20	3.50	0.0110	h / 319		0.0142	h / 247			
	Piso1	3.70	3.70	0.0087	h / 426		0.0089	h / 416			
	Cimentación	0.00									
	Total		17.70	0.0559	h / 317		0.0777	h / 228			
Notas:	Notas: (1) Las distorsiones están mayoradas por la ductilidad.										

Valores máximos

	Desplome lo	cal máximo de los pil	ares (🗆 / h)							
Planta	Situaciones persist	entes o transitorias	Situaciones sísmicas ⁽¹⁾							
i lanta	Dirección X	Dirección Y	Dirección X	Dirección Y						
Piso5			1 / 295	1 / 187						
Piso4			1 / 276	1 / 186						
Piso3			1 / 276	1 / 199						
Piso2			1 / 310	1 / 244						
Piso1			1 / 421	1 / 416						
Notas:										
⁽¹⁾ Los desplazamientos están mayorados por la ductilidad.										

Desplome total máximo de los pilares (□ / H)					
Situaciones persist	Situaciones sísmicas ⁽¹⁾				
Dirección X	Dirección Y	Dirección X	Dirección Y		
		1 / 309	1 / 226		
Notas:					
⁽¹⁾ Los desplazamientos están mayorados por la ductilidad.					

1.- SISMO

Norma utilizada: Norma Técnica E.030 (2014)

Norma Técnica E.030 (2014) Diseño Sismorresistente

Método de cálculo: Análisis modal espectral (Norma Técnica E.030 (2014), Artículo 4.6)

1.1.- Datos generales de sismo

Caracterización del emplazamiento

Zona sísmica (Norma Técnica E.030 (2014), Fig 1 y Anexo 1): Zona 4 Tipo de perfil de suelo (Norma Técnica E.030 (2014), 2.3.1): S2

Sistema estructural

R₀x : Coeficiente de reducción (X) (Norma Técnica E.030 (2014), Tabla 7)	R _o x : 6.00
R_{oY} : Coeficiente de reducción (Y) (Norma Técnica E.030 (2014), Tabla 7)	R _{oY} : 6.00
la: Factor de irregularidad en altura (Norma Técnica E.030 (2014), Tabla 8)	I a: 1.00
l _p : Factor de irregularidad en planta (Norma Técnica E.030 (2014), Tabla 9)	I p: 1.00
Geometría en altura (Norma Técnica E.030 (2014), Artículo 3.5): Regular	

Estimación del periodo fundamental de la estructura: Especificado por el usuario

Tax: Periodo fundamental aproximado (X)	T _a x ∶ 0.33 s
T _{aY} : Periodo fundamental aproximado (Y)	T _{aY} : 0.38 s

Importancia de la obra (Norma Técnica E.030 (2014), Artículo 3.1 y Tabla 5): C: Edificaciones comunes

Parámetros de cálculo

Número de modos de vibración que intervienen en el análisis: Según norma

Fracción de sobrecarga de uso	: 0.50
Fracción de sobrecarga de nieve	: 0.50
Factor multiplicador del espectro	: 1.00

Verificación de la condición de cortante basal: Según norma

No se realiza análisis de los efectos de 2º orden

Criterio de armado a aplicar por ductilidad: Requisitos especiales para elementos resistentes a fuerzas de sismo según la NTE.060

Direcciones de análisis

Acción sísmica según X

Acción sísmica según Y

Proyección en planta de la obra

1.2.- Espectro de cálculo

1.2.1.- Espectro elástico de aceleraciones

1.2.2.- Espectro de diseño de aceleraciones

El espectro de diseño sísmico se obtiene reduciendo el espectro elástico por el coeficiente (R) correspondiente a cada dirección de análisis.

R _X : Coeficiente de reducción (X) (Norma Técnica E.030 (2014), Tabla 6)	R _X : 6.00
R₀x : Coeficiente de reducción (X) (Norma Técnica E.030 (2014), Tabla 7)	R _o x : 6.00
R _Y : Coeficiente de reducción (Y) (Norma Técnica E.030 (2014), Tabla 6)	R _Y : 6.00
R ay: Coeficiente de reducción (Y) (Norma Técnica E 030 (2014), Tabla 7)	R ev : 6.00
I _a : Factor de irregularidad en altura (Norma Técnica E.030 (2014), Tabla 8)	I _a : 1.00
l _p : Factor de irregularidad en planta (Norma Técnica Ε.030 (2014), Tabla 9)	I p: 1.00

Norma Técnica E.030 (2014) (Artículo 4.6.2 y 2.5)

1.3.- Coeficientes de participación

Modo	Т	Lx	Ly	L _{gz}	M _x	My	Hipótesis X(1)	Hipótesis Y(1)
Modo 1	0.376	0.0002	1	0.0001	0 %	73.71 %	R = 6 A = 3.157 m/s² D = 11.3087 mm	R = 6 A = 3.157 m/s² D = 11.3087 mm
Modo 2	0.328	1	0.0003	0.0082	78.06 %	0 %	R = 6 A = 3.157 m/s ² D = 8.59537 mm	R = 6 A = 3.157 m/s ² D = 8.59537 mm
Modo 3	0.305	0.007	0.0094	1	0 %	0 %	R = 6 A = 3.157 m/s² D = 7.41639 mm	R = 6 A = 3.157 m/s ² D = 7.41639 mm
Modo 4	0.089	0.0005	1	0.0005	0 %	20.27 %	R = 6 A = 2.102 m/s ² D = 0.417 mm	R = 6 A = 2.102 m/s ² D = 0.417 mm
Modo 5	0.093	1	0.0005	0.0046	17.82 %	0 %	R = 6 A = 2.142 m/s ² D = 0.46639 mm	R = 6 A = 2.142 m/s ² D = 0.46639 mm
Total					95.88 %	93.98 %		

T: Periodo de vibración en segundos.

 L_x , L_y : Coeficientes de participación normalizados en cada dirección del análisis.

Lgz: Coeficiente de participación normalizado correspondiente al grado de libertad rotacional.

M_x, M_y: Porcentaje de masa desplazada por cada modo en cada dirección del análisis.

R: Relación entre la aceleración de cálculo usando la ductilidad asignada a la estructura y la aceleración de cálculo obtenida sin ductilidad.

A: Aceleración de cálculo, incluyendo la ductilidad.

D: Coeficiente del modo. Equivale al desplazamiento máximo del grado de libertad dinámico.

Representación de los periodos modales

Se representa el rango de periodos abarcado por los modos estudiados, con indicación de los modos en los que se desplaza más del 30% de la masa:

Hipótesis Sismo X1					
Hipótesis	Т	А			
modal	(s)	(g)			
Modo 2	0.328	0.322			

Hipótesis Sismo Y1					
Hipótesis	Т	А			
modal	(s)	(g)			
Modo 1	0.376	0.322			

1.4.- Centro de masas, centro de rigidez y excentricidades de cada planta
Planta	c.d.m.	c.d.r.	ex	ey
Fidilla	(m)	(m)	(m)	(m)
Piso5	(21.00, 15.00)	(21.00, 15.00)	0.00	0.00
Piso4	(21.00, 15.00)	(21.00, 15.00)	0.00	0.00
Piso3	(21.00, 15.00)	(21.00, 15.00)	0.00	0.00
Piso2	(21.00, 15.00)	(21.00, 15.00)	0.00	0.00
Piso1	(21.00, 15.00)	(21.00, 15.00)	0.00	0.00

c.d.m.: Coordenadas del centro de masas de la planta (X,Y)

- c.d.r.: Coordenadas del centro de rigidez de la planta (X,Y)
- ex: Excentricidad del centro de masas respecto al centro de rigidez (X)
- ey: Excentricidad del centro de masas respecto al centro de rigidez (Y)

Representación gráfica del centro de masas y del centro de rigidez por planta

1.5.- Corrección por cortante basal

1.5.1.- Cortante dinámico CQC

El cortante basal dinámico (V_d), por dirección e hipótesis sísmica, se obtiene mediante la combinación cuadrática completa (CQC) de los cortantes en la base por hipótesis modal.

Hipótesis sísmica (X)	Hipótesis modal	V _X (t)	V _{d,X} (t)
	Modo 1	0.0001	
Sismo X1	Modo 2	1506.0221	
	Modo 3	0.0931	1525.0695
	Modo 4	0.0001	
	Modo 5	233.1697	

Hipótesis sísmica (Y)		Hinátosis modal	Vy	$V_{d,Y}$
		Tipolesis modal	(t)	(t)
		Modo 1	1423.4359	
		Modo 2	0.0001	
	Sismo Y1	Modo 3	0.0015	1447.8984
		Modo 4	260.5840	
		Modo 5	0.0001	
		1		

Vd,x: Cortante basal dinámico en dirección X, por hipótesis sísmica

 $V_{d,Y}$: Cortante basal dinámico en dirección Y, por hipótesis sísmica

1.5.2.- Cortante basal estático

El cortante sísmico en la base de la estructura se determina para cada una de las direcciones de análisis:

V _{s,x} : Cortante sísmico en la base (X) (Norma Técnica E.030 (2014), Artículo 4.5.2)	V s,x :	1181.8376	; t _
Sd,x(Ta): Aceleración espectral horizontal de diseño (X)	S d,x (T a) ∶	0.322	g
T _{ax} : Periodo fundamental aproximado (X)	T _{aX} :	0.33	S
$V_{S,Y}$: Cortante sísmico en la base (Y) (Norma Técnica E.030 (2014), Artículo 4.5.2)	V S,Y :	1181.8376	; t _
Sd,γ(T₂): Aceleración espectral horizontal de diseño (Y)	S _{d,Y} (Ta) :	0.322	g
Tay: Periodo fundamental aproximado (Y)	T _{aY} :	0.38	S
P: Peso sísmico total de la estructura	P :	6002.9846	i t
El peso sísmico total de la estructura es la suma de los pesos sísmicos de todas las plantas.	;		-

pi: Peso sísmico total de la planta "i"

Suma de la totalidad de la carga permanente y de la fracción de la sobrecarga de uso considerada en el cálculo de la acción sísmica.

Planta	р _і (t)
Piso5	1090.2406

Planta	p _i (t)
Piso4	1225.4829
Piso3	1225.4829
Piso2	1225.4829
Piso1	1236.2954
P=□pi	6002.9846

1.5.3.- Verificación de la condición de cortante basal

Cuando el valor del cortante dinámico total en la base (V_d), obtenido después de realizar la combinación modal, para cualquiera de las direcciones de análisis, es menor que el 80 % del cortante basal sísmico estático (V_s), todos los parámetros de la respuesta dinámica se multiplican por el factor de modificación: $0.80 \cdot V_s/V_d$.

Geometría en altura (Norma Técnica E.030 (2014), Artículo 3.5): Regular

Norma Técnica E.030 (2014) (Artículo 4.6.4)

Hipótesis sísmica	Condición de co	Factor de modificación	
Sismo X1	$V_{d,X1} \square 0.80 \cdot V_{s,X}$	1525.0695 t □ 1545.5684 t	1.01
Sismo Y1	$V_{d,Y1} \square 0.80 \cdot V_{s,Y}$	1447.8984 t □ 1545.5684 t	1.07

 $V_{d,X}$: Cortante basal dinámico en dirección X, por hipótesis sísmica

 $V_{s,X}$: Cortante basal estático en dirección X, por hipótesis sísmica

 $V_{d,Y}$: Cortante basal dinámico en dirección Y, por hipótesis sísmica

 $V_{s,Y}$: Cortante basal estático en dirección Y, por hipótesis sísmica

1.6.- Cortante sísmico combinado por planta

El valor máximo del cortante por planta en una hipótesis sísmica dada se obtiene mediante la Combinación Cuadrática Completa (CQC) de los correspondientes cortantes modales.

Si la obra tiene vigas con vinculación exterior o estructuras 3D integradas, los esfuerzos de dichos elementos no se muestran en el siguiente listado.

1.6.1.- Cortante sísmico combinado y fuerza sísmica equivalente por planta

Los valores que se muestran en las siguientes tablas no están ajustados por el factor de modificación calculado en el apartado 'Corrección por cortante basal'.

Hipótesis sísmica: Sismo X1

Dianta	Q _X	$F_{eq,X}$	QY	$F_{eq,Y}$
Fianta	(t)	(t)	(t)	(t)
Piso5	504.6265	504.6265	0.2110	0.2110
Piso4	932.1823	433.8291	0.3268	0.1396
Piso3	1233.5569	329.0035	0.3979	0.1580
Piso2	1429.5549	243.6653	0.4803	0.1656
Piso1	1525.0695	136.8137	0.5397	0.1006

Hipótesis sísmica: Sismo Y1

Planta	Q _X	$F_{eq,X}$	Q _Y	$F_{eq,Y}$
Fidilla	(t)	(t)	(t)	(t)
Piso5	0.2533	0.2533	512.3123	512.3123
Piso4	0.4362	0.1955	923.1691	420.4966
Piso3	0.5565	0.1771	1201.2024	313.4802
Piso2	0.6552	0.1754	1373.2505	225.6844
Piso1	0.7213	0.1154	1447.8984	115.2287

Cortantes sísmicos máximos por planta

Fuerzas sísmicas equivalentes por planta

1.6.2.- Porcentaje de cortante sísmico resistido por tipo de soporte y por planta

El porcentaje de cortante sísmico de la columna 'Muros' incluye el cortante resistido por muros, pantallas y elementos de arriostramiento.

Hipótesis sísmica: Sismo X1

Planta	%Q _X		%Q _Y		
Tianta	Pilares	Muros	Pilares	Muros	
Piso5	20.87	79.13	26.62	73.38	
Piso4	19.67	80.33	26.92	73.08	
Piso3	16.02	83.98	21.31	78.69	
Piso2	13.59	86.41	11.88	88.12	
Piso1	14.19	85.81	7.99	92.01	

Hipótesis sísmica: Sismo Y1

Planta	%0	%Qx		%Q _Y	
i lanta	Pilares	Muros	Pilares	Muros	
Piso5	23.77	76.23	31.66	68.34	
Piso4	22.71	77.29	27.38	72.62	
Piso3	21.37	78.63	20.87	79.13	
Piso2	19.19	80.81	16.38	83.62	
Piso1	27.46	72.54	11.43	88.57	

1.6.3.- Porcentaje de cortante sísmico resistido por tipo de soporte en arranques

El porcentaje de cortante sísmico de la columna 'Muros' incluye el cortante resistido por muros, pantallas y elementos de arriostramiento.

Hipótesis sísmica	%Q _X		%Q _Y	
	Pilares	Muros	Pilares	Muros
Sismo X1	14.19	85.81	7.99	92.01
Sismo Y1	27.46	72.54	11.43	88.57

VENTANA PARA LA EXPORTACION DE PLANOS

💈 Selección de planos									
🗹	B Z D B + + 9 & 20 20								
Dibujar	Recursos de edición	Tipo de plano	Con cuadro	Pert					
		Despiece de pilares	✓	DWC					
		Planos de planta (Cimentación)	✓	DWC					
		Planos de planta (Armadura transversal inferior)	✓	DWC					
		Planos de planta (Armadura longitudinal inferior)	✓	DWC					
	□ □ Cuadro de pilares ☑ DW(
	□ Plano de pórticos ☑ DWC								
	Cuadro de pilares DWC								
		Planos de planta (Cimentación)	✓	DWC					
		Planos de planta (Despiece cimentación)	✓	DWC					
•		111		Þ					
Aceptar		Cajetín Grabar Capas	Cano	celar					

PLANOS DEL CYPECAD

ESTUDIOS DE SUELO

INFORME TÉCNICO

ESTUDIO DE MECANICA DE SUELOS CON FINES

DE CIMENTACIÓN

PROYECTO

DISEÑO SÍSMICO DE UN EDIFICIO DE 5 PISOS CON EL USO DEL CYPECAD Y ETABS EN VILLA MARÍA DEL TRIUNFO - LIMA 2019

SOLICITA: Bach. Rony Ñahuis Suyón Bach. Keveen Febres Silva

LIMA OCUBRE 2019

Jr. Amargura 415 San Jerónimo Andahuaylas – Apurímac

INDICE

MEMORIA DESCRIPTIVA.

RESUMEN DE LAS CONDICIONES DE CIMENTACIÓN.

- A) TIPO DE CIMENTACIÓN.
- B) ESTRATO DE APOYO DE LA CIMENTACIÓN
- C) PARÁMETROS DE DISEÑO PARA LA CIMENTACIÓN
- D) AGRESIVILIDAD DEL SUELO A LA CIMENTACIÓN.
- INFORMACIÓN PREVIA.
- A) DEL TERRENO A INVESTIGAR.
- i) Ubicación y accesos.
- ii) Topografía del Terreno.
- iii) Situación del Terreno.
- B) DE LA OBRA A CIMENTAR
- i) Características Generales
- ii) Edificación especial
- iii) Movimiento de tierra
- iv) Tipo de edificación
- C) DATOS GENERALES DE LA ZONA.
 - Geología local de la zona.
- ii) Usos anteriores. iii) Restos Argueológi
 - Restos Arqueológicos Anteriores.
- D) EMS DE TERRENOS COLINDANTES.
 E) DE LAS EDIFICACIONES ADYACENTES.
- EXPLORACIÓN DE CAMPO.
- A) PROGRAMA DE INVESTIGACIÓN MÍNIMO PIM.
- i) Condiciones de frontera.
- ii) Número de puntos de investigación

i)

- iii) Profundidad mínima a alcanzar en cada punto de investigación.
- B) TRABAJOS REALIZADOS IN SITU.
- C) ENSAYOS REALIZADOS IN SITU.
- D) ENSAYOS DE LABORATORIO.
- E) PERFIL DEL SUELO
- F) NIVEL DE LA NAPA FREÁTICA
- G) EFECTO DEL SISMO
- H) ANÁLISIS DE LA CIMENTACIÓN.
 - i) Estabilidad.
 - ii) Capacidad de carga por corte.
 - iii) Por asentamiento.
 - iv) por hundimiento.
 - v) Riesgo de licuefacción.
 - vi) Rellenos controlados de ingeniería

4. CONCLUSIONES Y RECOMENDACIONES

- 5. ANEXOS
- 5.1 Planos y perfiles de suelos.
- 5.2 Plano de ubicación del programa de exploración
- 5.3 Perfil estratigráfico por punto Investigado.
- 5.4 Resultados de los ensayos insitu y laboratorio.

CTORES GENERALES rafía Asuntos Ambientales Mineros

jfaconsultoresconstructores@hotmail.com jfaconsultoresconstructores@yahoo.com

A) TIPO DE CIMENTACIÓN.

El Tipo de cimentación será determinado por el ingeniero especialista en estructuras en razón a las características mecánicas del terreno, y a los datos obtenidos en laboratorio como su cohesión varia de 0.02 A 0.05 su ángulo de fricción interna DE 23° A 25 °posición del nivel freático no existe, siempre que sean posibles cimentaciones superficiales, ya que son el tipo de cimentación menos costoso y más simple de ejecutar.

Según los Estudios de Mecánica de suelos realizados en el Laboratorio de la empresa CONSULTORES CONSTRUCTORES GENERALES SAC.recomienda el tipo de cimentación por Zapatas Corridas.

Zapatas corridas.

Estas zapatas funcionan como viga flotante que recibe cargas lineales puntuales y/o separadas.

En cimentaciones superficiales este tipo de cimentación admite en función principalmente, de la naturaleza del terreno situado sobre la cota de asiento de las zapatas.

En primer lugar se tiene un suelo homogéneo en la estratigrafía que es de 0.35 a 2.00 m, de profundidad de limo arcillosos de color marrón rojizo con riesgo de desmoronamiento donde se procedió a la excavación directa de hueco de las calicatas de profundidad que es de 1.50 m. Las zapatas corridas están indicadas como cimentación de un elemento estructural longitudinalmente continuo, en el que se pretende los asientos en el terreno. Teniendo el concepto descrito y con los valores obtenidos como capacidad admisible, corte directo, Cohesión, Angulo de fricción interna, densidad natural, perfil Estratigráfico en cada punto SIN LA presencia de nivel freático en el terreno se determinó **Zapatas Corridas**.

Figura N° 1 Mapa ubicación fuente google Eart.

Jr. Amargura 415 San Jerónimo Andahuaylas – Apurímac CONSULTORES Y CONSTRUCTORES GENERALES Estudio de Suelos - Geotecnia - Minería - Cartografía Asuntos Ambientales Mineros

Cuando más del 30% del material es retenido en lamilla ¾".

c) Si el porcentaje de finos es menor o igual que el 15%, deberá compactarse a una densidad relativa (ASTM D 4254), no menor del 70%.

d) No será recomendable la utilización de materiales con más de 15% de finos salvo que se sustenten los métodos de compactación y control deberán realizarse controles de compactación en todas las capas compactadas a razón necesariamente de un control por cada 250 m2 como máximo.

4. CONCLUSIONES

Condiciones de Cimentación Propuesta.

AC

Con la aproximación propia de la exploración ejecutada, podemos establecer que para las edificaciones del Proyecto en referencia, se podrá adoptar sistemas económicos de cimentación superficial, por medio de cimentaciones corridas con sobre cimientos armados y zapatas conectadas con cimientos y sobre cimientos armados. Los elementos de cimentación, en todos los casos deberán desplantarse a una profundidad de enterramiento de 1.5 m. mínimo, en el estrato areno limo arenoso -arcilloso detectado, mejorando la capacidad portante del terreno con falsas zapatas, con un peralte de 0.40 m. como mínimo

✓ La profundidad de desplante "Df" se define: en el proyecto sin sótano, como la distancia vertical de la superficie del terreno al fondo de la

✓ cimentación, se podrá asignar al subsuelo al nivel especificado un valor de "Presión Admisible" no menor de 1.30 kg/cm² tanto por falla por esfuerzo cortante, como por asentamiento.

✓ La profundidad de Enterramiento y la sección transversal de cimientos corridos no podrá ser menor de 1.5 m y 0.50m. Pudiendo ser las zapatas en forma cuadrada o rectangular.

El Proyectista Estructural podrá adoptar la utilización de cimientos y sobre cimientos reforzados, para lo cual deberá considerar el mejoramiento del suelo por debajo de la platea con material de relleno controlado de ingeniería, tal como manda la Norma E.050 (Suelos y Cimentaciones del Reglamento Nacional de Edificaciones.

 ✓ La conexión de las zapatas aisladas mediante cimientos y sobre cimientos reforzados se han de supervisar a los requerimientos de Comportamiento Sismo resistente, de conformidad a la Norma Peruana E.030-2018 Diseño Sismo resistente.

 Es conveniente que todos los elementos estructurales se apoyen a la misma profundidad y calculados de acuerdo a las normas de Diseño Sismo resistente.

UF A SAC Equato de Suelos - Geotecina - Mineria - Cartografía Asintes Ambientales Mineros

the second

LABORATORIO MECÁNICA DE SUELOS CONCRETO Y ASFALTO

OBRA : MURO DE CONTENCIÓN PARA PROTECCIÓN DE REDES DE AGUA MZ. 1, J, K, O, P, R, X, V DEL ASENTAMIENTO HUMANO 8 DE DICIEMBRE ZONA JOSÉ CARLOS MARIÁTEGUI.

	ORALES																		L.L. = 38.9 %		L.P. = 32.2 %	I. P. = 6.7 %		OBSERVACIONES:				3.								
c_01 1.50 m F.P.O.	ILLA Nº 40		37	; ო	33.23	28.38	4.85	13.98	34.69	0																										
N° CALICATA PROFUNDIDAD RESPONSABLE ENTIDAD	PASANTE MA) MTC E 110-2000	24	0	33.60	27.94	0.66	14.31	39.55) MTC E 111-200	c	25.07	24.28	0.79	21.80	2.48	31.85	0																		
IEMBRE ING. F	ONSISTENCIA	E FIGNIDO (FF)	16	1	34.97	28.76	14 40	14.27	43.52	E PLASTICO (LF	Ŧ	25.28	24.35	0.93	21.49	2.86	32.52															/	p			30 40
MATERIAL PROPIO UBICACIÓN : ASENTAMIENTO HUMANO 8 DE DICI COORDENADAS : FECHA RECEPCION : 24/10/2019 FECHA DE ENSAYO : 24/10/2019	LIMITES DE CO	LIMIT	NUMERO DE GOLPES, N	N° DEL DEPOSITO	PESO DEL SUELO HUMEDO + DEPOSITO (g)		PESO DEL DEPOSITO	PESO DEL SUELO SECC	CONTENIDO DE AGUA (w%)	LIMITE	N° DEL DEPOSITO	PESO DEL SUELO HUMEDO + DEPOSITO (g)	PESO DEL SUELO SECO + DEPOSITO (9)	PESO DEL AGUA (g)	PESO DEL DEPOSITO	PESO DELSUELO SECO	% DE HUMEDAD		45°.0 16.0	0.44	43.0	42.5	41.5	(%)	140:0 40:0	39.5	33:0 Q	38.0	37.5 237.5	36.5 000	36.0	35.5	34.5	34.0	33.0	1 15 2 2F

Jr. Amargura 415 San Jerónimo Andahuaylas – Apurímac

90 80

20

60

50

40

N° DE GOLPES 30

25

N

15

UF AS SAC Equilibrium of Suchas A CONSTRUCTORES GENERALES SAMPlentales Mineros

1

LABORATORIO MECÁNICA DE SUELOS CONCRETO Y ASFALTO

OBRA : MURO DE CONTENCIÓN PARA PROTECCIÓN DE REDES DE AGUA MZ. 1, J, K, O, P, R, X, V DEL ASENTAMIENTO HUMANO 8 DE DICIEMBRE ZONA JOSÉ CARLOS MARIÁTEGUI.

SR. RONAL CARHUAS MORALES c_01 1.50 m F.P.O. N° CALICATA PROFUNDIDAD ING. RESPONSABLE ENTIDAD SOLICITANTE ENSAYO DE COMPACTACION MTC E 115-2000 UBICACIÓN : ASENTAMIENTO HUMANO 8 DE DICIEMBRE 0 COORDENADAS : FECHA RECEPCION : 24/10/2019 FECHA DE ENSAYO : 24/10/2019 MATERIAL : PROPIO

METODO DE COMPACTACION : C VO COMPACTACION C VO SOMPACTACION C VO PESO MOLDE + SUELO (9) 103. PESO MOLDE (9) 65 PESO MOLDE (9) 65 PESO MOLDE (9) 65 DEVISIÓN DU MEDA (100.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	LUMEN DEL MOLDE :	2073 cm3	MOLDE Nº ;	
COMPACTACION N° ENSAYO N° ENSAYO SESO MOLDE + SUELO FESO MOLDE + SUELO FESO MOLDE (9) FESO MOLDE (9) FE		0.00	S S S S S S S S S S S S S S S S S S S	
V* ENSAYO ESO MOLDE + SUELO PESO MOLDE PESO MOLDE PESO MOLDE PESO MOLDE (g) (g) (g) (g) (g) (g) (g) (g)				0
DESO MOLDE + SUELO (g) 103 PESO MOLDE (g) 65 PESO MOLDE (g) 65 PESO MOLDE (g) 63 PESO MOLDE (g) 63 PESO MOLDE (g) 63 PESO MOLDE (g) 64 PESO MOLDE (g) 65			-	
ESO MOLDE * SOELO (9)	V	6	4	
PESO MOLDE (9) 65 FESO SUELO COMPACTADO (9) 33 PENSIDAD HUMEDA (9) 33	10.0 10724.0	11021.0	10816.0	
PESO SUELO COMPACTADO (9) 38 DENSIDAD HUMEDA (21,0003) 1 8	43 6543	6543	0270	
DENSIDAD HUMEDA	38 4181	4478	otop	
	51 2.14		5V/7	
CONTENIDO DE LI MATDAD		2.100	2.061	
	0	c		
ESO SUELO HUMEDO + TARA (a) 50	505.0	0014		
ESO SUELO SECO + TARA	0 101		0.710	
ESO DEL AGUA	2.1.1	4/0.0	474.0	
	24.0	34.0	43.0	
ESO DEL RECIPIENTE (9) 0.	0.0	0.0	0.0	
ESO DEL SUELO SECO (g) 49:	.0 481.0	170.0		
ONTENIDO HUMEDAD (%) 3.	5.0	0.0	0.11	
ENSIDAD SECA (ar/cm ³) 1.7	1 921	110 0		

Jr. Amargura 415 San Jerónimo Andahuaylas – Apurímac

faconsultoresconstructores@hotmail.com (6-00-04)

UF AO SAC Equato de Suctos - Geotecnia - Mineria - Cartografia Asimtos Ambientales Mineros

1

LABORATORIO MECÁNICA DE SUELOS CONCRETO Y ASFALTO

OBRA : Muro de contención para protección de redes de agua m2. 1, J, K, O, P, R, X, V del asentamiento humano 8 de diciembre zona José carlos mariátegui.

MATERIAL : PROPIO UBICACIÓN : ASENTAMIENTO HUMANO 8 DE DICIEMBRE COORDENADAS : 24/10/2015 FECHA RECEPCION : 24/10/2015 FECHA DE ENSAYO : 24/10/2015

N° CALICATA : c_01 PROFUNDIDAD : 1.50 m ING. RESPOSABLE : F.P.O. ENTIDAD :

: SR. RONAL CARHUAS MORALES SOLICITANTE

CONTENI	DO DE HUMEDA MTC E 108-200	D NATURA	ſ	
N° RECIPIENTE				
		-	0	
PESO DEL SUELO HUMEDO + RECIPIENTE	(B)			
		00.000	200.000	
PESO DEL SUELO SECO + RECIPIENTE	(6)	00 007	00007	
		100.00	482.00	
PESO DEL AGUA	(8)	00		
		Z4.00	24.00	
PESO DEL RECIPIENTE	(8)	000		
		aa.c	66.0	
PESO DEL SUELO SECO	(8)			
		203.00	383.00	
HUMEDAD	(%)	100	1000	
		12.0	0.27	
PROMEDIO	(%)		(
			3	

OBSERVACIONES :

Jr. Amargura 415 San Jerónimo Andahuaylas – Apurímac

CAPACIDAD PORTANTE DE SUELOS

ZAPATA:	C_01
SOLICITA:	SR. RONAL CARHUAS MORALES
UBICACIÓN:	ASENTAMIENTO HUMANO 8 DE DICIEMBRE
PROYECTO:	MURO DE CONTENCIÓN PARA PROTECCIÓN DE REDES DE AGUA MZ. I, J, K, O, P, R. X. V DEL AS

TEORIA DE LA CAPACIDAD DE CARGA ULTIMA SEGÚN TERZAGHI

Dimensión calculada de la zapata (B) (m):	1.48
---	------

ifaconsultoresconstructores@hotmail.co

Jr. Amargura 415 San Jerónimo Andahuaylas – Apurímac Panel Fotográfico

Excavación de calicata para el estudio de suelo

Diseño en los programas Cypecad y Etabs

Diseño de los planos de estructuras

-. .

MATRIZ DE CONSISTENCIA

				OPERACIONALIZ	ACION DE VARIABLE	ES	
PROBLEMA Problema General	OBJETIVOS Obietivo General	HIPOTESIS Hipotesis	VARIABLE	Definicion Conceptual	Definicion Operacional	Dimensiones	Indicadores
·Es factible al programa							NORMAS TÉCNICAS DE ESTRUCTURAS DE CONCRETO ARMADO
estructural CYPECAD en comparación de ETABS en el	ractural CYPECAD en paración de ETABS en el ulo de diseño sísmico de ivienda de 5 pisos en Villa ría del Triunfo, LIMA - 2019?	El software CYPECAD es más factible que el software ETABS en el diseño sísmico de una vivienda de 5 pisos en Villa María del Triunfo, LIMA – 2019		Históricamente, en Norteamérica el diseño sísmico ha hecho énfasis en el movimiento horizontal del terreno debido a que la componente horizontal de movimiento acrede as general la componente turífica y o que las estimaturas movimiento acrede as general la componente turífica y o que las estimaturas de la componente de la componente turífica y o que las estimaturas de la componente de la componente de la componente de la componente de la componente de la componente de la componente de la componente de la componente de la componente de la componente de la componente d		EDIFICACIONES EN EL PERÚ	NORMAS TÉCNICAS DE ESTRUCTURAS DE ACERO
una vivienda de 5 pisos en Villa María del Triunfo, LIMA -				son por lo general nucho más rígidas y resistentes para la respuesta ante cargas verticales en comparación con su respuesta ante			NORMAS TÉCNICAS DE CARGAS
2019?				cargas horizontales. La experiencia ha demostrado que las componentes horizontales son las más destructivas. Para el diseño estructural, la intensidad	Esta variable será medida con 3		FACTORES DE COEFICIENTE DE BASAL
			DISEÑO SISMICO	de un terremoto se describe en terminos de la aceleración del terreno como una fracción de la aceleración de la gravedad, es decir, 0.1, 0.2 ó 0.3 g. Aunque la aceleración pico es un parámetro de diseño decisivo, las	dimensiones: criterios para el diseño sísmico de estructuras de tierra,	DISEÑO DE ANALISIS ESTATICO	FACTOR DE AMPLIFICACION Y REDUCCION SISMICA
Problema Especifico	Objetivo Epecífico	Hipotesis Epecifico		características de frecuencia y la duración de un terremoto son también importantes; mientras más cercana sea la frecuencia del terremoto a la frecuencia natural de una estructura y mientras mayor sea la duración del	normgon armado, metalicas y nadera		FUERZA CORTANTE
¿Qué normativas están	Aplicar las normas técnicas			terremoto, mayor será el potencial de daño. Considerando un comportamiento elástico, las estructuras sometidas a un			ESPECTRO DE RESPUESTA
implementadas en el software CYPECAD para el diseño sísmico de una vivienda de 5	peruanas implementadas en el software CYPECAD para el diseño sísmico de una vivienda de	las normativas que se dan para el diseño sísmico de una vivienda de 5 pisos en Villa Maria del Triunfo Lima.		sismo de magnitud considerable sufrirán también grandes desplazamientos. (Nilson, p.648)		DISEÑO DE ANALISIS DINAMICO	DISTORSIONES MÁXIMAS
pisos en Villa Maria del Triunfo, Lima - 2019?	5 pisos en Villa Maria del Triunfo, Lima – 2019	2019.					RESTRICCIONES DE IRREGULARIDAD
							INTRODUCCIÓN DE DATOS
¿Es viable el uso del software CYPECAD y ETABS para el diseño de analisis estatico de	Utilizar el software CYPECAD y ETABS para realizar el diseño de analisis estatico para una vivineda	Es viable el uso del software CYPECAD y ETABS para el diseño de analisis estatico de una vivienda de				CYPECAD	ANALISIS ESTRUCTURAL
una vivienda de 5 pisos en Villa Maria del Triunfo, LIMA- 2019?	de 5 pisos en Villa Maria del Triunfo, LIMA - 2019	5 pisos en Villa Maria del Triunfo, LIMA- 2019		Sonware que ne creado en España en la decada de los 80s por la empresa Cype Ingenieros S. A., para realizar el cálculo y dimensionamiento de estructuras de hormigón armado, viviendas, edificios y proyectos de obra civil	Ecta unriable cará modida con 2		EXPORTACION DE RESULTADOS
¿Es viable el uso del software	Utilizar el software CYPECAD y	Es viable el uso del software	SOFTWARE CYPECAD y ETABS	que pueden ser sometidos a acciones horizontales y verticales de cargas. La cual permite al ingeniero calculista un análisis bi y tridimensional de la estructura, el dimensionamiento de todos sus elementos estructurales incluida la cimentación, el armado de acero de refuerzo de cada uno de ellos y por	Esta variable será medida con 2 dimensiones: Uso del software CYPECAD y ETABS		INTRODUCCIÓN DE DATOS
C TPECAD y ETABS para el diseño de analisis dinamico de una vivienda de 5 pisos en Villa Maria del Triunfo LIMA.	ETABS para realizar el diseño de analisis dinamico para una vivneda de 5 pisos en Villa Maria del	CYPECAD y ETABS para el diseño de analisis dinamico de una vivienda de 5 pisos en Villa Maria del Triunfo,		último la generación de los planos estructurales de la obra de forma muy detallada junto con su respectiva memoria de cálculo; ambos en formato de uso convencional (Santos, p.7).		ETABS	ANALISIS ESTRUCTURAL
2019?	Triunfo, LIMA - 2019	LIMA- 2019					EXPORTACION DE RESULTADOS

Declaratoria de Originalidad del Autor

Yo, Keveen Alonso Febres Silva, egresado de la Facultad de Ingeniería y Arquitectura y Escuela Profesional Ingeniería Civil de la Universidad César Vallejo Sede Lima Este, declaro bajo juramento que todos los datos e información que acompañan al Trabajo de Investigación/Tesis titulado: "Diseño Sísmico de un edificio de 5 pisos con el uso del CYPECAD y ETABS en Villa María del Triunfo - Lima 2019". Es de mi autoría, por lo tanto, declaro que el Trabajo de Investigación/Tesis:

- 1. No ha sido plagiado ni total, ni parcialmente.
- 2. He mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- 3. No ha sido publicado ni presentado anteriormente para la obtención de otro grado académico o título profesional.
- 4. Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Lugar y fecha, San Juan de Lurigancho 20-12-2019

Apellidos y Nombres del Autor Febres Silva, Keveen Alonso	
DNI: 70946760	Firma
ORCID: 0000-0001-5902-0557	Kunfart

Declaratoria de Originalidad del Autor

Yo, Rony Ñahuis Suyon, egresado de la Facultad de Ingeniería y Arquitectura y Escuela Profesional Ingeniería Civil de la Universidad César Vallejo Sede Lima Este, declaro bajo juramento que todos los datos e información que acompañan al Trabajo de Investigación/Tesis titulado: "Diseño Sísmico de un edificio de 5 pisos con el uso del CYPECAD y ETABS en Villa María del Triunfo - Lima 2019". Es de mi autoría, por lo tanto, declaro que el Trabajo de Investigación/Tesis:

- 1. No ha sido plagiado ni total, ni parcialmente.
- 2. He mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- 3. No ha sido publicado ni presentado anteriormente para la obtención de otro grado académico o título profesional.
- 4. Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Lugar y fecha, San Juan de Lurigancho 20-12-2019

Apellidos y Nombres del Autor Ñahuis Suyon, Rony	
DNI: 74121816	Firma
ORCID: 0000-0001-5829-7597	Leag Stutte