

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Incorporación de vidrio triturado para mejorar las propiedades físico - mecánicas de suelos arcillosos en la avenida Industrial, Puno – 2021"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTOR:

Rodríguez Asqui, Frank Elvis (ORCID: 0000-0003-2076-6110)

ASESOR:

Mg. Benites Zuñiga, José Luis (ORCID: 0000-0003-4459-494X)

LÍNEA DE INVESTIGACIÓN:

Diseño de infraestructura vial

LIMA – PERÚ

2021

DEDICATORIA

A mis padres, Reyna y Felipe Santiago, Por ser el soporte, motivo e impulso a lo largo de mi vida y la principal razón para poder alcanzar mis metas. Porque son la razón que me motiva cada día para esforzarme por el presente y el mañana.

A mis hermanas, familiares, amigos y compañeros por acompañarme en cada etapa de mi vida universitaria como también a una persona muy especial J. y a muchas personas por el apoyo incondicional y por ser una fuente de inspiración que me encamina al éxito.

AGRADECIMIENTO

A la Universidad Andina Néstor Cáceres Velásquez; que me brindó la oportunidad de ser parte de ella y a los docentes de la Escuela Profesional de Ingeniería Civil por su labor en mi formación profesional y experiencias que me brindaron durante mi formación profesional.

A la Universidad César Vallejo; por brindarme la oportunidad de pertenecer a su casa de estudios.

A mi asesor de tesis Dr. Ing. José Luis Benites Zuñiga, por el tiempo paciencia y apoyo en el desarrollo de esta tesis.

ÍNDICE DE CONTENIDOS

Dedica	atoria	ii
Agrade	ecimiento	iii
Índice	de contenidos	iv
Índice	de tablas	V
Índice	de figuras	vi
Resum	nen	viii
Abstra	ct	ix
I. INTF	RODUCCIÓN	1
II. MAF	RCO TEÓRICO	5
III. ME	TODOLOGÍA	26
3.1.	Tipo y diseño de investigación	26
3.2.	Variables y operacionalización	27
3.3.	Población, muestra y muestreo	27
3.4.	Técnicas e instrumentos de recolección de datos	28
3.5.	Procedimientos	28
3.6.	Método de análisis de datos	29
3.7.	Aspectos éticos	29
IV. RE	SULTADOS	30
V. DIS	CUSIÓN	49
VI. CO	NCLUSIONES	53
VII. RE	ECOMENDACIONES	54
REFE	RENCIAS	55
ANEX	OS	59

ÍNDICE DE TABLAS

Tabla 1: Gradación de suelos.	14
Tabla 2. Cantidad mínima de muestra - ensayos de contenido de humedad.	15
Tabla 3. Índice de plasticidad en diferentes tipos de suelo	18
Tabla 4. Clasificación de suelos sistema AASHTO.	19
Tabla 5. Clasificación de los suelos según Índice de Grupo.	19
Tabla 6. Símbolos en clasificación SUCS	20
Tabla 7. Tipos de suelos clasificación SUCS.	21
Tabla 8. Correlación entre clasificación AASHTO y SUCS	22
Tabla 9. Especificaciones para la prueba Proctor modificado.	23
Tabla 10. Categorías de subrasante en función al CBR.	25
Tabla 11: Gradación de agregados de tamaño fino.	29
Tabla 12. Ubicación de la muestra M - 01.	32
Tabla 13. Granulometría de la muestra M - 01.	33
Tabla 14. Clasificación SUCS, AASHTO, contenido de humedad y Gs de la	
muestra M - 01.	34
Tabla 15. Granulometría del vidrio triturado.	35
Tabla 16. Clasificación SUCS, AASHTO, contenido de humedad y Gs de la	
muestra M - 01 + % de vidrio triturado.	36
Tabla 17. Límites de consistencia de la muestra M - 01.	37
Tabla 18. Límites de consistencia de la muestra M - 01 + vidrio triturado.	37
Tabla 19. Resultados de ensayo Proctor modificado muestra M - 01 + vidrio	
triturado.	42
Tabla 20. Resultados de ensayo CBR muestra M - 01 + vidrio triturado.	47

ÍNDICE DE FIGURAS

Figura 1. Equipo manual para determinar el límite líquido.	16
Figura 2: Carta de plasticidad	21
Figura 3: Carta de plasticidad	21
Figura 4. Molde de ensayo Proctor modificado (método A y B)	23
Figura 5. Molde del ensayo CBR	24
Figura 6. Ubicación del distrito de Puno.	30
Figura 7. Ubicación de la Av. Industrial.	31
Figura 8. Excavación calicata C - 01.	31
Figura 9. Análisis granulométrico por tamizado M - 01.	33
Figura 10. Obtención de pesos retenidos - análisis granulométrico por tamiza	ıdo.
	33
Figura 11 . Curva granulométrica M - 01.	34
Figura 12. Trituración del vidrio.	35
Figura 13. Obtención de gradación de vidrio triturado.	35
Figura 14. Equipo de ensayo - Gravedad específica.	35
Figura 15. Ensayo de gravedad específica.	35
Figura 16. Limite líquido.	36
Figura 17. Limite plástico.	36
Figura 18. Curva - variación del índice de plasticidad (IP) muestra patrón + %	de
vidrio	37
Figura 19. Variación del índice de plasticidad (IP) muestra patrón + % de vidr	io
triturado.	38
Figura 20. Ensayo Proctor modificado - llenado del molde.	38
Figura 21. Ensayo Proctor modificado - compactación.	38
Figura 22. Curva - Relación entre el contenido de humedad óptimo y densida	ıd
máxima seca - muestra patrón.	39
Figura 23. Curva - Relación entre el contenido de humedad óptimo y densida	ıd
máxima seca - muestra patrón + 4% de vidrio triturado.	39
Figura 24. Curva - Relación entre el contenido de humedad óptimo y densida	ıd
máxima seca - muestra patrón + 7% de vidrio triturado.	40
Figura 25. Curva - Relación entre el contenido de humedad óptimo y densida	ıd
máxima seca - muestra patrón + 10% de vidrio triturado.	40
Figura 26 . Curva - Relación entre la máxima densidad seca y el % de vidrio	
triturado.	41
Figura 27. Variación - Relación entre la máxima densidad seca y el % de vidr	io
triturado.	41
Figura 28. Curva - Relación entre el contenido de humedad óptimo y el % de	
vidrio triturado.	41
Figura 29. Variación - Relación entre el contenido de humedad óptimo y % de	Э
vidrio triturado.	42
Figura 30. Llenado del molde CBR.	43
Figura 31. Ensayo CBR - Penetración.	43
Figura 32. Diagrama de ensayo CBR de los especímenes ensayados de la	
muestra M - 01.	43

Figura 33. Diagrama de ensayo CBR de los especímenes ensayados de la	
muestra M - 01 + 4% de vidrio triturado.	44
Figura 34. Diagrama de ensayo CBR de los especímenes ensayados de la	
muestra M - 01 + 7% de vidrio triturado.	44
Figura 35. Diagrama de ensayo CBR de los especímenes ensayados de la	
muestra M - 01 + 10% de vidrio triturado.	44
Figura 36. Diagrama de ensayo CBR de M - 01 - muestra patrón.	45
Figura 37. Diagrama de ensayo CBR de M - 01 + 4% de vidrio triturado.	45
Figura 38. Diagrama de ensayo CBR de M - 01 + 7% de vidrio triturado.	46
Figura 39. Diagrama de ensayo CBR de M - 01 + 10% de vidrio triturado.	46
Figura 40. Curva - Relación entre el CBR al 95% y % de vidrio triturado.	47
Figura 41. Variación - Relación entre el CBR al 95% y % de vidrio triturado.	47
Figura 42. Curva - Relación entre el CBR al 100% y % de vidrio triturado.	48
Figura 43. Variación - Relación entre el CBR al 100% y % de vidrio triturado.	48
Figura 44. Comparación del índice de plasticidad con antecedentes.	49
Figura 45. Comparación de MDS con antecedentes.	50
Figura 46. Comparación del contenido de humedad óptimo con antecedentes	3.5
Figura 47. Comparación del CBR al 95% con antecedentes.	52
Figura 48. Comparación del CBR al 100% con antecedentes.	52

RESUMEN

En la actualidad existen residuos como el vidrio, un material que es reciclable, sin

embargo, en muchos casos se dispone en los vertederos de residuos, eliminando

su posible aplicación para otros usos.

Por ello el presente trabajo, tiene por objetivo general, determinar la influencia de

la incorporación del vidrio triturado en las propiedades físico - mecánicas de suelos

arcillosos en la avenida Industrial, Puno - 2021. La determinación de las

propiedades físico - mecánicas de la muestra de suelo realizar ensayos de

laboratorio: granulometría, gravedad específica, límites de consistencia, ensayo

Proctor modificado v CBR.

Se consideró el tipo de investigación aplicada, un diseño de investigación del tipo

experimental, para el desarrollo de los experimentos fueron considerados

porcentajes de incorporación de vidrio triturado de 0%, 4%, 7% y 10% del peso de

las muestras, para ser ensayadas en el laboratorio.

La incorporación de vidrio triturado influye en las propiedades de los suelos, en

base a los resultados, se obtuvo que la adición del vidrio disminuye el IP de suelos

arcillosos, la densidad y la gravedad específica, también aumenta la resistencia

mecánica del suelo (CBR), obteniendo una proporción óptima de 7%, para el

mejoramiento de suelos en las subrasantes de obras viales.

Palabras clave: Vidrio triturado, CBR, subrasante.

viii

ABSTRACT

Currently there are waste such as glass, a material that is recyclable, however, in

many cases it is disposed of in waste dumps, eliminating its possible application for

other uses.

For this reason, the present work has the general objective of determining the

influence of the incorporation of crushed glass on the physical - mechanical

properties of clayey soils in Avenida Industrial, Puno - 2021. The determination of

the physical - mechanical properties of the sample of I usually perform laboratory

tests: granulometry, specific gravity, consistency limits, modified Proctor test and

CBR.

The type of applied research was considered, a research design of the experimental

type, for the development of the experiments, percentages of incorporation of

crushed glass of 0%, 4%, 7% and 10% of the weight of the samples were treated,

to be tested in the laboratory.

The incorporation of crushed glass influences the properties of the soils, based on

the results, it was obtained that the addition of glass decreases the IP of clay soils,

the density and the specific gravity, it also increases the mechanical resistance of

the soil (CBR), obtaining an optimal proportion of 7%, for the improvement of soils

in the subgrade of road works.

Keywords: Crushed glass, CBR, subrassant.

ix

I. INTRODUCCIÓN

El suelo es un material ampliamente usado en las obras civiles, siendo muy importante en la construcción de carreteras a nivel mundial, además los residuos sólidos generados por las actividades humanas, afectan al medio ambiente, caso del vidrio que es un material de desecho que tarda mucho tiempo en degradarse, por ello el reciclaje es una alternativa para poner en valor este material.

La composición de los suelos afecta la resistencia estructural de los pavimentos, y siendo la subrasante conformada por suelos blandos presentan una condición que hace que las capas estructurales del pavimento requieran mayores espesores de diseño, los suelos blandos sufren cambios volumétricos y deformaciones, que producen daños estructurales en las capas superiores¹.

Es necesario mejorar aquellos suelos que no satisfacen las características exigidas por las normativas de pavimentos, existen diversos compuestos industriales que pueden garantizar la estabilidad de un suelo, como son los estabilizantes químicos, sin embargo, además existen residuos producidos por el ser humano que son desperdiciados, caso del vidrio, por ello en España se busca reducir residuos que provienen del reciclado de vidrio de envases de la industria vidriera y cerámica, para utilizarlo en la estabilización de las capas en carreteras, el vidrio triturado se obtiene moliendo residuos de envases y embalajes de vidrio que provienen de la recolección selectiva de residuos domésticos e industriales, con esto se pone en valor los desechos del vidrio que al no ser reutilizados se depositan en vertederos, por ello se consigue un beneficio económico-ambiental².

Ante los problemas mencionados, en el Perú, la presencia de minerales presentes en el suelo como la arcilla, mantienen una baja capacidad de soporte y una calidad por debajo de lo establecido por la normatividad nacional, por lo cual este tipo de

¹ Caamaño, I. *Mejoramiento de un suelo blando de subrasante mediante la adición de cascarilla de arroz y su efecto en el módulo resiliente*. Bogotá : Universidad Militar Nueva Granada, 2016.

² Mas, María, y otros. *Análisis de la Viabilidad Ambiental de la Utilización de Morteros Fabricados con Polvo de Vidrio en la Estabilización de suelos*. Madrid: Universidad Politécnica de Madrid, 2016.

material no es adecuado para un suelo sobre el cual se coloque un pavimento. Una opción para convertir en suelos favorables es trabajarlos con el objetivo de modificar sus características físico - mecánicas por medio de procedimientos de estabilización en dicho suelo, como por ejemplo la adición de materiales que mejoren la capacidad de soporte³.

La construcción de infraestructura vial, está en crecimiento, lo que requiere de materiales de construcción de buena calidad para garantizar el nivel de servicio, al ejecutar este tipo de infraestructura, en beneficio del transporte, en dicha etapa se encuentran suelos inadecuados para ser utilizados como subrasante, debido a que las características del suelo no garantizan la estabilidad de los pavimentos, por lo que son descartados y consecuentemente reemplazados por materiales de conformación con mayor calidad, generalmente con un elevado costo, que influyen en el proyecto y disminuyendo la rentabilidad, incluso en ocasiones, el sobrecosto implica la cancelación definitiva de un proyecto, comprometiendo la comunicación vial y afectando a las poblaciones beneficiarias⁴.

En la ciudad de Puno, la cantera Salcedo en el C.P. del mismo nombre, es utilizada en la actualidad para construir carreteras y vías urbanas en la ciudad de Puno, sin embargo, en estado natural por su composición, no alcanza la calidad requerida, por ello es necesario aprovechar dicha cantera mediante la estabilización, lo cual evita el uso de recursos naturales al minimizar la utilización de suelos con una mejor calidad, enfocada a lograr la sostenibilidad, en base a consideraciones medioambientales y técnicas. El empleo de suelos disponibles conlleva a evitar la explotación de nuevos yacimientos⁵.

_

³ Mantilla, J. *Mejoramiento con granalla mineral en subrasante de suelos arcillosos en la carretera Tocache - Juanjui*, Km: 39+010. Lima : Universidad César Vallejo, 2019.

⁴ Sánchez, C. y Terrones, R. Estabilización de suelos utilizando híbrido de polvo de concha de abanico y vidrio reciclado, Huacacorral. Lima: Universidad César Vallejo, 2020.

⁵ Guzmán, P. Influencia de aditivos químicos en las características físico – mecánicas y relación costo – beneficio de suelos a emplearse en la superficie de rodadura de la vía Puno – aeropuerto de Ventilla, región Puno. Puno: Universidad Andina Néstor Cáceres Velásquez, 2017.

La avenida Industrial del centro poblado de Salcedo en la ciudad de Puno, en la actualidad se encuentra en mal estado de conservación en el 100%, en condiciones inadecuadas para la transitabilidad vehicular. A lo largo de la vía, las viviendas son afectadas por el constante polvo que se produce en épocas de secano y el lodo generado en épocas de precipitaciones pluviales. Así mismo ocasiona perdida en tiempos de viaje, dificultad para el traslado, deficiente servicio de transporte, alto costos de operación y consecuentemente pérdidas económicas. Actualmente es una trocha aperturada, que está compuesta por una capa conformada por una mezcla de suelo de una cantera cercana⁶.

Por tanto, se plantea como problema general: ¿De qué manera la incorporación del vidrio triturado influye en las propiedades físico – mecánicas de suelos arcillosos en la avenida Industrial, Puno-2021?

Asimismo, se tienen como problemas específicos: ¿De qué manera la incorporación del vidrio triturado influye en el porcentaje del índice de plasticidad de suelos arcillosos en la avenida Industrial, Puno-2021?, ¿Cuál es el efecto de la incorporación del vidrio triturado en la máxima densidad seca de suelos arcillosos en la avenida Industrial, Puno-2021?, ¿Cuál es el efecto de la incorporación del vidrio triturado en la resistencia de suelos arcillosos en la avenida Industrial, Puno-2021?

En la presente investigación como justificación teórica se busca dar a conocer la alternativa de mejoramiento de suelos para subrasantes con la incorporación del vidrio triturado, el cual es un residuo que puede ser utilizado en la construcción de carreteras, cuya incidencia es presentada el capítulo de resultados, a través del ensayo de capacidad de soporte (CBR) y Proctor modificado. Como justificación metodológica los procedimientos metodológicos considerados con el propósito de realizar la presente investigación, están relacionados a la ética y el método científico. La justificación técnica de la investigación presenta la utilización del vidrio

⁶ Municipalidad Provincial de Puno. *Mejoramiento del servicio vial urbano de la avenida industrial del centro poblado de salcedo, distrito de Puno - provincia de Puno - departamento de Puno*. Puno : OPMI, Municipalidad Provincial de Puno, 2021.

triturado en la subrasante para mejorar la capacidad de soporte, como un elemento alternativo y ecoeficiente al dar un uso a los residuos de vidrio, además de la aplicación de aspectos técnicos del Manual para ensayos de materiales del Ministerio de Transportes y Comunicaciones. La justificación social radica en que, siendo la infraestructura vial de mucha importancia para brindar beneficio a la población usuaria, por ello se plantea una alternativa para garantizar la adecuada resistencia mecánica de los suelos para mantener las vías en buen estado, posibilitando un tránsito fluido y las actividades económicas relacionadas.

Del análisis de la realidad problemática, se tiene por objetivo general: Determinar la influencia de la incorporación del vidrio triturado en las propiedades físico - mecánicas de suelos arcillosos en la avenida Industrial, Puno-2021. Así mismo se llegaron a obtener los objetivos específicos: Determinar la influencia del vidrio triturado en el porcentaje del índice de plasticidad de suelos arcillosos en la avenida Industrial, Puno-2021. Determinar el efecto de la incorporación del vidrio triturado en la máxima densidad seca de suelos arcillosos en la avenida Industrial, Puno-2021. Determinar el efecto de la incorporación del vidrio triturado en la resistencia de suelos arcillosos en la avenida Industrial, Puno-2021.

Como hipótesis general en la presente investigación se tiene que: La incorporación del vidrio triturado influye en la mejora las propiedades físico - mecánicas de suelos arcillosos en la Av. Industrial, Puno-2021. Las hipótesis específicas son: La incorporación del vidrio triturado influye en la reducción del porcentaje del índice de plasticidad de suelos arcillosos en la Av. Industrial, Puno-2021. El efecto de la incorporación del vidrio triturado mejora la máxima densidad seca de suelos arcillosos en la Av. Industrial, Puno-2021. El efecto de la incorporación del vidrio triturado mejora la resistencia de suelos arcillosos en la Av. Industrial, Puno-2021.

II. MARCO TEÓRICO

Con el fin de desarrollar la presenta investigación, se requirió la revisión bibliográfica, a nivel nacional se tienen los trabajos de investigación:

En la tesis de Haro (2021), quien tuvo como objetivo analizar los efectos de la adición del vidrio reciclado en suelos de subrasante en proporción de 0, 6 y 8%, la investigación de tipo aplicada, considera un diseño experimental. Tuvo como población son considerados los suelos de la A.H. Villa Hermosa-Chimbote, la muestra seleccionada consta de 04 calicatas a 1.50 m de profundidad, los instrumentos utilizados fueron las guías de laboratorio y reportes de datos. Los resultados obtenidos indican que para las muestras sin vidrio reciclado en el ensayo Proctor modificado, dieron como resultado un 10.51% de contenido de humedad óptimo, densidad seca máxima de 1.936gr/cm³, mientras que para el CBR un 18.24% y 29.55%, con 6% de vidrio 28.46% y 33.08%, con 8% de vidrio 25.78% y 29.58% (CBR al 95 y 100% respectivamente). Se Concluye que la adición de vidrio reciclado en proporción de 6%, es el más óptimo para la mejora el CBR, aumentando un 50% respecto a la condición inicial (sin vidrio reciclado).

La adición de un estabilizante de suelos híbrido propuesto por Sánchez & Terrones (2020), quienes tuvieron como objetivo evaluar la estabilización de suelos con una mezcla de polvo de vidrio reciclado y conchas de abanico, la investigación de tipo aplicada, nivel cuantitativo, la población considerada fueron los suelos del C.P. Huacacorral-Virú-La Libertad. La muestra consta de 03 calicatas de 1.50 m, para los experimentos, los instrumentos considerados son las guías de observación en laboratorio, basados en la normatividad ASTM. Los resultados indican que, para los valores de máxima densidad seca, son: 1.71 gr/cm³, 1.748 gr/cm³, 1.787 gr/cm³, 1.807 gr/cm³, óptimo contenido de humedad: 16.20%, 14.80%, 13.50%, 12.20%, para la adición del estabilizante en proporciones de 0%, 10%, 15% y 20%, respectivamente. El índice CBR de la muestra sin estabilizante tuvo un valor de 4.90% (siendo de categoría S1-Subrasante pobre, de acuerdo a la normatividad del MTC); 11%, 15% y 20% respecto a las muestras de análisis estabilizadas. Los estudios realizados concluyen que es evidente la influencia de un compuesto elaborado en base a conchas de abanico y vidrio reciclado en la mejora el CBR del

suelo, la proporción óptima es de 20% para la conformación de la estructura de una carretera, mejorando las propiedades resistentes, con un incremento de un 13% en la MDS y 300% en el índice CBR, además disminuye en 62% la expansión del CBR y 25% para el contenido de humedad óptimo.

El trabajo de Guzmán (2017), tuvo como objetivo permitir la utilización de suelos de regular calidad, para la conformación de la subrasante con ayuda de la estabilización de suelos, tipo de investigación cuantitativa, la población de estudio considerada fue la cantera de Salcedo, la muestra consiste en 03 muestras extraídas de la cantera mencionada, los instrumentos considerados son los registros de observación de laboratorio. Los resultados muestran las características físico - mecánicas de la cantera Salcedo, límite líquido 27.44%, límite plástico 17.16%, tipo de suelo A-2-4 (clasificación AASHTO), densidad seca de 2.21 gr/cm³, contenido de humedad óptimo 6.89%, un CBR de 31.97% y 56.37% (CBR al 95 y 100% respectivamente), en base a los ensayos de laboratorio. El estudio concluye que el suelo de la cantera no es favorable para la utilización en vías, de acuerdo a la normatividad del MTC y la AASHTO, los cuales son: el índice de plasticidad con 10.28% (MTC y AASHTO recomiendan IP menor a 7%); MDS 2.21gr/cm3 (MTC y AASHTO recomiendan valores superiores a 2.00gr/cm³); CBR (100%) igual a 56.37%, la normatividad recomienda un valor mayor al 60%. Sin embargo, la estabilización química con 0.09gr del aditivo Terra - Zyme, mejora el IP a un 6.34%, la densidad seca incrementa un 8.72%, y el CBR en un 32.10%. Por lo cual dicha cantera para su utilización en obras viales requiere de un mejoramiento o estabilización.

En el ámbito internacional, se tienen las siguientes investigaciones:

En el trabajo de Pérez (2020), se buscó evaluar propiedades físicas, químicas y mecánicas la adición de residuos de áridos reciclados y vidrio CRT en la estructura de una carretera, la investigación fue de tipo experimental, como población fueron consideradas las carreteras de Málaga, la muestra seleccionada consiste en el tramo de las conexiones viales de la carretera A357 y A367, del término municipal de Ardales, Málaga – España, concluye que los áridos reciclados presentaron menor densidad y mayor absorción de agua debido a su contenido de partículas

cerámicas, los resultados de Proctor modificado muestran que la densidad seca máxima en estado natural es de 1.92 gr/cm³ y 13.29% de contenido de humedad óptimo, mientras que para la adición de 10% de vidrio esta se incrementa hasta 2.05 gr/cm³ y disminuye a 11.01% para el contenido de humedad óptimo. Para el CBR (100%), se obtuvieron 65% adicional respecto a la condición original con la aplicación de vidrio de tubo de rayos catódicos como árido, en un 10%, logrando niveles excelentes de capacidad de carga, adecuados para conformación de las capas estructurales de una carretera.

Laica (2016), presentó en su investigación su objetivo general la determinación de la inclusión de polímeros reciclados en la resistencia mecánica para una sub base (proporciones de 0, 3, 6 y 9%), la investigación de tipo aplicada, las muestras constan de 3 muestras representativas de la cantera Alvarado Ortiz, Ambato – Ecuador, en función de la adición de polímeros, los instrumentos utilizados fueron las investigaciones de laboratorio. Los resultados del Proctor modificado muestran que la MDS disminuye en la medida que se agrega el polímero (0, 3, 6 y 9%), siendo: 1.92 gr/cm³, 1.91 gr/cm³, 1.84 gr/cm³ y 1.81gr/cm³ respectivamente para las muestras consideradas, el contenido de humedad óptimo decrece desde 10.4%, 10.05%, 9.60% y 9.40%, para el caso de CBR igualmente disminuye: 25%, 18.4%, 12.1% y 10.2% respectivamente, se concluye que la adición de polímeros afectan negativamente en la capacidad de soporte del suelo, indicando que dicho material no es adecuado para la estabilización de suelos.

En la investigación de Caamaño (2016), se tuvo como objetivo optimizar las propiedades físicas - mecánicas de un suelo tipo blando para subrasantes con la adición de ceniza de la cascarilla de arroz, para la mejora de la resistencia mecánica del suelo, consiste en una investigación de tipo experimental, la población de estudio considerada los suelos blandos de la carretera de Pasto a Genoy - Nariño - Colombia, la muestra considerada fue una calicata entre la progresiva K 3+000 al K 3+500, los instrumentos consistieron en los registros de laboratorio. La interpretación de los resultados indica que la incorporación de la ceniza de cascarilla de arroz (CCA) adicionado de 0,2,4 y 6% en peso, afectan al límite líquido con la disminución de 6.10% con adición de 2% de CCA, mientras que con 6% de

CCA, no hubo variación. En caso del límite plástico, se presentaron incrementos de 4.5%, 13% y 3.8% respectivamente, en caso del índice de plasticidad se dio una disminución de 27.3% para la adición del 2%, una reducción de 12.5% para 4% de CCA y un descenso de 14.3% para 6%. La influencia en el módulo resiliente indica que para un 2% de adición esta se incrementa en 17.8%, un 4% de CCA incrementa en un 21.7%, sin embargo, un 6% de CCA, disminuye la resistencia en 3.9%. Concluyendo que un 4% de adición de CCA, brinda mejores características en la mejora de las características físico - mecánicas del suelo.

The review of research related to the objectives are:

Blayi, Sherwani, Ibrahim, Faraj and Daraei (2020), presented in their scientific paper entitled "Strength improvement of expansive soil by utilizing waste glass powder", which consisted of seeking to improve the expansive soils since they lose support capacity when moistened, causing a volumetric change, they propose to improve the soils with the addition of waste glass powder (WGP), this was crushed and mixed with the soil samples in proportions of 2.5%, 5%, 10%, 15% and 25% of the dry weight of the soil. Soil samples were taken from the road Hamilton Soran -Jundean in the city of Soran - Iraq with a depth of 1 to 2.7 m. Several laboratory tests were performed for the samples with the addition of WGP percentages, consider Atterberg limits, compaction, unconfined compressure resistance (UCS), direct shear resistance, and CBR. The analysis of results obtained indicated that the plasticity index of the natural soil was 19.39%, with the modified Proctor test a maximum dry density 1.74gr / cm3 and 18.50% of maximum moisture content, a CBR of 4.50%, the addition of recycled glass of proportion with respect to the samples, the increase of the addition of recycled glass reduces the plasticity index to 19, 17, 16, 14 and 8% respectively, the density Maximum dryness increases proportionally from 1.77, 1.81, 1.87, 1.94 and 1.90gr / cm3, the CBR index presented values of: 5.60%, 7.20%, 9.90%, 12.20% and 10.80%. According to the results of the aforementioned tests, the addition of glass powder in expansive soils favorably affects the consistency and resistance of the soil, reaching 15% of added glass powder as an optimal percentage, since above this proportion negatively influences resistance.

For soil stabilization, Gowtham, Naveenkumar, Ranjithkumar, Vijayakumar and Sivaraja (2018), investigated the addition of recycled glass and plastic dust in clay soils, because they have engineering properties generally undesirable due to wetting among other physical disturbances, so it requires stabilization, with laboratory tests as the Atterberg boundaries, compaction test and CBR. The glass powder and plastic waste material is added in proportions of 0%, 2%, 4%, 6% and 8%, with material used was extracted in Manalmadu – India. The results obtained indicate that the initial soil without stabilization presents a plasticity index of 14.90%, maximum dry density of 1.87gr / cm³, optimal moisture content of 17.63%, a CBR of 8.50%, the addition of 0%, 2%, 4%, 6% and 8% indicate that the CBR penetration values for 5mm, 5.12%, 7.63%, 8.50% and 7.22% respectively. Concluding that the stabilization for the construction of pavements was obtained an optimal addition of 6%, which improves the bearing capacity with respect to the initial condition.

Rose, Jolly, Mareena and Thomas (2017), investigated the use of glass dust residues in geotechnical applications, to evaluate their effects on the compressibility and CBR resistance of clay soil, with laboratory tests of unconfined compression tests and CBR testing. Glass dust was added in 0%, 2%, 4%, 6%, 8% and 10% proportion, additionally the elimination of waste that comes from industries are a big problem since they are a threat to the environment, especially with nonbiodegradable waste or that have very long decomposition periods in the case of glass, therefore it is a solution the reuse in useful products, as an alternative to recycling, the crushed recycled glass powder had a size less than 0.075 mm, the clay soil was collected from a construction site located in Kuttanadu, at a depth of 7 m, direct cutting tests, UCC and CBR were performed. As results it was found that the analysis soil had a plasticity index of 50%, MDD 1,464gr / cm³, 34% of optimum moisture content, and a CBR of 3%, the samples stabilized with glass, indicated an increase in the maximum dry density to: 1.47, 1.48, 1.49, 1.47 and 1.46gr / cm³ respectively, while for the CBR index we have 4.38, 7.29, 12.80 and 7.20%. In conclusion, it is possible to stabilize a clay soil with waste materials with an optimal value of 8%, the dry density value of the soil is also increased. Glass dust is industrial waste and can be inexpensive and waste management can also be efficient in reducing threats to the environment.

La revisión de artículos científicos relacionados con la investigación se presenta a continuación:

Campos, Urbina y Tamayo (2021), en su investigación buscaron evaluar las potencialidades físicas y mecánicas del vidrio triturado para su uso como agregado en la producción de materiales de construcción, que permitan su aprovechamiento, dando como resultado que el vidrio presenta alta resistencia frente a la abrasión para elementos de hormigón, lo cual permite ser utilizado en pavimentos y carreteras. La trituración del vidrio obtiene partículas que pasan una malla con aberturas menores a 5mm, también pueden considerarse un material puzolánico, de acuerdo a la norma ASTM C618, haciendo viable la sustitución de ciertos materiales tradicionales, además de brindar beneficios económicos y medio ambientales, al aprovechar el vidrio para su reutilización y otorgarle una utilidad práctica.

La investigación de Mas, García y Marco (2016), tuvo el objetivo de realizar el análisis de viabilidad desde el punto de vista ambiental para la aplicación de morteros y polvo de vidrio para la estabilización de suelos, además estudió la toxicidad al utilizar el vidrio para la estabilización de suelos, debido a que el material tiene la finalidad de estar expuesto a la intemperie, y puede ser afectado con el agua de las precipitaciones pluviales, agua superficial o aguas subterráneas, ya que pueden provocar la lixiviación. Los resultados obtenidos fueron comparados con la legislación vigente, los cuales determinaron que la inclusión del vidrio es viable para la estabilización de suelos, además aumenta la superficie reactiva, y ante la presencia de humedad forma el Gel de Silicato de Calcio hidratado, lo cual proporciona al suelo estabilizado la capacidad de auto repararse, frente a las deformaciones. Para ello se aplicaron en un mortero con ligante y arena en una relación 2,75 a 1 y una relación agua a ligante: 0,52, el ligante estuvo compuesto por 80% de vidrio y el 20% es cemento Portland, dando como resultado una alternativa sustentable para el mejoramiento de suelos.

A continuación, se presentan los enfoques conceptuales consideradas en la investigación:

El vidrio es un material cerámico utilizado en la construcción se caracteriza por ser homogéneo, transparente, compacto y resistente ante los efectos atmosféricos. La fabricación es en base a cuarzo, potasa y sosa, le dan propiedades de transparencia, inalterabilidad y resistencia frente a altas temperaturas, del silicato de potasio y óxido de plomo se elabora el cristal; del silicato de sodio y la adición de cal se fabrica el vidrio común y la mezcla del silicato de potasio y cal produce vidrios resistentes a las temperaturas elevadas. Los vidrios y los cristales son elaborados con silicatos de sodio y potasio con adiciones de magnesio, aluminio y óxidos de hierro, presentan un ligero color verdoso por la presencia de hierro en sus materias primas. Es un material muy resistente al agua y los ácidos, tienen poco brillo, su composición química consiste en: 70-75 % de Sílice; de un 12-18 % de Sodio; de un 0-1 % de Potasio; entre un 5- 14 % de Calcio; desde un 0,5 a 3% de Aluminio; de 0-4 % de Magnesio⁷.

El reciclaje del vidrio inicia con la separación y recuperación de los materiales. Posteriormente un procesamiento Intermedio, consiste en la separación en dos sub - etapas⁸:

- a) Selección: selección del material para ser reutilizado.
- b) Trituración: Consiste en romper los residuos de vidrio utilizando un martillo.

Para facilitar su manejo, se carga a un molino dependiendo del espesor de las partes de vidrio procesadas. Por último, es descargado del molino y son tamizados haciéndolo pasar por una malla de 5 mm de abertura. Finalmente, la recolección y transporte permite distribuir el vidrio para elaborar vidrio nuevo en plantas de elaboración de vidrio con materia extraída del proceso de reciclado⁸.

El suelo es un material importante en obras civiles, ya que sobre él se apoyan los cimientos para las edificaciones⁹.

⁷ Gutiérrez, L. El concreto y otros materiales para la construcción. Manizales : Universidad Nacional de Colombia, 2003. ISBN 958-9322-82-4.

⁸ Campos, Silvia, Urbina, María y Tamayo, Daynier. 2021. Potencialidades del vidrio triturado como material de construcción. Holguín: Universidad de Holguín, Holguín, Cuba, 2021.

⁹ Gana, A. J. y Tabat, J.B. 2017. *Clay soil stabilisation using powdered glass*. Nigeria: Department of Civil Engineering of Landmark University, International Journal of Engineering and Emerging Scientific Discovery, 2017. ISSN: 2536-7269.

Un suelo es arcilloso generalmente presenta granos finos, compuesto por arcilla, que a su vez son partículas sedimentarias o minerales muy finos, hechos de silicatos de aluminio hidratado¹¹.

Los suelos arcillosos presentan propiedades inadecuadas en ingeniería, ya que tienen baja resistencia al esfuerzo cortante, que se reduce más cuando existe presencia de agua, son generalmente plásticos y compresibles, cuando se mojan y se contraen al secarse, lo que lo hace indeseable¹⁰.

Los suelos inestables se encuentran en muchos lugares del mundo y son un problema para construir carreteras, estructuras, sistemas de riego y cimentaciones, por la baja capacidad de carga y resistencia cortante, por ello una alternativa para mejorar el suelo se conoce como estabilización, en la actualidad existen varios métodos y materiales empleados para este fin, pero no son rentables en algunos casos o no son respetuosos con el medio ambiente¹¹.

Los materiales que se utilizan para la estabilización de suelos, incluyen desde cenizas volantes, carbón mineral, fibras de polímeros, residuos cerámicos, vidrio reciclado, polvo de rocas y residuos de neumáticos, que representan una alternativa para el mejoramiento de suelos inestables¹².

Existen beneficios ecológicos al utilizar materiales alternativos, al reutilizar residuos no reciclados para aplicaciones útiles, como la estabilización de suelos¹³.

¹¹ Syed, Aaqib y Sudipta, Chakraborty. 2020. *Effects of waste glass powder on subgrade soil improvement*. Bangladesh: World Scientific News, 2020. EISSN 2392-2192.

¹⁰ Olufowobi, J. y and others. 2017. *Clay Soil Stabilisation Using Powdered Glass.* Nigeria: Department of Civil Engineering of University of Technology Akure, International Journal of Engineering and Emerging Scientific Discovery, 2017.

¹² Gusmão, Fabio y and others. 2020. Estabilization of caolinit clavey soil with glass waste and rock dust waste pulverized in high energy mill. [En línea] 2020. [Citado el: 05 de 08 de 2021.] https://www.ijaet.org/media/1I54-IJAET1301428-v13-i1-pp1-12.pdf. ISSN 22311963.

¹³ Canakci, Hanifi, Al-Kaki, Aram y Celik, Fatih. 2016. *Stabilization of clay with waste soda lime glass powder.* Turkey: Department of Civil Engineering, University of Gaziantep, Procedia Engineering, 2016. DOI 10.1016/j.proeng.2016.08.705.

Acciones como el reciclaje pueden ayudar a reducir la demanda de recursos naturales, ayudando a conseguir un medio ambiente sostenible. El vidrio es un material que no se aprovecha en muchos lugares, como ejemplo se tiene que, en los estados unidos en el 2001, 11 millones de toneladas terminaban como residuos, apenas un 22% fue reciclado, en Australia, se utilizan 850 000 toneladas de vidrio, del cual solo el 40% es reciclado, el resto es enterrado en vertederos de residuos. La biodegradación del vidrio toma 450 años aproximadamente¹⁴.

La subrasante es definida como el nivel superior del movimiento de tierras (corte o relleno) establecida previamente en el proyecto, sobre el cual se soporta las capas estructurales del pavimento la cual consiste en subbase, base y carpeta de hormigón o asfalto¹⁵.

La subrasante consiste en el suelo subyacente que sirve como cimentación para las capas de pavimento, es una capa de materiales compactados capaz de soportar dicha estructura¹⁶.

La capacidad de resistencia o soporte en subrasantes bajo condiciones en modo de servicio, es decir con tránsito, son clasificadas en función a sus materiales, se clasifican en cinco categorías (S0, S1, S2, S3 y S4)¹⁷.

Son considerados materiales aptos para subrasante aquellos suelos con un índice CBR igual o mayor a 6%, caso contrario, se recomienda eliminar el material que resulte inadecuado para reemplazar con material con índice CBR mayor al 6%; para su estabilización¹⁷.

¹⁴ Salamatpoor, Sina y Salamatpoor, Siavash. 2017. *Evaluation of adding crushed glass to different combinations of cement - stabilized sand.* Iran: Department of Civil Engineering, Najafabad Branch, Islamic Azad University, GEO-Engineering, 2017. https://doi.org/10.1186/s40703-017-0044-0.

¹⁵ MTC. Manual de Ensayo de Materiales. Lima: Ministerio de Transportes y Comunicaciones - Dirección General de Caminos y Ferrocarriles, 2016.

¹⁶ Merritt, Frederick, Loftin, Kent y Rickectts, Jonathan. 2004. Manual del Ingeniero Civil. México D.F.: Mc Graw Hill Interamericana, 2004. ISBN 970-10-2254-8.

¹⁷ MTC. Manual para el diseño de carreteras no pavimentadas de bajo volumen de tránsito. Lima: Ministerio de Transportes y Comunicaciones, 2008.

Determinar las propiedades físico - mecánicas del suelo son obtenidas para ser correlacionadas con su resistencia y la permeabilidad, estos son el peso específico, la granulometría, límites de consistencia, densidad, contenido de humedad, su clasificación y su densidad seca y óptimo contenido de humedad. Con respecto a la capacidad de soporte se tiene el índice CBR¹⁸.

Para determinar las propiedades físico - mecánicas de un suelo utilizado para infraestructura vial, son necesarias las pruebas de laboratorio normalizadas, como el contenido de humedad, granulometría por tamizado, límites de consistencia, peso específico, ensayos de compactación y CBR¹⁹.

El objetivo del análisis granulométrico mediante tamizado (ASTM D 422 -MTC E107) es determinar de forma cuantitativa la distribución de las partículas que conforman un suelo en base a sus tamaños²⁰.

Tabla 1: Gradación de suelos.

Tamiz	Porcentaje que pasa							
Tamiz	A-1	A-2	С	D	E	F		
50 mm (2")	100							
37.5 mm (1 ½")	100							
25 mm (1")	90-100	100	100	100	100	100		
19 mm (3/4")	65-100	80-100						
9.5 mm (3/8")	45-80	65-100	50-85	60-100				
4.75 mm (N°4)	30-65	50-85	35-65	50-85	55-100	70-100		
2.0 mm (N° 10)	22-52	33-67	25-50	40-70	40-100	55-100		
425 µm (N° 40)	15-35	20-45	15-30	25-45	20-50	30-70		
75 μm (N° 200)	5-20	5-20	5-15	5-20	6-20	8-25		

Fuente: Manual de carreteras de bajo volumen de tránsito (MTC, 2008).

La distribución granulométrica adecuada debe estar dentro del intervalo de los porcentajes que pasan los diferentes tamices indicados en la tabla 1, que corresponden a materiales adecuados para capas de afirmado en obras viales.

¹⁸ Menéndez, José. 2016. Ingeniería de pavimentos. Lima : Instituto de la construcción y gerencia, 2016. ISBN 978-612-4280-15-3.

¹⁹ Montejo, Alfonso. 2002. Ingeniería de pavimentos para carreteras. Bogotá: Universidad Católica de Colombia, 2002. ISBN 958-96036-2-9.

²⁰ ASTM. 2007. ASTM D 422 - 63 (2007) e2. Standard Test Method For Particle - Size Analysis of soils. West Conshohocken, PA: ASTM International, 2007.

El contenido de humedad del suelo es determinado en base a la ASTM D 2216 y MTC E108, expresado como un porcentaje, entre la cantidad de agua en peso del suelo y el peso únicamente de las partículas sólidas²¹.

Se calcula el contenido de humedad, mediante la siguiente fórmula¹⁵:

$$W = \frac{Peso \ del \ agua}{Peso \ de \ suelo \ seco} X100 \ ; \ W \ = \ \frac{M_{CWS} - M_{CS}}{M_{CS} - M_{C}} \ X \ 100 = \frac{M_{W}}{M_{S}} \ X \ 100$$

Dónde:

W = Contenido de humedad, (%).

M_{cws} = Peso del recipiente con suelo húmedo (gr).

 M_{cs} = Peso del recipiente con suelo seco (gr).

 M_c = Peso del recipiente (gr).

 $M_w = Peso de agua (gr).$

Ms = Peso de partículas sólidas del suelo (gr).

Para efectuar el ensayo del contenido de humedad la masa mínima a someter para los ensayos debe cumplir las especificaciones de la siguiente tabla:

Tabla 2. Cantidad mínima de muestra - ensayos de contenido de humedad.

Máximo tamaño de partícula (pasa el 100%)	Tamaño de malla estándar	Masa mínima recomendada de espécimen de ensayo húmedo para contenido de humedad		
Ci 10070)		a ± 0.1%	a ± 1%	
2 mm o menos	2.0 mm (N°10)	20 g	20 g	
4.75 mm	4.776 mm (N°4)	100 g	20 g	
9.5 mm	9.525 mm (3/8")	500 g	50 g	
19 mm	19.050 mm (3/4")	2.5 Kg	250 g	
37.5 mm	38.10 mm (1 1/2")	10 Kg	1 Kg	
75 mm	76.20 mm (3/")	50 Kg	5 Kg	

Fuente: Manual de ensayos de materiales (MTC, 2016).

La gravedad específica es una propiedad física de los suelos, indica la cantidad en peso por unidad de volumen²².

²¹ ASTM. 2019. *ASTM D 2216 - 19. Standard Test Methods For Laboratory Determination Of Water (Moisture) Content Of Soil And Rock By Mass.* West Conshohocken. PA: ASTM International, 2019.

²² ASTM. 2014. ASTM D 854 - 14. Standard Test Methods For Specific Gravity Of Soil Solids By Water Pycnometer. West Conshohocken. PA: ASTM International, 2014.

Los límites de consistencia también conocidos como límites de Atterberg se establecen para los diferentes cambios entre los estados físicos del suelo, dependiendo del contenido de humedad, los cuales son fase sólida, semisólida, plástica y líquida²³.

Los límites de consistencia son útiles, para ser correlacionadas con su comportamiento para ser utilizados en obras de ingeniería, eso incluye características como la compresibilidad, la permeabilidad, su compactación, la contracción o expansión y su resistencia mecanica¹⁵.

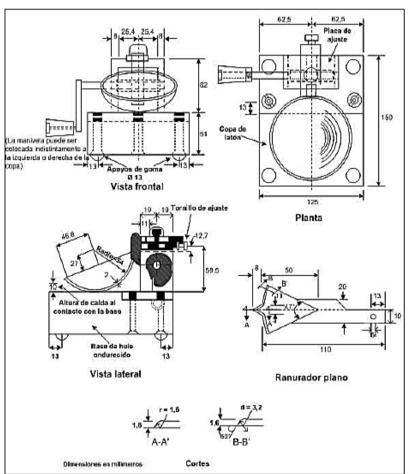


Figura 1. Equipo manual para determinar el límite líquido. Fuente: Manual de carreteras – suelos y pavimentos (MTC, 2014).

El Límite líquido de los suelos o (LL), se define bajo las normas ASTM D1241 o MTC E110, se refiere al contenido de humedad (%), cuando el suelo se encuentra

²³ ASTM. 2017. ASTM D 4318 - 17 e1. Standard Test Methods For Liquid Limit, Plastic Limit, And Plasticity Index Of Soils. West Conshohocken: ASTM International, 2017.

entre los límites de los estados plástico y líquido. Se considera al contenido de humedad considerando un surco separador por la mitad de una pasta de suelo, que se cierra por una distancia de $\frac{1}{2}$ ", al hacer caer la cuchara de Casagrande unas 25 veces de una altura de 1.0 cm, con una velocidad de 2 caídas por segundo 15.

Se considera una muestra entre 150 gr a 200 gr del material que pasa el tamiz de 425 µm de abertura (Nº 40), se utiliza el método de cuarteo de muestras. Las muestras a ensayar deben ser mezcladas sobre un recipiente mediante una espátula para obtener una porción representativa¹⁵.

El Límite plástico de los suelos (LP), se desarrolla bajo la norma ASTM D1241 y MTC E111, se refiere al volumen de la humedad por el cual un suelo deja de estar en estado plástico hacia el estado semiplástico¹⁹.

"Se define al límite plástico (LP) como un contenido de humedad mínimo para formar barritas de suelo de 3,2 mm de diámetro, al rodar una muestra de suelo con la palma de una mano contra una superficie, evitando que se desmoronen dichas barras"¹⁵.

El límite plástico considera el promedio de la medición de los contenidos de humedad de dos muestras, expresada con aproximación al entero:

Límite plástico =
$$\frac{\text{Peso del agua}}{\text{Peso del suelo seco}} X100$$

El Índice de plasticidad (IP), se desarrolla bajo la norma ASTM D1241 y MTC E110, E111, es definido como la característica que consiste en la diferencia entre el LL y LP, indica la humedad con la cual una muestra de suelo se mantiene en estado plástico justo antes de pasar al estado líquido¹⁹.

$$IP = LL - LP$$

Tabla 3. Índice de plasticidad en diferentes tipos de suelo

Índice de plasticidad	Plasticidad	Características		
IP > 20	Alta	Suelos muy arcillosos		
IP ≤ 20, IP > 7	Media	Suelos arcillosos		
IP < 7	Baja	Suelos poco arcillosos		
IP = 0	No pláctico (ND)	Suelos exentos de		
IP - U	No plástico (NP)	arcilla		

Fuente: Manual de carreteras de bajo volumen de tránsito (MTC, 2014).

Se debe considerar que la presencia de arcilla puede afectar la estabilidad de una subrasante debido a la sensibilidad que tiene frente al agua, por ello es adecuado un IP $< 7^{24}$.

La clasificación de los suelos utilizados para construcción de vías deberá ser bajo los sistemas AASHTO y SUCS²⁴.

El sistema AASHTO, para clasificar suelos se basa en grupos, tomando características como la granulometría, límite líquido e índice de plasticidad, además de un índice de grupo⁹.

El Índice de grupo, es definido por el MTC (2014), como un parámetro fundamentado en los límites de consistencia o también conocidos como Atterberg, es un valor entre 0 y 20, y se expresa como:

$$IG = 0.2$$
 (a) + 0.005 (a.c) + 0.01 (b.d)

Donde:

a: F - 35 (% que pasa el tamiz N°200, entre 1 y 40).

b: F - 15 (% que pasa el tamiz N°200, entre 1 y 40).

c: LL - 40 (entre 0 y 20).

d: IP - 10 (entre 0 y 20 o más).

²⁴ MTC. Manual de carreteras - Suelos, Geología, Geotecnia y Pavimentos:Sección Suelos y Pavimentos. Lima: Ministerio de Transportes y Comunicaciones, 2014.

Tabla 4. Clasificación de suelos sistema AASHTO.

Clasificación general	Suelos granulares 35% máximo que pasa por el tamiz 0.075 mm (N°200)					Suelos finos Mas de 35% pasa el tamiz 0.075 mm (N°200)						
Clasificación	A-1			A-2							Α	-7
	A-1-	A-1-	A-3	A-2-	A-2-	A-2-	A-2-	A-4	A-5	A-6	Α-	Α-
de Grupo	a	b		4	5	6	7				7-5	7-6
Análisis												
granulométri												
co % que												
pasa el												
tamiz:												
2 mm (N°10)	Máx . 50											
0.425 mm	Máx	Máx	Min.									
(N°40)	. 30	. 50	51									
F:0.075 mm	Máx	Máx	Máx.	Máx	Máx	Máx	Máx	Min.	Min.	Min	Min	Min
(N°200)	. 15	. 25	10	. 35	. 35	. 35	. 35	36	36	. 36	. 36	. 36
Característic												
as de la												
fracción que												
pasa el tamiz												
N° 40												
Limite liquido				Máx	Min.	Máx	Min.	Máx	Min.	Min	Min	Min
(LL)				. 40	41	. 40	41	. 40	41	. 40	. 41	. 41
Îndice de	Máx	Máx		Máx	Máx	Min.	Min.	Máx	Máx	Min	Min	Min
plasticidad	. 6	. 6	NP	. 10	. 10	11	11	. 10	. 10	. 11	. 11	. 11
(IP)	. 0	. 0		. 10	. 10	'''	11	. 10	. 10	. 11	. 11	. 11
Tipo de Piedra		a,	Aren	Grava		v gronac		Suelo		Suelos		
material	grava	у	a fina			y arenas, rcillosas		limoso arcillosos				
	arena				,,,,,,		a. o.iii					
Estimación												
general del	Excel	ente a	bueno			Regular a insuficiente						
suelo como		Totalia a buollo										
subrasante.												

Fuente: Manual de carreteras – suelos y pavimentos (MTC, 2014).

Tabla 5. Clasificación de los suelos según Índice de Grupo.

Índice de Grupo	Suelo de sub rasante
IG > 9	Inadecuado
IG entre 4 a 9	Insuficiente
IG entre 2 a 4	Regular
IG entre 1 a 2	Bueno
IG ente 0 a 1	Muy Bueno

Fuente: Manual de carreteras – sección suelos y pavimentos (MTC, 2014).

"El sistema SUCS fue desarrollado por Dr. Arturo Casagrande, quien identifica los suelos de acuerdo a su capacidad estructural y la plasticidad, también su comportamiento como material en la construcción en obras de ingeniería"⁹.

Es considerado:

- 1. Porcentaje de contenido de gravas, arenas y finos.
- 2. La forma de la curva granulométrica.
- 3. Características de la plasticidad y su compresibilidad.

Los tipos de suelos considerados para este sistema de clasificación se muestran en la tabla 6. Además, para realizar la clasificación se deben contar con los siguientes datos²⁵:

- Porcentaje de gravas (proporción pasante en tamiz de 76.20 mm y retenido en tamiz N° 4).
- ➤ Porcentaje de arenas (parte que pasa el tamiz N°4 o 4.72 mm y retenido en tamiz N° 200).
- Porcentaje de limos y arcillas (fracción que pasa el tamiz N° 200).
- > Coeficiente de uniformidad (Cu) y coeficiente de curvatura (Cc).
- Límites de consistencia.

Tabla 6. Símbolos en clasificación SUCS

Tipo de suelo	Prefijo	Subgrupo	Sufijo
Grava	G	Bien graduado	W
Arena	S	Pobremente graduado	Р
Limo	M	Limoso	M
Arcilla	С	Arcilloso	С
Orgánico	0	Limite liquido alto (>50)	L
Turba	Pt	Limite liquido alto (<50)	Н

Fuente: Manual de carreteras – suelos y pavimentos (MTC, 2014).

_

²⁵ Das, B. *Fundamentos de Ingeniería geotécnica*. México D.F.: Thomson Learning, 2001. ISBN 970-686-061-4.

Figura 2: Carta de plasticidad

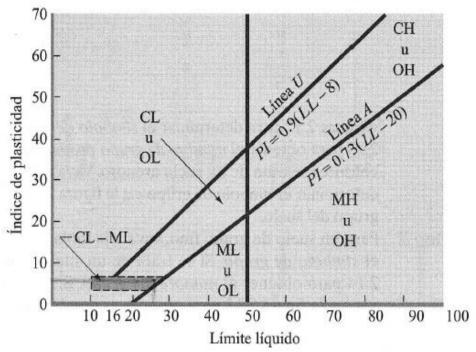


Figura 3: Carta de plasticidad Fuente: Fundamentos de Ingeniería geotécnica (Das, 2001).

Tabla 7. Tipos de suelos clasificación SUCS.

Símbolo	Características Generales					
GW			Bien graduadas			
GP	Gravas	Limpias (Finos<5%)	Pobremente			
GF	(>50% eı		graduadas			
GM	tamiz N°	Con finos	Componente limoso			
GC	ASTM)	(Finos>12%)	Componente			
00		(1110321270)	arcilloso			
SW			Bien graduadas			
SP	Arenas	Limpias (Finos<5%)	Pobremente			
31	(<50% eı		graduadas			
SM	tamiz N°	Con finos	Componente limoso			
sc	ASTM)	(Finos>12%)	Componente			
30		(11103-1270)	arcilloso			
ML	Limos	Baja Plasticidad (LL<50)				
CL	LIIIO3	Alta Plasticidad (LL>50)				
CH	Arcillas	Baja Plasticidad (LL	<50)			
CH	Aicilias	Alta Plasticidad (LL>50)				
OL	Suelos	Baja Plasticidad (LL<50)				
CH	orgánicos	Alta Plasticidad (LL>50)				
Pt	Turba	Suelos altamente org	Suelos altamente orgánicos			

Fuente: Manual de carreteras – sección suelos y pavimentos (MTC, 2014).

Tabla 8. Correlación entre clasificación AASHTO y SUCS

Clasificación de suelos AASHTO -	Clasificación de suelos SUCS -
AASHTO M-145	ASTM-D-2487
A-1-a	GW,GP,GM.SW.SP.SM
A-1-b	GM,GP,SM,SP
A-2	GM,GC,SM,SC
A-3	SP
A-4	CL,ML
A-5	ML,MH,CH
A-6	CL,CH
A-7	OH,MH,CH

Fuente: Manual de carreteras – sección suelos y pavimentos (MTC, 2014).

La compactación de los suelos en laboratorio Proctor Modificado, se desarrolla con la ASTM D 1557 y MTC E115, la compacidad y/o densidad de un suelo es el grado de compactación. Es el incremento en la densidad y disminución de macro – porosidad en el suelo. La compactación sirve para aumentar la resistencia de los suelos, aumentando la capacidad de soporte de cargas. Para los controles de la compactación en el proceso de construcción, es imprescindible realizar las pruebas que permitan determinar la máxima densidad seca y el contenido de humedad óptimo de los suelos²⁶.

La densidad máxima, se refiere al peso seco máximo, que produce la máxima densidad obtenido en la compactación de un suelo bajo la humedad óptima de manera preestablecida¹⁹.

El contenido de la humedad óptimo se refiere a la cantidad que existe de agua en el suelo para producir la máxima densidad seca¹⁹.

"El ensayo se refiere a compactación en el laboratorio, permite obtener una correlación entre el peso unitario seco y su contenido de humedad de los suelos, se utiliza moldes de \emptyset 4" y/o 6", emplea un pisón de 44,50 N con una altura de caída de 457 mm, lo cual produce una energía de (2700 KN – m / m³)"15.

²⁶ ASTM. 2012. ASTM D1557-12 e1. Standard Test Methods For Laboratory Compaction Characteristics Of Soil Using Modified Effort (56,000 ft lbf/ft3 (2 700 KN-m/m3)). West Conshohocken, PA: ASTM International, 2012.

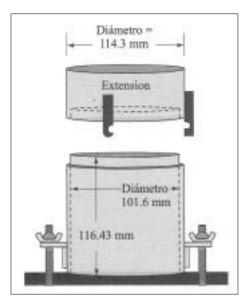


Figura 4. Molde de ensayo Proctor modificado (método A y B) Fuente: Fundamentos de Ingeniería geotécnica (Das, 2001).

El suelo que se encuentra debajo de la subrasante, con una profundidad mínima de 30 cm, debe ser compactado para lograr un 95% de la densidad seca máxima del Proctor modificado²⁴.

Tabla 9. Especificaciones para la prueba Proctor modificado.

Descripción	Método A	Método B	Método C
Diámetro del molde	4" (101.6 mm)	4" (101.6 mm)	6" (152.4 mm)
Volumen del molde	0.033 p3 (944 cm3)	0.033 p3 (944 cm3)	2124 cm3
Peso del pisón	10 lb (4.45 kg)	10 lb (4.45 kg)	10 lb (4.45 kg)
Altura de caída del pisón	18" (304.8 mm)	18" (304.8 mm)	18" (304.8 mm)
Número de golpes por capa	25	25	56
Número capas	5	5	5
Energía de compactación	56 000 ft lb/p3	56 000 ft lb/p3	56 000 ft lb/p3
Energía de compactación	2700 KN-m/m3	2700 KN-m/m3	2700 KN-m/m3
Material	Se emplea el que pasa el tamiz N°4	Se emplea el que pasa el tamiz de 3/8"	Se emplea el que pasa el tamiz de 3/4"
Uso	Cuando el 20% o menos del peso del material es retenido en el tamiz N°4	Cuando el 20% del peso del material es retenido en el tamiz N°4 y 20% o menos es retenido en el tamiz 3/8".	Cuando el 20% en peso del material es retenido en el tamiz 3/8" y menos de 30% en peso es retenido en el tamiz 3/4".

Fuente: Fundamentos de Ingeniería geotécnica – ASTM D1557 (Das, 2001).

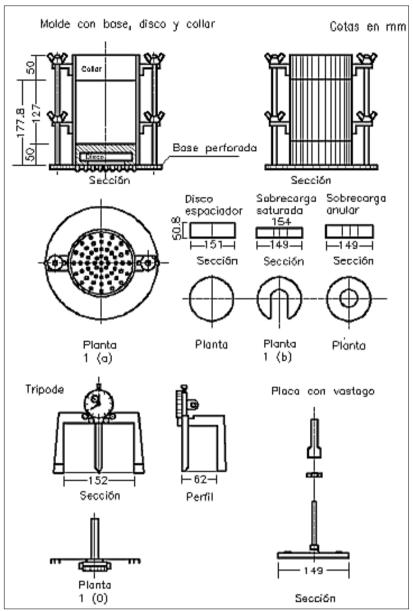


Figura 5. Molde del ensayo CBR

Fuente: Manual de carreteras – suelos y pavimentos (MTC, 2014).

El índice CBR o California Bearing Ratio, por sus siglas, es desarrollado en base a la ASTM D1883 y la MTC E 132, es una prueba de penetración y se emplea en la evaluación de la capacidad portante de los suelos compactados como para diseño de las carreteras²⁷.

²⁷ ASTM. 2016. *ASTM D 1883 - 16. Standard Test Method For California Bearing Ratio (CBR) Of Laboratory - Compacted Soils.* West Conshohocken, PA: ASTM International, 2016.

"El ensayo CBR se usa en la evaluación de las capas estructurales de una carretera, pavimentos de vías y pistas de aterrizaje" 15.

Los suelos ubicados bajo la subrasante con una profundidad no menor de 60 cm deben contar con un CBR mayor o igual a 6%, caso contrario requiere una estabilización con el fin de garantizar la capacidad de soporte mínima²⁴.

La norma ASTM D1883, define el CBR como la relación de la presión ejercida para penetrar 2.54 mm de la muestra (0.1") y la presión necesaria para obtener dicha penetración en un material arbitrario, determinar propiedades mecánicas del suelo, midiendo el esfuerzo requerido para penetrar una muestra de suelo a razón de 1.27mm/min a 0.10" y 0.20" de profundidad¹⁵.

Específicamente para la conformación de la subrasante se consideran suelos adecuados que cuenten con un CBR \geq 6%, caso de obtener valores inferiores se deberá realizar una estabilización, mediante el mejoramiento con un material adecuado para modificar sus propiedades resistentes o reemplazar el suelo con uno adecuado 15 .

Tabla 10. Categorías de subrasante en función al CBR.

Categoria de Subrasante	CBR	
S0 : Sub rasante inadecuada	CBR < 3%	
S1 : Subrasante insuficiente	De CBR ≥ 3% a CBR < 6%	
S2 : Subrasante regular	De CBR ≥ 6% a CBR < 10%	
S3 : Subrasante buena	De CBR ≥ 10% a CBR < 20%	
S4 : Subrasante muy buena	De CBR ≥ 20% a CBR < 30%	
S5 : Subrasante excelente	CBR ≥ 30%	

Fuente: Manual de carreteras – suelos y pavimentos (MTC, 2014).

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

El tipo de investigación considerado: aplicada, pues buscó resolver un problema de la realidad objetiva²⁸.

El diseño de la investigación, ha considerado un diseño de investigación experimental, definido como: "el proceso por el cual es sometido un objeto de estudio a condiciones previamente determinadas (variable independiente), y observar sus efectos (variable dependiente)"²⁹.

Diseño con posprueba únicamente y grupo de control²⁸.

 RG_1 X_1 O_1 RG_2 X_2 O_2 RG_3 X_3 O_3

RG 4 - O 4

Dónde:

RG₁: Grupo experimental o muestra aleatoria de suelo 1.

RG₂: Grupo experimental o muestra aleatoria de suelo 2.

RG₃: Grupo experimental o muestra aleatoria de suelo 3.

RG₄: Grupo experimental o muestra aleatoria de suelo 4.

x₁: Tratamiento - adición de vidrio triturado 4%.

x₂: Tratamiento - adición de vidrio triturado 7%.

x₃: Tratamiento - adición de vidrio triturado 10%.

O₁: Observación muestra 1 - adición de vidrio triturado 4%.

O₂: Observación muestra 2 - adición de vidrio triturado 7%.

O₃: Observación muestra 3 - adición de vidrio triturado 10%.

O₄: Observación muestra 4 sin adición de vidrio triturado (muestra patrón).

²⁸ Hernández, R., Fernández, C. y Baptista, M. *Metodología de la investigación*. México D.F.: Mc Graw Hill, 2014. ISBN 978-1-4562-2396-0.

²⁹ Arias, F. *El proyecto de investigación*. Caracas: Episteme, 2016.

3.2. Variables y operacionalización

"Una variable aquella propiedad cuyo contenido puede variar y esta a su vez es

susceptible de poder medirse y observarse de manera directa o indirecta" 28.

La operacionalización se define de acuerdo a Borja (2012): "aquel proceso por el

cual se explica el procedimiento de medición de las variables consideradas en la

hipótesis, para ello es necesario descomponerlas en indicadores que puedan

medirse".

Variable independiente: Vidrio triturado

Variable dependiente: Propiedades físico-mecánicas de suelos

3.3. Población, muestra y muestreo

La población se refiere a un conjunto de elementos de investigación de interés que

tienen ciertas especificaciones²⁸.

La presente investigación consideró como población la sub rasante de la avenida

Industrial, Tramo: Progresivas 0+000 al 2+730, del centro poblado de Salcedo -

Puno.

Una muestra es definida como un subconjunto de una población, la cual pertenece

a ese conjunto de la población total²⁸.

La muestra fue definida por una calicata (C - 01) de la sub rasante de la avenida

Industrial, la cual conforma dicha vía⁶.

El muestreo consiste en un proceso de selección de elementos definido por las

consideraciones de la investigación²⁸.

El muestreo aplicado fue no probabilístico, debido a que la selección de la muestra

es por el investigador, al considerar una muestra de suelo de la subrasante para

alcanzar los objetivos de la presente investigación.

27

3.4. Técnicas e instrumentos de recolección de datos

La técnica considerada fue la observación estructurada o sistemática, que consiste en aquel proceso ordenado para conocer de manera directa al objeto de estudio, describirlo y realizar análisis"³⁰.

El instrumento utilizado consiste en registros de observación, las cuales sirven para recolectar información de las muestras de estudio, considerando los objetivos e indicadores correspondientes de las variables de la investigación, de manera estructurada³⁰.

Los registros utilizados consisten en guías de laboratorio:

- Límite líquido, plástico y de plasticidad (MTC E110, E111 y ASTM D4318-84).
- Ensayo de Proctor modificado: (MTC E 115, ASTM D 1557).
- Ensayo CBR: (MTC E132 y ASTM D 1883).

La validez en la presente investigación es dada por medio de profesionales especialistas en ingeniería civil, al validar los instrumentos y los reportes del laboratorio de suelos,

La confiabilidad de los instrumentos de laboratorio utilizados, son respaldados con los certificados de calibración respectivos, para garantizar la confiabilidad de los datos obtenidos de los ensayos de laboratorio.

3.5. Procedimientos

La obtención de muestras de suelo de la subrasante de la avenida Industrial, con herramientas manuales y posterior traslado al laboratorio, donde se determinaron sus propiedades físico – mecánicas.

La obtención del vidrio triturado, inicia con la recolección del vidrio producto de residuos en vidrierías de la ciudad de Puno, fueron sometidos a molienda mecánica con una comba metálica hasta obtener la gradación de ASTM C 33-18, de gradación de agregados finos³¹.

³⁰ Bernal, C. *Metodología de la investigación*. Bogotá: Pearson Education, 2010. ISBN: 978-958-699-128-5

³¹ ASTM. 2018. ASTM C33-18. Standard specification for aggregates for concrete. West Conshohocken. PA: ASTM International, 2018.

Experimentación - mejoramiento de suelo de subrasante con incorporación del vidrio triturado, Se comenzó con la separación de las muestras en 04 grupos: 03 muestras incorporadas con los porcentajes de 4%, 7% y 10% de proporción en peso, iniciando con los límites de consistencia (LL, LP e IP), con la compactación del suelo (Proctor Modificado), posteriormente el ensayo. Paralelamente 01 muestra patrón sin incorporación de vidrio triturado, para comparar el incremento de la capacidad de soporte del suelo.

Tabla 11: Gradación de agregados de tamaño fino.

Tamiz	Porcentaje que pasa
4.75 mm (N°4)	95 - 100
2.36 mm (N°8)	80 - 100
1.18 mm (N°16)	50 - 85
600 μm (N°30)	25 - 60
300 μm (N°50)	5 - 30
150 μm (N°100)	0 - 10
75 μm (N°200)	0 - 3

Fuente: ASTM C 33-18 (2018).

3.6. Método de análisis de datos

Los análisis considerados fueron realizados en el software Microsoft Excel, el cual permite el registro de los datos producto de los ensayos de laboratorio, así mismo permite elaborar tablas y gráficos con los datos mencionados, para la elaboración de los reportes correspondientes y su presentación.

3.7. Aspectos éticos

La investigación considera los lineamientos de la Universidad César Vallejo, en base a las guías para la elaboración de trabajo de investigación y tesis para obtención de grados académicos y títulos profesionales, aprobada con resolución del vicerrectorado de investigación N° 011 – 2020 – VI - UCV, así como el reglamento de propiedad intelectual de la Universidad César Vallejo, aprobada con resolución de consejo universitario N°0168-2020/UCV, la ISO 690: 2010 (E)³² para las referencias bibliográficas, así como para la prevención del plagio se utilizó el software TURNITIN.

_

³² UA. 2012. ISO 690:2010 (E). Alicante: Universitat d' Alicant, 2012.

IV. RESULTADOS

Ubicación geográfica

La ubicación se encuentra en la avenida Industrial, del centro poblado de Salcedo. La localización es la siguiente:

Región: Puno. Provincia: Puno. Distrito: Puno.

Altitud: 3840 m.s.n.m.

Coordenadas (UTM WGS 84) 19 L: E 392106.89; N 8245528.316

El objetivo general es determinar la influencia de la incorporación del vidrio triturado en las propiedades físico - mecánicas de suelos arcillosos en la Av. Industrial, para ello se hicieron las pruebas de laboratorio mencionados en el marco teórico, considerando las proporciones de 4%, 7% y 10% de vidrio triturado incorporado en las muestras de suelo, el cual es suelo arcilloso tipo CL (arcilla de baja plasticidad con arena), existente en la conformación de la subrasante de la mencionada vía.

Localización geográfica

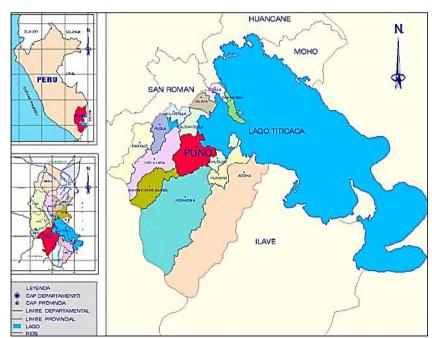


Figura 6. Ubicación del distrito de Puno.

Fuente: Plan desarrollo urbano de la ciudad de Puno (MPP, 2008).

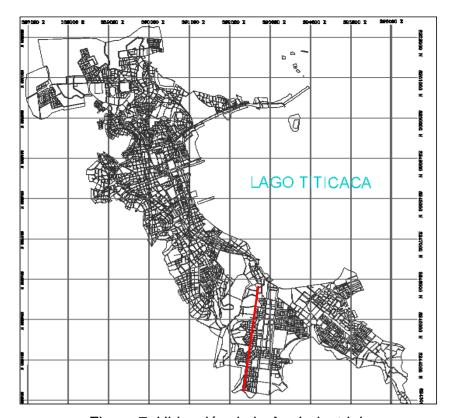


Figura 7. Ubicación de la Av. Industrial. Fuente: Plan desarrollo urbano de la ciudad de Puno (MPP, 2008).

Extracción de las muestras

Se realizó la extracción de una muestra de la subrasante de la Av. Industrial para realizar los estudios en laboratorio para la presente investigación, la muestra fue denominada M-01, la cual procede de la calicata C-01.

Figura 8. Excavación calicata C - 01. Fuente: Elaboración propia.

Tabla 12. Ubicación de la muestra M - 01.

Muestra	Prof.	Margen	Coordenadas		Altitud
M - 01	1.50 m	Derecho	392822 E	8244739 N	3840 msnm

Fuente: elaboración propia.

Trabajo de laboratorio

Se realizó 01 ensayo de granulometría (ASTM D 422 -MTC E107), la muestra fue extraída de la subrasante de la Av. Industrial, codificada como M - 01, con el propósito de determinar la distribución granulométrica de las partículas que conforman la muestra. Se realizó la clasificación de la muestra de suelo en base al sistema AASTHO y SUCS. Fue realizado 01 ensayo de límites de consistencia (MTC E110, E111 y ASTM D 4318-84) o Atterberg (limite líquido y límite plástico), así como también con los respectivos porcentajes de incorporación para determinar la influencia en la plasticidad de la muestra. Para el ensayo de Proctor modificado (ASTM D 1557), para evaluar la máxima densidad seca y el óptimo contenido de humedad, las muestras para dicho ensayo se tomaron de la siguiente manera: 01 ensayo en estado natural y 03 ensayos con las muestras individualmente y por separado del suelo de la M - 01, con adición del 4%, 7% y 10% de vidrio triturado. Además, se realizaron ensayos de CBR (MTC E132, ASTM D1883), con el propósito de determinar la resistencia del suelo, las muestras fueron tomadas de la siguiente manera: 01 ensayos con la M - 01 en estado natural, 03 ensayos con las muestras de suelo M - 01, con adición de 4%, 7% y 10% de vidrio triturado, los ensayos se realizaron en el laboratorio G&C GEOTECHNIK MATERIAL TEST LABOR.

La muestra M - 01, que fue utilizada en la presente investigación, fue manipulada con cuidado durante la extracción y traslado hacia el laboratorio, para que no se vean afectadas sus propiedades, los estudios fueron realizados respetando los parámetros establecidos por la normatividad (Manual de ensayo de materiales en laboratorio), los ensayos respectivos fueron realizados en el laboratorio mencionado, los reportes de los ensayos de laboratorio se presentan en los anexos, así como sus certificados de calibración de los equipos .

Para lograr el objetivo general que fue determinar la influencia de la incorporación del vidrio triturado en las propiedades físico - mecánicas de suelos arcillosos en la avenida Industrial, Puno-2021, se realizaron ensayos de laboratorio como:

Análisis granulométrico de suelos (ASTM D 422 - MTC E107)

El ensayo permitió determinar la distribución granulométrica de las partículas que conforman la muestra M - 01, separando el tamaño de partículas en función al juego de tamices disponible en el laboratorio.

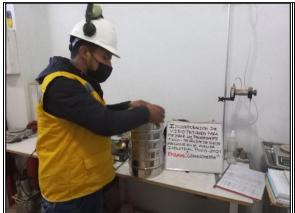


Figura 9. Análisis granulométrico por tamizado M - 01.

Figura 10. Obtención de pesos retenidos - análisis granulométrico por tamizado.

Tabla 13. Granulometría de la muestra M - 01.

Tamiz	Peso Retenido	% Retenido Parcial	% Retenido Acumulado	% que pasa
19 mm (3/4")				
12.5 mm (1/2")				100.00
9.5 mm (3/8")	4.87	0.84	0.84	99.16
6.3 mm (1/4")				
4.75 mm (N°4)	7.33	1.26	2.10	97.90
2.0 mm (N° 10)	22.28	3.84	5.94	94.06
840 µm (N° 20)	16.31	2.81	8.75	91.25
425 µm (N° 40)	19.25	3.32	12.07	87.93
300 µm (N° 50)				
250 µm (N° 60)	12.59	2.17	14.24	85.76
150 µm (N° 100)	16.63	2.87	17.11	82.89
75 µm (N° 200)	30.47	5.25	22.36	77.64
<75 µm (fondo)	450.42	77.64	100.00	

Fuente: Reporte de laboratorio.

La tabla 13, presenta un resumen del análisis granulométrico mediante el tamizado de la muestra M - 01, el porcentaje de partículas retenidas en el tamiz N° 200 es 77.64%, esto indica que la muestra es de gradación en función a las características granulométricas: Grava (2" – N° 4) un 2.10%, arena (N° 4 – N° 200) con 20.26% y finos (N° 200) un 77.64%.

Figura 11. Curva granulométrica M - 01. Fuente: Reporte de laboratorio.

La muestra de suelo M - 01 fue clasificada con el sistema SUCS y AASHTO, también se obtuvo la humedad de la muestra patrón.

Tabla 14. Clasificación SUCS, AASHTO, contenido de humedad y Gs de la muestra M - 01.

Muestra	Clasificación SUCS	Clasificación AASHTO	Contenido de humedad	Gravedad específica (gr/cm3)
M - 01	CI	A - 6 (12)	12.52 %	2.76

Fuente: Elaboración propia.

La clasificación en el sistema AASHTO indica A-6(12) un suelo malo para su utilización en vías, debido a la composición de la muestra, de acuerdo a la tabla 4, de clasificación de suelos para su uso en subrasantes según el índice de grupo es mayor a 9 (IG de la M - 01 = 12), lo cual lo clasifica como inadecuado, para el SUCS es definido como CL una arcilla de baja plasticidad con arena.

La gradación del vidrio triturado utilizado, fue referida a la ASTM C 33 - 18, de agregado fino, cuya granulometría es presentada en la tabla 15.

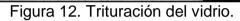


Figura 13. Obtención de gradación de vidrio triturado.

Tabla 15. Granulometría del vidrio triturado.

		%		
Tamiz	Peso	Retenido	% Retenido	% que
	Retenido	Parcial	Acumulado	pasa
6.3 mm (1/4")				100.00
4.75 mm (N°4)	54.96	2.50	2.50	97.5
2.0 mm (N° 10)	165.23	7.50	10.00	90.00
840 µm (N° 20)	495.45	22.50	32.51	67.49
425 µm (N° 40)	539.47	24.50	57.01	42.99
300 µm (N° 50)				
250 µm (N° 60)	550.40	25.00	82.01	17.99
150 µm (N° 100)	286.22	13.00	95.01	4.99
75 µm (N° 200)	77.00	3.50	98.51	1.49
<75 µm (fondo)	32.87	1.49	100.00	

Fuente: Elaboración propia.

Figura 14. Equipo de ensayo - Gravedad específica.

Figura 15. Ensayo de Gravedad específica.

Con la incorporación de la cantidad de vidrio triturado en las muestras, se presentaron variaciones en las características, ver tabla 16.

Tabla 16. Clasificación SUCS, AASHTO, contenido de humedad y Gs de la muestra M - 01 + % de vidrio triturado.

Muestra M - 01 + vidrio triturado	Clasificación SUCS	Clasificación AASHTO	Contenido de humedad	Gravedad específica (gr/cm3)
M - 01	CL	A - 6 (12)	12.52 %	2.76
Experimento - 01 (4%)	ML	A - 6 (10)	-	2.75
Experimento - 02 (7%)	CL	A - 6 (7)	-	2.73
Experimento - 03 (10%)	CL	A - 6 (5)	-	2.69

Fuente: Elaboración propia.

El primer objetivo específico, el cual consiste en determinar la influencia del vidrio triturado en el porcentaje del índice de plasticidad de suelos arcillosos en la avenida Industrial, Puno-2021, se obtuvo lo siguiente:

Los límites de consistencia son importantes para determinar su clasificación del suelo, y conocer sus características físicas y mecánicas.

La tabla 17 muestra los resultados de los límites de consistencia, el resultado de la muestra ensayada determinó que el LL de la muestra M - 01 es 40%, límite plástico de 24%, la diferencia da resultado el índice de plasticidad igual a 16% según la tabla 3, está en el rango de 20 > IP > 7 determinado con una plasticidad media,

propio de suelos arcillosos, que a su vez es un material inadecuado para subrasantes, ya que se recomienda un IP < 7.

Tabla 17. Límites de consistencia de la muestra M - 01.

Muestr	Límite	Limite	Índice de
a	Líquido (LL)	Plástico (LP)	Plasticidad (IP)
M - 01	40%	24%	16%

Fuente: Elaboración propia.

Así mismo se realizaron pruebas para determinar la influencia en los límites de consistencia mediante la incorporación del vidrio triturado en los porcentajes de 4,7 y 10%, presentados en la tabla 18.

Tabla 18. Límites de consistencia de la muestra M - 01 + vidrio triturado.

Muestra M - 01 + vidrio triturado	Límite Líquido (LL)	Limite Plástico (LP)	Índice de Plasticidad (IP)
Experimento - 01 (4%)	39%	25%	13%
Experimento - 02 (7%)	36%	23%	12%
Experimento - 03 (10%)	34%	23%	11%

Fuente: Elaboración propia.

Indice de plasticidad IP (%)

16%

16%

12%

12%

12%

11%

12%

10%

14% 5% 6% 7% 8% 9% 10%

% de incorporación de vidrio triturado

Figura 18. Curva - variación del índice de plasticidad (IP) muestra patrón + % de vidrio

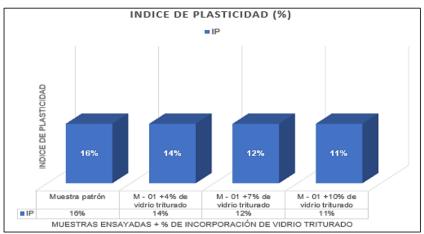


Figura 19. Variación del índice de plasticidad (IP) muestra patrón + % de vidrio triturado.

La figura 18 muestra la influencia de la incorporación del vidrio triturado, al obtener un IP de 16% en el suelo natural, cuando se incorpora un 4% de vidrio triturado el IP disminuye a 14%, una adición de 7% presenta un IP de 12%, el reemplazo de 10% de proporción en peso de vidrio triturado reduce el IP hasta un 11%, por tanto, afecta en la reducción del IP a razón que se va aumentando la proporción de vidrio triturado (%).

Para el objetivo específico 2, que consistió en determinar el efecto de la incorporación del vidrio triturado en la máxima densidad seca de suelos arcillosos en la avenida Industrial, Puno-2021, fue utilizado el ensayo Proctor modificado, el método fue tipo "A". considerando el suelo de la muestra patrón y la incorporación del 4%, 7% y 10% de vidrio triturado.

llenado del molde.

Figura 20. Ensayo Proctor modificado - Figura 21. Ensayo Proctor modificado compactación.

M - 01 (muestra patrón)

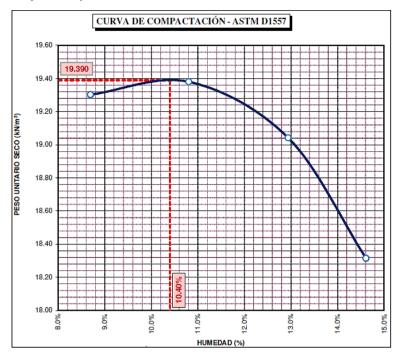


Figura 22. Curva - Relación entre el contenido de humedad óptimo y densidad máxima seca - muestra patrón.

Fuente: Reporte de laboratorio - ensayo CBR - Elaboración propia.

Experimento 01 (M - 01 + 4% de vidrio triturado)

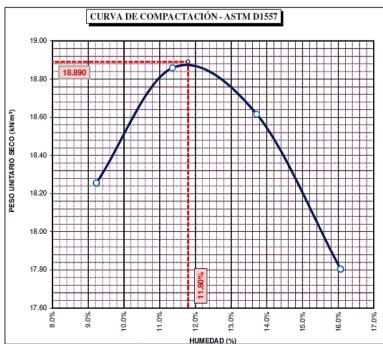


Figura 23. Curva - Relación entre el contenido de humedad óptimo y densidad máxima seca - muestra patrón + 4% de vidrio triturado.

Fuente: Reporte de laboratorio - ensayo CBR - Elaboración propia.

Experimento 02 (M - 01 + 7% de vidrio triturado)

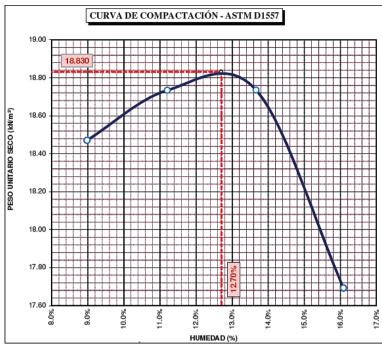


Figura 24. Curva - Relación entre el contenido de humedad óptimo y densidad máxima seca - muestra patrón + 7% de vidrio triturado.

Fuente: Reporte de laboratorio - ensayo CBR - Elaboración propia.

Experimento 03 (M - 01 + 10% de vidrio triturado)

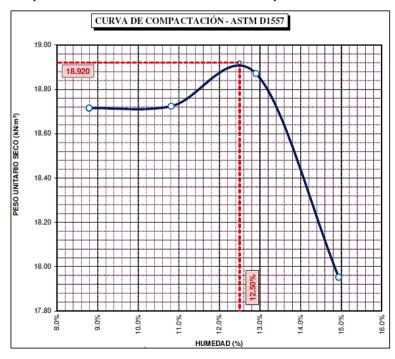


Figura 25. Curva - Relación entre el contenido de humedad óptimo y densidad máxima seca - muestra patrón + 10% de vidrio triturado.

Fuente: Reporte de laboratorio - ensayo CBR - Elaboración propia.

Figura 26. Curva - Relación entre la máxima densidad seca y el % de vidrio triturado.

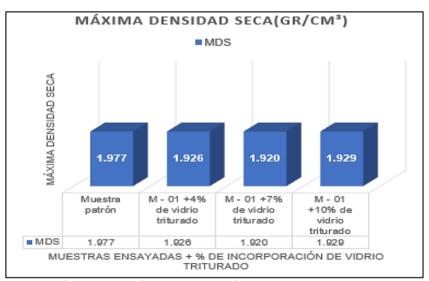


Figura 27. Variación - Relación entre la máxima densidad seca y el % de vidrio triturado.

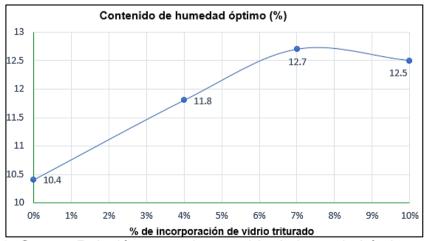


Figura 28. Curva - Relación entre el contenido de humedad óptimo y el % de vidrio triturado.

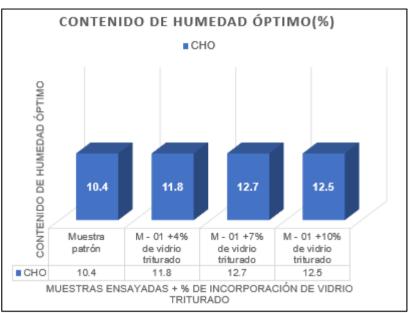


Figura 29. Variación - Relación entre el contenido de humedad óptimo y % de vidrio triturado.

Tabla 19. Resultados de ensayo Proctor modificado muestra M - 01 + vidrio triturado.

Muestra	Detalle	humedad óptima %	Peso unitario seco (KN/m3)	Peso unitario seco (gr/cm3)
M - 01	Muestra patrón	10.40	19.390	1.977
Experimento - 01	M - 01 +4% de vidrio triturado	11.80	18.890	1.926
Experimento - 02	M - 01 +7% de vidrio triturado	12.70	18.830	1.920
Experimento - 03	M - 01 +10% de vidrio triturado	12.50	18.920	1.929

Fuente: Elaboración propia.

La tabla 19 presenta el resultado de los ensayos Proctor Modificado de las muestras, se determinó que la humedad es de 10.40%, peso unitario seco es de 1.977 gr/cm3, a continuación, las muestras de suelo patrón y vidrio triturado (en proporción de 4%, 7% y 10% de vidrio triturado): el Experimento - 01 cuyo óptimo contenido de humedad es 11.80%, peso unitario seco de 1.926 gr/cm3, el Experimento - 02 obtuvo una humedad óptima de 12.70%, peso unitario seco de 1.920 gr/cm3 y el Experimento - 03 una humedad óptima de 12.50%, peso unitario seco de 1.929 gr/cm3. Es evidente la disminución del valor de la densidad seca en tanto se incorpora el vidrio reciclado (entre 0, 4 y 7%), mientras que con 10% de vidrio, aumenta ligeramente la densidad seca, aunque con valor inferior al suelo

patrón (M - 01), ver figura 25 y 26, en cuanto al contenido de humedad óptimo, esta aumenta a razón que se incrementa el contenido de vidrio triturado (entre el 0, 4 y 7%), en tanto que con 10% de vidrio disminuye ligeramente pero aún por encima del valor de la muestra patrón (ver figura 27 y 28).

Respecto al objetivo específico 3, consistió en determinar el efecto de la incorporación del vidrio triturado en la resistencia de suelos arcillosos en la avenida Industrial, Puno-2021, fue realizado el ensayo CBR, para la muestra M - 01, y la incorporación de vidrio triturado.

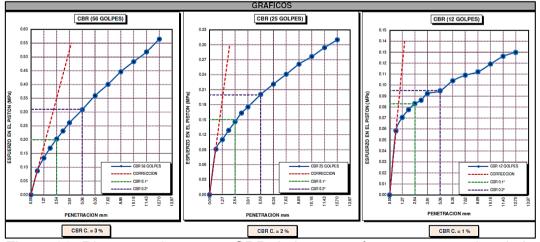


Figura 32. Diagrama de ensayo CBR de los especímenes ensayados de la muestra M - 01.

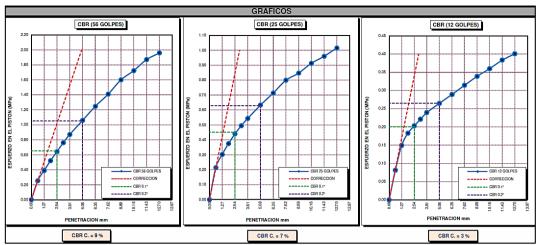


Figura 33. Diagrama de ensayo CBR de los especímenes ensayados de la muestra M - 01 + 4% de vidrio triturado.

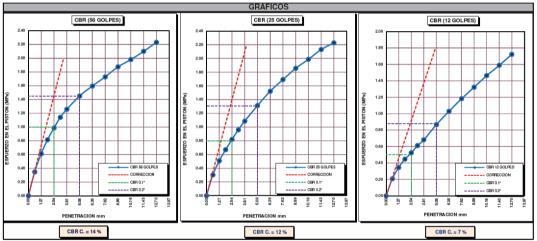


Figura 34. Diagrama de ensayo CBR de los especímenes ensayados de la muestra M - 01 + 7% de vidrio triturado.

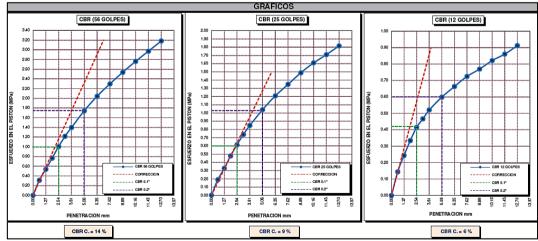


Figura 35. Diagrama de ensayo CBR de los especímenes ensayados de la muestra M - 01 + 10% de vidrio triturado.

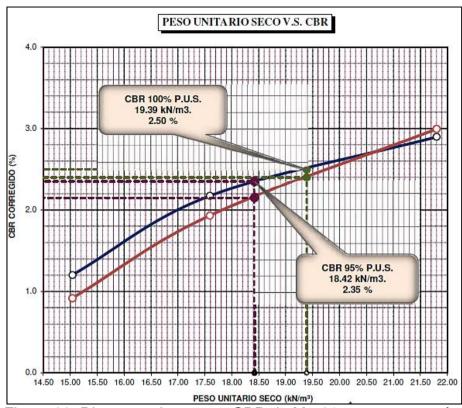


Figura 36. Diagrama de ensayo CBR de M - 01 - muestra patrón.

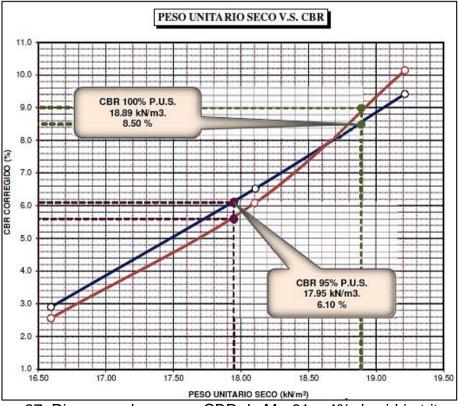


Figura 37. Diagrama de ensayo CBR de M - 01 + 4% de vidrio triturado.

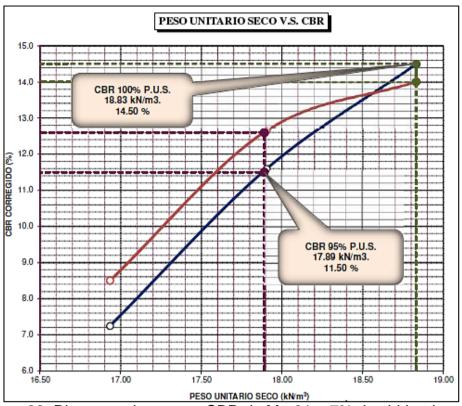


Figura 38. Diagrama de ensayo CBR de M - 01 + 7% de vidrio triturado.

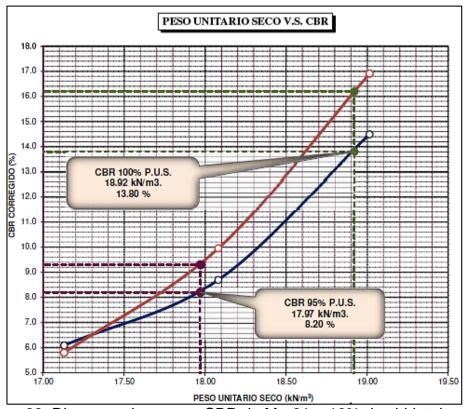


Figura 39. Diagrama de ensayo CBR de M - 01 + 10% de vidrio triturado.

Tabla 20. Resultados de ensayo CBR muestra M - 01 + vidrio triturado.

Muestra	Detalle	Penetración	CBR (100%)	CBR al (95%)
M - 01	Muestra patrón	0.1"	2.50%	2.35%
Experimento - 01	M - 01 +4% de vidrio triturado	0.1"	8.50%	6.10%
Experimento - 02	M - 01 +7% de vidrio triturado	0.1"	14.50%	11.50%
Experimento - 03	M - 01 +10% de vidrio triturado	0.1"	13.80%	8.20%

Fuente: Elaboración propia.

Figura 40. Curva - Relación entre el CBR al 95% y % de vidrio triturado.

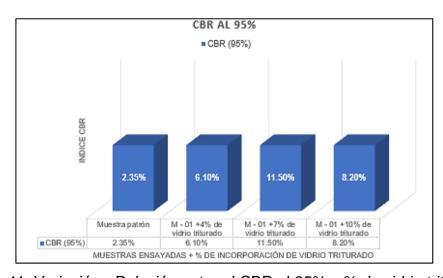


Figura 41. Variación - Relación entre el CBR al 95% y % de vidrio triturado.

La tabla 20 presenta los resultados del CBR, los valores están en relación a la penetración de 0.1" (2.54 mm), el comportamiento de la capacidad de soporte,

aumenta de manera favorable a razón que se incrementa el porcentaje de vidrio triturado, desde el valor inicial de la muestra patrón se incrementa la resistencia hasta con un 7% de vidrio triturado, el cual alcanza valores máximos (11.50% para CBR al 95% y 14.50% para CBR al 100%).

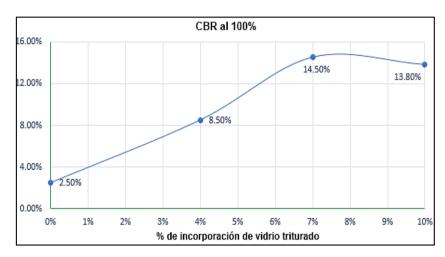


Figura 42. Curva - Relación entre el CBR al 100% y % de vidrio triturado.

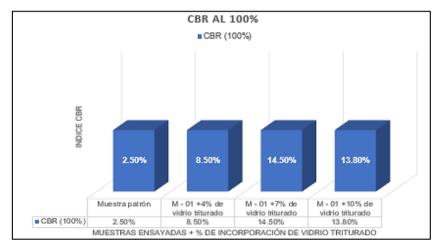


Figura 43. Variación - Relación entre el CBR al 100% y % de vidrio triturado.

Para cantidades superiores a 7% de vidrio incorporado, afectan de forma negativa en la capacidad de soporte (8.20% con CBR al 95% y 13.80% para CBR al 100%), en la muestra M - 01 en estado natural o muestra patrón presenta un CBR al 100% y 95% con penetración de 0.1" valores de 2.50% y 2.35% respectivamente, por tanto, un porcentaje óptimo de vidrio triturado a incorporar para aumentar la capacidad de soporte es de 7%.

V. DISCUSIÓN

Culminados los procedimientos de los ensayos de laboratorio respectivos en función de los objetivos específicos, y haber descrito los resultados del suelo patrón y la incorporación de vidrio triturado en el capítulo anterior, expresados mediante tablas y gráficos. En el presente capítulo son presentados el análisis comparativo y discusión de los valores obtenidos en función a los objetivos, entre los antecedentes y la investigación.

Para el objetivo específico 1, el cual consistió en determinar la influencia del vidrio triturado en el porcentaje del índice de plasticidad de suelos arcillosos en la avenida Industrial, Puno-2021.

En la investigación de Sánchez y Terrones (2020), fueron utilizados diferentes porcentajes de incorporación de un estabilizante híbrido compuesto de vidrio reciclado y conchas de abanico, en razón del 0%, 10%, 15% y 20%, los cuales fueron incorporados en las muestras de suelo y posteriormente el ensayo de límites de consistencia, donde se obtuvieron los índices de plasticidad de 16.86%, 15.42%, 13.26% y 12.6% respectivamente.

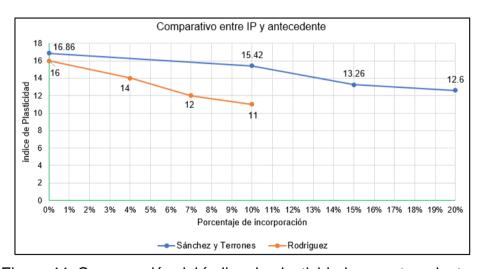


Figura 44. Comparación del índice de plasticidad con antecedentes.

Se coincide con Sánchez y Terrones, debido a que la incorporación del vidrio reciclado (triturado), influye en la disminución del índice de plasticidad, que es necesario para la conformación de subrasantes, debido a que suelos con un IP alto

representan suelos expansivos, los cuales no son adecuados para obras viales, ver figura 43, donde se muestra que las curvas que indican el índice de plasticidad, decrecen en la medida que se incrementa la cantidad de vidrio incorporado, desde una muestra de suelo propia de la presente investigación, en estado natural con un IP de 16%, 14% con 4% de vidrio, 12% con 7% de vidrio y 11% con 10% de vidrio triturado, lo cual representa un IP en 31.25% menos comparado con la muestra patrón, en tanto para Sánchez y Terrones, los IP varían desde un suelo patrón con 16.86% de IP, una adición de 10% de vidrio un IP de 15.42%, lo cual representa un 8.54% menos respecto al suelo patrón, siendo este porcentaje (10%) el cual existe en ambas investigaciones, donde se observa una variación, debido a que el material para mejoramiento en la tesis de Sánchez y Terrones fue un híbrido de vidrio y conchas de abanico, mientras que en la presente investigación solo se utilizó vidrio.

Frente al objetivo específico 2, que consistió en determinar el efecto de la incorporación del vidrio triturado en la máxima densidad seca de suelos arcillosos en la avenida Industrial, Puno - 2021. En la investigación de Haro (2021), fueron determinados los valores de MDS con la incorporación de vidrio reciclado en proporciones de 0, 6 y 8%, los datos presentados en la figura 44, indican la variación de la incorporación del vidrio reciclado en el suelo y su influencia en la máxima densidad seca, la figura 45 muestra la comparación del contenido de humedad óptimo de la investigación y los antecedentes.

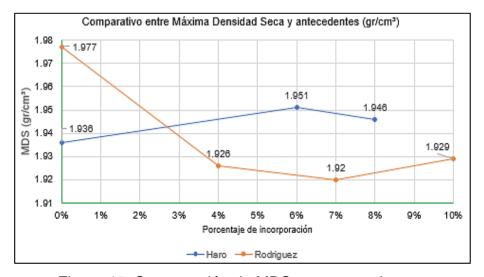


Figura 45. Comparación de MDS con antecedentes.

No se coincide con Haro, respecto a la máxima densidad seca al observar una variación con la presente investigación, en la tesis de Haro existe un incremento en la máxima densidad seca (MDS), debido al tamaño de las partículas de vidrio triturado que se utilizaron, en el antecedente del tesista Haro fue utilizado únicamente vidrio en tamaños de partículas de 0.149 mm, en tanto que en la presente investigación fue utilizada una gradación en base a la ASTM C - 33 - 18 (agregado fino), y se va reduciendo la MDS, incrementándose ligeramente con un 10% de vidrio triturado, aunque por debajo del valor del suelo natural.

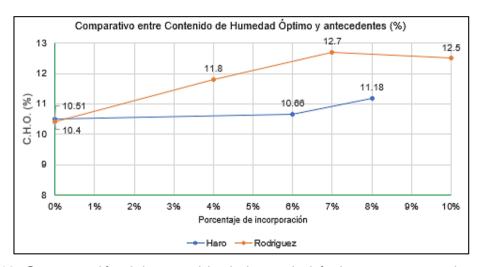


Figura 46. Comparación del contenido de humedad óptimo con antecedentes.

Se coincide con Haro, respecto al contenido de humedad, al evidenciar en ambos casos un aumento en el contenido de humedad óptimo, de acuerdo a la figura 45, la incorporación de vidrio incrementa la cantidad del agua necesaria para lograr la máxima densidad del ensayo Proctor modificado, desde un valor de 10.4% de la muestra patrón, 10.66% para la incorporación de 6% de vidrio y 11.18% con 8% de vidrio, en la presente investigación también se presenta una un incremento desde 10.51% del suelo natural, un 11.8% con 4% de vidrio, 12.7% con 7% de vidrio y 12.50% para 10% de vidrio incorporado.

En base al objetivo específico 3, que fue determinar el efecto de la incorporación del vidrio triturado en la resistencia de suelos arcillosos en la avenida Industrial, Puno-2021. En la investigación de Haro (2021), se determinó que la incorporación de vidrio reciclado puede afectar la resistencia de los suelos, los valores de CBR al

95% y 100%, indican que hasta un 6% de proporción de vidrio, presenta valores máximos para CBR, ver figura 46 y 47.

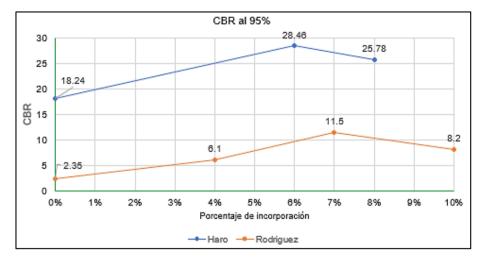


Figura 47. Comparación del CBR al 95% con antecedentes.

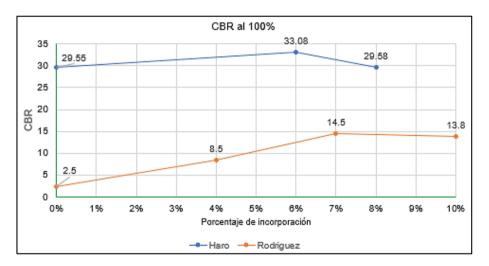


Figura 48. Comparación del CBR al 100% con antecedentes.

Se coincide con Haro al observar que existe un aumento del CBR, ya que el mencionado autor, obtiene como porcentaje adecuado un 6% de proporción en peso de incorporación de vidrio, Según Haro existe un incremento que representa un 156% respecto al suelo natural (CBR 95%) y un 111% (CBR 100%), mientras que la presente investigación obtiene un 7% como porcentaje óptimo para lograr un valor del CBR equivalente a 489% y 580% respecto a la muestra inicial o patrón (CBR al 95% y 100% respectivamente).

VI. CONCLUSIONES

La presente investigación titulada "Incorporación de vidrio triturado para mejorar las propiedades físico - mecánicas de suelos arcillosos en la avenida Industrial, Puno-2021", presenta las siguientes conclusiones:

La incorporación del vidrio triturado influye en el índice de plasticidad de los suelos arcillosos en la avenida Industrial, de tal manera que provocan una disminución en el IP, en la medida que se aumenta la cantidad de vidrio triturado, desde 0%, 4%, 7% y 10%, siendo este último el que presenta una disminución de un IP de 16% en estado natural (muestra patrón), hasta un 11% con incorporación de 10% de vidrio, lo cual representa una reducción de 31.25% respecto a la condición inicial (patrón).

El efecto de la incorporación del vidrio triturado afecta la máxima densidad seca de suelos arcillosos en la avenida Industrial, provocando una ligera disminución en relación al valor en estado natural (muestra patrón), de manera inversamente proporcional en la medida que se aumenta el contenido de vidrio (1.977 gr/ cm³ en estado natural y 1.929 gr/cm³ con 10% de vidrio triturado), en tanto para el contenido de humedad óptimo esta tiende a aumentar dicho valor desde 10.4% de la muestra patrón pasando a 12.50% con 10% de vidrio triturado.

La incorporación del vidrio triturado influye en la resistencia de suelos arcillosos en la avenida Industrial, aumentando la resistencia desde un 2.35% en estado natural hasta un 11.50% con 7% de vidrio triturado (valor óptimo) en CBR al 95%, lo cual representa un incremento de 489% respecto al suelo inicial (muestra patrón) en tanto que para CBR al 100% desde 2.50% hasta 14.50% con 7% de vidrio, lo que representa un incremento de 580% respecto a la condición inicial.

VII. RECOMENDACIONES

Se recomienda incorporar vidrio triturado para disminuir el IP de los suelos arcillosos en la avenida Industrial, sobre todo cuando existen suelos expansivos, que cuenten con una cantidad elevada de arcilla, la cual es inadecuada para subrasantes de obras viales por su sensibilidad al agua, la incorporación de vidrio triturado es una alternativa para reducir el índice de plasticidad en suelos expansivos o arcillosos.

Se recomienda utilizar el vidrio triturado en suelos arcillosos ya que no afecta en gran medida en la máxima densidad seca, aunque si aumenta el contenido de humedad óptimo, sin embargo, se mejora otras propiedades de resistencia del suelo, y no existe una gran variación en la MDS.

Se recomienda la incorporación del vidrio triturado en proporción de 7%, ya que aumenta la resistencia CBR tanto al 95% y 100%, aumentando entre 4 y 5 veces respecto a la condición inicial de la muestra patrón, por lo cual es adecuado en el mejoramiento y/o estabilización de suelos arcillosos con un bajo índice CBR.

REFERENCIAS

Arias, Fidias. 2016. El proyecto de investigación. Caracas: Episteme, 2016.

ASTM. 2018. ASTM C33-18. Standard specification for aggregates for concrete. West Conshohocken. PA: ASTM International, 2018.

ASTM. 2016. ASTM D 1883 - 16. Standard Test Method For California Bearing Ratio (CBR) Of Laboratory - Compacted Soils. West Conshohocken, PA: ASTM International, 2016.

ASTM. 2019. ASTM D 2216 - 19. Standard Test Methods For Laboratory Determination Of Water (Moisture) Content Of Soil And Rock By Mass. West Conshohocken. PA: ASTM International, 2019.

ASTM. 2007. ASTM D 422 - 63 (2007) e2. Standard Test Method For Particle - Size Analysis of soils. West Conshohocken, PA: ASTM International, 2007.

ASTM. 2017. ASTM D 4318 - 17 e1. Standard Test Methods For Liquid Limit, Plastic Limit, And Plasticity Index Of Soils. West Conshohocken: ASTM International, 2017.

ASTM. 2014. ASTM D 854 - 14. Standard Test Methods For Specific Gravity Of Soil Solids By Water Pycnometer. West Conshohocken. PA: ASTM International, 2014.

ASTM. 2012. ASTM D1557-12 e1. Standard Test Methods For Laboratory Compaction Characteristics Of Soil Using Modified Effort (56,000 ft lbf/ft3 (2 700 KN-m/m3)). West Conshohocken, PA: ASTM International, 2012.

Bernal, César. 2010. *Metodología de la investigación*. Bogotá: Pearson Education, 2010. ISBN: 978-958-699-128-5.

Blayi, Rizgar, y otros. 2020. Strength improvement of expansive soil by utilizing waste glass powder. Soran: Soran University, 2020.

Borja, Manuel. 2012. *Metodología de la investigación científica para ingenieros*. Chiclayo: Universidad Nacional Pedro Ruiz Gallo, 2012.

Caamaño, Iván. 2016. *Mejoramiento de un suelo blando de subrasante mediante la adición de cascarilla de arroz y su efecto en el módulo resiliente*. Bogotá : Universidad Militar Nueva Granada, 2016.

Campos, Silvia, Urbina, María y Tamayo, Daynier. 2021. *Potencialidades del vidrio triturado como material de construcción*. Holguín: Universidad de Holguín, Holguín, Cuba, 2021.

Canakci, Hanifi, Al-Kaki, Aram y Celik, Fatih. 2016. *Stabilization of clay with waste soda lime glass powder*. Turkey: Department of Civil Engineering, University of Gaziantep, Procedia Engineering, 2016. DOI 10.1016/j.proeng.2016.08.705.

Das, Braja. 2001. Fundamentos de Ingeniería geotécnica. México D.F.: Thomson Learning, 2001. ISBN 970-686-061-4.

Gana, A. J. y Tabat, J.B. 2017. *Clay soil stabilisation using powdered glass*. Nigeria: Department of Civil Engineering of Landmark University, International Journal of Engineering and Emerging Scientific Discovery, 2017. ISSN: 2536-7269.

Gowtham, S, y otros. 2018. Stabilization of Clay Soil by Using Glass and Plastic Waste Powder. Manalmadu: N.S.N. College of Engineering and Technology, 2018.

Gusmão, Fabio y and others. 2020. Estabilization of caolinit clavey soil with glass waste and rock dust waste pulverized in high energy mill. [En línea] 2020. [Citado el: 05 de 08 de 2021.] https://www.ijaet.org/media/1I54-IJAET1301428-v13-i1-pp1-12.pdf. ISSN 22311963.

Gutiérrez, Libia. 2003. *El concreto y otros materiales para la construcción.* Manizales : Universidad Nacional de Colombia, 2003. ISBN 958-9322-82-4.

Guzmán, Pamela. 2017. Influencia de aditivos químicos en las características físico – mecánicas y relación costo – beneficio de suelos a emplearse en la superficie de rodadura de la vía Puno – aeropuerto de Ventilla, región Puno. Puno: Universidad Andina Néstor Cáceres Velásquez, 2017.

Haro, Luis. 2021. Efecto de la adición de Vidrio Reciclado en la estabilización de suelo arenoso en el A.H. Villa Hermosa, Nuevo Chimbote. Lima: Universidad César Vallejo, 2021.

Hernández, Roberto, Fernández, Carlos y Baptista, María. 2014. *Metodología de la investigación*. México D.F.: Mc Graw Hill, 2014. ISBN 978-1-4562-2396-0.

Jalanoca, Freyre. 2021. *Mejoramiento de la subrasante incorporando el aceite residual de vehículos motorizados en la carretera Platería Perka, Puno 2021.* Lima: Universidad César Vallejo, 2021.

Laica, Juan. 2016. *Influencia de la inclusión de polímero reciclado (caucho) en las propiedades mecánicas de una sub base.* Ambato : Universidad Técnica de Ambato, 2016.

Mantilla, José. 2019. *Mejoramiento con granalla mineral en subrasante de suelos arcillosos en la carretera Tocache – Juanjui, Km: 39+010.* Lima: Universidad César Vallejo, 2019.

Mas, María, y otros. 2016. Análisis de la Viabilidad Ambiental de la Utilización de Morteros Fabricados con Polvo de Vidrio en la Estabilización de suelos. Madrid: Universidad Politécnica de Madrid, 2016.

Menéndez, José. 2016. *Ingeniería de pavimentos*. Lima: Instituto de la construcción y gerencia, 2016. ISBN 978-612-4280-15-3.

Merritt, Frederick, Loftin, Kent y Rickectts, Jonathan. 2004. *Manual del Ingeniero Civil.* México D.F.: Mc Graw Hill Interamericana, 2004. ISBN 970-10-2254-8.

Montejo, Alfonso. 2002. *Ingeniería de pavimentos para carreteras*. Bogotá: Universidad Católica de Colombia, 2002. ISBN 958-96036-2-9.

MPP. 2008. *Plan de desarrollo urbano de la ciudad de Puno.* Puno : Municipalidad Provincial de Puno, 2008.

MTC. 2014. *Manual de carreteras - Suelos, Geología, Geotecnia y Pavimentos:Sección Suelos y Pavimentos*. Lima : Ministerio de Transportes y Comunicaciones, 2014.

MTC. 2016. *Manual de Ensayo de Materiales*. Lima: Ministerio de Transportes y Comunicaciones-Dirección General de Caminos y Ferrocarriles, 2016.

MTC. 2008. Manual para el diseño de carreteras no pavimentadas de bajo volumen de tránsito. Lima: Ministerio de Transportes y Comunicaciones, 2008.

Municipalidad Provincial de Puno. 2021. *MEJORAMIENTO DEL SERVICIO VIAL URBANO DE LA AVENIDA INDUSTRIAL DEL CENTRO POBLADO DE SALCEDO, DISTRITO DE PUNO - PROVINCIA DE PUNO - DEPARTAMENTO DE PUNO.* Puno: OPMI, Municipalidad Provincial de Puno, 2021.

Olufowobi, J. y and others. 2017. *Clay Soil Stabilisation Using Powdered Glass*. Nigeria: Department of Civil Engineering of University of Technology Akure, International Journal of Engineering and Emerging Scientific Discovery, 2017.

Pérez, Pablo. 2020. Evaluación del comportamiento de áridos reciclados de RCD y residuos de vidrio de TV. CRT en capas estructurales de carreteras. Córdoba: Universidad de Córdoba, 2020.

Rose, Jinu, y otros. 2017. *Effect of Glass Powder on Engineering Properties of Clayey Soil.* Kanjirappally: Department of Civil Engineering Amal Jyothi College of Engineering Kanjirappally, Kerala, India, 2017.

Salamatpoor, Sina y Salamatpoor, Siavash. 2017. Evaluation of adding crushed glass to different combinations of cement - stabilized sand. Iran: Department of Civil Engineering, Najafabad Branch, Islamic Azad University, GEO-Engineering, 2017. https://doi.org/10.1186/s40703-017-0044-0.

Sánchez, Crosby y Terrones, Renzo. 2020. Estabilización de suelos utilizando híbrido de polvo de concha de abanico y vidrio reciclado, Huacacorral. Lima: Universidad César Vallejo, 2020.

Syed, Aaqib y Sudipta, Chakraborty. 2020. *Effects of waste glass powder on subgrade soil improvement*. Bangladesh: World Scientific News, 2020. EISSN 2392-2192.

UA. 2012. ISO 690:2010 (E). Alicante: Universitat d' Alicant, 2012.

ANEXOS

Anexo 1: Matriz de operacionalización de variables.

VARIABLES DE LA INVESTIGA CIÓN	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA DE MEDICIÓN
independie nte:	Según Campos y otros (2021), El vidrio triturado es un elemento producto de la molienda mecánica del vidrio,	Determinar la gradación del tamaño de las partículas del vidrio triturado, para	Gradación – tamaño de las partículas.	Micrómetros (µm). ASTM C 33-18	
triturado	en base a una gradación, con tamaños inferiores a 5 mm	muestras de suelo a	Porcentaje de incorporación.	4%, 7% y 10%	
	Menéndez (2016) define a las propiedades físico-		Análisis granulométrico por tamizado.	MTC E107, ASTM D422.	Razón
Dependient e: propiedades	mecánicas del suelo, al peso específico, la granulometría, límites de consistencia,	Determinar las propiedades físico - mecánicos de suelos arcillosos, mediante los y	Gravedad específica con picnómetro de agua.	MTC E113, ASTM D854-14.	Razón
físico- mecánicas de suelos	densidad, contenido de humedad, su clasificación y su densidad seca y óptimo		Ensayo de Límite líquido y límite plástico.	MTC E110, E111 y ASTM D 4318-84.	Razón
arcillosos	de mecánica de suelos.	Ensayo de Proctor modificado.	MTC E118, ASTM D 1557-12.	Razón	
	CBR.		Ensayo CBR.	MTC E201, ASTM D1883-16.	Razón

Anexo 2: Matriz de consistencia.

TÍTULO: Inco	orporación de vidrio t	riturado para mejorar la	s propiedades fís	ico - mecánicas de s	suelos arcillosos en la avenida Indu	strial, Puno - 2021.
PROBLEMA	OBJETIVOS	HIPÓTESIS	V	ARIABLE, INDICADOR	ES E INSTRUMENTOS	TIPO Y DISEÑO DE INVESTIGACIÓN
PROBLEMA	OBJETIVO	HIPÓTESIS GENERAL		V. INDEPENDIENT	E: Vidrio triturado	
GENERAL	GENERAL	HIPOTESIS GENERAL	DIMENSIONES	INDICADORES	INSTRUMENTOS]
¿De qué manera la incorporación del vidrio triturado influye en las propiedades físico –	Determinar la influencia de la incorporación del vidrio triturado en las propiedades físico-	La incorporación del vidrio triturado influye en la mejora las propiedades físico-	Gradación – tamaño de las partículas.	Micrómetros (µm). ASTM C 33-18	Juego de tamices	
mecánicas de suelos arcillosos en la avenida Industrial, Puno-2021?	mecánicas de suelos arcillosos en la avenida Industrial, Puno-2021.	mecánicas de suelos arcillosos en la avenida Industrial, Puno-2021.	Porcentaje de incorporación.	4%, 7% y 10%	Balanza de precisión.	Tipo de investigación:
PROBLEMA	OBJETIVO	HIPÓTESIS		PIENTE: Propiedades físi	ico-mecánicas de suelos arcillosos	Aplicada.
ESPECÍFICOS	ESPECÍFICOS	ESPECÍFICAS	DIMENSIONES	INDICADORES	INSTRUMENTOS	
¿De qué manera la incorporación del vidrio triturado influye en el porcentaje del índice	Determinar la influencia del vidrio triturado en el porcentaje del índice	La incorporación del vidrio triturado influye en la reducción del porcentaje del índice de	Análisis granulométrico por tamizado.	MTC E107, ASTM D422.	Juego de tamices, balanza de precisión.	Diseño: Experimental.
de plasticidad de suelos arcillosos en la avenida Industrial, Puno-2021?	de plasticidad de suelos arcillosos en la avenida Industrial, Puno-2021.	plasticidad de suelos arcillosos en la avenida Industrial, Puno-2021.	Gravedad específica con picnómetro de	MTC E113, ASTM D854-14.	Picnómetro de agua, balanza de precisión.	Técnica: Observación.
¿Cuál es el efecto de la	Determinar el efecto	El efecto de la	agua.			Instrumento de
incorporación del vidrio	de la incorporación del vidrio triturado en	incorporación del vidrio	Ensayo de Límite	MTC E110, E111 y	Placa de vidrio, cuchara de	recolección de
triturado en la máxima densidad seca de suelos	la máxima densidad seca de suelos arcillosos en la	triturado mejora la máxima densidad seca de suelos arcillosos	líquido y límite plástico.	ASTM D 4318-84.	Casagrande, balanza de precisión, horno eléctrico.	datos: Registro de
arcillosos en la avenida Industrial, Puno-2021?	avenida Industrial, Puno-2021.	en la avenida Industrial, Puno-2021.	Ensayo de Proctor	MTC E118, ASTM D	Molde Proctor, martillo de compactación de Proctor modificado, balanza de	observación.
¿Cuál es el efecto de la incorporación del vidrio	Determinar el efecto de la incorporación del vidrio triturado en	El efecto de la incorporación del vidrio	modificado.	1007-12.	precisión.	
triturado en la resistencia de suelos arcillosos en la avenida Industrial, Puno-2021?	la resistencia de suelos arcillosos en la avenida Industrial, Puno-2021.	triturado mejora la resistencia de suelos arcillosos en la avenida Industrial, Puno-2021.	Ensayo CBR.	MTC E201, ASTM D1883-16.	Molde CBR, prensa CBR, balanza de precisión.	

Anexo 3: Instrumento de recolección de datos.

HEICACIÓN : ROCEDENCIA : ROFUND : TAMEZ AS 4° 1 3° 2 1/2° 2° 1 1/2° 1° 1 3/4°	propraction de cânicas de la c	suelos arcii	EZ ASOUI FR	DATOS GEN									
BICACIÓN : ROCEDENCIA : RISESTRA : ROFUND : TAMEZ 4° 3° 2 1/2° 2° 1 1/2° 5° 3/4°	(mm) 101 600	Pesos		DATOS GEN	ERALES								
BICACIÓN : ROCEDENCIA : RISESTRA : ROFUND : TAMEZ 4° 3° 2 1/2° 2° 1 1/2° 5° 3/4°	(mm) 101 600			SOLICITANTE:	ERALES								
ROCEDENCIA: RUESTRA: ROFUND.: TAMEZ 4" 3" 2 1/2" 2" 1 1/2" 1" 3/4"	(mm) 101 600					DATOS GENERALES							
7AMZ 4" 3" 2.52" 2" 5.52" 5.52" 5.52"	(mm) 101 600			CLASIF, SUELOS			COORDENADAS ESTE: NORTE: COTA:						
3" 2:12" 2" 1:12" 1:12" 1:13/4"			% Pesos Retenidos	% Retenidos Acumulados	% Q' PASA	ESPECIF "A"	DESCRIPCION DE LA MUESTRA						
3" 2:12" 2" 1:12" 1:12" 1:13/4"							CANTERA						
2.1/2" 2" 1.1/2" 1" 3/4"							UBICACIÓN :						
1 1/2"	63.500						MUESTRA						
3/4*	50.800						MATERIAL						
3/4*	38 100						TAMAÑO MAX						
	25.400						PESO TOTAL :						
1/2"	19.050						LIMITE LIQUIDO :						
	12.700						LIMITE PLASTICO :						
3/8"	9.525						INDICE PLASTICO						
1/4"	6,350						HUM. NATURAL:						
N' 4 N' 8	4.760 2.380				1		CLASIFICACION SUCS						
N°50	2.000						AASHTO :						
N*16	1,190						HUM OPTIMA						
N° 30	0.580						DENSIDAD MAX						
N° 40	0.420						CBR						
N' 50	0.297						OBSERVACIONES						
N* 100	0.149												
N° 200	0.074						Se clasifico con Coeficientes de :						
< N° 200							Cu*						
Observaciones:VA	Ningun LIDACIÓN		RUMENTO	POR JUICIO	EXPERTO								
_X	Timbur!	T. Maria	Q	Yasmarı 1801	Alerton Tape E Sol C NTs.		HIGH WASTERS AND A PROPERTY OF No PICTURE OF						

INSTRUMENTO DE RECOLECCION DE DATOS

GRAVEDAD ESPECIFICA

PROYECTO:

Incorporación de vidrio triturado para mejorar las propiedades físico mecánicas de suelos arcillosos en la avenida Industrial, Puno - 2021 Registro:

Fecha:

AUTOR:

RODRIGUEZ ASQUI, FRANK ELVIS

FICHA TÉCNICA Nº

PICNÓMETRO Nº		C-500	
CAPACIDAD PICNÓMETRO CM3	(cm3)		
PESO PICNÓMETRO	(g)		
PESO PICNÓMETRO + SUELO SECO, gr.	(g)		
PESO SUELO SECO, gr (w1)	(g)		
PESO PICN. + AGUA + SUELO , gr.(W1)	(g)		
PESO PICN. + AGUA a C.T.(20°C), gr.(W2)	(g)		
PESO PICN.+ AGUA A TEMP, ENSAYO	(g)		
TEMPERATURA DE ENSAYO, °C	(°c)		
GS A TEMPERATURA ENSAYO	(°T)		
GS A 20° C	(°c)		
PROMEDIO GS A 20 °c	(g/cm3)		

EMPERATURA °c	yw	k	TEMPERATURA °c	yw	k
19			25		
20			26		
21			27		
22			28		
23			29		
24			30		

Ninguna Observaciones:

VALIDACIÓN DE INSTRUMENTO POR JUICIO EXPERTO

	1140 I KOMENTO D	E RECOLECC	ION DE DA	ATOS	
	1	IMITES DE CON	SISTENCIA		
ANDARD TES	T METHODS FOR LIQUID	LIMIT, PLASTIC	LIMIT, AND	PLASTICITY	INDEX OF SOILS (AST
		4318 - 17	01)		
	Incompressión de vidale				Dentston
PROYECTO:	Incorporación de vidrio - mecánicas de suelo	s arcillosos en la	avenida Indi	piedades físic	
	-	2021		and and a	Fecha:
AUTOR:	RODRIGUEZ ASQUI,	FRANK FLVIS			-
		FICHA TÉCN	IICA Nº		
	DOSIFICACION	Limite	Limite	Indice de	
		plastico	liquido	plasticidad	NORMATIVA
	Suelo Natural				
Suelo Nati	ural +4% de vidrio triturado				ASTM D 4318 - 17
	ural +7% de vidrio triturado				
	ral +10% de vidrio triturad				
	VALIDACIÓN DE INSTE	THE RESERVE AND ADDRESS OF THE PARTY OF THE	JUICIO EXPE	ERTO	
	nn ur)	THE ALEX LIME GOMET CALLA (IN 200129			
		Oth SMITH	Tapes		

INSTRUMENTO DE RECOLECCION DE DATOS

RELACIÓN HUMEDAD - DENSIDAD PRÓCTOR

STANDARD TEST METHODS FOR LABORATORY COMPACTION CHARACTERISTICS OF SOIL USING MODIFIELD EFFORT (56 000 ft. ib//h3(2700 KN-m/m3)) (ASTM D 1557 - 12e1)

PROYECTO:

Incorporación de vidrio triturado para mejorar las propiedades físico - mecánicas de suelos arcillosos en la avenida Industrial, Puno - 2021

Registro:

Fecha:

		FICHA TÉCNIC	A N°		
AUTOR RODRIGUEZ ASQUI FRANK ELVIS					
NUESTRA		INCORP. (vidrio triturado)	MDS	осн	NORMATIVA
	Suelo Natural 0%				ASTM D 1557 - 12e1
Suelo Nati	ural +4% de vidrio triturado	4%			ASTM D 1557 - 12e2
Suelo Natural +7% de vidrio triturado		7%			ASTM D 1557 - 12e3
Suelo Natural +10% de vidrio triturado		10%	1		ASTM D 1557 - 12e4

Observaciones:

Ningona

VALIDACIÓN DE INSTRUMENTO POR JUICIO EXPERTO

INSTRUMENTO DE RECOLECCION DE DATOS CBR STANDARD TEST METHOD FOR CALIFORNIA BEARING RATIO (CBR) OF LABORATORY - COMPACTED Incorporación de vidrio triturado para mejorar las propiedades físico -Registro: mecánicas de suelos arcillosos en la avenida Industrial, Puno - 2021 PROYECTO: Fecha: FICHA TÉCNICA Nº AUTOR: RODRIGUEZ ASQUI, FRANK ELVIS INCORP. **CBR 95% CBR 100%** (vidrio NORMATIVA NUESTRA 0.1" 0.2" 0,1" triturado) 0.2" ASTM D 1883 -16 Suelo Natural +0% de vidrio triturado 0% ASTM D 1883 -16 Suelo Natural +4% de vidrio triturado 4% Suelo Natural +7% de vidrio triturado ASTM D 1883 -16 7% Suelo Natural +10% de vidrio triturado 10% ASTM D 1883 -16 Ningona. Observaciones: VALIDACIÓN DE INSTRUMENTO POR JUICIO EXPERTO

Anexo 4: Panel fotográfico.

Fotografía 01: Calicata C - 01.

Fotografía 02: Proceso de trituración del vidrio.

Fotografía 03: Obtención del vidrio triturado.

Fotografía 04: Obtención del vidrio triturado y gradación.

Fotografía 05: Lavado de la muestra en malla N°200 para ensayo de granulometría.

Fotografía 06: Ensayo de granulometría por tamizado (con juego de tamices).

Fotografía 07: Preparación del ensayo de gravedad específica.

Fotografía 08: Ensayo de gravedad específica por Picnómetro de agua.

Fotografía 09: Preparación de suelo para Ensayo de Límite plástico.

Fotografía 10: Ensayo de Límite plástico.

Fotografía 11: Preparación de la muestra para ensayo de Límite líquido.

Fotografía 12: Ensayo de Límite líquido con la cuchara de Casagrande.

Fotografía 11: Secado al horno de la muestra del ensayo de Límite líquido.

Fotografía 12: Incorporación de los porcentajes de vidrio de acuerdo a la gradación para ensayo Proctor modificado (4%, 7% y 10%).

Fotografía 13: Preparación de las muestras con vidrio triturado incorporado para el ensayo Proctor modificado.

Fotografía 14: Llenado del molde del ensayo Proctor modificado.

Fotografía 15: Compactación - ensayo Proctor modificado.


Fotografía 16: Extracción de muestras para determinar el contenido de humedad - ensayo Proctor modificado.

Fotografía 17: Incorporación de los porcentajes de vidrio de acuerdo a la gradación para ensayo CBR (4%, 7% y 10%).

Fotografía 18: Preparación de las muestras con vidrio triturado incorporado para el ensayo CBR.

Fotografía 19: Preparación del papel filtro para el ensayo CBR.

Fotografía 20: Colocación de la placa de soporte del ensayo CBR.

Fotografía 20: Llenado del molde del ensayo CBR.

Fotografía 20: Compactación de la muestra en el molde del ensayo CBR.

Fotografía 21: Enrasado del molde - ensayo CBR.

Fotografía 22: Pesado de la muestra en el molde del ensayo CBR.

Fotografía 23: Colocación del collarín en el molde del ensayo CBR.

Fotografía 24: Colocación del papel filtro y el peso - ensayo CBR.

Fotografía 25: Sumergido de las muestras - ensayo CBR.

Fotografía 26: Lectura del extensómetro - ensayo CBR.

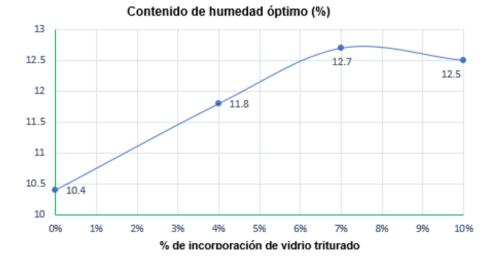
Fotografía 27: Colocación de la muestra en la prensa CBR.

Fotografía 28: Aplicación de la carga y toma de lectura en la prensa CBR.

Anexo 5: Hojas de cálculo.

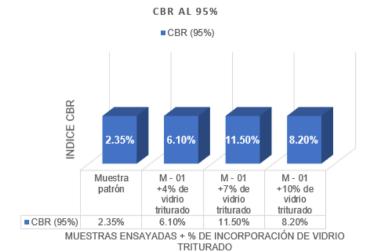
Resultados de límites de consistencia						
Muestra	Detalle	limite liquido	limite plástico	IP	% de vidrio triturado	
M - 01	Muestra patrón	40%	24%	16%	0%	
Experimento - 01	M - 01 +4% de vidrio triturado	39%	25%	14%	4%	
Experimento - 02	erimento - 02 M - 01 +7% de vidrio triturado		23%	12%	7%	
Experimento - 03	M - 01 +10% de vidrio triturado	34%	23%	11%	10%	

INDICE DE PLASTICIDAD (%)

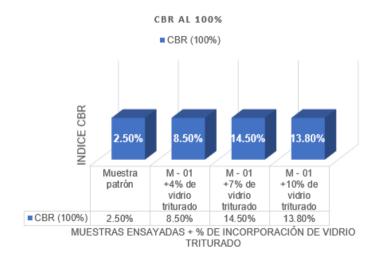

MUESTRAS ENSAYADAS + % DE INCORPORACIÓN DE VIDRIO TRITURADO

	Resultados del ensayo Proctor modificado					
Muestra	Detalle	Contenido de humedad óptimo %	Peso unitario seco (gr/cm3)	% de vidrio triturado		
M - 01	Muestra patrón	10.4	1.977	0%		
Experimento - 01	M - 01 +4% de vidrio triturado	11.8	1.926	4%		
Experimento - 02	M - 01 +7% de vidrio triturado	12.7	1.920	7%		
Experimento - 03	M - 01 +10% de vidrio triturado	12.5	1.929	10%		

MÁXIMA DENSIDAD SECA(GR/CM3)



CONTENIDO DE HUMEDAD ÓPTIMO(%)

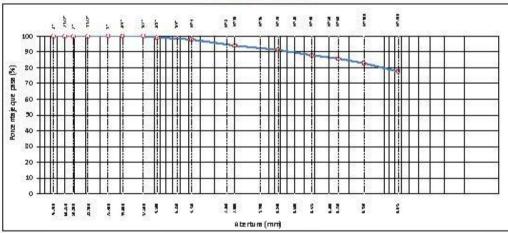

Resultados del ensayo CBR					
Muestra	Detalle	CBR al 100%	CBR al 95%	% de vidrio triturado	
M - 01	Muestra patrón	2.50%	2.35%	0%	
Experimento - 01	M - 01 +4% de vidrio triturado	8.50%	6.10%	4%	
Experimento - 02	M - 01 +7% de vidrio triturado	14.50%	11.50%	7%	
Experimento - 03	M - 01 +10% de vidrio triturado	13.80%	8.20%	10%	

% de incorporación de vidrio triturado

Anexo 6: Certificados de los ensayos de laboratorio.

G&C CONSULTORES Y CONTRATISTAS GENERALES S.A.C

GAB GEOTEBHNIK MATERIAL TEST LABOR


ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

STANDARD TEST METHOD FOR PARTICLE-SIZE AHALYSIS OF SOILS (ASTM 0 422 - 63 (2007) et)

PROYECTO INCORPORACIÓN		VIDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES FÍSICO	. Registro H	Registro H* : /_UCV_F-09/21-001-GSG			
PROTECTO	MECÁNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL, PUNO-2021				Sale while del 2021		
		DATOS GENERALES					
UBICACIÓN	: PROVINCIA DE PUNO	- DEPARTAMENTO DE PUNO			a recommende		
PROCEDENCIA	SUELO PATRON	SOLIGITANTE : BACH. J.C. FRANK ELVIS		COORDE	NADAS		
CALICATA	:C-01	RODRIGUEZ ASQUI	ESTE	100			
MUESTRA	: M - 01	TAMANO MÁXIMO: 1/2 In.	NORTE	16			
PROFUND.	: 0.20 - 1.60 m.	CLASTF. SUELOS: (CL)/ A-6 (12)	COTA	100	m.s.n.m.		

TAMZ	AMMITOT-27 (rest)	RESO RETENDO	PORCENTAIS RETERDO	RETERIOO ACUMULADO	POROBITAIS QUE PASA	ESP SCIR CACION	ENSAYOSESTÁNDAR DE CLASFICACIÓN (DASS DANT - DE 272 - DE ART)	- Dee16 -
10 in.	254,000							
6in.	152,400			A A	- 3		Peso inicial seco : 590,15 gr.	
5in.	127,000			0.00	- 3		Peso Oldbal : 590.15 gr.	
4 in.	101.600		1	2	- 3		CAPACTERISTICAS PISCASDEL SUBLI	0
3 in.	76.200		2	Q 9	- 3		Cort enido de Humedad (%): 12	52
2 1/2 in.	60.350						TAMAÑO MAXIMO: 1/2	in.
2 in.	50,800			45 IA	- 3		Limite Liquido(LL): 4	0
1 1/2 in.	38,100		8	6 6	- 3		Limite Pitellico (LP): 2	4
1 in.	25,400			G 50			Indios Pládioo(IP): 1	6
3/4 in .	19,000						Charl to solión (SUCS): C	L
1/2 in.	12,500			8 8	100.00		Clastillosolón (AASHTO): A-6	(12)
3/8 in .	9,500	4.87	0.84	0.84	99.16		Indioe de Consisiencia : 1,1	
1/4 in.	6350	1,000	3 3 3 3 3 3	A 2012 A	30000000		DESCRIPSION DELISUELO	× .
Nº 4	4.750	7.33	126	2.10	97.90		Descripción (AASHTO): MA	LO.
Nº8	2360						Descripción (SUCS): Aralle de baja plesia	sided con
Nº 10	2,000	22.28	3.84	594	94.06		arena	
Nº 16	1.190	1200	(#SSS)	11 TUV 11	14155		Maleria Orgánica :	
Nº20	0.840	16.31	2.81	8.75	91.25		Turba : -	
Nº30	0.600			¥	-		cu: 0,000 cc: 0,0	00
Nº40	0.425	19.25	332	12.07	87.90		CARACTERISTICAS GRANULOMETRICA	8
Nº 50	0300	30000000	S	Garage and St.	201222-031		Grava > 2" : 0,6	00
N260	0250	12,59	2.17	1424	85.76		Oraya 2" - Nt 4 : 2.	
Nº 100	0.150	16.63	2.87	17.11	82.89		Arers N#4 - N# 200 : 20	26
Nº 200	0.075	30.47	525	2236	77.64		Finds < Nt 200 : 77	64
<№200	PONDO	450.42	77.64	100.00			KS8" 0.0	19%

CURVA GRANULOMETRICA

OBSERVACIONES: Las mucacina fucion es causa de of lateratorio son of soficial estado y oconocidad son of mismo.

Security Comments

GAO GEOTEOHNIK MATERIAL TEST LABOR
ARCHATORIO DE INVESTIGACIÓN & ENSAVODE MATERIALES

LIMITES DE CONSISTENCIA - PASA MALLA Nº 40

STANDARD TEST METHODS FOR LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY HOEK OF SOILS (ASTM 0.48.8 - 17 et)

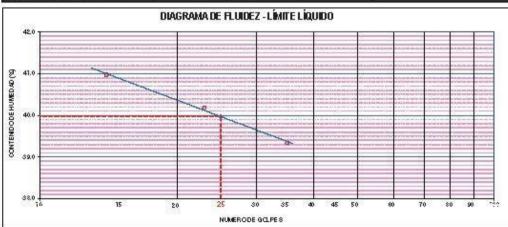
Registed H* f_UCV_H09/21-001-GSC JINCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES FÍSICO -PROYECTO MECÁNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL, PUNO-2021 : 01 de Seix-se del 2021

DATOS GENERALES

UBUGACIÓN : PROVINCIA DE PUNO - DEPARTAMENTO DE PUNO

PROCEDENCIA : SUELO PATRON

SOLICITANTE : BACH, J.C. FRANK ELVIS RODRIGUEZ ASQUI


CALICATA 1C - 01 MUESTRA 1H - 01 10.20 - 1.60 m.

TAMANO MÁXIMO : 1/2 In.

CLASTF. SUELOS : (CL) / A-6 (12)

		LIMITE L	QUIDO (ASTM D 4318	- 17o1)	
Nro. DE TARA	n°	LC-07	CC - 02	LC - 48	
PÉSO DÉ LA TARA	(9)	45.94	45.92	45.91	
PESOTARA + SUELOHUMEDO	(9)	65.23	64.48	61.92	
PESOTARA + SUELOSECO	(9)	60.02	59.16	57.40	
PÉSO DÉ AGUA	(9)	5.91	5.32	4.52	
PESO DEL SUELO SECO	(9)	14.18	13.24	11.49	
CONTENDO DE HUMEDAD	(%)	40.97	40.18	39.34	
NUMERODE GOLPES	n° .	14	23	35	
		LIMITE PL	ASTICO (ASTM D4319	2 - 17 e1)	
Nro. DE TARA	T	TC-04	LC - 05		
priori nelli 4 T4 P4	/05	de od	47.07		

LIMITE PLASTICO (ASTM D4318-17-41)					
Nro. DE TARA	$\Gamma = \Gamma$	LC-04	LC - 05	2	
PÉSO DÉ LA TARA	(9)	46.94	47.87		
PESOTARA + SUELOHUMEDO	(9)	49 97	50.91		
PESOTARA + SUELOSECO	(9)	49.38	50.31		
PÉSO DÉ AGUA	(9)	0.59	0.60		
PESO DEL SUELO SECO	(9)	2.44	2.44		
CONTENDO DE DE HUMEDAD	(%)	24.18	24.59		

CONSTANTES FISICAS DE	LAMUESTRA
UMITE UQUIDO	40
LIMITE PLASTICO	24
INDICE DE PLASTICIDAD	16

OBSERVACIONES

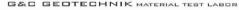
Las muestras fueron puestas en el laboratorio por el solicitante y etiquetadas por el mismo.

CONTENIDO DE HUMEDAD NATURAL

STANDARD TEST METHODS FOR LABORATORY DETERMINATION OF WATER (MOISTURE) CONTENT OF SOIL AND ROCK BY MASS (ASTM 0.2216 - 8)

PROYECTO	INCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES : PÍSICO - MECÁNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL.		Registro H*: r_ucv_r-m/21-001-cac		
	: MSICO - MECANICAS DE SDECOS ANCIEDADAS EN DA AVENDA INDOSTRIAL,				
	PUNO-ZGZ1	Perchan	35.8	01 de 3a en 1e de 2021	

I, DATOS GENERALES				
LIBICACIÓN : PROVINCIA DE PUNO - DEPARTAMENTO DE PUNO				
PROCEDENCIA	SUELO PATRON	SOLIGITANTE : BACH, J.C. FRANK ELVIS RODRIGUEZ ASOUI		
CALICATA	:C-01	SOCIALIANTE : BACH. I C. PRAMA ELUIS RODRIGUEZ ASQUI		
MUESTRA	: M - Q1	TAMA NO MÁXIMO : 1/2 In.		
PROFUND.	: 0.20 - 1.60 m.	CLASTF. SUELOS : CL) / A-6 12)		


Nº DE ENSAYO	S	1	2	3
N² Tara		CH-01	CH - 02	CH-03
Peso Tara	(91)	70.72	72.20	78.94
Peso Tara + Suelo Humedo	(91)	352.78	41826	461.65
Peso Tara + Suelo Seco	(91)	321.11	379.13	420.19
Peso Agua	(91)	31.67	39.13	41.46
Peso Suelo Seco	(91)	250.39	306.93	341.25
Contanido de Humedad	(gr.)	12.65	12.75	12.15
PROMEDIO	(%)		12.52	

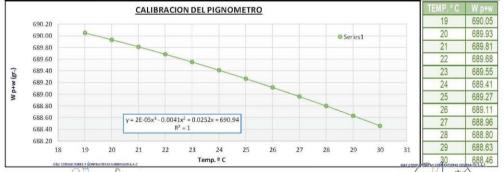
Observaciones:

Las muestras itueron puestas en el laboratorio por el solicitante y el quetadas por el mismo.

C dippeda

GRAVEDAD ESPECÍFICA DE LOS SUELOS

STANDARD TEST METHODS FOR SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER (ASTM D 854-14)


TECTE	INCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES : FÍSICO - MECÁNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL.	Registro Nº	: T_UCV_F-09/21-001-G&C
TESIS	PUNO-2021	Fecha	: 01 de Setiembre del 2021

DATOS GENERALES								
UBICACIÓN	: PROVINCIA DE PUNC	- DEPARTAMENTO DE PUNO						
PROCEDENCIA : SUELO PATRON		BACH, I.C. FRANK ELVIS	COORDENADAS					
CALICATA	: C - 01	SOLICITANTE : BACH. I.C. FRANK ELVIS RODRIGUEZ ASQUI	ESTE					
MUESTRA	: M - 01	TAMANO MÁXIMO: 1/2 in.	NORTE					
PROFUND.	: 0.20 - 1.60 m.	CLASIF. SUELOS: (CL) / A-6 (12)	СОТА					

	DAT	OS DE LA MUESTRA	CUADRO DE RE	SULTADOS
CLASIF. SUCS	:	CL	TEMPERATURA DE ENSAYO	20 °
CLASIF. AASTHO	:	A-6 (12)	FACTOR "K"	1.0000
DESCRIP. SUCS	:	Arcilla de baja plasticidad con arena	GS (Promedio)	2.76 g/cm3

PICNÓMETRO Nº		C-500			OBSERVACIONES	
CAPACIDAD PICNÓMETRO CM3	[cm3]	250	250	250		
PESO PICNÓMETRO , gr.	[9]	114.65	114.65	114.65	1	
PESO PICNÓMETRO + SUELO SECO , gr.	[9]	164.65	164.65	164.65	1	
PESO SUELO SECO , gr. (Ws)	[9]	50.00	50.00	50.00	1	
PESO PICN. + AGUA + SUELO , gr. (W1)	[9]	720.65	720.56	720.63	LAS MUESTRAS FUERON PUESTAS EN EL	
PESO PICN. + AGUA a C.T.(20°C) , gr. (W2)	[9]	689.93	689.93	689.93	LABORATORIO POR EL SOLICITANTE Y	
PESO PICN. + AGUA A TEMP. ENSAYO.	[9]	688.69	688.69	688.69	ETIQUETADAS POR EL	
TEMPERATURA DE ENSAYO, º C	[°C]	26	26.5	21	MISMO.	
GS A TEMPERATURA ENSAYO	[°T]	2.771	2.757	2.768	1	
GS A 20 ° C	[°C]	2.767	2.753	2.764]	
PROMEDIO GS A 20 ° C	[g/cm3]		2.76		1	

	DENSIDAD		AGUA Y FACTOR DE C (AS TEMPERATURAS	ONVERSIÓN	
TEMP ° C	γw	К	TEMP. ° C	γw	К
19	0.9984347	1.0002	25	0.9970770	0.9989
20	0.9982343	1.0000	26	0.9968156	9.9986
21	0.9980233	0.9998	27	0.9965451	0.9983
22	0.9978019	0.9996	28	0.9962652	0.998
23	0.9975702	0.9993	29	0.9959761	0.9977
24	0.9973286	0.9991	30	0.9956780	0.9974

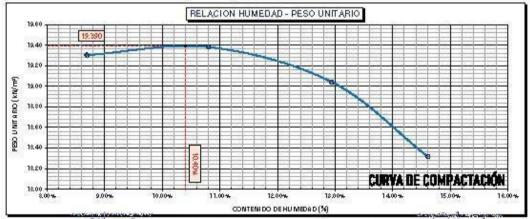
Muyala

GAR GERTERHNIK MATERIAL TEST LABOR

BOBATOBROTTE INVESTIGACIÓN & ENSAYOTTE MATERIALES

RELACION HUMEDAD - DENSIDAD PROCTOR

STANDARD TESTMETHODS FOR LABORATORY COMPACTION CHARACTERISTICS OF SOIL USING MODIFIED EFFORT (56,000 ft-16f/ft3 (2 700 kn-m /m 3)) (ASTMD 1557-12: 1


PROYECTO	PROPLEDADES FÍSICO - MECÁNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL, PUNO-2021 Fecha : 01 de Seci	: r_ucv_+-09/21-001-GBC	
PROTECTO		Fecha	: 01 de Seciembre del 2021
	DATOS GENERALES	-	

		DATOS GENERALES				
UBICACIÓN	: PROVINCIA DE PUNO	- DEPARTAMENTO DE PUNO				
PROCEDENCIA	SUELO PATRON	SOLICITANTE : BACH, J.C. FRANK ELVIS	COORDENADAS			
CALICATA		RODRIGUEZ ASQUI	ESTE	3		
MUESTRA	: M - QI	TAMANO MÁXIMO : 1/2 in.	NORTE	53		
PROFUND.	: 0.20 - 1.60 m.	CLASTF. SUELOS : (CL) / A-6 (12)	COTA	38	ms.n.m.	

DATOS	S D E	LA MUESTRA	DATOS DEL ENSAYO							
CLASIFICACIÓN (SUCS)		CL	% Ret. Tamiz 3/4":		METODO DE ENSAYO	Hécodo 'A'				
CLASIFICACIÓN (AASHTO)		A-6 12)	% Ret. Tamiz 3/8*: 0.84	50	No DE CAPAS	as				
DESCRICIÓN (SUCS)		Arcillo de bajo pibelfoldad con ar ero	% Ret. Tamiz Nº4: 2.10	%	GOLPES POR CAPA	56				

		EMMILT EL	IFLEADU		
MOLDE No MASA DEL MOLDE	X - 01 3,617 g.		DEL MOLDE ARTILLO	933 Manual	cm ²
	RE	GISTROS Y CALCL	ILOS DEL ENSAYO	10 2000000	
Masa Suelo Humedo + Molde	q.	96.14	5661	5664	2612
Masa del Molde	q.	36.17	3617	3617	3617
Masa del Suelo Humedo	q/cm ²	1997	2044	2047	1998
Densidad del Suelo Humedo	g/cm ⁻	2.139	2.190	2.193	2.140
Capsula No	No	TP-01	TP-02	TP-03	TP-04
Masa de la Capsula	q.	45,45	49.58	48.25	46.78
Sue la Humedo + Capsula	q.	281.05	215.51	228.39	231.27
Masa del Suelo Seco + Capsula	q.	262.21	199.33	207.75	207.75
Masa del Agua	q.	18.84	16.18	20.64	23.52
Masa del Suelo Seco	q.	216.76	149.75	159.50	160.97
Humedad (%)	%	8.69%	10.80%	12.94%	14.61%
Promedio de Humedad (%)	%	8.69%	10.80%	12.94%	14.61%
Densidad del Suelo Seco	g/cm²	1.958	1.976	1.942	1.868
Peso Unitario Seco	kN/m	1930	19.38	19.04	18.31

PROCTOR MODIFICADO	: ASTM D-1557-12e1	PESO UNITARIO SECO	1.977	gr/cc	19.390	kN/m3
MET. DE PREPARACIÓN	: Húmedo	HUMEDAD OPTIMA	10.40	9%	10.40	%

OBSERVACIONES Unas privações fue ron questas en el biporator bipor el solicitante y eciquetadas por el mismo.

BAC APPEAR TO COMPANY COMPANY

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA (CBR)

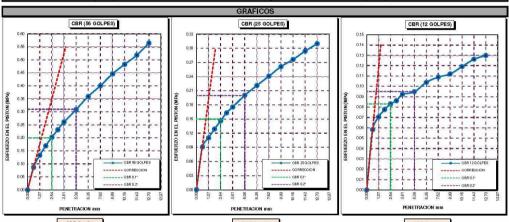
STANDARD TESTIMETHOD FOR CALEORNIA BE ARING RATIO (CBR) OF LABORATORY - COMPACTED SOLIS (ASTMD 1883 - 15)

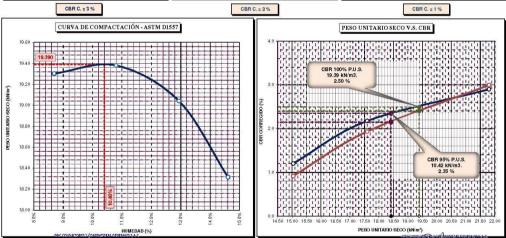
ROYECTO		PECÍNICIS DE	SULLOS AND	1 KIT 4 KA	IO MAN	HIDA IN	AK US PROPIEDADES PÍSICO - Registro Nº 140 UST KIAL, PO40-2021 Pachs					: T_UCV_F-09/21-001-G8C			
									0000	ACTIO		A.S.	- 1		
							HERALE	5							
ROCEDENCE	D	: FRENCIA DE : SUELO PATRO		COLUBAC								To .	COLORDE	MEDIS	
ALICATA		:C-01	8.7		500.00	TANTE :	BACH. I	C. PERMA	FIVE 10	D KIGUEZ	Vad ni	ESTS			_
TUESTRA		: 4 - 91			TANANO I	и Доама :	1,2 10.					NORTE			
ROPUHD.		:020-180 m.			CUSTR	sumos:	(C) /A	6 [12]		COTA : WAS					
		KATOS DE LA MU	ESTRA						0.50	OS PAR	A EL ENE	CYA			
LASIFICACIÓN		:	Cı		- 15	METODOS	06 EN6.W	5	: MHodo		_	DEIHN	екстон	: 40-0	pe d
LASIRCACIÓ	(OTHERU)	¥	8-6 (1.2)			PESO UN	OTARJO S	600	: 19.39	khriva		E MARITI		: Harnol	
ESCRICIÓN (യയു	: Arcille 05	baja s bacco	40 co+ 415	943 S	HUNBOA	D ČPTINI		: 10.40	4	NET. DE	PREPARA	non.	: Pürvad	-
IGLDE Na :			000.	î —	A.	7			н-	13			9-1	.2	
ANERO DE C	PAS		n.	-	- 3		- 1		-			4	3		
AMERO DE OC	MPES PORCA	PA	n*	-	- 5	e	-		7	5		-	1	_	
r some cure	WILLIAM STREET, STREET	0.00	n²		- 61	-	_		-	*			Ŷ	_	
r some cure			n.		-		- 5			-			1		
OND X TONES	DE LA NUEST	RA.	CBR	SINSU	NERGIR	SUNE	RODO	53N 9JR	NERGIR	SUNE	ROTEG	SINSU	NERGE	SUNE	ROIL
			-	_	REGISTRO	exeme	HOOFE	PRICENO	_						-
laca Suala Hu	mada e Net 4		l e		M	THE RESERVE AND PERSONS NAMED IN	1.11	LIS	194		441	T	314		230
aca del Naide			a.	-	114		111		140		140	-	130	- 22	30
laca del Suelo			a.	34		_	90.2		47		92.5	_	114	_	270
(dumen del Si			en'	-	10		130		40	-	44	_	140		140
enddad del S	uala Humada		green!	27	454	2.	575	13	170	2.	141	- 6	474	17	300
Specia Na		ha	PC	-1	-	-2	PC	-3	PC	-4	PC	-5	P	- d	
lace de la Cap	rius		a.	33	-	-	.99	35	-	-	.75	_	1.54		21
uelo Humedo		215	a.	521.71		_	3.71	304		_	1.91	_	7.74		1.25
lace del Suela	Seco + Cape	ula	a.	480.47		433	1.93	517	27	434.52		440,47		49	60.00
lacs del Aqua		a.	41	24	49	49.73 44.73		41.51		31	726	99.33			
laura del Suela Seca		a.	196	.12	404.79 4		444	442.70 449.		1.77	tt.	LE.0	414-27		
V _e de Humedad		4	10.40%		12,20% 19,35%		117.	14.12%		10.44%			D47.		
rameda de H	21071-027		4	10.40%		10 /1mc2005 175 97123		10.35% 14.15%			10.44%		-	04%	
enddad del S			grav'	21.200		2.794		1.794		1.576		1.554		1.657	
aca Unitoria S	aco .		khav	21,	500	22	494	17.	5579	15.401		15.039		16,054	
						EXPAN	ISIÓN								
Fee	ha	Hara	Tiempa	D	al	Expa	ndān		bil	Expo	ndān	r	Nat	Steps	ndà
100		17.7				mm %		141.77		mm	9%		100	mm	-
		-	24:00:00	303 406		0.00	202	245.00 346.90		2.01	2.00	160,00		0.00	0
		+		449			-	440	-	4.90			5.00		+-
			48:00:00 72:00:00	439	10000	4.03	1.92	471	2000	3.50	4.17	255	5.90	3.40	4.
		+	96:00:00	307		5.24	4.12	511		6.50	4.90		4.00	4.71	1
			1 4 4 4 4 4		100				CONT.	4.54		-	-	341.1	-
						PENE TR									
PENETR	UCS ČN	4	Cargo Extender		NOLDEN	la .	A-7 CBR		NOLDEN	9	N-12 COAL	8	NOLDE N	-	9-1
mm	Pulg.	Tlampa	Kg-Franck a	LECTURA "Hg"	Kq/ am3	Npx	Carr.	LECTURA	Kq/ am3	Nps	Carr.	LECTURAL "Neg"	Kq/cm3	Npa	Co
0.00	୍ଷ	90:00	3.00	0.0	0.00	0.00	120	0.0	0.00	0.00		0.0	0.00	0.00	1
0.65	0.025	00:50		17.0	0.20	0.09		17.9	0.93	0.09		11.5	0.59	0.00	
1.27	0.050	GE:00	8 8	262	1 45	0.13		21.7	1.12	0.11		13.9	0.72	0.07	8
1.90	0.075	61.:50	" 2000	33.4	1.73	0.17		25.4	1.41	6.13		15.4	0.79	0.03	
2.54	0.100	02:00	70.51	19.9	2.06	0.20	2.90	23.3	1.49	0.15	2.17	19.4	0.25	0.03	1
3.17	0.15	02:50	5/3	45.0	2.35	0.25	9	12.2	1.00	0.16		17.0	923	0.09	13
3.51	0.150	95:00	105.46	51.5	2.66	0.26		34.0	1.79	0.12		18.2	9.94	0.09	-
5.05	0.250	95:90	/ 10.35	0.00	4.15	0.31	2.00	39.5	2.04	0.20	1.95	18.7	0,97	0.09	-
7.62	0.250	05:00	8 8	70.9	4.00	0.40		44.5	2.25	0.22	-	20.5	1.04	0.10	-
7.62	0.500	GE:00	100	79.0	4.33	0.40		31.3	2.00	0.24	-	21.5	1.11	0.11	-
10.16	0.400	05:00	W 6	932	4.92	0.43		34.3	2.00	0.20	\vdash	24.5	121	0.12	1
11.45	0.450	GP:00	2	102.2	3.43	0.52		54.3 53.0	1.00	0.29	-	24.9	121	0.13	-
	_0.500 · ·		0	111.4	5.79	0.50	1	1.10	4.16	0.41	\vdash	48.6.	well Ale	J.14.	
12.70		-	_	_	_	_		_	-	-	-				-
12.70 BSBRVACION	ES 1	Los or washing the	on puedos en e	I laborat orto	por el es B	citarta o a	Houstaday	per al relen	va.				St. 11.34	-	
		tamo de GR de Certificado SF N										i	Shanto.	W	3

G&C GEOTECHNIK MATERIAL TEST LABOR

LABORATORIO DE INVESTIGACION & ENSAYO DE MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA (CBR)


STANDARD TEST METHOD FOR CALIFORNIA BEARING RATIO (CBR) OF LABORATORY - COMPACTED SOILS (ASTM D 1883 - 16)


Registro Nº: T_UCV_F-09/21-001-G&C INCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES FÍSICO - MECÁNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL, PUNO-2021 PROYECTO : 01 de Setiembre del 2021

,	DATOS GENERALES						
UBICACIÓN	: PROVINCIA DE PUNO -	DEPARTAMENTO DE PUNO					
PROCEDENCIA	SUELO PATRON	COLTOTTANTE - DAGUL T.O. FDANK FILITO DODDITOUT ACQUIT	COORDENADAS				
CALICATA	: C - 01	SOLICITANTE: BACH. I.C. FRANK ELVIS RODRIGUEZ ASQUI	ESTE	:			
MUESTRA	: M - 01	TAMANO MÁXIMO: 1/2 in.	NORTE	:			
PROFUND.	: 0.20 - 1.60 m.	CLASIF, SUELOS : (CL) / A-6 (12)	COTA	9	msnm		

DATOS DE LA MUESTRA			DATOS PARA EL ENSAYO						
CLASIFICACIÓN (SUCS)	(8)	CL	NORMA	: ASTM D-1557-12e1	PESO UNITARIO SECO	8	19.39	kN/m3	
CLASIFICACIÓN (AASHTO)	1	A-6 (12)	METODO DE ENSAYO	: Método "A"	PESO UNITARIO SECO AL 95%	Ĭ.	18.42	kN/m3	
DESCRICIÓN (SUCS)	: A	rcilla de baja plasticidad con arena	TIEMPO DE INMERSIÓN	: 4 Días (96 Horas)	HUMEDAD ÓPTIMA	ž.	10.40	%	

CBR (100% DE M.D.S.) 0.1	%	2.50 %	CBR (100% DE M.D.S.) 0.2"	%	2.40 %
CBR (95% DE M.D.S.) 0.1"	%	2.35 %	CBR (95% DE M.D.S.) 0.2"	%	2.15 %

OBSERVACIONES

Certificado Nº MT-LF-240-2020/R3288; Certificado Nº MT-LF-026-2020/G&C01003

CON FINES

: Investigación

G&C CONSULTORES Y CONTRATISTAS GENERALES S.A.C.

GAB GEOTEGHNIK MATERIAL TEST LABOR

COTA

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

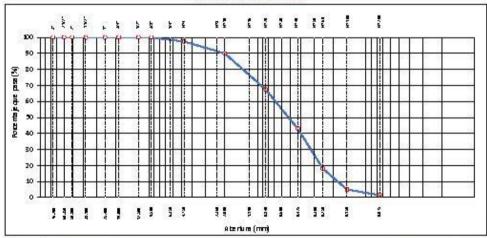
STANDARD TEST METHOD FOR PARTICLE-SIZE AN ALYSIS OF SOILS (ASTM D 422 - 63 (2007) e2)

OBRA INCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES FÍSICO POR CICUY-199/41-1992-6360

MECÁNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL, PUNO -2021

DATOS GENERALES

UBICACIÓN : PROVINCIA DE PUNO - DEPARTAMENTO DE PUNO


PROCEDENCIA : VIDRIO RECICLADO SOLICITANTE : BACH. J.C. FRANK

USO : ESTABLUZACIÓN TAMANO MÁXUMO : 1/4 N NORTE :

CLASTF. SUELOS : VIDRIO SELBOCIO NADO

TAMIZ	62-TOTHE AA (mm)	MASS RETERIOS	PORCENTAIS RETENDO	ACMULADO	POROBITAIS QUE PASA	ESPECIFICACION	SHEAR OF STANDARDS OLASIROA DROTS-DOSSS-DOS	
10 in	254,000	0.000						
6 in	152,400		10		8		Masa Iniolaliseoo: 2201.6 gr	8
5in	127,000		(i) ii		%		Nasa Global : 2201.6 gr	
4 in	101,500		(i))	1 1	3	3	одраготору под пока	DEL SUELO
3 in	76200		£ 3	1 13	Ø	3	Contenido de Humedad (%):	12.0
2 1/2 in	60.350		(i)	. 8	8		TAMANOMAXIMO:	1/4 in
2in	50,900		6 5		2		Limite Liquido (LL):	NP
1 1/2 in	38,100		0 3	30	7		Limite Piásico (LP):	NP
1 in	25,400		(i)	10.0	3		ndice Plastoc (IP):	NP
3/4 in	19,000						Clasiliosolón (SUCS) :	
1/2 in	12,500		6 - 6		y		Clasillosolón (AASHTO):	
3/9 in	9.500		0. 3	7.0	S		Indice de Constituencia :	NP
1/4 in	6.350				100.00		DESCRIPTION DEL S	UELO
N24	4.750	54.96	2.50	2.50	97.50		Descripción (A48HTC):	BUBNO
Nº8	2,360		0: 5		2.		Descripción (SUCS):	4 1 1 1 1 1 1
Nº 10	2,000	16523	7.50	10,00	90.00		Arena p	obremente gradada
Nº 16	1.190	0000000			S ROBE		Mareria Orgánica :	
Nº 20	0.940	495.45	22.50	32.51	67.49		Turbs:	
Nº 30	0.600						CU: 3.963 CC:	0.755
Nº 40	0.425	539.47	24.50	57.01	4299		OARAOT SREETTOAS GRANUE	CACETTROOMS
Nº 50	0.300	1280X.	District 5	- 13 (5°C)			Grava > 2" :	0.00
Nº 60	0.250	550,40	25.00	92.01	17.99		Grava 2" -Nt 4 :	2.50
Nº 100	0.150	28622	13.00	95.01	4.99		Arena Nt4 - № 200 :	96.01
Nº 200	0.075	77.00	3.50	98.51	1.49		Finos ch# 200 :	1.49
< № 200	RONDO	32.27	1.49	100,00	St. 1986		108"	0.0%

CURVA GRANULO METRICA

Observacionos - ASA ABBANAS ABRAS FUERO 4 PROPORCIO 44.003 FOR EL RESPONSABLE DE ESFUDIO.

Salewood water

Significan

GAR GERTERHNIK MATERIAL TEST LABOR

(SBATCIBIO DE INVESTIBACIÓN & ENSAVO DE MATERIALE

LIMITES DE CONSISTENCIA - PASA MALLA Nº 40

STANDARD TE STMETHODS FOR LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS (ASTM D 4318 - 17 ed)
--

15 (16) (17) (17)	INCORPORACIÓN DE VIDRIO PRIPURADO PARA MEJORAR LAS PROPIEDADES HÍSICO -			4" : FEE0-07/21-002-GSC
OBRA	PECÁTICAS DE SUELO:	Per: ha	: 01 de Salembe de (202)	
8		DATOS GENERALES		
UBICACIÓN	: FROVINCIA DE FUND -	01-14C144C0 01-14C0		
PROCEDENCIA	: VIBRIO RECICLADO	SOLICITANTE: BACH, I.C. PRANK	1	COORDEHADAS
uso	: ESTABILIZACION		ETE	
NU ESTRA	: u - g [таиано иактио : 1/4 и	NOR TE	
CON PINES	: leves quede	CLASTF, SU BLOS : VIORIO SE DECCIONA DO	COTA	

<u>.</u>	22 22	LIMITE	LIQUIDO (ASTMIDIAS)	8-1741)		
Nes DETARA	no.	1010000 (41100			T T	
MASA DE LA TARA	[9]		N SERVER B	1		
MASA TARA + SUELOHUMEDO	[9]		I NID	2.		
MASA TARA + SUELO SECO	[9]		IVI			
MASA DE ACUA	[9]		2	- 8		
MNSX DELSUELOÆCO	[9]					
CONTENIDO DE HUMEDAD	(%)		n e			
NUMERO DE GOLPES	n°			i i		
8		LIMITE P	LASTICO (48 1M D 48	18-1741)	100	
Neo, DE TARA			200	0 20		
MASA DELA TARA	[9]		The separate	. 1		
Miasa tara + Suelohumedo	[9]			8		
MUSA TARA + SUELO SECO	[9]		TAL	7		
MASA DE AGUA	[9]		8	t t		
WISY DEFRIEFO #500	[9]					
CONTENIDO DE DE HUMEDAD	(%)	NP	NP	9	T	

20.0	15	77	38 (8	- 32 - 13	
	 		1000		- 0
				_	
	 	-			
					- /-
		40			
VDMHDS1000-CRMIC-SSI	7 macs486/06/20012 (54864)	Limitation Phanesistra	resistance of the second	n sheep even con-	state of costs
		- 10			
			-	_	
28.0	J.		J. J.		

CONSTANTES FISICAS DE LA MUESTRA				
UM TE UGUIDO	NP			
LIMITE PLASTICO	NP			
INDICE DE PLASTICIDAD	NP			

OBSERVACIONES

LAS MUESTRAS Y DAT CE FUERON PROPORCIONADOS FOR EL RESPONSABLE DEL ESTUDIO

SALE-PROPERTY PARTY AND SALES

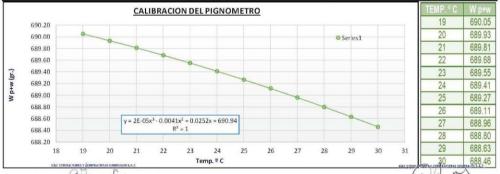
and professional construction of the construct

G&C GEOTECHNIK MATERIAL TEST LABOR

ABORATORIO DE INVESTIGACIÓN & ENSAYO DE MATERIALE:

GRAVEDAD ESPECÍFICA DE LOS SUELOS

STANDARD TEST METHODS FOR SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER (ASTM D 854-14)


Į,	TESIS	INCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES : FÍSICO - MECÁNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL,	Registro Nº	: T_UCV_F-09/21-002-G&C
ľ	12313	PUNO-2021	Fecha	: 01 de Setiembre del 2021

DATOS GENERALES							
UBICACIÓN	BICACIÓN : PROVINCIA DE PUNO - DEPARTAMENTO DE PUNO						
PROCEDENCIA	: VIDRIO RECICLADO	SOLICITANTE : BACH. I.C. FRANK ELVIS	COORDENADAS				
uso	: ESTABILIZACION	SOLICITANTE: RODRIGUEZ ASQUI	ESTE				
MUESTRA	: M - 01	TAMANO MÁXIMO: 1/4 in.	NORTE				
CON FINES	: Investigación	CLASIF. SUELOS: VIDRIO SELECCIONADO	СОТА				

DATOS DE LA MUESTRA			CUADRO DE RESULTADOS			
CLASIF. SUCS	:	VIDRIO	TEMPERATURA DE ENSAYO	20 °		
CLASIF. AASTHO	:	SELECCIONADO	FACTOR "K"	1.0000		
DESCRIP. SUCS	:	-	GS (Promedio)	2.53 g/cm3		

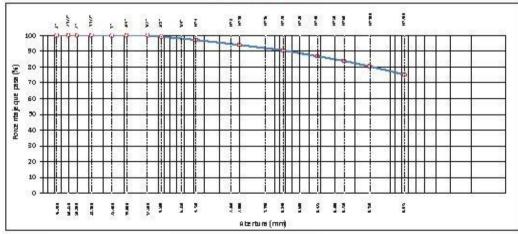
PICNÓMETRO Nº		C-500			OBSERVACIONES
CAPACIDAD PICNÓMETRO CM3	[cm3]	500	500	500	
PESO PICNÓMETRO , gr.	[9]	114.65	114.65	114.65	
PESO PICNÓMETRO + SUELO SECO , gr.	[g]	214.65	214.65	214.65	1
PESO SUELO SECO , gr. (Ws)	[9]	100.00	100.00	100.00	
PESO PICN. + AGUA + SUELO , gr. (W1)	[9]	749.45	748.98	749.13	LAS MUESTRAS FUERON PUESTAS EN EL
PESO PICN. + AGUA a C.T.(20°C) , gr. (W2)	[9]	689.93	689.93	689.93	LABORATORIO POR EL SOLICITANTE Y
PESO PICN. + AGUA A TEMP. ENSAYO.	[9]	688.69	688.69	688.69	ETIQUETADAS POR EL
TEMPERATURA DE ENSAYO, º C	[°C]	26	26.5	21	MISMO.
GS A TEMPERATURA ENSAYO	[°T]	2.548	2.518	2.528	1
GS A 20 ° C	[°C]	2.544	2.514	2.524]
PROMEDIO GS A 20 ° C	[g/cm3]		2.53]

	DENSIDAD RELATIVA DEL AGUA Y FACTOR DE CONVERSIÓN "K" PARA VARIAS TEMPERATURAS						
TEMP ° C	γw	К	TEMP. ° C	γw	К		
19	0.9984347	1.0002	25	0.9970770	0.9989		
20	0.9982343	1.0000	26	0.9968156	9.9986		
21	0.9980233	0.9998	27	0.9965451	0.9983		
22	0.9978019	0.9996	28	0.9962652	0.998		
23	0.9975702	0.9993	29	0.9959761	0.9977		
24	0.9973286	0.9991	30	0.9956780	0.9974		

RAIN, LEI MARY CARMEN YANA CONDIENT TÉCIACO INFONESTA OCUADORI/ORO DE INVESTIGACÓN Y NASSINO DE MATERIALOS. UNIL ESTIMBRE

GAR GERTERHNIK MATERIAL TEST LABOR

BOBATOBIO DE INVESTIBACIÓN A ENSAYO DE MATERIALES


ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

STAND ARD TEST METHOD FOR PARTICLE-SIZE AHALYSIS OF SOILS (ASTM 0 422 - 63 (2007) e2)

PROYECTO	, I NCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES FÍSICO -				r_ucv_+as,	/21-003-GBC			
Pidredio	M BCÁNICAS DE SUELO	AS DE SUELOS ARCULIOSOS EN LA AVENUDA UNDUSTRUAL, PUNO-2021			II de Seve	n k ie de (202)			
		DATOS GENERALES							
UBJCACJÓN	: PROVINCIA DE PUNO -	: PROVINCIA DE PUNO - DEPARTAMENTO DE PUNO							
DOSTFICACION	: SUELO PAIRON + 4% YIORIO	SOLICITANTE : BACH, I.C. FRANK ELVIS	8	000	RDENAD	AS			
EXPERIMENTO	: EXP Q1	ROD RIGUEZ ASQUI	ESTE	- 6	-				
MUESTRA	1 M - QI	TAMANO MÁXIMO : 1/2 In.	NORTE	- 3	1				
gon cuun	10 30 - 1 60 m	CLASTS CHELOS - THE COACHION	COTA		.00				

TAMZ	ANSHTOT-SI (NR)	PESO DEMETERS	PORCEHTAIS RETERIO	RETERIDO ACUMULADO	PORCENTALE GUE PASA	EAPECETCA GON	ENSAYOS ESTÁNDAD DE CLASFIC Dant 3 - Deste - De	
10 in.	254,000				ý: V)	8		
6in.	152,400	0 3			8: 93	8	Pesolnidal seco : 997.17 g	J.
Sin.	127,000	8 3		6	8 8	8	Peso Global : 997.17 c	7.
4in.	101.600				š - 3		CARACTERISTICAS PISICA	ISDB. SUELO
3in.	76.200	2 3			S 3	0	Contenido de Humedad (%) :	
2 1/2 in.	60.350				1		TAMAÑO MAXIMO :	1/2 in.
2in.	50,800	(t) (8	£ 9	83	Limii e Liquido (LL):	39
1 1/2 in.	38,100				6 8		Limite Plásiloo (LP):	25
lin.	25,400					8	Indio Phalloo(P):	13
3/4 in.	19,000						Clastiliosolón(SUCS):	ML
1/2 in.	12.500	Ø 3			100.00	8	Clastilioación (AASHTO):	A-6 (10)
3/8 in.	9,500	5.56	0.63	0.63	99.07		Indice de Consisiencia :	2.14
1/4 in.	6,350		100000	1 3 3 7 3 -	S 2000		DESCRIPSIONDEL	SUBLO
Nº 4	4.750	19.92	2.25	2.87	97.10	8	Descripción (AASHTO):	MALO
Nº8	2.360						Descripción (SUCS): Limo de	o beje ple slid ded con
Nº 10	2.000	27.25	3.07	5.94	94.06	13		oreno
Nº 16	1.190		100000				Maleria Orgánica :	
N220	0.840	20.20	3.42	9.36	90.64	12	Turbs :	S-600
Nº30	0.600	8 3		-	7: 0	80	cu: 0,000 cc:	0.000
Nº40	0.425	33.56	3.78	13.14	86.86	00	CARACTERISTICAS GRAIN.	JLONETRICAS
Nº50	0.300	Same of the			S many		Grava > 2" :	0.00
N260	0.250	26.00	2.93	16.07	80.90	188	Graya 2"- Nt 4 :	2.87
Nº 100	0.150	20.50	3.44	19.51	80.49	80	Arena Nt4 - Nt 200 :	21.89
N≥200	0.075	46.56	5.25	24.76	75.24	8	Finos < № 200 :	7524
≺Nº200	PONDO	667.52	75.24	100.00	F	35	160 8"	0.0%

CURVA GRANUL OMETRICA

OBSERVACIONES:

Las mucasas fucion sucasas de el latolación sor el solecturario y espuestadas sor el maino.

January S

: 01 de Seix-se del 2021

GAB GEDTERHNIK material test labor aboratorio de investidación a ensavo de materiales

LIMITES DE CONSISTENCIA - PASA MALLA Nº 40

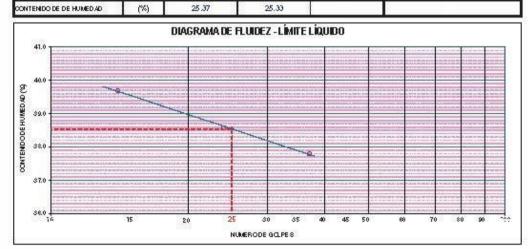
STANDARD TEST METHODS FOR LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY HOEK OF SOILS (ASTM 0.48.8 - 17 et)

Registra H* /_UCV_H09/21-003-GSC INCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES FÍSICO -PROYECTO MECÁNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL, PUNO-2021

DATOS GENERALES

UBICACIÓN : PROVINCIA DE PUNO - DEPARTAMENTO DE PUNO

DOSTFICACION: SUELO PATRON + 4% VIDRO


SOLICITANTE : BACH, J.C. FRANK ELVIS RODRIGUEZ ASQUI EXPERIMENTO : EXP. - 01

MUESTRA 1H - Q1

10.20 - 1.60 m.

TAMANO MÁXIMO : 1/2 In. CLASTF. SUELOS : [ML) / A-6 (10)

		LIMITE L	QUIDO (ASTM D4318	. 1701)	
Nro. DE TARA	Π°	LC-06	LC - 07	LC - 08	
PESO DE LA TARA	(9)	46.83	45.95	42.95	
PESOTARA + SUELOHUMEDO	(9)	65.27	63.90	59.72	
PESOTARA + SUELOSECO	(9)	60.46	58,83	55,12	
PESO DE AGUA	(9)	5.41	497	4.6	
PESO DEL SUELO SECO	(9)	13.63	12.88	12.17	
CONTENIDO DE HUMEDAD	(%)	39.69	38.59	37.80	
NUMERODE GOLPES	n°	14	24	37	
		LIMITE PL	ASTICO (ASTM D4319	- 17 e1)	
No. DE TARA	T	LC-09	LC - 10		
PÉSO DÉ LA TARA	(9)	46,39	49.02		
PESOTARA + SUELOHUMEDO	(9)	48.96	52.78		
PESOTARA + SUELOSECO	(9)	48.44	52.02		
PESO DE AGUA	(9)	0.52	0.76		
PESO DEL SUELO SECO	(9)	2.05	3,00		

CONSTANTES FISICAS DE	LAMUESTRA
UMITE UQUIDO	
UMITE PLASTICO	25
INDICE DE PLASTICIDAD	15

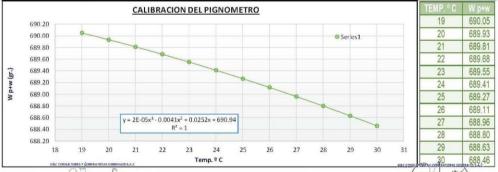
OBSERVACIONES

ron puestas en el laboratorio por el solicitante y etiquetadas por el mismo.

G&C CONSULTORES Y CONTRATISTAS GENERALES S.A.C. G&C GEDTECHNIK MATERIAL TEST LABOR LABORATORIO DE INVESTIGACION & ENSAYO DE MATERIALES

GRAVEDAD ESPECÍFICA DE LOS SUELOS

STANDARD TEST METHODS FOR SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER (ASTM D 854-14)


Į,	TESIS	INCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES : FÍSICO - MECÁNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL,	Registro Nº	: T_UCV_F-09/21-003-G&C
ľ	12313	PUNO-2021	Fecha	: 01 de Setiembre del 2021

	DATOS GENERALES						
UBICACIÓN	BICACIÓN : PROVINCIA DE PUNO - DEPARTAMENTO DE PUNO						
PROCEDENCIA : SUELO PATRON + 4% VIDRIO		SOLICITANTE : BACH. I.C. FRANK ELVIS	COORDENADAS				
EXPERIMENTO	: EXP 01	SOLICITANTE: RODRIGUEZ ASQUI	ESTE				
MUESTRA	: M - 01	TAMANO MÁXIMO: 1/2 in.	NORTE				
PROFUND.	: 0.20 - 1.60 m.	CLASIF. SUELOS: (ML) / A-6 (10)	СОТА				

	DATO	S DE LA MUESTRA	CUADRO DE RESULTADOS			
CLASIF. SUCS	:	ML	TEMPERATURA DE ENSAYO	20 °		
CLASIF. AASTHO	:	A-6 (10)	FACTOR "K"	1.0000		
DESCRIP. SUCS	:	Limo de baja plasticidad con arena	GS (Promedio)	2.75 g/cm3		

PICNÓMETRO Nº		C-500			OBSERVACIONES
CAPACIDAD PICNÓMETRO CM3	[cm3]	250	250	250	
PESO PICNÓMETRO , gr.	[9]	114.65	114.65	114.65	
PESO PICNÓMETRO + SUELO SECO , gr.	[9]	189.65	189.65	189.65	1
PESO SUELO SECO , gr. (Ws)	[9]	75.00	75.00	75.00	
PESO PICN. + AGUA + SUELO , gr. (W1)	[9]	736.55	736.41	736.56	LAS MUESTRAS FUERON PUESTAS EN EL
PESO PICN. + AGUA a C.T.(20°C) , gr. (W2)	[9]	689.93	689.93	689.93	LABORATORIO POR EL SOLICITANTE Y
PESO PICN. + AGUA A TEMP. ENSAYO.	[9]	688.69	688.69	688.69	ETIQUETADAS POR EL
TEMPERATURA DE ENSAYO, º C	[°C]	26	26.5	21	MISMO.
GS A TEMPERATURA ENSAYO	[°T]	2.763	2.749	2.764	1
GS A 20 ° C	[°C]	2.759	2.745	2.760]
PROMEDIO GS A 20 ° C	[g/cm3]		2.75]

	DENSIDAD RELATIVA DEL AGUA Y FACTOR DE CONVERSIÓN "K" PARA VARIAS TEMPERATURAS						
TEMP ° C	γw	К	TEMP. ° C	γw	К		
19	0.9984347	1.0002	25	0.9970770	0.9989		
20	0.9982343	1.0000	26	0.9968156	9.9986		
21	0.9980233	0.9998	27	0.9965451	0.9983		
22	0.9978019	0.9996	28	0.9962652	0.998		
23	0.9975702	0.9993	29	0.9959761	0.9977		
24	0.9973286	0.9991	30	0.9956780	0.9974		

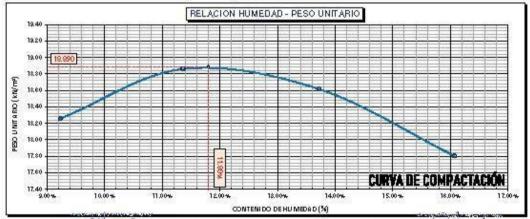
Muyale

GAR GERTERHNIK MATERIAL TEST LABOR

BOBATOBRO DE INVESTIBACIÓN & ENSAYO DE MATERIALES

RELACION HUMEDAD - DENSIDAD PROCTOR

STANDARD TESTMETHODS FOR LABORATORY COMPACTION CHARACTERISTICS OF SOIL USING MODIFIED EFFORT (56,000 ft-16f/ft3 (2 700 kn-m /m 3)) (ASTMD 1557-12: 1


BROVECTO	INCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPLEDADES FÍSICO - MECÁNICAS DE SUELOS ARCILLOSOS	Registro Nº	: r_ucv_+-09/21-003-GBC
PROYECTO	EN LA AVENIDA INDUSTRIAL, PUNO-2021	Fecha	: 01 de Seclembre del 2021

		DATOS GENERALES							
UBICACIÓN : PROVINCIA DE PUNO - DEPARTAMENTO DE PUNO									
DOSTFICACION	: SUH OPHI ROH+ 4% FIORIO	COLUMN TARTE	COORDENADAS						
EXPERIMENTO	: EXP Q1	SOLICITA NTE : BACH, I.C. PRANK ELVIS ROBRIGUEZ ASQUI	ESTE	133					
MUESTRA	: H - GI	TAMANO MÁXIMO : 1/2 In.	NORTE	53					
PROFUND.	: 0.20 - 1.60 m.	CLASTF. SUELOS : (ML) / A-6 (10)	COTA	39	m 4.n.m				

DATOS	S D E	LA MUESTRA	DATOS DEL ENSAYO							
силаттелетон (виса)		ИL	% Ret. Tamiz 3/4":		METODO DE ENSAYO	Hécodo 'A'				
CLASIFICACIÓN (AASHTO)		A-6 (10)	% Ret.Tamiz3/8*: 0.63 %	Sea .	No DE CAPAS	as				
DESCRICIÓN (SUCS)		Livo de baja pheliddad con arem	% Ret. Tamiz N*4: 2.87 %	10	GOLPES POR CAPA	56				

		EQLIPO EN	PLEADO		
MOLDE No MASA DEL MOLDE	X - 01 3,617 q.		DEL MOLDE ARTILLO	933 Manual	cw ₂
	RE	GISTROS Y CALCL	ILOS DEL ENSAYO		
Masa Suelo Humedo + Molde	q.	22.12	56.16	5632	5584
Masa del Molde	q.	36 17	36 17	3617	3617
Masa del Suelo Humedo	g/cm ²	1898	1999	5012	1967
Densidad del Suelo Humedo	g/cm ⁻	2.033	2.142	2.159	2.107
Capsula No	No	TP-05	TP-05	TP-07	TP-08
Masa de la Capsula	q.	48.95	49,47	45,42	45.90
Sue lo Humedo + Capsula	q.	260.79	277.17	275.45	258.95
Masa del Suelo Seco + Capsula	q.	242.89	253.94	247.70	229.40
Masa del Agua	q.	17.90	23.23	27.75	29.55
Masa del Suelo Seco	q.	193.94	204.47	20 2. 28	183.90
Humedad (%)	%	9.23%	11.36%	13.72%	16.07%
Promedio de Humedad (%)	%	9.23%	11.36%	13.72%	16.07%
Densidad del Suelo Seco	g/cm²	1.852	1.923	1.898	1.815
Peso Unitario Seco	kN/m	18.26	18.86	18.52	17.80

PROCTOR MODIFICADO	: ASTM D-1557-12e1	PESO UNITARIO SECO	1.926	gr/cc	18.890	kN/m3
MET. DE PREPARACIÓN	: Húmedo	HUMEDAD OPTIMA	11.80	9%	11.80	%

OBSERVACIONES Unas privações fue ron questas en el biporator bipor el solicitante y eciquetadas por el mismo.

N. A. I SHOWN COURSE HAVE TO SERVE CONTRACT OF A CONTRACT OF SERVE OF ACT OF SERVE B. J. P. S. L. Bec appril Construction of the Construction of

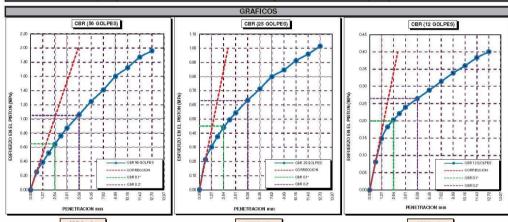
ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA (CBR)

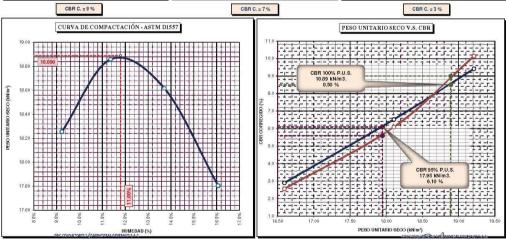
STANDARD TESTIMETHOD FOR CALBORNIA BE ARING RATIO (CBR) OF LABORATORY - COMPACTED SOLIS (ASTMD 1883 - 15)

PROYECTO		PECÍNICIS DE								Registra		18	TUCV_F4						
						37.4.3		18100305	540	Fachs		A.S.	a i de self	******	ALC I				
							HERALE	5											
MICACIÓN MOSIFICACIO		: FREVIACIA DE	The second second		DE 7440	100						T.	COLORDE		_				
DUP EREM ENTO		: EXF 01	I was billion	×	\$00.00	TANTE :	BACH. I	C. PER44	ELVIS TO	OKIGUEZ	ASQ at	ESTE	COGNEDA	NODAS	_				
TUESTRA	7	: 4 - 91		- 9	TANANO I	чжама :	1.0 10.					NORTE							
PROFUHD.		:0.20 -1.60 m.			CLASIR	sumas :	144/8	4 110)				COTA							
	- On	RATOS DE LA MU	PET O D						ri-co	CE PAR	A EL EHE	0.00							
L ASIRICACIÓN		:	u,			METODOO	DE ENBAY	5	: MHodo'		_	DEIHN	еретбе	: 40-0	No de				
LASPICACIÓN	(COLUMN)		A-0 [10]			PESO UN	OTARJO S	600	: 19.89	khrwa		E MARITI		: Harnel					
escrición (s	ucsj	: LIMO DE	hap sleensh	0 m 4 =	M65 50	HUNBOA	D ČPTINI	5.5703	11,40	4	NET. DE	PREPARAC	10N	: Púrvad	4				
IOLDE Na			oop.		A-		_		Sc.				0-						
WHERO DE CU	n a c		n²	-	- 3		-	-	- 2					_					
ANERO DE GO		0.1	0.5	-	-	_	- 3	_	7.	-			1	_					
Y SOBRECURO	-	-	n²	\vdash	- 0		_		-	-			- 7	_					
V+ SOBRECURA			n²		-		- 5	\vdash	-	-		-	-i	_					
OND XX TONES	OE LA NUEST	RA.	CBR	SINSU	HERODR	SUND	ROIDO	53N 9.8	FROR	SUND	ROTEO	SINSU	NERGE	SUNE	ROID				
						awama	noopel	PRICESOS							-				
laca Suela Hun	nado a Nei 4		l e	115	LEGISTRO	Name and Address of the Owner, where	0.035.041	121	20	1.14	191	T	90.7		271				
iaca dal Nolda			g.	72		-	20	77			71.2	_	112		1.12				
Yaca del Suela	Humeda		a.	47	7477	2002	112	44	007.0		79		225	- 07	4.572				
dumen del Su			en'		63	-	103	2027			04		15.5		ы				
Senddad del Su	0000		grere"	25	W. W.	-	231	2.0	145	-	102	_	39.2		062				
Specia Na			ha	PC	-7	PC	-8	PC	-9.	PC	- 10	PC	- 11	PC	-12				
Vaca de la Cape	ula		a.	32	42	3.5	.52	31	293	-	20	Territoria de la compansión de la compan	.9.4	A 2000	1.79				
ivelo Humedo	+ Capaula	215	a.	579	.10	540	1.93	475	.00	90	16.106						2.41	60	4.17
Vaca del Suela :	Seco + Cape	ula	a.	3.20	.70	42	2.97	444	.77	3.5	1.96	494.93		10					
Vaca del Aqua			a.	32	40	> >0	.DI	- 41	.70	70	.55	43.16		77	-20				
Vaca del Suela	Seco		a.	444	70.	475	1.45	31/	100	44	7.10	40	408.12		5.10				
% de Humedad			4	112			437.	11.2			73 %.		3 97.		437.				
rameda de Hu	1071-117		4	_	90799	11 1000	65%	11.3			757%	11.55%			4570				
Venddad del Su			grees!	1.5		-	PES	12			565	16.595		17,209					
aca Uniteria S	ACO		khay	19.	215	19.	250	18.	105	18.	315	16	595	17	.NO				
						EXPAN	ISIÓN												
Fed	1	Hara	Tiempa	Di		Expa	ndån	DI	wit .	Expa	ndān		(st	Skipp	ındân				
127		177.70	2000000000	100		mm	4.	1980		mm	9.	100	37.6	mm	46				
		1	0.00:00	447	7.00	0.00	0,00	094		0.00	0.00		9.50	0.00	0.0				
		+	24:00:00 43:00:00	497		1.52	1.20	7.70 3.44		1.93	1.52	_	420	5.15	4.5				
		+	72:00:00	377		3.54	2.79	377	1700	4.00	2.59		0.00	5.40	4.				
		1	96:00:00	377		1.69	2.91	33/		4.79	4.77	_	00.0	Shit	4.				
			1 44.44 344						-	7.11				7.10					
						PENE TR	ACION												
PENETR	KC3ĞN		Cargo Extandor		NOLDEN	a	A-4 1 780		NOLDEN	a	A-30	8	NOLDE N		9-8				
mm	Pulg.	Tlampa	Kg-France c	LECTURA.	Kg/ and	Npx	Carr.	LISCTURA "Not"	Kq/ am3	Npa	Carr.	LECTURAL "Neg"	Kq/am3	Npa	Ca				
0.00	୍ଷ	GD:00		0.0	0.00	0.00	1201	0.0	0.00	0.00		0.0	0.00	0.00	100				
0.63	0.025	00:50		49.6	2.50	0.25		42.2	2.18	0.21		10,0	023	0.03					
1.27	0.050	GI.: 0G	8 8	762	3.97	0.49	1	99.6	3.00	0.30		21.4	1.52	0.15	8				
1.90	0.075	61:50	1 2000 A	102.6	3.50	0.12	9	74.0	3.22	0.43		36.0	1.20	61.0					
2.54	0.100	02:00	/ 6.9	1.25.6	0.54	0.64	9.42	30.2	4.49	0.44	0.52	40.0	2/07	0.20	2.				
3.17	0.125	02:30	5 13 15 15	1 90 /0	7.75	0.76	9	97.6	5.04	0.49		44.6	225	0.22	1				
3.51	0.150	95:00	105.46	171.2	3 23	0.87	1 8	197.2	3.54	0.54		47.2	2.44	0.24	100				
5.05	0.200	04:00	/ 10.35	203.3	10.79	1.06	10.14	124.3	0.45	0.61	6.09	22	2.70	07.0	Z.				
0.55	0.250	05:00 08:00	8 8	246.0	12.71	1.25	- 0	140.6	7.27	0.71	_	57.0	4.20	0.41	13				
5.59	0.350	GT:00	9	278.0 315.6	14.37	1.44		197.0	3.14 3.44	0.30	-	60.3	3.45	0.11					
10.16	0.460	05:00	10 6	140.0	17.57	1.74	3.7	180.0	9.50	0.91	\vdash	71.0	3.41	0.14	-				
11.45	9.450	GE:00		169.0	19.07	1.87		139.4	9.73	0.96	\vdash	73.0	4.91	0.10					
12.70	-0.500	- Decuration (130.0	19.93	1.90	1 1	200.2	10.45	1.01		73.5	-14C34	л.4С.	-				
MAGERY ACTONE	THE OWNER WHEN PERSON NAMED IN	Law trypethay har	on puedos en e	_	-	_	Hquebaba	_	_		_	7	200	200	1				
		Trans de CRE Du	n indicador de la	chra daha	Ly branedu	chor de fine	es 'GLD	A TRO ST.				Ĺ	Alimin .	DE -	3				
	walker	Cartification Nº N											and the second						

G&C GEOTECHNIK MATERIAL TEST LABOR

LABORATORIO DE INVESTIGACION & ENSAYO DE MATERIALES


STANDARD TEST METHOD FOR CALIFORNIA BEARING RATIO (CBR) OF LABORATORY - COMPACTED SOILS (ASTM D 1883 - 16)


Registro Nº: T_UCV_F-09/21-003-G&C INCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES FÍSICO - MECÁNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL, PUNO-2021 PROYECTO : 01 de Setiembre del 2021

		DATOS GENERALES			
UBICACIÓN	PROVINCIA DE PUNO - DEPAR	TAMENTO DE PUNO			
DOSIFICACION : SUELO PATRON + 4% VIDRIO		COLTOTTANTE : DAGU Y O FRANK FINGS RODRYGUEZ ACOUNT		COORDENADAS	;
EXPERIMENTO	EXP 01	SOLICITANTE: BACH. I.C. FRANK ELVIS RODRIGUEZ ASQUI	ESTE	į.	
MUESTRA	: M - 01	TAMANO MÁXIMO: 1/2 in.	NORTE	1	
PROFUND.	: 0.20 - 1.60 m.	CLASIF. SUELOS: (ML) / A-6 (10)	COTA	1	m.s.n.m.

DATOS DE L	A I	MUESTRA	DATOS PARA EL ENSAYO								
CLASIFICACIÓN (SUCS)	8	ML	NORMA	: ASTM D-1557-12e1	PESO UNITARIO SECO	12	18.89	kN/m3			
CLASIFICACIÓN (AASHTO)	3	A-6 (10)	METODO DE ENSAYO		PESO UNITARIO SECO AL 95%		17.95	kN/m3			
DESCRICIÓN (SUCS)	:no	de baja plasticidad con are	TIEMPO DE INMERSIÓN	: 4 Días (96 Horas)	HUMEDAD ÓPTIMA	ij	11.80	%			

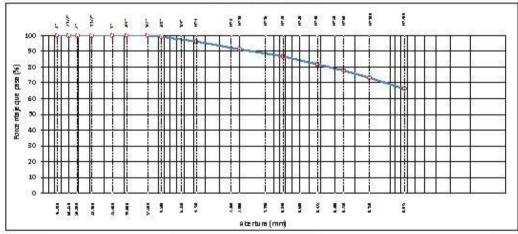
CBR (100% DE M.D.S.) 0.1	%	8.50 %	CBR (100% DE M.D.S.) 0.2"	%	9.00 %
CBR (95% DE M.D.S.) 0.1"	%	6.10 %	CBR (95% DE M.D.S.) 0.2"	%	5.60 %

OBSERVACIONES

| Subject Neestras fueron puestas en el laboratorio por el solicitante y etiquetadas por el mismo
| Certificado N° MT-LF-240-2020/R3283; Certificado N° MT-LF-026-2020/G&C01003

GAR GERTERHNIK MATERIAL TEST LABOR

BOBATOBIO DE INVESTIBACIÓN A ENSAYO DE MATERIALES


ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

STAND ARD TEST METHOD FOR PARTICLE-SIZE AHALYSIS OF SOILS (ASTM 0 422 - 63 (2007) e2)

PROYECTO	JINCORPORACIÓN DE V	IDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES FÍSICO	Registro H	· : r	_UCV_F-09/21-004-G&C		
PROTECTO	MECÁNICAS DE SUELO	Pecha	77.7	l de Seuen ke del 2021			
		DATOS GENERALES					
UEDCACIÓN	: PROVINCIA DE PUNO -	DEPARTAMENTO DE PUNO	9.5		UNIVERSITY OF THE		
DOSTFICACION	: SUELO PARON + 7% YIORIO	SOLICITANTE : BACH. J.C. FRANK ELVIS	COORDENADAS				
EXPERIMENTO	: EXP QZ	RODRIGUEZ ASQUI	ESTE	- 8			
MUESTRA	1 M - G1	TAMANO MÁXIMO: 1/2 In.	NORTE				
DOCELLED	10 20 - 1 00 m	CLASSE SUSIDE LICHTAGE 12)	COTA				

TAMZ	AMRITOTAT (mm)	PESO RETENDO	PORCENTAE RETIREO	RETERMO O MOVIMULADIO	POR CENTARE GUE PARA	EMECIFICACION	ENSAYOS ESTÁNDAD DE C Dasts - De	LASIFICACIÓN(D422 - D2216 - este - D2487)	
10 in.	254.000				7.				
6in.	152,400				ě: : : : : : : : : : : : : : : : : : :	8	Peso iriotal seco: 7	54.20 gr.	
Sin.	127.000				9	8	Peso Global : 7	751-20 gr.	
4in.	101.600				9 9		CARACTERISTICAS	SFISICASDEL SLELO	
3in.	76.200	- 3		2	4 9		Contenido de Humedad (%):	
2 1/2 in.	60,350				7		TAMANOMADIMO:	1/2 in.	
2in.	50,800				£ 2	00	Limite Liquido (LL):	36	
1 1/2 in.	38,100			3			Limite Phalico(LP):	23	
lin.	25,400	- 3					Indoe Plásiloo (IP):	12	
3/4 in.	19.000		$\overline{}$				Clastilicación (SUCS) :	CL	
1/2 in.	12,500				100.00	0	Clastillosolón (AASHTO) :	A-6 (7)	
3/8 in.	9,500	622	0.82	0.82	99.18		Indoe de Cansisienola :	2.06	
1/4 in.	6350	1888		1 2000	\$ W-1100 \$		DESCRIPSIO	ON DEL SUELO	
Nº 4	4.750	22.45	298	3.80	96.20	8	Descripción (AASHTO):	MALO	
Nº8	2360						Descripción (SUCS):	Andilla arence a de baja	
Nº 10	2,000	36.95	490	8.70	91.30			phelicited	
Nº 16	1,190	8.58	9555	0.000	n vijak n		Maleria Orgánica :		
Nº20	0.840	34.30	4.55	1325	86.75		Turba :	3460	
Nº30	0.600				Ý	80	CU: 0.000	cc: 0,000	
Nº40	0.425	38.08	5.05	1830	81.70	00	CARACTERISTICAS	GRANULOMETRICAS	
Nº50	0.300	successor 3		i amaza			Grava > 2":	0.00	
N2 60	0250	29.49	391	2221	77.79		Grava 2" - N# 4 :	3.80	
Nº 100	0.150	34.64	4.59	26.80	75.20	8	4rene NM - № 200 :	29.96	
Nº 200	0.075	52.47	696	33.76	66.24	(A)	Finos KN# 200 :	66.24	
<№200	FONDO	499.60	6624	100.00	Ø 9		80e"	0.0%	

CURVA GRANUL OMETRICA

OBSERVACIONES:

ша мусялна (устоленскама се сі възнавно вогої зоістично у столошима вогої ма мо.

Angellow S

GAB GEDTERHNIK material test labor aboratorio de investidación a ensavo de materiales

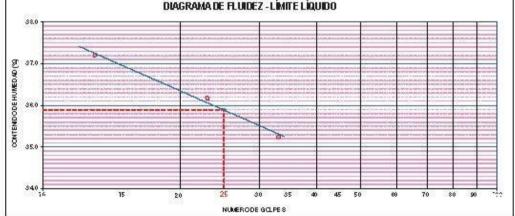
LIMITES DE CONSISTENCIA - PASA MALLA Nº 40

STANDARD TEST METHODS FOR LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY HOEK OF SOILS (ASTM 0.48.8 - 17 et)

Registra H* /_UCV_H09/21-004-GSC INCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPJEDADES FÍSICO -MECÁNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL, PUNO-2021 PROYECTO : 01 de Seix-se del 2021

DATOS GENERALES

UBUCACIÓN : PROVINCIA DE PUNO - DEPARTAMENTO DE PUNO


DOSIFICACION: SUELO PATRON + 7% VIDRIO EXPERIMENTO : EXP. - GZ

MUESTRA 1H - Q1 10.20 - 1.60 m. SOLICITANTE : BACH, J.C. FRANK ELVIS RODRIGUEZ ASQUI

TAMANO MÁXIMO : 1/2 In. CLASTF. SUELOS : (CL) / A-6 (7)

		LIMITE L	QUIDO (ASTM D4318	. 17+1)	
No. DETARA	Π°	LC-11	LC - 12	LC - 73	
PÉSO DÉ LA TARA	(9)	45.79	48.08	34.45	
PESOTARA + SUELOHUMEDO	(9)	63 27	65.51	53.56	
PESOTARA + SUELOSECO	(9)	58.53	60.88	48.58	
PÉSO DÉ AGUA	(9)	4.74	4.63	4.98	
PESO DEL SUELO SECO	(9)	12.74	12.9	14.13	
CONTENDO DE HUMEDAD	(%)	37.21	38.17	35.24	
NUMERODE GOLPES	II°	13	23	33	
		LIMITE PL	ASTICO (ASTM D4319	- 17 e1)	
Nro. DE TARA	T	LC-14	LC - 75		
PÉSO DÉ LA TARA	(9)	45.56	46.74		
PESOTARA + SUELOHUMEDO	(9)	48.73	50.20		

PÉSO DÉ LA TARA	(9)	45.56	46.74	1		
PÉSO TARA + SUEL OHUMEDO	(9)	48.73	50.20			
PESOTARA + SUELOSECO	(9)	48.13	49.54	1	i i	
PÉSO DÉ ÁGUA	(9)	0.60	0.66			
PESO DEL SUELO SECO	(9)	2.57	2,90	8	2	
CONTENIDO DE DE HUMEDAD	(%)	23.35	23.57	1		
2000		DIAGRAMA DE	FLUIDEZ - LÍMIT	E L iQUI DO		
38.0		_		-		
1						

CONSTANTES FISICAS DE	LAMUESTRA
UMITE UQUIDO	
UMITE PLASTICO	25
INDICE DE PLASTICIDAD	12

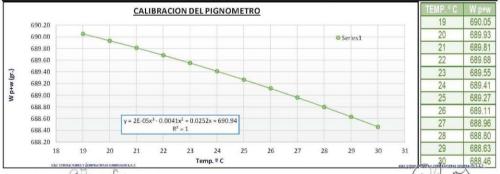
OBSERVACIONES

Las muestras fueron puestas en el laboratorio por el solicitante y etiquetadas por el mismo.

G&C CONSULTORES Y CONTRATISTAS GENERALES S.A.C. G&C GEDTECHNIK MATERIAL TEST LABOR LABORATORIO DE INVESTIGACION & ENSAYO DE MATERIALES

GRAVEDAD ESPECÍFICA DE LOS SUELOS

STANDARD TEST METHODS FOR SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER (ASTM D 854-14)


TECTE		Registro Nº	: T_UCV_F-09/21-004-G&C
TESIS	: FÍSICO - MECÂNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL, PUNO-2021	Fecha	: 01 de Setiembre del 2021

	DATOS GENERALES							
UBICACIÓN	BICACIÓN : PROVINCIA DE PUNO - DEPARTAMENTO DE PUNO							
PROCEDENCIA	: SUELO PATRON + 7% VIORIO	SOLICITANIE - BACH, I.C. FRANK ELVIS	COORDENADAS					
EXPERIMENTO	: EXP 02	SOLICITANTE : BACH, I.C. FRANK ELVIS	ESTE					
MUESTRA	: M - 01	TAMANO MÁXIMO: 1/2 in.	NORTE					
PROFUND.	: 0.20 - 1.60 m.	CLASIF. SUELOS: (CL) / A-6 (7)	СОТА					

DATOS DE LA MUESTRA			CUADRO DE RESULTADOS			
CLASIF. SUCS	:	CL	TEMPERATURA DE ENSAYO	20 °		
CLASIF. AASTHO	:	A-6 (7)	FACTOR "K"	1.0000		
DESCRIP. SUCS	:	Arcilla Arenosa de baja plasticidad	GS (Promedio)	2.73 g/cm3		

PICNÓMETRO Nº			C-500	OBSERVACIONES	
CAPACIDAD PICNÓMETRO CM3	[cm3]	250	250	250	
PESO PICNÓMETRO , gr.	[9]	114.65	114.65	114.65	
PESO PICNÓMETRO + SUELO SECO , gr.	[g]	189.65	189.65	189.65	1
PESO SUELO SECO , gr. (Ws)	[9]	75.00	75.00	75.00	
PESO PICN. + AGUA + SUELO , gr. (W1)	[9]	736.32	736.25	736.30	LAS MUESTRAS FUERON PUESTAS EN EL
PESO PICN. + AGUA a C.T.(20°C) , gr. (W2)	[9]	689.93	689.93	689.93	LABORATORIO POR EL SOLICITANTE Y
PESO PICN. + AGUA A TEMP. ENSAYO.	[9]	688.69	688.69	688.69	ETIQUETADAS POR EL
TEMPERATURA DE ENSAYO, º C	[°C]	26	26.5	21	MISMO.
GS A TEMPERATURA ENSAYO	[°T]	2.74	2.733	2.738	1
GS A 20 ° C	[°C]	2.736	2.729	2.734]
PROMEDIO GS A 20 ° C	[g/cm3]		2.73]

	DENSIDAD RELATIVA DEL AGUA Y FACTOR DE CONVERSIÓN "K" PARA VARIAS TEMPERATURAS							
TEMP ° C	γw	К	TEMP. ° C	γw	К			
19	0.9984347	1.0002	25	0.9970770	0.9989			
20	0.9982343	1.0000	26	0.9968156	9.9986			
21	0.9980233	0.9998	0.9998 27 0.996545	0.9965451	0.9983			
22	0.9978019	0.9996	28	0.9962652	0.998			
23	23 0.9975702 0.9993 29 0.99597		0.9959761	0.9977				
24	0.9973286	0.9991	30	0.9956780	0.9974			

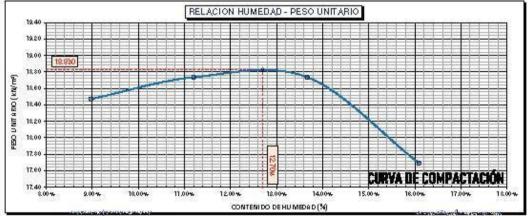
Muyala

GAR GERTERHNIK MATERIAL TEST LABOR

CORATORIO DE INVESTIGACIÓN A ENSAVODE MATERIALES

RELACION HUMEDAD - DENSIDAD PROCTOR

STANDARD TESTMETHODS FOR LABORATORY COMPACTION CHARACTERISTICS OF SOIL USING MODIFIED EFFORT (56,000 ft-16f/ft3 (2 700 kn-m /m 3)) (ASTM D 1557-12: 1


PROYECTO	INCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES FÍSICO - MECÁNICAS DE SUELOS ARCILLOSOS	Registro Nº	: /_UCV_F-09/21-004-GBK	
PROFELIO	EN LA AVENIDA INDUSTRIAL, PUNO-2021	Fecha	: 01 de Seclembre del 2021	

DATOS GENERALES								
LIBUCACIÓN : PROVINCIA DE PUNO - DEPARTAMENTO DE PUNO								
DOSTFICACION : SULLO PAR IDA 1 7% MORRO EXPERIMENTO : EXP G2	SUPPLY AND A 1 SAM MOKED			COORDENADAS				
	SOLICITA NTE : BACH, I.C. PRANK ELVIS ROBRIGUEZ ASQUI		3					
MUESTRA	: H - GI	TAMANO MÁXIMO : 1/2 In.	NORTE	53				
PROFUND.	: 0.20 - 1.60 m.	GLASTF, SUELOS : ICL) / A-6 (7)	COTA	39	ms.n.m.			

DATOS DE LA MUESTRA			DATOS DEL ENSAYO				
силаттелетон (виса)		CL	% Ret. Tamiz 3/4":	METODO DE ENSAYO	Mécodo 'A'		
CLASIFICACIÓN (AASHTO)	35	A-6 (7)	% Ret.Tamiz3/8*: 0.82 %	No DE CAPAS	as		
DESCRICIÓN (SUCS)		Andila arencea de baja phelididad	% Ret. Tamiz N*4: 3.80 %	GOLPES POR CAPA	56		

EQUIPO EMPLEADO									
MOLDE No MASA DEL MOLDE	X - 01 VOLUMEN DEL MOLD 3,617 q. TIPO DE MARTILLO			933 Hanual					
	REG	STROS Y GALGE	ILOS DEL ENSAYO						
Masa Suelo Humedo + Molde	q.	55 33	5600	5600	5572				
Masa del Molde	q.	36 17	3617	3617	3617				
Masa del Suelo Humedo	q/cm ²	1916	1983	2027	1955				
Densidad del Suelo Humedo	g/cm ⁻	2.053	2.124	2.172	2,094				
Capsula No	No	TP-09	TP-10	TP-11	TP-12				
Masa de la Capsula	q.	48,46	47,40	46.67	49.34				
Sue lo Humedo + Capsula	q.	299.57	283.51	288.20	278.71				
Masa del Suelo Seco + Capsula	q.	278.88	259.72	259.16	246.92				
Masa del Agua	q.	20.69	23.79	29.04	31.79				
Masa del Suelo Seco	q.	230 AZ	212.32	212.49	197.58				
Humedad (%)	%	8.98%	11.20%	13.67%	16.09%				
Promedio de Humedad (%)	%	8.98%	11.20%	13.67%	16.09%				
Densidad del Suelo Seco	g/cm²	1.883	1.910	1.910	1.804				
Boso Unitario Coro	kN (m)	1047	10 72	10 70	17.50				

PROCTOR MODIFICADO	: ASTM 0-1557-12e1	PESO UNITARIO SECO	1.920	1.920 gr/cc 18.830 kN/			
MET. DE PREPARACIÓN	: Húmedo	HUMEDAD OPTIMA	12.70	9%	12.70	%	

OBSERVACIONES Ulus propries fue on questas en el bacrator b por el solikitante y eciquetadas por el mismo.

Sec. April Construction

GAB SECTEBHNIK MATERIAL TEST LABOR.

SOBATOBIO DE INVESTIBACIÓN & ENSAYO DE MATERIALES

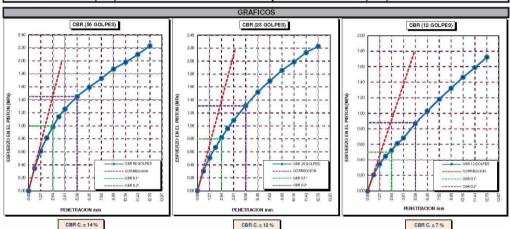
ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA (CBR)

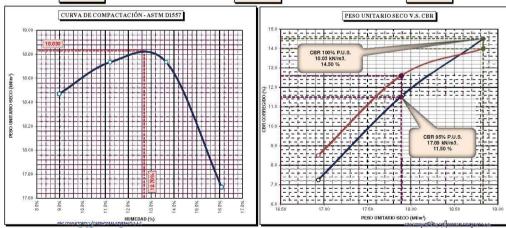
STANDARD TESTIVETHOD FOR CALEORNIA BEARING RATIO (CBR) OF LABORATORY - COMPACTED SOLIS (ASTIMD 1883 - 16)

		PECÍMICIS DE S								Registra		135	T_UCV_F4										
	- 3	- A CONTRACT OF S	-51 W3 A4L		*****	TIME IN		, 21	580 .	Fachs		100	O I de Self	erybre del	303.1								
					D	AITOS GE	HERALE	5															
вісасто́н		PROVINCE BE P	J 40 - OE 90.	CONFACO	0t 7 U4	3																	
KOSIFICACIO	OH :	SULLO FACTOR	The Vincin	3	200.0		eres 1	C. HEX.44		n #12-46 1		COORDINADAS											
OUP EREM ENT	ro :	EXF 02					BANKET	C. 150.45		4.10002	- And all	ESTE	13										
TUEST RA		n - 01		2	TANANO	NADONO:	1,2 10.					NORTE :											
ROPUHD.	- 3	020-160		- 8	CLASTR	SUMOS:	JOH /A-	0 [7]				COTA	40		17.41								
	0.9	Gross de la Mue	STRA						0.40	OS PAR	A EL CHE	AYO											
LASISCACIÓN	N(sucs) :		CL		- 0	METODO	E END.W(: MHodo	A*	TIENPO	ретник	явтон	: 40-0	70 4								
LABROAGIA	N (JUSHTO) :		A-6 (7)			PESO UN	2 OURATO	600	: 19.63	khrma	TIPO D	E MARUTL	LO	: Harsol									
SESCRICIÓN (S	യയു :	Arcelle are	rowde by	e e los case	a .	HUNBOA	D ČPTINA	Contract Con	: 12.70	4	NET. DE	PREPARAC	1ČN	: Pûrvedo	_								
HOLDE Na :			coo.	i —	A	-	_		Sc.	13		r -	A-	1.7	=								
ANERO DE CA	DEC		n'	-			- 5	\vdash		1				1000									
	OLPES POR CAP		n*	-			- 8	-	7	_			1		_								
+ SOBRECIRG	WITH STREET STREET, STREET	1000	n.	-	- 8	1072	_		_	· ·			-										
V+ SOBRECIRO			n.	_	- 33		- 8	\vdash	_	-		-	-	-									
	DE LA NUESTR		CBR	SINSU	anninense.	OR SHAREST STREET	aging	SIN SUR	and the same of	CURIC	ROTO	SINSU	************	SUND	1000								
ONE X TONES	DELXHOUSTR	2					-		BROOK	2011	102200	2314.20	1 SOUTH	SOME									
				-	STATE OF STREET	SYCALO	CONTRACTOR	PERSONAL PROPERTY.		-													
	medo + Nalde		g.	1.00	_		179	120	-	_	1.32	_	390	_	136								
Vaca del Nolde	Constant		a.	82			27	76		-	99.1	67	-	- 27	47								
Vaca del Suela			g.	45		_	152	4.5	_		114		25		21								
(dumen del Si	1000		em'	21	- V	-	13	210		-	114	_	1.0	-	13								
Denddad del S	uda Humeda		grery'	251	44	2.	196	2.0	56	2.	125	EX	147	27	1.57								
Specia Na			ha	PC-	E	PC	- 14	PC -	15	PC	- 16	PC	- 17	PC	- 15								
Yawa da la Cap	wula :		a.	35.	75	26	.16	34.	לם	35.74		35.74		35.74		21	.73	82	A)				
iualo Humado	+ Capaula	0	g.	2 23	.63	12	34	3.57	.90	470.00		470.03		470.03		M	123	560	1.49				
Vaca del Suela	Seco + Capeul	la	a.	100	27	5.5	1.34	433	AZ	410.41		410.41		410.41		410.41		410.41		- 43	1.70	42	4.27
Nace del Aque			g.	33.	41	92	/m	31.	4I	34.75		33.75		33.75		The second second		51	A7	74	11		
Nace del Suela	Seco		a.	4.00	.ω	43	E1.4	404	Ad	150.50				40.1.98		13 411 A							
% de Humadad	d		4	12.7	OT.	14.	47.	12.6	37.	10.20%		12.74%		13.03%									
Promedo de H	umedad		. 4	12.7	rares	14.	257%	124	ETWs	16.35%		12.74%		15,05%									
Denddad del S	uda Seca		grent'	1.9	200	1.5	722	1.5	26	1.	1.535		727	1.725									
Paca Unitoria S	S ACC		khay"	182		18	348	17.5	P34	17	PII	22 16.955		16	942								
						EXPAN	BIÓN																
			0.00000	1550	2	_	ndån	11530	377	Come	ndân	100	321 3	Section	n d Ar								
90	0.000	10000					The last	DE	at:	man.	44	D	*	mm									
Fed	dna	Hara	Tempo	- 55	al	mm	46	10,530							_								
Fed	dha	Hara	0:00:00	792			9.00	249	.90	0.00	0.00	662	D1.1	0.00	0.								
Fac	cha	Hara	30000	- 50	.10	mm		249		0.00	1.42		01.1	-	-								
Fed	cha	Hara	0.00:00	792	.10 .00	mm 0.00	0.00		.90			72		0.00	1.								
Fed	cha	Hara	0:00:00 24:00:00	792	.10 .00 .00	0.00 1.14	0.00	120	.90 .00	1.30	1.42	72 i 74 i	2.50	14.1	1.								
Fac	dra	Hera	0.00:00 24:00:00 43:00:00	792 8.47 8.49	.10 .00 .00	mm 0.00 1.14 1.45	9.99 9.99	120	.90 .99 .90	1.87	1.42	72 : 74 : 74 :	04.1 04.1	9,99 1,51 1,92	1.								
Fed	dra	Hara	0.00:00 24:00:00 48:00:00 72:00:00	792 3.17 3.49	.10 .00 .00	mm 0.00 1.14 1.40 1.30 1.33	0.00 0.90 1.14 1.42 1.43	325 325 325	.90 .99 .90	1.30	1.42 1.47 1.32	72 : 74 : 74 :	04.1 1.10 1.00	0.00 1.51 1.92 2.00	1. 1. 1.								
		Hara	0.00:00 24:00:00 43:00:00 72:00:00 96:00:00	792 3.17 3.49	.10 .00 .00 .00	mm 0.00 1.14 1.40 1.30 1.38 PENE TR	0.00 0.90 1.14 1.42 1.43 AGIÓN	325 325 325	.90 .90 .90	1.30 1.37 1.93 1.95	1.42 1.47 1.52 1.53	72 : 74 : 74 :	7.50 1.50 7.00 1.90	0.00 1.51 1.92 2.00 2.03	1. 1. 1.								
	dia Dozi ă n		0.90:00 24:00:00 43:00:00 72:00:00 96:00:00	792 3.47 3.49 3.63 3.60	.10 .00 .00	mm 0.00 1.14 1.40 1.30 1.38 PENE TR	0.00 0.90 1.14 1.42 1.43	120 121 123 125	.90 .99 .90	1.30 1.37 1.93 1.95	1.42 1.47 1.32	741 744 744 746	04.1 1.10 1.00	0.00 1.51 1.92 2.00 2.03	1. 1. 1.								
		Hara Tampa	0.500:00 24:00:00 43:00:00 72:00:00 96:00:00 Carga Estandar Kg-Fenz's	792 3.17 3.49	.10 .00 .00 .00	mm 0.00 1.14 1.40 1.30 1.38 PENE TR	9,99 9,99 1,14 1,42 1,43 AGIÓN	325 325 325	.90 .90 .90	1.30 1.37 1.93 1.95	1.42 1.47 1.32 1.33	72 : 74 : 74 :	7.50 1.50 7.00 1.90	0.00 1.51 1.92 2.00 2.03	A-L:								
PENETR mm	DICTÓN	Петра	0.90:00 24:00:00 43:00:00 72:00:00 96:00:00	792 3.37 3.40 3.03 3.00	III III III III III III III III III II	1.14 1.45 1.30 1.32 PENETR	0.00 0.00 1.14 1.42 1.43 ACIÓN 8-2 CBR	4.50 323 325 326 426 426	.90 .90 .90 .10 NOLDER	1.30 1.37 1.34 1.35	1.42 1.47 1.32 1.33	72 ; 74 ; 74 ; 74 ; 74 ; 150 ; CR.A. ;	1.50 1.50 1.90 1.90 Notice N	9,00 1,51 1,92 2,00 2,05 2,05	1. 1. 1.								
PENETR	įvosān Pulg.		0.500:00 24:00:00 43:00:00 72:00:00 96:00:00 Carga Estandar Kg-Fenz's	792 3.47 3.49 3.63 3.60	.10 .00 .00 .00	0.00 1.14 1.45 1.30 1.33 PENETF	0.00 0.00 1.14 1.42 1.43 ACIÓN 8-2 CBR	120 121 123 125	.90 .90 .90 .10	1.30 1.37 1.34 1.95	1.42 1.47 1.32 1.33	721 743 743 743	7.50 7.50 7.50 7.50 7.50 7.50 7.50	9.00 1.51 1.92 2.00 2.05	I I								
PENETR mm	DOJĀN Palg. Q	Tlampa 03:00 03:50	0.500:00 24:00:00 43:00:00 72:00:00 96:00:00 Carga Estandar Kg-Fenz's	792 3.37 3.49 3.63 3.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2	III III III III III III III III III II	0.00 1.14 1.40 1.30 1.32 PENE TR Nps 0.00 0.35	0.00 0.00 1.14 1.42 1.43 ACIÓN 8-2 CBR	3.00 3.23 3.25 3.26 3.26 4.26 4.27 4.27 4.27	.90 .90 .10 NOLDER Kg/am3	1.30 1.37 1.33 1.33 1.33 0.00 0.00	1.42 1.47 1.32 1.33	721 743 743 743 LISCTURIA *Negr*	No.DE N Kg/cm3	0.00 1.31 1.92 2.00 2.03 4 8 8 9	1 1 1 1 1 Co								
PENETR mm	DICTÓN Palq. Q	Tlampo CD: OO	0.00:00 24:00:00 43:00:00 72:00:00 96:00:00 Carga Extandar Kg-Frem2 r Hgs	792 8.37 8.49 303 300 LECTURAL VAGE	NOLDER	mm 0,00 1.14 1.40 1.30 1.32 PENETR	0.00 0.00 1.14 1.42 1.43 ACIÓN 8-2 CBR	325 325 326 326 326 326 326 327	.90 .90 .10 MOLDEN Kg/am3	1.30 1.37 1.33 1.33 4 8 8 9	1.42 1.47 1.32 1.33	72 : 743 : 744 : 7	NOLDE N Kg/am3	0.00 1.51 1.92 2.00 2.05 a a a Pips 0.00 0.21	1 1 1 1 1 Co								
PENETR mm 0.00 0.65	DOJĀN Palg. Q QQIS QQIS	Tlampa	0.90:00 24:00:00 43:00:00 72:00:00 96:00:00 Carga Estandar- Kg-Fore 27 Hps	792 337 349 301 300 407 407 00 932	NO MOLDER AND	0.00 1.14 1.40 1.30 1.33 PENE TR 43 0.00 0.35 0.61	0.00 0.00 1.14 1.42 1.43 ACIÓN 8-2 CBR	1.00 121 123 124 125 126 127 127 127 127 127 127 127 127 127 127	.90 .90 .10 .10 MOLDE N Mag/am3 0.00 4.03 5.17	1.30 1.37 1.33 1.33 1.33 0.00 0.00	1.42 1.47 1.32 1.33	721 743 744 742 1807 (RA "Neg" 0.0 44 /0	7.30 7.30 7.30 7.30 MOLDE N Kg/cm3 0.30 2.12	0.00 1.51 1.92 2.00 2.05 0.05 0.00 0.21 0.34	1 1 1 1 1 Co								
PENETR mm 0.00 0.03 1.27 1.90	DC3ČN Pulg. Q Q,025 Q,035 Q,035 Q,075	Tlampa GI: GO GI: SO GI: SO	0.00:00 24:00:00 43:00:00 72:00:00 96:00:00 Carga Extandar Kg-Frem2 r Hgs	792 337 349 301 300 407 407 00 932 1493	.10 .00 .00 .00 .00 .00 .00 .00 .00 .00	0.00 1.14 1.40 1.30 1.33 PENE TR 40 0.00 0.35 0.41	0.00 0.90 1.14 1.42 1.43 ACIÓN ACIÓN COR. COR.	1.00 A 142 A	.90 .90 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1	1.39 1.37 1.31 1.93 1.93 0.00 0.30 0.51	1.42 1.47 1.32 1.33 7.42 CBR. CBR.	721 743 744 745 746 746 967 9.67 9.67 9.67 9.67 9.67 9.67 9.67	NOLDE N Kg/am3 0.00 2.12 4.51	0.00 1.31 1.92 2.00 2.03 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
PEASTR mm 0.00 0.63 1.27 1.90 2.54 3.17	9 d. 0.55 Q d. 0.55 Q d. 0.55 Q d. 0.55 Q d. 0.55 Q d. 0.55	Tlampa G1:00 G1:00 G1:00 G1:00 G2:00 G2:00	0.00:00 24:00:00 43:00:00 72:00:00 96:00:00 Carga Edwards- Edwards- Edwards- Figs 70:31 / 6.9	792 349 349 364 366 366 366 467 467 467 467 467 467 467 467 467 4	10 mm	0.00 1.14 1.40 1.30 1.32 PENE TR 4s 0.00 0.31 0.41 0.31 0.32	0.00 0.90 1.14 1.42 1.43 ACIÓN ACIÓN COR. COR.	1.00 A 1.00 A 1.00 A 1.00 A 1.00 A 1.00 A 1.00 A 1.00 A 1.00 A	.90 .90 .90 .10 .00 .00 .473 .5.17 .6.22 .8.45	1.30 1.32 1.33 1.33 1.33 0.00 0.50 0.51 0.62 0.32	1.42 1.47 1.32 1.33 7.42 CBR. CBR.	22 743 744 744 744 744 744 744 744 744 744	MOLDE N Kg/cm2 0.00 0.00 Kg/cm2 0.00 2.12 4.31 4.33 3.42	0,00 1,31 1,92 2,00 2,03 Nps 0,00 0,21 0,44 0,43 0,52	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
95.00 0.60 0.60 1.177 1.90 2.54	9.055 9.055 9.055 9.050 9.150 9.150	Tlampo G1:00 G1:00 G1:00 G1:00 G1:00 G2:00	0.00:00 24:00:00 43:00:00 72:00:00 96:00:00 Carqui Edundar Kg-Fore?/ Hps	792 349 349 364 366 366 366 466 466 466 466 466 466	.10 .m .m .m .m .m .m .m .m .m .m .m .m .m	0.00 1.14 1.40 1.30 1.32 PENE TR 4s 0.00 0.35 0.61 0.31	0.00 0.90 1.14 1.42 1.43 ACIÓN ACIÓN COR. COR.	1.00 A	.90 .90 .10 MOLDER Kg/am3 0.90 4.93 5.17 6.22	1.39 1.37 1.34 1.93 0.93 0.90 0.30 0.51 0.67	1.42 1.47 1.32 1.33 7.42 CBR. CBR.	721 743 744 745 745 0.0 44.0 48.0 38.0 104.0	NOLDE N Kg/am3 0.00 2.12 4.51 3.42	0.00 1.31 1.92 2.00 2.03 Nps 0.00 0.21 0.34 0.43	3-L								
0.00 0.65 1.77 1.90 2.54 5.17 5.51	Palg. Q 0.025 0.025 0.025 0.025 0.025 0.025	Tlampa GD:00 GD:50 GD:00 GD:50 GD:50 GD:50 GD:50 GD:50	0.00:00 24:00:00 43:00:00 72:00:00 96:00:00 Carga Edwards- Edwards- Edwards- Figs 70:31 / 6.9	792 349 341 341 341 341 340 442 443 4443 4443	.10 .00 .00 .00 .00 .00 .00 .00 .00 .00	######################################	0.00 0.90 1.14 1.42 1.43 AGÓN COR. COR. COR.	1.00 A 144 A	.90 .90 .90 .10 Modube N Mograma 9.00 9.00 9.17 6.22 3.45 9.73	1.30 1.37 1.34 1.33 0.93 0.90 0.90 0.91 0.92 0.92 0.94	1.42 1.47 1.32 1.33 1.33 7.42 CBR. Carr. (9.1	221 743 744 744 744 744 744 744 744 744 744	NOLDE N Kq/am2 4.31 4.33 4.33 4.33 4.33 4.33 4.33	0,00 1,31 1,92 2,00 2,03 Nps 0,00 0,21 0,34 0,43 0,52 0,68	3-L								
Mm 0.00 0.00 1.17 1.90 2.54 5.17 5.05	UCTÓN Pala. Q 0.025 Q.025 Q.025 Q.025 Q.020 Q.025 Q.020 Q.025	Tlampa G1:00 G2:50 G1:50 G1:50 G2:50 G2:50 G2:00	0.00:00 24:00:00 43:00:00 72:00:00 96:00:00 Carqui Edundar Kg-Fore?/ Hps	792 349 349 349 349 349 449 449 444 444 444	10 mm	0.00 1.14 1.40 1.30 1.33 PENETR 0.00 0.35 0.61 0.35 1.14 1.26	0.00 0.90 1.14 1.42 1.43 AGÓN COR. COR. COR.	130 143 143 143 143 143 150 150 150 150 150 150 150 150 150 144 150 2	.90 .90 .90 .10 MOLDE N May ama 9.00 9.00 9.17 6.22 9.78 11.08	1.30 1.37 1.93 1.93 1.93 0.90 0.90 0.91 0.67 0.32 0.96 1.09	1.42 1.47 1.32 1.33 1.33 7.42 CBR. Carr. (9.1	22 743 744 744 744 744 744 744 744 744 744	NOLDE N Kg/am/J 0.00 2.12 4.13 4.33 4.33 4.33 4.33	0.00 1.31 1.92 2.00 2.03 0.00 0.21 0.44 0.45 0.42 0.43 0.43 0.43	3-L 0-C 0-C								
0.00 0.65 1.77 1.90 2.54 5.17 5.05 6.35	Paid G G G G G G G G G G G G G G G G G G G	Tlampd G1:G0 G1:G0 G1:G0 G1:G0 G1:G0 G1:G0 G1:G0 G1:G0 G1:G0 G2:G0 G2:G0 G3:G0 G3:G0 G3:G0	0.00:00 24:00:00 43:00:00 72:00:00 96:00:00 Carqui Edundar Kg-Fore?/ Hps	792 349 349 349 349 349 449 449 447 447 447 447 447 447 447 4	NOLDER 6 3.32 6 3.22 6 3.22 10 3.42 14 3.32 14 3.33 14 3.35 14	0.00 1.14 1.30 1.32 PENETE (a) 0.00 0.35 0.61 0.31 0.31 0.31 1.30	0.00 0.90 1.14 1.42 1.43 AGÓN COR. COR. COR.	1.00 A 1.	.90 .90 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1	1.30 1.37 1.34 1.95 1.95 0.00 0.30 0.51 0.67 0.32 0.32 1.30 1.31	1.42 1.47 1.32 1.33 1.33 7.42 CBR. Carr. (9.1	221 743 744 745 747 747 747 747 747 747 747 747	NOLDE N Kg/cmJ 0.00 2.00 Kg/cmJ 0.00 2.12 3.31 4.31 4.31 4.32 6.23 6.23 6.33	0,00 1,31 1,92 2,00 2,03 0,00 0,21 0,44 0,43 0,52 0,63 0,63 0,63 0,63 0,63 0,63 0,63 0,63	3-L								
0.00 0.63 1.17 1.90 2.54 3.17 5.51 5.05 7.61	DUCTÓRI Pada, Q Q.035 Q.055 Q.055 Q.155 Q.155 Q.155 Q.255 Q.255 Q.255 Q.255	Tlampa G2:G0 G1:G0 G1:G0 G2:G0 G2:G0 G2:G0 G2:G0 G3:G0 G3:G0 G3:G0 G3:G0 G3:G0 G3:G0 G3:G0 G3:G0 G3:G0	0.00:00 24:00:00 43:00:00 72:00:00 96:00:00 Carqui Edundar Kg-Fore?/ Hps	792 349 349 349 349 749 759 632 1493 1494 2443 2473 2493 31440	10 m m m m m m m m m m m m m m m m m m m	7000 0.00 1.140 1.20 1.20 1.20 PENE TR 40 0.00 0.01 0.01 0.01 0.01 1.14 1.20 1.14 1.20 1.14 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	0.00 0.90 1.14 1.42 1.43 AGÓN COR. COR. COR.	1.00 1.12 1.23 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	.90 .90 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1	7, 20 1, 20 1, 23 1, 23 1, 23 1, 23 7, 25 0, 20 0, 31 0, 67 0, 22 0, 26 1, 29 1, 21 1, 22	1.42 1.47 1.32 1.33 1.33 7.42 CBR. Carr. (9.1	721 743 744 745 747 747 747 747 747 747 747 747	NOLDE N Mg/m3 Mg/m3 Mg/m3 Mg/m3 2.12 4.31 4.33 3.42 6.23 6.23 10.48	0,00 1,31 1,92 2,00 2,03 0,00 0,21 0,44 0,43 0,63 0,63 0,63 0,63 1,03	3-L								
0.00 0.02 1.27 1.90 2.51 5.05 6.35 7.42 5.30	Palg. G.ADS G.ADS	Tlampa GD:001 GD:501 GD:501 GD:501 GD:500 GD:500 GD:500 GD:500 GD:500 GD:500 GD:500	0.00:00 24:00:00 43:00:00 72:00:00 96:00:00 Carqui Edundar Kg-Fore?/ Hps	792 349 349 349 349 749* 0.0 0.52 1.60 .0 1794.3 244.3 244.3 244.3 244.3 244.3 244.3 244.3 244.3 244.3	10 / m / m / m / m / m / m / m / m / m /	0.00 1.14 1.20 1.32 PENE TR 42 0.00 0.31 0.31 0.31 1.44 1.20 1.45 1.45 1.45 1.45 1.45 1.45	0.00 0.90 1.14 1.42 1.43 AGÓN COR. COR. COR.	1.00 1.12 1.23 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	.90 .90 .90 .10 MOLDS N r r kg/cm3 9.70 9.22 3.45 9.73 11.49 14.99 14.99	1.30 1.37 1.32 1.33 1.33 1.33 0.00 0.30 0.31 0.67 0.32 0.30 1.31 1.52 1.69	1.42 1.47 1.32 1.33 1.33 7.42 CBR. Carr. (9.1	221 743 744 742 742 0.0 44.0 63.0 103.0 134.4 171.0 202.0 233.0 120.0 12	NOLDE N Kg/cm3 0.00 0.00 Kg/cm3 0.00 2.12 3.31 4.33 3.32 0.23 0.23 12.04 13.40	0.00 1.31 1.92 2.00 2.03 Npp 0.00 0.21 0.44 0.42 0.42 0.41 0.63 0.27 1.03 1.13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								

Certifica 3: 9º NT-LE-340-3030/R3380; Certificado № NT-LE-03G-3030/G8C0300:

an access


STANDARD TEST METHOD FOR CALIFORNIA BEARING RATIO (CBR) OF LABORATORY - COMPACTED SOILS (ASTM D 1883 - 16)


Registro Nº: T_UCV_F-09/21-004-G&C INCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES FÍSICO - MECÁNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL, PUNO-2021 PROYECTO : 01 de Setiembre del 2021

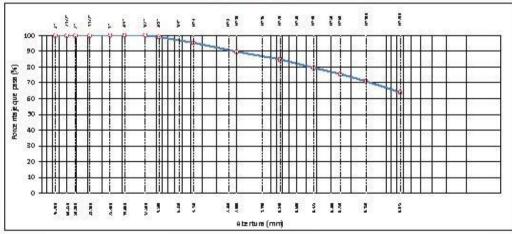
	DATOS GENERALES							
UBICACIÓN	: PROVINCIA DE PUNO - DEPAR	TAMENTO DE PUNO						
DOSIFICACION	: SUELO PATRON + 7% VIDRIO	COLTOTTANTE : DAGU Y G FRANK FILIGO DO DOVOLET ACOLU		COORDENADAS	;			
EXPERIMENTO	: EXP 02	SOLICITANTE: BACH. I.C. FRANK ELVIS RODRIGUEZ ASQUI	ESTE	į.				
MUESTRA	: M - 01	TAMANO MÁXIMO: 1/2 in.	NORTE	E				
PROFUND.	: 0.20 - 1.60 m.	CLASIF. SUELOS: (CL) / A-6 (7)	COTA	9	m.s.n.m.			

DATOS DE L	A MUEST	RA	DATOS PARA EL ENSAYO							
CLASIFICACIÓN (SUCS)	8	CL	NORMA	: ASTM D-1557-12e1	PESO UNITARIO SECO	100	18.83	kN/m3		
CLASIFICACIÓN (AASHTO)	B	A-6 (7)	METODO DE ENSAYO	: Método "A"	PESO UNITARIO SECO AL 95%	ij	17.89	kN/m3		
DESCRICIÓN (SUCS)	; cilla arend	osa de baja plasticio	TIEMPO DE INMERSIÓN	: 4 Días (96 Horas)	HUMEDAD ÓPTIMA		12.70	%		

CBR (100% DE M.D.S.) 0.1	%	14.50 % CE	BR (100% DE M.D.S.) 0.2"	%	14.00 %
CBR (95% DE M.D.S.) 0.1"	%	11.50 % CE	BR (95% DE M.D.S.) 0.2"	%	12.60 %

OBSERVACIONES

Certificado N° MT-LF-240-2020/R3288; Certificado N° MT-LF-026-2020/G&C01003


ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

STAND ARD TEST METHOD FOR PARTICLE-SIZE AHALYSIS OF SOILS (ASTM 0 422 - 63 (2007) e2)

PROVECTO JINCORPORACIÓN DE VI		IDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES F	ISICO - Registro H	· r_uc	V_F-09/21-005-GBC
PROTECTO	HECÁNICAS DE SUELO	1 Pacha		Sale while del 2021	
		DATOS GENERALES			
UBICACIÓN	: PROVINCIA DE PUNO -	DEPARTAMENTO DE PUNO	100	77535 SANS	V. 1400-1040040
DOSTFICACIO	DIN : SUELO PAIRON + 10% VORIO	SOLIGITANTE : BACH. J.C. FRANK ELVIS		COORD	ENADAS
EXPERIMENT	O : EXP 03	RODRIGUEZ ASQUI	ESTE	100	
MUESTRA	: H - GI	TAMANO MÁXIMO: 1/2 In.	NORTE	16	
PROFUND	10 20 - 1 60 m	CLASSE SHELDS: LC(1/4/6/15)	COTA	\$77	men m

TAMZ	AMBINTOT-ST (mm)	RETENDO	PORCENTAIS RETERDO	ACUMULADO	POROBITAIS QUE PANA	SSP SIGR CACKON	ENSAYOS ESTÁNDAD DE CL Duets - Des	ASRCACIÓN (D-422 - D2216 - 852 - D2467)
10 in.	254,000			9				
6in.	152,400			A: :A			Paso Inicial saco : 92	9.24 gr.
5in.	127,000			0.00	- 3		Peso Global : 92	8.24 gr.
4 in.	101.600			9. 9.	- 3		CARACTERISTICAS	RECASDEL SUELO
3in.	76.200		2		- 2		Cort enido de Hume dad (%)	1 3
2 1/2 in.	60.350			7			TAMAÑO MAXIMO:	1/2 in.
2 in.	50.800		2	45 34			Limite Liquido(LL):	34
1 1/2 in.	28,100			6 B	- 1		Limite Plasitoo (LP):	23
1 in.	25,400						Indice Plastico(IP):	11
3/4 in.	19,000						Clastiticación (8UCS):	CL
1/2 in.	12,500			A: : : : : : : : : : : : : : : : : : :	100.00		Clastillosolón (AASHTO):	A-6 (5)
3/8 in.	9,500	8.82	0.95	0.95	99.05		Indioe de Consistencia :	2.09
1/4 in .	6350	23/5/0			3033474		DESCRIPS OF	NIDEL SUELO
Nº 4	4.750	33.82	3.64	4.59	95.41		Descripción (AASHTO):	MALO
Nº8	2360						Descripción (SUCS):	Ardillo erenose de bajo
Nº 10	2,000	52.66	5.67	1027	89.70		di	ples lidded
Nº 16	1.190	30300	C STATE	11c-55 55	1,000		Maleria Orgánica :	
Nº20	0.840	45,18	4.87	15.13	84.87		Turba :	-
N230	0.600			\$1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			CU: 0,000	0.000
Nº40	0.425	49.85	537	20.50	79.50		CARACTERISTICAS	CRANULOWET PICAS
Nº50	0300	0.000		ilaan ka sa	West Advances of the		Grava > 2" :	0.00
N2 60	0250	36.18	3.90	24.40	75.60		Grava 2" - Nº 4 :	4.59
Nº 100	0.150	42.48	4.58	2898	71.02		Arers 1#4 - 1# 200 :	31.36
Nº 200	0.075	64.70	697	3595	64.05		Finds < Nt 200 :	64.05
≺№200	FONDO	594.55	64.05	100.00			858"	0.0%

CURVA GRANULOMETRICA

OBSERVACIONES: Las mucacias fucion as casas de of lateratorio son clas locarico y oconocidas apriol mame.

GAO GEOTEOHNIK MATERIAL TEST LABOR
ARCHATORIO DE INVESTIGACIÓN & ENSAVODE MATERIALES

LIMITES DE CONSISTENCIA - PASA MALLA Nº 40

STANDARD TEST METHODS FOR LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY HOEK OF SOILS (ASTM 0.48.8 - 17 et)

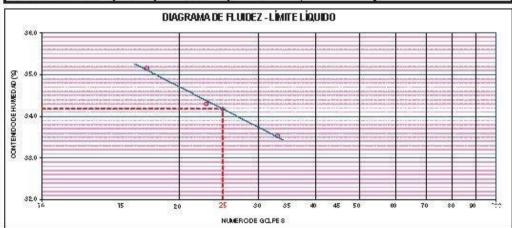
Registed H* f_UCV_H09/21-005-GSC JINCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES FÍSICO -PROYECTO MECÁNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL, PUNO-2021 : 01 de Seucinhie del 2021

DATOS GENERALES

UBUCACIÓN : PROVINCIA DE PUNO - DEPARTAMENTO DE PUNO

DOSTRICACION: SUELO PATRON + 10% VIDETO EXPERIMENTO : EXP. - 03

MUESTRA 1H - Q1


10.20 - 1.60 m.

SOLICITANTE : BACH, J.C. FRANK ELVIS RODRIGUEZ ASQUI

TAMANO MÁXIMO : 1/2 In.

CLASTF. SUELOS : (CL) / A-6 (S)

		DWLE D	QUIDO (ASTM D 4318.	1701)	
No. DE TARA	nº l	LC-16	LC - 17	LC - 78	
PESO DE LA TARA	(9)	46.19	46,11	45.5	
PESOTARA + SUEL OHUMEDO	(9)	62.75	64.63	65.01	
PESOTARA + SUELOS ECO	(9)	58.44	59.90	60.11	
PESO DE AGUA	(9)	4.31	4.73	49	
PESO DEL SUELO SECO	(9)	12.26	13.79	14.61	
CONTENIDO DE HUMEDAD	(%)	35.15	34.30	33.54	
NUMERODE GOLPES	n°	17	23	33	
		LIMITE PL	ASTICO (ASTM D4319	- 17 e1)	
No. DETARA		LC-19	LC - 20		
PÉSO DÉ LA TARA	(9)	45.66	45.47		
PESOTARA + SUEL OHUMEDO	(9)	48.64	48.90		
PESOTARA + SUELOSECO	(9)	48.09	48,18		
PESO DE AGUA	(9)	0.55	0.62		
PESO DEL SUELO SECO	(9)	2.43	2.71		
CONTENIDO DE DE HUMEDAD	(%)	22.63	22.98	6	

CONSTANTES FISICAS DE	LAMUESTRA
UMITE UQUIDO	54
UMITE PLASTICO	25
INDICE DE PLASTICIDAD	-11

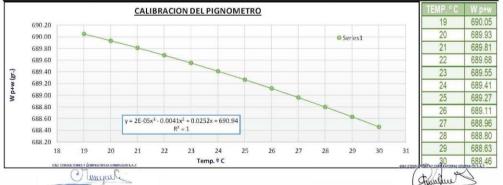
Las muestras fueron puestas en el laboratorio por el solicitante y etiquetadas por el mismo.

OBSERVACIONES

G&C CONSULTORES Y CONTRATISTAS GENERALES S.A.C. G&C GEDTECHNIK MATERIAL TEST LABOR LABORATORIO DE INVESTIGACION & ENSAYO DE MATERIALES

GRAVEDAD ESPECÍFICA DE LOS SUELOS

STANDARD TEST METHODS FOR SPECIFIC GRAVITY OF SOIL SOLIDS BY WATER PYCNOMETER (ASTM D 854-14)


TESIS		Registro Nº	: T_UCV_F-09/21-005-G&C
LESIS	: FÍSICO - MECÂNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL, PUNO-2021	Fecha	: 01 de Setiembre del 2021

		DATOS GENERALES					
UBICACIÓN							
PROCEDENCIA	: SUELO PATRON + 10% VIDRIO	SOLICITANTE : BACH, I.C. FRANK ELVIS	COORDENADAS				
EXPERIMENTO	: EXP 03	SOLICITANTE: RODRIGUEZ ASQUI	ESTE				
MUESTRA	: M - 01	TAMANO MÁXIMO: 1/2 in.	NORTE				
PROFUND.	: 0.20 - 1.60 m.	CLASIF. SUELOS: (CL) / A-6 (5)	СОТА				

	DAT	OS DE LA MUESTRA	CUADRO DE RESULTADOS				
CLASIF. SUCS	:	CL	TEMPERATURA DE ENSAYO	20 °			
CLASIF. AASTHO	:	A-6 (5)	FACTOR "K"	1.0000			
DESCRIP. SUCS	:	Arcilla Arenosa de baja plasticidad	GS (Promedio)	2.69 g/cm3			

PICNÓMETRO Nº		C-500			OBSERVACIONES
CAPACIDAD PICNÓMETRO CM3	[cm3]	250	250	250	
PESO PICNÓMETRO , gr.	[9]	114.65	114.65	114.65	
PESO PICNÓMETRO + SUELO SECO , gr.	[9]	189.65	189.65	189.65	1
PESO SUELO SECO , gr. (Ws)	[9]	75.00	75.00	75.00	
PESO PICN. + AGUA + SUELO , gr. (W1)	[9]	735.99	735.86	735.79	LAS MUESTRAS FUERON PUESTAS EN EL
PESO PICN. + AGUA a C.T.(20°C) , gr. (W2)	[9]	689.93	689.93	689.93	LABORATORIO POR EL SOLICITANTE Y
PESO PICN. + AGUA A TEMP. ENSAYO.	[9]	688.69	688.69	688.69	ETIQUETADAS POR EL
TEMPERATURA DE ENSAYO, º C	[°C]	26	26.5	21	MISMO.
GS A TEMPERATURA ENSAYO	[°T]	2.707	2.695	2.688	1
GS A 20 ° C	[°C]	2.703	2.691	2.684]
PROMEDIO GS A 20 ° C	[g/cm3]		2.69]

	DENSIDAD		GUA Y FACTOR DE C AS TEMPERATURAS	ONVERSIÓN	
TEMP ° C	γw	К	TEMP. ° C	γw	К
19	0.9984347	1.0002	25	0.9970770	0.9989
20	0.9982343	1.0000	26	0.9968156	9.9986
21	0.9980233	0.9998	27	0.9965451	0.9983
22	0.9978019	0.9996	28	0.9962652	0.998
23	0.9975702	0.9993	29	0.9959761	0.9977
24	0.9973286	0.9991	30	0.9956780	0.9974

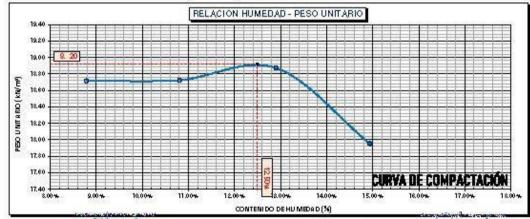
GRC CONSULTORES Y CONTROTISTOS GENERALES S O C

GAB GEOTERHNIK MATERIAL TEST LABOR

CORNICIERO DE INVESTIBACIÓN & ENSASO DE MATERIALES.

RELACION HUMEDAD - DENSIDAD PROCTOR

STANDARD TEST METHODS FOR LABORATORY COMPACTION CHARACTERISTICS OF SOIL USING MODIFIED EFFORT (56,000 ft-16f/ft3 (2 700 kn-m /m 3)) (ASTMD 1557-12: 1


and vot m	INCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPLEDADES FÍSICO - MECÁNICAS DE SUELOS ARCILLOSOS	Registro Nº	: r_ucv_+-09/21-005-GBC
PROYECTO	EN LA AVENIDA INDUSTRIAL, PUNO-2021	Fecha	: 01 de Seclembre del 2021

		DATOS GE	NERALES			
UBICACIÓN	: PROVINCIA DE PUNO -	DEPARTAMENTO DE PI	סמינ	1454		
DOSTFICACION	SSIFICACION : SURIO PATRON - 10'4 VIDRIO SOLICITANTE : BACH, I.C. FRANK ELVIS		BACH, J.C. FRANK ELVIS	3	COORDEN	ADAS
EXPERIMENTO	: EXP 03	SULMITANTE	ROD RIGUEZ ASQUI	ESTE	ů.	
MUESTRA	: M - a1	OMEXÂM ON AMAT	1/2 (4.	NORTE	10	
PROFUND.	: 0.20 - 1.60 m.	CLASTF. SUELOS	(CL) / A-6 (S)	COTA	32	ms.n.m.

DATOS	DE	LA MUESTRA	DATOS DEL ENSAYO							
силаттелето́н (виса)	1	CL	% Ret. Tamiz 3/4":	_	METODO DE ENSAYO	Hécodo 'A'				
CLASIFICACIÓN (AASHTO)		A-6 (5)	% Ret.Tamiz 3/8*: 0.95	50	No DE CAPAS	as				
DESCRICIÓN (SUCS)		And is premoved a tops phelidded	% Ret . Tamiz N*4: 4.59	%	GOLPES POR CAPA	56				

		EQLIPO EMP	LEADO		
MOLDE No MASA DEL MOLDE	X - 01 3,617 q.	VOLUMEN D		933 Manual	cm ₂
	REGI	STROS Y CALCUI	LOS DEL ENSAYO	THE TOWNS	
Masa Suelo Humedo + Molde	q.	55.55	5592	5645	2281
Masa del Molde	q.	36 17	36 17	3617	3617
Masa del Sue lo Humedo	q/cm²	19 38	1975	2028	1964
Densidad del Suelo Humedo	q/cm ⁻	2.076	2.116	2.173	2,104
Capsula No	No	TP-13	TP-14	TP-15	TP-15
Masa de la Capsula	q.	57.60	46.87	43.18	58.46
Sue lo Humedo + Capsula	q.	292.12	265.22	295.04	291.72
Masa del Suelo Seco + Capsula	q.	273.17	243.91	266.26	261,40
Masa del Agua	q.	18.95	21.31	28.78	30.32
Masa del Suelo Seco	q.	215.57	197.04	223.08	202.94
Humedad (%)	%	8.79%	10.82%	12,90%	14,94%
Promedio de Humedad (%)	No.	8.79%	10.82%	12.90%	14,94%
Densidad del Suelo Seco	g/cm²	1.908	1.909	1.924	1.831
Peso Unitario Seco	kN/m	18.72	18.72	18.87	17.95

PROCTOR MODIFICADO	: ASTM D-1557-12e1	PESO UNITARIO SECO	1.929	gr/cc	18.920	kN/m3
MET. DE PREPARACIÓN	: Hűmedo	AMETEO DADSMUH	12.50	%	12.50	9/0

OBSERVACIONES University of the ron buestas en el biocrato (biocr el solicitante y eciquezadas por el mismo.

and district construction of the second of t

G&C CONSULTORES Y CONTROTISTOS GENERALES S O C

GAB GEOTERHNIK MATERIAL TEST LABOR

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA [CBR]

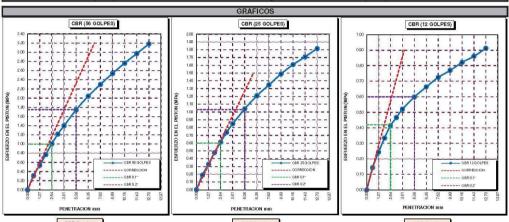
STANDARD TESTIVETHOD FOR CALFORNIA BE ARING RATIO (CBR) OF LABORATORY - COMPACTED SOLIS (ASTIMD 1883 - 16)

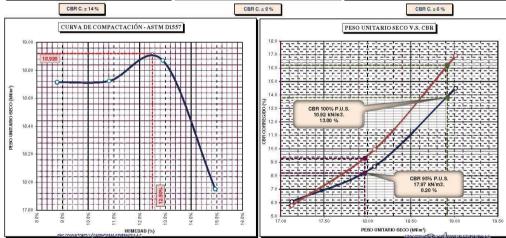
ROYECTO		hecyalors as	4 OF VIOLES	retruests	d wa	DE LOS COS	DES PRO	PILEDADES	* ISIO3 -	Ragistro		10		09/21-005					
						-mas 14L		,	500	Faths		£3	0146	arritra dal	303 (
					D.	ratos ge	HERALE	5											
шсашби	90000	PROVINCE OF			DE 7440	10						44							
OSIFICACIO		:3010 131 004	1 10% VIDE	10	SOLX	TANTE :	BACH. I.	C. HER44	LIVE TO	DEIGUE	IN DEALS		COLORDI	NUDAS	_				
XP EREN EHT	0	: EXF Q3										ESTE							
N ESTRA		: u - a1		- 1	TANANO I			20.0				NORTE	•						
ROPUND.		:0.20-1.60		Y.	CLUSTR	suelas :	(Ci) /x-	9 3				COTA	45		17.43				
		NATIONS DE LA MILI									LA EL EHE								
LASIFICACIÓN		å.	C.			1000077780	DE ENDIAL	200000	: MHodo'			DEIHH		: 40-0	190 4				
LASRICACIÓN		3 <u></u> .	A-6 [3]	33			OTANIOS	ROSSING .	: 18.92		50,50,50,500	E NAROTIL		:Hansh					
escrición (s	യവ	: Arcili ar	C+034 dC 14)	a a hou cale	a	HUNBOA	о бетани		: 12.50	4	NET. DE	PREPARAC	ION	: Púrvado	_				
OLDE No			œ.		н	-5			, H	•		3	_ H	7					
UNERG DE CA	PAS	201	n.		- 3		- 0		,	W		<u> </u>							
UNERO DE GO	APESPORC	Øλ	nd o		5	đ	- 3		7.	5		2	1	2					
M SOBRECURG	A CIRCULAR		n-		- 35				-	23			- 9	i i					
r some cure	A. ANULJA	210	nº nº							i	LOGICA D	J		ž					
CANDICIONES	DE LA NUEST	RA.	CBR	SINSU	HEROIR	SUND	RODO	534 S.R	ERGIR	SUNI	Rabo	SINSU	HEROR	SUND	ROID				
					ieorem lo	SYCHO	ULOSTEL	DUCTON	_										
laca Suelo Hu	meda + Nat4		- a.	140	_	_	373	119	75	C - 1	21.25	F 10	2 00	11	572				
aca del Nalde		2 00	a.	32			27.5	7.9			99.7	_	91		101				
acs del Suela			ā.	49	17-12 II.		93.5	4.1	200		Ma.	- 27	67	977	171				
dumen del Si			ere'	21		150	114	-21			110		20		20				
enddad del S	17000		aces,	2.1		44 000	217	2.0	351	0 000	140	10	200	- 27	962				
				PC-			- NI	PC -					- 25		- 74				
apeda Na laca da la Cap	eula.		ha	34			.99	as as			PC - 22		_		47				
uelo Humedo			a.	494			LA.	407		35.03							1.50		
aca del Suela			a.	449	100/ 0		4.44	443	100	474.90		400.12		-	1.92				
aca del Aqua	3400 7 040		a.	41			22	- 4		94.12		499.32						72.0	
aca dal Suala	Sam		a.	104		1	1.22		142.00		433.37		1.47		0.25				
de Humadad	-		4	12.5	-	5 757	#1Te	12.5	21	-	47.	-	.T.		217.				
rameda de H			- 4	12.5			30%	12.5			40%		2500		1500				
enddad del S			grere"	1.9	0.00	1.5	929	1.5	707.50	1	34 Z	-	147	1.5	747				
aca Uniterio S			khay"	19.6	314	19.	.013	15.4	351	18	.000	17.	179	17	.131				
						CARLIN	i carbai												
						EXPAN		_											
Fee	ha	Hara	Tlempo	DI			ndân	DE	at I		an dân	0	=		nd ån				
150	130000	10000	0:00:00	479	v r	0.00	9.00	347	œ	mm 0.00	9,00	40	1.50	0.00	9.				
		+	24:00:00	304		0.62	0.49	334		0.29	0.70		1.00	128	1.7				
		1	48:00:00	311		0.30	10.03	395		1.22	0.96		6.50	1.44	1.				
			72:00:00	517	_	0.97	9.77	301		1.44	1.1.4		.00	1.59	1.				
		1	96:00:00	324		1.14	929	204		1.45	1.14		1.00	1.79	1.				
		-				PENE TR	10000						_						
PENETR	restate:		1 2	_		77777	100000												
PENETR	ACTON:	Патра	Carga Extandar		NOLDER	6	N+S CBA	DANGE OF THE PARTY OF	NOLDEN	4	N-4	(C	NOLDE N		N+7				
mm	Pulg.	100	Kg-France c	LECTURA.	Kar ama	Nps	Carr.	LECTURA "Neg"	Kay am	Npa	Carr.	LECTURA "Neg"	Kq (am 3	Nps	Ca				
0.00	୍ଷ	60:00	-	0.0	0.00	0.00		0.0	0.00	0.00	T	0.0	0.00	0.00	77				
0.65	0.025	90:30		612	4.10	0.31		37 A	1.93	0.19	$\overline{}$	23.3	1.40	0.14					
1.27	0.050	a1:00	8 8	195.2	5.47	0.54	2	64.3	3.44	0.44		40.0	2.43	0.24	3				
1.90	0.075	01:30	1	151.2	7.21	0.77	1	94.2	4.27	0.43		63.5	1.40	LE.D	3				
2.54	0.100	02:00	7031	1921.1	10.24	1.00	14.49	49 (202) 62		0.61	5.70	31.7	4.22	0.41	d				
3.17	0.15	02:30	300.63	259.7	12.59	1.21	15	145.4	7.31	9.74		91.9	4.75	0.47	1				
3.81	0.150	Q5:00	100	275.4	14.25	1.40	3	147.1	3.64	0.85		102.6	01.6	0.52					
5.05	Q.200	04:00	105.46	344.7	17.76	1.74	16.91	205.1	10.60	1.04	9.95	118.1	0.10	0.60	. 5				
6.35	0.250	05:00	100	402.7	20 21	2.04	()	2.53.2	12.31	1.21		150.2	0.70	0.60	3				
7.62	0.300	OB: OG	20 3	411.1	23.42	2.50	3	265.2	13.74	1.45		142.9	7.47	0.72	18				
5.59	0.350	Ø:00	8 8	500.2	25.25	2.54	(0)	291.6	15.17	1.49		151.2	724	0.77	37				
10.16	0.400	05:00		144.0	₫.14	2.76		317.3	16.40	1.01		162.0	3.47	0.22					
	0.450	GP:00	18 8	201.9	51.25	2.97		447.1	17.42	1.71		169.2	3.73	0.26	13.				
11.43	_0.500			0.27.5	1/ 41	4.18	_	457.9	13.50	1.31	_	1,20,2	-2.194	J.94.					

Cartificado PENT-LE-140-3030/R3388; Cartificado PENT-LE-036-3030/98001003 Currio Cartifica

Management of the control of the con

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA (CBR)


STANDARD TEST METHOD FOR CALIFORNIA BEARING RATIO (CBR) OF LABORATORY - COMPACTED SOILS (ASTM D 1883 - 16)


Registro Nº: T_UCV_F-09/21-005-G&C INCORPORACIÓN DE VIDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES FÍSICO - MECÁNICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL, PUNO-2021 PROYECTO echa : 01 de Setiembre del 2021

		DATOS GENERALES		
UBICACIÓN	PROVINCIA DE PUNO - DEPAR	RTAMENTO DE PUNO		
DOSIFICACION	; SUELO PATRON + 10% VIDRIO	COLTOTTANTE : DAGU Y O FRANK FINGS RODRYGUET ACOUST		COORDENADAS
EXPERIMENTO	EXP 03	SOLICITANTE: BACH. I.C. FRANK ELVIS RODRIGUEZ ASQUI	ESTE :	
MUESTRA	: M - 01	TAMANO MÁXIMO: 1/2 in.	NORTE :	
PROFUND.	: 0.20 - 1.60 m.	CLASIF, SUELOS: (CL) / A-6 (5)	COTA :	m.s.n.m

DATOS DE L	A MUES	TRA		DATOS PA	ARA EL ENSAYO			
CLASIFICACIÓN (SUCS)	8	CL	NORMA	: ASTM D-1557-12e1	PESO UNITARIO SECO	100	18.92	kN/m3
CLASIFICACIÓN (AASHTO)	B	A-6 (5)	METODO DE ENSAYO	: Método "A"	PESO UNITARIO SECO AL 95%	ij	17.97	kN/m3
DESCRICIÓN (SUCS)	; cilla arer	nosa de baja plasticio	TIEMPO DE INMERSIÓN	: 4 Días (96 Horas)	HUMEDAD ÓPTIMA		12.50	%

CBR (100% DE M.D.S.) 0.1	%	13.80 % CE	BR (100% DE M.D.S.) 0.2"	%	16.20 %
CBR (95% DE M.D.S.) 0.1"	%	8.20 % CE	BR (95% DE M.D.S.) 0.2"	%	9.30 %

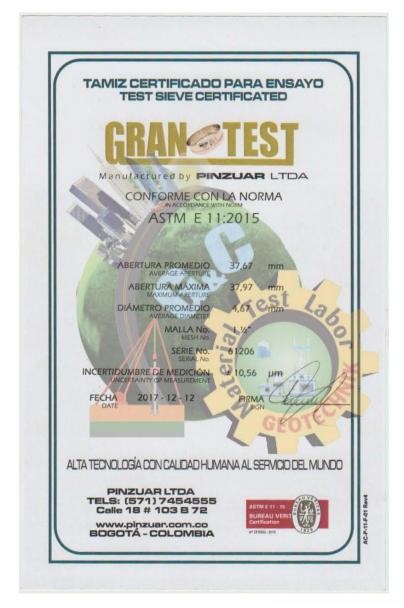
OBSERVACIONES Unit as rue estra s fueron puestas en el laboratorio por el solicitante y etiquetadas por el mismo.

Certificado N° MT-LF-240-2020/R3283; Certificado N° MT-LF-026-2020/G&C01003

Anexo 7: Certificado de calibración de los equipos.

G&C CONSULTORES Y CONTRATISTAS GENERALES S.A.C.

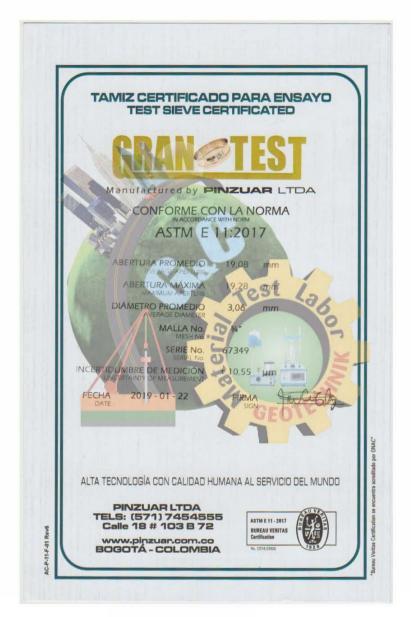
G&C GEOTECHNIK MATERIAL TEST LABOR

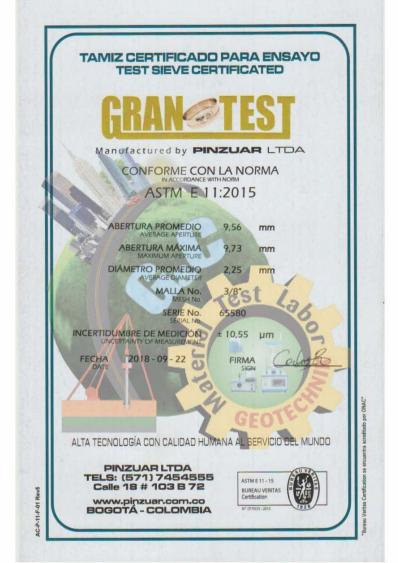


G&C GEOTECHNIK MATERIAL TEST LABOR.

LABORATORIO DE INVESTIGACIÓN & ENSAYO DE MATERIALE:

G&C GEOTECHNIK MATERIAL TEST LABOR


LABORATORIO DE INVESTIGACIÓN & ENSAYO DE MATERIALES



G&C GEOTECHNIK material test labor

G&C GEOTECHNIK MATERIAL TEST LABOR

LABORATORIO DE INVESTIGACIÓN & ENSAYO DE MATERIALES

G&C GEOTECHNIK MATERIAL TEST LABOR

Manufactured by PINZUAR LTDA

CONFORME CON LA NORMA IN ACCORDANCE WITH NORM

ASTM E 11

ABERTURA PROMEDIO

2339,25 µm

ABERTURA MÁXIMA

2390,00 µm

DIAMETRO PROMEDIO

923,50

MALLA No.

SERIE No.

65294 ST

± 20,30 μm

INCERTIDUMBRE DE MEDICIÓN

FIRMA

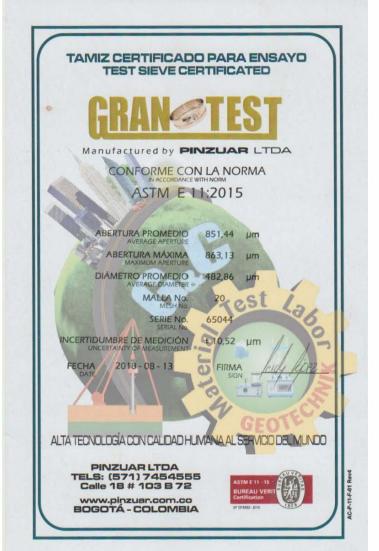
2018 - 08 - 30

100

ALTA TECNOLOGÍA CON CALIDAD HUMANA ADSERVICIO DEL MUNDO

PINZUAR LTDA TELS: (571) 7454555 Calle 18 # 103 B 72

www.pinzuar.com.co BOGOTÁ - COLOMBIA



G&C GEOTECHNIK MATERIAL TEST LABOR

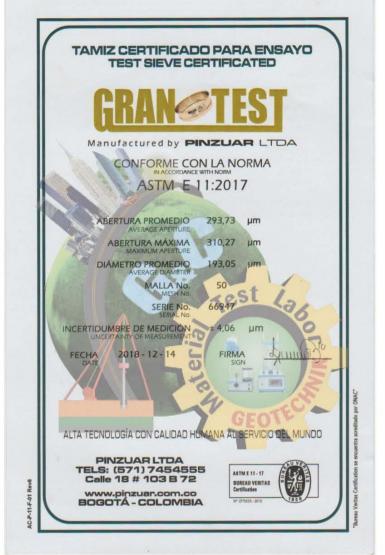
LABORATORIO DE INVESTIGACIÓN & ENSAYO DE MATERIALES

G&C GEOTECHNIK MATERIAL TEST LABOR

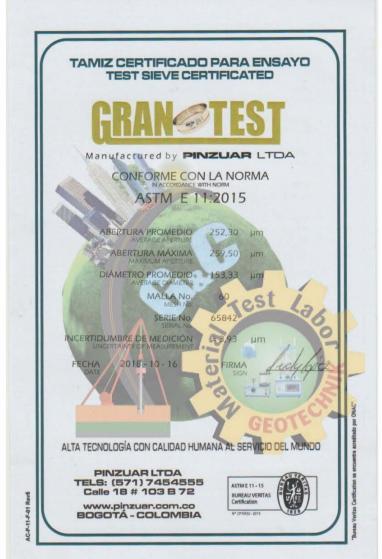
ABORATORIO DE INVESTIGACIÓN & ENSAYO DE MATERIALES



G&C GEOTECHNIK MATERIAL TEST LABOR


LABORATORIO DE INVESTIGACIÓN & ENSAYO DE MATERIA

G&C GEOTECHNIK MATERIAL TEST LABOR



G&C GEOTECHNIK MATERIAL TEST LABOR

G&C GEOTECHNIK MATERIAL TEST LABOR

ABORATORIO DE INVESTIGACIÓN & ENSAYO DE MATERIALES

G&C GEOTECHNIK MATERIAL TEST LABOR

LABORATORIO DE INVESTIGACIÓN & ENSAYO DE MATERIALES

servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN MT - LL - 026 - 2019

Área de Metrología Laboratorio de Longitud

Página 1 de 3

1. Expediente 190075

2. Solicitante G&C CONSULTORES Y CONTRATISTAS

GENERALES S.A.C.

3. Dirección Av. Simon Bolivar Nº 2740, Puno - Puno -

PUNO

4. Instrumento de Medición DIAL

Alcance de indicación 0 mm a 25 mm

División de Escala /

Resolución

0,01 mm

Marca BAKER

Modelo JO8A

Número de Serie R3288

Procedencia NO INDICA

Identificación NO INDICA

Tipo de indicación ANALÓGICO

5. Fecha de Calibración 2019-12-22

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

METROLOGÍA & TÉCNICAS S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui

declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

Fecha de Emisión

Jefe del Laboratorio de Metrologia

AN C. QUISPE MORALES

out an Laborator

Sello

OGIA & TECHOOS SALU LABORATORIO SALU PERU

2019-12-22

Metrología & Técnicas S.A.C. Av. San Diego de Alcalá Mz F1 Lote 24 - Urb. San Diego - Lima - Perú Telf.: (511) 540-0642 Cel.: (511) 971 439 272 / 997 846 766 / 942 635 342 / 971 439 282 RPC: 940037490

email: metrologia@metrologialecnicas.com ventas@metrologiatecnicas.com calidad@metrologiatecnicas.com WEB: www.metrologiatecnicas.com

CERTIFICADO DE CALIBRACIÓN MT - LL - 026 - 2019

Área de Metrología Laboratorio de Longitud

Página 3 de 3

11. Resultados de Medición

ALCANCE DEL ERROR DE INDICACIÓN (fe)

VALOR PATRÓN	INDICACIÓN DEL COMPARADOR	ERROR DE INDICACIÓN
(mm)	(mm)	(µm)
2,500	2,501	1
5,000	5,002	2
7,500	7,504	4
10,000	10,002	2
12,500	12,503	3
15,000	15,000	0
17,500	17,505	5
20,000	20,002	2
22,500	22,503	3
25,000	25,001	1

Alcance del error de indicación (fe): 5 µm

Incertidumbre del error de indicación : ±3 µm para (k=2)

ALCANCE DEL ERROR DE REPETIBILIDAD (fw.)

VALOR PATRÓN (mm)	INDICACIÓN DEL COMPARADOR (mm)	ERROR DE INDICACIÓN (µm)
	17,502	2
	17,504	4
17,500	17,502	2
	17,501	1
	17,501	1

Error de Repetibilidad (fw): 3 µm

Incertidumbre del error de indicación : ± 3 µm para (k=2)

12. Incertidumbre

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%. La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Metrología & Técnicas S.A.C.

Av. San Diego de Alcalá Mz F1 Lote 24 - Urb. San Diego - Lima - Perú Telf: (511) 540-0642 Cel.: (511) 971 439 272 / 997 846 766 / 942 635 342 / 971 439 282 RPC: 940037490

email: metrologia@metrologiatecnicas.com ventas@metrologiatecnicas.com calidad@metrologiatecnicas.com WEB: www.metrologiatecnicas.com

CERTIFICADO DE CALIBRACIÓN MT - LL - 026 - 2019

Área de Metrología Laboratorio de Longitud

Página 2 de 3

6. Método de Calibración

La calibración se realizó según el método descrito en el PC-014: "Procedimiento de Calibración de Comparadores de Cuadrante (Usando Bloques)" del SNM-INDECOPI. Segunda Edición.

7. Lugar de calibración

Laboratorio de Longitud de METROLOGÍA & TÉCNICAS S.A.C. - METROTEC Av. San Diego de Alcalá Mz. F1 lote 24 Urb. San Diego, San Martín de Porres - Lima

8. Condiciones Ambientales

	Inicial	Final
Temperatura	26,2 °C	26,2 °C
Humedad Relativa	72,1 %	72,1 %

9. Patrones de Referencia

Trazabilidad	Patrón utilizado	Certificado/Informe de calibración			
Patrones del INDECOPI-SNM Bloques patrón (Grado K) Patrones del INDECOPI-SNM Comparador mecánico de bloques	BLOOMEO BATRÓN (O. 1. 10.	BV 111.011			
	BLOQUES PATRÓN (Grado K) LA 01 021	DM - INACAL LLA-C-091-2018			

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.

Metrología & Técnicas S.A.C. metriologia & recinicas S.A.C. Av. San Diego de Alcalá Mz F1 Lote 24 - Urb. San Diego - Lima - Perú Telf.: (511) 540-0642 Cel.: (511) 971 439 272 / 997 846 766 / 942 635 342 / 971 439 282 RPC: 940037490

email: metrologia@metrologiatecnicas.com ventas@metrologiatecnicas.com calidad@metrologiatecnicas.com WEB: www.metrologiatecnicas.com

CERTIFICADO DE CALIBRACIÓN MT - LT - 013 - 2019

Área de Metrología Laboratorio de Temperatura

Página 1 de 6

1	Expediente	190053

2. Solicitante **G & C CONSULTORES Y CONTRATISTAS** GENERALES S.A.C.

3. Dirección Av. Simón Bolivar Nº 2740, Puno - Puno -PUNO

4. Equipo HORNO

Alcance Máximo De 0 °C a 150 °C

Marca ALFA

Modelo G-030/250

Número de Serie NO INDICA

Procedencia TURQUIA

Identificación MT-191 (*)

Ubicación NO INDICA

Descripción

Alcance

División de escala /

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

METROLOGÍA & TÉCNICAS S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

Resolución	0,1 -C	0,1 °C			
Tipo	DIGITAL	TERMÓMETRO ANALÓGICO			

5. Fecha de Calibración 2019-12-19

Fecha de Emisión Jefe del Laboratorio de Metrología

Controlador /

Selector

0°C a 150°C

Sello

Instrumento de

medición

0°C a 150°C

2019-12-19

JUAN C. OUISPE MORALES

Metrología & Técnicas S.A.C.

Av. San Diego de Alcalá Mz F1 Lote 24 Urb. San Diego - LIMA - PERÚ Telf.: (511) 540-0642

Cel.: (511) 971 439 272 / 942 635 342 / 971 439 282 RPM: #971439272 / #942635342 / #971439282

RPC: 940037490

email: metrologia@metrologiatecnicas.com ventas@metrologiatecnicas.com WEB: www.metrologiatecnicas.com

CERTIFICADO DE CALIBRACIÓN MT - LT - 013 - 2019

Área de Metrología Laboratorio de Temperatura

Página 2 de 6

6. Método de Calibración

La calibración se efectuó por comparación directa de acuerdo al PC-018 "Procedimiento para la Calibración de Medios Isotérmicos con Aire como Medio Termostatico", 2da edición, publicado por el SNM-INDECOPI, 2009.

7. Lugar de calibración

Las instalaciones de la empresa TÉCNICAS CP S.A.C. Av. Santa Ana Mz H lote 2 Urb. San Diego, San Martín de Porres - Lima

8. Condiciones Ambientales

	Inicial	Final
Temperatura	24,7 °C	24,7 °C
Humedad Relativa	69 %	69 %

El tiempo de calentamiento y estabilización del equipo fue de 120 minutos. El controlador se seteo en 110 °C

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Certificado y/o Informe de calibración
Dirección de Metrología INACAL LT - 560 - 2017	TERMÓMETRO DE INDICACIÓN	METROLOGIA & TECNICAS SAC
Dirección de Metrología INACAL LT - 562 - 2017	DIGITAL CON 12 CANALES	MT - LT - 104 - 2018

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación de CALIBRADO.
- (*) Código de identificación indicado en una etiqueta adherido al equipo.
- La periodicidad de la calibración depende del uso, mantenimiento y conservación del instrumento de medición.

Metrología & Técnicas S.A.C.

Av. San Diego de Alcalá Mz F1 Lote 24 Urb. San Diego - LIMA - PERÚ

Telf: (511) 540-0642 Cel.: (511) 971 439 272 / 942 635 342 / 971 439 282 RPM: #971439272 / #942635342 / #971439282

RPC: 940037490

email: metrologia@metrologiatecnicas.com ventas@metrologiatecnicas.com WEB: www.metrologiatecnicas.com

CERTIFICADO DE CALIBRACIÓN MT - LT - 013 - 2019

Área de Metrología Laboratorio de Temperatura

Página 3 de 6

11. Resultados de Medición

PARA LA TEMPERATURA DE 110 °C

Tiempo (min)	Termómetro del equipo (°C)	TEMPERATURAS EN LAS POSICIONES DE MEDICIÓN (°C)											
		NIVEL SUPERIOR				NIVEL INFERIOR				Tprom	máx-T _m		
		1	2	3	4	5	6	7	8	9	10	(°C)	
00	110,0	112,0	109,7	108,9	107,6	111,4	105,9	110,0	110,1	108,9	109,3	109,4	6,1
02	110,0	112,0	109,8	108,9	107,4	111,5	105,7	109,8	110,1	108,6	109,3	109,3	6,3
04	110,0	112,0	109,9	108,9	107,7	111,3	106,1	109,6	110,0	108,6	109,3	109,3	5,9
06	110,0	112,0	110,0	109,2	107,5	111,3	105,7	109,9	110,1	108,8	109,3	109,4	6,3
08	110,0	111,6	110,1	109,1	107,6	111,3	106,2	109,9	110,2	108,8	109,4	109,4	5,4
10	110,0	112,1	110,0	109,0	107,6	111,4	106,2	109,9	110,4	108,6	109,3	109,4	5,9
12	110,0	112,1	109,9	108,9	107,8	111,4	106,1	109,8	110,0	108,8	109,5	109,4	6,0
14	110,0	112,0	110,1	109,1	107,6	111,4	106,0	109,9	110,2	108,5	109,6	109,4	6,0
16	110,0	111,8	109,7	109,1	107,5	111,4	105,6	109,8	110,3	108,8	109,5	109,3	6,2
18	110,0	112,0	110,0	109,1	107,6	111,4	106,1	109,9	110,4	108,7	109,6	109,5	5,9
20	110,0	112,0	110,2	109,1	107,7	111,4	105,9	110,3	110,2	108,8	109,4	109,5	6,1
22	110,0	111,9	109,9	109,4	107,8	111,2	106,0	110,1	110,5	108,8	109,4	109,5	5,9
24	110,0	112,1	110,2	109,0	107,6	111,5	105,6	109,9	110,2	108,6	109,3	109,4	6,5
26	110,0	111,8	110,0	108,9	107,5	111,3	106,1	110,0	110,2	108,8	109,3	109,4	5,7
28	110,0	111,7	109,7	109,2	107,4	111,2	105,5	109,9	110,2	108,5	109,3	109,2	6,2
30	110,0	111,7	109,9	109,0	107,4	111,3	106,4	109,8	110,2	108,1	109,5	109,3	5,3
32	110,0	111,9	109,5	109,0	107,3	111,3	106,0	109,6	110,3	108,3	109,2	109,2	5,9
34	110,0	111,9	109,8	109,0	106,9	111,4	106,1	109,8	110,2	108,7	109,2	109,3	5,8
36	110,0	111,8	109,9	109,2	107,7	111,5	106,1	110,0	110,1	109,0	109,5	109,5	5,7
38	110,0	111,9	109,9	109,1	107,8	111,4	105,8	110,0	110,4	109,1	109,5	109,5	6,1
40	110,0	112,1	109,9	109,2	107,6	111,5	105,7	109,9	110,4	108,8	109,2	109,4	6,4
42	110,0	112,2	109,9	109,0	107,6	111,6	105,9	109,9	110,1	108,9	109,3	109,4	6,3
44	110,0	112,0	110,2	109,2	107,6	111,9	106,2	110,0	110,4	109,0	109,5	109,6	5,8
46	110,0	112,0	110,3	109,4	108,1	111,7	106,2	110,2	110,3	109,1	109,7	109,7	5,8
48	110,0	112,1	110,2	109,2	107,7	111,8	105,9	110,1	110,3	109,0	109,5	109,6	6,2
50	110,0	112,5	110,3	109,6	107,7	111,7	106,6	110,3	110,6	108,9	109,8	109,8	5,9
52	110,0	112,3	110,3	109,5	107,7	111,8	106,5	110,2	110,6	109,0	109,5	109,7	5,8
54	110,0	112,5	110,5	109,5	108,1	111,9	106,4	110,3	110,5	109,0	109,6	109,8	6,1
56	110,0	112,2	110,4	109,4	107,9	112,0	106,0	110,4	110,7	109,0	109,7	109,8	6,2
58	110,0	112,5	110,6	109,5	108,0	112,0	106,7	110,3	110,9	108,8	109,6	109,9	5,8
60	0,0			1	M. F.	0.00	3. 0	200			3,0	320	10
PROM	110,0	112,0	110,1	109,1	107,6	111,5	106,0	110,0	110,3	108,7	109,4	109,5	70
MAX.	110,0	112,5	110,6	109,6	108,1	112,0	106,7	110,4	110,9	109,1	109,8	100	
T.MIN	0,0	111,6	109,5	108,9	106,9	111,2	105,5	109,6	110,0	108,1	109,2	10	18
DTT	110.0	0.9	1.1	0.8	1.7	0.8	1.2	0.8	0.0	1.0	0.6	1.5	110

0,8

Metrología & Técnicas S.A.C. Av. San Diego de Alcalá Mz F1 Lote 24 Urb. San Diego - LIMA - PERÚ Telf.: (511) 540-0642 Cel.: (511) 971 439 272 / 942 635 342 / 971 439 282 RPM: #971439272 / #942635342 / #971439282 RPC: 940037490

email: metrologia@metrologiatecnicas.com ventas@metrologiatecnicas.com WEB: www.metrologiatecnicas.com

METROLOGÍA & TÉCNICAS S.A.C.

CERTIFICADO DE CALIBRACIÓN MT - LT - 013 - 2019

Área de Metrología Laboratorio de Temperatura

Página 4 de 6

PARÁMETRO	VALOR (°C)	INCERTIDUMBRE EXPANDIDA (°C)
Máxima Temperatura Medida	112,5	0,5
Mínima Temperatura Medida	105,5	0,5
Desviación de Temperatura en el Tiempo	1,2	0,4
Desviación de Temperatura en el Espacio	6,0	0,4
Estabilidad Medida (±)	0,6	0,26
Uniformidad Medida	6,5	0,4

T.PROM : Promedio de la temperatura en una posición de medición durante el tiempo de calibración. Tprom : Promedio de las temperaturas en la diez posiciones de medición para un instante dado.

T.MAX : Temperatura máxima T.MIN : Temperatura mínima.

DTT : Desviación de Temperatura en el Tiempo.

Para cada posición de medición su "desviación de temperatura en el tiempo" DTT está dada por la diferencia entre la máxima y la mínima temperatura en dicha posición.

Entre dos posiciones de medición su "desviación de temperatura en el espacio" está dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

La uniformidad es la máxima diferencia medida de temperatura entre las diferentes posiciones espaciales para un mismo instante de tiempo.

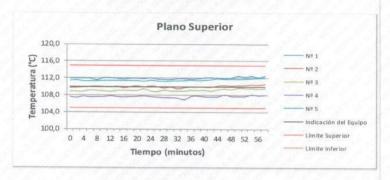
La estabilidad es considerada igual a \pm 1/2 DTT.

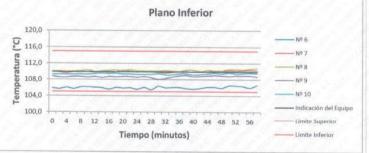
Metrología & Técnicas S.A.C.

Av. San Diego de Alcalá Mz F1 Lote 24 Urb. San Diego - LIMA - PERÚ Telf.: (511) 540-0642

Cel.: (511) 971 439 272 / 942 635 342 / 971 439 282 RPM: #971439272/ #942635342 / #971439282 RPC: 940037490

email: metrologia@metrologiatecnicas.com ventas@metrologiatecnicas.com WEB: www.metrologiatecnicas.com


METROLOGÍA & TÉCNICAS S.A.C.


CERTIFICADO DE CALIBRACIÓN MT - LT - 013 - 2019

Área de Metrología Laboratorio de Temperatura

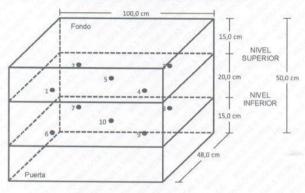
Página 5 de 6

DISTRIBUCIÓN DE TEMPERATURAS EN EL EQUIPO TEMPERATURA DE TRABAJO: 110 °C ± 5 °C

Metrología & Técnicas S.A.C. Av. San Diego de Alcalá Mz F1 Lote 24 Urb. San Diego - LIMA - PERÚ Telf.: (511) 540-0642

Cel.: (511) 971 439 272 / 942 635 342 / 971 439 282 RPM: #971439272 / #942635342 / #971439282 RPC: 940037490

email: metrologia@metrologiatecnicas.com ventas@metrologiatecnicas.com WEB: www.metrologiatecnicas.com


METROLOGÍA & TÉCNICAS S.A.C.

CERTIFICADO DE CALIBRACIÓN MT - LT - 013 - 2019

Área de Metrología Laboratorio de Temperatura

Página 6 de 6

DISTRIBUCIÓN DE LOS TERMOPARES

Los sensores 5 y 10 están ubicados en el centro de sus respectivos niveles.

Los sensores del 1 al 4 y del 6 al 9 se colocaron a 16 cm de las paredes laterales y a 8 cm del fondo y frente del equipo a calibrar.

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estandar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

Fin del documento

Telf.: (511) 540-0642 Cel.: (511) 971 439 272 / 942 635 342 / 971 439 282 RPM: #971439272 / #942635342 / #971439282

RPC: 940037490

email; metrologia@metrologiatecnicas.com ventas@metrologiatecnicas.com WEB: www.metrologiatecnicas.com

Página 1 de 3

técnicas

Prestar servicios con política de mejoramiento continuo y cumplimiento con las normas y

Visión: Lograr la confianza de nuestros

clientes en el desarrollo de sus empresas a través de nuestros servicios.

alcanzar el liderazgo en el mercado, y de esta manera obtener para nuestros

empleados la consecución de

ideales en el plano intelectual y personal, con constante investigación e innovación, en la

especificaciones

requeridas equipos ensayos

Tenemos

búsqueda de la máxima exactitud en la medición de

CERTIFICADO DE CALIBRACIÓN CLM-808-2019

Solicitante : G&C CONSULTORES Y

CONTRATISTAS GENERALES SAC

Dirección : AV. SIMON BOLIVAR 2740

PUNO

Instrumento de Medición : COPA CASA GRANDE

 Marca:
 : PINZUAR

 Modelo:
 : PS-11

 Serie:
 : 1591

 Identificación:
 : NO INDICA

 Procedencia:
 : COLOMBIA

 Contador
 : ANALOGO

División minima:

Lugar de Calibración : Lab. Longitud de Metrotest E.I.R.L.

Fecha de Calibración : 2019-29-13 Fecha de Emisión : 2019-29-13

Método de Calibración Empleado

La calibración se realizó por comparación directa uasando un tacometro y un Cronometro Patrón certificados, empleando el método de comparación entre las indicaciones de lectura del equipo Casagrande a calibrar versus las revoluciones por minuto medidas con el tacómetro patrón en un tiempo determinado.

Tomando Como referencia la Norma ASTM D 4318 y el Manual de Ensayos de Materiales (EM2000)

Determinación de Limite Liquido de los Suelos MTC E 110 - 2000.

Observaciones:

- Se colocó una etiqueta con la indicación "CALIBRADO".
- Base endurecida Cumple con su referencia a rebote Seco

Los errores encontrados son menores a los Errores Máximos Permitidos (e.m.p) para su Clase de Exactitud. Los resultados indicados en el presente documentos son validos en el momento de la calibración y se refieren exclusivamente al instrumento calibrado, no debe utilizarse como certificado de conformidad de producto. METROTEST EIRL. No se hace responsable por los perjuicios que pueda ocasionar el uso incorrecto o inadecuado de este instrumento y tampoco de interpretaciones incorrectas o indebidas del presente documento. El usuario es responsable de la recalibración de sus instrumentos a intervalos apropiados de acuerdo al uso, conservación y mantenimiento del mismo y de acuerdo con las disposiciones legales vigentes. El presente documento carece de valor sin firmas y sellos.

• (*) Código inscrito en una etiqueta adherida al instrumento.

Diag

Luiggil Asenjo G. Jefe de Metrologia

Certificado de Calibración CLM-808-2018 Página 2 de 3

Condiciones Ambientales:

	Inicial	Final
Temperatura	21,2 °C	21,0 °C
Humedad Relativa	51 %	52,0 %

PATRONES DE REFERENCIA:

Los resultados de la calibración realizada son trazables a la Unidad de Medida de los Patrones Nacionales de Masa del Servicio Nacional de Metrología SNM – INDECOPI en concordancia con el sistema Internacional de Unidades de Medida (SI) y el sistema Legal de Unidades del Perú (SLUMP).

Trazabilidad	Patrón utilizado	Certificado de calibración
Patrones de referencia de METROTEST E.I.R.L.	Pie de rey Patrón	CLM-001-2018
Patrones de referencia del DM-INACAL	Cronometro Patrón de 0,01 seg de resolución	LTF-C-111-2018
Patrones de referencia del DM-INACAL	Tacómetro Patrón de 0,1 RPM de resolución	LTF-C-108-2018

RESULTADOS

APARATO DE LIMITE LIQUIDO

		行工員		Dimen	siones	
	Descripció	n	Metrico	Tolerancia	Ingles	Tolerancia
			(mm)	(mm)	(in)	(in)
de	Radio de la copa	A	54,472	54 ±0.5	2,14	0,020
Conjunto de la cazuela	Espesor de la copa	В	1,934	2 ±0.1	0,08	0,004
Cor	Profundidad de la copa	С	26,554	27 ±0.5	1,05	0,020
	Copa desde la guia del elevador hasta la base	N	48,096	47 ±1	1,89	0,039
Base	Espesor	K	50,72	50 ±2	2,00	0,08
	Largo	L	150,36	150 ±2	5,92	0,08
	Ancho	M	125,13	125 ±2	4,93	0,08

RANURADOR

Espesor	a	10,00	0,1	0,39	0,004
Borde Cortante	b	2,244	0,1	0,09	0,004
Ancho	С	13,26	0,1	0,52	0,004

Luiggi Asenja G. Jefe de Metrología

Certificado de Calibración CLM-808-2018 Página 3 de 3

CONTOMETRO

N° Cuentas del Patrón	N° Cuentas del instrumento	Error de N° de cuentas	Incertidumbre de N° cuentas
2	2	0	1
5	5	0	1
10	10	0	1
15	15	0	1
20	20	0	1
25	25	0	1
30	30	0	1

Incertidumbre

La incertidumbre de medición reportada ha sido calculada de acuerdo con las Guías OIML G1-100-en: 2008 (JCGM 100: 2008) y OIML G1-104-en: 2009 (JCGM 104: 2009) "Guía para la expresión de la incertidumbre en las Mediciones", la cual sugiere desarrollar un modelo matemático que tome en cuenta los factores de influencia durante La Incertidumbre indicada no incluye una estimación de las variaciones a largo plazo.

variaciones a largo plazo.

La Incertidumbre de medición reportada se denomina Incertidumbre expandida (U) y se obtiene de la multiplicación de la Incertidumbre Estándar Combinada (u) por el factor de cobertura (k).

Generalmente se expresa un actor k=2 para un nivel de confianza de aproximadamente 95%.

Fin del Certificado de Calibración

Solicitante Dirección

G&C CONSULTORES Y

CONTRATISTAS GENERALES SAC

AV. SIMON BOLIVAR N° 2740

Equipo de Medición

BALANZA NO AUTOMÁTICA

OHAUS SE602F

Modelo

Serie

B423425341

Identificación

NO INDICA

Procedencia

NO INDICA

Capacidad Máxima

600 g

División de escala (d)

División de verificación (e)

0,01 g

Tipo

0,1 g **ELECTRONICA**

Ubicación

Lab. Masa de Metrotest E.I.R.L.

Fecha de Calibración

2019-12-13

Método de Calibración

Comparación Directa. Procedimiento de Calibración de Balanzas de Funcionamiento no Automático Clase III y Clase IIII. PC - 001 del SNM-INDECOPI, Tercera Edición enero 2010.

Condiciones Ambientales

	Inicial	Final
Temperatura	19,7 °C	19,5 °C
Humedad Relativa	45 %	44 %

Fecha de emisión

Jefe de Metrología

Misión: Prestar servicios con política de

mejoramiento continuo y cumplimiento con las normas y especificaciones técnicas

Lograr la confianza de nuestros clièntes en el desarrollo de sus empresas a través de nuestros

alcanzar el liderazgo en el mercado, y de esta manera obtener para nuestros empleados la consecución de

personal, con constante investigación e innovación, en la búsqueda de la managementa.

exactitud en la medición de

medición

requeridas en equipos para ensayos.

Visión:

servicios Tenemos alcanzar el

TEST

2018-09-13

Observaciones

Automático; el limite inferior (capacidad mínima) de medida para esta balanza no debe ser menor a 0.2 g

Los Errores Máximos Permitidos (emp) mostrados en este documento corresponden a los emp para balanzas en uso de funcionamiento no automático de clase de exactitud III según NMP:003:2009 - 2da Edición

Los resultados del presente documento, son válidos únicamente para el objeto calibrado y se refieren al momento y a las condiciones en que fueron ejecutadas las mediciones, al solicitante le corresponde definir la frecuencia de calibración en función al uso, conservación y mantenimiento del instrumento de medición

Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guía para la Expresión de la incertidumbre en la medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95 %.

Trazabilidad

Este certificado de calibración documenta la trazabilidad a los patrones nacionales e internacionales que materializan las unidades físicas de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Certificado de Calibración
Patrones de Referencia de INACAL-DM	Juego de pesas (Clase E2)	LM-597-2018

Página 2 de 4

Resultados de la Medición

Fecha de Calibración	2018-09-13
Identificación de la balanza	NO INDICA
Ubicación de la balanza	LAB. MASA DE METROTEST E.I.R.L.
Objection de la balanza	Jr. Aristides Sologuren Nº484 Doto 102 Urb. Parques de Villa Sol - Los Olivos

INSPECCIÓN VISUAL

Sistema de traba	NO TIENE		
Plataforma	TIENE	Nivelación	TIENE
Oscilación Libre	TIENE	Cursor	NO TIENE
Ajuste de cero	TIENE	Escala	NO TIENE

ENSAYO DE REPETIBILIDAD

Carga L	1= 300,0	0 g
1	ΔL	E
(g)	(g)	(g)
300,00	0,007	0,0
300,00	0,007	0,0
300,00	0,007	0,0
300,00	0,007	0,0
300,00	0,007	0,0
300,00	0,007	0,0
300,00	0,007	0.0
300,00	0,007	0,0
300,00	0,007	0,0
300,00	0,007	0,0
	Δ Emáx (g)	0,0
	emp(g)	0,3

Carga L	2= 600,0	0 g
-1	ΔL	E
(g)	(g)	(g)
599,96	0,007	0,0
599,96	0,007	0,0
599,96	0,007	0,0
599,96	0.007	0,0
599,96	0,007	0,0
599,96	0,007	0,0
599,96	0,007	0,0
599,96	0,007	0,0
599,96	0,007	0,0
599,96	0,007	0,0
0,	Δ Emáx (g)	0,0
100	emp(g)	0,3

ENSAYO DE PESAJE

Carga (g)	CA	ARGA CRE	CIENTE		CAF	RGA DECE	RECIENT	E	emp ±(g)
	(g)	ΔL (g)	E (g)	Ec (g)	(g)	ΔL (g)	E (g)	Ec (g)	
0,10	0,10	0.006	0,0		107	1 ,0,	107	107	
0,20	0,20	0.006	0,0	0,0	0,20	0,006	0,0	0,0	0.1
1,00	1,00	0,006	0,0	0,0	1,00	0,006	0,0	0,0	0,1
5,00	5,00	0,006	0,0	0,0	5,00	0,006	0,0	0.0	0.1
50,00	50,00	0,006	0,0	0,0	50,00	0,006	0,0	0,0	0,1
100,00	100,00	0,006	0,0	0,0	100,00	0,006	0,0	0,0	0,2
200,00	200,00	0,006	0,0	0,0	200,00	0,006	0,0	0,0	0,2
300,00	300,00	0,007	0,0	0,0	300,00	0,006	0,0	0,0	0,3
400,00	400,00	0,007	0,0	0,0	400,00	0,006	0,0	0,0	0,3
500,00	500,00	0,007	0,0	0,0	500,00	0,007	0,0	0,0	0,3
600,00	600,00	0,007	0,0	0,0	600,00	0.007	0,0	0,0	0,3

Página 3 de 4

r. Aristides Sologuren eur Upto. 102 Urb. Parques de Villa Sol - Los Olivos www.metrotesteirl.com/metrotesteiglicom/ometrotesteirl.com/metrotesteiglicom/ometrotesteirl.com/emetrotesteiglicom/ometrotesteirl.com/metrotesteiglicom/ometrotesteig

ENSAYO DE EXCENTRICIDAD

1

	De	Determinación del Eo			Determinación del Error corregido Ec					
N° Carga	N°	(g)	ΔL (g)	Eo (g)	Carga (g)	(g)	ΔL . (g)	E (g)	Ec (g)	emp (g)
1	0,10	0,10	0,007	0,0	- 1	200,00	0,007	0,0	0,0	
2		0,10	0,007	0,0		200,00	0,007	0,0	0,0	1
3		0,10	0,007	0,0	200,00	200,00	0,007	0,0	0,0	0,2
4	110	0,09	0,007	0,0		200,00	0,007	0.0	0,0	
5	3	- 0,10	0,007	0,0		200,00	0,007	0,0	0,0	1

Error Máximo Permitido Indicación del instrumento

Error encontrado Ec

Error corregido Error en cero Eo

Carga incrementada

LECTURA CORREGIDA E INCERTIDUMBRE DE LA BALANZA

Lectura corregida =
$$R$$
 + 0,000002 x R
Incertidumbre Expandida = $2 \times \sqrt{0,000017 \text{ g}^2 + 0,0000000003 \times R^2}$

R Lectura, cualquier indicación obtenida después de la calibración.

Los emp para balanzas en uso de funcionamiento no automático de Capacidad Máxima: 600 g. División de verificación (e): 0,1 g y clase de exactitud III, según Norma Metrológica: Instrumento de Funcionamiento No Automático NMP:003:2009 - 2da Edición, es:

	Intervalo				
0 g	а	50 g	0,1 g		
50 g	а	200 g	0,2 g		
200 g	а	600 g	0,3 g		

CERTIFICADO DE CALIBRACIÓN MT - LF - 240 - 2020

Área de Metrología

Laboratorio de Fuerza

Página 1 de 3

5. Fecha de Calibración Fecha de Emisión	2020-11-12 Jefe del Laboratorio de Metrología	Sello
		sello carece de validez.
	-, -,	El certificado de calibración sin firma
Resolución	0,1 kgf	4
Número de Serie	221114	que lo emite.
Marca Modelo	HIGH WEIGHT 315-X8	aprobación por escrito del laboratori
Indicación	DIGITAL	Este certificado de calibración no pode ser reproducido parcialmente sin
Identificación	NO INDICA	calibración aquí declarados.
Procedencia	NO INDICA	este instrumento, ni de una incorrect interpretación de los resultados de l
Número de Serie	G8C01003	se responsabiliza de los perjuicios qu pueda ocasionar el uso inadecuado d
Modelo	NO INDICA	METROLOGÍA & TÉCNICAS S.A.C. n
Marca	KAIZA CORP	mantenimiento del instrumento d medición o a reglamento vigente.
Capacidad	5000 kgf	la ejecución de una recalibración, la cua está en función del uso, conservación
l. Equipo	PRENSA CBR	momento de la calibración. Al solicitant le corresponde disponer en su moment
. Dirección	Av. Simon Bolivar N° 2740, Puno - Puno - PUNO	Los resultados son validos en
	GENERALES S.A.C.	acuerdo con el Sistema Internacional d Unidades (SI).
2. Solicitante	G & C CONSULTORES Y CONTRATISTAS	nacionales o internacionales, qui realizan las unidades de la medición d
1. Expediente	200610	Este certificado de calibración documenta la trazabilidad a los patrones

Metrologia & Técnicas S.A.C. Av. San Diego de Alcalá Mz. F1 lote 24 Urb. San Diego , SMP , LIMA Telf: (511) 540-0642 Cel.: (511) 971 439 272 / 971 439 282

2020-11-26

ventas@metrologiatecnicas.com metrologia@metrologiatecnicas.com www.metrologiatecnicas.com

LABORATORIO S

Firmado digitalmente por Firmado digitalmente per Eleazar Cesar Chavez Raraz

Fecha: 2020.12.10 17:13:37

-05'00'

CERTIFICADO DE CALIBRACIÓN MT - LF - 240 - 2020

Área de Metrología

Laboratorio de Fuerza

Página 2 de 3

6. Método de Calibración

La calibración se realizó por el método de comparación directa utilizando patrones trazables al SI calibrados en las instalaciones del LEDI-PUCP tomado como referencia el método descrito en la norma UNE-EN ISO 7500-1 "Verificación de Máquinas de Ensayo Uniaxiales Estáticos. Parte 1: Máquinas de ensayo de tracción/compresión. Verificación y calibración del sistema de medida de fuerza." - Julio 2006.

7. Lugar de calibración

Laboratorio de Fuerza de METROLOGÍA & TÉCNICAS S.A.C. - METROTEC Av. San Diego de Acalá Mz. F1 lote 24 Urb. San Diego, San Martín de Porres - Lima

8. Condiciones Ambientales

I	Inicial	Final
Temperatura	23,2 °C	23,2 °C
Humedad Relativa	74 % HR	74 % HR

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Informe/Certificado de calibración
Celdas patrones calibradas en HOTTINGER BALDWIN MESSTECHNIK GmbH - Alemania	Celda de carga calibrado a 20 tnf con incertidumbre del orden de 0,5 %	

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- El equipo trabaja con una celda de carga, M81: ZEMIC, Modelo: H3-C3-5.0t-6B y Serie: 5.0t P2C037485

CERTIFICADO DE CALIBRACIÓN MT - LF - 240 - 2020

Área de Metrología

Laboratorio de Fuerza

Página 3 de 3

11. Resultados de Medición

1111	Indicación del Equipo		Indicación de Fuerza (Ascenso) Patrón de Referencia					
%	F_i (kgf)	F_1 (kgf)	F ₂ (kgf)	F_3 (kgf)	F _{Promedio} (kgf)			
10	500,0	502,3	502,0	502,1	502,1			
20	1000,0	1003,5	1003,0	1003,0	1003,2			
30	1500,0	1503,1	1502,8	1503,0	1503,0			
40	2000,0	2001,5	2001,3	2001,3	2001,4			
50	2500,0	2501,0	2501,0	2501,2	2501,1			
60	3000,0	3000,4	3000,2	3000,5	3000,4			
70	3500,0	3500,0	3500,1	3500,2	3500,1			
80	4000,0	3999,1	3999,2	3999,1	3999,1			
90	4500,0	4498,2	4498,1	4498,1	4498,1			
100	5000,0	4997,5	4997,3	4997,3	4997,4			
Retorn	o a Cero	0,0	0,0	0,0				

Indicación	Erro	res Encontrados er	el Sistema de Me	edición	Incertidumbre
del Equipo	Exactitud	Repetibilidad	Reversibilidad	Resol. Relativa	U (k=2)
F (kgf)	q (%)	b (%)	v (%)	a (%)	(%)
500,0	-0,42	0,06		0,02	0,21
1000,0	-0,32	0,05		0,01	0,21
1500,0	-0,20	0,02	, .	0,01	0,21
2000,0	-0,07	0,01	(444)	0,01	0,21
2500,0	-0,04	0,01		0,00	0,21
3000,0	-0,01	0,01		0,00	0,21
3500,0	0,00	0,01		0,00	0,21
4000,0	0,02	0,00		0,00	0,21
4500,0	0,04	0,00		0,00	0,21
5000,0	0,05	0,00		0,00	0,21

MÁXIMO ERROR RELATIVO DE CERO (f)	0,00 %

12. Incertidumbre

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%. La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Anexo 8: Boleta de ensayos de laboratorio.

	r.L. <mark>Y CONTRATISTAS GENERALES S.</mark> ID BR. CHANU CHANU 1 CDRA GRIF	CONTRACTOR OF PERSONS OF	BOLETADE VENTA ELECTRONI RUC: 20601125405 EB01-11	CA
PUNO - PUNO - PUNO	ATORIC DE ENGAY 2 DE MATERIALE. ATORIC DE ENSAVO DE MATERIALE.	ABORATORIC DE ENSAY	EBUI-11	
Fecha de Emisión Señar(es) DNI Tipo de Moneda	: : 28/09/2021 : FRANK ELVIS RODRIGUEZ : ASQUI : 74697051 : SOLES	LABORATION DE CYCANO DE LABORATURIO DE CYCANO DE LABORATURIO DE DICANO DE LABORATURIO DE DICANO DE LABORATURIO DE PASANO DE LABORATURIO DE ENISÁNO DE LABORATURIO DE LABORATURIO DE LABORATURIO DE LABORATURIO DE LABORATURIO DE LABORATURIO DE LABORATURIO DE LABORATURIO DE LABORATURIO DE LABORATURIO	E MATERIALES LA CONTACTARIO DE LE MATERIA DE LA COMPATURA DE L	
Observación Cantidad Unidad Medida	: Descripción	Valor Unitario(*) Descuer	nto(*) Importe de ICBPE	R
1,00 UNIDAD	SERVICIO DE ENSAYOS DE LABORATORIO PARA LA TESIS: INCORPORACION DE VIDRIO TRITURADO PARA MEJORAR LAS PROPIEDADES FISICO - MECANICAS DE SUELOS ARCILLOSOS EN LA AVENIDA INDUSTRIAL, PUNO-2021		0.00 1,109.20	0.0
		Otros Cargos :	E NATURAL STABORATORIO DE S	5/0.1
		Otros Tributos :	SHAME AND RESIDENCE OF THE PARTY OF THE PART	5/0.1
		ICBPER : Importe Total :	5/1,1	/ 0.0 09.:
S DE MAY EN NEW SERVICES	AT URIC DE ENDANG DE MATERIALE AT DECEMBER DE MATERIALE AT DESCRIPTORE	CON. UN MEL	CIENTO NUEVE Y 20/100 S	
(*) Sin impuestos.		Op. Gravada :	5/9	BAD I
	stos, de ser Op. Gravada.	Op. Exonerada :		/ 0.
	ATORIO DE ENSAVO DE MATERIA DE	Op. Inafecta:		/ 0.
		ISC:		/ 0.
		IGV:	5 <i>J</i> 1	
		IOBPER:		/ 0.
		Otros Cargos :		/ 0.
		Otros Tributos :	NE PAR LA SERVICE S	/ 0.
		Monto de ; Redondeo	AVAILABLE AND THAT SHEET	/ 0.
O DE MATERIALES CARON O DE MATERIALES CARON	AVORIO DE ENSAVO DE NATERIALE ATORIO DE ENSAVO DE NATERIALE	Importe Total :	5/ 1,1	
Esta es una represe Emisor Electrónico p	ntación impresa de la Boleta de uede verificarla utilizando su d	ave SOL, el Adquirente o	rada en el Sistema de la SUNA Usuario puede consultar su v onsulta de Validez del CPE.	AT, E alid