

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Influencia en la resistencia mecánica del concreto con la incorporación de Cemento Multipropósito y agua fría entre 10°C a35°C en Challhuahuacho – Apurímac, 2020"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

AUTOR:

Salas Duran Jim Anthony (ORCID: 0000-0003-3701-8450)

ASESOR:

Mg. Pinto Barrantes, Raúl Antonio (ORCID:0000-0002-9573-0182)

LÍNEA DE INVESTIGACIÓN:

Diseño sísmico y estructural

LIMA - PERÚ

2020

Dedicatoria

El presente trabajo de investigación es dedicado a mis padres, quienes siempre me apoyaron durante el desarrollo de este trabajo.

Agradecimiento

El presente trabajo de investigación se logró gracias al apoyo del Ing. Carlos Orbegoso y de los laboratorios del CONSORCIO INTEGRACIÓN, quien apoyo con la utilización de su laboratorio para realizar los ensayos requeridos.

INDICE

Carat	tula	.i
Dedic	catoria	. ii
Agrad	decimiento	iii
Índice	e de figuras	vi
Índice	e de Tablasv	/ii
Índice	e de Gráficosv	iii
Índice	e de Abreviaturas	Х
Resu	men	X
Abstr	actx	(ii
l.	INTRODUCCIÓN1	3
II.	MARCO TEÓRICO 1	6
III.	METODOLOGÍA2	4
3.1	Tipo y Diseño de Investigación2	:4
3.2.	Variables y Operacionalización2	:5
3.3.	Población y muestra2	:6
3.4.	Técnicas e instrumentos de recolección de datos	:7
3.5.	Procedimiento2	7
3.6.	Método de análisis de datos3	1
3.7.	Aspectos éticos3	1
IV.	RESULTADOS	2
4.1. incorp	Comparación del incremento de la resistencia del concreto con l poración de agua entre 10°C a 35°C a los 7 días3	
4.2. incorp	Comparación del comportamiento del módulo de rotura del concreto a porar agua entre 10° C y 35°C 7 días3	
4.3. incorp	Comparación del incremento de la resistencia del concreto con l poración de agua entre 10°C a 35°C a los 14 días3	
4.4. incorp	Comparación del comportamiento del módulo de rotura del concreto a porar agua entre 10° C y 35°C 14 días3	
4.5.	Comparación del incremento de la resistencia del concreto con l poración de agua entre 10°C a 35°C a los 28 días3	

4.6. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua entre 10° C y 35°C 28 días37
4.7. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua entre 10° C y 35°C 35 días
4.8. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua entre 10° C y 35°C 35 días39
4.9. Análisis del comportamiento de la resistencia del concreto con la incorporación de agua a los 10°C
4.10. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua a los 10° C41
4.11. Análisis del comportamiento de la resistencia del concreto con la incorporación de agua a los 15°C
4.12. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua a los 15° C
4.13. Análisis del comportamiento de la resistencia del concreto con la incorporación de agua a los 20°C
4.14. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua a los 20° C
4.15. Análisis del comportamiento de la resistencia del concreto con la incorporación de agua a los 30°C
4.16. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua a los 30° C
4.17. Análisis del comportamiento de la resistencia del concreto con la incorporación de agua a los 20°C
4.18. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua a los 30° C
V. DISCUSIÓN50
VI. CONCLUSIONES54
VII. RECOMENDACIONES56
REFERENCIAS57
ANEXOS

Índice de figuras

Figura 1: Muestras de briquetas de concreto	. 22
Figura 2: Rotura de briquetas de concreto	. 22
Figura 3: Cemento multipropósito tipo IP	. 23
Figura 4: Almacenamiento de agua en obra	. 23
Figura 5: Ensayo de resistencia mecánica del concreto	. 26
Figura 6: Asentamiento del concreto	. 29
Figura 7: Agregado grueso	. 29

Índice de Tablas

Tabla 1: Asentamiento de concreto ACI 211.1-91	. 28
Tabla 2: Cuadro de datos de roturas a los 7 días	. 32
Tabla 3: Cuadro de datos del módulo de rotura del concreto a los 7 días	. 33
Tabla 4: Cuadro de datos de roturas a los 14 días	. 34
Tabla 5: Cuadro de datos del módulo de rotura del concreto a los 14 días	. 35
Tabla 6: Cuadro de datos de roturas a los 28 días	. 36
Tabla 7: Cuadro de datos del módulo de rotura del concreto a los 28 días	. 37
Tabla 8: Cuadro de datos de roturas a los 35 días	. 38
Tabla 9: Cuadro de datos del MR del concreto a los 35 días	. 39
Tabla 10: Cuadro de datos de roturas con la incorporación de agua a 10°C	. 40
Tabla 11: Cuadro de datos del MR con la incorporación de agua a los 10°C	. 41
Tabla 12: Cuadro de datos de roturas con la incorporación de agua a 15°C	. 42
Tabla 13: Cuadro de datos del MR con la incorporación de agua a los 15°C	. 43
Tabla 14: Cuadro de datos de roturas con la incorporación de agua a 20°C	. 44
Tabla 15: Cuadro de datos del MR con la incorporación de agua a los 20°C	. 45
Tabla 16: Cuadro de datos de roturas con la incorporación de agua a 30°C	. 46
Tabla 17: Cuadro de datos del MR con la incorporación de agua a los 30°C	. 47
Tabla 18: Cuadro de datos de roturas con la incorporación de agua a 35°C	. 48
Tabla 19: Cuadro de datos del MR con la incorporación de agua a los 35°C	. 49
Tabla 20: Tabla de resultados del investigador Héctor Castro Saavedra	. 50
Tabla 21: Tabla general de resultados	. 51
Tabla 22: Resistencia a la compresión del concreto kg/cm²	. 52
Tabla 23: Resistencia a la compresión alcanzada con diferentes temperatu	ras
de agua	. 53

Índice de Gráficos

Gráfico 1: Incremento de la resistencia del concreto a una edad de 7 días 32
Gráfico 2: Incremento en el porcentaje de la resistencia concreto a una edad de
7 días
Gráfico 3: Comparación del MR con la incorporación de agua entre 10°C y 35°C
33
Gráfico 4: Comparación del porcentaje del MR respecto al diseño de 210kg/cm
a los 7 días33
Gráfico 5: Incremento de la resistencia del concreto a una edad de 14 días 34
Gráfico 6:Incremento en el porcentaje de la resistencia concreto a una edad de
14 días 34
Gráfico 7: Comparación del MR con la incorporación de agua entre 10°C y 35°C
a los 14 días35
Gráfico 8: Comparación del porcentaje del MR respecto al diseño de 210kg/cm
a los 14 días35
Gráfico 9: Incremento de la resistencia del concreto a una edad de 28 días 36
Gráfico 10:Incremento en el porcentaje de la resistencia concreto a una edad de
28 días
Gráfico 11: Comparación del MR con la incorporación de agua entre 10°C a
35°C a los 14 días
Gráfico 12: Comparación del porcentaje del MR respecto al diseño de 210kg/cm
a los 28 días
Gráfico 13: Incremento de la resistencia del concreto a una edad de 35 días. 38
Gráfico 14:Incremento en el porcentaje de la resistencia concreto a una edad de
35 días
35 días

Gráfico 20: Comparación del porcentaje del MR respecto al diseño de
210kg/cm ² 41
Gráfico 21: Resistencia del concreto con la incorporación de agua a 15°C 42
Gráfico 22:Porcentaje del incremento de la resistencia del concreto con agua a
15°C
Gráfico 23: Comparación del MR con la incorporación de agua a los 15°C 43
Gráfico 24: Comparación del porcentaje del MR respecto al diseño de
210kg/cm ² 43
Gráfico 25: Resistencia del concreto con la incorporación de agua a 20°C 44
Gráfico 26:Porcentaje del incremento de la resistencia del concreto con agua a
20°C
Gráfico 27: Comparación del MR con la incorporación de agua a los 20°C 45
Gráfico 28: Comparación del porcentaje del MR respecto al diseño de
210kg/cm ²
Gráfico 29: Resistencia del concreto con la incorporación de agua a 30°C 46
Gráfico 30:Porcentaje del incremento de la resistencia del concreto con agua a
30°C
Gráfico 31: Comparación del MR con la incorporación de agua a los 30°C 47
Gráfico 32: Comparación del porcentaje del MR respecto al diseño de
210kg/cm ²
Gráfico 33: Resistencia del concreto con la incorporación de agua a 35°C 48
Gráfico 34:Porcentaje del incremento de la resistencia del concreto con agua a
35°C
Gráfico 35: Comparación del MR con la incorporación de agua a los 35°C 49
Gráfico 36: Comparación del porcentaje del MR respecto al diseño de
210kg/cm ² 49

Índice de Abreviaturas

PET Polietileno Tereftalato

CPO 30R RS BRA Cemento Portland Ordinario, Clase Resistente 30 de

Resistencia Rápida, Resistente a los Sulfatos

RCC Resistencia a la Compresión

RNE Reglamento Nacional de Edificaciones

R^a/_c Relación Agua Cemento

Ww Peso del Agua

Wc Peso del Cemento

Wg Peso de la Grava

Var Volumen de la Arena

Vc Volumen del Cemento

Vw Volumen del Agua

V_G Volumen de la Grava

Yw Peso Específico

Resumen

La siguiente investigación tiene como título "Influencia en la resistencia mecánica del concreto con la incorporación de Cemento Multipropósito y agua fría entre 10°C a 35°C en Challhuahuacho – Apurímac, 2020" donde se tuvo como objetivo general: Evaluar la resistencia a la compresión y el módulo de rotura del concreto con la incorporación de cemento multipropósito y agua fría entre 10°C a 35°C en Challhuahuacho - Apurímac, 2020. La metodología utilizada fue de enfoque cuantitativo, tipo de investigación fue cuasi experimental. La población fueron todas las probetas realizadas en el laboratorio y la muestra fue de 20 probetas cilíndricas. Como resultados se obtuvo que, con la incorporación de cemento multipropósito y agua fría entre 10°C a 35°C. La resistencia a la compresión y el módulo de rotura aumenta conforme aumenta la temperatura del agua hasta llegar a los 35°C obteniendo una resistencia a la compresión a los 35 días mínima de f'c=222.40kg/cm² al utilizar agua a una temperatura de 10°C, y al utilizar agua a una temperatura de 15°C alcanzo una resistencia a la compresión a los 35 días de f'c=228.00kg/cm², así mismo al utilizar agua a una temperatura de 20°C, alcanzo una resistencia a la compresión de f´c= 236.30kg/cm², también cuando se utilizó una temperatura de agua de 30°C, alcanciazo una resistencia a la compresión de f'c=255.80kg/cm² y finalmente al utilizar una temperatura de agua de 35°C alcanzo una resistencia a la compresión de f´c=278.00kg/cm² demostrando que a la resistencia a la compresión aumenta al agregar agua a una mayor temperatura.

Palabras claves: Concreto, resistencia a la compresión, temperatura de agua.

Abstract

The following research is entitled "Influence on the mechanical resistance of concrete with the incorporation of Multipurpose Cement and cold water between 10°C to 35°C in Challhuahuacho - Apurímac, 2020" where the general objective was: Evaluate the resistance to compression and the concrete breaking modulus with the incorporation of multipurpose cement and cold water between 10°C to 35°C in Challhuahuacho - Apurímac, 2020. The methodology used was quantitative approach, type of research was quasi experimental. The population consisted of all the specimens made in the laboratory and the sample consisted of 20 cylindrical specimens. As results it was obtained that, with the incorporation of multipurpose cement and cold water between 10°C and 35°C. The compressive strength and the modulus of rupture increases as the water temperature increases until reaching 35°C, obtaining a minimum compressive strength after 35 days of f'c=222.40kg/cm² when using water at a temperature of 10°C, and when using water at a temperature of 15°C I reached a compressive strength at 35 days of f'c=228.00kg/cm², likewise when using water at a temperature of 20°C, I reached a compressive strength of f'c=236.30kg/cm², also when a water temperature of 30°C was used, a compressive strength of f'c=255.80kg/cm² and finally when using a temperature of 35°C water reached a compressive strength of f'c=278.00kg/cm² showing that the compressive strength increases when water is added at a higher temperature.

Keywords: Concrete, compressive strength, water temperature.

I. INTRODUCCIÓN

El cemento portland ha sido utilizado en diferentes tipos de edificaciones en todo el mundo. Sin embargo, los países al pasar los años se vieron con la necesidad de producir cementos que permitan el ahorro y el cuidado del medio ambiente (Rincón, Vela, Meza y Angulo. 2016, p. 2). Debido a su elevado costo de producción y alta contaminación, se ha buscado un aditivo que mejore las características del concreto, que sea económico y que además minimice el impacto ambiental, una adición de características plástica derivada del petróleo y que pertenece al grupo de los materiales sintéticos denominados poliésteres;(PET). para esto se fabricaron varios especímenes de concreto con agregado grueso triturado y agregado fino volcánico, cemento CPO 30R RS BRA, agua y el aditivo de fibra de PET. con estos materiales se elaboró la mezcla de concreto y una vez alcanzada la edad de prueba, se obtuvieron resultados de compresión simple, módulo de ruptura, resistividad eléctrica y velocidad de pulso ultrasónico (Ramírez, Lara, Montes de Oca, López y Velázquez, 2019 p. 10).

Aproximadamente 40 años en la ciudad de Abancay se utilizó el método de curado externo, el cual consiste en la aplicación de agua sobre la superficie del concreto a través del proceso de riego de agua en forma periódica, Así también en algunos casos sumergen completamente en agua los elementos de concreto en posas de agua, como se realizan las briquetas del laboratorio, elementos pre fabricados. Sin embargo, en el día a día sumergir los elementos no es viable. Para este caso se utiliza el método de riego de agua periódico para conservar la humedad (Cuellar y Sequeros, 2017, p.18). En vista que en Challhuahuacho se viene invirtiendo en infraestructura pública y privada de forma acelerada, así mismo la infraestructura de un hogar es una necesidad primordial para el ser humano, sin embargo, las condiciones tecnológicas y constructivas para satisfacer estas necesidades no siempre las más adecuadas, lo que se refleja en uso inadecuado de los materiales de construcción, en nuestro caso la elaboración de concreto estructural, puesto que en toda ejecución de obras civiles el concreto estructural está presente, y como toda ejecución de infraestructura nueva trae consigo problemas a resolver en este caso la elaboración de concreto estructural según las especificaciones técnicas de los diferentes proyectos, por lo tanto, esta es la razón que motiva a investigar el diseño de mezclas de concreto estructural para la construcción de obras civiles con aditivo superplastificante y agregados del Distrito de Challhuahuacho (Quispe y Urrutia, 2017, p. 1).

Durante el proceso de ejecución de las edificaciones en el distrito de Challhuahuacho que queda ubicado en el departamento de Apurímac provincia de Cotabambas. Se realiza de manera empírica sin previo estudio de los agregados, en este distrito se reemplaza la utilización de cemento tipo V por el cemento multipropósito o IP por la facilidad que proporciona la empresa Yura en su distribución, este cemento IP tiene un comportamiento diferente, además del cemento, la utilización de agua fría (Agua a temperatura ambiente +/-10°) en la preparación del concreto hace que el concreto no obtenga la resistencia requerida.

El presente proyecto de investigación responde al problema de baja resistencia del concreto, que responde a la causa de la mala dosificación, la consecuencia el concreto no alcanza la resistencia requerida y el aporte de esta es diseñar un concreto para mejorar la resistencia mecánica con la adición de cementos multipropósito y agua.

De lo mencionado anteriormente se plantea la formulación del problema: ¿En qué medida influirá la resistencia mecánica del concreto con la incorporación de cemento multipropósito y agua fría entre 10°C a 35°C en Challhuahuacho - Apurímac, 2020?

El presente estudio se justifica por lo teórico, porque permite tener teorías relacionadas a la investigación de la resistencia mecánica del concreto, permitiendo comparar resultados de investigadores sobre estructuras donde se utilizan concretos con la incorporación del cemento multipropósito y agua entre 10°C a 35°C. Este estudio se justifica en la práctica porque, permitirá evaluar el desempeño de la resistencia mecánica del concreto en un clima de temperatura baja, Este estudio se justifica en lo social porque permite a la

comunidad emplear un diseño de concreto de acuerdo a las condiciones del clima de la zona en la cual se realiza la investigación. El estudio se justifica por conveniencia porque permitirá a la comunidad desarrollar proyectos más duraderos ante un clima agresivo como es la zona a la cual se aplica el presente estudio, permitiendo a la comunidad garantizar la durabilidad de las viviendas u obras donde se emplee este tipo de concreto. El trabajo tiene se justifica metodológicamente porque se lleva a cabo mediante un proceso que en el cual se hace uso de los instrumentos como la guía de observación, fichaje de referencias bibliográficas, entrevistas, briquetas o testigos de concreto, y estudios físicos de los agregados a utilizar.

En tanto los objetivos planteados serán: Como objetivo general se tiene Evaluar la resistencia a la compresión y el módulo de rotura del concreto con la incorporación de cemento multipropósito y agua fría entre 10°C a 35°C en Challhuahuacho - Apurímac, 2020. Los objetivos específicos son los siguientes: Determinar la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 10°C. Determinar la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 15°C. Determinar la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 20°C. Determinar la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 30°C. Determinar la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 30°C. Determinar la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 35°C.

II. MARCO TEÓRICO

Cabe mencionar que es de gran envergadura tener en cuenta los antecedentes con respecto a la resistencia mecánica del concreto con investigaciones internacionales, nacionales como en el caso de Sim Jian (2018), en su tesis "Determination Of Mechanical Properties Of Concrete With Partial Replacement of Tire Rubber Crumb", elaborado en la Universidad de las Vegas, la cual tiene objetivo principal la incorporación de migajas de caucho de llantas para mejorar la resistencia mecánica del concreto. Metodología: se realizó un enfoque cuantitativo con diseño cuasi experimental con una muestra de 30 cubos de concreto. Aplico como instrumento fichas de recolección de datos en ensayos de prueba de resistencia a la compresión. La ductilidad del hormigón se estudia obteniendo la deformación del cubo a través del indicador de cuadrante y trazando la curva de tensión de deformación. La viabilidad, la resistencia a la compresión y la relación de ductilidad se discuten en esta investigación. Y obtuvo como resultados: el aumento en el valor de caída El aumento adicional en el porcentaje de miga de goma puede conducir a una mayor caída en el valor de caída y finalmente fallar por debajo del rango requerido para la caída. La resistencia a la compresión de RCC logró una menor resistencia a la compresión en comparación con la muestra de control. A los 28 días, la muestra de control alcanzó un promedio de 24.32 MPa mientras que el RCC obtuvo un promedio de 20.97MPa, 19.15MPa, 18.87MPa y 16.87MPa para RC11, RC13, RC15 y RC17 respectivamente.

Así también Widmer, Sulser, Burge, Velten y Huber (2017) en la investigación Multipurpose cement dispersing polymers for high flow and high strength concrete" Elaborado en Estados Unidos, Se presenta una nueva categoría de polímeros multipropósito, los polímeros son capaces de servir como un agente dispersante de cemento y, al mismo tiempo, aceleran el fraguado y tienen propiedades anticorrosivas y reductoras de contracción al acero. Los polímeros son polímeros acrílicos modificados con éster y grupo amida, que pueden obtenerse mediante una esterificación análoga a un polímero de un ácido poliacrílico con 1 un polialquilenglicol – monoalquiléter mono funcional,

2) un alcano lamina terciaria y, opcionalmente, 3) mediante la amidación con un alquiléter de polialquilenglicol amino. Los polímeros multipropósito sirven para mezclar cemento para el hormigón con propiedades de aceleración, compensación de contracción y anticorrosivas del acero.

Por otro lado, Chatveera y Permphon (2018), en su investigación "Properties of portland cement type v mortar mixed with ground rice husk ash and limestone powder". Elaborado en la Universidad Thammasat en Tailandia. El objetivo de esta investigación es estudiar las propiedades del mortero tipo V de cemento Portland mezclado con cenizas de cáscara de arroz molido (GRHA) y dos tipos de polvo de piedra caliza (LS1 y LS2). Se probaron las propiedades físicas y químicas del cemento Portland Tipo V, cenizas de cáscara de arroz molidas y polvo de piedra caliza. Se investigaron las propiedades del mortero, como el requerimiento de agua, la resistencia a la compresión, la pérdida de resistencia a la compresión y la contracción por secado. Las soluciones utilizadas en este estudio fueron sulfato de sodio (Na 2 SO 4) y sulfato de magnesio (MgSO 4) Las concentraciones de ambas soluciones fueron del 5% en peso de acuerdo con el estándar ASTM C 1012. GRHA, LSI y LS2 tienen tamaños de partículas de 29, 12 y 128 μm. Los niveles de reemplazo de GRHA, LS1 y LS2 en el cemento Portland Tipo V fueron 0%, 20% y 40% en peso. de materiales cementosos. La relación de agua a material cementoso se controló en función de los requisitos de agua conforme al valor de flujo a 110 ± 5%. Los resultados mostraron que la resistencia a la compresión del mortero se redujo al aumentar el porcentaje de reemplazos de GRHA y LS en el cemento Portland Tipo V. A los 180 días, la resistencia a la compresión de todos los morteros fue menor que la del mortero de control. El mortero que contenía 20% de GRHA y LS (C80R10LS110) fue el desarrollo más alto en resistencia a la compresión y tan alto como el del mortero de control. De los resultados de la resistencia al sulfato, se descubrió que cuanto mayor era el porcentaje de reemplazos de GRHA y LS en el cemento Portland Tipo V, menor era la pérdida de resistencia y la contracción por secado del mortero. La pérdida de resistencia de los morteros en la solución de sulfato de magnesio fue mayor que en la solución de sulfato de sodio.

Así también Buenaño Cristina (2018) en su tesis "Determinación de un porcentaje de resina de poliéster en un concreto polimérico para alcanzar una alta resistencia a compresión" elaborado en la universidad técnica de Ambato en Colombia, donde menciona. Las necesidades del campo de la construcción son numerosas en lo que a hormigón se refiere, de allí la necesidad de proponer nuevos materiales que cubran dichas necesidades. El presente trabajo tiene como objetivo encontrar un porcentaje de resina de poliéster en el concreto polimérico que alcance una alta resistencia a compresión. Metodología: tuvo un enfoque cuantitativo tipo de investigación cuasi experimental. Aplico como instrumentos fichas de recolección de datos y el Método de la densidad óptima para un concreto tradicional, se sustituyó la parte de cemento y agua por resina de poliéster y peróxido de Mek (C8H18O6), obteniéndose así la dosificación para el concreto polimérico con diferentes porcentajes de resina de poliéster. Durante la elaboración se observó que la trabajabilidad mejoró al ir incrementándose el porcentaje de resina de poliéster en la mezcla. Finalmente, las probetas con diferentes porcentajes de resina de poliéster se las sometió a un ensayo de compresión a los 21 y 28 días. Los resultados obtenidos permitieron deducir que con el 45% de resina de poliéster ni siquiera se alcanza el límite inferior de resistencia a compresión esperado a los 21 y 28 días, mientras que con el 50% se duplica el valor de la resistencia y se supera a la de diseño. Los mejores resultados se obtienen con el 55%, pues una vez más duplica el valor obtenido con el 45% y se alcanza una alta resistencia a compresión. Estos resultados favorables, permitirán abrir campo para obtener un material de alta resistencia a compresión con resina de poliéster, cuyas propiedades físicas y mecánicas son muy superiores a las del concreto tradicional.

Así mismo Duran y Velásquez (2016) en su tesis "Evaluación de la aptitud de concretos, reemplazando parcialmente el cemento portland por cenizas volantes y cenizas de bagazo de caña de azúcar". Elaborado en la universidad Francisco de Paula Santander de Colombia tiene como objetivo estudiar la resistencia a compresión de mezclas de concreto, sustituyendo el 5%, 10%, 15% y 20% la cantidad de cemento por cenizas volantes, así como también con cenizas de bagazo de caña de azúcar. Metodología: realizo un enfoque

cuantitativo tipo de investigación cuasi experimental. Aplico como instrumento fichas de recolección de datos con los cuales se determina las propiedades de las cenizas con la finalidad de clasificarlas según la NTC 3493, realizando ensayos de las características de los agregados utilizados en el diseño de mezclas, posteriormente fabricar briquetas las cuales fraguaron 24 horas, las cuales fueron colocadas en piscinas de curado, las cuales se ensayaron en tiempo de 7, 14 y 28 días. Las cuales obtuvieron un incremento del 5% y 10% con la adición de cenizas.

Desde otro punto de vista Ramírez y Pórtela (2018) en su tesis "Comportamiento de la resistencia a la compresión de muestras de concreto adicionadas con ceniza volante con porcentajes inferiores al 10%". Elaborado en la universidad católica de Colombia. La investigación fue basada en los problemas ambientales que se generan con el uso de cemento como material principal en las obras civiles, tiene como objetivo incorporar cenizas volantes en el concreto para alcanzar una alta resistencia a la compresión, de esta forma mitigar los impactos ambientales. La metodología utilizada tiene un enfoque cuantitativo aplicada, cuasi experimental. Y como fichas de recolección de datos la elaboración de los análisis experimentales. Como resultados obtuvo muestras que fallaron a los 72 días, las cuales no obtuvieron mayor incremento en la resistencia.

Con respecto a los antecedentes nacionales se tiene el de Castro Héctor (2014). En su tesis titulada: "Influencia de la temperatura del agua en la resistencia a la compresión del concreto f'c= 210kg/cm2, utilizando agregados del rio cajamarquino". Elaborado en la universidad nacional de Cajamarca. El objetivo principal de este trabajo de investigación, fue determinar la influencia de la temperatura del agua al momento de la preparación del concreto en la resistencia del mismo a los 28 días, con temperaturas que van desde 4°C hasta 80°C. la metodología empleada fue de enfoque cuantitativo, tipo de investigación experimental descriptiva. Como población se utilizó 80 especímenes de cilindros de concreto. Los resultados obtenidos, permiten decir con argumentos que la temperatura ideal para la preparación del

concreto es de 60°C, ¡ya que fueron muy favorables! os resultados con la preparación de la misma.

Así también, Chillón Luis (2019) en su tesis titulada "Influencia de la temperatura del agua de mezcla en las propiedades físico-mecánicas del concreto elaborado en climas fríos". En la universidad de Nacional de Cajamarca. tuvo como objetivo general: Determinar la influencia de la temperatura del agua de mezcla en las propiedades físico-mecánicas del concreto elaborado en climas fríos. La metodología utilizada fue de enfoque cuantitativo, tipo de investigación cuasi experimental. La población fue de 160 de especímenes de concreto en forma cilíndrica. Como resultados se obtuvo que la resistencia a compresión aumenta conforme se incrementa la temperatura del agua.

Por otro lado, Leyva y Palomino (2016) en su tesis "Evaluación comparativa de la permeabilidad, resistencia a la compresión del concreto poroso elaborado con cemento IP y agregado de 1/2", 3/8" y 1/4" de las canteras de Machupichu, abril y Huillque" Elaborado en la Universidad Andina del Cusco. Objetivo: comparar la permeabilidad y la resistencia a la compresión del concreto poroso con la incorporación de cemento tipo IP. Metodología es de enfoque cuantitativo descriptiva relacional tipo de investigación experimental y las fichas de recolección de datos está compuesta por briquetas de concreto de forma cilíndrica para la elaboración de concreto poroso. Resultados: la resistencia promedio obtenida fue de 191.67 kg/cm² con una permeabilidad de 114.50ml/s e infiltración promedio 874.79 l/min/m².

Así también, Cana y Quispe (2018) en su tesis "Análisis de las propiedades mecánicas del concreto aplicando cemento portland tipo IP almacenado en condiciones no favorables durante los meses más húmedos en la ciudad de Arequipa". Elaborado en la Universidad de la UNAS. La presente investigación tiene como objetivo determinar el comportamiento de las propiedades mecánicas del concreto utilizando cemento almacenado en condiciones favorables y desfavorables en tiempo de clima húmedo. Metodología: tuvo un enfoque cuantitativo, tipo de investigación fue experimental. Aplico como

instrumentos ficha de recolección de datos. Como muestra fueron todas las probetas realizadas en laboratorio de la universidad de la UNAS. Resultados, las propiedades mecánicas del concreto disminuyen directamente proporcional al tiempo de almacenado.

Por otro lado, Cervantes y Villa (2015) en su tesis "Análisis comparativo del concreto lanzado con cemento tipo IP y tipo HE en el revestimiento de túneles de la mina Orcopampa – Arequipa". Elaborado en la Universidad Ricardo Palma. Tiene como objetivo principal determinar las diferencias del concreto lanzado con el cemento Tipo IP y Tipo HE desde el análisis de resistencia a la compresión y tenacidad en el revestimiento del túnel de la mina Metodología: Orcopampa-Arequipa. Utilizo un enfoque descriptivo, aplicada y empírica, tipo de investigación cuasi experimental. Aplico como instrumento fichas de recolección de datos, como muestra fue todas las probetas de concreto realizadas en el laboratorio. Obteniendo como resultados. Los resultados estadísticos nos demuestran que si existen diferencias significativas de 62% entre. Resultados, el cemento tipo HE tiene mejor desempeño al momento de absorber la energía ya que se desarrolla más rápido a edades tempranas.

Finalmente, Lencinas e Incahuanaco (2017) en su tesis "Evaluación de mezclas de concreto con adiciones de ceniza de paja de trigo como sustituto en porcentaje del cemento portland puzolánico IP en la zona Altiplánica". Elaborado en la Universidad Nacional del Altiplano. El presente trabajo de investigación tiene como objetivo principal determinar la influencia en cuanto a características físicas (slump) y mecánicas (f'c) en mezclas de concreto con el uso de la Ceniza de paja de Trigo de la Región como sustituto en porcentaje del cemento portland. Metodología: Realizo un enfoque cuantitativo, tipo de investigación cuasi experimental. Aplico como instrumentos, los métodos ACI y fichas de recolección de datos. Muestra fueron todas las probetas realizadas en el laboratorio. Y como resultados. Se obtuvo resistencias con variaciones, en 0.54% con la incorporación del 2.5% de cenizas e inferiores del 0.85% con la incorporación del 5% de cenizas.

Con referencia a las bases teóricas se tiene los siguientes conceptos:

La resistencia mecánica del concreto es un tipo de esfuerzo al que se somete al concreto en una estructura al momento de soportar cargas. La empresa Cemex (2019), indica que la resistencia a la compresión es el esfuerzo principal del concreto. Es la encargada de soportar un peso en una unidad de área y se expresa en kg/cm² (psi) (parr.3).

Por lo cual el concreto es el encargado de soportar la carga de la estructura a construir, o como en ingeniería se conoce las cargas vivas y muertas de la edificación.

Figura 1: Muestras de briquetas de concreto

Figura 2: Rotura de briquetas de concreto.

El cemento multipropósito es se está utilizando con mayor demanda en Apurímac porque este tiene este cemento se puede utilizar en diferentes estructuras ya sea de viviendas, puentes u obras expuestas a agentes agresivos. El cemento portland tipo IP se está utilizando en reemplazo del cemento tipo V en la región Sur como es el caso de Apurímac, este cemento tiene una alta resistencia comprobada a los agentes que dañan al cemento convencional

YURA (2019). Los componentes del cemento portland tipo IP tiene propiedades que aportan una alta durabilidad, permeabilidad y resistencia antes los agentes dañinos externos como los sulfatos, frio y agentes químicos. (parr. 4).

Figura 3: Cemento multipropósito tipo IP

Temperatura del agua es muy importante para la preparación de la mezcla de concreto ya que al reaccionar el cemento se eleva la temperatura, haciendo que fragüe más rápido, pero al usar agua caliente (+20°) se elevarse la temperatura y hace que este concreto obtenga mayor volumen por el efecto de dilatación del concreto, una vez dilatado el concreto, este se enfría y empieza la etapa de contracción, este fenómeno lleva al agrietamiento en vaciados masivos ya que los volúmenes son altos.

La empresa Argos (2020), indica: La termo expansión del concreto debe ser considerado tanto dentro como fuera de la masa ya que al deshidratarse rápidamente este genera agrietamiento es por ello que la temperatura de colocación se debe considerar 6°C por debajo de la temperatura del aire. (parr.6).

Figura 4: Almacenamiento de agua en obra

III. METODOLOGÍA

3.1 Tipo y Diseño de Investigación

El tipo de investigación es aplicada ya que, busca indagar, fundar y transformar una situación problemática, el cual se interesa más sobre la aplicación inmediata de un problema. En relación a la ingeniería son clasificados según sus tipos, si es que este soluciona una problemática (Borja, 2012, p. 10). El presente trabajo de investigación es aplicado por consiguiente la investigación tendrá una alta confiabilidad y podrá ser usada como teoría.

Diseño de investigación

La manipulación de las variables independientes afecta directamente a la variable dependiente la cual puede varias la investigación propuesta por el investigador. (Hernández Fernández y Baptista, 2014, p. 189). El diseño que corresponde a esta investigación fue de tipo cuasi experimental ya que, se evaluará las muestras mediante ensayos en laboratorio; con la finalidad de determinar el grado de influencia que tendrá el cemento tipo IP y la temperatura del agua en la resistencia mecánica del concreto en climas fríos como es la zona en la cual se está aplicando la investigación. Del mismo modo el presente proyecto de investigación fue del tipo experimental, yaqué se manipulan la variable independiente para obtener resultados.

Enfoque cuantitativo

La investigación cuantificada es una representación confiable, la cual plantea conocer algunos resultados a través de obtención de datos y estudios de datos, con las que pueden contradecir algunas interrogantes sobre el estudio y poder comprobar la hipótesis planteada. Este tipo de investigación es muy confiable en la medición numérica frecuentemente en el uso estadístico (Borja, 2016, p. 11). La presente investigación fue de enfoque cuantitativo ya qué se obtendrá resultados numéricos, como el conteo de las muestras realizadas en cada tipo de ensayo en el que se use el cemento multipropósito y se varié la temperatura del agua para conocer en los números el crecimiento de la resistencia mecánica del concreto.

3.2. Variables y Operacionalización

Variable independiente 1

Cemento Multipropósito

Definición operacional.

Dimensiones.

- · permeabilidad.
- Resistencia a los sulfatos.

Indicadores.

- Porcentaje de absorción.
- Porcentaje de deterioro.

Variable Independiente 2

Agua fría ente 10°C a 35°C: El agua utilizada en la preparación de la mezcla debe ser de preferencia potable ya que no contiene agentes agresivos que afecten negativamente al concreto (RNE E-060, 2009, p. 31). El agua es un recurso fundamental en la elaboración de la mezcla del concreto, es por ello que debe estar libre de agentes contaminantes que reduzcan la resistencia del concreto.

Definición operacional

Dimensiones.

- Temperatura del agua.
- Propiedades físicas del agua

Indicadores.

- Agua a 10°.
- Agua a 20°.
- Agua a 35°.
- Porcentaje de sulfatos.
- Porcentaje de agentes orgánicos.

Variable dependiente.

Resistencia mecánica del concreto:

El concreto debe tener una dosificación para poder proporcionar una adecuada resistencia a la comprensión y debe satisfacer los criterios de durabilidad (RNE E-060, 2009, p. 31). De esta forma otorgar un ideal desempeño estructural. La resistencia a la compresión es la característica mecánica principal del concreto.

Figura 5: Ensayo de resistencia mecánica del concreto

Definición operacional.

Dimensiones

- Resistencia a la comprensión
- Resistencia a la tracción.
- Módulo de rotura.

Indicadores

- Curva de crecimiento de la resistencia.
- Split Test.
- Momento de rotura.

3.3. Población y muestra

Población.

El universo de población estará conformado por todas las muestras en el laboratorio donde se realizarán los ensayos al concreto, haciendo uso de las variables para determinar la resistencia mecánica del concreto.

Gómez (2012), define que: La población se consigue mediante una evaluación que involucra el cálculo efectivo sobre la población en el área de estudio; se efectúa de manera que observa la realidad de la población del universo ya estudiado, el cual la situación debe ser suficientemente representativa, ya que estos estudios de investigación generan teorías generalizables (p.13).

Muestra.

Para la siguiente investigación fue realizada utilizando una muestra de 20 briquetas de concreto de forma cilíndrica.

Unidad de análisis.

La unidad de análisis de este trabajo de investigación fueron las probetas y/o briquetas cilíndricas de concreto.

3.4. Técnicas e instrumentos de recolección de datos

Esta investigación se aplico las siguientes técnicas:

- Observación
- Análisis documental de datos

Para dicho trabajo investigación se empleó el protocolo:

- ASTM 422-63 (Ensayo de análisis granulométrico).
- RNE Norma E-060 (Concreto Armado).

Fichas de Registro de Datos: Las fichas serán fueron empleadas de acuerdo a las normas del RNE tales como en la norma E-060 (Concreto armado).

3.5. Procedimiento.

La investigación se realizó a través de los siguientes ensayos

- Contenido de humedad del agregado (NTP.185.2002).
- Peso volumétrico o unitario del agregado (NTP.400.0.17).
- Granulometría del agregado (ASTM C136).

Utilización de los 7 tamices estándar (ASTM C33).

Después de proceder con los ensayos que otorgaran las propiedades físicas se diseñó una mezcla de concreto de f´c 210 kg/cm², (por ser una resistencia más utilizada en las viviendas autoconstruidas).

Luego de haber hallado las características físicas de los agregados se procedió a diseñar la mezcla de la siguiente forma:

- 1. Selección del Slump del concreto.
- 2. Estimación del tamaño máximo de la grava
- 3. Estimación de la cantidad de agua
- 4. Determinación de la resistencia de la dosificación
- 5. Selección de la relación agua cemento
- 6. Cálculo de cemento
- 7. Cálculo de la cantidad de grava y arena.
- 8. Ajuste por humedad atrapada.

1. Selección del asentamiento del concreto (Slump):

La determinación del Slump del concreto se determina al medir el asentamiento que sufre la muestra del concreto fresco en forma de cono al momento de extraer el apoyo; Para realizar esta prueba se utiliza el llamado cono de Abrams.

Mediante la siguiente tabla de la norma ACI se utilizará un Slump de 4pulg.

TIPOS DE CONSTRUCCIÓN	ASENTAMIENTO (PULG)	
TIPOS DE CONSTRUCCION	MÁXIMO	MÍNIMO
MUROS DE SUBESTRUCTURAS SENCILLOS, ZAPATAS, MUROS Y CAJONES DE CIMENTACIÓN	3	1
VIGAS Y MUROS REFORZADOS	4	1
COLUMNAS PARA EDIFICIOS	4	1
PAVIMENTOS Y LOSAS	3	1
CONCRETO MASIVO	3	1

Tabla 1: Asentamiento de concreto ACI 211.1-91

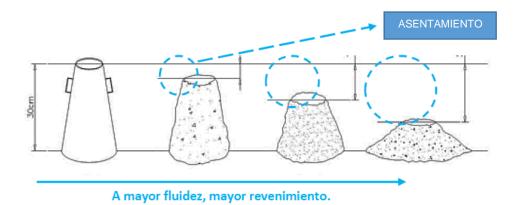


Figura 6: Asentamiento del concreto

2. Estimación del tamaño máximo del agregado

El tamaño máximo de la grava no debe exceder las siguientes condiciones:

- a. 1/5 del espacio del encofrado.
- b. 1/3 del peralte de la losa.
- c. 3/4 de la separación entre las barras de acero o alambres.

Para la presente investigación se utilizará la condición "a", por ser concreto diseñado en laboratorio. Grava de tamaño máximo 1"

Figura 7: Agregado grueso

3. Estimación de la cantidad de agua.

El RNE no determina cantidades de agua, es por ello que, se utilizara la tabla 6.3.3 de norma ACI 211.1-91. La cual indica una cantidad de 193 litros o 193 kg.

4. Estimación de la resistencia de la dosificación.

Se estima resistencia de f`c=210 kg/cm² por ser el más utilizado en las edificaciones autoconstruidas en la zona de estudio.

5. Selección de la relación agua cemento.

El RNE en la norma E-060 de concreto armado en la tabla 4.2 requisitos para condiciones especiales de exposición. La relación agua cemento será A/C= 0.45.

6. Cálculo de cemento.

Contando con la información necesario como cantidad de agua y la relación agua cemento, se procederá a aplicar la siguiente formula:

$$R^{a}/_{C} = \frac{w_{w}}{w_{c}} : w_{c} = \frac{w_{w}}{R^{a}/_{C}}$$

7. Cálculo de grava y arena.

a. Cantidad de grava

Para obtener el volumen de la grava es preciso trabajar con la siguiente tabla otorgada por el ACI. Dicho valor no se encuentra reflejado en esta tabla es por ello que se procederá a interpolar. El volumen del concreto es compactado es por ello que se hará uso de siguiente fórmula para hallar el peso del agregado grueso.

$$PVSC_G = \frac{W_G}{V_G} :: W_G = PVSC_G . V_G$$

b. Cantidad de agregado fino.

Conociendo los pesos o volúmenes de todos los componentes de la mezcla del concreto (agua, cemento y grava), se procederá a obtener el volumen de la arena o agregado fino mediante la siguiente formula:

$$V_{C} = \frac{W_{C}}{GE_{C}.Y_{W}} \qquad \qquad \text{Vol. Abs.}$$

$$V_{W} = \frac{W_{W}}{GE_{W}.Y_{W}} \qquad \qquad V_{mat} = \frac{W_{mat}}{GE_{mat}.Y_{W}}$$

• Volumen de la grava
$$V_G = \frac{W_{GW}}{GE_G.Y_W}$$

• Volumen de la arena
$$V_{Ar} = 1m^3 - V_C - V_W - V_G$$

8. Primera mezcla de prueba. Ajuste por humedad de los agregados.

Se debe tener en cuenta que una buena proporción de agua mantiene bien hidratado el concreto durante su proceso de fraguado.

Recordar que los agregados contienen un % de humedad por lo cual ya tienen agua y esta debe ser disminuida al momento de realizar la mezcla del concreto mediante la siguiente formula:

$$V_{Wmez} = W_W - W_{Wabs} - W_{Wcont}$$

3.6. Método de análisis de datos

Los datos obtenidos mediante los ensayos de las briquetas fueron procesados a través de los programas Excel Microsoft y SPSS para realizar cuadros estadísticos, estos cuadros de gráficos fueron analizados para la interpretación de los resultados.

3.7. Aspectos éticos

Para el presente trabajo tomo las siguientes consideraciones éticas:

- Toda la información recolectada de libros, de revistas, de proyectos ya realizados son citadas según su tipo de fuente bibliográfica.
- Se realizó este proyecto de investigación, dando uso al sistema ISO 690-1 e ISO 690-2, porque se presenta una investigación y estudio de ingeniería.
- Se respeta la veracidad de los resultados encontrados en otras investigaciones, es decir, se colorarán las referencias bibliográficas de los autores.
- La presente investigación no contemplara plagio de ninguna índole.

IV. RESULTADOS

Objetivo General: Evaluar la resistencia a la compresión y el módulo de rotura del concreto con la incorporación de cemento multipropósito y agua fría entre 10°C a 35°C en Challhuahuacho - Apurímac, 2020.

4.1. Comparación del incremento de la resistencia del concreto con la incorporación de agua entre 10°C a 35°C a los 7 días.

ROTURA A 7 DIAS				
Dias	Agua C°	Resistencia (kg/cm²)	Porcentaje	
7	10° C°	146.30	69.70%	
7	15° C°	147.00	70.00%	
7	20° C°	161.40	76.80%	
7	30° C°	170.10	81.00%	
7	35° C°	172.90	82.30%	

Tabla 2: Cuadro de datos de roturas a los 7 días.

Gráfico 1: Incremento de la resistencia del concreto a una edad de 7 días.

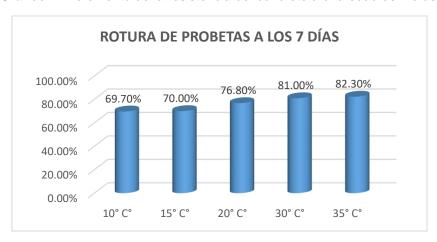


Gráfico 2: Incremento en el porcentaje de la resistencia concreto a una edad de 7 días.

De acuerdo a los gráficos se evidencia que la resistencia del concreto va incrementando cuando se eleva la temperatura del agua a una edad de 7 días.

4.2. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua entre 10° C y 35°C 7 días.

DATOS DE ROTURA DE PROBETAS A LOS 7 DÍAS					
Días	Incorporación del	Módulo de	RESISTENCIA BASE		
Dias	agua a °C	rotura kg/cm²	210 kg/cm ²	Porcentaje	
7	10° C°	23.71	28.41	83.47%	
7	15° C°	23.77	28.41	83.67%	
7	20° C°	24.91	28.41	87.67%	
7	30° C°	25.57	28.41	90.00%	
7	35° C°	25.78	28.41	90.74%	

Tabla 3: Cuadro de datos del módulo de rotura del concreto a los 7 días.

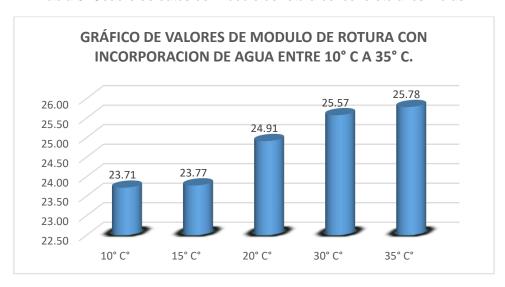


Gráfico 3: Comparación del MR con la incorporación de agua entre 10°C y 35°C.

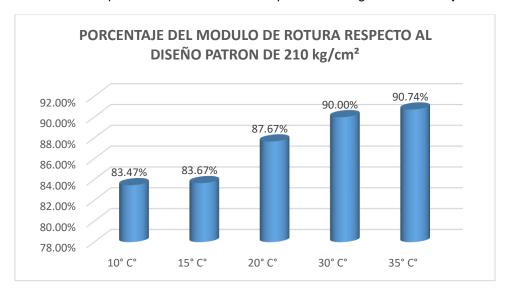


Gráfico 4: Comparación del porcentaje del MR respecto al diseño de 210kg/cm² a los 7 días.

Se puede ver que el comportamiento del módulo de rotura va incrementando conforme la temperatura del agua aumenta.

4.3. Comparación del incremento de la resistencia del concreto con la incorporación de agua entre 10°C a 35°C a los 14 días.

ROTURA A 14 DIAS					
Días	Agua C°	Resistencia (kg/cm²)	Porcentaje		
14	10° C°	182.70	87.00%		
14	15° C°	188.30	89.70%		
14	20° C°	210.80	100.40%		
14	30° C°	238.90	113.70%		
14	35° C°	241.70	115.10%		

Tabla 4: Cuadro de datos de roturas a los 14 días.

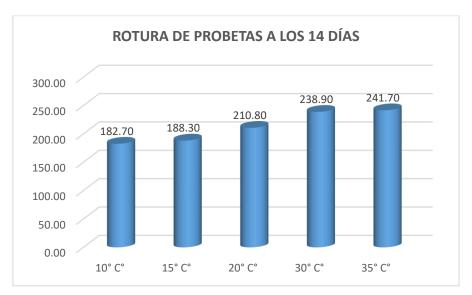


Gráfico 5: Incremento de la resistencia del concreto a una edad de 14 días.

Gráfico 6:Incremento en el porcentaje de la resistencia concreto a una edad de 14 días.

De acuerdo a los gráficos se evidencia que la resistencia del concreto va incrementando cuando se eleva la temperatura del agua a una edad de 14 días.

4.4. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua entre 10° C y 35°C 14 días.

DATOS DE ROTURA DE PROBETAS A LOS 14 DÍAS					
Días	Incorporación del	Módulo de	RESISTENCIA BASE		
Dias	agua a °C	rotura kg/cm²	210 kg/cm ²	Porcentaje	
14	10° C°	26.50	28.41	93.27%	
14	15° C°	26.90	28.41	94.69%	
14	20° C°	28.47	28.41	100.19%	
14	30° C°	30.30	28.41	106.66%	
14	35° C°	30.48	28.41	107.28%	

Tabla 5: Cuadro de datos del módulo de rotura del concreto a los 14 días.

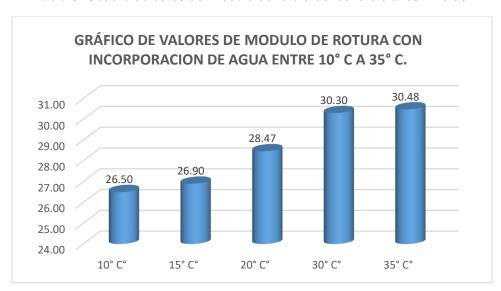


Gráfico 7: Comparación del MR con la incorporación de agua entre 10°C y 35°C a los 14 días.

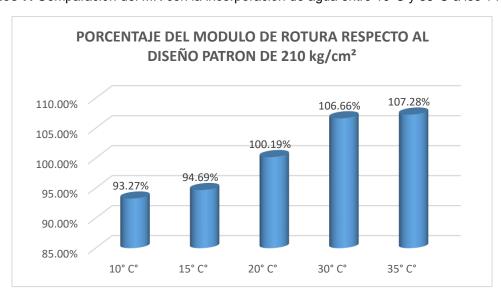


Gráfico 8: Comparación del porcentaje del MR respecto al diseño de 210kg/cm² a los 14 días.

Se puede ver que el comportamiento del módulo de rotura va incrementando conforme aumenta la temperatura del agua.

4.5. Comparación del incremento de la resistencia del concreto con la incorporación de agua entre 10°C a 35°C a los 28 días.

ROTURA A 28 DIAS					
Días	Agua C°	Resistencia (kg/cm²)	Porcentaje		
28	10° C°	208.50	99.30%		
28	15° C°	216.80	103.30%		
28	20° C°	228.00	108.60%		
28	30° C°	250.20	119.10%		
28	35° C°	264.10	125.80%		

Tabla 6: Cuadro de datos de roturas a los 28 días.

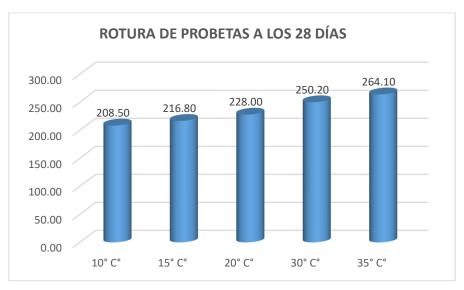


Gráfico 9: Incremento de la resistencia del concreto a una edad de 28 días.

Gráfico 10:Incremento en el porcentaje de la resistencia concreto a una edad de 28 días.

De acuerdo a los gráficos se evidencia que la resistencia del concreto va incrementando cuando se eleva la temperatura del agua a una edad de 28 días.

4.6. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua entre 10° C y 35°C 28 días.

DATOS DE ROTURA DE PROBETAS A LOS 28 DÍAS				
Días	Incorporación del	Módulo de	RESISTENCIA BASE	
Dias	agua a °C	rotura kg/cm²	210 kg/cm ²	Porcentaje
28	10° C°	28.31	28.41	99.64%
28	15° C°	28.87	28.41	101.61%
28	20° C°	29.60	28.41	104.20%
28	30° C°	31.01	28.41	109.15%
28	35° C°	31.86	28.41	112.14%

Tabla 7: Cuadro de datos del módulo de rotura del concreto a los 28 días.

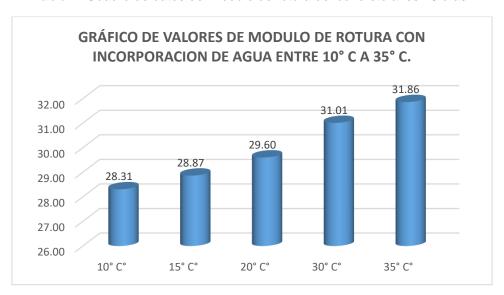


Gráfico 11: Comparación del MR con la incorporación de agua entre 10°C a 35°C a los 14 días.

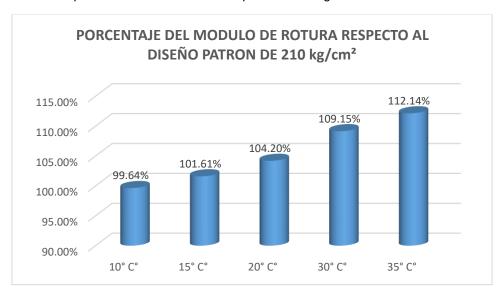


Gráfico 12: Comparación del porcentaje del MR respecto al diseño de 210kg/cm² a los 28 días.

Se puede ver que el comportamiento del módulo de rotura va incrementando conforme aumenta la temperatura del agua.

4.7. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua entre 10° C y 35°C 35 días.

	ROTURA A 35 DIAS				
Días	Agua C°	Resistencia (kg/cm²)	Porcentaje		
35	10° C°	222.40	105.90%		
35	15° C°	228.00	108.60%		
35	20° C°	236.30	112.50%		
35	30° C°	255.80	121.80%		
35	35° C°	278.00	132.40%		

Tabla 8: Cuadro de datos de roturas a los 35 días.

Gráfico 13:Incremento de la resistencia del concreto a una edad de 35 días.

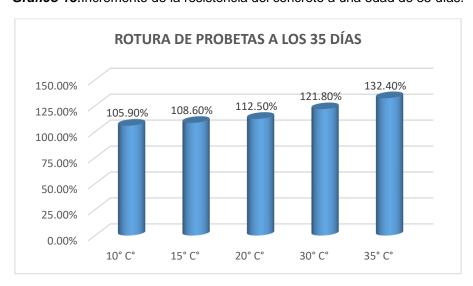


Gráfico 14:Incremento en el porcentaje de la resistencia concreto a una edad de 35 días.

De acuerdo a los gráficos se evidencia que la resistencia del concreto va incrementando cuando se eleva la temperatura del agua a una edad de 35 días.

4.8. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua entre 10° C y 35°C 35 días.

	DATOS DE ROTURA DE PROBETAS A LOS 35 DÍAS			
Días	Incorporación del	Módulo de	RESISTENCIA BASE	
Dias	agua a °C	rotura kg/cm²	210 kg/cm ²	Porcentaje
35	10° C°	29.24	28.41	102.91%
35	15° C°	29.60	28.41	104.20%
35	20° C°	30.14	28.41	106.08%
35	30° C°	31.36	28.41	110.37%
35	35° C°	32.69	28.41	115.06%

Tabla 9: Cuadro de datos del MR del concreto a los 35 días.

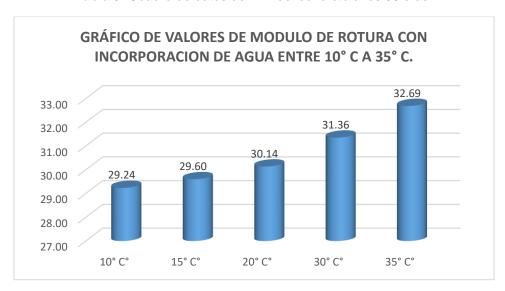
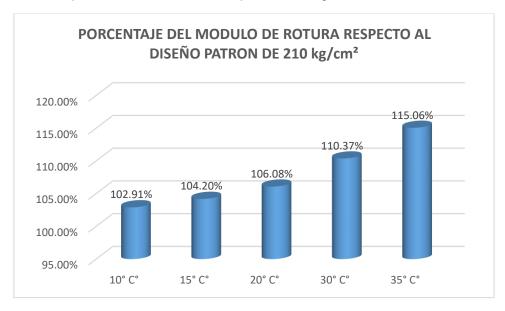



Gráfico 15: Comparación del MR con la incorporación de agua entre 10°C a 35°C a los 35 días.

Gráfico 16: Comparación del porcentaje del MR respecto al diseño de 210kg/cm² a los 35 días. Se puede ver que el comportamiento del módulo de rotura va incrementando conforme aumenta la temperatura del agua.

Objetivo Especifico 1: Determinar la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 10°C

4.9. Análisis del comportamiento de la resistencia del concreto con la incorporación de agua a los 10°C.

DATOS	DATOS DE PROBETAS CON AGUA A 10°C.			
Días	Resistencia (kg/cm²) Porcentaje			
7	146.3	69.70%		
14	182.7	87.00%		
28	208.5	99.30%		
35	222.4	105.90%		

Tabla 10: Cuadro de datos de roturas con la incorporación de agua a 10°C.

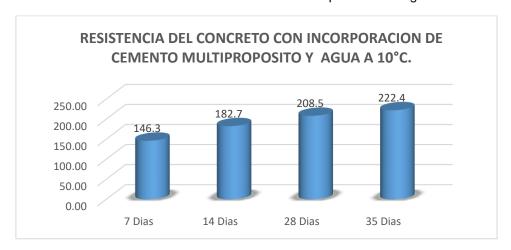


Gráfico 17: Resistencia del concreto con la incorporación de agua a 10°C.

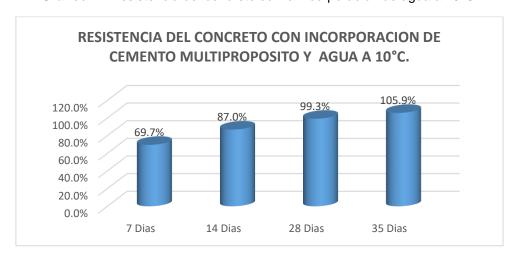


Gráfico 18: Porcentaje del incremento de la resistencia del concreto con agua a 10°C.

Se evidencia en los gráficos que la resistencia del concreto con la incorporación de cemento multipropósito y agua a 10°C sigue incrementando hasta los 35 días.

4.10. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua a los 10° C.

	DATOS CON AGUA A 10°				
Días	Resistencia	Módulo de	RESISTENCIA BASE		
Dias	(kg/cm²)	rotura kg/cm²	210 kg/cm ²	Porcentaje	
7	146.3	23.71	28.41	83.47%	
14	182.7	26.50	28.41	93.27%	
28	208.5	28.31	28.41	99.64%	
35	222.4	29.24	28.41	102.91%	

Tabla 11: Cuadro de datos del MR con la incorporación de agua a los 10°C.

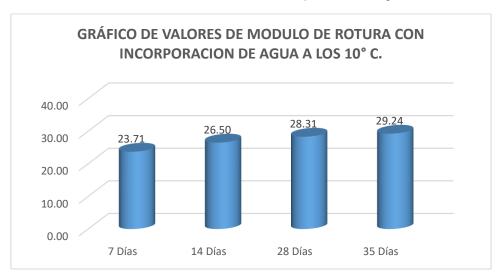


Gráfico 19: Comparación del MR con la incorporación de agua a los 10°C.

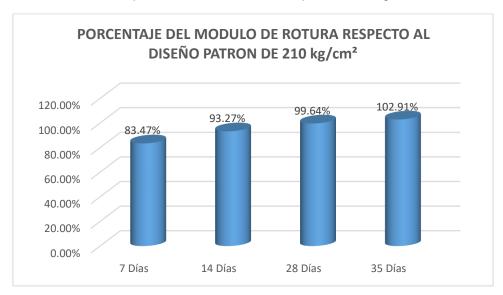


Gráfico 20: Comparación del porcentaje del MR respecto al diseño de 210kg/cm².

Se puede ver que el comportamiento del módulo de rotura va incrementando conforme van pasando el tiempo hasta alcanzar su máximo esfuerzo a los 35 días.

Objetivo Especifico 2: Determinar la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 15°C.

4.11. Análisis del comportamiento de la resistencia del concreto con la incorporación de agua a los 15°C.

DATOS E	DATOS DE PROBETAS CON AGUA A 15° C.				
Días	Resistencia (kg/cm²)	Porcentaje			
7	147.00	70.00%			
14	188.30	89.70%			
28	216.80	103.30%			
35	228.00	108.60%			

Tabla 12: Cuadro de datos de roturas con la incorporación de agua a 15°C.

Gráfico 21:Resistencia del concreto con la incorporación de agua a 15°C.

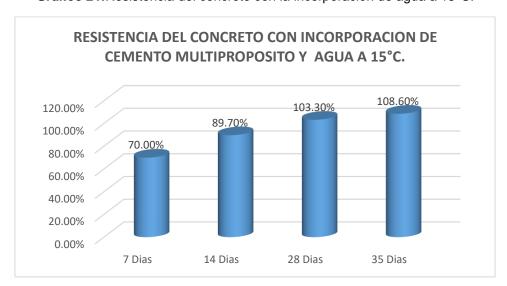


Gráfico 22: Porcentaje del incremento de la resistencia del concreto con agua a 15°C.

Se evidencia en los gráficos que la resistencia del concreto con la incorporación de cemento multipropósito y agua a 15°C sigue incrementando hasta los 35 días.

4.12. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua a los 15° C.

	DATOS CON AGUA A 15°				
Días	Resistencia Resistencia		RESISTENCIA BASE		
Dias	(kg/cm²)	rotura kg/cm²	210 kg/cm ²	Porcentaje	
7	147.00	23.77	28.41	83.67%	
14	188.30	26.90	28.41	94.69%	
28	216.80	28.87	28.41	101.61%	
35	228.00	29.60	28.41	104.20%	

Tabla 13: Cuadro de datos del MR con la incorporación de agua a los 15°C.

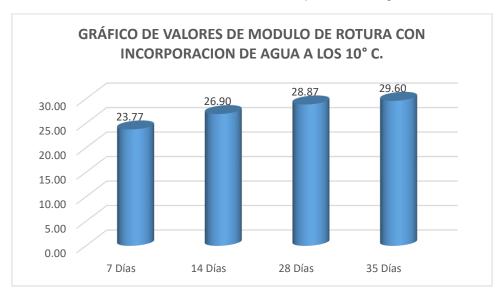


Gráfico 23: Comparación del MR con la incorporación de agua a los 15°C.

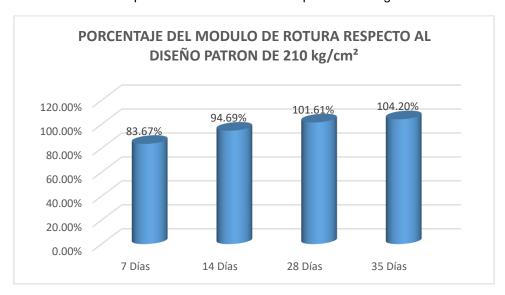


Gráfico 24: Comparación del porcentaje del MR respecto al diseño de 210kg/cm².

Se puede ver que el comportamiento del módulo de rotura va incrementando conforme van pasando el tiempo hasta alcanzar su máximo esfuerzo a los 35 días.

Objetivo Específico 3: Determinar la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 20°C.

4.13. Análisis del comportamiento de la resistencia del concreto con la incorporación de agua a los 20°C.

DATOS	DATOS DE PROBETAS CON AGUA A				
	20° C.				
Días	Resistencia (kg/cm²) Porcentaje				
7	161.40	76.80%			
14	210.80	100.40%			
28	228.00	108.60%			
35	236.30	112.50%			

Tabla 14: Cuadro de datos de roturas con la incorporación de agua a 20°C.

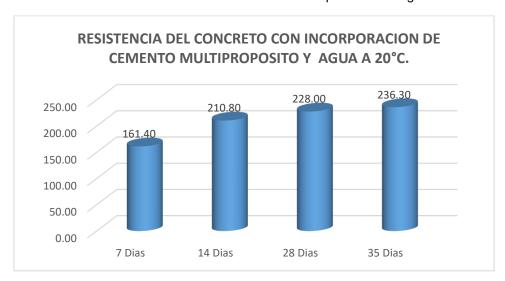


Gráfico 25: Resistencia del concreto con la incorporación de agua a 20°C.

Gráfico 26:Porcentaje del incremento de la resistencia del concreto con agua a 20°C.

Se evidencia en los gráficos que la resistencia del concreto con la incorporación de cemento multipropósito y agua a 20°C sigue incrementando hasta los 35 días.

4.14. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua a los 20° C.

	DATOS CON AGUA A 20°				
Días	Resistencia Mód		RESISTENCIA BASE		
Dias	(kg/cm²)	rotura kg/cm²	210 kg/cm ²	Porcentaje	
7	161.40	24.91	28.41	87.67%	
14	210.80	28.47	28.41	100.19%	
28	228.00	29.60	28.41	104.20%	
35	236.30	30.14	28.41	106.08%	

Tabla 15: Cuadro de datos del MR con la incorporación de agua a los 20°C.

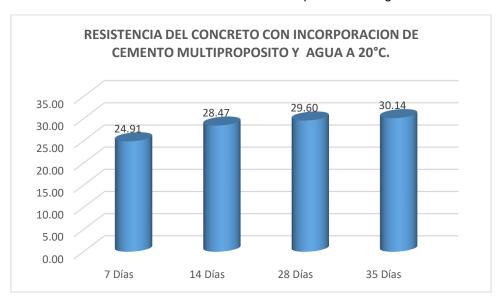


Gráfico 27: Comparación del MR con la incorporación de agua a los 20°C.

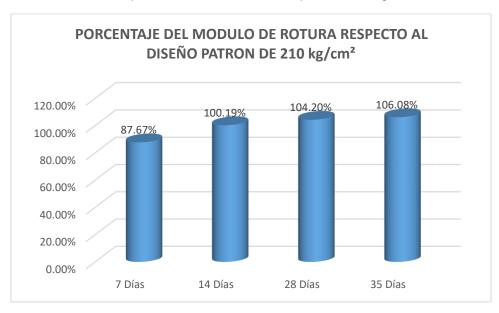


Gráfico 28: Comparación del porcentaje del MR respecto al diseño de 210kg/cm².

Se puede ver que el comportamiento del módulo de rotura va incrementando conforme aumenta la temperatura del agua.

Objetivo Especifico 4: Determinar la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 30°C.

4.15. Análisis del comportamiento de la resistencia del concreto con la incorporación de agua a los 30°C.

DATOS	DATOS DE PROBETAS CON AGUA A 30° C.			
Días	Días Resistencia (kg/cm²) Porcentaje			
7	170.10	81.00%		
14	238.90	113.70%		
28	250.20	119.10%		
35	255.80	121.80%		

Tabla 16: Cuadro de datos de roturas con la incorporación de agua a 30°C.

Gráfico 29:Resistencia del concreto con la incorporación de agua a 30°C.

Gráfico 30:Porcentaje del incremento de la resistencia del concreto con agua a 30°C.

Se puede ver que el comportamiento del módulo de rotura va incrementando conforme van pasando el tiempo hasta alcanzar su máximo esfuerzo a los 35 días.

4.16. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua a los 30° C.

	DATOS CON AGUA A 30°						
Días	Resistencia Módulo de		Resistencia Módulo	Resistencia Módulo	Módulo de	RESISTEN	CIA BASE
Dias	(kg/cm²)	rotura kg/cm²	210 kg/cm ²	Porcentaje			
7	170.10	25.57	28.41	90.00%			
14	238.90	30.30	28.41	106.66%			
28	250.20	31.01	28.41	109.15%			
35	255.80	31.36	28.41	110.37%			

Tabla 17: Cuadro de datos del MR con la incorporación de agua a los 30°C.

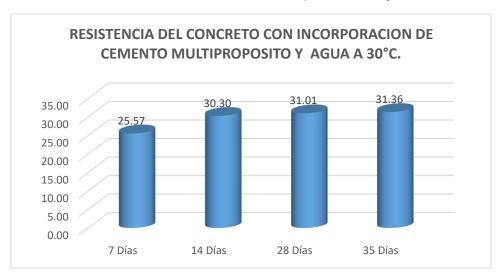


Gráfico 31: Comparación del MR con la incorporación de agua a los 30°C.

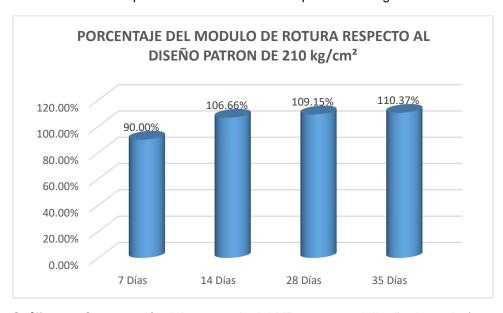


Gráfico 32: Comparación del porcentaje del MR respecto al diseño de 210kg/cm².

Se puede ver que el comportamiento del módulo de rotura va incrementando conforme van pasando el tiempo hasta alcanzar su máximo esfuerzo a los 35 días.

Objetivo Especifico 5: Determinar la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 35°C.

4.17. Análisis del comportamiento de la resistencia del concreto con la incorporación de agua a los 35°C.

DA	DATOS DE ROTURA DE PROBETAS CON AGUA A 35° C.			
Días	Días Resistencia (kg/cm²) Porcentaje			
7	172.90	82.30%		
14	241.70	115.10%		
28	264.10	125.80%		
35	278.00	132.40%		

Tabla 18: Cuadro de datos de roturas con la incorporación de agua a 35°C.

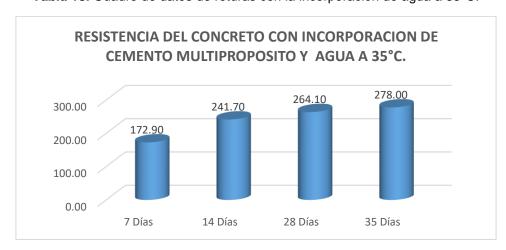


Gráfico 33: Resistencia del concreto con la incorporación de agua a 35°C.

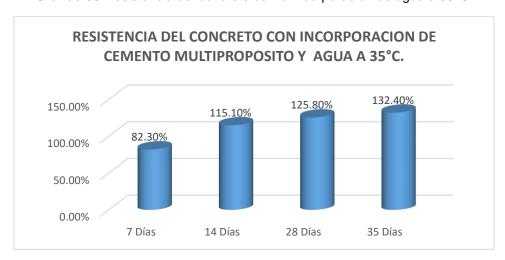


Gráfico 34: Porcentaje del incremento de la resistencia del concreto con agua a 35°C.

Se evidencia en los gráficos que la resistencia del concreto con la incorporación de cemento multipropósito y agua a 30°C sigue incrementando hasta los 35 días.

4.18. Comparación del comportamiento del módulo de rotura del concreto al incorporar agua a los 30° C.

DATOS CON AGUA A 35°								
Días	Posistonsia	Módulo de RESISTEN		CIA BASE				
Dias	Resistencia rotura I		210 kg/cm ²	Porcentaje				
7	172.90	25.78	28.41	90.74%				
14	241.70	30.48	28.41	107.28%				
28	264.10	31.86	28.41	112.14%				
35	278.00	32.69	28.41	115.06%				

Tabla 19: Cuadro de datos del MR con la incorporación de agua a los 35°C.

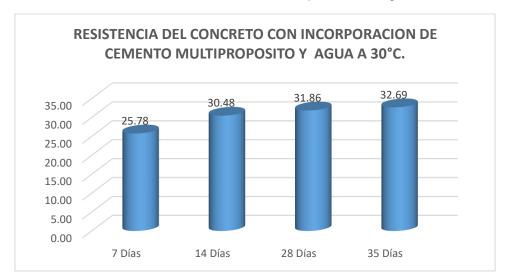


Gráfico 35: Comparación del MR con la incorporación de agua a los 35°C.

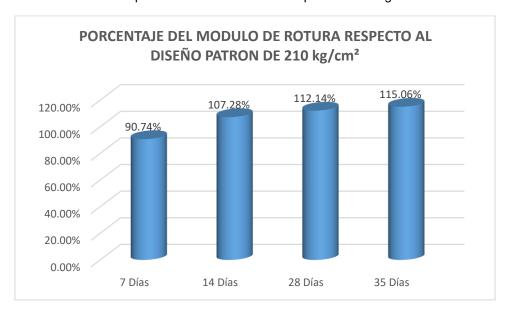


Gráfico 36: Comparación del porcentaje del MR respecto al diseño de 210kg/cm².

Se puede ver que el comportamiento del módulo de rotura va incrementando conforme van pasando el tiempo hasta alcanzar su máximo esfuerzo a los 35 días.

V. DISCUSIÓN

EL investigador Castro Saavedra (2014). En su tesis titulada: "Influencia de la temperatura del agua en la resistencia a la compresión del concreto f'c= 210kg/cm2, utilizando agregados del rio cajamarquino". Tuvo como objetivo general determinar la influencia de la temperatura del agua utilizada al momento de la elaboración del concreto, en la resistencia a la compresión del mismo a los 28 días de un concreto f'c= 210 kg/cm², utilizando agregados del rio cajamarquino, material que es seleccionado en la planta de chancado Roca Fuerte.

Donde obtuvo los siguientes resultados.

RESULTADOS GENERALES DE ROTURAS DE PROBETAS CON INCORPARACION DE CEMENTO TIPO II Y TIPO V CON AGUA ENTRE 4°C A 80°C.							
Días	Temperatura (°C)	Resistencia promedio a la compresión del concreto (kg/cm²)	Módulo de Young (Kg/cm²)				
28	4	283.05	20878.15				
28	18.5	313.75	23586.33				
28	40	338.48	24511.04				
28	60	348.81	26062.53				
28	80	259.98	20793.98				
21	4	267.42	19407.18				
21	18.5	288.89	19567.45				
21	40	312.36	21157.46				
21	60	320.91	21736.83				
21	80	244.24	17712.12				
14	4	247.07	22819.92				
14	18.5	278.79	20232.31				
14	40	294.02	22977.91				
14	60	298.05	22103.68				
14	80	231.80	21389.79				
7	4	201.15	22456.31				
7	18.5	263.79	21359.45				
7	40	269.02	20953.25				
7	60	277.26	23293.36				
7	80	218.29	23973.25				

Tabla 20: Tabla de resultados del investigador Héctor Castro Saavedra

EL investigador Castro Saavedra Héctor, pudo comprobar que la temperatura del agua es muy importante ya que influye de manera positiva y negativa a la resistencia mecánica del concreto, esta influencia corresponde a la temperatura del agua utilizada al momento de realizar la mezcla tal como se muestro en el grafico anterior.

Objetivo General: Evaluar la resistencia a la compresión y el módulo de rotura del concreto con la incorporación de cemento multipropósito y agua fría entre 10°C a 35°C en Challhuahuacho - Apurímac, 2020.

RESULTADOS GENERALES DE ROTURAS DE PROBETAS CON INCORPARACION DE CEMENTO MULTIPROPOSITO Y AGUA ENTRE 10°C A 35°C.							
Días	Temperatura (°C)	Resistencia a la compresión del concreto (kg/cm²)	Módulo de Rotura del concreto (kg/cm²)				
35	10	222.40	29.24				
35	15	228.00	29.60				
35	20	236.30	30.14				
35	30	255.80	31.36				
35	35	278.00	32.69				
28	10	208.50	28.31				
28	15	216.80	28.87				
28	20	228.00	29.60				
28	30	250.20	31.01				
28	35	264.10	31.86				
14	10	182.70	26.50				
14	15	188.30	26.90				
14	20	210.80	28.47				
14	30	238.90	30.30				
14	35	241.70	30.48				
7	10	146.30	26.50				
7	15	147.00	26.90				
7	20	161.40	28.47				
7	30	170.10	30.30				
7	35	172.90	30.48				

Tabla 21: Tabla general de resultados

En la presente investigación se pudo comprobar que la incorporación de cemento multipropósito y agua entre 10°C a 35°C. afecta de manera positiva en la resistencia a la compresión y en el módulo de rotura del concreto si el agua utilizada alcanza una alta temperatura tal cual se muestra en la tabla anterior,

Los resultados hallados establecen una ideal temperatura del agua, de esta forma los vecinos del distrito de Challhuahuacho podrán realizar mezclas de concreto con una mayor resistencia.

Así también, el investigador Chillón Luis (2019) en su tesis titulada "Influencia de la temperatura del agua de mezcla en las propiedades físico-mecánicas del concreto elaborado en climas fríos" tuvo como objetivo general: Determinar la influencia de la temperatura del agua de mezcla en las propiedades físico-mecánicas del concreto elaborado en climas fríos.

Donde obtuvo los siguientes resultados:

En su tabla N°25 muestra los siguientes resultados:

Compresión Promedio	Agua de mezcla 10°C	Agua de mezcla 23°C	Agua de mezcla 50°C	Agua de mezcla 78°C
7 días	171.43	173.54	176.72	194.84
14 días	224.66	230.03	235.98	242.49
21 días	252.68	265.73	267.83	274.81
28 días	261.38	262.69	265.37	283.40

Tabla 22: Resistencia a la compresión del concreto kg/cm²

En donde muestra que:

- La resistencia a compresión de los especímenes elaborados con agua a temperaturas (10°C, 23°C, 50°C, 78°C) y ensayados a los 7 días alcanza el 70% establecido por la norma (E. 060).
- La resistencia a compresión del concreto va incrementándose según la edad,
 excepto a los 28 días donde la resistencia se mantiene o disminuye.
- Si la temperatura del agua de mezcla es mayor a 50°C, la resistencia a compresión del concreto muestra un incremento no significativo en relación a los especímenes base (23°C), pero cuando la temperatura es igual a 10°C la resistencia a la compresión es menor que el espécimen base.

Objetivo General: Evaluar la resistencia a la compresión y el módulo de rotura del concreto con la incorporación de cemento multipropósito y agua fría entre 10°C a 35°C en Challhuahuacho - Apurímac, 2020.

	RESISTENCIA A LA COMPRESIÓN ALCANZADA								
DAS	AGUA DE MEZCLA 10°C	AGUA DE MEZCLA 15°C	AGUA DE MEZCLA 20°C	AGUA DE MEZCLA 30°C	AGUA DE MEZCLA 35°C				
7	146.30	147.00	161.40	170.10	172.90				
14	182.70	188.30	210.80	238.90	241.70				
28	208.50	216.80	228.00	250.20	264.10				
35	222.40	228.00	236.30	255.80	278.00				

Tabla 23: Resistencia a la compresión alcanzada con diferentes temperaturas de agua.

- La resistencia a compresión alcanzada de las probetas elaborados con agua a temperatura de (10°) no alcanza el 70% de la resistencia y las probetas con una temperatura de agua de (15°, 20°, 30° y 35°) pasan el 70% de la resistencia de diseño cumpliendo lo establecido en la norma (E-060).
- La resistencia a compresión del concreto va aumentado conforme se aumenta la temperatura del agua y pasan los días hasta llegar a los 35días.
- Si la temperatura del agua pasa los 30°C, el incremento de la resistencia a la compresión aumenta en 6.6% con respecto a la resistencia obtenida con incorporación de agua a los 30°C y la resistencia a la compresión disminuye al utilizar agua a los 10°C.
- El módulo de rotura también se ve afectado de manera positiva al incorporar cemento multipropósito y agua entre 10°C a 35°C, ya que la resistencia aumenta al elevar la temperatura del agua.
- La presente investigación determina que la temperatura del agua es muy importante al momento de realizar la mezcla de concreto.

VI. CONCLUSIONES

Se concluye que, al incorporar cemento multipropósito y agua entre 10°C a 35°C, se comprobó que afecta de manera positiva ya que, aumenta la resistencia del concreto y el módulo de rotura del concreto así mismo, el cemento multipropósito tiene una curva de crecimiento de 35 días los cual le permite seguir aumentando sus resistencias mecánicas.

Se concluye que, la incorporación de cemento multipropósito y agua a 10°C, afecta de manera negativa, el concreto este no alcanzara a los 28 días, sin embargo, el cemento multipropósito tiene la propiedad de seguir aumentando su resistencia mecánica hasta los 35 días los cual hace cumplir con una resistencia a la compresión de f´c=222.00 kg/cm² valor que representa el 105.90% y un módulo de rotura del 29.24 kg/cm² alcanzando un porcentaje 102.91% con respecto al diseño de la mezcla.

Se concluye que, la incorporación de cemento multipropósito y agua a 15°C, afecta de manera positiva, el concreto alcanzara a los 28 días el f´c de diseño, sin embargo, el cemento multipropósito tiene la propiedad de seguir aumentando su resistencia mecánica hasta los 35 días los cual hace cumplir con una resistencia a la compresión de f´c=228.00 kg/cm² valor que representa el 108.60% y un módulo de rotura del 29.60 kg/cm² alcanzando un porcentaje 104.20% con respecto al diseño de la mezcla.

Se concluye que, la incorporación de cemento multipropósito y agua a 20°C, afecta de manera positiva, el concreto alcanzara a los 28 días el f´c de diseño, sin embargo, el cemento multipropósito tiene la propiedad de seguir aumentando su resistencia mecánica hasta los 35 días los cual hace cumplir con una resistencia a la compresión de f´c=236.30 kg/cm² valor que representa el 112.50% y un módulo de rotura del 30.14 kg/cm² alcanzando un porcentaje 106.08% con respecto al diseño de la mezcla.

Se concluye que, la incorporación de cemento multipropósito y agua a 30°C, afecta de manera positiva, el concreto alcanzara a los 28 días el f´c de diseño, sin embargo, el cemento multipropósito tiene la propiedad de seguir aumentando su resistencia mecánica hasta los 35 días los cual hace cumplir con una resistencia a la compresión de f´c=255.80 kg/cm² valor que representa el

121.80% y un módulo de rotura del 31.36 kg/cm² alcanzando un porcentaje 110.37% con respecto al diseño de la mezcla.

Se concluye que, la incorporación de cemento multipropósito y agua a 35°C, afecta de manera positiva, el concreto alcanzara a los 28 días el f´c de diseño, sin embargo, el cemento multipropósito tiene la propiedad de seguir aumentando su resistencia mecánica hasta los 35 días los cual hace cumplir con una resistencia a la compresión de f´c=278.00 kg/cm² valor que representa el 132.40% y un módulo de rotura del 32.69 kg/cm² alcanzando un porcentaje 115.06% con respecto al diseño de la mezcla.

VII. RECOMENDACIONES

Se recomienda utilizar la incorporación de cemento multipropósito o tipo IP y una temperatura de agua de 30°C, ya que se aprecia en los resultados que es una temperatura ideal para evitar la termo expansión del concreto, fenómeno que causa la alta temperatura que puede alcanzar al reaccionar el cemento temperaturas de hasta 65°C, de esta manera se obtendrá elementos estructurales más resistente y duraderos.

Se recomienda no utilizar el agua a una temperatura de 10°C porque, pondría al límite la resistencia a la compresión del concreto, lo cual puede causar problemas al momento de ensayar los elementos estructurales vaciados con esta temperatura de agua, ya que la resistencia alcanzada es en laboratorio el cual cuenta con ambientes ideales para realizar los ensayos cosa que no es igual al momento de realizarlo en campo porque hay factores que afectan como la cantidad de agua, la dosificación de la mezcla entre otros.

Se recomienda no utilizar una temperatura de 15°C porque de igual forma con lo dicho anteriormente pondría al límite las resistencias mecánicas del concreto.

Se recomienda tener mucho cuidado al utilizar temperaturas de agua a los 20°C, porque su factor de seguridad no es muy alto y podría poner al límite la estructura vaciada con esta condición del agua.

Se recomienda utilizar la mezcla con cemento multipropósito tipo IP con una temperatura de agua a los 30°C, por ser una temperatura ideal, este diseño de mezcla puede alcanzar sin problemas las resistencias mecánicas investigadas, de esta forma construir elementos estructurales con una adecuada resistencia a la compresión.

Se recomienda utilizar la mezcla con cemento multipropósito tipo IP con una temperatura de agua a los 35°C, por ser una temperatura ideal, este diseño de mezcla puede alcanzar sin problemas las resistencias mecánicas investigadas, sin embargo la diferencia en el factor de seguridad respecto al utilizar una temperatura de 30°C es muy baja.

REFERENCIAS

ASTM C136-06. Stándard test method for sieve analysis of fine and coarse aggregates. [Fecha de consulta: 20 de junio de 2020].

Disponible en: http://es.escribd.com/doc/276047132/ASTM-C-136-06-pdf

ASTM C 39. Stándar test method for compressive strength of cy lindrical concrete especimens. [Fecha de consulta: 20 de junio de 2020].

Disponible en: https://civilgeeks.com/tag/descargar-astm-c-39-en-español/

ASTM C 78. Método de ensayo estándar para resistencia a la flexión del concreto. [Fecha de consulta: 20 de junio de 2020].

Disponible En: https://www.academia.edu/31702311/ASTM_Designaci%C3%B 3n_C78_M%C3%A9odo_de_Ensayo_Est%C3%A1ndar_para_Resistencia_a_la _Flexi%C3%B3n_del_Concreto_Usando_Viga_Simple_con_Carga_a_los_Terci os_del_Claro

ASTM D 4123. Indirect tensile test for the determination of the stiffnes and the resilient modulus of asphalt concretes. [Fecha de consulta: 20 de junio de 2020]. Disponible. En: https://kupdf.net/download/astmd123597eb180dc0d602b322bb1

ASTOCAZA, Sonia. Eficiencia del aditivo sikacem plastificante en el diseño de mezclas y calidad del concreto en obras de la ciudad de Ica. Trabajo (Proyecto de investigación).

Perú: Universidad nacional San Luis Gonzaga de Ica, 2017.

Disponible En: https://es.scribd.com/document/383471676/348344671EFICIE NCIA- DEL-ADITIVO-SIKACEM-PLASTIFICANTE-docx

BEDÓN, Jorge Diseño óptimo para obtener concreto de alta resistencia para obras civiles en zonas alto andinas del Perú. Tesis (Título de ingeniero civil).

Perú: Universidad Nacional del Santa, 2017.

Disponible en: http://repositorio.uns.edu.pe/handle/UNS/2910

BORJA, Manuel. Metodología de la investigación científica. Perú, 2016.

Disponible en: https://unprg.academia.edu/ManuelBorjaSu%C3%A1rez

CARRILLO, Joel y ROJAS, Jairo. Análisis comparativo de las propiedades mecánicas de compresión y flexión de un concreto patrón f´c= 210 kg/cm2 y un concreto reemplazado en porcentaje del 1,2,3 y 4% con dramix 3D respecto al volumen del agregado fino de la mezcla, elaborado con agregados de las canteras de vicho y cunyac. Tesis (Título de ingeniería civil).

Perú: Universidad Andina del Cusco, 2018.

Disponible en: http://repositorio.uandina.edu.pe/handle/UAC/719

CASTRO, María y YUCRA, Noemi. Evaluación y diagnóstico de la calidad del concreto elaborado a pie de obra en zonas rurales en los distritos de cerro colorado, Paucarpata y Socabaya en la ciudad de Arequipa. Tesis (Título de ingeniería civil).

Perú: Universidad Nacional de San Agustín, 2018.

Disponible en: http://repositorio.unsa.edu.pe/handle/UNSA/4773

GÓMEZ, Luis y otros. Study on the hydration of portland cement paste replaced with blast furnace slag, fly ash, and metakaolin: effect on the usage of two superplasticizer additives. Revista (Alconpat Journal) [Fecha de consulta: 3 de junio de 2020].

Disponible en: http://www.revistas-conacyt.unam.mx/alconpat/index.php/RA

FERNÁNDEZ, [et, al]. Evaluación del comportamiento de la resistencia a compresión del concreto con la aplicación del aditivo superplastificante PSP NLS, para edades mayores a 28 días. [En línea] Revista Ingeniería UC [Fecha de consulta: 3 junio de 2020].

Disponible en: https://docplayer.es/26812915-Revista-INGENIERÍA-uc-issn-universidad-de-carabobo-venezuela.html

LÓPEZ, Pedro y FACHELLI, Sandra. Metodología de la investigación social cuantitativa [En línea] España: 2015 [Citado el: 10 de julio del 2018]

Disponible en: https://ddd.uab.cat/pub/caplli/2016/163564/metinvsoccuaa2016_cap 1-2.pdf

FLORES, Bécquer. Hormigón autocompactante. Tesis (Título de ingeniería civil). Ecuador: Universidad Central del Ecuador, 2018.

Disponible en: http://www.dspace.uce.edu.ec/handle/25000/4482

GONZÁLEZ, Byron. Escala de medición en estadística [En línea] Guatemala: enero 2004 [Citado el: 27 de noviembre del 2018] Disponible en: https://pdfs.semanticscholar.org/6dbb/300fab9d467a476b3f38eb750cd94c6768 bb.pdf

GUTIÉRREZ, Luis. Evaluación de las ventajas técnicas y económicas del empleo de aditivo superplastificante en los concretos de resistencia convencional. Tesis (Título de ingeniería civil).

Perú: Universidad Nacional Federico Villarreal, 2018.

Disponible en: https://alicia.concytec.gob.pe/vufind/Record/RUNF83a41eb58a 55fa7b9b216703b05a 82a6/Details

HALDE, Vipin y otros. Effect of fly ash and polymer on compressive strength of concrete. [En línea] IRJET 2017 [Fecha de consulta: 5 de junio de 2020]. Disponible en: https://www.irjet.net/archives/V4/i6/IRJET-V4I676.pdf

HARMSEM, Teodoro. Diseño de estructuras de concreto armado. [En línea] 3ra ed. Perú: PUCP, 2002. [Fecha de consulta: 5 de junio de 2020].

Disponible en: https://civilgeeks.com/2011/02/12/diseno-de-estructuras-de-concreto-teodoro-harmsen/

HERNÁNDEZ, César. Plastificantes para el hormigón. Tesis (Título de construcción).

Chile: Universidad Austral de Chile, 2005.

Disponible en: http://cybertesis.uach.cl/tesis/uach/2005/bmfcih557p/doc/bmfcih557p.pdf

HERNÁNDEZ, Roberto y otros. Metodología de la investigación. [En línea] 6ta ed. México: mexicana 2006. [Fecha de consulta: 5 de junio de 2020].

Disponible en: http://observatorio.epacartagena.gov.co/wpcontent/uploads/2017 /08/metodologia-de- la-investigacion-sexta-edicion.compressed.pdf

HERNÁNDEZ, Roberto [et, al]. Metodología de la investigación. [En línea] 5ta ed. México: mexicana 2003. [Fecha de consulta: 5 de junio de 2020].

Disponible en: ttps://www.esup.edu.pe/descargas/dep_investigacion/Metodologia%20de%20la%20in vestigaci%C3%B3n%205ta%20Edici%C3%B3n.pdf

HUARCAYA, Coldie. Comportamiento del asentamiento en el concreto usando aditivo polifuncional sikament 290n y aditivo superplastificante de alto desempeño sika viscoflow 20E. Tesis (Título de ingeniería civil).

Perú: Universidad Ricardo Palma 2014.

Disponible en: http://repositorio.urp.edu.pe/handle/urp/432

HUERTA, Carlos. Diseño de mezclas de concreto. Perú: Universidad Cesar Vallejo 2015.

Disponible en: https://es.scribd.com/document/219699702/Metodos-de-Diseno-de-Mezclas1-Ing-Huerta

MAYANGA, Antony. Evaluación de las propiedades del concreto con aditivos superplastificantes chemament 400 y sikaplast - 326 en estructuras especiales, Lambayeque - 2018. Tesis (Titulo de ingeniería civil).

Perú: Universidad Señor de Sipan, 2018.

Disponible en: http://repositorio.uss.edu.pe/handle/uss/5873?show=full

GÓMEZ, Carlos. Mejorando las capacidades de la mezcla. [En línea] Perú: 2017 Constructivo. [Fecha de consulta: 5 de junio de 2020].

Disponible en: https://studylib.es/doc/7670412/mejorando-las-capacidades-de-la-mezcla

LÓPEZ, Luciano. Mejorando las capacidades de la mezcla. [En línea] Perú: 2017 Constructivo [Fecha de consulta: 10 de junio de 2020]..

Disponible en: https://studylib.es/doc/7670412/mejorando-las-capacidades-de-la-mezcla

PASQUEL, Enrique. Mejorando las capacidades de la mezcla. [En línea] Perú: 2017 Constructivo. [Fecha de consulta: 5 de junio de 2020].

Disponible en: https://studylib.es/doc/7670412/mejorando-las-capacidades-de-la-mezcla

NIETO, Roberto. Análisis comparativo de concretos con aditivos reductores de agua: complementación utilizando el aditivo glenium 3030 en concretos autonivelantes. Tesis (Título de ingeniería civil).

Perú: Universidad Nacional de INGENIERÍA, 2007.

Disponible en: http://cybertesis.uni.edu.pe/handle/uni/4240

NIÑO, Víctor Miguel. Metodología de la investigación. [En línea] Colombia: 2011. [Fecha de consulta: 5 de junio de 2020].

Disponible en: http://roa.ult.edu.cu/bitstream/123456789/3243/1/METODOLOGI A%20DE%20LA%20INVESTIGACION%20DISENO%20Y%20EJECUCION.pdf. ISBN 978-58-8675-94-7

NTP 334.088. 2015. Aditivos químicos en pastas, mortero y concreto. Lima-Perú: s.n., 2015.

NTP 339.185. 2013. Método de ensayo normalizado para contenido de humedad total evaporable de agregados por secado. Lima-Perú: s.n., 2013.

NTP 400.011. 2018. Agregado para concretos requisitos. Lima-Perú: s.n., 2018.

NTP 400.012. 2013. Análisis granulométrico del agregado fino, grueso y global. Lima- Perú: s.n., 2013.

NTP 400.017. 2011. Método de ensayo normalizado para determinar la más por unidad de volumen o densidad (peso unitario) y los vacíos en los agregados. Lima-Perú: s.n., 2011.

NTP 400.021. 2002. Agregados método de ensayo normalizado para peso específico y absorción del agregado grueso. Lima-Perú: s.n., 2002.

NTP 400.022. 2013. Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado fino. Lima-Perú: s.n., 2013.

NTP, 334.009. 2005. Cementos portland requisitos. Lima-Perú: s.n., 2005. NTP, 400.037. 2018. Agregados para concreto requisito. Lima-Perú: s.n., 2018.

OCAMPO, Lizeth y MACÍAS, Fabio. Estudio a nivel Colombia de la influencia del aditivo better mix en estado fresco, semi endurecido y endurecido del concreto estructural. Tesis (Título de ingeniería civil).

Colombia: Universidad de la Salle, 2015.

Disponible en: https://ciencia.lasallecoedu/ing_civil/6/

OSORIO, Jesús. Diseño de mezcla de concreto. [En línea] Colombia: cinco de Julio de 2013. [Fecha de consulta: 5 de junio de 2020].

Disponible en: https://www.360enconcreto.com/blog/detalle/diseno-de-mezclas-de-concreto

PONCE, Ricardo y TAPIA, Víctor. Comportamiento de cementos ecuatorianos con humo de sílice y aditivo súper plastificante. Tesis (Título de INGENIERÍA civil).

Ecuador: Universidad San Francisco de Quito USFQ, 2015.

Disponible en: http://repositorio.usfq.edu.ec/handle/23000/5018

PORTUGAL, Pablo. Tecnología del concreto de alto desempeño. [Fecha de consulta: 5 de junio de 2020]. s.n., 2007.

Disponible en: https://civilgeeks.com/2016/08/03/tecnologia-del-concreto-alto-desempeño/

QUIROZ, Mariela y SALAMANCA, Lucas. Apoyo didáctico para la enseñanza y aprendizaje en la asignatura de "tecnología del hormigón". Trabajo (licenciatura en ingeniería civil).

Bolivia: Universidad Mayor de San Simón, 2006.

Disponible en:https://www.academia.edu/13223612/UNIVERSIDAD_MAYOR_D E_SAN_SIM%C3%93N_FACULTAD_DE_CIENCIAS_Y_TECNOLOG%C3%8D A_APOYO_DID%C3%81CTICO_PARA_LA_ENSE%C3%91ANZA_Y_APREN DIZAJE_EN_LA_ASIGNATURA_DE_TECNOLOG%C3%8DA_DEL_HORMIG% C3%93N

RIVERA, Gerardo. Concreto simple Colombia, Universidad del Cauca. S.I. 2015. Disponible en: https://www.academia.edu/13569512/CONCRETO_SIMPLE

SÁNCHEZ, Kemmer. Aditivo superplastificante y su influencia en la consistencia y desarrollo de resistencias de concreto para f¨c=175, 210,245 kg/cm2. Tesis (Previo a optar el título de INGENIERÍA civil).

Perú: Universidad Continental, 2017.

Disponible en: https://repositorio.continental.edu.pe/handle/20.500.12394/3451

Sika Perú S.A. Hoja técnica. [ed.] Versión elaborada por: Sika Perú S.A. Lima, Perú: s.n., 2015.

TORO, Jaime. influencia de la fibra de polipropileno con 5%, 10% y 15% del volumen del cemento en la resistencia a la compresión y tracción del concreto f´c= 210 kg/cm2. Tesis (Previo a optar el título de INGENIERÍA civil).

Perú: Universidad Cesar Vallejo, 2017.

Disponible en: http://repositorio.ucv.edu.pe/handle/UCV/10235

TORRE, Ana. Curso básico de tecnologia del concreto para ingenieros civiles. [En linea] Perú: Universidad Nacional de INGENIERÍA, 2004.

Disponible en: https://civilgeeks.com/2016/07/25/curso-basico-tecnologia-del-concreto-ingenieros-civiles-ing-ana-torre-c/

VILLANUEVA, Fernando. Obtención de un concreto de alta resistencia para un f"c= 800 kg/cm2 usando agregado de la cantera el chiche-Cajamarca, aditivos y adición mineral. Tesis (Titulo de ingeniería civil).

Perú: Universidad Nacional de Cajamarca, 2015.

Disponible en: http://webcache.googleusercontent.com/search?q=cache:http://repositorio.unc.edu.pe/handle/UNC/640

VILLANUEVA, Gílmer. Influencia del aditivo superplastificante reductor de agua en las características del concreto de alta resistencia. Tesis (Título de ingeniería civil).

Perú: Universidad Nacional de Cajamarca, 2015.

Disponible en: http://webcache.googleusercontent.com/search?q=cache:http://repositorio.unc.edu.pe/handle/UNC/521

ANEXOS

Anexo 1: Matriz de operacionalización de las variables

Influencia en la resistencia mecánica del concreto con la incorporación de Cemento Multipropósito y agua fría entre 10°C a 35°C en Challhuahuacho – Apurímac, 2020.

VARIABLES	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA DE MEDICIÓN
	Se define como la capacidad para soportar una carga por unidad de área, y se expresa en términos de esfuerzo, generalmente en kg/cm2, MPa y con alguna frecuencia en libras por pulgada cuadrada (psi)" Así también el RNE en	El RNE en la norma E-0.60 indica que, "Los requisitos para f'c deben basarse en ensayos de probetas cilíndricas, confeccionadas y ensayadas", como también, "Los ensayos de resistencia a la	Resistencia a la comprensión	Curva de desarrollo de la resistencia.	Razón
VARIABLE DEPENDIENTE (Y). Resistencia Mecánica	la norma E-060 (2009) indica que: El concreto debe dosificarse para que proporcione una resistencia promedio a la compresión, <i>fcr</i> , [], y debe satisfacer los criterios de durabilidad []. El concreto debe producirse de manera	tracción por flexión o por compresión diametral (split test) no deben emplearse como base para la aceptación del concreto en obra" y finalmente, "considera como un ensayo de resistencia al promedio de las resistencias de dos probetas cilíndricas hechas de la misma	Resistencia a la tracción.	Split Test.	Razón
del Concreto	que se minimice la frecuencia de resultados de resistencia inferiores a fc, []. La resistencia mínima del concreto estructural, fc, diseñado y construido de acuerdo con esta Norma no debe ser inferior a 17 MPa.	muestra de concreto y ensayadas a los 28 días o a la edad de ensayo establecida para la determinación de f'c" (p. 40).	Módulo de rotura.	Momento de rotura.	Razón
VARIABLE generación elaborado bajo los más altos está	CEMENTOS YURA (2020) indica que: "Cemento de última generación elaborado bajo los más altos estándares de la industria cementera, colabora con el medio ambiente, de	CEMENTOS YURA (2020), indica que posee: Alta resistencia al ataque de sulfatos, ideal para obras portuarias expuestas al agua de mar, también en canales, alcantarillas, túneles y suelos con alto contenido de sulfatos. Bajo calor de hidratación. Mayor impermeabilidad.	Impermeabilidad	Porcentaje de absorción	Razón
Cemento Multipropósito	conformidad con la NTP 334.090 y la Norma ASTM C 595, recomendado para todo tipo de obra civil.	 Mayor resistencia a la compresión. Mejor trabajabilidad. Considerado el cemento bandera por cumplir con las exigencias de los cementos Tipo I, II y V. Además de tener una buena performance en ataques severos. 	Resistencia a los sulfatos.	Porcentaje de deterioro	Razón
				Agua a 10°	Razón
		RNE en la norma técnica E-060 (2009) indica que, "el aqua	Temperatura del agua	Agua a 20°	Razón
VARIABLE INDEPENDIENTE (X2).	RNE en la norma técnica E-060 (2009) indica que, "el agua	empleada en la preparación y curado del concreto deberá ser, de preferencia, potable" (p. 31).		Agua a 35°	Razón
Agua entre 10º a 35°C	empleada en la preparación y curado del concreto debera	p. 6.1.3.1.3.1.4, p. 6.4.3.1.4	Propiedades	Porcentaje de sulfatos	Razón
			físicas	Porcentaje de agentes orgánicos	Razón

Anexo 2: Matriz de consistencia

Influencia en la resistencia mecánica del concreto con la incorporación de Cemento Multipropósito y agua fría entre 10°C a 35°C en Challhuahuacho – Apurímac, 2020

PROBLEMA GENERAL	OBJETIVO GENERAL	HIPÓTESIS GENERAL	VARIABLES	DIMENSIONES	INSTRUMENTOS
¿En qué medida se ve afectada la resistencia a la compresión y el módulo de rotura del concreto con	Evaluar la resistencia a la compresión y el módulo de rotura del concreto con la incorporación de cemento	La incorporación de cemento multipropósito y agua fría entre 10°C a 35°C afectara la resistencia a la		Resistencia a la comprensión	
la incorporación de cemento multipropósito y agua fría entre 10°C a 35°C en Challhuahuacho - Apurímac, 2020?	multipropósito y agua fría entre 10°C a 35°C en Challhuahuacho - Apurímac, 2020.	compresión y módulo de rotura del concreto en Challhuahuacho - Apurímac, 2020.	Variable dependiente. (Y) Resistencia Mecánica	Resistencia a la tracción.	
PROBLEMAS ESPECÍFICOS	OBJETIVOS ESPECÍFICOS	HIPÓTESIS ESPECIFICAS	del Concreto		
¿En qué medida se ve afectada la	Determinar la resistencia a la	La incorporación de cemento	dei Concreto		
resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 10°C?	compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 10°C	multipropósito y agua a 10°C afectara la resistencia a la compresión y al módulo de rotura del concreto.		Módulo de rotura	
¿En qué medida se ve afectada la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 15°C?	Determinar la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 15°C	La incorporación de cemento multipropósito y agua a 15°C afectara la resistencia a la compresión y al módulo de rotura del concreto.	Variable independiente (X1).	Impermeabilidad	
¿En qué medida se ve afectada la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y aqua a 20°C?	Determinar la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 20°C	La incorporación de cemento multipropósito y agua a 20°C afectara la resistencia a la compresión y al módulo de rotura del concreto.	Cemento Multipropósito	Resistencia a los sulfatos	
¿En qué medida se ve afectada la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 30°C?	Determinar la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 30°C	La incorporación de cemento multipropósito y agua a 30°C afectara la resistencia a la compresión y al módulo de rotura del concreto.	Variable independiente (X2). Agua a fría entre 10°C a 35°C	Temperatura del agua.	
¿En qué medida se ve afectada la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 35°C?	Determinar la resistencia a la compresión y el módulo de rotura del concreto al incorporar cemento multipropósito y agua a 35°C	La incorporación de cemento multipropósito y agua a 35°C afectara la resistencia a la compresión y al módulo de rotura del concreto.		Propiedades físicas del agua	

Anexo 3: Validez y confiabilidad de los instrumentos de recolección de datos

INFORME DE OPINIÓN SOBRE INSTRUMENTO DE INVESTIGACIÓN CIENTÍFICA I. DATOS GENERALES

Apellidos y nombres del experto: Mg. Manuel Hugo Puican Carreño Institución donde labora : LA O. CONTRATISTAS GENERALES

Especialidad : Ingeniero Civil

Instrumento de evaluación : Diseño de mezclas y ensayo a la compresión

Autor del instrumento (s) Salas Duran Jim Anthony

II. ASPECTOS DE VALIDACIÓN

MUY DEFICIENTE (1) DEFICIENTE (2) ACEPTABLE (3) BUENA (4) EXCELENTE (5)

CRITERIOS	INDICADORES	1	2	3	4	5
CLARIDAD	Los items están redactados con lenguaje apropiado y libre de ambigüedades acorde con los sujetos muestrales.					>
OBJETIVIDAD	Las instrucciones y los items del instrumento permiten recoger la información objetiva sobre la variable. INFLUENCIA EN LA RESISTENCIA MECÁNICA DEL CONCRETO en todas sus dimensiones en indicadores conceptuales y operacionales.					×
ACTUALIDAD	El instrumento demuestra vigencia acorde con el conocimiento científico, tecnológico, innovación y legal inherente a la variable: INFLUENCIA EN LA RESISTENCIA MECÁNICA DEL CONCRETO					7
ORGANIZACIÓN	Los items del instrumento reflejan organicidad lógica entre la definición operacional y conceptual respecto a la variable, de manera que permiten hacer inferencias en función a las hipótesis, problema y objetivos de la investigación.			000	y	
SUFICIENCIA	Los items del instrumento son suficientes en cantidad y calidad acorde con la variable, dimensiones e indicadores.				X	
INTENCIONALIDAD	Los items del instrumento son coherentes con el tipo de investigación y responden a los objetivos, hipótesis y variable de estudio.					y
CONSISTENCIA	La información que se recoja a través de los items del instrumento, permitirá analizar, describir y explicar la realidad, motivo de la investigación.					1
COHERENCIA	Los items del instrumento expresan relación con los indicadores de cada dimensión de la variable INFLUENCIA EN LA RESISTENCIA MECÁNICA DEL CONCRETO					3
METODOLOGÍA	La relación entre la técnica y el instrumento propuestos responden al propósito de la investigación, desarrollo tecnológico e innovación.			0	X	
PERTINENCIA	La redacción de los items concuerda con la escala valorativa del instrumento.				X	
	PUNTAJE TOTAL		- 4	6		

(Nota: Tener en cuenta que el instrumento es válido cuando se tiene un puntaje mínimo de 41; sin embargo, un puntaje menor al anterior se considera al instrumento no válido ni aplicable)

E infranció & valido	, buede ser aflicado.	
PROMEDIO DE VALORACIÓN:	Apurimec, 16 de Julio	de 2020
ap	400000 Tima	

INFORME DE OPINIÓN SOBRE INSTRUMENTO DE INVESTIGACIÓN CIENTÍFICA

L DATOS GENERALES

Apellidos y nombres del experto: Mg. Lavado Enriquez, Juana Maribel

Institución donde labora

: Universidad Cesar Vallejo - Lima Norte

Especialidad

: Ingenieria Civil

Instrumento de evaluación : Diseño de Mezcla, Ensayo de Compresión.

Autor (s) del instrumento (s): Salas Duran Jim Anthony

II. ASPECTOS DE VALIDACIÓN

MUY DEFICIENTE (1) DEFICIENTE (2) ACEPTABLE (3) BUENA (4) EXCELENTE (5)

CRITERIOS	INDICADORES	1	2	3	4	6
CLARIDAD	Los items están redactados con lenguaje apropiado y libre de ambigüedades acorde con los sujetos muestrales.				X	
OBJETIVIDAD	Las instrucciones y los litems del instrumento permiten recoger la información objetiva sobre la variable: INFLUENCIA EN LA RESISTENCIA MECÁNICA DEL CONCRETO en todas sus dimensiones en indicadores conceptuales y operacionales.					X
ACTUALIDAD	El instrumento demuestra vigencia acorde con el conocimiento científico, tecnológico, innovación y legal inherente a la variable: INFLUENCIA EN LA RESISTENCIA MECÁNICA DEL CONCRETO				X	
ORGANIZACIÓN	Los îtems del instrumento reflejan organicidad lógica entre la definición operacional y conceptual respecto a la variable, de manera que permiten hacer inferencias en función a las hipótesis, problema y objetivos de la investigación.				X	
SUFICIENCIA	Los items del instrumento son suficientes en caritidad y calidad acorde con la variable, dimensiones e indicadores.				X.	
INTENCIONALIDAD	Los items del instrumento son coherentes con el tipo de investigación y responden a los objetivos, hipótesis y variable de estudio.					X
CONSISTENCIA	La información que se recoja a través de los items del instrumento, permitirá analizar, describir y explicar la realidad, motivo de la investigación.					X
COHERENCIA	Los items del instrumento expresan relación con los indicadores de cada dimensión de la variable INFLUENCIA EN LA RESISTENCIA MECÁNICA DEL CONCRETO					X
METODOLOGÍA	La relación entre la técnica y el instrumento propuestos responden al propósito de la investigación, desarrollo tecnológico e innovación.				X	
PERTINENCIA	La redacción de los items concuerda con la escala valorativa del instrumento.		1		X	
	PUNTAJE TOTAL	U	4			

(Nota: Tener en cuenta que el instrumento es válido cuando se tiene un puntaje mínimo de 41; sin embargo, un puntaje menor al anterior se considera al instrumento no vilido ni aplicable)

	ISMUHOUD ES	Varios,	PUROE	SOL APUGADO	_7
PROME	EDIO DE VALORACIÓN:	y) \.	Llm	ovohamba. 08 de Julio del :	202

I. Manbel Laveldo Eringuez INGENIERO CIVIL GIP (6090H

INFORME DE OPINIÓN SOBRE INSTRUMENTO DE INVESTIGACIÓN CIENTÍFICA I. DATOS GENERALES

Apellidos y nombres del experto: Mg. Marién Kalina Puican Barrios

Institución donde labora

: CONSORCIO INTEGRACIÓN

Especialidad

: Ingeniera Industrial

Instrumento de evaluación : Diseño de mezclas y ensayo a la compresión

Autor del instrumento (s) : Salas Duran Jim Anthony

II. ASPECTOS DE VALIDACIÓN

MUY DEFICIENTE (1) DEFICIENTE (2) ACEPTABLE (3) BUENA (4) EXCELENTE (5)

CRITERIOS	INDICADORES	1	2	3	4	5
CLARIDAD	Los items están redactados con languaje apropiado y libre de ambigüedades acorde con los sujetos mue strales.					X
OBJETIVIDAD	Las instrucciones y los items del instrumento permiten recoger la información objetiva sobre la variable: INFLUENCIA EN LA RESISTENCIA MECÁNICA DEL CONCRETO en todas sus dimensiones en indicadores conceptuales y operacionales.					X
ACTUALIDAD	El instrumento demuestra vigencia acorde con el conocimiento científico, tecnológico, innovación y legal inherente a la variable: INFLUENCIA EN LA RESISTENCIA MECÁNICA DEL CONCRETO				X	
ORGANIZACIÓN	Los îtems del instrumento reflejan organicidad lógica entre la definición operacional y conceptual respecto a la variable, de manera que permiten hacer inferencias en función a las hipótesis, problema y objetivos de la investigación.				X	
SUFICIENCIA	Los items del instrumento son suficientes en cantidad y calidad acorde con la variable, dimensiones e indicadores.				X	
INTENCIONALIDAD	Los items del instrumento son coherentes con el tipo de investigación y responden a los objetivos, hipótesis y variable de estudio.					X
CONSISTENCIA	La información que se recoja a través de los items del instrumento, permitirá analizar, describir y explicar la realidad, motivo de la investigación.					X
COHERENCIA	Los îtems del instrumento expresan relación con los indicadores de cada dimensión de la variable INFLUENCIA EN LA RESISTENCIA MECÁNICA DEL CONCRETO					X
METODOLOGÍA	La relación entre la técnica y el instrumento propuestos responden al propósito de la investigación, desarrollo tecnológico e innovación.				X	
PERTINENCIA	La redacción de los ítems concuerda con la escala valorativa del instrumento.				X	
	PUNTAJE TOTAL		1	15		

(Nota: Tener en cuenta que el instrumento es válido cuando se tiene un puntaje mínimo de 41; sin embargo, un puntaje menor al anterior se considera al instrumento no válido ni aplicable)

III. OPINIÓN DE APLICABILIDA El morumono 93	velido,	priede	arr o	plicade) .
PROMEDIO DE VALORACIÓN:	45 N	Aputimac .	1(c_de_	Julio	de 202

Anexo 4. Declaratoria de originalidad del Autor

Declaratoria de autenticidad (Autor)

Yo, Jim Anthony Salas Duran, estudiante de la Universidad César Vallejo de la

Escuela Profesional de Ingeniería Civil, identificado con DNI 46677783 cuyo

proyecto de investigación lleva por título "Influencia en la resistencia mecánica del

concreto con la incorporación de Cemento Multipropósito y agua fría entre 10°C a

35°C en Challhuahuacho – Apurímac, 2020°

Declaro bajo juramento:

El proyecto presentado es de mi total autoría.

2. Se ha respetado las normas internacionales de citas y referencias para las

fuentes consultadas. Por el cual, la siguiente investigación no ha sido

plagiado ni en su totalidad ni parcialmente.

3. El proyecto de investigación no ha sido publicado anteriormente.

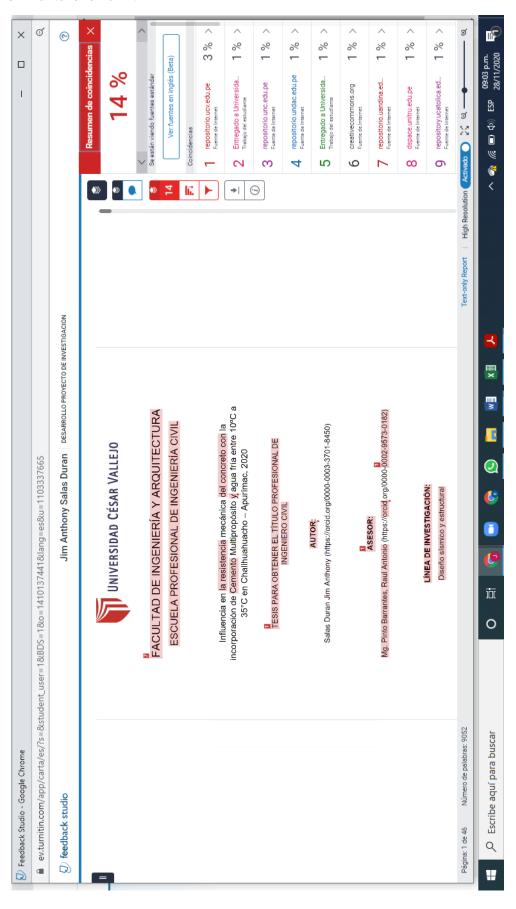
De identificarme la falta de fraude (datos falsos), plagio (información sin citar

autores), autoplagio (presentar como nuevo algún trabajo de investigación propio

que ya ha sido publicado), piratería (uso ilegal de información ajena) o falsificación

(representar falsamente las ideas de otros), asumo las consecuencias y sanciones

que de mi acción se deriven, sometiéndome a la normativa vigente de la


Universidad César Vallejo.

Lima, 28 de Noviembre del 2020

Salas Duran Jim Anthony

DNI: 46677783

Anexo 4 Pantallazo Turnitin

Anexo 4. Certificados de los Laboratorios

CONTROL DE CALIDAD

LABORATORIO DE ENSAYO DE MATERIALES DE INGENIERIA Y DE LA CONSTRUCCION

DISEÑO DE MEZCLA PARA CONCRETO

Influencia en la resistencia mecánica del concreto con la incorporación de Proyecto: Cemento Multipropósito y agua fría entre 10°C a 35°C en Challhuahuacho –

Apurimac, 2020

Solicita: JIM ANTHONY SALAS DURAN

Departamento: APURIMAC
Provincia: COTABAMBAS
Distrito: CHALLHUAHUACHO

fc= 210 kg/cm2 slump= 4 pulg Sin Aditivo

T. MAX. NOMINAL DE AGREGADO 3/4pulg

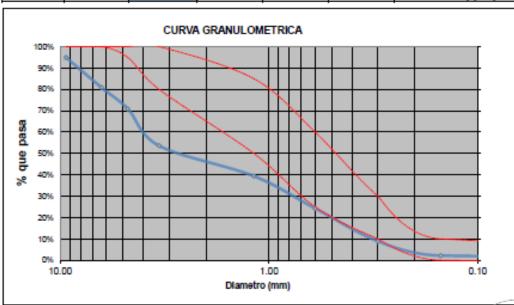
Canteras
Fino OBRAMART Grueso OBRAMART

Ing. Saulo Apuirre Zevallos CONSURCE INTEGRACION ESPECIA "STA DE CALIDAD Ing. Higo Cuba Benavente

LABORATORIO DE ENSAYO DE MATERIALES DE INGENIERIA Y DE LA CONSTRUCCION

Influencia en la resistencia mecánica del concreto con la incorporación de Cemento Multipropósito y agua Proyecto:

fría entre 10ºC a 35ºC en Challhuahuacho - Apurímac, 2020


Ubicación: CHALLHUAHUACHO-COTABAMBAS-APURIMAC

Cantera: OBRAMART Fecha: 15/09/2020

Solicitante: JIM ANTHONY SALAS DURAN

ANALISIS GRANULOMETRICO AGREGADO FINO POR TAMIZADO MTC E-107-200

							METROS
Tamiz N°	Diam.(mm)	Peso Retenido	%Retenido	%Retenido Acumulado	%que pasa	Superior	C 33
3/8 pulg	9.375	49.61	5.09%	5.09%	94.91%	100.00%	100.00%
1/4 pulg	6.350	136.11	13.97%	19.06%	80.94%	100.00%	100.00%
4	4.750	97.12	9.97%	29.03%	70.97%	100.00%	95.00%
8	3.360	169.04	17.35%	46.38%	53.62%	100.00%	80.00%
16	1.180	138.52	14.22%	60.60%	39.40%	85.00%	50.00%
30	0.600	147.29	15.12%	75.72%	24.28%	60.00%	25.00%
50	0.300	149.53	15.35%	91.07%	8.93%	30.00%	10.00%
100	0.150	65.87	6.76%	97.83%	2.17%	10.00%	0.00%
bandeja	0.000	21.14	2.17%	100.00%	0.00%	0.00%	0.00%
		974.23	100.00%			SERIE "C	"(Tyller)

Ing. Hugo Cuba Benavente

% Re t.Acumulados MF100

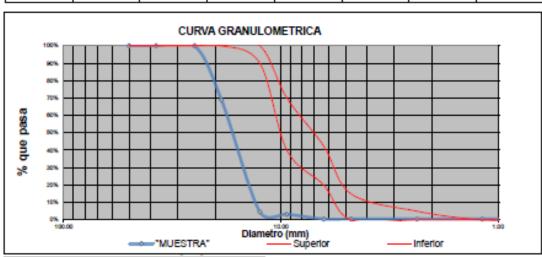
MF = 4.06 Arena Gruesa

Ing. Saulo Apuirre Zevallos CONSORCI: INTEGRACIÓN ESPECIA: STA DE CALIDAD

LABORATORIO DE ENSAYO DE MATERIALES DE INGENIERIA Y DE LA CONSTRUCCION

Proyecto: Influencia en la resistencia mecánica del concreto con la incorporación de Cemento Multipropósito y agua

fría entre 10°C a 35°C en Challhuahuacho - Apurimac, 2020


Ubicación: CHALLHUAHUACHO-COTABAMBAS-APURIMAC

Cantera: OBRAMART Fecha: 15/09/2020

Solicitante: JIM ANTHONY SALAS DURAN

ANALISIS GRANULOMETRICO AGREGADO GRUESO POR TAMIZADO MTC E-107-200

							AETROS C 33
		Peso		%Referido			
Tamiz N°	Diam.(mm)	Refenido	%Retenido	Acumulado	%que pasa	Superior	Inferior
2 pulg	50.000	0.00	0.00%	0.00%	100.00%	100.00%	100.00%
1 1/2 pulg	37.500	0.00	0.00%	0.00%	100.00%	100.00%	100.00%
1 pulg	25.000	0.00	0.00%	0.00%	100.00%	100.00%	100.00%
3/4pulg	18.750	1067.83	31.13%	31.13%	68.87%	100.00%	100.00%
1/2pulg	12.500	2201.87	64.20%	95.33%	4.67%	100.00%	90.00%
3/8pulg	9.375	47.81	1.39%	96.72%	3.28%	70.00%	40.00%
1/4pulg	6.350	93.22	2.72%	99.44%	0.56%	42.50%	20.00%
Nº4	4.750	0.00	0.00%	99.44%	0.56%	15.00%	0.00%
Nº8	2.360	0.00	0.00%	99.44%	0.56%	5.00%	0.00%
Nº16	1.180	0.08	0.00%	99.44%	0.56%	0.00%	0.00%
N ₆ 30	0.600	0.31	0.01%	99.45%	0.55%	0.00%	0.00%
Nº50	0.300	2.04	0.06%	99.51%	0.49%	0.00%	0.00%
Nº100	0.150	6.32	0.18%	99.70%	0.30%	0.00%	0.00%
bandeja	0.000	10.41	0.30%	100.00%	0.00%	0.00%	0.00%
		3429.89	100.00%				

MF = \frac{\sum \% \text{Re } t. Acumulados}{100}

Tamaño Maximo Absoluto= Tamaño Maximo Nominal=

MF = 7.25

Ing. Saulo Abuirre Zevallos CONSDROY INTEGRACION ESPECIA: STA DE CALIDAD Ing. Higo Cuba Benavente

1 pulg 3/4 pulg

LABORATORIO DE ENSAYO DE MATERIALES DE INGENIERIA Y DE LA CONSTRUCCION

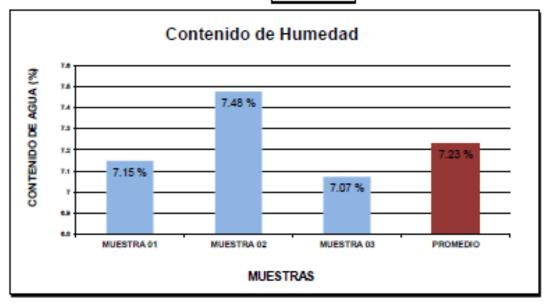
Influencia en la resistencia mecánica del concreto con la incorporación de

Proyecto: Cemento Multipropósito y agua fría entre 10°C a 35°C en Challhuahuacho -

Apurímac, 2020

Ubicación: CHALLHUAHUACHO-COTABAMBAS-APURIMAC

Muestra: OBRAMART-OBRAMART


Fecha: 15/09/2020

Solicitante: JIM ANTHONY SALAS DURAN

CONTENIDO DE HUMEDAD DE MATERIAL FINO

	MUESTRA 01	MUESTRA 02	MUESTRA 03	PROMEDIO
PESO DE CAPSULA	29.85	28.05	24.79	
PESO CAPS + MATERIAL HUMEDO	120.68	113.71	115.36	
PESO CAPS + MATERIAL SECO	114.62	107.75	109.38	
PESO DEL AGUA	6.06	5.96	5.98	
PESO DEL SUELO SECO	84.77	79.70	84.59	
CONTENIDO DE AGUA (%)	7.15	7.48	7.07	7.23

PROMEDIO DE CONTENIDO DE AGUA = 7.23%

Nota.- La humedad que se determino es la que tenia el material en el momento del ensayo y es la que se uso para el presente diseño de mezclas, teniendo en cuenta que la humedad no es constante depende de la humedad del ambiente

Ing. Saulo Apuirre Zevallos CONSORCIT INTEGRACIÓN ESPECIA: STA DE CALIDAD

Ing. Hugo Cuba Benavente

LABORATORIO DE ENSAYO DE MATERIALES DE INGENIERIA Y DE LA CONSTRUCCION

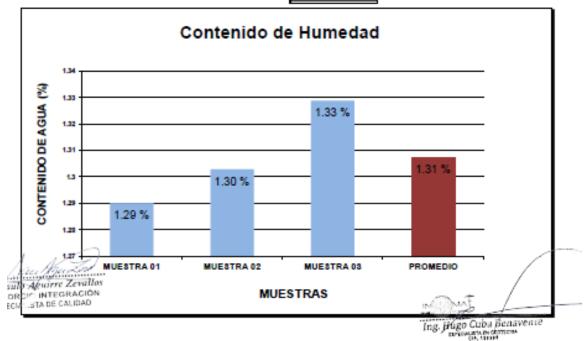
Influencia en la resistencia mecánica del concreto con la incorporación de

Proyecto: Cemento Multipropósito y agua fría entre 10ºC a 35°C en Challhuahuacho −

Apurímac, 2020

Ubicación: CHALLHUAHUACHO-COTABAMBAS-APURIMAC

Muestra: OBRAMART-OBRAMART


Fecha: 15/09/2020

Solicitante: JIM ANTHONY SALAS DURAN

CONTENIDO DE HUMEDAD DE MATERIAL GRUESO

	MUESTRA 01	MUESTRA 02	MUESTRA 03	PROMEDIO
PESO DE CAPSULA	29.00	26.79	24.16	
PESO CAPS + MATERIAL HUMEDO	113.31	112.53	114.10	
PESO CAPS + MATERIAL SECO	112.24	111.43	112.92	
PESO DEL AGUA	1.07	1.10	1.18	
PESO DEL SUELO SECO	83.24	84.64	88.76	
CONTENIDO DE AGUA (%)	1.29	1.30	1.33	1.31

PROMEDIO DE CONTENIDO DE AGUA = 1.31%

Nota.- La humedad que se determino es la que tenía el material en el momento del ensayo y es la que se uso para el presente diseño de mezclas, teniendo en cuenta que la humedad no es constante depende de la humedad del ambiente

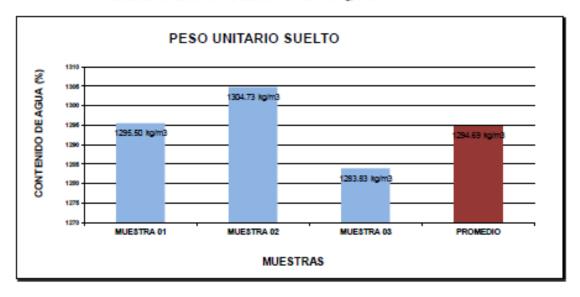
LABORATORIO DE ENSAYO DE MATERIALES DE INGENIERIA Y DE LA CONSTRUCCION

Proyecto: Influencia en la resistencia mecánica del concreto con la incorporación de Cemento

Multipropósito y agua fría entre 10ºC a 35°C en Challhuahuacho – Apurímac, 2020

Ubicación: CHALLHUAHUACHO-COTABAMBAS-APURIMAC

Muestra: OBRAMART-OBRAMART


Fecha: 15/09/2020

Solicitante: JIM ANTHONY SALAS DURAN

PESO UNITARIO SUELTO MATERIAL FINO

	MUESTRA 01	MUESTRA 02	MUESTRA 03	PROMEDIO
PESO DE MOLDE	3429.00 gr	3429.00 gr	3429.00 gr	
PESO MOLDE + MATERIAL HUMEDO	12404.24gr	12468.16gr	12323.40gr	
VOLUMEN DE MOLDE	6928.00cm3	6928.00cm3	6928.00cm3	
PESO UNITARIO SUELTO	1295.50 kg/m3	1304.73 kg/m3	1283.83 kg/m3	1294.69 kg/m3

PROMEDIO DE PESO UNITARIO SUELTO = 1294.69 kg/cm3

Ing. Hugo Cuba Benavente

Ing. Saulo Abuirre Zevallos CONSDRCI". INTEGRACIÓN ESPECIA: STA DE CALIDAD

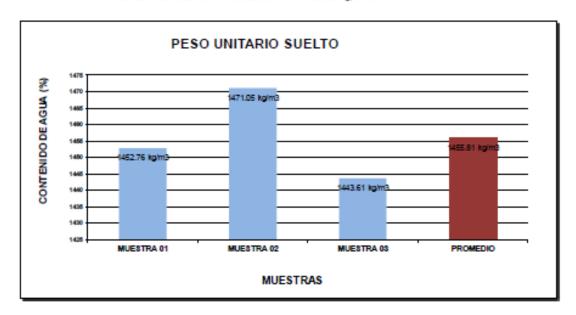
LABORATORIO DE ENSAYO DE MATERIALES DE INGENIERIA Y DE LA CONSTRUCCION

Proyecto: Influencia en la resistencia mecánica del concreto con la incorporación de Cemento

Multipropósito y agua fría entre 10°C a 35°C en Challhuahuacho – Apurímac, 2020

Ubicación: CHALLHUAHUACHO-COTABAMBAS-APURIMAC

Muestra: OBRAMART-OBRAMART


Fecha: 15/09/2020

Solicitante: JIM ANTHONY SALAS DURAN

PESO UNITARIO SUELTO MATERIAL GRUESO

	MUESTRA 01	MUESTRA 02	MUESTRA 03	PROMEDIO
PESO DE MOLDE	3429.00 gr	3429.00 gr	3429.00 gr	
PESO MOLDE + MATERIAL HUMEDO	13493.70gr	13620.42gr	13430.34gr	
VOLUMEN DE MOLDE	6928.00cm3	6928.00cm3	6928.00cm3	
PESO UNITARIO SUELTO	1452.76 kg/m3	1471.05 kg/m3	1443.61 kg/m3	1455.81 kg/m3

PROMEDIO DE PESO UNITARIO SUELTO = 1455.81 kg/cm3

Ing. Hugo Cuba Benavente

Ing. Saulo Aguirre Zevallos CONSDROY INTEGRACIÓN ESPECIA: STA DE CALIDAD

LABORATORIO DE ENSAYO DE MATERIALES DE INGENIERIA Y DE LA CONSTRUCCION

Proyecto: Influencia en la resistencia mecànica del concreto con la incorporación de Cemento

Multipropósito y agua fría entre 10°C a 35°C en Challhuahuacho - Apurimac, 2020

Ubleación: CHALLHUAHUACHO-COTABAMBAS-APURIMAC

Muestra: OBRAMART-OBRAMART

Fecha: 15/09/2020

Solicitante: JIM ANTHONY SALAS DURAN

PESO UNITARIO SUELTO VARILLADO MATERIAL FINO

and the second second second	MUESTRA 01	MUESTRA 02	MUESTRA 03	PROMEDIO
PESO DE MOLDE	3429.00 gr	3429,00 gr	3429.00 gr	
PESO MOLDE + MATERIAL HUMEDO	15532.00gr	15528.00gr	15537.00gr	
VOLUMEN DE MOLDE	6928.00cm3	6928.00cm3	6928.00cm3	
PESO UNITARIO SUELTO	1746.97 kg/m3	1746.39 kg/m3	1747.69 kg/m3	1747.02 kg/m3

PROMEDIO DE PESO UNITARIO COMPACTADO = 1747.0 kg/cm3

Ing. Hugo Cuba Benavente

Ing. Saulo Apuerre Zevallos CONSORCE INTEGRACIÓN ESPECIA .STA DE CALIDAD

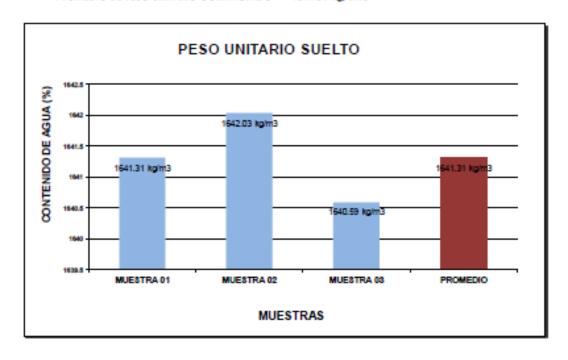
LABORATORIO DE ENSAYO DE MATERIALES DE INGENIERIA Y DE LA CONSTRUCCION

Proyecto: Influencia en la resistencia mecánica del concreto con la incorporación de Cemento

Multipropósito y agua fría entre 10°C a 35°C en Challhuahuacho – Apurímac, 2020

Ubicación: CHALLHUAHUACHO-COTABAMBAS-APURIMAC

Muestra: OBRAMART-OBRAMART


Fecha: 15/09/2020

Solicitante: JIM ANTHONY SALAS DURAN

PESO UNITARIO SUELTO VARILLADO MATERIAL GRUESO

	MUESTRA 01	MUESTRA 02	MUESTRA 03	PROMEDIO
PESO DE MOLDE	3429.00 gr	3429.00 gr	3429.00 gr	
PESO MOLDE + MATERIAL HUMEDO	14800.00gr	14805.00gr	14795.00gr	
VOLUMEN DE MOLDE	6928.00cm3	6928.00cm3	6928.00cm3	
PESO UNITARIO SUELTO	1641.31 kg/m3	1642.03 kg/m3	1640.59 kg/m3	1641.31 kg/m3

PROMEDIO DE PESO UNITARIO COMPACTADO = 1641.31 kg/cm3

Ing. Hugo Cuba Benavente

Ing. Saulo Apuirre Zevallos CONSORCI INTEGRACIÓN ESPECIA: STA DE CALIDAD

LABORATORIO DE ENSAYO DE MATERIALES DE INGENIERIA Y DE LA CONSTRUCCION

Proyecto: Influencia en la resistencia mecánica del concreto con la incorporación de Cemento Multipropósito y

agua fría entre 10°C a 35°C en Challhuahuacho – Apurímac, 2020

Ubicación: CHALLHUAHUACHO-COTABAMBAS-APURIMAC

Muestra: OBRAMART-OBRAMART

Fecha: 15-9-20

Solicitante: JIM ANTHONY SALAS DURAN

PESO ESPECIFICO Y ABSORCION DE AGREGADO FINO AASHTO T 84

Peso Específico de masa (Pem)

Wo= Peso en el aire de la muestra secada en el homo, gr : 491.41 gr V= Volumen de Frasco en cm3 : 500.00 cm3 Va≡ Peso en gramos o volumen en cm3 de agua añadida en el : 301.00 cm3

frasco

$$Pox = \frac{W_0}{(V - V_0)} = 2.47 \text{ gr/cm3}$$
 Ab = $\frac{500 - W_0}{W_0} \text{ z}|00 = 1.75\%$

$$P_{BB} = \frac{500}{(V - V_c)} \times 100$$
 = 2.51 gr/cm3 $P_{quade} = \frac{W_0}{(V - V_c) - (500 - W_0)}$ = 2.58 gr/cm3

PESO ESPECIFICO Y ABSORCION DE AGREGADO GRUESO AASHTO T 84

A= PESO SECO EN EL AIRE : 1508.09 gr B= PESO SUPERFICIALMENTE SECO : 1525.94 gr C= PESO DE LA MUESTRA EN AGUA : 928.03 gr

$$\gamma_{ap} = \frac{A}{B-C}$$
 = 2.52 $\gamma_{aparatio} \frac{A}{A-C}$ = 2.60

$$\gamma_{\bullet} = \frac{B}{B-C}$$
 = 2.55 Absorcion= $\frac{B-A}{A}$ = 1.18%

Ing. Hugo Cuba Benavente

Ing. Saulo Apraire Zevallos CONSDRCI" INTEGRACIÓN ESPECIA: STA DE CALIDAD

LABORATORIO DE ENSAYO DE MATERIALES DE INGENIERIA Y DE LA CONSTRUCCION

DISEÑO DE MEZCLAS - CONCRETO, Norma de Referencia ACI 211.1

Proyecto: Influencia en la resistencia mecánica del concreto con la incorporación de Cemento Multipropósito y agua fría entre 109C a 35°C en

Challhuahuacho – Apurimac, 2020

Cliente: JIM ANTHONY SALAS DURAN

Diseño Pc 210 kg/cm² Fecha de ensayo 25092000

Slump 4 Pulgedas T. máx.Nomin 1º Pulgedas Cemento: TIPO II

DATOS DE INSUMOS Y MATERIALES

Insumo: Cemento Yura Portland Tipo IP

Material: Agregado Grueso Cantera OBRAMART
Agregado Fino Cantera OBRAMART

Valores de ensavo

Propiedades físicas de los agrega	dos	A. Fino	A. Grueso	Cemento
Peso Especifico (base secs)	(gr/cm²)	2.58	2.60	2.85
Peso Uniterio Compactado	(kg/m²)	1.747016338	1.641	
Peso Uniterio Suelto	(kg/m²)	1.294688222	1.455805427	
Absorción	%	0.02	0.011836164	*****
Humedad	%	0.07	0.01	
Modulo de Fineza	%	4.08	2.98	
Meterial que pasa por la malla # 200	%	2.17	0.70	

Valores de diseño

Cemento	(kg/m²)	428.89
Agus	(lt/m²)	193.00
Agregado Fino	(kg/m²)	862.82
Agregado Grueso	(kg/m²)	820.66

Correction por	r humedad	
Agregado Fino	(kg/m²)	863.45
Agregado Grueso	(kg/m²)	820.76

RESULTADOS FINALES

Dosificacion en peso humedo por mª				
Cemento	(kg/m²)	428.889		
Agus	(Nm²)	192.517		
Agregado Fino	(kg/m²)	863.448		
Agregado Grueso	(kg/m²)	820.763		
Viscocrete 1110	Mm*	0.000		
SkaAer	lt/m²	0.000		

Dosificacio	on en peso por bol:	sa de cemento
Cemento	(kg/bls)	42.500
Agus	(Itabia)	19.077
Agregado Fino	(kg/bls)	85.562
Agregado Grueso	(kg/bls)	81.332
Viscocrete 1110	Ibble	0.000
SiksAer	Itible	0.000

Dosificacion e	in volumen por bo	lsa de cemento
Cemento	(bla)	1.000
Agus	(It/bis)	19.077
Agregado Fino	(pie*/bis)	2.360
Agregado Grueso	(pie*/bis)	1.995
Viscocrete 1110	lt/bis	0.000
SikaAer	t/bis	0.000

Relacion A/C:	0.45
	•
Factor Cemento (bla/m*)	10.09

Observaciones:

FECHA:

HECHO POR.

FIRMA:

NOMBRIESS, PURO CUDIA DEMINISTRATION NOMBRES:

CARGO:

CARGO:

CARGO:

CARGO:

CARGO:

CONSDICT INTEGRACION

FECHA:

LABORATORIO CENTRAL DE ENSAYO DE MATERIALES DE INGENIERIA Y DE LA

CONSTRUCCION

DISEÑO DE MEZCLA DE CONCRETO

Fecha 25/09/2020 Revision 0

COMBORCIO INTEGRACION		Diag	ENO DE MEZO	DADE CONC	RETO	Nevision	
			ACI-211.1	NTP E-060		Pagina	1 de 1
Solicitante:	JIM ANTHONY SALAS DURAN				Muestra N* :		
Diseño de Concreto :	210 kg/cm²				Musebvado por :	Hugo Cuba Benav	ente
Liseno de Concreto .						Hago Cube Benav	
					Ensayedo por :		*19
					Fecha de ensayo :	25/09/2020	
	DATOS				Proces	samiento	
Concreto sin sire incon	norado			Ī	Volümene	es abecitatos	
]	Cemerio *	0.137	nd*
-		242			Agua *	0.193	nd*
for		210	igion?		Au-	0.000 0.316	nd*
Factor de Seguridad fro (diseño) *		273	ligion?	1	Agregado graeso * Aditivo *	0.000	
The galactic of		274	- Span	ı	Sume total	0.000	
Cemento Portland		TIPOIP		ī		Agregado fino	
Tipo I ASTM		C-150		1			
Peac específico		2.85		1	Volümen absoluto fino *	0304	nd*
		•		_	Peec finc secc *	863	kgin?
	Agregado Fino			Į.			
Peso específico (base saturado)		2.50	griom*		Valores	de diseño	
Peec unitario compectado		1.76	ligin)*	l			t-t-d
Peso unitario suello		1.29	lg/m²	l	Cernerio =	69	light?
Absorbión Humedad (vi)		1.78%	*	7.0	Agua * Agregado fino seco *	193	Morr light
Módulo de Tireza		4.00	-	1.4	Agregado granso seco *	821	lain?
Malla 200		2.17		1		-	-
		-	-				
	Agregado Graeso			Ī	Corrección	por humedad	
Tam. Máx Nominal		1"		Ī			
Peso unitario compactado		1.64	lg/m²	Į.	Agregado fino húmedo *	863	kgin?
Peso unitario suello		1.46	lg/m²	Į.	Agregado grueso húmedo *	821	lg/n²
Peso específico (base saturado)		2.60	grices				
Absorbión Humedad (n)		1.10%	%		Humedad superfic	ial de los agregados	
Humedad (H)		1.21%	*	L	Agregado fino *	0.05	*
	PROCESAMENTO			Г	Agregado graeso seco *	0.00	-
Seleccion de guertamiento de goue		г		t		****	
especificaciones tecnicas de la obra		4.0	Pulp.	1	Aporte de humedad (agua) de los agregados	
				1			
Volúmen unitario de agua	(Table 1.1)	193	Mari ^a	340	Agregado fino *	0.47	Mm ^a
				1	Agregado grueso seco *	0.01	Mm ^a
Contenido de aire incorporado	(Tabla 1.2a)	2.0	%		Aporte de humedad agregados *	0.48	Min/
Relation to accordance to	(Table 1.5)	0.45	ais		to a destroy	190,50	No.
Relación alo por resistencia	(1808-1.2)	0.40		0.46	Agua efectiva *	186.02	Der.
Plastificante (viscocrete 1110)		0.00	E/bis ig/m²	1	Pages comanic	ios por humedad	
Factor cements		429	lg/m²	1	reace drings		
		10.1	bia	1	Cemerto *	429	lg/m²
Sika AER (noorp. De Aire)		0	mi/bis	1	Agua efectiva *	192.5	Min/
		0	B/bia	1	Agregado fino húmedo *	863	lght*
				l	Agregado grueso húmedo * Silament 306 N (0.5%)	821	light?
Contenido agregado grueso	(Table 1.4)	0.50	peso/m²	l		600	light*
Peso agregado grueso *		621	ig/m²	Į	Sila Aer (0.07%)	0.000	light?
			BESILI TAN	OS FINALES			
			409	429	Deaffered	n en volumen x bolisa de cemen	do.
Programite en	seso (himedo)						
Progonitin en Agr. Pino Agr. Grueso	peso (himedo) Agus tisaco Cemento	ł	863	429	Cemento Agr	Fino Agr. Grueso	Ague
	Agua bisaco Cemento		863	69		Fino Agr. Grusso 2.4 2.0	
Agr. Fino Agr. Grueso	Agua tisaco Cemento						19.1
Agr. Fino Agr. Grueso	Agua bisaco Cemento		863		1		
Agr. Pico Agr. Grueso 2.0 1.8 alc diseño	Agua titaco Cemento 18.1 1	0.45	863		Pesoports	2.4 2.0 anda (1 Bolks) 	19.1 kg/kaco
Agr. Fino Agr. Grusso 2.0 1.8	Agua titaco Cemento 18.1 1	0.45	863		Pesoports penedic = agus efectivs =	2.4 2.0 ands (1 Boha)	19.1 kg/kaco b/saco
Agr. Piro Agr. Grueso 2.0 1.9 ulc diseño ulc electivo	Agua titaco Cemento 18.1 1		863		1 Peso ports ownerio * ague efective * agreeded for himedo *	2.4 2.0 ands (1 Bolts) 42.5 19.1 165.5	ighaco thaco ighaco
Agr. Pico Agr. Grueso 2.0 1.8 alc diseño	Agua titaco Cemento 18.1 1		863		f Peso ports again electric = again electric = again electric = againgado fino himedo = agrapado praeso himedo =	2.4 2.0 anda (1 Bolsa) 42.5 12.1 65.9 81.3	19.1 lighaco Bhaco lighaco lighaco
Agr. Pino Agr. Grusso 2.0 1.9 ulc diseño alc electivo	Agua titaco Cemento 18.1 1		863		1 Peso ports ownerio * ague efective * agreeded for himedo *	2.4 2.0 ands (1 Bolts) 42.5 19.1 165.5	19.1 lighaco triano lighaco

Observaciones:	
Nonline	
Fundam Firma	ing, jingo Cuba Paggapanie

Ing. Saulo Aburre Zevallos CONSCROIT INTEGRACIÓN ESPECIA STA DE CALIDAD

Anexo 6. Ensayos de roturas del concreto

ENSAYO DE COMPRESIÓN A LOS 7 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 10°C

											1				
					CON	ITRO	L DE C	CALIDAD							
CONSC	ORCIO INTE	EGRACION		ENSAYO A COMPRESION DE TESTIGOS CILINDRICOS DE CONCRETO. NORMAS TECNICAS: MTC E 704, ASTM C 39-99, AASHTO T 22											
				NORMAS TECNICAS: MTC E 704, ASTM C 39-99, AASHTO T 22 encia mecánica del concreto con la incorporación de Cemento Multipropósito y agua fría entre 10ºC a 35°C en Challhuahuacho – Apurímac, 2020											
PROYEC				ca del concreto	con la incorp	oracion de (Cemento Multip	proposito y agua fria	entre 10°C a 35°	C en Challhuahu		-			
CLIENTE		Salas Duran Jin									Fecha de		30/09/2020		
UBICACI		Apunmac - Co	tabambas - Cha	Ilhuahuacho							Fecha de	ensayo:	07/10/2020		
ESTRUC											Edad:		7 Dias		
ELEMENT	0:	Concreto con a	gua 10°C								F'c:		210 (Kg/cm2)		
	RESIST.			EECHA DI	E ENSAYO			DIAMETRO	AREA DE	CARGA	DESIS	TENCIA ALCA	ΔΝ7ΔΠΔ		
N° DE	_ DE _ ESPECIF.	ESTRUCTURA	ELEMENTO	MOLDEO	ROTURA	EDAD	SLUMP	DE	TESTIGO	SOMETIDA	RESIST.	RESIST.	RESIST.	TIPO DE	
TESTIG	10-	201110010101		(dia)	(dia)	(dias)	(Pulg.)	TESTIGO	(cm²)	(kg.)	(kg/cm²)	(%)	PROMEDIO (%)	FRACTUE	
	(ka/cm²)			(uia)	(uia)	(uias)	(Fulg.)	TESTIOO	(cm²)	(vg.)	(kg/cm²)	(70)	(70)		
1	210			30/09/2020	07/10/2020	7		14.9	174.37	25515	146.3	69.7		С	
		† o	Concreto con agua 10°C				4.5"						69.7		
		† 1	agua 10 C				†						1		
			$\overline{\bigvee}$						ĺ	E					
			\triangle		\triangle		\triangle]						
							EQUIPOS UTII	17ADOS							
		EQU	JIPOS	FABR	ICANTE (MAR			FECHA DE CALIBRACI	ION	INFO. 1	EC. DE CALIBR	ACION	1		
	PRENSA HIWEIGHT (PERUTEST)							17/08/2019		PT-LF-071-2]		
	VERNIER INSIZE BALANZA OHAUS							17/08/2019 25/07/2019		PT - LF - 022 - 2 PT - LM - 0163 -			4		
		BALANZA		UNAUS				25/07/2019		P1 - LM - 0163	2019		1		
	ELA	BORADO POR:	/			REVISADO	O POR:								
Firma:	IN M	I /		Firma:		Jan St	gu Zin		1						
The Higo Cuba Benavence Cares: Ing. Sauto Agran						EGRACIÓN		1							
Nombre:	CEPED	CIP. 120300		Nombre:	CONSO ESPEC	IAL STA DE	E CALIDAD		1						
Fecha:		/10/2020		Fecha:	07/10/2020				1						
ecila.	Ui	/ TUIZUZU		recita.	07/TU/2020										

ENSAYO DE COMPRESIÓN A LOS 14 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 10°C

					CC	ONTRO	L DE C	ALIDAD							
				ENSAYO A COMPRESION DE TESTIGOS CILINDRICOS DE CONCRETO.											
CONS	ORCIO INTEG	RACION		NORMAS TECNICAS: MTC E 704. ASTM C 39-99. AASHTO T 22											
PROYEC	TO:	Influencia en	la resistencia me	ecánica del cor	creto con la i			fultipropósito y agua				rímac 2020			
CLIENT			Jim Anthony								Fecha de		30/09/2020		
UBICAC			Cotabambas -	Challhuahua	cho						Fecha de		14/10/2020		
ESTRUC		, ,									Edad:		14 Dias		
ELEMEN'		Concreto co	n agua 10°C								F'c:		210 (Kg/cm2)		
CCCITICIT		CONCICTO CO	ii ugua 10 C										E10 (ng/cm2)		
				FECHA DE	ENSAVO			DIAMETRO	AREA DE		DEGIG	TENCIA ALCA	ΜΖΑΠΑ		
Nº DE	RESIST. DE	ESTRUCTU				EDAD	SLUMP			CARGA		T	RESIST.	TIPO DE	
TESTIG	O ESPECIF. fc= (kg/cm²)	RA	ELEMENTO	MOLDEO	ROTURA			DE	TESTIGO	SOMETIDA	RESIST.	RESIST.	PROMEDIO	FRACTURA	
	(kg/cm)			(dia)	(dia)	(dias)	(Pulg.)	TESTIGO	(cm²)	(kg.)	(kg/cm ²)	(%)	(%)		
2	210	1	Concreto con	30/09/2020	14/10/2020	14 Dias		14.9	173.20	31636	182.7	87.0		В	
		0	agua 10°C				4.5"						87.0		
			-8												
			A		В			D		E					
							EQUIPOS U	TILIZADOS					I		
l			UIPOS		RICANTE (MA	RCA)	F	ECHA DE CALIBRACIO			C. DE CALIBRA	CION	Į.		
		PRENSA		HIWEIGHT (P	ERUTEST)			17/08/2019		PT - LF - 071 - 201			1		
		VERNIER		INSIZE				17/08/2019		PT - LF - 022 - 201			1		
l		BALANZA		OHAUS				25/07/2019		PT - LM - 0163 - 2	019		1		
									_						
	ELABOR	RADO POR:				REVISADO	O POR:		4						
	IN MAT	\int		Firma:		Jan Aguirr									
Firma:		Cargo: Ing Hilgo Cuba Benavente Cargo: CONSORCI							1						
Cargo:	Ing Hugo Cu	ba Benaven	Ite		CONS	OKCI. INTE	CALIBAR		_						
	Ing. Higo Cu	ba Benaven en geoteoma 0/2020	Ite	Cargo: Nombre: Fecha:	CONS ESPE 14/10/2020	CIAL STADE	CALIDAD		_						

ENSAYO DE COMPRESIÓN A LOS 28 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 10°C

	-0													
7	N. C.			COI										
-	-			FI	NSAVO A	COMPRE	SION DE TES	TIGOS CIL	INDDICOS	DE CONC	`DETO			
CONSORCIO	INTEGRACION		ENSAYO A COMPRESION DE TESTIGOS CILINDRICOS DE CONCRETO. NORMAS TECNICAS: MTC E 704, ASTM C 39-99, AASHTO T 22											
PROYECTO:	Influencia en	la resistencia m	ecánica del co	ncreto con la ir	ncornoración		ultipropósito y agua				Anurimac 202	0		
CLIENTE:		Jim Anthony	ecarrica del cor	na eto con la n	icor por acioni	de Cemento IV	uniproposito y agua	IIIa eliue 10-c				30/09/2020		
UBICACIÓN:		Cotabambas -	Challhuahua	acho						Fecha de		28/10/2020		
ESTRUCTURA:	•									Edad:		28 Dias		
ELEMENTO:	Concreto co	on agua 10°C								F'c:		210 (Kg/cm2)		
	IST. DE ESTRUCTU			EENSAYO	EDAD	SLUMP	DIAMETRO	AREA DE	CARGA		ISTENCIA AL		TIPO DE	
TESTICO ESPE	CIF. TC=	ELEMENTO	MOLDEO	ROTURA	LUAD	Scom	DE	TESTIGO	SOMETIDA	RESIST.	RESIST.	RESIST. PROMEDIO	FRACTUE	
(kg	/cm²)		(dia)	(dia)	(dias)	(Pulg.)	TESTIGO	(cm²)	(kg.)	(kg/cm ²)	(%)	(%)		
1 2	210	Concreto con	30/09/2020	28/10/2020	28 Dias		14.9	175.07	36503	208.5	99.3]	D	
	0	agua 10°C				4.5"						99.3		
		_												
		X		λ										
						EQUIPOS UTIL	IZADOS							
		UIPOS		RICANTE (MAF	RCA)	F	ECHA DE CALIBRACIO	ON		EC. DE CALIBR	ACION			
	PRENSA		HIWEIGHT (PE	ERUTEST)			17/08/2019		PT-LF-071-2			1		
	VERNIER		INSIZE				17/08/2019		PT - LF - 022 - 2			4		
	BALANZA		OHAUS				25/07/2019		PT - LM - 0163	- 2019		J		
	ELABORADO POR				REVISADO	POR:		I						
Firma: IN M	AT /	10	Firma:	Ing. 3	auto Aprili	re Zevallos								
Cargo: Ing. Hug Nombre: Care	o Cuba Benaveno		Cargo: CONSORCE TA DE CALIDAD Nombre:											
Fecha:	28/10/2020		Fecha:	28/10/2020				1						
recna.	20/10/2020		recha.	28/10/2020										

ENSAYO DE COMPRESIÓN A LOS 35 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 10°C

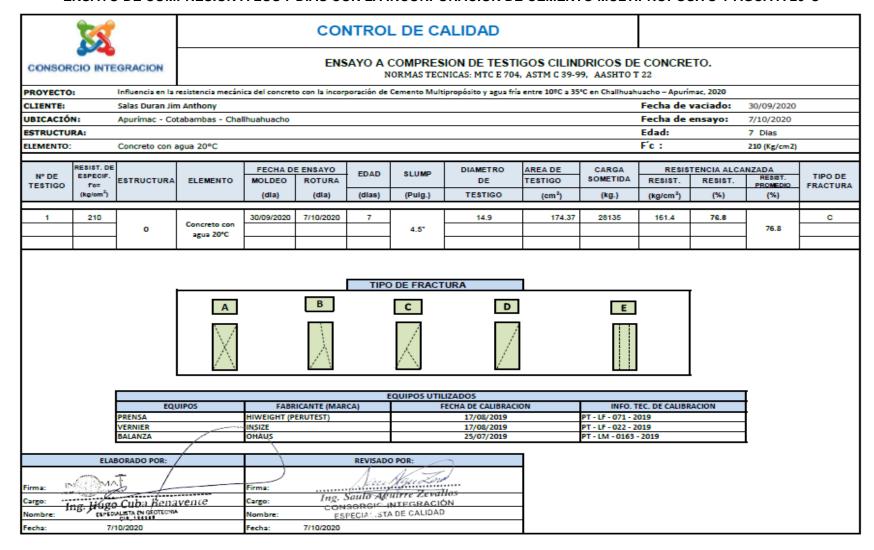
	TO				CO	NTRO	L DE C	ALIDAD							
				ENSAYO A COMPRESION DE TESTIGOS CILINDRICOS DE CONCRETO.											
CONSO	RCIO INTEG	BRACION		NORMAS TECNICAS: MTC E 704, ASTM C 39-99, AASHTO T 22											
PROYECTO):	Influencia en	la resistencia n	necánica del c	oncreto con la	incorporació	n de Cemento	Multipropósito y agu	ıa fría entre 10º	C a 35°C en Chal	lhuahuacho –	Apurímac, 20	20		
CLIENTE:		Salas Duran	Jim Anthony								Fecha de	vaciado:	30/09/2020		
UBICACIÓ	N:	Apurímac -	Cotabambas	- Challhuahu	uacho						Fecha de	ensayo:	04/11/2020		
ESTRUCTU	IRA:										Edad:		35 Dias		
ELEMENTO:		Concreto co	n agua 10°C								F'c:		210 (Kg/cm2)		
Nº DE	RESIST. DE	ESTRUCTU		FECHA DE	E ENSAYO	EDAD	SLUMP	DIAMETRO	AREA DE	CARGA	RESIS	TENCIA ALC	RESIST.	TIPO DE	
TESTIGO	ESPECIF. fc=	RA	ELEMENTO	MOLDEO	ROTURA	LUAD	SEO.	DE	TESTIGO	SOMETIDA	RESIST.	RESIST.	PROMEDIO	FRACTURA	
	(kg/cm²)			(dia)	(dia)	(dias)	(Pulg.)	TESTIGO	(cm²)	(kg.)	(kg/cm ²)	(%)	(%)		
1	210		Concreto	30/09/2020	04/11/2020	35 Dias	4.5"	14.9	175.07	38936	222.4	105.9		D	
		0	con agua				1						105.9		
			10°C												
						TIDA	. DE ED 403		_						
						TIPO	DE FRACT	URA				ī			
			Α		В		С	D]	E					
			N 2	I					7						
			V		Ì										
			\wedge		\triangle		\triangle	/							
									_			ı			
													_		
							EQUIPOS UT								
			IIPOS		RICANTE (MAI	RCA)	F	ECHA DE CALIBRACI	ON		EC. DE CALIBR	ACION	1		
		PRENSA		HIWEIGHT (PI	ERUTEST)		ļ	17/08/2019		PT-LF-071-2			1		
		VERNIER		INSIZE			ļ	17/08/2019		PT - LF - 022 - 2			4		
		BALANZA/		QHAUS				25/07/2019		PT - LM - 0163 -	2019		1		
		/_		_		/			-						
-	-	ADO PØR:				REVISADO			4						
Firma: IN		_/		Firma:		/ San X	Ju Zon		4						
Cargo:	a Hugo Cub	a Benavence		Cargo: Ing. Sauto Apuirre Zevallos Nombre: CONSORCIO INTEGRACION											
				Nombre:	CON	ISORCE: INT	L. Correction								
Nombre: In Fecha:	g. Hugo Cub	N GEOTECNIA		Fecha:	04/11/2020 ^{ES}	PECIA: STA DE	E CALIDAD		4						

ENSAYO DE COMPRESIÓN A LOS 7 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 15°C

l														
	KX				CON	ITRO	L DE CA	ALIDAD						
CIO	NSORCIO INTE	GRACION			ENS			ION DE TESTI				TO.		
PROYEC					1.1.			NICAS: MTC E 704 opósito y agua fría en				2020		
CLIENTE		Salas Duran Jim		a del concreto co	on ia incorpoi	racion de Ce	mento Multipr	oposito y agua ma en	tre 10=C 2 35°C 6	en Challnuanuac	Fecha de		30/09/2020	
UBICAC				Uhumhumaha							Fecha de		07/10/2020	
ESTRUCT		Apurimac - Co	abambas - Challhuahuacho									ensayo:	7 Dias	,
		C	1500								Edad: F'c:			
ELEMENT	O:	Concreto con a	agua 15°C								FC:		210 (Kg/cm2)
	RESIST.			FECHA DE E	ENSAYO	EDAD	SLUMP	DIAMETRO	AREA DE	CARGA	RESIS	TENCIA ALCA	ANZADA	
N° DE TESTIGO	ESPECIF.	ESTRUCTUR A	ELEMENTO	MOLDEO	ROTURA	EDAD	SLUMP	DE	TESTIGO	SOMETIDA	RESIST.	RESIST.	RESIST. PROMEDIO	TIPO DE FRACTURA
1231160	fo= (kn/om²)	_ ^		(dla)	(dla)	(dlas)	(Pulg.)	TESTIGO	(cm²)	(kg.)	(kg/cm²)	(%)	(%)	TRACTORA
	(Kalam)													
1	210]	Concreto con	30/09/2020 0	07/10/2020	7		14.9	174.37	25635	147.0	70.0		С
		0	agua 15°C				4.5"						70.0	
l			_											1
			А		В	TIPO	DE FRACT	URA	<u> </u>	E		Ī		
			A		В	TIPO			<u>T</u>	E				
			A		В	TIPO			<u>T</u>	E				
			A		В			D		E			-	
			A		CANTE (MARC	E	C C	D. IZADOS FECHA DE CALIBRACIO	DN DN	INFO.1	FEC. DE CALIBR	RACION	3	
		PRENSA	X	HIWEIGHT (PERI	CANTE (MARC	E	C C	LIZADOS FECHA DE CALIBRACIO 17/08/2019	DN ON	INFO. 1	019	RACION		
		PRENSA VERNIER	X	HIWEIGHT (PERI	CANTE (MARC	E	C C	IZADOS FECHA DE CALIBRACIO 17/08/2019 17/08/2019	DN .	INFO. 1 PT - LF - 071 - 2 PT - LF - 022 - 2	019 019	RACION		
		PRENSA	X	HIWEIGHT (PERI	CANTE (MARC	E	C C	LIZADOS FECHA DE CALIBRACIO 17/08/2019	DN .	INFO. 1	019 019	RACION		
	ELA	PRENSA VERNIER	X	HIWEIGHT (PERI	CANTE (MARC	E	C C	IZADOS FECHA DE CALIBRACIO 17/08/2019 17/08/2019	ON T	INFO. 1 PT - LF - 071 - 2 PT - LF - 022 - 2	019 019	RACION		
Firma:	IN M	PRENSA VERNIER BALANZA BORADO POR:	UIPOS	HIWEIGHT (PERI	CANTE (MARC	REVISADO	C EQUIPOS UTIL	D. LIZADOS FECHA DE CALIBRACIO 17/08/2019 17/08/2019 25/07/2019	DN .	INFO. 1 PT - LF - 071 - 2 PT - LF - 022 - 2	019 019	RACION		
Firma: Cargo:	Ing His	PRENSA VERNIER BALANZA BORADO POR:	uipos	HIWEIGHT (PERI	CANTE (MARC	REVISADO A	C C C C C C C C C C C C C C C C C C C	17/08/2019 17/08/2019 25/07/2019	DN .	INFO. 1 PT - LF - 071 - 2 PT - LF - 022 - 2	019 019	RACION		
	Ing His	PRENSA VERNIER BALANZA BORADO POR:	uipos	HIWEIGHT (PERI	CANTE (MARC	REVISADO A	C C C C C C C C C C C C C C C C C C C	17/08/2019 17/08/2019 25/07/2019	ON .	INFO. 1 PT - LF - 071 - 2 PT - LF - 022 - 2	019 019	RACION		

ENSAYO DE COMPRESIÓN A LOS 14 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 15°C

				CO	NTRO	L DE C	ALIDAD							
		<u> </u>		EN	EAVO A	COMPDE	SION DE TEST	ICOS CILII	IDDICOS D	E CONCE	ETO			
CONSORCIO INTEG	RACION			EIN				EIO.						
PROYECTO:	Influencia en	la resistencia mo	cánica del con	ocreto con la ir					39-99, AASHTO T 22 C a 35°C en Challhuahuacho – Apurímac, 2020					
CLIENTE:		Jim Anthony			- For Good		and the passes of a gard			Fecha de		30/09/2020		
UBICACIÓN:	Apurimac - (Cotabambas -	Challhuahua	cho						Fecha de	ensayo:	14/10/2020		
ESTRUCTURA:										Edad:		14 Dias		
ELEMENTO:	Concreto co	n agua 15°C								F'c:		210 (Kg/cm2)		
RESIST. DE			FECHA DE	ENSAYO	EDAD	el line	DIAMETRO	AREA DE	CARGA	RESIS	TENCIA ALCA		TIDO DE	
TESTIGO ESPECIF. fc=	ESTRUCTU RA	ELEMENTO	MOLDEO	ROTURA	EDAD	SLUMP	DE	TESTIGO	SOMETIDA	RESIST.	RESIST.	RESIST. PROMEDIO	TIPO DE FRACTURA	
(kg/cm²)	100		(dia)	(dia)	(dias)	(Pulg.)	TESTIGO	(cm²)	(kg.)	(kg/cm ²)	(%)	(%)	TIGOTOG	
2 210		Concreto con	30/09/2020	14/10/2020	14 Dias		14.9	173.20	32609	188.3	89.7		В	
	0	agua 15°C				4.5"						89.7		
					TIPO	DE FRACT	TURA				_			
											Ī			
		Α	l	В		С	D		E					
		$\setminus A$					/]						
		\vee		1										
		$ \cdot \cdot $		/ N		\triangle	/							
		/ N		/ N		· \	/	J						
	'										•			
						EQUIPOS UT	TILIZADOS					ī		
	EQ	UIPOS	FABR	RICANTE (MAR	RCA)		ECHA DE CALIBRACIO	ON	INFO. TE	C. DE CALIBRA	ACION	t		
	PRENSA		HIWEIGHT (PE				17/08/2019		PT - LF - 071 - 201	19		Ī		
	VERNIER		INSIZE				17/08/2019		PT - LF - 022 - 201	19]		
	BALANZA		OHAUS				25/07/2019		PT - LM - 0163 - 2	2019		1		
	/							_						
ELABOR	ADO PÓR:				REVISADO	O POR:		4						
- Face T)		Sau	Sgu Zor								
Firma	/		Firma:											
Cargo: Ing. Hugo Cuba I	Benavente		Cargo:					1						
Nombre: CAPSCIALISTA EN GE	OTECNIA		Nombre:	E	SPECIALISTA	DE CALIDAD		1						
Cir, 11939			rronner c.											


ENSAYO DE COMPRESIÓN A LOS 28 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 15°C

			I								ı —				
					CO	NTROL	DE C	ALIDAD							
CONSO	RCIO INTEG	PACION		ENSAYO A COMPRESION DE TESTIGOS CILINDRICOS DE CONCRETO.											
CONSO	RCIO INTEG	RACION		NORMAS TECNICAS: MTC E 704, ASTM C 39-99, AASHTO T 22											
PROYECT	0:	Influencia en	la resistencia m	ecánica del co	ncreto con la i	ncorporación		lultipropósito y agua				Apurímac, 202	20		
CLIENTE:		Salas Duran .											30/09/2020		
UBICACIO	ÓN:		Cotabambas -	Challhuahua	acho						Fecha de	ensayo:	28/10/2020		
ESTRUCT	URA:										Edad:		28 Dias		
ELEMENTO):	Concreto co	n agua 15°C								F'c:		210 (Kg/cm2)		
Nº DE	RESIST. DE	ESTRUCTU		FECHA D	E ENSAYO	EDAD	SLUMP	DIAMETRO	AREA DE	CARGA	RES	ISTENCIA AL	_CANZADA	TIPO DE	
TESTIGO	ESPECIF. fc=	RA	ELEMENTO	MOLDEO	ROTURA	LUND	Scom	DE	TESTIGO	SOMETIDA	RESIST.	RESIST.	RESIST. PROMEDIO	FRACTURA	
TEOTIOO	(kg/cm²)	101		(dia)	(dia)	(dias)	(Pulg.)	TESTIGO	(cm ²)	(kg.)	(kg/cm ²)	(%)	(%)	110101010	
1	210		Concreto con	30/09/2020	28/10/2020	28 Dias		14.9	175.07	37963	216.8	103.3		В	
		0	agua 15°C				4.5"						103.3		
			agua 15 C												
			X		λ										
							EQUIPOS UTII								
		_	UIPOS		RICANTE (MA	RCA)	F	ECHA DE CALIBRACI	ON		EC. DE CALIBR	ACION			
		PRENSA		HIWEIGHT (P	ERUTEST)			17/08/2019		PT - LF - 071 - 2					
		VERNIER		INSIZE				17/08/2019		PT - LF - 022 - 2			4		
		BALANZA		OHAUS			<u> </u>	25/07/2019		PT - LM - 0163	- 2019		1		
	ELABOR	ADO POR:				REVISADO	POR:								
	IN MA	Cuba Benal	vence	Firma:	Ing.	Sauto Again	re Zevallos								
Firma: Cargo:	Ing. Hugo	WETA PN GEOTECNIA		Cargo:	CON	SURG	CALLIDAD								
Firma: Cargo: Nombre:	ing. Hugo	LISTA EN GEOTECINA		Cargo: Nombre:	CON	PECIA: .STA DI	E-CALIDAD.		1						

ENSAYO DE COMPRESIÓN A LOS 35 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 15°C

	757				CO	NTRO	L DE C	ALIDAD						
course	-				ENS	AYO A C	OMPRESI	ON DE TESTI	GOS CILIN	DRICOS DI	CONCR	ETO.		
CONSO	RCIO INTE	GRACION						NICAS: MTC E 704						
PROYECTO):	Influencia en	la resistencia n	necánica del c	oncreto con la	incorporación	n de Cemento	Multipropósito y agu	ua fría entre 10º	C a 35°C en Chal	lhuahuacho –	Apurímac, 20	20	
CLIENTE:		Salas Duran .	Jim Anthony								Fecha de	vaciado:	30/09/2020	
UBICACIÓ	N:	Apurímac -	Cotabambas	- Challhuahı	uacho						Fecha de	ensayo:	04/11/2020	
ESTRUCTU	JRA:										Edad:		35 Dias	
ELEMENTO:	:	Concreto co	n agua 15°C								F'c:		210 (Kg/cm2)	
	RESIST. DE			FECHA D	E ENSAYO			DIAMETRO	AREA DE	CARGA	RESIS	TENCIA ALC	ANZADA	
N° DE TESTIGO	ESPECIF. fc=	ESTRUCTU RA	ELEMENTO	MOLDEO	ROTURA	EDAD	SLUMP	DE	TESTIGO	SOMETIDA	RESIST.	RESIST.	RESIST. PROMEDIO	FRACTUR
TESTIGO	(kg/cm²)	NA.		(dia)	(dia)	(dias)	(Pulg.)	TESTIGO	(cm²)	(kg.)	(kg/cm ²)	(%)	(%)	FRACTUR
				(unu)	(u.u)	(unus)	(, a.g.,	1201100	(ciii)	(**8-7	(Kg/OIII)	(74)	(24)	
1	210		Concreto	30/09/2020	04/11/2020	35 Dias	4.5"	14.9	175.07	39909	228.0	108.6		D
		0	con agua										108.6	
]	15°C											
			A		В		<u>c</u>			E				
							EQUIPOS UT	ILIZADOS					Т	
		EQU	IIPOS	FAB	RICANTE (MAI			ECHA DE CALIBRACI	ION	INFO. TI	EC. DE CALIBR	ACION	t	
		PRENSA		HIWEIGHT (P	ERUTEST)			17/08/2019		PT - LF - 071 - 2	019		1	
		VERNIER /		INSIZE				17/08/2019		PT - LF - 022 - 2	019]	
		BALANZA		ÒḤAUS				25/07/2019		PT - LM - 0163 -	2019		1	
									_				-	
1951	Control of the Art of the	ADO PÓR:				REVISADO	POR:		4					
Firma:	13/1/2			Firma:		Juni	94200		╛					
Cargo: 'In	a Hugo Cub	а Вепаvели	е	Cargo:	Ing	. Saulo Agui	rre Zevalios		4					
Nombre:	DEPECUALISTA E	1/2020		Nombre: Fecha:	04/11/2020 ⁸	NSORCI IN	DE CALIDAD		4					

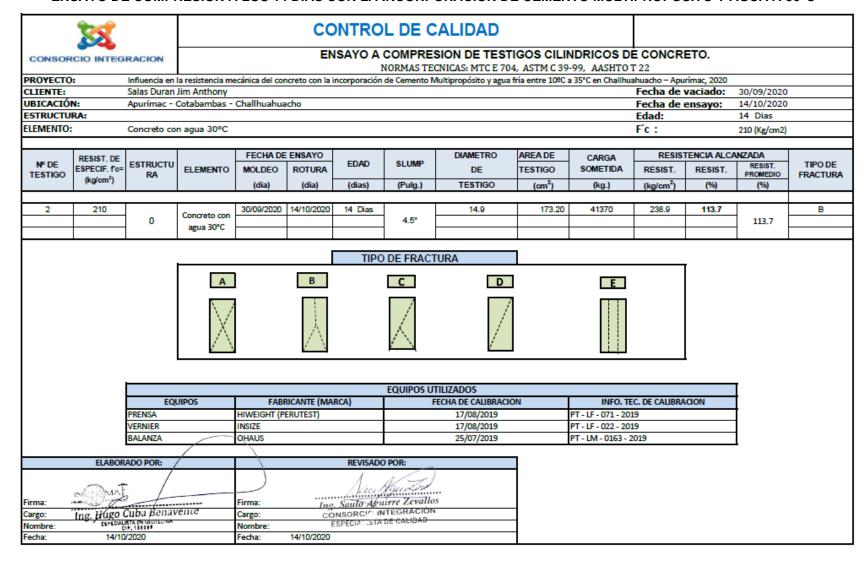
ENSAYO DE COMPRESIÓN A LOS 7 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 20°C

ENSAYO DE COMPRESIÓN A LOS 14 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 20°C

	XX				CC	NTRO	L DE C	ALIDAD						
					NDRICOS DI	E CONCE	ETO							
CONSOR	RCIO INTEG	RACION				EIO.								
PROYECTO)·	Influencia en	a resistencia me	cánica del con	ocreto con la i			CNICAS: MTC E 704 Multipropósito y agua f				rímac 2020		
CLIENTE:	,.	Salas Duran		carrica del cor	icreto com la i	incorporacion	de Cemento N	nutuproposito y agua i	illa ellu e 10-0	1 33 C el Cilalillo	Fecha de		30/09/2020	1
UBICACIÓ	N:		Cotabambas -	Challhuahua	rcho						Fecha de		14/10/2020	
ESTRUCTU		r parimee	Cotabambas	Chamadhad	icio						Edad:	ciisayoi	14 Dias	
ELEMENTO	:	Concreto co	n agua 20°C								F'c:		210 (Kg/cm2)	
													(-6,)	
	RESIST. DE CATALICATION FECHA DE ENSAYO FOAD CLUMP DIAMETRO AREA DE										RESIS	TENCIA ALCA	ANZADA	
Nº DE TESTIGO	ESPECIF. fc=	ESTRUCTU RA	ELEMENTO	MOLDEO	ROTURA	EDAD	SLUMP	DE	TESTIGO	CARGA SOMETIDA	RESIST.	RESIST.	RESIST. PROMEDIO	TIPO DE FRACTURA
1201100	(kg/cm²)			(dia)	(dia)	(dias)	(Pulg.)	TESTIGO	(cm²)	(kg.)	(kg/cm ²)	(%)	(%)	1101010101
2	210		Concreto con	30/09/2020	14/10/2020	14 Dias		14.9	173.20	36503	210.8	100.4		В
		0	agua 20°C				4.5"						100.4	
			ugua 20 0											
						TIDO	DE FRACT	TIDA	т					
						HPC	DE FRACI	UKA				ī		
			Α		В		С	D		E				
			\ /				1	/						
			\sim		1									
			\wedge		$/ \setminus$			/						
									,			l		
							FOLUDOS LO						,	
		501	unos	5405	NOAPER (AAA)	DC41	EQUIPOS U			INCO TO		.c.ou	ļ	
		PRENSA	JIPOS		RICANTE (MA	KCA)	·	ECHA DE CALIBRACIO		PT - LF - 071 - 201	C. DE CALIBRA	ACION	ł	
		VERNIER		HIWEIGHT (PI	ERUIESIJ			17/08/2019 17/08/2019		PT - LF - 0/1 - 201			-	
		BALANZA		OHAUS				25/07/2019		PT - LM - 0163 - 2			1	
			_	1				,,					1	
	ELABOR	ADO POR:				REVISADO	O POR:		I					
	IN MA	E /				Sa	L. NguZ							
Firma:	marine To	7		Firma:					1					
Cargo:	Ing. Hugo	Cuba Bena	vente	Cargo:		- PHICODICI	STA DE CALIDA	ION	4					
Nombre:	- Etheov	LISTA EN GEOTECHIA		Nombre:	44/40/0000	ESPECIA".	314 DE CAEIDA		-					
Fecha:	14/10	/2020		Fecha:	14/10/2020									

ENSAYO DE COMPRESIÓN A LOS 28 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 20°C

	M				COI	NTROL	DEC	ALIDAD						
CONSOR	RCIO INTEG	PACION			El	NSAYO A	COMPRE	SION DE TEST	TIGOS CIL	INDRICOS	DE CONC	RETO.		
CONSON	CIO INTEG	RACION						ECNICAS: MTC E 70						
PROYECT(D:	Influencia en	la resistencia m	ecánica del cor	ncreto con la in	ncorporación		lultipropósito y agua				Apurímac, 202	20	
CLIENTE:		Salas Duran .	Jim Anthony								Fecha de	vaciado:	30/09/2020	
UBICACIÓ	N:	Apurimac - (Cotabambas -	Challhuahua	acho						Fecha de	ensayo:	28/10/2020	
ESTRUCTU	JRA:										Edad:		28 Dias	
ELEMENTO:	:	Concreto co	n agua 20°C								F'c:		210 (Kg/cm2)	
NO DE	RESIST. DE	FOTDUCTU		FECHA DE	ENSAYO	EDAD	SLUMP	DIAMETRO	AREA DE	CARGA	RES	ISTENCIA AL	CANZADA	TIDO DE
Nº DE TESTIGO	ESPECIF. f'c=	ESTRUCTU RA	ELEMENTO	MOLDEO	ROTURA	EUAD	SLUMP	DE	TESTIGO	SOMETIDA	RESIST.	RESIST.	RESIST. PROMEDIO	TIPO DE FRACTURA
TESTIGO	(kg/cm²)	25		(dia)	(dia)	(dias)	(Pulg.)	TESTIGO	(cm ²)	(kg.)	(kg/cm²)	(%)	(%)	FICACTORA
1	210		Concreto con	30/09/2020	28/10/2020	28 Dias		14.9	175.07	39909	228.0	108.6		E
		0	agua 20°C				4.5"						108.6	
			X		\triangle		\bigwedge							
							EQUIPOS UTIL							
			JIPOS		RICANTE (MAR	RCA)	F	ECHA DE CALIBRACIO			EC. DE CALIBR	ACION	1	
		PRENSA		HIWEIGHT (PE	RUTEST)			17/08/2019		PT - LF - 071 - 2			-	
		VERNIER BALANZA		OHAUS				17/08/2019 25/07/2019		PT - LF - 022 - 2 PT - LM - 0163			-	
		DALANZA	_	UNAUS				25/07/2019		F1-LWI-0163	- 2019		1	
	FLAROR	ADO POR: /	_			REVISADO	POR:		1					
Firma:	MAT	1	nie	Firma: Cargo:	Ing	Sauto Age	dirre Zevallo							
Nombre:	ng. Hugo Cu	DA DEHAVE	1100	Nombre:	E	SPECIAL STA	DE CALIDAD		1					
Fecha:	28/10	/2020		Fecha:	28/10/2020				1					
									•					


ENSAYO DE COMPRESIÓN A LOS 35 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 20°C

	3							ALIDAD						
					DRICOS DI	E CONCR	ETO.							
CONSO	RCIO INTE	GRACION			9, AASHTO T	22								
PROYECTO):	Influencia en	la resistencia r	mecánica del c	oncreto con la	incorporación	n de Cemento	Multipropósito y agu	ia fría entre 10º	C a 35°C en Chal	lhuahuacho –	Apurímac, 20	20	
CLIENTE:		Salas Duran	Jim Anthony								Fecha de	vaciado:	30/09/2020	
UBICACIÓ	N:	Apurímac -	Cotabambas	- Challhuahu	ıacho						Fecha de	ensayo:	4/11/2020	
ESTRUCTU	JRA:										Edad:		35 Dias	
ELEMENTO:	:	Concreto co	n agua 20°C								F'c:		210 (Kg/cm2)	
	RESIST. DE	FATRUATU		FECHA DE	ENSAYO	EDAD	SLUMP	DIAMETRO	AREA DE	CARGA	RESIS	TENCIA ALC		TIDO D
Nº DE TESTIGO	ESPECIF. fc=	ESTRUCTU RA	ELEMENTO	MOLDEO	ROTURA	EUAU	SLUMP	DE	TESTIGO	SOMETIDA	RESIST.	RESIST.	RESIST. PROMEDIO	FRACTU
1231100	(kg/cm²)	lu.		(dia)	(dia)	(dias)	(Pulg.)	TESTIGO	(cm²)	(kg.)	(kg/cm ²)	(%)	(%)	TIMOTO
					, ,	, ,	, , ,		(2007)	, , ,	(. , ,		
1	210		Concreto	30/09/2020	4/11/2020	35 Dias	4.5"	14.9	175.07	41370	236.3	112.5		D
		0	con agua]						112.5	
			20°C											
			A \		В		<u>c</u>	D		E				
							EQUIPOS UT	ILIZADOS					ī	
		EQU	JIPOS	FAB	RICANTE (MAI	RCA)	F	ECHA DE CALIBRACI	ON	INFO. TI	EC. DE CALIBR	ACION	I	
		PRENSA		HIWEIGHT (P	ERUTEST)			17/08/2019		PT-LF-071-2				
		VERNIER		INSIZE				17/08/2019		PT - LF - 022 - 2			1	
		BALANZA /	/	OHAÙS			<u> </u>	25/07/2019		PT - LM - 0163 -	2019		1	
		/		<u> </u>					-					
Ciena a -	ELABOR	ADO POR;/		Cirmo:		REVISADO			-					
Firma:	mand for the	Cuba Barar	enre	Firma:	.,		rre Zevallos		-					
Cargo: Nombre:	Ing. Hugo	Cuba Benavi	ence	Cargo: Nombre:	Ing	Souto Apui NSORCIO IN	rre Zevallos		-					
HOMBIE.		10, 120307		nombre.										
Fecha:		/2020		Fecha:	4/11/2020 5	SPECIAL STAD	E CALIDAD							

ENSAYO DE COMPRESIÓN A LOS 7 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 30°C

1	20				CON	NTRO	L DE C	ALIDAD						
CONSORO	CIO INTEG	GRACION			ENS			SION DE TESTI NICAS: MTC E 704				ETO.		
PROYECTO:	I	nfluencia en la n	esistencia mecánio	a del concreto o	con la incorpo	ración de Ce	emento Multipr	opósito y agua fría en	ntre 10°C a 35°C	en Challhuahuac	ho – Apurimac	, 2020		
CLIENTE:	5	Salas Duran Jim	Anthony								Fecha de	vaciado:	30/09/2020	
UBICACIÓN	l: /	Apurímac - Col	tabambas - Cha	llhuahuacho							Fecha de	ensayo:	7/10/2020	
ESTRUCTUR	LA:										Edad:		7 Dias	
ELEMENTO:	(Concreto con a	agua 30°C								F'c:		210 (Kg/cm2)	
													,	
N° DE	RESIST. DE	ESTRUCTUR		FECHA DE	ENSAYO	EDAD	SLUMP	DIAMETRO	AREA DE	CARGA	RESIS	TENCIA ALCA		TIPO DE
TESTIGO	ESPECIF.	A	ELEMENTO	MOLDEO	ROTURA			DE	TESTIGO	SOMETIDA	RESIST.	RESIST.	RESIST. PROMEDIO	FRACTURA
	f'o= (kg/om²)			(dla)	(dla)	(dlas)	(Pulg.)	TESTIGO	(cm²)	(kg.)	(kg/cm²)	(%)	(%)	
1	210	_	Concreto con	30/09/2020	7/10/2020	7	-	14.9	174.37	29658	170.1	81.0		С
		0	agua 30°C	L			4.5"						81.0	
			A		В		c	D		E				
		•					EQUIPOS UTIL	LIZADOS				•	1	
			JIPOS		ICANTE (MAR	CA)		FECHA DE CALIBRACIO	ON		TEC. DE CALIBI	RACION		
		PRENSA VERNIER		HIWEIGHT (PEI	RUTEST)			17/08/2019 17/08/2019		PT - LF - 071 - 2 PT - LF - 022 - 2			-	
		BALANZA		OHAUS				25/07/2019		PT - LM - 0163 -			1	
	-			•			•			•			-	
	ELAB(ORADO POR:				REVISAD	O POR:	<u> </u>	I					
						1	NauZov		I					
Firma: Cargo:				Firma: Cargo:	Luci		uirre Zeva	ÓN	-					
					Luci		uirre Zeval INTEGRACE A DE CALIDAE	ÓN	-					

ENSAYO DE COMPRESIÓN A LOS 14 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 30°C

ENSAYO DE COMPRESIÓN A LOS 28 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 30°C

	1				COI	NTROL	DECA	LIDAD						
	3					NCAVO A	COMPRE	SION DE TES	TICOS CIL	INDDICOS	DE CONG	PETA		
CONSOR	RCIO INTEG	RACION			E	NSAYO A						RETU.		
	_		<u> </u>					CNICAS: MTC E 7				. ,		
PROYECTO	0:			ecánica del co	ncreto con la ir	ncorporación	de Cemento M	ultipropósito y agua	fria entre 10ºC	a 35°C en Chall		<u> </u>		
CLIENTE:		Salas Duran .									Fecha de			
UBICACIÓ		Apurimac -	Cotabambas -	Challhuahua	acho						Fecha de	ensayo:	28/10/2020	
ESTRUCTU	JRA:										Edad:		28 Dias	
ELEMENTO:	:	Concreto co	n agua 30°C								F'c:		210 (Kg/cm2)	
Nº DE	RESIST. DE ESPECIF. f'c=	ESTRUCTU	ELEMENTO	MOLDEO	ENSAYO	EDAD	SLUMP	DIAMETRO	AREA DE	CARGA SOMETIDA		ISTENCIA AL		TIPO DE
TESTIGO	(kg/cm²)	RA	ELEMENTO		ROTURA			DE	TESTIGO		RESIST.	RESIST.	RESIST. PROMEDIO	FRACTUR
	(kg/cm/)			(dia)	(dia)	(dias)	(Pulg.)	TESTIGO	(cm²)	(kg.)	(kg/cm ²)	(%)	(%)	
	242			00/00/0000	0014010000	22.5			475.07	40000	252.0	440.4		
1	210	_	Concreto con	30/09/2020	28/10/2020	28 Dias	4.5"	14.9	175.07	43803	250.2	119.1	I	С
		0	agua 30°C				4.0						119.1	
			X		À		\triangle						_	
							QUIPOS UTIL							
			JIPOS		RICANTE (MAI	RCA)	F	ECHA DE CALIBRACI	ON		EC. DE CALIBR	ACION	4	
		PRENSA		HIWEIGHT (PE	RUTEST)			17/08/2019		PT - LF - 071 - 2			4	
		VERNIER		INSIZE				17/08/2019		PT - LF - 022 - 2			-	
		BALANZA		OHAUS				25/07/2019		PT - LM - 0163	- 2019		J	
	ELABOR	ADO POR:	/	$\overline{}$		REVISADO	POR:	`	Т					
Firma:	IN MA	Cuba Bena	avence	Firma:			Ngu Zoo uirre Zevalle NTEGRACIÓN							
Cargo:	Ing. Hugo	ALISTA EN GEOTECHI	Α	Cargo:		ESPECIAL STA	DE CALIDAD		1					
Nombre:		917, 141111		Nombre:]					
		V2020		Fecha:	28/10/2020									

ENSAYO DE COMPRESIÓN A LOS 35 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 30°C

					CO	NTRO	I DE C	ALIDAD						
					ENS	AYO A C	OMPRESI	ON DE TESTI	GOS CILIN	IDRICOS D	E CONCR	ETO.		
CONSO	RCIO INTEG							NICAS: MTC E 704						
PROYECTO):	Influencia en	la resistencia r	necánica del co	oncreto con la	incorporació	n de Cemento	Multipropósito y agu	ua fría entre 10º	C a 35°C en Cha		<u> </u>		
CLIENTE:			Jim Anthony										30/09/2020	
UBICACIÓ		Apurímac -	Cotabambas	- Challhuahu	acho						Fecha de	ensayo:	4/11/2020	
ESTRUCTU	IRA:										Edad:		35 Dias	
ELEMENTO:		Concreto co	n agua 30°C								F'c:		210 (Kg/cm2)	
	RESIST. DE			FECHA DE	ENSAYO			DIAMETRO	AREA DE	CARGA	RESIS	TENCIA ALC		
Nº DE TESTIGO	ESPECIF. fc=	ESTRUCTU RA	ELEMENTO	MOLDEO	ROTURA	EDAD	SLUMP	DE	TESTIGO	SOMETIDA	RESIST.	RESIST.	RESIST. PROMEDIO	TIPO DE FRACTURA
1231100	(kg/cm²)	IVA		(dia)	(dia)	(dias)	(Pulg.)	TESTIGO	(cm²)	(kg.)	(kg/cm ²)	(%)	(%)	TICACTORA
	•	•	•											
1	210		Concreto	30/09/2020	4/11/2020	35 Dias	4.5"	14.9	175.07	44776	255.8	121.8		D
		0	con agua]						121.8	
			30°C											
			A V		В		<u>C</u>		7					
							EQUIPOS UT							
			IIPOS		RICANTE (MAI	RCA)	F	ECHA DE CALIBRAC	ON		EC. DE CALIBR	ACION	1	
		PRENSA		HIWEIGHT (PE	RUTEST)			17/08/2019		PT - LF - 071 - 2			1	
		VERNIER		INSIZE				17/08/2019		PT - LF - 022 - 2			4	
		BALANZA	/	OHAUS				25/07/2019		PT - LM - 0163	- 2019		1	
	FLADOR	, , , , , , , , , , , , , , , , , , ,	′	<u> </u>		DELUCATO	200		-					
F:		AĐO POR:				REVISADO			-					
Firma:	IN M	0		Firma:		- Coulo Ahu	irre Zevalios		-					
Cargo:	Ing. Hugo	Cuba Bena ALISTA EN GEOTECNIA	vente	Cargo:		and the second state of the	ITEGIZAGIUN		-					
Nombre:	CAPEC	ALISTA EN GEOTECNIA GIA, 114347	1	Nombre:		EEPECIA: STA	DE CALIDAD		-					
Fecha:	4/11	/2020		Fecha:	4/11/2020									

ENSAYO DE COMPRESIÓN A LOS 7 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 35°C

1	9				COL	ITRO	DEC	ALIDAD						
						• • • • • • • • • • • • • • • • • • • •	L DL G	TLIDAD						
CONSOF	RCIO INTE	EGRACION			ENS			SION DE TESTI NICAS: MTC E 704				TO.		
PROYECTO	0:	Influencia en la r	esistencia mecánio	a del concreto	con la incorpo	ración de Ce	emento Multipr	opósito y agua fría en	ntre 10°C a 35°C	en Challhuahuac	ho – Apurimac	, 2020		
CLIENTE:		Salas Duran Jim	Anthony								Fecha de	vaciado:	30/09/2020	
UBICACIÓ	ón:	Apurímac - Co	tabambas - Cha	llhuahuacho							Fecha de	ensayo:	7/10/2020	
ESTRUCTU	URA:										Edad:		7 Dias	
ELEMENTO):	Concreto con a	agua 35°C								F'c:		210 (Kg/cm2)	
	RESIST.												,,,,	
N° DE	DE	ESTRUCTUR		FECHA DE	E ENSAYO	EDAD	SLUMP	DIAMETRO	AREA DE	CARGA	RESIS	TENCIA ALCA		TIPO DE
TESTIGO	ESPECIF.	A	ELEMENTO	MOLDEO	ROTURA			DE	TESTIGO	SOMETIDA	RESIST.	RESIST.	RESIST. PROMEDIO	FRACTURA
	fo= (kg/om²)			(dla)	(dla)	(dlas)	(Pulg.)	TESTIGO	(cm²)	(kg.)	(kg/cm²)	(%)	(%)	
	T .			T										
1	210	- I	Concreto con	30/09/2020	7/10/2020	7	-	14.9	174.37	30152	172.9	82.3		С
		0	agua 35°C				4.5"		1				82.3	
									_					
						TIPO	DE FRACT	URA	<u> </u>			T		
			А		В	TIPO	C C	URA	T	E				
			A		В	TIPO			1	E				
			A		В		с 	D	T	E				
		FOL	X	I FARR	λ		C C	D	T.		TEC DE CALIBI	RACION	1	
		EQL PRENSA	A	FABR HIWEIGHT (PI	RICANTE (MAR		C C	D	T ON		TEC. DE CALIBR	RACION]	
		PRENSA VERNIER	X	HIWEIGHT (PE	RICANTE (MAR		C C	IZADOS FECHA DE CALIBRACIO 17/08/2019 17/08/2019	I ON	INFO. 1 PT - LF - 071 - 2 PT - LF - 022 - 2	019 019	RACION		
		PRENSA	X	HIWEIGHT (PE	RICANTE (MAR		C C	LIZADOS FECHA DE CALIBRACIO 17/08/2019	ON	INFO. 1	019 019	RACION		
		PRENSA VERNIER BALANZA	X	HIWEIGHT (PE	RICANTE (MAR	CA)	C C	IZADOS FECHA DE CALIBRACIO 17/08/2019 17/08/2019	ON	INFO. 1 PT - LF - 071 - 2 PT - LF - 022 - 2	019 019	RACION		
	ELA	PRENSA VERNIER	X	HIWEIGHT (PE	RICANTE (MAR ERUTEST)	CA)	EQUIPOS UTIL	D LIZADOS FECHA DE CALIBRACIO 17/08/2019 17/08/2019 25/07/2019	ON	INFO. 1 PT - LF - 071 - 2 PT - LF - 022 - 2	019 019	RACION		
Firma:	IN.	PRENSA VERNIER BALANZA ABORADO POR:	JIPOS	HIWEIGHT (PE	RICANTE (MAR ERUTEST)	REVISADO	EQUIPOS UTIL	D LIZADOS FECHA DE CALIBRACIO 17/08/2019 17/08/2019 25/07/2019	ON	INFO. 1 PT - LF - 071 - 2 PT - LF - 022 - 2	019 019	RACION		
	IN.	PRENSA VERNIER BALANZA ABORADO POR:	JIPOS	HIWEIGHT (PE	RICANTE (MAR ERUTEST)	REVISADO	C EQUIPOS UTIL	D LIZADOS FECHA DE CALIBRACIO 17/08/2019 17/08/2019 25/07/2019	ON .	INFO. 1 PT - LF - 071 - 2 PT - LF - 022 - 2	019 019	RACION		
Cargo:	IN.	PRENSA VERNIER BALANZA ABORADO POR:	JIPOS	HIWEIGHT (PE INSIZE OHAUS Firma: Cargo:	Ing. Sun	REVISADO	C EQUIPOS UTIL	D LIZADOS FECHA DE CALIBRACIO 17/08/2019 17/08/2019 25/07/2019	ON .	INFO. 1 PT - LF - 071 - 2 PT - LF - 022 - 2	019 019	RAGON		
	Ing. H	PRENSA VERNIER BALANZA ABORADO POR:	JIPOS	HIWEIGHT (PE	Ing. Sun	REVISADO	C EQUIPOS UTIL	D LIZADOS FECHA DE CALIBRACIO 17/08/2019 17/08/2019 25/07/2019	ON .	INFO. 1 PT - LF - 071 - 2 PT - LF - 022 - 2	019 019	RACION		

ENSAYO DE COMPRESIÓN A LOS 14 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 35°C

	-				CC	NITEO	I DE C	ALIDAD						
					CC	MIKO	LDEC	ALIDAD						
CONSO	RCIO INTEG	PACION			EN	ISAYO A	COMPRE	SION DE TEST	IGOS CILI	NDRICOS D	E CONCR	ETO.		
CONSO	RCIO INTEG	RACION					NORMAS TE	CNICAS: MTC E 70	4, ASTM C 39	-99, AASHTO	Г 22			
PROYECT	0:	Influencia en	la resistencia me	ecánica del cor	ncreto con la i	incorporación	de Cemento N	Multipropósito y agua	fría entre 10ºC	a 35°C en Challhu				
CLIENTE:			Jim Anthony								Fecha de		30/09/2020	
UBICACIÓ		Apurimac -	Cotabambas -	Challhuahua	acho						Fecha de	ensayo:	14/10/2020	
ESTRUCTU											Edad:		14 Dias	
ELEMENTO):	Concreto co	n agua 35°C								F'c:		210 (Kg/cm2)	
Nº DE	RESIST. DE	ESTRUCTU		FECHA DE		EDAD	SLUMP	DIAMETRO	AREA DE	CARGA		TENCIA ALC	ANZADA RESIST.	TIPO DE
TESTIGO	ESPECIF. fc=	RA	ELEMENTO	MOLDEO	ROTURA			DE	TESTIGO	SOMETIDA	RESIST.	RESIST.	PROMEDIO	FRACTURA
	(kg/cm²)			(dia)	(dia)	(dias)	(Pulg.)	TESTIGO	(cm²)	(kg.)	(kg/cm ²)	(%)	(%)	
2	210		Concreto con	30/09/2020	14/10/2020	14 Dias	4.51	14.9	173.20	41856	241.7	115.1		В
		0	agua 35°C				4.5"						115.1	
					- 1	TIPO	DE FRACT	URA	T					
				_			22110101	0.01	-			T		
			Α]	В		С	D		E				
			<u> </u>	1			- /	- /	1					
			1×1	1				L /						
			L X		LÀ		1	1/						
			/		$/ \setminus$			/						
			7 3	1	, ,				<u>'</u>	1 !		1		
							EQUIPOS U	TILIZADOS					ī	
		EQ	UIPOS	FABR	RICANTE (MA	RCA)	F	ECHA DE CALIBRACIO	ON	INFO. TE	C. DE CALIBRA	ACION	†	
		PRENSA		HIWEIGHT (P	ERUTEST)			17/08/2019		PT - LF - 071 - 20	19		Ī	
		VERNIER		INSIZE				17/08/2019		PT - LF - 022 - 20]	
		BALANZA		OHÀUS				25/07/2019		PT - LM - 0163 - 2	2019		1	
									-					
	ELABOR	ADO POR:				REVISADO	O POR:		4					
	INCOM	I L				Saul	Su Zord							
Firma:	100	Cuba Benz	evente	Firma:	Ing.	Saulo Agu	irre Zevallo	š						
Cargo:	Ing. Hugo	ALISTA EN GEOTECH	A	Cargo:		NSORCIF IN			1					
Nombre:		CIP. 120300		Nombre:	E	SPECIALISTA	DE GIVEIDAL							
		/2020			14/10/2020									

ENSAYO DE COMPRESIÓN A LOS 28 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 35°C

						UTDOL	DE 0	AL IDAD						
					COI	NIROL	DE C	ALIDAD						
CONSO	RCIO INTEG	BACION			EI	NSAYO A	COMPRE	SION DE TEST	TIGOS CIL	INDRICOS	DE CONC	RETO.		
CONSO	RCIO INTEG	RACION						ECNICAS: MTC E 70						
PROYECT	O:	Influencia en	la resistencia m	ecánica del cor	ncreto con la in	ncorporación		fultipropósito y agua				Apurímac, 202	20	
CLIENTE:		Salas Duran .	Jim Anthony								Fecha de	vaciado:	30/09/2020	
UBICACI	ÓN:	Apurimac -	Cotabambas -	Challhuahua	acho						Fecha de	ensayo:	28/10/2020	
ESTRUCT	URA:										Edad:		28 Dias	
ELEMENTO):	Concreto co	n agua 35°C								F'c:		210 (Kg/cm2)	
Nº DE	RESIST. DE	ESTRUCTU			ENSAYO	EDAD	SLUMP	DIAMETRO	AREA DE	CARGA		ISTENCIA AL		TIPO DE
TESTIGO	ESPECIF. f'c= (kg/cm²)	RA	ELEMENTO	MOLDEO	ROTURA			DE	TESTIGO	SOMETIDA	RESIST.	RESIST.	RESIST. PROMEDIO	FRACTURA
	(kg/ciii)			(dia)	(dia)	(dias)	(Pulg.)	TESTIGO	(cm²)	(kg.)	(kg/cm ²)	(%)	(%)	
1	210			30/09/2020	28/10/2020	28 Dias	1	14.9	175.07	48237	264.1	125.8		
1	210	0	Concreto con	30/09/2020	28/10/2020	28 Dias	4.5"	14.9	1/5.0/	40237	204.1	120.8	125.8	
	+	·	agua 35°C				4.5						125.0	
					λ									
						E	EQUIPOS UTII	LIZADOS						
			JIPOS		RICANTE (MAR	RCA)	F	ECHA DE CALIBRACIO	ON		EC. DE CALIBR	ACION		
		PRENSA		HIWEIGHT (PE	ERUTEST)			17/08/2019		PT-LF-071-2			4	
		VERNIER	-	INSIZE				17/08/2019		PT - LF - 022 - 2			4	
		BALANZA		OHAUS			<u> </u>	25/07/2019		PT - LM - 0163	- 2019		J	
	ELABOR	ADO POR: /				REVISADO	POR:		Т					
	in@MaI	;				Sans	rre Zevallos		1					
Firma:	Ing. Hugo	uba Benav	ене	Firma:	Ing.	Sauto Mg 41	FEGRACIÓN		4					
Cargo:	HIR HURO	TA DN GEOTECHIA		Cargo: Nombre:	ES	PECIA STAD	F CALIDAD		4					
Nombre: Fecha:		/2020		Nombre: Fecha:	28/10/2020				1					
i etila.	20/10	12020		i ecila.	20/10/2020				+					

ENSAYO DE COMPRESIÓN A LOS 7 DÍAS CON LA INCORPORACIÓN DE CEMENTO MULTIPROPÓSITO Y AGUA A 35°C

	100				CO	NTRO	L DE C	ALIDAD						
					DRICOS DI	E CONCR	FTO							
CONSO	RCIO INTEG	RACION			LINS			NICAS: MTC E 704				LIO.		
PROYECT	0:	Influencia en	la resistencia r	mecánica del o	oncreto con la			Multipropósito y ago				Apurimac 20	120	
CLIENTE:	-		Jim Anthony					proposito j og				vaciado:		
UBICACIÓ	ĎN:		Cotabambas	- Challhuahi	uacho						Fecha de		4/11/2020	
ESTRUCTO	JRA:										Edad:		35 Dias	
ELEMENTO	:	Concreto co	n agua 35°C								F'c:		210 (Kg/cm2)	
	RESIST. DE			FECHA DE	ENSAYO			DIAMETRO	AREA DE	CARGA	RESIS	TENCIA ALC	ANZADA	
Nº DE	ESPECIF. fc=	ESTRUCTU	ELEMENTO	MOLDEO	ROTURA	EDAD	SLUMP	DE	TESTIGO	SOMETIDA	RESIST.	RESIST.	RESIST. PROMEDIO	TIPO DE
TESTIGO	(kg/cm²)	RA		(dia)	(dia)	(dias)	(Pulg.)	TESTIGO	(cm²)	(kg.)	(kg/cm ²)	(%)	(%)	FRACTURA
				(uia)	(uia)	(uias)	(ruig./	1231100	(GIII)	(ng./	(kg/cm)	(70)	(70)	
1	210		Concreto	30/09/2020	4/11/2020	35 Dias	4.5"	14.9	175.07	48670	278.0	132.4		D
		0	con agua				1						132.4	
		1	35°C				1						1	
						TIPO	DE FRACT	TIDA	_					
						TIFC	DETRACT	UKA				T		
			Α		В		С	D		E	l			
			X		\bigwedge		\langle		7					
												1		
							EQUIPOS UT	ILIZADOS					1	
		EQU	IIPOS	FAB	RICANTE (MAI			ECHA DE CALIBRACI	ION	INFO, T	EC. DE CALIBR	ACION	1	
		PRENSA		HIWEIGHT (PE				17/08/2019		PT - LF - 071 - 2			1	
		VERNIER		INSIZE	,			17/08/2019		PT - LF - 022 - 2			1	
		BALANZA		OHAUS \				25/07/2019		PT - LM - 0163	- 2019		1	
	'		/	1				7		•			-	
	ELABORA	DO POR:					POR:	/						
Firma:	and he want		*******	Firma:		Jui	1940							
Cargo:	Ing. Hugo	Cuba Bena	vente	Cargo:	In	a Soula 46	uirre Zevall	05						
Nombre:	DEPENA	LISTA EN GEOTECHIA GLA 1111111 /2020	•	Nombre:		ONSORCIO	NTEGRACIÓ A DE CALIDAD	14	_					
Fecha:	4/11/	/2020		Fecha:	4/11/2020	ESPECIAL: 31	A DE GHEIDH							