

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA AMBIENTAL

Consorcio fitorremediador integrado con sistema mixto para depurar los efluentes residuales domésticos del río Chillón – Lima 2020

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniera Ambiental

AUTORA:

López Gutiérrez, Izumi Jhassie (ORCID: 0000-0001-8753-9524)

ASESOR:

Dr. Jave Nakayo, Jorge Leonardo (ORCID: 0000-0003-3536-881X)

LÍNEA DE INVESTIGACIÓN:

Tratamiento y Gestión de los Residuos

LIMA – PERÚ

2020

Dedicatoria

El presente desarrollo de investigación está dedicado principalmente a Dios y la Virgen de la Puerta por darme sabiduría, fuerza y salud para continuar en este proceso de obtener uno de los anhelos más deseados como es el título universitario.

A mis abuelos padres, por su amor, trabajo y sacrificio en estos años, gracias a ustedes llegue hasta aquí, así también a mis padres, familiares y amigos cercanos.

Agradecimientos

Primordialmente agradecer a mi asesor de Tesis Dr. Jave, Leonardo Jorge por ser mi guía, orientarme con sus conocimientos, su manera de trabajar y su motivación que han sido fundamentales para mi investigación; así mismo al Dr. Quijano, Dr. Ordoñez y el Dr. Castañeda, por el apoyo y sus conocimientos en la realización de la tesis.

También agradezco a mis padres por el apoyo incondicional que recibí a lo largo de la carrera universitaria Mamá Julia tu mi motor, gracias por todo lo que hiciste y haces a lo largo de mi vida por siempre estar para mí, Papá Víctor por ser la fuerza, el guía, tu eres el ingeniero de mi corazón gracias. Así mismo a mis padres Mamá Gleny y Papá Raúl por impulsarme, por darme la vida y apoyar en el forjamiento de mi carácter al no rendirme ante las dificultades.

A toda mi familia Gutiérrez Menacho, por su apoyo incondicional Tío Jenkins, Tío James, Hibet tú en especial tía, estuviste en mis momentos difíciles gracias; a mis primos Cristhian, Francesco, Andrea, Dayra, Victoria y Karime les toca a ustedes seguir y salir adelante cumplan sus sueños y anhelos, a mis amigos Mariana gracias por tu cariño y Duardo C. gracias por ser mi soporte en la elaboración del trabajo y por ser un amigo de verdadera.

Índice de Contenido

Dedi	icatoria	ii
Agra	decimientos	iii
Resu	umen	vii
Abst	ract	viii
l.	INTRODUCCIÓN	1
II.	MARCO TEÓRICO	4
III.	METODOLOGÍA	21
3.1.	Tipo y diseño de investigación	21
3.2.	Variables y operacionalización	21
3.3.	Población, muestra, muestreo, unidad de análisis	21
3.4.	Técnicas e instrumentos de recolección de datos	22
3.5.	Procedimientos	23
3.6.	Método de análisis de datos	27
3.7.	Aspectos éticos	28
IV.	RESULTADOS	29
V.	DISCUSIÓN	46
VI.	CONCLUSIONES	48
VII.	RECOMENDACIONES	49
REF	ERENCIAS	50
ΔNF	XOS	56

Índice de tablas

Tabla 1: Taxonomía del Junco	14
Tabla 2: Taxonomía del Papiro	14
Tabla 3: Taxonomía del Bambú	15
Tabla 4: Taxonomía del Buchón de agua	16
Tabla 5: Parámetros fisicoquímicos y microbiológicos para uso de riego	20
Tabla 6: Resultados parámetros in-situ	29
Tabla 7: Caracterización Fisicoquímicas pre-tratamiento	29
Tabla 8: Características físicas del Bambú	30
Tabla 9: Características físicas del Junco	30
Tabla 10: Características físicas del Papiro	30
Tabla 11: Características físicas del Buchón de Agua	31
Tabla 12: Resultados fisicoquímicos y medición orgánica del consorcio fitorremediador	31
Tabla 13: Determinación de los coliformes totales por el método de tubos múltiples	32
Tabla 14: Resultados de los parámetros fisicoquímicos de la depuración del agua	32
Tabla 15: Resultados del tiempo de retención	33
Tabla 16: Tratamiento óptimo en tiempo de retención	34
Tabla 17: Resultados del porcentaje de reducción en los tratamientos	35
Tabla 18: Análisis de varianza de oxígeno disuelto del agua residual doméstica	43
Tabla 19: Análisis de varianza de la demanda química de oxígeno del agua residual	
doméstica	43
Tabla 20: Análisis de varianza de la demanda biológica de oxígeno del agua residual	
doméstica.	44
Tabla 21:Análisis de varianza de la Turbidez del agua residual doméstica	44
Tabla 22: Análisis de varianza del pH del agua residual doméstica	45
Tabla 23: Análisis de varianza de conductividad eléctrica del agua residual doméstica	45
Tabla 24: Matriz de operacionalización de variables	56
Tabla 25: Matriz de consistencia.	57
Tabla 26: Cuadro de validez por experto	58
Tabla 27: Tabla de instrumentos de recolección de datos	58
Tabla 28: Georreferenciación de la población	63

Índice de figuras

Figura 1: Diagrama del proceso elaborado del consorcio fitorremediador integrado al si	stema
mixto para la depuración de efluentes residuales doméstico	23
Figura 2: Georreferenciación de la zona de estudio	25
Figura 3: Muestreo aleatorio simple	25
Figura 4: Efecto del tratamiento sobre la conductividad eléctrica	35
Figura 5: Efecto del tratamiento sobre el potencial redox	36
Figura 6: Efecto del tratamiento sobre la turbidez.	37
Figura 7: Efecto del tratamiento sobre los sólidos totales.	38
Figura 8: Efecto del tratamiento sobre los sólidos disueltos	38
Figura 9:Efecto del tratamiento sobre los sólidos suspendidos totales	39
Figura 10: Efecto del tratamiento sobre la concentración de sólidos	39
Figura 11: Efecto del tratamiento sobre el oxígeno disuelto.	40
Figura 12: Efecto del tratamiento sobre la demanda bioquímica de oxígeno	41
Figura 13: Efecto del tratamiento sobre la demanda biológica de oxígeno	41
Figura 14: Variación del tratamiento del consorcio depurador	42
Figura 15: Mapa de ubicación.	63
Figura 16: Toma de muestra y puntos de muestreo.	64
Figura 17: Análisis del agua residual doméstica y sus parámetros	65
Figura 18: Acondicionamiento de las plantas fitorremediadoras	65
Figura 19: Índice de radiación UV - 15 de junio	66
Figura 20: Preparación y caracterización de las especies y del sistema mixto	66
Figura 21: Tratamiento previo del sistema mixto (Parshall y sistema Choque)	67
Figura 22:Toma de muestra de los 3 tratamientos.	68
Figura 23: Certificado de calibración	69
Figura 24:Dimensiones del sistema mixto	70
Figura 25: Análisis de los parámetros fisicoquímicos	71
Figura 26: Análisis del tratamiento uno	72
Figura 27:Análisis del segundo tratamiento	73
Figura 28: Análisis del tercer tratamiento.	74
Figura 29: Análisis Microbiológico post-tratamiento	7 5

Resumen

La presente investigación fue realizada con el objetivo de determinar la reducción de los contaminantes de efluentes residuales domésticos mediante un consorcio fitorremediador integrado al sistema mixto en el rio Chillón en el distrito de Puente Piedra, provincia de Lima, usando las especies fitorremediadoras (Bambú, Junco, Papiro; Buchón de Agua) e integrado un sistema mixto (Parshall y Proceso de choque). La metodología consistió en una investigación aplicada con un enfoque cuantitativo, el cual tuvo un diseño experimental, la población de efluentes residuales doméstico y la muestra obtenida de 50L de agua residual doméstica para caracterización fisicoquímica. Se armó el sistema mixto el cual ayudó a oxigenar el agua para la depuración del efluente. Los resultados obtenidos en los tratamientos T1 - 6h, T2 -12h, T3 – 24h, fueron pH 7.06, CE 230 us/cm, OD 5.96 mgO2/l, DBO5 104.68 mgO2/l y DQO 99.98 mgO2/l siendo el tercero el más eficiente con resultados de respectivamente, haciendo una comparación con los resultados iniciales de la caracterización de la muestra, el porcentaje de reducción fueron pH 12.94%, CE 76.67%, OD 64.18%, 72.23% Y DQO 83.41 sin exceder los Estándares de Calidad Ambiental. Se aplicó el método de continuidad y Minitab para la corroboración de la hipótesis de los datos estadísticos.

Palabras claves: Consorcio fitorremediador, Parshall, reducción, sistema de choque

Abstract

The present investigation was carried out with the objective of determining the reduction of the pollutants of domestic residual effluents through a phytoremediator consortium integrated into the mixed system in the Chillón river in the Puente Piedra district, province of Lima, using the phytoremediator species (Bambú, Junco, Papyrus; Buchón de Agua) and integrated a mixed system (Parshall and Shock Process). The methodology consisted of applied research with a quantitative approach, which had an experimental desing, the population of domestic wastewater and the sample obtained from 50L of domestic residual water for physicochemical characterization. The mixed system was put together which helped oxygenate the water for the for the effluent purification. The results obtained in treatments T1 - 6h, T2 - 12h, T3 - 24h, were pH 7.06, CE 230 us/cm, OD 5.96 mgO2/l, DBO5 104.68 mgO2/l and DQO 99.98 mgO2/l, the third being the most efficient with results of respectively, making a comparison with the initial results of the characterization of the sample, the percentage of reduction were pH 12.94%, CE 76.67%, OD 64.18%, 72.23% and DQO 83.41 without exceeding the Environmental Quality Standards. The continuity method and Minitab were applied to corroborate the hypothesis of the statistical data.

Keywords: phytoremediator, consortium, Parshall, reduction, shock system

I. INTRODUCCIÓN

El desarrollo de investigación propone mejorar la calidad del agua residual para la reducción de los contaminantes patógenos existentes los que llegaron a beneficiar a las comunidades aledañas, a las riberas del rio chillón se utilizó un consorcio fitorremediador para depurar los efluentes domésticos, generadas en el distrito de Puente Piedra, las que descargan en un cuerpo receptor (rio Chillón) ocasionando contaminación a la fauna acuática, como a las áreas de cultivo que utilizan esta agua para el regadío de sus siembras, construyendo un sistema mixto para la depuración del agua residual doméstica el cual estuvo constituida por un canal de Parshall con la finalidad de incrementar el caudal de salida al sistema de barrera de choque teniendo como resultado una óptima demanda química de oxígeno, oxígeno disuelto y demanda bioquímica de oxígeno, cumpliendo la normativa de la ley de recursos hídricos N° 29338 de acuerdo al título V, nos habla de la protección del agua y en su artículo 76° establecen vigilancia y fiscalización existente en los efluentes, que afecten a un cuerpo de agua superficial, las cuales cumplirán con los objetivos planteados teniendo como resultados aportes a nivel social, económico, ambiental y tecnológico para así obtener un sistema amigable y sostenible atraves del tiempo. Por lo tanto, la realidad problemática en los últimos años, se ha incrementado las aguas residuales doméstica a nivel mundial debido al crecimiento poblacional, también el sector industrial y municipal que no tratan a estas aguas donde el 56% de agua dulce extraída anualmente (2212 Km³) se convierte en agua residual. Si bien este problema ha ido en incremento en los últimos años, se espera que la cantidad de aguas residuales a nivel mundial disminuya para el año 2030, principalmente en los países de menores recursos económicos, los cuales en la actualidad presentan mayor cantidad de aguas residuales a nivel mundial, debido a su poca accesibilidad a las tecnologías que les permitan tratar estas aguas. En promedio los países ricos están tratando el 70% de las aquas municipales e industriales, en los países de rentas medios altos un 12%, en los países de rentas bajos un 10% y en los países pobres un 8% (Koncagul, 2017). En nuestro país los tratamientos de las aguas residuales solamente existen en las capitales a nivel nacional habiendo deficiencia en las ciudades pequeñas y pueblo alto andinos que carecen de este tratamiento que en la mayoría de los casos estas aguas son vertidas a los cuerpos de aguas más cercanos no es tan amplio como en países de altos recursos económicos; por ello las aguas residuales han logrado alcanzar un 70% en el Perú por la no existencia de PTAR. (Organismo de Evaluación y Fiscalización Ambiental, 2014)

Por consiguiente, la investigación se basó en la aplicación de un consorcio fitorremediador integrado a un sistema mixto para así depurar y tratar los afluentes domésticos en beneficio de la agricultura, ganadería y los ecosistemas, Por ello se formula el siguiente problema general ¿Cómo el consorcio fitorremediador integrado con sistema mixto permite depurar los efluentes residuales domésticos del río Chillón – Lima 2020?, los problemas específicos las cuales son: ¿Cuáles son las características fisicoquímicas en la depuración de los efluentes domésticos del río chillón mediante un consorcio fitorremediador integrado con sistema mixto? y ¿Cuál es la reducción de contaminantes de las aguas residuales domesticas mediante el consorcio fitorremediador integrado con sistema mixto?

La justificación de la investigación propuso una mejora en el bienestar comunitario, los que a la vez beneficiaron a los ecosistemas, teniendo una viabilidad económica aceptable. Por tanto, se presenta en niveles. El nivel social, porque su tratamiento ya no permitirá seguir dañando a la salud de la comunidad, compuesta por niños, adolescentes, jóvenes, personas adultas como personas vulnerables que son los adultos mayores teniendo en cuenta los canales de regadío de Chuquitanta y los asentamientos humanos cercanos que se dedican a la agricultura. A nivel económico, propuso el uso de un consorcio fitorremediador integrado a un sistema mixto de bajo costo para su renovación, como su mantenimiento para la depuración de efluentes domésticos. A nivel ambiental, ya no generara olores fétidos por la eutrofización del agua, no perjudicara los ecosistemas, como tampoco a la producción agrícola de la zona, los que tendrán una calidad de vida más digna. En el nivel tecnológico, su construcción no necesita caídas de agua ya que el método mixto utilizado permitió una calidad de agua de categoría tres de acuerdo a los estándares de la calidad ambiental del agua para cuerpos receptores.

Adicionalmente respondiendo a las preguntas de la investigación se formuló el siguiente objetivo general, evaluar el consorcio fitorremediador integrado con sistema mixto para depurar los efluentes residuales domésticos del río Chillón – Lima 2020 así también como objetivos específicos, determinar las características fisicoquímicas en la depuración de los efluentes domésticos del río chillón mediante un consorcio fitorremediador integrado con sistema mixto y evaluar la reducción de contaminantes de las aguas residuales domesticas mediante el consorcio fitorremediador integrado con sistema mixto.

Se planteó como hipótesis general el consorcio fitorremediador integrado con sistema mixto permite la depuración de los efluentes residuales domésticos del río Chillón – Lima 2020 y como hipótesis específicas, las características fisicoquímicas en la depuración de los efluentes domésticos del río chillón mejoraron mediante el consorcio fitorremediador integrado con sistema mixto y la reducción de contaminantes de las aguas residuales domesticas mediante el consorcio fitorremediador integrado con sistema mixto alcanzo 80%.

II. MARCO TEÓRICO

Dentro de los Trabajos Previos mencionamos GARAY. (2017). Cuyo objetivo fue disminuir la concentración del boro en las aguas minero termales de la laguna "la milagrosa" utilizo 10 litros del agua previa caracterización donde se encontró una concentración de Boro >25 mg/L, cuya metodología fue construcción de las 3 peceras de las siguientes medidas de ancho 20 cm, largo 39 cm y altura 19 cm estas estuvieron distribuidas de la siguiente manera; T1 (Jacinto de agua) coloco 7 plantas, T2 (Lenteja de agua) coloco 30 gr de la planta y T3 (Jacinto y Lenteja de agua) colocó 3 y 15 gr de las plantas respectivamente la cual obtuvo que se disminuyó, en el T1 (6.88 mg/L), T2 (26,93 mg/L) y T3 (27.41 mg/L) de tal manera se concluyó que el Jacinto de agua es más eficiente para la disminución de la concentración de Boro. Además, URUJ, et. al (2019). Demostró que el vertimiento de efluentes cargados de colorantes afecta el equilibrio del ambiente, genera un estrés hídrico y la integridad de los sistemas ecológicos por genotóxico, mutagénico por lo cual son perjudiciales para la salud como método de remediación utilizaron la fitorremediación catalizada por bombas accionadas con solares naturales (plantas verdes) y sus procesos metabólicos asociados es importante para la disminución de estos colorantes la cual tuvo una eficiencia de decoloración de tinte fue de 93% (Amarnath y 87% (Amido Negro) URUJ, et. al (2019).

JIANFENG (2016) determinó la eficiencia de la microalga exógena Chlorella para disminuir la concentración de fosforo y amoniaco en las aguas residuales mediante la fitorremediación (matraces de agitación y dióxido de carbono CO2 burbujeante). Se concluye que el tratamiento de control eliminó el DQO (aproximadamente 85%) más eficientemente que los otros dos grupos con microalgas, (aproximadamente 70% en ambos tratamientos), se observó lo contrario los grupos de microalgas eliminaron alrededor de 98% y 93% en las condiciones de elevación de CO2- aire, 70% y 85% en la condición de matraz de agitación, respectivamente (mientras que simplemente 10% y 20%, respectivamente, en el control).

WANG, et. al (2018) tuvo como objetivo purificar las aguas residuales contenientes de vanadio, en la investigación abrió el alcance adicional de la utilización de co-cultivo de

plantas para la disminución de metales co-contaminada de aguas residuales el cual obtuvo como efecto de mejora un (74,15% de V: 78,78% de Cr: 53,09%; Cd y P) la absorción de la raíz contribuyo con (57,96%, 46,66%, 41,27% y 49,35%) para la eliminación total de V, Cr, Cd, Pb. Se concluye la eliminación de los contaminantes en estudio fue por el mecanismo de la rizosfera la cual disminuyo los contaminantes y se demostró que es efectiva la fitorremediación.

GIRON, (2018), redujo la materia orgánica en las aguas residuales domesticas que eran vertidas en el rio Huara; se utilizó cataras artificiales la cual tuvo una medida de 1.15 m de altura, de largo 25 metros, de ancho 0.80 m y 0.04 m de espesor con una pendiente de 15 grados y con una división de escalones para su oxigenación. Los resultados de los parámetros fisicoquímicos: DBO5 y DQO mostraron que hubo una eficiencia de (74,9% y 82,51%), durante 24 horas; (77,39 % y 85,13 %) en 48 horas y (81,78 % y 89,43 %), en 72 horas. TING (2018) demostró la productividad del Jacinto de agua fue (aguas residuales petroquímicas, tiempo de retención = 4,5 h, productividad de la planta = 6,1 g peso seco / m2 re) (industria papelera efluente, tiempo de retención = 5 meses, productividad de la planta = 55,2 g seco peso / m2 retención); (industria papelera, tiempo de retención = 2 días, productividad de la planta = 65 g de peso seco / m2 re); (1. estiércol de cerdo, retención tiempo = 18 días, productividad de la planta = 44,6 g de peso seco / m2 retención); (2. Carcasa tratamiento, tiempo de retención = 18 días, productividad de la planta = 36,1 g seco peso / m2 retención); 3. (Pectina, tiempo de retención = 2 días, productividad de la planta = 35,1 g peso seco / m2). Se concluyó que el Jacinto de agua es una planta que tiene muy buena retención de contaminantes y se le dio una buena utilidad en el proyecto.

NAGHIPOUR (2018), el cual determinó la biomasa de *Azolla filiculoides*, disminuyendo del plomo, níquel y cadmio. Tuvo un diseño experimental, aplicada. Se utilizó biomasa viva cuya concentración inicial fue de 0,8 mg/L de Cadmio 10 mg/L Plomo, 25mg/L de Níquel, con tiempo de contacto tiempo fue 15 días, diferentes dosis de plomo, níquel y cadmio de 5 mg / L. Se concluyó que eficiencia de la disminución de cadmio fue del 92,84%, el plomo (Pb) disminuyó 97,12%, el níquel fue 76,82%. VISHAL (2018)

metales pesados de efluentes textiles puede conducir a una grave amenaza si llegan a la cadena alimentaria, demuestra que se redujo en 59%, 35% y 83%; 10, 27, 33 y 44%, después de 30 días de tratamiento por *T. Patula, A. Amellus, P. Grandiflora y G. Grandiflora*, respectivamente, El suelo tratado con aguas residuales textiles durante 30 su eficiencia fue de Cd, Cr, As y Pb al 73%, 73%, 87% y 80%, respectivamente.

ROJAS (2018) realizo el tratamiento de aguas residuales domésticas con la especie vetiver (*Chrysopogon Zizanioides*) en humedales artificiales la muestra tomado en el trabajo fue de la zona de Chota los análisis de los parámetros fisicoquímicos (turbidez, pH, DBO5, DQO, sólidos suspendidos totales, aceites y grasas). Los resultados obtenidos en cuanto al porcentaje fueron [99,53% (turbidez), 95,51%(SST), 83,89% (DBO5), 72,97%(DQO) 88,89%, Aceites y grasas, 99,99% (*Coliformes Termotolerantes*)]. Se concluyó que el humedal de especie vetiver fue eficiente para la remediación del agua.

REALPE, MAZA, ACEVEDO Y HERRERA (2016) evaluaron las características físico-química de la membrana para la capacidad de absorción de agua, propiedades mecánicas de tracción y capacidades de intercambio iónico. El resultado de absorción de agua incremento en un 60.9% luego de 8 horas, la carga de TiO2 en el mismo tiempo se da en un resultado de 4%, en conclusión, se registra que aumenta conforme el tiempo. AYALA R. et al (2018) también implementó un sistema de fitorremediación a escala de laboratorio disminuyendo los contaminantes de las especies *Eichhornia crassipes*, *Nymphoides humboldtiana* y *Nasturtium officinale*, integrado por cuatro sistemas de tratamiento de flujo discontinuo, cuya metodología se evaluaciones cada 15 días, por cuatro veces, para lo cual se analizaron parámetros fisicoquímicos y microbiológicos como: temperatura, pH, turbidez, sólidos totales, demanda química de oxígeno (DQO), demanda bioquímica de oxígeno (DBO5), coliformes totales y fecales. Los resultados muestran que la calidad del efluente tratado cumple en su mayoría con los límites máximos permisibles.

Según GALLEGOS, J., et al. (2018). Evaluó la eficiencia de Sagittaria latifolia y Sagittaria lancifolia en la remoción de contaminantes básicos en nueve humedales

artificiales de flujo libre (HAFL) establecieron en su metodología nueve HAFL, tres sin vegetación (HAFL-Control), tres con *Sagittaria lancifolia* (HAFL-S-Lan) y tres con *Sagittaria latifolia* (HAFL-S-Lat); a los cuales se les determinó temperatura, pH, sólidos suspendidos totales (SST), demanda bioquímica de oxígeno (DBO5), demanda química de oxígeno (DQO), coliformes fecales (CF), y biomasa microbiana y vegetal. Obteniendo así la eficiencia de remoción de *Sagittaria latifolia* en SST, DBO5, DQO y CF fue de 94, 97, 96 y 99 %, respectivamente, mientras que para *Sagittaria lancifolia* fue de 97, 94, 93 y 99.9 %,

MENDOZA, Y. et al (2018). Estableció un diseño experimental de un factor (plantas) y seis niveles que corresponden a los cinco tratamientos y un control con capacidad de 84,4L que funcionaron a condiciones ambientales. Las máximas eficiencias de remoción se presentaron en el microcosmo con 100% y 50% cobertura de *Pistia stratiotes*, excepto DBO MENDOZA, Y. et al (2018). Que se presentó en el sistema con 50% de cada planta. Se alcanzaron remociones de: 78,5% N[O.sup.-.sub.2], 24,9% N[O.sup.-.sub.3], 8,6% N [H.sup.+. sub.4], 51,6% P [O.sup.-3.sub.4], 79,1% [DBO.sub.5], 76,2% DQO y 99,9% para CT y CF.

CORONEL (2016), Realizando un proceso experimental basándose en la eficiencia del Jacinto de agua y Lenteja de agua para tratar las aguas residuales. En el procedimiento usó un filtro de grava para poder atrapar los residuos sólidos existentes y empezar a depositar en tres recipientes de vidrio con *Eichhornia crassipes, Lemna Minor* para un control de agua residual sin planta acuática; se determinó la eficiencia de remoción analizándose la concentración de los parámetros microbiológicos y fisicoquímicos del agua residual. Se concluye que la eficiencia en el tratamiento de las aguas residuales con porcentajes promedios de remoción del 88.24% referido a los parámetros microbiológicos y fisicoquímicos y con respecto *a Lemna Minor* obtuvo un promedio de remoción del 81.24%. de la misma manera, BADILLO et al., (2016) Evaluaron y construyeron dos prototipos de humedales artificiales para el tratamiento de aguas residuales domesticas con el fin de poder determinar la eficiencia de humedales artificiales por ello se enmarco en un prototipo que contuviera 4 tipos de suelos (arena

de rio, suelo fértil, suelo volcánico, arena de rio) dando como eficiencia la reducción de turbidez de 37,3 a valores de 6.11 y 112 NTU respectivamente.

LARSEN, A, et al.(2019), cuyo objetivo fue demostrar la concentración de oxígeno mediante el interfaz del sedimento, el diseño fue aplicado, cuya metodología, se basa en 4 etapas, se construyó los canales, que se basaron en el canal de Parshall, se realizó las medición de la velocidad del agua 120 L s -1 desde .40.4 m sobre el lecho del río mediante la bomba centrífuga , la segunda etapa fue el almacenamiento del oxígeno líquido con una capacidad de 14,2 m 3 m cuya temperatura oscila desde 14 °C a 30 °C a una presión de 320 kPa, las barras de lavado de 4.2 m. la tercera etapa se determinó el caudal de oxígeno puede variar de 10 a 60 kg h -1, se midió la concentración de OD y salinidad y temperatura, durante 5 días, cuyos resultados OD a entre 6,8 y 9,3 mg L -1 y 0.93 mg L -1 , temperatura promedio de 25.4. LARSEN, A, et al. (2019),

JINGFU, W, et al. (2019). utilizo material modificado con nanoburbujas de oxígeno y liberación de nitrógeno y fosforo, el cual se elaboró un prototipo, cuyo diseño experimental puro, la metodología consistió en la generación de nanoburbujas, la presión esta 3 atm y la velocidad 150 m/s, luego se evaluó su eficiencia de oxigenación en el (matraz), la muestra contenía nitrógeno, fosforo y amoniaco, dentro un rango de tiempo de 15 min, 20 min, se llevaron a cabo los análisis cuyos resultados fueron el OD el cual alcanzó 6.55 mg/L y se redujo las concentraciones de P (TP) total, N total (TN) y amoníaco N (NH 3 -N) en el agua suprayacente en un porcentaje 96.4%, 51.1% y 24.9%, respectivamente.

AUSTIN, D et al. (2019). Realizo un humedal de flujo superficial y disminuir, el nitrógeno, el diseño fue experimental puro, la metodología que se realizó se basó en la construcción de un humedal de flujo superficial cuya área de 23m² y 21 m² finales están oxigenados. El flujo medio fue de 863 m3 /d contactor de oxígeno de flujo descendente, se midió presión a 3 atm y clasificado a 266 kg O2, se utilizó el junco, de 9 a 10 unidades, se analizó la concentración de Nitrógeno y el amoniaco, el cual superaba límites y se midió el oxígeno disuelto, los cuales fueron Amoniaco 8.0 mg/L,

LA temperatura fue de 20 $^{\circ}$ C y el OD 20 mg/L , durante 3 semanas se midieron periódicamente, los resultados fueron 5 mg/L ID, 0.2 mg de NH3 con una temperatura 33 $^{\circ}$ C.

NAOYA, L, et al (2008), Demostró la dinámica del sistema de riego mediante diques utilizando el riego convencional., cuyo diseño fue experimental y la metodología se divido en tres etapas, primero fue la construcción del canal de riego de 1 a 2 ha, dividiendo 3 áreas, A, B, C, utilizando el canal de Parshall para la filtración del nivel freático, se analizaron durante 2 temporadas y se instaló dos percoladores con un riego constante de 76% y la percolación resultaron 40%, 21% y 31%. El área total de la parcela experimental en cada granja, cuya pendiente 1.9%, 343 en la granja A, 205 m y 2.9% para la granja B, y 165 m y 3.0% para la granja C, respectivamente, finalmente los resultados de la dinámica de sistema de riego variaron, la productividad llego 75% y con la temperatura fue de 20 a 35 °C.

GRUBE, H, et al. (2014). Con el proyecto "Respuestas fisiológicas de Juncus Efusus (Rush) Al Cromo y Relevancia para el tratamiento de aguas residuales en Humedales Construidos" cuyo objetivo de la investigación fue demostrar, la capacidad bioadsorbente de la especie Juncos Efussus, la metodología utilizada fue caracterizar la especie Juncus Effusus en diferentes concentraciones de dicromato es aproximadamente 34 µM, se determinó la clorofila a 340 µM, cuya población de esta especie fue 5 unidades de Juncos compuestas en 5 brotes de tamaño de 20 cm, se colocó en los matraces en una solución de 0.5 con un pH 5.5, el cual se determinó mediante 3 días, La duración del tratamiento fue de 35 a 40 días, las concentraciones de cromo fue 340 µM, 500 µM, 750 µM y 1000 µM en aguas residuales, se analizaron los disminuyeron significativamente la clorofila concentraciones de dicromato de 170 μM. El contenido de clorofila fue concentraciones inferiores a 500 μM y desmullendo significadamente el cromo a 17 µM a 34 µM, cuyas condiciones 25°C Y 33 °C, con un pH de 6.5 a 8.0.

EVDOKIA, S, et al. (2016.) demostró la remediación de ecosistemas, cuyo diseño fue cuasi experimenta, la metodología utilizada se dividió en dos etapas,, la primera la

construcción de unos prototipos de humedal artificial, de 40 cm de largo, 20 ancho con una población 10 *Juncus*, un flujo horizontal, con un contenido de 16 m3/d, se analizó en agua residual, OD de 56 mg/L, pH 5.5, cuya humedad 76% durante 4 semanas, los resultados fueron que se removió 70% de OD y el pH llego a 7.3 a 8.5, gracias a la fitorremediación de la especie.

RUBIO, J Y MONTENEGRO, A. (2018). Demostró que la especie *Juncus* tiene un gran potencial de remoción para los contaminantes de las aguas residuales, el diseño fue de tipo aplicada con nivel experimental, cuya metodología fue en las aguas residuales de rio Rioja. Los resultaron fue el DBO5 a 656 mg/L, OD a 5.03mg/L, STS 476.5 ppm, 30 mg/L, turbidez 28.51 UNT con un pH de 8.36, temperatura 25 °C y conductividad 842.6 ms, cloruro de sodio 470.6 ppm y resistividad 1.049 kΩ y un porcentaje de oxígeno disuelto. 70.10%, la construcción Se procedió a excavar la zanja, con dimensiones de 1.75 m de ancho, 7m de largo y 0.7 m de altura, con una pendiente de 0.5 %, con una descarga de 2.1 m3, con un sustrato. de piedra chancada el cual dará mayor disminución de los contaminantes, durante 3 semanas se examinó, los resultados fueron una remoción para el 85% DBO5, OD de 98.15%, 96% SST con una turbidez en 7.81 UNT, la temperatura de 0.2°C y conductibilidad 170.8 uS/cm.

BANSARI, M, et al. (2014). Fue demostrar la efectividad de las tecnologías convencionales para disminuir los contaminantes de las aguas residuales, este diseño es una metodología aplicada se dividió en 3 etapas, primero se evaluaron los contaminantes SST, SDT, DBO, OD, dureza, metales, 600mg/L, 700ppm, 630 mg/L, 6.03 mg/L respectivamente, la segunda etapa fue la selección de tres tipos de macrófitas son emergentes, (totora y junco), el diseño fue de flujo horizontal, se utilizó las macrófitas para liberar O2 contra la corrosión, para la disminuir la turbulencia y la velocidad fue 5.02 m/L, la investigación el 60% del total volumen de tejido, para subsuelo fue utilizado grava y arena. Sistema in situ para eliminación de efluentes de aguas residuales una cama de lámina construida es una opción para tratamiento de aguas residuales in situ, el tiempo de retención fue durante 30 días, se analizaron el porcentaje de remoción 85% SST, 73% de SDT, 90% de DBO, 86 % OD y 96% de dureza. ISLENA, A. (2010). Disminuyo los metales pesados en las aguas residuales

mediante el Humedal, cuyo diseño fue aplicada, experimental, la metodología utilizada fue el diseño del humedal fue de tipo horizontal, de 42 cm de largo, de 5 m de alto, se utilizó la especie totora en 10 unidades. Cuyas condiciones fue de 25°C, humedad de 80%, el sub suelo fue de grava y arena, para el tratamiento se tomó 2 semanas durante 7 días se analizó, las aguas residuales, e determino la eficiencia de porcentaje de disminución fue 63% en DBO, 59% en OD y pH 7.2.

MACASSI, G. (2017). Logrando la disminución de los contaminando con la aplicación de la nano burbujas y a través de la oxigenación mediante un sistema de choque. El diseño fue experimental puro, el cual se implementó el equipo de oxigenación, fue inyectada por los tiempos de 2horas, 4horas, 6horas, 8 horas y 10 horas con un flujo de agua 0,1389 L/s, el método fue método del tubo Venturi, se retuvo y se analizó el agua el cual superaba los límites máximos permisibles, Resultando el DQO desde 320 mg/L a 96 mg/L, pH desde 6.6 a 7.9 y turbidez desde 33.15 NTU a 213.48 NTU.

LLAGAS, W, CHAFLOQUE, E Y GÓMEZ, G. (2016) construyo el Humedal de artificial, para el sistema de agua, para el regadío con un sistema superficial Libre, cuyo diseño es aplicada y experimental, la metodología fue dividida en 2, primero fue diseñar el Humedal artificial, cuyas medidas fue de 566.73m³, a través de tuberías de PVC de 3 pulgadas que alimentan con dos celdas, el cual se implanto 6 unidades de totora y carrizo, con un sub suelo de graba, finalmente se analizó el OD y DBO, después de un tiempo de retención de 5 días , con una temperatura de variación de 10° C a 30°C, con una remoción de 50% a 70% y OD 60% y 70%.

PULCHA, J Y VALENCIA, M. (2019) redujo de los niveles concentración nitratos, amonio y cobre o plomo, el cual se dio en las aguas residuales producidos por una minería, cuyo diseño fue aplicado y experimental cuya metodología fue la construcción de cuadro celdas y dos sub celdas, el cual se plantó 5 totoras y 4 carrizos, el humedal artificial fue de tipo horizontal, las medidas del humedal fueron 20cm de ancho, 20cm de alto, el material acrílico fue de 5mm, el subsuelo fue de piedra chancada, la pendiente fue de 5%. En la segunda etapa se determinó las condiciones del humedal el cuales fueron: la temperatura: 18°C, presión 1012.10 mb, altitud 45 msnm y

humedad 64%, se determinó el amonio 10 ppm, nitrato 10ppm, Los parámetros a evaluar en nuestras subceldas, son la temperatura (°C), turbidez (NTU) examino 7 días, cuyos resultados fueron temperatura: 19 °C, pH 7.45 hasta 7.9, el DBO fue 32.47, la turbidez desde 0.19 NTU y la conductividad 1.1 uS/cm.

BERNAL, O. (2014). disminuyó los contaminantes de las aguas residuales domesticas en Nueva Granada mediante un humedal artificial, cuyo diseño fue aplicada y experimental puro, la metodología fue implementar un humedal de diseños de flujo horizontal en PTAR, se evaluó las aguas residuales DBO5 de: 84.2 mg02/L, OD 146.5 mg/L, SST de 54 mg/L, en un caudal Q: 0.1 m3/d, en el subsuelo Grava media de 25mm, la especie a utilizada fue *Polygonumpunctatum* (Barbasco) de 6 a 8 unidades, *Eichhornia crassipes*(Jacinto de agua) 3 a 4 unidades, *Limnobium aevigatum*.(Buchón cucharita) 8 a 10 unidades, *Typha spp*(Totora). 3 a 2 unidades, se utilizó la tubería de PVC de 1, para las instalaciones hidráulicas. Se trataron por cumplió por cuatro meses, cuyos resultados fueron conductividad que fue de 800 μS/cm, 6mg/L de OD, la turbidez fue de 22 UNT, 13, g/L de DBO, SST de 14 mg/L y los nitratos fue 0,531 mg/l.

Las teorías:

El consorcio Según el autor SILVA, L, (2014), un consorcio son aquellas personas, objetos o plantas que tienen en común, el cual se puede aplicar con diferentes tipos de especies, consiguiendo un beneficio o algo en particular. Un ejemplo en los humedales existes diferentes tipos de plantas acuáticas como el junco, totora, bambú y buchón de agua que es el consorcio de plantas que tienen una composición fisiológica y bioquímica de absorber, retener y degradar los contaminantes y trabajaran con un mismo fin el desarrollo de la investigación.

Los Humedales se caracteriza grado de humedad muy alta y con una gran variedad de vegetación, la vegetación se caracteriza por ser un potencial auto- depurador, los humedales pueden ser distintas como los manglares y pantanos. PÉREZ, E, (2009).

Los microorganismos en Humedales: En los humedales son diversos hay tipos de microorganismos como bacterias, levadura, hongos y protozoarios, pero las cuales son más eficaces para humedales son las bacterias lo que hacen estas es nutrirse de la materia orgánica que deja la planta son absorbidos y así transformarla mediante su metabolismo consumen el carbono orgánico estas son de dos tipos aérobicas o anaeróbica en las raíces de las plantas es el habitad de estos microorganismos transfieren así oxígenos de las hojas hasta la raíz CARBAJAL. (2017).

Este mecanismo auto-depurador, de las plantas semiacuáticas, contribuyen al ecosistema, depurando, removiendo, reduciendo, degradando y volatilizando los contaminantes hidrobiológicos. contaminantes Pérez, E, (2009).

La Fitorremediación: Según el autor DELGADILLO, A, et al. (2011), es un conjunto de tecnologías a partir de la concentración de los procesos bioquímicos de las plantas cuya función es depurar los contaminantes en el agua, el cual t tiene la capacidad para acumular metales pesados y orgánicos, el cual se manifiesta en las raíces, el componente esencial calidad microbiológica del agua está dada por cierto grupos de microorganismos indicadores de contaminación fecal, ayuda al riego y la fertilización de los cultivos requerida para emplearla en la agricultura conocer sus factores limitante Algunas plantas fitorremediadoras son:

El junco su nombre científico *Schoenoplectus Americanos*, se ubica en el norte de Perú, cuyos tallos pueden llegar 1.5 m, son espinosos, lisos y trígonos. Las vainas son floriales el cual llegan de 13 cm a 20 cm. PONTE, H. (2015). Su habitad de acuerdo al autor Ponte, Héctor. (2015).se encuentran en zonas templadas, el Perú, en la zona de Cajamarca, cuya conductividad es de 3.1 mS/cm a 41.3 mS/cm. El pH de 6.32 a 8.32,

con amonio de amonio de 1.95ppm a12.25ppm y nitratos 0.5ppm a 3.5ppm como se muestra en la siguiente **Tabla 1.**

Tabla 1: Taxonomía del Junco

TAXONOMÍA DEL JUNCO			
Genero	Schoenoplectus		
Especie	Americanus		
Familia	Cyperaceae.		
Reino	Plantae		

De acuerdo VALLEJO, J Y SANTAYA, M (2009) o por su nombre científico *Cyperus Papyrus* es de familia de las ciperáceas se aprecia en la **Tabla 2**.

Tabla 2: Taxonomía del Papiro

TAXONOMÍA DEL PAPIRO			
Genero	Cyperus		
Especie	Cyperus Papyrus		
Familia	Ciperáceas		
Clase	Liliopsida		
Reino	Plantae		

El papiro es una planta que crece en una temperatura a relativamente baja y se adapta en los inviernos. Para la población de papiros crece fácilmente con las raíces hundidas en el agua y plantarlos por tallo, por ello requiere mucha humedad.

De acuerdo con el MINISTERIO DE AGRICULTURA, (2008), existentes en el Perú, los bambúes se encuentran distribuidos en todo el territorio, su habitad están en los bosques húmedos de montaña de los Andes tropicales en los departamentos de Ucayali, Madre de Dios, Cusco y Junín, sus raíces son delgadas y fasciculadas, en los Brotes: 100 g de brote contiene fibra un promedio 0,77 g., la altura de los tallos pueden llegar de 1cm a 20 cm de diámetro y la altura 25 y las hojas están compuestas de foliolos, con alto contenido de flavonas, aminoácidos y con elementos esenciales. La condición ambiental del Bambú está expuesto a 8 horas de luz solar en el día, las temperaturas desde 38 °C, la siembra generalmente la mejor temporada es en primavera u otoño, con un pH de entre 5,5 y 6,5, según el MINISTERIO DE AGRICULTURA, (2008). Ver tabla N°3.

Tabla 3: Taxonomía del Bambú

TAXONOMÍA DEL BAMBÚ			
Genero	Bambusoideae		
Especie	Bambusoideae		
Familia	Poaceae		
Clase	Liliopsida		
Filo	Angiospermae		
Reino	Plantae		

El Buchon de agua de acuerdo con el autor PORRAS, C. (2017) *Eichornia Crassipes,* cuyo origen se encuentra en Norte y Sudamérica, se caracteriza por tallos horizontales y estolóníferos, finos hasta robustos y flotantes, Hojas con delgadas, fasciculadas, de 3

a 40 cm de longitud. Las condiciones ambientales están expuesto a 8 horas de luz solar en el día, las temperaturas desde 38 °C, la siembra generalmente la mejor temporada es en primavera u otoño, con un pH de entre 5,5 y 6,5, según PORRAS, C. (2017), Ver Tabla N°4.

Tabla 4: Taxonomía del Buchón de agua

TAXONOMÍA DEL BUCHÓN DE AGUA			
Genero	Eichornia		
Especie	Eichornia Crassipes		
Familia	Araliaceae		
Clase	Magnoliopsida		
Reino	Plantae		

Tiempo de retención de las especies de Fitorremediación según CARMEN, A. (2015), el tiempo de retención en los humedales tiene un rango de 5 hasta 15 días donde se encuentran la mayor bio-acumulación, en las raíces.

El Canal de Parshall Cuenca, L. (2019) es aquel que permite medir la cantidad de agua, que se traslada permite y medir el transcurrir del agua medidor de régimen crítico, el cual mide el gasto y la profundidad para las condiciones de descarga. Se divide.

- Transición de entrada
- Sección convergente
- Garganta
- Sección divergente

Las ventajas del canal de Parshall de acuerdo Cuenca, L. (2019), es de estándar universal, es adaptable a cualquier tipo de suelo, es inmune a cualquier perturbación

aguas arriba. Poco mantenimiento, sus aplicaciones se da utiliza en las plantas de tratamiento de agua, en canales abiertos, paras la agricultura e irrigación.

1: Fórmula del Caudal en Parshall

$$Q: C * Ha^n \tag{1}$$

Donde:

Q= Caudal

C= Volumen del caudal

Ha n= calado del punto de canal

La Demanda Química de Oxígeno, es la cantidad mínima de oxígeno ante la degradación, el cual se materializa con el proceso de electrocoagulación es un tratamiento de coagulación utilizando energía HIDRITEC (2018). el DBO es utilizado para la PTAR, te cualquier sector:

2: Fórmula del DQO

$$DQO = \frac{(Vgb - Vgm) * Nsf * 8000}{Vm - ml} \tag{2}$$

Donde, el "Vgb" es el volumen Gastado en el blanco, "Vgm" es el volumen gastado en la muestra, "Nsf" la cual es la normalidad del sulfato ferroso amoniacal y "Vm-ml" es el volumen de la muestra en mililitros.

Así también CONAGUA (2016) establece las aguas residuales, fecales o cloacales, son aquellas que han sido utilizadas en alguna actividad, ella que forma parte del residuo constituyente, el cual no sirve para otros fines. Existen varios tipos de agua aguas servidas, aguas residuales y aguas negras, por lo general algunos son residuos domésticos y otras industriales respectivamente.

La conductividad eléctrica es dependiente de los iones disueltos con relación a la temperatura en el agua, dependiendo de la concentración una corriente eléctrica. Esta capacidad depende de la presencia de iones y de su concentración el cual se mide en el laboratorio, expresadas en micro Siemens/I (µS/I).

Turbidez: Según JIMÉNEZ, B. (2001), "Es la medida de claridad en el agua. La turbidez, se debe a las partículas suspendidas en el agua". El cual se mide significa Unidad de Turbidez Nefelométrica". Actúa coloides en el agua formados de partículas mayormente iones positivos. Para analizarlos utiliza el método nefelometría.

Los Solidos totales Según RIGOLA, M (2000) es la medición de las impurezas presentes en el agua en suspensión. Los sólidos totales se depositarán en el medio acuático cubriendo algunas especies marinas. Hay solidos orgánicos e inorgánicos las cuales aumentan la concentración de los sólidos y se determina mediante la siguiente ecuación:

3:Formula de sólidos totales.

$$ST = \frac{(Wvaso + Muestra - Wvaso) * 1000}{Vl}$$
(3)

Donde, "W_{VASO+ MUESTRA}" es el peso del vaso más la muestra y "W_{Vaso}" la cual es el peso del vaso y V_L es el volumen de la muestra en litros.

Solidos Disueltos: De acuerdo con los autores SIGLER, A Y BAUDER, J (2005), son sólidos que se agrupan en pequeñas porciones 2 micrones debido a su tamaño no se remueve fácilmente, esto solidos disueltos estas conformados por minerales, metales, y sales disueltos en el agua, también es indicador de agua la cual se determina con la siguiente formula:

4: Fórmula de sólidos disueltos

$$SD = \frac{(Wvaso + Muestra - Wvaso) * 1000}{VL} \tag{4}$$

Donde, W_{VASO+MUESTRA} es el peso del vaso más la muestra filtrada y "W_{Vaso}" es el peso del vaso precipitado y por último el V_L es el volumen de la muestra en litros.

El oxígeno Disuelto: Es uno de los indicadores principales de la calidad del agua, generalmente varían de 7.0 y 8.0 mg/L. El aire, es el principal origen, el cual se esparce en el agua por la turbulencia en los ríos y los lagos. DIGESA. (2000). Para calcular el oxígeno disuelto se especifica en la siguiente ecuación:

5:Fórmula del oxígeno disuelto

$$OD = \frac{VT * N * 8000 * VE}{VM * (VE - 2)} \tag{5}$$

Donde, VT es el volumen gastado de tiosulfato, "N" es la normalidad del tiosulfato, "VE" es el volumen del frasco de winkler y "VM" es el volumen de la muestra

Demanda Bioquímica de Oxigeno: capacidad la cantidad de oxígeno requerida para consumir la materia orgánica, el cual se realiza con los microrganismos en el habitad generalmente se degradan una temperatura de 20°C. DIGESA. (2000). La cual se halla utilizando la siguiente formula:

6:Fórmula de la demanda bioquímica de oxígeno.

$$DBO5 = \frac{OD \ inicial - OD \ final}{\% \ de \ dilución} \tag{6}$$

Donde el "OD_{INICIAL} "es el oxígeno disuelto inicial (con agua de dilución) la cual luego resta con el "OD_{FINAL}" el cual es el oxígeno disuelto final

Nitratos: De acuerdo DIGESA. (2000), Es la formación de los nitritos al que se oxida por el grupo de nitrobacterias el cual se forma el nitrato (NO3), los nitratos se pueden originar por aumento de la vegetación, el cual se traslada en el agua, así trayéndolo al sub suelo

Los fosfatos se encuentran en las aguas naturales, lagos, ríos, mares y aguas subterráneas. El origen de la mayoría de los compuestos de sulfatos es la oxidación de minerales de sulfito o los desechos industriales. DIGESA. (2000).

Sulfato: De acuerdo a DIGESA. (2000), es el principal compuesto en la disolución de la lluvia, en altas concentraciones de sulfatos en el agua puede ser un contaminante debido a la presencia de calcio y la dureza.

Según Decreto Supremo ECA DEL AGUA. (2015). Establece que en la categoría 3, la cual son aguas superficiales parámetros que se deben de cumplir las más representativas son como indica en la Tabla N°5.

Tabla 5: Parámetros fisicoquímicos y microbiológicos para uso de riego

PÁRAMETROS	UNID	Valores	
FÍSICOS - QUÍMICOS			
Potencial Hidrógeno	рН	5,5 – 9,0	
Demanda Bioquímica de Oxígeno (DBO5)	mg/L	15	
Oxígeno Disuelto (OD)	mg/L	>4	
Solidos Disueltos Totales	mg/L	1000	
Solidos Totales	mg/L	1500	
MICROBIOLÓGICO			
Coliformes Totales (35-37°C)	NMP/100 m	1 000	
Coliformes Termotolerantes (44,5°C)	NMP/100 m	1 000	
Escherichia coli	NMP/100 m	1 00	

Fuente: MINAM 2015

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

El tipo de investigación fue aplicada se consideró lo dicho por Hernández, Fernández y Baptista, (2014), por sus objetivos que nos proporcionaron respuestas planteadas para la pregunta de la problemática, las que servirán de bienestar a la comunidad y según el tipo de datos empleados es cuantitativa, porque estuvo basado en análisis de la realidad a través de diferentes mediciones, las que permitieron realizar experimentos que pudieron contractar las hipótesis.

El diseño de la investigación se basa en la manipulación de dos variables una independiente y dependiente siendo esta experimental y se utiliza el método deductivo para comprobar la realidad y llegar a lo particular en la investigación.

3.2. Variables y operacionalización

V.D Depuración de efluentes domésticos del rio Chillón

V.I Consorcio fitorremediador integrado a sistema mixto (Parshall y proceso de Choque)

La matriz de operacionalización de dichas variables se detallará en el Anexo N°3

3.3. Población, muestra, muestreo, unidad de análisis

La población de nuestro estudio de investigación es el rio chillón la cual se encuentra en exposición de contaminantes debido a la gran afluencia del mismo y que viven a las laderas del Rio Chillón por eso se propone el proyecto de un consorcio fitorremediador integrado a un sistema mixto la cual depuran los efluentes domésticos que se realizó y se encuentra ubicada en el Distrito de Puente Piedra- Lima, cuyos datos se muestran en el Anexo N° 7

El tamaño de la muestra para la investigación es de 50L de agua residual domestica del Rio Chillón la cual representa las características de la población, cuando se realizó el muestreo en la zona de estudio.

Muestreo puntual, el muestreo se realizó en horario normal en el rio Chillón. Es un proceso la cual se toma la muestra, pero teniendo en cuenta una parte representativa

de la población ya que los parámetros caracterizaran la zona que es objeto de estudio el muestreo que se utilizara será probabilístico la cual involucra a la toma de muestra de manera aleatoria simple siendo esta una selección conocida llevándose acabo tomas al azar hasta completar el tamaño muestra.

La unidad experimental fue de 2 litros para los análisis realizados en la investigación, agua rio chillón.

3.4. Técnicas e instrumentos de recolección de datos

La técnica a utilizar es la observación, Esta consistió en recolectar los datos pertinentes y conceptos de las unidades en análisis, la técnica es recolectar datos mediante un plan detallado de procedimientos que nos conducirá a reunir los datos con un propósito específico como la depuración de las aguas residuales del rio Chillón en el Distrito Puente Piedra – Lima como se menciona en el Anexo N° 5

Tal como lo indica Díaz (2011), la observación permite obtener conocimientos y datos que apoyara al investigador para el proceso de investigación.

Los instrumentos de recolección de datos vienen hacer los formatos que va emplear el investigador para poder almacenar la información la que constituirá un chequeo en la variable independiente y en la variable dependiente Anexo N°7 En el proyecto de investigación se redactará de la siguiente forma:

- Formato de cadena de custodia toma de muestra
- Formato de caracterización del rio Chillón Lima 2020.
- Formato de caracterización del consorcio Fitorremediador.
- Formato de sistema mixto y tratamientos

La validez de los instrumentos para la recolección de datos, se dio a través del juicio de tres expertos docentes de la universidad cesar vallejo, con colegiatura vigente (Anexo N° 6)

Es el grado en que un instrumento mide la variable, lo cual deben ser válidos y precisos (HERNANDEZ, R., et al., 2014, p.121), tras la valoración de los instrumentos presentados se dio atraves del juicio de tres expertos docentes de la universidad Cesar Vallejo (Anexo N°5) dándonos como resultado una validez perfecta relacionadas con el informe de investigación ver tabla 26.

3.5. Procedimientos

El procedimiento se da a conocer por 5 fases ver (**Figura 1**)

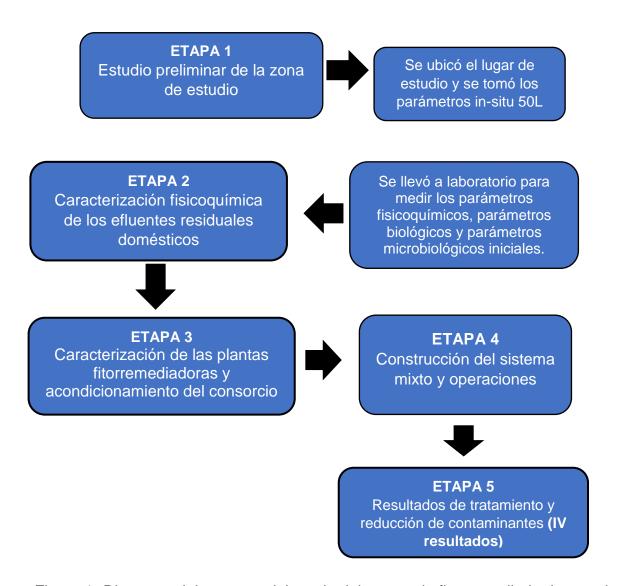


Figura 1: Diagrama del proceso elaborado del consorcio fitorremediador integrado al sistema mixto para la depuración de efluentes residuales doméstico

Etapa1: Estudio preliminar de la zona

La zona de estudio se determinó por medio de la observación se utilizó GPS como herramienta de ubicación y una libreta de apuntes. Siendo así el punto de la investigación los efluentes del rio Chillón el cual fue ubicado en el Distrito de Puente Piedra- Lima. Se utilizó el protocolo de calidad Sanitaria de Recursos Hídricos Superficiales Anexo

Los materiales usados fueron los siguientes:

- Cooler
- Frascos
- Cinta métrica
- Balde
- Jarras
- Etiquetas
- Indeleble
- cuaderno de notas
- Brújula
- GPS
- Cronómetro
- Multiparámetro

Las muestras fueron tomadas del rio Chillón Anexo 8 el día 15 de junio del 2020 en el lapso de 9am a 6pm el cual se realizó los parámetros in situ el pH al 7.55, Temperatura 24.6 (°C), Conductividad eléctrica 992 (uS/cm), Oxígeno Disuelto 491.

Figura 2: Georreferenciación de la zona de estudio

Antes de poder tomar la muestra se procedió al lavado del envase, siendo enjuagado dos a tres veces con el agua del lugar de recolección de la muestra, con el fin de eliminar sustancias posibles que puedan alterar los resultados. Las muestras fueron tomadas a un 1 m a una profundidad de 25 cm, se sacaron 2L de la muestra de cada punto (**Anexo 8**), haciendo el uso de guantes quirúrgicos, tomando el agua contracorriente del cuerpo de agua y siendo colocados en un cooler.

Figura 3: Muestreo aleatorio simple

Fuente: Ministerio del Medio Ambiente (2014)

Etapa 2: Análisis de Agua residual domestica del Rio Chillón

Las muestras del Rio Chillón fueron llevadas al laboratorio de la Universidad Nacional de Ingeniería para su caracterización en los análisis de características fisicoquímicas del efluente doméstico, parámetros biológicos y parámetros microbiológicos del efluente domestico **Anexo N°9**

Etapa 3: Acondicionamiento del consorcio fitorremediador y caracterización

Las plantas que se utilizaron para el tratamiento del agua del rio Chillón fueron acondicionadas por 7 días en el agua de la zona de estudio para colocarlas en el sistema mixto de la depuración del agua. El clima fue del mes de junio donde se realizaron los tratamientos, en tres tiempos (6 horas, 12 horas y 24 horas) fue un mes de temperaturas promedio según la estación meteorológica **Anexo Nº 10**. La cantidad del consorcio de plantas por especie fue de 5 tipos, en relación al área determina al sistema mixto para realizar el estudio para la depuración de los efluentes del rio Chillón antes de ello las plantas fueron caracterizadas.

Las 4 plantas se caracterizaron, el largo del tallo, la cantidad de hojas, forma de tallo, tamaño de raíz así mismo se aplicó el mismo análisis en los parámetros fisicoquímicos, se procedió a dividir las hojas y tallo obteniendo un peso de 50 gramos, se colocó en una botella con 200 ml de agua destilada para luego llevar a un agitador rotacional por 30 minutos, se dejó decantar y se analizó las lecturas.

Etapa 4: Construcción del sistema mixto.

En la presente investigación se construyó el sistema mixto, la cual consta de 3 partes, teniendo como desarrollo el consorcio fitorremediador, el Parshall y el proceso de choque, se armó para el proceso del tratamiento en horas después se realizó el acondicionamiento de las plantas ya caracterizadas (Junco, Papiro, Bambú, Buchón de Agua) previamente se calculó el volumen de área de retención donde se encontraron ubicadas las plantas fitorremediadoras la cual fue de 21,6L de agua residual doméstica ver **Anexo N°11 y Anexo N°12**

Los materiales del sistema mixto (Parshall y Sistema de Choque) fueron las siguientes:

- Maderas
- Masilla para carro
- Piedras de diferentes diámetros
- Plantas de humedales
- Plantas de humedales
- Manguera
- Baldes
- Plástico
- Pintura acrílica

El nivel de pendiente fue determinado mediante el método del transportador y nivel de agua con la finalidad de calcular de manera práctica. La pendiente se determinó de acuerdo a los estudios de mecánica de suelos en campo, el cual fue de 5° de pendiente y así obtener una mayor velocidad cuando esta pasaba por la zona más estrecha del Parshall y se origine el choque del agua para bajar el DQO necesario de acuerdo a la normativa de los efluentes de agua residual doméstica en un cuerpo de agua.

Etapa 5:

Los resultados y la reducción de los contaminantes se encuentran en (IV resultados) donde se especifican los valores obtenidos en el proceso total del pretratamiento y pos tratamiento de acuerdo al diseño experimental planteado en el desarrollo de investigación.

3.6. Método de análisis de datos

Los valores obtenidos en la investigación fueron comparados con cuadros de Excel, representados por gráficos de comportamiento de los procesos a través de la investigación realizada. También se emplearon la estadística que nos dará a conocer las fases del proceso mediante el análisis de regresión y minitab, dando respuesta a las hipótesis planteadas en la investigación.

Una relación funcional matemáticamente hablando, está dada por:

 $Y = f(x1,...,xn; \theta 1,...,\theta m)$

donde:

Y: Variable respuesta (o dependiente)

xi : La i-ésima variable independiente (i=1,..,n)

θj: El j-ésimo parámetro

3.7. Aspectos éticos

El desarrollo de investigación se realizó con información documentada, artículos científicos y respetando los derechos del autor y/o entidades. Además, el trabajo siguió los lineamientos establecidos en el código de ética, Reglamento de Investigación y Resolución Rectorial 0089-2019/UCV cumpliendo el Reglamento de Investigación de la Universidad Cesar Vallejo, resolución de vicerrectorado de investigación N°004-2020-VI-UCV, líneas de investigación y la guía de productos de investigación 2020. También se utilizó el software Turnitin para verificar el plagio, representándose originalidad de 12%.

IV. **RESULTADOS**

Resultados de parámetros in-situ

Tabla 6: Resultados parámetros in-situ

Código de Muestra	RC-PL01
pH (Acido/Base)	7.55
Temperatura (°C)	24.6 °C
Conductividad Eléctrica (uS/cm)	992 uS/cm
Oxígeno Disuelto (OD)	491

Resultados de las características fisicoquímicas del agua inicial del río Chillón.

Resultados de la caracterización del Consorcio Fitorremediador

Tabla 7: Caracterización Fisicoquímicas pre-tratamiento.

	Temperatura	рН	Conductividad	Potencial
Código	(°C)	(ácido/base)	eléctrica	Rédox
			(µS/cm)	(mV)
ARCH - L	21.00	8.11	986	368
	Turbidez	Sólidos	Sólidos	Oxígeno
	NTU	Totales	Disueltos	Disuelto
		(mg/l)	(mg/l)	(mgO ₂ /L)
	285	2750	1250	3.63
ARCH - L	Solidos	Demanda	Demanda Bioló	ógica Oxigeno
	Totales	Química	DB	O ₅
	suspendidos	Oxígeno DQO	mgC) ₂ /L
		(mgO ₂ /L)		
	1000	602.88	37	7
ARCH -L	Agua Residual r	ío Chillón – Lima		

♣ BAMBU (*Guadua angustifolia kunth*)

Tabla 8: Características físicas del Bambú

Código	Características físicas			
Largo del Tallo	El largo del tallo fue de 60 centímetros			
Hojas Cantidad	Tuvo una cantidad de 6 hojas pegadas al tallo y 4 externas			
Diámetro del tallo	Su diámetro fue de 2 centímetros			
Tamaño de raíz	La raíz tuvo un tamaño de 8 centímetros			

♣ JUNCO (Scirpus holoschoenus L.)

Tabla 9: Características físicas del Junco

Código	Características físicas
Largo del Tallo	El largo del tallo fue de 60 centímetros
Hojas Cantidad	Tuvo una cantidad de 6 hojas pegadas
Forma del Tallo	Trígonos, bordes redondeados
Tamaño de raíz	La raíz tuvo un tamaño de 4 centímetros

♣ PAPIRO (Cyperus Papyrus)

Tabla 10: Características físicas del Papiro

Código	Características físicas
Largo del Tallo	El largo del tallo fue de 60 centímetros
Hojas Cantidad	Estas son formadas por una vaina, divididas en dos parte una inferior y otra superior.
Forma del Tallo	Tallo erecto flexible, liviano, triangular
Tamaño de raíz	La raíz tuvo un tamaño de 6 centímetros las que se encuentran un 50% sumergida en el agua.

♣ BUCHON DE AGUA (Eichhornia crassipes)

Tabla 11: Características físicas del Buchón de Agua

Código	Características físicas
Largo del Tallo	No Poseen un tallo
Hojas Cantidad	Estas tienen un promedio de 6 hojas por planta
Forma del Tallo	La forma de su tallo es formado por sus bulbos flotantes
Tamaño de raíz	La raíz tuvo un tamaño de 6 centímetros las que se encuentran un 100% sumergida en el agua.

Tabla 12: Resultados fisicoquímicos y medición orgánica del consorcio fitorremediador

Código	PF- B	PF- J	PF- P	PF- BA
Temperatura (°C)	21.05	21.00	21.05	21
рН	6.8	6.78	6.88	7.2
Conductividad eléctrica (µS/cm)	234	315	345	356
Potencial Redox (mv)	110	108	111	135
N	4	3.5	3	5
Р	1	1.2	0.9	1
С	2.10	1.85	1.72	2.01
Relación C/N	0.525	0.528	0.573	0.402

Dónde: PF: Planta fitorremediador, CJ: Características del Junco, CP: Características del Papiro, CBA: Características del Buchón de Agua.

Resultados de parámetros microbiológico en el agua de rio Chillón

Resultados microbiológico Número más probable (NMP) en 100 mililitros de muestra donde se utilizó el método de tubos múltiples, realizándose 2 pruebas, 1 presuntiva y la otra afirmativa, dando los resultados de acuerdo a la tabla normalizada de estadística que se emplea para determinar la cantidad de los números más probables de coliformes totales, siendo esta los siguientes de acuerdo a la tabla N° 13.

Tabla 13: Determinación de los coliformes totales por el método de tubos múltiples

Código	NMP/100 ml
NMP – 6 horas	7000
NMP – 12 horas	5000
NMP – 24 horas	3000

Resultados del tratamiento del agua residual doméstica con el consorcio fitorremediador con sistema mixto

Tabla 14: Resultados de los parámetros fisicoquímicos de la depuración del agua

Tratamiento/ Tiempo	Temperatura (°C)	рН	Conductividad eléctrica (µS/cm)	Potencial redox (mV)
T1 /1H	22.00	7.96	949	315
T2 /2H	21	7.65	945	232
T3 /4 H	20	7.06	230	100
	Turbidez NTU	Solidos totales (mg/L)	Solidos disueltos (mg/L)	Solidos suspendidos totales (mg/L)
T1/6H	270	2730	1136	1594
T2/12H	130	2120	1036	1084

T3/24H	85	1100	630	470
	Concentraci ón de	Oxígeno	Demanda	Demanda Biológica de
	solidos	Disuelto bioquímica o oxígeno		oxígeno
	(mg/L)	(mgO ₂ /L)	(mgO ₂ /L)	(mgO₂/L)
T1/6H	25.2	3.78	599.7	358
T2/12H	16.58	5.92	388.67	160
T3/24H	14.02	5.96	99.98	104.68

En la tabla N° 14 se observó el primer tratamiento T1 en 6 horas, T2 en 12 horas y T3 en 24 horas respectivamente. Siendo el T3 así el más eficiente y con mayor reducción de los parámetros del agua el tercer tratamiento de 24 horas fue el óptimo.

Resultados del sistema mixto (Parshall y proceso de Choque)

Tabla 15: Resultados del tiempo de retención

Código	Volumen (L)	Caudal (L/s)	Tiempo de retención hidráulica m3/s
TRH –ARD	21,6	0.0047	0.0045

Dónde: TRH – ARD: Tiempo de retención hidráulica del agua residual domestica

7:Fórmula del tiempo de retención.

$$TRH = \frac{V}{Q} \tag{7}$$

Dónde: TRH es tiempo de retención hidráulica, Ves volumen (L) y Q es caudal (L/s)

El Caudal del sistema mixto fue calculado mediante el protocolo de DIGESA utilizando el método del recipiente

8: Volumen del área de la retención hidráulica

Volumen del área de la retención hidráulica =
$$L * A * H$$
 (8)

$$V=40 cm *60 cm *15 cm$$

 $V=0.027 m^3$

9: Fórmula volumen del agua en el área de retención hidráulica

Volumen del agua en el área de retención hidráulica (9)
$$= L * A * H$$

$$V= 40 \ cm * 60cm * 12cm$$

$$V= 21.6 \ L$$

En la siguiente tabla 16 se tiene el tiempo de retención del tratamiento optimo

Tabla 16: Tratamiento óptimo en tiempo de retención

Cádigo	DQO	DBO5	Oxígeno	Conductividad	PH
Código	DQO	DBO3	Disuelto	Eléctrica	РП
T1 - 6H	599.7	358	3.78	949	7.9
T2 - 12H	398.67	160	5.92	945	7.65
T3 - 24 H	99.98	104.68	5.96	230	7.06

Porcentaje de reducción del Consorcio Depurador

10: Fórmula del porcentaje de reducción.

$$R = \frac{Ti - Tf}{Ti} * 100 \tag{10}$$

Dónde: TI, es DQO inicial y TF, es DQO final

Tabla 17: Resultados del porcentaje de reducción en los tratamientos

Parámetros	рН	CE	OD	DBO5	DQO
Inicial	8.11	986	3.63	377	602.88
Final	7.06	230	5.96	104.68	99.98
Porcentaje	12.94%	76.67%	64.18%	72.23%	83.41%
de reducción					

Porcentaje de reducción total: 61.8%

Resultados estadísticos de la comparación de los parámetros fisicoquímicos en los tratamientos

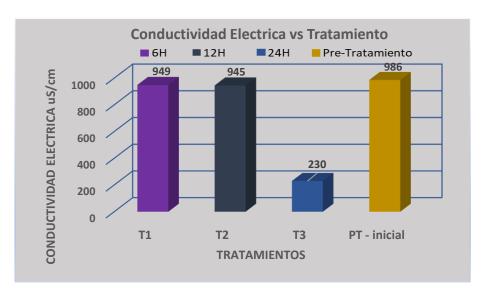


Figura 4: Efecto del tratamiento sobre la conductividad eléctrica

De la figura 4 se observa la comparación de los resultados de los tres tratamientos, la conductividad eléctrica del agua del rio Chillón, de la cual se observa que a medida que pasan las horas de 6h a 12h no existe mucha diferencia, por lo contrario, al comparar con el T3 de 24 horas se nota que existe una reducción máxima de un 75.76% con respecto al tratamiento de 6 horas. Pero también con respecto al valor inicial al 76.67%

Figura 5: Efecto del tratamiento sobre el potencial redox.

De la figura 5 se observó la comparación de los resultados de los tres tratamientos en el potencial redox del agua residual del rio Chillón, de la cual se observa que a medida que pasan las horas de 6 a 12 horas existe una mínima diferencia, en cambio al comparar con las 24 horas del T3 se nota que existe una reducción máxima de un 68.25% con respecto al tratamiento de 6 horas. Pero también con respecto al valor inicial, al 76.67%

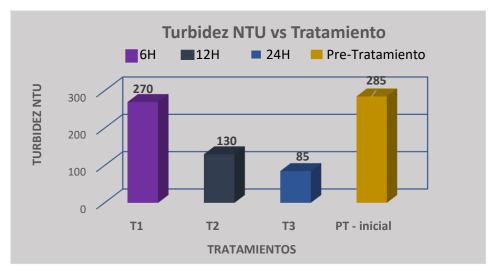


Figura 6: Efecto del tratamiento sobre la turbidez.

De la figura 6 se observó la comparación de los resultados de los tres tratamientos con respecto a la turbidez del agua, de la cual se observa que a medida que pasan las horas existe mayor reducción de la turbidez, así de 6 a 12 horas existe ya diferencia considerable, pero al comparar con el 24horas se nota que existe una reducción máxima de un 68.51% con respecto al tratamiento de 6 horas. Así también se comparó con el valor inicial la cual dio un 70.17%.

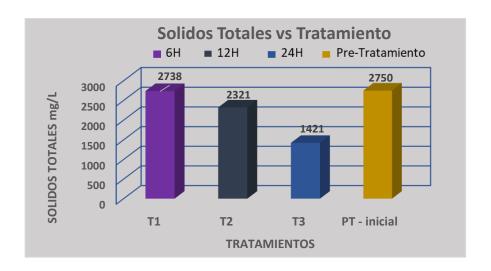


Figura 7: Efecto del tratamiento sobre los sólidos totales.

De la figura 7 se observó la comparación los resultados de los tres tratamientos en los sólidos totales, de la cual se observa que a medida que pasan las horas existe una mínima reducción de los sólidos totales entre 6 a 12 horas existe una mínima diferencia, en cambio al comparar con las 24 horas se nota que existe una reducción máxima de un 48.10% con respecto al tratamiento de 6 horas. Pero al comparar con el valor inicial da un 93%

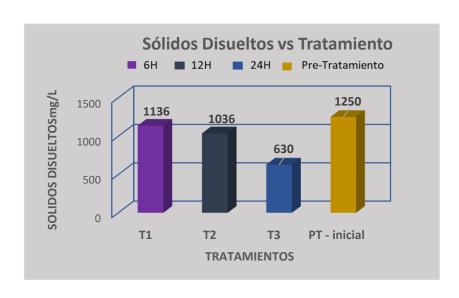


Figura 8: Efecto del tratamiento sobre los sólidos disueltos

De la figura 8 se observó la comparación de los resultados de los tres tratamientos en los sólidos disueltos, de la cual se observa que a medida que pasan las horas existe una mínima reducción de los sólidos disueltos entre 6 a 12 horas, en cambio al comparar con las 24 horas se nota que existe una reducción máxima de un 44.54% con respecto al tratamiento de 6 horas. Pero al comparar con el valor inicial es 80%.

Figura 9: Efecto del tratamiento sobre los sólidos suspendidos totales.

De la figura 9 se observó la comparación de los resultados de los tres tratamientos en los sólidos suspendidos, de la cual se observa que a medida que pasan las horas existe una mínima reducción de los sólidos suspendidos entre 6 a 12 horas existe, en cambio al comparar con las 24 horas se nota que existe una reducción máxima de un 70.51% con respecto al tratamiento de 6 horas. Pero al comparar con el valor inicial es 68.66%

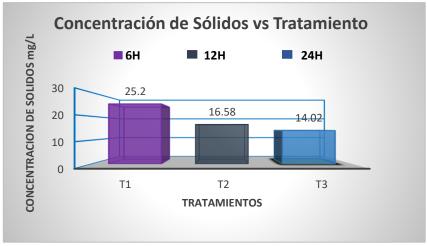


Figura 10: Efecto del tratamiento sobre la concentración de sólidos

De la figura 10 se observó la comparación de los resultados de los tres tratamientos en la concentración de sólidos, de la cual se observa que a medida que pasan las horas existe una reducción de la concentración de sólidos así entre las 6 a 12 horas existe una mayor reducción, de ahí se observa que la reducción es menor o mínima, sin embargo, al comparar con las 24 horas se nota que existe una reducción máxima de un 44.37% con respecto al tratamiento de 6 horas.

PARÁMETROS BIOLÓGICOS DEL AGUA

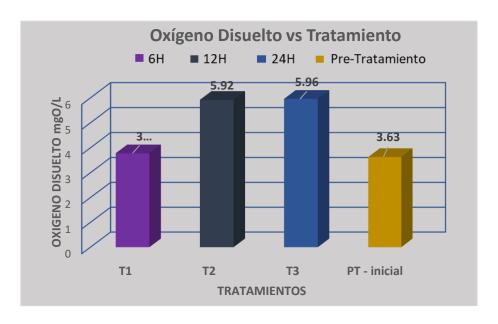


Figura 11: Efecto del tratamiento sobre el oxígeno disuelto.

De la figura 11 se observa la comparación de los resultados de los tres tratamientos del oxígeno disuelto del agua residual del río Chillón, de la cual se observa que a medida que pasan las horas existe una reducción de la concentración de sólidos así entre las 6 a 12 horas existe una mayor reducción, de ahí se observa que la reducción es menor o mínima, sin embargo, al comparar con las 24 horas se nota que existe una reducción máxima de un 57.67% con respecto al tratamiento de 6 horas. Pero también con respecto al valor inicial, al 64%

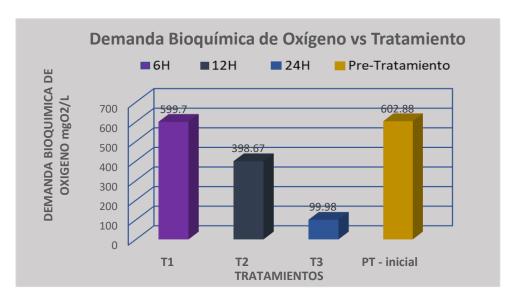


Figura 12: Efecto del tratamiento sobre la demanda bioquímica de oxígeno.

De la figura 12 se observó la comparación de los resultados de los tres tratamientos de la demanda bioquímica de oxígeno del agua residual del río Chillón, de la cual se observa que a medida que pasan las horas existe una reducción de la demanda bioquímica de oxígeno (DQO) así entre las 6 a 12 horas se observa que la reducción es menor o mínima, sin embargo, al comparar con las 24 horas se nota que existe una reducción máxima de un 83.32% con respecto al tratamiento de 6 horas. Pero también con respecto al valor inicial, al 84%

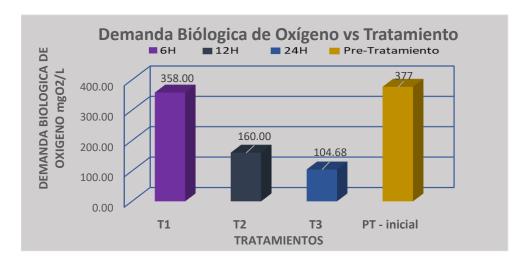


Figura 13: Efecto del tratamiento sobre la demanda biológica de oxígeno.

De la figura 13 se observa la comparación de los resultados de los tres tratamientos en la demanda biológica de oxígeno del agua del rio Chillón, de la cual se observa que a medida que pasan las horas de 6 a 12horas no existe mucha diferencia, por lo contrario, al comparar con las 24 horas se nota que existe una reducción máxima de un 70.75%% con respecto al tratamiento de 6 horas. Pero también con respecto al valor inicial, al 72.23%

Variación del tratamiento del consorcio depurador

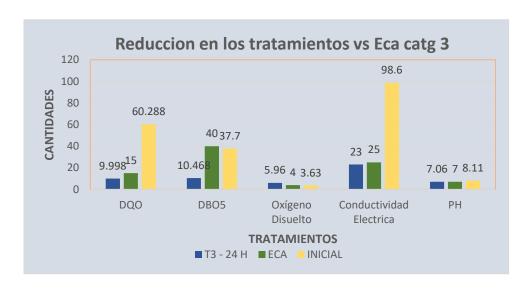


Figura 14: Variación del tratamiento del consorcio depurador

De la figura 14 se observó cómo fue el comportamiento de los parámetros físicos, químicos y biológicos con respecto a los estándares de calidad ambiental, las que llegaron a valores aceptables para que sean vertidas en un cuerpo de agua y no ocasionen impactos a los ecosistemas existentes.

Análisis estadístico

En la línea metodológica de la investigación en el cumplimiento de esta se comprobó que, durante las fases experimentales desarrollada, la generación de los datos y su debida recopilación a través de la técnica y de los instrumentos, obedece así una distribución normal, garantizando de esta manera la correcta manipulación de las dos variables.

Oxígeno Disuelto

Tabla 18: Análisis de varianza de oxígeno disuelto del agua residual doméstica.

		Estadístico			Inferior	Superior	Inferior	Superior
	Coeficientes	Error típico	t	Probabilidad	<i>95</i> %	<i>9</i> 5%	95.0%	95.0%
Intercepción	4.838	0.13706516	35.2970815	3.8448E-06	4.45744612	5.21855388	4.45744612	5.21855388
Variable X 1	0.051571429	0.00879877	5.86120832	0.00422957	0.02714212	0.07600073	0.02714212	0.07600073

VARIANZA DEL OD

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	0.74469143	0.74469143	34.353763	0.00422957
Residuos	4	0.08670857	0.02167714		
Total	5	0.8314			

Como F < 0.05 entonces si hay efecto del tratamiento sobre el oxígeno disuelto.

♣ DQO

Tabla 19: Análisis de varianza de la demanda química de oxígeno del agua residual doméstica

ANÁLISIS DE VARIANZA DEL DQO

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	401.52175	401.52175	260.249595	8.6363E-05
Residuos	4	6.17133333	1.54283333		
Total	5	407.693083			

			Estadístico			Superior	Inferior	Superior
	Coeficientes	Error típico	t	Probabilidad	<i>95%</i>	<i>95%</i>	95.0%	95.0%
Intercepción	127.666667	1.15634001	110.40582	4.036E-08	124.456152	130.877181	124.456152	130.877181
			-		-	-	-	
Variable X 1	-1.1975	0.07423018	16.1322532	8.6363E-05	1.40359601	0.99140399	1.40359601	-0.99140399

Como F < 0.05 entonces si hay efecto del tratamiento sobre el DQO

♣ DBO5

Tabla 20: Análisis de varianza de la demanda biológica de oxígeno del agua residual doméstica.

ANÁLISIS DE VARIANZA DEL

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	333.802566	333.802566	94.2507952	0.00063019
Residuos	4	14.1665676	3.5416419		
Total	5	347.969133			

		Estadístico		Inferior	Superior	Inferior	Superior	
	Coeficientes	Error típico	t	Probabilidad	<i>9</i> 5%	<i>95%</i>	<i>95.0%</i>	<i>95.0%</i>
Intercepción	128.499333	1.75197688	73.3453363	2.0707E-07	123.635066	133.363601	123.635066	133.363601
	-		-			-		
Variable X 1	1.09185714	0.11246653	9.70828487	0.00063019	-1.4041143	0.77959999	-1.4041143	-0.77959999

Como F < 0.05 entonces si hay efecto del tratamiento sobre el DBO

♣ Turbidez

Tabla 21: Análisis de varianza de la Turbidez del agua residual doméstica.

ANÁLISIS DE VARIANZA

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	2378.05714	2378.05714	67.01449275	0.001212828
Residuos	4	141.942857	35.4857143		
Total	5	2520			

			Estadístico			Superior	Inferior	Superior
	Coeficientes	Error típico	t	Probabilidad	Inferior 95%	<i>9</i> 5%	95.0%	95.0%
Intercepción	151.8	5.54565467	27.3727827	1.05931E-05	136.4027942	167.197206	136.402794	167.197206
	-		-			-	-	
Variable X 1	2.91428571	0.35599817	8.18623801	0.001212828	-3.902695078	1.92587635	3.90269508	-1.92587635

Como F < 0.05 entonces si hay efecto del tratamiento sobre la turbidez

♣ pH

Tabla 22: Análisis de varianza del pH del agua residual doméstica

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	0.02527	0.02527	164.804348	0.00021225
Residuos	4	0.00061333	0.00015333		
Total	5	0.02588333			

			Estadístico			Superior	Inferior	Superior
	Coeficientes	Error típico	t	Probabilidad	<i>95%</i>	95%	95.0%	95.0%
Intercepción	7.29466667	0.01152774	632.792199	3.742E-11	7.26266052	7.32667282	7.26266052	7.32667282
			-		-	-	-	
Variable X 1	-0.0095	0.00074001	12.8376146	0.00021225	0.01155461	0.00744539	0.01155461	-0.00744539

ANÁLISIS DE VARIANZA

FUENTE DE VARIACION	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	7865.2	7865.2	152.623545	0.0002467
Residuos	4	206.133333	51.5333333		
Total	5	8071.33333			

			Estadístico		Inferior	Superior	Inferior	Superior
	Coeficientes	Error típico	t	Probabilidad	<i>95%</i>	<i>95%</i>	95.0%	95.0%
Intercepción	360.533333	6.68298004	53.9479889	7.0673E-07	341.978406	379.088261	341.978406	379.088261
Variable X 1	-5.3	0.42900771	12.3540902	0.0002467	6.49111637	4.10888363	6.49111637	-4.10888363

Como F < 0.05 entonces si hay efecto del tratamiento sobre el pH

Conductividad eléctrica

Tabla 23: Análisis de varianza de conductividad eléctrica del agua residual doméstica

ANÁLISIS DE VARIANZA

FUENTE DE VARIACION	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	7865.2	7865.2	152.623545	0.0002467
Residuos	4	206.133333	51.5333333		
Total	5	8071.33333			

		Estadístico		Inferior	Superior	Inferior	Superior
Coeficientes	Error típico	t	Probabilidad	<i>95%</i>	<i>95%</i>	95.0%	95.0%
360.533333	6.68298004	53.9479889	7.0673E-07	341.978406	379.088261	341.978406	379.088261
-5.2	0./2000771	12 25/10002	0.0002467	- 6 /0111637	- // 10888363	- 6 /0111637	-4.10888363
	360.533333	360.533333 6.68298004	Coeficientes Error típico t 360.533333 6.68298004 53.9479889	Coeficientes Error típico t Probabilidad 360.533333 6.68298004 53.9479889 7.0673E-07	Coeficientes Error típico t Probabilidad 95% 360.533333 6.68298004 53.9479889 7.0673E-07 341.978406	Coeficientes Error típico t Probabilidad 95% 95% 360.533333 6.68298004 53.9479889 7.0673E-07 341.978406 379.088261	Coeficientes Error típico t Probabilidad 95% 95% 95.0% 360.533333 6.68298004 53.9479889 7.0673E-07 341.978406 379.088261 341.978406

Como F < 0.05 entonces si hay efecto del tratamiento sobre la conductividad eléctrica.

V. **DISCUSIÓN**

- El consorcio fitorremediador integrado a un sistema mixto con un caudal de Q:0.0047 m3/s en la cual se redujo los parámetros fisicoquímicos del agua residual domesticas del rio chillón obteniendo los siguientes resultados en 104.68 g/L de DBO, 5.96mg/L de OD, Turbidez 85 UNT, SST de 470 mg/L teniendo así un porcentaje de reducción de un 72.23% en comparación con lo que sostiene BERNAL, O. (2014) empleo un diseño de flujo horizontal mediante Jacinto de agua y buchona cucharita con un caudal de Q: 0.1 m3/d, evaluando los siguientes parámetros de aguas residuales doméstica: conductividad 800 μS/cm, 6mg/L de OD, la turbidez fue de 22 UNT, 13, g/L de DBO, SST de 14 mg/L con un porcentaje de reducción de 58%. Concluyendo que, el consorcio integrado al sistema mixto es más eficiente.
- El consorcio fitorremediador (buchón de agua, bambú, junco y papiro) atraves de un modelo tipo Parshall que permitió regular los flujos de agua de escurrimiento en el sistema de choque; con un ángulo de inclinación de 5° de pendiente en el cual la planta genero la captura de los siguientes parámetros: Turbidez 85 NTU, DBO5 al 104.68 mg/l, conductividad 230 uS/cm mientras que, PULCHA, J Y VALENCIA, M. (2019) emplearon un diseño de cuatro y dos sub celdas elaborándose así un humedal artificial de tipo horizontal con plantas fitorremediadoras de totora y carrizo con una pendiente de 5% reduciendo los siguiente parámetros: DBO5 al 32.47 mg/l, Turbidez 0.19 NTU, la conductividad 1.1 uS/cm.
- Se depuro los efluentes domésticos del rio chillón aplicando un consorcio fitorremediador integrado a un sistema mixto (Parshall y proceso de choque) con una pendiente de 5°, proceso de choque para su oxigenación natural con dimensiones de 1.50 m x 60 cm la cual obtuvo una reducción de materia orgánica de los efluentes residuales de un DBO al 72.23% y DQO al 83.41%, teniendo una mayor depuración mientras que, GIRON (2018) implemento cataratas artificiales

con las dimensiones de 1.15 m de altura, de largo 25 metros y una pendiente de 15° para depurar aguas residuales domésticas, en la cual se redujo los siguientes parámetros de DBO al 74,9% y DQO al 82.51%. Teniendo así, que los 2 sistemas son eficientes para la reducción de la demanda química de oxígeno.

- El consorcio fitorremediador integrado al sistema mixto utilizó especies (buchón de agua, papiro, bambú, junco) para la depuración en el agua residual, determinándose las características fisicoquímicas de los efluentes residuales domésticos mediante los tratamientos, logrando los siguientes resultados de DQO al 83.41%, turbidez UNT al 70.17%, (SST) al 80% y (DBO5) al 72.23%. En comparación con ROJAS (2018), en la reducción de las aguas residuales empleó un sistema basado en humedales artificiales con la especie (*Chrysopogon Zizanioides*), determinando los parámetros de 53% (turbidez), 95,51%(SST), 83,89% (DBO5), 72,97%(DQO), siendo así el consorcio fitorremediador más beneficioso en los tratamientos de aguas residuales.
- En el estudio realizado se aplicó la metodología de un diseño experimental aplicativo para la reducción de contaminantes en el agua residual doméstica, implementándose un consorcio fitorremediador con sistema mixto integrado. Se obtuvo los siguientes parámetros finales: DQO en 99.98, pH en 7.06, turbidez al 85 UNT, en los tiempos de 6, 12 y 24 horas respectivamente. Mientras que, MACASSI (2017) aplicó un diseño experimental puro en un sistema de choque fitorremediador en diferentes tiempos de 6,8 y 10 horas obteniendo los siguientes resultados: el DQO desde 320 mg/L a 96 mg/L, pH desde 6.6 a 7.9 y turbidez al 33.15 NTU, siendo el consorcio menos eficiente en el DQO pero sí más influyente en los demás parámetros, lo cual el sistema de choque hace indispensable para este tipo de tratamientos.

VI. **CONCLUSIONES**

- El uso del consorcio fitorremediador conformado por el Bambú, Junco, Papiro y Buchón de Agua, permitió recuperar las aguas residuales domesticas del río Chillón; alcanzo reducciones significativas en los parámetros fisicoquímicos evaluados, entre los cuales se tienen: pH al 7.06, CE al 230 (μS/cm), OD al 5.96 (mgO2/L), DBO5 al 104.68 (mgO2/L), DQO al 99.98 (mgO2/L), Potencial Rédox al 10 (Mv), Turbidez al 85 NTU, ST al 1100 (mg/L), SD al 630 (mg/L), coliformes fecales al 3000 NMP cuyos valores están por debajo de los estándares de calidad ambiental para categoría 3 de riego, permitiendo de esta manera comprobar nuestra hipótesis general de que el consocio propuesto cumple la función de depuración de las sustancias contaminantes en las aguas analizadas.
- Mediante la aplicación del consorcio fitorremediador conformado por el Bambú, Junco, Papiro y Buchón de Agua, logró reducción las concentraciones de los contaminantes de los parámetros seleccionados y medidos inicialmente, cuyos valores fueron: pH al 8.11, CE al 986(μS/cm), OD al 3.63 (mgO2/L), DBO5 al 377(mgO2/L), DQO al 602.8 (mgO2/L), Potencial Rédox 368 (Mv), Turbidez al 285 NTU, ST al 2750 mg/l, SD al 1250 mg/l y coliformes fecales 7000 NMP y después del tratamiento los valores finales obtenidos llegaron a: pH al 7.06, CE al 230 (μS/cm), OD al 5.96 (mgO2/L), DBO5 al 104.68 (mgO2/L), DQO al 99.98 (mgO2/L), Potencial Rédox al 10 (Mv), Turbidez al 85 NTU, ST al 1100 (mg/L), SD al 630 (mg/L) y coliformes fecales al 3000 NMP; por lo cual, dicho consorcio permitió disminuir de manera significativa los niveles de concentración de cada uno de los parámetros analizados.
- La aplicación del consorcio fitorremediador conformado por el Bambú, Junco, Papiro y Buchón de Agua, logró reducir de manera significativa las concentraciones de los parámetros, en un nivel porcentual de: pH de 2.94%, CE de 76.67%, OD de 64.18%, DBO5 de 72.23%, DQO de 83.41%, Turbidez de 70.17%, ST de 60%, SD de 49.6%, Potencial redox de 72.82% y coliformes fecales de 57.14%, mejorando la calidad de las aguas efluentes residuales domésticos, en un promedio de 60%.

VII. RECOMENDACIONES

- Se sugiere comparar las especies del consorcio pre y pos tratamiento para tener un estudio más profundizado mediante las especies depuradoras
- Realizar con profundidad los cálculos de ingreso de caudal con respecto a la garganta de Parshall para poder determinar el aumento de velocidades del sistema
- Realizar un análisis microbiológico en el agua residual para insertar nuevas especies fitorremediador.
- Implementación de nuevas tecnologías en la purificación de aguas residuales integradas con sistemas mixtos.

REFERENCIAS

- AUSTIN, David, Vásquez, Rafael, Gar, Dyke y Timothy, King. Nitrificación y eliminación total de nitrógeno en un humedal súper oxigenado. Science of The Total Environment. 652 (1): 307-313, febrero 2019. ISSN: 0048-9697
- AYALA, R., Ordoñez, E., Rascón, J, Ramírez, V., Silva. R. Fitorremediación de aguas residuales domésticas utilizando las especies Eichhornia crassipes, Nymphoides humboldtiana y Nasturtium officinale. Agroproducción. Journal of Reserarch in Sustainable Agroproduction. 2 (3): setiembre 2018.

ISSN: 2520-9760

- AZNAR, Antonio. Determinación de los parámetros físico-químicos de calidad de las aguas. Revista interdisciplinar de Gestión Ambiental. 2 (23): 12-19, marzo 2000, ISSN: 1575-1317
- BANSARI M, Ribadiya, A, Mehali, J y Mehta. Tratamiento de aguas residuales municipales e industriales por cañaveral tecnología: un enfoque de tratamiento de bajo costo. Journal of Engineering Research and Applications. 4 (12): 15-18, diciembre 2014.

ISSN: 2248-9622

- BERNAL, Oscar. Diseño de unidad piloto de humedales artificiales de flujo subsuperficial para tratamiento de aguas residuales domesticas en el campus UMNG-Cajicá con fines de reusó. Tesis (Magíster en Ciencias Ambientales). Bogotá: Universidad Jorge Tadeo Lozano, 2014. Disponible en https://expeditiorepositorio.utadeo.edu.co/bitstream/handle/20.500.12010/1749/T0 60.pdf?sequence=1&isAllowed=y
- CUENCA, Leidy. Cálculo de la longitud mínima de aproximación para una canaleta Parshall, a través de la comparación del comportamiento hidráulico entre un modelo numérico y un modelo físico. Tesis (Titulación en Ingeniería). Bogotá: Universidad Católica de Colombia, 2019. Disponible en https://hdl.handle.net/10983/23663
- Digesa. Gesta del Agua Grupo de estudio técnico. [en línea]. Lima, 2000. Fechas
 de consulta: 15 de marzo de 2020]. Disponible en

http://www.digesa.minsa.gob.pe/DEPA/informes_tecnicos/GRUPO%20DE%20US

- DEL CARMEN, Alicia. Evaluación de la eficiencia de la remoción de nutrientes del efluente de la PTAR de la empresa Esmeralda CORP S.A.C. mediante el uso de humedales artificiales, empleando la especie Typha Domingensis Pers. (totora). Tesis (Titulación en Ingeniería). Lima: Universidad Científica Del Sur. Perú. 2015. Disponible en https://hdl.handle.net/20.500.12805/245
- ESTRADA Islena. Humedales artificiales de flujo subsuperficial (HAFSS) para remoción de metales pesados en aguas residuales. Tesis (Título Técnico). Pereira-Risaralda. Universidad Tecnológica de Pereira. 2010.
- EVDOKIA, stavros, Christo Lopoulos y Nicolas KALOGERAKIS. Juncus spp, ¿El helophyte para todas (fito) remediación propósitos?, Grecia. SienceDirect, 28 (1): 43-55.

ISSN: 1871-6784

- GONZÁLEZ, Carrillo Y Sánchez. Definiciones y problemática en la investigación científica en aspectos de fitorremediación de suelos. Agro productividad. [en línea].
 2010, n°4. [Fecha de consulta: 10 febrero de 2020]. Disponible en https://www.colpos.mx/wb_pdf/Agroproductividad/2017/AGROPRODUCTIVIDAD
 IV_2017.pdf
- GARAY, Aparicio. Eficacia de las macrófitas jacinto y lenteja de agua para disminuir la concentración del boro, en las aguas minero termales de la "laguna la milagrosa".
 Tesis (Titulación en Ingeniería). Lima: Universidad César Vallejo, 2017. Disponible en https://hdl.handle.net/20.500.12692/3525
- Gallegos, Jessica, Lópes, Gaspar y Bautista, Raúl. Evaluation of free flow constructed wetlands with Sagittaria latifolia and Sagittaria lancifolia in domestic wastewater treatment. Ingeniería Agrícola y Biosistemas. Tabasco-México. Ingeniería Agrícola y Biosistemas, 10(2): 49–65, julio 2018.

ISSN: 2007-3925

- GRUBE, Wiessner, Kuschk, Kaestner. Respuestas fisiológicas de Juncus Efusus (Rush) Al Cromo y Relevancia para el tratamiento de aguas residuales en Humedales Construidos, Alemania. International Journal of Phytoremediation, 10,

- (8): 79-90, abril 2014. Disponible en https://www.researchgate.net/publication/23177255_Physiological_Responses_Of _Juncus_Effusus_Rush_To_Chromium_And_Relevance_For_Wastewater_Treat ment_In_Constructed_Wetlands
- HU, Hao. Phytoremediation of anaerobically digested swine wastewater contaminated by oxytetracycline via Lemna aequinoctialis: Nutrient removal, growth characteristics and degradation pathways. Bioresource Technology. [en línea]. 7, n.°103215, 5 noviembre 2019 [Fecha de consulta: 5 de diciembre de 2019]. Disponible en https://doi.org/10.1016/j.jece.2019.103215

ISSN: 2213-3437

- HAO, Hu. Fitorremediación de aguas residuales porcinas digeridas anaeróbicamente contaminadas por oxitetraciclina a través de Lemna. 291(1): 1-4, noviembre 2019.

ISSN: 0960-8524

- Hernández, Acosta, Elizabeth, Quiñones, Aguilar, Evangelina E., Cristóbal, Acevedo, David, Rubiños, Panta, Juan E. CALIDAD BIOLÓGICA DE AGUAS RESIDUALES UTILIZADAS PARA RIEGO DE CULTIVOS FORRAJEROS EN TULANCINGO, HIDALGO, MÉXICO. Revista Chapingo. Serie Ciencias Forestales y del Ambiente [en linea]. 2014, 20(1), 89-100[fecha de Consulta 27 de septiembre de 2021]. Disponible en: https://www.redalyc.org/articulo.oa?id=62930437008 ISSN: 2007-3828
- JIANFENG Ye; Zhaofeng Song; Liang Wang y Jun Zhu. Análisis metagenómico de la evolución de la estructura del microbiota en la fitorremediación de las aguas residuales de una laguna porcina. Hartford-EE.UU. Bioresource Technology, 219: 439-444, noviembre 2016.

ISSN: 0960-8524.

 JINGFU, Wang. El. Oxigenación y control sincrónico de la liberación de nitrógeno y fósforo en la interfaz sedimento-agua utilizando material modificado con nano burbujas de oxígeno. Guizhou-China, nº 725, julio, 2020.

ISSN: 0048-9697.

 LARSEN, Alaya, Kieryn, Sarah y Alessandra, Zoë. Artificially oxygenating the Swan River estuary increases dissolved oxygen concentrations in the water and at the sediment interface. Western-Australia, 128:112-121, marzo 2019.

ISSN: 0925-8574.

- LLAGAS, Wilmer, Chafloque, Enrique y Gómez, Guadalupe. Diseño de humedales artificiales periciales para tratamiento de aguas residuales de humedales artificiales. Lima, Revista del Instituto de Investigaciones. 15 (17): 85-96, julio 2006. ISSN: 1628-8097.
- LÓPEZ, Zitlali, Tavera, Rosaluz y Novelo Eberto Efecto de la sulfonación del estireno-éster acrílico sobre las propiedades de las membranas del intercambio protónico. Coyoacán-México, 18(1): 13-28, junio 2015.

ISSN:1405-888X

- MACASSI, Giuliana. Comportamiento del sistema de nanoburbujas en el tratamiento para reducir los niveles de contaminación de aguas residuales domésticas de la provincia De Concepción. Tesis (Titulación en Ingniería). Huancayo: Universidad del Centro, 2017. Disponible en https://repositorio.uncp.edu.pe/handle/20.500.12894/3777
- MENDOZA, Yoma, Pérez, Jhonny y Galindo, Adnrés. Evaluación del Aporte de las Plantas Acuáticas Pistia stratiotes y Eichhornia crassipes en el Tratamiento de Aguas Residuales Municipales. 29(2), marzo, 2018.

ISSN: 0718-0764

MORA, Arturo. Catálogo de la flora y vegetación de los humedales mexicanos.
 Universidad Nacional Autónoma de México. 1. ed.172(1): 96-104

ISBN: 97860702071953

 Naghipour, Davoud, Ashrafi, Mozhgan y Gholamzadeh, Taghavi. Fitorremediación de metales pesados (Ni, Cd, Pb) por los filiculoides de Azolla a partir de una solución acuosa. Data in brief. 12(1): 1409-1414, diciembre 2018.

ISSN:2352-3409

 NAOYA, Lorena, López, Darío y Armando, Taro. Evaluación de la dinámica del agua del sistema de riego de diques de contorno en campos de arroz en pendiente en Colombia. Japón: Agricultural Water Management. 217(1): 107-118, mayo 2019. ISSN: 0378-3774

- PÉREZ, Elena. Selección de plantas acuáticas para establecer humedales en el estado de Durango. Tesis (Doctor en Ingeniería). Chihuahua: Centro de investigación de materiales avanzados, S.C. Chihuahua, Centro de investigaciones de materiales avanzados. 2009. 45 pp.
- PORRAS, Cindy. Estudio del buchón de agua (Eichornia Crassipes) para el tratamiento de aguas residuales. Tesis (Titulación en Ingeniería). Bucaramanga: Universidad Abierta y a Distancia. 2017. Disponible en https://repository.unad.edu.co/handle/10596/17528
- PULCHA, Jorge y Valencia, Michael. Evaluación de la degradación de contaminantes ecotóxicos de las aguas de residuales de la industria minera por medio de humedales artificiales. Tesis (Título en Ingeniería). Lima: Pontificia Universidad Católica del Perú, 2019. Disponible en http://hdl.handle.net/20.500.12404/14458
- PULIDO, Víctor y Bermúdez, Ludisleydis. Estado actual de la conservación de los hábitats de los Pantanos de Villa. Lima-Perú. Researchgate. 25(2):679-702, 2019.
 ISSN: 1815-8242
- REZANIA Shahabaldin, Ponraj Mohanadoss y Talaiekhozani A, Mohamad.
 Perspectivas de fitorremediación utilizando Jacinto de agua para la eliminación de metales pesados, contaminantes orgánicos e inorgánicos en aguas residual. Johor Bahru-Malasia. Journal of Environmental Management. 161 (1): 125-133, 2015.
 ISSN: 0301-4797.
- RUBIO, Jorge y Montenegro, Alexis. Humedal Artificial en el tratamiento de las aguas residuales domésticas de la 3ra Brigada de Fuerzas Especiales, batallón de servicios N° 300, Distrito de Rioja, Provincia de Rioja. Tesis (Titulación en ingeniería). Moyobamba: Universidad de San Martin. Perú, 2018. Disponible en http://hdl.handle.net/11458/2970
- SILVA, Luis, 2004. Enfermeros Del Consorcio Sanitario de Tenerife. [en línea].
 Sevilla: Editorial MAD, S.L., 2004 [Fecha de consulta: 25 de mayo de 2004].
 Capítulo 1. Disponible en

https://books.google.co.cr/books?id=zr4lzbiu4zYC&printsec=frontcover#v=onepage&q&f=false

ISBN: 8466516425

- TING, IAW. Application of water hyacinth (Eichhornia crassipes) for phytoremediation of ammoniacal nitrogen: A review. Journal of Water Process Engineering. 22(1): 239-249, abril 2018.

ISSN: 2214-7144.

- TORRES, Jocelyn, Guerra, Raquel y Amparo Milda. Evaluación de la eficiencia en el tratamiento de aguas residuales para riego mediante humedales Artificiales de flujo libre superficial (FLS) con las especies Cyperus Papyrus y Phragmites Australis, en Carapongo-Lurigancho. Revista de Investigación Ciencia, Tecnología y Desarrollo. [en línea]. mayo 2017 3 n.o 2. [Fecha de consulta: 3 de enero 2020]. Disponible en https://doi.org/10.17162/rictd.v3i2.657

ISSN: 2313-7991

- URUJ, Tahir y Azra, Yasmin. Fitorremediación: flora potencial para el metabolismo del colorante sintético. Rawalpindi, Pakistan. Journal of King Saud University – Science, abril 2016, 28(2):119-130. ISSN: 1018-3647
- VALLEJO, Jose Y Santaya, Manuel. La historia de la Fitoterapia en Egipto: un campo abierto a múltiples disciplinas. Dialnet. 3(2): 101-105. ISSN: 1576-3080.
- VISHAL, Chandanshive, Suhas, Kadam y Rahul Khandar. Fitorremediación in situ de colorantes de aguas residuales textiles utilizando plantas ornamentales de jardín, efecto sobre la calidad del suelo y el crecimiento de las plantas. Chemosphere. 210(1): 968-976. Noviembre 2018. ISSN: 0045-6535
- WANG, Liang, Lin Hai y Dong Yingbo. Efectos de los patrones de cultivo de cuatro plantas en la fitorremediación de aguas residuales sintéticas que contienen vanadio. Ecological Engineering. 115(1): 27-34, mayo 2018. ISSN: 0925-8574

ANEXOS

• Anexo 1: Matriz de operacionalización de variables

Tabla 24: Matriz de operacionalización de variables.

VARIABLE	DEFINICION CONCEPTUAL	DEFINICION OPERACIONAL	DIMENSIONES	INDICADOR	ESCALA DE UNIDAD
			Características	Tamaño de la planta	cm
	El consorcio		de plantas	números de Hojas	cm
	Fitorremediador es	El consorcio	fitorremediadoras	Tamaño del Tallo	cm
Consorcio	aquel que	fitorremediador será	Cantidad de	Junco	número
fitorremediador	aprovecha la	medido por la cantidad de	plantas por	Papiro	número
integrado con sistema mixto	capacidad de ciertas plantas para	plantas por especie,	especie	Buchón de agua	número
(canal Parshall	absorber, acumular,	características de las	Обробіо	Bambú	número
y proceso de	metabolizar,	plantas fitorremediadoras y los parámetros de	Parámetros de	Tiempo de retención	caudal/tiempo
choque)	volatilizar o estabilizar	operación	operación	área (rectangular)	m3
	DELGADILLO (2011).		Características	nivel de pendiente	grados
			sistema mixto	volumen de agua	m3
	La depuración es el			рН	acido/base
	proceso en el que se			Conductividad Eléctrica	μS/cm
serie de tratal para elimin Depuración de impurezas de Efluentes su Domésticos en uso, antes de	somete al agua a una			Temperatura	°C
			Características	Oxígeno Disuelto	mgO2/I
	impurezas debidas a	La depuración de efluentes será medido mediante las	físicas y químicas	Demanda Química de Oxígeno	mgO2/I
	uso, antes de verterla al medio ambiente o	características físicas y químicas del agua residual	quimodo	Demanda Biológica de Oxígeno	mgO2/l
el Río Chillón	reutilizar parte de	quimicas dei agua residuai		Solidos Totales	mg/l
	la misma para el riego			Coliformes Totales	NMP/100 m
	de zonas verdes públicas Camacho, (2012)		Reducción de Contaminantes	T1-T2/T1	%

Tabla 25: Matriz de consistencia.

PROBLEMA GENERAL	OBJETIVO GENERAL	HIPÓTESIS GENERAL
¿Cómo el consorcio fitorremediador integrado con sistema mixto permite depurar los efluentes residuales domésticos del río Chillón – Lima 2020?	Evaluar el consorcio fitorremediador integrado con sistema mixto para depurar los efluentes residuales domésticos del río Chillón – Lima 2020	El consorcio fitorremediador integrado con sistema mixto permite la depuración de los efluentes residuales domésticos del río Chillón – Lima 2020
PROBLEMAS ESPECÍFICOS	OBJETIVOS ESPECÍFICOS	HIPÓTESIS ESPECÍFICOS
Problema Específicos 1	Objetivo Específico 1	Hipótesis Específica 1
¿Cuáles son las características fisicoquímicas en la depuración de los efluentes domésticos del río chillón mediante un consorcio fitorremediador integrado con sistema mixto?	Determinar las características fisicoquímicas en la depuración de los efluentes domésticos del río chillón mediante un consorcio fitorremediador integrado con sistema mixto	H0: Las características fisicoquímicas en la depuración de los efluentes domésticos del río chillón mejoraron mediante el consorcio fitorremediador integrado con sistema mixto.
Problema Específicos 2	Objetivo Específico 2	Hipótesis Específica 2
¿Cuál es la reducción de contaminantes de las aguas residuales domesticas mediante el consorcio fitorremediador integrado con sistema mixto?	Evaluar la reducción de contaminantes de las aguas residuales domesticas mediante el consorcio fitorremediador integrado con sistema mixto.	H0: La reducción de contaminantes de las aguas residuales domesticas mediante el consorcio fitorremediador integrado con sistema mixto alcanzo 80%

ANEXO 5:

Tabla 26: Cuadro de validez por experto

N°	Apellidos y Nombres	CIP	Valoración
1	Jave Nakaguara, Jorge Leonardo	43444	95%
2	Quijano Pacheco, Wilber	90140	95%
3	Ordoñez Gálvez, Juan Julio	89972	97%
	Promedio de validación		96%

Tabla 27: Tabla de instrumentos de recolección de datos

ETAPAS	FUENTE	TECNICA	INSTRUMENTO	RESULTADOS
Fase 1: Análisis de aguas residuales	Mapa de ubicación de la zona	Observación	Formato cadena de custodia	Parámetros insitu, Ph, CE,OD
Fase 2: Acondicionamiento de consorcio de plantas	Fuentes primarias de taxonomía	Observación	Formato caracterización de consorcio	Características del consorcio fitorremediador
Fase 3: Caracterización de agua residual doméstica	Estándar método del agua – versión 2017	Observación	Formato de caracterización del agua residual	Calidad del agua residual doméstica
Fase 4: Construcción del sistema mixto y resultados de los tratamientos	Fuentes primaria- análisis de Laboratorio	Observación	Formato del sistema mixto y tratamiento	Tiempo de los tratamientos, reducción de contaminantes del agua.

Anexo 6. Validación de los instrumentos

A. Validación por criterio del experto 1.

CADENA DE CUSTODIA

Responsable: Izumy Jhassie López Gutiérrez

Lugar de toma de muestra: río Chillón

DATOS DE FUENTE DE AGUA Coordenadas X: 0273147 Y: 8679700							
X: 0273147		Y: 8679700					
Cuenca: Río Chillói	n						
Región /departamento: Lima	Distrito: Puente Piedra	Provincia: Lima	Localidad/centro poblado: Efluentes del río Chillón				
Largo: 30 m	Ancho: 40 m	Profundidad baja: 3m	Profundidad alta: 5m				
Residuos Orgánicos e inorgánicos	Aspectos Ambientales	Impactos Ambientales	Indicadores Bioquímicos				
Si presento materia orgánica	Turbia	No presenta					
Si presento materia orgánica	Turbia						
Si presento materia orgánica e inorgánica	Turbia						
	Cuenca: Río Chillón Región /departamento: Lima Largo: 30 m Residuos Orgánicos e inorgánicos Si presento materia orgánica Si presento materia orgánica Si presento materia orgánica	Cuenca: Río Chillón Región /departamento: Lima Distrito: Puente Piedra Largo: 30 m Ancho: 40 m Residuos Orgánicos e inorgánicos Si presento materia orgánica Turbia Si presento materia orgánica Turbia Si presento materia orgánica Turbia	Cuenca: Río Chillón Región /departamento: Lima Distrito: Puente Piedra Lima Largo: 30 m Ancho: 40 m Profundidad baja: 3m Residuos Orgánicos e inorgánicos Si presento materia orgánica Si presento materia orgánica Turbia Provincia: Lima Profundidad baja: 3m Impactos Ambientales No presenta Si presento materia orgánica Turbia Si presento materia orgánica Turbia Turbia				

CIP: 90140

Mgrt Wilber S. Quijano Pacheco

Dr. Ing. Carlos Alberto Castañeda Olivera

DOCENTE E INVESTIGADOR CIP: 130267 RENACYT: P0078275

B. Validación por criterio del experto 2.

FORMATO DE CARACTERIZACIÓN DEL AGUA RESIDUAL DOMÉSTICA

RESPONSABLES DE LA MUESTRA: Izumy López Gutiérrez

Muestra	Muestreo	treo						Regu	erimiento	Requerimiento de análisis	.S.			
Código	Fecha	Hora		_	Físicas				Químicas	S		Materia	Materia orgánica	
				23		Sólidos		된	띰	8	00	DOO	DBO5	Coliformes
			Turbidez		SST	SD	ST							Totales
ARCH-L	ARCH-L 15/06/2 0	8 am	285	21	1500	1250	2750	8.11	368	986	3.63	602.88	377	7000
			A			1	94	22			S S S S S S S S S S S S S S S S S S S			
			7	Ä	In Ca	ler. Carlos Alberto Castonieda Olivera	\$ 5	mede 0	linera	N				
Σ	Mgrt Wilber S. Quijano Pacheco CIP:90140	S. Quijan	o Pacheco		E SOCE	DOCENTE E INVESTIGADOR CIP: 130267 RENACYT: P0078275	NVEST 130267 : P007	GADOI 1275	~	CAPRO SHOO	¥1,300,2			

C. Validación por criterio del experto 3.

FORMATO DE CARACTERIZACIÓN DE CONSORCIO FITORREMEDIADOR (Eichornia Crassipes, Schoenoplectus, Bambusoideae, Cyperus Papyrus)

RESPONSABLES DE LA MUESTRA: Izumy López Gutiérrez

	Muestra	Muestreo	reo		Indicador	_		Requerimi	Requerimiento de análisis	ilisis			Observaciones
Especie	Código	Fecha	Hora	Altura (cm)	Número de Hojas	Tamaño del Tallo (cm)	(mɔ/sn)	Conductivida d eléctrica (mv)	Potencial Redox (mv)	-	U	z	
Bambú	PF-B	16/06/20	8:00	9	9	2	6.8	234	110	21	2.10	4	
Papiro	PF-P	16/06/20	8:30	9			6.8	345	111	21	1.72	က	
Junco	PFJ	16/06/20	8:45	99	9	4	6.7	315	108	21	1.85	3.5	
Suchón de Agua	PF-BA	16/06/20	8:50	No posee	9	9	7.2	356	135	22	2.01	2	
N Take	CIP:90140	CIP:90140 Mert Wilber S. Quilano Pacheco		1	Cortos	Dr. 180 Corlos Alberto Castainda (CV Stoiede 0	Olivera	Jan July				
				• X	SCENTE CL SENAC	SENTE E INVESTIGAD CIP: 130267 RENACYT: P0078275	DOCENTE E INVESTIGADOR CIP: 130267 RENACYT: P0078275	~					

D. Validación por criterio de experto 4

FORMATO DE SISTEMA MIXTO INTEGRADO Y TRATAMIENTO

RESPONSABLES DE LA MUESTRA: Izumy Jhassiet López Gutiérrez

Sistema	Choque	T. Nivel Retenc pendien ión te		ů					
-		T. Retenc ión			0.0045				
Canal de Parshall		Volum en			21.6				
	3	Caudal			0.0047				
55 S	2 5	358	160	104					
Parámetros Biológicos	oba	1594 3.78 599.7	388.7	86.66					
P. B.	αo	3.78	5.92	5.96					
	SST	1594	1084	470					
	SD	1136	1036	630					
	ST	2730	2120	1100					
Parámetros fisicoquímicos	Turbidez	270	130	85					
Parámetros	Potencial Redox	315	232	100					
	30	949	945	230					
	ĭ	22°C	21°C	20°C					
	Нd	96'.	7.65	7.06					
Tratamiento/	Tiempo	T1-6h	T2-12h	T3-24h					

Dire Conference of the Confere

leg. Carlos Alberto Castañeda Olivera DOCENTE E INVESTIGADOR CIP: 130267

Mgrt Wilber S. Quijano Pacheco

Anexo 7: Georreferenciación de la población

Tabla 28: Georreferenciación de la población

Código	Área de la Población	Coordenadas UTM - WGS84
RC-PL	Efluentes del rio Chillón	x: 768501.72

Mapa del punto de recojo

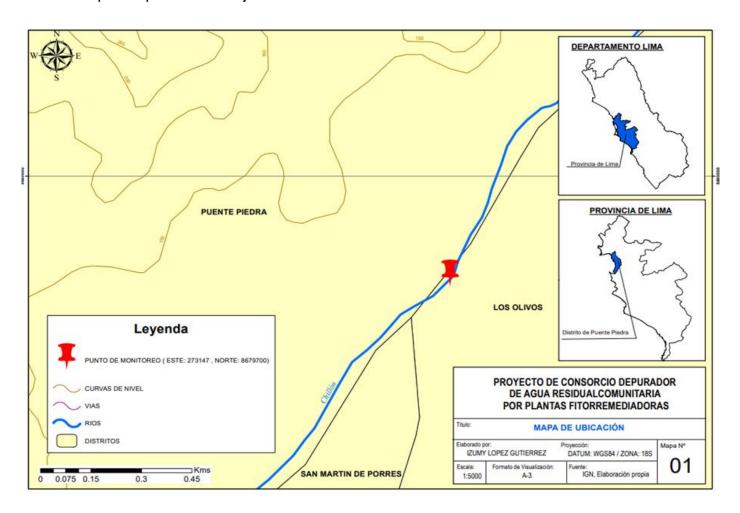


Figura 15: Mapa de ubicación.

Anexo 8. Punto de Muestreo



Figura 16: Toma de muestra y puntos de muestreo.

Anexo 9: Caracterización y Análisis de los tratamientos

Figura 17: Análisis del agua residual doméstica y sus parámetros

Figura 18: Acondicionamiento de las plantas fitorremediadoras

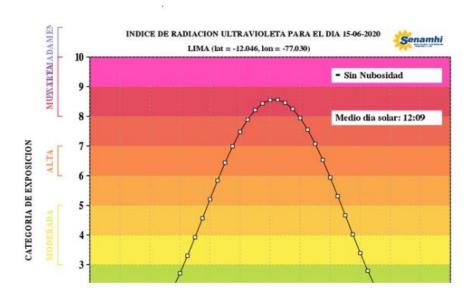


Figura 19: Índice de radiación UV - 15 de junio

Fuente: Senamhi

Anexo 10: Consorcio Fitorremediador integrado

Figura 20: Preparación y caracterización de las especies y del sistema mixto.

ÁREA DEL ACONDICIONAMIENTO DEL CONSORCIO DEPURADOR

REGULADOR DE CAUDAL, ESTRANGULADOR

FUSIONADO Y OXIGENADOR NATURAL DE AGUA

Figura 21: Tratamiento previo del sistema mixto (Parshall y sistema Choque)

Anexo 11: Proceso experimental del consorcio fitorremediador

Figura 22:Toma de muestra de los 3 tratamientos.

Anexo N°12. Calibración del multiparametro "

Figura 23: Certificado de calibración

Anexo 13: Dimensiones del sistema mixto (Parshall y proceso de Choque)

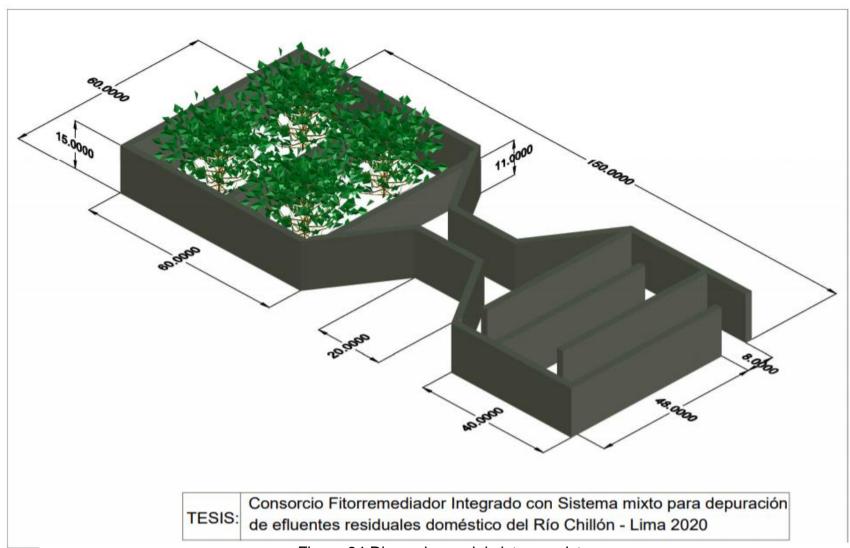


Figura 24:Dimensiones del sistema mixto

Anexo N°14: Análisis de parámetros fisicoquímicos y biológicos.

Figura 25: Análisis de los parámetros fisicoquímicos

Facultad de Ingeniería Geológica, Minera y Metalúrgica

Laboratorio de Espectrometría

SOLICITADO POR : IZUMI JHASSIET LOPEZ GUTIERREZ
Procedencia de muestras : Agua Residual Domestica – Rio Chillón

Recepción de muestras : Lima, 30 de Junio del 2020

Tratamientos de Agua Residual Domestica

Primer Tratamiento: Parámetros físico - químico

Código	Temperatura °C	Potencial de hidrogeno pH(acido/base)	Conductividad eléctrica µS/cm	Potencial redox mv	Turbidez NTU
T1- H1	22.01	8.01	965	345	284
T1 - H2	22.00	7.98	964	341	283
T1 - H3	22.00	7.99	962	342	280
T1 - H4	22.00	7.94	960	328	279
T1 - H5	22.00	7.93	953	326	276
T1 - H6	22.00	7.90	949	315	270

Parámetros físicos (método gravimétrico)

Código	Solidos totales mg/L	Solidos disueltos mg/L	Solidos suspendidos totales mg/L	Concentración de solidos mg/L
T1- H1	2742	1148	1594	25.56
T1 - H2	2743	1146	1597	25.53
T1 - H3	2740	1145	1595	25.40
T1 - H4	2739	1141	1598	25.32
T1 - H5	2736	1139	1597	25.25
T1 - H6	2730	1136	1594	25.20

Parámetros biológicos del agua del rio Chillón

Código	Oxígeno Disuelto (mgO ₂ /L)	Demanda bioquímica de oxígeno(mgO ₂ /L)	Demanda Bioquímica de oxígeno(mgO ₂ /L)
T1- H1	3.65	600.33	370
T1 - H2	3.68	600.00	369
T1 - H3	3.70	599.98	368
T1 - H4	3.71	599.85	365
T1 - H5	3.73	599.78	360
T1 - H6	3.78	599.70	358

Av. Túpac Amarú N° 210, Lima 25, Apartado 1301-Perú

Teléfono: (511) 4824427, Central Telefónica (511) 4811070, Anexo 4245

e-mail: labespectro@uni.edu.pe

Figura 26: Análisis del tratamiento uno

Facultad de Ingeniería Geológica, Minera y Metalúrgica

Laboratorio de Espectrometría

Segundo Tratamiento: Parámetros físico - químico

Código	Temperatura °C	Potencial de hidrogeno pH(acido/base)	Conductividad eléctrica µS/cm	Potencial redox	Turbidez NTU
T2 - H2	21.01	7.90	960	mv 240	170
T2 - H4	21.00	7.88	958	243	171
T2 - H6	21.00	7.76	956	241	162
T2 – H8	21.00	7.75	950	239	154
T2 - H10	21.00	7.70	949	238	140
T2 - H12	21.00	7.65	945	232	130

Parámetros físicos (método gravimétrico)

Código	Solidos totales mg/L	Solidos disueltos mg/L	Solidos suspendidos totales mg/L	Concentración de solidos mg/L
T2- H2	2450	1048	1402	23.23
T2 - H4	2420	1046	1374	21.12
T2 - H6	2405	1045	1360	20.23
T2 - H8	2300	1041	1259	19.56
T2 - H10	2230	1039	1191	18.47
T2 - H12	2120	1036	1084	16.58

Parámetros biológicos del agua del rio Chillón

Código	Oxigeno Disuelto (mgO ₂ /L)	Demanda bioquímica de oxígeno(mgO ₂ /L)	Demanda biológica de oxígeno (mgO ₂ /L)
T2- H2	4.85	467.00	215
T2 - H4	4.98	450.04	200
T2 - H6	5.35	430.24	185
T2 - H8	5.67	410.12	178
T2 - H10	5.80	400.08	165
T2 - H12	5.92	398.67	160

Av. Túpac Amarú N° 210, Lima 25, Apartado 1301-Perú

Teléfono: (511) 4824427, Central Telefónica (511) 4811070, Anexo 4245

e-mail: labespectro@uni.edu.pe

Figura 27: Análisis del segundo tratamiento

Facultad de Ingeniería Geológica, Minera y Metalúrgica

Laboratorio de Espectrometría

Tercer Tratamiento: Parámetros físico - químico

Código	Temperatura °C	Potencial de hidrogeno pH(acido/base)	Conductividad eléctrica µS/cm	Potencial redox mv	Turbidez NTU
T3 - H4	20.02	7.25	345	135	140
T3 - H8	20.01	7.21	315	128	136
T3 - H12	20.00	7.20	289	120	110
T3 - H16	20.00	7.15	275	118	100
T3 - H20	20.00	7.10	264	110	95
T3 - H24	20.00	7.06	230	100	85

Parámetros físicos (método gravimétrico)

Código	Solidos totales mg/L	Solidos disueltos mg/L	Solidos suspendidos totales mg/L	Concentración de solidos mg/L
T3- H4	1680	754	926	20.42
T3 - H8	1523	745	778	21.12
T3 - H12	1465	725	740	22.23
T3 - H16	1405	700	705	19.01
T3 - H20	1352	680	672	18.06
T3 - H24	1100	630	470	14.02

Parámetros biológicos del agua del rio Chillón

Código	Oxígeno Disuelto (mgO ₂ /L)	Demanda bioquímica de oxígeno(mgO ₂ /L)	Demanda biológica de oxígeno(mgO ₂ /L)
T3- H4	5.07	123.00	126.00
T3 - H8	5.18	118.67	119.00
T3 - H12	5.34	112.23	114.45
T3 - H16	5.89	109.45	110.13
T3 - H20	5.92	102.08	105.02
T3 - H24	5.96	99.98	104.68

Av. Túpac Amarú N° 210, Lima 25, Apartado 1301-Perú

Teléfono: (511) 4824427, Central Telefónica (511) 4811070, Anexo 4245

e-mail: labespectro@uni.edu.pe

Figura 28: Análisis del tercer tratamiento.

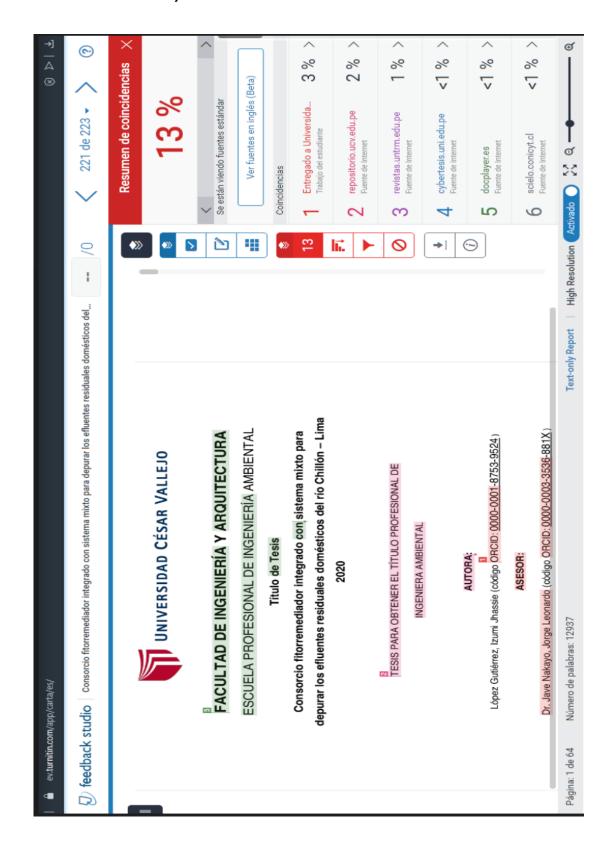
Facultad de Ingeniería Geológica, Minera y Metalúrgica

Laboratorio de Espectrometría

Resultados microbiológico Número más probable (NMP/100ml) en los tres tratamientos (método tubos múltiples)

Código	NMP/100 ml
NMP - 6 horas	7000
NMP - 12 horas	5000
NMP - 24 horas	3000

Evaluación de tubos positivos NMP/100 ml de coliformes fecales *Escherichia coli* totales en 100 mililitros de muestra, las colonias muestreadas dieron positivo, se utilizaron medios EMB, TSI, LIA Y SIM. Las que fueron evaluadas en tablas de NMP con 5 diluciones.


Lima, 10 de Julio del 2020

MSc. Atilio Mendoza Atilio Jefe Lab. Espectrometría

Av. Túpac Amarú N° 210, Lima 25, Apartado 1301-Perú Teléfono: (511) 4824427, Central Telefónica (511) 4811070, Anexo 4245 e-mail: labespectro@uni.edu.pe

Figura 29: Análisis Microbiológico post-tratamiento

Anexo N° 14: Porcentaje de turnitin

