

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Polímero adhesivo natural para mejorar la capacidad de soporte y densidad máxima en subrasante de pavimentos rígidos, Salcedo – Puno

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL

AUTORES:

PINO PINEDA, Edwin Fredy (ORCID: 0000-0001-5730-4740)

MAQUERA MAMANI, Hugo Nelson (ORCID: 0000-0001-5786-9565)

ASESOR:

Mg. CLEMENTE CONDORI, Luis Jimmy (ORCID: 0000-0002-0250-4363)

LÍNEA DE INVESTIGACIÓN:

Diseño de infraestructura vial

LIMA – PERÚ

2021

DEDICATORIA

De: Pino Pineda Edwin Fredy

Esta tesis la dedico a mi hija Luciana, a mi madre Balvina, mis hermanos Walter y Rammel por su apoyo incondicional, y los sabios consejos, que sin su ayuda todo esto sería complicado.

De: Maquera Mamani Hugo Nelson

Quiero dedicar esta tesis a mis padres Esteban y Juana por darme su entera confianza, haberme forjado con buenos valores y ser la persona que soy.

Muchos de mis logros se los debo a ellos especial esta tesis porque me enseñaron a luchar por lo que me gusta y alcanzar mis sueños.

AGRADECIMIENTO

De: Pino Pineda Edwin Fredy

Agradecer a Dios y a mi familia por guiarme en el camino correcto, por todo sus consejos e inmensa sabiduría. Así mismo agradecer a la universidad Cesar Vallejo por darnos la oportunidad de ser parte de ella.

De: Maquera Mamani Hugo Nelson

Empezar dando gracias a Dios por permitirme tener y disfrutar a mi familia. Gracias a mi familia por estar siempre presente. En esta vida nada es sencillo, pero gracias a sus aportes, afectos y a su inmensa bondad, lo complicado se pudo superar. Les agradezco y hago presente mi gran afecto hacia ustedes.

ÍNDICE DE CONTENIDOS

DEDICATORIA	ii
AGRADECIMIENTO	iii
DECLARACIÓN DE AUTENTICIDAD	iv
ÍNDICE DE CONTENIDOS	V
ÍNDICE DE TABLAS	V
ÍNDICE DE GRÁFICOS Y FIGURAS	viii
ÍNDICE DE ABREVIATURAS	x
RESUMEN	xii
ABSTRACT	xiii
I. INTRODUCCIÓN	1
II. MARCO TEÓRICO	10
III. METODOLOGÍA	33
3.1. Tipo y diseño de investigación	33
3.2. Variables y operacionalización	
3.3. Población, muestra y muestreo	35
3.4. Técnicas e instrumentos de recolección de datos	36
3.5. Procedimientos	37
3.6. Método de análisis de datos	54
3.7. Aspectos éticos	54
IV. RESULTADOS	55
V. DISCUSIÓN	83
VI. CONCLUSIONES	85
VII. RECOMENDACIONES	86
REFERENCIAS BIBLIOGRAFICAS	87

ÍNDICE DE TABLAS

Tabla 1. Componentes del polímero adhesivo natural	19
Tabla 2. Tipos de polímeros adhesivo natural	20
Tabla 3. Tipo de suelos	23
Tabla 4. Clasificación de arcillas según su origen	24
Tabla 5. Características de suelos según índices de plasticidad	27
Tabla 6. Categoría de Subrasante	31
Tabla 7. Especificaciones técnicas de pavimentos	32
Tabla 8. Análisis granulométrico progresiva (km 0+520)	55
Tabla 9. Análisis granulométrico progresiva (km 0+750)	57
Tabla 10. Análisis granulométrico progresiva (km 1+000)	59
Tabla 11. Límites de consistencia del suelo natural	60
Tabla 12. Límites de consistencia del suelo natural + 2% de polímero	61
Tabla 13. Límites de consistencia del suelo natural + 4% de polímero	61
Tabla 14. Límites de consistencia del suelo natural + 6% de polímero	61
Tabla 15. Contenido de humedad natural	62
Tabla 16. Proctor Modificado suelo natural + 0% adición de polímero	62
Tabla 17. Proctor Modificado suelo patrón + 2% de polímero	63
Tabla 18. Proctor Modificado suelo patrón + 4% de polímero	63
Tabla 19. Proctor Modificado suelo patrón + 6% de polímero	63
Tabla 20. % de penetración 0.1" del suelo natural	65
Tabla 21. % de penetración de 0.1" suelo patrón + 2% polímero	65
Tabla 22. % de penetración de 0.1" suelo patrón +4% polímero	66
Tabla 23. % de pee 0.1" suelo patrón + 6% polímero	66
Tabla 24. Análisis de precios unitarios para 1m3 de subrasante	68
Tabla 25. Análisis de precios unitarios para 1m3 de subrasante	68
Tabla 26. Presupuesto subrasante con la incorporación del polímero	69
Tabla 27. Criterios para seleccionar prueba estadística	69
Tabla 28. Prueba de Normalidad	70
Tabla 29. Prueba de Homogeneidad de varianzas (Levene)	71
Tabla 30. Descripción de las variables	71
Tabla 31. Prueba de ANOVA	72

Tabla :	32. Comparación de los resultados de índice de plasticidad	72
Tabla	33. Sub conjuntos de Tukey	73
Tabla	34. Prueba de Normalidad	73
Tabla	35. Prueba de homogeneidad de varianzas (Levene)	74
Tabla	36. Descripción de las variables	74
Tabla	37. Prueba de Análisis de varianza	75
Tabla	38. Comparación múltiple de cada uno de los resultados de CBR	75
Tabla	39. Sub conjuntos de Tukey	76
Tabla -	40. Prueba de Normalidad	76
Tabla -	41. Prueba de Homogeneidad de varianzas (Levene)	77
Tabla -	42. Descripción de las variables	77
Tabla -	43. Prueba de Análisis de varianza	77
Tabla -	44. Comparación múltiple de los resultados de densidad seca máxima	78
Tabla -	45. Sub conjuntos de Tukey	79
Tabla -	46. Prueba de Normalidad	79
Tabla -	47. Prueba de Homogeneidad de varianzas (Levene)	80
Tabla -	48. Prueba de Análisis de varianza	80
Tabla -	49. Comparación múltiple de los resultados	
Tabla	50. Sub conjuntos de Tukey	81

ÍNDICE DE GRÁFICOS Y FIGURAS

Figura 1. Vías no pavimentadas	1
Figura 2. Pirámides de Shersi	2
Figura 3. Estabilización de suelos	3
Figura 4. Estabilización con cal	3
Figura 5. Avenida deteriorada salcedo	5
Figura 6. Estado actual de calles y avenida salcedo	6
Figura 7. Provincia de Puno y sus distritos	9
Figura 8. Estructura de un polímero	. 17
Figura 9. Polímero estabilizador de carreteras	. 18
Figura 10. Polímero natural (Almidón)	. 19
Figura 11. Proceso de estabilización por reciclado	. 22
Figura 12. Estabilización de suelos con polímeros	. 22
Figura 13. Ensayo de limite liquido	. 25
Figura 14. Ensayo de limite plástico	. 26
Figura 15. Carta de plasticidad (S.U.C.S.)	. 27
Figura 16. Ensayo Proctor Modificado	. 28
Figura 17. Ensayo CBR	. 29
Figura 18. Distribución de cargas en el pavimento rígido	. 29
Figura 19. Estructura de un pavimento rígido	. 30
Figura 20. Sección típica transversal pavimento rígido.	. 31
Figura 21. Av. Industrial, centro poblado Salcedo	. 37
Figura 22. Polímero adhesivo natural	. 38
Figura 23. AV. Industrial, centro poblado de Salcedo	. 38
Figura 24. AV. Industrial, centro poblado de Salcedo	. 39
Figura 25. Calicata C-01	. 39
Figura 26. Calicata C-02	. 40
Figura 27. Calicata C-03	. 40
Figura 28. Tapado de calicatas de la AV. Industrial	. 41
Figura 29. Material trasladado a laboratorio	. 41
Figura 30. Material trasladado a laboratorio	. 42
Figura 31. Proceso de mezclado del suelo con el polímero adhesivo natural	. 42

Figura 32.	Cuarteo de las muestras	43
Figura 33.	Secado de la muestra	43
Figura 34.	Peso de la muestra seca	44
Figura 35.	Lavado de la muestra en el tamiz Nº 200	44
Figura 36.	Secado en el horno de la muestra lavada	45
Figura 37.	Tamizado de la muestra	45
Figura 38.	Tamizado de la muestra	45
Figura 39.	Pesado de los retenidos de las mallas	46
Figura 40.	Instrumentos ensayo de límites de consistencia	46
Figura 41.	Ensayo de granulometría malla Nº40	47
Figura 42.	Incorporación de agua a la muestra	47
	Elaboración del ensayo Casagrande	
Figura 44.	Elaboración del ensayo Limite liquido	49
Figura 45.	Porciones del material dispuesto antes del ensayo	49
Figura 46.	Incorporación del material al molde	50
Figura 47.	Ensayo Proctor	50
Figura 48.	Enrasado del molde	51
Figura 49.	Peso del molde + material	51
Figura 50.	Incorporación del material al molde	52
Figura 51.	Ensayo CBR	52
Figura 52.	Elaboración del ensayo CBR	53
Figura 53.	Curva granulométrica progresiva (km +520)	56
Figura 54.	Curva granulométrica progresiva (km +750)	58
Figura 55.	Curva granulométrica progresiva (km 1+000)	59
Figura 56.	Resumen de la MDS y OCH	64
Figura 57.	Resumen de capacidad de soporte california	67

ÍNDICE DE ABREVIATURAS

AASHTO : American association of state highway and transportation officials

% : Porcentaje

EEUU : Estados Unidos

PCA : Análisis de componentes principales

F'c : Resistencia a compresión del concreto

Km : Kilómetros

LL : Limite liquido

LP : Limite plástico

IP : Índice de plasticidad

SUCS : Sistema unificados de clasificación de suelos

CH : Arcillas inorgánicas de alta compresibilidad

CL : Arcilla inorgánica de baja plasticidad

UM : Unidad de muestra

GC : Arcillas inorgánicas de alta plasticidad

CBR : Ensayo de Relación de Soporte de California

U : Suelos con perfil de textura uniformes

G : Suelos con perfil de textura gradual

D : Suelos con perfil de textura doble

O : Suelos inorgánicos

W_a : Humedad natural

IL : Índice liquido

S₀ : Subrasante inadecuada

S₁ : Subrasante pobre

S₂ : Subrasante regular

S₃ : Subrasante buena

S₄ : Subrasante muy buena

S₅ : Subrasante extraordinaria

PVC : Policloruro de vinilo

NTC : Normas técnicas complementarias

Kg : Kilogramos

Cm² : Centímetros cuadrados

G5P2 : Neumático de auto

CHM217 : Neumático de camión

°C : Grados Celsius

URB : Urbanización

PET : Tereftalato de polietileno

m : Metros

QMT : Quiminet

DMS : Densidad máxima seca

ML : Limos Inorgánicos de baja compresibilidad

PRT : Plástico reciclado triturado

RESUMEN

La presente investigación titulada "Polímero adhesivo natural para mejorar la capacidad de soporte y densidad máxima en subrasante de pavimentos rígidos, Salcedo – Puno" se realizó con el propósito de aplicar una nueva técnica de estabilización de suelos para mejorar las propiedades físico mecánicas de la sub rasante en la avenida industrial Salcedo-Puno, progresiva (km 00+520 - km 1+000), usando como estabilizante polímero adhesivo natural, las cuales puedan cumplir con los requerimientos mínimos establecidos en la DG-2013. El método de investigación empleado en la presente tesis es de carácter hipotético deductivo, ya que se establecieron hipótesis para luego contrastarlas, para tal fin se realizó la extracción del suelo a mejorar aplicando polímero adhesivo natural en proporciones de 2 %, 4 % y 6 %. Para obtener las características del suelo se emplearon los siguientes ensayos geotécnicos: granulometría, límites de consistencia, Proctor CBR. Los resultados obtenidos del suelo natural evaluado contempla un CBR de 5.493%, máxima densidad seca 1.714 g/cm3 y un contenido de humedad óptima de 14.863%, así mismo se determinó que de acuerdo a los valores de CBR la proporción de polímero adhesivo natural con mejor comportamiento fue de 4%, debido a que esta proporción incremento ligeramente el valor de CBR en un 41.783%, concluyendo que la incorporación de polímero adhesivo natural genera un incremento positivo en los valores de CBR, Proctor e índice de plasticidad, siendo la más influyente la dosificación del 4%.

Palabras Claves:

Polímero natural, subrasante, máxima densidad seca, capacidad de soporte y pavimentos.

ABSTRACT

The present investigation entitled "Natural adhesive polymer to improve the support capacity and maximum density in subgrade of rigid pavements, Salcedo - Puno" was carried out with the purpose of applying a new soil stabilization technique to improve the physical mechanical properties of the subgrade. From the industrial avenue Salcedo-Puno, progressive (km 00+520 - km 1+000), using natural adhesive polymer as stabilizer, which can meet the minimum requirements established in DG-2013. The research method used in this thesis is of a hypothetical deductive nature, since hypotheses were established and then contrasted, for this purpose the extraction of the soil to be improved was carried out by applying natural adhesive polymer in proportions of 2%, 4% and 6%. To obtain the soil characteristics, the following geotechnical tests were used: granulometry, consistency limits, CBR and Proctor. The results obtained from the natural soil evaluated contemplates a CBR of 5,493%, maximum dry density 1,714 g / cm3 and an optimal moisture content of 14,863%, likewise it was determined that according to the CBR values the proportion of natural adhesive polymer with The best performance was 4%, because this proportion slightly increased the CBR value by 41,783%, concluding that the incorporation of natural adhesive polymer generates a positive increase in the values of CBR, Proctor and plasticity index, being the most influencing the dosage of 4%.

Keywords:

Natural polymer, subgrade, maximum dry density, support capacity and pavements.

I. INTRODUCCIÓN

En el transcurso de los años se ha empleado muchos aditivos para mejorar y reforzar los materiales empleando materiales naturales como la fibra que otorga mayor resistencia a diferencia de las más simples.

En el ámbito actual el contexto internacional ha dejado de lado el estudio relacional entre la economía y la política por razones de economía y cambios académicos de los que se pretende recoger que los temas económicos y el tema de desarrollo en infraestructura vial van de la mano. En ciudades de Latinoamérica la infraestructura vial se encuentra en implementación continua no pudiendo llevarse a la par con la creciente economía. Jiménez, Leiteritz y Urregu (2018 pág. 18).

Alrededor del 80% de las vías a nivel mundial se encuentran sin pavimentar y generalmente estas son de bajos volúmenes de tránsito, así como se llega a visualizar en la figura 1. En la (AASHTO) se detalla que el 20% aproximadamente de los pavimentos llegan a fallar a causa de la insuficiencia de la resistencia estructural. En Colombia de acuerdo a la reglamentación correspondiente para las vías, la red de transporte de Bogotá está clasificada de acuerdo al estado de conservación donde se indica que el 18% está en buenas condiciones, en tanto el 56% se encuentra en un estado regular a malo y el 34% en mal estado. Silva (2016).

Figura 1. Vías no pavimentadas

Fuente. https://bit.ly/34ylj2t

La carencia de los suelos al contener características pertinentes brindar un buen terreno de fundación, a con llevado a generar nuevas alternativas de mejoramiento en múltiples ámbitos internacionales y nacionales. Landa y Torres (2019 pág. 15)

La elaboración de estabilizadores de la arcilla en el ámbito de la construcción cuenta con una antigüedad de 5.000 años de antigüedad. Las Pirámides de Shersi en el Tibet fueron edificadas con mezclas de arcilla y cal, así como se visualiza en la figura 2, en la India y la China se ha utilizado de diferentes formas la estabilización de suelos, donde la estabilización de suelos con polímeros, ha tenido un significativo crecimiento en los últimos años en España, logrando en resumen resultados positivos. De esta manera España forma parte de un numeroso grupo de países europeos que aun utilizan esta técnica desde que muchos años atrás. Ramírez (2015 pág. 5).

Figura 2. Pirámides de Shersi Fuente. https://bit.ly/3vs1jLD

Es una tradición en los EEUU el uso de aditivos que son de naturaleza polimérica, los cuales fueron desarrollado en los años 70 del siglo XX. En un inicio, su elaboración estuvo relacionado a la investigación militar, esto con la intención de lograr elaborar aditamentos para ejecutar mejor las pistas donde aterrizaran los aviones, así como también los helicópteros. Posteriormente, su desarrollo paso al ámbito civil y actualmente existe numerosas compañías que los producen. Curitomay (2018 pág. 31).

El empleo de la técnica de estabilización de suelos es considerado como un avance importante en el campo de tratamiento de materiales, así como se puede visualizar

en la figura 3, que permite el aprovechamiento de los suelos encontrados en los movimientos que ocurre en la tierra en el momento de realizar el trazo. Para conseguirlo, hay que recurrir a aditivos que modifiquen las propiedades que poseen el suelo con dos objetivos principales: incrementar la capacidad portante y disminuir su susceptibilidad al agua. Duque, Vásquez y Orrego (2019 pág. 51).

Figura 3. Estabilización de suelos Fuente. https://bit.ly/3i2Sxjc

En el Perú se tiene conocimiento de muchas experiencias en la elaboración de terraplenes utilizando materiales que se encuentran insitu con cemento o cal, los cuales muestran resultados positivos, así como se puede visualizar en la figura 4. Para valorar su utilidad en la formación de las capas debajo de la capa de rodadura, es de importancia consultar a referencias externas, donde destacan los ejemplos que existe en EEUU. Altamirano (2015 pág. 16).

Figura 4. Estabilización con cal Fuente. https://bit.ly/3foCgn3

En Perú existe una variedad de tramos de carreteras donde ya se ha aplicado la estabilización de los suelos con Polímeros, un tramo donde se utilizó esta alternativa es el Sub tramo división Pasco-Huánuco el cual se elaboró en el año 2003, esta se encuentra entre el departamento de Cerro de Pasco y el departamento de Huánuco, con el fin de crear la conectividad de los sitios y municipios entre los cuales están: Huarica, San Rafael y Amdo, entre otros. Los porcentajes de Polímero utilizados en la estabilización del suelo que conforman la subrasante de esta carreta, son del 3.5 a 5.0%, esto debido a la variación de plasticidad que presentaba el suelo del lugar. Vásquez (2016 pág. 42).

Así podemos mencionar también la aplicación de los polímeros para realizar el mantenimiento de pistas de aterrizaje, así como en el proyecto del aeropuerto Internacional Lima-Callao, Perú, operado por Lima Airport Partners, en el cual los problemas significativos se mostraron en el desgaste y la difusión de polvo por parte de los aviones que utilizaban esta pista, los trabajos realizados en el aeropuerto Internacional Jorge Chávez, Lima-Callao. Ramírez (2015 pág. 94).

Es cotidiano visualizar pavimentos que no cumplen con su tiempo de vida así como ocurrió en el caso de Azángaro para lo que se planteó una metodología que pueda establecer un tiempo acorde al periodo de vida para la cual fue diseñada la estructura, lamentablemente se tiene el antecedente de ejecución de obra que no cumplió su periodo por cuestiones externas como son los fenómenos climatológicos en la zona, esto repercute en el libre desenvolvimiento de la población de la ciudad de Azángaro, utilizando el diseño planteado, afectaría de manera positiva a la actividad economía, ya que los costos de transporte disminuirán y el aspecto de la ciudad mejorará. Se empleó la metodología AASTHO 93 y PCA empleando pavimentos de concreto hidráulico de F`c= 210 kg/cm2 aplicando metodologías que en ese entonces no se utilizaban en la entidad municipal para lograr una mejoría en la calidad de los materiales de pavimentación con esta referencia. Calla (2015)

Actualmente las calles que conectan la ciudad de Puno no cuentan con suelos completamente estables por lo que surge la necesidad de emplear nuevos aditamentos naturales que puedan influir sobre los suelos cohesivos que se presentan en la ciudad de Puno, caso pertinente a comentar es la situación de las calles del centro poblado de Salcedo, esta al ser una de las zonas con mayor

crecimiento poblacional, sus calles y avenidas no cuenta con una carpeta de rodadura ideal, se ha observado que al pasar el tiempo se han presentado daño al elemento vial el cual ha sido construido de pavimento flexible.

El suelo del centro poblado de Salcedo la subrasante no es segura en donde la estabilidad y la durabilidad no garantiza el buen comportamiento de la estructura del pavimento, provocando hundimientos, fisuramiento y agrietamiento como se puede apreciar en la figura 5.

Figura 5. Avenida deteriorada salcedo

Existe una uniformidad de suelos donde se conoce que es un tipo de suelo arcilloso limoso el cual tiene un valor de CBR de 6%, donde la plataforma de las calles presenta perdida de los finos, asentamientos o hundimientos notorios que perjudican al tránsito vial, de la misma forma, se observa en la subrasante presencia de fallas transversales, longitudinales y diagonales. Esto debido a los factores climatológicos devastadores que azotan a los pavimentos de la Región de Puno y peor en tiempos de lluvia entre los meses de noviembre a marzo. Y más aún en la zona de Salcedo ya que el nivel freático es demasiado alto, debido a que está a orillas del lago Titicaca. También uno de los factores de la destrucción de la vía, es el tránsito vehicular como también vehículos de alto tonelaje haciendo que no sea suficiente la capacidad de soporte de la plataforma de pavimento rígido como se puede apreciar en la figura Nº 6.

Figura 6. Estado actual de calles y avenida salcedo

Cabe resaltar que en la mayoría de los trabajos viales la conformación y característica de los suelos no es la misma, por lo que en las calles del centro poblado Salcedo – Puno, se cuenta con suelos inestables, con valores de CBR < 6%, requiriendo en gran parte de las calles trabajos de mejoramiento y estabilización de suelos, por lo expuesto anteriormente surge la formulación del problema general donde se plantea emplear el uso de polímeros naturales para ver el comportamiento que surte sobre la subrasante.

Para ello es necesario determinar la cantidad optima de polímero adhesivo natural esto con la finalidad de mejorar la capacidad de soporte y densidad máxima en la subrasante, de la Zona del centro poblado de Salcedo-Puno.

Formulación del Problema

Problema General:

¿Como el polímero adhesivo natural mejoraría la capacidad de soporte y densidad máxima de sub rasante de pavimentos rígidos, Salcedo - Puno 2021?

Problemas específicos:

¿Con una proporción establecida se lograría una mejor compactación y reducción de vacíos utilizando el polímero adhesivo natural?

¿Con una proporción establecida se reducirá los valores de plasticidad utilizando el polímero adhesivo natural?

¿Con una proporción establecida se reduciría los costos de ejecución utilizando el polímero adhesivo natural?

Objetivos

Objetivo general

Mejorar la capacidad de soporte y densidad máxima de subrasante de pavimentos rígidos, Salcedo - Puno por medio del polímero adhesivo natural.

Objetivos específicos

Lograr una mejor compactación y reducción de vacíos utilizando el polímero adhesivo natural por medio de una proporción establecida

Mejorar el índice de plasticidad utilizando el polímero adhesivo natural por medio de una proporción establecida.

Reducir los costos de ejecución utilizando el polímero adhesivo natural por medio de una proporción establecida.

Hipótesis

Hipótesis General

El polímero adhesivo natural mejorara la capacidad de soporte y densidad máxima de subrasante de pavimentos rígidos, Salcedo - Puno

Hipótesis específicas

Una proporción establecida lograra una mejor compactación y reducción de vacíos utilizando el polímero adhesivo natural

Una proporción establecida reducirá los valores de índice de plasticidad utilizando el polímero adhesivo natural en un 10%.

Una proporción establecida reducirá los costos de ejecución utilizando el polímero adhesivo natural en un 2%.

Justificación del Estudio

Justificación técnica

Esta investigación es justificable al dirigir la búsqueda hacia nuevas aplicaciones que puedan mejorar la condición de una subrasante mediante la estabilización de suelos, de esta manera verificar la empleabilidad de este insumo como es el polímero adhesivo natural y la influencia en los parámetros de resistencia que demanda el reglamento vigente.

Justificación social

Se justifica socialmente debido a que se contribuirá en nuevos conocimientos se contará con nuevas alternativas de conformación de la subrasante que permita el normal desarrollo de las capas siguientes de la estructura del pavimento, de esta manera contribuyendo al conocimiento de ingeniería civil, mediante la acotación de una solución para poder ser empleada en los casos que el profesional lo requiera.

Justificación económica

La justificación de carácter económico se justifica puesto que el recurso empleado para esta investigación se trata del polímero adhesivo natural, de esta forma el ingeniero civil se le provee de una solución en lugares donde no se tenga mucha cobertura de materiales tradicionales de mejoramiento u optimización pudiéndose emplear para mejorar los parámetros de calidad de trabajo terminado como primera instancia para que en capas posteriores tener un normal desarrollo de ejecución de proyecto, indudablemente repercutiendo positivamente en la economía del proyecto.

Justificación ambiental

Se justifica ambientalmente debido a que se tendrá una significativa reducción de impacto ambiental comparado al transporte y manipulación de elementos químicos, de igual forma se pretende mitigar los impactos sobre aguas freáticas o subterráneas con la aplicación del polímero adhesivo natural, practicando ideologías para comprobar la funcionalidad del insumo utilizado conjuntamente con el material afirmado (escarificado).

Delimitación

Delimitación temporal

La investigación se desarrolló en el mes de abril del año 2021 trabajándose alrededor de 4 meses siguientes, para recabar formalmente la información del lugar donde se pretende realizar la aplicación del insumo y así caracterizar a los suelos a emplear.

Delimitación espacial

Este punto quedo constituido por el centro poblado de Salcedo como se muestra en la figura 7, esta se encuentra localizada a 5 km. De la ciudad de puno a orillas del lago Titicaca en dirección sur - este, colindando con la ciudad de puno. Contando con una población de 29,356 personas censadas.

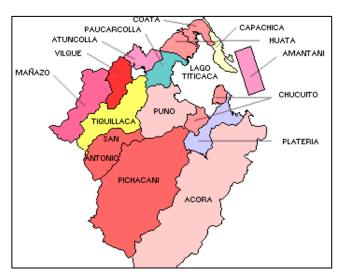


Figura 7. Provincia de Puno y sus distritos

Fuente: https://bit.ly/3b6ikmz

II. MARCO TEÓRICO

Trabajos previos

Internacionales

Ayala (2017), en su investigación (Pregrado) denominado "Estabilización y control de suelos expansivos utilizando polímeros", realizado para la Universidad de Especialidades Espíritu Santo - Samborondón. Tiene por objetivo lograr una estabilización adecuada de suelos expansivos mediante la utilización de polímeros. El método de investigación empleado es de carácter cuantitativo. Los resultados determinaron que dentro de las tres muestras evaluadas se hallaron contenidos de humedad natural con los porcentajes (24.10%, 26.10% y 33.10%), en cuanto a los limistes de atterberg y los índices de plasticidad hallados para la primera unidad de muestra se determinaron los siguientes valores (LL 56.00, LP 21.08 e IP 34.90), por lo que a su misma vez se estableció según la clasificación SUCS que el suelo contemplado en la evaluación se dio por un CH, en cuanto a la unidad de muestra numero dos dio paso a los siguientes valores (LL 35.70, LP 25.03 e IP 10.70), denotando dentro de su estructura una clasificación de suelos según la clasificación SUCS un CL, finalmente la muestra número tres dio paso a los siguientes valores (LL 30.30, LP 9.95 e IP 20.30) dando pase a una clasificación mediante el método SUCS de CL. Tras la evaluación del ensayo Proctor se determinaron los siguientes valores establecidos en el contenido de humedad optima y la densidad seca máxima para la UM 01 (15.00% y 1670 kg/m³), UM 02 (15.00% y 1740 kg/m³), UM 03 (26.00% y 1425 kg/m³). Concluyendo que tras los ensayos realizados en la presente investigación se pudo definir que la estabilización con polímeros no genera un gran cambio dentro de la subrasante por lo que los polímeros dentro de los suelos arcillosos no son favorables en su aplicación ya estos aditamentos tienden a hacer decrecer las características mecánicas de dicho suelo.

Zambrano y Casanova (2016), en su investigación (Pregrado) denominado "Uso de polímeros como estabilizador de suelos aplicado en vías de arcilla (CL) y grava arcillosa (GC)", realizado para la Universidad de Especialidades Espíritu Santo – Samborondón, tiene por objetivo estabilizar el suelo arcilloso y una grava arcillosa mediante el uso de Polímeros. El método de investigación aplicado es de carácter

aplicada – experimental. Donde se hallaron los resultados que establecieron ante los límites de atterberg dieron pase a los valores de (WL 46.00, WP 20.00 e IP 26.00), donde el tipo de suelos encontrado es (A-2-7) – (GC) según la tabla de clasificación AASTHO y SUCS respectivamente, en cuanto a la unidad de muestra numero dos se presentaron los siguientes valores correspondientes a (WL 47.00, WP 20.00 e IP 27.00) dando pase a las clasificaciones de suelos mediante la AASHTO – SUCS (A-7-CL) respectivamente. Mediante el ensayo CBR se pudieron determinar que los valores alcanzados fueron de 14.60% y 23.70% para la muestra patrón, e incluyendo el polímero en diferentes dosificaciones se pudieron determinar que los valores alcanzados fueron de 36.50% y 42.85%. Concluyendo que el empleo de polímeros encima los terrenos de fundación son altamente viables ya que de acuerdo a las características generas se pudieron obtener aumentos en las funciones mecánicas del 14%.

Rodríguez Edgar [et al] (2006) en su artículo de investigación denominado "Influencia de la inclusión de desecho de PVC sobre el CBR de un material granular tipo subbase", desarrollado para la Revista de Investigación Ingenierías de la Universidad de Medellín. Tiene por objetivo en determinar la influencia a emplear PVC a un material de sub – base. El método de investigación empleado es de carácter aplicada. Los resultados demostraron que, tras emplear el material reciclado de PVC, sobre un suelo natural, se denotaron cambios en las características como el CBR y el índice de plasticidad, donde se presenciaron los siguientes resultados con la aplicación del 4%, 8% y 10%. CBR 8.15%, 9.89% y 5.12%, respectivamente. Concluyendo que el empleo de PET en suelos blandos es bueno, aplicándolo hasta en un 8%, en tanto se denoto un declive al emplear el 10%.

Cajamarca y Acero (2015) en su artículo de investigación denominado "Comparación técnica de pegantes para cerámica con contenidos de látex y polímeros", desarrollado para la Revista de Investigación de la Universidad Católica de Colombia. Tiene por objetivo realizar ensayos de laboratorio de acuerdo a la norma NTC 4381, con el fin de definir una comparación técnica entre adhesivos para cerámica que contengan látex y polímeros utilizados en la industria de la construcción. El método de investigación es de carácter aplicada – experimental.

Los resultados probaron que en cuanto a la calidad y seguridad para obedecer con las delimitaciones exigidas por la Norma Técnica Colombiana NTC 43819 y para así al momento de realizar un proyecto para establecer en cuál de estos implementados para brindar mayor confiabilidad en el momento de uso y ofrece acabados duraderos, cómodos, así mismo, consolidar calidad acorde a las exigencias de hoy en día. Concluyendo que se delimito la capacidad de adherencia a través de la tracción de dos muestras, posteriormente del secado el Portland arrojo 180 Kg/cm2 de tracción, así mismo que el Pegaor demostró una fuerza de tracción de 130 Kg/cm2. El ensayo de resistencia a la tracción, empleando la fuerza de tensión se nota que el comportamiento del Portland muestra más propiedades de agarre, por consiguiente, se da con la certeza de que las deformaciones son diferentes en una parte mínima. Los ensayos de laboratorio hechos bajo las limitaciones de las normas técnicas de algunos adhesivos para cerámicas, estas dan resultados hacen que se tome en cuenta a la hora de escoger que clase de requisito o exigencia es necesario para una determinada adaptación.

Suárez (2018) en su investigación (Pregrado) denominado "Obtención de productos adhesivos a partir de pirólisis de llantas recicladas", desarrollado para la Universidad de La Sabana – Colombia. Tiene por objetivo evaluar el uso de los residuos de llantas para obtener productos adherentes por medio del método de pirolisis, para el uso en la industria del calzado y la marroquinería. El método de investigación es de carácter experimental – cuantitativo. Los resultados determinaron que al recolectar 2 tipos de neumáticos de distintos vehículos GSP2 y CHM217 (auto, camión), los que fueron obtenidos en el depósito de neumáticos en el occidente de la ciudad de Bogotá – Colombia. Para luego realizar la trituración mecánica, donde se obtuvo piezas de tamaños heterogéneos. En cambio, después de obtener las muestras de los vehículos se notó que hay la posibilidad de recuperar la mayor cantidad de caucho de los neumáticos del camión, por lo que aparentemente se trata a las especificaciones técnicas que necesitan los neumáticos para este tipo de vehículos, por las condiciones en las cuales dichos son sometidos a un gran trabajo. Después de obtener las muestras, estas fueron sometidas al proceso de pirolisis. Concluyendo que los resultantes obtenidos presentan una fuerza de adhesión de 6.53, en las cuales incumben a los productos comercialmente empleados, así mismo el precio de elaboración de este material

sea menor al 40% con respecto a los productos comerciales ampliamente empleados en la industria de la marroquinería y calzado. En la cual nos brinda una solución para disminuir la contaminación ocasionados por los neumáticos. Es factible concluir que los residuos de los neumáticos son muy útiles para la elaboración de productos adherentes donde se puede alcanzar una fase liquida nutritiva en compuestos de hidrocarburos empleado en la elaboración de adhesivos, de tal manera la mejor temperatura para obtener una gran cantidad de fase liquida es 475°C, así mismo la mayor cantidad de extracto restablecido la presentan los neumáticos de los camiones ya que estas presentan delimitaciones técnicas que están a favor de la presencia de productos hidrocarburos que pueden ser empleadas para la fabricación de materiales adherentes.

Felixberger (2008) en su investigación (Pregrado) denominado "Adhesivos de colocación en capa delgada modificados con polímeros", desarrollado para la Universidad Augsburgo PCI. Tiene como objetivo determinar la composición de adhesivos de colocación en capa delgada modificados con polímeros. El método de investigación es de carácter aplicada. Los resultados determinar que, en la actualidad, el ensayo de elasticidad se realiza mediante la medida de la formación transversal de la muestra del mortero curado según la norma EN 12002:2003 aunque existen algunas dificultades en la reparación de las probetas, el módulo de ensayo es razonable. Concluyendo que la resolución de la capacidad de adherencia bajo tracción se describe en las normas, pero limitantes para emplearlas en la vida real.

Nacionales

Palli (2015) en su investigación (Pregrado) denominado "Guía básica para estabilización de suelos con cal en caminos de baja intensidad vehicular en la provincia de San Román", desarrollado para la Universidad Nacional de Altiplano. Tiene como objetivo determinar la influencia de la estabilización de suelos con cal en las propiedades mecánicas de los suelos plásticos y elaborar una guía básica para estabilización de suelos en caminos de baja intensidad vehicular en la provincia de San Román. El método de investigación es de carácter experimental. Los resultados determinaron que tras efectuar los límites de consistencia se lograron presenciar que las canteras evaluadas cumplen con las especificaciones

dotadas por la EG – 2013, en tanto tras incorporar el aditamento detallado en la investigación mencionada se vio una leve variación del índice de plasticidad en 4 y 9% generando un incumplimiento sobre esta característica. Concluyendo que la incorporación de la cal sobre el suelo mejora significativamente sobre las características mecánicas, en tanto tras emplearlo sobre las características físicas se denoto una disminución de este componente, afirmando que la cal es altamente viable para estabilizar suelos blandos debido a sus propiedades puzolánicas.

Cortes (2018), según su investigación (Pregrado) denominado "Desempeño de suelos estabilizados con polímeros en Perú", desarrollado para la Universidad de Piura. Tiene por objetivo emplear el uso de estabilizadores eficaces y sostenibles al posibilitar la reutilización de suelo existente luego de cumplir su vida útil y que, durante su ejecución, no presentan el agrietamiento por contracción propio de los estabilizadores convencionales. El método de investigación es de carácter aplicada. Los resultados demostraron que, el empleo de polímeros en el Perú es muy escaso, por lo que para detallar el debido procedimiento de este material en la norma los proveedores de polímeros plantean seguir el procedimiento establecido en la ciudad de Australia, por lo que se evaluaron diferentes muestras en suelos blandos, en los cuales se incorporaron 5%, 10% y 20% de polímeros, donde se caracterizaron las capacidades de soporte y los índices de plasticidad. Concluyendo que el empleo de estos materiales es altamente viable para mejorar los suelos, en tanto se debe contener un debido procedimiento para lograr este mejorar el suelo.

Romero y Sañac (2016), en su investigación (Pregrado) denominado "Evaluación comparativa mediante la capacidad de soporte y densidad máxima de un suelo adicionado con polímero adhesivo natural en porcentajes de 0.5%, 1%, 2% y 3% frente a un suelo natural para sub rasante de pavimento rígido de la urb. San Judas Chico – Cusco", desarrollada para la Universidad Andina del Cusco. Tiene por objetivo evaluar comparativamente mediante la capacidad de soporte y densidad máxima de un suelo adicionado con polímero adhesivo natural en porcentajes de 0.5%, 1%, 2% y 3% ante a un suelo natural para sub – rasante de pavimento rígido de la Urb. San Judas Chico – Cusco. El método de investigación es de carácter experimental – aplicada – descriptiva. Los resultados pudieron evidenciar que el

CBR de la muestra de arcilla va incrementando de acuerdo al porcentaje de polímero adhesivo natural, pero va bajando a partir de la colocación del 2% de polímero adhesivo natural. El aumento o desarrollo no tiene una variación notable entre dato y dato. La subrasante es de una calidad insuficiente con la aplicación de polímero adhesivo natural de 0.3%. esta subrasante tiene una calidad regular con la aplicación de polímero adhesivo natural que cambia de 0.4% - 0.6%. la subrasante tiende a ser buena con la aplicación de 0.7% - 1.7% la subrasante aun tiende a ser buena, por lo cual el porcentaje de aditivo sobrepasara por lo que no es económico. Concluyendo el empleo del polimero adhesivo natural es altamente viable en ciertas dosificaciones, generando el mayor valor a la cantidad del 1.5%, en tanto a mayor incorporación disminuye las capacidades del suelo.

Capia (2020), según su investigación (Pregrado) denominada "Estabilización de suelos arcillosos mediante el uso de polímeros reciclados PET a nivel de la subrasante de la carretera Juliaca – Caminaca, 2019", realizada para la Universidad Peruana Unión. Tiene como objetivo estabilizar los suelos arcillosos mediante el uso de polímeros reciclados PET a nivel de la subrasante de la carretera Juliaca – Caminaca. El método de investigación es de carácter aplicada – descriptivo. Los resultados pudieron evidenciar que se tomaron como estudio las siguientes progresivas Km 2+000, Km 2+500, donde se tomaran las muestras para efectuar los ensayos in – situ y 3 calicatas de una profundidad de 1.50 m. estas fueron ensayadas en el laboratorio para suelos en estado natural y con la aplicación del 1%, 3% y 5% de polímeros reciclados PET, se efectuó un total de 36 ensayos de CBR. Lo cuales los ensayos efectuados in – situ en dos puntos, los resultados dieron para CBR= 5.31% y CBR= 5.34%. De tal manera, efectuando las calicatas se pudo notar que el suelo de la sub – rasante está dividido en dos tramos conforme las características mecánicas y físicas con un CBR AL 95% D.M.S donde en el primer tramo se nota CL ML con un CBR de 5.41%, mientras tanto que en el segundo tramo se nota CL con un CBR de 5.78%; según el Ministerio de Transportes Y Comunicaciones (2013), nos recomienda cambiar y mejorar la sub – rasante. Con los resultados obtenidos concluimos que para un suelo natural el CBR de 5.41% y con la aplicación de 3% de polímeros reciclados PET se aumenta el CBR al 6.19% D.M.S, dando así que el 3% como óptimo. Concluyendo que se demuestra parcialmente a la hipótesis que dice: hay una dosificación proporcionada de los polímeros reciclados PET como aplicación para estabilizar la sub – rasante. Según los resultados se observa que para un suelo natural más la aplicación del 3% de polímero reciclado PET incrementa su capacidad para un soporte CBR de un 0.58% hasta 0.87% de su capacidad de soporte CBR de suelo sin adición. Concluyendo que la adición de polímero reciclado PET logra mejorar su resistencia a la deformación de cargas de polímero reciclado PET logra mejorar su resistencia a la deformación de cargas vehiculares si logramos agregar una dosificación de 3% de polímeros reciclados PET, ya que el polímero es un material resistente de baja densidad que ayuda a tener mayor resistencia al corte y fricción. De acuerdo a la hipótesis nos dice que: la utilización de los polímeros reciclados PET reduce el espesor del diseño estructural del pavimento. En el diseño estructural del pavimento flexible depende de la cualidad del material de la sub – rasante depende en mayor parte los espesores del pavimento habiendo la sub – base, base y carpeta asfáltica; la reducción de espesor es mínima ya que al adicionar el polímero reciclado PET aumenta en 0.87% del CBR de suelo natural, razón por la cual en el diseño de pavimento solo reduce la sub base.

Quispe y Sañac (2019), en su investigación (Pregrado) denominada "Influencia de la incorporación de plástico reciclado triturado – PET en el mejoramiento del suelo a nivel de sub rasante en la prolongación de la Av. Micaela Bastidas, Tamburco -Abancay, 2018", desarrollado para la Universidad Politécnica de los Andes. Tiene como objetivo determinar la influencia de la incorporación de plástico reciclado triturado - PET en el mejoramiento del suelo a nivel de sub rasante en la prolongación de la Av. Micaela Bastidas, Tamburco, Abancay, 2018. El método de investigación es de carácter básica – aplicada. Tras efectuar los ensayos de laboratorio se determinaron los siguientes resultados, el suelo sin incorporación de algún aditamento tras efectuar el ensayo de granulometría doto de una caracterización de que la subrasante necesita mejoramiento debido a que el suelo que presenta es un limo, por otro lado, el CBR promedio que se genero en este punto es de 3.40%, en tanto el PRT-PET 2% doto de un CBR de 9.09%, mejorando esta característica en un 24%, así mismo la variación que se repercutió en el índice de plasticidad se reducido en un 25%, debido a la característica que fomenta el material PET, el PRT-PET 5%, redujo la capacidad de soporte en un 12%, alcanzado valores de 7.05%, y aumentando el índice de plasticidad en un 10%.

Concluyendo que el empleo de este aditamento PET, mejora en cierta medida las características del suelo siendo su valor optimo el del 2%, en tanto a mayor incorporación de PET se denoto una degradación de las propiedades físicas y mecánicas del suelo, por lo que emplear este insumo no es viable para infraestructuras viales.

Teorías relacionadas al tema

Polímeros

Se entiende a los polímeros como macromoléculas conseguidas a partir de la unión covalente repetida de monómeros y el proceso de formación se llama polimerización, así como se puede visualizar en la figura 8, estos pueden ser inorgánicos, como es el caso del vidrio, es usual que los polímeros sean de interés industrial cuando hablamos de compuestos orgánicos compuestos derivados de los hidrocarburos. Meneses, Corrales y Valencia (2008 pág. 56).

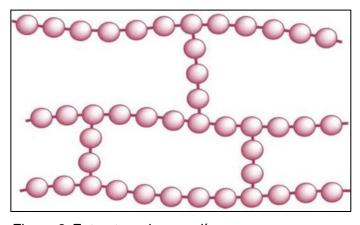


Figura 8. Estructura de un polímero

Fuente. https://bit.ly/3vqliZZ

Dependiendo de las características de determinado material podremos diseñar un polímero con las características específicas que deseemos. (Elasticidad, reflectante, resistencia, dureza, fragilidad, opacidad, maleabilidad, aislante, etc.). por su función y origen son (polímeros naturales, polímeros artificiales y polímeros sintéticos). Díaz y Valero (2021 pág. 18).

Usualmente los polímeros sintéticos son utilizados en las diferentes industrias, las cuales son inventadas por el ser humano. Los cuales son aplicados en carreteras con el objetivo de incrementar la estabilidad de agregados y de esta manera

disminuir la dispersión de las arcillas, así como se visualiza en la figura 9. Castro Ruben [et al] (2020 pág. 111)..

Figura 9. Polímero estabilizador de carreteras Fuente. https://bit.ly/3wNXK2T

Generalmente los cauchos, plásticos y material de fibra son denominados polímeros sintéticos. En caso de las técnicas que se utilizan en la estabilización no se encuentra estudiadas a profundidad, aun cuando en el mercado no se puede encontrar fácilmente los insumos creados a partir de polímeros. La empleabilidad de este insumo en la estabilización tiene la misma finalidad que otras técnicas de con el objetivo: Impermeabilizar y estabilizar el suelo con el fin conseguir condiciones adecuada para el uso vial. Salazar Margarita [et al] (2020).

Polímero adhesivo natural

Se define como adhesivos de origen natural a todo aquello que es producido o extraído de los recursos naturales que se encuentra en el planeta, los recursos, así como los animales y vegetales, el almidón, así como se visualiza en la figura 10, la goma producida a partir de cecina o caucho natural, son ejemplo de pegamentos de origen natural. Estos fueron los primeros pegamentos que se llegaron a descubrir y que se utilizó a lo largo de la historia de la evolución de los adhesivos. Caldera y Herrera (2019 pág. 3).

Figura 10. Polímero natural (Almidón) Fuente. https://bit.ly/3oQhGPE

Colas animales

Son elaboradas a partir del colágeno, proteína que está presente en la piel y cartílago. Son presentadas de forma solida (laminas, escamas, sémolas, tabletas y perlas), también es presentada en forma de liquida. Generalmente proviene de conejos, ovinos y animales vacunos, a partir de cocción de la piel y del hueso en algunos se obtiene de residuos de animales, otra forma de adquirirlo es a través de pescados, dentro de ellos la mayor demandada es la de esturión la cual entrega una mayor calidad. Las gomas de origen animal aún son utilizadas para restauraciones, esto debido a sus características parecidas a los sintéticos originales, y de la igual forma a su propiedad de reversibilidad con el contacto al agua caliente, a pesar de que muestra inconvenientes en la preparación, conservación, endurecimiento y cristalización. (2016 pág. 36).

Componentes físico – químicos

En la tabla 1. Se presentan todos los componentes físico químicos que pueden contener los polímeros adhesivos naturales.

Tabla 1. Componentes del polímero adhesivo natural

Componentes	Porcentajes	
Proteína	75.50%	
Humedad	8.80%	
Carbohidratos	13.60	
Ceniza	1.20%	
Grasa	0.90%	

Fuente. Romero y Sañac (2016 pág. 65).

Tipos de polímero adhesivo natural

Los polímeros adhesivos naturales se vienen clasificando en ocho tipos los cuales se enmarcan dentro de la tabla 2.

Tabla 2. Tipos de polímeros adhesivo natural

Tipo de polímero natural	Definición		
Cola de liebre	Cola original producida con piel y cartílago de liebres.		
Cola de conejo genuina	Producida a partir de animales, aplicada en el tratamiento para		
	consolidar capas pictóricas, adhesiones y demás. Tiene forma de		
	placas.		
Cola de cartílagos	Tiene una adhesión alta, tiene gran similitud con la cola a partir de		
	conejo, en cambio esta goma proviene a partir de bovinos: su forma		
	es granular.		
Cola de carpintero	Es conocida como cola de pencas, hoy en día fue cambiada por		
	cola blanca aplicada en la carpintería. Es empleada en sentado de		
	color y para la dar origen a la paste en forraciones de cuadros. Su		
	forma es en placas y perlas.		
Cola de encuadernación	Cola a partir de animales de coloración blanquecina, en forma de		
	polvo de encuadernación.		
Gelatina de pescado	Cola a partir de animales que esta constituida pro espinas y otros		
	productos de pescados. Por sus características como, bajo peso		
	molecular y viscosidad, se empleabilidad en pequeñas cantidades		
	es adecuada en la protección y consolidación de capas pictóricas.		
Fu-nori	Proviene a partir de la extracción de mucilago de 3 algas marinas;		
	es empleada en la consolidación de pinturas mates y gráficas,		
	gracias a su óptima calidad óptica.		
Cola de esturión rusa	Su origen es a partir de pieles y espinas de este pez; se cree que		
	es la cola con un alto grado de pureza y compactación, a su ves		
	otorga una adherencia en concentraciones bajas, a su ves tiene un		
	alto grado de penetración. Gracias a sus optimas características es		
	adecuada su empleabilidad en consolidad de capas pictóricas y de		
	su preparación.		
	Se utiliza generalmente en países nórdicos y al este de Europa.		

Fuente. QMT (2016).

Aplicación del polímero adhesivo natural

Las aplicaciones cotidianas en las cuales se emplea el uso del polímero natural son las siguientes:

Restauración

En la restauración aún se utiliza las colas animales por las propiedades que posee y las características semejantes a las utilizadas inicialmente, así mismo por su reversibilidad con agua caliente, a pesar que muestran inconvenientes en la preparación, endurecimiento, conservación y cristalización. Romero y Sañac (2016 pág. 66).

Carpintería

Desde el inicio de la construcción existió la herramienta de los adhesivos. En carpintería y bricolaje esta herramienta es esencial para esta actividad. No existe un registro desde el inicio de la empleabilidad del pegamento aplicado en madera, sin embargo, hoy en día se sigue elaborando a partir de restos de animales y huesos, con una finalidad artesanal. Romero y Sañac (2016 pág. 66).

Tarrajeo

El tarrajeo que tiene las viviendas de material a partir de barro en zonas alto andinas son fácilmente visualizados en los alrededores de la cuidad de Cusco, utilizando la cola de carpintero en cantidades experimentales. Romero y Sañac (2016 pág. 67).

Estabilización de suelos

La estabilización del suelo incrementa o se tiene control de la estabilidad volumétrica, incrementa la resistencia y el módulo esfuerzo-deformación, incrementa su permeabilidad, eficacia y disminuye su susceptibilidad al agua, como se puede visualizar en la figura 11. Se necesitan realizar los ensayos de laboratorio y también pruebas de campo para analizar la productividad de la técnica. Se utilizan los suelos que poseen baja calidad, impidiendo la extracción y el traslado a vertedero, incrementa su resistencia a los agentes climáticos, así como la erosión y la helada, el cual facilita el traslado en terrenos donde no se puede realizar prácticas, donde se requiere la adquisición de una plataforma estable que posea un apoyo firme de infraestructura lineal, que coopera estructuralmente consigo mismo. Yepes (2017 pág. 2).

Figura 11. Proceso de estabilización por reciclado Fuente. https://bit.ly/3bXBMIN

Estabilización con polímeros

Los polímeros trabajan como agentes catalíticos de suplencia iónico encima de una porción activa de las arcillas disminuyendo la capacidad electrostática de las partículas, despojando la capacidad para absorber agua, así como se visualiza en la figura 12. Esto con la finalidad de que el suelo posea superior capacidad de carga y que posea una estabilización duradera. Curitomay (2018 pág. 84).

Figura 12. Estabilización de suelos con polímeros Fuente. https://bit.ly/3bVB8oK

Suelo

Se define al suelo como material de construcción con mayor antigüedad, complejidad y usado por los profesionales en ingeniería, así mismo las propiedades físico-químicas y mecánicas, así como de la resistencia, compresibilidad, estabilidad volumétrica, permeabilidad y durabilidad, las cuales son de mayor importancia en la ingeniería, generalmente la mayoría de las estructuras civiles esta cimentadas encima de la superficie de la tierra o dentro de ella, la clasificación de los suelos de acuerdo en la tabla 3. Aguirre Ana [et al] (2020 pág. 2).

Tabla 3. Tipo de suelos

Descripción	Símbolo
Suelos con perfil de textura uniforme	U
Suelos con perfil de textura doble	D
Suelos con perfil de textura gradual	G
Suelos orgánicos	0

Fuente. Sánchez, Quimbayo y Sterling (2015).

Arcillas

Se define arcilla a todo sedimento o almacenamiento de mineral que al humedecerse se hace plástico y esta se conforma con un material granuloso el cual es muy fino. Donde el tamaño de sus partículas es menor a 4 micras y están compuestas especialmente de silicatos de aluminio hidratado. Picasso y Sun (2008 pág. 4).

La manera más eficaz de identificar un tipo de terreno es elaborando pruebas o exámenes los cuales nos otorgaran los datos exactos de su composición, pero en campo lo más recomendable es realizar una prueba humedeciendo y amasando la tierra, ya que se cuentan con diferentes tipos de arcillas las cuales quedaran enmarcadas dentro de la tabla 4. Garcia, Florez y Medina (2018 pág. 2).

Tabla 4. Clasificación de arcillas según su origen

CLASIFICACION DE ARCILLAS SEGÚN SU ORIGEN					
			Draduatas da	De rocas	Arcilla residual
	Materia	Sin movimiento	Productos de meteorización	Cristalinas	Caolín primario
			ordinaria	De rocas	Arcilla residual impura
			Ordinana	sedimentarias	Arcilla caolinita
	residual	durante la	Productos de	De rocas	Bauxita
		formación	meteorización	cristalinas	Dauxita
			ordinaria más	Rocas	Bauxita
			acción química	sedimentarias	Diásporo
				Productos de	Lutita argilaceo
Arcillas	acción de corr		Depositado en aguas sin o poca		Limo argilaceo
		Denositado en			Eliffo di glidoco
		acción de corrientes, en mares, lagos, pantanos, etc.		Productos de	Caolín sedimentario
				meteorización	Arcilla bola
		a. na. 100, 010.	ordinaria más	Algunas bauxitas	
<				intensa acción	Arcillas bituminosas
				química adicional	Diásporo
	Materia Transportada		or aguas de suave	Productos de	Lutita silícea
		movimiento, arroyos, estuarios,		trituración algo	Limo silíceo
			etc.	meteorizados	
		Depositado por acción glacial		Productos de	
				abrasión más	Arcilla glacial o till
			3	ligera	
				meteorizados	
		Depositado por vientos		Productos de	
				abrasión más	Loess
				ligera	
	702 (2014 pág			meteorización	

Fuente. Zea (2014 pág. 19).

Las propiedades del suelo se derivan en factores sobre la textura, temperatura y cohesión. La textura en un suelo arcilloso se muestra con una suave capa (fina) la cual está formada por partículas muy finas, en otros términos, se le considera un terreno sumamente pesado. Sobre la temperatura del suelo arcilloso este viene siendo frio, este tipo de material tiene a tener pocas probabilidades de subir su temperatura. Esto se origina tras la acumulación que se orienta en los espacios vacíos mantenimiento un ámbito húmedo. Rios María [et al] (2010 pág. 226).

Plasticidad

La plasticidad es una propiedad de la estabilidad del suelo que llega a un punto límite de humedad que no llega a la desintegración, en donde la plasticidad no está relacionado a los elementos grueso que posea el suelo, sino que está más relacionado a sus elementos finos que tenga. al realizar el análisis granulométrico nos permite saber esta propiedad y es por esta razón que se necesita realizar los Limites de Atterberg. Romero y Sañac (2016 pág. 67).

Limite Liquido

Hace referencia a la cantidad de humedad poseía por el suelo para que se comporte como de forma plástica. En este punto la cantidad de humedad del suelo se encuentra en la cúspide que llega a cambiar su comportamiento a como un fluido, este se puede determinar a través del ensayo de la copa de Casagrande como se puede visualizar en la figura 13. Chavarry, Figueroa y Reynaga (2020 pág. 46).

Figura 13. Ensayo de limite liquido Fuente. https://bit.ly/3wzEhTd

Limite Plástico

Consiste en que la cantidad de humedad por debajo se llega a denominar como material no plástico, la elaboración del procedimiento que se realiza se muestra en la figura 14. Chavarry, Figueroa y Reynaga (2020 pág. 49).

Figura 14. Ensayo de limite plástico Fuente. https://bit.ly/3oQP7l2

Límite de Retracción

Es la humedad obtenida de la perdida de coherencia en la falta de agua en el momento donde el suelo se fisura. Es definido como humedad justa y suficiente que llana los poros en el momento que el suelo llega a su volumen mínimo, cada vez es menos su empleabilidad, teniendo la tendencia a desaparecer. Diaz (2018 pág. 26)

Índice de Plasticidad

Nos indica la dimensión del intervalo de la humedad, la misma, que nos ilustra la tabla 5, cuando las características del suelo tienen consistencia plástica y nos permite realizar la clasificación más detallas del suelo. Cuando el índice de plasticidad es mayor esta se relaciona a un suelo muy arcilloso, en cambio si el índice de plasticidad es mínimo esta es relacionada a un suelo poco arcilloso. Pino y Tejeda (2013 pág. 4).

El índice de plasticidad está representado matemáticamente la siguiente ecuación.

$$IP = W_L - W_p$$

Ip = Indice de Plasticidad

 W_L = Limite Liquido

 W_n = Limite Plástico

El índice de plasticidad nos facilita realizar la clasificación de acuerdo al IP, de la que muestra la clasificación en la tabla 5, así como también se clasificará de acuerdo a la figura 15:

Tabla 5. Características de suelos según índices de plasticidad

Índice de plasticidad	Características
IP > 20	Suelo muy arcilloso
20 > IP > 10	Suelos arcillosos
10 > IP > 4	Suelos pocos arcillosos
IP = 0	Suelos extensos de arcillas

Fuente. Diaz (2018 pág. 26).

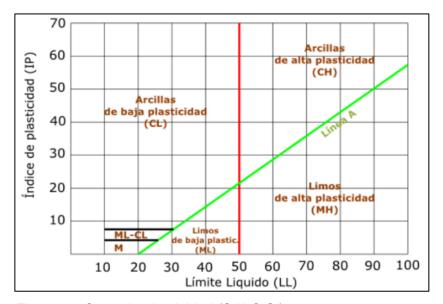


Figura 15. Carta de plasticidad (S.U.C.S.)

Fuente. https://bit.ly/2RM3yLf

Para poder determinar el índice de liquidez es necesario conocer el límite líquido, limite plástico y humedad aplicando la siguiente expresión matemática.

$$IL = \frac{W_a - W_p}{W_L - W_p}$$

IL = Indice de Liquidez

 W_L = Limite Liquido

 W_p = Limite Plástico

 W_a = Humedad Natural

Proctor modificado

El Proctor modificado se entiende a la compactación del suelo que se realiza aplicando energía mecánica que se requiera, así como se puede visualizar en la figura 16, además se le añade una cantidad optima de humedad a la muestra de suelo con la finalidad en disminuir el volumen de vacíos expulsando el aire que se encuentra en los poros, por tanto, el volumen total del mismo, incrementando de esta manera la densidad con el fin de aumentar las propiedades del suelo. Llique y Guerrero (2014 pág. 10).

El Proctor se considera un procedimiento fundamental en el estudio y control en términos de calidad para realizar la compactación del terreno de trabajo. A partir del ensayo Proctor se puede calcular la densidad seca máxima del suelo, de acuerdo a grado de humedad y de la energía mecánica de compactación definida. Camacho, Reyes y Mendez (2007 pág. 70).

Figura 16. Ensayo Proctor Modificado Fuente. https://bit.ly/3uqM0S9

CBR

El método del CBR es utilizado para analizar la calidad parcial del suelo en subrasante, subbase y base del pavimento. En el año 1929, el Ingeniero Stanton y Portes propusieron el método CBR ante el departamento de Carreteras de California, así mismo es de donde se origina su nombre California Bearing Ratio. Farias Ojeda, Mendoza y Baltazar (2020 pág. 196).

Este método nos permite realizar el cálculo de resistencia al corte del suelo bajo la condición de densidad y humedad supervisadas, así como se llega a visualizar en

la figura 17. Además, nos otorga el dato de relación de soporte, el mismo que no son continuos en un suelo estudiado, sino que se llega a aplicar solamente al estado actual que se llega encontrar al suelo mientras se realiza el ensayo. Sandoval y Rivera (2019 pág. 138).

Figura 17. Ensayo CBR Fuente. https://bit.ly/34oPPfS

Pavimentos rígidos

El pavimento rígido comprende a la losa de concreto que se coloca directamente encima de la base o subbase de una vía. Además, la losa de concreto atrae la mayor parte del esfuerzo que se llega a ejercer sobre el pavimento, esto se debe a la rigidez que presenta y al alto módulo de elasticidad que posee, esto permite una adecuada distribución de cargas de la rueda otorgando de resultados mínimos de tensiones en la subrasante, como se aprecia en la figura 18. Barreto; Banguera y Cordova (2018 pág. 60).

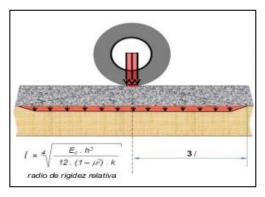


Figura 18. Distribución de cargas en el pavimento rígido Fuente. https://bit.ly/3b7BN6i

Se considera una alternativa grata para la construcción de las carreteras por las bondades que posee, así como su resistencia, durabilidad, drenaje, textura, visibilidad, seguridad, luminosidad, reparaciones, menores costos, esta a su vez se compone de tres estructuras las cuales son losa, base, subrasante como se visualiza en la figura 17. Perico Néstor [et al] (2015 pág. 42).

Losa

Es la capa de una superficie asfáltica se define de acuerdo a la composición de sus materiales como puede ser de asfalto o concreto, actuante sobre el soporte de las cargas que son provocado por el alto tránsito como se visualiza en la figura 19. Barreto Shirley, Banguera y Cordova (2018 pág. 62).

Figura 19. Estructura de un pavimento rígido

Fuente. https://bit.ly/3gyDOvV

Es considerada como elemento estructural que tienen el objetivo de distribuir las cargas que son resultados del tránsito vehicular, así como se aprecia en la figura 20. Estas cargas producen esfuerzo, las cuales tiene que ser calculadas para realizar la selección del material y determinar las cantidades y mediciones adecuadas para la estructura. Covarrubias (2012 pág. 182)

Figura 20. Sección típica transversal pavimento rígido.

Fuente. https://bit.ly/3h3TNSL

Subrasante

La subrasante se entiende como la extensión acabada de la vía, esto originado por la categoría de movimiento de tierras, donde por encima se situará el pavimento o afirmado, siendo el lugar de la estructura del pavimento que forma la parte sobre el prisma de la estructura, la misma que se construye en medio de la estructura del pavimento y el terreno natural. Serrano y Padilla (2019 pág. 3).

Las características en las que se regirá la subrasante consisten en recibir y soportar la carga generada a partir del tránsito, que son transmitidas, del pavimento, así como transmitir y distribuir de forma adecuada cargas a las partes del terraplén. Cuadros (2017 pág. 16).

En esta capa se utiliza el parámetro de evaluación de la resistencia de las deformaciones a tránsito. Donde se considera la capacidad de soporte del terreno la cual se puede visualizar en la tabla 6. Chávez Carlos [et al] (2016 pág. 202).

Tabla 6. Categoría de Subrasante

Categorías de Subrasante	CBR
\emph{S}_{0} : Subrasante inadecuada	CBR < 3%
S ₁ : Subrasante Pobre	De CBR ≥ 3%; A CBR < 6%
${\it S}_{ m 2}$: Subrasante Regular	De CBR ≥ 6%; A CBR < 10%
${\it S}_3$: Subrasante Buena	De CBR ≥ 10%; A CBR < 20%
S ₄ : Subrasante Muy Buena	De CBR ≥ 20%; A CBR < 30%
$oldsymbol{S}_5$: Subrasante Extraordinaria	De CBR ≥ 30%

Fuente. MTC (2013 pág. 40).

Subbase granulares

Estas están conformadas por suelos naturales o también con agregados procedentes de la elaboración con maquinarias. Deben seguir con determinados cumplimientos de calidad los cuales se contemplan dentro de la tabla 7, Determinando la capacidad de soporte mínima de 30% con cierta cantidad pasante de la malla 40, contando a su vez con una cantidad menor del 6% en cuando a su plasticidad y una cantidad en función al límite liquido del 25%. Este componente debe estar libre de materia orgánica o inorgánica, esta tiene que contarse con un material netamente granular. Estas especificaciones son determinadas en las normas ecuatorianas. Zambrano, Tejeda y Aaenlle (2020 pág. 31).

Tabla 7. Especificaciones técnicas de pavimentos

FI	LEMENTO	TIPO DE PAVIMENTO						
	LEMIENTO	FLEXIBLE	RIGIDO	ADOQUINES				
		95 % de compactación						
		Suelos g	Suelos granulares – Proctor Modificado					
Qui	b – rasante	Suelos	cohesivos – Proct	or Estándar				
Sui	b – rasante		Espesor compacta	ado:				
		≥ 250 m	m – Vías locales	y colectoras				
		≥ 300 mr	m – Vías arteriale:	s y expresas				
		CBR ≥ 40% - 100%		CBR ≥ 30%				
S	ub – base	Compactación Proctor	100% compa	actación Proctor Modificado				
		Modificado						
	Base	CBR ≥ 80% 100% Compactación Proctor Modificado	N.A.	CBR ≥ 80% 100% Compactación Proctor Modificado Cama de arena fina, de				
Imprimació	Imprimación / capa de apoyo Penetración de la Imprimación / capa de apoyo imprimación ≥ 5 mm N.A. espesor comp		espesor comprendido entre 25 y 40 mm.					
Espesor de	Vías locales	≥ 50 mm		≥ 60 mm				
la capa de	Vías colectoras	≥ 60 mm	≥ 150 mm	≥ 80 mm				
rodadura	Vías arteriales	≥ 70 mm		NR.				
Todaddia	Vías expresas	≥ 80 mm	≥ 200 mm	NR.				
	Vías locales		M.R. ≥ 3.4					
Material	Vías colectoras	Concreto asfaltico	Mpa Mpa	f'c ≥ 38 Mpa				
iviaterial	Vías arteriales	CONCIECO ASIAILICO	(34 Kg/cm ²)	(380 kg/cm ²)				
Events Miner	Vías expresas	(24)	(OT NG/CIII)					

Fuente. Miranda y Rado (2019 pág. 21).

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

Tipo de investigación:

El tipo de actividades rige de una serie de procesos aplicables para investigar y determinar una cuestión surgida de un problema, con el fin de obtener nueva información en el ámbito aplicado. Hernández (2019).

De acuerdo a este criterio en esta investigación se aplicó el tipo de investigación aplicada por su característica de emplear conocimientos principales para así poder alcanzar los objetivos planteados y de tal manera podamos deducir que la investigación que se plantea es una investigación aplicada.

Diseño de investigación:

Según Hernández (2019) el diseño de un proceso de estudio en el sistema y/o plan que se efectuara para obtener información que se requiere en un estudio, para responder los problemas del estudio, realizándose con ello la prueba de hipótesis y conocer la veracidad de los mismos.

El diseño del presente estudio es experimental, ya que, está enfocada al monitoreo de los fenómenos que sucedieron en el área de estudio, aplicando a muestras significativas, con un diseño experimental con estrategias de control metodología cuantitativa, con el objetivo de estudio de las informaciones.

Método de investigación:

Es el camino o tratamiento que persigue el investigador para poder efectuar de su actividad una praxis científica.

Este método impone a mezclar el momento racional o la reflexión racional (la deducción y la formación de hipótesis) con el momento empírico o reconocimiento de la realidad (diccionario de psicología científica y filosófica)

Esta investigación es hipotética-deductiva ya que se llevó a partir de una hipótesis general e hipótesis específica, del cual se demostró a través de un proceso de investigación.

Enfoque de investigación

El enfoque sobre un plan de investigación viene siendo el proceso delimitando

aspectos sobre lo sistemático, a si también en lo disciplinado y controlado, de

acuerdo a los niveles cualitativos o cuantitativos, en los que se enfocara la

investigación. Arias (2016).

En la investigación que se desarrolló, se dio el empleo de un enfoque cuantitativo,

ya que dentro de esta se aplicó el uso de los niveles tanto descriptivos como

explicativos.

Nivel de investigación

El nivel de la investigación está de acuerdo al grado de holgura de la cual se

pretende estudiar algunos fenómenos o acciones de la realidad social, por ello todo

está en la investigación. Pino (2016).

Esto nos conlleva a determinar que en nuestra investigación se empleó el nivel

correlacional, ya que tiene por finalidad mesurar los grados de relación que exista

en los conceptos o variables, moderándolas una por una y posteriormente,

cuantifica y analizar su vínculo. De tal manera estas correlacionales se sujeten en

las hipótesis sometidas a prueba.

3.2. Variables y operacionalización

Variable independiente: Polímero Adhesivo Natural

a) Definición Conceptual: Los polímeros adhesivos naturales vienen siendo

materiales que se encuentran en el entorno ambiental, estos se caracterizan por

contener características adherentes a cualquier material o agregado, dentro de

estas podemos encontrar el caucho, cola de liebre, cola de carpintero, entre

otros. Romero (2016).

b) Definición Operacional: Los polímeros naturales por su alta capacidad

adherente a muchos materiales viene siendo un aditivo altamente factible para

aplicarlo en el entorno de los suelos para modificar las características físico

mecánicas de estos mencionados.

c) Dimensiones: Parámetros de diseño, porcentaje de incorporación.

34

d) Indicadores: Cantidad, densidad, mejora.

e) Instrumento: % de incorporación, ensayos de laboratorio.

f) Escala de Medición: Razón

Variable dependiente: Capacidad de soporte y densidad máxima.

a) Definición Conceptual: Esta definida como densidad de un suelo (y) a la relación entre su masa tanto de la fracción solida como del agua que contiene (Ws+w) y su volumen (V) y es la resistencia a las cargas antes de deformarse.

Barreto (2018).

b) Definición Operacional: Tanto la capacidad de soporte como densidad máxima del suelo vienen siendo características sumamente importantes del suelo, las cuales se rigen a ciertos parámetros para el diseño de una infraestructura. Estas capacidades se tienden a medir mediante ensayo de laboratorio las cuales proporcionan datos cuantificables las cuales ayudaran a identificar si un suelo es altamente resistente o no.

c) Dimensiones: Resistencia.

d) Indicadores: Capacidad de soporte.

e) Instrumento: Ensayos de laboratorio.

f) Escala de Medición: Razón.

3.3. Población, muestra y muestreo

Población

Tamayo (2003 pág. 114), define este punto como un ámbito global y genérico en donde se avanzó la investigación.

En la investigación la población quedo constituida por las calles y avenidas no pavimentadas del centro poblado de salcedo.

Criterios de inclusión

Vara (2010), el criterio de inclusión, es la delimitación de la población, considerando todos sus aspectos, propiedades y características de la población en estudio.

Las zonas que tengan tendencia a ser pavimentadas en el centro poblado de Salcedo.

Criterios de exclusión

El criterio de exclusión, viene siendo un límite impuesto bajo la relación de la población, donde excluirán características o ámbitos donde se intervendrá. Vara (2010).

Para el desarrollo del estudio de investigación no se considerarán las zonas que no contemplen el centro poblado de Salcedo.

Muestra

Hernández, Fernández y Baptista (2014) la muestra es donde se delimita, esta mayor mente es considerada como representativa de la misma.

La muestra para el estudio se consideró la avenida Industrial, ya que es una vía principal y que tiene mayor fluidez vehicular centro poblado de salcedo – Puno.

Muestreo

Pino (2018) el muestreo consiste en tomar una parte de un conjunto, estudiar una de sus características.

Como muestra del presente trabajo de investigación utilizo un muestreo no probabilístico, ya que se consideró las vías del centro poblado de Salcedo.

3.4. Técnicas e instrumentos de recolección de datos

Técnicas de recolección de datos

Arias (2004) Se le designan técnica a todos aquellos métodos que ayuden a cuantificar mediante valores de una manera sintética que pueda dar solución a un problema.

La técnica de recolección de datos que se utilizó en la investigación es, observación, medición, obtención de muestras, descripción de lugares al azar, análisis de resultados, interpretación de resultados, todos de su importancia en la cual se realizó la investigación.

Instrumentos de recolección datos

Se define como instrumentos a todos aquellos medios que se emplearan tanto en forma física como virtual, para la obtención o recopilación de los datos necesarios para desarrollar la investigación. Garcia (2004)

El instrumento utilizado en la investigación es fichas de recolección y medición de datos, cotización de materiales y servicios, equipos y herramientas de laboratorio, software de análisis e interpretación de resultados.

3.5. Procedimientos

Trabajo de campo

En el trabajo de campo se comenzó con la visita de Av. Industrial, del centro poblado de Salcedo, para luego realizar la toma de muestras, así como se muestra en la figura 21.

Figura 21. Av. Industrial, centro poblado Salcedo

Posteriormente se consiguió el polímero adhesivo natural (ver figura 22) el cual fue trasladado hacia el laboratorio para ser mezclado con el suelo de subrasante.

Figura 22. Polímero adhesivo natural

Seguidamente se realiza la excavación para la toma de muestras de la Av. Industrial, del centro poblado Salcedo como se muestra en la figura 23.

Figura 23. AV. Industrial, centro poblado de Salcedo

Después se realiza a delimitar la excavación para tomar las muestras de acuerdo a una profundidad establecida como se muestra en la figura 24. En la AV. Industrial, centro poblado de Salcedo

Figura 24. AV. Industrial, centro poblado de Salcedo

tomando las muestras de la calicata a una profundidad de 1.60m recolectando los estratos requeridos de acuerdo a las capas encontradas como se ve en la figura 25, 26 y 27.

Figura 25. Calicata C-01.

Figura 26. Calicata C-02

Figura 27. Calicata C-03

Procediendo al tapado de las calicatas realizadas como se muestra en la figura 28, por ende, concluyendo el proceso de recolección de muestras requeridas para llevar al laboratorio a efectuar los respectivos ensayos.

Figura 28. Tapado de calicatas de la AV. Industrial

Ensayos de laboratorio.

En la etapa de laboratorio se realizó el traslado correspondiente del material al laboratorio, extraído de las tres calicatas tomadas en la etapa de campo, como se apreciado en la imagen 29 y 30.

Figura 29. Material trasladado a laboratorio

Figura 30. Material trasladado a laboratorio

Una vez que se consiguió las muestras de suelo y el polímero adhesivo natural se procedió a mezclarlas en las proporciones establecidas (ver figura 31) para realizar los ensayos de mecánica de suelos.

Figura 31. Proceso de mezclado del suelo con el polímero adhesivo natural

Ensayo de granulometría.

Para este procedimiento se cuarteo las muestras extraídas de las calicatas en la AV. Industrial del centro poblado de Salcedo. Como se muestra en la figura 32.

Figura 32. Cuarteo de las muestras

Luego se procede a pesar la muestra para posteriormente ponerlas al secado correspondiente, como se muestra en la figura 33.

Figura 33. Secado de la muestra

Se retiro la muestra seca y fría, para posteriormente pesarla. Donde se registra el peso de la muestra secada en horno. Como se ilustra en la figura 34.

Figura 34. Peso de la muestra seca

En el lavado de la muestra se empleó la malla N°200. Se echo paulatinamente las partículas con el fin de no perder partículas mayores a 0.074mm. Como se ilustra en la figura 35.

Figura 35. Lavado de la muestra en el tamiz Nº 200.

Luego de a ver hecho el secado al horno el material que fue retenido por la malla N.º 200. Se procede con el pesado, como se muestra en la figura 36.

Figura 36. Secado en el horno de la muestra lavada

Se echa la muestra en la parte superior del juego de tamices, se sacude por un medio de 15 minutos, como se muestran en la figura 37 y 38.

Figura 37. Tamizado de la muestra

Figura 38. Tamizado de la muestra

Se pesa y se selecciona cada muestra retenida en diferentes tamices como se muestra en la figura 39.

Figura 39. Pesado de los retenidos de las mallas

Límites de consistencia

Los instrumentos empleados para desarrollar el ensayo de límite de consistencia se aprecian en la imagen 40.

Figura 40. Instrumentos ensayo de límites de consistencia

Limite liquido

Apartamos una cantidad aproximada de 150 gr del suelo seco que pasa por la malla N.º 4, como se aprecia en la figura 41, el cual se coloca en un recipiente para luego agregar en pequeñas cantidades agua hasta obtener una mezcla homogénea, como se aprecia en la figura 42.

Figura 41. Ensayo de granulometría malla Nº40

Figura 42. Incorporación de agua a la muestra

Colocamos una pequeña cantidad en la parte central de la copa Casagrande y retiramos los excesos, seguidamente pasamos el acanalador por el centro de la copa y dividir en dos porciones, así como se visualiza en la figura 43.

Figura 43. Elaboración del ensayo Casagrande

Después de ello generamos movimiento constante a la cazuela y a continuación suministramos golpes a velocidad de cada segundo hasta cerrar la ranura de 12.7 mm, una vez logrado cerrar la abertura se procedió a registrar la cantidad de golpes y finalmente se tomó una porción de la parte central para colocarlo en un recipiente y proceder con el secado por 24 horas en el horno.

Limite plástico

Tomamos una pequeña cantidad de aproximadamente 15 gr. De la mezcla del preparado anterior para luego proceder a rodar pequeñas cantidades para formar rollitos con un diámetro uniforme de aproximadamente 3.2 mm, así como se visualiza en la figura 44, donde si logramos tener este diámetro y no presenta agrietamiento nos indica que el suelo tiene humedad superior a su límite plásticos. Finalmente juntamos los rollitos en recipientes para proceder con el secado de 24 horas, sin olvidar pesar antes y después del secado los rollitos.

Figura 44. Elaboración del ensayo Limite liquido

Proctor Modificado

Para desarrollar el ensayo de Proctor Modificado se realizó el tamizado de la muestra que se obtuvo in situ, el cual antes procedimos con su secado, para este ensayo se utilizó el método A. Seguidamente se procedió a dividir en 4 porciones de 2.5 Kg, como se aprecia en la figura 45, añadiendo la cantidad de agua determinada se procedió al mezclado uniformemente.

Figura 45. Porciones del material dispuesto antes del ensayo

Continuamos colocando la primera capa dentro del molde, como se aprecia en la figura 46 y aplicamos 25 golpes en toda el área dejando caer el pistón al aire libre, como se aprecia en la figura 47, esto se repitió hasta colocar las 5 capas de suelo en el molde.

Figura 46. Incorporación del material al molde

Figura 47. Ensayo Proctor

Procedemos a quitar el collarín y a nivelar el molde con la regla metálica, como se aprecia en la figura 48, seguidamente quitamos la base y procedemos a realizar el pesado de la muestra con el molde, como se aprecia en la figura 49.

Figura 48. Enrasado del molde

Figura 49. Peso del molde + material

Finalmente, todo este procedimiento se repitió en las calicatas evaluadas respectivamente.

Ensayo CBR

En primera instancia determinamos la densidad y la humedad, para esto utilizaremos 6 Kg de muestra de suelo para realizar cada molde CBR, seguidamente procedimos a colocar el disco espaciador de 2" y papel filtro grueso, la cantidad de agua que se agrega es la misma calculada para el ensayo Proctor. Continuamos en dividir en 5 porciones, como se aprecia en la figura 50, las cuales se compacta en 5 capas con 12, 25 y 56 golpes por capa, como se aprecia en la figura 51, además retiraremos una pequeña muestra para determinar el contenido de humedad.

Figura 50. Incorporación del material al molde

Figura 51. Ensayo CBR

Seguidamente retiramos el collarín de la parte superior del molde metálico, luego pasamos a voltear el molde y retirar la base y el disco espaciador. Separamos el molde con muestra para poder determinar la densidad y la humedad de la muestra.

Procedemos con la determinación de la expansión libre, como ya es conocido el cálculo de la densidad y humedad se coloca el papel filtro y se prosigue colocando en la base circular metálica con extensiones en los lados y la posición del molde es volteada, luego en la superficie libre colocamos el papel filtro, donde se ubicará la placa de metal en la parte central del vástago graduable y en la base metálica se pondrá pesas de plomo. La mínima sobrecarga que se aplicara es de 101 lb.

Se procede con la primera medición de expansión es el trípode con un extensómetro, luego se para a regularizar a cero y además se tuvo que marcar la superficie del molde haciendo coincidir el extensómetro con el vástago, la medición de la expansión de realizar pasado las 24 horas por cuatro días.

Pasamos a determinar la resistencia de expansión, donde la muestra anterior se sumergió durante 96 horas, luego pasado el tiempo se procedió a escurrir por 10 min, para realizar su pesado se retiramos el anillo y la base del molde.

Colocamos en molde con la muestra sobre la base de metal, seguidamente se colocó debajo del pistón, luego se asienta el pistón con peso de 10lb en el centro de la muestra. Por último, se soltó el pistón de penetración, como se visualiza en la figura 52, y después de ello se retiró la muestra del molde y se hace registro de los datos.

Figura 52. Elaboración del ensayo CBR

3.6. Método de análisis de datos

En la presente investigación se utilizó el método mecanicista puesto que se pretende tener un enfoque puramente científico, con un marco teórico suficiente que permita el análisis completo de la mecánica del comportamiento de un pavimento ante las acciones del clima y del tránsito vehicular. Esto es, un marco teórico en donde las propiedades fundamentales de los materiales se conocen, y se puede determinar en laboratorio o en campo. Esta metodología facilita la predicción correcta de la evolución en el tiempo de los diferentes deterioros que se pudieran presentar y, por ende, incrementar en mayor medida la confiabilidad del diseño.

3.7. Aspectos éticos

la redacción del documento se rige bajo los artículos que estipula el "código de ética en investigación de la Universidad César Vallejo" en primera instancia tiene la finalidad de respetar de manera veraz y original de los temas contemplados bajo los artículos 5° y 6°, se propone el artículo 7° y 8° la importancia de que el profesional encargado de la investigación cuente con los conocimientos necesarios para desarrollar la tesis, empleando criterios específicos de rigor científico tales como citas bibliográficas. Por considerarse como delito el hecho de hacer pasar el trabajo ajeno por propio es que se tubo cuidado al elaborar las citas cumpliendo el artículo 15° empleando el estilo ISO 690 para establecer las referencias de autoría de terceras personas encaminándonos a obedecer coincidentemente con el artículo 16° referente a los derechos de autor.

IV. RESULTADOS

En esta etapa se detalla y da a conocer los resultados obtenidos a través de los ensayos desarrollados, donde podremos responder los objetivos planteados, durante la primera etapa se procedió a recolectar las muestras de suelo de la Avenida Industrial – Salcedo, progresivas km (0+520 – 1+000), para realizar los ensayos correspondientes en laboratorio donde se determina principalmente las características con las que cuentan los materiales extraídos, seguidamente se procede a realizar el ensayo de granulometría para determinar la clasificación de los suelos, así mismo se muestran los resultados obtenidos en los límites de consistencia, Proctor y CBR.

Granulometría - C1

En esta etapa se detallan las propiedades físicas de las muestras recolectadas de la Avenida Industrial - Salcedo, tramo 0+520.

En la tabla 8. Se detalla las cantidades retenidas y/o acumuladas del suelo evaluado en la progresiva KM (0+520), en las cuales se emplea los tamices que oscilan desde los valores de la malla de 4" hasta la malla Nº200.

Tabla 8. Análisis granulométrico progresiva (km 0+520)

		Tamiz	Abertura	Peso	% Retenido		% que
			(mm)	Retenido	Parcial	Acumulado	pasa
Piedra o cantos		4"	101.600				
Piedra	o cantos	3"	76.200				
		2 ½"	63.500				
		2"	50.800				
	Gruesa	1 ½"	38.100				
		1"	25.400				
Grava		3/4"	19.050				
		1/2"	12.700				100.00
	Fina	3/8"	9.525	12.00	0.60	0.60	99.40
	ГПа	1/4"	6.350				
		No. 4	4.760	54.00	2.80	3.40	96.60
	Grueso	No. 8	2.360				
	Grueso	No. 10	2.000	196.00	10.10	13.50	86.50
		No. 16	1.190				
	Media	No. 20	0.834				
	ivieula	No. 30	0.600				
Arena		No. 40	0.420	242.00	12.40	25.90	74.10
		No. 50	0.300				
		No. 60	0.250				
	Fina	No. 80	0.177				
		No. 100	0.149				
		No. 200	0.075	322.00	16.50	42.40	57.60
		< 200		1123.00	57.60	100.00	-

Fuente. Resultados de laboratorio

En la tabla 8 se muestran los porcentajes pasantes que tiene el material de suelo natural, teniendo que el porcentaje pasante por el tamiz N° 200 es mayor al 35%, se considera que la muestra es un suelo fino, de características arcillosas, con un porcentaje de arena del 42.40%, y la ausencia de material grava.

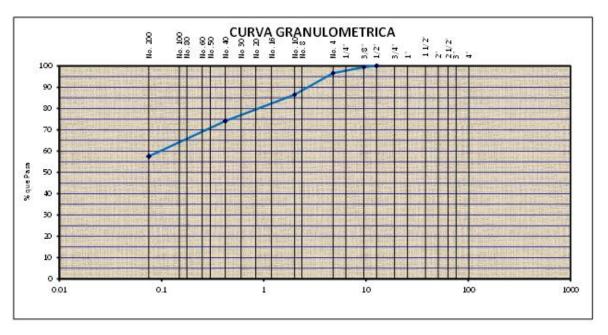


Figura 53. Curva granulométrica progresiva (km +520)

Fuente. Resultados de laboratorio

En la figura 53, se aprecia la curva granulométrica dada en base a los valores obtenidos de la tabla 8, originaria del suelo natural en la progresiva (km 0+520) de la Av. Industrial – Salcedo, donde se denota la carencia del material grueso, por lo que el suelo evaluado puede originar problemas de saturación debido a la retención de líquidos.

Según la clasificación SUCS el material evaluado es de carácter CL (arcilla de baja plasticidad), en tanto la clasificación AASHTO detalla que este suelo es un A-6(4) presenciando una caracterización del limo – arcillosa, definiéndolo como una arcilla de baja plasticidad con presencia de arena, debido a que el % pasante del tamiz Nº 200 es más del 35%, con un límite liquido del 32.10%, un límite plástico 21.34% y un índice de plasticidad del 10.76%.

Granulometría - C2

En esta etapa se detallan las propiedades físicas de las muestras recolectadas de la Avenida Industrial - Salcedo, tramo 0+750.

En la tabla 9. Se detalla las cantidades retenidas y/o acumuladas del suelo evaluado en la progresiva KM (0+750), en las cuales se emplea los tamices que oscilan desde los valores de la 4" a la < Nº200.

Tabla 9. Análisis granulométrico progresiva (km 0+750)

		Tamiz	Abertura	Peso	% R	etenido	% que
		ASTM	(mm)	Retenido	Parcial	Acumulado	pasa
Piedra o cantos		4"	101.600				
Fledia	0 Carilos	3"	76.200				
		2 ½"	63.500				
		2"	50.800				
	Gruesa	1 ½"	38.100				
		1"	25.400				100.00
Grava		3/4"	19.050	14.00	0.90	0.90	99.10
		1/,"	12.700				
	Fina	3/8"	9.525	28.00	1.90	2.80	97.20
	ГПа	1/4"	6.350				
		No. 4	4.760	38.00	2.60	5.40	94.60
	Grueso	No. 8	2.360				
	Grueso	No. 10	2.000	118.00	7.90	13.30	86.70
		No. 16	1.190				
	Media	No. 20	0.834				
	ivieula	No. 30	0.600				
Arena		No. 40	0.420	188.00	12.70	26.00	74.00
		No. 50	0.300				
		No. 60	0.250				
	Fina	No. 80	0.177				
		No. 100	0.149				
		No. 200	0.075	320.00	21.50	47.50	52.50
-		< 200		780.00	52.50	100.00	

Fuente. Resultados de laboratorio

En la tabla 9 se muestran los porcentajes pasantes que tiene el material de suelo natural, teniendo que el porcentaje pasante por el tamiz N° 200 es mayor al 35%, se considera que la muestra es un suelo fino, de características arcillosas, con un porcentaje de arena del 47.50%, y la ausencia de material grava.

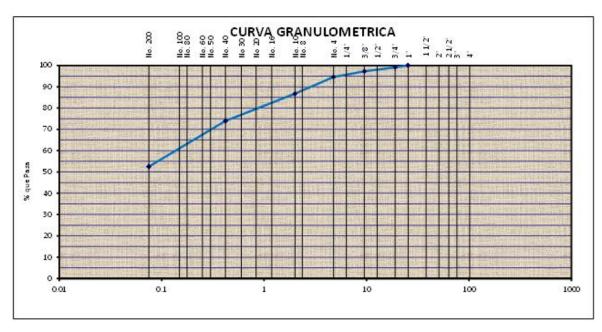


Figura 54. Curva granulométrica progresiva (km +750)

Fuente. Resultados de laboratorio

En la figura 52 se aprecia la curva granulométrica dada en base a los valores obtenidos de la tabla 9, originaria del suelo natural en la progresiva (km 0+750) de la Av. Industrial – Salcedo, donde se denota la carencia del material grueso, por lo que el suelo evaluado puede originar problemas de saturación debido a la retención de líquidos.

Según la clasificación SUCS el material evaluado es de carácter ML (limo inorgánico de baja compresibilidad), en tanto la clasificación AASHTO detalla que este suelo es un A-4(2) presenciando una caracterización del limo – arcillosa, definiéndolo como un limo con arena, debido a que el % pasante del tamiz Nº 200 es más del 35%, con un límite liquido del 30.80%, un límite plástico 23.17% y un índice de plasticidad del 7.63%.

Granulometría - C3

En esta etapa se detallan las propiedades físicas de las muestras recolectadas de la Avenida Industrial - Salcedo, tramo 1+000.

En la tabla 10. Se detalla las cantidades retenidas y/o acumuladas del suelo evaluado en la progresiva KM (1+000), en las cuales se emplea los tamices que oscilan desde los valores de la Nº04 a la < Nº200.

Tabla 10. Análisis granulométrico progresiva (km 1+000)

		Tamiz	Abertura	Peso	% R	% Retenido	
		ASTM	(mm)	Retenido	Parcial	Acumulado	pasa
Piedra o cantos		4"	101.600				
Fleura	o caritos	3"	76.200				
		2 ½"	63.500				
		2"	50.800				
	Gruesa	1 ½"	38.100				
		1"	25.400				
Grava		3/4"	19.050				
		1/2"	12.700				100.00
	Fina	3/8"	9.525	22.00	1.50	1.50	98.50
		1/4"	6.350				
		No. 4	4.760	32.00	2.20	3.70	96.30
	Grueso	No. 8	2.360				
	Grueso	No. 10	2.000	67.00	4.60	8.30	91.70
	Media	No. 16	1.190				
		No. 20	0.834				
		No. 30	0.600				
Arena		No. 40	0.420	104.80	7.20	15.50	84.50
		No. 50	0.300				
		No. 60	0.250				
	Fina	No. 80	0.177				
		No. 100	0.149				
		No. 200	0.075	519.50	35.70	51.20	48.80
		< 200		710.40	48.80	100.00	

Fuente. Resultados de laboratorio

En la tabla 10 se muestran los porcentajes pasantes que tiene el material de suelo natural, teniendo que el porcentaje pasante por el tamiz N° 200 es mayor al 35%, se considera que la muestra es un suelo fino, de características arcillosas, con un porcentaje de arena del 51.20%, y la ausencia de material grava.

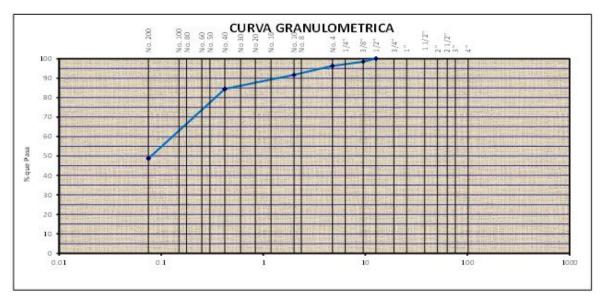


Figura 55. Curva granulométrica progresiva (km 1+000)

Fuente. Resultados de laboratorio

En la figura 55 se aprecia la curva granulométrica dada en base a los valores obtenidos de la tabla 10, originaria del suelo natural en la progresiva (km 1+000) de la Av. Industrial – Salcedo, donde se denota la carencia del material grueso, por lo que el suelo evaluado puede originar problemas de saturación debido a la retención de líquidos.

Según la clasificación SUCS el material evaluado es de carácter SC (arenas arcillosas), en tanto la clasificación AASHTO detalla que este suelo es un A-4(1) presenciando una caracterización del limo – arcillosa, definiéndolo como una arena arcillosa con grava, debido a que el % pasante del tamiz Nº 200 es más del 35%, con un límite liquido del 28.88%, un límite plástico 20.66% y un índice de plasticidad del 8.22%.

Ensayo de constantes físicos

Los límites de consistencia muestran la capacidad que posee un suelo para resistir a la fragmentación mediante la incorporación de humedad, mostrando los límites de plasticidad de un suelo.

Tabla 11. Límites de consistencia del suelo natural

Descripción	Suelo natural				
Descripcion	00+520	00+750	1+000		
LL	32.100	30.800	28.880		
LP	21.340	23.170	20.660		
IP	10.760	7.630	8.220		

Fuente. Resultados de laboratorio

En la tabla 11, se puede apreciar que el límite liquido dado por la tendencia lineal de las humedades, se ubica en la gráfica del punto de 25 golpes y donde intercepte con la línea tendencia, ese es el valor de límite líquido del suelo, en este caso para las progresivas (00+520, 00+750 y 1+000) se obtuvieron limites líquidos de (32.100%, 30.800% y 28.880%) respectivamente, en cuanto al índice de plasticidad se obtuvieron los siguientes valores (10.76%, 7.630% y 8.220%).

Tabla 12. Límites de consistencia del suelo natural + 2% de polímero

Descripción	Suelo natural + 2% polímero					Suelo natural + 2% polímero			
Descripcion	0+520 0+750 1+000								
LL	29.90	30.24	28.42						
LP	20.19	22.79	20.19						
IP	9.71	7.45	8.23						

Fuente. Resultados de laboratorio

En la tabla 12, se puede apreciar que el límite liquido dado por la tendencia lineal de las humedades, se ubica en la gráfica del punto de 25 golpes y donde intercepte con la línea tendencia, ese es el valor de límite líquido del suelo, en este caso para las progresivas (00+520, 00+750 y 1+000) se obtuvieron limites líquidos de (29.900%, 30.240% y 28.420%) respectivamente, en cuanto al índice de plasticidad se obtuvieron los siguientes valores (9.71%, 7.45% y 8.23%).

Tabla 13. Límites de consistencia del suelo natural + 4% de polímero

Descripción	Suelo natural + 4% polímero				
Descripcion	0+520 0+750 1+000				
LL	29.44	30.12	28.18		
LP	20.46	22.84	20.03		
IP	8.98	7.28	8.15		

Fuente. Resultados de laboratorio

En la tabla 13, se puede apreciar que el límite liquido dado por la tendencia lineal de las humedades, se ubica en la gráfica del punto de 25 golpes y donde intercepte con la línea tendencia, ese es el valor de límite líquido del suelo, en este caso para las progresivas (0+520, 0+750 y 1+000) se obtuvieron limites líquidos de (29.44%, 30.12% y 28.18%) respectivamente, en cuanto al índice de plasticidad se obtuvieron los siguientes valores (8.98%, 7.28% y 8.15%).

Tabla 14. Límites de consistencia del suelo natural + 6% de polímero

Descripción	Suelo natural + 6% polímero 0+520 0+750 1+000				
Descripcion					
LL	28.70	29.82	27.82		
LP	20.56	22.69	20.04		
IP	8.14	7.13	7.78		

En la tabla 14, se puede apreciar que el límite liquido dado por la tendencia lineal de las humedades, se ubica en la gráfica del punto de 25 golpes y donde intercepte con la línea tendencia, ese es el valor de límite líquido del suelo, en este caso para las progresivas (0+520, 0+750 y 1+000) se obtuvieron limites líquidos de (28.70%, 29.82% y 27.82%) respectivamente, en cuanto al índice de plasticidad se obtuvieron los siguientes valores (8.14%, 7.13% y 7.78%).

Determinación del contenido de humedad natural

El contenido de humedad natural muestra la cantidad del agua con la que cuentan las muestras inalteradas, este estudio se realiza para la su posterior realización de compactación.

Tabla 15. Contenido de humedad natural

Descripción	Progresiva					
Descripcion	00+520 00+750				1+000	
Muestras	1	2	1	2	1	2
Contenido de humedad	21.52	21.33	19.40	19.33	18.77	18.50
Promedio	21.43		19.36		18.64	

Fuente. Resultados de laboratorio

En la tabla 15, se puede apreciar los valores obtenidos de las humedades en las calicatas evaluadas en tres puntos (km 0+520, 0+750 y 1+000), en cuales se detallan los valores promedio de (21.43%, 19.36% y 18.64%).

Proctor Modificado

En esta etapa se muestran los resultados obtenidos a partir del ensayo Proctor y las unidades de muestras evaluadas.

Tabla 16. Proctor Modificado suelo natural + 0% adición de polímero

Descripción	Suelo natural			
2000po	0+520	0+750	1+000	Promedio
Máxima densidad seca	1.653	1.704	1.784	1.714
Optimo contenido de humedad	15.24	14.78	14.57	14.863

Fuente. Resultados de laboratorio

En tabla 16, se aprecian los datos determinados tras la evaluación del ensayo Proctor Modificado para un suelo natural, en la cual se determinó que para llegar a la máxima densidad seca (1.714 g/cm³), es necesario contar con un óptimo contenido de humedad de 14.863%.

Tabla 17. Proctor Modificado suelo patrón + 2% de polímero

Descripción	Suelo natural + 2% polímero			ero
Descripcion	0+520 0+750 1+000 Promedio			
Máxima densidad seca	1.639	1.694	1.773	1.702
Optimo contenido de humedad	14.68	13.65	13.98	14.103

Fuente. Resultados de laboratorio

En tabla 17, se aprecian los datos determinados tras la evaluación del ensayo Proctor Modificado para un suelo natural + 2% de polímero, en la cual se determinó que para llegar a la máxima densidad seca (1.702 gr/cm³), es necesario contar con un óptimo contenido de humedad de 14.103%.

Tabla 18. Proctor Modificado suelo patrón + 4% de polímero

Descripción	Suelo natural + 4% polímero			ero
Descripcion	0+520 0+750 1+000 Promedic			
Máxima densidad seca	1.631	1.680	1.759	1.690
Optimo contenido de humedad	14.26	13.57	13.55	13.793

Fuente. Resultados de laboratorio

En tabla 18, se aprecian los datos determinados tras la evaluación del ensayo Proctor Modificado para un suelo natural + 4% de polímero, en la cual se determinó que para llegar a la máxima densidad seca (1.690 gr/cm³), es necesario contar con un óptimo contenido de humedad de 13.793%.

Tabla 19. Proctor Modificado suelo patrón + 6% de polímero

Descripción	Suelo natural + 6% polímero			ro
Boompoion	0+520 0+750 1+000 Promedic			
Máxima densidad seca	1.625	1.671	1.752	1.683
Optimo contenido de humedad	13.95	13.34	12.58	13.290

Fuente. Resultados de laboratorio

En tabla 19, se aprecian los datos determinados tras la evaluación del ensayo Proctor Modificado para un suelo natural + 6% de polímero, en la cual se determinó

que para llegar a la máxima densidad seca (1.683 gr/cm³), es necesario contar con un óptimo contenido de humedad de 13.290%.

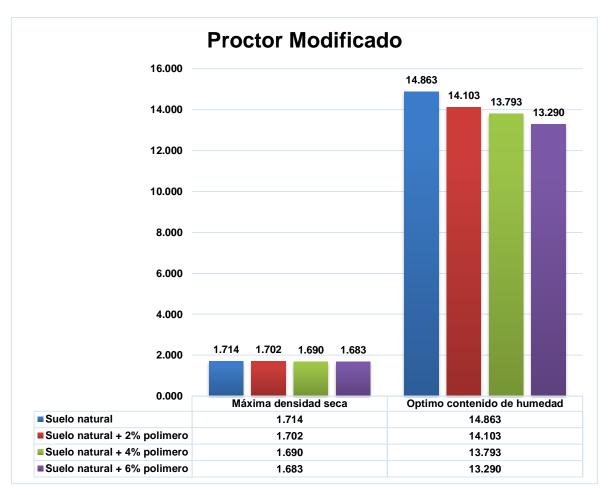


Figura 56. Resumen de la MDS y OCH

Fuente. Resultados de laboratorio

La figura 56, se puede apreciar la variación de la máxima densidad seca y el óptimo contenido de humedad, para un suelo natural se presencia que para llegar a una máxima densidad de 1.714 g/cm³, es necesario contar con un óptimo contenido de humedad de 14.863%, definiendo que la incorporación progresiva de polímero adhesivo natural afecta positivamente en el contenido óptimo de humedad, siendo la más influyente la incorporación del 6% de este material, el cual llega a valores del 13.290% de humedad, para contar con una máxima densidad seca del 1.683 g/cm³.

Capacidad de Soporte California

En la presente etapa se muestran los resultados obtenidos tras la evaluación de la capacidad de soporte california del suelo ubicado en las progresivas del km 0+520, km 0+750 y km 1+000.

Tabla 20. % de penetración para un suelo de 0.1" del suelo natural

Descripción		Suelo natural			
Descripcion	0+520	0+750	1+000	Promedio	
CBR al 95% de la MDS	3.600	3.200	3.900	3.567	
CBR al 100% de la MDS	5.170	5.490	5.820	5.493	

Fuente. Resultados de laboratorio.

En la tabla 20, se aprecia los valores efectuados para una penetración de 0.1" desarrollado en las progresivas (km 0+520, 0+750 y 1+000), en la cual se llegó a valores promedio de 3.567% para un CBR al 95% respecto a la MDS, en tanto para un CBR al 100% de la MDS se llegó a un valor promedio de 5.493%, demostraron que el suelo no cuenta con las características pertinentes para la conformación de una subrasante, debido a que dentro de las normas se contempla que el CBR debe ser mayor a 6%.

Tabla 21. % de penetración para un suelo de 0.1" suelo patrón + 2% polímero

Descripción	Suelo patrón + 2% polímero			
Becomposess	0+520 0+750 1+000 Promedi			
CBR al 95% de la MDS	5.120	4.500	5.400	5.007
CBR al 100% de la MDS	7.110	7.750	7.430	7.430

Fuente. Resultados de laboratorio

En la tabla 21, se aprecia los valores efectuados para una penetración de 0.1" desarrollado en las progresivas (km 0+520, 0+750 y 1+000), en la cual se llegó a valores promedio de 5.007% para un CBR al 95% respecto a la MDS, 7.430% para un CBR al 100% de la MDS, demostrando que la aplicación de polímero adhesivo natural en cantidad del 2% influye significativamente en el CBR aumentando un 23.833% su valor en relación a la muestra específica, siendo optimo la aplicación del polímero adhesivo natural.

Tabla 22. % de penetración para un suelo de 0.1" suelo patrón +4% polímero

Descripción	Patrón + 4% polímero			
Descripcion	0+520	0+750	1+000	Promedio
CBR al 95% de la MDS	5.500	5.100	6.050	5.550
CBR al 100% de la MDS	8.400	8.720	8.400	8.507

Fuente. Resultados de laboratorio

En la tabla 22, se aprecia los valores efectuados para una penetración de 0.1" desarrollado en las progresivas (km 0+520, 0+750 y 1+000), en la cual se llegó a valores promedio de 5.550% para un CBR al 95% respecto a la MDS, 8.507% para un CBR al 100% de la MDS, demostrando que la aplicación de polímero adhesivo natural en cantidad del 4% influye significativamente en el CBR aumentando un 41.683% su valor en relación a la muestra patrón, siendo optimo la aplicación del polímero adhesivo natural.

Tabla 23. % de penetración para un suelo de 0.1" suelo patrón + 6% polímero

Descripción	Patrón + 6% polímero			
Beschipolon	0+520	0+750	1+000	Promedio
CBR al 95% de la MDS	5.120	4.800	5.100	5.007
CBR al 100% de la MDS	7.750	7.430	7.750	7.643

Fuente. Resultados de laboratorio

En la tabla 23, se aprecia los valores efectuados para una penetración de 0.1" desarrollado en las progresivas (km 0+520, 0+750 y 1+000), en la cual se llegó a valores promedio de 5.007% para un CBR al 95% respecto a la MDS, 7.643% para un CBR al 100% de la MDS, demostrando que la aplicación de polímero adhesivo natural en cantidad del 6% influye en el CBR, ya que se denota un aumento del 27.383% de su valor en relación a la muestra patrón, siendo eficiente la aplicación del polímero adhesivo natural en este porcentaje.

En la figura 57, se aprecia la influencia del polímero adhesivo natural sobre el suelo natural, demostrando que inicialmente el valor del CBR al 100% de la MDS es de 5.493%, al aplicar la cantidad del 2% de polímero se reflejó en un aumento del 23.833% del CBR, en tanto al aplicar la dosificación del 4% de polímero se vio reflejado en un aumento del 41.783% del CBR, generando un aumento de mejora progresiva del CBR, ya al aplicar el 6% se presenció un aumento del 27.383% del CBR en relación al suelo natural, originando un punto de declive por lo que se indica

que a este porcentaje el polímero adhesivo tiende a no trabajar bien con el suelo natural.

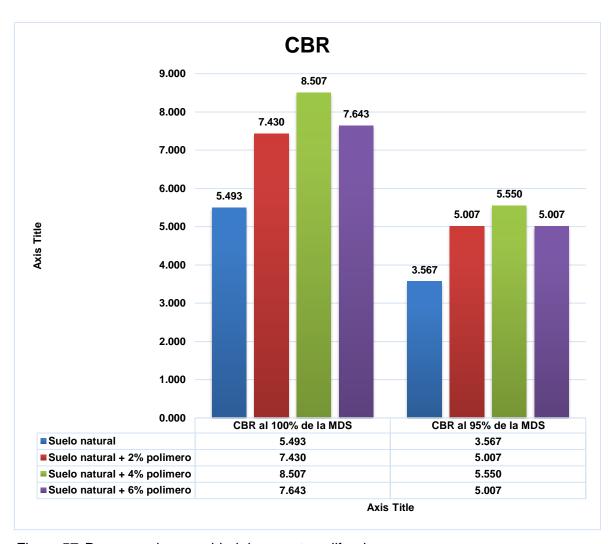


Figura 57. Resumen de capacidad de soporte california

Fuente. Resultados de laboratorio

Presupuesto para mejorar la subrasante

En la tabla 24 se aprecia el análisis de precios unitarios para el mejoramiento de la subrasante con incorporación de polímero adhesivo natural en 1 metro cúbico, de donde se obtiene un costo unitario de 17.57 soles.

Tabla 24. Análisis de precios unitarios para 1m3 de subrasante

Partida	002.A	Mejoramiento de	subrasante con po	olímero adhes	ivo natural			
Rendimiento	M3/DÍA	MO. 1,420.0000	EQ. 1,420.0000		Costo u	nitario directo p	oor: M3	17.57
Código	Descrip	oción Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra						
0147010001	CAPATAZ			HH	1.2000	0.0189	21.44	0.41
0147010004	PEON			HH	6.0000	0.0755	14.58	1.10
								1.51
		Materiales						
0201010018	ACEITE MU	JLTIGRADO 15w-40		gal		0.0300	40.00	1.20
0201040003	DIESEL BS	50		gal		0.1200	12.60	1.51
		Equipos						2.71
0337010001	HERRAMIE	NTAS MANUALES		%MO		5.0000	1.61	0.08
0349030046	RODILLO L 10-12T	ISO VIBRATORIO AU	TOP 101-135 HP	НМ	1.5000	0.0229	135.08	3.09
0349090001	MOTONIVE	LADORA 145 - 150 HF	•	HM	1.5000	0.0229	187.97	4.30
								7.47
		Subpartidas						
930101930306	POLIMERO	ADHESIVO NATURAI	L	L		6.0000	0.80	4.80
930101130101	AGUA PAR	A LA OBRA		МЗ		0.0600	17.94	1.08
								5.88

En la tabla 25 se aprecia el análisis de precios unitarios para el mejoramiento de la subrasante sin incorporación de polímero adhesivo natural en 1 metro cúbico, de donde se obtiene un costo unitario de 15.54 soles.

Tabla 25. Análisis de precios unitarios para 1m3 de subrasante

Partida	002.A	Mejoran	niento de la subrasa	nte				
Rendimiento	M3/DÍA	MO. 1,020.0000	EQ. 1,020.0000		Costo u	nitario directo p	oor: M3	15.54
Código	Descri	pción Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra						
0147010001	CAPATAZ			HH	1.0000	0.0189	21.44	0.41
0147010004	PEON			НН	4.0000	0.0755	14.58	1.10
								1.51
		Materiales						
0201010018	ACEITE MU	JLTIGRADO 15w-40		gal		0.0300	40.00	1.20
0201040003	DIESEL BS	50		gal		0.1200	12.60	1.51
0207030001	MATERIAL	GRANULAR		М3		0.2000	8.50	1.70
								4.41
		Equipos						
0337010001	HERRAMIE	NTAS MANUALES		%MO		5.0000	1.61	0.08
0349030046	RODILLO L 10-12T	ISO VIBRATORIO A	UTOP 101-135 HP	НМ	1.0000	0.0229	135.08	3.09
0349090001	MOTONIVE	ELADORA 145 - 150 I	HP	HM	0.0229	187.97	4.30	4.30
								7.47
		Subpartidas						
930101130101	AG	GUA PARA LA OBRA		М3		0.1200	17.94	2.15
								2.15

De acuerdo a los precios unitarios se plantea el costo efectivo por una cantidad de 1 km, como se aprecia en la tabla 26.

Tabla 26. Presupuesto mejoramiento subrasante con la incorporación del polímero

Mejoramiento de la subrasante + polímero adhesivo natural								
Descripción	Volumen (m3)	P.U. (S/.)	Total (S/.)					
Subrasante	1350.00	17.57	23719.50					
Mejora	amiento de la subrasante c	on material granular	•					
Descripción	Volumen (m3)	P.U. (S/.)	Total (S/.)					
Subrasante	1350.00	15.54	20979.00					

Definiendo que en el aspecto de costo beneficio la incorporación de polímero adhesivo natural es mucho más elevado ya que para la conformación o mejoramiento de 1km es necesario emplear un costo total de 23719.50 soles, en tanto al emplear material granular para el mejoramiento de la subrasante es necesario emplear un costo total de 20979.00 soles, habiendo una diferencia de 13.06%.

Prueba estadística

Para llevar a cabo el análisis estadístico se tomaron en cuenta los siguientes criterios para seleccionar la prueba estadística para la contrastación de hipótesis los cuales se detallan en la tabla 27.

Tabla 27. Criterios para seleccionar prueba estadística

CRITERIOS						
Tipo de estudio	Aplicativo					
Nivel de estudio	Explicativo					
Diseño de estudio	Experimental					
Tipo de variable	Variable Numérica					
Comportamiento de datos	Valores finales					

Tomando en cuenta los criterios de la tabla 27 se dedujo que se usará la prueba estadística de análisis de varianza (ANOVA), los datos serán procesados mediante el software Microsoft Excel y el Statistical Package for Social Sciences (SPSS).

Planteamiento de Hipótesis

H_o: No existe variación estadística en las medias de los grupos

H₁: Existe variación estadística en las medias de los grupos

Nivel de significancia

El nivel de significancia será de 5% puesto que es un valor que se utiliza comúnmente.

Lectura del P-valor y toma de decisión

P-valor ≥ α (Se acepta H₀)

P-valor $< \alpha$ (Se acepta H_1)

Prueba estadística para los resultados de índice de plasticidad

Para realizar las pruebas estadísticas paramétricas, en este caso el análisis de varianza (ANOVA) se comprobaron si existe una distribución normal, a través de las pruebas de normalidad, tomando como punto de partida si se cuentan con datos menores a 50 el análisis se realiza con la prueba de Shapiro Wilk.

En la prueba estadística Análisis de Varianza como primer paso se comprueba si tiene distribución normal mediante las pruebas de normalidad, en este caso se analiza con la prueba de Shapiro Wilk porque se cuenta con menores a 50 datos, como se aprecia en la tabla 28.

Tabla 28. Prueba de Normalidad

	Proporción	Kolmogor	ov-Smirn	ov ^a	Sha	piro-Wilk	
	Гторогской	Estadístico	gl	Sig.	Estadístico	gl	Sig.
ΙP	100% SN + 0% P.A.N.	0,319	3		0,885	3	0,34
IF	98% SN + 2% P.A.N.	0,247	3		0,969	3	0,66
	96% SN + 4% P.A.N.	0,188	3		0,998	3	0,97
	94% SN + 6% P.A.N.	0,242	3		0,973	3	0,68

En la tabla 28 se aprecian que los valores de significancia (p-valor) son mayores a 0.05 (α), por consiguiente, tienen una distribución normal, esto indica que se puede utilizar la prueba paramétrica Análisis de Varianzas (ANOVA).

De la misma manera otro de los supuestos que se debe cumplir para realizar la prueba paramétrica de ANOVA es que las muestras posean igualdad de varianzas (homocedasticidad) para lo cual se realiza el test de Levene tal como se puede apreciar en la tabla 29.

Tabla 29. Prueba de Homogeneidad de varianzas (Levene)

	Prueba de homogeneidad de varianzas									
		Estadístico	gl1	gl2	Sig.					
		de Levene								
IP	Se basa en la media	1,853	3	8	,216					
	Se basa en la mediana	,403	3	8	,755					
	Se basa en la mediana y con gl ajustado	,403	3	4,060	,759					
	Se basa en la media recortada	1,699	3	8	,244					

De la tabla anterior se aprecia que los valores de significancia son mayores al p-valor (0.05) por lo que se puede afirmar que la varianza de los grupos es estadísticamente igual por lo que existe homogeneidad de varianzas, por lo tanto se puede realizar la prueba paramétrica de ANOVA.

En la tabla 30 se detallan las características de las variables.

Tabla 30. Descripción de las variables

	Descriptivos									
IP										
	N	Media	Desv.		95% del	intervalo de				
				Desv.	confianz	za (media)	Mín.	Máx.		
				Error	Límite Límite		_ IVIIII.	IVIAX.		
					inferior	superior				
100% SN + 0% P.A.N.	3	8,870	1,6631	0,9602	4,7385	13,0015	7,63	10,76		
98% SN + 2% P.A.N.	3	8,463	1,1479	0,6626	5,6117	11,3149	7,45	9,71		
96% SN + 4% P.A.N.	3	8,106	0,8058	0,4652	6,1048	10,1086	7,28	8,89		
94% SN + 6% P.A.N.	3	7,683	0,5118	0,2955	6,4117	8,9549	7,13	8,14		
Total	12	8,280	1,0571	0,3051	7,6091	8,9525	7,13	10,76		

Luego de poseer todos los datos se realiza la prueba paramétrica de análisis de varianza como se detalla en la tabla 29.

Tabla 31. Prueba de ANOVA

		ANOVA			
		IP			
	Suma de	gl	Media	F	Sig.
	cuadrados	91	cuadrática		Oig.
Entre grupos	2,303	3	0,768	0,615	0,624
Dentro de grupos	9,991	8	1,249		
Total	12,294	11			

En la tabla 31 se puede apreciar que el p-valor es de 0.624 que es mayor a 0.05 (α), por lo cual se rechaza la hipótesis del investigador (H_1), que indica que las medias del grupo patrón y de los grupos experimentales son diferentes, es decir no existe una varianza estadística significativa.

Para apreciar en que grupos hay diferencias o no se realiza una post prueba (posthoc), la cual se denomina la prueba de Tukey (Tabla 31 y 32).

Tabla 32. Comparación de los resultados de índice de plasticidad

	Comp	araciones múltip	oles			
	Varial	ole dependiente:	IP			
		HSD Tukey				
(I) Proporción	(J) Proporción	Diferencia de medias (I-J)	Desv. Error	Sig.		e confianza 95% Límite superior
	98% SN + 2% P.A.N.	0,406	0,912	0,969	-2,5153	3,3286
100% SN + 0% P.A.N.	96% SN + 4% P.A.N.	0,763	0,912	0,836	-2,1586	3,6853
	94% SN + 6% P.A.N.	1,186	0,912	0,587	-1,7353	4,1086
	100% SN + 0% P.A.N.	-0,406	0,912	0,969	-3,3286	2,5153
98% SN + 2% P.A.N.	96% SN + 4% P.A.N.	0,356	0,912	0,978	-2,5653	3,2786
	94% SN + 6% P.A.N.	0,780	0,912	0,827	-2,1420	3,7020
	100% SN + 0% P.A.N.	-0,763	0,912	0,836	-3,6853	2,1586
96% SN + 4% P.A.N.	98% SN + 2% P.A.N.	-0,356	0,912	0,978	-3,2786	2,5653
	94% SN + 6% P.A.N.	0,423	0,912	0,965	-2,4986	3,3453
	100% SN + 0% P.A.N.	-1,186	0,912	0,587	-4,1086	1,7353
94% SN + 6% P.A.N.	98% SN + 2% P.A.N.	-0,780	0,912	0,827	-3,7020	2,1420
	96% SN + 4% P.A.N.	-0,423	0,912	0,965	-3,3453	2,4986

Según los datos de la tabla 32 la mayoría de valores son mayores a 0.05 (α), esto quiere decir que no existe diferencias significativas, por lo tanto, las medias de los grupos no son distintas estadísticamente.

Tabla 33. Sub conjuntos de Tukey

IP									
	HSD Tukey ^a								
Proporción	N	Subconjunto para alfa = 0.05							
		1							
94% SN + 6% P.A.N.	3	7,6833							
96% SN + 4% P.A.N.	3	8,1367							
98% SN + 2% P.A.N.	3	8,4633							
100% SN + 0% P.A.N.	3	8,8700							
Sig.		,587							
Se visualizan las medias para los grupos en los subconjuntos homogéneos.									
a. Utiliza el tamaño de la muestra de la media armónica = 3,000.									

Según la tabla 33 no existe diferencias significativas en todos los grupos, ya que el grupo patrón y los grupos experimentales se encuentran ubicadas en la misma columna.

Prueba estadística para los resultados de capacidad de soporte

Para realizar las pruebas estadísticas paramétricas, en este caso el análisis de varianza (ANOVA) se comprueba si existe una distribución normal, a través de las pruebas de normalidad, debido a que se cuentan con datos menores a 50 el análisis se realiza con la prueba de Shapiro Wilk

En la prueba estadística Análisis de Varianza como primer paso se comprueba si tiene distribución normal mediante las pruebas de normalidad, en este caso se analiza con la prueba de Shapiro Wilk porque se cuenta con menores a 50 datos, como se aprecia en la tabla 34.

Tabla 34. Prueba de Normalidad

		Prueba	s de norr	nalidad				
	Descripción	Kolmog	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Descripcion	Estadístico	gl	Sig.	Estadístico	gl	Sig.	
CBR	100%SN + 0%P.A.N.	0,176	3		1,000	3	0,983	
	98%SN+2%P.A.N.	0,175	3		1,000	3	1,000	
	96%SN+4%P.A.N.	0,248	3		0,968	3	0,659	
	94%SN+6%P.A.N.	0,267	3		0,951	3	0,576	
a. Correc	L cción de significación de Lill	iefors			1		1	

En la tabla 34 se aprecian que los valores de significancia (p-valor) son mayores a 0.05 (α), por consiguiente, tienen una distribución normal, esto indica que se puede utilizar la prueba paramétrica Análisis de Varianza (ANOVA).

De la misma manera otro de los supuestos que se debe cumplir para realizar la prueba paramétrica de ANOVA es que las muestras posean igualdad de varianzas (homocedasticidad) para lo cual se realiza el test de Levene tal como se puede apreciar en la tabla 35.

Tabla 35. Prueba de homogeneidad de varianzas (Levene)

	Prueba de homogeneidad de varianzas									
Estadístico gl1 gl2 S de Levene										
CBR	Se basa en la media	,283	3	8	,836					
	Se basa en la mediana	,341	3	8	,796					
	Se basa en la mediana y con gl ajustado	,341	3	7,98 3	,796					
	Se basa en la media recortada	,291	3	8	,831					

De la tabla anterior se aprecia que los valores de significancia son mayores al p-valor (0.05) por lo que se puede afirmar que la varianza de los grupos es estadísticamente igual por lo que existe homogeneidad de varianzas, por lo tanto se puede realizar la prueba paramétrica de ANOVA.

En la tabla 36 se detallan las características de las variables.

Tabla 36. Descripción de las variables

			Descript	ivos					
	CBR								
	N	Media	Desv.	Desv. Error	confianz	ntervalo de za para la edia	Mín.	Máx.	
					Lím. inf.	Lím. Sup.			
100%SN + 0%P.A.N.	3	5,4933	,32501	,18765	4,6860	6,3007	5,17	5,82	
98%SN+2%P.A.N.	3	7,4300	,32000	,18475	6,6351	8,2249	7,11	7,75	
96%SN+4%P.A.N.	3	8,5433	,16258	,09387	8,1395	8,9472	8,40	8,72	
94%SN+6%P.A.N.	3	7,4900	,23580	,13614	6,9042	8,0758	7,29	7,75	
Total	12	7,2392	1,1725	,33850	6,4941	7,9842	5,17	8,72	

Luego de poseer todos los datos se realiza la prueba paramétrica de análisis de varianza como se detalla en la tabla 37.

Tabla 37. Prueba de Análisis de varianza

		ANOVA			
		CBR			
	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	14,544	3	4,848	66,855	,000
Dentro de grupos	,580	8	,073		
Total	15,124	11			

En la tabla 37 se puede apreciar que el p-valor es de 0.000 que es menor a 0.05 (α), por lo cual se acepta la hipótesis alterna (H_1), que indica que las medias del grupo patrón y de los grupos experimentales no son parecidas estadísticamente, es decir existe una varianza estadística significativa.

Para detallar las diferencias significativas entre los grupos se realiza una post prueba (post-hoc), la cual se denomina la prueba de Tukey (Tabla 38).

Tabla 38. Comparación múltiple de cada uno de los resultados de CBR

	Compara	ciones múlti	ples			
	Variable de	ependiente:	CBR			
	H	SD Tukey				
(I) Descripción	(J) Descripción	Dif. de medias (I-J)	Desv. Error	Sig.		alo de a al 95% Límite superior
100%SN + 0%P.A.N.	98%SN+2%P.A.N.	-1,936	,219	,000	-2,6408	-1,2326
	96%SN+4%P.A.N.	-3,050	,219	,000	-3,7541	-2,3459
	94%SN+6%P.A.N.	-1,996	,219	,000	-2,7008	-1,2926
	100%SN + 0%P.A.N.	1,936	,219	,000	1,2326	2,6408
98%SN+2%P.A.N.	96%SN+4%P.A.N.	-1,113	,219	,004	-1,8174	-,4092
	94%SN+6%P.A.N.	-,060	,219	,992	-,7641	,6441
	100%SN + 0%P.A.N.	3,050	,219	,000	2,3459	3,7541
96%SN+4% P.A.N.	98%SN+2%P.A.N.	1,113	,219	,004	,4092	1,8174
	94%SN+6%P.A.N.	1,053	,219	,006	,3492	1,7574
	100%SN + 0%P.A.N.	1,996	,219	,000	1,2926	2,7008
94%SN+6%P.A.N.	98%SN+2%P.A.N.	,060	,219	,992	-,6441	,7641
	96%SN+4%P.A.N.	-1,053	,219	,006	-1,7574	-,3492
*. La diferencia de me	dias es significativa en el r	nivel 0.05.	1	1		1

Según los datos de la tabla 38 la mayoría de los valores son menores a 0.05 (α), esto quiere decir que existe diferencias significativas entre la mayoría de los grupos, por lo tanto, la media de los grupos son diferentes estadísticamente.

Tabla 39. Sub conjuntos de Tukey

CBR							
HSD Tukey ^a							
Descripción	Ν	Subconju	ınto para alfa	t = 0.05			
		1 2 3					
100%SN + 0%P.A.N.	3	5,4933					
98%SN+2%P.A.N.	3		7,4300				
94%SN+6%P.A.N.	3		7,4900				
96%SN+4%P.A.N.	3			8,5433			
Sig.		1,000	,992	1,000			
Se visualizan las medias	s para los gr	upos en los subo	conjuntos hor	mogéneos.			

Según la tabla 39 existe diferencias significativas entre los grupos, ya que el grupo patrón y los grupos experimentales se encuentran ubicadas en distintas columnas.

Prueba estadística para los resultados de Densidad Seca Máxima

Para realizar las pruebas estadísticas paramétricas, en este caso el análisis de varianza (ANOVA) se comprueba si existe una distribución normal, a través de las pruebas de normalidad, debido a que se cuentan con datos menores a 50 el análisis se realiza con la prueba de Shapiro Wilk.

En la prueba estadística Análisis de Varianza como primer paso se comprueba si tiene distribución normal mediante las pruebas de normalidad, en este caso se analiza con la prueba de Shapiro Wilk porque se cuenta con menores a 50 datos, como se aprecia en la tabla 40.

Tabla 40. Prueba de Normalidad

	Descripción	Kolmogorov-Smirnov ^a		Sha	piro-Wilk	,	
		Estadístico	gl	Sig.	Estadístico	gl	Sig.
DSM	100%SN + 0%P.A.N.	,225	3		,984	3	,757
<i>D</i> 0	98%SN+2%P.A.N.	,214	3		,989	3	,803
	96%SN+4%P.A.N.	,228	3		,982	3	,743
	94%SN+6%P.A.N.	,239	3		,975	3	,699

En la tabla 40 se aprecian que los valores de significancia (p-valor) son mayores a 0.05 (α), por consiguiente, tienen una distribución normal, esto indica que se puede utilizar la prueba paramétrica Análisis de Varianzas (ANOVA).

De la misma manera otro de los supuestos que se debe cumplir para realizar la prueba paramétrica de ANOVA es que las muestras posean igualdad de varianzas

(homocedasticidad) para lo cual se realiza el test de Levene tal como se puede apreciar en la tabla 41.

Tabla 41. Prueba de Homogeneidad de varianzas (Levene)

	Prueba de homogeneidad de varianzas								
		Estadístico	gl1	gl2	Sig.				
		de Levene							
DMS	Se basa en la media	,001	3	8	1,000				
	Se basa en la	,002	3	8	1,000				
	mediana								
	Se basa en la	,002	3	7,998	1,000				
	mediana y con gl								
	ajustado								
	Se basa en la media	,001	3	8	1,000				
	recortada								

En la tabla 42 se detallan las características de las variables.

Tabla 42. Descripción de las variables

			Descript	ivos				
DSM								
	N	Media Desv. Servor		Mín.	Máx.			
		21101	Límite inferior	Límite superior				
100%SN + 0%P.A.N.	3	1,7137	,06603	,03812	1,5496	1,8777	1,65	1,78
98%SN+2%P.A.N.	3	1,7020	,06736	,03889	1,5347	1,8693	1,64	1,77
96%SN+4%P.A.N.	3	1,6900	,06458	,03729	1,5296	1,8504	1,63	1,76
94%SN+6%P.A.N.	3	1,6827	,06430	,03712	1,5229	1,8424	1,63	1,75
Total	12	1,6971	,05727	,01653	1,6607	1,7335	1,63	1,78

Luego de poseer todos los datos se realiza la prueba paramétrica de análisis de varianza como se detalla en la tabla 43.

Tabla 43. Prueba de Análisis de varianza

		ANOVA	1		
DSM					
	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	,002	3	,001	,130	,940
Dentro de grupos	,034	8	,004		
Total	,036	11			

En la tabla 43 se puede apreciar que el p-valor es de 0.940 que es mayor a 0.05 (α) , por lo cual se rechaza la hipótesis del investigador (H_1) , que indica que existe una varianza estadística significativa entre el grupo patrón y los grupos experimentales.

Para detallar la diferencia entre los grupos se realiza una post prueba (post-hoc), la cual se denomina la prueba de Tukey (Tabla 44).

Tabla 44. Comparación múltiple de los resultados de densidad seca máxima

	Compa	raciones múltiples				
	Variable	dependiente: DSM				
		HSD Tukey				
(I) Descripción	(J) Descripción	Diferencia de	Desv.	Sig.	Interva	al 95%
		medias (I-J)	Error		Lím. Inf.	a al 95% Lím. sup. ,1831 ,1951 ,2025 ,1598 ,1835 ,1908 ,1478 ,1595 ,1788 ,1405
	98%SN+2%P.A.N.	,01167	,05355	,996	-,1598	,1831
100%SN + 0%P.A.N.	96%SN+4%P.A.N.	,02367	,05355	,969	-,1478	,1951
	94%SN+6%P.A.N.	,03100	,05355	,936	-,1405	,2025
	100%SN + 0%P.A.N.	-,01167	,05355	,996	-,1831	,1598
98%SN+ 2%P.A.N.	96%SN+4%P.A.N.	,01200	,05355	,996	-,1595	,1835
	94%SN+6%P.A.N.	,01933	,05355	,983	-,1521	,1908
	100%SN + 0%P.A.N.	-,02367	,05355	,969	-,1951	,1478
96%SN+ 4%P.A.N.	98%SN+2%P.A.N.	-,01200	,05355	,996	-,1835	,1595
	94%SN+6%P.A.N.	,00733	,05355	,999	-,1641	,1788
	100%SN + 0%P.A.N.	-,03100	,05355	,936	-,2025	,1405
94%SN+ 6%P.A.N.	98%SN+2%P.A.N.	-,01933	,05355	,983	-,1908	,1521
	96%SN+4%P.A.N.	-,00733	,05355	,999	-,1788	,1641

Según los datos de la tabla 44, la mayoría de valores son mayores a 0.05 (α), esto quiere decir que no existe diferencias significativas entre la mayoría de los grupos.

Tabla 45. Sub conjuntos de Tukey

		DSM				
HSD Tukey ^a						
Descripción	N	Subconjunto para alfa = 0.05				
		1				
94%SN+6%P.A.N.	3	1,6827				
96%SN+4%P.A.N.	3	1,6900				
98%SN+2%P.A.N.	3	1,7020				
100%SN + 0%P.A.N.	3	1,7137				
Sig.		,936				
Se visualizan las medias	s para los grupos	s en los subconjuntos homogéneos.				

Según la tabla 45, no existe diferencias significativas entre algunos grupos, ya que el grupo patrón y los grupos experimentales se encuentran ubicadas en la misma columna.

Prueba estadística para los resultados de Contenido de Humedad Óptimo

En la prueba estadística Análisis de Varianza como primer paso se comprueba si tiene distribución normal mediante las pruebas de normalidad, en este caso se analiza con la prueba de Shapiro Wilk porque se cuenta con menores a 50 datos, como se aprecia en la tabla 46.

Tabla 46. Prueba de Normalidad

		Prueba	s de nori	malidad				
	Proporción	Kolmog	gorov-Smirn	orov-Smirnov ^a Shapiro-Wil			(
		Estadístic o	gl	Sig.	Estadístic o	gl	Sig.	
СНО	100% SN + 0% P.A.N.	,263	3		,956	3	,595	
	98% SN + 2% P.A.N.	,259	3		,959	3	,609	
	96% SN + 4% P.A.N.	,376	3		,771	3	,571	
	94% SN + 6% P.A.N.	,196	3		,996	3	,879	
a. Corre	ección de significación	de Lilliefors						

En la tabla 46 se aprecian que los valores de significancia (p-valor) son mayores a 0.05 (α), por consiguiente, tienen una distribución normal, esto indica que se puede utilizar la prueba paramétrica Análisis de Varianzas (ANOVA).

De la misma manera otro de los supuestos que se debe cumplir para realizar la prueba paramétrica de ANOVA es que las muestras posean igualdad de varianzas (homocedasticidad) para lo cual se realiza el test de Levene tal como se puede apreciar en la tabla 47.

Tabla 47. Prueba de Homogeneidad de varianzas (Levene)

	Prueba de homogeneidad de varianzas								
		Estadístico de Levene	gl1	gl2	Sig.				
CHO	Se basa en la media	,478	3	8	,707				
	Se basa en la mediana	,288	3	8	,833				
	Se basa en la mediana y con gl ajustado	,288	3	7,129	,833				
	Se basa en la media recortada	,465	3	8	,715				

Luego de poseer todos los datos se realiza la prueba paramétrica de análisis de varianza como se detalla en la tabla 48.

Tabla 48. Prueba de Análisis de varianza

ANOVA							
CHO							
	Suma de cuadrados	gl	Media cuadrática	F	Sig.		
Entre grupos	3,907	3	1,302	5,064	,030		
Dentro de grupos	2,057	8	,257				
Total	5,964	11					

En la tabla 43 se puede apreciar que el p-valor es de 0.030 que es menor a 0.05 (α), por lo cual se acepta la hipótesis del investigador (H_1), que indica que existe una varianza estadística significativa entre el grupo patrón y los grupos experimentales.

Para detallar la diferencia entre los grupos se realiza una post prueba (post-hoc), la cual se denomina la prueba de Tukey (Tabla 49).

Tabla 49. Comparación múltiple de los resultados de contenido de humedad óptimo

Comparaciones múltiples Variable dependiente: CHO							
HSD Tukey							
(I) Proporción	(J) Proporción	Diferencia de medias (I-J)	Desv. Error	Sig.	Intervalo de confianza a 95% Límite Límite		
100% SN + 0% P.A.N.	98% SN + 2% P.A.N.	,76000	,41405	,325	inferior -,5659	superior 2,0859	
	96% SN + 4% P.A.N.	1,07000	,41405	,120	-,2559	2,3959	
	94% SN + 6% P.A.N.	1,57333 [*]	,41405	,022	,2474	2,8993	
98% SN + 2% P.A.N.	100% SN + 0% P.A.N.	-,76000	,41405	,325	-2,0859	,5659	
	96% SN + 4% P.A.N.	,31000	,41405	,875	-1,0159	1,6359	
	94% SN + 6% P.A.N.	,81333	,41405	,276	-,5126	2,1393	
96% SN + 4% P.A.N.	100% SN + 0% P.A.N.	-1,07000	,41405	,120	-2,3959	,2559	
	98% SN + 2% P.A.N.	-,31000	,41405	,875	-1,6359	1,0159	
	94% SN + 6% P.A.N.	,50333	,41405	,635	-,8226	1,8293	
94% SN + 6% P.A.N.	100% SN + 0% P.A.N.	-1,57333 [*]	,41405	,022	-2,8993	-,2474	
	98% SN + 2% P.A.N.	-,81333	,41405	,276	-2,1393	,5126	
	96% SN + 4% P.A.N.	-,50333	,41405	,635	-1,8293	,8226	

Según los datos de la tabla 49, se aprecia que la proporción que vario significativamente en el contenido de humedad se dio en la proporción de 94% SN + 6% P.A.N., debido a que su significancia es de 0.022 < 0.05 (α), esto quiere decir que no existe diferencias significativas entre la mayoría de los grupos.

Tabla 50. Sub conjuntos de Tukey

СНО							
HSD Tukey ^a							
Proporción	N	Subconjunto para alfa = 0.05					
Fioporcion		1	2				
94% SN + 6%	3	13,2900					
P.A.N.	3	13,2900					
96% SN + 4%	3	13,7933	13,7933				
P.A.N.	3	10,7900	10,7 900				
98% SN + 2%	3	14,1033	14,1033				
P.A.N.	3	14,1000	14,1000				
100% SN + 0%	3		14,8633				
P.A.N.	3		17,0000				
Sig.		,276	,120				

Según la tabla 50, existe diferencias significativas entre algunos grupos, ya que el grupo patrón y los grupos experimentales se encuentran ubicadas en diferentes columnas.

V. DISCUSIÓN

Discusión Nº 01

De acuerdo a los resultados obtenidos a la capacidad de soporte y densidad máxima de la subrasante los autores Pino Edwin y Maquera Hugo, tras efectuar su investigación con la incorporación del polímero adhesivo natural en cantidades de (0%, 2%, 4% y 6%) pudieron presenciar los siguientes valores (5.493%, 7.430%, 8.507% y 7.643%) respectivamente, en tanto los autores Romero Rocío y Sañac Cynthia (2016), tras efectuar su investigación pudieron determinar los siguientes valores (5.100%, 6.100%, 4.400% y 2.700%), respectivamente de acuerdo a las dosificaciones (0%, 2%, 4% y 6%), definiendo que la incorporación de este polímero influye en un aumento progresivo como se denota en las cantidades de 2% y 4% para el primer autor, por otro lado Romeo Rocío y Sañac Cynthia (2016) define que el punto más álgido se denota al incorporar el 2% de polímero, concluyendo que la influencia de este material aumenta en cierta medida las características mecánicas de la subrasante (CBR). Esta diferencia podría de haberse dado por las características independientes que poseía cada suelo que se sometieron a estudio.

Discusión Nº 02

Respecto al ensayo Proctor para lograr una mejor compactación y reducción de vacíos aplicando polímero adhesivo, los autores Pino Edwin y Maquera Hugo, tras efectuar su investigación con el empleo de este aditamento mencionado en dosificaciones de (0%, 2%, 4% y 6%), determinaron los siguientes valores de máxima densidad seca (1.714 gr/cm³, 1.702 gr/cm³, 1.690 gr/cm³ y 1.683 gr/cm³) respectivamente y un óptimo contenido de humedad de (14.24%, 14.103%, 13.793% y 13.290%) respectivamente en relación de la dosificación del polímero, para lograr una óptima compactación, en tanto los autores Romero Roció y Sañac Cynthia (2016), tras efectuar su investigación pudieron determinar los siguientes valores de humedad optima (10.20%, 9.90%, 9.80% y 9.60%) y densidades secas (1.927 gr/cm³, 1.917 gr/cm³, 1.908 gr/cm³ y 1.894 gr/cm³), estos dos valores se originaron de acuerdo a las dosificaciones establecidas de (0%, 2%, 4% y 6%), para el primer caso se aprecia que la incorporación del 6% de polímero adhesivo natural reduce en un 10.58% el contenido de humedad óptimo lo que significa que se

requerirá menor cantidad de agua que se necesitará para alcanzar la máxima densidad seca, la disminución de cantidad de agua se traduce en menor cantidad de horas máquina de los cisterna. En cambio en el estudio de Romero Roció y Sañac Cynthia (2016) no hubo diferencias estadísticamente significativas como para afirmar que la incorporación de polímero adhesivo natural influye en el contenido de humedad.

Discusión Nº 03

Según los resultados obtenidos de los ensayos geotécnicos, se rechaza la hipótesis planteada que señala que una proporción establecida reducirá los valores de índice de plasticidad, ya que de acuerdo a los resultados del análisis de varianza la disminución de los valores del índice de plasticidad no es significativa, pero la proporción que tuvo un mejor desempeño fue la de 6% de polímero adhesivo natural que redujo el índice de plasticidad en un 13.42% respecto al suelo de subrasante.

Esto concuerda con lo que afirman Romero Roció y Sañac Cynthia (2016), quienes tras efectuar su investigación pudieron determinar los siguientes valores de índice de plasticidad (11.22%, 11.02%, 10.97% y 10.91%) quienes de la misma manera no logran reducir de manera significativa la plasticidad (se redujo solamente en un 2.84%), esta poca disminución en ambos estudios podría deberse a la poca proporción de polímero adhesivo natural que se adiciona al suelo.

Discusión Nº 04

Respecto a la reducción de costos para el mejoramiento de una subrasante aplicando polímero adhesivo natural los autores Pino Edwin y Maquera Hugo, tras realizar su investigación determinaron que la aplicación de este polímero denota un costo mucho más elevado en relación a un mejoramiento con material granular del 13.06%, en tanto los autores Romero Roció y Sañac Cynthia (2016), en su investigación definen que la aplicación de este compuesto repercute significativamente en el presupuesto de una partida, ya que el proceso de extracción resulta ser altamente laborioso, por lo que la relación costo beneficio resulta ser significativamente desfavorable para la realización o mejoramiento de las subrasantes.

VI. CONCLUSIONES

Conclusión 1. Dando respuesta al objetivo general de la presente investigación se concluye que la aplicación de polímero adhesivo natural mejora la capacidad de soporte mas no en la densidad máxima de la subrasante de pavimentos rígidos en la zona de Salcedo – Puno, en un porcentaje máximo del 41.783%.

Conclusión 2. Según el objetivo específico 1, se concluye que, para lograr una mejor compactación y reducción de vacíos, es necesario la incorporación de polímero adhesivo natural en una cantidad del 6% disminuyendo el contenido de humedad óptimo requerido para alcanzar la densidad seca máxima en un 12.80%, esto repercute en el menor empleo de agua durante el proceso de compactación de una vía.

Conclusión 3. Dando respuesta al objetivo específico 2, se concluye que la adición de polímero adhesivo natural al suelo de subrasante en proporciones de 2%, 4% y 6 % no varían de manera significativa el índice de plasticidad, debido a que se obtuvieron valores de 8.46%, 8.136% y 7.68% respectivamente.

Conclusión 4. De acuerdo al objetivo específico 3, se concluye que tras incorporar polímero adhesivo natural los costos aumentan hasta en un 13.06% en relación a un mejoramiento con material granular, por lo que en el aspecto de costo beneficio este aditamento resulta ser mucho más costoso, pero más barato que otros aditamentos comúnmente usados.

VII. RECOMENDACIONES

Se recomienda evaluar otro tipo de estabilización en la zona de Salcedo – Puno, debido a que no se muestran buenos resultados con la aplicación de polímero adhesivo natural.

Para la aplicación de los datos obtenidos en esta investigación se recomienda tener en cuenta el tipo de suelo y el estabilizante usado en la subrasante.

Se recomienda para futuras investigaciones el estudio de este aditamento para bases y subbase.

Se recomienda para futuras investigaciones el uso de este polímero adhesivo natural, ya no en función del peso, si no en función del agua para su pertinente compactación.

REFERENCIAS BIBLIOGRAFICAS

Tesis

AYALA, Genesis. Estabilización y control de suelos expansivos utilizando polímeros. Tesis (Titulo de Ingeniería Civil). Samborondón. Universidad de Especialidades Espíritu Santo, 2017.

Disponible en https://bit.ly/3u3uHpV

CALLA, Efraín. Pavimentación de los jirones Achaya, Manco Capac, Conde de Lemus, Arica y Puno de la municipalidad de Azángaro, Puno. Tesis (Titulo de Ingeniería Civil). Puno: Universidad Nacional del Altiplano, 2015.

Disponible en https://bit.ly/3fBZxB8

CAPIA, Cliver. Estabilización de suelos arcillosos mediante el uso de polímeros reciclados PET a nivel de la subrasante de la carretera Juliaca – Caminaca, 2019. Tesis (Titulo de Ingeniería Civil). Juliaca: Universidad Peruana Unión, 2020.

Disponible en https://bit.ly/3wkl6vm

CORTES, Darko. Desempeño de suelos estabilizados con polímeros en Perú. Tesis (Titulo de Ingeniería Civil). Piura: Universidad de Piura, 2018.

Disponible en https://bit.ly/3bXk1mT

CUADROS, Claudia. Mejoramiento de las propiedades físico – mecánicas de la subrasante en una vía afirmada de la red vial departamental de la región de Junin mediante la estabilización química con oxido de calcio. Tesis (Titulo de Ingeniería Civil). Huancayo: Universidad Peruana los Andes, 2017.

Disponible en https://bit.ly/3ouLZeJ

DUQUE, Jennifer, VÁSQUEZ, Brayan y ORREGO, José. Mejoramiento de Subrasante en vías de Tercer orden. Tesis (Titulo de Ingeniería Civil). Pereira: Universidad Libre Seccional Pereira, 2017.

Disponible en https://bit.ly/3wnuyzq

LANDA, Jacques y TORRES, Sergio. Mejoramiento de suelos arcillosos en subrasante mediante el uso de cenizas volante de bagazo de caña de azúcar y cal. Tesis (Titulo de Ingeniería Civil). Lima: Universidad Peruana de Ciencias Aplicadas, 2019.

Disponible en https://bit.ly/3bDH31V

MIRANDA, Cristian y RADO, Marco. Propuesta de concretos reforzados con fibras de acero y cemento puzolánico para la construcción de pavimentos rígidos en la región de Apurímac. Tesis (Titulo de Ingeniería Civil). Lima: Universidad Peruana de Ciencias Aplicadas, 2019.

Disponible en https://bit.ly/33VwRxv

NUÑEZ, Anselmo. Optimización de espesores de pavimentos con aplicación de geo-sintéticos. Tesis (Titulo de Ingeniera Civil). Puno. Universidad Nacional del Altiplano, 2016.

Disponible en https://bit.ly/2ScQOgF

PALLI, Edwin. Guía básica para estabilización de suelos con cal en camino de baja intensidad vehicular en la provincia de San Román. Tesis (Titulo de Ingeniería Civil). Puno: Universidad Nacional del Altiplano, 2015.

Disponible en https://bit.ly/3wiiQ8Z

QUISPE, Esperanza y SOÑAC, Magaly. Influencia de la incorporación de plástico reciclado triturado – PET en el mejoramiento del suelo a nivel de sub rasante en la prolongación de la Av. Micaela Bastidas. Tamburco – Abancay. Tesis (Titulo de Ingeniería Civil). Abancay: Universidad Tecnológica de los Andes, 2019.

Disponible en https://bit.ly/3u2JeCq

RAMIEZ, Andres. Inversión en infraestructura vial y su impacto en el desarrollo económico. Tesis (Titulo de Ingeniería Civil). Cundinamarca: Universidad de la Sabana, 2018.

Disponible en https://bit.ly/3hGu3Mx

ROMERO, Roció y SAÑAC, Cynthia. Evaluación comparativa de la capacidad de soporte y densidad máxima de un suelo adicionando con polímero adhesivo natural en porcentajes, en San Judas Chico – Cusco. Tesis (Titulo de Ingeniería Civil). Cusco: Universidad Andina del Cusco, 2016.

Disponible en https://bit.ly/3vaTJF6

SILVA, Mayra. Mejoramiento de la subrasante con geomallas multiaxiales tipo TX140 y TX160, aplicando a en tramos de la calle Alemania - Cajamarca. Tesis (Titulo de Ingeniería Civil). Cajamarca. Universidad Peruana del Norte, 2016.

Disponible en https://bit.ly/2T7CDKc

SUAREZ, Erika. Obtención de productos adhesivos a partir de pirolisis de llantas reciclas. Tesis (Titulo de Ingeniería Civil). Medellín: Universidad Nacional de Colombia, 2015.

Disponible en https://bit.ly/3ytB3IS

VASQUEZ, Jean. Inversión de infraestructura vial y su relación con la inversión privada en el Perú periodo 2000 – 2014. Tesis (Titulo de Economía). Medellín: Universidad Nacional de Trujillo, 2016.

Disponible en https://bit.ly/3tZL4nH

YUCRA, Arturo y CAMALA, Edwin. Análisis del uso de aditivos PERMA ZYME y Cloruro cálcico en la estabilización de la base de la carretera no pavimentada Dv. Huancané. Tesis (Titulo de Ingeniería Civil). Lima: Universidad Nacional del Altiplano, 2017.

Disponible en https://bit.ly/2SZKJEx

ZAMBRANO, Alejandra y CASANOVA, Manuel. Uso de polímeros como estabilizador de suelos aplicado en vías de arcilla (CL) y grava arcillosa (GC). Tesis (Titulo de Ingeniería Civil). Samborondón. Universidad de Especialidades Espíritu Santo, 2016.

Disponible en https://bit.ly/3fwrXMN

ZEA, Norma. Caracterización de las arcillas. Tesis (Titulo de Ingeniería Civil). Guatemala: Universidad San Carlos de Guatemala, 2014.

Disponible en https://bit.ly/3v3caLH

Revistas

SERANO, Erika y PADILLAS, Edgar. Análisis de los cambios en las propiedades mecánicas de materiales de subrasante por la adición de materiales poliméricos reciclados. Revista de Investigación Solidaria, 15 (1): 1-25, 2019.

ISSN: 2382-4220

APLICACIONES EOR de inyección de polímero en yacimientos de crudo pesado y alta temperatura por Castro Ruben [et al]. Bucaramanga: Revista de Investigación

Ciencia, Tecnología y Futuro, 10 (2): 73-83, enero 2020.

ISSN: 2382-4581

PICASSO, Gino y SUN, Maria. Aplicaciones tecnológicas de las arcillas

modificadas. Revista de Investigación Sociedad Química del Perú, 74 (1): 1-25,

2008.

ISSN: 1810-634X

GARCIA, Ricardo, FLORES, Eder y MEDINA, Yurley. Caracterización física de las

arcillas utilizadas en la fabricación de productos de mampostería para la

construcción en Ocaña Norte de Santander (Colombia). Revista de Investigación

Espacios, 39 (53): 1-17, noviembre 2018.

ISSN: 0798-1015

CAJAMARCA, Johan y ACERO, Jeison. Comparación técnica de pegantes para

cerámica con contenidos de látex y polímeros. Revista de Investigación de la

Universidad Católica de Colombia, 1 (12): 6-18, 2015.

PINO, Juan y TEJEDA, Eduardo. Consideraciones acerca de la actividad de las

arcillas en la estabilización de suelos con sales cuaternarias de amonio. Revista de

Investigación de Arquitectura e Ingeniería, 7 (3): 1-12, 2013.

ISSN: 1990-8830

CONSTRUCCION sustentable del pavimentó rígido caso: Troncal Central del Norte

por Perico Néstor [et al]. Tunja: Revista de Investigación L'esprit Ingénieux, 4 (1):

36-54, mayo 2015.

DIAZ, Luis y VALERO, Manuel. Efecto de la adición de polímeros de cadena corta

sobre la estructura química, propiedades mecánicas, térmica y biológicas de

poliuretanos sintetizados con disocianatos alifáticos y aceite de higuerilla. Revista

de Investigación Química Nova, 44 (1): 48-57, 2021.

ISSN: 1678-7064

90

CHAVARRY, Carlos, FIGUEROA, Rosario y REYNAGA, Rossy. Estabilización química de capas granulares con cloruro de calcio para vías no pavimentadas.

Revista de Investigación Polo del Conocimiento, 5 (46): 40-69, noviembre 2020.

ISSN: 2550-682X

ESTABILIZACION química de suelos - materiales convencionales y activados alcalinamente por Aguirre Ana [et al]. Bogotá. Revista de Investigación Sena, 84

(2): 202-226, enero 2020.

ISSN: 2256-5035

JIMENEZ, Gabriel, LEITERITZ, Ralf y URREGUM, Carolina. Estado del arte de la económica política internacional en Latinoamérica. Revista de Investigación

Desafíos, 30 (2): 9-11, setiembre 2018.

ISSN: 0124-4035

ESTUDIO exploratorio de las propiedades físicas de suelos y su relación con los deslizamientos superficiales: Cuenca del rio Maracay, estado Aragua – Venezuela por Rios Maria [et al]. Venezuela. Revista de Investigación Geográfica Venezolana, 51 (2): 225-247, diciembre 2010.

ISSN: 1012-1617

WETTING collapse in Patzcuaro Uruapan Highway embankments por Chávez Carlos [et al]. Morelia. Revista de Investigación y Tecnología, 27 (2): 225-247, diciembre 2010.

ISSN: 1405-7743

POLIMEROS biogenerados: una alternativa medioambiental por Salazar Margarita [et al]. Medellín. Revista de Investigación DYNA, 87 (214): 75-84, febrero 2020.

ISSN: 2346-2183

BARRETO, Shirley, BANGUERA, Jonathan y CORDOVA, Javier. Análisis comparativo de ejes equivalentes obtenidos mediante el método AASHTO 93 y los proporcionados por pesaje en balanza fija de vehículos. Revista de Investigación Universidad y Sociedad, 10 (1): 59-68, marzo 2018.

ISSN: 2218-3620

FELIXBERGER, Josef. Adhesivos de colocación en capa delgada modificados con

polímeros, Augsburg-Europa. Revista de Investigación Construction Chemicals

Europe, 2 (4):12-36, 2008.

ISSN:001X-2177

INFLUENCIA de la inclusión de desechos de PVC sobre el CBR de un material

granular tipo subbase por Rodriguez Edgar [et al]. Medellín: Revista de

Investigación Ingenierías de la Universidad de Medellín, 5 (9):21-30, diciembre

2006.

ISSN: 2248-4094

ULLOA, Andrea. Guía de pruebas de laboratorio y muestreo en campo para la

verificación de calidad en materiales de pavimento asfaltico. s.l. Revista de

Investigación Métodos y Materiales, 1(1):39-60, diciembre 2011.

ROJAS, Miguel y RAMIREZ, Andres. Inversión en infraestructura vial y su impacto

en el crecimiento económico. Aproximación de análisis al caso infraestructura.

Revista de Investigación de la Universidad de Medellín, 17 (32): 109-128, 2018.

COVARRUBIAS, Juan. Design of concrete pavement with optimized slab geometry.

Santiago. Revista de Investigación Ingeniería de Construcción, 27(3):181-197,

enero 2012.

ISSN: 0718-5073

ZAMBRANO, Isabel, TEJEDA, Eduardo y AAENLLE, Anadelys. Materiales

granulares mejorados con emulsión asfáltica catiónica para subbases de

pavimentos. Revista de Investigación Infraestructura Vial LanammeUCR, 22 (39):

29-42, marzo 2020.

ISSN: 2215-3705

MENESES, Juliana, CORRALES, Catalina y VALENCIA, Marco. Síntesis y

caracterización de un polímero biodegradable a partir del almidón de yuca. Revista

de Investigación EIA, 1 (8): 57-67, diciembre 2008.

ISSN: 2463-0950

92

Libros

HERNÁNDEZ, Roberto. Metodología de la investigación. 1.ª ed. McGraw-Hill: México, 2019. 634 pp.

HERNÁNDEZ, Roberto, FERNÁNDEZ, Carlos y BAPTISTA, Lucio. Tesis y metodología de la investigación. 6.^{ta} ed. s.l.: McGraw-Hill, 2014. 426 pp.

MTC. Manual de carreteras, suelos, geología, geotécnica y pavimentos. 1.ª. ed. MTC: Lima, 2013. 355 pp.

PINO, Raul. Metodología de la investigación - elaboración de diseños para contrastar hipótesis. 2.^{da}. ed. San Marcos: Lima, 2018. 475 pp.

TAMAYO, Mario. El proceso de la investigación científica. 4^{ta}. ed. Limusa, 2003. 440 pp.

VARA, Arístides. 7 pasos para una tesis exitosa. 1^{ra}. ed. Universidad San Martin de Porres, 2010. 451 pp.

ARIAS, Fadias. "El proyecto de investigación". 4ta. Caracas : Episteme Venezuela, 2004.

ISBN: 980-07-3868-1

GARCIA, Eduardo. Metodologia de investigacion cuantitativa.1ª. Lima: Texas, 2004. pág. 91.

Pagina Web

Estabilizacion de suelos con cloruro de sodio. Recursos internet (evidence-based materials internet links) [en línea]. Lima: Dokumen. [Fecha de consulta: 15 de mayo de 2021].

Disponible en https://bit.ly/3v88W9M

Plan Nacional de Infraestructura para la competitividad. Recursos internet (evidence-based materials internet links) [en línea]. Lima: MEF. [Fecha de consulta: 15 de mayo de 2021].

Disponible en https://bit.ly/2T7JAuM

Los adhesivos. Recursos internet (evidence-based materials internet links) [en línea]. Colombia: Quiminet. [Fecha de consulta: 12 de mayo de 2021].

Disponible en https://bit.ly/3bHnDsT

ANEXOS

Anexo 01. Operacionalización de Variables

"Polímero adhesivo natural para mejorar la capacidad de soporte y densidad máxima en subrasante de pavimentos rígidos, Salcedo – Puno

Variables	Definición Conceptual	Dimensiones	Indicadores	Instrumento	Escala de medición
V.I. Polímero adhesivo	Las colas animales están formadas por gelatina, que se obtiene a partir del colágeno, proteína existente en la piel y cartílagos. Se presentan en forma sólida (tabletas, láminas, escamas, sémola y perlas), o líquida. Por su origen pueden ser de conejo, ovinos y bovinos, consiguiendo a partir de la cocción huesos, pieles o residuos de los animales; por otro parte, se consiguen también por el pescado, entre ellas, la del esturión ofrece la mayor calidad. Las	Porcentaje de incorporación	Cantidad	Porcentaje	Razón
natural	colas animales se siguen utilizando en renovación por sus buenas propiedades y características parecidas a las utilizadas originalmente, así como su reversibilidad con agua caliente, aunque exhiben los inconvenientes de su preparación, conservación, endurecimiento y cristalización. Romero y Sañac (2016)	Características físicas		Ensayos de laboratorio	
V.D. Capacidad de soporte y densidad de subrasante de pavimentos rígidos	La capacidad de soporte es una de la propiedad es más fundamental de los suelos. Su comportamiento, al estar sometido a tensiones es mucho más complejo que el de otros materiales. Las deformaciones que experimenta no dependen solo del "tipo de suelo" respectivo, sino también del estado en que se halle éste, de acuerdo a su contenido de humedad, grado de compacidad, estructura interna, etc. por otro lado, el suelo subyacente a una fundación que puede notarse heterogeneidades de importancia, imputando grandes variaciones de resistencia según la dirección de aplicación de las tensiones(anisotropía). es una ciencia empírica, que se basada en la experimentación, la cual nos proporciona ensayos y procedimientos para poder establecer las diferentes propiedades físicas y mecánicas de un suelo. densidad que ella tiene para las mismas condiciones de cada material que va a tener en terreno. Chavarry, Figueroa y Reynaga (2020)	Características físicas Características mecánicas	Limite líquido Limite plástico Índice de plasticidad Humedad Granulometría Capacidad de soporte Densidad de Campo	Ensayos de laboratorio	Razón

MATRIZ DE CONSISTENCIA

Anexo 02. Matriz de Consistencia

"Polímero adhesivo natural para mejorar la capacidad de soporte y densidad máxima en subrasante de pavimentos rígidos, Salcedo – Puno"

PROBLEMA GENERAL	OBJETIVO GENERAL	HIPÓTESIS GENERAL	VARIABLES	DIMENSIONES	INDICADOR	METODOLOGÍA
	Mejorar la capacidad de soporte	El polímero adhesivo mejorara la	VI Polímetro adhesivo	Proporción	%	Enfoque Cuantitativo
de soporte y densidad máxima rasal de sub rasante de pavimentos Salce	y densidad máxima de sub rasante de pavimentos rígidos, Salcedo – Puno 2021 por medio del polímero adhesivo.	capacidad de soporte y densidad máxima de sub rasante de pavimentos rígidos, Salcedo – Puno 2021	VD Capacidad de soporte y densidad máxima	Características físico mecánicas	Ensayos de laboratorio	Diseño de investigación Experimental Nivel de Investigación Correlacional
PROBLEMAS ESPECÍFICOS	OBJETIVOS ESPECÍFICOS	HIPÓTESIS ESPECÍFICOS	VI	Contidad	and one 2	Tipo de Investigación Aplicada
. Con una proporción			Proporción establecida	Cantidad	gr/cm3	Población Suelos naturales de sub
¿Con una proporción establecida se lograría una mejor compactación y reducción de vacíos utilizando el polímero	Lograr una mejor compactación y reducción de vacíos utilizando el polímero adhesivo natural por medio de una proporción establecida	Una proporción establecida lograra una mejor compactación y reducción de vacíos utilizando el polímero adhesivo natural	VD Compactación y reducción de vacíos	Características físico mecánicas	ensayos en laboratorio	rasante de Salcedo – Puno Muestra
adhesivo natural?			reduction de vacios			3 calicatas aleatorias de centro poblado de Salcedo
¿Con una proporción establecida se reduciría los valores de índice de plasticidad utilizando el polímero adhesivo natural?	Mejorar el índice de plasticidad utilizando el polímero adhesivo natural por medio de una proporción establecida.	Una proporción establecida reducirá los valores de índice de plasticidad utilizando el polímero adhesivo natural en un 10%.	VI Proporción establecida	Cantidad	%	Técnica de recolección de datos Observación y medición Realización de calicatas Muestreo de materiales
			VD Índice de plasticidad	Características físico mecánicas	%	 Ensayos de laboratorio Análisis de resultados Interpretación de resultados
						Instrumentos
	natural per modio de una los	Una proporción establecida reducirá los costos de ejecución utilizando el polímero adhesivo natural en un 2%.	VI Proporción establecida VD	Cantidad	gr/cm3	 Fichas de recolección de datos Herramientas de bolsas y de muestreo Equipos y herramientas de laboratorio Trabajo de gabinete
			Costos	Viabilidad económica	Software S10 Software Excel	Software de análisis e interpretación de resultados

Anexo 3. Matriz de validación de los instrumentos para la obtención de datos

MATRIZ DE VALIDACIÓN DE LOS INSTRUMENTOS PARA LA OBTENCIÓN DE DATOS

Título de investigación: "Polímero adhesivo natural para mejorar la capacidad de soporte y densidad máxima en subrasante de pavimentos rígidos, Salcedo – Puno"

Apellidos y nombres de los investigadores: PINO PINEDA, Edwin Fredy / MAQUERA MAMANI, Hugo Nelson

Hornan Nath Hallon

Apellidos y nombres del Experto: NACA BAYLON Hernán

	AS	SPECTOS POR EVALUAR		0	PINION DEL	EXPERTO
VARIABLES	DIMENSIONES	INDICADORES	INSTRUMENTO DE MEDICIÓN	SI CUMPLE	NO CUMPLE	OBSERVACIONES
Variable Independiente: Polimero adhesivo natural	Porcentaje de incorporación	Cantidad	Porcentaje.	×		
	Características físicas	Granulometría Límite liquido Limite plástico Indice de plasticidad Humedad	Tamices, horno, cuchara de casagrande, balanza, acanalador.	x		
Variable dependiente: Capacidad de soporte y densidad de	Características físicas	Granulometría Límite liquido Limite plástico Indice de plasticidad Humedad	Tamices, horno, cuchara de casagrande, balanza, acanalador	х		
subrasante de pavimentos rígidos	Propiedades Mecánicas Máxima densidad seca y CHO CBR	Equipo de Proctor modificado	×			
		CBR	Equipo de Californian Bearing Ratio	×		

CONSTANCIA DE VALIDACIÓN

Yo Hernán Ñaca Bailón CIP N.º 66749, como Profesional en Ingeniería Civil, por medio de este presente hago constar que se ha revisado con fines de validación de instrumentos y los efectos de su aplicación al personal que elabora la tesis titulada:

"Polímero adhesivo natural para mejorar la capacidad de soporte y densidad máxima en subrasante de pavimentos rígidos, Salcedo – Puno"

Luego de hacer las observaciones y sugerencias pertinentes, puedo dar las siguientes apreciaciones en el siguiente cuadro:

CRITERIOS	DEFICIENTE	ACEPTABLE	EXCELENTE
Congruencia de Indicadores			X
Viabilidad de Instrumentos			Х
Confiabilidad del instrumento			Х
Esta formulado con lenguaje adecuado y específico.			х
Expresa el alcance de la investigación			x
Contribuye al avance de la ciencia. Tecnología y desarrollo sostenible			x

Puno, 05 de julio del 2021

Ing. Hernán Ñaga Bailón

DNI N.º 01318214

MATRIZ DE VALIDACIÓN DE LOS INSTRUMENTOS PARA LA OBTENCIÓN DE DATOS

Título de investigación: "Polímero adhesivo natural para mejorar la capacidad de soporte y densidad máxima en subrasante de pavimentos rígidos, Salcedo – Puno"

Apellidos y nombres de los investigadores: PINO PINEDA, Edwin Fredy / MAQUERA MAMANI, Hugo Nelson

Apellidos y nombres del Experto: MONTESINOS CHAVEZ Eddie Juan.

	ASPECTOS POR EVALUAR					EXPERTO
VARIABLES	DIMENSIONES	INDICADORES	INSTRUMENTO DE MEDICIÓN	SI CUMPLE	NO CUMPLE	OBSERVACIONES
Variable	Porcentaje de incorporación	Cantidad	Porcentaje.	X		
Independiente: Polimero adhesivo natural	Características físicas	Granulometría Límite liquido Limite plástico Indice de plasticidad Humedad	Tamices, horno, cuchara de casagrande, balanza, acanalador.	×		
Variable dependiente: Capacidad de soporte y densidad de	Características físicas	Granulometría Límite liquido Limite plástico Indice de plasticidad Humedad	Tamices, horno, cuchara de casagrande, balanza, acanalador	×		
subrasante de pavimentos rígidos	Propiedades	Máxima densidad seca y CHO	Equipo de Proctor modificado	X		
	Mecánicas	CBR	Equipo de Californian Bearing Ratio	X		

CONSTANCIA DE VALIDACIÓN

Yo Eddie Juan Montesinos Chávez CIP N.º 85120, como Profesional en Ingeniería Civil, por medio de este presente hago constar que se ha revisado con fines de validación de instrumentos y los efectos de su aplicación al personal que elabora la tesis titulada:

"Polímero adhesivo natural para mejorar la capacidad de soporte y densidad máxima en subrasante de pavimentos rígidos, Salcedo – Puno"

Luego de hacer las observaciones y sugerencias pertinentes, puedo dar las siguientes apreciaciones en el siguiente cuadro:

CRITERIOS	DEFICIENTE	ACEPTABLE	EXCELENTE
Congruencia de Indicadores			1/
Viabilidad de Instrumentos			× /
Confiabilidad del instrumento			
Esta formulado con lenguaje adecuado y específico.		X	X
Expresa el alcance de la investigación		X	
Contribuye al avance de la ciencia. Tecnología y desarrollo sostenible			*

Puno, 05 de julio del 2021

Ing. Eddie Juan Montesinos Chávez

DNI N.º 40889825

MATRIZ DE VALIDACIÓN DE LOS INSTRUMENTOS PARA LA OBTENCIÓN DE DATOS

Título de investigación: "Polímero adhesivo natural para mejorar la capacidad de soporte y densidad máxima en subrasante de pavimentos rígidos, Salcedo – Puno"

Apellidos y nombres de los investigadores: PINO PINEDA, Edwin Fredy / MAQUERA MAMANI, Hugo Nelson

Apellidos y nombres del Experto: MAMANI CHOQUE Raul.

	Α:	SPECTOS POR EVALUAR		0	PINION DEL	EXPERTO
VARIABLES	DIMENSIONES	INDICADORES	INSTRUMENTO DE MEDICIÓN	SI	NO CUMPLE	OBSERVACIONES
Variable Independiente: Polimero adhesivo natural	Porcentaje de incorporación	Cantidad	Porcentaje.	×		
	Características físicas	Granulometría Límite liquido Limite plástico Indice de plasticidad Humedad	Tamices, horno, cuchara de casagrande, balanza, acanalador.	×		
Variable dependiente: Capacidad de soporte y densidad de	Características físicas	Granulometría Límite liquiclo Limite plástico Indice de plasticidad Humedad	Tamices, horno, cuchara de casagrande, balanza, acanalador	×		
subrasante de pavimentos rígidos	Propiedades	Máxima densidad seca y CHO	Equipo de Proctor modificado	×		
	Mecánicas	CBR	Equipo de Californian Bearing Ratio	X		

FAUU MAMANI CHOCUE INGENIERO CIVIL REG. CIP. 87210

CONSTANCIA DE VALIDACIÓN

Yo Raúl Mamani Choque CIP N.º 87210, como Profesional en Ingeniería Civil, por medio de este presente hago constar que se ha revisado con fines de validación de instrumentos y los efectos de su aplicación al personal que elabora la tesis titulada:

"Polímero adhesivo natural para mejorar la capacidad de soporte y densidad máxima en subrasante de pavimentos rígidos, Salcedo – Puno"

Luego de hacer las observaciones y sugerencias pertinentes, puedo dar las siguientes apreciaciones en el siguiente cuadro:

CRITERIOS	DEFICIENTE	ACEPTABLE	EXCELENTE
Congruencia de Indicadores		~	
Viabilidad de Instrumentos		~	
Confiabilidad del instrumento			~
Esta formulado con lenguaje adecuado y específico.			×
Expresa el alcance de la investigación		×	
Contribuye al avance de la ciencia. Tecnología y desarrollo sostenible			×

Puno, 05 de julio del 2021

Ing. Raúl Mamani Choque

DNI N.º 01324236

Anexo 4. Reporte de datos analizados SPSS

EXAMINE VARIABLES=IP BY Descripción /PLOT BOXPLOT NPPLOT /COMPARE GROUPS /STATISTICS DESCRIPTIVES /CINTERVAL 95 /MISSING LISTWISE /NOTOTAL.

Explorar

Notas

Salida creada		09-JUL-2021 15:03:53	
Comentarios			
Entrada	Datos	D:\CONTRASTACIÓN DE HIPOTESIS PAN\DATOS SPSS GENERAL.sav	
	Conjunto de datos activo	ConjuntoDatos1	
	Filtro	<ninguno></ninguno>	
	Ponderación	<ninguno></ninguno>	
	Segmentar archivo	<ninguno></ninguno>	
	N de filas en el archivo de datos de trabajo	12	
Manejo de valores perdidos	Definición de perdidos	Los valores perdidos definidos por el usuario para variables dependientes se tratan como perdidos.	
	Casos utilizados	Los estadísticos se basan en casos sin valores perdidos para ninguna de la variable dependiente o factor utilizado.	
Sintaxis		EXAMINE VARIABLES=IF BY Descripción /PLOT BOXPLOT NPPLOT /COMPARE GROUPS /STATISTICS DESCRIPTIVES /CINTERVAL 95 /MISSING LISTWISE /NOTOTAL.	

Notas

Recursos	Tiempo de procesador	00:00:01.97
	Tiempo transcurrido	00:00:00.97

Descripción

Resumen de procesamiento de casos

				C	asos		
		Válido		Perdidos		Total	
	Descripción	N	Porcentaje	N	Porcentaje	N	Porcentaje
IP	100%SN + 0%P.A.N.	3	100,0%	0	0,0%	3	100,0%
	98%SN+2%P.A.N.	3	100,0%	0	0,0%	3	100,0%
	96%SN+4%P.A.N.	3	100,0%	0	0,0%	3	100,0%
	94%SN+6%P.A.N.	3	100,0%	0	0,0%	3	100,0%

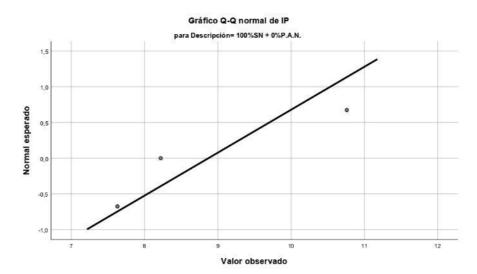
Descriptivos

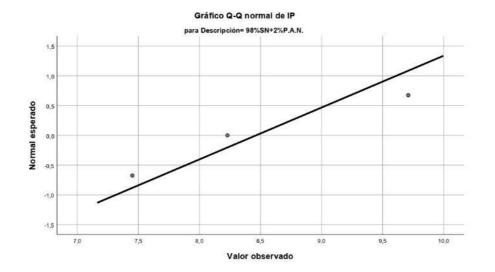
	Descripción			Estadístico	Error estándar
P	100%SN + 0%P.A.N.	Media		8,8700	,96023
		95% de intervalo de	Limite inferior	4,7385	
		confianza para la media	Limite superior	13,0015	
		Media recortada al 5%		*	
		Mediana		8,2200	
		Varianza	2,766		
		Desviación estándar	1,66316		
		Mínimo	7,63		
		Máximo	10,76		
		Rango	3,13		
		Rango intercuartil			
		Asimetría	1,490	1,225	
		Curtosis	8:	94	
	98%SN+2%P.A.N.	Media		8,4633	,66276
		95% de intervalo de	Límite inferior	5,6117	
		confianza para la media	Límite superior	11,3149	
		Media recortada al 5%		9	
		Mediana		8,2300	
		Varianza		1,318	es es
		Desviación estándar	1,14793		

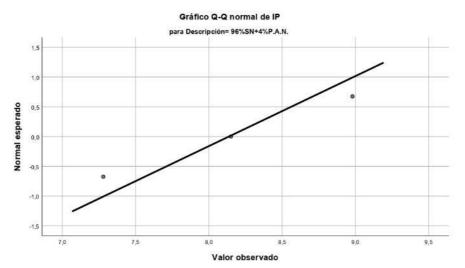
Página 2

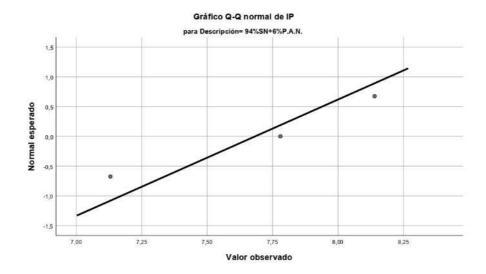
Descriptivos

Descripción			Estadístico	Error estánda
	Mínimo		7,45	
	Máximo		9,71	
	Rango		2,26	
	Rango intercuartil			
	Asimetria		,877	1,225
	Curtosis			
96%SN+4%P.A.N.	Media		8,1367	,49079
	95% de intervalo de confianza para la media	Límite inferior	6,0250	
		Límite superior	10,2484	
	Media recortada al 5%			
	Mediana	8,1500		
	Varianza	,723		
	Desviación estándar	,85008		
	Mínimo		7,28	
	Máximo	8,98		
	Rango	1,70		
	Rango intercuartil	10		
	Asimetría	-,071	1,225	
	Curtosis			
94%SN+6%P.A.N.	Media	7,6833	,29554	
	95% de intervalo de	Límite inferior	6,4117	
	confianza para la media	Límite superior	8,9549	
	Media recortada al 5%		*	
	Mediana		7,7800	
	Varianza		,262	
	Desviación estándar		,51189	
	Mínimo		7,13	
	Máximo		8,14	
	Rango		1,01	
	Rango intercuartil		v	
	Asimetría		-,819	1,225
	Curtosis			

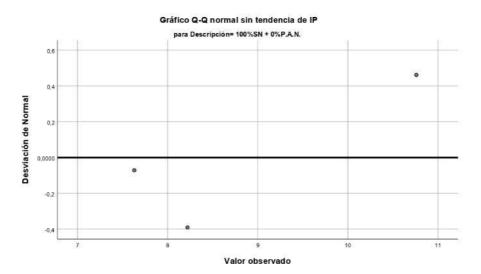

Pruebas de normalidad

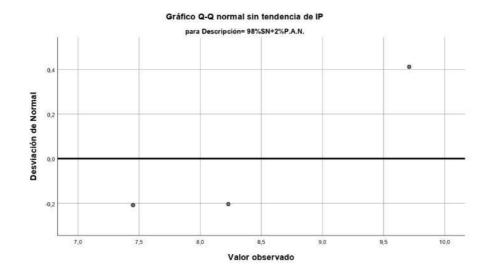

		Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Descripción	Estadístico	gl	Sig.	Estadístico	gl	Sig.
IP	100%SN + 0%P.A.N.	,319	3	(4)	,885	3	,341
	98%SN+2%P.A.N.	,247	3		,969	3	,662
	96%SN+4%P.A.N.	,177	3	*	1,000	3	,974
	94%SN+6%P.A.N.	,242	3	9	,973	3	,686

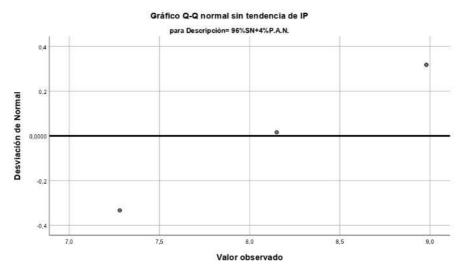

a. Corrección de significación de Lilliefors

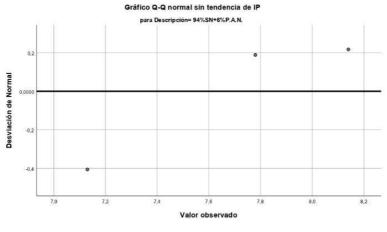

IP

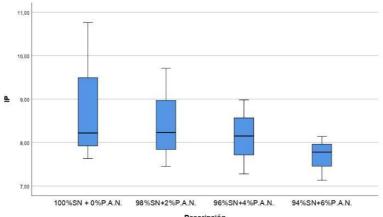
Gráficos Q-Q normales








Gráficos Q-Q normales sin tendencia



Página 6

ONEWAY IP BY Descripción /PLOT MEANS

Página 8

ONEWAY IP BY Proporción /STATISTICS HOMOGENEITY /MISSING ANALYSIS /POSTHOC=TUKEY ALPHA(0.05).

Unidireccional

Prueba de homogeneidad de varianzas

		Estadístico de Levene	gl1	gl2	Sig.
IP	Se basa en la media	1,853	3	8	,216
	Se basa en la mediana	,403	3	8	,755
	Se basa en la mediana y con gl ajustado	,403	3	4,060	,759
	Se basa en la media recortada	1,699	3	8	,244

Unidireccional

Notas

	Notas	
Salida creada		09-JUL-2021 15:04:21
Comentarios		
Entrada	Datos	D:\CONTRASTACIÓN DE HIPOTESIS PAN\DATOS SPSS GENERAL.sav
	Conjunto de datos activo	ConjuntoDatos1
	Filtro	<ninguno></ninguno>
	Ponderación	<ninguno></ninguno>
	Segmentar archivo	<ninguno></ninguno>
	N de filas en el archivo de datos de trabajo	12
Manejo de valores perdidos	Definición de perdidos	Los valores perdidos definidos por el usuario se tratan como perdidos.
	Casos utilizados	Los estadísticos para cada análisis se basan en casos sin datos perdidos para cualquier variable del análisis.
Sintaxis		ONEWAY IP BY Descripción /PLOT MEANS /MISSING ANALYSIS /POSTHOC=TUKEY ALPHA(0.05).
Recursos	Tiempo de procesador	00:00:00.14
	Tiempo transcurrido	00:00:00.14

ANOVA

IP

	Suma de cuadrados	gl	Media cuadrática	E	Sig.
Entre grupos	2,274	3	,758	,598	,634
Dentro de grupos	10,137	8	1,267		
Total	12,411	11			

Pruebas post hoc

Comparaciones múltiples

Variable dependiente: IP HSD Tukey

(I) Descripción	(J) Descripción	Diferencia de medias (I-J)	Desv. Error	Sig.	Intervalo de .
100%SN + 0%P.A.N.	98%SN+2%P.A.N.	,40667	,91910	,969	-2,5366
	96%SN+4%P.A.N.	,73333	,91910	,854	-2,2100
	94%SN+6%P.A.N.	1,18667	,91910	,593	-1,7566
98%SN+2%P.A.N.	100%SN + 0%P.A.N.	-,40667	,91910	,969	-3,3500
	96%SN+4%P.A.N.	,32667	,91910	,984	-2,6166
	94%SN+6%P.A.N.	,78000	,91910	,830	-2,1633
96%SN+4%P.A.N.	100%SN + 0%P.A.N.	-,73333	,91910	,854	-3,6766
	98%SN+2%P.A.N.	-,32667	,91910	,984	-3,2700
	94%SN+6%P.A.N.	,45333	,91910	,958	-2,4900
94%SN+6%P.A.N.	100%SN + 0%P.A.N.	-1,18667	,91910	,593	-4,1300
	98%SN+2%P.A.N.	-,78000	,91910	,830	-3,7233
	96%SN+4%P.A.N.	-,45333	,91910	,958	-3,3966

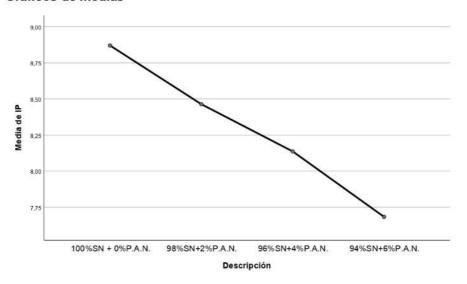
Comparaciones múltiples

Variable dependiente: IP HSD Tukey

		Intervalo de
(I) Descripción	(J) Descripción	Límite superior
100%SN + 0%P.A.N.	98%SN+2%P.A.N.	3,3500
	96%SN+4%P.A.N.	3,6766
	94%SN+6%P.A.N.	4,1300
98%SN+2%P.A.N.	100%SN + 0%P.A.N.	2,5366
	96%SN+4%P.A.N.	3,2700
	94%SN+6%P.A.N.	3,7233
96%SN+4%P.A.N.	100%SN + 0%P.A.N.	2,2100
	98%SN+2%P.A.N.	2,6166
	94%SN+6%P.A.N.	3,3966
94%SN+6%P.A.N.	100%SN + 0%P.A.N.	1,7566
	98%SN+2%P.A.N.	2,1633
	96%SN+4%P.A.N.	2,4900

Subconjuntos homogéneos

IΡ


HSD Tukey^a

Descripción	N	Subconjunto para alfa = 0.05
94%SN+6%P.A.N.	3	7,6833
96%SN+4%P.A.N.	3	8,1367
98%SN+2%P.A.N.	3	8,4633
100%SN + 0%P.A.N.	3	8,8700
Sig.		,593

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

a. Utiliza el tamaño de la muestra de la media armónica = 3,000.

Gráficos de medias

EXAMINE VARIABLES=CBR BY Descripción /PLOT BOXPLOT NPPLOT /COMPARE GROUPS /STATISTICS DESCRIPTIVES
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.

Explorar

Notas

Salida creada		09-JUL-2021 15:05:04
Comentarios		
Entrada	Datos	D:\CONTRASTACIÓN DE HIPOTESIS PAN\DATOS SPSS GENERAL.sav
	Conjunto de datos activo	ConjuntoDatos1
	Filtro	<ninguno></ninguno>
	Ponderación	<ninguno></ninguno>
	Segmentar archivo	<ninguno></ninguno>
	N de filas en el archivo de datos de trabajo	12
Manejo de valores perdidos	Definición de perdidos	Los valores perdidos definidos por el usuario para variables dependientes se tratan como perdidos.
	Casos utilizados	Los estadísticos se basan en casos sin valores perdidos para ninguna de la variable dependiente o factor utilizado.
Sintaxis		EXAMINE VARIABLES=CBR BY Descripción /PLOT BOXPLOT NPPLOT /COMPARE GROUPS /STATISTICS DESCRIPTIVES /CINTERVAL 95 /MISSING LISTWISE /NOTOTAL.
Recursos	Tiempo de procesador	00:00:01.14
	Tiempo transcurrido	00:00:00.84

Descripción

Resumen de procesamiento de casos

Casos Válido Perdidos Total Porcentaje Porcentaje Porcentaje Descripción CBR 100%SN + 0%P.A.N. 3 100,0% 0,0% 100,0% 0 3 98%SN+2%P.A.N. 3 100,0% 0 0,0% 3 100,0% 96%SN+4%P.A.N. 3 100,0% 0 0,0% 3 100,0% 94%SN+6%P.A.N. 3 100,0% 0 0,0% 3 100,0%

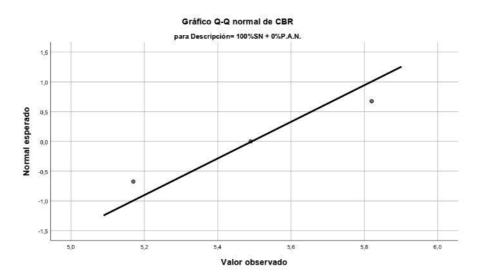
Descriptivos

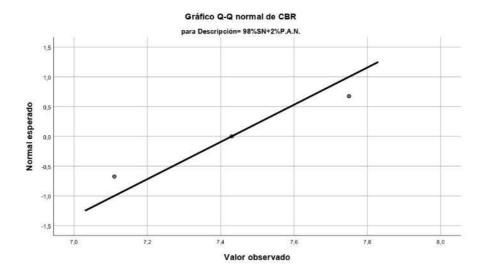
	Descripción			Estadístico	Error estánda
CBR	100%SN + 0%P.A.N.	Media		5,4933	,18765
		95% de intervalo de	Limite inferior	4,6860	
		confianza para la media	Límite superior	6,3007	
		Media recortada al 5%			
		Mediana		5,4900	
		Varianza		,106	
		Desviación estándar		,32501	
		Mínimo		5,17	
		Máximo		5,82	
		Rango		,65	
		Rango intercuartil		8	
		Asimetría		,046	1,225
		Curtosis			
	98%SN+2%P.A.N.	Media		7,4300	,18475
		95% de intervalo de confianza para la media	Límite inferior	6,6351	
			Límite superior	8,2249	
		Media recortada al 5%			
		Mediana		7,4300	
		Varianza		,102	
		Desviación estándar		,32000	
		Mínimo		7,11	
		Máximo		7,75	
		Rango		,64	
		Rango intercuartil			
		Asimetria		,000	1,225
		Curtosis			

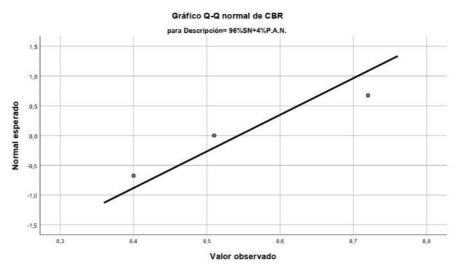
Página 13

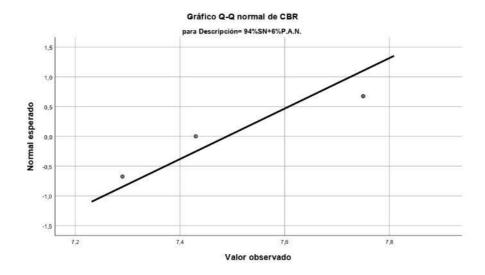
Descriptivos

Descripción			Estadístico	Error estándar
96%SN+4%P.A.N.	Media		8,5433	,09387
	95% de intervalo de	Límite inferior	8,1395	
	confianza para la media	Limite superior	8,9472	
	Media recortada al 5%		20	
	Mediana		8,5100	
	Varianza		,026	
	Desviación estándar		,16258	
	Mínimo		8,40	
	Máximo		8,72	
	Rango		,32	
	Rango intercuartil			
	Asimetría		,884	1,225
	Curtosis		*	
94%SN+6%P.A.N.	Media		7,4900	,13614
	95% de intervalo de confianza para la media	Límite inferior	6,9042	
		Límite superior	8,0758	
	Media recortada al 5%		20	
	Mediana		7,4300	
	Varianza		,056	
	Desviación estándar		,23580	
	Mínimo		7,29	
	Máximo		7,75	
	Rango		,46	
	Rango intercuartil			
	Asimetría		1,071	1,225
	Curtosis		*	

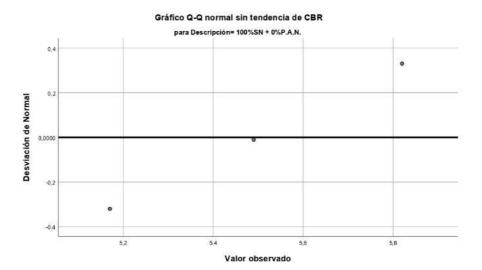

Pruebas de normalidad

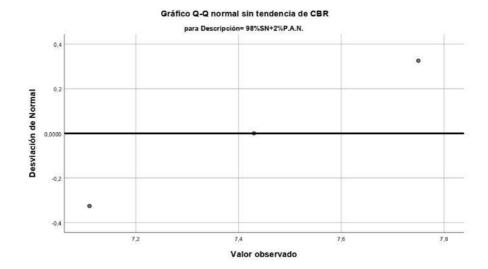

		Kolmogorov-Smirnov ^a		Shapiro-Wilk			
	Descripción	Estadístico	gl	Sig.	Estadístico	gl	Sig.
CBR	100%SN + 0%P.A.N.	,176	3	80	1,000	3	,983
	98%SN+2%P.A.N.	,175	3		1,000	3	1,000
	96%SN+4%P.A.N.	,248	3	¥	,968	3	,659
	94%SN+6%P.A.N.	,267	3	9	,951	3	,576

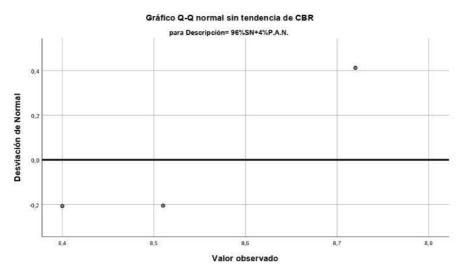

a. Corrección de significación de Lilliefors

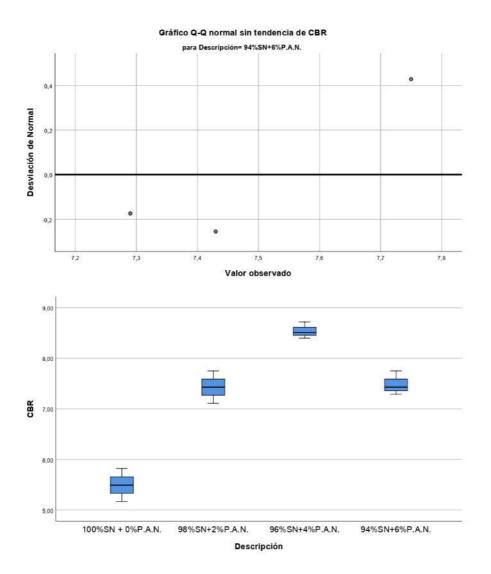

CBR

Gráficos Q-Q normales








Gráficos Q-Q normales sin tendencia

Página 17

ONEWAY CBR BY Descripción /PLOT MEANS

Página 19

```
GET
```

FILE='D:\CONTRASTACIÓN DE HIPOTESIS PAN\CBR PAN.sav'.

DATASET NAME ConjuntoDatosl WINDOW=FRONT.

ONEWAY CBR BY Proporción

/STATISTICS HOMOGENEITY

/MISSING ANALYSIS

/POSTHOC=TUKEY ALPHA(0.05).

Unidireccional

[ConjuntoDatosl] D:\CONTRASTACIÓN DE HIPOTESIS PAN\CBR PAN.sav

Prueba de homogeneidad de varianzas					
		Estadístico de Levene	gl1	gl2	Sig.
CBR	Se basa en la media	,057	3	8	,981
	Se basa en la mediana	,056	3	8	,981
	Se basa en la mediana y con gl ajustado	,056	3	7,754	,981
	Se basa en la media recortada	,056	3	8	,981

Unidireccional

Notas

	110140	
Salida creada		09-JUL-2021 15:06:23
Comentarios		
Entrada	Datos	D:\CONTRASTACIÓN DE HIPOTESIS PAN\DATOS SPSS GENERAL.sav
	Conjunto de datos activo	ConjuntoDatos1
	Filtro	<ninguno></ninguno>
	Ponderación	<ninguno></ninguno>
	Segmentar archivo	<ninguno></ninguno>
	N de filas en el archivo de datos de trabajo	12
Manejo de valores perdidos	Definición de perdidos	Los valores perdidos definidos por el usuario se tratan como perdidos.
	Casos utilizados	Los estadísticos para cada análisis se basan en casos sin datos perdidos para cualquier variable del análisis.
Sintaxis		ONEWAY CBR BY Descripción /PLOT MEANS /MISSING ANALYSIS /POSTHOC=TUKEY ALPHA(0.05).
Recursos	Tiempo de procesador	00:00:00.14
	Tiempo transcurrido	00:00:00.13

ANOVA

CBR

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	14,544	3	4,848	66,855	,000
Dentro de grupos	,580	8	,073		
Total	15,124	11			

Pruebas post hoc

Comparaciones múltiples

Variable dependiente: CBR

HSD Tukey

(I) Descripción	(J) Descripción	Diferencia de medias (I-J)	Desv. Error	Sig.	Intervalo de .
100%SN + 0%P.A.N.	98%SN+2%P.A.N.	-1,93667 [*]	,21987	,000	-2,6408
	96%SN+4%P.A.N.	-3,05000 [*]	,21987	,000	-3,7541
	94%SN+6%P.A.N.	-1,99667 [*]	,21987	,000	-2,7008
98%SN+2%P.A.N.	100%SN + 0%P.A.N.	1,93667*	,21987	,000	1,2326
	96%SN+4%P,A.N.	-1,11333	,21987	,004	-1,8174
	94%SN+6%P.A.N.	-,06000	,21987	,992	-,7641
96%SN+4%P.A.N.	100%SN + 0%P.A.N.	3,05000*	,21987	,000	2,3459
	98%SN+2%P.A.N.	1,11333	,21987	,004	,4092
	94%SN+6%P.A.N.	1,05333*	,21987	,006	,3492
94%SN+6%P.A.N.	100%SN + 0%P.A.N.	1,99667	,21987	,000	1,2926
	98%SN+2%P.A.N.	,06000	,21987	,992	-,6441
	96%SN+4%P.A.N.	-1,05333	,21987	,006	-1,7574

Comparaciones múltiples

Variable dependiente: CBR

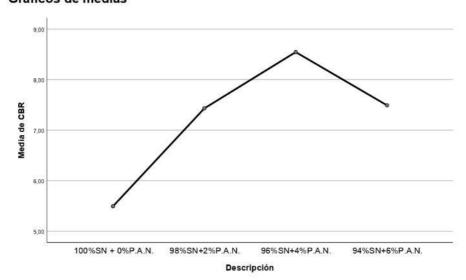
HSD Tukey

		Intervalo de
(I) Descripción	(J) Descripción	Límite superior
100%SN + 0%P.A.N.	98%SN+2%P.A.N.	-1,2326
	96%SN+4%P.A.N.	-2,3459
	94%SN+6%P.A.N.	-1,2926
98%SN+2%P.A.N.	100%SN + 0%P.A.N.	2,6408
	96%SN+4%P.A.N.	-,4092
	94%SN+6%P.A.N.	,6441
96%SN+4%P.A.N.	100%SN + 0%P.A.N.	3,7541
	98%SN+2%P.A.N.	1,8174
	94%SN+6%P.A.N.	1,7574
94%SN+6%P.A.N.	100%SN + 0%P.A.N.	2,7008
	98%SN+2%P.A.N.	,7641
	96%SN+4%P.A.N.	-,3492

*. La diferencia de medias es significativa en el nivel 0.05.

Subconjuntos homogéneos

CBR


		-
HSD	Tille	. 3
HOLD	LUKE	v

		Subconjunto para alfa = 0.05			
Descripción	N	1	2	3	
100%SN + 0%P.A.N.	3	5,4933			
98%SN+2%P.A.N.	3		7,4300		
94%SN+6%P.A.N.	3		7,4900		
96%SN+4%P.A.N.	3			8,5433	
Sig.		1,000	,992	1,000	

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

a. Utiliza el tamaño de la muestra de la media armónica = 3,000.

Gráficos de medias

EXAMINE VARIABLES-DSM BY Descripción /PLOT BOXPLOT NPPLOT /COMPARE GROUPS /STATISTICS DESCRIPTIVES /CINTERVAL 95 /MISSING LISTWISE /NOTOTAL.

Explorar

Notas

Salida creada		09-JUL-2021 15:07:46
Comentarios		
Entrada	Datos	D:\CONTRASTACIÓN DE HIPOTESIS PAN\DATOS SPSS GENERAL.sav
	Conjunto de datos activo	ConjuntoDatos1
	Filtro	<ninguno></ninguno>
	Ponderación	<ninguno></ninguno>
	Segmentar archivo	<ninguno></ninguno>
	N de filas en el archivo de datos de trabajo	12
Manejo de valores perdidos	Definición de perdidos	Los valores perdidos definidos por el usuario para variables dependientes se tratan como perdidos.
	Casos utilizados	Los estadísticos se basan en casos sin valores perdidos para ninguna de la variable dependiente o factor utilizado.
Sintaxis		EXAMINE VARIABLES=DSM BY Descripción /PLOT BOXPLOT NPPLOT /COMPARE GROUPS /STATISTICS DESCRIPTIVES /CINTERVAL 95 /MISSING LISTWISE /NOTOTAL.
Recursos	Tiempo de procesador	00:00:00.97
	Tiempo transcurrido	00:00:00.80

Descripción

Resumen de procesamiento de casos

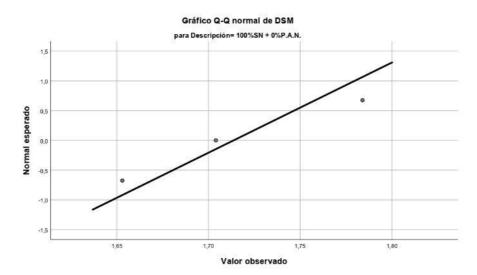
Casos Perdidos Válido Total Porcentaje Porcentaje Porcentaje Descripción DSM 100%SN + 0%P.A.N. 3 100,0% 0 0,0% 3 100,0% 98%SN+2%P.A.N. 3 100,0% 0 0,0% 3 100,0% 96%SN+4%P.A.N. 3 100,0% 0 0,0% 3 100,0% 94%SN+6%P.A.N. 3 100,0% 0 0,0% 100,0%

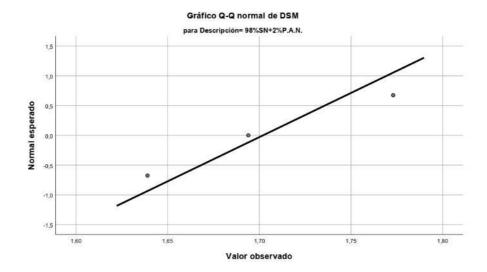
Descriptivos

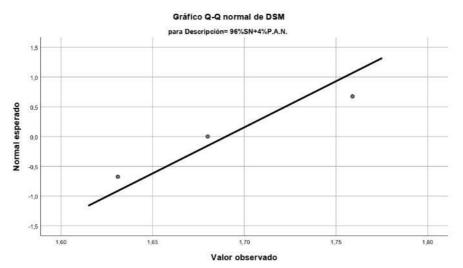
	Descripción			Estadístico	Error estánda
DSM	100%SN + 0%P.A.N.	Media	1,7137	,03812	
		95% de intervalo de	Límite inferior	1,5496	
		confianza para la media	Limite superior	1,8777	
		Media recortada al 5%			
		Mediana	1,7040		
		Varianza		,004	
		Desviación estándar		,06603	
		Mínimo		1,65	
		Máximo		1,78	
		Rango		,13	
		Rango intercuartil			
		Asimetría		,645	1,225
		Curtosis			
	98%SN+2%P.A.N.	Media	1,7020	,03889	
		95% de intervalo de	Límite inferior	1,5347	
		confianza para la media	Límite superior	1,8693	
		Media recortada al 5%		57	
		Mediana		1,6940	
		Varianza		,005	
		Desviación estándar		,06736	
		Mínimo		1,64	
		Máximo		1,77	
		Rango		,13	

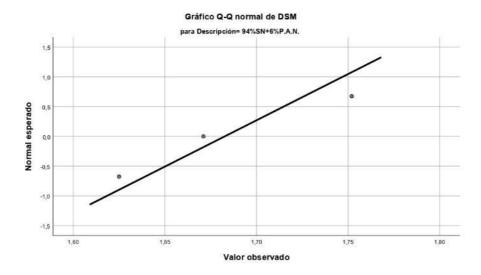
Descriptivos

Descripción			Estadístico	Error estánda
	Rango intercuartil			
	Asimetría		,527	1,225
	Curtosis		2	
96%SN+4%P.A.N.	Media	1,6900	,03729	
	95% de intervalo de	Límite inferior	1,5296	
	confianza para la media	Límite superior	1,8504	
	Media recortada al 5%			
	Mediana		1,6800	
	Varianza		,004	
	Desviación estándar	,06458		
	Mínimo		1,63	
	Máximo		1,76	
	Rango		,13	
	Rango intercuartil		y:	
	Asimetría		,680	1,225
	Curtosis		2	
94%SN+6%P.A.N.	Media		1,6827	,03712
	95% de intervalo de	Límite inferior	1,5229	
	confianza para la media	Límite superior	1,8424	
	Media recortada al 5%			
	Mediana		1,6710	
	Varianza		,004	
	Desviación estándar		,06430	
	Mínimo		1,63	
	Máximo		1,75	
	Rango		,13	
	Rango intercuartil		20	
	Asimetria		,790	1,225
	Curtosis			

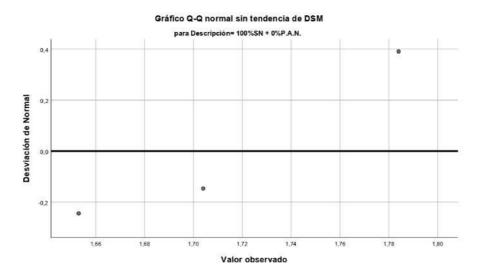

Pruebas de normalidad

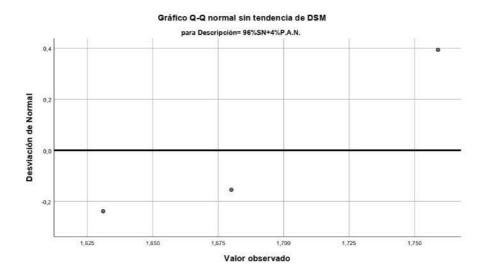

		Kolmogorov-Smirnov ^a		Shapiro-Wilk			
	Descripción	Estadístico	gl	Sig.	Estadístico	gl	Sig.
DSM	100%SN + 0%P.A.N.	,225	3	(4)	,984	3	,757
	98%SN+2%P.A.N.	,214	3		,989	3	,803
	96%SN+4%P.A.N.	,228	3	*	,982	3	,743
	94%SN+6%P.A.N.	,239	3	9	,975	3	,699

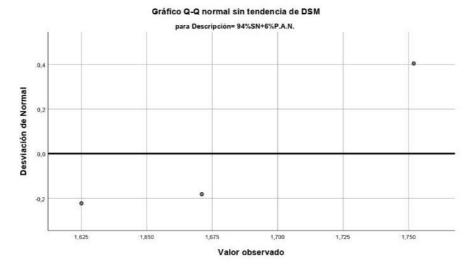

a. Corrección de significación de Lilliefors

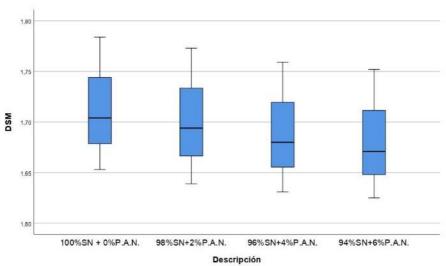

DSM

Gráficos Q-Q normales






Gráficos Q-Q normales sin tendencia



Página 28

ONEWAY DSM BY Descripción /PLOT MEANS

ONEWAY DMS BY Proporción /STATISTICS HOMOGENEITY /MISSING ANALYSIS /POSTHOC=TUKEY ALPHA(0.05).

Unidireccional

Prueba de homogeneidad de varianzas

		Estadístico de Levene	gl1	gl2	Sig.
DMS	Se basa en la media	,001	3	8	1,000
	Se basa en la mediana	,002	3	8	1,000
	Se basa en la mediana y con gl ajustado	,002	3	7,998	1,000
	Se basa en la media recortada	,001	3	8	1,000

Unidireccional

Notas

Salida creada		09-JUL-2021 15:08:49
Comentarios		
Entrada	Datos	D:\CONTRASTACIÓN DE HIPOTESIS PAN\DATOS SPSS GENERAL.sav
	Conjunto de datos activo	ConjuntoDatos1
	Filtro	<ninguno></ninguno>
	Ponderación	<ninguno></ninguno>
	Segmentar archivo	<ninguno></ninguno>
	N de filas en el archivo de datos de trabajo	12
Manejo de valores perdidos	Definición de perdidos	Los valores perdidos definidos por el usuario se tratan como perdidos.
	Casos utilizados	Los estadísticos para cada análisis se basan en casos sin datos perdidos para cualquier variable del análisis.
Sintaxis		ONEWAY DSM BY Descripción /PLOT MEANS /MISSING ANALYSIS /POSTHOC=TUKEY ALPHA(0.05).
Recursos	Tiempo de procesador	00:00:00.11
	Tiempo transcurrido	00:00:00.11

ANOVA

DSM

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	,002	3	,001	,130	,940
Dentro de grupos	,034	8	,004		
Total	,036	11			

Pruebas post hoc

Comparaciones múltiples

Variable dependiente: DSM

HSD Tukey

(I) Descripción	(J) Descripción	Diferencia de medias (I-J)	Desv. Error	Sig.	Intervalo de .
100%SN + 0%P.A.N.	98%SN+2%P.A.N.	,01167	,05355	,996	-,1598
	96%SN+4%P,A.N.	,02367	,05355	,969	-,1478
	94%SN+6%P.A.N.	,03100	,05355	,936	-,1405
98%SN+2%P.A.N.	100%SN + 0%P.A.N.	-,01167	,05355	,996	-,1831
	96%SN+4%P.A.N.	,01200	,05355	,996	-,1595
	94%SN+6%P.A.N.	,01933	,05355	,983	-,1521
96%SN+4%P.A.N.	100%SN + 0%P.A.N.	-,02367	,05355	,969	-,1951
	98%SN+2%P.A.N.	-,01200	,05355	,996	-,1835
	94%SN+6%P.A.N.	,00733	,05355	,999	-,1641
94%SN+6%P.A.N.	100%SN + 0%P.A.N.	-,03100	,05355	,936	-,2025
	98%SN+2%P.A.N.	-,01933	,05355	,983	-,1908
	96%SN+4%P.A.N.	-,00733	,05355	,999	-,1788

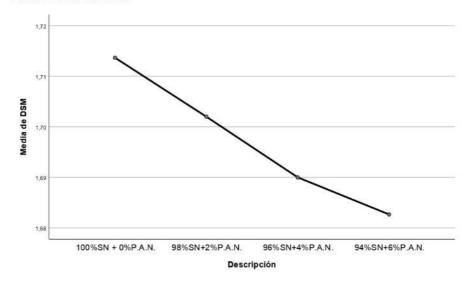
Comparaciones múltiples

Variable dependiente: DSM HSD Tukey

		Intervalo de
(I) Descripción	(J) Descripción	Límite superior
100%SN + 0%P.A.N.	98%SN+2%P.A.N.	,1831
	96%SN+4%P.A.N.	,1951
	94%SN+6%P.A.N.	,2025
98%SN+2%P.A.N.	100%SN + 0%P.A.N.	,1598
	96%SN+4%P.A.N.	,1835
	94%SN+6%P.A.N.	,1908
96%SN+4%P.A.N.	100%SN + 0%P.A.N.	,1478
	98%SN+2%P.A.N.	,1595
	94%SN+6%P.A.N.	,1788
94%SN+6%P.A.N.	100%SN + 0%P.A.N.	,1405
	98%SN+2%P.A.N.	,1521
	96%SN+4%P.A.N.	,1641

Subconjuntos homogéneos

DSM


HSD Tukey^a

		Subconjunto para alfa = 0.05
Descripción	N	- 1
94%SN+6%P.A.N.	3	1,6827
96%SN+4%P.A.N.	3	1,6900
98%SN+2%P.A.N.	3	1,7020
100%SN + 0%P.A.N.	3	1,7137
Sig.		.936

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

a. Utiliza el tamaño de la muestra de la media armónica = 3,000.

Gráficos de medias

EXAMINE VARIABLES—CHO BY Proporción
/PLOT BOXPLOT NPPLOT
/COMPARE GROUPS
/STATISTICS DESCRIPTIVES
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.

Explorar

Notas

Salida creada		27-JUL-2021 11:37:05
Comentarios		
Entrada	Datos	D:\CONTRASTACIÓN DE HIPOTESIS PAN\CBR PAN.sav
	Conjunto de datos activo	ConjuntoDatos1
	Filtro	<ninguno></ninguno>
	Ponderación	<ninguno></ninguno>
	Segmentar archivo	<ninguno></ninguno>
	N de filas en el archivo de datos de trabajo	12
Manejo de valores perdidos	Definición de perdidos	Los valores perdidos definidos por el usuario para variables dependientes se tratan como perdidos.
	Casos utilizados	Los estadísticos se basan en casos sin valores perdidos para ninguna de la variable dependiente o factor utilizado.
Sintaxis		EXAMINE VARIABLES=CHO BY Proporción /PLOT BOXPLOT NPPLOT /COMPARE GROUPS /STATISTICS DESCRIPTIVES /CINTERVAL 95 /MISSING LISTWISE /NOTOTAL.

Página 1

Notas

Recursos	Tiempo de procesador	00:00:02.37
	Tiempo transcurrido	00:00:01.12

Proporción

Resumen de procesamiento de casos

				C	asos		
		V	álido	Pe	rdidos	1	Γotal
	Proporción	N	Porcentaje	N	Porcentaje	N	Porcentaje
СНО	100% SN + 0% P.A.N.	3	100,0%	0	0,0%	3	100,0%
	98% SN + 2% P.A.N.	3	100,0%	0	0,0%	3	100,0%
	96% SN + 4% P.A.N.	3	100,0%	0	0,0%	3	100,0%
	94% SN + 6% P.A.N.	3	100,0%	0	0,0%	3	100,0%

Descriptivos

	Proporción			Estadístico
СНО	100% SN + 0% P.A.N.	Media	14,8633	
		95% de intervalo de	Límite inferior	14,0121
		confianza para la media	Límite superior	15,7146
		Media recortada al 5%		
		Mediana		14,7800
		Varianza		,117
		Desviación estándar		,34269
		Mínimo		14,57
		Máximo	15,24	
		Rango		,67
		Rango intercuartil		
		Asimetría		1,030
		Curtosis		
	98% SN + 2% P.A.N.	Media		14,1033
		95% de intervalo de	Límite inferior	12,7968
		confianza para la media	Límite superior	15,4099
		Media recortada al 5%		
		Mediana		13,9800
		Varianza		,277
		Desviación estándar		,52596

Página 2

Descriptivos

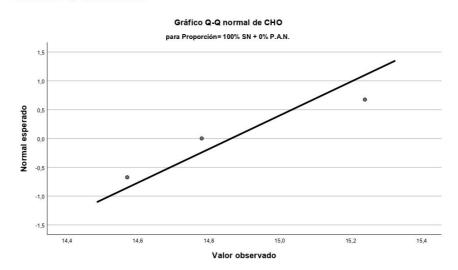
	Proporción			Error estánda	
СНО	100% SN + 0% P.A.N.	Media		,19785	
		95% de intervalo de	Límite inferior		
		confianza para la media	Límite superior		
		Media recortada al 5%			
		Mediana			
		Varianza			
		Desviación estándar			
		Mínimo			
		Máximo			
		Rango			
		Rango intercuartil			
		Asimetría		1,225	
		Curtosis			
	98% SN + 2% P.A.N.	Media		1,225 . ,30366	
		95% de intervalo de	Límite inferior		
		confianza para la media	Límite superior		
		Media recortada al 5%			
		Mediana			
		Varianza			
		Desviación estándar			

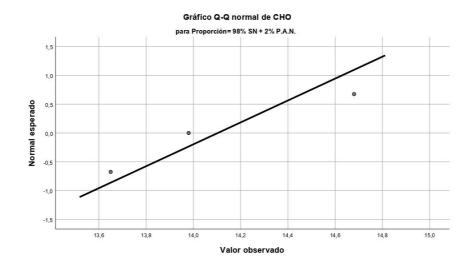
Descriptivos

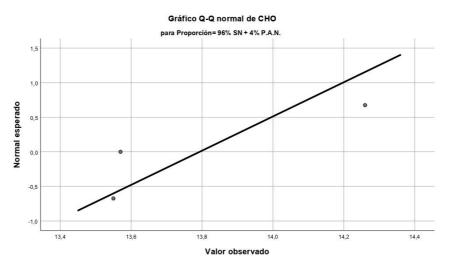
Proporción			Estadístic
	Mínimo		13,6
	Máximo		14,6
	Rango		1,0
	Rango intercuartil		
	Asimetría		,99
	Curtosis		
96% SN + 4% P.A.N.	Media		13,793
	95% de intervalo de	Límite inferior	12,789
	confianza para la media	Límite superior	14,797
	Media recortada al 5%		
	Mediana		13,570
	Varianza		,16
	Desviación estándar		,4042
	Mínimo		13,5
	Máximo		14,2
	Rango		,7
	Rango intercuartil		
	Asimetría		1,72
	Curtosis		
94% SN + 6% P.A.N.	Media		13,290
	95% de intervalo de	Límite inferior	11,585
	confianza para la media	Límite superior	14,995
	Media recortada al 5%		
	Mediana		13,340
	Varianza		,47
	Desviación estándar		,6863
	Mínimo		12,5
	Máximo		13,9
	Rango		1,3
	Rango intercuartil		
	Asimetría		-,32
	Curtosis		

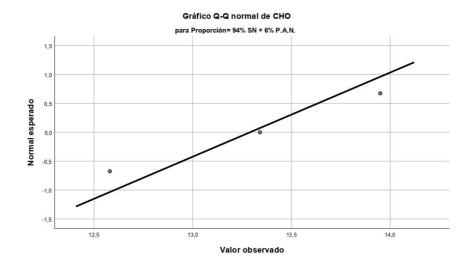
Descriptivos

Proporción			Error estánda
	Mínimo		
	Máximo		
	Rango		
	Rango intercuartil		
	Asimetría		1,22
	Curtosis		
96% SN + 4% P.A.N.	Media		,2334
	95% de intervalo de	Límite inferior	
	confianza para la media	Límite superior	
	Media recortada al 5%		
	Mediana		
	Varianza		
	Desviación estándar		
	Mínimo		
	Máximo		
	Rango		
	Rango intercuartil		
	Asimetría	1,22	
	Curtosis		
94% SN + 6% P.A.N.	Media	,3962	
	95% de intervalo de	Límite inferior	
	confianza para la media	Límite superior	
	Media recortada al 5%		
	Mediana		
	Varianza		
	Desviación estándar		
	Mínimo		
	Máximo		
	Rango		
	Rango intercuartil		
	Asimetría		1,22
	Curtosis		

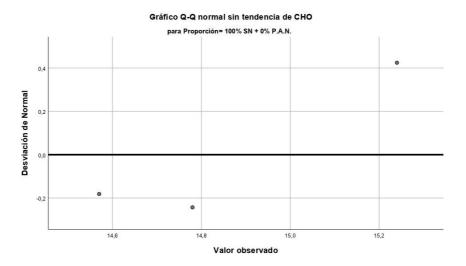

Pruebas de normalidad

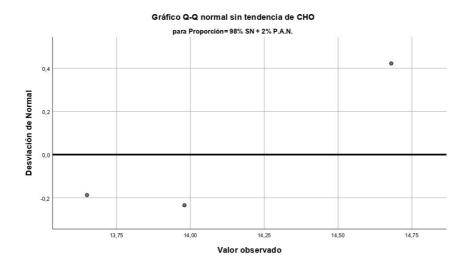

		Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Proporción	Estadístico	gl	Sig.	Estadístico	gl	Sig.
СНО	100% SN + 0% P.A.N.	,263	3	•	,956	3	,595
	98% SN + 2% P.A.N.	,259	3		,959	3	,609
	96% SN + 4% P.A.N.	,376	3		,771	3	,571
	94% SN + 6% P.A.N.	,196	3		,996	3	,879

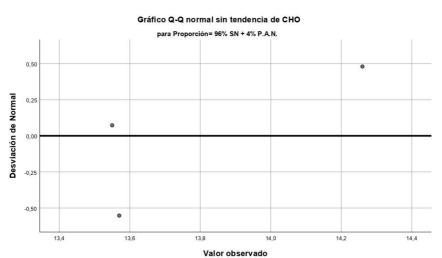

a. Corrección de significación de Lilliefors

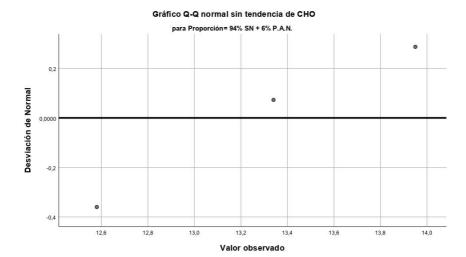

СНО

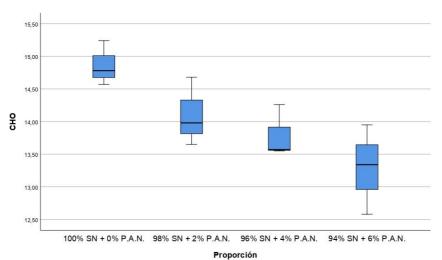
Gráficos Q-Q normales








Gráficos Q-Q normales sin tendencia



Página 8

ONEWAY CHO BY Proporción /STATISTICS HOMOGENEITY

Página 10

/PLOT MEANS
/MISSING ANALYSIS
/POSTHOC=TUKEY ALPHA(0.05).

Unidireccional

Notas

Salida creada		27-JUL-2021 11:40:34
Comentarios		
Entrada	Datos	D:\CONTRASTACIÓN DE HIPOTESIS PAN\CBR PAN.sav
	Conjunto de datos activo	ConjuntoDatos1
	Filtro	<ninguno></ninguno>
	Ponderación	<ninguno></ninguno>
	Segmentar archivo	<ninguno></ninguno>
	N de filas en el archivo de datos de trabajo	12
Manejo de valores perdidos	Definición de perdidos	Los valores perdidos definidos por el usuario se tratan como perdidos.
	Casos utilizados	Los estadísticos para cada análisis se basan en casos sin datos perdidos para cualquier variable del análisis.
Sintaxis		ONEWAY CHO BY Proporción /STATISTICS HOMOGENEITY /PLOT MEANS /MISSING ANALYSIS /POSTHOC=TUKEY ALPHA(0.05).
Recursos	Tiempo de procesador	00:00:00.23
	Tiempo transcurrido	00:00:00.16

Prueba de homogeneidad de varianzas

		Estadístico de Levene	gl1	gl2	Sig.
СНО	Se basa en la media	,478	3	8	,707
	Se basa en la mediana	,288	3	8	,833
	Se basa en la mediana y con gl ajustado	,288	3	7,129	,833
	Se basa en la media recortada	,465	3	8	,715

ANOVA

СНО

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	3,907	3	1,302	5,064	,030
Dentro de grupos	2,057	8	,257		
Total	5.964	11			

Pruebas post hoc

Comparaciones múltiples

Variable dependiente: CHO

HSD Tukey

					Intervalo de
(I) Proporción	(J) Proporción	Diferencia de medias (I-J)	Desv. Error	Sig.	Límite inferior
100% SN + 0% P.A.N.	98% SN + 2% P.A.N.	,76000	,41405	,325	-,5659
	96% SN + 4% P.A.N.	1,07000	,41405	,120	-,2559
	94% SN + 6% P.A.N.	1,57333*	,41405	,022	,2474
98% SN + 2% P.A.N.	100% SN + 0% P.A.N.	-,76000	,41405	,325	-2,0859
	96% SN + 4% P.A.N.	,31000	,41405	,875	-1,0159
	94% SN + 6% P.A.N.	,81333	,41405	,276	-,5126
96% SN + 4% P.A.N.	100% SN + 0% P.A.N.	-1,07000	,41405	,120	-2,3959
	98% SN + 2% P.A.N.	-,31000	,41405	,875	-1,6359
	94% SN + 6% P.A.N.	,50333	,41405	,635	-,8226
94% SN + 6% P.A.N.	100% SN + 0% P.A.N.	-1,57333 [*]	,41405	,022	-2,8993
	98% SN + 2% P.A.N.	-,81333	,41405	,276	-2,1393
	96% SN + 4% P.A.N.	-,50333	,41405	,635	-1,8293

Comparaciones múltiples

Variable dependiente: CHO

HSD Tukey

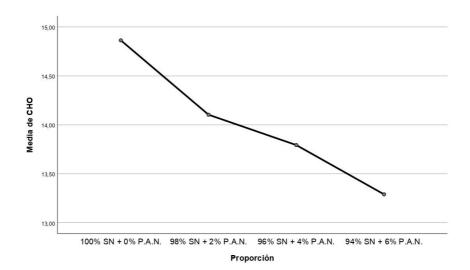
Intervalo de ...

(I) Proporción	(J) Proporción	Límite superior
100% SN + 0% P.A.N.	98% SN + 2% P.A.N.	2,0859
	96% SN + 4% P.A.N.	2,3959
	94% SN + 6% P.A.N.	2,8993
98% SN + 2% P.A.N.	100% SN + 0% P.A.N.	,5659
	96% SN + 4% P.A.N.	1,6359
	94% SN + 6% P.A.N.	2,1393
96% SN + 4% P.A.N.	100% SN + 0% P.A.N.	,2559
	98% SN + 2% P.A.N.	1,0159
	94% SN + 6% P.A.N.	1,8293
94% SN + 6% P.A.N.	100% SN + 0% P.A.N.	-,2474
	98% SN + 2% P.A.N.	,5126
	96% SN + 4% P.A.N.	,8226

^{*.} La diferencia de medias es significativa en el nivel 0.05.

Subconjuntos homogéneos

СНО


HSD Tukey^a

		Subconjunto para alfa = 0.0		
Proporción	Ν	1	2	
94% SN + 6% P.A.N.	3	13,2900		
96% SN + 4% P.A.N.	3	13,7933	13,7933	
98% SN + 2% P.A.N.	3	14,1033	14,1033	
100% SN + 0% P.A.N.	3		14,8633	
Sig.		,276	,120	

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

Gráficos de medias

a. Utiliza el tamaño de la muestra de la media armónica = 3,000.

SERVICIO DE IJECANCA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO – PUNO

SOLICITA FECHA RECEP. : BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA ENS

:01 DE JUNIO DEL 2021 : 02 DE JUNIO DEL 2021

NO. RESP. LAB

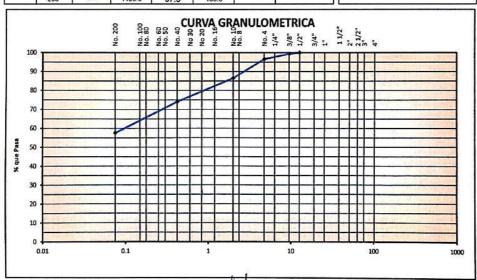
; FJCP.

: H.A.B.

ANALISIS GRANULOMÉTRICO POR TAMIZADO

(Norma MTC E 107 - ASTM D 422)

: KM. 0+ 520 - AV. INDUSTRIAL - SALCEDO


: Suelos Natural + 0 % Adición de Polímero MUESTRA CANTIDAD

: 40 Kg.

CALICATA Nº :C-1, M-1, E-2

PRESENTACIÓN : Saco de Polietileno PROFUNDIDAD : 00:20 - 01:50 m.

-	/	Tamiz	Abertura	Peso	% R	etenido	% que	Especificaciones	Descripción de Muestra
/		ASTM	(mm.)	Retenido	Parcial	Acumulado	Pasa	Especificaciones	Descripcion de Muestra
PIED	RAO	4"	101.600						Peso Inicial : 1949.00 (gr)
CAN	TOS	3*	76.200						Peso Lavado : 826.00 (gr)
7.		2 1/2"	63.500						Peso Perdido : 1123.00 (gr)
	5	2"	50.800						
	GRUESA	1 1/2"	38.100				100		Humedad Natural : 21.43 %
	9	1"	25.400		(- 1/A-2/A 1				LIMITES DE CONSISTENCIA
GRAVA		3/4"	19.050						Limite Liquido : 32.10 %
5		1/2"	12.700			Section Committee	100.0		Limite Plástico : 21.34 %
	3	3/8*	9.525	12.0	0.6	0.6	99.4		I.P : 10.76 %
	FIRE	1/4"	6.350						
		No. 4	4.760	54.0	2.8	3.4	96.6		CLASIFICACION
1	3	No. 8	2.360						AASHTO (ASTM D-3282) : A-6(4)
	GRUESA	No. 10	2.000	196.0	10.1	13.5	86.5		SUCS (ASTM-D-2487) : CL
		No. 16	1.190		ivic-sa				DESCRIPCION DE MUESTRA
	*	No 20	0.834						- Arcilla de baja plasticidad co
٧	MEDIA	No 30	0.600	i nnesina					arena
AREMA		No. 40	0.420	242.0	12.4	25.9	74.1	PARTICIAL PROPERTY OF THE PARTY	PROPIEDADES
<		No. 50	0.300						Grava > 3" :
		No. 60	0.250						Grava : 3.40 %
	YIN'Y	No. 80	0.177						Arena : 39.00 %
	_	No. 100	0.149	(e-trestate to			0.000		Finos : 57.60 %
		No. 200	0.075	322.0	16.5	42.4	57.6	810	100.00 %
		-200	_	1123.0	57.6	100.0		19	

Observaciones

: La Muestra fue Ideptificada, muestreada, etiquetada sto en laboratorio por el Solicitante

JAC LABORATORIOS

Hernan Naca Bailón MOEMERO CIVIL CO M 60780

SERVICIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMENTOS.

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO – PUNO

SOLICITA

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP.

: 01 DE JUNIO DEL 2021

RALIZADO POR : F.J.C.P.

FECHA ENSAYO : 02 DE JUNIO DEL 2021

ING. RESP.LAB : H.Ñ.B.

DETERMINACION DEL CONTENIDO DE HUMEDAD NATURAL

ASTM D 2216 - MTC E-108

Muestra Nº		C-1, M-1, E-2			
Profundidad m.		00:20 - 01:50 m.			
Тагто №		03	04		
Peso del Tarro	gr	24.55	23.90		
Peso del tarro + Suelo Húmedo	gr	264.78	255.32		
Peso del tarro + Suelo Seco	. gr	222.24	214.63		- W
Peso del Agua	gr	42.54	40.69		
Peso del suelo seco	gr	197.69	190.73		
Contenido de Humedad	%	21.52	21.33		
Promedio	8	21.4	3		

Observaciones : La Muestra fue Identificada, muestreada, etiquetada y puesto en laboratorio por el Solicitante

J&C LABORATOR

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASPALTO Y PAYIMENTOS

INFORME DE ENSAYO

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS

RÍGIDOS, SALCEDO – PUNO : BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson SOLICITA

FECHA RECEP. : 01 DE JUNIO DEL 2021 FECHA ENSAYO : 02 DE JUNIO DEL 2021

TESIS

: FJCP. ING. RESP. LAB

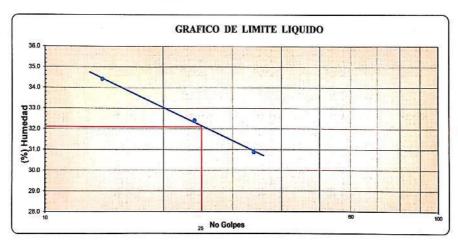
ENSAYO DE CONSTANTES FISICOS

: KM. 0+ 520 - AV, INDUSTRIAL - SALCEDO : C - 1, M - 1, E - 2 : 00:20 - 01:50 m.

CALICATA Nº

: Suelos Natural + 0 % Adición de Polímero

CANTIDAD : 40 Kg.
PRESENTACIÓN : Saco de Polietileno


LIMITE LIQUIDO (MTC E 110 ASTM D - 4318)

Prueba Nro.	01	02	03	
Tarro Nro.	12	16	8	
Peso de la Capsula (gr)	23.74	24.74	22.67	
Peso de la Capsula+Suelo Humedo (gr)	36.54	37.28	37.51	4
Peso de la Capsula+Suelo Seco (gr)	33.52	34.21	33.71	
Peso del agua (g)	3.02	3.07	3.80	
Peso del Suelo Seco (gr)	9.78	9.47	11.04	
Contenido de Humedad (%)	30.88	32.42	34.42	
Numero de Golpes	34	24	14	

LIMITE PLASTICO (MTC E 111 ASTM D - 4318)

Тагго Nro.	35	36	PROMEDIO
Peso de la Capsula (gr)	22.93	25.52	
Peso de la Capsula+Suelo Humedo (gr)	27.95	31.18	
Peso de la Capsula+Suelo Seco (gr)	27.08	30.17	
Peso del Agua (gr)	0.87	1.01	
Peso del Suelo Seco (gr)	4.15	4.65	
Contenido de Humedad (%)	20.96	21.72	21.34

1.1.	32 10	IP . 2	134 10	10.76

nes : La Muestra fue Identificada, muestreada, etiquetada y puesto en laboratorio por el Solicitante

J&C LABORATOR OS FELIPE J. CAREHELFINEDA

Hernan Ñace Bailón INGENIERO CIVIL CIP Nº 89780

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE

PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

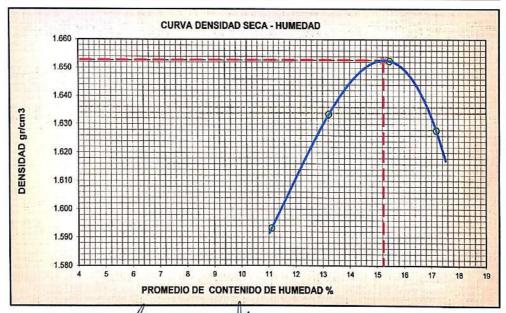
FECHA RECEP. : 01 DE JUNIO DEL 2021 FECHA ENSAYO : 03 DE JUNIO DEL 2021 RALIZADO POR ING. RESP. LAB

: F.J.C.P. ; H.Ń.B.

RELACION HUMEDAD DENSIDAD (PROCTOR MODIFICADO)

(ASTM - 1557 MTC E 115)

PROCEDENCIA : KM. 0+ 520 - AV. INDUSTRIAL - SALCEDO


CALICATA Nº

: C-1, M-1, E-2

MUESTRA CANTIDAD

: Suelos Natural + 0 % Adición de Polímero : 40 Kg.

Metodo de Compactacion				Numero de Capas						
AASHTO T 180 - "C"		56 5								
	CALCU	ILO DE DE	NSIDAD I	HUMEDAI)	3118-7				
Peso suelo húmedo. + molde	gr	970	69	99	38	100	62	10	061	
2. Peso del molde	gr	6000		6000		60	00	60	000	
3. Volumen del molde cc		21	29	21	2129		29	2129		
4. Peso suelo húmedo	gr	37	69	3938		40	62	4061		
5. Densidad suelo húmedo	gr/cc	1.770		1.8	1.850		1.908		1.907	
8.	(CALCULO I	DE HUME	DAD						
6. Capsula Nº		4	3	2	29	7	5	21	14	
7. Peso del suelo húmedo.+ capsula	gr	255.10	266.22	230.06	235.84	249.86	248.05	278.14	243.77	
8. Peso del suelo seco+capsula	gr	232.18	241.84	205.62	211.36	216.23	218.21	241.00	211.44	
9. Peso del agua	gr	22.92	24.38	24.44	24.48	33.63	29.84	37.14	32.33	
10. Peso de la capsula	gr	23.90	24.55	22.32	24.77	23.05	24.00	24.80	23.08	
11. Peso del suelo seco	gr	208.28	217.29	183.30	186.59	216.23	194.21	216.20	188.36	
12. Contenido de humedad	%	11.00	11.22	13.33	13.12	15.55	15.36	17.18	17.16	
12. Promedio de Humedad	%	11.	.11	13	.23	15.	46	17	.17	
	CAL	CULO DE I	DENSIDA	D SECA			o Ed pender			
13. Densidad seca del suelo	gr/cc	1.5	593	1.6	534	1.6	52	1.6	528	
Densidad Máxima gricc		1.653 Humed					15.24%			

Observaciones

: La Muestra fue Intificada, muestreada, etiquerada y puesto en laboratorio por el Solicitante

J&C LABORATORIO

Hernan Naca Bailon

LABORATORIO DE ENSAYO DE MATERIALES SERVICIO DE MEGANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMENTOS.

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE

PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP.

: 01 DE JUNIO DEL 2021

RALIZADO POR

: F.J.C.P.

FECHA ENSAYO

: 04 DE JUNIO DEL 2021

ING. RESP.LAB

: H.Ñ.B.

ENSAYO C. B. R.

(ASTM D-1883)

REFERENCIAS DE LA MUESTRA

ROCEDENCIA

: KM. 0+ 520 - AV. INDUSTRIAL - SALCEDO

MUESTRA

: Suelos Natural + 0 % Adición de Polímero

CALICATA Nº

: C-1, M-1, E-2

: 40 Kg.

: 00:20 - 01:50 m. ROFUNDIDAD

PRESENTACIÓN

: Saco de Polietileno

N°	01		02		03	
N°	05		05		05	
N°	56		25		12	
	Opti. Humedad	Saturado	Opti. Humedad	Saturado	Opti. Humedad	Saturado
	11872	11989	11876	12009	11866	12074
grs.	7851	7851	8097	8097	8288	8288
grs.	4021	4138	3779	3912	3578	3786
C.C.	2120	2120	2108	2108	2112	2112
gr/cc.	1.90	1.95	1.79	1.86	1.69	1.79
%	15.30	17.11	15.39	19.10	15.13	21.17
gr/cc.	1.65	1.67	1.55	1.56	1.47	1.48
N°	06	09	04	- 08	07	17
grs.	228.63	244.09	238.81	235.37	251.19	238.11
grs.	201.32	211.89	210.14	201.26	221.21	200.51
grs.	27.31	32.20	28.67	34.11	29.98	37.60
grs.	22.77	23.65	23.90	22.67	23.05	22.92
grs.	178.55	188.24	186.24	178.59	198.16	177.59
%	15.30	17.11	15.39	19.10	15.13	21.17
%	15.30	17.11	15.39	19.10	15.13	21.17
	N° N° grs. grs. c.c. gr/cc. % gr/cc. N° grs. grs. grs. grs. grs. %	N° 05 N° 56 Opti. Humedad 11872 grs. 7851 grs. 4021 c.c. 2120 gr/cc. 1.90 % 15.30 gr/cc. 1.65 N° 06 grs. 228.63 grs. 201.32 grs. 27.31 grs. 22.77 grs. 178.55 % 15.30	N° 05 N° 56 Opti. Humedad Saturado 11872 11989 grs. 7851 7851 grs. 4021 4138 c.c. 2120 2120 gricc. 1.90 1.95 % 15.30 17.11 gt/cc. 1.65 1.67 N° 06 09 grs. 228.63 244.09 grs. 201.32 211.89 grs. 27.31 32.20 grs. 22.77 23.65 grs. 178.55 188.24 % 15.30 17.11	N° 05 05 N° 56 25 Opti. Humedad Saturado Opti. Humedad 11872 11989 11876 grs. 7851 8097 grs. 4021 4138 3779 c.c. 2120 2120 2108 gricc. 1.90 1.95 1.79 % 15.30 17.11 15.39 grloc. 1.65 1.67 1.55 N° 06 09 04 grs. 228.63 244.09 238.81 grs. 201.32 211.89 210.14 grs. 27.31 32.20 28.67 grs. 22.77 23.65 23.90 grs. 178.55 188.24 186.24 % 15.30 17.11 15.39	N° 05 05 N° 56 25 Opti. Humedad Saturado Opti. Humedad Saturado 11872 11989 11876 12009 grs. 7851 8097 8097 grs. 4021 4138 3779 3912 c.c. 2120 2120 2108 2108 gricc. 1.90 1.95 1.79 1.86 % 15.30 17.11 15.39 19.10 grloc. 1.65 1.67 1.55 1.56 N° 06 09 04 08 grs. 228.63 244.09 238.81 235.37 grs. 201.32 211.89 210.14 201.26 grs. 27.31 32.20 28.67 34.11 grs. 22.77 23.65 23.90 22.67 grs. 178.55 188.24 186.24 178.59 % 15.30 17.11 15.39	N° 05 05 05 N° 56 25 12 Opti. Humedad Saturado Opti. Humedad Saturado Opti. Humedad 11872 11989 11876 12009 11866 grs. 7851 7851 8097 8097 8288 grs. 4021 4138 3779 3912 3578 c.c. 2120 2120 2108 2108 2112 gricc. 1.90 1.95 1.79 1.86 1.69 % 15.30 17.11 15.39 19.10 15.13 grlcc. 1.65 1.67 1.55 1.56 1.47 N° 06 09 04 08 07 grs. 228.63 244.09 238.81 235.37 251.19 grs. 228.63 244.09 238.81 235.37 251.19 grs. 227.31 32.20 28.67 34.11 29.98

DE EXPANCIÓN	1.44
--------------	------

Fecha	cha Hora	Tiempo	Dial	Expansi		Dial	Expansión		Dial	Expansión	
recia	Hola	Петтро	Diai	mm.	%	Diai	mm.	%	Diai	mm.	%
4/6/21	09:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5/6/21	09:00	24.00	0.87	0.87	0.69	0.98	0.98	0.77	1.08	1.08	0.85
6/6/21	09:00	48.00	1.12	1.12	0.88	1.31	1.31	1.03	1.44	1.44	1.13
7/6/21	09:00	72.00	1.66	1.66	1.31	1.69	1.69	1.33	1.76	1.76	1.39
8/6/21	09:00	96.00	1.71	1.71	1.35	1.84	1.84	1.45	1.94	1.94	1.53

PENETRACIÓN

F	Penetraciò	n	Carga	Dial	Carga C	orregida	CBR	Dial	Carga Corregida		CBR	Dial	Carga Corregida		CBR
mm.	Pulg.	Tiempo	Patròn	Diai	Kg	K/cm²	CBR	Diai	Kg	K/cm²	CBR	Diai	Kg	K/cm²	CBr
0	0	0		0	0	0		0	0	0		0	0	0	
0.63	0.025	30 "		4	18	0.9		2	9	0.5		1	4	0.2	
1.27	0.050	1'		8	35	1.8		4	18	0.9		2	9	0.5	
1.90	0.075	1'30"	1	12	52	2.7	- 30	7	31	1.6		3	13	0.7	
2.54	0.100	2'	70	16	70	3.6	5.2	10	44	2.3	3.2	4	18	0.9	1.3
3.17	0.125	3'		19	83	4.3		12	52	2.7		6	26	1.4	120111111111
3.81	0.150	4'	105	24	105	5.4		15	66	3.4	1 3	8	35	1.8	
5.08	0.200	5'		28	122	6.3	THE THE	17	74	3.8		10	44	2.3	
7.62	0.300	6'	133	31	135	7.0		20	87	4.5		13	57	2.9	
10.16	0.400	7		34	149	7.7		22	96	5.0		15	66	3.4	
12.70	0.500	8'	181	37	162	8.4		25	109	5.7		17	74	3.8	
MILLO				CAPAC	IDAD	45 kn	experience in the con-	SOBRE	CARGA	4547 g.	10000	CONST	ANTE	19.33	111111111111111111111111111111111111111

Observaciones : La Muestra fue Identificada, muestreada, etiquetada y puesto en

boratorio por el Solicitante

J&C LABORATORIO

Hernan Nata lation

J&C - LABORATORIOS JR. MANUEL PINO Nº 120 TELF. CEL. 951 882115 - PUNO - PERU LABORATORIO DE ENSAYO DE MATERIALES SERVICIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMENTOS.

GRAFICO C.B.R.

REFERENCIAS DE LA MUESTRA

PROCEDENCIA

; KM. 0+ 520 - AV. INDUSTRIAL - SALCEDO

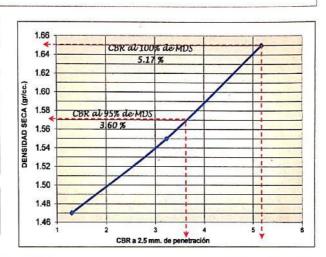
CALICATA Nº

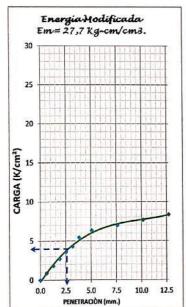
: C-1, M-1, E-2

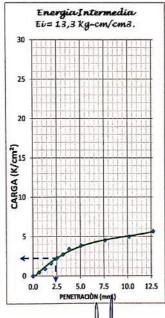
: 00:20 - 01:50 m.

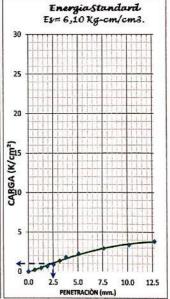
MUESTRA

: Suelos Natural + 0 % Adición de Polímero


: 40 Kg. CANTIDAD


: Saco de Polietileno PRESENTACIÓN


VALORES M.D.S.-O.C.H. Y C.B.R.


MAXIMA DENSIDAD SECA	1.653	gr/c/c.
CONTENIDO DE HUMEDAD OPTIMA	15.24	%
CBR AL 95 % DE SU MDS	3.60	%
CBR AL 100 % DE SU MDS	5.17	%

CLASIFICACI	ON
AASHTO (ASTM D-3282)	A-6(4)
SUCS (ASTM-D-2487)	CI

Observaciones : La Muestra fue Identificada, muestreada, etiquetada y pue en laboratorio por el Solicitante

> J&C LABORATORIO FELIPE J. ERLERES

Hernan Ñata Bailón

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS

RÍGIDOS, SALCEDO - PUNO

SOLICITA : BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson Fecha Recep. : 01 DE JUNIO DEL 2021 RALIZADO POI ING, RESP. LA 1908 P. 1909 P.

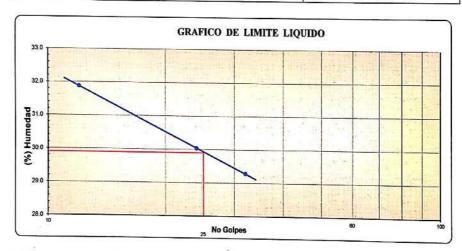
: FJ.C.P. ING, RESP. LAB

ENSAYO DE CONSTANTES FÍSICOS

: KM. 0+ 520 - AV. INDUSTRIAL - SALCEDO : C-1, M-1, E-2 : 00:20 - 01:50 m.

 MUESTRA
 : Suelos Natural + 2 % Adición de Polímero

 CANTIDAD
 : 40 Kg.


 PRESENTACIÓN
 : Saco de Polietileno

CALICATA N° PROFUNDIDAD

LIMITE LIQUIDO (MTC E 110 ASTM D - 4318)									
Prueba Nro.	01	02	03						
Tarro Nro.	12	4	7						
Peso de la Capsula (gr)	23.74	23.90	23.05						
Peso de la Capsula+Suelo Humedo (gr)	35.35	35.59	37.28						
Peso de la Capsula+Suelo Seco (gr)	32.72	32.89	33.84						
Peso del agua (g)	2.63	2.70	3.44						
Peso del Suelo Seco (gr)	8.98	8.99	10.79						
Contenido de Humedad (%)	29.29	30.03	31.88						
Numero de Golpes	32	24	12						

LIMITE PLASTICO (MTC E 111 ASTM D - 4318)								
Tarro Nro.	17	21	PROMEDIO					
Peso de la Capsula (gr)	22.92	24.80						
Peso de la Capsula+Suelo Humedo (gr)	27.98	29.80						
Peso de la Capsula+Suelo Seco (gr)	27.13	28.96						
Peso del Agua (gr)	0.85	0.84						
Peso del Suelo Seco (gr)	4.21	4.16						
Contenido de Humedad (%)	20.19	20.19	20,19					

L.L. : 29.90 I.P. : 20.19 I.P. :	12/07/

etada y puesto en laboratorio por el Solicitante arvaciones : La Muestra fue identific 0

J&C LABORATORIOS FELIPE J. CACERES

Hernan Naca Bailon

SERVICIO DE MECANICA DE SUELOS CONCRETO: ASFALTO Y PAVINGNTOS

INFORME DE ENSAYO

TESIS

POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE

PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA

BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP.

: 01 DE JUNIO DEL 2021 : 03 DE JUNIO DEL 2021 RALIZADO POR

FJCP

FECHA ENSAYO 03 D

ING. RESP. LAB

HAB

RELACION HUMEDAD DENSIDAD (PROCTOR MODIFICADO) (ASTM - 1557 MTC E 115)

PROCEDENCIA

KM 0+ 520 - AV. INDUSTRIAL - SALCEDO

MUESTRA

Suelos Natural + 2 % Adición de Polímero

CALICATA Nº

; C-1, M-1, E-2

CANTIDAD

40 Kg.

PROFUNDIDAD : 00.20 - 01.50 m PRESENTACIÓN : Saco de Polietileno

Metodo de Compactacion	enclus persons		Numero	de Golpes		Numero de Capas				
AASHTO T 180 - "C"		56						5		
	CALC	JLO DE DE	NSIDAD	HUMEDA	0					
1. Peso suelo húmedo. + molde	gr	97	01	9858		9988		10	021	
2. Peso del molde	gr	60	00	60	00	60	00	50	000	
3. Volumen del molde	cc	21	29	2129		21	29	2129		
Peso suelo húmedo	gr	37	01	3858		3988		40	121	
5. Densidad suelo húmedo	1,7	38	1.8	312	1.873		1.889			
	(CALCULO	DE HUME	DAD						
6. Capsula Nº		14	17	14	19	21	40	18	19	
7. Peso del suelo húmedo.+ capsula	gr	235.12	263.65	244.08	267.24	285.71	267.23	284.04	304.21	
8. Peso del suelo seco+capsula	gr	215.88	241.10	219.69	241.11	249 88	236.95	247.88	265.95	
9. Peso del agua	gr	19.24	22.55	24.37	26.13	35.83	30.28	36.16	38.26	
10. Peso de la capsula	gr	23.08	22.92	23.08	24.85	24.80	24.91	24.72	24.85	
11. Peso del suelo seco	gr	192.80	218.18	196.61	216.26	249.88	212.04	223.16	241.10	
12. Contenido de humedad	%	9.98	10.34	12.40	12.08	14.34	14.28	16.20	15.87	
12. Promedio de Humedad	%	10	.16	12	.24	14.	31	18	.04	
	CAL	CULO DE	DENSIDA	D SECA						
13. Densidad seca del suelo	gr/cc	1.5	78	1.6	15	1.6	39	1.0	328	
Densidad Máxima	gricc	1.6	39	1	Humeda	ad optima		14.	68%	

Observaciones

: La Muestra fue Identificada, muestreada, etiquetada y puesto en laboratorio por el Solicitante

JAC LABORATORIOS
FELIPE J. CACIRES PINEDA
Lab. Shobs

Hernan Naca Bailón

LABORATORIO DE ENSAYO DE MATERIALES SERVICIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMENTOS.

INFORME DE ENSAYO

TESIS ; POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE

PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA : BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP. : 01 DE JUNIO DEL 2021 RALIZADO POR : F.J.C.P.
FECHA ENSAYO : 04 DE JUNIO DEL 2021 ING. RESP.LAB : H.Ñ.B.

ENSAYO C. B. R. (ASTM D-1883)

REFERENCIAS DE LA MUESTRA

PROCEDENCIA : KM. 0+ 520 - AV. INDUSTRIAL - SALCEDO MUESTRA : Suelos Natural + 2 % Adición de Polímero

CALICATA N° : C-1, M-1, E-2 CANTIDAD : 40 Kg.

PROFUNDIDAD : 00:20 - 01:50 m. PRESENTACIÓN : Saco de Polietileno

CAPAS Golpes por C Condición Mu Peso suelo h Peso molde Peso suelo h Volumen del Densidad h % de Humed Densidad sec	uestra iùmedo iùmedo	+ molde grs	N°		05	04 05			05				05		
Condición Mu Peso suelo hi Peso molde Peso suelo hi Volumen del Densidad hù % de Humed	uestra iùmedo iùmedo	+ molde grs	N°	-											
Peso suelo h Peso molde Peso suelo h Volumen del Densidad hù % de Humed	iùmedo -	+ molde grs			56				25				12		
Peso molde Peso suelo h Volumen del Densidad hù % de Humed	iùmedo	+ molde grs		Opti. H	umedad	Satu	rado	Opti. H	umedad	Satur	ado	Opti. Hu	ımedad	Satur	ado
Peso suelo h Volumen del Densidad hù % de Humed			3.	12	194	122	62	12	291	124	29	142	12	1440)2
Volumen del Densidad hù % de Humed			grs.	82	25	82	25	85	26	852	6	106		1066	_
Densidad hù % de Humed	5 759		grs.	39	69	40	37	37	65	390)3	35	51	374	1
% de Humed	suelo		C.C.	21	06	210	06	21	16	211	6	212	23	212	3
	imeda	U-C	gr/cc.	1.	88	1.9	92	1.	78	1.8	4	1.6	57	1.70	5
Densidad sec	lad	-121 1/1-2/2	%	14	.63	16.	30	14	.72	17.3	70	14.	59	19.7	6
	ca		gr/cc.	1.	64	1.6	35	1.	55	1.5		1.4	-	1.4	_
Тапо		THE EAST	N°	0	6	10	6		1	20	Edward D	20		01	1 30
Tarro màs su	ielo hùm	iedo	grs.	228	3.62	242	.09	224	1.88	248.	62	236	.12	252.	32
Tarro màs su	uelo seco)	grs.	202	2.35	211	.62	190	3.96	214.		208		214.	
Peso de Agua	ıa		grs.	26	.27	30.	47	279	.92	33.9		27.	0.00	37.8	-
Peso de tarro	0		grs.	22	.77	24.	74	22	.83	22.	56	22.	67	22.8	20010
Peso suelo s	eco		grs.	179	9.58	186	.88	170	3.13	192.	-	186		191.	
% de humeda	ad		%	14	.63	16.		300.00	.72	17.7	330	14.	W155	19.7	
Promedio Hu	ımedad		%	14	.63	16.	30	14	.72	17.	70	14.	59	19.7	6
					% DE E	EXPANO	CIÒN	1.	25						
Facha		Uasa	Tiamna	Ь	ial	Expa	nsión		ial	Expan	sión	Di	al	Expan	sión
Fecha	1	Hora	Tiempo	D	ial	mm.	%	D	iai	mm.	%	_ Di	aı	mm.	%
4/6/21	1	11:00	0.00	0.	00	0.00	0.00	0.	00	0.00	0.00	0.0	00	0.00	0.00
5/6/21	1	11:00	24.00	0.	49	0.49	0.39	0.	71	0.71	0.56	0.9	90	0.90	0.71
6/6/21	1	11:00	48.00	0.	66	0.66	0.52	0.	85	0.85	0.67	1.2	22	1.22	0.96
7/6/21		11:00	72.00	1	35	1.35	1.06	1	48	1.48	1.17	1.6	30	1.60	1.26
8/6/21	-	11:00	96.00		50	1.50	1.18		58	1.58	1.24	1.6		1.68	1.32
	W = 0					200000	NETR			- Alloya - Alloya	24.500	30.00			
Per	netración	, 1	Carga		Carga C				Carga Co	omenida	1	Tay Vi	Cama (Corregida	
	Pulg.	Tiempo	Patròn	Dial	Kg	K/cm²	CBR	Dial	Kg	K/cm²	CBR	Dial	Kg	K/cm²	CBF
0	0	0	T dd on	0	0	0	-	0	0	0		0	0	0	
	0.025	30"		5	22	1.1	-	3	13	0.7	-	1	4	0.2	
	0.050	1'		10	44	2.3		7	31	1.6	-	3	13	0.7	
	0.075	1'30"		14	61	3.2		10	44	2.3		5	22	1.1	
	0.100	2'	70	22	96	5.0	7.1	15	66	3.4	4.8	8	35	1.8	2.6
	0.100	3'	10	26	114	5.0	7.1	17	74	3.8	4.0	11	48	2.5	2.0
	-	4'	105	29	127	6.6	-	20	87	4.5		14	61	3.2	-
	0.150	5'	105	33	-	7.5		-			-	/8/			8
	0.200		400		144	-		22	96	5.0		17	74	3.8	2
	0.300	6'	133	37	162	8.4		25	109	5.7	-	19	83	4.3	
-	0.400	7	-	40	175	9.0		27	118	6.1		21	92	4.7	1
12.70 ANILLO	0.500	8'	181	44 CAPACI	192	9.9 45 kn		31 SOBREC	135	7.0 1547 g.		23 CONSTA	101	5.2 19.33	

Observaciones : La Muestra fue Identificada, muestrada, etiquetada y puesto en latioratorio por el Solicitante

J&C LABORATORIS

FEUPE FOICEDS PINEDA

Lai Syelos

Hernan Nata Hallon INCENIERO CIVIL CENTE NO CANA

J & C - LABORATORIOS JR. MANUEL PINO № 120 TELF. CEL. 951 682115 - PUNO - PERU LABORATORIO DE ENSAYO DE MATERIALES SERVICIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMENTOS.

GRAFICO C.B.R.

REFERENCIAS DE LA MUESTRA

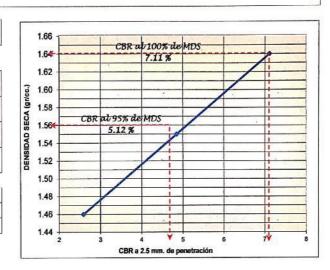
PROCEDENCIA CALICATA N° : KM. 0+ 520 - AV. INDUSTRIAL - SALCEDO

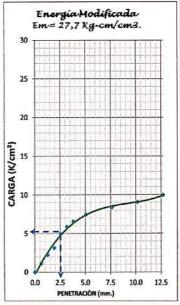
: C-1, M-1, E-2

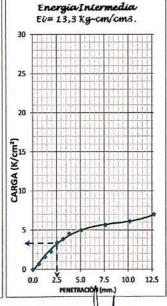
: 00:20 - 01:50 m.

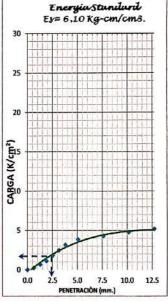
MUESTRA

: Suelos Natural + 2 % Adición de Polímero


CANTIDAD : 40 Kg.


PRESENTACIÓN : Saco de Polietileno


VALORES M.D.S.-O.C.H. Y C.B.R.


	T	
MAXIMA DENSIDAD SECA	1.639	gr/c/c.
CONTENIDO DE HUMEDAD OPTIMA	14.68	%
CBR AL 95 % DE SU MDS	5.12	%
CBR AL 100 % DE SU MDS	7.11	%

CLASIFICACI	ON
AASHTO (ASTM D-3282)	A-4(3)
SUCS (ASTM-D-2487)	CL

Observaciones : La Muestra fue Identificada, muestreada, etiquetada y puesto en laboratorio por el Solicitante

J&C LABORATORIOS FELIPE J. OCERES MEDA

Hernan Ñaca Hailón INGENERO COLL CIP Nº 05/40

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS

RÍGIDOS, SALCEDO - PUNO

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson SOLICITA

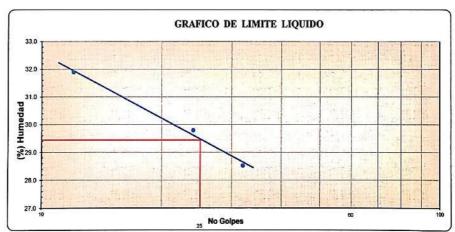
FECHA RECEP. : 01 DE JUNIO DEL 2021 FECHA ENSAYO : 02 DE JUNIO DEL 2021 RALIZADO POR

: FJ.CP. : HÁB.

ENSAYO DE CONSTANTES FÍSICOS

PROCEDENCIA

: KM. 0+ 520 - AV. INDUSTRIAL - SALCEDO : C - 1, M - 1, E - 2 : 00:20 - 01:50 m.


MUESTRA : Suelos Natural + 4 % Adición de Polímero CANTIDAD : 40 Kg. PRESENTACIÓN : Saco de Polietileno

PROFUNDIDAD

LIMI	TE LIQUIDO (MTC E 110	ASTM D - 4318)		
Prueba Nro.	01	02	03	
Tarro Nro.	19	31	12	
Peso de la Capsula (gr)	24.85	24.56	23.74	
Peso de la Capsula+Suelo Humedo (gr)	36.88	36.06	38.09	
Peso de la Capsula+Suelo Seco (gr)	34.21	33.42	34.62	
Peso del agua (g)	2.67	2.64	3.47	
Peso del Suelo Seco (gr)	9.36	8.86	10.88	
Contenido de Humedad (%)	28.53	29.80	31.89	
Numero de Golpes	32	24	12	

LIMITE PLASTICO (MTC E 111 ASTM D - 4318) PROMEDIO Tarro Nro. 24 Peso de la Capsula (gr) 23.21 23.05 28.00 Peso de la Capsula+Suelo Humedo (gr) 27.92 Peso de la Capsula+Suelo Seco (gr) 27.11 27.17 Peso del Agua (gr) 0.81 0.83 Peso del Suelo Seco (gr) 3.90 4.12 20.77 20.15 20,46 Contenido de Humedad (%)

L.L. :	29.44	L.P. : 20.46	I.P. : 8.98

ratorio por el Solicitante ervaciones : La Muestra fue Identificada, r

J&C LABORATORIO

FELIPE J. CACCRES NEDA

Hernan Naca Bailon

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA

; BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP. ; 01 DE JUNIO DEL 2021 FECHA ENSAYO : 03 DE JUNIO DEL 2021

; F.J.C.P. RALIZADO POR

Humedad optima

: H.Ñ.B. ING. RESP. LAB

RELACION HUMEDAD DENSIDAD (PROCTOR MODIFICADO) (ASTM - 1557 MTC E 115)

PROCEDENCIA

: KM. 0+ 520 - AV. INDUSTRIAL - SALCEDO

MUESTRA

: Suelos Natural + 4 % Adición de Polímero

14.26%

CALICATA N°

Densidad Máxima

: C-1, M-1, E-2

CANTIDAD

: 40 Kg.

Metodo de Compactacio	n	1	Numero	de Golpes		S 99	Numero	de Capas	
AASHTO T 180 - "C"				56		1125		5	
	CALCU	JLO DE DE	NSIDAD	HUMEDAI	0	3			
Peso suelo húmedo. + molde	gr	96	17	98	108	99	48	99	88
2. Peso del molde	gr	60	00	60	00	60	00	60	000
3. Volumen del molde	cc	21	29	21	29	21	29	21	29
4. Peso suelo húmedo	gr	36	17	38	108	39	48	39	88
5. Densidad suelo húmedo	gr/cc	1.6	99	1.7	789	1.8	154	1.8	373
		CALCULO I	DE HUME	DAD					
6. Capsula Nº		13	7	22	31	8	10	14	16
7. Peso del suelo húmedo.+ capsula	gr	244.52	261.66	247.21	254.98	263.64	269.89	263.01	298.01
Peso del suelo seco+capsula	gr	226.65	241.96	224.11	231.24	231.66	240.11	231.26	261.47
9. Peso del agua	gr	17.87	19.70	23.10	23.74	31.98	29.78	31.75	36.54
10. Peso de la capsula	gr	24.68	23.05	25.35	24.56	22.67	23.63	23.08	24.74
11. Peso del suelo seco	gr	201.97	218.91	198.76	206.68	231.66	216.48	208.18	236.73
12. Contenido de humedad	%	8.85	9.00	11.62	11.49	13.80	13.76	15.25	15.44
12. Promedio de Humedad	%	8.5	92	11	.55	13.	78	15	.34
	CAL	CULO DE I	DENSIDA	D SECA					
13. Densidad seca del suelo	arice	1.5	60	14	i03	1.6	20	1.0	24

1.631

gr/cc

1.640	H	Ш	Н	П	H	H	Ш	11	H	П		H		T	H	П	H	Ш	Ш	Н	Ш	Ш	П	Ī
1.630				H								H		Ħ						-				
1.620																	/				9	\		
1.610																								
1.600														1	g									1 6 6
1.590													1											
1.580						H						1												
1.570											1													
1.560									e															
1.550	<u>⊞</u>	5	Ш	6	Н	7	H	B	#	9	#	10		11	Ш	12	13	H	14	Ш	15	16		1

: La Muestra fue Identificada, muestreada, etiquetada y puesto en laboratorio por el Solicitante

J&C LABORATORI

Hernan Naca Bailón

INFORME DE ENSAYO

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE TESIS

PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

SOLICITA : F.J.C.P. RALIZADO POR : 01 DE JUNIO DEL 2021 FECHA RECEP. ING. RESP.LAB : H.A.B. : 04 DE JUNIO DEL 2021

FECHA ENSAYO ENSAYO C. B. R.

(ASTM D-1883)

REFERENCIAS DE LA MUESTRA

: Suelos Natural + 4 % Adición de Polimero : KM. 0+ 520 - AV. INDUSTRIAL - SALCEDO MUESTRA PROCEDENCIA

: 40 Kg. CANTIDAD : C-1, M-1, E-2 CALICATA Nº

: Saco de Polietileno PRESENTACIÓN : 00:20 - 01:50 m. ROFUNDIDAD

101.55	N°	07		08		09	
MOLDE	N°	05		05		05	
CAPAS	N°	56		25		12	
Solpes por Capa	N		O-1da	Opti. Humedad	Saturado	Opti. Humedad	Saturado
Condición Muestra		Opti, Humedad	Saturado		12030	11790	11999
Peso suelo húmedo + molde grs.		11968	12101	11877		8241	8241
Peso molde	grs.	8012	8012	8126	8126		
Peso suelo húmedo	grs.	3956	4089	3751	3904	3549	3758
Volumen del suelo	C.C.	2119	2119	2131	2131	2133	2133
	gr/cc.	1.87	1.93	1.76	1.83	1.66	1.76
Densidad hùmeda	% %	14.24	17.35	14.38	18.27	14.18	19.70
% de Humedad			1.64	1.54	1.55	1.46	1.47
Densidad seca	gr/cc.	24	26	06	05	09	11
Тапо	N°			262.82	269.12	266.86	296.21
Tarro más suelo húmedo	grs.		278.43		231.25	236.65	251.21
Tarro màs suelo seco	grs.		240.62	232.64	37.87	30.21	45.00
Peso de Agua	grs.	29.80	37.81	30.18			22.83
Peso de tarro	grs.	23.21	22.67	22.77	24.00	23.65	
Peso suelo seco	grs.	209.31	217.95	209.87	207.25	213.00	228.38
% de humedad	%		17.35	14.38	18.27	14.18	19.70
Promedio Humedad	%	14.24	17.35	14.38	18.27	14.18	19.70
1 (dilicate i iasaas		% DE E	XPANCIÒN	1.16			
				and the same of th			

	1			Expa	nsión	Dial	Expan	sión	Dial	Expar	nsión
Fecha	Hora	Tiempo	Dial	mm,	%	Diai	mm.	%	Diai	mm.	%
4/6/21	12:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5/6/21	12:20	24.00	0.60	0.60	0.47	0.72	0.72	0.57	1.12	1.12	0.88
6/6/21	12:20	48.00	0.87	0.87	0.69	1.23	1.23	0.97	1.44	1.44	1.13
7/6/21	12:20	72.00	1.10	1.10	0.87	1.38	1.38	1.09	1.58	1.58	1.24
8/6/21	12:20	96.00	1.32	1.32	1.04	1.45	1.45	1.14	1.64	1.64	1.29

PENETRACIÓN

D	enetraciòn		Carga		Carga C	опедіда		Diel	Carga Co	orregida	CBR	Dial	Carga C	corregida	CBF
	Pulg.	Tiempo	Patròn	Dial	Kg	K/cm²	CBR	Dial	Kg	K/cm²	CDR	Diai	Kg	K/cm²	ODI
mm.	O .	0	1 auon	0	0	0		0	0	0		0	0	0	
0.63	0.025	30 "		6	26	1.4		4	18	0.9		1	4	0.2	
1.27	0.050	1'		12	52	2.7		9	39	2.0		5	22	1.1	
1.90	0.075	1'30"		17	74	3.8	an a same /	12	52	2.7		7	31	1.6	
2.54	0.100	2'	70	26	114	5.9	8.4	16	70	3.6	5.2	9	39	2.0	2.9
3.17	0.125	3'		29	127	6.6		19	83	4.3		13	57	2.9	
3.81	0.150	4'	105	31	135	7.0		22	96	5.0		16	70	3.6	
5.08	0.200	5'		36	157	8.1		24	105	5.4		19	83	4.3	
7.62	0.300	6'	133	41	179	9.3		28	122	6.3		21	92	4.7	Jun-200
10.16	0.400	7		44	192	9.9		30	131	6.8		23	101	5.2	
12.70	0.500	8'	181	47	205	10.6		33	144	7.5		25	109	5.7	
ANILLO				CAPAC	CIDAD	45 kn				4547 g.		CONST	ANTE	19.33	-

este en laboratorio por el Solicitante Observaciones : La Muestra fue Identificada, muestra

J&C LABORATORIO

J & C - LABORATORIOS JR. MANUEL PINO Nº 120 TELF. CEL. 951 682115 - PUNO - PERU

LABORATORIO DE ENSAYO DE MATERIALES SERVICIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMENTOS.

GRAFICO C.B.R.

REFERENCIAS DE LA MUESTRA

: KM. 0+ 520 - AV. INDUSTRIAL - SALCEDO

CALICATA Nº

ROFUNDIDAD

: 00:20 - 01:50 m.

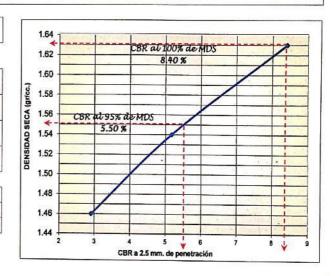
: C-1, M-1, E-2

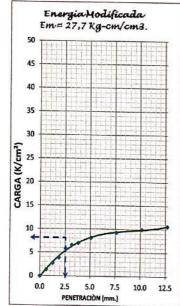
MUESTRA

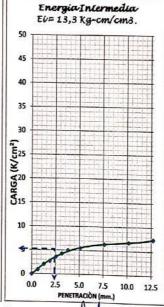
: Suelos Natural + 4 % Adición de Polímero

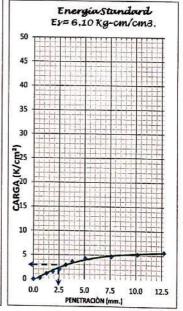
CANTIDAD

: 40 Kg.


PRESENTACIÓN


: Saco de Polietileno


VALORES M.D.S.-O.C.H. Y C.B.R.


MAXIMA DENSIDAD SECA	4 004	
MAXIMA DENSIDAD SECA	1.631	gr/c/c
CONTENIDO DE HUMEDAD OPTIMA	14.26	%
CBR AL 95 % DE SU MDS	5.50	%
CBR AL 100 % DE SU MDS	8.40	%

CLASIFICACI	ION
AASHTO (ASTM D-3282)	A-4(3)
SUCS (ASTM-D-2487)	CL

Observaciones : La Muestra fue Identificada este en laboratorio por el Solicitante J&C LABORATORIO

FEUPE J. CACERES PINEDA

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASPALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS

RÍGIDOS, SALCEDO - PUNO

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP. : 01 DE JUNIO DEL 2021
FECHA ENSAYO : 02 DE JUNIO DEL 2021

; FJCP. ; H.A.B.

ING. RESP. LAB

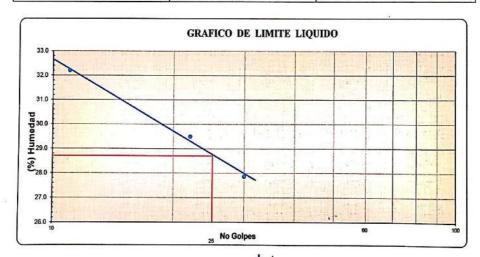
ENSAYO DE CONSTANTES FISICOS

: KM. 0+ 520 - AV. INDUSTRIAL - SALCEDO : C - 1, M - 1, E - 2 : 00:20 - 01:50 m. PROCEDENCIA

 MUESTRA
 : Suelos Natural + 6 % Adición de Polímero

 CANTIDAD
 : 40 Kg.

 PRESENTACIÓN
 : Saco de Polietileno


CALICATA N° PROFUNDIDAD

LIMITE LIQUIDO (MTC E 110 ASTM D - 4318)

Prueba Nro.	01	02	03	
Tarro Nro.	17	15	4	
Peso de la Capsula (gr)	22.92	22.06	23.90	
Peso de la Capsula+Suelo Humedo (gr)	37.42	37.03	37.94	
Peso de la Capsula+Suelo Seco (gr)	34.26	33.62	34.52	
Peso del agua (g)	3.16	3.41	3.42	
Peso del Suelo Seco (gr)	11.34	11.56	10.62	
Contenido de Humedad (%)	27.87	29.50	32.20	
Numero de Golpes	30	22	11	

LIMITE PLASTICO (MTC E 111 ASTM D - 4318) Tarro Nro. 12 PROMEDIO Peso de la Capsula (gr) 23.19 23.74 Peso de la Capsula+Suelo Humedo (gr) 27.02 27.89 Peso de la Capsula+Suelo Seco (gr) 26.36 27.19 Peso del Agua (gr) 0.66 0.70 Peso del Suelo Seco (gr) 3.17 3.45 Contenido de Humedad (%) 20.82 20.29 20.56

L.L. :	28.70	L.P. : 20.56	I.P. :	8.14

Observaciones : La Muestra fue Identificada, muestreada, etiquetada y puesto en labora prio por el Solicitante.

J&C LABORATORIOS

FELIPE J. PATERES PINEDA

Hernan Wara Bailon

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE

PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA

BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP. : 01 DE JUNIO DEL 2021 FECHA ENSAYO : 03 DE JUNIO DEL 2021 RALIZADO POR ING. RESP. LAB

; F.J.C.P.

: H.Ñ.B.

RELACION HUMEDAD DENSIDAD (PROCTOR MODIFICADO) (ASTM - 1557 MTC E 115)

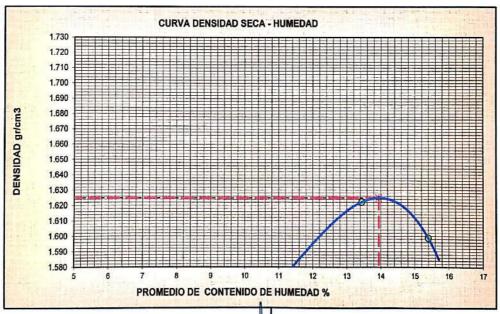
PROCEDENCIA

: KM. 0+ 520 - AV. INDUSTRIAL - SALCEDO

MUESTRA

: Suelos Natural + 6 % Adición de Polimero

CALICATA Nº


: C-1, M-1, E-2

CANTIDAD

: 40 Kg.

PROFUNDIDAD

Metodo de Compactacion			Numero	de Golpes			Numero	de Capas		
AASHTO T 180 - "C"				56				5		
	CALC	JLO DE DE	NSIDAD	HUMEDAI)					
Peso suelo húmedo. + molde	gr	95	888	97	35	99	18	99	28	
Peso del molde	gr	60	000	60	000	60	00	60	00	
Volumen del molde	CC	21	29	21	29	21	29	21	29	
Peso suelo húmedo	gr	35	88	37	35	39	18	39	28	
5. Densidad suelo húmedo	gr/cc	1.6	585	1.7	754	1.8	140	1.8	1.845	
	(CALCULO	DE HUME	DAD						
6. Capsula Nº		6	9	12	18	12	14	32	33	
7. Peso del suelo húmedo.+ capsula	gr	252.92	261.34	265.52	253.39	294.92	260.22	286.83	297.99	
Peso del suelo seco+capsula	gr	233.64	241.25	241.13	230.15	260.14	231.99	251.52	261.25	
9. Peso del agua	gr	19.28	20.09	24.39	23.24	34.78	28.23	35.31	36.74	
10. Peso de la capsula	gr	22.77	23.65	23.74	24.72	23.74	23.08	22.60	22.21	
11. Peso del suelo seco	gr	210.87	217.60	217.39	205.43	260.14	208.91	228.92	239.04	
12. Contenido de humedad	%	9.14	9.23	11.22	11.31	13.37	13.51	15.42	15.37	
12. Promedio de Humedad	%	9.	19	11	.27	13.	.44	15	.40	
	CAL	CULO DE	DENSIDA	D SECA						
13. Densidad seca del suelo	gr/cc	1.5	543	1.5	577	1.6	22	1.6	599	
Densidad Máxima	gr/cc	1.6	25	1	Humeda	d optima	1	13.9	95%	

sto en laboratorio por el Solicitante.

J&C LABORATORIO

Hernan IVaca Bailón

LABORATORIO DE ENSAYO DE MATERIALES SERVICIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMENTOS.

INFORME DE ENSAYO

; POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE TESIS

PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA : BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP. : 01 DE JUNIO DEL 2021 RALIZADO POR : F.J.C.P.

: 04 DE JUNIO DEL 2021 FECHA ENSAYO ING. RESP.LAB : H.Ñ.B.

ENSAYO C. B. R.

(ASTM D-1883)

REFERENCIAS DE LA MUESTRA

PROCEDENCIA : KM. 0+ 520 - AV. INDUSTRIAL - SALCEDO : Suelos Natural + 6 % Adición de Polímero MUESTRA CALICATA Nº : C-1, M-1, E-2 CANTIDAD : 40 Kg.

MOLDE		N°	10			11			12		1000	
CAPAS		N°	05			05	05					
Golpes por Capa		N°	56			25			12			
Condición Muestr	а		Opti. Humedad	Satu	ırado	Opti. Humedad	Satu	rado	Opti. Humedad	Satu	rado	
Peso suelo hùme	do + molde g	rs.	12062	12145		11794	11944		11556	117	-	
Peso molde		grs.	8089	80	89	8102	8102		8044	80-		
Peso suelo hùme	do	grs.	3973	40)56	3692	384	12	3512	370		
Volumen del suelo		c.c.	2148	21	48	2110	21	10	2138	21:		
Densidad hùmed	а	gr/cc.	1.85	1.	89	1.75	1.82		1.64	1.7	73	
% de Humedad		%	13.99	16	.07	14.29	18.24		13.96	19.70		
Densidad seca	50	gr/cc.	1.62	1.63		1.53	1.54		1.44	1.45		
Тагго		N°	14	1	6	34	3		35	42		
Tarro más suelo h		grs.	295.83	291	1.10	266.82	305.68		272.14	294.12		
Tarro más suelo s	3		262.35	254.23		236.24	262.32		241.62	249.65		
Peso de Agua	3.0.		33.48	36.87		30.58	43.36		30.52	44.47		
Peso de tarro	e tarro grs.		23.08	24.74		22.17	24.	56	22.93	23.87		
Peso suelo seco		grs.	239.27	229.49		214.07	237	.76	218.69	225.78		
% de humedad		%	13.99	16.07		14.29	18.24		13.96	19.70		
Promedio Humeda	ad	%	13.99	16.07		14.29	18.24		13.96	the state of the s		
			% DE E	XPAN	CIÒN	1.07						
Fecha	Hora	Tiempo	Dial	Expa	nsión	Dial	Expar	sión	D. 1	Expar	nsión	
			2.01	mm.	%	Dial	mm.	%	Dial	mm.	%	
4/6/21	02:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
5/6/21	02:30	24.00	0.54	0.54	0.43	0.76	0.76	0.60	0.98	0.98	0.77	
6/6/21	02:30	48.00	0.72	0.72	0.57	0.95	0.95	0.75	1.03	1.03		
7/6/21	02:30	72.00	1.04	1.04	0.82	1.15	1.15	0.75		1000000	0.81	
8/6/21	02:30	96.00	1.29	1.29	1.02	1.35	1.35	1.06	1.36	1.36	1.07	
					ENETR		1.33	1.00	1.44	1.44	1.13	

			00.00	-	.2.0	1.20	1.02	1	.35	1.35	1.06	1.	44	1.44	1.13
						PE	NETR	ACIÒN							
Penetración		Carga	Dial	Carga C	опедіда	CBR	Dist	Carga C	orregida		0.0000000	Cama (Corregida		
mm.	Pulg.	Tiempo	Patròn	Diai	Kg	K/cm²	CDK	Dial	Kg	K/cm²	CBR	Dial	Kg	K/cm²	CBF
0	0	0		0	0	0		0	0	0		0	0	0	
0.63	0.025	30 "		5	22	1.1		2	9	0.5		1	4	0.2	
1.27	0.050	1'		14	61	3.2		7	31	1.6	-	3	13	0.2	
1.90	0.075	1'30"		20	87	4.5		11	48	2.5		5	22	1.1	
2.54	0.100	2'	70	24	105	5.4	7.8	15	66	3.4	4.8	6	26		4.5
3.17	0.125	3'		30	131	6.8		18	79	4.1	4.0	8		1.4	1.9
3.81	0.150	4'	105	35	153	7.9		21	92	4.7	-	11	35	1.8	_
5.08	0.200	5'		40	175	9.0		25	109	5.7		_	48	2.5	-
7.62	0.300	6'	133	45	197	10.2		28	122	6.3		16	70	3.6	-

4.3 10.16 0.400 49 214 11.1 32 140 7.2 22 96 5.0 12.70 0.500 8' 54 236 12.2 35 153 7.9 26 114 5.9 CAPACIDAD SOBRECARGA 4547 g. CONSTANTE 19.33

J&C LABORATOR

Observaciones : La Muestra fue Identificada

uestreada, etiquetada y

en laboratorio por el Solicitante

BS PINEDA FELIPE L

Hernan Nava **Failón** INGENIERO CIVIL CIP IN COLVE

GRAFICO C.B.R.

REFERENCIAS DE LA MUESTRA

CALICATA Nº

: KM. 0+ 520 - AV. INDUSTRIAL - SALCEDO

: C-1, M-1, E-2

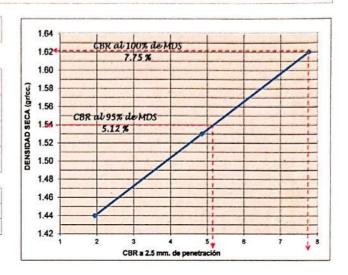
PROFUNDIDAD

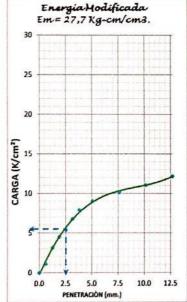
: 00.20 - 01:50 m.

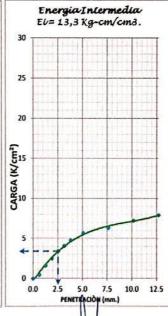
MUESTRA

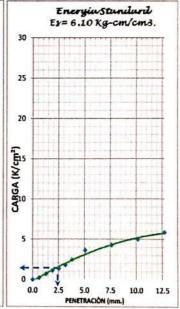
PRESENTACIÓN

: Suelos Natural + 6 % Adición de Polímero


40 Kg. CANTIDAD


: Saco de Polietileno


VALORES M.D.S.-O.C.H. Y C.B.R.


MAXIMA DENSIDAD SECA	1.625	gr/c/c.
CONTENIDO DE HUMEDAD OPTIMA	13.95	%
CBR AL 95 % DE SU MDS	5.12	%
CBR AL 100 % DE SU MDS	7.75	%

CLASIFICACI	ON
AASHTO (ASTM D-3282)	A-4(2)
SUCS (ASTM-D-2487)	CL

Observaciones : La Muestra fue Identificada muestreada, etiquetada y J&C LABORATORIO

RELIPE J. CACERES INEDA

to en laboratorio por el Solicitante.

Hernan Na

ailón

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN

SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP.

: 01 DE JUNIO DEL 2021

RALIZADO POR

: F.J.C.P.

FECHA ENS

: 02 DE JUNIO DEL 2021

ING. RESP. LAB

: H.Ñ.B.

ANALISIS GRANULOMÉTRICO POR TAMIZADO (Norma MTC E 107 - ASTM D 422)

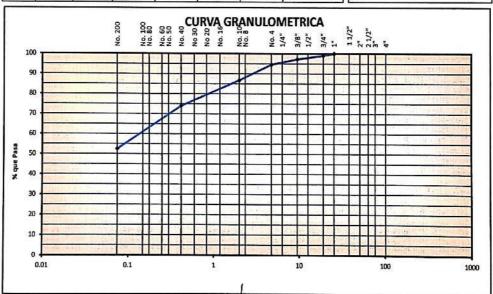
PROCEDENCIA

: KM. 0+750 - AV. INDUSTRIAL - SALCEDO

MUESTRA

: Suelos Natural + 0 % Adición de Polímero

CALICATA Nº


:C-2, M-1, E-2

CANTIDAD : 45 Kg.

PROFUNDIDAD : 00:20 - 01:50 m. PRESENTACIÓN : Saco de Polietileno

8	7	Tamiz	Abertura	Peso	% R	etenido	% que	F
/	ASTM		(mm.)	Retenido	Parcial	Acumulado	Pasa	Especificaciones
PIED	RAO	4"	101.600	9=	1000			
CAN	TOS	3*	76.200					19:17
	100	2 1/2"	63.500					
	5	2*	50.800			a commence de		
	GRUESA	1 1/2"	38.100					
GRAVA	9	1*	25.400				100.0	
		3/4"	19.050	14.0	0.9	0.9	99.1	
		1/2"	12.700	Some residential				
	FINA	3/8"	9.525	28.0	1.9	2.8	97.2	
	Ē	1/4"	6.350					
		No. 4	4.760	38.0	2.6	5.4	94.6	
	GRUESA	No. 8	2.360		TOTAL SECTION AND ADDRESS OF THE PARTY.			- Carrier Signature
	GRU	No. 10	2.000	118.0	7.9	13.3	86.7	
		No. 16	1.190					
	MEDIA	No 20	0.834					
5	¥	No 30	0.600			s reserve to the second		
ARENA		No. 40	0.420	188.0	12.7	26.0	74.0	
1	- 13	No. 50	0.300				20-2-20-	A SOCIETY OF THE
		No. 60	0.250					W 49:
	FINA	No. 80	0.177				-	
	-	No. 100	0.149				-	
		No. 200	0.075	320.0	21.5	47.5	52.5	
		-200	_	780.0	52.5	100.0		

Peso Inicial		1486.00	(gr)
Peso Lavado	-	706.00	(gr)
Peso Perdido	ASIFICAC	780.00	(gr)
r cao r croido	ě	700.00	19.7
Humedad Natural	:	19.36	%
LIMITES DE C	ONS	ISTENCIA	
Limite Liquido	3	30.80	%
Limite Plastico	:	23.17	%
l.P		7.63	%
CLASIF	CAC	ION	
AASHTO (ASTM D-3282)	:	A-4(2)	
SUCS (ASTM-D-2487)	:	ML	
DESCRIPCION	DE	MUESTRA	
- Limo con arena			
PROPIE	DAI	DES	
Grava > 3"	2		
Grava	:	5.40	%
Arena	:	42.10	%
Finos	:	52.50	%
		100.00	%

Observaciones

: La Muestra fue Identificada puesto en laboratorio por el Solicitante

J&C LABORATORIOS

FELIPE J. CATERES PINEDA Lab. Surios

Hernan Ñaca Bailón

J&C - LABORATORIOS JR. MANUEL PINO Nº 120 CEL 951 682115 - PUNO - PERU

LABORATORIO DE ENSAYO DE MATERIALES

SERVICIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMENTOS.

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO – PUNO

SOLICITA

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP.

: 01 DE JUNIO DEL 2021

RALIZADO POR : F.J.C.P.

FECHA ENSAYO

: 02 DE JUNIO DEL 2021

: H.Ñ.B. ING. RESP.LAB

DETERMINACION DEL CONTENIDO DE HUMEDAD NATURAL

ASTM D 2216 - MTC E-108

Muestra №	C-2, M-	1, E-2			
Profundidad m.		00:20 - 0	1:50 m.		
Tarro N°		06	21		
Peso del Tarro	gr	22.77	24.80	-	
Peso del tarro + Suelo Húmedo	gr	248.79	285.90		
Peso del tarro + Suelo Seco	gr	212.07	243.61		
Peso del Agua	gr	36.72	42.29		
Peso del suelo seco	gr	189.30	218.81		
Contenido de Humedad	%	19.40	19.33		
Promedio		19.30	6		

Observaciones : La Muestra fue Identificada, muestreada, etiquetada y puesto en laboratorio por el Solicitante

J&C LABORATORYOS

BEFFYICKO DE MEGANIGA DE BUELOS CONCRETO, ASPALTO Y PAVIMENTOS

INFORME DE ENSAYO

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO – PUNO

BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson
RALIZADO PO

SOLICITA

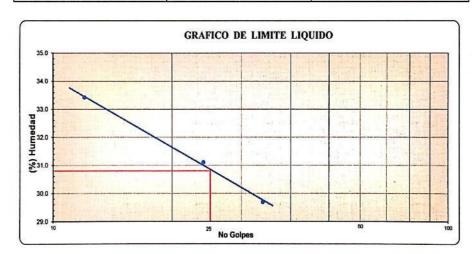
: 01 DE JUNIO DEL 2021 : 02 DE JUNIO DEL 2021 FECHA ENSAYO

ING. RESP. LAB

: FJCP. : HAB

ENSAYO DE CONSTANTES FÍSICOS

PROCEDENCIA CALICATA Nº


: KM. 0+750 - AV. INDUSTRIAL - SALCEDO : C - 2, M - 1, E - 2 : 00:20 - 01:50 m.

MUESTRA : Suelos Natural + 0 % Adición de Polímero cantidad : 45 Kg.
PRESENTACIÓN : Saco de Polietileno

LIMITE LIQUIDO (MTC E 110 ASTM D - 4318)									
Prueba Nro.	01 0		03						
Tarro Nro.	14	1	26						
Peso de la Capsula (gr)	23.08	22.89	22.67						
Peso de la Capsula+Suelo Humedo (gr)	36.75	36.42	38.12						
Peso de la Capsula+Suelo Seco (gr)	33.62	33.21	34.25						
Peso del agua (g)	3.13	3.21	3.87						
Peso del Suelo Seco (gr)	10.54	10.32	11.58						
Contenido de Humedad (%)	29.70	31.10	33.42						
Numero de Golpes	34	24	12						

LIMITE PLASTICO (MTC E 111 ASTM D - 4318)								
Tarro Nro.	29	24	PROMEDIO					
Peso de la Capsula (gr)	24.77	23.21						
Peso de la Capsula+Suelo Humedo (gr)	29.38	28.06						
Peso de la Capsula+Suelo Se∞ (gr)	28,52	27.14						
Peso del Agua (gr)	0.86	0.92						
Peso del Suelo Seco (gr)	3.75	3.93						
Contenido de Humedad (%)	22.93	23.41	23.17					

1 .	30.80	li D	. 22 47	I I D	7 62

J&C LABORATORIOS

Hernan Nica Ballon Noemeno Savil Cap ni 107 so

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASPALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA

BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

CAL

cc

gr

gr/cc

FECHA RECEP.

: 01 DE JUNIO DEL 2021

RALIZADO POR ING. RESP. LAB : F.J.C.P.

FECHA ENSAYO : 03 DE JUNIO DEL 2021

: H.Ñ.B.

RELACION HUMEDAD DENSIDAD (PROCTOR MODIFICADO) (ASTM - 1557 MTC E 115)

PROCEDENCIA

: KM, 0+750 - AV, INDUSTRIAL - SALCEDO

Metodo de Compactacion AASHTO T 180 - "C"

MUESTRA

: Suelos Natural + 0 % Adición de Polímero

Numero de Capas

CALICATA Nº

: C-2, M-1, E-2

CANTIDAD

: 45 Kg. : Saco de Polietileno

PROFUNDIDAD : 00:20 - 01:50 m.

1. Peso suelo húmedo. + molde 2. Peso del molde 3. Volumen del mold

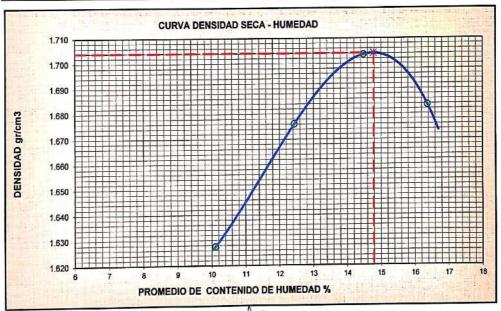
4. Peso suelo húmedo

5 Densidad suelo húmedo

PRESENTACIÓN

Numero de Golpes

		77		
CUL	DE DENSIDAD	HUMEDAD		
	9815	10012	10152	10171
٦ŀ	6000	6000	6000	6000
11	2129	2129	2129	2129
٦ŀ	3815	4012	4152	4171


CALCULO DE HUMEDAD

6. Capsula Nº	
7. Peso del suelo húmedo.+ capsula	gr
8. Peso del suelo seco+capsula	gr
9. Peso del agua	gr
10. Peso de la capsula	gr
11. Peso del suelo seco	gr
12. Contenido de humedad	%
12. Promedio de Humedad	%

7	31	25	27	13	6	8	10	
234.87	233.00	234.56	257.82	266.89	276.86	275.44	281.17	
215.62	213.68	211.14	232.21	233.25	244.62	239.95	244.87	
19.25	19.32	23.42	25.61	33.64	32.24	35.49	36.30	
23.05	24.56	23.95	24.94	24.68	22.77	22.67	23.63	
192.57	189.12	187.19	207.27	233.25	221.85	217.28	221.24	
10.00	10.22	12.51	12.36	14.42	14.53	16.33	16.41	
10.11		12	.43	14.	48	16.37		

CALCULO DE DENSIDAD SECA

13. Densidad seca del suelo	gr/cc	1.627	1.676	1.704	1.684
Deneidad Mávima	aricc	1.704	Humedad opti	ma	14.78%

Observaciones

uesto en laboratorio por el Solicitante : La Muestra fue Identificada, muestreada, etiquetada y

J&C LABORATORIO

FELIPE J. CACERE

Hernan Naca Bailón

PROCEDENCIA

LABORATORIO DE ENSAYO DE MATERIALES SERVICIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMENTOS.

INFORME DE ENSAYO

; POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE TESIS PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA : BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP. : 01 DE JUNIO DEL 2021 RALIZADO POR : F.J.C.P. FECHA ENSAYO : 08 DE JUNIO DEL 2021 ING. RESP.LAB : H.Ñ.B.

ENSAYO C. B. R.

REFERENCIAS DE LA MUESTRA

(ASTM D-1883)

: KM. 0+750 - AV. INDUSTRIAL - SALCEDO : Suelos Natural + 0 % Adición de Polímero

CALICATA Nº : C-2, M-1, E-2 CANTIDAD : 45 Kg.

ROFUNDIDAD : 00:20 - 01:50 m. PRESENTACIÓN : Saco de Polietileno

MOLDE	N°	01		02		03		
CAPAS	N°	05	X.	05		05		
Golpes por Capa	N°	56		25		12		
Condición Muestra		Opti. Humedad	Saturado	Opti. Humedad	Saturado	Opti. Humedad	Saturado	
Peso suelo hùmedo + molde grs.		11986	12104	12002	12168	11967	12141	
Peso molde	grs.	7851	7851	8097	8097	8288	8288	
Peso suelo hùmedo	grs.	4135	4253	3905	4071	3679	3853	
Volumen del suelo	C.C.	2120	2120	2108	2108	2112	2112	
Densidad hùmeda	gr/cc.	1.95	2.01	1.85	1.93	1.74	1.82	
% de Humedad	%	14.81	16.99	14.64	18.39	14.90	19.78	
Densidad seca	gr/cc.	1.70	1.71	1.62	1.63	1.52	1.52	
Тагто	N°	18	12	10	17	03	06	
Tarro más suelo húmedo	grs.	274.13	243.29	249.11	269.57	237.99	278.91	
Tarro más suelo seco	grs.	241.96	211.41	220.31	231.25	210.31	236.61	
Peso de Agua	grs.	32.17	31.88	28.80	38.32	27.68	42.30	
Peso de tarro	grs.	24.72	23.74	23.63	22.92	24.55	22.77	
Peso suelo seco	grs.	217.24	187.67	196.68	208.33	185.76	213.84	
% de humedad	%	14.81	16.99	14.64	18.39	14.90	19.78	
Promedio Humedad	%	14.81	16.99	14.64	18.39	14.90	19.78	

Fecha	Hora	Tiempo	Dial	Expa	nsión	Dial	Expar	nsión	Dial	Expar	nsión
		пошро	Olai	mm.		Diai	mm.	%	Diai	mm.	%
8/6/21	10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9/6/21	10:00	24.00	0.79	0.79	0.62	0.92	0.92	0.72	0.94	0.94	0.74
10/6/21	10:00	48.00	1.02	1.02	0.80	1.24	1.24	0.98	1.34	1.34	1.06
11/6/21	10:00	72.00	1.56	1.56	1.23	1.57	1.57	1.24	1.72	1.72	1.35
12/6/21	10:00	96.00	1.64	1.64	1.29	1.79	1.79	1.41	1.88	1.88	1.48

PENETRACIÓN

F	Penetraciò	n	Carga	Dial	Carga C	orregida	CBR	Dial	Carga Co	orregida	CDD	Dist	Carga C	опедіda	
mm.	Pulg.	Tiempo	Patròn	Diai	Kg	K/cm²	CDIC	Diai	Kg	K/cm²	CBR	Dial	Kg	K/cm²	CBR
0	0	0		0	0	0		0	0	0		0	0	0	
0.63	0.025	30 "		5	22	1.1	THE PARTY OF	3	13	0.7		1	4	0.2	
1.27	0.050	1'		9	39	2.0		4	18	0.9	1	2	9	0.5	
1.90	0.075	1'30"		14	61	3.2		7	31	1.6		3	13	0.7	-
2.54	0.100	2"	70	17	74	3.8	5.5	10	44	2.3	3.2	4	18	0.9	1.3
3.17	0.125	3'		21	92	4.7		13	57	2.9		6	26	1.4	1.0
3.81	0.150	4'	105	24	105	5.4		16	70	3.6		9	39	2.0	
5.08	0.200	5'		28	122	6.3		19	83	4.3		12	52	2.7	_
7.62	0.300	6'	133	31	135	7.0	S/IC SHEES	22	96	5.0		15	66	3.4	
10.16	0.400	7		34	149	7.7		25	109	5.7		17	74	3.8	
12.70	0.500	8'	181	37	162	8.4	30.000 T. E.	27	118	6.1		19	83	4.3	
ANILLO		us prins		CAPAC	IDAD	45 kn		SOBREC		547 g.		CONST		19.33	

Observaciones : La Muestra fue Identificada, muestreada, etiquetada y puesto en laboratorio por el Solicitante

J&C LABORATOR S

J & C - LABORATORIOS JR. MANUEL PINO № 120 TELF. CEL. 951 682115 - PUNO - PERU

LABORATORIO DE ENSAYO DE MATERIALES SERVICIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMENTOS.

C.B.R. GRAFICO

REFERENCIAS DE LA MUESTRA

; KM. 0+750 - AV. INDUSTRIAL - SALCEDO

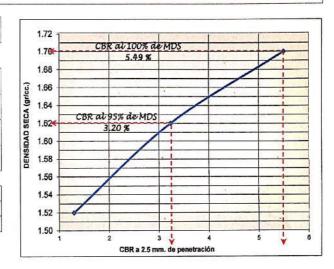
CALICATA Nº

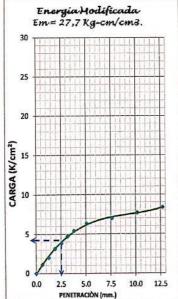
: C-2, M-1, E-2

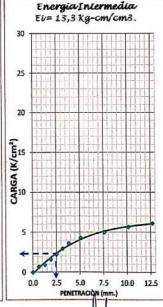
PROFUNDIDAD

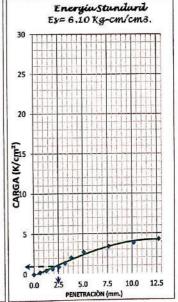
: 00:20 - 01:50 m.

: Suelos Natural + 0 % Adición de Polímero


CANTIDAD


: 45 Kg. : Saco de Polletileno PRESENTACIÓN


VALORES M.D.S.-O.C.H. Y C.B.R.


MAXIMA DENSIDAD SECA	1.704	gr/c/c.
CONTENIDO DE HUMEDAD OPTIMA	14.78	%
CBR AL 95 % DE SU MDS	3.20	%
CBR AL 100 % DE SU MDS	5.49	%

CLASIFICACI	ON
AASHTO (ASTM D-3282)	A-4(2)
SUCS (ASTM-D-2487)	ML

Observaciones : La Muestra fue Identificada filuestreada, etiquetada y puesto en laboratorio por el Solicitante

Hernan Nach Hailón INGENIEROCTAL CIP Nº 60 49

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS

RÍGIDOS, SALCEDO - PUNO

SOLICITA

FECHA RECEP. FECHA ENSAYO

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson : 01 DE JUNIO DEL 2021 : 02 DE JUNIO DEL 2021 ING. RESP. LA

: FJCP. : H.R.B. RALIZADO POR

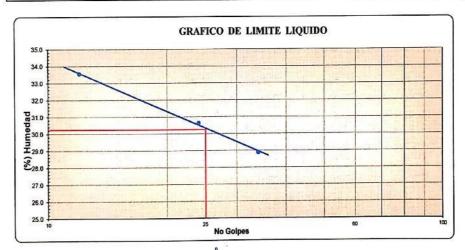
ENSAYO DE CONSTANTES FISICOS

: KM. 0+750 - AV. INDUSTRIAL - SALCEDO : C - 2, M - 1, E - 2 : 00:20 - 01:50 m.

: Suelos Natural + 2 % Adición de Polímero

CALICATA Nº

CANTIDAD : 45 Kg.
PRESENTACIÓN : Saco de Polietileno


LIMITE LIQUIDO (MTC E 110 ASTM D - 4318)

Prueba Nro.	01	02	03	
Tarro Nro.	14	8	27	
Peso de la Capsula (gr)	23.08	22.67	24.94	
Peso de la Capsula+Suelo Humedo (gr)	36.69	38.49	36.96	
Peso de la Capsula+Suelo Seco (gr)	33.64	34.78	33.94	
Peso del agua (g)	3.05	3.71	3.02	
Peso del Suelo Seco (gr)	10.56	12.11	9.00	
Contenido de Humedad (%)	28.88	30.64	33.56	
Numero de Golpes	34	24	12	

LIMITE PLASTICO (MTC E 111 ASTM D - 4318)

Tarro Nro.	6	9	PROMEDIC
Peso de la Capsula (gr)	22.77	23.65	
Peso de la Capsula+Suelo Humedo (gr)	26.89	27.72	
Peso de la Capsula+Suelo Se∞ (gr)	26.13	26.96	
Peso del Agua (gr)	0.76	0.76	
Peso del Suelo Seco (gr)	3.36	3.31	
Contenido de Humedad (%)	22.62	22.96	22.79

				$\overline{}$
1.1 : 30.24	L.P. : 22.79	I.P. :	7.45	- 1

laboratorio por el Solicitante Observaciones : La Muestra fue Identifi

J&C LABORATORIOS

Herman Naca Ballon

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO – PUNO

SOLICITA : BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP. : 01 DE JUNIO DEL 2021 ; F.J.C.P. RALIZADO POR FECHA ENSAYO : 03 DE JUNIO DEL 2021 : H.Ñ.B. ING. RESP. LAB

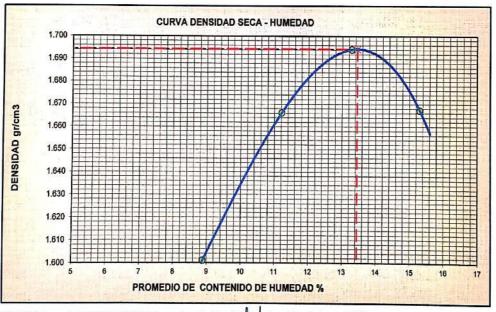
RELACION HUMEDAD DENSIDAD (PROCTOR MODIFICADO) (ASTM - 1557 MTC E 115)

PROCEDENCIA: KM. 0+750 - AV. INDUSTRIAL - SALCEDO

MUESTRA

: Suelos Natural + 2 % Adición de Polímero

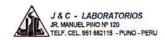
CALICATA N° : C-2, M-1, E-2 PROFUNDIDAD : 00:20 - 01:50 m.


CANTIDAD PRESENTACIÓN : 45 Kg. : Saco de Polietileno

Metodo de Compactacion	Numero de Golpes	Numero de Capas
AASHTO T 180 - "C"	56	5

CALCULO DE DENSIDAD HUMEDAD									
Peso suelo húmedo. + molde	gr	9718	9952	10093	10100				
2. Peso del molde	gr	6000	6000	6000	6000				
Volumen del molde	cc	2129	2129	2129	2129				
Peso suelo húmedo	gr	3718	3952	4093	4100				
5. Densidad suelo húmedo	gr/cc	1.746	1.856	1,922	1.926				

6. Capsula Nº		6	21	30	29	32	40	16	14
7. Peso del suelo húmedo.+ capsula	gr	243.12	255.15	242.06	254.84	243.41	252.46	274.84	264.11
Peso del suelo seco+capsula	gr	224.62	236.14	219.62	231.25	214.62	225.32	241.19	231.84
9. Peso del agua	gr	18.50	19.01	22.44	23.59	28.79	27.14	33.65	32.27
10. Peso de la capsula	gr	22.77	24.80	22.71	24.77	22.60	24.91	24.74	23.08
11. Peso del suelo seco	gr	201.85	211.34	196.91	206.48	214.62	200.41	216.45	208.76
12. Contenido de humedad	%	9.17	8.99	11.40	11.42	13.41	13.54	15.55	15.46
12. Promedio de Humedad	%	9.	9.08		11.41		13.48		.50


			- 00.1		
13. Densidad seca del suelo	gr/cc	1.601	1.666	1.694	1.667
Densidad Máxima	gr/cc	1.694	Humeda	d optima	13.65%

: La Muestra fue Identificada, muestreada, etiquetada y puesto en laboratorio por el Solicitante

J&C LABORATORIO

Hernan Ñ

LABORATORIO DE ENSAYO DE MATERIALES SERVICIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMENTOS.

INFORME DE ENSAYO

TESIS

; POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE

PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP.

: 01 DE JUNIO DEL 2021

RALIZADO POR

: F.J.C.P.

: 08 DE JUNIO DEL 2021

FECHA ENSAYO

ING. RESP.LAB

: H.Ñ.B.

ENSAYO C. B. R.

(ASTM D-1883)

REFERENCIAS DE LA MUESTRA

PROCEDENCIA

: KM. 0+750 - AV. INDUSTRIAL - SALCEDO

MUESTRA

: Suelos Natural + 2 % Adición de Polímero

CALICATA Nº

: C-2, M-1, E-2

: 45 Kg.

: 00:20 - 01:50 m. PROFUNDIDAD

PRESENTACIÓN

: Saco de Polietileno

MOLDE		N°	04			05			06		5536	
CAPAS	3,77	N°	05			05			05			
Golpes por Capa		N°	56			25			12			
Condición Muestr	a		Opti. Humedad	Saturado		Opti. Humedad	Satur	ado	Opti. Humedad Sat		ado	
Peso suelo hùme	do + molde g	rs.	12269	123	382	12388	12529		14324	145	42	
Peso molde		grs.	8225	8225		8526	8526		10661	106	61	
Peso suelo hùme	do	grs.	4044	4157		3862	4003		3663	388	51	
Volumen del suele	0	C.C.	2106	2106		2116	2116		2123	212	23	
Densidad hůmed	d hùmeda gr/cc		1.92	1.97		1.83	1.89		1.73 1.			
% de Humedad	de Humedad 9		13.62	15.72		13.70	17.33		1000		19.17	
Densidad seca		gr/cc.	1.69	1.	71	1.61	1.6	31	1.52	1.5		
Tarro	'arro N°		16	2	2	18	24		12	20	-	
Tarro màs suelo l	màs suelo hùmedo grs.		241.62	284	1.09	271.18	273	62	245.86	290.32		
Tarro más suelo s	suelo seco grs.		215.62	248.95		241.48	236		218.96	247.24		
Peso de Agua		grs.	26.00	35.14		29.70	36.98		26.90	43.08		
Peso de tarro		grs.	24.74	25.35		24.72	23.21		23.74	22.56		
Peso suelo seco		grs.	190.88	223	3.60	216.76	213.43		195.22	224.68		
% de humedad		%	13,62	15	.72	13.70	17.33		13.78	19.17		
Promedio Humed	ad	%	13.62	15	.72	13.70	17.	33	13.78	19.	17	
			% DE E	XPAN	CIÒN	1.35						
			224 87	Expa	nsión	Dial	Expar	nsión	Dial	Expar	sión	
Fecha	Hora	Tiempo	Dial	mm.	%	Dial	mm.	%	Diai	mm.	%	
8/6/21	11:45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
9/6/21	11:45	24.00	0.72	0.72	0.57	0.88	0.88	0.69	0.96	0.96	0.76	
10/6/21	11:45	48.00	0.98	0.98	0.77	1.18	1.18	0.93	1.32	1.32	1.04	
10/0/21	11.40	10.00				4.54	4.54	1.10	160	1.60	1 33	

		Tiempe	Tiomno	5	Expansión		Dial	Expansión		Dial	Expansión	
Fecha	Hora	Tiempo	Dial	mm.	%	Dial	mm.	%	Diai	mm.	%	
8/6/21	11:45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
9/6/21	11:45	24.00	0.72	0.72	0.57	0.88	0.88	0.69	0.96	0.96	0.76	
10/6/21	11:45	48.00	0.98	0.98	0.77	1.18	1.18	0.93	1.32	1.32	1.04	
	11:45	72.00	1.51	1.51	1.19	1.51	1.51	1.19	1.69	1.69	1.33	
11/6/21 12/6/21	11:45	96.00	1.59	1.59	1.25	1.72	1.72	1.35	1.84	1.84	1.45	

PENETRACIÓN	
-------------	--

								0.101011							
	Penetraciò	n	Carga		Carga C	orregida	000	Diel	Carga C	orregida	CBR	Dial	Carga	Corregida	CBR
escential I	Pulg.	Tiempo	Patròn	Dial	Kg	K/cm²	CBR	Dial	Kg	K/cm²	CDIK	Didi	Kg	K/cm²	3.5000
mm.	o o	0	1 40011	0	0	0		0	0	0		0	0	0	
	0.025	30"	_	6	26	1.4	7	4	18	0.9		1	4	0.2	
0.63		1'		11	48	2.5		7	31	1.6		3	13	0.7	
1.27	0.050	1'30"	-	19	83	4.3		10	44	2.3		5	22	1.1	
1.90	0.075	2'	70	24	105	5.4	7.8	14	61	3.2	4.5	8	35	1.8	2.6
2.54	0.100	3'	70	28	122	6.3	1.5.20	16	70	3.6		10	44	2.3	
3.17	0.125		105	31	135	7.0	-	19	83	4.3		13	57	2.9	
3.81	0.150	4'	105	35	153	7.9		23	101	5.2		15	66	3.4	
5.08	0.200	5'		-	166	8.6	1	26	114	5.9		17	74	3.8	8
7.62	0.300	6'	133	38	-	9.3		29	127	6.6		20	87	4.5	
10.16	0.400	7'		41	179	9.9		31	135	7.0		23	101	5.2	
12.70	0.500	8'	181	44	192			SIDBREC	-	4547 g.	-	CONST	1	19.33	
NILLO				CAPAC	IDAD	45 kn		SPARE	ARGA	4047 g.		100.10.1		12155	

Observaciones : La Muestra fue Identificada, muestreada, etiquetada y puesto en laboratorio por el Solicitante

J&C LABORATORIO

Hernan Nata Hailon

GRAFICO C.B.R.

REFERENCIAS DE LA MUESTRA

PROCEDENCIA

; KM. 0+750 - AV. INDUSTRIAL - SALCEDO

CALICATA Nº

: C-2, M-1, E-2

PROFUNDIDAD

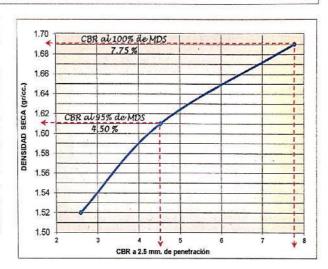
: 00:20 - 01:50 m.

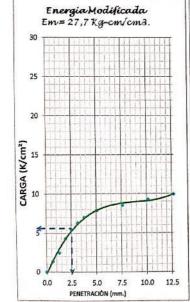
MUESTRA

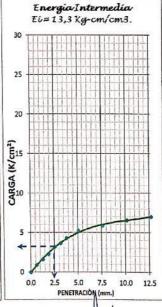
: Suelos Natural + 2 % Adición de Polímero

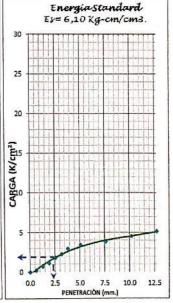
CANTIDAD

: 45 Kg.


PRESENTACIÓN


: Saco de Polietileno


VALORES M.D.S.-O.C.H. Y C.B.R.


MAXIMA DENSIDAD SECA	1,694	gr/c/c.
CONTENIDO DE HUMEDAD OPTIMA	13.65	%
CBR AL 95 % DE SU MDS	4.50	%
CBR AL 100 % DE SU MDS	7.75	%

CLASIFICACI	ON
AASHTO (ASTM D-3282)	A-4(2)
SUCS (ASTM-D-2487)	ML

Observaciones : La Muestra fue Identificada, muestra da, etiquetada y pues en laboratorio por el Solicitante

J&C LABORATORIOS
FEURE J. CACERGA PINEDA
SEL SUBIOS

Hernan Ñada Bailón MGENEROCNA CEP Nº 65 100

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASPALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS

RÍGIDOS, SALCEDO - PUNO

SOLICITANTE FECHA ENSAYO

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

: 01 DE JUNIO DEL 2021 : 02 DE JUNIO DEL 2021

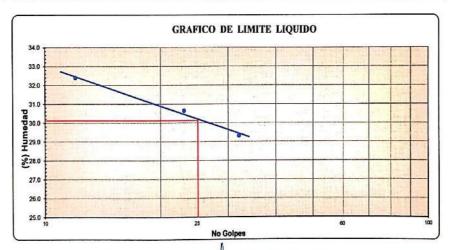
ING. RESP. LAB : HAR.

ENSAYO DE CONSTANTES FISICOS

: KM. 0+750 - AV. INDUSTRIAL - SALCEDO : C - 2, M - 1, E - 2 : 00:20 - 01:50 m.

MUESTRA : Suelos Natural + 4 % Adición de Polímero : 45 Kg. PRESENTACIÓN : Saco de Polietileno

CALICATA Nº


LIMITE LIQUIDO (MTC E 110 ASTM D - 4318)

Prueba Nro.	01	02	03	
Тагго Nro.	11	18	4	
Peso de la Capsula (gr)	22.83	24.72	23.90	
Peso de la Capsula+Suelo Humedo (gr)	37.43	37.21	37.10	
Peso de la Capsula+Suelo Seco (gr)	34.12	34.28	33.87	
Peso del agua (g)	3.31	2.93	3.23	
Peso del Suelo Seco (gr)	11.29	9.56	9.97	
Contenido de Humedad (%)	29.32	30.65	32.40	
Numero de Golpes	32	23	12	

LIMITE PLASTICO (MTC E 111 ASTM D - 4318)

Тапо Nro.	8	17	PROMEDIO
Peso de la Capsula (gr)	22.67	22.92	
Peso de la Capsula+Suelo Humedo (gr)	28.13	28.54	
Peso de la Capsula+Suelo Seco (gr)	27.12	27.49	
Peso del Agua (gr)	1.01	1.05	
Peso del Suelo Seco (gr)	4.45	4.57	
Contenido de Humedad (%)	22.70	22.98	22.84

 20.42	I D . 22.94	ID .	7 28

Observaciones : La Muestra fue Identificada, mujes

J&C LABORATORY

Hernan Naca Bailon

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO – PUNO

SOLICITANTE

; BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

gr/cc

FECHA RECEP. : 01 DE JUNIO DEL 2021 FECHA ENSAYO : 04 DE JUNIO DEL 2021 RALIZADO POR : F.J.C.P. ING. RESP. LAB ; H. Ñ. B.

RELACION HUMEDAD DENSIDAD (PROCTOR MODIFICADO)

PROCEDENCIA: KM. 0+750 - AV. INDUSTRIAL - SALCEDO

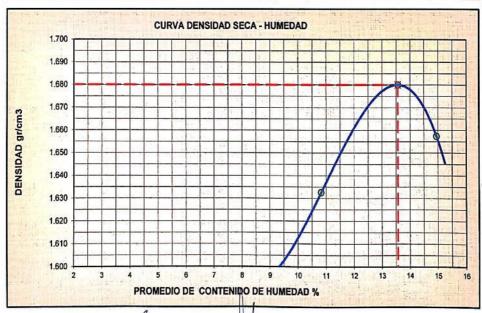
(ASTM - 1557 MTC E 115)

: Suelos Natural + 4 % Adición de Polímero

CALICATA Nº : C-2, M-1, E-2 PROFUNDIDAD : 00:20 - 01:50 m.

Densidad Máxima

CANTIDAD : 45 Kg.


PRESENTACIÓN : Saco de Polietileno

Humedad optima

13.57%

Metodo de Compactacion			Numero	de Golpes		Numero de Capas				
				56	5					
	CALCU	ILO DE DE	NSIDAD I	HUMEDAI)					
1. Peso suelo húmedo. + molde	gr	96	9691		52	100	62	100	056	
2. Peso del molde	gr	60	100	60	00	60	00	60	000	
3. Volumen del molde	cc	21	29	21	29	21	29	21	29	
4. Peso suelo húmedo	gr	3691		3852		40	62	40)56	
5. Densidad suelo húmedo	gr/cc	1.734 1.809		109	1.908		1.905			
	C	CALCULO	DE HUME	DAD						
6. Capsula Nº		25	24	26	23	22	20	28	38	
7. Peso del suelo húmedo.+ capsula	gr	206.22	210.52	162.52	144.99	178.18	168.95	287.94	304.97	
8. Peso del suelo seco+capsula	gr	191.02	195.91	149.02	132.95	156.96	151.41	253.26	268.59	
9. Peso del agua	gr	15.20	14.61	13.50	12.04	21.22	17.54	34.68	36.38	
10. Peso de la capsula	gr	23.95	23.21	22.67	23.19	25.35	22.56	22.30	24.11	
11. Peso del suelo seco	gr	167.07	172.70	126.35	109.76	156.96	128.85	230.96	244.48	
12. Contenido de humedad	%	9.10	8.46	10.68	10.97	13.52	13.61	15.02	14.88	
12. Promedio de Humedad	%	8.	78	10	.83	13.	57	14	.95	
	CAL	CULO DE I	DENSIDA	D SECA						
13. Densidad seca del suelo	lel suelo gr/cc			1.594 1.633			80	1.657		

1.680

Observaciones

uesto en laboratorio por el Personal de Laboratorio.

Hernan Naca Bailón

EIZA

J&C - LABORATORIOS JR. MANUEL PINO Nº 120 TELF. CEL. 951 682115 - PUNO - PERU

LABORATORIO DE ENSAYO DE MATERIALES SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITANTE

BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP.

: 01 DE JUNIO DEL 2021

RALIZADO POR

FECHA ENSAYO

: 08 DE JUNIO DEL 2021

ING. RESP.LAB

: H. Ñ. B.

ENSAYO C. B. R.

(ASTM D-1883)

REFERENCIAS DE LA MUESTRA

PROCEDENCIA

: KM. 0+750 - AV. INDUSTRIAL - SALCEDO

: Suelos Natural + 4 % Adición de Polímero

CALICATA Nº

: C-2, M-1, E-2

CANTIDAD

: 45 Kg.

ROFUNDIDAD : 00:20 - 01:50 m.

PRESENTACIÓN

: Saco de Polietileno

MOLDE	N°	07		08		09		
CAPAS	N°	05		05		05		
Golpes por Capa	N°	56		25		12		
Condición Muestra		Opti. Humedad	Saturado	Opti. Humedad	Saturado	Opti. Humedad	Saturado	
Peso suelo hùmedo + molde grs.		12042	12131	11986	12142	11895	12112	
Peso molde	grs.	8012	8012	8126	8126	8241	8241	
Peso suelo húmedo	grs.	4030	4119	3860	4016	3654	3871	
Volumen del suelo	C.C.	2119	2119	2131	2131	2133	2133	
Densidad hùmeda	gr/cc.	1.90	1.94	1.81	1.88	1.71	1.81	
% de Humedad	%	13.37	14.90	13.45	17.46	13.67	20.03	
Densidad seca	gr/cc.	1.68	1.69	1.60	1.60	1.51	1.51	
Tarro	N°	40	08	44	47	25	09	
Tarro más suelo húmedo	grs.	218.63	178.51	252.91	197.74	230.32	206.14	
Tarro más suelo seco	grs.	195.79	158.43	225.76	171.68	205.34	175.68	
Peso de Agua	grs.	22.84	20.08	27.15	26.06	24.98	30.46	
Peso de tarro	grs.	24.91	23.65	23.97	22.46	22.67	23.63	
Peso suelo seco	grs.	170.88	134.78	201.79	149.22	182.67	152.05	
% de humedad	%	13.37	14.90	13.45	17.46	13.67	20.03	
Promedio Humedad	%	13.37	14.90	13.45	17.46	13.67	20.03	

6	DE	EXPANCIÓN	1 32

Fecha	Hora	Tiempo	Dial	Expa	nsión	Dial	Expar	nsión	Dial	Expan	nsión
Todia	Tiola	потро	Diai	mm.	%	Diai	mm.	%	Diai	mm.	%
8/6/21	02:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9/6/21	02:00	24.00	0.69	0.69	0.54	0.85	0.85	0.67	0.92	0.92	0.72
10/6/21	02:00	48.00	0.94	0.94	0.74	1.17	1.17	0.92	1.30	1.30	1.02
11/6/21	02:00	72.00	1.49	1.49	1.17	1.49	1.49	1.17	1.65	1.65	1.30
12/6/21	02:00	96.00	1.55	1.55	1.22	1.68	1.68	1.32	1.79	1.79	1.41

PENETRACIÓN

1	Penetraciò	n	Carga	Dial	Carga C	orregida	CBR	Dial	Carga Corregida	CBR	Dial	Carga (Corregida	CBR	
mm.	Pulg.	Tiempo	Patròn	Diai	Kg	K/cm²	CBR	Diai	Kg	K/cm²	CBR	Diai	Kg	K/cm²	CBK
0	0	0		0	0	0		0	0	0		0	0	0	
0.63	0.025	30 "		7	31	1.6		4	18	0.9	1 = 30.57	2	9	0.5	
1.27	0.050	1'		11	48	2.5		7	31	1.6	-	5	22	1.1	-
1.90	0.075	1'30"		20	87	4.5	n or a second	12	52	2.7		7	31	1.6	
2.54	0.100	2'	70	27	118	6.1	8.7	16	70	3.6	5.2	10	44	2.3	3.2
3.17	0.125	3'		31	135	7.0		19	83	4.3		13	57	2.9	
3.81	0.150	4'	105	35	153	7.9		22	96	5.0		16	70	3.6	2.40
5.08	0.200	5'		39	170	8.8		26	114	5.9	e contractor a	19	83	4.3	
7.62	0.300	6'	133	42	184	9.5		30	131	6.8		22	96	5.0	
10.16	0.400	7		46	201	10.4		33	144	7.5		24	105	5.4	
12.70	0.500	8'	181	49	214	11.1		37	162	8.4		28	122	6.3	0.00
ANILLO			11-22/12/12	CAPAC	DAD _	45 kn		SOBREC	CARGA	1547 g.		CONST	ANTE	19.33	

Observaciones : La Muestra fue Identificada, muestreada, etiquetada y puesto en I boratorio por el Personal de Laboratorio.

LABORATORIO DE ENSAYO DE MATERIALES MECANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMENTOS.

: Suelos Natural + 4 % Adición de Polímero

GRAFICO C.B.R.

REFERENCIAS DE LA MUESTRA

PROCEDENCIA

: KM. 0+750 - AV. INDUSTRIAL - SALCEDO

CALICATA N°

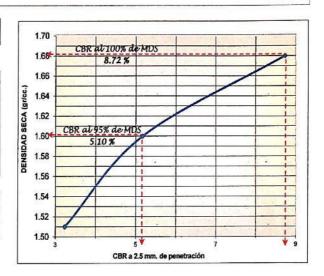
: C-2, M-1, E-2

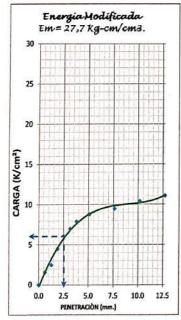
: 00:20 - 01:50 m.

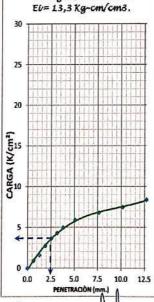
, E-2

m. PRESENT.

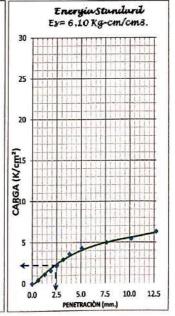
CANTIDAD : 45 Kg.


MUESTRA


PRESENTACIÓN : Saco de Polietileno


VALORES M.D.S.-O.C.H. Y C.B.R.

MAXIMA DENSIDAD SECA	1.680	gr/c/c
CONTENIDO DE HUMEDAD OPTIMA	13.57	%
CBR AL 95 % DE SU MDS	5.10	%
CBR AL 100 % DE SU MDS	8.72	%


CLASIFICACION				
AASHTO (ASTM D-3282)	A-4(2)			
SUCS (ASTM-D-2487)	ML			

Energia Intermedia

Observaciones : La Muestra fue Identificada, muestreada, etiquetada y puesto en laboratorio por el Personal de Laboratorio.

J&C LABORATOPIOS
FELIPE I VICERES PINEDA
Lai Suelos

Hernan Naca Bailón INGENIERO AIVE CIP Nº 6074

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

FECHA ENSAYO

Contenido de Humedad (%)

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS

RÍGIDOS, SALCEDO - PUNO

SOLICITANTE FECHA RECEP.

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson : 01 DE JUNIO DEL 2021 : 02 DE JUNIO DEL 2021 INO. RESP. LA

ING. RESP. LAB

; H.A.S.

ENSAYO DE CONSTANTES FISICOS

: KM. 0+750 - AV. INDUSTRIAL - SALCEDO : C - 2, M - 1, E - 2 : 00:20 - 01:50 m. PROCEDENCIA

MUESTRA

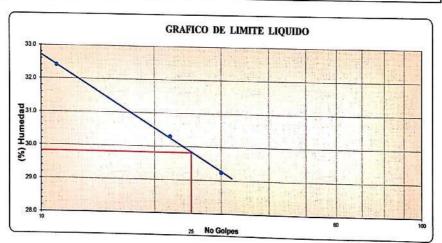
: Suelos Natural + 6 % Adición de Polímero : 45 Kg. : Saco de Polietileno

22.69

CALICATA Nº

CANTIDAD PRESENTACIÓN

	-		
LIMITE LIQUIDO	(MTCE1	110 ASTM D -	4318)


Prueba Nro.	01	02	03	
Tarro Nro.	23	40	36	
Peso de la Capsula (gr)	23.19	24.91	25.52	
Peso de la Capsula+Suelo Humedo (gr)	38.79	37.08	38.39	
Peso de la Capsula+Suelo Se∞ (gr)	35.26	34.25	35.24	
Peso del agua (g)	3.53	2.83	3.15	
Peso del Suelo Seco (gr)	12.07	9.34	9.72	
Contenido de Humedad (%)	29.25	30.30	32.41	
Numero de Golpes	30	22	11	

LIMITE PLASTICO (MTC E 111 ASTM D - 4318)					
Tarro Nro.	13	15	PROMEDIO		
Peso de la Capsula (gr)	24.68	22.06			
Peso de la Capsula+Suelo Humedo (gr)	29.17	26.44			
Peso de la Capsula+Suelo Seco (gr)	28.35	25.62			
Peso del Agua (gr)	0.82	0.82			
Peso del Suelo Seco (gr)	3.67	3.56			

23.03

	BA .		The same of the sa			
L.L.		29.82	L.P. : 22.69	LP. :	7.13	
					7.13	

22.34

ratorio por el Personal de Laboratorio.

J&C LABORATORIOS FELIPE JACA

Hernan Maca Bailón INGENIERO CIVIL CIP N 68 44

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA FECHA RECEP.

; BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

: 01 DE JUNIO DEL 2021 FECHA ENSAYO : 04 DE JUNIO DEL 2021 RALIZADO POR ING. RESP. LAB ; F.J.C.P. ; H. Ñ. B.

RELACION HUMEDAD DENSIDAD (PROCTOR MODIFICADO) (ASTM - 1557 MTC E 115)

PROCEDENCIA

: KM. 0+750 - AV. INDUSTRIAL - SALCEDO

MUESTRA

: Suelos Natural + 6 % Adición de Polímero

CALICATA Nº PROFUNDIDAD : 00:20 - 01:50 m.

: C-2, M-1, E-2

CANTIDAD

: 45 Kg. PRESENTACIÓN : Saco de Polietileno

Metodo de Compactacion	Numero de Golpes	Numero de Capa
	56	5
CALCII	LO DE DENSIDAD HUMEDAD	

CALCULO DE DENSIDAD HUMEDAD						
Peso suelo húmedo. + molde	gr	9617	9808	9998	9958	
2. Peso del molde	gr	6000	6000	6000	6000	
3. Volumen del moide	cc	2129	2129	2129	2129	
4. Peso suelo húmedo	gr	3617	3808	3998	3958	
5. Densidad suelo húmedo	gr/cc	1.699	1.789	1.878	1.859	

CALCULO DE HUMEDAD									
6. Capsula Nº		14	7	18	20	24	6	8	4
7. Peso del suelo húmedo.+ capsula	gr	209.62	208.32	216.32	225.32	224.69	210.36	218.38	207.32
8. Peso del suelo seco+capsula	gr	194.32	193.28	197.47	205.32	199.25	189.24	193.24	182.89
9. Peso del agua	gr	15.30	15.04	18.85	20.00	25.44	21.12	25.14	24.43
10. Peso de la capsula	gr	23.08	23.05	24.72	22.56	23.21	22.77	22.67	23.90
11. Peso del suelo seco	gr	171.24	170.23	172.75	182.76	199.25	166.47	170.57	158.99
12. Contenido de humedad	%	8.93	8.84	10.91	10.94	12.77	12.69	14.74	15.37
12. Promedio de Humedad	%	8.	88	10	.93	12	.73	15	.05

	CALC	JLO DE DENSIDAI	DISECA		
13. Densidad seca del suelo	gr/cc	1.560	1.612	1.666	1.616
Densidad Máxima	gr/cc	1.671	Humedad optima		13.34%

Observaciones

: La Muestra fue Identificada, puesto en laboratorio por el Personal de Laboratorio.

J&C LABORATOR OS FELIPE J. CALEPES PINEDA

Hernan Ñica Bailón INGENIERO CIVIL CIP Nº 18/49

J&C - LABORATORIOS

JR, MANUEL PINO N° 120 TELF, CEL. 951 682115 - PUNO - PERU

LABORATORIO DE ENSAYO DE MATERIALES SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE

PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP.

: 01 DE JUNIO DEL 2021

RALIZADO POR ING. RESP.LAB

: F.J.C.P. : H. Ñ. B.

FECHA ENSAYO

: 08 DE JUNIO DEL 2021

ENSAYO C. B. R.

(ASTM D-1883)

REFERENCIAS DE LA MUESTRA

PROCEDENCIA

: KM. 0+750 - AV. INDUSTRIAL - SALCEDO

: Suelos Natural + 6 % Adición de Polimero

CALICATA Nº

: C-2, M-1, E-2

CANTIDAD

: 45 Kg.

ROFUNDIDAD

: 00:20 - 01:50 m.

: Saco de Polietileno PRESENTACIÓN

MOLDE	N°	01	01			03	
CAPAS	N°	05	05			05	
Golpes por Capa	N°	56		25		12	
Condición Muestra		Opti. Humedad	Saturado	Opti. Humedad	Saturado	Opti. Humedad	Saturado
Peso suelo hùmedo + molde grs.		11859	11968	11899	12054	11881	12089
Peso molde	grs.	7851	7851	8097	8097	8288	8288
Peso suelo hùmedo	grs.	4008	4117	3802	3957	3593	3801
Volumen del suelo	C.C.	2120	2120	2108	2108	2112	2112
Densidad hùmeda	gr/cc.	1.89	1.94	1.80	1.88	1.70	1.80
% de Humedad	%	13.42	15.71	13.34	16.97	13.51	18.41
Densidad seca	gr/cc.	1.67	1.68	1.59	1.60	1.50	1.52
Tarro	N°	24	16	27	07	16	08
Tarro más suelo húmedo	grs.	199.48	219.71	213.93	231.95	193.32	219.95
Tarro más suelo seco	grs.	178.62	193.24	191.68	201.64	173.26	189.28
Peso de Agua	grs.	20.86	26.47	22.25	30.31	20.06	30.67
Peso de tarro	grs.	23.21	24.74	24.94	23.05	24.74	22.67
Peso suelo seco	grs.	155.41	168.50	166.74	178.59	148.52	166.61
% de humedad	%	13.42	15.71	13.34	16.97	13.51	18.41
Promedio Humedad	%	13.42	15.71	13.34	16.97	13.51	18.41

6 DE	EXPANCIÓN	14

Fecha	Hora	Tiempo	Dial	Dial		Dial	Expar	sión	Dial	Expansión		
i cuia	Tiola	Петтро	Diai	mm.	%	Diai	mm.	%	Diai	mm.	%	
8/6/21	04:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
9/6/21	04:30	24.00	0.62	0.62	0.49	0.78	0.78	0.61	1.30	1.30	1.02	
10/6/21	04:30	48.00	1.08	1.08	0.85	1.46	1.46	1.15	2.12	2.12	1.67	
11/6/21	04:30	72.00	1.34	1.34	1.06	2.03	2.03	1.60	2.78	2.78	2.19	
12/6/21	04:30	96.00	0.48	0.48	0.38	2.32	2.32	1.83	2.89	2.89	2.28	

PENETRACIÓN

	Penetraciò	n	Carga	Dial	Carga C	orregida	CBR	Dial	Carga C	orregida	CBR	Dial	Carga (Corregida	CBR
mm.	Pulg.	Tiempo	Patròn	Diai	Kg	K/cm²	CDIX	Diai	Kg	K/cm²	CBK	Diai	Kg	K/cm²	CBR
0	0	0		0	0	0		0	0	0		0	0	0	
0.63	0.025	30 "		6	26	1.4		3	13	0.7		2	9	0.5	
1.27	0.050	1'	3	11	48	2.5		6	26	1.4		4	18	0.9	
1.90	0.075	1'30"		18	79	4.1		10	44	2.3	ASSAITO COM	6	26	1.4	8:11-3-112 2:55-3-1
2.54	0.100	2'	70	23	101	5.2	7.4	15	66	3.4	4.8	9	39	2.0	2.9
3.17	0.125	3'		27	118	6.1		18	79	4.1		12	52	2.7	
3.81	0.150	4'	105	32	140	7.2		21	92	4.7		14	61	3.2	
5.08	0.200	5'		36	157	8.1		24	105	5.4		16	70	3.6	
7.62	0.300	6'	133	41	179	9.3		27	118	6.1	e cons	19	83	4.3	
10.16	0.400	7'		46	201	10.4		29	127	6.6		21	92	4.7	
12.70	0.500	8'	181	51	223	11.5		31	135	7.0		25	109	5.7	
NILLO		*		CAPACI	DAD	45 kn		SOBREC	ARGA	4547 a.	-			19 33	

Observaciones : La Muestra fue Identificada, muestreada, etiquetada y puesto e ratorio por el Personal de Laboratorio,

LABORATORIO DE ENSAYO DE MATERIALES MEGANIGA DE SUELOS, CONCRETO, ASPACTO Y PAVIMENTOS.

GRAFICO C.B.R.

REFERENCIAS DE LA MUESTRA

PROCEDENCIA

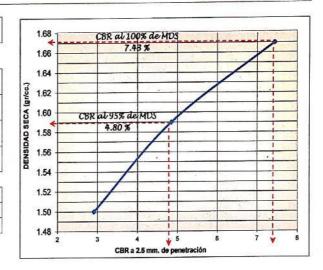
: KM. 0+750 - AV. INDUSTRIAL - SALCEDO

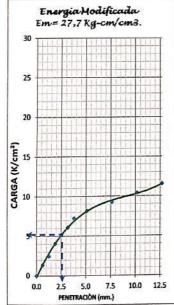
: Suelos Natural + 6 % Adición de Polímero

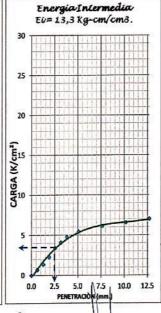
CALICATA Nº ROFUNDIDAD : C-2, M-1, E-2 : 00:20 - 01:50 m.

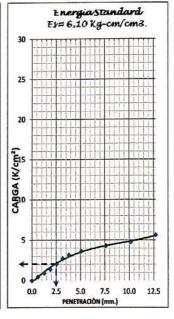
CANTIDAD : 45 Kg.

PRESENTACIÓN


MUESTRA


: Saco de Polietileno


VALORES M.D.S.-O.C.H. Y C.B.R.


	4.074	
MAXIMA DENSIDAD SECA	1.671	gr/c/c.
CONTENIDO DE HUMEDAD OPTIMA	13.34	%
CBR AL 95 % DE SU MDS	4.80	%
CBR AL 100 % DE SU MDS	7.43	%

CLASIFICACI	ON
AASHTO (ASTM D-3282)	A-4(2)
SUCS (ASTM-D-2487)	ML

reada, etiquetada y puesto en aboratorio por el Personal de Laboratorio. Observaciones : La Muestra fue Identificada, m

J&C LABORATORIOS FELSE ACEPES PINEDA

Hernan Nach Bhilón

INFORME DE ENSAYO

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE

PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP. FECHA ENSAYO

: 01 DE JUNIO DEL 2021 : 02 DE JUNIO DEL 2021

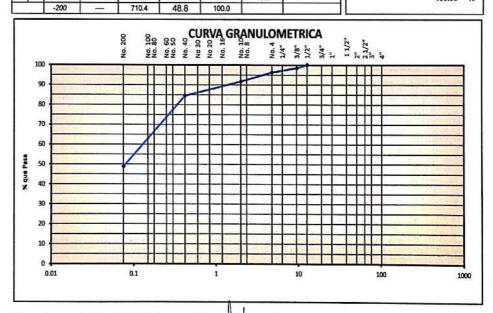
: F.J.C.P. : H.N.B.

ANALISIS GRANULOMÈTRICO POR TAMIZADO (Norma MTC E 107 - ASTM D 422)

MUESTRA : Suelos Natural + 0 % Adición de Polímero

PROCEDENCIA CALICATA Nº

: KM. 1+ 000 - AV. INDUSTRIAL - SALCEDO :C-3, M-1, E-2


CANTIDAD

: 45 Kg. : Saco de Polietileno

PROFUNDIDAD : 00:20 - 01:50 m.

PRESENTACIÓN

	7	Tamiz	Abertura	Peso	% Re	etenido	% que	Faradinasiana	Decedest		d	100
		ASTM	(mm.)	Retenido	Parcial	Acumulado	Pasa	Especificaciones	Descripció	n de i	Muestra	
PIEDRA	10	4"	101.600					-	Peso Inicial	:	1455.70	(gr)
CANTO	os	3"	76.200						Peso Lavado	:	745.30	(gr)
T		2 1/2"	63.500						Peso Perdido	:	710.40	(gr)
1	3	2*	50.800		District Name of							UST (1)
	GRUESA	1 1/2"	38.100				and the same of th		Humedad Natural	:	18.64	%
	9	1*	25.400	control of the contro			and the second		LIMITES DE C	ONS	ISTENCIA	1
GRAVA		3/4"	19.050						Limite Liquido	:	28.88	%
°F		1/2"	12.700				100.0		Limite Plastico	:	20.66	%
- 1	3	3/8*	9.525	22.0	1.5	1.5	98.5		I.P	:	8.22	%
	FIRE	1/4"	6.350						200			
	2.555	No. 4	4.760	32.0	2.2	3.7	96.3	-	CLASIF	ICAC	ION	
	184 184	No. 8	2.360						AASHTO (ASTM D-3282)	:	A-4(1)	
	GRUESA	No. 10	2.000	67.0	4.6	8.3	91.7		SUCS (ASTM-D-2487)	:	SC	
ı	1 1	No. 16	1.190						DESCRIPCION	N DE	MUESTRA	
	WEDIA	No 20	0.834						- Arena Arcillosa o	on g	rava	
4	ME	No 30	0.600	-82 - 9	200		Style-Till-System			- 5		
ARENA		No. 40	0.420	104.8	7.2	15.5	84.5		PROPI	EDAD	ES	
1		No. 50	0.300						Grava > 3"	:		
		No. 60	0.250						Grava		3.70	%
	F	No. 80	0.177						Arena	:	47.50	%
	5	No. 100	0.149			100000000000000000000000000000000000000		1000	Finos	0	48.80	%
		No. 200	0.075	519.5	35.7	51.2	48.8			-	100.00	%
		200	1	740.4	40.0	400.0						

Observaciones : La Muestra fue Idontificada, muestreada, etiquetada y puesto en laboratorio por el Solicitante

J&C LABORATORIOS

Hernan Ñaca Beilón INGENIERD CIVIL CIP N° 07/4

J&C - LABORATORIOS

JR. IAANUEL PINO Nº 120 CEL 951 682115 - PUNO - PERU

LABORATORIO DE ENSAYO DE MATERIALES

SERVICIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMENTOS.

INFORME DE ENSAYO

TESIS

:POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN

SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP.

: 01 DE JUNIO DEL 2021

RALIZADO POR : F.J.C.P.

FECHA ENSAYO : 02 DE JUNIO DEL 2021

ING. RESP.LAB : H.Ñ.B.

DETERMINACION DEL CONTENIDO DE HUMEDAD NATURAL

ASTM D 2216 - MTC E-108

Muestra Nº		C-3, M-	1, E-2		
Profundidad m.		00:20 - 0	1:50 m.		
Tarro Nº		19	04		
Peso del Tarro	gr	24.85	23.90		
Peso del tarro + Suelo Húmedo	gr	264.62	249.91		
Peso del tarro + Suelo Seco	gr	226.72	214.63		
Peso del Agua	gr	37.90	35.28		
Peso del suelo seco	gr	201.87	190.73		
Contenido de Humedad	%	18.77	18.50		
Promedio		18.6	4		

Observaciones : La Muestra fue Identificada, muestreada, etiquetada y puesto en laboratorio por el Solicitante

J&C LABORATORY

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASPALTO Y PAVIMENTOS

INFORME DE ENSAYO

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS TESIS

: POLINERO ANTALO.

RÍGIDOS, SALCEDO – PUNO

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson
RALEADO POR SOLICITA : BACHILLERES: PINO PIN FECHA RECEP. : 01 DE JUNIO DEL 2021 FECHA ENSAYO : 02 DE JUNIO DEL 2021 ING. RESP. LAB : HA.B.

ENSAYO DE CONSTANTES FÍSICOS

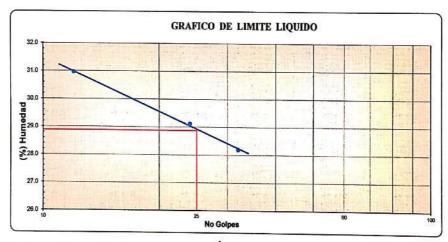
: KM. 1+ DOO - AV. INDUSTRIAL - SALCEDO PROCEDENCIA

MUESTRA

: Suelos Natural + 0 % Adición de Polímero : 45 Kg. : Saco de Polietileno

CALICATA N° PROFUNDIDAD : C-3, M-1, E-2 : 00:20 - 01:50 m.

PRESENTACIÓN


LIMITE LIQUIDO (MTC E 110 ASTM D - 4318)

Prueba Nro.	01	02	03	
Tarro Nro.	34	31	32	
Peso de la Capsula (gr)	22.17	24.56	22.60	
Peso de la Capsula+Suelo Humedo (gr)	35.72	35.60	37.15	
Peso de la Capsula+Suelo Seco (gr)	32.74	33.11	33.71	
Peso del agua (g)	2.98	2.49	3.44	
Peso del Suelo Seco (gr)	10.57	8.55	11.11	
Contenido de Humedad (%)	28.19	29.12	30.96	
Numero de Golpes	32	24	12	

LIMITE PLASTICO (MTC E 111 ASTM D - 4318)

Tarro Nro.	35	36	PROMEDIO
Peso de la Capsula (gr)	22.93	25.52	
Peso de la Capsula+Suelo Humedo (gr)	27.92	31.15	
Peso de la Capsula+Suelo Seco (gr)	27.08	30.17	
Peso del Agua (gr)	0.84	0.98	
Peso del Suelo Seco (gr)	4.15	4.65	
Contenido de Humedad (%)	20.24	21.08	20,66

11.		28.88	L.P.	20.66	ID -	0.00	
F-F-	•	20.00	L.F.	20.00	I.P. :	8.22	

J&C LABORATORIOS

Herman il aca Bailón Mogentiro civil CIP N 50740

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

; POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA FECHA RECEP.

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

: 01 DE JUNIO DEL 2021 FECHA ENSAYO : 04 DE JUNIO DEL 2021 RALIZADO POR ING. RESP. LAB ; F.J.C.P.

: H.Ñ.B.

RELACION HUMEDAD DENSIDAD (PROCTOR MODIFICADO) (ASTM - 1557 MTC E 115)

PROCEDENCIA: KM. 1+ 000 - AV. INDUSTRIAL - SALCEDO

: Suelos Natural + 0 % Adición de Polímero

CALICATA N°

: C-3, M-1, E-2

CANTIDAD

: 45 Kg.

Metodo de Compactacion			Numero	de Golpes			Numero (ie Capas	
AASHTO T 180 - "C"		bir		56					
	CALCU	ILO DE DE	NSIDAD I	HUMEDAL)				
1. Peso suelo húmedo. + molde	gr	100	152	102	203	103	124	100	371
2. Peso del molde	gr	60	00	60	00	60	00	60	00
3. Volumen del molde	cc	21	29	21	29	21	29	21	29
4. Peso suelo húmedo	gr	40	52	42	03	43	24	43	71
5. Densidad suelo húmedo	gr/cc	1.9	03	1.9	74	2.0	31	2.0	53
	(CALCULO	E HUME	DAD					25110011
6. Capsula Nº	6	3	1	35	29	11	47	28	38
7. Peso del suelo húmedo.+ capsula	gr	223.10	221.00	221.06	225.24	233.71	252.16	286.44	306.17
Peso del suelo seco+capsula	gr	205.00	202.88	199.71	203.39	205.05	224.05	249.86	266.59
9. Peso del agua	gr	18.10	18.12	21.35	21.85	28.66	28.11	36.58	39.58
10. Peso de la capsula	gr	24.55	22.89	22.93	24.77	22.83	22.46	22.30	24.11
11. Peso del suelo seco	gr	180.45	179.99	176.78	178.62	205.05	201.59	227.56	242.48
12. Contenido de humedad	%	10.03	10.07	12.08	12.23	13.98	13.94	16.07	16.32
12. Promedio de Humedad	%	10.	.05	12	.15	13.	.96	16	.20
	CAL	CULO DE I	DENSIDA	D SECA					
13. Densidad seca del suelo	gr/cc	1.7	29	1.3	760	1.7	82	1.7	67
Densidad Máxima	gr/cc	1.7	'84	1	Humeda	d optima	1	14.5	57%

	1.790 -		П	П	II	П	П	П	П	II				П	П	П	П	T		T		П	П	П	П		11	П	П	П		T	I
				\perp	+	Н	Н	\perp	Н	$^{+}$	Н	Н	Н	+	+	Ш	\mathbb{H}		+			H	\mathbb{H}	Н.	N.			+		+		+	
	1.780																						/	0				V					
2	1.770	#									-	#									1	1				+			1				
	1.760																	İ		ø										1			
	1.750	<u> </u>									-							/	/														
	1.740			H												/	/			+	ļ												
	1.730						İ				-				/																		
	1.720	5		6				#	R		+	9		#	1		11		12	#	=	13	+	14	+		5	#	16	#	17		

Observaciones

: La Muestra fue Identificada, muestreada, etiquetada y puesto en laboratorio por el Solicitante

J&C LABORATORY

Hernan N ca Bailón

LABORATORIO DE ENSA YO DE MATERIALES SERVICIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMENTOS.

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE

PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP. : 01 DE JUNIO DEL 2021

RALIZADO POR ING. RESP.LAB

: F.J.C.P.

FECHA ENSAYO

: 13 DE JUNIO DEL 2021

: H.Ñ.B.

ENSAYO C. B. R.

(ASTM D - 1883)

REFERENCIAS DE LA MUESTRA

PROCEDENCIA

: KM. 1+ 000 - AV. INDUSTRIAL - SALCEDO

MUESTRA

: Suelos Natural + 0 % Adición de Polímero

CALICATA N°

: C-3, M-1, E-2

CANTIDAD

: 45 Kg.

PROFUNDIDAD : 00:20 - 01:50 m. PRESENTACIÓN

: Saco de Polietileno

MOLDE			N°		01				02			V	03	25-32-5	- 11
CAPAS			N°		05				05				05		
Golpes por	Capa		N°		56	700000000			25	00.00			12		
Condición	Muestra			Opti. H	umedad	Satur	rado	Opti. H	umedad	Satur	ado	Opti. Hu	medad	Satura	ado
Peso suelo	hùmedo	+ molde gr	5.	12	174	122	61	12:	224	124	02	122		1237	
Peso mold	е		grs.	78	51	785	51	80	97	809	17	82	88	828	~
Peso suelo	hùmedo		grs.	43	23	441	10	41	27	430	15	39	17	408	3
Volumen d	el suelo		C.C.	21	20	212	20	21	08	210	18	21	12	211	2
Densidad			gr/cc.		04	2.0	80	1.	96	2.0	4	1.8	35	1.93	3
% de Hum	50.00		%	14	.69	16.	25	14.68		18.3	39	14.	56	19.1	4
Densidad s	seca		gr/cc.		78	1.7	3.4	1.	71	1.7	2	1.6	32	1.62	2
Tarro		THE PARTY OF	N°	27	0	08	3	4	4	48	Making S	2	5	06	NE
Tarro màs			grs.		9.43	225.	.09	243	3.91	201.	37	220	.29	230.1	11
Tarro más		0	grs.		5.79	196.			5.76	173.	80	195.34		196.8	80
Peso de A			grs.	400	.64	28.			.15	27.5	57	24.95		33.3	1
Peso de ta	A SANCE		grs.		.91	22.	67	23	.97	23.9	92	23.	95	22.7	7
Peso suelo			grs.	- 770	0.88	174.			1.79	149.	88	171	.39	174.0	03
% de hum	5.0000		%	V 1500	.69	16.	777.00	9.00	.68	18.3		14.	56	19.1	4
Promedio	Humedad		%	14	.69	16.	-	14	.68	18.3	39	14.56		19.1	4
					% DE	EXPAN(CIÒN	1.	34					165 37	
Fed	:ha	Hora	Tiempo	D	ial	Expar	nsión	D	ial	Expan	sión	Dial		Expans	sión
				Dial		mm.	%			mm.	%		u	mm.	%
13/6		09:30	0.00		00	0.00	0.00	0.	00	0.00	0.00	0.00		0.00	0.00
14/6		09:30	24.00	0.	47	0.47	0.37	0.	52	0.52	0.41	0.3	72	0.72	0.57
15/6	5/21	09:30	48.00	0.	98	0.98	0.77	1.	12	1.12	0.88	0.9	99	0.99	0.78
16/6	5/21	09:30	72.00	1.	32	1.32	1.04	1.	48	1.48	1.17	1.6	37	1.67	1.31
17/6	5/21	09:30	96.00	1.	52	1.52	1.20	1.	72	1.72	1.35	1.8		1.86	1.46
						PE	NETR	ACIÓN			,,,,,,				1.10
F	enetració	n	Carga	Dial	Carga C	orregida	CBR	Dial	Carga Co	orregida			Carga C	Corregida	
mm.	Pulg.	Tiempo	Patròn	Diai	Kg	K/cm²	CDIC	Diai	Kg	K/cm²	CBR	Dial	Kg	K/cm²	CBF
0	0	0	10000	0	0	0		0	0	0		0	0	0	
0.63	0.025	30 "		5	22	1.1		3	13	0.7		1	4	0.2	
1.27	0.050	1'		9	39	2.0		7	31	1.6	110	2	9		-
1.90	0.075	1'30"		15	66	3.4	70.00	10	44	2.3		4	18	0.5	
2.54	0.100	2'	70	18	79	4.1	5.8	13	57	2.9	4.2	6	18	0.9	
3.17	0.125	3'		21	92	4.7		17	74	3.8	7.2	9	-	1.4	1.9
3.81	0.150	4'	105	25	109	5.7		20	87	4.5	-	-	39	2.0	
5.08	0.200	5'		28	122	6.3	10000	24	105	5.4	-	11	48	2.5	
7.62	0.300	6'	133	32	140	7.2		27	118	6.1	-	13	57	2.9	
10.16	0.400	7'	-	36	157	8.1		30		-		15	66	3.4	
12.70	0.500	8'	181	40	175	9.0		33	131	6,8		18	79	4.1	
		-	101	70	1/0	9.0		33	144	7.5		20	87	4.5	

Observaciones : La Muestra fue Identificada, muestra da, etiquetada y pues

en aboratorio por el Solicitante

J&C LABORATORIOS

I ernan Naca Bailón

GRAFICO C.B.R.

REFERENCIAS DE LA MUESTRA

PROCEDENCIA

; KM. 1+000 - AV. INDUSTRIAL - SALCEDO

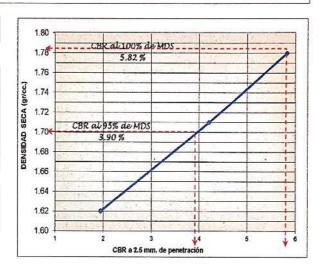
CALICATA N°

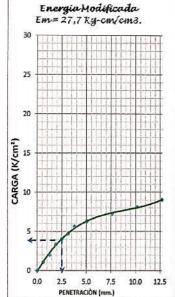
: C-3, M-1, E-2

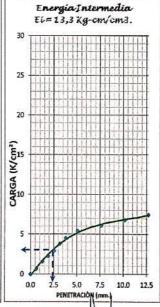
PROFUNDIDAD : 00:20 - 01:50 m.

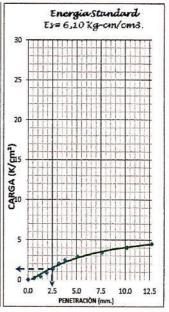
MUESTRA

: Suelos Natural + 0 % Adición de Polímero


CANTIDAD : 45 Kg.


PRESENTACIÓN : Saco de Polietileno


VALORES M.D.S.-O.C.H. Y C.B.R.


MAXIMA DENSIDAD SECA	1.784	gr/c/c
CONTENIDO DE HUMEDAD OPTIMA	14.57	%
CBR AL 95 % DE SU MDS	3.90	%
CBR AL 100 % DE SU MDS	5.82	%

CLASIFICACI	ON
AASHTO (ASTM D-3282)	A-4(1)
SUCS (ASTM-D-2487)	sc

Observaciones : La Muestra fue Identificada, muestreada, etiquetada y pueso en laboratorio por el Solicitante

FELIPE J. CICERES PINEDA

J&C LABORATORIOS

Hernan Naca Bailon

SERVICIO DE MECANICA DE SUBLOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS

RÍGIDOS, SALCEDO - PUNO

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

SOLICITA FECHA RECEP. FECHA ENSAYO

: 01 DE JUNIO DEL 2021 : 02 DE JUNIO DEL 2021

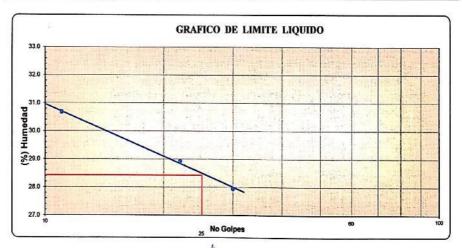
RALIZADO POR ING. RESP. LAB

; FJ.C.P. ; H.A.B.

ENSAYO DE CONSTANTES FISICOS

: KM. 1+000 - AV. INDUSTRIAL - SALCEDO : C - 3, M - 1, E - 2 : 00:20 - 01:50 m. PROCEDENCIA CALICATA N°

MUESTRA : Suelos Natural + 2 % Adición de Polímero : 45 Kg. PRESENTACIÓN : Saco de Polietileno


PROFUNDIDAD

LIMITE LIQUIDO (MTC E 110 ASTM D - 4318)

Prueba Nro.	01	02	03		
Tarro Nro.	12	4	7		
Peso de la Capsula (gr)	23.74	23.90	23.05		
Peso de la Capsula+Suelo Humedo (gr)	35.23	35.49	37.15		
Peso de la Capsula+Suelo Seco (gr)	32.72	32.89	33.84		
Peso del agua (g)	2.51	2.60	3.31		
Peso del Suelo Seco (gr)	8.98	8.99	10.79		
Contenido de Humedad (%)	27.95	28.92	30.68		
Numero de Golpes	30	22	11	T	

UMIT	E PLASTICO (MTC E 11	I ASTM D - 4318)	
Tarro Nro.	17	21	PROMEDIO
Peso de la Capsula (gr)	22.92	24.80	
Peso de la Capsula+Suelo Humedo (gr)	27.98	29.80	
Peso de la Capsula+Suelo Seco (gr)	27.13	28.96	
Peso del Agua (gr)	0.85	0.84	
Peso del Suelo Seco (gr)	4.21	4.16	

Contenido de I	Humeda	d (%)		20.19	20.19			20.19
L.L.		28.42	L.P.	20.19		[ID .	8.23	

J&C LABORATORIOS

FELIPE J-C CERES PINEDA

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

: 01 DE JUNIO DEL 2021 FECHA RECEP.

RALIZADO POR

: F.J.C.P.

FECHA ENSAYO : 04 DE JUNIO DEL 2021

ING. RESP. LAB

: H.Ñ.B.

RELACION HUMEDAD DENSIDAD (PROCTOR MODIFICADO) (ASTM - 1557 MTC E 115)

PROCEDENCIA

: KM. 1+000 - AV. INDUSTRIAL - SALCEDO

MUESTRA

: Suelos Natural + 2 % Adición de Polímero

CALICATA Nº

: C-3, M-1, E-2

Metodo de Compactacion AASHTO T 180 - "C"

CANTIDAD

: 45 Kg. : Saco de Polietileno

PROFUNDIDAD : 00:20 - 01:50 m.

PRESENTACIÓN

mero de Golpes	Numero de Capas

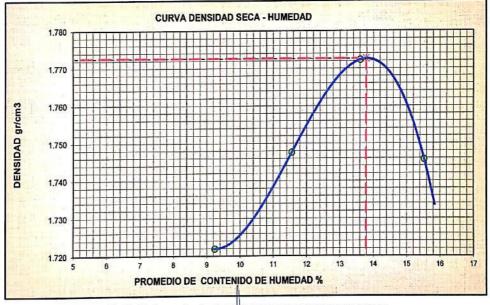
	CALCULO	DE DENSIDAD I	HUMEDAD		
Peso suelo húmedo. + molde	gr	10012	10158	10294	10301
2. Peso del molde	gr	6000	6000	6000	6000
3. Volumen del molde	cc	2129	2129	2129	2129
4. Peso suelo húmedo	gr	4012	4158	4294	4301
5. Densidad suelo húmedo	gr/cc	1.884	1.953	2.017	2.020

CALCULO DE HUMEDAD

6. Capsula Nº		14	17
7. Peso del suelo húmedo.+ capsula	gr	234.12	261.6
8. Peso del suelo seco+capsula	gr	215.88	241.1
9. Peso del agua	gr	18.24	20.5
10. Peso de la capsula	gr	23.08	22.93
11. Peso del suelo seco	gr	192.80	218.1
12. Contenido de humedad	%	9.46	9.42
12. Promedio de Humedad	%	9.	44

14	17	14	19	21	40	18	19
234.12	261.65	243.06	266.24	284.71	265.93	283.44	302.21
215.88	241.10	219.69	241.11	249.88	236.95	247.88	264.95
18.24	20.55	23.37	25.13	34.83	28.98	35.56	37.26
23.08	22.92	23.08	24.85	24.80	24.91	24.72	24.85
192.80	218.18	196.61	216.26	249.88	212.04	223.16	240.10
9.46	9.42	11.89	11.62	13.94	13.67	15.93	15.52
9.	44	11	.75	13.	80	15	.73

CALCULO DE DENSIDAD SECA


15. Delisidad Seco del Good	9
Table 100 control of the control of	

1.722	1.748	1.772	1.746

Densidad Máxima	gricc
-----------------	-------

1 773	

Humedad optima	13.98%
----------------	--------

Observaciones

: La Muestra fue Identificada, muestreada, etiquetada y puesto en laboratorio por el Solicitante

J&C LABORATORIO

Hernan Nada Bailón

LABORATORIO DE ENSAYO DE MATERIALES SERVICIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMENTOS.

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN

SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP.

: 01 DE JUNIO DEL 2021

RALIZADO POR

: F.J.C.P.

FECHA ENSAYO

: 13 DE JUNIO DEL 2021

ING. RESP.LAB

: H.Ñ.B.

ENSAYO C. B. R.

(ASTM D-1883) REFERENCIAS DE LA MUESTRA

ROCEDENCIA

: KM. 1+ 000 - AV. INDUSTRIAL - SALCEDO

: Suelos Natural + 2 % Adición de Polímero

CALICATA Nº

: C-3, M-1, E-2

CANTIDAD

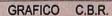
: 45 Kg.

ROFUNDIDAD : 00:20 - 01:50 m. PRESENTACIÓN

: Saco de Polietileno

MOLDE		N°	04		05		06		
CAPAS	5-5-m-100	N°	05		05		05		
Golpes por Capa		N°	56		25		12		
Condición Muestr	a		Opti. Humedad	Saturado	Opti. Humedad	Saturado	Opti. Humedad	Saturado	
Peso suelo hùme	do + molde g	rs.	12481	12562	12559	12719	14445	14672	
Peso molde		grs.	8225	8225	8526	8526	10661	10661	
Peso suelo hùme	do	grs.	4256	4337	4033	4193	3784	4011	
Volumen del suelo)	C.C.	2106	2106	2116	2116	2123	2123	
Densidad hůmed	a	gr/cc.	2.02	2.06	1.91	1.98	1.78	1.89	
% de Humedad		%	14.07	16.30	14.13	17.70	14.10	20.28	
Densidad seca		gr/cc.	1.77	1.77	1.67	1.68	1.56	1.57	
Тапо		N°	06	16	11	20	26	01	
Tarro más suelo h	ùmedo	grs.	227.62	242.09	223.84	248.62	235.22	253.32	
Tarro más suelo s	eco	grs.	202.35	211.62	198.96	214.63	208.95	214.47	
Peso de Agua		grs.	25.27	30.47	24.88	33.99	26.27	38.85	
Peso de tarro		grs.	22.77	24.74	22.83	22.56	22.67	22.89	
Peso suelo seco		grs.	179.58	186.88	176.13	192.07	186.28	191.58	
% de humedad		%	14.07	16.30	14.13	17.70	14.10	20.28	
Promedio Humeda	ad	%	14.07	16.30	14.13	17.70	14.10	20.28	
			% DE E	XPANCIÓN	1.29			-10000	
F. 4.		T	Diel	Expansión	Diel	Expansión	Dial	Expansión	
Fecha	Hora	Tiempo	Dial -		Dial		- Diai -		

Facha	Here	Tiomas	Dial	Expa	nsión	Dial	Expar	sión	Dial	Expar	nsión
Fecha	Hora	Tiempo	Diai	mm.	%	Diai	mm.	%	Diai	mm.	%
13/6/21	11:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14/6/21	11:00	24.00	0.42	0.42	0.33	0.49	0.49	0.39	0.69	0.69	0.54
15/6/21	11:00	48.00	0.93	0.93	0.73	1.09	1.09	0.86	0.96	0.96	0.76
16/6/21	11:00	72.00	1.29	1.29	1.02	1.45	1.45	1.14	1.62	1.62	1.28
17/6/21	11:00	96.00	1.48	1.48	1.17	1.67	1.67	1.31	1.78	1.78	1.40


	RA		

F	Penetraciò	n	Carga	Dial	Carga C	orregida	CBR	Dial	Carga Co	orregida	CBR	Dial	Carga (Corregida	CBR
mm.	Pulg.	Tiempo	Patròn	Diai	Kg	K/cm²	CDIX	Diai	Kg	K/cm²	CDIC	Diai	Kg	K/cm²	CDIN
0	0	0		0	0	0		0	0	0		0	0	0	
0.63	0.025	30 "		6	26	1.4		4	18	0.9		1	4	0.2	1
1.27	0.050	1'		12	52	2.7) #il= :	7	31	1.6		3	13	0.7	
1.90	0.075	1'30"		18	79	4.1		12	52	2.7		5	22	1.1	
2.54	0.100	2'	70	23	101	5.2	7.4	16	70	3.6	5.2	8	35	1.8	2.6
3.17	0.125	3'		27	118	6.1		19	83	4.3		11	48	2.5	
3.81	0.150	4'	105	32	140	7.2		22	96	5.0	4x-32	14	61	3.2	
5.08	0.200	5'		34	149	7.7		25	109	5.7		16	70	3.6	
7.62	0.300	6'	133	38	166	8.6		28	122	6.3		19	83	4.3	
10.16	0.400	7		42	184	9.5		31	135	7.0		21	92	4.7	
12.70	0.500	8'	181	47	205	10.6		34	149	7.7		24	105	5.4	
ANILLO				CAPACI	DAD	45 kn	10.	SOBREC	ARGA 4	4547 g.		CONST	NTE	19.33	

Observaciones : La Muestra fue Identificada, muesto poratorio por el Solicitante

REFERENCIAS DE LA MUESTRA

PROCEDENCIA CALICATA Nº ; KM. 1+ 000 - AV. INDUSTRIAL - SALCEDO

: C-3, M-1, E-2

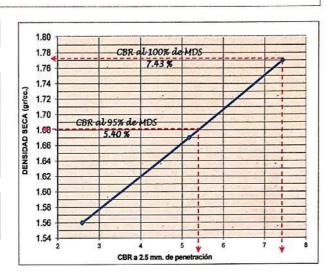
PROFUNDIDAD

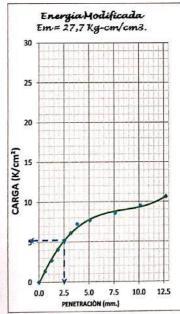
: 00:20 - 01:50 m.

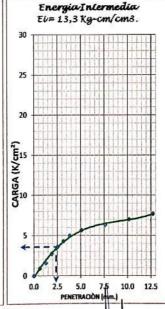
MUESTRA

: Suelos Natural + 2 % Adición de Polímero

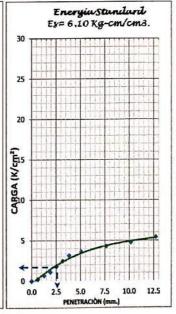
CANTIDAD : 45 Kg.


PRESENTACIÓN


: Saco de Polietileno


VALORES M.D.S.-O.C.H. Y C.B.R.

MAXIMA DENSIDAD SECA	1.773	gr/c/c.
CONTENIDO DE HUMEDAD OPTIMA	13.98	%
CBR AL 95 % DE SU MDS	5.40	%
CBR AL 100 % DE SU MDS	7.43	%


CLASIFICACI	ON
AASHTO (ASTM D-3282)	A-4(1)
SUCS (ASTM-D-2487)	sc

Hernan Nara Failón INGENIERI CML CP N 18140

Observaciones : La Muestra fue Identificada, muestreada, etiquelada y puesto en la oratorio por el Solicitante

J&C LABORATORIOS
FELIPE TO CACEAS PINEDA
Lab Suelos

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMIENTOS

INFORME DE ENSAYO

TESIS

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS

RÍGIDOS, SALCEDO - PUNO

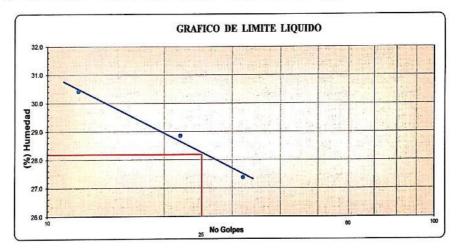
: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson : 01 DE JUNIO DEL 2021 : 02 DE JUNIO DEL 2021 HO. RESP. LAB SOLICITA FECHA RECEP. FECHA ENSAYO

ING. RESP. LAB

: FJ.C.P.

ENSAYO DE CONSTANTES FÍSICOS

CALICATA IF


: C-3, M-1, E-2 : 00:20 - 01:50 m.

MUESTRA : Suelos Natural + 4 % Adición de Polit CANTIDAD : 45 Kg. PRESENTACIÓN : Saco de Politetileno

LIMITE LIQUIDO (MTC E 110 ASTM D - 4318)								
Prueba Nro.	01	02	03					
Tarro Nro.	14	17	11					
Peso de la Capsula (gr)	23.08	22.92	22.83					
Peso de la Capsula+Suelo Humedo (gr)	34.71	36.72	37.02					
Peso de la Capsula+Suelo Seco (gr)	32.21	33.63	33.71					
Peso del agua (g)	2.50	3.09	3.31					
Peso del Suelo Seco (gr)	9.13	10.71	10.88					
Contenido de Humedad (%)	27.38	28.85	30.42					
Numero de Golpes	32	22	12					

LIMITI	E PLASTICO (MTC E 111	ASTM D - 4318)	
Тапо №о.	23	25	PROMEDIO
Peso de la Capsula (gr)	23.19	23.95	
Peso de la Capsula+Suelo Humedo (gr)	28.26	29.73	
Peso de la Capsula+Suelo Seco (gr)	27.41	28.77	
Peso del Agua (gr)	0.85	0.96	
Peso del Suelo Seco (gr)	4.22	4.82	
Contenido de Humedad (%)	20.14	19.92	20.03

11 .	28.18	ID .	20.03	I.P. :	8.15

esto en laboratorio por el Solicitante vaciones : La Muestra fue Identificada, mo 0

> J&C LABORATORIOS FELIPE I CACEDES PINEDA

Hernan Maca Bailón INGENIERO CIVIL CIP H. 1997-19

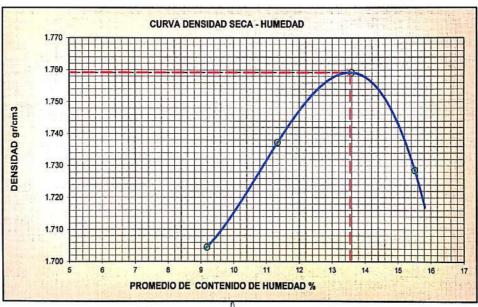
LABORATORIO DE ENSAYO DE MATERIALES SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO - PUNO TESIS

; BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson SOLICITA

; F.J.C.P. : 01 DE JUNIO DEL 2021 RALIZADO POR FECHA RECEP. ; H.Ñ.B. FECHA ENSAYO : 04 DE JUNIO DEL 2021 ING. RESP. LAB


RELACION HUMEDAD DENSIDAD (PROCTOR MODIFICADO)

(ASTM - 1557 MTC E 115)

: Suelos Natural + 4 % Adición de Polímero PROCEDENCIA: KM. 1+000 - AV. INDUSTRIAL - SALCEDO MUESTRA

CALICATA Nº : C - 3, M - 1, E - 2 CANTIDAD : 45 Kg.

Metodo de Compactacion		Numero de Golpes				Numero de Capas				
AASHTO T 180 - "C"				56				5		
	CALC	JLO DE DE	NSIDAD I	HUMEDAI)					
1. Peso suelo húmedo. + molde	gr	99	62	10	118	102	254	100	251	
2. Peso del molde	gr	60	000	60	00	60	00	60	00	
3. Volumen del molde	cc	21	29	21	29	21	29	21	29	
4. Peso suelo húmedo	gr	39	62	41	18	42	54	4251		
5. Densidad suelo húmedo	gr/cc	1.8	361	1.9	134	1.9	198	1.997		
	(CALCULO I	DE HUME	DAD				-000102-		
6. Capsula Nº		3	10	21	12	42	16	32	15	
7. Peso del suelo húmedo.+ capsula	gr	237.12	259.32	233.21	256.18	270.71	258.93	273.41	287.21	
8. Peso del suelo seco+capsula	gr	219.32	239.42	212.32	232.14	237.88	231.32	240.08	251.24	
9. Peso del agua	gr	17.80	19.90	20.89	24.04	32.83	27.61	33.33	35.97	
10. Peso de la capsula	gr	24.55	23.63	24.80	23.74	23.87	24.74	22.60	22.06	
11. Peso del suelo seco	gr	194.77	215.79	187.52	208.40	237.88	206.58	217.48	229.18	
12. Contenido de humedad	%	9.14	9.22	11.14	11.54	13.80	13.37	15.33	15.70	
12. Promedio de Humedad	%	9.	18	11	.34	13.	.58	15	.51	
	CAL	CULO DE	DENSIDA	D SECA						
13. Densidad seca del suelo	gr/cc	1.7	704	1.7	'37	1.7	59	1.7	29	
Densidad Máxima	gr/cc		759	1			l optima		13.55%	

: La Muestra fue Identificada, muestreada, etiquetada y puesto en laboratorio por el Solicitante

J&C LABORATOR Hernan Nada Bailón

SERVICIO DE MECANICA DE SUELOS, CONCRETO, ASPALTO Y PAVIMENTOS.

INFORME DE ENSAYO

TESIS

; POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN

SUBRASANTE DE PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP.

: 01 DE JUNIO DEL 2021

RALIZADO POR

ING. RESP.LAB

: F.J.C.P. : H.Ñ.B.

FECHA ENSAYO : 13 DE JUNIO DEL 2021

ENSAYO C. B. R.

(ASTM D-1883)

REFERENCIAS DE LA MUESTRA

PROCEDENCIA

: KM. 1+ 000 - AV. INDUSTRIAL - SALCEDO

: Suelos Natural + 4 % Adición de Polímero

13.72

CALICATA Nº

Promedio Humedad

: C-3, M-1, E-2

CANTIDAD PRESENTACIÓN : 45 Kg. : Saco de Polietileno

: 00:20 - 01:50 m. ROFUNDIDAD

MOLDE

MOLDL	IN	VI		00		Va .		
CAPAS	N°	05	05			05		
Golpes por Capa	N°	56		25		12		
Condición Muestra	142 TO 120000 DAY	Opti. Humedad	Saturado	Opti. Humedad	Saturado	Opti. Humedad	Saturado	
Peso suelo hùmedo + molde grs.		12252	12365	12143	12342	12076	12236	
Peso molde	grs.	8012	8012	8126	8126	8241	8241	
Peso suelo húmedo	grs.	4240	4353	4017	4216	3835	3995	
Volumen del suelo	C.C.	2119	2119	2131	2131	2133	2133	
Densidad hůmeda	gr/cc.	2.00	2.05	1.89	1.98	1.80	1.87	
% de Humedad	%	13.66	16.22	13.63	17.66	13.72	17.80	
Densidad seca	gr/cc.	1.76	1.77	1.66	1.68	1.58	1.59	
Тапо	N°	34	28	16	16	12	14	
Tarro más suelo húmedo	grs.	245.12	245.42	226.32	243.12	236.06	251.21	
Tarro màs suelo seco	grs.	218.32	214.28	202.14	210.34	210.44	216.74	
Peso de Agua	grs.	26.80	31.14	24.18	32.78	25.62	34.47	
Peso de tarro	grs.	22.17	22.30	24.74	24.74	23.74	23.08	
Peso suelo seco	grs.	196.15	191.98	177.40	185.60	186.70	193.66	
% de humedad	%	13.66	16.22	13.63	17.66	13.72	17.80	

16.22 % DE EXPANCIÓN 1.25

	Fecha Hora	Hom	Tiempo	Dial	Expansión		Dial	Expansión		Dial	Expansión	
		Tion	ridilipo	Diai	mm.	%	Diai	Diai	mm.	%	Diai	mm.
_	13/6/21	12:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	14/6/21	12:30	24.00	0.39	0.39	0.31	0.46	0.46	0.36	0.66	0.66	0.52
	15/6/21	12:30	48.00	0.90	0.90	0.71	1.04	1.04	0.82	0.92	0.92	0.72
	16/6/21	12:30	72.00	1.31	1.31	1.03	1.41	1.41	1.11	1.59	1.59	1.25
П	17/6/21	12:30	96.00	1.47	1.47	1.16	1.60	1.60	1.26	1.68	1.68	1.32

13.63

PENETRACIÓN

- 1	Penetraciò	n	Carga	Dial	Carga C	orregida	CBR	Dial	Carga Co	orregida	CBR	Dial	Carga (Corregida	CBF
mm.	Pulg.	Tiempo	Patròn	Diai	Kg	K/cm²	CDR	Diai	Kg	K/cm²	CDK	Diai	Kg	K/cm²	CBF
0	0	0		0	0	0		0	0	0		0	0	0	
0.63	0.025	30 "		7	31	1.6		4	18	0.9		2	9	0.5	
1.27	0.050	1'		12	52	2.7		5	22	1.1		5	22	1.1	
1.90	0.075	1'30"		18	79	4.1		12	52	2.7		8	35	1.8	
2.54	0.100	2'	70	26	114	5.9	8.4	18	79	4.1	5.8	11	48	2.5	3.6
3.17	0.125	3'		33	144	7.5		22	96	5.0		14	61	3.2	
3.81	0.150	4'	105	41	179	9.3		26	114	5.9		17	74	3.8	SOLINE TO SERVICE
5.08	0.200	5'		49	214	11.1		30	131	6.8		20	87	4.5	
7.62	0.300	6'	133	57	249	12.9		35	153	7.9		23	101	5.2	820
10.16	0.400	7	- V- VA	63	275	14.2		39	170	8.8		25	109	5.7	
12.70	0.500	8'	181	70	306	15.8		44 1	192	9.9	- Income de	27	118	6.1	0000000
ANILLO		Marie Harrison		CAPAC	IDAD	45 kn	- 111			4547 a.	-221	CONST	NTE	19.33	

torio por el Solicitante Observaciones : La Muestra fue Identificada, muestreada, etiquetada y puesto en la

J&C LABORATORIO

liernan Nada Bailón

GRAFICO C.B.R.

REFERENCIAS DE LA MUESTRA

KM. 1+ 000 - AV. INDUSTRIAL - SALCEDO

CALICATA Nº

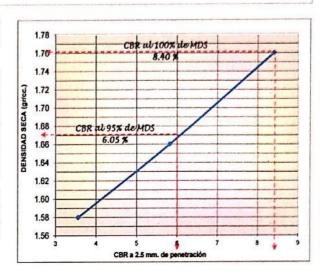
: C-3, M-1, E-2

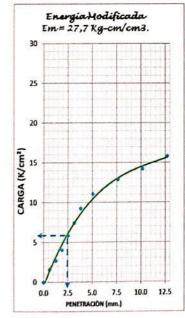
: 00:20 - 01:50 m.

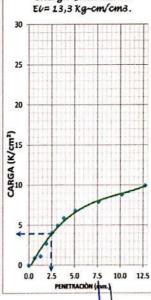
MUESTRA

: Suelos Natural + 4 % Adición de Polimero

CANTIDAD : 45 Kg.

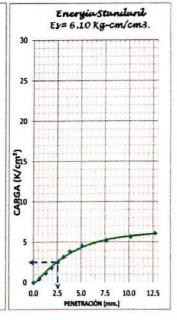

PRESENTACIÓN


: Saco de Polietileno


VALORES M.D.S.-O.C.H. Y C.B.R.

MAXIMA DENSIDAD SECA	1.759	gr/c/c
CONTENIDO DE HUMEDAD OPTIMA	13.55	%
CBR AL 95 % DE SU MDS	6.05	%
CBR AL 100 % DE SU MDS	8.40	%

CLASIFICACI	ON
AASHTO (ASTM D-3282)	A-4(1)
SUCS (ASTM-D-2487)	sc



Hernan Naga Bailon

Energia Intermedia

Observaciones : La Muestra fue Identificada, muestrada, etiquetada y puesto en poratorio por el Solicitante

J&C LABORATORIO

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASPALTO Y PAVIMENTOS

INFORME DE ENSAYO

PROYECTO

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PAVIMENTOS

RÍGIDOS, SALCEDO - PUNO

: BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson SOLICITA

: 01 DE JUNIO DEL 2021 : 02 DE JUNIO DEL 2021 FECHA ENSAYO

: FJCP.

ING. RESP. LAB

ENSAYO DE CONSTANTES FISICOS

: KM. 1+000 - AV. INDUSTRIAL - SALCEDO : C - 3, M - 1, E - 2 : 00:20 - 01:50 m. PROCEDENCIA

MUESTRA : Suelos Natural + 6 % Adición de Polímero CANTIDAD : 45 Kg. PRESENTACIÓN : Saco de Polietileno

20.04

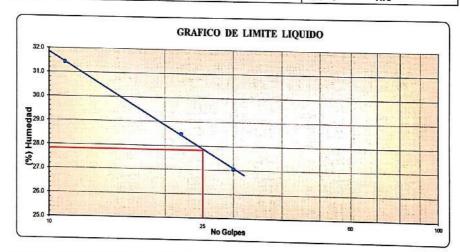
CALICATA Nº

Contenido de Humedad (%)

MUESTRA CANTIDAD

LIMITE LIQUIDO (MTC E 110 ASTM D - 4318)

Prueba Nro.	01	02	03	
Tarro Nro.	7	5	24	
Peso de la Capsula (gr)	23.05	24.00	23.21	
Peso de la Capsula+Suelo Humedo (gr)	36.48	37.17	37.72	
Peso de la Capsula+Suelo Seco (gr)	33.62	34.25	34.25	
Peso del agua (g)	2.86	2.92	3.47	
Pesa del Suelo Seco (gr)	10.57	10.25	11.04	
Contenido de Humedad (%)	27.06	28.49	31.43	
Numero de Golpes	30	22	11	


LIMITE PLASTICO (MTC E 111 ASTM D - 4318) Tarro Nro. PROMEDIO 33 Peso de la Capsula (gr) 22.21 22.56 Peso de la Capsula+Suelo Humedo (gr) 28.39 28.72 Peso de la Capsula+Suelo Seco (gr) 27.36 27.69 Peso del Agua (gr) 1.03 1.03 Peso del Suelo Seco (gr) 5.15

5.13

20.08

1000	770000		
_ LL. :	27.82	L.P. : 20.04	LP. : 7.78

20.00

etada y puesto en laboratorio por el Solicitante.

J&C LABORATORIAS FELIPE

Hernan Naga Failón

SERVICIO DE MECANICA DE SUELOS CONCRETO, ASFALTO Y PAVIMENTOS

INFORME DE ENSAYO

: POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE PROYECTO

PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

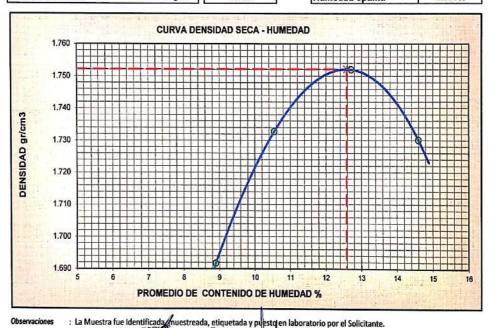
SOLICITA : BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

: F.J.C.P. : 01 DE JUNIO DEL 2021 RALIZADO POR FECHA RECEP. FECHA ENSAYO : 04 DE JUNIO DEL 2021 ; H.Ñ.B. ING. RESP. LAB

RELACION HUMEDAD DENSIDAD (PROCTOR MODIFICADO) (ASTM - 1557 MTC E 115)

PROCEDENCIA : KM. 1+000 - AV. INDUSTRIAL - SALCEDO

J&C LABORATO


MUESTRA

: Suelos Natural + 6 % Adición de Polímero

CALICATA Nº : C-3, M-1, E-2

CANTIDAD : 45 Kg.

PROFUNDIDAD : 00:20 - 01:50 m.			PRESENTA	CIÓN	: Saco de P	olietileno			
Metodo de Compactacion		1		Numero de Capas					
AASHTO T 180 - "C"			56		5				
	CALC	JLO DE DE	NSIDAD I	HUMEDA	D				
1. Peso suelo húmedo. + molde	gr	99	22	10	078	10204		10221	
2. Peso del molde	gr	60	00	60	000	60	00	60	000
3. Volumen del molde	cc	21	29	21	129	21	29	21	29
4. Peso suelo húmedo	gr	3922		40	78	42	04	42	21
5. Densidad suelo húmedo	gr/cc	1.842		1.915		1.975		1.983	
	(CALCULO	DE HUME	DAD	E 30 VA				
6. Capsula Nº	.0	10	8	16	22	36	14	25	2
7. Peso del suelo húmedo.+ capsula	gr	274.32	285.34	262.32	259.39	261.92	268.84	270.33	279.69
8. Peso del suelo seco+capsula	gr	254.14	263.58	238.95	237.77	231.88	241.62	238.88	246.98
9. Peso del agua	gr	20.18	21.76	23.37	21.62	30.04	27.22	31.45	32.71
10. Peso de la capsula	gr	23.63	22.67	24.74	25.35	25.52	23.08	23.95	22.32
11. Peso del suelo seco	gr	230.51	240.91	214.21	212.42	231.88	218.54	214.93	224.66
12. Contenido de humedad	%	8.75	9.03	10.91	10.18	12.95	12.46	14.63	14.56
12. Promedio de Humedad	%	8.	89	10	.54	12	.71	14	.60
	CAL	CULO DE	DENSIDA	D SECA					
13. Densidad seca del suelo	gr/cc	1.692		1.7	733	1.752		1.730	
Densidad Máxima	gr/cc	1.752		Humedad		nd ontima		12.58%	

Hernan Ñac

J & C - LABORATORIOS JR. MANUEL PINO Nº 120 TELF. CEL. 951 082115 - PUNO - PERU LABORÁTORIO DE ENSAYO DE MATERIALES BERVICIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMIENTOS.

GRAFICO C.B.R.

REFERENCIAS DE LA MUESTRA

PROCEDENCIA

: KM, 1+ 000 - AV. INDUSTRIAL - SALCEDO

CALICATA Nº

: C-3, M-1, E-2

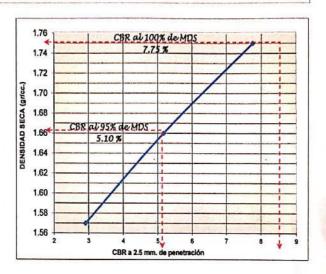
PROFUNDIDAD

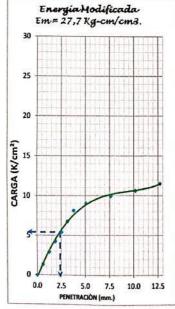
: 00:20 - 01:50 m.

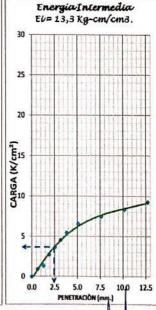
MUESTRA

: Suelos Natural + 8 % Adición de Polímero

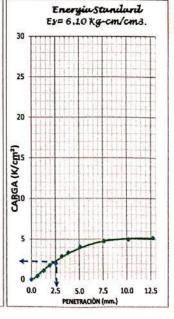
TIDAD : 45 Kg.


PRESENTACIÓN


: Saco de Polietileno


VALORES M.D.S.-O.C.H. Y C.B.R.

MAXIMA DENSIDAD SECA	1.752	gr/c/c.
CONTENIDO DE HUMEDAD OPTIMA	12.58	%
CBR AL 95 % DE SU MDS	5.10	%
CBR AL 100 % DE SU MDS	7.75	%


CLASIFICACI	ON
AASHTO (ASTM D-3282)	A-4(1)
SUCS (ASTM-D-2487)	SC

Ternan Nac Baron

Observaciones : La Muestra fue Identificada, muestreada, etiquetada y puesto en laboratorio por el Solicitante.

JAC LABORATORIOS
FELDE J. FACCHES PINEDA
L.D. BUGIOS

LABORATORIO DE ENSAYO DE MATERIALES SERVICIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y PAVIMENTOS.

INFORME DE ENSAYO

PROYECTO : POLÍMERO ADHESIVO NATURAL PARA MEJORAR LA CAPACIDAD DE SOPORTE Y DENSIDAD MÁXIMA EN SUBRASANTE DE

PAVIMENTOS RÍGIDOS, SALCEDO - PUNO

SOLICITA : BACHILLERES: PINO PINEDA, Edwin Fredy y MAQUERA MAMANI, Hugo Nelson

FECHA RECEP. : 01 DE JUNIO DEL 2021 RALIZADO POR : F.J.C.P.
FECHA ENSAYO : 13 DE JUNIO DEL 2021 ING. RESP.LAB : H.Ñ.B.

ENSAYO C. B. R. (ASTM D-1883)

REFERENCIAS DE LA MUESTRA

PROCEDENCIA : KM. 1+000 - AV. INDUSTRIAL - SALCEDO MUESTRA : Suelos Natural + 6 % Adición de Polímero

CALICATA N° : C-3, M-1, E-2 CANTIDAD : 45 Kg.

PROFUNDIDAD : 00:20 - 01:50 m. PRESENTACIÓN : Saco de Polietileno

MOLDE	N°	10		11		12	V- Marine	
CAPAS	N°	05	05			05		
Golpes por Capa	. N°	56		25		12		
Condición Muestra		Opti. Humedad	Saturado	Opti. Humedad	Saturado	Opti. Humedad	Saturado	
Peso suelo húmedo + molde grs.		12308	12445	12045	12222	11813	12039	
Peso molde	grs.	8089	8089	8102	8102	8044	8044	
Peso suelo húmedo	grs.	4219	4356	3943	4120	3769	3995	
Volumen del suelo	C.C.	2148	2148	2110	2110	2138	2138	
Densidad hùmeda	gr/cc.	1.96	2.03	1.87	1.95	1.76	1.87	
% de Humedad	%	12.55	15.54	12.54	17.08	12.46	18.40	
Densidad seca	gr/cc.	1.75	1.76	1.66	1.67	1.57	1.58	
Tarro	N°	34	40	41	47	32	30	
Tarro más suelo húmedo	grs.	249.93	252.10	234.82	281.98	254.42	281.93	
Tarro más suelo seco	grs.	224.54	221.54	211.36	244.12	228.74	241.65	
Peso de Agua	grs.	25.39	30.56	23.46	37.86	25.68	40.28	
Peso de tarro	grs.	22.17	24.91	24.21	22.46	22.60	22.71	
Peso suelo seco	grs.	202.37	196.63	187.15	221.66	206.14	218.94	
% de humedad	%	12.55	15.54	12.54	17.08	12.46	18.40	
Promedio Humedad	%	12.55	15.54	12.54	17.08	12.46	18.40	

7.000		9/32/32/3
% DE	EXPANCIÓN	1.21

							-1			1	
Fecha	Hora	Tiempo	Dial	Expansión		Dial	Expansión		Dial	Expansión	
1 cuia		Петтро		mm.	%	Diai	mm.	%	Diai	mm.	%
13/6/21	02:45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14/6/21	02:45	24.00	0.37	0.37	0.29	0.42	0.42	0.33	0.62	0.62	0.49
15/6/21	02:45	48.00	0.86	0.86	0.68	0.98	0.98	0.77	0.89	0.89	0.70
16/6/21	02:45	72.00	1.24	1.24	0.98	1.39	1.39	1.09	1.49	1.49	1.17
17/6/21	02:45	96.00	1.39	1.39	1.09	1.59	1.59	1.25	1.64	1.64	1.29

TRAC	CION
	TRAC

				-		1.4		TOIOIT			201				
Penetración	Carga	Dial	Carga Corregida		CBR	Dial	Carga Corregida		CBR	Dial	Carga Corregida		CDE		
mm.	Pulg.	Tiempo	Patròn	Diai	Kg	K/cm²	ODIN	Diai	Kg	K/cm²	CDK	Diai	Kg	K/cm²	CBR
0	0	0		0	0	0		0	0	0		0	0	0	
0.63	0.025	30 "		6	26	1.4		4	18	0.9		2	9	0.5	
1.27	0.050	ľ	N-VS-VS-V	13	57	2.9		6	26	1.4		5	22	1.1	
1.90	0.075	1'30"		19	83	4.3		12	52	2.7		8	35	1.8	
2.54	0.100	2'	70	24	105	5.4	7.8	16	70	3.6	5.2	9	39	2.0	2.9
3.17	0.125	3'		30	131	6.8		20	87	4.5		13	57	2.9	
3.81	0.150	4'	105	36	157	8.1		24	105	5.4		15	66	3.4	- 1000
5.08	0.200	5'		40	175	9.0		29	127	6.6		18	79	4.1	
7.62	0.300	6'	133	44	192	9.9		33	144	7.5		21	92	4.7	
10.16	0.400	7		47	205	10.6		37	162	8.4		22	96	5.0	
12.70	0.500	8'	181	51	223	11.5		41	179	9.3		23	101	5.2	
NILLO				CAPACI	DAD	45 kn		SOBREC	ARGA 4	1547 g.	-	CONST	ANTE	19.33	

Observaciones : La Muestra fue Identificada, muestreada, etiquetada y puesto en laboratorio por el Solicitante.

FELIFE OCCEPTES PINEDA
Lab. Suelos

SERVICIO DE ASEGURAMIENTO METROLÓGICO

CERTIFICADO DE CALIBRACIÓN Nº: 53500-16918-CLF-2020

Expediente 5588-15152-2020 Fecha de emisión :

SOLICITANTE : CACERES PINEDA FELIPE JESUS - J&C - LABORATORIOS.
DIRECCIÓN : JR. MANUEL PINO Nº 120 BARRIO JOSE A. ENCINAS, PUNO, PUNO, PUNO.

: PRENSA DE ENSAYO CBR : ELE : EL78-0860 : 780860-01876 2. INSTRUMENTO DE MEDICIÓN MARCA MODELO DEL EQUIPO

RELOJ COMPARADOR 2

RELOJ COMPARADOR 1

MARCA : INSIZE

MODELO : NO IND

N° DE SERIE : NO IND MARCA : ELE INTERNATIONAL MODELO : NO INDICA : NO INDICA : NO INDICA : NO INDICA : 30 mm N° DE SERIE WFG224 ALCANCE DIV. DE ESCALA DIV. DE ESCALA

3. FECHA Y LUGAR DE MEDICIÓN.

La calibración se realizó el día 5 de Octubre del 2020 en las instalaciones (local Puno) de CACERES PINEDA FELIPE JESUS - J&C - LABORATORIOS

4. MÉTODO.

La calibración se realizó con patrones que tienen trazabilidad al SNM-INDECOPI, tomando como referencia la norma UNE-EN ISO 7500-1.2006 Parte 1 "Máquinas de ensayo de tracción-compresión. Certificación y calibración del sistema de medida de fuerza"

IN:	STRUMENTO	MARCA	MODELO	CERTIFICADO Y/O INFORME	TRAZABILIDAD
CEI	LDA DE CARGA	TECSCALE	BTY	48986-5614-CLM-2020	ADVANCED METROLOGY
TERM	MOHIGRÓMETRO	LUTRON	MHB-382SD	LT-755-2016	INACAL

6. CONDICIONES AMBIENTALES.

La calibración se realizó bajo las siguientes condiciones ambientales: Temperatura: 22,1 °C a 22,1 °C Humedad Relativa:

Observationes.

Los resultados de las mediciones efectuadas se muestran en la página 02 del presente documento.

Para el cálculo de la incertidumbre de medición se utilizó un factor de cobertura k=2 que corresponde a un nivel de confianza de aproximadamente 95 %.

Con fines de identificación se colocó una etiqueta autoadhesiva de color verde con la indicación "CALIBRADO". La periodicidad de la calibración depende del uso, mantenimiento y conservación del instrumento de medición

La calibración se realizó bajo condiciones del laboratorio.
(*) Código asignado por ADVANCED METROLOGY S.A.C.

VB.

PROHIBIDA LA REPRODUCCION TOTAL O PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACION ESCRITA DE ADVANCED METROLOGY SAC Jr. Tnte. Aristides del Carpio N° 1626 Urb. Los Cipreces - Cercado de Lima, Lima - Perú Telf.: 564-5937 / 564-2046 / 564-5244 Telefax: (511) 564-5492 RPM: # 677755 RPC: 963754100 Entel: 981167242 E-mail: ventas@ametrology.pe / www.ametrology.com

SERVICIO DE ASEGURAMIENTO METROLÓGICO

Certificado Nº: 53500-16918-CLF-2020 Página 2 de 2

RESULTADOS DE CALIBRACIÓN

VALOR NOMINAL (kg.F)	VALOR INDICADO EN EL EQUIPO (kg.F)	ERROR (kg.F)	INCERTIDUMBRE (kg.F)		
Advenced Material of Advenced M	July Adversari 10,0 Adversari A	0,0	8,0		
mond Materials 500 mond Materials	Advanced Metrol 499 Advanced Materings A	franced Matricol Advanced	Metalogy Admir 0,8 latrology A		
1000	Advanced Matter 998 Advanced Materialogy A	branced Metro1;5 Advances	0,8		
1500	1498	-2,3	0,9		
2000	tralingy Advanced 1998 by Advanced Materials	Advance-2,0	Motorology 0,9 and Matrala		
2500	y Advanced Metrology Advanced Metrology Avanced 2498 cv Advanced Metrology	ry Advanced Materials Advanced by Advanced Materials Advanced Adva	0,9		
3000	Advanced Metro2997 diversed Metrology A	-2,6	Methology Advanto, 9 excelogy A		
3500	Advanced Metro 3497 dvanced Metrology A	dyenced Hetr-2,8 Advanced	Manualing According A		
4000	3997	ty Advanced Historingy Adv	0,9		
Advanced Mr 4500 Advanced M	trategy Advanced 4497 av Advanced Materials	-3.4	week Materials 10,9 and Materials		

1kg.F=kg.G

G=Gravedad

mouth Hatrology Advanced Metrology Advanced Metrolo

PROHIBIDA LA REPRODUCCION TOTAL O PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACION ESCRITA DE ADVANCED METROLOGY SAC

Jr. Tnte. Aristides del Carpio N° 1626 Urb. Los Cipreces - Cercado de Lima , Lima - Perú Telf:: 564-5937 / 564-2046 / 564-5244 Telefax: (511) 564-5492 RPM: # 677755 RPC: 963754100 Entel: 981167242 E-mail: ventas@ametrology.pe / www.ametrology.com