

FACULTADA DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

INGENIERO CIVIL

AUTORES:

Ayquipa Altamirano, Carlos Edward (ORCID:0000-0002-5688-5384)

Guillén Garfias, Andy Selwyn (ORCID:0000-0001-9584-529X)

ASESOR:

Mg. Robert Wilfredo, Sigüenza Abanto (ORCID:0000-0001-8850-846)

LÍNEA DE INVESTIGACIÓN:

"Diseño de Infraestructura Vial"

LIMA-PERÚ

2021

Dedicatoria

A Dios, por permitirme haber logrado uno de mis objetivos en mi formación profesional, que es tan importante para mi persona y para mi familia.

A mi madre, María Jesús Garfias Huarcaya, por todo lo que hace día a día por mí y por mis hermanos, por su inquebrantable amor y apoyo incondicional que me demuestra a diario. Cada paso en mi vida lo he dado gracias a ella, todos los logros alcanzados se los dedico y debo a ella. Eres mi todo Mamá.

A mi familia, mi padre Wilfredo Guillén, por sus consejos, mi hermana Heedy que es una profesional admirable, mi hermano Kevin quien es la persona que me impulsa todos los días, quien es incondicional con su amor, porque sus sueños son los míos, por sus ganas de querer salir adelante me motivan día a día a seguir adelante. Gracias Dios por haberme dado a una familia maravillosa.

A mis amigos por todo lo que pasamos y pasaremos juntos, en especial a mi amigo David que es mi mano derecha en el desarrollo de mi vida profesional.

A mi hermano de la vida, Carlos Ayquipa que es más que mi familia.

Guillen Garfias Andy Selwyn

A mis padres Carlos Ayquipa Ñahuie y Maximiliana Altamirano Leyva, por el esfuerzo y dedicación, por haberme formado como la persona que soy en la actualidad; muchos de mis logros se los debo a ustedes entre los que se incluye en este. Me formaron con reglas y algunas libertades, pero al final de cuentas me motivaron para alcanzar mis anhelos.

A mi hija Mia Valentina Ayquipa Anca, por ser mi fuente de motivación e inspiración para poder superarme cada día más y así poder luchar para que la vida nos depare un futuro mejor.

A mi familia, mi novia, tíos, primos y demás familiares que me demostraron el apoyo en las buenas y en las malas.

A mis amigos Andy guillen Garfias, José Luis Cáceres miranda, David Jefferson Huauya Arotinco, Nelson Palomino Carbajal, Mirzon Guillen Vargas, Jhonatan Oscco Chuquimamani y a todos mis amigos por los buenos momentos que hemos compartido, por las experiencias vividas juntos y el apoyo incondicional que me brindan.

Ayquipa Altamirano Carlos Edwar

Agradecimiento

A Dios, por su gracia y misericordia por mantenerme de pie en los momentos más difícil, por nunca abandonarme y por nunca hacer que pierda la fe en él.

A mi madre, una mujer sin igual, una madre envidiable, la persona que día a día me impulsa a seguir, sin ella no soy nada ni nadie. Gracias amor de mi vida, gracias!!

A mis hermanos Kevin y Heedy por todo el amor que me demuestran, son mi luz ante cualquier adversidad, son los que me presionan día a día para ser mejor, Gracias por ser parte de mi vida.

> A mis amigos que son parte de mi vida y mi crecimiento profesional, a mis amigos David, José y Carlos que son las personas con las cuales me estoy desarrollando personalmente y profesionalmente.

A la universidad Cesar Vallejo por permitirme cumplir una de las metas que tengo establecidas en la vida.

> Nuevamente a Dios porque a él le debo todo, sin él no soy nada. Gracias Dios mío nunca dejare de estar agradecido por todo.

A Dios por bendecirnos y permitirnos culminar este trabajo de investigación y por ser el apoyo y fortaleza en aquellos momentos difíciles que afrontamos durante nuestro proceso de pregrado.

A mi familia, mis padres, familia y amigos que por todas las dificultades y adversidades afrontadas siempre estuvo dándome su mano, a mi familia, que siempre ha estado presente en todo momento. Por último, a mi compañero de tesis, con el que hemos desarrollado varios retos académicos y espero afrontar muchos más.

A la Universidad cesar vallejo por ser la entidad que me estuvo predispuesto en todo momento para el asesoramiento y apoyo de la presente tesis y seguir formando buenos profesionales.

ΑI Mg. Sigüenza Abanto, Robert Wilfredo Porque día a día nos imparten enseñanzas y motivan a luchar para el cumplimiento de nuestras metas. Un agradecimiento especial por transmitirme los conocimientos necesarios para poder desarrollar y llegar a la etapa final de esta investigación, de poder terminar mis estudios.

Ayquipa Altamirano Carlos Edwar

Índice de Contenidos

Dedi	icatoria	ii
Agra	adecimiento	iv
Índic	e de contenidos	V
Resu	umen	xi
Abst	ract	xii
l.	INTRODUCCIÓN	13
II.	MARCO TEÓRICO	16
III.	METODOLOGÍA	45
3.1	Tipo y diseño de investigación	45
3.2	Variables y operacionalización	48
3.3	Población (criterios de selección), muestra, muestreo,	unidad de
análi	isis	49
3.4	Técnicas e instrumentos de recolección de datos	49
3.5	Procedimientos	50
3.6	Método de análisis de datos	53
3.7	Aspectos éticos	53
IV.	RESULTADOS	54
٧.	DISCUSIÓN	98
VI.	CONCLUSIONES	106
VII.	RECOMENDACIONES	109
REFE	ERENCIAS	110
ANE	XOS	114

ÍNDICE DE TABLAS

Tabla 1 Elasticidad por tipo de Vehículo2	:8
Tabla 2 Factores de distribución direccional y de carril para determinar e	el
tránsito en el carril de diseño	29
Tabla 3 Configuración de Ejes3	0
Tabla 4 Relación de Cargas por Eje para determinar EE para Afirmado.	s,
Pavimentos Flexibles y Semirrígidos3	32
Tabla 5 Factor de Ajuste por presión de Neumático (Fp) para Ejes Equivalente	∍s
(<i>EE</i>)	3
Tabla 6 Guía referencial para la selección del tipo de estabilizador 4	1
Tabla 7 Operacionalización de las variables independientes definidas 4	8
Tabla 8 Operacionalización de las variables dependientes definidas 4	8
Tabla 9 <i>PBI por departamentos.</i> 5	4
Tabla 10 Población por departamentos5	4
Tabla 11 PBI PER CAPITA por departamentos5	5
Tabla 12 Tasa de crecimiento por tipo de vehículo5	5
Tabla 13 Factores de corrección por tipo de vehículo5	5
Tabla 14 IMDA del tramo LI-1165	6
Tabla 15 Tráfico generado por tipo de proyecto57	•
Tabla 16 Tráfico normal proyectado de la ruta LI-1165	8
Tabla 17 Tráfico generado proyectado de la ruta LI-1165	9
Tabla 18 Tráfico total proyectado de la ruta LI-1165	9
Tabla 19 Factores destructivos, Factor direccional y factor carril por tipo d	le
vehículo pesado6	0
Tabla 20 Ejes equivalentes de diseño en la ruta LI-1166	1
Tabla 21 Ubicación de calicatas de la ruta LI-116 y la cantera Salome 6	2
Tabla 22 Cuadro resumen del ensayo de granulometría, LL, LP, II	P,
clasificación SUCS y AASHTO y Humedad natural (W) realizados a la ruta L	/-
116	3
Tabla 23 Capacidad de carga (CBR), de las calicatas realizadas en campo	ο.
6	4

Tabla 24 Cuadro resumen del ensayo de granulometría, LL, LP, II	ο,
clasificación SUCS y AASHTO y Humedad natural (W) realizados a la canter	ra
SALOME6	5
Tabla 25 Muestras Estabilizadas evaluadas6	6
Tabla 26 Cuadro resumen del ensayo de Proctor Modificado y Compresión n	10
confinada a la muestra estabilizada 016	5 7
Tabla 27 Cuadro resumen del ensayo de Proctor Modificado y Compresión n	10
confinada a la muestra estabilizada 026	5 7
Tabla 28 Cuadro resumen del ensayo de Proctor Modificado y Compresión n	10
confinada a la muestra estabilizada 036	8
Tabla 29 Especificaciones Tec. De tipos de estabilizadores y parámetros de	el
Documento Técnico De Soluciones Básicas Del MTC6	9
Tabla 30 Cuadro resumen del ensayo de Proctor Modificado, CBR	У
Compresión no confinada a la muestra estabilizada 047	'1
Tabla 31 Cuadro resumen del ensayo de Proctor Modificado, CBR	У
Compresión no confinada a la muestra estabilizada 057	'1
Tabla 32 Cuadro resumen del ensayo de Proctor Modificado, CBR	У
Compresión no confinada a la muestra estabilizada 06 7	'2
Tabla 33 Cuadro resumen del ensayo de Proctor Modificado, CBR	У
Compresión no confinada a la muestra estabilizada 07 7	'3
Tabla 34 Cuadro resumen del ensayo de Proctor Modificado, CBR	У
Compresión no confinada a la muestra estabilizada 08 7	'3
Tabla 35 Cuadro resumen del ensayo de Proctor Modificado, CBR	y
Compresión no confinada a la muestra estabilizada 09 7	
Tabla 36 Periodo de análisis7	7
Tabla 37 Número de repeticiones acumuladas de EE de 8.2 t, en el carril de	
diseño7	'8
Tabla 38 Categorías de la sub rasante7	'8
Tabla 39 Valores recomendados de nivel de confiabilidad	'9
Tabla 40 Valores de los coeficientes estadísticos de la Desviación Estánda	Эľ
Normal (Zr)	30
Tabla 41 Valores de la Desviación Estándar Combinada (So) 8	30
Tabla 42 Índices de Serviciabilidad Inicial (Pi) 8	;1
Tabla 43 Índices de Serviciabilidad Final (Pf)	32

Tabla 44 Resultados mediante ASSHTO 93 a la muestra de cantera sin
estabilizante84
Tabla 45 Resultados para espesores mediante el estabilizado al 3% con
Cemento86
Tabla 46 Resultados para espesores mediante el estabilizado al 4% con
Cemento88
Tabla 47 Resultados para espesores mediante el estabilizado de 0.26 lts/m3
PROES 100 + 45 Kg/m3 de Cemento90
Tabla 48 Resultados para espesores mediante el estabilizado de 0.26 lts/m3
PROES 100 + 45 Kg/m3 de Cemento92
Tabla 49 Resultados para espesores mediante el estabilizado de 0.26 lts/m3
PROES 100 + 45 Kg/m3 de Cemento94
Tabla 50 <i>Cuadro resumen de espesores para todas las bases estabilizadas</i> 95
Tabla 51 <i>Volúmen solicitado para el mejoramiento de la ruta LI-116</i> 96
Tabla 52 <i>Volúmen solicitado para el mejoramiento de la ruta LI-116</i> 96
Tabla 53 Resultados del ensayo a la compresión máxima no confinada 98
Tabla 54 Resultados del ensayo a la compresión máxima no confinada 99
Tabla 55 Resultados de los ensayos realizados en la vía Huaylillas-Buldibuyo.
Tabla 56 Resultados de los ensayos realizados en la via LI-116101
Tabla 57 Cuadro comparativo de CBR y Resistencia a la compresión 102
Tabla 58 Cuadro comparativo de CBR y Resistencia a la compresión 103
Tabla 59 Resultados de los ensayos realizados en la via LI-116104
Tabla 60 <i>Cuadro comparativo de CBRs</i> 105

ÍNDICE DE FIGURAS

Figura 1. Límites de Atterberg.	. 35
Figura 2. Proceso para la identificación del tipo de suelos	. 39
Figura 3. Proceso de selección del tipo de estabilización	. 40
Figura 4. Descripción de afirmado	. 76
Figura 5. Variación de a2 para 3% de cemento.	. 85
Figura 6. Variación de a2 para 4% de cemento.	. 87
Figura 7. Variación de a2 para 0.26 Lts/m3 de PROES 100 + 45 Kg/m3	de
Cemento	. 89
Figura 8. Variación de a2 para 0.28 Lts/m3 de PROES 100 + 45 Kg/m3	de
Cemento	. 91
Figura 9. Variación de a2 para 0.30 Lts/m3 de PROES 100 + 45 Kg/m3	de
Cemento	. 93

Resumen

La presente tesis titulada "Influencia en el Diseño de Pavimento considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021", tiene como objetivo principal determinar el diseño de pavimento adecuado considerando el aceite sulfonado y cemento como aditivo para la base de la ruta LI-116.

La metodología es del tipo aplicada, empleando un diseño cuasiexperimental; la población está ubicada en la ruta LI-116, Yamobamba - La Libertad; donde se analizó los datos obtenidos empleando los Manuales del MTC y la guía AASHTO.

Se analizaron los datos con ensayos de laboratorio (CBR y resistencia a la compresión no confinada) a las 06 calicatas de la vía y 03 calicatas de cantera, obteniendo un CBR promedio de vía de 18%; lo siguiente fue estabilizar las muestras de la cantera con aditivo PROES 100 (0.26, 0.28 y 0.30 Lts/m3) + 45 Kg/m3 de Cemento Portland I obteniendo que el CBR al 100% mejoró en 101.3%, 106.0% y 117.1% y con resistencias a la compresión de 32, 37 y 39 kg/cm², dando como resultado el objetivo planteado .

Finalmente, se concluye los estabilizadores mencionados mejoran las propiedades ingenieriles de los suelos de acuerdo a las dosificaciones planteadas.

Palabras claves: aceite sulfonado, PROES 100, cemento portland I, diseño de pavimento.

Abstract

The present thesis entitled "Influence on Pavement Design considering a

Stabilized Base with Cement and Sulfonated Oil - Route LI-116, La Libertad,

2021", has as its main objective to determine the adequate pavement design

considering sulfonated oil and cement as additive for the base of route LI-116.

The methodology is of the applied type, using a quasi-experimental design; the

population is located on route LI-116, Yamobamba - La Libertad; where the data

obtained using the MTC Manuals and the AASHTO guide were analyzed.

The data were analyzed with laboratory tests (CBR and resistance to unconfined

compression) on the 06 road pits and 03 quarry pits, obtaining an average road

CBR of 18%; The following was to stabilize the guarry samples with PROES 100

additive (0.26, 0.28 and 0.30 Lts / m3) + 45 Kg / m3 of Portland Cement I,

obtaining that the CBR at 100% improved by 101.3%, 106.0% and 117.1% and

with compressive strengths of 32, 37 and 39 kg / cm², resulting in the objective

set.

Finally, it is concluded that the mentioned stabilizers improve the engineering

properties of the soils according to the proposed dosages.

Keywords: sulfonated oil, PROES 100, portland cement I, pavement design.

χij

I. INTRODUCCIÓN

La infraestructura vial a nivel departamental y vecinal constituye uno de los principales elementos dentro de la economía peruana al ser el medio de comunicación directo por el cual se da la movilización entre los centros poblados, distritos, provincias; incentivando así el movimiento económico del campo que a la par facilita el desarrollo regional contribuyendo con la reducción de la pobreza local (L. Martinez.2017).

Al ser tan importante las rutas departamentales se hace necesario realizar planes de rehabilitación y mantenimiento constantes que garanticen niveles de serviciabilidad y transitabilidad óptimos para la correcta movilización de vehículos y personas; no obstante las limitaciones de los gobiernos regionales y locales asociadas a la propiedad y responsabilidad de estas vías, así como los vacío de información que existen con respecto a su ubicación y distribución hace que su deterioro se acelere a tal punto que la vía sea intransitable.

Dado ese punto de vista, el MTC está ejecutando el plan estratégico sectorial Multianual que trata de "Ampliar, conservar y modernizar la infraestructura vial departamental y rural de transportes de calidad competitivas que promuevan la inclusión social, la integración interna y externa del país y protección del medio ambiente.

A través de estos estudios se elabora los planes de gestión, mejoramiento y conservación por niveles de servicio donde se evalúa a la ruta en estudio y se determina si esta se interviene a nivel de mejoramiento o conservación.

De acuerdo a la cantidad de tráfico y al tipo de vía se ha determinado que se diseñara un pavimento a nivel de soluciones básicas, con un periodo de diseño de 10 años (RD 003_2015_MTC_14). En tal sentido diseñaremos un pavimento a nivel de soluciones básicas con cemento y aceite sulfonado.

El uso de estabilizantes químicos para mejorar las condiciones de las vías departamentales ha venido siendo a lo largo del tiempo un método bastante investigado y aplicado, a pesar de esto, su implementación para mejorar las condiciones que puede tener la vía a lo largo de su vida útil o hasta que sea intervenida de mejor manera ha sido baja, esto teniendo en cuenta que la mayoría de las vías del país se encuentran en afirmado, según el Ministerio de

transportes y Comunicaciones la infraestructura vial se encuentra dividido en 3 niveles: Red vial Nacional, Departamental y Vecinal; la longitud total de las vías son 168,473.1 Km, en la red vía nacional se tiene 27,109.6 km, el 79%(21,434.0 km) se encuentra pavimentada y el 21% (5,675.6 km) sin pavimentar; en la red vial departamental se tiene 27,505.6 km, el 13% (3,623.1 km) se encuentra pavimenta y el 87% (23,882.5 km) sin pavimentar; en la red vial Vecinal se tiene 113,857.9 km, el 2% (1,858.9 km) se encuentra pavimentada y el 98% (111,999.0 km) sin pavimentar. Estos datos reflejan la poca importancia que tienen nuestras vías vecinales y departamentales.

Por medio de la presente investigación se analiza desde el punto de vista ingenieril una alternativa la elección de una determinada alternativa de estabilización para vías departamentales y vecinales a partir de subproductos industriales que actualmente se encuentran en etapa de ejecución y que fueron implementados en una vía a partir de un caso base. Para la presente investigación se encontró que la estabilización de vías es un procedimiento que cumple con aquellos requisitos.

Formulación del problema de investigación

Según lo antes mencionado, nos preguntamos ¿Cuáles son las Variaciones del diseño de pavimento considerando el aceite sulfonado y cemento como estabilizadores en la ruta Li-116, La Libertad -2021?

Ante el problema mencionado, podemos determinar el objetivo general y especifico, el objetivo general es determinar el diseño de pavimento adecuado considerando el aceite sulfonado y cemento como aditivo para la base.

Y como objetivos específicos, se tiene el primer objetivo que es determinar los parámetros de diseño de pavimentos adecuados para la ruta Li-116 (Trafico - CBR de diseño – número estructural a superar), el segundo objetivo específico es analizar el comportamiento de las bases estabilizadas utilizando aceite sulfonado, cemento y aceite sulfonado más cemento, el tercero es determinar cómo varia el coeficiente estructural para cada base (Determinar cuál tiene mayor aporte estructural), el cuarto es determinar el diseño de pavimento para

una base estabilizada con cemento, el quinto es determinar el diseño de pavimento para una base estabilizada con aceite sulfonado, el sextos es determinar el diseño de pavimento para una base estabilizada con cemento y aceite sulfonado, el séptimo es valuar los diseños de pavimentos y escoger el óptimo y el octavo es determinar las ventajas de estabilizar una base con aceite sulfonado y cemento.

A pesar de las importantes ventajas potenciales que ofrecen estos estabilizadores químicos patentados, la mayoría de los ingenieros se resisten a recomendar su uso. En consecuencia, no han gozado de un uso y aceptación generalizados. Esta falta de aceptación puede atribuirse principalmente a la falta de investigaciones publicadas de forma independiente sobre estabilizadores químicos.

Otros factores incluyen la falta de métodos de prueba de laboratorio estándar para la predicción efectiva del desempeño en el campo y, a menudo, información inadecuada proporcionada por los fabricantes de los aditivos de estabilización, junto con tasas de aplicación a veces mal definidas o inconsistentes en la literatura del producto.

Por lo antes descrito, la presente investigación implementará el método de estabilización química con cemento y aceite sulfonado, con el fin de comparar el efecto que este agente estabilizante pueden causar sobre las características ingenieriles del suelo, identificando, cuál de estos permite conseguir mejores resultados en los ensayos de caracterización (límites de Atterberg, compresión confinada, Proctor modificado y CBR - California Bearin Ratio), logrando obtener un análisis que resulte útil para la implementación en distintos proyectos de Ingeniería Civil en el Perú para carreteras que tengan presencia de materiales con comportamiento plástico.

Esta investigación recoge los planteamiento, análisis y resultados que fueron desarrollados para ruta Li-116 (ruta departamental) donde fue diseñado un pavimento con base estabilizada y aceite sulfonado.

II. MARCO TEÓRICO

Como antecedentes internacionales tenemos a:

Bleakley, A. M., Jr. (2012). Tiene como nombre de tesis "Improving the properties of reclaimed asphalt pavement for roadway base applications through blending and chemical stabilizatio" ("Mejora de las propiedades del pavimento asfáltico recuperado para aplicaciones de base de carreteras a través de la fusión y estabilización química"), donde indica que el pavimento asfaltico (RAP) se produce mediante fresado durante las operaciones repavimentación. Encontrar formas innovadoras de incorporar rap en las aplicaciones de cursos base de carreteras proporcionará beneficios ambientales y económicos al permitir el reciclaje in situ de material para proyectos como el ensanchamiento o la adición de hombros. RAP es un material granular bien drenado que ya está en el lugar, sin embargo 100% RAP tiene baja resistencia al rodamiento y se arrastra bajo carga.

El objetivo de esta investigación era desarrollar métodos para mejorar la fuerza del RAP al tiempo que se reducía la fluencia a un nivel admisible mediante la mezcla con agregado de piedra caliza triturada de una mejor calidad y/o mediante la estabilización química con emulsión asfáltica, cemento Portland o cal.

Nemati, R. (2019). Elabora la tesis Evaluation of structural contribution of asphalt mixtures through improved performance parameters (Evaluación de la contribución estructural de mezclas asfálticas a través de parámetros de desempeño mejorados). En la presente tesis explica sobre los enfoques disponibles para diseñar las estructuras del pavimento. Estos enfoques generalmente se dividen en dos categorías principales como métodos empíricos y mecánico-empíricos (M-E). El método empírico más utilizado es el método de diseño AASHTO 1993, que utiliza coeficientes específicos de materiales (coeficientes de capa) para cuantificar la capacidad estructural proporcionada por cada capa de pavimento. Por otro lado, los enfoques M-E utilizan propiedades fundamentales de mezcla como módulo complejo (E* y ángulo de

fase) para determinar la respuesta estructural del pavimento. Sin embargo, los métodos M-E requieren datos extensos para la calibración local y, como resultado, muchas agencias estatales siguen utilizando el enfoque empírico.

Una de las principales modificaciones del enfoque de diseño AASHTO 1993 ha sido la actualización de los coeficientes de capa (valor a) de las mezclas de asfalto utilizando diferentes medidas mecanicistas y basadas en el rendimiento. Los coeficientes de capa tienen una influencia significativa en la determinación del espesor de la capa que se traduce en la contribución estructural de las capas, así como en el rendimiento a largo plazo del pavimento y consecuentemente en los costes de construcción y mantenimiento. Por lo tanto, es fundamental determinar valores confiables a que sean más relevantes para las condiciones regionales y los materiales utilizados localmente.

Odion, D. (2019). Elabora la tesis "Soil-geopolymer mixtures using fly ash and recycled concrete aggregates (RCA) forRoad base and subbase layer" (Mezclas de suelo-geopolímero utilizando cenizas volantes y agregados de hormigón reciclado (RCA) para la capa de base y subbase de la carretera). Trata de la investigación sobre la eficacia de diversos materiales como estabilizadores del suelo. Mientras que algunos están causando efectos peligrosos en el medio ambiente y son perjudiciales para la salud humana, otros no tienen ningún efecto significativo en la resistencia y durabilidad del suelo afectado. De las diversas técnicas disponibles para mejorar la resistencia del suelo, nuestro proyecto tiene como objetivo sondear la eficacia de un geopolímero bajo en calcio y agregados de hormigón reciclado (RCA) como un nuevo material aglutinante ecológico para mejorar las características de resistencia de suelos plásticos altos y bajos. Da como resultado la contracción del geopolímero fue menor que la mezcla de cemento del suelo, mientras que la primera fue más duradera que más tarde también. Aparentemente, el geopolímero con su alta resistencia, bajo costo, bajo consumo de energía y emisiones de CO2 durante la síntesis ofrece un mejor sustituto del suelo estabilizado con cemento del suelo.

Martinez, L. (2017) presenta la investigación titulada "Análisis de los factores económicos y ambientales que intervienen en la elección de las alternativas de estabilización físico-química para vías terciarias en Colombia a partir de subproductos industriales procesados. Caso de aplicación Urrao, Antioquia", en la investigación se realiza el análisis para la selección optima en los cuatro tipos estabilizadores para vías terciarias producto del procesamiento químico de los subproductos industriales procesados. En la investigación utiliza parámetros económicos y de medio ambiente, donde se tiene como resultados los costos para cada solución considerada. También cuenta con análisis de medio ambiente para cada caso.

Entre libros, artículos y revistas tenemos a:

Antunes, V., Simão, N., & Freire, A. C. (2017), publican el artículo "Estabilización de caminos rurales con corrientes residuales en Colombia como estrategia ambiental basada en una metodología de evaluación del ciclo de vida" donde evalúan el aceite sulfonado (SO) seleccionado comercialmente disponible (SO) y un polímero para su uso como estabilizadores del suelo en una investigación basada en laboratorio. Los resultados de los ensayos que se realizaron a las muestras señalaron que el desempeño dependía tanto del tipo de suelo como de la dosis estabilizadora. Generalmente, el tratamiento no condujo a cambios sustanciales en las propiedades del índice ni la densidad seca máxima. Sin embargo, el contenido óptimo de humedad para LQF se redujo sustancialmente (17-35%) junto con mejoras en la resistencia en seco (resistencia a la compresión no confinada [SCP]: 38% para MM, 26% para OC,>500% para LQF; resistencia a la flexión estática [SFS]: 60% para MM y OC,>500% para LQF) y características de hinchamiento (20% para OC, 21-61% para MM). Aplicados en el contexto adecuado, los estabilizadores son adecuados para el tratamiento de suelos para carreteras de bajo volumen.

Balaguera, A.; Alberti, J.; Carvajal, G.I; Fullana-i-Palmer, P. (2021), publican el articulo denominado "Stabilising rural roads with waste streams in colombia as an environmental strategy based on a life cycle assessment methodology" (Estabilización del suelo utilizando estabilizadores químicos líquidos patentados: aceite sulfonado y un polímero), en el cual se muestra los resultados de la aplicación de la Evaluación del Ciclo de Vida Ambiental (LCA) a tramos de dos carreteras de bajo tránsito ubicadas en dos sitios diferentes de Colombia: una en el área Urrao (Antioquia), ubicada en el centro del país; y otra en La Paz (Cesar), ubicada en el noreste del país. Cada segmento se estabilizó con materiales alternativos como polvo de ladrillo, ceniza volante, aceite sulfonado y polímero. El estudio se realizó en tres etapas: la primera fue la fabricación del estabilizador; la segunda incluyó acciones preliminares que iban desde la búsqueda del material hasta su colocación in situ; y la tercera fue el proceso de estabilización, que incluyó todo el proceso de solicitud, desde el estabilizador a la carretera. Los impactos ambientales se evidenciaron principalmente en la fabricación de estabilizadores (60% del total), para aceite sulfonado o polímero, debido a los diferentes compuestos utilizados durante la producción, antes de su uso como estabilizadores.

Onyejekwe, S., & Ghataora, G. S. (2015) publican la "característica" "Estabilización del suelo utilizando estabilizadores químicos líquidos patentados: aceite sulfonado y un polímero", donde evalúan el aceite sulfonado (SO) seleccionado comercialmente disponible (SO) y un polímero para su uso como estabilizadores del suelo en una investigación basada en laboratorio. Dos suelos naturales (Mercia mudstone [MM] y Oxford clay [OC]) y finos de cantera caliza (LQF) fueron tratados con SO, un polímero, y una combinación de SO y polímero para evaluar los cambios en sus propiedades de ingeniería. Los resultados de las pruebas señalaron que el desempeño dependía tanto del tipo de suelo como de la dosis estabilizadora. Generalmente, el tratamiento no condujo a cambios sustanciales en las propiedades del índice ni la densidad seca máxima. Sin embargo, el contenido óptimo de humedad para LQF se redujo sustancialmente (17-35%) junto con mejoras en la resistencia en seco (resistencia a la compresión no confinada [SCP]: 38% para MM, 26% para OC,>500% para LQF;

resistencia a la flexión estática [SFS]: 60% para MM y OC,>500% para LQF) y características de hinchamiento (20% para OC, 21-61% para MM). Aplicados en el contexto adecuado, los estabilizadores son adecuados para el tratamiento de suelos para carreteras de bajo volumen.

Li, Q., & Hu, J. (2020) publican el artículo "Mechanical and Durability Properties of Cement-Stabilized Recycled Concrete Aggregate" (Propiedades mecánicas y de durabilidad del agregado de concreto reciclado estabilizado con cemento), donde investigan el efecto del uso de agregados de concreto reciclado (RCA) como reemplazo parcial del agregado natural (NA) sobre las propiedades mecánicas y relacionadas con la durabilidad de una mezcla de agregados de concreto reciclado estabilizado con cemento (RSC). Se realizaron pruebas para establecer la resistencia a la compresión no confinada (SCP), la resistencia indirecta a la tracción (ITS), la contracción por secado y la relación de pérdida de agua de cada proporción de mezcla. El aumento en el contenido de cemento y el tiempo de curado tuvieron un efecto evidente en la mejora de la resistencia. La prueba de contracción por secado mostró que las propiedades de contracción de secado de la mezcla de CSR se redujeron obviamente con una alta relación de reemplazo. Es evidente que la mezcla CSM presentó un mejor rendimiento de contracción de secado que el de la mezcla de RSC.

Al-Qadi, I., Ozer, H., Loizos, A., & Murrell, S. (Eds.). (2019). Publica el Libro "Pavimentos de aeródromos y carreteras 2019: Pruebas y caracterización de materiales de pavimento", el cual contiene 57 artículos revisados por pares sobre la prueba y caracterización de pavimentos de aeródromos y carreteras. Los temas incluyen: caracterización de laboratorio y de campo de aglutinantes, modificadores y rejuvenecedores de asfalto; mezclas de asfalto y modificación; materiales reciclados y de desecho en mezclas asfálticas; materiales de base y subrasante no unidos; estabilización de capa; y avances recientes en la caracterización de materiales cementosos y tecnología de pavimentos de hormigón.

Como antecedentes nacionales tenemos a:

Salas Mercado, D. (2018) en su investigación titulada "Estabilización de suelos con Adición de cemento y Aditivo Terrasil para el mejoramiento de la Base del Km 11+000 al Km 9+000 de la Carretera Puno - Tiquillaca – Mañazo", presenta como objetivo el de establecer las propiedades físicas y mecánicas de los suelos, el resultado de la investigación indico que el suelo de fundación es de regular calidad; otro resultado obtenido va con respecto al índice de plasticidad (Ip) en donde dio como resultado 10.26%, con respecto a la densidad seca (Ds) dio 1.65 gr/cm3, el CBR al 100% de 39.58%, por lo cual se consideran como suelos regulares. Por lo descrito, se procedió a estabilizar el suelo de fundación con Cemento y aditivo Terrasil. Primeramente, se añadió 4% de cemento, dicha estabilización dio como resultado: un índice de plasticidad (Ip) de 6.19%, con respecto a la densidad seca dio 2.09% y el CBR al 100% en 64.87%. Seguidamente se estabilizo con terrasil con 10 gr. Por kilo de suelo, el cual presento un índice de plasticidad (Ip) de 6.74%, además de una densidad seca (Ds) de 1.99 gr/cm3 y con respecto al CBR al 100% dio como resultado 61.37%; por todo lo descrito anteriormente se concluye que el material de la cantera "Lumpoorcco" es aceptable para la estabilización con Cemento y con el aditivo Terrasil de acuerdo a lo solicitado por el MTC.

Atarama, E. (2015) en su tesis titulada "Evaluación de la transitabilidad para caminos de bajo tránsito estabilizados con aditivo proes" desarrolla el mejoramiento de las características físicas y mecánicas del suelo en un camino realizando la estabilización de suelos empleando el aditivo químico PROES en la construcción de carreteras en el cual se asegure un correcto nivel de serviciabilidad. Los resultados obtenidos empleando el aditivo PROES dan cuenta de una mejora en un casi 300% de CBR; con respecto a la evaluación funcional (IRI) se evidencio que hubo una disminución del 48% con respecto al valor inicial tomado en la carretera, dando un IRI promedio de 2.89 empleando un Slurry Seal. Además de lo antes mencionado, se evaluó estructuralmente la carretera estabilizada, en donde el numero estructural promedio sobrepasa en

un 26% al valor mínimo requerido (0.87), dando como resultado un numero estructural promedio de 1.10.

Reategui Puscan, J. A. (2018) realizo la tesis titulada "Influencia del aditivo Proes para mejorar la estabilización de la subrasante del tramo Lahuarpía – Emilio San Martin, Jepelacio, Moyobamba 2017", en donde detalla la nueva técnica para la estabilización de suelos a nivel de rasante, la estabilización en mención involucra el empleo del aditivo químico PROES con el cual se debe garantizar una adecuada transitabilidad. Los resultados obtenidos dieron cuenta que para suelos en estado natural del tipo arena arcillosa y arcillas inorgánicas (A- 2-6) se tiene rangos de CBR de 5% al 30% y para gravas arenosas mal gravadas A-1-a presentan CBR medidos en el rango de 33% al 95%; a los terrenos en estado natural se le aplico una dosificación de 0.25 lt/m3 de (aceite sulfonado Proes 100) y 38 Kg/m3 de cemento Portland lo cual genero CBR al 100% en el rango de 116.4% al 129.9%, por lo cual se puede deducir que se mejoró las condiciones de transitabilidad de la vía.

Gómez, A. J., & Silva, E. E. (2020) en su tesis de grado titulada "Influencia del aceite sulfonado y cemento Portland Tipo I en la estabilización de la vía Huaylillas – Buldibuyo en la provincia de Pataz, 2020", investiga la influencia que se tiene en la vía Huaylillas – Buldibuyo el empleo de aceite sulfonado y cemento como material estabilizante. Los resultados obtenidos dieron cuenta del incremento de los CBR para muestras de diseño adicionando 0.5%, 2%, 3.5% y 5% de cemento portland y 0.30Lt/m³ de aceite sulfonado, en donde los CBR se incrementó en la muestra 01 de 19.6% hasta un 100.2% y en la muestra 02 de 5.8% a 78.1%. Además de lo señalado, la resistencia a la compresión promedio dio como resultado 24.10 kg/cm², con lo cual superamos lo solicitado en la norma; con lo descrito se calculó el espesor de la carretera por el método NAASRA el cual dio un espesor de 20 cm.

Manrique Reynaga, J. F. (2021) en su tesis de grado titulada "Aplicación de aceite sulfonado para mejorar la subrasante en la Avenida "La Cultura" distrito de Pacucha, Andahuaylas, Apurímac – 2020" realizo la aplicación del aceite sulfonado a la vía de la Avenida "La Cultura", la aplicación en mención dio los siguientes resultados: en suelos del tipo limo-arcillosa con arena (GC-GM), arena arcillosa con grava (SC) y arena mal graduada con arcilla y grava (SP-SC), los CBR al 100% están en la orden de 42.3%, 62% y 78% respectivamente; además de lo mencionado se realizados dosificaciones de 0.3 lt/m3 de aceite sulfonado y 1%, 1.5% y 2% de cemento al suelo natural dando como resultado que en la segunda opción (0.3 lt/m3 de aceite sulfonado y 1.5% de cemento) superan el CBR mínimo de la norma con valores de 240%, 121% y 146%. Por lo descrito anteriormente, se concluye que al aplicar los estabilizadores mencionados mejoran el porcentaje de CBR de la vía de manera significativa.

Como bases teóricas tenemos:

Trafico:

Tiene como principal enfoque cuantificar, clasificar y conocer los vehículos que se desplazan por la ruta LI-116, también conocer el de dónde vienen y hacia dónde van de los vehículos, tiempos de viaje y las velocidades de los vehículos en la carretera, así como los pesos máximos con los que se desplazan los vehículos; todos estos parámetros serán empleados para determinar las características de diseño de la carretera y el diseño del pavimento.

Tramos homogéneos

Se hace una revisión del área de influencia de la ruta para determinar los tramos homogéneos de tráfico a definir para la presente investigación. Se mostrarán las coordenadas geográficas de inicio y fin del tramo homogéneo definido. Así mismo se mostrará las rutas de los tramos en estudio de las vías que conectan.

Conteo y clasificación vehicular

Se utilizarán formatos de campo ya establecidos por la Oficina de Planificación y Presupuesto de MTC.

Los formatos contienen la siguiente información:

- El tramo.
- La estación para la toma de información.
- La ubicación de la Estación.
- La fecha.
- La hora.
- El sentido de circulación.
- El tipo de vehículo.
 - El automóvil.
 - Camioneta.
 - Camioneta rural.
 - Microbús.
 - Ómnibus: 2E, 3E.
 - Camión simple, 2E, 3E, 4E.
 - Camiones articulados: Semi-Trailers de 2S2, 2S3, 3S2, 3S3 y Tráileres de 2T2, 2T3, 3T2, 3T3.

La información que se tome de los trabajos de campo será llenada según el formato que se tenga.

El Índice Medio Diario Anual (IMD_A) será determinado por la siguiente expresión:

$$IMD_A = FC \times IMD_S$$

En donde:

 IMD_{S} = Índice medio diario Semanal.

Fc = Factor de corrección para cada estación.

 IMD_A = Índice Medio Diario Anual.

Encuestas origen destino

Se utilizan para determinar y clasificar los motivos de los viajes de los usuarios, también conocer el origen de procedencia y destino de viaje para los diferentes tipos de vehículos.

Factores de corrección

Los factores de corrección estacional son valores que eliminan las variaciones que se presentan producto del desempeño del tránsito vehicular a través de un año, esto incluye las diferentes actividades que se presentan (épocas escolares, feriados, etc.) se realizan por un periodo y se repiten anualmente.

Los factores de corrección estacional son obtenidos de los datos históricos anuales que se acumulan los últimos años; para el presente estudio se toma en cuenta el año en el que se hace el estudio, de los cuales se tiene información detallada y completa que se toma de los Peajes que se encuentran en la red vial nacional.

El factor de corrección estacional definido para los vehículos ligeros y pesados se calculan de acuerdo a la siguiente formula:

$$Fc = \frac{IMD_{a\|o}}{IMD_{mes}}$$

Demanda de transporte

Tipos de tránsito:

- Tráfico normal: llamado a la cantidad de vehículos que se desplazan por la vía, el cual tiene crecimiento que es independiente de la ejecución de cualquier proyecto. Es necesario calcular antes la tasa de crecimiento.
- Tráfico generado: Es el producto de las mejoras en la vía y rehabilitación de una carretera. Existe porque se mejora la vía.
- Trafico desviado: El tráfico desviado es aquel que se desviará por la vía en estudio debido a las mejoras u obras que se realizan en el proyecto,

también se considera como aquel tránsito que utiliza otras rutas pero que, manteniendo su origen y destino, será atraído por la vía nueva.

 Tráfico total: Este compuesto por la sumatoria del tráfico normal y generado.

Proyección de trafico

Se calculará el crecimiento de tránsito empleando la expresión de progresión geométrica de forma independiente para el componente de tránsito de vehículos de pasajeros y de carga.

$$T_{Tn} = T_0(1 + R_i)^n$$

Dónde:

 T_{T_n} = Tráfico en el tramo T, en el año n.

 T_0 = Tráfico en el tramo T, en el año base.

 R_i = Tasa de generación de viajes.

n = Tiempo en años.

Para vehículos ligeros y ómnibus:

$$r_{vp} = (1 + r_{PBI} \times E_{VP})(1 + r_h) - 1$$

Dónde:

 r_{vp} = Tasa de Crecimiento Anual de Tráfico de Vehículos de Pasajeros.

 r_{PBI} = Tasa de Crecimiento Anual del PBI Per Cápita.

 r_h = Tasa de Crecimiento Anual de la Población.

 $E_{\it VP}$ = Elasticidad de la Demanda de Tráfico de Vehículos de Pasajeros con relación al PBI Per Cápita.

Para vehículos de carga:

$$r_{vp} = r_{PBI} \times E_{Vc}$$

Dónde:

 r_{vp} = Tasa de Crecimiento Anual de Tráfico de Vehículos de Carga.

 r_{PBI} = Tasa de Crecimiento Anual del PBI.

 E_{Vc} = Elasticidad de la demanda de Tráfico de Velocidades de Carga.

Para la obtención de las tasas de crecimiento (PBI, POB, PBI per cápita) se utilizó la siguiente expresión:

$$r_i = \left(\frac{T_{actual}}{T_{pasada}}\right)^{\frac{1}{(n)}} - 1$$

Dónde:

 r_i : Tasa de crecimiento (PBI, POB, PBI/hab) de la región.

n : Número de periodos de tiempo (intervalo).

T : Dato del cual se desea calcular la tasa de crecimiento.

Tasas de Crecimiento del Producto Bruto Interno

El INEI proporciona a través de su página web información actualizada sobre el Producto Bruto Interno en soles constantes año 2007, para los años del 2007 al 2019.

Las tasas de crecimiento se consideran todos los departamentos obtenidos de las matrices Origen Destino ya que todas estas regiones son centros atractores y generadores de viajes, y que los vehículos de carga que circulan por la carretera en estudio van a influir en el comportamiento del tráfico en la misma.

Población

La información de la población por departamento considerada para este cálculo se ha tomado de la información proporcionada por el INEI a través de su página web de la población censada en los años 2007 y 2019.

Se consideran todos los departamentos obtenidos de las matrices OD ya que todas estas regiones afectan a la proyección de las tasas de crecimiento en cuanto a la población.

Producto Bruto Interno Per Cápita

Para determinar las tasas de crecimiento de tráfico proyectado, se ha obtenido el PBI por cada habitante dividiendo el PBI entre la población censada.

Elasticidad

La Elasticidad se utilizará de acuerdo a otros estudios semejantes de la zona y aceptadas por el MTC, debido a que al rehabilitarse y/o mejorarse o realizar un mantenimiento periódico a la carretera, el parque automotor sufre un incremento.

Tabla 1Elasticidad por tipo de Vehículo.

Vehículo	Elasticidad			
Automóviles	1			
Ómnibus	1			
Camiones	1			

Fuente: Estudios del MTC.

Factor direccional y Factor Carril

Viene definido por la cantidad de vehículos pesados que transitan en una dirección o sentido de tráfico, por lo general está representado por la mitad del total del tránsito que circula en ambas direcciones.

Tabla 2Factores de distribución direccional y de carril para determinar el tránsito en el carril de diseño.

N° de calzadas	N° de sentidos	N° de carriles por sentido	Factor Direccional (Fd)	Factor Carril (Fc)	Factor Ponderado (Fd x Fc por carril de diseño)
	1 sentido	1	1.00	1.00	1.00
1 calzada	1 sentido	2	1.00	0.80	0.80
(en el caso de	1 sentido	3	1.00	0.60	0.60
IMDa total de la	1 sentido	4	1.00	0.50	0.50
calzada)	2 sentido	1	0.50	1.00	0.50
	2 sentido	2	0.50	0.80	0.40
2 calzadas con	2 sentido	1	0.50	1.00	0.50
separador central	2 sentido	2	0.50	0.80	0.40
(para IMDa total	2 sentido	3	0.50	0.60	0.30
de dos calzadas)	2 sentido	4	0.50	0.50	0.25

Fuente: Manual de suelos y pavimentos-MTC.

Numero de repeticiones de ejes equivalentes

Para el diseño de pavimento, se emplea la demanda del tráfico pesado de ómnibus y de camiones. Este se mide como Ejes Equivalentes (EE) acumulados durante el periodo de diseño.

Los EE se definen como el efecto de daño causado sobre el pavimento por un eje de dos ruedas convencionales cargados con 8.2 toneladas, con neumáticos a una presión de 80 lb/pulg².

Tabla 3 Configuración de Ejes.

CONJUNTO DE EJES (s)	NOMENCLATURA	N° DE NEUMATICOS	GRAFICO
EJE SIMPLE (con ruedas simple)	1RS	2	
EJE SIMPLE (con ruedas doble)	1RD	4	
EJE TANDEM (1 eje rueda simple + 1 eje rueda doble)	1RS + 1RD	6	
EJE TANDEM (2 ejes rueda doble)	2RD	8	
EJE TRIDEM (1 rueda simple + 2 ejes rueda doble)	1RS + 2RD	10	
EJE TRIDEM (3 ejes rueda doble)	3RD	12	

Nota: RS: Rueda Simple. RD: Rueda Doble.

Fuente: Manual de suelos y pavimentos-MTC.

El número de repeticiones equivalentes de 8. 2 toneladas, se determina con la siguiente expresión:

$$N_{rep \ de \ EE_{8.2tn}} = \sum |EE_{dia-carril} \ x \ 365 \ x \ Fca$$

Dónde:

EEdia-carril = IMDpi x Fd x Fc x Fvpi x Fpi

IMDpi = Indice medio según tipo de vehículo pesado.

Fd = Factor direccional.

Fc = Factor carril de diseño.

Fvpi = Factor vehicular pesado del tipo seleccionado según su composición de ejes.

Fpi = Factor de presión de neumáticos.

Fca = Factor de crecimiento acumulado por tipo de vehículo pesado.

365 = Número de días del año.

Factores destructivos

Metodología para determinar los Factores Destructivos

Los factores destructivos han sido calculados mediante los siguientes pasos:

- Se calcula los factores destructivos por carga, según el tipo de vehículo, se realiza de acuerdo a lo que recomienda la norma AASHTO-93.
- Los factores destructivos por presión neumática, según el tipo de vehículo, se realizará de acuerdo a los valores registrados durante los censos de carga.

Factores por Carga

Se agrupan los pesos según el tipo de vehículo y de acuerdo al sentido de circulación.

Los factores destructivos se calculan de acuerdo a la metodología recomendada por la guía ASSTHO.

Tabla 4Relación de Cargas por Eje para determinar EE para Afirmados, Pavimentos Flexibles y Semirrígidos.

Tipo de Eje	Eje Equivalente (EE 8.2 tn)			
Eje Simple de ruedas simples (EEs1)	EEs1 = [P / 6.6]^4.0			
Eje Simple de ruedas dobles (EEs2)	$EE_{s2} = [P/8.2]^4.0$			
Eje Tándem (1 eje ruedas dobles + 1 eje rueda simple) (EE _{TA1})	EE _{TA1} = [P / 14.8]^4.0			
Eje Tándem (2 ejes de ruedas dobles) (EETA2)	$EE_{TA2} = [P/15.1]^4.0$			
Ejes Trídem (2 ejes ruedas dobles+ 1 eje rueda simple) (EETR1)	EE _{TR1} = [P / 20.7]^3.9			
Ejes Trídem (3 ejes de ruedas dobles) (EETR2)	$EE_{TR2} = [P/21.8]^3.9$			
P = peso real por eje en toneladas				

Fuente: Tablas del Apéndice D de la Guía AASHTO 93.

Factor por Presión Neumática – Sin Presión Neumática

Es un efecto que se da en las estructuras de los pavimentos, al factor denominado por presión neumática, varía de acuerdo a la presión (lb/pl²) neumática propiamente dicha y los espesores de la estructura de pavimento de acuerdo a la información de la Tabla siguiente, en la que la presión de inflado es igual presión de contacto / 0.90.

Tabla 5Factor de Ajuste por presión de Neumático (Fp) para Ejes Equivalentes (EE).

ESPESOR DE CAPA DE RODADURA	Presión de contacto del Neumático (PCN) en PCN PCN = 0.90 x [Presión de inflado del neumático) (pal)						
(mm)	80	90	100	110	120	130	140
50	1.00	1.30	1.80	2.13	2.91	3.59	4.37
60	1.00	1.33	1.72	2.18	2.69	3.27	3.92
70	1.00	1.30	1.65	2.05	2.49	2.99	3.53
80	1.00	1.28	1.59	1.94	2.32	2.74	3.20
90	1.00	1.25	1.53	1.84	2.17	2.52	2.91
100	1.00	1.23	1.48	1.75	2.04	2.35	2.68
110	1.00	1.21	1.43	1.66	1.91	2.17	2.44
120	1.00	1.19	1.38	1.59	1.80	2.02	2.25
130	1.00	1.17	1.34	1.52	1.70	1.89	2.09
140	1.00	1.15	1.30	1.46	1.62	1.78	1.94
150	1.00	1.13	1.26	1.39	1.52	1.66	1.79
160	1.00	1.12	1.24	1.36	1.47	1.59	1.71
170	1.00	1.11	1.21	1.31	1.41	1.51	1.61
180	1.00	1.09	1.18	1.27	1.36	1.45	1.53
190	1.00	1.08	1.16	1.24	1.31	1.39	1.46
200	1.00	1.08	1.15	1.22	1.28	1.35	1.41

NOTA:

Fuente: Manual de Carreteras – Suelos y Pavimentos – MTC.

⁻ EE = Ejes Equivalentes.

⁻ Presión de inflado del neumático (Pin): está referido al promedio de presiones de inflado de neumáticos por tipo de vehículo pesado.

⁻ Presión de Contacto del neumático (PCN): igual al 90% del promedio de presiones de inflado de neumáticos por tipo de vehículos pesado.

⁻ Para espesores menores de capa de rodadura asfáltica, se aplicará el factor de ajuste igual al espesor de 50 mm.

Suelos y pavimentos:

Diseño de un pavimento.

El pavimento viene conformado por capas de materiales adecuados, los cuales están ubicados entre la superficie de la subrasante y de rodadura, sus principales funciones son las de ofrecer una superficie uniforme, de forma y textura adecuada, resistentes a los agentes perjudiciales como la acción del tránsito y el intemperismo, también tiene la función de transferir los esfuerzos que producen las cargas de los vehículos que transitan.

Según el documento técnico de soluciones básicas en carreteras no pavimentadas del MTC de febrero 2015 visado bajo la Dirección de Normatividad Vial de la DGCyF del MTC, tiene por finalidad aumentar el periodo de diseño de 5 años (afirmado) a 10 años (soluciones básicas).

Según el manual de soluciones básicas del MTC se establece que para ejes equivalentes menores o iguales al 1 000 000, se considera como diseño de pavimento una solución Básica.

El diseño del pavimento se realizará con el método ASSHTO 93.

Granulometría (ASTM D-422, MTC E-107)

Esta guía cubre la determinación numérica de la distribución de los tamaños de las partículas en suelos. Esencialmente con este ensayo separamos el material granular y fino.

Clasificación de SUCS y ASSHTO (ASTM D-2487, ASTM D-3282)

Se basa en la distribución del tamaño de las partículas del suelo, con las cuales separamos el material granular de los materiales finos.

La guía ASSTHO se utiliza también para clasificar el suelo y agregados.

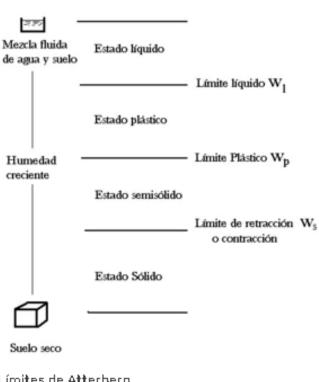
Contenido de humedad (ASTM D-2216, MTC E-108)

La relación que se presenta entre el porcentaje de agua y la masa del suelo. Se

determina obteniendo el contenido de humedad de una fracción de la muestra

del suelo, obteniendo el peso del suelo seco y el contenido de humedad (W%).

Límites de consistencia, Limite Liquido (ASTM D-4318, MTC E-110), Limite


Plástico (ASTM D-4318, MTC E-111)

Los suelos cambian de consistencia en relación a la cantidad de humedad.

Tienen los siguientes estados: solidos, semisólido, líquido y plástico. Los limites

entres esos estados se denominan límites de consistencia los cuales son Limite

de Contracción (LC) limite Plástico (LP) y limite Liquido (LL)

Límites de Atterberg

Figura 1. Límites de Atterberg.

Fuente: cerawiki.com

35

Índice de Plasticidad

Se determina restando el límite líquido (LL) y el límite plástico (LP) del suelo obteniendo el IP.

Proctor Modificado (ASTM D-1557, MTC E-115)

Este ensayo determina el óptimo contenido de humedad y la máxima densidad seca, todo esto calculado con una compactación establecida.

El cálculo del Proctor modificado se determinará utilizando la NTP 339.141-1991 / MTC E-115; para lo cual se utilizó los siguientes materiales y equipos:

Se utilizará moldes cilíndricos que estarán hechos de material rígido y de paredes sólidas, cada uno de los moldes deberá tener una base de plato y adicional un collar de extensión ensamblado. Ambas piezas deberán estar hechas de metal rígido y diseñados de modo que se puedan juntar de manera segura y de desmontar de manera sencilla.

Ensayo California Bearing Ratio (CBR ASTM 1883, MTC E-132)

El CBR es la capacidad de soporte al esfuerzo cortante de un suelo, bajo criterios de densidad y humedad, cuidadosamente controladas, calculando la resistencia del terreno (Manual de ensayos de materiales MC-06-16).

Este método de prueba se emplea para evaluar la resistencia posible de materiales de subrasante, sub base y base, incluyendo materiales reciclados para empleo en pavimentos de carreteras y pistas de aterrizaje (ATARAMA. 2015).

Ensayo de Abrasión de los Ángeles (NTP 400.019, MTC E-207)

En este ensayo se logra estimar el desgaste que origina a los materiales en su grado de alteración, baja resistencia estructural, plano de cristalización y forma de las partículas.

Ensayo a la compresión no confinada (MTC E-1103/ASTM-2166)

Se hace este ensayo a suelos que tengan partículas pequeñas y arcilla que se

adhieren a sí mismos, estos se llaman suelos cohesivos y suelos semi-

cohesivos.

Se basa en un ensayo uniaxial en donde la probeta no tiene soporte lateral, y al

aplicar carga determinamos la resistencia a la compresión no confinada (qů) e

indirectamente la resistencia al corte (c).

Metodología AASTHO 93

Para el diseño del pavimento se ha seguido los lineamientos establecidos en la

guía AASHTO Guide for Design of Pavement Structures, 1993, el cual es

reconocida a nivel mundial ya que conlleva un sustento experimental, la quía

determina un Número Estructural (SN) requerido por el pavimento para resistir el

volumen de tránsito vehicular satisfactoriamente durante su periodo de diseño.

En la metodología AASHTO se considera cuatro categorías principales para la

entrada de datos con los cuales se realizará el diseño:

Variables de diseño, criterios de desempeño y propiedades estructurales.

Se expresa en la siguiente formula:

 $\log W_{18} = Z_R S_0 + 9.36 \log(SN + 1) - 0.20 + \frac{\log\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{\left(SN + 1\right)^{5.19}}} + 2.32 \log M_R - 8.07$

Dónde:

W18: ejes equivalentes

ZR: Probabilidad

So: Desviación estándar

Δ PSI: Cambio de serviciabilidad

Po: Serviciabilidad Inicial

37

Pt: Serviciabilidad final

MR: Módulo resilente

$$SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3$$

Siendo:

a₁, a₂ y a₃: Coeficientes de cada capa

m₂ y m₃: Coeficientes de drenaje

D₁, D₂ y D₃: Espesor de cada capa

Estabilización de suelos

El marco teórico referente a la estabilización de suelos va dirigida a la acción de mejorar las características y propiedades físicas del suelo, para tal fin se emplea diferentes metodologías, equipos y materiales.

Antes de definir el tipo de estabilizador que se aplicara en el suelo, el Manual de Carreteras sugiere, primero identificar qué tipo de suelo está presente y luego seleccionar el tipo de estabilización, de acuerdo a las siguientes figuras:

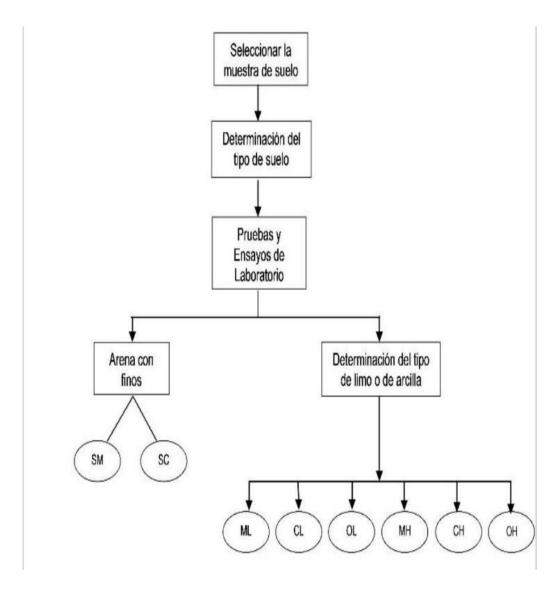


Figura 2. Proceso para la identificación del tipo de suelos.

Fuente: www.slideshare.net/estabilizaciondesuelos.

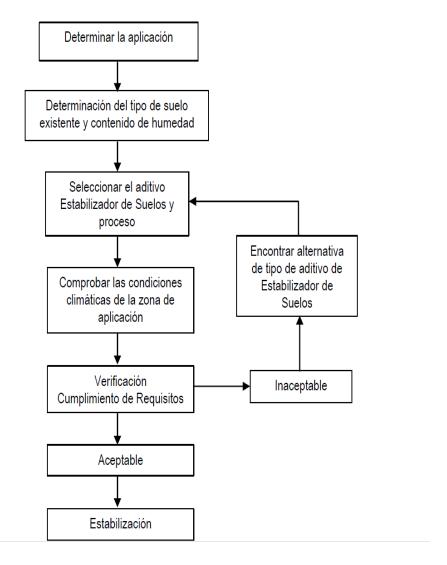


Figura 3. Proceso de selección del tipo de estabilización.

Fuente: www.slideshare.net/estabilizaciondesuelos.

El Manual de Carreteras también proporciona una guía referencial con la cual se puede elegir el tipo de estabilizador que puede ser empleado, de acuerdo al tipo de suelo. La cual se muestra en la siguiente tabla:

Tabla 6 *Guía referencial para la selección del tipo de estabilizador.*

TIPO DE ESTABILIZADOR RECOMENDADO	NORMAS TECNICAS	SUELO (1)	DOSIFICACION (3)	CURADO - APERTURA AL TRANSITO (5)	OBSERVACIONES
Cemento	EG-CBT-2008 Sección 3068 ASTM C150 AASHTO M85	A-1,A-2,A-3,A-4,A-5,A-6 y A-7 LL > 40% IP >= 18% CMO (2) < 1.0% Sulfatos (SO42) < 0.2% Abrasión < 50% Durabilidad SO4 Ca (4) AF <= 10% AG <= 12% Durabilidad SO4 Mg AF <= 15% AG <= 18%	2 - 12%	7 días	Diseño de mezcla de acuerdo a recomendaciones de la PCA (Portland Cement Association)
Emulsión	ASTM 02397 0 AASHTO M208	A-1, A-2 y A3 Pasante malla № 200 <= 10% IP <= 8% Equiv. Arena >= 40% CMO (2) < 1.0% Sulfatos (SO4 2) < 0.6% Abrasión < 50% Durabilidad SO4 Ca (4) AF <= 10% AG <= 12% Durabilidad SO4 Mg AF <= 15% AG <= 18%	4 - 8%	mínimo 24 horas	Cantidad de aplicación a ser definida de acuerdo a resultados del ensayo Marshall modificado o Illinois
Cal	EG-CBT-2008 Sección 3078 AASHTO M216 ASTM C977	A-2-6, A-2-7, A-6 y A-7 10% <= IP <= 50% CMO (2) < 3.0% Sulfatos (SO4 2) < 0.2% Abrasión < 50%	2 - 8%	mínimo 72 horas	Para IP > 50%, se puede aplicar cal en dos etapas. Diseño de mezcla de acuerdo a la norma ASTM D 6276.
Cloruro de Calcio	ASTM 098 ASTM 0345 ASTM E449 MTC E1109	A-1, A-2, y A-3 IP <= 15% CMO (2) < 3.0% Sulfatos (SO4 2) < 0.2% Abrasión < 50%	1 a 3% en peso del suelo seco	24 horas	
Cloruro de Sodio	EG-CBT-2008 Sección 309 B ASTM E534 MTC E1109	A-2-4, A-2-5, A-2-6, A-2-7 8% <= IP <= 15% CMO (2) < 3.0% Abrasión < 50%	50 -80 kg/m3	07 dias	La cantidad de sal depende de los resultados(dosificación) y tramo de prueba.
Cloruro de Magnesio	MTC E1109	A-1, A-2 y A-3 IP <= 15% CMO (2) < 3.0% pH: mínimo 5 Abrasión < 50%	50 -80 kg/m3	48 horas	La cantidad de sal depende de los resultados de laboratorio(dosificación) y tramo de prueba.
Enzimas	EG-CBT-2008 Sección 308 B MTC E1109	A-2-4, A-2-5, A-2-6, A-2-7 6% <= IP <= 15% 4.5 < pH < 8.5 CMO (2) No debe contener Abrasión < 50% % < Nº 200: 10 - 35%	1 L / 30-33 m3	De acuerdo a Especificaciones del fabricante	
Aceites sulfonados		Aplicable en suelos con partículas finas limosas o arcillosas, con LL bajo, arcillas y limos muy plásticos CMO (2) < 1.0% Abrasión < 50%		De acuerdo a Especificaciones del fabricante	

Fuente: Manual de Carreteras-MTC, 2014.

Estabilización química como solución

Cuando se mezclan con el suelo, los estabilizadores químicos funcionan de varias maneras. Ayudan a alinear las partículas de arcilla, lo que mejora la compactabilidad.

Los cambios en la polaridad de las cargas superficiales de las partículas de arcilla dan como resultado un aumento en la fuerza de cohesión entre partículas y modifica la estructura de la red de arcilla y los sitios de intercambio iónico del recubrimiento de las arcillas. Como resultado, se reduce la sensibilidad al agua y se mejora la acción aglutinante de las partículas del suelo, con lo cual se reduce la plasticidad y aumenta la resistencia.

Estabilización con aceite sulfonado

Los aceites sulfonados, también conocidos como hidrocarburos sulfonados, tienen el principal ingrediente activo descrito en el título. Sin embargo, normalmente se agregan otros ingredientes, que los fabricantes afirman que ayudan a la acción del compuesto de alguna manera.

Esencialmente, los SO son tensioactivos cuyo agente principal es una molécula de dos partes. Una parte se adsorbe sobre la superficie de las partículas de arcilla, reduciendo su capacidad de intercambio iónico. Esto reduce la capacidad del mineral de arcilla para absorber agua, cambiándola de carácter hidrófilo a hidrófobo.

Estabilización con cemento

La estabilización del suelo con cemento se emplea para aumentar las propiedades de resistencia y rigidez del suelo, permitiendo el uso de suelos locales con características débiles a través de una reducción del índice de plasticidad y mejora su capacidad portante. Una capa estabilizada de suelocemento, especialmente para la aplicación de la capa base, proporciona un excelente soporte para superficies asfálticas, incluso en soluciones con capas superficiales bituminosas finas.

Los aglutinantes hidráulicos, en particular cemento, consisten principalmente de sílice, alúmina y cal, que forman silicatos cálcicos y aluminatos cálcicos. La mezcla de cemento con agua inicia una serie de reacciones de hidratación química que conducen a cambios químicos, físicos y mecánicos en el sistema y provocan una ganancia inmediata de resistencia en los materiales estabilizados.

Diferentes metodologías y regulaciones definen el uso del cemento como agente estabilizador para tratar diferentes capas de estructuras de pavimentos de carreteras.

Estabilización con aditivo químico PROES 100

Para la presente investigación estamos utilizando el aditivo químico PROES 100 que tiene una tecnología de estabilización Iónica, la cual tiene como base la interacción que se da entre los aditivos químicos y las arcillas que se encuentran en el suelo, creando una reacción que, junto con la de elevar su capacidad portante, mejora su estabilidad y resistencia frente a la acción del agua y las cargas de tránsito (PROESTECH 2019).

La reacción que se produce, se basa en la ionización, aglomeración y ordenamiento de las partículas, para lo cual, utiliza agentes cementantes tradicionales (cemento, cal y cenizas) y un aditivo líquido, que permite una reacción mejorada de estos estabilizadores tradicionales.

Los suelos tratados con tecnología PROES® para generar vías ecológicas de alta resistencia presentan un incremento en la resistencia y en los ensayos de CBR practicados a diferentes materiales y mezclas.

Cuenta con las siguientes consideraciones de uso:

- Se deben asegurar condiciones iguales y la composición correcta en el suelo a estabilizar de acuerdo a estudios y especificaciones de PROES.
- Al suelo que te estabilizara se debe agregar un aditivo sólido, el cual puede ser cemento u otro filler accesible localmente.
- El aditivo liquido PROES 100 se incorpora al suelo de 0.25 a 0.35 lt/m3 de suelo estabilizado.

- El aditivo solido se agrega entre 45 y 80 kg/m3 al suelo.
- Para la aplicación se emplea un camión en donde se diluye el aditivo seleccionado previo a su ampliación.
- Se extenderá el suelo tratado con una motoniveladora, luego se compactará con rodillo.

III. METODOLOGÍA

3.1 Tipo y diseño de investigación

3.1.1 Tipo de Investigación

De acuerdo al Reglamento del RENACYT – CONCYTEC - 2018 el tipo de investigación puede ser básica o aplicada; en donde se puntualiza que la investigación aplicada "está dirigida a identificar a través del conocimiento científico, los medios (metodologías, protocolos y tecnologías) con las cuales se puede atender una necesidad reconocida y específica".

Por lo descrito anteriormente, nuestra presente tesis es del tipo aplicada.

Además del tipo de investigación descrita anteriormente, nuestra investigación caracterizó de la siguiente manera:

• Por su orientación: Aplicada

Según Calderón y Alzamora (2010) una investigación es aplicada cuando hay un descubrimiento previo, lo cual nos permite ir más allá de un descubrimiento básico, si no ya la solución de un problema practico.

En la presente tesis se emplea la metodología de diseño de pavimento flexible ASHTTO 93, que tiene establecido diferentes parámetros y criterio de diseño, considerando el tráfico y los estudios de suelos para un óptimo diseño. En nuestro caso se va a considerar el uso de una base estabilizada con cemento y aceite sulfonado (PROES 100), con lo cual se conocerá cuáles serán las variaciones en el diseño de pavimento en la ruta LI-116. ubicado en Yamobamba – La Libertad.

• Por su técnica de contrastación: Experimental

Según Calderón y Alzamora (2010) se probará que un método es mejor que otro asociando 2 variables, y en esa circunstancia se analizará el método, técnica y procedimiento por lo cual habrá control de las variables y manipulación de las mismas.

En una experimental hay un rol estándar, algo que siempre se usa y obviamente habrá un experimento que es algo que nosotros queremos probar. Se probará que una variable (estabilización de la base) al ser manipulada encontrará variación al momento de realizar el diseño de pavimento.

Por su direccionalidad: Prospectiva

Según Calderón y Alzamora (2010) la causa de una investigación es el presente y el efecto el futuro.

Para la presente investigación diseñaremos un pavimento utilizando el cemento y aceite sulfonado como agentes estabilizadores y probaremos su efecto en futuro, determinando en qué medida estos agentes aportan en el diseño de pavimento.

Por el tipo de fuente de recolección de datos: Prolectiva

Se recogerá información de campo del estudio de tráfico tales como el IMDA, censo de carga, encuestas origen destino y el estudio de suelos como muestreo de calicatas en plataforma y cantera para el desarrollo del diseño de pavimento.

Por evolución del fenómeno estudiado: Transversal

El presente estudio se realizará en la comunidad de Yamobamba, distrito de Huamachuco, prov. de Sánchez Carrión y dep. de La Libertad en el año 2021, determinando las variables de diseño para la vía en ese momento.

• Por la comparación de poblaciones: Comparativa.

Se establecerá una teoría de causalidad, nos referimos al análisis y resultados del IMDA, censo de carga y encuestas origen destino relacionados con el tráfico y los resultados de laboratorio de las muestras procesadas de la cantera y de la ruta LI-116, que nos proporcionaran data para el diseño de pavimento.

3.1.2 Diseño de investigación

Los diseños cuasiexperimentales son aquellos que se operan deliberadamente, de por lo menos, una variable independiente para examinar su impacto sobre una o varias variables dependientes. (Hernández, Fernández, & Baptista, 2014, p.151).

Por lo descrito anteriormente, en la presente tesis manipularemos nuestras variables independientes (aceite sulfonado y cemento) para asi medir el resultado que tiene en la variable dependiente definido (diseño de pavimento); por lo descrito nuestra finalidad es buscar alguna variación en la variable dependiente e indicadores que se relacione de forma organizada tomando como contexto la ruta LI-116.

3.2 Variables y operacionalización

Tabla 7Operacionalización de las variables independientes definidas.

Variables independientes	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Medición
Aceite Sulfonado	Los aceites sulfonados son agentes catalizadores que producen intercambio de iones; químicamente son compuestos orgánicos derivados de sulfuros y ácidos combinados. (Gómez y Silva, 2020, p. 56).	Los aceites sulfonados reducen el contenido de agua entre las partículas del suelo, aumentando el número de vacíos que permiten el reacomodamiento de las partículas, bien sea por atracción entre ellas o bien por compactación. (Gómez y Silva, 2020, p. 56).	Aceite Sulfonado	Dosificación	%
Cemento	Producto que se obtiene por la pulverización del Clinker portland con la adición eventual de yeso natural (MTC-Glosario de Términos, 2018, 7)	El cemento Portland es utilizado para variar y aumentar la calidad del suelo asi como para cambiar el suelo en una masa de cemento con una mayor resistencia y durabilidad. (Aliaga y Soriano, 2019, p. 34).	Cemento Portland	Dosificación	%

Fuente: Elaboración Propia.

Tabla 8Operacionalización de las variables dependientes definidas.

Variables dependientes	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Medición
Diseño de pavimento con	La solución Básica es un tipo de diseño que se aplica en carreteras no pavimentadas la cual tiene por objetivo aumentar la vida útil y nivel de servicio de la superficie de rodadura, que se deterioran por la acción del tránsito y el clima,	será diseñado de acuerdo a la guía AASHTO "Diseño de estructuras de	Propiedades de los materiales	 Clasificación de suelos Granulometría Limites CBR 	MTC, 2014
solución Básica	conformando baches, encalaminado, desprendimiento de agregados y la emisión de polvo, obteniendo que las capas de rodadura presenten un menor	diseño, evaluación, especificaciones técnicas	Propiedades de la solución básica	Especificaciones Técnicas Generales para Construcción de Carreteras	EG-2013
•	grado de daño (Documento técnico de soluciones básicas; MTC; 2015).	Transportes.	Diseño	Numero EstructuralEspesores	AASTHO 1993

Fuente: Elaboración Propia.

3.3 Población (criterios de selección), muestra, muestreo, unidad de análisis

Población

En esta investigación la población delimitada será la ubicada en la ruta departamental LI-116, específicamente en la localidad de Yamobamba, del distrito de Huamachuco, de la prov. Sánchez Carrión y del dep. de La Libertad.

La población es el conjunto de elementos a los cuales se refiere la investigación. (Bernal, 2010, p. 160).

Muestra

La muestra para este trabajo de investigación se consideró toda la ruta departamental LI-116, el cual presenta una longitud total de 13.114 km.

Según (Hernández, Fernández, & Baptista, 2014, p.173) "Se conoce como muestra a un subgrupo de una población que es de nuestra atención del cual obtendremos datos, y de antemano definirse y delimitarse con exactitud, aparte de ello tiene que ser propiamente de la población, donde el investigador procura que los resultados obtenidos de la muestra se extrapolen a la población.

3.4 Técnicas e instrumentos de recolección de datos

Se empleará la observación experimental, con el cual se obtendrá la cantidad de vehículos que utilizan la vía por día; para la definición de las características de los materiales se realizarán ensayos los cuales nos darán la data requerida y para el diseño de la solución básica se recurrirá al método AASHTO 93.

Los instrumentos a emplearse serán AutoCAD - Civil 3D para realizar los planos, guía de observación de campo y Excel para la formulación de tablas, así como el uso de ábacos para el diseño de la solución básica.

3.5 Procedimientos

Para la realización del diseño del pavimento considerando una base estabilizada con cemento y aceite sulfonado en la ruta LI-116, Yamobamba-La Libertad tendremos en cuenta y efectuaremos lo siguiente:

- a) Recopilación de la información.
- b) Inspección visual y obtención de muestras del lugar de trabajo (estudio de tráfico y suelos).
- c) Caracterización del suelo (Granulometría, contenido de humedad, Limites de Atterberg, clasificación de suelos, CBR, Proctor Modificado, Resistencia a la compresión y Abrasión de los Ángeles).
- d) Definición de la dosificación para los diferentes tipos de estabilización.
- e) Ensayo de laboratorio de las muestras estabilizadas.
- f) Diseño de pavimento con la base estabilizada.

Se detalla cada uno de los procedimientos antes mencionados:

3.5.1 Recopilación de la información.

Se realizo las actividades de recolección de información referentes a nuestro tema, partiendo de la problemática inicial, el cual corresponde al diseño de pavimento considerando una base estabilizada con cemento y aceite sulfonado en Yamobamba – La Libertad. Se realizo una investigación a diferentes fuentes literarias en busca de información que contenga alguna relación en nuestro tema, lo cual permitió obtener los conocimientos fundamentales sobre los estabilizantes que existen, su eficiencia y los procedimientos para su aplicación.

3.5.2 Inspección visual y obtención de muestras en el área de estudio (estudio de tráfico y suelos).

3.5.2.1 Estudio de Trafico

Nos proporcionó la data base para evaluar los indicadores de tráfico (composición y volumen vehicular), para la evaluación de su funcionalidad en el tiempo. El diseño de la ruta LI-116 se realizó para un volumen de tránsito de un periodo determinado.

Los conteos vehiculares de cantidad y la clasificación vehicular se realizaron en las 24 horas del día durante siete días consecutivos en la estación Choquizonguillo, se detalla en los anexos los resultados de los trabajos realizados.

3.5.2.2 Estudio de Suelos

En esta fase, las muestras de suelo se obtuvieron mediante la excavación a una profundidad aproximada de 1.50 m del nivel de la rasante de la via en 06 puntos estratégicos además de la muestra obtenida de la cantera Salome. En primer lugar, por medio de un procedimiento visual, el material dispuesto se identificó y describió en el lugar de donde fue extraído. Una vez obtenido el material granular se procedió a realizar sus ensayos en laboratorio.

3.5.2.3 Caracterización del suelo (Granulometría, Limites de Atterberg, CBR, Proctor Modificado, Resistencia a la compresión).

Los ensayos en laboratorio que se realizaron a las muestras de la vía y de cantera fueron descritos en el item II. MARCO TEORICO, se detalla los ensayos:

- a) Clasificación de SUCS y ASSHTO (ASTM D-2487, ASTM D-3282).
- b) Granulometría (ASTM D-422, MTC E-107).
- c) Contenido de humedad de un suelo (ASTM D-2216, MTC E-108).
- d) Limite Liquido (ASTM D-4318, MTC E-110).
- e) Limite Plástico (ASTM D-4318, MTC E-111).
- f) Índice de Plasticidad.
- g) Proctor Modificado (ASTM D-1557, MTC E-115).
- h) Ensayo California Bearing Ratio-CBR (CBR ASTM 1883, MTC E-132).
- i) Ensayo de Abrasión de los Ángeles (NTP 400.019, MTC E-207).
- j) Compresión no confinada en muestras de suelos (ASTM 2166, MTC E-121).

3.5.3 Determinación de la dosificación para la estabilización.

La dosificación del cemento y aceite sulfonato son primeramente

proporcionados por el proveedor, a la par de dicha dosificación realizaremos

ensayos con diferentes dosis sobre la muestra obtenida de la cantera

Salome; evaluaremos los resultados obtenidos para proporcionar la

dosificación optima.

3.5.4 Ensayo de laboratorio de las muestras estabilizadas.

Los ensayos que se realizarán a las muestras estabilizadas serán los

siguientes:

Ensayo de compactación de suelos Próctor Modificado.

• Ensayo California Bearing Ratio (CBR).

Compresión no confinada – resistencia media (kg/cm²).

3.5.5 Diseño de pavimento con la base estabilizada.

El diseño de la base estabilizada se realizará con el siguiente método:

a) Método AASHTO 1993.

El diseño de pavimento empleando el método AASHTO 1993 se inicia

hallando el número estructural (SN) con la siguiente ecuación:

$$\log W_{18} = Z_R S_o + 9.36 \log (SN + 1) - 0.20 + \frac{\log \left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \log (M_R) - 8.07$$

Dónde:

W18: ejes equivalentes

ZR: Probabilidad

So: Desviación estándar

Δ PSI: Cambio de serviciabilidad

Po: Serviciabilidad Inicial

Pt: Serviciabilidad final

52

MR: Módulo resilente

Con el SN, se realiza la estructura del pavimento conformado por la capa superior, base y subbase, mediante la ecuación de diseño propuesta en la guía AASHTO 1993:

$$SN = \sum_{i=1}^{n} a_i D_i m_i$$

$$SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3$$

En donde:

ai: coeficiente de cada capa (1/cm).

Di: Espesores (cm).

mi: coeficientes de drenaje (adimensional).

3.6 Método de análisis de datos

Una vez terminadas las etapas de recolección y procesamiento de información se inicia la etapa de análisis de datos, en donde se analizará los datos y las herramientas a utilizar para los datos antes descritos.

El método de análisis de datos la realizaremos apoyándonos en las normas ASSHTO; Manual de ensayos de materiales para carreteras del MTC; Suelos Geología y Pavimentos del MTC.

3.7 Aspectos éticos

La presente tesis se desarrolló con responsabilidad y veracidad, respetando la autoría y originalidad de los diferentes autores, citando el material bibliográfico empleado; se utilizó el software del TURNITIN como herramienta para realizar la revisión de confiabilidad y privacidad.

IV. RESULTADOS

Los resultados para determinar la influencia en el diseño de pavimento considerando una base estabilizada con cemento y aceite sulfonado en la ruta LI-116, fueron adquiridos de los trabajos en campo y gabinete realizados en los Estudios de Trafico y Suelos, los cuales detallaremos a continuación:

4.1 Estudio de Trafico

Proporciona número de Ejes equivalentes, el cual es una de las variables para obtener el espesor del diseño de las bases estabilizadas.

4.1.1 Determinación de los Ejes equivalentes (EE)

El número de EE es una de las variables para realizar el diseño de carreteras.

Detallaremos, los datos procesados para obtener los ejes equivalentes proyectados que se utilizara en el diseño:

Tabla 9 *PBI por departamentos.*

Departementes				
Departamentos	2007	2019	TASA	
Cajamarca	8,159,499	10,348,500	2.00%	
La Libertad	14,615,612	22,629,943	3.71%	

Fuente: Producto bruto interno, INEI.

Tabla 10Población por departamentos.

Demontonous	POBLACION						
Departamentos	2007	2019	TASA				
Cajamarca	1,476,708	1,542,362	0.36%				
La Libertad	1,682,213	1,950,956	1.24%				

Fuente: Población, INEI.

Tabla 11PBI PER CAPITA por departamentos.

	PBI								
Departamentos	PBI	POB	PBI PER						
			CAPITA						
Cajamarca	2.00%	0.37%	1.62%						
La Libertad	3.71%	1.24%	2.44%						

Fuente: INEI.

De los datos mostrados en los cuadros anteriores se obtiene las tasas de crecimiento para la disposición vehicular, la cual se clasifica en vehículos ligeros (autos, camionetas) y vehículos pesados (ómnibus, camiones de 2 ejes, camiones de 3 ejes y otros).

Tabla 12 *Tasa de crecimiento por tipo de vehículo.*

TASA DE CRECIMIENTO										
DEPARTAMENTO	LIVIANO	OMNIBUS	PESADO							
Cajamarca	0.37%	1.62%	2.00%							
La Libertad	1.24%	2.44%	3.71%							

Fuente: Elaboración propia.

Los factores de corrección mostrados en la tabla siguiente son obtenidos del peaje VIRU, los factores de corrección por tipo de vehículo será utilizado para obtener el IMDa.

Tabla 13Factores de corrección por tipo de vehículo.

Tipo de vehículo	Factor de corrección
Livianos	1.12
Pesados	1.09

Fuente: INEI.

4.1.1.1 Resultados del conteo vehicular

Del conteo vehicular se obtuvieron las cantidades de tráfico en la vía, por cada día, por el tipo de vehículo y sentido.

Tabla 14
IMDA del tramo LI-116.

TIPO DE VEHÍCULOS	TOTAL, SEMANAL	IMDS Σ Vi/7	FC	IMDA = IMDS X FC	DISTRIB. %	DISTRIBUCION POR CAPACIDAD DE VEHICULO
Automóvil	52	7	1.12	8	5.6%	
Station Wagon	102	15	1.12	17	12.0%	
Pick_Up	215	31	1.12	35	24.6%	76.8%
Panel	28	4	1.12	4	2.8%	70.070
C. Rural	269	38	1.12	43	30.3%	
Microbús	12	2	1.12	2	1.4%	
Bus_2E	0	0	1.12	0	0.0%	0.7%
Bus_3E	6	1	1.09	1	0.7%	0.7%
Camión_2E	148	21	1.09	23	16.2%	
Camión_3E	51	7	1.09	8	5.6%	
Camión_4E	5	1	1.09	1	0.7%	
Semitrayler 2S1/2S2	0	0	1.09	0	0.0%	22.5%
Semitrayler_2S3	1	0	1.09	0	0.0%	
Semitrayler 3S1/3S2	1	0	1.09	0	0.0%	
TOTAL, IMD	890	127		142	100.0%	100.0%

Fuente: Trabajos de campo.

De la tabla anterior se observa que la cantidad de vehículos livianos que transitan por la vía es reflejada en 76.8%, seguido por los vehículos pesados con un 22.5% y finalizando con los buses que presentan un 0.7%.

4.1.1.2 Resultados del tráfico proyectado

El tráfico proyectado se obtiene procesando la información recogida de campo, en dicha información se incluye la tasa de crecimiento para proyectar valores de tráfico para 10 años.

Los valores de tráfico proyectado se determinan sumando los valores proyectados de tráfico normal y del tráfico generado proyectado; se muestra los valores obtenidos por cada tipo tráfico proyectado:

Trafico normal

El tráfico normal se proyecta hasta el año 2031 para lo cual se utiliza los indicadores macro-económicos que establece el MEF para lo cual se utiliza los indicadores de la Región La Libertad mostrados en el cuadro de tasa de crecimiento; se muestra el resultado del tráfico normal proyectado en la tabla 16.

• Trafico generado

Es aquel que no está presente actualmente, pero aparecerá después de realizar el mejoramiento a la vía, el tráfico generado normalmente es calculado como un porcentaje del tráfico normal, debido a información de proyectos anteriores, se muestra los porcentajes considerados por el Ministerio de Economía y Finanzas:

Tabla 15 *Trafico generado por tipo de proyecto.*

Tipo de Intervención	% de tráfico normal
Proyecto de Mejoramiento por Niveles de Servicio	30% - 70%
Proyecto de Recuperación	5%
Proyecto de Asfaltado en Costa y Sierra	10% – 15%
Proyecto de Asfalto en Selva	15% - 20%

Fuente: MEF.

De acuerdo al cuadro anterior nos corresponde aplicar un 30% al tráfico normal para así obtener el tráfico generado; el tráfico generado será sumado al tráfico normal después de aplicar el mejoramiento (segundo año).

Tráfico total

El tráfico total se obtiene de la sumatoria del tráfico normal más el tráfico generado en el periodo evaluado (10 años).

Se muestra los resultados referentes al tráfico normal, generado y total:

Tabla 16 *Trafico normal proyectado de la ruta LI-116.*

VEHICULO	TASA CRECIM	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Automóvil	1.24%	8	8	8	8	8	9	9	9	9	9	9
Station_Wagon	1.24%	17	17	17	18	18	18	18	19	19	19	19
Pick_Up	1.24%	35	35	36	36	37	37	38	38	39	39	40
Panel	1.24%	4	4	4	4	4	4	4	4	4	4	5
C. Rural	1.24%	43	44	44	45	45	46	46	47	47	48	49
Microbús	1.24%	2	2	2	2	2	2	2	2	2	2	2
Bus_2E	2.44%	0	0	0	0	0	0	0	0	0	0	0
Bus_3E	2.44%	1	1	1	1	1	1	1	1	1	1	1
Camión_2E	3.71%	23	24	25	26	27	28	29	30	31	32	33
Camión_3E	3.71%	8	8	9	9	9	10	10	10	11	11	12
Camión_4E	3.71%	1	1	1	1	1	1	1	1	1	1	1
Semitrayler_2S1/2S2	3.71%	0	0	0	0	0	0	0	0	0	0	0
Semitrayler_2S3	3.71%	0	0	0	0	0	0	0	0	0	0	0
Semitrayler_3S1/3S2	3.71%	0	0	0	0	0	0	0	0	0	0	0
TOTAL		142	144	147	150	152	156	158	161	164	166	171

Fuente: Trabajos de gabinete.

Tabla 17 *Trafico generado proyectado de la ruta LI-116.*

VEHICULO	TASA GENER	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Automóvil	30.00%		2	2	2	2	3	3	3	3	3	3
Station_Wagon	30.00%		5	5	5	5	5	5	6	6	6	6
Pick_Up	30.00%		11	11	11	11	11	11	11	12	12	12
Panel	30.00%		1	1	1	1	1	1	1	1	1	2
C. Rural	30.00%		13	13	14	14	14	14	14	14	14	15
Microbús	30.00%		1	1	1	1	1	1	1	1	1	1
Bus_2E	30.00%		0	0	0	0	0	0	0	0	0	0
Bus_3E	30.00%		0	0	0	0	0	0	0	0	0	0
Camión_2E	30.00%		7	8	8	8	8	9	9	9	10	10
Camión_3E	30.00%		2	3	3	3	3	3	3	3	3	4
Camión_4E	30.00%		0	0	0	0	0	0	0	0	0	0
Semitrayler_2S1/2S2	30.00%		0	0	0	0	0	0	0	0	0	0
Semitrayler_2S3	30.00%		0	0	0	0	0	0	0	0	0	0
Semitrayler_3S1/3S2	30.00%		0	0	0	0	0	0	0	0	0	0
TOTAL		0	42	44	45	45	46	47	48	49	50	53

Fuente: Trabajos de gabinete.

Tabla 18 *Tráfico total proyectado de la ruta LI-116.*

VEHICULO	TASA GENER	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Automóvil		8	10	10	10	10	12	12	12	12	12	12
Station_Wagon		17	22	22	23	23	23	23	25	25	25	25
Pick_Up		35	46	47	47	48	48	49	49	51	51	52
Panel		4	5	5	5	5	5	5	5	5	5	7
C. Rural		43	57	57	59	59	60	60	61	61	62	64
Microbús		2	3	3	3	3	3	3	3	3	3	3
Bus_2E		0	0	0	0	0	0	0	0	0	0	0
Bus_3E		1	1	1	1	1	1	1	1	1	1	1
Camión_2E		23	31	33	34	35	36	38	39	40	42	43
Camión_3E		8	10	12	12	12	13	13	13	14	14	16
Camión_4E		1	1	1	1	1	1	1	1	1	1	1
Semitrayler_2S1/2S2		0	0	0	0	0	0	0	0	0	0	0
Semitrayler_2S3		0	0	0	0	0	0	0	0	0	0	0
Semitrayler_3S1/3S2		0	0	0	0	0	0	0	0	0	0	0
TOTAL		142	186	191	195	197	202	205	209	213	216	224

Fuente: Trabajos de gabinete.

4.1.1.3 Cálculo de los Ejes equivalentes (EE)

Los EE son obtenidos del procesamiento de los vehículos pesados, se muestra los resultados para la obtención del EAL de diseño en el periodo de 10 años:

Tabla 19Factores destructivos, Factor direccional y factor carril por tipo de vehículo pesado.

	BU	SES	CA	MIONE	ES	SEM	MITRAYL	ERS		•	TRAYL	ERS		
TIPO DE VEHÍCULO	2E	>=3E	2E	3E	4E	2S1 / 2S2	283	3S1 / 3S2	>=383	2T2	2T3	3T2	3T3	TOTAL
Carga (Manual de Pavimentos)	4.50365	2.63131	4.50365	3.28458	2.77355	7.74194	6.59142	6.52287	5.37235	10.98023	9.76115	9.76115	8.54208	
Factor Direccional							1.0							
Factor Carril							1.0							
IMD (Vehículos Pesados) 2019	0	1	23	8	1	0	0	0	0	0	0	0	0	33

Fuente: Trabajos de gabinete.

Con los valores mostrados en la tabla anterior se procede al cálculo del EAL por cada año durante el periodo de diseño (10 años); en la tabla siguiente se nos presenta los EAL de cada año, así como el EAL acumulado en el periodo de diseño (año 2031) con el cual se realizará el diseño del pavimento:

Tabla 20 *Ejes equivalentes de diseño en la ruta LI-116.*

		BU	SES	CA	MIONES		SEMITI	RAYLER	S		TR	AYLER	S			
PERIODO DE DISEÑO	AÑOS	2E	>=3E	2E	3E	4	2S1 / 2S2	283	3S1/3S2	>=383	2T2	2T3	3T2	3T3	EAL ANUAL	EAL ACUMULADO
2021	0	0	960	37,808	9,591	1,012	0	0	0	0	0	0	0	0	4.94E+04	4.94E+04
2022	1	0	960	50,959	11,989	1,012	0	0	0	0	0	0	0	0	6.49E+04	6.49E+04
2023	2	0	960	54,247	14,386	1,012	0	0	0	0	0	0	0	0	7.06E+04	1.36E+05
2024	3	0	960	55,890	14,386	1,012	0	0	0	0	0	0	0	0	7.22E+04	2.08E+05
2025	4	0	960	57,534	14,386	1,012	0	0	0	0	0	0	0	0	7.39E+04	2.82E+05
2026	5	0	960	59,178	15,585	1,012	0	0	0	0	0	0	0	0	7.67E+04	3.58E+05
2027	6	0	960	62,466	15,585	1,012	0	0	0	0	0	0	0	0	8.00E+04	4.38E+05
2028	7	0	960	64,110	15,585	1,012	0	0	0	0	0	0	0	0	8.17E+04	5.20E+05
2029	8	0	960	65,753	16,784	1,012	0	0	0	0	0	0	0	0	8.45E+04	6.05E+05
2030	9	0	960	69,041	16,784	1,012	0	0	0	0	0	0	0	0	8.78E+04	6.92E+05
2031	10	0	960	70,685	19,182	1,012	0	0	0	0	0	0	0	0	9.18E+04	7.84E+05

Fuente: Trabajos en gabinete.

Se asume un EAL de diseño = **7.84x10**⁵ **EE**

4.2 Estudio de Suelos

Para el estudio de Suelos se realizó la extracción de muestras tanto de la vía como de la cantera más próxima, las muestras fueron conseguidos mediante la realización de pozos exploratorios (en adelante calicatas a cielo abierto) en la vía y la cantidad de calicatas están de acuerdo al tipo de solución que le propondrá (SOLUCION BASICA) lo cual implica realizar 06 calicatas; además de lo antes mencionado se realizó la toma de 03 muestras de la cantera SALOME, el cual es una posible cantera de donde se obtendrá el material para la base estabilizada.

Se detalla la ubicación de las calicatas y trincheras realizados en campo:

Tabla 21Ubicación de calicatas de la ruta LI-116 y la cantera Salome.

NOMBRE	PROGRESIVA	CALICATA	COORDENADA	S UTM WGS-84	PROF.
HOMBKE	TROOREDIVA	OALIOATA	NORTE	ESTE	(m)
		CA	ALICATA EN LA	VIA	
	0+005.19	C - 01	9131433	819696	1.70
	2+549.92	C - 02	9129519	819288	1.70
Emp. PE-3N	4+823.06	C - 03	9127631	818953	1.20
(Culicanda) -	7+369.15	C - 04	9125455	818883	1.70
Emp. LI-115	9+732.44	C - 05	9123181	818961	1.70
(Dv.	10+675.10	C - 06	9120578	820080	0.70
Culicanda)	С	ALICATA Y	TRINCHERAS EN	I LA CANTERA	
	Km. 0+000	C - 01	9132829	823670	3.00
	Acceso: 6.36	T - 01	9132838	803675	3.00
	km	T - 02	9132850	823678	3.00

Fuente: Trabajos en campo del equipo de suelos.

Los ensayos de laboratorio realizados a las muestras extraídas se efectuaron para cada variación estratigráfica de cada calicata, en donde permitieron definir las propiedades de los suelos empleando ensayos físicos y mecánicos.

A continuación, detallamos los resultados que se obtuvieron de los ensayos en el laboratorio:

4.2.1 Ensayos de laboratorio realizado a la vía

En los siguientes ítems se presenta los resúmenes de las propiedades de las muestras obtenidas de la ruta:

4.2.1.1 Granulometría, Limites de Atterberg (LL, LP y IP), Clasificación SUCS y AASHTO y Humedad natural (W).

Tabla 22Cuadro resumen del ensayo de granulometría, LL, LP, IP, clasificación SUCS y AASHTO y Humedad natural (W) realizados a la ruta LI-116.

NOMBBE	COORDE	NADAS	CA	LICATA	PROF.	% QU	E PASA	LIMI	TES < I	√ 040	CLASI	FICACIÓN	\A/ (0/ \
NOMBRE	NORTE	ESTE	Nº	MUESTRA	(m)	Nº 4	Nº 200	L.L.	L.P.	I.P.	SUCS	AASHTO	W (%)
	9131433	819696	C- 01	M-1	0.00 -0.20	34.8	8.3	NP	NP	NP	GW-GM	A-1-a (0)	3.3
	9131433	819696	C- 01	M-2	0.20 -1.70	43.9	5.8	24	16	8	GP-GC	A-2-4 (0)	5.5
	9129519	819288	C- 02	M-1	0.00 -0.30	39.3	15.8	26	19	7	GC-GM	A-2-4 (0)	5.4
	9129519	819288	C- 02	M-2	0.30 -1.70	81.4	34.9	29	25	4	SM	A-2-4 (0)	14.2
Emp. PE-3N (Culicanda) -	9127631	818953	C- 03	M-1	0.00 -0.45	61.0	34.8	27	20	7	GC	A-2-4 (0)	20.4
Emp. LI-115	9127631	818953	C- 03	M-2	0.45 -1.20	84.9	64.6	26	19	7	CL-ML	A-4 (6)	18.3
(Dv. Culicanda)	9125455	818883	C- 04	M-1	0.00 -0.40	54.1	25.0	24	18	6	GC-GM	A-2-4 (0)	4.6
Ganicanaa)	9125455	818883	C- 04	M-2	0.40 -1.70	79.2	34.8	34	24	10	SM	A-2-6 (0)	12.5
	9123181	818961	C- 05	M-1	0.00 -0.40	38.7	12.2	28	21	7	GC-GM	A-2-4 (0)	5.1
	9123181	818961	C- 05	M-2	0.40 -1.70	52.1	19.7	33	24	9	GM	A-2-4 (0)	14.6
	9120578	820080	C- 06	M-1	0.00 -0.70	54.8	28.1	24	18	6	GC-GM	A-2-4 (0)	9.4

Fuente: Resultados de ensayos en JR GEOCONSULTORES INGENIEROS SRL.

Del cuadro anterior se puede concluir los siguientes puntos:

- En el estrato superior predomina los suelos granulares de tendencia limo-arcillosa identificada en el sistema SUCS como GC-GM con 67%, le sigue las gravas finas arcillosa bien graduada con un 17% y finalmente una grava arcillosa con un 16%.
- En el estrato inferior se compone en su mayoría por suelos granulares de tendencia limosa. Predomina las arenas limosas identificadas en el sistema SUCS como un SM con 33%, le siguen los suelos del tipo gravas limo-arcillosas, gravas limosas, gravas mal gradadas arcillosas y arcillas limosas de baja plasticidad, participan haciendo un total aproximado de 67%.

4.2.1.2 Ensayos de las propiedades mecánicas

Los ensayos que permiten obtener las propiedades mecánicas del suelo frente a solicitaciones mecánicas, determinando su condición de resistencia, en nuestro caso para el diseño de espesores de pavimentos son: el CBR y el ensayo de Densidad - Humedad (Proctor).

Tabla 23
Capacidad de carga (CBR), de las calicatas realizadas en campo.

NOMBRE	CA	LICATA	PROF.	% QUE PASA	14/ (0/)	PROC	TOR	CBR A	\L 0.1"	CBR DE LA
NOMBRE	N.º	MUESTRA	(m)	LA MALLA ¾"	W (%)	MDS	OCH	95% MDS	100% MDS	SUBRASATE
	C- 01	M-1	0.00 -0.20	66.4	3.3	-	-	-	-	
	C- 01	M-2	0.20 -1.70	70.2	5.5	2.107	9.1	41.0	47.1	
	C- 02	M-1	0.00 -0.30	60.6	5.4	-	-	-	-	
Emp. PE-3N	C- 02	M-2	0.30 -1.70	88.8	14.2	1.821	12.4	25.0	30.2	
(Culicanda) -	C- 03	M-1	0.00 -0.45	79.4	20.4	-	-	-	-	
Emp. LI-115	C- 03	M-2	0.45 -1.20	96.7	18.3	1.563	13.0	16.9	20.0	18
(Dv.	C- 04	M-1	0.00 -0.40	72.8	4.6	-	-	-	-	
Culicanda)	C- 04	M-2	0.40 -1.70	100.0	12.5	1.874	13.1	25.4	33.4	
Odiloarida)	C- 05	M-1	0.00 -0.40	60.6	5.1	-	-	-	-	
	C- 05	M-2	0.40 -1.70	75.2	14.6	2.025	10.1	44.6	54.3	
	C- 06	M-1	0.00 -0.70	76.6	9.4	1.914	11.1	41.6	49.7	

Fuente: Resultados de ensayos en JR GEOCONSULTORES E INGENIEROS SRL.

4.2.2 Ensayos de laboratorio realizado a la cantera SALOME

Tabla 24Cuadro resumen del ensayo de granulometría, LL, LP, IP, clasificación SUCS y AASHTO y Humedad natural (W) realizados a la cantera SALOME.

CANTERA	% QU PAS RA CALIC. PROF.			LIMI	TES <	N° 40	W	CLASIF	ICACIÓN	ABSORCION	EQUIV. DE ARENA	CONTENIDO DE MATERIA ORGÁNICA	ABRASIÓN	PROC	TOR	СВБ	R 0.1"	
	• · · · · · · · · · · · · · · · · · · ·	(m)	N° 4	N° 200	L.L.	L.P.	I.P.	(%)	sucs	AASHTO	%	%	%	%	MAX. DENS.	осн	95%	100%
	C-01	0.00 - 3.00	0.2	15.2	27	22	5	6.6	GM	A-1-b (0)	0.8 %	47	0.91	27.5	2.143	8.6	49.4	65.4
SALOME	T-01	0.00 - 3.00	2.0	19.9	29	23	6	4.1	GM	A-1-b (0)	0.8 %	43	1.02	29.5	2.129	9.4	43.2	55.0
	T-02	0.00 - 3.00	7.8	12.2	28	22	6	5.8	GC-GM	A-2-4 (0)	1.4 %	37	0.61	29.5	2.122	8.3	45.1	53.5

Fuente: Resultados de ensayos en JR GEOCONSULTORES E INGENIEROS SRL.

4.2.3 Ensayos de laboratorio realizado a las muestras estabilizadas de la cantera Salome

Las muestras obtenidas de la cantera Salome fueron analizadas y evaluadas en laboratorio, las estabilizaciones fueron distribuidos de la siguiente manera:

Tabla 25 *Muestras Estabilizadas evaluadas.*

		CANTIDAD	
ESTABILIZANTE	CANTIDAD 01	CANTIDAD 02	CANTIDAD 03
CEMENTO	2% del vol. de la muestra	3% del vol. de la muestra	4% del vol. muestra
ADITIVO PROES 100	0.26 lts/m3 (PROES 100)	0.28 lts/m3 (PROES 100)	0.30 lts/m3 (PROES 100)
ADITIVO PROES 100 + CEMENTO	0.26 lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)	0.28 lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)	0.30 lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

Fuente: Trabajos en laboratorio.

Se muestran los resultados obtenidos para cada Estabilizado.

4.2.3.1 Muestras estabilizadas con cemento

a) Muestra Estabilizada con 2 % de Cemento o 45 Kg/m3 (Cemento Portland)

Tabla 26Cuadro resumen del ensayo de Proctor Modificado y Compresión no confinada a la muestra estabilizada 01.

	CALICATA		PROCTOR	MODIFICADO	COMPRESIÓN
NOMBRE	N.º	PROF. (m)	MÁXIMA DENSIDAD SECA (gr/cm³)	OPTIMO CONTENIDO DE HUMEDAD (%)	NO CONFINADA - RESISTENCIA PROMEDIO (kg/cm²)
CANTERA SALOME	C- 01 / T-01 / T-02	3.00	2.131	8.8	17

Fuente: Resultados de ensayos en JR GEOCONSULTORES E INGENIEROS SRL.

b) Muestra Estabilizada con 3 % Cemento o 67.5 Kg/m3 (Cemento Portland)

Tabla 27Cuadro resumen del ensayo de Proctor Modificado y Compresión no confinada a la muestra estabilizada 02.

	CALICATA		PROCTOR	MODIFICADO	COMPRESIÓN NO
NOMBRE	N.º	PROF. (m)	MÁXIMA DENSIDAD SECA (gr/cm³)	OPTIMO CONTENIDO DE HUMEDAD (%)	CONFINADA – RESISTENCIA PROMEDIO (kg/cm²)
CANTERA SALOME	C- 01 / T-01 / T-02	3.00	2.131	8.8	24

Fuente: Resultados de ensayos en JR GEOCONSULTORES E INGENIEROS SRL.

c) Muestra Estabilizada con 4 % Cemento o 90 Kg/m3 (Cemento Portland)

Tabla 28Cuadro resumen del ensayo de Proctor Modificado y Compresión no confinada a la muestra estabilizada 03.

	CALICATA		PROCTOR	MODIFICADO	COMPRESIÓN
NOMBRE	N.º	PROF. (m)	MÁXIMA DENSIDAD SECA (gr/cm³)	OPTIMO CONTENIDO DE HUMEDAD (%)	NO CONFINADA - RESISTENCIA PROMEDIO (kg/cm²)
CANTERA SALOME	C- 01 / T-01 / T-02	3.00	2.131	8.8	32

Fuente: Resultados de ensayos en JR GEOCONSULTORES E INGENIEROS SRL.

Los resultados obtenidos a las muestras estabilizadas con cemento son comparados con los requeridos en el **DOCUMENTO TÉCNICO PARA LAS SOLUCIONES BÁSICAS EN CARRETERAS NO PAVIMENTADAS DEL - MTC**, en el cual en el cuadro N° 01 del documento muestra lo siguiente:

Tabla 29Especificaciones Tec. De tipos de estabilizadores y parámetros del Documento Técnico De Soluciones Básicas Del MTC.

SUELO ESTABILIZADO CON	PAPAMETROS
	1.Resistencia a compresión simple= 1.8 MPa mínimo (MTC E 1103)
	2.Humedecimiento-secado (MTC E 1104):
Cemento	-Para suelos A-1; A-2-4; A-2-5; A3 = 14 % de Pérdida Máxima
	-Para suelos A-2-6; A-2-7; A-4; A5 = 10 % de Pérdida Máxima
	-Para suelos A-6; A-7 = 7 % de Pérdida Máxima
	1.Estabilidad Marshall = 230 Kg minimo (MTC E 504)
Emulsión Asfáltica	2.Pérdida de estabilidad después de saturado = 50% máximo
	3.Porcentaje de recubrimiento y trabajabilidad de la mezcla debe estar entre 50 y 100%
Cal	1.CBR. = 100% mínimo (MTC E 115, MTC E 132) 2.Expansión s; 0.5%
Sales	1. CBR ^o = 100% mínimo, CBR no saturado (MTC E 115, MTC E 132)
Productos químicos	
(aceites sulfonados,	1.CBR* = 100% mínimo (MTC E 115, MTC E 132)
ionizadores, polímeros,	2.Expansión s; 0.5%
enzimas, sistemas, etc.)	

^(°) CBR corresponde a la penetración de 0.1"

Fuente: Doc. Téc. de soluciones básicas del MTC.

De los resultados obtenidos con el estabilizado con cemento se puede resaltar lo siguiente:

- Según el Documento Técnico de soluciones básicas del MTC solo se nos solicita una resistencia mínima de 1.8 MPa lo que equivale a 18 kg/cm².
- Según el Documento Técnico de soluciones básicas del MTC, solo se nos solicita realizar la prueba de Resistencia a la compresión simple.
- De las dosificaciones empleadas, la dosificación con el 3% y 4% del volumen de material de muestra presenta una resistencia promedio de 24 kg/cm² y 32 kg/cm² los cuales satisfacen lo requerido en el Documento Técnico de soluciones básicas del MTC.

4.2.3.2 Muestras estabilizadas con aditivo PROES 100

a) Muestra con 0.26 Lts/m3 (PROES 100)

Tabla 30Cuadro resumen del ensayo de Proctor Modificado, CBR y Compresión no confinada a la muestra estabilizada 04.

-	CALICATA		PROCTOR	MODIFICADO	CBR AL 0.1"		COMPRESIÓN
NOMBRE	N.º	PROF. (m)	MÁXIMA DENSIDAD SECA (gr/cm³)	OPTIMO CONTENIDO DE HUMEDAD (%)	95% MDS	100% MDS	NO CONFINADA - RESISTENCIA PROMEDIO (kg/cm²)
CANTERA SALOME	C- 01 / T-01 / T-02	3.00	2.131	8.8	49.8	65.2	14

Fuente: Resultados de ensayos en JR GEOCONSULTORES E INGENIEROS SRL.

b) Muestra con 0.28 Lts/m3 (PROES 100)

Tabla 31Cuadro resumen del ensayo de Proctor Modificado, CBR y Compresión no confinada a la muestra estabilizada 05.

	CALICATA		PROCTOR	MODIFICADO	IODIFICADO CBR		COMPRESIÓN
NOMBRE	N.º	PROF. (m)	MÁXIMA DENSIDAD SECA (gr/cm³)	OPTIMO CONTENIDO DE HUMEDAD (%)	95% MDS	100% MDS	NO CONFINADA - RESISTENCIA PROMEDIO (kg/cm²)
CANTERA SALOME	C- 01 / T-01 / T-02	3.00	2.131	8.8	57.9	75.6	15

Fuente: Resultados de ensayos en JR GEOCONSULTORES E INGENIEROS SRL.

c) Muestra con 0.30 Lts/m3 (PROES 100)

Tabla 32Cuadro resumen del ensayo de Proctor Modificado, CBR y Compresión no confinada a la muestra estabilizada 06.

	CALICATA	PROCTOR MODIFICADO CBR AL 0.1"					COMPRESIÓN
NOMBRE	N.º	PROF. (m)	MÁXIMA DENSIDAD SECA (gr/cm³)	OPTIMO CONTENIDO DE HUMEDAD (%)	95% MDS	100% MDS	NO CONFINADA - RESISTENCIA PROMEDIO (kg/cm²)
CANTERA SALOME	C- 01 / T-01 / T-02	3.00	2.131	8.8	65.7	84.9	17

Fuente: Resultados de ensayos en JR GEOCONSULTORES E INGENIEROS SRL.

De los resultados obtenidos a las muestras estabilizadas solo con el aditivo PROES 100 se concluye lo siguiente:

- Las dosificaciones empleadas con aditivo PROES 100 fueron de 0.26 Lts/m3, 0.28 Lts/m3 y 0.30 Lts/m3.
- Los CBR a 0.1" obtenidos al 100 % de la MDS no satisfacen lo requerido por el Documento Técnico de soluciones básicas del MTC (tabla N° 29) ya que presentan valores de 65.2, 75.6 y 84.9.
- Las resistencias a la compresión promedios no varían significativamente en las tres muestras estabilizadas dando resultados de 14 kg/cm², 15 kg/cm² y 17 kg/cm²,

4.2.3.3 Muestras estabilizadas con aditivo PROES 100 + Cemento

a) Muestra con 0.26 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

Tabla 33Cuadro resumen del ensayo de Proctor Modificado, CBR y Compresión no confinada a la muestra estabilizada 07.

	CALICATA		PROCTOR	MODIFICADO	CBR	AL 0.1"	COMPRESIÓN
NOMBRE	N.º	PROF. (m)	MÁXIMA DENSIDAD SECA (gr/cm³)	OPTIMO CONTENIDO DE HUMEDAD (%)	95% MDS	100% MDS	NO CONFINADA - RESISTENCIA PROMEDIO (kg/cm²)
CANTERA SALOME	C- 01 / T-01 / T-02	3.00	2.131	8.8	85.8	101.3	32

Fuente: Resultados de ensayos en JR GEOCONSULTORES E INGENIEROS SRL.

b) Muestra con 0.28 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

Tabla 34Cuadro resumen del ensayo de Proctor Modificado, CBR y Compresión no confinada a la muestra estabilizada 08.

	CALICATA		PROCTOR	MODIFICADO	CBR /	AL 0.1"	COMPRESIÓN
NOMBRE	N.º	PROF. (M)	MÁXIMA DENSIDAD SECA (gr/cm³)	OPTIMO CONTENIDO DE HUMEDAD (%)	95% MDS	100% MDS	NO CONFINADA - RESISTENCIA PROMEDIO (kg/cm²)
CANTERA SALOME	C- 01 / T-01 / T-02	3.00	2.131	8.8	89.3	106.0	37

Fuente: Resultados de ensayos en JR GEOCONSULTORES E INGENIEROS SRL.

c) Muestra con 0.30 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

Tabla 35Cuadro resumen del ensayo de Proctor Modificado, CBR y Compresión no confinada a la muestra estabilizada 09.

_	CALICATA		PROCTOR	MODIFICADO	CBR	AL 0.1"	COMPRESIÓN
NOMBRE	N.º	PROF. (M)	MÁXIMA DENSIDAD SECA (gr/cm³)	OPTIMO CONTENIDO DE HUMEDAD (%)	95% MDS	100% MDS	NO CONFINADA - RESISTENCIA PROMEDIO (kg/cm²)
CANTERA SALOME	C- 01 / T-01 / T-02	3.00	2.131	8.8	99.2	117.1	39

Fuente: Resultados de ensayos en JR GEOCONSULTORES E INGENIEROS SRL.

De los resultados obtenidos a las Muestra estabilizada con aditivo PROES 100 y Cemento Portland se resalta lo siguiente:

- Se estabilizo las muestras de la Cantera Salome con las siguientes dosificaciones:
 - Muestra + 0.26 lts/m3 (PROES 100) + 45 kg/m3 (Cemento).
 - Muestra + 0.28 lts/m3 (PROES 100) + 45 kg/m3 (Cemento).
 - Muestra + 0.30 lts/m3 (PROES 100) + 45 kg/m3 (Cemento).
- Realizando el comparativo con lo solicitado en el Doc. Téc. de soluciones básicas del MTC en donde se nos solicita una resistencia mínima a la compresión de 1.8 MPa (18 kg/cm²) se observa que todas las estabilizaciones cumplen con lo requerido dando valores de 32, 37 y 39 kg/cm².
- Con respecto a los valores del ensayo de CBR a 0.1" obtenidos al 100 % de la MDS se observa que la muestra con 0.26 lts/m3 de PROES 100 + 45 kg/m3 de Cemento está al límite de lo solicitado en el Documento Técnico de soluciones básicas del MTC con un valor de 101.3.
- Por lo descrito anteriormente se puede deducir que las 03 muestras estabilizadas con aditivo PROES 100 + CEMENTO satisfacen lo solicitado en el Doc. Téc. de soluciones básicas del MTC.
- Además, viéndolo por el lado económico por las solicitaciones de las dosificaciones, es viable realizar la dosificación con 0.26 lts/m3 de PROES 100 + 45 kg/m3 de Cemento para la estabilización de la base en la ruta LI-116 ya que emplea menos cantidad de estabilizadores.

4.3 Diseño de la ruta LI-116

Para el diseño de la vía emplearemos los resultados de los Estudios de Trafico y Suelos, apoyándonos en el MANUAL DE CARRETERAS – SUELOS GEOLOGIA, GEOTECNIA Y PAVIMENTOS del MTC.

En el capítulo XI AFIRMADOS del Manual de Suelos del MTC se nos brinda las consideraciones para el diseño de un afirmado. Un factor importante para determinar si diseñaremos un afirmado es la cantidad de ejes equivalentes, en el capítulo XI se nos muestra el siguiente texto para diseño de afirmados:

AFIRMADOS

Las carreteras no pavimentadas con revestimiento granular en sus capas superiores y superficie de rodadura corresponden en general a carreteras de bajo volumen de tránsito y un número de repeticiones de Ejes Equivalentes de hasta 300,000 EE en un periodo de diez años; estas carreteras no pavimentadas pueden ser clasificadas como sigue:

Figura 4. Descripción de afirmado.

Fuente: Manual de Suelos Geología, Geotecnia y Pavimentos del MTC.

Por lo descrito en la imagen anterior y por la solicitud de ESAL de diseño que tenemos en la ruta LI-116 (**7.84x10**⁵ **EE**) no corresponde diseñar un afirmado, por consiguiente, se tiene que diseñar un pavimento flexible.

En el capítulo XII PAVIMENTO FLEXIBLE se nos muestra los criterios para el diseño de un pavimento empleando el Método AASHTO 1993.

Por lo descrito anteriormente, emplearemos en Método AASHTO 1993 para el diseño de espesores de la carretera.

4.3.1 Método AASHTO 1993 (cálculo del Numero Estructural – SN)

El empleo del método AASHTO 93 involucra la evaluación de diversos factores detallados en el capítulo de MARCO TEORICO.

Se muestra las ecuaciones con la cual hallaremos los espesores de acuerdo a nuestras solicitudes:

• Número Estructural (SN):

$$log W_{18} = Z_R S_0 + 9.36 log (SN + 1) - 0.20 + \frac{log \left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 log M_R - 8.07$$

• Espesores del pavimento flexible:

$$SN = a_1 D_1 + a_2 D_2 m_2 + a_3 D_3 m_3$$

En los siguientes ítems detallaremos las variables que utilizaremos para el diseño de los espesores de la ruta departamental LI-116:

4.3.1.1 Variable de tiempo

El periodo para el diseño se da de acuerdo a la clasificación de la vía, mostramos los periodos recomendados por el MTC:

Tabla 36 *Periodo de análisis.*

CLASIFICACIÓN DE LA VIA	PERIODO DE ANÁLISIS
Urbana de alto vol. de tráfico	30 - 50
Rural de alto vol. de tráfico	20 - 50
Pavimentada de bajo vol. de tráfico	15 - 25
No pavimentada de bajo vol. de tráfico	10 - 20

Fuente: Manual de conservación-MTC.

La ruta departamental LI-116 se clasifica como una vía no Pavimentada de bajo volumen de tráfico por consiguiente nuestro periodo es de **10 años**.

4.3.1.2 Tránsito (EE)

De acuerdo al estudio de tráfico el número de ejes equivalentes de diseño es de 7.84x10⁵ EE.

Se nos muestra los tipos de trafico de acuerdo al número de EE de diseño:

Tabla 37 *Numero de repeticiones acumuladas de EE de 8.2 t, en el carril de diseño.*

CATEGORIA		E TRÁFICO RESADO EN EE	TIPO DE TRÁFICO EXPRESADO EN EE
	De	Α	LAFILISADO LIN LL
BAJO	150001	300000	TP_1
VOĻUMEN DE	300001	500000	TP_2
TRÁNSITO DE	500001	750000	TP_3
150,001 A 1'000,000 EE	750001	1000000	TP_4
	1000001	1500000	TP_5
	1500001	3000000	TP_6
CAMINOS QUE	3000001	5000000	TP_7
TIENEN UN	5000001	7500000	TP_8
TRAFICO COMPRENDIDO	7500001	10000000	TP_9
ENTRE	10000001	12500000	TP_10
1'000,000 Y	12500001	15000000	TP_11
30'000,000 EE	15000001	20000000	TP_12
22 222,000 ==	20000001	25000000	TP_13
	25000001	3000000	TP_14

Fuente. Manual de Carreteras-Suelos-MTC.

Según el cuadro anterior el tipo de tráfico es TP4.

4.3.1.3 Subrasante (CBR)

La característica de la subrasante viene definida por el CBR obtenido de las calicatas de la ruta, se muestra las categorías del Manual de Suelos del MTC.

Tabla 38Categorías de la sub rasante.

CBR DE LA S	UBRASANTE	CATEGORIA DE LA SUBRASANTE	DESCRIPCIÓN DE LA SUBRASANTE
CBR MENC	DRES A 3%	S0	Inadecuada
De CBR = 3%	A CBR < 6%	S1	Pobre
De CBR = 6%	A CBR < 10%	S2	Regular
De CBR = 10%	A CBR < 20%	S 3	Buena
De CBR = 20%	A CBR < 30%	S4	Muy Buena
CBR MAYORES C	IGUALES A 30%	S5	Extraordinaria

Fuente. Manual de Carreteras-Suelos-MTC.

De acuerdo a los ensayos de CBR de las muestras de la plataforma de vía se obtuvo un CBR promedio de 18%, por lo cual según el cuadro anterior nuestra sub rasante está clasificada como un S3 (SUBRASANTE BUENA).

4.3.1.4 Confiabilidad (R)

La confiabilidad está definida de acuerdo al rango de tráfico, tal como se aprecia en la siguiente tabla:

Tabla 39Valores recomendados de nivel de confiabilidad.

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO DE TRÁ EXPRESAD DE		NIVEL DE CONFIABILIDAD
TP_1	150001	300000	70%
TP_2	300001	500000	75%
TP_3	500001	750000	80%
TP_4	750001	1000000	80%
TP_5	1000001	1500000	85%
TP_6	1500001	3000000	85%
TP_7	3000001	5000000	85%
TP_8	5000001	7500000	90%
TP_9	7500001	10000000	90%
TP_10	10000001	12500000	90%
TP_11	12500001	15000000	90%
TP_12	15000001	20000000	95%
TP_13	2000001	25000000	95%
TP_14	25000001	30000000	95%

Fuente. Manual de Carreteras-Suelos-MTC.

La confiabilidad (R) para el tipo de tráfico TP4 es 80%.

4.3.1.5 Desviación Estándar (Zr)

La Desviación Estándar (Confiabilidad) viene definida de acuerdo al rango de tráfico, tal como se aprecia en la siguiente tabla:

Tabla 40Valores de los coeficientes estadísticos de la Desviación Estándar Normal (Zr).

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO DE TRÁ EXPRESAD DE		NIVEL DE CONFIABILIDAD
TP_1	150001	300000	-0.524
TP_2	300001	500000	-0.674
TP_3	500001	750000	-0.842
TP_4	750001	1000000	-0.842
TP_5	1000001	1500000	-1.036
TP_6	1500001	3000000	-1.036
TP_7	3000001	5000000	-1.036
TP_8	5000001	7500000	-1.282
TP_9	7500001	10000000	-1.282
TP_10	10000001	12500000	-1.282
TP_11	12500001	15000000	-1.282
TP_12	15000001	20000000	-1.645
TP_13	2000001	25000000	-1.645
TP_14	25000001	30000000	-1.645

Fuente. Manual de Carreteras-Suelos-MTC.

La Desviación Estándar Normal (Zr) para nuestro diseño toma el valor de -0.842.

4.3.1.6 Desviación Estándar Combinada (So)

El valor de So según la guía AASHTO 1993 está relacionada con el tipo de pavimento y del comportamiento del pavimento, se muestra los valores señalados:

Tabla 41Valores de la Desviación Estándar Combinada (So).

CONDICION DE DICEÑO	DESVIACIÓ	N ESTANDAR
CONDICION DE DISEÑO	PAV. RÍGIDO	PAV. FLEXIBLE
Variación en la predicción del comportamiento del pavimento sin errores en el tránsito.	0.35	0.40
Variación en la predicción del comportamiento del pavimento con errores en el tránsito.	0.40	0.50

Fuente. Guía AASHTO 1993.

Para nuestros espesores tomaremos el valor promedio de 0.40 y 0.50 el cual nos da **0.45** como el valor para la Desviación Estándar Combinada.

4.3.1.7 Índice de Serviciabilidad Presente (PSI)

Viene dada por la diferencia entre la serviciabilidad inicial y final, se muestra casa uno de ellas:

a) Serviciabilidad Inicial (Pi)

Representa la condición de la vía recién construida, se indica los índices de servicio inicial:

Tabla 42 *Indices de Serviciabilidad Inicial (Pi).*

TIPO DE TRÁFICO EXPRESADO	RANGO DE TRÁI EXPRESAD		INDICE DE SERVICIABILIDAD
EN EE	De	Α	INICIAL (Pi)
TP_1	150001	300000	3.8
TP_2	300001	500000	3.8
TP_3	500001	750000	3.8
TP_4	750001	1000000	3.8
TP_5	1000001	1500000	4.0
TP_6	1500001	3000000	4.0
TP_7	3000001	5000000	4.0
TP_8	5000001	7500000	4.0
TP_9	7500001	10000000	4.0
TP_10	1000001	12500000	4.0
TP_11	12500001	15000000	4.0
TP_12	15000001	20000000	4.2
TP_13	2000001	25000000	4.2
TP_14	25000001	30000000	4.2

Fuente. Manual de Carreteras-Suelos-MTC.

El índice inicial de acuerdo a nuestro tráfico es de 3.8.

b) Serviciabilidad Final o Terminal (PT)

Representa la condición de la vía que ha alcanzado la necesitad requerida, se indica los índices de servicio final:

Tabla 43 Índices de Serviciabilidad Final (Pf).

TIPO DE TRÁFICO	RANGO DE TRÁI EXPRESAD		INDICE DE SERVICIABILIDAD
EXPRESADO EN EE	De	Α	FINAL (PF)
TP_1	150001	300000	2.0
TP_2	300001	500000	2.0
TP_3	500001	750000	2.0
TP_4	750001	1000000	2.0
TP_5	1000001	1500000	2.5
TP_6	1500001	3000000	2.5
TP_7	3000001	5000000	2.5
TP_8	5000001	7500000	2.5
TP_9	7500001	10000000	2.5
TP_10	10000001	12500000	2.5
TP_11	12500001	15000000	2.5
TP_12	15000001	2000000	3.0
TP_13	2000001	25000000	3.0
TP_14	25000001	30000000	3.0

Fuente. Manual de Carreteras-Suelos-MTC.

El índice final de acuerdo a nuestro tráfico es de 2.

Con los datos mostrados el índice de Serviciabilidad Presente (PSI) nos da como resultado 1.8.

4.3.1.8 Módulo de Resiliencia (MR)

Representa la rigidez del suelo de la sub rasante, el cálculo se realiza con el CBR de la sub rasante mediante la siguiente ecuación:

$$M_R = 2555 \times CBR^{0.64}$$

Teniendo un valor de CBR DE 18%, el Módulo Resiliente es de 16247 PSI.

Con los datos obtenidos se realiza el cálculo con la siguiente ecuación a fin de obtener el Numero Estructural (SN) con el cual hallaremos los espesores de acuerdo a nuestras muestras estabilizadas.

$$log W_{18} = Z_R S_0 + 9.36 log (SN + 1) - 0.20 + \frac{log \left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 log M_R - 8.07$$

El numero Estructural (SN) obtenido es de 2.29.

4.3.2 Método AASHTO 1993 (Cálculo de los espesores).

Los espesores serán calculados mediante el método AASHTO 1993, la cual emplea la siguiente ecuación:

$$SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3$$

Para hallar los espesores del pavimento se tuvo siguientes consideraciones:

- El numero Estructural (SN) de 2.29 no se verá afectado por el tipo de estabilizante a colocar en la base.
- En la capa superior se asumirá la colocación de un micro pavimento de 25 mm ya es el Manual de Suelos lo recomienda para tráficos menores a 1'000,000 EE.
- Se calculará espesores para una base estabilizada con CEMENTO y para una base estabilizada con aditivo PROES 100 + CEMENTO ya que cumplieron con lo solicitado en el Doc. Téc. de soluciones básicas del MTC.
- No se calculará espesores con los resultados obtenidos de la base estabilizada con solo aditivo PROES 100 debido a que no cumplieron el CBR solicitado en el Documento Técnico de soluciones básicas del MTC (mínimo 100% del CBR).

Por lo descrito anteriormente detallaremos los resultados obtenidos para el cálculo de espesores:

4.3.2.1 Cálculo del espesor del pavimento sin añadir ningún estabilizante

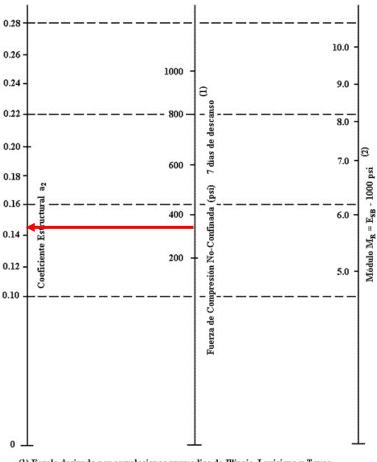
Tabla 44Resultados mediante ASSHTO 93 a la muestra de cantera sin estabilizante.

	LI-116
Parámetros de diseño	(Km 0+000 – Km 13+114)
Numero Estructural SN	2.29
Coef. de capa superior (1/cm)	0.130
Espesor de capa superior(cm)	2.5
Coef. de base (1/cm)	0.052
Coef. de drenaje de la base (adimensional)	1.0
Espesor de base (cm)	20
Coef. de sub - base (1/cm)	0.047
Coef. de drenaje de la base (adimensional)	1.0
Espesor de sub -base (cm)	20

Fuente: Trabajos en gabinete.

4.3.2.2 Cálculo del espesor del pavimento añadiendo Cemento

a) Espesor de la muestra estabilizada con 2 % Cemento o 45 Kg/m3 (Cemento Portland)


La muestra estabilizada con cemento al 2% no cumple con la solicitud del Documento Técnico de soluciones básicas del MTC ya que se nos solicita una resistencia a la compresión mínima de 18 kg/cm²; por lo descrito no realizaremos el cálculo de espesores de dicha muestra estabilizada.

b) Espesor de la muestra estabilizada con 3 % Cemento o 67.5 Kg/m3 (Cemento Portland)

Para obtener los espesores tuvimos las siguientes consideraciones:

- La muestra estabilizada con cemento al 3% presenta una resistencia a la compresión de 24 kg/cm² de acuerdo a los ensayos realizados.
- La resistencia a la compresión de 24 kg/cm² equivale a 341.36 PSI.

 La guía AASHTO 1993 presenta el siguiente Abaco en donde se nos brinda los coeficientes estructurales para base estabilizadas con cemento de acuerdo a las resistencias obtenidas:

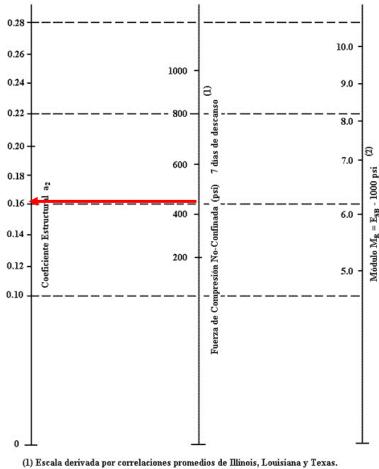
- (1) Escala derivada por correlaciones promedios de Illinois, Louisiana y Texas.
- (2) Escala derivada en el proyecto NCHRP (3).

Figura 5. Variación de a2 para 3% de cemento.

Fuente: Guía AASHTO 1993.

- De acuerdo a la figura anterior para una Resistencia a la Compresión de 341.36 PSI le equivale un coeficiente estructural de base de 0.144/pulg.
- el coeficiente estructural de la base de 0.144/pulg equivale a 0.057/cm,
 dicho valor será utilizado para hallar el espesor de la base estabilizada.
- Con los datos descritos en los párrafos anteriores realizaremos el cálculo del pavimento flexible (se adjunta los cálculos en el Anexo 07), mostramos el siguiente cuadro de resultados:

Tabla 45Resultados para espesores mediante el estabilizado al 3% con Cemento.


	LI-116		
Parámetros de diseño	(Km 0+000 – Km 13+114)		
Numero Estructural SN	2.29		
Coef. de capa superior (1/cm)	0.130		
Espesor de capa superior(cm)	2.5		
Coef. de base (1/cm)	0.057		
Coef. de drenaje de la base (adimensional)	1.0		
Espesor de base (cm)	18 ≈ 20		
Coef. de sub - base (1/cm)	0.047		
Coef. de drenaje de la base (adimensional)	1.0		
Espesor de sub -base (cm)	20		

Fuente: Trabajos en gabinete.

c) Espesor de la muestra estabilizada con 4 % Cemento o 90 Kg/m3 (Cemento Portland)

Para obtener los espesores tuvimos las siguientes consideraciones:

- La muestra estabilizada con cemento al 4% presenta una resistencia a la compresión de 32 kg/cm² de acuerdo a los ensayos realizados.
- La resistencia a la compresión de 32 kg/cm² equivale a 455.15 PSI.
- La guía AASHTO 1993 presenta el siguiente Abaco en donde se nos brinda los coeficientes estructurales para base estabilizadas con cemento de acuerdo a las resistencias obtenidas:

(2) Escala derivada en el proyecto NCHRP (3).

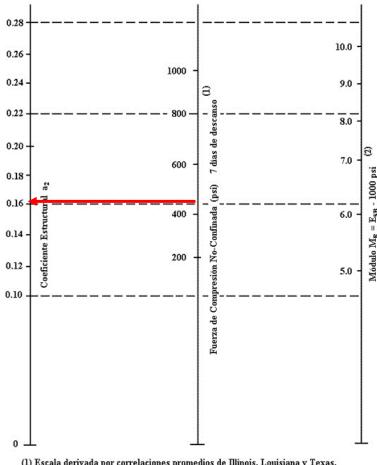
Figura 6. Variación de a2 para 4% de cemento.

Fuente: Guia AASHTO 1993.

- De acuerdo a la figura anterior para una Resistencia a la Compresión de 455.15 PSI le corresponde un coeficiente estructural de base de 0.162/pulg.
- el coeficiente estructural de la base de 0.162/pulg equivale a 0.064/cm, dicho valor será utilizado para hallar el espesor de la base estabilizada.
- Con los datos descritos en los párrafos anteriores realizaremos el cálculo del pavimento flexible (se adjunta los cálculos en el Anexo 07), mostramos el siguiente cuadro de resultados:

Tabla 46Resultados para espesores mediante el estabilizado al 4% con Cemento.

	LI-116			
Parámetros de diseño	(Km 0+000 – Km 13+114)			
Numero Estructural SN	2.29			
Coef. de capa superior (1/cm)	0.130			
Espesor de capa superior(cm)	2.5			
Coef. de base (1/cm)	0.064			
Coef. de drenaje de la base (adimensional)	1.0			
Espesor de base (cm)	16 ≈ 20			
Coef. de sub - base (1/cm)	0.047			
Coef. de drenaje de la base (adimensional)	1.0			
Espesor de sub -base (cm)	20			


Fuente: Trabajos en gabinete.

4.3.2.3 Cálculo del espesor del pavimento añadiendo aditivo PROES 100 y Cemento

a. Espesor de la muestra estabilizada con 0.26 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

Para obtener los espesores tuvimos las siguientes consideraciones:

- La muestra estabilizada con 0.26 Lts/m3 de PROES 100 + 45 Kg/m3 de Cemento presenta un CBR al 0.1" del 100% de MDS de 101.3%, por lo cual estamos al límite de los solicitados para estabilizados con productos químicos (100% de CBR).
- La muestra estabilizada con 0.26 Lts/m3 de PROES 100 + 45 Kg/m3 de Cemento presenta una resistencia a la compresión de 32 kg/cm² de acuerdo a los ensayos realizados.
- La resistencia a la compresión de 32 kg/cm² equivale a 455.15 PSI.
- La guía AASHTO 1993 presenta el siguiente Abaco en donde se nos brinda los coeficientes estructurales para base estabilizadas con cemento de acuerdo a las resistencias obtenidas:

(1) Escala derivada por correlaciones promedios de Illinois, Louisiana y Texas.

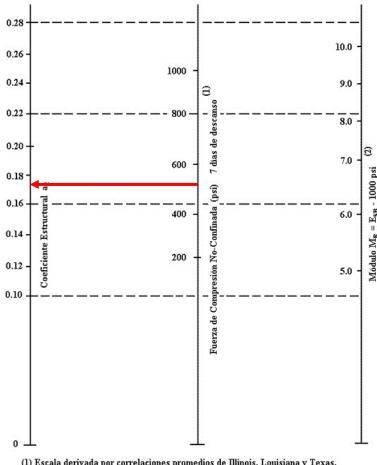
(2) Escala derivada en el proyecto NCHRP (3).

Figura 7. Variación de a2 para 0.26 Lts/m3 de PROES 100 + 45 Kg/m3 de Cemento.

Fuente: Guia AASHTO 1993.

- De acuerdo a la figura anterior para una Resistencia a la Compresión de 455.15 PSI le corresponde un coeficiente estructural de base de 0.162/pulg.
- el coeficiente estructural de la base de 0.162/pulg equivale a 0.064/cm, dicho valor será utilizado para hallar el espesor de la base estabilizada.
- Con los datos descritos en los párrafos anteriores realizaremos el cálculo del pavimento flexible (se adjunta los cálculos en el Anexo 07), mostramos el siguiente cuadro de resultados:

Tabla 47Resultados para espesores mediante el estabilizado de 0.26 lts/m3 PROES 100 + 45 Kg/m3 de Cemento


	LI-116		
Parámetros de diseño	(Km 0+000 – Km 13+114)		
Numero Estructural SN	2.29		
Coef. de capa superior (1/cm)	0.130		
Espesor de capa superior (cm)	2.5		
Coef. de base (1/cm)	0.064		
Coef. de drenaje de la base (adimensional)	1.0		
Espesor de la base (cm)	16 ≈ 20		
Coef. de sub - base (1/cm)	0.047		
Coef. de drenaje de la base (adimensional)	1.0		
Espesor de sub -base (cm)	20		

Fuente: Trabajos en gabinete.

Espesor de la muestra estabilizada con 0.28 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

Para obtener los espesores tuvimos las siguientes consideraciones:

- La muestra estabilizada con 0.28 Lts/m3 de PROES 100 + 45 Kg/m3 de Cemento presenta un CBR al 0.1" del 100% de MDS de 106.0%, por lo superamos el límite de lo solicitado para estabilizados con productos químicos (100% de CBR).
- La muestra estabilizada con 0.28 Lts/m3 de PROES 100 + 45 Kg/m3 de Cemento presenta una resistencia a la compresión de 37 kg/cm² de acuerdo a los ensayos realizados.
- La resistencia a la compresión de 37 kg/cm² equivale a 526.26 PSI.
- La guía AASHTO 1993 presenta el siguiente Abaco en donde se nos brinda los coeficientes estructurales para base estabilizadas con cemento de acuerdo a las resistencias obtenidas:

(1) Escala derivada por correlaciones promedios de Illinois, Louisiana y Texas.

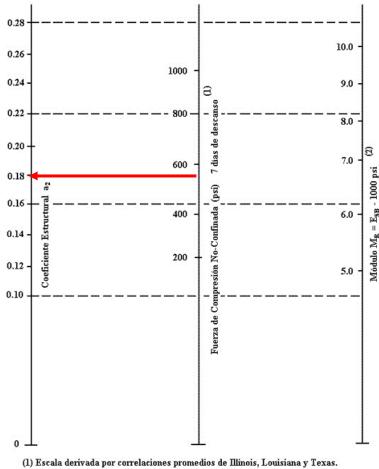
(2) Escala derivada en el proyecto NCHRP (3).

Figura 8. Variación de a2 para 0.28 Lts/m3 de PROES 100 + 45 Kg/m3 de Cemento.

Fuente: Guía AASHTO 1993.

- De acuerdo a la figura anterior para una Resistencia a la Compresión de 526.26 PSI le corresponde un coeficiente estructural de base de 0.175/pulg.
- el coeficiente estructural de la base de 0.175/pulg equivale a 0.069/cm, dicho valor será utilizado para hallar el espesor de la base estabilizada.
- Con los datos descritos en los párrafos anteriores realizaremos el cálculo del pavimento flexible (se adjunta los cálculos en el Anexo 07), mostramos el siguiente cuadro de resultados:

Tabla 48Resultados para espesores mediante el estabilizado de 0.26 lts/m3 PROES 100 + 45 Kg/m3 de Cemento


	LI-116		
Parámetros de diseño	(Km 0+000 – Km 13+114)		
Numero Estructural SN	2.29		
Coef. de capa superior (1/cm)	0.130		
Espesor de capa superior(cm)	2.5		
Coef. de base (1/cm)	0.069		
Coef. de drenaje de la base (adimensional)	1.0		
Espesor de la base (cm)	15		
Coef. de sub - base (1/cm)	0.047		
Coef. de drenaje de la base (adimensional)	1.0		
Espesor de sub -base (cm)	20		

Fuente: Trabajos en gabinete.

c. Espesor de la muestra estabilizada con 0.30 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

Para obtener los espesores tuvimos las siguientes consideraciones:

- La muestra estabilizada con 0.30 Lts/m3 de PROES 100 + 45 Kg/m3 de Cemento presenta un CBR al 0.1" del 100% de MDS de 117.1%, por lo superamos el límite de lo solicitado para estabilizados con productos químicos (100% de CBR).
- La muestra estabilizada con 0.28 Lts/m3 de PROES 100 + 45 Kg/m3 de Cemento presenta una resistencia a la compresión de 39 kg/cm² de acuerdo a los ensayos realizados.
- La resistencia a la compresión de 39 kg/cm² equivale a 554.71 PSI.
- La guía AASHTO 1993 presenta el siguiente Abaco en donde se nos brinda los coeficientes estructurales para base estabilizadas con cemento de acuerdo a las resistencias obtenidas:

(2) Escala derivada en el proyecto NCHRP (3).

Figura 9. Variación de a2 para 0.30 Lts/m3 de PROES 100 + 45 Kg/m3 de Cemento.

Fuente: Guía AASHTO 1993.

- De acuerdo a la figura anterior para una Resistencia a la Compresión de 554.71 PSI le corresponde un coeficiente estructural de base de 0.180/pulg.
- el coeficiente estructural de la base de 0.180/pulg equivale a 0.071/cm,
 dicho valor será utilizado para hallar el espesor de la base estabilizada.
- Con los datos descritos en los párrafos anteriores realizaremos el cálculo del pavimento flexible (se adjunta los cálculos en el Anexo 07), mostramos el siguiente cuadro de resultados:

Tabla 49Resultados para espesores mediante el estabilizado de 0.26 lts/m3 PROES 100 + 45 Kg/m3 de Cemento

	LI-116		
Parámetros de diseño	(Km 0+000 – Km 13+114)		
Numero Estructural SN	2.29		
Coef. de capa superior (1/cm)	0.130		
Espesor de capa superior(cm)	2.5		
Coef. de base (1/cm)	0.071		
Coef. de drenaje de la base (adimensional)	1.0		
Espesor de la base (cm)	15		
Coef. de sub - base (1/cm)	0.047		
Coef. de drenaje de la base (adimensional)	1.0		
Espesor de sub -base (cm)	20		

Fuente: Trabajos en gabinete.

Los resultados para los espesores resultantes son resumidos en la siguiente tabla:

Tabla 50Cuadro resumen de espesores para todas las bases estabilizadas.

E	STABILIZANTE	ZANTE		CEMENTO		ADI	TIVO PROES	§ 100	ADITIVO	PROES 100 + C	EMENTO
	DOSIFICACION	SIN ESTABILIZANTE	2% de la muestra	3% de la muestra	4% de la muestra	0.26 lts/m3 (PROES 100)	0.28 lts/m3 (PROES 100)	0.30 lts/m3 (PROES 100)	0.26 lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)	0.28 lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)	0.30 lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)
(cm)	Capa Superior (micropavimento)	2.5	No cumple con la resistencia a	2.5	2.5	None	000		2.5	2.5	2.5
ESPESORES (cm)	Base	20	la compresión mínima de 18 kg/cm² solicita para	18	16	una penetra	con el CBR ación de 0.1" r 100 % de	el cual debe	16	15	15
ш	Sub base	20	Soluciones Básicas.	20	20				20	20	20

Fuente: Trabajos en gabinete.

Del cuadro anterior se observa que la estabilización con 0.28 lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland) presenta un espesor para base de 15 cm y subbase de 20 cm, con lo cual es el más óptimo para realizar los trabajos en campo y en la parte económica.

4.4 Volumen para el Mejoramiento de la ruta LI-116

El volumen requerido para realizar el mejoramiento de la ruta LI-116 está reflejado en la siguiente tabla:

Tabla 51Volumen solicitado para el mejoramiento de la ruta LI-116.

RUTA		CION DEL AMO	PROG	RESIVA	LONG (KM)	ANCHO PROYECTADO	ESPESOR DE PAVIMENTO	VOLUMEN SOLICITADO	
	DE	Α	INICIO	FIN	, ,	(*) (m)	(**) (m)	(m3)	
LI- 116	Emp. PE- 3N (Culicanda)	Emp. LI- 115 (Dv. Culicanda).	00+000	13+114	13.114	3.8	0.375	18687.45	

^{*}Ancho obtenido del Estudio de Topografía.

Fuente: Trabajos en campo y gabinete.

La cantera SALOME es la más próxima a la ruta LI-116, el Estudio de Topografía realizo el levantamiento topográfico de dicha cantera (VER ANEXO 04 PLANOS), por lo descrito se muestra la siguiente tabla en donde describe los volúmenes existentes en la cantera Salome:

Tabla 52Volumen solicitado para el mejoramiento de la ruta LI-116.

	С		
DESCRIPCIÓN	SÍMBOLO	%	VOLUMEN (m³)
Potencia Bruta	Pb		126695.68
Desbroce	D	10.00% Pb	12669.568
Potencia Neta	Pn=Pb-D		114026.112
Volumen (Boloneria) >12"	V0	10.00% Pn	
Volumen Utilizable	Vu=Pn-V0		114026.112
Merma	M	5.00% Vu	5701.3056
Volumen Desechable	Vd=D+V0+M		18370.8736
Volumen Útil	Vu=Pb-Vd		108324.8064
Área de explotación (m2)		5554.44	

Fuente: Trabajos del Estudio de Topografía.

^{**}Espesor de acuerdo al estabilizado con 0.28 lts/m3 de PROES 100 + 45 Kg/m3 CEMENTO.

En el cuadro anterior se observa que el volumen útil es de 108324.8 m3 de la cantera SALOME, con lo cual se satisface el volumen requerido para el mejoramiento de toda la ruta LI-116.

V. DISCUSIÓN

De acuerdo a nuestros resultados se logró demostrar que el estabilizado con aceite sulfonado y cemento mejora significativamente las propiedades ingenieriles de la estructura de pavimento, se presenta la comparación con los resultados referenciales enmarcados en el marco teórico.

Onyejekwe, S., & Ghataora, G. S. (2014) publicaron el artículo "Estabilización del suelo utilizando estabilizadores químicos líquidos patentados: aceite sulfonado y un polímero", en el artículo en mención se evaluo la estabilización con aceite sulfonado y con polímero sobre un suelo del tipo lutolita Mercia (MM), Arcilla Oxford (OC) y finos de cantera de piedra caliza (LQF), dando como resultado lo siguiente:

Tabla 53Resultados del ensayo a la compresión máxima no confinada.

Muestras + Aceite Sulfonado + Polímero	Compresión máxima no confinado
lutita Mercia [MM]	Mejoro en 38%
arcilla Oxford [OC]	Mejoro en 26%
finos de cantera de piedra caliza (LQF)	Mejoro en 50%

Fuente: Articulo de Onyejekwe, S., & Ghataora, G. S.

En nuestro caso la cantera Salome presenta como material predominante GRAVA LIMOSA con presencia de fragmentos de roca de tipo subangular de hasta 5" (GM), por lo descrito nuestro material a estabilizar tendría un equivalente aproximado a los finos de cantera de piedra caliza (Grava arenosa) evaluada en el artículo de Onyejekwe, S., & Ghataora, G. S.

Se muestra los resultados referentes a los esfuerzos de resistencia a la compresión aplicados a nuestras muestras y a los del artículo de Onyejekwe, S., & Ghataora, G. S.

Tabla 54Resultados del ensayo a la compresión máxima no confinada.

ESTABILIZANTE	ADITIVO PROES 100 + CEMENTO			A	CEITE SUL	FONADO	+ POLIMEF	RO
TIPO DE SUELO	Grava limosa (cantera)			Fino de	cantera de	piedra cal	iza - Grava	arenosa
DOSIFICACION	0.26 lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)	0.28 lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)	0.30 lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)	1 vez la DDF	2 veces la DDF	3 veces la DDF	4 veces la DDF	5 veces la DDF
RESISTENCIA A LA COMPRESION	32 kg/cm²	37 kg/cm²	39 kg/cm²	3.56 kg/cm²	3.12 kg/cm²	23.45 kg/cm²	25.50 kg/cm²	24.47 kg/cm²

DDF: Dosis del fabricante.

Fuente: Ensayos de laboratorio y articulo de Onyejekwe, S., & Ghataora, G. S.

Del cuadro anterior se puede concluir:

- La resistencia a la compresión del aditivo PROES 100 + CEMENTO genera un incremento hasta cierto punto, se emplea 0.28 lts/m3 (PROES 100) + 45 Kg/m3 Cemento para una resistencia de 37 kg/cm² luego de ahí los incrementos no son tan significativos.
- La resistencia a la compresión del ACEITE SULFONADO + POLIMERO genera un incremento hasta cierto punto, se emplea 4 veces la dosis del fabricante para una resistencia de 25.5 kg/cm² luego de ahí la resistencia se ve disminuida.
- Por lo descrito, los estabilizadores empleados tienen un punto alto de resistencia a cierta dosificación, lo que conlleva a evaluar otros estabilizadores en futuras investigaciones.

Gómez, A. J., & Silva, E. E. (2020) en su tesis de grado titulada "Influencia del aceite sulfonado y cemento Portland Tipo I en la estabilización de la vía Huaylillas – Buldibuyo en la provincia de Pataz, 2020" obtiene los siguientes resultados:

Tabla 55Resultados de los ensayos realizados en la vía Huaylillas-Buldibuyo.

Calicata	С		C2		C3	
Progresiva	Km 6			Km 7+500		3+500
Profundidad de muestra (m)	0.30	1.50	0.30	1.50	0.30	1.50
SUCS AASHTO	SC	SC	SC	SM 4 (3)	SM	SC
IP	A-2-4 (0) 10.07	A-4 (2) 7.46	A-2-4 (0) 8.99	A-4 (3) 9.93	A-2-4 (0) 10.49	A-2-6 (0) 15.05
Contenido de humedad %	9.8	8.8	7.7	7.2	14.2	7.8
Contenido óptimo de humedad %	9.10	9.34	7.73	11.41	10.65	10.01
Densidad máxima seca						
(gr/cm3)	1.975	1.957	2.056	1.916	1.881	1.952
CBR Natural al 100 %	21.8	8.2	19.6	7.5	20.2	9.4
CBR Natural al 95 %	18.6	7.4	9.6	5.8	18.2	6.9
ESTABILIZACION CON AD	ITIVO ACEIT	E SULFON	ADO 0.30 lt/m	13, Y 0.50 %	CEMENTO	
Contenido óptimo de humedad %	8.63	7.69	6.00	10.31	9.52	8.98
Densidad máxima seca (gr/cm3)	2.008	1.978	2.063	1.921	1.903	1.961
CBR Natural al 100 %	28.1	21.5	24.6	16.4	28.0	16.7
CBR Natural al 95 %	20.9	15.2	19.6	12.1	21.9	13.3
Ensayo de compresión no confinada – No saturada (km/cm2)	17.09		14.17		14.44	
ESTABILIZACION CON A	DITIVO ACE	ITE SULFO	NADO 0.30 lt/	m3, Y 2 % (CEMENTO	
Contenido óptimo de humedad %	5.88	7.87	5.27	10.42	9.67	9.26
Densidad máxima seca (gr/cm3)	2.029	1.982	2.074	1.943	1.929	2.007
CBR Natural al 100 %	35.4	34.2	44.7	31.8	52.5	38.9
CBR Natural al 95 %	24.3	29.8	37.8	24.9	45.6	30.1
Ensayo de compresión no confinada – No saturada (km/cm2)	19.37		17.03		17.4	
ESTABILIZACION CON AD	DITIVO ACEI	TE SULFON	IADO 0.30 lt/r	n3, Y 3.5 %	CEMENTO	
Contenido óptimo de humedad %	5.42	6.07	5.48	9.35	8.35	8.15
Densidad máxima seca (gr/cm3)	2.036	1.996	2.080	1.976	1.952	2.013
CBR Natural al 100 %	72.2	55.7	69.1	55.8	64.9	57.7
CBR Natural al 95 %	57.5	49.4	62.6	47.6	53.1	45.2
Ensayo de compresión no confinada – No saturada (km/cm2)	22.03		24.1		20.38	
ESTABILIZACION CON A	DITIVO ACE	ITE SULFO	NADO 0.30 lt/	m3, Y 5 % C	CEMENTO	
Contenido óptimo de humedad %	6.33	4.76	4.34	7.79	7.02	7.38
Densidad máxima seca (gr/cm3)	2.047	2.000	2.099	2.002	1.985	2.019
CBR Natural al 100 %	100.2	76.4	91.2	86.7	94.4	94.5
CBR Natural al 95 %	85.9	65.2	81.7	74.0	83.8	78.1
Ensayo de compresión no confinada – No saturada (km/cm2)	25.11		30.38		24.63	
Fuento: Toois de Cémez A	1 0 Cil	F F				

Fuente: Tesis de Gómez, A. J., & Silva, E. E.

En nuestro caso se obtuvo los siguientes resultados:

Tabla 56Resultados de los ensayos realizados en la via LI-116.

Lugar	Cantera Salome		
Progresiva	Km 0+000		
Profundidad de muestra (m)	3		
SUCS	GM		
AASHTO	A-1-b (0)		
IP	6		
Contenido de humedad %	5.5		
Óptimo de humedad %	9		
Densidad máxima seca (gr/cm3)	2.13		
CBR Natural al 100 %	57.96		
CBR Natural al 95 %	45.9		
ESTABILIZACION CON ADITIVO ACEITE SULFO	ONADO 0.26 lt/m3, Y 2 % CEMENTO		
Óptimo de humedad %	8.8		
Densidad máxima seca (gr/cm3)	2.131		
CBR Natural al 100 %	101.3		
CBR Natural al 95 %	85.8		
Ensayo de compresión no confinada (km/cm2)	32		
ESTABILIZACION CON ADITIVO ACEITE SULFO	NADO 0.28 lt/m3, Y 2 % CEMENTO		
Óptimo de humedad %	8.8		
Densidad máxima seca (gr/cm3)	2.131		
CBR Natural al 100 %	106		
CBR Natural al 95 %	89.3		
Ensayo de compresión no confinada (km/cm2)	37		
ESTABILIZACION CON ADITIVO ACEITE SULFO	NADO 0.30 lt/m3, Y 2 % CEMENTO		
Óptimo de humedad %	8.8		
Densidad máxima seca (gr/cm3)	2.131		
CBR Natural al 100 %	117.1		
CBR Natural al 95 %	99.2		
Ensayo de compresión no confinada (km/cm2)	39		

Fuente: Trabajos en campo y laboratorio.

De los cuadros anteriores se puede resaltar lo siguiente:

- Los tipos de suelos a estabilizar para ambos casos son arena arcillosa y grava limosa, respectivamente.
- En la tesis de Gómez, A. J., & Silva, E. E. hicieron diferentes estabilizaciones en donde la dosificación del aceite sulfonado no sufrió

- alguna variación (0.30 lt/m3), en tanto se emplearon las siguientes dosificaciones de cemento: 0.5%, 2%, 3.5% y 5%.
- En nuestro caso hemos mantenido la dosificación del cemento en 2% y variado la adición de aceite sulfonato PROES 100 en: 0.26 lt/m3, 0.28 lt/m3 y 0.30 lt/m3.
- De nuestros resultados de CBR al 100%, CBR al 95% y Resistencia a la compresión se muestran los resultados cercanos para ambos casos:

Tabla 57Cuadro comparativo de CBR y Resistencia a la compresión.

DOSIFICACION	CBR AL 100 %	CBR AL 95 %	RESISTENCIA A LA COMPRESION (km/cm2)
ESTABILIZACION CON ADITIVO ACEITE SULFONADO 0.30 lt/m3, Y 5 % CEMENTO	100.2	85.9	30.38
ESTABILIZACION CON ADITIVO ACEITE SULFONAD-PROES 100 0.26 lt/m3, Y 2 % CEMENTO	101.3	85.8	32

Fuente: Ensayos de Laboratorio y tesis de Gómez, A. J., & Silva, E. E.

- La diferencia de CBRs del cuadro anterior es producto del material base empleado para la estabilización.
- Del cuadro anterior se puede concluir que para el estabilizado de una arena arcillosa se emplea más aceite sulfonado y cemento que para el estabilizado de una grava limosa, esto se ve reflejado en que obtuvimos un CBR AL 100 % de 101.3 mientras que la tesis de Gómez, A. J., & Silva, E. E un CBR de 100.2%
- Igualmente, que el CBR, en nuestro caso obtuvimos una resistencia a la compresión mayor (32 km/cm2) que, en el ensayo de Gómez, A. J., & Silva, E. E. que obtuvo una resistencia de 30.38 km/cm2.

Manrique Reynaga, J. F. (2021) en su tesis titulada "Aplicación de aceite sulfonado para mejorar la subrasante en la Avenida "La Cultura" distrito de Pacucha, Andahuaylas, Apurímac – 2020", en donde evaluó de qué manera influye la estabilización química mediante el uso del aceite sulfonado en la Avenida "La Cultura" distrito de Pacucha, Andahuaylas, Apurímac, el cual dio los siguientes resultados:

Tabla 58Cuadro comparativo de CBR y Resistencia a la compresión.

Calicata	C1	C2	C3			
Progresiva	Km 0+250	Km 0+500	Km 0+750			
SUCS	GC-GM	SC	SP-SC			
AASHTO	A-1-b (0)	A-2-6 (0)	A-2-6 (0)			
IP %	5.50	13.10	10.60			
Contenido óptimo de humedad – O.C.H %	12.90	9.10	7.62			
Densidad máxima seca – M.D.S (tn/cm3)	1.960	2.65	2.154			
CBR Natural al 100 %	42.3	62	78			
CBR Natural al 95 %	22.5	46	45			
ESTABILIZACION CON ACEITE SULFONADO 0.3 lt/m3 + 1 % DE PESO MDS DE CEMENTO TIPO I						
CBR Natural al 100 %	129.0	72.5	83.8			
CBR Natural al 95 %	97.0	96.0	76.1			
ESTABILIZACION CON ACEITE SULFONADO 0.3 lt/m3 + 1.5 % DE PESO MDS DE CEMENTO TIPO I						
CBR Natural al 100 %	240.0	121.0	146.0			
CBR Natural al 95 %	150.0	102.0	129.0			
ESTABILIZACION CON ACEITE SULFONADO 0.3 lt/m3 + 2 % DE PESO MDS DE CEMENTO TIPO I						
CBR Natural al 100 %	280.0	224.0	256.0			
CBR Natural al 95 %	205.0	164.0	190.5			

Fuente: Tesis de Manrique Reynaga, J. F.

En nuestro caso se obtuvo los siguientes resultados:

Tabla 59Resultados de los ensayos realizados en la via LI-116.

Lugar	Cantera Salome		
Progresiva	Km 0+000		
Profundidad de muestra (m)	3		
sucs	GM		
AASHTO	A-1-b (0)		
IP	6		
Contenido de humedad %	5.5		
Óptimo de humedad %	9		
Densidad máxima seca (gr/cm3)	2.13		
CBR Natural al 100 %	57.96		
CBR Natural al 95 %	45.9		
ESTABILIZACION CON ADITIVO ACEITE SULFO	NADO 0.26 lt/m3, Y 2 % CEMENTO		
Óptimo de humedad %	8.8		
Densidad máxima seca (gr/cm3)	2.131		
CBR Natural al 100 %	101.3		
CBR Natural al 95 %	85.8		
Ensayo de compresión no confinada (km/cm2)	32		
ESTABILIZACION CON ADITIVO ACEITE SULFO	NADO 0.28 lt/m3, Y 2 % CEMENTO		
Óptimo de humedad %	8.8		
Densidad máxima seca (gr/cm3)	2.131		
CBR Natural al 100 %	106		
CBR Natural al 95 %	89.3		
Ensayo de compresión no confinada (km/cm2)	37		
ESTABILIZACION CON ADITIVO ACEITE SULFO	NADO 0.30 lt/m3, Y 2 % CEMENTO		
Óptimo de humedad %	8.8		
Densidad máxima seca (gr/cm3)	2.131		
CBR Natural al 100 %	117.1		
CBR Natural al 95 %	99.2		
Ensayo de compresión no confinada (km/cm2)	39		
nte: Trabajos en campo y laboratorio			

Fuente: Trabajos en campo y laboratorio.

Se muestra los resultados de la comparación a los resultados obtenidos en ambos trabajos:

En las 03 calicatas realizadas en la tesis de Manrique Reynaga, J. F. se tienen como material de calicata grava limo-arcillosa con arena (GC-GM), arena arcillosa con grava (SC) y arena mal graduada con arcilla y grava (SP-SC); en nuestra cantera Salome predomina como material grava limosa (GM); nuestro material de la cantera Salome se asemeja con el material de la calicata 01 de la Avenida "La Cultura".

- En la tesis de Manrique Reynaga, J. F. hicieron diferentes estabilizaciones en donde la dosificación del aceite sulfonado no sufrió alguna variación (0.30 lt/m3), en tanto se emplearon las siguientes dosificaciones de cemento: 1%, 1.5% y 2%.
- En nuestro caso hemos mantenido la dosificación del cemento en 2% y variado la adición de aceite sulfonato PROES 100 en: 0.26 lt/m3, 0.28 lt/m3 y 0.30 lt/m3.
- De nuestros resultados de CBR al 100% y CBR al 95% se muestran los resultados cercanos para ambos casos:

Tabla 60Cuadro comparativo de CBRs

DOSIFICACION	CBR AL 100 %	CBR AL 95 %
ESTABILIZACION CON ADITIVO ACEITE SULFONADO 0.30 lt/m3, Y 2 % CEMENTO	129.0	97.0
ESTABILIZACION CON ADITIVO ACEITE SULFONAD-PROES 100 0.30 lt/m3, Y 2 % CEMENTO	117.1	99.2

Fuente: Ensayos de Laboratorio y tesis de Manrique Reynaga, J. F.

- Uno de los motivos de la diferencia de CBRs obtenidos es producto del material base empleado para la estabilización.
- Del cuadro anterior se puede concluir que una grava limo-arcillosa con arena (GC-GM) presenta mejores resultados de estabilización con respecto al CBR al 100% que una grava limosa (GM) empleando una dosificación de ACEITE SULFONADO 0.30 lt/m3, Y 2 % CEMENTO (129% de CBR a 117% de CBR).

VI. CONCLUSIONES

Trafico:

De acuerdo al estudio de tráfico de la ruta LI-116 se ha determinado la sectorización en 1 tramo homogéneo que empieza en el Emp. PE-3N (Culicanda) y termina en el Emp. LI-115 (Dv. Culicanda).

El conteo vehicular ha arrojado que el 76.8% son vehículos pesados y el 23.02% son vehículos pesados, el total semanal salió 890 vehículos, el IMDS promedio salió 127, al aplicar el factor corrección que son 1.12 de vehículos livianos y 1.09 de vehículos pesados. Al ser mayor a 1 el factor corrección el IMD promedio semanal salió 142. Las tasas de crecimiento se calcularon de acuerdo al PBI PER CAPITA, la tasa de crecimiento para vehículo liviano es 1.24%, para ómnibus 2.44% y para vehículo pesado 3.71%. El cálculo del tráfico total se hizo sumando el tráfico normal y generado, dando como resultado un IMDA de 224 vehículos proyectados al 2031. Factor Carril Fc=1 y Factor direccional Fd=1.

El IMDA y los EAL fueron calculados para un periodo de 10 años, dándonos como resultados finales IMDA al 2021 de 142 vehículos, al 2031 con 224 vehículos y el ESAL al 2024 fue 4.94E+04 y para el 2031 sale 7.84E+05.

Suelos:

Se hicieron estudios a la plataforma y cantera,

En la cantera se hizo estudio de 1 calicata y 2 trincheras, se determinó que el área de explotación es 5554.44 m2, una potencia bruta de 126,695.68 m3, potencia neta de 114,026.112 m3 y volumen útil de 108,324.80 m3. De las muestras ensayadas en laboratorio se determinó que la máxima densidad seca es 2.131 gr/cm³ y el contenido de humerdad optimo es el de 8.8 %; el CBR calculado que tiene la cantera está entre 40-50 al 95%, el tipo de suelo predominante según la clasificación SUCS es Grava limosa (GM).

El ancho proyectado para la vía es de 3.80 m, la vía tiene una superficie de rodadura de capa granular y una longitud 13+114 km.

De la extracción de muestras en la plataforma, se determinó que el tipo de suelo predominante son de tendencia limo-arcillosa identificada en el sistema SUCS como GC-GM con 67%, le sigue las gravas finas arcillosa bien graduada con un

17% y finalmente una grava arcillosa con un 16%; se obtuvieron 11 muestras de las cuales se pudo determinar que el CBR de la sub rasante con el cual se diseñara el pavimento es 18.

Para el diseño de pavimento, primero se tiene que evaluar los estabilizados planteados, para la presente investigación se planteó la pregunta ¿Cuáles son las variaciones del diseño de pavimento considerando el aceite sulfonado y cemento como estabilizadores en la ruta li-116, Yamobamba, la libertad, 2021?.

Al respecto se hizo el ensayo de CNC con distintas dosificaciones, cemento, aceite sulfonado y cemento y aceite sulfonado. Para cemento del 2% de la muestra no cumple con la resistencia de la compresión por que la mínima es de 18 kg/cm² y resultado fue 17 kg/cm²; para el 3% de la muestra la resistencia salió 24 kg/cm² con el cual el diseño de la base salió 18 cm y la sub base 20 cm; para el 4% de la muestra la resistencia salió 32 kg/cm² y los espesores de pavimentos salieron 16 cm para la base y 20 cm para la sub base.

Se hicieron dosificaciones de solo aditivo PROES 100 para 0.26, 0.28 y 0.30 lts/m3 demostrándose que para ninguna dosificación no se cumple con el CBR mínimo indicado en la norma el cual debe llegar al 100% como mínimo.

Para las dosificaciones de aditivo PROES 100 + CEMENTO se realizó la de 0.26 lts/m2 + 45 kg/m3 donde la resistencia salió 32 kg/cm² y el espesor de la base 16 cm y la sub base de 20 cm; para 0.28 lts/m2 + 45 kg/m3 la resistencia salió 37 kg/cm² y el espesor de la base 15cm y de la sub base 20 cm; para 0.30 lts/m2 + 45 kg/m3 donde la resistencia salió 39 kg/cm² y el espesor de la base 15 cm y la sub base de 20 cm.

Se ha determinado como mejor como mejor alternativa la dosificación con aditivo PROES 100 + cemento con 0.28 lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland), con esta dosificación se diseñó el pavimento dando como resultado el coeficiente estructural de la base en 0.069, la propuesta de solución óptima es la de una sub base granular con CBR al 40%, compactada al 100% de la MDS e= 20 cm, una base estabilizada con aceite sulfonado + cemento (lts/m2 + 45 kg/m3) e= 15 cm y como recubrimiento un micro pavimento (e= 25 mm).

Se ha utilizado el ensayo de la resistencia a la compresión no confinada para el análisis del coeficiente estructural de la base estabilizada dando como resultado un coeficiente estructural que hace que se modifique el espesor de la base.

Se determino que hay cambios significativos en los espesores de diseño de pavimento al considerar el ensayo de la resistencia de la compresión y determinar el aporte en el coeficiente estructural de la base estabilizada, también se ha demostrado que las propiedades mecánicas y características del suelo mejoran los factores como la resistencia y la reducción de la plasticidad, con lo cual demostramos que el diseño es el óptimo técnicamente. Por tal, el objetivo general de la presente investigación se habría logrado.

VII. RECOMENDACIONES

Se recomienda que, para futuras investigaciones, se tome en cuenta desarrollar el estudio de tráfico a un nivel más alto, ya que este estudio es de primordial importancia, ya que con este estudio se determinara las características de diseño de la carretera, diseño del pavimento y la evaluación económica de la carretera.

Se recomienda que el ensayo a la resistencia a la compresión no confinada se añada al manual de suelos y pavimentos, ya que con este ensayo podremos determinar en qué medida varía el coeficiente estructural, y así no hacer caso solo a las recomendaciones del proveedor de los aditivos.

Se recomienda verificar la dosificación de la estabilización en el tipo de pavimento propuesto, dada la posible variabilidad de los materiales de cantera una vez extraída y zarandeada.

Se recomienda que los que diseñen futuros estabilizados con aceite sulfonado y cemento tomen en cuenta esta investigación, ya que se demostró la variación del coeficiente estructural y como afecte este en el diseño de pavimento.

Se recomienda la estabilización con aceite y cemento sea evaluada en otro tipo de suelos con diferentes características discutidas en este estudio.

Se recomienda considerar diferentes ensayos para determinar el coeficiente estructural con diferentes tipos de estabilizadores químicos.

Se recomienda Identificación de los suelos con mayor probabilidad de beneficiarse de la estabilización. No todos los suelos son aptos para el tratamiento.

Determinación de las dosis de aplicación para los tipos de suelo seleccionados. Las tasas recomendadas por los fabricantes a menudo no son las más efectivas. Se requieren ensayos para determinar las tasas de aplicación adecuadas.

Los suelos tratados deben perder humedad para ganar fuerza, por lo que los aditivos deben aplicarse en condiciones de clima seco. Esto hace que los estabilizadores sean más adecuados para su uso en regiones tropicales y subtropicales que tienen distintas estaciones húmedas y secas.

REFERENCIAS

GUIA AASHTO (1993) Guide for desing of pavement structures. Estados Unidos. American Association Of State Highway And Transportation Officials.

Ministerio de Transportes y Comunicaciones (2013). Manual de carreteras. Especificaciones técnicas generales para construcción EG-2013. Lima, Perú.

Ministerio de Transportes y Comunicaciones (2016). Manual de carreteras. Mantenimiento o conservación vial. Lima, Perú.

Ministerio de Transportes y Comunicaciones (2014). Manual de carreteras. Suelos, Geología, Geotecnia y Pavimentos, Sección Suelos y pavimentos. Lima, Perú.

Ministerio de Transportes y Comunicaciones (2016). *Manual de ensayos de Materiales. Lima, Perú.*

Reglamento Nacional de Vehículos (2003). Anexo IV. Pesos y medidas de Vehículos.

Ministerio de Transportes y Comunicaciones (2015). Documento Técnico de Soluciones Básicas en Carreteras no Pavimentadas.

PROESTECH. (2020). Especificaciones técnicas. Consultado el 5 de julio de 2021. http://www.proes.cl/

Bleakley, Jr. (2012). "Improving the properties of reclaimed asphalt pavement for roadway base applications through blending and chemical stabilization"

http://aulavirtual.urp.edu.pe/bdacademicas/dissertations-theses/improving-properties-reclaimed-asphalt-pavement/docview/1010625171/se-2?accountid=45097

Nemati, R. (2019). Evaluation of structural contribution of asphalt mixtures through improved performance parameters.

http://aulavirtual.urp.edu.pe/bdacademicas/dissertations-theses/evaluationstructural-contribution-asphalt/docview/2236400441/se-2?accountid=45097

Odion, D. (2019). Soil-geopolymer mixtures using fly ash and recycled concrete aggregates (RCA) forRoad base and subbase layers

http://aulavirtual.urp.edu.pe/bdacademicas/dissertations-theses/soil-geopolymer-mixtures-using-fly-ash-recycled/docview/2435567918/se-2?accountid=45097

Alvarez P, Brian D. (2021) Comparación de las alternativas de estabilización con cal, cemento, silicato de sodio y aceite sulfonado para vías terciarias con presencia de arcilla en la región de la Orinoquía.

https://orcid.org/0000-0002-1843-2501

Antunes, V., Simão, N., & Freire, A. C. (2017). A soil-cement formulation for road pavement base and sub base layers: A case study. Transportation Infrastructure Geotechnology.

http://dx.doi.org/10.1007/s40515-017-0043-9

Balaguera, A.; Alberti, J.; Carvajal,G.I;Fullana-i-Palmer,P (2017). Stabilising Rural Roads witch Waste Streams in Colombia as an Environmental Strategy Based on a Life Cycle Assessment Methodology.

https://doi.org/10.3390/su13052458

Onyejekwe, S., & Ghataora, G. S. (2015). Soil stabilization using proprietary liquid chemical stabilizers: Sulphonated oil and a polymer. Bulletin of Engineering Geology and the Environment.

http://dx.doi.org/10.1007/s10064-014-0667-8

Li, Q., & Hu, J. (2020). *Mechanical and durability properties of cement-stabilized recycled concrete aggregate.*

http://dx.doi.org/10.3390/su12187380

Al-Qadi, I., Ozer, H., Loizos, A., & Murrell, S. (Eds.). (2019). *Airfield and highway pavements 2019: Testing and characterization of pavement materials.*

https://www.proquest.com/legacydocview/EBC/5834595?accountid=45097

Rondón Quintana, H. A. (2016). Pavimentos: materiales, construcción y diseño. Ecoe Ediciones.

https://elibro.net/es/lc/bibliourp/titulos/70435

Angulo Roldan, D., & Rojas Escajadillo, H. F. (2016). Ensayo de fiabilidad con aditivo PROES para la estabilización del suelo en el AA.HH. El Milagro, 2016.

http://repositorio.ucp.edu.pe/handle/UCP/142

Salas Mercado, D. (2018). Estabilización de suelos con Adición de cemento y Aditivo Terrasil para el mejoramiento de la Base del Km 11+000 al Km 9+000 de la Carretera Puno - Tiquillaca - Mañazo.

http://repositorio.uancv.edu.pe/handle/UANCV/1378

Carranza, A. L., & Fernandez, D. C. (2019). Aplicación de los aditivos PROES y CONAID para mejorar la capacidad de soporte (CBR) de la subrasante en la vía de acceso al C.P. Barraza, Laredo, La Libertad-2018 (Tesis de licenciatura).

http://hdl.handle.net/11537/14968

Atarama, E. (2015). Evaluación de la transitabilidad para caminos de bajo tránsito estabilizados con aditivo PROES.

https://hdl.handle.net/11042/2262

Reategui Puscan, J. A. (2018). Influencia del aditivo Proes para mejorar la estabilización de la subrasante del tramo Lahuarpía – Emilio San Martin, Jepelacio, Moyobamba 2017.

https://hdl.handle.net/20.500.12692/19208

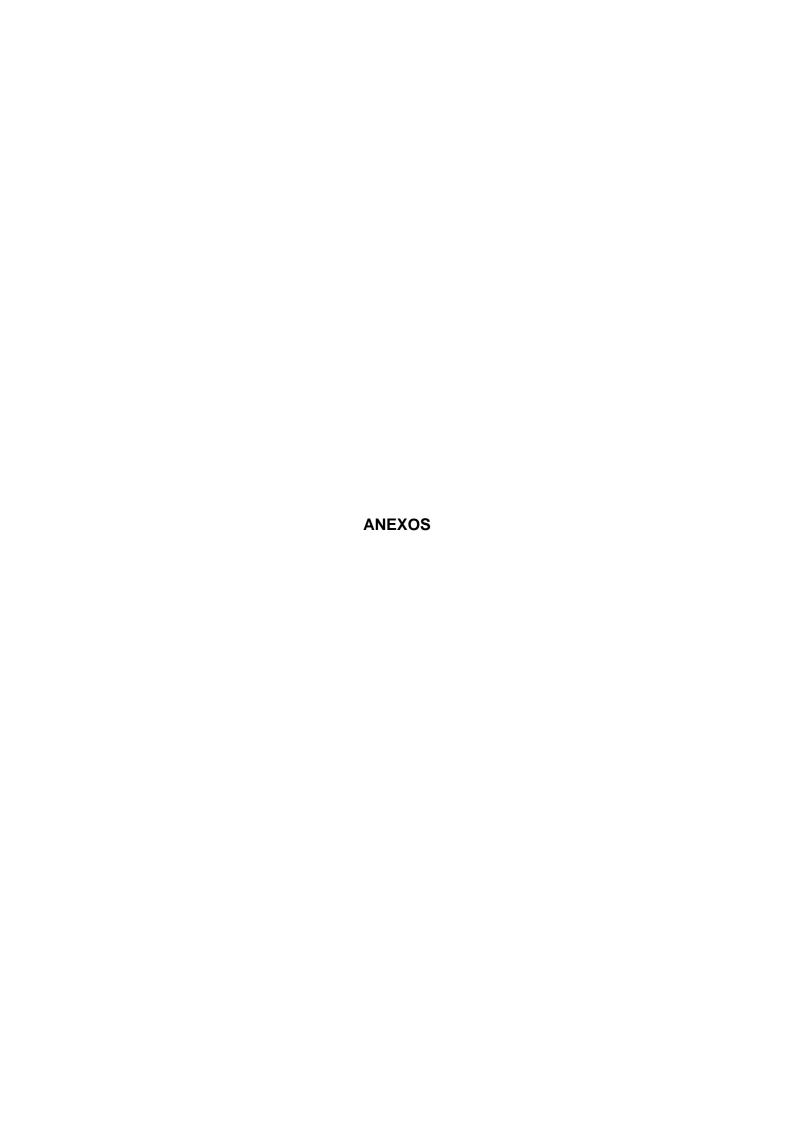
Arce Palacios, E. J. (2019). Aplicación de aditivos químicos para la estabilización de suelos en el sector de Yumpe – Huayllacayan – Ancash, 2019.

https://hdl.handle.net/20.500.12692/52576

Gómez, A. J., & Silva, E. E. (2020). *Influencia del aceite sulfonado y cemento Portland Tipo I en la estabilización de la vía Huaylillas – Buldibuyo en la provincia de Pataz*, 2020.

https://hdl.handle.net/11537/25225

Efus Uriarte, C. A. (2020). Estabilización química mediante el uso del aceite sulfonado y permazyme en la carretera no pavimentada Chacco – Muruncancha, Distrito de Quinua Provincia de Huamanga – Ayacucho – 2020".


https://hdl.handle.net/20.500.12692/57307

Manrique Reynaga, J. F. (2021). Aplicación de aceite sulfonado para mejorar la subrasante en la Avenida "La Cultura" distrito de Pacucha, Andahuaylas, Apurímac - 2020.

https://hdl.handle.net/20.500.12692/59612

Angulo Roldan, D., & Rojas Escajadillo, H. F. (2016). Ensayo de fiabilidad con aditivo PROES para la estabilización del suelo en el AA.HH. El Milagro, 2016.

http://repositorio.ucp.edu.pe/handle/UCP/142

Anexo 01.

Matriz de operacionalización de variables.

Variables independientes	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Medición
Aceite Sulfonado	Los aceites sulfonados son agentes catalizadores que producen intercambio de iones; químicamente son compuestos orgánicos derivados de sulfuros y ácidos combinados. (Gómez y Silva, 2020, p. 56).	Los aceites sulfonados reducen el contenido de agua entre las partículas del suelo, aumentando el número de vacíos que permiten el reacomodamiento de las partículas, bien sea por atracción entre ellas o bien por compactación. (Gómez y Silva, 2020, p. 56).	Aceite Sulfonado	Dosificación	%
Cemento	pulverización del Clinker	El cemento Portland es utilizado para variar y aumentar la calidad del suelo asi como para cambiar el suelo en una masa de cemento con una mayor resistencia y durabilidad. (Aliaga y Soriano, 2019, p. 34).	Cemento Portland	Dosificación	%

Fuente: Elaboración Propia.

Operacionalización de las variables dependientes definidas.

Variables dependientes	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Medición
Diseño de pavimento con solución Básica	La solución Básica es un tipo de diseño que se aplica en carreteras no pavimentadas la cual tiene por objetivo aumentar la vida útil y nivel de servicio de la superficie de rodadura, que sufren rápido deterioro por efecto del tránsito y el	será diseñado de acuerdo a la guía AASHTO "Diseño de estructuras de	Propiedades de los materiales	 Clasificación de suelos Granulometría Limites CBR 	MTC, 2014
	encalaminado, desprendimiento de agregados y la emisión de polvo,	diseño, evaluación, especificaciones técnicas	Propiedades de la solución básica	Especificaciones Técnicas Generales para Construcción de Carreteras	EG-2013
	grado de daño (Documento técnico de soluciones básicas; MTC; 2015).	Transportes.	Diseño	Numero EstructuralEspesores	AASTHO 1993

Fuente: Elaboración Propia.

Anexo 02.

Instrumento de recolección de datos.

TECNICAS E INSTRUMENTOS DE RECOLECCION DE DATOS

Se empleará la observación experimental, con el cual se obtendrá la cantidad de vehículos que utilizan la vía por día; para la definición de las características de los materiales se realizarán ensayos los cuales nos darán la data requerida y para el diseño de la solución básica se utilizara el método AASHTO 93.

Los instrumentos a emplearse serán AutoCAD - Civil 3D para realizar los planos, guía de observación de campo y Excel para la formulación de tablas, así como el uso de ábacos para el diseño de la solución básica.

Anexo 03.

Panel Fotográfico

PANEL FOTOGRAFICO DE TRABAJOS EN CAMPO

Se observa la excavacion y recojo de muestra de la calicata c-2 de 50kg con presencia de grava arcillosa .

Se observan 2 tipos de estratos, primera muestra a 0.30 cm de profundidad con presencia grava arcilla limosa color marrón claro, con presencia de fragmentos de roca tipo subangular de hasta 8". La segunda muestra a 1.70 cm de profundidad arena limosa color marrón oscuro con presencia de grava de tipo subangular de hasta 3".

Se observa la excavacion y recojo de muestra de la calicata c-2 de 50kg con presencia de grava arcillosa.

Se observan 3 tipos de estratos, primera muestra M-01 a 0.45 cm de profundidad presencia grava arcillosa color beige, con presencia de fragmentos de roca tipo subredondeado de hasta 5". La segunda muestra M.02 a 1.20 cm de profundidad con presencia limo arcilla inorgánica de baja plasticidad, color amarillo con grava de tipo subangular chata y alargada de hasta 3". La tercera muestra a 1.50 cm de profundidad con presencia de roca fracturada angulosa, color marrón.

Se observa la excavacion y recojo de muestra de la calicata c-4 de 50kg con presencia de grava arcillosa limosa.

Se observan 2 tipos de estratos, primera muestra M-01 a 0.40 cm de profundidad con presencia grava arcillosa limosa, color marrón claro, con presencia de fragmentos de roca tipo subangular de hasta 6". La segunda muestra M.02 a 1.60 cm de profundidad con presencia arena limosa, color gris con grava de tipo subangular de hasta 3".

Se observa la excavacion y recojo de muestra de la calicata c-4 de 50kg con presencia de grava arcillosa limosa.

Se observan 2 tipos de estratos, primera muestra M-01 a 0.40 cm de profundidad con presencia grava arcillosa limosa, color marrón claro, con presencia de fragmentos de roca tipo subangular chata de hasta 6". La segunda muestra M.02 a 1.50 cm de profundidad con presencia grava limosa, color marrón claro, con presencia de fragmentos de roca de tipo subangular, chata hasta 6".

Se observa en la cantera salome la excavacion y recojo de muestra de la trinchera t-01 donde se con presencia de grava limosa.

Se observa en la cantera salome el recojo de la muestra trinchera T-01 donde se ve presencia la presencia de grava, color marrón claro, con presencia de fragmentos de roca de tipo subangular de hasta 6".

Se observa en la cantera salome la excavacion y recojo de muestra de la trinchera t-02 donde se ve la presencia de grava arcillo limosa.

Se observa en la cantera salome el recojo de la muestra trinchera T-02 donde se ve presencia de grava arcillo, color marrón claro, con presencia de fragmentos de roca de tipo subangular de hasta 5".

Se observa en la cantera salome el recojo de la muestra de la calicata c-01 donde se ve la presencia de fragmentos de la roca topo subangular de hasta 6", suelo seco, con cimentación fuerte.

TRABAJOS REALIZADOS EN LABORATORIO

Se observa la entrega de las muestras de cantera T-0.1, T-02, C-01 al laboratorio JR GEO SONSULTORES E INGENIEROS.

Se observa la preparación del material T-0.1, T-02, C-01 en el laboratorio JR GEO SONSULTORES E INGENIEROS.

Se observa la preparación y el cuarteo de los materiales T-0.1, T-02, C-01 en el laboratorio JR GEO SONSULTORES E INGENIEROS.

Se observa la entrega se observa los trabajos con las mallas nro 8 a la malla nro 200 ,T-0.1, T-02, C-01 en el laboratorio JR GEO SONSULTORES E INGENIEROS.

Se observa el lavado de la muestra por la malla nro. 200 T-0.1, T-02, C-01 en el laboratorio JR GEO SONSULTORES E INGENIEROS.

Se observa los trabajos de golpes de pison por capas de T-0.1, T-02, C-01 en el laboratorio JR GEO SONSULTORES E INGENIEROs.

Se observa la entrega de las muestras de cantera T-0.1, T-02, C-01 en el laboratorio JR GEO SONSULTORES E INGENIEROS.

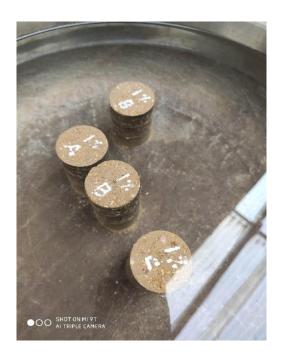
Se observa la entrega de las muestras de cantera T-0.1, T-02, C-01 al laboratorio JR GEO SONSULTORES E INGENIEROs.

Se observa el pesado del material para moldeo en el laboratorio JR GEO SONSULTORES E INGENIEROS.

Se observa la compactación del molde CNC en el laboratorio JR GEO SONSULTORES E INGENIEROS.

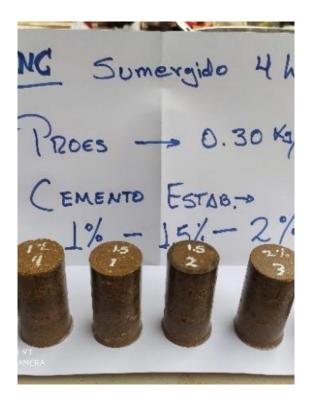
Se observa la extracción del testigo CNC en el laboratorio JR GEO SONSULTORES E INGENIEROS.

Se observa el testigo extraído CNC en el laboratorio JR GEO SONSULTORES E INGENIEROS.


Se observa los testigos CNC en curado por 7 y 28 días según norma, en el laboratorio JR GEO SONSULTORES E INGENIEROS.

Se observa los testigos sumergidos en agua por 4 horas en el laboratorio JR GEO SONSULTORES E INGENIEROS.

Se observa los testigos sumergidos en agua por 4 horas (cemento estabilizador y proes) en el laboratorio JR GEO SONSULTORES E INGENIEROS.


Se observa los testigos sumergidos en agua por 4 horas (cemento tipo I y proes) en el laboratorio JR GEO SONSULTORES E INGENIEROS.

Se observa los testigos sumergidos en agua por 4 horas (material natural) en el laboratorio JR GEO SONSULTORES E INGENIEROS.

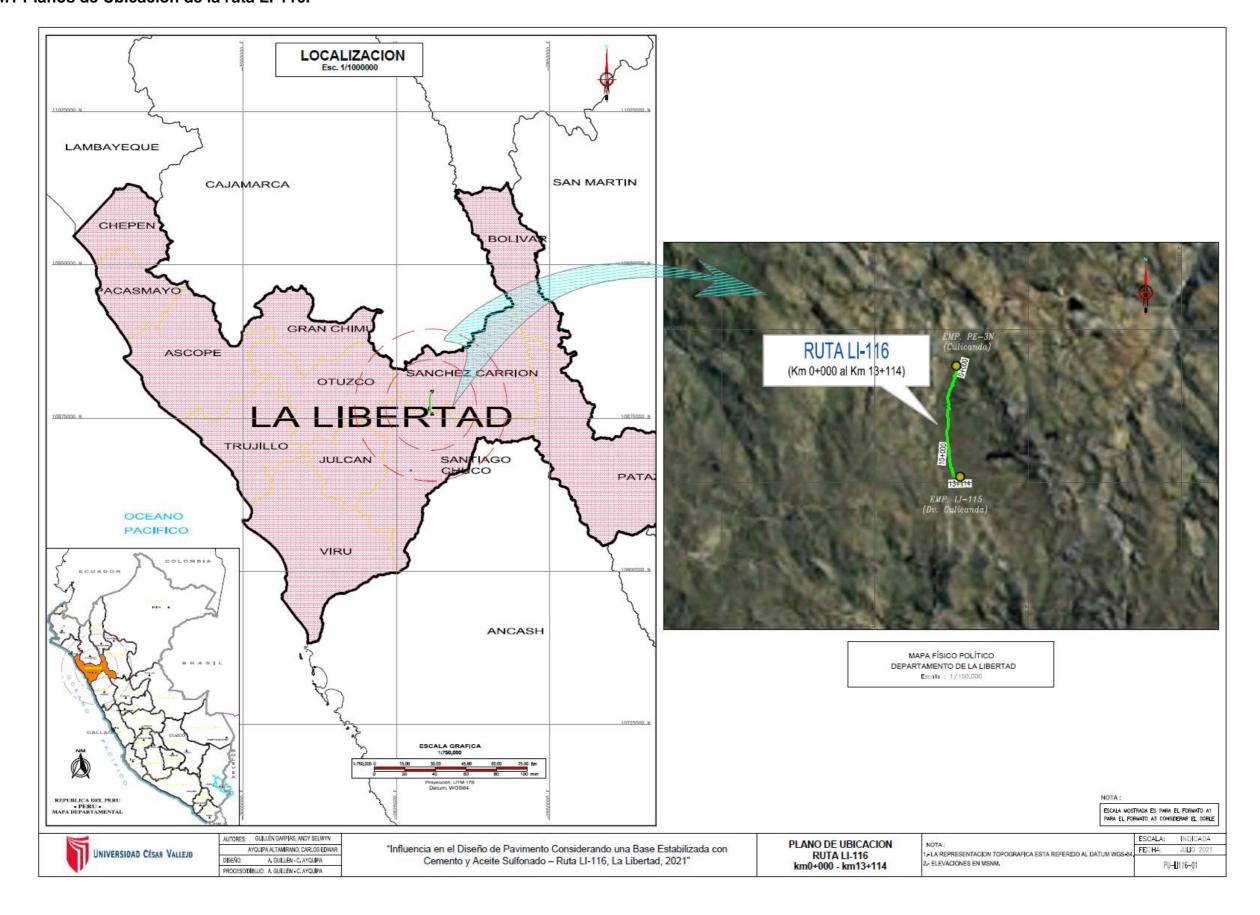
Se observa los testigos curados a 07 días (sin saturar con aditivo proes) en el laboratorio JR GEO SONSULTORES E INGENIEROS.

Se observa los testigos curados a 07 días (saturado con aditivo proes) en el laboratorio JR GEO SONSULTORES E INGENIEROS.

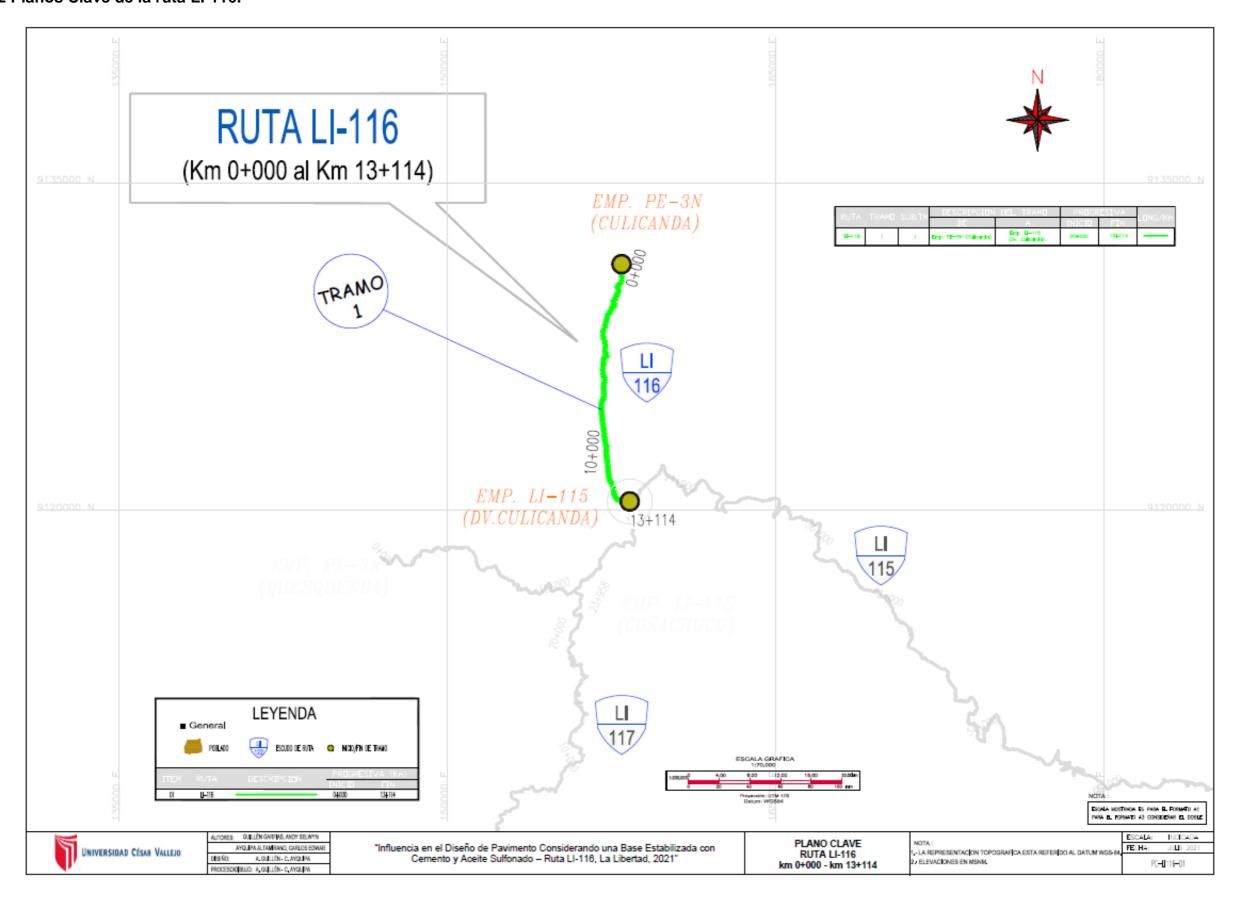
Se observa la rotura de los testigos en el laboratorio JR GEO SONSULTORES E INGENIEROS.

Se observa la compresión y falla de los testigos en el laboratorio JR GEO SONSULTORES E INGENIEROS.

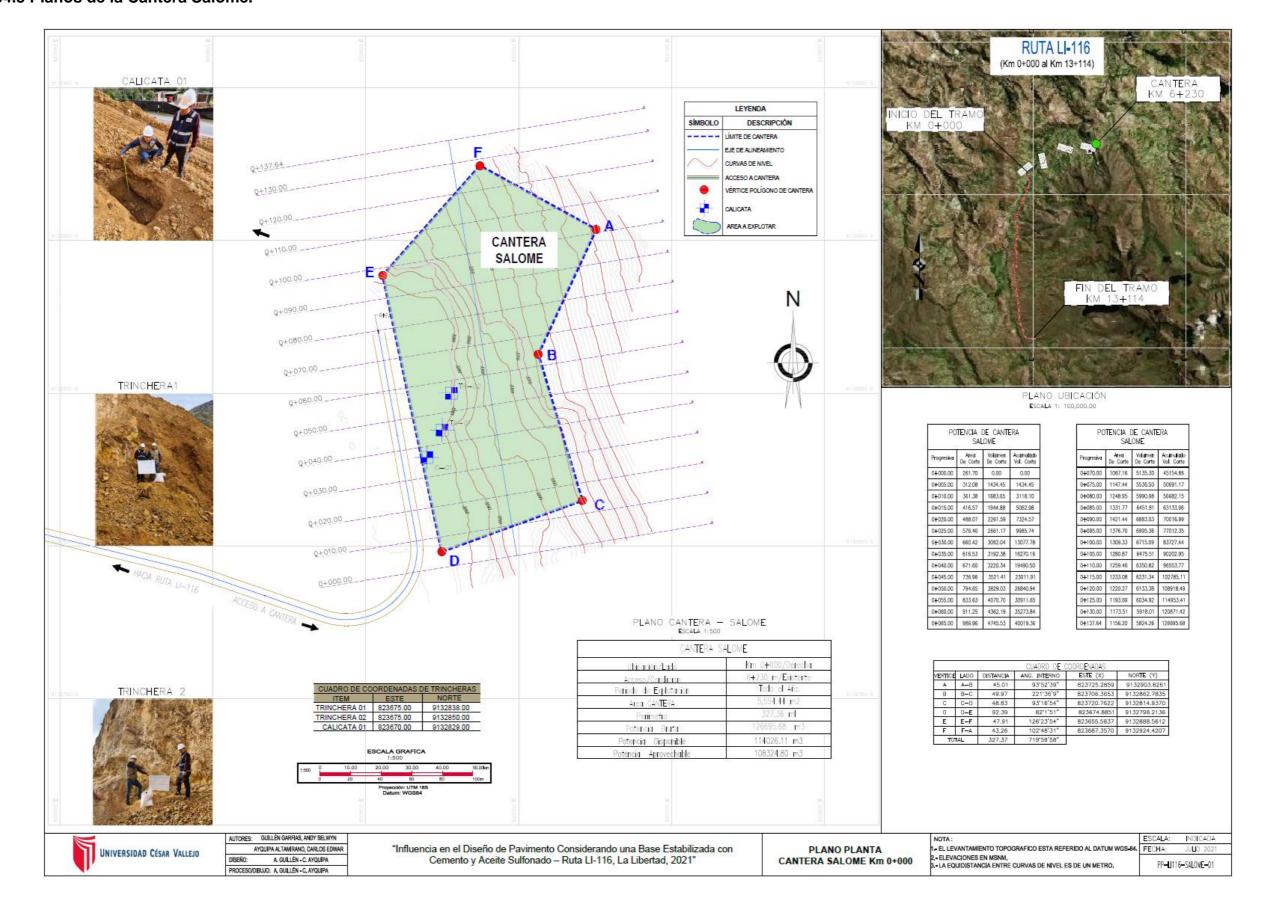
Se observa la compresión y falla de los testigos en el laboratorio JR GEO SONSULTORES E INGENIEROS.

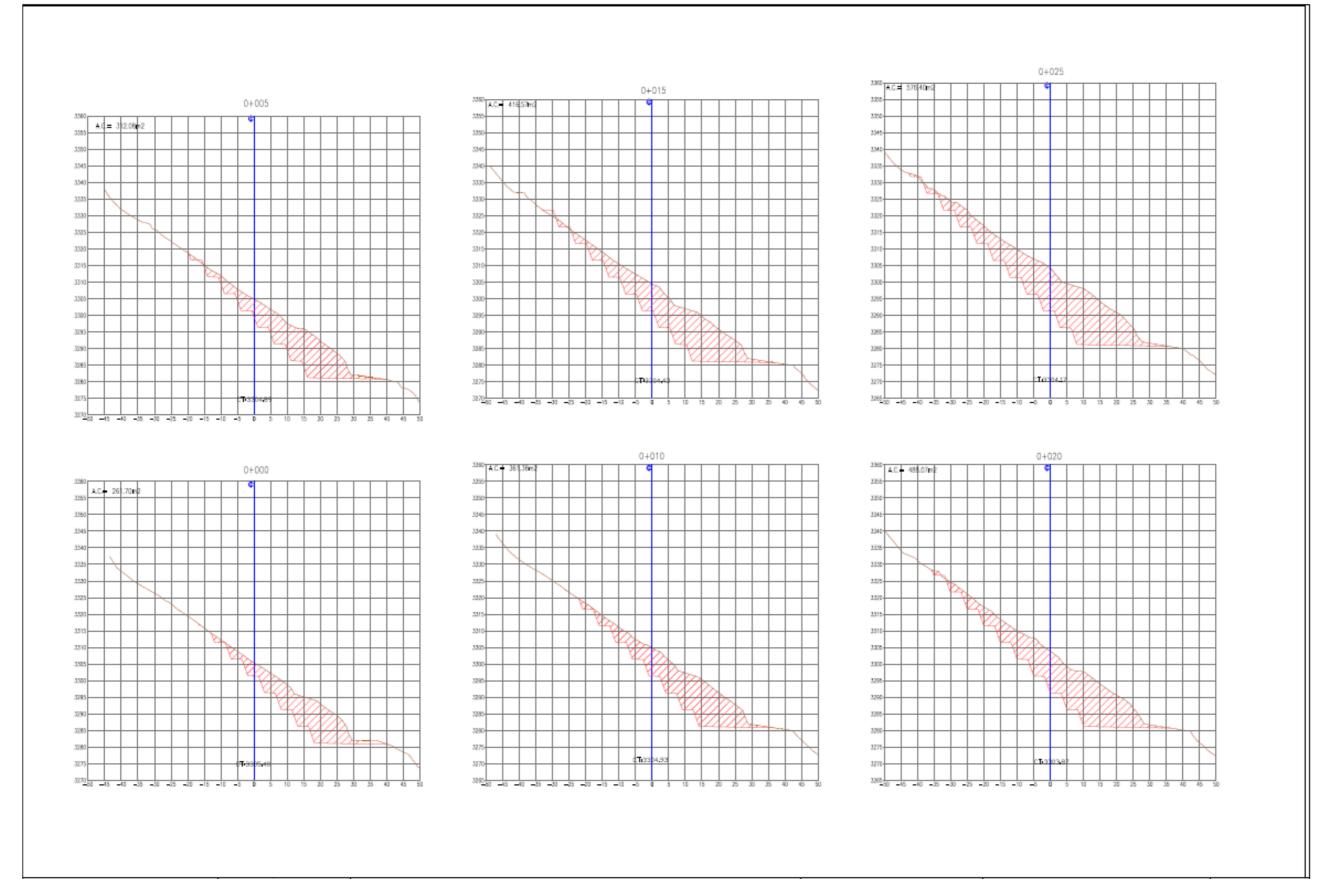


Se observa los testigos fallados testigos en curado a 28 días en el laboratorio JR GEO SONSULTORES E INGENIEROS.


Anexo 04.

Planos

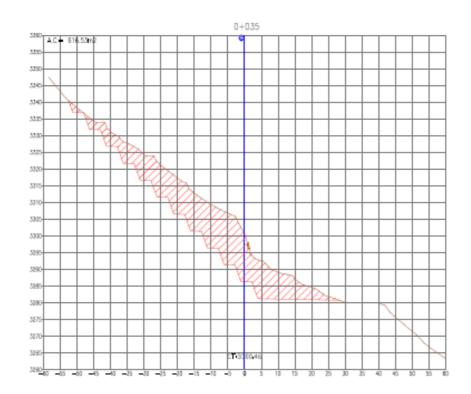

Anexo 04.1 Planos de Ubicación de la ruta LI-116.

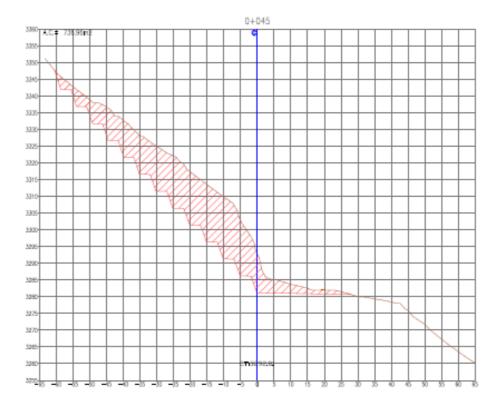


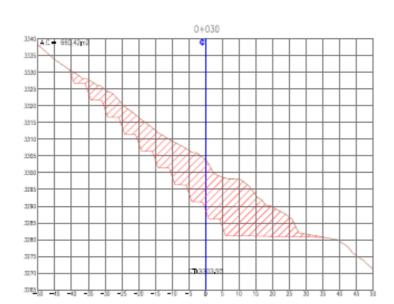
Anexo 04.2 Planos Clave de la ruta LI-116.

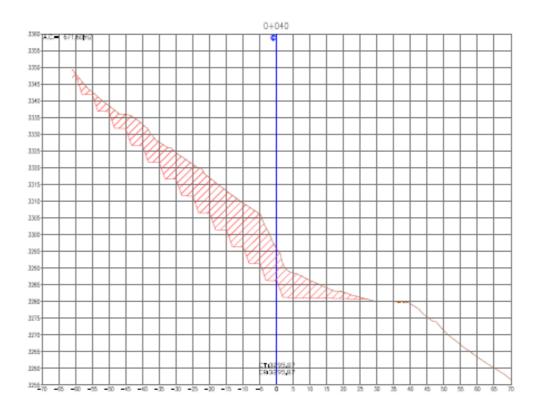
Anexo 04.3 Planos de la Cantera Salome.

AUTORES: GUILLÉN GARRIAS, ANDY SELWYN AYQUIFA ALTAMIRANO, CARLOS EDWAR DISEÑO: A GUILLÉN C AYOUPA PROCESO/DISULO: A SUILLÉN C AYOUPA


"Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado - Ruta LI-116, La Libertad, 2021


SECCIONES TRANSVERSALES 0+000 - 0+025


MOTA: ESCALA: NOICADA


1. EL LEVANTAMIENTO TOPOGRAFICO ESTA REFERIDO AL DATUM WOS.84. FECHL: JULIO 2021 2. ELEVACIONES EN MISNM. 3. LA EQUIDISTANCIA ENTRE CURVAS DE NIVEL ES DE UN METRO.

ST-U116-S4L0WE-01

NUTCRES: GUILLÉN GARRIAS, ANDY SELWYN AYQUEA ALTAMEANO, CARLOS EDWAR A GUILLEN C AYOUPA PROCESO/DIBLUC: A SUILLÉN C AYQUIPA

"Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado - Ruta LI-116, La Libertad, 2021

SECCIONES TRANSVERSALES 0+035 - 0+045

NATIA:

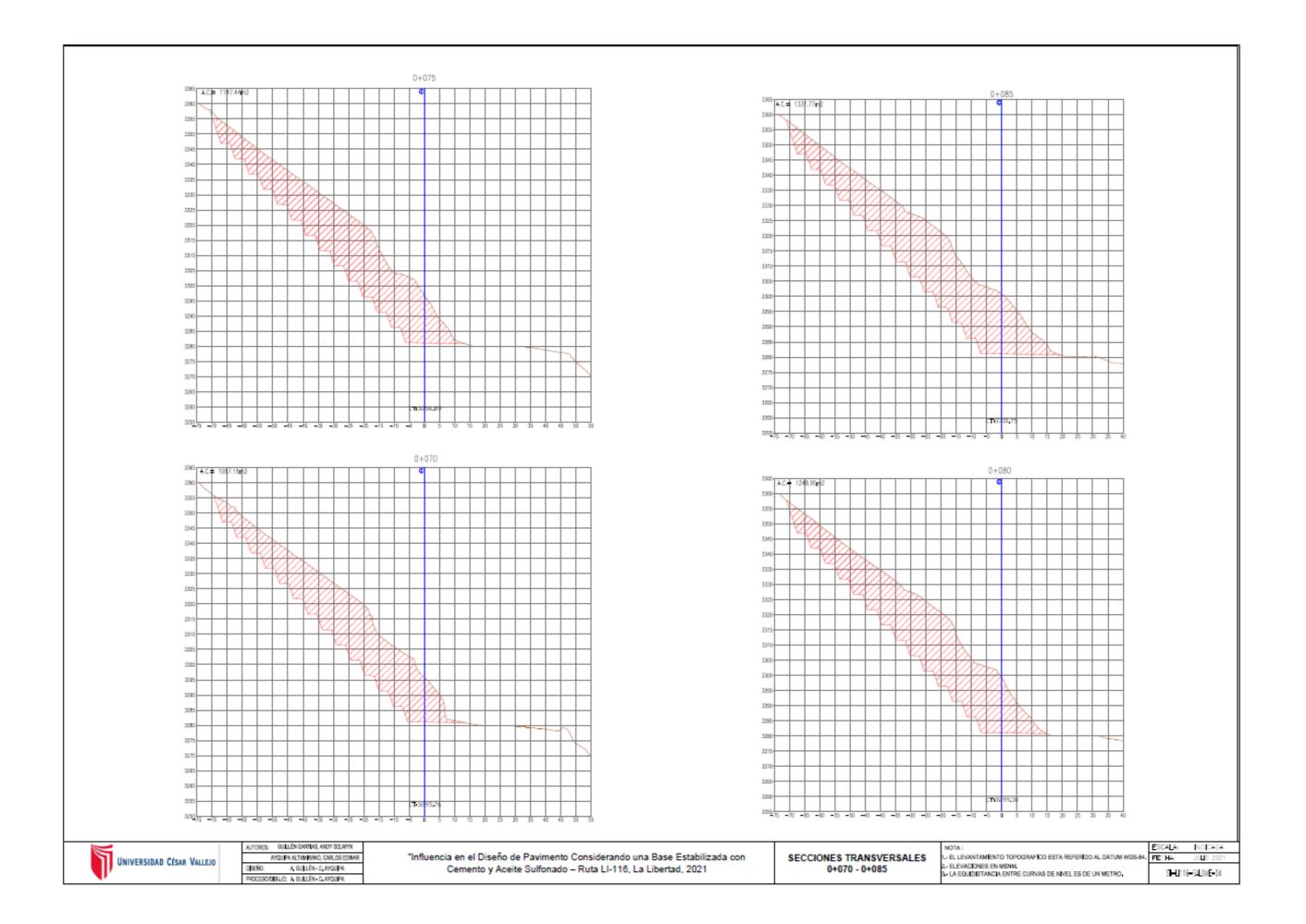
1. EL LEVANTAMIENTO TOPOGRAFICO ESTA REFERIDO AL DATUM WGS-84.

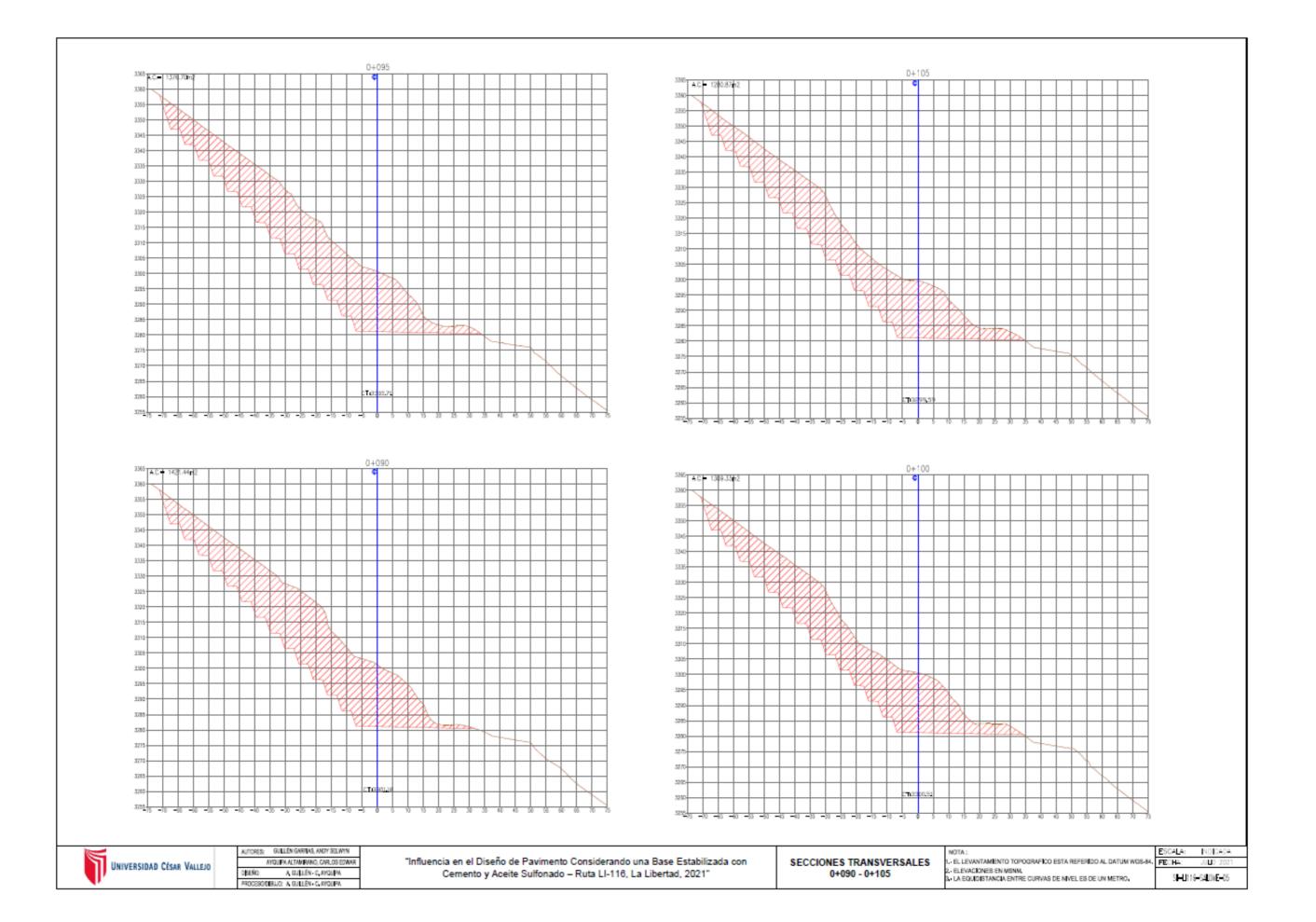
2. EL EVACIONES EN MSNM.

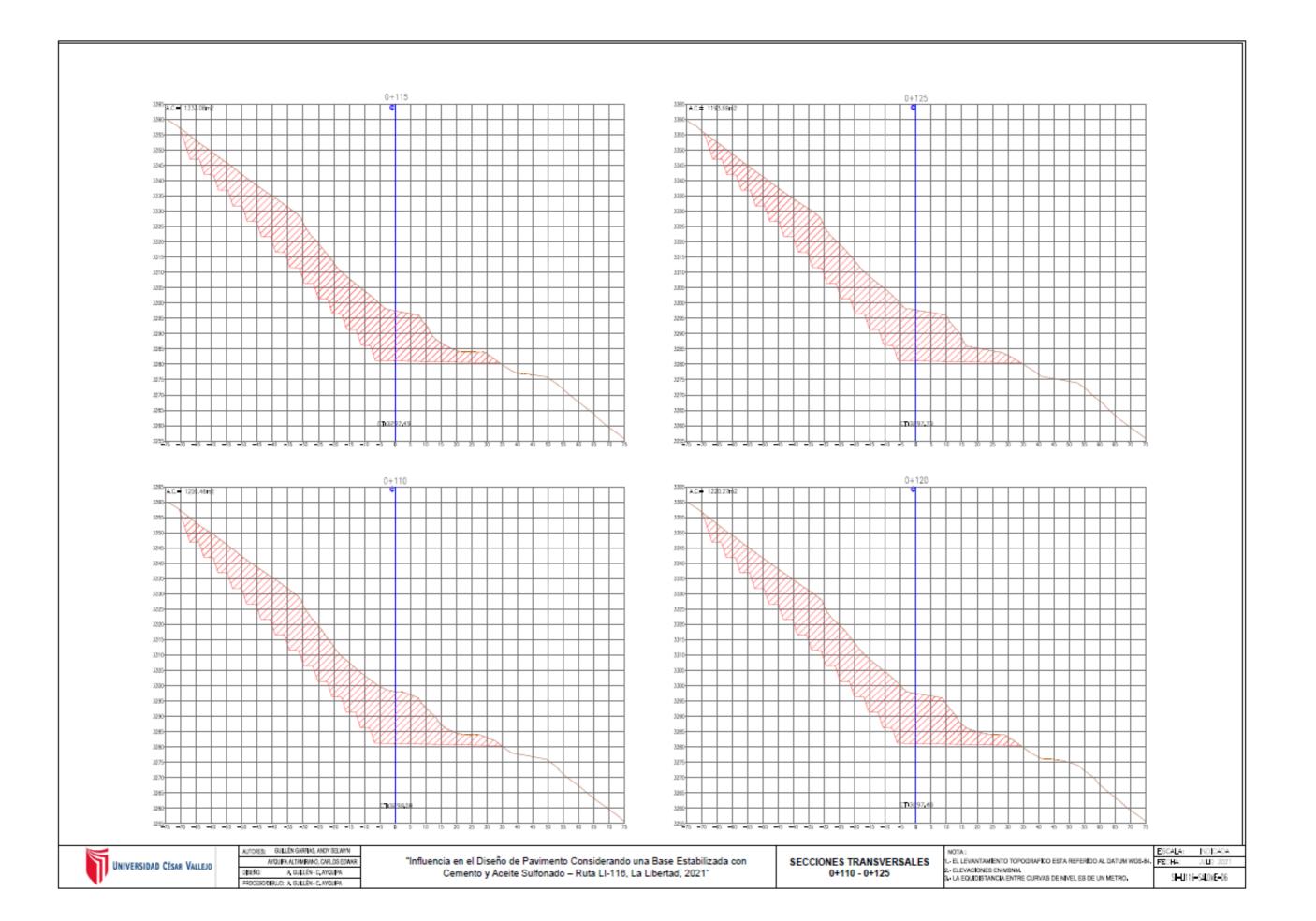
3. LA EQUIDISTANCIA ENTRE CURVAS DE NIVEL ES DE UN METRO.

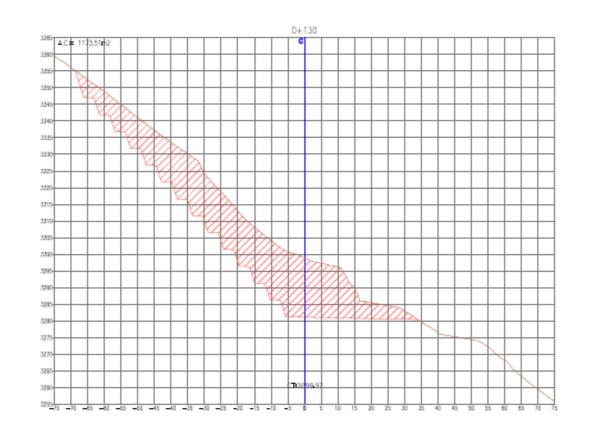
SHJ116-SJL016-07

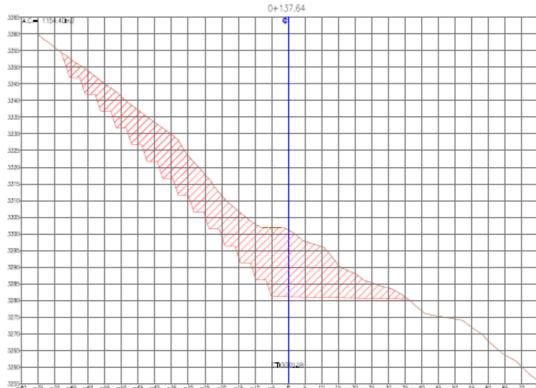
AUTORES: GUILLÉN GARRIAS, ANDY SELWYN AYQUIFA ALTAMIRANO, CARLOS EDWAR DISEÑO: A GUILLÉN-C AYQUIPA PROCESO/DIBLUC: A SULLÉN C. AYQUIPA


"Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado - Ruta LI-116, La Libertad, 2021


SECCIONES TRANSVERSALES 0+050 - 0+065


NOTA: ESCALA: NOICADA


EL LEVANTAMIENTO TOPOGRAFICO ESTA REFERIDO AL DATUM WOS-84. FECHA: JULY 2021 EL LEVACIONES EN MISNIM.
 LA EQUIDISTANCIA ENTRE CURVAS DE NIVEL ES DE UN METRO.


SI-U116-SALONE-03

AUTORES: GUILLÉN GARRIAS, ANDY SELWYN AYQUEN ALTAMENANO, CARLOS EDWAR DISEÑO A GUILLÉN C, AYGUPA
PROCESODIBLIO: A GUILLÉN C, AYGUPA

"Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado - Ruta LI-116, La Libertad, 2021"

SECCIONES TRANSVERSALES 0+130 - 0+137.64

NOTA:

1. EL LEVANTAMIENTO TOPOGRAFICO ESTA REFERIDO AL DATUM WGS-84.

2. EL EVACIONES EN MSNM.

3. LA EQUIDISTANCIA ENTRE CURVAS DE NIVEL ES DE UN METRO.

SHUTTE-SHUTE-OT

Anexo 05.

Estudio de Trafico.

Anexo 05.1. Cálculo de IMDA.

Valores a Precios Constantes de 2007 (Miles de soles)

Cuadro № 1 PERÚ: Producto Bruto Interno por Años, según Departamentos

Departamentos	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016P/	2017P/	2018E/	2019	2020E/
Amazonas	1,778,775	1,930,947	2,058,318	2,210,682	2,287,107	2,551,601	2,682,266	2,824,603	2,782,128	2,784,366	2,940,822	3,118,115	3,169,633	3,035,262
Áncash	15,672,771	16,854,588	16,400,826	16,013,215	16,155,687	17,666,947	18,478,843	16,028,265	17,584,621	18,365,696	19,317,454	20,722,034	19,985,182	18,742,618
Cajamarca	8,159,499	9,319,769	10,050,467	10,140,905	10,595,497	11,270,583	11,086,928	10,855,588	10,798,612	10,581,305	10,901,682	11,208,795	11,483,085	10,348,500
La Libertad	14,615,612	15,653,801	15,716,171	16,624,855	17,378,414	18,712,792	19,532,083	19,821,258	20,274,733	20,448,345	20,797,558	21,831,799	22,629,943	21,217,757
Lambayeque	6,880,023	7,512,522	7,910,362	8,449,884	8,937,792	9,782,672	10,138,533	10,354,938	10,809,529	11,080,412	11,371,483	11,835,620	12,114,059	11,328,570
Lima	136,238,703	148,415,981	148,910,138	164,623,842	178,742,876	189,597,321	200,400,691	208,022,491	214,469,326	220,241,329	224,691,974	234,432,451	240,557,069	210,887,962
Piura	12,651,720	13,580,502	13,998,851	15,106,528	16,366,999	17,066,135	17,746,782	18,750,443	18,866,671	18,924,869	18,473,111	19,776,544	20,529,216	18,589,356
San Martín	3,266,254	3,598,432	3,740,600	4,034,361	4,245,537	4,752,177	4,828,116	5,173,301	5,466,266	5,588,107	5,944,145	6,062,216	6,083,527	5,876,304
Valor Agregado Bruto	293,189,822	318,790,856	322,523,652	347,414,072	369,930,807	391,432,954	413,533,783	423,193,988	438,189,192	455,722,499	467,758,714	486,355,508	496,991,345	442,152,996
Impuestos a los Producto	23,672,020	26,618,399	27,397,396	31,092,161	32,442,212	35,162,701	38,194,925	39,716,922	40,458,121	42,246,926	42,666,329	44,420,343	46,141,106	40,538,443
Derechos de Importación	2.831.473	3,460,639	2.772.041	3,575,225	3.883.297	4.603.062	4,706,063	4.397.059	3.859.052	3.612.049	3.790.051	3.849.052	3,276,044	2,799,038

456,434,771 467,307,969

482,506,365

501,581,474

514,215,094

534,624,903

546,408,495

485,490,477

Fuente: Instituto Nacional de Estadística e Informática Con información disponible al 15 de marzo del 2021

Producto Bruto Interno

Departamentos		PBI	
Departamentos	2007	2019	TASA
Áncash	15,672,771	19,985,182	2.05%
Cajamarca	8,159,499	11,483,085	2.89%
Amazonas	1,778,775	3,169,633	4.93%
La Libertad	14,615,612	22,629,943	3.71%
Lambayeque	6,880,023	12,114,059	4.83%
Lima	136,238,703	240,557,069	4.85%
Piura	12,651,720	20,529,216	4.12%
San Martín	3,266,254	6,083,527	5.32%

319,693,315

348,869,894

352,693,089

382,081,458

406,256,316

431,198,717

CUADRO Nº 3.63 PERÚ: POBLACIÓN TOTAL AL 30 DE JUNIO DE CADA AÑO, SEGÚN DEPARTAMENTO, 1995-2025

Año	Perú	Amazonas	Áncash	Cajamarca	La Libertad	Lambayeque	Lima	Piura	San Martín
2007	28,481,901	406,087	1,097,098	1,476,708	1,682,213	1,174,519	8,730,820	1,725,502	746,844
2008	28,807,034	408,629	1,103,481	1,485,188	1,703,617	1,185,684	8,855,022	1,740,194	758,974
2009	29,132,013	411,043	1,109,849	1,493,159	1,725,075	1,196,655	8,981,440	1,754,791	771,021
2010	29,461,933	413,314	1,116,265	1,500,584	1,746,913	1,207,589	9,113,684	1,769,555	782,932
2011	29,797,694	415,466	1,122,792	1,507,486	1,769,181	1,218,492	9,252,401	1,784,551	794,730
2012	30,135,875	417,508	1,129,391	1,513,892	1,791,659	1,229,260	9,395,149	1,799,607	806,452
2013	30,475,144	419,404	1,135,962	1,519,764	1,814,276	1,239,882	9,540,996	1,814,622	818,061
2014	30,814,175	421,122	1,142,409	1,525,064	1,836,960	1,250,349	9,689,011	1,829,496	829,520
2015	31,151,643	422,629	1,148,634	1,529,755	1,859,640	1,260,650	9,838,251	1,844,129	840,790
2016	31,488,625	423,898	1,154,639	1,533,783	1,882,405	1,270,794	9,989,369	1,858,617	851,883
2017	31,826,018	424,952	1,160,490	1,537,172	1,905,301	1,280,788	10,143,003	1,873,024	862,822
2018	32,162,184	425,829	1,166,182	1,540,004	1,928,197	1,290,617	10,298,159	1,887,210	873,593
2019	32,495,510	426,566	1,171,714	1,542,362	1,950,956	1,300,270	10,453,874	1,901,032	884,179
2020	32,824,358	427,202	1,177,080	1,544,325	1,973,446	1,309,731	10,609,166	1,914,346	894,564
2021	33,149,016	427,701	1,182,255	1,545,803	1,995,707	1,318,979	10,764,428	1,927,201	904,738
2022	33,470,569	428,036	1,187,242	1,546,741	2,017,827	1,328,021	10,920,309	1,939,694	914,710
2023	33,788,589	428,264	1,192,080	1,547,280	2,039,747	1,336,892	11,076,223	1,951,751	924,495
2024	34,102,668	428,437	1,196,808	1,547,552	2,061,403	1,345,628	11,231,595	1,963,298	934,114
2025	34,412,393	428,603	1,201,465	1,547,694	2,082,737	1,354,261	11,385,860	1,974,262	943,582

Donartamentes		POBLACION	
Departamentos	2007	2019	TASA
Áncash	1,097,098	1,171,714	0.55%
Cajamarca	1,476,708	1,542,362	0.36%
Amazonas	406,087	426,566	0.41%
La Libertad	1,682,213	1,950,956	1.24%
Lambayeque	1,174,519	1,300,270	0.85%
Lima	8,730,820	10,453,874	1.51%
Piura	1,725,502	1,901,032	0.81%
San Martín	746,844	884,179	1.42%

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

Dennytamentes			
Departamentos	2007	2019	TASA
Áncash	15,672,771	19,985,182	2.05%
Cajamarca	8,159,499	11,483,085	2.89%
Amazonas	1,778,775	3,169,633	4.93%

PBI - POR DEPARTAMENTOS

Departamentos		PBI	
Departamentos	2007	2019	TASA
Áncash	15,672,771	19,985,182	2.05%
Cajamarca	8,159,499	11,483,085	2.89%
Amazonas	1,778,775	3,169,633	4.93%
La Libertad	14,615,612	22,629,943	3.71%
Lambayeque	6,880,023	12,114,059	4.83%
Lima	136,238,703	240,557,069	4.85%
Piura	12,651,720	20,529,216	4.12%
San Martín	3,266,254	6,083,527	5.32%

	POBLACI	ON	
Danastaniantan		POBLACION	
Departamentos	2007	2019	TASA
Áncash	1,097,098	1,171,714	0.55%
Cajamarca	1,476,708	1,542,362	0.36%
Amazonas	406,087	426,566	0.41%
La Libertad	1,682,213	1,950,956	1.24%
Lambayeque	1,174,519	1,300,270	0.85%
Lima	8,730,820	10,453,874	1.51%
Piura	1,725,502	1,901,032	0.81%
San Martín	746,844	884,179	1.42%

	PBI PER CAPITA											
Damantamantaa	PBI PER CAPITA											
Departamentos	2007	2019	TASA									
Áncash	14.29	17	1.49%									
Cajamarca	5.53	7	2.52%									
Amazonas	4.38	7	4.50%									
La Libertad	8.69	12	2.44%									
Lambayeque	5.86	9	3.94%									
Lima	15.60	23	3.29%									
Piura	7.33	11	3.28%									
San Martín	4.37	7	3.85%									

Departamentos		PBI	
Departamentos	PBI	POB	PBI PER CAPITA
Áncash	2.05%	0.55%	1.49%
Cajamarca	2.89%	0.36%	2.52%
Amazonas	4.93%	0.41%	4.50%
La Libertad	3.71%	1.24%	2.44%
Lambayeque	4.83%	0.85%	3.94%
Lima	4.85%	1.51%	3.29%
Piura	4.12%	0.81%	3.28%
San Martín	5.32%	1 42%	3 85%

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO – RUTA LI-116, LA LIBERTAD, 2021"

TA	SA DE CRECIMI	ENTO			
DEPARTAMENTO	LIVIANO	OMNIBUS	PESADO		
Áncash	0.55%	1.49%	2.05%		
Cajamarca	0.36%	2.52%	2.89%		
Amazonas	0.41%	4.50%	4.93%		
La Libertad	1.24%	2.44%	3.71%		
Lambayeque	0.85%	3.94%	4.83%		
Lima	1.51%	3.29%	4.85%		
Piura	0.81%	3.28%	4.12%		
San Martín	1.42%	3.85%	5.32%		

	Factore	s de corre	cción d	e vehícul	os ligero	s por uni	dad de	ad de peaje - Promedio (2010-2016) FORMATO Nº 1.1						1.1 A	Factores de corrección de vehículos pesados por u					unidad de peaje - Promedio (2010-2016)					FORMATO Nº 1.1 B			
N°	Peaje		Febrero Ligeros	Marzo Ligeros	Abril Ligeros	Mayo Ligeros	Junio Ligeros		Agosto Ligeros	Setiembre Ligeros	Octubre Ligeros	Noviembre Ligeros		Total geros Co	ódigo	Peaje		Febrero Pesados	Marzo Pesados	Abril Pesados	Mayo Pesados	Junio Pesados	Julio Pesados	Agosto Pesados		Octubre Pesados		Diciembre Total Pesados Pesado
1 AGUAS	S CALIENTES	FC 0.9394	FC 0.8663	FC 1.1161	FC 1.0973	FC 1.1684	FC 1.1945		FC 0.8773	FC 0.9386	FC 1.0294	FC 1.0292		FC 1.0000	1 /	AGUAS CALIENTES	FC 1.0234	FC 0.9771	FC 1.0540	FC 1.0631	FC 1.0703	FC 1.1254	FC 0.9831	FC 0.9574	FC 0.9655	FC 0.9434	FC 0.9429	FC FC 0.9922
2 AGUAS 3 AMBO	S CLARAS	1.0204 0.7822	1.0668 0.8431	1.1013 0.8697	1.0449 0.7549	0.9979 0.7755	0.9863 0.7823	0.8917 0.7479	0.9168 0.9820	1.0069 1.0329	1.0155 0.9842	1.0712 0.9966	0.8127 0.8835	1.0000	2 <i>I</i>	AGUAS CLARAS AMBO	1.0497 0.7967	1.0164 0.7869	0.9941 0.8193	1.0038 0.7762	0.9878 0.7945	0.9823 0.7905	0.9940 0.7890	0.9597 1.0495	0.9819 1.0086	1.0086 0.9572	1.0042 0.9482	0.8920 0.9447
4 ATICO		0.8849	0.7376	1.0576	1.0168	1.1538	1.1764	0.9711	0.9893 0.9108	1.0821	1.0845 1.0455	1.1559	0.9021	1.0000	-	ATICO	1.0402	0.9961	1.0326 1.0835	1.0478	1.0392	1.0365	1.0288 0.9884	0.9862	0.9828 0.9335	0.9573	0.9313	0.9458
5 AYAVIF 6 CAMAN	NA	0.9913 0.5935	0.9287 0.4934	1.0870 1.0509	1.0730 1.2563	1.1003 1.3886	1.0878 1.3961	1.2549	1.2278	0.9242 1.3076	1.2658	1.0348 1.2303		1.0000	_	AYAVIRI CAMANA	1.0377 0.9370	1.0057 0.8802	1.0410	1.0533 1.0753	1.0511 1.0804	1.0319 1.0953	1.0782	0.9505 1.0099	1.0099	0.9456 0.9947	0.9485 0.9786	0.9933 0.8325
7 CANCA 8 CARAC		0.8722 1.0576	0.8703 0.9886	1.0694	1.1121 1.0550	1.1631 1.0578	1.2130 1.0471	0.9722 0.9900	0.9150 0.8677	1.0516 0.9953	1.0161 0.9895	1.0259 1.0077	0.8914 0.7648	1.0000	_	CANCAS CARACOTO	1.0490 1.0489	0.9888 1.0165	1.0151 1.0879	1.0452 1.0415	1.0584 1.0743	1.0381 1.0541	1.0041 0.9982	0.9824 0.9041	1.0019 0.9575	0.9551 0.9453	0.9433 0.9765	0.9563 0.8133
9 CASAR		1.1441 1.0992	1.1924 1.0589	1.2529 1.3534	0.9991 1.0405	0.9240	1.0245	0.8401	0.8801 0.8717	1.0508 0.9632	0.9739 0.9514	1.1465 1.1169	0.8656 0.9747	1.0000		CASARACRA CATAC	1.1123 1.0538	1.0819 1.0807	1.1121 1.1606	0.9769	0.9865 1.0119	0.9782	0.9872 0.9591	0.9697 0.9372	0.9731 0.9719	0.9521 0.9644	1.0674 0.9958	0.9416 0.9684
11 CCASA	ACANCHA	1.0321	1.0692	1.1050	1.0611	1.0772 1.0719	1.0762 1.0565	0.9517	0.9133	0.8930	0.9959	0.9734	0.7789	1.0000		CCASACANCHA	1.0985	1.0820	1.0974	1.0756 1.0774	1.0216	0.9642 0.9848	0.9688	0.9568	0.9552	0.9509	0.9198	0.7875
12 CHACA		1.0342 1.1804	0.9781 1.2304	0.9986 1.2157	1.0653 1.0487	1.0693 1.0103	1.2488 1.0467	1.0419 0.7867	0.9217 0.8314	0.9818 1.0145	0.9211 0.9547	1.0968 1.0196	0.9676 0.9379	1.0000	12 (13 (CHACAPAMPA CHALHUAPUQUIO	1.1253 1.0741	0.9872 1.0868	0.9856 1.0814	1.0061 1.0640	1.0477 1.0533	1.0441 0.9822	1.0496 0.9411	0.9939 0.9321	0.9340 0.9569	0.9269 0.9455	0.9523 0.9498	1.0257 0.9948
14 CHICA 15 CHILCA		0.9891	0.9536	1.0369	1.0347	1.0520	1.0477	0.9368	0.9915	1.0553	1.0166	1.0421	0.7493	1.0000	-	CHICAMA CHILCA	0.9742	0.9585	1.0327	1.0799	1.0586	1.0428	1.0427 1.0341	0.9889	0.9895	0.9814	0.9459	0.7964 0.8073
16 CHULL	.QUI	0.6041 1.0428	0.5736 1.0728	0.7824 1.0509	1.0624 1.0163	1.5470 1.0500	1.6110 0.9407		1.4238 0.9316	1.5046 0.9915	1.2451 0.9207	1.1887 1.2832	0.6261 0.8829	1.0000	15 (16 (CHULLQUI	0.9471 0.9571	0.9731 0.9658	1.0202 1.0534	1.0429 1.0776	1.0652 1.0809	1.0551 1.0402	1.0171	0.9979 0.9865	0.9991 0.9731	0.9830 0.9169	0.9674 1.2400	0.9257
17 CHULU 18 CIUDAI	JCANAS D DE DIOS	1.0210 0.9338	1.0629 0.9146	1.1565 1.1930	1.1355 1.0736	1.0650 1.0024	1.0374 1.0271	0.9771 0.9071	0.9150 0.9185	0.9843 1.0902	0.9479 0.8660	0.9145 1.0664	0.7502 0.6549	1.0000	17 (18 (CHULUCANAS CIUDAD DE DIOS	1.0042 0.9412	0.9705 0.9568	1.1344 1.1245	1.1580 1.0109	1.0939 0.9763	1.0464 1.0522	1.0225 1.0638	0.9536 1.0509	0.9603 1.0687	0.9195 0.8375	0.8980 0.8101	0.7996 0.6639
19 CORCO	ANC	1.1416	1.1681	1.2623	1.0206	0.9748	1.0336	0.7786	0.8795	1.0065	0.9892	1.1933	0.8888	1.0000	19 (CORCONA	1.1221	1.0894	1.1031	0.9536	0.9648	0.9756	0.9759	0.9653	0.9769	0.9739	1.0900	0.9561
20 CRUCE 21 CUCUL		0.9033 0.9988	0.8846 1.0350	1.0933 1.1242	1.0974 1.1174	1.1592 1.1070	1.1950 0.9545	0.8640 0.9574	0.9864 0.9186	1.1644 0.9449	0.9986 0.9671	1.0861 0.9672	0.6673 1.0218	1.0000	20 (21 (CRUCE BAYOVAR CUCULI	0.9925 0.9544	0.9617 1.0489	1.0163 1.1882	1.0654 1.1610	1.0473 1.0781	1.0635 0.9789	1.0368 0.9835	0.9979 0.9222	1.0155 0.9034	0.9779 0.9413	0.9314 0.9400	0.7892 1.0895
22 DESVIC 23 DESVIC		0.9736 0.8889	1.0105 0.8761	1.1312 1.0496	1.1600 1.0840	1.1451 1.1438	1.0896 1.1754		0.8716 0.9935	0.9919 1.1153	0.9562 1.0280	1.0093 1.0362	0.7176 0.8201	1.0000	22 [23 [DESVIO OLMOS DESVIO TALARA	1.0670 1.0234	1.0554 0.9763	1.0607 1.0148	1.0567 1.0405	1.0520 1.0343	1.0192 1.0196	0.9857 1.0096	0.9187 0.9862	0.9394 1.0060	0.9597 0.9840	0.9510 0.9643	0.8440 0.9566
24 EL FISC	CAL	0.8940	0.8401	1.0559	1.0613	1.0717	1.1269	1.0109	0.9938	1.0838	1.0772 1.0310	1.0791	0.8290	1.0000	_	EL FISCAL	0.9793 1.0139	0.9154 0.9909	1.0173	1.0391	1.0246	1.1024	1.0633	1.0320	1.0256 0.9958	0.9910	0.9728 0.9592	0.8304
25 EL PAR 26 FORTAI		0.9205 0.9181	0.9105	1.0517 1.0150	1.0162	1.1149	1.1469		1.0108	1.1060	1.0310	1.0929	0.7531	1.0000	25 E 26 F	EL PARAISO FORTALEZA	1.0139	0.9909	1.0354	1.0501 1.0378	1.0370	1.0203 1.0527	1.0117	0.9785	0.9958	0.9754 0.9807	0.9592	0.7830
27 HUACE	RAPUQUIO MEY	0.8954 0.9035	0.9256 0.9244	0.8519 1.1291	0.7865 1.1310	1.1504 1.2668	0.9951 1.1960	0.8705 0.8634	0.9487 0.9658	0.9945 1.1330	0.9710 1.0542	1.1529 1.1438	0.8270 0.6719	1.0000	27 H	HUACRAPUQUIO HUARMEY	0.8680 1.0626	0.9011 1.0429	0.8423 1.1171	0.7848 1.1586	1.1603 1.1478	1.0254 1.0300	0.9226 0.9937	0.9778 0.9497	0.9218 0.9638	0.9085 0.9479	1.1194 0.9288	0.9334 0.7750
29 ICA 30 ILAVE		0.8952	0.8816	1.0171	1.0174	1.1066	1.1329	0.9323	0.9830	1.0531	0.9755	1.1795	0.8886	1.0000	29	ICA	0.9862	0.9844	1.0316	1.0471	1.0536	1.0587	1.0384	0.9804	0.9489	0.9352	1.0246	0.8853
31 ILO		1.0094 0.8298	0.9590 0.8229	0.9766 1.0127	1.0121 1.0787	1.1366 1.0722	1.1846 1.1206	1.1008	0.7789 1.0550	1.0459 0.9804	1.0628 1.0440	1.1372 1.0342	0.9867 0.8332	1.0000	30 I	ILAVE ILO	1.0287 1.0669	0.9435 1.0457	0.9580 1.0755	1.0108 0.9887	1.0332 1.0028	1.0505 1.0483	1.0763 1.0198	0.8865 1.0030	1.0774 0.9598	1.0686 0.9650	1.1077 0.9476	1.0765 0.8449
32 JAHUA 33 LOMA I	Y - CHINCHA LARGA BAJA	0.8933 1.0542	0.8732 1.2728	1.0316 1.3705	0.9075 1.2397	1.1200 1.1376	1.1826 1.0325		0.9922 0.9065	1.1421 0.9251	1.0329 0.8919	1.0528 0.8810	0.4477 0.7535	1.0000	32 J	JAHUAY - CHINCHA LOMA LARGA BAJA	1.0249 0.9984	0.9973 1.0881	1.0339 1.2082	1.0479 1.2064	1.0542 1.1264	1.0382 1.0819	1.0310 0.9625	0.9626 0.9904	0.9677 0.9475	0.9563 0.9315	0.9390 0.9058	0.4681 0.7844
34 LUNAH	IUANA	1.0078	1.0300	1.0448	0.9515	1.0102	1.1445	0.8265	0.9416	1.1121	0.9751	1.0782	1.0732	1.0000	34 I	LUNAHUANA	1.1157	1.0802	1.0493	1.0496	0.9891	1.0416	0.9823	0.9305	0.9768	0.9344	0.9505	1.0360
35 MACUS 36 MARCO		1.0451 0.9662	1.0018 0.8961	1.0480 0.9852	1.0861 1.0088	1.1085 1.0983	1.1300 1.0530		0.9432 1.0196	1.0228 1.0333	0.9617 1.0271	1.0240 1.0027	0.7588 0.7889	1.0000	36 !	MARCONA	1.0472 1.0211	1.0557 0.9817	1.0808 0.9389	1.0272 1.0037	1.1020 1.1061	1.0260 1.0323	1.2521 1.0444	0.9430 1.0595	0.9199 1.0602	0.9216 0.9693	0.9320 0.9652	0.8424 0.8165
37 MATAR 38 MENO		0.4710 0.9317	0.3895 1.0027	0.9813 1.0511	1.5079 1.0791	1.7155 1.0349	1.6697 1.0573	1.6168 0.9502	1.5740 0.9064	1.5939 1.0854	1.4242 0.8523	1.3091 0.7838	0.7821 0.5208	1.0000	37 I 38 I	MATARANI MENOCUCHO	0.9769 1.0902	0.8851 1.0710	1.0520 1.1233	1.0660 1.0356	1.0756 0.9978	1.0200 0.9628	1.0076 0.9467	1.0345 0.9518	0.9879 1.0001	0.9887 0.8032	0.9761 0.7510	0.8394 0.6242
39 MOCCI	E	1.0278	0.9771	1.0470	1.0650	1.0408	0.9962	0.9898	0.9054	1.0213	1.0118	1.0013	0.6605	1.0000	39	MOCCE	0.9589	0.9880	1.0560	1.1377	1.0767	0.9655	1.0381	0.9850	0.9950	0.9641	0.9495	0.6739
40 MONTA 41 MORRO	OPE	0.9048 0.9513	0.8791 0.9141	1.0475 1.0811	1.0354 1.1244	1.0354 1.1424	1.1059 1.1751	1.0488 0.8926	1.0071 0.9687	1.0540 1.0920	1.0687 0.9715	1.0353 1.0545	0.8310 0.6746	1.0000	40 I 41 I	MONTALVO MORROPE	0.9749 0.9853	0.9489 0.9582	1.0168 1.0108	1.0360 1.0690	1.0138 1.0412	1.0964 1.0481	1.0793 1.0383	1.0412 1.0113	1.0186 1.0140	0.9900 0.9789	0.9696 0.9444	0.8286 0.7873
42 MOYOE 43 NAZCA		1.0850 0.9661	1.0698 0.9054	1.0813 1.0447	1.0651 1.0579	1.0168 1.0734	0.9738 1.0837	0.9435 0.9221	0.9373 0.9299	0.9761 1.0191	0.9702 1.0129	0.9891 1.0678	0.8038 1.0237	1.0000	42 I 43 I	MOYOBAMBA NAZCA	1.0394 1.0512	1.0126 1.0102	1.0017 1.0291	1.0501 1.0329	1.0243 1.0337	0.9980 1.0279	0.9971 0.9978	0.9593 0.9794	0.9650 0.9595	0.9824 0.9575	0.9764 0.9266	0.8706 1.0810
44 PACAN 45 PACRA		0.9367 1.0292	0.9280 1.0010	1.0694 1.0522	1.0717 0.9639	1.1095 1.1074	1.1596 1.0791		0.9569 0.9429	1.1054 1.0130	1.0141 0.9989	1.0390 1.0593	0.6863 0.9694	1.0000	-	PACANGUILLA PACRA	0.9774 1.0868	0.9487 1.0277	1.0090 1.0319	1.0641 1.0367	1.0495 1.0279	1.0596 0.9996	1.0523 0.9696	0.9901 0.9510	0.9939 0.9694	0.9811 0.9504	0.9523 0.9933	0.8040 1.0005
46 PAITA		0.8338	0.8399	0.9955	1.0884	1.1366	1.1292	1.0983	1.0805	1.0034	1.0469	1.0315	0.7241	1.0000		PAITA	1.0781	1.0144	1.0791	1.1787	1.1043	1.0823	1.1406	1.0573	0.9480	0.9039	0.8388	0.7955
47 PAMPA 48 PAMPA		1.0470 0.9682	0.8406 1.0250	1.0891 1.1275	1.0786 1.1108	1.1541 1.0497	1.1507 1.0842		0.7893 0.7799	1.0577 1.0466	1.0224 1.0741	1.0477 1.1328	0.8316 0.8288	1.0000	47 F	PAMPA CUELLAR PAMPA GALERA	1.1278 1.0903	1.1060 1.0946	1.0743 1.0837	1.0196 1.0554	1.1381 1.0345	1.0914 1.0078	0.9853 0.9802	0.9499 0.9332	0.9494 0.9554	0.8790 0.9417	0.8946 0.9377	0.8184 0.8104
49 PAMPA 50 PATAH	AMARCA	0.9676 1.0587	0.9879 0.9424	1.0838 1.1593	1.0298 1.0874	1.1090 1.1075	1.0882 1.1136		0.9048 0.7985	0.8396 1.0365	0.9118 0.9748	0.9069 1.0193	0.8363 0.8250	1.0000	49 F	PAMPAMARCA PATAHIJASI	1.0692 1.0842	1.0541 1.0620	1.0691 1.0935	1.0606 1.0743	1.0664 1.0716	1.0201 1.0642	0.9938 1.0134	0.9473 0.9309	0.7723 0.9448	0.7828 0.8982	0.7751 0.9068	0.8073 0.7907
51 PEDRO	RUIZ	0.9743	1.0357	1.1043	1.1210	1.1162	1.0422	0.9404	0.9088	0.9643	0.9746	1.0028	0.7673	1.0000	50 . 51 F	PEDRO RUIZ	1.0395	1.0270	1.0141	1.0435	1.0091	0.9897	1.0051	0.9512	0.9635	0.9802	0.9788	0.8808
52 PICHIR 53 PIURA	SULLANA	1.0429 1.1032	1.1004 1.0808	1.1389 1.1780	1.0572 1.0977	1.0324 1.0536	1.0052 1.0475		0.8779 0.9472	0.9784 0.9953	0.9987 0.9479	1.0072 0.9443				PICHIRHUA PIURA SULLANA	1.0749 1.0777	1.0717 1.0635	1.0921 1.1221	1.0739 1.0607	1.0482 1.0386	1.0267 1.0120	0.9978 1.0199	0.9372 0.9693	0.9326 0.9893	0.9460 0.9711	0.9215 0.9363	0.7813 0.7840
54 PLANC 55 POMAH		1.0522 0.9923	1.0822 0.9975	1.0719 1.1424	1.0640 1.1909	1.0586 1.1430	1.0147 1.0907		0.9113 0.8476	0.9516 0.9921	0.9578 0.9880	1.0475 1.0076				PLANCHON POMAHUACA	1.3438 1.0921	1.2774 1.0391	1.1203 1.0626	1.2187 1.0829	1.0792 1.0577	1.0400 1.0278	0.9561 0.9851	0.8949 0.9081	0.8533 0.9596	0.8878 0.9608	0.9470 0.9436	0.7937 0.8043
56 PONGO	O	1.0334	1.0848	1.0606	1.0886	1.0567	1.0028	0.9826	0.9141	0.9728	0.9669	0.9699	0.8065	1.0000	56 F	PONGO	1.1352	1.0876	1.0772	1.0246	0.9968	0.9762	0.9396	0.9093	0.9267	0.9780	0.9737	0.9432
57 POZO F 58 PUNTA		0.9235 0.9849	0.8502 0.8010	1.0219 1.1299	1.0682 1.2158	1.1022 1.4581	1.0689 1.4051		1.0403 0.5874	1.1089 1.1694	1.0396 1.0552	1.0052 1.2693	1.0738	1.0000	-	POZO REDONDO PUNTA PERDIDA	1.0265 1.1241	0.9947 1.1208	1.0212 1.0721	1.0323 1.0308	1.0463 1.3098	1.0444 1.1524	0.9966 0.9881	0.9978 0.9410	1.0416 0.9228	1.0080 0.8658	0.9479 0.9105	0.8953 0.9502
59 QUIULL 60 RUMIC		1.1371 1.0728	1.1635 0.9436	1.2501 1.0297	1.0385 0.8578	1.0168 1.2202	1.0572 1.1942		0.8670 0.8975	0.9850 1.0348	0.9894 1.0713	1.1196 1.1703			_	QUIULLA RUMICHACA	1.1612 1.0818	1.0951 1.0268	1.0804 1.0299	0.9231 1.0168	0.9335 1.0400	0.9738 0.9999	0.9523 0.9651	0.9509 0.9211	0.9766 0.9717	0.9979 0.9617	1.1258 1.0142	0.9767 1.0086
61 SAN AN	NTON								1.1261	1.0559	0.9635	1.0337	0.8809	1.0000	61	SAN ANTON								1.0513	1.0045	0.9507	1.0325	0.9682
63 SAN LO	DRENZO	1.0500 0.9766	0.9816 1.0535	1.0785 1.1195	1.0904 1.1258	1.1222 1.1044	1.0984 1.0287	0.8775	0.9088 0.9294	0.9405 0.9572	0.9236 0.9531	0.9675 1.0553	0.7550	1.0000	63	SAN GABAN SAN LORENZO	1.0987 1.4046	1.0538 1.3695	1.1783 1.3441	1.1125 1.2260	1.1375 1.1596	1.0887 1.0369	1.2293 0.9617	0.8892 0.9140	0.8511 0.8716	0.8426 0.8117	0.9370 0.8314	0.8556 0.7406
64 SANTA 65 SAYLLA		1.0119 1.0247	0.8481 0.9848	1.1341 1.1232	1.1083 1.0935	1.1142 1.0634	1.1636 1.0650		0.7603 0.9125	1.0670 0.9189	1.0127 0.9852	1.0654 0.9876			_	SANTA LUCIA SAYLLA	1.0470 1.0655	1.0248 1.0234	1.0863 1.0782	1.0801 1.0621	1.0723 1.0384	1.0987 1.0339	1.0265 0.9836	0.9249 0.9496	0.9396 0.9489	0.9085 0.9527	0.9206 0.9402	0.7987 0.9677
66 SERPE 67 SICUY	NTIN DE PASAMA	1.0952 1.0307	1.0572 0.8251	1.0806 1.0268	1.0634 1.0855	1.0649 1.1303	1.0634 1.1529	0.9685	0.8150 0.7631	1.0387 1.0878	1.0592 1.0585	1.0482 1.1855	0.9383	1.0000		SERPENTIN DE PASAM. SICUYANI	1.0230 1.1224	1.0047 1.0194	1.0391 1.0416	1.0460 1.0932	1.0344 1.1379	1.0180 1.1370	1.0079 1.0892	0.9814 1.0167	0.9903 1.0202	0.9671 0.9074	0.9547 0.9111	0.8073 0.9537
68 SOCOS	S	1.2201	0.9974	0.9997	0.8936	1.0904	1.0721	0.9417	0.9564	1.0115	1.0043	1.0295	0.9394	1.0000	68	SOCOS	1.0895	1.0107	1.0057	1.0133	1.0501	0.9948	0.9791	0.9551	0.9911	0.9563	1.0190	0.9775
69 TAMBO 70 TOMAS		0.9319 0.9857	0.9595 0.9170	1.0447 1.0642	1.1058 1.0853	1.0969 1.1028	1.0611 1.0928	1.0462 1.0370	1.0492 0.9984	1.0252 0.9003	0.8999 1.0377	0.9612 1.0434			_	TAMBOGRANDE TOMASIRI	0.5981 0.9707	0.7330 0.9200	1.1320 1.0234	1.4600 1.0693	1.4249 1.0587	1.2833 1.0722	1.3179 1.0633	1.3397 1.0043	1.1955 0.9636	1.0221 0.9993	0.9193 0.9996	0.7364 0.8396
71 TUNAN 72 UNION		1.0782 1.0447	1.0585 1.0363	1.1034 1.0948	1.0103 1.0397	1.0405 1.0254	1.0399	0.8655	0.8521 0.9337	0.9794 0.9674	0.9803 1.0156	1.1159 1.0481	0.9908	1.0000	71	TUNAN UNION PROGRESO	1.0667 1.1490	1.0665 1.1263	1.0946 1.0698	1.0642 1.0555	0.9824 1.0314	0.9383 1.0245	0.9359 0.9767	0.9286 0.9104	0.9760 0.9079	0.9695 0.9712	1.0221 0.9732	1.0081 0.7871
73 UTCUB	BAMBA	1.2615	1.0304	1.0861	1.0957	1.0591	1.0235	0.9403	0.8986	0.9387	0.9666	0.9829	0.7404	1.0000	73 l	UTCUBAMBA	1.1972	1.0385	1.0281	1.0362	1.0103	0.9780	0.9674	0.9217	0.9488	0.9731	0.9745	0.8352
	NTE DE PASAMAY	0.9446 0.7271	0.9314 0.6706	1.0413 1.0249	0.9953 1.1471	1.0835 1.1965	1.1120 1.1952		0.9962 1.0842	1.0777 1.1307	0.9899 1.1457	1.0378 1.1340			-	VARIANTE DE PASAMA` VARIANTE DE UCHUMA	0.9887 1.0098	0.9310 0.9718	0.9776 1.0488	1.0407 1.0730	1.0175 1.0687	0.9947 1.0488	1.0313 1.0203	1.0007 0.9727	1.0627 0.9680	1.0236 0.9544	0.9889 0.9535	0.8481 0.8176
76 VESIQU		0.8541 1.0216	0.8934 0.9810	1.0456 1.0936	1.0853 1.0639	1.1403 1.1199	1.1558 1.1221	1.0155	1.0827 1.0231	1.1187 1.0946	1.0027 0.9628	1.0222 0.9888	0.6992	1.0000	-	VESIQUE	1.0350 1.0480	0.9958 1.0102	1.0528 1.0629	1.0910 1.0926	1.0936 1.0942	1.0812 1.0887	1.0585 1.0686	1.0182 1.0210	1.0308 1.0220	0.9303 0.9200	0.9137 0.8925	0.7587 0.7637
78 YAUCA		0.8963	0.8050	1.0503	1.0220	1.1199	1.1221		0.9940	1.0946	1.0581	1.1286			78 Y	YAUCA	1.0357	0.9909	1.0322	1.0391	1.0356	1.0435	1.0345	0.9875	0.9833	0.9602	0.9350	0.9457
	ación al 2017. Los valores presen	tados, son susce	eptibles a sei	actualizados pe	eriódicamente	por la OPMI-N	/ITC, sin incu	rrir en actualizació	n de la Ficha	Técnica Está	ndar.					Información al 2017. Nota: Los valores pre:	sentados, son sus	ceptibles a se	er actualizados	periódicamen	te por la OPN	MI-MTC, sin incurr	ir en actualiz	ación de la Fich	a Técnica Estáno	dar.		

Tesis "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

Tramo Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda). Ubicacion: CHOQUIZONGUILLO

Cod Estación: Sentido ENTRADA

Estación:		CHOQUIZON	NGUILLO	1												Dia		LUNES	Fecha	10-Ma	.y-21
	Auto	Station		CAMIONE	TAS		В	US		CAMION			SEMIT	RAYLER			Tra	aylers			PORC.
Hora	movil	Wagon	Pick UP	Panel	Rural Combi	Micro	2E	>=3E	2E	3E	4E	2S1/ 2S2	2S3	3S1/ 3S2	>=3S3	2T2	2T3	3T2	>=3T3	TOTAL	%
00-01					1															1	1.64
01-02			1		1				1											3	4.92
02-03		1	1												ļ					2	3.28
03-04			1		1				1											3	4.92
04-05			2																	2	3.28
05-06			3						2											5	8.20
06-07		1							1											2	3.28
07-08					1															1	1.64
08-09			1																	1	1.64
09-10									2				ļ		ļ					2	3.28
10-11		<u> </u>			1				1						ļ					2	3.28
11-12	2	1		ļ	3										ļ					6	9.84
12-13	1	1	3		1				1											7	11.48
13-14			1		1															2	3.28
14-15					1															1	1.64
15-16	1	1			3	·							ļ		ļ					5	8.20
16-17	1		1		2									ļ						4	6.56
17-18		ļ	1		1		ļ							ļ	ļ		ļ			2	3.28
18-19		2	1	ļ	1		<u> </u>						ļ		ļ					4	6.56
19-20	1	ļ	-		2			ļ							ļ				-	3	4.92
20-21		ļ	ļ			ļ	ļ		1				ļ		ļ		ļ	ļ		11	1.64
21-22			1				ļ	ļ			ļ		ļ	ļ	ļ		ļ			11	1.64
22-23		1	1																	11	1.64
23-24			1																	0	0.00
TOTAL	6	8	17	0	20	0	0	0	10	0	0	0	0	0	0	0	0	0	0	61	100.00
%	9.84	13.11	27.87	0.00	32.79	0.00	0.00	0.00	16.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	

VOLUMEN DE TRAFICO PROMEDIO DIARIO

Tesis "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

 Tramo
 Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda).
 Ubicacion :
 CHOQUIZONGUILLO

 Cod Estación
 Sentido
 SALIDA

Estación CHOQUIZONGUILLO Dia LUNES Fecha 10-May-21 PORC. CAMIONETAS BUS CAMION SEMITRAYLER Traylers Station Auto Hora Pick Rural Micro 2S1/ 3S1/ TOTAL movil Wagon 2E >=3E 2E 3E 4E 253 > = 3S3 2T2 2T3 % 3T2 >=3T3 Panel UP Combi 2S2 **3S2** 00-01 0.00 01-02 0 0.00 02-03 0 0.00 03-04 0 0.00 04-05 0.00 0 05-06 0.00 0 06-07 0.00 0 07-08 0 0.00 08-09 4.62 09-10 1.54 10-11 6.15 11-12 3 4.62 12-13 2 10 15.38 13-14 9 13.85 14-15 7.69 15-16 10.77 16-17 7.69 17-18 7.69 18-19 3.08 19-20 6.15 20-21 1.54 21-22 4.62 22-23 1.54 23-24 3.08 TOTAL 12 18 0 0 0 17 8 0 0 0 0 0 0 0 0 0 65 100.00

VOLUMEN DE TRAFICO PROMEDIO DIARIO

12.31

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

100.00

26.15

Tesis "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

Tramo Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda). Ubicacion: Ubicacion: CHOQUIZONGUILLO Cod Estación Sentido AMBOS

0.00

18.46

1.54

27.69

0.00

0.00

Estación		CHOQUIZON	NGUILLO												Dia		LUNES		Fecha	10-May-21	
	Auto	Station		CAMIONET	ΓAS		В	US		CAMION			SEMIT	RAYLER			Tra	aylers			PORC.
Hora	movil	Wagon	Pick UP	Panel	Rural Combi	Micro	2E	> = 3E	2E	3E	4E	2S1/ 2S2	2S3	3S1/ 3S2	>=3S3	2T2	2T3	3T2	>=3T3	TOTAL	%
40. AAA 11. AA																					
00-01	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	11	0.79
01-02	-	-	1	-	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-	3	2.38
02-03	-	1	1	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	2	1.59
03-04	-	-	1	-	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-	3	2.38
04-05	-	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	1.59
05-06	-	-	3	-	-	-	-	-	2		-	-	-	-	-	-	-	-	-	5	3.97
06-07	-	1	-		-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	2	1.59
07-08	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0.79
08-09	-	1	2	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	4	3.17
09-10	1	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-	-	3	2.38
10-11	-	1	1	-	3	-	-	-	1	-	-	-	-	-	-	-	-	-	-	6	4.76
11-12	2	1	-	-	3	-	-	-	3	-	-	-	-	-	-	-	-	-	-	9	7.14
12-13	1	1	3	-	1	-	-	-	3	8	-	-	-	-	-	-	-	-	-	17	13.49
13-14	1	1	3	1	3	-	-	-	2	-	-	-	-	-	-	-	-	-	-	11	8.73
14-15	-	-	-	-	4	-	-	-	2	-	-	-	-	-	-	-	-	-	-	6	4.76
15-16	1	2	1	-	6	-	-	-	2	-	-	-	-	-	-	-	-	-	-	12	9.52
16-17	1	-	3	-	4	-	-	-	1	-	-	-	-	-	-	-	-	-	-	9	7.14
17-18	1	1	2	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7	5.56
18-19	-	2	3	-	1	-	-	-	-	-	-		-	-	-	-	-	-	-	6	4.76
19-20	1	-	1	-	4	-	-	-	1	-	-	-	-	-	-	-	-	-	-	7	5.56
20-21	-	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-	-	2	1.59
21-22	-	1	1	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	3.17
22-23	-	1	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	2	1.59
23-24	-	-	1	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	T -	2	1.59
TOTAL	9	14	29	1	38	0	0	0	27	8	0	0	0	0	0	0	0	0	0	126	100.00
%	7.14	11.11	23.02	0.79	30.16	0.00	0.00	0.00	21.43	6.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	

Proyecto: "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

CHOQUIZONGUILLO Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda). Ubicacion: **ENTRADA** Cod Estación: Sentido

MARTES 11-May-21 Estación: CHOQUIZONGUILLO Dia CAMIONETAS BUS CAMION SEMITRAYLER Traylers PORC. Auto Station Hora Rural Micro 2S1/ TOTAL movil Wagon 2E >=3E 2E 3E 4E **2S3** > = 3S3 2T2 2T3 >=3T3 % Panel 3T2 UP Combi **2S2** 3S2 00-01 3.08 01-02 4.62 02-03 1.54 03-04 3.08 04-05 2 3.08 05-06 9.23 06-07 3.08 07-08 1.54 1.54 08-09 09-10 4.62 1.54 10-11 11-12 10.77 12-13 10.77 13-14 4.62 14-15 3.08 15-16 7.69 16-17 7.69 17-18 3.08 18-19 6.15 19-20 4.62 1.54 20-21 1.54

VOLUMEN DE TRAFICO PROMEDIO DIARIO

0.00

0.00

0.00 0.00

0.00

0.00

0.00

0.00

CHOQUIZONGUILLO

Ubicacion:

0.00

0.00

1.54

0.00

100.00

65

100.00

"Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021" Proyecto: Tramo

0.00

21-22

22-23

23-24 TOTAL

Tramo

12.31

17

9.23

26.15 0.00

24

36.92

Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda). Ubicacion: CHOQUIZONGUILLO Cod Estación SALIDA

0.00 0.00 15.38

Estación CHOQUIZONGUILLO Dia MARTES Fecha 11-May-21

10

	Auto	Station		CAMIONET	ΓAS		В	US		CAMION			SEMIT	RAYLER			Tra	aylers			PORC.
Hora	movil	Wagon	Pick UP	Panel	Rural Combi	Micro	2E	>=3E	2E	3E	4E	2S1/ 2S2	2S3	3S1/ 3S2	>=3S3	2T2	2T3	3T2	>=3T3	TOTAL	%
00-01			1																	11	1.49
01-02																				0	0.00
02-03																				0	0.00
03-04					1															1	1.49
04-05																				0	0.00
05-06																				0	0.00
06-07																				0	0.00
07-08																				0	0.00
08-09		1	1						1											3	4.48
09-10	1							·							1				<u> </u>	1	1.49
10-11		1	1		2									1						4	5.97
11-12									3											3	4.48
12-13									2	8										10	14.93
13-14	1	1	2	1	2				2											9	13.43
14-15					3				2	T			-		<u> </u>				<u> </u>	5	7.46
15-16		1	1		3				2											7	10.45
16-17			2		2				1											5	7.46
17-18	1	1	1		2		<u> </u>							-	·				<u> </u>	5	7.46
18-19			2			1				Î				1					1	2	2.99
19-20		1	1		2		1	1	1			1		1	***************************************					4	5.97
20-21		1							1				1							1	1.49
21-22		1			2							Ì	İ							3	4.48
22-23			1						1				1							1	1.49
23-24			1						1											2	2.99
TOTAL	3	6	13	1	19	0	0	0	17	8	0	0	0	0	0	0	0	0	0	67	100.00
%	4.48	8.96	19.40	1.49	28.36	0.00	0.00	0.00	25.37	11.94	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	1

VOLUMEN DE TRAFICO PROMEDIO DIARIO

"Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021" Proyecto:

Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda). AMBOS Cod Estación Sentido Estación CHOQUIZONGUILLO MARTES Fecha 11-May-21 Dia

LStation	_	OTTOQUIZOT		CAMIONET	AS		В	US		CAMION			SEMIT	RAYLER			Tra	ylers	rcona	TT Way 21	PORC.
Hora	Auto movil	Station Wagon	Pick UP	Panel	Rural Combi	Micro	2E	>= 3E	2E	3E	4E	2S1/ 2S2	283	3S1/ 3S2	>=3S3	2T2	2T3	3T2	>=3T3	TOTAL	%
00-01	-	-	1	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	2.27
01-02	-	-	1	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	2.27
02-03	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0.76
03-04	-	-	1	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	2.27
04-05	-	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	1.52
05-06	-	-	3	-	-	-	-	-	3	-	-	-	-	-	-	-	-	-	-	6	4.55
06-07	-	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-	-	2	1.52
07-08	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0.76
08-09	-	1	2	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	4	3.03
09-10	1	-	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-	-	-	4	3.03
10-11	-	1	1	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	3.79
11-12	3	1	-	-	3	-	-	-	3	-	-	-	-	-	-	-	-	-	-	10	7.58
12-13	1	1	3	-	1	-	-	-	3	8	-	-	-	-	-	-	-	-	-	17	12.88
13-14	1	1	3	1	4	-	-	-	2	-	-	-	-	-	-	-	-	-	-	12	9.09
14-15	-	-	-	-	5	-	-	-	2	-	-	-	-	-	-	-	-	-	-	7	5.30
15-16	1	2	1	-	6	-	-	-	2	-	-	-	-	-	-	-	-	-	-	12	9.09
16-17	2	-	3	-	4	-	-	-	1	-	-	-	-	-	-	-	-	-	-	10	7.58
17-18	1	1	2	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7	5.30
18-19	-	2	3	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6	4.55
19-20	1	-	1	-	4	-	-	-	1	-	-	-	-	-	-	-	-	-	-	7	5.30
20-21	-	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-	-	2	1.52
21-22	-	1	1	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	3.03
22-23	-	1	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	2	1.52
23-24	-	-	1	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	2	1.52
TOTAL	11	12	30	1	43	0	0	0	27	8	0	0	0	0	0	0	0	0	0	132	100.00
%	8.73	9.52	23.81	0.79	34.13	0.00	0.00	0.00	21.43	6.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	104.76	

"Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021" Proyecto:

Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda). CHOQUIZONGUILLO Ubicacion: Tramo Cod Estación **ENTRADA** Sentido E-1

CHOQUIZONGUILLO Estación **MIERCOLES** Dia Fecha 12-May-21 CAMIONETAS BUS CAMION PORC. SEMITRAYLER
3S1/ Traylers Auto Station TOTAL Hora Micro 2S1/ Pick Rural movil Wagon 2E >=3E 2E 3E 4E **2S3** >=3\$3 2T2 2T3 3T2 >=3T3 % UP 3S2 Combi 252 00-01 7.94 01-02 0.00 0 0.00 02-03 0 03-04 0.00 04-05 4.76 05-06 4.76 06-07 4.76 07-08 4.76 08-09 7.94 3.17 09-10 10-11 6.35 3.17 11-12 12-13 4.76 13-14 7.94 14-15 1.59 15-16 4.76 16-17 4.76 17-18 4.76 4.76 18-19 19-20 3.17 3.17 3.17 20-21

VOLUMEN DE TRAFICO PROMEDIO DIARIO

12 1 0 0

0.00 0.00 19.05 1.59 0.00 0.00 0.00 1.59 0.00

0

1

0

0

0.00 0.00

0

0

0.00

0

0.00

4.76

4.76

100.00

63

100.00

"Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021" Proyecto:

0

0.00

0

21-22 22-23

23-24

4

16

25.40 4.76

3

24

38.10

TOTAL

CHOQUIZONGUILLO Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda). Ubicacion: Tramo

0

Cod Estación Sentido **SALIDA** 12-May-21 CHOQUIZONGUILLO **MIERCOLES** Estación Fecha

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LStacion		OTTOGOILO													Dia		WILLINGOL		i cona	12 May 21	
Note Magon Magon		Auto	Station		CAMIONET			В	US		CAMION			SEMIT				Tra	aylers			PORC.
01-02	Hora				Panel		Micro	2E	>=3E	2E	3E	4E		283		>=3S3	2T2	2T3	3T2	>=3T3	TOTAL	%
01-02																						
02-03	00-01	***************************************																			0	0.00
03-04	01-02			1		1							***************************************								2	2.60
04-05 05-06 2 2 2 0 4 4 0 0 4 4 0 0 4 4 0 0 1	02-03			1																	1	1.30
05-06 2 2 06-07 1 3 07-08 3 3 08-09 2 2 10-11 1 2 11-12 3 1 11-12 3 1 13-14 1 1 14-15 4 2 15-16 1 2 16-17 1 1 17-18 1 1 18-19 1 1 19-20 1 1 21-22 1 1 1 1 2 3 1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3 1	03-04					1															1	1.30
06-07 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 4 4 4 4 9-10 2 2 1 1 2 2 1 1 2 2 1 1 6 6 6 11-12 3 1 1 1 1 1 6 6 6 1 <t< th=""><td>04-05</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0.00</td></t<>	04-05																				0	0.00
07-08 3 3 3 4 4 4 4 4 4 2 10-11 1 2 2 1 1 6 6 6 6 6 11-12 3 1 <	05-06			2	2																4	5.19
08-09 2 2 2 4 09-10 1 2 2 1 2 2 1 6 2 1 6 6 6 6 11-12 3 1 <	06-07		1																		1	1.30
09-10 1 2 2 2 6 1 1 1 1 1 1 1 1 1 1 1 2 1 <td>07-08</td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td>3</td> <td>3.90</td>	07-08					3															3	3.90
10-11	08-09		2			2															4	5.19
11-12 3 1 1 1 6 12-13 1 1 1 1 1 13-14 1 1 1 2 1 2 14-15 4 2 3 6 6 15-16 1 2 3 6 6 16-17 1 1 13 1 16 17-18 1 3 2 2 8 18-19 1 2 8 2 19-20 1 1 2 1 2 20-21 1 2 1 1 1 21-22 1 1 1 1 1 22-23 1 1 1 1 2	09-10									2											2	2.60
12-13 1	10-11			1		2				2	1										6	7.79
13-14 1 1 1 2 14-15 4 2 6 15-16 1 2 3 6 16-17 1 1 13 1 16 17-18 1 3 2 2 8 18-19 1 1 2 8 2 19-20 1 1 2 1 2 20-21 1 1 1 1 1 1 21-22 1 1 1 1 1 2 22-23 1 1 1 1 2 1	11-12			3	1	1				1											6	7.79
14-15 4 2 15-16 1 2 16-17 1 1 17-18 1 3 18-19 1 19-20 1 20-21 1 21-22 1 1 1 22-23 1	12-13					1															1	1.30
15-16	13-14					1				1											2	2.60
16-17 1 1 13 1 16 17-18 1 3 2 2 8 18-19 1 1 2 2 1 2 19-20 1 1 2 1 2 2 1	14-15					4				2											6	7.79
17-18 1 3 2 2 8 18-19 1 1 2 19-20 1 2 2 20-21 1 2 1 21-22 1 1 1 1 22-23 1 1 1 2	15-16			1		2				3											6	7.79
18-19 1 2 19-20 1 2 20-21 1 2 21-22 1 1 22-23 1 1	16-17	1		1		13				1											16	20.78
19-20 1 1 2 2 2 20-21 1 1 2 1 1 2 2 2 21 2 2 2 2 2 2 2 2 2	17-18		1	3		2				2											8	10.39
20-21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18-19			1						1											2	2.60
21-22 1 1 1 22-23 1 1 2 2	19-20			1						1											2	2.60
22-23		1																			1	1.30
	21-22			1																	1	1.30
	22-23	***************************************				1				1											2	2.60
23-24	23-24																				0	0.00
TOTAL 2 4 16 3 34 0 0 0 17 1 0<	TOTAL	2	4	16	3	34	0	0	0	17	1	0	0	0	0	0	0	0	0	0	77	100.00
% 2.60 5.19 20.78 3.90 44.16 0.00 0.00 0.00 22.08 1.30 0.00 <th< th=""><td>%</td><td>2.60</td><td>5.19</td><td>20.78</td><td>3.90</td><td>44.16</td><td>0.00</td><td>0.00</td><td>0.00</td><td>22.08</td><td>1.30</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>100.00</td><td></td></th<>	%	2.60	5.19	20.78	3.90	44.16	0.00	0.00	0.00	22.08	1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	

VOLUMEN DE TRAFICO PROMEDIO DIARIO

"Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta Ll-116, La Libertad, 2021" Proyecto: Emp. PE-3N (Culicanda) - Emp. Ll-115 (Dv. Culicanda). Ubicacion: Tramo

CHOQUIZONGUILLO Cod Estación Sentido **AMBOS** CHOOLIZONGLILLO MIERCOLES Fecha 12-May-21

Estación		CHOQUIZO	NGUILLO												Dia		MIERCOL	.ES	Fecha	12-May-21	
	Auto	Station		CAMIONET	ΓAS		В	US		CAMION			SEMITE	RAYLER			Tra	aylers			PORC.
Hora	movil	Wagon	Pick UP	Panel	Rural Combi	Micro	2E	>=3E	2E	3E	4E	2S1/ 2S2	2S3	3S1/ 3S2	>=3S3	2T2	2T3	3T2	>=3T3	TOTAL	%
00-01	-	-	2	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	3.57
01-02	-	-	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	1.43
02-03	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0.71
03-04	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0.71
04-05	-	-	1	-	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-	3	2.14
05-06	-	-	2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7	5.00
06-07	-	1	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	2.86
07-08	-	-	-	1	4	-	-	-	1	-	-	-	-	-	-	-	-	-	-	6	4.29
08-09	-	2	3	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9	6.43
09-10	1	-	1	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-	-	4	2.86
10-11	-	-	2	-	4	-	-	-	3	1	-	-	-	-	-	-	-	-	-	10	7.14
11-12	-	-	3	1	1	-	-	-	3	-	-	-	-	-	-	-	-	-	-	8	5.71
12-13	-	1	1	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	6.56
13-14	-	-	1	-	3	-	-	-	1	1	-	-	-	1	-	-	-	-	-	7	5.00
14-15	-	-	-	-	4	-	-	-	3	-	-	-	-	-	-	-	-	-	-	7	5.00
15-16	-	1	1	-	3	-	-	-	4	-	-	-	-	-	-	-	-	-	-	9	6.43
16-17	2	-	2	-	14	-	-	-	1	-	-	-	-	-	-	-	-	-	-	19	13.57
17-18	-	1	3	-	3	-	-	-	4	-	-	-	-	-	-	-	-	-	-	11	7.86
18-19	-	-	1	-	3	-	-	-	1	-	-	-	-	-	-	-	-	-	-	5	3.57
19-20	-	-	1	-	2	-	-	-	1	-	-	-	-	-	-	-	-	-	-	4	2.86
20-21	1	-	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	2.14
21-22	-	-	1	-	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-	3	2.14
22-23	-	1	-	-	1	-	-	-	3	-	-	-	-	-	-	-	-	-	-	5	3.57
23-24	-	1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	2.14
TOTAL	4	8	32	6	58	0	0	0	29	2	0	0	0	1	0	0	0	0	0	140	100.00
%	2.86	5.71	22.86	4.29	41.43	0.00	0.00	0.00	20.71	1.43	0.00	0.00	0.00	0.71	0.00	0.00	0.00	0.00	0.00	100.00	

JUEVES

0

Dia

0

JUEVES

Dia

13-May-21

6.76

0.00

4.05

2.70

1.35

4.05

2.70

0.00

100.00

5

0

74

13-May-21

0

Fecha

Fecha

Proyecto: "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

CHOQUIZONGUILLO

24

CHOQUIZONGUILLO

32.43

0

0.00

21

0

0.00

Estación

16-17

17-18

18-19

19-20

20-21

21-22

22-23

23-24

TOTAL

Proyecto:

Estación

 Tramo
 Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda).
 Ubicación:
 CHOQUIZONGUILLO

 Cod Estación
 E-1
 Sentido
 ENTRADA

PORC. BUS CAMIONETAS CAMION Traylers SEMITRAYLER Auto Station TOTAL Pick Hora Rural Micro 2S1/ 3S1/ movil Wagon 2E >=3E 2E 3E 4E **2S**3 >=3S3 2T2 2T3 3T2 >=3T3 % UP 3S2 Combi **2S2** 00-01 5.41 4 01-02 4.05 3 02-03 5.41 03-04 2.70 04-05 5.41 05-06 1.35 06-07 6.76 07-08 17 22.97 08-09 4.05 09-10 4.05 10-11 2.70 11-12 2.70 12-13 1.35 13-14 4.05 14-15 2.70 15-16 2.70

VOLUMEN DE TRAFICO PROMEDIO DIARIO

9

12.16

4.05

0

0

"Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

0

0.00

 Tramo
 Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda).
 Ubicacion :
 CHOQUIZONGUILLO

 Cod Estación
 Sentido
 SALIDA

0

0.00

8.11

BUS CAMIONETAS CAMION SEMITRAYLER Traylers PORC. Station Auto Hora Pick Rural Micro 2S1/ 3S1/ TOTAL 3E movil Wagon Panel 2E >=3E 2E 4E 2S3 >=3S3 2T2 2T3 3T2 >=3T3 % UP Combi **2S2** 3S2 00-01 0.00 01-02 1.41 02-03 0 0.00 03-04 1.41 04-05 2.82 05-06 5.63 06-07 2.82 07-08 8.45 6 08-09 8.45 09-10 0.00 10-11 2.82 11-12 5.63 12-13 9.86 13-14 11.27 14-15 7.04 15-16 2.82 16-17 2.82 17-18 10 14.08 18-19 5.63 19-20 0.00 0 20-21 2.82 21-22 2.82 22-23 1.41 23-24 0.00 TOTAL 11 10 100.00 12 20 0 0 0 12 0 0 0 0 0 0 0 71 0.00 0.00 0.00 16.90 14.08 1.41 0.00 1.41 0.00 0.00 0.00 0.00

VOLUMEN DE TRAFICO PROMEDIO DIARIO

Proyecto: "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

Tramo Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda).

Cod Estación E-1 Sentido AMBOS

Fetación CI-OCULIZONGUILLO

stación		CHOQUIZON	IGUILLO												Dia		JUEVES		Fecha	13-May-21	
				CAMIONET	TAS		В	US		CAMION			SEMIT	RAYLER				aylers			PORC
Hora	Auto movil	Station Wagon	Pick UP	Panel	Rural Combi	Micro	2E	>=3E	2E	3E	4E	2S1/ 2S2	283	3S1/ 3S2	>=3S3	2T2	2T3	3T2	>=3T3	TOTAL	%
00-01	-	1	2	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	2.76
01-02	-	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	2.76
02-03	-	-	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	2.76
03-04	-	-	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	2.07
04-05	-	1	2	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6	4.14
05-06	-	1	3	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	3.45
06-07	-	2	-	-	4	-	-	-	1	-	-	-	-	-	-	-	-	-	-	7	4.83
07-08	-	7	2	-	1	-	-	-	2	8	3	-	-	-	-	-	-	-	-	23	15.86
08-09	2	2	3	-	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-	9	6.21
09-10	-	-	2	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	3	2.07
10-11	1	-	-	1	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-	4	2.76
11-12	-	-	3	-	1	-	-	-	-	2	-	-	-	-	-	-	-	-	-	6	4.14
12-13	_	-	2	-	1	-	-	T -	2	2	-	-	1	-	-	-	-	-	-	8	13.1
13-14		3	4	-	2	-	-	T -	-	1	1	-	-	-	-	-	-	-	-	11	7.59
14-15	-	-	5	-	2	-	-	 	-	-	-	-	-	 	-	-	-	-	-	7	4.83
15-16	-	-	1	-		-	-	†	3	-	-	-	-	† -	-	-	-	-	-	4	2.76
16-17	2	-	1	-	3	-	-	 	1	-	·	-	-	 -	-	-	-	-	-	7	4.83
17-18	-	-		-	2	-	-	-	3	5	l .	-	-	 	-	-	-	-		10	6.90
18-19		2	1	-	2	-	-	l .	2	-	-	-	-	<u> </u>	-	-	_	-	-	7	4.83
19-20		<u> </u>	1	-	1	-	-	 		-	<u> </u>	-	-	 	-	-	-	-	-	2	1.38
20-21	1	_	1		1	_	_	<u> </u>		_				<u> </u>	_		_	_		3	2.07
21-22		1	1		1	-	-		2	-	-	-			-	-	-	-	_	5	3.45
22-23			2	-	1		-		-	-	-	-		 		-	-	-		3	2.07
23-24		_					_	l				-		<u> </u>	-	-	-	-	·	0	0.00
TOTAL	6	20	44	1	32	0	0	0	10	10	4	0	1	0	0	0	0	0	0	145	100.0
W	4.14	13.79	30.34	0.69	22.07	0.00	0.00	0.00	18 12.41	19 13.10	2.76	0.00	0.69	0.00	0.00	0.00	0.00	0.00	0.00	100.00	100.0

Proyecto: "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

 Tramo
 Emp. PE-3N (Culicanda) - Emp. LH115 (Dv. Culicanda).
 Ubicacion : CHOQUIZONGUILLO
 COD Estación
 Sentido
 ENTRADA

VIERNES Estación CHOQUIZONGUILLO Dia Fecha 14-May-21 BUS CAMIONETAS CAMION SEMITRAYLER Traylers PORC. Auto Station Pick UP Micro **TOTAL** Hora Rural 2S1/ 3S1/ Panel 2E >=3E 2E 3E 4E **2S**3 > = 3S3 2T2 2T3 3T2 >=3T3 % movil Wagon 2S2 3S2 Combi 00-01 5.06 1.27 5.06 01-02 02-03 2 03-04 1.27 04-05 2.53 05-06 1.27 06-07 5.06 07-08 5.06 8.86 08-09 7.59 09-10 10-11 2.53 11-12 3.80 12-13 6.33 5.06 7.59 13-14 14-15 2.53 2.53 15-16 16-17 17-18 3.80 18-19 2.53 19-20 2.53 8.86 6.33 20-21 21-22 22-23 0.00 23-24 2.53 TOTAL 10 22 0 32 0 0 0 9 5 0 0 0 0 0 0 0 0 79 100.00

VOLUMEN DE TRAFICO PROMEDIO DIARIO

0.00 0.00 11.39 6.33 0.00 0.00 0.00 0.00

Proyecto: "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

 Tramo
 Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda).
 Ubicacion :
 CHOQUIZONGUILLO

 Cod Estación
 E-1
 Sentido
 SALIDA

 Estación
 Dia
 VIERNES

Estación		CHOQUIZON	NGUILLO												Dia		VIERNES		Fecha	14-May-21	
	Auto	Station		CAMIONE	ΓAS		В	US		CAMION			SEMIT	RAYLER			Tra	ylers			PORC.
Hora	Auto movil	Wagon	Pick UP	Panel	Rural Combi	Micro	2E	>=3E	2E	3E	4E	2S1/ 2S2	283	3S1/ 3S2	>=3S3	2T2	2T3	3T2	>=3T3	TOTAL	%
00-01		2		ļ	1											***************************************		·····		3	4.41
01-02			1	-	<u> </u>			1	1			1		1						0	0.00
02-03		<u> </u>	-		1			-					 	-					-	1	1.47
03-04			-	ļ	1						<u> </u>		 	-					<u> </u>	1	1.47
04-05	****	<u> </u>	-	 	1			1	-		ļ		 	-					 	1	1.47
05-06		 	1		······································			·								***************************************				1	1.47
06-07		·	2	 					l				 	·					+	2	2.94
07-08			 	1	1			<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u> </u>				-	2	2.94
08-09				 	2			†						†				***************************************		2	2.94
09-10		1	1		1			1	1											4	5.88
10-11		<u> </u>	<u> </u>		·			†	2	4	t	<u> </u>	†	-				***************************************	-	6	8.82
11-12		1	1	 					1		<u> </u>		†	1					1	2	2.94
12-13	****				1			1	1		İ		<u> </u>			***************************************			<u> </u>	2	2.94
13-14		<u> </u>	1					İ	·	1		İ							·	1	1.47
14-15	1	<u> </u>	2	·	2			·	İ				†	1					1	5	7.35
15-16		1			2				1		<u> </u>		<u> </u>		<u> </u>	***************************************	***************************************	***************************************		4	5.88
16-17			2		2				1											5	7.35
17-18	····	1	3		1				2		ļ		1					***************************************		7	10.29
18-19		1	3		5				1		İ									10	14.71
19-20				1	1]	[l		1	1		***************************************	Î		1	1	1.47
20-21													Ī			***************************************				0	0.00
21-22			2						1							·····				3	4.41
22-23	1				1				2		l		1			***************************************	1		1	4	5.88
23-24			1																	1	1.47
TOTAL	2	6	18	1	23	0	0	0	13	5	0	0	0	0	0	0	0	0	0	68	100.00

VOLUMEN DE TRAFICO PROMEDIO DIARIO

100.00

Proyecto: "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

Tramo Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda). "CHOQUIZON

 Tramo
 Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda).
 Ubicación :
 "CHOQUIZONGUILLO

 Cod Estación
 E-1
 Sentido
 AMBOS

 Exterión
 CHOQUIZONGUILLO
 Diagram (Chicago de la contraction de la contracti

stación		CHOQUIZON	NGUILLO												Dia		VIERNES	;	Fecha	14-May-21	
	Auto	Station		CAMIONE	ΓAS		В	US		CAMION			SEMIT	RAYLER			Tra	aylers			PORC
Hora	movil	Wagon	Pick UP	Panel	Rural Combi	Micro	2E	>=3E	2E	3E	4E	2S1/ 2S2	2S3	3S1/ 3S2	>=3S3	2T2	2T3	3T2	>=3T3	TOTAL	%
00-01	-	2	3		2	_	-		-			-		-	-	-		_		7	4.76
01-02	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0.68
02-03	-	-	2	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	3.40
03-04	-	-	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	1.36
04-05	-	-	-	-	3	-	-	-	-	-	-	-	-	-	-	-		-		3	2.04
05-06	-	-	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	1.36
06-07	-	-	3	-	2	-	-	-	1	-	-	-	-	-	-	-	-	-	-	6	4.08
07-08	-	1	-	1	4	-	-	-	-	-	-	-	-	-	-	-	-	-		6	4.08
08-09	1	1	2	-	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9	6.12
09-10	-	1	3	-	1	-	-	-	3	2	-	-	-	-	-	-	-	-		10	6.80
10-11	-	1	1	-	-	-	-	-	2	4	-	-	-	-	-	-	-	-		. 8	5.44
11-12	-	1	2	-	-	-	-	-	1	1	-	-	-	-	-	-	-	-		5	3.40
12-13	-	-	2	-	3	-	-	-	2	-	-	-	-	-	-	-	-	-	1 .	7	11.48
13-14	-	-	2	-	2	-	-	-	-	1	-	-	-	-	-	-	-	-		- 5	3.40
14-15	1	-	3	-	5	-	-	-	2	-	-	-	-	-	-	-	-	-	-	11	7.48
15-16	-	1	1	-	3	-	-	-	1	-	-	-	-	-	-	-	-	-		- 6	4.08
16-17	-	-	2	-	3	-	-	-	2	-	-	-	-	-	-	-	-	-	-	. 7	4.76
17-18	-	2	3	-	3	-	-	-	2	-	-	-	-	-	-	-	-	-		10	6.80
18-19	-	2	3	-	6	-	-	-	1	-	-	-	-	-	-	-	-	-	-	12	8.16
19-20	-	2	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	2.04
20-21	-	-	2	-	2	-	-	-	1	2	-	-	-	-	-	-	-	-	-	7	4.76
21-22	-	1	2	-	3	-	-	-	2	-	-	-	-	-	-	-	-	-	-	. 8	5.44
22-23	1	-	-	-	1	-	-	-	2	 	-	-	-	-	-	-	-	İ -		4	2.72
23-24	-	1	1	-	1	-	-	-	-	-	-	-	-	-	-	-	†	-	†	3	2.04
TOTAL	3	16	40	1	55	0	0	0	22	10	0	0	0	0	0	0	0	0	0	147	100.0
%	2.04	10.88	27.21	0.68	37.41	0.00	0.00	0.00	14.97	6.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	1

SABADO

Fecha

15-May-21

0.00

0.00

0.00

0.00

100.00

62

49

100.00

0

0.00

100.00

Proyecto: "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

Estación

20-21

21-22

22-23

23-24

TOTAL

TOTAL

8.16

12

24.49

2.04

14.29

14

28.57

0

0.00

CHOQUIZONGUILLO

 Tramo
 Emp. PE-3N (Culicanda) - Emp. LH115 (Dv. Culicanda).
 Ubicacion :
 CHOQUIZONGUILLO

 Cod Estación
 E-1
 Sentido
 ENTRADA

CAMIONETAS CAMION Traylers PORC SEMITRAYLER Auto Station Hora Pick Rural Micro 2S1/ TOTAL 2E 3E 4E 2S3 Wagon 2E > = 3S3 2T2 >=3T3 movil Panel >=3E 2T3 3T2 % UP **2S2** 3S2 00-01 1.61 01-02 6.45 02-03 1.61 03-04 1.61 04-05 8.06 05-06 3.23 06-07 12.90 07-08 6.45 08-09 8.06 09-10 6.45 10-11 9.68 11-12 3.23 12-13 3.23 13-14 4.84 14-15 3.23 15-16 3.23 16-17 8.06 17-18 8.06 18-19 0.00 19-20 0.00

VOLUMEN DE TRAFICO PROMEDIO DIARIO

4.84

0

0.00 0.00

0

0.00

0.00

0.00

0.00

Proyecto: "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

0.00

0

0.00

TramoEmp. PE-3N (Culicanda) - Emp. LF-115 (Dv. Culicanda).Ubicacion :CHOQUIZONGUILLOCod EstaciónSentidoSALIDA

9.68

CHOQUIZONGUILLO SABADO Estación Dia **Fecha** 15-May-21 CAMIONETAS CAMION PORC. SEMITRAYLER **Traylers** Station **TOTAL** Hora Micro Pick Rural 2S1/ 3S1/ Wagon 2E >=3E 2E 3E 4E 2S3 > = 3S3 2T3 3T2 >=3T3 % UP **2S2 3S2** Combi 00-01 4.08 2.04 01-02 02-03 0.00 03-04 2.04 04-05 0.00 05-06 2.04 06-07 4.08 07-08 4.08 08-09 6.12 09-10 2.04 10-11 6.12 11-12 2.04 12-13 6.12 13-14 14.29 14-15 4.08 15-16 12.24 16-17 6.12 17-18 8.16 18-19 4.08 19-20 8.16 20-21 0.00 21-22 0 0.00 22-23 0.00 23-24 2.04

VOLUMEN DE TRAFICO PROMEDIO DIARIO

0

2.04 0.00

0

0.00

0

0.00

0

0.00

0

0.00

0

0.00

0

0.00

0.00

Proyecto: "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

0

0.00

TramoEmp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda).Ubicacion :CHOQUIZONGUILLOCod EstaciónE-1SentidoAMBOS

0

0.00

10

20.41

Estación		CHOQUIZON	NGUILLO												Dia		SABADO		Fecha	15-May-21	
	Auto	Station		CAMIONET	ΓAS		В	US		CAMION			SEMIT	RAYLER			Tra	aylers			PORC.
Hora	movil	Wagon	Pick UP	Panel	Rural Combi	Micro	2E	>=3E	2E	3E	4E	2S1/ 2S2	283	3S1/ 3S2	>=3S3	2T2	2T3	3T2	>=3T3	TOTAL	%

00-01	2	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	2.70
01-02	-	-	3	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	4.50
02-03	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-			1	0.90
03-04	-	-	1	<u> </u>	1	-	-	-	-		-		<u> </u>	-	ļ	-	-	-	<u> </u>	2	1.80
04-05	-	-	2	-	2	-	-	-	1	-	-	-	-	-	-	-	-	-	-	5	4.50
05-06	1	-	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	2.70
06-07	-	4	-	-	5	-	-	-	1	-	-	-	-	-	-	-	-	-		10	9.01
07-08	-	3	1	-	1	-	-	-	1	-	-	-	-	-	-	-	-	-		6	5.41
08-09	-	3	1	2	-	-	-	1	1	-	-	-	-	-	-	-	-	-	-	8	7.21
09-10	1	2	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	4.50
10-11	-	2	1	3	1	-	-	2	-	-	-	-	-	-	-	-	-	-	-	9	8.11
11-12	-	1	-	1	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	3	2.70
12-13	-	-	-	1	-	-	-	1	2	1	-	-	-	-	-	-	-	-	-	5	8.20
13-14	2	1	1	3	1	-	-	-	2	-	-	-	-	-	-	-	-	-	-	10	9.01
14-15	1	-	-	1	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-	4	3.60
15-16	2	1	1	-	3	-	-	-	1	-	-	-	-	-	-	-	-	-	-	8	7.21
16-17	-	2	1	2	1	-	-	1	1	-	-	-		-	-	-		-	-	8	7.21
17-18	2	1	1	3	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	9	8.11
18-19	-	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	1.80
19-20	-	-	1	l	2	-	-	 	1	-	-	-	-	-	-	-	-	-	-	4	3.60
20-21	-	-	-	<u> </u>	-	-	-	-	-		-	-	l .	-	· .	-			<u> </u>	0	0.00
21-22	-	-	l -		-	-	-	-	-		-	-	<u> </u>	-	-	-	_	-	 	0	0.00
22-23		-	-			_			-		-	-	-	-	-		-		-	0	0.00
23-24	-	-	1	-	-	-	-	-	-	-	-	-	-	-	 	-	-		<u> </u>	1	0.90
TOTAL	11	20	20	18	22	0	0	6	13	1	0	0	0	0	0	0	0	0	0	111	100.00
%	9.91	18.02	18.02	16.22	19.82	0.00	0.00	5.41	11.71	0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	100.00
/0	9.91	10.02	10.02	10.22	13.02	0.00	0.00	5.41	11./1	0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	

Proyecto: "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

 Tramo
 Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda).
 Ubicacion :
 CHOQUIZONGUILLO

 Cod Estación
 E-1
 Sentido
 ENTRADA

CHOQUIZONGUILLO DOMINGO Dia Fecha 16-May-21 Estación CAMIONETAS BUS CAMION PORC. SEMITRAYLER 3S1/ Traylers Auto Station TOTAL Hora Pick Micro 2S1/ Rural 3E **2S**3 movil Wagon 2E >=3E 2E 4E > = 3S3 2T2 2T3 3T2 >=3T3 % UP 3S2 Combi 252 00-01 2.08 01-02 6.25 4.17 02-03 03-04 6.25 04-05 2.08 05-06 4.17 06-07 4.17 2.08 07-08 2.08 08-09 09-10 2.08 4.17 10-11 6.25 11-12 12-13 10.42 13-14 4.17 14-15 2.08 15-16 10.42 16-17 2 8.33 17-18 4.17 18-19 8.33 19-20 4.17 2.08 20-21 0.00 21-22 0 22-23 0.00 23-24 0.00 TOTAL 11 0 0 0 48 100.00 0 0 8 0 0 0 0 0 0.00 0.00 0.00 16.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VOLUMEN DE TRAFICO PROMEDIO DIARIO

Proyecto: "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

Tramo Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda). Ubicacion : CHOQUIZONGUILLO

Cod Estación E-1 Sentido SALIDA

Estación CHOOLIZONGUILLO Dia DOMINGO

ación		CHOQUIZON	NGUILLO												Dia		DOMINGO)	Fecha	16-May-21	
	Auto	Station		CAMIONE	TAS	_	В	US		CAMION			SEMIT	RAYLER			Tra	aylers			PO
Hora	Auto movil	Wagon	Pick UP	Panel	Rural Combi	Micro	2E	>=3E	2E	3E	4E	2S1/ 2S2	283	3S1/ 3S2	>=3S3	2T2	2T3	3T2	>=3T3	TOTAL	9
00-01																				0	0
01-02		1																		11	2
02-03						1														1	2
03-04					1															11	
04-05	1		1			111			1											4	
05-06					1															1	
06-07	1	1	1																	3	
07-08			1			1														2	
08-09			1		1	1														3	
09-10			1						1	1										3	
10-11		1																		1	
11-12	1		1			1														3	
12-13										1										1	
13-14									1		1									2	
14-15		1	1		1	1														4	
15-16		<u> </u>				1														1	
16-17			1			1														2	
17-18	·····		<u> </u>	***************************************	······································	1			1		·		1		·····		······			2	
18-19		1	1			1	l				<u> </u>		<u> </u>		<u> </u>		<u> </u>			3	
19-20		Ì	Ť	·				T			İ		1		1		İ		T	0	
20-21		1		1		2				1										3	
21-22			İ	<u> </u>						1	İ			<u> </u>	<u> </u>				1	0	
22-23		İ	T	1				·	İ	1	†		†		1		†		1	0	
23-24	***************************************		†					†	<u> </u>	<u> </u>			<u> </u>	†			†			0	
TOTAL	3	5	9	0	4	12	0	0	4	3	1	0	0	0	0	0	0	0	0	41	1
%	7.32	12.20	21.95	0.00	9.76	29 27	0.00	0.00	9.76	7.32	2 44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	一

VOLUMEN DE TRAFICO PROMEDIO DIARIO

Proyecto: "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021"

Tramo Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda). Ubicacion :

 Tramo
 Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda).
 Ubicacion :
 CHOQUIZONGUILLO

 Cod Estación
 E-1
 Sentido
 ABBOS

 Code Sentido
 Code Sentido
 ABBOS

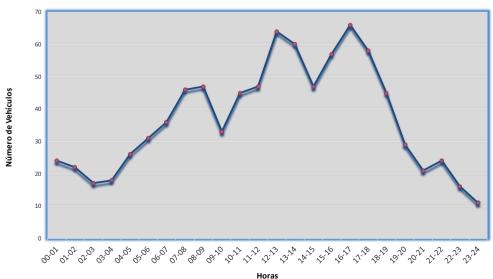
Hora Auto movil 00-01 01-02 02-03 03-04 04-05 1 05-06	Station Wagon	Pick UP	Panel	Rural Combi	Micro	2E	>= 3E	2E	3E	4E	2S1/		RAYLER 3S1/			Tra	aylers			PORC.
00-01 - 01-02 - 02-03 - 03-04 - 04-05 1 05-06 -	Wagon -		Panel -		Micro	2E	>=3E	2E	3E	ΛE	2S1/		201/							
01-02 - 02-03 - 03-04 - 04-05 1 05-06 -	- 1 1 -	- 1 1	-	1	-					72	2S2	253	3S2	>=3S3	2T2	2T3	3T2	>=3T3	TOTAL	%
01-02 - 02-03 - 03-04 - 04-05 1 05-06 -	1 1 -	1 1	-	1	-		·						ļ							
02-03 - 03-04 - 04-05 1 05-06 -	1 1	1 1	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1.12
03-04 - 04-05 1 05-06 -	-	1			-	-	-	1	-	-	-	-	-	-	-	-	-	-	4	4.49
04-05 1 05-06 -	-	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-		-	3	3.37
05-06 -	-	ļ <u>'</u>	-	2	-	-	-	1	-	-	-	-	-	-	-	-	-	-	4	4.49
		2	-	-	1	-	-	1	-	-	-	-	-	-	-	-	-	-	5	5.62
	-	1	-	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-	3	3.37
06-07	2	1	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	5	5.62
07-08	-	1	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3.37
08-09 -	-	2	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	4	4.49
09-10 -	-	1	-	-	-	-	-	2	1	-	-	-	-	-	-	-	-	-	4	4.49
10-11 -	1	-	-	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-	3	3.37
11-12 2	1	1	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	6	6.74
12-13	1	1	-	1	-	-	-	1	1	-	-	-	-	-	-	-	-	-	6	9.84
13-14 -	-	1	-	1	-	-	-	1	-	1	-	-	-	-	-	-	-	-	4	4.49
14-15 -	1	1	-	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-	5	5.62
15-16	1	-	-	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-	6	6.74
16-17 1	-	2	-	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-	6	6.74
17-18 -	-	1	-	1	1	-	-	1	-	-	-	-	-	-	-	-	-	-	4	4.49
18-19 -	3	2	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	7	7.87
19-20	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2.25
20-21 -	-	-	-	-	2	-	-	1	1	-	-	-	-	-	-	-	-	-	4	4.49
21-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
22-23 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
23-24 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
TOTAL 8	12	20	0	21	12	0	0	12	3	1	0	0	0	0	0	0	0	0	89	100.00
% 8.99	13.48	22.47	0.00	23.60	13.48	0.00	0.00	13.48	3.37	1.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	

Proyecto: Tramo Cod Estación "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta LI-116, La Libertad, 2021" Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda). Ubicacion : CHOQUIZONGUILLO

E-1

Sentido

TOTAL
DEL LUNES 10 AL DOMINGO 16 DE MAYO


DEL 2021

Estación	CHOQUIZONGUILLO	Días

Hama	Auto	Station Wagon		CAMIONET	'AS	Micro	В	us		CAMION			SEMITE	RAYLER			Tra	aylers		TOTAL
Hora	movil	Wagon	Pick UP	Panel	Rural Combi	Wagon	2E	>=3E	2E	3E	4E	2S1/ 2S2	2S3	3S1/ 3S2	>=3S3	2T2	2T3	3T2	>=3T3	TOTAL
LUNES																				
10/05/2021																				
ENTRADA	6	8	17	0	20	0	0	0	10	0	0	0	0	0	0	0	0	0	0	61
SALIDA	3	6	12	1	18	0	0	0	17	8	0	0	0	0	0	0	0	0	0	65
Ambos MARTES	9	14	29	1	38	0	0	0	27	8	0	0	0	0	0	0	0	0	0	126
11/05/2021																				
ENTRADA	8	6	17	0	24	0	0	0	10	0	0	0	0	0	0	0	0	0	0	65
SALIDA	3	6	13	1	24 19	0	0	0	17	8	0	0	0	0	0	0	0	0	0	67
Ambos	11	12	30	1	43	o	0	0	27	8	0	o	0	0	0	0	0	o	o	1 32
MIERCOLES	- ''	12	- 50	•		•					_		_					-	 	102
12/05/2021																				
ENTRADA	2	4	16	3	24	0	0	0	12	1	0	0	0	1	0	0	0	0	0	63
SALIDA	2	4	16	3	34	0	0	0	17	1	0	0	0	0	0	0	0	0	0	77
Ambos	4	8	32	6	58	0	0	0	29	2	0	0	0	1	0	0	0	0	0	140
JUEVES																				
13/05/2021							_					_		_	_	_				
ENTRADA	3	8	24	0	21	0	0	0	6	9	3	0	0	0	0	0	0	0	0	74
SALIDA	3	12	20	1	11	0	0	0	12	10	1	0	1	0	0	0	0	0	0	71
Ambos VIERNES	6	20	44	1	32	0	0	0	18	19	4	0	1	0	0	0	0	0	0	145
14/05/2021																				
ENTRADA	1	10	22	0	32	0	0	0	9	5	0	0	0	0	0	0	0	0	0	79
SALIDA	2	6	18	1	23	0	0	0	13	5	0	0	0	0	0	0	0	0	0	68
Ambos	3	16	40	1	55	ő	Ö	ő	22	10	0	ő	ő	Ö	Ö	Ö	ő	ő	ő	147
SABADO				-				,		- 10					,			-		
15/05/2021																				
ENTRADA	7	13	8	17	8	0	0	6	3	0	0	0	0	0	0	0	0	0	0	62
SALIDA	4	7	12	1	14	0	0	0	10	1	0	0	0	0	0	0	0	0	0	49
Ambos	11	20	20	18	22	0	0	6	13	1	0	0	0	0	0	0	0	0	0	111
DOMINGO																				
16/05/2021																				
ENTRADA	5	7	11	0	17	0	0	0	8	0	0	0	0	0	0	0	0	0	0	48
SALIDA	3	5	9	0	4	12	0	0	4	3	1	0	0	0	0	0	0	0	0	41
Ambos	8	12	20	0	21	12	0	0	12	3	1	0	0	0	0	0	0	0	0	89
TOTAL	52	102	215	28	269	12	0	6	148	51	5	0	1	1	0	0	0	0	0	890

Hora	Auto	Station Wagon		CAMIONE	TAS	Micro	В	us		CAMION			SEMIT	RAYLER			Tra	ylers		TOTAL	PORC.
nora	movil	Wagon	Pick UP	Panel	Rural Combi	Wagon	2E	>=3E	2E	3E	4E	2S1/ 2S2	283	3S1/ 3S2	>=3S3	2T2	2T3	3T2	>=3T3	TOTAL	%
00-01	2	3	9	-	10	_	-	-	-	-	-	-	-	-	-	-	-	-	-	24	2.70
01-02	-	1	12	-	7	-	-	-	2	-	-	-	-	-	-	-	-	-	-	22	2.47
02-03	-	2	11	-	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-	17	1.91
03-04	-	-	5	-	11	-	-	-	2	-	-	-	-	-	-	-	-	-	-	18	2.02
04-05	1	1	11	-	9	1	-	-	3	-	-	-	-	-	-	-	-	-	-	26	2.92
05-06	1	1	14	3	6	-	-	-	6	-	-	-	-	-	-	-	-	-	-	31	3.48
06-07	1	10	6	1	11	-	-	-	7	-	-	-	-	-	-	-	-	-	-	36	4.04
07-08	-	11	4	2	13	1	-	-	4	8	3	-	-	-	-	-	-	-	-	46	5.17
08-09	3	10	15	2	11	1	-	1	4	-	-	-	-	-	-	-	-	-	-	47	5.28
09-10	4	3	7	2	1	-	-	-	12	4	-	-	-	-	-	-	-	-	-	33	3.71
10-11	1	6	6	4	13	-	-	2	8	5	-	-	-	-	-	-	-	-	-	45	5.06
11-12	7	5	9	2	9	1	-	-	11	3	-	-	-	-	-	-	-	-	-	47	5.28
12-13	3	4	12	1	9	-	-	1	13	20	-	-	1	-	-	-	-	=	-	64	7.19
13-14	4	6	15	5	16	-	-	-	8	3	2	-	-	1	-	-	-	-	-	60	6.74
14-15	2	1	9	1	23	1	-	-	10	-	-	-	-	-	-	-	-	-	-	47	5.28
15-16	5	8	6	-	24	1	-	-	13	-	-	-	-	-	-	-	-	-	-	57	6.40
16-17	8	2	14	2	31	1	-	1	7	-	-	-	-	-	-	-	-	-	-	66	7.42
17-18	4	6	12	3	16	1	-	1	10	5	-	-	-	-	-	-	-	-	-	58	6.52
18-19	-	11	15	-	14	1	-	-	4	-	-	-	-	-	-	-	-	-	-	45	5.06
19-20	3	2	5	-	15	-	-	-	4	-	-	-	-	-	-	-	-	-	-	29	3.26
20-21	2	-	4	-	4	2	-	-	6	3	-	-	-	-	-	-	-	-	-	21	2.36
21-22	-	4	6	-	9	-	-	-	5	-	-	-	-	-	-	-	-	-	-	24	2.70
22-23	1	3	2	-	3	-	-	-	7	-	-	-	-	-	-	-	-	-	-	16	1.80
23-24	-	2	6	-	1	=	-	-	2	-	-	-	-	-	-	-	-	=	-	11	1.24
TOTAL	52	102	215	28	269	12	0	6	148	51	5	0	1	1	0	0	0	0	0	890	100.00
%	5.84	11.46	24.16	3.15	30.22	1.35	0.00	0.67	16.63	5.73	0.56	0.00	0.11	0.11	0.00	0.00	0.00	0.00	0.00	100.00	

"Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado – Ruta Ll-116, La Libertad, 2021" Carretera

Emp. PE-3N (Culicanda) - Emp. LI-115 (Dv. Culicanda). Tramo

Cod Estación

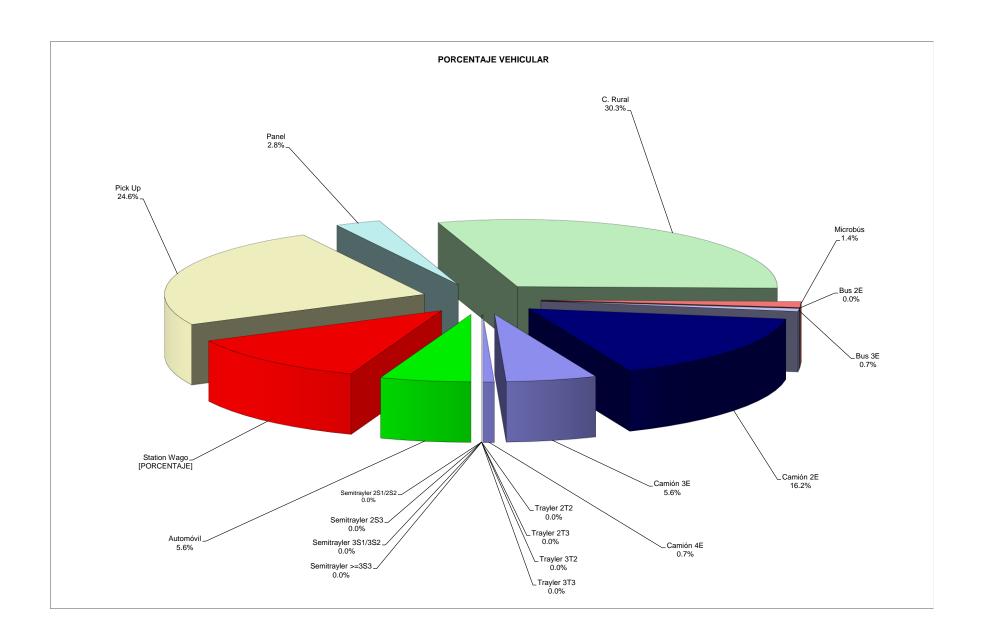
CHOQUIZONGUILLO Estación

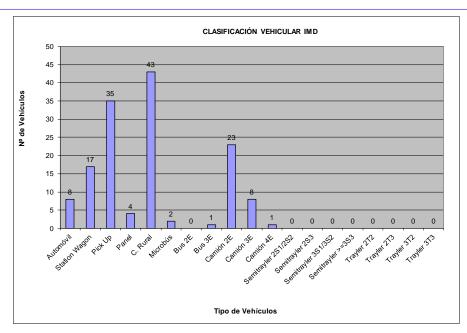
Ubicacion CHOQUIZONGUILLO Sentido

DEL LUNES 10 AL DOMINGO 16 DE MAYO DEL 2021

		STATION	C	AMIONETA	AS		В	US		CAMION			SEM	ITRAYLER			TRAY	LERS			PORC.
HORA	AUTO	WAGON	PICK UP	PANEL	RURAL (Combi)	MICRO	2E	>=3E	2E	3E	4E	2S1/2S2	283	3S1/3S2	>=3\$3	2T2	2T3	3T2	>=3T3	TOTAL	%
LUNES	9	14	29	1	38	0	0	0	27	8	0	0	0	0	0	0	0	0	0	126	14.2
MARTES	11	12	30	1	43	0	0	0	27	8	0	0	0	0	0	0	0	0	0	132	14.8
MIÉRCOLES	4	8	32	6	58	0	0	0	29	2	0	0	0	1	0	0	0	0	0	140	15.7
JUEVES	6	20	44	1	32	0	0	0	18	19	4	0	1	0	0	0	0	0	0	145	16.3
VIERNES	3	16	40	1	55	0	0	0	22	10	0	0	0	0	0	0	0	0	0	147	16.5
SABADO	11	20	20	18	22	0	0	6	13	1	0	0	0	0	0	0	0	0	0	111	12.5
DOMINGO	8	12	20	0	21	12	0	0	12	3	1	0	0	0	0	0	0	0	0	89	10.0
TOTAL	52	102	215	28	269	12	0	6	148	51	5	0	1	1	0	0	0	0	0	890	100.0
IMD	7	15	31	4	38	2	0	1	21	7	1	0	0	0	0	0	0	0	0	127	
%	5.8	11.5	24.2	3.1	30.2	1.3	0.0	0.7	16.6	5.7	0.6	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	100.0	/

TRAFICO VEHICULAR AMBOS SENTIDOS POR DÍAS


Tipo de Vehículos	Lunes	Martes	Miércoles	Jueves	Viernes	Sabado	Domingo	Total Semanal	IMDs Σ Vi/7	FC	IMDa = IMDs x FC
Automóvil	9	11	4	6	3	11	8	52	7	1.12	8
Station Wagon	14	12	8	20	16	20	12	102	15	1.12	17
Pick Up	29	30	32	44	40	20	20	215	31	1.12	35
Panel	1	1	6	1	1	18	0	28	4	1.12	4
C. Rural	38	43	58	32	55	22	21	269	38	1.12	43
Microbús	0	0	0	0	0	0	12	12	2	1.12	2
Bus 2E	0	0	0	0	0	0	0	0	0	1.12	0
Bus 3E	0	0	0	0	0	6	0	6	1	1.09	1
Camión 2E	27	27	29	18	22	13	12	148	21	1.09	23
Camión 3E	8	8	2	19	10	1	3	51	7	1.09	8
Camión 4E	0	0	0	4	0	0	1	5	1	1.09	1
Semitrayler 2S1/2S2	0	0	0	0	0	0	0	0	0	1.09	0
Semitrayler 2S3	0	0	0	1	0	0	0	1	0	1.09	0
Semitrayler 3S1/3S2	0	0	1	0	0	0	0	1	0	1.09	0
Semitrayler >=3S3	0	0	0	0	0	0	0	0	0	1.09	0
Trayler 2T2	0	0	0	0	0	0	0	0	0	1.09	0
Trayler 2T3	0	0	0	0	0	0	0	0	0	1.09	0
Trayler 3T2	0	0	0	0	0	0	0	0	0	1.09	0
Trayler 3T3	0	0	0	0	0	0	0	0	0	1.09	0
TOTAL IMD	126	132	140	145	147	111	89	890	127		142


FACTOR DE CORRECCION ESTACIONAL PEAJE VIRU

	CALCU	ILO DEL IMD	
R	esumen	de Metodologia	
IMD =-	VS 7	-	
VS = Volume	en Prome	edio Semanal	
Fc Veh. Lige	eros =	1.11994	
Fc Veh. Pes	ados =	1.09418	
IMD =		Vehiculos por dia V. x año	


TRAFICO VEHICULAR IMD Corregido (Veh/dia)

Tipo de Vehículos	IMDa	Distrib.%	Distribucion por capacidad de Vehiculo
Automóvil	8	5.6%	
Station Wagon	17	12.0%	
Pick Up	35	24.6%	76.8%
Panel	4	2.8%	70.070
C. Rural	43	30.3%	
Microbús	2	1.4%	
Bus 2E	0	0.0%	
Bus 3E	1	0.7%	0.7%
Camión 2E	23	16.2%	
Camión 3E	8	5.6%	
Camión 4E	1	0.7%	
Semitrayler 2S1/2S2	0	0.0%	
Semitrayler 2S3	0	0.0%	
Semitrayler 3S1/3S2	0	0.0%	22.5%
Semitrayler >=3S3	0	0.0%	
Trayler 2T2	0	0.0%	
Trayler 2T3	0	0.0%	
Trayler 3T2	0	0.0%	
Trayler 3T3	0	0.0%	
TOTAL IMD	142	100.0%	100.0%

Anexo 05.2. Cálculo de ESAL.

											e (ESALs S (80 PS					
Tramo	0						•									
De	e		Emp. P	E-3N (Culi	icanda)						ESTACIO	N N°				
,	A	ı	Emp. LI-1	15 (Dv. Cı	ılicanda).								E1			
																ı
actores Destructivos																
dotoroo Bootraotroo	- r	Ru	ses		Camiones	•		Semit	raylers			Trav	ylers			
	-	Du	3C 3		oannone.	•	7	Jennu				IIu	71013			
Tipo de vehículo		2E	>=3E	2E	3E	4E	2S1 / 2S2	253	3S1 / 3S2	>=383	2T2	2T3	3T2	3Т3	TOTAL	
Carga (Manual de pavimentos	3)	4.50365	2.63131	4.50365	3.28458	2.77355	7.74194	6.59142	6.52287	5.37235	10.98023	9.76115	9.76115	8.54208		•
Factor Direccional		-					I	1.0				ı		ı		
Factor Carril								1.0							1	
IMD																
(Vehículos Pesados) 202	21	0	1	23	8	1	0	0	0	0	0	0	0	0	33	
	_															
jes Equivalentes	<u></u>	Bu	ses		Camiones	S		Semit	raylers			Tray	ylers			
	Años	2E Bu	ses == ==	2E	3E	4E	2S1 / 2S2	Semite SS3 7	381 / 382 aylers	>=3S3	272	Tray	ylers 212	3T3	EAL Anual	Acumu
2021	0	2 E	960	37,808	ж 9,591	1,012	0	0 283	0 381 / 382	0	0	0 2T3	0 372	0	Anual 4.94E+04	Acum (
2021 2022	0 1	0 0	960 960	37,808 50,959	명 9,591 11,989	1,012 1,012	0	583 0	0 0 381 / 382	0	0	0 0 213	0 0 312	0	Anual 4.94E+04 6.49E+04	4.94 6.49
2021 2022 2023	0 1 2	0 0 0	960 960 960	37,808 50,959 54,247	9,591 11,989 14,386	1,012 1,012 1,012	0 0 0	0 0 0	0 0 0 381 / 382	0 0 0	0 0 0	0 0 213	0 0 312	0 0 0	4.94E+04 6.49E+04 7.06E+04	4.94 6.49
2021 2022	0 1	0 0 0 0	960 960 960 960 960	37,808 50,959 54,247 55,890	9,591 11,989 14,386 14,386	1,012 1,012 1,012 1,012	0 0 0	0 0 0 0	0 0 381 / 382	0 0 0 0	0	0 0 0 0	0 0	0 0 0	Anual 4.94E+04 6.49E+04	4.94 6.49 1.30 2.08
2021 2022 2023 2024	0 1 2 3	0 0 0	960 960 960	37,808 50,959 54,247	9,591 11,989 14,386	1,012 1,012 1,012	0 0 0	0 0 0	0 0 0 381 / 382	0 0 0	0 0 0 0	0 0 213	0 0 312	0 0 0	4.94E+04 6.49E+04 7.06E+04 7.22E+04	4.94 6.49 1.30 2.00 2.82
2021 2022 2023 2024 2025 2026 2027	0 1 2 3 4 5 6	0 0 0 0 0	960 960 960 960 960 960 960	37,808 50,959 54,247 55,890 57,534 59,178 62,466	9,591 11,989 14,386 14,386 14,386 15,585 15,585	1,012 1,012 1,012 1,012 1,012 1,012 1,012 1,012	0 0 0 0	0 0 0 0 0	0 0 381 / 382	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	Anual 4.94E+04 6.49E+04 7.06E+04 7.22E+04 7.39E+04 7.67E+04 8.00E+04	4.94 6.49 1.30 2.08 2.82 3.58 4.38
2021 2022 2023 2024 2025 2026 2027 2028	0 1 2 3 4 5 6	0 0 0 0 0 0 0	960 960 960 960 960 960 960 960	37,808 50,959 54,247 55,890 57,534 59,178 62,466 64,110	9,591 11,989 14,386 14,386 14,386 15,585 15,585	1,012 1,012 1,012 1,012 1,012 1,012 1,012 1,012 1,012	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	Anual 4.94E+04 6.49E+04 7.06E+04 7.22E+04 7.39E+04 7.67E+04 8.00E+04 8.17E+04	4.94 6.49 1.36 2.08 2.82 3.58 4.38
2021 2022 2023 2024 2025 2026 2027	0 1 2 3 4 5 6	0 0 0 0 0 0	960 960 960 960 960 960 960	37,808 50,959 54,247 55,890 57,534 59,178 62,466	9,591 11,989 14,386 14,386 14,386 15,585 15,585	1,012 1,012 1,012 1,012 1,012 1,012 1,012 1,012	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 381 / 382	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	Anual 4.94E+04 6.49E+04 7.06E+04 7.22E+04 7.39E+04 7.67E+04 8.00E+04	4.94 6.49 1.36 2.08 2.83 3.56 4.38 5.20 6.09

Anexo 06.

Estudio de Suelos.

Anexo 06.1. Fichas de Campo.

Ruta LI-116

"Influencia en el diseño de pavimento considerando una base estabilizada con cemento y aceite sulfonado – ruta LI-116, La Libertad, 2021"

PERFIL ESTRATIGRÁFICO (ASTM D-2488)

PROVIENE : PLATAFORMA EXISTENTE

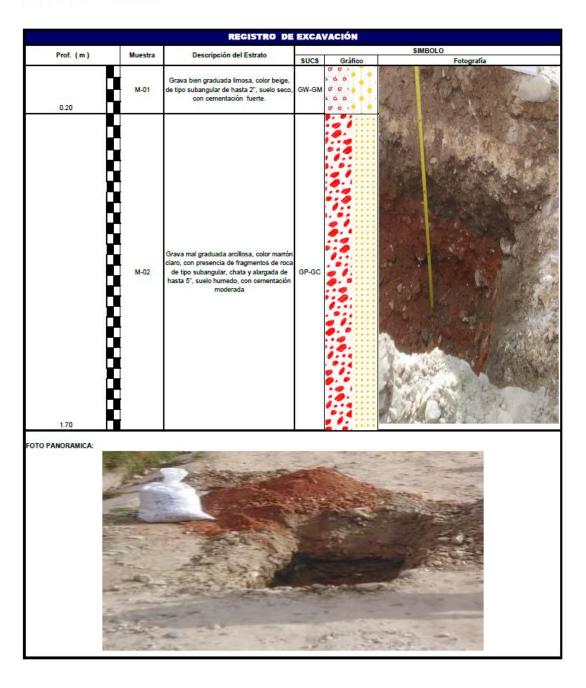
COORDENADA : N 9131433 E 819898
PROGRESIVA : 0+005.19 km

CALICATA : LI116/C-01

N° DE ESTRATOS : 2

RUTA : LI-116

NIVEL FREÁTICO : NO SE ENCONTRO


MUESTREADO A : CIELO ABIERTO

FECHA MUESTREO : 3/06/2021

MUESTREADO POR : ANDY GUILLÉN - CARLOS AYQUIPA

REVISADO

FECHA : 3/06/202 ZONA : 17 PROFUNDIDAD : 1.70 m

"Influencia en el diseño de pavimento considerando una base estabilizada con cemento y aceite sulfonado – ruta LI-116, La Libertad, 2021"

: 3/06/2021

PERFIL ESTRATIGRÁFICO (ASTM D-2488)

FECHA MUESTREO

PROVIENE : PLATAFORMA EXISTENTE

COORDENADA : N 9129519 E 819288 MUESTREADO POR : ANDY GUILLÉN - CARLOS AYQUIPA

PROGRESIVA : 2+549.92 km REVISADO

 CALICATA
 : LI116/C-02
 FECHA
 : 3/06/2021

 N° DE ESTRATOS
 : 2
 ZONA
 : 17

 RUTA
 : LI-116
 PROFUNDIDAD
 : 1.7 m

NIVEL FREÁTICO : NO SE ENCONTRO MUESTREADO A : CIELO ABIERTO

(C) 157(E) 157E	1000	REGISTRO DI	-		SIMBOLO
Prof. (m)	Muestra	Descripción del Estrato	SUCS	Gráfico	Fotografía
0.30	M-01	Grava arcillo limosa, color marrón claro, con presencia de fragmentos de roca de tipo subangular de hasta 8", suelo humedo, con cementación moderada.	GC-GM		
1.70	M-02	Arena limosa, color marrón oscuro, con presencia de grava de tipo subangular de hasta 3°, suelo humedo, con cementación moderada	SM		FIG. 1. CHARD TRANS. TO CHARD IN THE PROPERTY OF THE PROPERTY

"Influencia en el diseño de pavimento considerando una base estabilizada con cemento y aceite sulfonado - ruta LI-116, La Libertad, 2021"

PERFIL ESTRATIGRÁFICO (ASTM D-2488)

PROVIENE : PLATAFORMA EXISTENTE

: N 9127631 E 818953 COORDENADA MUESTREADO POR

: 4+823.06 km PROGRESIVA

CALICATA : LI116/C-03 N° DE ESTRATOS : 2 RUTA : LI-116

NIVEL FREÁTICO : NO SE ENCONTRO MUESTREADO A : CIELO ABIERTO

FECHA MUESTREO : 3/06/2021

: ANDY GUILLÉN - CARLOS AYQUIPA

REVISADO

FECHA : 3/06/2021 ZONA : 17 PROFUNDIDAD : 1.20 m

Prof. (m)	Muestra	Descripción del Estrato	37		SIMBOLO
Prof. (m)	muestra	Descripcion del Estrato	SUCS	Gráfico	Fotografia
0.45	M-01	Grava arcillosa, color beige, con presencia de fragmentos de roca de tipo sub redondeado, alargada de hasta 5°, suelo seco, con cementación fuerte.	GC		
1.20	M-02	Limo y arcilla inorgánica de baja plasticidad, color amarillo, con presencia de grava de tipo subangular, chata y alargada de hasta 3", suelo humedo, de consistencia firme.	CL-ML		
1.50		Presencia de roca fracturada angulosa, color marrón, en estado compacto en forma de bloques		2/2/11	

"Influencia en el diseño de pavimento considerando una base estabilizada con cemento y aceite sulfonado – ruta LI-116, La Libertad, 2021"

: 3/06/2021

PERFIL ESTRATIGRÁFICO (ASTM D-2488)

FECHA MUESTREO

PROVIENE : PLATAFORMA EXISTENTE

COORDENADA : N 9125455 E 818883 MUESTREADO POR : ANDY GUILLÉN - CARLOS AYQUIPA

PROGRESIVA : 7+369.15 km REVISADO

 CALICATA
 : LI116/C-04
 FECHA
 : 3/06/2021

 N° DE ESTRATOS
 : 2
 ZONA
 : 17

 RUTA
 : LI-116
 PROFUNDIDAD
 : 1.7 m

NIVEL FREÁTICO : NO SE ENCONTRO
MUESTREADO A : CIELO ABIERTO

		REGISTRO DI	EXCA	VACION		
Prof. (m)	Muestra	Descripción del Estrato		0.00	SIMBOLO	
rioi. (m)	muestra	Descripcion del Estrato	SUCS	Gráfico	Foto	grafía
0.40	M-01	Grava arcillo limosa, color marrón claro, con presencia de fragmentos de roca de tipo subangular de hasta 6°, suelo seco, con cementación moderada.	GC-GM			
	M-02	Arena limosa, color gris, con presencia de grava de tipo subangular de hasta 3°, suelo humedo, con cementación moderada	SM			

CONCENENT A ENFLOISENCE DE PAVIMENTO CON CEMENTO JUNA BASE ESTABLIFANA CON CEMENTO Y ACERTE SULFONADO AUTA LI-116, TRUSILUO-L'ULCANDA, 2021 (CALICATA - CA-04 RITA-LI-116 COURDENADAS Nº 9125458 E. 818883

FECHA: 03-06-8

"Influencia en el diseño de pavimento considerando una base estabilizada con cemento y aceite sulfonado – ruta LI-116, La Libertad, 2021

: 3/06/2021

PERFIL ESTRATIGRAFICO (ASTM D-2488)

FECHA MUESTREO

PROVIENE : PLATAFORMA EXISTENTE

COORDENADA : N 9123181 E 818961 MUESTREADO POR : ANDY GUILLÉN - CARLOS AYQUIPA

PROGRESIVA : 9+732.44 km REVISADO

 CALICATA
 : LI116/C-05
 FECHA
 : 3/06/2021

 Nº DE ESTRATOS
 : 2
 ZONA
 : 17

 RUTA
 : LI-116
 PROFUNDIDAD
 : 1.70 m

NIVEL FREATICO : NO SE ENCONTRO
MUESTREADO A : CIELO ABIERTO

Prof. (m)	SUSTRIA	Desoripción del Estrato		9 55	SIMBOLO
Prof. (m)	Muectra	Decompoion del Estrato	sucs	Grafico	Fotografia
0.40	M-01	Grava arcilio limosa, color marrón ciaro, con presencia de fragmentos de roca de tipo subangular, chata de hasta 6°, suelo seco, con cementación fuerte.	gс-дм		
	M+02	Grava limosa, color mamón claro, con presencia de fragmentos de roca de spo subangular, chata de hasta 6º, suelo humedo, con cementación moderada	GM		

"Influencia en el diseño de pavimento considerando una base estabilizada con cemento y aceite sulfonado - ruta LI-116, La Libertad, 2021"

PERFIL ESTRATIGRÁFICO (ASTM D-2488)

: PLATAFORMA EXISTENTE PROVIENE

COORDENADA : N 9120578 E 820080

: 10+675.10 km PROGRESIVA : LI116/C-06

N° DE ESTRATOS ::1 RUTA : LI-116

CALICATA

NIVEL FREATICO : NO SE ENCONTRO : CIELO ABIERTO MUESTREADO A

FECHA MUESTREO : 3/06/2021

MUESTREADO POR : ANDY GUILLÉN - CARLOS AYQUIPA

REVISADO

: 3/06/2021 FECHA ZONA : 17 PROFUNDIDAD : 0.70 m

Deef (m)	Muestra	December 1/2 del Februar			SIMBOLO
Prof. (m)	Muestra	Descripción del Estrato	SUCS	Gráfico	Fotografía
0.70	M-01	Grava arcillo limosa, color marrón, con presencia de fragmentos de roca de tipo sub redondeado, alargada de hasta 6°, suelo seco, con cementación moderada.	GC-GM		
		Presencia de roca fracturada angulosa, color marrón oscuro, en estado compacto en forma de bloques			

Cantera Salome

"Influencia en el diseño de pavimento considerando una base estabilizada con cemento y aceite sulfonado – ruta LI-116, La libertad, 2021"

PERFIL ESTRATIGRÁFICO (ASTM D-2488)

CANTERA : SALONE

COORDENADA : N 9132829 E 823670

PROGRESIVA : DV. A 6.23 KM DE 0+000 km

CALICATA : C-1
Nº DE ESTRATOS : 1
RUTA : LI-116
NAIGH EREÁTICO : NO SE

NIVEL FREATICO : NO SE ENCONTRO
MUESTREADO A : CIELO ABIERTO

FECHA MUESTREO : 2/06/2021

MUESTREADO POR : ANDY GUILLÉN - CARLOS AYQUIPA

REVISADO :

FECHA : 2/06/2021 ZONA : 17 M PROFUNDIDAD : 3.0 m

		REGISTRO DE EXC	AVAG	IÓN	
Prof. (m)	Muestra	Descripción del Estrato	ANTON	2011	SIMBOLO
	M-01	Grava limosa, color marrón claro, con presencia de fragmentos de roca de tipo subangular de hasta 6°, suelo seco, con cementación fuerte.	GM	Gráfico	Fotografia
3.00 TO PANORAMICA:	to a Birth Count of the		*		
		THE CHAIRSAS	VIZE.	12-01	

"Influencia en el diseño de pavimento considerando una base estabilizada con cemento y aceite sulfonado - ruta LI-116, La Libertad, 2021"

PERFIL ESTRATIGRÁFICO (ASTM D-2488)

CANTERA : SALOME FECHA MUESTREO : 2/06/2021

: N 9132838 : ANDY GUILLÉN - CARLOS AYQUIPA COORDENADA E 803675 MUESTREADO POR

: DV. A 6.29 KM DEL 0+000 km **PROGRESIVA** REVISADO

: T-1 TRINCHERA **FECHA** : 2/08/2021 N° DE ESTRATOS : 1 ZONA : 17 M RUTA : LI-116 PROFUNDIDAD : 3.0 m

: NO SE ENCONTRO NIVEL FREÁTICO MUESTREADO A : CIELO ABIERTO

		REGISTRO DE EXC	AVACI	ÓN	
Prof. (m)	Muestra	Descripción del Estrato		1714447	SIMBOLO
rioi. (m)	Muestra	Descripcion del Estrato	SUCS	Gráfico	Fotografia
3.00	M-01	Grava limosa, color marrón claro, con presencia de fingmentos de roca de tipo subangular de hasta 6°, suelo seco, con cementación fuerte.	GM		

FOTO PANORAMICA:

INFLIENCIA EN EL DISENO DE PAYMENTO LOBORAMON
UNA BASE ESTABILIZADA LON CERLENTO Y ACETE
SULFAMADO - RUTA LI-116. TRUDILLOCLULCANDA, 2021.6 TRUDILLOEANTERA SALOME RUTA LI-116 CUTA: 3257 mas

COURDENADA N: 9/32838 E: 823675

TRINCHERA - TOI

"Influencia en el diseño de pavimento considerando una base estabilizada con cemento y aceite sulfonado – ruta LI-116, La Libertad, 2021"

PERFIL ESTRATIGRÁFICO (ASTM D-2488)

CANTERA : SALOME FECHA MUESTREO : 2/08/2021

COORDENADA : N 9132850 E 823678 MUESTREADO POR : ANDY GUILLÉN - CARLOS AYQUIPA

PROGRESIVA : DV. A 6.23 KM DEL 0+000 km REVISADO

 TRINCHERA
 : T-2
 FECHA
 : 2/06/2021

 N° DE ESTRATOS
 : 1
 ZONA
 : 17 M

 NIVEL FREÁTICO
 : NO SE ENCONTRO
 PROFUNDIDAD
 : 3.0 m

 MUESTREADO A
 : CIELO ABIERTO

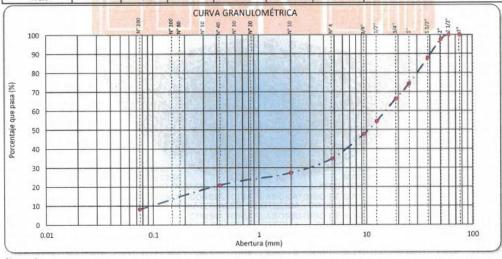
		REGISTRO DE EX	CAVAC	CIÓN
Prof. (m)	Muestra	Descripción del Estrato		SIMBOLO
3.00	M-01	Grava arcillo limosa, color marrón claro, con presencia de fragmentos de roca de tipo subangular de hasta 5", suelo seco, con cementación fuerte.	cc car	
O PANORAMICA:		"INFLUENTIA ENEL DEE LOUSIDERANDO UMA DA COU LEMENTO Y DICHE LAMTERI SALOHE: LOURDE MADA: E . 82 36 78 N. 9/3 2850 TRI FELHA: 02-06-202	7A 32	AUHENTO ARMI E PRA ALCONOMIA PA-TO2

Anexo 06.2. Ensayos a muestras de la ruta LI-116.

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMÉTRICO POR TAMIZADO NORMAS TÉCNICAS: MTC E 107, ASTM D 422, AASHTO T 88

DATOS DE LA MUESTRA


"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

PLATAFORMA EXISTENTE DESCRIPCIÓN COORDENADAS

N 9131433 / E 819696 PROFUNDIDAD: 0.00 -0.20

CALICATA C - 01 MUESTRA

TAMIZ	ABERTURA (mm)	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFIC.	DESCRIPCIÓN DE	LA MUEST	TRA
4"	101.600	-		The same of the sa			Peso de la N	Auestra	
3"	76.200						Peso Total de la Muestra	(gr.):	16848
2 1/2"	60.350				100.0		Material Fino < N°4	(gr.):	5863
2"	50.800	414.1	2.5	2.5	97.5		Material Grueso > N*4	(gr.):	10985
1 1/2"	38.100	1638.1	9.7	12.2	87.8		Fracción Material < Nº4	(gr.):	581.0
1"	25.400	2296.1	13.6	25.8	74.2		Limites de Cor	nsistencia	
3/4"	19.000	1318.1	7,8	33.6	66.4		Limite Liquido	(%):	NP
1/2"	12.500	2010.1	11.9	45.6	54.4		Límite Plástico	(%):	NP
3/8"	9.500	1128.1	6.7	52.3	47.7		Indiçe Plástico	(%):	NP
Nº4	4.750	2180.1	12.9	65.2	34.8		Clasificación	de Suelo	
Nº8	2.380	70.20	4.2	69.4	30.6		Clasificación SUCS		GW-GN
N°10	2.000	54.82	3.3	72.7	27.3		Clasificación AASHTO	- 1	A-1-a (0
N°16	1.190	30.11	1.8	74.5	25.5				
N°20	0.840	30.20	1.8	76.3	23.7				
N°30	0.600	21.82	1.3	77.6	22.4	Mark W.			
N°40	0.425	25.42	1,5	79.1	20.9	1455	Humedad Natural	(%)	3.3
N°50	0.300	48.10	2.9	82.0	18.0	I Halle	The second second		
N°80	0.177	50.10	3.0	85.0	15.0				
N°100	0.150	77.71	4.7	89.7	10.3				
N°200	0.075	34.72	2.1	91.7	8.3				
< N°200	FONDO	137.8	8.3	100.0	0.0		RELEGIES DO		

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵 r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

RUTA: LI-116

FECHA: 19/07/2021

HECHO POR: J.L.Q.M

Av. Diagonal Norte Nº 750, Ofic. N 501-SMP 🔞

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y ASFALTO

DETERMINACIÓN DE HUMEDAD NATURAL NORMAS TÉCNICAS: MTC E 108, ASTM D 2216

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

PLATAFORMA EXISTENTE DESCRIPCIÓN COORDENADAS : N 9131433 / E 819696

RUTA: LI -116 PROFUNDIDAD: 0.00 -0.20

CALICATA : C - 01 MUESTRA M - 1

HECHO POR: J.L.Q.M FECHA: 19/07/2021

ENSAYO Nº				
N° DE TARA		T-24	The sale of the sa	
PESO TARA + SUELO HÚMEDO	(gr)	1599.1		
PESO TARA + SUELO SECO	(gr)	1550.1		
PESO DE LA TARA	(gr)	72.1		
PESO DEL AGUA	(gr)	49.0		
PESO DE L SUELO SECO	(gr)	1478.0		
CONTENIDO DE HUMEDAD	(%)	3.32		
HUMEDAD NATURAL	(%)		3.3	

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP N° 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com
Av. Diagonal Norte Nº 750, Ofic. N 501- SMP

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y ASFALTO

LÍMITES DE CONSISTENCIA - MALLA N°40 NORMAS TÉCNICAS: MTC E 110 - MTC E 111, ASTM D 4318, AASHTO T 89 - T 90

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN : PLATAFORMA EXISTENTE

COORDENADAS : N 9131433 / E 819696 CALICATA : C - 01

MUESTRA : M-1

RUTA: LI -116

PROFUNDIDAD: 0.00 -0.20

HECHO POR: J.L.Q.M FECHA: 19/07/2021

		LÍMITE LÍQUIDO (MTC E 110, AASHTO T	(89)	
N° DE TARA				
PESO TARA + SUELO HÚMEDO	(gr)	THE STATE OF THE S	NAME OF TAXABLE PARTY.	
PSO TARA + SUELO SECO	(gr)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
PESO DEL AGUA	(gr)			
PESO DE LA TARA	(gr)			
PESO DE L SUELO SECO	(gr)	9 9 9	9 9 9	
CONTENIDO DE HUMEDAD	(%)	Colored III	the first and the state of the	
NÚMERO DE GOLPES				
		LÍMITE PLÁSTICO (MTC E 111, AASHTO	T 90)	
N° DE TARA				The same
PESO TARA + SUELO HÚMEDO	(gr)			
PSO TARA + SUELO SECO	(gr)	00 0 000		
PESO DE LA TARA	(gr)			
PESO DEL AGUA	(gr)			
PESO DE L SUELO SECO	(gr)		0 00	
CONTENIDO DE HUMEDAD	(%)	Topicals Indian Co.	Indiana de la Proposición de l	

CONSTANTES FÍSICAS DE LA MUESTRA				
LIMITE LÍQUIDO	(%)	NP		
LIMITE/PLASTICO	(%)	NP		
INDICE DE PLASTICIDAD	(%)	NP		

OBSERVACIONES

José Luis Quispe Mendoza Tec. Laporatorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLAS USANO INGENIERA CIVIL Reg. CIP Nº 67689

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

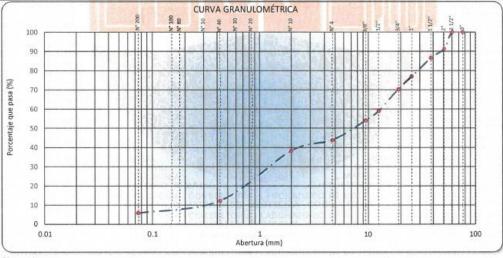
982 840 339 / 956 363 147 🛅

Av. Diagonal Norte Nº 750, Ofic. N 501- SMP

ANALISIS GRANULOMÉTRICO POR TAMIZADO NORMAS TÉCNICAS: MTC E 107, ASTM D 422, AASHTO T 88

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"


DESCRIPCIÓN PLATAFORMA EXISTENTE COORDENADAS

RUTA: LI-116 N 9131433 / E 819696 PROFUNDIDAD: 0.20 -1.70 HECHO POR: J.L.Q.M

CALICATA C-01 MUESTRA

TAMIZ	ABERTURA (mm)	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFIC.	DESCRIPCIÓN DE	LA MUEST	RA
4"	101.600			-	-		Peso de la l	duestra	
3"	76.200				100.0		Peso Total de la Muestra	(gr.):	14318
2 1/2"	60.350	1000.0	7.0	7.0	100.0		Material Fino < N*4	(gr.):	6282
2"	50.800	248.0	1.7	8.7	91.3		Material Grueso > N°4	(gr.):	8036
1.1/2"	38.100	683.0	4.8	13.5	86.5		Fracción Material < N*4	(gr.):	612.4
1"	25.400	1389.0	9.7	23.2	76.8		Limites de Co	nsistencia	
3/4"	19.000	946.0	6.6	29.8	70.2		Limite Liquido	(%):	24
1/2"	12.500	1613.0	11.3	41.1	58.9		Limite Plástico	(%):	16
3/8"	9.500	706.0	4.9	46.0	54.0		Indice Plástico	(%):	8
	The second secon						THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED I	NAME AND ADDRESS OF THE OWNER, WHEN	

2"	50.800	248.0	1.7	8.7	91.3	Material Grueso > N°4	(gr.):	8036
1 1/2"	38.100	683.0	4.8	13.5	86.5	Fracción Material < N*4	(gr.):	612.4
1"	25.400	1389.0	9.7	23.2	76.8	Limites de Consistencia		
3/4"	19.000	946.0	6.6	29.8	70.2	Limite Liquido	(%):	24
1/2"	12.500	1613.0	11.3	41.1	58.9	Limite Plástico	(%):	16
3/8"	9.500	708.0	4.9	46.0	54.0	Indice Plástico	(%):	8
N°4	4.750	1449.0	10.1	56.1	43.9	Clasificación	de Suelo	
N°8	2.380	39.00	2.8	58.9	41.1	Clasificación SUCS		GP-GC
N*10	2.000	40.00	2.9	61.8	38.2	Clasificación AASHTO	54	A-2-4 (0)
N°16	1.190	58.20	4.2	66.0	34.0			
N°20	0.840	117.40	8.4	74.4	25.6			
N°30	0.600	164.40	11.8	86.1	13.9	(10.79)		
N°40	0.425	22.00	1.6	87.7	12.3	Humedad Natural	(%):	5.5
N°50	0.300	20 00	1.4	89.2	10.8			
N°80	0.177	30.70	2.2	91.4	8.6	Máxima dens. Seca	(gr/cm ³):	2.107
N*100	0.150	37.10	27	94.0	6.0	Óptimo Cont. Humedad	(%):	9.1
N°200	0.075	2.40	0.2	94.2	5.8	CBR 0.1" al 95% MDS	(%):	29.4
< N°200	FONDO	81.2	5.8	100.0	0.0	CBR 0.1* al 100% MDS	(%):	37.8

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com ir.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

FECHA: 19/07/2021

DETERMINACIÓN DE HUMEDAD NATURAL NORMAS TÉCNICAS: MTC E 108, ASTM D 2216

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO --RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN : PLATAFORMA EXISTENTE COORDENADAS : N 9131433 / E 819696 RUTA: LI -116 PROFUNDIDAD: 0.20 -1.70 HECHO POR: J.L.Q.M

FECHA: 19/07/2021

CALICATA : C-01 MUESTRA : M-2

ENSAYO Nº N' DE TARA PESO TARA + SUELO HÚMEDO 1112.0 PESO TARA + SUELO SECO 1056.0 PESO DE LA TARA (gr 39.0 PESO DEL AGUA 56.0 (gr PESO DE L SUELO SECO 1017.0 (gr 5.51 (%)

HUMEDAD NATURAL (%)

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL REG. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

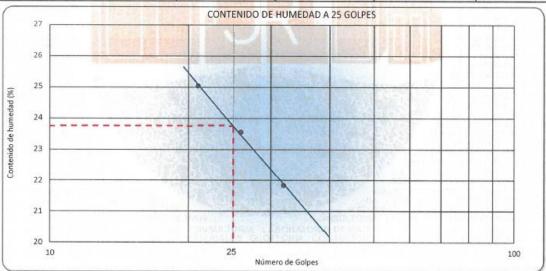
LÍMITES DE CONSISTENCIA - MALLA N°40 NORMAS TÉCNICAS: MTC E 110 - MTC E 111, ASTM D 4318, AASHTO T 89 - T 90

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN : PLATAFORMA EXISTENTE

COORDENADAS : N 9131433 / E 819696 CALICATA : C-01


MUESTRA : M-2

RUTA: LI-11

PROFUNDIDAD : 0.20 -1.70 HECHO POR: J.L.Q.M

FECHA: 19/07/2021

		LIMITE LIQUIDO (MTC	E 110, AASHTO T 89)		
N" DE TARA		T-49	T-46	T-09	
PESO TARA + SUELO HÚMEDO	(gr)	51.10	48.76	51.73	
PSO TARA + SUELO SECO	(gr)	46.10	44.58	44.99	
PESO DEL AGUA	(gr)	5.00	4.18	6.74	
PESO DE LA TARA	(gr)	26.13	26.84	14.11	
PESO DE L SUELO SECO	(gr)	19.97	17.74	30.88	
CONTENIDO DE HUMEDAD	(%)	25.04	23.56	21.83	
NÚMERO DE GOLPES		21	26	32	
N° DE TARA		LÍMITE PLÁSTICO (MT	C E 111, AASHTO T 90)		
PESO TARA + SUELO HÚMEDO	(gr)	39.08	38.27		
PSO TARA + SUELO SECO	(gr)	37.58	36.91		
PESO DE LA TARA	(gr)	27.69	28.37		
PESO DEL AGUA	(gr)	1.50	1.36		
PESO DE L SUELO SECO	(gr)	9.89	8.54		
CONTENIDO DE HUMEDAD	(%)	15.17	15.93		

CONSTANTES FÍSICAS DE LA MUESTRA							
LÍMITE LÍQUIDO	(%)	24					
LÍMITE/BLÁSTICO	(%)	16					
INDICE DE PLASTICIDAD	(%)	8.					

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL REG. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

Av. Diagonal Norte Nº 750, Ofic. N 501- SMP

OBSERVACIONES

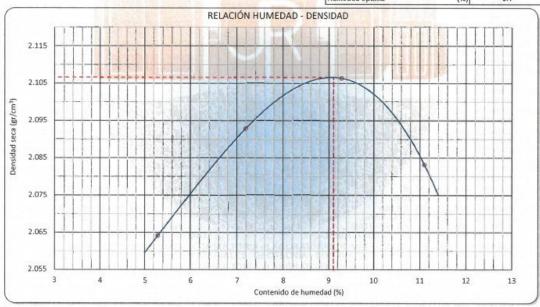
proyectos@jrgeoconsultores.com

PROCTOR MODIFICADO NORMAS TÉCNICAS: MTC E115, ASTM D 1557, AASHTO T 180

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN : PLATAFORMA EXISTENTE


RUTA: LI -116 PROFUNDIDAD: 0.20 -1.70

COORDENADAS : N 9131433 / E 819696

HECHO POR: J.L.Q.M FECHA: 19/07/2021

CALICATA : C-01 MUESTRA : M-2

Ensayo N' iúmero de Capas Golpes de Pisón por Capa 11112 11259 11408 eso molde + base 6548 6548 6548 6548 (gr Peso suelo húmedo compactado 4564 4711 4834 4860 (gr Volumen del molde (cm² 2100 2100 2100 2100 2.173 Peso volumétrico húmedo 2.302 2.243 2.314 736.0 765.2 643.0 741.7 (gr Peso del suelo seco + tara 705.3 600.1 (gr 722.0 680.0 Peso de Tara 125.0 138.0 124.0 121.2 (gr) Peso de agua 42.9 30.7 43.2 61.7 (gr Peso del suelo seco 580.3 462.1 600.8 556.0 (gr Contenido de agua 5.3 7.2 9.3 11.1 (% Peso volumétrico seco 2.064 2.093 Densidad máxima 2.107 (gr/cm² Húmedad óptima 9.1

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLASUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com
jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

PLATAFORMA EXISTENTE DESCRIPCIÓN

COORDENADAS ; C-01 CALICATA

: N 9131433 / E 819696

MUESTRA M-2 RUTA: LI -116

PROFUNDIDAD: 0.20 -1.70 HECHO POR: J.L.Q.M

FECHA: 19/07/2021

	De la Day	OF THE PARTY OF TH	COMPACT	ACIÓN	ACCURATION AND VALUE	CALCULATION STATE	SC STREET,		
Molde N*			15	11	112 113				
N* Capas		THE THURSDAY		1000-1-15		OVERTICAL PROPERTY.			
N° golpes por capa				26					
Condición de la muestra		NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO		
Peso de molde + Suelo húmedo	(gr)	12849	12893	12698	12797	12357	12495		
Peso de molde + base	(gr)	7901	7901	7984	7984	7914	7914		
Peso del suelo húmedo	(gr)	4948	4992	4714	4813	4443	4581		
Volumen del molde	(cm ³)	2146	2146	2153	2153	2138	2138		
Densidad húmeda	(gr/cm ³)	2.306	2.326	2.190	2.235	2.078	2.143		
N° Tara		T-44	T-78	T-105	T-66	T-45	T-78		
Peso suelo húmedo + tara	(91)	423.0	946.8	821.8	889.8	712.3	869.9		
Peso suelo seco + tara	(gr)	396.3	869.4	762.4	810.3	660.4	785.0		
Peso de tara	(gr)	115.4	132.2	130.4	130.5	120.0	132.2		
Peso de agua	(gr)	26.7	77.4	59.4	79.5	51.9	84.9		
Peso de suelo seco	(gr)	280.9	737.2	632.0	679.8	540.4	652.8		
Contenido de humedad	(%)	9.5	10.5	9.4	11.7	9.6	13.0		
Densidad seca	(gr/cm ³)	2.106	2.105	2.001	2.001	1.896	1.896		

100 90 EXPANSIÓN EXPANSION EXPANSION EXPANSIÓN HORA TIEMPO DIAL 12/07/2021 07:58 0.000 13/07/2021 07:58 0.000 0.00 0.000 0.00 0.000 0.00 14/07/2021 07:58 48 0.000 0.00 0.00 0.000 0.00 15/07/2021 07:58 72 0.000 0.00 0.00 0.000 0.00 0.000 07:58 0.000 0.00 96 0.00 0.000 0.00 0.000

				2000	PENETRA	CIÓN								
	CARGA		MOLE	DE Nº 115			MOLD	E Nº 112			MOLDE Nº 113			
	ESTÁNDAR	ESTÁNDAR	CAR	GA	CORR	ECCIÓN	CAR	GA	CORRE	ECCIÓN	CAR	GA	CORRECCIÓN	
	(kg/cm2)	Dial (div)	kg	kg	%	Dial (div)	kg	kg	*	Dial (div)	kg	kg	%	
0.000	100	7	.0				0				0			
0.635			125				90				68			
1.270			254				176				147			
1.905			389				282				224			
2.540	70.5		542	521.0	37.7		425	406.7	29.4		350	333.1	24.1	
3.810			763				644				542			
5.080	105.7		982	975.6	47.0		865	851.7	41.0		726	741.1	35.7	
6.350			1154				1026				941			
7.620			1362				1254				1094			
10.600			1654				1536				1423			
12.700			1854				1678				1542			

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLAS USANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

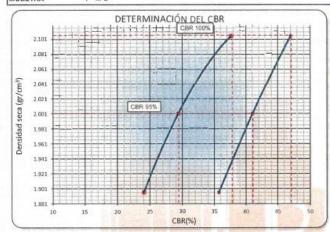
jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

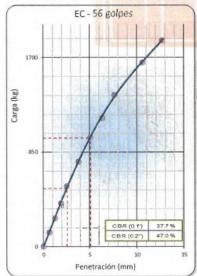
"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

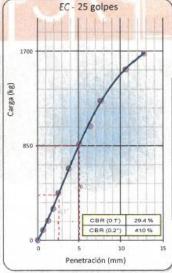

DESCRIPCIÓN PLATAFORMA EXISTENTE COORDENADAS : N 9131433 / E 819696

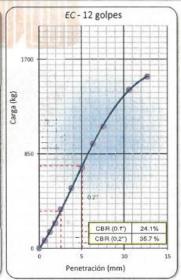
: C-01 CALICATA MUESTRA M-2

RUTA: LI-116

PROFUNDIDAD: 0.20 -1.70 HECHO POR: J.L.Q.M


FECHA: 19/07/2021




DATOS DEL PROCTOR MODIFICADO						
PROCTOR MODIFICADO ASTM		1557				
MÁXIMA DENSIDAD SECA	(gr/cm ³):	2 107				
ÓPTIMO CONTENIDO DE HUMEDAD	(%):	9.1				
95% DE LA MAXIMA DENSIDAD SECA	(gr/cm ³):	2.001				

PORCENTAJE DEL CBR							
GBR. AL 95% DE M.D.S. (%)	0.1"	29,4	0.2"	41.0			
C.B.R. AL 100% DE M.D.S. (%)	0.1"	37.8	0.2"	47.5			

Observaciones:

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOL A SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵 r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com 🗧

Av. Diagonal Norte Nº 750, Ofic. N 501- SMP [9]

proyectos@jrgeoconsultores.com

ANALISIS GRANULOMÉTRICO POR TAMIZADO NORMAS TÉCNICAS: MTC E 107, ASTM D 422, AASHTO T 88

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO --RUTA LI-116, LA LIBERTAD, 2021"

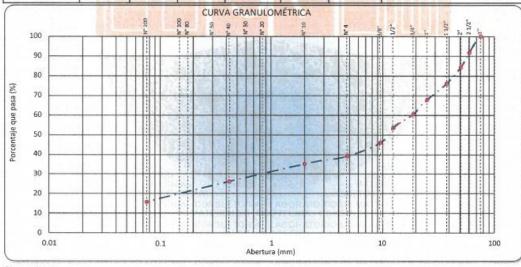
DESCRIPCIÓN PLATAFORMA EXISTENTE

N 9129519 / E 819288

C- 02

MUESTRA

COORDENADAS


CALICATA

RUTA: LI-116

PROFUNDIDAD: 0.00 -0.30 HECHO POR: J.L.Q.M

FECHA: 19/07/2021

TAMIZ	ABERTURA (mm)	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFIC.	DESCRIPCIÓN DE	LA MUEST	TRA
4°	101.600			The second second second			Peso de la I	Muestra	
3"	76.200				100.0		Peso Total de la Muestra	(gr.):	15236
2 1/2"	60.350	1250.0	8.2	8.2	91.8		Material Fino < N*4	(gr.):	5985
2"	50.800	1135.0	7.4	15.7	84.3		Material Grueso > N°4	(gr.):	9251
1 1/2*	38.100	1247.0	8.2	23.8	76.2		Fracción Material < Nº4	(gr.):	500.0
1"	25.400	1284.0	8.4	32.3	67.7		Limites de Co	nsistencia	A
3/4"	19.000	1089.0	7.1	39.4	60.6		Limite Liquido	(%):	26
1/2*	12.500	1099.0	7.2	46.6	53.4		Limite Plástic0	(%):	19
3/8"	9.500	1123.0	7.4	54.0	46.0		Indice Plástico	(%):	7
N°4	4.750	1024.0	6.7	60.7	39.3		Clasificación	de Suelo	ESPT 0
N*8	2.380	34.26	2.7	63.4	36.6		Clasificación SUCS	:	GC-GN
N°10	2.000	21.13	1.7	65.1	34.9		Clasificación AASHTO	- 1	A-2-4 (
N*16	1.190	28.37	2.2	67.3	32.7				
N°20	0.840	25.46	2.0	69.3	30.7				
N°30	0.600	27.71	2.2	71.5	28.5				
N*40	0.425	32.19	2.5	74.0	26.0	10000	Humedad Natural	(%):	5,4
N*50	0.300	35.07	2.8	76.8	23.2	1111111			
N'80	0.177	38.22	3.0	79.8	20.2		15.40° 10.		
N°100	0.150	35.96	2.8	82.6	17.4	10.55			
N°200	0.075	20.73	1.6	84.2	15.8	10200	The second secon		
< N°200	FONDO	200.9	15.8	100.0	0.0	535333	REAL PROPERTY.		

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

DETERMINACIÓN DE HUMEDAD NATURAL NORMAS TÉCNICAS: MTC E 108, ASTM D 2216

L DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, TRUJILLO-

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN PLATAFORMA EXISTENTE : N 9129519 / E 819288

RUTA: LI -116

COORDENADAS

PROFUNDIDAD: 0.00 -0.30

: C- 02 CALICATA

HECHO POR: J.L.Q.M

: M-1 MUESTRA

FECHA: 19/07/2021

ENSAYO N°				
N' DE TARA		T-35		CONTRACTOR OF STREET
PESO TARA + SUELO HÚMEDO	(gr)	2360.0		
PESO TARA + SUELO SECO	(gr)	2246.0		
PESO DE LA TARA	(gr)	122.0		
PESO DEL AGUA	(gr)	114.0		
PESO DE L SUELO SECO	(gr)	2124.0		
CONTENIDO DE HUMEDAD	(%)	5.37	AND REPORT OF STREET	
HUMEDAD NATURAL	(%)		5.4	

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELL BARZOLAS USANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

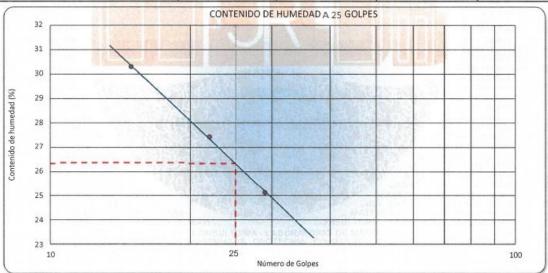
LÍMITES DE CONSISTENCIA - MALLA Nº40 NORMAS TÉCNICAS: MTC E 110 - MTC E 111, ASTM D 4318, AASHTO T 89 - T 90

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

"INFLUENCIA EN EL D: PLATAFORMA EXISTENTE

: N 9129519 / E 819288 COORDENADAS CALICATA


C- 02

MUESTRA M- 1 RUTA: LI-116

PROFUNDIDAD: 0.00 -0.30

HECHO POR: J.L.Q.M FECHA: 19/07/2021

		LÍMITE LÍQUIDO (MTC	E 110, AASHTO T 89)		
n° DE TARA		T-12	T-13	T-14	
PESO TARA + SUELO HÚMEDO	(gr)	45.67	44.00	46.38	
PSO TARA + SUELO SECO	(gr)	39.03	38.10	40.53	
PESO DEL AGUA	(gr)	6.64	5.90	5.85	
PESO DE LA TARA	(gr)	17.12	16.59	17.24	
PESO DE L SUELO SECO	(gr)	21.91	21,51	23.29	
CONTENIDO DE HUMEDAD	(%)	30.31	27.43	25.12	
NÚMERO DE GOLPES		15	22	29	
N° DE TARA		LÍMITE PLÁSTICO (MTC	C E 111, AASHTO T 90)		
PESO TARA + SUELO HÚMEDO	(gr)	18.08	17.26		
PSO TARA + SUELO SECO	(gr)	16.26	15.56		
PESO DE LA TARA	(gr)	6.83	6.67		
PESO DEL AGUA	(97)	1.82	1.70		
PESO DE L SUELO SECO	(gr)	9 43	8.89	38	

CONSTANTES FÍSICAS DE LA MUESTRA							
LÍMITE LÍQUIDO	(%)	26					
LÍMITE PLÁSTICO	(%)	19					
INDICE DE PLASTICIDAD	(%)	7					

OBSERVACIONES

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO INGENERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

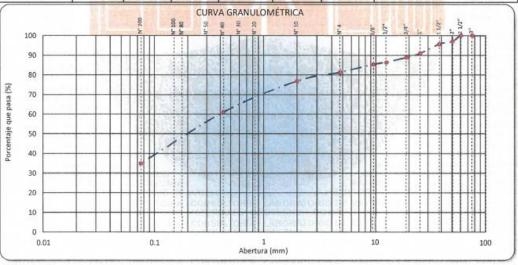
ANALISIS GRANULOMÉTRICO POR TAMIZADO NORMAS TÉCNICAS: MTC E 107, ASTM D 422, AASHTO T 88

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO --RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN : PLATAFORMA EXISTENTE

COORDENADAS : N 9129519 / E 819288


CALICATA : C - 02

MUESTRA : M-2

PROFUNDIDAD: 0.30 -1.70 HECHO POR: J.L.Q.M FECHA: 19/07/2021

RUTA: LI-116

TAMIZ	ABERTURA (mm)	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFIC.	DESCRIPCIÓN D	E LA MUEST	RA		
4"	101.600						Peso de la	Peso de la Muestra			
3"	76.200					4.15.1	Peso Total de la Muestra	(gr.):	8217		
2 1/2*	60.350			1,23	100.0		Material Fino < N*4	(gr.):	6685		
2"	50,800	239.1	2.9	2.9	97.1		Material Grupso > N°4	(gr.):	1532		
1 1/2"	38,100	117.6	1.4	4.3	95.7		Fracción Material < Nº4	(gr.):	620.0		
1"	25.400	382.9	4.7	9.0	91.0		Limites de C	onsistencia			
3/4"	19.000	178.3	2.2	11.2	88.8		Limite Liquido	(%):	29		
1/2"	12.500	193.0	2.3	13.5	86.5		Limite Plástico	(%):	25		
3/8"	9.500	102.4	1.2	14.8	85.2		Indice Plástico	(%):	4		
N°4	4.750	318.8	3.9	18.6	81.4		Clasificació	n de Suelo	-		
N°8	2.380	24.66	3.2	21.9	78.1		Clasificación SUCS	:	SM		
N*10	2.000	10.35	1.4	23.2	76.8		Clasificación AASHTO		A-2-4 (0)		
N*16	1.190	41.44	5.4	28.7	71,3						
N*20	0.840	26.63	3.5	32.2	67.8						
N*30	0.600	26.06	3.4	35.6	64.4						
N°40	0.425	26.39	3.5	39.1	60.9		Humedad Natural	(%):	14.2		
N*50	0.300	29.17	3.8	42.9	57.1	100/-					
N*80	0.177	63.29	8.3	51.2	48.8		Máxima dens. Seca	(gr/cm ³):	1.821		
Nº100	0 150	25.78	3,4	54.6	45.4	Mark St.	Óptimo Cont, Humedad	(%):	12.4		
N*200	0.075	80.05	10.5	65.1	34.9	121	CBR 0.1" al 95% MDS	(%):	17.2		
< N°200	FONDO	266.2	34.9	100.0	0.0	1 1 1 1 1 1 1	CBR 0.1" al 100% MDS	(%):	21.0		

Observaciones:

José Luis Quispe Mendoza Tec. Laporatorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147

r.diaz@jrgeoconsultores.com 🔄

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

DETERMINACIÓN DE HUMEDAD NATURAL NORMAS TÉCNICAS: MTC E 108, ASTM D 2216

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN PLATAFORMA EXISTENTE

COORDENADAS : N 9129519 / E 819288 CALICATA

RUTA: LI -116 PROFUNDIDAD: 0.30 -1.70

; C-02 MUESTRA M- 2

HECHO POR: J.L.Q.M FECHA: 19/07/2021

ENSAYO N*				
N° DE TARA		T-62	BILLINGE PURK IN THE PART OF T	
PESO TARA + SUELO HÚMEDO	(gr)	1567.0		
PESO TARA + SUELO SECO	(gr)	1430.0		
PESO DE LA TARA	(gr)	463.6		
PESO DEL AGUA	(gr)	137.0		
PESO DE L SUELO SECO	(gr)	966.4		
CONTENIDO DE HUMEDAD	(%)	14.18		Janes San San Con
HUMEDAD NATURAL	(%)		14.2	

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

LÍMITES DE CONSISTENCIA - MALLA Nº40 NORMAS TÉCNICAS: MTC E 110 - MTC E 111, ASTM D 4318, AASHTO T 89 - T 90

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

PLATAFORMA EXISTENTE DESCRIPCIÓN

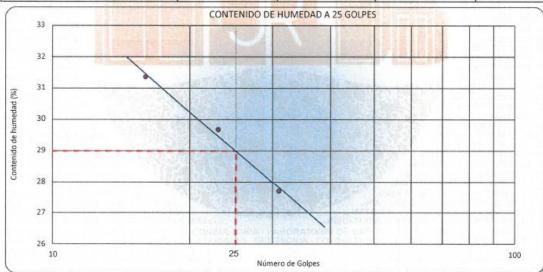
COORDENADAS : N 9129519 / E 819288

: C-02

MUESTRA

CALICATA

: M-2


RUTA: LI-116

PROFUNDIDAD: 0.30 -1.70

HECHO POR: J.L.Q.M

FECHA: 19/07/2021

		LÍMITE LÍQUIDO (MTC	E 110, AASHTO T 89)		
N° DE TARA		T-50	T-10	T-63	
PESO TARA + SUELO HÚMEDO	(gr)	79.30	51.67	84.52	
PSO TARA + SUELO SECO	(gr)	71.73	43.56	77.34	
PESO DEL AGUA	(gr)	7.57	8.11	7.18	
PESO DE LA TARA	(gr)	47.59	16.23	51.41	
PESO DE L SUELO SECO	(gr)	24.14	27.33	25.93	
CONTENIDO DE HUMEDAD	(%)	31.36	29.67	27.69	
NÚMERO DE GOLPES		16	23	31	
N° DE TARA		LÍMITE PLÁSTICO (MTC	C E 111, AASHTO T 90)		
PESO TARA + SUELO HÚMEDO	(91)	15.53	16.00		
PSO TARA + SUELO SECO	(gr)	13.77	14.14		
PESO DE LA TARA	(gr)	6.78	6.62		
PESO DEL AGUA	(gr)	1.76	1.86		
PESO DE L SUELO SECO	(gr)	6.99	7.52	78	
CONTENIDO DE HUMEDAD	(%)	25 18	24.73	CONTRACTOR OF THE PARTY OF THE	

CONSTANTES FÍSICA	S DE LA MUESTR	IA .
LÍMITE LÍQUIDO	(%)	29
LÍMITE/PLÁSTICO	(%)	25
INDICE DE PLASTICIDAD	(%)	4

OBSERVACIONES

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL

Reg. CIP Nº 67689

982 840 339 / 956 363 147 []

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

PROCTOR MODIFICADO NORMAS TÉCNICAS: MTC E115, ASTM D 1557, AASHTO T 180

DATOS DE LA MUESTRA

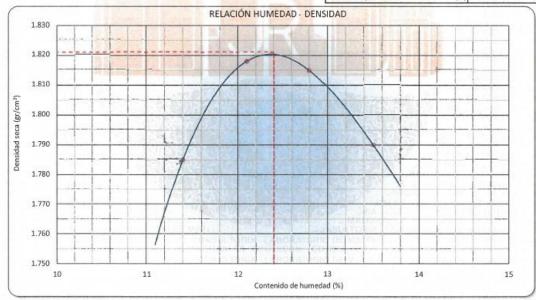
"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN PLATAFORMA EXISTENTE

COORDENADAS N 9129519 / E 819288 CALICATA

MUESTRA

: C-02


M-2

RUTA: LI-116

PROFUNDIDAD: 0.30 -1.70 HECHO POR: J.L.Q.M

FECHA: 19/07/2021

Ensayo N°				3 3	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Número de Capas		5				
Solpes de Pisón por Capa					25	
Peso suelo húmedo + molde	(gr)	5651	5698	5707	5692	
Peso molde + base	(gr)	3746	3746	3746	3746	
Peso suelo húmedo compactado	(gr)	1905	1952	1961	1946	
/olumen del molde	(cm ³)	958	958	958	958	
Peso volumétrico húmedo	(qr/cm ³)	1,988	2.038	2.047	2.032	
Tara N°	THE RESERVE	T-84	7-47	T-104	T-105	
Peso del suelo húmedo + tara	(gr)	763.0	713.9	629.9	739.1	
Peso del suelo seco + tara	(gr)	694.2	650.0	577.0	665.6	
Peso de Tara	(gr)	90.9	122.0	164.0	121.0	
Peso de agua	(gr)	68.8	63.9	52.9	73.5	
Peso del suelo seco	(gr)	603.3	528.0	413.0	544.6	
Contenido de agua	(%)	11.4	12.1	12.8	13.5	
Peso volumétrico seco	(gr/cm ³)	1.785	1.818	1.815	1.790	
		1 100		Densidad máxima	(gr/cm ³)	1.821
				Húmedad óptima	(%)	12.4

José Luis Quispe Mendoza Tec. Laporatorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLAS USANO INGEMIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com grigeoconsultores@gmail.com

proyectos@jrgeoconsultores.com

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN : PLATAFORMA EXISTENTE

COORDENADAS : N 9129519 / E 819288

RUTA: LI -116 PROFUNDIDAD: 0.30 -1.70

HECHO POR: J.L.Q.M FECHA: 19/07/2021

CALICATA : C - 02 MUESTRA : M-2

			COMPACT	ACIÓN				
Molde N ³		personant to	16	10		10		
N* Capas				5		5 12		
N' golpes por capa				2				
Condición de la muestra		NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO	
Peso de molde + Suelo húmedo	(gr)	12400	12433	12176	12221	11664	11719	
Priso de molde + base	(gr)	8044	8044	8072	8072	7810	7810	
Peso del suelo húmedo	(gr)	4356	4389	4104	4149	3854	3909	
Volumen del molde	(cm³)	2128	2128	2131	2131	2138	2138	
Densidad húmeda	(gr/cm³)	2.047	2.062	1.926	1,947	1.803	1.829	
N° Tara		T-90	T-95	T-113	T-22	T-33	T-48	
Peso suelo húmedo + tara	(gr)	859.8	771.0	828.8	910.7	728.8	879.2	
Peso suelo seco + tara	(gr)	785.0	695.0	762.4	810.3	660.4	785.0	
Peso de tara	(gr)	181.7	132.0	222.9	83.0	95.2	111.9	
Peso de agua	(gr)	74.8	76.0	66.4	100.4	68.4	94.2	
Peso de suelo seco	(gr)	603.3	563.0	539.5	727.3	565.2	673.1	
Contenido de humedad	(%)	12 4	13.5	12.3	13.8	12.1	14.0	
Densidad seca	(gr/cm ³)	1.821	1.817	1.715	1.711	1.608	1.604	

					EXPANSIÓ	N		SECTION .		NAME OF BRIDE	5
FECHA HORA	нови	TIEMPO	DIAL	EXPANSION		DIAL	EXPANSIÓN			EXPANSIÓN	
PEUNA	HURA	TIEMPO	DIAL	mm		UNL	mm	*	DIAL	mm	- %
12/07/2021	09:22	0	0	0.0	0.00	0	0.000	0.00	0	0.000	0.00
13/07/2021	09.22	24	47	0.470	0.40	57	0.570	0.49	67	0.670	0.57
14/07/2021	09:22	48	56	0.560	0.48	65	0.650	0.56	76	0.760	0.65
15/07/2021	09:22	72	63	0.630	0.54	73	0.730	0.62	83	0.830	0.71
16/07/2021	09:22	96	69	0.690	0.59	81	0.810	0.69	95	0.950	0.81

				F	ENETRA	CIÓN		COLUMN TWO				10000	
	CARGA	MOLDE Nº 198				MOLDE Nº 100				MOLDE Nº 101			
PENETRACIÓN (mm)	ESTÁNDAR	CARGA		CORR	ECCIÓN	CAR	CARGA		CCIÓN	CARGA		CORRECCIÓN	
A STATE OF THE STA	(kg/cm2)	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	56
0.000	7.15		0				0	1	4		0		
0.635			75			100	51			1 7	42		
1.270			130				88				92		
1.905			200				143				131		
2.540	70.5		288	291.0	21.0		280	231.2	16.7		207	191.5	13.
3.810			484				364				301		
5.080	105.7		633	626.9	30.2		502	502.4	24.2		390	395.7	19.
6.350			786				640				506		
7.620			1040				839				654		
10.600			1385				1096				888		
12.700			1589				1239				1022		

Observaciones:

José Luis Quispe Mendoza Tec, Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO

INGENIERA CIVIL Reg. CIP Nº 67689 982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com 🔯

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

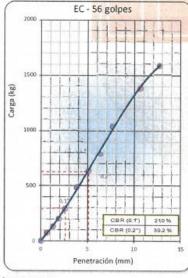
"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

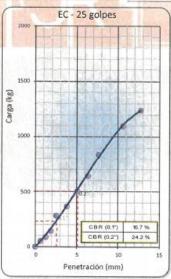
DESCRIPCIÓN : PLATAFORMA EXISTENTE

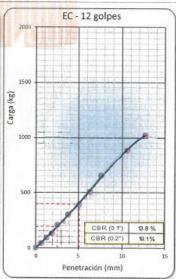
COORDENADAS : N 9129519 / E 819288

CALICATA : C - 02 MUESTRA : M-2 RUTA: LI-116

PROFUNDIDAD: 0.30 -1.70 HECHO POR: J.L.Q.M


FECHA: 19/07/2021




DATOS DEL PROCTOR MODIFICADO								
PROCTOR MODIFICADO ASTM	The second secon	1557						
MÁXIMA DENSIDAD SECA	(gr/cm³):	1.821						
ÓPTIMO CONTENIDO DE HUMEDAD	(%)	12.4						
95% DE LA MAXIMA DENSIDAD SECA	(gr/cm ³):	1.730						

PORCENTAJE DEL CBR									
C.B.R. AL 95% DE M.D.S. (%)	0.1*	17.2	0.2"	25.0					
C.B.R. AL 100% DE M.D.S. (%)	0.1"	21.0	0.2"	30.2					

Observaciones:

Observaciones :

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

ANALISIS GRANULOMÉTRICO POR TAMIZADO NORMAS TÉCNICAS: MTC E 107, ASTM D 422, AASHTO T 88

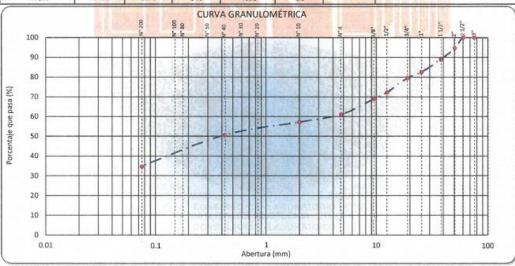
DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN PLATAFORMA EXISTENTE : N 9127631 / E 818953

M-1

COORDENADAS CALICATA : C-03


MUESTRA

PROFUNDIDAD: 0.00 -0.45 HECHO POR: J.L.Q.M

FECHA: 19/07/2021

RUTA: LI-116

TAMIZ	ABERTURA (mm)	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFIC.	DESCRIPCIÓN DE	LA MUEST	RA .		
4"	101.600	-		-			Peso de la M	Poso de la Muestra			
3"	76.200						Peso Total de la Muestra	(gr.):	10551		
2 1/2*	60.350				100.0		Meterial Fing < N'4	(gr.):	6435		
2*	50.800	564.0	5.3	5.3	94.7		Material Grueso > N°4	(gr.):	4116		
1 1/2"	38.100	597.0	5.7	11.0	89.0		Fracción Material < Nº4	(gr.):	505.4		
1"	25.400	685.0	6.5	17.5	82.5		Limites de Co	nsistencia			
3/4*	19.000	327.0	3.1	20.6	79.4		Limite Liquid ⁰	(%):	27		
1/2*	12,500	758.0	7.2	27.8	72.2		Limite Plástico	(%):	20		
3/8*	9.500	354.0	3.4	31.1	68.9		Indice Plástico	(%):	7		
N°4	4.750	831.0	7.9	39.0	61.0		Clasificación	de Suelo			
N"8	2.380	25.85	3.1	42.1	57.9		Clasificación SUCS	:	GC		
N°10	2.000	6.11	0.7	42.9	57.1		Clasificación AASHTO	:	A-2-4 (
N°16	1.190	22.29	2.7	45.6	54 4						
N°20	0.840	10.98	1.3	46.9	53.1						
N°30	0.600	9.99	1.2	48.1	51.9						
N*40	0.425	10.68	1.3	49.4	50.6	Live Ch	Humedad Natural	(%):	20.4		
N°50	0.300	12.19	1.5	50.8	49.2	l location					
N°80	0.177	31.36	3.8	54.6	45.4	The same					
N*100	0.150	15.17	18	56.5	43.5	TES STO	1 5 7 1 2 5 5 5 T.				
N°200	0.075	72.29	8.7	65.2	34.8		D. H. Printer and Rev.				
< N°200	FONDO	288.5	34.8	100.0	0.0	111100	THE REPORT OF THE PARTY OF THE				

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

DETERMINACIÓN DE HUMEDAD NATURAL NORMAS TÉCNICAS: MTC E 108, ASTM D 2216

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

: PLATAFORMA EXISTENTE DESCRIPCIÓN

; N 9127631 / E 818953 COORDENADAS : C-03 CALICATA ; M-1

RUTA: LI-116 PROFUNDIDAD: 0.00 -0.45

HECHO POR: J.L.Q.M

FECHA: 19/07/2021

ENSAYO N°				
N° DE TARA		T-72	The state of the s	
PESO TARA + SUELO HÚMEDO	(gr)	1683.0		
PESO TARA + SUELO SECO	(gr)	1473.0		
PESO DE LA TARA	(gr)	445.6		
PESO DEL AGUA	(gr)	210.0		
PESO DE L SUELO SECO	(gr)	1027.4		
CONTENIDO DE HUMEDAD	(%)	20.44		Andrew Company
HUMEDAD NATURAL	(%)		20.4	

Observaciones:

MUESTRA

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

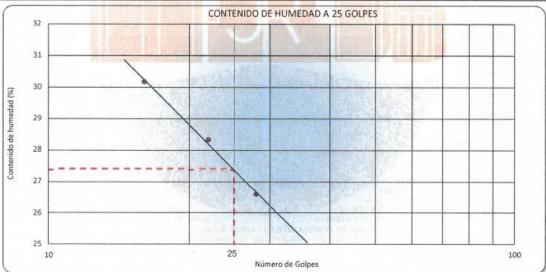
proyectos@jrgeoconsultores.com

LÍMITES DE CONSISTENCIA - MALLA N°40 NORMAS TÉCNICAS: MTC E 110 - MTC E 111, ASTM D 4318, AASHTO T 89 - T 90

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN : PLATAFORMA EXISTENTE


COORDENADAS : N 9127631 / E 818953

CALICATA : C - 03 MUESTRA : M- 1 RUTA: LI-116

PROFUNDIDAD: 0.00 -0.45

HECHO POR: J.L.Q.M FECHA: 19/07/2021

		LIMITE LIQUIDO (MTC	E 110, AASHTO T 69)		
N° DE TARA	AL-	T-31	T-46	T-88	-
PESO TARA + SUELO HÚMEDO	(gr)	53.31	56.42	77.82	
PSO TARA + SUELO SECO	(gr)	45.00	48.66	71.05	
PESO DEL AGUA	(gr)	8.31	7.76	6.77	
PESO DE LA TARA	(gr)	17.46	21.27	45.58	200100
PESO DE L SUELO SECO	(gr)	27.54	27.39	25.47	
CONTENIDO DE HUMEDAD	(%)	30.17	28.33	26.58	
NÚMERO DE GOLPES		16	22	28	
N° DE TARA		LÍMITE PLÁSTICO (MT	C E 111, AASHTO T 90)		
PESO TARA + SUELO HÚMEDO	(gr)	15.40	16.56		
PSO TARA + SUELO SECO	(gr)	13.92	14.94		
PESO DE LA TARA	(gr)	6.39	6.57		
PESO DEL AGUA	(gr)	1.48	1.62		
PESO DE L SUELO SECO	(gr)	7.53	8.37		
CONTENIDO DE HUMEDAD	(%)	19.65	19.35		

LÍMITE LÍQUIDO	(%)	27
LÍMITE/PHASTICO	(%)	20
INDICE DE PLASTICIDAD	(%)	7

OBSERVACIONES

20 7

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGEMIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

ANALISIS GRANULOMÉTRICO POR TAMIZADO NORMAS TÉCNICAS: MTC E 107, ASTM D 422, AASHTO T 88

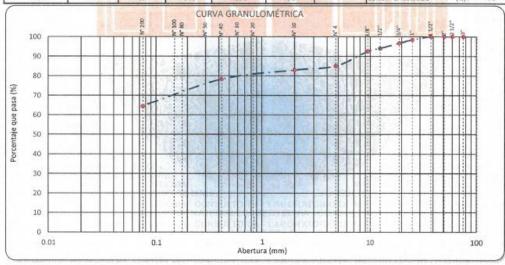
DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN : PLATAFORMA EXISTENTE COORDENADAS : N 9127631 / E 818953

CALICATA

: C-03


RUTA: LI-116 PROFUNDIDAD: 0.45-1.20

HECHO POR: J.L.Q.M ECHA: 19/07/2021

IÓN DE LA MUESTRA

MUESTRA	: M-2					distribution of the same	FEO
TAMIZ	ABERTURA (mm)	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFIC.	DESCRIP
4"	101.600						Pe
3"	76.200						Peso Total de la M
0.4000	00.000						100

	(min)	METERIOO	POLICIAL	ACCHICEADO				
4"	101.600					Peso de la	Muestra	
3"	76.200					Peso Total de la Muestra	(gr.):	13100
2 1/2"	60.350					Material Fino < N°4	(gr.):	11127
2"	50.800					Material Grueso > N°4	(gr.):	1973
1.1/2"	38.100				100.0	Fracción Material < N°4	(gr.):	526.1
1"	25.400	212.2	1.6	1.6	98.4	Limites de Co	onsistencia	1000
3/4"	19.000	222.6	1.7	3.3	96.7	Limite Liquido	(%):	26
1/2"	12.500	338.9	2.6	5.9	94.1	Límite Plástico	(%):	19
3/8"	9.500	206.0	1.6	7.5	92.5	Indice Plástico	(%):	7
N°4	4.750	993.4	7.6	15.1	84.9	Clasificación	de Suelo	Table
N*8	2.380	9.04	1.5	16.5	83.5	Clasificación SUCS		CL-M
N°10	2.000	3.85	0.6	17.1	82.9	Clasificación AASHTO		A-4 (6
N°16	1,190	11.61	1.9	19.0	81.0			
N°20	0.840	6.93	1.1	20.1	79.9	The state of the s		
N°30	0.600	5.04	0.8	20.9	79.1			
N*40	0.425	5.52	0.9	21.8	78.2	Humodad Natural	(%):	18.3
N*60	0.300	4.84	0.8	22.6	77.4	The state of the s		
N°80	0.177	15.05	2.4	25.1	74.9	Máxima dens. Seca	(gr/cm ³) :	1.563
N°100	0.150	9.63	1.6	26.6	73.4	Optimo Cont. Humedad	(%):	13.0
N°200	0.075	54.45	8.8	35.4	64.6	CBR 0.1" al 95% MDS	(%):	11.3
< N°200	FONDO	400.1	64.6	100.0	0.0	CBR 0.1" al 100% MDS	(%):	13.5

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com Av. Diagonal Norte Nº 750, Ofic. N 501- SMP

DETERMINACIÓN DE HUMEDAD NATURAL NORMAS TÉCNICAS: MTC E 108, ASTM D 2216

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

PLATAFORMA EXISTENTE DESCRIPCIÓN

RUTA: LI -116

COORDENADAS : N 9127631 / E 818953 CALICATA C - 03

PROFUNDIDAD: 0.45 -1.20

MUESTRA M-2 HECHO POR: J.L.Q.M FECHA: 19/07/2021

ENSAYO N°		
N° DE TARA		T-47
PESO TARA + SUELO HÚMEDO	(gr)	1229.1
PESO TARA + SUELO SECO	(gr)	1057.6
PESO DE LA TARA	(gr)	122.0
PESO DEL AGUA	(gr)	171.5
PESO DE L SUELO SECO	(gr)	935.6
CONTENIDO DE HUMEDAD	(%)	18.33

HUMEDAD NATURAL

Observaciones:

SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVID Reg. CIP Nº 67689

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

Av. Diagonal Norte Nº 750, Ofic. N 501- SMP 0

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos 982 840 339 / 956 363 147 📵

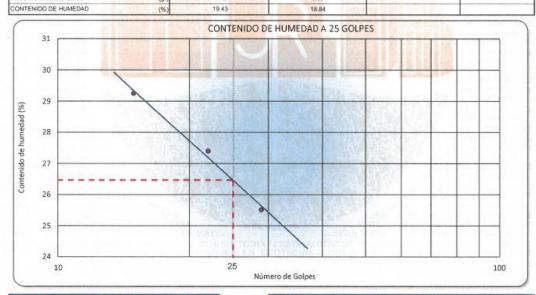
LÍMITES DE CONSISTENCIA - MALLA N°40 NORMAS TÉCNICAS: MTC E 110 - MTC E 111, ASTM D 4318, AASHTO T 89 - T 90

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

LÍMITE LÍQUIDO (MTC E 110; AASHTO T 89)

DESCRIPCIÓN : PLATAFORMA EXISTENTE


RUTA : LI -116 PROFUNDIDAD : 0,45 -1,20

COORDENADAS : N 9127631 / E 818953 CALICATA : C - 03

HECHO POR: J.L.Q.M FECHA: 19/07/2021

CALICATA : C - 03 MUESTRA : M- 2

N° DE TARA		T-28	T-21	T-08	
PESO TARA + SUELO HÚMEDO	(gr)	52.90	52.04	48.42	
PSO TARA + SUELO SECO	(gr)	45.06	44.67	42.05	
PESO DEL AGUA	(gr)	7.84	7.37	6.37	
PESO DE LA TARA	(gr)	18.25	17.77	17.08	
PESO DE L SUELO SECO	(gr)	26.81	26.90	24.97	
CONTENIDO DE HUMEDAD	(%)	29.24	27.40	25.51	
NÚMERO DE GOLPES		15	22	29	
N° DE TARA		LIMITE PLASTICO (M	TC E 111, AASHTO T 90)		NAME OF
PESO TARA + SUELO HÚMEDO	(gr)	15.62	16.28		
PSO TARA + SUELO SECO	(gr)	14.12	14.66		
PESO DE LA TARA	(gr)	6.40	6.06		
PESO DEL AGUA	(gr)	1.50	1.62	100	
PESO DE L SUELO SECO	(gr)	7.72	8.60		

CONSTANTES FÍSICA	IS DE LA MUES	TRA
LÍMITE LÍQUIDO	(%)	26
LÍMITE PLÁSTICO	(%)	19
INDICE DE PLASTICIDAD	(%)	7

OBSERVACIONES

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLAS USANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

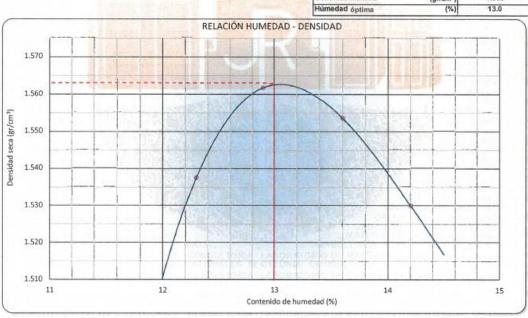
proyectos@jrgeoconsultores.com

PROCTOR MODIFICADO NORMAS TÉCNICAS: MTC E115, ASTM D 1557, AASHTO T 180

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

PLATAFORMA EXISTENTE DESCRIPCIÓN : N 9127631 / E 818953


RUTA: LI-116

COORDENADAS : C-03 CALICATA

PROFUNDIDAD: 0.45 -1.20

MUESTRA : M-2 HECHO POR: J.L.Q.M FECHA: 19/07/2021

Ensayo N'					42	
Número de Capas			5			
Golpes de Pisón por Capa			25		25	
Peso suelo húmedo + molde	(gr)	5501	5536	5537	5521	
96to molde + base	(gr)	3880	3880	3880	3880	
Pesc suelo húmedo compactado	(gr)	1621	1656	1657	1641	
Volumen del moide	(cm³)	939	939	939	939	
Peso volumétrico húmedo	(gr/cm ²)	1.727	1.763	1.765	1.747	
Fara N°	US STATE OF	T-55	T-48	T-94	T-33	
Peso del suelo húmedo + tara	(gr)	775.5	795.3	870.9	746,3	
Peso del suelo seco + tara	(gr)	703.8	718.5	781.2	676.7	
Peso de Tara	(gr)	121.0	123.0	122.0	186.9	
Peso de agua	(gr)	71.7	76.8	89.7	69.6	
Peso del suelo seco	(gr)	582.8	595.5	659.2	489.8	
Contenido de agua	(%)	12.3	12.9	13.6	14.2	
Peso volumétrico seco	(gr/cm ³)	1.538	1.562	1.554	1.530	
		THE SECOND	O STATE	Densidad máxima	(gr/cm ³)	1.563
				Húmedad óptima	(%)	13.0

Observaciones:

José Luis Quispe Mendoza Tec. Laporatorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN : PLATAFORMA EXISTENTE COORDENADAS : N 9127631 / E 818953

RUTA: LI-116 PROFUNDIDAD: 0.45-1.20

HECHO POR: J.L.Q.M FECHA: 19/07/2021

CALICATA : C-03 MUESTRA M-2

		DESCRIPTION AVIS	COMPA	CTACIÓN	CARROLL	DAMES AND LINES.	SOPRE THE	
Molde N*		1	80	and the same of	9	98 5 12		
N° Capas		MATERIAL STREET	5	A CONTRACTOR OF THE PARTY OF TH				
N° golpes por capa			5	2				
Condición de la muestra		NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO	
Peso de molde + Suelo húmedo	(gr)	11763	11783	11561	11597	11077	11122	
Pean de molds + base	(gr)	8010	8010	8062	8062	7858	7858	
Peso del suelo húmedo	(gr)	3753	3773	3499	3535	3219	3264	
Volumen del malde	(cm ⁹)	2125	2125	2138	2138	2135	2135	
Densidad húmeda	(gr/cm ³)	1.766	1.776	1.636	1.654	1.508	1.529	
N° Tara		T-114	T-22	T-35	T-28	T-36	T-44	
Peso suelo húmedo + tara	(gr)	920.8	815.3	847.9	913.4	732.5	879.8	
Peso suelo seco * tara	(gr)	828.8	725.9	762.4	810.3	660.4	783.0	
Peso de tara	(gr)	121.0	83.0	89.3	84.0	88.2	115.4	
Peso de agua	(gr)	92.0	89.4	85.5	103.1	72.1	96.8	
Peso de suela seco	(gr)	707.8	642.9	673.1	726.3	572.2	667.6	
Contenido de humedad	(%)	13.0	13.9	12.7	14.2	12.6	14.5	
Densidad seca	(gr/cm ⁸)	1,563	1.559	1,452	1.448	1.339	1.335	

			100	11.1		93	Albania Inc.		96		
EXPANSIÓN											
FECHA HORA	TIEMPO	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	200	EXPA	NSION	
TEGIN				mm		-	mm	*	DIAL	mm	
12/07/2021	11:16	0	0	0.000	0.00	0	0.000	0.00	0	0.000	0.00
13/07/2021	11:16	24	45	0.450	0.38	95	0.950	0.81	155	1.550	1.30
14/07/2021	11:16	48	62	0.620	0.53	114	1.140	0.97	178	1.780	1.50
15/07/2021	11:16	72	79	0.790	0.68	159	1.590	1.36	218	2.180	1.86
16/07/2021	11:16	96	98	0.980	0.84	175	1.750	1.50	244	2.440	2.09

					PENETI	RACIÓN					11.00	WHEN THE		
	CARGA	MOLDE № 180					MOLDE Nº 99				MOLDE N° 98			
PENETRACIÓN (mm)	ESTÁNDAR	CAR	GA	CORR	ECCIÓN	CAR	GA	CORRE	CCIÓN	CAR	GA	CORRECCIÓN		
	(kg/cm2)	Dial (div)	kg	kg	76	Dial (div)	kig	kg	- %	Dial (div)	kg	kg	*	
0.000		1	0	100		200	0				0			
0.635			37				23		-		17			
1.270			82			1000	58				53			
1.905			130				109				80			
2.540	70.5		202	186.2	13.5		152	145.3	10.5		119	112.8	8.2	
3.810			294				235				183			
5.080	105.7		404	414.2	20.0		326	328.3	15.8		251	261.6	12.	
6.350			543				419				349			
7.620			650				502				399			
10.600			863				692				543			
12.700			965				765				605			

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO

INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

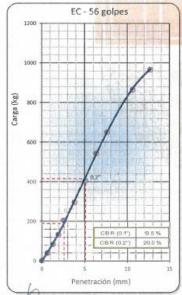
"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

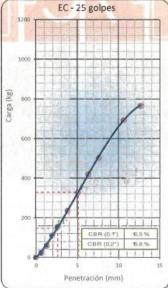
: PLATAFORMA EXISTENTE DESCRIPCIÓN

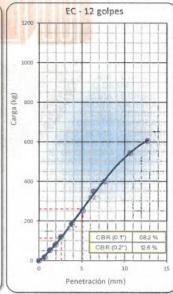
COORDENADAS : N 9127631 / E 818953

CALICATA : C-03 : M-2 MUESTRA

RUTA: LI-116


PROFUNDIDAD: 0.45 -1.20 HECHO POR: J.L.Q.M FECHA: 19/07/2021


	1.584	DETERMINACIÓN DEL CBR	
		C8R 100%	
	1.564		
	1.544		
	1.524		
2	1.504		
r/cu	1.484	- CBR 95%	
Densidad seca (gr/cm³)	1.464		
d se	1,444		
sida	1.424		
Den	1.404		
	1.384		
	1.364		
	1.344		
	1.324		
	0	5 10 15 20 CBR(%)	25


DATOS DEL PROCTOR M	ODIFICADO	
PROCTOR MODIFICADO ASTM		1557
MÁXIMA DENSIDAD SECA	(gr/cm³):	1.563
ÓPTIMO CONTENIDO DE HUMEDAD	(%):	13.0
95% DE LA MAXIMA DENSIDAD SECA	(gr/cm³):	1.485

PORCENTAJE DEL CBR							
C.B.R. AL 95% DE M.D.S. (%)	0.1"	11.3	0.2	16.9			
C.B.R. AL 100% DE M.D.S. (%)	0.1*	13.5	0.2"	20.0			

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵 r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

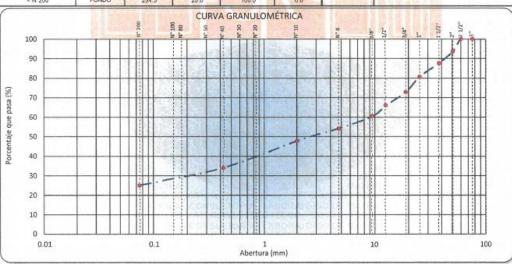
Av. Diagonal Norte № 750, Ofic. N 501- SMP

ANALISIS GRANULOMÉTRICO POR TAMIZADO NORMAS TÉCNICAS: MTC E 107, ASTM D 422, AASHTO T 88

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN PLATAFORMA EXISTENTE COORDENADAS


N 9125455 / E 818883

CALICATA C - 04 MUESTRA M - 1

RUTA: LI-116

PROFUNDIDAD: 0.00 -0.40 HECHO POR: J.L.Q.M FECHA: 19/07/2021

TAMIZ	ABERTURA (mm)	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFIC.	DESCRIPCIÓN DE	LA MUEST	RA
4"	101.600								
3"	76,200						Peso Total de la Muestra	(gr.):	16329
2 1/2"	60.350				100.0		Material Fino < N*4	(gr.)	8840
2"	50.800	1039.0	6.4	6.4	93.6		Material Grueso > N°4	(gr.):	7489
1 1/2"	38.100	987.0	6.0	12.4	87.6		Fracción Material < Nº4	(gr.):	550.0
1"	25.400	1138.0	7.0	19.4	80.6		Limites de Cor	nsistencia	
3/4"	19.000	1279.0	7.8	27.2	72.8		Limite Llquida	(%):	24
1/2"	12.500	1152.0	7.1	34.3	65.7		Limite Plástico	(%):	18
3/8"	9.500	891.0	5.5	39.7	60.3		Indice Plástico	(%):	6
N*4	4.750	1003.0	6.1	45.9	54.1		Clasificación	de Suelo	
N°8	2.380	31.25	3.1	48.9	51.1		Clasificación SUCS	- 1	GC-GM
N*10	2.000	34.62	3.4	52.3	47.7		Clasificación AASHTO		A-2-4 (0)
N*16	1.190	32.97	3.2	55.6	44.4				
N*20	0.840	38.27	3.8	59.4	40.6				
N*30	0.600	39.41	3.9	63.2	36.8				
N°40	0.425	28.00	2.8	66.0	34.0		Humedad Natural	(%):	4.6
N*50	0.300	19.75	19	67.9	32,1				
N*80	0.177	31.09	31	71.0	29.0				
N°100	0.150	19.06	1.9	72.9	27,1		The state of the s		
N=200	0.075	21.33	2.1	75.0	25.0	1555			
< N°200	FONDO	254.3	25.0	100.0	0.0		I BUILD SET THE		

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

DETERMINACIÓN DE HUMEDAD NATURAL NORMAS TÉCNICAS: MTC E 108, ASTM D 2216

L DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, TRUJILLO-

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

PLATAFORMA EXISTENTE DESCRIPCIÓN

RUTA: LI -116 : N 9125455/ E 818883

COORDENADAS : C - 04 CALICATA MUESTRA M - 1

PROFUNDIDAD: 0.00 -0.40 HECHO POR: J.L.Q.M FECHA: 19/07/2021

ENSAYO N*				
N° DE TARA	-	T-12	BUILDING CO. CO.	
PESO TARA + SUELO HÚMEDO	(gr)	1350.0		
PESO TARA + SUELO SECO	(gr)	1295.0		
PESO DE LA TARA	(gr)	87.2		
PESO DEL AGUA	(gr)	55.0		
PESO DE L SUELO SECO	(gr)	1207.8		
CONTENIDO DE HUMEDAD	(%)	4.55		
HUMEDAD NATURAL	(%)		4.6	

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLAS USANO INGEMERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

LÍMITES DE CONSISTENCIA - MALLA N°40 NORMAS TÉCNICAS: MTC E 110 - MTC E 111, ASTM D 4318, AASHTO T 89 - T 90

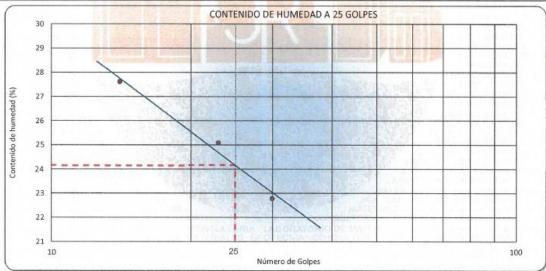
DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

"INFLUENCIA EN EL E: PLATAFORMA EXISTENTE

COORDENADAS CALICATA

: N 9125455 / E 818883


: C-04

MUESTRA : M-1 RUTA: LI-116

PROFUNDIDAD: 0.00 -0.40

HECHO POR: J.L.Q.M FECHA: 19/07/2021

		LÍMITE LÍQUIDO (MTO	E 110, AASHTO T 89;		
N° DE TARA		T-36	T-37	T-38	
PESO TARA + SUELO HÚMEDO	(gr)	44.20	38.52	44.39	
PSO TARA + SUELO SECO	(gr)	38.33	34.34	39.25	
PESO DEL AGUA	(gr)	5.87	4.18	5.14	
PESO DE LA TARA	(gr)	17.05	17.68	16.67	
PESO DE L SUELO SECO	(gr)	21.28	16.66	22.58	
CONTENIDO DE HUMEDAD	(%)	27.61	25.08	22.77	12111010
NÚMERO DE GOLPES		14	23	30	
N° DE TARA		LÍMITE PLÁSTICO (MT	C E 111, AASHTO T 90)		
PESO TARA + SUELO HÚMEDO	(gr)	39.91	45.55		
PSO TARA + SUELO SECO	(gr)	38.26	43.20		
PESO DE LA TARA	(gr)	28.92	30.03		
PESO DEL AGUA	(gr)	1.65	2.35		
PESO DE L SUELO SECO	(gr)	9.34	13.17		
CONTENIDO DE HUMEDAD	(%)	17.72	17.80		

CONSTANTES FÍSICA	AS DE LA MUESTR	IA.
LÍMITE LÍQUIDO	(%)	24
LIMITE/BLASTICO	(%)	18
INDIC DE PLASTICIDAD	(%)	6

SOLEDAD AURELLA BARZOLA SUSANO INCEMIERA CIVIL

Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

Av. Diagonal Norte Nº 750, Ofic. N 501-SMP 💟

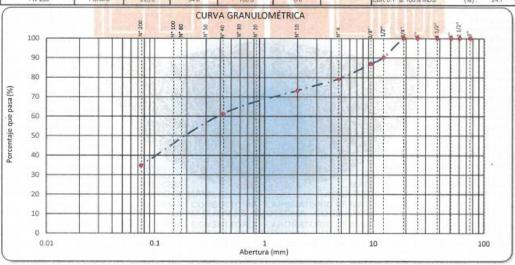
OBSERVACIONES

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

ANALISIS GRANULOMÉTRICO POR TAMIZADO NORMAS TÉCNICAS: MTC E 107, ASTM D 422, AASHTO T 88

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO --RUTA LI-116, LA LIBERTAD, 2021"


DESCRIPCIÓN PLATAFORMA EXISTENTE COORDENADAS : N 9125455 / E 818883

CALICATA : C-04 MUESTRA M- 2

RUTA: LI-116

PROFUNDIDAD: 0.40 -1.70 HECHO POR: J.L.Q.M FECHA: 19/07/2021

TAMIZ	ABERTURA (mm)	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	% QUE PASA ESPECIFIC.	DESCRIPCIÓN DE LA MUESTRA		TRA
4"	101.600						Peso de la	Muestra	
3"	76.200						Peso Total de la Muestrá	(gr.) :	8501
2 1/2"	60.350						Material Fino < N°4	(gr.):	6735
2"	50.800						Material Grueso > Nº4	(gr.):	1766
1 1/2"	38.100						Fracción Material < Nº4	(gr.):	462.5
1"	25.400						Limites de C	onsistencia	
3//4"	19,000				100.0		Limite Liquido	(%):	34
1/2"	12.500	823.3	9.7	9.7	90.3		Limite Plástico	(%)	24
3/8"	9.500	291.5	3.4	13.1	86.9		Indice Plástico.	(%):	10
N°4	4.750	651.0	7.7	20.8	79.2		Clasificació	n de Suelo	-
Nº8	2.380	21.15	3.6	24.4	75.6		Clasificación SUCS	:	SM
N°10	2.000	14.15	2.4	26.8	73.2		Clasificación AASHTO	:	A-2-6 (0
N°16	1.190	12.99	2.2	29.0	71.0				
N°20	0.840	18.28	3.1	32.2	67.8				
N°30	0.600	19.51	3.3	35.5	64.5				
N°40	0.425	18.48	3.2	38.7	61.3	100000	Humedad Natural	(%):	12.5
N°50	0.300	18.39	3.2	41.8	58.2				
N°80	0.177	51.56	8.8	50.7	49.3	1	Máxima dens. Seca	(gr/cm ³):	1.874
N*100	0.150	18 97	3.2	53.9	46.1		Óptimo Cont. Humedad	(%):	13.1
N°200	0.075	65.99	11.3	65.2	34.8	1000	CBR 0.1" al 95% MOS	(%):	18.5
< N°200	FONDO	203.0	34.8	100.0	0.0	12000	CBR 0.1" al 100% MDS	(%):	24.7

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵 r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

DETERMINACIÓN DE HUMEDAD NATURAL NORMAS TÉCNICAS: MTC E 108, ASTM D 2216

EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO – RUTA LI-116, TRUJILLO-(

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO --RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN PLATAFORMA EXISTENTE : N 9125455 / E 818883

RUTA: LI -116

COORDENADAS : C-04 CALICATA

PROFUNDIDAD: 0.40 -1.70 HECHO POR: J.L.Q.M

MUESTRA M- 2 FECHA: 19/07/2021

ENSAYO N°				
N° DE TARA		T-72	DESCRIPTION OF THE PARTY OF THE	
PESO TARA + SUELO HÚMEDO	(gr)	1548.1		
PESO TARA + SUELO SECO	(gr)	1425.2		
PESO DE LA TARA	(gr)	445.6		
PESO DEL AGUA	(gr)	122.9		
PESO DE L SUELO SECO	(gr)	979.6		
CONTENIDO DE HUMEDAD	(%)	12.55		
HUMEDAD NATURAL	(%)		12.5	

Observaciones:

José Luis Quispe Mendoza Tec. Laporatorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLA SUSANO INCENERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

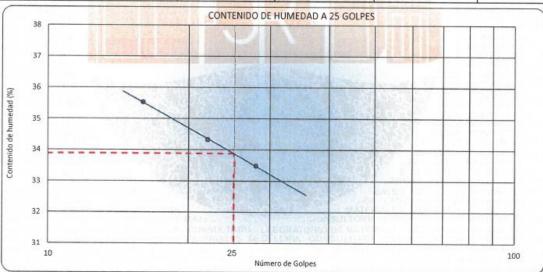
LÍMITES DE CONSISTENCIA - MALLA Nº40 NORMAS TÉCNICAS: MTC E 110 - MTC E 111, ASTM D 4318, AASHTO T 89 - T 90

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

"INFLUENCIA EN EL DI: PLATAFORMA EXISTENTE

: N 9125455 / E 818883 COORDENADAS


CALICATA : C-04 MUESTRA M-2

RUTA: LI-116 PROFUNDIDAD: 0.40 -1.70

> HECHO POR: J.L.Q.M FECHA: 19/07/2021

LÍMITE LÍQUIDO (MTC E 110, AASHTO T 89)							
N° DE TARA	-	T-12	T-10	T-14			
PESO TARA + SUELO HÚMEDO	(gr)	38.56	38.62	38.21			
PSO TARA + SUELO SECO	(gr)	32.94	33.06	32.95			
PESO DEL AGUA	(gr)	5.62	5.56	5.26			
PESO DE LA TARA	(gr)	17.12	16.86	17.24			
PESO DE L SUELO SECO	(gr)	15.82	16.20	15.71			
CONTENIDO DE HUMEDAD	(%)	35.52	34.32	33.48			
NÚMERO DE GOLPES		16	22	28			

LÍMITE PLÁSTICO (MTC E 111, AASHTO T 90)						
N° DE TARA		T-24	T-27	CONTRACTOR DESCRIPTIONS		
PESO TARA + SUELO HÚMEDO	(gr)	16.94	16.71			
PSO TARA + SUELO SECO	(gr)	15.02	14.71			
PESO DE LA TARA	(gr)	6.76	6.54			
PESO DEL AGUA	(gr)	1.92	2.00			
PESO DE L SUELO SECO	(gr)	8.26	8.17			
CONTENIDO DE HUMEDAD	(%)	23.24	24.48			

CONSTANTES FÍSICA	AS DE LA MUESTR	A
LÍMITE LÍQUIDO	(%)	34
LÍMITE PLÁSTICO	(%)	24
INDICE DE PLASTICIDAD	(%)	10

OBSERVACIONES

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLA SUSANO INGEMIERA CIVIL REG. CIP Nº 67200

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

PROCTOR MODIFICADO NORMAS TÉCNICAS: MTC E115, ASTM D 1557, AASHTO T 180

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN

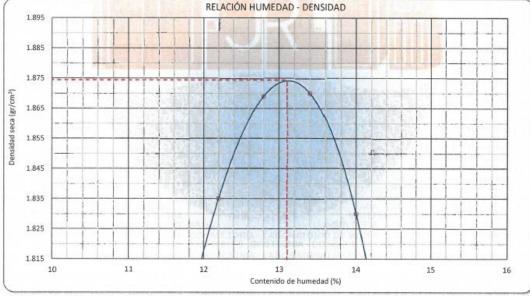
PLATAFORMA EXISTENTE

RUTA: LI-116

COORDENADAS

: N 9125455 / E 818883

PROFUNDIDAD: 0.40 -1.70


: C-04 CALICATA

HECHO POR: J.L.Q.M

: M-2 MUESTRA

FECHA: 19/07/2021

Ensayo N'	REPORT S	1 10 25	2	3	Se Barrier Se	COLUMN TO
Numero de Capas						
Golpes de Pisón por Capa				25		
Peso suelo húmedo + molde	(gr)	5813	5860	5871	5839	
Peso molde + base	(gr)	3880	3880	3880	3880	
Peso suelo húmedo compactado	(gr)	1933	1980	1991	1969	
Volumen del molde	(cm ³)	939	939	939	939	
Peso volumétrico húmedo	(gr/cm²)	2.059	2.108	2.121	2.086	
Tara N*	TO ALL DO	T-35	T-36	T-37	T-34	Market 1
Peso del suelo húmedo + tara	(gr)	608.1	570.2	548.1	552.3	
Peso del suelo seco + tara	(gr)	555.2	519.3	503.5	506.0	
Peso de Tara	(gr)	122.0	121.2	170.0	174.8	
Peso de agua	(gr)	52.9	51.0	44.7	46.4	
Peso del suelo seco	(gr)	433.2	398.1	333.5	331.2	
Contenido de agua	(%)	12.2	12.8	13.4	14.0	
Peso volumétrico seco	(gr/cm²)	1.835	1.869	1.870	1.830	
	THE SECOND	-1	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Densidad máxima	(gr/cm ³)	1.874
				Húmedad óptima	(%)	13.1

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INCEMERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📳 r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com proyectos@jrgeoconsultores.com

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

PLATAFORMA EXISTENTE

COORDENADAS : N 9125455 / E 818883 CALICATA : C-04 MUESTRA

: M-2

RUTA: LI-116

PROFUNDIDAD: 0.40 -1.70 HECHO POR: J.L.Q.M

FECHA: 19/07/2021

			COMPACT	ACIÓN				
Molde N°		5	83		84			
N* Capas		THE PARTY OF		5		5 12		
N° golpes por capa				21				
Condición de la muestra		NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO	
Peso de molde + Suelo húmedo	(gr)	12577	12612	12253	12307	11935	11999	
Peso do molda + base	(gr)	8048	8048	8024	8024	7949	7949	
Peso del suelo húmedo	(gr)	4529	4564	4229	4283	3986	4050	
Volumen del molde	(cm ⁸)	2137	2137	2128	2128	2146	2146	
Densidad húmeda	(gr/cm ²)	2.119	2.136	1.988	2.013	1.857	1.887	
N° Tara		T-15	T-16	T-21	T-23	T-24	T-16	
Peso suelo húmedo + tara	(gr)	864.2	770.5	483.6	913.7	492.2	607.6	
Peso suelo seco + tara	(gr)	816.8	683.6	437.5	807.6	444.9	538.5	
Peso de tara	(gr)	454.8	71.6	77.4	76.2	72.1	71.6	
Peso de agua	(gr)	47.4	86.9	46.1	106.1	47.3	69.1	
Peso de suelo seco	(gr)	362.0	612.0	360.1	731.4	372.8	466.9	
Contenido de humedad	(%)	13.1	14.2	12.8	14.5	12.7	14.8	
Densidad seca	(gr/cm ³)	1.874	1.870	1.762	1.758	1.648	1.644	

					EXPANSIÓ	N					
FECHA	HORA	TIEMPO	DIAL	EXPANSION		DIAL	EXPANSIÓN		DIAL	EXPANSION	
FEGNA		TEMPO	District	mm			mm			mm	%
12/07/2021	08:32	0	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00
13/07/2021	08:32	24	35.00	0.350	0.30	46.00	0.460	0.39	51.00	0.510	0.4
14/07/2021	08:32	48	63.00	0.630	0.54	68.00	0.680	0.58	69.00	0.690	0.50
15/07/2021	08:32	72	69.00	0.690	0.59	79.00	0.790	0.68	92.00	0.920	0.79
16/07/2021	08:32	96	72.00	0.720	0.62	84.00	0.840	0.72	93.00	0.930	0.7

				F	PENETRA	CIÓN							
	CARGA	MOLDE N° 85				MOLD	E Nº 83		MOLDE Nº 84				
PENETRACIÓN (mm)	ESTÁNDAR	CARGA		CORR	ECCIÓN	CAR	GA	CORRE	CCIÓN	CAR	3A	CORRE	CCIÓN
	(kg/cm2)	Dial (div)	kg	kg		Dial (div)	kg	kg	*	Dial (div)	kg	kg	
0.000	100		0		17.1		0	20			0	Per Training	
0.635			89		U		55				40		
1.270			163			17	115				76		
1.905			240	14.7			168				113		
2.540	70.5		364	341.8	24.7		260	241.3	17.4		172	160.9	11.
3.810			498				357				241		
5.080	105.7		708	693.1	33.4		502	497.5	24.0		335	335.0	16.
6.350			848				615				423		
7.620			992				710				502		
10.600			1165				823				566		
12.700			1250				877				602		

Observaciones:

José Luis Quispe Mendoza Tec. Laporatorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL

Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com price in ingeoconsultores@gmail.com

proyectos@jrgeoconsultores.com

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

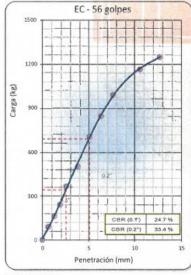
DESCRIPCIÓN : PLATAFORMA EXISTENTE

COORDENADAS : N 9125455 / E 818883 CALICATA : C - 04

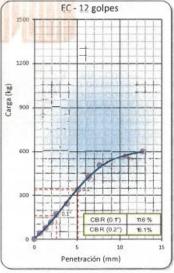
MUESTRA : M-2

RUTA: LI-116

PROFUNDIDAD: 0.40 -1.70


HECHO POR: J.L.Q.M FECHA: 19/07/2021

	1.893	17	1			MINA	CIOI	* DEL	L		1		
	100					10	BR 100			111			
	1.873	1111			100	12 1921	Player		1	-		1	
	1.853	Ħ		1		1 3	100	1	4		1		
	1.833				Total Control			1			1	j.	H
	1.813							1-	1	1		1	
	1.793	4			CBR	95%	1		-11	_		1	Ħ
	1.773	4 4 4	-	-	Marie M	-	ALCOHOL:		1				
	1.753				H	+1		-,	/			1	
3	1.733	44				1	-4	1	-			Ti	
į	1.713			-		1		/	1				
	1.693			-4		/	1		4				
	1.673			-	-/		1		+				
	1.653	-	-	-	1	1	1		41		+	1	-
	1.633						1		10			1	-


DATOS DEL PROCTOR MODIFICADO								
PROCTOR MODIFICADO ASTM		1557						
MÁXIMA DENSIDAD SECA	(gr/cm ³):	1.874						
ÓPTIMO CONTENIDO DE HUMEDAD	(%)	13.1						
95% DE LA MAXIMA DENSIDAD SECA	(gr/cm ³):	1.781						

PORCENTAJE DEL CBR										
C B R AL 95% DE M.D.S. (%)	0.1"	18.5	0.2	25,4						
C.B.R. AL 100% DE M.D.S. (%)	0.1"	24.7	0.2	33.4						

Observaciones

Observaciones :

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 [8]

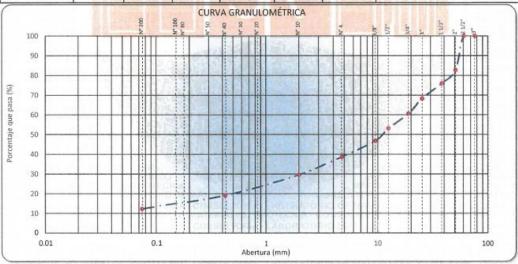
r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

ANALISIS GRANULOMÉTRICO POR TAMIZADO NORMAS TÉCNICAS: MTC E 107, ASTM D 422, AASHTO T 88

DATOS DE LA MUESTRA


"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO – RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN : PLATAFORMA EXISTENTE COORDENADAS : N 9123181 / E 818961 RUTA: LI-116 PROFUNDIDAD: 0.00 -0.40 HECHO POR: J.L.Q.M

CALICATA : C - 05 MUESTRA : M-1

FECHA: 19/07/2021

TAMIZ	ABERTURA (mm)	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFIC.	DESCRIPCIÓN DE	LA MUEST	RA
4*	101.600						Peso de la l	Muestra	
3"	76.200						Peso Total de la Muestra	(gr.):	12829
2 1/2"	60.360	1185.0			100.0	9110	Material Fino < N°4	(gr.);	4961
2"	50.800	1045.0	8.1	17.4	82.6		Material Grueso > N*4	(gr.):	7868
1 1/2"	38.100	865.0	6.7	24.1	75.9		Fracción Material < Nº4	(gr.):	500.0
1"	25,400	963.0	7.5	31.6	68.4		Limites de Co	nalatancia	
3/4"	19.000	1002.0	7.8	39.4	60.6		Limito Liquido	(%):	28
1/2"	12.500	957.0	7.5	46.9	53.1		Limite Plástico	(%)	21
3/8"	9.500	830.0	6.5	53.4	46.6	No. of London	Indice Plástico	(%):	7
N*4	4.750	1021.0	8.0	61,3	38.7		Clasificación	de Suelo	
N*8	2.380	63.25	4.9	66.2	33.8		Clasificación SUCS	1	GC-GN
N*10	2.000	55.01	4.3	70.5	29.5		Clasificación AASHTO	:	A-2-4 (0
N°16	1.190	38.40	3.0	73,4	26.6				
N°20	0.840	35.73	2.8	76.2	23.8				
N°30	0.600	28.06	2.2	78.4	21.6				
N*40	0.425	33.17	2.6	80.9	19.1		Humedad Natural	(%):	5.1
N°50	0.300	24.74	1.9	82.9	17.1				
N*80	0.177	20.69	1.6	84.5	15,5				
N°100	0.150	18:80	1.5	85.9	14.1				
N°200	0.075	23.76	1,8	87.8	12.2	- FEMALE	A Print of the last		
< N°200	FONDO	158.4	12.2	100.0	0.0	12000	11 10 11 15 17 15 1 18 10		

Observaciones :

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLAS USANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 👭 r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

DETERMINACIÓN DE HUMEDAD NATURAL NORMAS TÉCNICAS: MTC E 108, ASTM D 2216

L DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, TRUJILLO-

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN : PLATAFORMA EXISTENTE

RUTA: LI -116

COORDENADAS : CALICATA : N 9123181 / E 818961

PROFUNDIDAD: 0.00 -0.40

CALICATA : C - 05 MUESTRA : M-1

HECHO POR: J.L.Q.M FECHA: 19/07/2021

ENSAYO N°			
N° DE TARA		T-35	and the state of t
PESO TARA + SUELO HÚMEDO	(gr)	1365.0	
PESO TARA + SUELO SECO	(gr)	1305.0	
PESO DE LA TARA	(gr)	122.0	
PESO DEL AGUA	(gr)	60.0	
PESO DE L SUELO SECO	(gr)	1183.0	
CONTENIDO DE HUMEDAD	(%)	5.07	
HUMEDAD NATURAL	(%)		5.1

Observaciones:

III-JR IIII

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147

r.diaz@jrgeoconsultores.com grigeoconsultores@gmail.com

proyectos@jrgeoconsultores.com

LÍMITES DE CONSISTENCIA - MALLA Nº40 NORMAS TÉCNICAS: MTC E 110 - MTC E 111, ASTM D 4318, AASHTO T 89 - T 90

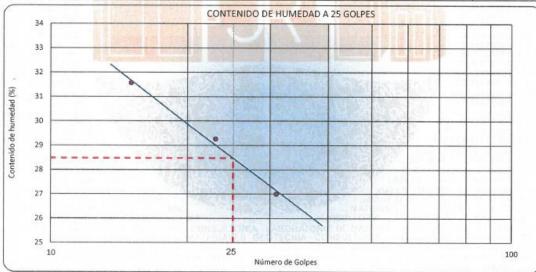
DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO --RUTA LI-116, LA LIBERTAD, 2021"

"INFLUENCIA EN EL I: PLATAFORMA EXISTENTE

COORDENADAS : N 9123181 / E 818961 CALICATA

MUESTRA


: C-05 M- 1

RUTA: LI -116

PROFUNDIDAD: 0.00 -0.40

HECHO POR: J.L.Q.M FECHA: 19/07/2021

		LIMITE LIQUIDO (MTC	E 110, AASHTO T 89)		
N" DE TARA		T-71	T-72	T-73	Mary Control
PESO TARA + SUELO HÚMEDO	(gr)	56.37	55.19	58.40	
PSO TARA + SUELO SECO	(gr)	49.50	49,21	51.76	
PESO DEL AGUA	(gr)	6.87	5.98	6.64	
PESO DE LA TARA	(gr)	27.73	28.77	27.16	77.77
PESO DE L SUELO SECO	(gr)	21.77	20.44	24.60	
CONTENIDO DE HUMEDAD	(%)	31.56	29.26	26.99	
NÚMERO DE GOLPES		15	23	31	
N° DE TARA		LÍMITE PLÁSTICO (MT	C E 111, AASHTO T 90)		
PESO TARA + SUELO HÚMEDO	(gr)	36.87	45.29		
PSO TARA + SUELO SECO	(gr)	35.11	42.04		
PESO DE LA TARA	(gr)	26.84	26.88		
PESO DEL AGUA	(gr)	1.76	3.25		
PESO DE L SUELO SECO	(gr)	8.27	15.16		
CONTENIDO DE HUMEDAD	(%)	21.28	21.44		

CONSTANTES FÍSICA	S DE LA MUESTF	AS
LÍMITE LÍQUIDO	(%)	28
LÍMITE PLÁSTICO	(%)	21
INDICE DE PLASTICIDAD	(%)	7

OBSERVACIONES

Reg. CIP Nº 67689

SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL 982 840 339 / 956 363 147 📵

- r.diaz@jrgeoconsultores.com
- jr.geoconsultores@gmail.com
- proyectos@jrgeoconsultores.com

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

ANALISIS GRANULOMÉTRICO POR TAMIZADO NORMAS TÉCNICAS: MTC E 107, ASTM D 422, AASHTO T 88

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO --RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN : PLATAFORMA EXISTENTE COORDENADAS : N 9123181 / E 818961

0.425

0.300

0.177

0.150

0.075

FONDO

32.27

80.39

26.09

71.35

2.3

1.9

5.1

RUTA : LI -116 PROFUNDIDAD : 0.40 -1.70

CALICATA : C - 05 MUESTRA : M-2

N°40

N°80

Nº100

N°200

< N°200

HECHO POR: J.L.Q.M FECHA: 19/07/2021

vedad Natural

optimo Cont. Humedad

OBR 0.1" all 95% MDS

OBR 0.1" all 100% MDS

(%)

(16)

(%)

2.025

10.1

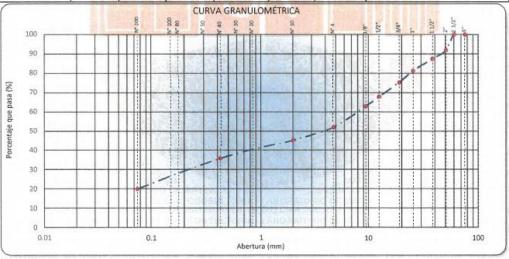
41.9

TAMIZ	ABERTURA (mm)	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFIC.	DESCRIPCIÓN DE	LA MUEST	RA .
4*	101.600						Peso de la l	Muestra	
3*	76,200						Peso Total de la Musetra	(gr.):	14005
2 1/2"	60.350				100.0		Material Fino < N*4	(gr.):	7290
2"	50.800	1147.0	8.2	8.2	91.8		Material Grueso > N°4	(gr.):	6715
1 1/2"	38,100	627.0	4.5	12.7	87.3		Fracción Material < Nº4	(gr.)	722.2
1"	25.400	857.0	6.1	18.8	81.2		Limites de Co	neistancia	
3/4"	19.000	843.0	6.0	24.8	75.2		Limite Liquido	(%):	33
1/2"	12.500	1036.0	7.4	32.2	67.8		Limite Plástico	(%):	24
3/8"	9.500	675.0	4.8	37.0	63.0		Indice Plástico	(%):	9
N°4	4.750	1530.0	10.9	47.9	52.1		Clasificación	de Suelo	
N°8	2.380	77.43	5.6	53.5	46.5		Clasificación SUCS	:	GM
N°10	2.000	16,26	1.2	54.7	45.3		Clasificación AASHTO	1	A-2-4 (0)
N°16	1.190	48.32	3.5	58.2	41.8				
N°20	0.840	25.90	1.9	60.0	40.0				
1.0200	0.000	00.00	0.0	00.4	07.0				

64.4

67.4

73.2


75.1

80.3

35.6

24.9

19.7

Observaciones :

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOL ASUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

DETERMINACIÓN DE HUMEDAD NATURAL NORMAS TÉCNICAS: MTC E 108, ASTM D 2216

L DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, TRUJILLO-

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

PLATAFORMA EXISTENTE DESCRIPCIÓN COORDENADAS

RUTA: LI-116 : N 9123181 / E 818961 PROFUNDIDAD: 0.40 -1.70

: C-05 CALICATA

HECHO POR: J.L.Q.M. MUESTRA : M-2 FECHA: 19/07/2021

ENSAYO N°				
N° DE TARA		T-62	ALL DINANCES CONTRACTOR	
PESO TARA + SUELO HÚMEDO	(gr)	1429.0		
PESO TARA + SUELO SECO	(gr)	1306.0		
PESO DE LA TARA	(gr)	463.6		
PESO DEL AGUA	(gr)	123.0		
PESO DE L SUELO SECO	(gr)	842.4		
CONTENIDO DE HUMEDAD	(%)	14.60	Say (Hallanders (Late) - Halland	
HUMEDAD NATURAL	(%)		14.6	

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLA SUSANO INCENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

Av. Diagonal Norte № 750, Ofic. N 501- SMP

LÍMITES DE CONSISTENCIA - MALLA Nº40 NORMAS TÉCNICAS: MTC E 110 - MTC E 111, ASTM D 4318, AASHTO T 89 - T 90

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

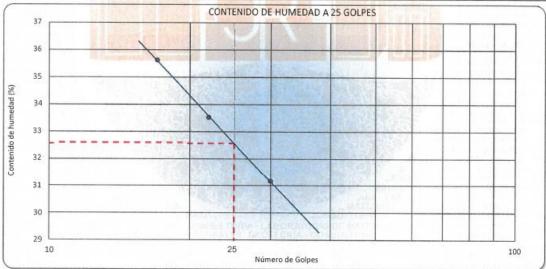
"INFLUENCIA EN EL I: PLATAFORMA EXISTENTE

: N 9123181 / E 818961 COORDENADAS

CALICATA : C - 05

MUE

RUTA: LI-116


PROFUNDIDAD: 0.40 -1.70

HECHO POR: J.L.Q.M

CONTRACTOR OF	and the second second	
ESTRA	: M- 2	FECHA: 19/07/2021

N° DE TARA		T-32	T-47	T-40	
PESO TARA + SUELO HÚMEDO	(gr)	47.85	47.21	49.47	
PSO TARA + SUELO SECO	(gr)	43.07	42.58	43.61	
PESO DEL AGUA	(gr)	4.78	4.63	5.86	
PESO DE LA TARA	(gr)	27.73	28.77	27.16	
PESO DE L SUELO SECO	(gr)	15.34	13.81	16.45	
CONTENIDO DE HUMEDAD	(%)	31.16	33.53	35.62	
NÚMERO DE GOLPES		30	22	17	
		LIMITE PLASTICO (MT	TC E 111, AASHTO T 90)	NO SECTION S	SKI S
N° DE TARA		T-11	T-49		
DECOTADA - PUELO MISHEDO	404	20.00			

LÍMITE PLÁSTICO (MTC E 111, AASHTO T 90)								
N° DE TARA		T-11	T-49					
PESO TARA + SUELO HÚMEDO	(gr)	37.38	37.80					
PSO TARA + SUELO SECO	(gr)	35.37	35.71					
PESO DE LA TARA	(gr)	26.84	26.88					
PESO DEL AGUA	(91)	2.01	2.09					
PESO DE L SUELO SECO	(gr)	8.53	8.83					
CONTENIDO DE HUMEDAD	(%)	23.56	23.67					

CONSTANTES FÍSICA	AS DE LA MUESTR	ZA A
LÍMITE LÍQUIDO	(%)	33
LÍMITE/PLÁSTICO	(%)	24
INDICE DE PLASTICIDAD	(%)	0

OBSERVACIONES

José Luis Quispe Mendoza Tec. Laporatorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLAS USANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

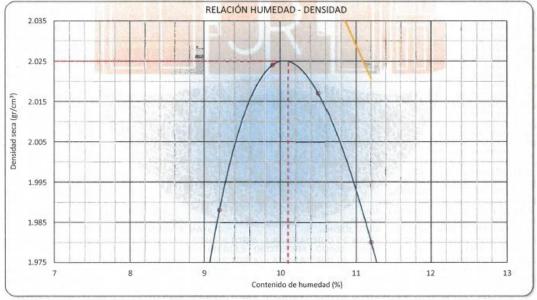
PROCTOR MODIFICADO NORMAS TÉCNICAS: MTC E115, ASTM D 1557, AASHTO T 180

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN : PLATAFORMA EXISTENTE

COORDENADAS : N 9123181 / E 818961


RUTA: LI -116 PROFUNDIDAD: 0.40 -1.70

PROFUNDIDAD : 0.40 -1.7 HECHO POR: J.L.Q.M

FECHA: 19/07/2021

CALICATA : C - 05 MUESTRA : M-2

Ensayo N°	TAY DESCRIPTION OF	1	2	3	THE STATE OF THE	
Número de Capas						
Golpes de Pisón por Capa			56		56	
Peso suelo húmedo + molde	(gr)	10996	11109	11118	11061	
Peso molde + base	(gr)	6420	6420	6420	6420	
Peso suelo húmedo compactado	(gr)	4576	4689	4698	4641	
Volumen del molde	(cm ³)	2108	2108	2108	2108	
Pesa volumétrico húmedo	(gr/cm ²)	2.171	2.224	2.229	2.202	
Fara Nº	MARKET D	T-91	T-106	T-95	T-99	
Peso del suelo húmedo + tara	(gr)	757,1	779.6	770.7	715.1	
Peso del suelo seco + tara	(gr)	705.3	722.0	710.0	660.9	
Peso de Tara	(gr)	142.3	140.1	132.0	177.2	
Peso de agua	(gr)	51.8	57.6	60.7	54.2	
Peso del suelo seco	(9r)	563.0	581.9	578.0	483.7	
Contenido de agua	(%)	9.2	9.9	10.5	11.2	
Peso volumétrico seco	(gr/cm ²)	1.988	2.024	2.017	1.980	
		100		Densidad máxima	(gr/cm ³)	2.025
				Himedad óntima	(%)	10.1

Observaciones :

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📳

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

: PLATAFORMA EXISTENTE

COORDENADAS : N 9123181 / E 818961 CALICATA : C-05

MUESTRA : M-2

RUTA: LI-116 PROFUNDIDAD: 0.40 -1.70

HECHO POR: J.L.Q.M FECHA: 19/07/2021

			COMPACT	ACIÓN	HOLDSTAN		
Molde N°		18	3	184			35
N° Capas		THE LOCAL PROPERTY OF					
N° golpes por capa				26			
Condición de la muestra		NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO
Peso de molde + Suelo húmedo	(gr)	12635	12672	12362	12421	11994	12069
Peso de molda + base	(gr)	7899	7899	7926	7926	7806	7806
Peso del suelo húmedo	(gr)	4736	4773	4436	4495	4188	4263
Volumen del molde	(cm ³)	2124	2124	2113	2113	2120	2120
Densidad húmeda	(gr/cm ^a)	2.230	2.247	2.099	2.127	1.975	2.011
N* Tara		T-109	T-91	T-93	T-90	T-89	T-87
Peso suelo húmedo + tara	(gr)	851.6	716.2	819.3	746.5	802.9	735.4
Peso suelo seco + tara	(gr)	785.0	658.4	758.6	684.2	745.6	675.2
Peso de tara	(gr)	126.0	142.3	138.9	142.4	142.1	160.7
Peso de agua	(gr)	66.6	57.8	60,7	62.3	57.3	60.2
Peso de suelo seco	(gr)	659.0	516.1	619.7	541.8	603.5	514.5
Contenido de humedad	(%)	10.1	11.2	9.8	11.5	9.5	11.7
Densidad seca	(gr/cm ²)	2.025	2.021	1.912	1.908	1.804	1.800
To be a	- I I I I I I I I I I I I I I I I I I I	100	NAME OF THE OWNER, WHEN	Out .		90	

THE PLANT	4 7 7 7		THE PARTY NAMED IN	N. P. Co.	EXPANSIÓ	IN	W 17 18 1	OVER 18	IN STREET	SPACE	TO ST
FECHA	HORA	TIEMPO	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN
	, Indian			mm	*		mm			mm	
12/07/2021	11:44	0	0	0.000	0.00	0	0.000	0.00	0	0.000	0.00
13/07/2021	11.44	24	15	0.150	0.13	28	0.280	0.24	58	0.580	0.50
14/07/2021	11:44	48	25	0.250	0.21	35	0.350	0.30	49	0.490	0.42
15/07/2021	11:44	72	36	0.360	0.31	49	0.490	0.42	64	0.640	0.58
16/07/2021	.11:44	96	65	0.650	0.56	71	0.710	0.61	95	0.950	0.8

					PENETRA	CIÓN								
	CARGA		MOLI	DE Nº 183			MOLD	E Nº 184			MOLD	E Nº 185		
	ESTÁNDAR	CAR	GA	CORR	ECCIÓN	CAR	GA	CORRE	CCIÓN	CAR	GA	CORR	CORRECCIÓN	
	(kg/cm2)	Dial (div)	kg	kg		Dial (div)	kg	kg	*	Dial (div)	kg	kg	*	
0.000	(1)		0				0				0			
0.635			135				105				83			
1.270			277				203				160			
1.905			443	170			370				303			
2.540	70.5		627	579.1	41.9		487	458.8	33.2		370	357.0	25.	
3.810			835				659				503			
5,080	105.7		1125	1126.2	54.3		918	902.8	43.5		713	699.0	33.	
6.350			1432				1132				887			
7.620			1819				1439				1135			
10.600			2262				1822				1442			
12.700			2599				2072				1648			

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL

Reg, CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

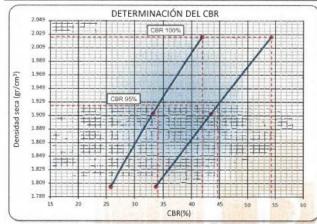
Av. Diagonal Norte № 750, Ofic. N 501- SMP

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

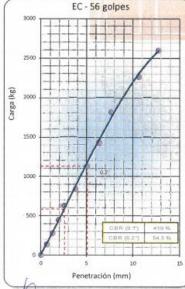
DESCRIPCIÓN : PLATAFORMA EXISTENTE

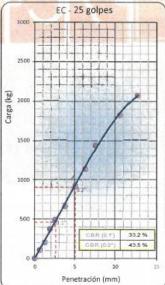

COORDENADAS : N 9123181 / E 818961 CALICATA : C - 05

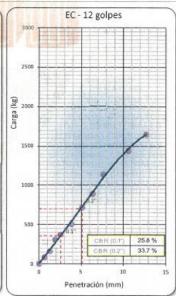
MUESTRA : M-2

RUTA: LI -116

PROFUNDIDAD: 0.40 -1.70 HECHO POR: J.L.Q.M


FECHA: 19/07/2021




DATOS DEL PROCTOR MOD	FICADO	10.00
PROCTOR MODIFICADO ASTM		1557
MÁXIMA DENSIDAD SECA	(gr/cm ³):	2.025
ÓPTIMO CONTENIDO DE HUMEDAD	(%):	10.1
95% DE LA MAXIMA DENSIDAD SECA	(ar/cm ³):	1.924

PORCENTAJE DEL CBR							
C B R AL 95% DE M D S (%)	0.1*	34.0	0.2*	44.6			
C.§ R. AL 100% DE M.D.S. (%)	0.1*	41.9	0.2"	54.3			

Observaciones:

Observaciones :

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL

Reg. CIP Nº 67689

- 982 840 339 / 956 363 147 📵
- r.diaz@jrgeoconsultores.com
- jr.geoconsultores@gmail.com
- proyectos@jrgeoconsultores.com
- Av. Diagonal Norte № 750, Ofic. N 501- SMP

ANALISIS GRANULOMÉTRICO POR TAMIZADO NORMAS TÉCNICAS: MTC E 107, ASTM D 422, AASHTO T 88

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO --RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN PLATAFORMA EXISTENTE COORDENADAS N 9120578 / E 820080

RUTA: LI-116 PROFUNDIDAD: 0.00 -0.70

CALICATA C - 06 MUESTRA

Nº80

Nº100

N°200

80.39

26.09

71.35

1.6

0.150

0.075

HECHO POR: J.L.Q.M FECHA: 19/07/2021

Máxima dens, Seca

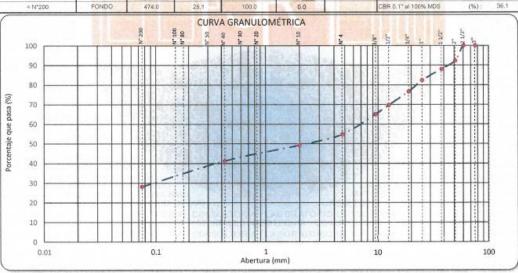
Óptimo Cont. Humeda

(%)

29.3

36.1

TAMIZ	ABERTURA (mm)	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFIC.	DESCRIPCIÓN DE	LA MUEST	RA .
4"	101,600	Total Control		- Constant of the Constant of			Peso de la I	Muestra	
3"	76.200						Peso Total de la Muestra	(gr.):	14850
2 1/2"	60.350				100.0		Material Fino < N°4	(gr.):	8132
2"	50.800	1147.3	7.7	7.7	92.3		Material Grueso > Nº4	(gr.):	6718
1.1/2*	38.100	627.0	4.2	11.9	88.1		Fracción Material < Nº4	(gr.):	922.2
1"	25.400	857.9	5.8	17.7	82.3		Limites de Co	nsistancia	
3/4"	19.000	843.4	5.7	23.4	76.6		Limite Liquido	(%):	24
1/2"	12.500	1036.8	7.0	30.4	69.6		Limite Plástico	(%):	18
3/8"	9.500	675.2	4.5	34.9	65.1		Endice Plástico	(%):	6
Nº4	4.750	1530.1	10.3	45.2	54.8		Clasificación	de Suelo	
N°8	2.380	77.43	4.6	49.8	50.2	==11 77 15	Clasificación SUCS		GC-GM
Nº10	2.000	16.26	1.0	50.8	49.2		Clasificación AASHTO		A-2-4 (0)
Nº16	1,190	48.32	2.9	53.7	46.3				
N°20	0.840	25.90	1.5	55.2	44.8				
N°30	0.600	27.83	1.7	56.9	43.1				
N°40	0.425	32.27	1.9	58.8	41.2		Humedad Natural	(%):	9.4
N°50	0.300	42.41	2.5	61.3	38.7				
	The state of the s	The second secon	A STATE OF THE PARTY OF THE PAR	The state of the s	-				


67.6

71.9

33.9

32.4

28.1

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLAS USANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

DETERMINACIÓN DE HUMEDAD NATURAL NORMAS TÉCNICAS: MTC E 108, ASTM D 2216

DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, TRUJILL(

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO --RUTA LI-116, LA LIBERTAD, 2021"

: PLATAFORMA EXISTENTE DESCRIPCIÓN

COORDENADAS : N 9120578 / E 820080

; C-06

MUESTRA : M-1

CALICATA

RUTA: LI -116

PROFUNDIDAD: 0.00 -0.70 HECHO POR: J.L.Q.M

FECHA: 19/07/2021

ENSAYO N°				
N' DE TARA	-	T-25	THE RESIDENCE OF THE PARTY OF T	
PESO TARA + SUELO HÚMEDO	(gr)	1419.0		
PESO TARA + SUELO SECO	(gr)	1305.0		
PESO DE LA TARA	(gr)	90,9		
PESO DEL AGUA	(gr)	114.0		
PESO DE L SUELO SECO	(gr)	1214.1		
CONTENIDO DE HUMEDAD	(%)	9.39		
HUMEDAD NATURAL	(%)		9.4	

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com proyectos@jrgeoconsultores.com

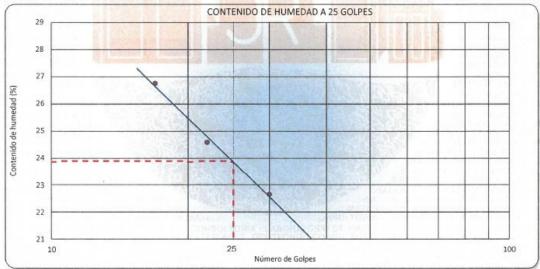
LÍMITES DE CONSISTENCIA - MALLA Nº40 NORMAS TÉCNICAS: MTC E 110 - MTC E 111, ASTM D 4318, AASHTO T 89 - T 90

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

"INFLUENCIA EN EL |: PLATAFORMA EXISTENTE

RUTA: LI -116


COORDENADAS : N 9120578 / E 820080 CALICATA : C-06

PROFUNDIDAD: 0.00 -0.70

MUESTRA : M-1 HECHO POR: J.L.Q.M FECHA: 19/07/2021

		LÍMITE LÍQUIDO (MT	C E 110, AASHTO T 89)		
N° DE TARA		T-02	T-05	T-08	
PESO TARA + SUELO HÚMEDO	(gr)	44.29	49.39	47.39	
PSO TARA + SUELO SECO	(gr)	41.23	45.32	43.12	100
PESO DEL AGUA	(gr)	3.06	4.07	4.27	
PESO DE LA TARA	(gr)	27.73	28.77	27.16	
PESO DE L SUELO SECO	(gr)	13.50	16.55	15.96	
CONTENIDO DE HUMEDAD	(%)	22.65	24.59	26.75	
NI MERO DE COLPES		30	22	17	

NÚMERO DE GOLPES		30	22	17	
		LIMITE PLASTICO (MT	C E 111, AASHTO T 90)		
N° DE TARA		T-18	T-21	and the same of th	and the state of
PESO TARA + SUELO HÚMEDO	(gr)	36.92	37.32		
PSO TARA + SUELO SECO	(gr)	35.37	35.71		
PESO DE LA TARA	(gr)	26.84	26.88		
PESO DEL AGUA	(gr)	1.55	1.61		
PESO DE L SUELO SECO	(gr)	8.53	8.83		
CONTENIDO DE HUMEDAD	(%)	18.17	18.23		

CONSTANTES FISICA		
LÍMITE LÍQUIDO	(%)	24
LÍMITE/PLÁSTICO	(%)	18
INDICE DE PLASTICIDAD	(%)	6

OBSERVACIONES

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

Av. Diagonal Norte № 750, Ofic. N 501- SMP

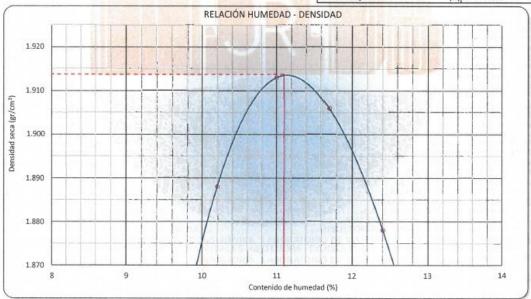
PROCTOR MODIFICADO NORMAS TÉCNICAS: MTC E115, ASTM D 1557, AASHTO T 180

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

PLATAFORMA EXISTENTE COORDENADAS : N 9120578 / E 820080

; C-06


RUTA: LI-116

PROFUNDIDAD: 0.00 -0.70

HECHO POR: J.L.Q.M FECHA: 19/07/2021

CALICATA MUESTRA : M-1

Ensaye N°						
Número de Capas						
Golpes de Pisón por Capa		56	56	56		
Peso suelo húmedo + molde	(gr)	10837	10928	10940	10901	
Peso molde + base	(gr)	6422	6422	6422	6422	
Peso suelo húmedo compactado	(gr)	4415	4506	4518	4479	
Volumen del molde	(cm ^a)	2122	2122	2122	2122	
Peso volumétrico húmedo	(gr/cm ³)	2.081	2.123	2.129	2.111	
Tara N°		T-04	T-05	T-08	T-11	Salid Salar
Peso del suelo húmedo + tara	(gr)	773.3	796.3	787,5	737.0	
Peso del suelo seco + tara	(gr)	705.3	722.0	710.0	660.9	
Peso de Tara	(gr)	39.0	46.8	47.2	46.8	
Peso de agua	(gr)	68.0	74.3	77.5	76.1	
Peso del suelo seco	(gr)	666.3	675.2	662.8	614.1	
Contenido de agua	(%)	10.2	11.0	11.7	12.4	
Peso volumétrico seco	(gr/cm ²)	1.888	1.913	1.906	1.878	
		and the		Densidad máxima	(gr/cm ³)	1.914
				Húmedad óptima	(%)	11.1

Observaciones:

José Luis Quispe Mendoza Tec. Lahoratorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📳

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DESCRIPCIÓN : PLATAFORMA EXISTENTE

N 9120578 / E 820080

CALICATA : C - 06 MUESTRA : M-1

COORDENADAS

RUTA: LI-116

PROFUNDIDAD: 0.00 -0.70 HECHO POR: J.L.Q.M FECHA: 19/07/2021

COMPACTACIÓN Molde N 232 N° Capas 26 12 Condición de la muestra NO SATURADO SATURADO NO SATURADO SATURADO NO SATURADO SATURADO 12358 12393 11814 12132 7820 7820 7827 7827 7906 Peses alsa mesida + base (gr 4538 4277 3987 4053 4573 4226 (9) 2134 2111 2116 2134 2111 2116 Volumen del molde (cm³ 2.126 2.143 2.026 1.915 2.002 Densidad húmeda N° Tara T-93 T-90 T-87 Peso suelo húmedo + tara 858,1 721.4 826.1 751.9 810.2 741.1 (91 785.0 658.4 758.6 684.2 745.6 675.2 (gr 126.0 142.3 138.9 142 4 142.1 160.7 Peso de tara (gr Peso de agua 73.1 63.0 67.5 67.7 64.6 65.9 (gr Peso de suelo seco 659.0 516.1 619.7 541.8 603.5 514.5 (gr Contenido de humedad 11.1 12.2 10.9 12.5 10.7 12.8 Densidad seca 1.801 1.702

	EXPANSIÓN										
FECHA	HORA	TIEMPO	20.00	EXPANSIÓN DIAL		EXPA	NSIÓN	DIAL	EXPA	NSIÓN	
PEGNA	Honn		DIAL	mm	*	DIAL	mm		DIAL	mm	%
12/07/2021	02:25	0	0	0.000	0.00	0	0.000	0.00	0	0.000	0.00
13/07/2021	02:25	24	13	0.130	0.11	27	0.270	0.23	38	0.380	0.32
14/07/2021	02:25	48	27	0.270	0.23	33	0.330	0.28	49	0.490	0.42
15/07/2021	02:25	72	35	0.350	0.30	55	0.550	0.47	64	0.640	0.5
16/07/2021	02:25	96	69	0.690	0.59	81	0.810	0.69	88	0.880	0.75

				B Man	PENETRA	CIÓN							
	CARGA		MOLE	DE Nº 231			MOLDI	E Nº 232			E N° 233		
PENETRACIÓN (mm)	ESTÁNDAR	CAR	GA	CORR	ECCIÓN	CAR	RGA	CORRE	CCIÓN	CAR	GA	CORRE	ECCIÓN
	(kg/cm2)	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	76
0.000			0				0				0		
0.635			114				88		1 1		63		
1.270			240				178				128		
1.905			365				275				213		
2.540	70.5		503	499.5	36.1		410	392.0	28.3		322	291.8	21
3.810			781				611				444		
5.080	105.7		1007	1031.1	49.7		830	839.1	40.4		600	629.4	- 30
6.350			1301				1056				837		
7.620			1522				1216				957		
10.600			1979				1690				1293		
12.700			2250				1875				1475		

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO

INGENIERA CIVIL Reg. CIP Nº 67689 982 840 339 / 956 363 147 [6]

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

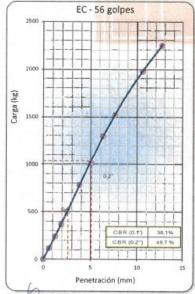
DATOS DE LA MUESTRA

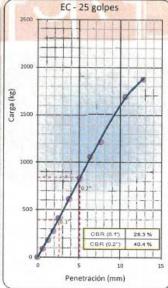

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

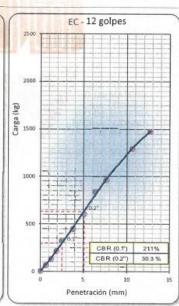
DESCRIPCIÓN : PLATAFORMA EXISTENTE

COORDENADAS : N 9120578 / E 820080

CALICATA : C - 06 MUESTRA : M-1 RUTA: LI-116 PROFUNDIDAD: 0.00 -0.70


PROFUNDIDAD: 0.00 -0.70 HECHO POR: J.L.Q.M FECHA: 19/07/2021




DATOS DEL PROCTOR MODIFICADO								
PROCTOR MODIFICADO ASTM		1557						
MÁXIMA DENSIDAD SECA	(gr/cm ³):	1.914						
ÓPTIMO CONTENIDO DE HUMEDAD	(%):	11.1						
95% DE LA MAXIMA DENSIDAD SECA	(gr/cm ³):	1.818						

PORCENTAJE DEL CBR									
C B R. AL 95% DE M.D.S. (%)	0,1~	29.3	0.2"	41.6					
C.B.R. AL 100% DE M.D.S. (%)	0.1"	36.1	0.2"	49.7					

Observaciones:

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO

INGENIERA CIVIL Reg, CIP Nº 67689

- 982 840 339 / 956 363 147 📵
- r.diaz@jrgeoconsultores.com
- jr.geoconsultores@gmail.com
- proyectos@jrgeoconsultores.com
- Av. Diagonal Norte Nº 750, Ofic. N 501-SMP

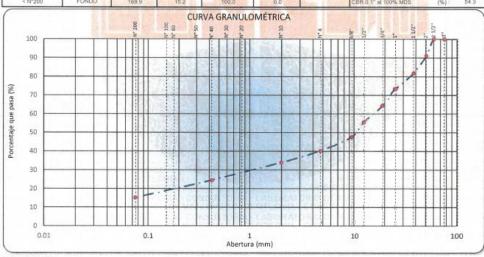
Anexo 06.3. Ensayos a muestras de Cantera Salome.

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y ASFALTO

ANALISIS GRANULOMÉTRICO POR TAMIZADO NORMAS TÉCNICAS: MTC E 107, ASTM D 422, AASHTO T 88

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"


CANTERA SALOME COORDENADAS N 9132829 / E 823670

CALICATA C-1 MUESTRA M- 1

RUTA: LI-116 PROFUNDIDAD: 0.00 -3.00

HECHO POR: J.L.Q.M. FECHA: 19/07/2021

TAMIZ	ABERTURA (mm)	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFIC.	DESCRIPCIÓN D	E LA MUEST	RA
4"	101.600						Peso de la	Muestra	
3"	76.200						Peso Total de la Muestra	(gr.):	14015
2 1/2"	60.350				100.0		Material Fino < N°4	(gr.):	5631
2"	50.800	1251.0	8.9	8.9	91.1		Material Grueso > N*4	(gr.):	8384
1.1/2"	38.100	1324.6	9.5	18.4	81.6		Fracción Material < Nº4	(gr.):	450.0
1"	25.400	1164.2	8.3	26.7	73.3		Limites de C	onsistencia	1
3/4"	19.000	1269.7	9.1	35.7	64.3		Limite Liquido	(%):	27
1/2"	12.500	1245.1	8.9	44.6	55.4		Limite Plástico	(%):	22
3/8"	9.500	1094.2	7.8	52.4	47.6		Indice Plástico	(%):	5
N°4	4.750	1034.9	7.4	59.8	40.2		Clasificació	n de Suelo	WHILE
N*8	2.380	55.60	5.0	64.8	35.2		Clasificación SUCS	1	GM
N*10	2.000	14.56	1.3	66.1	33.9		Clasificación AASHTO	1	A-1-b (0
N°16	1.190	42.26	3.8	69.9	30.1				
N°20	0.840	24.97	2.2	72.1	27.9				
N°30	0.600	18.49	1.7	73.7	26.3				
N°40	0.425	19.78	1.8	75.5	24.5	1 1000	Humedad Natural	(%):	6.6
N°50	0.300	16.53	1.5	77.0	23.0	100			
N*80	0.177	40.79	3.6	80.6	19,4		Máxima dens. Seca	(gr/cm ³):	2.143
N°100	0.150	16.84	1.5	82.1	17.9	11/53	Óptimo Cont. Humedad	(%):	8.6
N°200	0.075	30.26	2.7	84.8	15.2	1955	CBR 0.1" al 95% MDS	(%):	35.7
< N°200	FONDO	169.9	15.2	100.0	0.0	L IROS	CBR 0.1" al 100% MDS	(%):	54.3

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

Av. Diagonal Norte № 750, Ofic. N 501- SMP

DETERMINACIÓN DE HUMEDAD NATURAL NORMAS TÉCNICAS: MTC E 108, ASTM D 2216

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CÉMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA : SALOME COORDENADAS : N 9132829 / E 823670

RUTA: LI-116 823670 PROFUNDIDAD: 0.00 -3.00 HECHO POR: J.L.Q.M.

CALICATA : C-1 MUESTRA : M-1

FECHA: 19/07/2021

ENSAYO N°				
N° DE TARA		T-35		
PESO TARA + SUELO HÚMEDO	(gr)	5609.0		
PESO TARA + SUELO SECO	(gr)	5269.0		
PESO DE LA TARA	(gr)	122.0		
PESO DEL AGUA	(gr)	340.0		
PESO DE L SUELO SECO	(gr)	5147.0		
CONTENIDO DE HUMEDAD	(%)	6.61		
HUMEDAD NATURAL	(%)		6.6	

Observaciones:

José Luis Quispe Mendoza Tec, Laboratorio de Mecánica de Suelos

SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 []

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

Av. Diagonal Norte № 750, Ofic. N 501- SMP

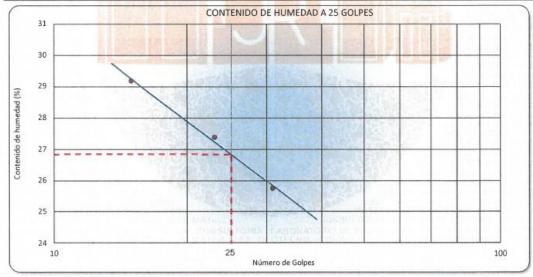
LÍMITES DE CONSISTENCIA - MALLA N°40 NORMAS TÉCNICAS: MTC E 110 - MTC E 111, ASTM D 4318, AASHTO T 89 - T 90

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA : SALOME

COORDENADAS : N 9132829 / E 823670


CALICATA : C-1 MUESTRA : M-1 RUTA: LI-116

PROFUNDIDAD : 0.00 -3.00 HECHO POR: J.L.Q.M.

FECHA: 19/07/2021

	LÍMITE LÍQUIDO (MTC E 110, AASHTO T 89)						
N° DE TARA		T-61	T-81	T-43			
PESO TARA + SUELO HÚMEDO	(gr)	83.34	83.28	53.96			
PSO TARA + SUELO SECO	(gr)	75.72	76.19	47.38			
PESO DEL AGUA	(gr)	7.62	7.09	6.58			
PESO DE LA TARA	(gr)	49.61	50.30	21.81			
PESO DE L SUELO SECO	(gr)	26.11	25.89	25.57			
CONTENIDO DE HUMEDAD	(%)	29.18	27.39	25.73			
NÚMERO DE GOLPES		15	23	31			

HOWERO DE GOLFES		1.5	20	91	
		LÍMITE PLÁSTICO (M	TC E 111, AASHTO T 90)		
N° DE TARA		T-08	T-01		
PESO TARA + SUELO HÚMEDO	(gr)	16.50	15.78		
PSO TARA + SUELO SECO	(gr)	14.70	14.12		
PESO DE LA TARA	(gr)	6.60	6.54		
PESO DEL AGUA	(gr)	1.80	1.66	10.00	
PESO DE L SUELO SECO	(gr)	8.10	7.58	Chillian Constitution of the	
CONTENIDO DE HUMEDAD	(%)	22.22	21.90		

CONSTANTES FÍSICAS DE LA MUESTRA							
LÍMITE LÍQUIDO	(%)	27					
LIMITE/PLASTICO	(%)	22					
INDICE DE PLASTICIDAD	(%)	5					

OBSERVACIONES

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

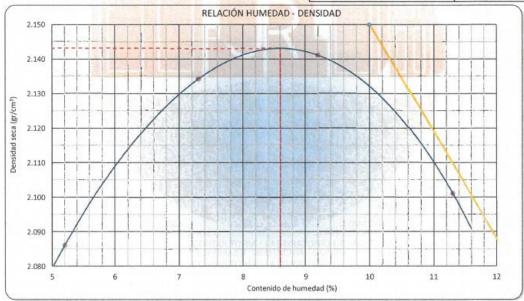
PROCTOR MODIFICADO NORMAS TÉCNICAS: MTC E115, ASTM D 1557, AASHTO T 180

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA SALOME

COORDENADAS : N 9132829 / E 823670


RUTA: LI-116 PROFUNDIDAD: 0.00 -3.00

CALICATA ; C-1 HECHO POR; J.L.Q.M.

: M-1 MUESTRA

FECHA: 19/07/2021

Ensayo N*	AUSTRAL S		2	3	4	STATE OF THE PARTY OF
Número de Capas						
Golpes de Pisón por Capa		56		56	56	
Peso suelo húmedo + molde	(gr)	11156	11357	11458	11459	
Peso moide + base	(gr)	6548	6548	6548	6548	
Peso suelo húmedo compactado	(gr)	4608	4809	4910	4911	
Volumen del molde	(cm ³)	2100	2100	2100	2100	
Peso volumétrico húmedo	(gr/cm ³)	2.194	2.290	2.338	2,338	
Tara N°	-	T-41	T-33	T-93	T-91	541
Peso del suelo húmedo + tara	(gr)	637.0	677.9	815.1	770.5	
Peso del suelo seco + tara	(gr)	610.0	638.0	761.2	710.5	
Peso de Tara	(gr)	90.2	91.2	174.8	179.6	
Peso de agua	(gr)	27.0	39.9	53.9	60.0	
Peso del suelo seco	(gr)	519.8	546.8	586.4	530.9	
Contenido de agua	(%)	5.2	7.3	9.2	11.3	
Peso volumétrico seco	(gr/cm ³)	2.086	2.134	2.141	2.101	equal months
		- 1	December 1	Densidad máxima	(gr/cm ³)	2.143
				Húmedad óptima	(%)	8.6

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com proyectos@jrgeoconsultores.com

Av. Diagonal Norte № 750, Ofic. N 501- SMP

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA : SALOME

COORDENADAS : N 9132829 / E 823670

: C-1 CALICATA : M-1 MUESTRA

RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00

HECHO POR: J.L.Q.M.

FECHA: 19/07/2021

			COMPAG	CTACION				
Molde N*		18	6	Manager at No. 14	2	15		
Nº Capas				710000000000000000000000000000000000000				
N° golpes por capa				2		12		
Condición de la muestra		NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO	
Peso de molde + Suelo húmedo	(gr)	12937	13022	12489	12563	12647	12726	
Peso de molde + base	(gr)	7960	7960	7660	7660	7979	7979	
Peso del suelo húmedo	(gr)	4977	5062	4829	4903	4668	4747	
Volumen del molde	(cm ³)	2129	2129	2128	2128	2125	2125	
Densidad húmeda	(gr/cm ⁹)	2.338	2.378	2.269	2.304	2.197	2.234	
N° Tara		T-47	T-104	T-98	T-53	T-45	T-89	
Peso suelo húmedo + tara	(gr)	685.1	740.8	818.4	881.3	703.6	579.9	
Peso suelo seco + tara	(gr)	636.5	685.3	762.4	810.3	660.4	541.2	
Peso de tara	(gr)	83.7	169.0	125.0	133.0	169.0	175.6	
Peso de agua	(gr)	48.6	55.5	.56.0	71.0	43.2	38.7	
Peso de suelo seco	(gr)	552.8	516.3	637.4	677.3	491.4	365.6	
Contenido de humedad	(%)	8.8	10.7	8.8	10.5	8.8	10.6	
Densidad seca	(gr/cm ³)	2.149	2.147	2.086	2.085	2.019	2.020	

			EXPANSIÓN								
FECHA	HORA	TIEMPO	DIAL	EXPA	NSIÓN	MINT	EXPA	NSIÓN	PIAT	EXPA	NSIÓN
PEUNA	HURA	HEMPO	DIAL	mm	*	DIAL	mm	*	DIAL	mm	%
12/07/2021	08:40	0	0	0.000	0.00	0	0.000	0.00	0	0.000	0.0
13/07/2021	08:40	24	8	0.080	0.07	19	0.190	0.16	29	0.290	0.2
14/07/2021	08:40	48	16	0.160	0.14	26	0.260	0.22	43	0.430	0.3
15/07/2021	08:40	72	23	0.230	0.20	38	0.380	0.32	52	0.520	0.4
16/07/2021	08:40	96	24	0.240	0.21	38	0.380	0.32	52	0.520	0.4

	THE RESERVE	SA CONTRACTOR	TO T	MC I	PENETE	RACIÓN	1000	12100	TO S			BYNA	400
	CARGA		MOLE	DE Nº 196			MOLD	E Nº 142			MOLD	E Nº 153	
PENETRACIÓN (mm)	ESTÁNDAR	CAR	GA	CORRE	ECCIÓN	CAR	GA	CORRE	CCIÓN	CAR	GA	CORRE	CCIÓN
tame?	(kg/cm2)	Dial (div)	kg	kg	*	Dial (div)	kg	kg		Dial (div)	kg	kg	%
0.000			0				0				0		
0.635			194				112				49		
1.270			346				294				171		
1.905			585				425				312		
2.540	70.5		795	765.7	55.4		642	613.1	44.3		511	453.5	32.
3.810			1129				965				742		
5.080	105.7		1396	1373.2	66.2		1210	1187.7	57.2		968	969.4	46.
6.350			1552				1363				1142		
7.620			1892				1727				1367		
10.600			2399				2146				1850		
12.700			2621				2345				1988		

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵 r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com
Av. Diagonal Norte № 750, Ofic. N 501- SMP

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA SALOME

CALICATA C- 1 MUESTRA

COORDENADAS : N 9132829 / E 823670

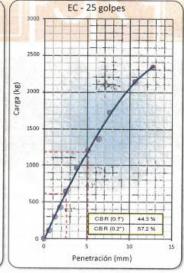
M-1

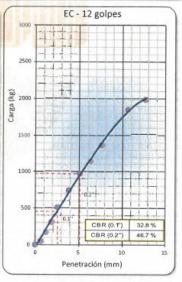
RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00

HECHO POR: J.L.Q.M. FECHA: 19/07/2021

DATOS DEL PROCTOR MO	DIFICADO	
PROCTOR MODIFICADO ASTM	-	1557
MÁXIMA DENSIDAD SECA	(gn/cm ³):	2.143
ÓPTIMO CONTENIDO DE HUMEDAD	(%)	8.6


PORCENTAJE DEL CBR								
CBR AL95% DEM.D.S (%)	0.1" 35.7	0.2"	49.4					
CBR AL 100% DEM.D.S. (%)	0.1" 54.3	0.21	65.4					


Ohso	nyaci	ones.	

95% DE LA MAXIMA DENSIDAD SECA

	3000		EC-	56 gc	olpes		
	2500				9	7	
Carga (kg)	2000	#		1	4		100
	1500		1	1			
	1000		1	0.2			
	500	1	0.1"	CBR	(0.1)	55.4 %	
	0	1	- 5		(0.2")	66.2 %	
				CBR	(0.2")		662%

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 [6]

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

GRAVEDAD ESPECÍFICA

NORMA MTC E 206, ASTM C 127, ASSTHO T 85

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA : SALOME

COORDENADAS : N 9132829 / E 823670

CALICATA : C-1 MUESTRA : M-1

RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00 HECHO POR: J.L.Q.M.

FECHA: 19/07/2021

	AGREGADO GRUESO									
	MUESTRAS		Muestra 1	Muestra 2	Muestra 2	Promedio				
Α	Peso Mat. Sat. Superf. Seca (en aire)	gr	1,805.3	1,755.6						
В	Peso Mat. Sat. Superf. Seca (en agua)	gr	1,126.0	1,094.2						
С	Volumen de Masa + Volumen de Vacio	cm3	679.3	661.4						
D	Peso Material Seco en Estufa (105°C)	gr	1,788.9	1,743.7						
E	Volumen de Masa = C-(A-D)	cm3	662.87	649.50	Acres E LIE					
Peso Espe	cifico (Base Seca) = D/C	gr/cm3	2.634	2.636		2.635				
Peso Espe	cifico (Base Saturada) = A/C	gr/cm3	2.658	2.654	BEST LUCK	2.656				
Peso Espe	cifico Aparente (Base Seca) = D/E	gr/cm3	2.699	2,685		2.692				
Porcentaje	de Absorcion = ((A-D) / D) x 100	%	0.9%	0.7%		0.8%				

Observaciones	:			
		 -		

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 [9]

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com proyectos@jrgeoconsultores.com

EQUIVALENTE DE ARENA NORMAS TÉCNICAS: MTC E 114. ASTM D 2419, AASHTO T 176

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DATOS DE LA MUESTRA

CANTERA : SALOME

RUTA: LI-116

COORDENADAS : N 9132829 / E 823670

PROFUNDIDAD: 0.00 -3.00

CALICATA : C-1

HECHO POR: J.L.Q.M.

MUESTRA : M-1 FECHA: 19/07/2021

Nº DE ENSAYOS	1	2	3
Tamaño máximo (pasa malla Nº 4)	4.76	4.76	4.76
Hora de entrada a saturación	12:03	12:05	12:07
Hora de salida de saturación (mas 10")	12:13	12:15	12:17
Hora de entrada a decantación	12:15	12:17	12:19
Hora de salida de decantación (mas 20")	12:35	12:37	12:39
Altura máxima de material fino	6.3	6.1	6.2
Altura máxima de la arena	2.9	2.9	2.8
Equivalente de Arena (%)	46.0	47.5	45.2
PROMEDIO		47	

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGEMIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com 🔤

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

CONTENIDO DE MATERIA ORGÁNICA (PÉRDIDA POR IGNICIÓN) NORMAS TÉCNICAS: MTC E 118, AASHTO T 267

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO --RUTA LI-116, LA LIBERTAD, 2021"

DATOS DE LA MUESTRA

: SALOME CANTERA

CALICATA : C-1 MUESTRA M-1

COORDENADAS : N 9132829 / E 823670

RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00

HECHO POR: J.L.Q.M.

	FECHA:	19/07/2021
_		

ENSAYO N°				
Tara Nº		T-08	T-09	
Peso de la tara y suelo seco, antes de ignición		102.68	103.47	
Peso de la tara y suelo seco, después de ignición	(gr)	102.49	103.28	
Peso de materia orgánica	(gr)	0.19	0.19	
Peso de la tara	(gr)	80.16	83.71	
Peso del suelo seco neto	(gr)	22.33	19.57	
Contenido de Materia Orgánica	(%)	0.85	0.97	
Promedio Contenido de Materia Orgánica	(%)		0.91	THE REPORT OF THE PARTY OF

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

ABRASIÓN LOS ÁNGELES NORMAS TÉCNICAS: MTC E 207, ASTM C 131, AASHTO T 96

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO --RUTA LI-116, LA LIBERTAD, 2021"

CANTERA

: SALOME

RUTA : LI-116

COORDENADAS

: N 9132829 / E 823670

PROFUNDIDAD: 0.00-3.00

CALICATA

: C-1

ECHO POP- II AM

MUESTRA

FECHA: 19/07/2021

MUESTRA	1 1 1	
GRADACIÓN	"A"	
N° DE ESFERAS	12	
TAMIZ (N°)	12	
1"	1,250	
3/4"	1,250	
1/2"	1,250	
3/8*	1,250	Black Co.
PESO TOTAL	5,000	Law grade
MATERIAL RETENIDO TAMIZ Nº 12	3,625	i kar i kar
PORCENTAJE DE DESGASTE	27.5	

Observaciones:

José Luis Quispe Mendoza Tec. Laporatorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

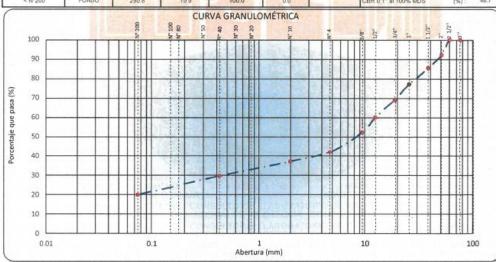
r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

ANALISIS GRANULOMÉTRICO POR TAMIZADO NORMAS TÉCNICAS: MTC E 107, ASTM D 422, AASHTO T 88

DATOS DE LA MUESTRA


"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO --RUTA LI-116, LA LIBERTAD, 2021"

CANTERA : SALOME COORDENADAS :: N 9132838 / E 803675

TRINCHERA : T-1 MUESTRA : M-1 RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00 HECHO POR: J.L.Q.M. FECHA: 19/07/2021

TAMIZ	ABERTURA (mm)	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFIC.	DESCRIPCIÓN DE LA MUESTRA		'RA
4"	101.600			THE COLORS OF TH			Peso de la Muestra		
3"	76.200						Peso Total de la Muestra	(gr.):	35000
2 1/2"	60.350				100.0		Material Fino < N*4	(gr.):	14703
2"	50.800	2695.8	7.7	7.7	92.3		Material Grueso > N*4	(gr.):	20297
1 1/2"	38.100	2355.6	6.7	14.4	85.6		Fracción Material < N*4	(gr.):	613.5
1"	25,400	3030.4	8.7	23.1	76.9		Limites de C	onsistencia	A HER
3/4"	19.000	2740.4	7.8	30.9	69.1		Limite Liquido	(%):	29
1/2"	12.500	3134.7	9.0	39.9	60.1		Limite Plástico	(%):	23
3/8"	9.500	2703.4	7.7	47.6	52.4		Indice Plástico	(%):	6
N°4	4.750	3636.9	10.4	58.0	42.0		Clasificació	n de Suelo	2000
N°8	2.380	57.80	4.0	61.9	38.1		Clasificación SUCS	:	GM
N°10	2.000	14.52	1.0	62.9	37.1		Clasificación AASHTO	:	A-1-b (0
Nº16	1.190	44.45	3.0	66.0	34.0				
N°20	0.840	26.59	1.8	67.8	32.2				
N°30	0.600	18.87	1,3	69.1	30.9				
N°40	0.425	19.45	1,3	70.4	29.6	1	Humedad Natural	(%)::	4.1
N°50	0.300	16.45	1.1	71.6	28.4				
Nº80	0.177	43.86	3.0	74.6	25.4		Máxima dens. Seca	(gr/cm ³):	2.129
N°100	0.150	16.98	1.2	75 7	24.3	1100	Óptimo Cont, Humedad	(%):	9.4
N*200	0.075	63 78	4.4	80.1	19.9	111.5	CBR 0.1" al 95% MDS	(%):	33.6
< N°200	FONDO	290.8	19.9	100.0	0.0	- 1000	CBR 0.1" al 100% MDS	(%):	46.7

Observaciones :

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

982 840 339 / 956 363 147 📵

proyectos@jrgeoconsultores.com

DETERMINACIÓN DE HUMEDAD NATURAL NORMAS TÉCNICAS: MTC E 108, ASTM D 2216

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

SALOME CANTERA

RUTA: LI-116 PROFUNDIDAD: 0.00 -3.00

COORDENADAS : N 9132838 / E 803675 : T-1 TRINCHERA

HECHO POR: J.L.Q.M.

MUESTRA : M-1 FECHA: 19/07/2021

ENSAYO N°				
N° DE TARA		T-41	STORES CONTRACTOR IN SEC.	Name and Address of the Owner, where the Owner, which the
PESO TARA + SUELO HÚMEDO	(gr)	5624.0		
PESO TARA + SUELO SECO	(gr)	5408.0		
PESO DE LA TARA	(gr)	138.0		
PESO DEL AGUA	(gr)	216.0		
PESO DE L SUELO SECO	(gr)	5270.0		
CONTENIDO DE HUMEDAD	(%)	4.10	17.0	Francisco Carried
HUMEDAD NATURAL	(%)		41	

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com proyectos@jrgeoconsultores.com

LÍMITES DE CONSISTENCIA - MALLA Nº40 NORMAS TÉCNICAS: MTC E 110 - MTC E 111, ASTM D 4318, AASHTO T 89 - T 90

DATOS DE LA MUESTRA

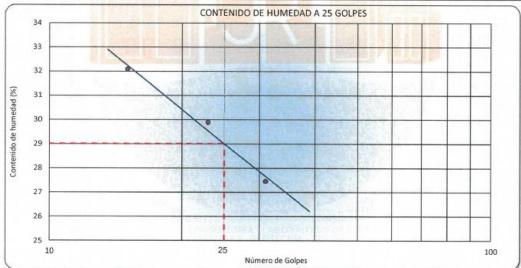
"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

CANTERA SALOME

COORDENADAS : N 9132838 / E 803675

TRINCHERA ; T-1

MUESTRA


RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00 HECHO POR: J.L.Q.M.

FECHA: 19/07/2021

		LIMITE LIQUIDO (MT	C E 110, AASHTO T 89)		
N° DE TARA		T-63	T-80	T-44	
PESO TARA + SUELO HÚMEDO	(gr)	84.01	84,30	53.00	
PSO TARA + SUELO SECO	(gr)	76.09	75.12	46.13	
PESO DEL AGUA	(gr)	7.92	9.18	6.87	
PESO DE LA TARA	(gr)	51.41	44.41	21.10	
PESO DE L SUELO SECO	(gr)	, 24.68	30.71	25.03	
CONTENIDO DE HUMEDAD	(%)	32.09	29.89	27.45	
NÚMERO DE GOLPES		15	23	31	
		LIMITE PLASTICO (M	TC E 111, AASHTO T 90)		
N° DE TARA		T-07	T-03		-
PESO TARA + SUELO HÚMEDO	(gr)	17.03	15.94		
PSO TARA + SUELO SECO	(gr)	15.11	14.19		
DESCRIPTION	72.5	0.04	0.00		

N° DE TARA		T-07	T-03	
PESO TARA + SUELO HÚMEDO	(gr)	17.03	15.94	
PSO TARA + SUELO SECO	(gr)	15.11	14,19	
PESO DE LA TARA	(gr)	6.81	6.62	
PESO DEL AGUA	(9r)	1.92	1.75	
PESO DE L'SUELO SECO	(gr)	8.30	7.57	
CONTENIDO DE HUMEDAD	(%)	23.13	23.12	-1.01

CONSTANTES FISICA	AS DE LA MUES	TRA
LÍMITE LÍQUIDO	(%)	29
LIMITEPLASTICO	(%)	23
INDICE DE PLASTICIDAD	(%)	6

OBSERVACIONES

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵 r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

PROCTOR MODIFICADO NORMAS TÉCNICAS: MTC E115, ASTM D 1557, AASHTO T 180

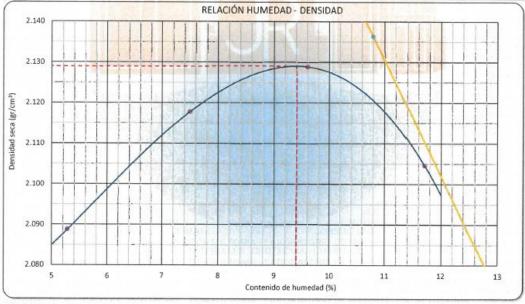
DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA

COORDENADAS : N 9132838 / E 803675

: T-1 TRINCHERA


MUESTRA M-1 RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00

HECHO POR: J.L.Q.M.

FECHA: 19/07/2021

Ensayo N°	William World		2	3	4	mo in the
Número de Capas					5	
Golpes de Pisón por Capa		56	56	56	56	
Peso suelo húmedo + molde	(gr)	11166	11329	11448	11485	
Peso molde + base	(gr)	6548	6548	6548	6548	
Peso suelo húmedo compactado	(gr)	4618	4781	4900	4937	
Volumen del molde	(cm ³)	2100	2100	2100	2100	
Peso volumétrico húmedo	(gr/cm ³)	2.199	2.277	2.333	2.351	
Tara N°	STREET, TO	T-40	T-37	T-92	T-89	10.35
Peso del suelo húmedo + tara	(gr)	633.4	665.7	807.6	763.4	
Peso del suelo seco + tara	(gr)	608.4	631.1	753.2	701.8	
Peso de Tara	(gr)	135.0	170.0	186.9	175.6	
Peso de agua	(gr)	25.0	34.6	54.4	61.6	
Peso del suelo seco	(gr)	473.4	461.1	566.3	526.2	
Contenido de agua	(%)	5.3	7.5	9.6	11.7	
Peso volumétrico seco	(gr/cm ³)	2,089	2.118	2.129	2.105	
			Charles of the second	Densidad máxima	(gr/cm³)	2.129
				Húmedad óptima	(%)	9.4

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA SALOME RUTA: LI-116

COORDENADAS : N 9132838 / E 803675

PROFUNDIDAD: 0.00 -3.00

TRINCHERA : T-1 MUESTRA M-1

HECHO POR: J.L.Q.M. FECHA: 19/07/2021

			COMPA	CTACIÓN				
Molde N		185		18	186		7	
N° Capas			and the last	5		Section 4 to 1		
N° golpes por capa		56		26		12		
Condición de la muestra		NO SATURADO	SATURADO	SATURADO NO SATURADO SATURAL		NO SATURADO	SATURADO	
Peso de molde + Suelo húmedo	(gr)	12767	12852	12718	12793	12365	12442	
Peso de troide + base	(gr)	7806	7806	7923	7923	7749	7749	
Peso del suelo húmedo	(gr)	4961	5046	4795	4870	4616	4693	
Volumen del molde	(cm ³)	2120	2120	2128	2128	2130	2130	
Densidad húmeda	(gr/cm ³)	2.340	2.380	2.253	2.289	2.167	2.203	
N" Tara		T-47	T-104	T-98	T-53	T-45	T-89	
Peso suelo húmedo + tara	(gr)	674.9	741.9	809.4	890.0	704.4	583.2	
Peso suelo seco + tara	(gr)	623.1	682.6	749.4	812.5	658.4	542.0	
Peso de tara	(gr)	83.7	169.0	125.0	133.0	169.0	175.6	
Peso de agua	(gr)	51.8	59.3	60.0	77.5	46.0	41.2	
Peso de suelo seco	(gr)	539.4	513.6	624.4	679.5	489.4	366.4	
Contenido de humedad	(%)	9.6	11.5	9.6	11.4	9.4	11.2	
Densidad seca	(gr/cm ⁸)	2.135	2.134	2.056	2.054	1.981	1.981	

					EXPANS	IÓN					
FECHA	HORA	TIEMPO	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN
	110111			mm		DIAL	mm	*	DAL	mm	*
12/07/2021	09:07	0	0	0.000	0:00	0	0.000	0.00	0	0.000	0.00
13/07/2021	09.07	24	13	0.130	0.11	18	0.180	0.15	21	0.210	0.1
14/07/2021	09:07	48	16	0.160	0.14	20	0.200	0.17	23	0.230	0.2
15/07/2021	09:07	72	18	0.180	0.15	23	0.230	0.20	28	0.280	0.2
16/07/2021	09:07	96	19	0.190	0.16	24	0.240	0.21	28	0.280	0.2

					PENETI	RACIÓN						\$75.54	1995
	CARGA		MOLI	DE Nº 185			MOLD	E Nº 186			MOLD	E Nº 187	
PENETRACIÓN (mm)	ESTÁNDAR	CAR	GA	CORR	ECCIÓN	CAR	GA	CORRE	CCIÓN	CAR	GA	CORRI	ECCIÓN
	(kg/cm2)	Dial (div)	kg	kg	*	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%
0.000			0			1	0	105			0		
0.635			151				121				80		
1.270			331				290				185		
1.905			485				416				295		
2.540	70.5		712	654.8	47.3		552	527.1	38.1		414	381.9	27.6
3.810			935	. 7			713				550		
5.080	105.7		1131	1150.3	55.4		998	988.9	47.7		762	764.6	36.8
6.350			1351				1247				990		
7.620			1582				1487				1245		
10.600			1912				1758				1561		
12.700			2159				1998				1728		

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL

Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com proyectos@jrgeoconsultores.com

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA : SALOME

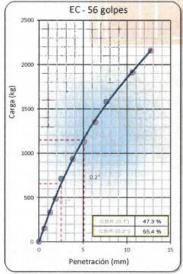
COORDENADAS : N 9132838 / E 803675

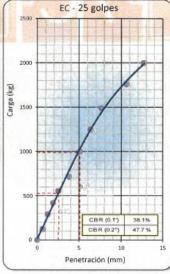
TRINCHERA : T-1
MUESTRA : M-1

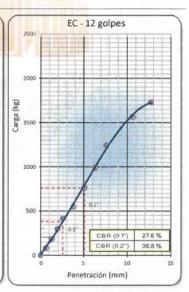
RUTA: LI-116

PROFUNDIDAD : 0.00 -3.00

HECHO POR: J.L.Q.M.






DATOS DEL PROCTOR M	ODIFICADO	
PROCTOR MODIFICADO ASTM	- 1	1557
MÁXIMA DENSIDAD SECA	(gr/om ³):	2.129
ÓPTIMO CONTENIDO DE HUMEDAD	(%):	9.4
95% DE LA MAXIMA DENSIDAD SECA	(gr/om³):	2.023

POR	CENTAJE I	EL CBR		
C.B.R. AL 95% DE M.D.S. (%)	0.1"	33.6	0.2"	43.2
CB R. AL 100% DE M.D.S. (%)	0.1"	45.7	0.2"	55.0

Observaciones:

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

982 840 339 / 956 363 147 📵

proyectos@jrgeoconsultores.com

LABORATORIO MECÁNICA DE SUELOS, CONCRETO Y ASFALTO GRAVEDAD ESPECÍFICA

NORMA MTC E 206, ASTM C 127, ASSTHO T 85

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA : SALOME

COORDENADAS: N 9132838 / E 803675

TRINCHERA : T- 1 MUESTRA : M-1 RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00 HECHO POR: J.L.Q.M.

FECHA: 19/07/2021

		AC	REGADO G	RUESO		
	MUESTRAS		Muestra 1	Muestra 2	Muestra 2	Promedio
Α	Peso Mat. Sat. Superf. Seca (en aire)	gr	1,705.5	1,722.4		
В	Peso Mat. Sat. Superf. Seca (en agua)	gr	1,062.0	1,071.9		
С	Volumen de Masa + Volumen de Vacios	cm3	643.5	650.5		
D	Peso Material Seco en Estufa (105°C)	gr	1,690.8	1,710.8		
E	Volumen de Masa = C-(A-D)	cm3	628.77	638.89		
Peso Esp	ecifico (Base Seca) = D/C	gr/cm3	2.628	2.630		2.629
Peso Esp	ecifico (Base Saturada) = A/C	grlcm3	2.650	2.648		2.649
Peso Esp	ecifico Aparente (Base Seca) = D/E	gr/cm3	2.689	2.678	MARKET FOR	2.683
Porcentaj	e de Absorcion = ((A-D) / D) x 100	%	0.9%	0.7%		0.8%

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com 🔄

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

ABRASIÓN LOS ÁNGELES NORMAS TÉCNICAS: MTC E 207, ASTM C 131, AASHTO T 96

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA

: SALOME

RUTA: LI-116

COORDENADAS : N 9132838 / E 803675 PROFUNDIDAD: 0.00-3.00

TRINCHERA : T-1 HECHO POR: J.L.Q.M.

MUESTRA : M-1 FECHA: 19/07/2021

MUESTRA		
GRADACIÓN	"A"	
N° DE ESFERAS	12	
TAMIZ (N°)	12	
1"	1,250	
3/4"	1,250	
1/2"	1,250	
3/8"	1,250	LA PLUM
PESO TOTAL	5,000	
MATERIAL RETENIDO TAMIZ Nº 12	3,526	E E E
PORCENTAJE DE DESGASTE	29.5	en Europe

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

Soledad Karola Soledad Aurelia Barzola Susano INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com
Av. Diagonal Norte Nº 750, Ofic. N 501- SMP

EQUIVALENTE DE ARENA

NORMAS TÉCNICAS: MTC E 114, ASTM D 2419, AASHTO T 176

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO --RUTA LI-116, LA LIBERTAD, 2021"

DATOS DE LA MUESTRA

CANTERA : SALOME

COORDENADAS: N 9132838 / E 803675

TRINCHERA : T-1 MUESTRA : M-1 RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00

HECHO POR: J.L.Q.M.

FECHA: 19/07/2021

Nº DE ENSAYOS	1	2	3
Tamaño máximo (pasa malla Nº 4)	4.76	4.76	4.76
Hora de entrada a saturación	12:55	12:57	12:59
Hora de salida de saturación (mas 10")	13:05	13:07	13:09
Hora de entrada a decantación	13:07	13:09	13:11
Hora de salida de decantación (mas 20")	13:27	13:29	13:31
Altura máxima de material fino	6.6	6.3	6.4
Altura máxima de la arena	2.8	2.7	2.7
Equivalente de Arena (%)	42.4	42.9	42.2
PROMEDIO		43	

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLA SUSANO INCENIERA CIVIL

Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com pr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

CONTENIDO DE MATERIA ORGÁNICA (PÉRDIDA POR IGNICIÓN) NORMAS TÉCNICAS: MTC E 118, AASHTO T 267

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DATOS DE LA MUESTRA

: SALOME CANTERA

RUTA: LI-116

COORDENADAS

: N 9132838 / E 803675

PROFUNDIDAD: 0.00 -3.00

HECHO POR: J.L.Q.M.

TRINCHERA : T-1 MUESTRA M-1

FECHA: 19/07/2021

ENSAYO N°			2	
Tara N°		T-12	T-13	
Peso de la tara y suelo seco, antes de ignición		102.67	103.55	
Peso de la tara y suelo seco, después de ignición	(gr)	102.42	103.39	
Peso de materia orgánica	(gr)	0.25	0.16	
Peso de la tara	(gr)	82.83	82.70	
Peso del suelo seco neto	(gr)	19.59	20.69	
Contenido de Materia Orgánica	(%)	1.28	0.77	
Promedio Contenido de Materia Orgánica	(%)	make an expense	1.02	SOME DESIGNATION OF THE PARTY O

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecânica de Suelos

SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147

r.diaz@jrgeoconsultores.com

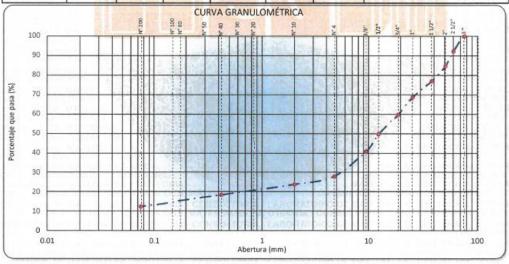
jr.geoconsultores@gmail.com proyectos@jrgeoconsultores.com

ANALISIS GRANULOMÉTRICO POR TAMIZADO NORMAS TÉCNICAS: MTC E 107, ASTM D 422, AASHTO T 88

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA SALOME


COORDENADAS N 9132850 / E 823678 T-2

TRINCHERA MUESTRA

RUTA: LI-116

PROFUNDIDAD : 0.00 -3.00 HECHO POR: J.L.Q.M FECHA: 19/07/2021

TAMIZ	ABERTURA (mm)	PESO RETENIDO	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	ESPECIFIC.	DESCRIPCIÓN D	E LA MUEST	RA
4"	101.600		-				Peso de la	Muestra	
3"	76.200				100.0		Peso Total de la Muestra	(gr.):	35000
2 1/2"	60,350	2724.2	7.8	7,8	92.2		Manerian Pirro ~ N/4	(91.)	9724
2"	50.800	2673.9	7.6	15.4	84.6		Material Grueso > N°4	(gr.):	25276
1 1/2"	38.100	2649.1	7.6	23.0	77.0		Fracción Material < Nº4	(gr.):	650.0
1"	25.400	2950,5	8.4	31.4	68.6		Limites de C	onsistencia	
3/4"	19.000	3078.2	8.8	40.2	59.8		Limite Liquid®	(%):	28
1/2"	12.500	3526.5	10.1	. 50.3	49.7		Limite Plástico	(%)	22
3/8"	9.500	3120.8	8.9	59.2	40.8		indice Plastico	(%):	6
Nº4	4.750	4552.9	13.0	72.2	27.8		Clasificació	n de Suelo	900
Nº8	2.380	53.85	2.3	74.5	25.5		Clasificación SUCS	:	GC-GM
Nº10	2.000	43.26	1.8	76.4	23.6		Clasificación AASHTO		A-2-4 (0
N°16	1.190	42.35	1.8	78.2	21.8				
N°20	0.840	34.67	1.5	79.7	20.3				
M,30	0.600	25.28	1,1	80.7	19.3				
N°40	0.425	21.90	0.9	81.7	18.3	1,000	Humedad Natural	(%):	5.8
N°50	0.300	44.15	1.9	83.6	16.4	17/10			
N°80	0.177	24.28	1.0	84.6	15.4	1100	Máxima dens, Seca	(gr/cm ³):	2.122
N°100	0.150	36.55	1.6	86.2	13.8		Óptimo Cont. Humedad	(%):	8.3
N°200	0.075	37.18	1.6	87.8	12.2	1300	CBR 0.1" al 95% MDS	(%):	30.0
< N°200	FONDO	286.5	12.2	100 0	0.0	- 17000	CBR 0.1" al 100% MDS	(%):	45.1

Observaciones:

José Luis Quispe Mendoza Tec. Laporatorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLASUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

DETERMINACIÓN DE HUMEDAD NATURAL NORMAS TÉCNICAS: MTC E 108, ASTM D 2216

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

SALOME CANTERA COORDENADAS : N 9132850 / E 823678

; T-2

TRINCHERA : M-1 MUESTRA

RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00 HEC

CHO POR:	J.L.Q.M
FECHA-	19/07/2021

ENSAYO Nº		1	
N° DE TARA		T-61	
PESO TARA + SUELO HÚMEDO	(gr)	5354.1	
PESO TARA + SUELO SECO	(gr)	5085.0	
PESO DE LA TARA	(gr)	454.8	
PESO DEL AGUA	(gr)	269.1	
PESO DE L SUELO SECO	(gr)	4630.2	
CONTENIDO DE HUMEDAD	(%)	5.81	
HUMEDAD NATURAL	(%)		5.8

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵 r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

Av. Diagonal Norte № 750, Ofic. N 501- SMP

LÍMITES DE CONSISTENCIA - MALLA Nº40 NORMAS TÉCNICAS: MTC E 110 - MTC E 111, ASTM D 4318, AASHTO T 89 - T 90

DATOS DE LA MUESTRA

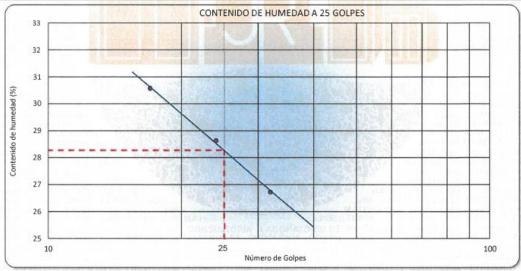
"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA SALOME

COORDENADAS N 9132850 / E 823678

TRINCHERA : T-2 M- 1

MUESTRA


RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00

HECHO POR: J.L.Q.M FECHA: 19/07/2021

N° DE TARA		T-31	T-44	T-01	
PESO TARA + SUELO HÚMEDO	(gr)	49.59	49.19	47.97	
PSO TARA + SUELO SECO	(gr)	44.58	44.26	43.70	
PESO DEL AGUA	(gr)	5.01	4.93	4.27	
PESO DE LA TARA	(gr)	28.19	27.04	27.72	
PESO DE L SUELO SECO	(gr)	16.39	17.22	15.98	
CONTENIDO DE HUMEDAD	(%)	30.57	28.63	26.72	
NÚMERO DE GOLPES		17	24	32	

	LÍMITE PLÁSTICO (MTC E 111, AASHTO T 90)				
N° DE TARA		T-49	T-05		
PESO TARA + SUELO HÚMEDO	(gr)	37.73	39.32		
PSO TARA + SUELO SECO	(gr)	35.79	37.38		
PESO DE LA TARA	(gr)	26.88	28.39		
PESO DEL AGUA	(gr)	1.94	1.94		
PESO DE L SUELO SECO	(gr)	8.91	8.99		
CONTENIDO DE HUMEDAD	(%)	21.77	21.58		

CONSTANTES FÍSICA	IS DE LA MUEST	RA
LÍMITE LÍQUIDO	(%)	28
LÍMITE/PLÁSTICO	(%)	22
INDICE DE PLASTICIDAD	(%)	6

OBSERVACIONES

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLA SUSANO INCEMIERA CIVIL Reg. CIP Nº 67499

982 840 339 / 956 363 147 [0]

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

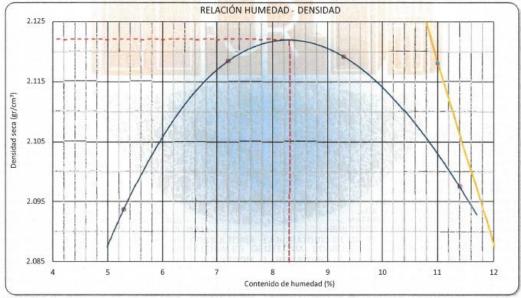
PROCTOR MODIFICADO NORMAS TÉCNICAS: MTC E115, ASTM D 1557, AASHTO T 180

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA SALOME

: N 9132850 / E 823678


RUTA: LI-116 PROFUNDIDAD: 0.00 -3.00

COORDENADAS TRINCHERA

T- 2 MUESTRA M-1

HECHO POR: J.L.Q.M FECHA: 19/07/2021

Ensayo N°		STATE OF THE	2	3	4	
Número de Capas						
Golpes de Pisón por Capa		56	56			
Peso suelo húmedo + molde	(gr)	10884	11025	11120	11163	
Peso molde + base	(gr)	6233	6233	6233	6233	
Peso suelo húmedo compactado	(gr)	4651	4792	4887	4930	
Volumen del molde	(cm ³)	2110	2110	2110	2110	
Peso volumétrico húmedo	(gr/cm ³)	2.204	2.271	2.316	2.336	
Tara N°	STREET, STREET	T-102	T-103	T-104	T-87	
Peso del suelo húmedo + tara	(gr)	922.2	1027.7	1012.1	973.2	
Peso del suelo seco + tara	(gr)	883.0	966.9	940.0	892.0	
Peso de Tara	(gr)	142.0	123.0	164.0	179.5	
Peso de agua	(gr)	39.2	60.8	72.1	81.2	
Peso del suelo seco	(gr)	741.0	843.9	776.0	712.5	
Contenido de agua	(%)	5.3	7.2	9.3	11.4	
Peso volumétrico seco	(gr/cm ⁸)	2.094	2.118	2.119	2.097	
		Densidad máxima		(gr/cm ³)	2.122	
				Húmedad óptima (%)		8.3

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

gyectos@jrgeoconsultores.com

proyectos@jrgeoconsultores.com Av. Diagonal Norte Nº 750, Ofic. N 501- SMP 💟

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA : SALOME

COORDENADAS : N 9132850 / E 823678

TRINCHERA : T-2 : M-1 MUESTRA

RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00 HECHO POR: J.L.Q.M

FECHA: 19/07/2021

			COMPAC	TACIÓN				
Molde Nº		20	4	20	3	20	2	
N' Capas		ALL VENDER	STATE OF THE	The state of the s				
N golpes por caps		5	6	26		12		
Condición de la muestra		NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO	
Peso de molde + Suelo húmedo	(gr)	13340	13425	13140	13222	12907	12982	
Pean de molde + base	(gr)	8408	8408	8378	8378	8329	8329	
Peso del suelo húmedo	(gr)	4932	5017	4762	4844	4578	4653	
Volumen del molde	(cm ³)	2135	2135	2129	2129	2131	2131	
Densidad húmeda	(gr/cm ³)	2.310	2:350	2.237	2.275	2.148	2.183	
N° Tara		T-112	T-93	T-41	T-47	T-52	T-61	
Peso suelo húmedo + tara	(gr)	881.0	734.2	807.0	880.8	704.0	553.5	
Peso suelo seco + tara	(gr)	823.1	682.0	754.6	809.4	659.1	544.3	
Peso de tara	(gr)	133.0	174.9	138.0	122.0	124.0	454.8	
Peso de agua	(gr)	57.9	52.2	52.4	71.4	44.9	9.2	
Peso de suelo seco	(gr)	690 1	507.1	616.6	687.4	535.1	89.5	
Contenido de humedad	(%)	8.4	10.3	8.5	10.4	8.4	10.3	
Densidad seca	(gr/cm ³)	2 131	2.131	2.062	2.061	1.982	1.980	

	190/9				EXPANSI	ÓN			100166	10000	9.7
FECHA	HORA	TIEMPO	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN
	10.00		DIAL	mm		DIAL	mm	*	DUL	mm	%
12/07/2021	09:40	0	0	0.000	0.00	0	0.000	0.00	0	0.000	0.00
13/07/2021	09:40	24	49	0.490	0.42	57	0.570	0.49	63	0.630	0.54
14/07/2021	09:40	48	51	0.510	0.44	62	0.620	0.53	93	0.930	0.79
15/07/2021	09:40	72	55	0.550	0.47	70	0.700	0.60	96	0.960	0.82
16/07/2021	09:40	96	56	0.560	0.48	70	0.700	0.60	96	0.960	0.82

					PENETE	RACIÓN		1	100	WE W	J. Company		
	CARGA		MOLI	DE Nº 204			MOLD	E N° 203			MOLD	E N* 202	
PENETRACIÓN (mm)	ESTÁNDAR	CAR	GA	CORR	ECCIÓN	CAR	rga .	CORRE	CCIÓN	CAR	GA	CORRE	ECCIÓN
	(kg/cm2)	Dial (div)	kg	kg		Dial (div)	kg	kg	%	Dial (div)	kg	kg	%
0.000		10 10 10	0		The same	7.00	0				0		
0.635		1576	151				101				71		
1.270		4.00	343		100	10.70	201				151		
1.905			487				391				251		
2.540	70.5		688	644.0	46.6	200	533	499.2	36.1		351	358.0	25.9
3.810			893				755				601		
5.080	105.7		1124	1125.0	54.2		1000	1011.8	48.8		851	876.5	42.2
6.350			1324				1246				1152		
7.620			1547				1456				1252		
10.600			1896				1790				1652		
12.700			2258				2102				1846		

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵 r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

Av. Diagonal Norte Nº 750, Ofic. N 501- SMP 💟

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

SALOME CANTERA

RUTA: LI-116 PROFUNDIDAD: 0.00 -3.00

COORDENADAS · N 9132850 / E 823678 TRINCHERA T- 2

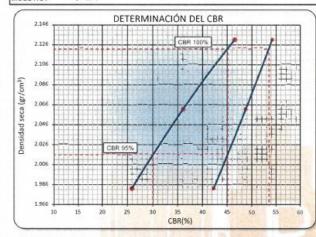
MUESTRA M-1 HECHO POR: J.L.Q.M

FECHA: 19/07/2021

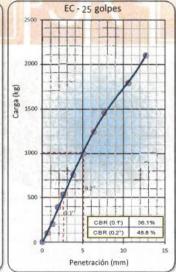
MÁXIMA DENSIDAD SECA

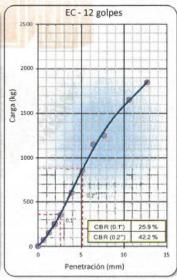
2.122

PTIMO CONTENIDO DE HUMEDAD


(%): 2.016 (ar/cm³):

85%	DE	LA	MAXIMA	DENSIDAD SECA	
					Π
	-	-	-		


POR	CENTAJE	DEL CER		
D B R. AL 95% DE M.D.S. (%)	0.1*	30.0	0.2"	45.1
C.B.R. AL 100% DE M.D.S. (%)	0.1"	45.1	0.2"	53.5


DATOS DEL PROCTOR MODIFICADO

Observaciones:

EC - 56 golpes 2500 Carga (kg) 1500 CBR (0.1) CBR (0.2") 542 % Penetración (mm)

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL

Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵 r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

Av. Diagonal Norte Nº 750, Ofic. N 501- SMP

LABORATORIO MECÁNICA DE SUELOS, CONCRETO Y ASFALTO **GRAVEDAD ESPECÍFICA**

NORMA MTC E 206, ASTM C 127, ASSTHO T 85

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA : SALOME

COORDENADAS : N 9132850 / E 823678

TRINCHERA : T-2 MUESTRA : M-1

PROFUNDIDAD: 0.00 -3.00

HECHO POR: J.L.Q.M FECHA: 19/07/2021

		AG	REGADO GE	RUESO		
	MUESTRAS		Muestra 1	Muestra 2	Muestra 2	Promedio
Α	Peso Mat. Sat. Superf. Seca (en aire)	gr	1,526.8	1,371.9		
В	Peso Mat. Sat. Superf. Seca (en agua)	gr	940.5	849.8		
С	Volumen de Masa + Volumen de Vacios	cm3	586.3	522.1		
D	Peso Material Seco en Estufa (105°C)	gr	1,503.4	1,355.6		
E	Volumen de Masa = C-(A-D)	cm3	562.90	505.80		
Peso Espe	cifico (Base Seca) = D/C	gr/cm3	2.564	2,596	DESCRIPTION OF	2.580
Peso Espe	cifico (Base Saturada) = A/C	gr/cm3	2.604	2.628		2.616
Peso Espe	cifico Aparente (Base Seca) = D/E	gr/cm3	2,671	2.680		2.675
Porcentaje	de Absorcion = ((A-D) / D) x 100	%	1.6%	1.2%	Section 2	1.4%

and a content of the same						
A STATE OF THE STA	The World	al to the	E. Maria	100		

José Luis Quispe Mendoza Tec. Laboratorio de Mocánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com proyectos@jrgeoconsultores.com

Av. Diagonal Norte Nº 750, Ofic. N 501- SMP 0

ABRASIÓN LOS ÁNGELES NORMAS TÉCNICAS: MTC E 207, ASTM C 131, AASHTO T 96

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

CANTERA

: SALOME

: N 9132850 / E 823678

RUTA: LI-116

COORDENADAS

PROFUNDIDAD: 0.00 -3.00

TRINCHERA : T-2 HECHO POR: J.L.Q.M

MUESTRA : M-1 FECHA: 19/07/2021

MUESTRA	1	
GRADACIÓN	"A"	
N° DE ESFERAS	12	
TAMIZ (N°)	12	
1"	1,250	
3/4"	1,250	
1/2"	1,250	
3/8"	1,250	la is
PESO TOTAL	5,000	
MATERIAL RETENIDO TAMIZ Nº 12	3,526	
PORCENTAJE DE DESGASTE	29.5	

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com Av. Diagonal Norte Nº 750, Ofic. N 501- SMP

EQUIVALENTE DE ARENA NORMAS TÉCNICAS: MTC E 114, ASTM D 2419, AASHTO T 176

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DATOS DE LA MUESTRA

CANTERA : SALOME **RUTA: LI-116**

COORDENADAS : N 9132850 / E 823678

PROFUNDIDAD: 0.00 -3.00

TRINCHERA : T-2 HECHO POR: J.L.Q.M

MUESTRA : M-1 FECHA: 19/07/2021

N° DE ENSAYOS	1	2	3
Tamaño máximo (pasa malla Nº 4)	4.76	4.76	4.76
Hora de entrada a saturación	01:40	01:42	01:44
Hora de salida de saturación (mas 10")	01:50	01:52	01:54
Hora de entrada a decantación	01:52	01:54	01:56
Hora de salida de decantación (mas 20")	02:12	02:14	02:16
Altura máxima de material fino	7.0	7.5	7.2
Altura máxima de la arena	2.6	2.6	2.5
Equivalente de Arena (%)	37.1	34.7	34.7
PROMEDIO		37	

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com [2] jr.geoconsultores@gmail.com [2]

proyectos@jrgeoconsultores.com

Av. Diagonal Norte № 750, Ofic. N 501-SMP 🔽

CONTENIDO DE MATERIA ORGÁNICA (PÉRDIDA POR IGNICIÓN) NORMAS TÉCNICAS: MTC E 118, AASHTO T 267

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO -RUTA LI-116, LA LIBERTAD, 2021"

DATOS DE LA MUESTRA

: SALOME COORDENADAS : N 9132850 / E 823678 : T-2

M-1

PROFUNDIDAD: 0.00 -3.00 HECHO POR: J.L.Q.M FECHA: 19/07/2021

ENSAYO Nº Tara N° 107.72 108.19 Peso de la tara y suelo seco, después de ignición 107.59 108.02 (gr 0.13 0.17 (gr (gr 24.58 Peso del suelo seco neto 24.89 (gr Contenido de Materia Orgánica (%) 0.52 0.69 nedio Contenido de Materia Orgánica

Observaciones:

TRINCHERA

MUESTRA

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos Soledad Kondolo Soledad aurelja Barzola Susano INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com progression in general results of the consultores of the cons

proyectos@jrgeoconsultores.com

Av. Diagonal Norte Nº 750, Ofic. N 501- SMP

Anexo 06.4. Ensayos a muestras Estabilizadas.

a) Ensayos a muestras con PROES 100

LABORATORIO DE MECÂNICA DE SUELOS, CONCRETO Y ASFALTO

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

CANTERA : SALOME
COORDENADAS : N 9132829 / E 823670
CALICATA : C-01 / T-01 / T-02
MUESTRA : M-1

BASE ESTABILIZADA : PROES

DOSIFICACIÓN : 0.26 lt/m3 (PROES 100)

RUTA: LI-116 PROFUNDIDAD: 0.00 -3.00 HECHO POR: J.L.Q.M

FECHA: 19/07/2021

			COMPACT	ACIÓN		TOTAL PROPERTY	THE RESERVE	
Molde N°		-24		24	46	24		
N° Capas						3		
N' golpes por capa		5	5	2	6			
Condición de la muestra		NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO	
Peso de molde + Suelo húmedo	(gr)	13045		12603		12395		
Peso de molde + base	(gr)	8068	18000	7901		7808	COLUMN TO A	
Peso del suelo húmedo	(gr)	4977	H-SIME	4702	CERCULATE OF	4587		
/olumen del molde	(cm³)	2147	II Date:	2115	ERON CALIFO	2139	-	
Densidad húmeda	(gr/cm ³)	2.318	G 5550	2.223	THEFT	2.145	Description	
N° Tara		T-22	Kennikate	T-24	-	T-25		
Peso suelo húmedo + tara	(gr)	603.2		607.2		602.9	SHE CHILD	
Peso suelo seco + tara	(gr)	561.2		564.3		559.8	Party Lat B	
Peso de tara	(gr)	83.0		72.1	100	70.5		
Peso de agua	(gr)	42.0		42.9		43.1	Table Village	
Peso de suelo seco	(gr)	478.2	Contract of the last	492.2		489.3		
Contenido de humedad	(%)	8.8		8.7		8.8	COLUMN TO SERVICE	
Densidad seca	(gr/cm ³)	2.131	A 100	2.045	SEE HOUSE	1.971		
THE CASE OF STREET STREET	COLUMN TOWN	100	AND DESCRIPTION OF THE PERSON NAMED IN	ne	-	1.071		

					EXPANSIÓ	V		*(11,197)	RANGE OF THE PARTY	STATE OF THE PARTY.	100
FECHA	HORA	TIEMPO	DIAL	EXPA	NSIÓN	DIAL	EXPA	VSIÓN	0000	EXPANSIÓN	
			HERMAN	mm			mm		DIAL	mm	
12/07/2021	01:30	0	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00
13/07/2021	01:30	24	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00
14/07/2021	01:30	48	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00
15/07/2021	01:30	72	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00
16/07/2021	01:30	96	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00

				P	ENETRA	CIÓN	0.00	DEF	100	# UNIVERSAL	WHEN P	AND DESCRIPTION OF THE PERSON NAMED IN	STEET.
PENETRACIÓN	CARGA ESTÁNDAR	MOLDE N° 245 CARGA CORRECCIÓN				P. A.		E Nº 246		MOLDE N° 247			
(mm)	(kg/cm2)			CORRECCIÓN		CARGA		CORRECCIÓN		CARGA		CORRECCIÓN	
		Dial (div)	kg	kg	- 56	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%
0.000	a rathrator	(E) (1)	0	10.00		(19)	0	1			0		
0.635			281	V 285	M. For	P. SE	232				189	10000	
1.270	Mark E. Di	5 972	454	128			370	21116	1113		295	The Late	311
1.905			695				566				456		
2.540	70.5		947	902.2	65.2		760	728.9	52.7	RC 150	608	586.8	42
3.810			1207				967				785		
5.080	105,7	0.00	1623	1566.3	75.5	100	1309	1260.3	60.7		1053	1012.2	48.
6.350			1821				1467				1171	1000	0.00
7.620			2172				1744				1405		
10.600			2458	1.117			1971		1111	9 11	1581	- OUT	
12.700			2692	175			2168				1728	0.000	1111

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP N° 67689

982 840 339 / 956 363 147 [] r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com proyectos@jrgeoconsultores.com

Av. Diagonal Norte Nº 750, Ofic. N 501- SMP

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

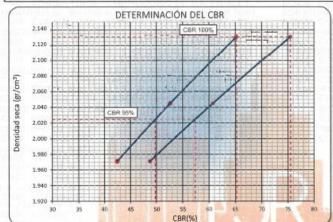
"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

CANTERA : SALOME

COORDENADAS

CALICATA

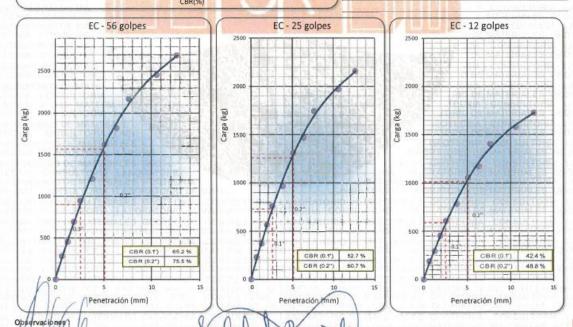
: N 9132829 / E 823670 : C-01 / T-01 / T-02


MUESTRA : M-1
BASE ESTABILIZADA : PROES

DOSIFICACIÓN : 0.26 lt/m3 (PROES 100)

RUTA: LI-116

PROFUNDIDAD : 0.00 -3.00 HECHO POR: J.L.Q.M


FECHA: 19/07/2021

DATOS DEL PROCTOR MODIFICADO									
PROCTOR MODIFICADO ASTM	经产品收益品	1557							
MÁXIMA DENSIDAD SECA	(gricm ³)	2 131							
ÓPTIMO CONTENIDO DE HUMEDAD	(%):	8.8							
95% DE LA MAXIMA DENSIDAD SECA	(gricm ⁵)	2.024							

PORCENTAJE DEL CBR									
C.B.R. AL 95% DE M.D.S. (%)	0.1"	49.8	0.2"	57.3					
C.B.R. AL 100% DE M.D.S. (%)	0.1"	65.2	0.2"	75.5					

Observaciones

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

- 982 840 339 / 956 363 147
- r.diaz@jrgeoconsultores.com gr.geoconsultores@gmail.com
- proyectos@jrgeoconsultores.com
- Av. Diagonal Norte № 750, Ofic. N 501-SMP

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

CANTERA : SALOME

COORDENADAS : N 9132829 / E 823670 : C-01/T-01/T-02

CALICATA MUESTRA ; M-1 BASE ESTABILIZADA : PROES

DOSIFICACIÓN : 0.28 lt/m3 (PROES 100)

RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00 HECHO POR: J.L.Q.M

FECHA: 19/07/2021

			COMPACTA	ACIÓN		STATE OF THE PARTY.	T-10 CO-20	
Molde N*	Volde N°			21		215		
Nº Capas						5 12		
N° golpes por capa		5	5	26				
Condicion de la muestra		NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO	
Peso de molde + Suelo húmedo	(gr)	12898		12624	Walled Control of the	12519	a distribution	
Peso de moide + base	(gr)	7947	19000	7888		8035		
Peso del suelo húmedo	(gr)	4951	A PINE	4736	STORMAN A	4484	The section	
Volumen del molde	(cm ³)	2132	N 25588	2130	HIA LEWS	2124	FIGURE OF	
Densidad hümeda	(gr/cm ³)	2.322	10 March 1997	2.223	TENTILE T	2.111	SULTONO	
√° Tara		T-34		T-35		T-36		
Peso suelo húmedo + tara	(gr)	603.6	N. C. Carlos	607.7		612.9		
Peso suelo seco + tara	(gr)	561.9		565.3	No.	570.8		
Peso de tara	(gr)	89.3	CHARLE	89.3	100	88.2		
eso de agua	(gr)	41.7	TO STREET	42.4	12/4	42.1		
Peso de suelo seco	(gr)	472.6	Total proper	476.0	THE PARTY.	482.6		
Contenido de humedad	(%)	8.8	ESTATE ENGLISH	8.9	THE REST	8.7	DISTRIBUTE DE	
Densidad seca	(gr/cm³)	2.134	1000	2.042	NEW DEFENSE	1.942	11/11/19	
AAR	SECRETAL PROPERTY.	100	THE RESERVE	96	SEE SEE SEE	91		

					EXPANSIÓN		Tem year	Eq. (1)	The state of the s	PATTERN.	700
FECHA	HORA	HORA TIEMPO DIAL EXPANSIÓN DIAL EXPAN	RA TIEMPO	VSIÓN		EXPA	NSIÓN				
				mm			mm	%	DIAL	mm	*
12/07/2021	02:30	0	0.00	0,000	0.00	0.00	0.000	0.00	0.00	0.000	0.0
13/07/2021	02:30	24	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.0
14/07/2021	02:30	48	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.0
15/07/2021	02:30	72	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.0
16/07/2021	02:30	96	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.0

				P	ENETRA	CIÓN							
DENETRACIÓN	CARGA		MOLI	DE Nº 213			MOLD	E Nº 214		MOLDE Nº 215			
PENETRACIÓN ESTÁNDAR (mm) (kg/cm²)	CAR	IGA	CORR	ECCIÓN	CAR	RGA	CORRE	CCIÓN	CARGA		CORRECCIÓN		
	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	*	
0.000		The second	0	(41)	Mr. Mi	100	0				0		
0.635	La Abruhuma &	110	327	100		1	264				182		
1.270		10/0	522		1	1.79	421	15			286	10.17	
1.905			820				662				432		
2.540	70.5		1100	1050.8	76.0		881	846.1	61.2		575	552.6	39
3.810			1403				1132				724		
5.080	105.7		1886	1816.0	87.5	1000	1517	1459.2	70.3	73111	971	936.3	45
6.350			2102				1684				1091		
7.620			2515				2019				1301		
10.600			2836				2272				1464	10 [1]	
12,700			3129				3508				1610		

José Luis Quispe Mendoza Tec. Laporatorio de Mecánica de Suelos

SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

Av. Diagonal Norte Nº 750, Ofic. N 501-SMP [0]

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

SALOME CANTERA

COORDENADAS N 9132829 / E 823670 CALICATA C-01 / T-01 / T-02 MUESTRA M-1

BASE ESTABILIZADA : PROES

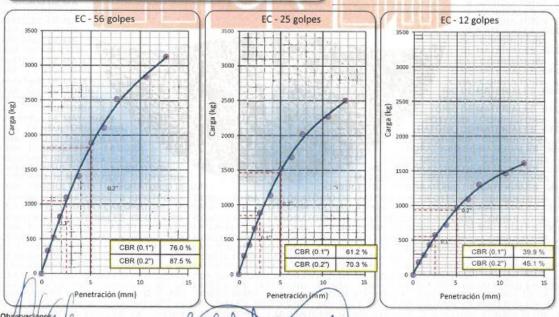
José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

DOSIFICACIÓN 0.28 lt/m3 (PROES 100) RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00 HECHO POR: J.L.Q.M

FECHA: 19/07/2021

982 840 339 / 956 363 147


r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com proyectos@jrgeoconsultores.com

Av. Diagonal Norte Nº 750, Ofic. N 501-SMP [2]

DETERMINACIÓN DEL CBR 2.130 2.110 2.090 (gr/cm³) 2.070 2.050 seca 2.030 2.010 1.990 1.970 1.950 1.930 1.910

DATOS DEL PROCTOR MODIFICADO									
PROCTOR MODIFICADO ASTM	LAS PRIME	1557							
MÁXIMA DENSIDAD SECA	(gr/cm³)	2.131							
ÓPTIMO CONTENIDO DE HUMEDAD	(%):	8.8							
95% DE LA MAXIMA DENSIDAD SECA	(gr/cm ³):	2.024							

PORCENTAJE DEL CBR									
C B R. AL 95% DE M.D.S. (%)	0.1"	57.9	0.2"	66.4					
C.B.R. AL 100% DE M.D.S. (%)	0.1"	75.6	0.2*	87.1					

SOLEDAD AURELLA BARZOLA SUSANO

INGENIERA CIVIL Reg. CIP Nº 67689

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO – RUTA LI-116, LA LIBERTAD, 2021"

CANTERA SALOME

: N 9132829 / E 823670

RUTA: LI-116

COORDENADAS : C-01 / T-01 / T-02 CALICATA

PROFUNDIDAD: 0.00 -3.00 HECHO POR: J.L.Q.M

MUESTRA : M-1 FECHA: 19/07/2021

BASE ESTABILIZADA : PROES

DOSIFICACIÓN : 0.30 lt/m3 (PROES 100)

			COMPACT	ACIÓN				
Aolde N°		20	5	20	16	207		
N° Capas		CONTRACTOR OF STREET				5 12		
N° golpes por capa		5		2	STATE OF STATE OF			
Condición de la muestra		NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO	
Peso de moide + Suelo húmedo	(gr)	12923	ET DI	12873	FORIA DER	12472	WEBBLALER	
Peso de molde + base	(gr)	7980		8125		7923		
Peso del suelo húmedo	(gr)	4943	1 / 1 / 1	4748	I ned a su	4549	ATTEMPT OF	
Volumen del molde	(cm ³)	2131	9 10 10	2138		2129	0.4344 1014	
Densidad húmeda	(gr/cm ³)	2.320	II COMES	2.221		2.137		
N*.Tara		T-30	and the second	T-31		T-32		
Peso suelo húmedo + tara	(gr)	591.1		591.3		614.0		
Peso suelo seco + tara	(gr)	548.7		549.1		571.8	ATE BUILDING	
Peso de tara	(gr)	67.0	4011114530	70.3		91.6	Out of the	
Peso de agua	(gr)	42,4		42.2		42.2		
Peso de suelo seco	(gr)	481.7		478.8		480.2	120151/111101	
Contenido de humedad	(%)	8.8		8.8		8.8		
Densidad seca	(gr/cm ³)	2.132	A Section 1	2.041		1,964	OK-ULTE	
		100	177 177 177 1772	96	COLUMN TO SERVICE	92	CONTROL OF THE PARTY OF THE PAR	

					EXPANSIÓ	N					
FECHA HORA	TIEMPO	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	
11011	HORA		N. William	mm	*	N. C. C.	mm		DIAL	mm	*
12/07/2021	02:00	0	.0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.0
13/07/2021	02:00	24	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.0
14/07/2021	02:00	48	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.0
15/07/2021	02:00	72	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.0
16/07/2021	02:00	96	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.0

				P	ENETRA	CIÓN							
	CARGA		MOL	DE Nº 205		Desgi	MOLD	E N° 206			MOLDE N° 207		
(mm) (kg/cm2)	CAR	GA	CORR	ECCIÓN	CAR	GA	CORRE	CCIÓN	CAR	GA	CORRECCIÓN		
	Dial (div)	kg	kg	*	Dial (div)	kg	kg	. *	Dial (div)	kg	kg	- %	
0.000			0	75.77	Paris	100	0			- Province	0	JUN SILVE	HIM
0.635		13.	369	W. 11 :		1/35	294				248		
1.270			581	TANK!		10.10	472				383	MIT IN	100
1.905			906	- 17.57			733				600		
2.540	70.5	U I	1240	1177.1	85.1		996	948.0	68.5		801	768.3	55
3.810			1580				1272				1021		F
5.080	105.7		2127	2051,1	98.8		1702	1645.2	79.3		1374	1319.5	63
6.350	1111		2382				1912				1526	- mileji	
7.620			2851				2285				1834		
10,600			3211				2579				2061		
/12.700			3538				2843				2278		

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL

Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

Av. Diagonal Norte Nº 750, Ofic. N 501-SMP

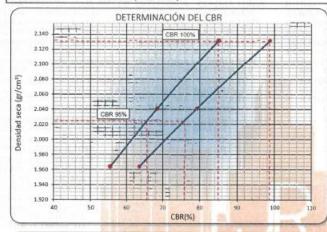
RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

CANTERA : SALOME

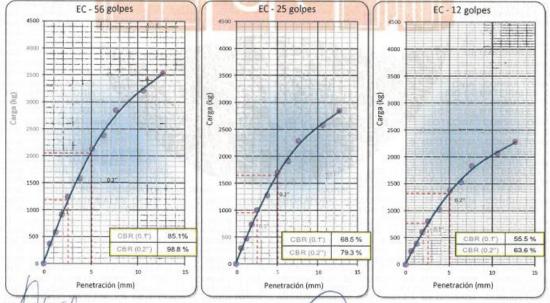
COORDENADAS : N 9132829 / E 823670
CALICATA : C-01 / T-01 / T-02
MUESTRA : M-1


BASE ESTABILIZADA : PROES

DOSIFICACIÓN : 0.30 lt/m3 (PROES 100)

RUTA: LI-116

PROFUNDIDAD: 0:00 -3:00 HECHO POR: J.L.Q.M


FECHA: 19/07/2021

DATOS DEL PROCTOR M	ODIFICADO	
PROCTOR MODIFICADO ASTM		1557
MÁXIMA DENSIDAD SECA	(gnlom ^b):	2.131
ÓPTIMO CONTENIDO DE HUMEDAD	(%)	8.8
95% DE LA MAXIMA DENSIDAD SECA	(gr/cm³):	2.024

PORCENTAJE DEL CBR										
C.B.R. AL 95% DE M.D.S. (%)	0.1"	65.7	0.2*	75.8						
C.S.R. ML 100% DE M.D.S. (N)	0.1"	84.9	0.2*	98.6						

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📵

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

Av. Diagonal Norte Nº 750, Ofic. N 501- SMP 🖸

b) Ensayos a muestras de aditivo PROES 100 + CEMENTO

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y ASFALTO

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL: DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

SALOME : N 9132829 / E 823670 COORDENADAS : C-01 / T-01 / T-02 CALICATA

MUESTRA

; M-1 BASE ESTABILIZADA : PROES

DOSIFICACIÓN : 0.26 lt/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland) RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00 HECHO POR: J.L.Q.M FECHA: 19/07/2021

THE RESERVE OF THE PARTY OF THE			COMPACTA	CIÓN	CAR MINES	SALES MALES	
Voide Nº		25	19	26	0	26	
N' Capas				5		THE RESIDENCE OF	
N' golpes por capa		5	5	26		1	
Condición de la muestra		NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO
Peso de moide + Suelo húmedo	(gr)	12830		12575		12374	
Peeo de moide + 1886	(gr)	7921		7853		7880	
Peso del suelo húmedo	(gr)	4909		4722		4494	
Volumen del molde	(cm ³)	2117		2133		2126	
Densidad húmeda	(gr/cm ³)	2.319	10,200	2.214		2.114	
N° Tara		T-18	THE STATE OF	T-17		T-15	
Peso suelo húmedo + tara	(gr)	593.6		604.9		603.7	
Peso suelo seco + tara	(gr)	552.4		562.5		558.2	
Peso de tara	(gr)	84.9		76.6		41.2	
Peso de agua	(gr)	41.2	The second	42.4		45.5	
Peso de suelo seco	(gr)	467.5		485.9		517.0	
Contenido de humedad	(%)	8.8	TANKS THE	8.7		8.8	
Densidad seca	(gr/cm ⁸)	2.131	THE STREET	2.036	SHEER LE	1.943	
STATE OF THE STATE		100	HOWEL ST	96	THE RESERVE	91	

	THE SECOND	SAMPLE AND		704-12	EXPANSIÓ	V	War Park	70.01			
FECHA	HORA	TIEMPO	DIAL	EXPANSION		DIAL	EXPANSIÓN		DIAL	EXPA	NSIÓN
FLORIA	HORK	THE STATE OF THE S	DOLL	nm	%	DIAL	mm		DIAL	mm	
12/07/2021	01:30	0	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00
13/07/2021	01:30	24	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00
14/07/2021	01:30	48	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00
15/07/2021	01:30	72	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00
16/07/2021	01:30	96	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00

The second second				P	ENETRA	CIÓN							
	CARGA		MOLE	DE N° 259		MOLDE Nº 260				MOLDE N* 261			
PENETRACIÓN (mm)	ESTÁNDAR	CAR	GA	CORR	ECCIÓN	CAR	GA	CORRE	CCIÓN	CAR	GA	CORRE	CCIÓN
10007	(kg/cm2)	Dial (div)	kg	kg	*	Dial (div)	kg	kg	*	Dial (div)	kg	kg	
0.000			0			1	0		1		0		
0.635			437	1	MA FORD		390				350		
1.270			704				604				512		
1.905			1081				931				801		
2.540	70.5		1466	1402.4	101.4		1266	1209.5	87.4		1071	1031.9	74.6
3.810			1884				1622				1379		
5.080	105.7		2535	2441.1	117.6		2160	2087.5	100.6		1832	1769.8	85.3
6.350			2832				2421				2056		
7.620			3390				2885				2462		
10.600			3828				3253				2786		
, 12.700			4201				3594				3055		

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL

982 840 339 / 956 363 147 📵 Reg. CIP Nº 67689

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com Av. Diagonal Norte № 750, Ofic. N 501- SMP

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

CANTERA : SALOME

COORDENADAS : N 9132829 / E 823670
CALICATA : C-01 / T-01 / T-02
MUESTRA : M-1

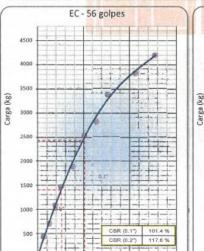
BASE ESTABILIZADA : PROES

DOSIFICACIÓN : 0.26 lt/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

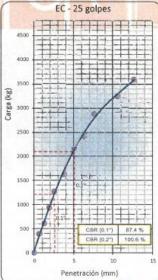
RUTA : LI-116

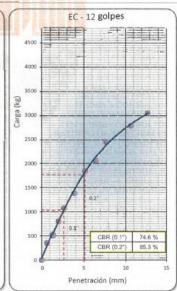
PROFUNDIDAD: 0.00 -3.00 HECHO POR: J.L.Q.M FECHA: 19/07/2021

| DATOS DEL PROCTOR MODIFICADO | 1557


2.024

POR	CENTALE	EL CBR	100	LI BILL
C.B.P. AL 95% DE M.D.S. (%)	0.1"	85.8	0.2"	98.6
C.B.R. AL 100% DE M.D.S. (%)	0.1*	101.3	0.2"	117.6


Observaciones:


5% DE LA MAXIMA DENSIDAD SECA

Penetración (mm)

Observaciones:

José Luis Quispe Mendoza Tec. Laporatorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO

INGENIERA CIVIL Reg, CIP Nº 67689 982 840 339 / 956 363 147 💆

r.diaz@jrgeoconsultores.com ijr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

Av. Diagonal Norte Nº 750, Ofic. N 501- SMP 💟

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

SALOME CANTERA

COORDENADAS N 9132829 / E 823670 CALICATA C-01 / T-01 / T-02

MUESTRA M-1 BASE ESTABILIZADA : PROES

DOSIFICACIÓN : 0.28 lt/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland) RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00 HECHO POR: J.L.Q.M FECHA: 19/07/2021

			COMPACTA	ACIÓN				
Molde N'		25	59	26		26	H	
N' Capas				THE PERSON NAMED IN		5 12		
N* golpes por capa		5	5	2	6			
Condición de la muestra		NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO	
Peso de molde + Suelo húmedo	(gr)	12827		12569		12372		
Peso de molde + base	(gr)	7921		7853		7880		
Peso del suelo húmedo	(gr)	4906		4716		4492		
Volumen del molde	(cm ⁵)	2117		2133		2126		
Densidad húmeda	(gr/am ³)	2.317		2.211		2.113		
N° Tara		T-21		T-37		T-24		
Peso suelo húmedo + tara	(gr)	586.8	ID COMMON	641.2		483.3		
Peso suelo seco + tara	(gr)	545.6	\$1100 pt 200 pt	597.4		450.1		
Peso de tara	(gr)	77.4	U.S. WITE	93.9		72.1		
Peso de agua	(gr)	41.2		43.8		33.2		
Peso de suelo seco	(gr)	468.2		503.5		378.0		
Contenido de humedad	(%)	8.8		8.7		8.8		
Densidad seca	(gr/cm ³)	2.130		2.034	Contra Section	1.942		
		100		06	CF = 10 F 30 S	91		

					EXPANSIÓN	N					
FECHA	HORA	TIEMPO	DIAL	EXPAN	EXPANSION		EXPANSION		DIAL	EXPANS	
FEUNA	HUKA	TRIMPU	DIAL	mm		DIAL	mm		MAL	mm	*
12/07/2021	02:00	0	0.00	0.000	0:00	0.00	0.000	0.00	0.00	0.000	0.00
13/07/2021	02:00	24	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.0
14/07/2021	02:00	48	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.0
15/07/2021	02:00	72	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.0
16/07/2021	02:00	96	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.0

				P	ENETRA	CIÓN							
	CARGA		MOLE	E Nº 259		MOLDE N° 260				MOLDE N° 261			
PENETRACIÓN (mm)	ESTÁNDAR	CARGA		CORRECCIÓN		CARGA		CORRECCIÓN		CARGA		CORRECCIÓN	
	(kg/cm2)	Dial (div)	kg	kg	*	Dial (div)	kg	kg		Dial (div)	kg	kg	*
0.000		200	0	dr T	100		0				0		
0.635			453				393				349		
1.270			720				614				523		
1.905			1132				971				832		
2.540	70.5		1540	1464.3	105.8		1322	1255.2	90.7		1135	1073.3	77
3.810			1972				1689				1428		
5.080	105.7		2647	2555.5	123.2		2258	2179.2	105.0		1926	1857.1	89
6.350			2968				2526				2161		
7.620			3557				3042				2585		
/_10.600			4012				3422				2924		
2.700			4421				2759				3222		

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

- 982 840 339 / 956 363 147 📵
- r.diaz@jrgeoconsultores.com
- jr.geoconsultores@gmail.com proyectos@jrgeoconsultores.com
- Av. Diagonal Norte Nº 750, Ofic. N 501- SMP

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

CANTERA ; SALOME

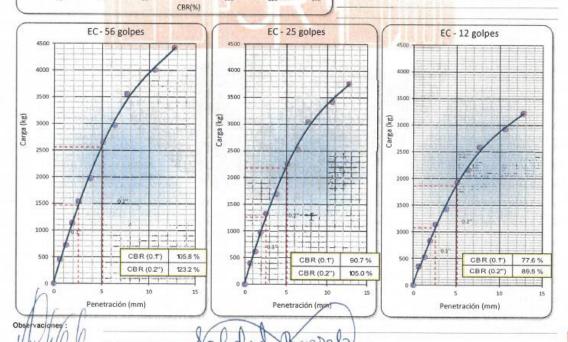
COORDENADAS : N 9132829 / E 823670 CALICATA : C-01 / T-01 / T-02

MUESTRA : M-1
BASE ESTABILIZADA : PROES

DOSIFICACIÓN : 0.28 lt/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00 HECHO POR: J.L.Q.M


FECHA: 19/07/2021

DATOS DEL PROCTOR MO	DIFICADO	
PROCTOR MODIFICADO ASTM		1557
MÁXIMA DENSIDAD SECA	(gr/om ²):	2.131
ÓPTIMO CONTENIDO DE HUMEDAD	(%):	8.8
95% DE LA MAXIMA DENSIDAD SECA	(gr/cm ³):	2.024

POR	CENTAJE D	EL CBR		
C.B.R. AL 95% DE M.D.S. (%)	0.1"	89.3	0.2"	103.3
C.B.R. AL 100% DE M.D.S. (%)	0.1"	108.0	0.2"	123.3

Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO

INGENIERA CIVIL Reg. CIP Nº 67689

- 982 840 339 / 956 363 147 📵
- r.diaz@jrgeoconsultores.com
- jr.geoconsultores@gmail.com 🧧
- proyectos@jrgeoconsultores.com
- Av. Diagonal Norte Nº 750, Ofic. N 501- SMP

RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

; SALOME CANTERA

COORDENADAS

CALICATA

: N 9132829 / E 823670 : C-01 / T-01 / T-02

MUESTRA : M-1 BASE ESTABILIZADA : PROES

DOSIFICACIÓN : 0.30 lt/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00

HECHO POR: J.L.Q.M FECHA: 19/07/2021

5 NO SATURADO (r) 12832	59 5 4 SATURADO	26/ 5 26 NO SATURADO		.26 .5 .12		
NO SATURADO (17) 12832		26				
NO SATURADO (r) 12832				12		
(r) 12832	SATURADO	NO SATURADO	A CHICAGO CO.			
		NO SATURADO	SATURADO	NO SATURADO	SATURADO	
		12569		12372		
(r) 7921	11000	7853		7880		
pr) 4911		4716		4492		
3) 2117		2133		2126		
2.320		2.211		2.113		
T-28		T-29		T-30		
ar) 600.2	METGERAL	622.9		584.1		
pr) 558.4	HE WATER	578.2		542.3		
pr) 84.0		69.6		67.0		
gr) 41.8		44.7		41.8		
(r) 474.4	Street Park	508.6		475.3		
%) 8.8	THE RESERVE	8.8		8.8		
2.132		2.033		1.942		
C T T T C C C C	n") 2117 n") 2.320 T-28 gr) 600.2 gr) 558.4 gr) 84.0 gr) 474.4 %) 8.8	97) 4911 n°) 2117 n°) 2130 T-28 97) 600.2 97) 558.4 97) 84.0 97) 41.8 97) 474.4 %) 8.8	gr) 4911 4716 n²) 2117 2133 ' n²) 2.320 2.211 T-28 T-29 gr) 600.2 622.9 gr) 558.4 578.2 gr) 84.0 69.6 gr) 41.8 44.7 gr) 474.4 508.6 % 8.8 8.8 n²) 2.132 2.033	gr) 4911 4716 n°) 2117 2133 n°) 2320 2211 T-28 T-29 gr) 600.2 622.9 gr) 558.4 578.2 gr) 84.0 69.6 gr) 41.8 44.7 gr) 474.4 508.6 % 8.8 8.8 n°) 2.132 2.033	97) 4911 4716 4492 187) 2117 2133 2126 187) 2.320 2.211 2.113 17-28 7-29 7-30 190 600.2 622.9 584.1 191 558.4 578.2 542.3 190 84.0 69.6 67.0 197 41.8 44.7 41.8 197 474.4 508.6 475.3 188 8.8 8.8 8.8 189 8.8 8.8 8.8 194 2.132 2.033 1.942	

			100			95			91				
Harris Co.	STATISTICS.	San San San	ESCHOOL STREET	Oholo Ca	EXPANSIO	V			A TOTAL	1000			
FECHA	HORA	TITUDO	DIAL	EXPA	EXPANSION		XPANSIÓN	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN
FEURA	HORA	TIEMPO	DIAL	mm		UML	mm		Dist	mm			
12/07/2021	02:30	0	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00		
13/07/2021	02:30	24	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.0		
14/07/2021	02:30	48	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00		
15/07/2021	02:30	72	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00		
16/07/2021	02:30	96	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00		

	1 21 222	93771		P	ENETRA	CIÓN	-	BINGS:	MIST.	THE PERSON NAMED IN	1000	MARKET SE	1000
	CARGA		MOLDE Nº 260				MOLDE Nº 261						
PENETRACIÓN (mm)	ESTÁNDAR	CARGA		CORRECCIÓN		CARGA		CORRECCIÓN		CARGA		CORRECCIÓ	
	(kg/cm2)	Dial (div)	kg	kg		Dial (div)	kg	kg	*	Dial (div)	kg	kg	- %
0.000		1000	0	Leky			0				0		
0.635			507	1/11/11			454				378		
1.270			797				689				600		
1.905			1264				1067				922		
2.540	70.5		1696	1622.0	117.3		1451	1390.1	100.5		1245	1190.4	86
3.810			2177				1869				1585		
5.080	105.7		2930	2822.1	136.0		2502	2405.9	115.9		2137	2052.0	98.
6.350			3271				2781				2377		
7.620			3914				3349				2865		
10.600			4416				3767				3201		
12,700			4874				4(48				3523		

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL

Reg. CIP Nº 67689

982 840 339 / 956 363 147 🚇

r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com Av. Diagonal Norte Nº 750, Ofic. N 501-SMP [0]

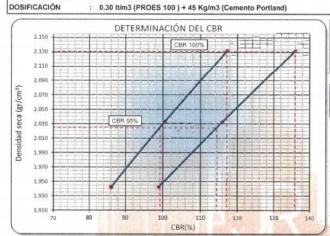
RELACIÓN SOPORTE DE CALIFORNIA (C.B.R.) NORMAS TÉCNICAS: MTC E 132, ASTM D 1883, AASHTO T 193

DATOS DE LA MUESTRA

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

CANTERA SALOME

COORDENADAS N 9132829 / E 823670 CALICATA C-01 / T-01 / T-02 MUESTRA M-1

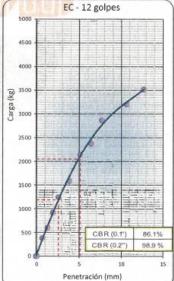

BASE ESTABILIZADA PROES

0.30 lt/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

RUTA: LI-116

PROFUNDIDAD: 0.00 -3.00 HECHO POR: J.L.Q.M

FECHA: 19/07/2021


DATOS DEL PROCTOR MODIFICADO								
PROCTOR MODIFICADO ASTM	1	1557						
MÁXIMA DENSIDAD SECA	[gr/cm ³]:	2.131						
ÓPTIMO CONTENIDO DE HUMEDAD	(%):	8.8						
95% DE LA MAXIMA DENSIDAD SECA	(gr/cm ³):	2.024						

PORCENTAJE DEL CBR								
C 8 R. AL 95% DE M.D.S (%)	0.1"	99.2	0.2"	114,4				
C.B.R. AL 100% DE M.D.S. (%)	0.1"	117.1	0.2"	135.8				

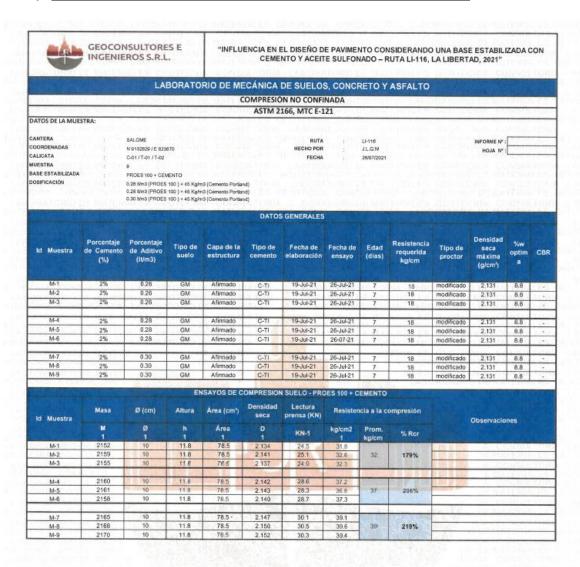
Observaciones:

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLA SUSANO

INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147


r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

Av. Diagonal Norte Nº 750, Ofic. N 501-SMP 💟

c) Ensayos de Resistencia a la Compresión no Confinada

Comendarios:

José Luis Quispe Mendoza Tec. Laporatorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 📳

r.diaz@jrgeoconsultores.com
jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

Av. Diagonal Norte № 750, Ofic. N 501-SMP 🔽

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y ASFALTO

COMPRESIÓN NO CONFINADA

ASTM 2166, MTC E-121

DATOS DE LA MUESTRA:

SALOME

N 9132829 / E 823670

RUTA HECHO POR

FECHA

J.L.Q.M

INFORME Nº HOJA Nº

CALICATA MUESTRA

G-01 / T-01 / T-02

CEMENTO

2 % de Cemento o 45 Kg/m3 (Cemento Portiend) 3 % de Cemento o 67.5 Kg/m3 (Cemento Portland)

4 % de Cemento o 90 Kg/m3 (Cemento Portland)

No.	DATOS GENERALES												
ld Muestra	Porcentaje de Cemento (%)	Porcentaje de Aditivo (lt/m3)	Tipo de suelo	Capa de la estructura	Tipo de cemento	Fecha de elaboración	Fecha de ensayo	Edad (dias)	Resistencia requerida kg/cm	Tipo de proctor	Densidad seca máxima (g/cm	‱ optima	CBR
M-1	2%	- Profits	GM	Afirmado	C-TI	19-Jul-21	26-Jul-21	7	18	modificado	2.131	8.8	TOU
M-2	2%	-	GM	Afirmado	C-TI	19-Jul-21	26-Jul-21	7	18	modificado	2.131	8.8	1.0
M-3	2%	NA SABI	GM	Afirmado	C-TI	19-Jul-21	26-Jul-21	7	18	modificado	2.131	8.8	-
M-4	3%		GM	Afirmado	C-TI	19-Jul-21	26-Jul-21	7	18	modificado	2.131	8.8	O.
M-5	3%		GM	Afirmado	C-TI	19-Jul-21	26-Jul-21	7	18	modificado	2.131	8.8	
M-6	3%		GM	Afirmado	C-TI	19-Jul-21	26-07-21	7	18	modificado	2,131	8.8	
TENSIO I		*			Mary N	Marin Marin		-102			HIM	6PR	13
M-7	4%		GM	Afirmado	C-TI	19-Jul-21	26-Jul-21	7	18	modificado	2.131	8.8	
M-8	4%	-	GM	Afirmado	C-TI	19-Jul-21	26-Jul-21	7	18	modificado	2.131	8.8	
14.0		- II. II 300	CM	Afirmada	C-TI	19-14-21	26, 14,21	14	40	modificado	2 131	8.8	

		ENSAYOS DE COMPRESION SUELO - CEMENTO									
Observaciones	Resistencia a la compresión		Lectura prensa (KN)	Densidad seca	Área (cm²)	Altura	Ø (cm)	Masa	d Muestra		
	% Rcr	Prom. kg/cm	kg/cm2 1	KN-1	D 1	Área 1	-	0 1	M Ø		
DE MALE	AND DESCRIPTION OF THE PARTY.	SHOW.	16.4	12.6	2.140	78.5	11.8	10	2158	M-1	
100	92%	17	16.8	12.9	2.143	78.5	11.8	10	2161	M-2	
	ENTERINE .		16.5	12.7	2.142	78.5	11.8	10	2160	M-3	
	State of the	Market 1	23.9	18.4	2.146	78.5	11.8	10	2164	M-4	
	133%	24	24.2	18.6	2.147	78.5	11.8	10	2165	M-5	
	Market -		23.5	18.1	2.151	78.5	11.8	10	2169	M-6	
	Salas I		31.7	24.4	2.151	78.5	11.8	10	2169	M-7	
	179%	32	32.3	24.9	2.153	78.5	11.8	10	2171	M-8	
	STATE OF THE PARTY	THE REAL PROPERTY.	32.6	25.1	2.154	78.5	11.8	10	2172	M-9	

José Luis Quispe Mendoza Tec. La poratorio de Mecánica de Suelos SOLEDAD AURELIA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 [6]

r.diaz@jrgeoconsultores.com jr.geoconsultores@gmail.com

proyectos@jrgeoconsultores.com

Av. Diagonal Norte Nº 750, Ofic. N 501-SMP 💟

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO - RUTA LI-116, LA LIBERTAD, 2021"

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y ASFALTO

COMPRESIÓN NO CONFINADA

ASTM 2166, MTC E-121

DATOS DE LA MUESTRA:

CANTERA COORDENADAS

CALICATA

MUESTRA

N 9132829 / E 823670 C-01/T-01/T-02

PROES

BASE ESTABILIZADA 0.26 Il/m3 (PROES 100)

0.28 N/m3 (PROES 100) 0.30 l/m3 (PROES 100)

RUTA HECHO POR

FECHA

JLOM

HOJA Nº

DATOS GENERALES													
ld Muestra	Porcentaje de Cemento (%)	Porcentaje de Aditivo (lt/m3)	Tipo de suelo	Capa de la estructura	Tipo de cemento	Fecha de elaboración	Fecha de ensayo	Edad (dias)	Resistencia requerida kg/cm	Tipo de proctor	Densidad seca máxima (g/cm	%w optim a	CBR
M-1	TOTAL STREET	0.26	GM	Afirmado	C-TI	19-Jul-21	26-Jul-21	7	18	modificado	2.131	8.8	11.12
M-2		0.26	GM	Afirmado	C-TI	19-Jul-21	26-Jul-21	7	18	modificado	2.131	8.8	
M-3		0.26	GM	Afirmado	C-TI	19-Jul-21	26-Jul-21	7	18	modificado	2.131	8.8	
M-4		0.28	GM	Afirmado	C-TI	19-Jul-21	26-Jul-21	7	18	modificado	2.131	8.8	7.2
M-5	. 5 HE-1/14	0.28	GM	Afirmado	C-TI	19-Jul-21	26-Jul-21	7	18	modificado	2.131	8.8	13
M-6	MISIX TO E	0.28	GM	Afirmado	C-TI	19-Jul-21	26-07-21	7	18	modificado	2.131	8.8	-
M-7	-	0.30	GM	Afirmado	C-TI	19-Jul-21	26-Jul-21	7	18	modificado	2.131	8.8	
M-8		0.30	GM	Afirmado	C-TI	19-Jul-21	26-Jul-21	7	18	modificado	2.131	8.8	1 1-1
M-9	7 SIL 10	0.30	GM	Afirmado	C-TI	19-Jul-21	26-Jul-21	7	18	modificado	2.131	8.8	

				ENSAYO	S DE COMP	RESION SUELO	- PROES	100			
d Muestra	Masa	Ø (cm)	Altura	Área (cm²)	Densidad seca	Lectura prensa (KN)	Resistencia a la compresión		Observaciones		
	M	0 1	1	Área 1	D 1	KN-1	kg/cm2	Prom. kg/cm	% Rer		
M-1	2154	10	11.8	78,5	2.136	10.4	135			DE WATE	
M-2	2157	10	11.8	78.5	2.139	10.6	13.8	14	77%	- The store	
M-3	2153	10	11.8	78.5	2.135	10.9	14.2		h Sel	0.34	distance -
M-4	2162	10	11.8	78.5	2.144	11.9	15.5		1	NAME OF TAXABLE PARTY.	THE PARTY OF THE P
M-5	2163	10	11.8	78.5	2.145	12.1	15.7	15	86%	(4)	
M-6	2163	10	11.8	78.5	2.145	11.7	15.2				
M-7	2171	10	11.8	78.5	2.153	13.0	16.9	Name and Address of the Owner, where	Section 1		
M-8	2174	10	11.8	78.5	2.156	12.9	16.8	17	93%		
M-9	2172	10	11.8	78.5	2.154	12.8	16.6	58854	The same of the sa	NEW TWO IS NOT	

José Luis Quispe Mendoza Tec. Laboratorio de Mecánica de Suelos

SOLEDAD AURELLA BARZOLA SUSANO INGENIERA CIVIL Reg. CIP Nº 67689

982 840 339 / 956 363 147 r.diaz@jrgeoconsultores.com

jr.geoconsultores@gmail.com proyectos@jrgeoconsultores.com

Av. Diagonal Norte Nº 750, Ofic. N 501-SMP [2]

Anexo 06.5. Fichas Técnicas de Estabilizantes.

FICHA TECNICA DE PROES 100

FICHA TÉCNICA

i. Tecnología PROES

El proceso PROES® de estabilización química de suelos (patentado) trata el suelo natural transformándolo en una base impermeable, resistente (CBR > 100%) y flexible.

Este proceso ocupa:

- a. El suelo natural con plasticidad
- b. El aditivo líquido PROES, que actúa por ionización y ordena las partículas del suelo.
- c. Aditivo sólido que sirve como aglomerante.

La base generada con PROES aporta toda la capacidad estructural necesaria, por lo que requiere de una carpeta de rodado sólo como protección de la abrasión producida por el tráfico y según el estándar de operación esperado.

ii. Consideraciones de uso.

- Se deben asegurar condiciones de homogeneidad y composición adecuada en el suelo a tratar de acuerdo a estudios y especificaciones de acuerdo a PROES.
- Al suelo a tratar se debe agregar un aditivo sólido, el cuál consiste en cemento u otro filler gestionable localmente.
- El aditivo líquido PROES se agrega al suelo en dosis de 0,30 a 0,35 lt/m³ de suelo estabilizado. La aplicación se realiza utilizando un camión aljibe, donde se diluye el aditivo PROES en agua previo a su aplicación.
- 4. La finalización del proceso contempla revolver y extender el suelo tratado con motoniveladora, y luego el compactado con rodillo vibratorio. Este proceso debe realizarse en las 4 horas inmediatamente posteriores al riego.

iii. Condiciones de transporte del aditivo líquido

Envase : Estanque HDPE anillado de 55 galones 200

litros, sellado, diámetro 595 mm, altura 888

mm (ver ilustración adjunta).

Transporte: : los estanques se movilizan en pallets de

1000mm x 1200 mm.

iv. Condiciones químicas del aditivo líquido

División de riesgo : Clase 8 - Líquido corrosivo

Código UN : NU 3256

Estado físico : líquido de color oscuro y apariencia oleosa

Peso específico : 1,15

pH : 1 a 1,5 en estanque, 4 a 6 en aplicación según dilución.

Estabilidad : producto estable a temperatura ambiente, mantener bajo 100°C

Fecha de caducación : no tiene

FICHA TECNICA DE CEMENTO PORTLAND TIPO I

DESCRIPCIÓN

Cemento Portland Tipo I. Gracias a su nuevo diseño de Clinker, se logra un concreto más durable brindando alta resistencia a todas las edades.

usos

Cemento de uso general.

ATRIBUTOS

Diseño que supera los requisitos de la normas nacionales

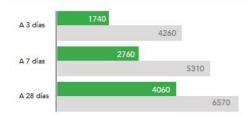
Altas resistencias a todas las edades

- Desarrolla altas resistencias iniciales que garantiza un adecuado avance de obra.
- El diseño correcto en concreto garantiza un menor tiempo de desencofrado.

RECOMENDACIONES

Mantener el cemento en un lugar seco bajo techo, protegido de la humedad.

Almacenar en pilas de menos de 10 sacos.



Utilizar agregados y materiales de buena calidad.

A mayor sea la humedad de los agregados, se debe dosificar menor cantidad de agua.

RESISTENCIA A LA COMPRESIÓN

Resistencia a la compresión (psi)

■ Resultado Promedio ■ Requisito mínimo NTP 334.009 / ASTM C150

Pacasmayo -

Cemento Portland tipo I

Requisitos Normalizados

NTP 334.009 / ASTM C150

REQUERIMIENTOS QUÍMICOS

ENSAYOS	TIPO	VALOR	UNIDAD	NORMAS DE ENSAYO	RESULTADO	
MgO	Máximo	6.0	%	NTP 334.086	2.1	
SO ₃	Máximo	3.0	%	NTP 334.086	2.8	
Pérdida por ignición	Máximo	3.5	%	NTP 334.086	3.1	
Residuo insoluble	Máximo	1.5	%	NTP 334.086	0.6	

REQUERIMIENTOS FÍSICOS

	ENSAYOS	TIPO	VALOR	UNIDAD	NORMAS DE ENSAYO	RESULTADO	
	Contenido de aire	Máximo	12	%	NTP 334.048	8	
	Finura, Superficie específica	Mínimo	2,600	cm²/g	NTP 334.002	4000	_
	Expansión en autoclave	Máximo	0.80	%	NTP 334.004	0.07	_
_	Resistencia a la compresión						_
	3 días	Mínimo	12.0 (1740)	MPa (psi)	NTP 334.051	29.4 (4260)	
	7 días	Mínimo	19.0 (2760)	MPa (psi)	NTP 334.051	36.6 (5310)	
	28 días ⁽¹⁾	Mínimo	28.0 (4060)	MPa (psi)	NTP 334.051	45.3 (6570)	
	Tiempo de Fraguado Vicat						
	Fraguado inicial	Mínimo	45	Minutos	NTP 334.006	139	
	Fraguado final	Máximo	375	Minutos	NTP 334.006	250	

⁽¹⁾ Requisito opcional.

VENTAJAS

Presentaciones: Bolsas de 42.5 kg, granel y big bag de 1TM

Fecha y hora de envasado: para que utilices el cemento más fresco

Fecha de vencimiento: para aprovechar de mejor manera sus propiedades

El cemento descrito arriba, al tiempo del envío, cumple con los requisitos químicos y físicos de la NTP 334.009.

Anexo 06.6. Certificado de Laboratorio – JR.

CERTIFICADO DE ENSAYOS EN LABORATORIO

El que suscribe, Ing. Romel Diaz Alvarado, hace constar por medio de la presente que los Sres. Bach. Guillén Garfias, Andy Selwyn y Bach. Ayquipa Altamirano, Carlos Edwar, identificados con DNI Nº 70678241 y Nº 46093607 respectivamente, han realizado los ensayos de Clasificación SUCS y AASHTO, Granulometría, Contenido de Humedad, Limites de Atterberg, Abrasión de los Angeles, Proctor Modificado, CBR y Compresión no Confinada, en las Instalaciones del Laboratorio de materiales - Geotecnia - Consultoría JR GEOCONSULTORES E INGENIEROS S.R.L, requeridos para la tesis "Influencia en el Diseño de Pavimento Considerando una Base Estabilizada con Cemento y Aceite Sulfonado - Ruta LI-116, La Libertad, 2021"; los resultados obtenidos se encuentran registrados en nuestra base de datos.

Se expide el presente certificado a solicitud de los interesados, para los fines que estimen conveniente.

Lima, 19 de julio del 2021

Romel Díaz Alvarado GERENTE GENERAL JR GEOCONSULTORES E INGENIEROS S.R.L. Anexo 07.

Diseño de Pavimentos.

Anexo 07.1. Diseño de espesores sin Estabilizante.

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO – RUTA LI-116, LA LIBERTAD, 2021"

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 - SIN ESTABILIZANTE

El diseño del pavimento flexible involucra el analisis de diversos factores: Tráfico, drenaje, clima, caracteristicas de los suelos, capacidad de trasferencia de carga, nivel, de serviciabilidad deseado, el grado de confiabilidad al que se desea efectuar el diseño acorde con el grado de importancia de la carretera. Todos estos factores son necesarios para producir un comportamiento confiable del pavimento y evitar que el daño del pavimento alcance en nivel de colapso durante su vida de servicio.

$$\log_{10}(ESAL) = Z_R S_o + 9,36\log_{10}(SN+1) - 0,20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4,2-1,5}\right]}{0,40 + \frac{1094}{(SN+1)^{5,19}}} + 2,32\log_{10}M_R - 8,07$$

VARIABLES DE DISEÑO

01.01 VARIABLES DE TIEMPO

Se considerá dos variables: periodo de analisis y vida util del pavimento.

para efectos de diseño se considera el periodo de vida útil, mientras que el periodo de analisis se utiliza para la comparación de alternativas de diseño, es decir, para el análisis económico del proyecto:

CLASIFICACION DE LA VIA	PERIODO DE ANALISIS
Urbana de alto volumen de tráfico	30 - 50
Rural de álto volumen de tráfico	20 - 50
Pavimentada de bajo volumen de tráfico	15 - 25
No pavimentada de bajo volumen de tráfico	10 - 20

No pavimentada de bajo volumen de tráfico

10 Años

01.02 TRÁNSITO

En el metodo AASHTO los pavimentos se proyectan para que estos resistan determinado número de cargas durante su vida útil. El transito esta compuesto por vehículos de diferente peso y número de ejes que producen diferentes tensiones y deformaciones en el pavimento, lo cuál origina distintas fallas en éste. Para tener en cuentas esta diferencia, el tránsito se transforma a un número de cargas por eje simple equivalente de 18 kips (80 kN) ó ESAL (Equivalent Single Axle Load). de tal manera que el efecto dañino de cualquier eje pueda ser representado por un número de cargas por eje simple.

De acuerdo al estúdio de trafico el número de repeticiones es: 7.84E+05

Para el caso del tráfico y del diseño de pavimentos flexibles se define 2 categorías:

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 - SIN ESTABILIZANTE

CATEGORIA	RANGO DE TRÁFICO P EN I		TIPO DE TRÁFICO EXPRESADO EN EE
BAJO VOLUMEN DE	De 150001	A 300000	TP1
	De 300001	A 500000	TP2
TRÁNSITO DE 150,001	De 500001	A 750000	TP3
A 1'000,000 EE	De 750001	A 1000000	TP4
	De 1000001	A 1500000	TP5
	De 1500001	A 3000000	TP6
CAMINOS QUE	De 3000001	A 5000000	TP7
TIENEN UN TRAFICO	De 5000001	A 7500000	TP8
COMPRENDIDO	De 7500001	A 10000000	TP9
	De 10000001	A 12500000	TP10
ENTRE 1'000,000 Y	De 12500001	A 15000000	TP11
30'000,000 EE	De 15000001	A 20000000	TP12
	De 20000001	A 25000000	TP13
	De 25000001	A 30000000	TP14

De acuerdo al número de repeticiones de eje equivalente, el tipo de tráfico es:

TP4

01.03 SUBRASANTE

Las características de la subrasante sobre la que se asienta el pavimento, están definidas en seis (06) categorías de subrasante, en base a su capacidad de soporte CBR.

De acuerdo al estúdio de mecánica de suelos el CBR de la subrasante es: 18.00%

CBR DE LA S	UBRASANTE	CATEGORIA DE LA SUBRASANTE	DESCRIPCIÓN DE LA SUBRASANTE
CBR MENO	ORES A 3%	S0	Subrasante Inadecuada
De CBR = 3%	A CBR < 6%	S1	Subrasante Pobre
De CBR = 6%	A CBR < 10%	\$2	Subrasante Regular
De CBR = 10%	A CBR < 20%	\$3	Subrasante Buena
De CBR = 20%	A CBR < 30%	\$4	Subrasante Muy Buena
CBR MAYORES O	IGUALES A 30%	S5	Subrasante Extraordinaria

De acuerdo al estudio de mecánica de suelos:

S3

01.03 CONFIABILIDAD

La confiabilidad es la probabilidad de que el pavimento se comporte satisfactoriamente durante su vida útil o período de diseño, resistiendo las condiciones de tráfico y medio ambiente dentro de dicho período. Cabe resaltar, que cuando hablamos del comportamiento del pavimento nos referimos a la capacidad estructural y funcional de brindar seguridad y confort al usuario durante el período para el cual fue diseñado. Por lo tanto, la confiabilidad esta asociada a la aparición de fallas en el pavimento.

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO – RUTA LI-116, LA LIBERTAD, 2021"

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 - SIN ESTABILIZANTE

a) DESVIACIÓN ESTANDAR

 (S_o)

La desviación estándar es la desviación de la población de valores obtenidos por AASHTO que involucra la variabilidad inherente a los materiales y a su proceso constructivo. En la siguiente tabla se muestran valores para la desviación estándar.

CONDICION DE DISEÑO	DESVIACIÓN ESTANDAR			
CONDICION DE DISENO	PAV. RÍGIDO	PAV. FLEXIBLE		
Variación en la predicción del comportamiento del pavimento sin errores en el tránsito.	0.35	0.40		
Variación en la predicción del comportamiento del pavimento con errores en el tránsito.		0.50		

$$S_o = 0.45$$

b) FACTOR DE CONFIABILIDAD

(R)

Tiene que ver con el uso esperado de la carretera. Así, para carreteras principales el nivel de confiabilidad es alto, ya que un subdimensionamiento del espesor del pavimento traerá como consecuencia que éste alcance los niveles mínimos de serviciabilidad antes de lo previsto, debido al rápido deterioro que experimentará la estructura. En la siguiente tabla se dan niveles de confiabilidad aconsejados por la AASHTO.

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO DE TRÁFICO EN	NIVEL DE CONFIABILIDAD	
TP1	De 150001	A 300000	70%
TP2	De 300001	A 500000	75%
TP3	De 500001	A 750000	80%
TP4	De 750001	A 1000000	80%
TP5	De 1000001	A 1500000	85%
TP6	De 1500001	A 3000000	85%
TP7	De 3000001	A 5000000	85%
TP8	De 5000001	A 7500000	90%
TP9	De 7500001	A 10000000	90%
TP10	De 10000001	A 12500000	90%
TP11	De 12500001	A 15000000	90%
TP12	De 15000001	A 20000000	95%
TP13	De 20000001	A 25000000	95%
TP14	De 25000001	A 30000000	95%

El factor de confiabilidad R para el tipo de tráfico TP4 es:

80%

c) PROBABILIDAD (Z_R)

Es el valor "Z" (Área bajo la curva de distribución normal correspondiente a la curva estandarizada para una confiabilidad "R"

$$Z_R = -0.842$$

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO – RUTA LI-116, LA LIBERTAD, 2021"

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 - SIN ESTABILIZANTE

02. CRITERIOS DE COMPORTAMIENTO

02.01 SERVICIABLILDAD

la serviciabilidad se unas como una medida del comportamiento del pavimento, la misma que se relaciona con la seguridad y comodidad que puede brindar al usuario (comportamiento funcional) cuando este circula por la vialidad. Tambien se relaciona con las caracteristicas físicas que puede presentar el pavimento como grietas, fallas, peladuras, etc, que podrian afectar la capacidad de soporte de la estructura (comportamiento estructural).

a) INDICE DE SERVICIABILIDAD INICIAL (P_0)

El índice de serviciabilidad inicial (PO) se establece como la condición original del pavimento inmediatamente después de su construcción o rehabilitación. AASHTO estableció para pavimentos flexibles un valor inicial deseable de 4.2, si es que no se tiene información disponible para el diseño.

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO DE TRÁFICO PESADO EXPRESADO EN EE		INDICE DE SERVICIABILIDAD INICIAL (PO)
TP1	De 150001	A 300000	3.8
TP2	De 300001	A 500000	3.8
TP3	De 500001	A 750000	3.8
TP4	De 750001	A 1000000	3.8
TP5	De 1000001	A 1500000	4.0
TP6	De 1500001	A 3000000	4.0
TP7	De 3000001	A 5000000	4.0
TP8	De 5000001	A 7500000	4.0
TP9	De 7500001	A 10000000	4.0
TP10	De 10000001	A 12500000	4.0
TP11	De 12500001	A 15000000	4.0
TP12	De 15000001	A 20000000	4.2
TP13	De 20000001	A 25000000	4.2
TP14	De 25000001	A 30000000	4.2

El Indice de Servisciabilidad Inicial PO para el tipo de tráfico TP4 es:

b) INDICE DE SERVICIABILIDAD FINAL (P_t)

El índice de serviciabilidad final (Pt), ocurre cuando la superficie del pavimento ya no cumple con las expectativas de comodidad y seguridad exigidas por el usuario. Dependiendo de la importancia de la vialidad, pueden considerarse los valores Pt indicados en la siguiente tabla

3.8

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 - SIN ESTABILIZANTE

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO DE TRÁFICO P		INDICE DE SERVICIABILIDAD FINAL (PF)
TP1	De 150001	A 300000	2.0
TP2	De 300001	A 500000	2.0
TP3	De 500001	A 750000	2.0
TP4	De 750001	A 1000000	2.0
TP5	De 1000001	A 1500000	2.5
TP6	De 1500001	A 3000000	2.5
TP7	De 3000001	A 5000000	2.5
TP8	De 5000001	A 7500000	2.5
TP9	De 7500001	A 10000000	2.5
TP10	De 10000001	A 12500000	2.5
TP11	De 12500001	A 15000000	2.5
TP12	De 15000001	A 20000000	3.0
TP13	De 20000001	A 25000000	3.0
TP14	De 25000001	A 30000000	3.0

El Indice de Servisciabilidad Final PF para el tipo de tráfico TP4 es:

2

03. PROPIEDADES DE LOS MATERIALES

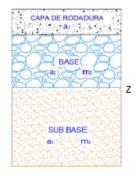
03.01 MODULO RESILENTE (M_R)

Es calculado por el ensayo T274 de la AASHTO, que viene a ser un método muy dificil de realizar en muchos lugares porque no se cuenta con los equipos que efectuen este ensayo, por lo tanto existenrelaciones que pueden calcular dicho módulo aproximadamente, tomando como parámetro principal el CBR, dato que se puede calcular mediante ensayos de la AASHTO y ASTM.

$$M_R = 2555 \times CBR^{0.64}$$

El Módulo Resilente en PSI para un CBR DE 18% es: 16247 psi

SN Requerido	G_t	N18 Nominal	N18 Calculado
2.29	-0.176	5.894	5.895


04. COEFICIENTES ESTRUCTURALES

$$SN = D_1 \times a_1 + D_2 \times a_2 \times m_2 + D_3 \times a_3 \times m_3$$

Di = Espesor de la capa en pulgadas

 $a_i = \text{Coeficiente estructural de la capa}$

 $m_i = \,$ Coeficnete de drenaje de la capa

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 - SIN ESTABILIZANTE

04.01 COEFICIENTE ESTRUCTURAL DE LA CAPA

Es la capacidad estructural del material para resistir las cargas actuantes. Estos coeficientes estan basados en correlaciones obtenidas a partir de los ensayos AASHTO de 1958 - 60 y ensayos posteriores que se han extendido a otros materiales para generalizar la aplicación del metodo.

COEFICIENTE ESTRUCTURAL DE LA CAPA SUPERIOR DEL PAVIMENTO			
COMPONENTE DEL PAVIMENTO COEFICIENTE ESTRUCTURAL (a1)		OBSERVACIÓN	
Carpeta asfáltica en caliente módulo 2965 Mpa a 20°C	0.170	Capa superficial recomendada para todos los tipos de tráfico	
Capa asfática en frío, mezcla asfáltica con emulsión.	0.125	Capa superficial recomendada para tráficos menores a 1'000,000 EE	
Micropavimento 25 mm	0.130	Capa superficial recomendada para tráficos menores a 1'000,000 EE	
Tratamiento superficial Bicapa	0.000 (*)	Capa superficial recomendada para tráficos menores a 500,000 EE, no aplicable en tramos con pendientes > 8%, con curvas pronunciadas	
Lechada Asfáltica (Slurry Seal) de 12 mm	0.000 (*)	Capa superficial recomendada para tráficos menores a 500,000 EE, no aplicable en tramos con pendientes > 8%, y frenado de vehículos	

^{*}no se considera por no tener aporte de material

La componente de pavimento sera de: Micropavimento 25 mm
Por lo tanto el coeficiente estructural a1 será: 0.130

COEFICIENTE ESTRUCTURAL DE LA BASE			
COMPONENTE DE LA BASE	COEFICIENTE ESTRUCTURAL (a2)	OBSERVACIÓN	
Base granular 80% CBR compactada al 100% de la MDS	0.052	Capa de base recomendada para tráfico menor a 5'000,000 EE	
Base granular 100% CBR compactada al 100% de la MDS	0.054	Capa de base recomendada para tráfico mayor a 5'000,000 EE	
Base granular tratada con asfalto (Estabilidad mrshall=1500Lb)	0.115	Capa de base recomendada para todo los tipos de tráficos	
Base granular tratada con cemento (f'c= 35 kg/cm2 a los 7 dias)	0.070	Capa de base recomendada para todo los tipos de tráficos	
Base granular tratada con cal (f'c= 12 kg/cm2 a los 7 dias)	0.080	Capa de base recomendada para todo los tipos de tráficos	

La componente de la Base será de: Base granular 80% CBR compactada al 100% de la MDS
Por lo tanto el coeficiente estructural a1 será: 0.052

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 - SIN ESTABILIZANTE

COEFICIENTE ESTRUCTURAL DE LA SUB-BASE				
COMPONENTE DE LA SUB-BASE COEFICIENTE ESTRUCTURAL (a3)				
Sub-Base granular 40% CBR compactada al 100% de la MDS	0.047	Capa de base recomendada para tráfico menor a 15'000,000 EE		
Sub-Base granular 60% CBR compactada al 100% de la MDS	0.050	Capa de base recomendada para tráfico mayor a 15'000,000 EE		

La componente de la Sub-Base será de: Sub-Base granular 40% CBR compactada al 100% de la MDS

Por lo tanto el coeficiente estructural a1 será: 0.047

por lo tanto: $a_1 = 0.130$ $a_2 = 0.052$ $a_3 = 0.047$

04.02 COEFICIENTE DE DRENAJE DE LA CAPA m_i

TABLA DE VALORES RECOMENDADOS PARA EL COEFICIENTE DE DRENAJE

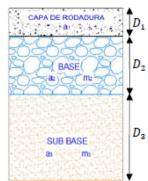
Cd	Tiempo en que tarda el agua en ser	Porcentaje de tiempo en que la estructura del pavimento esta expuesto a niveles de humedad cercanas a la saturación			ta expuesto a
CALIFICACIÓN	avacuada	< 1%	1 - 5%	5 - 25%	>25%
EXCELENTE	2 horas	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20
BUENO	1 dia	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00
REGULAR	1 semana	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80
POBRE	1 mes	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60
MUY POBRE	El agua no evacua	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40

El coeficiente de drenaje para base será: $m_2=1.00$ El coeficiente de drenaje para sub-base será: $m_3=1.00$

04.03 CALCULO DE LOS ESPESORES DE LA CAPA

CNI DECLIERIDO	SN CALCULADO	ESP	ESORES EN	I CM
SN REQUERIDO	SN CALCULADO	D_1	D_2	D_{a}
2.29	2.31	2.5	20	20

05. CONCLUSIONES


a) Para el suelo TIPO I se considerará:

 $D_1 = 2.5 \text{ cm}$ $D_2 = 20 \text{ cm}$ $D_3 = 20 \text{ cm}$

 MICROPAVIMENTO
 2.5 cm

 BASE
 20 cm

 SUB BASE
 20 cm

Anexo 07.2. Diseño de espesores con 3% de Cemento.

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO – RUTA LI-116, LA LIBERTAD, 2021"

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 3 % CEMENTO O 67.5 Kg/m3 (CEMENTO PORTLAND)

El diseño del pavimento flexible involucra el analisis de diversos factores: Tráfico, drenaje, clima, caracteristicas de los suelos, capacidad de trasferencia de carga, nivel, de serviciabilidad deseado, el grado de confiabilidad al que se desea efectuar el diseño acorde con el grado de importancia de la carretera. Todos estos factores son necesarios para producir un comportamiento confiable del pavimento y evitar que el daño del pavimento alcance en nivel de colapso durante su vida de servicio.

Desviación estándar normal Desviación estándar global
$$\int_{\text{estructural}}^{\text{Número}} \log_{10}(ESAL) = Z_R S_o + 9,36\log_{10}(SN+1) - 0,20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4,2-1,5}\right]}{0,40 + \frac{1094}{\left(SN+1\right)^{5,19}} + 2,32\log_{10}M_R - 8,07$$
Módulo de resilencia

01. VARIABLES DE DISEÑO

01.01 VARIABLES DE TIEMPO

Se considerá dos variables: periodo de analisis y vida util del pavimento.

para efectos de diseño se considera el periodo de vida útil, mientras que el periodo de analisis se utiliza para la comparación de alternativas de diseño, es decir, para el análisis económico del proyecto:

CLASIFICACION DE LA VIA	PERIODO DE ANALISIS
Urbana de alto volumen de tráfico	30 - 50
Rural de álto volumen de tráfico	20 - 50
Pavimentada de bajo volumen de tráfico	15 - 25
No pavimentada de bajo volumen de tráfico	10 - 20

No pavimentada de bajo volumen de tráfico

10 Años

01.02 TRÁNSITO

En el metodo AASHTO los pavimentos se proyectan para que estos resistan determinado número de cargas durante su vida útil. El transito esta compuesto por vehículos de diferente peso y número de ejes que producen diferentes tensiones y deformaciones en el pavimento, lo cuál origina distintas fallas en éste. Para tener en cuentas esta diferencia, el tránsito se transforma a un número de cargas por eje simple equivalente de 18 kips (80 kN) ó ESAL (Equivalent Single Axle Load). de tal manera que el efecto dañino de cualquier eje pueda ser representado por un número de cargas por eje simple.

De acuerdo al estúdio de trafico el número de repeticiones es: 7.84E+05

Para el caso del tráfico y del diseño de pavimentos flexibles se define 2 categorías:

DISEÑO DE PAVIMENTO FLEXIBLE CON 3 % CEMENTO O 67.5 Kg/m3 (CEMENTO PORTLAND)

CATEGORIA	RANGO DE TRÁFICO PESADO EXPRESADO EN EE		TIPO DE TRÁFICO EXPRESADO EN EE
BAJO VOLUMEN DE	De 150001	A 300000	TP1
	De 300001	A 500000	TP2
TRÂNSITO DE 150,001	De 500001	A 750000	TP3
A 1'000,000 EE	De 750001	A 1000000	TP4
	De 1000001	A 1500000	TP5
	De 1500001	A 3000000	TP6
CAMINOS QUE	De 3000001	A 5000000	TP7
TIENEN UN TRAFICO	De 5000001	A 7500000	TP8
COMPRENDIDO	De 7500001	A 10000000	TP9
	De 10000001	A 12500000	TP10
ENTRE 1'000,000 Y	De 12500001	A 15000000	TP11
30'000,000 EE	De 15000001	A 20000000	TP12
	De 20000001	A 25000000	TP13
	De 25000001	A 30000000	TP14

De acuerdo al número de repeticiones de eje equivalente, el tipo de tráfico es:

TP4

01.03 SUBRASANTE

Las características de la subrasante sobre la que se asienta el pavimento, están definidas en seis (06) categorías de subrasante, en base a su capacidad de soporte CBR.

De acuerdo al estúdio de mecánica de suelos el CBR de la subrasante es: 18.00%

CBR DE LA SUBRASANTE		CATEGORIA DE LA SUBRASANTE	DESCRIPCIÓN DE LA SUBRASANTE
CBR MENORES A 3%		SO SO	Subrasante Inadecuada
De CBR = 3%	A CBR < 6%	S1	Subrasante Pobre
De CBR = 6%	A CBR < 10%	\$2	Subrasante Regular
De CBR = 10%	A CBR < 20%	S 3	Subrasante Buena
De CBR = 20%	A CBR < 30%	\$4	Subrasante Muy Buena
CBR MAYORES O	IGUALES A 30%	S5	Subrasante Extraordinaria

De acuerdo al estudio de mecánica de suelos:

S3

01.03 CONFIABILIDAD

La confiabilidad es la probabilidad de que el pavimento se comporte satisfactoriamente durante su vida útil o período de diseño, resistiendo las condiciones de tráfico y medio ambiente dentro de dicho período. Cabe resaltar, que cuando hablamos del comportamiento del pavimento nos referimos a la capacidad estructural y funcional de brindar seguridad y confort al usuario durante el período para el cual fue diseñado. Por lo tanto, la confiabilidad esta asociada a la aparición de fallas en el pavimento.

a) DESVIACIÓN ESTANDAR (S_o)

La desviación estándar es la desviación de la población de valores obtenidos por AASHTO que involucra la variabilidad inherente a los materiales y a su proceso constructivo. En la siguiente tabla se muestran valores para la desviación estándar.

DISEÑO DE PAVIMENTO FLEXIBLE CON 3 % CEMENTO O 67.5 Kg/m3 (CEMENTO PORTLAND)

CONDICION DE DISEÑO	DESVIACIÓN ESTANDAR	
CONDICION DE DISENO	PAV. RÍGIDO	PAV. FLEXIBLE
Variación en la predicción del comportamiento del pavimento sin errores en el tránsito.	0.35	0.40
Variación en la predicción del comportamiento del pavimento con errores en el tránsito.	0.40	0.50

$$S_o = 0.45$$

b) FACTOR DE CONFIABILIDAD (R)

Tiene que ver con el uso esperado de la carretera. Así, para carreteras principales el nivel de confiabilidad es alto, ya que un subdimensionamiento del espesor del pavimento traerá como consecuencia que éste alcance los niveles mínimos de serviciabilidad antes de lo previsto, debido al rápido deterioro que experimentará la estructura. En la siguiente tabla se dan niveles de confiabilidad aconsejados por la AASHTO.

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO DE TRÁFICO PESADO EXPRESADO EN EE		NIVEL DE CONFIABILIDAD
TP1	De 150001	A 300000	70%
TP2	De 300001	A 500000	75%
TP3	De 500001	A 750000	80%
TP4	De 750001	A 1000000	80%
TP5	De 1000001	A 1500000	85%
TP6	De 1500001	A 3000000	85%
TP7	De 3000001	A 5000000	85%
TP8	De 5000001	A 7500000	90%
TP9	De 7500001	A 10000000	90%
TP10	De 10000001	A 12500000	90%
TP11	De 12500001	A 15000000	90%
TP12	De 15000001	A 20000000	95%
TP13	De 20000001	A 25000000	95%
TP14	De 25000001	A 30000000	95%

El factor de confiabilidad R para el tipo de tráfico TP4 es:

c) PROBABILIDAD (Z_R)

Es el valor "Z" (Área bajo la curva de distribución normal correspondiente a la curva estandarizada para una confiabilidad "R"

80%

$$Z_R = -0.842$$

02. CRITERIOS DE COMPORTAMIENTO

02.01 SERVICIABLILDAD

la serviciabilidad se unas como una medida del comportamiento del pavimento, la misma que se relaciona con la seguridad y comodidad que puede brindar al usuario (comportamiento funcional) cuando este circula por la vialidad. Tambien se relaciona con las características físicas que puede presentar el pavimento como grietas, fallas, peladuras, etc, que podrian afectar la capacidad de soporte de la estructura (comportamiento estructural).

DISEÑO DE PAVIMENTO FLEXIBLE CON 3 % CEMENTO O 67.5 Kg/m3 (CEMENTO PORTLAND)

a) INDICE DE SERVICIABILIDAD INICIAL (P_0)

El índice de serviciabilidad inicial (P0) se establece como la condición original del pavimento inmediatamente después de su construcción o rehabilitación. AASHTO estableció para pavimentos flexibles un valor inicial deseable de 4.2, si es que no se tiene información disponible para el diseño.

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO DE TRÁFICO P EN I		INDICE DE SERVICIABILIDAD INICIAL (PO)
TP1	De 150001	A 300000	3.8
TP2	De 300001	A 500000	3.8
TP3	De 500001	A 750000	3.8
TP4	De 750001	A 1000000	3.8
TP5	De 1000001	A 1500000	4.0
TP6	De 1500001	A 3000000	4.0
TP7	De 3000001	A 5000000	4.0
TP8	De 5000001	A 7500000	4.0
TP9	De 7500001	A 10000000	4.0
TP10	De 10000001	A 12500000	4.0
TP11	De 12500001	A 15000000	4.0
TP12	De 15000001	A 20000000	4.2
TP13	De 20000001	A 25000000	4.2
TP14	De 25000001	A 30000000	4.2

El Indice de Servisciabilidad Inicial PO para el tipo de tráfico TP4 es:

b) INDICE DE SERVICIABILIDAD FINAL (P_t)

El índice de serviciabilidad final (Pt), ocurre cuando la superficie del pavimento ya no cumple con las expectativas de comodidad y seguridad exigidas por el usuario. Dependiendo de la importancia de la vialidad, pueden considerarse los valores Pt indicados en la siguiente tabla

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO DE TRÁFICO PESADO EXPRESADO EN EE		INDICE DE SERVICIABILIDAD FINAL (PF)
TP1	De 150001	A 300000	2.0
TP2	De 300001	A 500000	2.0
TP3	De 500001	A 750000	2.0
TP4	De 750001	A 1000000	2.0
TP5	De 1000001	A 1500000	2.5
TP6	De 1500001	A 3000000	2.5
TP7	De 3000001	A 5000000	2.5
TP8	De 5000001	A 7500000	2.5
TP9	De 7500001	A 10000000	2.5
TP10	De 10000001	A 12500000	2.5
TP11	De 12500001	A 15000000	2.5
TP12	De 15000001	A 20000000	3.0
TP13	De 20000001	A 25000000	3.0
TP14	De 25000001	A 30000000	3.0

DISEÑO DE PAVIMENTO FLEXIBLE CON 3 % CEMENTO O 67.5 Kg/m3 (CEMENTO PORTLAND)

03. PROPIEDADES DE LOS MATERIALES

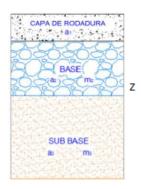
03.01 MODULO RESILENTE (M_R)

Es calculado por el ensayo T274 de la AASHTO, que viene a ser un método muy dificil de realizar en muchos lugares porque no se cuenta con los equipos que efectuen este ensayo, por lo tanto existenrelaciones que pueden calcular dicho módulo aproximadamente, tomando como parámetro principal el CBR, dato que se puede calcular mediante ensayos de la AASHTO y ASTM.

$$M_R = 2555 \times CBR^{0.64}$$

El Módulo Resilente en PSI para un CBR DE 18% es: 16247 psi

SN Requerido	G_t	N18 Nominal	N18 Calculado
2.29	-0.176	5.894	5.895


04. COEFICIENTES ESTRUCTURALES

$$SN = D_1 \times a_1 + D_2 \times a_2 \times m_2 + D_3 \times a_3 \times m_3$$

 $D_i = Espesor de la capa en pulgadas$

 $a_i = Coeficiente estructural de la capa$

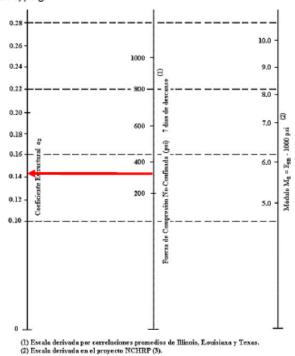
 $m_i =$ Coeficnete de drenaje de la capa

04.01 COEFICIENTE ESTRUCTURAL DE LA CAPA a_i

Es la capacidad estructural del material para resistir las cargas actuantes. Estos coeficientes estan basados en correlaciones obtenidas a partir de los ensayos AASHTO de 1958 - 60 y ensayos posteriores que se han extendido a otros materiales para generalizar la aplicación del metodo.

COEFICIENTE ESTRUCTURAL DE LA CAPA SUPERIOR DEL PAVIMENTO			
COMPONENTE DEL PAVIMENTO	COEFICIENTE ESTRUCTURAL (a1)	OBSERVACIÓN	
Carpeta asfáltica en caliente módulo 2965 Mpa a 20°C	0.170	Capa superficial recomendada para todos los tipos de tráfico	
Capa asfática en frío, mezcla asfáltica con emulsión.	0.125	Capa superficial recomendada para tráficos menores a 1'000,000 EE	
Micropavimento 25 mm	0.130	Capa superficial recomendada para tráficos menores a 1'000,000 EE	
Otta Seal	0.000	Capa superficial recomendada para todos los tipos de tráfico	
Tratamiento superficial Bicapa	0.000	Capa superficial recomendada para tráficos menores a 500,000 EE, no aplicable en tramos con pendientes > 8%, con curvas pronunciadas	
Lechada Asfáltica (Slurry Seal) de 12 mm	0.000	Capa superficial recomendada para tráficos menores a 500,000 EE, no aplicable en tramos con pendientes > 8%, y frenado de vehículos	

La componente de pavimento sera de: Micropavimento 25 mm


Por lo tanto el coeficiente estructural a1 será: 0.130

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 3 % CEMENTO O 67.5 Kg/m3 (CEMENTO PORTLAND)

Para el calculo del coeficiente de la base se tuvo las siguientes consideraciones:

- El coeficiente de capa de la base sera determinada mediante los calculos obtenidos del ensayo a la compresion (ensayo realizado a muestra con 3% de cemento).
- En el ensayo a la compresion se obtuvo una resistencia promedio de 24 kg/cm².
- La resistencia a la compresión de 24 kg/cm² equivale a 341.36 PSI.
- La resistencia de 341.36 PSI es llevala al siguiente abaco de la GUIA ASSHTO 1993, en donde se obtiene el coeficiente de la base en 1/pulg:

- De acuerdo a la figura anterior para una Resistencia a la Compresión de 341.36 PSI le corresponde un coeficiente estructural de base de 0.144/pulg.
- El coeficiente estructural de la base de 0.144/pulg equivale a 0.057/cm, dicho valor será utilizado para el cálculo del espesor de la base estabilizada.

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 3 % CEMENTO O 67.5 Kg/m3 (CEMENTO PORTLAND)

COEFICIENTE ESTRUCTURAL DE LA BASE			
COMPONENTE DE LA BASE	COEFICIENTE ESTRUCTURAL (a2)	OBSERVACIÓN	
Base granular 80% CBR compactada al 100% de la MDS	0.052	Capa de base recomendada para tráfico menor a 5'000,000 EE	
Base granular 100% CBR compactada al 100% de la MDS	0.054	Capa de base recomendada para tráfico mayor a 5'000,000 EE	
Base granular tratada con asfalto (Estabilidad mrshall=1500Lb)	0.115	Capa de base recomendada para todo los tipos de tráficos	
Base granular tratada con cemento (f'c= 18 kg/cm2 a los 7 dias)	0.057	Capa de base recomendada para todo los tipos de tráficos	
Base granular tratada con cemento (f'c= 35 kg/cm2 a los 7 dias)	0.070	Capa de base recomendada para todo los tipos de tráficos	
Base granular tratada con cal (f'c= 12 kg/cm2 a los 7 dias)	0.080	Capa de base recomendada para todo los tipos de tráficos	

La componente de la Base será de: Base granular tratada con cemento (f'c= 18 kg/cm2 a los 7 dias)

Por lo tanto el coeficiente estructural a1 será: 0.057

COEFICIENTE ESTRUCTURAL DE LA SUB-BASE				
COMPONENTE DE LA SUB-BASE	COEFICIENTE ESTRUCTURAL (a3)	OBSERVACIÓN		
Sub-Base granular 40% CBR compactada al 100% de la MDS	0.047	Capa de base recomendada para tráfico menor a 15'000,000 EE		
Sub-Base granular 60% CBR compactada al 100% de la MDS	0.050	Capa de base recomendada para tráfico mayor a 15'000,000 EE		

La componente de la Sub-Base será de: Sub-Base granular 40% CBR compactada al 100% de la MDS

Por lo tanto el coeficiente estructural a1 será: 0.047

por lo tanto: $a_1 = \quad 0.130 \qquad \qquad a_2 = \quad 0.057 \qquad \qquad a_3 = \quad \quad 0.047$

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 3 % CEMENTO O 67.5 Kg/m3 (CEMENTO PORTLAND)

04.02 COEFICIENTE DE DRENAJE DE LA CAPA

TABLA DE VALORES RECOMENDADOS PARA EL COEFICIENTE DE DRENAJE

C Tiempo en que tarda		Porcentaje de tiempo en que la estructura del pavimento esta expuesto a			
C _d	el agua en ser	niveles de humedad cercanas a la saturación			
CALIFICACIÓN	avacuada	< 1%	1 - 5%	5 - 25%	>25%
EXCELENTE	2 horas	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20
BUENO	1 dia	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00
REGULAR	1 semana	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80
POBRE	1 mes	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60
MUY POBRE	El agua no evacua	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40

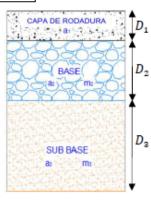
 $D_3 = 20 \, \text{cm}$

El coeficiente de drenaje para base será: $m_2 = 1.00$ El coeficiente de drenaje para sub-base será: $m_3 = 1.00$

04.03 CALCULO DE LOS ESPESORES DE LA CAPA

SN REQUERIDO	SN CALCULADO	ESP	ESORES EN	I CM
SIN REQUERIDO	SIN CALCULADO	D_1	D_2	D_3
2.29	2.29	2.5	18	20

05. CONCLUSIONES


a) Para el suelo TIPO I se considerará:

 $D_1 = 2.5 \text{ cm}$ $D_2 = 18 \, \text{cm}$

MICROPAVIMENTO 2.5 cm

BASE 20 cm

SUB BASE 20 cm

Anexo 07.3. Diseño de espesores con 4% de Cemento.

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO – RUTA LI-116, LA LIBERTAD, 2021"

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 4 % CEMENTO O 90 Kg/m3 (CEMENTO PORTLAND)

El diseño del pavimento flexible involucra el analisis de diversos factores: Tráfico, drenaje, clima, caracteristicas de los suelos, capacidad de trasferencia de carga, nivel, de serviciabilidad deseado, el grado de confiabilidad al que se desea efectuar el diseño acorde con el grado de importancia de la carretera. Todos estos factores son necesarios para producir un comportamiento confiable del pavimento y evitar que el daño del pavimento alcance en nivel de colapso durante su vida de servicio.

$$\log_{10}(ESAL) = Z_R S_o + 9,36\log_{10}(SN+1) - 0,20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4,2-1,5}\right]}{0,40 + \frac{1094}{(SN+1)^{5,19}}} + 2,32\log_{10}M_R - 8,07$$

01. VARIABLES DE DISEÑO

01.01 VARIABLES DE TIEMPO

Se considerá dos variables: periodo de analisis y vida util del pavimento.

para efectos de diseño se considera el periodo de vida útil, mientras que el periodo de analisis se utiliza para la comparación de alternativas de diseño, es decir, para el análisis económico del proyecto:

CLASIFICACION DE LA VIA	PERIODO DE ANALISIS
Urbana de alto volumen de tráfico	30 - 50
Rural de álto volumen de tráfico	20 - 50
Pavimentada de bajo volumen de tráfico	15 - 25
No pavimentada de bajo volumen de tráfico	10 - 20

No pavimentada de bajo volumen de tráfico

10 Años

01.02 TRÁNSITO

En el metodo AASHTO los pavimentos se proyectan para que estos resistan determinado número de cargas durante su vida útil. El transito esta compuesto por vehículos de diferente peso y número de ejes que producen diferentes tensiones y deformaciones en el pavimento, lo cuál origina distintas fallas en éste. Para tener en cuentas esta diferencia, el tránsito se transforma a un número de cargas por eje simple equivalente de 18 kips (80 kN) ó ESAL (Equivalent Single Axle Load). de tal manera que el efecto dañino de cualquier eje pueda ser representado por un número de cargas por eje simple.

De acuerdo al estúdio de trafico el número de repeticiones es: 7.84E+05

Para el caso del tráfico y del diseño de pavimentos flexibles se define 2 categorías:

DISEÑO DE PAVIMENTO FLEXIBLE CON 4 % CEMENTO O 90 Kg/m3 (CEMENTO PORTLAND)

CATEGORIA	RANGO DE TRÁFICO P EN I		TIPO DE TRÁFICO EXPRESADO EN EE
BAJO VOLUMEN DE	De 150001	A 300000	TP1
	De 300001	A 500000	TP2
TRÁNSITO DE 150,001	De 500001	A 750000	TP3
A 1'000,000 EE	De 750001	A 1000000	TP4
	De 1000001	A 1500000	TP5
	De 1500001	A 3000000	TP6
CAMINOS QUE	De 3000001	A 5000000	TP7
TIENEN UN TRAFICO	De 5000001	A 7500000	TP8
	De 7500001	A 10000000	TP9
COMPRENDIDO	De 10000001	A 12500000	TP10
ENTRE 1'000,000 Y	De 12500001	A 15000000	TP11
30'000,000 EE	De 15000001	A 20000000	TP12
	De 20000001	A 25000000	TP13
	De 25000001	A 30000000	TP14

De acuerdo al número de repeticiones de eje equivalente, el tipo de tráfico es:

TP4

01.03 SUBRASANTE

Las características de la subrasante sobre la que se asienta el pavimento, están definidas en seis (06) categorías de subrasante, en base a su capacidad de soporte CBR.

De acuerdo al estúdio de mecánica de suelos el CBR de la subrasante es: 18.00%

CBR DE LA SUBRASANTE		CATEGORIA DE LA SUBRASANTE	DESCRIPCIÓN DE LA SUBRASANTE
CBR MENO	ORES A 3%	SO SO	Subrasante Inadecuada
De CBR = 3%	A CBR < 6%	S1	Subrasante Pobre
De CBR = 6%	A CBR < 10%	\$2	Subrasante Regular
De CBR = 10%	A CBR < 20%	\$3	Subrasante Buena
De CBR = 20%	A CBR < 30%	\$4	Subrasante Muy Buena
CBR MAYORES O	IGUALES A 30%	\$5	Subrasante Extraordinaria

De acuerdo al estudio de mecánica de suelos:

S3

01.03 CONFIABILIDAD

La confiabilidad es la probabilidad de que el pavimento se comporte satisfactoriamente durante su vida útil o período de diseño, resistiendo las condiciones de tráfico y medio ambiente dentro de dicho período. Cabe resaltar, que cuando hablamos del comportamiento del pavimento nos referimos a la capacidad estructural y funcional de brindar seguridad y confort al usuario durante el período para el cual fue diseñado. Por lo tanto, la confiabilidad esta asociada a la aparición de fallas en el pavimento.

a) DESVIACIÓN ESTANDAR (S_o)

La desviación estándar es la desviación de la población de valores obtenidos por AASHTO que involucra la variabilidad inherente a los materiales y a su proceso constructivo. En la siguiente tabla se muestran valores para la desviación estándar.

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 4 % CEMENTO O 90 Kg/m3 (CEMENTO PORTLAND)

CONDICION DE DISEÑO	DESVIACIÓN ESTANDAR		
CONDICION DE DISENO	PAV. RÍGIDO	PAV. FLEXIBLE	
Variación en la predicción del comportamiento del pavimento sin errores en el tránsito.	0.35	0.40	
Variación en la predicción del comportamiento del pavimento con errores en el tránsito.		0.50	

$$S_0 = 0.45$$

b) FACTOR DE CONFIABILIDAD (R)

Tiene que ver con el uso esperado de la carretera. Así, para carreteras principales el nivel de confiabilidad es alto, ya que un subdimensionamiento del espesor del pavimento traerá como consecuencia que éste alcance los niveles mínimos de serviciabilidad antes de lo previsto, debido al rápido deterioro que experimentará la estructura. En la siguiente tabla se dan niveles de confiabilidad aconsejados por la AASHTO.

TIPO DE TRÁFICO EXPRESADO	RANGO DE TRÁFICO I	NIVEL DE	
EN EE	EN	CONFIABILIDAD	
TP1	De 150001	A 300000	70%
TP2	De 300001	A 500000	75%
TP3	De 500001	A 750000	80%
TP4	De 750001	A 1000000	80%
TP5	De 1000001	A 1500000	85%
TP6	De 1500001	A 3000000	85%
TP7	De 3000001	A 5000000	85%
TP8	De 5000001	A 7500000	90%
TP9	De 7500001	A 10000000	90%
TP10	De 10000001	A 12500000	90%
TP11	De 12500001	A 15000000	90%
TP12	De 15000001	A 20000000	95%
TP13	De 20000001	A 25000000	95%
TP14	De 25000001	A 30000000	95%

El factor de confiabilidad R para el tipo de tráfico TP4 es:

c) PROBABILIDAD (Z_R)

Es el valor "Z" (Área bajo la curva de distribución normal correspondiente a la curva estandarizada para una confiabilidad "R"

80%

$$Z_R = -0.842$$

02. CRITERIOS DE COMPORTAMIENTO

02.01 SERVICIABLILDAD

la serviciabilidad se unas como una medida del comportamiento del pavimento, la misma que se relaciona con la seguridad y comodidad que puede brindar al usuario (comportamiento funcional) cuando este circula por la vialidad. Tambien se relaciona con las caracteristicas físicas que puede presentar el pavimento como grietas, fallas, peladuras, etc, que podrian afectar la capacidad de soporte de la estructura (comportamiento estructural).

DISEÑO DE PAVIMENTO FLEXIBLE CON 4 % CEMENTO O 90 Kg/m3 (CEMENTO PORTLAND)

a) INDICE DE SERVICIABILIDAD INICIAL (P_0)

El índice de serviciabilidad inicial (P0) se establece como la condición original del pavimento inmediatamente después de su construcción o rehabilitación. AASHTO estableció para pavimentos flexibles un valor inicial deseable de 4.2, si es que no se tiene información disponible para el diseño.

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO DE TRÁFICO PESADO EXPRESADO EN EE		INDICE DE SERVICIABILIDAD INICIAL (PO)
TP1	De 150001	A 300000	3.8
TP2	De 300001	A 500000	3.8
TP3	De 500001	A 750000	3.8
TP4	De 750001	A 1000000	3.8
TP5	De 1000001	A 1500000	4.0
TP6	De 1500001	A 3000000	4.0
TP7	De 3000001	A 5000000	4.0
TP8	De 5000001	A 7500000	4.0
TP9	De 7500001	A 10000000	4.0
TP10	De 10000001	A 12500000	4.0
TP11	De 12500001	A 15000000	4.0
TP12	De 15000001	A 20000000	4.2
TP13	De 20000001	A 25000000	4.2
TP14	De 25000001	A 30000000	4.2

El Indice de Servisciabilidad Inicial PO para el tipo de tráfico TP4 es:

3.8

b) INDICE DE SERVICIABILIDAD FINAL (P_t)

El índice de serviciabilidad final (Pt), ocurre cuando la superficie del pavimento ya no cumple con las expectativas de comodidad y seguridad exigidas por el usuario. Dependiendo de la importancia de la vialidad, pueden considerarse los valores Pt indicados en la siguiente tabla

TIPO DE TRÁFICO	RANGO DE TRÁFICO PESADO EXPRESADO		INDICE DE SERVICIABILIDAD
EXPRESADO EN EE	EN EE		FINAL (PF)
TP1	De 150001	A 300000	2.0
TP2	De 300001	A 500000	2.0
TP3	De 500001	A 750000	2.0
TP4	De 750001	A 1000000	2.0
TP5	De 1000001	A 1500000	2.5
TP6	De 1500001	A 3000000	2.5
TP7	De 3000001	A 5000000	2.5
TP8	De 5000001	A 7500000	2.5
TP9	De 7500001	A 10000000	2.5
TP10	De 10000001	A 12500000	2.5
TP11	De 12500001	A 15000000	2.5
TP12	De 15000001	A 20000000	3.0
TP13	De 20000001	A 25000000	3.0
TP14	De 25000001	A 30000000	3.0

DISEÑO DE PAVIMENTO FLEXIBLE CON 4 % CEMENTO O 90 Kg/m3 (CEMENTO PORTLAND)

03. PROPIEDADES DE LOS MATERIALES

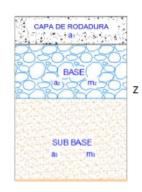
03.01 MODULO RESILENTE (M_R)

Es calculado por el ensayo T274 de la AASHTO, que viene a ser un método muy dificil de realizar en muchos lugares porque no se cuenta con los equipos que efectuen este ensayo, por lo tanto existenrelaciones que pueden calcular dicho módulo aproximadamente, tomando como parámetro principal el CBR, dato que se puede calcular mediante ensayos de la AASHTO y ASTM.

$$M_R = 2555 \times CBR^{0.64}$$

El Módulo Resilente en PSI para un CBR DE 18% es: 16247 psi

SN Requerido	G_t	N18 Nominal	N18 Calculado
2.29	-0.176	5.894	5.895


04. COEFICIENTES ESTRUCTURALES

$$SN = D_1 \times a_1 + D_2 \times a_2 \times m_2 + D_3 \times a_3 \times m_3$$

 $D_i = Espesor de la capa en pulgadas$

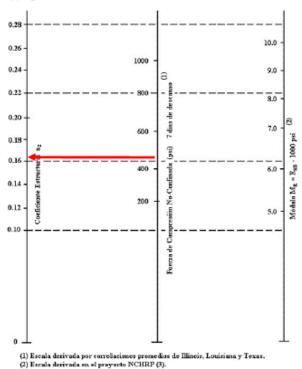
 $a_i =$ Coeficiente estructural de la capa

 $m_i = \text{Coeficnete de drenaje de la capa}$

04.01 COEFICIENTE ESTRUCTURAL DE LA CAPA a_i

Es la capacidad estructural del material para resistir las cargas actuantes. Estos coeficientes estan basados en correlaciones obtenidas a partir de los ensayos AASHTO de 1958 - 60 y ensayos posteriores que se han extendido a otros materiales para generalizar la aplicación del metodo.

COEFICIENTE ESTRUCTURAL DE LA CAPA SUPERIOR DEL PAVIMENTO			
COMPONENTE DEL PAVIMENTO	COEFICIENTE ESTRUCTURAL (a1)	OBSERVACIÓN	
Carpeta asfáltica en caliente módulo 2965 Mpa a 20°C	0.170	Capa superficial recomendada para todos los tipos de tráfico	
Capa asfática en frío, mezcla asfáltica con emulsión.	0.125	Capa superficial recomendada para tráficos menores a 1'000,000 EE	
Micropavimento 25 mm	0.130	Capa superficial recomendada para tráficos menores a 1'000,000 EE	
Otta Seal	0.000	Capa superficial recomendada para todos los tipos de tráfico	
Tratamiento superficial Bicapa	0.000	Capa superficial recomendada para tráficos menores a 500,000 EE, no aplicable en tramos con pendientes > 8%, con curvas pronunciadas	
Lechada Asfáltica (Slurry Seal) de 12 mm	0.000	Capa superficial recomendada para tráficos menores a 500,000 EE, no aplicable en tramos con pendientes > 8%, y frenado de vehículos	


La componente de pavimento sera de: Micropavimento 25 mm

Por lo tanto el coeficiente estructural a1 será: 0.130

DISEÑO DE PAVIMENTO FLEXIBLE CON 4 % CEMENTO O 90 Kg/m3 (CEMENTO PORTLAND)

Para el calculo del coeficiente de la base se tuvo las siguientes consideraciones:

- El coeficiente de capa de la base sera determinada mediante los calculos obtenidos del ensayo a la compresion (ensayo realizado a muestra con 4% de cemento).
- En el ensayo a la compresion se obtuvo una resistencia promedio de 32 kg/cm².
- La resistencia a la compresión de 32 kg/cm² equivale a 455.15 PSI.
- La resistencia de 455.15 PSI es llevala al siguiente abaco de la GUIA ASSHTO 1993, en donde se obtiene el coeficiente de la base en 1/pulg:

- De acuerdo a la figura anterior para una Resistencia a la Compresión de 455.15 PSI le corresponde un coeficiente estructural de base de 0.162/pulg.
- El coeficiente estructural de la base de 0.162/pulg equivale a 0.064/cm, dicho valor será utilizado para el cálculo del espesor de la base estabilizada.

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 4 % CEMENTO O 90 Kg/m3 (CEMENTO PORTLAND)

COEFICIENTE ESTRUCTURAL DE LA BASE			
COMPONENTE DE LA BASE	COEFICIENTE ESTRUCTURAL (a2)	OBSERVACIÓN	
Base granular 80% CBR compactada al 100% de la MDS	0.052	Capa de base recomendada para tráfico menor a 5'000,000 EE	
Base granular 100% CBR compactada al 100% de la MDS	0.054	Capa de base recomendada para tráfico mayor a 5'000,000 EE	
Base granular tratada con asfalto (Estabilidad mrshall=1500Lb)	0.115	Capa de base recomendada para todo los tipos de tráficos	
Base granular tratada con cemento (f'c= 18 kg/cm2 a los 7 dias)	0.064	Capa de base recomendada para todo los tipos de tráficos	
Base granular tratada con cemento (f'c= 35 kg/cm2 a los 7 dias)	0.070	Capa de base recomendada para todo los tipos de tráficos	
Base granular tratada con cal (f c= 12 kg/cm2 a los 7 dias)	0.080	Capa de base recomendada para todo los tipos de tráficos	

La componente de la Base será de: Base granular tratada con cemento (f'c= 18 kg/cm2 a los 7 dias)

Por lo tanto el coeficiente estructural a1 será: 0.064

COEFICIENTE ESTRUCTURAL DE LA SUB-BASE			
COMPONENTE DE LA SUB-BASE	COEFICIENTE ESTRUCTURAL (a3)	OBSERVACIÓN	
Sub-Base granular 40% CBR compactada al 100% de la MDS	0.047	Capa de base recomendada para tráfico menor a 15'000,000 EE	
Sub-Base granular 60% CBR compactada al 100% de la MDS	0.050	Capa de base recomendada para tráfico mayor a 15'000,000 EE	

La componente de la Sub-Base será de: Sub-Base granular 40% CBR compactada al 100% de la MDS

Por lo tanto el coeficiente estructural a1 será: 0.047

por lo tanto: $a_1 = \quad 0.130 \qquad \qquad a_2 = \quad 0.064 \qquad \qquad a_3 = \quad \quad 0.047$

DISEÑO DE PAVIMENTO FLEXIBLE CON 4 % CEMENTO O 90 Kg/m3 (CEMENTO PORTLAND)

04.02 COEFICIENTE DE DRENAJE DE LA CAPA m

TABLA DE VALORES RECOMENDADOS PARA EL COEFICIENTE DE DRENAJE

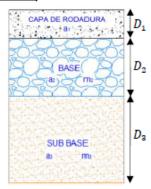
C_d	Tiempo en que tarda el agua en ser	Porcentaje de tiempo en que la estructura del pavimento esta expuesto niveles de humedad cercanas a la saturación			ta expuesto a
CALIFICACIÓN	avacuada	< 1%	1 - 5%	5 - 25%	>25%
EXCELENTE	2 horas	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20
BUENO	1 dia	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00
REGULAR	1 semana	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80
POBRE	1 mes	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60
MUY POBRE	El agua no evacua	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40

El coeficiente de drenaje para base será: $m_2=1.00$ El coeficiente de drenaje para sub-base será: $m_3=1.00$

04.03 CALCULO DE LOS ESPESORES DE LA CAPA

SN REQUERIDO	SN CALCULADO	ESP	ESORES EN	I CM
3N NEQUENIDO	SIN CALCULADO	D_1	D_2	D ₃
2.29	2.29	2.5	16	20

05. CONCLUSIONES


a) Para el suelo TIPO I se considerará:

 $D_1 = 2.5 \text{ cm}$ $D_2 = 16 \text{ cm}$ $D_3 = 20 \text{ cm}$

 MICROPAVIMENTO
 2.5 cm

 BASE
 20 cm

 SUB BASE
 20 cm

Anexo 07.4. Diseño de espesores con 0.26 lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland).

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO – RUTA LI-116, LA LIBERTAD, 2021"

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.26 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

El diseño del pavimento flexible involucra el analisis de diversos factores: Tráfico, drenaje, clima, caracteristicas de los suelos, capacidad de trasferencia de carga, nivel, de serviciabilidad deseado, el grado de confiabilidad al que se desea efectuar el diseño acorde con el grado de importancia de la carretera. Todos estos factores son necesarios para producir un comportamiento confiable del pavimento y evitar que el daño del pavimento alcance en nivel de colapso durante su vida de servicio.

$$\log_{10}(ESAL) = Z_R S_o + 9,36\log_{10}(SN+1) - 0,20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4,2-1,5}\right]}{0,40 + \frac{1094}{(SN+1)^{5,19}}} + 2,32\log_{10}M_R - 8,07$$

01. VARIABLES DE DISEÑO

01.01 VARIABLES DE TIEMPO

Se considerá dos variables: periodo de analisis y vida util del pavimento.

para efectos de diseño se considera el periodo de vida útil, mientras que el periodo de analisis se utiliza para la comparación de alternativas de diseño, es decir, para el análisis económico del proyecto:

CLASIFICACION DE LA VIA	PERIODO DE ANALISIS
Urbana de alto volumen de tráfico	30 - 50
Rural de álto volumen de tráfico	20 - 50
Pavimentada de bajo volumen de tráfico	15 - 25
No pavimentada de bajo volumen de tráfico	10 - 20

No pavimentada de bajo volumen de tráfico

10 Años

01.02 TRÁNSITO

En el metodo AASHTO los pavimentos se proyectan para que estos resistan determinado número de cargas durante su vida útil. El transito esta compuesto por vehículos de diferente peso y número de ejes que producen diferentes tensiones y deformaciones en el pavimento, lo cuál origina distintas fallas en éste. Para tener en cuentas esta diferencia, el tránsito se transforma a un número de cargas por eje simple equivalente de 18 kips (80 kN) ó ESAL (Equivalent Single Axle Load). de tal manera que el efecto dañino de cualquier eje pueda ser representado por un número de cargas por eje simple.

De acuerdo al estúdio de trafico el número de repeticiones es: 7.84E+05

Para el caso del tráfico y del diseño de pavimentos flexibles se define 2 categorías:

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.26 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

CATEGORIA	RANGO DE TRÁFICO P EN I		TIPO DE TRÁFICO EXPRESADO EN EE
BAJO VOLUMEN DE	De 150001	A 300000	TP1
TRÁNSITO DE 150,001	De 300001	A 500000	TP2
· · · · · · · · · · · · · · · · · · ·	De 500001	A 750000	TP3
A 1'000,000 EE	De 750001	A 1000000	TP4
	De 1000001	A 1500000	TP5
	De 1500001	A 3000000	TP6
CAMINOS QUE	De 3000001	A 5000000	TP7
TIENEN UN TRAFICO	De 5000001	A 7500000	TP8
COMPRENDIDO	De 7500001	A 10000000	TP9
ENTRE 1'000,000 Y	De 10000001	A 12500000	TP10
*	De 12500001	A 15000000	TP11
30'000,000 EE	De 15000001	A 20000000	TP12
	De 20000001	A 25000000	TP13
	De 25000001	A 30000000	TP14

De acuerdo al número de repeticiones de eje equivalente, el tipo de tráfico es:

TP4

01.03 SUBRASANTE

Las características de la subrasante sobre la que se asienta el pavimento, están definidas en seis (06) categorías de subrasante, en base a su capacidad de soporte CBR.

De acuerdo al estúdio de mecánica de suelos el CBR de la subrasante es: 18.00%

CBR DE LA SUBRASANTE		CATEGORIA DE LA SUBRASANTE	DESCRIPCIÓN DE LA SUBRASANTE
CBR MENO	ORES A 3%	S0	Subrasante Inadecuada
De CBR = 3%	A CBR < 6%	S1	Subrasante Pobre
De CBR = 6%	A CBR < 10%	\$2	Subrasante Regular
De CBR = 10%	A CBR < 20%	\$3	Subrasante Buena
De CBR = 20%	A CBR < 30%	\$4	Subrasante Muy Buena
CBR MAYORES O	CBR MAYORES O IGUALES A 30%		Subrasante Extraordinaria

De acuerdo al estudio de mecánica de suelos:

S3

01.03 CONFIABILIDAD

La confiabilidad es la probabilidad de que el pavimento se comporte satisfactoriamente durante su vida útil o período de diseño, resistiendo las condiciones de tráfico y medio ambiente dentro de dicho período. Cabe resaltar, que cuando hablamos del comportamiento del pavimento nos referimos a la capacidad estructural y funcional de brindar seguridad y confort al usuario durante el período para el cual fue diseñado. Por lo tanto, la confiabilidad esta asociada a la aparición de fallas en el pavimento.

a) DESVIACIÓN ESTANDAR (S_o)

La desviación estándar es la desviación de la población de valores obtenidos por AASHTO que involucra la variabilidad inherente a los materiales y a su proceso constructivo. En la siguiente tabla se muestran valores para la desviación estándar.

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.26 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

CONDICION DE DISEÑO	DESVIACIÓN ESTANDAR		
CONDICION DE DISENO	PAV. RÍGIDO	PAV. FLEXIBLE	
Variación en la predicción del comportamiento del pavimento sin errores en el tránsito.	0.35	0.40	
Variación en la predicción del comportamiento del pavimento con errores en el tránsito.		0.50	

 $S_0 = 0.45$

b) FACTOR DE CONFIABILIDAD (R)

Tiene que ver con el uso esperado de la carretera. Así, para carreteras principales el nivel de confiabilidad es alto, ya que un subdimensionamiento del espesor del pavimento traerá como consecuencia que éste alcance los niveles mínimos de serviciabilidad antes de lo previsto, debido al rápido deterioro que experimentará la estructura. En la siguiente tabla se dan niveles de confiabilidad aconsejados por la AASHTO.

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO DE TRÁFICO PESADO EXPRESADO EN EE		NIVEL DE CONFIABILIDAD
TP1	De 150001	A 300000	70%
TP2	De 300001	A 500000	75%
TP3	De 500001	A 750000	80%
TP4	De 750001	A 1000000	80%
TP5	De 1000001	A 1500000	85%
TP6	De 1500001	A 3000000	85%
TP7	De 3000001	A 5000000	85%
TP8	De 5000001	A 7500000	90%
TP9	De 7500001	A 10000000	90%
TP10	De 10000001	A 12500000	90%
TP11	De 12500001	A 15000000	90%
TP12	De 15000001	A 20000000	95%
TP13	De 20000001	A 25000000	95%
TP14	De 25000001	A 30000000	95%

El factor de confiabilidad R para el tipo de tráfico TP4 es:

c) PROBABILIDAD (Z_R)

Es el valor "Z" (Área bajo la curva de distribución normal correspondiente a la curva estandarizada para una confiabilidad "R"

80%

 $Z_R = -0.842$

02. CRITERIOS DE COMPORTAMIENTO

02.01 SERVICIABLILDAD

la serviciabilidad se unas como una medida del comportamiento del pavimento, la misma que se relaciona con la seguridad y comodidad que puede brindar al usuario (comportamiento funcional) cuando este circula por la vialidad. Tambien se relaciona con las características físicas que puede presentar el pavimento como grietas, fallas, peladuras, etc, que podrian afectar la capacidad de soporte de la estructura (comportamiento estructural).

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.26 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

a) INDICE DE SERVICIABILIDAD INICIAL (Po

El índice de serviciabilidad inicial (P0) se establece como la condición original del pavimento inmediatamente después de su construcción o rehabilitación. AASHTO estableció para pavimentos flexibles un valor inicial deseable de 4.2, si es que no se tiene información disponible para el diseño.

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO DE TRÁFICO P EN I		INDICE DE SERVICIABILIDAD INICIAL (PO)
TP1	De 150001	A 300000	3.8
TP2	De 300001	A 500000	3.8
TP3	De 500001	A 750000	3.8
TP4	De 750001	A 1000000	3.8
TP5	De 1000001	A 1500000	4.0
TP6	De 1500001	A 3000000	4.0
TP7	De 3000001	A 5000000	4.0
TP8	De 5000001	A 7500000	4.0
TP9	De 7500001	A 10000000	4.0
TP10	De 10000001	A 12500000	4.0
TP11	De 12500001	A 15000000	4.0
TP12	De 15000001	A 20000000	4.2
TP13	De 20000001	A 25000000	4.2
TP14	De 25000001	A 30000000	4.2

El Indice de Servisciabilidad Inicial PO para el tipo de tráfico TP4 es:

3.8

b) INDICE DE SERVICIABILIDAD FINAL (P_t)

El índice de serviciabilidad final (Pt), ocurre cuando la superficie del pavimento ya no cumple con las expectativas de comodidad y seguridad exigidas por el usuario. Dependiendo de la importancia de la vialidad, pueden considerarse los valores Pt indicados en la siguiente tabla

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO DE TRÁFICO P EN I		INDICE DE SERVICIABILIDAD FINAL (PF)
TP1	De 150001	A 300000	2.0
TP2	De 300001	A 500000	2.0
TP3	De 500001	A 750000	2.0
TP4	De 750001	A 1000000	2.0
TP5	De 1000001	A 1500000	2.5
TP6	De 1500001	A 3000000	2.5
TP7	De 3000001	A 5000000	2.5
TP8	De 5000001	A 7500000	2.5
TP9	De 7500001	A 10000000	2.5
TP10	De 10000001	A 12500000	2.5
TP11	De 12500001	A 15000000	2.5
TP12	De 15000001	A 20000000	3.0
TP13	De 20000001	A 25000000	3.0
TP14	De 25000001	A 30000000	3.0

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.26 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

03. PROPIEDADES DE LOS MATERIALES

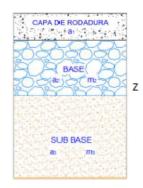
03.01 MODULO RESILENTE (M_R)

Es calculado por el ensayo T274 de la AASHTO, que viene a ser un método muy dificil de realizar en muchos lugares porque no se cuenta con los equipos que efectuen este ensayo, por lo tanto existenrelaciones que pueden calcular dicho módulo aproximadamente, tomando como parámetro principal el CBR, dato que se puede calcular mediante ensayos de la AASHTO y ASTM.

$$M_R = 2555 \times CBR^{0.64}$$

El Módulo Resilente en PSI para un CBR DE 18% es: 16247 psi

SN Requerido	G_t	N18 Nominal	N18 Calculado
2.29	-0.176	5.894	5.895


04. COEFICIENTES ESTRUCTURALES

$$SN = D_1 \times a_1 + D_2 \times a_2 \times m_2 + D_3 \times a_3 \times m_3$$

 D_i = Espesor de la capa en pulgadas

 a_i = Coeficiente estructural de la capa

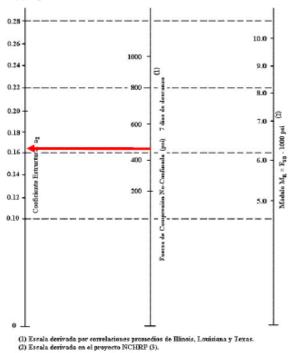
 $m_i = ext{ Coeficnete de drenaje de la capa}$

04.01 COEFICIENTE ESTRUCTURAL DE LA CAPA a_i

Es la capacidad estructural del material para resistir las cargas actuantes. Estos coeficientes estan basados en correlaciones obtenidas a partir de los ensayos AASHTO de 1958 - 60 y ensayos posteriores que se han extendido a otros materiales para generalizar la aplicación del metodo.

COEFICIENTE ESTRUCTURAL DE LA CAPA SUPERIOR DEL PAVIMENTO			
COMPONENTE DEL PAVIMENTO	COEFICIENTE ESTRUCTURAL (a1)	OBSERVACIÓN	
Carpeta asfáltica en caliente módulo 2965 Mpa a 20°C	0.170	Capa superficial recomendada para todos los tipos de tráfico	
Capa asfática en frío, mezcla asfáltica con emulsión.	0.125	Capa superficial recomendada para tráficos menores a 1'000,000 EE	
Micropavimento 25 mm	0.130	Capa superficial recomendada para tráficos menores a 1'000,000 EE	
Otta Seal	0.000	Capa superficial recomendada para todos los tipos de tráfico	
Tratamiento superficial Bicapa	0.000	Capa superficial recomendada para tráficos menores a 500,000 EE, no aplicable en tramos con pendientes > 8%, con curvas pronunciadas	
Lechada Asfáltica (Slurry Seal) de 12 mm	0.000	Capa superficial recomendada para tráficos menores a 500,000 EE, no aplicable en tramos con pendientes > 8%, y frenado de vehículos	

La componente de pavimento sera de: Micropavimento 25 mm


Por lo tanto el coeficiente estructural a1 será: 0.130

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.26 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

Para el calculo del coeficiente de la base se tuvo las siguientes consideraciones:

- El coeficiente de capa de la base sera determinada mediante los calculos obtenidos del ensayo a la compresion (ensayo realizado a una muestra con 0.26 Lts/m3 de PROES 100 + 45 Kg/m3 de Cemento.
- En el ensayo a la compresion se obtuvo una resistencia promedio de 32 kg/cm².
- La resistencia a la compresión de 32 kg/cm² equivale a 455.15 PSI.
- La resistencia de 455.15 PSI es llevala al siguiente abaco de la GUIA ASSHTO 1993, en donde se obtiene el coeficiente de la base en 1/pulg:

- De acuerdo a la figura anterior para una Resistencia a la Compresión de 455.15 PSI le corresponde un coeficiente estructural de base de 0.162/pulg.
- El coeficiente estructural de la base de 0.162/pulg equivale a 0.064/cm, dicho valor será utilizado para el cálculo del espesor de la base estabilizada.

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.26 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

COEFICIENTE ESTRUCTURAL DE LA BASE			
COMPONENTE DE LA BASE	COEFICIENTE ESTRUCTURAL (a2)	OBSERVACIÓN	
Base granular 80% CBR compactada al 100% de la MDS	0.052	Capa de base recomendada para tráfico menor a 5'000,000 EE	
Base granular 100% CBR compactada al 100% de la MDS	0.054	Capa de base recomendada para tráfico mayor a 5'000,000 EE	
Base granular tratada con asfalto (Estabilidad mrshall=1500Lb)	0.115	Capa de base recomendada para todo los tipos de tráficos	
Base granular tratada con cemento (f'c= 18 kg/cm2 a los 7 dias)	0.064	Capa de base recomendada para todo los tipos de tráficos	
Base granular tratada con cemento (f'c= 35 kg/cm2 a los 7 dias)	0.070	Capa de base recomendada para todo los tipos de tráficos	
Base granular tratada con cal (f'c= 12 kg/cm2 a los 7 dias)	0.080	Capa de base recomendada para todo los tipos de tráficos	

La componente de la Base será de: Base granular tratada con cemento (f'c= 18 kg/cm2 a los 7 dias)

Por lo tanto el coeficiente estructural a1 será: 0.064

COEFICIENTE ESTRUCTURAL DE LA SUB-BASE			
COMPONENTE DE LA SUB-BASE	COEFICIENTE ESTRUCTURAL (a3)	OBSERVACIÓN	
Sub-Base granular 40% CBR compactada al 100% de la MDS	0.047	Capa de base recomendada para tráfico menor a 15'000,000 EE	
Sub-Base granular 60% CBR compactada al 100% de la MDS	0.050	Capa de base recomendada para tráfico mayor a 15'000,000 EE	

La componente de la Sub-Base será de: Sub-Base granular 40% CBR compactada al 100% de la MDS

Por lo tanto el coeficiente estructural a1 será: 0.047

por lo tanto: $a_1 = 0.130$ $a_2 = 0.064$ $a_3 = 0.047$

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.26 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

04.02 COEFICIENTE DE DRENAJE DE LA CAPA

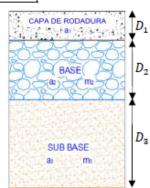
TABLA DE VALORES RECOMENDADOS PARA EL COEFICIENTE DE DRENAJE

С.	Tiempo en que tarda	Porcentaje de tiempo en que la estructura del pavimento esta expuesto a			ta expuesto a
C _d	el agua en ser	nive	les de humedad cerca	nas a la saturación	
CALIFICACIÓN	avacuada	< 1%	1 - 5%	5 - 25%	>25%
EXCELENTE	2 horas	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20
BUENO	1 dia	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00
REGULAR	1 semana	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80
POBRE	1 mes	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60
MUY POBRE	El agua no evacua	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40

El coeficiente de drenaje para base será: $m_2 = 1.00$ El coeficiente de drenaje para sub-base será: $m_3 = 1.00$

04.03 CALCULO DE LOS ESPESORES DE LA CAPA

SN REQUERIDO	SN CALCULADO	ESP	ESORES EN	I CM
SIN REQUERIDO	SN CALCULADO	D_1	D_2	D_3
2.29	2.29	2.5	16	20


CONCLUSIONES 05.

a) Para el suelo TIPO I se considerará:

 $D_1 = 2.5 \, \text{cm}$

 $D_2 = 16 \text{ cm}$ $D_2 = 20 \text{ cm}$

MICROPAVIMENTO 2.5 cm BASE 20 cm SUB BASE 20 cm

Anexo 07.5. Diseño de espesores con 0.28 lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland).

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO – RUTA LI-116, LA LIBERTAD, 2021"

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.28 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

El diseño del pavimento flexible involucra el analisis de diversos factores: Tráfico, drenaje, clima, caracteristicas de los suelos, capacidad de trasferencia de carga, nivel, de serviciabilidad deseado, el grado de confiabilidad al que se desea efectuar el diseño acorde con el grado de importancia de la carretera. Todos estos factores son necesarios para producir un comportamiento confiable del pavimento y evitar que el daño del pavimento alcance en nivel de colapso durante su vida de servicio.

$$\log_{10}(ESAL) = Z_R S_o + 9,36\log_{10}(SN+1) - 0,20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4,2-1,5}\right]}{0,40 + \frac{1094}{(SN+1)^{5,19}}} + 2,32\log_{10}M_R - 8,07$$

01. VARIABLES DE DISEÑO

01.01 VARIABLES DE TIEMPO

Se considerá dos variables: periodo de analisis y vida util del pavimento.

para efectos de diseño se considera el periodo de vida útil, mientras que el periodo de analisis se utiliza para la comparación de alternativas de diseño, es decir, para el análisis económico del proyecto:

CLASIFICACION DE LA VIA	PERIODO DE ANALISIS
Urbana de alto volumen de tráfico	30 - 50
Rural de álto volumen de tráfico	20 - 50
Pavimentada de bajo volumen de tráfico	15 - 25
No pavimentada de bajo volumen de tráfico	10 - 20

No pavimentada de bajo volumen de tráfico

10 Años

01.02 TRÁNSITO

En el metodo AASHTO los pavimentos se proyectan para que estos resistan determinado número de cargas durante su vida útil. El transito esta compuesto por vehículos de diferente peso y número de ejes que producen diferentes tensiones y deformaciones en el pavimento, lo cuál origina distintas fallas en éste. Para tener en cuentas esta diferencia, el tránsito se transforma a un número de cargas por eje simple equivalente de 18 kips (80 kN) ó ESAL (Equivalent Single Axle Load). de tal manera que el efecto dañino de cualquier eje pueda ser representado por un número de cargas por eje simple.

De acuerdo al estúdio de trafico el número de repeticiones es: 7.84E+05

Para el caso del tráfico y del diseño de pavimentos flexibles se define 2 categorías:

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.28 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

CATEGORIA	RANGO DE TRÁFICO PESADO EXPRESADO EN EE		TIPO DE TRÁFICO EXPRESADO EN EE
BAJO VOLUMEN DE	De 150001	A 300000	TP1
TRÁNSITO DE 150,001	De 300001	A 500000	TP2
	De 500001	A 750000	TP3
A 1'000,000 EE	De 750001	A 1000000	TP4
	De 1000001	A 1500000	TP5
	De 1500001	A 3000000	TP6
CAMINOS QUE	De 3000001	A 5000000	TP7
TIENEN UN TRAFICO	De 5000001	A 7500000	TP8
COMPRENDIDO	De 7500001	A 10000000	TP9
	De 10000001	A 12500000	TP10
ENTRE 1'000,000 Y	De 12500001	A 15000000	TP11
30'000,000 EE	De 15000001	A 20000000	TP12
	De 20000001	A 25000000	TP13
	De 25000001	A 30000000	TP14

De acuerdo al número de repeticiones de eje equivalente, el tipo de tráfico es:

TP4

01.03 SUBRASANTE

Las características de la subrasante sobre la que se asienta el pavimento, están definidas en seis (06) categorías de subrasante, en base a su capacidad de soporte CBR.

De acuerdo al estúdio de mecánica de suelos el CBR de la subrasante es: 18.00%

CBR DE LA SUBRASANTE		CATEGORIA DE LA SUBRASANTE	DESCRIPCIÓN DE LA SUBRASANTE
CBR MENORES A 3%		S0	Subrasante Inadecuada
De CBR = 3%	A CBR < 6%	S1	Subrasante Pobre
De CBR = 6%	A CBR < 10%	\$2	Subrasante Regular
De CBR = 10%	A CBR < 20%	\$3	Subrasante Buena
De CBR = 20%	A CBR < 30%	\$4	Subrasante Muy Buena
CBR MAYORES O	IGUALES A 30%	\$5	Subrasante Extraordinaria

De acuerdo al estudio de mecánica de suelos:

S3

01.03 CONFIABILIDAD

La confiabilidad es la probabilidad de que el pavimento se comporte satisfactoriamente durante su vida útil o período de diseño, resistiendo las condiciones de tráfico y medio ambiente dentro de dicho período. Cabe resaltar, que cuando hablamos del comportamiento del pavimento nos referimos a la capacidad estructural y funcional de brindar seguridad y confort al usuario durante el período para el cual fue diseñado. Por lo tanto, la confiabilidad esta asociada a la aparición de fallas en el pavimento.

a) DESVIACIÓN ESTANDAR (S_o)

La desviación estándar es la desviación de la población de valores obtenidos por AASHTO que involucra la variabilidad inherente a los materiales y a su proceso constructivo. En la siguiente tabla se muestran valores para la desviación estándar.

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.28 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

CONDICION DE DISEÑO	DESVIACIÓN ESTANDAR		
CONDICION DE DISENO	PAV. RÍGIDO	PAV. FLEXIBLE	
Variación en la predicción del comportamiento del pavimento sin errores en el tránsito.	0.35	0.40	
Variación en la predicción del comportamiento del pavimento con errores en el tránsito.	0.40	0.50	

$$S_0 = 0.45$$

b) FACTOR DE CONFIABILIDAD (R)

Tiene que ver con el uso esperado de la carretera. Así, para carreteras principales el nivel de confiabilidad es alto, ya que un subdimensionamiento del espesor del pavimento traerá como consecuencia que éste alcance los niveles mínimos de serviciabilidad antes de lo previsto, debido al rápido deterioro que experimentará la estructura. En la siguiente tabla se dan niveles de confiabilidad aconsejados por la AASHTO.

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO DE TRÁFICO PESADO EXPRESADO EN EE		NIVEL DE CONFIABILIDAD
TP1	De 150001	A 300000	70%
TP2	De 300001	A 500000	75%
TP3	De 500001	A 750000	80%
TP4	De 750001	A 1000000	80%
TP5	De 1000001	A 1500000	85%
TP6	De 1500001	A 3000000	85%
TP7	De 3000001	A 5000000	85%
TP8	De 5000001	A 7500000	90%
TP9	De 7500001	A 10000000	90%
TP10	De 10000001	A 12500000	90%
TP11	De 12500001	A 15000000	90%
TP12	De 15000001	A 20000000	95%
TP13	De 20000001	A 25000000	95%
TP14	De 25000001	A 30000000	95%

El factor de confiabilidad R para el tipo de tráfico TP4 es:

c) PROBABILIDAD (Z_R)

Es el valor "Z" (Área bajo la curva de distribución normal correspondiente a la curva estandarizada para una confiabilidad "R"

80%

$$Z_R = -0.842$$

02. CRITERIOS DE COMPORTAMIENTO

02.01 SERVICIABLILDAD

la serviciabilidad se unas como una medida del comportamiento del pavimento, la misma que se relaciona con la seguridad y comodidad que puede brindar al usuario (comportamiento funcional) cuando este circula por la vialidad. Tambien se relaciona con las caracteristicas físicas que puede presentar el pavimento como grietas, fallas, peladuras, etc, que podrian afectar la capacidad de soporte de la estructura (comportamiento estructural).

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.28 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

a) INDICE DE SERVICIABILIDAD INICIAL (P_0)

El índice de serviciabilidad inicial (PO) se establece como la condición original del pavimento inmediatamente después de su construcción o rehabilitación. AASHTO estableció para pavimentos flexibles un valor inicial deseable de 4.2, si es que no se tiene información disponible para el diseño.

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO DE TRÁFICO P EN I		INDICE DE SERVICIABILIDAD INICIAL (PO)
TP1	De 150001	A 300000	3.8
TP2	De 300001	A 500000	3.8
TP3	De 500001	A 750000	3.8
TP4	De 750001	A 1000000	3.8
TP5	De 1000001	A 1500000	4.0
TP6	De 1500001	A 3000000	4.0
TP7	De 3000001	A 5000000	4.0
TP8	De 5000001	A 7500000	4.0
TP9	De 7500001	A 10000000	4.0
TP10	De 10000001	A 12500000	4.0
TP11	De 12500001	A 15000000	4.0
TP12	De 15000001	A 20000000	4.2
TP13	De 20000001	A 25000000	4.2
TP14	De 25000001	A 30000000	4.2

El Indice de Servisciabilidad Inicial PO para el tipo de tráfico TP4 es:

b) INDICE DE SERVICIABILIDAD FINAL (P_t)

El índice de serviciabilidad final (Pt), ocurre cuando la superficie del pavimento ya no cumple con las expectativas de comodidad y seguridad exigidas por el usuario. Dependiendo de la importancia de la vialidad, pueden considerarse los valores Pt indicados en la siguiente tabla

TIPO DE TRÁFICO	RANGO DE TRÁFICO P	ESADO EXPRESADO	INDICE DE SERVICIABILIDAD
EXPRESADO EN EE	EN	EE	FINAL (PF)
TP1	De 150001	A 300000	2.0
TP2	De 300001	A 500000	2.0
TP3	De 500001	A 750000	2.0
TP4	De 750001	A 1000000	2.0
TP5	De 1000001	A 1500000	2.5
TP6	De 1500001	A 3000000	2.5
TP7	De 3000001	A 5000000	2,5
TP8	De 5000001	A 7500000	2.5
TP9	De 7500001	A 10000000	2.5
TP10	De 10000001	A 12500000	2.5
TP11	De 12500001	A 15000000	2.5
TP12	De 15000001	A 20000000	3.0
TP13	De 20000001	A 25000000	3.0
TP14	De 25000001	A 30000000	3.0

3.8

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.28 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

03. PROPIEDADES DE LOS MATERIALES

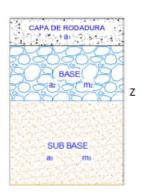
03.01 MODULO RESILENTE (M_R)

Es calculado por el ensayo T274 de la AASHTO, que viene a ser un método muy dificil de realizar en muchos lugares porque no se cuenta con los equipos que efectuen este ensayo, por lo tanto existenrelaciones que pueden calcular dicho módulo aproximadamente, tomando como parámetro principal el CBR, dato que se puede calcular mediante ensayos de la AASHTO y ASTM.

$$M_R = 2555 \times CBR^{0.64}$$

El Módulo Resilente en PSI para un CBR DE 18% es: 16247 psi

SN Requerido	G_t	N18 Nominal	N18 Calculado
2.29	-0.176	5.894	5.895


04. COEFICIENTES ESTRUCTURALES

$$SN = D_1 \times a_1 + D_2 \times a_2 \times m_2 + D_3 \times a_3 \times m_3$$

 $D_i = Espesor de la capa en pulgadas$

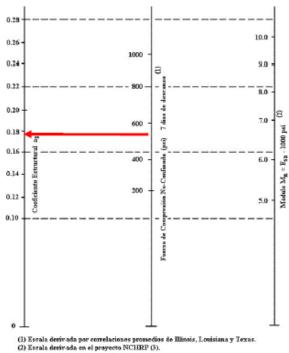
 a_i = Coeficiente estructural de la capa

 $m_i = \text{Coeficnete de drenaje de la capa}$

04.01 COEFICIENTE ESTRUCTURAL DE LA CAPA a

Es la capacidad estructural del material para resistir las cargas actuantes. Estos coeficientes estan basados en correlaciones obtenidas a partir de los ensayos AASHTO de 1958 - 60 y ensayos posteriores que se han extendido a otros materiales para generalizar la aplicación del metodo.

COEFICIENTE ESTRUCTURAL DE LA CAPA SUPERIOR DEL PAVIMENTO			
COMPONENTE DEL PAVIMENTO	COEFICIENTE ESTRUCTURAL (a1)	OBSERVACIÓN	
Carpeta asfáltica en caliente módulo 2965 Mpa a 20°C	0.170	Capa superficial recomendada para todos los tipos de tráfico	
Capa asfática en frío, mezcla asfáltica con emulsión.	0.125	Capa superficial recomendada para tráficos menores a 1'000,000 EE	
Micropavimento 25 mm	0.130	Capa superficial recomendada para tráficos menores a 1'000,000 EE	
Otta Seal	0.000	Capa superficial recomendada para todos los tipos de tráfico	
Tratamiento superficial Bicapa	0.000	Capa superficial recomendada para tráficos menores a 500,000 EE, no aplicable en tramos con pendientes > 8%, con curvas pronunciadas	
Lechada Asfáltica (Slurry Seal) de 12 mm	0.000	Capa superficial recomendada para tráficos menores a 500,000 EE, no aplicable en tramos con pendientes > 8%, y frenado de vehículos	


La componente de pavimento sera de: Micropavimento 25 mm
Por lo tanto el coeficiente estructural a1 será: 0.130

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.28 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

Para el calculo del coeficiente de la base se tuvo las siguientes consideraciones:

- El coeficiente de capa de la base sera determinada mediante los calculos obtenidos del ensayo a la compresion (ensayo realizado a una muestra con 0.28 Lts/m3 de PROES 100 + 45 Kg/m3 de Cemento.
- En el ensayo a la compresion se obtuvo una resistencia promedio de 37 kg/cm².
- La resistencia a la compresión de 37 kg/cm² equivale a 526.26 PSI.
- La resistencia de 526.26 PSI es llevala al siguiente abaco de la GUIA ASSHTO 1993, en donde se obtiene el coeficiente de la base en 1/pulg:

- De acuerdo a la figura anterior para una Resistencia a la Compresión de 526.26 PSI le corresponde un coeficiente estructural de base de 0.175/pulg.
- El coeficiente estructural de la base de 0.175/pulg equivale a 0.069/cm, dicho valor será utilizado para el cálculo del espesor de la base estabilizada.

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.28 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

COEFICIENTE ESTRUCTURAL DE LA BASE		
COMPONENTE DE LA BASE	COEFICIENTE ESTRUCTURAL (a2)	OBSERVACIÓN
Base granular 80% CBR compactada al 100% de la MDS	0.052	Capa de base recomendada para tráfico menor a 5'000,000 EE
Base granular 100% CBR compactada al 100% de la MDS	0.054	Capa de base recomendada para tráfico mayor a 5'000,000 EE
Base granular tratada con asfalto (Estabilidad mrshall=1500Lb)	0.115	Capa de base recomendada para todo los tipos de tráficos
Base granular tratada con cemento (f'c= 18 kg/cm2 a los 7 dias)	0.069	Capa de base recomendada para todo los tipos de tráficos
Base granular tratada con cemento (f'c= 35 kg/cm2 a los 7 dias)	0.070	Capa de base recomendada para todo los tipos de tráficos
Base granular tratada con cal (f'c= 12 kg/cm2 a los 7 dias)	0.080	Capa de base recomendada para todo los tipos de tráficos

La componente de la Base será de: Base granular tratada con cemento (f'c= 18 kg/cm2 a los 7 dias)

Por lo tanto el coeficiente estructural a1 será: 0.069

COEFICIENTE ESTRUCTURAL DE LA SUB-BASE			
COMPONENTE DE LA SUB-BASE	COEFICIENTE ESTRUCTURAL (a3)	OBSERVACIÓN	
Sub-Base granular 40% CBR compactada al 100% de la MDS	0.047	Capa de base recomendada para tráfico menor a 15'000,000 EE	
Sub-Base granular 60% CBR compactada al 100% de la MDS	0.050	Capa de base recomendada para tráfico mayor a 15'000,000 EE	

La componente de la Sub-Base será de: Sub-Base granular 40% CBR compactada al 100% de la MDS

Por lo tanto el coeficiente estructural a1 será: 0.047

por lo tanto: $a_1 = \quad \textbf{0.130} \qquad \qquad a_2 = \quad \textbf{0.069} \qquad \qquad a_3 = \quad \quad \textbf{0.047}$

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.28 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

04.02 COEFICIENTE DE DRENAJE DE LA CAPA

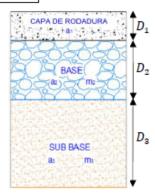
TABLA DE VALORES RECOMENDADOS PARA EL COEFICIENTE DE DRENAJE

<i>C</i> .	Tiempo en que tarda	Porcentaje de tiem	po en que la estructu	ra del pavimento es	ta expuesto a
o d	el agua en ser	niveles de humedad cercanas a la saturación			
CALIFICACIÓN	avacuada	< 1%	1 - 5%	5 - 25%	>25%
EXCELENTE	2 horas	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20
BUENO	1 dia	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00
REGULAR	1 semana	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80
POBRE	1 mes	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60
MUY POBRE	El agua no evacua	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40

El coeficiente de drenaje para base será: $m_2 = {
m ~1.00}$ El coeficiente de drenaje para sub-base será: $m_{\rm 3}={
m ~1.00}$

04.03 CALCULO DE LOS ESPESORES DE LA CAPA

SN REQUERIDO	SN CALCULADO	ESP	ESORES EN	N CM
SIN REQUERIDO	SN CALCULADO	D_1	D_2	D_{a}
2.29	2.30	2.5	15	20


CONCLUSIONES 05.

a) Para el suelo TIPO I se considerará:

 $D_1 = 2.5 \, \text{cm}$

 $D_2 = 15 \text{ cm}$ $D_3 = 20 \text{ cm}$

MICROPAVIMENTO 2.5 cm BASE 15 cm SUB BASE 20 cm

Anexo 07.6. Diseño de espesores con 0.30 lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland).

"INFLUENCIA EN EL DISEÑO DE PAVIMENTO CONSIDERANDO UNA BASE ESTABILIZADA CON CEMENTO Y ACEITE SULFONADO – RUTA LI-116, LA LIBERTAD, 2021"

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.30 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

El diseño del pavimento flexible involucra el analisis de diversos factores: Tráfico, drenaje, clima, caracteristicas de los suelos, capacidad de trasferencia de carga, nivel, de serviciabilidad deseado, el grado de confiabilidad al que se desea efectuar el diseño acorde con el grado de importancia de la carretera. Todos estos factores son necesarios para producir un comportamiento confiable del pavimento y evitar que el daño del pavimento alcance en nivel de colapso durante su vida de servicio.

$$\log_{10}(ESAL) = Z_R S_o + 9,36\log_{10}(SN+1) - 0,20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4,2-1,5}\right]}{0,40 + \frac{1094}{(SN+1)^{5,19}}} + 2,32\log_{10}M_R - 8,07$$

01. VARIABLES DE DISEÑO

01.01 VARIABLES DE TIEMPO

Se considerá dos variables: periodo de analisis y vida util del pavimento.

para efectos de diseño se considera el periodo de vida útil, mientras que el periodo de analisis se utiliza para la comparación de alternativas de diseño, es decir, para el análisis económico del proyecto:

CLASIFICACION DE LA VIA	PERIODO DE ANALISIS
Urbana de alto volumen de tráfico	30 - 50
Rural de álto volumen de tráfico	20 - 50
Pavimentada de bajo volumen de tráfico	15 - 25
No pavimentada de bajo volumen de tráfico	10 - 20

No pavimentada de bajo volumen de tráfico

10 Años

01.02 TRÁNSITO

En el metodo AASHTO los pavimentos se proyectan para que estos resistan determinado número de cargas durante su vida útil. El transito esta compuesto por vehículos de diferente peso y número de ejes que producen diferentes tensiones y deformaciones en el pavimento, lo cuál origina distintas fallas en éste. Para tener en cuentas esta diferencia, el tránsito se transforma a un número de cargas por eje simple equivalente de 18 kips (80 kN) ó ESAL (Equivalent Single Axle Load). de tal manera que el efecto dañino de cualquier eje pueda ser representado por un número de cargas por eje simple.

De acuerdo al estúdio de trafico el número de repeticiones es: 7.84E+05

Para el caso del tráfico y del diseño de pavimentos flexibles se define 2 categorías:

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.30 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

CATEGORIA	RANGO DE TRÁFICO P EN I		TIPO DE TRÁFICO EXPRESADO EN EE
BAJO VOLUMEN DE	De 150001	A 300000	TP1
TRÁNSITO DE 150,001	De 300001	A 500000	TP2
· · · · · · · · · · · · · · · · · · ·	De 500001	A 750000	TP3
A 1'000,000 EE	De 750001	A 1000000	TP4
	De 1000001	A 1500000	TP5
	De 1500001	A 3000000	TP6
CAMINOS QUE	De 3000001	A 5000000	TP7
TIENEN UN TRAFICO	De 5000001	A 7500000	TP8
COMPRENDIDO	De 7500001	A 10000000	TP9
	De 10000001	A 12500000	TP10
ENTRE 1'000,000 Y	De 12500001	A 15000000	TP11
30'000,000 EE	De 15000001	A 20000000	TP12
	De 20000001	A 25000000	TP13
	De 25000001	A 30000000	TP14

De acuerdo al número de repeticiones de eje equivalente, el tipo de tráfico es:

TP4

01.03 SUBRASANTE

Las características de la subrasante sobre la que se asienta el pavimento, están definidas en seis (06) categorías de subrasante, en base a su capacidad de soporte CBR.

De acuerdo al estúdio de mecánica de suelos el CBR de la subrasante es: 18.00%

CBR DE LA SUBRASANTE		CATEGORIA DE LA SUBRASANTE	DESCRIPCIÓN DE LA SUBRASANTE
CBR MENO	ORES A 3%	SO SO	Subrasante Inadecuada
De CBR = 3%	A CBR < 6%	S1	Subrasante Pobre
De CBR = 6%	A CBR < 10%	\$2	Subrasante Regular
De CBR = 10%	A CBR < 20%	\$3	Subrasante Buena
De CBR = 20%	A CBR < 30%	\$4	Subrasante Muy Buena
CBR MAYORES O	IGUALES A 30%	S5	Subrasante Extraordinaria

De acuerdo al estudio de mecánica de suelos:

S3

01.03 CONFIABILIDAD

La confiabilidad es la probabilidad de que el pavimento se comporte satisfactoriamente durante su vida útil o período de diseño, resistiendo las condiciones de tráfico y medio ambiente dentro de dicho período. Cabe resaltar, que cuando hablamos del comportamiento del pavimento nos referimos a la capacidad estructural y funcional de brindar seguridad y confort al usuario durante el período para el cual fue diseñado. Por lo tanto, la confiabilidad esta asociada a la aparición de fallas en el pavimento.

a) DESVIACIÓN ESTANDAR (S_0)

La desviación estándar es la desviación de la población de valores obtenidos por AASHTO que involucra la variabilidad inherente a los materiales y a su proceso constructivo. En la siguiente tabla se muestran valores para la desviación estándar.

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.30 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

CONDICION DE DISEÑO	DESVIACIÓN ESTANDAR		
CONDICION DE DISENO	PAV. RÍGIDO	PAV. FLEXIBLE	
Variación en la predicción del comportamiento del pavimento sin errores en el tránsito.	0.35	0.40	
Variación en la predicción del comportamiento del pavimento con errores en el tránsito.	0.40	0.50	

$$S_0 = 0.45$$

b) FACTOR DE CONFIABILIDAD (R)

Tiene que ver con el uso esperado de la carretera. Así, para carreteras principales el nivel de confiabilidad es alto, ya que un subdimensionamiento del espesor del pavimento traerá como consecuencia que éste alcance los niveles mínimos de serviciabilidad antes de lo previsto, debido al rápido deterioro que experimentará la estructura. En la siguiente tabla se dan niveles de confiabilidad aconsejados por la AASHTO.

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO DE TRÁFICO I EN	NIVEL DE CONFIABILIDAD	
TP1	De 150001	A 300000	70%
TP2	De 300001	A 500000	75%
TP3	De 500001	A 750000	80%
TP4	De 750001	A 1000000	80%
TP5	De 1000001	A 1500000	85%
TP6	De 1500001	A 3000000	85%
TP7	De 3000001	A 5000000	85%
TP8	De 5000001	A 7500000	90%
TP9	De 7500001	A 10000000	90%
TP10	De 10000001	A 12500000	90%
TP11	De 12500001	A 15000000	90%
TP12	De 15000001	A 20000000	95%
TP13	De 20000001	A 25000000	95%
TP14	De 25000001	A 30000000	95%

El factor de confiabilidad R para el tipo de tráfico TP4 es:

80%

c) PROBABILIDAD (Z_R)

Es el valor "Z" (Área bajo la curva de distribución normal correspondiente a la curva estandarizada para una confiabilidad "R"

$$Z_R = -0.842$$

02. CRITERIOS DE COMPORTAMIENTO

02.01 SERVICIABLILDAD

la serviciabilidad se unas como una medida del comportamiento del pavimento, la misma que se relaciona con la seguridad y comodidad que puede brindar al usuario (comportamiento funcional) cuando este circula por la vialidad. Tambien se relaciona con las caracteristicas físicas que puede presentar el pavimento como grietas, fallas, peladuras, etc, que podrian afectar la capacidad de soporte de la estructura (comportamiento estructural).

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.30 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

a) INDICE DE SERVICIABILIDAD INICIAL (P₀)

El índice de serviciabilidad inicial (PO) se establece como la condición original del pavimento inmediatamente después de su construcción o rehabilitación. AASHTO estableció para pavimentos flexibles un valor inicial deseable de 4.2, si es que no se tiene información disponible para el diseño.

TIPO DE TRÁFICO	RANGO DE TRÁFICO P	ESADO EXPRESADO	INDICE DE SERVICIABILIDAD
EXPRESADO EN EE	ENI	EE	INICIAL (PO)
TP1	De 150001	A 300000	3.8
TP2	De 300001	A 500000	3.8
TP3	De 500001	A 750000	3.8
TP4	De 750001	A 1000000	3.8
TP5	De 1000001	A 1500000	4.0
TP6	De 1500001	A 3000000	4.0
TP7	De 3000001	A 5000000	4.0
TP8	De 5000001	A 7500000	4.0
TP9	De 7500001	A 10000000	4.0
TP10	De 10000001	A 12500000	4.0
TP11	De 12500001	A 15000000	4.0
TP12	De 15000001	A 20000000	4.2
TP13	De 20000001	A 25000000	4.2
TP14	De 25000001	A 30000000	4.2

El Indice de Servisciabilidad Inicial PO para el tipo de tráfico TP4 es:

3.8

b) INDICE DE SERVICIABILIDAD FINAL (P_t)

El índice de serviciabilidad final (Pt), ocurre cuando la superficie del pavimento ya no cumple con las expectativas de comodidad y seguridad exigidas por el usuario. Dependiendo de la importancia de la vialidad, pueden considerarse los valores Pt indicados en la siguiente tabla

TIPO DE TRÁFICO	RANGO DE TRÁFICO P	ESADO EXPRESADO	INDICE DE SERVICIABILIDAD
EXPRESADO EN EE	EN EE		FINAL (PF)
TP1	De 150001	A 300000	2.0
TP2	De 300001	A 500000	2.0
TP3	De 500001	A 750000	2.0
TP4	De 750001	A 1000000	2.0
TP5	De 1000001	A 1500000	2.5
TP6	De 1500001	A 3000000	2.5
TP7	De 3000001	A 5000000	2.5
TP8	De 5000001	A 7500000	2.5
TP9	De 7500001	A 10000000	2.5
TP10	De 10000001	A 12500000	2.5
TP11	De 12500001	A 15000000	2.5
TP12	De 15000001	A 20000000	3.0
TP13	De 20000001	A 25000000	3.0
TP14	De 25000001	A 30000000	3.0

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.30 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

03. PROPIEDADES DE LOS MATERIALES

03.01 MODULO RESILENTE (M_R)

Es calculado por el ensayo T274 de la AASHTO, que viene a ser un método muy dificil de realizar en muchos lugares porque no se cuenta con los equipos que efectuen este ensayo, por lo tanto existenrelaciones que pueden calcular dicho módulo aproximadamente, tomando como parámetro principal el CBR, dato que se puede calcular mediante ensayos de la AASHTO y ASTM.

$$M_R = 2555 \times CBR^{0.64}$$

El Módulo Resilente en PSI para un CBR DE 18% es: 16247 psi

SN Requerido	G_t	N18 Nominal	N18 Calculado
2.29	-0.176	5.894	5.895

04. COEFICIENTES ESTRUCTURALES

$$SN = D_1 \times a_1 + D_2 \times a_2 \times m_2 + D_3 \times a_3 \times m_3$$

D_i = Espesor de la capa en pulgadas

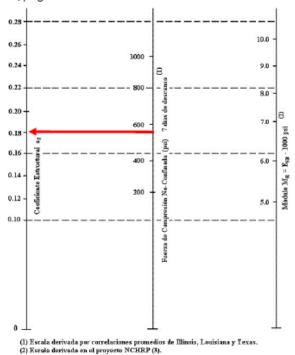
 $a_i =$ Coeficiente estructural de la capa

 $m_i = ext{ Coeficnete de drenaje de la capa}$

04.01 COEFICIENTE ESTRUCTURAL DE LA CAPA a

Es la capacidad estructural del material para resistir las cargas actuantes. Estos coeficientes estan basados en correlaciones obtenidas a partir de los ensayos AASHTO de 1958 - 60 y ensayos posteriores que se han extendido a otros materiales para generalizar la aplicación del metodo.

COEFICIENTE ESTRUCTURAL DE LA CAPA SUPERIOR DEL PAVIMENTO				
COMPONENTE DEL PAVIMENTO	COEFICIENTE ESTRUCTURAL (a1)	OBSERVACIÓN		
Carpeta asfáltica en caliente módulo 2965 Mpa a 20°C	0.170	Capa superficial recomendada para todos los tipos de tráfico		
Capa asfática en frío, mezcla asfáltica con emulsión.	0.125	Capa superficial recomendada para tráficos menores a 1'000,000 EE		
Micropavimento 25 mm	0.130	Capa superficial recomendada para tráficos menores a 1'000,000 EE		
Otta Seal	0.000	Capa superficial recomendada para todos los tipos de tráfico		
Tratamiento superficial Bicapa	0.000	Capa superficial recomendada para tráficos menores a 500,000 EE, no aplicable en tramos con pendientes > 8%, con curvas pronunciadas		
Lechada Asfáltica (Slurry Seal) de 12 mm	0.000	Capa superficial recomendada para tráficos menores a 500,000 EE, no aplicable en tramos con pendientes > 8%, y frenado de vehículos		


La componente de pavimento sera de: Micropavimento 25 mm

Por lo tanto el coeficiente estructural a1 será: 0.130

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.30 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

Para el calculo del coeficiente de la base se tuvo las siguientes consideraciones:

- El coeficiente de capa de la base sera determinada mediante los calculos obtenidos del ensayo a la compresion (ensayo realizado a una muestra con 0.30 Lts/m3 de PROES 100 + 45 Kg/m3 de Cemento.
- En el ensayo a la compresion se obtuvo una resistencia promedio de 39 kg/cm².
- La resistencia a la compresión de 39 kg/cm² equivale a 554.71 PSI.
- La resistencia de 554.71 PSI es llevala al siguiente abaco de la GUIA ASSHTO 1993, en donde se obtiene el coeficiente de la base en 1/pulg:

- De acuerdo a la figura anterior para una Resistencia a la Compresión de 554.71 PSI le corresponde un coeficiente estructural de base de 0.180/pulg.
- El coeficiente estructural de la base de 0.180/pulg equivale a 0.071/cm, dicho valor será utilizado para el cálculo del espesor de la base estabilizada.

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.30 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

COEFICIENTE ESTRUCTURAL DE LA BASE				
COMPONENTE DE LA BASE	COEFICIENTE ESTRUCTURAL (a2)	OBSERVACIÓN		
Base granular 80% CBR compactada al 100% de la MDS	0.052	Capa de base recomendada para tráfico menor a 5'000,000 EE		
Base granular 100% CBR compactada al 100% de la MDS	0.054	Capa de base recomendada para tráfico mayor a 5'000,000 EE		
Base granular tratada con asfalto (Estabilidad mrshall=1500Lb)	0.115	Capa de base recomendada para todo los tipos de tráficos		
Base granular tratada con cemento (f'c= 18 kg/cm2 a los 7 dias)	0.071	Capa de base recomendada para todo los tipos de tráficos		
Base granular tratada con cemento (f'c= 35 kg/cm2 a los 7 dias)	0.070	Capa de base recomendada para todo los tipos de tráficos		
Base granular tratada con cal (f'c= 12 kg/cm2 a los 7 dias)	0.080	Capa de base recomendada para todo los tipos de tráficos		

La componente de la Base será de: Base granular tratada con cemento (f'c= 18 kg/cm2 a los 7 dias)

Por lo tanto el coeficiente estructural a1 será: 0.071

COEFICIENTE ESTRUCTURAL DE LA SUB-BASE				
COMPONENTE DE LA SUB-BASE	COEFICIENTE ESTRUCTURAL (a3)	OBSERVACIÓN		
Sub-Base granular 40% CBR compactada al 100% de la MDS	0.047	Capa de base recomendada para tráfico menor a 15'000,000 EE		
Sub-Base granular 60% CBR compactada al 100% de la MDS	0.050	Capa de base recomendada para tráfico mayor a 15'000,000 EE		

La componente de la Sub-Base será de: Sub-Base granular 40% CBR compactada al 100% de la MDS

Por lo tanto el coeficiente estructural a1 será: 0.047

por lo tanto: $a_1 = 0.130$ $a_2 = 0.071$ $a_3 = 0.047$

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASTHO 93 TRAMO 1

DISEÑO DE PAVIMENTO FLEXIBLE CON 0.30 Lts/m3 (PROES 100) + 45 Kg/m3 (Cemento Portland)

04.02 COEFICIENTE DE DRENAJE DE LA CAPA m_i

TABLA DE VALORES RECOMENDADOS PARA EL COEFICIENTE DE DRENAJE

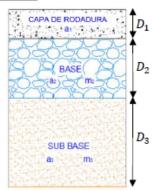
C _d	Tiempo en que tarda el agua en ser	Porcentaje de tiempo en que la estructura del pavimento esta expuesto a niveles de humedad cercanas a la saturación			
CALIFICACIÓN	avacuada	< 1%	1 - 5%	5 - 25%	>25%
EXCELENTE	2 horas	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20
BUENO	1 dia	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00
REGULAR	1 semana	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80
POBRE	1 mes	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60
MUY POBRE	El agua no evacua	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40

El coeficiente de drenaje para base será: $m_2=1.00$ El coeficiente de drenaje para sub-base será: $m_3=1.00$

04.03 CALCULO DE LOS ESPESORES DE LA CAPA

SN REQUERIDO	SN CALCULADO	ESP	ESORES EN	I CM
SIN REQUERIDO		D_1	D_2	D_3
2.29	2.33	2.5	15	20

05. CONCLUSIONES


a) Para el suelo TIPO I se considerará:

$$D_1 = 2.5 \text{ cm}$$

$$D_2 = 15 \, \text{cm}$$

$$D_3 = 20 \, \text{cm}$$

MICROPAVIMENTO 2.5 cm BASE 15 cm SUB BASE 20 cm

