

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERIA AMBIENTAL

Sistema de filtración rápida con biocarbón de residuos de piña y linaza en el tratamiento de agua residual domestica Coronel Portillo-Huacho 2019

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERA AMBIENTAL

AUTORA:

Briggite Elizabeth Muñoz Solano (ORCID: 0000-0001-6499-1729)

ASESOR:

M.Sc. Wilber Samuel Quijano Pacheco (ORCID: 0000-0001-7889-7928)

LINEA DE INVESTIGACIÓN:

Calidad y Gestión de los Recursos Naturales

LIMA – PERÚ

2019

DEDICATORIA

A mi madre Maruja con mucho cariño y amor.

AGRADECIMIENTO

A Dios por todas sus bendiciones y no hacer que me rinda. A mi madre por el gran esfuerzo, dedicación, perseverancia y apoyo en la culminación de mi Tesis. A mi padre por el apoyo moral que me dio durante la realización de mi tesis. A mi alma Mater Universidad Cesar vallejo.

A mi Asesor el Ing. Wilber Quijano Pacheco ya que sin su ayuda respectiva no hubiera podido culminar. A todas las personas que me apoyaron en poder realizar mi sueño.

ACTA DE APROBACIÓN DE LA TESIS

Código : F07-PP-PR-02.02 Versión : 10 Fecha : 10-06-2019 Página : 1 de 1

B Jurado encargado de evaluar la tesis presentada por don (ña) រូវប្បទ្ធាវិទ ស្រីក្នុងទីស្រីស្រីស្និន Solovo
cuyo do es: " Siskma de ciltroion sapida con biocorbon de residuos de priña y linaza en el trotomiento de agua residuol domestica larend Portillo- Huscho 2019"
"
Reunizio en la fecha, escuchó la sustentación y la resolución de preguntas por el estuciante, otorgándole el calificativo de:/
Lugary fecha Lima, 20 de Sicianbre del 2019
PRESIDENTE SECRETARIO FOR PLOSTA SUAS SOR EUSTERO HURACIO
MSe. UNITANO MCHELO, WILENE

Eaboró	Dirección de Investigación	Revisó	Responsable de SGC	Aprobó	Vicerrectorado de Investigación
--------	-------------------------------	--------	--------------------	--------	------------------------------------

Declaratoria de Autenticidad

Yo, Muñoz Solano Briggite Elizabeth, con DNI. 73339875, a efecto de cumplir con las disposiciones vigentes consideradas en el reglamento de grados y títulos de la Universidad Cesar Vallejo, Facultad de Ingeniería, Escuela Profesional de Ingeniería Ambiental, declaro bajo juramento que todo datos e información que acompañan a la Tesis titulada:

"Sistema de filtración rápida con biocarbón de residuos de piña y linaza en el tratamiento de agua residual domestica Coronel Portillo-Huacho 2019" por lo tanto, declaro que la Tesis:

- 1. No ha sido plagiado ni total, ni parcialmente.
- Hemos mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- No ha sido publicado ni presentado anteriormente para la obtención de otro grado académico o titulo profesional.
- Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumimos la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual nos sometemos a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Lima, 18 de Febrero 2020

Apellidos y Nombres del Autor	
Muñoz Solano, Briggite	
Elizabeth	
DNI: 73339875	Firma:
ORCID: 0000-0001-6499-1729	78
ORCID: 0000-0001-6499-1729	100

ÍNDICE

CARATULA	
DEDICATORIA	ii
AGRADECIMIENTO	iii
PAGINA DE JURADO	iv
DECLARACION DE AUTENTICIDAD	v
ÍNDICE	vi
RESUMEN	ix
ABSTRACT	x
I. INTRODUCCIÓN	1
II. MÉTODO	14
2.1. Tipo y Diseño de investigación	14
2.2. Variables y operacionalización de la variable	
2.3 Población y Muestra:	17
2.3.1 Población	17
2.4 Técnicas e Instrumentos de recolección de datos:	17
2.5 Procedimiento:	
2.6 Métodos de análisis de datos:	26
2.7 Aspectos Éticos:	26
III. RESULTADOS	27
IV. DISCUSIÓN	
V. CONCLUSIONES	48
VI. RECOMENDACIONES	49
REFERENCIAS	50
ANEXO	54

ÍNDICE DE TABLAS

Tabla 3 Materiales y Equipos	Tabla 2 Validación del instrumento por los expertos.	18
Tabla 5 Parámetros fisicoquímicos iniciales del agua	Tabla 3 Materiales y Equipos	19
Tabla 6 Resultados del primer proceso del tratamiento del agua a través del biofiltro de cascara de piña	Tabla 4 Características del biofiltro de piña y linaza	27
cascara de piña	Tabla 5 Parámetros fisicoquímicos iniciales del agua	27
Tabla 7 Resultados promedio del primer proceso del tratamiento del agua a través del biofiltro de cascara de piña en comparación a la inicial	Tabla 6 Resultados del primer proceso del tratamiento del agua a través del bio	ofiltro de
Tabla 8: Resultados de reducción de los contaminantes	cascara de piña.	28
Tabla 8: Resultados de reducción de los contaminantes	Tabla 7 Resultados promedio del primer proceso del tratamiento del agua a tr	avés del
Tabla 9: Resultados del promedio del primer proceso del tratamiento del agua a través del floculante de residuos de linaza	biofiltro de cascara de piña en comparación a la inicial	29
ÍNDICE DE FIGURAS Figura 1: Efecto del Biocarbón sobre el pH	Tabla 8: Resultados de reducción de los contaminantes.	37
ÍNDICE DE FIGURAS Figura 1: Efecto del Biocarbón sobre el pH	Tabla 9: Resultados del promedio del primer proceso del tratamiento del agua a tr	ravés del
Figura 1: Efecto del Biocarbón sobre el pH	floculante de residuos de linaza.	38
Figura 2: Efecto del biofiltro sobre el Redox	ÍNDICE DE FIGURAS	
Figura 3: Efecto del Biocarbón sobre la conductividad eléctrica	Figura 1: Efecto del Biocarbón sobre el pH.	29
Figura 4: Efectos del tratamiento del biocarbón sobre el oxígeno disuelto	Figura 2: Efecto del biofiltro sobre el Redox.	30
Figura 5: Efectos del tratamiento del biocarbón sobre la turbidez	Figura 3: Efecto del Biocarbón sobre la conductividad eléctrica	31
Figura 6: Efectos del tratamiento del biocarbón sobre los sólidos totales	Figura 4: Efectos del tratamiento del biocarbón sobre el oxígeno disuelto	31
Figura 7: Efectos del tratamiento del biocarbón sobre los Solidos sediméntales totales 33 Figura 8: Efectos del tratamiento del biocarbón sobre los Solidos Totales Disueltos 34 Figura 9: Efectos del tratamiento del biocarbón sobre la Demanda Bioquímica de Oxígeno	Figura 5: Efectos del tratamiento del biocarbón sobre la turbidez	32
Figura 8: Efectos del tratamiento del biocarbón sobre los Solidos Totales Disueltos 34 Figura 9: Efectos del tratamiento del biocarbón sobre la Demanda Bioquímica de Oxígeno	Figura 6: Efectos del tratamiento del biocarbón sobre los sólidos totales	33
Figura 9: Efectos del tratamiento del biocarbón sobre la Demanda Bioquímica de Oxígeno. 35 Figura 10: Efectos del tratamiento del biocarbón sobre la Demanda Bioquímica de Oxígeno. 35 Figura 11: Efectos del tratamiento del biocarbón sobre las grasas y aceites. 36	Figura 7: Efectos del tratamiento del biocarbón sobre los Solidos sediméntales tota	les 33
Figura 10: Efectos del tratamiento del biocarbón sobre la Demanda Bioquímica de Oxígeno. 35 Figura 11: Efectos del tratamiento del biocarbón sobre las grasas y aceites	Figura 8: Efectos del tratamiento del biocarbón sobre los Solidos Totales Disueltos	34
Figura 10: Efectos del tratamiento del biocarbón sobre la Demanda Bioquímica de Oxígeno. 35 Figura 11: Efectos del tratamiento del biocarbón sobre las grasas y aceites	Figura 9: Efectos del tratamiento del biocarbón sobre la Demanda Bioquímica de	Oxígeno.
Figura 11: Efectos del tratamiento del biocarbón sobre las grasas y aceites		
Figura 11: Efectos del tratamiento del biocarbón sobre las grasas y aceites		
Figura 12: Efectos del tratamiento con linaza para el pH		
	Figura 12: Efectos del tratamiento con linaza para el pH	39

Figura 13: Efecto del tratamiento de la linaza sobre el Redox
Figura 14: Efectos del tratamiento con linaza para la Conductividad Eléctrica 4
Figura 15: Efecto del tratamiento de la linaza sobre el Oxígeno Disuelto
Figura 16: Efecto del tratamiento de la linaza sobre la Turbidez
Figura 17: Efecto del tratamiento de la linaza sobre los Sólidos Totales
Figura 18: Efecto del tratamiento de la linaza sobre los Sólidos Sediméntales Totales 4
Figura 19: Efecto del tratamiento de la linaza sobre los Sólidos Sediméntales Disueltos 4
Figura 20: Efecto del tratamiento de la linaza sobre la Demanda Bioquímica de Oxigeno.4
Figura 21: Efecto del tratamiento de la linaza sobre la Demanda Química de Oxigeno 4
Figura 22: Efecto del tratamiento de la linaza sobre Aceites y Grasas

RESUMEN

El objetivo de la investigación fue evaluar el sistema de filtración rápida con biocarbón de cascara de piña y residuos de linaza en el tratamiento de las aguas residuales domesticas en Coronel Portillo – Huacho-2019. Método de tipo experimental, enfoque cuantitativo de nivel aplicativo. Para el presente sistema de tratamiento se desarrolló por dos fases el primero con un filtro y el segundo con floculante; el filtro se construyó de PVC y el biofiltro de la cascara de piña por el método de pirolisis y para el floculante de linaza se obtuvo el polímero con extracción con hexano en el equipo soxhlet, Se tomó una muestra de 30 litros proveniente de la tubería de aguas residuales domesticas de la zona de estudio, el cual se tomó 30 litros para el Biofiltro de cascara de piña, y de ello 10 litro para las tres unidades experimentales con tres repeticiones planteándose bajo el diseño completamente al azar, se evaluó los parámetros físicos, químicos y microbiológicos. Los resultados obtenidos para el filtro fueron promisorios por cuanto se redujo en los parámetros un 60%, y con la linaza al evaluar los datos con el análisis de varianza fueron significativos (P<0.05) en cada parámetro evaluado obteniendo que a menos dosis de 2.5g en la prueba de jarras se logró reducir de manera significativa la concentración de pH (7.87 a 6.45), redox (49.6 a 42.66), conductividad eléctrica (1010 a 2427), oxígeno disuelto (2.14 a 3.096), turbidez (71 a 2.15), solidos totales (230 a 37.63), solidos sediméntales totales (179 a 24.3), solidos sediméntales disueltos (217 a 12.9), demanda bioquímica de oxigeno (671 a 127.66), demanda química de oxigeno (864 a 242), coliformes totales(1.8x10^5 a 703), coliformes fecales (4.2x10^4 a 700). En conclusión, se determinó que a menor dosis de linaza el contaminante es reducido hasta un 90%, haciendo que este sistema sea óptimo para el tratamiento de este tipo de aguas.

Palabras claves: Biofiltro de cascara de piña, aguas residuales domésticas, floculante de linaza.

ABSTRACT

The objective of the research was to evaluate the rapid filtration system with pineapple peel biocarbon and flaxseed residues in the treatment of domestic wastewater in Coronel Portillo - Huacho-2019, it is an experimental type, quantitative approach of application level. For the present treatment system, the first with a filter and the second with flocculant were developed in two phases; The filter was constructed of PVC and the biofilter of the pineapple peel by the pyrolysis method and for the flaxseed flocculant the polymer with hexane extraction was obtained in the soxhlet equipment, a 30-liter sample was taken from the pipe Domestic wastewater from the study area, which took 30 liters for the Pineapple Peel Biofilter, and from that 10 liters for the three experimental units with three repetitions considering the completely random design, the physical parameters were evaluated, Chemical and microbiological The results obtained for the filter were promising because it was reduced in the parameters by 60%, and with the flaxseed when evaluating the data with the analysis of variance they were significant (P < 0.05) in each parameter evaluated obtaining that at less than 2.5 doses gr in the jar test, the concentration of Ph (7.87 to 6.45), redox (49.6 to 42.66), electrical conductivity (1010 to 2427), dissolved oxygen (2.14 to 3,096), turbidity (71 to 2.15) was significantly reduced), total solids (230 to 37.63), total sedimentary solids (179 to 24.3), dissolved sedimentary solids (217 to 12.9), biochemical oxygen demand (671 to 127.66), chemical oxygen demand (864 to 242), total coliforms (1.8x10 ^ 5 to 703), fecal coliforms (4.2x10 ^ 4 to 700). In conclusion it was determined that at a lower dose of flaxseed the contaminant is reduced up to 90%, making this system optimal for the treatment of this type of water.

Keywords: Pineapple peel biofilro, domestic wastewater, flaxseed flocculant

I. INTRODUCCIÓN

El crecimiento poblacional a nivel global hace que las necesidades del agua se incrementen y por otro lado este disminuyendo en muchas partes del mundo, por lo que ya no encontramos agua natural limpia, hecho que se está contaminando durante todo el recorrido del ciclo del agua por diferentes fuentes y esto se nota mayor en los efluentes producto de los residuos domésticos que son vertidos directamente a los ríos.

El trabajo de investigación se realizó para el tratamiento de las aguas contaminadas del Rio Huaura con efluentes de uso doméstico, que al ser vertidas a un cuerpo receptor estas perjudican a los ecosistemas acuáticos, contaminan el suelo y si es utilizadas en la agricultura, estos ocasionan problemas tóxicos debido a la presencia de bacterias coliformes y metales pesados.

Además, existen diferentes formas de tratamiento de estos efluentes de manera técnica son: desde el tratamiento primario hasta el tratamiento terciario que es tratamiento microbiológico, siendo la filtración rápida con el uso de Biocarbón de cualquier producto permiten reducir los contaminantes del agua, según los antecedentes este reduce hasta un 60%, pero también se puede suplementar el tratamiento con aglutinantes de diferentes productos y llega hasta un 80% de reducir los contaminantes del agua.

Por otro lado, el residuo de la cascara de piña como producto del consumo industrial genera una gran cantidad de 2 toneladas por día en los diferentes mercados de lima norte y estos se depositan en los rellenos sanitarios; también la linaza producto de los residuos de uso de las emolienteras que están ubicados en lima norte que aproximadamente se desecha 200 kg por día, que estos son vertidos en la calle y muy pocos en los tachos.

Razón por la cual el presente trabajo usó el residuo de la cascara de piña para construir un biofiltro y de los residuos de la linaza se obtuvo un floculante que permitió reducir los contaminantes del efluente domestico al rio Huaura.

La realidad problemática de esta investigación se enfoca en el tratamiento de aguas residuales domesticas que se vierten directamente al cuerpo de agua haciendo que se contamine y afecte a la flora y fauna acuática y más aún a la agricultura por presentar bacterias y otros organismos vivos que indirectamente perjudican a la salud humana

El pueblo de Coronel Portillo—Huacho, no es ajena a esta problemática debido a que los desechos de las aguas que utilizan los hogares son vertidos directamente sin previo tratamiento por canales y algunos ductos que los conducen a las aguas del río Huaura, produciendo los problemas que se conocen. Por tal motivo de esta problemática la proponemos en el trabajo de investigación mediante un tratamiento de biocarbón de los residuos de la cascara de piña y para complementar este tratamiento de floculación con los residuos de la linaza y poder tener una mejor calidad de agua y reducir estos impactos ambientales que se vienen originando en el caserío Coronel Portillo — Huacho.

De los antecedentes, mencionamos que dentro del proceso de tratamiento para reducir la materia orgánica del efluente que vierte la tubería de las aguas residuales domesticas de Coronel Portillo en Huacho, Maquero-Lara (2014) evaluó los tratamientos de aguas residuales domesticas bajo el proceso de lodos activados, y concluyó que el fraccionamiento de la materia orgánica (DQO) obtiene una mejor calidad de oxígeno en un reactor aeróbico. López — Vásquez et al. (2017), al evaluar la ausencia de agua, este permitirá la implementación y desarrollo de tecnologías futuras para el reúso del agua. En el tratamiento de aguas residuales domesticas se tuvo en cuenta un papel importante el de las bacterias con otros organismos vivos, continuamente de su estructura celular y sus componentes, requerimientos nutricionales, fuentes de carbono y energía, y la concientización a las condiciones ambientales.

Molano. J. (2016), en el manejo de aguas residuales, utilizó para la coagulación - floculación el almidón de solanum tuberosum l, para poder obtener el agua en condiciones de valores máximos admisibles al decreto supremo N° 021 – 009 vivienda donde se vio que utilizó diferentes sustancias que ayudarón al proceso de descontaminación poliacrilamida anionica y almidón gelatinizado utilizando cantidades para ver la velocidad y la concentración en la que iba a variar la turbidez de la muestra donde obtuvo un DQO de 83%.

Lian, y et al, (2014) para la eliminación eficiente de amoniaco, se formaron biofilms eficientes de oxidantes de amoniaco en la fase estacionaria sin una inoculación especial. Por los análisis y la filogenética revelaron que las proteobacterias dominaron en él. La abundancia relativa arqueas oxidantes de amoniaco (AOA) y bacterias oxidantes de amoniaco (BOA) mostro una tendencia contraria. En la fase de flujo (efluente de agua), la diversidad de AOA se correlaciono significativamente con la concentración de oxígeno disuelto (DO), NO3-N y NH3-N. La abundancia de BOA se correlacionó significativamente

con la concentración del oxígeno disuelto. NH3-N y COD se identificaron como los factores clave para dar forma a la estructura de la comunidad BOA. AOA podría jugar un papel importante en el SIRM. Este estudio podría revelar factores ambientales clave que afectan la composición de la comunidad y la abundancia de oxidantes de amoníaco en el MRIS.

Bolívar, L., (2018) mencionó que en la zona urbana de Coayllo no cuenta con una planta de tratamiento, por ello generan malos olores y esas aguas son utilizados para uso agrícola. El proceso de coagulación, floculación y sedimentación es un tratamiento de agua que permite remover los sólidos que se encuentran en suspensión por el uso del coagulante natural extraído de las semillas del níspero. Concluyo que la semilla de níspero es una buena opción de uso como floculante natural al generar un impacto positivo y afectuoso con el medio ambiente.

Sodamade, G., et al (2014) mencionó que la filtración de arena intermitente se adoptó en el tratamiento de aguas residuales sintéticas que tienen propiedades de efluentes de fosas sépticas en el laboratorio. Durante un período de 84 días, las aguas residuales sintéticas se dosificaron intermitentemente en dos filtros de arena de 50 cm y 100 cm de profundidad en un intervalo de 4 h. El material del filtro tiene un tamaño efectivo 10 de 0,42 mm, 60 de 0,92 mm, coeficiente de uniformidad, Cu, de 2,2 y conductividad hidráulica de 4,632 x 10-3 ms-1 con un diámetro de poro efectivo de 0,094 mm. La carga hidráulica fue de 0.144 m / día y la DBO5 de las aguas residuales fue de 172,3 mg/l. La eliminación de sólidos en suspensión, nitrógeno amónico (NH4-N) y BOD5 en columnas de 100 y 50 cm fue de 91,4% y 88,6%, 98.7% y 99,8% y 92% y 90%, respectivamente, mientras que PO4- La eliminación de P fue de alrededor del 45% en ambas columnas. A diferencia de otros parámetros, NO3-N estaba aumentando, lo que significa que la desnitrificación no tuvo lugar en las columnas de filtro. Según los resultados, la columna de filtro de 50 cm es económicamente preferible debido a la diferencia insignificante cuando se compara con la columna de filtro de 100 cm. La eliminación de bacterias fue ligeramente mayor en 100 cm de profundidad (99,88%) que en 50 cm de profundidad (99,68%).

Al, O. Kara, Z. et al. (2018) al simular el sistema de filtración de ósmosis inversa a gran escala para la eliminación de N-nitrosodimetilamina de las aguas residuales menciona que la ósmosis inversa (OI) su uso es conveniente porque ofrece una alta tasa de rechazo de contaminantes y un menor consumo de energía en comparación con otros procesos de tratamiento térmico. Primero, la aplicabilidad de este modelo se evaluó mediante un estudio

de simulación y los resultados se compararon con los datos experimentales recopilados de la literatura para una planta determinada. En segundo lugar, se llevan a cabo más estudios de simulación y análisis para evaluar el rendimiento de la planta para el rechazo y la tasa de recuperación de NDMA en diferentes condiciones de operación de presión de alimentación, caudal y concentración. Para la configuración de OI estudiada, se concluye que se puede lograr un máximo de 55.1% de rechazo de NDMA, lo que confirma el problema restante de un menor rechazo de NDMA.

Schelgel, et al. (2018) al evaluar la efectividad de generación de biocarbón a partir del material sólido en la hidrólisis aeróbico-microbiológica, por dos métodos de procesamiento en operaciones secuenciales para aumentar la rentabilidad de los procesos individuales durante la transformación de biomasa y sus desechos para obtener otros productos. Los desechos sobrantes contienen pocos constituyentes que pueden descomponerse, y su eliminación adecuada consume recursos, por lo que se procesan mediante carbonización hidrotérmica para obtener biocarbono. Los resultados obtenidos cuando la biomasa de la vegetación con un alto contenido de humedad se expone a altas temperaturas para la carbonización hidrotérmica, se produce una evaporación del agua y una cantidad selectiva de algunas partículas contenidas en la biomasa. Los residuos sobrantes son un material sólido y duro, con una alta concentración de carbono. Concluyendo que los procesos con la operación secuencial, se obtienen compuestos útiles y los desechos producidos desde el primer procesamiento se convierten en materia prima para el siguiente proceso, que origina la carbonización hidrotérmica, y con ello se mejora la eficiencia y alcanza la rentabilidad financiera.

Singanan, et y al (2015) estudiarón la eliminación de los iones Hg (II) de las aguas residuales sintéticas, utilizando el biocarbono activado producido a partir de las hojas de Tridax procumbens (Asteraceae). Los estudios experimentales por lotes mostraron que se requería un tiempo de equilibrio de 160 minutos para la eliminación máxima de Hg (II) a la dosis optimizada de biocarbono de 2,5 g por 100 ml de agua residual sintética. Se encontró que el pH óptimo requerido para la eliminación máxima (96,5%) de iones Hg (II) era 5,5. La biosorción de los iones metálicos sobre la superficie del biocarbono activado es probablemente a través de un mecanismo de intercambio iónico. El biocarbono se puede regenerar con mínima pérdida y reutilizarse sin ninguna activación química.

Ji,B.et al,(2015) al tratar las aguas residuales domésticas en un nuevo filtro de biofilm de secuenciación por lotes, con filtro de biopelículas por lotes de secuencia piloto (SBBF), biorreactor híbrido combinado con reactor reactor de biopelículas por lotes de secuenciación (SBBR) con un filtro biológico. Los resultados promedio de eficiencia de eliminación de la demanda química de oxígeno (DQO), nitrógeno amónico (NH4 (+) - N), nitrógeno total (TN) y fósforo total (TP). En conclusión la pirosecuenciación del gen 16S RNA reveló que la comunidad del biofilm consistía en representar el 93,6% del total de unidades taxonómicas operacionales.

Journal of Enviromental Engineering, (2014) mencionó que el Impacto de los procesos de tratamiento terciario en la eficacia de la cloración para el control del crecimiento biológico en sistemas de enfriamiento de recirculación que utilizan aguas residuales municipales tratadas. El uso de monocloramina (MCA) como biocida primario es tan efectivo como el uso de cloro libre en sistemas de enfriamiento que utilizan aguas residuales municipales tratadas de forma secundaria como única fuente de agua de reposición. Concluyendo que la efectividad de MCA como biocida del sistema de enfriamiento para tres tipos de aguas municipales tratadas con tratamiento terciario, son: acidificación, nitrificación y filtración en arena, filtración de arena y adsorción granular de carbón activado.

Renang, W. A., et al (2018) estudió la efectividad de un sistema de biofiltración fabricado para tratar las aguas grises domésticas. Utilizando los desechos agrícolas como medio de biofiltro que sirve para reducir el costo del tratamiento y la acumulación de desechos agrícolas, estos son la fibra de coco y cascara de arroz.

Los resultados demostraron que hubo diferencias insignificativas en el rendimiento al eliminar la DBO5 y la DQO, con eficiencias para coco de 43,93% y cascara de arroz de 38,19%.

Quach-Cu, J., et al (2018) estudió el efecto de los procesos de tratamiento de aguas residuales primarias, secundarias y terciarias en las concentraciones del gen de resistencia a antibióticos (ARG) en las fracciones de aguas residuales sólidas y disueltas. A través del (PTAR) se han identificado como fuentes potenciales de genes de resistencia a los antibióticos (ARG), Los resultados mostraron que ambos genes se redujeron en cada etapa sucesiva del tratamiento en la fracción disuelta. Los ARG asociados a los sólidos aumentaron durante la etapa de lodo activado y se redujeron en cada etapa subsiguiente. En conclusión, la eliminación de los

ARG por el cloro se mejoró mediante filtración en comparación con el efluente secundario clorado sin filtrar. Este estudio demuestra que las PTAR de etapa terciaria con desinfección pueden proporcionar una eliminación superior de los ARG en comparación con el tratamiento secundario solo.

Vera, L., et al (2014) evaluaron que el funcionamiento de biorreactores de membrana anaerobios sumergidos para tratar las aguas residuales domésticas. Durante los experimentos continuos, la degradación de la materia orgánica por vía anaeróbica mostró una eliminación promedio de DQOT de 85% y 93%. De hecho, la degradación generó biogás después de varios días de operación y su composición relativa de metano fue de 60% después de 25 días de operación. Además, la comparación entre el rendimiento de los biorreactores en condiciones aeróbicas y anaeróbicas en términos de filtración, informó que utilizaron una semejanza vez que alcanzaron un mejor pronóstico para el proyecto en resultados.

Diaz et al. (2016) mencionó que en el tratamiento de aguas residuales al agregar el coagulante de almidón de yuca, midió los parámetros fisicoquímicos y microbiológicos en las pruebas de jarras obtuvo valores de turbidez, reducción de turbidez de 74 NTU hasta 8.7 NTU.

Guzmán et al. (2015) mencionó que al utilizar el polvo de la semilla de la Cassia fístula para demostrar la efectividad del floculante natural y constatar que sea eficiente, estableció que la dosis óptima mediante la prueba de jarras, determinando los parámetros de color, turbidez, alcalinidad total, y dureza total; utilizando agua del Canal del Dique. La dosis óptima del coagulante encontrada está entre 10 - 20 mg/L, obteniendo valores finales de turbidez y color de 5 NTU y 22 UC respectivamente.

Telenchano Y Rocio (2017) en los tratamientos de aguas con cascaras de papa, piña y plátano, como coagulantes naturales, obtuvo mejores resultados con el residuo vegetal del plátano en un medio ácido, con una remoción de 98% de la turbiedad, 82% del color, 99 % de los SST, 84% de ST, 76% DBO 5, 54% DQO y 95% de aceites y grasas.

Las teorías relacionadas al trabajo de investigación son las caracterizaciones del biofiltro y poza de floculación, es una alternativa atractiva para el tratamiento de grandes volúmenes de efluentes que contengan concentraciones moderadas, en un biofiltro las fases gaseosas que contienen contaminantes atraviesa por un soporte solido húmedo donde viven los microorganismos responsables de la degradación. El biofiltro es utilizado con el fin de minimizar los olores en las emisiones en la atmosfera en las plantas de tratamientos. En la

actualidad también se aplica a otros compuestos orgánicos de origen muy diverso (Ramos P., 2003).

Las características del biofiltro son: el reactor que es un material solido orgánico, los biofiltros son aplicados a corrientes de gases de alto caudal y el biofiltro que opera en condiciones de estado estacionario.

De las características del residuo de la linaza que son: la semilla que tiene una textura, tostada y chiclosa, que al ser utilizado el producto arroja una baba mucilaginosa, que es el componente de la semilla de linaza que también es beneficioso para el ser humano; pudiendo los residuos usados como floculante para poder minimizar la contaminación que causan las aguas residuales domesticas mediante un proceso descontaminante. La semilla de la linaza contiene proteínas, lípidos, grasas y fibra dietética. El mucilago que contiene la linaza es un polisacárido que tiene la capacidad gelificante porque forma un gel y grasas que arrastran los contaminantes y metales pesados contenidos en las aguas (Magro. M, 2015).

SINIA (2015) mencionó que el tratamiento de agua residuales provenientes de las industrias, de zonas agrícolas y de uso doméstico, contienen los procesos físicos, químicos y biológicos, que son utilizados para limpiar las aguas residuales hasta que permita obtenerlo mucho más purificada para el consumo ya sea humano o doméstico, y para su reaprovechamiento.

El tratamiento primario sirvió principalmente para la remoción de solidos que contenga el agua emanada por algún rio o tubería porque si cayera algún objeto o material se podría dañar u obstruir la maquinaria utilizada para la eliminación de estos efluentes. El agua residual pasa a través de una trituradora, en la que las hojas y otros materiales orgánicos se trituran para facilitar su posterior procesamiento y eliminación. Fundación hogares juveniles campesinos (2006).

El tratamiento secundario es el segundo paso que se da en este tratamiento porque son removidos de por si la materia orgánica o sean por los microorganismos encontrados. Además, por la presencia de oxígeno, las bacterias aeróbicas llegan a convertir la materia orgánica en un producto más aceptable, como el dióxido de carbono, agua, nitratos y fosfatos, así como materiales orgánicos. Al producirse la materia orgánica nueva da como objetivo indirecto a los procesos de tratamiento biológico, y esta materia debe eliminarse antes de descargar el agua en el cauce receptor. Soledad, B. (2009).

El tratamiento terciario es proveniente del tratamiento secundario ya que también se atenúan la carga de materia orgánica. Los contaminantes removidos por el tratamiento terciario son categorizados en forma más general como sólidos en suspensión, materiales inorgánicos disueltos y compuestos orgánicos disueltos, incluyendo la importante categoría de los nutrientes de algas. Manahan, S. (2006).

La floculación es la sustancia que se une a otra para precipitar. La floculación es la unión de solidos suspendidos que ayudan a precipitar y acarar o eliminar los minerales no recomendables para los humanos. La floculación es utilizada en el tratamiento de aguas industriales y domésticas, también es utilizado para ser recicladas. Los tipos de floculantes que existen son: cationes y aniónicos, minerales u orgánicos y sintéticos o naturales. Machuca, et y al (2014)

La granulometría son arenas dispersas en los filtros de los tratamientos de aguas que contienen un coeficiente y un diámetro accesible para el proceso. La granulometría es vista por cada malla, que pasa por ella pero que no le permite tolerar porcentajes muy elevados. Crespo. C., (2004).

El pH lo define como el potencial de hidrogeno, ya que es un grado relativo de acidez o alcalinidad de una sustancia. El pH representa la cantidad de iones de hidrogeno. Milady., (2012)

La Demanda Química de Oxigeno (DQO) Es la cantidad de oxigeno que se precisa para poder oxidar todos los compuestos orgánicos e inorgánicos susceptibles de combinarse con el oxígeno. El pH se expresa en mg/kg o en ppm, estos datos por si solos son insuficientes por cuanto un residuo industrial pueda tener un alto valor de DQO para tratarse de un residuo biodegradable. (Castells. X., 2012)

Los sólidos totales es la cantidad de materia solida contenida por unidad de medida, y son responsables de las impurezas que son vistas, ya que los sólidos totales equivalen a la suma de todos los sólidos disueltos y suspendidos en el agua; los sólidos totales son o pueden ser sustancias orgánicas e inorgánicas. Castells. X., (2012)

La materia suspendida consiste en partículas muy pequeñas que no se pueden eliminar por medio de disposición. Ello hace que la materia suspendida absorba la luz haciendo que el agua tenga poca turbidez.

La demanda biológica de oxigeno es equivalente a la cantidad de oxigeno consumido para provocar la biodegradabilidad de la materia orgánica presente en el agua. La demanda biología de oxigeno es necesario ya que es requerido por las bacterias porque sus residuos orgánicos son convertidos en compuestos estables, la unidad de medida que expresa es ppm y adquiere un sentido en aquellos residuos que hayan de someterse a procesos de degradación para la recuperación de biogás (Castells. X., 2012).

Se realizaron muestreos de volúmenes de agua muy limitados mediante tubos, los tubos generalmente tienden a tener sustancias que reaccionan con un contaminante que pretendería medir su reacción. Cuando se depende del tipo de tubo y contaminante a determinar es necesariamente pasar por más o menos volumen de muestra. Crespo E. (2008).

Tamaño del carbón se aplicó en tecnologías limpias en las que el carbón puede utilizarse de una forma más limpia y de diferentes tamaños, a menudo energéticamente más eficiente que en el pasado. El carbón se pulveriza hasta conseguir un tamaño muy pequeño de partículas y se puede separar de forma efectiva en partículas minerales y partículas de carbón. Baird C. (2002).

La temperatura es aquel sentido de tacto que proporcionó el sentido del tacto ya que se puede concluir si un cuerpo está más caliente que otro, pero estas sensaciones comparativas son imprecisas y no se pueden considerar una medida física, la unidad de temperatura es el grado en centígrados que se define como la centésima parte del intervalo de temperatura. Morales J. (2005).

La conductividad eléctrica sirve para averiguar si una sustancia es un compuesto iónico, un metal o una sustancia covalente puesto que los metales conducen la electricidad en estado sólido, los compuestos iónicos solo lo hacen fundidos o disueltos y las sustancias covalentes no conducen la electricidad, por lo tanto, nos resulta que A es un metal, B y C son dos sustancias covalentes y D es un compuesto químico iónico. Andres, et y al. (2008).

El Potencial Redox es la medida de la afinidad de electrones, en las reacciones bioquímicas, el electrón eliminado de una molécula pasa siempre a otra, por lo tanto, cuando una molécula se oxida, otra se reduce. En cualquier reacción química, la tendencia de que estas reacciones de oxidorreduccion o reacciones redox, se producen de forma espontánea dependiendo de la variación de energía libre para la transferencia del electrón, que a su vez depende de las afinidades relativas de las dos moléculas por los electrones. Alberts, et y al (2006).

La turbidez es la medida por el cual se mide el agua por su claridad ya que sería debido a la presencia de partículas. La turbidez se mide en unidades nefelométricas de turbidez (NTU). Para lo que es agua potable, la turbidez no debe pasar las 5 NTU, el instrumento usado para su medición es el turbidímetro, que mide la intensidad de la luz dispersada a 90°. En cuerpos de agua loticos podemos medir el inverso de la turbidez en un disco dividido en cuatro cuartos dos blancos y dos negros el cual se sumerge en el agua atada a una cuerda, esto es una forma convencional de observar la turbidez de otro ángulo. Sánchez, O. (2007)

Filtración rápida se aplica cuando la tasa de filtración es el orden de 1 a 15 m/h. un filtro rápido consiste de un lecho de profundidad variable, entre 80 cm y varios metros. En general las partículas de mayor tamaño y fuertemente ligadas tienen tendencia a ser retenidas en las capas superiores del filtro, dando lugar a grandes pérdidas de carga y poca penetración del floculo. Las partículas finas suspendidas penetran más, especialmente cuando el medio es grueso y provoca pérdidas y descargas menores. Jiménez, B. (2001)

Red española de compostaje (2015). El biocarbón es un material granular ya que en cualquier tipo de residuo orgánico se obtienen procesos de carbonización, buscando mejorar las propiedades del suelo, la retención del agua y nutrientes y el crecimiento y productividad de los cultivos y todo ellos justificado por un objetivo principal que es la posibilidad del secuestro de carbono en el suelo con la disminución de las emisiones de gases de Efecto invernadero, este método también es llamado Pirolisis.

Guías para la calidad del agua potable, Volumen 3 (2013). Coliformes totales y fecales. Los coliformes comúnmente se mide de la calidad del agua, los organismos coliformes totales son las llamadas bacterias gram-negativas que son las que fermentan a una temperatura de 35 o 37 °C, con producción de ácido, gas y aldehído dentro de 24 a 48 horas.

Las bacterias coliformes fecales (coliformes termorresistentes) son un subgrupo de las bacterias coliformes totales y tienen las mismas propiedades excepto que toleran y crecen a una mayor temperatura, y producen indol a partir del triptófano, los organismos que poseen estas propiedades son considerados como *Escherichia coli*.

Los coliformes totales incluyen diferentes tipos de géneros o subgrupos de los cuales son de origen fecal, ya que estas pueden multiplicarse en presencia de material orgánico. Algunas especies de coliformes son asociadas frecuentemente a desechos orgánicos e inorgánicos o pueden ser habitantes comunes del suelo o de las aguas superficiales (Guías para la calidad del agua potable, Volumen 3, 2013).

Marco legal:

Decreto Supremo: N° 004-2017-MINAM

En el artículo 1 indica que se aprueba los estándares de calidad permitidos para aguas con la normativa respectiva sujeta a los estándares permisibles.

3.3 Categoría 3: Riego de vegetales y bebida de animales

Riego de vegetales son como aquellas aguas utilizadas para el riego de los cultivos vegetales, las cuales, dependiendo de factores como el tipo de riego empleado en los cultivos, la clase de consumo utilizado (crudo o cocido) y los posibles procesos industriales o de transformación a los que puedan ser sometidos los productos agrícolas.

Agua para riego no restringido: Se entiende como aquellas aguas cuya calidad permite su utilización en el riego de: cultivos alimenticios que se consumen crudos (como son por ejemplo las hortalizas, plantas frutales de tallo bajo o similares); cultivos de árboles o arbustos frutales con sistema de riego por aspersión, donde el fruto o partes comestibles entran en contacto directo con el agua de riego, aun cuando estos sean de tallo alto; parques públicos, campos deportivos, áreas verdes y plantas ornamentales; o cualquier otro tipo de cultivo.

Agua para riego restringido: Se entiende como aquellas aguas cuya calidad permite su utilización en el riego de: cultivos alimenticios que se consumen cocidos (como las habas); cultivos de tallo alto en los que el agua de riego no entra en contacto con el fruto (como son los árboles frutales); cultivos a ser procesados, envasados y/o industrializados (como los son el trigo, arroz, avena y quinua); cultivos industriales no comestibles (son el algodón), y; cultivos forestales, forrajes, pastos o similares (maíz forrajero y alfalfa).

Bebida de animales: Son aquellas aguas utilizadas para bebida de animales mayores como ganado vacuno, equino o camélido, y para animales menores como ganado porcino, ovino, caprino, cuyes, aves y conejos.

De acuerdo a lo antes mencionado la presente investigación plantea el siguiente problema general ¿Cuál sería el sistema de filtración rápida con biocarbón de cascara de piña y residuos de linaza en el tratamiento de las aguas residuales domesticas en Coronel Portillo – Huacho-2019? , y los problemas específicos son ¿Cuál sería la característica del biofiltro y poza de floculación del sistema de filtración rápida para el tratamiento de las aguas residuales domesticas en Coronel Portillo-Huacho 2019?, ¿Cuál sería la característica del residuo de la

linaza en el sistema de filtración rápida para el tratamiento de las aguas residuales domesticas en Coronel Portillo-Huacho 2019? y ¿Cuál será la dosis óptima de la linaza como floculante en el tratamiento de las aguas residuales domesticas en Coronel Portillo-Huacho 2019?

La justificación de la investigación a nivel teórico es que, de acuerdo a los estudios científicos realizados de manera teórica el proyecto de investigación va a comprobar la eficiencia en el tratamiento de las aguas residuales utilizando un producto bio residual el cual tendrá como eficiencia los cambios y transformaciones que sufrirá el agua para que cause un impacto positivo en los ecosistemas acuáticos y terrestres, a nivel metodológico se utiliza un método que mejorara de manera eficiente el agua residual, a bajos costos debido a que el elemento reductor la podemos encontrar en los diferentes mercados, siendo una metodología aplicable en cualquier zona, a nivel social favorecerá al caserío Coronel Portillo debido a que ya se generaran plagas de insectos que se dan en las diferentes estaciones del año debido a la mala gestión del agua residual existente, a nivel económico propone un tratamiento aplicativo y de manejo de residuos orgánicos para el tratamiento de las aguas residuales por tal motivo económicamente no afectaría a la economía del caserío Coronel Portillo-Huacho 2019 y a nivel ambiental reducirá los impactos que esta generan dando una mejor calidad de vida a los ecosistemas acuáticos y por ende a los habitantes de la zona, dando así una conservación y uso del agua sostenible.

En base a ello se tiene como objetivo general, evaluar el sistema de filtración rápida con biocarbón de cascara de piña y residuos de linaza en el tratamiento de las aguas residuales domesticas en Coronel Portillo – Huacho-2019 y como objetivos específicos Identificar la característica del biofiltro y poza de floculación del sistema de filtración rápida para el tratamiento de las aguas residuales domesticas en Coronel Portillo-Huacho 2019, Identificar la característica del residuo de la linaza en el sistema de filtración rápida para el tratamiento de las aguas residuales domesticas en Coronel Portillo-Huacho 2019 y Determinar la dosis óptima de la linaza como floculante en el tratamiento de las aguas residuales domesticas en Coronel Portillo-Huacho 2019.

La hipótesis general es el sistema de filtración rápida con biocarbón de cascara de piña y residuos de linaza será eficiente en el tratamiento de las aguas residuales domesticas en Coronel Portillo — Huacho-2019, y las hipótesis especificas son Las características del biofiltro y poza de floculación del sistema de filtración rápida serán eficientes para el tratamiento de las aguas residuales domesticas en Coronel Portillo-Huacho 2019, La característica del residuo de la linaza influirá en el sistema de filtración rápida para el

tratamiento de las aguas residuales domesticas en Coronel Portillo-Huacho 2019 y La dosis óptima de la linaza como floculante será eficiente en el tratamiento de las aguas residuales domesticas en Coronel Portillo-Huacho 2019.

En base a ello se tiene como objetivo general, Evaluar el sistema de filtración rápida con biocarbón de cascara de piña y residuos de linaza en el tratamiento de las aguas residuales domesticas en Coronel Portillo – Huacho-2019 y como objetivos específicos Identificar la característica del biofiltro y poza de floculación del sistema de filtración rápida para el tratamiento de las aguas residuales domesticas en Coronel Portillo-Huacho 2019, Identificar la característica del residuo de la linaza en el sistema de filtración rápida para el tratamiento de las aguas residuales domesticas en Coronel Portillo-Huacho 2019 y Determinar la dosis de la linaza como floculante en el tratamiento de las aguas residuales domesticas en Coronel Portillo-Huacho 2019.

II. MÉTODO

2.1. Tipo y Diseño de investigación

El trabajo de investigación es de tipo explicativo porque Ander y Egg, (1987). Mencionaron que la investigación propone también observar nuevos parámetros, o perfeccionarlas para mejorar su efectividad o adaptarlas a nuevos propósitos.

Vargas, Zoila, 2009, mencionó que la investigación es una metodología explicativa, donde se viven experiencias con Resultados de investigación con propósitos de mejorar una situación específica o particular, para comprobar un método o modelo mediante la aplicación innovadora y creativa de una propuesta de intervención.

El diseño es experimental, porque se manipuló la variable independiente, en este caso son los residuos de cascara de piña como biocarbón y residuos de linaza con el propósito de conocer su influencia sobre la variable dependiente que son las aguas residuales domésticas.

Para Hernández, et al. (2010), mencionaron que el diseño experimental infiere a la manipulación de una o más variables independientes y luego se analizan las consecuencias de la manipulación que tiene una o más variables dependientes.

2.2. Variables y operacionalización de la variable.

2.2.1 Variables

- Variable independiente: Sistema de Filtración Rápida y uso del biocarbón de la cascara de piña y residuos de la linaza.
- Variable dependiente: Tratamiento de las aguas residuales domésticas.

2.2.2 Operacionalización de la variable:

Tabla 1 Matriz de Operacionalización

El sistema de filtracion rapida sirve para eliminar las particulas solidas que quedan en el agua contaminada por la mala decantacion o por la suspension en el fluido (Jaen,M. 2014). La biosorción de los iones metálicos sobre la superficie del biocarbono activado es probablemente a trayés de un probableme	VARIABLES	DEFINICION CONCEPTUAL	DEFINICION OPERACIONAL	DIMENSIONES	INDICADOR	U. DE MEDIDA
mecanismo de intercambio iónico. El biocarbono se puede regenerar con mínima pérdida. Además, puede reutilizarse sin ninguna activación química.(Singanan, et y al. 2015) Traves del equipo socklet y asi se usará como floculante, para el cual se utilizará el equipo de jarras de acuerdo a los tratamientos propuestos. Traves del equipo socklet y asi se usará como floculante, para el cual se utilizará el equipo de jarras de acuerdo a los tratamientos propuestos. Caracteristicas del residuo de la linaza Rendimiento 9 dosis de la linaza como floculante 10 g	FILTRACION RAPIDA Y USO DEL BICARBON DE	sirve para eliminar las particulas solidas que quedan en el agua contaminada por la mala decantacion o por la suspension en el fluido (Jaen,M. 2014). La biosorción de los iones metálicos sobre la superficie del biocarbono activado es probablemente a través de un mecanismo de intercambio iónico. El biocarbono se puede regenerar con mínima pérdida. Además, puede reutilizarse sin ninguna activación	filtración rapida se usará el biocarbón de los residuos de piña, para la caracterizacion del biocarbón se realizará por el proceso de pirólisis; y para la carcterizacion de la linaza se obtendra el polimero a traves del equipo socklet y asi se usará como floculante, para el cual se utilizará el equipo de jarras de acuerdo a los tratamientos propuestos.	biofiltro de la cascara de piña Caracteristicas del residuo de la linaza dosis de la linaza	Tamaño del carbon Peso del carbón Volumen del biocarbon volumen del agua Tiempo de floculación Volumen de la poza Granulometria Peso Rendimiento 2.5 5	cm Kg cm3 cm3 Hrs m3 mm Kg % g

				рН	acido/base		
		F	F		Temperatura	°C	
					Cond. Electrica	us/cm	
					Potencial Redox(EH)	mv	
					Parametros quimicos	Solidos Totales	mg/l
	El proceso de tratamiento de las		del agua del biofiltro	Turbidez	NTU		
	aguas residuales domesticas	I as manématura féria		Oxi. Disuelto	mg/l		
	tienen fases a utilizar como el	Los parámetros físico		DQO	mgO/l		
	tratamiento primario, tratamiento	químicos asi como lo microbiológico del agua se		DBO5	mgO/l		
TRATAMIENTO DE LAS	secundario y terciario. En este	analizó en el laboratorio de biotecnologia de la UCV Lima Norte, con ello se deteminó la eficiencia del biofiltro asi como del flocuante de acuardo al tratamiento.			Sólidos Disueltos	mg/l	
AGUAS RESIDUALES	_			Sólidos Sedimentales	mg/l		
DOMESTICAS				рН	acido/base		
				Temperatura	°C		
			Parametros fisicos y quimicos del agua despues del tratamiento	Cond. Electrica	us/cm		
				Potencial Redox(EH)	mv		
	•			solidos Totales	mg/l		
	J.(2000)			Turbidez	NTU		
				Oxi. Disuelto	mg/l		
			u atamento	tratamiento	DQO	mgO/l	
						DBO5	mgO/l
					Sólidos Disueltos	mg/l	
				Sólidos Sedimentales	mg/l		
			Parametros	coliformes totales	ufc		
			microbiologicos	coliformes fecales	ufc		

2.3 Población y Muestra:

2.3.1 Población

La población es la cantidad de aguas residuales domesticas que produce la población del caserío Coronel Portillo en Huacho, de acuerdo al censo del caserío integran 250 personas aproximadamente, producen de agua residual doméstica de 12m³ por día que se deposita en el río.

CODIGO		COORDENADAS UTM
СР-Н	X: 11°04′27′′S	Y:77°35′57′′W

2.3.2 Muestra:

En el proyecto de investigación se tomaron 40 litros de agua residual doméstica, 10 litros fueron utilizados para la muestra de laboratorio.

2.3.3 Muestreo:

La muestra se tomó de acuerdo al protocolo de aguas residuales y se realizó la toma de muestra con un balde de 5 litros de capacidad, de la misma caída de agua, este fue cada 10 min hasta completar 40 litros, una vez homogenizado se obtuvo los 30 litros que se necesitaba.

2.4 Técnicas e Instrumentos de recolección de datos:

2.4.1 Técnica de recolección de datos:

La técnica utilizada fue la observación. Según Baptista y Hernández (2014) mencionan que esta técnica es que el investigador está pendiente de lo que sucede en la investigación en la cual establece su propio instrumentos y herramientas

2.4.2 Instrumentos de recolección de datos.

Estos fueron construidos de acuerdo al modelo estadístico y a la matriz de operacionalización de la variable, y se encuentran en el (anexo 74).

2.4.3 Validez y confiabilidad

La validez de los instrumentos de evaluación o recopilación de datos fue firmada por 4 expertos los que evaluaron de confiabilidad (Tabla 2).

Tabla 2 Validación del instrumento por los expertos.

EXPERTOS	NOMBRES Y APELLIDOS	CODIGO C.I.P	ESPECIALIDAD	
EXPERTO N°1	Alfaro Rodríguez Carlos Humberto	37913	Químico	
EXPERTO N°2	Baca Rodríguez Segundo Marter	0168585	Biólogo	
EXPERTO N°3	Laureano Valentín Gaudencio	121554	Geólogo	
EXPERTO N°4	Ordoñez Gálvez Juan Julio	89972	Mecánica de fluidos	

2.4.4 Metodología del proyecto:

2.4.4.1 Ubicación del proyecto.

El presente proyecto tiene como lugar realizarse en el km 153,5 de la Panamericana Norte en el puente Huaura-Huacho.

2.4.4.2 Tiempo de ejecución del trabajo:

El trabajo de investigación se realizó durante el periodo 2019 – II, en la cual duro el cabo de dos meses, se comenzó en Setiembre hasta noviembre del 2019, donde se realice la recolección de muestras y análisis de datos.

2.4.4.3. Tratamientos:

Se realizó en dos fases:

1° Fase uso del filtro de biocarbón de cascara de piña.

2° Fase de usó el floculante como tratamientos de los residuos de linaza:

T1: DOSIS DE 2.5g de residuos de linaza.

T2: DOSIS DE 5g residuos de linaza.

T3: DOSIS DE 10g residuos de linaza.

2.4.4.4. Materiales y Equipos

Los equipos y materiales utilizados en el presente trabajo durante el proceso de ejecución se muestran en la Tabla 3.

Tabla 3 Materiales y Equipos

N°	MATERIALES	EQUIPOS
01	BOTAS DE JEBE	GPS
02	BIDONES	BRUJULA
03	GUANTES	PEACHIMETRO
04	LENTES	TURBIDIMTERO
05	FRASCOS DE POLIETILENO	FRASCOS WINKLER
06	BALDES	CONDUCTIMETRO

2.5 Procedimiento:

1.- Recolección de agua:

La toma de agua se realizó mediante baldes de 5 litros, para poder alcanzar el agua residual domestica que emana de la tubería ubicada exactamente debajo del Puente de Huaura — Huacho, se tomó la muestra de agua recogiéndolo directamente del tubo de agua residual doméstica, se recolecto para las pruebas iniciales y también para las pruebas finales, en las pruebas finales se recolecto el agua cada 10 minutos, en el balde de 5 litros obteniendo 40 litros de agua que se colocaron en bidones de 20 litros cada uno.

Después del proceso de recolección, se llevó previamente a ser tratadas en el tratamiento primario y secundario.

a)

c)

d)

e)

Figura 1:

- a) Ubicado en el Puente Huaura en el kilómetro 153.2 de la Panamericana norte.
- b) Recolección de agua debajo del Puente Huaura.
- c) Recolección de agua para muestras iniciales.
- d) Recolección de agua para muestras finales.
- e) Muestras iniciales a evaluar.

2.- Construcción del filtro:

El filtro fue construido para introducir el biocarbón producido de la cascara de piña, cuyos componentes son 3 baldes, que son los recipientes donde se almaceno el agua residual doméstica, conectado por un tubo de PVC al filtro y dentro están 3 láminas de aluminio que sirve de separación para los filtros, ese está luego conectado a las pozas que recepción el agua filtrada y esta se llevó al laboratorio para poder tratar con el floculante en el equipo de jarras en el laboratorio (como se muestra en la figura a y b)

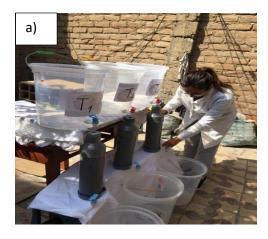
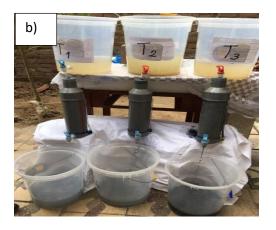



Figura 2: a) Construcción de biofiltro.

b) Recepción del agua contaminada a los filtros con biocarbón de cascara de piña.

3.- Obtención del biocarbón de cascara de piña:

La recolección de las cáscaras de piña se realizó de los residuos de las juguerías del mercado los chasquis de San Martin de Porras, y fue en cantidad de 20 kilos y se secó al medio ambiente. Este producto se llevó al laboratorio a la estufa a 70°C por 48 hrs para el respectivo secado, lo siguiente fue llevarlo a la mufla a 600° por 10 minutos para convertirlo en carbón, luego llevarlo al tamiz sacando 3 kilos, se procedió a activarlo con ácido fosfórico 1 ml por 1gr activando así el carbón de cascara de piña.

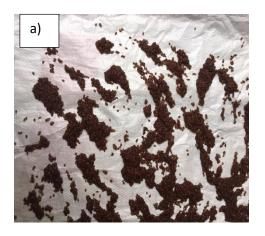
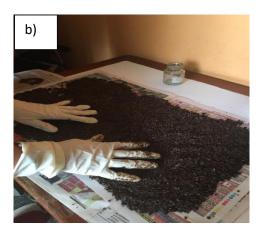


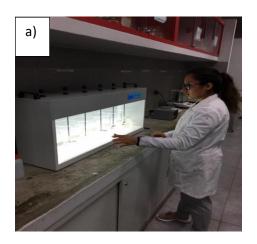
Figura 3:

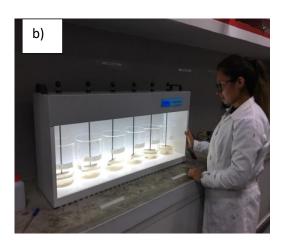
- a) Recolección de cascara de piña
- b) Cascara de piña seca al ambiente.
- c) Cascara de piña llevada a la mufla para convertirse en carbón y luego ser activada con ácido sulfúrico.
- d) Secado del carbón activado de cascara de piña

4.- Obtención del floculante:

La recolección de los residuos de linaza se realizó de los vendedores de emoliente se recolecto 9 kg, el proceso fue el secado al ambiente, se molió hasta dejar una textura arenosa, lo siguiente fue desengrasar la linaza, se utilizó para ello el hexano, luego volver a colocar al molino para darle una textura más fina para llevarlo al equipo de Soklet para extraer la grasa y pigmentos que había quedado, lavar con alcohol, secarlo y al final tamizar.






Figura 4:

- a) Recolección de linaza de las emolienteras para ser secado al ambiente
- b) Linaza molida con textura grasosa, se le agrego hexano para quitarle el exceso de grasa.
- c) Después del secado con el hexano se vuelve a moler para su previo tratamiento.
- d) Pesado de la linaza convertida en harina por socket.

5.- Floculación:

Para realizar el proceso de floculación se usó el equipo de jarras, en la cual se tendrá el volumen de 1 litro de agua donde a cada tratamiento se le agrego las dosis de linaza observando cuan más efectivo eran las dosis agregadas de 2.5g, 5g y 10g con una temperatura de 70°C con 70 de revolución en 30 minutos dejando solo al floculante que actuó sobre el agua.

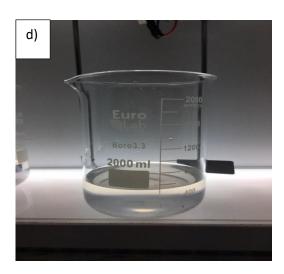


Figura 5:

- a) Se hizo prueba de jarras con el floculante de la linaza.
- b) Se colocó a 70 revoluciones por 30 minutos.
- c) Se analizó los parámetros físicos químicos.
- d) Resultado final de la prueba de jarras se logró minimizar el contaminante del agua residual doméstica.

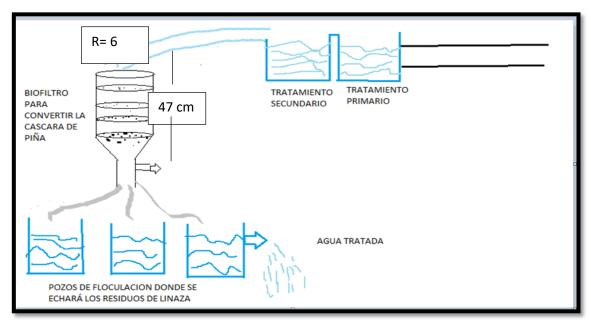


Figura 10. Esquema de tratamiento de aguas servidas.

Flujo de agua:

$$Q = \frac{V}{T} \qquad Q = \frac{500 \, ml}{1710 \, seg}$$

$$Q = 0.29 \, ml/seg$$

2.5.4.6. Análisis químicos:

- 1. pH
- 2. Temperatura
- 3. Turbidez
- 4. Oxígeno disuelto
- 5. DQO
- 6. DBO5
- 7. Solidos sediméntales
- 8. Solidos disueltos
- 9. Solidos totales
- 10. Coliformes Totales
- 11. Coliformes fecales
- 12. Conductividad eléctrica
- 13. Potencial Redox

2.6 Métodos de análisis de datos:

El experimento se planteó bajo el diseño complementario al azar lo que contiene 3 tratamientos con 3 repeticiones y un litro de agua residual como unidad experimental, El modelo aditivo lineal es:

$$Y_{ij} = u + T_i + E_{ij}$$
; donde $i = 1, 2, 3 \text{ y } j = 1, 2.3$

Yij= Efecto del i-ésimo tratamiento de la J-esima repetición

U= media poblacional

T_i = Efecto del i-esimo tratamiento

 E_{ij} = error experimental.

Distribución de las unidades experimentales:

Para desarrollar la segunda fase la distribución de las unidades experimentales donde se aplicó el floculante de linaza se muestra en el Figura siendo 9 las unidades experimentales.

T3 1	T3 2	T2 3
T1 4	T2 5	T1 6
T3 7	T1 8	T2 9

2.7 Aspectos Éticos:

El investigador de la presente investigación se comprometió a mantener un comportamiento profesional y ético con la finalidad de obtener y presentar la veracidad de los resultados. Asimismo, la investigación respeto el reglamento de investigación, código de ética y la resolución rectoral N° 0089-2019 de la Universidad Cesar Vallejo. También la presente tesis fue sometida al software Turnitin para verificar su originalidad.

III. RESULTADOS

3.1 Características del biofiltro de la cascara de piña.

Tabla 4.

Tabla 4 Características del biofiltro de piña y linaza

MUESTRA	L BIOFILTRO Y I	BIOFILTRO Y POZA DE FLOCULACION						
	VOLUMEN DEL TUBO	TAMAÑO DEL CARBON	PESO DEL CARBON	VOLUMEN DEL BIOCARBON	VOLUMEN DE LA POZA	VOLUMEN DEL AGUA		
	cm3	mm	g	cm3	cm3	cm3		
1	6	2	185	5.6	7.2	10		
2	6	2	185	5.6	7.2	10		
3	6	2	185	5.6	7.2	10		

3.2 Parámetros físico-químicos del agua Iniciales

Los resultados obtenidos para el análisis fisicoquímico del agua antes de empezar con los tratamientos se muestran en la Tabla 5, son de los parámetros iniciales.

Tabla 5 Parámetros fisicoquímicos iniciales del agua

Indicadores	UNIDADES	VALORES
ph	Acido base	7.87
Redox	mv	49.6
Temperatura	°C	10.5
Conductividad electrica	us/cm	10.1
Oxígeno disuelto	mgo/l	2.14
turbidez	NTU	71
Sólidos totales	mg/l	230
Sólidos sedimentales totales	mg/l	179
Sólidos sedimentales disueltos	mg/l	217
DBO5	mgO ₂ /l	671
DQO	mgO ₂ /l	854
Aceites y Grasas	mg/l	75

En la Tabla 5 se observa que los parámetros evaluados corresponden a un agua contaminada y propio de aguas de efluentes domésticos, todos sobrepasan los estándares calidad ambiental ECA.

3.3 Resultados del biocarbón de cascara de piña.

Para el tratamiento del agua se realizó dos procesos, el primero a través del biofiltro y el segundo por el floculante de residuos de linaza; los resultados obtenidos del análisis químico de las aguas después de pasar por el biofiltro se muestran en la Tabla 6.

Tabla 6 Resultados del primer proceso del tratamiento del agua a través del biofiltro de cascara de piña.

INDICADORES	TRATAMIENTO 1 (200g)		TRATAMIENTO 2 (200g)			TRATAMIENTO 3(200g)			
	R1	R2	R3	R1	R2	R3	R1	R2	R3
pН	6.54	6.48	6.57	6.55	6.58	6.61	6.12	6.15	6.12
Redox	45.7	43.5	43.1	45.1	40.7	43.5	40.1	40.5	40.8
Temperatura	23.4	23.4	23.4	23.1	23.1	23.1	23.5	23.5	23.5
Conductividad									
eléctrica	2257	2248	2249	2262	2258	2258	2241	2246	2247
Oxígeno disuelto	2.96	3.18	3.15	3.18	3.19	3.16	3.15	3.15	3.19
Turbidez	4.73	4.74	4.81	6.8	6.78	6.71	2.27	2.28	3.19
Sólidos totales	64.7	64.5	63.1	66.4	66.3	65.1	74.2	75.1	74.8
Sólidos suspendidos									
totales	38.4	38.9	38.4	42.3	40.1	42.7	45.3	46.6	45.9
Solidos suspendidos									
disueltos	15.3	15.1	15.7	17.3	17.7	16.04	20.3	20.8	21.6
DBO5	283	281	286	226	231	226	195	195	193
DQO	458	453	453	407	402	405	381	386	382
Aceites y grasas	27.3	27.1	27.7	18.1	18.4	17.1	14.6	14.6	14.9

De la Tabla 6 podemos observar que existió una reducción considerable de los parámetros evaluados con respecto a los valores de los parámetros iniciales, esto con respecto al biocarbón que obtenido a partir de la cascara de piña, que es un desecho y como tal genera contaminación ambiental.

Tabla 7 Resultados promedio del primer proceso del tratamiento del agua a través del biofiltro de cascara de piña en comparación a la inicial.

INDICADORES					INICIALES
INDICADORES	T1	T2	T3	PROM	INICIALES
ph	6.53a	6.58a	6.13b	6.41	7.87
Redox	44.10a	43.10a	40.47a	42.56	49.6
Tempratura	23.40	23.10	23.50	23.33	10.5
Conductividad electrica	2251.33a	2259.33ab	2244.67b	2251.78	1010
Oxígeno disuelto	3.10a	3.18a	3.16a	3.15	2.14
Turbidez	4.76a	6.76b	2.58c	4.70	71
Sólidos totales	64.10 ^a	65.93b	74.70c	68.24	230
Sólidos suspendidos totales	38.57 ^a	41.70b	45.93c	42.07	179
Sólidos suspendidos	15.37a				217
disueltos	13.37a	17.01b	20.90c	17.76	217
DBO5	283.33 ^a	227.67b	194.33c	235.11	671
DQO	454.67a	404.67b	383.00c	414.11	864
Aceites y grasas	27.37	17.87	14.70	19.98	75

De la Tabla 7 se observa que el promedio general en una reducción considerable de los contaminantes en función al parámetro inicial, esto se observa en los gráficos. En el pH se observa que hubo diferencia estadística y que todos los filtros actúan de igual manera.

Figura 1: Efecto del Biocarbón sobre el pH.

Al análisis de varianza (Tabla N°1 en ANEXO) se observó que hay diferencia estadística, lo que significa que los filtros no fueron iguales y al realizar la prueba de contraste de Tukey nos

muestra que el filtro 2 se acerca más un pH neutro (letras desiguales) y esto se corrobora con el Figura 1 y al comparar con el inicial se observa que hay Efecto en el pH.

En el Redox se observa que no hubo diferencia estadística y que todos los tratamientos actúan de igual manera.

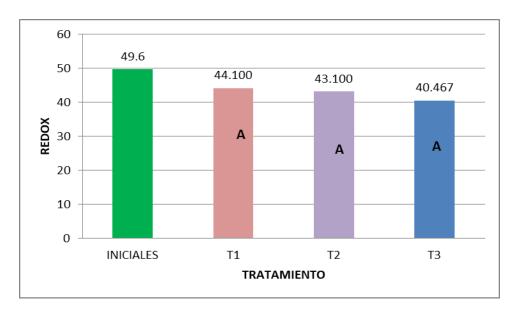


Figura 2: Efecto del biofiltro sobre el Redox.

Al análisis de varianza de la Figura 2 se observó que no hay diferencia significativa entre los filtros para el tratamiento REDOX, sin embargo, existe diferencia numérica que permite que el filtro 3 tenga mejor reducción y al comparar con el inicial se observa que efectivamente existe una reducción.

Para la conductividad eléctrica el análisis de varianza se observa que hay diferencia estadística y al realizar la prueba de contraste efctivamente hay diferencia estadística (letras desiguales).

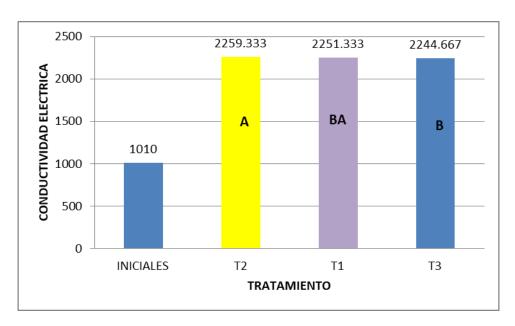


Figura 3: Efecto del Biocarbón sobre la conductividad eléctrica.

Al análisis de varianza de la figura 3 se observó que efectivamente existe diferencia estadística que el filtro 2 y 1 presentaron mejores resultados que el filtro 3. Al comparar con la inicial muestra un aumento en la conductividad haciendo que exista mayor actividad de las sales.

Para el Oxígeno disuelto no existe diferencia estadística (cuadro del anexo), por cuanto todos los filtros son iguales (letras iguales).

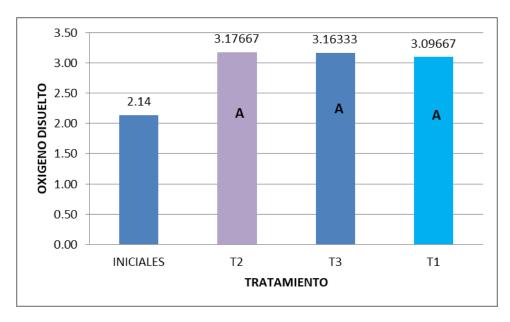


Figura 4: Efectos del tratamiento del biocarbón sobre el oxígeno disuelto.

Al análisis de varianza de la Figura 4 se observó que no hay diferencia significativa entre los tratamientos, sin embargo, existe diferencia numérica que permite que el filtro 2 tenga el mejor oxígeno disuelto y al comparar con el inicial se observa que efectivamente existe un aumento.

Para la turbidez el análisis de varianza se observa que hay diferencia estadística y al realizar la prueba de contraste efectivamente hay diferencia estadística (letras desiguales).

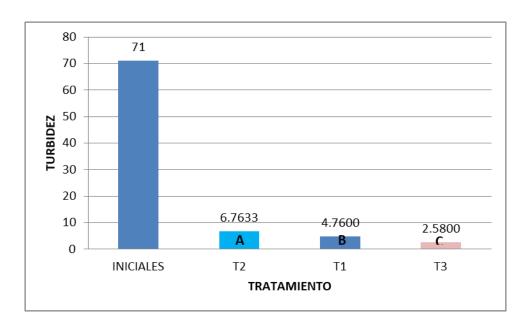


Figura 5: Efectos del tratamiento del biocarbón sobre la turbidez.

Al análisis de varianza de la Figura 5 se observó que efectivamente existe diferencia estadística que el filtro 3 posee el mejor resultado que el filtro 1 y 2. Al comparar con la inicial muestra que existe una reducción a la turbidez. Para los Sólidos Totales análisis de varianza se observa que hay diferencia estadística y al realizar la prueba de contraste (cuadro del anexo) efetivamente hay diferencia estadística (letras desiguales).

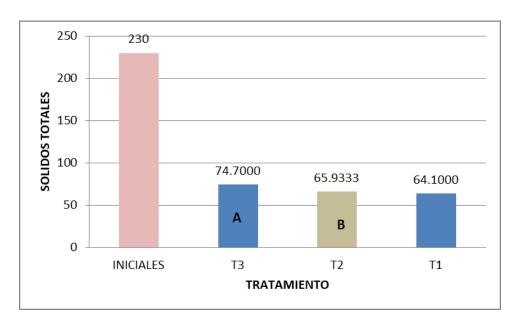


Figura 6: Efectos del tratamiento del biocarbón sobre los sólidos totales.

Al análisis de varianza de la Figura 6 se observó que efectivamente existe diferencia estadística que el filtro 1 posee el mejor resultado que el filtro 2 y 3. Al comparar con la inicial muestra que existe una reducción de los sólidos totales.

Para los Solidos Sediméntales Totales al análisis de varianza (cuadro 7 del anexo) se observa que hay diferencia estadística y al realizar la prueba de contraste (cuadro del anexo) efctivamente hay diferencia estadística (letras desiguales).

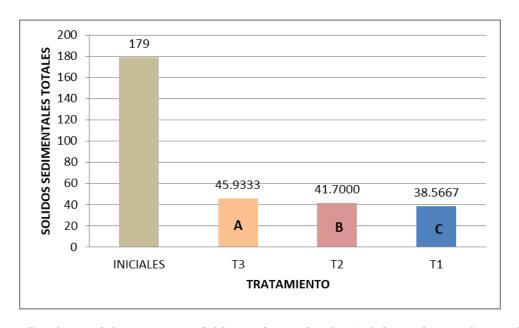


Figura 7: Efectos del tratamiento del biocarbón sobre los Solidos sediméntales totales.

Al análisis de varianza de la Figura 7 se observó que efectivamente existe diferencia estadística que el tratamiento 1 posee el mejor resultado que el filtro 2 y 3. Al comparar con la inicial muestra que existe una reducción de los Sólidos Sedimentables totales.

Para los Solidos Totales Disueltos al análisis de varianza (cuadro 8 del anexo) se observa que hay diferencia estadística y al realizar la prueba de contraste (cuadro del anexo) efictivamente hay diferencia estadística (letras designales).

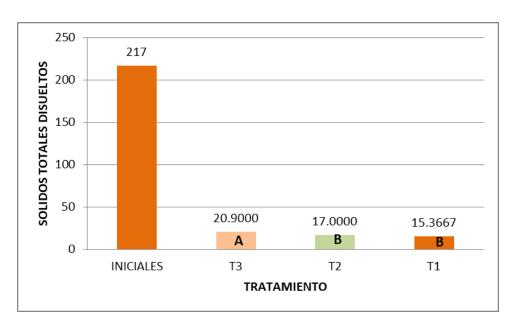


Figura 8: Efectos del tratamiento del biocarbón sobre los Solidos Totales Disueltos.

Al análisis de varianza de la Figura 8 se observó que efectivamente existe diferencia estadística que el tratamiento 1 posee el mejor resultado que el tratamiento 2 y 3. Al comparar con la inicial muestra que existe una reducción de los Solidos Totales Disueltos.

Para la Demanda Bioquímica de Oxígeno al análisis de varianza (cuadro 9 del anexo) se observa que hay diferencia estadística y al realizar la prueba de contraste de Tukey (cuadro del anexo) efctivamente hay diferencia estadística (letras desiguales).

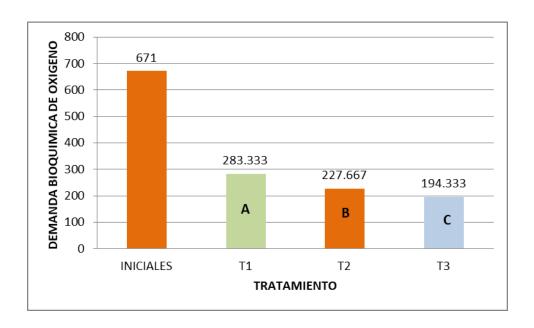


Figura 9: Efectos del tratamiento del biocarbón sobre la Demanda Bioquímica de Oxígeno.

Al análisis de varianza de la Figura 9 se observó que efectivamente existe diferencia estadística que el filtro 3 posee el mejor resultado que el filtro 2 y 1. Al comparar con la inicial muestra que existe una reducción de la demanda bioquímica de oxígeno.

Para la Demanda Química de Oxigeno al análisis de varianza (cuadro 10 del anexo) se observa que hay diferencia estadística y al realizar la prueba de contraste de Tukey (cuadro del anexo) efctivamente hay diferencia estadística (letras desiguales).

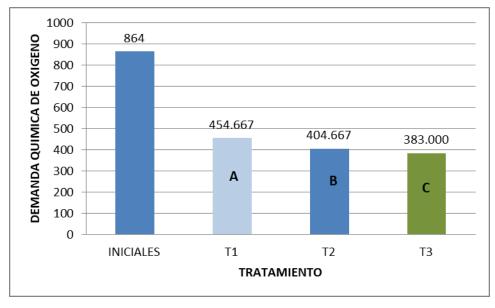


Figura 10: Efectos del tratamiento del biocarbón sobre la Demanda Bioquímica de Oxígeno.

Al análisis de varianza de la Figura 10 se observó que efectivamente existe diferencia estadística que el filtro 3 posee el mejor resultado que el filtro 2 y 1. Al comparar con la inicial muestra que existe una reducción de la demanda química de oxígeno.

Para la Aceites y Grasas al análisis de varianza (cuadro 11 del anexo) se observa que hay diferencia estadística y al realizar la prueba de contraste de Tukey (cuadro del anexo) efectivamente hay diferencia estadística (letras desiguales).

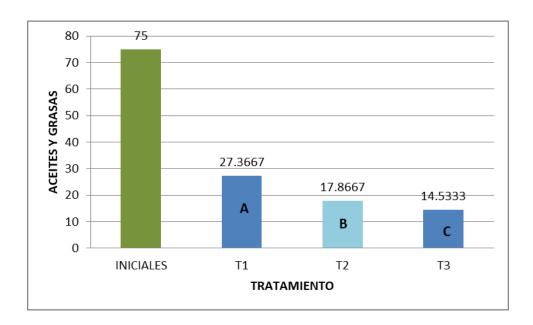


Figura 11: Efectos del tratamiento del biocarbón sobre las grasas y aceites.

Al análisis de varianza de la Figura 11 se observó que efectivamente existe diferencia estadística que el tratamiento 3 posee el mejor resultado que el filtro 2 y 1. Al comparar con la inicial muestra que existe una reducción de grasas y aceites.

3.4 Resultados de la linaza

En el tratamiento del agua, el segundo proceso fue el uso por un floculante de residuos de linaza; los resultados obtenidos del análisis químico de las aguas después de realizar el proceso en el equipo de jarras se muestran en la Tabla 4. Los tratamientos fueron T1: dosis de 2.5 mg de residuos de linaza, T2: dosis de 5 mg residuos de linaza y el T3: dosis de 10 mg residuos de linaza.

Tabla 8. Resultados del segundo proceso del tratamiento del agua a través del floculante de residuos de linaza

Tabla 8: Resultados de reducción de los contaminantes.

INDICADORES	PROMEDIO T1	PROMEDIO T2	PROMEDIO T3	INICIALES
рН	6.53a	6.58 a	6.13a	7.87
REDOX	44.10 a	43.10 a	40.47 b	49.6
TEMPRATURA	23.40	23.10	23.50	10.5
CONDUCTIVIDAD ELECTRICA	2251.33 a	2259.33 b	2244.67 c	1010
OXIGENO DISUELTO	3.10 a	3.18 ba	3.16 b	2.14
TURBIDEZ	4.76 a	6.76 b	2.58 c	71
SOIDOS TOTALES	64.10 a	65.93 b	74.70 c	230
SOLIDOS SEDIMENTALES TOTALES	38.57 a	41.70 b	45.93 c	179
SOLIDOS SEDIMENTALES DISUELTOS	15.37 a	17.01 b	20.90 с	217
DBO	283.33 a	227.67 b	194.33 с	671
DQO	454.67 a	404.67 b	383.00 c	864
ACEITES Y GRASAS	27.37 a	17.87 b	14.70 b	75

De la Tabla 8 se tiene los resultados de reducción de los contaminantes, más aún que permite el uso del agua para regadío y con ello no pueda contaminar el agua del rio.

El promedio de comparación entre el tratamiento se muestra en la Tabla 8, en la que se puede apreciar la cantidad de reducción de los contaminantes en los dos procesos que se siguió en el tratamiento de las aguas.

Tabla 9: Resultados del promedio del primer proceso del tratamiento del agua a través del floculante de residuos de linaza.

	TRAT	ΓΑΜΙΙ	ENTO	TRAT	ГАМІН	ENTO 2	TRAT	AMIEN	то 3
INDICADORES	2.5 gr		5 gr			10 gr			
	R1	R2	R3	R1	R2	R3	R1	R2	R3
pН	6.36	6.87	6.12	6.07	6.1	6.08	6.03	6.07	6.08
REDOX	42.6	42.6	42.8	44.2	44.6	44.6	44.7	44.1	44.1
TEMPRATURA	22.3	22.3	22.3	23.4	23.4	23.4	22.5	22.5	22.5
CONDUCTIVIDA D ELECTRICA	2422	2431	2428	2506	2512	2515	2338	2342	2334
OXIGENO DISUELTO	3.41	3.43	3.48	3.09	3.12	3.08	2.35	2.87	2.92
TURBIDEZ	3.15	1.74	1.58	11.2	11.1 8	11.15	26.5	25.6	25.6
SOIDOS TOTALES	37.5	37.3	38.1	51.3	51.8	52.1	56.7	56.4	57.1
SOLIDOS SEDIMENTALES TOTALES	24.3	25.1	25.6	36.1	33.7	33.5	38.3	39.6	39.1
SOLIDOS SEDIMENTALES DISUELTOS	12.7	12.4	13.6	16.9	15.4	15.3	17.3	17.2	18.9
DBO	127	125	131	173	170	173	196	192	196
DQO	244	241	241	256	261	254	281	284	281
ACEITES Y GRASAS	17.3	17.8	17.2	19.7	19.2	19.5	19.1	19.4	19.2

Para el pH al análisis de varianza se observa que no hay diferencia estadística y al realizar la prueba de contraste de Tukey efctivamenten no hay diferencia estadística (letras iguales).

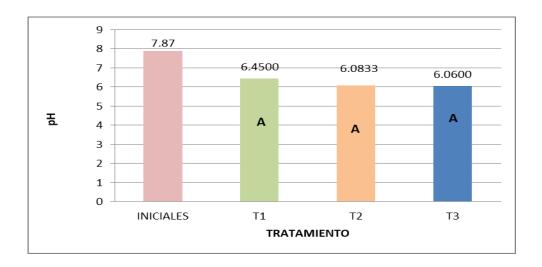


Figura 12: Efectos del tratamiento con linaza para el pH.

Al análisis de varianza de la Figura 12 se observó que efectivamente no existe diferencia estadística entre los tratamientos y que el tratamiento 1 posee el mejor resultado que el tratamiento 2 y 3, que son valores que se asemeja al neutro. Al comparar con la inicial muestra que existe una reducción del pH.

En el Redox se observa que hay diferencia estadística y que todos los tratamientos actúan de diferente manera.

Figura 13: Efecto del tratamiento de la linaza sobre el Redox.

De la Figura 13 se observó que hay diferencia significativa entre los tratamientos, que el tratamiento 2 tenga mejor reducción y al comparar con el inicial se observa que efectivamente existe una reducción.

Para la conductividad eléctrica al análisis de varianza se observa que hay diferencia estadística y al realizar la prueba de contraste efctivamente hay diferencia estadística (letras desiguales).

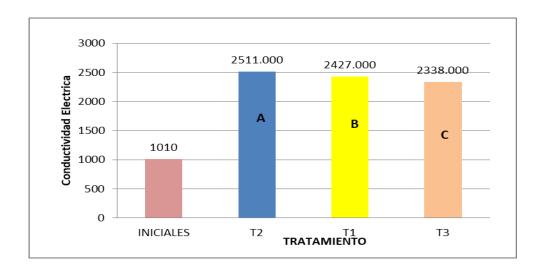


Figura 14: Efectos del tratamiento con linaza para la Conductividad Eléctrica.

De la Figura 14 se observó que hay diferencia significativa entre los tratamientos, que el tratamiento 2 tiene mejor conductividad eléctrica que los tratamientos 1 y 2 y al comparar con el inicial se observa que efectivamente existe una diferencia significativa.

Al análisis de varianza en Oxígeno Disuelto se observa que hay diferencia estadística y que todos los tratamientos actúan de diferente manera.

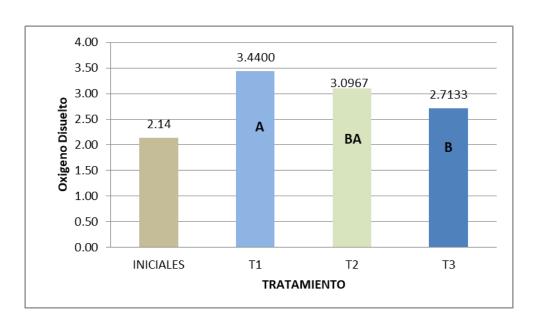


Figura 15: Efecto del tratamiento de la linaza sobre el Oxígeno Disuelto.

De la Figura 15 se observó hay diferencia significativa entre los tratamientos, que el tratamiento 1 tiene mejor eficacia hacia los tratamientos 2 y 3 y al comparar con el inicial se observa que efectivamente existe una diferencia significativa.

Al análisis de varianza en Turbidez se observa que hay diferencia estadística y que todos los tratamientos actúan de diferente manera.

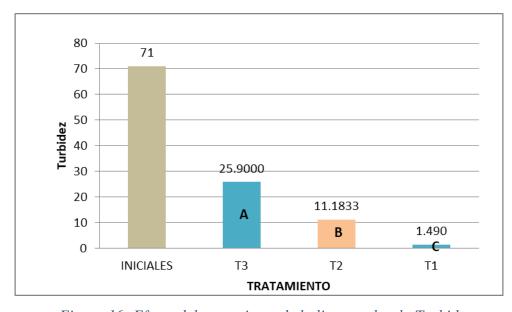


Figura 16: Efecto del tratamiento de la linaza sobre la Turbidez.

De la Figura 16 se observó hay diferencia significativa entre los tratamientos, que el tratamiento 1 tiene mejor eficacia hacia los tratamientos 2 y 3 y al comparar con el inicial se observa que efectivamente existe una diferencia significativa.

Al análisis de varianza en Solidos Totales se observa que hay diferencia estadística y que todos los tratamientos actúan de diferente manera.

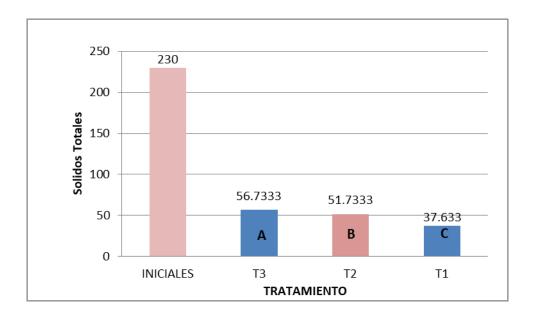


Figura 17: Efecto del tratamiento de la linaza sobre los Sólidos Totales.

De la Figura 17 se observó hay diferencia significativa entre los tratamientos, que el tratamiento 1 tiene mejor eficacia hacia los tratamientos 2 y 3 y al comparar con el inicial se observa que efectivamente existe una diferencia significativa.

Al análisis de varianza en Solidos Sediméntales Totales se observa que hay diferencia estadística y que todos los tratamientos actúan de diferente manera.

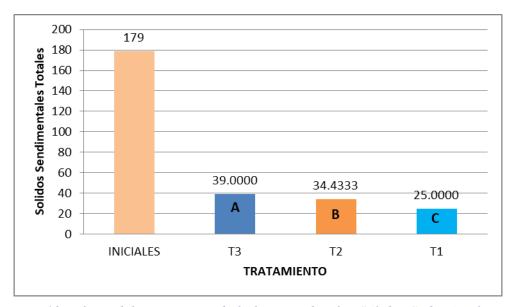


Figura 18: Efecto del tratamiento de la linaza sobre los Sólidos Sediméntales Totales.

De la Figura 18 se observó hay diferencia significativa entre los tratamientos, que el tratamiento 1 tiene mejor eficacia hacia los tratamientos 2 y 3 y al comparar con el inicial se observa que efectivamente existe una diferencia significativa.

Al análisis de varianza en Solidos Sediméntales Disueltos se observa que hay diferencia estadística y que todos los tratamientos actúan de diferente manera.

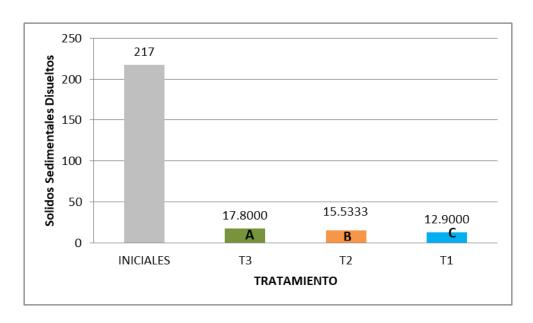


Figura 19: Efecto del tratamiento de la linaza sobre los Sólidos Sediméntales Disueltos.

De la Figura 19 se observó que hay diferencia significativa entre los tratamientos, que el tratamiento 1 tiene mejor eficacia hacia los tratamientos 2 y 3 y al comparar con el inicial se observa que efectivamente existe una diferencia significativa.

Al análisis de varianza en Demanda Bioquímica de Oxigeno se observa que hay diferencia estadística y que todos los tratamientos actúan de diferente manera.

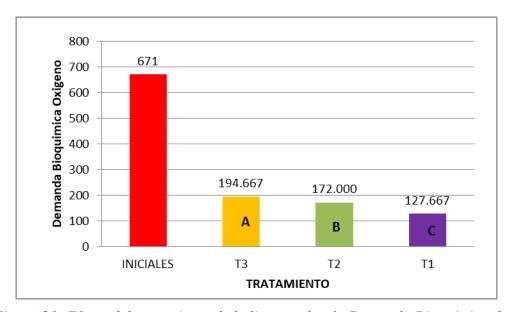


Figura 20: Efecto del tratamiento de la linaza sobre la Demanda Bioquímica de Oxigeno.

De la Figura 20 se observó que hay diferencia significativa entre los tratamientos, que el tratamiento 1 tiene mejor eficacia hacia los tratamientos 2 y 3 y al comparar con el inicial se observa que efectivamente existe una diferencia significativa.

Al análisis de varianza en Demanda Química de Oxigeno se observa que hay diferencia estadística y que todos los tratamientos actúan de diferente manera.

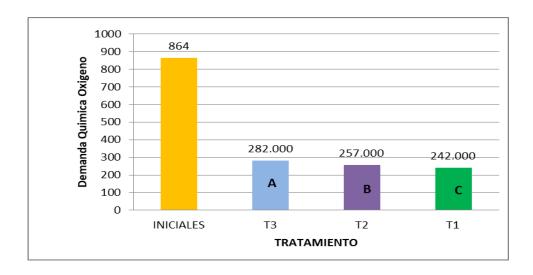


Figura 21: Efecto del tratamiento de la linaza sobre la Demanda Química de Oxigeno.

De la Figura 21 se observó que hay diferencia significativa entre los tratamientos, que el tratamiento 1 tiene mejor eficacia hacia los tratamientos 2 y 3 y al comparar con el inicial se observa que efectivamente existe una diferencia significativa.

Al análisis de varianza en Aceites y Grasas se observa que hay diferencia estadística y que todos los tratamientos actúan de diferente manera.

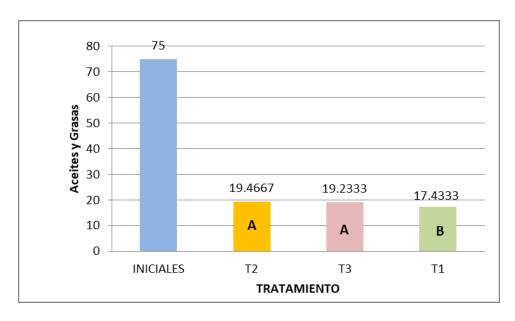


Figura 22: Efecto del tratamiento de la linaza sobre Aceites y Grasas.

De la Figura 22 se observó que hay diferencia significativa entre los tratamientos, que el tratamiento 1 tiene mejor eficacia hacia los tratamientos 2 y 3 y al comparar con el inicial se observa que efectivamente existe una diferencia significativa.

IV. DISCUSIÓN

Los resultados iniciales del agua en estudio para los parámetros como pH 7,87, redox 49.6, temperatura 10,5, CE 10.1, OD 2,14, turbidez 71, solidos totales 230, solidos suspendidos totales 179, solidos suspendidos disueltos 217, DBO 671, DQO 854 y aceites y grasas 75, resultados que permiten observar que se trata de un efluente de residuos domiciliarios comparados con los ECA (2017) y es así como ingresa al río, contaminando en todo su recorrido y esta agua río abajo sirve de consumo de animales, regadío hasta consumo humano, conocido este problema se desarrolló el presente trabajo con el fin de proponer un tratamiento y bajar los niveles de los contaminantes.

Las características del filtro se construyeron a base de PVC, en ella se pondrá el biofiltro de la cascará de piña, calculando el flujo para las dimensiones mencionadas en la metodología, siendo este 0.29 ml/s está construido a escala y que puede ser construido al volumen de agua que se requiere.

El biocarbón de cascara de piña, producto que se recuperó de las juguerías antes de ser arrojadas es en las calles genera un problema ambiental. Al activar como biocarbón se debe usar como filtro para este tipo de aguas o efluentes domésticos, estos realizados en gran escala evitaría muchos problemas en contaminación de aguas, esta afirmación también lo menciona Schegel et al. (2018), que los productos vegetales con buenos filtros como carbón activado. De los resultados se observa la reducción de los parámetros evaluados siendo el mejor tratamiento el 3 cuya dosis es 200g. de biocarbón, comparando con diferentes autores mencionan que este biofiltro es eficaz en el tratamiento de este tipo de aguas (Telenchiano y Rocio,2017) usando estos residuos redujo contaminantes de alrededor del 90%, Ji B. et al (2011) con biofiltros con microorganismos, en otros trabajos se tuvo valores similares al presente trabajo. (Renang, W. A., et al (2018), Quach-Cu, J., et al (2018) y Vera, L., et al 2014).

La linaza, como floculante, producto que fue recuperado de las vendedoras de emolientes al igual que la cáscara de piña su deposición es en las calles generando un problema ambiental,

sin embargo haciendo un tratamiento adecuado obteniendo el polímero se usa como floculante en el tratamiento de agua de uso doméstico, siendo los resultados mostrados en el análisis de varianza (P< 0.05) la significancia para los tres tratamientos pH 6.53a, 6.58a, 6.13a; para Redox 44,10a, 43,10a, 40,47 b; para la Conductividad eléctrica 2251,33a, 2259,33b, 2244,67c; oxígeno disuelto 3,10a, 3,18ba, 3,16b; Turbidez 4,76a, 6,76b, 2,58c; Sólidos totales 64.10a, 65.93b, 74.70c; para los Sólidos sedimentables totales 38,57a, 41,70b, 45,93c; Sólidos sedimentables disueltos 15,37a; 17.01b, 20,90c; DBO 283,33a, 227,67b, 194,33c; DQO 454.67a, 404,67b, 383,00 c; para aceites y grasas 27,37a, 17,87b, 14,70b, comparando con Renang, W. A., et al (2018) al determinar la efectividad de un sistema de biofiltración fabricado para tratar las aguas grises domésticas, fue eliminar la DBO5 y la DQO en 43.93% y 38.19%, Quach-Cu, J., et al (2018), igual resultado obtuvieron Vera, L., et al (2014). Con biorreactores De Membrana Anaerobios Para Tratamiento De Aguas Residuales Domésticas, mostró una eliminación promedio de DQOT de 85% y 93%, DIAZ et al. (2016) con el coagulante de almidón de yuca, con resultados de reducción de turbidez de 74 NTU hasta 8,7 NTU y GUZMAN et al. (2015) con polvo de la semilla de la Cassia fístula como floculante natural. La dosis óptima del coagulante encontrada está entre 10 - 20 mg/L, obteniendo valores finales de turbidez y color de 5 NTU y 22 UC respectivamente.

De la eficiencia de remoción podemos afirmar que desde el efluente y con el primer tratamiento que fue con el biocarbón de la cascara de piña se obtuvo que un promedio de 60% y con el polímero de linaza se elevó hasta un 85% en casi todos los parámetros, cabe mencionar que la dosis optima en el polímero de linaza es el tratamiento 1 con 2.5 g/litro de agua, la razón encontrada fue que a mayor dosis ya no actúa los polímeros haciendo que en vez de flocular contamine el agua, esto en relación a los valores iniciales del agua, encontrándose valores de reducción de hasta 160.75% para el OD y para el Redox de solo 10% tomando los valores más altos. Con ello demostramos tanto el biofiltro de carbón de cáscara de piña y la linaza como floculante se pueden usar para el tratamiento de las aguas de efluentes domésticos comparando con los resultados de Renang, W. A., et al (2018) solo obtuvo eficiencias de 43,93% y 38,19% en DBO₅ y DQO respectivamente. Así mismo Singanan et al., (2015) obtuvo en DQO 84,4%.

V. CONCLUSIONES

Con los resultados obtenidos y bajo las condiciones desarrolladas en el presente trabajo se llegó a las siguientes conclusiones:

Los residuos de cascara de piña como filtro es adecuado para ser usado en un equipo de filtración rápida con características de flujo de 0,29 ml/seg, de PVC que simula a un sistema de tratamiento hasta llegar a la poza de floculación donde se incluye el floculante linaza.

Las características de la linaza como floculante cuyo polímero permite formar con los contaminantes floculos en el agua, cuya granulometría fue de 180 mm, el rendimiento es de 20% del total de linaza.

De acuerdo a los resultados de análisis de los parámetros evaluados tanto de la filtración con el biofiltro de cáscara de piña y con el floculante de linaza, el tratamiento 1 con la dosis de 2.5 g/litro fue la mejor en reducir los contaminantes del agua en estudio. Además, se determinó que cuanto mayor es la dosis menos funciona o porque existe sobrante de polímero.

VI. RECOMENDACIONES

Usar el biocarbón de cascara de piña a razón de 20 g por la capacidad del filtro y que el flujo de agua sea de 0.29 ml/seg y añadir el floculante a razón de 2.5 g/l de agua servida.

Realizar mayores estudios para tratamientos con otros tipos de agua, usando el equipo de filtrado y con nuevas dosis.

Mejorar la técnica del biofiltro y uso del floculante de linaza con mayores y menores dosis que permita llegar un mejor óptimo.

Realizar trabajos con otros biofiltros o carbones activados de diferentes componentes vegetales que posee cada región en el país.

REFERENCIAS

 ACEDO.J., (2006). Instrumentación y control avanzado de procesos. 1ra ed. pp 632. Madrid, 2006.

ISBN: 9788499695044

Disponible:

https://books.google.com.pe/books?id=3NkfbokoggcC

- ANDRES, et y al. Física y Química 4 ESO. 1ra ed. pp 280. Madrid, 2008.

ISBN: 9788497713214

Disponible:

https://www.agapea.com/libros/Fisica-y-Quimica-4-ESO-9788497713214-i.htm

- Alberts, et y al. 2006. Introducción a la biología celular. 2da ed. pp864. Argentina, 2006.

ISBN: 9786078546442

Disponible:

 $\underline{https://books.google.com.pe/books?id=qrrYZJhrRm4C\&printsec=frontcover\#v=onepage\&q \underline{\&f=false}$

 BOLIVAR, L Remoción de sólidos suspendidos y materia orgánica de las aguas residuales domésticas empleando semillas de níspero en la zona urbana de Coayllo – Lima. [en linea] tesis para obtener el título de Ingeniero ambiental en Universidad Cesar Vallejo, Lima – Perú, 2018

Disponible:

https://hdl.handle.net/20.500.12692/28008

- BAIRD, C. Química ambiental. 2da ed. pp848. España, 2013

ISBN: 978-84-291-7915-6

Disponible:

https://dialnet.unirioja.es/servlet/libro?codigo=685348

- Crespo. C., Mecánica de suelos y cimentaciones. 5ed. pp 650. México, 2004.

ISBN: 968 18 64891

Disponible:

https://stehven.files.wordpress.com/2015/06/mecanica-desuelos-y-cimentaciones-crespovillalaz.pdf

CRESPO, E. (2008). Técnicas de muestreo. Modulo: contaminación atmosférica. [en linea]
 Master en Ingeniería y Gestión Medioambiental. Escuela de Negocios. Madrid, 2008.
 Disponible:

https://www.eoi.es/es/savia/publicaciones/20035/tecnicas-de-muestreo-contaminacion-atmosferica

 Castells. X.. Reciclaje de residuos industriales: Residuos sólidos urbanos y fangos de depuradora. 2da ed. España, 2012.

ISBN: 978-84-7978-835-3

Disponible:

http://www.untumbes.edu.pe/vcs/biblioteca/document/varioslibros/1090.%20Reciclaje%20 de%20residuos%20industriales.%20Residuos%20s%C3%B3lidos%20urbanos%20y%20fa ngos%20de%20depuradora.pdf

- FRAUME, J et al. Fundación hogares juveniles campesinos. [en linea] Manual abecedario ecológico. Bogotá – Colombia, 2006.

Disponible:

https://books.google.com.pe/books?id=rrGMx DpbfAC&printsec=frontcover&hl=es&sourc
e=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

- JIMENEZ, B. La contaminación ambiental en México: causas, efectos y tecnología apropiada. [en linea] Revista Limusa. Instituto de Ingeniería de la UNAM. pp 926. México, 2001.
- ISBN: 968-18-6042 X

Disponible:

https://books.google.com.pe/books?id=8MVxlyJGokIC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

- JI, B. et al. (2015). Treatment of domestic wastewater in a new biofilm filter for batch sequencing. Applied microbiology and biotechnology., 99 (13), 5731–5738.

KARA, Z. y MUJTABA, I. Moises. (2018). Simulation of the large-scale reverse osmosis

filtration system for the removal of N-nitrosodimethylamine from wastewater. Chemical

engineering magazine of Asia and the Pacific, 13 (2), 1.

LIAN, y et al, (2014), "Oxidantes de amoniaco en un sistema de infiltración rápida de

múltiples capas a escala piloto para el tratamiento de aguas residuales domésticas".

[SINIA] Sistema Nacional de Gestion Ambiental. [en linea] Manual del Ministerio del

Ambiente – MINAM. Pp 92. Lima, 2015.

Disponible:

https://sinia.minam.gob.pe/documentos/guia-sistema-nacional-gestion-ambiental

MATHIAS Schlegel, M.; IBRAHIM, Bassel; Kipping-Rössel, D.; Ortiz-Laurel, H.

Generation of biocarbon from the solid material in aerobic-microbiological hydrolysis.

Agroproductividad. Nov2018, Vol. 11 Issue 11, p27-33. 7p.

Molano, J. 2016, Tratamiento de efluentes de la industria alimentaria por coagulación-

floculación utilizando almidón de Solanum tuberosum L. 'papa' como alternativa al

manejo convencional.

MAGRO. M., (2015). Physicochemical, chemical proximal and sensory characterization

of pre-cooked flour from germazed seed of linaza (linum usitatissimum) through self-

washed and toasted.

MACHUCA, S et al. Operaciones unitarias y proceso químico. [en linea] Revista IC

editorial. España, 2014.

ISBN: 9788416207039

Disponible:

https://www.agapea.com/libros/Operaciones-unitarias-y-proceso-quimico-QUIE0108-

Ebook--EB9788416207039-i.htm

52

- RAMOS P. Avances en Calidad Ambiental. [en linea] Universidad de Salamanca. España, 2002.

ISBN: 84-7800-811-X

Disponible:

 $\underline{https://books.google.com.pe/books?id=WAgsRdxAGtQC\&printsec=frontcover\#v=onepage\&q\&f=false}$

- SODAMADE, G., LONGE, E., & SANGODOYIN., A. Filtración de arena mediante el tratamiento de aguas residuales sintéticas que tienen propiedades efluentes de fosas sépticas en el laboratorio. (2014)
- SÁNCHEZ, O, et al. Perspectivas sobre conservación de ecosistemas acuáticos en México. [en linea] Instituto Nacional de Ecología. pp293. México, 2007.

ISBN: 9789688178560

Disponible:

http://bibliotecasibe.ecosur.mx/sibe/book/000045540

- SINGANAN, M. Biosorption of Hg (II) ions from synthetic wastewater using a new biocarbon technology. [en linea] Environmental Engineering Research, 2015.

Disponible:

DOI: https://doi.org/10.4491/eer.2014.032

https://books.google.com.pe/books/about/Aplicaciones_en_Venezuela_del_tratamien
t.html?id=G4uQAgAAQBAJ&printsec=frontcover&source=kp_read_button&redir_e
sc=y#v=onepage&q&f=false

- WAUQUIER.J.P. (2004). El refino del petróleo: Petróleo crudo, productos petrolíferos, esquemas de fabricación. [en linea] Ediciones Diaz Santos. Pp 462. España, 2004.
- ISBN: 84-7978-623-X

Disponible:

https://books.google.com.pe/books/about/El_Refino_Del_Petr%C3%B3leo.html?id=dwkgt8u2MmIC&redir_esc=y

ANEXO

Anexo 01: Memoria Fotográficos

Figura 1: Puente Huaura.

Figura 3: Recolección del agua residual doméstica.

Figura 2: Tubería de agua residual domestica localizada debajo del puente Huaura

Figura 4: Muestras iniciales.

Figura 5: Toma de muestras iniciales

Figura 6: Toma de muestras iniciales

Figura 7: Cascara de piña seca en capsulas.

Figura 8: Cascara de piña seca en capsulas llevado a la mufla.

Figura 9: Cascara de piña carbonizada en la mufla.

Figura 10: Tamización del carbón de cascara de piña.

Figura 11: Carbón de cascara de piña agregado con acido fosfórico.

Figura 12: Lavado y secado de carbón de cascara de piña con agua destilada.

Figura 13: Secado de residuos de linaza.

Figura 14: Residuos de linaza seca, añadida con Hexano por 24 horas.

Figura 15: Residuos de linaza convertidos en polvo para ser usadas para las respectivas dosis.

Figura 17: Construcción del biofiltro.

Figura 16: Peso de las dosis de linaza a usar.

Figura 18: Caida por tiempos del agua contaminada con el biocarbón de cascara de piña.

Figura 19: Análisis de los parámetros fisicoquímicos de las aguas residuales.

Figura 20: Análisis con el biocarbón de cascara de piña.

Figura 21: Análisis con el biocarbón de cascara de piña.

Figura 22: Prueba de jarras con las respectivas dosis de linaza.

Figura 23: Verificación de la prueba de jarras.

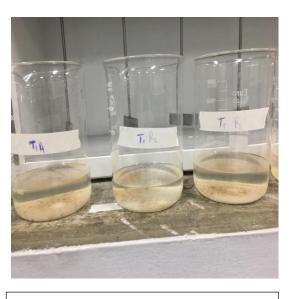


Figura 24: Resultados de la primera prueba de jarras.

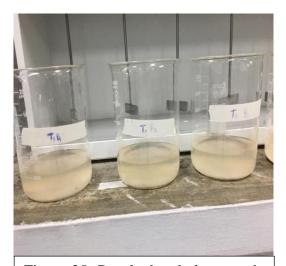


Figura 25: Resultados de la segunda prueba de jarras.

Figura 26: Resultados de la tercera prueba de jarras.

Tabla N° 1 Análisis de Varianza del pH del Biocarbón de cascara de piña.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	0.365	0.1825	165.91	<.0001
ERROR	6	0.0066	0.0011		
SUMA TOTAL	8	0.3716			
cv= 0.517145					

Tabla N° 2 Resultados de significancia del pH de Biocarbón de cascara de piña de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T2	6.58
A	T1	6.53
В	Т3	6.13
	INICIAL	7.87

Tabla N° 3 Análisis de Varianza de REDOX del Biocarbón de cascara de piña.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	21.13555556	10.56777778	4.50	0.0640
ERROR	6	14.08666667	2.3477778		
SUMA TOTAL	8	35.22222222			
cv= 3.600578					

Tabla N° 4 Resultados de significancia de REDOX de Biocarbón de cascara de piña de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T1	44.100
A	T2	43.100
A	T3	40.467
	INICIALES	49.6

Tabla N° 5 Análisis de Varianza de CONDUCTIVIDAD ELECTRICA del Biocarbón de cascara de piña.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	323.555556	161.7777778	12.13	0.0078
ERROR	6	80.0000000	13.3333333		
SUMA TOTAL	8	403.555556			
cv= 0.162160					

Tabla N°6 Resultados de significancia de CONDUCTIVIDAD ELECTRICA de Biocarbón de cascara de piña de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T2	2259.333
ВА	T1	2251.333
В	T3	2244.667
	INICIALES	1010

Tabla N° 7 Análisis de Varianza de OXIGENO DISUELTO del Biocarbón de cascara de piña.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	0.01102222	0.00551111	1.10	0.3911
ERROR	6	0.03000000	0.00500000		
SUMA TOTAL	8	0.04102222			
cv= 2 247955	<u> </u>			_	<u>. </u>

Tabla N°8 Resultados de significancia de OXIGENO DISUELTO de Biocarbón de cascara de piña de acuerdo al TUKEY

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO	
A	T2	3.17667	
A	T3	3.16333	
A	T1	3.09667	
	INICIALES	2.14	

Tabla N° 9 Análisis de Varianza de la TURBIDEZ del Biocarbón de cascara de piña.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	26.26602222	13.13301111	139.10	<.0001
ERROR	6	0.56646667	0.09441111		
SUMA TOTAL	8	26.83248889			
cv= 6 535985					

Tabla $N^{\circ}10$ Resultados de significancia de TURBIDEZ de Biocarbón de cascara de piña de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T2	6.7633
В	T1	4.7600
С	Т3	2.5800
	INICIALES	71

Tabla N° 11 Análisis de Varianza de la SOLIDOS TOTALES del Biocarbón de cascara de piña.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR >F
TRATAMIENTO	2	192.575556	96.2877778	193.44	<.0001
ERROR	6	2.9866667	0.4977778		
SUMA TOTAL	8	195.5622222			
cv= 1.033833					_

Tabla $N^{\circ}12$ Resultados de significancia de SOLIDOS TOTALES de Biocarbón de cascara de piña de acuerdo al TUKEY

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T3	74.7000
В	T2	65.9333
С	T1	64.1000
	INICIALES	230

Tabla N° 13 Análisis de Varianza de la SOLIDOS SEDIMENTALES TOTALES del Biocarbón de cascara de piña.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	82.00666667	41.00333333	49.87	0.0002
ERROR	6	4.93333333	0.82222222		
SUMA TOTAL	8	86.94000000			
cv= 2.155542				_	

Tabla N°14 Resultados de significancia de SOLIDOS TOTALES de Biocarbón de cascara de piña de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T3	45.9333
В	T2	41.7000
С	T1	38.5667
	INICIALES	179

Tabla N° 15 Análisis de Varianza de la SOLIDOS TOTALES DISUELTOS del Biocarbón de cascara de piña

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR >F
TRATAMIENTO	2	48.4955556	24.24777778	55.39	0.0001
ERROR	6	2.62666667	0.43777778		
SUMA TOTAL	8	51.12222222			
cv= 3.726427					

Tabla N°16 Resultados de significancia de SOLIDOS TOTALES DISUELTOS de Biocarbón de cascara de piña de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T3	20.9000
В	T2	17.0000
В	T1	15.3667
	INICIALES	217

Tabla N° 17 Análisis de Varianza de la DEMANDA BIOQUIMICA DE OXIGENO del Biocarbón de cascara de piña

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	12130.88889	6065.44444	1137.27	<.0001
ERROR	6	32.00000	5.33333		
SUMA TOTAL	8	12162.88889			
cv= 0.982259					

Tabla N°18 Resultados de significancia de DEMANDA BIOQUIMICA DE OXIGENO de Biocarbón de cascara de piña de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T1	283.333
В	T2	227.667
C	Т3	194.333
	INICIALES	671

Tabla N° 19 Análisis de Varianza de la DEMANDA QUIMICA DE OXIGENO del Biocarbón de cascara de piña.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	8105.555556	4052.777778	561.15	<.0001
ERROR	6	43.333333	7.222222		
SUMA TOTAL	8	8148.888889			
cv= 0.648961		_			_

Tabla N°20 Resultados de significancia de DEMANDA QUIMICA DE OXIGENO de Biocarbón de cascara de piña de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T1	454.667
В	T2	404.667
С	T3	383.000
	INICIALES	864

Tabla N° 21 Análisis de Varianza de ACEITES Y GRASAS del Biocarbon de cascara de piña.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	266.0555556	133.0277778	554.28	<.0001
ERROR	6	1.4400000	0.2400000		
SUMA TOTAL	8	267.4955556			
cv= 2.459053					

Tabla N°22 Resultados de significancia de ACEITES Y GRASAS de Biocarbón de cascara de piña de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T1	27.3667
В	T2	17.8667
С	T3	14.5333
	INICIALES	75

Tabla N° 23 Análisis de Varianza del pH de residuos de linaza.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	0.28708889	0.14354444	2.92	0.1303
ERROR	6	0.29526667	0.0492111		
SUMA TOTAL	8	0.58235556			
cv= 3.579279					

Tabla $N^{\circ}24$ Resultados de significancia de ACEITES Y GRASAS de linaza de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T1	6.4500
A	T2	6.0833
A	Т3	6.0600
	INICIALES	7.87

Tabla N° 25 Análisis de Varianza del REDOX de residuos de linaza.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	5.9355556	2.96777778	47.70	0.0002
ERROR	6	0.37333333	0.06222222		
SUMA TOTAL	8	6.30888889			
cv= 0.569362					

Tabla N°26 Resultados de significancia de REDOX de linaza de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T2	44.4667
A	Т3	44.3000
В	T1	42.6667
	INICIALES	49.6

Tabla N° 27 Análisis de Varianza de CONDUCTIVIDAD ELECTRICA de residuos de linaza.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	44906.00000	22453.00000	1161.36	<.0001
ERROR	6	116.00000	19.33333		
SUMA TOTAL	8	45022.00000			
cv= 0.181293					

Tabla N°28 Resultados de significancia de CONDUCTIVIDAD ELECTRICA de linaza de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T2	2511.000
В	T1	2427.000
С	T3	2338.000
	INICIALES	1010

Tabla N° 29 Análisis de Varianza de OXIGENO DISUELTO de residuos de linaza.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR >F
TRATAMIENTO	2	0.79286667	0.39643333	11.73	0.0084
ERROR	6	0.20273333	0.03378889		
SUMA TOTAL	8	0.99560000			
cv= 5.961650	<u> </u>	_			

Tabla $N^{\circ}30$ Resultados de significancia de OXIGENO DISUELTO de linaza de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T1	3.4400
ВА	T2	3.0967
В	Т3	2.7133
	INICIALES	2.14

Tabla N° 31 Análisis de Varianza de TURBIDEZ de residuos de linaza.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	906.3890889	453.1945444	3731.70	<.0001
ERROR	6	0.7286667	0.1214444		
SUMA TOTAL	8	907.1177556			_
cv= 2.710335					

Tabla $N^{\circ}32$ Resultados de significancia de TURBIDEZ de linaza de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	Т3	25.9000
В	T2	11.1833
С	T1	1.490
	INICIALES	71

Tabla N° 33 Análisis de Varianza de SOLIDOS TOTALES de residuos de linaza.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	588.6200000	294.3100000	1919.41	<.0001
ERROR	6	0.9200000	0.1533333		
SUMA TOTAL	8	589.5400000			
cv= 0.804062					

Tabla $N^{\circ}34$ Resultados de significancia de SOLIDOS TOTALES de linaza de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	Т3	56.7333
В	T2	51.7333
С	T1	37.633
	INICIALES	230

Tabla N° 35 Análisis de Varianza de SOLIDOS SEDIMENTALES TOTALES de residuos de linaza.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	305.8422222	152.9211111	155.34	<.0001
ERROR	6	5.9066667	0.9844444		
SUMA TOTAL	8	311.7488889			
cv= 3.023950					<u> </u>

Tabla $N^{\circ}36$ Resultados de significancia de SOLIDOS SEDIMENTALES TOTALES de linaza de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T3	39.0000
В	T2	34.4333
С	T1	25.0000
	INICIALES	179

Tabla N° 37 Análisis de Varianza de SOLIDOS SEDIMENTALES DIUELTOS de residuos de linaza.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	36.08222222	18.04111111	38.57	0.0004
ERROR	6	2.80666667	0.46777778		
SUMA TOTAL	8	38.88888889			
cv= 4.437985					

Tabla N°38 Resultados de significancia de SOLIDOS SEDIMENTALES DISUELTOS de linaza de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T3	17.8000
В	T2	15.5333
С	T1	12.9000
	INICIALES	217

Tabla N° 39 Análisis de Varianza de DEMANDA BIOQUIMICA DE OXIGENO de residuos de linaza.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	P R >F
TRATAMIENTO	2	6968.222222	3484.111111	591.64	<.0001
ERROR	6	35.333333	5.888889		
SUMA TOTAL	8	7003.555556			
cv= 1.472713					

Tabla N°40 Resultados de significancia de DEMANDA BIOQUIMICA DE OXIGENO de linaza de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	Т3	194.667
В	T2	172.000
С	T1	127.667
	INICIALES	671

Tabla N° 41 Análisis de Varianza de DEMANDA QUIMICA DE OXIGENO de residuos de linaza.

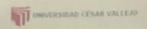
FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	2450.000000	1225.000000	193.42	<.0001
ERROR	6	38.000000	6.333333		
SUMA TOTAL	8	2488.000000			
cv= 0.966688	_				_

Tabla N°42 Resultados de significancia de DEMANDA QUIMICA DE OXIGENO de linaza de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T3	282.000
В	T2	257.000
С	T1	242.000
	INICIALES	864

Tabla N° 43 Análisis de Varianza de ACEITES Y GRASAS de residuos de linaza.

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADRADOS	CUADRADOS MEDIOS	F.VALOR	PR>F
TRATAMIENTO	2	7.42888889	3.71444444	58.65	0.0001
ERROR	6	0.38000000	0.06333333		
SUMA TOTAL	8	7.80888889			
cv= 1.344982					


Tabla N°44 Resultadosde significancia de ACEITES Y GRASAS de linaza de acuerdo al TUKEY.

SIGNIFICANCIA	TRATAMIENTO	PROMEDIO
A	T2	19.4667
A	T3	19.2333
В	T1	17.4333
	INICIALES	75

Anexo 02: Validación de instrumentos:

.

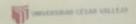
INACEPTABLE INACEPTABLE ACEPTABLE ACEPTAB	1.5. Representation of the control o		VALIDACIÓ!	N DI	IN	STR	UM	ENT	0			0			
1.4. Nombree del instrumento motivo de evaluación. Con titula del control de la contro	LA Nembere del instrumento motivo de evaluación de activación de la control de l'estrumento del l'estrumento de l'estrumento de l'estrumento de l'estrumento del l'estrum	1. DATOS GI	ENERALES Born L	2/		- 22	. 0	Sie	curre	6	1	1/01	for		
1.4. Nombre dei instrumento motivo de evaluación Con telegratura en la desegratura de la control de	LA Nembere del instrumento motivo de evaluación de activación de la control de l'estrumento del l'estrumento de l'estrumento de l'estrumento de l'estrumento del l'estrum	1.2. Carno	s institución donde labora DI	66	1	ici		1	*****		1	Parent			-
INACEPTABLE INDICADORES INACEPTABLE ACEPTABLE ACEPT	INDICADORES INDICADORES INACEPTABLE ACCEPTABLE ACC	1.3. Especia	alidad o linea de investigación: Alec	NOCO	ich	4.1	Gal	tio	n a	41	lor-	MON	150	LD	Chican Chican
INACEPTABLE INDICADORES INACEPTABLE ACEPTABLE ACEPT	INDICADORES INDICADORES INACEPTABLE ACCEPTABLE ACC	1.4. Nombe	e del instrumento motivo de evaluació	in:Ca	WE CO	audit	iten.	t ofte	C. 62H	fred	专事	25% C	20		Sicu.
INDICADORES INDICADORES INACEPTABLE ACEPTABLE ACEPT	INDICADORES INDICADORES INACEPTABLE ACCEPTABLE ACC	1.3. Autor()	A) de Instrumento Zare 1997. 85	inth.		188215	red free								
INDICADORES INDICADORES 40 45 50 55 60 65 70 75 80 85 90 95 I CLARIDAD Esta adecuado con lenguaje comprensible. Esta adecuado a las leyes y principios científicos. Esta adecuado a los objetivos y las necesidades reales de la investigación. 4 ORGANIZACIÓN Existe una organización lógica. Toma en cuenta los aspectos metodológicos esenciales Esta adecuado para valorar las variables de la Hipótesis. 7. CONSISTENCIA Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodológía y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	Esta adecuado a las leyes y principios científicos. 2. OBJETIVIDAD Esta adecuado a las leyes y principios científicos. 3. ACTUALIDAD Esta adecuado a los objetivos y las necesidades reales de la investigación. 4. ORGANIZACIÓN Existe una organización lógica. 5. SUPRILINCIA ITOMA en cuenta los aspectos metodológicos esenciales Esta adecuado para valorar las variables de la Hipótesis. 7. CONSISTENCIA Se respalda en fundamentos secnicos y/o científicos. 8. COHERENCIA Problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodológía y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los ocomponentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD El Instrumento cumple con los Requisitos para su aplicación El Instrumento ocumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: IV. PROMEDIO DE VALORACIÓN:														
1. CLARIDAD Esta formulado con lenguaje comprensible. Esta adecuado a las leyes y principios científicos. Esta adecuado a los objetivos y las necesidades reales de la investigación. 4. ORGANIZACIÓN Existe una organización lógica. 5. SUFICIENCIA Toma en cuenta los aspectos metodológicos esenciales Esta adecuado para valorar las variables de la Hipótesis. 7. CONSISTENCIA Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodológia y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	1. CLARIDAD Esta formulado con lenguaje comprensible. 2. OBJETIVIDAD Esta adecuado a las leyes y principios científicos. Esta adecuado a los objetivos y las necesidades reales de la investigación. 4. ORGANIZACIÓN Existe una organización lógica. 5. SUPICIENCIA Toma en cuenta los aspectos metodológicos esenciales. 4. Intencionalidado para valorar las variables de la Hipótesis. 7. CONSISTENCIA Existe coberencia entre los problemas objetivos, hipótesis, variables e indicadores. 8. COHERENCIA P. METODOLOGÍA P. METODOLOGÍA P. METODOLOGÍA P. METODOLOGÍA P. El Instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación V. PROMEDIO DE VALORACIÓN: Lima, de Junio del 2019				IN	ACEP	TAE	BLE					ACE	PTA	BLE
1. CLARIDAD Esta formulado con lenguaje comprensible. 2. OBJETTVIDAD Esta adecuado a las leyes y principios científicos. Esta adecuado a los objetivos y las necesidades reales de la investigación. 4. ORGANIZACIÓN Existe una organización lógica. 5. SUFICIENCIA Toma en cuenta los aspectos metodológicos esenciales Esta adecuado para valorar las variables de la Hipótesis. 7. CONSISTENCIA Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores, variables e indicadores para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	Esta adecuado a las leyes y principios científicos. Besta adecuado a los objetivos y las necesidades reales de la investigación. 4 ORDANIZACIÓN Existe una organización lógica. 5 SUPICIENCIA Toma en cuenta los aspectos metodológicos esenciales 4 DRIPACIONALIBAD Esta adecuado para valorar las variables de la Hipotesis. 7. CONSISTENCIA Se respalda en fundamentos técnicos y/o científicos. 8. COHERENCIA problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodológida y diseño aplicados para lograr probar las hipótesis. 10 PERTINENCIA El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: Lima, de Junio del 2019 Esta decuado a las leyes y principios científicos. X DETACTORIA DE APLICABILIDAD (CIENTIFICA DE CONTROLLA DE CONT	CRITERIOS	INDICADORES	40	45	50	55	60	65				85	90	95
2. OBJETTVIDAD Esta adecuado a las leyes y principios científicos. Esta adecuado a los objetivos y las necesidades reales de la investigación. 4. ORGANIZACIÓN Existe una organización lógica. 5. SUFICIENCIA Toma en cuenta los aspectos metodológicos esenciales Esta adecuado para valorar las variables de la Hipótesis. 7. CONSISTENCIA Se respalda en fundamentos técnicos y/o científicos. Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	Esta adecuado a las leyes y principios científicos. 1. ACTUALIDAD Esta adecuado a los objetivos y las necesidades reales de la investigación. 4. ORGANIZACIÓN Existe una organización lógica. 5. SUPICIENCIA Toma en cuenta los aspectos metodológicos esenciales A RITENCIONALIDAD Variables de la Hipótesis. 7. CONSISTENCIA Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. 10. PERTINENCIA El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD El Instrumento cumple con los Requisitos para su aplicación El Instrumento no cumple con Los requisitos para su aplicación PET Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN:		Esta formulado con lenguaje												
2. ORDETIVIDAD principios científicos. Esta adecuado a los objetivos y las necesidades reales de la investigación. 4. ORGANIZACIÓN Existe una organización lógica. 5. SUFICIENCIA Toma en cuenta los aspectos metodológicos esenciales Esta adecuado para valorar las variables de la Hipótesis. 7. CONSISTENCIA Se respalda en fundamentos técnicos y/o científicos. Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	Esta adecuado a los objetivos y las necesidades reales de la investigación. 4. ORGANIZACIÓN Existe una organización lógica. 5. SUPICIENCIA Toma en cuenta los aspectos metodológicos esenciales de la Hipotexis. 7. CONSISTENCIA Se respalda en fundamentos técnicos y/o científicos. 8. COHERENCIA problemas objetivos, hipótesis, variables e indicadores. 10. PERTINENCIA El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. 11. OPINIÓN DE APLICABILIDAD 12. El instrumento cumple con los Requisitos para su aplicación 13. El instrumento no cumple con Los requisitos para su aplicación 14. OPINIÓN DE VALORACIÓN: 15. SUPICIENCIA POR ALICABILIDAD 16. PERTINENCIA POR ALICABILIDAD 17. CONSISTENCIA POR ALICABILIDAD 18. COPINIÓN DE APLICABILIDAD 19. METODOLOGÍA para su aplicación 10. PERTINENCIA POR ALICABILIDAD 10. PERTI	1. CLARIDAD													X
Esta adecuado a los objetivos y las necesidades reales de la investigación. 4. ORGANIZACIÓN Existe una organización lógica. 5. SUFICIENCIA Toma en cuenta los aspectos metodológicos esenciales de la Hipótesis. 6. INTENCIONALIDAD Esta adecuado para valorar las variables de la Hipótesis. 7. CONSISTENCIA Se respalda en fundamentos técnicos y/o científicos. Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	Esta adecuado a los objetivos y las necesidades reales de la investigación. 4. ORGANIZACIÓN Existe una organización lógica. 5. SUPICIENCIA Tóma en cuenta los aspectos metodológicos esenciales de la Hipótesis. 7. CONSISTENCIA Existe una organización lógica. 8. ONTENCIONALIDAD Esta adecuado para valorar las variables de la Hipótesis. 7. CONSISTENCIA técnicos y/o científicos. Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: Lima, de Junio del 2019	2 OBJETTIVEDAD													K
3. ACTUALIDAD necesidades reales de la investigación. 4. ORGANIZACIÓN Existe una organización lógica. 5. SUFICIENCIA Toma en cuenta los aspectos metodológicos esenciales 6. ENTENCIONALIDAD Esta adecuado para valorar las variables de la Hipótesis. 7. CONSISTENCIA Se respalda en fundamentos técnicos y/o científicos. Existe coberencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	3. ACTUALIDAD necesidades reales de la investigación. 4. ORGANIZACIÓN Existe una organización lógica. 5. SUPICIENCIA Toma en cuenta los aspectos metodológicos esenciales 6. INTENCIONALIDAD Esta adecuado para valorar las variables de la Hipótesis. 7. CONSISTENCIA técnicos y/o científicos. 8. COHERENCIA problemas objetivos, hipótesis, variables e indicadores. 9. METODOLOGÍA perodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: Lima, de Junio del 2019 Apunçuiço.							-							7
investigación. 4. ORGANIZACIÓN Existe una organización lógica. 5. SUFICIENCIA Toma en cuenta los aspectos metodológicos esenciales Esta adecuado para valorar las variables de la Hipótesis. 7. CONSISTENCIA Se respalda en fundamentos técnicos y/o científicos. Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	investigación. 4 ORGANIZACIÓN Existe una organización lógica. 5 SUPICIENCIA Toma en cuenta los aspectos metodológicos esenciales Esta adecuado para valorar las variables de la Hipótesis. 7. CONSISTENCIA Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: Lima, de Junio del 2019 Apunçuição La Alpunçuição Apunçuição	3 ACTUALIDAD	The state of the s											. 1	
5. SUFICIENCIA Toma en cuenta los aspectos metodológicos esenciales Esta adecuado para valorar las variables de la Hipótesis. Se respalda en fundamentos técnicos y/o científicos. Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	5. SUFICIENCIA metodológicos esenciales 6. INTENCIONALIDAD Esta adecuado para valorar las variables de la Hipotesis. Se respalda en fundamentos técnicos y/o científicos. Se respalda en fundamentos técnicos y/o científicos. Se respalda en fundamentos técnicos y/o científicos. Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: J. J	J. M. I CHLIDAD											1	X	
5. SUPICIENCIA Toma en cuenta los aspectos metodológicos esenciales Esta adecuado para valorar las variables de la Hipótesis. 7. CONSISTENCIA Se respalda en fundamentos técnicos y/o científicos. Existe coberencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	S. SLEKCIENCIA Toma en cuenta los aspectos metodológicos esenciales Esta adecuado para valorar las variables de la Hipótesis. S. CONSISTENCIA Esta eccuado para valorar las variables de la Hipótesis. Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: J. J	4. ORGANIZACIÓN	Existe una organización lógica.												0
metodologicos esenciales Esta adecuado para valorar las variables de la Hipótesis. 7. CONSISTENCIA Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	metodologicos esenciales Esta adecuado para valorar las variables de la Hipótesis. Se respalda en fundamentos técnicos y/o científicos. Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: Lima, de Junio del 2019 Apuruque A para lograr probar las hipótesis. Esta adecuado para valorar las variables e indicadores. Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN:		Toma en cuenta los aspectos												-
A DITENCIONALIDAD variables de la Hipótesis. Se respalda en fundamentos técnicos y/o científicos. Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	**A PATENCIONALIDAD variables de la Hipótesis. 7. CONSISTENCIA Se respalda en fundamentos técnicos y/o científicos. 8. COHERENCIA problemas objetivos, hipótesis, variables e indicadores, variables e indicadores, variables e indicadores, para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento no cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: Lima, de Junio del 2019	5. SUPICIENCIA						10							X
variables de la Hipotesss. 7. CONSISTENCIA Se respalda en fundamentos técnicos y/o científicos. Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	variables de la Hipotessa. Se respalda en fundamentos técnicos y/o cientificos. Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: James de Junio del 2019 America de Junio del 2019	4 INTENCIONALIDAD													d
7. CONSISTENCIA técnicos y/o científicos. Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	## A CONSISTENCIA técnicos y/o científicos. Existe coherencia entre los problemas objetivos, hípótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD		variables de la Hipotesis.			-	-	-		-	-				^
Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores. 1. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: IV. PROMEDIO DE VALORACIÓN:	7. CONSISTENCIA									16			X	
8. COHERENCIA problemas objetivos, hipótesis, variables e indicadores. La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	8 COHERENCIA problemas objetivos, hipótesis, variables e indicadores. 9. METODOLOGÍA metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: Jamunus Jamunus Jamunus Jamunus Jamunus Jamunus Jamunus Jamunus Jamunus Lima, de Junio del 2019													-	
La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	9. METODOLOGÍA PERTINENCIA La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: James de Junio del 2019	8. COHERENCIA		1											K
9. METODOLOGÍA metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	9. METODOLOGÍA metodología y diseño aplicados para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: J. M.														
para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la	para lograr probar las hipótesis. El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: Lima, de Junio del 2019		Table 1												
El instrumento muestra la relación entre los componentes de la	El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: Lima, de Junio del 2019	9. METODOLOGÍA					12						1		×
entre los componentes de la	entre los componentes de la investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: 10 PERTINENCIA		D. DESCRIPTION OF THE PROPERTY				-								
10. PERTINENCIA	investigación y su adecuación al Método Científico. III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: Jamunum Método Científico. Jamunum Jamunum A Método Científico.												Bi	1	
investigación y su adecuación ai	III. OPINIÓN DE APLICABILIDAD - El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: Promedio del 2019 Promedio del 201	10. PERTINENCIA	investigación y su adecuación al				-					1		N	
Método Científico.	- El Instrumento cumple con los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: Lima, de Junio del 2019		Método Científico.												
	- El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: Lima, de Junio del 2019							1	1						
	Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: Lima, de Junio del 2019														
los Requisitos para su aplicación	Lima, de Junio del 2019														
los Requisitos para su aplicación - El Instrumento no cumple con	Lima, de Junio del 2019							0	_	7					
los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación	A Summer	IV. PROMEDI	O DE VALORACIÓN:					75	%	9	1				-
los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación	A Summer						-				1		1	1	/
los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación	A Summer								<	<	P	1	-	6	/
los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: 95 %	CHIMA DELEXPERTOINEGRMAN	Lima, de Juni	o del 2019							1	11	Mu	uce	44	/
los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación IV. PROMEDIO DE VALORACIÓN: 95 %	LIMING MELLEAPER IL VINTUR MAN							S	7	D	y	DERTO	ANEZ	ARX.	NI
los Requisitos para su aplicación - El Instrumento no cumple con Los requisitos para su aplicación V. PROMEDIO DE VALORACIÓN: J. W. Marting Company	CIP: /0/6585							1000		DE	01	65%	5/	TOVE	STATE OF

DATOS GENERALES 1.1 Apellidos y Nombres: Laure and Valentin Gaudencio 1.2 Cargo e institución donde labora: Das antes en esta de la lacada de linea de investigación: Danto en entre en esta de la lacada de lac
1.5. Autor(A) de Instrumentos L. N. GOLES L. S. V. (1885 D. D. S.

II. A		DACION

	OS DE VALIDACION		IN	ACE	PTAE	BLE				MENTE	AC		ABLE	
CRITERIOS	INDICADORES	40	45	50	55	60	65	70	75	80	85	90	95	100
1. CLARIDAD	Esta formulado con lenguaje comprensible.										/			
2. OBJETIVIDAD	Esta adecuado a las leyes y principios científicos.										/			
3. ACTUALIDAD	Esta adecuado a los objetivos y las necesidades reales de la investigación.										1	/		
4. ORGANIZACIÓN	Existe una organización lógica.										/			
5. SUFICIENCIA	Toma en cuenta los aspectos metodológicos esenciales										/			
6. INTENCIONALIDAD	Esta adecuado para valorar las variables de la Hipótesis.										/			
7. CONSISTENCIA	Se respalda en fundamentos técnicos y/o científicos.										1			
8, COHERENCIA	Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores.										1			
9. METODOLOGÍA	La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis.										1			
0. PERTINENCIA	El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico.										/			

III. OPINIÓN DE APLICABILIDAD


- El Instrumento cumple con los Requisitos para su aplicación
- El Instrumento no cumple con Los requisitos para su aplicación

IV. PROMEDIO DE VALORACIÓN:

Lima, de Junio del 2019

Si

FIRMA DEL EXPERTO INFORMANTE
CIP: 12 15 59
DNI No: 0765 504

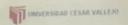
L	DATOS CENERALES Ordones Bolies Islam Julio
	I L Appliedon y Nombres Orden - CCV
	1.1. Application y Numbers: V No. 1.2. Cargo e institución donde labora T. J. April 2003 y 6 or Tron ou Responsable T. O. Rocke.
	Trabative of y faction of the annual 10 Rock
	13. Especialidad o linea de investigar nos
	1.2 Cargo e institución donde labora DOC Sobre OCO A Establica Su Passallado Sino de investigación. Trebabal GOD A Establica Su Passallado Sino de investigación. Trebabal GOD A Establica Su Passallado Sino de instrumento motivo de evaluación. Sens Sucres Guerras Guerras Guerras Su Passallado Su
	Progre Hone Dolland
	1.3. Autor(A) de tour unique.

IL ASPECTOS DE VALIDACIÓN

	INDICADORES		IN	ACEI	TAE	ILE			CEPT	MENTE			ABLE	
CRITERIOS	INDICADORES	40	45	50	55	60	65	70	75	80	85	90	95	100
1. CLARIDAD	Esta formulado con lenguaje comprensible.										/			
2. OBJETTVIDAD	Esta adecuado a las leyes y principios científicos.										1			
3. ACTUALIDAD	Esta adecuado a los objetivos y las necesidades reales de la investigación.										1			
4. ORGANIZACIÓN	Existe una organización lógica.										/			
5. SUFICIENCIA	Toma en cuenta los aspectos metodológicos esenciales										1			
6 INTENCIONALIDAD	Esta adecuado para valorar las variables de la Hipótesis.										1			
7. CONSISTENCIA	Se respalda en fundamentos técnicos y/o científicos.										1			
8. COHERENCIA	Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores.										1			
METODOLOGÍA	La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis.										1			
0. PERTINENCIA	El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico.										1			

III. OPINIÓN DE APLICABILIDAD

- El Instrumento cumple con los Requisitos para su aplicación
- El Instrumento no cumple con Los requisitos para su aplicación


IV. PROMEDIO DE VALORACIÓN:

Lima, de Junio del 2019

Si

85, %

CIP: DNI No:

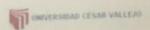
DATOS GENERALES 1.1. Apellidos y Nombres D. C. SLOS A. G. Soll VS. 3. J. Kan. Justin. J. S. L. S
1.1. Apellidos y Nombres: U. 1. 20-6. 22 P. 20-6. 22 P
1.3. Especialidad o linea de investigación: Declarante no esta de la contrata de la contrata de la contrata de linea de investigación: Declarante de la contrata del la contrata de la contrata del la contrata de la contrata del la contrata de la contrata del la contrata de
1.4. Nombre del instrumento motivo de evaluación de solo de partir ou farebane
1.3. Especialidad o línea de investigación: Declaration 1.5. Autor (A) de l'instrumento motivo de evaluación: Pano motivo de lastrumento motivo de evaluación: Pano motivo de l'instrumento. Pano motivo de l'instrumento de l'instrument

II. ASPECTOS DE VALIDACIÓN

CRITERIOS	INDICADORES		IN	ACE	TAE	BLE				MENTE	ACEPTABLE			
CRITERIOS	INDICADORES	40	45	50	55	60	65	70	75.	80	85	90	95	100
1. CLARIDAD	Esta formulado con lenguaje comprensible.										1			
2. OBJETIVIDAD	Esta adecuado a las leyes y principios científicos.										1			
3. ACTUALIDAD	Esta adecuado a los objetivos y las necesidades reales de la investigación.										1			
4. ORGANIZACIÓN	Existe una organización lógica.										/			
5. SUFICIENCIA	Toma en cuenta los aspectos metodológicos esenciales										/			
6. INTENCIONALIDAD	Esta adecuado para valorar las variables de la Hipótesis.										1			
7. CONSISTENCIA	Se respalda en fundamentos técnicos y/o científicos.										1			
8 COHERENCIA	Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores.				1						/			
METODOLOGÍA	La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis.										/			
0. PERTINENCIA	El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico.										/			

III. OPINIÓN DE APLICABILIDAD

- El Instrumento cumple con los Requisitos para su aplicación
- El Instrumento no cumple con Los requisitos para su aplicación


IV. PROMEDIO DE VALORACIÓN:

Lima, de Junio del 2019

Si

85 %

CIP: DNI No.

	1.1. Apellidos y Nombres. Laures o Volunta Garance o 1.2. Cargo e institución donde labora. Das ents. UCV 1.3. Especialidad o linea de investigación. Caladad ny 6 en 600 new 100 Taturna Mariana la Nombre del instrumento motivo de evaluación. 1.4. Nombre del instrumento motivo de evaluación. 1.5. Autor(A) de Instrumento. Dago te Mariana So Cana
**	ASPECTOS DE VALIDACIÓN

II. ASPECTOS	West names		IN	ACEI	TAE	BLE				MENTE	AC	EPT/	ABLE	
CRITERIOS	INDICADORES	40	45	50	55	60	65	70	75	80	85	90	95	10
1. CLARIDAD	Esta formulado con lenguaje comprensible.										/			
2 OBJETIVIDAD	Esta adecuado a las leyes y principios científicos.										/			
3. ACTUALIDAD	Esta adecuado a los objetivos y las necesidades reales de la investigación.										/			
4. ORGANIZACIÓN	Existe una organización lógica.										/			
5. SUFICIENCIA	Toma en cuenta los aspectos metodológicos esenciales										1			
6 INTENCIONALIDAD	Esta adecuado para valorar las variables de la Hipótesis.										1			
7. CONSISTENCIA	Se respalda en fundamentos técnicos y/o científicos.										1			
8. COHERENCIA	Existe coherencia entre los problemas objetivos, hipótesis, variables e indicadores.										1			
9. METODOLOGÍA	La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis.										/			
10. PERTINENCIA	El instrumento muestra la relación entre los componentes de la investigación y su adecuación al Método Científico.										1			

III. OPINIÓN DE APLICABILIDAD

- El Instrumento cumple con los Requisitos para su aplicación
- El Instrumento no cumple con Los requisitos para su aplicación

IV. PROMEDIO DE VALORACIÓN:

Lima, de Junio del 2019

FIRMA DEL EXPERTO INFORMANTE CIP: 12 (1 5 4 9 2 DNI No: 0 7 6 5 5 2 9 2

Anexo 03: Certificado análisis en el laboratorio de la Universidad Cesar Vallejo

ENSAYO N°01 -MC- 2019

LABORATORIO DE QUIMICA - UCV INFORME DE RESULTADOS- MUESTREO DE AGUA

Direction:

Km. 153.5 Panamericana Norte. Puente Huari

Tipo de ensayo:

Análisis Fisicoquímicos

Matriz:

Agua residual

Descripcion de la muestra:

Muestra inicial de agua residual domestica

Muestra tomado por:

Briggite Elizabeh Muñoz Solano

Fecha de ingreso de la muestra:

14/10/2019

lugar donde se realizo el ensayo:

	V-1	pH			Legis Generalis	
Estacion	Tipo de resultado	Cod	ordenadas	Altitud	Unidad de medida	Resultados
M- Inicial	Marian	Norte	110427			7.67
Mi- Inicial	Muestra	Este	773557	7		7.87

		Potencial redo	06			
Estacion	Tipo de resultado	Coo	rdenadas	Altitud	Unidad de medida	Resultado
M- Inicial	Muestra	Norte	110427		Mv	49.6

		Temperatura)			
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados
8.8 Indebel	Muestra	Norte	110427	Т	1 40	10.5
M- Inicial	Muestra.	Este	Este 773557		,c	10.5

	Cor	nductividad Elé	ctrica			
Estacion	Tipo de resultado	Coordenadas		Altitud	Unidad de medida	Resultado
A. Inicial	Muestra	Norte	110427			1010
M- Inicial	Muestra	Este	773557		µs/cm	1010

		Oxigeno Disue	lto			
Estacion	Tipo de resultado	Cod	ordenadas	Altitud	Unidad de medida	Resultado
M- Inicial	Martin	Norte	110427			214
M- Inicial	Muestra	Este	773557	7	mg/l	2.14

		Turbidez				
Estacion	Tipo de resultado	Con	ordenadas	Altitud	Unidad de medida	Resultado
NA Service		Norte	110427	1		74
M- Inicial	Muestra	Este	773557	1	NTU	71

	700	55 (mg/)	-W	V = 1	
Estacion	Tipo de resultado	Coordenadas	Altitud	Unidad de medida	Resultado

M- Inicial	Muestra	Norte	110427			230
M- married	Mucsita	Este	773557		mg/I	230
		TSS (mg/l)				
Estacion	Tipo de resultado	Cod	ordenadas	Altitud	Unidad de medida	Resultado
M- Inicial	Muestra	Norte	110427		mg/l	179
m- macan	Mucona	Este 773557	773557		10021	1/2
	100	TDS (mg/l)				
Estacion	Tipo de resultado	Cor	ordenadas	Altitud	Unidad de	Resultado
7,000		Coordinadas			medida	2000000
M- Inicial	Muestra	Norte	110427		mg/l	217

	Demand	la Bioquimica d	le Oxigeno	2	(0)	<u> </u>
Estacion	Tion do resultado	Con			Unidad de	Bassinadas
Estacion	Tipo de resultado	Coordenadas		Altitud	medida	Resultados
M- Inicial	Muestra	Norte	110427			694
No- success	Muestra	Este	773557	1	mg/l	671

Este

Muestra

	Dema	nda Quimica de	Oxigeno		92-57-1-5	
Estacion	Tipo de resultado	Cox	rdenadas	Altitud	Unidad de	Resultados
Cocacion	ripo de resultado		Courdenadas		medida	Resultables
M-Inicial	Manager	Norte	110427			000
no- micial	Muestra	Este	773557	7	mg/l	864

	Ac	eites y Grasas	(mg/l)		and the second	
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados
M-Inicial	Muestra	Norte	110427			127
no-miciel	muestra	Este	773557	7	mg/l	127

Metodologia de Análisis:

M-Inicial

APHA-AWWA-WEF (2012)52108

Estándar Methods for the examination of water and wastewater. AWWA-1992

773557

mg/l

217

SMEWW.APHA-AWWA 2510 B. (2017)

SM 2130 B. Turbidity. Nephlometric Method.

APHA-AWWA-WEF (2012) 5210 B

APHA-AWWA-WEF (2012) 5220 B

SMEWW-APHA-AWWA-WEF Part 2540 D, 22nd Ed. 2012. Solids. Total Suspended

Solids Dried at 103-105°C.

Equipo utilizado: Codigo Interno: Multiparámetro Hanna Edge 6053633 espectofotometro 6009512 Mufta 6009565 Estufa DAIHAN SCIENTIFIC 6007386 Equipo de filtración con bomba al vacio 06-53628

M.Sc. Carper Marine College Productiones CIP. Confe CA. Colffice Production INGENIERO COLUMNO CO. P. 37913

ENSAYO N'03 -MC- 2019

LABORATORIO DE QUIMICA - UCV INFORME DE RESULTADOS- MUESTREO DE AGUA

Direction:

Km. 153.5 Panamericana Norte. Puente Huari

Tipo de ensayo:

Análisis Fisicoquímicos

Matriz:

Agua residual

Descripcion de la muestra:

Muestra tratada mediante biocarbon de cascara de piña

Muestra tomado por:

Briggite Elizabeh Muñoz Solano

Fecha de ingreso de la muestra:

9/11/2019

lugar donde se realizo el ensayo:

	pH								
Estacion T1-R1	Tipo de resultado	iltado Coordenadas		Altitud	Unidad de medida	Resultados			
	T. Marine	Norte	110427	1 =					
14004	Muestra	Este	773557			5.54			
T1-R2	Muestra	Norte	110427			5.48			
11-12	Muestra	Este	773557			5,45			
T1 D2	Manufac	Norte	110427			6.62			
T1-R3	Muestra	Este	773557			5.57			

Potencial redox									
Estacion	Tipo de resultado	Coordenadas		Altitud	Unidad de medida	Resultados			
71.01	Muestra	Norte	110427	Т		40.74			
T1-R1	Muestra	Este :	773557		Mv	45.7			
T1-R2	Muestra	Norte	110427		943	49.6			
11-HZ	Muestra	Este	773557	1	Mv	43.5			
T1-R3	Mantes	Norte	110427		Mv	49.4			
11-03	Muestra	Este	773557			43.1			

	Temperatura									
Estacion	rtacion Tipo de resultado Coordenadas		ordenadas	Altitud	Unidad de medida	Resultados				
T1-R1	Muestra	Norte	110427		ъс.	23.4				
11-11	Muestra	Este	773557			23.4				
T1-R2	Muestra	Norte	110427		*0	23.4				
11-112	Muestra	Este	773557							
T1-R3	Muestra	Norte	110427		-c	20.0				
12-13	Mucsela	Este	773557	1		23.4				

	Conductividad Eléctrica								
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultado			
T1-R1	Muestra	Norte	110427			2262			
11-102	Municia.	Este	773557		µs/cm	2257			
T1-R2	Muestra	Norte	110427		oston	2240			
11-112	Muestra	Este	773557		μs/cm	2248			
71.03	Martin	Norte	110427			2240			
T1-R3	Muestra	Este	773557	1	µs/cm	2249			

	Oxigeno Disuelto								
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados			
T1-R1	Muestra	Norte	110427			2.06			
14-64	restre	Este	773557		mg/l	2,96			
T1-R2	Muestra	Norte	110427		and the	3.18			
12-02	Prisestra	Este	773557		mg/l	3.18			
T1-R3	Muestra	Norte	110427		mg/l	2.16			
14-63	nouestra	Este	773557	1		3.15			

	Turbidez							
Estacion	Tipo de resultado	Coc	Coordenadas Alt		Unidad de medida	Resultados		
T1-R1	Muestra	Norte	110427		im.	4.73		
1.1-h1	Instacetta	Este	773557		NTU	4.73		
T1-R2	Muestra	Norte	110427		NTU	4.74		
11-nz	MDESTIA	Este	773557		NIU	4,74		
T1-R3	Muestra	Norte	110427		NTU	4.04		
11-43	Muestra	Este	773557			4.81		

·	ST (mg/)							
Estacion	Tipo de resultado	lo Coordenadas		Altitud	Unidad de medida	Resultados		
T1-R1	Muestra	Norte	110427	Т	m 0	64.7		
14-n4	muestra	Este	773557		mg/l	64.7		
T1-R2	Muestra	Norte	110427			646		
1.1-112	MURSUR	Este	773557		mg/l	64.5		
77.03	Muestra	Norte	110427		0	63.4		
T1-R3	Muestra	Este	773557	1	mg/l	63.1		

	SST (mg/l)								
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultado			
T1-R1	Muestra	Norte	110427	1		38.4			
11.01	MU620.4	Este	773557	1	mg/l	38.4			
T1-R2	Muestra	Norte	110427		and A	20.0			
11-82	Muestra	Este	773557	1	mg/l	38.9			
T1-R3	Muestra	Norte	110427		mg/l	26.1			
11.43	Muestra	Este	773557	7		38.4			

	STD (mg/l)								
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados			
T1-R1	Muestra	Norte	110427	1		15.3			
17-67	Muestra	Este	773557	1	mg/l	15.3			
T1-R2	Muestra	Norte	110427		and.	15.4			
(1) nz	Municipa	Esté	773557		mg/l	15.1			
T1-R3	Muestra	Norte	110427		mg/l	15.7			
11.63	Muestra	Este	773557	1		15.7			

	Demanda Bioquimica de Oxigeno							
Estacion	Tipo de resultado	Coordenadas	Altitud	Unidad de	Basultados			
Literation	TO DE TEJUNIANO	COOLOGIANA	raturada	medida	nesumourus			

T1-R1	Muestra	Norte	110427		283
14-04	Muestra	Este	773557	mg/l	
T1-R2 M	Manager	Norte	110427	mg/l	281
11-00	Muestra	Este	773557		
T1-R3	Manager	Norte	110427		ane
F1-R3 Muestra	Este	773557	mg/l	286	

Demanda Quimica de Oxigeno								
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados		
T1-R1	Muestra	Norte	110427	T	ma B	458		
11-01	Muestra	Este	773557		mg/l	458		
T1-R2	Muestra	Norte	110427		Carrier III	453		
3.4-96	Muestra	Este	773557		mg/l	453		
T1-R3	Muestra	Norte	110427		mg/l	400		
11-02	Muestra	Este	773557	1		453		

	Aceites y Grasas (mg/l)								
Estacion	Tipo de resultado	Coordenadas		Altitud	Unidad de medida	Resultados			
TI-R1	Muestra	Norte	110427		man	27.3			
11-11	muestra	Este	773557		mg/l	41.5			
T1-R2	Manten	Norte	110427			224			
14-82	Muestra	Este	773557		mg/l	27.1			
T1-R3	Muestra	Norte	110427		mg/l	27.7			
11-n3	Muestra	Este	773557	1		21.7			

APHA-AWWA-WEF (2012)5210B

Estandar Methods for the examination of water and wastewater. AWWA-1992

SMEWW.APHA-AWWA 2510 B. (2017) 5M 2130 B. Turbidity. Nephlometric Method.

APHA-AWWA-WEF (2012) 5210 B APHA-AWWA-WEF (2012) 5220 B

SMEWW-APHA-AWWA-WEF Part 2540 D, 22nd Ed. 2012. Solids. Total Suspended

Solids Dried at 103-105°C.

Equipo utilizado:

Multiparametro Hanna Edge

Codigo Interno:

6053633

espectofotometro

6009512 Muffa 6009565

Estufa DAIHAN SCIENTIFIC

6007386

Equipo de filtracion con bomba al vacio

06-53628

M.Sc. (%

Appro Rodriguez

C. I. P. 37013

ENSAYO N'04 -MC- 2019

LABORATORIO DE QUIMICA - UCV INFORME DE RESULTADOS- MUESTREO DE AGUA

Direction:

Km. 153.5 Panamericana Norte. Puente Huairi

Tipo de ensayo:

Análisis Fisicoquímicos

Matriz:

Agua residual

Descripcion de la muestra:

Muestra tratada mediante biocarbon de cascara de piña

Muestra tomado por:

Briggite Elizabeh Muñoz Solano

Fecha de ingreso de la muestra:

9/11/2019

lugar donde se realizo el ensayo:

	pH								
Estacion T2-R1	Tipo de resultado	Cor	rdenadas Altitud		Unidad de	Resultados			
	147301100000	/ / 55		Francou	medida				
	Montes	Norte	110427			5.55			
12-01	Muestra	Este	773557	7		5.55			
T2-R2	Muestra	Norte	110427			6.00			
12-62	Muestra	Este	773557	1		5.58			
T2-R3 Muestr	Muestra	Norte	110427			5.61			
15-03	Millestra	Este	773557	1		5.61			

	Potencial redox								
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados			
T2-R1	Muestra	Norte	110427		140	45.1			
12-10	Muestra	Este	773557	1	Mv	40.1			
T2-R2	Muestra	Norte	110427		14.	40.7			
12-02	Muestra	Este	773557	7	Mv	40.7			
T2-R3	Montes	Norte	110427		Mv	47.5			
12-62	Muestra	Este	773557	7		43.5			

Temperatura								
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados		
T2-R1	Muestra	Norte	110427		40	23.1		
14-64	Muestra	Este	773557	1	*C	23.1		
T2-R2	Muestra	Norte	110427		*C	23.1		
12-02	Mineratra	Este	773557	1		23.1		
T2-R3	Mainten	Norte	110427		**	***		
12-63	Muestra	Este	773557	1		23.1		

	Conductividad Eléctrica								
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados			
T2-81	Muestra	Norte	110427		I	****			
12-01	Muestra	Este	773557	1	µs/cm	2262			
T2-R2	Muestra	Norte	110427		14034233	Men			
12-02	Munitra	Este	773557	1	µs/cm	2258			
T2-R3	Muneten	Norte	110427	7	- Si-	Alex			
12.63	Muestra	Este	773557	7	µs/cm	2258			

	Oxigeno Disuelto							
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados		
T2-R1	Muestra	Norte	110427			2.00		
12-112	Mucsua	Este	773557	1	mg/l	3.18		
T2-R2	Muestra	Norte	110427		0	2.50		
ta-na	Muesu-a	Este	773557	1	mg/l	3.19		
T2-R3	Muestra	Norte	110427		ng/l	2.0		
12-113	iniuestra	Estel	773557	1		3.16		

	Turbidez							
Estacion	Tipo de resultado	Cod	ordenadas	Altitud	Unidad de medida	Resultados		
T2-R1	Muestra	Norte	110427		NO.			
12-11	Muestra	Este	773557	1	NTU	6.8		
T2-R2	Muestra	Norte	110427		Arres	5.30		
12-nz	muestra	Este	773557		NTU	6.78		
T2-R3	Muestra	Norte	110427		NTU	6.71		
14-40	Muestra	Este	773557	1		6,71		

	ST (mg/)							
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados		
T2-R1	Muestra	Norte	110427					
14704	Misiestra	Este	773557		mg/l	66.4		
T2-R2	Muestra	Norte	110427		ma B	***		
12-82	Muestra	Este	773557	1	mg/l	66.3		
T2-R3	Manager	Norte	110427		mg/t	27.4		
12-95	Muestra	Este	773557			65.1		

	SST (mg/l)							
Estacion	Tipo de resultado	Tipo de resultado Coordenadas		Altitud	Unidad de medida	Resultados		
T2-R1	Muestra	Norte	110427			***		
74.04	mucotta	Este	773557	1	mg/l	42.3		
T2-R2	Muestra	Norte	110427		and the	40.4		
12-06	Muestra	Este	773557	1	mg/l	40.1		
T2-R3	Muestra	Norte	110427		mg/l	45.5		
12-003	muestra.	Este	773557	1		42.7		

	STD (mg/l)							
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados		
T2-R1	Muestra	Norte	110427			477		
12-61	Muestra	Este	773557		mg/l	17.3		
T2-R2	Muestra	Norte	110427		2002	122		
12-52	Mucotra	Este	773557	1	mg/l	17.7		
T2-R3	Muestra	Norte	110427		mg/l	15.01		
12/62	Muestra	Este	773557			16.04		

	Demanda Bi	oquimica de Oxigeno			
Estacion	Tipo de resultado	Coordenadas	Altitud	Unidad de medida	Resultados

T2-R1	Muestra	Norte	110427	The same of	226
12-01	muestra	Este	773557	mg/l	
T2-R2	Muestra	Norte	110427	mg/l	231
12-62	nouestra.	Este	773557		
73.03		Norte	110427	mg/l	226
T2-R3	Muestra	Este	773557		

Demanda Quimica de Oxigeno							
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados	
T2-R1	Muestra	Norte	110427		mah	607	
12-01	MURSUA	Este	773557	7	mg/l	407	
T2-R2	Muestra	Norte	110427		mark.	402	
12-02	nanestra	Este	773557	1	mg/l	402	
T2-R3	Muestra	Norte	110427		mg/l	Ane	
12-65	Muestra	Este	773557			405	

Aceites y Grasas (mg/l)							
Estacion	Tipo de resultado	Coordenadas		Altitud	Unidad de medida	Resultados	
		-				33.631.031.031	
T2-R1		Norte	110427	T		10.1	
12-K1	Muestra	Este	773557		mg/l	18.1	
T2-R2	Muestra	Norte	110427		ma B	10.4	
12-82	Muestra	Este	773557		mg/l	18.4	
T2-R3	Muestra	Norte	110427		mall	124	
14-h3	Muestra	Este	773557		mg/l	17.1	

APHA-AWWA-WEF (2012)5210B

Estándar Methods for the examination of water and wastewater. AWWA-1992

SMEWW.APHA-AWWA 2510 B. (2017) SM 2130 B. Turbidity. Nephlometric Method.

APHA-AWWA-WEF (2012) 5210 B APHA-AWWA-WEF (2012) 5220 B

SMEWW-APHA-AWWA-WEF Part 2540 D, 22nd Ed. 2012. Solids. Total Suspended

Solids Dried at 103-105°C.

Equipo utilizado: Codigo Interno: Multiparámetro Hanna Edge

6053633

espectofotometro

6009512 Mufla

6009565

Estufa DAIHAN SCIENTIFIC

6007386

Equipo de filtracion con bomba al vacio

06-53628

M.Sc. Office Consultation Redrigue

C. L.P. 37913

ENSAYO N'05 -MC- 2019

LABORATORIO DE QUIMICA - UCV INFORME DE RESULTADOS- MUESTREO DE AGUA

Direction:

Km. 153.5 Panamericana Norte. Puente Huari

Tipo de ensayo:

Análisis Fisicoquímicos

Matriz:

Agua residual

Descripcion de la muestra:

Muestra tratada mediante biocarbon de cascara de piña-

Muestra tomado por:

Briggite Elizabeh Muñoz Solano

Fecha de ingreso de la muestra:

9/11/2019

lugar donde se realizo el ensayo:

	pH								
Estacion	Tipo de resultado	Con	ordenadas	Altitud	Unidad de medida	Resultado			
T3-R1	Muestra	Norte	110427			4.12			
13-112	Muestra	Este	773557			4.12			
T3-R2	Muestra	Norte	110427	-		20.00			
13-112	Muestra	Esto	773557			4.15			
T2 02		Norte	110427			4.12			
T3-R3	Muestra	Este	773557	7					

		Potencial redo	×			
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados
T3-R1	Muestra	Norte	110427		Mv	40.1
13-81	Muestra	Este	773557		MV	40.1
T3-R2	Muestra	Norte	110427		140	40.0
13-112	Muestra	Este	773557	V	Mv	40.5
T3-R3	Muestra	Norte	110427	6	865	40.0
13-113	Muestra	Este	773557	1	Mv	40.8

	Temperatura						
Estacion	Tipo de resultado	oo de resultado Coordenadas		Altitud	Unidad de medida	Resultados	
T3-R1	Muestra	Norte	110427		*c	23.5	
13-114	Muestra	Este	773557		1	23.5	
T3-R2	Muestra	Norte	110427		100	22.5	
13-112	Muestra	Este	773557		°C	23.5	
T3-R3	Muestra	Norte	110427		*c	22.5	
13-113	Muestra	Este	773557	1		23.5	

	Cor	nductividad Elé	ctrica			
Estacion	Tipo de resultado	Cod	ordenadas	Altitud	Unidad de medida	Resultado
T3-R1	Muestra	Norte	110427			2241
13-112	Muestra	Este	773557	1	μs/cm	2241
T3-R2	Muestra	Norte	110427	1		2246
13-82	Munistra	Este	773557		μs/cm	
T3-R3	Muestra	Norte	110427		953158V	2242
13-63	Mulestra Este 773557		μs/cm	2247		

	Oxigeno Disuelto						
Estacion	Tipo de resultado	Coordenadas		Altitud	Unidad de medida	Resultados	
				2000000	medida	200000000	
T2 01	Muestra	Norte	110427			0.00	
T3-R1	Neuestra	Este	773557		mg/l	3.15	
T3-R2		Norte	110427		man H	3.15	
13-82	Muestra	Este	773557		mg/l	3.15	
T3-R3	Manager	Norte	110427		mg/l	3.19	
13-63	Muestra	Este	773557			3.19	

	.,	Turbidez			30,000	
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados
T3-R1	Muestra	Norte	110427		NTU	2.27
13-61	Muesur	Este	773557		MIG	4.67
T3-R2	Muestra	Norte	110427		NTU	2.20
13-82	Muestra	Este	773557		NIU	2.28
T3 D2	Montes	Norte	110427		ACTO	2.40
T3-R3	Muestra	Este	773557		NTU	3,19

		ST (mg/)				
Estacion	Tipo de resultado	Cox	ordenadas	Altitud	Unidad de medida	Resultado
T3-R1	Muestra	Norte	110427		ma/l	74.2
La-rea	Mucsus	Este	773557		mg/l	19.2
T3-R2	Muestra	Norte	110427		meA.	75.1
	Muestra	Este	773557	7	mg/l	/5.1
19.04		1000				
T3-R3	Muestra	Norte	110427		mg/l	74.8

		SST (mg/l)				
Estacion	Tipo de resultado	Co	ordenadas	Altitud	Unidad de medida	Resultados
T3-R1	Muestra	Norte	110427	1	mg/l	45.3
13ma	muestra	Este	773557		ings,	45.3
T3-R2	Muestra	Norte	110427		mg/I	46.6
13-02	Muestra	Este	773557		mgn	40.0
T3 03	Martin	Norte	110427		mg/l	AE A
T3-R3	Muestra	Este	773557	1		45.9

	STD (mg/l)						
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados	
T3-R1	Muestra	Norte	110427		ma B	20.3	
13-81	nouestra	Este	773557		mg/l	20.5	
T3-R2	Muestra	Norte	110427		ma B	20.0	
13-82	nouestre	Este	773557		mg/l	20.8	
T3-R3	Muestra	Norte	110427		mg/l	34.6	
13-83	MUMATE	Este	773557	1		21.6	

	Demanda Bi	loquimica de Oxigeno			
Francisco	Tino de socultado	Coordenadas	Altitud	Unidad de	Resultados
Estacion	Tipo de resultado	Coordenadas	Autitua	medida	Resultado

T3-R1	Muestra	Norte	110427	mall	195
19-47	muestra	Este	773557	mg/l	
T3-R2 Muestra	Markey	Norte	110427	ma fl	+05
	Este	773557	mg/l	195	
T3 03	1440,5200	Norte	110427	mg/l	100
T3-R3 Muestra	Muestra	Este	773557		193

	Demanda Quimica de Oxigeno						
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados	
T3-R1	Muestra	Norte	110427		mg/l	381	
13-01	muestra	Este	773557		mgri	301	
T3-R2	Musetes	Norte	110427		ma B	200	
13-82	Muestra	Este	773557		mg/l	386	
T3-R3	Musetes	Norte	110427		img/l	382	
13-13	Muestra	Este	773557	1	mg/r	382	

	Aceites y Grasas (mg/l)						
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados	
T3-R1	Muestra	Norte	110427		mg/l	14.6	
	100000	Este	773557	-			
T3-R2	Muestra	Norte Este	110427 773557	1	mg/l	14.1	
T3-R3	Muestra	Norte	110427		mg/l	14.9	
13-103	Muestra	Este	773557			44.3	

APHA-AWWA-WEF (2012)5210B

Estándar Methods for the examination of water and wastewater. AWWA-1992

SMEWW.APHA-AWWA 2510 B. (2017) SM 2130 B. Turbidity. Nephlometric Method.

APHA-AWWA-WEF (2012) 5210 B APHA-AWWA-WEF (2012) 5220 B

SMEWW-APHA-AWWA-WEF Part 2540 D, 22nd Ed. 2012. Solids. Total Suspended

Solids Dried at 103-105°C.

Equipo utilizado: Codigo Interno: Multiparámetro Hanna Edge

6053633

espectofotometro

6009512 Mufla

6009565

Estufa DAIHAN SCIENTIFIC

6007386

Equipo de filtracion con bomba al vacio

06-53628

M.Sc. Carlos Cunt

INGENIERÓ QUIMIO C. I. P. 37913

CIP.

ENSAYO N'06 -MC- 2019

LABORATORIO DE QUIMICA - UCV INFORME DE RESULTADOS- MUESTREO DE AGUA

Direccion:

Km. 153.5 Panamericana Norte. Puente Huan

Tipo de ensayo:

Análisis Fisicoquímicos

Matriz:

Agua residual

Muestra tratada con linaza

Descripcion de la muestra: Muestra tomado por:

Briggite Elizabeh Muñoz Solano

Fecha de ingreso de la muestra:

9/11/2019

lugar donde se realizo el ensayo:

		pH			Augusta I and	
Estacion	Tipo de resultado	Coc	pordenadas Altitud Unidad de		Unidad de	Resultados
Latacion	1,400				medida	NESOTIAGO.
T1-R1	Manage	Norte	110427			F 07
11-81	Muestra	Este	773557		(5.07
T1-R2	Muestra	Norte	110427			6.1
11-NZ	Muestra	Este	773557			5.1
** **	Months	Norte	110427		1	F 200
T1-R3	Muestra	Este	773557	1		5.08

	Potencial redox							
Estacion	Tipo de resultado	Coo	ordenadas	Altitud	Unidad de medida	Resultado		
T1-R1	Muestra	Norte	110427					
17-87	Muestra	Este	773557		Mv	44.2		
71.03		Norte	110427		24.00	44.6		
T1-R2	Muestra	Este	773557	1	Mv			
71.03	Moneton	Norte	110427		Mv	44.5		
T1-R3	Muestra	Este	773557	1		44.6		

	Temperatura									
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultado				
71.01	1	Norte	110427		1.0	22.4				
T1-R1	Muestra	Este	773557		,c	23.4				
T1-R2	Manuta	Norte	110427		- 20	23.4				
11-82	Muestra	Esto	773557	1	°C	23.4				
71.02	10	Norte	110427		100	***				
T1-R3	Muestra	Este	773557	1	,ς	23.4				

	Conductividad Eléctrica									
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados				
T1-R1	Muestra	Norte	110427			2000				
17-87	Muestra	Este	773557	1	μs/cm	2506				
T1-R2	Muestra	Norte	110427		700000	2000				
11-04	Muestra	Este	773557	7	μs/cm	2512				
T1 01	Montes	Norte	110427		1.23	2525				
T1-R3	Muestra	Este	773557	7	μs/cm	2515				

	Oxigeno Disuelto								
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados			
T1-R1	Muestra	Norte	110427		mail .	3.09			
17-87	Muesua	Este	773557		mg/l	3.09			
T1-R2	Muestra	Norte	110427		mall.	3.12			
12-82	Muestra	Este	773557		mg/l	3.12			
T1-R3	Musetee	Norte	110427		mg/l	3.00			
11-40	Muestra	Este	773557	1		3.08			

	Turbidez								
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados			
T1-R1	Muestra	Norte	110427		NTU	11.22			
17-47	Muestra	Este	773557		NIU	11.22			
T1-R2	Muestra	Norte	110427		ACTO	11 10			
11-112	Muestra	Este	773557		NTU	11.18			
74.00	Muestra	Norte	110427		NTU	45.46			
T1-R3	Muestra	Este	773557	1		11.15			

	ST (mg/)								
Estacion	Tipo de resultado	Coordenadas		Altitud	Unidad de medida	Resultados			
T1-R1	Muestra	Norte	110427			51.3			
17-67	Muestra	Este	773557		mg/l	313			
T1-R2	Muestra	Norte	110427			51.8			
11-62	Missestra	Este	773557		mg/l	21.8			
T1-R3	Muestra	Norte	110427		mg/l	22.1			
17-10	Millestra	Este	773557			52.1			

	SST (mg/l)							
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados		
T1-R1	Muestra	Norte	110427			36.1		
1.4:954	rendestre	Este	773557		mg/l	50.1		
T1-R2	Muestra	Norte	110427			22.2		
12-02	muestra	Este	773557		mg/l	33.7		
T1.02	Massier	Norte	110427		mg/l	22.5		
T1-R3	Muestra	Este	773557			33.5		

		STD (mg/t)				
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados
T1-R1	Muestra	Norte	110427		matt.	16.9
1.a-ma	muestra	Este	773557		mg/l	10.9
T1-R2	Muestra	Norte	110427		mall.	46.4
14-nz	muestra	Este	773557		mg/l	15.4
T1-R3	Muestra	Norte	110427	/	mg/l	40.0
11-63	Muestra	Este	773557			15.3

	Demanda Bi	oquimica de Oxigeno				
Estacion	Tipo de resultado	Coordenadas	Altitud	Unidad de	Resultados	
Estation	ripo de resultado	Coordenadas	Altitud	medida	Resultados	

1 17	mall	110427	Norte	Muestra	T1-R1
* *	mg/l	773557	Este	Muestra	11-61
1 17	mg/l	110427	Norte		T1-R2 Muestr
		773557	Este	Muestra	
n 43	mg/l	110427	Norte	2.2.	
1 17		773557	Este	Muestra	T1-R3 M

Demanda Quimica de Oxigeno								
Estacion	Tipo de resultado	Coo	rdenadas	Altitud	Unidad de medida	Resultados		
T1 D1	Muestra	Norte	110427			256		
T1-R1	Muestra	Este	773557		mg/l	430		
71.03	Montes	Norte	110427		200	261		
T1-R2	Muestra	Este	773557		mg/l	501		
#1 P3		Norte	110427		mg/l	26.4		
T1-R3	Muestra	Este	773557			254		

	Ac	eites y Grasas	(mg/l)			
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados
***		Norte	110427		mg/l	19.7
T1-R1	Muestra	Este	773557		mg/l	13.7
71.03	Montes	Norte	110427		mall	10.2
T1-R2	Muestra	Este	773557		mg/l	19.2
		Norte	110427		mall	19.5
T1-R3	Muestra	Este	773557	1	mg/l	

APHA-AWWA-WEF (2012)52108

Estándar Methods for the examination of water and wastewater. AWWA-1992

SMEWW.APHA-AWWA 2510 B. (2017) SM 2130 B. Turbidity. Nephlometric Method.

APHA-AWWA-WEF (2012) 5210 B APHA-AWWA-WEF (2012) 5220 B

SMEWW-APHA-AWWA-WEF Part 2540 D, 22nd Ed. 2012. Solids. Total Suspended

Solids Dried at 103-105°C.

Equipo utilizado: Codigo Interno: Multiparámetro Hanna Edge

6053633

espectofotometro

6009512 Mufla 6009565

Estufa DAIHAN SCIENTIFIC

6007386

Equipo de filtracion con bomba al vacio

06-53628

M.Sc. Carlos

C. L.P. 37913

ENSAYO N'07 -MC- 2019

LABORATORIO DE QUIMICA - UCV INFORME DE RESULTADOS- MUESTREO DE AGUA

Direccion:

Km. 153.5 Panamericana Norte. Puente Huari

Tipo de ensayo:

Análisis Fisicoquímicos

Matriz:

Agua residual

Descripcion de la muestra:

Muestra tratada con linaza

Muestra tomado por:

Briggite Elizabeh Muñoz Solano

Fecha de ingreso de la muestra:

9/11/2019

lugar donde se realizo el ensayo:

	72.	pH				
Estacion	Tipo de resultado	Cod	ordenadas	Altitud	Unidad de	Resultados
	000000000000000000000000000000000000000	1000		344144	medida	
	Muestra	Norte	110427		T	5.03
T2-R1	y muestra	Este	773557			5.00
T2-R2	Muestra	Norte	110427			5.07
12-02	Muestra	Este	773557			5.07
T2 82	Muestra	Norte	110427	110427		5.08
T2-R3	Muestra	Este	773557	1		

Potencial redox							
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados	
T2-R1	Muestra	Norte	110427		T	44.7	
12-04	Muestra	Este	773557		Mv	44.7	
T2-R2		Norte	110427		Mv	44.4	
12-82	Muestra	Este	773557			44.1	
72.62	Muestra	Norte	110427		Mv		
T2-R3	Muestra	Este	773557			44.1	

		Temperatura	1	100	CAN HOUSE	
Estacion	Tipo de resultado	Cos	ordenadas	Altitud	Unidad de medida	Resultados
T2-R1	Muestra	Norte	110427		1	225
12-81	Muestra	Este	773557		*C	22.5
T2-R2	Muestra	Norte	110427		40	225
12-82	Muestra	Este	773557		ής.	22.5
77.07	Muestra	Norte	110427		20	2276
T2-R3	Miuestra	Este	773557			22.5

	Cor	nductividad Elé	ctrica		Navi Maria I I	
Estacion	Tipo de resultado	Coo	ordenadas	Altitud	Unidad de medida	Resultados
72-81	Muestra	Norte	110427		austeen.	1010
12.01	Manager	Este	773557		μs/cm	2338
T2-R2	Montes	Norte	110427		and from	22.62
12.62	Muestra	Este	773557	1	μs/cm	2342
***	Mineter	Norte	110427		μs/cm	2224
T2-R3	Muestra	Este	773557	1		2334

		Oxigeno Disue	ito			
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados
T2-R1	Muestra	Norte	110427		mañ	2.35
16-ma	rendestra	Este	773557		mg/l	6:33
T2-R2	Muestra	Norte	110427		mg/l	2.87
12-82	muestra	Este	773557			6.87
T2-R3	Muestra	Norte	110427		maß	2.02
	Muestra	Este	773557	1	mg/l	2.92

		Turbidez				
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados
T2-R1	Muestra	Norte	110427		Arris	26.5
12-11	Muestra	Este	773557		NTU	20.5
72.02	Muestra	Norte	110427		NTU	2.00000
T2-B2	Muestra	Este	773557		MIG	25.6
72.00	Montes	Norte	110427		Armi	20.0
T2-R3	Muestra	Este	773557		NTU	25.6

	W	ST (mg/)		0)	2	
Estacion	Tipo de resultado	Con	ordenadas	Altitud	Unidad de medida	Resultado
T2-R1	Muestra	Norte	110427		matt.	56.7
15-01	Muestra	Este	773557		mg/l	36.7
T2-R2	Marine	Norte	110427		man A	
12-62	Muestra	Este	773557		mg/l	56.4
72.02	Muestra	Norte	110427	3	200	57.1
T2-R3		Este	773557	1	mg/l	57.1

	40-	SST (mg/l)		V - 1	/- V	
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados
T2-R1	Muestra	Norte	110427			30.1
12-01	Missestra	Este	773557		mg/ī	38.3
T2-R2		Norte	110427			20.5
12-82	Muestra	Este	773557		mg/l	39.6
77.02	Muestra	Norte	110427		mad.	20.1
T2-R3	muestra	Este	773557	1	mg/l	39.1

		STD (mg/l)		10	amiceanyou	
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados
T2-R1	Muestra	Norte	110427		madi	17.3
12-h1	Muestra	Este	773557		mg/l	17.3
T2-R2	1000000	Norte	110427			172
12-N2	Muestra	Este	773557		mg/l	17.2
22.50	Moneton	Norte	110427		mg/l	18.9
T2-R3	Muestra	Este	773557			18.9

	Demanda Bi	oquimica de Oxigeno	U.	AN HUMBER	
Estacion	Tipo de resultado	Coordenadas	Altitud	Unidad de medida	Resultados

T2-R1	Muestra	Norte	110427	mall	196
15.61		Este	773557	mg/l	
T2 62	Muestra	Norte	110427	mg/l	192
T2-R2		Este	773557		
T2-R3	Moneton	Norte	110427		100
	Muestra	Este	773557	mg/l	196

	Demanda Quimica de Oxigeno								
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados			
T2-R1	Maritia	Norte	110427		mall	201			
12-81	Muestra	Este	773557		mg/l	281			
T2-R2	The same	Norte	110427		mg/l	284			
12-82	Muestra	Este	773557			204			
T2-R3	Muestra	Norte	110427		and 0	701			
		Este	773557		rmg/l	281			

	Aceites y Grasas (mg/l)								
Estacion	Tipo de resultado	de resultado Coordenadas		Altitud	Unidad de medida	Resultados			
T2-R1	Muestra	Norte	110427		med	19.1			
12-81	Muestra	Este	773557		mg/l	13.1			
T2-R2	Muestra	Norte	110427		mg/l	10.4			
12-112	Muestra	Este	773557			19.4			
T2-R3	Muestra	Norte	110427		made	19.2			
		Este	773557		mg/l	19.2			

APHA-AWWA-WEF (2012)5210B

Estándar Methods for the examination of water and wastewater. AWWA-1992

SMEWW.APHA-AWWA 2510 B. (2017) SM 2130 B. Turbidity. Nephlometric Method.

APHA-AWWA-WEF (2012) 5210 B APHA-AWWA-WEF (2012) 5220 B

SMEWW-APHA-AWWA-WEF Part 2540 D, 22nd Ed. 2012. Solids. Total Suspended

Solids Dried at 103-105°C.

Equipo utilizado: Codigo Interno:

Multiparâmetro Hanna Edge

6053633

espectofotometro

6009512 Muffa

6009565

Estufa DAIHAN SCIENTIFIC

6007386

Equipo de filtracion con bomba al vacio

06-53628

M.Sc. Carlie

ENSAYO N'08 -MC- 2019

LABORATORIO DE QUIMICA - UCV INFORME DE RESULTADOS- MUESTREO DE AGUA

Direction: Km. 153.5 Panamericana Norte. Puente Huan

Tipo de ensayo: Análisis Fisicoquímicos

Matriz: Agua residual
Descripcion de la muestra: Muestra trata:

Descripcion de la muestra: Muestra tratada con linaza

Muestra tomado por: Briggite Elizabeh Muñoz Solano

Fecha de ingreso de la muestra: 9/11/2019

lugar donde se realizo el ensayo: Laboratorio de Química - UCV.

		pH				
Estacion	Tipo de resultado	Coordenadas		Altitud	Unidad de	Resultados
					medida	
T3-R1	Muestra	Norte	110427			2.26
13.47	Minicalia	Este	773557			3.36
T3-R2	Muestra	Norte	110427			2.09
13762	Mentanta	Este	773557	1		3.87
T3.03	Muestra	Norte	110427			4.12
T3-R3	Munistra	Este	773557	7		

	Potencial redox								
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados			
T3-R1	Muestra	Norte	110427		T	43.6			
13-81	Mucsula	Este	773557		Mv	42.6			
T3-R2	Muestra	Norte.	110427		***	***			
13.62	Motsua	Este	773557	1	Mv	42.6			
T3-R3	Muestra	Norte	110427		4.00	***			
13-103	Muestra	Este	773557	1	Mv	42.8			

	Temperatura									
Estacion	Tipo de resultado	Cox	ordenadas	Altitud	Unidad de medida	Resultados				
T3-R1	Muestra	Norte	110427		No.	22.3				
10-112	Mucsula	Este	773557	1	~	22.5				
T3-R2	Muestra	Norte	110427		Υ.	22.2				
13-nz Mues	Muestra	Este	773557			22.3				
T2 02	Muestra	Norte	110427		τ	22.2				
T3-R3	Muestra	Este	773557	1		22.3				

	Cor	nductividad Elé	ctrica	y.		0
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados
T3-R1	Muestra	Norte	110427			2422
13-162	Mucsua	Este	773557	1	µs/cm	2422
T3-R2	Muestra	Norte	110427			2424
13-112	Muestra	Este	773557		µs/cm	2431
T3-R3	Muestra	Norte.	110427		μs/cm	2220
13-10	muestra	Este	773557	1		2428

	Oxigeno Disuelto								
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados			
T3-R1	Muestra	Norte	110427			0.44			
13-97	Mucsua	Este	773557	7	mg/l	3.41			
T3-R2	Muestra	Norte	110427		2.5	2.42			
13 MZ	Muestra	Este	773557		mg/l	3.43			
T3-R3	Muestra	Norte	110427		mg/l	2.40			
13.63	Muestra	Este	773557	1		3.48			

	Turbidez							
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados		
T3-R1	Muestra	Norte	110427		NTU	216		
13-62	Muestra	Este	773557	7	MIU	3.15		
T3-R2	Muestra	Norte	110427		NTU	4.74		
13-112	Muestra	Este	773557	7	NIU	1.74		
T3-R3	Muestra	Norte	110427		NTU	150		
13:163	Muestra	Este	773557			1.58		
		4.140	170007					

	ST (mg/)								
Estacion	Tipo de resultado	Coc	ordenadas	Altitud	Unidad de medida	Resultados			
T3-R1	Muestra	Norte	110427		mad.	27.6			
13-02	Minestra	Este	773557		mg/l	37.5			
T3-R2	Muestra	Norte	110427		mg/l	22.2			
13-82	Muestra	Este	773557	1		37.3			
T3-R3	Manager	Norte	110427			20.6			
	Muestra	Este	773557	1	mg/l	38.1			

	SST (mg/l)							
Estacion	Tipo de resultado	Coo	ordenadas	Altitud	Unidad de medida	Resultados		
T3-R1	Muestra	Norte	110427			24.2		
13-84	muestra	Este	773557	1	mg/l	24.3		
T3-R2	Muestra	Norte	110427		and.	No. o.		
13-86	muestra	Este	773557	1	mg/l	25.1		
T3-R3	Montes	Norte	110427		mg/l	20.0		
1.3-45	Muestra	Este	773557	1		25.6		

	33	STD (mg/l)			()	
Estacion	Tipo de resultado	Coo	ordenadas	Altitud	Unidad de medida	Resultados
T3-R1	Muestra	Norte	110427			12.7
13-62	muestra	Este	773557	7	mg/l	12.7
T3-R2	Muestra	Norte	110427			17.4
13-82	Muestra	Este	773557	7	mg/l	12.4
T3-R3	Manager	Norte	110427	-	mg/l	100
13-83	Muestra	Este	773557			13.6

	Demanda Bioquimica de Oxigeno								
Estacion	Tipo de resultado	Coordenadas	Altitud	Unidad de medida	Resultados				

T3-R1	Muestra	Norte	110427	mg/l	127
		Este	773557		
T3-R2	Muestra	Norte	110427	mg/l	125
		Este	773557		
T3-R3	Muestra	Norte	110427	mg/l	131
		Este	773557		

	Dema	nda Quimica de	Oxigeno		1270000000000	
Estacion	Tipo de resultado	Coordenadas		Altitud	Unidad de medida	Resultados
			Courdenadas			
T3-R1	Montes	Norte	110427		T	***
13-65	Muestra	Este	773557		mg/t	244
T3-R2	Muestra	Norte	110427		mg/l	241
		Este	773557			
T3-R3	Muestra	Norte	110427		mad.	241
		Este	773557	1	mg/i	

	Ac	eites y Grasas	mg/I)		11100 2130015	
Estacion	Tipo de resultado	Coordenadas		Altitud	Unidad de medida	Resultados
T3-R1	Muestra	Norte	110427			17.0
15-112	Muestra	Este	773557		mg/l	17.3
T3-R2	Muestra	Norte	110427		mg/l	17.8
		Este	773557			
T3-R3	Muestra	Norte	110427			17.2
		Este	773557		mg/l	

APHA-AWWA-WEF (2012)5210B

Estandar Methods for the examination of water and wastewater. AWWA-1992

SMEWW.APHA-AWWA 2510 B. (2017) SM 2130 B. Turbidity. Nephlometric Method.

APHA-AWWA-WEF (2012) 5210 B APHA-AWWA-WEF (2012) 5220 B

SMEWW-APHA-AWWA-WEF Part 2540 D, 22nd Ed. 2012. Solids. Total Suspended.

Solids Dried at 103-105°C.

Equipo utilizado: Codigo Interno: Multiparámetro Hanna Edge

6053633

espectofotometro

6009512 Mufla 6009565

Estufa DAIHAN SCIENTIFIC

6007386

Equipo de filtracion con bomba al vacio

06-53628

M.Sc. Carker Transport Communication Communi