

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA INDUSTRIAL

Aplicación del estudio del trabajo para mejorar la productividad del filete de pollo de la empresa San Fernando, Huaral 2021.

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Industrial

AUTOR:

Colán Olortegui, José Luis (ORCID: 0000-0002-7620-6406)

ASESOR:

Mgtr. Ing. Añazco Escobar, Dixon Groky (ORCID: 0000-0002-2729-1202)

LÍNEA DE INVESTIGACIÓN:

Gestión empresarial y productiva

LIMA - PERÚ

2021

Dedicatoria

Con mucho amor y cariño dedico este trabajo de investigación a la memoria de mi madrina Ferrarina Silva Campos, por todo cuanto me dio en su vida, enseñanzas, consejos, valores y sobretodo amor.

A mi madre Dalia Hayde y padre José Luis, que con todo su amor me inculcaron valores y virtudes para ser una persona de bien.

A mi esposa Abigail e hijas Priya, Briana y Joseluis que son el motor y motivo para salir adelante en la vida.

AGRADECIMIENTO.

Agradezco a Dios por darme la vida y haberme brindado la oportunidad de lograr con éxito este trabajo de investigación.

Agradezco a mis profesores por sus enseñanzas que hicieron posible lograr este trabajo de investigación, en especial al profesor que me guío en mi trabajo de investigación Añazco Escobar, Dixon Groky.

Agradezco a mis compañeros de trabajo, Noé Chavarría, Manuel Quintana, Sebastián Nenin, Gerónimo Molla por haberme apoyado en el proceso de mi investigación y facilitarme, explicarme con detalle las informaciones requeridas del proceso.

Agradezco a los ingenieros Jhonny Pantoja y José Bazán por las oportunidades y el apoyo brindado en esta etapa de mi carrera profesional.

Dedicatoria	i
Agradecimiento	ii
Declaración de autenticidad	iii
Índice de contenidos	iv
Índice de tablas	vii
Índice de figuras	xi
Índice de Anexos	xiii
Resumen	xix
Abstract	xx
I. INTRODUCCIÓN	1
II. MARCO TEÓRICO	17
1 Estudio del trabajo	27
1.1 Definición	27
1.1.2 Pasos para implementar el estudio de trabajo	27
1.2 Dimensiones	29
1.2.1 Estudio de métodos	29
1.2.2 Medición del trabajo	34
2 Productividad	40
2.1 Definición.	40
2.3 Tipos de productividad	40
2.3.1 Productividad Laboral.	40
2.3.2 Productividad Total	41
2.3.3 Productividad Marginal.	41
2.4 Dimensiones.	41
2.4.1 Gestión de tiempos.	41
2.4.2 Gestión de proceso.	42
III. METODOLOGÍA	11

3.1 Tipo y diseño de la investigación	45
3.1.1 Tipo de investigación	45
3.1.2 Diseño de investigación	46
3.2 Variables y Operacionalización	46
3.2.1 Variable Independiente: Estudio del Trabajo	46
3.2.2 Variable Dependiente: Productividad	48
3.3 Población, muestra y muestreo	53
3.3.1 Población	53
3.3.2 Muestra	54
3.3.3 Muestreo	56
3.4 Técnicas e instrumentos de recolección de datos	56
3.4.1 Técnica	56
3.4.2 Instrumento	57
3.4.3 Validez	59
3.4.4 Confiabilidad del instrumento	63
3.5 Procedimientos	68
3.5.1. Desarrollo del proyecto	69
3.5.1.1. Descripción general del proceso de la empresa	69
3.5.1.2. Descripción del proceso de fileteo – Pre test	
3.5.1.3. Calculo del Pre Test.	75
3.5.1.4 Cálculo del Post Test	100
3.6 Métodos de análisis de datos	124
3.6.1 Análisis descriptivos	124
3.6.1.1. Análisis descriptivo de la variable independiente y dependiente	124
3.6.2 Análisis Inferencial	140
3.7 Aspectos éticos	141
IV. ASPECTOS ADMINISTRATIVOS	143
4.1 Recursos y Presupuestos	144
4.1.1 Recursos Humanos	144
4.1.2 Recursos Materiales	
4.2.3 Presupuesto	
4.2 Financiamiento	146
T.C. LUCHVICHUVIIVIIVIIVIIIVIIIVIIIVIIIVIIIVIIIVIIIV	

4.3 Cronograma de ejecución	146
V. RESULTADOS	148
5.1 Análisis descriptivo	149
5.1.1 Variable Independiente: Estudio del trabajo	149
5.1.1.2 Dimensión: Estudio de métodos	149
5.1.1.3 Dimensión: Medición del trabajo	153
5.1.2 Variable Dependiente: Productividad	155
5.1.2.1 Dimensión: Gestión de tiempos	157
5.1.2.2 Dimensión: Gestión de proceso	159
5.2 Análisis inferencial	161
5.2.1 Estudio de la hipótesis general de investigación	163
5.2.2 Estudio de la hipótesis específica (H1)	165
5.2.3 Estudio de la hipótesis específica (H2)	167
VI DISCUSIÓN	169
VII CONCLUSIONES	172
VIII RECOMENDACIONES	174
REFERENCIAS	176
ANEXOS	182

Índice de tablas.

Tabla 1: Situación actual de la empresa
Tabla 2: Matriz de vester1
Tabla 3: Número de causas que afectan la productividad del filete de pollo.1
Tabla 4: Cuadro de estratificación14
Tabla 5: Matriz de Operacionalización5
Tabla 6: Matriz de consistencia5
Tabla 7: Preguntas del cuestionario de validez de los instrumentos6
Tabla 8: Cálculo de la validez del instrumento de estudio6
Tabla 9: Procesos de estudio del trabajo64
Tabla 10: Cálculo de la confiabilidad del instrumento para medir el filete de
pechuga6
Tabla 11: Cálculo de la confiabilidad del instrumento para medir el filete de
pierna60
Tabla 12: Cálculo total de la confiabilidad de los instrumentos6
Tabla 13: Cálculo de la confiabilidad de los instrumentos (variable
dependiente)68
Tabla 14: Diagrama de Operaciones de Proceso (DOP) fileteo de pechugas y
piernas - Pre Test7
Tabla 15: Resultado del Diagrama de Actividades de Proceso (DAP) filetec
de pechugas y piernas - Pre Test74
Tabla 16: Índice de actividades que agregan valor - Pre test70
Tabla 17: Índice de actividades en horas - Pre test7
Tabla 18: Lista de productos estudiados para el cálculo del tiempo estándar
Pre test7
Tabla 19: Sistema de suplementos por descaso7
Tabla 20: Cálculo del tiempo estándar filete de pechuga de 300 gr. Pre test
79
Tabla 21: Cálculo del tiempo estándar del proceso de filete de pechuga corto
mariposa santa – Pre test8
Tabla 22: Cálculo del tiempo estándar del proceso de filete económico x1
Pre test.

Tabla 23: Cálculo del tiempo estándar del proceso de filete de pechuga corte
KFC - Pre test85
Tabla 24: Cálculo del tiempo estándar del proceso de filete de pierna big
crunch – Pre test87
Tabla 25: Cálculo del tiempo estándar del proceso de filete de pierna con
piel x3 – Pre test89
Tabla 26: Cálculo del tiempo estándar del proceso de filete de pierna PPPC –
Pre test91
Tabla 27: Diagrama bimanual del proceso de limpieza – Pre test92
Tabla 28: Diagrama bimanual del proceso de limpieza – Pre test93
Tabla 29: Cálculo del tiempo estándar total por semana – Pre test94
Tabla 30: Productividad semanal - Pre test96
Tabla 31: Productividad mensual – Pre test96
Tabla 32: Causas de baja productividad97
Tabla 33: Posibles solución de las principales causas99
Tabla 34: Diagrama de Operaciones de Proceso (DOP) fileteo de pechugas y
piernas - Post Test100
Tabla 35: Resultado del diagrama de Actividades de Proceso (DAP) fileteo de
pechugas y piernas- Post Test102
Tabla 36: Índice de actividades que agregan valor al proceso - Post Test103
Tabla 37: Índice de actividades en horas - Post Test103
Tabla 38: Análisis del estudio métodos en horas Pre test - Post test104
Tabla 39: Lista de productos estudiados para el cálculo del tiempo estándar-
Post test105
Tabla 40: Cálculo del tiempo estándar filete de pechuga de 300 gr. Post test.
107
Tabla 41: Cálculo del tiempo estándar del proceso de filete de pechuga corte
mariposa santa – Post test109
Tabla 42: Cálculo del tiempo estándar del proceso de filete económico x1 -
Post test111
Tabla 43: Cálculo del tiempo estándar del proceso de filete de pechuga corte
KFC - Post test113
Tabla 44: Cálculo del tiempo estándar del proceso de filete de pierna big

crunch - Post test115
Tabla 45: Cálculo del tiempo estándar del proceso de filete de pierna con
piel x3 – Post test117
Tabla 46: Cálculo del tiempo estándar del proceso de filete de pierna PPPC -
Pre test119
Tabla 47: Diagrama bimanual del proceso de limpieza / moldeado – Post test.
120
Tabla 48: Cálculo del tiempo estándar total por semana - Post test121
Tabla 49: Productividad semanal - Post test122
Tabla 50: Productividad mensual - post test123
Tabla 51: Estudio descriptivo de la variable independiente y dependiente en
el proceso de filete de pollo125
Tabla 52: Distribución de frecuencias del total de actividades128
Tabla 53: Distribución de frecuencias de las actividades que no agregan
valor al proceso de filete129
Tabla 54: Distribución de frecuencias del índice de actividades proceso de
filete130
Tabla 55: Distribución de frecuencias del tiempo estándar del proceso de
filete132
Tabla 56: Distribución de frecuencias de las toneladas de filete ejecutadas
semanal134
Tabla 57: Distribución de frecuencias del tiempo ejecutado / Ciclo135
Tabla 58: Distribución de frecuencias de la productividad (tn/ h)136
Tabla 59: Normalidad de las dimensiones de estudio141
Tabla 60: Materiales usados en el proyecto de investigación145
Tabla 61: Presupuesto del proyecto de investigación145
Tabla 62: Cronograma de actividades147
Tabla 63: Síntesis del estudio de métodos149
Tabla 64: Índice de actividades que son necesarias149
Tabla 65: Índice de actividades en horas que son necesarias150
Tabla 66: Resultado de la productividad - Pre test y Post test156
Tabla 67: Resultado del rendimiento del tiempo - Pre test y Post test158
Tabla 68: Resultados de las toneladas de producción - Pre test y Post test.

	160
Tabla 69: Tipo de estadígrafos	161
Tabla 70: Normalidad de las dimensiones - Pre test y Post test	161
Tabla 71: Correlación de las dimensión Toneladas ejecutadas/ Product	ividad
ejecutada	162
Tabla 72: Resultado de la prueba de Wilcoxon (Hipótesis general)	164
Tabla 73: Resultado de significancia de Wilcoxon (Hipótesis general)	164
Tabla 74: Resultado de la prueba de Wilcoxon (H1)	166
Tabla 75: Resultado de significancia de Wilcoxon (H1)	166
Tabla 76: Resultado de la prueba de Wilcoxon (H2)	168
Tabla 77: Resultado de significancia de Wilcoxon (H2)	168

Índice de figuras

Figura 1: Mapa mundial de países productores de carne de pollo	2
Figura 2: Producción mundial de carne de pollo	2
Figura 3: Productividad laboral en Asia – Pacifico 2018 (\$ / persona)	3
Figura 4: Producción de carne de pollo en América Latina y el Caribe	4
Figura 5: Productividad laboral América 2018 (\$ / persona)	5
Figura 6: Producción de carne de pollo Enero 2019- Enero 2020	6
Figura 7: Situación actual de la empresa campaña - 2020	8
Figura 8: Diagrama causa efecto	10
Figura 9: Principales causas que generan la baja productividad del filet	e de
pollo	13
Figura 10: Grafico de estratificación	15
Figura 11: Tiempo total del trabajo	30
Figura 12: Simbología del diagrama de operaciones (DOP)	31
Figura 13: Simbología del diagrama de actividades (DAP)	31
Figura 14: Diagrama de recorrido	33
Figura 15: Símbolos del diagrama bimanual	34
Figura 16 : Cronometro de estudio de tiempos	35
Figura 17: Formula del número de ciclos	36
Figura 18: Cálculo del número del tiempo promedio	37
Figura 19: Formula del tiempo normal	37
Figura 20: Formula del tiempo estándar	38
Figura 21: Sistemas de suplementos para el trabajo	39
Figura 22: formula de la productividad	40
Figura 23: Formula del rendimiento de tiempo	41
Figura 24: Formula las toneladas de producción	42
Figura 25: Distribución de piezas de pollo trozado	53
Figura 26: Formula del tamaño de la muestra para poblaciones finitas	54
Figura 277: Cronometro	57
Figura 28: Tablero de recolección de datos	58
Figura 29: Formula del Alfa de Cronbach	63
Figura 30: Resultado del estudio de método - Pre test	76

Figura 31: Resultados del estudio de métodos Pre test - Post test104
Figura 32: índice de frecuencia del total de actividades129
Figura 33: Índice de frecuencia de las actividades que no agregan valor al
proceso de filete130
Figura 34: Índice de frecuencia de las actividades del proceso de filete de
pollo131
Figura 35: Estudio de método - filete de pollo semanal131
Figura 36: Índice de frecuencia del tiempo estándar del proceso de filete de
pollo132
Figura 37: Medición del trabajo - semanal133
Figura 38: Distribución de frecuencia de toneladas de filete ejecutado134
Figura 39: Análisis de frecuencia del tiempo ejecutado/ ciclo135
Figura 40: Análisis de frecuencia de la productividad (tn/h)136
Figura 41: Análisis del tiempo proyectado / tiempo ejecutado vs rendimiento-
semanal137
Figura 42: Análisis del rendimiento de tiempo de filete de pollo – Mensual.
138
Figura 43: Comportamiento de los indicadores de la variable - productividad.
139
Figura 44: Índice de actividades que son necesarias150
Figura 45: Índice de actividades en horas que son necesarias151
Figura 46: Resultado de la distancia (m) - Pre test y post test152
Figura 47: Resultados del tiempo estándar semanal - Pre test y Post test153
Figura 48: Resultados de tiempo estándar - Pre test y Post test154
Figura 49: Comportamiento de la productividad semanal - Pre test y Post
test155
Figura 50: Comportamiento del rendimiento del tiempo semanal - Pre test y
Post test157
Figura 51: Comportamiento de las toneladas de producción semanal - Pre
test y Post test159
Figura 52: Correlación de las dimensiones toneladas de producción/
Productividad Ejecutada162

Índice de Anexos

ANEXO 1: Declaratoria de autenticidad del autor18	3
ANEXO 2: Matriz de Operacionalización de la variable18	4
ANEXO 3: Matriz de consistencia18	5
ANEXO 4: Cálculo del tamaño de la muestra18	6
ANEXO 5: Muestreo aleatorio simple18	6
ANEXO 6: Especificaciones técnicas del cronometro18	; 7
ANEXO 7: Formato de flujo de proceso18	8
ANEXO 8: Formato del diagrama de análisis proceso (DAP)18	8
ANEXO 9: Formato de diagrama de operaciones proceso (DOP)18	19
ANEXO 10: Formato de diagrama bimanual18	19
ANEXO 11: Formato de toma de tiempos por actividades19	0
ANEXO 12: Formato de cálculo del número de muestras19	0
ANEXO 13: Formato de cálculo del tiempo estándar19	1
ANEXO 14: Formato de cálculo de la productividad19	1
ANEXO 15: Formato de registro de fileteo de pechugas19	2
ANEXO 16: Formato de registro de fileteo de piernas19	13
ANEXO 17: Línea de fileteo de pechuga de pollo19	14
ANEXO 18: Diagrama de Operaciones de Proceso (DOP) fileteo de pechuga	ıs
y piernas - Pre Test19)5
ANEXO 19: Diagrama de Actividades de Proceso (DAP) fileteo de pechugas	у
piernas - Pre Test19)6
ANEXO 20: Toma de tiempo del filete de pechuga 300 gr – Pre test19	8
ANEXO 21: Cálculo de número de observaciones del fileteo de pechuga 30	0
gr – Pre test20	0
ANEXO 22: Calculo del promedio de los tiempos observados del proceso d	le
filete de pechuga de 300 gr Pre test20	1
ANEXO 23: Calculo del tiempo estándar filete de pechuga de 300 gr. Pre tes	t.
20	12
ANEXO 24: Toma de tiempo del filete de pechuga corte mariposa SANTA	_
Pre test20	14
ANEXO 25: Cálculo del número de observaciones proceso de filete d	le
pechuga corte mariposa SANTA- Pre test20	16

ANEXO 26: Cálculo del promedio los tiempos observados del proceso de
filete de pechuga corte mariposa SANTA – Pre test207
ANEXO 27: Cálculo del tiempo estándar del proceso de filete de pechuga
corte mariposa SANTA- Pre test209
ANEXO 28: Toma de tiempos del proceso de filete de pechuga económico x1
– Pre test211
ANEXO 29: Cálculo del número de observaciones del proceso de filete de
pechuga económico x1- Pre test213
ANEXO 30: Cálculo del promedio de observaciones del filete económico x1-
Pre test214
ANEXO 31: Calculo del tiempo estándar del proceso de filete económico x1 -
Pre test216
ANEXO 32: Toma de tiempo del proceso de filete de pechuga corte KFC Pre
test218
ANEXO 33: Cálculo del número de observaciones del proceso de corte KFC
– Pre test220
ANEXO 34: Cálculo del promedio de los tiempos del proceso de filete de
pechuga corte KFC- Pre test221
ANEXO 35: Cálculo del tiempo estándar del proceso de filete de pechuga
corte KFC - Pre test223
ANEXO 36: Toma de tiempos de proceso de filete de pierna big crunch – Pre
test225
ANEXO 37: Cálculo del número de observaciones del proceso de filete de
pierna big crunch – Pre test227
ANEXO 38: Cálculo del promedio de las observaciones del proceso de filete
de pierna big crunch – Pre test228
ANEXO 39: Cálculo del tiempo estándar del proceso de filete de pierna big
crunch – Pre test229
ANEXO 40: Toma de tiempo del proceso de filete de pierna con piel x3 - Pre
test231
ANEXO 41: Cálculo del número de observaciones del proceso de filete de
pierna con piel x 3 – Pre test233
ANEXO 42: Cálculo del promedio de las observaciones del proceso de filete

de pierna con piel x3 – Pre test234
ANEXO 43: Cálculo del tiempo estándar del proceso de filete de pierna con
piel x3 – Pre test235
ANEXO 44: Toma de tiempos del proceso de pierna PPPC – Pre test237
ANEXO 45: Cálculo de número de observaciones del proceso de filete de
pierna PPPC – Pre test239
ANEXO 46: Cálculo del promedio de tiempos de las observaciones de
proceso de filete de pierna PPPC - Pre test240
ANEXO 47: Cálculo del tiempo estándar del proceso de filete de pierna PPPO
– Pre test241
ANEXO 48: Diagrama bimanual del proceso de limpieza de filete243
ANEXO 49: Diagrama bimanual del proceso de moldeado de filete244
ANEXO 50: Productividad diario - mes de enero 2020245
ANEXO 51: Productividad diario - mes de febrero 2020246
ANEXO 52: Productividad diario - mes de marzo 2020247
ANEXO 53: Productividad diario - mes de abril 2020248
ANEXO 54: Productividad diario - mes de mayo 2020249
ANEXO 55: Productividad diario - mes de junio250
ANEXO 56: Layout de ingreso al proceso de fileteo / Tiempo de preparación
de materiales251
ANEXO 57: Diagrama de Operaciones de Proceso (DOP) fileteo de pechugas
y piernas - Post Test252
ANEXO 58: Diagrama de Actividades de Proceso (DAP) fileteo de pechugas y
piernas- Post Test253
ANEXO 59: Toma de tiempos con cronometro255
ANEXO 60: Toma de tiempo del filete de pechuga 300 gr - Post test256
ANEXO 61: Cálculo de número de observaciones del fileteo de pechuga 300
gr - Post test258
ANEXO 62: Cálculo del promedio de los tiempos observados del proceso de
filete de pechuga de 300 gr - Post test259
ANEXO 63: Cálculo del tiempo estándar filete de pechuga de 300 gr - Pos
test260
ANEXO 64: Toma de tiempo del filete de pechuga corte mariposa SANTA -

Post test262
ANEXO 65: Cálculo del número de observaciones proceso de filete de
pechuga corte mariposa SANTA - Post test264
ANEXO 66: Cálculo del promedio los tiempos observados del proceso de
filete de pechuga corte mariposa SANTA – Post test265
ANEXO 67: Cálculo del tiempo estándar del proceso de filete de pechuga
corte mariposa SANTA - Post test266
ANEXO 68: Toma de tiempos del proceso de filete de pechuga económico x1
- Post test268
ANEXO 69: Cálculo del número de observaciones del proceso de filete de
pechuga económico x1- Post test270
ANEXO 70: Cálculo del promedio de observaciones del filete económico x1-
Post test271
ANEXO 71: Cálculo del tiempo estándar del proceso de filete económico x1 -
Post test272
ANEXO 72: Toma de tiempo del proceso de filete de pechuga corte KFC -
Post test274
ANEXO 73: Cálculo del número de observaciones del proceso de corte KFC -
Post test276
ANEXO 74: Cálculo del promedio de los tiempos del proceso de filete de
pechuga corte KFC- Post test277
ANEXO 75: Cálculo del tiempo estándar del proceso de filete de pechuga
corte KFC - Post test278
ANEXO 76: Toma de tiempos de proceso de filete de pierna big crunch - Post
test280
ANEXO 77: Cálculo del número de observaciones del proceso de filete de
pierna big crunch - Post test282
ANEXO 78: Cálculo del promedio de las observaciones del proceso de filete
de pierna big crunch - Post test283
ANEXO 79: Cálculo del tiempo estándar del proceso de filete de pierna big
crunch - Post test285
ANEXO 80: Toma de tiempo del proceso de filete de pierna con piel x3 - Post
test287

ANEXO 81: Cálculo del número de observaciones del proceso de filete de
pierna con piel x 3 - Post test289
ANEXO 82: Cálculo del promedio de las observaciones del proceso de filete
de pierna con piel x3- Post test290
ANEXO 83: Cálculo del tiempo estándar del proceso de filete de pierna con
piel x3 - Post Test292
ANEXO 84: Toma de tiempos del proceso de pierna PPPC - Post test294
ANEXO 85: Cálculo de número de observaciones del proceso de filete de
pierna PPPC - Post test296
ANEXO 86: Cálculo del promedio de tiempos de las observaciones del
proceso de filete de pierna PPPC- Post test297
ANEXO 87: Cálculo del tiempo estándar del proceso de filete de pierna PPPC
- Post test299
ANEXO 88: Diagrama bimanual del proceso de limpieza / moldeado de filete.
301
ANEXO 89: proceso de filete de pollo302
ANEXO 90: Productividad diario - mes de enero 2021303
ANEXO 91: Productividad diario - mes de febrero 2021304
ANEXO 92: Productividad diario - mes de marzo 2021305
ANEXO 93: Productividad diario - mes de abril 2021306
ANEXO 94: Productividad diario - mes de mayo 2021307
ANEXO 95: Productividad diario - mes de junio 2021308
ANEXO 96: Base de datos para el análisis de la normalidad de las
dimensiones – SPSS 24309
ANEXO 97: Resultados de la normalidad de las dimensiones – SPSS 24310
ANEXO 98: Base de datos Pre test y Post test - SPSS24311
ANEXO 99: Prueba de Wilcoxon variable productividad - SPSS 24312
ANEXO 100: Prueba de Wilcoxon dimensión rendimiento del tiempo - SPSS
24313
ANEXO 101: Prueba de Wilcoxon dimensión toneladas de producción - SPSS
24314
ANEXO 102: Juicio de experto 1315
ANEXO 103: Juicio de experto 2316

ANEXO 104: Juicio de experto 3	317
ANEXO 105: Juicio de experto 4	318
ANEXO 106: Juicio de experto 5	319
ANEXO 107: Juicio de experto 6	320
ANEXO 108: Juicio de experto 7	321
ANEXO 109: juicio de experto 8	322
ANEXO 110: Recibo digital de turnitin	323
ANEXO 111: Resultados de similitud (Turnitin)	324

Resumen

El propósito principal del presente estudio de investigación es determinar como la aplicación del estudio del trabajo mejorara la productividad del filete de pollo de la empresa San Fernando, Huaral 2021. El estudio que se ha desarrollado es de tipo aplicada con un nivel explicativo, de carácter cuantitativo y con un diseño experimental, la población del presente estudio de investigación está compuesta por 34 órdenes de producción de filete de pollo procesadas en las primeras semanas del año 2020. Por otro lado, el tamaño de la muestra es 19 órdenes de producción de filete de pollo, para evaluar los datos se hizo un muestreo aleatorio simple, en septiembre, octubre, noviembre y diciembre se lleva a cabo la implementación del estudio del trabajo, por ende los datos del post test se tomaron a partir del mes de enero del 2021. Por otro lado, en la presente investigación se aplicó la técnica del cronometraje y la observación directa para poder analizar eficientemente los procedimientos, de igual modo se utilizaron los instrumentos de recolección de datos. El procesamiento de los resultados de la investigación se realizó a través del programa IBM SPSS Statics 24 mediante la estadística descriptiva e inferencial, los resultados de la aplicación del estudio del trabajo fueron positivo teniendo un índice de incremento de la productividad de 19.00% y un índice de mejora de 30.90%, con respecto al rendimiento del tiempo se obtuvo un índice de incremento de 15.20% y un índice de mejora de 62.04%, así mismo las toneladas de producción logro un índice de incremento de 11.80% y un índice de mejora de 16.25%.Por lo tanto, estos resultados se contrastan con la prueba de Wilcoxon donde el nivel de significancia de la productividad empleado al pre test y post test es de 0.000. En consecuencia se puede decir que se rechaza H₀ para abrazar la hipótesis de estudio.

Palabras claves: Estudio del trabajo, productividad.

Abstract

The main purpose of this research study is to determine how the application of the work study will improve the productivity of the chicken fillet of the company San Fernando, Huaral 2021. The study that has been developed is of an applied type with an explanatory level, of character Quantitative and with an experimental design, the population of the present research study is made up of 34 chicken fillet production orders processed in the first weeks of 2020. On the other hand, the sample size is 19 fillet production orders of chicken, to evaluate the data a simple random sampling was made, in September, October, November and December the implementation of the work study is carried out, therefore the post-test data was taken from the month of January 2021 On the other hand, in the present investigation the technique of timing and direct observation was applied to be able to efficiently analyze the procedures, from i In the same way, the data collection instruments were used. The processing of the research results was carried out through the IBM SPSS Statics 24 program through descriptive and inferential statistics, the results of the application of the study of the work were positive, having an index of increase in productivity of 19.00% and an index improvement of 30.90%, with respect to the performance of time, an increase rate of 15.20% and an improvement rate of 62.04% were obtained, likewise the tons of production achieved an increase rate of 11.80% and an improvement rate of 16.25%. Therefore, these results are contrasted with the Wilcoxon test where the level of significance of productivity used at the pre-test and post-test is 0.000. Consequently, it can be said that H0 is rejected to embrace the study hypothesis.

Keywords: Work study, productivity.

Hoy en día la carne de pollo es uno de los alimentos fundamentales y el más consumido en los hogares del mundo, por ser unos de los insumos que genera una gran cantidad de proteínas al cuerpo humano, en consecuencia las empresas dedicadas al rubro de crianza y beneficiado de aves de corral están creciendo de forma progresiva en el rubro, según la revista Avinews (2019).

En consecuencia, en el año 2019 se produjo 98.4 millones de toneladas, en el mismo año la industria de avícula tuvo un crecimiento en la producción de carne de pollo de 3.0% con respecto al año 2018, y en el consumo se detalló un crecimiento de 2.8% con respecto al año 2018, es por ello que el año 2019 se registró que el consumo fue de 31,4 kg/ persona en el mundo, según la revista Avinews (2019).

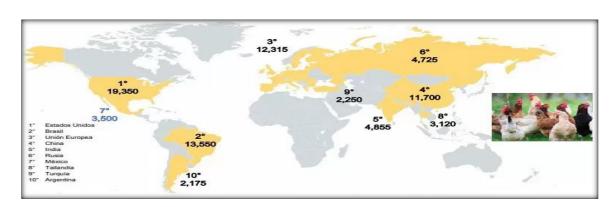


Figura 1: Mapa mundial de países productores de carne de pollo.

Fuente: USDA (Departamento de Agricultura de Estados Unidos, 2019).

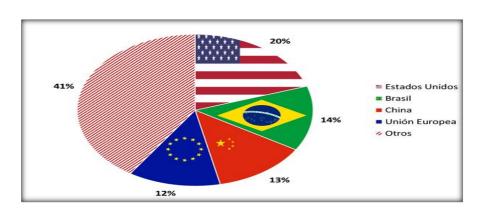


Figura 2: Producción mundial de carne de pollo.

Fuente: USDA (Departamento de Agricultura de Estados Unidos, 2019).

En la figura 2, se muestra que el país con más producción de carne de pollo es Estados Unidos con una proporción de (20%), Brasil con una proporción de (14%), China con una proporción de (13%), Unión Europea con una proporción de (12%) y los otros países en el mundo con (41%) respectivamente.

También a nivel mundial la productividad laboral es el problema principal que carecen muchos países del primer mundo, ya que los proceso han ido cambiado con el transcurrir de los años, los países con niveles más altos de productividad laboral en el mundo es Brunei con un giro económico de Hidrocarburo, Singapur con un giro económico derivado de sector logístico y los países con mayor número de habitantes del mundo como lo es Taiwán, Australia, Japón, Corea del Sur Y Nueva Zelanda registran la mayor tasa de productividad por ser países dedicados a la investigación y desarrollo de productos, por otro lado están los países como China, India, entre otros países de Asia, que tienen un mayor problema en la productividad en sus proceso por tener la mayor producción agrario en el sector, según lo mencionado por el investigador Álvaro Merino (2018).

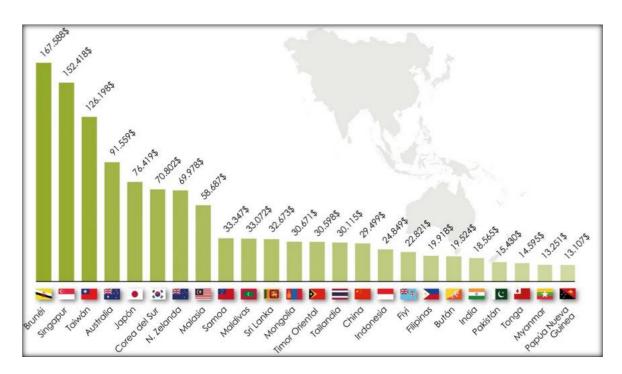


Figura 3: Productividad laboral en Asia – Pacifico 2018 (\$ / persona).

Fuente: Organización Internacional del Trabajo (2018)

De la figura 3, se observa que la mayor productividad laboral en los países de Asia – Pacifico lo encabezan Brunéi, Singapur, Taiwán, Australia, Japón, Corea del Sur, N. Zelanda y Malacia con una productividad laboral mayor a 50 \$/persona, por ende los otros países que se muestra en el grafico no superan el 34 \$/persona, en conclusión el margen de diferencia entre el país con mayor productividad laboral (Brunéi) y el país con menor productividad laboral (Papúa Nueva Guinea) es de 154.4 \$/persona.

En américa latina la producción de carne de pollo está en constante crecimiento donde en el año 2018 ha crecido 1.1% con respecto al año 2017 y en el año 2019 creció en 2.1% con respecto al año 2018, los países americanos como Argentina, Perú, México, Colombia y Chile son los que abarcan el 88.8% de la producción de carne de pollo (Instituto Latinoamericano del pollo, 2019).

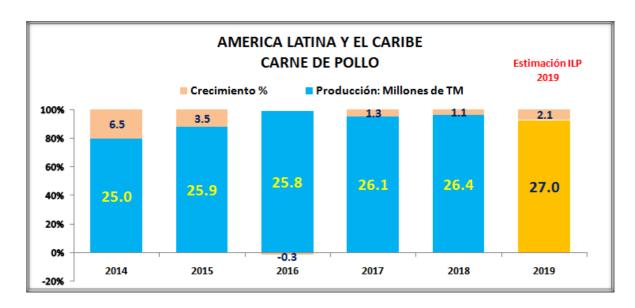


Figura 4: Producción de carne de pollo en América Latina y el Caribe.

Fuente: ILP (Instituto Latinoamericano del pollo, 2019).

En la figura 4, producción de carne de pollo América Latina y el Caribe muestra que en el año 2014 la producción de carne de pollo creció 6.5%, en el año 2015 creció 3.5 %, el año 2016 descendió en -0.3 %, en el año 2017 tuvo un crecimiento de 1.3%, en el año 2018 creció 1.1% y en año 2019 tuvo un crecimiento de 2.1%, en conclusión la producción de carne de pollo en América y en los otros países del caribe ha tenido en los últimos años un crecimiento

exponencialmente.

Asimismo, en América Latina la mayor parte de las empresas tienen como objetivo mejorar la productividad de sus procesos, es por ello que se están enfocando en minimizar el obstáculo que representa la baja productividad, los países como Estados Unidos, Puerto Rico y Canadá son los países con mayor productividad laboral de américa latina, por tener como amparo el dólar. En consecuencia no es necesario centrar la economía en sectores más altos en proceso, sino en activar la economía de los sectores que se encuentran sumergido en el dilema de la baja productividad. Según lo mencionado por el Banco de Desarrollo de América Latina (2019, párr. 3).

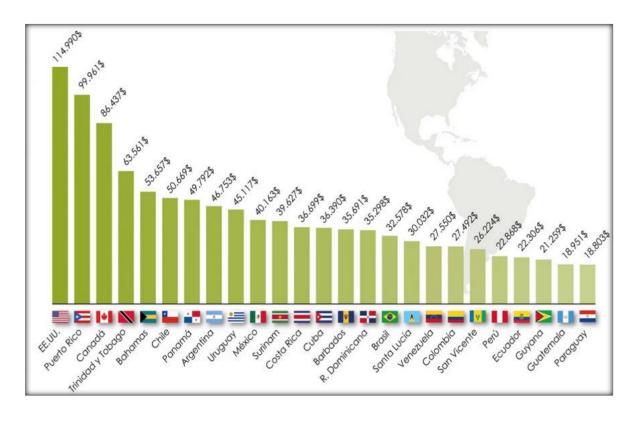


Figura 5: Productividad laboral América 2018 (\$ / persona).

Fuente: Organización Internacional del Trabajo, 2018.

De la figura 5, se observa que la mayor productividad laboral de América lo lideran los países de EE.UU., Puerto Rico y Canadá con una tasa de productividad superior al 85 \$/ persona, mientras que el Perú tiene una productividad laboral de 22.8 \$/persona y los países con mayor déficit en la

productividad laboral se encuentran los países de Ecuador con 22.3 \$/persona, Guyana con 21.2 \$/persona, Guatemala con 18.9\$/persona y Paraguay con 18.8 \$/persona respectivamente, en conclusión el margen de diferencia entre el país con mayor productividad laboral (EE.UU.) y el país con menor productividad laboral (Paraguay) es de 96.1 \$/persona.

También, en el Perú, específicamente en el departamento de lima provincias las empresas dedicadas a la crianza y beneficiado de pollos tienen un problema en común la baja productividad, sin embargo el sector pecuario está en constante crecimiento en la región, en el año 2019 ha crecido 3.5 % con respecto al año 2018 (MINAGRI, 2019, párr. 2), también representa el 25 % del valor bruto a la actividad agropecuario de la región (Montenegro, 2019, párr. 3). Es por ello que las empresas del sector pecuario están implementando sistemas que ayuden a mejorar la productividad en las líneas de proceso, ya que esta representa un gran vacío en el sistema productivo.

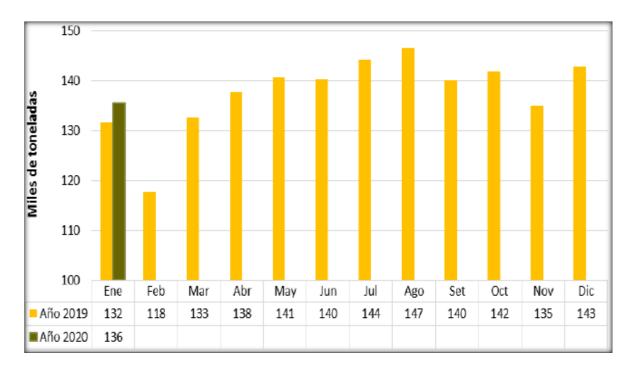


Figura 6: Producción de carne de pollo Enero 2019- Enero 2020.

Fuente: SIEA (Sistema Integrado de Estadística Agraria, 2020)

De la figura 6, podemos decir que la producción de carne de pollo en el Perú supera los 130 mil toneladas de carne de pollo producida, también podemos decir

que en los meses de mayo, junio, julio, agosto y diciembre del 2019 alcanzo picos de producción por tratarse de meses festivos donde el consumo de carne de pollo es mayor.

Por ello, el lugar elegido para este estudio de investigación es la empresa San Fernando, la empresa se desenvuelve en el sector agropecuario, en la crianza de pollo, producción y venta de Huevos, Producción de alimentos balanceados para las distintas granjas ubicadas estratégicamente en el norte centro y sur del país, producción de embutidos de carne de pollo, cerdo y pavos, Beneficiado de pollos en dos grandes planta ubicada en sur del país (Chincha) y en el norte (Huaral), el presente estudio de investigación se situara en planta de beneficio Huaral, específicamente en la línea de filete de pollo.

La línea de filete de pollo se caracteriza por el deshuesado y pesaje de filetes de pechugas y piernas de pollo según los requerimientos de los clientes (rango, peso y forma), con el transcurrir de los años la línea de filete ha llegado hacer una de las principales líneas de proceso de la compañía por la flexibilidad y dinamismo de sus procesos, pero lamentablemente presenta diversas debilidades siendo el problema principal la baja productividad de la línea de filete de pollo, este dilema está afectando directamente en el crecimiento y perduración en el tiempo de la línea de filete de pollo.

Tabla 1: Situación actual de la empresa.

Mes	Ene20	Feb20	Mar20	Abr20	May20	Jun20	Jul20	Ago20	Total
Toneladas. Producción	80.34%	78.67%	76.46%	68.68%	62.70%	65.02%	64.00%	67.26%	70.28%
Rendimiento. Tiempo	20.75%	21.62%	25.75%	27.41%	28.54%	28.90%	24.69%	30.25%	25.93%
Productividad Ejecutada (tn/ hora)	66.11%	65.19%	65.49%	59.60%	54.98%	57.16%	54.43%	59.74%	60.22%

Fuente: Realización propia, 2020.

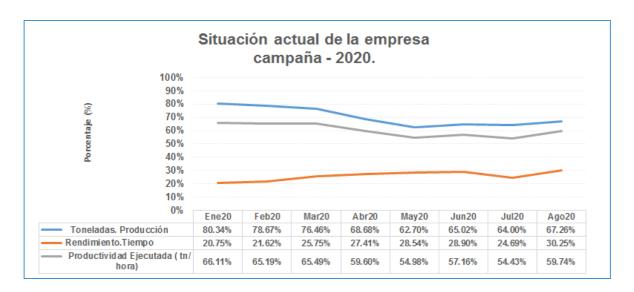


Figura 7: Situación actual de la empresa campaña - 2020.

Fuente: Realización propia, 2020.

Según la óptica de la tabla 1 y en la figura 7 se muestra que en los últimos 8 meses de proceso el rendimiento de tiempos en promedio es de 25.93 % y el las toneladas producción en promedio es de 70.28% y la productividad ejecutada en promedio es de 60.22% respectivamente. En conclusión la aplicación del estudio del trabajo ayudara a mejorar este indicador.

Por otro lado, las causas de este problema son múltiples, pero para este estudio estamos eligiendo que los tiempos improductivos y despilfarros de los recursos son el origen del principal motivo del descenso de la productividad en la línea de filete de pollo, teniendo en cuenta que los despilfarros es todo lo que pueda pasar en el proceso donde el operario no agregar valor al producto terminado, Cruelles (2018, p.41).

En cuanto a, las consecuencias que pueden traer este problema son diversos, pero para este estudio de investigación tomaremos la pérdida de capacidad de la línea de filete de pollo, sabiendo que la rápida respuesta de la producción de los pedidos urgentes que se realizan diariamente en la línea de filete de pollo es primordial, cuyos pedidos son aproximadamente de 1,000 kg que se deben en entregar en el horario correspondiente para no recortar los pedidos hacia los Centros de Distribución (CD), por ello la capacidad de repuesta de la línea de

filete de pollo es importante para el crecimiento del negocio.

En fin, el presente estudio de investigación pretende aumentar la productividad del filete de pollo, por intermedio de un aporte en el sistema de producción, teniendo en cuenta el uso del estudio del trabajo, donde se aplicara todas las técnicas y métodos de ingeniería con la finalidad de mitigar el mal uso de los recurso y despilfarros de tiempos que no generan valor al proceso, actual causa que presenta la línea de filete de pollo en la empresa San Fernando.

Figura 8: Diagrama causa efecto.

Fuente: Realización propia, 2020.

Para un mayor estudio del origen que están afectando la baja productividad del filete de pollo, haremos uso del diagrama de vester y el diagrama de Pareto, con la finalidad de priorizar la causa principal que está produciendo la baja productividad del filete de pollo de la empresa San Fernando.

En la matriz de vester se tiene como principio: 3 = Fuerte relación con la causa, 2 = media relación con la causa, 1 = poca relación con la causa y 0 = nada relación con la causa.

Tabla 2: Matriz de vester.

Problemas															Puntaje	%					
PX	Lista de causas	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14 P15 P16 P17 P18					Tuntaje	Ponderado
P1	Tiempos improductivos y despilfarros de los recursos.		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	51	14.7%
P2	Pérdida de capacidad de proceso.	3		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	50	14.5%
P3	Tiempos en preparación de materiales.	3	3		3	3	3	3	3	2	3	3	3	3	3	3	3	2	3	49	14.2%
P4	Layout del ingreso al proceso ineficiente	3	3	3		3	3	3	3	0	3	3	0	3	3	3	3	3	2	44	12.7%
P5	Metodología de proceso no están definidos.	3	3	3	3		3	3	3	1	3	3	0	3	2	2	2	1	2	40	11.6%
P6	Falta de materiales en oportunidad.	3	2	2	2	1		1	1	0	1	2	0	0	0	0	0	0	0	15	4.3%
P7	Método de trabajo inadecuado.	3	2	2	2	2	1		0	0	0	0	0	0	0	0	0	0	0	12	3.5%
P8	Excesivos tiempos muertos en las maquinas.	2	2	0	1	1	0	0		1	0	1	2	0	0	0	0	0	0	10	2.9%
P9	Falta de mantenimiento en las maquinas.	3	3	0	1	0	0	0	0		0	1	0	0	0	0	0	0	0	8	2.3%
P10	Incumplimiento de las ventanas horarias	2	2	1	0	0	0	0	0	0		2	0	0	0	0	0	0	0	7	2.0%
P11	Incorrecta planificación de producción.	3	3	3	3	3	3	3	3	3	3		3	2	2	2	2	2	1	44	12.7%
P12	Actividades de maquina que no agregan valor.	2	2	0	0	0	0	0	0	0	0	1		0	0	0	0	0	0	5	1.4%
P13	Falta de capacitación en mejoras de proceso.	1	1	0	0	1	0	1	0	0	0	0	0		0	0	0	0	0	4	1.2%
P14	Falta de integración y trabajo en equipo.	1	1	0	0	0	0	1	0	0	0	0	0	0		0	0	0	0	3	0.9%
	Ambiente de trabajo desordenado.	0	1	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	1	0.3%
P16	El personal no respeta las reglas.	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	1	0.3%
P17	Clima laboral negativo.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		1	1	0.3%
P18	Personal desmotivado y sin objetivos definidos.	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		1	0.3%
		Sui	ma																	346	100%

Fuente: Elaboración propio, 2020.

En la tabla 2, utilizando la matriz de vester se observa que las causas que tiene una relación directamente proporcional al problema principal tienen un puntaje de 51, 50, 49, 44, 40 respectivamente, siendo el motivo principal de la disminución de la productividad del filete de pollo.

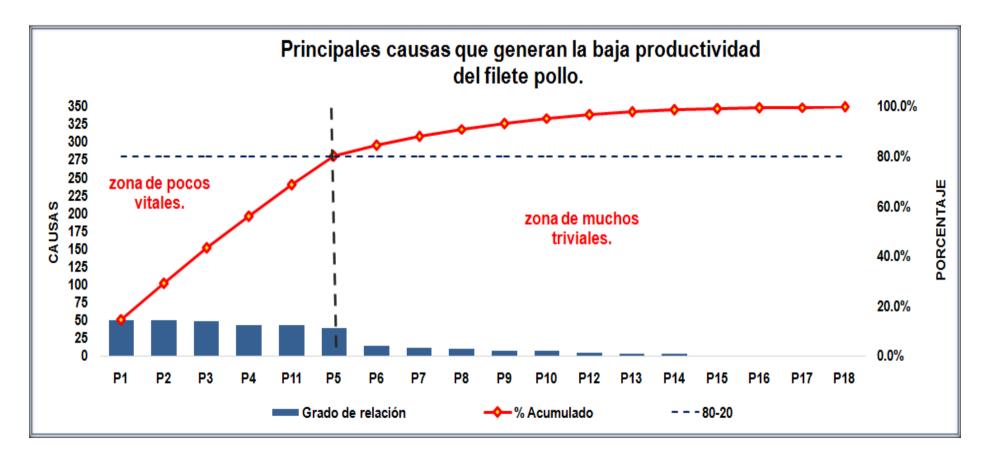

En consecuencia a los datos estudiados en la matriz de vester, se realizó el diagrama de Pareto con el propósito de poder medir las causas más notorias del actual problema que aqueja la línea de filete de pollo en la empresa San Fernando, teniendo en cuenta que el diagrama de Pareto es un instrumento poderoso de calidad que ayuda profundizar el estudio del trabajo, con la finalidad que se pueda tomar decisiones asertivas en proceso de estudio de forma clara y concisa. Gutiérrez (2010, p. 179).

Tabla 3: Número de causas que afectan la productividad del filete de pollo.

PX Ordenado	Causas	% Parcial	% Acumulado	80-20
P1	Tiempos improductivos y despilfarros de los recursos.	14.7%	14.7%	80.0%
P2	Pérdida de capacidad de proceso.	14.5%	29.2%	80.0%
P3	Tiempos en preparación de materiales.	14.2%	43.4%	80.0%
P4	Layout del ingreso al proceso ineficiente.	12.7%	56.1%	80.0%
P11	Incorrecta planificación de producción.	12.7%	68.8%	80.0%
P5	Metodología de proceso no están definidos.	11.6%	80.3%	80.0%
P6	Falta de materiales en oportunidad.	4.3%	84.7%	80.0%
P7	Método de trabajo inadecuado.	3.5%	88.2%	80.0%
P8	Excesivos tiempos muertos en las maquinas.	2.9%	91.0%	80.0%
P9	Falta de mantenimiento en las maquinas.	2.3%	93.4%	80.0%
P10	Incumplimiento de las ventanas horarias.	2.0%	95.4%	80.0%
P12	Actividades de maquina que no agregan valor.	1.4%	96.8%	80.0%
P13	Falta de capacitación en mejoras de proceso.	1.2%	98.0%	80.0%
P14	Falta de integración y trabajo en equipo.	0.9%	98.8%	80.0%
P15	Ambiente de trabajo desordenado.	0.3%	99.1%	80.0%
P16	El personal no respeta las reglas.	0.3%	99.4%	80.0%
P17	Clima laboral negativo.	0.3%	99.7%	80.0%
P18	Personal desmotivado y sin objetivos definidos.	0.3%	100.0%	80.0%

Fuente: Realización propia, 2020.

Figura 9: Principales causas que generan la baja productividad del filete de pollo.

Fuente: Realización propia, 2020.

En la tabla 2 de número de causas y en la figura 9 del diagrama de Pareto, se muestran los principales dilemas que aqueja a toda la línea de filete de pollo en la empresa San Fernando S.A. que son tiempos improductivos y despilfarros de recursos (14.7%), pérdida de capacidad de proceso (14.5%), tiempos en preparación de materiales (14.2%), Layout del ingreso al proceso ineficiente (12.7%), incorrecta planificación de producción (12,7%), metodología de proceso no están definidos (11.6%), siendo las observaciones más resaltantes que están direccionando la disminución de la productividad en la línea de filete de pollo de la compañía.

Para profundizar el estudio y el origen de las incidencias que están provocando la disminución de la productividad en la línea de filete de pollo se realizó la matriz de estratificación donde se dividió en tres estratos gestión, proceso y mantenimiento.

Tabla 4: Cuadro de estratificación.

PROBLEMAS DE ÁREA	Mano de Obra	Medio Ambiente	Maquina	Método	Medición	Materiales	NIVEL DE CRITICIDAD	Total de incidencias	% de problemas	Impacto	Calificador	Prioridad	Medidas a tomar
Proceso	4	1	0	6	2	0	Alto	13	72.2%	5	65	1	Estudio del trabajo
Mantenimiento	0	0	3	0	0	0	Medio	3	16.7%	4	12	2	ТРМ
Gestión	1	0	0	0	0	1	Bajo	2	11.1%	3	6	3	Estudio del trabajo
Total de problemas	5	1	3	6	2	1	Total	18	100.0%				

Fuente: Realización propia, 2020.

Según la óptica de la tabla 4, se puede decir que el estrato con mayor problema es proceso con 72.2% de los problemas, mantenimiento con 16.7% y Gestión con 11.1% de los problemas. De igual forma se puede observar en la figura 10.

Figura 10: Grafico de estratificación.

Fuente: Realización propia, 2020.

En consecuencia, por todo lo expresado anteriormente en el actual trabajo de investigación es necesario formular el problema general de estudio ¿Cómo la aplicación del estudio del trabajo mejorara la productividad del filete de pollo de la empresa San Fernando, Huaral 2021?

También, es necesario formular los problemas específicos del presente estudio de investigación: ¿Cómo la aplicación del estudio del trabajo mejorara el rendimiento del tiempo en el proceso de filete de pollo de la empresa San Fernando, Huaral 2021?

A su vez ¿Cómo la aplicación del estudio del trabajo mejorara las toneladas de producción del filete de pollo de la empresa San Fernando, Huaral 2021?

El reciente estudio de investigación es conveniente, porque va a servir de punto de inicio para implementar nuevas metodologías en las diferentes líneas de proceso de la empresa San Fernando, también será de mucha utilidad para el registro de datos que ayudaran a tener indicadores de medición del trabajo realizado en la línea de filete de pollo.

También, posee justificación práctica, porque contribuirá con la compañía en

brindar resultados a su problemática de baja productividad en la medida que se aplique el estudio del trabajo en la línea de filete de pollo.

Además, se justifica metodológicamente, porque pretende perseguir un nuevo indicador con referencia en la implementación de nueva metodologías de trabajo en la línea filete de pollo de la empresa San Fernando, el cual puede ser tomado como punto inicial para futuras investigaciones relacionados al tema de estudio.

Así mismo, el objetivo principal de la reciente investigación es: Determinar como la aplicación del estudio del trabajo mejorara la productividad del filete de pollo de la empresa San Fernando, Huaral 2021.

Además, los objetivos específicos del presente trabajo de investigación son: Determinar como la aplicación del estudio del trabajo mejorara el rendimiento del tiempo en proceso de filete de pollo de la empresa San Fernando, Huaral 2021.

Determinar como la aplicación del estudio del trabajo mejorara las toneladas de producción del filete de pollo de la empresa San Fernando, Huaral 2021.

Por otro lado, la hipótesis primordial del presente trabajo de investigación es: La aplicación del estudio del trabajo mejora la productividad del filete de pollo de la empresa San Fernando, Huaral 2021.

También, cabe formular las hipótesis específicas del estudio de investigación siendo los siguientes:

H1: La aplicación del estudio del trabajo mejora el rendimiento del tiempo en el proceso de filete de pollo de la empresa San Fernando, Huaral 2021.

H2: La aplicación del estudio del trabajo mejora las toneladas de producción del filete de pollo de la empresa San Fernando, Huaral 2021.

Sobre el presente estudio de investigación, se logró encontrar los siguientes trabajos previos que sustentan y respaldan a las variables de estudio.

Según TUDELA (2018), el propósito primordial de estudio fue mejorar la productividad mediante el estudio del trabajo en la empresa Páyanos EIRL, 2018. El presente estudio de investigación es de diseño cuasi-experimental y de tipo aplicado, tiene como población de estudio paquetes comerciales que fueron realizados en 51 días del mes del quinto y sexto del año 2018; la implementación tuvo pie en el séptimo y octavo mes del mismo año respectivamente. En suma, los datos obtenidos del estudio se visualizan en el último mes del año 2018, la muestra de estudio fue elegida por conveniencia y la población de estudio fue elegida de la misma manera. El método elegido para la recolección y análisis de los datos fueron la hoja de estudio del tiempo, hoja de cuenta de actividades realzadas y el software SPSS. V.20 de la mano con la hoja de cálculo de Microsoft Excel. Los resultados del estudio de investigación fue e incremento de la productividad de 52% a 78%, por otro lado la eficiencia mejoro de 82% a 87% y la eficacia de 63% a 90%.

En consecuencia, el estudio realizado por Tudela ayudara a la presente investigación en reforzar las teorías y las variables de estudio, teniendo como referencia los resultados obtenidos en la tesis, también ayudara entender los puntos clave de la investigación como lo es la eficiencia y la eficacia cuyos resultados fueron positivos en el estudio.

También el estudio realizado por los investigadores ACUÑA y BRICEÑO (2018), el propósito primordial del proyecto fue determinar el incremento de la productividad en el área de congelado en la compañía GroupCoishco S.A.A, 2018. El estudio realizado tuvo los siguientes dimensiones como diagnóstico de las actividades, métodos de trabajo y el estudio de tiempos de proceso, todo ello con el fin de mejorar la productividad, teniendo en cuenta los componentes que participan en el desarrollo de la producción como los insumos utilizados en la línea, el trabajo del operario. Es estudio fue de forma aplicada, en consecuencia el enfoque fue cuantitativo, el diseño pre experimental y la población de estudio fue conformada por la producción de productos congelados. Para mejorar la

productividad mediante el estudio del trabajo, se utilizaron diversas herramientas tales como hojas de registro, cumplimientos de confiabilidad, fichas de observación, todos los datos recolectados fueron analizados mediante el software SPSS V.25. El instrumento de medición fue aprobado por los profesores expertos. Los resultados de la investigación fueron notorios en el área de congelado, porque se pudo esquematizar los tiempos del proceso de corte mediante el método de trabajo, todo ello finalizo en el incremento de la productividad del operario y de los componentes utilizado en el proceso en un 2% y 1% en el área de congelados.

Según el estudio realizado por los investigadores Acuña y Briceño ayudara a reforzar la variable, dimensiones e indicadores del presente estudio de investigación, porque han logrado aplicar un método de trabajo eficiente obteniendo resultados positivos, en consecuencia da a conocer la buena gestión de los materiales incorporados al sistema de trabajo.

Po otro lado LIZARRAGA (2017), en su estudio tiene como objetivo la productividad del área de envasados en PEGSA INDUSTRIAL S.A.C, 2017. El estudio se centró bajo pilar las teorías relacionadas al tema del autor Kanawaty, las dimensiones utilizadas en el presente estudio fueron relacionados con la ingeniería de métodos de trabajo y el análisis del tiempo en toda la línea de envasados. Por ello, la presente investigación tuvo como finalidad aplicada, con un nivel descriptivo y aplicativo, teniendo como óptica el sistema de trabajo cuantitativo, el diseño cuasi-experimental. La población estudiada fueron 25 días de trabajo de la línea del décimo mes del año 2017. El sistema utilizado en la recolección de los datos fueron la hoja de registro, ficha de observación, el cumplimiento de confiabilidad y las herramientas de análisis con el SPSS versión 22. Los diversos métodos utilizados en el presente estudio derivaron al incremento de la producción, por ende al aumento de la productividad de la línea de envasados en un 36,13% en la empresa de estudio.

En relación con el estudio realizado por el investigador Lizárraga, las dimensiones utilizadas en su estudio servirán como apoyo para reforzar las variables de estudio a través de los indicadores. Por otro lado, se está utilizando la base

teóricas descritas por diferentes autores que se apoyan en Kanawaty por brindar soluciones y direccionar con metodología de sistema de trabajo y métodos de ingeniería para la resolución de los dilemas que afectan directamente a la productividad.

Según YANAC (2018), el objetivo primordial del estudio de investigación es incrementar la productividad mediante la introducción de un sistema de trabajo en Chevrolet sac, 2018. El presente estudio tiene como diseño cuasi experimental, aplicada porque se basa en estudios científicos y se respalda en base teóricos. La población de estudio fue de 2 meses de producción, por otro lado se tomaron los datos del octavo y noveno mes del año 2018 para analizarlos antes de aplicar el estudio. La muestra fue tomada del proceso por conveniencia, en el estudio la recopilación de los datos históricos del proceso se realizó mediante los sistemas como la hoja de toma de tiempos, la ficha de control, la hoja de la eficiencia, eficacia esta información recopilada en las líneas de proceso fueron analizadas en los sistemas estadísticos como el SPSS V.21. El resultado obtenido fue un incremento en la productividad de 21.96 %.

Los resultados obtenidos en el estudio realizado por el investigador Yanac, dan cuenta del manejo eficiente al aplicar el estudio del trabajo; por ello, se pudo estandarizar los procedimientos y eliminación todas las tareas que no suman ningún efecto al proceso productivo, en conclusión el estudio realizado por Yanac, reforzara las variables de estudio del actual proyecto de investigación.

Asu vez el investigador ASQUI (2018), el fin del estudio es mejorar la productividad del área de aparado de calzado a través de la aplicación del estudio del trabajo, el presente tesis de investigación tuvo como herramientas principales el Pareto, la categorización del origen de los problemas más relevantes de la línea de producción, derivando a una mejor alternativa de mejorar los costos de aplicación. El trabajo de indagación es de tipo aplicada, diseño cuasi experimental con un nivel explicativo. La matriz de Operacionalización de la variable es la herramienta que ayudara a registrar el pre test y el post test. Asimismo se obtuvo el análisis económico el cual resulto, en la relación beneficio costo 1.56, también se obtuvo un VAN S/. 14,663.53 y una TIR de 39%. Finalmente con la

metodología aplicada en el estudio se llegó a mejorar el rendimiento en 47. 91% a un 55.24% con el uso del programa estadístico SPSS, resulto 0.000 en valor de prueba. En conclusión, la incorporación de una nueva metodología de trabajo si mejora la productividad en la línea de proceso de calzado.

En suma, el estudio realizado por el indagador Asqui, ayudara al presente trabajo de investigación en comprender los temas de costos de fabricación, metodologías de ingeniera de proceso, herramientas de calidad como el Pareto , la estratificación de las actividades, todo ello con el fin de elevar la capacidad de producción.

Tambien ELIAS (2017), en su estudio el objetivo es aumentar el índice de productividad laboral. El diseño del estudio fue cuasi experimental, es aplicativo, descriptivo. La población estudiada son los clientes potenciales de la compañía, el estudio de medirá durante 30 días en la línea de acabados, las herramientas usadas para la recolección de los datos fueron los diferentes formatos de control de proceso, DAP, DOP, diagrama bimanual, estudio de tiempos. Todos los datos obtenidos fueron procesados en el software SPSS V. 24. Los resultados obtenidos fueron positivos, los cuales concluyeron rechazando la hipótesis nula, ya que estos resultados son inferiores a 0.05.

El estudio realizado por el indagador Elías, estudia los acabados de productos en 30 días, utilizando las diferentes herramientas de la ingeniería industrial, los cuales serán un aporte para el presente trabajo de investigación, considerando los resultados positivos obtenidos que servirán como sustento a las variables de estudio.

Asi mismo, el investigador ROJAS (2016), el estudio es pre experimental, teniendo como modelo la aplicación, siendo descriptiva y explicativa, la población de estudio es el proceso de hilos de 30 lotes de un periodo de 30 días, estos datos son elegidos por conveniencia. La recopilación de la información fue de manera dinámica utilizado los diferentes sistemas de la ingeniera de métodos. Los resultados obtenidos en el estudio fueron positivo, teniendo una mejoría en la productividad en el área de hilandería pasando de 0,42 a 0,49. Esto es igual al 7% de mejoría en la productividad, por otro lado la eficiencia paso de ser 0,85 a 0,97.

Esto es igual 12% de mejoría de la eficiencia, también se mejoró la eficacia del área de hilandería pasando de 0,49 a 0,50. Esto es igual al 1% de mejoría de la eficacia del área de hilandería.

Tambien JIMENEZ (2018), el presente trabajo tiene como fin subir la productividad en la compañía "Bici motos el Líder E.I.R.L". La población está constituida por 34 modelos de motos ensamblados en el año 2018 y la muestra está constituida por 4 modelos de motos con mayor demanda en el mercado. El problema que presenta el actual estudio es la baja productividad de la línea de ensamble la cual será analizada mediante el estudio del trabajo, con la finalidad de poder lograr utilizar la máxima capacidad el recurso tiempo. El hallazgo derivado del estudio fue positivos en media de que el estudio fuera implementado los sistemas de trabajo, mejorando así la productividad del ensamble en un 43,75%. En relación con el estudio realizado por el indagador Jiménez, los resultados obtenidos en el estudio reforzaran las variables e indicadores del actual proyecto de investigación.

RAMOS (2018), la población está constituida por el servicio de mantenimiento de esmeriles durante un periodo determinado. El sistema de recolección de datos está formada por la observación directa en el proceso, la propuesta para implementación del estudio fue en séptimo mes del año 2018, de esta forma se pudo minimizar los puntos críticos de las actividades que no aportan valor al trabajo realizado. El estudio se analizó mediante el programa SPSS V. 23, con el fin de obtener la información del antes y después de los datos del proceso de forma detallada. El efecto que derivo el estudio fueron nobles, como por ejemplo el índice de esmeriles se incrementó en 31,76%, los tiempos de ciclo del proceso bajaron 15.92 minutos, por otro lado el rendimiento mejoro en 11.67%, la eficiencia logro incrementar de 4.12% en el estudio realizado y la eficacia de 11.8%.

En conclusión, el estudio realizado por el indagador Ramos, tuvo resultados positivos en su estudio de investigación. Por ello, se tomara las bases teóricas del estudio para reforzar la variable independiente, dependiente, dimensiones e indicadores del actual proyecto de investigación.

Por otro lado, el investigador SALVO (2018), el estudio utilizo un sistema deductivo, el tipo de estudio es aplicada, utilizando las teorías existentes como base para el trabajo de tesis. La primera población está formada 56 actividades del proceso de enlatados de espárragos, donde la muestra es 14 actividades del proceso de selección y recepción de los productos enlatados de espárragos. La siguiente población está formada por 24 medidas de tiempos en el área de clasificación y recepción de espárragos, la muestra para esta población fue seleccionada de manera conveniente al proceso. De igual manera en el estudio de tiempos en el proceso se utilizó la herramienta (cronometro), con la finalidad de tomar el tiempo estándar por ciclo en el proceso de clasificación y recepción de productos terminados con la finalidad de calcular la productividad. Los resultados fueron en la reducción de tiempos en el proceso de clasificación y recepción e productos terminados como lo es el brote de espárragos pasando a reducir los minutos a 18.26 minutos, también mejoro el rendimiento en 72 kg/hh, en el proceso de clasificación se pudo aumentar en 14.29%.

En suma, la investigación realizada por el indagado Salvo será usado como base para la realización del actual proyecto de investigación porque reforzaran la variable de estudio. De igual manera podemos decir que los resultados obtenidos en el estudio fueron positivos en el departamento de recepción y clasificación donde se aplicó las herramientas de ingeniera, en conclusión logro mejorar el índice de rendimiento y la productividad de la cosecha del brote de espárragos.

Por otro lado NICHO (2018), el fin del estudio es incrementar la productividad a través de la aplicación de una metodología de trabajo. Tiene como diseño cuasi experimental, aplicada, yaqué se refuerza con las bases teóricas relacionados al tema, la población del estudio fue formada por 30 días de proceso. La muestra del estudio fue tomada por conveniencia con las mismas características de la población. La recolección de los datos fueron tomados con las herramientas de observación, la hoja de tiempos y otra herramientas de la ingeniería industrial, se utilizó Microsoft Excel 2016 y el análisis SPSS versión 22, para detallar los datos recopilado. Los resultados fueron positivos en función al objetivo del estudio, consiguiendo ascender la productividad de 76% a 91%, teniendo así un incremento de 15%, también aumento la eficiencia y la eficacia del área de trabajo

el primero en 8% y el segundo en 15%.

También, el indagador VALDIVIESO. [et al.], (2020), revista de científica cuyo primordial fin es subir la productividad mediante la ingeniera de métodos. La característica de la investigación fue aplicada de diseño pre experimental, teniendo como población de estudio las referencias de los días de la producción real del filete de pescado y la muestra del estudio son los resultados diarios de la productividad del proceso durante 6 meses del año 2020, en el estudio se tomó el muestreo no probabilístico y por conveniencia. Los antecedentes de la investigación fueron recolectados a través de las técnicas de los sistemas del trabajo y los datos de la productividad fueron tomados directamente del proceso para posterío a ello analizarlos mediante el estadístico XLSTAR. Los resultados fueron el incremento de la productividad de 3.6 kg/hh, el aprovechamiento de las materias primas fueron 75.0% y la eficiencia fue de 50,9%.la mejora en el método de trabajo derivo a nuevas ideas como acondicionamiento de fajas de trasporte de productos terminados, acondicionando mesas para el trabajo, con la finalidad de minimizar los movimientos innecesarios, logrado de esta manera tener un tiempo estándar de 29,3%y la productividad subió a 3,9 kg/hh, la productividad del operario incremento a 78,2% y la eficiencia de los insumos usados en el proceso subió en un 61,4%. El estudio realizado por Valdivieso, ayudara a reforzar las variables de estudio en la presente investigación.

Por otro lado, el indagador ESPICHAN. [et al.],(2015), el estudio tiene como fin primordial calcular el medir nivel de efecto que pude tener el método de trabajo propuesto en la tesis. La investigación fue de características aplicada, de carácter explicativa, teniendo como diseño el pre experimento, porque solo se tiene un grupo o proceso de análisis, también según el enfoque es cuantitativo, deductivo. La población estudiada fueron 22 operarios del proceso embolsado de productos, las herramientas que ayudaron a la recolección de los datos para el estudio fue la observación de las actividades realizadas en el proceso de empacado, el estudio de tiempos estándar por ciclo de proceso y balance de línea. Las observaciones recopiladas en el proceso fueron estudiadas en el software IBM SPSS, v.21 y la hoja de cálculo de Excel. En consecuencia al estudio de las observaciones recopilados y estudiados, obtuvieron los siguientes resultados en el proceso de

empacado de productos en un 11,1%; mientras que el estudio de los tiempos proporcionan el 33,9%, por ende, el balance de la línea de producción un efecto 15%. Los resultados nos indican un impacto en la productividad de 29,41%. Concluyendo, todo lo anterior mencionado conlleva a mejorar el rendimiento de la compañía en mención. El estudio realizado por el investigador Espichan, ayudaran a que las variables de estudio tengan bases teóricas para poder sustentarlas, ya que el estudio se asemeja a la realidad del problema de baja productividad.

Asi mismo, el investigador GUARACA (2015), la finalidad primordial de la tesis es subir de forma gradual la productividad en la línea de prensado de minimizado los recursos utilizados, para el buen manejo del capital. Se utilizó el estudio del método de trabajo, la medición de los tiempos, teniendo en cuenta la recuperación de la capacidad del operario y con la finalidad de detectar los índices de operaciones no aprovechadas en el proceso, que no suman valor a la línea de estudio, el tipo de investigación fue aplicada, con un diseño pre experimental, de un enfoque cuantitativo, el resultado del estudio arrojo el incremento de la productividad en 25% de incremento, esta mejora incremento la capacidad, reflejados en las ventas de 2500 juegos/mes.

De igual forma, el indagador MASAQUIZA, [et al.], (2017), en su estudio tiene como fin mejorar el rendimiento, productividad y la efciencia, donde ase referencia al buen manejo de los recurso en la linea de producción en el sector agrario, el presente articulo de investigación predomina la inducción de los sistemas y subsistemas de las base agropecuarias en relación con el rendimiento la eficiencia y la productividad.

En relación con el articulo realizado por el investigador Masaquiza, dan claro ejemplo de la cresiente tendencia de la busqueda del indicador de la productividad en los diferentes sectores de producion, por ello el estudio realizado por Maquiza servira como apoyo de la variable de estido en el presente trabajo de investigación.

Ademas, COLMENARES Y VILLEGAS (2018), el fin del presente estudio es subir el índice de productividad mediante la aplicación de las herramientas lean bajo el

diseño pre experimental, de tipo aplicada, la muestra de la investigación son los sesgos producidos diariamente en la línea de acabados, los instrumentos utilizados en el estudio fueron la observación directa del proceso, mapeo de proceso, medición de proceso, entre otras herramientas de la ingeniera. Los resultados obtenidos fueron satisfactorio porque se logró subir la productividad a más del 50%, trabajando con las principales causa que aquejaban la baja productividad en la línea de corte de sesgos, también se logró estandarizadas los procesos de corte. Finalmente, se presentó a la organización una propuesta de mejora con soporte de validación estadística que garantiza la reducción de re procesos, así mismo la reducción de desperdicios, adquisición de una cultura de medición, redistribución de planta para minimizar viajes, reducción de tiempos de búsqueda, que son las ventajas de trabajar bajo la metodología Lean Six Sigma. Gracias al compromiso del director general, el equipo de colaboración y los consultores externos, el proyecto se completó con éxito.

De la misma manera el investigador AGUIRRE Y LEAL (2015), el trabajo de investigación tiene como fin insertar las bases teóricas de la medición del desperdicio de tiempo en la zona de producción, el estudio es Pre experimental de enfoque cuantitativo y tipo aplicada, las herramientas usadas en el proceso de recopilación de los datos fueron la medición del despilfarros y el diagnostico d la productividad entre otras herramientas de la ingeniería industrial, los resultados obtenidos fueron positivos, yaqué se cuantifico y se estandarizo las líneas. De acuerdo los investigadores Gutiérrez y Leal, el diagnóstico de la de la productividad es muy importante dentro de la investigación, por ello se tomara referencias que respalden las teorías del actual proyecto de investigación.

ALDES, (2020), en este proyecto se aplicó toda la técnica derivado del método de trabajo con la finalidad de mejorar los tiempos estándar, capacidad de producción en la línea de envasado de agua ardiente en la industria licorera de Cauca. Por ende se hizo un estudio de tipo descriptivo, con un enfoque metodológico cuantitativo, donde se aplicó el estudio de métodos y el estudio del tiempo eficazmente para lograr resultados positivos en la productividad de la línea de envasados.

Para reforzar los antecedentes del presente estudio de investigación se describió las teorías relacionados al tema.

1 Estudio del trabajo.

1.1 Definición.

El estudio del trabajo es la forma de optimizar estratégicamente los insumos usados en el proceso de tal forma que se pueda utilizar la máxima capacidad de las maquinas, materia prima, el área de proceso, también el estudio del trabajo ayuda a simplificar, minimizar las operaciones del proceso que no suman ni restan valor agregado al proceso tal forma que los procesos se vuelvan más dinámicos y flexible en el plan de producción (ACUÑA, y otros, 2018).

1.1.2 Pasos para implementar el estudio de trabajo.

1.1.2.1 Seleccionar.

La implementación del estudio de trabajo, conlleva a seleccionar el área donde se tiene las incidencias o problemas específicos con la finalidad de organizar los procesos las causas las cuales deberán ser analizadas con rigor (ACUÑA, y otros, 2018). De acuerdo con Acuña y Briceño la selección de los problemas es un punto esencial para la implementación del estudio del trabajo, por ende seleccionaremos las distintas actividades del proceso fileteo de pollo donde se evidencio la baja productividad.

1.1.2.2 Registrar.

Registrar todos los datos de los procesos o actividades realizadas de manera cronológica utilizando las distintas herramientas de la ingeniera de métodos, con la finalidad de recopilar los diversos dilemas que están afectando la baja productividad (KANAWATY, 1996 pág. 21). De acuerdo con el investigador Kanawaty, registrar los datos de los procesos es fundamental para mejorar el sistema de trabajo.

1.1.2.3 Examinar.

El proceso de fabricación de SKUS tiene diversos sistemas y sub sistemas que se tienen que examinar de tal manera que no se pierda la lógica de las actividades que se está realizado; las secuencias de producción o cambios de módulos; control de los recursos empleados en el proceso, entre otras actividades que se tienen que examinar con carácter crítico (KANAWATY, 1996 pág. 21). De acuerdo con el investigador Kanawaty, examinar los puntos críticos de las líneas de proceso es fundamental para poder implementar un estudio de trabajo de manera eficaz.

1.1.2.4 Establecer.

Establecer los métodos y herramientas que se va a usar en el estudio del trabajo, teniendo en cuenta, que debe ser el más económico, también se tiene que formar al grupo de trabajo, cuyas ideas deben tomarse en cuenta en el momento de la toma de decisiones (KANAWATY, 1996 pág. 21). De acuerdo con el investigador Kanawaty, puntualizar las herramientas y el grupo de apoyo es esencial para obtener resultados positivos en el estudio.

1.1.2.5 Evaluar.

Mediante la mejora continua de los procesos se va a tener resultados que se tienen que evaluar mediante indicadores de gestión, con la finalidad de fijar un tiempo estándar de los procesos.

1.1.2.6 Definir.

Los nuevos métodos de trabajo son definidos y mostrados mediante indicadores de control de proceso a los miembros de trabajo, con la finalidad de definir los métodos principales que ayudaran a que se cumpla con el objetivo propuesto (KANAWATY, 1996 pág. 21). En concordancia con lo mencionado por Kanawaty, los nuevos métodos utilizados en el proceso tienen que ser definidos y mostrados al grupo de trabajo de manera clara y concisa

1.1.2.7 Implementar.

Después de haber seguido los pasos mencionados anteriormente se tiene que implementar el nuevo método de trabajo, capacitando a las personas de las líneas de proceso, con la finalidad que se conozca el nuevo sistema de trabajo y parámetros de tiempos fijados.

1.1.2.8 Controlar.

La aplicación del estudio de trabajo en las líneas de operaciones debe ser controlada mediante un sistema de control permanente realizado por el equipo de trabajo, con la finalidad de no volver a utilizar el método anterior (KANAWATY, 1996 pág. 21). De acuerdo con lo expresado por Kanawaty, el control de los resultados obtenidos debe ser controlado y estandarizado, mediante indicadores de control de proceso donde se muestre los resultados obtenidos con el nuevo método de trabajo.

1.2 Dimensiones.

1.2.1 Estudio de métodos.

Es coordinar de manera ordenada los recursos, materiales, teniendo como premisa que todo proceso tiende a mejorar (GARCÍA, 2005 pág. 33), por ende se puede ejecutar un análisis afín de determinar qué alternativas de mejoras se pueden aplicar en el proceso través del estudio de métodos.

1.2.1.1 Actividades que no agregan valor.

Son todas las operaciones realizadas en el proceso que suman un costo, pero no suman un valor agregado al producto realizado en las líneas de proceso. (GUTIÉRREZ, 2010 pág. 96). De acuerdo con el investigador Gutiérrez, las actividades que no agregan valor son los movimientos innecesarios que se realizan en los procesos, generando sobre tiempos, tiempos muertos, paradas no programadas entre otras actividades que no suman ningún valor al proceso.

Contenido básico del trabajo Contenido Básico del producto o la operación. (lo del trabajo absolutamente necesario) Contenido de trabajo adicional a causa de un mal diseño del A producto o de una mala utilización de los materiales Tiempo total de Operación en las Condiciones iniciales Contenido Suplementario Contenido de trabajo adicional de trabajo Tiempo total a causa de métodos de В improductivo manufactura u operativos ineficientes Tiempo Tiempo improductivo el cual se sin valor imputa a los recursos humanos agregado

Figura 11: Tiempo total del trabajo.

Fuente: Salazar, estudio del trabajo, 2019.

1.2.1.2 Actividades que agregan valor.

Actividades realizadas mediante un plan de producción, estas actividades son esenciales para el cumplimiento del programa, cuyos procedimientos están orientados hacia la mejora continua (GUTIÉRREZ, 2010 pág. 102).

1.2.1.3 Herramientas para el estudio de métodos.

1.2.1.3.1 Diagrama de Operaciones de Proceso (DOP).

Es el punto de introducción del plan de trabajo en forma gráfica de los materiales e inspecciones, también se incluyen información valiosa para el análisis del diagrama como por ejemplo: el tiempo de cada operación (SALAZAR, 2019).

Figura 12: Simbología del diagrama de operaciones (DOP).

ACTIVIDAD	SÍMBOLO	DESCRIPCIÓN
Operación	0	Indican las principales actividades del proceso, métodos o procesos.
Inspección		Indica la inspección de calidad y/o la verificación de cantidad.
Actividad combinada		Indica que varias actividades se estan ejecutando al mismo tiempo.

Fuente: Kanawaty (Introducción al estudio del trabajo, 1996).

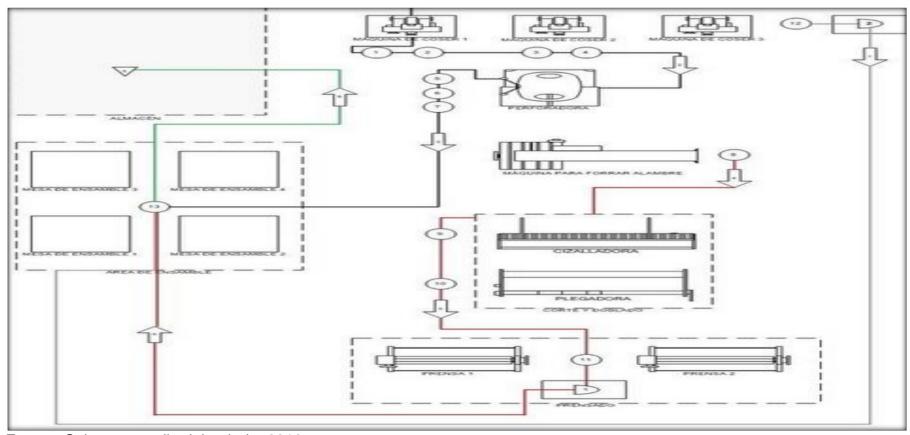
1.2.1.3.2 Diagrama Actividades de Proceso (DAP).

Es un apunte cronológico de operaciones que se ejecutan mediante procedimientos y estándares manera gráfica, donde se incluyen las inspecciones, las demoras, almacenamientos y traslados de los productos en las líneas de proceso (TUDELA, 2018 pág. 39).

Figura 13: Simbología del diagrama de actividades (DAP).

Actividad	Símbolo	Resultado predominante			
Operación	0	Se produce o efectúa algo.			
Transporte	\Rightarrow	Se cambia de lugar o se mueve.			
Inspección		Se verifica calidad o cantidad.			
Demora		Se interfiere o retrasa el paso siguiente			
Almacenaje		Se guarda o protege.			

Fuente: (SOLOINDUSTRIALES, 2017).


1.2.3.1.3.3 Diagrama de flujo.

Es una representación gráfica del proceso en general, donde se incluyen los desplazamientos, demoras, operaciones, inspecciones y almacenamiento, también se incorpora a la información los tiempos obtenidos en cada actividad (GARCÍA, 2005 pág. 60). De acuerdo con García, el diagrama de flujo es una herramienta poderosa que ayudara a la investigación en la recolección y análisis de las líneas de proceso.

1.2.3.1.3.4 Diagrama de recorrido.

Es el complemento del diagrama de proceso, consiste en graficar el recorrido del producto, permitiendo observar el comportamiento del producto tales como el transporte, cuellos de botellas y los tiempos que duran cada una de las actividades mostradas, esto con el fin de consolidar los procedimientos para convertirlos en sistemas flexibles y dinámicos con tendencia a la mejora continua (SALAZAR, 2019). De acuerdo con lo mencionado por el investigador Salazar, el diagrama de recorrido ayudará a la presente investigación en mitigar los desperdicios de tiempos improductivos y despilfarros de los recursos, actual problema que aqueja a la línea de filete de pollo.

Figura 14: Diagrama de recorrido.

Fuente: Salazar, estudio del trabajo, 2019.

1.2.1.3.5 Diagrama bimanual.

Es una herramienta eficaz que guarda relación con el movimiento de las manos (derecha e izquierda), indicando la sincronización entre ambas manos, por ende este tipo de diagramas es usado para operaciones cortas (SALAZAR, 2019).

Figura 15: Símbolos del diagrama bimanual.

ACTIVIDAD	SÍMBOLO	DESCRIPCIÓN			
Operación	\bigcirc	Se emplea para los actos de asir,sujetar,utilizar soltar una herramienta pieza o material.			
Traslado	ightharpoons	Se emplea para reprsentar el moviminto de las manos, herramientas o material.			
Demora		Se emplea para indicar paradas de las manos .			
Almacenaje		Se emplea para indicar el acto de sostener el material o piezas en la actividad asignada.			

Fuente: Salazar, estudio de métodos, 2019.

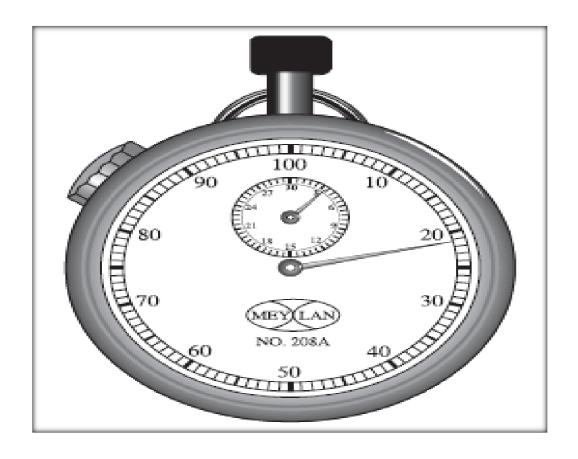
1.2.1.3.6 Diagrama Hombre - Máquina.

El diagrama hombre – máquina muestra de manera detallada las actividades que el operario y la maquina realiza durante la elaboración de los productos mostrando los tiempos ociosos del operario y de la máquina, por lo general se tiene que comparar el costo del operario ocioso con el costo de la maquina ocioso, teniendo la perspectiva de la mejora continua de los procesos (NIEBEL, y otros, 2009 pág. 32).

1.2.2 Medición del trabajo.

Es la adaptación de diferentes métodos para establecer el tiempo que emplea un operario capacitado para realizar una tarea específica según un manual de proceso (KANAWATY, 1996 pág. 251).

1.2.2.1 Métodos de cronometraje.


1.2.2.1.1 Métodos de cronometraje regreso a cero.

Este método consiste en tomar el tiempo después de cada actividad ejecutada, regresando el cronometro a cero para una nueva toma de tiempo del proceso siguiente o de otro operario (NIEBEL, y otros, 2009 pág. 337).

1.2.2.1.2 Métodos de cronometraje continuo.

Este método de cronometraje consiste en dejar avanzar el cronometro hasta el fin de la actividad analizada, además este método brinda un detalle completo de la operación realizada. Por otro lado, permite ver que no se dejaron de tomar el tiempo es el estudio (NIEBEL, y otros, 2009 pág. 337).

Figura 16 : Cronometro de estudio de tiempos.

Fuente: Niebel y Freivalds, Metodos, estandares y diceño de trabajo, 2009.

Con la finalidad que la toma de datos con el cronometro sea confiabre al 95.45 % y error de 5% puede calcularse con la siguiente formula.

Figura 17: Formula del número de ciclos.

$$n = \left(\frac{40\sqrt{n' \sum x^2 - (\sum x)^2}}{\sum x}\right)^2$$

Fuente: Tudela, 2018.

Donde:

ld	Descripción
N	Número de ciclos que deben cronometrarse.
n'	estudio.
X	Valor de las observaciones preliminares.
Σ	Sumatoria de valores.
40	Nivel de confianza de 94.45%.

1.2.2.2 Estudio de tiempos.

El estudio de tiempo utiliza los registros de las operaciones, con la finalidad de medir el ritmo de trabajo que se está realizado y estimar tiempos para cada sistema de producción (MEYERS, y otros, 2006 pág. 52). De acuerdo con lo expuesto por Meyers, el estudio de tiempo determinara los horarios de cada operación ejecutada en el proceso de fabricación de los SKU´S, información valiosa que ayudara al supervisor, operario y al encargado del proceso a direccionar correctamente el curso de la producción para el cumplimiento del plan de trabajo.

1.2.2.2.1 Tiempo promedio.

El tiempo promedio de una actividad o ejecución de un producto es la suma global de todos los tiempos tomados entre el número de actividades realizadas (SALAZAR, 2019). De acuerdo con Salazar el tiempo promedio se calcula tan solo con la suma de los tiempos tomados en cada estación entre el número total de ellas.

Figura 18: Cálculo del número del tiempo promedio.

$$Te = \frac{\sum Xi}{LC}$$

Fuente: Salazar, cálculo del tiempo promedio, 2019.

Donde:

ld	Descripción		
Те	Tiempo promedio.		
Σχί	Suma de tiempo tomados.		
LC	Número total del tiempos tomados.		

1.2.2.2.2 Tiempo Normal.

Es el tiempo que se requiere en el proceso para desarrollar una actividad de manera que el operario no se apresure en terminar la tarea, pero tampoco se demore demasiado en hacerlo (SALAZAR, 2019), por ello es importante que se establezca el tiempo normal del proceso.

Figura 19: Formula del tiempo normal.

$$Tn = Te \times rac{Valor\ Atribuido}{Valor\ Estándar}$$

Fuente: Salazar, cálculo de tiempo estandar, 2019.

Donde:

ld	Descripción
Те	Tiempo promedio.
VA	Factor de ritmo de trabajo Atribuido.
VE	Factor de ritmo de trabajo Equivalente

1.2.2.1.6 Tiempo Estándar.

Es el tiempo requerido para producir un uno o más artículos en una línea de proceso, para poder implementar este estudio de tiempo es importante que se tome el tiempo a un operario bien capacitado y calificado en la tarea propuesta. Una excelente práctica para el estudio del tiempo estándar es darle dos semanas en el trabajo al operario para que se adapte antes de iniciar el estudio de tiempo (MEYERS, y otros, 2006 pág. 51).

En relación por lo mencionado por Meyers, (NIEBEL, y otros, 2009 pág. 345), dice que el "tiempo estándar es el índice de practica que tiene el operario en realizar un producto determinado, cuando no trabaja de manera apresurada ni despacio, teniendo en cuenta las especificaciones técnicas de producto".

Para poder calcular el tiempo estándar de un proceso o producto (NIEBEL, y otros, 2009 pág. 345) presenta las siguientes pautas:

Primero, se hace la sumatoria de todas las actividades estudiadas, y se anota la cantidad de actividades realizadas.

Segundo, se hace el cálculo del tiempo promedio por cada etapa del proceso analizado, esto es la división de las cantidades de operaciones realizadas entre la cantidad total de operaciones realizadas.

Se calcula los tiempos normales de cada actividad, teniendo en cuenta la valorización atribuidas a las actividades, luego se hará el cálculo del tiempo determinado por cada actividad la cual es la multiplicación de tiempo normal por el porcentaje de suplemento atribuido a las actividades realizadas.

Figura 20: Formula del tiempo estándar.

$$TS = TN X (1 + SUPLEMENTO)$$

Fuente: Niebel y Freivalds, Metodos, estandares y diceño de trabajo, 2009.

1.2.2.2.3 Suplementos.

Los suplementos son tiempos adicionales que se agregan al proceso, con la

finalidad que los tiempos sean alcanzables para la ejecución de operación (NIEBEL, y otros, 2009 pág. 366). Además se tiene que tener en cuenta que el trabajo es una labor que genera cansancio al cuerpo, es por ello, que toda persona que realiza un trabajo en distintas condiciones requieren un espacio de tiempo para reponerse y complacer las necesidades personales, todas estas actividades prolonga un tiempo adicional al trabajo realizado.

Figura 21: Sistemas de suplementos para el trabajo.

INGENIERÍA INDUSTRIAL ONLINE.COM			SISTEMA DE SUPLEMENTOS POR DESCANSO		
SUPLEMENTOS CONSTANTES	HOMBRE		SUPLEMENTOS VARIABLES	HOMBRE	MUJER
Necesidades personales	5	7	e) Condiciones atmosféricas		
Básico por fatiga	4	4	Índice de enfriamiento, termómetro		
SUPLEMENTOS VARIABLES	HOMBRE	MUJER	de KATA (milicalorías/cm2/segundo)		
a) Trabajo de pie			16	0	
Trabajo se realiza sentado(a)	0	0	14	0	
Trabajo se realiza de pie	2	4	12	0	
b) Postura normal			10	3	
Ligeramete incómoda	0	1	8	10	
Incómoda (inclinación del cuerpo)	2	3	6	21	
Muy incómoda (Cuerpo estirado)	7	7	5	31	
			4	45	
c) Uso de la fuerza o energía muscular			3	64	
(levantar, tirar o empujar)			2	100	
			f) Tensión visual		
Peso levantado por kilogramo			Trabajos de cierta precisión	0	0
2,5	0	1	Trabajos de precisión o fatigosos	2	2
5	1 2 Trabajos de gran precisión		5	5	
7,5	2	3	g) Ruido		
10	3	4	Sonido continuo	0	0
12,5	4	6	Sonidos intermitentes y fuertes	2	2
15	5	8	Sonidos intermitentes y muy fuertes	5	5
17,5	7	10	Sonidos estridentes	7	7
20	9	13	h) Tensión mental		
22,5	11	16	Proceso algo complejo	1	1
25	13	20 (máx)	Proceso complejo o de atención	4	4
30	17		dividida	-	-
33,5	22		Proceso muy complejo	8	8
d) Iluminación			i) Monotonía mental		
Ligeramente por debajo de la potencia		_	Toolbaile (1)	0	0
calculada	0	0	Trabajo monótono	1	1
Donton to a second	_	_	Trabajo bastante monótono	1	1
Bastante por debajo	2	2	Trabajo muy monótono	4	4
Absolutamente insuficiente	5	5	j) Monotonía física	_	_
			Trabajo algo aburrido	0	0
			Trabajo aburrido	2	2
			Trabajo muy aburrido	5	5

Fuente: Salazar, suplementos del estudio del trabajo, 2019.

2 Productividad.

2.1 Definición.

La productividad es el vínculo que tiene productos obtenidos en las diferentes líneas de producción y la utilización correcta de los recursos empleados en los procesos (GUTIÉRREZ, 2010 pág. 21). En relación con lo mencionado por el investigador Gutiérrez, la productividad tiene como premisa saber utilizar los recursos para obtener la mayor producción con el mínimo recurso empleado.

También se puede decir que la productividad es el volumen de la producción en relación de lo eficaz que se han aprovechado los insumos como: materia prima, energía, mano de obra, tiempo, dinero, etcétera (BAIN, 2005 pág. 3). En consecuencia la productividad es la mezcla y aprovechamiento de todos los insumos usados en el proceso para cumplir el plan de producción.

Figura 22: formula de la productividad.

$$Productividad = \frac{Producción}{Insumos} = \frac{Resultados logrados}{Recursos empleados}$$

Fuente: Bain, productividad: solución a los problemas de la empresa, 2005.

2.3 Tipos de productividad.

La productividad se puede organizar en productividad laboral, productividad total, productividad marginal, según el enfoque que se requiere indicar (ROJAS, 2016 pág. 38).

También la Enciclopedia Económica, (2018), define lo siguiente sobre los tipos de productividad:

2.3.1 Productividad Laboral.

Es cuando se vincula la producción obtenida de las líneas de proceso con la proporción de labores empleados en el proceso.

2.3.2 Productividad Total.

Es cuando vinculas todos los recursos empleados en el sistema productivo tales

como el trabajo, el tiempo, mano de obra entres otros recursos.

2.3.3 Productividad Marginal.

Es aquella productividad que mide a los productos adicionales que ingresan al

proceso para ser transformados en uno de los factores que interviene en la

producción.

2.4 Dimensiones.

2.4.1 Gestión de tiempos.

La gestión del tiempo es el recurso más valioso al momento de calcular la

productividad, pero también es el indicador que demuestra la eficiencia del trabajo

realizado durante un periodo parcial o total del día (El blog de retos para ser

directivo, 2016). De acuerdo con el Blog de retos para ser directivos, el recurso

tiempo es el más valioso en el momento de evaluar la productividad, por ende en

el actual trabajo de investigación está enfocado en minimizar los tiempos

improductivos que deriva la baja productividad de la línea de filete de pollo.

2.4.1.1 Rendimiento de tiempos.

El rendimiento de tiempo es el cálculo del tiempo proyectado / ciclo de trabajo

entre el tiempo ejecutado / ciclo de trabajo, todo restado uno por el cien por

ciento.

Figura 23: Formula del rendimiento de tiempo.

REND.T = ((T.PROY/CICLO)/

(T.EJEC/CICLO) -1) X 100%

Fuente: Elaboración propia, 2020.

41

2.4.1.2 Tiempo proyectado.

Es el tiempo que se le asigna al proceso, teniendo en cuenta los diversos

factores que interviene en la producción como tiempos de esperas, arranque de

líneas, materia prima en oportunidad, stock de seguridad, proceso manual o

proceso automatizado, en consecuencia se tendría el tiempo proyectado del

proceso.

2.4.1.2 Tiempo ejecutado.

Es el tiempo real que se ejecutó las tareas en el proceso mediante el plan de

trabajo, en consecuencia es el tiempo que se da a conocer como se están

haciendo uso de los recursos en las líneas de proceso.

2.4.2 Gestión de proceso.

Es la cantidad máxima que se utiliza la capacidad del proceso y medida absoluta

obtenida por la organización en un lapso de tiempo determinado, la cual brinda

una perspectiva al cumplimiento del plan de proceso (RODRIGUEZ, 2020). De

acuerdo con Rodríguez, la capacidad de procesos es de suma importancia, ya

que es el indicador que muestra cómo se está comportando la producción en un

horizonte de tiempo.

2.4.2.1 Toneladas de producción.

Las toneladas de producción es el cálculo de la tonelada de producción ejecutada

/ la tonelada de filete proyectado todo ello por el cien por ciento.

Figura 24: Formula las toneladas de producción.

Tn.PROD = (Tn.EIEC)/

(Tn.PROY) X100%

Fuente: Elaboración propia, 2020.

2.4.2.2 Tonelada ejecutada.

Es la cantidad de toneladas de producto obtenido en un lapso de tiempo, donde

42

se utilizó los diferentes recursos como: tiempo, mano de obra, materia prima, energía, etcétera (RODRIGUEZ, 2020). Asimismo podemos decir que el volumen ejecutado de producción es el cumplimiento del plan de trabajo.

2.4.2.3 Tonelada proyectada.

Es la cantidad de toneladas, que se deriva al proceso como parte del plan de trabajo en las líneas de proceso, brinda una perspectiva del programa proyectado en un tiempo determinado (RODRIGUEZ, 2020). En consecuencia el volumen proyecto es el plan de trabajo, punto inicial para empezar a producir los pedidos a los clientes.

En conclusión este capítulo contiene: los antecedentes referidos al tema de estudio. Los análisis históricos y evaluación de la problemática, soluciones propuestas ejecutadas por otras investigaciones, principales bases teóricas relacionadas a las variables de estudio.

3.1 Tipo y diseño de la investigación

3.1.1 Tipo de investigación

El actual proyecto de investigación es de tipo aplicada, porque necesita de hallazgos y bases teóricas para resolver las necesidades y dilemas que presenta el actual proyecto de investigación (GONZALES, [et al.], 2015 pág. 96). De acuerdo con lo mencionado por los investigadores Gonzales [et al.], el actual proyecto de investigación, utilizamos hallazgos y bases teóricas de estudios relacionados al tema para resolver los problemas que están aquejando a la línea de filete de pollo.

También, podemos decir que el tipo de investigación está dirigido a la meta fijada del proyecto investigado, estableciendo procedimientos, métodos, instrumentos, técnicas y los procedimientos del proyecto de investigación (TACILLO, 2016 pág. 88).

Por otro lado, la investigación aplicada se encuentra relacionada a la investigación básica, porque el estudio necesita de los aportes teóricos y descubrimiento para poder solucionar los dilemas que se están presentando en el estudio de investigación (VALDERRAMA, 2013 pág. 164).

Además, el nivel del estudio investigación es explicativa porque se conoce las causas del problema, teniendo como referencia el vínculo de causa y efecto con el problema de la investigación. (TACILLO, 2016 pág. 91). En relación por lo mencionado por el investigador Tacillo, el nivel explicativo del estudio pretende explicar las causas y como se muestran en la investigación, es decir que se utiliza la variable independiente para tener el efecto en la variable dependiente y medir el efecto del problema de investigación (VALDERRAMA, 2013 pág. 168).

Así mismo, la perspectiva que muestra el presente estudio de investigación es de carácter cuantitativo, ya que los datos utilizados toman una postura de medición y análisis de las variables, las cuales son analizadas mediante el enfoque estadístico (VALDERRAMA, 2013 pág. 106). De acuerdo con lo mencionado por Valderrama, el presente estudio de investigación tomara datos numéricos con la finalidad de calcular la variable independiente y dependiente, a través de este

cálculo se obtendrá resultados que ayuden a mejorar el problema de baja

productividad de los filetes de pollo en la compañía.

3.1.2 Diseño de investigación

Es la actividad que existe sobre la variable independiente implantado por acción

del indagador para derivar el efecto sobre la variable dependiente, todo ese

proceso debe hacerse de manera ordenada y controlada (TACILLO, 2016 pág.

82).

En suma, en el presente proyecto de investigación, se tiene como fin aplicar las

herramientas del estudio del trabajo para mejorar la productividad del filete de

pollo de la empresa San Fernando S.A, por ende el diseño de la investigación

será experimental porque se aplicara todas las herramientas derivados del estudio

del trabajo para lograr un cambio en la variable productividad.

Así mismo, los modelos de investigación experimentales se dividen en tres

formas, pero en el actual proyecto de investigación se apoyara en un diseño pre-

experimental porque solo se tiene un solo grupo de estudio, por ende se tomara

los datos del pre y post prueba para posterior a ello analizarlo (TACILLO, 2016

pág. 82).

3.2 Variables y Operacionalización

3.2.1 Variable Independiente: Estudio del Trabajo

3.2.1.1 Definición Conceptual

El estudio del trabajo es una herramienta básica que busca la forma de optimizar

los recursos en los procesos productivos utilizando el sistema de métodos para

mejorar la máxima capacidad de los recursos tales como: maquinas, materia

prima, el área de proceso, también el estudio del trabajo ayuda a simplificar todas

aquellas operaciones que no suman valor al sistema de trabajo de tal forma que

los procesos se vuelvan más dinámicos y flexible en el plan de producción

(ACUÑA y BRICEÑO, 2018).

46

3.2.1.2 Definición Operacional

El estudio del trabajo es medido a través de las dimensiones como son el estudio de métodos y la medición del trabajo, la primera dimensión tiene como indicador el índice de actividades, cuya fórmula es el número total de actividades menos las operaciones que no suman valor al sistema de trabajo dividido entre el número total de las actividades, por otro lado la segunda dimensión tiene como indicador el tiempo estándar para realizar una operación, cuya fórmula es el tiempo normal que tarda una operación en realizarse multiplicado por uno más el suplemento por descanso, estas herramientas ayudara que el proceso en reducir los tiempos muertos el control permanente de los recursos utilizados (COLÁN, 2020).

3.2.1.3 Estudio de métodos.

Es coordinar de manera ordenada los recursos, materiales, teniendo como premisa que todo proceso tiende a mejorar (GARCÍA, 2005 pág. 33), por ende se puede ejecutar un análisis afín de determinar qué alternativas de mejoras se pueden aplicar en el proceso a través del estudio de métodos. También se puede decir que el estudio de métodos es un procedimiento principal para reducir la carga de trabajo, primordialmente se enfoca en mitigar o eliminar los movimientos ociosos de las materias primas o de los colaboradores de línea (KANAWATY, 1996 pág. 252). De acuerdo con lo mencionados por los investigadores el estudio de métodos ayudara a la presente investigación en detectar los movimientos innecesarios dentro del sistema de la línea de filete de pollo.

Formula del índice de actividades en el proceso.

$$IA = \frac{TOTAL\ ACT - ACT\ NO\ AV}{TOTAL\ ACTIVIDADES} X\ 100\%$$

Donde:

IA = Índice de actividades.
 TOTAL ACT= Total activideades.
 ACT NO AV = Actividades que no agregan valor.

3.2.1.4 Medición del trabajo.

Es la adaptación de diferentes métodos para establecer el tiempo que emplea un operario capacitado para realizar una tarea específica según un manual de proceso (KANAWATY, 1996 pág. 251). La medición del trabajo tiene como finalidad dar a conocer el tiempo determinado para la ejecución de las actividades específicas dentro de las líneas de proceso, también es la herramienta que sirve como punto clave para la detección de tiempos improductivos que se encuentran sumergidos en el tiempo total del proceso.

Formula del tiempo estándar.

$$TS = TNX(1+S)$$

Donde:

TS = Tiempo Estándar.

TN = Tiempo normal.

S = Suplemento por descanso.

3.2.2 Variable Dependiente: Productividad.

3.2.2.1 Definición Conceptual

La productividad es el vínculo que tiene productos obtenidos en las diferentes líneas de producción y la utilización correcta de los recursos empleados en los procesos (GUTIÉRREZ, 2010 pág. 21). También se puede decir que la productividad es el volumen de la producción en relación de lo eficaz que se han aprovechado los insumos como: materia prima, energía, mano de obra, tiempo, dinero, etcétera (BAIN, 2005 pág. 3). En relación con lo mencionado por los autores Gutiérrez y Bain, la productividad tiende bajar o subir su rendimiento de los insumos utilizados en el sistema.

3.2.2.2 Definición Operacional

Productividad es medida mediante las dimensiones de gestión de tiempos y gestión de proceso, la primera dimensión tiene como indicador el rendimiento del tiempo, cuya fórmula es el tiempo proyectado por ciclo de producción entre el tiempo ejecutado por ciclo de producción todo ello restado uno por el cien por ciento, teniendo como resultado el rendimiento tiempo de producción de un producto o proceso. Por otro lado la segunda dimensión tiene como indicador las toneladas de producción, cuya fórmula es las toneladas ejecutadas en el proceso entre las toneladas proyectadas por el cien por ciento. COLAN, 2020).

3.2.2.3 Gestión de tiempos

Es el recurso más valioso al momento de calcular la productividad, porque este indicador demuestra la eficiencia del trabajo realizado durante un tiempo determinado del día (El blog de retos para ser directivo, 2016). La gestión de tiempo ayudara a la presente investigación a mitigar los despilfarros de sobretiempo que actualmente se presenta en el área de estudio.

Formula del rendimiento de tiempo.

REND.T=((**T**.*PROY*/**CICLO**)/(**T**.*EJEC*/**CICLO**) -1) *X* 100%

Donde:

REND.T = Rendimiento del tiempo.

T. EJEC = Tiempo Ejecutado por ciclo.

T.PROY = Tiempo Proyectado por ciclo.

3.2.2.4 Gestión de proceso.

Es el enfoque total de la mejora del proceso en las cantidad máxima que se obtiene de productos terminados al final del proceso, uso correcto de los materiales, teniendo en cuenta la mejora escalonada del proceso o línea de producción (KANAWATY, 1996 pág. 222), en relación por lo expresado por Kanawaty, (RODRIGUEZ, 2020), comenta que la gestión de proceso es una

medida absoluta obtenida por la organización en un lapso de tiempo determinado, la cual brinda una perspectiva al cumplimiento del plan de proceso. Por ende la gestión de proceso se medirá en función de la capacidad de proceso y las mejoras continuas de las diferentes líneas productivas.

Formula de la tonelada de producción.

$$Tn.PROD=(Tn.EJEC)/(Tn.PROY) X100\%$$

Donde:

Tn .PROD = Toneladas de producción.

Tn. EJEC = Tonelada Ejecutada.

Tn .PROY = Tonelada Proyectada.

Tabla 5: Matriz de Operacionalización.

MATRIZ DE OPERACIONALIZACIÓN

Aplicación del estudio del trabajo para mejorar la productividad del filete de pollo de la empresa San Fernando, Huaral 2021.

Variables	Definición Conseptual	Definición Operacional	Dimenciones	Indicadores	Formula	Escala de medición
Variable	El estudio del trabajo es una herramienta básica que busca la forma de optimizar los recursos en los procesos productivos	El estudio del trabajo se mide a través de las dimensiones estudio de métodos y la medición del trabajo, la primera dimensión tiene como indicador el índice de actividades, cuya fórmula es el número total de actividades menos las actividades	Estudio de métodos	Índice de actividades	IA = (TOTAL ACT-ACT NO AV) / (TOTAL ACTIVIDADES) X 100% IA = Índice de actividades. TOTAL ACT= Total activideades. ACT NO AV = Actividades que no agregan valor.	Razón
independiente:	utilizando el sistema de métodos para mejorar la máxima capacidad de los recurso tales como: maquinas, materia prima, el área de proceso, también el estudio del trabajo ayuda a simplificar las actividades que no	que no agregan valor al proceso dividido entre el número total de las actividades, por otro lado la segunda dimensión tiene como indicador el tiempo estándar para realizar una operación, cuya fórmula es el			TS = TNX(1+S)	
Estudio del trabajo.	agregan valor al proceso de tal forma que los procesos se vuelvan más dinámicos y flexible en el plan de producción (ACUÑA, y BRICEÑO, 2018).	tiempo normal que tarda una operación en realizarse multiplicado por uno más el suplemento por descanso, estas herramientas ayudara que el proceso en reducir los tiempos muertos el control permanente de los recursos utilizados (COLÁN, 2020).	Medición del trabajo	Tiempo Estándar	TS = Tiempo Estándar. TN = Tiempo normal. S = Suplemento por descanso.	Intervalo
Variable dependiente:	La productividad es el vínculo que tiene productos obtenidos en las diferentes líneas de producción y la utilización correcta de los recursos empleados en los procesos	proyectado por ciclo de producción entre el tiempo ejecutado por ciclo de	Gestión de tiempos	Rendimiento del tiempo	REND.T=((T.PROY/CICLO))/ (T.EJEC/CICLO) -1) X 100% REND.T = Rendimiento del tiempo. T. EJEC = Tiempo Ejecutado por ciclo. T.PROY = Tiempo Proyectado por ciclo.	Razón
Productividad.	(GUTIÉRREZ, 2010 pág. 21). También se puede decir que la productividad es una medida de lo eficaz que se han utilizado los recursos como: materia prima, energía, mano de obra, tiempo, dinero, etcétera (BAIN, 2005 pág. 3).	producción todo ello restado uno por el cien por ciento, teniendo como resultado el rendimiento tiempo de producción de un producto o proceso. Por otro lado la segunda dimensión tiene como indicador las toneladas de producción, cuya fórmula es las toneladas ejecutadas en el proceso entre las toneladas proyectadas por el cien por ciento. COLAN, 2020).	Gestión de Proceso	Toneladas de producción	Tn.PROD=(Tn.EJEC)/ (Tn.PROY) X100% Tn.PROD = Toneladas de producción. Tn.EJEC = Tonelada Ejecutado. Tn.PROY = Tonelada Proyectado.	Razón

Fuente: Realización propia, 2021.

Tabla 6: Matriz de consistencia.

PROBLEMA	OBJETIVO	HIPÓTESIS	VARIABLES E INDICADORES	METODOLOGÍA
PROBLEMA GENERAL ¿Cómo la aplicación del estudio del trabajo mejorara la productividad del filete de pollo de la empresa San Fernando, Huaral 2021?	OBJETIVO GENERAL Determinar como la aplicación del estudio del trabajo mejorara la productividad del filete de pollo de la empresa San Fernando, Huaral 2021.	HIPÓTESIS GENERAL La aplicación del estudio del trabajo mejora la productividad del filete de pollo de la empresa San Fernando, Huaral 2021.	INDEPENDIENTE: ESTUDIO DEL TRABAJO Dimensiones: • Estudio de métodos. • Medición del trabajo. Indicadores:	Tipo de la investigación: Aplicada Nivel: Explicativo Diseño: Experimental Enfoque: Cuantitativo Forma:
PROBLEMAS ESPECÍFICOS 1. ¿Cómo la aplicación del estudio del trabajo mejorara el rendimiento del tiempo en el proceso de filete de pollo de la empresa San Fernando, Huaral 2021? 2. ¿Cómo la aplicación del estudio del trabajo mejorara las toneladas de producción del filete de pollo de la empresa San Fernando, Huaral 2021?	1. Determinar como la aplicación del estudio del trabajo mejorara el rendimiento del tiempo en proceso de filete de pollo de la empresa San Fernando, Huaral 2021. 2. Determinar como la aplicación del estudio del trabajo mejorara las toneladas de producción del filete de pollo de la empresa San Fernando, Huaral 2021.	HIPÓTESIS ESPECÍFICOS H1: La aplicación del estudio del trabajo mejora el rendimiento del tiempo en el proceso de filete de pollo de la empresa San Fernando, Huaral 2021. H2: La aplicación del estudio del trabajo mejora las toneladas de producción del filete de pollo de la empresa San Fernando, Huaral 2021.	VARIABLE DEPENDIENTE: PRODUCTIVIDAD Dimensiones: Gestión de tiempos Gestión de proceso. Indicadores: Rendimiento del tiempo. Toneladas de producción.	Forma: Pre – experimento. Población: N= 34 semanas (Ordenes de producción). Muestra: n = 19 Técnica: • Análisis documental. • Observación directa. Instrumentos: • Cronometro. • Tablero. • Formatos DOP. • Formato DAP • Diagrama bimanual. • Formato estudio de tiemp • Formato de control. • Excel. • SPSS 24.

Fuente: Realización propia, 2021.

3.3 Población, muestra y muestreo

3.3.1 Población

La población del presente estudio de investigación estará compuesta por el resultado de las toneladas de producción (t) del fileteo de pollo (pechugas y piernas) procesadas durante las 34 primeras semanas del año 2020. Teniendo en cuenta que la producción de filete de pechuga es el resultado del 50% de la producción y el fileteo de pierna le corresponde el 50% de la producción.

Por otro lado, la producción de filete de pechuga y piernas de pollo tiene diferentes productividades por producto, estos se mueven según el grado de dificultad en el acabado del producto. Por ello podemos decir que la población de estudio está compuesto de las características que poseen los objetos que son derivadas de los puntos esenciales de las especificaciones técnicas, según lo mencionado por (HERNÁNDEZ, 2014 pág. 36).

También, cabe mencionar que la proporción que representa al elemento primordial del proceso (materia prima) que se utiliza para la producción de filete de pollo está compuesto por piezas trozadas de un pollo entero, teniendo en cuenta que el pollo entero se troza en diferentes piezas con la finalidad de ser fileteadas según especificaciones técnicas y/o requerimiento de los clientes.

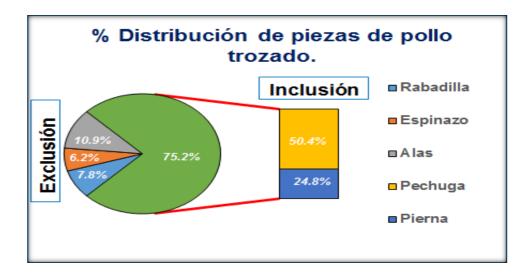


Figura 25: Distribución de piezas de pollo trozado.

Fuente: Realización propia, 2020.

Según la óptica de la figura 25, el pollo trozado se distribuyen en las piezas de rabadilla que representa 7.8%, espinazo 6.2%, alas 10.9%, pechuga 50.4% y piernas 24.8% dentro de la distribución de un pollo entero, por ende en el presente estudio de investigación solo se estudiaran los volúmenes (t) de la producción obtenidos de los filetes de pechugas y piernas.

En consecuencia, los criterios de selección son:

Inclusión = Las toneladas de producción (t) de filete obtenido en el proceso de fileteo de pechugas y piernas y sus distintos SKU'S.

Exclusión = En el presente estudio de investigación no se estudiaran las otras piezas que componen el pollo entero como lo es la rabadilla, espinazo, y alas ya que estas piezas son derivadas a otro proceso que compone la cadena de producción de la empresa san fernando.

3.3.2 Muestra

En el presente estudio de investigación el tamaño de la muestra se calculó haciendo uso de la siguiente fórmula para poblaciones finitas de variables cuantitativas, tal como se muestra en la figura 26.

Figura 26: Formula del tamaño de la muestra para poblaciones finitas.

$$\mathbf{n} = \frac{N \, x \, Z^2 \, x \, \sigma^2}{(N-1)E^2 \, x \, (Z^2 \, x \, \sigma^2)}$$

Donde:

Tamaño de la población	N
Nivel de confianza 95%	Z
Desviación estandar	σ
Pecisión o margen de error	E
Tamaño de la muestra	n

La población de estudio fue el resultado de las toneladas de producción (t) del fileteo de las 34 primeras semanas del año 2020, teniendo en cuenta que cada semana es una orden de producción, el nivel de confianza utilizado para el presente estudio fue de 95% y el margen de error 1.20 (t), teniendo en cuenta que el margen de error en términos porcentuales es de 3.8 %

En consecuencia, se tuvo como resultado que el tamaño de la muestra para el actual estudio de investigación serán 19 órdenes de producción y cada orden de producción representa una semana de proceso siendo el resultado de las toneladas de producción (t) de filete de pollo (pechugas y piernas) procesado durante los 34 primeras semanas del año 2020 como se muestra en el anexo 4. Por ello, se analizara los registros obtenidos en el proceso diario de filete de pechugas y piernas de pollo, sabiendo que las características primordiales de la muestra son el grado de dificultad (tamaño, forma y peso), que tiene los productos terminados de pechugas y piernas de pollo. Sabiendo que, la muestra es una porción representativo de la población el cual se derivan los registros estudiados, cuyos datos deben representar a la población de estudio (HERNÁNDEZ, 2014 pág. 173).

La unidad de análisis en el presente estudio son las toneladas de producción (t) de fileteo de pollo obtenido en la línea de proceso. Ya que, estas toneladas de producción dependen de diferentes factores como son productos terminados pechugas y piernas de pollo, considerando la proporción en el programa proyectado semanal de los pedidos en pechuga es el 50% y en piernas es el 50% en productos acabados.

Por ende, el marco muestral estará constituido por los resultados obtenidos de las toneladas de producción (t) de filetes de pollo según la lista del plan semanal de programación, las cuales se analizaran en función a las características de los SKU´S pechugas y piernas de pollo. Según el investigador (HERNÁNDEZ, 2014), comenta que el marco muestral se refiere a las referencias de los elementos de la población, así como la oportunidad de en marcarlos para seleccionar las unidades de la muestra (pág. 185)

3.3.3 Muestreo

En el actual trabajo de investigación se utilizó un muestreo aleatorio simple, donde se asegura que todos los datos tienen la probabilidad de ser insertados dentro de la muestra cómo se puede apreciar en el anexo 5. Es por ello, que se estableció números aleatorios para calcular los datos de las 19 órdenes de producción semanal, muestra que se tomaron de la población de las 34 primeras semanas del año 2020.

3.4 Técnicas e instrumentos de recolección de datos

3.4.1 Técnica

Hay diferentes maneras de recolectar los datos para la investigación, que ayudaran al indagador a tomar y recolectar puntualmente los diversos antecedentes que serán analizados, la técnica será usada según la circunstancia o proceso a medir por el indagador, según lo mencionado por el investigador (HERNANDEZ, y otros, 2014).

Para la recolección de los datos del presente estudio de investigación se usaran las técnicas más relevantes que ayudaran a comprender la problemática de la producción, cuyo efecto están encadenado la caída de la productividad del filete de pollo en la empresa San Fernando.

Análisis documental.

En el proceso de fileteo de pechugas y piernas de pollo, el análisis documental es crucial para determinar si se han utilizado de manera correcta los recursos o hubo algún indicio de despilfarros de los recursos en el proceso de fileteo de pollo, por ello en el presente estudio analizaremos las bases de datos de los resultados obtenidos diariamente en la línea de filete de pollo en la empresa San Fernando.

Observación directa.

La observación directa es primordial para analizar los procedimientos y pasos empleados y la ejecución de las distintas actividades dentro de la línea de filete de pollo, todo ello ayudaran al estudio en la recolección necesaria de los datos para

el análisis, con el fin de mejorar la productividad del filete de pollo. También nos ayudara a reconocer los sistemas y subsistemas de las operaciones realizadas por los operaros de máquinas y los procedimientos del fileteo de pechugas y piernas de pollo de manera eficaz.

3.4.2 Instrumento.

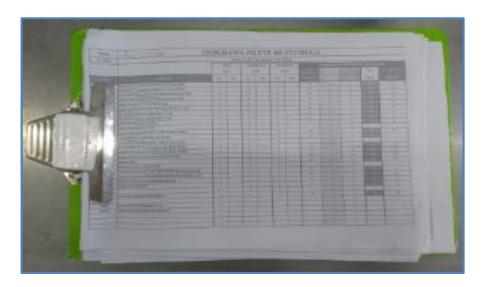
Los instrumentos de medición son el camino que conduce al estudio en la recolección eficaz de los datos esenciales para el trabajo de investigación (VALDERRAMA, 2013 pág. 95). De acuerdo con el investigador Valderrama, los instrumentos de investigación harán que se faciliten la recolección de los datos de proceso de manera clara y precisa, también ayudaran a que estos datos sean de carácter representativo en la investigación.

En consecuencia, en el presente estudio de investigación se utilizaran los siguientes mecanismos para encaminar el estudio de investigación.

Cronometro.

En la actualidad existen diversos instrumentos de diferentes marcas y características, pero para este estudio de investigación se trabajara con el cronometro CASIO STOPWATCH HS-3.

Fuente: Realización propia, 2020


Especificaciones técnicas del cronometro:

El cronometro tiene una precisión a temperatura normal de ±99,997685%, su capacidad de presentación es de 9 horas, 59 minutos y 59,99 segundos. También tiene una pila de litio (tipo: CR-2016). Ver anexo 6.

Tablero de recolección de datos.

El tablero de recolección de datos debe ser liviano de fácil transporte, pero fuerte para brindar a poyo al indagador, pueden ser de plástico, metal, teflón y triplay de 1/4 a 1/5 de pulgadas.

Figura 28: Tablero de recolección de datos.

Fuente: Realización propia, 2020.

También, cabe mencionar que en la presente investigación se usaran los principales controles de métodos de ingeniería como:

El formato de flujo de proceso, este formato ayudará a detallar el flujo de proceso de filete de pollo (pechugas y piernas). Ver anexos 7.

Formato del diagrama de proceso, este formato ayudará a recolectar, describir, las operaciones, transportes, esperas, inspección, almacenamiento, las distancias del proceso para poder analizarlas y eliminarlas. Ver anexo 8.

Formato de operaciones de proceso (DOP), este formato ayudará al análisis de las operaciones e inspecciones del proceso de filete de pollo (pechugas y piernas). Ver anexo 9.

Formato del diagrama bimanual, este diagrama ayudará a la toma de datos de los movimiento del operario al realizar un proceso. Ver anexo 10.

Formato de toma de tiempo por actividades, este formato ayudará a registrar los tiempos de las actividades que se realizan en el proceso de fileteo de pechugas y piernas. Ver anexo 11.

Formato del cálculo del número de muestras, este formato ayudará a calcular los números de muestras de los tiempos que se tienen por cada actividad realizada. Ver anexo 12.

Formato del cálculo del tiempo estándar, este formato ayudara al cálculo de los tiempos estándar por cada actividad dando un resumen total del tiempo de la operación. Ver anexo 13.

Formato del cálculo de la productividad, este formato ayudara a registrar de manera diario los tiempos proyectados, los tiempos ejecutado, el rendimiento del tiempo, las toneladas de producción proyectados, las toneladas de producción ejecutadas, las toneladas de materia prima utilizada en el proceso, el remanente de proceso y la productividad del día. Ver anexo 14.

Fichas de registro.

Con el fin de hacer un diagnóstico de los procedimientos de fileteo de piernas y pechugas de pollo, se utilizara la ficha de registros para registral los diferentes productos que son elaborados diariamente para posterior a ello analizar los resultados del día de proceso. Ver anexo 15 y 16.

3.4.3 Validez

La validez de los instrumentos es esencial para la realización del estudio de investigación, porque de esta manera se asegura la medición de la variable independiente y dependiente del estudio (HERNANDEZ, y otros, 2014 pág. 201).

De acuerdo con lo mencionado por el indagador Hernández, la validez de los instrumentos será el punto de inicio para empezar con la recolección de los datos para el estudio, la revisión y aprobación del instrumento estará en disposición de los profesionales de la industria de aves de la empresa San Fernando (ingenieros de producción e ingenieros de programación) a los cuales se le aplico un cuestionario para calcular la validez de los instrumentos (Ver anexo 102, 103, 104, 105, 106, 107, 108 y 109), dicha validez fue evaluado en los 4 tipos (apariencia, contenido, constructo e instrumento), de las cuales fueron seleccionados 13 preguntas.

Tabla 7: Preguntas del cuestionario de validez de los instrumentos.

VALIDEZ	N°	PREGUNTAS
	P1	¿Cree usted que la fórmula establecida para calcular el índice de actividades es la correcta? IA =(TOTAL ACT-ACT NO AV) / (TOTAL ACTIVIDADES) X100 %
APARIENCIA	P2	¿Cree usted que la fórmula establecida para calcular el tiempo estándar es la correcta? TS = TN X (1 + S)
AFARIENCIA	Р3	¿Cree usted que la fórmula establecida para calcular el rendimiento tiempo es la correcta? REND.T = ((T.PROY/ CICLO) / (T.EJEC/ CICLO) -1) X 100 %
	P4	¿Cree usted que la fórmula establecida para calcular las toneladas de producción es la correcta? Tn.PROD = (Tn . EJEC) / (Tn . PROY) X 100 %
P5		Sabiendo que el título del estudio es: Aplicación del estudio del trabajo para mejorar la productividad del filete de pollo de la empresa San Fernando, Huaral 2021. ¿Cree usted que las variables (Estudio del trabajo y Productividad) fueron seleccionadas correctamente?
CONTENIDO	P6	Sabiendo que el objetivo general del estudio es: Determinar como la aplicación del estudio del trabajo mejorara la productividad del filete de pollo de la empresa San Fernando, Huaral 2021. ¿Cree usted que las dimensiones (Estudio de métodos y Medición del trabajo) son las adecuadas para tal propósito?
	P7	¿Cree usted que los indicadores (Rendimiento de tiempo y toneladas de producción) son los adecuados para obtener resultados en la variable productividad?
	P8	¿Cree usted que la variable independiente (estudio del trabajo) influye en la variable dependiente (productividad)?
CONSTRUTO	P9	¿Cree usted que la dimensión (estudio de métodos) influye directamente con la dimensión (Gestión de tiempos)?
	P10	¿Cree usted que el indicador (Tiempo estándar) influye en la mejora de las toneladas de producción?
	P11	¿Cree usted que en la presente investigación el cronometro es el instrumento adecuado para medir los tiempos del proceso de fileteo de pollo?
INSTRUMENTO	P12	¿Cree usted que los instrumentos que se utilizan para medir la variable independiente (Estudio del trabajo) son los correctos? Formatos de estudios de tiempos, formato DAP, formato DOP.
	P13	¿Cree usted que los instrumentos que se utilizan para medir la variable dependiente (productividad) son los correctos? Formatos de producción diario, registro de la producción en toneladas.

Fuente: Realización propia, 2021

Para calcular la validez del instrumento se utilizó pregunta dicotómicas (SI – NO, donde el SI es igual a 1 y el NO es igual a 0), también se hizo uso de la fórmula de la V de Aiken para obtener el coeficiente de valides teniendo en cuenta que si la validez es menor a 0.6 el instrumento no es confiable y si es mayor a 0.6 el instrumento es confiable.

Tabla 8: Cálculo de la validez del instrumento de estudio.

	VALIDEZ			APARIENCIA				CONTENIDO			CONSTRUCTO			INSTRUMENTO				
NOMBRES	APELLIDOS	PROFESIÓN	EMPRESA DONDE LABORA	CARGO	CORREO ELECTRÓNICO	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13
Jhonny Bernardo	Pantoja Carreño	Ingeniero de Sistemas	San Fernando S.A	Supervisor de Producción	jpantoja@san-fernando.com.pe	1	1	1	1	1	1	1	1	1	1	1	1	1
Jose Alberto	Bazan Lopez	Ingeniero Agroindustrial	San Fernando S.A	Supervisor de Producción	jbazan@san-fernando.com.pe	1	1	1	1	1	1	1	1	1	1	1	1	1
Jesús Alberto	Caldas Geronimo	Ingeniero Industrial	San Fernando S.A	Supervisor de producción	jcaldasg@san-fernando.com.pe	1	1	1	1	1	1	1	1	1	1	1	1	1
Danny Richard	Aguila Tipo	Ingeniero Agroindustrial	San Fernando S.A	Supervisor de producción	daguila@san-fernando.com.pe	1	1	1	1	1	1	1	1	1	1	1	1	1
Sebastián Nenin	Alcántara Albornoz	Ingeniero Industrial	San Fernando S.A	Asistente de Calidad	acalidadpbh@san-fernando.com.pe	1	1	1	1	1	1	1	1	1	1	1	1	1
Cesar Felipe	Holguin Sabana	Ingeniero de Sistemas	San Fernando S.A	Asistente de Almacén 3	cholguin@san-fernando.com.pe	1	1	0	1	1	1	1	1	1	1	1	1	1
Givenchi Michael	Bonilla Belen	Ingeniero Industrial	San Fernando S.A	Programador de Producción	gbonilla@san-fernando.com.pe	1	1	0	1	1	1	1	1	1	1	1	1	1
Edwin	Colan Chavez	Ingeniero de Sistemas	San Fernando S.A	Programador de Almacén 3	ecolanc@san-fernando.com.pe	1	1	1	0	1	1	1	1	1	1	1	1	1
					Sumatoria	8.00	8.00	6.00	7.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
					V de Aiken	1.00	1.00	0.75	0.88	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
					Validez Apariencia	0.91												
					Validez Contenido	1.00												
					Validez Constructo	1.00												
					Validez Instrumento	1.00												
					Coeficiente de V de Aiken	0.97												

Fuente: Realización propia, 2021

Según la óptica de la figura 41, la validez de apariencia es de 0.91, la validez de contenido es de 1.00, la validez de constructo es de 1.00 y la validez de instrumento es de 1.00, por ende la validez total de los instrumentos de estudio es de 0.97 la cual indica que el coeficiente de validez es alta.

En suma, los instrumentos están acorde a la matriz de Operacionalización de las variables, esto quiere decir que los instrumentos usados en el actual estudio son válidos.

3.4.4 Confiabilidad del instrumento

La confiabilidad está basada en la credibilidad del instrumento de estudio, es decir que se pueda emplear varias veces en el estudio, pero se obtendrá los mismos resultados o muy parecidos al coeficiente. Por ello, el resultado obtenido con el instrumento empleado debe ser firme en los datos y coherente en los resultados (HERNANDEZ, y otros, 2014 pág. 200). De acuerdo con Hernández, la confiabilidad de los instrumentos deben ser coherente en los resultados tantas veces sea aplicado en el estudio de investigación.

En suma, en el presente estudio de investigación se medirá la confiabilidad mediante la técnica de correlación de los datos donde se delimitara la fiabilidad del presente estudio con el apoyo del programa IBM SPSS Statics 24.

Para calcular la confiabilidad del instrumento se hizo uso de la fórmula de Alfa de Cronbach.

Figura 29: Formula del Alfa de Cronbach.

$$\mathbf{r} = (\frac{k}{k-1})(\mathbf{1}\frac{\Sigma SJ^2}{S^2})$$

Donde:

r = Coeficiente de alfa.

K = Número de reactivos.

 Si^2 = Varianza del reactivos.

 ΣSi^2 = Suma Varianza de cada reactivos.

 S^2 = Varianza de todas las calificaciones.

Por ello, se procedió a calcular la confiabilidad de los instrumentos de la variable independiente y la variable de pendiente, la primera variable (independiente) se medirá la confiabilidad haciendo tomas de tiempos al proceso de filete de pechuga y pierna durante 20 días en el mes de octubre 2020. La segunda variable (dependiente) se medirá atreves de los datos recolectado de proceso de filete de pechuga y pierna en toneladas y el rendimiento, tal como se puede verificar en las tablas 10, 11, 12 y 13.

Tabla 9: Procesos de estudio del trabajo.

TOMA DE TIEMPOS(INDICADOR TIEMPO ESTÁNDAR)						
Proceso1	Fileteo de filete de pechuga 300 gr.					
Proceso2	Filete de pechuga corte mariposa SANTA.	PROCESO DE FILETE				
Proceso3	Filete de pollo economico x1.	DE PECHUGA				
Proceso4	Fileteo de filete corte KFC.					
Proceso5	Fileteo de pierna big crunch.	PROCESO				
Proceso6	Fileteo de pierna con piel x 3.	DE FILETE DE				
Proceso7	Fileteo de pierna para PPPC.	PIERNA				

Fuente: Realización propia, 2021 (Excel).

En la tabla 9, se puede apreciar los procesos de filete de pechuga y pierna, el proceso 1, proceso 2, proceso 3 y el proceso 4 corresponden al proceso específico de pechuga, por otro lado, el proceso 5, el proceso 6 y el proceso 7 corresponden al proceso específico de pierna.

A continuación de muestra el cálculo de la confiabilidad del instrumento para medir los tiempos del filete de pechuga.

Tabla 10: Cálculo de la confiabilidad del instrumento para medir el filete de pechuga.

	CONFIABILIDAD PROCESO DE PECHUGA							
Tiempos	Proceso1	Proceso2	Proceso3	Proceso4	Suma			
T1	131.952	149.594	78.004	170.577	530.127			
T2	131.416	147.838	77.506	170.485	527.245			
T3	129.434	147.152	77.467	170.435	524.488			
T4	129.334	146.912	77.007	170.321	523.574			
T5	129.251	146.89	76.911	170.314	523.366			
T6	129.034	146.219	76.89	170.306	522.449			
T7	129.017	146.217	76.817	170.246	522.297			
T8	128.971	146.049	76.685	170.163	521.868			
Т9	128.787	145.533	76.646	170.064	521.03			
T10	128.47	145.452	76.643	169.997	520.562			
T11	128.325	145.263	76.611	169.965	520.164			
T12	128.307	144.817	76.539	169.952	519.615			
T13	127.933	144.663	76.528	169.951	519.075			
T14	127.883	144.644	76.471	169.9	518.898			
T15	127.817	144.531	76.453	169.869	518.67			
T16	127.667	143.874	76.419	169.844	517.804			
T17	127.596	143.719	76.402	169.717	517.434			
T18	126.927	143.683	76.161	169.683	516.454			
T19	126.843	143.231	76.079	169.467	515.62			
T20	126.41	142.785	75.915	170.166	515.276			
Varianza Total	1.783	2.735	0.238	0.080	13.605			
				r	0.859			
	,	k	ΣSJ^2	k	4.000			
	$\mathbf{r} = (\frac{1}{k})$	$\frac{k}{(-1)}$)(1	$\frac{1}{S^2}$	S ²	13.605			
		_	-	ΣSj ²	4.836			

Fuente: Realización propia, 2021 (Excel).

Según la tabla 10, los datos medidos son confiables yaqué se obtuvo como resultado un coeficiente de 0.859.

A continuación de muestra el cálculo de la confiabilidad del instrumento para medir los tiempos del filete de pierna.

Tabla 11: Cálculo de la confiabilidad del instrumento para medir el filete de pierna.

(CONFIABILIDAD PROCESO DE PIERNAS						
Tiempos	Proceso1	Proceso2	Proceso3	Suma			
T1	208.988	44.304	137.645	390.937			
T2	208.752	44.023	137.484	390.259			
Т3	208.679	43.977	137.478	390.134			
T4	208.625	43.975	137.451	390.051			
T5	208.623	43.952	137.402	389.977			
Т6	208.504	43.924	137.389	389.817			
T7	208.414	43.92	137.339	389.673			
Т8	208.401	43.917	137.3296	389.6476			
Т9	208.342	43.888	137.324	389.554			
T10	208.32	43.879	137.263	389.462			
T11	208.317	43.878	137.225	389.42			
T12	208.315	43.842	137.223	389.38			
T13	208.267	43.767	137.21	389.244			
T14	208.239	43.439	137.198	388.876			
T15	208.078	43.401	137.118	388.597			
T16	208.078	43.396	137.111	388.585			
T17	207.995	43.395	137.011	388.401			
T18	207.994	43.212	136.924	388.13			
T19	207.979	43.179	136.698	387.856			
T20	207.315	43.014	136.662	386.991			
Varianza Total	0.12297539	0.11367789	0.06042297	0.83436801			
			r	0.966			
- ($\frac{k}{k-1}$)(1	ΣSJ^2	k	3.000			
$\mathbf{r} = (\frac{1}{2})$	$\frac{1}{k-1}$)(1	$\overline{S^2}$	S ²	0.834			
			ΣSj ²	0.297			

Fuente: Realización propia, 2021 (Excel).

Según la tabla 11, los datos medidos son confiables yaqué se obtuvo como resultado un coeficiente de 0.966.

A continuación de muestra el cálculo de la confiabilidad total del instrumento para medir los tiempos del filete de pechuga y pierna.

Tabla 12: Cálculo total de la confiabilidad de los instrumentos.

	CONFIABILIDAD PROCESO TOTAL							
	PROCI	ESO DE FIL	ETE DE PEC	CHUGA	PROCESO	DE FILETE	DE PIERNA	
Tiempos	Proceso1	Proceso2	Proceso3	Proceso4	Proceso5	Proceso6	Proceso7	Suma
T1	131.952	149.594	78.004	170.577	208.988	44.304	137.645	921.064
T2	131.416	147.838	77.506	170.485	208.752	44.023	137.484	917.504
T3	129.434	147.152	77.467	170.435	208.679	43.977	137.478	914.622
T4	129.334	146.912	77.007	170.321	208.625	43.975	137.451	913.625
T5	129.251	146.89	76.911	170.314	208.623	43.952	137.402	913.343
T6	129.034	146.219	76.89	170.306	208.504	43.924	137.389	912.266
T7	129.017	146.217	76.817	170.246	208.414	43.92	137.339	911.97
T8	128.971	146.049	76.685	170.163	208.401	43.917	137.3296	911.5156
Т9	128.787	145.533	76.646	170.064	208.342	43.888	137.324	910.584
T10	128.47	145.452	76.643	169.997	208.32	43.879	137.263	910.024
T11	128.325	145.263	76.611	169.965	208.317	43.878	137.225	909.584
T12	128.307	144.817	76.539	169.952	208.315	43.842	137.223	908.995
T13	127.933	144.663	76.528	169.951	208.267	43.767	137.21	908.319
T14	127.883	144.644	76.471	169.9	208.239	43.439	137.198	907.774
T15	127.817	144.531	76.453	169.869	208.078	43.401	137.118	907.267
T16	127.667	143.874	76.419	169.844	208.078	43.396	137.111	906.389
T17	127.596	143.719	76.402	169.717	207.995	43.395	137.011	905.835
T18	126.927	143.683	76.161	169.683	207.994	43.212	136.924	904.584
T19	126.843	143.231	76.079	169.467	207.979	43.179	136.698	903.476
T20	126.41	142.785	75.915	170.166	207.315	43.014	136.662	902.267
Varianza Total	1.7825079	2.7353045	0.2384566	0.0796194	0.1229754	0.1136779	0.06042297	20.7259756
							r	0.878
				n _ (k	$(\frac{\Sigma SJ^2}{S^2})$	k	7.000
				$\Gamma = (\overline{k})$	$(-1)^{()}$	$\overline{S^2}$	S ²	20.726
							ΣSj ²	5.133

Fuente: Realización propia, 2021 (Excel).

Según la tabla 12, los datos medidos son confiables yaqué se obtuvo como resultado un coeficiente de 0.878 En suma, este resultado da luz verde para poder aplicar el instrumento en el actual estudio de investigación.

Tabla 13: Cálculo de la confiabilidad de los instrumentos (variable dependiente).

	CONFIABILIDA	D DE LA VARIA	BLE DEPENDIENT	E
Dato	Toneladas. Producción	Rendimiento. Tiempo	Productividad Ejecutada (tn/ hora)	Suma
1	0.817	0.297	0.671	1.78
2	0.806	0.289	0.670	1.77
3	0.802	0.289	0.670	1.76
4	0.802	0.288	0.667	1.76
5	0.801	0.287	0.661	1.75
6	0.795	0.274	0.657	1.73
7	0.791	0.273	0.656	1.72
8	0.790	0.272	0.654	1.72
9	0.781	0.265	0.653	1.70
10	0.760	0.261	0.638	1.66
11	0.747	0.260	0.635	1.64
12	0.716	0.243	0.632	1.59
13	0.711	0.236	0.631	1.58
14	0.674	0.220	0.630	1.52
15	0.652	0.211	0.628	1.49
16	0.596	0.190	0.623	1.41
17	0.596	0.185	0.620	1.40
18	0.585	0.172	0.609	1.37
19	0.580	0.154	0.566	1.30
Varianza Total	0.006999096	0.001869152	0.00064758	0.022535886
			r	0.867
	$\frac{k}{-1}$)(1 $\frac{\Sigma S}{S}$	k	3.000	
$\Gamma = (\frac{1}{k})$	$\frac{-1}{1}$	S ²	0.023	
		ΣSj ²	0.010	

Según la tabla 13, los datos medidos son confiables yaqué se obtuvo como resultado un coeficiente de 0.867. En suma, este resultado da luz verde para poder aplicar el instrumento a la variable dependiente (productividad).

3.5 Procedimientos

El procedimiento a seguir en el presente estudio de investigación se iniciara con el análisis de los procesos, los métodos de trabajo actual, el flujo de producción, el plan de producción de la línea de filete de piernas y pechugas, estandarizando procedimientos para tener una toma de datos más cercanos posibles a la

realidad. También se seleccionara los puntos críticos según el Pareto anteriormente analizado según la figura 9, posterior a ello, se registraran los datos de los procesos o actividades que se realizan para obtener un producto de pierna y de pechuga, todo ello con la finalidad de detectar los cuellos de botella que están afectando la productividad del filete de pollo.

Siguiendo el plan de trabajo del presente estudio de investigación se examinara, establecerá, evaluara, definirá, implementara y se controlara, todas las actividades del proceso de filete de pollo. Teniendo en cuenta que los procedimientos de los sistemas y sub sistemas de la línea de filete de pollo son dinámicos y flexibles en el manejo diario.

3.5.1. Desarrollo del proyecto.

3.5.1.1. Descripción general del proceso de la empresa.

La empresa San Fernando ubicado en el norte del Perú específicamente en la provincia de Huaral es una de las principales plantas de beneficiado de aves (pollo) teniendo diferentes líneas de producción tales como: descargue de pollos, colgado de pollos, pelado de pollos, eviscerado de pollo, enfriados de carcasas, empaque - selección de carcasas de pollo, recepción de tinas de productos terminados y despacho de las carcasas de pollo.

También, se tiene líneas auxiliares de proceso tales como: la línea de corte de carcasas, la línea de fileteo de piernas y pechugas, siendo esta ultima la línea de estudio del actual trabajo de investigación.

Así mismo, en la línea de fileteo de pollo se producen diariamente diferentes SKU´S, con diferentes características y grados de dificultad (forma, tamaño y peso) esto con el objetivo de cubrir las necesidades de los consumidores.

3.5.1.2. Descripción del proceso de fileteo – Pre test.

La realización del proceso de fileteo de pechugas y piernas tiene como principales procesos la charla del personal al inicio del proceso, desplazamiento del personal hacia el filtro de limpieza, lavado de manos y desinfección, desplazamiento del personal hacia el área de filete, desinfección de mangas y guantes, desplazamiento del personal hacia las fajas de proceso, desplazamiento del

personal hacia la zona de forrado de balanzas, ubicación del personal en el puesto de trabajo, encendido de la maquina deshuesadora de pechuga y pierna, quitar las tapas de las tinas que contiene la materia prima, levantar las tinas a la tolva de abastecimiento, vaciar la materia prima a la tolva, agarrar la materia prima para la selección, abastecimiento de la materia prima (pechuga y pierna), deshuesado de la materia prima (maquina), desprender el filete del hueso, tirar el filete la faja transportadora, transporte del filete a la zona de limpieza, agarrar el filete de pechuga y pierna, Limpieza del filete de pechugas y piernas de pollo(quitar grasa y piel), tirar el filete la faja transportadora, transporte del filete a la zona de moldeado, agarrar el filete limpio de pechuga y pierna, moldeado de filete de pechugas y piernas según especificaciones técnicas, tirar el filete la faja transportadora, transporte del filete a la zona de embolsado, agarrar la bolsa de los productos, agarrar el filete moldeado, embolsado de los filetes moldeados de pechugas y piernas, enviar las bolsas al zona de sellado, agarrar las bolsas según los productos, colocar las bolsas en la faja de sellado lineal, agarrar las bolsas selladas de pechugas y pierna, entinado de productos terminados, poner tapas a las tinas de los productos terminados, etiquetado de las tinas con los productos terminados, colocar las tinas en parihuelas, almacenamiento de los productos terminados, transporte de los productos terminados a la zona de balanza, registro de los pesos de los productos terminados en las planillas, almacenamiento de los productos terminados (disposición de balanza) y el transporte los productos terminados a la zona de almacenes.

Charla del personal al inicio del proceso: en este punto del proceso se definen el plan de producción, pautas a seguir durante la preparación de las órdenes de producción, rotación del personal, seguridad y Buenas Prácticas de Manufactura (BPM).

Lavado de manos y desinfección: el personal de la línea de filete se traslada hacia la zona del filtro de limpieza para el lavado y desinfección de las manos, botas e indumentarias.

Desinfección de mangas y guantes: el personal de la línea de filete se traslada hacia el área de filete donde se encuentra el tacho de desinfectante para los

guantes y magas.

Ubicación del personal en el puesto de trabajo: después de la desinfección de los guantes y mangas el personal se traslada hacia las fajas y se ubican de acuerdo al puesto de desempeño.

Encendido de la maquina deshuesadora de pechuga y pierna: el operador de la maquina deshuesadora de pechuga y pierna realiza un checklist para diagnosticar el equipo y dar el visto bueno para el encendido.

Quitar las tapas de las tinas que contiene la materia prima: la materia prima utilizado en la línea de fileteo (pechugas y piernas) se decepcionan en tinas con una dimensión de 60 cm x 30 cm, las cuales tiene una tapa de protección para mantener el producto en las óptimas condiciones tales como temperatura (4°c) y la inocuidad de los productos.

Levantar las tinas a la tolva de abastecimiento: en este proceso el operario tiene que levantar la tina que contiene la materia prima utilizado en el proceso, las cuales se levantan 50 cm del piso hacia la tolva, para luego ser vaciado la materia prima a la tolva.

Agarrar la materia prima para la selección: en este proceso el operario de maquina hace una inspección de la materia prima de pechuga y pierna, para luego ser abastecido hacia la maquina deshuesadora.

Abastecimiento de la materia prima (pechuga y pierna): en este proceso el operario coge la materia prima y abastece a la maquina deshuesadora donde se retirar la piel de las pechuga y piernas.

Desprender el filete del hueso: en este proceso las pechugas y piernas son deshuesado, es decir que se retira la carne del hueso para luego ser trasportado el filete atreves de la faja.

Limpieza del filete de pechugas y piernas de pollo (quitar grasa y piel): en este proceso se retira el excedente de piel, grasa, hematomas y otros contaminantes que puedan presentar el filete de pollo, para luego ser trasportado

para el moldeado según la orden de producción.

Moldeado de filete de pechugas y piernas según especificaciones técnicas: en este proceso la materia prima (filete de pollo) se moldea según el requerimiento del cliente (tamaño, forma y peso), después de este proceso el filete moldeado es trasladado para el embolsado correspondiente.

Embolsado de los filetes moldeados de pechugas y piernas: en este proceso el filete de pollo (pechuga y pierna) son embolsados según ficha técnica y requerimiento del cliente amarrado o sellado.

Entinado de productos terminados: en este proceso las bolsas son entinadas en diferentes presentaciones cantidades según el requerimiento de los clientes y almacenadas para ser trasladados a la zona de pesaje.

Almacenamiento de los productos terminados (disposición de balanza). En este proceso los productos terminados de filete de pollo (pechugas y piernas) son almacenadas y pesadas, estos pesos son registrados en las planillas de producción según las ordenes de producción correspondiente para luego ser trasladado a la zona de almacenes para su posterior despacho.

Para un mejor panorama de las actividades que se realiza en el proceso de filete de pollo (pechugas y piernas) se realizó el Diagrama de Operaciones de Proceso (DOP). Cuyo procedimiento se muestra en el anexo 18.

Tabla 14: Diagrama de Operaciones de Proceso (DOP) fileteo de pechugas y piernas - Pre Test.

Siguiendo en la misma línea se realizó el Diagrama de Actividades de Proceso (DAP), con la finalidad de detectar las actividades que no agregan valor al proceso de filete de pollo (pechugas y piernas). Cuyo procedimiento se muestra en el anexo 19.

Tabla 15: Resultado del Diagrama de Actividades de Proceso (DAP) fileteo de pechugas y piernas - Pre Test.

Fuente: Realización propia, 2021.

Según la óptica de la tabla 15, el proceso de fileteo de pechuga y pierna cuenta

con un total de 22 operaciones, 10 transporte, 2 esperas, 6 inspecciones y 2

almacenamiento, que en suma hacen un total de 42 actividades. También en la

tabla 6, se puede denotar el recorrido total que es 230 metros en todo el proceso

de fileteo de pechugas y piernas de pollo en la empresa San Fernando.

En relación de las actividades registradas, se realizó la separación de las

actividades en dos grupos, las actividades necearías y las actividades no agregan

valor al proceso. Dando como resultado que 29 son actividades que agregan valor

y 13 son actividades que no agregan valor al proceso de fileteo de pechugas y

piernas en la empresa San Fernando.

Por otro lado, el tiempo de las actividades que agregan valor al proceso es de

26.68 min y el tiempo de las actividades que no agregan valor es de 62.65 min.

En conclusión el proceso tiene un bajo índice de actividades, por ello es muy

importante realizar el estudio del trabajo.

3.5.1.3. Calculo del Pre Test.

Para efectuar los cálculos (Pre-Test) del presente estudio de investigación, se

harán uso de las formulas propuestas en la matriz de Operacionalización de la

variable, según la variables de estudio.

Variable independiente: Estudio del trabajo.

Índice de Actividades.

Teniendo en cuenta lo hallado en la tala 6, Diagrama de Actividades de Proceso

(DAP), se puede denotar claramente las actividades que no agregan valor al

proceso de fileteo de pechugas y piernas. Así mismo, estas actividades serán

sometidas a un análisis para poder reducirlas en tiempo y distancias o en el mejor

de los casos eliminarlas.

Formula.

TOTAL DE ACTIVIDADES – ACTIVIDADES NO AGREGEN VALOR

TOTAL DE ACTIVIDADES.

75

Tabla 16: Índice de actividades que agregan valor - Pre test.

Total de	Actividades que	Índice de actividades que		
Actividades	no agregan valor	agregan valor.		
42	13	69.05%		

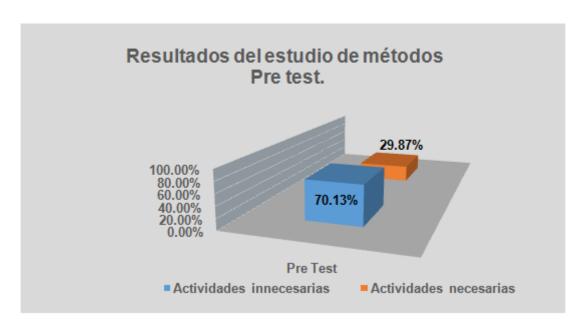

Según la tabla 16, el índice de actividades que agregan valor al proceso es de 69.05 %, por lo tanto la diferencia seria las actividades que no agregan valor al proceso de fileteo de pechugas y piernas, siendo este índice de 30.95 %.

Tabla 17: Índice de actividades en horas - Pre test.

Total Actividades (h)	Actividades que no agregan valor (h)	Índice de Actividades
1.49	1.04	29.87%

Fuente: Realización propia, 2021.

Figura 30: Resultado del estudio de método - Pre test.

Fuente: Realización propia, 2021.

Según la visión de la tabla número 17 y la figura 30, el índice de actividades necesarias es de 29.87%, por lo tanto el índice que no agregan valor al proceso

es de 70.13%, el resultado obtenido en el estudio de método (Pre- test) afirma la decisión de mejorar el proceso de filete de pechugas y piernas.

Tiempo estándar - Pre test

Con la finalidad de poder calcular el tiempo estándar de los procesos de pechuga y piernas se realizó una toma de tiempos por productos para simplificar las operaciones, teniendo en cuenta que cada producto tiene distintas velocidades y Características y el proceso se comportan de manera independiente al producto de pechuga o pierna. Por ende, los datos se tomaron el mes de octubre del 2020, se realizó en total 20 tomas de tiempos en diferentes momentos del día obteniendo así los tiempos con los que se van a trabajar.

Formula del tiempo estándar:

$$TS = TNX(1+S)$$

Para poder hallar el tiempo estándar del proceso de filete de pollo, tenemos que medir tiempos por procesos de fileteo, por ello se tomarán los tiempos de los siguientes productos de pechugas y piernas mencionados en la tabla 18

Tabla 18: Lista de productos estudiados para el cálculo del tiempo estándar-Pre test.

ltem	DESCRIPCIÓN	Proceso SKU'S		
1	FIL.PECHUGA C/M S/S 300 gr			
2	FIL.PECHUGA C/M S/S X 5 Kg.	Productos de filete de		
3	FIL. PECHUGA ECONOMICO X 1kg	pechuga.		
4	CORTE KFC			
5	FILETE BIG CRUNCH Bol. 12 Und.	Bood out on the Class of a		
6	FILETE PIERNA PPPC.	Productos de filete d		
7	FILETE DE PIERNA C/P Bol. X 3.0 kg	pierna.		

Fuente: Realización propia, 2021.

Para poder calcular el tiempo estándar de los procesos mencionados se hará uso de los sistemas de suplemento por descanso.

Tabla 19: Sistema de suplementos por descaso.

SISTEMA DE SUPLEMENTOS POR DESCASO				
Suplementos Consta	ntes			
Nesecidades personales 7				
Fatiga	4			
Suplementos Varia	ble			
Trabajo de pie	4			
Uso de la fuerza	5			
Índice de enfriamiento	3			
Total suplementos	23			

Cálculo del tiempo estándar del filete de pechuga 300 gr.

Para la realización del filete de pechuga de 300 gr se necesitan 28 actividades, por ello se tomaron 20 tomas de tiempo a cada actividad, estos datos fueron medidos en el mes de octubre de 2020, Tal como se puede visualizar en el anexo 20 y 21.

También, se hizo un promedio de los tiempos de los labores realizados en desarrollo del filete de pechuga de 300 gr, donde el mayor número de observaciones fue de 9 y el menor fue 1 observación. Estos datos se pueden visualizar en el anexo 22.

Además, se utilizó el sistema de Westinghouse para calcular el tiempo estándar del proceso de filete de pechuga de 300 gr. Teniendo en cuenta que el sistema de Westinghouse califica por habilidad, esfuerzo, condiciones y consistencia. Además, se adiciono a los tiempos los suplementos por fatiga, necesidades personales y suplementos variables.

Haciendo uso de todo lo expuesto se muestra el resultado del cálculo del tiempo estándar del proceso de filete de pechuga de 300 gr. (estudio Pre test), el procedimiento de los datos se muestran en el anexo 23

Tabla 20: Cálculo del tiempo estándar filete de pechuga de 300 gr. Pre test.

sanfernando La buera familia	SAN FERNANDO											
Formato de cálculo del tiempo estándar.												
Actividad	Fileteo de filete de pechuga 300 gr. Elaborado: Jose Luis Colan Olortegui.										an Olortegui.	
Hora Inicio	06:00 a.m.							ora Fin	al	06:00 p.m.		
N° de datos tomados	1							Fecha		01-10-2020 / 31-10-2020		
	Promedio de	Westinghouse			1		Tiempo Supl		nentos			
	tiempo observado	Ξ	ш	CD	cs	Factor de valoración	normal (TN)	nal up EV		total suplementos	Tiempo Estándar	
RESUMEN	127.98	0.81	0.54	-0.84	0.28	1.00	128.77	0.07	0.16	0.23	158.38	

Según la óptica de la tabla 20, se puede decir que el tiempo estándar para la realización del filete de 300 gr es de 158.38 minutos haciendo un total de 2.64 horas de proceso.

Cálculo del tiempo estándar del filete de pechuga corte mariposa santa.

De igual manera, la realización del filete de pechuga corte mariposa santa se necesitan 28 actividades, por ello se tomaron 20 tomas de tiempo a cada actividad, estos datos fueron medidos en el mes de octubre de 2020, Tal como se puede visualizar en el anexo 24 y 25.

También, se hizo un promedio de los tiempos de los procedimientos del filete de pechuga corte mariposa santa, donde el mayor número de observaciones fue de 9 y el menor fue 1 observación. Estos datos se pueden visualizar en el anexo 26.

Además, se utilizó el sistema de Westinghouse para calcular el tiempo estándar del proceso de filete de pechuga corte mariposa santa. Así mismo, se adiciono a los tiempos los suplementos por fatiga, necesidades personales y suplementos variables.

Haciendo uso de todo lo expuesto se muestra el resultado del cálculo del tiempo estándar del proceso de filete de pechuga corte mariposa santa. (Estudio Pre test), el procedimiento de los datos se muestran en el anexo 27

Tabla 21: Cálculo del tiempo estándar del proceso de filete de pechuga corte mariposa santa – Pre test.

sanfernando La buera familia	SAN FERNANDO											
Formato de cálculo del tiempo estándar.												
Actividad	Filete	huga co	rte mar	iposa S	E	laborad	o:	Jose Luis Col	olan Olortegui.			
Hora Inicio		06:00	a.m.		Н	ora Fin	al	06:00 p.m.				
N° de datos tomados				1				Fecha		01-10-2020 / 31-10-2020		
	Promedio de		Westin	ghouse			Tiempo Suplementos					
	tiempo observado	Ξ	ш	CD	cs	Factor de valoración	normal (TN)		F	total suplementos	Tiempo Estándar	
RESUMEN	145.64	0.81	0.54	-0.84	0.28	1.00	146.43	0.07	0.16	0.23	180.11	

Según la óptica de la tabla 21, se puede decir que el tiempo estándar para la realización del filete de corte mariposa SANTA es de 180.11 minutos haciendo un total de 3 horas de proceso.

Cálculo del tiempo estándar del filete de pechuga económico x1.

En el proceso de filete de pechuga económico x 1, se necesitan 22 actividades, por ello se tomaron 20 tomas de tiempo a cada actividad, estos datos fueron medidos en el mes de octubre de 2020, Tal como se puede visualizar en el anexo 28 y 29.

También, se hizo un promedio de los tiempos del desarrollo de las operaciones del filete de pechuga económico x 1, donde el mayor número de observaciones fue de 15 y el menor fue 1 observación. Estos datos se pueden visualizar en el anexo 30.

Además, se utilizó el sistema de Westinghouse para calcular el tiempo estándar del proceso de filete de pechuga económico x 1. Así mismo, se adiciono a los tiempos los suplementos por fatiga, necesidades personales y suplementos variables.

Haciendo uso de todo lo expuesto se muestra el resultado del cálculo del tiempo estándar del proceso de filete de pechuga económico x 1. (Estudio Pre test), el procedimiento de los datos se muestran en el anexo 31.

Tabla 22: Cálculo del tiempo estándar del proceso de filete económico x1 - Pre test.

sanfernando La buera familia	SAN FERNANDO											
Formato de cálculo del tiempo estándar.												
Actividad		le pollo	econor	nico x1.		E	laborad	o:	Jose Luis Col	an Olortegui.		
Hora Inicio		06:00	a.m.			Н	ora Fin	al) p.m.			
N° de datos tomados				1				Fecha		01-10-2020	0-2020 / 31-10-2020	
	Promedio de	Westinghouse					Tiempo	Suplementos				
Item Actividad	tiempo observado	Ξ	Е	CD	cs	Factor de valoración	normal (TN)		F	total suplementos	Tiempo Estándar	
RESUMEN	75.91	0.63	0.42	-0.66	0.22	1.00	76.52	0.07	0.16	0.23	94.12	

Según la óptica de la tabla 22, se puede decir que el tiempo estándar para la realización del filete económico x1 es de 94.12 minutos haciendo un total de 1.57 horas de proceso.

Cálculo del tiempo estándar del filete de pechuga corte KFC.

En el proceso de filete de pechuga corte KFC, se necesitan 28 actividades, por ello se tomaron 20 tomas de tiempo a cada actividad, estos datos fueron medidos en el mes de octubre de 2020, Tal como se puede visualizar en el anexo 32 y 33.

También, se hizo un promedio de los tiempos estimados en el desarrollo del filete de pechuga corte KFC, donde el mayor número de observaciones fue de 11 y el menor fue 1 observación. Estos datos se pueden visualizar en el anexo 34.

Además, se utilizó el sistema de Westinghouse para calcular el tiempo estándar del proceso de filete de pechuga corte KFC. Así mismo, se adiciono a los tiempos los suplementos por fatiga, necesidades personales y suplementos variables.

Haciendo uso de todo lo expuesto se muestra el resultado del cálculo del tiempo estándar del proceso de filete de pechuga corte KFC. (Estudio Pre test), el procedimiento de los datos se muestran en el anexo 35.

Tabla 23: Cálculo del tiempo estándar del proceso de filete de pechuga corte KFC - Pre test.

san fernando La buera familia	SAN FERNANDO												
Formato de cálculo del tiempo estándar.													
Actividad		o de file	ete corte	KFC.		E	laborad	o:	Jose Luis Col	Jose Luis Colan Olortegui.			
Hora Inicio		06:00	a.m.		Н	ora Fin	al	06:00	00 p.m.				
N° de datos tomados				1				Fecha		01-10-2020 / 31-10-2020			
	Promedio de	Westinghouse				Tiempo	Suplementos						
Item Actividad	tiempo observado	н	Е	CD	cs	Factor de valoración	normal (TN)		F	total suplementos	Tiempo Estándar		
RESUMEN	169.81	0.81	0.54	-0.84	0.28	1.00	170.60	0.07	0.16	0.23	209.84		

Según la óptica de la tabla 23, se puede decir que el tiempo estándar para la realización del filete de pechuga corte KFC es de 209.84 minutos haciendo un total de 3.5 horas de proceso.

Cálculo del tiempo estándar del filete de pierna big crunch

En el proceso de filete de pierna big crunch, se necesitan 28 actividades, por ello se tomaron 20 tomas de tiempo a cada actividad, estos datos fueron medidos en el mes de octubre de 2020, Tal como se puede visualizar en el anexo 36 y 37.

También, se hizo un promedio de los tiempos del proceso operativo del filete de pierna big crunch, donde el mayor número de observaciones fue de 13 y el menor fue 1 observación. Estos datos se pueden visualizar en el anexo 38.

Además, se utilizó el sistema de Westinghouse para calcular el tiempo estándar del proceso de filete de pierna big crunch. Así mismo, se adiciono a los tiempos los suplementos por fatiga, necesidades personales y suplementos variables.

Haciendo uso de todo lo expuesto se muestra el resultado del cálculo del tiempo estándar del proceso de filete de pierna big crunch. (Estudio Pre test), el procedimiento de los datos se muestran en el anexo 39.

Tabla 24: Cálculo del tiempo estándar del proceso de filete de pierna big crunch – Pre test.

sanfernando La buera familia	SAN FERNANDO											
Formato de cálculo del tiempo estándar.												
Actividad		de pie	rna big	crunch.		E	laborad	o:	olan Olortegui.			
Hora Inicio		06:00	a.m.			Н	ora Fin	al) p.m.			
N° de datos tomados			1				Fecha		01-10-2020 / 31-10-2020			
	Promedio de	Westinghouse					Tiempo	iempo Suplementos				
Item Actividad	tiempo observado	н	Е	CD	cs	Factor de valoración	normal (TN)		F	total suplementos	Tiempo Estándar	
RESUMEN	207.99	0.81	0.54	-0.84	0.28	1.00	208.78	0.07	0.16	0.23	256.79	

Según la óptica de la tabla 24, se puede decir que el tiempo estándar para la realización del filete de pierna big crunch es de 256.79 minutos haciendo un total de 4.28 horas de proceso.

Cálculo del tiempo estándar del filete de pierna con piel x 3

En el proceso de filete de pierna con piel x 3, se necesitan 28 actividades, por ello se tomaron 20 tomas de tiempo a cada actividad, estos datos fueron medidos en el mes de octubre de 2020, Tal como se puede visualizar en el anexo 40 y 41.

También, se hizo un promedio de los tiempos de los labores realizados del filete de pierna con piel x 3, donde el mayor número de observaciones fue de 13 y el menor fue 1 observación. Estos datos se pueden visualizar en el anexo 42.

Además, se utilizó el sistema de Westinghouse para calcular el tiempo estándar del proceso de filete de pierna con piel x 3. Así mismo, se adiciono a los tiempos los suplementos por fatiga, necesidades personales y suplementos variables.

Haciendo uso de todo lo expuesto se muestra el resultado del cálculo del tiempo estándar (Estudio Pre test), el procedimiento de los datos se muestran en el anexo 43.

Tabla 25: Cálculo del tiempo estándar del proceso de filete de pierna con piel x3 – Pre test.

sanfernando La buera familia	SAN FERNANDO											
Formato de cálculo del tiempo estándar.												
Actividad	Fileteo de pierna con piel x 3.						E	laborado: Jose Luis Co			an Olortegui.	
Hora Inicio	06:00 a.m.						Н	ora Fin	al) p.m.		
N° de datos tomados				1				Fecha		01-10-2020	01-10-2020 / 31-10-2020	
	Promedio de		Westir	ghouse	1		Tiempo Suple		nentos			
	tiempo observado	Ξ	Е	CD	cs	Factor de valoración	normal (TN)		F	total suplementos	Tiempo Estándar	
RESUMEN	43.68	0.81	0.54	-0.84	0.28	1.00	44.47	0.07	0.16	0.23	54.70	

Según la óptica de la tabla 25. Se puede decir que el tiempo estándar para la realización del filete de pierna con piel x 3 es de 54.70 minutos haciendo un total de 0.91 horas de proceso.

Cálculo del tiempo estándar del filete de pierna PPPC

En el proceso de filete de pierna PPPC, se necesitan 28 actividades, por ello se tomaron 20 tomas de tiempo a cada actividad, estos datos fueron medidos en el mes de octubre de 2020, Tal como se puede visualizar en el anexo 44 y 45.

También, se hizo un promedio de los tiempos del proceso operativo de filete de pierna PPPC, donde el mayor número de observaciones fue de 13 y el menor fue 1 observación. Estos datos se pueden visualizar en el anexo 46.

Además, se utilizó el sistema de Westinghouse para calcular el tiempo estándar del proceso de filete de pierna PPPC. Así mismo, se adiciono a los tiempos los suplementos por fatiga, necesidades personales y suplementos variables.

Haciendo uso de todo lo expuesto se muestra el resultado del cálculo del tiempo estándar (Estudio Pre test), el procedimiento de los datos se muestran en el anexo 47.

Tabla 26: Cálculo del tiempo estándar del proceso de filete de pierna PPPC – Pre test.

	san fernando La buera familia	SAN FERNANDO										
	Formato de cálculo del tiempo estándar.											
	Actividad	Fileteo de pierna para PPPC.						E	laborad	o:	an Olortegui.	
	Hora Inicio	06:00 a.m.						Н	ora Fin	al	06:00) p.m.
	N° de datos tomados				1			Fecha			01-10-2020 / 31-10-2020	
		Promedio de		Westir	nghouse	1		Tiempo	Supler	nentos		
Item		tiempo observado	н	ш	CD	CS	Factor de valoración	normal (TN)		F	total suplementos	Tiempo Estándar
	RESUMEN	137.03	0.81	0.54	-0.84	0.28	1.00	137.82	0.07	0.16	0.23	169.52

Según la óptica de la tabla 26, se puede decir que el tiempo estándar para la realización del filete de pierna PPPC es de 169.52 minutos haciendo un total de 2.83 horas de proceso.

Teniendo el antecedente de los tiempos medidos de los productos, podemos decir que la actividad que más demanda tiempo dentro del proceso es la limpieza y el moldeado de los productos. Por ello, se mostrara el diagrama bimanual de estos dos actividades, con la finalidad de analizarlas y minimizar los movimientos de las manos que no agregan valor.

Tabla 27: Diagrama bimanual del proceso de limpieza – Pre test.

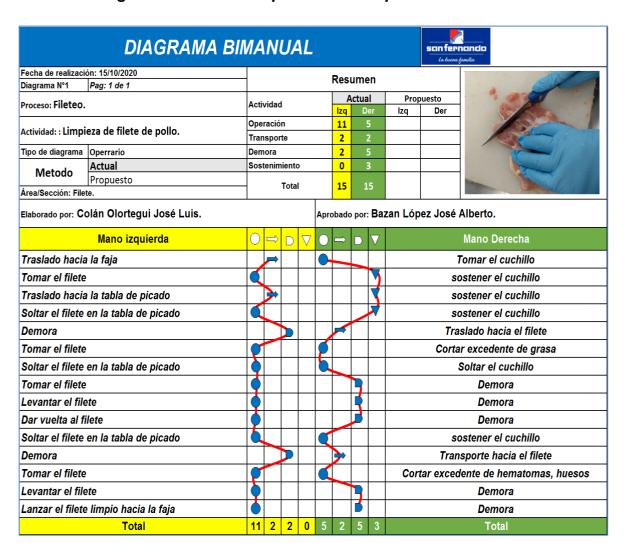
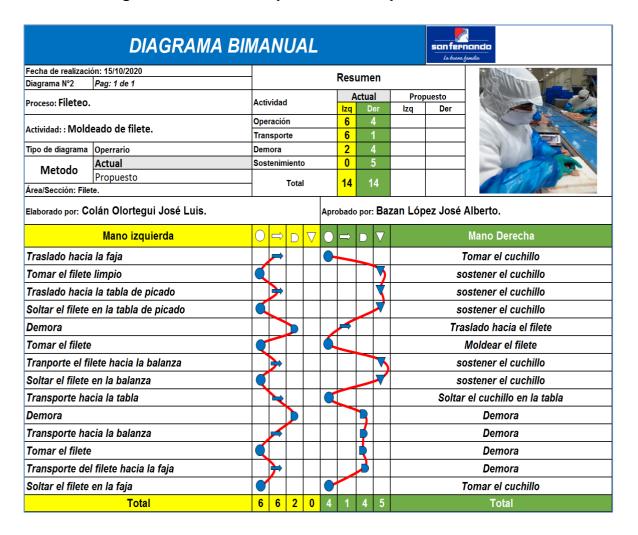



Tabla 28: Diagrama bimanual del proceso de limpieza – Pre test.

Con el fin de conocer el dinamismo de los productos elaborados en la línea de fileteo se mostraron los tiempos estándar por producto, por otro lado, los productos se pueden hacer en paralelo, es decir al momento de filetear un producto como los filetes de corte mariposas el operario puede sacar el mismo corte dentro del proceso de formado.

En suma, se tomaran los datos de los tiempos estándar de los procesos en paralelo, por ende se tomara el tiempo estándar el producto de filete de pechuga y pierna principal ya que el otro producto se produce por consecuencia.

Tabla 29: Cálculo del tiempo estándar total por semana – Pre test.

	fernando Formato de	cálculo del tiemp	o estándar.							
	ACTIVIDAD	F	Fileteo de pechuga y pierna.							
HORA D	DE INICIO		06:00							
N° DE D	ATOS TOMADOS		1							
Item	DESCRIPCIÓN	Total Tiempo Estándar por producto	Total Tiempo Estándar por proceso	Producción	Proceso SKU'S					
1	FIL.PECHUGA C/M S/S 300 gr	15.8	4- 4							
2	FIL.PECHUGA C/M S/S X 5 Kg.	18.0	15.8	Paralelo	Productos de filete					
3	FIL. PECHUGA ECONOMICO X 1kg	9.4	21.0	Paralelo	de pechuga.					
4	CORTE KFC	21.0	21.0	Paralelo						
5	FILETE BIG CRUNCH Bol. 12 Und.	25.7	25.7	Paralelo	Productos de filete					
6	FILETE PIERNA PPPC.	17.0	25.7	Faraleio	de pierna.					
7	FILETE DE PIERNA C/P Bol. X 3.0 kg	5.5	5.5	Paralelo	ue pierna.					
	TOTAL	112.3	68.0		·					

Según la tabla número 29, muestra que para cumplir las orden de producción de los distintos productos de pechugas y piernas se necesita las siguientes horas de proceso: 15.8 horas para producir el filete de pechuga de 300 gr y el filete corte mariposa SANTA (proceso en paralelo), 21.0 horas para producir el filete de pechuga corte KFC y el filete de pechuga económico x 1 (proceso en paralelo), 25.7 horas para producir el filete de pierna big crunch y el filete de pierna para PPPC (proceso en paralelo) y 5.5 horas para producir el filete de pierna con piel x 3, haciendo un total de horas de 68.0 horas, en consecuencia se tiene que estandarizar los tiempos de proceso para poder cumplir con los pedidos proyectado eso se lograra mejorando los tiempos estándares de los procesos de pechugas y piernas.

Variable Dependiente: Productividad – Pre test

Rendimiento del tiempo.

Sabiendo que el rendimiento del tiempo es un pilar fundamental para mejorar la productividad de proceso de fileteo de pechugas y piernas, se hizo un análisis mediante la siguiente formula:

REND.T = ((*T.PROY/CICLO*)/(*T.E/EC/CICLO*) -1) *X* 100%

Toneladas de producción.

Teniendo en cuenta que las toneladas de producción es el resultado del proceso de fileteo de pechugas y piernas derivados de las ordenes de producción y es el complemento del rendimiento del tiempo para hallar la productividad del proceso de fileteo, por ello, se hizo un análisis mediante la siguiente formula.

Tn.PROD = (Tn.EJEC)/ $(Tn.PROY) \times 100\%$

Productividad.

La productividad del presente estudio fue medido mediante la siguiente formula:

Productividad

Ejecutada (tn/hora) = (Tn. Producción .Ejec /
Tiempo. Ejec) x 100 %

Tabla 30: Productividad semanal - Pre test.

Semanas	Tiempo.Proyectado /Ciclo	Tiempo. Ejecutado /Ciclo	Rendimiento. Tiempo	Toneladas. Proyectado		Remanente de proceso (tn)			Productividad Ejecutada (tn/ hora)
2	66.00	53.08	24.35%	45.00	40.93	5.34	35.59	79.09%	67.05%
3	66.00	54.50	21.15%	45.00	41.46	5.41	36.05	80.11%	66.15%
4	66.00	56.30	17.32%	45.00	42.26	5.51	36.75	81.67%	65.31%
5	66.00	55.48	19.18%	45.00	41.73	5.44	36.29	80.64%	65.50%
6	66.00	57.20	15.63%	45.00	41.50	5.41	36.09	80.20%	63.20%
7	66.00	55.70	18.56%	45.00	40.87	5.33	35.54	78.98%	63.85%
8	66.00	52.38	26.01%	45.00	40.40	5.27	35.13	78.07%	67.07%
9	66.00	51.80	27.42%	45.00	39.86	5.20	34.66	77.02%	66.91%
10	66.00	53.40	23.73%	45.00	41.15	5.37	35.78	79.51%	67.04%
11	66.00	51.20	28.98%	45.00	38.66	5.04	33.62	74.71%	65.68%
12	66.00	51.90	27.17%	45.00	37.03	4.83	32.20	71.56%	62.05%
13	66.00	52.67	25.36%	45.00	40.71	5.31	35.40	78.67%	67.22%
14	66.00	54.10	22.10%	45.00	41.48	5.41	36.07	80.16%	66.71%
15	66.00	52.18	26.50%	45.00	39.35	5.13	34.22	76.04%	65.59%
16	66.00	50.90	29.67%	45.00	36.79	4.80	31.99	71.09%	62.85%
17	66.00	51.80	27.48%	45.00	30.04	3.92	26.12	58.04%	50.47%
18	66.00	51.20	28.91%	45.00	30.28	3.95	26.33	58.51%	51.43%
19	66.00	51.30	28.67%	45.00	30.83	4.02	26.81	59.58%	52.27%
20	66.00	52.36	26.10%	45.00	30.83	4.02	26.81	59.58%	51.22%
21	66.00	50.60	30.45%	45.00	34.07	4.44	29.63	65.84%	58.57%
22	66.00	51.23	28.89%	45.00	34.87	4.55	30.32	67.38%	59.22%
23	66.00	49.65	32.94%	45.00	34.56	4.51	30.05	66.78%	60.52%
24	66.00	51.83	27.35%	45.00	33.74	4.40	29.34	65.20%	56.61%

Fuente: Realización propia, 2021 (Excel).

Tabla 31: Productividad mensual – Pre test.

Mes	Tiempo.Proyectado /Ciclo	Tiempo. Ejecutado /Ciclo	Rendimiento. Tiempo	Toneladas. Proyectado	nrima	Remanente de proceso (tn)		Toneladas. Producción	Productividad Ejecutada (tn/ hora)
Ene20	253.00	209.78	20.75%	172.50	159.38	20.79	138.59	80.34%	66.11%
Feb20	275.00	226.66	21.62%	187.50	169.64	22.13	147.51	78.67%	65.19%
Mar20	286.00	227.67	25.75%	195.00	171.47	22.37	149.10	76.46%	65.49%
Abr20	286.00	224.58	27.41%	195.00	154.02	20.09	133.93	68.68%	59.60%
May20	286.00	222.59	28.54%	195.00	140.61	18.34	122.27	62.70%	54.98%
Jun20	286.00	221.98	28.90%	195.00	145.81	19.02	126.79	65.02%	57.16%

Fuente: Realización propia, 2021 (Excel).

Según la óptica de la tabla 30 y 31, se muestra el resultado semanal y mensual de la productividad del proceso de fileteo de pechugas y piernas, estos resultados

corresponden al análisis del pre test que fueron tomados en los meses de Enero hasta junio del 2020, teniendo como resultado que en promedio la productividad está en 61.42 %, para una mejor visualización del comportamiento de la productividad se muestran la base de datos de manera diario en el anexo número 50, 51,52, 53, 54 y 55.

3.5.1.4. Análisis de las principales causas de la baja productividad.

En seguida, se evidencia las causas primordiales que generan el dilema de la baja productividad que fue construido bajo un análisis de criterios del proceso.

Tabla 32: Causas de baja productividad.

PX Ordenado	Causas	% Parcial	% Acumulado	80-20
P1	Tiempos improductivos y despilfarros de los recursos.	14.7%	14.7%	80.0%
P2	Pérdida de capacidad de proceso.	14.5%	29.2%	80.0%
P3	Tiempos en preparación de materiales.	14.2%	43.4%	80.0%
P4	Layout del ingreso al proceso ineficiente.	12.7%	56.1%	80.0%
P11	Incorrecta planificación de producción.	12.7%	68.8%	80.0%
P5	Metodología de proceso no están definidos.	11.6%	80.3%	80.0%
P6	Falta de materiales en oportunidad.	4.3%	84.7%	80.0%
P7	Método de trabajo inadecuado.	3.5%	88.2%	80.0%
P8	Excesivos tiempos muertos en las maquinas.	2.9%	91.0%	80.0%
P9	Falta de mantenimiento en las maquinas.	2.3%	93.4%	80.0%
P10	Incumplimiento de las ventanas horarias.	2.0%	95.4%	80.0%
P12	Actividades de maquina que no agregan valor.	1.4%	96.8%	80.0%
P13	Falta de capacitación en mejoras de proceso.	1.2%	98.0%	80.0%
P14	Falta de integración y trabajo en equipo.	0.9%	98.8%	80.0%
P15	Ambiente de trabajo desordenado.	0.3%	99.1%	80.0%
P16	El personal no respeta las reglas.	0.3%	99.4%	80.0%
P17	Clima laboral negativo.	0.3%	99.7%	80.0%
P18	Personal desmotivado y sin objetivos definidos.	0.3%	100.0%	80.0%

Fuente: Realización propia, 2021.

P1: Tiempos improductivos y despilfarros de los recursos.

En la empresa San Fernando, específicamente en la línea de filete de pollo los tiempos improductivos y los despilfarros de recursos son la constante principal que aqueja a la baja productividad, tal como se puede apreciar en la tabla número 15 y el anexo 56.

P2: Pérdida de capacidad de proceso.

La pérdida de capacidad de fileteo seda con las excesivos remanentes que se tiene al momento de moldear los filetes según los diferentes especificaciones técnicas de los clientes (forma, peso, tamaño),tal como se muestra en la tabla número 30 y 31, por ello que se analizará este problema de manera detallada y verificando el método de trabajo.

P3: Tiempos en preparación de los materiales.

La preparación de los materiales también influye en la baja productividad, porque demanda un tiempo en preparación para el arranque de la línea estos materiales son: balanzas, cuchillos entre otros materiales que se utilizan en la línea de filete de pollo, tal como se puede apreciar en el anexo 56.

P4: Layout del ingreso al proceso ineficiente.

El Layout del ingreso del proceso es demasiado largo, teniendo una distancia de 145 metros, tal como se puede apreciar en la tabla número 15 y anexo 56.

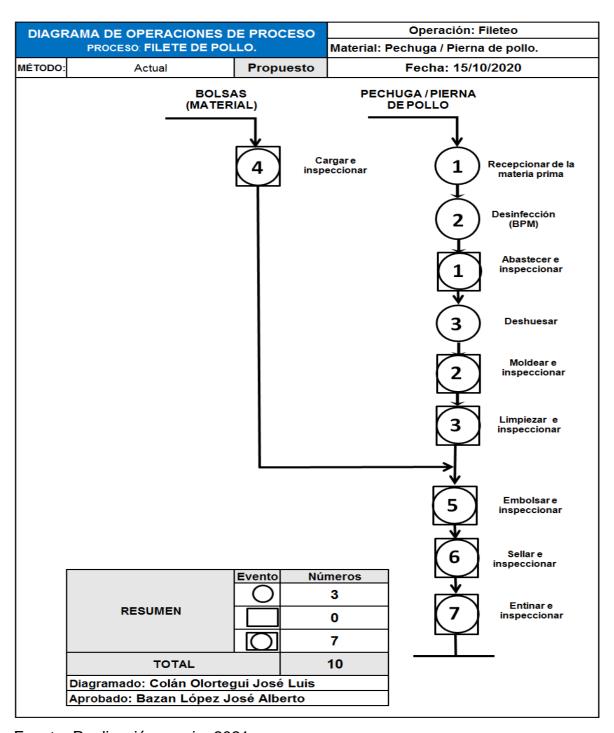
P11: Incorrecta planificación de producción.

La incorrecta planificación de la producción es un dilema que aqueja la línea de filete de pollo en la empresa San Fernando, por ello se analizó mediante el estudio del trabajo tal como se muestra en el anexo 50.

P5: Metodología de procesos no está definidos.

La deficiencia de la metodología del proceso de filete es evidente según lo analizado en la tabla número 15 y anexo 56, ya que los tiempos y distancia son excesivos.

Tabla 33: Posibles solución de las principales causas.

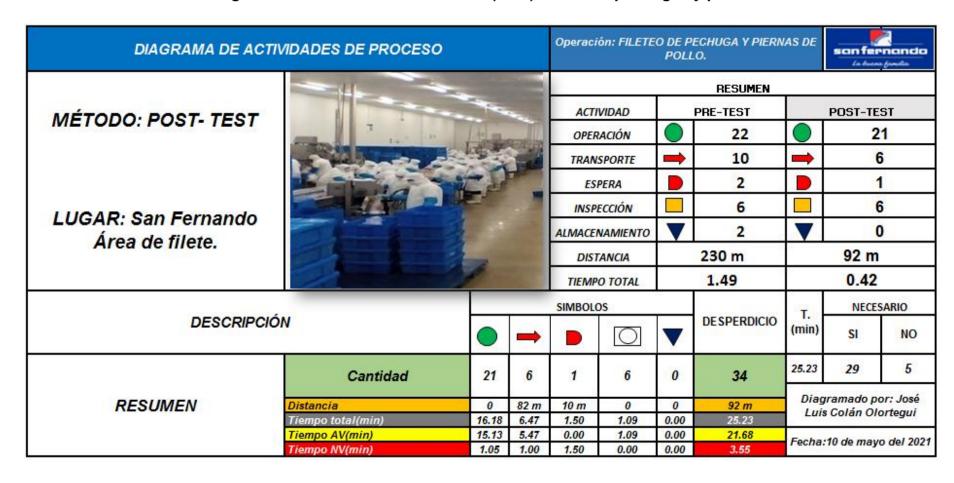

PX Ordenado	Causas	Posible solución			
P1	Tiempos improductivos y despilfarros de los recursos.	Medición del trabajo			
P2	Pérdida de capacidad de proceso.	Estudio del trabajo			
Р3	Tiempos en preparación de materiales.	Estudio de métodos			
P4	Layout del ingreso al proceso ineficiente.	Medición del trabajo			
P11	Incorrecta planificación de producción.	Estudio del trabajo			
P5	Metodología de proceso no están definidos.	Estudio del trabajo			

En la tabla número 33, se puede evidenciar las primordiales causas que aquejan la baja productividad del filete de pollo de la empresa San Fernando y sus posibles soluciones que darán respuesta al problema principal y lograr dar solución a los objetivos del actual estudio de investigación.

3.5.1.4 Cálculo del Post Test.

En seguida, se muestra el nuevo diagrama de operaciones de proceso de filete.

Tabla 34: Diagrama de Operaciones de Proceso (DOP) fileteo de pechugas y piernas - Post Test.


En el proceso de fileteo de pechugas y piernas se hizo el análisis de las actividades reduciendo los tiempos y combinando las actividades, teniendo un resultado positivo.

Después de aplicar el estudio de trabajo los principales procesos son:

La charla del personal al inicio del proceso, lavado de manos y desinfección, desinfección de mangas y guantes, desplazamiento del personal hacia las fajas de proceso, encendido de la maquina deshuesadora de pechuga y pierna, quitar las tapas de las tinas que contiene la materia prima, levantar las tinas a la tolva de abastecimiento, vaciar la materia prima a la tolva, agarrar la materia prima para la selección, abastecimiento de la materia prima (pechuga y pierna), deshuesado de la materia prima (maquina), desprender el filete del hueso, tirar el filete la faja transportadora, transporte del filete a la zona de limpieza, agarrar el filete de pechuga y pierna, Limpieza del filete de pechugas y piernas de pollo(quitar grasa y piel), tirar el filete la faja transportadora, transporte del filete a la zona de moldeado, agarrar el filete limpio de pechuga y pierna, moldeado de filete de pechugas y piernas según especificaciones técnicas, tirar el filete la faja transportadora, transporte del filete a la zona de embolsado, agarrar la bolsa de los productos, agarrar el filete moldeado, embolsado de los filetes moldeados de pechugas y piernas, enviar las bolsas al zona de sellado, agarrar las bolsas según los productos, colocar las bolsas en la faja de sellado lineal, agarrar las bolsas selladas de pechugas y pierna, entinado de productos terminados, poner tapas a las tinas de los productos terminados, etiquetado de las tinas con los productos terminados, colocar las tinas en parihuelas, transporte de los productos terminados a la zona de balanza, registro de los pesos de los productos terminados en las planillas y el transporte los productos terminados a la zona de almacenes.

En consecuencia, se mostrara el resultado del nuevo DAP del proceso de fileteo de pechugas y piernas. El detalle del análisis se muestra en el anexo 58.

Tabla 35: Resultado del diagrama de Actividades de Proceso (DAP) fileteo de pechugas y piernas- Post Test.

Según la óptica de la tabla 35, el proceso de fileteo de pechugas y piernas tiene 21 operaciones, 6 trasportes, 1 demora, 6 inspecciones, 0 almacenamientos, todo ello hace un total de 34 actividades que son esenciales para la realización del fileteo, también tiene un tiempo total de 25.23 minutos y una distancia de recorrido de 92 metros dentro del proceso.

En el proceso actual de fileteo de pechugas y piernas de pollo en la empresa San Fernando las actividades que son necesarias en el proceso son 29 y las que no son necesarias en el proceso son 5. De este análisis de mejora de proceso se calculó el porcentaje de actividades necesarias dentro del proceso de fileteo de pechugas y piernas.

Aplicando la siguiente formula se calculó el porcentaje de actividades Pre Test y Post Test.

$$IA = \left(\frac{TOTAL\ DE\ ACTIVIDADES - ACTIVIDADES\ QUE\ NO\ AGREGAN\ VALOR}{TOTAL\ DE\ ACTIVIDADES}\right)X\ \mathbf{100}\%$$

Aplicando la fórmula del índice de actividades se obtuvo que el porcentaje actividades que agregan valor al proceso es de 85.29% y el índice de actividades que no agregan valor es de 14.71%.

Tabla 36: Índice de actividades que agregan valor al proceso - Post Test.

Total de	Actividades que no	Índice de actividades que	Índice de actividades
Actividades	agregan valor	agregan valor.	que no agregan
34	5	85.29%	14.71%

Fuente: Realización propia, 2021.

Tabla 37: Índice de actividades en horas - Post Test.

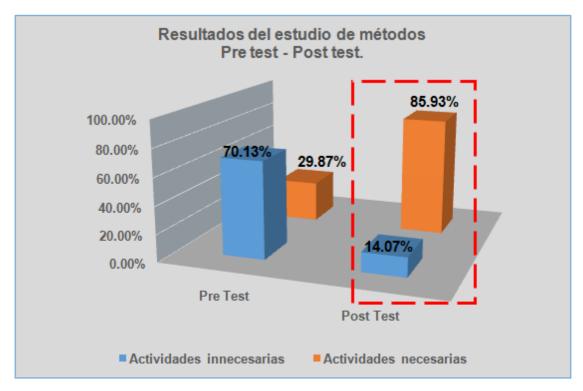

Total Actividades (h)	Actividades que no agregan valor (h)	Índice de Actividades
0.42	0.06	85.93%

Tabla 38: Análisis del estudio métodos en horas Pre test - Post test.

Índice	Pre Test	Post Test		
Actividades innecesarias	70.13%	14.07%		
Actividades necesarias	29.87%	85.93%		

En la tabla 38 y la figura 31, se puede apreciar el resultado de la implementación del estudio de métodos Pre test y Post test del estudio donde el índice de tiempo (h) de las actividades innecesarias baja de 70.13% a 14.07 % y el índice de tiempo (h) de las actividades que agregan valor al proceso aumenta de 29.87 % a 85.93 % respectivamente.

Figura 31: Resultados del estudio de métodos Pre test - Post test.

Tiempo estándar - Post test.

Con la finalidad de poder calcular el tiempo estándar del post test de los procesos de pechuga y piernas se realizó tomas de tiempos por productos para simplificar las operaciones, teniendo en cuenta que cada producto tiene distintas velocidades y Características y el proceso se comportan de manera independiente al producto de pechuga o pierna. Por ende, los datos se tomaron el mes de mayo del 2021, se realizó en total 20 tomas de tiempos en diferentes momentos del día obteniendo así los tiempos de cada proceso.

Formula.

$$TS = TNX(1+S)$$

Tabla 39: Lista de productos estudiados para el cálculo del tiempo estándar-Post test.

Item	DESCRIPCIÓN	Proceso SKU'S			
1	FIL.PECHUGA C/M S/S 300 gr				
2	FIL.PECHUGA C/M S/S X 5 Kg.	Productos de filete de pechuga.			
3	FIL. PECHUGA ECONOMICO X 1kg				
4	CORTE KFC				
5	FILETE BIG CRUNCH Bol. 12 Und.	Donadoustan de filete de			
6	FILETE PIERNA PPPC.	Productos de filete de			
7	FILETE DE PIERNA C/P Bol. X 3.0 kg	pierna.			

Cálculo del tiempo estándar del filete de pechuga 300 gr.

Para la realización del filete de pechuga de 300 gr se necesitan 24 actividades, por ello se tomaron 20 tomas de tiempo a cada actividad, estos datos fueron medidos en el mes de mayo del 2021, Tal como se puede visualizar en el anexo 60 y 61.

También, se hizo un promedio de los tiempos del desarrollo del filete de pechuga de 300 gr, donde el mayor número de observaciones fue de 9 y el menor fue 1 observación. Estos datos se pueden visualizar en el anexo 62.

Además, se utilizó el sistema de Westinghouse para calcular el tiempo estándar del proceso de filete de pechuga de 300 gr. Teniendo en cuenta que el sistema de Westinghouse califica por habilidad, esfuerzo, condiciones y consistencia. Además, se adiciono a los tiempos los suplementos por fatiga, necesidades personales y suplementos variables.

Haciendo uso de todo lo expuesto se muestra el resultado del cálculo del tiempo estándar del proceso de filete de pechuga de 300 gr. (estudio Post test), el procedimiento de los datos se muestran en el anexo 63

Tabla 40: Cálculo del tiempo estándar filete de pechuga de 300 gr. Post test.

sanfernando La buera familia											
Actividad	Fileteo de filete de pechuga 300 gr.						E	laborad	o:	Jose Luis Colan Olortegui.	
Hora Inicio	06:00 a.m.						Н	ora Fin	al	06:00 p.m.	
N° de datos tomados				1				Fecha		01-05-2021	/ 31-05-2021
	Promedio de		Westin	ghouse			Tiempo Supl		nentos		
	tiempo observado	Ξ	Е	CD	cs	Factor de valoración	normal (TN)	NP	F. V	total suplementos	Tiempo Estándar
RESUMEN	64.61	0.69	0.46	-0.72	0.24	1.00	65.28	0.07	0.16	0.23	80.30

Según la óptica de la tabla 40, se puede decir que el tiempo estándar para la realización del filete de 300 gr es de 80.30 minutos haciendo un total de 1.34 horas de proceso.

Cálculo del tiempo estándar del filete de pechuga corte mariposa santa.

De igual manera, la realización del filete de pechuga corte mariposa santa se necesitan 24 actividades, por ello se tomaron 20 tomas de tiempo a cada labor realizado, estos datos fueron medidos en el mes de mayo del 2021, Tal como se puede visualizar en el anexo 64 y 65.

También, se hizo un promedio de los tiempos de cada actividad del proceso de filete de pechuga corte mariposa santa, donde el mayor número de observaciones fue de 9 y el menor fue 1 observación. Estos datos se pueden visualizar en el anexo 66.

Además, se utilizó el sistema de Westinghouse para calcular el tiempo estándar del proceso de filete de pechuga corte mariposa santa. Así mismo, se adiciono a los tiempos los suplementos por fatiga, necesidades personales y suplementos variables.

Haciendo uso de todo lo expuesto se muestra el resultado del cálculo del tiempo estándar del proceso de filete de pechuga corte mariposa santa. (Estudio Post test), el procedimiento de los datos se muestran en el anexo 67.

Tabla 41: Cálculo del tiempo estándar del proceso de filete de pechuga corte mariposa santa – Post test.

san fernando La buera familia	SAN FERNANDO										
	Formato de cálculo del tiempo estándar.										
Actividad	Filete	Filete de pechuga corte mariposa SANTA. Elaborado: Jose Luis Colan Olortegui.									
Hora Inicio		06:00 a.m. Hora Final 06:00 p.m.) p.m.
N° de datos tomados				1				Fecha		01-05-2021	/ 31-05-2021
	Promedio de		Westin	ghouse			Tiempo	Supler	nentos		
Item Actividad	tiempo observado H E CD CS Factor de valoración						normal (TN)		F	total suplementos	Tiempo Estándar
RESUMEN	59.21	0.69	0.46	-0.72	0.24	1.00	59.88	0.07	0.16	0.23	73.65

Según la óptica de la tabla 41, se puede decir que el tiempo estándar para la realización del filete de corte mariposa SANTA es de 73.65 minutos haciendo un total de 1.23 horas de proceso.

Cálculo del tiempo estándar del filete de pechuga económico x1.

En el proceso de filete de pechuga económico x 1, se necesitan 16 actividades, por ello se tomaron 20 tomas de tiempo, estos datos fueron medidos en el mes de mayo del 2021, Tal como se puede visualizar en el anexo 68 y 69.

También, se hizo un promedio de los tiempos de cada actividad del proceso de filete de pechuga económico x 1, donde el mayor número de observaciones fue de 15 y el menor fue 1 observación. Estos datos se pueden visualizar en el anexo 70.

Además, se utilizó el sistema de Westinghouse para calcular el tiempo estándar del proceso de filete de pechuga económico x 1. Así mismo, se adiciono a los tiempos los suplementos por fatiga, necesidades personales y suplementos variables.

Haciendo uso de todo lo expuesto se muestra el resultado del cálculo del tiempo estándar del proceso de filete de pechuga económico x 1. (Estudio Post test), el procedimiento de los datos se muestran en el anexo 71.

Tabla 42: Cálculo del tiempo estándar del proceso de filete económico x1 - Post test.

sanfernando La buera familia	SAN FERNANDO											
	Formato de cálculo del tiempo estándar.											
Actividad		Filete de pollo economico x1. Elaborado: Jose Luis Colan Olortegui.										
Hora Inicio			06:00	a.m.			Н	ora Fin	al	06:00) p.m.	
N° de datos tomados				1				Fecha		01-05-2021	/ 31-05-2021	
	Promedio de		Westin	ghouse			Tiempo Supler		nentos			
Item Actividad	tiempo observado	tiempo H E CD CS valoración						NP	F	total suplementos	Tiempo Estándar	
RESUMEN	49.36	0.45	0.30	-0.48	0.16	1.00	49.79	0.07	0.16	0.23	61.24	

Según la óptica de la tabla 42, se puede decir que el tiempo estándar para la realización del filete económico x1 es de 61.24 minutos haciendo un total de 1.02 horas de proceso.

Cálculo del tiempo estándar del filete de pechuga corte KFC.

En el proceso de filete de pechuga corte KFC, se necesitan 24 actividades, por ello se tomaron 20 tomas de tiempos del proceso, estos datos fueron medidos en el mes de mayo del 2021, Tal como se puede visualizar en el anexo 72 y 73.

También, se hizo un promedio de los tiempos de cada actividad del proceso de filete de pechuga corte KFC, donde el mayor número de observaciones fue de 11 y el menor fue 1 observación. Estos datos se pueden visualizar en el anexo 74.

Además, se utilizó el sistema de Westinghouse para calcular el tiempo estándar del proceso de filete de pechuga corte KFC. Así mismo, se adiciono a los tiempos los suplementos por fatiga, necesidades personales y suplementos variables.

Haciendo uso de todo lo expuesto se muestra el resultado del cálculo del tiempo estándar del proceso de filete de pechuga corte KFC. (Estudio Post test), el procedimiento de los datos se muestran en el anexo 75.

Tabla 43: Cálculo del tiempo estándar del proceso de filete de pechuga corte KFC - Post test.

sanfernando La buera familia	SAN FERNANDO										
	Formato de cálculo del tiempo estándar.										
Actividad		Filete	o de file	ete corte	e KFC.		E	laborad	o:	Jose Luis Col	an Olortegui.
Hora Inicio		06:00 a.m. Hora Final 06:00 p.m.) p.m.
N° de datos tomados				1				Fecha		01-05-2021	/ 31-05-2021
	Promedio de		Westin	ghouse			Tiempo	Supler	nentos		
	tiempo observado H E CD CS Factor de valoración						normal (TN)		F	total suplementos	Tiempo Estándar
RESUMEN	109.50	0.69	0.46	-0.72	0.24	1.00	110.17	0.07	0.16	0.23	135.50

Según la óptica de la tabla 43, se puede decir que el tiempo estándar para la realización del filete de pechuga corte KFC es de 135.5 minutos haciendo un total de 2.26 horas de proceso.

Cálculo del tiempo estándar del filete de pierna big crunch

En el proceso de filete de pierna big crunch, se necesitan 24 actividades, por ello se tomaron 20 tomas de tiempo, estos datos fueron medidos en el mes de mayo del 2021, Tal como se puede visualizar en el anexo 76 y 77.

También, se hizo un promedio de los tiempos de cada actividad del proceso de filete de pierna big crunch, donde el mayor número de observaciones fue de 13 y el menor fue 1 observación. Estos datos se pueden visualizar en el anexo 78.

Además, se utilizó el sistema de Westinghouse para calcular el tiempo estándar del proceso de filete de pierna big crunch. Así mismo, se adiciono a los tiempos los suplementos por fatiga, necesidades personales y suplementos variables.

Haciendo uso de todo lo expuesto se muestra el resultado del cálculo del tiempo estándar del proceso de filete de pierna big crunch. (Estudio Post test), el procedimiento de los datos se muestran en el anexo 79

Tabla 44: Cálculo del tiempo estándar del proceso de filete de pierna big crunch – Post test.

sanfernando La buera familia		SAN FERNANDO										
Formato de cálculo del tiempo estándar.												
Actividad		Fileteo de pierna big crunch. Elaborado: Jose Luis Colan Olortegui.										
Hora Inicio		06:00 a.m. Hora Final 06:00 p.m.) p.m.	
N° de datos tomados				1				Fecha		01-05-2021	/ 31-05-2021	
	Promedio de		Westir	ighouse			Tiempo	Supler	nentos		-	
Item Actividad	tiempo observado	tiempo H E CD CS valoración					normal (TN)		E.	total suplementos	Tiempo Estándar	
RESUMEN	149.67	0.69	0.46	-0.72	0.24	1.00	150.34	0.07	0.16	0.23	184.92	

Según la óptica de la tabla 44, se puede decir que el tiempo estándar para la realización del filete de pierna big crunch es de 184.92 minutos haciendo un total de 3.08 horas de proceso.

Cálculo del tiempo estándar del filete de pierna con piel x 3

En el proceso de filete de pierna con piel x 3, se necesitan 28 actividades, por ello se tomaron 20 tomas de tiempo del proceso, estos datos fueron medidos en el mes de mayo del 2021, Tal como se puede visualizar en el anexo 80 y 81.

También, se hizo un promedio de los tiempos de cada actividad del proceso de filete de pierna con piel x 3, donde el mayor número de observaciones fue de 13 y el menor fue 1 observación. Estos datos se pueden visualizar en el anexo 82.

Además, se utilizó el sistema de Westinghouse para calcular el tiempo estándar del proceso de filete de pierna con piel x 3. Así mismo, se adiciono a los tiempos los suplementos por fatiga, necesidades personales y suplementos variables.

Haciendo uso de todo lo expuesto se muestra el resultado del cálculo del tiempo estándar (Estudio Post test), el procedimiento de los datos se muestran en el anexo 83.

Tabla 45: Cálculo del tiempo estándar del proceso de filete de pierna con piel x3 – Post test.

san fernando La buera familia	SAN FERNANDO										
Formato de cálculo del tiempo estándar.											
Actividad		Fileteo	de pier	na con	piel x 3.	1	E	laborad	o:	Jose Luis Col	an Olortegui.
Hora Inicio		06:00 a.m. Hora Final 06:00 p.m.) p.m.
N° de datos tomados				1				Fecha		01-05-2021	/ 31-05-2021
	Promedio de		Westir	nghouse			Tiempo	Supler	nentos		
Item Actividad	tiempo observado H E CD CS Factor de valoración						normal (TN)		F	total suplementos	Tiempo Estándar
RESUMEN	39.66	0.69	0.46	-0.72	0.24	1.00	40.33	0.07	0.16	0.23	49.61

Según la óptica de la tabla 45. Se puede decir que el tiempo estándar para la realización del filete de pierna con piel x 3 es de 49.61 minutos haciendo un total de 0.83 horas de proceso.

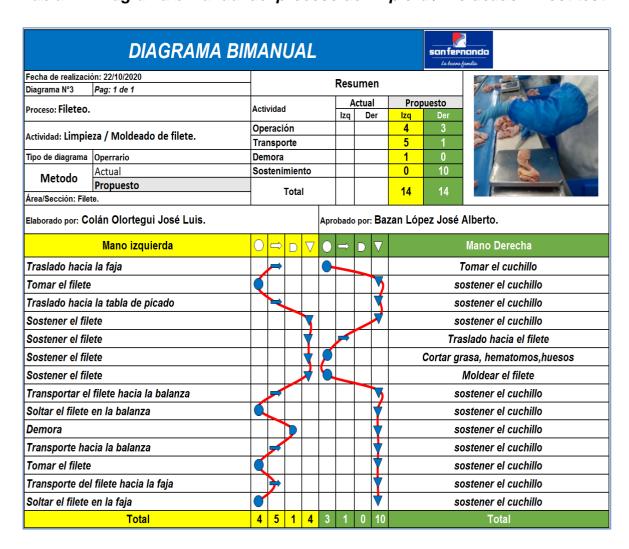
Cálculo del tiempo estándar del filete de pierna PPPC

En el proceso de filete de pierna PPPC, se necesitan 24 actividades, por ello se tomaron 20 tomas de tiempo, estos datos fueron medidos en el mes de octubre de 2020, Tal como se puede visualizar en el anexo 84 y 85.

También, se hizo un promedio de los tiempos de cada actividad del proceso de filete de pierna PPPC, donde el mayor número de observaciones fue de 13 y el menor fue 1 observación. Estos datos se pueden visualizar en el anexo 86.

Además, se utilizó el sistema de Westinghouse para calcular el tiempo estándar del proceso de filete de pierna PPPC. Así mismo, se adiciono a los tiempos los suplementos por fatiga, necesidades personales y suplementos variables.

Haciendo uso de todo lo expuesto se muestra el resultado del cálculo del tiempo estándar (Estudio Post test), el procedimiento de los datos se muestran en el anexo 87.


Tabla 46: Cálculo del tiempo estándar del proceso de filete de pierna PPPC – Pre test.

sanfernando La buera familia	SAN FERNANDO											
Formato de cálculo del tiempo estándar.												
Actividad		Fileteo de pierna para PPPC. Elaborado: Jose Luis Colan Olortegui.										
Hora Inicio		06:00 a.m. Hora Final 06:00 p.m.										
N° de datos tomados				1				Fecha		01-05-2021	/ 31-05-2021	
	Promedio de		Westir	ighouse	!		Tiempo	Supler	nentos			
	tiempo observado H E CD CS valoración						normal (TN)		F	total suplementos	Tiempo Estándar	
RESUMEN	90.40	0.69	0.46	-0.72	0.24	1.00	91.07	0.07	0.16	0.23	112.01	

Según la óptica de la tabla 46, se puede decir que el tiempo estándar para la realización del filete de pierna PPPC es de 112.01 minutos haciendo un total de 1.87 horas de proceso.

A continuación, se evidencia el resultado del diagrama bimanual donde se ha combinado el proceso de limpieza de los filetes con el proceso de moldeado, logrando así que el proceso sea más fluidos.

Tabla 47: Diagrama bimanual del proceso de limpieza / moldeado - Post test.

Con el fin de conocer el dinamismo de los productos elaborados en la línea de fileteo se mostraron los tiempos estándar por producto como se puede observar en la tabla 48, por otro lado, los productos se pueden hacer en paralelo, es decir al momento de filetear un producto como los filetes de corte mariposas el operario puede sacar el mismo corte dentro del proceso de formado.

En consecuencia, se tomaran los datos de los tiempos estándar del post test de los procesos en paralelo, por ende se tomara el tiempo estándar el producto de filete de pechuga y pierna principal ya que el otro producto se produce por consecuencia.

Tabla 48: Cálculo del tiempo estándar total por semana - Post test.

	Formato de cálculo del tiempo estándar.												
	ACTIVIDAD	F	Fileteo de pechuga y pierna.										
HORA E	DE INICIO		06:00)									
N° DE D	ATOS TOMADOS		1										
Item	DESCRIPCIÓN	Total Tiempo Estándar por producto	Total Tiempo Estándar por proceso	Producción	Proceso SKU'S								
1	FIL.PECHUGA C/M S/S 300 gr	8.0											
2	FIL.PECHUGA C/M S/S X 5 Kg.	7.4	8.0	Paralelo	Productos de filete								
3	FIL. PECHUGA ECONOMICO X 1kg	6.1	12.6	Paralelo	de pechuga.								
4	CORTE KFC	13.6	13.6	Paralelo									
5	FILETE BIG CRUNCH Bol. 12 Und.	18.5	18.5	Paralelo	Productos de filete								
6	FILETE PIERNA PPPC.	11.2	18.5	Paralelo	de pierna.								
7	FILETE DE PIERNA C/P Bol. X 3.0 kg	5.0	5.0	Paralelo	ue pierria.								
	TOTAL	69.7	45.0										

Fuente: Realización propia, 2021

Según la tabla 48, muestra que para cumplir las orden de producción de los distintos productos de pechugas y piernas se necesita las siguientes horas de proceso: 8.0 horas para producir el filete de pechuga de 300 gr y el filete corte mariposa SANTA (proceso en paralelo), 13.6 horas para producir el filete de pechuga de corte KFC y el filete de pechuga económico x 1 (proceso en paralelo), 18.5 horas para producir el filete de pierna big crunch y el filete de pierna para PPPC (proceso en paralelo) y 5.0 horas para producir el filete de pierna con piel x 3, haciendo un total de horas de 45.0 horas.

Variable Dependiente: Productividad – Post test

Aplicando los conceptos estudiados de Gestión de tiempos y Gestión de proceso se realizó a tomar los datos del post test después de la implementación del estudio del trabajo tal como se puede apreciar en la tabla 49.

Tabla 49: Productividad semanal - Post test.

Semanas	Tiempo.Proyectado/ Ciclo	Tiempo. Ejecutado /Ciclo	Rendimiento .Tiempo	Materia prima (tn)	Remanente de proceso (tn)	Toneladas. Ejecutada	Toneladas. Producción	Productividad Ejecutada (tn/ hora)
2	66.00	47.60	38.67%	41.75	3.80	37.95	84.33%	79.73%
3	66.00	47.40	39.26%	41.800	3.800	38.000	84.44%	80.18%
4	66.00	47.20	39.84%	42.130	3.830	38.300	85.11%	81.16%
5	66.00	47.50	38.97%	41.745	3.795	37.950	84.33%	79.91%
6	66.00	47.40	39.25%	41.745	3.795	37.950	84.33%	80.06%
7	66.00	46.90	40.74%	41.745	3.795	37.950	84.33%	80.92%
8	66.00	47.70	38.38%	41.624	3.784	37.840	84.09%	79.34%
9	77.00	55.10	39.76%	48.895	4.445	44.450	84.67%	80.68%
10	66.00	47.40	39.26%	41.690	3.790	37.900	84.22%	79.97%
11	66.00	47.06	40.25%	41.855	3.805	38.050	84.56%	80.86%
12	66.00	47.49	38.99%	41.690	3.790	37.900	84.22%	79.82%
13	66.00	47.38	39.31%	41.965	3.815	38.150	84.78%	80.52%
14	66.00	47.53	38.87%	42.240	3.840	38.400	85.33%	80.80%
15	66.00	46.73	41.28%	41.800	3.800	38.000	84.44%	81.35%
16	66.00	47.50	38.97%	41.800	3.800	38.000	84.44%	80.01%
17	66.00	46.50	42.02%	41.965	3.815	38.150	84.78%	82.10%
18	66.00	47.10	40.20%	41.910	3.810	38.100	84.67%	80.93%
19	66.00	46.90	40.76%	41.745	3.795	37.950	84.33%	80.93%
20	66.00	47.70	38.38%	41.855	3.805	38.050	84.56%	79.78%
21	66.00	47.50	38.97%	41.965	3.815	38.150	84.78%	80.33%
22	66.00	47.05	40.28%	41.745	3.795	37.950	84.33%	80.66%
23	66.00	47.70	38.38%	41.690	3.790	37.900	84.22%	79.47%
24	66.00	46.45	42.15%	41.525	3.775	37.750	83.89%	81.30%

Tabla 50: Productividad mensual - post test.

Mes	Tiempo.Proyectado/ Ciclo	Tiempo. Ejecutado /Ciclo	Rendimiento. Tiempo		Remanente de proceso (tn)	Toneladas. Ejecutada	Toneladas. Producción	Productividad Ejecutada (tn/hora)
Ene21	264.00	189.700	39.18%	167.420	15.220	152.200	84.56%	80.24%
Feb21	275.00	197.100	39.54%	174.009	15.819	158.190	84.37%	80.27%
Mar21	297.00	213.230	39.30%	188.265	17.115	171.150	84.52%	80.27%
Abr21	286.00	203.460	40.63%	181.720	16.520	165.200	84.72%	81.23%
May21	286.00	205.150	39.43%	181.170	16.470	164.700	84.46%	80.30%
Jun21	121.00	86.150	40.51%	76.285	6.935	69.350	84.06%	80.53%

Según la óptica de la tabla 49 y 50, se muestra el resultado semanal y mensual de la productividad del proceso de fileteo de pechugas y piernas, estos resultados corresponden al análisis del post test que fueron tomados en los meses de Enero hasta junio del 2021, teniendo como resultado que en promedio la productividad aumento de 61.42 % a 80.47 %, para una mejor visualización del comportamiento de la productividad post test se muestran la base de datos de manera diario en el anexo número 90, 91, 92, 93, 94 y 95.

3.6 Métodos de análisis de datos

El presente estudio de investigación tiene un enfoque cuantitativo, por ello se inducirá al cambio de la variable independiente a través de las técnicas del estudio del trabajo y por medio de los instrumentos de análisis de datos, con la finalidad de tener resultados en la variable dependiente, luego se procederá a analizar los datos en el programa IBM SPSS Statics 24 para realizar un análisis descriptivo e inferencial, estos datos estarán apoyados en la hoja de Excel versión 2010.

3.6.1 Análisis descriptivos

En el presente estudio de investigación se usara las medidas de tendencia central como la media que está en función a la suma de los datos estudiados, mediana que da una visión al estudio de cómo se mueve los datos dentro de la curva normal y la moda que es el dato que más se repite dentro del análisis, también se usaran las medidas de versatilidad como es clase, la variabilidad estándar de los datos, el coeficiente de variabilidad y la varianza de los datos (VALDERRAMA, 2013 pág. 230).

3.6.1.1. Análisis descriptivo de la variable independiente y dependiente.

En primer lugar, iniciaremos haciendo el análisis descriptivo de la variable independiente y dependiente con sus respectivas dimensiones, con la finalidad de dar a conocer cuál es el comportamiento de los indicadores, con respecto a las medidas de tendencia central, dispersión, simetría entre otras medias estadísticas.

Tabla 51: Estudio descriptivo de la variable independiente y dependiente en el proceso de filete de pollo.

			ESTA	ÍSTICA DESC	RIPTIVA	١.			
		VARIABLE:	INDEPENDIE	NTE	VARIABLE: DEPENDIENTE				
Estadística Descriptiva.	Dimensión 1	1: Estudio de	métodos	Dimensión 2: Tiempo Estándar	Dimensión 3: Gestión de proceso.		Dimensión 4: Gestión de tiempos.		Productividad
Estavistica Descriptiva.	Total Actividades (h)	Actividades que no agregan valor (h)	Índice de Actividades	Tiempo Estándar	Toneladas. Ejecutada	Toneladas. Producción	Tiempo.Ejecutado /Ciclo	Rendimiento .Tiempo	Ejecutada (tn/ hora)
Media	1.4984	1.0369	0.3080	67.9474	32.6868	0.7264	53.0547	0.2455	0.6151
Error típico	0.0041	0.0039	0.0025	0.0935	0.8874	0.0197	0.4457	0.0102	0.0139
Mediana	1.5000	1.0400	0.3087	68.0000	34.2200	0.7604	52.3600	0.2605	0.6381
Moda	1.5000	1.0500	0.3200	68.2000	26.8100	0.5958		0.2891	
Desviación estándar	0.0181	0.0168	0.0111	0.4074	3.8679	0.0860	1.9428	0.0444	0.0605
Varianza de la muestra	0.0003	0.0003	0.0001	0.1660	14.9606	0.0074	3.7743	0.0020	0.0037
Curtosis	-0.0562	-1.4048	-0.8221	0.6961	-1.0975	-1.0975	-0.4754	-0.6473	-0.6920
Coeficiente de asimetría	0.5856	-0.1988	0.0423	0.7792	-0.7199	-0.7199	0.8593	-0.7780	-0.9527
Rango	0.0700	0.0500	0.0384	1.6000	10.6300	0.2362	6.3000	0.1428	0.1664
Mínimo	1.4700	1.0100	0.2905	67.4000	26.1200	0.5804	50.9000	0.1538	0.5042
Máximo	1.5400	1.0600	0.3289	69.0000	36.7500	0.8167	57.2000	0.2967	0.6707
Suma	28.4688	19.7002	5.8513	1291.0000	621.0500	13.8011	1008.0400	4.6652	11.6877
Cuenta	19	19	19	19	19	19	19	19	19
Mayor (1)	1.5400	1.0600	0.3289	69.0000	36.7500	0.8167	57.2000	0.2967	0.6707
Menor(1)	1.4700	1.0100	0.2905	67.4000	26.1200	0.5804	50.9000	0.1538	0.5042
Coeficiente de Variación	0.0121	0.0162	0.0361	0.0060	0.1183	0.1183	0.0366	0.1809	0.0983
Nivel de confianza(95.0%)	0.0087	0.0081	0.0054	0.1964	1.8643	0.0414	0.9364	0.0214	0.0292

De la tabla número 51, se puede apreciar que el promedio del total de actividades alcanzado por el proceso de filete de pechugas y piernas es de 1.4984 horas con una variación de 0.0181, la mitad de los tiempos obtenidos son menores que 1.5 horas y 1.5 fue el tiempo más frecuente dentro de los datos obtenidos, la diferencia de tiempo entre el minino y el máximo es 0.07 horas, también se puede observar que el coeficiente de variación es de 0.0121 horas.

Además, se observa que la distribución del total de actividades presenta una asimetría positiva y una curtosis negativa. Por lo tanto, presenta una curva platicúrtica es decir no se comporta de manera normal.

También, se puede apreciar en la tabla número 51 que el promedio de las horas de las actividades que no agregan valor al proceso de filete de pechugas y piernas es de 1.0369 horas con una variación de tiempo de 0.0168, la mitad de los tiempos obtenidos son menores que 1.0400 horas y 1.0500 fue el tiempo más frecuente dentro de los datos obtenidos, la diferencia de tiempo entre el minino y el máximo es 0.0500 horas, también se puede observar que el coeficiente de variación es de 0.0162 horas.

Además, se observa que la distribución del total de actividades presenta una asimetría negativa y una curtosis negativa. Por lo tanto, presenta una curva platicúrtica, es decir que los datos de los tiempos no se comporta de manera normal.

De igual manera, se puede apreciar en la tabla número 51 que el promedio del índice de actividades es de 30.8 % con una variación de tiempo de 0.0111, la mitad de los tiempos obtenidos son menores que 30.87% y 32.00% fue el tiempo más frecuente dentro de los datos obtenidos, la diferencia de tiempo entre el minino y el máximo es 0.0384; también se puede observar que el coeficiente de variación es de 0.0361horas.

Además, se observa que la distribución del índice de las actividades presenta una asimetría positiva y una curtosis negativa. Por lo tanto, presenta una curva platicúrtica, es decir que los datos de los tiempos no se comporta de manera normal.

Por otro lado, en la tabla número 51, se puede apreciar que el promedio del tiempo estándar es de 67.9474 horas con una variación de tiempo de 0.4074, también se puede ver que la mitad de los tiempos obtenidos son menores que 68.0 horas y 68.20 fue el tiempo más frecuente dentro de los datos analizados, la diferencia de tiempo entre el minino y el máximo es 1.600; también se puede observar que el coeficiente de variación es de 0.0060 horas.

Además, se observa que la distribución del tiempo estándar presenta una asimetría positiva y además la curtosis es positiva. Por lo tanto, presenta una curva llamada leptocúrtica, es decir que los datos del tiempo estándar están agrupados más cerca a la media.

Igual mente, se puede decir que en la tabla número 51 que el promedio de las toneladas ejecutadas en la línea de filete de pollo es de 32.6868 tn con una variación de 3.8679, también se puede ver que la mitad de las toneladas obtenidos en el proceso de filete son menores que 34.2200 tn y 26.8100 fue el dato de toneladas más frecuente analizados, la diferencia de las toneladas de producción entre el minino y el máximo es 10.6300; también se puede observar que el coeficiente de variación es de 0.1183.

Además, se observa que la distribución de las toneladas de producción obtenida presenta una asimetría negativa y además la curtosis es negativa. Por lo tanto, presenta una curva llamada platicúrtica, es decir que los datos de las toneladas de filete ejecutado están más alejados de la media aritmética.

Por otro lado en la tabla número 51, se puede apreciar que el promedio del tiempo ejecutado por ciclo en la línea de filete de pollo es de 53.0547 horas con una variación de 1.9428, también se puede ver que la mitad de los tiempos obtenidos en el proceso de filete son menores que 52.3600 horas, la diferencia de los tiempos de producción entre el minino y el máximo es 6.3000; también se puede observar que el coeficiente de variación es de 0.0366.

Además, se observa que la distribución de los tiempos de producción obtenida presenta una asimetría positiva y además la curtosis es negativa. Por lo tanto, presenta una curva llamada platicúrtica, es decir que los datos de los tiempos

ejecutado están más alejados de la media aritmética.

Finalmente, podemos decir que el promedio de la productividad de filete de pollo es de 61.51% con una variación de 0.0605, también se puede ver que la mitad de los datos obtenidos en el proceso de filete de pollo son menores que 63.81%, la diferencia entre el minino y el máximo es 16.64%; también se puede observar que el coeficiente de variación es de 9%.

Además, se observa que la distribución de los datos de productividad obtenida presenta una asimetría negativa y además la curtosis es también negativa. Por lo tanto, presenta una curva llamada platicúrtica, es decir que los datos de los están más alejados de la media aritmética.

En consecuencia se hará uso de la fórmula de Sturges para hallar el número de intervalo, se hizo el análisis agrupado de frecuencias, con la finalidad de entender a profundo el comportamiento de los datos.

Donde k = 1 + 3.322 * log(N).

Análisis de la dimensión 1:

K= 6 y el ancho de los intervalos es de 0.0117 respectivamente.

Tabla 52: Distribución de frecuencias del total de actividades.

к	LII	LSI	Marca de clase	Frecuencia	f(x)	F(x)
11	1.47	1.48	1.48	5	0.26	0.26
12	1.48	1.49	1.49	4	0.21	0.47
13	1.49	1.51	1.50	4	0.21	0.68
14	1.51	1.52	1.51	2	0.11	0.79
15	1.52	1.53	1.52	3	0.16	0.95
16	1.53	1.54	1.53	1	0.05	1.00

Fuente: Realización propia, 2021

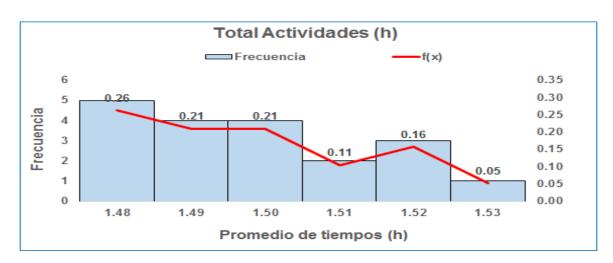
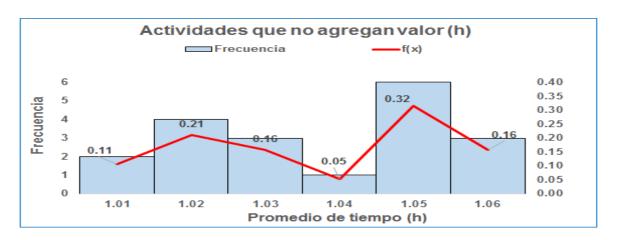


Figura 32: índice de frecuencia del total de actividades.

Fuente: Realización propia, 2021

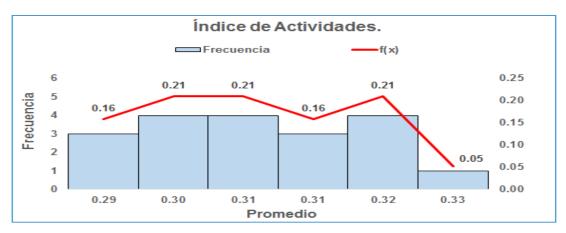

De la tabla número 52 y la figura número 32, se puede deducir que las probabilidades que se pueda obtener tiempos de 1.48 horas es de 26 % y tiene una frecuencia de 5, también se puede decir que la probabilidad de tener 1.49 horas es de 21% con una frecuencia de 4, de obtener 1.50 horas es de 21% con una frecuencia de 4, de obtener 1.51 horas es de 11% con una frecuencia de 2, de obtener 1.52 horas es de 16% con una frecuencia de 3 y la probabilidad de obtener tiempos de 1.53 horas es de 5% con una frecuencia de 1 respectivamente, en suma .la figura 49 nos indica la probabilidad de obtener tiempos entre 1.48 y 1.53 horas.

K= 6 y el ancho de los intervalos es de 0.0083 respectivamente.

Tabla 53: Distribución de frecuencias de las actividades que no agregan valor al proceso de filete.

к	LII	LSI	Marca de clase	Frecuencia	f(x)	F(x)
l1	1.01	1.02	1.01	2	0.11	0.11
12	1.02	1.03	1.02	4	0.21	0.32
13	1.03	1.04	1.03	3	0.16	0.47
14	1.04	1.04	1.04	1	0.05	0.53
15	1.04	1.05	1.05	6	0.32	0.84
16	1.05	1.07	1.06	3	0.16	1.00

Figura 33: Índice de frecuencia de las actividades que no agregan valor al proceso de filete.


De la tabla número 53 y la figura número 33, se puede deducir que las probabilidades que se pueda obtener tiempos de 1.01 horas es de 11 % y tiene una frecuencia de 2; también se puede decir que la probabilidad de tener 1.02 horas es de 21% con una frecuencia de 4; obtener 1.03 horas es de 16 % con una frecuencia de 3; obtener 1.04 horas es de 5% con una frecuencia de 1; obtener 1.05 horas es de 32% con una frecuencia de 5 y la probabilidad de obtener tiempos de 1.06 horas es de 16% con una frecuencia de 3 respectivamente, en suma la figura 50 nos indica la probabilidad de obtener tiempos entre 1.01 y 1.06 horas.

K= 6 y el ancho de los intervalos es de 0.0064 respectivamente.

Tabla 54: Distribución de frecuencias del índice de actividades proceso de filete.

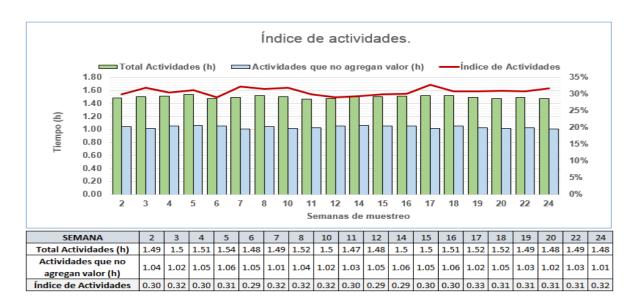

К	LII	LSI	Marca de clase	Frecuencia	f(x)	F(x)
I1	0.29	0.30	0.29	3	0.16	0.16
12	0.30	0.30	0.30	4	0.21	0.37
13	0.30	0.31	0.31	4	0.21	0.58
14	0.31	0.32	0.31	3	0.16	0.74
15	0.32	0.32	0.32	4	0.21	0.95
16	0.32	0.34	0.33	1	0.05	1.00

Figura 34: Índice de frecuencia de las actividades del proceso de filete de pollo.

De la tabla número 54 y la figura número 34, se puede decir que las probabilidades que se pueda obtener 29.0% del índice de actividades está en función al 16% de la frecuencia relativa, también se puede decir que la probabilidad de tener 30 % del índice de actividad con una frecuencia relativa del 21% y para obtener el 31% de índice de actividades está en función al 16% a 21% de la frecuencia relativa. En conclusión el índice de actividades está en función a la frecuencia relativa del tiempo.

Figura 35: Estudio de método - filete de pollo semanal.

De la figura 35, se observa que las horas de las actividades que no agregan valor al proceso son muy altas en relación a las actividades totales, por ende al mejorar el tiempo de las actividades totales aplicando el estudio del trabajo el índice aumentara en función a las actividades totales del proceso.

Análisis de la dimensión 2:


K= 6 y el ancho de los intervalos es de 0.2667 respectivamente.

Tabla 55: Distribución de frecuencias del tiempo estándar del proceso de filete.

K	LII	LSI	Marca de clase	Frecuencia	f(x)	F(x)
l1	67.40	67.67	67.53	6	0.32	0.32
12	67.67	67.93	67.80	3	0.16	0.47
13	67.93	68.20	68.07	5	0.26	0.74
14	68.20	68.47	68.33	4	0.21	0.95
15	68.47	68.73	68.60	0	0.00	0.95
16	68.73	69.01	68.87	1	0.05	1.00

Fuente: Realización propia, 2021.

Figura 36: Índice de frecuencia del tiempo estándar del proceso de filete de pollo.

De la tabla número 55 y la figura número 36, se puede deducir que las probabilidades que se pueda obtener tiempos de 67.53 horas es de 32 % y tiene una frecuencia de 6; también se puede decir que la probabilidad de tener 67.80 horas es de 16% con una frecuencia de 3; obtener 68.7 horas es de 26 % con una frecuencia de 4; obtener 68.33 horas es de 21% con una frecuencia de 4; obtener 68.87 horas es de 5% con una frecuencia de 1 y la probabilidad de obtener tiempos de 68.6 horas es de 0% respectivamente, en suma la figura 52 nos indica la probabilidad de obtener tiempos entre 67.53 y 68.87 horas.

Figura 37: Medición del trabajo - semanal.

Fuente: Realización propia, 2021.

De la figura 37, se desprende que el tiempo estándar del proceso de filete de pechugas y piernas es en promedio de 68 horas, estas horas están en función al acabado de los SKU'S, por ende, si se mejora los tiempos de los productos de pechugas y piernas se mejorara el tiempo estándar total.

Análisis de la dimensión 3:

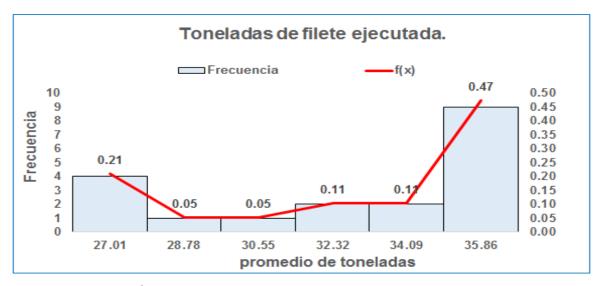

K= 6 y el ancho de los intervalos es de 1.7717 respectivamente.

Tabla 56: Distribución de frecuencias de las toneladas de filete ejecutadas semanal.

к	LII	LSI	Marca de clase	Frecuencia	f(x)	F(x)
l1	26.12	27.89	27.01	4	0.21	0.21
12	27.89	29.66	28.78	1	0.05	0.26
13	29.66	31.44	30.55	1	0.05	0.32
14	31.44	33.21	32.32	2	0.11	0.42
15	33.21	34.98	34.09	2	0.11	0.53
16	34.98	36.75	35.86	9	0.47	1.00

Fuente: Realización propia, 2021.

Figura 38: Distribución de frecuencia de toneladas de filete ejecutado.

Fuente: Realización propia, 2021.

De la tabla número 56 y la figura número 38, se puede deducir que las probabilidades que se pueda obtener una producción de 27.01 tn es de 21 % y tiene una frecuencia de 4; también se puede decir que la probabilidad de tener una producción de 28.78 a 30.55 tn es de 5 % con una frecuencia de 1 y obtener 32.32 a 34.09 tn es de 11 % con una frecuencia de 2; por ultimo para probabilidad de obtener una producción de 35.86 tn es de 47% respectivamente.

K= 6 y el ancho de los intervalos es de 1.050 respectivamente.

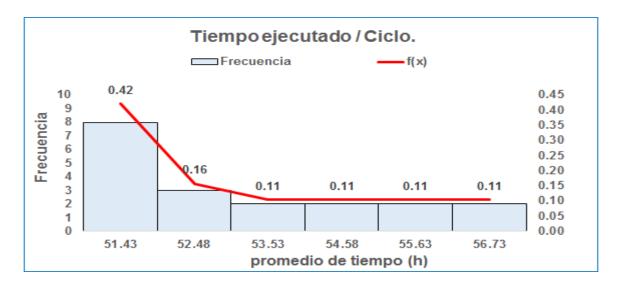

Análisis de la dimensión 4:

Tabla 57: Distribución de frecuencias del tiempo ejecutado / Ciclo.

К	LII	LSI	Marca de clase	Frecuencia	f(x)	F(x)
l1	50.90	51.95	51.43	8	0.42	0.42
12	51.95	53.00	52.48	3	0.16	0.58
13	53.00	54.05	53.53	2	0.11	0.68
14	54.05	55.10	54.58	2	0.11	0.79
15	55.10	56.15	55.63	2	0.11	0.89
16	56.15	57.30	56.73	2	0.11	1.00

Fuente: Realización propia, 2021.

Figura 39: Análisis de frecuencia del tiempo ejecutado/ ciclo.

Fuente: Realización propia, 2021.

De la tabla número 57 y la figura número 39, se puede decir que las probabilidades que pueda obtener un tiempo ejecutado de 51.43 horas es de 42% y tiene una frecuencia de 8; también se puede decir que la probabilidad de tener un tiempo ejecutado de 52.48 horas es de 16% con una frecuencia de 3 y obtener tiempos ejecutados de 53.53; 54.58; 55.63 y 56.73 horas es de 11 % con una frecuencia de 2 respectivamente.

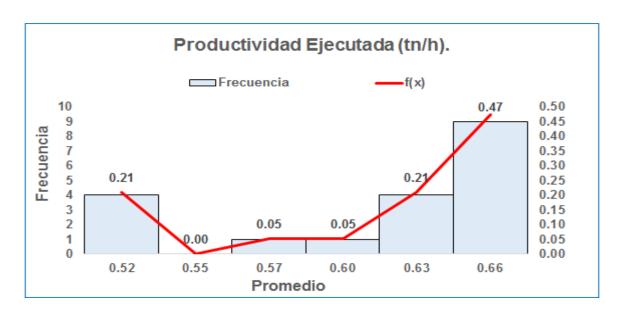
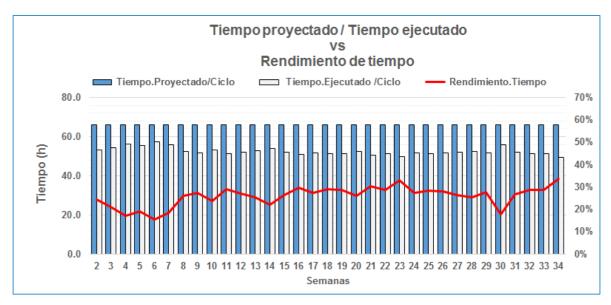

K= 6 y el ancho de los intervalos es de 0.0277 respectivamente.

Tabla 58: Distribución de frecuencias de la productividad (tn/h).

К	LII	LSI	Marca de clase	Frecuencia	f(x)	F(x)
11	0.50	0.53	0.52	4	0.21	0.21
12	0.53	0.56	0.55	0	0.00	0.21
13	0.56	0.59	0.57	1	0.05	0.26
14	0.59	0.62	0.60	1	0.05	0.32
15	0.62	0.64	0.63	4	0.21	0.53
16	0.64	0.67	0.66	9	0.47	1.00

Fuente: Realización propia, 2021.


Figura 40: Análisis de frecuencia de la productividad (tn/h).

Fuente: Realización propia, 2021.

De la tabla número 58 y la figura número 40 se puede decir que las probabilidades que se pueda obtener 52% de productividad está en función al 21% de la frecuencia relativa, también se puede decir que la probabilidad de tener 57% y 60% de productividad está en función a la frecuencia relativa de 5%, además muestra que para obtener el 63% de productividad está en función al 21% de la frecuencia relativa y por último se observa que para obtener una productividad de 66% tiene una probabilidad de 47% en función a la frecuencia relativa.

Figura 41: Análisis del tiempo proyectado / tiempo ejecutado vs rendimientosemanal.

Fuente: Empresa San Fernado, 2021.

Según la óptica de la figura 41, se desprende que el tiempo proyectado en la se manas son de 66 horas y el tiempo ejecutado está en función a los SKU'S que se producen en el día, por lo tanto, optimizando los tiempos en la línea de fileteo se podrá aumentar el rendimiento de tiempo que debe estar por debajo del tiempo proyectado el rendimiento.

A continuación, se mostrara el grafico de control del rendimiento de tiempo del filete de pollo en la empresa San Fernando.

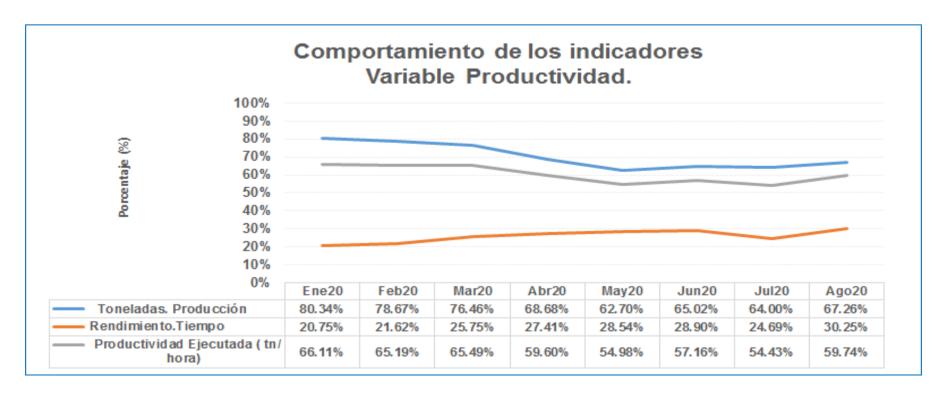

Rendimiento de tiempo. 14.0 70% 12.0 60% 10.0 50% Tiempo (h) 8.0 40% 6.0 30% 4.0 20% 2.0 10% 0.0 0% Ene20 Feb20 Mar20 Abr20 May20 Jun20 Jul20 Ago20 Tiempo, Provectado/Ciclo 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 Tiempo. Ejecutado / Ciclo 9.121 9.066 8.757 8.638 8.561 8.538 8.830 8.448 Rendimiento.Tiempo 0.216 0.274 0.285 0.247 0.303 0.207 0.258 0.289

Figura 42: Análisis del rendimiento de tiempo de filete de pollo - Mensual.

Fuente: Empresa San Fernado, 2021.

De la figura 42, se observa como es el comportamiento del rendimiento del tiempo en el proceso de filete de pollo en la empresa San Fernado, también se pude decir que a medida se trabaje en el tiempo ejecutado el rendimiento del tiempo aumenta, tal como se puede evidenciar en los meses de marzo, abril, mayo y junio con respecto al mes de enero y febrero del 2020.

Figura 43: Comportamiento de los indicadores de la variable - productividad.

Fuente: Empresa San Fernado, 2021.

De la figura número 43, se pude expresar que en enero del 2020 se obtuvo índice de producción de 80.34% y la productividad fue de 66.11% con un rendimiento de tiempo de 20.75%; en el mes de febrero se obtuvo 78.67 de índice de producción, 65.19% de productividad, 21.62% de rendimiento de tiempo; en el mes de marzo se obtuvo 76.46% de índice de producción, 65.49% de productividad y 25.75 de rendimiento de tiempo; en el mes de abril se obtuvo 68.68% de índice de producción, 59.60% de productividad y un rendimiento de 27.41%; en el mes de mayo se obtuvo 62.70% de índice de producción, 54.98% de productividad y un rendimiento de tiempo de 28.54%; en el mes de junio se obtuvo 65.02% de índice de producción, 57.16% de productividad y un rendimiento de tiempo de 28.90%; en el mes de julio se obtuvo 64.00% de índice de producción, 54.43% de productividad y un rendimiento de 24.69% y por último , en el mes de agosto se obtuvo 67.26% de índice de producción, 59.74% de productividad y un rendimiento de tiempo de 30.25%.

3.6.2 Análisis Inferencial

Después de analizar los datos con los programas estadísticos, se ejecutara las comparaciones de las medias que ayudara al estudio a contrastar las hipótesis. Por ello, cabe mencionar que en el presente estudio optaremos por dos estadígrafos Shapiro Wilk y Kolmogorov Smimov, se usara el primer estadígrafo Shapiro Wilk si la muestra es inferior a 30 datos analizados o Kolmogorov Smimov si la muestra es mayor a 30 datos analizados. Teniendo en cuenta que si las variables de estudio tienen un carácter paramétrico se usara el T-Student, por otro lado si las variables de estudio resultan ser de carácter no paramétrico se usara Wilcoxon.

Con la finalidad de conocer la normalidad de las dimensiones de estudio se hizo uso del sistema SPSS 24 tal como se puede apreciar en el anexo número 96 y 97, teniendo en cuenta que el número de muestras son 19 órdenes de producción de filete de pechugas y piernas (t) se analizara con el estadígrafo de Shapiro Wilk para el análisis de normalidad.

Tabla 59: Normalidad de las dimensiones de estudio.

		Pruebas de	normalidad				
	Dimensiones	Shapiro-Wilk					
	Difficultiones	Estadístico	gl	Sig.	Normalidad		
ıte	Total de actividades	0.935	19	0.218	Paramétrico		
Variables independiente	Actividades que no agregan valor	0.907	19	0.066	Paramétrico		
Val	Índice de actividades	0.967	19	0.713	Paramétrico		
ž	Tiempo estándar	0.898	19	0.045	No Paramétrico		
te s	Toneladas ejecutadas	0.835	19	0.004	No Paramétrico		
ble	Toneladas de producción	0.835	19	0.004	No Paramétrico		
/ariables :pendient	Tiempo ejecutado	0.883	19	0.024	No Paramétrico		
Variables dependiente	Rendimiento de tiempo	0.892	19	0.036	No Paramétrico		
р	Productividad ejecutada	0.804	19	0.001	No Paramétrico		

^{*.} Esto es un límite inferior de la significación verdadera.

Fuente: Realización propio, 2021. (SPSS 24).

Teniendo encueta que si el nivel de significancia es menor que 0.05 los datos no siguen un comportamiento normal (sig. < 0.05), por ende si el nivel de significancia es mayor que 0.05 los datos siguen una distribución normal (sig. > 0.05).

En consecuencia la tabla 59, muestra que las dimensiones total de actividades, actividades que no agregan valor, índice de actividades tienen un comportamiento paramétrico ya que el nivel de significancia es mayor a 0.05 (sig. >0.05). Por otro lado, las dimensiones tiempo estándar, toneladas ejecutadas, toneladas de producción, tiempo ejecutado, rendimiento de tiempo y la productividad ejecutada tienen un comportamiento no paramétrico ya que el nivel de significancia es menor a 0.05 (sig. < 0.05).

3.7 Aspectos éticos

El presente trabajo de investigación está alineado a las normas de ordenamiento derivados de la casa de estudio de la Universidad Cesar Vallejo, a lo largo de la redacción del presente estudio se respetara las autorías de los recursos utilizados que refuerzan las variables de estudio y los datos bibliográficos insertados al estudio. Por otro lado, se respetara los datos confidenciales de la empresa cuya línea de proceso es estudiada, también se utilizaran datos reales del proceso de

a. Corrección de significación de Lilliefors

fileteo de piernas y pechugas tomadas directamente por el indagador, por todo lo mencionado este trabajo de investigación será original que indagara la problemática de la baja productividad de filete de pollo.

En fin, la presente investigación respetara todas las normativas impuestas por la institución UCV, y por la Facultad de Ingeniería Industrial, donde se ratifica el compromiso de autenticidad del estudio y el uso adecuado de la información de la empresa.

4.1 Recursos y Presupuestos

En presente estudio de investigación los recursos humanos y materiales son esenciales para emprender el estudio, por ello se hará uso de ellos de manera responsable y equitativa, teniendo en cuenta los conceptos de eficiencia y eficacia de los recursos.

4.1.1 Recursos Humanos

Con el fin de que el presente estudio de investigación prospere de manera satisfactoria se emplearan los siguientes recursos humanos:

- 01 Investigador. El investigador es el encargado de indagar los procedimientos y ejecución de las actividades realizadas en el campo de estudio, con el fin de recolectar los datos de manera eficiente, para el análisis y toma de decisiones en el proyecto de investigación.
- 01 Encargado de línea de filete. es el encargado de dirigir el proceso de fileteo de piernas y pechugas, por ello es el principal apoyo del indagador en el campo de estudio por el conocimiento y el método de trabajo se realiza diariamente en la línea de filete de pollo.
- 01 Asesor Metodológico. Brindará las pautas necesarias para que el estudio de investigación se elabore de manera precisa y concisa siguiendo una estructura adecuada al estudio de investigación.

4.1.2 Recursos Materiales

Los materiales que se usaran en el presente estudio de investigación son básicamente útiles de primera necesidad que toda investigación suelen utilizar. Por ello, haremos uso de algunos de estos materiales primarios para la realización del mismo.

Tabla 60: Materiales usados en el proyecto de investigación.

Descripción	Cantidad	Unidad	Precio Unitario	Importe
Papel bond A4	01	Millar	S/.10.0	S/.10.0
Lapiceros	06	Unidades	S/.1.0	S/.6.0
Perforadora	01	Unidad	S/.15.0	S/.15.0
Engrapador	01	Unidad	\$/.20.0	\$/.20.0
Grapas	01	Caja	\$/.3.5	\$/.3.5
Folder Manila	10	Unidades	\$/.0.5	\$/.5.0
Resaltador	03	Unidades	\$/.4.5	S/.13.5
USB 16GB	01	Unidad	\$/.20.0	\$/.20.0
Tablero de datos	01	Unidad	S/.15.0	S/.15.0
	S/.108.0			

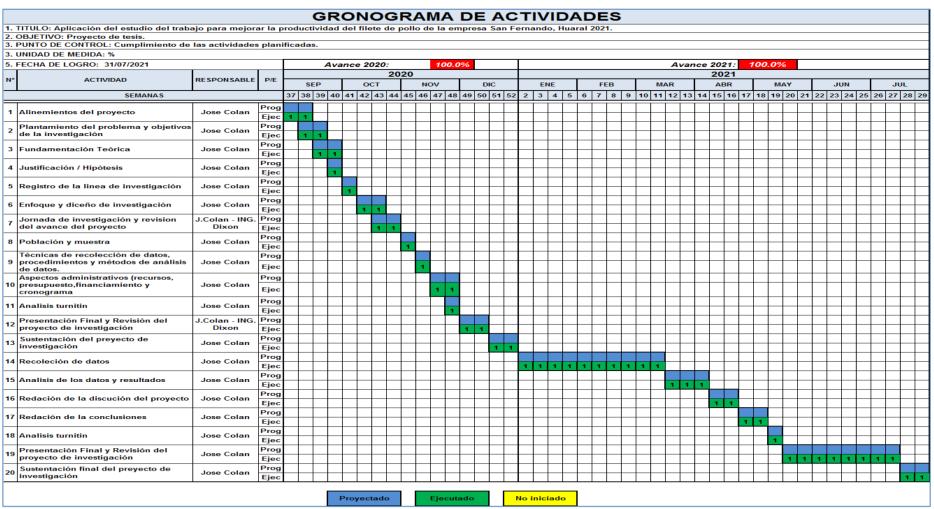
4.2.3 Presupuesto

En el presente estudio de investigación se calculó el siguiente presupuesto para asegurar la viabilidad del estudio.

Tabla 61: Presupuesto del proyecto de investigación.

CLASIFICADOR DE GASTOS	DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO S/.
2	GASTOS PRESUPUESTARIOS			
2.3	BIENES Y SERVISIOS			
2.3.1	Compras de Bienes			
2.3.1.5	Materiales útiles			
2.3.1.5.1	DE OFICINA			
2.3.1.5.1 2	Papeleria en General, útiles y Materiales de oficina			
	Papel bond A4	1	Millar	S/.10.0
	Lapiceros	6	Unidades	S/.6.0
	Perforadora	1	Unidad	S/.15.0
	Engrapador	1	Unidad	S/.20.0
	Grapas	1	Caja	S/.3.5
	Folder Manila	10	Unidades	S/.5.0
	Resaltador	3	Unidades	S/.13.5
	USB 16GB	1	Unidad	S/.20.0
	Tablero de datos	1	Unidad	S/.15.0
2.3.22.1	SERVICIOS DE ENERGIA			
2.3.22.1	ELECTRICA, AGUA Y GAS			
2.3.22.11	Servicio de suministro de energia electrica			
	Electricidad			S/.373.3
	Servicios Basicos,			
2.3.2 2	comunicaciones, Publicidad y			
	Difunsión			
2.3.22.2	Servicios de Telefonica e Internet			
2.3.22.23	Servicio de Internet			
	Internet			S/.66.7
TOTAL			S/.	S/.548.0

CLASIFICADOR DE GASTOS	DESCRIPCIÓN	CANTIDAD	UNIDAD	COSTO S/.	
TOTALS/.					
2.3.2 2	Servicios Basicos, comunicaciones, Publicidad y Difunsión				
2.3.22.4	Impresiones, Difución e Imagen Institucional				
2.3.22.4 4	Servicios de impresiones, encuadernación y Empastado				
	Impresones	1	Millar	S/.200.0	
	Anillados	4	Unidades	S/.16.0	
	Empastado	4	Unidades	S/.100.0	
	Fotocopias	600	Unidades	S/.60.0	
	Imprevistos	-	Unidades	S/.92.4	
TOTALS/.					


4.2 Financiamiento

El financiamiento del actual proyecto de investigación será ha sumido totalmente con capital propios el indagador.

4.3 Cronograma de ejecución.

Para un mejor análisis de las actividades que se van a realizar durante la ejecución del proyecto de investigación, se empleara la herramienta de planificación (diagrama de Gantt). Todo ello, con el fin de hacer seguimiento al avance del proyecto, también esta herramienta será un indicador visual que ayudará al indagador a tomar acción si alguna actividad no se está cumpliendo en el plazo indicado.

Tabla 62: Cronograma de actividades.

5.1 Análisis descriptivo

En primer lugar, se hizo el análisis descriptivo de los resultados del pre test y el post test de la aplicación del estudio del trabajo cuyo objetivo es mejorar la productividad del filete de pollo de la empresa san fernando.

5.1.1 Variable Independiente: Estudio del trabajo

5.1.1.2 Dimensión: Estudio de métodos

Indicador: Índice de actividades.

Tabla 63: Síntesis del estudio de métodos.

SÍNTESIS				
ACTIVIDAD	SIMBOLOS	PRE-TEST	POST-TEST	
Operación		22	21	
Transporte	1	10	6	
Espera		2	1	
Inspección		6	6	
Almacenamiento		2	0	
Actividades que no agregan	13	5		
Actividades que agregan val	29	29		
TOTAL	42	34		
Distancia (m)		230	92	
Tiempo (h)		1.49	0.42	
Actividades que no agregan	1.04	0.06		
Actividades que agregan valor (h)		0.44	0.36	

Fuente: Realización propia, 2021.

Tabla 64: Índice de actividades que son necesarias.

ACTIVIDADES	FORMULA	PRE -TEST	POST-TEST	PRE-TEST	POST-TEST
Actividades necesarias	TOTAL DE ACTIVIDADES - ACTIVIDADES QUE NO AGREGAN VALOR X 100 %	_ 29	_29_	69.05%	85.29%
Actividades liecesarias	TOTAL DE ACTIVIDADES	42	34	09.00/0	03.29 /0
Actividades innecesarias	TOTAL DE ACTIVIDADES - ACTIVIDADES QUE AGREGAN VALOR X 100 %	13	5	30.95%	14.71%
Actividades innecesarias	TOTAL DE ACTIVIDADES	42	34	30.93%	14.7 170

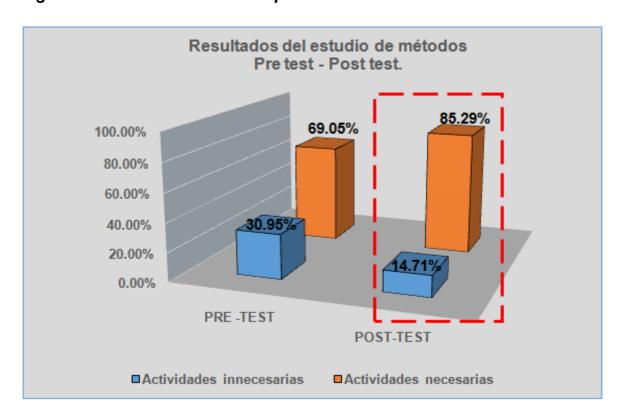


Figura 44: Índice de actividades que son necesarias.

Según la óptica de la tabla 64 y la figura 44, da muestra del incremento de las actividades necesarias pasando de un 69.05% a un 85.29% del total de las actividades para la realización del fileteo de pechugas y piernas en la empresa san fernando. Por ello, podemos decir que las actividades necesarias tuvieron un índice de incremento después de la aplicación del estudio del trabajo de un 16.25% y un índice de mejora de 23.53%.

Tabla 65: Índice de actividades en horas que son necesarias.

ACTIVIDADES	FORMULA		PRE-TEST	POST-TEST	PRE-TEST	POST-TEST
Actividades necesarias	TOTAL DE ACTIVIDADES - ACTIVIDADES QUE NO AGREGAN VALOR	– X 100 %	0.44	0.36	29.87%	85.93%
Actividades necesanas	TOTAL DE ACTIVIDADES	- X 100 /0	1.49	0.42	29.01%	60.95%
Actividades innecesarias	TOTAL DE ACTIVIDADES - ACTIVIDADES QUE AGREGAN VALOR	—X 100 %	1.04	0.06	70 420/	14.07%
Actividades lillecesarias	TOTAL DE ACTIVIDADES		1.49	0.42	70.13%	14.07%

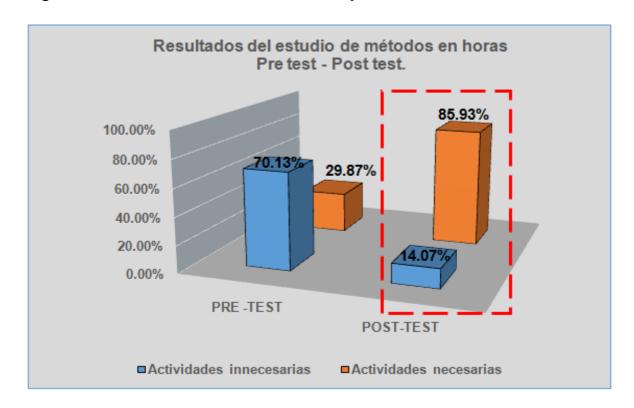
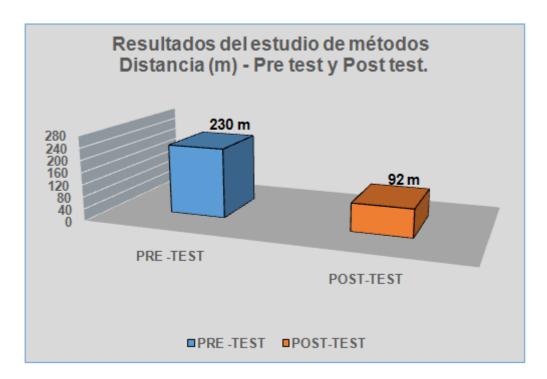
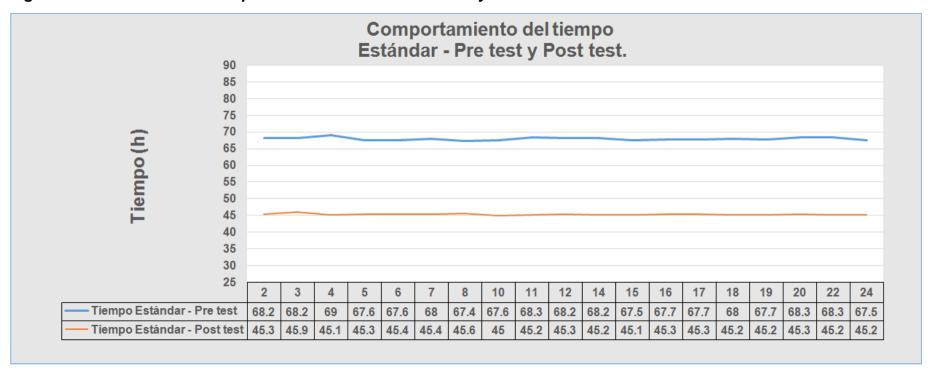


Figura 45: Índice de actividades en horas que son necesarias.

Según la óptica de la tabla 65 y la figura 45, da muestra del incremento de las actividades necesarias en horas pasando de un 29.87% a un 85.93% del total de las actividades para la realización del fileteo de pechugas y piernas en la empresa san fernando. Por ello, podemos decir que las actividades necesarias tuvieron un índice de incremento después de la aplicación del estudio del trabajo de un 56.06%.




Figura 46: Resultado de la distancia (m) - Pre test y post test.

Según la figura 46, se puede visualizar que la distancia recorrida en el DAP del proceso de producción de filete de pechugas y piernas se ha reducido de 230 m a 92 m. por lo tanto, se disminuyó la distancia de recorrido de 138 m, logrando así un índice de mejora de 60 % después de la implementación del estudio del trabajo.

5.1.1.3 Dimensión: Medición del trabajo

Indicador: Tiempo estándar.

Figura 47: Resultados del tiempo estándar semanal - Pre test y Post test.

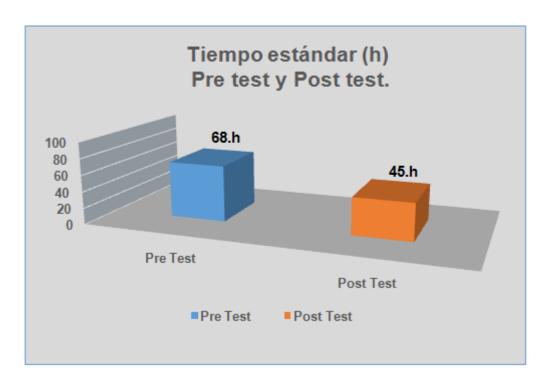


Figura 48: Resultados de tiempo estándar - Pre test y Post test.

Según la figura 47 y 48, se puede visualizar que el tiempo estándar para realizar una orden de producción de filete de pollo se ha reducido de 68 horas a 45 horas. Por lo tanto, se disminuyó las horas de producción en 23 horas, logrando así un índice de mejora de 33.8 % después de la implementación del estudio del trabajo.

5.1.2 Variable Dependiente: Productividad

Figura 49: Comportamiento de la productividad semanal - Pre test y Post test.

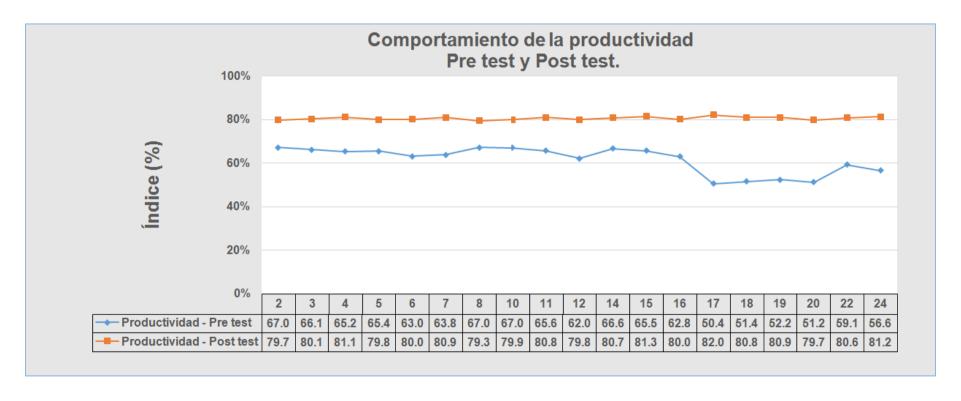


Tabla 66: Resultado de la productividad - Pre test y Post test.

Productividad -		Productividad -	
SEMANA	Pre test	Post test	
2	67.05%	79.73%	
3	66.15%	80.17%	
4	65.28%	81.14%	
5	65.41%	79.89%	
6	63.09%	80.06%	
7	63.81%	80.92%	
8	67.07%	79.33%	
10	67.00%	79.96%	
11	65.66%	80.85%	
12	62.04%	79.81%	
14	66.67%	80.79%	
15	65.58%	81.32%	
16	62.85%	80.00%	
17	50.42%	82.04%	
18	51.43%	80.89%	
19	52.26%	80.92%	
20	51.20%	79.77%	
22	59.18%	80.66%	
24	56.61%	81.27%	
PROMEDIO	61.50%	80.50%	

Según la figura 49 y la tabla 66, se puede visualizar que la productividad del filete de pollo aumento de 61.50% a un 80.50%. Por lo tanto, se puede decir que el índice de incremento es de 19.00% y el índice de mejora es de 30.90% después de la implementación del estudio del trabajo.

5.1.2.1 Dimensión: Gestión de tiempos

Indicador: Rendimiento del tiempo.

Figura 50: Comportamiento del rendimiento del tiempo semanal - Pre test y Post test.

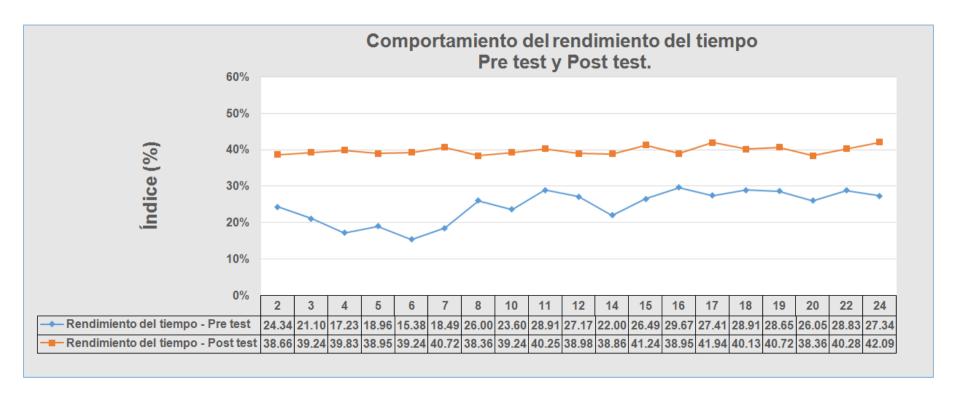


Tabla 67: Resultado del rendimiento del tiempo - Pre test y Post test.

	Rendimiento	Rendimiento
SEMANA	del tiempo -	del tiempo -
	Pre test	Post test
2	24.34%	38.66%
3	21.10%	39.24%
4	17.23%	39.83%
5	18.96%	38.95%
6	15.38%	39.24%
7	18.49%	40.72%
8	26.00%	38.36%
10	23.60%	39.24%
11	28.91%	40.25%
12	27.17%	38.98%
14	22.00%	38.86%
15	26.49%	41.24%
16	29.67%	38.95%
17	27.41%	41.94%
18	28.91%	40.13%
19	28.65%	40.72%
20	26.05%	38.36%
22	28.83%	40.28%
24	27.34%	42.09%
PROMEDIO	24.50%	39.70%

Según la figura 50 y la tabla 67, se puede visualizar que el rendimiento del tiempo del proceso de filete de pollo aumento de 24.50% a un 39.70%. Por lo tanto, se puede decir que el índice de incremento es de 15.20% y el índice de mejora es de 62.04% después de la implementación del estudio del trabajo.

5.1.2.2 Dimensión: Gestión de proceso

Indicador: Toneladas de producción.

Figura 51: Comportamiento de las toneladas de producción semanal - Pre test y Post test.

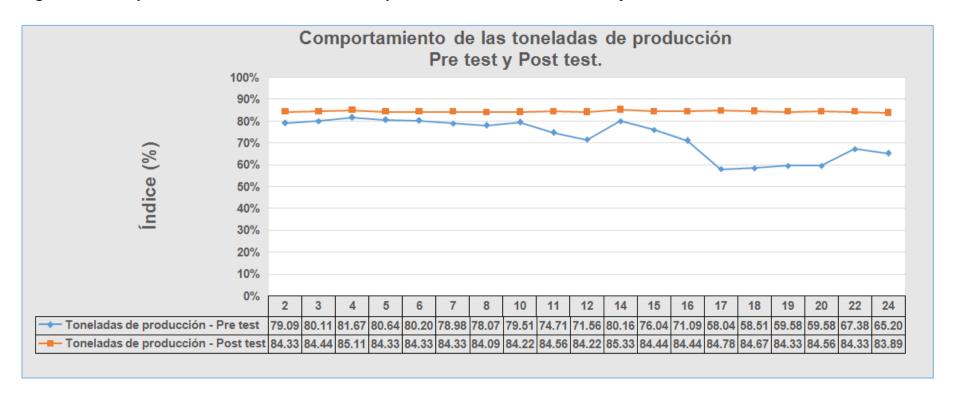


Tabla 68: Resultados de las toneladas de producción - Pre test y Post test.

	Toneladas de	Toneladas de
SEMANA	producción -	producción -
	Pre test	Post test
2	79.09%	84.33%
3	80.11%	84.44%
4	81.67%	85.11%
5	80.64%	84.33%
6	80.20%	84.33%
7	78.98%	84.33%
8	78.07%	84.09%
10	79.51%	84.22%
11	74.71%	84.56%
12	71.56%	84.22%
14	80.16%	85.33%
15	76.04%	84.44%
16	71.09%	84.44%
17	58.04%	84.78%
18	58.51%	84.67%
19	59.58%	84.33%
20	59.58%	84.56%
22	67.38%	84.33%
24	65.20%	83.89%
PROMEDIO	72.60%	84.40%

Según la figura 51 y la tabla 68, se puede visualizar que las toneladas de producción del proceso de filete de pollo aumento de 72.60% a un 84.40%. Por lo tanto, se puede decir que el índice de incremento es de 11.80% y el índice de mejora es de 16.25% después de la implementación del estudio del trabajo.

5.2 Análisis inferencial

En primer lugar, se efectuó la normalidad de los datos de la dimensiones y se analizó mediante el estadígrafo de Shapiro Wilk, ya que los datos analizados son menores a 30, tal como se puede ver en la tabla 69.

Tabla 69: Tipo de estadígrafos.

Tipo de muestra	Descripción	Estadígrafo
Muestra grande	n > 30	KOLMOGROROV SMIRNOV
Muestra pequeña	n < 30	SHAPIRO WILK

Fuente: Realización propia, 2021.

Tabla 70: Normalidad de las dimensiones - Pre test y Post test.

	Pruebas de normalidad -Shapiro-Wilk						
			Pre test	Post test			
	Dimensiones	Estadístico	gl	Sig.	Estadístico	gl	Sig.
_	Total de actividades	0.935	19	0.218	0.633	19	0.000
Variables independiente	Actividades que no agregan valor	0.907	19	0.066	0.870	19	0.014
Variables Iependier	Índice de actividades	0.967	19	0.713	0.929	19	0.169
hii	Tiempo estándar	0.898	19	0.045	0.828	19	0.003
_	Toneladas ejecutadas	0.835	19	0.004	0.893	19	0.037
oles iente	Toneladas de producción	0.835	19	0.004	0.884	19	0.025
Variables dependiente	Tiempo ejecutado	0.883	19	0.024	0.919	19	0.109
de	Rendimiento del tiempo	0.892	19	0.036	0.917	19	0.100
	Productividad ejecutada	0.804	19	0.001	0.948	19	0.371

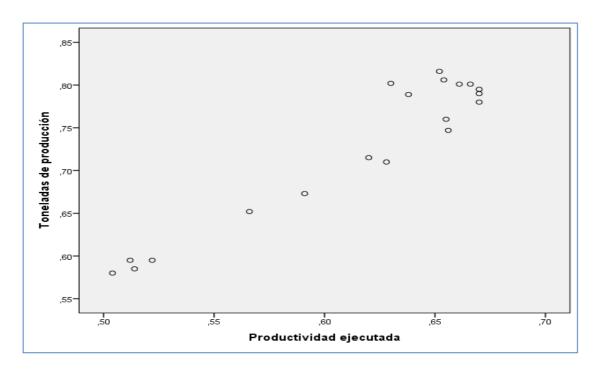
^{*.} Esto es un límite inferior de la significación verdadera.

Fuente: Realización propia, 2021.

Teniendo encueta que si el nivel de significancia es menor que 0.05 los datos no siguen un comportamiento normal (sig. < 0.05), por ende si el nivel de significancia es mayor que 0.05 los datos siguen una distribución normal (sig. > 0.05).

a. Corrección de significación de Lilliefors

Conociendo la normalidad de las dimensiones se utilizó la prueba del coeficiente de correlación de Spearman para dato no paramétrico, con la finalidad de conocer la correlación de la dimensión Toneladas de Producción y la productividad ejecutada. Tal como se puede apreciar en la tabla 71.


Tabla 71: Correlación de las dimensión Toneladas ejecutadas/ Productividad ejecutada.

	Correla	ciones	Toneladas de producción	Productividad ejecutada
Toneladas de		Coeficiente de	1.000	,738
	producción	Sig. (bilateral)		0.000
	produccion	N	19	19
Rho de Spearman	Productividad ejecutada	Coeficiente de correlación	,738	1.000
		Sig. (bilateral)	0.000	
		N	19	19

^{**.} La correlación es significativa en el nivel 0,01 (bilateral).

Fuente: Realización propio, 2021. (SPSS 24).

Figura 52: Correlación de las dimensiones toneladas de producción/ Productividad Ejecutada.

Fuente: Realización propio, 2021. (SPSS 24).

Según la óptica de la tabla 71 y la figura 52, se aprecia que el grado de asociación

de la dimensión toneladas ejecutadas y la variable productividad tiene una fuerza

de relación fuerte y tiene una dirección positiva, esto quiere decir que a medida

que las toneladas de producción aumenta la productividad ejecutada aumenta

5.2.1 Estudio de la hipótesis general de investigación.

Según la tabla 70, el nivel de significancia de la variable productividad pre test es

menor que 0.05 y el nivel de significancia de la productividad Post test es mayor

que 0.05. Por ello, podemos decir que no siguen un comportamiento paramétrico

Por ende, para entender si la productividad ha mejorado se comparara los

promedios del pre test y post test con la prueba de Wilcoxon.

Contraste de la hipótesis general.

H₀: La aplicación del estudio del trabajo no mejora la productividad del filete de

pollo de la empresa San Fernando, Huaral 2021.

Ha: La aplicación del estudio del trabajo mejora la productividad del filete de pollo

de la empresa San Fernando, Huaral 2021.

Así mismo µ será la media de la variable productividad pre test y post test.

Matriz de decisión:

H₀: μ Pre test ≥ μ Post test

 H_a : μ Pre test < μ Post test

163

Tabla 72: Resultado de la prueba de Wilcoxon (Hipótesis general)

Estadísticos descriptivos							
N Media Desviación Mínimo Máxi							
Productividad - Pre test	19	0.615	0.060	0.504	0.670		
Productividad - Post test	19	0.805	0.007	0.793	0.820		

Fuente: Realización propio, 2021. (SPSS 24).

Según la óptica de la tabla 72, se afirma que la productividad pre test es menor que la productividad Post test. Por lo tanto, es poco probable que la hipótesis nula (H_0 : μ Pre test $\geq \mu$ Post test) sea verdadera, en consecuencia se abraza la hipótesis de investigación (H_a : μ Pre test $< \mu$ Post test). Por ende, podemos decir que la aplicación del estudio del trabajo mejora la productividad del filete de pollo de la empresa San Fernando, Huaral 2021.

Tabla 73: Resultado de significancia de Wilcoxon (Hipótesis general)

Estadísticos de prueba ^a		
Productividad Post tes		
	Pre test	
Z	-3,823°	
Sig. asintótica (bilateral) 0.000		

a. Prueba de rangos con signo de Wilcoxon

Fuente: Realización propio, 2021. (SPSS 24).

Teniendo en cuenta que:

Sig. ≤ 0.05 , es poco probable que la H₀ sea verdadero (se rechaza H₀)

Sig. > 0.05, muy probable que la H_0 se verdadero (se acepta H_0)

De acuerdo con la tabla 73, el nivel de significancia de la productividad empleado al pre test y post test es de 0.000, por lo tanto, se puede decir que se rechaza H₀ para abrazar la hipótesis de estudio.

b. Se basa en rangos negativos.

5.2.2 Estudio de la hipótesis específica (H1).

Según la tabla 70, el nivel de significancia del rendimiento del tiempo pre test es

menor que 0.05 y el nivel de significancia del rendimiento del tiempo Post test es

mayor que 0.05. Por ello, podemos decir que no siguen un comportamiento

paramétrico

Por ende, para entender si rendimiento del tiempo ha mejorado se comparara los

promedios del pre test y post test con la prueba de Wilcoxon.

Contraste de la hipótesis específica H1.

H₀: La aplicación del estudio del trabajo no mejora el rendimiento del tiempo en el

proceso de filete de pollo de la empresa San Fernando, Huaral 2021.

Ha: La aplicación del estudio del trabajo mejora el rendimiento del tiempo en el

proceso de filete de pollo de la empresa San Fernando, Huaral 2021.

Así mismo µ será la media de la dimensión rendimiento del tiempo pre test y post

test.

Matriz de decisión:

 H_0 : μ Pre test ≥ μ Post test

Ha: μ Pre test < μ Post test

165

Tabla 74: Resultado de la prueba de Wilcoxon (H1).

Estadísticos descriptivos					
N Media Desviación Mínimo Máx					
Rendimiento del tiempo - Pre test	19	0.245	0.045	0.153	0.296
Rendimiento del tiempo - Post test	19	0.397	0.011	0.383	0.420

Fuente: Realización propio, 2021. (SPSS 24).

Según la óptica de la tabla 74, se afirma que rendimiento del tiempo pre test es menor que el rendimiento del tiempo Post test. Por lo tanto, es poco probable que la hipótesis nula (H_0 : μ Pre test $\geq \mu$ Post test) sea verdadera, en consecuencia se abraza la hipótesis de investigación (H_a : μ Pre test $< \mu$ Post test). Por ende, podemos decir que la aplicación del estudio del trabajo mejora el rendimiento del tiempo en el proceso del filete de pollo de la empresa San Fernando, Huaral 2021.

Tabla 75: Resultado de significancia de Wilcoxon (H1).

Estadísticos de prueba ^a		
	Rendimiento del tiempo - Post test - Pre test	
Z	-3,823°	
Sig. asintótica (bilateral)	0.000	

a. Prueba de rangos con signo de Wilcoxon

b. Se basa en rangos negativos.

Fuente: Realización propio, 2021. (SPSS 24).

Teniendo en cuenta que:

Sig. \leq 0.05, es poco probable que la H₀ sea verdadero (se rechaza H₀)

Sig. > 0.05, muy probable que la H_0 se verdadero (se acepta H_0)

De acuerdo con la tabla 75, el nivel de significancia del rendimiento del tiempo empleado al pre test y post test es de 0.000, por lo tanto, se puede decir que se rechaza H₀ para abrazar la hipótesis de estudio.

5.2.3 Estudio de la hipótesis específica (H2).

Según la tabla 70, el nivel de significancia de las toneladas de producción pre test

es menor que 0.05 y el nivel de significancia de las toneladas de producción Post

test también es menor que 0.05. Por ello, podemos decir que no siguen un

comportamiento paramétrico

Por ende, para entender si las toneladas de producción ha mejorado se

comparara los promedios del pre test y post test con la prueba de Wilcoxon.

Contraste de la hipótesis específica H2.

H₀: La aplicación del estudio del trabajo no mejora las toneladas de producción del

filete de pollo de la empresa San Fernando, Huaral 2021.

Ha: La aplicación del estudio del trabajo mejora las toneladas de producción del

filete de pollo de la empresa San Fernando, Huaral 2021.

Así mismo µ será la media de la dimensión toneladas de producción pre test y

post test.

Matriz de decisión:

 H_0 : μ Pre test ≥ μ Post test

Ha: μ Pre test < μ Post test

167

Tabla 76: Resultado de la prueba de Wilcoxon (H2).

Estadísticos descriptivos					
N Media Desviación Mínimo Máxin estándar					
Toneladas de producción - Pre test	19	0.726	0.086	0.580	0.816
Toneladas de producción - Post test	19	0.844	0.003	0.838	0.853

Fuente: Realización propio, 2021. (SPSS 24).

Según la óptica de la tabla 76, se afirma que las toneladas de producción de filete de pollo pre test es menor a las toneladas de producción de filete de pollo Post test. Por lo tanto, es poco probable que la hipótesis nula (H_0 : μ Pre test $\geq \mu$ Post test) sea verdadera, en consecuencia se abraza la hipótesis de investigación (H_a : μ Pre test $< \mu$ Post test). Por ende, podemos decir que la aplicación del estudio del trabajo mejora las toneladas de producción del filete de pollo de la empresa San Fernando, Huaral 2021.

Tabla 77: Resultado de significancia de Wilcoxon (H2).

Estadísticos de prueba ^a		
Toneladas de producción		
	Post test - Pre test	
Z	-3,823°	
Sig. asintótica (bilateral) 0.000		

a. Prueba de rangos con signo de Wilcoxon

Fuente: Realización propio, 2021. (SPSS 24).


Teniendo en cuenta que:

Sig. ≤ 0.05 , es poco probable que la H₀ sea verdadero (se rechaza H₀)

Sig. > 0.05, muy probable que la H_0 se verdadero (se acepta H_0)

De acuerdo con la tabla 77, el nivel de significancia de las toneladas de producción de filete de pollo empleado al pre test y post test es de 0.000, por lo tanto, se puede decir que se rechaza H₀ para abrazar la hipótesis de estudio.

b. Se basa en rangos negativos.

La aplicación del estudio del trabajo confirma los resultados obtenido en el estudio mediante la reducción de los tiempos de proceso, la eliminación y combinación de las actividades que no agregan valor, todo ello indujeron al incremento del rendimiento del tiempo de proceso y las toneladas de producción del filete de pollo.

Los resultados obtenidos en el presente estudio mostraron un incremento en la productividad, el cual registro un índice de incremento de 19.00%, este resultado afirmo a la hipótesis general del estudio. También se incrementó el rendimiento del tiempo y las toneladas de producción del filete de pollo, la primera tuvo un índice de incremento de 15.20%, el cual afirmo a la primera hipótesis especifica del estudio, la segunda tuvo un índice de incremento de 11.80%, el cual afirmo a la segunda hipótesis especifica del estudio.

En consecuencia, estos resultados concuerdan con lo observado por TUDELA (2018), que logro en su estudio incrementar la productividad de 52% a 78% teniendo como índice de incremento 26%. También aumento la eficiencia y la eficacia, el primero de 82% a 87%, logro un índice de incremento de 5% y el segundo paso de 63% a 90%, logro un índice de incremento de 27%, por ello en el estudio mencionado logro afirmar positivamente las hipótesis de estudio los cuales concuerdan con el presente estudio.

También, la mejora lograda es apoyada por el investigador LIZÁRRAGA (2017), cuyos resultado fue positivos al incremento de la productividad en 36.13% en tanto a la eficiencia de los recursos incremento en 9.31% y la eficacia incremento en 15.94% 21.96%, el resultado obtenido es acorde con lo hallado por el investigador YANAC (2018), donde aplico el estudio del trabajo y mejoro el índice de productividad en un 21.96%, la eficiencia incremento en 19.34% y la eficacia en 6.27%, el cual ambos estudios concuerdan con el resultado del estudio

De la misma forma, ROJAS (2016), en su estudio logro aumentar la productividad de 42% a 49% alcanzado un índice de mejora de 7%, con respecto al a la gestión de recursos utilizados en el proceso logro un índice de incremento de la eficiencia de 12% y un índice de eficacia de 1%. Por otro lado, el investigador RAMOS (2018), en su tesis observó un incremento del índice de productividad de 37.76%,

la eficiencia tuvo un índice de incremento de 4.12% y la eficacia 11.8%, los resultados obtenidos confirma el respaldo del presente estudio.

Los resultados obtenidos por NICHO (2018), fueron positivos al aplicar el estudio del trabajo, logro incrementar el índice de productividad a 15%, también incremento el índice de la eficiencia y eficacia el primero en 8% y el segundo en 15% respectivamente, estos resultados obtenidos por Nicho contrasta con los resultados obtenidos en el presente estudio.

Por otro lado, los investigadores ESPICHAN [et al.] (2015) y VALDIVIESO [et al.] (2020), quienes implementaron el estudio de métodos de trabajo para mejorar la productividad, lograron aumentar la productividad. El primero aumento en 29.41% y el segundo investigar aumento la productividad en 78.2% y el rendimiento de los recursos usados aumento en 61.4%, estos resultados con firman que la aplicación de métodos de trabajo aumentan la productividad, respaldando así al actual estudio.

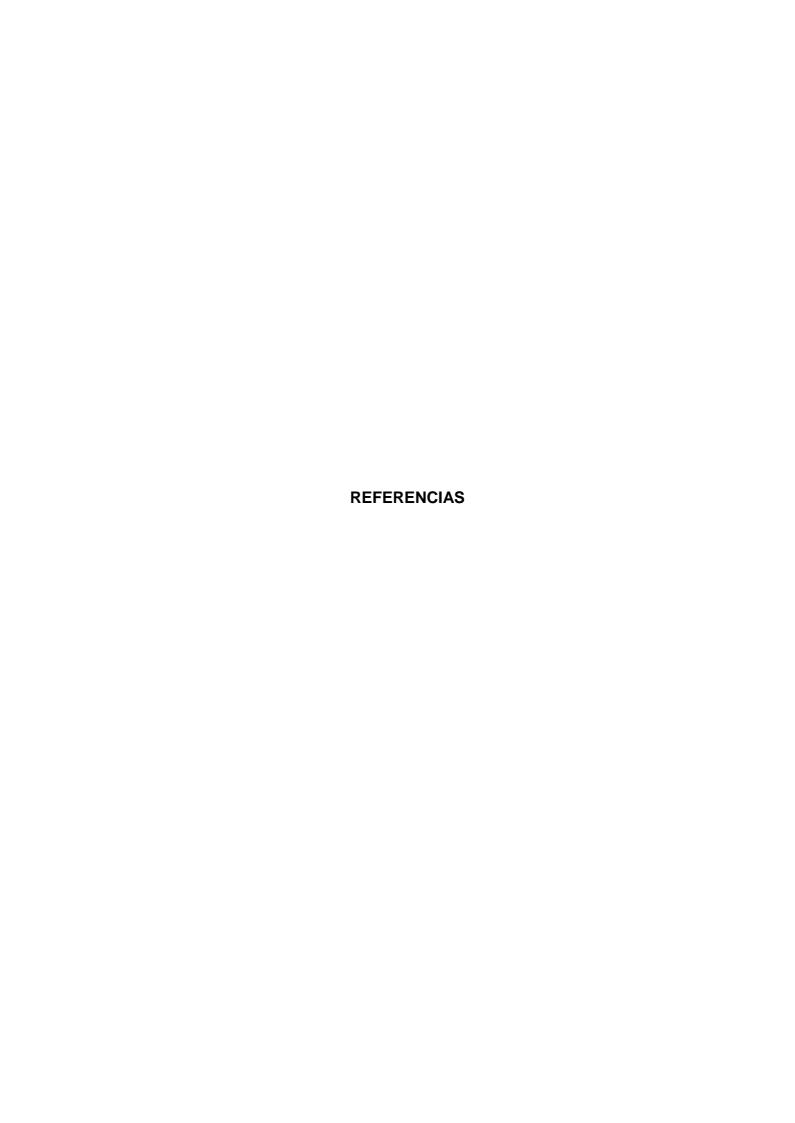
Asimismo, los resultados observados por los investigadores ACUÑA Y BRICEÑO (2018), tuvo un incremento en el índice de productividad de 2% y en materia prima mejoro en 1 %, estos resultados obtenidos por los investigadores concuerdan con los resultados obtenidos en el presente estudio, ya que aplicando el estudio de se logra tener un cambio en la variable productividad.

También, los resultados que tuvo el investigador ASQUI (2018), tuvo un incremento en la productividad de 7.33%, la eficiencia incremento en 5.42% y eficacia en 4.79%, el resultado obtenido es acorde con lo hallado por el investigador ELÍAS (2017), donde aplico el estudio del trabajo y mejoro el índice de productividad en un 15.39%, la eficiencia incremento en 14.83% y la eficacia en 10.32%, el cual ambos estudios concuerdan con el resultado del estudio, ya que dan respuesta a las hipótesis de investigación.

Los resultados contrastados en el presente estudio responden claramente al problema de investigación y a las hipótesis del presente estudio, dado que la aplicación del estudio del trabajo mejora la productividad del filete de pollo.

Con respecto al objetivo general, en esta tesis se determinó como la aplicación del estudio del trabajo mejorara la productividad del filete de pollo de la empresa San Fernando, por lo tanto los resultados obtenidos estadísticamente de los datos analizados de las 19 órdenes de producción de filete de pollo pre test y post test demostró que la media de la productividad pre test era de 61.50% y el post 80.50%, logrando un índice de incremento de 19.00% y un índice de mejora de 30.90%. También, el valor de significancia que se obtuvo mediante la prueba de Wilcoxon fue de 0.000, por ende se afirma la hipótesis de estudio.

Con respecto al objetivo específico 1, en esta tesis se determinó como la aplicación del estudio del trabajo mejorara el rendimiento del tiempo en proceso de filete de pollo de la empresa San Fernando, por lo tanto los resultados obtenidos estadísticamente de los datos analizados de las 19 órdenes de producción de filete de pollo pre test y post test demostró que la media del rendimiento del tiempo pre test era de 24.50% y el post 39.70%, logrando un índice de incremento de 15.20% y un índice de mejora de 62.04%. También, el valor de significancia que se obtuvo mediante la prueba de Wilcoxon fue de 0.000, por ende se afirma la hipótesis de estudio.


Con respecto al objetivo específico 2, en esta tesis se determinó como la aplicación del estudio del trabajo mejorara las toneladas de producción del filete de pollo de la empresa San Fernando, por lo tanto los resultados obtenidos estadísticamente de los datos analizados de las 19 órdenes de producción de filete de pollo pre test y post test demostró que la media de las toneladas de producción pre test era de 72.60% y el post 84.40%, logrando un índice de incremento de 11.80% y un índice de mejora de 16.25%. También, el valor de significancia que se obtuvo mediante la prueba de Wilcoxon fue de 0.000, por ende se afirma la hipótesis de estudio.

Apreciando los resultados logrados en la presente tesis se expresan algunas sugerencias para las futuras decisiones que puedan tomar las personas que conviven diariamente en la línea de filete de pollo, por ello se expresan las siguientes recomendaciones:

- a) Realizar auditorías internas de trabajo para supervisar que el método aplicado del estudio del trabajo se siga utilizando en la línea de filete de pollo.
- b) Insertar indicadores de control proceso para continuar con la mejora continua del nuevo método de trabajo aplicado en la línea de filete de pollo.
- c) Para seguir mejorando el rendimiento del tiempo, se debe ejecutar un minucioso análisis de los proceso realizados para asegurar una medición perfecta que permita tener una visón de mejora, de igual manera se debe seguir estandarizando los tiempos estándar de cada operación teniendo como visión reducirlo progresivamente.
- d) Para seguir mejorando las toneladas ejecutadas de producción se debe seguir mejorando el método de fileteo aprovechando los remanentes de los productos que se realizan dentro de la línea de producción de filete de pollo, comprometiendo a los trabajadores que se desempeñan diariamente el proceso con la finalidad de buscar mejoras continuas del proceso.

Finalmente, se recomienda que las herramientas del estudio del trabajo se apliquen en todas las líneas de proceso de la empresa, ya que es un método sencillo de aplicar y con buenos resultados.

ACUÑA, Elmer y BRICEÑO, Luis. 2018. Estudio del trabajo en el área de congelado para incrementar la productividad. Empresa Austral Group Coishco S.A.A. 2018. Univercidad Cesar Vallejos, Chimbote : 2018.

AGUIRRE, Juan David y LEAL, Juan David. 2015. ESTUDIO DIAGNÓSTICO DE LA PRODUCTIVIDAD PARA LA REDUCCIÓN DEL DESPILFARRO EN LA ASOCIACIÓN LA GRAN ALTERNATIVA. FUNDACIÓN UNIVERSITARIA CATÓLICA LUMEN GENTIUM, Cali : FUNDACIÓN UNIVERSITARIA CATÓLICA LUMEN GENTIUM, 2015.

Aplicación de la mejora de métodos de trabajo para incrementar la productividad en la producción del filete de anchoas. **VALDIVIESO**, **Briggitte Bellen**, **MEZA**, **Heidy Yessenia y GUTIERREZ**, **Elías**. **2020**. 2, Lima: UNIVERSIDAD CESAR VALLEJO, Julio - Diciembre de 2020, INGnosis Revista de Investigación Científica, Vol. Vol. 5 Núm, págs. 113-125.

ASQUI, Brian. 2018. Implementación de estudio de trabajo para mejorar la productividad en el área de servicio en la empresa Autofondo Chevrolet S.A.C. Los Olivos, 2018. Universidad Cesar Vallejos, Lima : 2018.

BAIN, David. 2005. Productividad : la solución a los problemas de la empresa. México : México, D.F. : McGraw-Hill Interamericana, 2005., 2005. 1456200046 9781456200046.

Centro de Estudios para el Desarrollo de la Producción Animal. **MASAQUISA**, **Diego**, y otros. 2017. 2, Camagüey : Universidad de Camagüey, Cuba, 2017, Vol. 29. 2224-7920.

El blog de retos para ser directivo. 2016. Gestión del tiempo: influencia en la productividad. https://retos-directivos.eae.es/. [En línea] 19 de Febrero de 2016. [Citado el: 05 de Octubre de 2020.] https://retos-directivos.eae.es/como-influye-lagestion-del-tiempo-en-la-productividad/#.

ELIAS, Antony. 2017. Aplicación del estudio del trabajo para la mejora de la productividad laboral, en el área de acabados en la empresa PERÚ FASHIONS

S.A.C., Puente Piedra, 2017. Universiadad Cesar Vallejos, Lima: 2017.

Enciclopedia Económica. 2018. Productividad. https://grudemi.com. [En línea] 28 de Julio de 2018. [Citado el: 05 de Octubre de 2020.] https://enciclopediaeconomica.com/productividad/.

Estudio de métodos de trabajo y productividad del proceso de empacado de pollo beneficiado en la empresa San Fernando S.A. Huaral, 2015. **ESPICHAN, Rafael Ángel, AMADO, Julio Fabián y GUTIERREZ, Jaime Eduardo. 2015.** 1, LIMA: UNIVERSIDAD CESAR VALLEJO, 2015, Vol. 2. 1201A398.

Factores de calidad que afectan la productividad y competitividad de las micros, pequeñas y medianas empresas del sector industrial metalmecánico. **LOPEZ, Diana Cristina. 2016.** 20, Colombia : Universidad Católica de Pereira UCP, 2016, Vol. 10, 25394169.

GARCÍA, Roberto. 2005. Estudio del trabajo. Monterrey: MC GRAW HILL INTERAMERICANA, 2005. 9789701046579.

GONZALES, Edgar, ROSALES, Rafael y GÓMEZ, Walter. 2015. Metodología de la Investigación. Lima: Fondo Editorial de la Universidad Maria Axiliadora, 2015. http://repositorio.uma.edu.pe/handle/UMA/96.

GRECCO, **Paula**, **y otros**. **2017**. Revisión sistemática de los procesos productivos de la empresa Taller del vidrio: Roque Sarmiento por medio de la aplicación de las herramientas del estudio del trabajo. Universidad Pontificia Bolivariana, Medellin : 2017.

GUARACA, **Segundo**. **2015**. Mejora de la productividad, en la sección de prensado de pastillas, mediante el estudio de métodos y la medición del trabajo, de la fábrica de frenos automotrices EGAR S.A. Escuela Politécnica Nacional, Quito: 2015.

GUTIÉRREZ, Humberto. 2010. Calidad total y productividad. México : McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V, 2010. 978-607-15-0315-2.

HERNANDEZ, FERNANDEZ y BAPTISTA. 2014. Metodología de la

investigación. México: McGraw-Hill, 2014.

HERNÁNDEZ, Roberto. 2014. Metodologia de la investigación. C.P. 01376, México D.F.: McGRAW-HILL / INTERAMERICANA EDITORES, S.A. DE C.V., 2014. 978-1-4562-2396-0.

—. 2014. Metodología de la investigación. Mexico: México D.F., 2014.

JARA, Hernan. 2015. "Estudio de Tiempos y Movimientos en la producción de gasa fraccionada para mejorar la productividad en la Empresa Laboratorios Americanos S.A. 2015". Universidad Cesar Vallejos, Lima: 2015.

JIMENEZ, Regulo. 2018. Aplicación de Estudio del Trabajo para incrementar la productividad de la Empresa Bicimotos el Lider E.I.R.L., 2018. Universidad Cesar Vallejos, Trujillo : 2018.

KANAWATY, George. 1996. Introducción al estudio del trabajo. Ginebra : Oficina Internacional del Trabajo, 1996. 9223971089.

LIZARRAGA, Stephany. 2017. Implementación del estudio del trabajo para incrementar la productividad en el área de envasado en PEGSA INDUSTRIAL S.A.C, 2017. Univercidad Cesar Vallejo, Lima: 2017.

MEYERS, Fred y STEPHENS, Mattherw. 2006. Diseño de instalaciones de manufactura y manejo. México : PEARSON EDUCACIÓN, 2006. 970-26-0749-3.

NICHO, Martin Arturo. 2018. Aplicación del estudio del trabajo para mejorar la productividad en el área de operaciones de la empresa J&Mc Contratistas Generales S.A.C, Callao, 2018. Universidad Cesar Vallejos, Lima : 2018.

NIEBEL, Benjamin y FREIVALDS, Andris. 2009. Ingenieria industrial métodos, estandares y diceño de trabajo. México: McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V., 2009. 978-970-10-6962-2.

RAMOS, Carmen. 2018. Aplicación del estudio del trabajo para mejorar la productividad en el área de servicio de mantenimiento de esmeriles angulares de la empresa Technical Services C&T SAC, Los Olivos 2018. universidad Cesar

Vallejos, Lima: 2018.

RODRIGUEZ, Gabriel. 2020. Volumen de Producción. Copyright © 2020 Comercio Exterior Latinoamerica. [En línea] 10 de Marzo de 2020. [Citado el: 6 de Octubre de 2020.] https://comercioexterior.la/volumen-de-produccion/#Capacidad a largo plazo.

ROJAS, Sara. 2016. Aplicación de estudio del trabajo para incrementar la productividad en el área de hilandería en la empresa Intratex S.A.C, Callao-2016. Universidad Cesar Vallejos, Lima : 2016.

SALAZAR, Bryan. 2019. Cálculo del tiempo estándar o tiempo tipo. Ingenieriaindustrialonline.com. [En línea] 28 de Junio de 2019. [Citado el: 02 de Octubre de 2020.] https://www.ingenieriaindustrialonline.com/estudio-detiempos/calculo-del-tiempo-estandar-o-tiempo-tipo/.

- —. 2019. Diagrama bimanual. Ingenieriaindustrialonline.com. [En línea] 20 de Junio de 2019. [Citado el: 30 de Septiembre de 2020.] https://www.ingenieriaindustrialonline.com/ingenieria-de-metodos/diagrama-bimanual/.
- —. 2019. Diagrama de recorrido. Ingenieriaindustrialonline.com. [En línea] 20 de Junio de 2019. [Citado el: 01 de Octubre de 2020.] https://www.ingenieriaindustrialonline.com/ingenieria-de-metodos/diagrama-de-recorrido/.
- —. 2019. Diagrama del proceso de la operación. Ingenieriaindustrialonline.com. [En línea] 18 de Junio de 2019. [Citado el: 30 de septiembre de 2020.] https://www.ingenieriaindustrialonline.com/ingenieria-de-metodos/diagrama-del-proceso-de-la-operacion/.
- —. 2019. Estudio de tiempos. Ingenieriaindustrialonline.com. [En línea] 25 de Junio de 2019. [Citado el: 02 de Octubre de 2020.] https://www.ingenieriaindustrialonline.com/estudio-de-tiempos/que-es-el-estudio-de-tiempos/.

—. 2019. Suplementos del Estudio de tiempos. Ingenieriaindustrialonline.com. [En línea] 28 de Junio de 2019. [Citado el: 2 de Octubre de 2020.] https://www.ingenieriaindustrialonline.com/estudio-de-tiempos/suplementos-delestudio-de-tiempos/.

SALVO, César. 2018. Aplicación Del Estudio Del Trabajo Para Incrementar La Productividad En El Área De Clasificación De Espárragos De Una Agroindustria, 2018. universidad Cesar Vallejos, Trujillo : 2018.

SOLOINDUSTRIALES. 2017. Análisis del proceso. SÍMBOLOS DE LOS GRÁFICOS DEL PROCESO. [En línea] 27 de Abril de 2017. [Citado el: 30 de septiembre de 2020.] https://soloindustriales.com/analisis-del-proceso/.

TACILLO, Elvis Fernando. 2016. Metodología de la investigación científica . Lima: Universidad Jaime Bausatey Meza., 2016. http://repositorio.bausate.edu.pe/handle/bausate/36.

TUDELA, Mercedes. 2018. Aplicacion del estudio del trabajo para mejorar la productividad en el área logística y operaciones en la empresa Payanos EIRL, Ate, 2018. Universidad Cesar Vallejos, Lima : 2018.

VALDERRAMA, S. 2013. Pasos para elaborar proyectos de investigación científica. Lima : San Marcos, 2013.

VALDERRAMA, Santiago. 2013. Pasos para elaborar proyectos de investigación. Lima: San Marcos, 2013.495 pp., 2013. 9786123028787.

VALDES, George Steban. 2020. Estudio del trabajo en la línea de envasado de aguardiente caucano en la Industria Licorera del Cauca. Universidad Autónoma de Occidente, Antioquia, Colombia : 2020.

YANAC, Luis. 2018. Implementación de estudio de trabajo para mejorar la productividad en el área de servicio en la empresa Autofondo Chevrolet S.A.C. Los Olivos, 2018. Universidad Cesar Vallejos, Lima : 2018.

ANEXOS

ANEXO 1: Declaratoria de autenticidad del autor.

Declaración de autenticidad

Yo, Colán Olortegui, José Luis futuro egresado de la Escuela Profesional

de Ingeniería Industrial, de la Facultad de Ingeniería de la Universidad

Cesar Vallejo, identificado con DNI Nº 47194739, con el trabajo de

investigación titulado: Aplicación del estudio del trabajo para mejorar la

productividad del filete de pollo de la empresa San Fernando, Huaral

2021.

Declaro bajo juramento que:

1) El trabajo de investigación es de mi autoría.

2) Se ha formulado respetando las normas internacionales de citas y referencias

para las fuentes consultadas. En conclusión, el trabajo de investigación no ha sido

plagiado ni total ni parcialmente.

3) El trabajo de investigación no ha sido auto plagiado; es decir, no ha sido

publicada ni presentada anteriormente para obtener un grado académico previo o

título profesional.

4) Los datos presentados en los resultados son reales, ninguno ha sido falseado,

ni duplicados, tampoco copiados y por tanto los resultados que se presentan en el

trabajo de investigación se constituirían en aportes de la realidad investigativa.

De identificarse fraude (datos falsos), plagio (información sin citar autores), auto

plagio (presentar como nuevo algún trabajo de investigación propio que ya sido

publicado), piratería (uso ilegal de información ajena) o falsificación (representar

falsamente las ideas de otros), asumo las consecuencias y sanciones que de mi

acción se deriven, sometiéndome a la normatividad vigente de la Universidad

Cesar Vallejo.

Lima, Octubre del 2020

Colán Olortegui, José Luis

DNI N° 47194739.

183

ANEXO 2: Matriz de Operacionalización de la variable.

MATRIZ DE OPERACIONALIZACIÓN

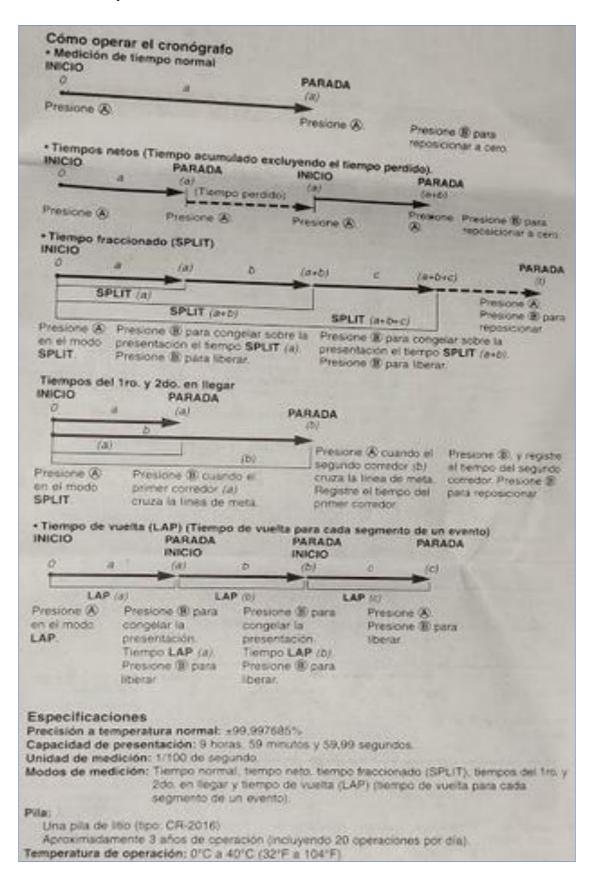
Aplicación del estudio del trabajo para mejorar la productividad del filete de pollo de la empresa San Fernando, Huaral 2021.

Variables	Definición Conseptual	Definición Operacional	Dimenciones	Indicadores	Formula	Escala de medición
		El estudio del trabajo se mide a través de las dimensiones estudio de métodos y la		,	IA=(TOTAL ACT-ACT NO AV) / (TOTAL ACTIVIDADES) X 100%	
Variable	El estudio del trabajo es una herramienta básica que busca la forma de optimizar los recursos en los procesos productivos	medición del trabajo, la primera dimensión tiene como indicador el índice de actividades, cuya fórmula es el número total de actividades menos las actividades	Estudio de métodos	Índice de actividades	IA = Índice de actividades. TOTAL ACT= Total activideades. ACT NO AV = Actividades que no agregan valor.	Razón
independiente:	utilizando el sistema de métodos para mejorar la máxima capacidad de los recurso	que no agregan valor al proceso dividido entre el número total de las actividades,				
	tales como: maquinas, materia prima, el área de proceso, también el estudio del trabajo	por otro lado la segunda dimensión tiene como indicador el tiempo estándar para			TS = TNX(1+S)	
Estudio del trabajo.	ayuda a simplificar las actividades que no agregan valor al proceso de tal forma que los procesos se vuelvan más dinámicos y flexible en el plan de producción (ACUÑA, y BRICEÑO, 2018).	realizar una operación , cuya fórmula es el tiempo normal que tarda una operación en realizarse multiplicado por uno más el suplemento por descanso, estas herramientas ayudara que el proceso en reducir los tiempos muertos el control permanente de los recursos utilizados	Medición del trabajo	Tiempo Estándar	TS = Tiempo Estándar. TN = Tiempo normal. S = Suplemento por descanso.	Intervalo
Variable dependiente:	La productividad es el vínculo que tiene productos obtenidos en las diferentes líneas de producción y la utilización correcta de los recursos empleados en los procesos	(COLÁN, 2020). Productividad es medida mediante las dimensiones de gestión de tiempos y gestión de proceso, la primera dimensión tiene como indicador el rendimiento del tiempo, cuya fórmula es el tiempo proyectado por ciclo de producción entre el tiempo ejecutado por ciclo de	Gestión de tiempos	Rendimiento del tiempo	REND.T=((T.PROY/CICLO)/(T.EJEC/CICLO)-1)X100% REND.T = Rendimiento del tiempo. T. EJEC = Tiempo Ejecutado por ciclo. T.PROY = Tiempo Proyectado por ciclo.	Razón
Productividad.	(GUTIÉRREZ, 2010 pág. 21). También se puede decir que la productividad es una medida de lo eficaz que se han utilizado los recursos como: materia prima, energía, mano de obra, tiempo, dinero, etcétera (BAIN, 2005 pág. 3).	producción todo ello restado uno por el cien por ciento, teniendo como resultado el rendimiento tiempo de producción de un producto o proceso. Por otro lado la segunda dimensión tiene como indicador las toneladas de producción, cuya fórmula es las toneladas ejecutadas en el proceso entre las toneladas proyectadas por el cien	Gestión de Proceso	Toneladas de producción	Tn. PROD=(Tn.EJEC)/ (Tn.PROY) X 100% Tn .PROD = Toneladas de producción. Tn. EJEC = Tonelada Ejecutado. Tn .PROY = Tonelada Proyectado.	Razón

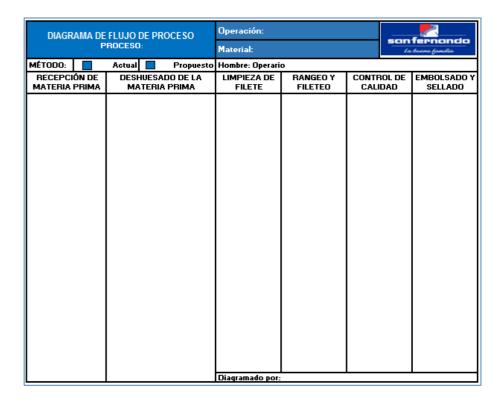
ANEXO 3: Matriz de consistencia.

PROBLEMA	OBJETIVO	HIPÓTESIS	VARIABLES E INDICADORES	METODOLOGÍA
PROBLEMA GENERAL ¿Cómo la aplicación del estudio del trabajo mejorara la productividad del filete de pollo de la empresa San Fernando, Huaral 2021?	OBJETIVO GENERAL Determinar como la aplicación del estudio del trabajo mejorara la productividad del filete de pollo de la empresa San Fernando, Huaral 2021.	HIPÓTESIS GENERAL La aplicación del estudio del trabajo mejora la productividad del filete de pollo de la empresa San Fernando, Huaral 2021.	INDEPENDIENTE: ESTUDIO DEL TRABAJO Dimensiones: • Estudio de métodos. • Medición del trabajo. Indicadores:	Tipo de la investigación: Aplicada Nivel: Explicativo Diseño: Experimental Enfoque: Cuantitativo Forma:
PROBLEMAS ESPECÍFICOS 1. ¿Cómo la aplicación del estudio del trabajo mejorara el rendimiento del tiempo en el proceso de filete de pollo de la empresa San Fernando, Huaral 2021? 2. ¿Cómo la aplicación del estudio del trabajo mejorara las toneladas de producción del filete de pollo de la empresa San Fernando, Huaral 2021?	1. Determinar como la aplicación del estudio del trabajo mejorara el rendimiento del tiempo en proceso de filete de pollo de la empresa San Fernando, Huaral 2021. 2. Determinar como la aplicación del estudio del trabajo mejorara las toneladas de producción del filete de pollo de la empresa San Fernando, Huaral 2021.	HIPÓTESIS ESPECÍFICOS H1: La aplicación del estudio del trabajo mejora el rendimiento del tiempo en el proceso de filete de pollo de la empresa San Fernando, Huaral 2021. H2: La aplicación del estudio del trabajo mejora las toneladas de producción del filete de pollo de la empresa San Fernando, Huaral 2021.	VARIABLE DEPENDIENTE: PRODUCTIVIDAD Dimensiones: Gestión de tiempos Gestión de proceso. Indicadores: Rendimiento del tiempo. Toneladas de producción.	Pre – experimento. Población: N= 34 semanas (Ordenes de producción). Muestra: n = 19 Técnica: • Análisis documental. • Observación directa. Instrumentos: • Cronometro. • Tablero. • Formato DOP. • Formato DAP • Diagrama bimanual. • Formato estudio de tiempos • Formato de control. • Excel. • SPSS 24.

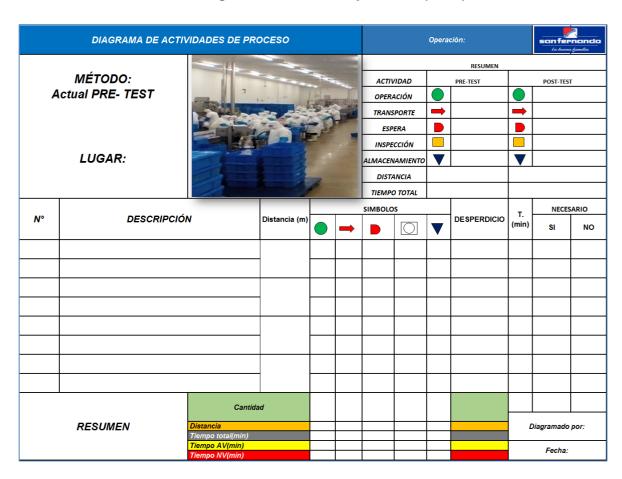
ANEXO 4: Cálculo del tamaño de la muestra.


$$\mathbf{n}=rac{N~x~Z^2~x~\sigma^2}{(N-1)E^2~x~(Z^2~x~\sigma^2)}$$

Tamaño de la población N 34.00
Nivel de confianza 95% Z 1.96
Desviación estandar σ 3.54
Pecisión o margen de error E 1.20
Tamaño de la muestra n 19.00


ANEXO 5: Muestreo aleatorio simple

		VOLUMEN DE	PRODUCCIÓN	GESTIÓN DE	TIEMPOS
SEMANA	N° ALEATORIOS	VOLUMEN PROGRAMADA DE FILETE DE POLLO (t)	VOLUMEN REAL DE FILETE DE POLLO (t)	TIEMPO PROYECTADO /CICLO	TIEMPO EJECUTADO /CICLO
1	1	45.00	35.60	66.00	51.08
2	2	45.00	36.06	66.00	51.06
3	4	45.00	36.75	66.00	52.89
4	5	45.00	36.30	66.00	52.20
5	6	45.00	36.09	66.00	52.11
6	7	45.00	35.55	66.00	51.12
7	8	45.00	35.14	66.00	52.38
8	10	45.00	35.79	66.00	51.18
9	11	45.00	33.63	66.00	50.64
10	12	45.00	32.21	66.00	51.91
11	14	45.00	36.07	66.00	51.49
12	15	45.00	34.23	66.00	52.18
13	16	45.00	32.00	66.00	50.91
14	17	45.00	26.12	66.00	38.48
15	18	45.00	26.33	66.00	41.79
16	19	45.00	26.82	66.00	42.41
17	20	45.00	27.17	66.00	42.23
18	22	45.00	30.32	66.00	49.77
19	24	45.00	29.34	66.00	51.83


ANEXO 6: Especificaciones técnicas del cronometro.

ANEXO 7: Formato de flujo de proceso.

ANEXO 8: Formato del diagrama de análisis proceso (DAP).

ANEXO 9: Formato de diagrama de operaciones proceso (DOP).

DIAGR	AMA DE OPERACIONES D	E PRO	CESO	Operación	1:
	PROCESO:			Material:	
ÉTODO:	Actual	Prop	iesto	Fecha:	
ı		Evento	MA	meros	1
		Evento	Nu	neros	
	RESUMEN	\vdash			
	11200111211				
	TOTAL				
	Diagramado:				
	Aprobado:				
			·		

ANEXO 10: Formato de diagrama bimanual.

DIAGRAM	IA BIMANUAL			Ope Fec	ració ha:	ón:							san fer	
				Dia	grar	na B	ima	nual						
Fecha de realizacio		П	Resumen											
Diagrama N°	Pag: 1 de 1	⊢												
Proceso:		Actividad						lz	q	tual D	er	Izq	uesto Der	1
		Operación												1
Actividad:		Transporte												1
Tipo de diagrama	Operrario	Esp	era]
Metodo	Actual	Insp	ecci	ón]
Wetodo	Almacenamiento]	
Área/Sección:		Total												
Elaborado por:		Apro						obad	o poi	r:				
Mano izqu	iierda						ano Derec	na						
		0	Î		D	∇	0	Î		Ω	∇			
		0	Û		Δ	\triangleright	0	Î		Δ	\triangleright			
		0	Î		О	∇	0	Î		Δ	\triangleright			
		0	Î			∇	0	$\widehat{\square}$			\vee			
		0	$\stackrel{ ightharpoond}{\Box}$		D	∇	0	Î			∇			
		0	$\hat{\Box}$		D	∇	0	Û		Δ	∇			
	0	Î		D	\triangleright	0	Û		Δ	\triangleright		•		
	0	Û			∇	0	Î		\Box	\triangleright				
Tota	I	0	0	0	0	0	0		0	0	0		Total	

ANEXO 11: Formato de toma de tiempos por actividades.

	sanfernando La buena familia								SAN			0						
						FORM	IATO D	E TON	IA DE 1	ГІЕМРО)							
	Actividad										laborad							
	Hora Inicio										Hora Fina	ıl						
	Nº de datos tomados										Fecha							
Item	Actividad	T1	T2	Т3	T4	Т5	Т6	T7	Т8	Т9	T10	T11	T12	T13	T14	T15	PROM	Σ
	TOTAL																	

ANEXO 12: Formato de cálculo del número de muestras.

\vdash	létodo borado:	Pre-test	P	ost-Test	Proceso:
Item		tividad	Σχ	Σx^2	$n = (\frac{40\sqrt{n\Sigma x^2 - (\Sigma x)^2}}{\Sigma x})^2$
					2.1

ANEXO 13: Formato de cálculo del tiempo estándar

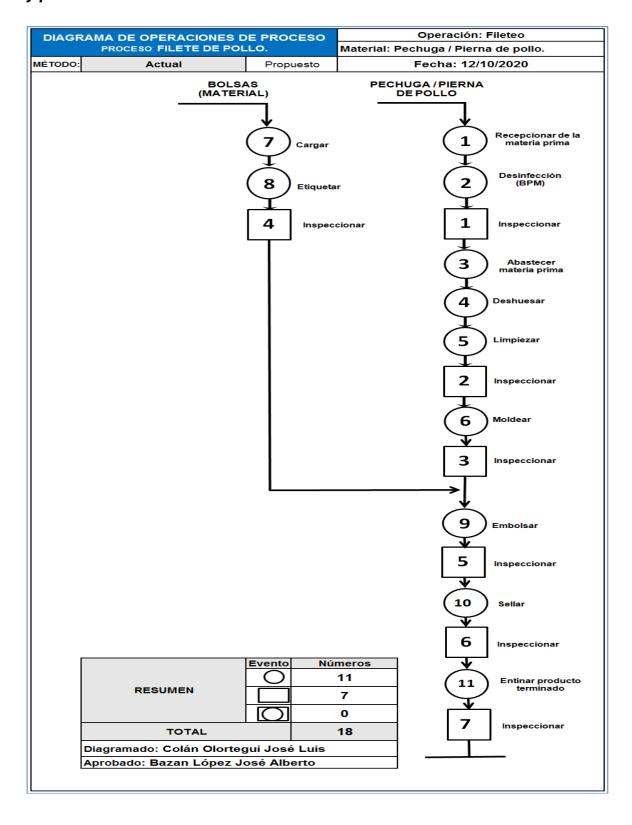
1	san fernando La buera faralta					9	SAN FERN	ANDO)			
			Form	ato de	cálcu	lo del	tiempo estái	ndar.				
	Actividad							_	aborac			
	Hora Inicio							Н	ora Fin			
N	° de datos tomados								Fecha			
		Promedio de		Westir	nghouse		Factor de	Tiempo	Suple	nentos	4-4-1	T!
ltem	Actividad	tiempo observado	Н	E	CD	CS	Factor de valoración	normal (TN)		F. V	total suplementos	Tiempo Estándar
	TOTAL											

ANEXO 14: Formato de cálculo de la productividad.

					Es	ductividad						
	Elab	orado:					•					
	Mes:											
	Fe	chas			ESTIÓN DE TIEMPOS				GEST	IÓN DE PROCESO		
Mes	Semana	Focha	Día	Tiempo.Proyectado	Tiempo.Ejecutado	Rendimiento		Materia prima	Remanente de	Toneladas.	Toneladas.	Productividad
IIICS	Jemunu	i conu	Diu	/Ciclo	/Ciclo	.Tiempo	Proyectado	(tn)	proceso (tn)	Ejecutada	Producción	Ejecutada (tn/ hora)

ANEXO 15: Formato de registro de fileteo de pechugas.

	FECHA			PRODU	JCCIÓN	sonfe	rnandc
	FECHA				REAL		era familia
MATERIAL	DETALLE	SKU	DESCRIPCIÓN	BOLSAS	BOLSAS	BOLSAS	Kg PT
P. TERMINADO	F. PECHUGA	001	FIL.PECH POLL C/M S/S 300 GR BLX3 KG.				
P. TERMINADO	F. PECHUGA	002	FIL. PECHUGA C/M C/S X 5 Kg				
P. TERMINADO	F. PECHUGA	003	FIL. PECHUGA ECONOMICO X 1kg				
P. TERMINADO	F. PECHUGA	004	CORTE KFC				
			INGRESO DE MATERIA PRIMA - GRUPO AZUL				
MATERIAL	DETALLE	SKU	DESCRIPCIÓN				TINAS
MATERI P.	F. PECHUGA		CARNE FRI				
MATERI P.	F. PECHUGA		CARNE C2				
MATERI P.	F. PECHUGA		CARNE C3				
MATERI P.	F. PECHUGA		BRASA B2				
MATERI P.	F. PECHUGA		BRASA B3				
MATERI P.	F. PECHUGA		BRASA B4				
			REGISTRAR HORAS TRABAJADAS	Hr - Ing	Hr - Fin	Time Ref.	Time Muert
			REGISTRAR HORAS (Ejemplo)				
			REGISTRAR HORAS				
						,	
			REGISTRAR EL NUMERO DE PERSONAL ASISTENTE	N° Oper.		Kg MP	
			TOTAL DE PERSONAL				
			SUB PRODUCTOS DE PECHUGA				
					1		
MATERIAL	DETALLE	CODIGO	DESCRIPCIÓN				
D5	F. PECHUGA	80034	CD5				
IEL	F. PECHUGA	80047	PIEL PRIMERA				
IEL	F. PECHUGA F. PECHUGA	80048 81	PIEL SEGUNDA				
ICADILLO MAQ	F. PECHUGA	91	HUESO DE PGA PICADILLO STORK				
ICADILLO MAQ	F. PECHUGA	66	GRASA				
PIEL ELIMINA	F. PECHUGA	125	PIEL PARA HARINA				


ANEXO 16: Formato de registro de fileteo de piernas.

		PROGRAM	IA DE PRODUCCIÓN DE FILETE DE PIERNA				
FECHA			PRODUCCIÓN REAL				rnando ra familia
				BOLSAS	BOLSAS	BOLSAS	
MATERIAL	DETALLE	SKU	DESCRIPCIÓN	LOTE	LOTE	LOTE	Kg PT
P. TERMINADO	F. PIERNA	005	FILETE BIG CRUNCH Bol. 12 Und.				
P. TERMINADO	F. PIERNA	006	FILETE PIERNA PPCC.				
P. TERMINADO	F. PIERNA	007	FILETE DE PIERNA C/P Bol. X 3.0 kg				
						Kg PT	
			INGRESO DE MP - GRUPO ROJO	.,		.,	
MATERIAL	DETALLE	SKU	MATERIA PRIMA - PIERNA ESPECIAL				KG
MATERI P.	F. PIERNA		PNA CARNE (C2 - C2)	<u></u>			
MATERI P.	F. PIERNA		PNA CRUNCH (B2 - B3 - B4)				
MATERI P.	F. PIERNA		PNA NORKY'S (B5 - B8)	<u> </u>			
						Kg MP	<u> </u>
			REGISTRAR HORAS TRABAJADAS	Hr - Ing	Hr - Fin	Time Ref.	Time Muert
			REGISTRAR HORAS				
			REGISTRAR EL NUMERO DE PERSONAL ASISTENTE	N° Oper.	Kg MP	Kg PT	Rend. MP
			TOTAL DE PERSONAL	<u> </u>			
			SUB PRODUCTOS DE PIERNA				
MATERIAL	DETALLE	CODIGO -	DESCRIPCIÓN	_	•		KG
DESHUESO	F. PIERNA	121258	DESHUESO CD6				<u> </u>
PIEL	F. PIERNA	80048	PIEL SEGUNDA				
PIEL	F. PIERNA	125	PIEL PARA HARINA				ļ
HUESO	F. PIERNA	76	HUESO DE CANILLA	ļ		ļ	ļ
PICADILLO MAQ	F. PIERNA		PICADILLO STORK	ļ			ļ
PICADILLO FAJA	F. PIERNA	66	GRASA		i	1	1

ANEXO 17: Línea de fileteo de pechuga de pollo.

ANEXO 18: Diagrama de Operaciones de Proceso (DOP) fileteo de pechugas y piernas - Pre Test.

ANEXO 19: Diagrama de Actividades de Proceso (DAP) fileteo de pechugas y piernas - Pre Test.

	DIAGRAMA DE ACTIVIDADES DE F	ROCESO			Operac	ión: FILET	EO DE DE PO	PECHUGA Y PIE LLO.	RNAS		rnando xa familia
		7						RESUMEN			
	MÉTODO:				ACTI	VIDAD		PRE-TEST		POST-TES	т
-	Actual PRE- TEST	14 .11	-		OPER	ACIÓN		22			
					TRAN	SPORTE		10	→		
					ESI	PERA		2			
HIGA	AR: San Fernando Área	Tell			INSPI	ECCIÓN		6			
LUGA	de filete.	4			ALMACE	NAMIENTO		2			
	de mete.	1 - 5			DIST	ANCIA		230 m			
			7		TIEMP	O TOTAL		89.33			
					SIMBOLO	os			Т.	NECE	SARIO
N°	DESCRIPCIÓN	Distancia (m)		→			•	DESPERDICIO	(min)	SI	NO
1	Charla del personal al inicio del proceso.	70 m	•						10	×	
2	Desplazamiento del personal hacia el filtro de limpieza	70111						Movimiento	3		×
3	Lavado de manos y desinfección.	40 m							1	×	
4	Desplazamiento del personal hacia el área de filete.	40 111						Movimiento	2		×
5	Desinfección de mangas y guantes.	20 m							3	×	
6	Desplazamiento del personal hacia las fajas de proces			7				Movimiento	2	×	
7	Desplazamiento del personal hacia la zona de forrado balanzas.	de 15 m						Movimiento	5		×
8	Ubicación del personal en el puesto de trabajo.	15111			•			Espera	15		×
9	Encendido de la maquina deshuesadora de pechuga pierna.	/							1	×	
10	Quitar las tapas de las tinas que contiene la materia prima.		•						0.12	×	

	1	1							1			
11	Levantar las tinas a la tolva de a	abastecimiento.		•						0.03	×	
12	Vaciar la materia prima a	la tolva.		P						0.02	×	
13	Agarrar la materia prima para	la selección.					•			0.02	×	
14	Abastecimiento de la materia prima	(pechuga y pierna).		(0.03	×	
15	Deshuesado de la materia prii	ma (maquina).	10 m			7			Espera	1.5		×
16	Desprender el filete del	hueso.		9						0.03		×
17	Tirar el filete la faja transp	ortadora.		•						0.02		×
18	Transporte del filete a la zona	de limpieza.	5 m		•					0.33	×	
19	Agarrar el filete de pechug	a y pierna.					>			0.02	×	
20	Limpieza del filete de pechugas y pie grasa y piel).	rnas de pollo (quitar		_						1	*	
21	Tirar el filete la faja transp	ortadora.		V						0.02		×
22	Transporte del filete a la zona	de moldeado.	3 m		•				Movimiento	0.08		×
23	Agarrar el filete limpio de pecl	nuga y pierna.					>			0.02	×	
24	Moldeado de filete de pechugas especificaciones técn									1.2	×	
25	Tirar el filete la faja transp			•						0.02	×	
26	Transporte del filete a la zona	de embolsado.	2 m		•				Movimiento	0.13	×	
27	Agarrar la bolsa de los pr	oductos .								0.02	×	
28	Agarrar el filete mold	eado.					>			0.02	×	
29	Embolsado de los filetes moldead piernas.	os de pechugas y		•						0.83	×	
30	Enviar las bolsas al zona (de sellado.	10 m		>				Movimiento	3		×
31	Agarrar las bolsas según los	s productos.		10						0.02	×	
32	Colocar las bolsas en la faja de	sellado lineal.		•						0.83	×	
33	Agarrar las bolsas selladas de pe	chugas y pierna.					>			0.02	×	
34	Entinado de productos tel	rminados.		-						0.33	×	
35	Poner tapas a las tinas de los prod	luctos terminados.		\						1.33	×	
36	Etiquetado de las tinas con los pro	ductos terminados.		•						0.02	×	
37	Colocar las tinas en pai	ihuelas.		•						0.33	×	
38	Almacenamiento de los produc	os terminados.						\	Almacen	15		×
39	Transporte de los productos terminos balanza.	nados a la zona de	30 m		•				Movimiento	2	×	**
40	Registro de los pesos de los produ- las planillas.	ctos terminados en								3		×
41	Almacenamiento de los produc								Almacen	15		×
42	(disposición de balar Transporte de los productos termi almacenes.		25 m		•				Movimiento	1	×	
	<u>аннаселе</u> ѕ.	Cantida	d	22	10	2	6	2	42	89.3	29	13
	RESUMEN	Distancia		0	220 m	10 m	0	0	230 m		mado por:	
	ALGOWILIA	Tiempo total(min)		23.20	18.55	16.50	1.09	30.00	89.33	(Colán Olort	egui
		Tiempo AV(min)		20.13	5.47	0	1.09	0			:10 de dicie	

ANEXO 20: Toma de tiempo del filete de pechuga 300 gr – Pre test.

	sanfernando La buera farella										SA	N FE	RNAI	NDO									
									DE TO	MA DE	TIEM	PO											
	Actividad Hora Inicio		F	ileteo de			ıga 300 <u>(</u>	gr.			laborado						Jose L	uis Colan					
	N° de datos tomados				06:00) a.m. 1					Hora Fina Fecha	11					01-10	06:00 p. 0-2020 / 31					
Item	Actividad	T1	T2	Т3	T4	T5	Т6	T7	T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	PROM	Σ
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	2.33
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
5	Abastecimiento de la materia prima.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
6	Deshuesado de la materia prima (maquina).	1.50	1.54	1.56	1.50	1.49	1.51	1.54	1.56	1.55	1.50	1.50	1.51	1.52	1.53	1.50	1.50	1.50	1.51	1.52	1.54	1.52	30.38
7	Desprender el filete del hueso.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
8	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
9	Transporte del filete a la zona de limpieza.	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.34	0.33	0.33	0.33	6.66
10	Agarrar el filete de pechuga.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33

11	Limpieza del filete de pechugas de pollo(quitar grasa y piel).	52.08	52.40	53.20	52.00	53.20	51.20	53.20	55.40	52.08	52.40	53.20	52.00	53.20	51.20	53.20	55.40	52.08	52.08	52.40	53.20	52.76	1055.12
12	Tirar el filete la faja transportadora.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
13	Transporte del filete a la zona de moldeado.	0.08	0.09	0.08	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.09	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.08	0.09	0.08	1.67
14	Agarrar el filete limpio de pechuga.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
15	Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas.	66.67	67.00	65.00	66.50	66.30	66.50	66.50	66.80	66.54	66.67	67.00	65.00	66.50	66.30	66.60	66.50	66.30	66.50	66.50	66.80	66.42	1328.48
16	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
17	Transporte del filete a la zona de embolsado.	0.13	0.13	0.14	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.14	0.13	0.14	0.14	0.13	0.13	2.67
18	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
19	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
20	Embolsado de los filetes moldeados de pechugas.	0.83	0.89	0.88	0.89	0.88	0.88	0.89	0.83	0.88	0.88	0.89	0.88	0.89	0.83	0.88	0.88	0.89	0.88	0.89	0.89	0.88	17.53
21	Enviar las bolsas al zona de sellado.	3.00	3.10	3.20	3.20	3.30	3.00	3.00	3.50	3.40	3.20	3.00	3.20	3.10	3.20	3.20	3.30	3.00	3.00	3.20	3.10	3.16	63.20
22	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
23	Colocar las bolsas en la faja de sellado lineal.	0.83	0.88	0.89	0.83	0.88	0.88	0.89	0.88	0.89	0.83	0.88	0.88	0.89	0.83	0.88	0.88	0.89	0.88	0.83	0.88	0.87	17.42
24	Agarrar las bolsas selladas de pechugas.	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
25	Entinado de productos terminados.	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.34	0.33	0.33	0.33	0.33	0.33	6.66
26	Poner tapas a las tinas de los productos terminados.	1.33	1.35	1.31	1.40	1.32	1.32	1.33	1.35	1.34	1.36	1.33	1.30	1.31	1.32	1.35	1.32	1.32	1.33	1.35	1.30	1.33	26.64
27	Etiquetado de las tinas con los productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
28	Colocar las tinas en parihuelas.	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	6.65
	TOTAL	127.88	128.79	127.67	127.93	129.02	126.93	128.97	131.95	128.31	128.47	129.43	126.41	129.03	126.84	129.25	131.42	127.60	127.82	128.33	129.33	128.57	2571.37

ANEXO 21: Cálculo de número de observaciones del fileteo de pechuga 300 gr – Pre test.

Ela		Pre-test	P	ost-Test	Proceso:
	aborado:	Jose Luis Co	lan Olortegui		Fileteo de filete de pechuga 300 gr.
Item		Actividad	Σχ	Σx^2	$n = (\frac{40\sqrt{n\Sigma x^2 - (\Sigma x)^2}}{\Sigma x})^2$
1	Quitar las materia pr	tapas de las tinas que contiene la ima.	2.33	0.27	1
2	Levantar la abastecim	as tinas a la tolva de iento.	0.66	0.02	1
3	Vaciar la n	nateria prima a la tolva.	0.33	0.01	9
4	Agarrar la	materia prima para la selección.	0.33	0.01	6
5	Abastecim	niento de la materia prima.	0.66	0.02	1
6	Deshuesa	do de la materia prima (maquina).	30.38	46.16	1
7	Desprende	er el filete del hueso.	0.66	0.02	1
8	Tirar el file	te la faja transportadora.	0.33	0.01	5
9	Transport	e del filete a la zona de limpieza.	6.66	2.22	1
10	Agarrar el	filete de pechuga.	0.33	0.01	9
11		lel filete de pechugas de Ir grasa y piel).	1055.12	55687.47	1
12	Tirar el file	te la faja transportadora.	0.33	0.01	9
13	Transport	e del filete a la zona de moldeado.	1.67	0.14	1
14	Agarrar el	filete limpio de pechuga.	0.33	0.01	9
15		de filete de pechugas de 300 gr. ecificaciones técnicas.	1328.48	88248.21	1
16	Tirar el file	te la faja transportadora.	0.33	0.01	8
17	Transport	e del filete a la zona de embolsado.	2.67	0.36	1
18	Agarrar la	bolsa de los productos .	0.33	0.01	9
19	Agarrar el	filete moldeado.	0.33	0.01	9
20	Embolsad pechugas.	o de los filetes moldeados de	17.53	15.38	1
21		bolsas al zona de sellado.	63.20	200.10	3
22	Agarrar la	s bolsas según los productos.	0.33	0.01	9
23	Colocar la	s bolsas en la faja de sellado lineal.	17.42	15.18	1
24	Agarrar la	s bolsas selladas de pechugas.	0.33	0.01	9
25	Entinado d	de productos terminados.	6.66	2.21	1
26	Poner tapa terminado	as a las tinas de los productos s.	26.64	35.50	1
27		de las tinas con los productos	0.33	0.01	9
28		ns tinas en parihuelas.	6.65	2.21	1

ANEXO 22: Calculo del promedio de los tiempos observados del proceso de filete de pechuga de 300 gr. - Pre test.

	sanfernando La buera familia					N FEF	RNAN	DO			
	N	ÚMER(O DE N	IUEST	RAS						
Item	Actividad	T1	T2	Т3	T4	T5	Т6	17	Т8	Т9	PROM
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12									0.12
2	Levantar las tinas a la tolva de abastecimiento.	0.03									0.03
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01				0.02
5	Abastecimiento de la materia prima.	0.03									0.03
6	Deshuesado de la materia prima (maquina).	1.50									1.50
7	Desprender el filete del hueso.	0.03									0.03
8	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02					0.02
9	Transporte del filete a la zona de limpieza.	0.33									0.33
10	Agarrar el filete de pechuga.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02
11	Limpieza del filete de pechugas de pollo(quitar grasa y piel).	52.08									52.08
12	Tirar el filete la faja transportadora.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02
13	Transporte del filete a la zona de moldeado.	0.08									0.08
14	Agarrar el filete limpio de pechuga.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02
15	Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas.	66.67									66.67
16	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02		0.02
17	Transporte del filete a la zona de embolsado.	0.13									0.13
18	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02
19	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02
20	Embolsado de los filetes moldeados de pechugas.	0.83									0.83
21	Enviar las bolsas al zona de sellado.	3.00	3.10	3.20							3.10
22	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02
23	Colocar las bolsas en la faja de sellado lineal.	0.83									0.83
24	Agarrar las bolsas selladas de pechugas.	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
25	Entinado de productos terminados.	0.33									0.33
26	Poner tapas a las tinas de los productos terminados.	1.33									1.33
27	Etiquetado de las tinas con los productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02
28	Colocar las tinas en parihuelas.	0.33									0.33

ANEXO 23: Calculo del tiempo estándar filete de pechuga de 300 gr. Pre test.

	san fernando La buera familia					S	SAN FERNA	ANDO)			
		Format	o de c	álculo	del ti	empo	estándar.					
	Actividad	Fi	ileteo de		e pechu	ga 300 <u>c</u>	jr.		laborad		Jose Luis Col	an Olortegui.
	Hora Inicio			06:00	0 a.m.			H	lora Fin	al		p.m.
	N° de datos tomados				1				Fecha		01-10-2020	/ 31-10-2020
		Promedio de		Westin	ghouse		Factor de	Tiempo	Supler	nentos	total	Tiempo
Item	Actividad	tiempo observado	Н	E	CD	cs	valoración	normal (TN)	NP	F. V	suplementos	Estándar
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12	0.03	0.02	-0.03	0.01	1.00	0.15	0.07	0.16	0.23	0.18
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
3	Vaciar la materia prima a la tolva.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
4	Agarrar la materia prima para la selección.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
5	Abastecimiento de la materia prima.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
6	Deshuesado de la materia prima (maquina).	1.50	0.03	0.02	-0.03	0.01	1.00	1.53	0.07	0.16	0.23	1.88
7	Desprender el filete del hueso.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
8	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
9	Transporte del filete a la zona de limpieza.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
10	Agarrar el filete de pechuga.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
11	Limpieza del filete de pechugas de pollo(quitar grasa y piel).	52.08	0.00	0.00	-0.03	0.01	1.00	52.06	0.07	0.16	0.23	64.03
12	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06

Transporte del filete a la zona de moldeado.	0.08	0.03	0.02	-0.03	0.01	1.00	0.11	0.07	0.16	0.23	0.14
Agarrar el filete limpio de pechuga.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas.	66.67	0.03	0.02	-0.03	0.01	1.00	66.70	0.07	0.16	0.23	82.04
Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Transporte del filete a la zona de embolsado.	0.13	0.03	0.02	-0.03	0.01	1.00	0.16	0.07	0.16	0.23	0.20
Agarrar la bolsa de los productos .	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Agarrar el filete moldeado.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Embolsado de los filetes moldeados de pechugas.	0.83	0.03	0.02	-0.03	0.01	1.00	0.86	0.07	0.16	0.23	1.06
Enviar las bolsas al zona de sellado.	3.10	0.03	0.02	-0.03	0.01	1.00	3.13	0.07	0.16	0.23	3.85
Agarrar las bolsas según los productos.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Colocar las bolsas en la faja de sellado lineal.	0.83	0.03	0.02	-0.03	0.01	1.00	0.86	0.07	0.16	0.23	1.06
Agarrar las bolsas selladas de pechugas.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Entinado de productos terminados.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
Poner tapas a las tinas de los productos terminados.	1.33	0.03	0.02	-0.03	0.01	1.00	1.36	0.07	0.16	0.23	1.68
Etiquetado de las tinas con los productos terminados.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Colocar las tinas en parihuelas.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
TOTAL											158.38
	Agarrar el filete limpio de pechuga. Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. Tirar el filete la faja transportadora. Transporte del filete a la zona de embolsado. Agarrar la bolsa de los productos . Agarrar el filete moldeado. Embolsado de los filetes moldeados de pechugas. Enviar las bolsas al zona de sellado. Agarrar las bolsas según los productos. Colocar las bolsas en la faja de sellado lineal. Agarrar las bolsas selladas de pechugas. Entinado de productos terminados. Poner tapas a las tinas de los productos terminados. Etiquetado de las tinas con los productos terminados. Colocar las tinas en parihuelas.	Agarrar el filete limpio de pechuga. Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. Tirar el filete la faja transportadora. O.02 Transporte del filete a la zona de embolsado. Agarrar la bolsa de los productos . Agarrar el filete moldeado. Embolsado de los filetes moldeados de pechugas. Enviar las bolsas al zona de sellado. Agarrar las bolsas según los productos. Colocar las bolsas selladas de pechugas. Agarrar las bolsas selladas de pechugas. O.02 Colocar las bolsas selladas de pechugas. O.02 Entinado de productos terminados. Poner tapas a las tinas de los productos terminados. Etiquetado de las tinas con los productos terminados. Colocar las tinas en parihuelas. O.33 Colocar las tinas en parihuelas. O.33	Agarrar el filete limpio de pechuga. Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. Tirar el filete la faja transportadora. Transporte del filete a la zona de embolsado. Agarrar la bolsa de los productos . Agarrar el filete moldeado. Embolsado de los filetes moldeados de pechugas. Enviar las bolsas al zona de sellado. Agarrar las bolsas según los productos. Colocar las bolsas selladas de pechugas. Entinado de productos terminados. Entinado de productos terminados. Entiquetado de las tinas con los productos Colocar las tinas en parihuelas. Colocar las tinas en parihuelas. Colocar las tinas en parihuelas. O.02 0.03 0.03 0.04 0.05 0.07 0.08 0.09	Agarrar el filete limpio de pechuga. Agarrar el filete limpio de pechuga. Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. Tirar el filete la faja transportadora. Transporte del filete a la zona de embolsado. Agarrar la bolsa de los productos . Agarrar el filete moldeado. Embolsado de los filetes moldeados de pechugas. Enviar las bolsas al zona de sellado. Agarrar las bolsas según los productos. Colocar las bolsas selladas de pechugas. Entinado de productos terminados. Poner tapas a las tinas de los productos terminados. Etiquetado de las tinas en parihuelas. O.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 66.67 0.03 0.02 -0.03 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 Enviar las bolsas al zona de sellado. 3.10 0.03 0.02 -0.03 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 Colocar las bolsas selladas de pechugas. 0.02 0.03 0.02 -0.03 Entinado de productos terminados. 0.33 0.03 0.02 -0.03 Poner tapas a las tinas de los productos terminados. 1.33 0.03 0.02 -0.03 Etique	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 66.67 0.03 0.02 -0.03 0.01 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 0.01 Enviar las bolsas al zona de sellado. 3.10 0.03 0.02 -0.03 0.01 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 0.01 Colocar las bolsas en la faja de sellado lineal. 0.83 0.03 0.02 -0.03 0.01 Entinado de productos terminados. 0.03 0.02 -0.03 0.01 Poner tapas a las tinas de los productos terminados. 1.33	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 66.67 0.03 0.02 -0.03 0.01 1.00 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 Agarrar la bolsa de los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 1.00 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 0.01 1.00 Enviar las bolsas al zona de sellado. 3.10 0.03 0.02 -0.03 0.01 1.00 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 Colocar las bolsas selladas de pechugas. 0.02 0.03 0.02	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 66.67 0.03 0.02 -0.03 0.01 1.00 66.70 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 0.01 1.00 0.86 Enviar las bolsas al zona de sellado. 3.10 0.03 0.02 -0.03 0.01 1.00 0.86 Enviar las bolsas según los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Colocar las bolsas en la faja de sellado lineal. <td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 66.67 0.03 0.02 -0.03 0.01 1.00 66.70 0.07 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 0.07 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Embolsado de los filetes moldeados de pechugas. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Enviar las bolsas al zona de sellado. 3.10 0.03 0.02 -0.03 0.01 1.00 0.86 0.07 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 0.86 <t< td=""><td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 66.67 0.03 0.02 -0.03 0.01 1.00 66.70 0.07 0.16 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.18 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 0.07 0.16 Agarrar la bolsa de los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Embolsado de los filetes moldeados 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 0.01 1.00 0.86 0.07 0.16 Enviar las bolsas al zona de sellado. 3.10<</td><td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 66.67 0.03 0.02 -0.03 0.01 1.00 66.70 0.07 0.16 0.23 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Agarrar la bolsa de los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 0.01 1.00 0.86 <t< td=""></t<></td></t<></td>	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 66.67 0.03 0.02 -0.03 0.01 1.00 66.70 0.07 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 0.07 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Embolsado de los filetes moldeados de pechugas. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Enviar las bolsas al zona de sellado. 3.10 0.03 0.02 -0.03 0.01 1.00 0.86 0.07 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 0.86 <t< td=""><td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 66.67 0.03 0.02 -0.03 0.01 1.00 66.70 0.07 0.16 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.18 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 0.07 0.16 Agarrar la bolsa de los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Embolsado de los filetes moldeados 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 0.01 1.00 0.86 0.07 0.16 Enviar las bolsas al zona de sellado. 3.10<</td><td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 66.67 0.03 0.02 -0.03 0.01 1.00 66.70 0.07 0.16 0.23 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Agarrar la bolsa de los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 0.01 1.00 0.86 <t< td=""></t<></td></t<>	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 66.67 0.03 0.02 -0.03 0.01 1.00 66.70 0.07 0.16 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.18 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 0.07 0.16 Agarrar la bolsa de los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Embolsado de los filetes moldeados 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 0.01 1.00 0.86 0.07 0.16 Enviar las bolsas al zona de sellado. 3.10<	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 66.67 0.03 0.02 -0.03 0.01 1.00 66.70 0.07 0.16 0.23 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Agarrar la bolsa de los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 0.01 1.00 0.86 <t< td=""></t<>

ANEXO 24: Toma de tiempo del filete de pechuga corte mariposa SANTA – Pre test.

	sanfernando La buena familia										SA	N FE	RNAI	NDO									
								MATO	DE TO	MA DE	TIEM	PO											
	Actividad		Filete	de pec			posa SA	NTA.		_	laborado						Jose L		Olortegui				
	Hora Inicio N° de datos tomados				06:00	0 a.m. 4					Hora Fina Fecha	ll					01.1	06:00 p.	.m. 1-10-2020				
	iv de datos tolliados										recna						01-10	J-2020 / 3.	1-10-2020				
Item	Actividad	T1	T2	Т3	T4	T5	Т6	17	T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	PROM	Σ
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	2.33
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
5	Abastecimiento de la materia prima.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
6	Deshuesado de la materia prima (maquina).	1.50	1.54	1.56	1.50	1.49	1.51	1.54	1.56	1.55	1.50	1.50	1.51	1.52	1.53	1.50	1.50	1.50	1.51	1.52	1.54	1.52	30.38
7	Desprender el filete del hueso.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
8	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
9	Transporte del filete a la zona de limpieza.	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.34	0.33	0.33	0.33	6.66
10	Agarrar el filete de pechuga.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33

11	Limpieza del filete de pechugas de pollo(guitar grasa y piel).	53.00	54.00	53.20	52.00	53.20	52.00	53.20	54.00	52.08	54.00	53.20	54.00	53.20	55.00	53.20	55.40	52.08	52.08	52.40	53.20	53.22	1064.44
12	Tirar el filete la faja transportadora.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
13	Transporte del filete a la zona de moldeado.	0.08	0.09	0.08	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.09	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.08	0.09	0.08	1.67
14	Agarrar el filete limpio de pechuga.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
15	moldeado de filete de pechugas de 300 gr. según especificaciones técnicas.	83.40	83.50	82.00	81.30	83.50	82.00	81.30	83.40	83.50	82.00	81.30	83.50	82.00	85.20	83.40	81.30	83.40	83.50	82.00	85.30	82.84	1656.80
16	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
17	Transporte del filete a la zona de embolsado.	0.13	0.13	0.14	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.14	0.13	0.14	0.14	0.13	0.13	2.67
18	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
19	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
20	Embolsado de los filetes moldeados de pechugas.	0.83	0.89	0.88	0.89	0.88	0.88	0.89	0.83	0.88	0.88	0.89	0.88	0.89	0.83	0.88	0.88	0.89	0.88	0.89	0.89	0.88	17.53
21	Enviar las bolsas al zona de sellado.	3.00	3.10	3.20	3.20	3.30	3.00	3.00	3.50	3.40	3.20	3.00	3.20	3.10	3.20	3.20	3.30	3.00	3.00	3.20	3.10	3.16	63.20
22	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
23	Colocar las bolsas en la faja de sellado lineal.	0.83	0.88	0.88	0.89	0.88	0.89	0.83	0.88	0.88	0.89	0.83	0.88	0.88	0.88	0.88	0.89	0.83	0.88	0.88	0.89	0.87	17.47
24	Agarrar las bolsas selladas de pechugas.	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
25	Entinado de productos terminados.	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.34	0.33	0.33	0.33	0.33	0.33	6.66
26	Poner tapas a las tinas de los productos terminados.	1.33	1.35	1.31	1.40	1.32	1.32	1.33	1.35	1.34	1.36	1.33	1.30	1.31	1.32	1.35	1.32	1.32	1.33	1.35	1.30	1.33	26.64
27	Etiquetado de las tinas con los productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
28	Colocar las tinas en parihuelas.	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	6.65
	TOTAL	145.53	146.89	144.66	142.79	146.22	143.23	143.72	147.15	145.26	145.45	143.68	146.91	144.53	149.59	146.05	146.22	144.64	144.82	143.87	147.84	145.45	2909.07

ANEXO 25: Cálculo del número de observaciones proceso de filete de pechuga corte mariposa SANTA- Pre test.

r	Método	Pre-test	P	ost-Test	Proceso: Filete de pechuga corte mariposa
Ela	aborado:	Jose Luis Co	olan Olortegui		SANTA.
Item		Actividad	Σx	Σx^2	$n = \left(\frac{40\sqrt{n\Sigma x^2 - (\Sigma x)^2}}{\Sigma x}\right)^2$
1	Quitar las materia pr	tapas de las tinas que contiene la ima.	2.33	0.27	1
2	Levantar i abastecim	as tinas a la tolva de viento.	0.66	0.02	1
3	Vaciar la r	nateria prima a la tolva.	0.33	0.01	9
4	Agarrar la	materia prima para la selección.	0.33	0.01	6
5	Abastecin	niento de la materia prima.	0.66	0.02	1
6	Deshuesa	do de la materia prima (maquina).	30.38	46.16	1
7	Desprend	er el filete del hueso.	0.66	0.02	1
8	Tirar el file	ete la faja transportadora.	0.33	0.01	5
9	Transport	e del filete a la zona de limpieza.	6.66	2.22	1
10	Agarrar el	filete de pechuga.	0.33	0.01	9
11		del filete de pechugas de ar grasa y piel).	1064.44	56669.58	1
12		ete la faja transportadora.	0.33	0.01	9
13	Transport	e del filete a la zona de moldeado.	1.67	0.14	1
14	Agarrar el	filete limpio de pechuga.	0.33	0.01	9
15		de filete de pechugas de 300 gr. pecificaciones técnicas.	1656.80	137277.38	1
16	Tirar el file	ete la faja transportadora.	0.33	0.01	8
17	Transport	e del filete a la zona de embolsado.	2.67	0.36	1
18	Agarrar la	bolsa de los productos .	0.33	0.01	9
19	Agarrar el	filete moldeado.	0.33	0.01	9
20	Embolsad pechugas	o de los filetes moldeados de	17.53	15.38	1
21	Enviar las	bolsas al zona de sellado.	63.20	200.10	3
22	Agarrar la	s bolsas según los productos.	0.33	0.01	9
23	Colocar la	s bolsas en la faja de sellado lineal.	17.47	15.27	1
24	Agarrar la	s bolsas selladas de pechugas.	0.33	0.01	9
25	Entinado	de productos terminados.	6.66	2.21	1
26	Poner tap	as a las tinas de los productos s.	26.64	35.50	1
27		o de las tinas con los productos	0.33	0.01	9
28		as tinas en parihuelas.	6.65	2.21	1

ANEXO 26: Cálculo del promedio los tiempos observados del proceso de filete de pechuga corte mariposa SANTA – Pre test

	sanfernando La buera familia				SAI	N FER	RNAN	DO			
	N	ÚMER	DE N	IUEST	RAS						
Item	Actividad	T1	T2	T3	T4	T5	T6	T7	T8	Т9	PROM
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12									0.12
2	Levantar las tinas a la tolva de abastecimiento.	0.03									0.03
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01				0.02
5	Abastecimiento de la materia prima.	0.03									0.03
6	Deshuesado de la materia prima (maquina).	1.50									1.50
7	Desprender el filete del hueso.	0.03									0.03
8	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02					0.02
9	Transporte del filete a la zona de limpieza.	0.33									0.33
10	Agarrar el filete de pechuga.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02
11	Limpieza del filete de pechugas de pollo(quitar grasa y piel).	53.00									53.00
12	Tirar el filete la faja transportadora.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02
13	Transporte del filete a la zona de moldeado.	0.08									0.08
14	Agarrar el filete limpio de pechuga.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02
15	moldeado de filete de pechugas de 300 gr. según especificaciones técnicas.	83.40									83.40
16	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02		0.02

17	Transporte del filete a la zona de embolsado.	0.13									0.13
"	Transporte del mete a la zona de emboisado.	0.13									0.13
18	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02
19	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02
20	Embolsado de los filetes moldeados de pechugas.	0.83									0.83
21	Enviar las bolsas al zona de sellado.	3.00	3.10	3.20							3.10
22	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02
23	Colocar las bolsas en la faja de sellado lineal.	0.85									0.85
24	Agarrar las bolsas selladas de pechugas.	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
25	Entinado de productos terminados.	0.33									0.33
26	Poner tapas a las tinas de los productos terminados.	1.33									1.33
27	Etiquetado de las tinas con los productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02
28	Colocar las tinas en parihuelas.	0.33									0.33

ANEXO 27: Cálculo del tiempo estándar del proceso de filete de pechuga corte mariposa SANTA- Pre test.

	san fernando La buera familia					S	SAN FERN	ANDO)			
		Format	o de c	álculo	del ti	empo	estándar.					
	Actividad	Filete	de pec		rte mari	posa SA	NTA.		laborad		Jose Luis Col	an Olortegui.
	Hora Inicio			06:00	0 a.m.			Н	lora Fin	al) p.m.
	N° de datos tomados			***	1				Fecha		01-10-2020	/ 31-10-2020
Item	Actividad	Promedio de tiempo observado	н	Westin	ghouse CD	cs	Factor de valoración	Tiempo normal (TN)	NP	nentos F	total suplementos	Tiempo Estándar
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12	0.03	0.02	-0.03	0.01	1.00	0.15	0.07	0.16	0.23	0.18
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
3	Vaciar la materia prima a la tolva.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
4	Agarrar la materia prima para la selección.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
5	Abastecimiento de la materia prima.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
6	Deshuesado de la materia prima (maquina).	1.50	0.03	0.02	-0.03	0.01	1.00	1.53	0.07	0.16	0.23	1.88
7	Desprender el filete del hueso.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
8	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
9	Transporte del filete a la zona de limpieza.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
10	Agarrar el filete de pechuga.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
11	Limpieza del filete de pechugas de pollo(quitar grasa y piel).	53.00	0.00	0.00	-0.03	0.01	1.00	52.98	0.07	0.16	0.23	65.17
12	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06

Transporte del filete a la zona de moldeado.	0.08	0.03	0.02	-0.03	0.01	1.00	0.11	0.07	0.16	0.23	0.14
Agarrar el filete limpio de pechuga.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
moldeado de filete de pechugas de 300 gr. según especificaciones técnicas.	83.40	0.03	0.02	-0.03	0.01	1.00	83.43	0.07	0.16	0.23	102.62
Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Transporte del filete a la zona de embolsado.	0.13	0.03	0.02	-0.03	0.01	1.00	0.16	0.07	0.16	0.23	0.20
Agarrar la bolsa de los productos .	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Agarrar el filete moldeado.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Embolsado de los filetes moldeados de pechugas.	0.83	0.03	0.02	-0.03	0.01	1.00	0.86	0.07	0.16	0.23	1.06
Enviar las bolsas al zona de sellado.	3.10	0.03	0.02	-0.03	0.01	1.00	3.13	0.07	0.16	0.23	3.85
Agarrar las bolsas según los productos.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Colocar las bolsas en la faja de sellado lineal.	0.85	0.03	0.02	-0.03	0.01	1.00	0.88	0.07	0.16	0.23	1.08
Agarrar las bolsas selladas de pechugas.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Entinado de productos terminados.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
Poner tapas a las tinas de los productos terminados.	1.33	0.03	0.02	-0.03	0.01	1.00	1.36	0.07	0.16	0.23	1.68
Etiquetado de las tinas con los productos terminados.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Colocar las tinas en parihuelas.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
TOTAL											180.11
	Agarrar el filete limpio de pechuga. moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. Tirar el filete la faja transportadora. Transporte del filete a la zona de embolsado. Agarrar la bolsa de los productos . Agarrar el filete moldeado. Embolsado de los filetes moldeados de pechugas. Enviar las bolsas al zona de sellado. Agarrar las bolsas según los productos. Colocar las bolsas en la faja de sellado lineal. Agarrar las bolsas selladas de pechugas. Entinado de productos terminados. Poner tapas a las tinas de los productos terminados. Etiquetado de las tinas con los productos terminados. Colocar las tinas en parihuelas.	Agarrar el filete limpio de pechuga. moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. Tirar el filete la faja transportadora. 0.02 Transporte del filete a la zona de embolsado. Agarrar la bolsa de los productos . Agarrar el filete moldeado. Embolsado de los filetes moldeados de pechugas. Enviar las bolsas al zona de sellado. Agarrar las bolsas según los productos. Colocar las bolsas selladas de pechugas. Agarrar las bolsas selladas de pechugas. O.02 Colocar las bolsas selladas de pechugas. O.02 Entinado de productos terminados. Poner tapas a las tinas de los productos terminados. Etiquetado de las tinas con los productos terminados. Colocar las tinas en parihuelas. O.33 Colocar las tinas en parihuelas. O.33	Agarrar el filete limpio de pechuga. moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. Tirar el filete la faja transportadora. Transporte del filete a la zona de embolsado. Agarrar la bolsa de los productos . Agarrar el filete moldeado. Embolsado de los filetes moldeados de pechugas. Enviar las bolsas al zona de sellado. Agarrar las bolsas según los productos. Colocar las bolsas selladas de pechugas. Entinado de productos terminados. Entinado de productos terminados. Entiquetado de las tinas con los productos Colocar las tinas en parihuelas. Colocar las tinas en parihuelas. O.02 0.03 83.40 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	Agarrar el filete limpio de pechuga. Agarrar el filete limpio de pechuga. moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. Tirar el filete la faja transportadora. Transporte del filete a la zona de embolsado. Agarrar la bolsa de los productos . Agarrar el filete moldeado. Embolsado de los filetes moldeados de pechugas. Enviar las bolsas al zona de sellado. Agarrar las bolsas según los productos. Colocar las bolsas selladas de pechugas. Entinado de productos terminados. Poner tapas a las tinas de los productos terminados. Etiquetado de las tinas en parihuelas. O.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 83.40 0.03 0.02 -0.03 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 Enviar las bolsas al zona de sellado. 3.10 0.03 0.02 -0.03 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 Colocar las bolsas selladas de pechugas. 0.02 0.03 0.02 -0.03 Entinado de productos terminados. 0.33 0.03 0.02 -0.03 Entinado de las tinas de los productos terminados. 1.33 0.03 0.02 -0.03 Etiqueta	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 83.40 0.03 0.02 -0.03 0.01 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 0.01 Enviar las bolsas al zona de sellado. 3.10 0.03 0.02 -0.03 0.01 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 0.01 Colocar las bolsas en la faja de sellado lineal. 0.85 0.03 0.02 -0.03 0.01 Agarrar las bolsas selladas de pechugas. 0.02 0.03 0.02	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 83.40 0.03 0.02 -0.03 0.01 1.00 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 Agarrar la bolsa de los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 1.00 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 0.01 1.00 Enviar las bolsas al zona de sellado. 3.10 0.03 0.02 -0.03 0.01 1.00 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 Colocar las bolsas selladas de pechugas. 0.02 0.03 0.02	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 83.40 0.03 0.02 -0.03 0.01 1.00 83.43 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 0.01 1.00 0.05 Enviar las bolsas al zona de sellado. 3.10 0.03 0.02 -0.03 0.01 1.00 0.05 Enviar las bolsas según los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Colocar las bolsas en la faja de sellado lineal. 0.85 0.03 0.02 -0	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 83.40 0.03 0.02 -0.03 0.01 1.00 83.43 0.07 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 0.07 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Embolsado de los filetes moldeados 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 0.01 1.00 0.86 0.07 Enviar las bolsas al zona de sellado. 3.10 0.03 0.02 -0.03 0.01 1.00 0.05 0.0	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 83.40 0.03 0.02 -0.03 0.01 1.00 83.43 0.07 0.16 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.18 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 0.07 0.16 Agarrar la bolsa de los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Embolsado de los filetes moldeados 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 0.01 1.00 0.86 0.07 0.16 Enviar las bolsas al zona de sellado. 3.10<	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 moldeado de filete de pechugas de 300 gr. según especificaciones técnicas. 83.40 0.03 0.02 -0.03 0.01 1.00 83.43 0.07 0.16 0.23 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Embolsado de los filetes moldeados de pechugas. 0.83 0.03 0.02 -0.03 0.01 1.00 0.86 <

ANEXO 28: Toma de tiempos del proceso de filete de pechuga económico x1 – Pre test.

	san fernando la buera familia										SA	N FE	RNAI	NDO									
								MATO	DE TO	MA DE	TIEM	PO											
	Actividad			Filete	de pollo		nico x1.				laborado						Jose L		Olortegui				
	Hora Inicio N° de datos tomados				06:00) a.m. 4					Hora Fina Fecha	ıl					01.10	06:00 p. 0-2020 / 31					
	N de datos tomados										recna						01-10	J-2020 / 3.	1-10-2020				
Item	Actividad	T1	T2	T3	T4	T5	Т6	17	T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	PROM	Σ
1	Quitar las tapas de las tinas que contiene la materia prima.	0.15	0.15	0.16	0.13	0.15	0.15	0.17	0.15	0.15	0.15	0.16	0.15	0.16	0.15	0.15	0.13	0.15	0.15	0.16	0.15	0.15	3.02
2	Levantar las tinas a la tolva de abastecimiento.	0.05	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.04	0.05	0.05	0.05	0.97
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
5	Abastecimiento de la materia prima.	0.08	0.08	0.05	0.08	0.08	0.07	0.08	0.07	0.08	0.08	0.07	0.08	0.07	0.08	0.08	0.08	0.08	0.08	0.08	0.07	0.08	1.52
6	Deshuesado de la materia prima (maquina).	1.50	1.54	1.56	1.50	1.49	1.51	1.54	1.56	1.55	1.50	1.50	1.51	1.52	1.53	1.50	1.50	1.50	1.51	1.52	1.54	1.52	30.38
7	Desprender el filete del hueso.	0.05	0.06	0.07	0.06	0.06	0.06	0.06	0.06	0.07	0.06	0.06	0.06	0.05	0.06	0.05	0.06	0.06	0.05	0.05	0.06	0.06	1.17
8	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
9	Transporte del filete a la zona de limpieza.	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.34	0.33	0.33	0.33	6.66
10	Agarrar el filete de pechuga.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33

11	Limpieza del filete de pechugas de pollo(quitar grasa y piel).	37.20	37.50	37.60	37.50	37.60	37.90	37.10	37.20	37.00	37.00	37.80	37.50	37.20	37.50	37.60	37.50	37.60	37.90	37.10	37.20	37.43	748.50
12	Tirar el filete la faja transportadora.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
13	Transporte del filete a la zona de moldeado.	0.08	0.09	0.08	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.09	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.08	0.09	0.08	1.67
14	Agarrar el filete limpio de pechuga.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
15	Moldeado de filete de pechuga economico x 1. según especificaciones técnicas.	34.30	34.50	34.60	34.50	35.00	34.60	34.50	35.00	36.00	35.20	34.20	34.50	35.00	34.60	34.50	35.00	36.00	35.20	34.60	35.20	34.85	697.00
16	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
17	Amarrar bolsas	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
18	Agarrar las bolsas de los productos terminado.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
19	Entinado de productos terminados.	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.34	0.33	0.33	0.33	0.33	0.33	6.66
20	Poner tapas a las tinas de los productos terminados.	1.33	1.35	1.31	1.40	1.32	1.32	1.33	1.35	1.34	1.36	1.33	1.30	1.31	1.32	1.35	1.32	1.32	1.33	1.35	1.30	1.33	26.64
21	Etiquetado de las tinas con los productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
22	Colocar las tinas en parihuelas.	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	6.65
	TOTAL	75.92	76.47	76.64	76.45	77.01	76.91	76.08	76.69	77.47	76.65	76.42	76.40	76.61	76.54	76.53	76.89	78.00	77.51	76.16	76.82	76.71	1534.15

ANEXO 29: Cálculo del número de observaciones del proceso de filete de pechuga económico x1- Pre test.

ı	Método	Pre-test	P	ost-Test	Proceso:
Ela	aborado:	Jose Luis Co	olan Olortegui		Filete de pollo economico x1.
ltem		Actividad	Σx	Σx^2	$n = \left(\frac{40\sqrt{n \sum x^2 - (\sum x)^2}}{\sum x}\right)^2$
1	Quitar las materia pr	tapas de las tinas que contiene la ima.	3.02	0.46	6
2	Levantar I abastecim	as tinas a la tolva de iento.	0.97	0.05	12
3	Vaciar la n	nateria prima a la tolva.	0.33	0.01	9
4	Agarrar la	materia prima para la selección.	0.33	0.01	6
5	Abastecin	niento de la materia prima.	1.52	0.12	15
6	Deshuesa	do de la materia prima (maquina).	30.38	46.16	1
7	Desprend	er el filete del hueso.	1.17	0.07	15
8	Tirar el file	ete la faja transportadora.	0.33	0.01	5
9	Transport	e del filete a la zona de limpieza.	6.66	2.22	1
10	Agarrar el	filete de pechuga.	0.33	0.01	9
11		del filete de pechugas de ar grasa y piel).	748.50	28014.13	1
12	Tirar el file	ete la faja transportadora.	0.33	0.01	9
13	Transport	e del filete a la zona de moldeado.	1.67	0.14	1
14	Agarrar el	filete limpio de pechuga.	0.33	0.01	9
15		de filete de pechuga economico x especificaciones técnicas.	697.00	24295.14	1
16		ete la faja transportadora.	0.33	0.01	8
17	Amarrar b	olsas	0.33	0.01	9
18	Agarrar la terminado	s bolsas de los productos	0.33	0.01	9
19	Entinado (de productos terminados.	6.66	2.21	1
20	Poner tapa terminado	as a las tinas de los productos s.	26.64	35.50	1
21	Etiquetado terminado	o de las tinas con los productos s.	0.33	0.01	9
22		as tinas en parihuelas.	6.65	2.21	1

ANEXO 30: Cálculo del promedio de observaciones del filete económico x1- Pre test.

	san fernando La buera familia							SAI	V FER	NAN	DO						
				N	ÚMER	O DE N	IUEST	RAS									
Item	Actividad	T1	T2	Т3	T4	Т5	Т6	T7	Т8	Т9	T10	T11	T12	T13	T14	T15	PROM
1	Quitar las tapas de las tinas que contiene la materia prima.	0.15	0.15	0.16	0.13	0.15	0.15										0.15
2	Levantar las tinas a la tolva de abastecimiento.	0.05	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.04	0.05	0.05	0.05				0.05
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01							0.02
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01										0.02
5	Abastecimiento de la materia prima.	0.08	0.08	0.05	0.08	0.08	0.07	0.08	0.07	0.08	0.08	0.07	0.08	0.07	0.08	0.08	0.08
6	Deshuesado de la materia prima (maquina).	1.50															1.50
7	Desprender el filete del hueso.	0.05	0.06	0.07	0.06	0.06	0.06	0.06	0.06	0.07	0.06	0.06	0.06	0.05	0.06	0.05	0.06
8	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02											0.02
9	Transporte del filete a la zona de limpieza.	0.33															0.33
10	Agarrar el filete de pechuga.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01							0.02
11	Limpieza del filete de pechugas de pollo(quitar grasa y piel).	37.20															37.20
12	Tirar el filete la faja transportadora.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02							0.02
13	Transporte del filete a la zona de moldeado.	0.08															0.08
14	Agarrar el filete limpio de pechuga.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01							0.02

15	Moldeado de filete de pechuga economico x 1. según especificaciones técnicas.	34.30												34.30
16	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02					0.02
17	Amarrar bolsas	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02				0.02
18	Agarrar las bolsas de los productos terminado.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02				0.02
19	Entinado de productos terminados.	0.33												0.33
20	Poner tapas a las tinas de los productos terminados.	1.33												1.33
21	Etiquetado de las tinas con los productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02				0.02
22	Colocar las tinas en parihuelas.	0.33												0.33

ANEXO 31: Calculo del tiempo estándar del proceso de filete económico x1 - Pre test.

	san fernando La buera familia					S	AN FERN	ANDO)			
		Format					estándar.					
	Actividad		Filete (econon	ico x1.			laborad			an Olortegui.
	Hora Inicio Nº de datos tomados			06:00	0 a.m.			H	lora Fin Fecha	al) p.m.
	N° de datos tomados			Mostin	ghouse					nentos	01-10-2020	/ 31-10-2020
Item	Actividad	Promedio de tiempo observado	н	E	CD	cs	Factor de valoración	Tiempo normal (TN)	NP	F	total suplementos	Tiempo Estándar
1	Quitar las tapas de las tinas que contiene la materia prima.	0.15	0.03	0.02	-0.03	0.01	1.00	0.18	0.07	0.16	0.23	0.22
2	Levantar las tinas a la tolva de abastecimiento.	0.05	0.03	0.02	-0.03	0.01	1.00	0.08	0.07	0.16	0.23	0.10
3	Vaciar la materia prima a la tolva.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
4	Agarrar la materia prima para la selección.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
5	Abastecimiento de la materia prima.	0.08	0.03	0.02	-0.03	0.01	1.00	0.11	0.07	0.16	0.23	0.13
6	Deshuesado de la materia prima (maquina).	1.50	0.03	0.02	-0.03	0.01	1.00	1.53	0.07	0.16	0.23	1.88
7	Desprender el filete del hueso.	0.06	0.03	0.02	-0.03	0.01	1.00	0.09	0.07	0.16	0.23	0.11
8	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
9	Transporte del filete a la zona de limpieza.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
10	Agarrar el filete de pechuga.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06

11	Limpieza del filete de pechugas de pollo(quitar grasa y piel).	37.20	0.00	0.00	-0.03	0.01	1.00	37.18	0.07	0.16	0.23	45.73
12	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
13	Transporte del filete a la zona de moldeado.	0.08	0.03	0.02	-0.03	0.01	1.00	0.11	0.07	0.16	0.23	0.14
14	Agarrar el filete limpio de pechuga.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
15	Moldeado de filete de pechuga economico x 1. según especificaciones técnicas.	34.30	0.03	0.02	-0.03	0.01	1.00	34.33	0.07	0.16	0.23	42.23
16	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
17	Amarrar bolsas	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
18	Agarrar las bolsas de los productos terminado.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
19	Entinado de productos terminados.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
20	Poner tapas a las tinas de los productos terminados.	1.33	0.03	0.02	-0.03	0.01	1.00	1.36	0.07	0.16	0.23	1.68
21	Etiquetado de las tinas con los productos terminados.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
22	Colocar las tinas en parihuelas.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
	TOTAL					·		·		·		94.12

ANEXO 32: Toma de tiempo del proceso de filete de pechuga corte KFC Pre test.

	sanfernando La buena familia										SA	N FE	RNAI	NDO									
								MATO	DE TO														
	Actividad Hora Inicio			Filete	o de file		KFC.				Elaborado Hora Fina						Jose L	uis Colan 06:00 p.	Olortegui				
	N° de datos tomados				00.00	1					Fecha	<u> </u>					01-10		 1-10-2020				
Item	Actividad	T1	T2	T3	T4	T5	T6	Т7	T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	PROM	Σ
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	2.33
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
5	Abastecimiento de la materia prima.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
6	Deshuesado de la materia prima (maquina).	1.50	1.54	1.56	1.50	1.49	1.51	1.54	1.56	1.55	1.50	1.50	1.51	1.52	1.53	1.50	1.50	1.50	1.51	1.52	1.54	1.52	30.38
7	Desprender el filete del hueso.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
8	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
9	Transporte del filete a la zona de limpieza.	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.34	0.33	0.33	0.33	6.66
10	Agarrar el filete de pechuga.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33

11	Limpieza del filete de pechugas de pollo(quitar grasa y piel).	60.20	60.20	60.50	60.30	60.20	60.10	60.10	60.50	60.10	60.30	60.20	60.10	60.10	60.50	60.10	60.10	60.20	60.10	60.30	60.20	60.22	1204.40
12	Tirar el filete la faja transportadora.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
13	Transporte del filete a la zona de moldeado.	0.08	0.09	0.08	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.09	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.08	0.09	0.08	1.67
14	Agarrar el filete limpio de pechuga.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
15	Moldeado de filete de pechugas corte KFC.según especificaciones técnicas.	100.10	100.20	100.20	100.10	100.20	100.30	100.20	100.00	100.10	100.20	100.20	100.20	100.20	100.20	100.10	100.10	100.20	100.10	100.20	100.30	100.17	2003.40
16	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
17	Transporte del filete a la zona de embolsado.	0.13	0.13	0.14	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.14	0.13	0.14	0.14	0.13	0.13	2.67
18	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
19	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
20	Embolsado de los filetes moldeados de pechugas.	1.50	1.60	1.20	1.50	1.20	1.50	1.40	1.40	1.20	1.50	1.40	1.40	1.50	1.50	1.20	1.40	1.50	1.40	1.50	1.40	1.41	28.20
21	Enviar las bolsas al zona de sellado.	2.00	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.40	2.50	2.40	2.43	48.50
22	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
23	Colocar las bolsas en la faja de sellado lineal.	1.20	1.30	1.20	1.40	1.50	1.20	1.30	1.50	1.40	1.50	1.30	1.20	1.50	1.40	1.40	1.40	1.50	1.40	1.30	1.40	1.37	27.30
24	Agarrar las bolsas selladas de pechugas.	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
25	Entinado de productos terminados.	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.34	0.33	0.33	0.33	0.33	0.33	6.66
26	Poner tapas a las tinas de los productos terminados.	1.33	1.35	1.31	1.40	1.32	1.32	1.33	1.35	1.34	1.36	1.33	1.30	1.31	1.32	1.35	1.32	1.32	1.33	1.35	1.30	1.33	26.64
27	Etiquetado de las tinas con los productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
28	Colocar las tinas en parihuelas.	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	6.65
	TOTAL	169.47	170.32	170.00	170.31	169.95	170.06	169.90	170.44	169.72	170.49	169.97	169.84	170.16	170.58	169.68	169.95	170.25	169.87	170.31	170.17	170.07	3401.42

ANEXO 33: Cálculo del número de observaciones del proceso de corte KFC – Pre test.

ľ	Иétodo	Pre-test	P	ost-Test	Proceso:
Ela	aborado:	Jose Luis Co	olan Olortegui		Fileteo de filete corte KFC.
Item		Actividad	Σχ	Σx^2	$n = \left(\frac{40\sqrt{n\Sigma x^2 - (\Sigma x)^2}}{\Sigma x}\right)^2$
1	Quitar las materia pr	tapas de las tinas que contiene la ima.	2.33	0.27	1
2	Levantar I	as tinas a la tolva de iento.	0.66	0.02	1
3	Vaciar la n	nateria prima a la tolva.	0.33	0.01	9
4	Agarrar la	materia prima para la selección.	0.33	0.01	6
5	Abastecin	niento de la materia prima.	0.66	0.02	1
6	Deshuesa	do de la materia prima (maquina).	30.38	46.16	1
7	Desprende	er el filete del hueso.	0.66	0.02	1
8	Tirar el file	rte la faja transportadora.	0.33	0.01	5
9	Transport	e del filete a la zona de limpieza.	6.66	2.22	1
10	Agarrar el	filete de pechuga.	0.33	0.01	9
11		lel filete de pechugas de nr grasa y piel).	1204.40	72529.34	1
12	1	ete la faja transportadora.	0.33	0.01	9
13	Transport	e del filete a la zona de moldeado.	1.67	0.14	1
14	Agarrar el	filete limpio de pechuga.	0.33	0.01	9
15		de filete de pechugas corte n especificaciones técnicas.	2003.40	200680.68	1
16	Tirar el file	te la faja transportadora.	0.33	0.01	8
17	Transport	e del filete a la zona de embolsado.	2.67	0.36	1
18	Agarrar la	bolsa de los productos .	0.33	0.01	9
19	Agarrar el	filete moldeado.	0.33	0.01	9
20	Embolsad pechugas.	o de los filetes moldeados de	28.20	40.04	11
21		bolsas al zona de sellado.	48.50	117.85	3
22	Agarrar la	s bolsas según los productos.	0.33	0.01	9
23	Colocar la	s bolsas en la faja de sellado lineal.	27.30	37.49	10
24	Agarrar la	s bolsas selladas de pechugas.	0.33	0.01	9
25	Entinado d	de productos terminados.	6.66	2.21	1
26	Poner tapas a las tinas de los productos terminados.		26.64	35.50	1
27		de las tinas con los productos	0.33	0.01	9
28		as tinas en parihuelas.	6.65	2.21	1
			1	l	l .

ANEXO 34: Cálculo del promedio de los tiempos del proceso de filete de pechuga corte KFC- Pre test.

	san fernando La buera familia					SAI	N FER	NAN	DO				
		N	ÚMER(DE N	IUEST	RAS							
Item	Actividad	T1	T2	Т3	T4	T5	Т6	17	T8	Т9	T10	T11	PROM
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12											0.12
2	Levantar las tinas a la tolva de abastecimiento.	0.03											0.03
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02				0.02
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01						0.02
5	Abastecimiento de la materia prima.	0.03											0.03
6	Deshuesado de la materia prima (maquina).	1.50											1.50
7	Desprender el filete del hueso.	0.03											0.03
8	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02							0.02
9	Transporte del filete a la zona de limpieza.	0.33											0.33
10	Agarrar el filete de pechuga.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01			0.02
11	Limpieza del filete de pechugas de pollo(quitar grasa y piel).	60.20											60.20
12	Tirar el filete la faja transportadora.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02			0.02
13	Transporte del filete a la zona de moldeado.	0.08											0.08
14	Agarrar el filete limpio de pechuga.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01			0.02
15	Moldeado de filete de pechugas corte KFC.según especificaciones técnicas.	100.10											100.10
16	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02				0.02
17	Transporte del filete a la zona de embolsado.	0.13											0.13
18	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02			0.02
19	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02			0.02

20	Embolsado de los filetes moldeados de pechugas.	1.50	1.60	1.20	1.50	1.20	1.50	1.40	1.40	1.20	1.50	1.40	1.40
21	Enviar las bolsas al zona de sellado.	2.00	2.50	2.40									2.30
22	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02			0.02
23	Colocar las bolsas en la faja de sellado lineal.	1.20	1.30	1.20	1.40	1.50	1.20	1.30	1.50	1.40	1.50		1.35
24	Agarrar las bolsas selladas de pechugas.	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02			0.02
25	Entinado de productos terminados.	0.33											0.33
26	Poner tapas a las tinas de los productos terminados.	1.33											1.33
27	Etiquetado de las tinas con los productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02			0.02
28	Colocar las tinas en parihuelas.	0.33		·									0.33

ANEXO 35: Cálculo del tiempo estándar del proceso de filete de pechuga corte KFC - Pre test.

	sanfernando La buera familia					S	SAN FERN	ANDO)			
		Format	o de c	álculo	del ti	empo	estándar.					
	Actividad		Filete	o de file		KFC.			laborad			an Olortegui.
	Hora Inicio			06:00	0 a.m.			Н	lora Fin	al		p.m.
	N° de datos tomados			Mantin	l ebeuse				Fecha		01-10-2020 /	31-10-2020
Item	Actividad	Promedio de tiempo observado	н	E	ghouse CD	cs	Factor de valoración	Tiempo normal (TN)	NP	nentos F	total suplementos	Tiempo Estándar
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12	0.03	0.02	-0.03	0.01	1.00	0.15	0.07	0.16	0.23	0.18
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
3	Vaciar la materia prima a la tolva.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
4	Agarrar la materia prima para la selección.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
5	Abastecimiento de la materia prima.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
6	Deshuesado de la materia prima (maquina).	1.50	0.03	0.02	-0.03	0.01	1.00	1.53	0.07	0.16	0.23	1.88
7	Desprender el filete del hueso.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
8	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
9	Transporte del filete a la zona de limpieza.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
10	Agarrar el filete de pechuga.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
11	Limpieza del filete de pechugas de pollo(quitar grasa y piel).	60.20	0.00	0.00	-0.03	0.01	1.00	60.18	0.07	0.16	0.23	74.02
12	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06

Transporte del filete a la zona de moldeado.	0.08	0.03	0.02	-0.03	0.01	1.00	0.11	0.07	0.16	0.23	0.14
Agarrar el filete limpio de pechuga.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Moldeado de filete de pechugas corte KFC.según especificaciones técnicas.	100.10	0.03	0.02	-0.03	0.01	1.00	100.13	0.07	0.16	0.23	123.16
Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Transporte del filete a la zona de embolsado.	0.13	0.03	0.02	-0.03	0.01	1.00	0.16	0.07	0.16	0.23	0.20
Agarrar la bolsa de los productos .	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Agarrar el filete moldeado.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Embolsado de los filetes moldeados de pechugas.	1.40	0.03	0.02	-0.03	0.01	1.00	1.43	0.07	0.16	0.23	1.76
Enviar las bolsas al zona de sellado.	2.30	0.03	0.02	-0.03	0.01	1.00	2.33	0.07	0.16	0.23	2.87
Agarrar las bolsas según los productos.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Colocar las bolsas en la faja de sellado lineal.	1.35	0.03	0.02	-0.03	0.01	1.00	1.38	0.07	0.16	0.23	1.70
Agarrar las bolsas selladas de pechugas.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Entinado de productos terminados.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
Poner tapas a las tinas de los productos terminados.	1.33	0.03	0.02	-0.03	0.01	1.00	1.36	0.07	0.16	0.23	1.68
Etiquetado de las tinas con los productos terminados.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
Colocar las tinas en parihuelas.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
TOTAL											209.84
	Agarrar el filete limpio de pechuga. Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. Tirar el filete la faja transportadora. Transporte del filete a la zona de embolsado. Agarrar la bolsa de los productos. Agarrar el filete moldeado. Embolsado de los filetes moldeados de pechugas. Enviar las bolsas al zona de sellado. Agarrar las bolsas según los productos. Colocar las bolsas en la faja de sellado lineal. Agarrar las bolsas selladas de pechugas. Entinado de productos terminados. Poner tapas a las tinas de los productos terminados. Etiquetado de las tinas con los productos terminados. Colocar las tinas en parihuelas.	Agarrar el filete limpio de pechuga. Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. Tirar el filete la faja transportadora. 0.02 Transporte del filete a la zona de embolsado. Agarrar la bolsa de los productos . 0.02 Agarrar el filete moldeado. Embolsado de los filetes moldeados de pechugas. Enviar las bolsas al zona de sellado. 2.30 Agarrar las bolsas según los productos. Colocar las bolsas selladas de pechugas. 0.02 Entinado de productos terminados. Poner tapas a las tinas de los productos terminados. Etiquetado de las tinas con los productos terminados. Colocar las tinas en parihuelas. 0.03	Agarrar el filete limpio de pechuga. Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. Tirar el filete la faja transportadora. 100.10 0.03 Transporte del filete a la zona de embolsado. Agarrar la bolsa de los productos . Embolsado de los filetes moldeados de pechugas. Enviar las bolsas al zona de sellado. Agarrar las bolsas al zona de sellado. Agarrar las bolsas según los productos. Colocar las bolsas selladas de pechugas. Entinado de productos terminados. Entinado de las tinas de los productos de pechugas a las tinas de los productos de pechugas. Entinados. Etiquetado de las tinas en parihuelas. 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. 100.10 0.03 0.02 Tirar el filete la faja transportadora. 0.02 0.03 0.02 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 Agarrar la bolsa de los productos . 0.02 0.03 0.02 Agarrar el filete moldeado. 0.02 0.03 0.02 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 Agarrar las bolsas según los productos. 0.02 0.03 0.02 Colocar las bolsas en la faja de sellado lineal. 1.35 0.03 0.02 Agarrar las bolsas selladas de pechugas. 0.02 0.03 0.02 Entinado de productos terminados. 0.33 0.03 0.02 Poner tapas a las tinas de los productos terminados. 1.33 0.03 0.02 Etiquetado de las tinas con los productos terminados. 0.02 0.03 0.02 </td <td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. 100.10 0.03 0.02 -0.03 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 -0.03 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 -0.03 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 Colocar las bolsas selladas de pechugas. 0.02 0.03 0.02 -0.03 Entinado de productos terminados. 0.33 0.03 0.02 -0.03 Poner tapas a las tinas de los productos terminados. 1.33 0.03 0.02 -0.03 Etique</td> <td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 -0.03 0.01 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 -0.03 0.01 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 0.01 Colocar las bolsas en la faja de sellado lineal. 1.35 0.03 0.02 -0.03 0.01 Entinado de productos terminados. 0.03 0.02 -0.03 0.01 Entiquetado de las tinas con los productos terminados. 0.02<td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 1.00 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 Agarrar la bolsa de los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 1.00 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 -0.03 0.01 1.00 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 -0.03 0.01 1.00 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 Colocar las bolsas selladas de pechugas. 0.02 0.03 0.02</td><td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 1.00 100.13 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Embolsado de los filetes moldeados. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 -0.03 0.01 1.00 1.43 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 -0.03 0.01 1.00 2.33 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Colocar las bolsas selladas de pechugas.<</td><td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Moldeado de filete de pechugas corte KFC-según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 1.00 100.13 0.07 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 0.07 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Embolsado de los filetes moldeados. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 -0.03 0.01 1.00 0.143 0.07 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 -0.03 0.01 1.00 2.33</td><td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 1.00 100.13 0.07 0.16 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 0.07 0.16 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 -0.03 0.01 1.00 1.43 0.07 0.16 Enviar las bolsas al zona de sellado. 2.30</td><td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Moldeado de filete de pechugas corte KFC. según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 1.00 100.13 0.07 0.16 0.23 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 0.07 0.16 0.23 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Embolsado de los filetes moldeados. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 -0.03 0.01 1.00 1.43 <</td></td>	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. 100.10 0.03 0.02 -0.03 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 -0.03 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 -0.03 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 Colocar las bolsas selladas de pechugas. 0.02 0.03 0.02 -0.03 Entinado de productos terminados. 0.33 0.03 0.02 -0.03 Poner tapas a las tinas de los productos terminados. 1.33 0.03 0.02 -0.03 Etique	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 -0.03 0.01 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 -0.03 0.01 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 0.01 Colocar las bolsas en la faja de sellado lineal. 1.35 0.03 0.02 -0.03 0.01 Entinado de productos terminados. 0.03 0.02 -0.03 0.01 Entiquetado de las tinas con los productos terminados. 0.02 <td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 1.00 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 Agarrar la bolsa de los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 1.00 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 -0.03 0.01 1.00 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 -0.03 0.01 1.00 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 Colocar las bolsas selladas de pechugas. 0.02 0.03 0.02</td> <td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 1.00 100.13 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Embolsado de los filetes moldeados. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 -0.03 0.01 1.00 1.43 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 -0.03 0.01 1.00 2.33 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Colocar las bolsas selladas de pechugas.<</td> <td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Moldeado de filete de pechugas corte KFC-según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 1.00 100.13 0.07 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 0.07 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Embolsado de los filetes moldeados. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 -0.03 0.01 1.00 0.143 0.07 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 -0.03 0.01 1.00 2.33</td> <td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 1.00 100.13 0.07 0.16 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 0.07 0.16 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 -0.03 0.01 1.00 1.43 0.07 0.16 Enviar las bolsas al zona de sellado. 2.30</td> <td>Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Moldeado de filete de pechugas corte KFC. según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 1.00 100.13 0.07 0.16 0.23 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 0.07 0.16 0.23 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Embolsado de los filetes moldeados. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 -0.03 0.01 1.00 1.43 <</td>	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 1.00 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 Agarrar la bolsa de los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 1.00 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 -0.03 0.01 1.00 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 -0.03 0.01 1.00 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 Colocar las bolsas selladas de pechugas. 0.02 0.03 0.02	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 1.00 100.13 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Embolsado de los filetes moldeados. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 -0.03 0.01 1.00 1.43 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 -0.03 0.01 1.00 2.33 Agarrar las bolsas según los productos. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 Colocar las bolsas selladas de pechugas.<	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Moldeado de filete de pechugas corte KFC-según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 1.00 100.13 0.07 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 0.07 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Embolsado de los filetes moldeados. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 -0.03 0.01 1.00 0.143 0.07 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 -0.03 0.01 1.00 2.33	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Moldeado de filete de pechugas corte KFC.según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 1.00 100.13 0.07 0.16 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 0.07 0.16 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Agarrar el filete moldeado. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 Embolsado de los filetes moldeados de pechugas. 1.40 0.03 0.02 -0.03 0.01 1.00 1.43 0.07 0.16 Enviar las bolsas al zona de sellado. 2.30	Agarrar el filete limpio de pechuga. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Moldeado de filete de pechugas corte KFC. según especificaciones técnicas. 100.10 0.03 0.02 -0.03 0.01 1.00 100.13 0.07 0.16 0.23 Tirar el filete la faja transportadora. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Transporte del filete a la zona de embolsado. 0.13 0.03 0.02 -0.03 0.01 1.00 0.16 0.07 0.16 0.23 Agarrar la bolsa de los productos . 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Embolsado de los filetes moldeados. 0.02 0.03 0.02 -0.03 0.01 1.00 0.05 0.07 0.16 0.23 Enviar las bolsas al zona de sellado. 2.30 0.03 0.02 -0.03 0.01 1.00 1.43 <

ANEXO 36: Toma de tiempos de proceso de filete de pierna big crunch – Pre test.

	san fernando La buera familia										SA	NN FE	RNAI	NDO									
								MATO	DE TO	MA DE	TIEM	PO											
	Actividad			Filetec	de pier		runch.				laborado						Jose L		Olortegui				
	Hora Inicio				06:00	0 a.m.				l	Hora Fina	ıl						06:00 p					
	N° de datos tomados					1					Fecha						01-10	0-2020 / 3:	1-10-2020				
Item	Actividad	T1	T2	Т3	T4	T5	Т6	17	T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	PROM	Σ
1	Quitar las tapas de las tinas que contiene la materia prima.	0.13	0.13	0.13	0.14	0.13	0.12	0.14	0.12	0.13	0.13	0.15	0.13	0.15	0.13	0.14	0.14	0.13	0.12	0.13	0.15	0.13	2.67
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
5	Abastecimiento de la materia prima.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
6	Deshuesado de la materia prima (maquina).	2.10	2.40	2.00	2.30	2.10	2.20	2.30	2.10	2.30	2.20	2.50	2.50	2.50	2.40	2.30	2.40	2.30	2.10	2.30	2.40	2.29	45.70
7	Desprender el filete del hueso.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
8	Desprendimiento del filete hacia la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
9	Transporte del filete a la zona de limpieza.	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.34	0.33	0.33	0.33	6.66
10	Agarrar el filete de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33

11	Limpieza del filete de pierna de pollo (quitar grasa y piel).	58.20	58.40	58.20	58.00	58.30	58.20	58.30	58.40	58.20	58.00	58.30	58.10	58.00	58.20	58.30	58.40	58.20	58.00	58.30	58.00	58.20	1164.00
12	Tirar el filete la faja transportadora.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
13	Transporte del filete a la zona de moldeado.	0.08	0.09	0.08	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.09	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.08	0.09	0.08	1.67
14	Agarrar el filete limpio de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
15	Moldeado de filete de pierna big crunch. según especificaciones técnicas.	140.10	140.20	140.20	140.00	140.30	140.20	140.20	140.10	140.20	140.20	140.20	140.20	140.10	140.00	140.00	140.50	140.50	140.20	140.20	140.00	140.18	2803.60
16	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
17	Transporte del filete a la zona de embolsado.	0.13	0.13	0.14	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.14	0.13	0.14	0.14	0.13	0.13	2.67
18	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
19	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
20	Embolsado de los filetes moldeados de pierna.	1.00	1.20	1.30	1.10	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.10	1.20	1.30	1.20	1.10	1.10	1.20	1.30	1.20	1.15	22.90
21	Enviar las bolsas al zona de sellado.	2.00	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.40	2.50	2.40	2.43	48.50
22	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
23	Colocar las bolsas en la faja de sellado lineal.	1.20	1.30	1.20	1.40	1.50	1.20	1.30	1.50	1.40	1.50	1.30	1.20	1.50	1.40	1.40	1.40	1.50	1.40	1.30	1.40	1.37	27.30
24	Agarrar las bolsas selladas de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
25	Entinado de productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
26	Poner tapas a las tinas de los productos terminados.	1.33	1.35	1.31	1.40	1.32	1.32	1.33	1.35	1.34	1.36	1.33	1.30	1.31	1.32	1.35	1.32	1.32	1.33	1.35	1.30	1.33	26.64
27	Etiquetado de las tinas con los productos terminados.	0.05	0.06	0.05	0.05	0.06	0.05	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.05	0.06	0.05	0.05	0.05	0.06	0.05	0.05	1.07
28	Colocar las tinas en parihuelas.	0.35	0.36	0.36	0.35	0.35	0.36	0.36	0.35	0.33	0.33	0.33	0.34	0.35	0.36	0.34	0.34	0.33	0.33	0.33	0.33	0.34	6.89
	TOTAL	207.32	208.75	207.99	208.08	208.32	208.00	208.24	208.32	208.40	208.32	208.63	208.27	208.41	208.50	208.34	208.99	208.68	207.98	208.62	208.08	208.31	4166.23

ANEXO 37: Cálculo del número de observaciones del proceso de filete de pierna big crunch – Pre test.

N	∕létodo	Pre-test	P	ost-Test	Proceso:
Ela	aborado:	Jose Luis Co	lan Olortegui		Fileteo de pierna big crunch.
ltem		Actividad	Σx	Σx^2	$n = \left(\frac{40\sqrt{n\Sigma x^2 - (\Sigma x)^2}}{\Sigma x}\right)^2$
1	Quitar las materia pr	tapas de las tinas que contiene la ima.	2.67	0.36	7
2	Levantar i abastecim	as tinas a la tolva de iento.	0.66	0.02	1
3	Vaciar la r	nateria prima a la tolva.	0.33	0.01	9
4	Agarrar la	materia prima para la selección.	0.33	0.01	6
5	Abastecin	niento de la materia prima.	0.66	0.02	1
6	Deshuesa	do de la materia prima (maquina).	45.70	104.85	7
7	Desprend	er el filete del hueso.	0.66	0.02	1
8	Desprend transporta	imiento del filete hacia la faja ndora.	0.33	0.01	5
9	Transport	e del filete a la zona de limpieza.	6.66	2.22	1
10	Agarrar el	filete de pierna.	0.33	0.01	9
11	Limpieza o grasa y pi	del filete de pierna de pollo (quitar el).	1164.00	67745.18	1
12	Tirar el file	ete la faja transportadora.	0.33	0.01	9
13	Transport	e del filete a la zona de moldeado.	1.67	0.14	1
14	Agarrar el	filete limpio de pierna.	0.33	0.01	9
15	1	de filete de pierna big crunch. pecificaciones técnicas.	2803.60	393009.02	1
16	Tirar el file	ete la faja transportadora.	0.33	0.01	8
17	Transport	e del filete a la zona de embolsado.	2.67	0.36	1
18	Agarrar la	bolsa de los productos .	0.33	0.01	9
19	Agarrar el	filete moldeado.	0.33	0.01	9
20	Embolsad pierna.	o de los filetes moldeados de	22.90	26.43	13
21	Enviar las	bolsas al zona de sellado.	48.50	117.85	3
22	Agarrar la	s bolsas según los productos.	0.33	0.01	9
23	Colocar la	s bolsas en la faja de sellado lineal.	27.30	37.49	10
24	Agarrar la	s bolsas selladas de pierna.	0.33	0.01	9
25	Entinado	de productos terminados.	0.33	0.01	9
26	Poner tap	as a las tinas de los productos s.	26.64	35.50	1
27	Etiquetado terminado	o de las tinas con los productos s.	1.07	0.06	13
28		as tinas en parihuelas.	6.89	2.37	2

ANEXO 38: Cálculo del promedio de las observaciones del proceso de filete de pierna big crunch – Pre test.

	san fernando La buera faralia						SAI	N FER	NAN	DO					
			N	ÚMER	O DE N	IUEST	RAS								
Item	Actividad	T1	T2	Т3	T4	T5	Т6	17	T8	Т9	T10	T11	T12	T13	PROM
1	Quitar las tapas de las tinas que contiene la materia prima.	0.13	0.13	0.13	0.14	0.13	0.12	0.14							0.13
2	Levantar las tinas a la tolva de abastecimiento.	0.03													0.03
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01					0.02
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01								0.02
5	Abastecimiento de la materia prima.	0.03													0.03
6	Deshuesado de la materia prima (maquina).	2.10	2.40	2.00	2.30	2.10	2.20	2.30							2.20
7	Desprender el filete del hueso.	0.03													0.03
8	Desprendimiento del filete hacia la faja transportadora.	0.02	0.02	0.02	0.02	0.02									0.02
9	Transporte del filete a la zona de limpieza.	0.33													0.33
10	Agarrar el filete de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02					0.02
11	Limpieza del filete de pierna de pollo (quitar grasa y piel).	58.20													58.20
12	Tirar el filete la faja transportadora.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02					0.02
13	Transporte del filete a la zona de moldeado.	0.08													0.08
14	Agarrar el filete limpio de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01					0.02
15	Moldeado de filete de pierna big crunch. según especificaciones técnicas.	140.10													140.10
16	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02						0.02
17	Transporte del filete a la zona de embolsado.	0.13													0.13
18	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02					0.02
19	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02					0.02
20	Embolsado de los filetes moldeados de pierna.	1.00	1.20	1.30	1.10	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.10	1.20	1.12
21	Enviar las bolsas al zona de sellado.	2.00	2.50	2.40											2.30
22	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02					0.02
23	Colocar las bolsas en la faja de sellado lineal.	1.20	1.30	1.20	1.40	1.50	1.20	1.30	1.50	1.40	1.50				1.35
24	Agarrar las bolsas selladas de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02					0.02
25	Entinado de productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02					0.02
26	Poner tapas a las tinas de los productos terminados.	1.33													1.33
27	Etiquetado de las tinas con los productos terminados.	0.05	0.06	0.05	0.05	0.06	0.05	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.05
28	Colocar las tinas en parihuelas.	0.35	0.36												0.36

ANEXO 39: Cálculo del tiempo estándar del proceso de filete de pierna big crunch – Pre test.

	san fernando La buera familia					S	SAN FERNA	ANDC)			
		Format	o de c	álculo	del ti	empo	estándar.					
	Actividad		Filetec		na big c	runch.			laborad			an Olortegui.
	Hora Inicio				0 a.m. 1			Н	lora Fina	al		p.m.
	Nº de datos tomados				i ighouse				Fecha	nentos	01-10-2020 /	31-10-2020
Item	Actividad	Promedio de tiempo observado	н	E	CD	cs	Factor de valoración	Tiempo normal (TN)	NP	F	total suplementos	Tiempo Estándar
1	Quitar las tapas de las tinas que contiene la materia prima.	0.13	0.03	0.02	-0.03	0.01	1.00	0.16	0.07	0.16	0.23	0.20
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
3	Vaciar la materia prima a la tolva.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
4	Agarrar la materia prima para la selección.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
5	Abastecimiento de la materia prima.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
6	Deshuesado de la materia prima (maquina).	2.20	0.03	0.02	-0.03	0.01	1.00	2.23	0.07	0.16	0.23	2.74
7	Desprender el filete del hueso.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
8	Desprendimiento del filete hacia la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
9	Transporte del filete a la zona de limpieza.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
10	Agarrar el filete de pierna.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
11	Limpieza del filete de pierna de pollo (quitar grasa y piel).	58.20	0.00	0.00	-0.03	0.01	1.00	58.18	0.07	0.16	0.23	71.56
12	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
13	Transporte del filete a la zona de moldeado.	0.08	0.03	0.02	-0.03	0.01	1.00	0.11	0.07	0.16	0.23	0.14

14	Agarrar el filete limpio de pierna.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
15	Moldeado de filete de pierna big crunch. según especificaciones técnicas.	140.10	0.03	0.02	-0.03	0.01	1.00	140.13	0.07	0.16	0.23	172.36
16	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
17	Transporte del filete a la zona de embolsado.	0.13	0.03	0.02	-0.03	0.01	1.00	0.16	0.07	0.16	0.23	0.20
18	Agarrar la bolsa de los productos .	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
19	Agarrar el filete moldeado.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
20	Embolsado de los filetes moldeados de pierna.	1.12	0.03	0.02	-0.03	0.01	1.00	1.15	0.07	0.16	0.23	1.41
21	Enviar las bolsas al zona de sellado.	2.30	0.03	0.02	-0.03	0.01	1.00	2.33	0.07	0.16	0.23	2.87
22	Agarrar las bolsas según los productos.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
23	Colocar las bolsas en la faja de sellado lineal.	1.35	0.03	0.02	-0.03	0.01	1.00	1.38	0.07	0.16	0.23	1.70
24	Agarrar las bolsas selladas de pierna.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
25	Entinado de productos terminados.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
26	Poner tapas a las tinas de los productos terminados.	1.33	0.03	0.02	-0.03	0.01	1.00	1.36	0.07	0.16	0.23	1.68
27	Etiquetado de las tinas con los productos terminados.	0.05	0.03	0.02	-0.03	0.01	1.00	0.08	0.07	0.16	0.23	0.10
28	Colocar las tinas en parihuelas.	0.36	0.03	0.02	-0.03	0.01	1.00	0.39	0.07	0.16	0.23	0.47
	TOTAL											256.79

ANEXO 40: Toma de tiempo del proceso de filete de pierna con piel x3 - Pre test.

	san fernando La buera familia										SA	N FE	RNAI	NDO									
							FOR	MATO	DE TO	MA DE	TIEM	PO											
	Actividad			Fileteo	de pier		piel x 3.				laborado						Jose L		Olortegui				
	Hora Inicio				06:00	a.m.					lora Fina	ıl						06:00 p.					
	N° de datos tomados										Fecha						01-10	J-2020 / 31	1-10-2020				
Item	Actividad	T1	T2	T3	T4	T5	Т6	17	T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	PROM	Σ
1	Quitar las tapas de las tinas que contiene la materia prima.	0.13	0.13	0.13	0.14	0.13	0.12	0.14	0.12	0.13	0.13	0.15	0.13	0.15	0.13	0.14	0.14	0.13	0.12	0.13	0.15	0.13	2.67
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
5	Abastecimiento de la materia prima.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
6	Deshuesado de la materia prima (maquina).	2.10	2.40	2.00	2.30	2.10	2.20	2.30	2.10	2.30	2.20	2.50	2.50	2.50	2.40	2.30	2.40	2.30	2.10	2.30	2.40	2.29	45.70
7	Desprender el filete del hueso.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
8	Desprendimiento del filete hacia la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
9	Transporte del filete a la zona de limpieza.	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.34	0.33	0.33	0.33	6.66
10	Agarrar el filete de pierna.	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
11	Limpieza del filete de pierna de pollo (quitar grasa y piel).	21.50	21.40	21.30	21.50	21.00	21.40	21.30	21.50	21.00	21.50	21.40	21.30	21.21	21.50	21.40	21.30	21.50	21.00	21.40	21.30	21.34	426.71
12	Tirar el filete la faja transportadora.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33

	<u> </u>		ı	1			l	l												ı			
13	Transporte del filete a la zona de rangeo.	0.08	0.09	0.08	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.09	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.08	0.09	0.08	1.67
14	Agarrar el filete limpio de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
15	Moldeado de filete de pierna con piel x 3. según especificaciones técnicas.	12.50	12.40	12.50	12.40	12.50	12.40	12.40	12.60	12.40	12.30	12.45	12.50	12.40	12.50	12.40	12.50	12.40	12.40	12.50	12.50	12.45	248.95
16	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
17	Transporte del filete a la zona de embolsado.	0.13	0.13	0.14	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.14	0.13	0.14	0.14	0.13	0.13	2.67
18	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
19	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
20	Embolsado de los filetes moldeados de pierna.	1.00	1.20	1.30	1.10	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.10	1.20	1.30	1.20	1.10	1.10	1.20	1.30	1.20	1.15	22.90
21	Enviar las bolsas al zona de sellado.	2.00	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.40	2.50	2.40	2.43	48.50
22	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
23	Colocar las bolsas en la faja de sellado lineal.	1.20	1.30	1.20	1.40	1.50	1.20	1.30	1.50	1.40	1.50	1.30	1.20	1.50	1.40	1.40	1.40	1.50	1.40	1.30	1.40	1.37	27.30
24	Agarrar las bolsas selladas de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
25	Entinado de productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
26	Poner tapas a las tinas de los productos terminados.	1.33	1.35	1.31	1.40	1.32	1.32	1.33	1.35	1.34	1.36	1.33	1.30	1.31	1.32	1.35	1.32	1.32	1.33	1.35	1.30	1.33	26.64
27	Etiquetado de las tinas con los productos terminados.	0.05	0.06	0.05	0.05	0.06	0.05	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.05	0.06	0.05	0.05	0.05	0.06	0.05	0.05	1.07
28	Colocar las tinas en parihuelas.	0.35	0.36	0.36	0.35	0.35	0.36	0.36	0.35	0.33	0.33	0.33	0.34	0.35	0.36	0.34	0.34	0.33	0.33	0.33	0.33	0.34	6.89
	TOTAL	43.01	43.95	43.40	43.98	43.21	43.40	43.44	43.92	43.40	43.92	43.98	43.77	43.92	44.30	43.84	43.89	43.88	43.18	44.02	43.88	43.71	874.28

ANEXO 41: Cálculo del número de observaciones del proceso de filete de pierna con piel x 3 – Pre test.

N	∕létodo	Pre-test	P	ost-Test	Proceso:
Ela	aborado:	Jose Luis Co	olan Olortegui		Fileteo de pierna con piel x 3.
Item		Actividad	Σχ	Σx^2	$n = \left(\frac{40\sqrt{n\Sigma x^2 - (\Sigma x)^2}}{\Sigma x}\right)^2$
1	Quitar las materia pr	tapas de las tinas que contiene la ima.	2.67	0.36	7
2	Levantar l	as tinas a la tolva de viento.	0.66	0.02	1
3	Vaciar la n	nateria prima a la tolva.	0.33	0.01	9
4	Agarrar la	materia prima para la selección.	0.33	0.01	6
5	Abastecin	niento de la materia prima.	0.66	0.02	1
6	Deshuesa	do de la materia prima (maquina).	45.70	104.85	7
7	Desprende	er el filete del hueso.	0.66	0.02	1
8	Desprendi transporta	imiento del filete hacia la faja ndora.	0.33	0.01	5
9		e del filete a la zona de limpieza.	6.66	2.22	1
10	Agarrar el	filete de pierna.	0.33	0.01	9
11	Limpieza o grasa y pie	del filete de pierna de pollo (quitar el).	426.71	9104.61	1
12	Tirar el file	ete la faja transportadora.	0.33	0.01	9
13	Transport	e del filete a la zona de rangeo.	1.67	0.14	1
14	Agarrar el	filete limpio de pierna.	0.33	0.01	9
15		de filete de pierna con piel x 3. pecificaciones técnicas.	248.95	3098.89	1
16	Tirar el file	ete la faja transportadora.	0.33	0.01	8
17	Transport	e del filete a la zona de embolsado.	2.67	0.36	1
18	Agarrar la	bolsa de los productos .	0.33	0.01	9
19	Agarrar el	filete moldeado.	0.33	0.01	9
20	Embolsad pierna.	o de los filetes moldeados de	22.90	26.43	13
21	ľ	bolsas al zona de sellado.	48.50	117.85	3
22	Agarrar la	s bolsas según los productos.	0.33	0.01	9
23	Colocar la	s bolsas en la faja de sellado lineal.	27.30	37.49	10
24	Agarrar la	s bolsas selladas de pierna.	0.33	0.01	9
25	Entinado d	de productos terminados.	0.33	0.01	9
26	Poner tapa terminado	as a las tinas de los productos s.	26.64	35.50	1
27		o de las tinas con los productos	1.07	0.06	13
28		as tinas en parihuelas.	6.89	2.37	2
	I				

ANEXO 42: Cálculo del promedio de las observaciones del proceso de filete de pierna con piel x3 – Pre test.

	san fernando La buena familia							N FER	NAN	DO					
			N	ÚMER(O DE N	IUEST	RAS								
Item	Actividad	T1	T2	Т3	T4	T5	Т6	T7	T8	Т9	T10	T11	T12	T13	PROM
1	Quitar las tapas de las tinas que contiene la materia prima.	0.13	0.13	0.13	0.14	0.13	0.12	0.14							0.13
2	Levantar las tinas a la tolva de abastecimiento.	0.03													0.03
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01					0.02
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01								0.02
5	Abastecimiento de la materia prima.	0.03													0.03
6	Deshuesado de la materia prima (maquina).	2.10	2.40	2.00	2.30	2.10	2.20	2.30							2.20
7	Desprender el filete del hueso.	0.03													0.03
8	Desprendimiento del filete hacia la faja transportadora.	0.02	0.02	0.02	0.02	0.02									0.02
9	Transporte del filete a la zona de limpieza.	0.33													0.33
10	Agarrar el filete de pierna.	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02					0.02
11	Limpieza del filete de pierna de pollo (quitar grasa y piel).	21.50													21.50
12	Tirar el filete la faja transportadora.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02					0.02
13	Transporte del filete a la zona de rangeo.	0.08													0.08
14	Agarrar el filete limpio de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01					0.02
15	Moldeado de filete de pierna con piel x 3. según especificaciones técnicas.	12.50													12.50
16	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02						0.02
17	Transporte del filete a la zona de embolsado.	0.13													0.13
18	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02					0.02
19	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02					0.02
20	Embolsado de los filetes moldeados de pierna.	1.00	1.20	1.30	1.10	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.10	1.20	1.12
21	Enviar las bolsas al zona de sellado.	2.00	2.50	2.40											2.30
22	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02					0.02
23	Colocar las bolsas en la faja de sellado lineal.	1.20	1.30	1.20	1.40	1.50	1.20	1.30	1.50	1.40	1.50				1.35
24	Agarrar las bolsas selladas de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02					0.02
25	Entinado de productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02					0.02
26	Poner tapas a las tinas de los productos terminados.	1.33													1.33
27	Etiquetado de las tinas con los productos terminados.	0.05	0.06	0.05	0.05	0.06	0.05	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.05
28	Colocar las tinas en parihuelas.	0.35	0.36												0.36

ANEXO 43: Cálculo del tiempo estándar del proceso de filete de pierna con piel x3 – Pre test.

	san fernando La buera familia					S	SAN FERNA	ANDO)			
		Format	o de c	álculo	del ti	empo	estándar.					
	Actividad		Fileteo		na con p	oiel x 3.			aborad		Jose Luis Col	an Olortegui.
	Hora Inicio				0 a.m.			Н	ora Fin	al		p.m.
	N° de datos tomados				1				Fecha		01-10-2020	31-10-2020
Item	Actividad	Promedio de tiempo observado	н	Westin	ghouse CD	cs	Factor de valoración	Tiempo normal (TN)	NP	nentos F	total suplementos	Tiempo Estándar
1	Quitar las tapas de las tinas que contiene la materia prima.	0.13	0.03	0.02	-0.03	0.01	1.00	0.16	0.07	0.16	0.23	0.20
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
3	Vaciar la materia prima a la tolva.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
4	Agarrar la materia prima para la selección.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
5	Abastecimiento de la materia prima.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
6	Deshuesado de la materia prima (maquina).	2.20	0.03	0.02	-0.03	0.01	1.00	2.23	0.07	0.16	0.23	2.74
7	Desprender el filete del hueso.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
8	Desprendimiento del filete hacia la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
9	Transporte del filete a la zona de limpieza.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
10	Agarrar el filete de pierna.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
11	Limpieza del filete de pierna de pollo (quitar grasa y piel).	21.50	0.00	0.00	-0.03	0.01	1.00	21.48	0.07	0.16	0.23	26.42
12	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
13	Transporte del filete a la zona de rangeo.	0.08	0.03	0.02	-0.03	0.01	1.00	0.11	0.07	0.16	0.23	0.14

14	Agarrar el filete limpio de pierna.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
15	Moldeado de filete de pierna con piel x 3. según especificaciones técnicas.	12.50	0.03	0.02	-0.03	0.01	1.00	12.53	0.07	0.16	0.23	15.41
16	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
17	Transporte del filete a la zona de embolsado.	0.13	0.03	0.02	-0.03	0.01	1.00	0.16	0.07	0.16	0.23	0.20
18	Agarrar la bolsa de los productos .	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
19	Agarrar el filete moldeado.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
20	Embolsado de los filetes moldeados de pierna.	1.12	0.03	0.02	-0.03	0.01	1.00	1.15	0.07	0.16	0.23	1.41
21	Enviar las bolsas al zona de sellado.	2.30	0.03	0.02	-0.03	0.01	1.00	2.33	0.07	0.16	0.23	2.87
22	Agarrar las bolsas según los productos.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
23	Colocar las bolsas en la faja de sellado lineal.	1.35	0.03	0.02	-0.03	0.01	1.00	1.38	0.07	0.16	0.23	1.70
24	Agarrar las bolsas selladas de pierna.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
25	Entinado de productos terminados.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
26	Poner tapas a las tinas de los productos terminados.	1.33	0.03	0.02	-0.03	0.01	1.00	1.36	0.07	0.16	0.23	1.68
27	Etiquetado de las tinas con los productos terminados.	0.05	0.03	0.02	-0.03	0.01	1.00	0.08	0.07	0.16	0.23	0.10
28	Colocar las tinas en parihuelas.	0.36	0.03	0.02	-0.03	0.01	1.00	0.39	0.07	0.16	0.23	0.47
	TOTAL											54.70

ANEXO 44: Toma de tiempos del proceso de pierna PPPC – Pre test.

	sanfernando La buera familia										SA	N FE	RNAI	NDO									
							FOR	MATO	DE TO	MA DE	TIEM	PO											
	Actividad			Filetec		na para	PPPC.			ı	Elaborado):					Jose L		Olortegui				
	Hora Inicio				06:00) a.m.					Hora Fina	l						06:00 p					
	N° de datos tomados				'	1					Fecha						01-10	0-2020 / 31	1-10-2020				
Item	Actividad	T1	T2	Т3	T4	T5	Т6	17	T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	PROM	Σ
1	Quitar las tapas de las tinas que contiene la materia prima.	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	3.00
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
3	Vaciar la materia prima a la tolva.	0.04	0.04	0.03	0.03	0.03	0.04	0.04	0.03	0.04	0.04	0.03	0.04	0.03	0.04	0.03	0.04	0.04	0.04	0.03	0.03	0.03	0.69
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
5	Abastecimiento de la materia prima.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
6	Deshuesado de la materia prima (maquina).	2.10	2.40	2.00	2.30	2.10	2.20	2.30	2.10	2.30	2.20	2.50	2.50	2.50	2.40	2.30	2.40	2.30	2.10	2.30	2.40	2.29	45.70
7	Desprender el filete del hueso.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
8	Desprendimiento del filete hacia la faja transportadora.	0.04	0.04	0.03	0.03	0.03	0.04	0.03	0.04	0.04	0.03	0.03	0.04	0.04	0.04	0.04	0.03	0.04	0.03	0.04	0.03	0.03	0.68
9	Transporte del filete a la zona de limpieza.	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	6.80
10	Agarrar el filete de pierna.	0.03	0.03	0.03	0.04	0.04	0.03	0.03	0.03	0.04	0.03	0.04	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.03	0.67
11	Limpieza del filete de pierna de pollo (quitar grasa y piel).	56.20	56.30	56.20	56.10	56.30	56.10	56.20	56.40	56.40	56.30	56.20	56.40	56.20	56.30	56.40	56.30	56.50	56.40	56.20	56.50	56.30	1125.90

12	Tirar el filete la faja transportadora.	0.04	0.03	0.04	0.04	0.03	0.03	0.04	0.03	0.03	0.03	0.04	0.04	0.04	0.03	0.04	0.04	0.04	0.03	0.03	0.03	0.03	0.68
13	Transporte del filete a la zona de rangeo.	0.09	0.09	0.08	0.08	0.07	0.09	0.09	0.07	0.08	0.08	0.09	0.08	0.08	0.09	0.09	0.07	0.07	0.08	0.07	0.09	0.08	1.61
14	Agarrar el filete limpio de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
15	Moldeado de filete de pierna para PPPC. según especificaciones técnicas.	70.50	70.20	70.50	70.10	70.60	70.50	70.60	70.50	70.40	70.60	70.30	70.20	70.20	70.10	70.60	70.50	70.60	70.50	70.40	70.60	70.43	1408.50
16	Tirar el filete la faja transportadora.	0.03	0.04	0.04	0.04	0.04	0.03	0.04	0.04	0.04	0.04	0.03	0.04	0.04	0.04	0.04	0.03	0.03	0.04	0.04	0.04	0.04	0.71
17	Transporte del filete a la zona de embolsado.	0.15	0.14	0.14	0.14	0.14	0.13	0.13	0.13	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	2.72
18	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
19	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
20	Embolsado de los filetes moldeados de pierna.	1.50	1.50	1.60	1.30	1.40	1.50	1.56	1.50	1.40	1.40	1.50	1.50	1.60	1.30	1.40	1.50	1.56	1.50	1.60	1.30	1.47	29.42
21	Enviar las bolsas al zona de sellado.	2.00	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.40	2.50	2.40	2.43	48.50
22	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
23	Colocar las bolsas en la faja de sellado lineal.	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	30.00
24	Agarrar las bolsas selladas de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
25	Entinado de productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
26	Poner tapas a las tinas de los productos terminados.	1.33	1.35	1.31	1.40	1.32	1.32	1.33	1.35	1.34	1.36	1.33	1.30	1.31	1.32	1.35	1.32	1.32	1.33	1.35	1.30	1.33	26.64
27	Etiquetado de las tinas con los productos terminados.	0.05	0.06	0.05	0.05	0.06	0.05	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.05	0.06	0.05	0.05	0.05	0.06	0.05	0.05	1.07
28	Colocar las tinas en parihuelas.	0.36	0.35	0.36	0.35	0.35	0.36	0.36	0.35	0.33	0.33	0.33	0.34	0.35	0.36	0.34	0.34	0.33	0.33	0.33	0.33	0.34	6.89
	TOTAL	136.66	137.26	137.01	136.70	137.11	137.12	137.40	137.33	137.22	137.34	137.23	137.39	137.21	136.92	137.45	137.48	137.65	137.20	137.32	137.48	137.22	2744.48

ANEXO 45: Cálculo de número de observaciones del proceso de filete de pierna PPPC – Pre test.

Item	aborado:	Jose Luis Co			-
Item			lan Olortegui	•	Fileteo de pierna para PPPC.
		Actividad	Σx	Σx^2	$n = \left(\frac{40\sqrt{n\Sigma x^2 - (\Sigma x)^2}}{\Sigma x}\right)^2$
1	Quitar las materia pr	tapas de las tinas que contiene la ima.	3.00	0.45	1
2	Levantar la abastecim	as tinas a la tolva de iento.	0.66	0.02	1
3	Vaciar la n	nateria prima a la tolva.	0.69	0.02	3
4	Agarrar la	materia prima para la selección.	0.33	0.01	6
5	Abastecim	niento de la materia prima.	0.66	0.02	1
6	Deshuesa	do de la materia prima (maquina).	45.70	104.85	7
7	Desprende	er el filete del hueso.	0.66	0.02	1
8	Desprendi transporta	miento del filete hacia la faja dora.	0.68	0.02	4
9	i ' '	e del filete a la zona de limpieza.	6.80	2.31	1
10	Agarrar el	filete de pierna.	0.67	0.02	4
11	Limpieza o grasa y pie	lel filete de pierna de pollo (quitar el).	1125.90	63382.81	1
12		te la faja transportadora.	0.68	0.02	5
13	Transport	e del filete a la zona de rangeo.	1.61	0.13	10
14	Agarrar el	filete limpio de pierna.	0.33	0.01	9
15		de filete de pierna para PPPC. ecificaciones técnicas.	1408.50	99194.21	1
16	Tirar el file	te la faja transportadora.	0.71	0.03	8
17	Transport	e del filete a la zona de embolsado.	2.72	0.37	1
18	Agarrar la	bolsa de los productos .	0.33	0.01	9
19	Agarrar el	filete moldeado.	0.33	0.01	9
20	Embolsad pierna.	o de los filetes moldeados de	29.42	43.46	7
21	Enviar las	bolsas al zona de sellado.	48.50	117.85	3
22	Agarrar las	s bolsas según los productos.	0.33	0.01	9
23	Colocar la	s bolsas en la faja de sellado lineal.	30.00	45.00	1
24	Agarrar las	s bolsas selladas de pierna.	0.33	0.01	9
25	Entinado d	de productos terminados.	0.33	0.01	9
26	Poner tapa terminado	as a las tinas de los productos s.	26.64	35.50	1
27		de las tinas con los productos	1.07	0.06	13
28		ns tinas en parihuelas.	6.89	2.37	2

ANEXO 46: Cálculo del promedio de tiempos de las observaciones del proceso de filete de pierna PPPC - Pre test.

	sanfernando La buena familia						SAI	N FER	NAN	DO					
			N	ÚMER	O DE N	IUEST	RAS								
Item	Actividad	T1	T2	Т3	T4	T5	T6	T7	Т8	Т9	T10	T11	T12	T13	PROM
1	Quitar las tapas de las tinas que contiene la materia prima.	0.15													0.15
2	Levantar las tinas a la tolva de abastecimiento.	0.03													0.03
3	Vaciar la materia prima a la tolva.	0.04	0.04	0.03											0.03
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01								0.02
5	Abastecimiento de la materia prima.	0.03													0.03
6	Deshuesado de la materia prima (maquina).	2.10	2.40	2.00	2.30	2.10	2.20	2.30							2.20
7	Desprender el filete del hueso.	0.03													0.03
8	Desprendimiento del filete hacia la faja transportadora.	0.04	0.04	0.03	0.03										0.03
9	Transporte del filete a la zona de limpieza.	0.34													0.34
10	Agarrar el filete de pierna.	0.03	0.03	0.03	0.04										0.03
11	Limpieza del filete de pierna de pollo (quitar grasa y piel).	56.20													56.20
12	Tirar el filete la faja transportadora.	0.04	0.03	0.04	0.04	0.03									0.03
13	Transporte del filete a la zona de rangeo.	0.09	0.09	0.08	0.08	0.07	0.09	0.09	0.07	0.08	0.08				0.08
14	Agarrar el filete limpio de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01					0.02
15	Moldeado de filete de pierna para PPPC. según especificaciones técnicas.	70.50													70.50
16	Tirar el filete la faja transportadora.	0.03	0.04	0.04	0.04	0.04	0.03	0.04	0.04						0.04
17	Transporte del filete a la zona de embolsado.	0.15													0.15
18	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02					0.02
19	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02					0.02
20	Embolsado de los filetes moldeados de pierna.	1.50	1.50	1.60	1.30	1.40	1.50	1.56							1.48
21	Enviar las bolsas al zona de sellado.	2.00	2.50	2.40											2.30
22	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02					0.02
23	Colocar las bolsas en la faja de sellado lineal.	1.50													1.50
24	Agarrar las bolsas selladas de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02					0.02
25	Entinado de productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02					0.02
26	Poner tapas a las tinas de los productos terminados.	1.33													1.33
27	Etiquetado de las tinas con los productos terminados.	0.05	0.06	0.05	0.05	0.06	0.05	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.05
28	Colocar las tinas en parihuelas.	0.36	0.35												0.36

ANEXO 47: Cálculo del tiempo estándar del proceso de filete de pierna PPPC – Pre test.

	san fernando La buera familia					S	SAN FERNA	ANDC)			
		Format	o de c	álculo	del ti	empo	estándar.					
	Actividad		Filetec	de pier	na para	PPPC.		E	aborad	o:	Jose Luis Cola	an Olortegui.
	Hora Inicio			06:00) a.m.			Н	ora Fin	al		p.m.
	N° de datos tomados				1				Fecha		01-10-2020	/ 31-10-2020
		Promedio de		Westin	ghouse		Factor de	Tiempo	Supler	nentos	total	Tienene
Item	Actividad	tiempo observado	н	Е	CD	cs	valoración	normal (TN)	NP	F	suplementos	Tiempo Estándar
1	Quitar las tapas de las tinas que contiene la materia prima.	0.15	0.03	0.02	-0.03	0.01	1.00	0.18	0.07	0.16	0.23	0.22
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
3	Vaciar la materia prima a la tolva.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
4	Agarrar la materia prima para la selección.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
5	Abastecimiento de la materia prima.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
6	Deshuesado de la materia prima (maquina).	2.20	0.03	0.02	-0.03	0.01	1.00	2.23	0.07	0.16	0.23	2.74
7	Desprender el filete del hueso.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
8	Desprendimiento del filete hacia la faja transportadora.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
9	Transporte del filete a la zona de limpieza.	0.34	0.03	0.02	-0.03	0.01	1.00	0.37	0.07	0.16	0.23	0.46
10	Agarrar el filete de pierna.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
11	Limpieza del filete de pierna de pollo (quitar grasa y piel).	56.20	0.00	0.00	-0.03	0.01	1.00	56.18	0.07	0.16	0.23	69.10
12	Tirar el filete la faja transportadora.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
13	Transporte del filete a la zona de rangeo.	0.08	0.03	0.02	-0.03	0.01	1.00	0.11	0.07	0.16	0.23	0.14

14	Agarrar el filete limpio de pierna.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
15	Moldeado de filete de pierna para PPPC. según especificaciones técnicas.	70.50	0.03	0.02	-0.03	0.01	1.00	70.53	0.07	0.16	0.23	86.75
16	Tirar el filete la faja transportadora.	0.04	0.03	0.02	-0.03	0.01	1.00	0.07	0.07	0.16	0.23	0.08
17	Transporte del filete a la zona de embolsado.	0.15	0.03	0.02	-0.03	0.01	1.00	0.18	0.07	0.16	0.23	0.22
18	Agarrar la bolsa de los productos .	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
19	Agarrar el filete moldeado.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
20	Embolsado de los filetes moldeados de pierna.	1.48	0.03	0.02	-0.03	0.01	1.00	1.51	0.07	0.16	0.23	1.86
21	Enviar las bolsas al zona de sellado.	2.30	0.03	0.02	-0.03	0.01	1.00	2.33	0.07	0.16	0.23	2.87
22	Agarrar las bolsas según los productos.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
23	Colocar las bolsas en la faja de sellado lineal.	1.50	0.03	0.02	-0.03	0.01	1.00	1.53	0.07	0.16	0.23	1.88
24	Agarrar las bolsas selladas de pierna.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
25	Entinado de productos terminados.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
26	Poner tapas a las tinas de los productos terminados.	1.33	0.03	0.02	-0.03	0.01	1.00	1.36	0.07	0.16	0.23	1.68
27	Etiquetado de las tinas con los productos terminados.	0.05	0.03	0.02	-0.03	0.01	1.00	0.08	0.07	0.16	0.23	0.10
28	Colocar las tinas en parihuelas.	0.36	0.03	0.02	-0.03	0.01	1.00	0.39	0.07	0.16	0.23	0.47
	TOTAL											169.52

ANEXO 48: Diagrama bimanual del proceso de limpieza de filete.

	DIAGRAMA	BIMA	N	UA	L							enando a farelia
Fecha de realizaci							Res	ume	an a			
Diagrama N°1	Pag: 1 de 1											
Proceso: Fileteo.		Acti	vidad	t			Izq	ctua	er	Prop Izq	uesto Der	
Actividadu Limni	eza de filete de pollo.	Оре	ració	n			11		5	·		
Actividad Limpi	eza de mete de pono.	Trar	spor	rte			2		2			
Tipo de diagrama	• •	Dem					2		5			Sterroman St. Commission
Metodo	Actual	Sos	tenim	niento)		0		3			
	Propuesto			Total			15	1	.5			
Área/Sección: File	te.											
Elaborado por: Co	olán Olortegui José Luis.					Apro	obado	por	: Baz	zan Lóp	ez José	Alberto.
	Mano izquierda		Î		abla		Î		∇			Mano Derecha
Traslado hacia	a la faja		Î									Tomar el cuchillo
Tomar el filete	•								7		s	ostener el cuchillo
Traslado hacia	a la tabla de picado		\Rightarrow						\		s	ostener el cuchillo
Soltar el filete	en la tabla de picado								7		s	ostener el cuchillo
Demora											Tra	aslado hacia el filete
Tomar el filete	•										Cort	ar excedente de grasa
Soltar el filete	en la tabla de picado					ø						Soltar el cuchillo
Tomar el filete	•											Demora
Levantar el file	ete											Demora
Dar vuelta al fi	ilete											Demora
Soltar el filete	en la tabla de picado										s	ostener el cuchillo
Demora							\rightarrow				Trai	nsporte hacia el filete
Tomar el filete	•									Con	tar exce	dente de hematomas, huesos
Levantar el file	ete							7				Demora
Lanzar el filete	e limpio hacia la faja											Demora
	Total	11	2	2	0	5	2	5	3			Total

ANEXO 49: Diagrama bimanual del proceso de moldeado de filete.

	DIAGRAMA	BIMA	N	U A	1L						sanfer La buera	
Fecha de realizaci							Res	ume	en			
Diagrama N°2	Pag: 1 de 1						Δ	ctua		Pror	uesto	
Proceso: Fileteo.	•	Acti	vidad	t			Izq		er	Izq	Der	
Actividad: : Mold	leado de filete.		ració				6	4	4			
			ispoi	rte			6	•	1			
Tipo de diagrama	Operrario Actual	Den		niento			0		4 5			
Metodo	Propuesto	305	termin	пени								
Área/Sección: File				Tota	ı		14	1	4			
Elaborado por: C	olán Olortegui José Luis.					Apro	bado	por	: Baz	zan Lóp	ez José	Alberto.
	Mano izquierda		\Rightarrow		abla		Î		∇			Mano Derecha
Traslado hacia	a la faja		Î									Tomar el cuchillo
Tomar el filete	e limpio								7		S	ostener el cuchillo
Traslado hacia	a la tabla de picado		\Rightarrow						T		S	ostener el cuchillo
Soltar el filete	en la tabla de picado								7		S	ostener el cuchillo
Demora											Tra	aslado hacia el filete
Tomar el filete	ę.											Moldear el filete
Tranporte el fi	ilete hacia la balanza		*								s	ostener el cuchillo
Soltar el filete	en la balanza								1		s	ostener el cuchillo
Transporte ha	cia la tabla		Î								Soltai	r el cuchillo en la tabla
Demora								3				Demora
Transporte ha	cia la balanza											Demora
Tomar el filete	•											Demora
Transporte de	l filete hacia la faja		\rightarrow									Demora
Soltar el filete	en la faja											Tomar el cuchillo
	Total	6	6	2	0	4	1	4	5			Total

ANEXO 50: Productividad diario - mes de enero 2020.

					Est	tudio del T	rabajo: Pro	ductividad				
	Elab	orado:			José Luis Colan Ol		•		Mét	odo:		Pre test
	N	es:			Enero				Aŕ	io:		2020
	Fe	chas		GE	STIÓN DE TIEMPOS				GEST	IÓN DE PROCESO		
Mes	Semana	Fecha 🔻	Día 🔻	Tiempo.Proyectado/ Ciclo	Tiempo.Ejecutado /Ciclo	Rendimiento .Tiempo	Toneladas. Proyectado	Materia prima (tn)	Remanente de proceso (tn)	Toneladas. Ejecutada	Toneladas. Producción	Productividad Ejecutada (tn/ hora)
Ene20	2	06-ene	lunes	11	8.90	23.6%	7.50	6.89	0.90	5.99	79.9%	67.3%
Ene20	2	07-ene	martes	11	8.90	23.6%	7.50	6.79	0.89	5.90	78.7%	66.3%
Ene20	2	08-ene	miércoles	11	8.80	25.0%	7.50	6.79	0.89	5.90	78.7%	67.0%
Ene20	2	09-ene	jueves	11	8.68	26.7%	7.50	6.67	0.87	5.80	77.3%	66.8%
Ene20	2	10-ene	viernes	11	8.90	23.6%	7.50	6.90	0.90	6.00	80.0%	67.4%
Ene20	2	11-ene	sábado	11	8.90	23.6%	7.50	6.90	0.90	6.00	80.0%	67.4%
Ene20	3	13-ene	lunes	11	9.00	22.2%	7.50	7.02	0.92	6.10	81.3%	67.8%
Ene20	3	14-ene	martes	11	9.00	22.2%	7.50	6.84	0.89	5.95	79.3%	66.1%
Ene20	3	15-ene	miércoles	11	9.00	22.2%	7.50	6.79	0.89	5.90	78.7%	65.6%
Ene20	3	16-ene	jueves	11	9.00	22.2%	7.50	6.79	0.89	5.90	78.7%	65.6%
Ene20	3	17-ene	viernes	11	9.00	22.2%	7.50	6.90	0.90	6.00	80.0%	66.7%
Ene20	3	18-ene	sábado	11	9.50	15.8%	7.50	7.13	0.93	6.20	82.7%	65.3%
Ene20	4	20-ene	lunes	11	9.50	15.8%	7.50	7.02	0.92	6.10	81.3%	64.2%
Ene20	4	21-ene	martes	11	9.50	15.8%	7.50	7.19	0.94	6.25	83.3%	65.8%
Ene20	4	22-ene	miércoles	11	9.50	15.8%	7.50	7.13	0.93	6.20	82.7%	65.3%
Ene20	4	23-ene	jueves	11	9.50	15.8%	7.50	7.02	0.92	6.10	81.3%	64.2%
Ene20	4	24-ene	viernes	11	9.50	15.8%	7.50	7.02	0.92	6.10	81.3%	64.2%
Ene20	4	25-ene	sábado	11	8.80	25.0%	7.50	6.90	0.90	6.00	80.0%	68.2%
Ene20	5	27-ene	lunes	11	9.50	15.8%	7.50	7.02	0.92	6.10	81.3%	64.2%
Ene20	5	28-ene	martes	11	8.80	25.0%	7.50	6.90	0.90	6.00	80.0%	68.2%
Ene20	5	29-ene	miércoles	11	8.60	27.9%	7.50	6.79	0.89	5.90	78.7%	68.6%
Ene20	5	30-ene	jueves	11	9.50	15.8%	7.50	7.02	0.92	6.10	81.3%	64.2%
Ene20	5	31-ene	viernes	11	9.50	15.8%	7.50	7.02	0.92	6.10	81.3%	64.2%

ANEXO 51: Productividad diario - mes de febrero 2020.

					Est	udio del T	rabajo: Pro	ductividad	d.			
	Elab	orado:			José Luis Colan Olo				Méto	odo:		Pre test
	N	les:			Febrero				Añ	ío:		2020
	Fe	chas		GE	STIÓN DE TIEMPOS			·	GEST	IÓN DE PROCESO		
Mes	Semana	Fecha	Día	Tiempo.Proyectado/Cic	Tiempo.Ejecutado /Ciclo	Rendimiento.T	Toneladas. Proyectado	Materia prima (tn)	Remanente de proceso (tn)	Toneladas. Ejecutada	Toneladas. Producción	Productividad Ejecutada (tn/ hora)
Feb20	5	01-feb	sábado	11	9.58	14.8%	7.50	7.00	0.91	6.09	81.2%	63.6%
Feb20	6	03-feb	lunes	11	9.50	15.8%	7.50	6.90	0.90	6.00	80.0%	63.2%
Feb20	6	03-feb 04-feb	martes	11	10.00	10.0%	7.50	7.13	0.93	6.20	82.7%	62.0%
Feb20	6	05-feb	miércoles	11	9.50	15.8%	7.50	6.90	0.90	6.00	80.0%	63.2%
Feb20	6	06-feb	iueves	11	10.00	10.0%	7.50	6.90	0.90	6.00	80.0%	60.0%
Feb20	6	07-feb	viernes	11	9.50	15.8%	7.50	6.89	0.90	5.99	79.9%	63.1%
Feb20	6	08-feb	sábado	11	8.70	26.4%	7.50	6.79	0.89	5.90	78.7%	67.8%
Feb20	7	10-feb	lunes	11	9.50	15.8%	7.50	6.83	0.89	5.94	79.2%	62,5%
Feb20	7	11-feb	martes	11	9.50	15.8%	7.50	6.79	0.89	5.90	78.7%	62.1%
Feb20	7	12-feb	miércoles	11	9.50	15.8%	7.50	6.79	0.89	5.90	78.7%	62.1%
Feb20	7	13-feb	jueves	11	9.20	19.6%	7.50	6.79	0.89	5.90	78.7%	64.1%
Feb20	7	14-feb	viernes	11	9.00	22.2%	7.50	6.90	0.90	6.00	80.0%	66.7%
Feb20	7	15-feb	sábado	11	9.00	22.2%	7.50	6.79	0.89	5.90	78.7%	65.6%
Feb20	8	17-feb	lunes	11	8.80	25.0%	7.50	6.67	0.87	5.80	77.3%	65.9%
Feb20	8	18-feb	martes	11	8.80	25.0%	7.50	6.79	0.89	5.90	78.7%	67.0%
Feb20	8	19-feb	miércoles	11	8.68	26.7%	7.50	6.70	0.87	5.83	77.7%	67.2%
Feb20	8	20-feb	jueves	11	8.60	27.9%	7.50	6.79	0.89	5.90	78.7%	68.6%
Feb20	8	21-feb	viernes	11	8.70	26.4%	7.50	6.67	0.87	5.80	77.3%	66.7%
Feb20	8	22-feb	sábado	11	8.80	25.0%	7.50	6.79	0.89	5.90	78.7%	67.0%
Feb20	9	24-feb	lunes	11	8.70	26.4%	7.50	6.67	0.87	5.80	77.3%	66.7%
Feb20	9	25-feb	martes	11	8.70	26.4%	7.50	6.67	0.87	5.80	77.3%	66.7%
Feb20	9	26-feb	miércoles	11	8.70	26.4%	7.50	6.67	0.87	5.80	77.3%	66.7%
Feb20	9	27-feb	jueves	11	8.60	27.9%	7.50	6.62	0.86	5.76	76.8%	67.0%
Feb20	9	28-feb	viernes	11	8.50	29.4%	7.50	6.56	0.86	5.70	76.0%	67.1%
Feb20	9	29-feb	sábado	11	8.60	27.9%	7.50	6.67	0.87	5.80	77.3%	67.4%

ANEXO 52: Productividad diario - mes de marzo 2020.

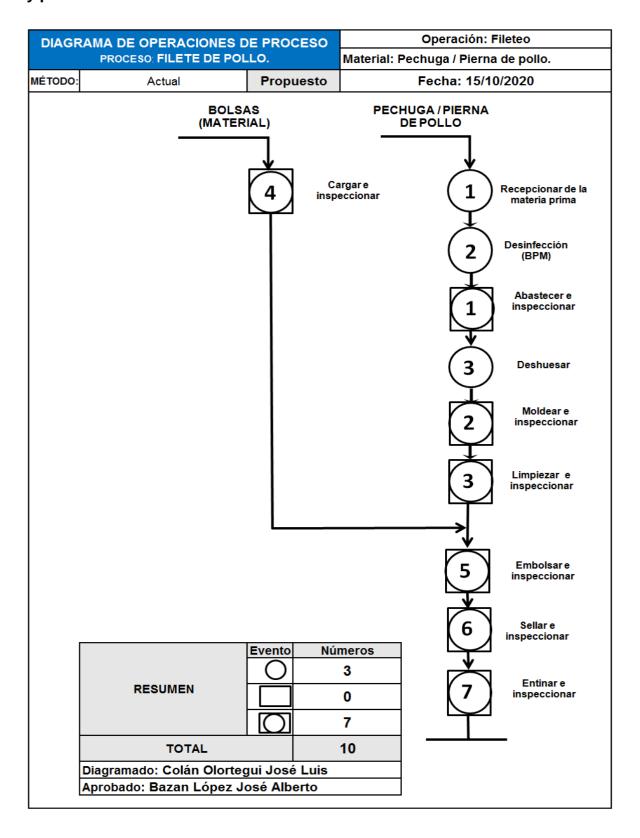
					Est	udio del 1	rabajo: Pro	ductividad	d.			
	Elab	orado:			José Luis Colan O	lortegui.			Mét	odo:		Pre test
	M	les:			Marzo				Ai	ĭo:		2020
	Fe	chas		6	GESTIÓN DE TIEMPOS				GEST	ÓN DE PROCESO		
Mes	Semana ▼	Fecha •	Día	Tiempo.Proyectado /Ciclo	Tiempo.Ejecutado /Ciclo	Rendimiento. Tiempo	Toneladas. Proyectado	Materia prima (tn)	Remanente de proceso (tn)	Toneladas. Ejecutada	Toneladas. Producción	Productividad Ejecutada (tn/ hora)
Mar20	10	02-mar	lunes	11	9.00	22.2%	7.50	6.90	0.90	6.00	80.0%	66.7%
Mar20	10	03-mar	martes	11	8.50	29.4%	7.50	6.67	0.87	5.80	77.3%	68.2%
Mar20	10	04-mar	miércoles	11	9.20	19.6%	7.50	7.13	0.93	6.20	82.7%	67.4%
Mar20	10	05-mar	jueves	11	9.00	22.2%	7.50	6.99	0.91	6.08	81.1%	67.6%
Mar20	10	06-mar	viernes	11	9.20	19.6%	7.50	6.79	0.89	5.90	78.7%	64.1%
Mar20	10	07-mar	sábado	11	8.50	29.4%	7.50	6.67	0.87	5.80	77.3%	68.2%
Mar20	11	09-mar	lunes	11	8.50	29.4%	7.50	6.56	0.86	5.70	76.0%	67.1%
Mar20	11	10-mar	martes	11	9.00	22.2%	7.50	6.67	0.87	5.80	77.3%	64.4%
Mar20	11	11-mar	miércoles	11	8.40	31.0%	7.50	6.33	0.83	5.50	73.3%	65.5%
Mar20	11	12-mar	jueves	11	8.40	31.0%	7.50	6.44	0.84	5.60	74.7%	66.7%
Mar20	11	13-mar	viernes	11	8.50	29.4%	7.50	6.33	0.83	5.50	73.3%	64.7%
Mar20	11	14-mar	sábado	11	8.40	31.0%	7.50	6.35	0.83	5.52	73.6%	65.7%
Mar20	12	16-mar	lunes	11	8.60	27.9%	7.50	6.33	0.83	5.50	73.3%	64.0%
Mar20	12	17-mar	martes	11	8.70	26.4%	7.50	5.98	0.78	5.20	69.3%	59.8%
Mar20	12	18-mar	miércoles	11	8.60	27.9%	7.50	6.21	0.81	5.40	72.0%	62.8%
Mar20	12	19-mar	jueves	11	8.70	26.4%	7.50	6.21	0.81	5.40	72.0%	62.1%
Mar20	12	20-mar	viernes	11	8.70	26.4%	7.50	6.10	0.80	5.30	70.7%	60.9%
Mar20	12	21-mar	sábado	11	8.60	27.9%	7.50	6.21	0.81	5.40	72.0%	62.8%
Mar20	13	23-mar	lunes	11	9.00	22.2%	7.50	6.90	0.90	6.00	80.0%	66.7%
Mar20	13	24-mar	martes	11	8.70	26.4%	7.50	6.79	0.89	5.90	78.7%	67.8%
Mar20	13	25-mar	miércoles	11	8.50	29.4%	7.50	6.67	0.87	5.80	77.3%	68.2%
Mar20	13	26-mar	jueves	11	9.00	22.2%	7.50	6.90	0.90	6.00	80.0%	66.7%
Mar20	13	27-mar	viernes	11	8.77	25.4%	7.50	6.79	0.89	5.90	78.7%	67.3%
Mar20	13	28-mar	sábado	11	8.70	26.4%	7.50	6.67	0.87	5.80	77.3%	66.7%
Mar20	14	30-mar	lunes	11	9.50	15.8%	7.50	7.02	0.92	6.10	81.3%	64.2%
Mar20	14	31-mar	martes	11	9.00	22.2%	7.50	6.90	0.90	6.00	80.0%	66.7%

ANEXO 53: Productividad diario - mes de abril 2020.

					Est	udio del 1	rabajo: Pro	ductividad	d.			
	Elab	orado:			José Luis Colan O	lortegui.	· ·		Mét	odo:		Pre test
	M	les:			Abril				Ai	ĩo:		2020
	Fe	chas		(GESTIÓN DE TIEMPOS				GEST	ÓN DE PROCESO		
Mes	Semana •	Fecha	Día	Tiempo.Proyectado /Ciclo	Tiempo.Ejecutado /Ciclo	Rendimiento. Tiempo	Toneladas. Proyectado	Materia prima (tn)	Remanente de proceso (tn)	Toneladas. Ejecutada	Toneladas. Producción	Productividad Ejecutada (tn/ hora)
Abr20	14	01-abr	miércoles	11	9.00	22.2%	7.50	6.90	0.90	6.00	80.0%	66.7%
Abr20	14	02-abr	jueves	11	8.60	27.9%	7.50	6.79	0.89	5.90	78.7%	68.6%
Abr20	14	03-abr	viernes	11	9.00	22.2%	7.50	6.98	0.91	6.07	80.9%	67.4%
Abr20	14	04-abr	sábado	11	9.00	22.2%	7.50	6.90	0.90	6.00	80.0%	66.7%
Abr20	15	06-abr	lunes	11	8.70	26.4%	7.50	6.67	0.87	5.80	77.3%	66.7%
Abr20	15	07-abr	martes	11	8.90	23.6%	7.50	6.46	0.84	5.62	74.9%	63.1%
Abr20	15	08-abr	miércoles	11	8.68	26.7%	7.50	6.56	0.86	5.70	76.0%	65.7%
Abr20	15	09-abr	jueves	11	8.60	27.9%	7.50	6.67	0.87	5.80	77.3%	67.4%
Abr20	15	10-abr	viernes	11	8.60	27.9%	7.50	6.56	0.86	5.70	76.0%	66.3%
Abr20	15	11-abr	sábado	11	8.70	26.4%	7.50	6.44	0.84	5.60	74.7%	64.4%
Abr20	16	13-abr	lunes	11	8.50	29.4%	7.50	5.98	0.78	5.20	69.3%	61.2%
Abr20	16	14-abr	martes	11	8.50	29.4%	7.50	6.21	0.81	5.40	72.0%	63.5%
Abr20	16	15-abr	miércoles	11	8.40	31.0%	7.50	6.10	0.80	5.30	70.7%	63.1%
Abr20	16	16-abr	jueves	11	8.50	29.4%	7.50	6.31	0.82	5.49	73.2%	64.6%
Abr20	16	17-abr	viernes	11	8.50	29.4%	7.50	6.10	0.80	5.30	70.7%	62.4%
Abr20	16	18-abr	sábado	11	8.50	29.4%	7.50	6.10	0.80	5.30	70.7%	62.4%
Abr20	17	20-abr	lunes	11	8.50	29.4%	7.50	5.66	0.74	4.92	65.6%	57.9%
Abr20	17	21-abr	martes	11	8.90	23.6%	7.50	4.83	0.63	4.20	56.0%	47.2%
Abr20	17	22-abr	miércoles	11	8.60	27.9%	7.50	5.18	0.68	4.50	60.0%	52.3%
Abr20	17	23-abr	jueves	11	8.90	23.6%	7.50	4.83	0.63	4.20	56.0%	47.2%
Abr20	17	24-abr	viernes	11	8.50	29.4%	7.50	4.83	0.63	4.20	56.0%	49.4%
Abr20	17	25-abr	sábado	11	8.40	31.0%	7.50	4.72	0.62	4.10	54.7%	48.8%
Abr20	18	27-abr	lunes	11	8.60	27.9%	7.50	5.18	0.68	4.50	60.0%	52.3%
Abr20	18	28-abr	martes	11	8.50	29.4%	7.50	5.18	0.68	4.50	60.0%	52.9%
Abr20	18	29-abr	miércoles	11	8.50	29.4%	7.50	5.06	0.66	4.40	58.7%	51.8%
Abr20	18	30-abr	jueves	11	8.50	29.4%	7.50	4.86	0.63	4.23	56.4%	49.8%

ANEXO 54: Productividad diario - mes de mayo 2020.

					Est	udio del 1	rabajo: Pro	ductividad	d.			
	Elab	orado:			José Luis Colan O	lortegui.	•		Mét	odo:		Pre test
	M	les:			Mayo				Ai	io:		2020
	Fe	chas		6	ESTIÓN DE TIEMPOS				GESTI	ÓN DE PROCESO		
Mes	Semana -	Fecha 🔻	Dia 🔻	Tiempo.Proyectado /Ciclo	Tiempo.Ejecutado /Ciclo	Rendimiento. Tiempo	Toneladas. Proyectado	Materia prima (tn)	Remanente de proceso (tn)	Toneladas. Ejecutada	Toneladas. Producción	Productividad Ejecutada (tn/ hora)
May20	18	01-may	viernes	11	8.60	27.9%	7.50	4.83	0.63	4.20	56.0%	48.8%
May20	18	02-may	sábado	11	8.50	29.4%	7.50	5.18	0.68	4.50	60.0%	52.9%
May20	19	04-may	lunes	11	8.40	31.0%	7.50	5.18	0.68	4.50	60.0%	53.6%
May20	19	05-may	martes	11	8.50	29.4%	7.50	5.18	0.68	4.50	60.0%	52.9%
May20	19	06-may	miércoles	11	8.60	27.9%	7.50	4.84	0.63	4.21	56.1%	49.0%
May20	19	07-may	jueves	11	8.50	29.4%	7.50	5.18	0.68	4.50	60.0%	52.9%
May20	19	08-may	viernes	11	8.60	27.9%	7.50	5.29	0.69	4.60	61.3%	53.5%
May20	19	09-may	sábado	11	8.70	26.4%	7.50	5.18	0.68	4.50	60.0%	51.7%
May20	20	11-may	lunes	11	8.90	23.6%	7.50	5.18	0.68	4.50	60.0%	50.6%
May20	20	12-may	martes	11	8.56	28.5%	7.50	4.95	0.65	4.30	57.3%	50.2%
May20	20	13-may	miércoles	11	8.90	23.6%	7.50	5.18	0.68	4.50	60.0%	50.6%
May20	20	14-may	jueves	11	8.50	29.4%	7.50	5.18	0.68	4.50	60.0%	52.9%
May20	20	15-may	viernes	11	8.90	23.6%	7.50	5.07	0.66	4.41	58.8%	49.6%
May20	20	16-may	sábado	11	8.60	27.9%	7.50	5.29	0.69	4.60	61.3%	53.5%
May20	21	18-may	lunes	11	8.50	29.4%	7.50	5.64	0.74	4.90	65.3%	57.6%
May20	21	19-may	martes	11	8.30	32.5%	7.50	5.67	0.74	4.93	65.7%	59.4%
May20	21	20-may	miércoles	11	8.50	29.4%	7.50	5.75	0.75	5.00	66.7%	58.8%
May20	21	21-may	jueves	11	8.50	29.4%	7.50	5.64	0.74	4.90	65.3%	57.6%
May20	21	22-may	viernes	11	8.30	32.5%	7.50	5.87	0.77	5.10	68.0%	61.4%
May20	21	23-may	sábado	11	8.50	29.4%	7.50	5.52	0.72	4.80	64.0%	56.5%
May20	22	25-may	lunes	11	8.50	29.4%	7.50	5.87	0.77	5.10	68.0%	60.0%
May20	22	26-may	martes	11	8.30	32.5%	7.50	5.75	0.75	5.00	66.7%	60.2%
May20	22	27-may	miércoles	11	8.43	30.5%	7.50	5.98	0.78	5.20	69.3%	61.7%
May20	22	28-may	jueves	11	8.50	29.4%	7.50	5.87	0.77	5.10	68.0%	60.0%
May20	22	29-may	viernes	11	8.90	23.6%	7.50	5.75	0.75	5.00	66.7%	56.2%
May20	22	30-may	sábado	11	8.60	27.9%	7.50	5.66	0.74	4.92	65.6%	57.2%


ANEXO 55: Productividad diario - mes de junio.

					Est	udio del 1	rabajo: Pro	ductividad	d.			
	Elab	orado:			José Luis Colan O		- and a joint is		Mét	odo:		Pre test
	N	les:			Junio				Aŕ	io:		2020
	Fe	chas		(GESTIÓN DE TIEMPOS				GESTI	ÓN DE PROCESO		
Mes	Semana •	Fecha •	Día ▼	Tiempo.Proyectado /Ciclo	Tiempo.Ejecutado /Ciclo	Rendimiento. Tiempo	Toneladas. Proyectado	Materia prima (tn)	Remanente de proceso (tn)	Toneladas. Ejecutada	Toneladas. Producción	Productividad Ejecutada (tn/ hora)
Jun20	23	01-jun	lunes	11	8.20	34.1%	7.50	5.87	0.77	5.10	68.0%	62.2%
Jun20	23	02-jun	martes	11	8.30	32.5%	7.50	5.75	0.75	5.00	66.7%	60.2%
Jun20	23	03-jun	miércoles	11	8.20	34.1%	7.50	5.64	0.74	4.90	65.3%	59.8%
Jun20	23	04-jun	jueves	11	8.30	32.5%	7.50	5.69	0.74	4.95	66.0%	59.6%
Jun20	23	05-jun	viernes	11	8.35	31.7%	7.50	5.87	0.77	5.10	68.0%	61.1%
Jun20	23	06-jun	sábado	11	8.30	32.5%	7.50	5.75	0.75	5.00	66.7%	60.2%
Jun20	24	08-jun	lunes	11	8.60	27.9%	7.50	5.41	0.71	4.70	62.7%	54.7%
Jun20	24	09-jun	martes	11	8.70	26.4%	7.50	5.52	0.72	4.80	64.0%	55.2%
Jun20	24	10-jun	miércoles	11	8.50	29.4%	7.50	5.52	0.72	4.80	64.0%	56.5%
Jun20	24	11-jun	jueves	11	8.60	27.9%	7.50	5.75	0.75	5.00	66.7%	58.1%
Jun20	24	12-jun	viernes	11	8.70	26.4%	7.50	5.75	0.75	5.00	66.7%	57.5%
Jun20	24	13-jun	sábado	11	8.73	26.0%	7.50	5.80	0.76	5.04	67.2%	57.7%
Jun20	25	15-jun	lunes	11	8.60	27.9%	7.50	5.64	0.74	4.90	65.3%	57.0%
Jun20	25	16-jun	martes	11	8.50	29.4%	7.50	5.26	0.69	4.57	60.9%	53.8%
Jun20	25	17-jun	miércoles	11	8.70	26.4%	7.50	5.52	0.72	4.80	64.0%	55.2%
Jun20	25	18-jun	jueves	11	8.59	28.1%	7.50	5.64	0.74	4.90	65.3%	57.0%
Jun20	25	19-jun	viernes	11	8.50	29.4%	7.50	5.52	0.72	4.80	64.0%	56.5%
Jun20	25	20-jun	sábado	11	8.50	29.4%	7.50	5.75	0.75	5.00	66.7%	58.8%
Jun20	26	22-jun	lunes	11	8.70	26.4%	7.50	5.52	0.72	4.80	64.0%	55.2%
Jun20	26	23-jun	martes	11	8.60	27.9%	7.50	5.43	0.71	4.72	62.9%	54.9%
Jun20	26	24-jun	miércoles	11	8.50	29.4%	7.50	5.52	0.72	4.80	64.0%	56.5%
Jun20	26	25-jun	jueves	11	8.70	26.4%	7.50	5.52	0.72	4.80	64.0%	55.2%
Jun20	26	26-jun	viernes	11	8.80	25.0%	7.50	5.52	0.72	4.80	64.0%	54.5%
Jun20	26	27-jun	sábado	11	8.31	32.4%	7.50	5.53	0.72	4.81	64.1%	57.9%
Jun20	27	29-jun	lunes	11	8.90	23.6%	7.50	5.52	0.72	4.80	64.0%	53.9%
Jun20	27	30-jun	martes	11	8.60	27.9%	7.50	5.64	0.74	4.90	65.3%	57.0%

ANEXO 56: Layout de ingreso al proceso de fileteo / Tiempo de preparación de materiales.

ANEXO 57: Diagrama de Operaciones de Proceso (DOP) fileteo de pechugas y piernas - Post Test.

ANEXO 58: Diagrama de Actividades de Proceso (DAP) fileteo de pechugas y piernas- Post Test.

	DIAGRAMA DE ACTIVIDADES	DE PROCESO			Operacio	ón: FILETEC	DE PE POLI	ECHUGA Y PIERN. .O.	AS DE	san fer La buen	rnando a familia
		4						RESUMEN			
MÉ	TODO: POST- TEST		7		АСТ	IVIDAD		PRE-TEST		POST-TES	т
IVIL	10D0: F031- 1E31	3 14 10	-		OPE	RACIÓN		22		2	:1
		Market Co.			TRAN	ISPORTE	\Rightarrow	10	-	(3
					ES	PERA		2		•	1
LUGA	R: San Fernando Área	The state of the s		9	INSP	ECCIÓN		6		(6
LUGA	de filete.				ALMACE	NAMIENTO	lacksquare	2		()
	de meter	1 1 1 1	7		DIS	TANCIA		230 m		92 m	
					TIEMI	O TOTAL		89.33		25.23	<u> </u>
					SIMBOL	os			Т.	NECE	SARIO
N°	DESCRIPCIÓN	Distancia (m)		-			▼	DESPERDICIO	(min)	SI	NO
1	Charla del personal al inicio del proceso.		•						5	×	
2	Lavado de manos y desinfección.								1	×	
3	Desinfección de mangas y guantes.								3	×	
4	Desplazamiento del personal hacia las fajas de p	proceso. 20 m		•				Movimiento	2	×	
5	Encendido de la maquina deshuesadora de ped pierna.	:huga y							1	×	
6	Quitar las tapas de las tinas que contiene la n prima.	nateria	-						0.12	×	
7	Levantar las tinas a la tolva de abastecimie	nto.)						0.03	×	
8	Vaciar la materia prima a la tolva.		•						0.02	×	
9	Agarrar la materia prima para la selecció	n.				>			0.02	×	
10	Abastecimiento de la materia prima (pechuga y	pierna).	<						0.03	×	
11	Deshuesado de la materia prima (maquina	a). 10 m			•			Espera	1.5		×
12	Desprender el filete del hueso.		•						0.03		×
13	Tirar el filete la faja transportadora.								0.02		×
14	Transporte del filete a la zona de limpieza	a. 5 m		•					0.33	×	

15	Agarrar el filete de pechuga y p	oierna.								0.02	×	
16	Limpieza del filete de pechugas y piernas grasa y piel).	de pollo (quitar		<						1	×	
17	Agarrar el filete limpio de pechuga	y pierna.								0.02	×	
18	Moldeado de filete de pechugas y pie especificaciones técnicas	- 1		-						1.2	×	
19	Tirar el filete la faja transporta	dora.		•						0.02	×	
20	Transporte del filete a la zona de el	mbolsado.	1 m						Movimiento	0.13	×	
21	Agarrar la bolsa de los produc	ctos .								0.02	×	
22	Agarrar el filete moldeado).					>			0.02	×	
23	Embolsado de los filetes moldeados de piernas.	e pechugas y								0.83	×	
24	Enviar las bolsas al zona de se	ellado.	1 m						Movimiento	1		×
25	Agarrar las bolsas según los pro	oductos.		9						0.02	×	
26	Colocar las bolsas en la faja de sel	lado lineal.								0.83	×	
27	Agarrar las bolsas selladas de pechu	gas y pierna.					-			0.02	×	
28	Entinado de productos termina	ados.		-						0.33	×	
29	Poner tapas a las tinas de los producto	os terminados.		7						1.33	×	
30	Etiquetado de las tinas con los producto	os terminados.								0.02	×	
31	Colocar las tinas en parihue	elas.								0.33	×	
32	Transporte de los productos terminado balanza.	os a la zona de	30 m		>				Movimiento	2	×	
33	Registro de los pesos de los productos las planillas.	terminados en								1		×
34	Transporte de los productos terminado almacenes.	os a la zona de	25 m		•				Movimiento	1	×	
		Cantida	nd	21	6	1	6	0	34	25.2	29	5
	RESUMEN Dis	tancia		0	82 m	10 m	0	0	92 m		mado por:	
		mpo total(min)		16.18	6.47	1.50	1.09	0.00	25.23	L '	Colán Olon	regui
	Tier	mpo AV(min)		15.13	5.47	0.00	1.09	0.00	21.68	Fochs	:10 de may	o dal 2021
	Tier	mpo NV(min)		1.05	1.00	1.50	0.00	0.00	3.55	recila.	To ue may	o del 202

ANEXO 59: Toma de tiempos con cronometro.

ANEXO 60: Toma de tiempo del filete de pechuga 300 gr - Post test.

	san fernando la buera familia										SA	IN FE	RNAI	NDO									
								MATO	DE TO														
	Actividad Hora Inicio		F	ileteo de		e pechu) a.m.	ga 300 g	gr.			Elaborado Hora Fina						Jose L	uis Colan 06:00 p.					\longrightarrow
	N° de datos tomados				00:00	7 a.m. 1					Fecha	II .					01-0	5-2021 / 3					\dashv
Item	Quitar las tanas de las tinas que contiene la		T2	T3	T4	T5	Т6	Т7	T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	PROM	Σ
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	2.33
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
5	Abastecimiento de la materia prima.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
6	Deshuesado de la materia prima (maquina).	1.50	1.54	1.56	1.50	1.49	1.51	1.54	1.56	1.55	1.50	1.50	1.51	1.52	1.53	1.50	1.50	1.50	1.51	1.52	1.54	1.52	30.38
7	Desprender el filete del hueso.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
8	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
9	Transporte del filete a la zona de limpieza.	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.34	0.33	0.33	0.33	6.66
10	Agarrar el filete de pechuga.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33

11	Limpieza del filete de pechugas de pollo(quitar grasa y piel) y Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas.	55.50	55.60	55.50	55.00	55.60	55.70	55.00	55.00	55.00	55.56	55.70	55.60	55.60	55.60	55.40	55.60	55.60	55.50	55.70	55.40	55.46	1109.16
12	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
13	Transporte del filete a la zona de embolsado.	0.13	0.13	0.14	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.14	0.13	0.14	0.14	0.13	0.13	2.67
14	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
15	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
16	Embolsado de los filetes moldeados de pechugas.	0.83	0.89	0.88	0.89	0.88	0.88	0.89	0.83	0.88	0.88	0.89	0.88	0.89	0.83	0.88	0.88	0.89	0.88	0.89	0.89	0.88	17.53
17	Enviar las bolsas al zona de sellado.	3.00	3.10	3.20	3.20	3.30	3.00	3.00	3.50	3.40	3.20	3.00	3.20	3.10	3.20	3.20	3.30	3.00	3.00	3.20	3.10	3.16	63.20
18	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
19	Colocar las bolsas en la faja de sellado lineal.	0.83	0.88	0.89	0.83	0.88	0.88	0.89	0.88	0.89	0.83	0.88	0.88	0.89	0.83	0.88	0.88	0.89	0.88	0.83	0.88	0.87	17.42
20	Agarrar las bolsas selladas de pechugas.	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
21	Entinado de productos terminados.	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.34	0.33	0.33	0.33	0.33	0.33	6.66
22	Poner tapas a las tinas de los productos terminados.	1.33	1.35	1.31	1.40	1.32	1.32	1.33	1.35	1.34	1.36	1.33	1.30	1.31	1.32	1.35	1.32	1.32	1.33	1.35	1.30	1.33	26.64
23	Etiquetado de las tinas con los productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
24	Colocar las tinas en parihuelas.	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	6.65
	TOTAL	64.52	64.87	64.86	64.32	65.00	64.81	64.15	64.64	64.57	64.85	64.81	64.89	64.82	64.83	64.73	65.00	64.70	64.62	65.01	64.62	64.73	1294.60

ANEXO 61: Cálculo de número de observaciones del fileteo de pechuga 300 gr - Post test.

ı	Método	Pre-test	P	ost-Test	Proceso:
El	aborado:	Jose Luis Co	olan Olortegui		Fileteo de filete de pechuga 300 gr.
Item		Actividad	Σx	Σx^2	$n = \left(\frac{40\sqrt{n\Sigma x^2 - (\Sigma x)^2}}{\Sigma x}\right)^2$
1	Quitar las materia pr	tapas de las tinas que contiene la ima.	2.33	0.27	1
2	Levantar l abastecim	as tinas a la tolva de iento.	0.66	0.02	1
3	Vaciar la n	nateria prima a la tolva.	0.33	0.01	9
4	Agarrar la	materia prima para la selección.	0.33	0.01	6
5	Abastecin	niento de la materia prima.	0.66	0.02	1
6	Deshuesa	do de la materia prima (maquina).	30.38	46.16	1
7	Desprende	er el filete del hueso.	0.66	0.02	1
8	Tirar el file	te la faja transportadora.	0.33	0.01	5
9	Transport	e del filete a la zona de limpieza.	6.66	2.22	1
10	Agarrar el	filete de pechuga.	0.33	0.01	9
11	pollo(quita de pechug	lel filete de pechugas de ir grasa y piel) y Moldeado de filete as de 300 gr. según ciones técnicas.	1109.16	61512.97	1
12	Tirar el file	te la faja transportadora.	0.33	0.01	8
13	Transport	e del filete a la zona de embolsado.	2.67	0.36	1
14	Agarrar la	bolsa de los productos .	0.33	0.01	9
15	Agarrar el	filete moldeado.	0.33	0.01	9
16	Embolsad pechugas.	o de los filetes moldeados de	17.53	15.38	1
17	Enviar las	bolsas al zona de sellado.	63.20	200.10	3
18	Agarrar la	s bolsas según los productos.	0.33	0.01	9
19	Colocar la	s bolsas en la faja de sellado lineal.	17.42	15.18	1
20	Agarrar la	s bolsas selladas de pechugas.	0.33	0.01	9
21	Entinado d	de productos terminados.	6.66	2.21	1
22	Poner tapa terminado	as a las tinas de los productos s.	26.64	35.50	1
23		de las tinas con los productos	0.33	0.01	9
24		ns tinas en parihuelas.	6.65	2.21	1
	-			•	

ANEXO 62: Cálculo del promedio de los tiempos observados del proceso de filete de pechuga de 300 gr - Post test.

	san fernando La buera familia	ÚMER:	O DE M	IIIEST		N FER	RNAN	DO			
Item	Actividad	T1	T2	T3	T4	T5	Т6	T7	Т8	Т9	PROM
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12									0.12
2	Levantar las tinas a la tolva de abastecimiento.	0.03									0.03
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01				0.02
5	Abastecimiento de la materia prima.	0.03									0.03
6	Deshuesado de la materia prima (maquina).	1.50									1.50
7	Desprender el filete del hueso.	0.03									0.03
8	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02					0.02
9	Transporte del filete a la zona de limpieza.	0.33									0.33
10	Agarrar el filete de pechuga.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02
11	Limpieza del filete de pechugas de pollo(quitar grasa y piel) y Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas.	55.50									55.50
12	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02		0.02
13	Transporte del filete a la zona de embolsado.	0.13									0.13
14	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02
15	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02
16	Embolsado de los filetes moldeados de pechugas.	0.83									0.83
17	Enviar las bolsas al zona de sellado.	3.00	3.10	3.20							3.10
18	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02
19	Colocar las bolsas en la faja de sellado lineal.	0.83									0.83
20	Agarrar las bolsas selladas de pechugas.	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
21	Entinado de productos terminados.	0.33									0.33
22	Poner tapas a las tinas de los productos terminados.	1.33									1.33
23	Etiquetado de las tinas con los productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02
24	Colocar las tinas en parihuelas.	0.33									0.33

ANEXO 63: Cálculo del tiempo estándar filete de pechuga de 300 gr - Post test.

	san fernando La buera familia					S	SAN FERNA	ANDO)			
		Format	o de c	álculo	del ti	empo	estándar.					
	Actividad	Fi	ileteo de		_	ga 300 <u>c</u>	jr.		laborad			an Olortegui.
	Hora Inicio Nº de datos tomados			06:00) a.m.			Н	lora Fin	al) p.m.
	N° de datos tomados			Westin	ghouse					nentos	01-05-2021	/ 31-05-2021
Item	Actividad	Promedio de tiempo observado	н	E	CD	cs	Factor de valoración	Tiempo normal (TN)	NP	F. V	total suplementos	Tiempo Estándar
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12	0.03	0.02	-0.03	0.01	1.00	0.15	0.07	0.16	0.23	0.18
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
3	Vaciar la materia prima a la tolva.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
4	Agarrar la materia prima para la selección.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
5	Abastecimiento de la materia prima.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
6	Deshuesado de la materia prima (maquina).	1.50	0.03	0.02	-0.03	0.01	1.00	1.53	0.07	0.16	0.23	1.88
7	Desprender el filete del hueso.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
8	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
9	Transporte del filete a la zona de limpieza.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
10	Agarrar el filete de pechuga.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
11	Limpieza del filete de pechugas de pollo(quitar grasa y piel) y Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas.	55.50	0.00	0.00	-0.03	0.01	1.00	55.48	0.07	0.16	0.23	68.24

							•		I		·	ı
12	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
13	Transporte del filete a la zona de embolsado.	0.13	0.03	0.02	-0.03	0.01	1.00	0.16	0.07	0.16	0.23	0.20
14	Agarrar la bolsa de los productos .	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
15	Agarrar el filete moldeado.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
16	Embolsado de los filetes moldeados de pechugas.	0.83	0.03	0.02	-0.03	0.01	1.00	0.86	0.07	0.16	0.23	1.06
17	Enviar las bolsas al zona de sellado.	3.10	0.03	0.02	-0.03	0.01	1.00	3.13	0.07	0.16	0.23	3.85
18	Agarrar las bolsas según los productos.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
19	Colocar las bolsas en la faja de sellado lineal.	0.83	0.03	0.02	-0.03	0.01	1.00	0.86	0.07	0.16	0.23	1.06
20	Agarrar las bolsas selladas de pechugas.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
21	Entinado de productos terminados.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
22	Poner tapas a las tinas de los productos terminados.	1.33	0.03	0.02	-0.03	0.01	1.00	1.36	0.07	0.16	0.23	1.68
23	Etiquetado de las tinas con los productos terminados.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
24	Colocar las tinas en parihuelas.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
	TOTAL											80.30

ANEXO 64: Toma de tiempo del filete de pechuga corte mariposa SANTA - Post test.

	sanfernando la buera faralla										SA	N FE	RNAI	IDO									
	FORMATO DE																		-1				
	Actividad Filete de pechuga corte mariposa SANTA. Hora Inicio 06:00 a.m.										laborado Hora Fina						Jose L	uis Colan 06:00 p.	Olortegui m				\longrightarrow
	N° de datos tomados				00.0	1					Fecha						01-0		1-05-2021				
Item	Actividad	T1	T2	Т3	T4	T5	T6	17	T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	PROM	Σ
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	2.33
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
5	Abastecimiento de la materia prima.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
6	Deshuesado de la materia prima (maquina).	1.50	1.54	1.56	1.50	1.49	1.51	1.54	1.56	1.55	1.50	1.50	1.51	1.52	1.53	1.50	1.50	1.50	1.51	1.52	1.54	1.52	30.38
7	Desprender el filete del hueso.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
8	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
9	Transporte del filete a la zona de limpieza.	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.34	0.33	0.33	0.33	6.66
10	Agarrar el filete de pechuga.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33

11	Limpieza del filete de pechugas de pollo(quitar grasa y piel) y Moldeado de filete de pechugas de 300 gr. según especificaciones técnicas.	50.10	50.20	50.10	50.10	50.20	50.10	50.20	50.10	50.20	50.10	50.20	50.20	50.10	50.10	50.10	50.20	50.10	50.10	50.10	50.12	50.14	1002.72
12	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
13	Transporte del filete a la zona de embolsado.	0.13	0.13	0.14	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.14	0.13	0.14	0.14	0.13	0.13	2.67
14	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
15	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
16	Embolsado de los filetes moldeados de pechugas.	0.83	0.89	0.88	0.89	0.88	0.88	0.89	0.83	0.88	0.88	0.89	0.88	0.89	0.83	0.88	0.88	0.89	0.88	0.89	0.89	0.88	17.53
17	Enviar las bolsas al zona de sellado.	3.00	3.10	3.20	3.20	3.30	3.00	3.00	3.50	3.40	3.20	3.00	3.20	3.10	3.20	3.20	3.30	3.00	3.00	3.20	3.10	3.16	63.20
18	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
19	Colocar las bolsas en la faja de sellado lineal.	0.83	0.88	0.89	0.83	0.88	0.88	0.89	0.88	0.89	0.83	0.88	0.88	0.89	0.83	0.88	0.88	0.89	0.88	0.83	0.88	0.87	17.42
20	Agarrar las bolsas selladas de pechugas.	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
21	Entinado de productos terminados.	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.34	0.33	0.33	0.33	0.33	0.33	6.66
22	Poner tapas a las tinas de los productos terminados.	1.33	1.35	1.31	1.40	1.32	1.32	1.33	1.35	1.34	1.36	1.33	1.30	1.31	1.32	1.35	1.32	1.32	1.33	1.35	1.30	1.33	26.64
23	Etiquetado de las tinas con los productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
24	Colocar las tinas en parihuelas.	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	6.65
	TOTAL	59.12	59.47	59.46	59.42	59.60	59.21	59.35	59.74	59.77	59.39	59.31	59.49	59.32	59.33	59.43	59.60	59.20	59.22	59.41	59.34	59.41	1188.16

ANEXO 65: Cálculo del número de observaciones proceso de filete de pechuga corte mariposa SANTA - Post test.

r	Vlétodo	Pre-test	P	ost-Test	Proceso:
Ela	aborado:	Jose Luis Co	olan Olortegui		Filete de pechuga corte mariposa SANTA.
Item		Actividad	Σχ	Σx^2	$n = \left(\frac{40\sqrt{n\Sigma x^2 - (\Sigma x)^2}}{\Sigma x}\right)^2$
1	Quitar las materia pr	tapas de las tinas que contiene la rima.	2.33	0.27	1
2	Levantar i abastecim	las tinas a la tolva de niento.	0.66	0.02	1
3	Vaciar la r	nateria prima a la tolva.	0.33	0.01	9
4	Agarrar la	materia prima para la selección.	0.33	0.01	6
5	Abastecin	niento de la materia prima.	0.66	0.02	1
6	Deshuesa	ndo de la materia prima (maquina).	30.38	46.16	1
7	Desprend	er el filete del hueso.	0.66	0.02	1
8	Tirar el file	ete la faja transportadora.	0.33	0.01	5
9	Transport	e del filete a la zona de limpieza.	6.66	2.22	1
10	Agarrar el	filete de pechuga.	0.33	0.01	9
11	pollo(quita de pechug	del filete de pechugas de ar grasa y piel) y Moldeado de filete µas de 300 gr. según ciones técnicas.	1002.72	50272.41	1
12	Tirar el file	ete la faja transportadora.	0.33	0.01	8
13	Transport	e del filete a la zona de embolsado.	2.67	0.36	1
14	Agarrar la	bolsa de los productos .	0.33	0.01	9
15	Agarrar el	filete moldeado.	0.33	0.01	9
16	Embolsad pechugas	lo de los filetes moldeados de	17.53	15.38	1
17	Enviar las	bolsas al zona de sellado.	63.20	200.10	3
18	Agarrar la	s bolsas según los productos.	0.33	0.01	9
19	Colocar la	s bolsas en la faja de sellado lineal.	17.42	15.18	1
20	Agarrar la	s bolsas selladas de pechugas.	0.33	0.01	9
21	Entinado	de productos terminados.	6.66	2.21	1
22	Poner tap	as a las tinas de los productos is.	26.64	35.50	1
23	Etiquetado terminado	o de las tinas con los productos os.	0.33	0.01	9
24	Colocar la	as tinas en parihuelas.	6.65	2.21	1

ANEXO 66: Cálculo del promedio los tiempos observados del proceso de filete de pechuga corte mariposa SANTA – Post test.

	sanfernando La buera familia				SAI	N FER	RNAN	DO			
	N	ÚMER	O DE N	IUEST	RAS						
Item	Actividad	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9	PROM
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12									0.12
2	Levantar las tinas a la tolva de abastecimiento.	0.03									0.03
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01				0.02
5	Abastecimiento de la materia prima.	0.03									0.03
6	Deshuesado de la materia prima (maquina).	1.50									1.50
7	Desprender el filete del hueso.	0.03									0.03
8	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02					0.02
9	Transporte del filete a la zona de limpieza.	0.33									0.33
10	Agarrar el filete de pechuga.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02
11	Limpieza del filete de pechugas de pollo(quitar grasa y piel) y Moldeado de filete	50.10									50.10
12	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02		0.02
13	Transporte del filete a la zona de embolsado.	0.13									0.13
14	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02
15	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02
16	Embolsado de los filetes moldeados de pechugas.	0.83									0.83
17	Enviar las bolsas al zona de sellado.	3.00	3.10	3.20							3.10
18	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02
19	Colocar las bolsas en la faja de sellado lineal.	0.83									0.83
20	Agarrar las bolsas selladas de pechugas.	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
21	Entinado de productos terminados.	0.33									0.33
22	Poner tapas a las tinas de los productos terminados.	1.33									1.33
23	Etiquetado de las tinas con los productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02
24	Colocar las tinas en parihuelas.	0.33									0.33

ANEXO 67: Cálculo del tiempo estándar del proceso de filete de pechuga corte mariposa SANTA - Post test.

	san fernando La buera familia					S	SAN FERN	ANDO)			
		Format	o de c	álculo	del ti	empo	estándar.					
	Actividad	Filete	de pec	huga co	rte mari	posa SA	NTA.	E	laborad	o:	Jose Luis Col	an Olortegui.
	Hora Inicio			06:0) a.m.			H	lora Fin	al		p.m.
	N° de datos tomados				1				Fecha		01-05-2021	/ 31-05-2021
		Promedio de		Westin	ghouse		Factor de	Tiempo	Supler	nentos	total	Tiempo
Item	Actividad	tiempo observado	н	Е	CD	cs	valoración	normal (TN)	NP	F	suplementos	Estándar
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12	0.03	0.02	-0.03	0.01	1.00	0.15	0.07	0.16	0.23	0.18
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
3	Vaciar la materia prima a la tolva.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
4	Agarrar la materia prima para la selección.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
5	Abastecimiento de la materia prima.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
6	Deshuesado de la materia prima (maquina).	1.50	0.03	0.02	-0.03	0.01	1.00	1.53	0.07	0.16	0.23	1.88
7	Desprender el filete del hueso.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
8	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
9	Transporte del filete a la zona de limpieza.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
10	Agarrar el filete de pechuga.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
11	Limpieza del filete de pechugas de pollo(quitar grasa y piel) y Moldeado de filete	50.10	0.00	0.00	-0.03	0.01	1.00	50.08	0.07	0.16	0.23	61.60
12	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06

	TOTAL											73.65
24	Colocar las tinas en parihuelas.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
23	Etiquetado de las tinas con los productos terminados.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
22	Poner tapas a las tinas de los productos terminados.	1.33	0.03	0.02	-0.03	0.01	1.00	1.36	0.07	0.16	0.23	1.68
21	Entinado de productos terminados.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
20	Agarrar las bolsas selladas de pechugas.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
19	Colocar las bolsas en la faja de sellado lineal.	0.83	0.03	0.02	-0.03	0.01	1.00	0.86	0.07	0.16	0.23	1.06
18	Agarrar las bolsas según los productos.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
17	Enviar las bolsas al zona de sellado.	3.10	0.03	0.02	-0.03	0.01	1.00	3.13	0.07	0.16	0.23	3.85
16	Embolsado de los filetes moldeados de pechugas.	0.83	0.03	0.02	-0.03	0.01	1.00	0.86	0.07	0.16	0.23	1.06
15	Agarrar el filete moldeado.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
14	Agarrar la bolsa de los productos .	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
13	Transporte del filete a la zona de embolsado.	0.13	0.03	0.02	-0.03	0.01	1.00	0.16	0.07	0.16	0.23	0.20

ANEXO 68: Toma de tiempos del proceso de filete de pechuga económico x1 - Post test.

	sanfernando La buena familia											N FE	RNAI	NDO									
		DE TO																					
	Actividad Filete de pollo economico x1. Hora Inicio 06:00 a.m.										Elaborado						Jose L	uis Colan					
	N° de datos tomados				00:00) a.m. 1					Hora Fina Fecha	11					01.0	06:00 p. 5-2021 / 31					
	n de datos tomados										reula						01-03	1-505T 31	1-03-2021				
Item Actividad T1 T2 T3 T4 T5 T6 T7					T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	PROM	Σ				
1	Quitar las tapas de las tinas que contiene la materia prima.	0.15	0.15	0.16	0.13	0.15	0.15	0.17	0.15	0.15	0.15	0.16	0.15	0.16	0.15	0.15	0.13	0.15	0.15	0.16	0.15	0.15	3.02
2	Levantar las tinas a la tolva de abastecimiento.	0.05	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.04	0.05	0.05	0.05	0.97
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
5	Abastecimiento de la materia prima.	0.08	0.08	0.05	0.08	0.08	0.07	0.08	0.07	0.08	0.08	0.07	0.08	0.07	0.08	0.08	0.08	0.08	0.08	0.08	0.07	0.08	1.52
6	Deshuesado de la materia prima (maquina).	1.50	1.54	1.56	1.50	1.49	1.51	1.54	1.56	1.55	1.50	1.50	1.51	1.52	1.53	1.50	1.50	1.50	1.51	1.52	1.54	1.52	30.38
7	Desprender el filete del hueso.	0.05	0.06	0.07	0.06	0.06	0.06	0.06	0.06	0.07	0.06	0.06	0.06	0.05	0.06	0.05	0.06	0.06	0.05	0.05	0.06	0.06	1.17
8	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33

9	Transporte del filete a la zona de limpieza.	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.34	0.33	0.33	0.33	6.66
10	Agarrar el filete de pechuga.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
11	Limpieza del filete de pechugas de pollo(quitar grasa y piel).moldear, embolsado.	45.10	45.10	45.20	45.20	45.20	45.20	45.10	45.10	45.20	45.10	45.10	45.20	45.20	45.20	45.10	45.10	45.10	45.20	45.20	45.20	45.16	903.10
12	Agarrar las bolsas de los productos terminado.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
13	Entinado de productos terminados.	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.34	0.33	0.33	0.33	0.33	0.33	6.66
14	Poner tapas a las tinas de los productos terminados.	1.33	1.35	1.31	1.40	1.32	1.32	1.33	1.35	1.34	1.36	1.33	1.30	1.31	1.32	1.35	1.32	1.32	1.33	1.35	1.30	1.33	26.64
15	Etiquetado de las tinas con los productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
16	Colocar las tinas en parihuelas.	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	6.65
	TOTAL	49.36	49.42	49.50	49.50	49.45	49.46	49.43	49.43	49.52	49.40	49.37	49.45	49.46	49.49	49.38	49.34	49.36	49.46	49.51	49.47	49.44	988.75

ANEXO 69: Cálculo del número de observaciones del proceso de filete de pechuga económico x1- Post test.

N	Método	Pre-test	P	ost-Test	Proceso:
Elá	aborado:	Jose Luis Co	olan Olortegui		Filete de pollo economico x1.
Item		Actividad	Σx	Σx^2	$n = \left(\frac{40\sqrt{n} \sum x^2 - (\sum x)^2}{\sum x}\right)^2$
1	Quitar las materia pr	tapas de las tinas que contiene la ima.	3.02	0.46	6
2	Levantar l abastecim	as tinas a la tolva de iento.	0.97	0.05	12
3	Vaciar la n	nateria prima a la tolva.	0.33	0.01	9
4	Agarrar la	materia prima para la selección.	0.33	0.01	6
5	Abastecin	niento de la materia prima.	1.52	0.12	15
6	Deshuesa	do de la materia prima (maquina).	30.38	46.16	1
7	Desprende	er el filete del hueso.	1.17	0.07	15
8	Tirar el file	ete la faja transportadora.	0.33	0.01	5
9	Transport	e del filete a la zona de limpieza.	6.66	2.22	1
10	Agarrar el	filete de pechuga.	0.33	0.01	9
11		lel filete de pechugas de ar grasa y piel).moldear, o.	903.10	40779.53	1
12	Agarrar la terminado	s bolsas de los productos	0.33	0.01	9
13	Entinado d	de productos terminados.	6.66	2.21	1
14	Poner tapa terminado	as a las tinas de los productos s.	26.64	35.50	1
15	Etiquetado terminado	o de las tinas con los productos s.	0.33	0.01	1
16	Colocar la	as tinas en parihuelas.	6.65	2.21	1

ANEXO 70: Cálculo del promedio de observaciones del filete económico x1-Post test.

	san fernando La buera familia							SAI	V FER	RNAN	DO						
				N	ÚMER	DE N	IUEST	RAS									
Item	Actividad	T1	T2	Т3	T4	T5	T6	17	Т8	Т9	T10	T11	T12	T13	T14	T15	PROM
1	Quitar las tapas de las tinas que contiene la materia prima.	0.15	0.15	0.16	0.13	0.15	0.15										0.15
2	Levantar las tinas a la tolva de abastecimiento.	0.05	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.04	0.05	0.05	0.05				0.05
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01							0.02
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01										0.02
5	Abastecimiento de la materia prima.	0.08	0.08	0.05	0.08	0.08	0.07	0.08	0.07	0.08	0.08	0.07	0.08	0.07	0.08	0.08	0.08
6	Deshuesado de la materia prima (maquina).	1.50															1.50
7	Desprender el filete del hueso.	0.05	0.06	0.07	0.06	0.06	0.06	0.06	0.06	0.07	0.06	0.06	0.06	0.05	0.06	0.05	0.06
8	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02											0.02
9	Transporte del filete a la zona de limpieza.	0.33															0.33
10	Agarrar el filete de pechuga.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01							0.02
11	Limpieza del filete de pechugas de pollo(quitar grasa y piel).moldear, embolsado.	45.10															45.10
12	Agarrar las bolsas de los productos terminado.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02							0.02
13	Entinado de productos terminados.	0.33															0.33
14	Poner tapas a las tinas de los productos terminados.	1.33															1.33
15	Etiquetado de las tinas con los productos terminados.	0.02															0.02
16	Colocar las tinas en parihuelas.	0.33															0.33

ANEXO 71: Cálculo del tiempo estándar del proceso de filete económico x1 - Post test.

	san fernando La buera familia					S	SAN FERNA	ANDO)			
		Format	o de c	álculo	del ti	empo	estándar.					
	Actividad		Filete	-	econom	ico x1.			laborad			an Olortegui.
	Hora Inicio			06:00) a.m.			H	lora Fin	al) p.m.
	N° de datos tomados			344	1				Fecha		01-05-2021	/ 31-05-2021
Item	Actividad	Promedio de tiempo observado	н	E	ghouse CD	cs	Factor de valoración	Tiempo normal (TN)	NP	nentos F	total suplementos	Tiempo Estándar
1	Quitar las tapas de las tinas que contiene la materia prima.	0.15	0.03	0.02	-0.03	0.01	1.00	0.18	0.07	0.16	0.23	0.22
2	Levantar las tinas a la tolva de abastecimiento.	0.05	0.03	0.02	-0.03	0.01	1.00	0.08	0.07	0.16	0.23	0.10
3	Vaciar la materia prima a la tolva.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
4	Agarrar la materia prima para la selección.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
5	Abastecimiento de la materia prima.	0.08	0.03	0.02	-0.03	0.01	1.00	0.11	0.07	0.16	0.23	0.13
6	Deshuesado de la materia prima (maquina).	1.50	0.03	0.02	-0.03	0.01	1.00	1.53	0.07	0.16	0.23	1.88
7	Desprender el filete del hueso.	0.06	0.03	0.02	-0.03	0.01	1.00	0.09	0.07	0.16	0.23	0.11
8	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06

9	Transporte del filete a la zona de limpieza.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
10	Agarrar el filete de pechuga.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
11	Limpieza del filete de pechugas de pollo(quitar grasa y piel).moldear, embolsado.	45.10	0.00	0.00	-0.03	0.01	1.00	45.08	0.07	0.16	0.23	55.45
12	Agarrar las bolsas de los productos terminado.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
13	Entinado de productos terminados.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
14	Poner tapas a las tinas de los productos terminados.	1.33	0.03	0.02	-0.03	0.01	1.00	1.36	0.07	0.16	0.23	1.68
15	Etiquetado de las tinas con los productos terminados.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
16	Colocar las tinas en parihuelas.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
	TOTAL			·	·			·		·		61.24

ANEXO 72: Toma de tiempo del proceso de filete de pechuga corte KFC - Post test.

	sanfernando La buera familia										SA	N FE	RNAI	NDO									
								MATO	DE TO	MA DE	TIEM	PO											
	Actividad			Filete	o de file		KFC.				Elaborado						Jose L		Olortegui				
	Hora Inicio N° de datos tomados				06:00) a.m.					Hora Fina Fecha	ı					04.0	06:00 p. 5-2021 / 31					
	N de datos tomados										reciia						01-03	5-2021 / 3.	1-05-2021				
Item	Actividad	T1	T2	T3	T4	T5	Т6	17	T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	PROM	Σ
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	2.33
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
5	Abastecimiento de la materia prima.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
6	Deshuesado de la materia prima (maquina).	1.50	1.54	1.56	1.50	1.49	1.51	1.54	1.56	1.55	1.50	1.50	1.51	1.52	1.53	1.50	1.50	1.50	1.51	1.52	1.54	1.52	30.38
7	Desprender el filete del hueso.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
8	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
9	Transporte del filete a la zona de limpieza.	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.34	0.33	0.33	0.33	6.66
10	Agarrar el filete de pechuga.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33

11	Limpieza del filete de pechugas de pollo(quitar grasa y piel), moldeado según ficha técnica.	100.10	100.20	100.20	100.10	100.20	100.30	100.20	100.00	100.10	100.20	100.20	100.20	100.20	100.20	100.10	100.10	100.20	100.10	100.20	100.30	100.17	2003.40
12	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
13	Transporte del filete a la zona de embolsado.	0.13	0.13	0.14	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.14	0.13	0.14	0.14	0.13	0.13	2.67
14	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
15	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
16	Embolsado de los filetes moldeados de pechugas.	1.50	1.60	1.20	1.50	1.20	1.50	1.40	1.40	1.20	1.50	1.40	1.40	1.50	1.50	1.20	1.40	1.50	1.40	1.50	1.40	1.41	28.20
17	Enviar las bolsas al zona de sellado.	2.00	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.40	2.50	2.40	2.43	48.50
18	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
19	Colocar las bolsas en la faja de sellado lineal.	1.20	1.30	1.20	1.40	1.50	1.20	1.30	1.50	1.40	1.50	1.30	1.20	1.50	1.40	1.40	1.40	1.50	1.40	1.30	1.40	1.37	27.30
20	Agarrar las bolsas selladas de pechugas.	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
21	Entinado de productos terminados.	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.34	0.33	0.33	0.33	0.33	0.33	6.66
22	Poner tapas a las tinas de los productos terminados.	1.33	1.35	1.31	1.40	1.32	1.32	1.33	1.35	1.34	1.36	1.33	1.30	1.31	1.32	1.35	1.32	1.32	1.33	1.35	1.30	1.33	26.64
23	Etiquetado de las tinas con los productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
24	Colocar las tinas en parihuelas.	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	6.65
	TOTAL	109.15	110.00	109.39	109.90	109.63	109.85	109.68	109.82	109.50	110.07	109.64	109.63	109.95	109.96	109.46	109.74	109.93	109.65	109.89	109.85	109.73	2194.69

ANEXO 73: Cálculo del número de observaciones del proceso de corte KFC - Post test.

r	∕létodo	Pre-test	P	ost-Test	Proceso:
Ela	aborado:	Jose Luis Co	olan Olortegui		Fileteo de filete corte KFC.
Item		Actividad	Σχ	Σx^2	$n = \left(\frac{40\sqrt{n\Sigma x^2 - (\Sigma x)^2}}{\Sigma x}\right)^2$
1	Quitar las materia pr	tapas de las tinas que contiene la ima.	2.33	0.27	1
2	Levantar i abastecim	as tinas a la tolva de iento.	0.66	0.02	1
3	Vaciar la r	nateria prima a la tolva.	0.33	0.01	9
4	Agarrar la	materia prima para la selección.	0.33	0.01	6
5	Abastecin	niento de la materia prima.	0.66	0.02	1
6	Deshuesa	do de la materia prima (maquina).	30.38	46.16	1
7	Desprend	er el filete del hueso.	0.66	0.02	1
8	Tirar el file	ete la faja transportadora.	0.33	0.01	5
9	Transport	e del filete a la zona de limpieza.	6.66	2.22	1
10	Agarrar el	filete de pechuga.	0.33	0.01	9
11		del filete de pechugas de ar grasa y piel), moldeado según ica.	2003.40	200680.68	1
12	Tirar el file	ete la faja transportadora.	0.33	0.01	8
13	Transport	e del filete a la zona de embolsado.	2.67	0.36	1
14	Agarrar la	bolsa de los productos .	0.33	0.01	9
15	Agarrar el	filete moldeado.	0.33	0.01	9
16	Embolsad pechugas	lo de los filetes moldeados de	28.20	40.04	11
17	i -	bolsas al zona de sellado.	48.50	117.85	3
18	Agarrar la	s bolsas según los productos.	0.33	0.01	9
19	Colocar la	s bolsas en la faja de sellado lineal.	27.30	37.49	10
20	Agarrar la	s bolsas selladas de pechugas.	0.33	0.01	9
21	Entinado	de productos terminados.	6.66	2.21	1
22	Poner tap	as a las tinas de los productos s.	26.64	35.50	1
23		o de las tinas con los productos	0.33	0.01	9
24		as tinas en parihuelas.	6.65	2.21	1

ANEXO 74: Cálculo del promedio de los tiempos del proceso de filete de pechuga corte KFC- Post test.

	san fernando La buera familia					SA	N FER	RNAN	DO				
		N	ÚMER(O DE N	IUEST	RAS							
Item	Actividad	T1	T2	Т3	T4	T5	Т6	17	T8	Т9	T10	T11	PROM
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12											0.12
2	Levantar las tinas a la tolva de abastecimiento.	0.03											0.03
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01			0.02
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01						0.02
5	Abastecimiento de la materia prima.	0.03											0.03
6	Deshuesado de la materia prima (maquina).	1.50											1.50
7	Desprender el filete del hueso.	0.03											0.03
8	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02							0.02
9	Transporte del filete a la zona de limpieza.	0.33											0.33
10	Agarrar el filete de pechuga.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01			0.02
11	Limpieza del filete de pechugas de pollo(quitar grasa y piel), moldeado según	100.10											100.10
12	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02				0.02
13	Transporte del filete a la zona de embolsado.	0.13											0.13
14	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02			0.02
15	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02			0.02
16	Embolsado de los filetes moldeados de pechugas.	1.50	1.60	1.20	1.50	1.20	1.50	1.40	1.40	1.20	1.50	1.40	1.40
17	Enviar las bolsas al zona de sellado.	2.00	2.50	2.40									2.30
18	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02			0.02
19	Colocar las bolsas en la faja de sellado lineal.	1.20	1.30	1.20	1.40	1.50	1.20	1.30	1.50	1.40	1.50		1.35
20	Agarrar las bolsas selladas de pechugas.	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02			0.02
21	Entinado de productos terminados.	0.33											0.33
22	Poner tapas a las tinas de los productos terminados.	1.33											1.33
23	Etiquetado de las tinas con los productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02			0.02
24	Colocar las tinas en parihuelas.	0.33											0.33

ANEXO 75: Cálculo del tiempo estándar del proceso de filete de pechuga corte KFC - Post test.

	san fernando La buera: familia					S	AN FERNA	ANDO)			
		Format	o de c	álculo	del ti	empo	estándar.					
	Actividad		Filete		te corte	KFC.			laborad		Jose Luis Cola	an Olortegui.
	Hora Inicio			06:00	0 a.m.			Н	lora Fina	al	06:00	•
	N° de datos tomados				1				Fecha		01-05-2021	31-05-2021
Item	Actividad	Promedio de tiempo observado	н	E	ghouse CD	cs	Factor de valoración	Tiempo normal (TN)	NP	nentos F	total suplementos	Tiempo Estándar
1	Quitar las tapas de las tinas que contiene la materia prima.	0.12	0.03	0.02	-0.03	0.01	1.00	0.15	0.07	0.16	0.23	0.18
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
3	Vaciar la materia prima a la tolva.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
4	Agarrar la materia prima para la selección.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
5	Abastecimiento de la materia prima.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
6	Deshuesado de la materia prima (maquina).	1.50	0.03	0.02	-0.03	0.01	1.00	1.53	0.07	0.16	0.23	1.88
7	Desprender el filete del hueso.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
8	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
9	Transporte del filete a la zona de limpieza.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
10	Agarrar el filete de pechuga.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
11	Limpieza del filete de pechugas de pollo(quitar grasa y piel), moldeado según ficha técnica.	100.10	0.00	0.00	-0.03	0.01	1.00	100.08	0.07	0.16	0.23	123.10
12	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06

13	Transporte del filete a la zona de embolsado.	0.13	0.03	0.02	-0.03	0.01	1.00	0.16	0.07	0.16	0.23	0.20
14	Agarrar la bolsa de los productos .	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
15	Agarrar el filete moldeado.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
16	Embolsado de los filetes moldeados de pechugas.	1.40	0.03	0.02	-0.03	0.01	1.00	1.43	0.07	0.16	0.23	1.76
17	Enviar las bolsas al zona de sellado.	2.30	0.03	0.02	-0.03	0.01	1.00	2.33	0.07	0.16	0.23	2.87
18	Agarrar las bolsas según los productos.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
19	Colocar las bolsas en la faja de sellado lineal.	1.35	0.03	0.02	-0.03	0.01	1.00	1.38	0.07	0.16	0.23	1.70
20	Agarrar las bolsas selladas de pechugas.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
21	Entinado de productos terminados.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
22	Poner tapas a las tinas de los productos terminados.	1.33	0.03	0.02	-0.03	0.01	1.00	1.36	0.07	0.16	0.23	1.68
23	Etiquetado de las tinas con los productos terminados.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
24	Colocar las tinas en parihuelas.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
	TOTAL											135.50

ANEXO 76: Toma de tiempos de proceso de filete de pierna big crunch - Post test.

	san fernando la buera familia										SA	N FE	RNAI	NDO									
	Actividad Hora Inicio N° de datos tomados			Fileteo		rna big o O a.m.		MATO	DE TO	_	TIEM Elaborado Hora Fina Fecha):						uis Colan 06:00 p. 5-2021 / 3:					
Item	Actividad	T1	T2	T3	T4	T5	Т6	Т7	T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	PROM	Σ
1	Quitar las tapas de las tinas que contiene la materia prima.	0.13	0.13	0.13	0.14	0.13	0.12	0.14	0.12	0.13	0.13	0.15	0.13	0.15	0.13	0.14	0.14	0.13	0.12	0.13	0.15	0.13	2.67
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
5	Abastecimiento de la materia prima.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
6	Deshuesado de la materia prima (maquina).	2.10	2.40	2.00	2.30	2.10	2.20	2.30	2.10	2.30	2.20	2.50	2.50	2.50	2.40	2.30	2.40	2.30	2.10	2.30	2.40	2.29	45.70
7	Desprender el filete del hueso.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
8	Desprendimiento del filete hacia la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
9	Transporte del filete a la zona de limpieza.	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.34	0.33	0.33	0.33	6.66
10	Agarrar el filete de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33

11	Limpieza del filete de pierna de pollo (quitar grasa y piel),moldeado.	140.10	140.20	140.20	140.00	140.30	140.20	140.20	140.10	140.20	140.20	140.20	140.20	140.10	140.00	140.00	140.50	140.50	140.20	140.20	140.00	140.18	2803.60
12	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
13	Transporte del filete a la zona de embolsado.	0.13	0.13	0.14	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.14	0.13	0.14	0.14	0.13	0.13	2.67
14	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
15	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
16	Embolsado de los filetes moldeados de pierna.	1.00	1.20	1.30	1.10	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.10	1.20	1.30	1.20	1.10	1.10	1.20	1.30	1.20	1.15	22.90
17	Enviar las bolsas al zona de sellado.	2.00	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.40	2.50	2.40	2.43	48.50
18	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
19	Colocar las bolsas en la faja de sellado lineal.	1.20	1.30	1.20	1.40	1.50	1.20	1.30	1.50	1.40	1.50	1.30	1.20	1.50	1.40	1.40	1.40	1.50	1.40	1.30	1.40	1.37	27.30
20	Agarrar las bolsas selladas de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
21	Entinado de productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
22	Poner tapas a las tinas de los productos terminados.	1.33	1.35	1.31	1.40	1.32	1.32	1.33	1.35	1.34	1.36	1.33	1.30	1.31	1.32	1.35	1.32	1.32	1.33	1.35	1.30	1.33	26.64
23	Etiquetado de las tinas con los productos terminados.	0.05	0.06	0.05	0.05	0.06	0.05	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.05	0.06	0.05	0.05	0.05	0.06	0.05	0.05	1.07
24	Colocar las tinas en parihuelas.	0.35	0.36	0.36	0.35	0.35	0.36	0.36	0.35	0.33	0.33	0.33	0.34	0.35	0.36	0.34	0.34	0.33	0.33	0.33	0.33	0.34	6.89
	TOTAL	149.00	150.23	149.68	149.96	149.90	149.68	149.82	149.80	150.09	150.21	150.20	150.05	150.30	150.19	149.92	150.47	150.36	149.86	150.21	149.96	149.99	2999.89

ANEXO 77: Cálculo del número de observaciones del proceso de filete de pierna big crunch - Post test.

ı	Vlétodo	Pre-test	P	ost-Test	Proceso:
El	aborado:	Jose Luis Co	olan Olortegui		Fileteo de pierna big crunch.
Item		Actividad	Σx	Σx^2	$n = (\frac{40\sqrt{n\Sigma x^2 - (\Sigma x)^2}}{\Sigma x})^2$
1	Quitar las materia pr	tapas de las tinas que contiene la ima.	2.67	0.36	7
2	Levantar I abastecim	as tinas a la tolva de iento.	0.66	0.02	1
3	Vaciar la n	nateria prima a la tolva.	0.33	0.01	9
4	Agarrar la	materia prima para la selección.	0.33	0.01	6
5	Abastecin	niento de la materia prima.	0.66	0.02	1
6	Deshuesa	do de la materia prima (maquina).	45.70	104.85	7
7	Desprend	er el filete del hueso.	0.66	0.02	1
8	Desprend transporta	imiento del filete hacia la faja Idora.	0.33	0.01	5
9	Transport	e del filete a la zona de limpieza.	6.66	2.22	1
10	Agarrar el	filete de pierna.	0.33	0.01	9
11		del filete de pierna de pollo (quitar al),moldeado.	2803.60	393009.02	1
12	Tirar el file	te la faja transportadora.	0.33	0.01	8
13	Transport	e del filete a la zona de embolsado.	2.67	0.36	1
14	Agarrar la	bolsa de los productos .	0.33	0.01	9
15	Agarrar el	filete moldeado.	0.33	0.01	9
16	Embolsad pierna.	o de los filetes moldeados de	22.90	26.43	13
17	Enviar las	bolsas al zona de sellado.	48.50	117.85	3
18	Agarrar la	s bolsas según los productos.	0.33	0.01	9
19	Colocar la	s bolsas en la faja de sellado lineal.	27.30	37.49	10
20	Agarrar la	s bolsas selladas de pierna.	0.33	0.01	9
21	Entinado (de productos terminados.	0.33	0.01	9
22	Poner tapa terminado	as a las tinas de los productos s.	26.64	35.50	1
23	Etiquetado terminado	o de las tinas con los productos s.	1.07	0.06	13
24	Colocar la	as tinas en parihuelas.	6.89	2.37	2

ANEXO 78: Cálculo del promedio de las observaciones del proceso de filete de pierna big crunch - Post test.

	san fernando La buera familia						SAI	N FER	NAN	DO					
			N	ÚMER(O DE N	IUEST	RAS								
Item	Actividad	T1	T2	Т3	T4	T5	Т6	17	Т8	Т9	T10	T11	T12	T13	PROM
1	Quitar las tapas de las tinas que contiene la materia prima.	0.13	0.13	0.13	0.14	0.13	0.12	0.14							0.13
2	Levantar las tinas a la tolva de abastecimiento.	0.03													0.03
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01					0.02
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01								0.02
5	Abastecimiento de la materia prima.	0.03													0.03
6	Deshuesado de la materia prima (maquina).	2.10	2.40	2.00	2.30	2.10	2.20	2.30							2.20
7	Desprender el filete del hueso.	0.03													0.03
8	Desprendimiento del filete hacia la faja transportadora.	0.02	0.02	0.02	0.02	0.02									0.02
9	Transporte del filete a la zona de limpieza.	0.33													0.33
10	Agarrar el filete de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02					0.02

11	Limpieza del filete de pierna de pollo (quitar grasa y piel),moldeado.	140.10													140.10
12	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02						0.02
13	Transporte del filete a la zona de embolsado.	0.13													0.13
14	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02					0.02
15	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02					0.02
16	Embolsado de los filetes moldeados de pierna.	1.00	1.20	1.30	1.10	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.10	1.20	1.12
17	Enviar las bolsas al zona de sellado.	2.00	2.50	2.40											2.30
18	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02					0.02
19	Colocar las bolsas en la faja de sellado lineal.	1.20	1.30	1.20	1.40	1.50	1.20	1.30	1.50	1.40	1.50				1.35
20	Agarrar las bolsas selladas de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02					0.02
21	Entinado de productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02					0.02
22	Poner tapas a las tinas de los productos terminados.	1.33													1.33
23	Etiquetado de las tinas con los productos terminados.	0.05	0.06	0.05	0.05	0.06	0.05	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.05
24	Colocar las tinas en parihuelas.	0.35	0.36												0.36

ANEXO 79: Cálculo del tiempo estándar del proceso de filete de pierna big crunch - Post test.

	sanfernando La buera familia					S	SAN FERNA	ANDO)			
		Format	o de c	álculo	del ti	empo	estándar.					
	Actividad		Fileted		na big c	runch.		E	laborad	o:	Jose Luis Col	an Olortegui.
	Hora Inicio				0 a.m.			H	lora Fin	al) p.m.
	N° de datos tomados				1				Fecha		01-05-2021	/ 31-05-2021
		Promedio de		Westir	ighouse		Factor de	Tiempo	Supler	nentos	total	Tiemme
Item	Actividad	tiempo observado	н	E	CD	cs	valoración	normal (TN)	NP	F	suplementos	Tiempo Estándar
1	Quitar las tapas de las tinas que contiene la materia prima.	0.13	0.03	0.02	-0.03	0.01	1.00	0.16	0.07	0.16	0.23	0.20
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
3	Vaciar la materia prima a la tolva.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
4	Agarrar la materia prima para la selección.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
5	Abastecimiento de la materia prima.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
6	Deshuesado de la materia prima (maquina).	2.20	0.03	0.02	-0.03	0.01	1.00	2.23	0.07	0.16	0.23	2.74
7	Desprender el filete del hueso.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
8	Desprendimiento del filete hacia la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
9	Transporte del filete a la zona de limpieza.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
10	Agarrar el filete de pierna.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
11	Limpieza del filete de pierna de pollo (quitar grasa y piel), moldeado.	140.10	0.00	0.00	-0.03	0.01	1.00	140.08	0.07	0.16	0.23	172.30

12	Tirar al filata la faia tranana stadara	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
12	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
13	Transporte del filete a la zona de embolsado.	0.13	0.03	0.02	-0.03	0.01	1.00	0.16	0.07	0.16	0.23	0.20
14	Agarrar la bolsa de los productos .	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
15	Agarrar el filete moldeado.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
16	Embolsado de los filetes moldeados de pierna.	1.12	0.03	0.02	-0.03	0.01	1.00	1.15	0.07	0.16	0.23	1.41
17	Enviar las bolsas al zona de sellado.	2.30	0.03	0.02	-0.03	0.01	1.00	2.33	0.07	0.16	0.23	2.87
18	Agarrar las bolsas según los productos.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
19	Colocar las bolsas en la faja de sellado lineal.	1.35	0.03	0.02	-0.03	0.01	1.00	1.38	0.07	0.16	0.23	1.70
20	Agarrar las bolsas selladas de pierna.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
21	Entinado de productos terminados.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
22	Poner tapas a las tinas de los productos terminados.	1.33	0.03	0.02	-0.03	0.01	1.00	1.36	0.07	0.16	0.23	1.68
23	Etiquetado de las tinas con los productos terminados.	0.05	0.03	0.02	-0.03	0.01	1.00	0.08	0.07	0.16	0.23	0.10
24	Colocar las tinas en parihuelas.	0.36	0.03	0.02	-0.03	0.01	1.00	0.39	0.07	0.16	0.23	0.47
	TOTAL											184.92

ANEXO 80: Toma de tiempo del proceso de filete de pierna con piel x3 - Post test.

	san fernando la buera familia										SA	N FE	RNAI	NDO									
								MATO	DE TO	MA DE	TIEM	PO											
	Actividad			Fileteo	de pier		piel x 3.				Elaborado						Jose L		Olortegui				
	Hora Inicio N° de datos tomados				06:00) a.m.					Hora Fina Fecha	I					01.00	06:00 p. 5-2021 / 3					
	in de datos tomados										reciia						01-03	5-2021 / 3.	1-03-2021				
Item	Actividad	T1	T2	Т3	T4	T5	Т6	17	T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	PROM	Σ
1	Quitar las tapas de las tinas que contiene la materia prima.	0.13	0.13	0.13 0.14 0.13 0.12 0.14 0.12 0.13 0.15 0.13 0.15 0.13 0.15 0.13 0.14 0.14 0.14 0.13 0.12 0.13 0.15 0.13 2.67																			
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03																				
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
5	Abastecimiento de la materia prima.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
6	Deshuesado de la materia prima (maquina).	2.10	2.40	2.00	2.30	2.10	2.20	2.30	2.10	2.30	2.20	2.50	2.50	2.50	2.40	2.30	2.40	2.30	2.10	2.30	2.40	2.29	45.70
7	Desprender el filete del hueso.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
8	Desprendimiento del filete hacia la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.33
9	Transporte del filete a la zona de limpieza.	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.33	0.33	0.33	0.34	0.33	0.33	0.34	0.33	0.33	0.33	6.66
10	Agarrar el filete de pierna.	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33

11	Limpieza del filete de pierna de pollo (quitar grasa y piel), moldeado.	30.10	30.20	30.10	30.10	30.20	30.20	30.20	30.20	30.10	30.10	30.20	30.20	30.20	30.10	30.20	30.10	30.20	30.20	30.10	30.20	30.16	603.20
12	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
13	Transporte del filete a la zona de embolsado.	0.13	0.13	0.14	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.14	0.13	0.14	0.14	0.13	0.13	2.67
14	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
15	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
16	Embolsado de los filetes moldeados de pierna.	1.00	1.20	1.30	1.10	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.10	1.20	1.30	1.20	1.10	1.10	1.20	1.30	1.20	1.15	22.90
17	Enviar las bolsas al zona de sellado.	2.00	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.40	2.50	2.40	2.43	48.50
18	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
19	Colocar las bolsas en la faja de sellado lineal.	1.20	1.30	1.20	1.40	1.50	1.20	1.30	1.50	1.40	1.50	1.30	1.20	1.50	1.40	1.40	1.40	1.50	1.40	1.30	1.40	1.37	27.30
20	Agarrar las bolsas selladas de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
21	Entinado de productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
22	Poner tapas a las tinas de los productos terminados.	1.33	1.35	1.31	1.40	1.32	1.32	1.33	1.35	1.34	1.36	1.33	1.30	1.31	1.32	1.35	1.32	1.32	1.33	1.35	1.30	1.33	26.64
23	Etiquetado de las tinas con los productos terminados.	0.05	0.06	0.05	0.05	0.06	0.05	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.05	0.06	0.05	0.05	0.05	0.06	0.05	0.05	1.07
24	Colocar las tinas en parihuelas.	0.35	0.36	0.36	0.35	0.35	0.36	0.36	0.35	0.33	0.33	0.33	0.34	0.35	0.36	0.34	0.34	0.33	0.33	0.33	0.33	0.34	6.89
	TOTAL	39.00	40.23	39.59	40.06	39.79	39.68	39.82	39.90	39.99	40.11	40.20	40.05	40.40	40.29	40.12	40.07	40.06	39.86	40.11	40.16	39.97	799.49

ANEXO 81: Cálculo del número de observaciones del proceso de filete de pierna con piel x 3 - Post test.

ı	VIétodo	Pre-test	P	ost-Test	Proceso:
El	aborado:	Jose Luis Co	olan Olortegui		Fileteo de pierna con piel x 3.
Item		Actividad	Σχ	Σx^2	$n = \left(\frac{40\sqrt{n\Sigma x^2 - (\Sigma x)^2}}{\Sigma x}\right)^2$
1	Quitar las materia pr	tapas de las tinas que contiene la ima.	2.67	0.36	7
2	Levantar l	as tinas a la tolva de iento.	0.66	0.02	1
3	Vaciar la n	nateria prima a la tolva.	0.33	0.01	9
4	Agarrar la	materia prima para la selección.	0.33	0.01	6
5	Abastecin	niento de la materia prima.	0.66	0.02	1
6	Deshuesa	do de la materia prima (maquina).	45.70	104.85	7
7	Desprende	er el filete del hueso.	0.66	0.02	1
8	Desprendi transporta	imiento del filete hacia la faja adora.	0.33	0.01	5
9	Transport	e del filete a la zona de limpieza.	6.66	2.22	1
10	Agarrar el	filete de pierna.	0.33	0.01	9
11		del filete de pierna de pollo (quitar el), moldeado.	603.20	18192.56	1
12	Tirar el file	ete la faja transportadora.	0.33	0.01	8
13	Transport	e del filete a la zona de embolsado.	2.67	0.36	1
14	Agarrar la	bolsa de los productos .	0.33	0.01	9
15	Agarrar el	filete moldeado.	0.33	0.01	9
16	Embolsad pierna.	o de los filetes moldeados de	22.90	26.43	13
17	Enviar las	bolsas al zona de sellado.	48.50	117.85	3
18	Agarrar la	s bolsas según los productos.	0.33	0.01	9
19	Colocar la	s bolsas en la faja de sellado lineal.	27.30	37.49	10
20	Agarrar la	s bolsas selladas de pierna.	0.33	0.01	9
21	Entinado d	de productos terminados.	0.33	0.01	9
22	terminado		26.64	35.50	1
23	Etiquetado terminado	o de las tinas con los productos s.	1.07	0.06	13
24	Colocar la	as tinas en parihuelas.	6.89	2.37	2

ANEXO 82: Cálculo del promedio de las observaciones del proceso de filete de pierna con piel x3- Post test.

	sanfernando La buena familia		N	ÚMERO	O DE M	IUEST		V FER	NAN	DO					
Item	Actividad	T1	T2	T3	T4	T5	T6	Т7	Т8	Т9	T10	T11	T12	T13	PROM
1	Quitar las tapas de las tinas que contiene la materia prima.	0.13	0.13	0.13	0.14	0.13	0.12	0.14							0.13
2	Levantar las tinas a la tolva de abastecimiento.	0.03													0.03
3	Vaciar la materia prima a la tolva.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01					0.02
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01								0.02
5	Abastecimiento de la materia prima.	0.03													0.03
6	Deshuesado de la materia prima (maquina).	2.10	2.40	2.00	2.30	2.10	2.20	2.30							2.20
7	Desprender el filete del hueso.	0.03													0.03
8	Desprendimiento del filete hacia la faja transportadora.	0.02	0.02	0.02	0.02	0.02									0.02
9	Transporte del filete a la zona de limpieza.	0.33													0.33
10	Agarrar el filete de pierna.	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02					0.02

11	Limpieza del filete de pierna de pollo (quitar grasa y piel), moldeado.	30.10													30.10
12	Tirar el filete la faja transportadora.	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02						0.02
13	Transporte del filete a la zona de embolsado.	0.13													0.13
14	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02					0.02
15	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02					0.02
16	Embolsado de los filetes moldeados de pierna.	1.00	1.20	1.30	1.10	1.00	1.00	1.00	1.00	1.20	1.20	1.20	1.10	1.20	1.12
17	Enviar las bolsas al zona de sellado.	2.00	2.50	2.40											2.30
18	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02					0.02
19	Colocar las bolsas en la faja de sellado lineal.	1.20	1.30	1.20	1.40	1.50	1.20	1.30	1.50	1.40	1.50	1.30			1.35
20	Agarrar las bolsas selladas de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02					0.02
21	Entinado de productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02					0.02
22	Poner tapas a las tinas de los productos terminados.	1.33													1.33
23	Etiquetado de las tinas con los productos terminados.	0.05	0.06	0.05	0.05	0.06	0.05	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.05
24	Colocar las tinas en parihuelas.	0.35	0.36												0.36

ANEXO 83: Cálculo del tiempo estándar del proceso de filete de pierna con piel x3 - Post Test.

	san fernando La buera familia					5	SAN FERN	ANDO)			
		Format	o de c	álculo	del ti	empo	estándar.					
	Actividad		Filetec	de pier	na con p	oiel x 3.		E	laborad	o:	Jose Luis Col	an Olortegui.
	Hora Inicio			06:0	0 a.m.			H	lora Fin	al		p.m.
	N° de datos tomados				1				Fecha		01-05-2021	31-05-2021
		Promedio de		Westir	ghouse		Factor de	Tiempo	Supler	nentos	total	Tiempo
Item	Actividad	tiempo observado	Н	E	CD	cs	valoración	normal (TN)	NP	F	suplementos	Estándar
1	Quitar las tapas de las tinas que contiene la materia prima.	0.13	0.03	0.02	-0.03	0.01	1.00	0.16	0.07	0.16	0.23	0.20
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
3	Vaciar la materia prima a la tolva.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
4	Agarrar la materia prima para la selección.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
5	Abastecimiento de la materia prima.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
6	Deshuesado de la materia prima (maquina).	2.20	0.03	0.02	-0.03	0.01	1.00	2.23	0.07	0.16	0.23	2.74
7	Desprender el filete del hueso.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
8	Desprendimiento del filete hacia la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
9	Transporte del filete a la zona de limpieza.	0.33	0.03	0.02	-0.03	0.01	1.00	0.36	0.07	0.16	0.23	0.45
10	Agarrar el filete de pierna.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
11	Limpieza del filete de pierna de pollo (quitar grasa y piel), moldeado.	30.10	0.00	0.00	-0.03	0.01	1.00	30.08	0.07	0.16	0.23	37.00
12	Tirar el filete la faja transportadora.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06

13	Transporte del filete a la zona de embolsado.	0.13	0.03	0.02	-0.03	0.01	1.00	0.16	0.07	0.16	0.23	0.20
14	Agarrar la bolsa de los productos .	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
15	Agarrar el filete moldeado.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
16	Embolsado de los filetes moldeados de pierna.	1.12	0.03	0.02	-0.03	0.01	1.00	1.15	0.07	0.16	0.23	1.41
17	Enviar las bolsas al zona de sellado.	2.30	0.03	0.02	-0.03	0.01	1.00	2.33	0.07	0.16	0.23	2.87
18	Agarrar las bolsas según los productos.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
19	Colocar las bolsas en la faja de sellado lineal.	1.35	0.03	0.02	-0.03	0.01	1.00	1.38	0.07	0.16	0.23	1.69
20	Agarrar las bolsas selladas de pierna.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
21	Entinado de productos terminados.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
22	Poner tapas a las tinas de los productos terminados.	1.33	0.03	0.02	-0.03	0.01	1.00	1.36	0.07	0.16	0.23	1.68
23	Etiquetado de las tinas con los productos terminados.	0.05	0.03	0.02	-0.03	0.01	1.00	0.08	0.07	0.16	0.23	0.10
24	Colocar las tinas en parihuelas.	0.36	0.03	0.02	-0.03	0.01	1.00	0.39	0.07	0.16	0.23	0.47
	TOTAL											49.61

ANEXO 84: Toma de tiempos del proceso de pierna PPPC - Post test.

	sanfernando La buena familia										SA	N FE	RNAI	NDO									
								MATO	DE TO	MA DE	TIEM	PO											
	Actividad			Filetec		na para	PPPC.			_	laborado						Jose L	uis Colan	0				
	Hora Inicio N° de datos tomados				06:00) a.m.					Hora Fina Fecha	ı					01.01	06:00 p. 5-2021 / 3					
	n de datos tomados										reciia						01-03	5-2021 / 3.	1-05-2021				
Item	Actividad	T1	T2	Т3	T4	T5	Т6	17	T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	PROM	Σ
1	Quitar las tapas de las tinas que contiene la materia prima.	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	3.00
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
3	Vaciar la materia prima a la tolva.	0.04	0.04	0.03	0.03	0.03	0.04	0.04	0.03	0.04	0.04	0.03	0.04	0.03	0.04	0.03	0.04	0.04	0.04	0.03	0.03	0.03	0.69
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
5	Abastecimiento de la materia prima.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
6	Deshuesado de la materia prima (maquina).	2.10	2.40	2.00	2.30	2.10	2.20	2.30	2.10	2.30	2.20	2.50	2.50	2.50	2.40	2.30	2.40	2.30	2.10	2.30	2.40	2.29	45.70
7	Desprender el filete del hueso.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.66
8	Desprendimiento del filete hacia la faja transportadora.	0.04	0.04	0.03	0.03	0.03	0.04	0.03	0.04	0.04	0.03	0.03	0.04	0.04	0.04	0.04	0.03	0.04	0.03	0.04	0.03	0.03	0.68
9	Transporte del filete a la zona de limpieza.	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	6.80
10	Agarrar el filete de pierna.	0.03	0.03	0.03	0.04	0.04	0.03	0.03	0.03	0.04	0.03	0.04	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.03	0.67

11	Limpieza del filete de pierna de pollo (quitar grasa y piel), moldeado.	80.20	80.10	80.10	80.20	80.10	80.10	80.20	80.10	80.20	80.20	80.20	80.20	80.10	80.10	80.10	80.20	80.20	80.10	80.20	80.10	80.15	1603.00
12	Tirar el filete la faja transportadora.	0.03	0.04	0.04	0.04	0.04	0.03	0.04	0.04	0.04	0.04	0.03	0.04	0.04	0.04	0.04	0.03	0.03	0.04	0.04	0.04	0.04	0.71
13	Transporte del filete a la zona de embolsado.	0.15	0.14	0.14	0.14	0.14	0.13	0.13	0.13	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	2.72
14	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.33
15	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.33
16	Embolsado de los filetes moldeados de pierna.	1.50	1.50	1.60	1.30	1.40	1.50	1.56	1.50	1.40	1.40	1.50	1.50	1.60	1.30	1.40	1.50	1.56	1.50	1.60	1.30	1.47	29.42
17	Enviar las bolsas al zona de sellado.	2.00	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.50	2.40	2.40	2.50	2.40	2.43	48.50
18	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
19	Colocar las bolsas en la faja de sellado lineal.	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	30.00
20	Agarrar las bolsas selladas de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.33
21	Entinado de productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.33
22	Poner tapas a las tinas de los productos terminados.	1.33	1.35	1.31	1.40	1.32	1.32	1.33	1.35	1.34	1.36	1.33	1.30	1.31	1.32	1.35	1.32	1.32	1.33	1.35	1.30	1.33	26.64
23	Etiquetado de las tinas con los productos terminados.	0.05	0.06	0.05	0.05	0.06	0.05	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.05	0.06	0.05	0.05	0.05	0.06	0.05	0.05	1.07
24	Colocar las tinas en parihuelas.	0.36	0.35	0.36	0.35	0.35	0.36	0.36	0.35	0.33	0.33	0.33	0.34	0.35	0.36	0.34	0.34	0.33	0.33	0.33	0.33	0.34	6.89
	TOTAL	90.02	90.73	90.28	90.56	90.19	90.49	90.67	90.41	90.50	90.50	90.79	90.85	90.77	90.49	90.41	90.76	90.62	90.27	90.80	90.34	90.52	1810.46

ANEXO 85: Cálculo de número de observaciones del proceso de filete de pierna PPPC - Post test.

ı	Vlétodo	Pre-test	P	ost-Test	Proceso:
El	aborado:	Jose Luis Co	olan Olortegui		Fileteo de pierna para PPPC.
Item		Actividad	Σχ	Σx^2	$n = \left(\frac{40\sqrt{n\Sigma x^2 - (\Sigma x)^2}}{\Sigma x}\right)^2$
1	Quitar las materia pr	tapas de las tinas que contiene la rima.	3.00	0.45	1
2	Levantar i abastecim	las tinas a la tolva de niento.	0.66	0.02	1
3	Vaciar la r	nateria prima a la tolva.	0.69	0.02	3
4	Agarrar la	materia prima para la selección.	0.33	0.01	6
5	Abastecin	niento de la materia prima.	0.66	0.02	1
6	Deshuesa	ndo de la materia prima (maquina).	45.70	104.85	7
7	Desprend	er el filete del hueso.	0.66	0.02	1
8	Desprend transporta	imiento del filete hacia la faja adora.	0.68	0.02	4
9	Transport	e del filete a la zona de limpieza.	6.80	2.31	1
10	Agarrar el	filete de pierna.	0.67	0.02	4
11		del filete de pierna de pollo (quitar el), moldeado.	1603.00	128480.50	1
12	Tirar el file	ete la faja transportadora.	0.71	0.03	8
13	Transport	e del filete a la zona de embolsado.	2.72	0.37	1
14	Agarrar la	bolsa de los productos .	0.33	0.01	9
15	Agarrar el	filete moldeado.	0.33	0.01	9
16	Embolsad pierna.	lo de los filetes moldeados de	29.42	43.46	7
17	Enviar las	bolsas al zona de sellado.	48.50	117.85	3
18	Agarrar la	s bolsas según los productos.	0.33	0.01	9
19	Colocar la	s bolsas en la faja de sellado lineal.	30.00	45.00	1
20	Agarrar la	s bolsas selladas de pierna.	0.33	0.01	9
21	Entinado	de productos terminados.	0.33	0.01	9
22	Poner tap	as a las tinas de los productos os.	26.64	35.50	1
23	Etiquetado terminado	o de las tinas con los productos os.	1.07	0.06	13
24	Colocar la	as tinas en parihuelas.	6.89	2.37	2

ANEXO 86: Cálculo del promedio de tiempos de las observaciones del proceso de filete de pierna PPPC- Post test.

	san fernando La buera familia						SAI	V FER	NAN	DO					
			N	ÚMER(O DE N	NUEST	RAS								
Item	Actividad	T1	T2	Т3	T4	T5	T6	17	T8	Т9	T10	T11	T12	T13	PROM
1	Quitar las tapas de las tinas que contiene la materia prima.	0.15													0.15
2	Levantar las tinas a la tolva de abastecimiento.	0.03													0.03
3	Vaciar la materia prima a la tolva.	0.04	0.04	0.03											0.03
4	Agarrar la materia prima para la selección.	0.02	0.02	0.02	0.02	0.02	0.01								0.02
5	Abastecimiento de la materia prima.	0.03													0.03
6	Deshuesado de la materia prima (maquina).	2.10	2.40	2.00	2.30	2.10	2.20	2.30							2.20
7	Desprender el filete del hueso.	0.03													0.03
8	Desprendimiento del filete hacia la faja transportadora.	0.04	0.04	0.03	0.03										0.03
9	Transporte del filete a la zona de limpieza.	0.34													0.34
10	Agarrar el filete de pierna.	0.03	0.03	0.03	0.04										0.03

11	Limpieza del filete de pierna de pollo (quitar grasa y piel), moldeado.	80.20													80.20
12	Tirar el filete la faja transportadora.	0.03	0.04	0.04	0.04	0.04	0.03	0.04	0.04						0.04
13	Transporte del filete a la zona de embolsado.	0.15													0.15
14	Agarrar la bolsa de los productos .	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02					0.02
15	Agarrar el filete moldeado.	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02					0.02
16	Embolsado de los filetes moldeados de pierna.	1.50	1.50	1.60	1.30	1.40	1.50	1.56							1.48
17	Enviar las bolsas al zona de sellado.	2.00	2.50	2.40											2.30
18	Agarrar las bolsas según los productos.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02					0.02
19	Colocar las bolsas en la faja de sellado lineal.	1.50													1.50
20	Agarrar las bolsas selladas de pierna.	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02					0.02
21	Entinado de productos terminados.	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02					0.02
22	Poner tapas a las tinas de los productos terminados.	1.33													1.33
23	Etiquetado de las tinas con los productos terminados.	0.05	0.06	0.05	0.05	0.06	0.05	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.05
24	Colocar las tinas en parihuelas.	0.36	0.35												0.36

ANEXO 87: Cálculo del tiempo estándar del proceso de filete de pierna PPPC - Post test.

	sanfernando La buera: familia					S	SAN FERN	ANDO)			
		Format	o de c	álculo	del ti	empo	estándar.					
	Actividad		Filetec	de pier		PPPC.			laborad		Jose Luis Col	an Olortegui.
	Hora Inicio				0 a.m.			Н	lora Fin	al) p.m.
	N° de datos tomados				1				Fecha		01-05-2021	/ 31-05-2021
Item	Actividad	Promedio de tiempo observado	н	Westin E	ghouse CD	cs	Factor de valoración	Tiempo normal (TN)	Supler	nentos F	total suplementos	Tiempo Estándar
1	Quitar las tapas de las tinas que contiene la materia prima.	0.15	0.03	0.02	-0.03	0.01	1.00	0.18	0.07	0.16	0.23	0.22
2	Levantar las tinas a la tolva de abastecimiento.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
3	Vaciar la materia prima a la tolva.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
4	Agarrar la materia prima para la selección.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
5	Abastecimiento de la materia prima.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
6	Deshuesado de la materia prima (maquina).	2.20	0.03	0.02	-0.03	0.01	1.00	2.23	0.07	0.16	0.23	2.74
7	Desprender el filete del hueso.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
8	Desprendimiento del filete hacia la faja transportadora.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
9	Transporte del filete a la zona de limpieza.	0.34	0.03	0.02	-0.03	0.01	1.00	0.37	0.07	0.16	0.23	0.46
10	Agarrar el filete de pierna.	0.03	0.03	0.02	-0.03	0.01	1.00	0.06	0.07	0.16	0.23	0.08
11	Limpieza del filete de pierna de pollo (quitar grasa y piel), moldeado.	80.20	0.00	0.00	-0.03	0.01	1.00	80.18	0.07	0.16	0.23	98.62
12	Tirar el filete la faja transportadora.	0.04	0.03	0.02	-0.03	0.01	1.00	0.07	0.07	0.16	0.23	0.08

	TOTAL											112.01
24	Colocar las tinas en parihuelas.	0.36	0.03	0.02	-0.03	0.01	1.00	0.39	0.07	0.16	0.23	0.47
23	Etiquetado de las tinas con los productos terminados.	0.05	0.03	0.02	-0.03	0.01	1.00	0.08	0.07	0.16	0.23	0.10
22	Poner tapas a las tinas de los productos terminados.	1.33	0.03	0.02	-0.03	0.01	1.00	1.36	0.07	0.16	0.23	1.68
21	Entinado de productos terminados.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
20	Agarrar las bolsas selladas de pierna.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
19	Colocar las bolsas en la faja de sellado lineal.	1.50	0.03	0.02	-0.03	0.01	1.00	1.53	0.07	0.16	0.23	1.88
18	Agarrar las bolsas según los productos.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
17	Enviar las bolsas al zona de sellado.	2.30	0.03	0.02	-0.03	0.01	1.00	2.33	0.07	0.16	0.23	2.87
16	Embolsado de los filetes moldeados de pierna.	1.48	0.03	0.02	-0.03	0.01	1.00	1.51	0.07	0.16	0.23	1.86
15	Agarrar el filete moldeado.	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
14	Agarrar la bolsa de los productos .	0.02	0.03	0.02	-0.03	0.01	1.00	0.05	0.07	0.16	0.23	0.06
13	Transporte del filete a la zona de embolsado.	0.15	0.03	0.02	-0.03	0.01	1.00	0.18	0.07	0.16	0.23	0.22

ANEXO 88: Diagrama bimanual del proceso de limpieza / moldeado de filete.

DIAGRAM	A BIMAI	<i>NU</i>	4 <i>L</i>						san fer La buera	
Fecha de realización: 22/10/2020 Diagrama N°3				ı	Res	ume	n			
Proceso: Fileteo.	Activio	ad			A Izq	ctua	_	Prop Izg	uesto Der	
Actividad: Limpieza / Moldeado de filete.	Opera Trans							5	3	
Tipo de diagrama Operrario	Demo							1	0	
Metodo Actual Propuesto	Soste							0	10	
Área/Sección: Filete.		Tota	al					14	14	
^{Elaborado por:} Colán Olortegui José Luis.				Apro	bado	por:	Baz	zan Lóp	ez José	Alberto.
Mano izquierda	O =	⇒ □	∇	0	\uparrow		$\overline{\vee}$			Mano Derecha
Traslado hacia la faja		→								Tomar el cuchillo
Tomar el filete							7		s	ostener el cuchillo
Traslado hacia la tabla de picado							\		s	ostener el cuchillo
Sostener el filete							7		s	ostener el cuchillo
Sostener el filete			7						Tra	aslado hacia el filete
Sostener el filete									Cortar g	rasa, hematomos,huesos
Sostener el filete			7							Moldear el filete
Transportar el filete hacia la balanza		-					7		s	ostener el cuchillo
Soltar el filete en la balanza							-		s	ostener el cuchillo
Demora							 		s	ostener el cuchillo
Transporte hacia la balanza							 		s	ostener el cuchillo
Tomar el filete							†		s	ostener el cuchillo
Transporte del filete hacia la faja		→					†		s	ostener el cuchillo
Soltar el filete en la faja							→		s	ostener el cuchillo
Total	4	5 1	4	3	1	0	10			Total

ANEXO 89: proceso de filete de pollo.

ANEXO 90: Productividad diario - mes de enero 2021.

					Estu	dio del Tra	abajo: Prod	uctividad.				
	Elat	orado:			José Luis Colan O	lortegui.			Mét	odo:		Post test
	N	les:			Enero	_			Ai	ĭo:		2021
	F	echas		6	GESTIÓN DE TIEMPOS				GESTI	ÓN DE PROCESO		
	0	F	n'-	Tiempo.Proyectado	Tiempo.Ejecutado	Rendimiento.	Toneladas.	Materia prima	Remanente de	Toneladas.	Toneladas.	Productividad Ejecutada
Mes	Sema	Fecha	Día 🖵	/Ciclo 💌	/Ciclo 💌	Tiempo 💌	Proyectado *	(tn)	proceso (tn) 🔻	Ejecutada 🔻	Producción 🔻	(tn/hora)
Ene21	2	04-ene	lunes	11	7.90	39.2%	7.50	6.99	0.64	6.35	84.7%	80.4%
Ene21	2	05-ene	martes	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Ene21	2	06-ene	miércoles	11	8.00	37.5%	7.50	7.04	0.64	6.40	85.3%	80.0%
Ene21	2	07-ene	jueves	11	8.00	37.5%	7.50	7.04	0.64	6.40	85.3%	80.0%
Ene21	2	08-ene	viernes	11	7.90	39.2%	7.50	6.88	0.63	6.25	83.3%	79.1%
Ene21	2	09-ene	sábado	11	7.80	41.0%	7.50	6.88	0.63	6.25	83.3%	80.1%
Ene21	3	11-ene	lunes	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
Ene21	3	12-ene	martes	11	8.00	37.5%	7.50	7.04	0.64	6.40	85.3%	80.0%
Ene21	3	13-ene	miércoles	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
Ene21	3	14-ene	jueves	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
Ene21	3	15-ene	viernes	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Ene21	3	16-ene	sábado	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
Ene21	4	18-ene	lunes	11	7.80	41.0%	7.50	7.10	0.65	6.45	86.0%	82.7%
Ene21	4	19-ene	martes	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Ene21	4	20-ene	miércoles	11	7.90	39.2%	7.50	7.10	0.65	6.45	86.0%	81.6%
Ene21	4	21-ene	jueves	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
Ene21	4	22-ene	viernes	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
Ene21	4	23-ene	sábado	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
Ene21	5	25-ene	lunes	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Ene21	5	26-ene	martes	11	8.00	37.5%	7.50	6.88	0.63	6.25	83.3%	78.1%
Ene21	5	27-ene	miércoles	11	8.00	37.5%	7.50	7.04	0.64	6.40	85.3%	80.0%
Ene21	5	28-ene	jueves	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
Ene21	5	29-ene	viernes	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
Ene21	5	30-ene	sábado	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%

ANEXO 91: Productividad diario - mes de febrero 2021.

					Estu	dio del Tr	abajo: Prod	uctividad.				
	Elal	orado:			José Luis Colan O	lortegui.	-		Mét	odo:		Post test
		Mes:			Febrero				Ai	io:		2021
	F	echas		6	ESTIÓN DE TIEMPOS				GESTI	ÓN DE PROCESO		
Mes	Sema	Fecha 🖵	Día 🔻	Tiempo.Proyectad o/Ciclo	Tiempo.Ejecutado /Ciclo	Rendimiento .Tiempo	Toneladas. Proyectado ▼	Materia prima (tn)	Remanente de	Toneladas. Ejecutada	Toneladas. Producción	Productividad Ejecutada (tn/ hora
Feb21	6	01-feb	lunes	11	7.90	39.2%	7.50	6.88	0.63	6.25	83.3%	79.1%
Feb21	6	02-feb	martes	11	8.00	37.5%	7.50	7.04	0.64	6.40	85.3%	80.0%
Feb21	6	03-feb	miércoles	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
Feb21	6	04-feb	iueves	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
Feb21	6	05-feb	viernes	11	7.90	39.2%	7.50	7.04	0.64	6.40	85.3%	81.0%
Feb21	6	06-feb	sábado	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
Feb21	7	08-feb	lunes	11	7.80	41.0%	7.50	6.88	0.63	6.25	83,3%	80.1%
Feb21	7	09-feb	martes	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
Feb21	7	10-feb	miércoles	11	7.90	39.2%	7.50	7.04	0.64	6.40	85.3%	81.0%
Feb21	7	11-feb	jueves	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
Feb21	7	12-feb	viernes	11	7.70	42.9%	7.50	7.04	0.64	6.40	85.3%	83.1%
Feb21	7	13-feb	sábado	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
Feb21	8	15-feb	lunes	11	7.90	39.2%	7.50	7.04	0.64	6.40	85.3%	81.0%
Feb21	8	16-feb	martes	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Feb21	8	17-feb	miércoles	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Feb21	8	18-feb	jueves	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Feb21	8	19-feb	viernes	11	7.80	41.0%	7.50	6.86	0.62	6.24	83.2%	80.0%
Feb21	8	20-feb	sábado	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Feb21	9	22-feb	lunes	11	7.80	41.0%	7.50	6.88	0.63	6.25	83.3%	80.1%
Feb21	9	23-feb	martes	11	8.00	37.5%	7.50	7.04	0.64	6.40	85.3%	80.0%
Feb21	9	24-feb	miércoles	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
Feb21	9	25-feb	jueves	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
Feb21	9	26-feb	viernes	11	7.90	39.2%	7.50	7.04	0.64	6.40	85.3%	81.0%
Feb21	9	27-feb	sábado	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%

ANEXO 92: Productividad diario - mes de marzo 2021.

					Estu	dio del Tr	abajo: Prod	luctividad.				
	Elal	orado:			José Luis Colan O	lortegui.			Mét	odo:		Post test
	ı	Aes:			Marzo				Ai	ĭo:		2021
	F	echas		G	ESTIÓN DE TIEMPOS				GESTI	ÓN DE PROCESO		
Mon	Comore	Foobo —	Día -	Tiempo.Proyectad	Tiempo.Ejecutado	Rendimiento	Toneladas.	Materia prima	Remanente de	Toneladas.	Toneladas.	Productividad
Mes	Sema	Fecha 🕌	Día 🔽	o/Ciclo 💌	/Ciclo 💌	.Tiempo ▼	Proyectado *	(tn) 💌	proceso (tn) 💌	Ejecutada 💌	Producción 💌	Ejecutada (tn/ hora
Mar21	10	01-mar	lunes	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
Mar21	10	02-mar	martes	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
Mar21	10	03-mar	miércoles	11	8.00	37.5%	7.50	7.04	0.64	6.40	85.3%	80.0%
Mar21	10	04-mar	jueves	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Mar21	10	05-mar	viernes	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Mar21	10	06-mar	sábado	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
Mar21	11	08-mar	lunes	11	7.90	39.2%	7.50	7.04	0.64	6.40	85.3%	81.0%
Mar21	11	09-mar	martes	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
Mar21	11	10-mar	miércoles	11	7.87	39.8%	7.50	6.93	0.63	6.30	84.0%	80.1%
Mar21	11	11-mar	jueves	11	7.89	39.4%	7.50	6.88	0.63	6.25	83.3%	79.2%
Mar21	11	12-mar	viernes	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
Mar21	11	13-mar	sábado	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
Mar21	12	15-mar	lunes	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
Mar21	12	16-mar	martes	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Mar21	12	17-mar	miércoles	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Mar21	12	18-mar	jueves	11	7.89	39.4%	7.50	6.93	0.63	6.30	84.0%	79.8%
Mar21	12	19-mar	viernes	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
Mar21	12	20-mar	sábado	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
Mar21	13	22-mar	lunes	11	8.00	37.5%	7.50	7.10	0.65	6.45	86.0%	80.6%
Mar21	13	23-mar	martes	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
Mar21	13	24-mar	miércoles	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
Mar21	13	25-mar	jueves	11	7.90	39.2%	7.50	7.04	0.64	6.40	85.3%	81.0%
Mar21	13	26-mar	viernes	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
Mar21	13	27-mar	sábado	11	7.98	37.8%	7.50	7.04	0.64	6.40	85.3%	80.2%
Mar21	14	29-mar	lunes	11	8.00	37.5%	7.50	7.04	0.64	6.40	85.3%	80.0%
Mar21	14	30-mar	martes	11	8.00	37.5%	7.50	7.10	0.65	6.45	86.0%	80.6%
Mar21	14	31-mar	miércoles	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%

ANEXO 93: Productividad diario - mes de abril 2021.

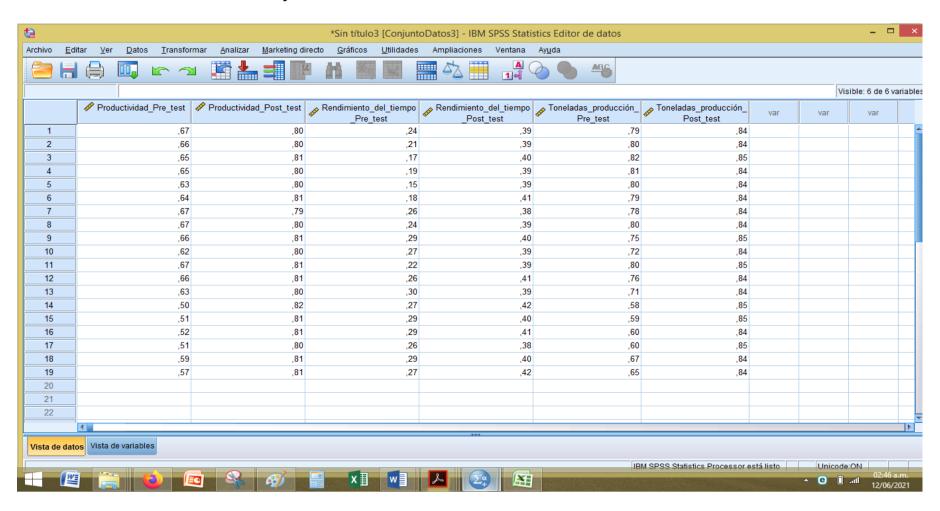
					Estu	dio del Tra	abajo: Prod	uctividad.				
	Elab	orado:			José Luis Colan O	lortegui.			Mét	odo:		Post test
	N	les:			Abril	_			Aŕ	io:		2021
	Fe	echas		G	ESTIÓN DE TIEMPOS				GESTI	ÓN DE PROCESO		
Mes	Sema	Fecha	Día 🖵	Tiempo.Proyectado /Ciclo	Tiempo.Ejecutado /Ciclo	Rendimiento .Tiempo	Toneladas. Proyectado ▼	Materia prima (tn)	Remanente de proceso (tn)	Toneladas. Ejecutada	Toneladas. Producción	Productividad Ejecutada (tn/ hora
Abr21	14	01-abr	jueves	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
Abr21	14	02-abr	viernes	11	7.90	39.2%	7.50	7.10	0.65	6.45	86.0%	81.6%
Abr21	14	03-abr	sábado	11	7.93	38.7%	7.50	7.04	0.64	6.40	85.3%	80.7%
Abr21	15	05-abr	lunes	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
Abr21	15	06-abr	martes	11	7.85	40.1%	7.50	6.93	0.63	6.30	84.0%	80.3%
Abr21	15	07-abr	miércoles	11	7.78	41.4%	7.50	6.93	0.63	6.30	84.0%	81.0%
Abr21	15	08-abr	jueves	11	7.50	46.7%	7.50	7.04	0.64	6.40	85.3%	85.3%
Abr21	15	09-abr	viernes	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
Abr21	15	10-abr	sábado	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
Abr21	16	12-abr	lunes	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
Abr21	16	13-abr	martes	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
Abr21	16	14-abr	miércoles	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Abr21	16	15-abr	jueves	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Abr21	16	16-abr	viernes	11	8.00	37.5%	7.50	7.04	0.64	6.40	85.3%	80.0%
Abr21	16	17-abr	sábado	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
Abr21	17	19-abr	lunes	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
Abr21	17	20-abr	martes	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Abr21	17	21-abr	miércoles	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
Abr21	17	22-abr	jueves	11	7.80	41.0%	7.50	7.10	0.65	6.45	86.0%	82.7%
Abr21	17	23-abr	viernes	11	7.50	46.7%	7.50	7.04	0.64	6.40	85.3%	85.3%
Abr21	17	24-abr	sábado	11	7.50	46.7%	7.50	6.93	0.63	6.30	84.0%	84.0%
Abr21	18	26-abr	lunes	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
Abr21	18	27-abr	martes	11	7.50	46.7%	7.50	6.93	0.63	6.30	84.0%	84.0%
Abr21	18	28-abr	miércoles	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
Abr21	18	29-abr	jueves	11	8.00	37.5%	7.50	7.04	0.64	6.40	85.3%	80.0%
Abr21	18	30-abr	viernes	11	8.00	37.5%	7.50	7.04	0.64	6.40	85.3%	80.0%

ANEXO 94: Productividad diario - mes de mayo 2021.

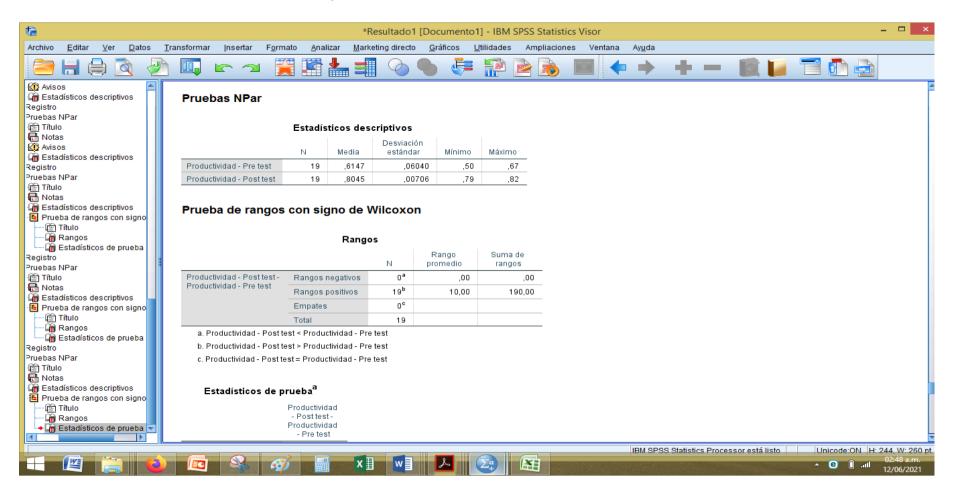
					Estu	dio del Tra	abajo: Prod	uctividad.				
	Elal	orado:			José Luis Colan O	lortegui.			Mét	odo:		Post test
		Mes:			Mayo				Ai	io:		2021
	F	echas		G	ESTIÓN DE TIEMPOS				GESTI	ÓN DE PROCESO		
Mon	Comons	Foobo —	Dia	Tiempo.Proyectado	Tiempo.Ejecutado	Rendimiento	Toneladas.	Materia prima	Remanente de	Toneladas.	Toneladas.	Productividad
Mes	Sema	Fecha 🕌	Día 🔽	/Ciclo 💌	/Ciclo 💌	.Tiempo ▼	Proyectado <a> 	(tn) 💌	proceso (tn)	Ejecutada 💌	Producción 💌	Ejecutada (tn/ hora
May21	18	01-may	sábado	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
May21	19	03-may	lunes	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
May21	19	04-may	martes	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
May21	19	05-may	miércoles	11	7.60	44.7%	7.50	6.93	0.63	6.30	84.0%	82.9%
May21	19	06-may	jueves	11	7.80	41.0%	7.50	6.88	0.63	6.25	83.3%	80.1%
May21	19	07-may	viernes	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
May21	19	08-may	sábado	11	7.90	39.2%	7.50	7.04	0.64	6.40	85.3%	81.0%
May21	20	10-may	lunes	11	7.90	39.2%	7.50	7.04	0.64	6.40	85.3%	81.0%
May21	20	11-may	martes	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
May21	20	12-may	miércoles	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
May21	20	13-may	jueves	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
May21	20	14-may	viernes	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
May21	20	15-may	sábado	11	8.00	37.5%	7.50	7.10	0.65	6.45	86.0%	80.6%
May21	21	17-may	lunes	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
May21	21	18-may	martes	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
May21	21	19-may	miércoles	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
May21	21	20-may	jueves	11	8.00	37.5%	7.50	7.10	0.65	6.45	86.0%	80.6%
May21	21	21-may	viernes	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
May21	21	22-may	sábado	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
May21	22	24-may	lunes	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
May21	22	25-may	martes	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
May21	22	26-may	miércoles	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
May21	22	27-may	jueves	11	7.85	40.1%	7.50	7.10	0.65	6.45	86.0%	82.2%
May21	22	28-may	viernes	11	7.80	41.0%	7.50	6.93	0.63	6.30	84.0%	80.8%
May21	22	29-may	sábado	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
May21	23	31-may	lunes	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%

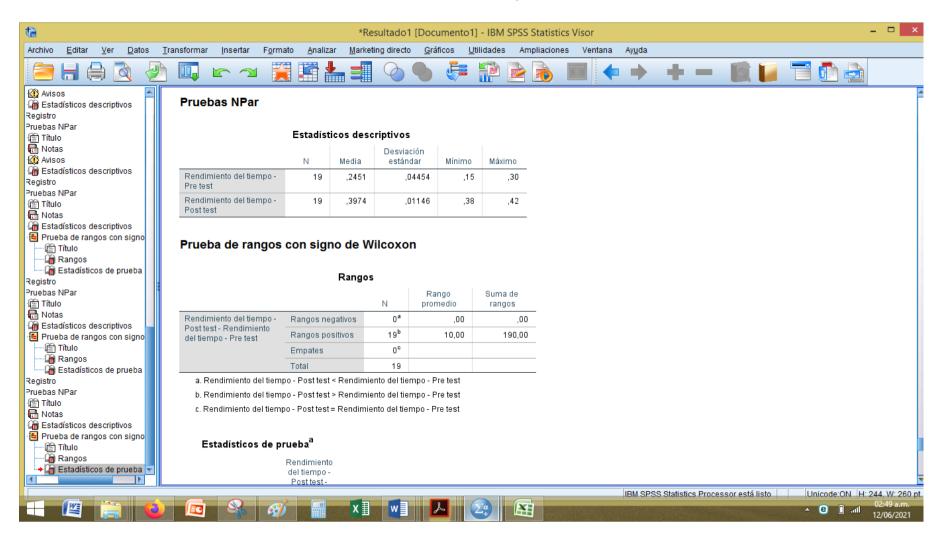

ANEXO 95: Productividad diario - mes de junio 2021.

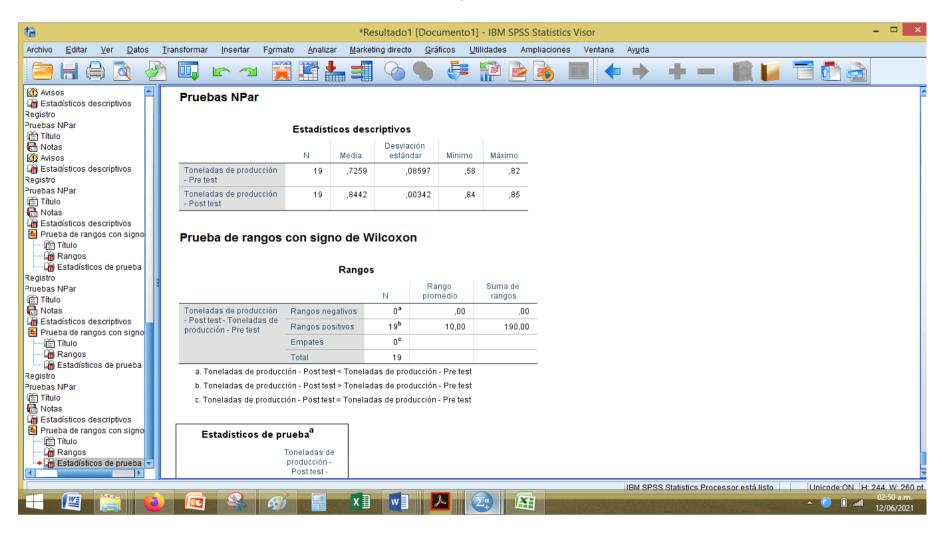
					Estu	idio del Tr	abajo: Prod	uctividad.				
	Elab	orado:			José Luis Colan O	lortegui.			Mét	odo:		Post test
	N	les:			Junio				Aí	io:		2021
	Fe	echas		GI	ESTIÓN DE TIEMPOS				GESTI	ÓN DE PROCESO		
Maa	Camana	Faaba	D(a	Tiempo.Proyectado	Tiempo.Ejecutado	Rendimiento	Toneladas.	Materia prima	Remanente de	Toneladas.	Toneladas.	Productividad
Mes _Ţ Ţ	Sema	Fecha 🔽	Día 🕝	/Ciclo 💌	/Ciclo 💌	.Tiempo ▼	Proyectado ▼	(tn) 💌	proceso (tn) 💌	Ejecutada 💌	Producción 💌	Ejecutada (tn/ hora
Jun21	23	01-jun	martes	11	7.80	41.0%	7.50	7.04	0.64	6.40	85.3%	82.1%
Jun21	23	02-jun	miércoles	11	7.90	39.2%	7.50	6.93	0.63	6.30	84.0%	79.7%
Jun21	23	03-jun	jueves	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Jun21	23	04-jun	viernes	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Jun21	23	05-jun	sábado	11	8.00	37.5%	7.50	6.93	0.63	6.30	84.0%	78.8%
Jun21	24	07-jun	lunes	11	7.89	39.4%	7.50	6.93	0.63	6.30	84.0%	79.8%
Jun21	24	08-jun	martes	11	7.98	37.8%	7.50	6.93	0.63	6.30	84.0%	78.9%
Jun21	24	09-jun	miércoles	11	7.58	45.1%	7.50	6.93	0.63	6.30	84.0%	83.1%
Jun21	24	10-jun	jueves	11	7.60	44.7%	7.50	6.93	0.63	6.30	84.0%	82.9%
Jun21	24	11-jun	viernes	11	7.80	41.0%	7.50	6.88	0.63	6.25	83.3%	80.1%
Jun21	24	12-jun	sábado	11	7.60	44.7%	7.50	6.93	0.63	6.30	84.0%	82.9%


ANEXO 96: Base de datos para el análisis de la normalidad de las dimensiones – SPSS 24.

rchivo	<u>E</u> ditar <u>V</u>	er <u>D</u> atos	Transfo	rmar <u>A</u> nalizar <u>!</u>		nalida ficos	d.sav [ConjuntoDatos <u>U</u> tilidades Ampliacio		Statistics Editor of	de datos			-	
				<u> </u>		*5	Zundades Amphace	A 1 A	<u>→ • • • • • • • • • • • • • • • • • • •</u>	6				
Total_	de_actividad	es 1,48										\	/isible: 9 de	9 vari
	∳ To	tal_de_activid	lades 🧳	Actividades_que_ no_agregan_valor	Índice_de_activida	ides	Tiempo_estándar	Toneladas_ ejecutadas	Toneladas_de _producción		Rendimiento _de_tiempo	Productividad_ ejecutada	var	
1			1,48	1,04		,30	68,20	35,59	,79	53,08	,24	,67		
2			1,50	1,02		,32	68,20	36,05	,80	54,50	,21	,66		
3			1,51	1,05		,30	69,00	36,75	,82	56,30		,65		
4			1,54	1,06		,31	67,60	36,29	,81	55,48				
5			1,48	1,05		,29	67,60	36,09	,80	57,20				\perp
6			1,49	1,01		,32	68,00	35,54	,79	55,70				
7			1,52	1,04		,32	67,40	35,13	,78	52,38				
8			1,50	1,02		,32	67,60	35,78	,80	53,40	,24	,67		
9			1,47	1,03		,30	68,30	33,62	,75	51,20		,66		
10			1,48	1,05		,29	68,20	32,20	,72	51,90	,27	,62		
11			1,50	1,06		,29	68,20	36,07	,80	54,10	,22	,67		
12			1,50	1,05		,30	67,50	34,22	,76	52,18	,26	,66		
13			1,51	1,06		,30	67,70	31,99	,71	50,90	,30	,63		
14			1,52	1,02		,33	67,70	26,12	,58	51,80	,27	,50		
15			1,52	1,05		,31	68,00	26,33	,59	51,20	,29	,51		
16			1,49	1,03		,31	67,70	26,81	,60	51,30	,29	,52		
17			1,48	1,02		,31	68,30	26,81	,60	52,36	,26	,51		
18			1,49	1,03		,31	68,30	30,32	,67	51,23	,29	,59		
19			1,48	1,01		,32	67,50	29,34	,65	51,83	,27	,57		
20														
21														
22														
	4													
ta de	e datos Vista	a de variables						Área de	información	IBM SPSS Statistic	es Processor cetá	lieto Unico	de:ON	
						x∄	w] L		9 2	ibiii SPSS Statistic	.s i iucessui esta		03:	22 p.


ANEXO 97: Resultados de la normalidad de las dimensiones - SPSS 24.


ANEXO 98: Base de datos Pre test y Post test - SPSS24.


ANEXO 99: Prueba de Wilcoxon variable productividad - SPSS 24.

ANEXO 100: Prueba de Wilcoxon dimensión rendimiento del tiempo - SPSS 24.

ANEXO 101: Prueba de Wilcoxon dimensión toneladas de producción - SPSS 24.

ANEXO 102: Juicio de experto 1

VALIDEZ	N°	PREGUNTAS
	P1	¿Cree usted que la fórmula establecida para calcular el índice de actividades es la correcta? IA =(TOTAL ACT-ACT NO AV) / (TOTAL ACTIVIDADES) X100 %
APARIENCIA	P2	¿Cree usted que la fórmula establecida para calcular el tiempo estándar es la correcta? TS = TN X (1 + S)
APARIENCIA	Р3	¿Cree usted que la fórmula establecida para calcular el rendimiento tiempo es la correcta? REND.T = ((T.PROY/ CICLO) / (T.E.JEC/ CICLO) -1) X 100 %
	P4	¿Cree usted que la fórmula establecida para calcular las toneladas de producción es la correcta? Tn.PROD = (Tn . EJEC) / (Tn . PROY) X 100 %
	P5	Sabiendo que el título del estudio es: Aplicación del estudio del trabajo para mejorar la productividad del filete de polio de la empresa San Fernando, Huaral 2021. ¿Cree usted que las variables (Estudio del trabajo y Productividad) fueron seleccionadas correctamente?
CONTENIDO	P6	Sabiendo que el objetivo general del estudio es: Determinar como la aplicación del estudio del trabajo mejorara la productividad de filete de pollo de la empresa San Fernando, Huaral 2021. ¿Cree usted que las dimensiones (Estudio de métodos y Medición del trabajo) son las adecuadas para tal propósito?
	P7	¿Cree usted que los indicadores (Rendimiento de tiempo y toneladas de producción) son los adecuados para obtener resultados er la variable productividad?
	P8	¿Cree usted que la variable independiente (estudio del trabajo) influye en la variable dependiente (productividad)?
CONSTRUTO	P9	¿Cree usted que la dimensión (estudio de métodos) influye directamente con la dimensión (Gestión de tiempos)?
	P10	¿Cree usted que el indicador (Tiempo estándar) influye en la mejora de las toneladas de producción?
	P11	¿Cree usted que en la presente investigación el cronometro es el instrumento adecuado para medir los tiempos del proceso de fileteo de pollo?
INSTRUMENTO	P12	¿Cree usted que los instrumentos que se utilizan para medir la variable independiente (Estudio del trabajo) son los correctos? Formatos de estudios de tiempos, formato DAP, formato DOP.
	P13	¿Cree usted que los instrumentos que se utilizan para medir la variable dependiente (productividad) son los correctos? Formatos de producción diario, registro de la producción en toneladas.

					Ship							VALI	DEZ			Aller	HIID S	3,900	Maler		A THIN	000			330
			APAR	ENCIA	1		UT ST		110	CONT	ENIDO	100		Gentle.	C	ONST	RUCT	0	THE DOOR	7.38	IN	STRL	MENT	0	
F	1		2	F	3	P	4	F	25	F	96	F	7	P	8	P	9	P	10	P	11	P	12	P	13
SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	N
×		1X		X		×		X		X		X		X		X		X		X	-	V		V	-

Observaciones (precisar si hay suficiend	sia): May Sulicional	
Opinión de aplicabilidad:	Aplicable [] Aplicable después de corregir [] No aplicable []	
Apellidos y nombres del juez validador.	Partojo Carreño Thonny	DNI: 42363260
Especialidad del validador:	Ing: Sistemas	

- APARIENCIA: Grado en que los instrumentos parece que mide lo que se quiere medir.
 CONTENIDO: Dominio experistos del contenido que se quiere resulte.
- CONTENIDO: Dominio específico del contenido que se quiere medir.
 CONSTRUTO: Relaciones lógicas entre los conseptos del estudio.
- L'EURITRO I C. Resistores logicas entre los conseptos del estudio.
 INSTRUMENTO: Coherencia entre los instrumentos usados en el estudio.

NOTA: Suficiencia, es cuando los items planteados son suficientes para medir las dimenciones de estudio.

ANEXO 103: Juicio de experto 2

VALIDEZ	N°	PREGUNTAS
	P1	¿Cree usted que la fórmula establecida para calcular el índice de actividades es la correcta? IA =(TOTAL ACT- ACT NO AV) / (TOTAL ACTIVIDADES) X100 %
	P2	¿Cree usted que la fórmula establecida para calcular el tiempo estándar es la correcta? TS = TN X (1 + S)
APARIENCIA	Р3	¿Cree usted que la fórmula establecida para calcular el rendimiento tiempo es la correcta? REND.T = {(T.PROY/ CICLO) / (T.E.JEC/ CICLO) -1) X 100 %
	P4	¿Cree usted que la fórmula establecida para calcular las toneladas de producción es la correcta? Tn.PROD = (Tn . EJEC) / (Tn . PROY) X 100 %
	P5	Sablendo que el título del estudio es: Aplicación del estudio del trabajo para mejorar la productividad del filete de pollo de la empresa San Fernando, Huaral 2021. ¿Cree usted que las variables (Estudio del trabajo y Productividad) fueron seleccionadas correctamente?
CONTENIDO	P6	Sablendo que el objetivo general del estudio es: Determinar como la aplicación del estudio del trabajo mejorara la productividad de filete de pollo de la empresa San Fernando, Huaral 2021. ¿Cree usted que las dimensiones (Estudio de métodos y Medición del trabajo) son las adecuadas para tal propósito?
	P7	¿Cree usted que los indicadores (Rendimiento de tiempo y toneladas de producción) son los adecuados para obtener resultados er la variable productividad?
	P8	¿Cree usted que la variable independiente (estudio del trabajo) influye en la variable dependiente (productividad)?
CONSTRUTO	P9	¿Cree usted que la dimensión (estudio de métodos) influye directamente con la dimensión (Gestión de tiempos)?
	P10	¿Cree usted que el indicador (Tiempo estándar) influye en la mejora de las toneladas de producción?
	P11	¿Cree usted que en la presente investigación el cronometro es el instrumento adecuado para medir los tiempos del proceso de fileteo de pollo?
INSTRUMENTO	P12	¿Cree usted que los instrumentos que se utilizan para medir la variable independiente (Estudio del trabajo) son los correctos? Formatos de estudios de tiempos, formato DAP, formato DOP.
	P13	¿Cree usted que los instrumentos que se utilizan para medir la variable dependiente (productividad) son los correctos? Formatos de producción diario, registro de la producción en toneladas.

	P O DE											VALI	DEZ				No.	and the	TUES !		(200	18950	DE TO	Sell.	SIN
100			APAR	ENCIA		TOTAL -			-	CONT	ENIDO		A) Xh		C	ONST	RUCT	0	STE		11	ISTRU	MENT	0	
F	21	F	2	P	3	P	4	F	5	F	96	F	7	F	8	P	9	P	10	P	11	P	12	P	13
SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	N
×.		X		~		X		X		X		X		V		V		×	-	×		V	1	~/	

Opinión de aplicabilidad:	Aplicable [X]	Aplicable después		No aplicable [1	
Apellidos y nombres del juez validador.		BOZON	Lopez	JOSE	DNI: _	40567996
Especialidad del validador:	INGE	MIERIA	AG	ROINDUST	RIBL.	

APARIENCIA: Grado en que los instrumentos parece que mide lo que se quiere medir.
 CONTENIDO: Describir assessible en experience que mide lo que se quiere medir.

3. CONSTRUTO: Relaciones lógicas entre los conseptos del estudio.

NOTA: Sufficiencia, es cuando los items planteados son suficientes para medir las dimenciones de estudio.

JOSE BAZAN LOPEZ Superusor de Producción Planta Sanestro de Aves Huaral son fermando 5.9.

ANEXO 104: Juicio de experto 3

VALIDEZ	N°	PREGUNTAS
	P1	¿Cree usted que la fórmula establecida para calcular el índice de actividades es la correcta? IA =(TOTAL ACT-ACT NO AV) / (TOTAL ACTIVIDADES) X100 %
1010/2004	P2	¿Cree usted que la fórmula establecida para calcular el tiempo estándar es la correcta? TS = TN X (1 + S)
APARIENCIA	Р3	¿Cree usted que la fórmula establecida para calcular el rendimiento tiempo es la correcta? REND.T = ((T.PROY/ CICLO) / (T.E.JEC/ CICLO) -1) X 100 %
	P4	¿Cree usted que la fórmula establecida para calcular las toneladas de producción es la correcta? Tn.PROD = (Tn . EJEC) / (Tn . PROY) X 100 %
	P5	Sablendo que el título del estudio es: Aplicación del estudio del trabajo para mejorar la productividad del filete de pollo de la empresa San Fernando, Huaral 2021. ¿Cree usted que las variables (Estudio del trabajo y Productividad) fueron seleccionadas correctamente?
CONTENIDO	P6	Sablendo que el objetivo general del estudio es: Determinar como la aplicación del estudio del trabajo mejorara la productividad d filete de pollo de la empresa San Fernando, Huaral 2021. ¿Cree usted que las dimensiones (Estudio de métodos y Medición del trabajo) son las adecuadas para tal propósito?
	P7	¿Cree usted que los indicadores (Rendimiento de tiempo y toneladas de producción) son los adecuados para obtener resultados e la variable productividad?
	P8	¿Cree usted que la variable independiente (estudio del trabajo) influye en la variable dependiente (productividad)?
CONSTRUTO	P9	¿Cree usted que la dimensión (estudio de métodos) influye directamente con la dimensión (Gestión de tiempos)?
	P10	¿Cree usted que el indicador (Tiempo estándar) influye en la mejora de las toneladas de producción?
	P11	¿Cree usted que en la presente investigación el cronometro es el instrumento adecuado para medir los tiempos del proceso de fileteo de pollo?
INSTRUMENTO	P12	¿Cree usted que los instrumentos que se utilizan para medir la variable independiente (Estudio del trabajo) son los correctos? Formatos de estudios de tiempos, formato DAP, formato DOP.
	P13	¿Cree usted que los instrumentos que se utilizan para medir la variable dependiente (productividad) son los correctos? Formatos de producción diario, registro de la producción en toneladas.

				28500								VALI	DEZ				Pin 1	B				373,615		100	530
93)			APAR	ENCIA	1				- 1	CONT	ENIDO				C	ONST	RUCT	0			IN	ISTRU	MENT	0	
P	21	F	2	P	3	P	4	P	5	F	96	F	7	P	8	P	9	P	10	P	11	P	12	P	13
SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	N
×		X		V		N		N	0.000	X		×	- 3	V		N		N		V		V		~	$\overline{}$

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad:

Aplicable [0] Aplicable después de corregir [] No aplicable []

Apellidos y nombres del juez validador.

Especialidad del validador:

Ingeniero Industrial

APARIENCIA: Grado en que los instrumentos parece que mide lo que se quiere medir.

CONSTRUTO: Relaciones lógicas entre los conseptos del estudio.

NOTA: Sufficiencia, es cuando los items planteados son suficientes para medir las dimenciones de estudio.

07 de 05 del 2021

a-----

JESÚS CAĽDAS GERÓNIMO Supervisor de Producción san fernanda 5.A.

ANEXO 105: Juicio de experto 4

VALIDEZ	N°	PREGUNTAS
	P1	¿Cree usted que la fórmula establecida para calcular el índice de actividades es la correcta? IA =(TOTAL ACT- ACT NO AV) / (TOTAL ACTIVIDADES) X100 %
	P2	¿Cree usted que la fórmula establecida para calcular el tiempo estándar es la correcta? TS = TN X (1 + S)
APARIENCIA	Р3	¿Cree usted que la fórmula establecida para calcular el rendimiento tiempo es la correcta? REND.T = {(T.PROY/ CICLO) / (T.E.JEC/ CICLO) -1) X 100 %
	P4	¿Cree usted que la fórmula establecida para calcular las toneladas de producción es la correcta? Tn.PROD = (Tn . EJEC) / (Tn . PROY) X 100 %
	P5	Sabiendo que el título del estudio es: Aplicación del estudio del trabajo para mejorar la productividad del filete de polio de la empresa San Fernando, Huaral 2021. ¿Cree usted que las variables (Estudio del trabajo y Productividad) fueron seleccionadas correctamente?
CONTENIDO	P6	Sabiendo que el objetivo general del estudio es: Determinar como la aplicación del estudio del trabajo mejorara la productividad di filete de pollo de la empresa San Fernando, Huaral 2021. ¿Cree usted que las dimensiones (Estudio de métodos y Medición del trabajo) son las adecuadas para tal propósito?
	P7	¿Cree usted que los indicadores (Rendimiento de tiempo y toneladas de producción) son los adecuados para obtener resultados e la variable productividad?
	P8	¿Cree usted que la variable independiente (estudio del trabajo) influye en la variable dependiente (productividad)?
CONSTRUTO	P9	¿Cree usted que la dimensión (estudio de métodos) influye directamente con la dimensión (Gestión de tiempos)?
	P10	¿Cree usted que el indicador (Tiempo estándar) influye en la mejora de las toneladas de producción?
	P11	¿Cree usted que en la presente investigación el cronometro es el instrumento adecuado para medir los tiempos del proceso de fileteo de pollo?
INSTRUMENTO	P12	¿Cree usted que los instrumentos que se utilizan para medir la variable independiente (Estudio del trabajo) son los correctos? Formatos de estudios de tiempos, formato DAP, formato DOP.
	P13	¿Cree usted que los instrumentos que se utilizan para medir la variable dependiente (productividad) son los correctos? Formatos de producción diario, registro de la producción en toneladas.

												VALI	DEZ									100	RISOV.		196
		Million .	APAR	ENCIA	1	- 3				CONT	ENIDO)			C	ONST	RUCT	0		BANE B	11	ISTRL	MENT	0	
P1		F	2	F	3	P	4	F	5	F	96	F	7	P	8	P	9	P	10	P	11	P	12	P	13
SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	
\sim		N		N		×		~		~		V		21		N		V		~		1		~	_

Observaciones (precisar si hay sufficiencia):

Opinión de aplicabilidad:

Aplicable [1]

Aplicable (appués ple corregir [1])

No aplicable [1]

1. APARIENCIA: Grado en que los instrumentos parece que mide lo que se quiere medir.

CONSTRUTO: Relaciones lógicas entre los conseptos del estudio.

NOTA: Suficiencia, es cuando los items planteados son suficientes para medir las dimenciones de estudio.

0.7 de 0.5 de 2021

Supervisor de Producción son fernanció, S.A.

ANEXO 106: Juicio de experto 5

VALIDEZ	N°	PREGUNTAS
	P1	¿Cree usted que la fórmula establecida para calcular el índice de actividades es la correcta? IA =(TOTAL ACT-ACT NO AV) / (TOTAL ACTIVIDADES) X100 %
	P2	¿Cree usted que la fórmula establecida para calcular el tiempo estándar es la correcta? TS = TN X (1 + S)
APARIENCIA	P3	¿Cree usted que la fórmula establecida para calcular el rendimiento tiempo es la correcta? REND.T = ((T.PROY/ CICLO) / (T.E.JEC/ CICLO) -1) X 100 %
	P4	¿Cree usted que la fórmula establecida para calcular las toneladas de producción es la correcta? Tn.PROD = (Tn . EJEC) / (Tn . PROY) X 100 %
	P5	Sablendo que el título del estudio es: Aplicación del estudio del trabajo para mejorar la productividad del filete de pollo de la empresa San Fernando, Huaral 2021. ¿Cree usted que las variables (Estudio del trabajo y Productividad) fueron seleccionadas correctamente?
CONTENIDO	P6	Sabiendo que el objetivo general del estudio es: Determinar como la aplicación del estudio del trabajo mejorara la productividad d filete de pollo de la empresa San Fernando, Huaral 2021. ¿Cree usted que las dimensiones (Estudio de métodos y Medición del trabajo) son las adecuadas para tal propósito?
	P7	¿Cree usted que los indicadores (Rendimiento de tiempo y toneladas de producción) son los adecuados para obtener resultados e la variable productividad?
	P8	¿Cree usted que la variable independiente (estudio del trabajo) influye en la variable dependiente (productividad)?
CONSTRUTO	P9	¿Cree usted que la dimensión (estudio de métodos) influye directamente con la dimensión (Gestión de tiempos)?
	P10	¿Cree usted que el indicador (Tiempo estándar) influye en la mejora de las toneladas de producción?
	P11	¿Cree usted que en la presente investigación el cronometro es el instrumento adecuado para medir los tiempos del proceso de fileteo de pollo?
INSTRUMENTO	P12	¿Cree usted que los instrumentos que se utilizan para medir la variable independiente (Estudio del trabajo) son los correctos? Formatos de estudios de tiempos, formato DAP, formato DOP.
	P13	¿Cree usted que los instrumentos que se utilizan para medir la variable dependiente (productividad) son los correctos? Formatos de producción diario, registro de la producción en toneladas.

												VALI	DEZ												
M			APAR	IENCI/	1		in i			CONT	ENIDO)			C	CONST	RUCT	0			IN	STRU	MENT	0	(= 3
P1		F	2	F	3	P	4	P	5	P	6	F	7	F	8	F	9	P	10	P	11	P	12	P	13
SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	N
×		N		X		V		'X		N		X	-	X		14		×		X		V		V	-

SI HAY SUFICIENCIA

ión de aplicabilidad: Aplicable [X] Aplicable después de corregir [] No aplicable [] idos y nombres del juez validador. ALCAMARA ALBORANOS SERASTIAN INSTITUTO DNI: 43422737

alidad del validador: INGENIERÍA INDUSTRIAL

ANEXO 107: Juicio de experto 6

VALIDEZ	N°	PREGUNTAS
	P1	¿Cree usted que la fórmula establecida para calcular el índice de actividades es la correcta? IA =(TOTAL ACT-ACT NO AV) / (TOTAL ACTIVIDADES) X100 %
	P2	¿Cree usted que la fórmula establecida para calcular el tiempo estándar es la correcta? TS = TN X (1 + S)
APARIENCIA	Р3	¿Cree usted que la fórmula establecida para calcular el rendimiento tiempo es la correcta? REND.T = {(T,PROY/ CICLO) / (T,EJEC/ CICLO) -1) X 100 %
	P4	¿Cree usted que la fórmula establecida para calcular las toneladas de producción es la correcta? Tn.PROD = (Tn . EJEC) / (Tn . PROY) X 100 %
	P5	Sabiendo que el título del estudio es: Aplicación del estudio del trabajo para mejorar la productividad del filete de pollo de la empresa San Fernando, Huaral 2021. ¿Cree usted que las variables (Estudio del trabajo y Productividad) fueron seleccionadas correctamente?
CONTENIDO	P6	Sabiendo que el objetivo general del estudio es: Determinar como la aplicación del estudio del trabajo mejorara la productividad de filete de pollo de la empresa San Fernando, Huarral 2021. ¿Cree usted que las dimensiones (Estudio de métodos y Medición del trabajo) son las adecuadas para tal propósito?
	P7	¿Cree usted que los indicadores (Rendimiento de tiempo y toneladas de producción) son los adecuados para obtener resultados en la variable productividad?
	P8	¿Cree usted que la variable independiente (estudio del trabajo) influye en la variable dependiente (productividad)?
CONSTRUTO	P9	¿Cree usted que la dimensión (estudio de métodos) influye directamente con la dimensión (Gestión de tiempos)?
	P10	¿Cree usted que el indicador (Tiempo estándar) influye en la mejora de las toneladas de producción?
	P11	¿Cree usted que en la presente investigación el cronometro es el instrumento adecuado para medir los tiempos del proceso de fileteo de pollo?
INSTRUMENTO	P12	¿Cree usted que los instrumentos que se utilizan para medir la variable independiente (Estudio del trabajo) son los correctos? Formatos de estudios de tiempos, formato DAP, formato DOP.
	P13	¿Cree usted que los instrumentos que se utilizan para medir la variable dependiente (productividad) son los correctos? Formatos de producción diario, registro de la producción en toneladas.

												VALI	DEZ												
	Las in	4	APARI	ENCI/	1				6	CONT	ENIDO			0.00	C	ONST	RUCT	0			IN	STRL	MENT	0	
F	1	F	2	F	3	F	4	P	5	F	6	F	7	P	8	F	9	P	10	P	11	Р	12	P	13
SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	N
X		'X			V	'X		X		V		OC		V		×		×		N		14		~	

Observaciones (precisar si hay suficiencia): 57 hay Sufi	Lencis
Opinión de aplicabilidad: Aplicable [] Aplicable después de corre	gir [] No aplicable []
Apellidos y nombres del juez validador. Holquin Saha	and Cesas DNI: 452/0962
Especialidad del validador: ING. 59 Ferra / Adm	inistração
	20 05
APARIENCIA: Grado en que los instrumentos parece que mide lo que se quiere medir.	Q9_ de Q5_ del 2021
CONTENIDO: Dominio específico del contenido que se quiere medir.	,
3, CONSTRUTO: Relaciones lógicas entre los conseptos del estudio.	C- 11 A
4. INSTRUMENTO: Coherencia entre los instrumentos usados en el estudio.	Cesar/f

ANEXO 108: Juicio de experto 7

VALIDEZ	N°	PREGUNTAS
	P1	¿Cree usted que la fórmula establecida para calcular el índice de actividades es la correcta? IA =(TOTAL ACT-ACT NO AV) / (TOTAL ACTIVIDADES) X100 %
	P2	¿Cree usted que la fórmula establecida para calcular el tiempo estándar es la correcta? TS = TN X (1 + S)
APARIENCIA	P3	¿Cree usted que la fórmula establecida para calcular el rendimiento tiempo es la correcta? REND.T = {(T.PROY/ CICLO) / (T.EJEC/ CICLO) -1) X 100 %
	P4	¿Cree usted que la fórmula establecida para calcular las toneladas de producción es la correcta? Tn.PROD = (Tn . EJEC) / (Tn . PROY) X 100 %
	P5	Sabiendo que el título del estudio es: Aplicación del estudio del trabajo para mejorar la productividad del filete de pollo de la empresa San Fernando, Huaral 2021. ¿Cree usted que las variables (Estudio del trabajo y Productividad) fueron seleccionadas correctamente?
CONTENIDO	P6	Sabiendo que el objetivo general del estudio es: Determinar como la aplicación del estudio del trabajo mejorara la productividad d filete de pollo de la empresa San Fernando, Huaral 2021. ¿Cree usted que las dimensiones (Estudio de métodos y Medición del trabajo) son las adecuadas para tal propósito?
	P7	¿Cree usted que los Indicadores (Rendimiento de tiempo y toneladas de producción) son los adecuados para obtener resultados e la variable productividad?
	P8	¿Cree usted que la variable independiente (estudio del trabajo) influye en la variable dependiente (productividad)?
CONSTRUTO	P9	¿Cree usted que la dimensión (estudio de métodos) influye directamente con la dimensión (Gestión de tiempos)?
	P10	¿Cree usted que el indicador (Tiempo estándar) influye en la mejora de las toneladas de producción?
	P11	¿Cree usted que en la presente investigación el cronometro es el instrumento adecuado para medir los tiempos del proceso de fileteo de pollo?
INSTRUMENTO	P12	¿Cree usted que los instrumentos que se utilizan para medir la variable independiente (Estudio del trabajo) son los correctos? Formatos de estudios de tiempos, formato DAP, formato DOP.
	P13	¿Cree usted que los instrumentos que se utilizan para medir la variable dependiente (productividad) son los correctos? Formatos de producción diario, registro de la producción en toneladas.

												VALI	DEZ												
			APAR	ENCI/	1					CONT	ENIDO				C	ONST	RUCT	0	271VA		IN	STRL	MENT	0	
P1		F	2	F	3	F	24	F	5	P	6	F	7	P	8	P	9	P	10	P	11	P	12	P	13
SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	IN
×		X			×	X		'X'		V		Y		Y		V		X		V		V		V	

Observaciones (precisar si hay suficiencia):	51 hay Sufficiencia
Opinión de aplicabilidad: Aplicable [X]	Aplicable después de corregir [] No aplicable []
Apellidos y nombres del juez validador. <u>Son</u>	illa Belén Givencti Michael DN: 42740605
Especialidad del validador:	ea programación Maestra. Industrial.
	0 7 de 0 5 del 2021
 APARIENCIA: Grado en que los instrumentos parece que mide lo que se quiere n 	nedir.
2. CONTENIDO: Dominio específico del contenido que se quiere medir.	- (N)
 CONSTRUTO: Relaciones lógicas entre los conseptos del estudio. 	0. 0.41
4. INSTRUMENTO: Coherencia entre los instrumentos usados en el estudio.	CINENCA HATCH
NOTA: Suficiencia, es cuando los items planteados son suficientes para medir las	dimenciones de estudio. Firma del experto Informante.

ANEXO 109: juicio de experto 8

VALIDEZ	N°	PREGUNTAS
	P1	¿Cree usted que la fórmula establecida para calcular el índice de actividades es la correcta? IA =(TOTAL ACT- ACT NO AV) / (TOTAL ACTIVIDADES) X100 %
APARIENCIA	P2	¿Cree usted que la fórmula establecida para calcular el tiempo estándar es la correcta? TS = TN X (1 + S)
APARIENCIA	P3	¿Cree usted que la fórmula establecida para calcular el rendimiento tiempo es la correcta? REND.T = {(T.PROY/ CICLO) / (T.E.JEC/ CICLO) -1) X 100 %
	P4	¿Cree usted que la fórmula establecida para calcular las toneladas de producción es la correcta? Tn.PROD = (Tn . EJEC) / (Tn . PROY) X 100 %
	P5	Sablendo que el título del estudio es: Aplicación del estudio del trabajo para mejorar la productividad del filete de pollo de la empresa San Fernando, Huaral 2021. ¿Cree usted que las variables (Estudio del trabajo y Productividad) fueron seleccionadas correctamente?
CONTENIDO	P6	Sabiendo que el objetivo general del estudio es: Determinar como la aplicación del estudio del trabajo mejorara la productividad de filete de pollo de la empresa San Fernando, Huaral 2021. ¿Cree usted que las dimensiones (Estudio de métodos y Medición del trabajo) son las adecuadas para tal propósito?
	P7	¿Cree usted que los indicadores (Rendimiento de tiempo y toneladas de producción) son los adecuados para obtener resultados en la variable productividad?
	P8	¿Cree usted que la variable independiente (estudio del trabajo) influye en la variable dependiente (productividad)?
CONSTRUTO	P9	¿Cree usted que la dimensión (estudio de métodos) influye directamente con la dimensión (Gestión de tiempos)?
	P10	¿Cree usted que el indicador (Tiempo estándar) influye en la mejora de las toneladas de producción?
	P11	¿Cree usted que en la presente investigación el cronometro es el instrumento adecuado para medir los tiempos del proceso de fileteo de pollo?
INSTRUMENTO	P12	¿Cree usted que los instrumentos que se utilizan para medir la variable independiente (Estudio del trabajo) son los correctos? Formatos de estudios de tiempos, formato DAP, formato DOP.
	P13	¿Cree usted que los instrumentos que se utilizan para medir la variable dependiente (productividad) son los correctos? Formatos de producción diario, registro de la producción en toneladas.

												VALI	DEZ			W51				1111116		200	1000		SEL
1		20113	APAR	ENCIA	1	2016				CONT	ENIDO			100	C	ONST	RUCT	0		-	10	ISTRU	MENT	0	
P1		P2		P3		P4		P5		P6		P7		P8		P9		P10		P11		P12		P13	
SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO
>		×		V	0.00		×	~	7	~		1		V		V		100		V	-	5.7		52	-

Observaciones (precisar si hay suficiencia)	SI HAY SUFICIENCÍA	
Opinión de aplicabilidad:	Aplicable [Aplicable después de corregir [] No	o aplicable []
Apellidos y nombres del juez validador.	COLAN CHANEZ EDWIN	DNI: 41380231
Especialidad del validador:	ING. SITTEMAS	
		09 de 05 del 2021
1. APARIENCIA: Grado en que los instrumentos parece qu	ue mide lo que se quiere medir.	
2. CONTENIDO: Dominio específico del contenido que se	quiere medir.	
3. CONSTRUTO: Relaciones lógicas entre los conseptos o	del estudio.	
4. INSTRUMENTO: Coherencia entre los instrumentos usa	ados en el estudio.	Edwicket CHAVER
NOTA: Suficiencia, es cuando los items planteados son se	uficientes para medir las dimenciones de estudio.	Firma del experto Informante.