

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA INDUSTRIAL

Aplicación de mantenimiento predictivo basado en la norma ISO 9001:2015 para mejorar la confiabilidad al cliente, 2019

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERO INDUSTRIAL

AUTORES:

Caritas Barrientos, Javier Christhian (ORCID: 0000-0002-5336-6925)

Meneses Gonzales, Luis Jesús (ORCID: 0000-0002-1774-1089)

ASESOR:

Dr. Panta Salazar, Javier Francisco (ORCID: 0000-0002-1356-4708)

LÍNEA DE INVESTIGACIÓN:

Gestión empresarial y productiva

LIMA – PERÚ 2019

Dedicatoria

A nuestros padres y familia por habernos apoyado de manera incondicional en estos años de estudios, levantándonos la moral. En especial a Dios por darme las fuerzas de lo alto para culminar mi meta ya que sin Él nada fuera posible.

A todos nuestros amigos que estuvieron a nuestro lado incondicionalmente, en el trascurso de este proceso apoyándonos y aportando conocimientos. Asimismo, a nuestros maestros, que en el transcurrir del tiempo nos dejaron valiosas enseñanzas y en especial a los que nos ayudaron asesorando y aclarando cada duda en la elaboración de tesis.

Agradecimientos

A Dios todo poderoso, por darnos las fuerzas para seguir adelante cada día y guiándonos en cada adversidad que pasamos, ya que a pesar de nuestras diversas cargas tu Señor nos hiciste descansar en Ti.

A nuestros padres por habernos criado para ser personas con principios y valores, asimismo a nuestros asesores académicos por brindarnos su apoyo compartiendo sus conocimientos en la elaboración de la presente tesis.

Sin olvidar a nuestros amigos cercanos, colegas de trabajo y a nuestros amigos de la universidad levantándonos la moral en cada momento de dificultad.

Índice de contenidos

Índice de tablas	V
Índice de figuras	vii
Resumen	viii
Abstract	ix
I. INTRODUCCIÓN	1
II. MARCO TEÓRICO	15
III. METODOLOGÍA	27
3.1. Tipo de Investigación	27
3.2. Variables y operacionalización	28
3.3. Población y muestra	30
3.4. Técnicas e instrumentos de recolección de datos	31
3.5. Procedimientos	33
3.6. Métodos de análisis de datos	50
3.7. Aspectos éticos	51
IV. RESULTADOS	52
V. DISCUSIÓN	83
VI. CONCLUSIONES	87
VII. RECOMENDACIONES	89
REFERENCIAS	90
ANEXOS	9/1

Índice de tablas

Tabla 1.	Causas potenciales de la baja confiabilidad de máquinas	11
Tabla 2.	Jerarquización de las causas evidenciadas	12
Tabla 3.	Cuadro de integración de variables independientes.	23
Tabla 4.	Expertos que dieron validez a los instrumentos de medición.	32
Tabla 5.	Valores para medir la confiabilidad del instrumento.	33
Tabla 6.	Evaluación de la criticidad en un periodo mensual	40
Tabla 7.	Cuadro de herramientas de trabajo de mantenimiento	43
Tabla 8.	Cuadro de programación de mantenimiento	46
Tabla 9.	Fichas técnicas de lsa maquinarias	48
Tabla 10.	Parámetros para el mantenimiento predictivo	49
Tabla 11.	Cuadro de herramientas de mantenimiento predictivo.	50
Tabla 12.	Medición de la criticidad antes de la mejora.	53
Tabla 13.	Medición de la eficacia de actividades programadas antes de la mejora	54
Tabla 14.	Medición del total de fallas antes de la mejora.	55
Tabla 15.	Medición de la variable independiente – Disponibilidad antes de la mejora	56
Tabla 16.	Medición de la variable dependiente – Confiabilidad antes de la mejora	57
Tabla 17.	Tiempos en la producción de las maquinas enchapadoras	58
Tabla 18.	Indagación descriptiva de la Planificación - Criticidad	59
Tabla 19.	Indicador criticidad en 16 semanas antes – después.	59
Tabla 20.	Indagación descriptiva de Hacer – Actividades programadas	60
Tabla 21.	indicador actividades programadas en 16 semanas antes – después	61
Tabla 22.	Indagación descriptiva de Hacer – Total de fallas	62
Tabla 23.	Indicador total de fallas en 16 semanas antes – después.	62
Tabla 24.	Indagación descriptiva de Actuar – Disponibilidad	63
Tabla 25.	Indicador disponibilidad en 16 semanas antes – después	64
Tabla 26.	Indagación descriptiva de la confiabilidad	65
Tabla 27.	Indicador confiabilidad en 16 semanas antes y después	65
Tabla 28.	Indagación descriptiva de la MTBF	66
Tabla 29.	Indicador MTBF en 16 semanas en un antes y después de la aplicación	67
Tabla 30.	Indagación descriptiva de la MTTR	68
Tabla 31.	Indicador MTTR en 16 semanas antes y después de la aplicación	68
Tabla 32.	Toma de decisiones para elegir el estudio estadístico de acuerdo a la población	69
Tabla 33.	Pruebas estadísticas	69
Tabla 34.	Procesamientos de datos de pres test y post test	70
Tabla 35.	Prueba de normalidad de confiabilidad con el Shapiro Wilk	70
Tabla 36.	Prueba de hipótesis general – confiabilidad con Wilcoxon	72

Tabla 37.	Prueba de Wilcoxon de los rangos con signo – Confiabilidad	73
Tabla 38.	Análisis de la prueba de Wilcoxon para la confiabilidad	73
Tabla 39.	Procesamiento de casos del pre test y el pos test del MTBF	74
Tabla 40.	Prueba de normalidad de MTBF con el Shapiro Wilk	74
Tabla 41.	Prueba de hipótesis especifica 1 – MTBF con Wilcoxon	76
Tabla 42.	Prueba de Wilcoxon de los rangos con signo – MTBF	77
Tabla 43.	Análisis estadístico de la prueba de Wilcoxon	77
Tabla 44.	Procesamiento de casos del pre test y el pos test del MTTR	78
Tabla 45.	Prueba de normalidad de MTTR con el Shapiro Wilk	78
Tabla 46.	Prueba de hipótesis especifica 2 – MTTR con Wilcoxon	80
Tabla 47.	Prueba de Wilcoxon de los rangos con signo - MTTR	81
Tabla 48.	Análisis estadístico de la prueba de Wilcoxon para la hipótesis de MTTR	81
Tabla 49.	Cuadro de costos de mantenimiento y repuestos del mantenimiento predictivo	82

Índice de figuras

Figura 1.	Diagrama de causa y efecto de la empresa SEGAMAQ MAQUINARIAS S.A.C	8
Figura 2.	DOP – actual del proceso de enchape	37
Figura 3.	Cuadro de criticidad	41
Figura 4.	Diagrama de flujo del mantenimiento predictivo	42
Figura 5.	Cuadro de repuestos y herramientas	48
Figura 6.	Organigrama de la empresa SEGAMA MAQUINARIAS S.A.C	53
<i>Figura 7.</i> 9001:2015.	Criticidad antes de aplicar el mantenimiento predictivo basado en la norma ISO 54	
<i>Figura 8.</i> basado en l	Medición de actividades programadas antes de aplicar el mantenimiento predictivo a norma ISO 9001:2015.	
<i>Figura 9.</i> norma ISO 9	Medición de total de fallas antes de aplicar el mantenimiento predictivo basado en 9001:2015	
<i>Figura 10.</i> en la norma	Medición de la disponibilidad antes de aplicar el mantenimiento predictivo basac a ISO 9001:2015	
Figura 11. norma ISO 9	Confiabilidad antes de la aplicación del mantenimiento predictivo basado en la 9001:2015	58
Figura 12.	Base de datos del indicador criticidad	60
Figura 13.	Base de datos del indicador actividades programadas	61
Figura 14.	Base de datos del indicador actividades programadas	63
Figura 15.	Base de datos del indicador disponibilidad	64
Figura 16.	Base de datos del indicador confiabilidad	66
Figura 17.	Base de datos del indicador MTBF	67
Figura 18.	Base de datos del indicador MTTR	69
Figura 19.	Distribución de data confiabilidad en el pre test.	71
Figura 20.	Distribución de data Confiabilidad en el pos test	71
Figura 21.	Distribución de data MTBF en el pre test	75
Figura 22.	Distribución de data MTBF en el pos test	75
Figura 23.	Distribución de data MTTR en el pre test	79
Figura 24.	Distribución de data MTTR en el pos test	79

Resumen

La presente investigación tuvo como objetivo determinar en qué medida la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 mejora la confiabilidad al cliente. El estudio fue de tipo aplicada, explicativa y descriptiva, el enfoque fue cuantitativo; la población estuvo conformada por un grupo de 20 máquinas de un modelo en específico, la muestra fue elegida por conveniencia siendo igual a la población. Se recopiló información referente al proceso de producción donde tuvo participación las máquinas en estudio; los cuales realizan el enchapado de melanina. El estudio fue durante 16 semanas antes y 16 semanas después. Se usó la técnica de observación en el campo; los reportes consolidados de las órdenes de mantenimiento sirvieron como información para la aplicación del mantenimiento predictivo a las máquinas; se utilizó para el análisis la teoría planteada en la investigación. La estadística descriptiva e inferencial de los datos fueron procesados mediante el uso del software Microsoft Excel e IBM SPSS v24, respectivamente. Se logró determinar que la media de la confiabilidad pasó de 80.66% a 89.40%, incrementándose este indicador en 8.7%., luego de la aplicación del aporte mencionado se logró mejorar significativamente la confiabilidad de los clientes en la empresa de estudios.

Palabras claves: mantenimiento, predictivo, confiabilidad, mantenibilidad

Abstract

The objective of this research was to determine to what extent the application of predictive maintenance based on the ISO 9001: 2015 standard improves customer reliability. The study was applied, explanatory and descriptive, the approach was quantitative; the population consisted of a group of 20 machines of a specific model, the sample was chosen for convenience being equal to the population. Information was collected regarding the production process where the machines under study had participation; which perform the melanin plating. The study was for 16 weeks before and 16 weeks after. The field observation technique was used; the consolidated reports of maintenance orders served as information for the application of predictive maintenance to machines; The theory raised in the investigation was used for the analysis. The descriptive and inferential statistics of the data were processed using Microsoft Excel and IBM SPSS v24 software, respectively. It was possible to determine that the mean reliability went from 80.66% to 89.40%, increasing this indicator by 8.7%. After applying the aforementioned contribution, it was possible to significantly improve the reliability of the clients in the study company

Keywords: maintenance, predictive, reliability, maintainability

I. INTRODUCCIÓN

El sector abocado al mantenimiento de equipos y maquinarias tuvo un crecimiento paulatino. El mantenimiento predictivo fue evolucionando desde finales de la década de 1950, motivados por una necesidad económica un pequeño grupo de emprendedores de Ohio (Estados Unidos) que desarrollaron una tecnología capaz de detectar anomalías en tipos particulares de motores eléctricos que provocaban problemas mecánicos continuos. Se descubrieron paradas de máquina en varios procesos de fabricación, lo que supuso grandes costes de reparación y hubo que evitarlo.

El mantenimiento se considera un gasto más que una inversión en muchos lugares del mundo. El mantenimiento es visto como un mal necesario por la mayoría de las empresas.

Lo cierto es que el mantenimiento incide en la capacidad de la empresa para cumplir con los objetivos planteados en su misión o visión empresarial, así como en sus objetivos organizacionales. Los activos no podrán lograr tales objetivos si no se mantienen. El mantenimiento se convierte en un facilitador de negocios en las empresas líderes, o al menos debería hacerlo. Y la confiabilidad es el enfoque que sustenta el mantenimiento, en otras palabras, hacer las tareas de mantenimiento adecuadas y apegarse a sus medidas de prevención de fallas. (Terrence, 2015, p. 17).

En lo que se detallada el mantenimiento es algo indispensable en la empresa donde ya debe formar parte y no verlo negativamente siendo ya un respaldo para las empresas que cuente con ello, así facilitando sus problemas internos o externos en la que pueda originarse, la cual ya si contaría con este planeamiento tendría la solución a la mano o su pronóstico de lo que deriva a su falla para su restauración o lo que sea su mejor inconveniente. El estudio logístico de la revista científica e investigadora nos detalló que:

Se utilizaron medidas correctivas para eliminar problemas, resultando altos costos de mantenimiento de equipos. En estos tiempos se desarrollaron técnicas de mantenimiento predictivo, que implican el diagnóstico y

mantenimiento de la infraestructura instalada tanto en las partes operativas eléctricas como mecánicas de los equipos, permitiendo la reducción de tiempos perdidos y costos de producción. (Anchundia, 2016, p. 7)

La información mostrada resalta que hoy en día se debe tener un plan de análisis para un mantenimiento para que así en el futuro no altere su producción y no sea tan elevado en sus costos si se procedería a un mantenimiento ya teniendo un plan de gestión elaborado sería lo más apropiado para la empresa. Sobre la estrategia predictiva en el mantenimiento industrial se describe lo siguiente:

El análisis de vibraciones es una tecnología que proporciona información adicional sobre el estado de la maquinaria rotativa y es utilizada por la mayoría de los departamentos de mantenimiento predictivo de las empresas industriales. Sin embargo, no es la única técnica predictiva que se puede utilizar en un plan de mantenimiento predictivo; hay otros que tienen mucho poder de diagnóstico. (Robles, 2017, pág. 38)

Viendo esta perspectiva estamos convencidos que no solo hay una técnica para detectar fallas ahora en la actualidad nos encontramos con diferentes tecnologías avanzados para detectar las fallas ya se mecánico, eléctrico, sensorial, etc., vemos la facilidad bajo esta técnica en ver su estado natural del equipo para luego darle lo que se requiera al equipo un mejor diagnóstico y que se va proceder a cambiar para su mejor rendimiento en su producción. En este análisis vemos un concepto estratégico difundiéndonos que mencionó:

La técnica predictiva existe desde hace unos 30 años en la industria. Debido a la falta de apoyo de la dirección de las empresas, ha fracasado la implementación de un plan de mantenimiento preventivo-predictivo. La administración de presupuestos de mantenimiento con perspectiva de corto plazo inhibe las inversiones esenciales en el desarrollo efectivo de planes de mantenimiento. (Jiménez, 2017, pág. 52)

Tomando en cuenta toda esta estrategia ya aplicada en el campo en la empresa aún se siguen negando por no verlo de una forma integrada para la empresa por el costo de inversión que se da, donde en una línea de producción es muy eficaz este

proyecto, pero se podría trabajar con un tercero donde podría ser otra salida para la empresa y su gasto sea menor quizás. Analizando los problemas dados según este citado vemos lo siguiente:

Una técnica puede detectar problemas que una técnica diferente no puede. Razón fundamental para utilizar varias tecnologías, ya que utilizar solo una o dos técnicas de predicción tiene relativamente pocas ventajas. Debido a que es posible que no se reconozcan las indicaciones de advertencia actuales, el equipo fallará en cualquier caso (Acevedo, 2012, p. 45).

En cierta parte si puede que pase una u otra desapercibido, pero haciendo un seguimiento intuitivo será menos los errores las máquinas para su mejor desempeño y durabilidad de vida a los equipos.

En Latinoamérica se ve que una de las preocupaciones que presentan las empresas de las industriases la disminución de costos. Debe garantizarse una gestión de mantenimiento adecuada para reducir los costes de mantenimiento; debe demostrarse la existencia de dificultades en la gestión del mantenimiento; y se deben reconocer las posibilidades de presentar actividades de mejora. (J. J. D., 2019, p. 23)

La empresa hace un estudio la cual trabaja por medio del check list así facilitándose los problemas que pueden tener con la historia de los equipos teniendo sus antecedentes la cual les servirá como un diagnóstico y con darle soluciones a sus problemas utilizando su gestión de planeamiento. En el siguiente contexto vemos que:

Con todo esto, se puede decir que el programa tradicional de mantenimiento predictivo ha evolucionado hacia un enfoque más moderno, basado en combinaciones disponibles comercialmente de sensores, microprocesadores, ordenadores y software, y permanentemente cableado de sistemas instalados de monitoreo. Uno de los factores que han impulsado el desarrollo y la implantación de sistemas de mantenimiento predictivo ha sido la aparición de nuevos parques eólicos en todo el mundo, con aerogeneradores donde la aplicación de un correcto plan de mantenimiento

es un factor determinante para conseguir una vida larga y efectiva de los mismos. (defensa, 2016, pág. 26)

Vemos lo que nos detalla un concepto del ministerio de defensa de una aplicación ya dada en el ejercito la cual es beneficioso para sus equipos y maquinarias de su mando, viendo, así como han ido creciendo bajo esta implementación satisfactoria. En Latinoamérica ponen sus vínculos la cual nos detallan:

Como también en México, como todos los años, tuvo lugar en la ciudad de León el Congreso mexicano de mantenimiento y confiabilidad CMCM 2017, que al igual que el congreso uruguayo se esfuerza por promover el vínculo y encuentro entre las autoridades del mantenimiento y las generaciones emergentes de profesionales y técnicos. En el evento se discutieron temas de importancia crucial, entre estos el desarrollo de la cultura del mantenimiento, el incremento de la productividad global, como eliminar del 33% al 55% en gastos de mantenimiento o como aumentar hasta 100% el tiempo de disponibilidad de equipos, entre otros aspectos. (GONZALES, 2018, pág. 12)

La diferencia de vínculos donde estos países promueven que se desarrolle más la cultura del mantenimiento, llegando a incrementar la su productividad en sus equipos para la confiabilidad. Del contexto nos detalla:

Durante mucho tiempo se pensó que el mantenimiento era una tarea que no requería mucha comprensión técnica. El mantenimiento se ha convertido en lo que es hoy, una actividad vital dentro de cualquier entorno operativo, ya que la experiencia técnica y científica se ha vuelto cada vez más necesaria (Velazco, 2019, p. 13)

El mantenimiento ya es parte de la programación para el cuidado de las máquinas y tenga un mejor desempeño continuo en su producción así no origine cuellos de botella en la producción. En este informe nos describe sobre como: Las inspecciones no son en realidad mantenimiento porque no están destinadas a compensar el desgaste que viene con el tiempo y el uso. Como resultado, las

inspecciones se pueden determinar utilizando estimaciones de personal de mantenimiento calificado (Garrido, 2017, p. 18).

Para hacer este trabajo se puede ver como un tiempo muerto para la producción de la empresa si se procede a una revisión técnica para ver cómo va su equipo y dar así el diagnostico donde también no se puede s ver de una forma negativa, también viendo de otro modo se está ganando tiempo para que un futuro se cambie lo necesario y su parada inapropiada y menos del tiempo que se puede perder si no le se hace una inspección a su debido tiempo.

En este mantenimiento sistemático eficaz de Garrido nos detalla que en otras situaciones que la valorización de vida útil de la maquinaria se ha quedado corta por lo que recomienda sustituir la pieza mucho antes que esté presente algún síntoma de avería. Asimismo menciona que el mantenimiento sistematizado no es completamente eficiente por lo que se realizaba cambios de piezas que aún se encontraban en buen estado, antes de presentar algún fallo, por lo que en verdad no era necesaria la acción. (Garrido, 2017, pág. 21)

A nivel sudamericano la revista nos detalla Gamboa (2015) que para los administradores y propietarios de la pymes ha pasado inadvertido el empleo del mantenimiento predictivo, ya que esto implica que al no haber un buen mantenimiento presente baja confiabilidad y tener ingresos bajos, por lo que implica clientes insatisfechos. Por lo que presentándolo en término monetario seria pérdida de miles de dólares. (p. 10)

Últimamente pasa estos casos por no proceder en trabajar de forma continua e integrada a su producción el mantenimiento predictivo, haciendo el seguimiento a su maquinaria para que así el costo disminuya en el servicio de mantenimiento y tenga una mejor confiabilidad y calidad es su empresa. En un contexto de aplicación predictiva nos detalla lo siguiente: La intervención en equipos más costosos que son críticos para la producción puede reducir el número de intervenciones en este equipo y se puede emplear la intervención de terceros. Como resultado, usamos un factor más pequeño para tener en cuenta los costos más altos. (Tavares, 2013, pág. 13)

En esta propuesta, con respecto al predictivo nos detalla Cedeno lo siguiente, que la presente propuesta motiva a aplicar un modelo de planificación predictiva para conseguir beneficios óptimos de los productos de las pequeñas

empresas, ya que esto permite mantener en estado óptimo para una producción eficiente, asimismo habrá una reducción de paradas imprevistas reduciría los tiempos de paradas no programadas. (p. 10)

El mantenimiento en el Perú se inició en 1976 durante el centenario de la Sociedad Nacional de Industrias, gracias a una cálida bienvenida brindada por el sector empresarial peruano, que reunió a técnicos e ingenieros del campo del mantenimiento industrial. (IPEMAN, pág. 2)

Las industrias en nuestro país optan por mantenimientos correctivos o preventivos la cual no apuestan mucho por mantenimiento predictivo, en algunos casos, donde el propósito es de estar a la par como los otro países vecinos o internaciones tienen ya aplicado en su sistema de trabajo donde permitan mejorar sus altos niveles de producción, aunque ya se ve últimamente entre otras el método de mantenimiento tras el seguimiento de dichos fallos frecuentes y gastos innecesarios en la inversión que puede ser mayor si no sigue en esta técnica de mantenimiento predictivo.

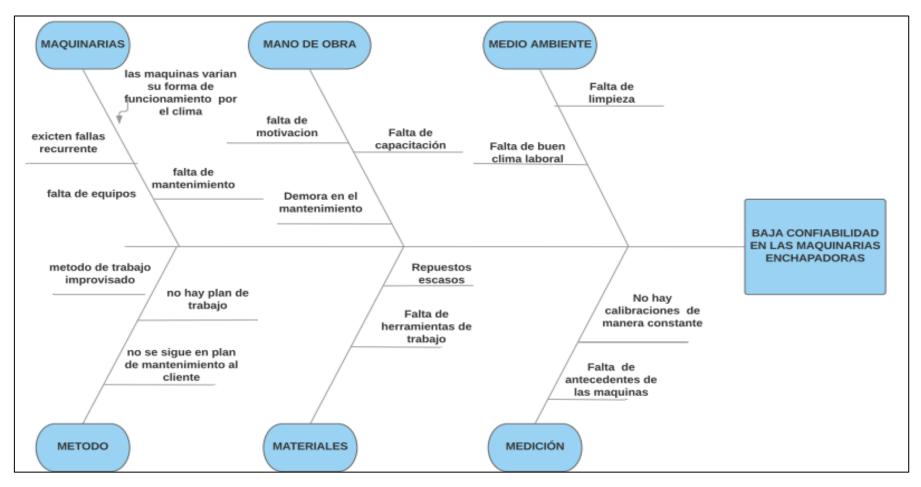
En el sector empresarial la empresa busca dar un servicio y confiabilidad mediante sus maquinarias de última generación, en la actualidad la empresa tiene problemas debido a no poder abastecerlos a sus máquinas de nuestros clientes por paradas no programadas y constantes fallas en los equipos como falta de calibraciones que sucede de improviso. Se evaluaron los gastos de mantenimiento correctivo preventivo y predictivo, así como las estadísticas de paradas no programadas, se identificaron las causas, se exploraron soluciones viables y de largo plazo, y luego se integraron en un modelo de gestión de mantenimiento predictivo.

Estos paros también resultan en una falta de uniformidad y estandarización del producto, lo que resulta en un bajo nivel de productividad en la organización. Además de producir cansancio en los operarios, también provoca retrasos en las entregas a los clientes. Se proporciona un plan de mantenimiento predictivo para prevenir tantos problemas de máquinas como sea posible en los negocios de nuestros clientes, con el fin de preservar el rendimiento del equipo y evitar problemas en el proceso de fabricación en la mayor medida posible.

Viendo la competitividad en la producción nacional se debe tener un resguardo de mantenimiento donde se mencionó que la estrategia más eficiente

para lograr competitividad es producir al menor costo, lo que se puede lograr contribuyendo a una administración de mantenimiento eficaz que reduzca las averías y los productos defectuosos (sanchez, 2017, pág. 5).

A nivel local, en la industria del rubro de muebles para el hogar u oficinas ha ido avanzando sus variedades quien tiene un mejor acabado la cual está por medio las máquinas industriales que hacen el enchape de melamina, en Lima ha ido evolucionando tanto en la competencia del servicio en habilitar los trabajos a los maestros carpinteros, como también a los que se dedican a la fabricación de muebles en melanina con el servicio de cortes de diferentes dimensiones y enchapados para su acabado del producto, que da la empresa por medio de sus maquinarias de su servicio hacia el cliente.


La mayoría de las fallas que exhibieron las máquinas se debieron a un mal uso, y esto continúa sucediendo en la actualidad. Inicialmente, el mantenimiento solo se realizaba cuando era imposible continuar usando el equipo, pero ahora se lo conoce como mantenimiento preventivo.

La empresa Segama Maquinarias SAC, es una empresa de ventas de maquinarias para el rubro de muebles. Las máquinas realizan el enchape de melamina. La empresa carece de un departamento de mantenimiento predictivo competente. En nuestro país están más extendidos los mantenimientos correctivos y preventivos, que son menos costosos a corto plazo. Como resultado, se requieren programas de mantenimiento más sofisticados y confiables, como un mantenimiento completo.

Existe una variedad de máquinas que se utilizan para hacer enchapes de melanina, pero ninguna de ellas está automatizada para facilitar la fabricación de los enchapes. A pesar de poseer partes mecánicas, eléctricas y electrónicas actuales.

Pero por ello nosotros como empresa no encontramos una situación, de darle la solventa a nuestros clientes, pero lo primero para ser más competitivo ante los demás debemos resolver nuestros problemas internos la cual describiremos una a una en lo siguiente y luego así daremos una solución a todos estos detalles. Los cuales se mencionan en el siguiente diagrama de la figura 1.

Figura 1. Diagrama de causa y efecto de la empresa SEGAMAQ MAQUINARIAS S.A.C

Fuente: Elaboración propia

Las máquinas varían su funcionamiento por el clima, esto sucede cuando una maquinaria es llevada a un sitio de altura del Perú y no de un clima cálido de lo normal a cuál hace que su funcionamiento cambie y no este adaptado al comienza en cuando se procede a trabajar.

Cada uno de las causas evidenciadas se detallan a continuación, los mismos que fueron revisados con los responsables del proceso:

Existen fallas casi recurrentes, si por el hecho se hace el llamado constante a la empresa, para darle una solución, careciendo de la constancia de un buen mantenimiento preventivo por la que los técnicos brindan.

Falta de mantenimientos, actualmente hemos verificado un 65% de nuestros clientes a falta de mantenimientos notando así su control en el acabo de la producción no muy buena para su cliente final.

Falta de motivación, quizás en la parte de trabajo se puede deducir que hay un ímpetu para trabajar adecuadamente siendo un bajo rendimiento en lo laboral de cada trabajo para su desempeño total hacia la empresa.

Falta de capacitación, siempre hay malas maniobras en las máquinas que se les instala o después de un mantenimiento donde ya se recurre urgente a una capacitación a los operarios para en manejo de las maquinas adecuadamente, prolongando así mejor tiempo de vida y desgaste de sus herramientas.

Demora en el mantenimiento, la demora del mantenimiento a veces se da frecuentemente por que no se hace una visita anteriormente donde el técnico va directamente sin saber su grado de problema que tiene, por ende, se demora el manteniendo presentándose más detalles de lo debido.

Falta de limpieza, la falta de limpieza siempre se ve reflejado en todas las maquina en casi un 80% por lo que trabaja en contacto del polvo(aserrín)o como también el engrasado y el contacto del polvo hace que se genere más suciedad obstruyendo trabajar la parte mecánica o la parte eléctrica.

Falta de buen clima laboral, es parte del desempeño del trabajo teniendo la

seguridad y tranquila al momento de ejecutar las labores de trabajo.

Método de trabajo improvisado, eso se origina por no tener claramente en lo que va a ejercer quizás otros trabajos no están capacitados técnicamente el personal para lo que se le designa, entonces trata de dale una solución correctiva por el momento viendo que no está al 100% conforme así no se le puede dar su garantía al cliente, causando un desperdicio.

No hay plan de trabajo, no hay una formada o sistema de trabajo adecuado para trabajar ordenadamente en la parte técnica de mantenimiento, sugiriendo un sistema de trabajo con el cliente para darle una garantía del respaldo como nuestro cliente de nuestras máquinas para su mejor producción teniendo una mejor confiabilidad hacia nosotros mejor acabado a su producción.

No se sigue el plan de mantenimiento al cliente, bueno últimamente no se sigue constante a los clientes en su trabajo de su producción haciendo así un diagnostico como vas sus piezas o herramientas en cuando le toca su mantenimiento respectivo.

Falta de equipos, estamos limitamos a trabajar por los equipos que contamos no son lo suficiente para darle una mejor solución por ende contamos con un tercero más, ayudándonos a solventar algunas herramientas y equipos de trabajo para la solución.

Repuestos escasos, hay algunos repuestos que no se consiguen por el año de la maquina estos repuestos ya son descontinuados en donde su solución sería fabricar con anticipación o darle otro parecido con el fin de darle otra mejor opción a su problema.

Falta de herramientas de trabajo, hay modelos de máquinas ya diferentes o de modelos modernos donde ya no son las mismas herramientas que se trabaja dónde nos sentimos obligados a actualizarnos usando nuevos métodos de trabajo y herramientas para su mejor trabajo elaborado a nuestro cliente.

No hay calibraciones de manera constante, por la falta de visita en nuestros clientes las maquinas se encuentran descalibradas y con un mal acabado de su producción

constante sugiriendo la visita continua, aplicando así un sistema de trabajo para su mejor acabado en su producción del material.

Falta datos de antecedentes de las máquinas, existen maquinas ya descontinuadas en sus visitas ya no registradas en el sistema, donde a lo largo del tiempo no hay información de una última visita dada para saber el estado técnico o como se encontró últimamente dándole así un mejor diagnóstico y proceder a trabaja adecuadamente.

El exceso de movimiento de material, los altos volúmenes de material en producción y un aumento en el proceso de ventas son algunas de las razones que se presentan en la empresa. El objetivo de esta tesis es crear un nuevo proceso de máquina utilizando la idea de mejora de la empresa que se ha proporcionado.

Esta empresa tiene como objetivo brindar un servicio de primer nivel a sus clientes mediante un mantenimiento predictivo basado en la norma ISO 9001, con el fin de mejorar la confiabilidad del cliente. Actualmente, nuestros clientes están experimentando dificultades como resultado de los altos costos asociados con paradas no programadas y fallas frecuentes de los equipos.

Tabla 1. Causas potenciales de la baja confiabilidad de máquinas

Código	Causas			
P1	Las maquinas varían su forma de funcionamiento por el clima			
P2	Existen fallas recurrentes			
P3	Falta de mantenimientos			
P4	Falta de motivación			
P5	Falta de capacitación			
P6	Demora en el mantenimiento			
P7	Falta de limpieza			
P8	Falta de buen clima laboral			
P9	Método de trabajo improvisado			
P10	No hay plan de trabajo			
P11	No se sigue el plan de mantenimiento al cliente			
P12	Falta de equipos			
P13	Repuestos escasos			
P14	Falta de herramientas de trabajo			
P15	No hay calibraciones de manera constante			

Tabla 2. Jerarquización de las causas evidenciadas

Causa	Frecuencia	Correlación	Efec.	Acumulado	
			Frecuencia		
P9	23	15	345	19%	345
P10	21	14	294	35%	639
P11	20	13	260	47%	860
P6	17	13	221	59%	1081
P15	14	13	182	69%	1263
P3	11	13	143	77%	1406
P16	10	12	120	83%	1526
P2	9	11	99	89%	1625
P12	7	10	70	93%	1695
P5	5	9	45	95%	1740
P8	3	9	27	97%	1767
P4	3	8	24	98%	1791
P14	2	8	16	99%	1807
P7	2	7	14	100%	1821
P13	1	6	6	100%	1827
P1	1	3	3	100%	1830
TOTAL	143		1869		

Formulación del problema de investigación

Para la formulación del problema de estudio se tomó en cuenta las diversas causas que se identificaron; el cual como problema general de esta investigación fue: ¿En qué medida la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 mejora la confiabilidad al cliente, 2019?

Como problemas específicos se consideraron los siguientes:

- ¿En qué medida la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 incrementa el tiempo promedio entre falla (MTBF) de la máquina, 2019?
- ¿En qué medida la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 disminuye el tiempo promedio de reparación de fallas (MTTR) de la máquina, 2019?

Entre las diversas razones que justificaron la realización de este estudio tenemos la Justificación metodológica, sobre el que Valderrama (2015) mencionó que se refiere al uso de enfoques y técnicas específicas (instrumentos como encuestas, formularios o modelos matemáticos) para el estudio de problemas similares al investigado, así como la posterior aplicación de otros investigadores. (p. 140).

El autor infiere que el uso de metodologías y diversas técnicas sirven de aporte a brindar solución a problemas similares por lo que en el presente caso es hallar las causas de diversas fallas de las maquinarias enchapadoras de madera, por lo esto es generado del efecto de la variable dependiente ya que es de importancia la manipulación de la variable independiente y poder lograr medir el cambio que se requiere con el uso de las herramientas propuestas.

Justificación práctica, al respecto Mora (2009) indicó que el mantenimiento predictivo examina la evolución temporal de factores particulares para vincularlos a la incidencia de fallas y determinar cuándo esta situación dará lugar a escenarios fuera de estándar (p.433). En este estudio se propone mejorar la confiabilidad de los clientes al adquirir máquinas de la empresa SEGAMA MAQUINARIAS, aplicando para ello el mantenimiento predictivo; con ello ayudar a optimizar la disponibilidad de las maquinarias, ya que se eliminará paradas imprevistas y se asegura una producción continua sin imprevistos. Todo lo mencionado brinda beneficios para los clientes que adquieran las maquinarias que brinda la empresa.

Justificación económica, Para Diaz et al. (2016) acerca de esta justificación manifestó que el [...] El mantenimiento debe considerarse una inversión más que un costo. Mediante la adopción de filosofías, esta transición permitió una mejora significativa y sostenible en los resultados operativos y financieros de las empresas. (p. 137). Por otro lado, Alessio (2004) explicó que el mantenimiento predictivo puede ahorrar un 1% del valor agregado de producción durante un año, con un 65% del costo de producción y un 35% del costo de mantenimiento (p.438). El análisis económico es de suma importancia para llevar acabo la justificación en el ámbito financiero que nos brinde seguridad que las inversiones realizadas en la empresa nos permitan tener una buena rentabilidad.

Implementar la metodología de mantenimiento predictivo bajo la norma ISO 9001:2018, permitirá reducir los costos elevados en los diversos mantenimientos

correctivos, asimismo aumentará el periodo de vida de las máquinas ya que eliminará fallas en el periodo de vida. Todo ello generará rentabilidad a la empresa.

El objetivo general de la investigación fue: Determinar en qué medida la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 mejora la confiabilidad al cliente.

Los objetivos específicos fueron:

- OE1: Determinar en qué medida la aplicación del mantenimiento predictivo basado en la ISO 9001:2015 incrementa el tiempo promedio entre falla (MTBF) de la máquina.
- OE2: Determinar en qué medida la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 disminuye el tiempo promedio de reparación de fallas (MTTR) de la máquina.

Se estableció la hipótesis general del estudio que fue: La aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 mejora significativamente la confiabilidad al cliente.

Como hipótesis específicas se consideraron a los siguientes:

- HE1: La aplicación del mantenimiento predictivo basado en la norma ISO
 9001:2015 incrementa el tiempo promedio entre falla (MTBF) de la máquina.
- HE2: La aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 disminuye el tiempo promedio de reparación de fallas (MTTR) de la máquina.

II. MARCO TEÓRICO

Entre las diversas literaturas, que se revisaron respecto a los temas de estudio se consideró a los siguientes autores quienes expusieron sus estudios los cuales tuvieron relación con esta investigación; los mismos que sirvieron como antecedentes de nivel internacional y fueron los siguientes:

Jiménez y Farfán (2019) en su estudio de tesis donde tuvieron como objetivo elaborar un plan de mantenimiento predictivo para mejorar la producción evitando paradas por fallos de equipos o máquinas. Su metodología fue de tipo aplicada, por el diseño pre experimental con un enfoque cuantitativo. El autor encontró que se habían manejado las dificultades generales de planificación del mantenimiento basadas en la confiabilidad y disponibilidad de las máquinas que habían obstaculizado o retrasado los procesos en el sector productivo. Como recomendación general, se debe analizar el resto de las áreas de producción y se debe refinar la frecuencia de las evaluaciones predictivas de las tres áreas trabajadas en la planta.

Morataya (2015) en su investigación cuyo objetivo fue proponer la creación del departamento de confiabilidad y establecer un plan de mantenimiento predictivo para equipos críticos. Su metodología se implementó utilizando un enfoque cuantitativo y un diseño pre-experimental. El autor concluyó que, para aplicar el mantenimiento predictivo, cada máquina debe ser considerada por separado, reemplazándose las revisiones periódicas por mediciones periódicas que puedan rastrear la evolución del estado operativo con mayor detalle, y que las técnicas de inspección más adecuadas en equipos críticos fueron análisis de vibraciones mecánicas, análisis de ultrasonidos y etiquetado infrarrojo.

Patiño (2015) hizo su investigación con el objetivo de implementar un sistema de gestión de la calidad que satisfaga las necesidades de los clientes considerando la norma técnica ISO 9001:2008. Se utilizó su metodología, un enfoque de diseño cuasi-experimental cuantitativo. El autor encontró que, al realizar un examen amplio de las condiciones existentes de la empresa, los resultados se

determinaron por capítulo de la norma y el promedio global del 56 por ciento bajo el mismo estudio, lo que permitió la construcción de una implementación de mantenimiento adecuada.

Gallo (2018) en su estudio cuyo objetivo fue desarrollar el mantenimiento predictivo mediante la técnica de la termografía para evaluar el correcto funcionamiento de los componentes de los alimentadores de CNEL EP Bolívar. Su metodología fue de tipo aplicada, descriptivo con enfoque cuantitativo. La termografía realizada en los transformadores de alimentación y distribución de Guanujo Centro reveló puntos calientes, los más críticos de los cuales se encuentran en los bajantes, puntos de conexión y bujes del transformador; Además, el análisis termográfico permitió el desarrollo de un plan de mantenimiento predictivo basado en programas de mantenimiento utilizando el software de la cámara FLIR T-400.

Verdezoto (2015) su investigación fue establecer un diagnóstico de la situación actual y proponer la elaboración de un plan de mantenimiento predictivo, basado en el análisis de la criticidad de los equipos que interviene en el proceso de laminación en una empresa industrial. Al proponer las herramientas de última tecnología que favorecen el proceso de producción a través de un diseño de mantenimiento predictivo, el autor determinó que la propuesta representa una opción muy rentable para reducir drásticamente el tiempo de inactividad operacional, lo cual ha sido previamente estudiado.

Los estudios en el aspecto nacional que se consideraron como referencia al tema de estudio fueron los siguientes:

Rojas (2016) su estudio de tesis fue incrementar la rentabilidad en una compañía minera, mediante la propuesta de un sistema de mantenimiento predictivo en el área de procesamiento de mineral. Se utilizó una metodología aplicada, con un diseño pre-experimental y un enfoque cuantitativo. El autor determinó que el mantenimiento predictivo reduce el número de fallas significativas del equipo de trituración en un 40%, lo que resulta en un aumento en la disponibilidad del equipo de trituración del 93.92% al 96.42%. La eficiencia del

procesamiento del mineral aumentó del 93.8% al 96.6%, lo que redujo los costos de mantenimiento y aumentó la rentabilidad del 28% al 34%.

Santiago (2017) realizó su estudio de tesis cuyo objetivo fue determinar como la implementación del mantenimiento predictivo incrementa la productividad en el área de máquinas automáticas. Su metodología fue de tipo de estudio pre experimental Aplicada, con diseño de investigación pre experimental, con enfoque cuantitativo. Además, el autor concluyo que con los valores obtenidos con la fórmula planteada se logró incrementar la productividad con el mantenimiento predictivo en un 95% por lo que el incremento fue de un 30% respectivamente.

Pasache (2017) su investigación fue determinar si la implementación de un plan de mantenimiento predictivo por análisis de vibraciones mejora la confiabilidad de los equipos rotativos en el área de galvanizado. Su metodología fue cuantitativa con diseño cuasi experimental – aplicada y con nivel explicativo, donde los resultados fueron satisfechos. El autor concluyo que la práctica de mantenimiento predictivo por análisis de vibraciones ayuda a aumentar la confiabilidad en un 5%, la disponibilidad mejoro con un incremento de 7% y el tiempo medio de reparación logro disminuir de un 65% a 44.2% respectivamente.

Inti y Alvares (2019) hicieron su estudio de tesis con el objetivo de optimizar los costos operarios por disponibilidad, aplicando el mantenimiento predictivo por análisis de aceite, de los montacargas en la empresa. Su metodología fue cuantitativa con diseño pre experimental – aplicada y con nivel explicativo. El autor concluyó que la práctica de mantenimiento predictivo por análisis de aceite ayuda a aumentar la disponibilidad del montacargas del 1,11% la cual demuestra un ahorro en los costos operativos del montacarga en \$34 393,88 dólares en un año operacional, confirmando la optimización en los costos operativos.

Cabrera (2018) en su estudio de tesis que tuvo como objetivo optimizar los indicadores de calidad de suministro, realizando mantenimiento predictivo mediante un sistema termográfico en los indicadores de media tensión. Su metodología fue cuantitativa con diseño pre experimental – aplicada y con nivel explicativo. El autor concluyó que después de aplicación del mantenimiento predictivo, los indicadores de calidad de suministro en los alimentadores de media tensión se logró reducir sus

valores en SAIFI 4.96, obtenido una reducción de 35% y en SAIDI 8.24 obteniendo una reducción del 30%.

Mantenimiento Predictivo bajo la norma ISO 9001:2015

Pretende aumentar la confiabilidad de los diversos sistemas de producción de una planta. Ya que esta función es de suma importancia para poder tener los equipos en buena producción. Alessio (2004) mencionó lo siguiente: el mantenimiento juega un papel vital en el sistema de producción de una empresa; tiene un impacto en la rentabilidad; aborda el requisito de mantener el equipo en funcionamiento para que no se interrumpan los planes de producción y las operaciones comerciales. (p.429)

El autor explicó, que en uno de los sistemas que es de suma importancia es en el área logístico, por lo que de ello depende una buena rentabilidad en la empresa puesto que los equipos siempre deben estar operativos, es decir todo el tiempo deben estar en marcha. Por lo que para ello se fue desarrollando cada vez más sobre el mantenimiento, para evitar paros de máquinas y eliminar el riesgo que las operaciones de la industria sea afectada, por lo que para Poor y Basl (2019) explicaron lo siguiente:

Los tipos de mantenimiento se desarrollaron gradualmente dependiendo de las circunstancias. El tipo más antiguo es después fallo de mantenimiento, o mantenimiento reactivo, cuya ventaja es el uso de la vida útil de la máquina. Por el contrario, la desventaja son las averías no planificadas y el posible tiempo de inactividad de la máquina. (p.4).

El autor explicó, que de acuerdo a las circunstancias el mantenimiento fue avanzando, ya que se conoció que las desventajas serían las averías no planificadas. Por lo que de aumenta la inactividad de la planta, porque esto genera un cuello de botella por la falta de maquina operativas que cumplan la demanda en el tiempo establecido. Ya que el mantenimiento fue cumpliendo diversos propósitos y cada vez mas era indispensable en las industrias, por lo que explicó Boero (2009) lo siguiente:

[...] Es un conjunto de acciones con los siguientes objetivos: a) mejorar el funcionamiento de las instalaciones; b) menores costos; c) extender la vida

útil del equipo; d) contribuir a la mejora de la calidad; e) mejorar la seguridad del personal; f) contribuir al medio ambiente; h) evitar todas las pérdidas. (p.9)

El autor refirió que el mantenimiento cumple con diversos propósitos, que cumplir con cada una de esos propósitos es indispensables en la planta de producción. Unos de los propósitos primordiales que se pueda resaltar más seria prolongar la vida útil de los equipos y contribuir a mejorar la calidad.

Mantenimiento predictivo

El mantenimiento se sub divide en diversos tipos, por lo que en esta oportunidad nos enfocaremos más al respecto es en el mantenimiento predictivo. Ya que con el transcurrir del tiempo la tecnología fue avanzando y siendo utilizando para mejorar la confiabilidad de las maquinas industriales, logrando un mejor monitoreo de la misma, por lo que Poor y Basl (2019) explicó lo siguiente:

El monitoreo del estado de la máquina, que permite acceder a los datos simultáneamente en Internet, permite sus usuarios a utilizar cada vez más datos recopilados directamente del fabricante. No es tan inusual para máquinas junto con sofisticados sistemas autónomos para predecir intervalos de mantenimiento en sí mismos. (p.8)

El autor manifestó, la tecnología es de mucha ayuda ya que los datos son recopilados de mejor manera, puesto que las maquinas fueron avanzando con sofisticados equipos que son de mucha ayuda para poder predecir el espacio de los mantenimientos, es decir que se podrá saber en qué momento se deberá dar mantenimiento de manera exacta sin que el equipo llegue a afectarse o llegar a un desgaste.

Para obtener una definición exacta de mantenimiento predictivo, se puede valorar el concepto de Mora (2009) que indicó que el mantenimiento predictivo examina la evolución temporal de factores particulares para vincularlos a la incidencia de problemas y calcular durante cuánto tiempo esta circunstancia generará escenarios que se desvíen de la norma. [...] (p.433). Manifestó el autor que el mantenimiento

predictivo evoluciona junto con las ocurrencias de fallas, con el propósito de conocer en qué tiempo ocurrirá fallas imprevistas.

Por otro lado, Poor y Basl (2019) explicaron lo siguiente:

El mantenimiento predictivo es un enfoque analítico que le permite predecir cuándo se producirá el equipo de producción. Falla y evita el mantenimiento oportuno y efectivo. Sin embargo, puede ir más allá y proporcionar información, Sobre la base de esto es posible "ajustar" el dispositivo gradualmente y reducir o incluso eliminar el fallo tarifa. El mantenimiento preventivo también incluye la evaluación de factores que afectan la calidad del producto y la implementación Medidas para optimizarlo. (p.6)

Se infiere, que el presente tipo de mantenimiento está basado en un enfoque analítico, que en el cual se evalúa factores que perjudican la calidad del producto a elaborar.

ISO 9001:2015

Según la norma ISO 901:2015 nos brinda el siguiente concepto: describe por qué el concepto es vital para la organización, algunos ejemplos de sus beneficios y ejemplos de actividades comunes para mejorar el desempeño de la organización cuando se adopta el principio. (p. 8)

Según Escalante (2017) explicó que la actual definición de calidad se centra no solo en satisfacer los requisitos, sino también en reducir la variación tanto como sea posible para acercarse lo más posible al objetivo (p. 18). Se infiere del presente texto que, cada vez más se busca un mejoramiento continuo, sin olvidar el factor económico ya que este influye mucho sobre una mejora.

Por otro lado, tenemos un pensamiento diferente Abril, Enríquez y Sánchez (2012) indicaron lo siguiente: el concepto de calidad ha experimentado varios cambios. En inicio se consideró al control de calidad, como nivel inicial de gestión de la calidad y se basa en técnicas de inspección de la producción. Promueve el desarrollo continuo en un negocio al incluir a todo su personal y enfocarse en la satisfacción de los consumidores internos y externos. (p. 44)

Para Abril, Enríquez y Sánchez (2012) explicaron que la gestión de la calidad está basada en 8 principios de gestión que los cuales son los siguientes:

1) enfoque basado en los procesos, 2) mejora continua del sistema de gestión de la calidad, 3) documentación del sistema de gestión de la calidad,

4) Compromiso de la dirección, 5) enfoque al cliente, 6) control de cambios,

7) comunicación interna, 8) formación del personal. Estos principios apuntan

a establecer una filosofía que asegure el éxito. (pp. 53-54)

Dimensión: Planificar

Basándonos en la norma ISO 9001:2015 la planificación, para Abril, Enríquez, y

Sánchez (2012) señalaron:

En los puntos 5.4.1 y 5.4.2 donde se habla de los objetivos de la calidad y la

planificación, especifica que se deben definir y registrar metas cuantificables

y metas que sean consistentes con la política de calidad y la mejora continua.

La planificación de la calidad también debe registrarse y alinearse con los

demás requisitos. (p. 58)

Basándonos en el área de mantenimiento, podemos apreciar según Alessio (2004)

lo siguiente:

Comienza con una lista de máquinas y componentes, luego de lo cual se

crea un archivo para cada máquina, que incluirá, entre otras cosas, el

administrador del sistema, la criticidad de la máquina y toda otra información

relevante (código, ubicación, características, consumo, componentes y

repuestos). (p. 455).

Análisis de criticidad

García (2012) indicó que dependiendo del proceso que se esté llevando a

cabo, el análisis de criticidad también se puede utilizar para identificar lugares

donde se prestará especial atención al mantenimiento (p. 110). Se explica que

antes de realizar el análisis de criticidad se debe realizar un control e identificar las

áreas donde se necesita ser analizada con más minuciosidad, para lo que García

(2012) explicó que los datos necesarios para el análisis de criticidad siempre están

relacionados con la frecuencia, los efectos y las consecuencias de las fallas, con

énfasis en las consideraciones ambientales y de seguridad (p. 111)

21

Según García (2012) indicó que la criticidad = Frecuencia de falla * consecuencia * 100%.

Donde:

Consecuencia = (nivel de producción * MTTR * imp. Producción) + costo de reparación + impacto de seguridad + impacto ambiental + satisfacción del cliente. (p. 111).

Dimensión 2: Hacer

Para Abril, Enríquez y Sánchez (2012) explicaron:

Se debe planificar la realización del producto, establecimiento e identificando los procesos y documentos [...]. Los métodos, parámetros, estándares y mediciones para el control del proceso deben especificarse de manera que la calidad del producto o servicio final cumpla con las demandas legales o del cliente. (p. 60).

Dimensión 3: Verificar

Para Abril, Enríquez y Sánchez (2012) explicaron:

En su punto 7.6 la norma dispone el deber de controlar e identificar los equipos de seguimiento y medición mediante los cuales se obtienen las mediciones que constituyen los datos de entrada de la siguiente etapa de análisis y mejora. Este requisito expresa la necesidad de controlar, calibrar, conservar, manejar y almacenar los equipos de medición [...]. (p. 63)

Dimensión 4: Actuar

Para Abril, Enríquez y Sánchez (2012) explicaron:

La norma establece específicamente el compromiso de la dirección en los procedimientos de control del producto no conforme (8.3), acción correctiva (8.5.2), y acción preventiva (8.5.3). Mediante estos 3 procedimientos la norma pretende que se eliminen y reduzca las causas de no conformidad [...]. (p. 65)

En la siguiente tabla se muestra la integración del mantenimiento predictivo y la norma ISO 9001:2015

Tabla 3. Cuadro de integración de variables independientes.

ISO 9001:20°	15	Mantenimiento Predictivo		
	Acciones para abordar riesgos	Análisis de criticidad.		
PLANIFICAR	y oportunidades Objetivos de la calidad y planificación para lograrlos			
	Planificación de los cambios			
	Recursos			
	Competencia			
	Toma de conciencia			
	Comunicación			
	Información documentada	Actividades programadas.		
	Planificación y control operacional	Control de mantenimientos.		
HACER	Requisitos para los productos y servicios			
	Diseño y desarrollo de los productos y servicios			
	Control de los procesos, productos y servicios suministrados externamente			
	Producción y provisión del servicio	Tomar acciones modificativas		
	Liberación de los productos y servicios			
	Control de las salidas no conformes	Controlar las salidas		
VEDIEIO A D	Seguimiento, medición, análisis y evaluación	Seguimiento de fallas		
VERIFICAR	Auditoria interna	Identificación de puntos críticos		
	Revisión por la dirección	Monitoreo		
	Generalidades	Histograma		
ACTUAR	No conformidad y acción	Acciones a realizar		
	correctiva			
	Mejora continua	Mejora continua		

Fuente: Elaboración propia.

Variable dependiente: Confiabilidad

Mora (2009) mencionó que la posibilidad de que un artículo realice

adecuadamente las funciones para las que fue construido durante un período de

tiempo y en condiciones normales se define como confiabilidad (p. 95). Esto

constituye una medida de desempeño para ello se usa el número de fallas, por lo

cual la capacidad de acción es el tiempo medio entre falla o en sus siglas en ingles

MTBF, ya que con la ayuda de las operaciones del mantenimiento se da una

disminución en el MTTR, por lo que proporcionara una mayor confiabilidad.

Por otro lado, Arata (2009) explicó:

La teoría de la confiabilidad es una herramienta para anticipar el

comportamiento operativo ya que permite la selección de las soluciones

óptimas tanto durante la creación de un proyecto como a lo largo de su

ejecución. El objetivo final es reducir el costo total de una operación industrial

a lo largo de todo su ciclo de vida. (p. 48)

Para obtener la confiabilidad de las maquinarias, se utiliza un informe técnico de lo

cual nos brinda la disponibilidad de las máquinas. Por lo que para ello necesitamos

si la disponibilidad aumenta o disminuye, para ello se toma los datos del tiempo

total de operación, el tiempo total de reparación y el número de fallas. Luego de ello

se procede a obtener el MBTF Y MTTR, que son datos de suma importancia para

obtener la confiabilidad de las máquinas.

También, Alessio (2004) explicó que la disponibilidad de un sistema mejora

a medida que disminuyen el MTTR y el MTBF. El control efectivo de estos dos

aspectos del diseño del equipo es extremadamente importante para el

mantenimiento y la logística. (p. 446). Por lo que inferimos que la disponibilidad

depende del MTTR y el MTBF, es decir de los datos del tiempo total de operación,

el tiempo total de reparación y el número de fallas.

Cálculo de Confiabilidad: C= MTBF / (MTBF+MTTR)

Dónde:

C: Confiabilidad

MTBF: Tiempo Promedio de Entre Falla

24

MTTR: Tiempo Promedio de Reparación de fallas

Tiempo promedio de entre falla (MTBF)

Mean Time Between Failures (MTBF) sobre el que García (2012) explicó que representa el intervalo de tiempo más probable entre el inicio del equipo y la ocurrencia de una falla; es decir, el tiempo medio transcurrido entre el inicio del equipo y la aparición del defecto. (p. 131)

Recalcó García (2012) que debe verse como una señal más que describe la conducta de un equipo de alguna manera. De manera similar, los datos pasados guardados en los sistemas de información deben usarse para establecer el valor de esta indicación (p. 131).

Cálculo de Fiabilidad MTBF= HTO/NF

Dónde:

MTBF: Tiempo Promedio sin fallar

HTO: Hora Total de Operación

NF: Numero de Falla

Tiempo promedio de reparación entre fallas (MTTR)

Su nombre original en inglés Mean Time To Repair (MTTR), sobre el que Alessio (2004) indicó que es una estadística compuesta que representa el promedio aritmético de los tiempos de mantenimiento individuales e incluye el tiempo de diagnóstico de fallas, el tiempo de desmontaje y el tiempo de logística para el suministro de repuestos (p.445)

Por otro lado, García (2012) explicó este indicador mide el tiempo que se tarda en reparar un equipo para devolver la unidad a las condiciones óptimas de funcionamiento después de que ha estado fuera de servicio durante un período de tiempo específico debido a una falla (p. 131).

Se infiere, que es el tiempo que en cual el equipo está en mantenimiento, para que el equipo se encuentro en una óptima condición, por lo que dentro de ella se encuentra diversos tiempos en las operaciones del mismo. Por lo que también es preciso tener en cuanta como concepto dentro del MTTR es la mantenibilidad que Gonzales (2016) menciona: "La mantenibilidad es la capacidad de que la maquina o equipo sea mantenido o restaurado en un periodo de tiempo dado y

pueda volver a su funcionamiento" (p. 134). Ya que se infiere del autor, que toda

máquina que haya estado inoperativo, es decir sin uso, pueda volver a su estado

de origen y prolongar su periodo de vida por medio de una reparación rápida y

eficaz.

Por otro lado, Mora (2019) explicó que es el tiempo neto promedio requerido

para realizar reparaciones correctivas o mantenimiento, excluidos los retrasos

logísticos y administrativos (p. 82). Por lo que parar hallar el MTTR se obtiene la

presente formula:

Cálculo de Tiempo promedio de reparación: MTTR= HTR/NF

Dónde:

MTTR: Tiempo promedio de reparación de fallas

HTR: Horas totales de reparación

NF: Número de falla

26

III. METODOLOGÍA

3.1. Tipo de Investigación

Investigación de tipo aplicada porque busca solucionar los problemas que se encuentran en la empresa Segamaq Maquinarias S.A.C, con el propósito de mejorar la confiabilidad de las maquinarias que brinda a sus clientes, mediante la aplicación del mantenimiento predictivo bajo la norma ISO 9001:2015. Ortiz y García (2008) explicaron que la investigación aplicada se esfuerza por satisfacer las demandas sociales relacionadas con el bienestar. Aplicar el conocimiento científico a los desafíos de la producción de bienes y servicios, así como realizar aportes en determinadas condiciones. (p. 38).

Diseño de investigación

Hernández, et al (2014) dividen al diseño en tres clases los cuales son preexperimentos, experimentos puros y cuasi experimentos. (p 140). El presente diseño de investigación es de tipo experimental de tipología Pre experimental, porque se manipulan al menos una o más variables independientes (mantenimiento predictivo bajo la norma ISO 9001:2015) para conocer el efecto sobre la variable dependiente (confiabilidad), para conocer el antes y después de la aplicación del mantenimiento predictivo bajo la norma ISO 9001:2015 en la empresa Segama Maquinarias SAC. Según lo mencionado por los autores en este diseño se da la manipulación de una de las variables para ver su efecto sobre la variable del problema.

Nivel de investigación

Al respecto del nivel descriptivo Hernández, et al. (2010) indicaron:

Las propiedades de los objetos de estudio se proporcionan en este nivel. Es decir, simplemente pretenden medir o recopilar información sobre las ideas o variables a las que se refieren de forma individual o conjunta; su objetivo no es mostrar cómo se relacionan. (p. 80)

Según lo indicado este estudio tuvo el nivel descriptivo y explicativo; es descriptivo porque se observa y se describe las causas que ocasionan los problemas; es explicativo porque se busca explicar el motivo que se originan los problemas en las maquinarias que brinda la empresa SEGAMAQ, mediante el diagrama causa y efecto, ya que así se podrá hallar la solución con la relación de las variables de estudio

Enfoque de Investigación

Sobre el enfoque lo explican Hernández, et al. (2014) en lo siguiente cuando se trata de avances en la investigación cuantitativa, destaca el diseño de instrumentos para cuantificar una variedad de fenómenos psicosociales que antes se pensaba que eran difíciles de abordar científicamente. (p. 10). El enfoque del estudio es cuantitativo porque utiliza datos numéricos que van a permitir hacer cálculos mediante análisis estadísticos. El análisis y comprobación de los diversos datos recolectados de la empresa, utilizando registro de datos estadísticos, aparatos de precisión, etc.

Alcance de la investigación

Hernández, et al. (2010) sobre el alcance indicaron que los estudios longitudinales recopilan datos a lo largo del tiempo en puntos o períodos diferentes para sacar conclusiones sobre el cambio, sus causas e implicaciones. (p. 158). El estudio se realizó con un corte longitudinal, porque se analizó el mantenimiento de las máquinas que ejecuta la empresa, mediante la recolección de datos e información, que en la cual conlleva a la disminución de la confiabilidad de las maquinas durante un periodo de 16 semanas, para poder analizar la problemática en el transcurso de presente periodo.

3.2. Variables y operacionalización

Variable 1: Mantenimiento predictivo bajo la norma ISO 9001:2015

Definición Conceptual

Este tipo de mantenimiento utiliza aparatos de prueba sofisticados para ayudar a predecir cuándo puede fallar algún componente del equipo. Permite tomar

decisiones lógicas como el reemplazo de partes gastadas en un turno de reparación

que no interfiera con la producción. (Alessio, 2004, p.435).

La adopción de un sistema de gestión de la calidad es una decisión estratégica

para una organización que le puede ayudar a mejorar su desempeño global y

proporcionar una base sólida para las iniciativas de desarrollo sostenible. (Gómez,

2017, p.10).

Definición operacional

Permite detectar fallas en los equipos industriales, siguiendo un conjunto de pasos

sucesivos con el propósito de detectar las posibles fallas en los equipos. Para el

cual se utilizó los instrumentos que permitieron medir cada uno de las dimensiones.

Dimensión 1: Planificar

Indicador:

criticidad (%) = frecuencia * consecuencia

Dimensión 2: Hacer

Indicador:

actividades programadas (%) = actividades ejecutadas / actividades

programadas

Dimensión 3: Verificar

Indicador:

evaluación de fallas (%) = número de equipos monitoreados / total de

equipos

Dimensión 4: Actuar

Indicador:

acciones correctivas (%) = tiempo de operación / tiempo disponible

Variable 2: Confiabilidad

Definición Conceptual

La confiabilidad es la característica de un equipo o sistema, expresada como una

probabilidad, mediante la cual desarrollará la función requerida de la manera

29

deseada, bajo todas las condiciones relevantes, durante el tiempo para el cual se le requiera (Alessio, 2004, p.444)

Definición operacional

Engloba tiempos y se expresa en términos probabilísticos. En donde busca medir criticidad, fiabilidad, mantenibilidad y brindar un diagnóstico general.

Dimensión 1: tiempo medio entre fallas

Indicador:

cálculo MTBF (%) = tiempo total de funcionamiento / número de fallas

Dimensión 2: tiempo medio de reparación

Indicador:

cálculo del MTTR (%) = tiempo total de inactividad / número de fallas

En ambas variables se consideró como escala de Medición: el tipo razón debido al tipo de dato obtenido y dato esperado como resultado, estos fueron numéricos continuos.

3.3. Población y muestra

Sobre población Hernández, et al. (2014) explicaron que engloba a todos los sujetos que participan de un estudio que presentan similares características (p. 174). La población de la presente investigación estará caracterizada por un grupo de 20 máquinas de un modelo, las cuales han sido vendidas por SEGAMA MAQUINARIAS S.A.C a diversas empresas, que las cuales se le brinda al cliente el mantenimiento correspondiente a dichas máquinas, los cuales presentan características similares, asimismo el análisis de la población se realizara por horas de trabajo.

Muestra

Sobre muestra, Ñaupas, et al. (2014) explicaron que representa un subconjunto, o porción de una población, elegida usando varios enfoques, considerando siempre la representatividad del universo (p. 246). Debido a que el diseño de la investigación es experimental de una tipología pre-experimental, la muestra en esta tesis se extrae de la comunidad en general.

Muestreo

Hernández, et al. (2014) explicaron que el subconjunto de la población en el que la selección de elementos se basa en las características de la investigación más que en la probabilidad (p. 176). La muestra la que se aplicará en el presente estudio será no probabilística, porque es una técnica que no depende de probabilidades, es decir de la fórmula.

Unidad de análisis

Se realiza en dos grupos de máquinas que es el de control y el experimental, que estas máquinas son de un solo tipo, pero de diferente modelo por lo que son de características iguales. La empresa hace el mantenimiento a las maquinas vendidas en todo el Perú, por lo que la población de máquinas son 20, de los cuales 10 se localizan en lima y las otras 10 de diversos departamentos.

Por lo que opto de colocar las 10 máquinas que se localizan en lima en el grupo experimental por la facilidad de llevar los instrumentos de medición y evitar costos de envió en instrumentos, y los 10 restantes en el grupo de control ya que nos hace más factible por lo que el personal siempre lleva un reporte de control.

3.4. Técnicas e instrumentos de recolección de datos

Técnica

Hernández, et al. (2014) indicaron que implica la creación de un plan preciso de métodos para recopilar datos para un objetivo determinado (p. 198). En nuestro caso la técnica será la observación por lo que se analizará con inspecciones el cambio y los defectos de las máquinas, ya que por medio de la presente técnica se logrará registrar diversos resultados a través de conjuntos de categorías en un intervalo de tiempo.

Instrumentos

Son los requerimientos que nos ayudan a poder observar y asimismo registrar datos, cuando algún dato requiera conocer el contexto a investigar, es decir que con lo que vas a levantar información en lo que sucede en la realidad del estudio. En una versión anterior Hernández, et al. (2010) indicaron que, en todos los campos temáticos, se han desarrollado métodos útiles para recopilar datos sobre variables

específicas. Así como herramientas para comprender las operaciones de comunicación de una empresa. (p. 262).

Ficha de recolección de datos

Estos son instrumentos que asisten a solicitar información de los datos, con el propósito de obtener datos verdaderos, ya que Hernández et al., (2010) indicaron que las investigaciones emplean una variedad de técnicas de recopilación de datos. Hay varias formas de cuestionarios, exámenes estandarizados y compilación de contenido para análisis estadístico u observación en estudios cuantitativos.

En esta investigación se usaron formatos que permitieron obtener información de cada uno de las dimensiones de estudio, los mimos que se muestran en el anexo 4 (formato planificar), anexo 5 (formato hacer), anexo 6 (formato verificar) y anexo 7 (formato actuar). Estas fichas se utilizaron como: Indicadores de mantenimiento predictivo bajo la norma ISO 9001:2015, indicadores de confiabilidad, programación del mantenimiento predictivo.

Validez del instrumento de medición

Los instrumentos de la investigación brindan validez a través de los instrumentos que se usan para medir las magnitudes que presentan en los diversos elementos de estudios en la empresa SEGAMAQ. A través del criterio de juicio de expertos fueron validados nuestros instrumentos, quienes dieron su aprobación respectiva; ello se indica en los anexos 15, anexo 16 y anexo 17.

Tabla 4. Expertos que dieron validez a los instrumentos de medición.

Expertos	Grado
Espinoza Vásquez, Pedro Antonio	Magister
Santos Esparza, Carlos	Magister
Panta Salazar, Javier	Doctor

Confiabilidad del instrumento

Los instrumentos aplicados en la obtención de la información se obtuvieron mediante los técnicos encargados del mantenimiento de máquinas, ya que se genera confiabilidad para obtener resultados consistentes cuando estos se aplican en diversas situaciones. Por lo que explica Hernández, et al. (2014) la validez interna se refiere al nivel de seguridad que uno tiene de que los resultados del experimento se interpretarán adecuadamente y serán confiables. (p. 134).

Tabla 5. Valores para medir la confiabilidad del instrumento.

Rango	Confiabilidad (dimensiones
0,81-1,00	Muy alta
0,61-0,80	Alta
0,40-0,60	Media
0,21-0,40	Baja
0,00-0,21	Muy baja

3.5. Procedimientos

En principio se tuvo que conocer a detalle las diversas actividades y procesos del área de estudio, ello fue posible con los diversos diagramas que sirvieron para tal fin, los mismos que se detallaron más adelante.

Proceso de producción de enchape del material

En la empresa Segama Maquinarias SAC, para el proceso del enchape respectivo del material se procede por un proceso de trabajo lineal que hacen las maquinas enchapadoras en su trabajo, así ya eligiendo que tipo de material se va a enchapar ya sea en canto delgado o canto grueso, según a eso se tomara el proceso de operaciones, la cual mostraremos en un DOP. Ahora describiremos la operación del enchapado lineal en un modelo de una maquina KDT MODELO 468.

Prendido de los grupos de trabajo: Se procede a prender la máquina y ver que funcionen correctamente y estén calibradas correctamente.

Inspección del material: En esta operación hay que verificar que el material que se va a enchapar esté debidamente bien cortado y no se encuentre en malas condiciones así posicionando ya para el enchapado.

Inspección del canto: En este proceso hay que verificar que sea el canto apropiado y color con el material que se va a ejecutar para el enchape tomando la precisión del recorrido del canto ya sea en canto delgado o canto grueso.

Cadena de arrastre: El material es llevado por medio de una faja transportadora para los trabajos de diferentes grupos en forma lineal, donde es la prima parte donde se activa el grupo desde la pantalla táctil del panel de control.

Alimentador de canto: Cuando el material se encuentra en movimiento transportando el material en la primera parte se activa automáticamente el alimentador de canto donde es detectado por unos sensores finales de carrera, así trabajando conjuntamente en paralelo el material (melanina) con el canto controlado con un temporizador por medio del PLC interiormente dentro del sistema.

Compuerta (cantidad de pegamento adecuado): En este proceso se activa la compuerta de cola donde comienza a tenerlo abierto hasta que termine de pasar el material ya con su debida calibración controlado por un sensor final de carrera para el material.

Encolador: Es la parte del encola del material que deriva de un rodillo encolador transportada de un motor controlado de un variador según a l velocidad que se esté pasando el material.

Corte de canto: Bueno ya pasado el material encolado en este grupo se encuentra la cuchilla de corte de canto, la cual cortara según el tamaño del material dejando suficiente sobrante de canto, tanto atrás como adelante, para que el siguiente grupo haga su trabajo de precisión en el corte entre los extremos.

Prensado con rodillos de presión de aire: En esta parte pasa hacía el prensado de los rodillos de presión siendo controlada bajo una presión de aire en 5 bar para canto grueso y en 2.5 bar para canto delgado, como también se puede modificar la

presión de aire según lo que se necesite para casos especiales de una mejor presión para el prensado apropiado que se necesite.

Grupo retestador: Este grupo retestador se encarga en hacer los cortes precisos al material ya sea adelante y atrás en forma vertical los cortes, obteniendo como herramientas dos discos de una medida de 20cm de diámetro trabajando en una velocidad sobre los 200hz.

Grupo refilado: En este grupo se encarga de refilar el canto horizontalmente sin dañar la melanina bajo una calibración ya esté pasando canto delgado o canto grueso, según a eso se calibra las cuchillas al radio que se requiera el modelo que sea refilado el material obteniendo así ya casi acabo.

Grupo rascador: Este es la parte final que hace como acabado final en la operación del moldeo del canto que va de la mano del refilado como este calibrado va hacia el rascador obtenido así una rascado con unas cuchillas de radio 3, teniendo en cuenta una buena calibración para su acabado casi terminado.

Grupo del pulidor: En este proceso ya se encuentra el material saliendo de la cadena de arrastre que antes que termine su operación pasa por unos trapos en forma circular dándole más afinidad al acabado y brillo a su color dejándolo más impecable el material ya enchapado en su totalidad.

Inspección del material: Ya terminado el proceso del enchape del material se procede a verificar minuciosamente el material como está quedando o si hay algún detalle en su proceso que pudo haber fallado por cualquier situación pasando así por un proceso de control de enchape El trabajo del enchapado de la melanina en su proceso de trabajo lineal

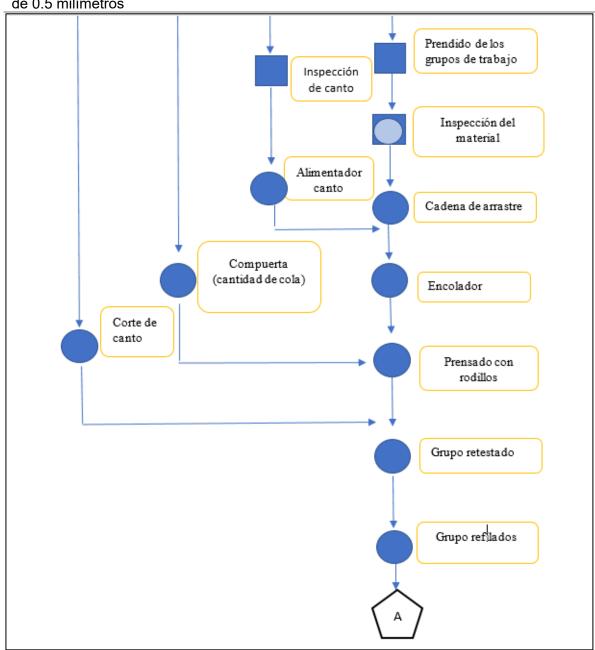


DIAGRAMA DE OPERACIONES DE PROCESOS (DOP)

Área: Producción	Pág. :1/2
Proceso: Enchape lineal del material	Método de trabajo: actual
Producto: melamina	Elaborado por:

Material: melanina canto de 3milimetros o canto

de 0.5 milímetros

DIAGRAMA DE OPERACIONES DE PROCESOS (DOP)

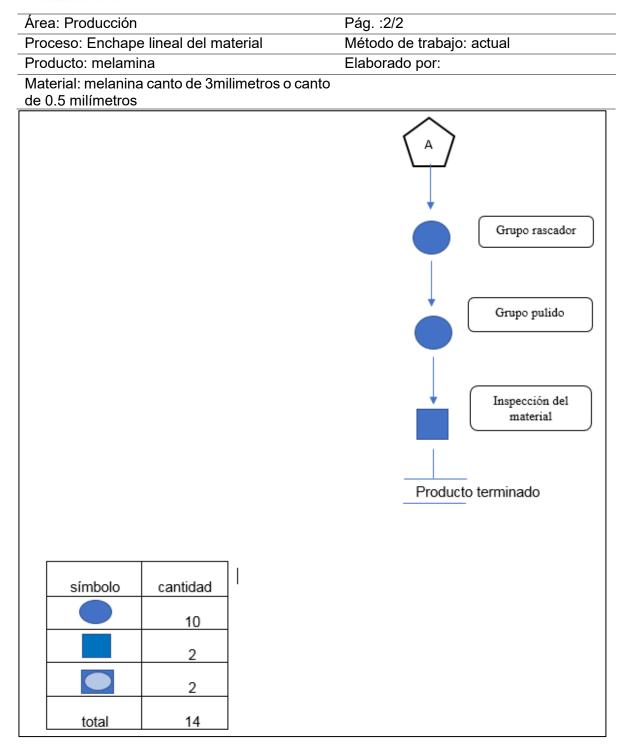


Figura 2. DOP – actual del proceso de enchape

Actividades críticas durante el proceso.

En las maquinarias adquiridas por los clientes de SEGAMA MAQUINARIAS S.A.C., se encuentran actividades criticas ya que a menudo no se aplica una gestión adecuada del mantenimiento, por lo que provoca las fallas y paradas imprevistas, los cuales impacta en el cliente, ya que para ello se presentara una mejor gestión que abarque el mantenimiento predictivo basado en la ISO 9001:2015, para una mejor respuesta a las fallas y brindar una mayor confiabilidad al cliente con el mantenimiento brindado por SEGAMA MAQUINARIAS S.A.C.

Prosiguiendo con las actividades críticas que causan a los clientes una baja productividad, en el área de enchapado como por ejemplo en el mal encolado hacia los materiales que se está pasando, es el bajo control de los parámetros de producción de las máquinas, ya que las empresas de los clientes por lo común no cuentan con un registro de tiempos de la máquina y solo se concentran en producir, por lo que para ello se insertara las dimensiones y sus parámetros del mantenimiento predictivo basado en la norma ISO 9011:2015, que es de vital importancia para su control de la criticidad de la máquina y para la mejora de la productividad del cliente aumentando la confiabilidad de la máquina.

Otra actividad critica es la falta del correcto mantenimiento preventivo, ya que no hay inspecciones y revisiones consecutivas, y no se realiza procedimientos por lo que se debía, se debe planificar, hacer, verificar y actuar para un correcto mantenimiento, para que se mantenga en un correcto funcionamiento de las maquina enchapadoras y así evitar fallas y paradas inesperadas. Por lo que aplicará un mantenimiento predictivo basado en la norma ISO 9001 donde se detalla procedimientos e indicadores para mejorar con cada intervención.

Una aplicación de gestión inadecuada de mantenimiento, seguir con otra actividad critica con respecto a un parámetro de la maquinaria, ya que no existe una correcta planificación, no hay control de manera consecutiva, no hay verificación consecutiva del producto terminado y no hay una buena acción en el mantenimiento, por lo que solo se realiza un mantenimiento preventivo no muy bien aplicado, ya que solo se busca solucionar las fallas supuestamente las más importantes para los de producción, por lo que se presentan en el momento costos y acaban con tiempos largos sin producción.

Las paradas de las máquinas, y el mal funcionamiento se deben a causa del desgaste de los rodajes, retenes de carbón y orring, entre otros incluyendo así variedad de repuestos ya gastados por el uso más de lo debido de tiempo en la parte del encolamiento la cual trabaja a 180°C a 200°C por ende se afectado constantemente casi en la mayoría de la maquinas este desperfecto por la falta de mantenimiento quedando en olvido cuando debe de proceder su mantenimiento en el momento apropiado ,donde debe seguirse unos de los parámetros del mantenimiento en la parte del calderin (encolado).

Tomando así una solución rápida e instantánea para la maquina se procedió con urgencia un mantenimiento correctivo en la parte del calderin, parando la producción y originando más elevado el costo ya sea en su producción por pérdida de tiempo y también conseguir repuestos de manera apropiable solo para darle la solución en ese instante. La falta de limpieza regular en el encolador ya sea manualmente desde adentro hacia afuera, encontrando desechos de viruta dentro de la olla del calderin obstruyendo el pase de pegamento.

Viéndolo desde ese punto se presentan paradas inapropiadas en la producción en la parte del enchape la cual provocan costos elevados en el mantenimiento, daños en la seguridad como en el medio ambiente para una solución instantánea, buscando repuestos para las partes ya gastadas llegando a veces a no encontrar en el stock del almacén, viendo el tipo de criticidad desde este punto en nuestras máquinas. Considerando la frecuencia y los impactos operacionales, se estima a las experiencias con los conocimientos requeridos se procede a colocar el puntaje según a la categoría a que pertenece el más adecuado, así como en todos los impactos que se conoce en la máquina operada por nuestros clientes.

Para poder realizar el estudio de la criticidad y tener bien establecido las razones por la cual las maquinarias de enchapado presentan una criticidad dentro del proceso de producción, se efectuará un análisis de criticidad para ello se tomarán los datos de la norma SAE JA 1011. Nos brindara ayuda de acuerdo a los factores de frecuencia y consecuencia.

Tabla 6. Evaluación de la criticidad en un periodo mensual

		Medición de la criticidad						
TIE	TIEMPO recurrencia de eventos * consecuencias							
mes	Tiempo	Recurren. Eventos	Impacto Operacional	Flexibilidad	Costo Mant.	Impacto S.A.H	Consecuencia	Criticidad
abril	semana 1	2	8	4	1	6	39	78
	semana 2	3	6	2	5	8	25	75
	semana 3	4	4	4	1	2	19	76
	semana 4	2	8	4	1	6	39	78
	semana 5	3	6	2	10	2	24	72
mayo	semana 6	2	8	4	1	8	41	82
	semana 7	3	6	2	1	8	21	63
	semana 8	1	10	4	25	6	71	71
	semana 9	3	6	2	10	4	26	78
junio	semana 10	1	10	4	25	8	73	73
	semana 11	3	6	2	1	8	21	63
	semana 12	2	8	4	5	6	43	86
	semana 13	3	4	2	10	8	26	78
julio	semana 14	4	6	2	1	6	19	76
	semana 15	3	2	4	10	8	26	78
	semana 16	2	6	2	25	4	41	82

Fuente: Elaboración propia.

Encontrando nuestro análisis de criticidad en el nivel rojo de estado crítico, donde se requiere la disminución de fallas y paradas de nuestros clientes acudiendo respectivamente a su mantenimiento para mejorar su productividad en su centro de labor de nuestros clientes de Segama Maquinaria SAC.

Especificaciones de las máquinas del área de enchapado.

Las máquinas con los que se trabajan son de la empresa Kdt-Maquinarias de trabajo en madera, modelo 365l donde se tomará el estudio adecuado donde se han estado presentando fallas y paradas inapropiadas, por ello se tomará una investigación y seguimiento para así poder lograr nuestro objetivo de su trabajo continuo y sin fallas en su producción de nuestros clientes.

Figura 3. Cuadro de criticidad

Fuente: http://bibing.us.es/proyectos/abreproy/5311/fichero/5+Analisis+de+criticidad.pdf

Diagnóstico de la empresa.

La empresa Segama Maquinarias SAC, actualmente no tiene un plan adecuado de gestión de mantenimiento para servicio de sus clientes, viéndose bajo esas circunstancias no llega brindarle su respaldo del servicio técnico a todos sus clientes en sus producciones que maneja cada empresa ya sea por las máquinas que adquirió de Segama Maquinarias SAC, teniendo dentro de la capital de lima como también en provincias. Notándose más establecido en la venta de máquinas, pero aun no bien establecido en la parte de mantenimiento e instalaciones de máquinas donde se tiene que darle sus garantías de las maquinas como debería ser asignado para todos los clientes

Mantenimiento Predictivo basado en la norma ISO 9001:2015 aplicado a maquinarias enchapadoras.

La empresa en la actualidad trabaja con el mantenimiento correctivo, por ello estamos limitados en si como debería ser nuestro servicio y dar un mejor mantenimiento a todos nuestros clientes para los servicios respectivos que tenemos de toda nuestra relación, como por ejemple cuando tienen una emergencia, paradas de fallas y/o averías en su producción de trabajo.

Por ende, se está proponiendo en hacer los mantenimientos predictivos basado en la norma 9001:2015, así comenzando desde la raíz los problemas teniendo todo un análisis e historial de la maquinas como también de nuestros clientes antiguos que hemos dejado de frecuentarlos por falta de una gestión de un mantenimiento, ganado sobre ese respaldo del servicio técnico en darle una mejor garantía a los clientes.

Tipo de mantenimiento predictivo bajo un diagrama de flujo

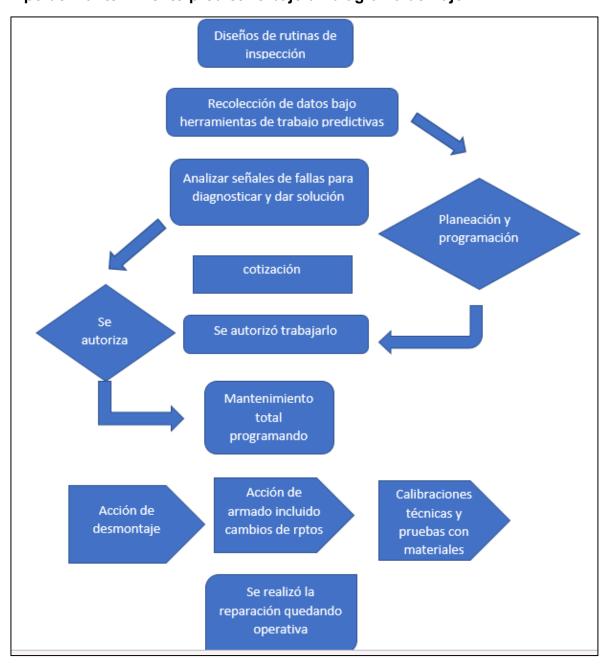


Figura 4. Diagrama de flujo del mantenimiento predictivo

Sobre el proceso de actividad para el mantenimiento, se mencionan que para la presente etapa se trabajó con este grupo de herramientas.

Tabla 7. Cuadro de herramientas de trabajo de mantenimiento.

Herramientas de trabajo de mantenimiento Juego llave hexagonales 2 Llave francesa 3 Llave sttilsom 4 Alicate de presión 5 Destornilladores plano 6 Destornillador estrella 7 Perillero plano/estrella 8 Alicate universal 9 Alicate (sacar seguro) 10 Lima 11 Saca rodajes 12 Multímetro 13 Martillo 14 Juego de llaves #8 al #24 15 Juego de llaves mixtas #8 al #24 16 Guantes alta temperatura, otros.

Actividades efectuadas en el trabajo hacia la máquina

Revisión inicial: revisaremos primeramente como están saliendo el material que está operando la maquina en su producción y en qué condiciones se encuentra los grupos de trabajo

Revisión eléctrica: Luego pasaremos a medir su tensión, su consumo de amperaje y como se encuentran los aparatos electrónicos y los motores

Revisión neumática: pasamos a revisar su aceite le lubricación neumática si se encuentra en su grado y en su medida correspondiente. Seguidamente verificamos el comprensor que trabaja de la mano con la máquina que este en óptimas condiciones

Revisión mecánica: pasamos a ver detalladamente como se encuentran la parte de los rodillos mecánicos de presión, la parte de los grupos de trabajo su

funcionamiento con los resortes de presión y sus copiadores que trabaja con los rodajes en función

Parte mecánica que procede al mantenimiento

Trabajamos primeramente en desarmado de la parte del calderin, donde procedemos a desinstalar el aire para poder trabajar normalmente y con la seguridad apropiada de botones de emergencias. Retirado el calderin se procede a limpiar la cola (pegamento, temperatura a 200°C.

Así seguidamente se desarma la parte del encolador, con las llaves hexagonales teniendo por separar para cambiar los rodajes del mismo eje de calderin. Luego se procede al cambio de rodajes cuidadosamente.

Pasando así al armado del calderin con su respectivo rodaje, retenes, pernos nuevos en diferentes variedades y sus orrines. Armado se procede a la calibración del calderin y a hacer la misma prueba con el material dejándolo que haga un buen trabajo limpio y graduada en su pegamento.

En la parte eléctrica

Vemos si se encuentra en buenas condiciones los contactares del tablero eléctrico, si se encuentra desgastados procedemos a cambiar literalmente por uno nuevo para que su enclave es más eficaz.

Verificamos que lo equipos eléctrico como los variadores plc o tablero de control esté operativa midiendo su voltaje de entrada y salida de tensión.

Revisamos los motores eléctricos como también en sus rodamientos si ya están para cambios por trabajo de alta revolución.

Se revisa de mismo modo las resistencias midiendo en ohmios si aún está operativa sino se pasa a cambias las planchas de resistencias.

Se verifica los finales de carrera la cual se cambia normalmente por que hace el control en la primera parte para que el trabajo ya comience con la automatización de la máquina en la producción que es detecta por este sensor.

Verificar los sensores del retestador (sensor magnético) cambio en los cilindros neumáticos.

Lubricaciones y/o engrasamientos

En la unidad de mantenimiento se cambia el aceite que filtra por todas las partes neumáticas del a máquina de la misma manera purgándose de todo líquido que se pueda encontrar en la máquina.

Se engrasa la parte de la cadena de arrastre por medio de una pistola engrasadora con una presión calibrada en lo necesario para que el trabajo sea libre de su deslizamiento de la cadena.

Componentes neumáticos

Pasamos a limpiar los cilindros neumáticos como también en las electroválvulas. Con un sprite w-40 y aceite 3 en 1, pulverizando hasta que quede limpio y lubricada en su totalidad cada componente que trabaje con aire de presión.

Herramientas y/o calibración

Se cambia las cuchillas desde el comienzo hasta el final con unos nuevos para que su trabajo sea eficaz y eficiente cuando pase los materiales de ese mismo modo tiene que ser bajo una calibración fina en cada grupo.

Cambio de trapos

Se le cambio los trapos de los pulidos para que haga el trabajo del pulido fino en el acabo luego de las cuchillas desarmando en motor del pulido y luego armándolo a su posición original. Siendo este el proceso del mantenimiento respectivo en su totalidad siguiendo el orden de trabajo, cuál debe ser cambiado por el tiempo de vida que se le ha estudiado como también en qué tiempo se tomara otra el manteniendo en la siguiendo fecha en que le tocara posteriormente a futuro.

Plan de la propuesta de mejora.

Para realizar el plan de mejora, se elaboró un formato de mantenimiento bajo un control mensual a las maquinarias para llevar un control de datos mucho más específicos. El cual lo podemos apreciar en el Anexo Nº 10.

Planeación

Mejora para los mantenimientos bajo fecha de entrega:

En esta propuesta de plan de mejora estamos trabajando por medio del PHVA, elaborando por medio de un programa, tomando desde la fecha de entrega como historial de la maquina con dato principal viendo el tiempo de mantenimiento que se le corresponde a su debido tiempo llegando como objetivo a aumentar nuestra confiabilidad bajo este proceso de control.

Según dadas las fechas referentes a la data obtenida en el presente sistema de control, se comunicará con el cliente para brindar un respectivo mantenimiento predictivo. Además, se evalúa la criticidad de las maquinas bajos un formato de recolección de datos (Anexo Nº 3).

Tabla 8. Cuadro de programación de mantenimiento

n°	Clientes	Maquin a kdt	Ruc	Dirección	Fecha	Días traba jo	Fecha de mantenimi ento
1	Alberto pio alvino	365H	10227557554	av. centenario nro.553 Pucallpa	11/12/2018	160	20/05/2019
2	Jireh proveedor S.A.C	305	20558363704	cal.lambayeque nº 122 p.trad.urb.mno.m elgar - arequipa - arequipa - mariano melgar	04/04/2019	180	01/10/2019
3	Industrias leomart S.A.C	468	20600846281	mza. n lote. 12 z.i. parque industrial parcela ii lima - lima - villa el salvador	08/04/2019	180	05/10/2019
4	Inversiones carlin S.A.C	368	20494503540	av. Aviación nro.255 Andrés Avelino Cáceres Ayacucho - huamanga	22/05/2019	180	18/11/2019
5	Fábrica de melanine S.A.C	468	20604658536	mz.alote 2 urb.san josé - Ayacucho - huamanga - Ayacucho	25/05/2019	180	21/11/2019
6	Representa ciones mdk E.I.R.L	4681	20571539978	mz.a lote 12 av. Martin prieto lima- huaura-huacho	22/07/2019	180	18/01/2020

7	Novocentro	3681	20536186779	av. mariscal	15/08/2019	180	11/02/2020
	universal S.A.C			castilla nro. 1795 (entre mariscal castilla y Aguirre morale) Junín - Huancayo - el tambo			
8	Aldiseño E.I.R.L	305	20523146158	Ampliación las cumbres de mza. B lote. 3 gru. comunidad campesina de co lima - lima - Cieneguilla	20/08/2019	180	16/02/2020
9	Sarkel peru S.A.C	368A	20603576170	av. Circunvalación mz.b lote 12 int.10 urb.semirustica la capitana (paradero obras) lima - Lurigancho	26/08/2019	180	22/02/2020
10	Ares mobiliario S.A.C	468A	20600480708	av. Gerardo unger nro.5269 urb.industrial naranjal -los olivos- lima	10/09/2019	180	08/03/2020

Fuente: SEGAMA MAQUINARIAS

Hacer:

Procedemos en hacer un seguimiento a la máquina desde un comienzo teniendo como dato principal. En esta ficha técnica individual es la información de datos técnicos como caracteristicas de la misma maquinaria de placa como dato principal ,siendo un factor importante desde su dia de fabricación hasta la actualidad y como se encuentra actualmente.

La cual esta información nos respalda como antecente propio de cada maquinaria siguiendo el orden a la fecha ante los demas maquinas para llevar un orden especifico y duracion de sus herramientas como accesorios en uso.

Repuestos, herramientas y costos

En este proyecto ante todo pasa por una cotización de cómo se encuentra la maquinaria en su estado natural bajo la inspección dada por el técnico. Según a eso precedemos al conjunto de repuestos necesarios, así como también en el cambio de herramientas cual se hará de lo más normal para un mantenimiento respectivo siendo elevado la cotización por el tiempo de trabajo más de la fecha suma elevado en su costo.

Tabla 9. Fichas técnicas de Isa maquinarias

SEGAMAQ	Ficha Te	écnica de la M	Código:	0001239	
SEGAMA MAQUINARIAS S.A.C				Fecha:	10/09/2019
				Revisión:	
		EDGE B	ANDING MA	CHINE	
N°:0001239	MAF	RCA:	KD	Т	
Model	KE - 365-A	Power:	10 KW 300*60	Voltage	220 v / 380 v
Panel	10 60 m m	Min Panel	150*150	Ampers	35 / 20
Thickness			82*1000		
Edge	0.4 - 3	External	*16800	Potence	13.5
Thickness		Dimensions	mm		
Serial Number	1.36552E+13	Production Date	20/04/2019		
Administer		LY/ Y 1797 -			
Standard		2008			

Fuente: Elaboración propia

Figura 5. Cuadro de repuestos y herramientas

Items	Cantidad	Descripcion	Precio unitario	Precio Total
10000		MANTENIMIENTO PREVENTIVO ENCHAPADORA	490.00	490.00
	1.00	MANTENIMETO DE CALDERIN	415.00	415.00
	1.00	MANTENIMETO CORRECTIVO	200.00	200.00
	1.00	CORREA DENTADA 480L RAPID CEHISA	90.00	90.00
	1.00	FAJA 880 mm x 20 mm (SERIE RAPID-EP)	290.00	290.00
	1.00	CUCHILLA DE GUILLOTINA 70 x 107 S. 200	440.00	440.00
	4.00	CUCHILLAS TIGRA REFILAR 20 X 15.8 X 2 R3 INF EP	80.00	320.00
	4.00	CUCHILLAS TIGRA REFILAR 20 X 15.8 X 2 R.3 SUP EP	80.00	320.00
	2.00	CUCHILLAS TIGRA RASCADOR 16 X 17.5 X 2 R3 T04F	100.00	200.00
	2.00	DISCO PULIDOR MFB60	120.00	240.00
	2.00	PULSADORES TIPO HONGO	45.00	90.00
	1.00	EJE RODILLO ALIMENTADOR DE CANTO	380.00	380.00
	3.00	MANGUERA FLEXIBLE 2 TRANSPARENTE	75.00	225.00
		TOTAL INSCLUIDO igv		3,700.00

Fuente: SEGAMA MAQUINARIAS

Verificar

Línea de Parámetros para el mantenimiento predictivo

En esto proceso de vamos a verificar grupos de trabajo como lo hemos enumerados según nos recomienda la guía de la maquinas en su seguimiento bajo los parámetros y funciones en los grupos de trabajo la cual encontraremos el punto crítico de cómo se encuentra siendo nuestro dato real, siendo ya el trabajo de la parte predictiva en analizar según a eso darle su cambio y/o prolongar su tiempo de vida de ese parte que se está operando.

Tabla 10. Parámetros para el mantenimiento predictivo

	Parámetros para el Mantenimiento
	Calderin
1	verificación la parte mecánica del encolador
2	verificación de las resistencias del calderin
3	verificación de los rodajes del calderin
	Parte Neumática
1	verificación aceite neumático
2	verificación pistones
3	verificación de carril neumático
4	engrase/lubricación
	parte mecánica
1	rueda del pisador
2	rueda de nylon del corte vertical
3	verificación del kardan
	sonidos(decibeles)
1	motor retestado
2	motor refilado
3	motor reductor
4	motor pulidor
	cadena
1	cadena de transmisión de calderin
2	rodales de la polea de transmisión
3	cadena de arrastre
	eléctrico
1	tablero eléctrico de mandol1, neutro
2	tablero eléctrico de fuerza: I1, I2, I3
3	variadores
4	PLC
5	Otros

Controlar

Herramientas para el uso de mantenimiento predictivo

Para el trabajo del mantenimiento predictivo contamos en estos instrumentos de medición siendo nuestra herramienta principal la cual nos hará diferente a las competencias teniendo estos componentes eléctricos de uso tecnológico para la medición exacta o que tanto es la gravedad de los grupos de trabajo, ya sea en la parte mecánica, en la parte eléctrica como en la parte del engrase o mediciones de los rodajes entre otros como se encuentran será nuestro punto de diagnóstico de la máquina.

Tabla 11. Cuadro de herramientas de mantenimiento predictivo.

Herramientas:

Cámara termografía

Virómetro (analizar las vibraciones)

Multímetro (medir el voltaje)
Amperímetro (medidor de corriente) su
aislamiento
Lubricador dieléctrico
sonómetro(decibeles)

Otros

3.6. Métodos de análisis de datos

Debido a que los datos obtenidos se procesan y luego se analizan en varias tablas que ofrece el software para su fácil comprensión, se utilizó el programa SPSS v22 para aplicar el análisis de la información en este estudio. La prueba t-Student y la prueba de Wilcoxon se utilizarán para demostrar la hipótesis porque no son paramétricas.

Acerca de la prueba t-Student, usado para dos muestras relacionadas, Sánchez (2015) explicó que el t-Student se creó para observar las diferencias entre dos muestras pequeñas e independientes con una distribución normal y homogeneidad en sus varianzas.

Cuando no son paramétricos se usará el estadígrafo Wilcoxon, para poder desarrollar la comparación de las muestras. Cáceres (2005) menciono que cuando las variables no son normales, el método actual se utiliza como una alternativa a

las pruebas de t-Student para comparar dos medias, independientemente de si los tamaños de muestra son pequeños o grandes. (p. 240)

3.7. Aspectos éticos

El estudio actual se realizó de manera responsable y ética; cabe resaltar que los datos recolectados están correctamente citados según el estilo que corresponde a la escuela de ingeniería de nuestra Universidad. Los datos son veraces y confiables porque se obtuvieron de la fuente primaria de la empresa; para ello se obtuvo la autorización debida que fue otorgada por la empresa para el desarrollo de nuestra investigación; la autorización que se menciona se encuentra en el anexo 9. La información también fue brindada por los técnicos y supervisores de mantenimiento, además se contó con la ayuda de los colaboradores que laboran para la empresa SEGAMAQ. Como resultado de la investigación actual se corroboró que fue muy beneficiosa para la empresa y para estudios referentes a la propuesta planteada.

IV. RESULTADOS

Generalidades de la empresa

Segama Maquinarias S.A.C, se dedica a la comercialización e importación de máquinas y repuestos para la industria del mueble, como enchapadoras. Posee 14 años de experiencias en el mercado y asimismo contamos con presencia ininterrumpida en el mercado. La empresa ofrece sus maquinarias a empresas dedicadas al rubro del mueble, y asimismo se les hace el mantenimiento a dichas máquinas, por lo que hace una visita a la empresa que adquirió la maquinaria, cada cierto tiempo para brindarle el servicio de mantenimiento. Se nombrará a los más potenciales y recurrentes con la empresa, ya que se tiene una fidelización con dichos clientes y se sigue trabajando junto a ellos.

Se encuentra ubicado en la Mz.M lote 14 Urb. Parque Industrial V.E.S del distrito de Villa El Salvador.

Visión: Ser un complemento importante en el desarrollo de la industria maderera. Asi mismo, creemos en proyectar una industria más competitiva, siendo la más atractiva para clientes; y en condiciones de poder enfrentar los obstáculos que el mercado actual demanda.

Misión: Llevar calidad y tecnología a cada cliente así poder lograr que la industria de transformación de la madera sea sostenible económicamente, social y ambientalmente.

La empresa Segama Maquinarias SAC, inició en el mundo comercial con una pequeña tienda de repuestos y herramientas, además brindando servicios de corte y pegados. Con el tiempo empezó en el rubro de la importación, ya que se logró contactar con el mismo proveedor del país de China para comerciar los repuestos del mismo KDT. Con el transcurrir del tiempo fue contando con un equipo de técnicos expertos en el mantenimiento industrial, así mismo haciéndose poco a poco más conocido, por lo que ya contaba con estrategias comerciales como bajo intereses que sean manejables con el cliente, asimismo por la compra y venta brindándole facilidad a nuestras clientes en surgir en su negocio con el fin de darle esa confiabilidad a nuestras clientes llegando así hasta hoy en día.

Organigrama de la empresa

En la siguiente figura se visualiza el organigrama de SEGAMA MAQUINARIAS S.A.C., el cual está conformada por un gerente general y su secretaria, el área de ventas conformadas por 2 vendedores, el área de logística conformada por 1 supervisor y 3 colaboradores, en el área de técnicos conformada por 3 técnicos supervisores y 5 asistentes.

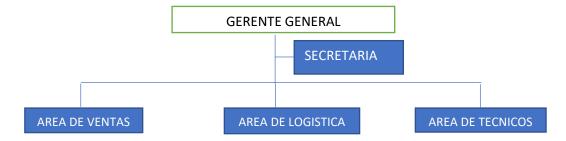


Figura 6. Organigrama de la empresa SEGAMA MAQUINARIAS S.A.C.

Resultados antes de la aplicación de la variable independiente: Mantenimiento predictivo basado en la norma ISO 9001:2015

Tabla 12. Medición de la criticidad antes de la mejora.

SEGAMAQ				F		recolección de ST – CRITICID			
SEGAMA I	MAQUINARIAS	S.A.C		Formula:C= Recurrencia de eventos * consecuencias					
Mes	semana	Recurren. Eventos	Impacto Operacional	Flexibi lidad	Costo Mant.	Impacto S.A.H	Consecuen- cia	Criticidad	
MARZO	1	2	. 8	4	1	6	39	78	
	2	3	6	2	5	8	25	75	
	3	4	4	4	1	2	19	76	
	4	2	8	4	1	6	39	78	
ABRIL	5	3	6	2	10	2	24	72	
	6	2	8	4	1	8	41	82	
	7	3	6	2	1	8	21	63	
	8	1	10	4	25	6	71	71	
MAYO	9	3	6	2	10	4	26	78	
	10	1	10	4	25	8	73	73	
	11	3	6	2	1	8	21	63	
	12	2	8	4	5	6	43	86	
JUNIO	13	3	4	2	10	8	26	78	
	14	4	6	2	1	6	19	76	
	15	3	2	4	10	8	26	78	
	16	2	6	2	25	4	41	82	
						TC	OTAL	<mark>75,56</mark>	

Fuente: SEGAMA MAQUINARIAS S.A.C

Figura 7. Criticidad antes de aplicar el mantenimiento predictivo basado en la norma ISO 9001:2015.

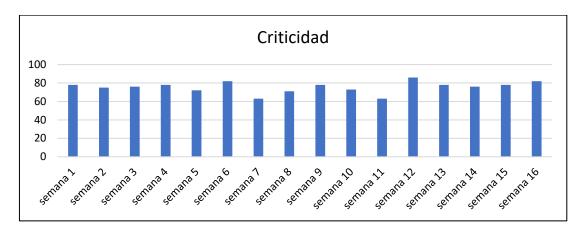


Tabla 13. Medición de la eficacia de actividades programadas antes de la mejora.

FORMATO DE RECOLECCION DE DATOS PRE TEST - Medición de eficacia de actividades programadas

Formula: E.A.P= actividades ejecutadas / actividades programadas

100%

100%

100%

100%

100%

SEGAMA MAQUINARIAS S.A.C

0207410111010					
MES	SEMANAS	Actividades ejecutadas	Actividades planificadas	%	Eficacia de actividades programadas
MARZO	1	2,0	4,0	100%	50%
	2	2,0	3,0	100%	67%
	3	3,0	5,0	100%	60%
	4	2,0	4,0	100%	50%
ABRIL	5	3,0	5,0	100%	60%
	6	3,0	6,0	100%	50%
	7	2,0	5,0	100%	40%
	8	2,0	5,0	100%	40%
MAYO	9	2,0	4,0	100%	50%
	10	3,0	6,0	100%	50%
	11	3,0	5,0	100%	60%

4,0

5,0

6,0

4,0

5,0

TOTAL

2,0

3,0

4,0

2,0

2,0

Fuente: SEGAMA MAQUINARIAS S.A.C

12

13

14

15

16

JUNIO

50%

60%

67%

50%

40%

<mark>53%</mark>

Figura 8. Medición de actividades programadas antes de aplicar el mantenimiento predictivo basado en la norma ISO 9001:2015.

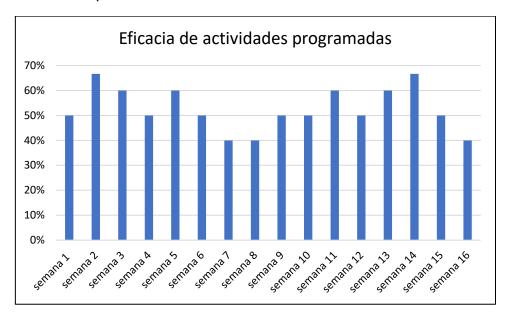


Tabla 14. Medición del total de fallas antes de la mejora.

CEGG		Formato de recolección de datos Medición del total de fallas PRE TEST					
SEGAMA MAG	QUINARIAS S.A.C						
Tiempo		GUIA					
mes	Tiempo	N°equipo monitoreado	Total de equipos	%	Total de fallas		
	Sem. 1	5	10	100	50%		
MARZO	Sem. 2	3	10	100	30%		
	Sem. 3	2	10	100	20%		
	Sem. 4	3	10	100	30%		
	Sem. 5	2	10	100	20%		
ABRIL	Sem. 6	5	10	100	50%		
	Sem. 7	2	10	100	20%		
	Sem. 8	4	10	100	40%		
	Sem. 9	5	10	100	50%		
MAYO	Sem. 10	3	10	100	30%		
	Sem. 11	2	10	100	20%		
	Sem. 12	4	10	100	40%		
	Sem. 13	5	10	100	50%		
JUNIO	Sem. 14	3	10	100	30%		
	Sem. 15	2	10	100	20%		
	Sem. 16	4	10	100	40%		

Fuente: SEGAMA MAQUINARIAS S.A.C

Figura 9. Medición de total de fallas antes de aplicar el mantenimiento predictivo basado en la norma ISO 9001:2015.

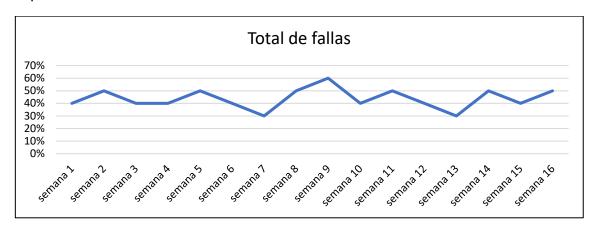


Tabla 15. Medición de la variable independiente – Disponibilidad antes de la mejora

Formato de recolección de datos Medición de la Disponibilidad FORMULA: Disponibilidad = (TO / TPO) x 100

tiempo			T.O		T.O	T.	P.O	T.P.	DISPONIBIL
mes	Sema -na	T.T T	Tiempo parad. Planif.	Paradas / averías		T.T.T	Tiempo parad. planif.	0	I-DAD
MARZO	1	492	118	5	324	492	118	374	86,6%
	2	491	119	3	342	491	119	372	91,9%
	3	496	114	2	362	496	114	382	94,8%
	4	491	119	3	342	491	119	372	91,9%
ABRIL	5	492	118	2	354	492	118	374	94,7%
	6	490	120	5	320	490	120	370	86,5%
	7	492	118	2	354	492	118	374	94,7%
	8	488	122	4	326	488	122	366	89,1%
MAYO	9	490	120	5	320	490	120	370	86,5%
	10	491	119	3	342	491	119	372	91,9%
	11	496	114	2	362	496	114	382	94,8%
	12	492	118	4	334	492	118	374	89,3%
JUNIO	13	490	120	5	320	490	120	370	86,5%
	14	491	119	3	342	491	119	372	91,9%
	15	498	112	2	366	498	112	386	94,8%
	16	492	118	4	334	492	118	374	89,3%
							TOTA	۸L	90,9%

Fuente: SEGAMA MAQUINARIAS S.A.C

Figura 10. Medición de la disponibilidad antes de aplicar el mantenimiento predictivo basado en la norma ISO 9001:2015.

Variable dependiente - Confiabilidad

Tabla 16. Medición de la variable dependiente – Confiabilidad antes de la mejora.

Medición de la confiabilidad pre-test de la aplicación de mantenimiento predictivo basado en la norma ISO 9001:2015

			MTBF			MTT	R	CONFIABILIDAD
Mes	Semana	TTF	NF	MTBF	TTI	NF	MTTR	
	1	492	5	98,4	118	5	23,6	80,66%
	2	491	3	163,7	119	3	39,7	80,49%
abril	3	496	2	248,0	114	2	57,0	81,31%
	4	491	3	163,7	119	3	39,7	80,49%
	5	492	2	246,0	118	2	59,0	80,66%
	6	490	5	98,0	120	5	24,0	80,33%
mayo	7	492	2	246,0	118	2	59,0	80,66%
,	8	488	4	122,0	122	4	30,5	80,00%
	9	490	5	98,0	120	5	24,0	80,33%
	10	491	3	163,7	119	3	39,7	80,49%
junio	11	496	2	248,0	114	2	57,0	81,31%
,	12	492	4	123,0	118	4	29,5	80,66%
	13	490	5	98,0	120	5	24,0	80,33%
	14	491	3	163,7	119	3	39,7	80,49%
julio	15	498	2	249,0	112	2	56,0	81,64%
,	16	492	4	123,0	118	4	29,5	80,66%
								80,66%

Figura 11. Confiabilidad antes de la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015.

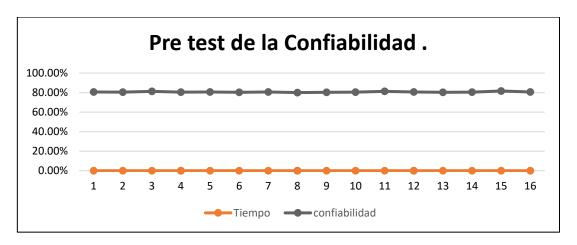


Tabla 17. Tiempos en la producción de las maquinas enchapadoras

5	F	G	AI	T	76	1
	_	U			1	A
SEC	ANA	MA	OIIIN	ΙΔΡΙΔ	SSA	0

Medición de tiempos en la producción de la maquina

Guía de observación

POR	Tiempo de	Tiemp	Tiempo	Por 10	Tiempo de	Tiem	Tiempo
MAQUIN	funcionamien	o total	inoperativ	maquinas	funcionamie	ро	inoperativo
Α	to		0		nto	total	
dia	9	11	2	dia	90	110	20
1/2 dia	5	6	1	1/2 dia	50	60	10
semanal	50	61	11	semanal	500	610	110
mes	200	240	40	mes	2000	2400	400

Nota. Fuente: SEGAMA MAQUINARIAS S.A.C

Estadística descriptiva: V.I. Mantenimiento Predictivo bajo la norma ISO 9001:2015

Dimensión 1: Planificar

Tabla 18. Indagación descriptiva de la Planificación - Criticidad

	Descriptivos		
		<u>Estadístico</u>	<u>Error</u>
			<u>estándar</u>
PRE TEST	Media	75,5625	1,55180
CRITICIDAD	Mediana	77,0000	
	Desviación estándar	6,20719	
	Mínimo	63,00	
	Máximo	86,00	
POSTEST	Media	48,8125	1,27220
CRITICIDAD	Mediana	48,0000	
	Desviación estándar	5,08879	
	Mínimo	41,00	
	Máximo	57,00	

Fuente: Data examinada por SPSS V.24

Interpretación: En la indagación se corrobora que la media antes de la aplicación fue 75,5625 y luego es de 48,8125, así como la mediana fue 77,0000 y luego es de 48,0000, y la desviación estándar fue de 6,20719 y luego es de 5,08879, asimismo el mínimo y el máximo valor fueron de 63,00 y 86,00 luego fueron 41,00 y 57,00.

Tabla 19. Indicador criticidad en 16 semanas antes – después.

D1 - PLANIFICAR CRITICIDAD					
<u>SEMANAS</u>	PRE TEST	POS TEST			
1	78%	46%			
2	75%	42%			
3	76%	57%			
4	78%	48%			
5	72%	48%			
6	82%	48%			
7	63%	45%			
8	71%	53%			
9	78%	52%			
10	73%	55%			
11	63%	52%			
12	86%	43%			
13	78%	50%			
14	76%	56%			
15	78%	48%			
16	82%	41%			
TOTAL	75,56%	48,81%			

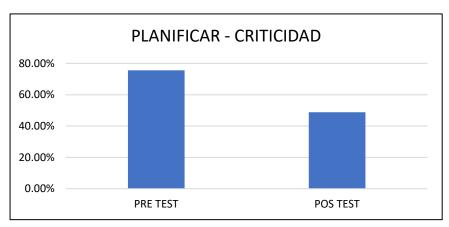


Figura 12. Base de datos del indicador criticidad

Interpretación: Con lo indicado en los resultados del indicador criticidad que se muestra en el presente gráfico, se aprecia una notable diferencia de disminución de la criticidad de 26.78%, en relación al antes y después de la aplicación.

Dimensión 2: Hacer

Tabla 20. Indagación descriptiva de Hacer – Actividades programadas

	Descriptivos		
		<u>Estadístico</u>	<u>Error</u> estándar
PRETEST	Media	52,7500	2,19564
ACTIVIDADES PROGRAMADAS	Mediana	50,0000	
	Varianza	77,133	
	Desviación estándar	8,78256	
	Mínimo	40,00	
	Máximo	67,00	
POSTEST	Media	73,7500	2,20133
ACTIVIDADES PROGRAMADAS	Mediana	72,5000	
	Varianza	77,533	
	Desviación estándar	8,80530	
	Mínimo	58,00	
	Máximo	88,00	

Fuente: Data examinada por SPSS V.24

Interpretación: En la indagación se corrobora que la media antes de la aplicación fue 52,7500 y luego es de 73,7500, así como la mediana fue 50,0000 y luego es de

72,5000, y la desviación estándar fue de 8,78256 y luego es de 8,80530, asimismo el mínimo y el máximo valor fueron de 40,00 y 67,00 luego fueron 58,00 y 88,00.

Tabla 21. indicador actividades programadas en 16 semanas antes – después.

	D2 - HACER	
ACTIV	IDADES PROGRAM	1ADAS
SEMANAS	PRE TEST	POS TEST
1	50	75
2	67	83
3	60	70
4	50	75
5	60	70
6	50	67
7	40	70
8	40	85
9	50	63
10	50	58
11	60	70
12	50	63
13	60	80
14	67	83
15	50	88
16	40	80
TOTAL	53%	74%

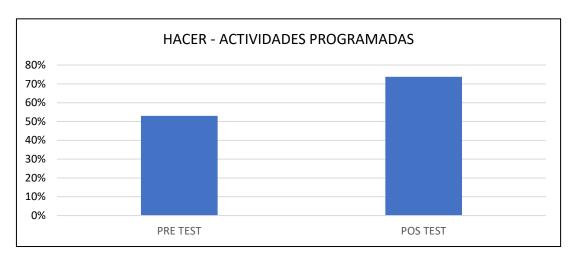


Figura 13. Base de datos del indicador actividades programadas

Interpretación: Con lo indicado en los resultados del indicador actividades programadas que se muestra en el presente gráfico, se aprecia una notable diferencia en el incremento de las actividades programadas de 21%, en relación al antes y después de la aplicación.

Dimensión 3: Verificar

Tabla 22. Indagación descriptiva de Hacer – Total de fallas

	Descriptivos		
		Estadístico	Error estándar
PRETEST	Media	33,7500	3,01040
TOTAL DE	Mediana	30,0000	
FALLAS	Varianza	145,000	
	Desviación estándar	12,04159	
	Mínimo	20,00	
	Máximo	50,00	
	Rango	30,00	
POSTEST	Media	25,0000	1,82574
TOTAL DE	Mediana	20,0000	
FALLAS	Varianza	53,333	
	Desviación estándar	7,30297	
	Mínimo	20,00	
	Máximo	40,00	

Fuente: Data examinada por SPSS V.24

Interpretación: En la indagación se corrobora que la media antes de la aplicación fue 33,7500 y luego es de 25,0000, así como la mediana fue 30,0000 y luego es de 20,0000, y la desviación estándar fue de 12,04159 y luego es de 7,30297, asimismo el mínimo y el máximo valor fueron de 20,00 y 50,00 luego fueron 20,00 y 40,00.

Tabla 23. Indicador total de fallas en 16 semanas antes – después.

- I	03 - VERIFICAI	₹				
TOTAL DE FALLAS						
SEMANAS	PRE TEST	POS TEST				
1	50	40				
2	30	20				
3	20	20				
4	30	20				
5	20	30				
6	50	40				
7	20	20				
8	40	20				
9	50	30				
10	30	20				
11	20	20				
12	40	20				
13	50	30				
14	30	20				
15	20	20				
16	40	30				
TOTAL	33,75	25				

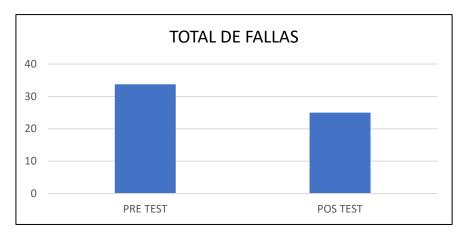


Figura 14. Base de datos del indicador actividades programadas

Interpretación: Con lo indicado en los resultados del indicador total de fallas que se muestra en el presente gráfico, se aprecia una notable diferencia en una disminución del total de fallas en un 8.75%, en relación al antes y después de la aplicación.

Dimensión 4: Actuar

Tabla 24. Indagación descriptiva de Actuar – Disponibilidad

	D	escriptivos	
		<u>Estadístico</u>	Error estándar
PRETEST	Media	90,9500	,82513
DISPONI BILIDAD	Mediana	91,9000	
BILIDAD	Varianza	10,893	
	Desviación estándar	3,30051	
	Mínimo	86,50	
	Máximo	94,80	
POSTEST	Media	93,9688	,31354
DISPONI	Mediana	94,6000	
BILIDAD	Varianza	1,573	
	Desviación estándar	1,25418	
	Mínimo	91,60	
	Máximo	94,80	

Fuente: Data examinada por SPSS V.24

Interpretación: En la indagación se corrobora que la media antes de la aplicación fue 90,9500 y luego es de 93,9688, así como la mediana fue 91,9000 y luego es de

94,6000, y la desviación estándar fue de 3,30051 y luego es de 1,25418, asimismo el mínimo y el máximo valor fueron de 86,50 y 94,80 luego fueron 91,60 y 94,80.

Tabla 25. Indicador disponibilidad en 16 semanas antes – después.

D4 - ACTUAR						
Disponibilidad						
SEMANAS	PRE TEST	POS TEST				
1	86,6%	92,0%				
2	91,9%	94,6%				
3	94,8%	94,8%				
4	91,9%	94,6%				
5	94,7%	92,0%				
6	86,5%	94,6%				
7	94,7%	94,7%				
8	89,1%	94,5%				
9	86,5%	91,9%				
10	91,9%	94,6%				
11	94,8%	94,8%				
12	89,3%	94,7%				
13	86,5%	94,6%				
14	91,9%	94,6%				
15	94,8%	94,8%				
16	89,3%	94,7%				
TOTAL	90,9%	94,1%				

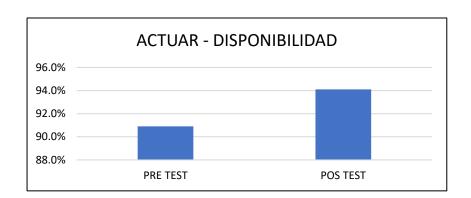


Figura 15. Base de datos del indicador disponibilidad

Interpretación: Con lo indicado en los resultados del indicador disponibilidad que se muestra en el presente gráfico, se aprecia una notable diferencia en el incremento de las actividades programadas de 3.2%, en relación al antes y después de la aplicación.

Variable dependiente - Confiabilidad

Tabla 26. Indagación descriptiva de la confiabilidad

DESCRIPTIVOS					
CONFIABILIDAD		Estadístic	Error		
		0	estándar		
CONFIABILIDAD	Media	80,6569	,10573		
PRE TEST	Mediana	80,5750			
	Varianza	,179			
	Desviación estándar	,42294			
	Mínimo	80,00			
	Máximo	81,64			
CONFIABILIDAD	Media	89,4044	,40344		
POST TEST	Mediana	89,6700			
	Varianza	2,604			
	Desviación estándar	1,61374			
	Mínimo	86,07			
	Máximo	91,80			

Fuente: Data examinada por SPSS 24

En la presente indagación se logra corroborar que antes de lograr la aplicación la media fue de 80,6569 y luego es de 89,4044, la mediana fue de 80,5750 y luego es de 89,6700, la desviación estándar fue 0,42294 y luego 1,61374, asimismo el valor fue del mínimo de 80,00 y el máximo 81,64 pero después fueron el mínimo 86,07 y el máximo 91,80.

Tabla 27. Indicador confiabilidad en 16 semanas antes y después.

D	atos - Confiabili	dad
Semana	Antes de	Después de
	Implementar	Implementar
1	80,66	86,07
2	80,49	87,87
3	81,31	88,2
4	80,49	88,36
5	80,66	87,21
6	80,33	88,52
7	80,66	88,85
8	80	89,34
9	80,33	90
10	80,49	90,49
11	81,31	90,16
12	80,66	90,82
13	80,33	90,49
14	80,49	90,98
15	81,64	91,31
16	80,66	91,8
PROMEDIO	80,66	89,41

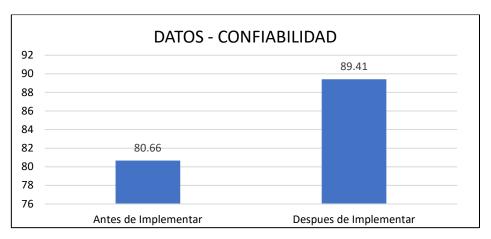


Figura 16. Base de datos del indicador confiabilidad

Interpretación: En conexión al índice de la confiabilidad que se presente en el grafico se lograr apreciar una clara diferencia de incremento de 8,75% con respecto al mantenimiento que se les brinda a las máquinas, en esto a la relación en el antes y en el después de lograr la investigación.

Dimensión 1: MTBF

Tabla 28. Indagación descriptiva de la MTBF.

	Descriptivos					
		Estadístico	Error			
			estándar			
PRETEST.MT	Media	165,7625	15,44250			
BF	Mediana	163,7000				
	Varianza	3815,534				
	Desviación estándar	61,77001				
	Mínimo	98,00				
	Máximo	249,00				
POSTEST.MT	Media	261,6750	8,39560			
BF	Mediana	273,5000				
	Varianza	1127,777				
	Desviación estándar	33,58239				
	Mínimo	175,00				
	Máximo	280,00				

Fuente: Data examinada por SPSS V.24

Interpretación: En la presente indagación se logra corroborar que antes de lograr la aplicación, la media fue de 165,7625 y luego es de 261,6750, la mediana fue de 163,7000 y luego es de 273,5000, la desviación estándar fue 61,77001 y luego 33,58239, asimismo el valor fue del mínimo de 98,00 y el máximo 249,00 pero después fueron el mínimo 175,00 y el máximo 280,00.

Tabla 29. Indicador MTBF en 16 semanas en un antes y después de la aplicación.

	DATOS - MTB	F
SEMANA	Antes de	Después de
	Implementar	Implementar
1	98,4	175
2	163,7	268
3	248	269
4	163,7	269,5
5	246	177,3
6	98	270
7	246	271
8	122	272,5
9	98	274,5
10	163,7	276
11	248	275
12	123	277
13	98	276
14	163,7	277,5
15	249	278,5
16	123	280
PROMEDIO	165,76	261,68

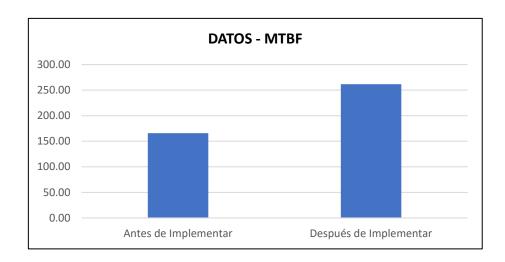


Figura 17. Base de datos del indicador MTBF

Interpretación: En conexión al indicador del MTBF que se presenta en el grafico se logra apreciar una clara diferencia de incremento de 95,9125 horas de funcionamiento en las 16 semanas con respecto al mantenimiento que se le brinda a las máquinas, en esto a la relación en el antes y en el después de lograr la investigación.

Dimensión 2: MTTR

Tabla 30. Indagación descriptiva de la MTTR.

	Descriptivos				
		Estadístico	Error estándar		
PRETEST	Media	39,4938	3,47609		
MTTR	Mediana	39,7000			
	Varianza	193,331			
	Desviación estándar	13,90436			
	Mínimo	23,60			
	Máximo	59,00			
POSTEST	Media	30,6125	,96854		
MTTR	Mediana	29,5000			
	Varianza	15,009			
	Desviación estándar	3,87417			
	Mínimo	25,00			
	Máximo	37,00			

Fuente: Data examinada por SPSS V.24

Interpretación: En la presente indagación se logra corroborar que antes de lograr la aplicación, la media fue de 39,4938 y luego es de 30,6125, la mediana fue de 39,7000 y luego es de 29,5000, la desviación estándar fue 13,90436 y luego 3,87417, asimismo el valor fue del mínimo de 23,60 y el máximo 59,00 pero después fueron el mínimo 25,00 y el máximo 37,00.

Tabla 31. Indicador MTTR en 16 semanas antes y después de la aplicación.

DATOS - MTTR					
<u>Día</u>	Antes de	Después de			
	<u>Implementar</u>	<u>Implementar</u>			
1	23,6	28,3			
2	39,7	37			
3	57	36			
4	39,7	35,5			
5	59	26			
6	24	35			
7	59	34			
8	30,5	32,5			
9	24	30,5			
10	39,7	29			
11	57	30			
12	29,5	28			
13	24	29			
14	39,7	27,5			
15	56	26,5			
16	29,5	25			
PROMEDIO	39,49	30,61			

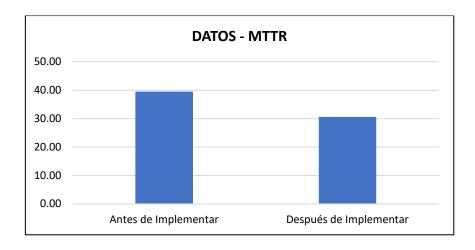


Figura 18. Base de datos del indicador MTTR

Interpretación: En conexión al indicador del MTTR que se presente en el grafico se logra apreciar una clara diferencia en la disminución en el tiempo medio para reparar de 8,88 horas de disfuncionamiento de las maquinas en las 16 semanas con respecto al mantenimiento que se le brinda a las máquinas, en esto a la relación en el antes y en el después de lograr la investigación.

Análisis inferencial

Para realizar el análisis inferencial se toma una regla se decisión, para elegir el tipo de estudio estadístico, asimismo saber en qué caso es paramétrico y no paramétrico. Por lo que se explica mediante tablas las decisiones a tomar.

Tabla 32. Toma de decisiones para elegir el estudio estadístico de acuerdo a la población.

<u>Decisión</u>	Estudio estadístico
Dato ≤ 30	Shapiro - Wilk
Dato ≥ 30	Kolmogorov - Smirnov

Tabla 33. Pruebas estadísticas

Significancia	Pre – test	Post – test	Decisión	Prueba
Sig. ≥ 0.05	No	Si	No paramétrico	Wilcoxon
Sig. ≥ 0.05	Si	No	No paramétrico	Wilcoxon
Sig. ≥ 0.05	No	No	No paramétrico	Wilcoxon
Sig. ≥ 0.05	Si	Si	Paramétrico	T Student

Prueba de la normalidad de variable dependiente Confiabilidad

Para corroborar la validación de la hipótesis, es importante conocer si la data obtenida en el pre test y en el post test tienen una decisión de normalidad paramétrica, ya que ambos datos tienen el N inferiores menor a 30, se opta por realizar el estudio de normalidad con el método de Shapiro Wilk.

Tabla 34. Procesamientos de datos de pres test y post test

Resumen de procesamiento de casos						
	Casos					
		<u>Válido</u> <u>Perdidos</u> <u>Total</u>				
	N	Porcentaje	Ν	Porcentaje	Ν	Porcentaje
PRE TEST	16	100,0%	0	0,0%	16	100,0%
CONFIABILIDAD						
POS TEST	16	100,0%	0	0,0%	16	100,0%
CONFIABILIDAD						

Fuente: elaboración propia

Tabla 35. Prueba de normalidad de confiabilidad con el Shapiro Wilk.

	Pruebas de norma	lidad	
		Shapiro-W	ilk
	Estadístico	<u>gl</u>	<u>Sig.</u>
PRE TEST	,858	16	,018
CONFIABILIDAD			
POS TEST	,964	16	,728
CONFIABILIDAD			
Nota. *. Esto es un límit	e inferior de la signif	ficación ver	dadera.
 a. Corrección de significamento 	cación de Lilliefors		

Gráfico Q-Q normal de PRETEST para CONFIABILIDAD 3-2-2-2-2-3-5 80,0 80,5 81,0 81,5 82,0 Valor observado

Figura 19. Distribución de data confiabilidad en el pre test.

Fuente: Data tratada por software SPSS V.24

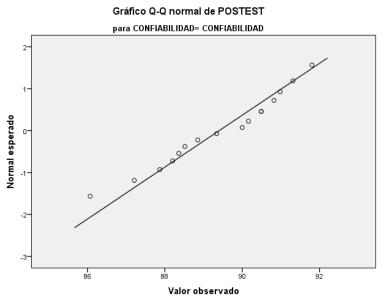


Figura 20. Distribución de data Confiabilidad en el pos test

Fuente: Data trata por software SPSS V.24

Interpretación: En los gráficos mostrados se logra corroborar que la Confiabilidad antes resulta una conducta no paramétrica y el después es paramétrica, porque no muestra un nivel muy significante en la dispersión.

Validación de la hipótesis general de la Variable dependiente.

Ho: La aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 no mejora significativamente la confiabilidad al cliente, 2019

Ha: La aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 mejora significativamente la confiabilidad al cliente.

Regla de toma de decisión:

Ho: valor de confiabilidad pre test ≥ valor de confiabilidad post test

Ha: valor de confiabilidad pre test < valor de confiabilidad post test

Con los datos obtenidos con la prueba de la normalidad, se puede apreciar la significancia de la hipótesis general del pre test con un valor de significancia menor 0.05 y asimismo del post test con un valor de significancia mayor de 0.05, por lo que fueron no paramétricos y paramétricos con lo que tomo con la decisión de normalidad. Por lo que se permite conocer que se aplicara la medida estadística de Wilcoxon para poder conocer si la confiabilidad ha logrado una mejora de manera significativa.

Tabla 36. Prueba de hipótesis general – confiabilidad con Wilcoxon

Estadísticos descriptivos							
<u>N Media Desviación Mínimo Máxi</u> <u>estándar</u> <u>mo</u>							
Confiabilidad pre test	16	80,6569	,42294	80,00	81,64		
Confiabilidad post test	16	89,4044	1,61374	86,07	91,80		

Tabla 37. Prueba de Wilcoxon de los rangos con signo – Confiabilidad

Rangos						
		<u>N</u>	<u>Rango</u>	<u>Suma de</u>		
			<u>promedio</u>	<u>rangos</u>		
Confiabilidad	Rangos	0 ^a	,00	,00,		
post test –	negativos					
Confiabilidad	Rangos positivos	16 ^b	8,50	136,00		
pre test.	Empates	0°				
	Total	16				
Nota. a. Confiab	ilidad post test < Confia	bilidad pre	test			
b. Confiabilidad	post test > Confiabilidad	d pre test				
c. Confiabilidad	post test = Confiabilidad	d pre test				

Fuente: Elaboración propia

Con los datos obtenidos se logra comprobar que la media de la confiabilidad en el pre test era de 80,6569 y se compara con la media de la confiabilidad en el post test es de 89,4044, y según la regla de toma de decisiones el valor de confiabilidad post test ≥ el valor de confiabilidad pre test no se logra cumplir, por lo que la Ho que esta define el tratamiento del mantenimiento predictivo basado la norma ISO 9001:2015 no mejora significativamente la confiabilidad hacia la máquina de los clientes.

Tabla 38. Análisis de la prueba de Wilcoxon para la confiabilidad

Estadísticos de pruebaª				
	POSTEST -			
	PRETEST			
Z	- 3,518 ^b			
Sig. asintótica (bilateral)	,000			
Nota. a. Prueba de Wilcoxon de los rangos con				
signo				
b. Se basa en rangos negativos.				

Fuente: Elaboración propia

En la tabla de la Wilcoxon se observa un p-valor = 0.00 < 0.05 lo que indica que se rechaza la hipótesis nula y acepta la hipótesis alterna, es decir: la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 mejora significativamente la confiabilidad al cliente.

Prueba de la normalidad de la dimensión MTBF

Para corroborar la validación de la hipótesis, es importante conocer si la data obtenida en el pre test y en el post test tienen una decisión de normalidad no paramétrica, ya que ambos datos tienen el N inferiores menor a 30, se opta por realizar el estudio de normalidad con el método de Shapiro Wilk.

Tabla 39. Procesamiento de casos del pre test y el pos test del MTBF

Resumen de procesamiento de casos						
	Casos					
	•	<u>Válido</u>	<u>Pe</u>	<u>erdidos</u>		<u>Total</u>
	N	Porcentaje	N	Porcentaje	Ν	Porcentaje
PRETEST.MTBF	16	100,0%	0	0,0%	16	100,0%
POSTEST.MTBF	16	100,0%	0	0,0%	16	100,0%

Fuente: Elaboración propia

Tabla 40. Prueba de normalidad de MTBF con el Shapiro Wilk.

Pruebas de normalidad					
Shapiro-Wilk					
	<u>Estadísti</u>	<u>gl</u>	<u>Sig.</u>		
	<u>co</u>				
PRETEST.MTBF	,819	16	,005		
POSTEST.MTBF ,502 16 ,000					
Nota. a. Corrección de significación de Lilliefors					

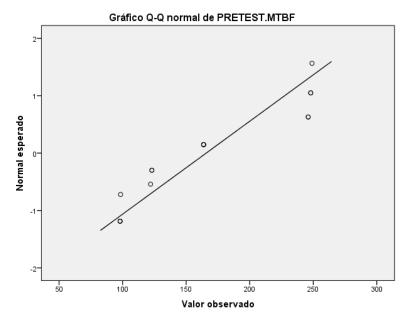


Figura 21. Distribución de data MTBF en el pre test.

Fuente: Data tratada por software SPSS V.24

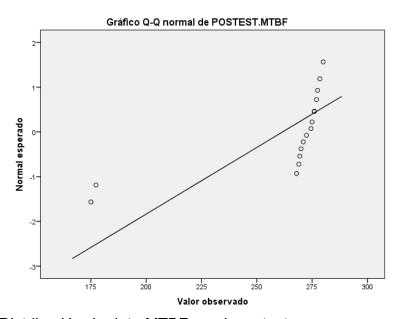


Figura 22. Distribución de data MTBF en el pos test

Fuente: Data trata por software SPSS V.24

Interpretación: En los gráficos mostrados se logra corroborar que el MTBF antes resulta una conducta no paramétrica y el después también es no paramétrica, porque muestra un nivel muy significante en la dispersión.

Validación de hipótesis especifica 1 de la variable dependiente.

Ho: La aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 no incrementa el tiempo promedio entre falla (MTBF) de la máquina del cliente.

Ha: La aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 incrementa el tiempo promedio entre falla (MTBF) de la máquina del cliente.

Regla de toma de decisión:

Ho: valor de MTBF pre test ≥ valor de MTBF post test.

Ha: valor de MTBF pre test < valor de MTBF post test.

Con los datos obtenidos con la prueba de la normalidad, se puede apreciar la significancia de la hipótesis general del pre test con un valor de significancia igual a 0.05 y asimismo del post test con un valor de significancia menor de 0.05, por lo que fueron ambos no paramétricos, es decir ≥ 0.05 con lo que se tomó la decisión de normalidad. Por lo que se permite conocer que se aplicara la medida estadística de Wilcoxon para poder conocer si el MTBF ha logrado una mejora de manera significativa.

Tabla 41. Prueba de hipótesis especifica 1 – MTBF con Wilcoxon

		Estadístico	os descriptivos		
	N	<u>Media</u>	<u>Desviación</u>	<u>Mínimo</u>	<u>Máximo</u>
			<u>estándar</u>		
PRETEST.MTB	16	165,762	61,77001	98,00	249,00
F		5			
POSTEST.MTB	16	261,675	33,58239	175,00	280,00
F		0			

Tabla 42. Prueba de Wilcoxon de los rangos con signo – MTBF

Rangos						
	<u>N</u>	<u>Rango</u>	<u>Suma de</u>			
			<u>promedio</u>	<u>rangos</u>		
POSTEST.MTBF	Rangos	1 ^a	5,00	5,00		
-	negativos					
PRETEST.MTBF	Rangos positivos	15 ^b	8,73	131,00		
	Empates	Oc				
	Total	16				

Nota. a. Post test MTBF < pre test MTBF

- a. Post test MTBF < pre test MTBF
- c. Post test MTBF = pre test MTBF

Fuente: Elaboración propia

Con los presentes datos se logra comprobar que la media del MTBF en el pre test era de 165,7625 y se compara con la media de la confiabilidad en el post test es de 261,6750, y según la regla de toma de decisiones el valor de MTBF de post test ≥ el valor de MTBF de pre test no se logra cumplir, por lo que la Ho que esta define el tratamiento del mantenimiento predictivo basado la norma ISO 9001:2015 no mejora significativamente el MTBF hacia la máquina de los clientes.

Tabla 43. Análisis estadístico de la prueba de Wilcoxon

Estadísticos de pruebaª				
	POSTEST.MTBF			
	<u>=</u>			
	PRETEST.MTBF			
Z	- 3,258 ^b			
Sig. asintótica (bilateral)	,001			
Nota. a. Prueba de Wilcoxon de los rangos con				
signo b. Se basa en rangos negativos.				

Fuente: Elaboración propia

En la tabla de la Wilcoxon se observa un p-valor = 0.001 < 0.005 lo que indica que se rechaza la hipótesis nula y acepta la hipótesis alterna, es decir: La aplicación del

mantenimiento predictivo basado en la norma ISO 9001:2015 incrementa el tiempo promedio entre falla (MTBF) de la máquina del cliente.

Prueba de la normalidad de la dimensión MTTR

Para corroborar la validación de la hipótesis, es importante conocer si la data obtenida en el pre test y en el post test tienen una decisión de normalidad no paramétrica, ya que ambos datos tienen el N inferiores menor a 30, se opta por realizar el estudio de normalidad con el método de Shapiro Wilk.

Tabla 44. Procesamiento de casos del pre test y el pos test del MTTR

Resumen de procesamiento de casos						
			C	Casos		
	<u>\</u>	∕álido	<u>Pe</u>	<u>erdidos</u>		<u>Total</u>
	Ν	Porcenta	Ν	Porcentaj	Ν	Porcenta
		je		е		je
PRETEST.MTT	16	100,0%	0	0,0%	16	100,0%
R						
POSTEST.MTT	16	100,0%	0	0,0%	16	100,0%
R						

Fuente: Elaboración propia

Tabla 45. Prueba de normalidad de MTTR con el Shapiro Wilk.

Pruebas de normalidad							
	Sha	piro-Wilk					
	<u>Estadístico</u> <u>gl</u> <u>Sig.</u>						
PRETEST.MT	,846	16	,012				
TR							
POSTEST.MT	,931	16	,255				
TR							
Nota. Esto es un límite inferior de la significación							
verdadera.							
a. Corrección de s	ignificación de Li	lliefors					

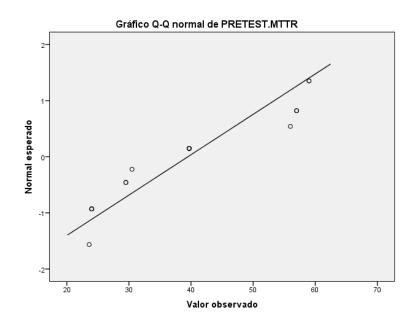


Figura 23. Distribución de data MTTR en el pre test.

Fuente: Data tratada por software SPSS V.24

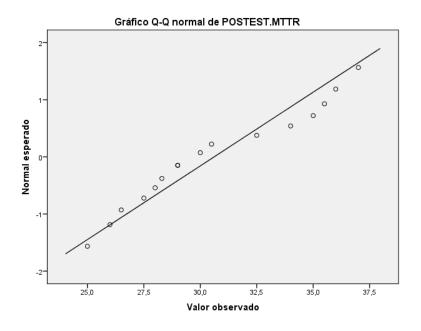


Figura 24. Distribución de data MTTR en el pos test

Fuente: Data trata por software SPSS V.24

Interpretación: En los gráficos mostrados se logra corroborar que el MTTR antes resulta una conducta no paramétrica y el después también es paramétrica, porque no muestra tanta dispersión.

Validación de la hipótesis especifica 2 – variable dependiente

Ho: La aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 no disminuye el tiempo promedio de reparación de fallas (MTTR) de la máquina del cliente.

Ha: La aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 disminuye el tiempo promedio de reparación de fallas (MTTR) de la máquina del cliente.

Regla de toma de decisión:

Ho: valor de MTTR pre test ≤ valor de MTTR post test

Ha: valor de MTTR pre test > valor de MTTR post test

Con los datos obtenidos con la prueba de la normalidad, se puede apreciar la significancia de la hipótesis general del pre test con un valor de significancia menor a 0.05 y asimismo del post test con un valor de significancia mayor de 0.05, por lo que fueron ambos no paramétricos, con lo que se tomó la decisión de normalidad. Por lo que se permite conocer que se aplicara la medida estadística de Wilcoxon para poder conocer si el MTTR ha logrado una mejora de manera significativa.

Tabla 46. Prueba de hipótesis especifica 2 – MTTR con Wilcoxon

		Estadísticos	s descriptivos		
	<u>N</u>	<u>Media</u>	<u>Desviación</u>	<u>Mínimo</u>	<u>Máxi</u>
			<u>estándar</u>		<u>mo</u>
PRETEST.MT	16	39,493	13,90436	23,60	59,00
TR		8			
POSTEST.MT	16	30,612	3,87417	25,00	37,00
TR		5			

Nota. Fuente: Elaboración propia

Tabla 47. Prueba de Wilcoxon de los rangos con signo - MTTR

		Rangos		
		<u>N</u>	Rango promedio	Suma de rangos
POSTEST.MTT	Rangos negativos	11 ^a	9,36	103,00
R -	Rangos positivos	5 ^b	6,60	33,00
PRETEST.MTT	Empates	0°		
R	Total	16		
Nota. a. POSTEST	$\Gamma.MTTR < PRETEST.M^{-1}$	TTR		
b. POSTEST.MTT	R > PRETEST.MTTR			
c. POSTEST.MTT	R = PRETEST.MTTR			

Fuente: Elaboración propia

Con los presentes datos se logra comprobar que la media del MTTR en el pre test era de 39,4938 y se compara con la media de la confiabilidad en el post test es de 30,6125, y según la regla de toma de decisiones el valor de MTTR de post test ≤ el valor de MTTR de pre test no se logra cumplir, por lo que la Ho que esta define el tratamiento del mantenimiento predictivo basado la norma ISO 9001:2015 no disminuye el tiempo promedio de reparación de fallas (MTTR) de la máquina del cliente.

Por lo que se obtiene que el MTTR disminuyó, es decir que Hipótesis especifica 2: la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 disminuye el tiempo promedio de reparación de fallas (MTTR) de la máquina, se valida porque se redujo el nivel de MTTR.

Tabla 48. Análisis estadístico de la prueba de Wilcoxon para la hipótesis de MTTR

Estadísticos de pruebaª				
	POSTEST.MTTR -			
	PRETEST.MTTR			
Z	-1,810 ^b			
Sig. asintótica (bilateral)	,070			
Nota.				
 a) Prueba de Wilcoxon de lo 	s rangos con signo			
b) Se basa en rangos p				
Fuente: Elaboración propia				

En la tabla de la Wilcoxon se observa un p-valor = 0.070 > 0.05 lo que indica que se aprueba la hipótesis nula y rechaza la hipótesis alterna, es decir: La aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 no disminuye el tiempo promedio de reparación de fallas (MTTR) de la máquina del cliente.

Análisis de costos

Costo de mantenimiento predictivo y repuestos de implementación

Tabla 49. Cuadro de costos de mantenimiento y repuestos del mantenimiento predictivo

N°	DESCRIPCIÓN				PRECIO
	mantenimiento	mano de obra			5000,00
1	predictivo	stock de repuestos			4000,00
		herramientas de trabajo (todo proceso)			9000,00
2	capacitación	()			1500,00
	TOTAL				19500,00
Pre	supuesto Proyecto de	Investigación			
N°	DESCRIPCIÓN	CANTIDAD	TIEMPO	precio unidad	PRECIO
1	Servicio de luz	1	8 meses	250	1000,00
2	servicio interned	1	8 meses	120	480,00
3	cartucho de tinta hp 664	4	8 meses	40	160,00
4	papel bond A4(1- MILLAR)	3	8 meses	100	300,00
5	lapiceros	3	8 meses	1	3,00
6	cuaderno A4	1	8 meses	40	40,00
7	copias(varios)	85	8 meses	0,5	42,50
8	tesis(copias)	6	8 meses	30	180,00
	total				2205,50
1	PRESUPUESTO MAN				19500,00
2	PRESUPUESTO PRO INVESTIGACIÓN	YECTO			2205,50
	TOTAL				21705,50

V. DISCUSIÓN

Primera discusión

Luego de la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 se mejoró de manera significativa la confiabilidad a las máquinas de los clientes de la empresa SEGAMA MAQUINARIAS, se logró conocer confiabilidad media de 80,6569% antes de la aplicación de la VI, por lo que se evidencia que es menor a la confiabilidad lograda en el pos test que es 89,4044%, ya que se aprecia una mejora en la confiabilidad como resultado del mantenimiento predictivo basado en la norma ISO 9001:2015 en las máquinas de los clientes de la empresa SEGAMA MAQUINARIAS, asimismo el presente resultado tiene cierta concordancia con lo expresado por Inti y Alvares (2019), en su tesis "Mantenimiento predictivo por análisis de aceite, para optimizar costos operativos por disponibilidad, montacargas P33000. Siderúrgica del Perú S.A.A. Chimbote 2018"; que se encuentra dentro del estudio donde sus problemas es el costo operativo de las máquinas y que concluye que la práctica de mantenimiento predictivo por análisis de aceite ayuda a aumentar la disponibilidad del montacargas del 1,11% la cual demuestra un ahorro en los costos operativos del montacarga en \$34 393,88 dólares en un año operacional, confirmando la optimización en los costos operativos; de igual manera revela el libro Mora (2009) sostiene que la confiabilidad se encuentra directamente relacionada con la frecuencia con la cual ocurren las fallas, por lo que si no hay el equipo es confiable al 100% y que el equipo desempeñe totalmente sus funciones.

Segunda discusión

Por consiguiente, con la indagación se afirma la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 incrementa el tiempo promedio entre falla (MTBF) de la máquina que tenía antes una media de 165,7625 que es menor a la media que se obtuvo después que es 261,6750, estos resultados corroboran un incremento del MTBF del resultado de la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015, esta finalidad concuerda con lo expresado por Rojas (2016), en su tesis "Propuesta de un sistema de mantenimiento predictivo en el área de procesamiento de mineral para incrementar la rentabilidad de una

compañía minera"; que se encuentra dentro del estudio donde sus problemas son en base a las fallas de los equipos críticos de chancado y molinos y que concluye que la práctica del mantenimiento predictivo que aumenta la disponibilidad en equipos de chancado de 93.92% a 96.42% y los molinos de 91.16% a 96.46%, la eficiencia en procesamiento de mineral de 93.8% a 96.6%; es por lo que después de aplicar el mantenimiento predictivo se logra mejorar el Mean Time Between Failures (MTBF) por lo que tiene correlación con la eficiencia, de igual manera la conjetura revelada en el libro explicando Alessio (2004): "cuanto menor sea el MTTR y mayor el MTBF la disponibilidad aumenta." (p. 446), además el MTBF explica García, O (2012): "indica el intervalo de tiempo más probable entre el arranque del equipo y la aparición de una falla; es decir es el tiempo promedio transcurrido hasta la llegada de la falla" (p. 131) por lo que el tiempo de funcionamiento del equipo incrementa es debido al incremento de la confiabilidad.

Tercera discusión

Por último, luego de la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015, en el presente estudio se ha logrado corroborar que se disminuye el tiempo promedio de reparación de fallas (MTTR) de la máquina, por lo que antes de la aplicación presenta una media de 39,4938 horas que es mejor a la media que se obtuvo después que es 30,6125, estos resultados corroboran una disminución en el MTTR del resultado de la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015, este logro concuerda con lo mencionado por Pasache (2017), en su tesis "Plan de mantenimiento predictivo por análisis de vibraciones para mejorar la confiabilidad de los equipos rotativos del área de galvanizado en una empresa metalmecánica, Lima 2017"; que se encuentra dentro del estudio donde sus problemas son las fallas localizadas en las máquinas y que concluye que aplicar el mantenimiento predictivo logro mejorar el tiempo medio de reparación en base a los resultados obtenidos y se obtuvo una mejora de 65% y 44.2% respectivamente, es por lo que después de aplicar el mantenimiento predictivo se logra mejorar el tiempo medio de reparación de igual manera la conjetura revelada en el libro Mora (2009) señala que el MTTR es el tiempo neto medio para realizar reparaciones sin incluir reparaciones logísticas y las demoras administrativas, por el cual es el tiempo que la maquina demora en ser reparada.

Cuarta discusión

En continuidad con los puntos de discusión, referidos a los diferentes hallazgos o resultados que fue posible obtener luego del análisis al que fue sometido los diferentes resultados de la investigación; se consideró necesario poner en evidencia los resultados de la variable independiente y sus dimensiones. Como primer resultado se menciona al índice de la criticidad que hizo referencia al nivel de criticidad que presentaron las diferentes máquinas antes y después de la evaluación del mantenimiento predictivo. El mencionado resultado se muestra en la tabla 19 de la página 59 donde el valor antes fue de 75.56% y después de la mejora fue de 48.81%; con ello se logró una notable disminución de este índice de un 26.75% el cual permitió evidenciar una baja en cuanto a la criticidad de las máquinas en estudio; estos mismos resultados también permitió la aceptación de aceptación de la hipótesis general. El resultado obtenido tuvo relación con los obtenido por Santiago (2017) quien implementó el mantenimiento predictivo en una empresa para incrementar la productividad en el área de máquinas automáticas. El mencionado investigador concluyó como resultado de su investigación que con los valores obtenidos con la fórmula planteada logró incrementar la productividad del mantenimiento predictivo en un 95% este incremento que logró fue de un 30% respectivamente. Según estos logros en ambos estudios aplicados a las máquinas que fueron parte de un proceso productivo, las mejoras de este programa fueron de mucha relevancia en la búsqueda de la satisfacción de los clientes.

Quinta discusión

Como siguiente punto de discusión del estudio, enfocado en poner en evidencia los valores que se obtuvo de las dimensiones relacionados con la variable independiente, nos referimos a la dimensión de las actividades programadas cuyos valores se muestran en la tabla 13 de la página 54; en donde se muestra los valores recogidos en cada uno de las semanas de medición tanto antes y después de la intervención; estos valores fueron: en la medición índice obtuvo un valor inicial del 53% y en la medición final luego de la aplicación de la gestión de mantenimiento predictivo este índice pasó a un 74%; logrando un incremento del indicador de las actividades programadas de un 21%, este resultó ser un valor significativo lo cual

indicó el logro de los objetivos planteados en el estudio y dar por válido las hipótesis planteadas. En particular este resultado tuvo una coincidencia con lo investigado por Cabrera (2018) quien en su tesis planteó la optimización de los indicadores de calidad de suministro, realizando el mantenimiento predictivo mediante un sistema termográfico en los indicadores de media tensión. Como resultado obtenido luego de su estudio el autor concluyó que después de aplicación del mantenimiento predictivo, los indicadores de calidad de suministro en los alimentadores de media tensión se logró reducir sus valores en SAIFI 4.96, obtenido una reducción de 35% y en SAIDI 8.24 obteniendo una reducción del 30%. Estos valores en común indicaron que el mantenimiento predictivo basado en la norma ISO generó una mejora en la satisfacción de los clientes de la empresa de estudio.

Sexta discusión

Como punto último de este apartado de discusión de los hallazgos o resultados de los indicadores obtenidos, se menciona a la dimensión disponibilidad, el cual se refiere al nivel de disposición de las máquinas para ejecutar el trabajo cuando este es requerido. Estos valores se muestran en la tabla 15, de la página 56 donde se indican los valores obtenidos durante ambos períodos de estudio. En la medición inicial este índice obtuvo 90.9% y en la medición final obtuvo un 94.1%; ello permitió evidenciar un notable aumento de este índice de la disponibilidad en un 3.1%, en apariencia este valor no es cuantificable pero como resultado positivo fue significativo; con lo cual también se pudo demostrar la validez de las hipótesis planteadas. En particular este valor como resultado obtenido tiene una coincidencia con lo investigado por Verdezoto (2015) quien en su investigación realizó un diagnóstico de la situación actual y propuso la elaboración de un plan de mantenimiento predictivo, basado en el análisis de la criticidad de los equipos que interviene en el proceso de laminación en una empresa industrial. El investigador determinó que la propuesta representa una opción muy rentable para reducir drásticamente el tiempo de inactividad operacional, lo cual ha sido previamente estudiado. Estos valores obtenidos respaldaron la teoría que se consideró en este estudio los cuales estuvo enfocado en satisfacer a los clientes.

VI. CONCLUSIONES

- 1. En conclusión, se demuestra los resultados obtenidos en la presente investigación que la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 mejora la confiabilidad de las maquinas enchapadoras de los clientes de SEGAMA MAQUINARIAS S.A.C, lo dicho se basa a los datos obtenidos en la prueba de hipótesis que se realizó, ya que se logró determinar que la media de la confiabilidad 80,66% antes de la aplicación y después aumento en el pos test 89,40%,se incrementó la confiabilidad en un 8,7%.
- 2. Se evidencia en los resultados obtenidos, que la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015, mejora la confiabilidad de las maquinas enchapadoras de los clientes de SEGAMA MAQUINARIAS S.A.C, esto se basa a la prueba de hipótesis con el análisis estadístico de Wilcoxon se llegó a determinar la media 165,76 horas que es menor a la media que se obtuvo después que es 261,9 horas, por lo que se aprecia un aumento de 95,9 horas. La presente mejora en el MTBF se logró alcanzar, por lo que en las maquinas enchapadores aumento la disponibilidad de operación, ya que se predijo antes de aparecer una falla o el desgaste de una pieza muy significativa, con los instrumentos predictivos que es la cámara termográfica y el sonómetro ya que se ayudó a controlar los parámetros de temperatura y sonido, por lo que para ello se siguió los pasos de la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015.
- 3. Finalmente se confirma que el efecto del mantenimiento predictivo basado en la norma ISO 9001:20152015 mejoró el tiempo medio entre fallas y el tiempo medio de reparación (MTTR), esto es en base a la prueba de hipótesis con el análisis estadístico de Wilcoxon, se llegó a determinar la media 39,5 horas que es mayor a la media que se obtuvo después que es 30,6 horas, por lo que se aprecia una disminución de 8,9 horas.

Esta mejora se debe a que el tiempo medio de reparación se logró disminuir ya que se obtuvo menos tiempos inoperativos de operación, ya que esto debe a la ayuda de los instrumentos predictivos. El presente resultado se logró siguiendo

los pasos de la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015, ya que no lo tenían antes.

De los presentes resultados obtenidos, se concluye que aplicando la técnica predictiva bajo la norma ISO 9001:2015, se logra una mejor aplicación en la gestión del mantenimiento ya que facilita la ejecución de las actividades planificadas para mejorar la confiabilidad y la disponibilidad de los equipos en situaciones críticas.

VII. RECOMENDACIONES

- 1. Se recomienda que se prosiga aplicando el mantenimiento predictivo basado en la norma ISO 9001:2015, ya que se logró mejorar la confiabilidad de las maquinarias enchapadoras adquiridas por los clientes, los cuales presentaban paradas de manera imprevistas. Para seguir con la presente mejora, se debe establecer responsables, que tengan experiencia y conocimientos técnicos en mantenimiento predictivo para garantizar que se prosiga el cumplimiento de la presente, asimismo del registro de los datos y monitoreo de las maquinarias de manera frecuente.
- 2. Se recomienda con respecto a la capacitación, incluir a todos los técnicos en el uso de herramientas predictivas y en el cumplimiento de los pasos del mantenimiento predictivo bajo la norma ISO 9011:2015. Por lo que se ha logrado evidenciar que los técnicos con mayor experiencia en el área, aportan conocimientos de suma importancia en el análisis de la falla.
- 3. Se recomienda con respecto a mantener la disminución del tiempo medio de reparación (MTTR), extender la metodología implantada entre los operarios, técnicos y jefe del área para mantener una comunicación de manera efectiva y lograr aportar más soluciones con herramientas predictivas de acuerdo al caso. Lo presente nos permitirá seguir mejorando la confiabilidad y asegurar la competitividad de la empresa, garantizando que las maquinas brindadas por la empresa garantiza un nivel adecuado de confiabilidad y un seguimiento constante en su mantenimiento.

REFERENCIAS

- ABRIL, C.E., ENRIQUEZ, A. y SÁNCHEZ, J.M., 2012, *Guía para la integración de sistemas de gestión;* Calidad, Medio Ambiente y seguridad y salud en el trabajo. 2ª. ed. Madrid: Fundación COMFEMENTAL. ISBN 9788493961879.
- ACEVEDO, A. M., 2012. Modelo para la implementación de mantenimiento predictivo en las facilidades de producción de petróleo [en línea]. Tesis Doctoral. Bucaramanga, Colombia: Universidad Industrial de Santander. Disponible en: https://www.docsity.com/es/modelo-para-la-implementacion-del-mantenimientio-predictivo/5782499/
- ALESSIO, F., 2004. Administración y dirección de la producción. Enfoque estratégico y de calidad 2ª. ed. México: Pearson Educación de México, S.a. de C.V. ISBN 9702605431.
- ARATA, A., 2009. *Ingeniería y gestión de la confiabilidad operacional en plantas industriales*. Santiago: RIL Ediciones. ISBN 9789562846585.
- BOERO, C., 2014. *Mantenimiento Industrial*. 2a. ed. Buenos Aires, Argentina: Universitas Editorial científica universitaria. ISBN 9789875720763.
- CABRERA, G., 2018. Mantenimiento predictivo con aplicación de un sistema termográfico para optimizar los indicadores de calidad de suministro en los alimentadores de media tensión Trujillo Nor Oeste [en línea]. Tesis de pregrado. Trujillo, Perú: Universidad César Vallejo. Disponible en: http://repositorio.ucv.edu.pe/handle/UCV/26581.
- CÁCERES, R., 2004. *Estadística multivariante y no paramétrica con SPSS*. Madrid: Ediciones Díaz de Santos S.A. ISBN 8479781807.
- CEDEÑO, E., ARÉVALO, L.M. y LEÓN, O.D., 2016. Estudio del impacto logístico-técnico que genera el mantenimiento predictivo en las PYMES de Milagro, Ecuador. *Journal of Science and Research: Revista Ciencia e Investigación*, vol. 1, no. 2, pp. 7-15. ISSN 2528-8083.
- DEFENSA, 2016. Mantenimiento predictivo y monitorización estructural. *defensa* [en línea]. [Consulta: abril 2019]. Disponible en: https://publicaciones.defensa.gob.es/media/download
- DÍAZ, A., VILLAR, L., CABRERA, J., GIL, A.S., MATA, R. y RODRÍGUEZ, A., 2016. Implementación del mantenimiento centrado en la confiabilidad en empresas de trasmisión eléctrica. *Ingeniería Mecánica*, vol. 19, no 3, pp. 137-142. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1815-59442016000300003

- ESPEJO, C. y ESPEJO, J., 2016. *Implementación de mantenimiento centrado en la confiabilidad en una malteria* [en línea]. Tesis de pregrado. Lima, Perú: Universidad Privada del Norte. Disponible en: http://repositorio.upn.edu.pe/handle/11537/10843.
- GALLO, D., 2018. Mantenimiento predictivo utilizando la técnica de la termografía en transformadores y alimentadores de la empresa Electrice CNEL EP Bolívar [en línea]. Tesis de pregrado. Cuenca, Ecuador: Universidad del Cuenca. Disponible en: http://dspace.ucuenca.edu.ec/handle/123456789/31314.
- GARCÍA, O., 2012. Gestión moderna del mantenimiento industrial, principios fundamentales. Colombia: Ediciones de la U. ISBN 9789587623161.
- GARCÍA, S., 2017. Organización y Gestión Integral de Mantenimiento. España: Ediciones Díaz de Santos. ISBN 9788479785772.
- GARRIDO, S. G., 2017. La contratación del mantenimiento industrial. El mantenimiento sistemático. España: Ediciones Díaz de Santos. ISBN 9788479789626.
- GÓMEZ, J.A., 2017. *Guía para la aplicación de ISO 9001:2015*. España: AENOR ediciones. ISBN 9788481439113.
- GONZÁLES, F.J., 2010. Reducción de Costes y Mejora de Resultados en Mantenimiento. Madrid: Fundación Confemetal. ISBN 9788492735341.
- GONZÁLES, R., 2016. *Mantenimiento Industrial: Organización, control y gestión*. Buenos Aires, Argentina: Alsina. ISBN 9789505532704.
- GUTIÉRREZ, H., 2014. *Calidad total y productividad.* 4a. ed. Ciudad de México: McGraw-Hill /Interamericana Editores s.a. de C.V. ISBN 9786071503152.
- HERNÁNDEZ, R., FERNÁNDEZ, C., y BAPTISTA, M. del P., 2014. *Metodología de la investigación*. 6ª. ed. México, D.F.: McGraw-Hill / Interamericana Editores, s.a. de C.V. ISBN 9781456223960.
- INTI, M. y ALVARES, C., 2019. *Mantenimiento predictivo por análisis de aceite, para optimizar costos operativos por disponibilidad, montacargas P3300. Siderúrgica del Perú S.A.A. Chimbote 2018* [en línea]. Tesis de pregrado. Trujillo, Perú: Universidad César Vallejo. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/27573?locale-attribute=es
- IPEMAN, 2018. Documento elaborado por la Comisión. *Ipeman* [en línea]. [Consulta: abril 2019]. Disponible en: https://www.ipeman.com/historia.php

- JIMÉNEZ, A. y FARFÁN, K., 2019. Diseño e implementación de un plan de mantenimiento predictivo basado en el análisis de vibración y termográfico para una planta de producción de balanceado para camarón [en línea]. Tesis de pregrado. Ecuador: Universidad Politécnica Salesiana. Disponible en: https://dspace.ups.edu.ec/handle/123456789/16995.
- JIMÉNEZ, M. A., 2017. Cómo monitorizar gran cantidad de puntos a un precio razonable. preditecnico. *Preditec* [en línea]. [Consulta: abril 2019]. Disponible en: http://www.preditec.com/notas-tecnicas/tecnicas-predictivas/como-monitorizar-gran-cantidad-de-puntos-a-un-precio-razonable/
- MILANO, T., 2011. *Planificación y gestión del mantenimiento industrial*. Caracas: Teddy Francisco Milano Hernández. ISBN 9789801212157.
- MORA, A., 2014. *Mantenimiento Planeación, ejecución y control.* México: Alfa Omega Grupo Editor. ISBN 9786077073444.
- MORATAYA, C., 2015. Propuesta de creación del departamento de confiabilidad y plan de mantenimiento predictivo para equipos críticos en el Ingenio Santa Ana [en línea]. Tesis de pregrado. Guatemala: Universidad San Carlos de Guatemala: Disponible en: http://www.repositorio.usac.edu.gt/3301/1/Cristian%20Gamaliel%20Morataya%20Toh on.pdf.
- PALELLA, S. y MARTINS, F., 2012. *Metodología de la investigación cuantitativa*. 3ª. ed. Caracas, Venezuela: FEDUPEL. ISBN 9802734454.
- PASACHE, M., 2017. Plan de mantenimiento predictivo por análisis de vibraciones para mejorar la confiabilidad de los equipos rotativos del área de galvanizado en una empresa metalmecánica, Lima 2017 [en línea]. Tesis de pregrado. Lima, Perú: Universidad César Vallejo: Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/13025
- PATIÑO, D., 2015. *Implementación del sistema de gestión de la calidad, ISO 9001:2008, en la empresa AGRICOLA CIA. LTDA*. [en línea]. Tesis de pregrado. Cuenca, Ecuador: Universidad del Cuenca. Disponible en: http://dspace.ucuenca.edu.ec/handle/123456789/21793.
- POÓR, P., y BASL, J., 2019. Predictive maintenance as an intelligent service in industry 4.0. *Journal of Systems Integration*, vol. 10, no. 1, pp. 3-10. ISSN 1804-2724. Recovered from: http://dx.doi.org/10.20470/jsi.v10i1.364
- PSYMA, 2015. Como determinar el tamaño de una muestra. *Ipeman* [en línea]. [Consulta: julio 2019]. Disponible en: https://www.psyma.com/company/news/message/comodeterminar-el-tamano-de-una-muestra.

- ROBLES, F. B., 2017. La estrategia predictiva en el mantenimiento 4.0. *reporteroindustrial* [en línea]. [Consulta: agosto 2019]. Disponible en: https://www.reporteroindustrial.com/temas/La-estrategia-predictiva-en-el-mantenimiento-40+127360
- ROJAS, L., 2016. Propuesta de un sistema de mantenimiento predictivo en el área de procesamiento de mineral para incrementar la rentabilidad de una compañía minera [en línea]. Tesis de pregrado. Cajamarca, Perú: Universidad Privada del Norte. Disponible en: http://repositorio.upn.edu.pe/handle/11537/12569?show=full.
- SÁNCHEZ, R., 2015. t-Student: Usos y abusos. *Revista mexicana de cardiología*, vol. 26, no. 1, pp. 59-61. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-21982015000100009&lng=es&tlng=es.
- SANTIAGO, G., 2017. Implementación del mantenimiento predictivo para incrementar la productividad en el área de máquinas automáticas de la empresa TECNOPRESS S.A.C, 2017 Ate Lima [en línea]. Tesis de pregrado. Liam, Perú: Universidad César Vallejo. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/12567
- TAVARES, I., 2013. Gestión de Mantenimiento enfocado a los costos, Sociedad Uruguaya de Mantenimiento. *URUMAN* [en línea]. [Consulta: agosto 2019]. Disponible en: http://www.ciu.com.uy/downloads/curso mnc.pdf
- VALDERRAMA, S., 2013. Pasos Para Elaborar Proyectos de Investigación Científica Cuantitativa, Cualitativa y Mixta. 2a. ed. Lima, Perú: Editorial San Marcos EIRL. ISBN s.n.
- VERDEZOTO, N., 2015. Propuesta de elaboración de un plan de mantenimiento predictivo, basado en la criticidad de los equipos del proceso laminación en calientes para la empresa ANDEC S.A. [en línea]. Tesis de pregrado. Ecuador: Universidad de cuenca. Disponible en: http://repositorio.ug.edu.ec/handle/redug/8852.
- VILLADA, F., MORENO, G., y VALENCIA, J., 2016. El mantenimiento predictivo y su efecto en la optimización de costos de mantenimiento. Revista Facultad de Ingeniería Universidad de Antioquia, no 25, pp. 95-105. Disponible en: http://bibliotecadigital.udea.edu.co/handle/10495/6146
- ZEGARRA, J., 2016. Propuesta de implementación de un sistema integrado en calidad, medio ambiente, seguridad y salud ocupacional basados en la norma ISO 9001:2008, ISO 14001:2004 y OHSAS 18001:2007 para aumentar la satisfacción de los clientes de la empresa L & S NASSI S.A.C. [en línea]. Tesis de pregrado. Lima, Perú: Universidad Privada del Norte. Disponible en: http://repositorio.upn.edu.pe/handle/11537/11064

ANEXOS

Anexo 1. Matriz de Operacionalización de Variables

Variables	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Escala de indicadores	Técnica	instrumento	Unidad de medida	Formula
	Este sistema de mantenimiento utiliza aparatos de prueba sofisticados para ayudar a predecir cuándo puede fallar algún componente	Permite detectar fallas en los equipos industriales, siguiendo un	Planificar	Análisis de criticidad	Razón	Observación	Hoja de registro de datos	Porcentaje	C = FRECUENCIA x CONSECUENCIA * 100 C = Criticidad
X: MANTENIMIENTO PREDICTIVO	del equipo. [] Este sistema permite tomar decisiones lógicas como el reemplazo de partes gastadas en un turno de reparación que no interfiera con la producción. (Alessio, 2004, p.435)	conjunto de pasos sucesivos con el propósito de detectar las posibles fallas en los equipos	Hacer	Actividades programadas bajo un Control de mantenimiento	Razón	Observación	Hoja de registro de datos	Porcentaje	EAP= A. E * 100 A. P EAP = Eficacia de actividades programadas AE = Actividades ejecutadas AP = Actividades planificadas
BASADO EN LA NORMA ISO: 9001:2015	La adopción de un sistema de gestión de la calidad es una decisión estratégica para una organización que le puede ayudar a mejorar su desempeño global y proporcionar una base sólida para las iniciativas	Brinda la facilidad de aumentar la satisfacción del cliente, adoptando una base consistente para el	Verificar	Seguimiento y evaluación de fallas	Razón	Observación	Hoja de registro de datos	Porcentaje	TF= nº de equipo mo <u>nitoreado</u> *100 Total, de equipos TF = Total de fallas TE = Total de equipos NEM = Numero de Equipos monitoreado
	de desarrollo sostenible. (Gomez, 2017, p.10)	desarrollo de la empresa.	Actuar	Acciones correctivas y mejora continua	Razón	Observación	Hoja de registro de datos	Nominal	M= TO *100 TD *100 Leyenda: D= Disponibilidad TO= Tiempo de operación TD= Tiempo disponible

"APLICACIÓN DE MANTENIMIENTO PREDICTIVO BASADO EN LA NORMA ISO 9001:2015 PARA MEJORAR LA CONFIABILIDAD AL CLIENTE, 2019"

Variables	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Escala de indicadores	Técnica	Instrumento	Unidad de medida	Formula
			Tiempo medio entre fallas	Cálculo de MTBF	Razón	Observación	Hoja de registro de	Porcentaje	MTBF = TTF x 100
Y: CONFIABILIDAD	La confiabilidad es la característica de un equipo o sistema, expresada como una probabilidad, mediante la cual desarrollará la función requerida de la manera deseada, bajo	Engloba tiempos y se expresa en términos probabilísticos. En donde busca medir criticidad, fiabilidad, mantenibilidad y					datos		Leyenda: MTBF = Tiempo medio entre fallas TTF = Tiempo total de funcionamiento NF = Numero de fallas
	todas las condiciones relevantes, durante el tiempo para el cual se le requiera (Alessio, 2004, p.444).	brindar un diagnostico general.	Tiempo medio para reparar.	Cálculo de MTTR	Razón	Observación	Hoja de registro de datos	Porcentaje	MTTR = HTR x 100 Leyenda: MTTR = Tiempo medio para repara TTI = Tiempo total de inactividad NF = Numero de fallas

Anexo 2. Matriz de consistencia

PROBLEMAS	OBJETIVOS	HIPOTESIS	VARIABLE	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	Escala de indicadores	Metodología
General	General	General							
¿En qué medida la aplicación del mantenimiento predictivo basado en	La aplicación del mantenimiento predictivo basado en la norma ISO	Determinar a qué medida la aplicación del mantenimiento		Este sistema de mantenimiento utiliza aparatos de prueba	Permite detectar fallas en los equipos industriales,	Planificar	Análisis de criticidad	Razón	RECOLECCIÓN DE DATOS
la norma ISO 9001:2015 mejorará la confiabilidad al cliente, 2019?	9001:2015 mejora significativamente la confiabilidad al cliente.	predictivo basado en la norma ISO 9001:2015 mejora la confiabilidad al cliente.	X: MANTENIMIENTO PREDICTIVO	sofisticados para ayudar a predecir cuándo puede fallar algún componente del	siguiendo un conjunto de pasos sucesivos con el propósito de detectar las	Hacer	Actividades programadas bajo un Control de mantenimiento	Razón	RECOLECCIÓN DE DATOS
	F(#	F(F	BASADO EN LA NORMA ISO 9001:2015	equipo. [] Este sistema permite tomar decisiones lógicas como el reemplazo de	posibles fallas en los equipos.	Verificar	Seguimiento y evaluación de fallas	Razón	RECOLECCIÓN DE DATOS
Específicos ¿En qué medida la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 mejorará la fiabilidad de la máquina. 2019?	Específicos Demostrar de qué manera la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 mejora la fiabilidad de la máquina.	Específicos La aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 mejora la fiabilidad de la máquina.		partes gastadas en un turno de reparación que no interfiera con la producción. (Alessio, 2004, p.435)		Actuar	Análisis de criticidad	Razón	RECOLECCIÓN DE DATOS
¿En qué medida la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 brindara un mejor mantenimiento de la máquina, 2019?	Demostrar de qué manera la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 brinda un mejor mantenimiento de la máquina.	La aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 brinda un mejor mantenimiento de la máquina.	Y: CONFIABILIDAD	La confiabilidad es la característica de un equipo o sistema, expresada como una probabilidad, mediante la cual desarrollará la	Engloba tiempos y se expresa en términos probabilísticos. En donde busca medir criticidad, fiabilidad, mantenibilidad y brindar un	MTBF	Calculo de MTBF	Razón	RECOLECCIÓN DE DATOS
¿En qué medida la aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 brindara un mejor diagnóstico de la máquina, 2019?	Demostrar de qué manera la aplicación del mantenimiento predictivo basado en la ISO 9001:2015 brinda un mejor diagnóstico de la máquina.	La aplicación del mantenimiento predictivo basado en la norma ISO 9001:2015 brinda un mejor diagnóstico de la máquina.		función requerida de la manera deseada, bajo todas las condiciones relevantes, durante el teimpo para el cual se le requiera (Alessio, 2004, p.444).	diagnostico general.	MTTR	Calculo de MTTR	Razón	RECOLECCIÓN DE DATOS

Anexo 3. Cronograma de ejecución del mantenimiento predictivo

					l	l									ı	l		l	l				l			ı	l	ı	ı	_
			019	919	019	919	919	019	019	910	919	919	06/05/2019	910	13/05/2019	18/05/2019	919	019	919	019	019	019	910	15/06/2019	019	22/06/2019	919	919	919	910
	N10	N10	01/04/2019	06/04/2019	08/04/2019	13/04/2019	15/04/2019	20/04/2019	22/04/2019	27/04/2019	29/04/2019	04/05/2019	5/2(11/05/2019	5/2(5/2(20/05/2019	25/05/2019	27/05/2019	01/06/2019	03/06/2019	08/06/2019	10/06/2019	6/2(17/06/2019	6/2(24/06/2019	29/06/2019	01/07/2019	06/07/2019
N° ACTIVIDAD	N° ACTIVIDAD	N° ACTIVIDAD	1/0	9/0	8/0	3/0	5/0	0/0	2/0	7/0	9/0	4/0	0/9	1/0	3/0	8/0	0/0	2/0	2/0	1/0	3/0	8/0	0/0	2/0	2/0	2/0	4/0	0/6	1/0	0/9
Reunión de coordinación	01/04/2019	06/04/2019	0	0	0	1	7	2	2	2	2	0	0	7	7	7	2	2	2	0	0	0	1	7	7	2	2	2	0	0
	01/04/2019	06/04/2019																												
Realidad de la empresa, plantear prob.	08/04/2019	13/04/2019																												!
Redacta el marco teórico,	00/01/2010	10,01,2010																												
justificación y objetivos	15/04/2019	20/04/2019																												/
Diseño tipo ,hipótesis y																														
objetivos	22/04/2019	27/04/2019																												'
Determinación de muestra	29/04/2019	04/05/2019																												
Oper. de variables-1ra																														
evaluación	06/05/2019	11/05/2019																												'
1ra jornada imple. De	10/05/00:5	10/05/00 : 5														 _														Ų
mant. predictivo	13/05/2019	18/05/2019	-																											
población y muestra	20/05/2019	25/05/2019																												
Técnicas e instrumentos	27/05/2019	01/06/2019																												
validación por juicio de																														l
expertos	03/06/2019	08/06/2019																												
Validación por juicio de																														l
expertos	10/06/2019	15/06/2019																												
Análisis estadístico	47/00/0040	00/00/0040																												
resultado y conclusión	17/06/2019	22/06/2019	-												-															
Proyecto de investigación a revisión	24/06/2019	29/06/2019																												
Presentación final a		_3,00,2010																												
gerencia	01/07/2019	06/07/2019																												
Sustentación final	08/07/2019	12/07/2019																												

Anexo 4. Instrumento de recolección de datos N° 1 – PLANIFICAR

5EG	AMAQ	Formato de recolección de datos Medición de la criticidad														
	QUINARIAS S.A.C															
Т	iempo	Recurrencia de eventos * consecuencias														
MES	TIEMPO	Recurrencia Eventos	Impacto Operacional	Flexibilidad	Costo Mant.	Impacto S.A.H	Consecuencia	Criticida								
	semana 1															
	semana 2															
	semana 3															
	semana 4															
	semana 5															
	semana 6															
	semana 7															
	semana 8															
	semana 9															
	semana 10															
	semana 11															
	semana 12															
	semana 13															
	semana 14															
	semana 15															
	semana 16															

Anexo 5. Formato de instrumento de recolección de datos N° 2 – HACER

		FORMATO	DE RECOLEC	CION	DE DATOS						
SEG	AMAQ	Medición de	eficacia de activi	dade	s programadas						
SEGAMA MA	AQUINARIAS S.A.C										
tiempo		GUIA									
mes	semanas	actividades ejecutadas	actividades planificadas	%	eficacia de actividades programadas						
	semana 1		praniiroadae	170	programadae						
	semana 2										
	semana 3										
	semana 4										
	semana 5										
	semana 6										
	semana 7										
	semana 8										
	semana 9										
	semana 10										
	semana 11										
	semana 12										
	semana 13										
	semana 14										
	semana 15										
	semana 16										

Anexo 6. Instrumento de recolección de datos N° 3 – VERIFICAR

	1.5	Formato de red	colección de	e dato	s						
SFG	AMAQ	Medición de			<u>-</u>						
	AQUINARIAS S.A.C	IVICUIOIOTI GC	or total ac la	iiuo							
tiempo	AGUITARIAU U.A.C	GUIA									
истіро	T	total de total de									
mes	Tiempo	N°equipo monitoriado	equipos	%	fallas						
	semana 1		•								
	semana 2										
	semana 3										
	semana 4										
	semana 5										
	semana 6										
	semana 7										
	semana 8										
	semana 9										
	semana 10										
	semana 11										
	semana 12										
	semana 13										
	semana 14										
	semana 15										
	semana 16										

Anexo 7. Instrumento de recolección de datos N° 4 – ACTUAR

	AMAQ RUINARIAS S.A.C	Formato de recolección de datos Medición de la Disponibilidad											
tiem po		T.O		T .		T.P.O	T.P. O	DISPONIBI LIDAD					
Mes	(T.T T)	Tiempo parad.planif	paradas /averías	0	T.T. Tiempo T parad.planif.								

Anexo 8. Formato de recopilación de datos del mantenimiento

	SEGAMA MAQU S.A.C Mza. M Lot Urb. Parque Indus	te 14 trial de Villa	HORA ENTRADA	
SEGAMAQ	el Salvad Telf: (01)287 Página W	' 3198	HORA	
SEGAMA MAQUINARIAS S.A.C	www.segamaq		SALIDA	
HOJA DE TRAB	AJO 2019	N°000	0001	
CODIGO DEL EQUIPO:		RES	PONSABLE	
NOMBRE DEL EQUIPO:				
NOMBRE DEL CLIENTE		FECHA:		
CODIGO DEL CLIENTE: HORAS DE TRABAJO:		TECNIC	CO ASIGNAD	0
TIPO DE TRABAJO	RESPUESTOS	COMENTA	RIO ADICION	IALES
CAMBIO DE RODAMIENTO				
EJES				
LIMPIEZA				
LIMPIEZA DE CALDERIN				
MOTORES				
MANT. GENERAL				
(MECANICA)		-		
NIVELACION DE EQUIPO		-		
PEGADO DE PLATINAS		-		
REVISIÓN BRAZO DE BANDERA				
REVISION CIRCUITO ELECTRICO				
REVISION REENVIO				
ANGULAR		OBSERVAC	CION DEL CL	IENTE
REGULACION INCISOR				
REGULACION ESCUADRA				
REGULACION RETESTADOR				
REGULACION REFILADOR				
REGULACION REBITEADOR		FIRMA	DEL CLIENT	Έ
REGULACION RASGADOR				
REAPRIETE DEL EQUIPO				
SISTEMA NEUMATICO			MA SEGAMA INARIAS S.A.	С
OTROS				

Anexo 9. Autorización de la empresa

Lima, 03 de setiembre del 2019

Señores:

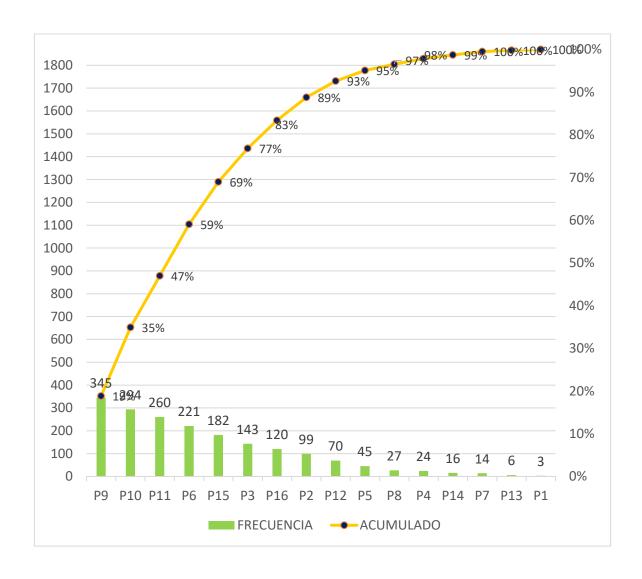
Caritas Barrientos, Javier Christhian Meneses Gonzales, Luis Jesús

Estudiantes de la Escuela Profesional de Ingeniería Industrial, de la Universidad César Vallejo

ASUNTO: AUTORIZACIÓN PARA REALIZAR TESIS DE INVESTIGACIÓN

Yo, Juan Segama Vargas , identificado con DNI 10719911, en mi calidad de representante legal de la empresa SEGAMA MAQUINARIAS S.A.C., autorizo a los Señores antes mencionados, ambos estudiantes de la Escuela Profesional de Ingeniería Industrial, de la Universidad Cesar Vallejo – Sede Lima Este, a utilizar información de la empresa que los estudiantes consideren relevantes para el desarrollo del proyecto de tesis denominado "Aplicación de mantenimiento predictivo basado en la norma ISO 9001:2015 para mejorar la confiabilidad al cliente, 2019". Los estudiantes se comprometen a hacer buen uso de los datos e información que puedan recopilar de los diferentes medios como archivos electrónicos, formatos y archivos físicos que la empresa pone a su disposición para los efectos de llevar a cabo el desarrollo de su investigación. Se reitera que la información debe ser de uso exclusivo para llevar a cabo la investigación de su tesis. De considerar necesario se autoriza a los estudiantes la publicación de su investigación en el medio que considere su Universidad.

El material suministrado por la empresa será la base para la construcción de un estudio de caso. La información y resultado que se obtenga del mismo podrían llegar a convertirse en una herramienta didáctica que apoye la formación de los estudiantes de la Escuela de Profesional de Ingeniería Industrial.


Atentamente,

Representante legal

game Vargas

Fuente: SEGAMA MAQUINARIAS S.

Anexo 10. Diagrama de Pareto

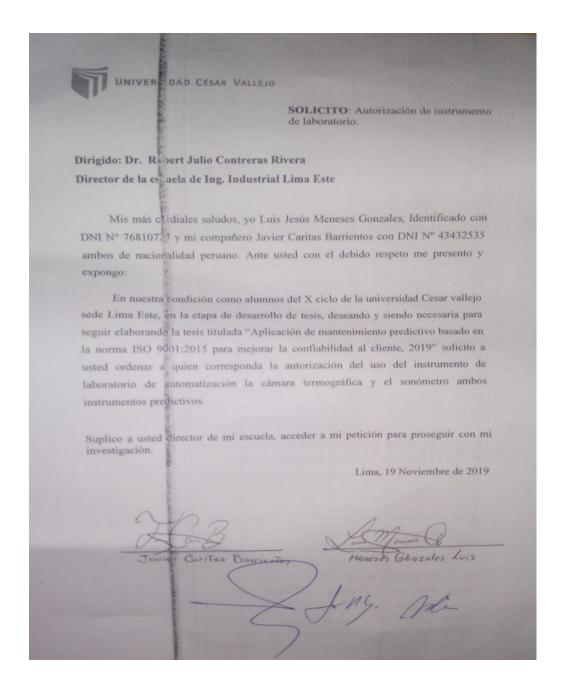
Anexo 11. Formato de mantenimiento bajo un control mensual a las maquinarias

SEGA	MA	1	С	LIENT	ΓE:													
	111111	W.	R	RESPC	NS	ABL	E.											
SEGAMA MAQU	IINARIAS S.	A.C		ECNIC														
Máqui na:		C(ÓĽ	DIGO							MOI O:	DEL						
	hor.	•		ABRI	 			N 1 A	YO		Ο.	II INII				11 11	10	
fecha :	hor				L			IVIA	10			JUN	U			JUI	LIO	
	a:	Se	em	nanas									Se	ema	nas			
REVISION		S-	-	S-2	S	S	S	S	S	S	S-	S-	S	S	S	S	S	S
TECNICAS		1			_	_	_	_	_	_	1	2	_	_	_	_	_	_
SEMANAL		'			3	4	1	2	3	4	'	_	3	4	1	2	3	4
mantenimie	onto				3	4	-		3	4			3	4	ı		3	4
de calderin																		
cambio/rev																		
rodajes	101011																	
cambio/rev	isión																ı	
de resisten	cias																ı	
cambio/rev																		
de retenes																		
cambio de	:!!\																	
pernos(vari			_															
el calderin	CS CII																	
cambio rpts	s del																	
calderin (pi																		
mantenimie	ento																	
neumático																		
cambio /rev																		
electr.																		
cambio/rev	isión																	
de electrov																		
Cambio/rev	/isión																	
unidad mar																		
mangueras																		
neumáticas cambio de																		
neumático	aceile																	
cambio de	filtros																	
cambio ele	ctrico																	
cambio/rev																		
motor trifas	SICO																	
50hz cambio/rev	ición		\dashv														<u> </u>	
motor de 2																		
cambio/rev			\dashv															
contactores																		
cambio/rev	isión		T															
fusibles																		

cambio/revisión														
llave termica cambio/revisión														
relay termico														
reviciones en la														
parte electr.de														
fuerza														
mando de control														
cambio/control														
panel tactil														
cambio/control														
de PLC cambio/control														
variadores														
velociadad														
cambio/control														
de														
temporizadores														
revisiones o														
progr. de parametros														
herramientas			+	+			+							
cuchilla hiotina														
discos														
retestadores														
fresas de radio														
3,radio 2,radio 1														
rascadores radio														
3,radio 2,radio 1			1											
pulidores														
calibración														
grupos de														
trabajo														
Otros														
1	NEO	DME T	ÉCN		<u> </u>		1		 		TÉC	אוור	\sim	
	NFO	RME T	ECN					FIRM	AL	<u>'</u>	ILC	JIVIC		
OBSER	VAC	IONES	B DE	L CI	LIEN	TE		FIRM	1A [EL	CLI	EΝΊ	Έ	
Fuente: Flahor	:4	:	_											

Anexo 12. Formato de información de mantenimiento de maquina

LIO IA DE TRAF			
HOJA DE TRAE		Nº 0001	20 /9
CÓDIGO DEL EQUIPO:	1368 17040		RESPONSABLE
NOMBRE DEL EQUIPO:	KOT - 36	8	- Lucy Germa Carboial
NOMBRE DEL CLIENTE: RA	presonteciones	HOK EIRL	FECHA: 15/10/19
CÓDIGO DEL CLIENTE:		HORAS DE TRABAJO:	JAVIEN TECNICO ASIGNADO
TIPO DE TRABAJO		REPUESTOS	COMENTARIOS ADICIONALES:
CAMBIO DE RODAMIENTO	1- Sonson	magnetics local rela	esteure Se le revis s detelledamente
EJES		0	dance so encondia mel un sens.
LIMPIEZA		THE PARTY OF	dol refertedor tresero d'code
LIMPIEZA DE CALDERÍN			se contiguis loi parametros d
MOTORES			secuencia con la cadena de
MANT. GENERAL (MECÁNICA)			enestre per ai here el
NIVELACIÓN DE EQUIPO			corte precisa al mamorita
PEGADO DE PLATINAS			de passe las metadelas chie
REVISIÓN BRAZO DE BANDERA			escrite pera q' nere el corte pieciso el momento de pesar los materielas ciaja liste pera tiabajar con norm
REVISIÓN CIRCUITO ELÉCTRICO			y compet as well
REVISIÓN REENVÍO ANGULAR			
REGULACIÓN INCISOR			
REGULACIÓN ESCUADRA			OBSERVACIONES DEL CLIENTE:
REGULACIÓN RETESTADOR			
REGULACIÓN REFILADOR			
REGULACIÓN REBITEADOR	-	CALL Y ST.	
REGULACIÓN RASCADOR			FIRMA CLIENTE:
REAPRIETE DEL EQUIPO	7		PINMA CLIENTE:
SERVICIO DE TORNO			Luckanas
SISTEMA NEUMÁTICO			mysoon
			FIRMA SEGAMA MAQUINARIAS S.A.


Anexo 13. Clientes del mercado en el sector maderera

SE	SEGAMA MAQUINARIAS S.A.C Datos de las empresas de clientes de la industria maderera										
N °	CLIENTES	RUC	C	DIRECCIÓN	FECHA	MAQUINA S	MODE LO				
1	Comercial maderera Olimpia S.R.L	204713 193		JR. Hipólito Unanue Nro.447 Urb. La Victoria Lima - Lima - La Victoria.	02/01/201	escuadrad ora					
2	Jorge Luis huanca Zaldívar	104310 991		pj. 7 mza. p lote. 12 urb. villa paraíso puno - san roman - juliaca	26/02/201 8	enchapado ra	365				
3	Diseño Perú mg E.I.R.L	20600° 562		av. Huancavelica nro. 1072 (entre Sebastián lorente y lobato) Junín - Huancayo - el tambo	01/03/201	enchapado ra	302				
4	Negociacione s Luis enrique S.R.L	205380 506		av. el sol nro. 425 urb. semi rustica canto grande (Alt. cdra. 22 av. próceres) lima - lima - sjl	05/04/201 8	enchapado ra	468				
5	Tableros habilitados E.I.R.L	206010 757		mza. k3 lote. 16 asc. peruarbo sec. Perú zona iii Arequipa - Arequipa - cerro colorado	19/04/201 8	enchapado ra	365				
6	Tableros melaminicos E.I.R.L	20600019 687		cal.lambayeque nro. 210 arequipa - arequipa - mariano melgar	25/08/201 8	enchapado ra	365				
7	Variedades d´negocios y servicios S.A.C	20355 191		av.prolong.miraflores mz.j lote 1a semi rustica mampuesto - la libertad - trujillo	15/09/201 8	enchapado ra	468I				
8	Alejos flores james flavio	100964 763		jr Ramón Castilla 101 santa clara - ate vitarte - lima	06/11/201 8	enchapado ra	365				
9	Hugo Mamani Mamani	100410 079		a.h santa rosa conchitas mz.i - villa maria triunfo - lima	16/11/201 8	enchapado ra	365				
1 0	Castro olivares maría rosa	10083 626		mz.44 lote 2 Huáscar canto grande -sjl - lima	20/11/201	enchapado ra	365				
1	Alberto pio alvino	102275 554		av. centenario nro.553 Pucallpa	11/12/201 9	enchapado ra	365H				
1 2	Jireh proveedor S.A.C	20558: 704		cal.lambayeque nº 122 p.trad.urb.mno.melgar - arequipa - arequipa - mariano melgar	04/04/201 9	enchapado ra	305				
1 3	Industrias leomart S.A.C	206008 281		mza. n lote. 12 z.i. parque industrial parcela ii lima - lima - villa el salvador	08/04/201 9	enchapado ra	468				
1 4	Inversiones carlin S.A.C	20494 540		av. Aviación nro.255 Andrés Avelino Cáceres Ayacucho - huamanga	22/05/201 9	enchapado ra	368				

1 5	Fábrica de melanine S.A.C	20604658 536	mz.alote 2 urb.san josé - Ayacucho - huamanga - Ayacucho	25/05/201 9	enchapado ra	468
1 6	Representaci ones mdk E.I.R.L	20571539 978	mz.a lote 12 av. Martin prieto lima-huaura-huacho	22/07/201 9	enchapado ra	4681
1 7	Novocentro universal S.A.C	20536186 779	av. mariscal castilla nro. 1795 (entre mariscal castilla y Aguirre morale) Junín - Huancayo - el tambo	15/08/201 9	enchapado ra	3681
1 8	Aldiseño E.I.R.L	20523146 158	Ampliación las cumbres de mza. B lote. 3 gru. comunidad campesina de co lima - lima - Cieneguilla	20/08/201	enchapado ra	305
1 9	Sarkel peru S.A.C	20603576 170	av. Circunvalación mz.b lote 12 int.10 urb.semirustica la capitana (paradero obras) lima - Lurigancho	26/08/201 9	enchapado ra	368A
2 0	Ares mobiliario S.A.C	20600480 708	av. Gerardo unger nro.5269 urb.industrial naranjal -los olivos- lima	10/09/201 9	enchapado ra	468A

Fuente: Empresa SEGAMA MAQUINARIAS S.A.C

Anexo 14. Autorización de uso instrumentos de Laboratorio de la Universidad César Vallejo

Anexo 15. Validación de contenido del instrumento de medición - 1.

	UNIVERSIDAD	CESAR	VALLEJO
41,			

Aplicación de mantenimiento predictivo basado en la norma ISO 9001:2015 para mejorar la conflabilidad al cliente, 2019"

Observaciones (precisar si hay suficiencia):

N.º	DIMENSIONES / items	Pertin	encia:	Releva	ncia ²	Clan	idad ³	Sugerencias
	VARIABLE INDEPENDIENTE: Mantenimiento predictivo basado en la norma ISO 9001:2015							
1	DIMENSIÓN 1: Planificar	Si	No	Si	No	Si	No	
	Ontoidad = Frecuencia x Consecuencia	V		V		V		
2	DIMENSION 2: Hacer	Si	No	SI	No	Si	No	
	Eficacia de actividades programadas = Actividades ejecutadas Actividades planificadas	V		V		V		
3	DIMENSIÓN 3: Verificar	Si	No	Si	No	Si	No	
	Total de fallas: N° de equipos monitoreados Total de equipos	1		V		V		
4	DIMENCION 4: Actuar	St	No	St	No	Si	No	
	Disponibilidad = Tiempo de operación Tiempo disponible	V		1		V		
	VARIABLE DEPENDIENTE: Confiabilidad							
1.	DIMENCION 1: Fieblidad	Si	No	St	No	Si	No	
	Tiempo promedio de reparación entre fallas = Horas totales de operación Numero de fallas	V		1		V		
2	DIMENCION 2: Manten bilidad	Si	No	SI	No	Si	No	
	Tiempo promedio de reparación de fallas = Horas totales de reparación Numero de fallas	V		V		1		

oinion de aplicabilidad: Apli	icable [) Aplica	able después de corregir [] No aplical	ble []
Apellidos y nombres del juez va Especialidad del validador	alidador. Dr. / Mg: Pant		nessa	DNI. 02636281
¹ Pertinencia: El ítem corresponde al conce ² Relevancia: El ítem es apropiado para repr dimensión especifica del constructo ³ Clarídad: Se enfiende sin dificultad alguna conciso, exacto y directo	resentar al componente o			Lima
Nota: Suficiencia, se dice suficiencia cuando son suficientes para medir la dimensión	o los ítems planteados		Firma de	Experto Informante.

Anexo 16. Validación de contenido del instrumento de medición - 2.

UNIVERSIDAD CÉSAR VALLEJ	T	UNIVERSIE	AD C	ÉSAR V	ALLEJO
--------------------------	---	-----------	------	--------	--------

Aplicación de mantenimiento predictivo basado en la norma ISO 9001:2015 para mejorar la conflabilidad al cliente, 2019"

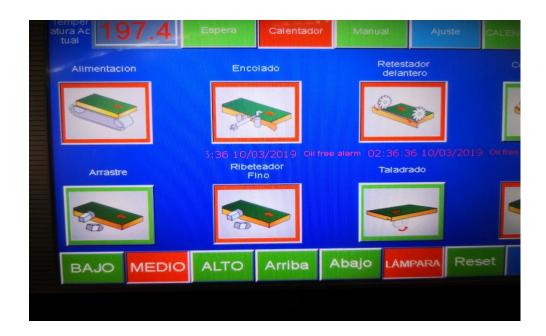
Observaciones (precisar si hay suficiencia):

N.º	DIMENSIONES / items	Pertine	encia:	Releva	ncia ²	Clan	dad ³	Sugerencias
	VARIABLE INDEPENDIENTE: Mantenimiento predictivo basado en la norma ISO 9001:2015							
1	DIMENSIÓN 1: Planificar	Si	No	Si	No	Si	No	
	Criticidad = Frecuencia x Consecuencia	V		V		V		
2	DIMENSION 2: Hacer	Si	No	SI	No	Si	No	
	Eficacia de actividades programadas = Actividades ejecutadas Actividades planificadas	V		V		V		
3	DIMENSIÓN 3: Verificar	Si	No	Si	No	Si	No	
	Total de fallas: N° de equipos monitoreados Total de equipos	1		V		V		
4	DIMENCION 4: Actuar	St	No	St	No	Si	No	
	Disponibilidad = Tiempo de operación Tiempo disponible	V		1		V		
	VARIABLE DEPENDIENTE: Confiabilidad							
1	DIMENCION 1: Fiebilidad	St	No	St	No	Si	No	
	Tiempo promedio de reparación entre fallas = Horas totales de operación Numero de fallas	V		1		V		
2	DIMENCION 2: Mantenibilidad	Si	No	SI	No	Si	No	
	Tiempo promedio de reparación de fallas = Horas totales de reparación Numero de fallas	V		V		1		

Opinión de aplicabilidad:	Aplicable [X]	Aplicable después de corregir [] No aplicable []	
		0/1/	1/_	
	del juez validador. D	(Mg:) ledus A. Espirhaza	a Vasque	DNI 0652260S
Especialidad del val	dador	the bretisti	7-f	19 10
	ponde al concepto teórico formulopiado para representar al comp			Limadedel 2019
dimensión específica del con ³ Claridad: Se entiende sin d				
conciso, exacto y directo	Salanaja a janga lan kama alauta	and an	/2	
son suficientes para medir la	ficiencia cuando los Items plante	agos	Firma d	lel Experto informante,

Anexo 17. Validación de contenido del instrumento de medición - 3.

UNIVERSIDAD CESAR VALLEJO	10
---------------------------	----


Aplicación de mantenimiento predictivo basado en la norma ISO 9001:2015 para mejorar la confiabilidad al cliente, 2019"

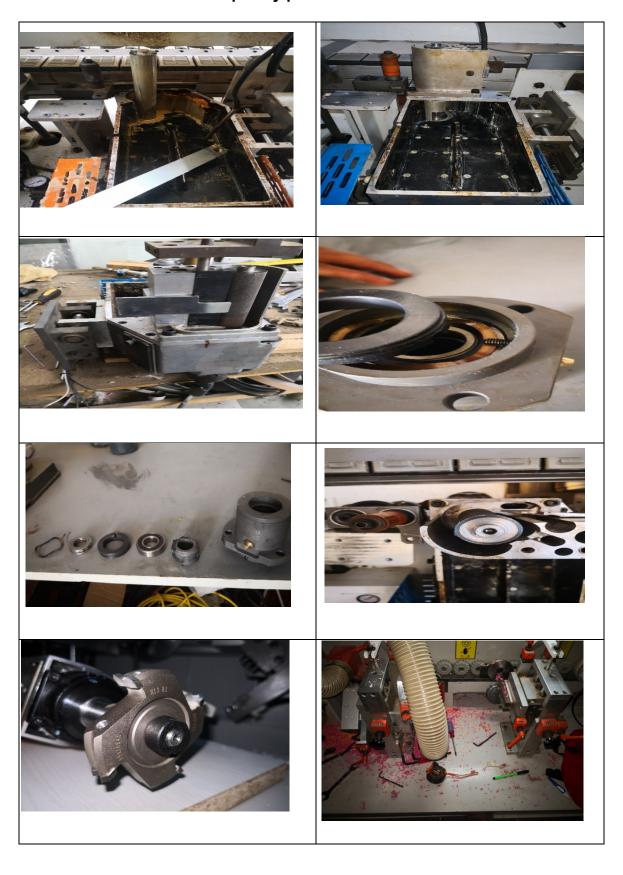
Observaciones (precisar si hay suficiencia):

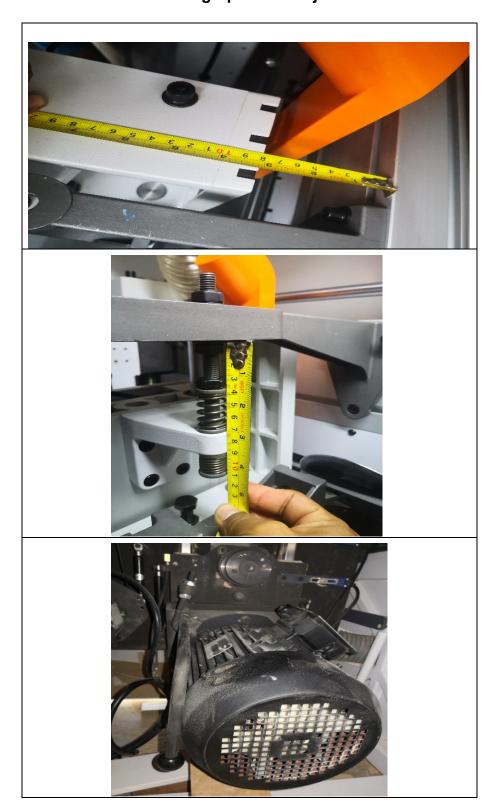
N.°	DIMENSIONES / items	Pertine	encia:	Releva	ncia ²	Clan	idad ³	Sugerencias
	VARIABLE INDEPENDIENTE: Mantenimiento predictivo basado en la norma ISO 9001:2015							
1	DIMENSIÓN 1: Planificar	Si	No	Si	No	Si	No	
	Criticidad = Frecuencia x Consecuencia	V		V		V		
2	DIMENSION 2: Hacer	Si	No	SI	No	Si	No	
	Eficacia de actividades programadas Actividades ejecutadas Actividades planificadas	V		V		V		
3	DIMENSIÓN 3: Verificar	Si	No	Si	No	Si	No	
	Total de fallas: N° de equipos monitoreados Total de equipos	1		V		V		
4	DIMENCION 4: Actuar	Si	No	Si	No	Si	No	
	Disponibilidad = Tiempo de operación Tiempo disponibile	V		~		V		
	VARIABLE DEPENDIENTE: Confiabilidad							
1	DIMENCION 1: Fiebilidad	St	No	St	No	Si	No	
	Tiempo promedio de reparación entre fallas = Horas totales de operación Numero de fallas	V		1		V		
2	DIMENCION 2: Mantenibilidad	Si	No	SI	No	Si	No	
	Tiempo promedio de reparación de fallas = Horas totales de reparación Numero de fallas	V		V		1		

Opinión de aplicabilidad:	Aplicable [X]	Aplicable después de corregir []	No aplicable []	f.
Apellidos y nombres Especialidad del vali	s del juez validador. Dr idador	(Mg) Sunt of Expanses	Cods	DNI 97187348
² Relevancia: El ítem es apro	ponde al concepto teórico formul opiado para representar al comp			Lima del 2019
dimensión especifica del con ³ Claridad: Se entiende sin d conciso, exacto y directo	estructo lificultad alguna el enunciado del	ftem, es		
Nota: Suficiencia, se dice su son suficientes para medir la	ficiencia cuando los items plante dimensión	eados	Firmed	Experte Informante.

Anexo 18. Fotos del panel de control de las maquinas

Anexo 19. Fotos de los aspectos de las máquinas a evaluar





Anexo 20. Áreas de la máquina y piezas a brindar el mantenimiento

Anexo 21. Calibraciones en el grupo de trabajo

Anexo 22. Revisiones en la parte neumática

Anexo 23. Fotos de las herramientas predictivas

CAMARA TERMOGRAFICA

Fluxómetro

Sonómetro

Anexo 24. Recolección de datos del Pre test - sellados por la empresa.

COMERCIALIZACIÓN E IMPORTACIÓN DE MAQUINAS PARA LA INDUSTRIA DEL MUEBLE Y TODO TIPO DE MAQUINARIA PESADA

en pm en	0000		formato de recolección de datos										
SEG	AMAQ			Mediciór									
SEGAMA M	AQUINARIAS S.A.C	criticidad PRE TEST recurrencia de eventos * consecuencias											
tiempo													
mes	Tiempo	Recurren. Eventos	Impacto Operacional	Flexibilidad	Costo Mant.	Impacto S.A.H	Consecuencia	Criticidad					
MARZO	semana 1	2	8	4	1	6	39	78					
	semana 2	3	6	2	5	8	25	75					
	semana 3	4	4	4	1	2	19	76					
	semana 4	2	8	4	1	6	39	78					
	semana 5	3	6	2	10	2	24	72					
ABRIL	semana 6	2	8	4	1	8	41	82					
	semana 7	3	6	2	1	8	21	63					
	semana 8	1	10	4	25	6	71	71					
	semana 9	3	6	2	10	4	26	78					
MAYO	semana 10	1	10	4	25	8	73	73					
	semana 11	3	6	2	1	8	21	63					
	semana 12	2	8	4	5	6	43	86					
	semana 13	3	4	2	10	8	26	78					
JUNIO	semana 14	4	6	2	1	6	19	76					
	semana 15	3	2	4	10	8	26	78					
	semana 16	2	6	2	25	4	41	82					

		formato de recolec	ción de datos							
SEG	amaq	Medición de la	eficacia de actividad	des programada	S					
SEGAMA MA	AQUINARIAS S.A.C	PRE TEST								
iempo		GUIA								
mes	semanas	actividades ejecutadas	actividades planificadas	%	eficacia de actividades programadas					
	semana 1	2.0	4.0	100%	50%					
MARZO	semana 2	2.0	3.0	100%	67%					
	semana 3	3.0	5.0	100%	60%					
	semana 4	2.0	4.0	100%	50%					
	semana 5	3.0	5.0	100%	60%					
ABRIL	semana 6	3.0	6.0	100%	50%					
	semana 7	2.0	5.0	100%	40%					
	semana 8	2.0	5.0	100%	40%					
	semana 9	2.0	4.0	100%	50%					
MAYO	semana 10	3.0	6.0	100%	50%					
	semana 11	3.0	5.0	100%	60%					
	semana 12	2.0	4.0	100%	50%					
	semana 13	3.0	5.0	100%	60%					
JUNIO	semana 14	4.0	6.0	100%	67%					
	semana 15	2.0	4.0	100%	50%					
	semana 16	2.0	5.0	100%	40%					

SEGAMA MAQUINARIAS S.A.C.

Erika Hethel Segama Co

- Mz. M. Lote 14 Parcela II, Urb. Parque Industrial Villa El Salvador
 Mz. VIII Lt. 10 Parcela 3A Sub Parcela 2A, Agr. Pachacamac (Fracción 5-6) Villa El Salvador
- 996 894 407 / 981 501 420 972 670 002 / 954 078 375
- isegama@hotmail.com / ventas1@segamaq.com / ventas2@segamaq.com

cec	arneo.	formato de recolección de	datos							
SEG	שחווד	Medición del total de falla	S							
SEGAMA MA	QUINARIAS S.A.C	PRE TEST								
tiempo		GUIA								
mes	Tiempo	N°equipo monitoreado	total de equipos	%	total de fallas					
	semana 1	5	10	100	50%					
MARZO	semana 2	3	10	100	30%					
	semana 3	2	10	100	20%					
	semana 4	3	10	100	30%					
	semana 5	2	10	100	20%					
ABRIL	semana 6	5	10	100	50%					
	semana 7	2	10	100	20%					
	semana 8	4	10	100	40%					
	semana 9	5	10	100	50%					
MAYO	semana 10	3	10	100	30%					
	semana 11	2	10	100	20%					
	semana 12	4	10	100	40%					
	semana 13	5	10	100	50%					
JUNIO	semana 14	3	10	100	30%					
	semana 15	2	10	100	20%					
	semana 16	4	10	100	40%					

SEGA	111111111111111111111111111111111111111	Formato de re	ecolección de datos	- PRE				
SEGAMA MAQU	JINARIAS S.A.C	Medición de la	a Disponibilidad					
tiempo		т.о		1	.P.O			
mes	(Т.ТТ	tiempo parad.planif.)	paradas/averías	T.O	т.т.т	tiempo parad.planif.	T.P.O	DISPONIBILIDAI
	492	118	5	324	492	118	374	86.6%
MARZO	491	119	3	342	491	119	372	91.9%
	496	114	2	362	496	114	382	94.8%
	491	119	3	342	491	119	372	91.9%
	492	118	2	354	492	118	374	94.7%
ABRIL	490	120	5	320	490	120	370	86.5%
	492	118	2	354	492	118	374	94.7%
	488	122	4	326	488	122	366	89.1%
	490	120	5	320	490	120	370	86.5%
MAYO	491	119	3	342	491	119	372	91.9%
	496	114	2	362	496	114	382	94.8%
	492	118	4	334	492	118	374	89.3%
	490	120	5	320	490	120	370	86.5%
JUNIO	491	119	3	342	491	119	372	91.9%
	498	112	2	366	498	112	386	94.8%
	492	118	4	334	492	118	374	89.3%

SEGAMA MAQUINARIAS S.A.C.
Erika Hethel Segama CoraPODERADO

Mz. M Lote 14 Parcela II, Urb. Parque Industrial - Villa El Salvador
Mz. VIII Lt. 10 Parcela 3A Sub Parcela 2A, Agr. Pachacamac (Fracción 5-6) - Villa El Salvador

996 894 407 / 981 501 420 972 670 002 / 954 078 375

isegama@hotmail.com / ventas1@segamaq.com / ventas2@segamaq.com

WWW.SEGAMAQ.COM

VARIABLE DEPENDIENTE

5EGf	PIMAQ		Andrew Services	FORM	IATO DE R	ECOLEC	CIÓN DE DATO	S			
SEGAMA MAG	QUINARIAS S.A.C	MEDICIÓN DE LA CONFIABILIDAD PRE-TEST									
		Guía de observación									
MES	Tiempo	TTF	NF	MTBF	TTI	NF	MTTR	CONFIABILIDAD			
					1	1		331111111111111111111111111111111111111			
	semana 1	492	5	98.4	118	5	23.6	80.66%			
MARZO	semana 2	491	3	163.7	119	3	39.7	80.49%			
	semana 3	496	2	248.0	114	2	57.0	81.31%			
	semana 4	491	3	163.7	119	3	39.7	80.49%			
	semana 5	492	2	246.0	118	2	59.0	80.66%			
ABRIL	semana 6	490	5	98.0	120	5	24.0	80.33%			
ADNIL	semana 7	492	2	246.0	118	2	59.0	80.66%			
	semana 8	488	4	122.0	122	4	30.5	80.00%			
	semana 9	490	5	98.0	120	5	24.0	80.33%			
MAYO	semana 10	491	3	163.7	119	3	39.7	80.49%			
MINIO	semana 11	496	2	248.0	114	2	57.0	81.31%			
	semana 12	492	4	123.0	118	4	29.5	80.66%			
	semana 13	490	5	98.0	120	5	24.0	80.33%			
JUNIO	semana 14	491	3	163.7	119	3	39.7	80.49%			
301110	semana 15	498	2	249.0	112	2	56.0	81.64%			
	semana 16	492	4	123.0	118	4	29.5	80.66%			

SEGAMA MAQUINARIAS S.A.C.

Erika Hethel Segama Cort

- Mz. M Lote 14 Parcela II, Urb. Parque Industrial Villa El Salvador
 Mz. VIII Lt. 10 Parcela 3A Sub Parcela 2A, Agr. Pachacamac (Fracción 5-6) Villa El Salvador
- 996 894 407 / 981 501 420 972 670 002 / 954 078 375
- jsegama@hotmail.com / ventas1@segamaq.com / ventas2@segamaq.com

Anexo 25. Recolección de datos del Pos test - sellados por la empresa.

COMERCIALIZACIÓN E IMPORTACIÓN DE MAQUINAS PARA LA INDUSTRIA DEL MUEBLE Y TODO TIPO DE MAQUINARIA PESADA

CECC	MAC	formato de recolección de datos												
SEGF	IIIIIU			Medición de l	a criticidad									
SEGAMA MAQUINARIAS S.A.C		POST TEST	POST TEST											
TIEMPO		recurrencia de eventos * consecuencias												
MES	Tiempo	Recurren. Eventos	Impacto Operacional	Flexibilidad	Costo Mant.	Impacto S.A.H	Consecuencia	Criticidad						
AGOSTO	semana 1	1	8	4	5	8	43	46						
	semana 2	2	4	2	5	8	21	42						
	semana 3	3	4	4	1	2	19	57						
	semana 4	1	8	4	10	6	48	48						
	semana 5	2	6	2	10	2	24	48						
SETIEMBRE	semana 6	1	8	4	10	6	48	48						
	semana 7	3	6	1	1	8	15	45						
	semana 8	1	8	4	15	6	53	53						
	semana 9	2	6	2	10	4	26	52						
OCTUBRE	semana 10	1	8	4	15	8	55	55						
	semana 11	2	4	2	10	8	26	52						
	semana 12	1	8	4	5	6	43	43						
	semana 13	2	2	1	15	8	25	50						
NOVIEMBRE	semana 14	2	6	2	10	6	28	56						
	semana 15	2	4	2	10	6	24	48						
	semana 16	1	6	2	25	4	41	41						

	man	formato de recolección de datos					
SEGA	IIIII	Medición de la	eficacia de actividades	programadas			
SEGAMA MAQUINARIAS S.A.C TIEMPO		POST TEST GUIA					
	semana 1	3.0	4.0	100% 100% 100%	75%		
AGOSTO	semana 2	2.5	3.0 5.0		83% 70%		
	semana 3	3.5					
	semana 4	3.0	4.0	100%	75%		
	semana 5	3.5	5.0	100%	70%		
SETIEMBRE	semana 6	4.0	6.0	100%	67%		
	semana 7	3.5	5.0	100%	70%		
	semana 8	4.5	5.0	100%	90%		
	semana 9	2.5	4.0	100%	63%		
OCTUBRE	semana 10	3.5	6.0	100%	58%		
	semana 11	3.5	5.0	100%	70%		
	semana 12	2.5	4.0	100%	63%		
NOVIEMBRE	semana 13	4.0	5.0	100%	80%		
	semana 14	5.0	6.0	100%	83%		
	semana 15	3.5	4.0	100%	88%		
	semana 16	4.0	5.0	100%	80%		

Mz. M Lote 14 Parcela II, Urb. Parque Industrial - Villa El Salvador
 Mz. VIII Lt. 10 Parcela 3A Sub Parcela 2A, Agr. Pachacamac (Fracción 5-6) - Villa El Salvador

996 894 407 / 981 501 420 972 670 002 / 954 078 375

isegama@hotmail.com / ventas1@segamaq.com / ventas2@segamaq.com

SEGG	MAC	formato de recolección de datos						
SEGANA MAQUINARIAS S.A.C		Medición del total de fallas POS TEST						
		MES	Tiempo	N°equipo monitoreado	total de equipos	%	total de fallas	
	semana 1	4	10	100	40%			
AGOSTO	semana 2	2	10	100	20%			
	semana 3	2	10	100	20%			
	semana 4	2	10	100	20%			
	semana 5	3	10	100	30%			
SETIEMBRE	semana 6	4	10	100	40%			
	semana 7	2	10	100	20%			
	semana 8	2	10	100	20%			
OCTUBRE	semana 9	3	10	100	30%			
	semana 10	2	10	100	20%			
	semana 11	2	10	100	20%			
	semana 12	2	10	100	20%			
NOVIEMBRE	semana 13	3	10	100	30%			
	semana 14	2	10	100	20%			
	semana 15	2	10	100	20%			
	semana 16	3	10	100	30%			

SEGAMA MAQUI	INARIAS S.A.C	TEST Medición Disponibi		latos POS				
TIEMPO		T.O tiempo				T.P.O		
MES	(T.T.T	parad.pl anif.)	paradas/averías	T.O	T.T.T	tiempo parad.planif.	T.P.O	DISPONIBILIDAD
	492	118	3	344	492	118	374	92.0%
AGOSTO	491	119	2	352	491	119	372	94.6%
	496	114	2	362	496	114	382	94.8%
	491	119	2	352	491	119	372	94.6%
	492	118	3	344	492	118	374	92.0%
SETIEMBRE	490	120	2	350	490	120	370	94.6%
	492	118	2	354	492	118	374	94.7%
	488	122	2	346	488	122	366	94.5%
	490	120	3	340	490	120	370	91.9%
OCTUBRE	491	119	2	352	491	119	372	94.6%
	496	114	2	362	496	114	382	94.8%
	492	118	2	354	492	118	374	94.7%
	490	120	2	350	490	120	370	94.6%
NOVIEMBRE	491	119	2	352	491	119	372	94.6%
	498	112	2	366	498	112	386	94.8%
	492	118	2	354	492	118	374	94.7%

SEGAMA MAQUINARIAS S.A.C. Erika Hethel Segama Col

- O Mz. M Lote 14 Parcela II, Urb. Parque Industrial Villa El Salvador Mz. VIII Lt. 10 Parcela 3A Sub Parcela 2A, Agr. Pachacamac (Fracción 5-6) - Villa El Salvador 996 894 407 / 981 501 420 972 670 002 / 954 078 375
- isegama@hotmail.com / ventas1@segamaq.com / ventas2@segamaq.com

WWW.SEGAMAQ.COM

VARIABLE DEPENDIENTE

SEGATIAQ SEGAMA MAQUINARIAS S.A.C		FORMATO DE RECOLECCION DE DATOS Medición de la confiabilidad POST-TEST							
	Tiempo	TTF	NF	MTBF	тп	NF	MTTR	CONFIABILIDAD	
AGOSTO	semana 1	525	3	175.0	85	3	28.3	86.07%	
	semana 2	536	2	268.0	74	2	37.0	87.87%	
	semana 3	538	2	269.0	72	2	36.0	88.20%	
	semana 4	539	2	269.5	71	2	35.5	88.36%	
SETIEMBRE	semana 5	532	3	177.3	78	3	26.0	87.21%	
	semana 6	540	2	270.0	70	2	35.0	88.52%	
	semana 7	542	2	271.0	68	2	34.0	88.85%	
	semana 8	545	2	272.5	65	2	32.5	89.34%	
OCTUBRE	semana 9	549	2	274.5	61	2	30.5	90.00%	
	semana 10	552	2	276.0	58	2	29.0	90.49%	
	semana 11	550	2	275.0	60	2	30.0	90.16%	
	semana 12	554	2	277.0	56	2	28.0	90.82%	
NOVIEMBRE	semana 13	552	2	276.0	58	2	29.0	90.49%	
	semana 14	555	2	277.5	55	2	27.5	90.98%	
	semana 15	557	2	278.5	53	2	26.5	91.31%	
	semana 16	560	2	280.0	50	2	25.0	91.80%	

SEGAMA MAQUINARIAS S.A.U.

Erika Hethel Segama Cor
APODERADO

Mz. M. Lote 14 Parcela II, Urb. Parque Industrial - Villa El Salvador
 Mz. VIII Lt. 10 Parcela 3A Sub Parcela 2A, Agr. Pachacamac (Fracción 5-6) - Villa El Salvador

996 894 407 / 981 501 420 972 670 002 / 954 078 375

jsegama@hotmail.com / ventas1@segamaq.com / ventas2@segamaq.com

