

ESCUELA DE POSGRADO

PROGRAMA ACADÉMICO DE MAESTRÍA EN INGENIERÍA CIVIL CON MENCIÓN EN DIRECCIÓN DE EMPRESAS DE LA CONSTRUCCIÓN

ISO 14001:2015 y su incidencia en la Gestión de Residuos Sólidos de la Construcción en la Empresa Atix Group S.A.C., Lima 2021

TESIS PARA OBTENER EL GRADO ACADÉMICO DE:

Maestro en Ingeniería Civil con Mención en Dirección de Empresas de la Construcción

AUTOR:

Hurtado Valderrama, Erik (ORCID: 0000-0002-3094-4489)

ASESOR:

Dr. Visurraga Agüero, Joel Martin (ORCID: 0000-0002-0024-668X)

LÍNEA DE INVESTIGACIÓN:

Dirección de Empresas de la Construcción

LIMA — PERÚ 2021

Dedicatoria

A mis padres Lena Ingrid y Edgar Vidal. A mis hermanos Kevin y Christian. Por su apoyo incondicional.

Agradecimiento

Al Gran Arquitecto del Universo por permitirme vivir.

A la Universidad César Vallejo.

A la empresa Atix Group S.A.C.

Índice de contenidos

			Página
Dedicatoria			ii
Agradecimiento		iii	
Índio	ce de d	contenidos	iv
Índio	ce de t	ablas	V
Índio	ce de g	gráficos y figuras	vii
Res	umen		viii
Abstract		ix	
I.	INTR	ODUCCIÓN	1
II.	MAR	CO TEÓRICO	5
III.	METODOLOGÍA		19
	3.1.	Tipo y diseño de investigación	19
	3.2.	Variables y operacionalización	20
	3.3.	Población, muestra y muestreo	21
	3.4.	Técnicas e instrumentos de recolección de datos	22
	3.5.	Procedimientos	25
	3.6.	Método de análisis de datos	25
	3.7.	Aspectos éticos	26
IV.	RES	ULTADOS	27
V.	DISC	CUSIÓN	42
VI.	CON	CLUSIONES	51
VII.	REC	OMENDACIONES	52
REFERENCIAS		53	
ANE	XOS		65

Índice de tablas

		Página
Tabla 1	Ficha Técnica del instrumento de recolección de datos	23
Tabla 2	Validación del instrumento de recolección de datos	24
Tabla 3	Resultado del análisis de confiabilidad a través de Alfa de Cronbach	24
Tabla 4	Tabla de contingencia de la variable ISO 14001:2015 por la variable Gestión de residuos sólidos de la construcción	27
Tabla 5	Tabla de contingencia de ISO 14001:2015 por la dimensión Componente técnico de la Gestión de residuos sólidos de la construcción	28
Tabla 6	Tabla de contingencia de ISO 14001:2015 por la dimensión Componente legal de la Gestión de residuos sólidos de la construcción	30
Tabla 7	Tabla de contingencia de ISO 14001:2015 por la dimensión Componente ambiental de la Gestión de residuos sólidos de la construcción	31
Tabla 8	Información de ajuste de los modelos	34
Tabla 9	Prueba Pseudo R cuadrado comportamiento de la variable dependiente Gestión de residuos sólidos de la construcción	34
Tabla 10	Prueba no paramétrica de la estimación de incidencia de la variable ISO 14001:2015 en variable Gestión de residuos sólidos de la construcción	35
Tabla 11	Información de ajuste de los modelos	36
Tabla 12	Prueba Pseudo R cuadrado comportamiento de la dimensión Componente Técnico de la variable dependiente Gestión de residuos sólidos de la construcción	36

Tabla 13	Prueba no paramétrica de la estimación de incidencia de la	37
	ISO 14001:2015 en la dimensión Componente Técnico de la	
	Gestión de residuos sólidos de la construcción	
Tabla 14	Información de ajuste de los modelos	38
Tabla 15	Prueba Pseudo R cuadrado comportamiento de la dimensión	38
	Componente Legal de la variable dependiente Gestión de	
	residuos sólidos de la construcción	
Tabla 16	Prueba no paramétrica de la estimación de incidencia de ISO	39
	14001:2015 en la dimensión Componente legal de Gestión	
	de residuos sólidos de la construcción	
Tabla 17	Información de ajuste de los modelos	40
Tabla 18	Prueba Pseudo R cuadrado comportamiento de la dimensión	40
	Componente Ambiental de la variable dependiente Gestión	
	de residuos sólidos de la construcción	
Tabla 19	Prueba no paramétrica de la estimación de incidencia de ISO	41
	14001:2015 en la dimensión Componente Ambiental de	
	Gestión de residuos sólidos de la construcción.	

Índice de figuras

		Pagina
Figura 1	Histograma, Histograma, V1-ISO 14001:2015 * V2-Gestión de	27
	residuos sólidos de la construcción	
Figura 2	Histograma, V1- ISO 14001:2015 * D1-V2 Componente técnico	29
	de la Gestión de residuos sólidos de la construcción.	
Figura 3	Histograma, V1–ISO 14001:2015 * D2-V2 Componente legal de	30
	la Gestión de residuos sólidos de la construcción.	
Figura 4	Histograma, V1–ISO 14001:2015 * D3-V2 Componente legal de	32
	la Gestión de residuos sólidos de la construcción	

Resumen

El objetivo general de la investigación fue determinar la incidencia de la ISO

14001:2015 en la Gestión de Residuos Sólidos de la Construcción en la empresa Atix

Group S.A.C., Lima 2021. Metodológicamente fue una investigación aplicada de

diseño no experimental, transversal descriptivo (correlacional causal), teniendo como

población 92 trabajadores y una muestra de 74 trabajadores obtenida con el muestreo

probabilístico del tipo aleatorio simple.

Para la recolección de datos se utilizó como técnica la encuesta y como instrumento

el cuestionario, validado por juicio de expertos como Aplicable, con Alta Confiabilidad

de 0,957 según el coeficiente Alfa de Cronbach. En el análisis inferencial se recurrió a

modelo y coeficiente no paramétricos, aplicando Regresión Ordinal, optando por el

coeficiente de determinación R² de Nagelkerke (Prueba Pseudo R cuadrado),

revelando que la ISO 14001:2015 incide significativamente en 36,0% en la gestión de

residuos sólidos de la construcción, en 31,3% en el componente técnico, en 34,4% en

el componente legal, y en 23,3% en el componente ambiental de la variable

dependiente; aceptándose la hipótesis general y específicas alternas.

Concluyendo que existe bajo nivel de incidencia significativa entre variables, reflejando

una relación causal directa débil.

Palabras claves: ISO 14001:2015, gestión residuos de construcción, contaminación.

viii

Abstract

The general objective of the research was to determine the incidence of ISO 14001:

2015 in the Management of Solid Construction Waste in the company Atix Group

S.A.C., Lima 2021. Methodologically, it was an applied research of a non-experimental,

descriptive cross-sectional design (causal correlational), with a population of 92

workers and a sample of 74 workers obtained with probabilistic sampling of the simple

random type.

For data collection, the survey was used as a technique and the questionnaire as an

instrument, validated by expert judgment as Applicable, with High Reliability of 0.957

according to Cronbach's Alpha coefficient. In the inferential analysis, non-parametric

model and coefficient were used, applying Ordinal Regression, opting for the

Nagelkerke R2 determination coefficient (Pseudo R squared test), revealing that ISO

14001: 2015 has a significant 36.0% impact on solid construction waste management,

31.3% for the technical component, 34.4% for the legal component, and 23.3% for the

environmental component of the dependent variable; accepting the general and

specific alternative hypotheses.

Concluding that there is a low level of significant incidence between variables, reflecting

a weak direct causal relationship.

Keywords: ISO 14001: 2015, construction waste management, pollution.

ix