

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Evaluación del pavimento flexible utilizando el método PCI en la avenida Mexico cuadras 32 – 37 José Leonardo Ortiz, Chiclayo.

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil.

AUTOR:

Peralta Sánchez, Celis Kevin (ORCID: 0000-0002-1109-2401)

ASESOR:

Mg. Medina Carbajal, Lucio Sigifredo (ORCID: 0000-0001-5207-4421).

LÍNEA DE INVESTIGACIÓN:

Diseño De Infraestructura Vial

PIURA - PERÚ

2021

DEDICATORIA

A mis Abuelos: **Norbil Sánchez Pasapera y Hermila Vásquez Nuñez,**ya que sé que están orgullosos desde el cielo.

A mis padres: José Celis Peralta Diaz y María Irene Sánchez Vásquez, que sin la ayuda de ellos no hubiera logrado mi meta profesional.

A mis hermanos: **William y Roxana**, quienes fueron piezas fundamentales en mi formación académica, mi más grande admiración y respeto hacia ellos.

AGRADECIMIENTO

A Dios, todo poderoso, quien siempre está conmigo y es mi fortaleza.

A mi abuelo: Norbil que es mi protector mi ángel que siempre me cuida desde el cielo y que me está guiando por el camino del bien.

A mi padre: José Celis, quien estoy muy agradecido de haberme brindado mi segunda carrera profesional.

A mi madre: María Irene, a quien agradezco de su ejemplo que me brinda mediante su trabajo que realiza a diario.

A mis hermanos: William y Roxana que fueron mi ejemplo de profesionales exitosos a seguir; y mi sobrina Noelia quien me saca una risa siempre cuando lo necesito.

A mi pareja: Milagros Arévalo a quien le agradezco por la vida universitaria que hemos realizado ambos, siempre con respeto, confianza, apoyo y amor; muchas gracias mí abogada.

A mi prima hermana: Yulisa quien agradezco por ser mi compañera de infancia y de juventud.

ÍNDICE DE CONTENIDOS

CARATULA	i
DEDICATORIA	ii
AGRADECIMIENTO	iii
ÍNDICE DE CONTENIDOS	iv
ÍNDICE DE TABLAS	V
ÍNDICE DE FIGURAS	vi
RESUMEN	viii
ABSTRACT	ix
I. INTRODUCCIÓN	1
II. MARCO TEÓRICO	4
III. METODOLOGÍA	22
3.1. Tipo y diseño de investigación	22
3.2. Variables y operacionalización	22
3.3. Población, muestra y muestreo	23
3.4. Técnicas e instrumentos de recolección de datos	24
3.5. Procedimiento	25
3.6. Método de análisis de datos	
3.7. Aspectos éticos	26
IV. RESULTADOS	27
V. DISCUSIÓN	37
VI. CONCLUSIONES	41
VII. RECOMENDACIONES	42
REFERENCIAS	43
ANEXOS	51

ÍNDICE DE TABLAS

Tabla N°1: Visualización de las técnicas e instrumentos	.25
Tabla N°2: Fallas patológicas encontradas en la avenida de estudio	.28
Tabla N°3: Severidades presentadas en el pavimento flexible del carril 1	.29
Tabla N°4: Severidades presentadas en el pavimento flexible del carril 2	.30
Tabla N°5: Calculo del rango y clasificación de las muestras del carril 1	.31
Tabla N°6: Calculo del rango y clasificación de las muestras del carril 2	.32
Tabla N°7: Mantenimiento y plan de reparación del carril 1	.33
Tabla N°8: Mantenimiento y plan de reparación del carril 2	.34

ÍNDICE DE FIGURAS

Figura N°1: Ubicación de la avenida de estudio	27
Figura N°2: Planilla de metrados	35
Figura N°3: Presupuesto de la avenida Mexico C32-C37	36
Figura N°4. Cálculo de la muestra	56
Figura N°5. Ubicación del distrito de estudio	57
Figura N°6. Ubicación del pavimento Av. Mexico C32 – C37	58
Figura N°7. Ficha de observación de fallas	59
Figura N°8. Instrumento de evaluación del pavimento	60
Figura N°9. Hoja de cálculo carril 1 _ 0+000 – 0+040	61
Figura N°10. Hoja de cálculo carril 1 _ 0+040 – 0+080	62
Figura N°11. Hoja de cálculo carril 1 _ 0+080 – 0+120	63
Figura N°12. Hoja de cálculo carril 1 _ 0+120 – 0+160	64
Figura N°13. Hoja de cálculo carril 1 _ 0+160 – 0+200	65
Figura N°14. Hoja de cálculo carril 1 _ 0+200 – 0+240	66
Figura N°15. Hoja de cálculo carril 1 _ 0+240 – 0+280	67
Figura N°16. Hoja de cálculo carril 1 _ 0+280 – 0+320	68
Figura N°17. Hoja de cálculo carril 1 _ 0+320 – 0+360	69
Figura N°18. Hoja de cálculo carril 1 _ 0+360 – 0+400	70
Figura N°19. Hoja de cálculo carril 1 _ 0+400 – 0+440	71
Figura N°20. Hoja de cálculo carril 1 _ 0+440 – 0+480	72
Figura N°21. Hoja de cálculo carril 1 _ 0+480 – 0+533	73
Figura N°22. Hoja de cálculo carril 2 _ 0+000 – 0+040	74
Figura N°23. Hoja de cálculo carril 2 _ 0+040 – 0+080	75
Figura N°24. Hoja de cálculo carril 2 _ 0+080 – 0+120	76
Figura N°25. Hoja de cálculo carril 2 _ 0+120 – 0+160	77
Figura N°26. Hoja de cálculo carril 2 _ 0+160 – 0+200	78

igura N°27. Hoja de cálculo carril 2 _ 0+200 – 0+240	79
Figura N°28. Hoja de cálculo carril 2 _ 0+240 – 0+280	80
Figura N°29. Hoja de cálculo carril 2 _ 0+280 – 0+320	81
Figura N°30. Hoja de cálculo carril 2 _ 0+320 – 0+360	82
igura N°31. Hoja de cálculo carril 2 _ 0+360 – 0+400	83
igura N°32. Hoja de cálculo carril 2 _ 0+400 – 0+440	84
Figura N°33. Hoja de cálculo carril 2 _ 0+440 – 0+480	85
Figura N°34. Hoja de cálculo carril 2 _ 0+480 – 0+533	86
Figura N°35. Ábacos para pavimento asfaltico	87
Figura N°36: Metrado del mantenimiento de pavimento Av. Mexico C32 - C37	97
Figura N°37: Análisis de Costos Unitarios	101
Figura N°38. Fotos de las fallas patológicas de la vía de estudio carril 1	109
Figura N°39. Fotos de las fallas patológicas de la vía de estudio carril 2	122

RESUMEN

La presente tesis detalla la importancia del PCI, también el procedimiento de evaluación que se hará en mi avenida de estudio con respecto al manual PCI. El fin de emplear el método es para dar a conocer que los pavimentos flexibles no cumplen su vida útil después de ser ejecutadas, dando como consecuencia pistas recién elaboradas en mal estado, es así que se está utilizando el método PCI para ver cuál es el daño presentado y dar un plan de mantenimiento y un presupuesto económico para contrarrestar las fallas que se logra visualizar; Por ende, se plantea como objetivo "Realizar la evaluación del pavimento flexible utilizando el método PCI en la avenida Mexico cuadras 32 a la 37 del Distrito de José Leonardo Ortiz", también la metodología presentada es de tipo aplicada, con un enfoque cuantitativo, con un nivel descriptivo y con un diseño no experimental – transversal, a la vez se detalla los resultados trabajados para obtener una evaluación del pavimento de la vía Mexico, y por último se redactó las conclusiones respecto a los resultados trabajados. El método PCI es de gran ayuda para obtener la clasificación de pavimentos flexibles y rígidos.

Palabras clave: PCI, pavimento, mantenimiento, presupuesto.

ABSTRACT

This thesis details the importance of the PCI, also the evaluation procedure that will be done in my avenue of study with respect to the PCI manual. The purpose of using the method is to make known that flexible pavements do not meet their useful life after being executed, resulting in newly made tracks in poor condition, that is why the PCI method is being used to see what the damage is presented and give a maintenance plan and an economic budget to counteract the failures that can be seen; Therefore, the objective is "To carry out the evaluation of the flexible pavement using the PCI method on Mexico Avenue blocks 32 to 37 of the José Leonardo Ortiz District", also the methodology presented is of an applied type, with a quantitative approach, with a descriptive level and with a non-experimental design - transversal, at the same time the worked results are detailed to obtain an evaluation of the pavement of the Mexico road, and finally the conclusions regarding the worked results were drawn up. The PCI method is of great help to obtain the classification of flexible and rigid pavements.

Keywords: PCI, pavement, maintenance, budget.

I. INTRODUCCIÓN

Hoy en día se observa alrededor del mundo un elevado incremento económico, en lo que respecta a la realización de expedientes de obras viales, como se sabe este tipo de proyectos tiene como finalidad conectar o unir ciudades y pueblos del ámbito urbano rural, las personas que tienen vida urbana se abastecen con el ingreso de las producciones de agricultura, ganadería y el arte textil, proveniente de diferentes regiones. El Estado Peruano invierte cantidades numerosas de soles para el cumplimiento de realización de obras de tipo de mejoramiento de transitabilidad vehicular; pero dejando de lado el tema del mantenimiento rutinario y periódico que contribuyen a la adecuada prestación del servicio dentro de la vida útil del proyecto; a consecuencia de la mala administración del recurso vial se puede observar que muchas de las vías se encuentran en inadecuadas condiciones, el departamento de Lambayeque, provincia de Chiclayo, distrito de José Leonardo Ortiz, también se encuentra con esta realidad, actualmente sus principales vías se encuentran deterioradas mostrando inadecuadas condiciones de transitabilidad vehicular que perjudican a la población. Los investigadores Pereira Paulo y Pais Jorge (2016) manifiestan que "El diseño de pavimentos y mezclas asfálticas representan un tema sólido con un conocimiento estable obtenido después de un largo período de investigación" (p.317).

La avenida México cuadras 32 a la cuadra 37 es una de las principales arterias viales del distrito de José Leonardo Ortiz, es un acceso hacia el mercado Moshoqueque y el mercado los Patos, actualmente esta vía presenta un pavimento flexible con evidencia de deterioro progresivo, por el orden de vía esta avenida debería presentar un pavimento en buenas condiciones que permita un tránsito fluido y seguro del tráfico vehicular.

Las carencias que tiene el pavimento flexible de la avenida Mexico cuadras 32 a la 37 del distrito José Leonardo Ortiz son innumerables, se identifican fallas de índole funcional en la superficie del pavimento (desintegración de extremos, ahuellamientos, hundimientos, grietas longitudinales, etc.), estas fallas limitan el tránsito vehicular en esta avenida que es objeto de estudio.

Por lo mencionado anteriormente se prevé que de continuar con esta realidad el pavimento de esta importante vía no alcanzaría los beneficios esperados dentro de su vida útil para el cual fue proyectada, representando así una inadecuada inversión para el estado y brindando un pésimo servicio a la población, tal es el caso de la avenida Mariano Cornejo que se ubica en el área de estudio perpendicular a la avenida México y que actualmente ya no cuenta con carpeta asfáltica observando el terreno natural en todo su recorrido.

Es así que el investigador tuvo como propósito sugerir la utilización del método PCI en la avenida Mexico cuadras 32 a la cuadra 37 del distrito de José Leonardo Ortiz, con la finalidad de indicar cuales son los daños que se encuentran presentes en dicha avenida de estudio y dar como sugerencia un tipo de mantenimiento y el presupuesto para mejorar el pavimento de estudio.

Ante lo descrito se planteó la siguiente pregunta general: ¿Cuál es la evaluación del pavimento flexible utilizando el método PCI en la avenida Mexico cuadras 32 a la 37 del Distrito de José Leonardo Ortiz?; y como preguntas específicas: ¿De qué modo interviene el método PCI en el reconocimiento de fallas superficiales del pavimento flexible en la avenida Mexico cuadras 32 a la 37 del distrito de José Leonardo Ortiz?, además ¿Cuál es el rango y la clasificación del pavimento de la avenida Mexico cuadras 32 a la 37 del distrito de José Leonardo Ortiz?, también ¿Cuál es el tipo de mantenimiento que necesita la avenida Mexico cuadras 32 a la 37 del distrito de José Leonardo Ortiz?, y ¿Cuál es el presupuesto total para mejorar la avenida Mexico cuadras 32 a la 37 del distrito de José Leonardo Ortiz?.

Esta investigación se justificó porque se dio a conocer el estado de deterioro de la avenida Mexico cuadras 32 a la 37 del distrito de José Leonardo Ortiz, como se sabe el departamento de Lambayeque presenta vías inadecuadas, por ende, estas no desempeñan su nivel de serviciabilidad. Por ello en esta investigación se evaluará el pavimento flexible utilizando el método del PCI y de esta manera poder determinar mediante los resultados obtenidos si el pavimento de estudio cumple o no cumple su nivel de servicio. Los investigadores Ajit Pratap [et al] (2018), mencionan que "El enfoque más práctico y económico para el mantenimiento de los caminos rurales es recoger las condiciones del pavimento mediante un estudio de inspección visual".

Finalmente, el proyecto realizado menciona un plan de mantenimiento y el presupuesto total para lograr mejorar la calidad de serviciabilidad del pavimento para los ciudadanos que transitan a diario por las cuadras mencionadas de dicha avenida de estudio, dando así una seguridad a los transportistas y obviando cualquier accidente presentado en la vía pública.

Para ampliar dicho proyecto se debe tener en cuenta que es lo que se quiere lograr, por lo tanto, se planteó el siguiente objetivo general: "Realizar la evaluación del pavimento flexible utilizando el método PCI en la avenida Mexico cuadras 32 a la 37 del Distrito de José Leonardo Ortiz". y los objetivos específicos que se realizaron son "Determinar la manera en que interviene el método PCI para el reconocimiento de las fallas superficiales del pavimento en la avenida Mexico cuadras 32 a la 37 del Distrito de José Leonardo Ortiz" como segundo objetivo específico "Evaluar e indicar el rango y la clasificación del pavimento de la avenida Mexico cuadras 32 a la 37 del distrito de José Leonardo Ortiz" como tercer objetivo específico "Indicar el mantenimiento adecuado para el pavimento de la avenida Mexico cuadras 32 a la 37 del distrito de José Leonardo Ortiz" y finalmente como último objetivo específico "Establecer el presupuesto total para la mejora de pavimento de la avenida Mexico cuadras 32 a la 37 del distrito de José Leonardo Ortiz"

II. MARCO TEÓRICO

se hace la presente mención a los autores de los antecedentes internacionales para el argumento de la tesis.

ACOSTA BARRETO, Carol Liseth y RUBIANO ÁLVAREZ, Anggie Carolina (2017), en su tesis titulada "Identificación De Patologías En Pavimentos Del Corredor Siberia – Tenjo Por Medio Del Método PCI E Invias Y Reconocimiento De Especies Arbóreas Contiguas Al Tramo" – Universidad Santo Tomás, Bogotá – Colombia; por la cual tuvo como objetivo general identificar las patologías en los pavimentos del corredor Siberia -Tenjo por medio del método PCI e INVIAS, las investigadoras no registran metodología del proyecto, el resultado de la investigación de Acosta y Rubiano concluyen que de acuerdo a los resultados obtenidos de la metodología PCI se puede decir que los tres tramos tienen daños graves que deben repararse de forma estructural para rehabilitar la vía.

OSORIO G, Daniela A. (2014), en su tesis titulada "Evaluación, De La Estructura Del Pavimento Aplicando El Método PCI, En El Tramo Redoma La Piña – Distribuidor De Matanza Puerto Ordaz Estado Bolívar" Universidad Nororiental Privada Gran Mariscal de Ayacucho – Venezuela, tuvo como objetivo general evaluar, la estructura del pavimento aplicando el método PCI en el tramo Redoma la Piña – Distribuidor de Matanza, Puerto Ordaz, Estado Bolívar, esta tesis se basa por ser un tipo de investigación no experimental - descriptiva, Osorio concluye que el estado en que se encuentra el pavimento flexible de la vía tramo Redoma la Piña – Distribuidor de Matanza que consta de 1798.6 metros lineales, la cual fue dividida en 22 unidades de muestra, se encuentra en malas condiciones.

AMAYA CAMARGO, Andrés Fernando y ROJAS GUAVITA, Efraín Esteban (2017), con tesis titulada "Análisis Comparativo Entre Metodologías VIZIR Y PCI Para La Auscultación Visual De Pavimentos Flexibles En La Ciudad De Bogotá" Universidad Santo Tomás, Bogotá – Colombia, por ende el autor tuvo como objetivo general análisis comparativo entre las metodologías de auscultación visual VIZIR (Francia) y PCI (EE.UU), para un tramo vial, construido en pavimento flexible y ubicado en la ciudad de Bogotá D.C, los investigadores no registran metodología del proyecto, Amaya y Rojas concluyó que luego de evaluar y analizar el estado de deterioro del

pavimento de la vía de estudio, se consiguieron resultados similares, obteniendo una clasificación promedio general para todo el tramo estudiado. Por la metodología PCI se obtuvo una clasificación excelente, mientras que por la metodología VIZIR se obtuvo una clasificación buena.

Se presenta los antecedentes nacionales para el argumento de la tesis a los siguientes autores:

GUZMAN NAVARRO, Marco Antonio (2017), e su tesis titulada "Evaluación Superficial Del Pavimento Flexible De La Av. Jorge Basadre Grohmann Del Distrito De Pocollay Tramo Av. Jorge Basadre Grohmann Este – Av. Basadre Y Forero, Aplicando El Método Del PCI" Universidad privada de Tacna, la presente tesis tuvo como objetivo general determinar la evaluación superficial del pavimento flexible aplicando el método PCI para conocer el estado de conservación de la av. Jorge Basadre Grohmann del distrito de Pocollay tramo av. Jorge Basadre Grohmann Este – av. Basadre y Forero, esta tesis se basa por ser de tipo de investigación aplicada con enfoque mixto, el investigador concluyó que el estado de conservación del pavimento flexible del Tramo 01 y Tramo 02 se encuentra en Buena condición sin embargo las Unidades de Muestra N° 09, 20 y 24 del Tramo 01 y N° 05, 07, 10, 12 y 14 del Tramo 02, se encuentran en mala o muy mala condición.

TACZA HERRERA, Erica Betsabe y RODRIGUEZ PAEZ, Braulio Omar (2018), con tesis titulada "Evaluación de fallas mediante el método PCI y planteamiento de alternativas de intervención para mejorar la condición operacional del pavimento flexible en el carril segregado del corredor Javier Prado" Universidad Peruana de Ciencias Aplicadas – Lima, tuvo como objetivo general Proponer alternativas de intervención que permitan mejorar la condición operacional del pavimento flexible existente en el carril segregado del corredor Javier Prado, para ella la metodología que emplearon los autores fue un nivel de investigación descriptiva, Tacza y Rodríguez concluyeron que Mediante la aplicación del Método Pavement Codition Index (PCI) se determinó la condición actual del pavimento flexible en el carril segregado del corredor Javier Prado; a partir de ello, se pudo plantear adecuadas alternativas de intervención necesarias para mejorar la condición de la vía.

BURGA MUTTO, Marcos Eulogio (2019), en su tesis titulada "Evaluación De La Superficie Del Pavimento Flexible En La Av. Industrial Aplicando El Método Del PCI Y Índice De Rugosidad, Chimbote – Áncash 2019" Universidad César Vallejo – Chimbote, la presente tesis tuvo como objetivo general evaluación del pavimento flexible aplicando el método del PCI y índice de rugosidad de la Av. Industrial, del distrito de Chimbote, el autor presenta una metodología descriptiva no experimental, por lo tanto el investigador concluyó que el pavimento en su estado superficial es "Regular" y a nivel estructural es "Bueno", aun estando en buen estado tiene una mínima necesidad de refuerzo del paquete, esto está dado ya que con el tiempo, servicio y factores climáticos han influido en su deterioro.

Aunado a ello es laudable señalar que, como antecedentes locales se presenta a los siguientes autores:

SALAZAR TELLO, Anghelo Alexis (2019), tesis titulada "Evaluación De Las Patologías Del Pavimento Flexible Aplicando El Método PCI, Para Mejorar La Transitabilidad De La Carretera Pomalca - Tumán" Universidad César Vallejo – Chiclayo, la presente investigación tuvo como objetivo general evaluar las patologías del pavimento flexible aplicando el método PCI, para mejorar la transitabilidad de la carretera Pomalca – Tumán desde el km 0 + 000 al km 10 + 000, la tesis presenta una metodología de diseño de investigación no experimental – descriptiva. El investigador concluyó que los diferentes niveles de severidad de fallas encontrados en el tramo de la carretera Pomalca – Tumán son: exudación con una severidad media, abultamiento y hundimiento con una severidad baja, grietas longitudinales y transversales con una severidad baja, pulimiento de agregados con una severidad media, huecos con una severidad baja y ahuellamiento con una severidad media.

CAMPOS CRUZ, Magaly (2019), en su tesis titulada "Evaluación Del Pavimento Flexible Por El Método Del PCI, Calle Dorado Cuadra 1- 10 Del Distrito José Leonardo Ortiz – Chiclayo" Universidad César Vallejo – Chiclayo, la presente tesis tuvo como objetivo general evaluar el estado de conservación del pavimento flexible en la calle DORADO cuadra 1-10 del Distrito José Leonardo Ortiz – Chiclayo, mediante el método PCI, para ello la metodología empleada en esta investigación fue aplicada – descriptiva con enfoque mixto, la autora concluyó que se identificó y

cuantificó las fallas más pronunciadas en esta vía, así mismo se realizó una inspección de todas las posibles causas que involucran el deterioro del pavimento teniendo como resultado que las fallas con mayor índice de daño que se presentan en la Calle Dorado cuadra 1 – 10 son: Parques y Cortes Útiles, Agregado Pulido, desprendimiento de agregado, grietas de borde. Todas estas fallas están con un grado de severidad de H (ALTO).

GUEVARA CALDERON, Richard Esthalin (2019), tesis titulada "Evaluación Del Pavimento Flexible Mediante Métodos Del PCI Y VIZIR En El Tramo De La Carretera De Monsefú - Puerto Etén." Universidad César Vallejo — Chiclayo, la presente investigación tuvo como objetivo general evaluar el pavimento Flexible con los métodos VIZIR y PCI sobre el tramo de la vía del pavimento de la carretera de los distritos de Monsefú y Puerto Etén, Provincia de Chiclayo — Departamento de Lambayeque, esta tesis se basa por ser un tipo de investigación evaluativa no experimental, finalmente el autor concluyó que el grado de deterioro del PCI posee un índice de clasificación de 33.80%, según el cuadro de clasificación nos demuestra que es un pavimento Malo, y la evaluación del VIZIR otorga como deterioro Regular un índice de clasificación de 3.97%.

Respecto a las teorías relacionadas al tema de investigación, se ha recurrido a revistas internacionales indexada y libros:

Los pavimentos flexibles siempre son diseñados a base de parámetros, es por ello que los investigadores Haitao Zhang, Mingyang Gong, Tengjiang Yu (2018), en su artículo titulado, "Modificación y aplicación de la fórmula de conversión de carga por eje para determinar el volumen de tráfico en el diseño del pavimento", Revista Internacional de Investigación y Tecnología de Pavimentos, describen que "La mayoría de los pavimentos asfálticos están diseñados en base a los estantes de la deflexión de la superficie del pavimento y la tensión de tracción de la capa del pavimento" (p.582).

Los pavimentos asfalticos deben diseñarse según lo solicita la deflexión máxima de la superficie de rodadura y su tensión de tracción que es sometida a esfuerzos de cargas vehiculares que están normadas por el reglamento de ministerio de transportes y comunicaciones (MTC), según el tipo de vía.

Para diseñar el pavimento se debe conocer el tipo de suelo, el ambiente, el tráfico, etc. Teniendo esto se forman espesores de capas posterior a ello se realiza mantenimientos a cada capa que conforma el paquete estructural (Menéndez, José, 2016, p.10).

Se puede llamar pavimento a una formación de capas de materiales como de agregados finos, agregados gruesos, emulsión asfáltica, aditivos y entre otros materiales, estas capas comprenden desde la realización de la subrasante, sub base, base, capa de rodadura o carpeta asfáltica.

La estructura del pavimento flexible está formada por una capa bituminosa, esta descansa sobre la capa de la base y la base sobre la capa de la subbase (Montejo, Alfonso, 1998, p.2)

- Capa de rodadura o carpeta asfáltica: Esta carpeta está compuesta de emulsiones asfálticas (derivado de crudo de petróleo DISEL) y de agregados finos y grueso, esta carpeta cumple la función de mejorar la serviciabilidad del tránsito de los vehículos livianos y pesados.
- Base: Esta capa es muy importante de la estructura del pavimento y se encuentra conformada de agregados; su función principal es que los esfuerzos verticales recibidos de la carpeta asfáltica por parte de los vehículos que transitan por la vía logren expandir las cargas a la carpeta de subbase y subrasante.
- Subbase: Es una capa de la estructura del pavimento se encuentra conformada de material granular con el fin de retener la presencia de aguas freáticas, esta también, se encarga de recibir los esfuerzos emitidos tanto de la capa de rodadura y de la base, tiene la finalidad de que los esfuerzos verticales lleguen atenuados a la subrasante.
- Subrasante: Esta es una de las capas más importantes de la estructura del pavimento, ya que se encarga de sostener y recibir de manera distribuida los esfuerzos verticales presentados de la capa de rodadura, la base, subbase emitida directamente por las cargas vehiculares que circulan por la vía, la subrasante debe estar completamente uniforme con el fin de no presentar problemas a la formación de las capas anteriores a esta.

Muchos de los pavimentos flexibles sufren daños considerables, no obstante, los autores Zhen Fu [et al] (2017), en su artículo titulado, "Evaluación de laboratorio del rendimiento del pavimento utilizando una mezcla asfáltica modificada con un nuevo material de refuerzo compuesto", Revista Internacional de Investigación y Tecnología de Pavimentos, redactan que: "El rendimiento de los pavimentos asfálticos se ve fuertemente afectado por las propiedades de la mezcla asfáltica, el crecimiento del tráfico, las duras condiciones de alta temperatura y la pesada carga por eje" (p.507).

Una de las principales causas que deterioran a los pavimentos flexibles son las excesivas cargas que transportan los vehículos pesados, estas cargas que sobrepasan lo estipulado por la norma MTC por eje, tienden a marcar al pavimento y muchos más rápido si la temperatura supera los 40 grados centígrados.

La carpeta estructural asfáltica sufre deterioro en presencia del recurso hídrico, es por ello que los investigadores Liu Kefei, Deng Linfei, Zheng Jiayu (2016), en su artículo titulado, "Estudio a nanoescala sobre daños por agua para diferentes aglutinantes de asfalto de mezcla caliente", Revista Internacional de Investigación y Tecnología de Pavimentos, indican que: "El material y las características estructurales del pavimento de hormigón asfáltico lo hacen más susceptible a la condición de hidratación" (p.405).

Los pavimentos de carpeta asfáltica son vulnerables al agua. Las aguas al estar en la superficie tienden a filtrar en la carpeta de rodadura generando así la separación de la carpeta asfáltica con la carpeta de la base.

Los fenómenos naturales siempre trae consecuencias a los pavimentos flexibles, los autores Masuda Sultana [et al] (2016), en su artículo titulado, "Deterioro de las carreteras de Queensland afectadas por inundación – Un estudio de investigación", Revista Internacional de Investigación y Tecnología de Pavimentos, sostienen que "La frecuencia de precipitaciones extremas, ciclones y fenómenos de lluvia ha influido significativamente en el deterioro de la resistencia estructural y las condiciones de la superficie (como la rugosidad y el bache) de las aceras" (p.425).

Muchos de los pavimentos flexibles no cuentan con un respectivo bombeo ni con una cuenta, por ende, al ocurrir precipitaciones pluviales o colapsos de alcantarillas,

estás generan que las aguas queden retenidas en las superficies asfálticas y posterior a ello al no ser evacuada se puede visualizar una falla muy común que es la separación de agregados, entonces, al diseñar un pavimento siempre debe contar con un bombeo y una cuneta con la finalidad de que las aguas escurran a través de ellas y así no generar fallas superficiales ni estructurales.

Las cargas vehiculares y el medio ambiente juegan en contra de los pavimentos flexibles, los autores Amr Elhadidy, Emad Elbeltagi, Mohammad Ammar (2015), en su artículo titulado, "Análisis óptimo del mantenimiento del pavimento mediante algoritmos genéticos multiobjetivo", Revista HBRC, sostiene que: "Cuando el pavimento está en servicio, las cargas de tráfico y el medio ambiente lo deteriorarían. Por lo tanto, se invertiría una cantidad de fondos para mantenerlo en condiciones adecuadas para desempeñar su papel" (p.107).

Las inadecuadas acciones de control por parte de las entidades competentes crean las condiciones para que transportistas irresponsables sobre cargan los vehículos y que al transitar por las vías estas deterioran al pavimento. Y, por otro lado, el medio ambiente también daña gran parte de las vías, por lo tanto, al tener dos responsables que influyen en los deterioros progresivos, las autoridades locales y regionales deberían generar proyectos para la mejora de los pavimentos.

El pavimento es una estructura capaz de soportar cargas pesadas vehiculares. Según los autores Nasser, Reem, Ameen Rafeeq Y Moosa, Alaa (2017), en su artículo titulado, "Evaluación de fallas de pavimento flexible: un caso a estudiar en Izki Road", Revista Internacional de Ingeniería, Gestión y Ciencia Avanzadas (IJAEMS), señala que "el pavimento tiene una estructura multicapa, duradera y capaz de resistir las cargas vehiculares en toda el área de la vía" (p.741).

El paquete estructural del pavimento flexible tiene que cumplir las condiciones de resistir las cargas envidas por parte de los vehículos, cada capa que conforma la estructura del pavimento tiene que ser duradera e impermeable con la finalidad que cumpla con su tiempo de vida útil,

La mezcla asfáltica debe preservar propiedades para mejorar el tránsito vehicular, por lo tanto el investigador Purvansh B (2018), en su artículo titulado, "Proporción de arena y limo como criterio de diseño en el diseño de Mezclas de pavimentación

bituminosa", Revista Internacional De Ciencias e Investigación (IJSR), hace mención que "las principales propiedades que se incorporan en una mezcla de pavimentación son la estabilidad, durabilidad, flexibilidad y resistencia al deslizamiento" (p. 1257).

Cada realización de pavimento flexible siempre tiene que presentar las características diseñadas por el ingeniero a cargo de la realización del proyecto, ya que al momento de realizar el expediente técnico se hace uso de diferentes estudios con el fin de determinar la capacidad que logrará resistir la carpeta asfáltica.

Para poder lograr una excelente inspección se debe tener en cuenta una planificación, por lo tanto, el investigador Zumrawi, Magdi (2015), en su artículo titulado, "Encuesta y Evaluación de Pavimentos Flexibles", Revista Internacional De Ciencias e Investigación (IJSR), nos dice que para garantizar que la inspección y la evaluación de fallas del pavimento, se debe tener una planificación que nos ayude a la identificación de los daños (p.1604).

Cabe mencionar que los pavimentos flexibles son estructuras que de alguna manera sufren daño de algún tipo, es por ello que se debe lograr dar una inspección de calidad, con el fin de tener resultados del estado que se encuentra la vía asfáltica. Después de obtener estos resultados se procede a realizar una planificación que nos ayude a mejorar la transitabilidad vehicular.

La humedad es una de las causas que influyen en el deterioro del pavimento flexible, según los autores Akhila, Anusha y Jagadeesh (2020), en su artículo titulado, "Estudios experimentales sobre asfalto de masilla de piedra utilizando pavimento de asfalto recuperado", Revista Internacional De Ciencias e Investigación (IJSR), comentan que "el deterioro prematuro de las carreteras con superficie asfáltica se da por causa de la humedad, que generan que el mortero asfaltico pierda su capacidad de retener sus agregados" (p. 180).

Cabe recalcar que el pavimento flexible siempre va a tener problemas cuando hay presencia de agua sobre la capa asfáltica, ya que la humedad provoca la separación de los agregados que componen la estructura del pavimento, dando, así como consecuencia a los diversos tipos de fallas patológicas que uno puede

encontrar en un pavimento tales como pueden ser: grietas longitudinales, grietas horizontales, piel de cocodrilo, bacheo, zanjas, ahuellamiento, etc.

Para lograr una identificación de fallas en una vía de estudio debemos empezar por una inspección. Los investigadores Zulufqar Bin y Dr. Rakesh Gupta (2017), en su artículo titulado, "Estudio De Defectos En Pavimentos Flexibles Y Sus Mantenimiento", Revista Internacional de Investigación y Desarrollo de Ingeniería Reciente (IJRERD), los autores nos mencionan que la inspección frecuente de la carretera es esencial para identificar los defectos y sus causas y determinar las prioridades que afectan a la vía y tomar las medidas correctivas adecuadas (p. 31).

El desgaste diario, hace que las carreteras se vayan devaluando con el tiempo, es así que el diseño realizado comprenderá un tiempo límite de vida útil en el cual se deberá programar el mantenimiento requerido para que se mantenga en óptimas condiciones y posteriormente se evalúe y tome una nueva decisión que puede ser un nuevo diseño o simplemente un mejoramiento de la carpeta asfáltica.

Las fallas patológicas de un pavimento no solo se presentan en países de América del sur, por el contrario, los autores Ali Kadhim y Zahra Mahdi (2018), en su artículo titulado, "Evaluación de averías del pavimento asfáltico en Main - Carreteras en la ciudad de Al-Diwaniyah", Revista de la Universidad de Babylon / Ciencias de la Ingeniería, sostiene que:

[...]Las principales razones de la falla de la red de carreteras parte media de lraq, son la rápida apariencia y el aumento de la intensidad de la deformación con ausencia de mantenimiento periódico en las superficies del pavimento, el aumento del tráfico de pesos, debilidad de la subrasante, la deficiencia del sistema de drenaje y el mal diseño de la mezcla asfáltica (p. 72).

Como se logra leer en la cita de Kadhim y Zahra, este artículo nos da a entender que no solo los países latinoamericanos tenemos este tipo de problemas acerca de los pavimentos; igualmente se presenta este problema en otros países ubicados en los continentes de Asia y Europa sufren de estos inconvenientes. Uno de los factores importantes que se debe tener en cuenta para la realización del expediente técnico es el estudio de tráfico, este estudio permite saber la cantidad exacta de vehículos tanto menores como mayores que transitarán por la vía a ejecutar, no

obstante, este estudio permite saber cuál va a ser el espesor del asfalto a colocar y así poder dar una buena serviciabilidad a los vehículos que recorrerán el pavimento, ahora si este estudio falla, las consecuencias serán desastrosas ya que si se coloca una bicapa de asfalto para un tránsito de vehículo menor o ligero y a las finales son los vehículos mayores o pesados que transitan, entonces esta bicapa de asfalto no soportará las cargas pesadas de estos vehículos, dando así con las deformaciones o asentamientos en la vía.

Teorías correspondientes al Método PCI.

Para poder evaluar un pavimento flexible, se debe tener en cuenta qué es lo que se va a cuantificar y calificar, ya que muchas veces se llega a confundir el término evaluar un pavimento dañado.

Existen tres métodos para realizar una evaluación de pavimento, las cuales son: evaluación visual, estructural, funcional.

• Evaluación visual: Los Dres. Karim, Rubasi y Saleh (2016), en su artículo titulado, "Índice de condición del pavimento de carreteras (PCI) Evaluación y mantenimiento: Un estudio de caso de Yemen", Revista Internacional: Organización, Tecnología Y Gestión en la Construcción, señala que "el procedimiento PCI es estándar utilizado por la industria de la carretera para evaluar visualmente el estado actual del pavimento" (p.1448). y los autores Zoccali, Pablo, Loprencipe, Giuseppe Y Galoni, Andrea (2017), en su artículo titulado, Pavimentos de piedra Sampietrini: análisis y uso del método de índice de condición del pavimento, Revista internacional de Ciencia Aplicadas, redactan que "El método PCI es un indicador numérico, basado en la inspección visual de la capa de rodadura" (p. 6). Esta evaluación justamente como su nombre lo menciona es visual por lo que se utilizará la observación periódica para ver tipos de fallas que se encuentra deteriorando el nivel de serviciabilidad del pavimento de estudio, para ser este tipo de evaluación visual actualmente se cuenta con dos métodos más representativos, PCI y VIZIR (metodología de auscultación francesa).

- Evaluación Estructural: La evaluación estructural mayormente se da por tramos, tiene la función de ver cuál es la capacidad estructural que presenta el pavimento de estudio, para esta evaluación hay dos tipos de ensayos los destructivos: este ensayo se realiza a través de realización de calicatas en la cual ésta nos proporciona la visualización estructural del pavimento, como se mencionó líneas arriba; ensayos no destructivos: acá se hace uso de la viga Benkelman en la cual esta nos proporciona parámetros de deflexión para la identificación de la capacidad estructural del pavimento flexible.
- Evaluación funcional: Los autores Marcomini Pinatt [et al] (2020), en su artículo titulado, "Evaluación del índice de condición del pavimento por diferentes métodos: Estudio de caso de Maringá Brasil", Revista Perspectivas interdisciplinarias de la Investigación del Transporte, comentan que "La mejor forma de estudiar un servicio es a través del usuario, por ejemplo, analizando si la carretera es cómoda (es decir, funcional para el tráfico) al conducir un vehículo por ella" (p.1). Esta evaluación radica en una inspección a nivel superficial del pavimento, con el objetivo de ver cuáles son las principales patologías que originan el deterioro de la vía y la incomodidad de los conductores.

El método PCI cumple la función de indicar el estado en que se encuentra el pavimento. Los investigadores Mohammed Neami, Rasha Rubaee y Kareem, Zainab (2017), en su artículo titulado, "Evaluación del índice de condición del pavimento para carreteras de la ciudad de Al-Kut", Revista internacional de ingeniería y tecnología actuales, nos describen que "Al emplear el PCI es una de las comprobaciones de rendimiento más utilizadas y eficaz como indicador de la condición del pavimento" (p. 1461).

El PCI es un método que nos ayuda a evaluar visualmente los pavimentos que se encuentran en mal estado como son flexibles, rígidos, mixtos y bloques de piedra, este método proporciona una descripción rápida de los tipos de fallas encontradas en la carpeta asfáltica o mejor conocida capa de rodadura.

Hoy en día si un pavimento no alcanza su vida útil proyectada, significa que ha sufrido daños severos, por lo tanto, Ary Setyawan, Jolis Nainggolan y Arif Budiarto (2015), en su artículo titulado, "Predecir la vida útil restante de la carretera usando

el índice de condición del pavimento", Revista ingeniería de procedimientos, comentan que el PCI se basa en la clasificación subjetiva del número de patologías de pavimento, casi siempre el pavimento no alcanza la vida útil como se había previsto debido a la cantidad de razones que afectan al diseño (p. 418).

Al realizar una evaluación de pavimento nos podemos encontrar con diferentes daños patológicos que sufre la vía, dando como una conclusión rápida que el pavimento no va lograr alcanzar la vida útil que se proyectó, por los diferentes tipos daños que se pueden encontrar y los más comunes son:

- Ahuellamiento: Se define como marcación de las huellas de los vehículos tanto pesados como livianos en el pavimento flexible, para llamar ahuellamiento la longitud que debe tener de daño es aproximado de 6 metros y una de las posibles causas que genera esto es debido al número de repeticiones realizadas por los vehículos con sobrecarga.
- Hundimiento: Se define como descenso en un área de la capa asfáltica, y una de las posibles causas que genera esto es la mala nivelación y compactación de toda la estructuración restante del pavimento.
- Corrugación: Es una ondulación que se da en la capa de rodadura, formando montañas de asfalto simultáneamente ya sea perpendicular o paralela, una de la causa que generan este tipo de patología son los vehículos pesados con sobre carga estimada.
- Fisura longitudinal: Es un tipo de grieta que se da longitudinalmente en relación al sentido del carril, tienen un aparecido con la patología del ahuellamiento y una de las principales causas es el mal proceso de unión de las juntan longitudinales.
- Fisura transversal: Es un tipo de grieta que se da transversal en el sentido del carril, esta fisura puede lograr abarcar todo el ancho del sentido de vía.
- Fisura tipo piel de cocodrilo: Estas grietas son de tipo poligonal irregular, se pueden dar en todo el ancho de la vía y las fisuras tienden a semejarse a la piel de cocodrilo y una de las posibles causas se da por la falta de espesor de la carpeta asfáltica.
- Desintegración por desprendimiento o descubrimiento de agregados: Este tipo de falla se da a través del desgate de capa de rodadura dando como

consecuencia la separación de los agregados que conforman la estructura del pavimento, esta falla suele darse después de haber cumplido con la vida útil.

- Desintegración por baches: Esto se debe a la descomposición total de los agregados dando como consecuencia la formación de hoyos circulares, a este tipo de patología le podemos llamar como una falla estructural debido a que se pierde la continuidad de la vía, lo que genera esta patología mencionada es la humedad.
- Desintegración por pulimiento: Acá se ve que los agregados se separan del bitumen (mezcla de sustancias orgánicas viscosas), generando así que la capa de rodadura sea completamente lisa y una de las causas de este problema es la calidad de mezcla pobre para obtener el asfalto, dando posteriormente como resultado este tipo de falla.
- Bacheos y reparaciones: Mayormente esto se da cuando hay separación total de los agregados formando así los baches y por lo tanto suelen reemplazar con algún tipo de material y por consecuencia esto no queda uniforme a la superficie original del pavimento.

Una de las cualidades que presenta el método PCI es que hay un valor numérico de calificación para los daños presentados en las muestras de vías de estudios. El investigador Nurjanah (2018), en su artículo titulado, "Nivel de vulnerabilidad de daño del pavimento usando Método del índice de condición del pavimento", Revista de ciencias de EDP, los autores señalan que el método PCI es un índice numérico cuyo valor oscila entre 0 que indica que el pavimento es muy malo y 100 que es muy bueno (p. 3).

Para dar un resultado de la evaluación del método empleado PCI, se indica que se debe trabajar con parámetros numéricos, haciendo referencia que si el resultado es "0" esto nos indica que el pavimento está totalmente dañado y esto demanda a una reconstrucción general, ahora si el resultado es "100" esto quiere decir que el pavimento se encuentra en óptimas condiciones de dar un buen servicio de transitabilidad vehicular; por lo tanto, se debe programar mantenimientos periódicos.

Defino como mantenimiento a la acción de mejoramiento, cuidado y conservación de pavimentos, esto nos permite tener una mejora de la carpeta asfáltica, señalización e iluminación llegando otra vez a la meta original del proyecto que una vez fue entregado a los beneficiarios. Existen dos tipos de mantenimientos para brindar la mejora al pavimento flexible, los cuales son:

- Mantenimiento rutinario: Es una planificación de mantenimiento preventivo con el objetivo de cumplir a preservar las características de diseño del pavimento como fue ejecutado, dentro de este plan diario de actividades de conservación podemos encontrar como limpieza de obras de arte, limpieza de calzada y berma, renovación de pintura de señalización, etc. Este mantenimiento se puede visualizar mayormente por las empresas nacionales y privadas estas realizan un cobro de peaje para el libre tránsito vehicular, dentro de las nacionales se encuentra Provias Nacional y por parte de las privadas encontramos como Consorcio Concesión Chancay-Acos S.A, Concesionaria Interoceánica Sur S.A, Concesión Valle del Zaña S.A, etc.
- Mantenimiento Periódico: Bazlamit, Ahmad, Al-Suleiman (2017), en su artículo titulado, "Aplicaciones de mantenimiento de pavimentos utilizando sistemas de información geográfica", Revista ingeniería de procedimientos, los investigadores manifiestan que debemos establecer prioridades de mantenimiento y reparación, esto incluye una disposición para la evaluación periódica del rendimiento del pavimento para identificar secciones que necesitan de esta prioridad (p. 84). Este tipo de mantenimiento es correctivo se da mayormente a intervalos mayores de un año, dentro de este plan se encuentra como sellado de pavimentos, recarpeteo y reconstrucción de elementos de la vía, estos mantenimientos también la generan las empresas nacionales y privadas mencionadas en el párrafo anterior. Los autores Valentin Donev y Markus Hoffmann (2018), en su artículo titulado, "Optimización del mantenimiento de pavimentos y actividades de rehabilitación, horarios y zonas de trabajo para secciones breves de la encuesta y múltiples tipos de problemas", Revista internacional de ingeniería de pavimentos, los autores señalan que todos los tratamientos de pavimentos incluyen en la eliminación de las capas existentes

correspondientes (p. 588). Para tener una mejora del pavimento se debe analizar cuáles son los puntos más graves, posteriormente se debe aplicar un mantenimiento adecuado para mejorar la calidad de transitabilidad vehicular, si el daño de la vía es grave se debe aplicar un recarpeteo y así emparejar a la capa asfáltica que todavía se encuentra en buen estado.

Un buen mantenimiento reduce las fallas presentadas en las vías, los investigadores Sarfaraz Ahmed, P. Vedagiri y Krishna Rao (2017), en su artículo titulado, "Priorización de secciones de mantenimiento de pavimentos utilizando el proceso de jerarquía analítica basado en objetivos", Revista Internacional de Investigación y Tecnología de Pavimentos, señalan que la función del mantenimiento del pavimento es disminuir el deterioro del pavimento y extender la vida útil. El mantenimiento del pavimento, si no se realiza en los momentos adecuados está impacta negativamente en el transporte (p.158).

Como se sabe los mantenimientos son fundamentales para conservar las vías de tránsito, existen dos tipos el correctivo y el preventivo, y dentro de ellas las opciones de reparación como son: fresado, sellado de grietas, un bacheo profundo o parcial, recarpeteos, etc. Estas opciones ayudan a mejorar la superficie asfáltica.

Para realizar un mantenimiento en el pavimento flexible existe técnicas o plan de recuperación para mejorar nuevamente el pavimento las cuales son:

- Sellado de grietas longitudinales trasversales y borde: Consiste en rellenar las fisuras mayores a 1mm con productos de emulsiones asfálticas o lechada con la finalidad de emparejar nuevamente con el pavimento que no tiene daño.
- Bacheo o Parcheo: Este tipo de reparación es de las más comunes en fallas como piel de cocodrilo, huecos, hundimientos, desplazamientos, ahuellamientos, con severidades baja, media y alta. Existe dos tipos de bacheo y parcheo como es:

Parcial: Esta demanda a la eliminación parcial del área afectada, para corregir este daño se aplica un regado de imprimante y posterior a ello se aplica el asfalto con su debida compactación.

Profundo: A igual que la parcial consiste en eliminación del área afectada, por lo tanto, para corregir el daño se trabaja mejorando la base y después de ello se aplica el asfalto con su debida compactación.

- Tratamiento superficial: Este tratamiento se da para fallas como pulimiento de agregados ya que consiste en aplicar un regado de sello bituminoso en zonas donde se visualiza la presencia de la gravilla o piedra chancada en la carpeta asfáltica.
- Sustituir parche: Consiste en remover el parche que presenta el pavimento con un nuevo material bituminoso (asfalto) con la finalidad de igualar nuevamente la carpeta de rodadura.
- Reconstrucción: Llamado también recarpeteo se presenta en zonas donde la falla es crítica, consiste en mejorar la base y posterior a ello colocar un nuevo asfalto con se debida compactación.
- Fresado: Esta remueve las áreas que presenta daños leves como en fallas de ahuellamiento, agrietamiento en bloques, elevaciones y corrugaciones. El fresado consiste en remover el pavimento dañado con una maquina cilíndrica con uñas incorporadas a ella y después de ello se coloca asfalto donde fue removido y así emparejando nuevamente la carpeta de rodadura.

Es importante tener un presupuesto para dar mantenimiento a las vías, los investigadores Agarwal P., Khan A., Choudhary S. (2017), en su artículo titulado, "Una estrategia racional para la asignación de recursos para el mantenimiento de caminos rurales", Revista de Procedimientos de investigación de transporte, sostiene que la priorización del mantenimiento de los caminos de bajo volumen es esencial. Por lo tanto, existe una necesidad urgente de desarrollar una estrategia racional de asignación de recursos para el mantenimiento de las carreteras (p.2196).

Para la conservación de pavimentos y su relación con su presupuesto económico podemos establecer según la experiencia que es más económico invertir en la ejecución de planes de mantenimiento vial y que se logra dar la sostenibilidad de los servicio de tránsito en condiciones adecuadas, alcanzando la vida útil para la cual fue diseñada o esperar al deterioro progresivo de la infraestructura vial que implica en el mediano plazo ejecutar un proyecto de reconstrucción que resulta

sumamente anti económico, más aún si consideramos que esta obra no alcanzó su vida útil.

Por otra parte, el aporte que tiene la presente investigación en beneficio a la sociedad es que se realice la adecuada evaluación de la capa de rodadura de la avenida en estudio, siguiendo los parámetros correspondientes del método PCI y así lograr determinar cuál es el número de incidencia que presenta a nivel de serviciabilidad para los conductores que hacen uso de esta vía pública y a la vez analizar y establecer qué tipo de mantenimiento se puede otorgar para mejorar la calidad de transitabilidad vehicular, agregado a esto se pretende reducir los diferentes tipos de accidentes presentados en la vía de estudio, también lograr alcanzar que el pavimento cumpla con su vida útil proyectada por parte de los ingenieros.

A continuación, se presenta un glosario de términos:

- **1.** Agregados: Materiales de construcción llamados también agregados finos y gruesos estos materiales se encuentras en ríos y cerros rocosos.
- 2. Asfalto: Material bituminoso viscoso mezclado con agregados finos y gruesos, a la vez es parte de la estructura del pavimento flexible y se encuentra ubicada después de la capa de la base.
- 3. Asentamiento: Producido por el mal proceso constructivo de la estructura del pavimento (subrasante, sub base, base), es un descenso de nivel de la superficie de rodadura.
- **4.** Calicata: Excavación al terreno natural con finalidad de visualizar el tipo de suelo.
- Calzada: Ancho del pavimento donde se ubican los carriles de tránsito y pueden variar de 1 a 4 carriles por calzada.
- **6.** Recarpeteo: Acción de eliminar el asfalto dañado y emplear un nuevo asfalto de una determinada sección de la vía.
- **7.** Expediente técnico: Conjunto de documentos que sirven para alcanzar un proyecto a ejecutar ya sea obras verticales u horizontales.
- **8.** Inspección: Acto de verificar, examinar que cumplan con todo lo descripto en el expediente técnico.

- **9.** Mantenimiento: Acto de reparación, rehabilitación con finalidad de mejorar la obra pública o privada que se encuentra en un deterioro progresivo.
- **10.**Obra vial: Es la realización de un pavimento ya sea flexible, rígido o mixto con finalidad de mejorar el tránsito.
- **11.**Patología: Fallas o daños que se presentan en obras horizontales o verticales (edificios, pistas, puentes, represa, etc.).
- 12. Pavimento: estructura mejorada para brindar un buen tránsito vehicular.
- **13.** Pavimento flexible: Estructura conformada por una sub rasante, sub base, base y la carpeta asfáltica.
- **14.** Pavimento mixto: Es la realización de pavimento flexible y rígido en una sola vía.
- **15.** Pavimento rígido: Estructura conformada por una sub rasante, sub base y la carpeta de concreto armado.
- **16.**PCI: Manual de índice de condición de pavimento este contiene y detalla la evaluación superficial de pavimentos a la vez indica el rango y la clasificación que se encuentra la vía de estudio.
- 17. Presupuesto: Costo total de la realización de obras públicas o privadas.
- **18.**Reconstrucción: Elaboración de la misma obra que fue dañada o deteriorada.
- **19.** Vía: Pavimento por donde transitan los vehículos livianos y pesados.
- 20.VIZIR: Metodología de auscultación francesa, este método indica la calificación del pavimento de estudio y a la vez señala que existe daños estructurales y funcionales.

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

 Tipo de investigación: La presente investigación fue de tipo Aplicada porque permitió conocer y dar solución al problema que es la de evaluar el pavimento flexible de la AV. Mexico cuadras 32 a la 37 y determinar cuáles son las diferentes fallas presentadas en la vía de estudio y generar un plan de mantenimiento.

Por tal motivo señalo que el proyecto de investigación tuvo un enfoque cuantitativo porque se señaló de forma numérica los tipos de patologías existentes en la vía pública de estudio.

A la vez el nivel del proyecto de investigación fue descriptivo porque solo se basa en la medición y descripción en el desarrollo de la investigación. según los autores Cabezas Mejía, Edison; Andrade Naranjo, Diego Y Torres Santamaría, Johana (2018), se basa en describir los procesos de inspección, los sucesos, incidentes y hechos que sean analizados. (p. 68).

• **Diseño de investigación:** No experimental - transversal, porque no existe manipulación en las variables y se ejecutó con la recolección de información en un tiempo único.

3.2. Variables y operacionalización

En el presente proyecto se logró identificar dos variables como son: independiente y dependiente.

V.1: Método PCI.

V.2: Evaluación del pavimento flexible.

Con respecto a la Variable 1:

- Definición Conceptual: El método PCI describe la integridad estructural a través de la inspección ocular y la condición operativa de los pavimentos, y su determinación se basa en la identificación y la evaluación del nivel de gravedad de observadas en las superficies de pavimentos (Santos Bertha [et al], 2020, p.2).
- **Definición operacional:** se utilizó la técnica de la Observación Sistemática.

- Indicadores: Identificación de patologías y Estado del pavimento.
- Escala de medición: Razón, Nominal.

Con respecto a la Variable 2:

- Definición Conceptual: "La información precisa y oportuna sobre las características de la superficie del pavimento es fundamental para evaluar el desempeño, el estado y la seguridad de la infraestructura del pavimento. Tanto el diseño como la administración se basan para una evaluación integral del pavimento" (Wang Kelvin [et al], 2015, p. 391).
- **Definición operacional:** Superficial y Funcional.
- Indicadores: Tipos de falla, Nivel de falla, Indicador numérico de la falla patológica, Estado del pavimento, Mantenimiento rutinario y periódico, Material, Maquinaria, mano de obra.
- Escala de medición: Nominal y Razón.

3.3. Población, muestra y muestreo

Población: Para realizar el proyecto de investigación se consideró las vías del distrito de José Leonardo Ortiz, dentro de estas seleccione la avenida Mexico porque presenta un nivel de tránsito fluido vehicular. El investigador Rahi Samar (2017) comenta que "La población se puede definir como todas las personas o elementos que uno desea entender" (p. 3).

- Criterios de inclusión: Fallas patológicas de las cuadras 32 a la 37 de la avenida Mexico.
- Criterios de exclusión: Cuadras de la avenida Mexico que no presentan fallas patológicas.

Muestra: Una vez definida la población se decidió tomar muestra de la avenida Mexico de las cuadras 32 a la 37, estas cuadras presentan un pavimento con carriles opuestos y berma central. La longitud por carril es de 533 metros sumando ambos carriles tenemos 1066 metros, el manual PCI indica que la muestra debe tener un rango de 140 a 320 m^2 ; empleando el manual se optó por trabajar con un área de 240 m^2 que esto da 26 muestras. El investigador Taherdoost (2016) Comenta que "Siempre en una

investigación se realiza la selección de una muestra, con el fin de obtener datos importantes" (p.19).

Muestreo: Para la realización del procedimiento de muestreo se revisó el manual del PCI en cual nos indica la fórmula a emplear para determinar el muestreo, como resultado tenemos que de 26 muestras que se obtendrá en campo solo se evaluará 10 unidades, pero se determinó evaluar las 26 muestras para obtener un resultado más aceptable. Los investigadores Muhammad Saleem [et al] (2019) manifiestan que "Para limitar la cantidad de recursos necesarios para una inspección, se elaboró un plan de muestreo para que se pudiera evaluar un PCI racionalmente preciso inspeccionando sólo un número limitado de unidades de muestra en la sección del pavimento" (p.1371).

Unidad de análisis: La importancia que tiene la unidad de análisis es que tiene un enfoque puntual sobre lo que se ha estudiado, por lo tanto, las cuadras 32 a la cuadra 37 de la avenida Mexico fueron evaluadas por el método PCI, con el fin de numerar las fallas patológicas presentadas en la vía de estudio.

3.4. Técnicas e instrumentos de recolección de datos

- ✓ Técnicas de campo: Como sabemos esta técnica nos ayuda a obtener resultados directos observados en el área de estudio, por lo tanto, es de suma importancia la realización de la técnica mencionada porque se hará uso de instrumentos que nos permitan realizar mediciones de las patologías presentadas en el pavimento.
- √ Técnicas de gabinete: Una de las cualidades que representa esta técnica es que trabaja de la mano con la técnica de campo, porque terminado el trabajo de campo los resultados obtenidos pasan por un proceso de analizar los datos.

Tabla N°1: Visualización de las técnicas e instrumentos según objetivos específicos del pavimento de evaluación de la avenida Mexico cuadras 32 a la 37.

OBJETIVOS	POBLACIÓN	MUESTRA	TÉCNICA	INSTRUMENTO
"Determinar la manera en	Vías del	Avenida	Observación	- Manual PCI
que interviene el método	distrito José	Mexico de		- Reglas metálicas
PCI para el reconocimiento	Leonardo	las cuadras		- Wincha metálica y fibra de
de las fallas superficiales	Ortiz.	32 a la 37.		vidrio
del pavimento en la AV.		(1066 m)		- Ficha de observación.
Mexico cuadras 32 a la 37				
del Distrito de José				
Leonardo Ortiz"				
"Evaluar e indicar el rango y	Vías del	Avenida	observación	- Manual PCI
la clasificación del	distrito José	Mexico de	Análisis	- Ficha hoja de cálculo
pavimento de la AV. Mexico	Leonardo	las cuadras	documental	Excel
cuadras 32 a la 37 del	Ortiz.	32 a la 37.		
distrito de José Leonardo		(1066 m)		
Ortiz"				
"Indicar el mantenimiento	Vías del	Avenida	Análisis	-Ficha documental
adecuado para el pavimento	distrito José	Mexico de	documental	
de la AV. Mexico cuadras 32	Leonardo	las cuadras		
a la 37 del distrito de José	Ortiz.	32 a la 37.		
Leonardo Ortiz"		(1066 m)		
"Establecer el presupuesto	Vías del	Avenida	Análisis	- Ficha documental
total para la mejora de	distrito José	Mexico de	documental	- Software S10
pavimento de la AV. Mexico	Leonardo	las cuadras		
cuadras 32 a la 37 del	Ortiz.	32 a la 37.		
distrito de José Leonardo		(1066 m)		
Ortiz".				

Fuente: Elaboración propia.

3.5. Procedimiento

Como se tiene conocimiento, para realizar la evaluación del pavimento, se hizo uso de la observación en campo con el fin de detallar las fallas patológicas presentadas en la avenida Mexico cuadras 32 a la 37, una vez fijada el área de estudio, se procede a leer el manual de PCI, en este manual detalla que al pavimento se da una evaluación por muestras, esto nos quiere decir que hay parámetros que debemos respetar.

Una vez leído y entendido el manual se procedió a fraccionar las muestras por metros cuadrados como indica el PCI, como resultado hay un número de muestras obtenidas en campo.

Estos datos se trabajaron con una fórmula del manual mencionado con el fin de tener un muestreo claro y preciso que indicaron el número exacto por muestras a evaluar, entonces con las respectivas herramientas de medición se trabajó en campo para medir las fallas encontradas por muestras, respectivamente se llenaron las fichas de observación.

Como último paso los datos obtenidos se procedieron a trabajar en hojas de cálculo para tener una mayor información del estado actual del pavimento de estudio.

3.6. Método de análisis de datos

Para la realización de análisis de datos obtenidos en campo se trabajaron con el programa Microsoft Excel, en el cual este presenta hojas de cálculos que contienen fórmulas, gráficos, tablas, etc. Esto ha permitido tener un buen desarrollo de la información dada por la técnica del campo y así tener una mejor evidencia del estado actual que presenta la avenida Mexico cuadras 32 a la cuadra 37. La investigadora Johnston Melissa (2014), manifiesta que "El análisis de datos es un método viable para utilizar en el proceso de investigación cuando se sigue un proceso sistemático" (p. 619).

3.7. Aspectos éticos

El proyecto de investigación presentado es de autenticidad propia, se ha respetado los procedimientos de citas que contiene en toda la sección del proyecto, también se ha respetado la autenticidad de las citas de diversas latitudes. Cabe mencionar que todos los autores citados son de fuentes fidedignas, asimismo es meritorio expresar que los investigadores de las teorías relacionadas al tema son completamente de revistas indexadas cumpliendo así con el reglamento de la universidad César Vallejo.

IV. RESULTADOS

 El primer resultado que se desarrolló en la investigación es determinar la manera en que interviene el método PCI para el reconocimiento de las fallas superficiales del pavimento en la avenida Mexico cuadras 32 a la 37 del Distrito de José Leonardo Ortiz.

Detalles:

La avenida Mexico cuadras 32 a la 37 pertenece al distrito de José Leonardo Ortiz, la avenida de estudio está ubicada entre la avenida Mariano Cornejo y la calle Juan Tomis Stack, cuenta con una longitud por carril de 533 metros sumando ambos carriles tenemos 1066 metros lineales.

Figura N°1: Ubicación de la avenida de estudio.

Fuente: Elaboración Propia

1. Instrumentos:

- Ficha de observación Reglas metálicas
- Winchas métricas (metálica y fibra de vidrio).
- Manual PCI

2. Unidades de muestras:

26 muestras de evaluación de 240 m².

3. Fallas existentes:

Tabla N°2: Fallas patológicas encontradas en la avenida de estudio.

INDICADOR	FALLAS DE LA NORMA PCI	UNIDAD DE	FALLAS PRESENTADAS
NUMÉRICO		MEDIDA	EN LA AV. MEXICO 32-37
1	Piel de cocodrilo	2	Calla presentada
1	Piei de cocodrilo	m^2	Falla presentada
2	Exudación	m^2	
3	Agrietamiento en bloques	m^2	Falla presentada
4	Abultamientos y hundimientos	m	Falla presentada
5	corrugación	m^2	Falla presentada
6	Depresión	m^2	
7	Grieta de borde	m	Falla presentada
8	Grieta de reflexión de junta	m	
9	Desnivel de carril y berma	m	Falla presentada
10	Grietas longitudinales y	m	Falla presentada
	transversales		
11	Parcheo	m^2	Falla presentada
12	Pulimento de agregados	m^2	Falla presentada
13	Huecos	un	Falla presentada
14	Cruce de vía férrea	m^2	
15	Ahuellamientos	m^2	Falla presentada
16	Desplazamiento	m^2	Falla presentada
17	Grieta parabólica	m^2	Falla presentada
18	Hinchamiento	m^2	
19	Desprendimiento de agregado	m^2	Falla presentada
Fuerster Flak	oración Pronia		<u> </u>

Fuente: Elaboración Propia

Interpretación de tabla N°2: Mediante la observación que se realizó para la avenida Mexico cuadras 32 a la 37 se encontró la presencia de 14 fallas patológicas en el pavimento flexible, por lo tanto, el manual PCI indica la existencia de 19 fallas para pavimento flexible, esto nos dio a entender que la avenida de estudio presentó un porcentaje de 74% de fallas con respecto a las fallas del manual PCI.

4. Severidad de fallas del pavimento:

Tabla N°3: Severidades presentadas en el pavimento flexible del carril 1 de la avenida Mexico cuadra 32 a la 37.

INDICADOR	FALLAS PRESENTADAS EN	UNIDAD	SI	EVERIDA	ND
NUMERICO	CARRIL 1	DE	L	М	Н
		MEDIDA	Bajo	Medio	Alto
1	Piel de cocodrilo.	m^2	2	10	2
3	Agrietamiento en bloques.	m^2	1	1	0
4	Abultamientos y hundimientos.	m	1	1	0
5	Corrugación.	m^2	0	0	1
7	Grieta de borde.	m	1	1	0
9	Desnivel de carril y berma.	m	0	0	0
10	Grietas longitudinales y transversales.	m	10	0	0
11	Parcheo.	m^2	0	7	0
12	Pulimento de agregados.	m^2	2	2	0
13	Huecos.	un	4	7	8
15	Ahuellamientos.	m^2	0	3	0
16	Desplazamiento	m^2	0	0	0
17	Grieta parabólica.	m^2	1	0	0
19	Desprendimiento de agregado.	m^2	2	3	0

Fuente: Elaboración Propia.

Interpretación tabla N°3: Mediante la utilización de los instrumentos se logró identificar las severidades correspondientes del carril 1 que cuenta con una longitud de 533 m, las fallas que más destaco en este carril fue la falla de Huecos presentando los 3 tipos de severidades bajo, medio y alto teniendo un promedio

total de 19 Huecos en todo el carril 1 de la avenida de estudio y la que menos destacaron son la falla de Corrugación con una severidad alta y la falla de Grieta parabólica con una severidad leve.

Tabla N°4: Severidades presentadas en el pavimento flexible del carril 2 de la avenida Mexico cuadra 32 a la 37.

INDICADOR	FALLAS PRESENTADAS EN	UNIDAD	SI	EVERIDA	D
NUMÉRICO	CARRIL 2	DE	L	М	Н
		MEDIDA	Bajo	Medio	Alto
1	Piel de cocodrilo.	m^2	1	11	5
3	Agrietamiento en bloques.	m^2	0	1	0
4	Abultamientos y hundimientos.	m	2	1	1
5	Corrugación.	m^2	0	1	0
7	Grieta de borde.	m	0	3	0
9	Desnivel de carril y berma.	m	1	1	0
10	Grietas longitudinales y transversales.	m	8	2	0
11	Parcheo.	m^2	0	5	3
12	Pulimento de agregados.	m^2	2	1	1
13	Huecos.	un	0	8	10
15	Ahuellamientos.	m^2	0	2	0
16	Desplazamiento	m^2	0	2	0
17	Grieta parabólica.	m^2	2	0	0
19	Desprendimiento de agregado.	m^2	0	0	5

Fuente: Elaboración Propia.

Interpretación tabla N°4: Mediante la utilización de los instrumentos se logró identificar las severidades correspondientes del carril 2 que cuenta con una longitud de 533 m, las fallas que más destacaron en este carril fue los Huecos presentando 18 fallas de severidades medio y alto y seguido por la falla de Piel de cocodrilo presentando 17 fallas de los 3 tipos de severidades, y la que menos destacaron son la falla de Agrietamiento en bloques con una severidad medio y la falla de corrugación con una severidad medio.

2. El segundo resultado que se desarrolló fue evaluar e indicar el rango y la clasificación del pavimento de la avenida Mexico cuadras 32 a la 37 del distrito de José Leonardo Ortiz.

Tabla N°5: Calculo del rango y clasificación de las muestras del carril 1.

MUESTRAS	PROGE	RESIVA	ÁREA	RANGO	CLASIFICACIÓN
UM1	0+000	0+040	240 m²	40	MALO
UM2	0+040	0+080	240 m²	36	MALO
UM3	0+080	0+120	240 m²	47	REGULAR
UM4	0+120	0+160	240 m²	67	BUENO
UM5	0+160	0+200	$240m^2$	47	REGULAR
UM6	0+200	0+240	240 m²	43	REGULAR
UM7	0+240	0+280	240 m²	31	MALO
UM8	0+280	0+320	240 m²	73	MUY BUENO
UM9	0+320	0+360	240 m²	28	MALO
UM10	0+360	0+400	240 m²	52	REGULAR
UM11	0+400	0+440	240 m²	57	BUENO
UM12	0+440	0+480	240 m²	52	REGULAR
UM13	0+480	0+533	318 m^2	40	MALO

Fuente: Elaboración Propia.

Interpretación tabla N°5: Evaluación del PCI en el carril 1 que consta de 533 metros y en la cual fue divida por muestras de 240 m^2 , la evaluación nos dio a conocer el rango y la clasificación, la UM1 se obtuvo un rango de 40 y una clasificación de Malo; la UM2 se obtuvo un rango de 36 y la clasificación de Malo, la UM3 se obtuvo un rango de 47 y la clasificación de Regular; la UM4 se obtuvo un rango de 67 y la clasificación de Bueno; la UM5 se obtuvo un rango de 47 y la clasificación de Regular; la UM6 se obtuvo un rango de 43 y la clasificación de Regular; la UM7 se obtuvo un rango de 31 y la clasificación de Malo; la UM8 se obtuvo un rango de 73 y la clasificación de Muy Bueno; la UM9 se obtuvo un rango de 28 y la clasificación de Malo; la UM10 se obtuvo un rango de 52 y la clasificación de Regular; la UM11 se obtuvo un rango de 57 y la clasificación de Bueno; la UM12 se obtuvo un rango de 52 y la clasificación de Regular; la UM13 se obtuvo un rango de 40 y la clasificación de Malo.

Tabla N°6: Calculo del rango y clasificación de las muestras del carril 2.

MUESTRAS	PROGE	RESIVA	ÁREA	RANGO	CLASIFICACIÓN
UM1	0+000	0+040	240 m^2	33	MALO
UM2	0+040	0+080	240 m ²	44	REGULAR
UM3	0+080	0+120	240 m ²	71	MUY BUENO
UM4	0+120	0+160	240 m ²	45	REGULAR
UM5	0+160	0+200	$240m^2$	42	REGULAR
UM6	0+200	0+240	240 m²	37	MALO
UM7	0+240	0+280	240 m²	73	MUY BUENO
UM8	0+280	0+320	240 m²	33	MALO
UM9	0+320	0+360	240 m²	34	MALO
UM10	0+360	0+400	240 m²	56	BUENO
UM11	0+400	0+440	240 m ²	48	REGULAR
UM12	0+440	0+480	240 m ²	36	MALO
UM13	0+480	0+533	318 m^2	53	REGULAR

Fuente: Elaboración Propia.

Interpretación tabla N°6: Evaluación del PCI en el carril 2 que consta de 533 metros y en la cual fue divida por muestras de 240 m^2 , la evaluación nos dio a conocer el rango y la clasificación, la UM1 se obtuvo un rango de 33 y una clasificación de Malo; la UM2 se obtuvo un rango de 44 y la clasificación de Regular, la UM3 se obtuvo un rango de 71 y la clasificación de Muy Bueno; la UM4 se obtuvo un rango de 45 y la clasificación de Regular; la UM5 se obtuvo un rango de 42 y la clasificación de Regular; la UM6 se obtuvo un rango de 37 y la clasificación de Malo; la UM7 se obtuvo un rango de 73 y la clasificación de Muy Bueno; la UM8 se obtuvo un rango de 33 y la clasificación de Malo; la UM9 se obtuvo un rango de 34 y la clasificación de Malo; la UM10 se obtuvo un rango de 56 y la clasificación de Bueno; la UM11 se obtuvo un rango de 48 y la clasificación de Regular; la UM12 se obtuvo un rango de 36 y la clasificación de Malo; la UM13 se obtuvo un rango de 53 y la clasificación de Regular.

 El tercer resultado que se desarrolló fue Indicar el mantenimiento adecuado para el pavimento de la avenida Mexico cuadras 32 a la 37 del distrito de José Leonardo Ortiz.

Tabla N°7: Mantenimiento y plan de reparación del carril 1.

MUESTRAS	PROGR	RESIVA	RANGO	CLASIFICACIÓN	MANTENIMIENTO	PLAN DE REPARACIÓN
UM1	0+000	0+040	40	MALO	CORRECTIVO	Tratamiento superficial, sellado grietas, bacheo parcial, sello superficial.
UM2	0+040	0+080	36	MALO	CORRECTIVO	Tratamiento superficial, bacheo profundo, sellado grietas, bacheo profundo.
UM3	0+080	0+120	47	REGULAR	CORRECTIVO	Sellado grietas, bacheo profundo.
UM4	0+120	0+160	67	BUENO	PREVENTIVO	Sellado grietas, bacheo parcial, sustituir parche.
UM5	0+160	0+200	47	REGULAR	CORRECTIVO	Bacheo parcial, parcheo parcial, sustituir el parche.
UM6	0+200	0+240	43	REGULAR	CORRECTIVO	Parcheo parcial, sustituir el parche, bacheo parcial, reconstrucción.
UM7	0+240	0+280	31	MALO	CORRECTIVO	Parcheo parcial, bacheo parcial, reconstrucción.
UM8	0+280	0+320	73	MUY BUENO	PREVENTIVO	Sellado grietas, tratamiento superficial, bacheo parcial, reconstrucción.
UM9	0+320	0+360	28	MALO	CORRECTIVO	Parcheo profundo, sellado grietas, bacheo parcial, reconstrucción.
UM10	0+360	0+400	52	REGULAR	CORRECTIVO	Bacheo parcial, parcheo parcial.
UM11	0+400	0+440	57	BUENO	PREVENTIVO	Sellado grietas, sustituir parche, parcheo parcial, reconstrucción.
UM12	0+440	0+480	52	REGULAR	CORRECTIVO	Parcheo parcial, sellado grietas, sustituir parche, bacheo profundo.
UM13	0+480	0+533	40	MALO	CORRECTIVO	Parcheo parcial, sellado grietas, reconstrucción, bacheo profundo y parcial.

Fuente: Elaboración Propia.

Interpretación tabla N°7: Se indicó el mantenimiento correctivo y preventivo según la clasificación obtenida en la evaluación del cálculo PCI y el plan de reparación que indica el manual PCI, por lo tanto, en el carril 1 se detalla la reparación adecuada como: Tratamiento superficial, sellado grietas, bacheo parcial y profundo, sello superficial, reconstrucción y parcheo parcial.

Tabla N°8: Mantenimiento y plan de reparación del carril 2.

MUESTRAS	PROGF	RESIVA	RANGO	CLASIFICACIÓN	MANTENIMIENTO	PLAN DE REPARACIÓN
UM1	0+000	0+040	33	MALO	CORRECTIVO	Parcheo parcial, parcheo profundo, renivelación, sellado grietas, bacheo profundo, reconstrucción.
UM2	0+040	0+080	44	REGULAR	CORRECTIVO	Bacheo parcial y profundo, parcheo parcial, reconstrucción, sellado grietas.
UM3	0+080	0+120	71	MUY BUENO	PREVENTIVO	Sustituir parche, parcheo parcial y profundo.
UM4	0+120	0+160	45	REGULAR	CORRECTIVO	Bacheo profundo, parcheo parcial, tratamiento superficial.
UM5	0+160	0+200	42	REGULAR	CORRECTIVO	Sustituir el parche, parcheo parcial, reconstrucción, bacheo profundo.
UM6	0+200	0+240	37	MALO	CORRECTIVO	Reconstrucción, bacheo profundo, sellado grietas.
UM7	0+240	0+280	73	MUY BUENO	PREVENTIVO	Parcheo parcial, sellado grietas, sustituir parche, reconstrucción.
UM8	0+280	0+320	33	MALO	CORRECTIVO	Reconstrucción, tratamiento superficial, parcheo profundo, renivelación.
UM9	0+320	0+360	34	MALO	CORRECTIVO	Bacheo parcial y profundo, parcheo parcial, sellado grietas.
UM10	0+360	0+400	56	BUENO	PREVENTIVO	Sellado grietas, bacheo parcial, sustituir parche, parcheo parcial.
UM11	0+400	0+440	48	REGULAR	CORRECTIVO	Bacheo parcial, parcheo parcial, sellado grietas.
UM12	0+440	0+480	36	MALO	CORRECTIVO	Reconstrucción, sustituir parche, bacheo profundo, fresado.
UM13	0+480	0+533	53	REGULAR	CORRECTIVO	Parcheo parcial, tratamiento superficial, sustituir parche, bacheo parcial, sellado grietas, parcheo profundo.

Fuente: Elaboración Propia.

Interpretación tabla N°8: Se indicó el mantenimiento correctivo y preventivo según la clasificación obtenida en la evaluación del cálculo PCI y el plan de reparación que indica el manual PCI, por lo tanto, en el carril 2 se detalla la reparación adecuada como: Tratamiento superficial, sellado grietas, renivelación, bacheo parcial y profundo, sello superficial, reconstrucción y parcheo parcial y profundo y fresado.

- 4. El cuarto y último resultado que se desarrolló fue establecer el presupuesto total para la mejora de pavimento de la avenida Mexico cuadras 32 a la 37 del distrito de José Leonardo Ortiz.
- Realización de planilla de metrados.

Figura N°2: Planilla de metrados.

Item	Descripción	Und.	Metrado
01	MANTENIMIENTO DE PAVIMENTO AV. MEXICO C32 - C37		
01.01	OBRAS PRELIMINARES		
01.01.01	CARTEL DE OBRA	und	1.00
01.01.02	MOVILIZACION Y DESMOVILIZACION DE EQUIPOS (SUBCONTRATO)	est	1.00
01.01.03		m2	6,396.00
01.02	M OVIMIENTO DE TIERRAS		
01.02.01	CORTE Y ROTURA DE PAVIMENTO ASFALTICO	m2	375.57
1.02.02	FRESADO DE CARPETA ASFALTICA EN MAL ESTADO	m2	244.51
1.02.03	EXCAVACION A NIVEL DE BASE PARA BACHEO	m 3	2.40
1.02.04	ELIMINACION DE MATERIAL EXCEDENTE	m 3	59.54
01.03	PAVIMENTOS		
01.03.01	CONFORMACION, COMPACTADO Y NIVELADO DE BASE GRANULAR E: 0.20 CM	m2	9.59
1.03.03		m 3	9.59
1.03.04	IMPRIMACION ASFALTICA PARA BASE	m2	620.08
1.03.05	CARPETA ASFALTICA EN CALIENTE DE 2"	m2	620.08
1.03.06	SELLADO DE FISURAS Y GRIETAS	m	335.30
	SELLADO DE GRIETAS EN BLOQUES	m2	12.50
1.03.08	RENIVELACIÓN ASFÁLTICA	m2	3.70
01.04	SISTEMA DE DRENAJE PLUVIAL		
01.04.01	LIMPIEZA DE CUNETA RECTANGULAR	m	1,066.00
1.04.02	INCORPORACION DE REJILLA METALICA PARA CANALETAS A=0.30 m:	m	1,066.00
01.05	SEÑALIZACION Y SEGURIDAD VIAL		
01.05.01	CONSERVACION DE SEÑALES INFORMATIVAS	und	8.00
1.05.02	REPOSICION DE SEÑALES REGLAMENTARIAS	und	5.00
1.05.03	PINTURA ASFALTICA	m2	280.00
1.05.04	PINTADO DE SARDINELES	m	1,972.00
1.05.05	PINTADO DE GIBAS O RESALTOS	m2	126.00
1.05.06	MARCAS EN EL PAVIMENTO	m	752.00

Fuente: Elaboración Propia.

Interpretación figura N°2: Realización de la planilla de metrados; se indicó la unidad de medida y el metrado correspondiente que se trabajó en el software Excel.

• Realización del presupuesto en el software S10.

Figura N°3: Presupuesto de la avenida Mexico C32-C37.

RESP.: CELIS KEVI	N PERALTA SANCHEZ				
	Presupuesto				
Presupuesto	0203001 Mantemiento en Av. Mexico cuadra 32 - 37 (KP)				
Subpresupue sto	001 Mantenimiento	0.000	700702423	v:	
Cliente	\$10 S.A.C.	Costo al	22/05/202	1	
Lugar	LAMBAYEQUE - CHICLAYO - JOSE LEONARDO ORTIZ				
Item	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
01	MANTENIMIENTO DE PAVIMENTO AV. MEXICO C32 - C37				95,784.01
01.01	OBRAS PRELIMINARES				7,757.43
01.01.01	CARTEL DE OBRA	und	1.00	896.47	896.47
01.01.02	MOVILIZACION Y DESMOVILIZACION DE EQUIPOS (SUBCONTRATO)	est	1.00	2,000.00	2,000.00
01.01.03	TRAZO Y REPLANTEO EN OBRA	m2	6,396.00	0.76	4,860.96
01.02	MOVIMIENTO DE TIERRAS				9,748.14
01.02.01	CORTE Y ROTURA DE PAVIMENTO ASFALTICO	m2	375.57	17.33	6,508.63
01.02.02	FRESADO DE CARPETA ASFALTICA EN MAL ESTADO	m2	244.51	7.31	1,787.37
01.02.03	EXCAVACION A NIVEL DE BASE PARA BACHEO	m3	2.40	45.63	109.51
01.02.04	ELIMINACION DE MATERIAL EXCEDENTE	m3	59.54	22.55	1,342.63
01.03	PAVIMENTOS				20,143.47
01.03.01	CONFORMACIÓN, COMPACTADO Y NIVELADO DE BASE GRANULAR E: 0.20 CM	m2	9.59	19.77	189.59
01.03.02	BACHEO PROFUNDO CON MEZCLA ASFALTICA	m3	9.59	27.18	260.66
01.03.03	IMPRIMACION ASFALTICA PARA BASE	m2	620.08	2.28	1,413.78
01.03.04	CARPETA ASFALTICA EN CALIENTE DE 2"	m2	620.08	25.04	15,526.80
01.03.05	SELLADO DE FISURAS Y GRIETAS	m	335.30	6.78	2,273.33
01.03.06	SELLADO DE GRIETAS EN BLOQUES	m2	12.50	27.18	339.75
01.03.07	RENIVELACION ASFALTICA	m2	3.70	37.72	139.56
01.04	SISTEMA DE DRENAJE PLUVIAL				28,163.72
01.04.01	LIMPIEZA DE CUNETA RECTANGULAR	m	1,066.00	3.90	4,157.40
01.04.02	INCORPORACIÓN DE REJILLA METALICA PARA CANALETAS A=0.30 m:	m	1,066.00	22.52	24,006.32
01.05	SEÑALIZACION Y SEGURIDAD VIAL		2027-0417-	No. con	29,971.25
01.05.01	CONSERVACION DE SEÑALES INFORMATIVAS	und	8.00	33.49	267.92
01.05.02	REPOSICION DE SEÑALES REGLAMENTARIAS	und	5.00	688.25	3,441.25
01.05.03	PINTURA ASFALTICA	m2	280.00	10.10	2,828.00
01.05.04	PINTADO DE SARDINELES	m	1,972.00	10.10	19,917.20
01.05.05	PINTADO DE GIBAS O RESALTOS	m2	126.00	3.80	478.80
01.05.06	MARCAS EN EL PAVIMENTO	m	752.00	4.04	3,038.08
	COSTO DIRECTO				95,784.01
	GASTOS GENERALES 29.6232%				28,926.40
	UTILIDAD 10%				9,578.40
	SUBTOTAL				134,288.81
	MPUESTO (IGV 18%)				18,965.29
	mi stato (ot ton)				10,303.23
	TOTAL PRESUPUESTO				153,254.10
	SON: CIENTO CINCUENTA Y TRES IMIL DOCIENTOS CINCUENTA Y CUATRO Y 00/100 NUEVOS SO	LES			

Fuente: Elaboración Propia.

Interpretación figura N°3: Se trabajó en el software S10 la planilla de metrados, por lo que se obtuvo un total de presupuesto de s/. 153,254.10. Por ende, con este presupuesto se logrará mejorar la calidad transitabilidad vehicular.

V. DISCUSIÓN

Teniendo el primer resultado realizado que consistió en determinar la manera en que interviene el método PCI para el reconocimiento de las fallas superficiales del pavimento de la avenida Mexico cuadras 32 a la 37, se determinó los siguientes parámetros de intervención de evaluación: 1. Instrumentos: Las cuales fueron como ficha de observación donde se recopilo los datos de las fallas encontradas en el pavimento, reglas metálicas las cuales sirvieron para la medición del ancho de las fisuras, winchas métricas estas se utilizaron para tener la longitud total y el ancho total de las fallas y por último el manual PCI donde indica las severidades y el concepto de las 19 fallas que propone dicho manual. 2. Unidades de muestras: Se realizo previamente el cálculo de muestras por cada carril presentado en la avenida de estudio, teniendo como resultado de 24 muestras de 240 metros cuadrados y 2 muestras de 318 metros cuadrados las cuales ya fueron evaluadas en la avenida de estudio. 3. Fallas existentes: De acuerdo al manual PCI que menciona sus 19 fallas al detalle, por lo tanto, en el pavimento de la avenida Mexico cuadras 32 a la 37 se verifico la presencia de 14 fallas las cuales fueron: Piel de cocodrilo, agrietamiento en bloques, abultamientos y hundimientos, corrugación, grieta de borde, desnivel de carril y berma, grietas longitudinales y transversales, parcheo, pulimento de agregados, huecos ahuellamientos, desplazamiento, grieta parabólica y desprendimiento de agregado. 4. Severidad de fallas del pavimento: Este parámetro es muy impórtate en la intervención para el reconocimiento de fallas superficiales, el manual PCI indica de 3 tipos de severidades las cuales son: bajo, medio y alto a la vez detalle de manera precisa de como poder reconocer las severidades de las fallas presentadas en el pavimento flexible, la avenida de estudio presentó mayor incidencia de fallas en Huecos y piel de cocodrilo con los 3 tipos de severidades bajo, medio y alto a lo largo de los 1066 metros lineales del pavimento flexible.

Los autores TACZA, Erica y RODRIGUEZ, Braulio (2018) en su investigación desarrollada mencionaron con respecto a su primer objetivo 2 parámetros de evaluación las cuales fueron: 1. Fallas existentes: En su pavimento de estudio los autores identificaron la presencia de 8 fallas con respecto a las 19 que menciona el manual PCI, las fallas que encontraron son: Piel de cocodrilo, Agrietamiento en

bloque, Depresión, Grietas longitudinales transversales, Huecos, Ahuellamiento, Desplazamiento y Desprendimiento de agregados. 2. Severidad de fallas presentadas: Los investigadores indicaron que existe 3 tipos de severidades como baja, media y alta, en su proyecto de investigación mencionan mediante un cuadro sus fallas encontradas en su pavimento de estudio y las severidades que se encuentran estas fallas, la que más destacaron fue los Huecos, Ahuellamiento, Desplazamiento y Desprendimiento de agregados, estas presentaron los 3 tipos de severidades y la que menos destaco fue el agrietamiento en bloque presentando solo una severidad media.

Cabe mencionar que con los investigadores solamente señalaron 2 parámetros para el reconocimiento de fallas superficiales las cuales son: Fallas existentes y Severidad de fallas presentadas, por la cual yo estoy de acuerdo con esos 2 parámetros, pero la diferencia es que en mi tesis desarrollada hice mención de dos parámetros más las cuales son: Los instrumentos y las unidades de muestras, por ende juntando estos 4 parámetros se pudo determinar la manera en que intervino el método PCI para el reconocimiento de las fallas superficiales.

Con respecto al segundo resultado que se desarrolló evaluar e indicar el rango y la clasificación de las fallas patológicas del pavimento de la AV. Mexico cuadras 32 a la 37; se determinó el estado en que se encuentran las 26 muestras evaluadas de los carriles, en el carril 1 que cuenta con 13 muestras de evaluación presentaron mediante el cálculo del PCI 5 muestras de rango que oscila de 25 a 40 en clasificación de Malo, 5 muestras de rango que oscila de 40 a 55 en clasificación Regular, 2 muestras de rango que oscila de 55 a 70 en clasificación Bueno y 1 muestra de rango que oscila de 70 a 85 en clasificación de Muy Bueno, en cambio para el carril 2 presentaron de igual manera 5 muestras de rango que oscila de 25 a 40 en clasificación de Malo, 5 muestras de rango que oscila de 40 a 55 en clasificación Regular, 1 muestra de rango que oscila de 55 a 70 de clasificación Bueno y 2 muestras de rango que oscila de 70 a 85 en clasificación de Muy Bueno, es decir que de las 26 muestras evaluadas se obtuvo 10 muestras de pavimento Malo, 10 muestras de pavimento regular, 3 muestras de pavimento Bueno y 3 muestras de pavimento Muy Bueno.

Por lo tanto, la autora CAMPOS CRUZ, Magaly (2019), en su tesis señala con respecto al segundo objetivo que logró realizar el cálculo PCI determinó que su avenida de estudio tuvo un rango de 10 a 25 con una clasificación MUY MALO.

La investigadora internacional OSORIO, Daniela (2014) ella hizo mención es su tesis que evaluó 22 muestras en su pavimento de estudio y mediante el cálculo PCI logró identificar que el pavimento contaba con 11 muestras de clasificación MALO, 7 muestras de MUY MALO Y 4 muestras de FALLADO.

Las dos autoras señalan que mediante el cálculo PCI se logra identificar el estado actual del pavimento a evaluar, por la cual comparto la misma idea de las investigadoras ya que en mi avenida de estudio se realizó el cálculo del PCI y logré obtener que la avenida Mexico cuadras 32 a la 37 se encuentra en un rango de 40 a 55 en una clasificación de REGULAR.

Con respecto al tercer resultado que se trabajó fue Indicar el mantenimiento adecuado para el pavimento de la avenida Mexico cuadras 32 a la 37, se determinó de manera adecuada para las 26 unidades de muestras evaluadas el mantenimiento correctivo y preventivo según la clasificación obtenida en campo a través del cálculo PCI, y dentro de estas muestras su plan de reparación de las fallas existentes. Este plan se indicó a través del manual PCI ya que ahí menciona las reparaciones para las fallas presentadas en campo, las reparaciones que se plantearon en el pavimento evaluado son: Sellado de grietas, Bacheo parcial o profundo, Parcheo parcial o profundo, Tratamiento Superficial, fresado, Sustituir parche y reconstrucción; estas reparaciones se aplicarán con respecto a las fallas que se encontraron en las 26 muestras de evaluación de la avenida Mexico cuadras 32 a la 37.

El autor SALAZAR, Anghelo (2019), hizo mención en su tesis desarrollada un mantenimiento menor rutinario o llamado también mantenimiento preventivo, en sus 10 kilómetros de evaluación del pavimento flexible el obtuvo un rango de 55 a 70 con una clasificación de BUENO por lo cual explico un plan de mantenimiento para sus fallas encontradas como: aplicación de arena/agregados y cilindrado, reciclado en frio, parcheo profundo o parcial, sellado de grietas y tratamiento

superficial, todas estas reparaciones mencionadas le ayudaran a que su pavimento evaluado cumpla nuevamente el rango de 100 y la clasificación de EXCELENTE.

Cuando se realiza una evaluación con el método PCI se logra obtener el rango y la clasificación del pavimento flexible, una vez trabajado es muy importante generar un mantenimiento y un plan de reparación es por ello que comparto la idea con el autor Salazar ya que mencionamos para nuestros pavimentos evaluados un plan de reparaciones con el fin de que las pistas de estudio alcancen nuevamente su nivel de serviciabilidad cuando estas obras fueron entregadas a la población.

Con respecto al cuarto y último resultado que es establecer el presupuesto total para la mejora de pavimento de la avenida Mexico cuadras 32 a la 37, se realizó una planilla de metrados posterior a ello se trabajó con el software S10 con la finalidad de obtener el presupuesto total para mejorar la calidad transitabilidad vehicular de la avenida mencionada, se obtuvo un costo directo de S/ 95,784.01 a la vez también un costo de gastos generales de S/ 28,926.40 un costo de utilidad de S/ 9,578.40 teniendo así un subtotal de S/ 134,288.81 posterior a ello un impuesto (IGV 18%) de S/ 18,965.29; sumando el subtotal más el impuesto se determinó el presupuesto total de S/ 153,254.10 este presupuesto ayudará a mejorar los 1066 metros lineales de pavimento flexible de la avenida de estudio y así tener un tránsito fluido seguro vehicular tanto liviano como pesado.

No obstante, la autora internacional Osorio G. Daniela hace mención en estimar el costo para la reparación óptima de su vía llamada TRAMO REDOMA LA PIÑA – DISTRIBUIDOR DE MATANZA PUERTO ORDAZ ESTADO BOLÍVAR; esta vía consta de 1798.6 metros lineales de pavimento asfaltico, por la cual obtuvo un presupuesto de recuperación de Bs. 12,447,854.00 (Moneda boliviana), por lo tanto, con el monto presentado por la autora internacional su avenida de estudio quedaría nuevamente en buenas condiciones.

VI. CONCLUSIONES

- 1. Se logró determinar que la manera en que interviene el método PCI para el reconocimiento de las fallas superficiales, fue a través de 4 parámetros las cuales son: Instrumentos, Unidades de Muestra, Fallas existentes y Severidad de fallas del pavimento; estos cuatros parámetros mencionados líneas arriba, fueron aplicados en el pavimento de la avenida Mexico cuadras 32 a la 37 del Distrito de José Leonardo Ortiz, Chiclayo.
- 2. Se consiguió evaluar e indicar el rango y la clasificación de los 2 carriles del pavimento de la avenida Mexico cuadras 32 a la 37 dando como resultado que el carril 1 presenta un rango que oscila entre 40 a 55, con una clasificación de REGULAR y en el carril 2 de igual manera presenta un rango que oscila entre 40 a 55 con una clasificación de REGULAR.
- 3. Se determinó el mantenimiento preventivo para clasificación de BUENO Y MUY BUENO, y mantenimiento correctivo para la clasificación de REGULAR Y MALO, también se determinó el plan de reparación que indica el manual PCI (ASTM-D6433-03) según las fallas presentadas en las 26 muestras de evaluación las cuales fueron: Sellado de grietas, Bacheo parcial o profundo, Parcheo parcial o profundo, Tratamiento Superficial, fresado, Sustituir parche y reconstrucción.
- **4.** Se fijó el presupuesto de la avenida Mexico cuadras 32 a la 37 con un monto de recuperación de la vía asfáltica de S/ 153,254.10, con este monto se logra obtener nuevamente un pavimento en óptimas condiciones.
- 5. Se realizó una buena evaluación de pavimento flexible de la avenida de estudio mediante el método PCI, teniendo así el estado actual, el mantenimiento adecuado y el presupuesto total para mejorar el tránsito vehicular fluido y seguro.

VII. RECOMENDACIONES

- 1. Se recomienda que al identificar las fallas superficiales en el pavimento flexible o rígido se debe trabajar con parámetros, estos facilitan el trabajo en campo cuando se realiza la inspección, medición y concepto de las fallas presentadas.
- 2. Se recomienda hacer un trabajo de gabinete correcto para poder realizar el cálculo del rango y la clasificación del pavimento que se evalúa, pero no dejando de lado el procedimiento que indica el manual PCI.
- 3. Se recomienda proponer un plan de mantenimiento con su debido plan de reparación, como se sabe el cálculo PCI nos brinda el estado actual del pavimento y es por ello que debemos siempre indicar un mantenimiento con el fin de recuperar el estado inicial de la vía de estudio.
- **4.** Se recomida que, cuando se trabaje con el método PCI siempre realizar un presupuesto total de recuperación de vías tanto asfálticas o de concreto.

REFERENCIAS

ACOSTA, Carol y RUBIANO, Anggie. Identificación De Patologías En Pavimentos Del Corredor Siberia – Tenjo Por Medio Del Método PCI E Invias Y Reconocimiento De Especies Arbóreas Contiguas Al Tramo. Tesis a obtener (título de Ingeniera civil). Bogotá: Universidad Santo Tomas, 2017. 7-176 pp.

AKHILA K, ANUSHA, T y JAGADEESH, H. Experimental Studies on Stone Mastic Asphalt Using Reclaimed Asphalt Pavement for Binder Course. *International Journal of Science and Research* [en línea]. Junio 2020, vol. 9, n°6. [Fecha de consulta: 1 de octubre de 2020].

Disponible en https://www.ijsr.net/get_abstract.php?paper_id=SR20601130556.

ISSN: 2319-7064

ALI, Zaid, ZAHRA, Zaid. Evaluation of Asphalt Pavement Distresses in Main Roadways in Al-Diwaniyah City. *Journal of Babylon University/Engineering Sciences* [en línea]. 11 Enero 2018, vol. 26, n°1. [Fecha de consulta: 4 de octubre de 2020].

Disponible

https://www.journalofbabylon.com/index.php/JUBES/article/view/1186/934 ISSN:2616-9916

AMAYA, Andrés y ROJAS, Efraín. Análisis Comparativo Entre Metodologías VIZIR y PCI Para La Auscultación Visual De Pavimentos Flexibles En La Ciudad De Bogotá. Tesis a obtener (título de Ingeniero civil). Bogotá: Universidad Santo Tomas, 2017. 14-100 pp.

AMR, Elhadidy, EMAD, Elbeltagi y MOHAMMAD, Ammar. Optimum analysis of pavement maintenance using multi-objective genetic algorithms. *HBRC Journal* [en línea]. Abril 2015, vol. 11, n°1. [Fecha de consulta: 4 de octubre de 2020].

Disponible

https://www.sciencedirect.com/science/article/pii/S1687404814000182

AGARWAL, P., KHAN, A. y CHOUDHARY, S. A Rational Strategy for Resource Allocation for Rural Road Maintenance. *Transportation Research Procedia* [en línea]. 2017, vol. 25. [Fecha de consulta: 1 de octubre de 2020].

Disponible en https://doi.org/10.1016/j.trpro.2017.05.422

ISSN: 2352-1465

BAZLAMIT, Subhi, AHMAD, Hesham y SULEIMAN, Turki. Pavement Maintenance Applications using Geographic Information System. *Procedia Engineering* [en línea]. Marzo 2017, vol. 182. [Fecha de consulta: 2 de octubre de 2020].

Disponible

https://www.sciencedirect.com/science/article/pii/S1877705817312596?via%3Dihu b

ISSN: 1877-7058

BIN, Zulufqar, DR. GUPTA, Rakesh. Study Of Defects In Flexible Pavement And Its Maintenance. *International Journal of Recent Engineering Research and Development* [en Iínea]. Junio 2017, vol. 2, n°6. [Fecha de consulta: 2 de octubre de 2020]. Disponible en https://www.researchgate.net/publication/329642260_STUDY_OF_DEFECTS_IN_FLEXIBLE PAVEMENT AND ITS MAINTENANCE

ISSN: 2455-8761

BURGA, Marcos. Evaluación de la superficie del pavimento flexible en la Av. Industrial aplicando el método del PCI y Índice de Rugosidad, Chimbote – Áncash 2019. Tesis a obtener (título de Ingeniero civil). Chimbote: Universidad César Vallejo, 2019. 14-42 pp.

CABEZAS, Edison, ANDRADE, Diego y TORRES, Johana. Enfoques, Niveles Investigativos, Diseños. En su: Introducción a la metodología de la investigación científica. Sangolquí - Ecuador. Comisión Editorial de la Universidad de las Fuerzas Armadas ESPE, 2018. p. 68.

ISBN: 978-9942-765-44-4

CAMPOS, Magaly. Evaluación Del Pavimento Flexible Por El Método Del PCI, Calle Dorado Cuadra 1- 10 Del Distrito José Leonardo Ortiz – Chiclayo. Tesis a obtener (título de Ingeniera civil). Chiclayo: Universidad César Vallejo, 2019. 33-54 pp.

CONDITION Survey for Evaluation of Pavement Condition Index of a Highway. Por SALEEM, Muhammad [et al], Civil Engineering Journal [en línea]. Junio 2019, vol. 5, n°6. [Fecha de consulta: 3 de octubre de 2020].

Disponible

https://www.researchgate.net/publication/334032695_Condition_Survey_for_Evaluation of Pavement Condition Index of a Highway

ISSN: 2476-3055

DETERIORATION of flood affected Queensland roads – An investigative study. Por Masuda Sultana [et al], International Journal of Pavement Research and Technology [en línea]. Noviembre 2016, vol. 9, n°6. [Fecha de consulta: 3 de octubre de 2020].

Disponible en https://doi.org/10.1016/j.ijprt.2016.10.002

ISSN: 1996-6814

DONEV, Valentin y HOFFMANN, Markus. Optimisation of pavement maintenance and rehabilitation activities, timing and work zones for short survey sections and multiple distress types. *International Journal of Pavement Engineering* [en línea]. 24 Julio 2018, vol. 21, n°5. [Fecha de consulta: 3 de octubre de 2020].

Disponible en https://doi.org/10.1080/10298436.2018.1502433

ISSN: 1029-8436

EVALUATION of pavement condition index by different methods: Case study of Maringá, Brazil, por MARCOMINI, Pinatt [et al]. Transportation Research Interdisciplinary Perspectives [en línea]. Marzo 2020, vol. 4. [Fecha de consulta: 3 de octubre de 2020].

Disponible

https://www.sciencedirect.com/science/article/pii/S2590198220300117?via%3Dihu b

ISSN: 2590-1982

GUEVARA, Richard. Evaluación del Pavimento Flexible Mediante Métodos Del PCI y VIZIR en el Tramo de La Carretera de Monsefú - Puerto Etén. Tesis a obtener (título de Ingeniero civil). Chiclayo: Universidad César Vallejo, 2019. 18-33 pp.

GUZMAN, Marco. Evaluación Superficial Del Pavimento Flexible De La Av. Jorge Basadre Grohmann Del Distrito De Pocollay Tramo Av. Jorge Basadre Grohmann Este – Av. Basadre Y Forero, Aplicando El Método Del PCI. Tesis a obtener (título de Ingeniero civil). Tacna: Universidad Privada de Tacna, 2017. 20-157 pp.

HAITAO, Zhang, MINGYANG, Gong y TENGJIANG, Yu. Modification and application of axle load conversion formula to determine traffic volume in pavement design. *International Journal of Pavement Research and Technology* [en línea]. Noviembre 2018, vol. 11. n°6. [Fecha de consulta: 1 de octubre de 2020].

Disponible en https://doi.org/10.1016/j.ijprt.2017.12.007

ISSN: 1996-6814

JOHNSTON, Melissa. Secondary Data Analysis: A Method of which the Time Has Come. *Qualitative and Quantitative Methods in Libraries* [en línea]. Enero 2014, vol. 3. n°3. [Fecha de consulta: 1 de octubre de 2020].

Disponible

https://www.researchgate.net/publication/294718657_Secondary_Data_Analysis_ A_Method_of_Which_the_Time_has_Come

ISSN: 2241-1925

KARIM, Fareed, HALEEM, Khaled y ABDO, Ali. The Road Pavement Condition Index (PCI) Evaluation and Maintenance: A Case Study of Yemen. *Organization, Technology and Management in Construction* [en línea]. 27 Abril 2016, vol. 8. n°1. [Fecha de consulta: 2 de octubre de 2020].

Disponible en https://www.sciendo.com/article/10.1515/otmcj-2016-0008

ISSN: 1847-6228

LABORATORY evaluation of pavement performance using modified asphalt mixture with a new composite reinforcing material. Por ZHEN, Fu [et al], International Journal of Pavement Research and Technology [en línea]. Noviembre 2017, vol. 10. n°6. [Fecha de consulta: 2 de octubre de 2020].

Disponible en https://doi.org/10.1016/j.ijprt.2017.04.001

ISSN: 1996-6814

LEVEL vulnerability damage of pavement using Pavement Condition Index method. Por NURJANAH, Siti *[et al]*, *EDP Sciences* [en línea]. 30 Julio 2018, vol. 181. [Fecha de consulta: 2 de octubre de 2020].

Disponible en https://doi.org/10.1051/matecconf/201818111003

ISSN: 2261-236

LIU, Kefei, DENG, Linfei, ZHENG, Jiayu. Nanoscale study on water damage for different warm mix asphalt binders. *International Journal of Pavement Research and Technology* [en línea]. Noviembre 2016, vol. 9, n°6. [Fecha de consulta: 2 de octubre de 2020].

Disponible en https://doi.org/10.1016/j.ijprt.2016.11.001

ISSN: 1996-6814

MENÉNDEZ, José. Introducción. En su: Ingeniería de Pavimentos. Lima - Perú. 5ta. ed. Instituto de la Construcción y Gerencia – ICG, 2016. p.10.

ISBN: 978-612-4280-15-3

MOHAMMED, Neami, RASHA, Rubaee y KAREEM, Zainab. Evaluation of Pavement Condition Index for Roads of Al-Kut City. *International Journal of Current Engineering and Technology* [en línea]. 15 Julio 2017, vol. 7, n°4. [Fecha de consulta: 29 de septiembre de 2020].

Disponible

https://www.researchgate.net/publication/328611822_Evaluation_of_Pavement_C ondition Index for Roads of Al-Kut City.

ISSN: 2277-4106

MONTEJO, Alfonso. Pavimentos, constitución y conceptos generales. En su: Ingeniería de Pavimentos para Carreteras. Bogotá – Colombia. 2da. ed. Universidad Católica de Colombia Ediciones y Publicaciones, 1998. p.2.

ISBN: 958-96036-2-9

NASSER, Reem, AMEEN Rafeeq y MOOSA, Alaa. Evaluation of Flexible Pavement Failures-A Case Study on Izki Road. *International Journal of Advanced Engineering Management and Science* [en línea]. Julio 2017, vol. 3, n°7. [Fecha de consulta: 27 de septiembre de 2020].

Disponible en https://dx.doi.org/10.24001/ijaems.3.7.6

ISSN: 2454-1311

NETWORK level pavement evaluation with 1 mm 3D survey system. Por Wang Kelvin [et al], Journal of Traffic and Transportation Engineering, [en línea]. 20 Octubre 2015, vol. 2, n°6. [Fecha de consulta: 27 de septiembre de 2020].

Disponible en https://doi.org/10.1016/j.jtte.2015.10.005

ISSN: 2095-7564

OSORIO, Daniela. Evaluación, De La Estructura Del Pavimento Aplicando El Método PCI, En El Tramo Redoma La Piña – Distribuidor De Matanza Puerto Ordaz Estado Bolívar. Tesis a obtener (título de Ingeniera civil). Guayana: República Bolivariana De Venezuela Universidad Nororiental Privada Gran Mariscal De Ayacucho, 2014. 3-115 pp.

PAVEMENT condition assessment using soft computing techniques. Por AJIT Pratap [et al], International Journal of Pavement Research and Technology [en línea]. Noviembre 2018, vol. 11, n°6. [Fecha de consulta: 28 de septiembre de 2020].

Disponible en https://doi.org/10.1016/j.ijprt.2017.12.006

ISSN: 1996-6814

PEREIRA, Paulo, PAIS, Jorge. Main flexible pavement and mix design methods in Europe and challenges for the development of an European method. *journal of traffic and transportation engineering* [en línea]. Agosto 2017, vol. 4, n°4. [Fecha de consulta: 29 de septiembre de 2020].

Disponible en https://doi.org/10.1016/j.jtte.2017.06.001

ISSN: 2095-7564

PURVANSH, Shah. Sand Silt Ratio as Design Criteria in Design of Bituminous Paving Mixtures. *International Journal of Science and Research* [en línea]. Marzo 2018, vol. 7, n°3. [Fecha de consulta: 29 de septiembre de 2020].

Disponible en https://www.ijsr.net/get_abstract.php?paper_id=ART2018830

ISSN: 2319-7064

RAHI, Samar. Research Design and Methods: A Systematic Review of Research Paradigms, Sampling Issues and Instruments Development. *International Journal of Economics & Management Sciences* [en línea]. Noviembre 2017, vol. 6, n°2. [Fecha de consulta: 29 de septiembre de 2020].

Disponible

https://www.researchgate.net/publication/316701205_Research_Design_and_Met hods_A_Systematic_Review_of_Research_Paradigms_Sampling_Issues_and_Ins truments_Development

ISSN: 2162-6359

SALAZAR, Anghelo. Evaluación de las patologías del pavimento flexible aplicando el método PCI, para mejorar la transitabilidad de la carretera Pomalca – Tumán. Tesis a obtener (título de Ingeniero civil). Chiclayo: Universidad César Vallejo, 2019. 12-25 pp.

SARFARAZ, Ahmed, P. Vedagiri y KRISHNA, Rao. Prioritization of pavement maintenance sections using objective based Analytic Hierarchy Process. *International Journal of Pavement Research and Technology* [en línea]. Marzo 2017, vol. 10, n°2. [Fecha de consulta: 27 de septiembre de 2020].

Disponible en https://doi.org/10.1016/j.ijprt.2017.01.001

ISSN: 1996-6814

SETYAWAN, Ary, NAINGGOLANB, Jolis y BUDIARTOC, Arif. Predicting the remaining service life of road using pavement condition index. *Procedia Engineering* [en línea]. Noviembre 2015, vol. 25. [Fecha de consulta: 27 de septiembre de 2020]. Disponible

en https://www.sciencedirect.com/science/article/pii/S1877705815034256?via%3Dihu b

ISSN 1877-7058

TACZA, Erica y RODRIGUEZ, Braulio. Evaluación de fallas mediante el método PCI y planteamiento de alternativas de intervención para mejorar la condición operacional del pavimento flexible en el carril segregado del corredor Javier Prado. Tesis a obtener (título de Ingeniero civil). Lima: Universidad Peruana de Ciencias Aplicadas, 2018. 17-93 pp.

TAHERDOOST, Hamed. Sampling Methods in Research Methodology; How to Choose a Sampling Technique for Research. *International Journal of Academic Research in Management [*en línea]. Enero 2016, vol. 5, n°2. [Fecha de consulta: 29 de septiembre de 2020].

Disponible

https://www.researchgate.net/publication/319998246_Sampling_Methods_in_Research_Methodology_How_to_Choose_a_Sampling_Technique_for_Research

ISSN: 2296-1747

VALIDATION of an indirect data collection method to assess airport pavement condition. Por SANTOS, Bertha [et al], Case Studies in Construction Materials Sciences [en línea]. 28 Julio 2020, vol. 13. [Fecha de consulta: 27 de septiembre de 2020].

Disponible en https://doi.org/10.1016/j.cscm.2020.e00419

ISSN: 2214-5095

ZOCCALI, Pablo, LOPRENCIPE, Giuseppe y GALONI, Andrea. Sampietrini Stone Pavements: Distress Analysis Using Pavement Condition Index Method. *Applied Sciences* [en línea]. Junio 2017, vol. 7, n°7. [Fecha de consulta: 28 de septiembre de 2020].

Disponible en https://www.mdpi.com/2076-3417/7/7/669

ISSN 2076-3417

ZUMRAWI, Magdi. Survey and Evaluation of flexible Pavement Failures. *International Journal of Science and Research* [en línea]. Enero 2015, vol. 4, n°1. [Fecha de consulta: 28 de septiembre de 2020].

Disponible en https://www.ijsr.net/get_abstract.php?paper_id=SUB15542

ISSN: 2319-7064

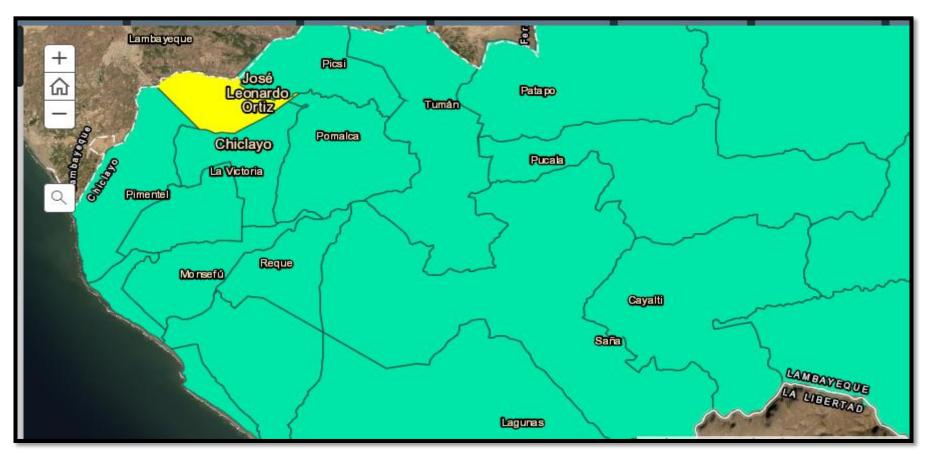
ANEXOS

• Anexo N.º 3: Matriz De Operacionalización De Variables: Variable Independiente.

VARIABLE 1	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA
o PCI	"El método PCI describe la integridad estructural a través de la inspección ocular y la condición operativa de los pavimentos, y su determinación se basa	Observación Sistemática	Inspección de calidad	Identificación de patologías	Razón
Método	en la identificación y la evaluación del nivel de gravedad de observadas en las superficies de pavimentos" (Bertha Santosa [et al], 2020, p.2).		Inspección del producto	Estado del pavimento	Nominal

• Anexo Nº.4: Matriz De Operacionalización De Variables: Variable Dependiente.

VARIABLE 2	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA
əle	"La información precisa y oportuna sobre las	Para poder realizar la evaluación del pavimento tendremos	Parámetros de evaluación	✓Instrumentos – unidades de muestras ✓Fallas existentes - severidad	Nominal
Evaluación del pavimento Flexible	características de la superficie del pavimento es fundamental para evaluar el desempeño, el estado y la seguridad	en cuenta los parámetros de evaluación, posterior a ello obtendré un rango y una	Rango y clasificación de fallas	✓ Indicador numérico de la falla patológica ✓ Estado del pavimento	Nominal
del pav	de la infraestructura del pavimento. Tanto el diseño como la	clasificación de fallas que presenta el pavimento, todo esto	Mantenimiento	✓Rutinario - preventivo ✓Periódico - correctivo	Nominal
Evaluación	administración se basan para una evaluación integral del pavimento" (Wang Kelvin [et al], 2015, p. 391)	mencionado tendré la finalidad de indicar un mantenimiento y un presupuesto adecuado.	Presupuesto	✓ Material ✓ Maquinaria ✓ Mano de obra	Ordinal


FUENTE: FUENTE: Elaboración Propia

• Figura N°4. Cálculo de la muestra, muestreo e intervalo de inspección muestreo.

27 5% 10 10	Unidades de		LONGITUDES DE UM Ancho de calzada (m) 5.0 5.5 6.0 6.5 7.3 (máximo)	Cuadro 2 IIDADES DE MUESTREO A Longitud de la unidad 46.0 41.8 38.3 35.4 31.5	de muestreo (m)
5% 10	Unidades de	muestreo	5.0 5.5 6.0 6.5 7.3 (máximo)	Longitud de la unidad 46.0 41.8 38.3 35.4 31.5	de muestreo (m)
5% 10	Unidades de	muestreo	5.0 5.5 6.0 6.5 7.3 (máximo)	46.0 41.8 38.3 35.4 31.5	
5% 10	Unidades de	muestreo	5.5 6.0 6.5 7.3 (máximo)	41.8 38.3 35.4 31.5	
5% 10	Unidades de	muestreo	6.5 7.3 (máximo)	35.4 31.5	
5% 10	Unidades de	muestreo			
5% 10	Unidades de	muestreo	a evaluar de 27 r	nuestras.	
5% 10	Unidades de	muestreo	a evaluar de 27 r	nuestras.	
5% 10	Unidades de	muestreo	a evaluar de 27 r	nuestras.	
10	Unidades de	muestreo	a evaluar de 27 r	nuestras.	
	Unidades de	muestreo	a evaluar de 27 r	nuestras.	
10	Unidades de	muestreo	a evaluar de 27 r	nuestras.	
27					
	27 10 2.7 2	10 2.7	10 2.7	10 2.7	10 2.7

FUENTE: Elaboración Propia

• Figura N°5. Ubicación del distrito de estudio.

FUENTE: Google earth pro

• Figura N°6. Ubicación del pavimento Av. Mexico C32 – C37.

FUENTE: Google earth pro

• Figura N°7. Ficha de observación de fallas.

	UNIVER	SIDAD CÉSAR VALLEJO			FICHA D	DE OBSE	RVACIÓN D	E FALLAS	;				
	NOMBRE	DE LA VÍA DE ESTUDIO			ΑV	ENIDA MEXI	CO CUADRAS 32 A	LA 37					
	UNII	DAD DE MUESTRA				UM	1-CARRIL 1						
	PRO	GRESIVA INICIAL					0+000						
	PRO	OGRESIVA FINAL					0+040						
	AN	ICHO DE LA VÍA				6	METROS						
	ÁRE	A DE LA UNIDAD					240 M2						
		EVALUADOR:				PERALTA SA	NCHEZ CELIS KEV	IN					
		FECHA:		6 DE MAYO DEL 2021									
						_							
Progresiva	Progresiva	Falla	Severidad	Ancho	Longitud	Altura	Ancho de fisura	Observación	Carril	Ancho Carril			
Inicial	Final			(m)	(m)	(cm)	(mm)			(m)			

FUENTE: Elaboración Propia

• Figura N°8. Instrumento de evaluación del pavimento.

			ÍNDIC	E DE CONDIC	IÓN DEL PAVII	MENTO			
TIMES.	ERSIDAD CÉS	AR VALLEIO	"Evaluación o				todo PCI en la		adras 32 a la
J GIVIV	ERSIDAD CES	AR VALLESO		37	Distrito José L	eonardo Ort	iz - Chiclayo 202	20"	
NOMBRI	E DE LA VÍA DE	ESTUDIO:		AV. MEXICO)			ESQUEMA	
UN	IDAD DE MUES	STRA:						-	
	OGRESIVA INIC								
	OGRESIVA FIN								
	CHO DE LA VÍA								
	DE LA UNIDAI								
AILLA	EVALUADOR:		PFRΔΙΤΔ	SÁN CHEZ CE	I IS K F\/ IN				
	FECHA:	•	TENALIA	SAIT CHILL CL	EIS KEVIIV				
	TECHA.								
N°	1	DAÑO		N°	1	DAÑO			
1	Piel de co co			11	Davela (m. 2)				
		_ ` '			Parcheo (m2	•	(2)		
2	Exudación (n		(2)	12	pulimiento d		(m2).		
3		to en bloque		13	Huecos (und				
4		tos y hundimi	entos (m2).	14	cruce de vía t				
5	Corrugación			15	Ahuellamien				
6	Depresión (n			16	Desplazamie				
7	Grieta de bo			17	Grieta parab				
8		flexión de jur	_ ` '	18	Hinchamient	<u> </u>			
9		ril / berma (m		19	Desprendimi	iento de agre	egados (m2).		
10	Gri etas longi	itudinales y tı	ransversales						
Daño	Severidad		Cantidades	s narciales		Total	Densidad (%)	Valor	
Dano	Severidad		- Cuntidude.	parciales		Total	Densidud (70)	deducido	
	-	-	l				TOTAL VD =		•
							TOTAL VD		
Núr	nero de valore	es deducidos	>2 (a)·				SEV ERI DA DES		İ
144		cido más alto			- 	Low	Baja	L	
Nićos					-				-
Nume	ero máximo de	valor de duc	ido (mi):		-	Medium	Media	M	
						High	Alta	Н	
					() (= -)				
	1		OR DEDUCIDO		(VDC)		1 1		
N°	1	VAI	LORES DEDUCI	JUS		VDT	q	VDC	
1	1			-					
2									
3									
4									
5									
6									
7									
							MAX VDC:		
INDICE	DE CON DICIÓN	DELPAVIME	NTO (PCI):	PCI: 100	- (MAX VDC o T	OTAL VD)]		
				PCI:					
							RANGO	CLASIFIC	CACION
COND	ICIÓN DEL EST	ADO DEL PAV	IMENTO:				100 - 85	Excel	ente
							85 - 70	Muy b	ueno
							70 - 55	Bue	$\overline{}$
							55 - 40	Regi	
							40 - 25	Ma	
							25 - 10	Muyı	
							10 - 0	Fall	
							10 - 0	Tulk	

FUENTE: Elaboración Propia

• Figura N°9. Hoja de cálculo carril 1 _ 0+000 - 0+040

					ONDICIÓN DE			-		
UNIVI	ERSIDAD CÉS	AR VALLEJO	"Evaluació	on del pavimo		utilizando el r Distrito José L		n la Avenida M z "	exico cuadras	32 a la 37
NOMBRE	DE LA VÍA DE	ESTUDIO:		AV. MEXICO					ESQUEMA	
UNII	DAD DE MUES	TRA:	U	IM1 - CARRIL	1					7
PRO	GRESIVA INIC	CIAL:		0+000						
	OGRESIVA FIN			0+000					40 1	m
	HO DE LA VÍA	` '		6					101	"
	DE LA UNIDAD		5554174	240		-				
	EVALUADOR: FECHA:			SÁNCHEZ CE E MAYO DEL 2					6 m	
	FECHA:		/ Di	E IVIA YO DEL 2	2021					
N°		DAÑO		N°		D/	AÑO			
1	Piel de cococ			11	Parcheo (m2					
2	Exudación (m	` '		12	· ·	de agregados	(m2).			
3	Agrietamien	to en bloque	(m2).	13	Huecos (und).				
4	Abultamient	os y hundimi	entos (ml).	14	cruce de vía	térrea (m2).				
5	Corrugación			15	Ahuellamier					
6	Depresión (n			16	Desplazamie					
7	Grieta de boi			17	Grieta parab					
8		lexión de jun		18	Hinchamien					
9 10	Desnivel carr	•	•	19	Desprendim	iento de agre	egados (m2).			
10	Grietas longi	tuumaies y tr	alisversales							
Daño	Severidad		Can	tidades parci	ales		Total	Densidad (%)	Valor deducido	
12	М	2.00	22.20				44.4	18.5	29	
10	L		25				25	10.4	10	
13		1.10	1.40			1.00	1.00	0.4	38	
19		3.50	11.40				39.9	16.6	22	ļ
19 1	 	1.90 1.50	7.80 1.70				14.82	6.2	0.4	
1	L	1.50	1.70				2.55	1.1	10	<u>[</u>
	Número de	valores dedu	ucidos >2 (a):					SEVERIDADES		
		ido más alto:		38	1		Low	Baja	L	
Núme	ro máximo de	valor deduci	do (mi):	6.7			Medium	Media	М	
							High	Alta	Н	
						1				
			OR DEDUCIDO		(VDC)					
N°	20		ORES DEDUCI		1 40	0.07	VDT	q	VDC	
2	38 38	29 29	22 22	10 10	10	0.07	109.07 111	6	55 58	
3	38	29	22	10	2	2	103	5 4	58 59	
4	38	29	22	2	2	2	95	3	60	
5	38	29	2	2	2	2	75	2	54	
6	38	2	2	2	2	2	48	1	48	<u> </u>
								MAX VDC:	60	
INDICE D	E CONDICIÓN	DEL PAVIME	NTO (PCI):	PC	I: 100 - (MAX	VDC o TOTAL	VD)			
				PCI:	40					
CONIC	CIÓN DEL ECT	A DO DEL DALL	IN ACRITO:		141.0			RANGO	CLASIFIC	
CONDI	CIÓN DEL ESTA	ADO DEL PAV	IIVIEN I O:	M	ALO			100 - 85	Excel	
								85 - 70 70 - 55	Muy b Bue	
								55 - 200	KPUI	
								55 - 40 40 - 25	Regi Ma	
								40 - 25 25 - 10	Muy ı	lo

• Figura N°10. Hoja de cálculo carril 1 _ 0+040 - 0+080

					CONDICIÓN DE			-		
J UNIV	/ERSIDAD CÉS	AR VALLEJO	"Evaluació	n del pavim		itilizando el r Distrito José L		n la Avenida M z "	exico cuadras 3	32 a la 37
NOMBR	E DE LA VÍA DE	ESTUDIO:		AV. MEXICO)				ESQUEMA	
UN	IDAD DE MUES	TRA:	L	JM2 - CARRIL	. 1	1				
PR	OGRESIVA INIC	CIAL:		0+040						
PR	ROGRESIVA FIN	IAL:		0+080					40 n	
AN	CHO DE LA VÍA	(m):		6					40 11	"
ÁREA	DE LA UNIDAD	• •		240		<u> </u>				
	EVALUADOR:			SÁNCHEZ CE		-			6 m	
	FECHA:		7 DE	MAYO DEL 2	2021				V	
N°		DAÑO		N°		D	AÑO			
1	Piel de cocoo			11	Parcheo (m2		-110			
2	Exudación (n	. ,		12		de agregados	(m2).			
3	-	to en bloque	(m2).	13	Huecos (uno		,			
4		os y hundimi		14	cruce de vía	<u> </u>				
5	Corrugación	(m2).		15	Ahuellamie	nto (m2).				
6	Depresión (n			16	Desplazamie	, ,				
7	Grieta de boi	, ,		17	Grieta parab					
8		lexión de jun		18	Hinchamien	, ,	1 1			
9		ril / berma (m	•	19	Desprendim	iento de agre	egados (m2).			
10	Grietas iongi	tudinales y tr	ansversales	ļ						
Daño	Severidad		Can	tidades parci	iales		Total	Densidad (%)	Valor deducido	
12	М	2.70	4.90				13.23	5.5	19	
13	Н	0.70	0.65			1.00	1.00	0.4	38	
10	L		10.00				10.00	4.2	0.4	
1	М	4.20	2.70				11.34	4.7	38	
7	L		7.70				7.70	3.2	0.3	
15	M	0.30	0.90				0.27	0.1	0.5	
	Número de	valores dedu	icidos >3 (a).					SEVERIDADES		
		ido más alto:		38			Low	Baja	L	
Núme	ero máximo de			6.7			Medium	Media	M	
			· · · ·	•			High	Alta	Н	
			OR DEDUCIDO		(VDC)			<u> </u>		
N°	1		LORES DEDUCI		1		VDT	q	VDC	
1	38	38	19	0.5	0.4	0.21	96.11	6	47	
3	38 38	38 38	19 19	0.5 0.5	0.4	2 2	97.9 99.5	5 4	51 57	
4	38	38	19	2	2	2	101	3	64	
5	38	38	2	2	2	2	84	2	60	
6	38	2	2	2	2	2	48	1	48	
	•			•	•	•	•	MAX VDC:	64	
INDICE	DE CONDICIÓN	DEL PAVIMEI	NTO (PCI):		PCI: 100 -	MAX VDC)]		
				PCI:	36					
20	10161-25: ===	4 DO DEL	IN ACNITO					RANGO	CLASIFIC	
COND	ICIÓN DEL ESTA	ADO DEL PAV	IIVIENTO:	N	1ALO			100 - 85	Excele	
								85 - 70 70 - FF	Muy b	
								70 - 55 55 - 40	Bue Regu	
								40 - 25	Ma	
								25 - 10	Muy r	

FUENTE: Elaboración Propia

• Figura N°11. Hoja de cálculo carril 1 _ 0+080 - 0+120

5 1			4	E DE CONDICION DE PROPERTO DE LA CONDICIO DEL CONDICIO DEL CONDICIO DE LA CONDICIO DE LA CONDICIO DEL CONDICI			odo PCI en la	a Avenida Mexic	o cuadras 3
UNIV	ERSIDAD CÉS	AR VALLEJO		<u>. </u>		rito José Leor			
NOMBR	E DE LA VÍA DE	ESTUDIO:		AV. MEXICO			ESC	QUEMA	
UN	IDAD DE MUES	TRA:	L	IM3 - CARRIL 1					
	OGRESIVA INIC			0+080					
	OGRESIVA FIN			0+120		4		40 m	
	CHO DE LA VÍA	• •		6		4			
AKEA	DE LA UNIDAD EVALUADOR:		DEDALTA	240 SÁNCHEZ CEL	IS VEVIN	+			
	FECHA:			MAYO DEL 20			6 r	n	
N°		DAÑO		N°		D	AÑO		
1	Piel	de cocodrilo	(m2).	11			eo (m2).		
2		xudación (m		12	р	ulimiento de	agregados (r	m2).	
3	Agrietan	niento en blo	que (m2).	13		Hueco	s (und).		
4			mientos (ml).	14			a térrea (m2)		
5		orrugación (n		15			niento (m2).		
6		epresión (m		16		•	niento (m2).		
7		eta de borde	` '	17			abolica (m2).		
9		reflexión de el carril / bei		18 19	Door		iento (m2).	os (m2)	
10			transversales	19	Desi	prendimiento	de agregado	os (m2).	
	Giretasions	ituamaies y	cransversares						
Daño	Severidad		Cantidades parciales Tota		es parciales Total Densid		Densidad (%)	Valor deducido	
10	L		9.00				16.50	6.9	0.8
10	L	0.25	7.50			+		+	
13 13	H	0.25	0.20 0.22			2	2.00	0.8	49
15	M	0.32	3.80				1.22	0.5	11
	Número de	valores ded	ucidos >2 (q):					SEVERIDADES	
	Valor deduc	ido más alto	:	49			Low	Baja	L
Núme	ero máximo de	valor deduc	ido (mi):	5.7			Medium	Media	M
							High	Alta	Н
					(D.0)	1			
N°			OR DEDUCIDO LORES DEDUCI	•	/DC)		VDT	 -	VDC
1	49	11	0.56			+	VDT 60.6	q 3	VDC 42
2	49	11	2				62	2	46
3	49	2	2				53	1	53
						1			
						<u> </u>		MAX VDC:	53
INDICE	DE CONDICIÓN	DEL PAVIME	NTO (PCI):	DC:		(MAX VDC)		_	
				PCI:	47		RANGO	LASIFICACION	
COND	ICIÓN DEL ESTA	ADO DEL PAV	'IMENTO:	REGU	JIAR		100 - 85	Excel	
55,115				REG			85 - 70	Muy b	
							70 - 55	Bue	
							55 - 40	Regu	
							40 - 25	Ma	
							25 - 10	Muy r	
							10 - 0	Falla	ido

• Figura N°12. Hoja de cálculo carril 1 _ 0+120 - 0+160

			ÍNDIC	E DE CONDI	CIÓN DEL PAVII	MENTO			
TI UNI	VERSIDAD CÉS	AR VALLEJO	"Evaluación (del pavimen	to flexible utili	zando el mé	todo PCI en la	Avenida Mexic	co cuadras 3
1, 5,11					a la 37 Dist	rito José Leo	nardo Ortiz"		
			1			1			
	RE DE LA VÍA DE			AV. MEXICO		4	ESQ	UEMA	
	IIDAD DE MUES			JM4 - CARRII	_ 1	-			
	ROGRESIVA INIC ROGRESIVA FIN			0+120 0+160		+			
	ICHO DE LA VÍA			6		1		40 m	
	A DE LA UNIDAD	• •		240		1			
	EVALUADOR:		PERALTA	SÁNCHEZ CE	ELIS KEVIN	1			
	FECHA:		7 D	E MAYO DEL	2021		6 r	n	
	_				_				
N°		DAÑO		N°			AÑO		
1	Piel de cocoo			11	Parcheo (m2		(0)		
2	Exudación (n	,	(2)	12		de agregados	(m2).		
<u>3</u> 4	Agrietamien Abultamient			13 14	Huecos (uno cruce de vía	•			
5	Corrugación		ciitos (IIII).	15	Ahuellamie	, ,			
6	Depresión (n			16	Desplazamie				
7	Grieta de bo			17	Grieta parab				
8	Grieta de ref		nta (ml).	18	Hinchamien				
9	Desnivel carı	ril / berma (m	nl).	19	Desprendim	iento de agr	egados (m2).		
10	Grietas Iongi	tudinales y t	ransversales						
Daño	Severidad		Can	tidades parc	iales		Total	Densidad (%)	Valor
			1				1000	2011010000 (70)	deducido
10 10	L		4.00 19			-	23.00	9.6	0.9
13	M	0.21	0.21		+				
13	M	0.23	0.25			2.0	2.00	0.8	29
11	M	2.50	1.50				3.75	1.6	11
					_				
			ucidos >2 (q):	T				SEVERIDADES	
B1 (ido más alto		29	_		Low	Baja	L
Num	ero máximo de	vaior deduc	ido (mi):	7.5	_		Medium High	Media Alta	M H
							підіі	Aita	п
		VAL	OR DEDUCIDO	CORREGIDO	(VDC)		-		
N°			LORES DEDUC		· · · ·		VDT	q	VDC
1	29	11	0.45				40.45	3	28
2	29	11	2				42	2	31
3	29	2	2				33	1	33
	+				+		1	+	
	I	<u> </u>	<u> </u>	1		I.	1	MAX VDC:	33
INDICE	DE CONDICIÓN	DEL PAVIME	NTO (PCI):		PCI: 100 - ((MAX VDC)			
				PCI:	67	,			
							RANGO	CLASIFIC	CACION
CONE	DICIÓN DEL ESTA	ADO DEL PAV	IMENTO:	В	JENO		100 - 85	Excel	
						•	85 - 70	Muy b	
							70 - 55	Bue	
							55 - 40	Regi	
							40 - 25	Ma	
							25 - 10	Muy i	
							10 - 0	Falla	100

FUENTE: Elaboración Propia

• Figura N°13. Hoja de cálculo carril 1 _ 0+160 - 0+200

JI UNIV	VERSIDAD CÉS	AR VALLEJO	"Evaluació			tilizando el r		n la Avenida M z "	exico cuadras 3	32 a la 37	
-	E DE LA VÍA DE			AV. MEXICO				ESQUEMA			
	IDAD DE MUES		L	JM5 - CARRIL	.1						
	OGRESIVA INIC			0+160							
	ROGRESIVA FIN CHO DE LA VÍA			0+200 6					40 n	n	
	DE LA UNIDAD	· ·		240							
711127	EVALUADOR:		PERALTA	SÁNCHEZ CE	LIS KEVIN						
	FECHA:			E MAYO DEL 2					6 m		
			•								
N°		DAÑO		N°		D	AÑO				
1	Piel de cocod	· '		11	Parcheo (m2						
2	Exudación (m			12	pulimiento		(m2).				
3	Agrietamient	•		13	Huecos (und						
5	Abultamient	-	entos (ml).	14 15	cruce de vía						
6	Corrugación (Depresión (m			16	Ahuellamier Desplazamie	• •					
7	Grieta de bor	-		17	Grieta parab						
8	Grieta de refl	• •	ıta (ml).	18	Hinchamien						
9	Desnivel carr			19	Desprendim	, ,	egados (m2).				
10	Grietas longi		•		· · · ·						
Daño	Severidad		Can	tidades parci	iales		Total	Densidad (%)	Valor deducido		
13	L	0.32	0.21			1	1.00	0.4	10		
13	М	0.20	0.15			1	1.00	0.4	19		
1	М	1.50	7.40			11.10	21.78	9.1	47		
1	M	1.20	8.90			10.68	21.78	9.1	47		
11	M	0.50	1.70				0.85	0.4	13		
			ucidos >2 (q):					SEVERIDADES			
		ido más alto:		47			Low	Baja	L		
Núm	ero máximo de	valor deduci	do (mi):	5.9	_		Medium	Media	M		
							High	Alta	Н		
		VAL	OR DEDUCIDO	CORREGIDO	(VDC)						
N°	 		LORES DEDUCI	1			VDT	q	VDC		
1	47	19	13	9			88	4	52		
2	47	19	13	2			81	3	51		
3	47 47	19 2	2	2	+		70 53	1	51 53		
4	47		2				55	1	53		
	+										
					•		I	MAX VDC:	53		
INDICE	DE CONDICIÓN	DEL PAVIME	NTO (PCI):		PCI: 100 - (MAX VDC)					
				PCI:	47			RANGO	CLASIFIC	ACION	
COND	OICIÓN DEL ESTA	ADO DEL PAV	IMENTO:	Re	gular			100 - 85	Excele		
20.112		0 5221710		Re	Dalai			85 - 70	Muy bu		
								70 - 55	Bue		
								55 - 40	Regu	ılar	
								40 - 25	Mal		
								25 - 10	Muy n		
								10 - 0	Falla	do	

FUENTE: Elaboración Propia

• Figura N°14. Hoja de cálculo carril 1 _ 0+200 - 0+240

-			"Evaluacio		CONDICIÓN DE ento flexible u			n la Avenida Me	exico cuadras	32 a la 37
UNI	VERSIDAD CÉS	AR VALLEJO		- aci pariii			Leonardo Orti			
IOMBR	RE DE LA VÍA DE	ESTUDIO:		AV. MEXICO)				ESQUEMA	
UN	IIDAD DE MUES	TRA:	Į	JM6 - CARRII	.1	1				
PR	ROGRESIVA INIC	CIAL:		0+200						
	ROGRESIVA FIN			0+240]			40 г	n
	ICHO DE LA VÍA			6		1			10.	"
AREA	A DE LA UNIDAD	<u> </u>	25544	240		-				
	EVALUADOR: FECHA:			SÁNCHEZ CE				=	6 m	
	FECHA:		7.0	E MAYO DEL	2021					
N°		DAÑO		N°		D	AÑO			
1	Piel de cocoo	drilo (m2).		11	Parcheo (m2	2).				
2	Exudación (n			12		de agregados	s (m2).			
3		to en bloque		13	Huecos (und	•				
4		os y hundimi	entos (ml).	14	cruce de vía	· · · · · · · · · · · · · · · · · · ·				
6	Corrugación (n	· · ·		15 16	Ahuellamiei Desplazamie					
7	Grieta de boi	•		17	Grieta parab	_ , ,				
8		lexión de jun	ta (ml).	18	Hinchamien					
9		ril / berma (m		19		• •	egados (m2).			
10		tudinales y tr			*					
Daño	Severidad		Can	tidades parc	iales		Total	Densidad (%)	Valor	
		4.00		T T T T T T T T T T T T T T T T T T T	laics		Total	Delisidad (78)	deducido	
1	M M	1.80 2.70	4.90 5.00			8.82 13.50	22.32	9.3	48	
11	M	1.90	1.70			13.30	3.23	1.3	10	
13	M	0.46	0.50			1.00	1.00	0.4	19	
19	L	2.20	4.80				10.56	4.4	0.3	
	Número de	valores dedu	ucidos >2 (q):					SEVERIDADES		
	Valor deduc	ido más alto:		48			Low	Baja	L	
Núm	ero máximo de	valor deduci	do (mi):	5.8			Medium	Media	M	
							High	Alta	Н	
		VALC	OR DEDUCIDO	COBBECIDO	(VDC)					
N°			LORES DEDUCI		(VDC)		VDT	q	VDC	
1	48	19	10	0.24			77.24	4	43	
2	48	19	10	2			79	3	42	
3	48	19	10	2			79	2	57	
4	48	2	2	2			54	1	54	
	l			L		1	-1	MAX VDC:	57	
NDICE	DE CONDICIÓN	DEL PAVIMEI	NTO (PCI):			(MAX VDC)				
				PCI:	43				A.	
CONT	DICIÓN DEL ECT	4 DO DEL DAVA	INJENITO:					RANGO	CLASIFIC	
CONL	DICIÓN DEL ESTA	ADO DEL PAVI	IIVIEN IU:	Re	egular			100 - 85 85 - 70	Excel Muy b	
								85 - 70 70 - 55	Bue	
								55 - 40	Regi	
								40 - 25	Ma	
								25 - 10	Muy	
								10 - 0	Falla	

• Figura N°15. Hoja de cálculo carril 1 _ 0+240 - 0+280

		Ī	"Evalues!		CONDICIÓN DE			n la Avenida M	ovico susdas-	22 2 12 27
UNI	VERSIDAD CÉS	AR VALLEJO	Evaluació	on dei pavim		Distrito José L			exico cuadras	32 a Ia 37
NOMBR	RE DE LA VÍA DE	ESTUDIO:		AV. MEXICO)				ESQUEMA	
UN	IIDAD DE MUES	TRA:	l	JM7 - CARRII	L1	1				
PR	OGRESIVA INIC	IAL:		0+240		1				
PI	ROGRESIVA FIN	AL:		0+280		1				
AN	ICHO DE LA VÍA	(m):		6]			40 r	m
ÁREA	A DE LA UNIDAD) (m2):		240						
	EVALUADOR:		PERALTA	SÁNCHEZ CI	ELIS KEVIN					
	FECHA:		7 D	E MAYO DEL	2021				6 m	
N°		DAÑO		N°		D	AÑO			
1	Piel de cococ	drilo (m2).		11	Parcheo (m	2).				
2	Exudación (m	ո2).		12	pulimiento	de agregados	(m2).			
3	Agrietamient	to en bloque	(m2).	13	Huecos (und	d).				
4	Abultamient		entos (ml).	14	+	térrea (m2).				
5	Corrugación			15	Ahuellamie	. ,				
6	Depresión (n			16	Desplazami	` '				
7	Grieta de bor	• •		17	Grieta paral	. ,				
8	Grieta de ref			18	Hinchamien					
9	Desnivel carr		•	19	Desprendin	niento de agre	egados (m2).			
10	Grietas longi	tudinales y tr	ansversales							
Daño	Severidad		Can	tidades parc	iales		Total	Densidad (%)	Valor deducido	
1	М	1.70	19.30				32.81	13.7	50	
13	M	0.15	0.16			1	1.00	0.4	19	
13	Н	0.49	0.50			1	1.00	0.4	38	
19	М	0.50	7.60				3.8	1.6	0.9	
15	М	0.10	2.50				0.25	0.1	0.5	
	Número de	valores ded	ucidos >2 (q):					SEVERIDADES		
	Valor deduc	ido más alto:		50			Low	Baja	L	
Núm	ero máximo de	valor deduci	do (mi):	5.6			Medium	Media	М	
				•			High	Alta	Н	
		VAL	OR DEDUCIDO	CORREGIDO	(VDC)					
N°	<u> </u>		LORES DEDUCI				VDT	q	VDC	
1	50	38	19	0.9	0.3		108.2	5	56	
2	50	38	19	0.9	2		109.9	4	63	
3	50	38	19	2	2		111	3	69	
4	50	38	2	2	2		94	2	67	
5	50	2	2	2	2		58	1	58	
								MAYNDO	60	
INDICE	DE CONDICIÓN	DEL PAVIME	NTO (PCI):		PCI: 100 -	(MAX VDC)		MAX VDC:	69	
				PCI:	31			DANICO	CLASIFIC	ACION
COND	DICIÓN DEL ESTA	ADO DEL DAVI	INJENITO:		4010			RANGO	Excel	
CONL	DICION DEL ESTA	ADO DEL PAV	IIVIEN IU:	, N	//ALO			100 - 85	Muy b	
								85 - 70 70 - 55	Bue	
								70 - 55 55 - 40	Regi	
								40 - 25	Ma	
								25 - 10	Muy r	
									1 t 1 G y 1	

• Figura N°16. Hoja de cálculo carril 1 _ 0+280 – 0+320

		1	"Evoluació		CONDICIÓN DE			n la Avenida M	ovico cuadras	22 2 12 27
UNIV	VERSIDAD CÉS	AR VALLEJO	Evaluacio	ni dei paviili		Distrito José Le			exico cuadras	52 a la 57
NOMBR	E DE LA VÍA DE	ESTUDIO:		AV. MEXICO)				ESQUEMA	
	IIDAD DE MUES		ι	JM8 - CARRIL		-				7
	OGRESIVA INIC			0+280		1				
	ROGRESIVA FIN			0+320						
AN	CHO DE LA VÍA	(m):		6					40 ו	n
ÁREA	A DE LA UNIDAD	O (m2):		240						
	EVALUADOR:		PERALTA	SÁNCHEZ CE	LIS KEVIN			-	0	
	FECHA:		7 DI	MAYO DEL	2021				6 m	
N°		DAÑO		N°		DA	AÑO			
1	Piel de cocoo	drilo (m2).		11	Parcheo (m2	2).				
2	Exudación (n			12	pulimiento	de agregados	(m2).			
3	Agrietamien			13	Huecos (uno	,				
4	Abultamient		entos (ml).	14		térrea (m2).				
5	Corrugación			15	Ahuellamie	, ,				
6	Depresión (n	,		16	Desplazamie	, ,				
7	Grieta de boi Grieta de ref	. ,	uta (ml)	17	Grieta parab					
<u>8</u> 9	_		, ,	18	Hinchamien		gades (m2)			
10	Desnivel carr Grietas longi			19	Ineshieuaim	iento de agre	gauus (IIIZ).			
10	Giretas iorigi	tuuinales y ti	alisversales							
Daño	Severidad		Can	tidades parc	iales		Total	Densidad (%)	Valor deducido	
10	L		28.00				28	11.7	0.6	
12	L	0.30	3.90				1.17	0.5	0	
13	М	0.21	0.25			1	1.00	0.4	19	
19	L	1.20	3.50				4.20	1.8	0.2	
3	M	2.40	2.70				6.48	2.7	0.8	
	Número de	valores ded	ucidos >2 (q):					SEVERIDADES		
	Valor deduc	ido más alto		19			Low	Baja	L	
Núm	ero máximo de	valor deduci	do (mi):	8.4			Medium	Media	М	
							High	Alta	Н	
		VAL	OR DEDUCIDO	CORREGIDO	(VDC)					
N°	1		LORES DEDUCI				VDT	q	VDC	
1	19	0.8	0.6	0.2	0		20.6	5	0.9	
2	19	0.8	0.6	0.2	2		22.6	4	0.9	
3	19	0.8	0.6	2	2		24.4	3	15	
4	19	0.8	2	2	2		25.8	2	18	
5	19	2	2	2	2	<u> </u>	27	1	27	
								MAX VDC:	27	
INDICE	DE CONDICIÓN	DEL PAVIME	NTO (PCI):			(MAX VDC)		IVIAN VDC.		
				PCI:	73			RANGO	CLASIFIC	ACION
COND	DICIÓN DEL ESTA	ADO DEL PAV	IMENTO:	MUY	BUENO			100 - 85	Excel	
								85 - 70	Muy b	
								70 - 55	Bue	
								55 - 40	Regi	
								40 - 25	Ma	lo
								25 - 10	Muy ı	malo
								10 - 0	Falla	obe

• Figura N°17. Hoja de cálculo carril 1 _ 0+320 - 0+360

					CONDICIÓN DE			-		,
UNIV	VERSIDAD CÉS	AR VALLEJO	"Evaluacio	ón del pavim			nétodo PCI e eonardo Orti	n la Avenida Mo z "	exico cuadras	32 a la 37
NOMBR	E DE LA VÍA DE	ESTUDIO:		AV. MEXICO)				ESQUEMA	
UN	IDAD DE MUES	TRA:	ı	JM9 - CARRII	L1					
PR	OGRESIVA INIC	CIAL:		0+320						
	ROGRESIVA FIN			0+360					40	m
	CHO DE LA VÍA	• •		6					401	"
ÁREA	DE LA UNIDAD			240						
	EVALUADOR:		PERALTA	SÁNCHEZ CI	ELIS KEVIN				6 m	
	FECHA:		7 D	E MAYO DEL	2021				V III	
N°		DAÑO		N°		D	AÑO			
1	Piel de cocoo	drilo (m2).		11	Parcheo (m2	·).				
2	Exudación (m	ո2).		12	pulimiento	de agregados	(m2).			
3	Agrietamien	to en bloque	(m2).	13	Huecos (und).				
4	Abultamient	os y hundimi	entos (ml).	14	cruce de vía	térrea (m2).				
5	Corrugación			15	Ahuellamiei	• •				
6	Depresión (n			16	Desplazamie	` '				
7	Grieta de boi	, ,	. / 1)	17	Grieta parab					
8		lexión de jun	<u> </u>	18	Hinchamien	<u> </u>				
9		ril / berma (m	•	19	Desprendim	iento de agre	egados (m2).			
10	Grietas iongi	tudinales y tr	ansversales							
Daño	Severidad		Can	tidades parc	ciales		Total	Densidad (%)	Valor deducido	
4	L		0.30				0.30	0.1	0	
10	L		26				26.00	10.8	0.8	
13	L	0.20	0.19			1	1.00	0.4	10	
1	Н	2.4	9.9			23.76	33.96	14.2	66	
1	Н	1.20	8.50			10.2	33.30	1		-
	Número de	valores dedu	ucidos >2 (q):					SEVERIDADES		Ī
		ido más alto:		66			Low	Baja	L	
Núme	ero máximo de	valor deduci	do (mi):	4.1			Medium	Media	М	
							High	Alta	Н]
		VALC	OR DEDUCIDO	CORREGIDO	(VDC)					
N°	 		LORES DEDUC	1			VDT	q	VDC	1
1	66	10	0.8	0			76.8	4	43	4
2	66	10	0.8	2			78.8	3	50	1
3	66	10	2	2			80	2	58	1
4	66	2	2	2			72	1	72	1
								MAX VDC:	72	
INDICE I	DE CONDICIÓN	DEL PAVIMEI	NTO (PCI):		PCI: 100 - (MAX VDC)		IVIAX VDC:	12	
				PCI:	28					
00			1. 45.1±0					RANGO	CLASIFIC	
COND	DICIÓN DEL ESTA	ADO DEL PAVI	IMENTO:	N	ИALO			100 - 85	Excel	
								85 - 70	Muy b	
								70 - 55	Bue	
								55 - 40	Reg	
								40 - 25	Ma	
								25 - 10	Muy	malo

• Figura N°18. Hoja de cálculo carril 1 _ 0+360 - 0+400

	.			ÍNDICE DE C	CONDICIÓN DE	L PAVIMENTO)			
INU I	VERSIDAD CÉS	AR VALLEJO	"Evaluacio	ón del pavim		utilizando el r Distrito José L		n la Avenida M z "	exico cuadras	32 a la 37
NOMBI	RE DE LA VÍA DE	ESTUDIO:		AV. MEXICO	`				ESQUEMA	
				M10 - CARRI		4			ESQUEIVIA	
	NIDAD DE MUES		U		LI	4		l li		
	ROGRESIVA INIC			0+360		4				
	ROGRESIVA FIN			0+400		-			40 1	n
	NCHO DE LA VÍA			6		4				
AKE	A DE LA UNIDAD	` '	DEDALTA	240	- 1.6 1/5 // 1.1	4				
	EVALUADOR:			SÁNCHEZ CE		4			6 m	
	FECHA:		7.0	E MAYO DEL	2021					
N°		DAÑO		N°		D	AÑO			
1	Piel de cocoo	drilo (m2).		11	Parcheo (m2	2).				
2	Exudación (n	,		12	pulimiento	de agregados	(m2).			
3	Agrietamien			13	Huecos (uno	,				
4	Abultamient		entos (ml).	14		térrea (m2).				
5	Corrugación	-		15	Ahuellamie	, ,				
6	Depresión (n			16	Desplazami					
7	Grieta de bo	• •		17	Grieta parak					
8	Grieta de ref			18	Hinchamien	, ,				
9	Desnivel car			19	Desprendin	niento de agre	egados (m2).			
10	Grietas longi	tudinales y tı	ansversales							
Daño	Severidad		Can	tidades parc	iales		Total	Densidad (%)	Valor deducido	
13	L	0.15	0.16				0.02	0.0	0	
1	М	2.90	5.10				14.79	6.2	41	
7	М		19.00				19.00	7.9	12	
13	M	0.20	0.21			1	1.00	0.4	19	
	Número de	valores ded	ucidos >2 (q):					SEVERIDADES	<u> </u>	
		ido más alto		41			Low	Baja	L	
Núm	nero máximo de			6.4			Medium	Media	M	
			,.				High	Alta	Н	
		VAL	OR DEDUCIDO	CORREGIDO	(VDC)					
N°		VA	LORES DEDUC	DOS			VDT	q	VDC	
1	41	19	12	0			72	4	40	
2	41	19	12	2			74	3	48	
3	41	19	2	2			64	2	47	
4	41	2	2	2			47	1	47	
								AAAWAYD C	42	
INDICE	DE CONDICIÓN	I DEL PAVIME	NTO (PCI):		PCI: 100 -	(MAX VDC)		MAX VDC:	48	
				PCI:	52				e:	14.01011
664	חוכולאי חבי בכד	4 DO DEL 241	IN ACNITO:		CLUAD			RANGO	CLASIFIC	
CONI	DICIÓN DEL ESTA	ADO DEL PAV	IIVIENTO:	REG	GULAR			100 - 85	Excel	
								85 - 70	Muy b	
								70 - 55	Bue	
								55 - 40	Regi	
								40 - 25 25 - 10	Ma Muy i	
								10-0	Falla	
							_	10 - 0	i alla	140

• Figura N°19. Hoja de cálculo carril 1 _ 0+400 - 0+440

UNI	VERSIDAD CÉS	AR VALLEJO	"Evaluacio	ón del pavim			método PCI e .eonardo Orti	n la Avenida M	exico cuadras	32 a la 31
						JISTITTO JOSE L	eonardo Orti			
IOMBR	RE DE LA VÍA DE	ESTUDIO:		AV. MEXICO)				ESQUEMA	
	IIDAD DE MUES		U	M11 - CARRI						
PR	OGRESIVA INIC	IAL:		0+400						
PI	ROGRESIVA FIN	AL:		0+440					40.	_
AN	ICHO DE LA VÍA	(m):		6					40 r	n
ÁREA	A DE LA UNIDAD) (m2):		240						
	EVALUADOR:		PERALTA	SÁNCHEZ C	ELIS KEVIN				6 m	
	FECHA:		7 D	E MAYO DEL	2021				0 111	
N°		DAÑO		N°		D	AÑO			
1	Piel de cocoo			11	Parcheo (m2					
2	Exudación (m			12		de agregados	(m2).			
3	Agrietamient	•	(m2).	13	Huecos (uno		,			
4	Abultamient	os y hundimi	entos (ml).	14	cruce de vía	térrea (m2).				
5	Corrugación ((m2).		15	Ahuellamie	nto (m2).				
6	Depresión (n			16	Desplazami					
7	Grieta de bor	` '		17	Grieta parab					
8	Grieta de ref		• •	18	Hinchamien					
9	Desnivel carr		•	19	Desprendim	iento de agre	egados (m2).			
10	Grietas longi	tudinales y tr	ansversales							
Daño	Severidad		Can	tidades parc	iales		Total	Densidad (%)	Valor deducido	
10	L		14.00				14.00	5.8	0.5	
11	М	1.40	1.90			2.66				
11	M	2.10	2.70			5.67	8.33	3.5	19	
1	М	2.40	3.90				9.36	3.9	35	
19	M	1.90	4.20				7.98	3.3	11	
	Nićma na sla		ucidos >2 (q):	•		'		CEL/EDIDADES		
		ido más alto:		35	_		Low	SEVERIDADES	L	
Núm	ero máximo de			7.0	\dashv		Medium	Baja Media	M	
Num	ero maximo de	vaioi deddci	uo (IIII).	7.0	_		High	Alta	H	
								7.1.00		
		VAL	OR DEDUCIDO	CORREGIDO	(VDC)					
N°		VA	LORES DEDUC				VDT	q	VDC	
1	35	19	11	0.5			65.5	4	36	
2	35	19	11	2			67	3	42	
3	35	19	2	2	+		58	2	43	
4	35	2	2	2			41	1	41	
NDICE	DE CONDICIÓN	DEL DAVAINAE	NTO (PCI):		PCI: 100	(MAX VDC)		MAX VDC:	43	
ADICE	DE CONDICION	PLLFAVIIVIE	TTO (FCI).	PCI:	57	(IVIAA VDC)		_		
								RANGO	CLASIFIC	ACION
CONE	DICIÓN DEL ESTA	ADO DEL PAV	IMENTO:	В	UENO			100 - 85	Excel	
								85 - 70	Muy b	
								70 - 55	Bue	
								55 - 40	Regu	
								40 - 25	Ma	
								25 - 10	Muy r	naio

• Figura N°20. Hoja de cálculo carril 1 _ 0+440 - 0+480

					CONDICIÓN DE					
UNIV	VERSIDAD CÉS	AR VALLEJO	"Evaluació	ón del pavim			método PCI e .eonardo Orti	n la Avenida M z "	exico cuadras	32 a la 37
NOMBR	RE DE LA VÍA DE	ESTUDIO:		AV. MEXICO)				ESQUEMA	
UN	IIDAD DE MUES	TRA:	U	M12 - CARRII	L1					
PR	OGRESIVA INIC	IAL:		0+440						
PI	ROGRESIVA FIN	AL:		0+480					40 1	m
AN	ICHO DE LA VÍA	(m):		6					401	"
ÁREA	A DE LA UNIDAD			240						
	EVALUADOR:			SÁNCHEZ CE				=	6 m	
	FECHA:		/ Di	E MAYO DEL 2	2021					
N°		DAÑO		N°			AÑO			
1	Piel de cocoo			11	Parcheo (m2		ANO			
2	Exudación (n			12	<u> </u>	de agregados	: (m2)			
3	Agrietamien		(m2).	13	Huecos (uno		5 (1112).			
4	Abultamient			14	cruce de vía	•				
5	Corrugación	· ·	· , ,	15	Ahuellamiei	, ,				
6	Depresión (n	n2).		16	Desplazamie	ento (m2).				
7	Grieta de boi	rde (ml).	· · · · · ·	17	Grieta parab	olica (m2).				
8	Grieta de ref	•		18	Hinchamien	, ,				
9	Desnivel carr		•	19	Desprendim	iento de agr	egados (m2).			
10	Grietas longi	tudinales y tr	ransversales							
Daño	Severidad		Can	tidades parc	iales		Total	Densidad (%)	Valor deducido	
1	М	0.80	2.60				2.08	0.9	21	
1	L	0.90	2.90				2.61	1.1	11	
11	М	0.70	1.40			0.98	2.85	1.2	10	
11	M	1.10	1.70	0.70		1.87	4.00	0.4	20	
13 17	H L	0.65 1.50	0.70 1.60	0.70		1.00	1.00 2.4	0.4 1.0	38 0.4	
17	L	1.50	1.00				2.4	1.0	0.4	
	Número de	valores dedi	ucidos >2 (q):					SEVERIDADES		
		ido más alto:		38			Low	Baja	L	
Núm	ero máximo de			6.7	7		Medium	Media	M	
							High	Alta	Н	
		VAL	OR DEDUCIDO	CORREGIDO	(VDC)					
N°		VA	LORES DEDUCI	DOS	_		VDT	q	VDC	
1	38	21	11	10	0.4		80.4	5	40	
2	38	21	11	10	2		82	4	46	
3	38	21	11	2	2		74	3	47	
4	38	21	2	2	2		65	2	48	
5	38	2	2	2	2	1	46	1 MAX VDC:	45 48	
INDICE	DE CONDICIÓN	DEL PAVIME	NTO (PCI):		PCI: 100 - (MAX VDC)		IVIAN VDC.	40	
				PCI:	52					
	4							RANGO	CLASIFIC	
COND	DICIÓN DEL ESTA	ADO DEL PAV	IMENTO:	Re	gular			100 - 85	Excel	
								85 - 70	Muy b	
								70 - 55 55 - 40	Bue Reg	
								-		
								201_75	I/ // c	
								40 - 25 25 - 10	Ma Muy	

• Figura N°21. Hoja de cálculo carril 1 _ 0+480 - 0+533

5			"Evaluació		CONDICIÓN DE ento flexible ι			n la Avenida M	exico cuadras	32 a la 37
UNIV	VERSIDAD CÉS	AR VALLEJO		•			eonardo Orti			
NOMBR	E DE LA VÍA DE	ESTUDIO:		AV. MEXICO)				ESQUEMA	
UN	IDAD DE MUES	TRA:	U	M13 - CARRI	L1					
PR	OGRESIVA INIC	CIAL:		0+480						
	ROGRESIVA FIN			0+533						53 m
AN	CHO DE LA VÍA	(m):		6						
ÁREA	DE LA UNIDAD			318						
	EVALUADOR:			SÁNCHEZ CE					6 m	
	FECHA:		7 D	E MAYO DEL :	2021					
N°		DAÑO		N°		D	AÑO			
1	Piel de cococ	drilo (m2).		11	Parcheo (m2	<u>'</u>).				
2	Exudación (m			12		de agregados	s (m2).			
3	Agrietamien	to en bloque	(m2).	13	Huecos (und		, ,			
4	Abultamient			14	cruce de vía	térrea (m2).				
5	Corrugación	(m2).		15	Ahuellamie	nto (m2).				
6	Depresión (n	•		16	Desplazamie					
7	Grieta de boi			17	Grieta parab					
8	Grieta de ref			18	Hinchamien	_ , ,				
9	Desnivel carr			19	Desprendim	iento de agr	egados (m2).			
10	Grietas longi	tudinales y ti	ransversales							
Daño	Severidad		Can	tidades parc	iales		Total	Densidad (%)	Valor deducido	
1	М	0.60	4.70				2.82	0.9	21	
3	L	1.40	1.90				2.66	0.8	0	
5	Н	0.50	0.70				0.35	0.1	10	
13	Н	0.46	0.46			1	2.00	0.63	44	
13	Н	0.49	0.51			1				
13	M	0.25	0.27			1	2.00	0.63	24	
13	M	0.21	0.23			1				
	Número de	valores ded	ucidos >2 (q):					SEVERIDADES	;	
	Valor deduc	ido más alto	•	44			Low	Baja	L	
Núm	ero máximo de	valor deduci	do (mi):	6.1			Medium	Media	М	
							High	Alta	Н	
		3/81	OB DEDUCES	CORRECIPO	(MDC)	1	_			
N°			OR DEDUCIDO LORES DEDUCI		(VDC)		VDT		VDC	
1	44	24	21	10	0		99	q 5	51	
2	44	24	21	10	2		101	4	58	
3	44	24	21	2	2		93	3	60	
4	44	24	2	2	2		74	2	54]
5	44	2	2	2	2		52	1	52	
			·					MAX VDC:	60	
NDICE	DE CONDICIÓN	DEL PAVIME	NTO (PCI):	2.0	PCI: 100 - (MAX VDC)		_		
				PCI:	40			BANCO	CLASIFIC	CACION
CONL	OICIÓN DEL ESTA	ADO DEL PAV	IMFNTO:	N.	1ALO			RANGO 100 - 85	Excel	
2011	DLL LOTA	DELIAV						85 - 70	Muy b	
								70 - 55	Bue	
								55 - 40	Regi	
								40 - 25	Ma	
								25 - 10	Muy	malo
								10 - 0	Falla	ado

• Figura N°22. Hoja de cálculo carril 2 _ 0+000 - 0+040

				ÍNDICE DE O	CONDICIÓN DE	L PAVIMENTO	2	-		
TI UNIT	VERSIDAD CÉS	AR VALLEJO	"Evaluació	ón del pavim			método PCI e eonardo Orti	n la Avenida Mo z "	exico cuadras	32 a la 37
NOMBD	E DE LA VÍA DE	ESTUDIO:		AV. MEXICO	<u> </u>	1			ESQUEMA	
						-			ESQUEIVIA	
	IIDAD DE MUES			<u>JM1 - CARRII</u> 0+000	L Z	+				
	ROGRESIVA INIC			0+000		1				
	CHO DE LA VÍA			6		+			40 r	n
	DE LA UNIDAI	` '		240		1				
AILL	EVALUADOR:	` '	PFRΔΙΤΔ	SÁNCHEZ CI	FIIS KEVIN	-				
	FECHA:	'		MAYO DEL				_	6 m	
		'.								
N°		DAÑO		N°		D.	AÑO			
1	Piel de cocoo	, ,		11	Parcheo (m2	•				
2	Exudación (n			12	pulimiento	de agregados	(m2).			
3		to en bloque		13	Huecos (uno					
4		os y hundimie	entos (ml).	14	cruce de vía					
5	Corrugación			15	Ahuellamie	` '				
6	Depresión (r			16	Desplazamie	· · · · · ·				
7	Grieta de bo		. (1)	17	Grieta parab	· · · · · · · · · · · · · · · · · · ·				
8		lexión de jun		18	Hinchamien	` '				
9		ril / berma (m	•	19	Desprendim	iento de agre	egados (m2).			
10	Grietas iongi	tudinales y tr	ansversales							
Daño	Severidad		Can	tidades parc	iales		Total	Densidad (%)	Valor deducido	
1	М	3.40	1.70			5.78	7.25	3.0	32	
1	М	0.7	2.1			1.47		3.0		
4	L		0.20				0.20	0.1	0	
9	M		1.00				1.00	0.4	0.4	
10	L		19.00				19.00	7.9	0.7	
13 13	H	0.48 0.50	0.49			1 1	2	0.8	49	
19	H	1.90	3.80			7.22	7.22	3.0	24	
	•			•		•				
		valores dedu		1 40	_			SEVERIDADES		
Niúma	vaior deduc ero máximo de	ido más alto:		49 5.7	_		Low	Baja	L	
Num	ero maximo de	vaior deduci	uo (mi):	5.7	_		High	Media Alta	M H	
								7		
			OR DEDUCIDO		(VDC)			 		
N°	 		LORES DEDUCI		1		VDT	q	VDC	
1	49	32	24	0.7	0.4	0	106.1	6	52	
2	49	32	24	0.7	0.4	2	108.1	5	57	
<u>3</u>	49 49	32 32	24 24	0.7	2	2 2	109.7 111	3	63 69	
5	49	32	24	2	2	2	89	2	63	
6	49	2	2	2	2	2	59	1	58	
				•	-	,	•	MAX VDC:	69	
INDICE	DE CONDICIÓN	DEL PAVIME	NTO (PCI):			MAX VDC)				
				PCI:	31			RANGO	CLASIFIC	ACION
COND	DICIÓN DEL ESTA	ADO DEL PAVI	IMENTO:	N.	ЛALO			100 - 85	Excel	
								85 - 70	Muy b	
								70 - 55	Bue	
								55 - 40	Regi	
								40 - 25	Ma	
								25 - 10	Muyı	malo
										ado

• Figura N°23. Hoja de cálculo carril 2 _ 0+040 - 0+080

_			"Evaluació		ONDICIÓN DE			n la Avanida NA	aviaa ayaduaa	22 a la 27
UNI	VERSIDAD CÉS	AR VALLEJO	Evaluació	on dei pavimo			eonardo Orti	n la Avenida Mo z "	exico cuadras	32 a Ia 37
NOMBR	RE DE LA VÍA DE	ESTUDIO:		AV. MEXICO	l				ESQUEMA	
UN	IIDAD DE MUES	TRA:	ι	JM2 - CARRIL	2					
PR	ROGRESIVA INIC	CIAL:		0+040						
PI	ROGRESIVA FIN	IAL:		0+080					40	
AN	ICHO DE LA VÍA	(m):		6					40	···
ÁRE/	A DE LA UNIDAD) (m2):		240						
	EVALUADOR:		PERALTA	SÁNCHEZ CE	LIS KEVIN			=	6 m	
	FECHA:		7 D	E MAYO DEL 2	2021			L	0 111	
	1	~			1					
N°		DAÑO		N°			AÑO			
1	Piel de cocoo	, ,		11	Parcheo (m2		/ 2)			
2	Exudación (n	•	(2)	12		de agregados	(m2).			
3 4	Agrietamien: Abultamient			13 14	Huecos (und					
5	Corrugación	•	entos (IIII).	15	cruce de vía Ahuellamier					
6	Depresión (n			16		` '				
7	Grieta de boi			17	Desplazamiento (m2). Grieta parabolica (m2).					
8	Grieta de ref	, ,	nta (ml).	18	Hinchamien					
9	Desnivel carr			19		iento de agre				
10	Grietas longi						<u> </u>			
									Valor	
Daño	Severidad		1	tidades parci	ales	Т.	Total	Densidad (%)	deducido	
13	M	0.21	0.22			1	1.00	0.4	10	
13	H	0.40	0.41			1	1.00	0.4	19	
1	M H	2.10	3.30 2.70				6.93 2.43	2.9	32 30	
10	L	0.90	10.00		1		10.00	1.0 4.2	0.3	
10	L	4.00	10.00				4.00	1.7	0.2	
					1					
			ucidos >2 (q):		4			SEVERIDADES		
Niśwa		ido más alto		32	_		Low	Baja	L	
Num	ero máximo de	vaior deduc	iao (mi):	7.2			Medium High	Media Alta	M H	
		***			(1,12,0)	1				
NIº	1		OR DEDUCIDO LORES DEDUCI		(VDC)		VOT		VDC	
N° 1	32	30	19	10	0.3	0	VDT 91.3	q 6	VDC 44	
2	32	30	19	10	0.3	2	93.3	5	48	
3	32	30	19	10	2	2	95	4	54	
4	32	30	19	2	2	2	87	3	56	
5	32	30	2	2	2	2	70	2	51	
6	32	2	2	2	2	2	42	1	24	
								MAX VDC:	56	
INDICE	DE CONDICIÓN	DEL PAVIME	NTO (PCI):		PCI: 100 - (MAX VDC)		_		
				PCI:	44					
661/-	NCIÓN DEL ECT	4 DO DEL 2000	UN AENITO	_				RANGO	CLASIFIC	
CONE	DICIÓN DEL ESTA	ADO DEL PAV	IIVIEN I U:	REG	GULAR			100 - 85	Excel	
								85 - 70	Muy b Bue	
								70 - 55 55 - 40	Regi	
								-		
								40 - 25 25 - 10	May ı	lo

• Figura N°24. Hoja de cálculo carril 2 _ 0+080 - 0+120

_						L PAVIMENTO				
UNIV	VERSIDAD CÉSA	AR VALLEJO	"Evaluació	on del pavim			nétodo PCI e eonardo Orti	n la Avenida Mo z "	exico cuadras	32 a la 37
NOMBRI	E DE LA VÍA DE	ESTUDIO:		AV. MEXICO)				ESQUEMA	
UN	IDAD DE MUES	TRA:	Ĺ	JM3 - CARRIL	. 2			Г		
PR	OGRESIVA INIC	IAL:		0+080						
PR	ROGRESIVA FIN	AL:		0+120						
AN	CHO DE LA VÍA	(m):		6					40	m
ÁREA	DE LA UNIDAD	(m2):		240						
	EVALUADOR:		PERALTA	SÁNCHEZ CE	LIS KEVIN			=	6 m	
	FECHA:		7 DI	E MAYO DEL 2	2021				0111	
N°		DAÑO		N°		D	AÑO			
1	Piel de cocod	lrilo (m2).		11	Parcheo (m2	2).				
2	Exudación (m	•		12		de agregados	(m2).			
3	Agrietamient			13	Huecos (und	•				
4	Abultamiento		entos (ml).	14	cruce de vía	• • •				
5	Corrugación (15	Ahuellamier	, ,				
6 7	Depresión (m Grieta de bor			16 17	Desplazamie	. , ,				
8	Grieta de bor		ta (ml)		17 Grieta parabolica (m2).18 Hinchamiento (m2).					
9	Desnivel carr			19		iento de agre	egados (m2)			
10	Grietas longit	· · · · · ·	•	13	Despiciani	icitto de agre	.gau03 (1112).			
	G . 10 tub 10 1.g. 1			ı						
Daño	Severidad		Can	tidades parci	iales		Total	Densidad (%)	Valor deducido	
11	М	1.50	0.90			1.35	6.63	2.8	18	
11	M	4.80	1.10			5.28	0.03	2.0		
1	M	0.70	2.20			1.54	4.9	2.0	19	
1	M	1.40	2.40			3.36	0.64	0.2	0.4	
16	M	0.80	0.80				0.64	0.3	0.4	
										Ì
	Número de	valores dedu	ucidos >2 (q):					SEVERIDADES		
		valores dedu ido más alto:		19			Low	SEVERIDADES Baja	L	
Núme		ido más alto:		19 8.4			Low Medium	1		
Núme	Valor deduc	ido más alto:						Ваја	L	
Núme	Valor deduc	ido más alto: valor deduci VALO	do (mi): DR DEDUCIDO	8.4 CORREGIDO	(VDC)		Medium	Baja Media	L M	
N°	Valor deduc ero máximo de	ido más alto: valor deduci VALO VA	do (mi): DR DEDUCIDO LORES DEDUCI	8.4 CORREGIDO	(VDC)		Medium High VDT	Baja Media Alta	L M H	
N° 1	Valor deduc ero máximo de 19	ido más alto: valor deduci VALO VAI	do (mi): DR DEDUCIDO LORES DEDUCI 0.16	8.4 CORREGIDO	(VDC)		Medium High VDT 37.16	Baja Media Alta q 3	L M H	
N° 1 2	Valor deducero máximo de	valor deduci VALC VALC 18 18	do (mi): OR DEDUCIDO LORES DEDUCI 0.16 2	8.4 CORREGIDO	(VDC)		Medium High VDT 37.16	Baja Media Alta q 3 2	L M H VDC 22 29	
N° 1	Valor deduc ero máximo de 19	ido más alto: valor deduci VALO VAI	do (mi): DR DEDUCIDO LORES DEDUCI 0.16	8.4 CORREGIDO	(VDC)		Medium High VDT 37.16	Baja Media Alta q 3 2 1	L M H VDC 22 29 23	
N° 1 2 3	Valor deducero máximo de	valor deduci VALO VA 18 18 2	do (mi): DR DEDUCIDO LORES DEDUCI 0.16 2 2	8.4 CORREGIDO		(MAX VDC)	Medium High VDT 37.16	Baja Media Alta q 3 2	L M H VDC 22 29	
N° 1 2 3	Valor deducero máximo de 19 19 19 19	valor deduci VALO VA 18 18 2	do (mi): DR DEDUCIDO LORES DEDUCI 0.16 2 2	8.4 CORREGIDO		(MAX VDC)	Medium High VDT 37.16	Baja Media Alta q 3 2 1	L M H VDC 22 29 23	
N° 1 2 3	Valor deducero máximo de 19 19 19 19 DE CONDICIÓN	valor deduci VALO VAI 18 18 2 DEL PAVIMEI	do (mi): DR DEDUCIDO LORES DEDUCI 0.16 2 2 NTO (PCI):	8.4 CORREGIDO DOS	PCI: 100 - ((MAX VDC)	Medium High VDT 37.16	Baja Media Alta q 3 2 1	L M H VDC 22 29 23	CACION
N° 1 2 3	Valor deducero máximo de 19 19 19 19	valor deduci VALO VAI 18 18 2 DEL PAVIMEI	do (mi): DR DEDUCIDO LORES DEDUCI 0.16 2 2 NTO (PCI):	8.4 CORREGIDO DOS PCI:	PCI: 100 - ((MAX VDC)	Medium High VDT 37.16	RANGO 100 - 85	L M H H VDC 22 29 23 29 CLASIFIC Excel	ente
N° 1 2 3	Valor deducero máximo de 19 19 19 19 DE CONDICIÓN	valor deduci VALO VAI 18 18 2 DEL PAVIMEI	do (mi): DR DEDUCIDO LORES DEDUCI 0.16 2 2 NTO (PCI):	8.4 CORREGIDO DOS PCI:	PCI: 100 - ((MAX VDC)	Medium High VDT 37.16	Baja Media Alta	L M H VDC 22 29 23 29 CLASIFIC Excel Muy b	ente ueno
N° 1 2 3	Valor deducero máximo de 19 19 19 19 DE CONDICIÓN	valor deduci VALO VAI 18 18 2 DEL PAVIMEI	do (mi): DR DEDUCIDO LORES DEDUCI 0.16 2 2 NTO (PCI):	8.4 CORREGIDO DOS PCI:	PCI: 100 - ((MAX VDC)	Medium High VDT 37.16	Baja Media Alta	L M H VDC 22 29 23 29 CLASIFIC Excel Muy b Bue	ente ueno no
N° 1 2 3	Valor deducero máximo de 19 19 19 19 DE CONDICIÓN	valor deduci VALO VAI 18 18 2 DEL PAVIMEI	do (mi): DR DEDUCIDO LORES DEDUCI 0.16 2 2 NTO (PCI):	8.4 CORREGIDO DOS PCI:	PCI: 100 - ((MAX VDC)	Medium High VDT 37.16	Baja Media Alta	L M H VDC 22 29 23 29 CLASIFIC Excel Muy b Bue Reg	ente ueno no ular
N° 1 2 3	Valor deducero máximo de 19 19 19 19 DE CONDICIÓN	valor deduci VALO VAI 18 18 2 DEL PAVIMEI	do (mi): DR DEDUCIDO LORES DEDUCI 0.16 2 2 NTO (PCI):	8.4 CORREGIDO DOS PCI:	PCI: 100 - ((MAX VDC)	Medium High VDT 37.16	Baja Media Alta	L M H VDC 22 29 23 29 CLASIFIC Excel Muy b Bue	ente ueno no ular

• Figura N°25. Hoja de cálculo carril 2 _ 0+120 - 0+160

			-		ONDICIÓN DE					
UNIV	VERSIDAD CÉS	AR VALLEJO	"Evaluació	on del pavimo			nétodo PCI e eonardo Orti	n la Avenida Mo z "	exico cuadras	32 a la 37
NOMBR	E DE LA VÍA DE	ESTUDIO:		AV. MEXICO					ESQUEMA	
UN	IDAD DE MUES	TRA:	l	JM4 - CARRIL	2					
PR	OGRESIVA INIC	CIAL:		0+120						
PF	ROGRESIVA FIN	IAL:		0+160					40	m
	CHO DE LA VÍA			6					40	"
ÁREA	DE LA UNIDAD			240						
	EVALUADOR:			SÁNCHEZ CE				=	6 m	
	FECHA:		7 DI	E MAYO DEL 2	2021				•	
N°		DAÑO		N°			AÑO			
1	Piel de cocoo	drilo (m2).		11	Parcheo (m2	•				
2	Exudación (n			12	pulimiento o		(m2).			
3	Agrietamien		•	13	Huecos (und	•				
4	Abultamient		entos (ml).	14	cruce de vía					
<u>5</u>	Corrugación Depresión (n			15 16	Ahuellamier Desplazamie					
7	Grieta de boi			17						
8	Grieta de ref	` '	ta (ml).		17 Grieta parabolica (m2).18 Hinchamiento (m2).					
9	Desnivel carr			19	Desprendim		gados (m2).			
10	Grietas longi	tudinales y tr	ransversales		•					
Daño	Severidad		Cantidade	s parciales			Total	Densidad (%)	Valor deducido	
13	Н	0.81	0.90			1	2.00	0.8	49	
15	М	0.3	1.2				0.36	0.2	0.8	
12	L	1.70	3.40				5.78	2.4	0	
7	М		20.00				20.00	8.3	13	
13	Н	0.70	0.60			1				
	Número de	valores ded	ucidos >2 (q):					SEVERIDADES		
	Valor deduc	ido más alto:	1	49			Low	Baja	L	
Núm	ero máximo de	valor deduci	do (mi):	5.7	_		Medium	Media	М	
							High	Alta	Н	
		VAL	OR DEDUCIDO	CORREGIDO	(VDC)					
N°			LORES DEDUCI				VDT	q	VDC	
1	49	13	0.8	0			62.8	4	40	
2	49	13	0.8	2			64.8	3	41	
3	49	13	2	2			66	2	48	
4	49	2	2	2			55	1 MAX VDC:	55 55	
INDICE	DE CONDICIÓN	DEL PAVIME	NTO (PCI):		PCI: 100 - (MAX VDC)		WIAN VDC.	- 33	
				PCI:	45					
COND	NCIÓN DEL ECT	4 DO DEL DAY	INACNITO:	0	N. II. A. D.			RANGO	CLASIFIC	
COND	OICIÓN DEL ESTA	ADO DEL PAV	IIVIEN IU:	REC	GULAR			100 - 85	Excel	
								85 - 70 70 - 55	Muy b Bue	
								70 - 55 55 - 40	Regi	
								40 - 25	Ma	
								25 - 10	Muy r	naio

• Figura N°26. Hoja de cálculo carril 2 _ 0+160 - 0+200

_			U.S. valora al d		CONDICIÓN DE					22 - 1- 27
UNI	VERSIDAD CÉSA	AR VALLEJO	Evaluacio	on dei pavim			eonardo Orti	n la Avenida Mo z "	exico cuadras	32 a ia 37
						1				
	E DE LA VÍA DE			AV. MEXICO					ESQUEMA	
	IIDAD DE MUES		L	JM5 - CARRIL	. 2					
	OGRESIVA INIC			0+160						
	ROGRESIVA FIN ICHO DE LA VÍA			0+200 6					40 r	n
	A DE LA UNIDAD			240						
ANEA	EVALUADOR:	` '	DERALTA	SÁNCHEZ CE	IIS KEVIN					
	FECHA:			E MAYO DEL		-		-	6 m	
			, 5.	LIVII (TO DEE	2021					
N°		DAÑO		N°		D	AÑO			
1	Piel de cocod	drilo (m2).		11	Parcheo (m2	2).				
2	Exudación (m	ո2).		12	pulimiento	de agregados	s (m2).			
3	Agrietamient	to en bloque	(m2).	13	Huecos (und	l).				
4	Abultamient		entos (ml).	14		térrea (m2).				
5	Corrugación (15	Ahuellamie	, ,				
6	Depresión (m	-		16	Desplazami					
7	Grieta de bor	` '	to (m)	17	Grieta parak					
8	Grieta de refl			18	Hinchamien	, ,	ogades (3)			
9 10	Desnivel carr Grietas longi		•	19	Ineshteugik	iento de agre	egauos (m2).			
10	diretas iorigi	tuuiiiaies y ti	alisveisales	1						
Daño	Severidad		Can	tidades parc	iales		Total	Densidad (%)	Valor deducido	
11	М	0.90	1.50			1.35	4.22	1.0		
11	М	1.20	2.40			2.88	4.23	1.8	13	
7	М		3.10				3.10	1.3	0.7	
19	М	0.70	1.60				2.60	1.1	10	
19	M	1.30	2.00			2.6	2.00	1.1	10	
5	М	1.10	1.30				1.43	0.6	11	
13	Н	0.76	0.80			1	1	0.4	37	
1	Н	1.00	3.50				3.5	1.5	35	
	Númoro do	valores ded	ucidos >2 (q):					CEVEDIDA DEC		
		ido más alto		37	_		Low	SEVERIDADES	L	
Núm	ero máximo de			6.8	=		Medium	Baja Media	M	
Nulli	ero maximo de	valoi deduci	uo (IIII).	0.8			High	Alta	H	
							111811	, 1100		
		VAL	OR DEDUCIDO	CORREGIDO	(VDC)					
N°	<u> </u>		LORES DEDUCI				VDT	q	VDC	
1	37	35	13	11	10	0.56	106.56	6	52	
2	37	35	13	11	10	2	108	5	57	
	37	35	13	11	2	2	100	4	57	
3		25	13	2	2	2	91	3	58	
4	37	35				2	80	2	58	
4 5	37	35	2	2	2				4-	
4			2	2	2	2	47	1	47	
4 5	37	35						1		
4 5 6	37 37	35 2	2		2	2			47 58	
4 5 6	37	35 2	2	2	PCI: 100 -			1		
4 5 6	37 37	35 2	2		2	2		1		CACION
4 5 6 INDICE	37 37	35 2 DEL PAVIME	2 NTO (PCI):	PCI:	PCI: 100 -	2		1 MAX VDC:	58	
4 5 6 INDICE	37 37 DE CONDICIÓN	35 2 DEL PAVIME	2 NTO (PCI):	PCI:	PCI: 100 -	2		1 MAX VDC:	58 CLASIFIC	ente
4 5 6 INDICE	37 37 DE CONDICIÓN	35 2 DEL PAVIME	2 NTO (PCI):	PCI:	PCI: 100 -	2		1 MAX VDC: RANGO 100 - 85	CLASIFIC Excel Muy b Bue	ente ueno no
4 5 6 INDICE	37 37 DE CONDICIÓN	35 2 DEL PAVIME	2 NTO (PCI):	PCI:	PCI: 100 -	2		1 MAX VDC: RANGO 100 - 85 85 - 70 70 - 55 55 - 40	CLASIFIC Excel Muy b Bue Regu	ente ueno no ular
4 5 6 INDICE	37 37 DE CONDICIÓN	35 2 DEL PAVIME	2 NTO (PCI):	PCI:	PCI: 100 -	2		1 MAX VDC: RANGO 100 - 85 85 - 70 70 - 55	CLASIFIC Excel Muy b Bue	ente ueno no ular Io

• Figura N°27. Hoja de cálculo carril 2 _ 0+200 - 0+240

_			"Fueluesid		CONDICIÓN DE			n la Avenida M		22 - 1- 27
UNI	VERSIDAD CÉS	AR VALLEJO	Evaluació	on dei paviin			eonardo Orti		exico cuadras	32 d ld 37
NOMBR	E DE LA VÍA DE	ESTUDIO:		AV. MEXICO)				ESQUEMA	
UN	IIDAD DE MUES	TRA:	ι	JM6 - CARRIL	_2					
PR	OGRESIVA INIC	CIAL:		0+200						
PI	ROGRESIVA FIN	IAL:		0+240					40	
AN	CHO DE LA VÍA	(m):		6					40	""
ÁRE/	A DE LA UNIDAD) (m2):		240						
	EVALUADOR:			SÁNCHEZ CE				=	6 m	
	FECHA:		7 DI	E MAYO DEL	2021				0111	
N°		DAÑO		N°			AÑO			
1	Piel de cocoo			11	Parcheo (m2	•				
2	Exudación (n			12	_	de agregados	(m2).			
3	Agrietamien	•	•	13	Huecos (und	•				
4	Abultamient		entos (ml).	14	cruce de vía					
5	Corrugación			15	Ahuellamier	· ,				
6	Depresión (n	•		16	Desplazamie					
7 8	Grieta de boi Grieta de ref	. ,	uta (ml)	17 18	Grieta parab Hinchamien					
9	Desnivel carr			19		iento de agre	anados (m2)			
10	Grietas longi			13	Despiendini	iento de agre	egauos (IIIZ).			
10	Grietas iorigi	tuuinales y ti	alisveisales							
Daño	Severidad		Cantidade	s parciales			Total	Densidad (%)	Valor deducido	
1	Н	0.70	1.90			1.33	3.97	1.7	37	
1	Н	1.10	2.40			2.64	3.57	1.7	37	
13	Н	0.87	0.90				2	0.8	49	
13	Н	0.75	0.78							
10	L	5.00					5.00	2.1	0.1	
	Número de	valores ded	ucidos >2 (q):					SEVERIDADES		
		ido más alto		49			Low	Baja	L	
Núm	ero máximo de	valor deduci	ido (mi):	5.7			Medium	Media	М	
							High	Alta	Н	
		VAL	OR DEDUCIDO	CORREGIDO	(VDC)					
N°			LORES DEDUCI		(*50)		VDT	q	VDC	
1	49	37	0.1				86.1	3	55	
2	49	37	2				88	2	63	
3	49	2	2				53	1	52	
								MAX VDC:	63	
INDICE	DE CONDICIÓN	DEL PAVIME	NTO (PCI):		PCI: 100 - (MAX VDC)				
				PCI:	37			RANGO	CLASIFIC	CACION
СОИГ	DICIÓN DEL ESTA	ADO DFI PAV	IMENTO:	Λ.	MALO			100 - 85	Excel	
30.12		0 2221710		IV				85 - 70	Muy b	
								70 - 55	Bue	
								55 - 40	Regi	
								40 - 25	Ma	
								25 - 10	Muy ı	malo
								10 - 0	Falla	ado

• Figura N°28. Hoja de cálculo carril 2 _ 0+240 - 0+280

J UNIN	VERSIDAD CÉSAR VALLEJO "Evalua						nétodo PCI e	n la Avenida M z "	exico cuadras	32 a la 37
	RE DE LA VÍA DE IIDAD DE MUES		l	AV. MEXICO JM7 - CARRIL					ESQUEMA	7
PR	OGRESIVA INIC	CIAL:		0+240						
PF	ROGRESIVA FIN	AL:		0+280						
AN	CHO DE LA VÍA	(m):		6					40 r	n
ÁREA	A DE LA UNIDAD) (m2):		240						
	EVALUADOR:		PERALTA	SÁNCHEZ CE	LIS KEVIN					
	FECHA:		7 D	E MAYO DEL 2	2021				6 m	
N°		DAÑO		N°			ΑÑO			
1	Piel de cocoo	drilo (m2).		11	Parcheo (m2					
2	Exudación (m			12		de agregados	(m2).			
3	Agrietamien	•		13	Huecos (uno	•				
4	Abultamient		entos (ml).	14	cruce de vía	, ,				
5	Corrugación			15	Ahuellamie					
6	Depresión (n			16	Desplazamie					
7	Grieta de bor			17	Grieta parab					
8	Grieta de ref			18	Hinchamien					
9	Desnivel carr			19	Desprendim	iento de agre	gados (m2).			
10	Grietas longi	tudinales y t	ransversales							
Daño	Severidad		Can	tidades parci	ales		Total	Densidad (%)	Valor deducido	
1	М	0.50	1.70				0.85	0.4	14	
10	L	3.00					3.00	1.3	0	
11	М	1.10	1.90				2.09	0.9	10	
7	М		12.00				12.00	5.0	10	
19	Н	0.90	1.60				1.44	0.6	13	
		.1 1. 1								
			ucidos >2 (q):	1.4	=			SEVERIDADES		
A1 ()		ido más alto		14	=		Low	Baja	L	
Num	ero máximo de	vaior deduc	ido (mi):	8.9			Medium High	Media Alta	M H	
			OR DEDUCIDO		(VDC)			<u>, </u>		
N°	ļ		LORES DEDUC				VDT	q	VDC	
1	14	13	10	10	0		47	5	21	
2	14	13	10	10	2		49	4	26	
3	14	13	10	2	2		41	3	27	
4	14	13	2	2	2		33	2	24	
5	14	2	2	2	2		22	1	22	
INDICE	DE CONDICIÓN	DEL DATAINAE	NTO (DCI):		DCI: 100	(MAX VDC)		MAX VDC:	27	
HADICE	DE CONDICION	PLLFAVIIVIE	1410 (FCI).	PCI:	73	(IVIDA VDC)		4		
				FCI.	13			RANGO	CLASIFIC	ACION
			UN AENITO	NALIV	BUENO			100 - 85	Excel	
COND	DICIÓN DEL ESTA	ADO DFI PAV	IIVIENTO:					100 00	LACCI	
COND	DICIÓN DEL ESTA	ADO DEL PAV	IMENTO:	IVIOT		_		85 - 70	Muv h	ueno
COND	DICIÓN DEL ESTA	ADO DEL PAV	IMENTO:	IVIOT				85 - 70 70 - 55	Muy b Bue	
COND	DICIÓN DEL ESTA	ADO DEL PAV	IMENTO:	IVIOT		•		70 - 55	Bue	no
COND	DICIÓN DEL ESTA	ADO DEL PAV	IMENTO:	IVIOT				70 - 55 55 - 40		no ılar
COND	DICIÓN DEL ESTA	ADO DEL PAV	IMENTO:	IVIOT				70 - 55	Bue Regu	no ular lo

• Figura N°29. Hoja de cálculo carril 2 _ 0+280 - 0+320

					CONDICIÓN DE			•		
UNI	VERSIDAD CÉS	AR VALLEJO	"Evaluació	ón del pavim		itilizando el r istrito José L		n la Avenida Mo z "	exico cuadras	32 a la 37
NOMBR	RE DE LA VÍA DE	ESTUDIO:		AV. MEXICO)				ESQUEMA	
UN	NIDAD DE MUES	TRA:	ι	JM8 - CARRIL	. 2					7
PR	ROGRESIVA INIC	CIAL:		0+280						
PI	ROGRESIVA FIN	IAL:		0+320						
AN	ICHO DE LA VÍA	(m):		6					40 1	m
ÁRE/	A DE LA UNIDAI) (m2):		240						
	EVALUADOR:		PERALTA	SÁNCHEZ CE	LIS KEVIN				6	
	FECHA:		7 D	E MAYO DEL 2	2021				6 m	
N°		DAÑO		N°		D	AÑO			
1	Piel de coco	drilo (m2).		11	Parcheo (m2	.).				
2	Exudación (n	n2).		12	pulimiento d	de agregados	(m2).			
3		to en bloque		13	Huecos (und	,				
4		os y hundimi	entos (ml).	14	cruce de vía					
5	Corrugación			15	Ahuellamier	, ,				
6	Depresión (r			16	Desplazamie					
7	Grieta de bo	` '	. / 1)	17	Grieta parab					
8		lexión de jun		18	Hinchamien	• •				
9		ril / berma (m	•	19	Desprendim	iento de agre	egados (m2).			
10	Grietas iongi	tudinales y tr	ransversales							
Daño	Severidad		Can	tidades parc	iales		Total	Densidad (%)	Valor deducido	
19	Н	3.40	3.70				12.58	5.2	31	
12	Н	3.40	14.80			50.32	93.22	38.8	59	
12	Н	3.9	11.00			42.9				
4	M		0.20				0.20	0.1	0.5	
9	L		2.70				2.70	1.1	0.2	
	Número de	valores ded	ucidos >2 (q):					SEVERIDADES		
		cido más alto:		59			Low	Baja	L	
Núm	ero máximo de	valor deduci	do (mi):	4.8			Medium	Media	M	
							High	Alta	Н	
		VAL	OR DEDUCIDO	CORREGIDO	(VDC)					
N°			LORES DEDUC	,			VDT	q	VDC	
1	59	31	0.5	0.16			90.66	4	52	
2	59	31	0.5	2	1		92.5	3	59	
2	59	31	2	2			94	2	67	
3			2	2			65	1	65	
4	59	2								
4	'		NTO (PCI):		PCI: 100 - (MAX VDC)		MAX VDC:	67	
4	59 DE CONDICIÓN		NTO (PCI):	PCI:	PCI: 100 - (MAX VDC)		IVIAX VDC:	6/	
4 INDICE	DE CONDICIÓN	DEL PAVIME		PCI:		MAX VDC)		RANGO	CLASIFIC	CACION
4 INDICE	'	DEL PAVIME				MAX VDC)		RANGO 100 - 85	CLASIFIC Excel	ente
4 INDICE	DE CONDICIÓN	DEL PAVIME			33	MAX VDC)	→	RANGO 100 - 85 85 - 70	CLASIFIC Excel Muy b	ente ueno
4 INDICE	DE CONDICIÓN	DEL PAVIME			33	MAX VDC)	→	RANGO 100 - 85 85 - 70 70 - 55	CLASIFIC Excel Muy b Bue	ente ueno no
4 INDICE	DE CONDICIÓN	DEL PAVIME			33	MAX VDC)	→	RANGO 100 - 85 85 - 70 70 - 55 55 - 40	CLASIFIC Excel Muy b Bue Regu	ente ueno no ular
4 INDICE	DE CONDICIÓN	DEL PAVIME			33	MAX VDC)	→	RANGO 100 - 85 85 - 70 70 - 55	CLASIFIC Excel Muy b Bue	ente ueno no ular Ilo

• Figura N°30. Hoja de cálculo carril 2 _ 0+320 - 0+360

		"Evaluació		CONDICIÓN DEI ento flexible u			n la Avenida M	exico cuadras	32 a la 37
ERSIDAD CÉS	AR VALLEJO								
E DE LA VÍA DE	ESTUDIO:		AV. MEXICO)				ESQUEMA	
IDAD DE MUES	TRA:	ι	JM9 - CARRIL	. 2					7
OGRESIVA INIC	CIAL:		0+320						
OGRESIVA FIN	AL:		0+360					40.	_
			6					401	"
DE LA UNIDAD) (m2):		240						
								6 m	
FECHA:		7 D	E MAYO DEL :	2021				V III	
	DAÑO		N°		D	AÑO			
Piel de cocod	drilo (m2).		11	Parcheo (m2).				
Exudación (m	ո2).		12	pulimiento d	de agregados	s (m2).			
Agrietamient	to en bloque	(m2).	13	Huecos (und).				
		entos (ml).	14						
			15		. ,				
			+						
_	. ,		1		, ,				
			1	+	, ,				
		•	19	Desprendim	iento de agre	egados (m2).			
Grietas iongi	tudinales y ti	ransversales							
Severidad		Can	tidades parc	iales		Total	Densidad (%)	Valor deducido	
М	0.20	0.21				- 2	0.8	28	
+						1.00	0.4	27	
					0.10	1.00	0.4	3/	
						11.60	4.8	38	
L	1.1	27			2.12	27	11.3	0.6	
Número de	valores ded	ucidos >2 (a):					CEVEDIDADES		
			38			Low			
			1				†		
	10.0.0.0000		1 0.7	_		High	Alta	Н	
Г	1/41	00 0000000	CORRECTE	(MDC)					
				(VDC)		VDT	n l	VDC	
38							4		
38	37	28	2			105	3	66	
38	37	2	2			79	2	57	
38	2	2	2			44	1	44	
JE CONDICIÓN	DEL DAVAINAE	NTO (DCI):	1	DCI- 100 /	MAX MDC)		MAX VDC:	66	
JE CONDICION	DELIAVIIVIE	1410 (1 CI).	PCI:	34	IVIAN VDC)		_		
							RANGO	CLASIFIC	ACION
ICIÓN DEL EST <i>A</i>	ADO DEL PAV	IMENTO:	N	1ALO			100 - 85	Excel	ente
							85 - 70	Muy b	
							70 - 55	Bue	
							55 - 40	Regi	
							55 - 40 40 - 25 25 - 10	Regu Ma Muy r	lo
	DAD DE MUES DGRESIVA INIC OGRESIVA FINICHO DE LA VÍA DE LA UNIDADE EVALUADOR: FECHA: Piel de cococ Exudación (n Agrietamien: Abultamient Corrugación (n Grieta de boi Grieta de ref Desnivel carr Grietas longi Severidad M M H M M L Número de Valor deducero máximo de ero máximo de 38 38 38 38 38 38	DAÑO Piel de cocodrilo (m2). Exudación (m2). Agrietamiento en bloque Abultamientos y hundimi Corrugación (m2). Depresión (m2). Grieta de borde (ml). Grieta de reflexión de jur Desnivel carril / berma (m Grietas longitudinales y tr Severidad M 0.20 M 0.27 H 0.90 M 2.70 M 1.1 L Número de valores ded Valor deducido más alto ero máximo de valor deducido más alto	DAD DE MUESTRA: DGRESIVA INICIAL: DGRESIVA FINAL: CHO DE LA VÍA (m): DE LA UNIDAD (m2): EVALUADOR: PERALTA FECHA: 7 DI DAÑO Piel de cocodrilo (m2). Exudación (m2). Agrietamiento en bloque (m2). Abultamientos y hundimientos (mI). Corrugación (m2). Grieta de borde (mI). Grieta de reflexión de junta (mI). Desnivel carril / berma (mI). Grietas longitudinales y transversales Severidad Can M 0.20 0.21 M 0.27 0 H 0.90 0.91 M 2.70 3.40 M 1.1 2.2 L 27 Número de valores deducidos >2 (q): Valor deducido más alto: Pro máximo de valor deducido (mi): VALOR DEDUCIDO VALORES DEDUCI 38 37 28 38 37 28 38 37 28 38 37 28	DAD DE MUESTRA:	E DE LA VÍA DE ESTUDIO: AV. MEXICO IDAD DE MUESTRA: UM9 - CARRIL 2 OGRESIVA INICIAL: 0+320 OGRESIVA INICIAL: 0+360 CHO DE LA VÍA (m): 6 DE LA UNIDAD (m2): 240 EVALUADOR: PERALTA SÁNCHEZ CELIS KEVIN FECHA: 7 DE MAYO DEL 2021 DAÑO N° Piel de cocodrilo (m2). 11 Parcheo (m2) Exudación (m2). 12 pulimiento or debución (m2). 13 Huecos (und Abultamientos y hundimientos (ml). 14 cruce de vía (corrugación (m2). 15 Ahuellamier (m2). 16 Desplazamie (m2). 17 Grieta parab (m3). 17 Grieta parab (m3). 18 Hinchamiento (m3). 19 Desprendim (m3). 19 Desprendim (m3). 19 Desprendim (m3). 19 Desprendim (m4). 19 Desprendim (m4). 19 Desprendim (m4). 2.70 0 0 0.21 0 0	E DE LA VÍA DE ESTUDIO: AV. MEXICO IDAD DE MUESTRA: UM9 - CARRIL 2 DOGRESIVA INICIAL: 0+360 CHO DE LA VÍA (m): 6 DE LA UNIDAD (m2): 240 EVALUADOR: PERALTA SÁNCHEZ CELIS KEVIN FECHA: 7 DE MAYO DEL 2021 DAÑO N° DEI de cocodrilo (m2). 11 Parcheo (m2). Exudación (m2). 12 pullimiento de agregado: Agrietamiento en bloque (m2). 13 Huecos (und). Abultamientos y hundimientos (mi). 14 cruce de vía térrea (m2). Corrugación (m2). 15 Ahuellamiento (m2). Depresión (m2). 16 Desplazamiento (m2). Grieta de borde (m1). 17 Grieta parabolica (m2). Grieta de borde (m1). 18 Hinchamiento (m2). Desnivel carril / berma (m1). 19 Desprendimiento de agr Grietas longitudinales y transversales Severidad Cantidades parciales M 0.20 0.21 Desprendimiento de agr M 0.27 0 Desprendimiento de agr M 0.27 0 3.40 9.18 M 1.1 2.2 2 2.42 L 27 Número de valores deducidos >2 (q): Valor deducido más alto: 38 PO MÁXINO DEL PAVIMENTO (PCI): PCI: 100 - (MAX VDC) PCI: 34	DE LA VÍA DE ESTUDIO: AV. MEXICO	DAD DE MUESTRA: UM9 - CARRIL 2 DARSIVA INICIAL: 0+320 OGRESIVA RINAL: 0+320 OGRESIVA RINAL: 0+360 CHO DE LA VÍA (m): 6 DE LA UNIDAD (m2): 240 DE MAYO DEL 2021	DE LA VÍA DE ESTUDIO: AV. MEXICO DAD DE MUESTRA: UM9 - CARRIL 2 20GRESIVA INICIAL: 0+320

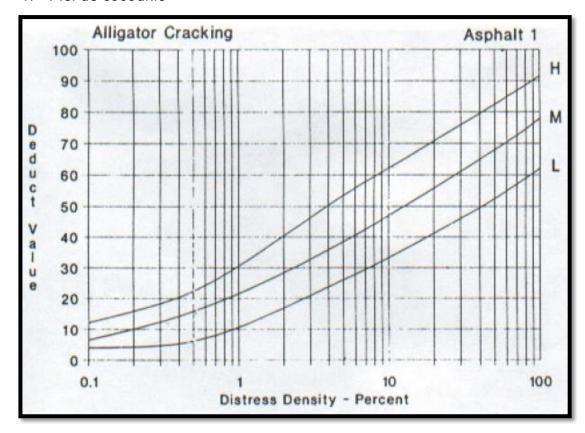
• Figura N°31. Hoja de cálculo carril 2 _ 0+360 - 0+400

	VEKSIDAD CESAK VALLEJO							n la Avanida NA	avica cuadras	22 a la 27
UNIV	VERSIDAD CÉSA	AR VALLEJO	Evaluacio	on dei pavime					exico cuadras :	32 a Ia 37
NOMBR	RE DE LA VÍA DE	ESTUDIO:		AV. MEXICO					ESQUEMA	
UN	IIDAD DE MUES	TRA:	U	M10 - CARRIL	. 2	1				
PR	OGRESIVA INIC	IAL:		0+360		1				
PF	ROGRESIVA FIN	AL:		0+400					40.0	
AN	ICHO DE LA VÍA	(m):		6]			40 1	n
ÁREA	A DE LA UNIDAD	(m2):		240						
	EVALUADOR:		PERALTA	SÁNCHEZ CE	LIS KEVIN]				
	FECHA:		7 DI	MAYO DEL 2	2021				6 M	
N°		DAÑO		N°		D/	งพืด			
1	Piel de cocod			11	Parcheo (m2		4140			
2	Exudación (m			12	_		(m2)			
3	Agrietamient	•	(m2)	13	Huecos (und		(1112).			
4	Abultamient			14	cruce de vía					
5	Corrugación (•		15	Ahuellamier					
6	Depresión (m			16	Desplazamie	. ,				
7	Grieta de bor			17	Grieta parab					
8	Grieta de sel		ta (ml).	18	Hinchamien					
9	Desnivel carr			19			gados (m2).			
10	Grietas longit	<u> </u>	•		1-000-000		- G (
		, , , , , , , , , , , , , , , , , , ,		1						
Daño	Severidad		Can	tidades parci	ales		Total	Densidad (%)	Valor deducido	
10	L		28.00				28.00	11.7	0.9	
13	М	0.25	0.26			1	2	0.8	20	
13	М	0.40	0.45			1	2	0.8	29	
11	M	1.40	2.10			2.94	3 49	1.5	11	
11	M	0.50	1.10			0.55	3.13	1.5		
15	M	0.25	19.00	<u> </u>			4.75	2.0	26	
	Número de	valores ded	ucidos >2 (q):					SEVERIDADES	<u> </u>	
		ido más alto:		29			Low		L	
Núme	ero máximo de	valor deduci	do (mi):	7.5			Medium	<u> </u>	М	
				•			High	Alta	Н	
							DAÑO Fegados (m2).			
		1/01/	OB DEDITION	CORRECIDO	(VDC)	1				
N°			OR DEDUCIDO		(VDC)		VDT		VDC	
N°	29	VA	LORES DEDUCI	DOS	(VDC)					
1	29	VA 26	LORES DEDUCI 11	DOS 0.45	(VDC)		66.45	4	37	
1 2	29	26 26	11 11	0.45 2	(VDC)		66.45 68	4 3	37 44	
1	+	VA 26	LORES DEDUCI 11	DOS 0.45	(VDC)		66.45 68 59	4 3 2	37 44 44	
1 2 3 4	29 29 29	26 26 26 26 2	11 11 2 2	0.45 2 2			66.45 68 59	4 3 2 1	37 44 44 35	
1 2 3 4	29 29	26 26 26 26 2	11 11 2 2	0.45 2 2 2 2	PCI: 100 - (MAX VDC)	66.45 68 59	4 3 2 1	37 44 44 35	
1 2 3 4	29 29 29	26 26 26 26 2	11 11 2 2	0.45 2 2		MAX VDC)	66.45 68 59	4 3 2 1 MAX VDC:	37 44 44 35 44	ACION
1 2 3 4	29 29 29 DE CONDICIÓN	26 26 26 26 2 DEL PAVIME	11 11 2 2 2 NTO (PCI):	0.45 2 2 2 2 PCI:	PCI: 100 - (MAX VDC)	66.45 68 59	4 3 2 1 MAX VDC:	37 44 44 35 44 CLASIFIC	
1 2 3 4	29 29 29	26 26 26 26 2 DEL PAVIME	11 11 2 2 2 NTO (PCI):	0.45 2 2 2 2 PCI:	PCI: 100 - (MAX VDC)	66.45 68 59	4 3 2 1 MAX VDC: RANGO 100 - 85	37 44 44 35 44 CLASIFIC Excelo	ente
1 2 3 4	29 29 29 DE CONDICIÓN	26 26 26 26 2 DEL PAVIME	11 11 2 2 2 NTO (PCI):	0.45 2 2 2 2 PCI:	PCI: 100 - (MAX VDC)	66.45 68 59	4 3 2 1 MAX VDC: RANGO 100 - 85 85 - 70	37 44 44 35 44 CLASIFIC Excelo	ente ueno
1 2 3 4	29 29 29 DE CONDICIÓN	26 26 26 26 2 DEL PAVIME	11 11 2 2 2 NTO (PCI):	0.45 2 2 2 2 PCI:	PCI: 100 - (MAX VDC)	66.45 68 59	4 3 2 1 MAX VDC: RANGO 100 - 85 85 - 70 70 - 55	37 44 44 35 44 CLASIFIC Excelo	ente ueno no
1 2 3 4	29 29 29 DE CONDICIÓN	26 26 26 26 2 DEL PAVIME	11 11 2 2 2 NTO (PCI):	0.45 2 2 2 2 PCI:	PCI: 100 - (MAX VDC)	66.45 68 59	4 3 2 1 MAX VDC: RANGO 100 - 85 85 - 70 70 - 55 55 - 40	37 44 44 35 44 CLASIFIC Excelo Muy b Bue Regu	ente ueno no ılar
1 2 3 4	29 29 29 DE CONDICIÓN	26 26 26 26 2 DEL PAVIME	11 11 2 2 2 NTO (PCI):	0.45 2 2 2 2 PCI:	PCI: 100 - (MAX VDC)	66.45 68 59	4 3 2 1 MAX VDC: RANGO 100 - 85 85 - 70 70 - 55 55 - 40 40 - 25	37 44 44 35 44 CLASIFIC Excelo Muy b Bue Regu Ma	ente ueno no ular lo

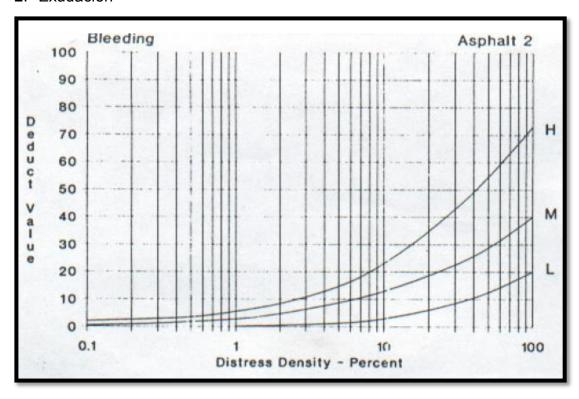
• Figura N°32. Hoja de cálculo carril 2 _ 0+400 - 0+440

					ONDICIÓN DE					
UNIV	VERSIDAD CÉSA	AR VALLEJO	"Evaluació	n del pavim		itilizando el n istrito José Lo		n la Avenida Mo z "	exico cuadras	32 a la 37
NOMBR	E DE LA VÍA DE	ESTUDIO:		AV. MEXICO	1				ESQUEMA	
	IDAD DE MUES		U	M11 - CARRII						7
	OGRESIVA INIC			0+400						
PF	ROGRESIVA FIN	AL:		0+440						
AN	CHO DE LA VÍA	(m):		6					40	m
ÁREA	DE LA UNIDAD	(m2):		240						
	EVALUADOR:			SÁNCHEZ CE				-	6 m	
	FECHA:		7 DI	MAYO DEL 2	2021				0111	
N°		DAÑO		N°		D/	ΑÑO			
1	Piel de cocod	Irilo (m2).		11	Parcheo (m2	<u>'</u>).				
2	Exudación (m	n2).		12	pulimiento d	de agregados	(m2).			
3	Agrietamient			13	Huecos (und					
4	Abultamient		entos (ml).	14	cruce de vía					
5				15	Ahuellamier	\ /				
6				16	Desplazamie					
7 8			n+a (ml)	17 18	Grieta parab					
9	Corrugación (m2). Depresión (m2). Grieta de borde (ml). Grieta de reflexión de junta (ml). Desnivel carril / berma (ml). Grietas longitudinales y transversales Severidad Ca		18	Hinchamien	io (m2). iento de agre	gados (m2)				
10				13	Pespienuili	icinto de agre	6auus (1112).			
	Grieta de reflexión de junta (ml). Desnivel carril / berma (ml). Grietas longitudinales y transversales Severidad Co		Į.							
Daño	Severidad		Can	tidades parci	iales		Total	Densidad (%)	Valor deducido	
13	M	0.39	0.41			1	2.00	0.8	29	
13	M	0.35	0.37		-	1				
1	M	0.90	4.10 1.20			3.69 0.84	4.53	1.9	29	
17	L	2.90	4.70			0.64	13.63	5.7	20	
3	M	1.4	2.4				3.36	1.4	0.5	
	· · · · · · · · · · · · · · · · · · ·		!	ļ.		ļ.				
	Número de	valores ded	ucidos >2 (q):	1				SEVERIDADES		
		ido más alto		29	_		Low	Baja	L	
Núm	ero máximo de	valor deduc	ido (mi):	7.5	_		Medium	Media	M	
							High	Alta	Н	
			OR DEDUCIDO		(VDC)					
N°			LORES DEDUCI		1		VDT	q	VDC	
1	29	29	20	0.25			78.25	4	45	
2	29	29	20	2			80	3	52	
<u>3</u> 4	29 29	29 2	2	2			62 35	1	46 35	
4	43		<u> </u>			<u> </u>	<u> </u>	MAX VDC:	52	
INDICE	DE CONDICIÓN	DEL PAVIME	NTO (PCI):		PCI: 100 - (MAX VDC)			<u></u>	
				PCI:	48					
60::-	NCIÓN DE EST	100 per 21:	IN ACNITO					RANGO	CLASIFIC	
COND	OICIÓN DEL ESTA	ADO DEL PAV	IIVIENTO:	REC	GULAR			100 - 85	Excel	
								85 - 70 70 - FF	Muy b	
								70 - 55 55 - 40	Reg	
								40 - 25	Ma	
								25 - 10	Muy	
								23-10		iiuio

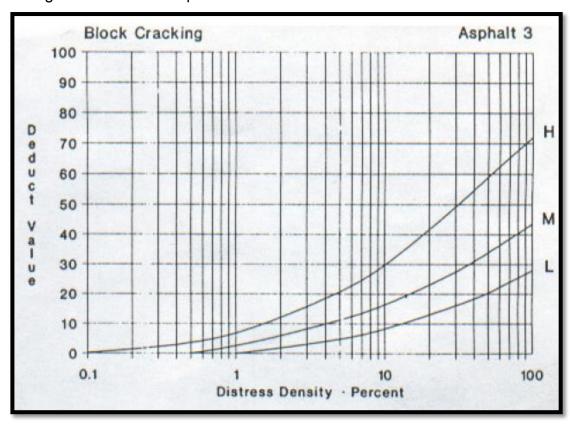
• Figura N°33. Hoja de cálculo carril 2 _ 0+440 - 0+480

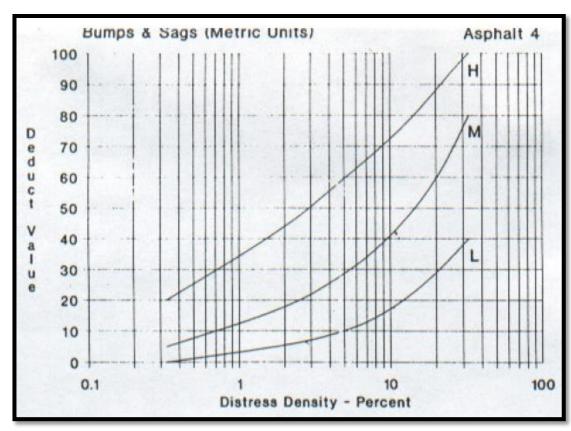

_			"Evaluaci		ONDICIÓN DE			n la Avenida M	ovico cuadras	22 a la 27
UNIV	ERSIDAD CÉS	AR VALLEJO	Lvaluaci	on dei paviiii		Distrito José L			exico cuauras	32 a la 37
NOMBR	E DE LA VÍA DE	ESTUDIO:		AV. MEXICO)				ESQUEMA	
UN	IDAD DE MUES	TRA:	U	M12 - CARRI	L 2	1				7
PR	OGRESIVA INIC	CIAL:		0+440		1				
PR	ROGRESIVA FIN	AL:		0+480					40.	
AN	CHO DE LA VÍA	(m):		6					40 ו	n
ÁREA	DE LA UNIDAD) (m2):		240						
	EVALUADOR:		PERALTA	SÁNCHEZ CE	LIS KEVIN				0	
	FECHA:		7 D	E MAYO DEL:	2021				6 m	
	Т	~ .		1			~ _			
N°	D: 1 1	DAÑO		N°			AÑO			
1	Piel de cocoo	, ,		11	Parcheo (m2	•	/ a)			
3	Exudación (n Agrietamien		(m2)	12 13		de agregados	(m2).			
	Abultamient			14	Huecos (uno	térrea (m2).				
5	Corrugación	•	C.1103 (1111 <i>)</i> .	15	Ahuellamie	, ,				
6	Depresión (n			16	Desplazami					
7	Grieta de boi			17	Grieta parak					
8	Grieta de ref	· '	ta (ml).	18	Hinchamien	· , ,				
9	Desnivel carr			19		niento de agre	gados (m2).			
10	Grietas longi	tudinales y tr	ansversales							
							1			
Daño	Severidad		Can	tidades parc	iales		Total	Densidad (%)	Valor deducido	
1	Н	1.30	2.10				2.73	1.1	31	
5	H	0.80	1.40			2.22	1.12	0.5	29	
11	H	0.50	0.60			0.30	0.66	0.3	11	
11	H	0.30	1.20 0.61			0.36	1	0.4	37	
16	M	0.58 0.40	0.50			1	0.2	0.4	0.5	
10	141	0.40	0.50		ļ		0.2	0.1	0.5	
	Número de	valores ded	ucidos >2 (q):					SEVERIDADES		,
		ido más alto:		37			Low	Baja	L	•
Núme	ero máximo de	valor deduci	do (mi):	6.8			Medium	Media	М	
							High	Alta	Н	
			_			1				
B10			OR DEDUCIDO		(VDC)		1/0=		1/00	
N°	27		LORES DEDUC	1	0.4	-	109.4	q 5	VDC	
2	37 37	31 31	29 29	11 11	0.4		108.4 110	4	57 64	
3	37	31	29	2	2		101	3	64	
4	37	31	2	2	2		74	2	54	
5	37	2	2	2	2		45	1	45	
							·	MAX VDC:	64	
INDICE I	DE CONDICIÓN	DEL PAVIME	NTO (PCI):			(MAX VDC)				
				PCI:	36				A A	
COND	ICIÓN DEL ESTA	1 DO DEL DAY	INACNITO		1010			RANGO	CLASIFIC	
COND	ICION DEL ESTA	ADO DEL PAV	IIVIEN IU:	IV	1ALO			100 - 85	Excel Muy b	
								85 - 70 70 - 55	Bue	
								70 - 55 55 - 40	Regi	
								40 - 25	Ma	
								25 - 10	Muyı	
								10 - 0	Falla	

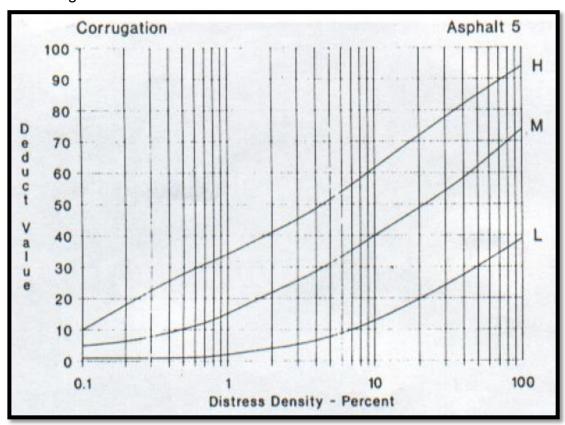
• Figura N°34. Hoja de cálculo carril 2 _ 0+480 - 0+533

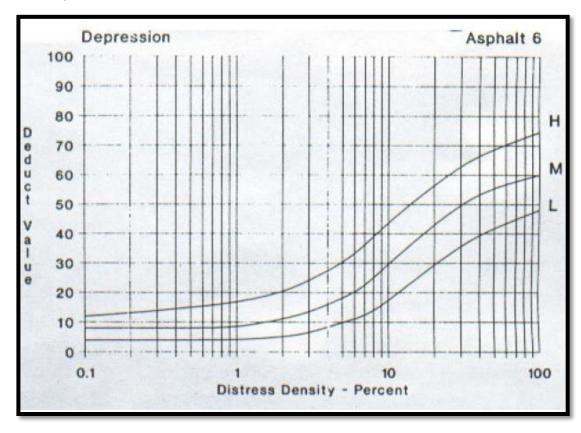

	-				E DE CONDICI						
UNIV	ERSIDAD CÉS	AR VALLEJO	"Evaluació	ón del pavim	ento flexible ເ		nétodo PCI e eonardo Orti		Mexico cuadras	32 a la 37 Dist	trito José
NOMBRI	E DE LA VÍA DE	ESTUDIO:		AV. MEXICO						ESQUEMA	
UNI	IDAD DE MUES	TRA:	Ul	M13 - CARRII	. 2						
PRO	OGRESIVA INIC	CIAL:		0+480							
PR	OGRESIVA FIN	IAL:		0+533							53 m
ANG	CHO DE LA VÍA	(m):		6							
ÁREA	DE LA UNIDAD) (m2):		318							
	EVALUADOR:		PERALTA	SÁNCHEZ CE	LIS KEVIN				!	6 m	
	FECHA:		7 DE	MAYO DEL 2	2021					6 m	
N°		DAÑO		N°			DAÑO				
1	Piel de cocoo			11	Parcheo (m2	•					
2	Exudación (n			12		de agregados	(m2).				
3	Agrietamien			13	Huecos (und	<u> </u>					
4	Abultamient		entos (ml).	14	cruce de vía	, ,					
5	Corrugación			15	Ahuellamier						
6 7	Depresión (n Grieta de bo	-		16 17	Desplazamie Grieta parab						
8	Grieta de poi	` '	ıta (ml)	17	Hinchamien	. ,					
9	Desnivel carr			19		iento de agre	andos (m2)				
10	Grietas longi		,	13	Peshielinilli	icilio de agit	. 6auus (1112).				
Daño	Severidad	tuamares y ti	unsversures	Cantidade	s parciales			Total	Densidad (%)	Valor	
	M	0.90	2.40	Cantidade	- parciales	<u> </u>	<u> </u>	2.16	0.7	deducido 19	
1 12	H	1.60	2.40					3.52	1.1	23	
11	Н	0.70	1.40					0.98	0.3	10	
13	M	0.20	0.30				1	1.00	0.3	15	
10	L	0.20	35.00		-			35.00	11.0	0.9	
17	L	1.30	3.40					4.42	1.4	0.5	
12	М	3.80	4.70					17.86	5.6	19	
4	L		0.25					0.25	0.1	0	
	N/	.1 1. 1		-					051/5515.455		
		ido más alto:	ucidos >2 (q):	22	4			Low	SEVERIDADES		
Númo	ro máximo de			23 8.1	-			Low	Baja Media	L M	
ivaiile	maxiiiio de	valor ueuuci	ωυ (IIII).	0.1				Medium High	Alta	H	
								111811	71110		
			OR DEDUCIDO		(VDC)				 		
N°	20		LORES DEDUCI			2.5		VDT	q	VDC	
1	23	19	19	15	10	0.9	0.5	87.4	7	42	
3	23 23	19 19	19 19	15 15	10	0.9 2	2	88.9 90	6 5	43 47	
<u>3</u>	23	19	19	15	2	2	2	82	4	46	
5	23	19	19	2	2	2	2	69	3	44	
6	23	19	2	2	2	2	2	52	2	39	
7	23	2	2	2	2	2	2	35	1	35	
									MAX VDC:	47	
INDICE [DE CONDICIÓN	DEL PAVIME	NTO (PCI):	D.01		100 - (MAX \	'DC)]		
				PCI:	53				RANGO	CLASIFIC	CACION
COND	ICIÓN DEL ESTA	ADO DEL PAV	IMENTO:	REG	GULAR				100 - 85	Excel	
									85 - 70	Muy b	
									70 - 55	Bue	no
									55 - 40	Regi	ular
									40 - 25	Ma	
									25 - 10	Muy r	malo
									10 - 0	Falla	ado

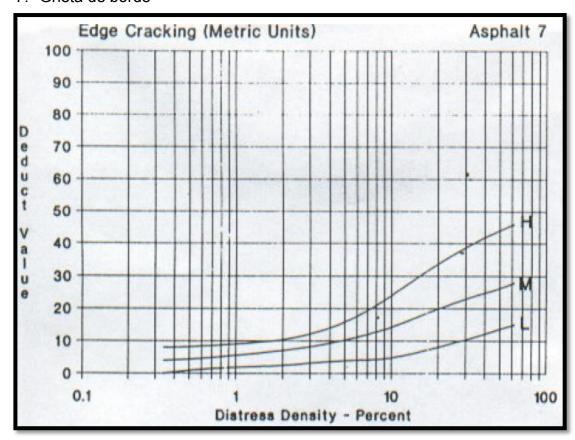
• Figura N°35. Ábacos para pavimento asfaltico

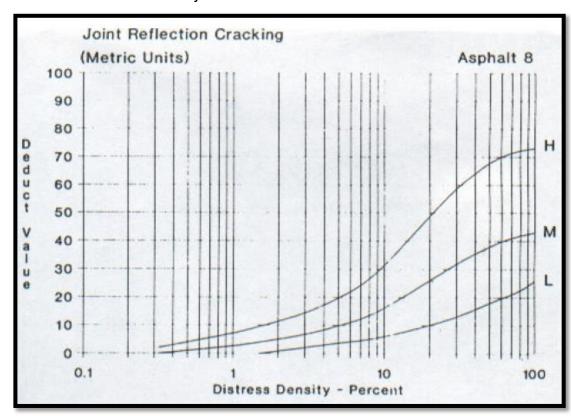

1. Piel de cocodrilo

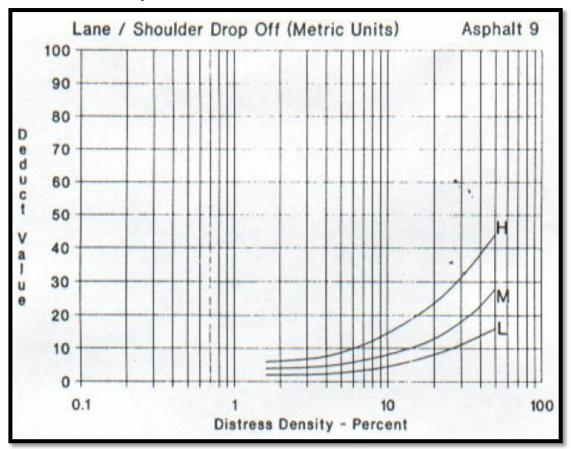

2. Exudación

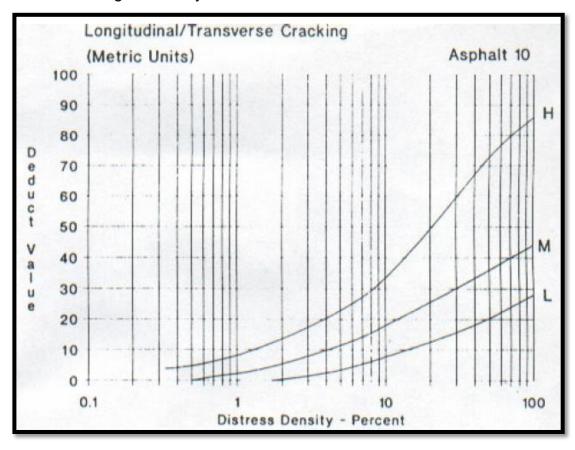

3. Agrietamiento en bloques

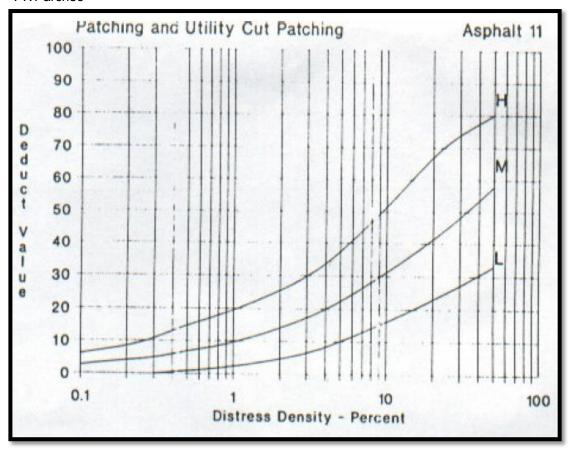

4. Abultamientos y hundimientos

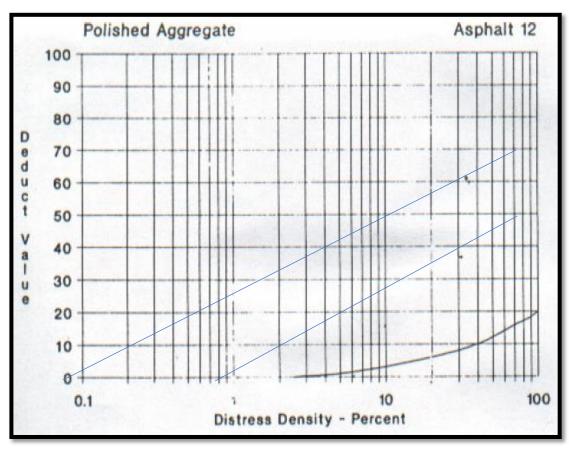

5. corrugación

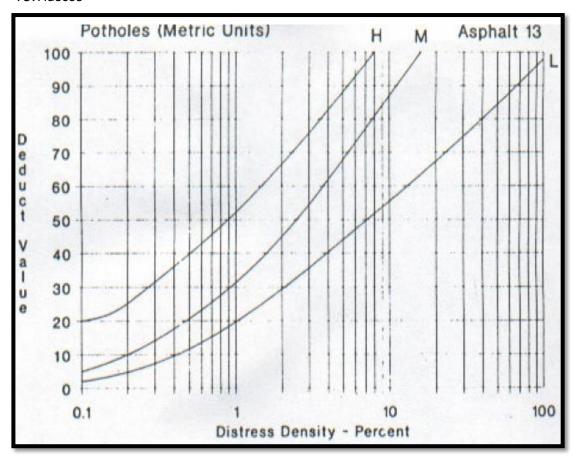

6. Depresión

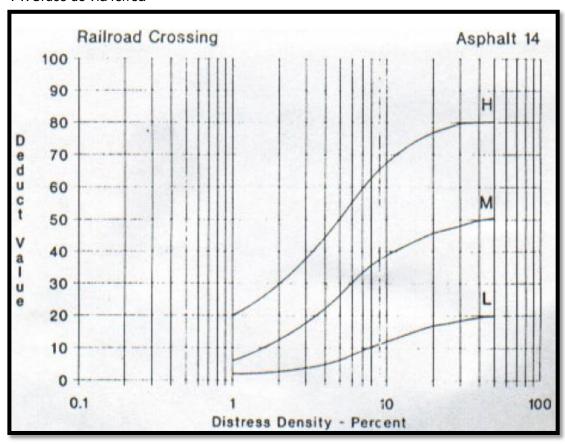

7. Grieta de borde

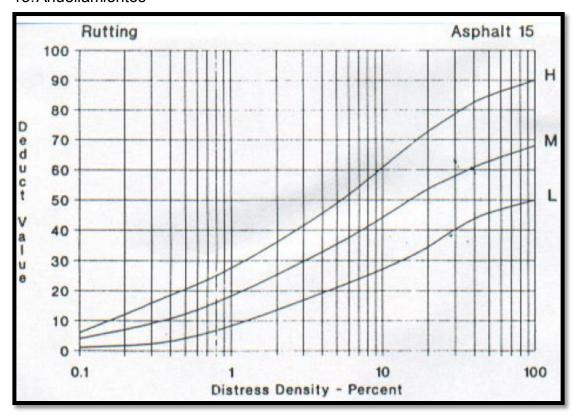

8. Grieta de reflexión de junta

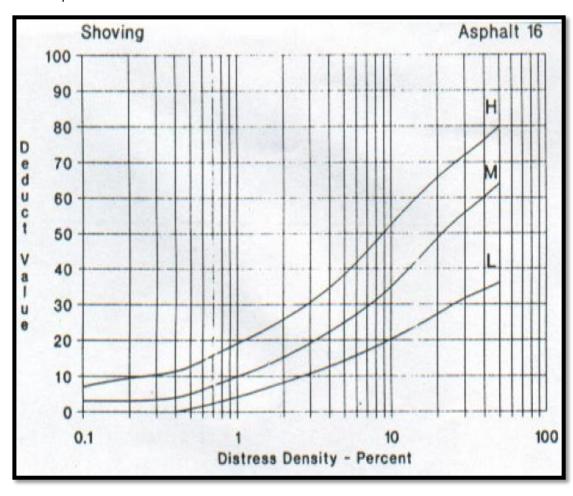

9. Desnivel de carril y berma

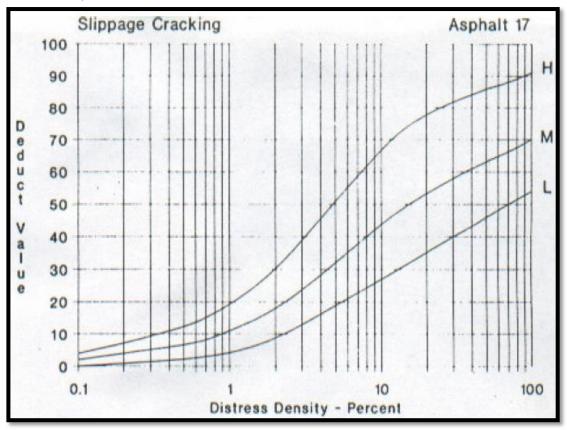

10. Grietas longitudinales y transversales

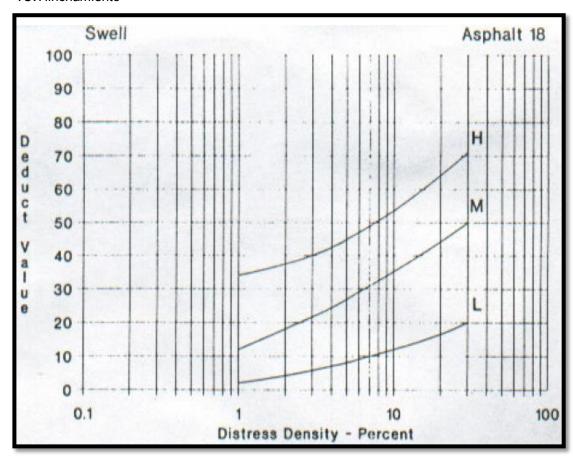

11. Parcheo

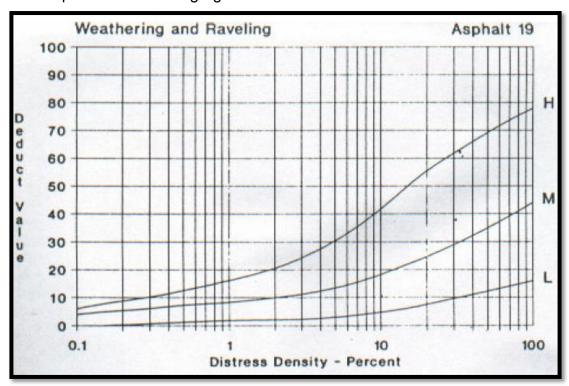

12. Pulimento de agregados

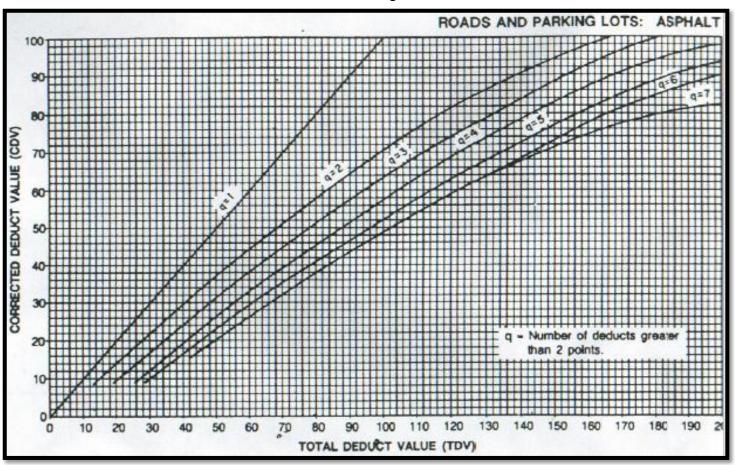

13. Huecos


14. Cruce de vía férrea


15. Ahuellamientos


16. Desplazamiento


17. Grieta parabólica


18. Hinchamiento

19. Desprendimiento de agregado

20. Abaco de valor deducido corregido.

• Figura N°36: Metrado del mantenimiento de pavimento Av. Mexico C32 - C37.

01	MANTENIMIENTO DE PAVIMENTO AV. MEXICO C32 - C37										
01.01	OBRAS PRELIMINARES										
01.01.01	CARTEL DE OBRA	Unidad	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	Área (m2)	Metrado Parcial	Metrado Total	
	Gigantografia del proyecto incluye parantes de madera	und	1.00	4.80	2.40				1.00	1.00	m2
01.01.02	MOVILIZACIÓN Y DESMOVILIZACION DE EQUIPOS (SUBCONTRATO)	Unidad	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	Área (m2)	Metrado Parcial	Metrado Total	
	Traslado de maquinaria	est	1.00						1.00	1.00	m2
01.01.03	TRAZO Y REPLANTEO	Unidad	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	Área (m2)	Metrado Parcial	Metrado Total	
	Longitud de via	ml	1.00	1066	6				6,396.00	6,396.00	m2
01.02.01	CORTE Y ROTURA DE PAVIMENTO ASFALTICO		Cantidad 1.00	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)		Parcial	Total	
01102101				-a.go (,	/ mone (m)	/ utal a (iii)	Lopotor (III)				
			1 00					12.5	12.5	375.57	m2
	AGRIETAMIENTO EN BLOQUE	m2									
	HUECOS	m2	1.00					9.59	9.59		
	HUECOS PARCHEO	m2 m2	1.00 1.00					37.09	9.59 37.09		
	HUECOS PARCHEO DESPRENDIMIENTO DE AGREGADOS	m2 m2 m2	1.00 1.00 1.00					37.09 106.22	9.59 37.09 106.22		
	HUECOS PARCHEO DESPRENDIMIENTO DE AGREGADOS PIEL COCODRILO	m2 m2 m2 m2	1.00 1.00 1.00 1.00					37.09 106.22 207.27	9.59 37.09 106.22 207.27		
	HUECOS PARCHEO DESPRENDIMIENTO DE AGREGADOS	m2 m2 m2	1.00 1.00 1.00					37.09 106.22	9.59 37.09 106.22		
01.02.02	HUECOS PARCHEO DESPRENDIMIENTO DE AGREGADOS PIEL COCODRILO	m2 m2 m2 m2	1.00 1.00 1.00 1.00	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	37.09 106.22 207.27	9.59 37.09 106.22 207.27	Metrado Total	
01.02.02	HUECOS PARCHEO DESPRENDIMIENTO DE AGREGADOS PIEL COCODRILO CORRUGACION	m2 m2 m2 m2 m2 m2	1.00 1.00 1.00 1.00 1.00	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	37.09 106.22 207.27 2.9	9.59 37.09 106.22 207.27 2.9		m2
01.02.02	HUECOS PARCHEO DESPRENDIMIENTO DE AGREGADOS PIEL COCODRILO CORRUGACION FRESADO DE CARPETA ASFALTICA EN MAL ESTADO	m2 m2 m2 m2 m2 m2	1.00 1.00 1.00 1.00 1.00 Cantidad	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	37.09 106.22 207.27 2.9 Área (m2)	9.59 37.09 106.22 207.27 2.9 Metrado Parcial		m2
01.02.02	HUECOS PARCHEO DESPRENDIMIENTO DE AGREGADOS PIEL COCODRILO CORRUGACION FRESADO DE CARPETA ASFALTICA EN MAL ESTADO PULIMIENTO DE AGREGADOS	m2 m2 m2 m2 m2 m2	1.00 1.00 1.00 1.00 1.00 1.00 Cantidad 1.00 1.00	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	37.09 106.22 207.27 2.9 Área (m2) 179.18 0.84 22.95	9.59 37.09 106.22 207.27 2.9 Metrado Parcial 179.18 0.84 22.95		m2
01.02.02	HUECOS PARCHEO DESPRENDIMIENTO DE AGREGADOS PIEL COCODRILO CORRUGACION FRESADO DE CARPETA ASFALTICA EN MAL ESTADO PULIMIENTO DE AGREGADOS DESPLAZAMIENTO	m2 m2 m2 m2 m2 m2 Unidad	1.00 1.00 1.00 1.00 1.00 Cantidad 1.00 1.00	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	37.09 106.22 207.27 2.9 Área (m2) 179.18 0.84	9.59 37.09 106.22 207.27 2.9 Metrado Parcial 179.18 0.84		m2

01.02.03	EXCAVACION A NIVEL DE BASE PARA BACHEO	Unidad	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	Área (m2)	Metrado Parcial	Metrado Total	
	HUECOS	m3	1.00			0.25		9.59	2.3975	2.40	m3
01.02.04	ELIMINACION DE MATERIAL EXCEDENTE	Unidad	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	Área (m2)	Metrado Parcial	Metrado Total	
	Referido al material procedente de la partida de corte y rotura de pavimentos									45.80	
	AGRIETAMIENTO EN BLOQUE	m3	1.00				0.07	12.5	0.88		
	HUECOS	m3	1.00				0.07	9.59	0.67		
	PARCHEO	m3	1.00				0.07	37.09	2.60		
	DESPRENDIMIENTO DE AGREGADOS	m3	1.00				0.07	106.22	7.44		
	PIEL COCODRILO	m3	1.00				0.07	207.27	14.51		
	CORRUGACION	m3	1.00				0.07	2.9	0.20		
	Referido al material procedente de las partida de fresado de carpeta asfaltica										
	PULIMIENTO DE AGREGADOS	m3	1.00				0.07	179.18	12.54		
	DESPLAZAMIENTO	m3	1.00				0.07	0.84	0.06		
	ABULTAMIENTO Y HUNDIMIENTOS	m3	1.00				0.07	22.95	1.61		
	AHUELLAMIENTO	m3	1.00				0.07	21.09	1.48		
	GRIETA PARABOLICA	m3	1.00				0.07	20.45	1.43		
	Referido al material procedente de la partida de excavacion a nivel de base para bacheo										
	HUECOS	m3	1.00			0.25		9.59	2.40	59.54	
									Factor esponj 30%	59.54	m3
01.03	PAVIMENTOS										
01.03.01	CONFORMACIÓN, COMPACTADO Y NIVELADO DE BASE GRANULAR E: 0.20 CM	Unidad	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	Área (m2)	Metrado Parcial	Metrado Total	
	HUECOS	m2	1.00					9.59	9.59	9.59	m2
01.03.03	BACHEO PROFUNDO	Unidad	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	Área (m2)	Metrado Parcial	Metrado Total	m2
	HUECOS	m2	1.00					9.59	9.59	9.59	m2

FUENTE: Elaboración Propia

01.03.04	IMPRIMACION ASFALTICA PARA BASE	Unidad	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	Área (m2)	Metrado Parcial	Metrado Total	
	AGRIETAMIENTO EN BLOQUE	m2	1.00					12.50	12.50	620.08	m2
	HUECOS	m2	1.00					9.59	9.59		
	PARCHEO	m2	1.00					37.09	37.09		
	DESPRENDIMIENTO DE AGREGADOS	m2	1.00					106.22	106.22		
	PIEL COCODRILO	m2	1.00					207.27	207.27		
	CORRUGACION	m2	1.00					2.90	2.90		
	PULIMIENTO DE AGREGADOS	m2	1.00					179.18	179.18		
	DESPLAZAMIENTO	m2	1.00					0.84	0.84		
	ABULTAMIENTO Y HUNDIMIENTOS	m2	1.00					22.95	22.95		
	AHUELLAMIENTO	m2	1.00					21.09	21.09		
	GRIETA PARABOLICA	m2	1.00					20.45	20.45		
01.03.05	CARPETA ASFALTICA EN CALIENTE DE 2"	Unidad	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	Área (m2)	Metrado Parcial	Metrado Total	
	AGRIETAMIENTO EN BLOQUE	m2	1.00					12.50	12.50	620.08	m2
	HUECOS	m2	1.00					9.59	9.59		
	PARCHEO	m2	1.00					37.09	37.09		
	DESPRENDIMIENTO DE AGREGADOS	m2	1.00					106.22	106.22		
	PIEL COCODRILO	m2	1.00					207.27	207.27		
	CORRUGACION	m2	1.00					2.90	2.90		
_	PULIMIENTO DE AGREGADOS	m2	1.00					179.18	179.18		
	DESPLAZAMIENTO	m2	1.00					0.84	0.84		
	ABULTAMIENTO Y HUNDIMIENTOS	m2	1.00					22.95	22.95		
	AHUELLAMIENTO	m2	1.00					21.09	21.09		
	GRIETA PARABOLICA	m2	1.00					20.45	20.45	-	

01.03.06	SELLADO DE FISURAS Y GRIETAS	Unidad	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	Área (m2)	Metrado Parcial	Metrado Total	
	GRIETAS LONGITUDINALES	ml	1.00	273.50					273.50	335.30	ml
	GRIETA BORDE	ml	1.00	61.80					61.80		
01.03.06	SELLADO DE GRIETAS EN BLOQUES	Unidad	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	Área (m2)	Metrado Parcial	Metrado Total	
	AGRIETAMIENTO EN BLOQUE	m2	1.00	12.50					12.50	12.50	m2
01.03.08	RENIVELACIÓN ASFÁLTICA	Unidad	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	Área (m2)	Metrado Parcial	Metrado Total	
	DESNIVEL CARRIL BERMA	ml	1.00	3.70					3.70	3.70	ml
01.04.01	LIMPIEZA DE CUNETA RECTANGULAR	Unidad	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	Área (m2)	Metrado Parcial	Metrado Total	
01.04	SISTEMA DE DRENAJE PLUVIAL	1						<i>i</i>	Metrado	L	
	Consiste en el retiro de material desmonte y sediemntos acumulados	ml	2.00	533.00	(,	()		()	1.066.00		ml
	Consiste en en en ello de material destribille y sedientifios accimidados	1100	2.00	333.00					1,000.00	1000.00	11111
01.04.02	INCORPORACIÓN DE REJILLA METALICA PARA CANALETAS A=0.30 m:	Unidad	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	Área (m2)	Metrado Parcial	Metrado Total	
	colocación de rejilla metalica	ml	2.00	533.00					1,066.00	1066.00	ml
01.05	SEÑALIZACION Y SEGURIDAD VIAL	Unidad	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Espesor (m)	Área (m2)	Metrado Parcial	Metrado Total	
01.05.01	CONSERVACION DE SEÑALES INFORMATIVAS	und	8.00						8.00	8.00	ml
01.05.02	REPOSICION DE SEÑALES REGLAMENTARIAS	und	5.00						5.00	5.00	ml
01.05.03	PINTURA ASFALTICA	m2	280.00						280.00	280.00	ml
01.05.04	PINTADO DE SARDINELES										
	Sardineles en veredas		2.00	483.00					966.00	1072 NN	ml
	Separador central	m	2.00	503.00					1,006.00		
01.05.05	PINTADO DE GIBAS O RESALTOS	m2	126.00						126.00		m2
01.05.06	MARCAS EN EL PAVIMENTO	m	752.00						752.00	752.00	ml

• Figura N°37: Análisis de Costos Unitarios

RESP. CELIS KEV	IN PERALTA SANC	neZ		A . (11. 1.						
				Analisis	de precios i	unitarios				
Presupuesto	0203001	Mantemiento	en Av. Mexi	co cuadra 32	- 37 (KP)					
Subpresupuesto	001 Mantenimiento								Fed	ha presupues
Partida	01.01.01		CARTEL DE	OBRA						
Rendimiento	und/DIA	MO.	1.0000	EQ.	1.0000	Costo unitario	directo por : und	S/.	896.47	U
Código	Descripción	Recurso		Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U
		Mano de Obra	a							
0101010003	OPERARIO			hh		2.0000	16.0000	18.24		291.8
0101010005	PEON			hh		2.0000	16.0000	16.76		268.1
									560.00	
		Materiales								
02041200010005	CLAVOS PARA M		EZA DE 3"	kg			1.9400	3.00		5.8
02070200010002	ARENA GRUESA			m3			0.6700	55.00		36.8
0213010001	CEMENTO PORT	AND TIPO I (42.5	kg)	bol			1.0000	22.00		22.
Ď218020001	PERNO HEXAGON		Ji	und			10.0000	2.00		20.
0231010001	MADERA TORNILI			p2			18.0000	5.00		90.
02310500010003	TRIPLAY DE 1.20)			und			4.0000	30.00		120.
0240020001	PINTURA ESMAL			gal			1.0000	25.00		25.
0240020001	FINTORA ESIMAL	_		yaı			1.0000	23.00	319.67	20.1
0301010006	E quipos HERRAMIENTAS MANUALES			0/ ma			3.0000	560.00		16.
0301010006	NEKKAWIEN I AS	VIAINUALES		%mo			3.0000	300.00	16.80	10.
									10.00	
Partida	01.01.02		MOVILIZAC	ION Y DESMO	VILIZACION	DE EQUIPOS	(SUBCONTR)	ATO)		
Rendimiento	est/DIA	MO.		EQ.		Costo unitari	o directo por : est	S/.	2,000.00	U
				24.		Cook dillah	o unodo por 1 doc		2,000.00	
Código	Descripción Recurso			Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U
0424010001	Subcontratos SC MOVILIZACION DE EQUIPOS			glb			1.0000	2,000.00		2,000.0
12.0.000	00 111011212110101	, DE EQU. 00		9.0				2,000.00	2,000.00	2,000.
Partida	01.01.03		TRAZO Y RI	EPLANTEO E	N OBRA					
Rendimiento	m2/DIA	MO.	2,000.0000	EQ.	2,000.0000	Costo unitario	o directo por : m2	S/.	0.76	U
Código	Descripción Recurso		Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U	
	Mano de Obra									
0101010002	CAPATAZ			hh		1.0000	0.0040	21.89		0.0
0101010005	PEON			hh		6.0000	0.0240	16.76		0.4
01010300000005	OPERARIO TOPO	GRAFO		hh		1.0000	0.0040	15.20		0.0
									0.55	
		Materiales								
0204120001	CLAVOS PARA MADERA CON CABEZA		ZA	kg			0.0050	2.63		0.0
02130300010001	YESO BOLSA 28 kg			bol			0.0100	12.00		0.0
0L10000010001	TESO BOLOA 20 N	9		001			0.0100	12.00	0.13	0.
		Equipos								
0204000044	TEODOLITO	_qu.pcc		hm		4 0000	0.0040	44.00		^
0301000011 0301010006	TEODOLITO HERRAMIENTAS			hm %mo		1.0000	0.0040 3.0000	14.00 0.55		0.

m2/DIA Descripción OFICIAL PEON OPERADOR DE DISCO DE COR	n Recurso Mano de Obra	80.0000	EQ. Unidad hh hh	80.0000	Costo unitario	directo por : m2	S/. Precio S/.	17.33 Parcial S/.	U\$
OFICIAL PEON OPERADOR DE DISCO DE COR	Mano de Obra	1	hh hh		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U\$
PEON OPERADOR DE DISCO DE COR	EQUIPO		hh						
PEON OPERADOR DE DISCO DE COR			hh						
OPERADOR DE					1.0000	0.1000	18.53		1.85
DISCO DE COR			hh		0.2000	0.0200	16.76		0.34
	Materiales				2.0000	0.2000	26.42		5.28
	Materiales							7.47	
	TE PC 300 DE 18"		und			0.0030	2,033.03		6.10
AGUA			und			0.0150	18.00	6.37	0.27
	Equipos								
HERRAMIENTA			%mo			3 0000	7 47		0.22
					0.1300				0.22
		Para comprensoral							0.09
	,	. ,							2.25
		001111 1 00111200					20,00	3.49	
01.02.02		FRESADO D	E CARPETA	ASFALTICA	EN MAL ESTAI	00			
m2/DIA	MO.	160.0000	EQ.	160.0000	Costo unitario	directo por : m2	SI.	7.31	U\$
Descripción			Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U\$
	Mano de Obra	1							
									2.51
OPERADOR DE	EQUIPO		hh		1.0000	0.0500	26.42		1.32
								3.83	
	Equipos								
HERRAMIENTA	S MANUALES		%mo			3.0000	3.83		0.11
MAQUINARIA F	RESADORA		hm		1.0000	0.0500	67.30	7.47 6.37 6.37 7.41 8.3.49 7.31 Parcial S/. 3.48 42.55	3.37
								0.10	
01.02.03		EXCAVACIO	ON A NIVEL D	E BASE PAR	A BACHEO				
m3/DIA	MO.	80.0000	EQ.	80.0000	Costo unitario	directo por : m3	S/.	45.63	U\$
Descripción	n Recurso		Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U\$
		a .							
OFICIAL			hh		2.2860	0.2286	18.53		4.24
PEON			hh		22.8570	2.2857	16.76		38.31
								42.55	
UEDDA	Equipos		04			0.000	/* ==		
					0.0000				1.28
MINI EXCAVADO	JKA		nm		0.2000	0.0200	90.00		1.80
	COMPRESORA MARTILLO CINC CORTADORA D 01.02.02 m2/DIA Descripción PEON OPERADOR DE HERRAMIENTA: MAQUINARIA FI 01.02.03 m3/DIA Descripción OFICIAL PEON	O1.02.02 m2/DIA MO. Descripción Recurso Mano de Obra PEON OPERADOR DE EQUIPO Equipos HERRAMIENTAS MANUALES MAQUINARIA FRESADORA 01.02.03 m3/DIA MO. Descripción Recurso Mano de Obra OFICIAL PEON	HERRAMIENTAS MANUALES COMPRESORA NEUMATICA MARTILLO CINCEL PARA CORTE (Para comprensora) CORTADORA DE PAVIMENTO C35 - 35HP VCOMBUS 01.02.02 FRESADO D m2/DIA MO. 160.0000 Descripción Recurso Mano de Obra PEON OPERADOR DE EQUIPO Equipos HERRAMIENTAS MANUALES MAQUINARIA FRESADORA 01.02.03 EXCAVACIO m3/DIA MO. 80.0000 Descripción Recurso Mano de Obra OFICIAL PEON Equipos HERRAMIENTAS MANUALES	HERRAMIENTAS MANUALES COMPRESORA NEUMATICA MARTILLO CINCEL PARA CORTE (Para comprensora) CORTADORA DE PAVIMENTO C35 - 35HP I/COMBUS M O1.02.02 FRESADO DE CARPETA M2/DIA M0. 160.0000 EQ. Descripción Recurso Mano de Obra PEON OPERADOR DE EQUIPO Hh Equipos HERRAMIENTAS MANUALES MAQUINARIA FRESADORA MO. 80.0000 EQ. Descripción Recurso Mano de Obra Descripción Recurso MAQUINARIA FRESADORA MAQUINARIA FRESADORA Hm Equipos HERRAMIENTAS MANUALES Mano de Obra OFICIAL PEON Hh Hh	HERRAMIENTAS MANUALES COMPRESORA NEUMATICA MARTILLO CINCEL PARA CORTE (Para comprensora) hm CORTADORA DE PAVIMENTO C35 - 35HP I/COMBUS MACUINARIA FRESADO DE CARPETA ASFALTICA I Descripción Recurso Mano de Obra PEON OPERADOR DE EQUIPO HERRAMIENTAS MANUALES MAQUINARIA FRESADORA MO. 80.0000 Descripción Recurso MIDIA MIDIA MO. 80.0000 MIDIA	HERRAMIENTAS MANUALES	HERRAMIENTAS MANUALES	HERRAMIENTAS MANUALES	Equipos

				NTE	RIAL EXCEDE	N DE MATE	ELIMINACIO		01.02.04	Partida
·	22.55	S/.	directo por : m3	Costo unitario	280.0000	EQ	280.0000	MO.	m3/DIA	Rendimiento
Precio L	Parcial S/.	Precio S/.	Cantidad	Cuadrilla		Unidad		Recurso	Descripción	Código
							ı	Mano de Obra		
0.		21.89	0.0143	0.5000		hh			CAPATAZ	0101010002
0.		18.53	0.0286	1.0000		hh			OFICIAL	0101010004
1.		16.76	0.1143	4.0000		hh			PEON	0 101010005
	2.76									
								Equipos		
0.		2.76	3.0000			%mo		MANUALES	HERRAMIENTAS I	0301010006
4.		150.00	0.0286	1.0000		hm			CARGADOR FRO	03011600010002
15.		270.00	0.0571	2.0000		hm			CAMION VOLQUE	0301220004
10.	19.79	210.00	0.0071	2.0000		100			CANNON VOLGOL	0301220004
	CM.	LAD 5. 0.20 /	ACE CRANII	/FLABO DE D	ACTADO V N	CIÓN COMP	CONFORMA		04.02.04	D- 414-
	СМ	LAR E: 0.20 (ASE GRANU	/ELADO DE B	ACTADO Y N	CION, COMP	CONFORMA		01.03.01	Partida
·	19.77	S/.	directo por : m2	Costo unitario	430.0000	EQ	430.0000	MO.	m2/DIA	Rendimiento
Precio l	Parcial S/.	Precio S/.	Cantidad	Cuadrilla		Unidad			Descripción	Código
		04.00	0.0000	0.5000		LL		Mano de Obra		0101010002
0.		21.89	0.0093	0.5000		hh			CAPATAZ	
0.		18.53	0.0186	1.0000		hh			OFICIAL	0101010004
0.		16.76	0.0558	3.0000		hh			PEON	0101010005
	1.48									
								Materiales		
9		60.00	0.1640			m3		ULAR PARA BASE	MATERIAL GRAN	02070400010002
	9.84									
								Equipos		
0.		1.48	3.0000			%mo			HERRAMIENTAS	0301010006
2.		157.00	0.0186	1.0000		hm	SO CA-25	ORIO DYNAPAC LI	RODILLO VIBRATO	03011900020002
3.		165.00	0.0186	1.0000		hm		RA	MOTONIVELADOR	0301200001
2.		130.00	0.0186	1.0000		hm		NA (2,500 GLNS.)	CAMION CISTERN	03012200050001
	8.45									
				FALTICA	N MEZCLA A	OFIINDO CO	RACHEO PE		01.03.02	Partida
L	27.18	S/.	directo por : m3	Costo unitario	1,000.0000	EQ	1,000.0000	MO.	m3/DIA	Rendimiento
Precio l	Parcial S/.	Precio S/.	Cantidad	Cuadrilla		Unidad		Recurso Mano de Obra	Descripción	Código
0.		21.89	0.0320	4.0000		hh			CAPATAZ	0101010002
0.		18.24	0.0240	3.0000		hh			OPERARIO	0101010002
1.		18.53	0.0560	7.0000		hh			OFICIAL	0101010003
0.				1.0000		hh			PEON	0101010004
U	2.31	16.76	0.0080	1.0000		nn			PEON	0101010005
								Materiales		
0.		15.50	0.0500			gal			ASFALTO RC-250	02010500010001
21.		361.60	0.0600						MEZCLA ASFALT	02010500010001
21.	22.48	301.00	0.0600			m3		IUA	INIEZULA ASPALTI	0201030003
								Equipos		
0		2.31	3.0000			%mo			HERRAMIENTAS	5301010006
1				1,000			SU UV JE			0301010000
1		157.00	0.0080	1.0000		hm	50 CA-25	ORIO DYNAPAC LIS	KODILLO VIBRATO	
1.		132.00	0.0080	1.0000		hm		A SOBRE LLANTAS	DAY/MATATACAS	0301390001

Partida	01.03.03		IMPRIMACIO	N ASFALTIC	A PARA BASE					
Rendimiento	m2/DIA	МО	1,900.0000		1,900.0000		o directo por : m2	S/.	2.28	U\$
Renaimiento	M2/DIA	MO.	1,900.0000	EQ.	1,900.0000	Costo unitari	o directo por : m2	51.	2.20	0.3
Código	Descripción I	Recurso		Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U\$
	N	Mano de Obra	la .							
0101010002	CAPATAZ			hh		2.0000	0.0084	21.89		0.18
0101010004	OFICIAL			hh		2.0000	0.0084	18.53		0.16
0101010005	PEON			hh		8.0000	0.0337	16.76		0.56
									0.90	
		Materiales								
02010500010001	ASFALTO RC-250			gal			0.0500	15.50	0.78	0.78
		Equipos								
0301010006	HERRAMIENTAS N			%mo			3.0000	0.90		0.03
0301220008						1 0000				
0301220008	CAMION IMPRIMA	DOK		hm		1.0000	0.0042	135.00	0.60	0.57
Partida	01.03.04		CARPETA A	SFALTICA EI	N CALIENTE D	E 2"				
Rendimiento	m2/DIA	MO.	850.0000	EQ.	850.0000	Costo unitari	o directo por : m2	S/.	25.04	U\$
Código	Descripción			Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U\$
0404040000		Mano de Obra		L.L.		4.0000	0.0004	04.00		0.04
0101010002	CAPATAZ			hh		1.0000	0.0094	21.89		0.21
0101010003	OPERARIO			hh		2.0000	0.0188	18.24		0.34
0101010005	PEON			hh		8.0000	0.0753	16.76	1.81	1.26
		Materiales								
0201050005	MEZCLA ASFALTI	CA		m3			0.0600	361.60		21.70
									21.70	
		Equipos								
0301010006	HERRAMIENTAS N			%mo			3.0000	1.81		0.05
03011900020002	RODILLO VIBRATO	DRIO DYNAPAC LI	SO CA-25	hm		1.0000	0.0094	157.00		1.48
									1.53	
Partida	01.03.05		SELLADO DI	FISHBAS V	GRIFTAS					
railiua	01.03.03									
Rendimiento	m/DIA	MO.	1,000.0000	EQ.	1,000.0000	Costo unital	rio directo por : m	S/.	6.78	U\$
Código	Descripción I	Recurso		Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U\$
	N.	Mano de Obra								
0101010002	CAPATAZ			hh		4.0000	0.0320	21.89		0.70
0101010003	OPERARIO			hh		3.0000	0.0240	18.24		0.44
0101010004	OFICIAL			hh		10.0000	0.0800	18.53		1.48
0101010005	PEON			hh		1.0000	0.0080	16.76		0.13
									2.75	
		Materiales								
02221600010024	SELLADOR SICAF	LEX PARA FISURA	AS	kg			0.2500	11.20		2.80
									2.80	
		Equipos								
0301010006	HERRAMIENTAS N			%mo			3.0000	2.75		0.08
0301120006	RUTEADOR			hm		1.0000	0.0080	143.50		1.15
									1.23	

Dortido	04.02.00		CELLADOR	E COLETAG	N DI COUEC					
Partida	01.03.06		SELLADO D	E GRIETAS I	N BLOQUES					
Rendimiento	m2/DIA	MO.	2,000.0000	EQ.	2,000.0000	Costo unitario	o directo por : m2	S/.	27.18	U\$
Código	Descripción	Recurso		Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U\$
	ı	Mano de Obra								
0101010003	OPERARIO			hh		2.0000	0.0080	18.24		0.15
0101010005	PEON			hh		8.0000	0.0320	16.76	0.69 25.31 1.18 37.72 Parcial S/. 7.79	0.54
									0.03	
500,4050005	MEZOLA AGEALT	Materiales					0.0700	204.00		05.04
0201050005	MEZCLA ASFALTI	ICA		m3			0.0700	361.60	25.31	25.31
		Equipos								
0301010006	HERRAMIENTAS I	MANUALES		%mo			3.0000	0.69		0.02
03011900020002	RODILLO VIBRATO	ORIO DYNAPAC LIS	SO CA-25	hm		1.0000	0.0040	157.00		0.63
0301390001	PAVIMENTADORA	SOBRE LLANTAS		hm		1.0000	0.0040	132.00	1.18	0.53
Partida	01.03.07		RENIVELAC	ION ASFALT	CA					
T dradd	0 1100101		1121111122710							
Rendimiento	m2/DIA	MO.	100.0000	EQ.	100.0000	Costo unitario	o directo por : m2	SI.	37.72	U\$
Código	Descripción	Recurso		Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U\$
		Mano de Obra								
0101010005	PEON			hh		4.0000	0.3200	16.76		5.36
01010300000005	OPERARIO TOPO	GRAFO		hh		2.0000	0.1600	15.20	7.79	2.43
		Materiales								
02010500010001	ASFALTO RC-250			gal			0.0500	15.50		0.78
02070100010002	PIEDRA CHANCAI	DA 1/2"		m3			0.5000	52.00		26.00
02070200010002	ARENA GRUESA			m3			0.0500	55.00		2.75
									29.53	
		Equipos								
0301000002	NIVEL TOPOGRAF	FICO		día		1.0000	0.0100	40.00		0.40
									0.40	
Partida	01.04.01		LIMPIEZA D	E CUNETA R	ECTANGULAR					
Rendimiento	m/DIA	MO.	40.0000	EQ.	40.0000	Costo unitar	rio directo por : m	S/.	3.90	U\$
Código	Descripción	Recurso Mano de Obra		Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U\$
0101010003	OPERARIO			hh		0.1000	0.0200	18.24		0.36
0101010005	PEON			hh		1.0000	0.2000	16.76		3.35
									3.71	
		Equipos								
0301010006	HERRAMIENTAS I			%mo			5.0000	3.71		0.19
									0.19	

Partida	01.04.02		INCORPOR	RACIÓN DE RE	JILLA METAL	LICA PARA CAN	NALETAS A=	0.30 m:		
						0.4				
Rendimiento	m/DIA	MO.	100.0000	EQ.	100.0000	Costo unitari	o directo por : m	\$1.	22.52	U\$
Código	Descripción	Recurso		Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio US
		Mano de Obra	1							
0101010003	OPERARIO			hh		1.0000	0.0800	18.24		1.46
0101010004	OFICIAL			hh		1.0000	0.0800	18.53		1.48
								2.94 0.09 19.49 19.49		
		Equipos								
0301010006	HERRAMIENTA	S MANUALES		%mo			3.0000	2.94		0.09
									0.09	
		Subcontratos								
04110300020001	SC REJILLA ME	TALICA PARA CANA	ALETAS R-1	m			1.0000	19.49		19.49
									19.49	
Partida	01.05.01		CONSERV	ACION DE SEÑ	ALES INFOR	RMATIVAS				
Rendimiento	und/DIA	MO.	50.0000	EQ.	50.0000	Costo unitario	directo por : und	\$1.	33.49	U\$
Código	Descripción	Recurso		Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U\$
		Mano de Obra	ı							
0101010002	CAPATAZ			hh		0.5000	0.0800	21.89		1.75
0101010005	PEON			hh		6.0000	0.9600	16.76		16.09
									17.84	
		Materiales								
02901300090004	TRAPO INDUST	RIAL		kg			0.0100	4.31		0.04
0290130019	DETERGENTE			und			1.0000	5.30		5.30
0290130021	AGUA			und			0.5700	18.00	45.00	10.26
									15.60	
0004040000		Equipos		0/			0.000	,		
0301010006	HERRAMIENTA	S MANUALES		%mo			0.3000	17.84		0.05

Partida	01.05.02		REPOSICION	N DE SEÑALI	ES REGLAME	ENTARIAS				
Rendimiento	und/DIA	MO.	8.0000	EQ	8.0000	Costo unitario	directo por : und	S/.	688.25	U:
Código	Descripción	Recurso		Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U
o cango	20001170101	Mano de Obra		omada		Cuuumu	- Cuntidud	1 10010 011	T UTOTUT OT	1 10010 0
0101010002	CAPATAZ			hh		0.5000	0.5000	21.89		10.9
0 101010003	OPERARIO			hh		0.0123	0.0123	18.24		0.2
0101010005	PEON			hh		6.0000	6.0000	16.76		100.5
									6	
		Materiales								
0204160003	PLATINA DE FIE			m			1.7050	3.73		6.3
0210010001	FIBRA DE VIDRI	O DE 4 mm ACABAD	0	m2			0.9600	187.59		180.0
0240020003	PINTURA ESMA	LTE SINTETICO TEI	KNO	gal			0.0150	16.30		0.24
0240020016	PINTURA IMPRI	MANTE		gal			0.0500	29.77		1.4
02400600100001	TINTA SERIGRA	FICA NEGRA		gal			0.0264	1,768.00		46.6
02400600100002	TINTA SERIGRA	FICA ROJA		gal			0.0132	1,768.00		23.3
0240080012	THINNER			gal			0.0123	27.48		0.3
0263010002	POSTES			und			1.0000	101.12		101.12
0267110010	LAMINA REFLEC	CTIVA ALTA INTENS	IDAD	jgo			15.5840	13.38		208.5
		568.17								
		Equipos								
0301010006	HERRAMIENTAS			%mo		0.5000	3.0000	111.73		3.3
0301370002	EQUIPO PARA S	SULDAK		hm		0.5000	0.5000	10.00	8.35	5.0
Partida	01.05.03		PINTURA AS	FALTICA						
Rendimiento	m2/DIA	MO.	100.0000	EQ	100.0000	Costo unitario	directo por : m2	S/.	10.10	U
Cádina	Descripción	Daguraa		Unidad		Cuadrilla	Cantidad	Precio S/.	Davaial C/	Precio U
Código	Descripcion	Mano de Obra		Unidad		Cuaurina	Gantiuau	Precio 31.	Palcial 3/.	Piecio U
0101010003	OPERARIO			hh		2.0000	0.1600	18.24		2.9
0101010005	PEON			hh		5.0000	0.4000	16.76		6.7
									9.62	
		Materiales								
02400300040001	PINTURA ASFAI	LTICA IMPERMEABL	E	kg			0.0150	29.77		0.4
									0.45	
		Equipos								
0301010006	HERRAMIENTAS	S MANUALES		%mo			0.3000	9.62		0.0
									0.03	

Partida	01.05.04	PINTADO D	ESARDINELE	S					
Rendimiento	m/DIA M	0. 100.0000	EQ.	100.0000	Costo unitar	rio directo por : m	S/.	10.10	U:
Código	Descripción Recurso Mano de Ob	ra	Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U
0101010002	CAPATAZ		hh		0.5000	0.0400	21.89		0.8
0101010005	PEON		hh		3.0000	0.2400	16.76		4.0
								4.90	
	Materiales								
0240020017	PINTURA DE TRAFICO		gal			0.1000	44.50		4.4
0240080019	DISOLVENTE DE PINTURA		gal			0.0009	37.80	4.48	0.0
	Fautass								
03014800020002	BROCHA DE NYLON DE 3"		und			0.1000	7.20		0.7
								0.72	
Partida	01.05.05	PINTADO DI	E GIBAS O RE	SALTOS					
Rendimiento	m2/DIA M	D. 500.0000	EQ.	500.0000	Costo unitario	o directo por : m2	S/.	3.80	U:
Código	Descripción Recurso Mano de Ob	ra	Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U
0101010002	CAPATAZ		hh		6.0000	0.0960	21.89		2.1
0101010005	PEON		hh		3.0000	0.0480	16.76	2.90	0.8
0240020017	Materiales PINTURA DE TRAFICO		gal			0.0120	44.50		0.5
0240080019	DISOLVENTE DE PINTURA		gal			0.0080	37.80		0.3
			300			0.000	Cilido	9	
	Equipos								
03014800020002	BROCHA DE NYLON DE 3"		und			0.0100	7.20	0.07	0.0
Partida	01.05.06	MARCAS EN	I EL PAVIMEI	NTO					
Rendimiento		0. 200.0000		200.0000	Coote unite	rio directo por : m	S/.	4.04	U
		200.000	EQ.	200.0000					
Código	Descripción Recurso		Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.	Precio U
0404040004	Mano de Ob	га	LL		0.5000	0.0000	40.50		0.0
0101010004 0101010005	OFICIAL PEON		hh		0.5000 4.0000	0.0200 0.1600	18.53 16.76		0.3 2.6
0101010000	FEON		1411		4.0000	0.1000	10.70	3.05	2.0
	Materiales								
0240020017	PINTURA DE TRAFICO		gal			0.0120	44.50		0.5
0240080017	DISOLVENTE XILOL		gal			0.0050	50.00		0.2
								0.78	
0204040000	Equipos		9/ 20			F 0000	2.05		0.4
0301010006 03014800020002	HERRAMIENTAS MANUALES BROCHA DE NYLON DE 3"		%mo und			5.0000 0.0080	3.05 7.20		0.1
1131114XHHH17HH17	RRUCHA DE NIVI (IN DE 3"		una				()()		() ()

• Figura N°38. Fotos de las fallas patológicas de la vía de estudio carril 1.

ILUSTRACIÓN 1: PRESENCIA DE HUECOS, DESPRENDIMIENTO DE AGREGADOS Y HUNDIMIENTO.

ILUSTRACIÓN 2: PULIMIENTO DE AGREGADOS

ILUSTRACIÓN 3: PIEL DE COCODRILO Y DESPRENDIMIENTO DE AGREGADOS

ILUSTRACIÓN 4: DESPRENDIMIENTO DE AGREGADOS

Ilustración 5: Parcheo y Pulimiento de agregados

Ilustración 6: Piel de cocodrilo, Ahuellamiento y Desprendimiento de materiales.

Ilustración 7: Huecos, Desprendimiento de agregados, Grieta longitudinales, Ahuellamiento

ILUSTRACIÓN 8: ABULTAMIENTOS Y HUNDIMIENTOS

Ilustración 9: Pulimiento de agregados

ILUSTRACIÓN 10: AGRIETAMIENTO Y HUNDIMIENTO.

ILUSTRACIÓN 11: PIEL DE COCODRILO Y SEPARACIÓN DE AGREGADOS.

ILUSTRACIÓN 12: GRIETAS TRANSVERSALES.

ILUSTRACIÓN 13: PULIMIENTO DE AGREGADOS

ILUSTRACIÓN 14: PULIMIENTO DE AGREGADOS Y AGRIETAMIENTO.

ILUSTRACIÓN 15: PIEL DE COCODRILO, AHUELLAMIENTO.

Ilustración 16: llenado de ficha de observación.

Ilustración 17: desprendimiento de agregados.

Ilustración 18: Grietas longitudinales, pulimiento de agregados.

ILUSTRACIÓN 19: PULIMIENTO DE AGREGADOS, AHUELLAMIENTO.

ILUSTRACIÓN 20: PIEL DE COCODRILO, AGRIETAMIENTO EN BLOQUE.

ILUSTRACIÓN 21: AGRIETAMIENTO EN BLOQUE.

ILUSTRACIÓN 22: GRIETAS LONGITUDINALES.

ILUSTRACIÓN 23: GRIETAS LONGITUDINALES.

ILUSTRACIÓN 24: PARCHEO, GRIETAS LONGITUDINALES.

Ilustración 25: desprendimiento de agregados.

Ilustración 26: Hueco, grietas longitudinales.

• FIGURA N°39. Fotos de las fallas patológicas de la vía de estudio carril 2.

Ilustración 27: Pulimiento de agregados.

ILUSTRACIÓN 28: PIEL DE COCODRILO, GRIETAS PARABÓLICAS, PULIMIENTO DE AGREGADOS.

Ilustración 29: Piel de cocodrilo, hundimiento, desprendimiento de agregados.

Ilustración 30: Desprendimiento de agregados, hundimiento, pulimiento de agregados.

Ilustración 31: Agrietamiento, desprendimiento de agregados, pulimiento de AGREGADOS.

Ilustración 32: Piel de cocodrilo, pulimiento de agregados.

Ilustración 33: Pulimiento de agregados.

ILUSTRACIÓN 34: DESPRENDIMIENTO DE AGREGADOS Y PULIMIENTO DE AGREGADOS.

ILUSTRACIÓN 35: DESPRENDIMIENTO DE AGREGADOS.

Ilustración 36: Hueco, Pulimiento de agregados.

Ilustración 37: Agrietamiento, hundimiento, desprendimiento de agregados.

Ilustración 38. Desprendimiento de agregados, agrietamiento en bloque, hundimiento.

ILUSTRACIÓN 39: PULIMIENTO DE AGREGADOS, HUNDIMIENTO.

ILUSTRACIÓN 40: GRIETAS EN BLOQUE.

ILUSTRACIÓN 41: HUNDIMIENTO, PULIMIENTO DE AGREGADOS.

ILUSTRACIÓN 42: HUNDIMIENTO, PULIMIENTO DE AGREGADOS.

ILUSTRACIÓN 1143: HUNDIMIENTO, HUECOS.

ILUSTRACIÓN 44: HUNDIMIENTO, PULIMIENTO DE AGREGADOS.

Ilustración 45: Pulimiento de agregados, Huecos.

Ilustración 46: Pulimiento de agregados, Huecos.

ILUSTRACIÓN 47: DESNIVEL CARRIL.

ILUSTRACIÓN 48: PIEL COCODRILO.

ILUSTRACIÓN 49: PIEL COCODRILO.

Ilustración 50: desprendimiento de agregados.

ILUSTRACIÓN 51: HUECO.

Ilustración 52: Corrugación, grieta parabólica, pulimiento de agregados.

ILUSTRACIÓN 53: HUECO.

ILUSTRACIÓN 54: GRIETA DE BORDE, GRIETA LONGITUDINAL, PARCHEO.

Ilustración 55: Parcheo, corrugación, desprendimiento de agregados, hueco.

ILUSTRACIÓN 56: ABULTAMIENTO, GRIETAS DE BORDE.

ILUSTRACIÓN 57: HUECO, GRIETA DE BORDE.

ILUSTRACIÓN 58: HUECO, GRIETA DE BORDE.

ILUSTRACIÓN 59: HUECOS, DESPRENDIMIENTO AGREGADOS.

ILUSTRACIÓN 61: HUECOS.