

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Muros de concreto armado aplicando arriostre postensado para estabilizar taludes en avenida Morales Duarez en Carmen de la Legua Reynoso- Callao, 2019

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

AUTOR:

Pinto Ampuero Lenin Álvaro (ORCID: 0000-0003-3683-8772)

ASESOR:

Mgtr. Pérez Rojas Even Deyser (ORCID: 0000-0002-5855-1767)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

Callao - Perú

2019

Dedicatoria

Dedicado a mi tía Pilar Ordoñez, por ser la única persona que confió en mí hasta la última etapa de mi carrera, a mi hijo Sebastián que siempre será mi motor y motivo para superarme día a día; a los profesores de la Universidad Cesar Vallejo por sus enseñanzas.

Agradecimiento

Agradecer primero a Dios por haberme permitido llegar hasta la etapa final de mi carrera profesional, a mi tía Pilar por su apoyo desde que inicie la carrera inicie la carrera, a mis padres, mi esposa y mi hijo Sebastián, por último y no menos importante a las personas que contribuyeron a que este proyecto se termine.

Índice

Dedicatoria	i
Agradecimiento	ii
RESUMEN	iv
ABSTRACT	v
I. INTRODUCCIÓN	1
1.1 Realidad problemática	2
1.2. Trabajos previos	5
1.3 Teorías relacionadas al tema	15
1.4. Formulación del problema	21
1.5 Justificación del estudio	22
1.7 Objetivos	23
II. MÉTODO	25
2.1 Tipo y Diseño de investigación	26
2.2. Operacionalización de variables	27
2.3 Población, muestra	30
2.4 Técnicas e instrumentos de recolección de datos, validez y confiabilidad	30
2.5. Procedimiento	32
2.6 Métodos de análisis de datos	32
2.7 Aspectos éticos	33
III RESULTADOS	34
IV. DISCUSIÓN	51
V. CONCLUSIONES	53
VI. RECOMENDACIONES	55
REFERENCIAS	57
ANEVOC	61

RESUMEN

El principal objetivo fue estabilizar el talud para evitar deslizamientos del terreno en la avenida morales duarez en Carmen de la Legua Reynoso, mediante un muro de contención aplicando arriostres postensados, el diseño es pre- experimental, el tipo de investigación fue aplicada, el enfoque fue cuantitativa, la variable independiente es muro de concreto armado y su variable dependiente es estabilizar taludes; la población en esta investigación fue de 120 metros lineales de la cuadra 8 de la avenida morales duarez, su muestra fue de 10 metros lineales para poder aplicar el método planteado. Las técnicas de recolección de datos fueron de las normas CE.020 Estabilización de Suelos y Taludes, E.050 Suelos y Cimentaciones, NTP E.060 Concreto Armado; los instrumentos de investigación fueron el equipo de corte directo, la copa de casa grande, la prueba de penetración estándar, los tamices para la granulometría. Con los resultados del estudio de suelos se concluyó que el material era grava arenosa pobremente graduada, con el estudio de límites de consistencia se obtuvo una humedad natural del 2.8%, el ensayo de solubles y sales para detectar si es que puede presentar riesgos después de construida el muro se obtuvo resultados positivos ya que tanto en sulfatos, cloruros como en sales solubles totales no llego a los limites riesgosos; con el ensayo del corte directo de acuerdo a los 3 especímenes se obtuvo como ángulo de fricción 32,3° y con este pudimos realizar el diseño de nuestro muro de concreto armado aplicando arriostre postensado. Los resultados del diseño del muro de concreto armado aplicando arriostre postensado fueron los siguientes: usar varillas de 3/8", 5/8" de acuerdo a la distribución que nos indica en el procedimiento y en el anclaje fue el uso de un cable de 7 hilos con un diámetro de 5/8" con un ángulo de inclinación de 45°. La recomendación fue de continuar esta investigación con el presupuesto y los demás estudios ya que es muy beneficioso para la población de dicha zona.

Palabras Clave: muro de concreto armado, arriostre postensado, corte directo, estabilizar taludes.

ABSTRACT

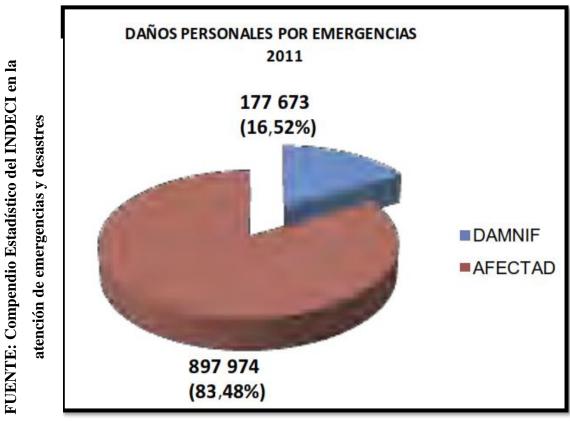
The main objective is to stabilize the slope to avoid landslides in the Morales Duarez Avenue in Carmen de la Legua Reynoso, through a retaining wall applying post-tensioned bracing, the design is pre-experimental, the type of research was applied, the approach was quantitative, the independent variable is reinforced concrete wall and its dependent variable is to stabilize slopes; The population in this investigation was 120 linear meters from block 8 of Morales Duarez Avenue, its sample was 10 linear meters in order to apply the proposed method. The data collection techniques were of the norms CE.020 Stabilization of Soils and Slopes, E.050 Soils and Foundations, NTP E.060 Reinforced Concrete; The research instruments were the direct cutting equipment, the large house cup, the standard penetration test, the sieves for the particle size. With the results of the soil study it was concluded that the material was poorly graded sandy gravel, with the study of consistency limits a natural humidity of 2.8% was obtained, the soluble and sales test to detect if it can present risks after Once the wall was built, positive results were obtained since both sulphates, chlorides and total soluble sales did not reach the risk limits; With the direct cut test according to the 3 specified, 32.3 ° friction angle was obtained and with this we were able to design our reinforced concrete wall by applying post-tensioned bracing. The results of the design of the reinforced concrete wall applying post-tensioned bracing were the following: use 3/8", 5/8" rods according to the distribution indicated in the procedure and in the anchorage was the use of a cable 7 threads with a diameter of 5/8 "with an inclination angle of 45°. The recommendation was to continue this research with the budget and other studies that is very beneficial for the population of that area.

Keywords: reinforced concrete wall, post-tensioned bracing, direct cut, stabilize slopes.

I. INTRODUCCIÓN

1.1 Realidad problemática

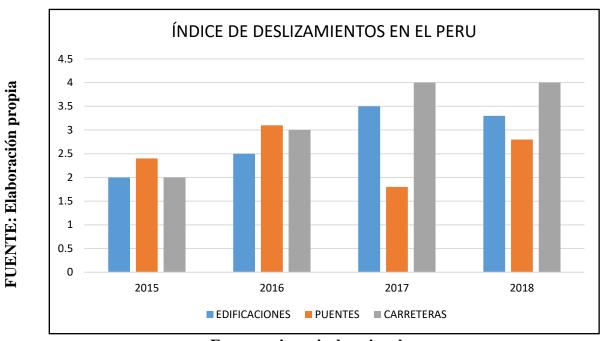
La inestabilidad de taludes es uno de los procesos geológicos con más aparición en nuestro país de los cuales en un 98% de ocurrencias no fueron identificadas con anticipación terminando así en deslizamientos de masas causando cuantiosas pérdidas económicas y en mucho de los casos pérdidas humanas (Ochoa, 2016, pág. 11)


Uno de los problemas más importante a considerar en cuanto a este tipo de estructuras se refiere es el deslizamiento, ya que viene a ser la causa principal de la erosión y del hundimiento, así como de la meteorización. (Cepeda Medina, Leal Leal, & García Cerezo, 2009, pág. 14).

En nuestro país el talud inestable, es un gran problema en la construcción, bien por la baja capacidad portante del suelo, o por los deslizamientos del suelo, lo que genera un movimiento no deseable, ya sea en una infraestructura, carreteras, etc. Esto generaría un desperdicio de gasto en la construcción dada.

Una construcción de cualquier tipo, sea cerca de un talud donde existe suelos no cohesivos, corre el riesgo de que se ocasione destrucciones y afecte a la población, si fuera en una carretera generaría un retarde en el tiempo de transporte por el deslizamiento de rocas, hasta podría haber pérdidas humanas. Otro problema sería al borde del rio donde puede haber deslizamientos debido al aumento del caudal del rio, lo cual debilitaría el suelo y peor en el caso de suelos no cohesivos, estos son suelos con partículas grandes que no se adhieren a sí mismo y contienen poca arcilla.

La problemática principal en la avenida Morales Duarez es que el talud se encuentra muy inestable, debido a que los suelos son no cohesivos, también porque el caudal del rio Rímac varía y ocasiona deslizamientos de rocas, materiales. Otra problemática es el desperdicio que la gente tira al borde de los taludes eso ocasiona que el suelo pierda resistencia y baje su capacidad portante lo cual genera inestabilidad en el talud.


Figura N° 01

Emergencias por región

Se puede observar en la **Figura 1,** el porcentaje de daños personales debido a los desastres naturales, obteniendo un 83% de personas afectadas ya sea en la salud, vivienda y un 17% a las personas damnificadas que lo han perdido todo, por esta razón debemos que capacitarnos más para poder diseñar y construir cualquier tipo de estructura para evitar pérdidas y deslizamientos.

Figura N° 02

Emergencia a nivel nacional

Se puede observar en la **Figura 2** que a pasar de los años los deslizamientos han ido aumentando sea en cualquier tipo de construcción, por eso debemos de prevenir estos desastres ya que puede causar muchos daños a la vida humana y materiales. Tanto en el 2017 como en el 2018 se ha mantenido al 4% de deslizamientos en lo que es carreteras, esto significa que no se ha tomado medidas preventivas y mucho menos propuestas para minimizar los daños de los deslizamientos.

1.2. Trabajos previos

1.2.1 Antecedentes Internacionales

(2016), Montenegro Katherine, Tipán Danilo en su tesis: ALTERNATIVAS DE ESTABILIZACIÓN DEL TALUD UBICADO EN EL KILÓMETRO 6+479 DEL PROYECTO DE AMPLIACIÓN DE LA AV. SIMÓN BOLÍVAR, TRAMO PANAMERICANA NORTE – TAJAMAR.; diseño de infraestructura vial, universidad, Ecuador

Esta tesis tiene como problema el fuerte crecimiento poblacional, crecimiento de los vehículos lo cual ocasiona el tráfico atroz por lo que han propuesto una ampliación en esas carreteras, pero hay un problema fundamental debido a la inestabilidad lo cual está generando deslizamientos continuos en el talud, y está ocasionando muchos accidentes en esas zonas. En esta investigación se quiere proponer una alternativa de solución la cual sea muy beneficiosa al menor costo, la cual se van a considerar varios parámetros para poder hacer las comparaciones de las alternativas presentadas en el estudio geotécnico; su variable es Análisis de las alternativas y Solución óptima que presente mayores ventajas. Para esta investigación se emplea el estudio explicativo ya que los resultados se van a orientar a la comprobación de la hipótesis; el método será descriptivo e inductivo- deductivo. La población de esta investigación es 400,000 habitantes y su muestra fue el tramo l de la panamericana- Tajamar.

Llegaron a la conclusión que la solución es estabilización es estructuras potenzadas ya que da más seguridad a un costo menor. Las recomendaciones para esta investigación es el mantenimiento de las obras de drenaje ya que se pueden acumular sedimentos la cual pueden afectar la funcionalidad de las obras, tener un correcto cronograma de anclajes, la perforación debe ser decidida directamente del contratista y lo indicado en el diseño para la correcta adherencia entre el anclaje y la lechada.

✓ El aporte en esta investigación fue de hacer continuamente una revisión de los muros para ver si están con sedimentos debido a que la zona tiene mucha humedad, realizar un diseño de drenaje.

 (2016), Saldarriaga Mero, Polivio Andrés en su tesis: Estudio de taludes en condiciones dinámicas para áreas urbanas en el cantón Esmeraldas, sector "las palmas"; diseño de infraestructura vial; Universidad de las Fuerzas Armadas – Ecuador.

La zona de la cuidad de esmeraldas está en alto riesgo sísmico y de muchas precipitaciones estacionales altas, lo cual la población se encuentra en peligro; los objetivos en esta investigación son de determinar los parámetros de resistencia al corte de suelos y determinar los factores de seguridad al deslizamiento según las condiciones del suelo y por ultimo proponer una medida de prevención a los deslizamientos que existen en el barrio de Las Palmas. Los deslizamientos presentan un grave peligro para la población y muy grandes pérdidas económicas, por tal razón estudiaran el talud para prevenir daños a gran escala. La metodología fue el tipo histórico, descriptivo, prospectivo, experimental y analítico. Se realizaron cuatro fases para esta investigación: La primera etapa fue del estudio preliminar que es la recopilación de información, el levantamiento topográfico, técnica de la fotointerpretación que permite realizar reconocimientos geológicos- geotécnicos. La segunda etapa es la cartografía preliminar, mapas topográficos, mapas geológicos, perfiles longitudinales y transversales. La tercera etapa fue la investigación en el terreno, se evaluó el subsuelo a partir de las medidas directas e indirectas el cual se obtuvieron datos cualitativos y cuantitativos. La cuarta etapa y ultima se hizo el análisis y diseño utilizando un software para determinar el factor de seguridad (FS), se utilizó para la estabilización pernos de anclaje inyectados con lechada.

La conclusión de esta investigación es que se tomaran medidas correctivas, las cuales permitan atenuar lo propenso a desplazamientos laterales. Las recomendaciones fueron de seguir con la normativa NEC para el análisis de estabilidad de taludes, otra fue de verificar las deformaciones calculadas en in-situ y por ultimo incluir la caracterización del macizo rocoso en condiciones estáticas y dinámicas.

✓ El aporte de esta investigación es la importancia de realizar un diseño de acuerdo a la normativa, cumplir con los parámetros y siempre verificar los resultados antes de emplearlos en campo.

(2015), González Arellano, Eduardo en su tesis: PROCEDIMIENTO PARA LA
ESTABILIZACIÓN DEL TALUD UBICADO EN LA AUTOPISTA MÉXICO –
ACAPULCO DEL KM 195+880 AL 196+365; diseño de infraestructura vial,
Universidad Nacional Autónoma de México – México.

El principal objetivo es dar una solución de estabilización de talud haciendo los estudios del comportamiento del talud como los factores que podrían alterar o afectar la estabilización a corto o largo plazo. Por ese motivo van a comparar varios métodos comunes ya sea en su procedimiento constructivo como la comparación económica de los sistemas constructivos para poder cumplir con el fin de la estabilización del talud. En sus estudios previos ejecutaron el levantamiento topográfico con estación total, nivel electrónico; realizaron los estudios geotécnicos para determinar el tipo de suelo mediante pruebas en campo y en el laboratorio mediante una calicata sacaron una muestra. Cuando el suelo es demasiado rocoso de hace el estudio de sondeo en roca utilizando una maquina rotatoria.

Un estudio importante es el hidrológico para evaluar las condiciones de las precipitaciones para poder terminar el sistema de drenaje adecuado. Las alternativas en esta investigación para la estabilidad de taludes son: Muro estructural de concreto armado con una malla triple torsión reforzada con cables de acero de ½ pulgada. Malla de alta capacidad en todo el corte y en la parte inestable reforzarla con cables de acero galvanizado de ½ pulgada formando una red romboidal. En la evaluación económica para esta investigación se hace más factible la primera alternativa la cual es el muro estructural de concreto armado.

- ✓ El aporte de esta investigación fue de obtener un conocimiento en el diseño como en lo económico porque hace una buena evaluación con otra alternativa que es la malla de alta capacidad.
- (2015), Bucio Oseguera, Roberto Carlos en su tesis: REVISIÓN ESTRUCTURAL Y
 PROPUESTA DE LOS MUROS DE CONTENCIÓN EN EL FRACCIONAMIENTO
 DENOMINADO "EL MILAGRO" EN LA CUIDAD DE URUAPAN, MICHOACÁN.;
 diseño de infraestructura vial; Universidad Don Vasco A.C.- México.

En esta investigación el problema principal es que en la zona de EL MILAGRO existen desniveles topográficos muy grandes, debido a eso se construyó muros de mampostería de

gran altura a base de piedra brasa con un mortero de arena cemento que con el pasar de los tiempos se ha visto ineficiente por lo que se realizara una revisión de las secciones ya construidas para poder verificar si son seguras esas estructuras y continuar con los demás tramos del fraccionamiento o plantear una opción diferente como solución. Esta investigación optara por recopilación de información tanto documental como de campo, luego pasaran los datos al programa AUTOCAD luego pasaran la base de datos a una ficha Excel, en la cual se formularán los métodos de Rankine y el método semiempírico de Terzaghi para que determinen los empujes actuantes sobre el muro.

El procedimiento constructivo para el muro será de los siguientes pasos: Verificación del área de terreno, excavación para el desplante del muro, tazo del muro, colocación de solado del muro a base de concreto pobre, construcción del muro a base de mampostería. Como se va analizar el muro ya construido los estudios a realizar son las pruebas de laboratorio de materiales, prueba del mortero que se añadió para unir las piedras en la mampostería, prueba de mecánica de suelo para poder obtener la resistencia de la roca existente con estos resultados podemos verificar si es eficiente o no el muro ya construido En el presente estudio se llevó a cabo bajo el procedimiento numérico, el enfoque es cuantitativo, el alcance es exploratorio porque se examina un problema poco estudiado el cual produce dudas y descriptivo porque se pretende describir los fenómenos, situaciones y eventos que generan problemas en los elementos y por último el diseño es no experimental cuantitativo ya que las variables no serán modificadas ni alteradas.

Llegaron a la conclusión que las dimensiones de los muros de contención existentes no son las adecuadas, los materiales empleados en la construcción del muro son de muy buena calidad, pero la mano de obra no fue la óptima para dicha construcción lo cual reduce la cuantía de seguridad, así como el nivel de resistencia. Otra conclusión fue que la propuesta de utilizar este tipo de estructura a base de concreto armado que cumple con todos los factores de seguridad necesarios.

✓ El aporte en esta investigación fue que cualquier proyecto a realizar se deben de obtener los estudios necesarios y un buen adecuado control de calidad tengo en la investigación como en la construcción con un seguimiento óptimo.

(2015), León Segura, Luis Daniel en su tesis: "METODOLOGÍA DE DISEÑO DE MUROS DE CONTENCIÓN CONSTRUIDOS A BASE DE GEOSINTÉTICOS. EJEMPLOS PRACTICOS DE LA CARRETERA MITLA – TEHUANTEPEC II"; diseño de infraestructura vial, Universidad Nacional Autónoma de México, México.

Se está planteando una opción económica y práctica que es el uso de los geosintéticos para estabilizar el talud lo cual permite una segura carretera, porque casi siempre pasa que se elabora un buen proyecto ejecutivo, pero a la hora de realizarlo sufre variaciones de acuerdo al avance de la obra.

El objetivo es realizar un impacto favorable tanto en costo como en tiempo al realizar el proceso constructivo de este tipo de estructura a base de geosintéticos, otro objetivo es que se desarrolle una fuente bibliografía útil para los lectores y les sirva como una herramienta guiadora para tener conocimientos del diseño de muros.

Su procedimiento constructivo para los geosintéticos son los siguientes pasos:

Preparación del terreno ahí depende mucho de las condiciones topográficas del suelo, lo cual se tiene que excavar para tener el correcto nivel del muro. Sistema de subdrenaje para impedir la presencia de agua o presiones hidrostáticas en el suelo atrapado por el muro. Colocación del refuerzo de los geosintéticos. Colocación de material de relleno sobre el refuerzo para evitar movimientos o dobleces del refuerzo. Colocación de las capas subsecuentes para llegar al nivel de la primera capa del suelo. Acabado de la fachada colocando un manto de geosintético a toda la cara del muro para controlar la erosión a la estructura.

En esta investigación tiene como conclusión que la topografía es información fundamental para el diseñador ya que mientras más precisa sea, la propuesta geométrica para el diseño será mucha más exacta lo cual proporciona un factor de seguridad mayor. Una recomendación es la práctica de sondeos de penetración estándar para conocer la estratigrafía de la zona de desplante como saber si hay cavernas u oquedades.

✓ Un aporte muy fundamental es que los muros de contención a base de geosintéticos no son usados para pendientes de gran altura, que es importante realizar un diseño de drenaje para evitar el ingreso del agua al suelo y evitar humedades, por ultimo realizar un estudio de sondeos de penetración estándar para evitar inestabilidades en la zona de desplante porque puede encontrarse cavernas u oquedades.

1.2.2 Antecedentes Nacionales

 (2018), Paul Alexander Silva Quesquén en su tesis: análisis comparativo de estabilidad de talud y propuesta de solución con muros anclados en la Carretera Las Pirias Cajamarca, 2018. Universidad Cesar Vallejo.

El objetivo es obtener el dominio de este tipo de estructura postensada con el fin de impedir la inestabilidad del talud en dicha circulación de vehículos donde realizo dos métodos de análisis apoyándose de un software. El diseño del presente estudio es de tipo cuasi-experimental ya que rige la variable independiente, el tipo de investigación es aplicada ya que se llevará a cabo de a base de metodologías y cuantitativo; su nivel es explicativo ya que buscara causas problemas. Su variable independiente es Estabilidad de talud y su variable independiente es Muros anclados.

La población de esta investigación es las carreteras Las Pirias-Cajamarca por lo que se llegó a la decisión final de tomar en cuenta al sector del tramo 15+280; su muestra fue el estudio donde la cota del talud era de 3000 centímetros. El método de análisis de datos fue elaborar trabajos haciendo una calicata sacar muestras y mandarlos al laboratorio de la UNFV para obtener las características del suelo.

La discusión de esta investigación es que aceptaron la hipótesis general ya que este tipo de estructura postensada si aumenta la firmeza en los taludes de la carretera Pirias-Cajamarca gracias al resultado del equilibrio limite y elemento finito se pudo comprobar que los muros pantalla si generan firmeza en la carretera; guarda relación con algunas tesis, sin embargo, en la tesis de Villanueva (2009) los resultados del talud eran inestables lo cual implementaron gaviones. Llega a la conclusión que dicha ubicación era muy inestable debido a su bajo factor de seguridad lo cual el muro anclado es muy recomendable efectuarlo.

Las recomendaciones fueron que cuando las zonas se encuentren en estado crítico y en riesgo implementar urgentes refuerzos para mantener los taludes estables, si implementan un sistema de refuerzo la cual tienen factores de seguridad mayor a 1 y no presentan inconvenientes, pueden presentarse por erosión por lo cual tienen que hondar el conocimiento del talud para dar más alternativas

✓ El aporte de esta investigación es que cuando el talud es muy inestable y tienes un factor de seguridad muy bajo es mejor hacer el diseño de un muro anclado ya que no presenta fallas y es muy confiable

(2018), Martínez Curi Aracely Anai en su tesis: Estabilidad de Taludes con Muros de Contención en la Ampliación Virgen de Lourdes Zona 4, Villa María del Triunfo, Lima
 -2018; diseño de infraestructura vial; Universidad Cesar Vallejo.

Tiene como principio hallar el diseño especifico de los muros de contención para lograr la solidez del talud en dicha vía donde realizo dos métodos de análisis apoyándose de un software. La metodología de esta investigación es descriptiva ya que va a describir las propiedades de un fenómeno; el tipo de investigación es aplicada y su diseño de tipo experimental, transversal. La variable independiente es Estabilidad de taludes y la variable dependiente es Muros de contención. La población en esta tesis son los 20 muros a proyectar, por el motivo de existe inestabilidad en sus calles y avenidas de la zona de virgen de Lourdes; su muestra será no probabilística ya que no se utilizará fórmula matemática para hallar la cantidad de taludes y muros. Para la técnica de la recopilación de la base de datos se emplearon las hojas de cálculo de Excel, en esta se insertarán características del suelo para poder analizar el nivel de estabilización de taludes y la ejecución de los muros. La discusión en esta investigación es que demostraron y discutieron para poder obtener los factores numéricos de la mecánica de suelo y el levantamiento topográfico del área; gracias a la técnica de los muros de contención que influye positivamente debido a que aumenta el factor de seguridad como indica en la norma. Llega a la conclusión que el tramo era muy inestable por su baja capacidad portante del suelo lo cual el muro anclado era muy recomendable efectuarlo

Las recomendaciones fueron de hacer más investigaciones sobre este tema debido a que en los cerros de muchos distritos viven cientos de personas y están en peligro ya que son de bajos recursos; se debe brindar charlas en cada municipalidad para que la población conozca las causas y las posibles soluciones que se puede realizar para disminuir las pendientes.

✓ El aporte de esta investigación es de dar conocimiento a la población de lo que se va a diseñar y ejecutar en dicha zona para no tener problemas a la hora de la ejecución y vean que es un beneficio para ellos mismos, para que tengan conocimientos se puede realizar charlas en dichas zonas de la población.

(2018), Rossmery Zúñiga Palomino en su tesis: A Análisis de estabilidad del talud
 Carretera Central Km 117 + 800 - 118 + 000 y propuesta de solución con el uso de gaviones - 2018. Universidad Cesar Vallejo.

Esta investigación tiene como principio hallar la influencia del uso de gaviones en el análisis de la estabilidad del talud de la vía central ayudado con el software Slide V.5 para saber si es estable o inestable y de acuerdo a eso hacer el pre dimensionamiento del muro de gaviones, así mismo se realizó el estudio de análisis granulométrico, ensayo de corte directo y un levantamiento topográfico. El diseño de esta investigación es no experimental ya que no se dominará las variables; su nivel es explicativo ya que se mostrará las causas de los sucesos o acontecimientos que se estudian. Su tipo de investigación será cuantitativo ya que se recogerá y analizará datos numéricos referentes a las variables y será aplicada la investigación ya que para obtener el nivel de estabilidad de los taludes se propondrá el uso de gaviones. La variable independiente es Estabilidad del talud y la variable dependiente es Uso de gavión. La población está dada por el tramo de la Carretera Central km. 117 + 800 – 118 + 000; la muestra es el análisis de la estabilidad del talud en dicha carretera. El método de análisis de datos será el software Slide V.5, la cual se obtendrá datos como los tipos de falla y el factor de seguridad. La discusión de esta investigación es que existe similitud con lo que sostiene Sánchez (2014) que el levantamiento topográfico es muy importante para poder meter datos al software y que lo parámetros como cohesión, ángulo de fricción son imprescindibles para la estabilidad del talud; sin embargo, con Morales (2017) no hay similitud ya que se realiza los métodos de diseño para luego realizar el control para obtener los desplazamientos ya sean horizontales o verticales. Llegaron a la conclusión que las propuestas por el uso de gaviones generaran mejores resultados gracias a la evaluación de dicho talud obteniendo factores de seguridad mayores. La recomendación fue que se realice el estudio en el tramo I, II, III y IV de la carretera central ya que hay muchas fallas de deslizamiento.

✓ El aporte de esta investigación fue de utilizar un programa especializado para diseño de muros de contención para la estabilización de taludes ya que los resultados serán muy exactos de dicho programa.

 (2017), Diego Pesantes Capacyachi en su tesis: Estabilidad de taludes aplicando muros de contención de mampostería en el Distrito de Comas-Lima 2017. Universidad Cesar Vallejo.

El objetivo es hallar una semejanza entre la estabilidad del talud y los muros de contención, diseño y cálculo del muro, el factor de seguridad y las características del suelo, orografía. El diseño es no experimental ya que no habrá variación de la variable independiente debido al uso de muros de contención con el fin de obtener el porcentaje que escasea para estabilizar los taludes; el tipo será aplicado ya que se averiguará la falta de estabilidad en dicho talud; el nivel de esta investigación será descriptiva ya que se investigará y describirá las características de lo referido. La variable independiente es Muro de Contención de Mampostería y la variable dependiente es Estabilidad de taludes. La población en esta investigación son las calles del Asentamiento Humano Villa Disciplina distrito de Comas; la muestra será la calle 1 del Asentamiento Humano Villa Disciplina, localizado en la cuarta zona de Collique, distrito de comas. Las técnicas de recolección de datos son la observación de datos ya que irán al campo a hacer una visita y observar el talud del AA.HH. y el análisis de documentos para obtener mucha más información tomando en cuenta los libros, revistas, artículos o tesis relacionas al tema.

La discusión de esta investigación fue la verificación del factor de seguridad de dicho elemento estructural con el fin de obtener el porcentaje o nivel de empuje del suelo del área seleccionada. Llegaron a la conclusión que los muros de contención hechos de mampostería es un método que estabiliza el talud, la cual mejorara la condición socioeconómica de los residentes del AA.HH. Villa Disciplina.

✓ El aporte del presente estudio es la realización del diseño del muro de mampostería ya que sus datos son muy recomendables en cuanto a estabilización de talud, su factor de seguridad es muy alto en dicha zona de baja capacidad portante.

(2017), Raúl Alexis miranda torres en su tesis: "Diseño del muro rígido para la estabilización de taludes en tramos de constante deslizamiento de la carretera Shapaja – Chazuta, 2017". Universidad Cesar Vallejo.

El objetivo es estabilizar el talud mediante el diseño de un muro de contención, el cual no permitirá el resbalamiento de tierra y roca en gran magnitud a las autopistas; se basaba en que las fuerzas de energía y la presión del suelo se iban a mantener estables. De nivel explicativo es el método seleccionado de la presente investigación, su diseño pre-experimental; su variable es Diseño de muro rígido y Estabilización de taludes en tramos de constante deslizamiento. Su población es el tramo de la carretera Shapaja a Chazuta que tiene 23 km y su muestra consta de los taludes críticos en el km 12+500 – 12+507 al km 12+549 – 12+568 del sector Chumia en la carretera Shapaja – Chazuta. Su método de análisis de datos fue el levantamiento topográfico mediante el uso de una estación total para que determinen el relieve del frente de estudio bajo las NTP; y en campo se hicieron excavaciones a 1.50m el cual llamamos calicatas ya que gracias a esto se pudo realizar el estudio de suelos guiándose con los parámetros correspondientes.

La discusión de esta investigación es que los muros rígidos están diseñados para soportar rellenos y deslizamientos de limos que se generan por la lluvia, luego de los ensayos se pudo comprobar que el material del suelo es limo inorgánico de baja plasticidad y es más seguro los muros de contención que los gaviones ya que no tienen geotextil en su recubrimiento Llego a la conclusión que el muro rígido debía contar tanto en el desplazamiento como en volteo con los factores de seguridad según el reglamento.

La recomendación para esta investigación fue de que sigamos con los estudios de estabilidad de los taludes para poder obtener más soluciones a problemas parecidos, para los que elaboren tesis similares realicen sus estudios de suelos en laboratorios certificados, y que tomen conciencia que las vías terrestres principales del país es de vital para el crecimiento sostenible del mismo.

✓ El aporte es que tenemos que tener el análisis confiable del estudio de suelos con el fin de conseguir los resultados correctos y no equivocarnos en el tipo de suelo ya que si sucede esto podríamos tener problemas graves con el tipo de muro a diseñar y ejecutar.

1.3 Teorías relacionadas al tema

1.3.1. Muros de concreto armado:

"Como su nombre lo indica, los muros de concreto armado son elementos estructurales diseñados para aguantar algo; está es un sólido que, sin la presencia de la muralla, tomaría una cualidad distinta a la dicha por el borde del muro para alcanzar su estabilidad". (Ordoñez, 2017, pag.1)

"Son muros verticales de concreto armado que resisten el empuje del suelo el cual se ancla con tensores en la masa del terreno conforme se hace la excavación general". (Blanco, 2010, pág. 17).

"Suelen ser de concreto o de mampostería y depende del peso propio para aplicar la gravedad, presentan una geometría trapezoidal". (Ortega, 1990, p.208)

Estos muros de concreto armado brindaran estabilidad al talud en la avenida Morales Duárez, aumentando el factor de seguridad para los pobladores de dicha zona.

Análisis estructural

"Un armazón puede explicarse como la unión de partes o componentes que se unen en forma ordenada para realizar una función dada. Esto sería: proteger un claro, como en los puentes; cercar un territorio, como se realiza en cualquier tipo de edificación, o contener un empuje para evitar deslizamientos como en los muros de detención, tanques o silos". (Gonzales, 2014, p.11)

"La función del análisis estructural consiste en explicar las fuerzas internas y las deflexiones en un lugar aleatorio de un armazón" (Camba, Chacón, Pérez, 1982, p.4).

"El estudio de un elemento estructural se basa en la fijación consecuente de los efectos del conjunto o fracción del elemento estructural, para obtener las validaciones de los Estados Limites Últimos y de Servicio". (Ojada, Parra, Sánchez, 2012, p.4)

Con el análisis estructural podremos realizar nuestro diseño de muro de concreto armado aplicando arriostre postensado obteniendo resultados exactos para la estabilización del talud en la avenida Morales Duárez en Carmen de la Legua Reynoso.

Ángulo de fricción

"Es un parámetro de los materiales rugosos el cual tiene una explicación física fácil, al estar enlazado con el ángulo de reposo o máximo ángulo posible para el desnivel de un conjunto de dicho material rugoso." (Sivakugan, 2000, p.7)

"Es la fuerza al deslizamiento causado por el roce que hay entre las porciones del terreno y su consistencia" (Crespo, 2004, p.123)

Hallando el ángulo de fricción podremos implementar el muro de arriostre postensado en el talud sin que se realicen momentos ya que se encontrara en reposo.

Capacidad portante del suelo

"Carga que produce hundimiento permanente de la fundación. El hundimiento debe estar asociado a una superficie en la que el terreno falla por corte". (Sfriso, 1984, p. 40)

"La dimensión de carga de un terreno está en relación de la conducta ante fuerzas de incisión, tal como se ha comprobado antes, el aguante al corte depende del esfuerzo estándar ejercido sobre el terreno y sus propiedades". (Patzan, 2009, p.17)

Es la resistencia del suelo lo cual impide el asentamiento producido por el muro de arriostre postensado, por eso la fuerza que impactará en el suelo deberá ser menos a la capacidad portante de este.

Empuje activo y pasivo

"El estado activo del terreno, sucede cuando se encuentra una semejanza en el volumen que le permite desplazarse hacia el exterior del lugar reducido, un modelo es, cuando una muralla de tierra se suelta, y el terreno falla al extenderse. Esta es el empuje mínimo a la que el terreno puede ser sometido para que no se fracture. En cambio, la fase pasiva ocurre cuando la masa del terreno está sometida a un impulso externa que lleva al terreno a la elasticidad linde de confinamiento". (Escobar, 2017, p. 368)

"Presiones ocasionadas debido al nivel pasivo, ya que coexiste la oportunidad de que el terreno en estudio se desproporcione adyacentemente, incrementando el nivel de rigidez paralela al suelo hasta una estimación numérica colosal donde se obtenga una falla de tipo tensional". (Reglamento Nacional de edificaciones, 2015).

Esto sucede con el muro de arriostre postensado ocasiona empujes lo cual se debe diseñar correctamente para que los empujes con las reacciones del suelo sean sumatoriamente cero.

Equipo de corte directo

"El objetivo de este ensayo es hallar la dureza al corte de una muestra del terreno estable y drenada, por el método del corte directo". (Universidad Nacional de Ingeniería, 2006, p.1)

"El propósito de los ensayos de corte, es hallar la resistencia de una muestra del terreno, sometida a fatigas y/o alteraciones que simulen las que existen o existirán en el suelo motivo de la aplicación de una carga". (Ugalde, 2006, p. 14)

"Este procedimiento describe y regula la técnica de ensayo para el hallazgo de la resistencia al corte de un espécimen del terreno, sometida anticipadamente a un progreso de afirmación, cuando se le aplica un esfuerzo de cizalladura o corte directo mientras se permite un drenaje total de ella". (Rodríguez, Soto, 2016, p.17)

Con el equipo de corte directo podre hallar el ángulo de fricción el cual es muy fundamental para mi diseño de muro de arriostre postensado.

Proctor Estándar

"Con este ensayo se realizará procesos de compactación en el laboratorio, para hallar la coherencia entre el porcentaje de agua y PUS (peso unitario seco) de los suelos previamente compactados en una horma de 2 o 3 pulgadas de radio con un pisón de 5,5 lbf que cae a una altura de 12 pulgadas, obteniendo una cantidad de energía de tipo compactada de 12 400 lb-pie/pie3". (Universidad Nacional de Ingeniería, 2006, p.1)

"Hallar el contenido de humedad optima y el peso específico seco máximo para una parte del terreno compactado con el ensayo de Proctor estándar ". (Pérez, Mendoza, Meza. Universidad de Sucre, 2012, p.2)

"El ensayo de compactación Proctor normal o estándar es realizado con el fin de encontrar la humedad optima a la cual un material alcanza una densidad seca máxima; la importancia que tiene la humedad en un material o muestra de suelo es bastante significativo ya que esta influye directamente en su densidad". (Macías, Leiva, Ibáñez, Cortez, Charry, Universidad de la Salle Bogotá DC, 2013, p.2)

El ensayo de Proctor estándar será importante para poder hallar mi capacidad portante para poder realizar mi diseño del muro de arriostre postensado.

1.3.2. Estabilizar taludes

"Alternativa geotécnica total que se incorpora en un desnivel, sea de pendiente, de zanja, de cisura, corriente u otros, con la habilidad de incorporarle estabilidad suficiente y sostenible, que atienda los criterios gravitatorios y sísmicos, medidos por factores de seguridad, sin arruinar su entorno". (CE020, 2000, p.6)

"Es la respuesta de mecánica de suelos total que se realiza hacia un talud que puede ser mediante una excavación, corte, natural, etc. (RNE, 2012, p.280)

Estabilizar el talud es impedir que las partículas de los suelos se desprendan el cual ocasiona deslizamientos y reduce su capacidad portante del suelo. Por tal motivo que se utilizan varios métodos ya sea por muros de contención u otros tipos de estabilización (geomallas, geoceldas, etc.).

Peso específico

"Se define como la toma de peso por unidad de masa en un compuesto. Hay que tener en consideración que peso es una unidad de fuerza, por lo tanto, está muy bien hablar de la cantidad de peso". (Crespo, 2004)

"El peso específico se define como el peso por unidad de masa. En el método universal sus unidades son N/M3". (Domingo, 2011, p.10)

Es un dato importante para los estudios de laboratorio ya que con el peso específico podremos obtener la capacidad portante del suelo.

Análisis de estabilidad

"Un talud es un conjunto de masa que tiene distintos niveles de altura, los cuales tienden a desplazarse debido a muchas razones, como es el cambio topográfico o por movimiento sísmico, así como el deslizamiento el cual genera la propia meteorización o filtraciones de agua que afectan negativa el nivel de estabilidad". (Suarez, 1998, p.141)

"Es la respuesta de mecánica de suelos total que se realiza hacia un talud que puede ser mediante una excavación, corte, natural, etc". (RNE, 2012, p.280).

"Los principios de mayor importancia en una vía terrestre son los desniveles. Esto conlleva a que cualquier terreno inclinado respecto a la constante de las estructuras del suelo sea denominado como talud". (MATTEIS, 2003, p. 4).

Analizar la estabilidad significa realizar estudios en laboratorio, muestras en in-situ, para poder obtener los datos apropiados del talud.

Factor de seguridad

"Una definición del factor de seguridad, es la del total resultante de fraccionar la solidez a la incisión aprovechable del terreno, a lo extenso de la superficie critica de resbalamiento, por el aguante a la circuncisión necesaria para conservar la igualdad" (Bishop, 1995)

"Es considerado como la cantidad estimada de los casos excesivos de deslizamiento en un desnivel, por lo tanto el ingeniero es quién deberá anticipar el proceso del diseño estructural". (Suarez, J.1998, p.123).

Es el resultado por el cual vamos a poder comprobar si el método está conforme para el problema que se presenta ya que la seguridad es el primer objetivo a lo cual se quiere llegar.

Equipo granulométrico

"Es la proporción por tamaños de las partículas de un árido. Para encontrar la distribución de tamaños de las partículas que conforman una porción de árido, se separan estos a través de cedazos o tamices". (García, Saval, Baeza, p.2)

"Es un procedimiento mecánico el cual se dispersan las partículas de un suelo en sus distintos tamaños, llamado segmento pequeño como lima arcilla" (Bravo, García, 2012.p.3)

"El estudio granulométrico es un repartimiento por tamaño de las partículas del terreno; la repetición de las partículas sólidas se efectúa según normas específicas". (Morales, Ramírez, 2012, p.4)

Con este equipo granulométrico se pudo separar los tamaños de partículas del suelo de la avenida Morales Duarez en Carmen de la Legua Reynoso

Equipo de corte directo

"El objetivo de este ensayo es hallar la dureza al corte de una muestra del terreno estable y drenada, por el método del corte directo". (Universidad Nacional de Ingeniería, 2006, p.1)

"El propósito de los ensayos de corte, es hallar la resistencia de una muestra del terreno, sometida a fatigas y/o alteraciones que simulen las que existen o existirán en el suelo motivo de la aplicación de una carga". (Ugalde, 2006, p. 14)

"Este procedimiento describe y regula la técnica de ensayo para el hallazgo de la resistencia al corte de un espécimen del terreno, sometida anticipadamente a un progreso de afirmación, cuando se le aplica un esfuerzo de cizalladura o corte directo mientras se permite un drenaje total de ella". (Rodríguez, Soto, 2016, p.17)

Con el equipo de corte directo podre hallar el ángulo de fricción el cual es muy fundamental para mi diseño de muro de arriostre postensado.

1.4. Formulación del problema

Problema general:

¿Cómo influye el muro de concreto armado aplicando arriostre postensado para estabilizar taludes en la avenida Morales Duárez en Carmen de la Legua Reynoso - callao, 2019?

Problemas específicos:

¿ Qué beneficia el muro de concreto armado aplicando arriostre postensado en el peso específico para estabilizar taludes en la avenida Morales Duárez en Carmen de la Legua Reynoso - callao, 2019?

¿Cómo contribuye el muro de concreto armado aplicando arriostre postensado en el factor de seguridad mediante el método de equilibrio límite para estabilizar taludes en la avenida Morales Duárez en Carmen de la Legua Reynoso - callao, 2019

1.5 Justificación del estudio

1.5.1 Justificación Teórica

"Durante el planteamiento del problema existe la creencia teórica de que lo referenciado tiene la intención de representar lo considerado, llegando a la comparación con el conocimiento actual En la indagación existe una apología teórica cuando la intención de la monografía es plasmar reflexión y disputa académico referente al conocimiento actual, de modo que se tiene una hipótesis para resultados o crear o mejorar el conocimiento actual". (Criollo, 2012, p. 1)

El principal motivo para realizar esta investigación, fue de dar a conocer el problema que se presenta en nuestro país, por la falta de estabilidad en taludes en muchos tramos de las carreteras, avenidas, calles y en los cerros donde vive mucha población y están en peligro de sufrir accidentes, hasta la muerte. Con los métodos de estabilidad, la norma técnica peruana y teorías de las dos variables se desarrollaron y planteo muchas propuestas de solución.

1.5.2 Justificación Metodológica

"En una investigación, el proceso metodológico del estudio se da cuando lo planificado renueva o actualiza un nuevo procedimiento con el fin de obtener ideas verídicas. Por el contrario, si un estudio tiene el propósito de encontrar nuevas metodologías o técnicas para crear conocimientos, así como cuestionar los procesos de investigación, entonces podemos concretar que la investigación tiene una apología metodológica". (Criollo, 2012, p. 8)

En esta investigación se innovo un método nuevo en el callao, la cual son los muros de arriostre postensado, ya que nos brindan un factor de seguridad muy alto en estabilidad de taludes para evitar deslizamientos en la avenida Morales Duárez.

1.5.3 Justificación Práctica

"Se puede considerar una justificación práctica, cuando el objetivo es dar solución al planteamiento del problema, proponiendo nuevas técnicas de estudio o procesos, los cuales garantizarán la solvencia del mismo". (Criollo, 2012, p. 4)

En esta investigación se resolvió el problema de la inestabilidad de talud mediante muros de arriostre postensado para evitar deslizamientos en la avenida Morales Duarez y evitar accidentes en las personas.

1.5.4 Justificación Social

El presente proyecto de investigación beneficio a los pobladores aledaños a la avenida Morales Duárez en Carmen de la Legua Reynoso ya que se evitó los accidentes vehiculares y pérdidas humanas causados por los deslizamientos de los taludes.

1.5.5 Justificación Tecnológica

La presente investigación implanta una nueva metodología en la zona del callao ya que los muros de arriostre postensadas no han sido ejecutados hasta la actualidad.

El muro de concreto armado contribuye positivamente en la cuantía de seguridad mediante la metodología de equilibrio límite para estabilizar los taludes de la avenida Morales Duárez en Carmen de la Legua Reynoso - Callao, 2019.

1.7 Objetivos

Objetivo general:

Determinar la estabilización del talud con muros de concreto armado aplicando arriostre postensado en la avenida Morales Duárez en Carmen de la Legua Reynoso - Callao, 2019.

Objetivos específicos:

Determinar el factor de seguridad para estabilizar taludes en la avenida Morales Duárez en Carmen de la Legua Reynoso - Callao, 2019.

Determinar el peso específico para el empuje del muro de concreto armado aplicando arriostre postensado al muro de concreto armado para estabilizar taludes en la avenida Morales Duárez en Carmen de la Legua Reynoso - Callao, 2019.

Determinar el análisis de estabilidad para que el muro de concreto armado aplicando arriostre postensado estabilice taludes en la avenida Morales Duárez en Carmen de la Legua Reynoso- Callao, 2019.

II. MÉTODO

2.1 Tipo y Diseño de investigación

2.1.1 Tipo:

"La investigación aplicada tiene como misión realizar nuevo método a partir de la epistemología obtenida a través de la investigación estratégica para hallar si estos pueden ser aplicados con o sin mayor delicadeza para los propósitos definidos". (Tam, Vera, Ramo, 2008, p.147)

El de tipo de esta investigación es: **investigación aplicada**, porque realizaremos metodologías para la estabilidad, y el diseño del muro de arriostre postensado.

2.1.2 Diseño:

"Podría definirse como la investigación que se realiza sin manipular deliberadamente variables. Es decir, se trata de estudios en los que no haces variar en forma intencional las variables independientes para ver su efecto sobre otras variables". (Sampieri, 6ta edición, p. 174)

"La investigación no experimental es cualquier investigación en la que resulta imposible manipular variables o asignar aleatoriamente a los sujetos o a las condiciones". (Klerlinger, 2979, p.116)

Esta investigación es **No Experimental** debido a que no tendrá el control de las variables, y es observar fenómenos y describirlas.

"Los tipos transaccionales o transversales se caracterizan por recopilar la cantidad de datos en un solo tiempo, en un momento único", (Sampieri, 6ta edición, p. 176)

"Investigaciones que recopilan datos en un solo momento, en un tiempo único. Su propósito es describir variables y analizar su incidencia e interrelación en un momento dado, es como tomar una fotografía de algo que sucede". (Hernández, 2003)

Esta investigación es de tipo **transeccionales** ya que solamente se recolecto datos en un solo momento, en un tiempo único.

2.1.3 Nivel:

"Como ya se dijo, puedes pretender realizar descripciones comparativas entre grupos o

subgrupos de personas u otros seres vivos, casos, objetos, comunidades o indicadores".

(Sampieri, 6ta edición, p. 178)

Esta investigación es **Descriptiva** ya que luego de realizar la recolección de datos y

aplicar nuestro método describiremos los resultados.

2.1.4 Enfoque:

"Toma relación a los ejercicios numéricos y cálculos matemáticos. En la actualidad,

representa un grupo de procedimientos de manera organizada y secuencial con el fin de

corroborar ciertas suposiciones. Cada etapa depende de la anterior y así sucesivamente,

por lo que no se puede evadir fases, el orden es vital, aunque desde luego, podemos

redefinir alguna etapa". (Sampieri, 6ta edición, p. 6)

"La investigación cuantitativa recoge información empírica (de cosas o aspectos que se

pueden contar, pesar o medir) y que por su naturaleza siempre arroja números como

resultado". (Behar, 2008, p.38)

El enfoque de esta investigación es **Cuantitativo**, ya que se obtuvo datos numéricos y sus

pasos fueron secuenciales; utilizamos instrumentos estandarizados.

2.2. Operacionalización de variables

Las variables consideradas para el presente en este trabajo de instigación son:

2.2.1 Variables:

Variable independiente: Muro de concreto armado

"Como su nombre lo indica, los muros de concreto armado son elementos estructurales

diseñados para aguantar algo; está es un sólido que, sin la presencia de la muralla, tomaría

una cualidad distinta a la dicha por el borde del muro para alcanzar su estabilidad".

(Ordoñez, 2017, pag.1)

27

"Son muros verticales de concreto armado que resisten el empuje del suelo el cual se

ancla con tensores en la masa del terreno conforme se hace la excavación general".

(Blanco, 2010, pág. 17).

"Suelen ser de concreto o de mampostería y depende del peso propio para aplicar la

gravedad, presentan una geometría trapezoidal". (Ortega, 1990, p.208)

Variable dependiente: Estabilizar taludes

"Alternativa geotécnica total que se incorpora en un desnivel, sea de pendiente, de zanja,

de cisura, corriente u otros, con la habilidad de incorporarle estabilidad suficiente y

sostenible, que atienda los criterios gravitatorios y sísmicos, medidos por factores

de seguridad, sin arruinar su entorno". (CE020, 2000, p.6)

"Es la respuesta de mecánica de suelos total que se realiza hacia un talud que

puede ser mediante una excavación, corte, natural, etc. (RNE, 2012, p.280)

2.2.2 Operacionalización

28

Variables	Descripción	Dimensiones	Descripción	Indicadores	Técnicas	Instrumento	Unidad de medida	Fórmula
reto armado	"Son muros verticales de concreto armado que resisten el empuje del suelo el cual se ancla con tensores en la masa del terreno conforme se hace la excavación general". (Blanco, 2010, p. 17). Análisis estructural estructural	Análisis estructural	"El objetivo del análisis estructural consiste en calcular las fuerzas internas y las deflexiones en un punto cualquiera de una estructura" (Camba, Chacón, Pérez, 1982, p.4)	Ángulo de fricción	NTP E 060 Concreto Armado	Equipo de corte directo	Kp/cm2	Dr=(emax-e) / (emax-emin)
Muros de concreto		Niveles	Altura a la que está situada una cosa, o a la cual llega la superficie de un líquido o la parte más alta de un conjunto de cosas amontonadas.	Empuje activo y pasivo	Norma CE.020 Estabilización de Suelos y Taludes	Equipo de corte directo	adimensiona I	$K_{\sigma} = \frac{\cos^{2}(\phi - \beta)}{\cos^{2}\beta \cdot \cos(\delta + \beta) \cdot \left[1 + \sqrt{\frac{sen(\delta + \phi)sen(\phi - i)}{\cos(\delta + \beta)\cos(\beta - i)}}\right]^{2}}$
Estabilizar taludes	"Un talud es una masa de tierra que posee diferentes pendientes, las cuales pueden fallar por distintos motivos tales como cambio topográfico, por sismo, filtraciones de agua o meteorización que alteran su estabilidad". (Suarez,	Propiedades del suelo	La proporción de los componentes determina una serie de propiedades que se conocen como propiedades físicas o mecánicas del suelo: textura, estructura, color, permeabilidad, porosidad, drenaje, consistencia, profundidad efectiva.	Peso específico	E 050 Suelos y Cimentaciones	Balanza granulométric a	Gr/cm3	$\gamma = \frac{Peso\ total\ de\ la\ roca\ (o\ suelo)\ (W=mg)}{Volumen\ total\ (V)}$
		Analisis de estabilidad	"Una definición del factor de seguridad contra la falla de un talud, es la del valor resultante de dividir la resistencia al corte disponible del suelo, a lo largo de la superficie critica de deslizamiento, por la resistencia al corte requerido para mantener el equilibrio" (Bishop, 1995)	Factor de seguridad	Norma CE.020 Estabilización de Suelos y Taludes	Equipo de corte directo	adimensiona I	$F = \frac{R \cdot \sum c' \cdot \delta_s \cdot \eta}{\sum W \cdot x} + \frac{R \cdot \sum (W - \mu \cdot b) \cdot \tan \phi \cdot \varepsilon}{\sum W \cdot x}$

2.3 Población, muestra

2.3.1 Población

"La población es el conjunto de todas las situaciones consecuentes que conlleva una serie de características". (Sampieri, 6ta edición, p.198)

"La población es un ligado de elementos, seres o eventos, concordantes entre sí en cuanto a una sucesión de características, de los cuales se desea hallar alguna pesquisa". (Hurtado, 2000, p.152)

La población de la siguiente investigación es 120 metros lineales de la cuadra 9 de la Av. Morales Duarez –Carmen de la Legua Reynoso

2.3.2 Muestra

"La muestra es un subconjunto de todas las situaciones consecuentes que se considera, por la cual se recopilan los respectivos datos para poder representar la población". (Sampieri, 6ta edición, p.196)

"Cuando no es consecuente elaborar un inventario o una lista, se emplea una muestra, es decir una ración representativa y adecuada de dicha población. Se selecciona de la urbe de estudio". (Espinoza, 2016, p. 4)

La muestra en este proyecto de investigación es 10 metros entre la cuadra 9 a la cuadra 10 de la Av. Morales Duárez – Carmen de la Legua Reynoso.

2.4 Técnicas e instrumentos de recolección de datos, validez y confiabilidad

2.4.1 Técnicas de recolección de datos

"Recopilar la base de datos representa una o varias herramientas de medición con el fin de recabar la información pertinente de las variables del estudio en la muestra o etapas seleccionadas". (Sampieri, 6ta edición, p.226)

Según Arias (2012), menciona que la técnica "es un medio el cual nos proporciona una manera para la investigación , conformando parte del método científico" (p. 67).

Como nuestra investigación es cuantitativa nuestra técnica será:

- Norma CE.020 Estabilización de Suelos y Taludes.
- E 050 Suelos y Cimentaciones.
- NT E 060 Concreto Armado
- Manual Técnico de Anclaje

2.4.2 Instrumentos de investigación

En nuestra investigación los instrumentos serán:

- Prueba de Penetración Estándar para poder calcular el Angulo de fricción.
- Copa de casa grande
- Teoría de Coulomb para hallar el Empuje Activo y Pasivo.
- Próctor Estándar para determinar la capacidad portante del suelo.
- Equipo de corte directo

2.4.3 Validez

"La validez, en términos generales, se refiere al grado en que un instrumento mide con exactitud la variable que verdaderamente pretende medir. Es decir, si refleja el concepto abstracto a través de sus indicadores empíricos". (Sampieri, 6ta edición, p.229)

Para los autores Baptista, Fernández y Hernández (2012) el concepto validez en la presente investigación corresponde a que "en términos generales, se refiere al grado en que un instrumento realmente mide la variable que pretende medir" (p.211).

Aplicabilidad Aplicabilidad						
Muro de concreto armado Estailizar taludes						
Expertos	Pertinencia Relevancia Claridad Pertinencia Relevancia					
Mg. Gustavo Adolfo, Aybar Arriola	Aplicable	Aplicable	Aplicable	Aplicable	Aplicable	Aplicable
Mg. Ericka Claudia, Bonilla Vera	Aplicable	Aplicable	Aplicable	Aplicable	Aplicable	Aplicable
Mg. Neil Balbin, Lazo	Aplicable	Aplicable	Aplicable	Aplicable	Aplicable	Aplicable

2.4.4 Confiabilidad

"La confiabilidad de un instrumento de medición representa el nivel de uso repetido en un mismo objeto, persona o sucesos, resulte datos iguales". (Sampieri, 6ta edición, p.228)

Según Hernández, Roberto. (2014) en su libro "Metodología de la investigación indica lo siguiente: Como tal, la confiabilidad es el rango por el cual una herramienta de medida genera resultados coherentes y verídicos. (p.200)

Todo tratamiento de la base de datos, ya sea, fórmulas o procedimientos correspondiente que se llevó a cabo en esta investigación son completamente confiables, ya que se encuentran comprendidos dentro de la Norma CE.020 Estabilización de Suelos.

2.5. Procedimiento

Se efectuó primero el levantamiento topográfico del talud para poder determinar la pendiente y la cantidad de relleno que se tendrá que realizar ya en campo, luego se extrajo una muestra de una trinchera y se hizo el estudio de suelo en un laboratorio certificado para obtener las características del suelo y sus propiedades. De acuerdo a la mecánica de suelos se utilizó el ensayo de corte directo el cual me brindo el ángulo de fricción, con el que realice el diseño del muro de concreto armado aplicando arriostre postensado para luego tener las conclusiones.

2.6 Métodos de análisis de datos

"El estudio de tipo cuantitavo de la base de datos se realiza en base a la matriz de consistencia, utilizando hojas de cálculos. Por ello, este capítulo se centra en la representación de los productos de las técnicas aplicadas en el análisis de datos y no en los procesos de cálculos". (Sampieri, 6ta edición, p.312)

Se obtuvo los datos realizando estudios en campo y describiendo las características de los resultados; luego se pasó a estudios en laboratorio, para finalmente pasar a realizar los definitivos estudios en gabinete, obteniendo el diseño del muro de concreto armado aplicando arriostre postensado.

2.7 Aspectos éticos

Para el presente trabajo de investigación, todo concepto teórico extraído de cada fuente previamente seleccionada, ya sea, texto, frase(s) o base(s) de dato(s) no ha sido modificada o manipulado.

Cabe recalcar que ninguna de las personas que formaron parte de esta investigación, así como críticas, información validada o experiencias, fue sometida u obligada a cualquier peligro.

.

III RESULTADOS

Datos obtenidos del levantamiento topográfico: Se puede apreciar el programa AutoCAD los siguientes datos: Las cotas rojas es el rio Rímac, las cotas negras con los taludes de la cuadra 8, con este plano se obtuvo la planimetría y los volúmenes del talud.

Datos obtenidos de Estudio de mecánica de suelos (EMS)

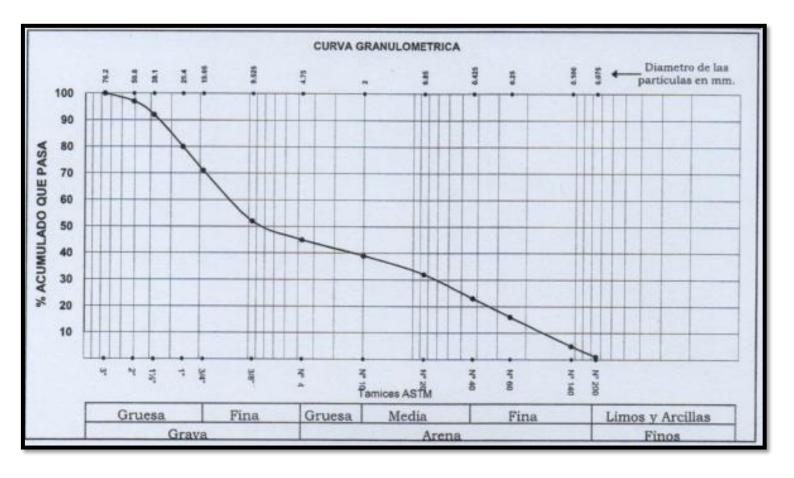
✓ Perfil estratigráfico del suelo

Este estudio es para determinar las capas paralelas que contiene el suelo llamado estratos. Lo que se realiza es una excavación vertical para ir viendo los tipos de estratos que existe, con eso obtendremos la descripción del material, clasificación SUCS, grafico, la profundidad del perfil, los porcentajes de los tipos de material sea grava, arena finos etc.

En nuestro resultado del perfil obtuvimos un gran depósito aluvial, compuesto por grava arenosa pobremente gradada, (GP) según la clasificación SUCS, plasticidad nula, medianamente denso, ligeramente húmedo, gris claro; el suelo es estable al momento de la excavación, presenta botonerías y bloques de gran tamaño, su composición está formada por gravas (55%), arenas (44%) y finos (1%), no presenta límites de atterberg.

MUROS DE CONCRETO ARMADO APLICANDO ARRIOSTRE POSTENSADO PARA ESTABILIZAR TALUDES EN AVENIDA MORALES DUAREZ CARMEN DE LA LEGUA REYNOSO - CALLAO,2019 Cliente: LENIN ALVARO PINTO AMPUERO Proyecto: **DESCRIPCION DE CALICATA** (NTP 339.116, 339.150/ASTM D 2488 - 09a) AREA DEL PROYECTO: AVENIDA MORALES DUAREZ - CARMEN DE LA LEGUA REYNOSO - CALLAO - LIMA UBICACIÓN : CALICATA: C-01 POZO : M - 01 **DESCRIPCION DE CALICATA** COORDENADAS: Este TAMAÑO MAXIMO: PROFUNDIDAD (m) NIVEL FREATICO: 0.00 - 2.50 m PROF. RAICES :
CONDICIONES DE LA SUPERFICIE: SOBRETAMAÑO MUESTRA N° DESCRIPCION DEL MATERIAL (Nombre del grupo/Simbolo del Clasificación SUCS Ê CEMENTACION CONSISTENCIA DTROS TESTS. grupo). Plasticidad, color, olor, humedad, reacción con el HCI, PLASTICIDAD PROF. consistencia, características adicionales. FINOS; ARENA Grava. COLOR 0.20 0.30 0.40 0.00 a 2.50 m. Gran deposito aluvial, compuesto por Grava arenosa pobremente gradada, (GP) según la clasificación SUCS, plasticidad nula, medianamente denso, ligeramente húmedo, gris claro; el suelo es M-1 GP 55 44 estable al momento de la excavación, presenta bolonerias y bloques de gran tamaño, su composición está formada por gravas (55%), arenas (44%) y finos (1%), no presenta limites de atterberg. 2.20 2.30 2.40 2.50 2.80 2.70 2.80 2.90

3.00


✓ Analisis granulométrico por tamizado

Este estudio está dentro de la mecánica de suelos ya que nos representa las distribuciones y las formas de los tamaños de las partículas que conforman el suelo. Se representa desde la malla de 3" hasta la N° 200, su abertura en mm. Y el porcentaje que pasa, eso nos dará como resultado final la curva granulométrica que está representado por lo acumulado que pasa vs los tamices ASTM.

En el estudio se obtuve el siguiente análisis granulométrico por tamizado:

	NTP 339.128 / AST	M - D 422
MALLA	ABERTURA mm.	% QUE PASA
3"	76.20	100
2"	50.80	97
11/2"	38.10	92
1"	25.40	80
3/4"	19.05	71
3/8"	9.525	52
Nº 4	4.750	45
Nº 10	2.000	39
N° 20	0.850	32
Nº 40	0.425	23
N° 60	0.250	16
Nº 140	0.106	5
Nº 200	0.075	1

De acuerdo al siguiente análisis granulométrico, pudimos obtener la siguiente curva granulométrica donde nos muestra la relación de los materiales con el porcentaje acumulado que pasa por cada tamiz

✓ Límites de consistencia

Este estudio nos permitirá determinar la cohesión de las muestras del suelo más su contenido de humedad, se realizaron los límites según A. Atterberg: límite líquido, límite plástico, límite de contracción y el índice plástico.

Los resultados fueron los siguientes:

AST	M - D 427 / D 43	18
Limite liquido	(%)	NT
Limite plastico	(%)	NP
Indice plastico	(%)	-
Limite de contraccion	(%)	
Resultado	s: ASTM - D 248	37 / D 3282
Coeficiente de :		
-Uniformidad		62.58
-Curvatura		0.23
Material:		
-Grava	%	55
-Arena	%	44
-Finos	%	1
Clasificacion:		
-AASHTO		
-SUCS	GP con arena	
Nombre de grupo:	777 - YEAR OF BURN	
CONTENIDO	DE HUMEDAD	ASTM - D 2216
Humedad natural	(%)	2.8

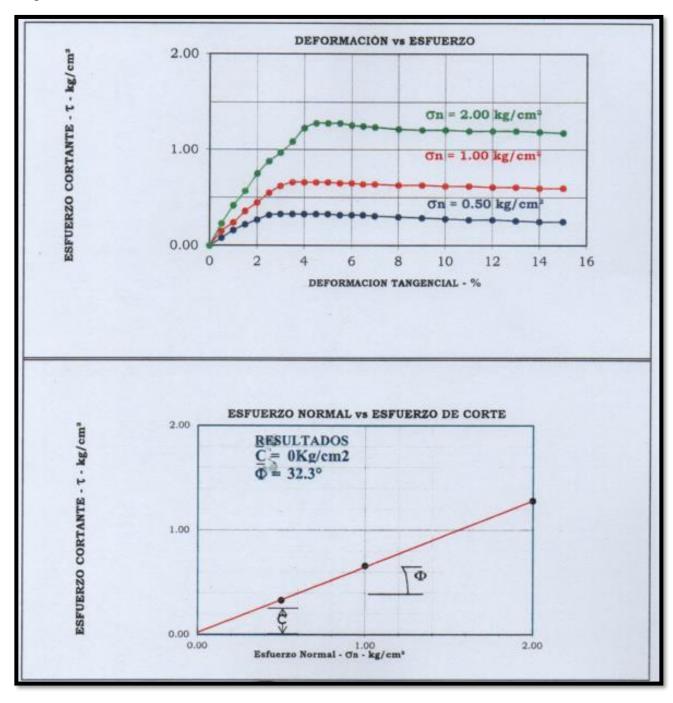
✓ Ensayo de Corte Directo

Este esayo es muy importante cuando existe problemas de estabilidad de taludes, presion lateral ya que es la resistencia interna por area unitaria que la massa del suelo brinda para resistir la falla.

La preparacion de la muestra es emsamblar la caja de corte y fijar la caja en posicion, obteniendo la seccion transversal de la muestra, luego se coloca la piedra porosa y el piston de carga sobre la superficie de la muestra, por ultimo se determina el peso y el espesor de la muestra

En cuanto al procedimiento del ensayo es aplicar carga vertical y colocar el medidor de desplazamiento vertical en posicion, luego ajutar el anillo dinanometrico y el desplazamiento horizontal, se comienza aplicar la carga horizontal midiendo desde los deformímetros de carga, el cambio de volumen y de desplazamiento horizontal. La tasa de deformación unitaria debe ser del orden de 0,5 a 2 mm/min y deberá ser tal que la muestra tarde en fallar entre 3 y 5 minutos.

Esto se realiza para dos espécimen más.


En esta tabla nos muestra los datos generales de los especímenes

Datos del Especimen	:	ESPECIMEN 01	ESPECIMEN 02	ESPECIMEN 03
Altura (h) (cm)	:	2.540	2.540	2.540
Diametro (Φ) (cm)	:	6.00	6.00	6.00
Densidad Seca (gr/cm³)	:	1.621	1.621	1.621
Humedad Inicial (%)	:	2.80	2.80	2.80
Humedad Saturación (%)	:	20.11	19.74	19.32
Esfuerzo Normal (kg/cm²)	:	0.50	1.00	1.50

Luego pasamos a hallar las deformaciones tangenciales con los esfuerzos de corte para más adelante obtener los resultados de los gráficos

ESPECIN	IEN 01	ESPECIA	MEN 02	ESPECIM	EN 03
Deformación Tangencial (%)	Esfuerzo de Corte kg/cm²	Deformación Esfuerzo Deformación Tangencial de Tangencial Corte (%) kg/cm² (%)		Esfuerzo de Corte kg/cm²	
0.5	0.08	0.5	0.15	0.5	0.23
1.0	0.16	1.0	0.24	1.0	0.42
1.5	0.22	1.5	0.36	1.5	0.57
2.0	0.27	2.0	0.45	2.0	0.75
2.5	0.32	2.5	0.55	2.5	0.88
3.0	0.33	3.0	0.62	3.0 /	0.97
3.5	0.33	3.5	0.66	3.5	1.09
4.0	0.33	4.0	0.66	4.0	1.23
4.5	0.33	4.5	0.66	4.5	1.28
5.0	0.33	5.0	0.66	5.0	1.28
5.5	0.32	5,5	0.65	5.5	1.28
6.0	0.32	6.0	0.65	6.0	1.26
6.5	0.32	6.5	0.64	6.5	1.25
7.0	0.31	7.0	0.64	7.0	1.24
8.0	0.30	8.0	0.63	8.0	1.22
9.0	0.29	9.0	0.63	9.0	1.21
10.0	0.28	10.0	0.62	10.0	1.21
11.0	0.27	11.0	0.62	11.0	1.20
12.0	0.27	12.0	0.61	12.0	1.20
13.0	0.26	13.0	0.61	13.0	1.20
14.0	0.25	14.0	0.60	14.0	1.19
15.0	0.25	15.0	0.60	15.0	1.18

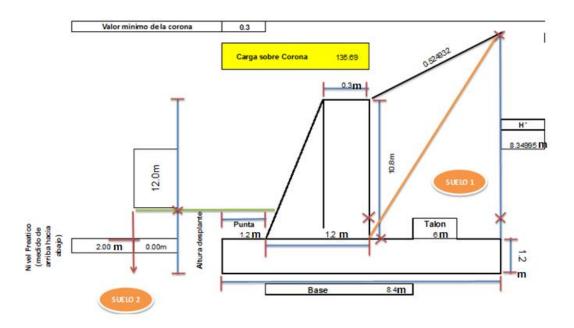
Por ultimo obtenemos los gráficos de DEFORMACION VS ESFUERZO y ESFUERZO NORMAL VS ESFUERZO DE CORTE el cual nos brindara el ángulo de cohesión el cual es muy importante para el diseño del muro de concreto armado aplicando arriostre postensado

✓ Análisis de suelos y sales

Este ensayo es importante para poder hallar las sales solubles en el suelo y agua subterranea, cloruro solubles y sulfato solubles para ver si es que afectara en largo plazo al muro de concreto armado y si afecta implementar una solucion.

Cuadro 4-5: Límites Permisibles de Sulfatos, Cloruros y Sales Solubles Totales

Presencia en el Suelo de:	ppm	Grado de Alteración	Observaciones	
*Sulfatos	0 - 1,000 Leve 1,000 - 2,000 Moderado 2,000 - 20,000 Severo >20,000 Muy sever		Ocasiona un ataque químico al concreto de la cimentación	
**Cloruros	>6,000	Perjudicial	Ocasiona problemas de corrosión de armaduras o elementos metálicos	
**Sales Solubles Totales	>15,000	40.0 - 60.0	Ocasiona problemas de pérdida de resistencia mecánica	


^{*}Comité ACI 318-2005

De acuerdo a este cuadro de límites permisibles de sulfatos, cloruros y sales solubles totales, no presenta riesgo el muro de concreto armado aplicando arriostre postensado ya sea en concreto, acero y resistencia mecánica.

^{*}Experiencia existente

Datos obtenidos del diseño de muro de concreto aplicando arriostre postensado

Para este diseño se tomó en cuenta la altura de la pendiente de 12 metros, una sobre carga de 1 tn/me2, el ángulo de fricción obtenida del ensayo de corte directo que es 32.30 grados, una resistencia de concreto de 210 kg/cm2 ya que es una obra de grandes esfuerzos, la resistencia ultimas de la varilla de acero grado 60° es 4200 kg/cm2.

Luego se asumió como predimensionamiento el espesor de la zapata como 1.2 m, la base de 8.40 m, una puntera de 1.20 m, el talón del muro una medida de 6.0 m, una corona de 0.3 m; con esos datos podemos realizar el diseño y obtener las verdaderas medidas.

La altura del relleno delante del muro es de 0.30 m comprobado en campo.

Luego se halló los cálculos de los empujes los cuales son el activo, dinámico y por sobrecarga en donde su formulación consiste en incorporar inercias generadas en la cuña. Es similar a la teoría de coulomb pero tiene en cuenta dos acciones adicionales que son producidas por el sismo. Comprobamos el análisis de estabilidad y se obtuvo los siguientes resultados:

Fa	Factor de seguridad por volcamiento			
	Suma de los momentos de las fuerzas que tienden a volvar el muro respecto al punto			
	Suma de los momentos de las fuerzas que tienden a resistir el muro respecto al punto			
7696.56				
— 407.39* — 1700.17 N*m				
Por lo tanto el FS de volcamiento es:				
	4.52			

Fac	Factor de seguridad por deslizamiento				
	Suma de las fuerzas horizontales resistentes				
	Suma de las fuerzas horizontales de empuje				
$=\frac{(\Sigma V)\tan\delta' + Bc_a' + P_p}{P_a\cos\alpha}$					
=					
Por lo tanto el FS de deslizamiento es:					
2.48					

Facto	Factor de seguridad por capacidad de carga				
	=				
	Capacidad de carga última				
	Capacidad de carga máxima				
=					
Por lo tanto el FS de deslizamiento es:					
	6.68				

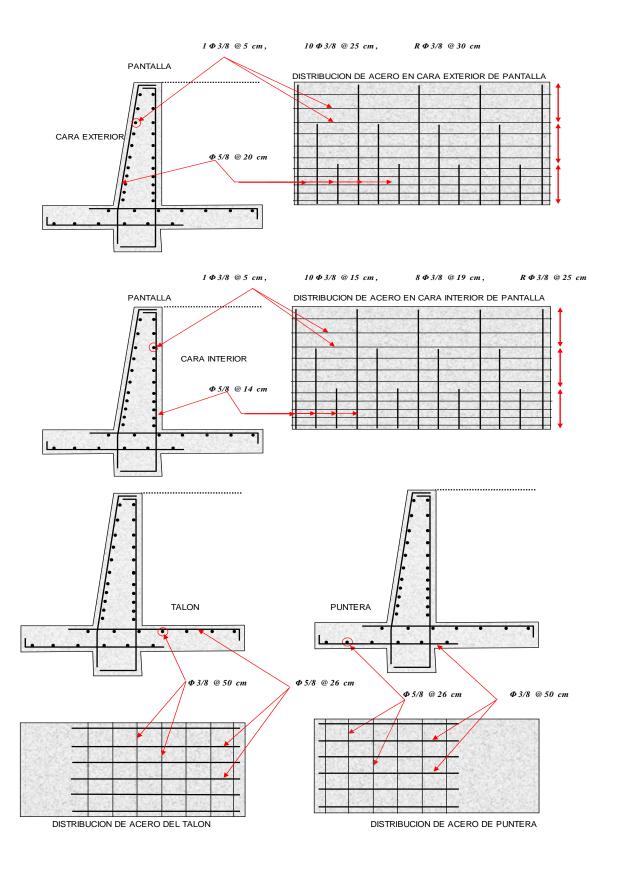
F	actor de seguridad por volcamiento)				
4.5200	Fsv > 2.0	Ok				
Fa	actor de seguridad por deslizamient	to				
2.4799	Fsd > 1.5	Ok				
	Factor de seguridad por carga					
6.6895	Fsc > 3.0	Ok				

EMPUJE DEL SUELO		EMPUJE DEL MURO
Ea== 14.5 ton/m2	<	Ep= 29.6 Ton/m2

Luego de afirmado los factores de seguridad y los empujes, se realizaron el cálculo del acero y obtuvimos los siguientes resultados:

En la cara exterior del muro los aceros longitudinales son varillas de 5/8" cada 0.20m, los aceros transversales se están distribuyendo 1 varilla de 3/8" a 5 cm, 10 varillas de 3/8" a 25cm y el resto de longitud varillas de 3/8" a 30cm

En la cara interior las varillas longitudinales son de 5/8" cada 14 cm, los aceros transversales se está distribuyendo 1 varilla de 3/8" a 5 cm, 10 varillas de 3/8" a 15cm, 8 varillas de 3/8" cada 19 cm y el resto de longitud varillas de 3/8" a 25 cm


En la parte del talón se están distribuyendo las varillas longitudinales de 5/8" cada 26 cm y los aceros transversales son de 3/8" cada 50 cm.

En la parte de la puntera se están distribuyendo las varillas longitudinales de 3/8" cada 50 cm y los aceros transversales son de 5/8" cada 26 cm.

Anclaje postensado:

En el diseño del acero postensado se necesitara una tubería para casing con un diámetro de 4", tubería plástica flexible con un diámetro de 5/8", cable de acero de 7 hilos con un diámetro de 5/8", separadores de caucho, espuma lubricante.

El procedimiento se efectuará con un ángulo de inclinación de 45°.

IV. DISCUSIÓN

PRIMERA DISCUSIÓN

Se está de acuerdo Bucio Oseguera, Roberto Carlos en su tesis: **REVISIÓN ESTRUCTURAL Y PROPUESTA DE LOS MUROS DE CONTENCIÓN EN EL FRACCIONAMIENTO DENOMINADO "EL MILAGRO"**, en que se deben realizar estudios en laboratorios certificados ya que los datos son muy confiables y se evita falla en los taludes después de realizado el diseño; y gracias a ellos se pudo comprobar en el laboratorio que el tipo de suelo del talud es grava arenosa poca gradada.

SEGUNDA DISCUSIÓN

De acuerdo a la tesis de Rossmery Zúñiga Palomino: Análisis de estabilidad del talud Carretera Central Km 117 + 800 – 118 + 000 y propuesta de solución con el uso de gaviones, comenta que para realizar un buen diseño del muro de contención debe ser con un software se está en discrepancia ya que haciendo un buen calculo en Excel se puede llegar a datos exactos como el empuje activo y pasivo y además de los análisis de estabilidad; un peso específico de 1684.67 KN*m.

TERCERA DISCUSIÓN

Si es más costoso que el diseño de muros de contención convencionales, sin embargo, este tipo de muro nos dará una mayor seguridad en cuanto a cualquier tipo de falla, ya sea de desplazamiento o volteo, como lo resalta Silba Quesquén en su proyecto de tesis: análisis comparativo de estabilidad de talud y propuesta de solución con muros anclados en la Carretera Las Pirias-Cajamarca, es más confiable invertir en seguridad que estar lamentándose pérdidas humanas.

V. CONCLUSIONES

PRIMERA CONCLUSIÓN

Luego de una profunda investigación se concluyó que el terreno está formado por 55% de gravas, 44% de arena y 1% de finos; osea el perfil está dado por un gran depósito aluvial, compuesto por grava arenosa pobremente gradada.

SEGUNDA CONCLUSIÓN

De los resultados de los análisis químicos se concluye que contiene pocos sulfatos lo cual no presentaran problemas en la cimentación del muro de concreto armado; contiene poca cantidad de cloruros, lo cual no habrá problemas con la corrosión de las armaduras del muro de concreto armado y por ultimo contiene poca cantidad de sales solubles totales lo cual no afectara en la resistencia mecánica del muro de concreto armado.

TERCERA CONCLUSIÓN

Se concluyó que luego de realizar el ensayo de corte directo se obtuvo un ángulo de fricción de 32.3° lo cual se realizó el diseño del muro obteniendo factores de seguridad muy elevados en volcamiento 4.52, en deslizamiento 2.48 y en capacidad de carga 6.68.

VI. RECOMENDACIONES

PRIMERA RECOMENDACIÓN

Continuar con los estudios faltantes, que son de metrados, presupuesto, etc., ya que, terminando este proyecto se podría dar más soluciones a los problemas

SEGUNDA RECOMENDACIÓN

Siempre realizar los estudios de suelo en laboratorios confiables y que estén certificados para luego no tener variación en campo que ya siempre hay esos problemas y los perjudicados son los pobladores de dicha zona de estudio

TERCERA RECOMENDACIÓN

A la municipalidad de Carmen de la legua Reynoso tener en cuenta esa avenida principal ya que está muy vulnerable para los pobladores, y no esperar a que pasen accidentes para tener en cuenta esta solución.

CUARTA RECOMENDACIÓN

Realizar los estudios correspondientes al rio Rímac para poder descartar cualquier tipo de falla por aumento de caudal hacia el muro de concreto armado.

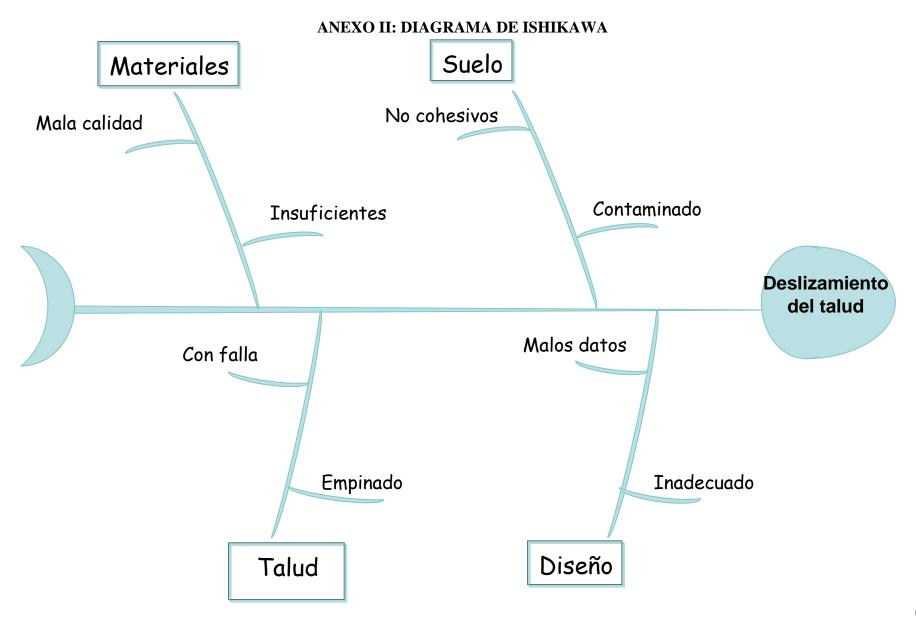
REFERENCIAS

- A. MARTINEZ Curi, Aracely. Estabilidad de Taludes con Muros de Contención en la Ampliación Virgen de Lourdes Zona 4, Villa María del Triunfo, Lima -2018. Tesis (título profesional en ingeniero civil). Lima, Perú: universidad Cesar Vallejo, 2018
- B. MIRANDA Torres, Raúl Alexis. "Diseño del muro rígido para la estabilización de taludes en tramos de constante deslizamiento de la carretera Shapaja Chazuta, 2017". Tesis (título profesional de ingeniero civil). Lima, Perú: Universidad Cesar Vallejo, 2017
- C. SILBA Quesquén, Paul Alexander análisis comparativo de estabilidad de talud y propuesta de solución con muros anclados en la Carretera Las Pirias-Cajamarca, 2018. Tesis (título profesional de ingeniero civil). Lima, Perú: universidad Cesar Vallejo, 2018
- D. BERNAL, C. (2010). "Metodología de la investigación". 3ª ed. Colombia: Pearson Educación. 106 p. ISBN: 9789586991285.
- E. SALKIND, Neil. Métodos de Investigación. 3a. Ed. México: Prentice Hall. 1999. ISBN 970-170234-4
- F. ÑAUPAS P., Mejía, M., Novoa, R. y Villagómez, P. (2012). "Metodología de la investigación". 4ta ed. Colombia. Ediciones de la U. ISBN 9789587621884.
- G. GONZALEZ Arellano, Eduardo. PROCEDIMIENTO PARA LA ESTABILIZACION DEL TALUD UBICADO EN LA AUTOPISTA MEXICO
 ACAPULCO DEL KM 195+880 AL 196+365. Tesis (título profesional en ingeniero civil). Nezahualcoyoti, México, UNIVERSIDAD NACIONAL AUTOOMA DE MEXICO, 2014

- H. BUCIO Oseguera, Roberto Carlos. RESION ESTRUCTURAL Y PROPUESTA DE LOS MUROS DE CONTENCION EN EL FRACCIONAMIENTO DENOMINADO "EL MILAGRO" EN LA CUIDAD DE URUAPAN, MICHOACAN. Tesis (título profesional en ingeniero civil). Michoacán, México: UNIVERSIDAD DON VASCO A.C., 2015
- I. LEON Segura, Luis Daniel. "METODOLOGIA DE DISEÑO DE MUROS DE CONTENCION CONSTRUIDOS A BASE DE GEOSINTETICOS. EJEMPLOS PRACTICOS DE LA CARRETERA MITLA – TEHUANTEPEC II". Tesis (título profesional en ingeniero civil). México: UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO, 2015
- J. MARTINEZ Curi, Aracely. Estabilidad de Taludes con Muros de Contención en la Ampliación Virgen de Lourdes Zona 4, Villa María del Triunfo, Lima -2018. Tesis (título profesional en ingeniero civil). Lima, Perú: universidad Cesar Vallejo, 2018.
- K. CALAVERA. J. Muros De Contención Y Muros De Sótano. 2. a. ed. INTEMAC.1990.307 p.
- L. ESTABILIDAD de Taludes [en línea]. España: GEOSTRU, 2016[fecha de consulta: 10 de junio de 2019].

Disponible en: https://www.geostru.eu/es/estabilidad-de-taludes/

M. VILLAR Arana, Hernán. Comparación del comportamiento estructural de muros de contención en voladizo y con contrafuentes. Tesis (título en ingeniero civil.) Perú: Universidad Nacional de Cajamarca, 2015. N. BEHAR, D. 2008. Metodología de la investigación. España: Editorial Shalom 2008.


Disponible:http://www.rdigital.unicv.edu.cv/bitstream/123456789/106/3/Libro

- 2° metodologia%20investigacion%20este.pdf
- O. DIAZ, Javier. Estabilización del talud de la costa verde en la zona del distrito de Magdalena. Tesis (título en ingeniería civil). Lima: Pontificia Universidad Católica del Perú, 2008.
- P. SALDARRIAGA Mero, Polivio Andrés. Estudio de taludes en condiciones dinámicas para áreas urbanas en el cantón Esmeraldas. Tesis (título en ingeniero civil). Ecuador: Universidad Fuerzas Armadas, 2016.
- Q. MONTENEGRO Katherine, Tipán Danilo. Alternativas de estabilización del talud ubicado en el kilómetro 6+479 del proyecto de ampliación de la av. Simón Bolívar, tramo Panamericana Norte- Tajamar. Tesis (título en ingeniero civil). Ecuador: Universidad Fuerzas Armadas, 2016.
- R. ZUÑIGA Palomino Rossmery. Analisis de estabilidad del talud Carretera Central
 Km 117+ 800 118 + 000 y propuesta de solución con el uso de gaviones- 2018.
 Tesis (título en ingeniero civil). Lima: Universidad Cesar Vallejo, 2018.
- S. CAPACYACHI Pesantes Diego. Estabilidad de taludes aplicando muros de contención de mampostería en el distrito de Comas – Lima 2017. Tesis (título en ingeniero civil). Lima: Universidad Cesar Vallejo, 2017.
- T. BORSELLI, Lorenzo. Geotecnia I parte VI Año académico 2019-2020, Instituto de Geología, Fac. de ingeniería UASLP, 2020. 6 pp.

- U. OCHOA Quispe, Lisbeth. Inestabilidad de taludes en el sector de santa barbara de la ciudad de Huancavelica. Tesis (título profesional en ingeniero civil). Huancayo, Perú: UNIVERSIDAD PERUANA LOS ANDES 2016.
- V. CEPEDA, Leal, García. Conservación y explotación de carreteras, 2da edición, 2009.
- W. GONZALES, Cuevas. Analisis Estructural, 2014.
- X. OJEDA, Parra, Sánchez. Analisis Estructural, Universidad Autónoma de Baja California 201.
- Y. RODRIGUEZ, Soto. ANALISIS Y COMPARACION DEL ANGULO DE FRICCION DE ARENAS FINAS OBTENIDO MEDIANTE ENSAYO SPT ESTANDAR, CORTE DIRECTO Y SPT CON INCREMENTO EN EL DIAMETRO INTERNO DEL MUESTREADOR. Tesis (título profesional en ingeniero civil). Bogotá D.C.: Universidad Distrital Francisco José de Caldas 2016.
- Z. MACIAS, Leiva, Ibáñez, Cortez, Charry. Ensayo de compactación. Bogotá DC: Universidad de la Salle 2013.
- AA. JIMENEZ, Rosa. Metodología de la investigación. La Habana: Editorial de Ciencias Médicas del Centro Nacional de información de Ciencias Médicas 1998.
- BB. SAMPIERI, Roberto. Metodología de la investigación. Mc Graw Hill Education. 6ta edition.

ANEXOS

MUROS DE CONCRETO ARMADO APLI	MUROS DE CONCRETO ARMADO APLICANDO ARRIOSTRE POSTENSADO PARA ESTABILIZAR TALUDES EN AVENIDA MORALES DUAREZ EN CARMEN DE LA LEGUA REYNOSO- CALLAO, 2019					
		NIN ALVARO PINTO				
PROBLEMAS	OBJETIVOS			OPERACIONALIZACIÓN DE VARIABLES		Metodo de investigacion
General	General	Independiente	Dimensión	Indicador	Instrumento	We todo de investigación
			Análisis Estructural	Angulo de fricción	Equipo de corte directo	
¿Cómo influye el muro de concreto armado aplicando arriostre postensado para estabilizar taludes en la	Determinar la estabilizacion del talud con muros de concreto armado aplicando arriostre postensado en	Muros de concreto		Capacidad portante del suelo	Proctor estandar	
avenida Morales Duarez en Carmen de la Legua Reynoso- callao, 2019?	la avenida Morales Duarez en Carmen de la Legua Reynoso- Callao, 2019.	armado	Niveles	Empuje activo y pasivo	Equipo de corte directo	Tipo: Aplicada Diseño: No experimental-
Específicos	Específicos	Dependiente				Transversal
¿Cómo contribuye el muro de concreto armado aplicando arriostre postensado para estabilizar taludes en la avenida Morales Duarez en Carmen de la Legua Reynoso- callao, 2019?	Determinar el factor de seguridad para estabilizar taludes en la avenida Morales Duarez en Carmen de la Legua Reynoso- Callao, 2019			Capacidad portante	Proctor estandar	Nivel:Descriptivo Enfoque:Cuantitativo
¿Qué beneficia el muro de concreto armado aplicando arriostre postensado en el peso espeficico para estabilizar taludes en la avenida Morales Duarez en Carmen de la Legua Reynoso - callao, 2019?	Determinar el peso especifico para el empuje del muro de concreto armado aplicando arriostre postensado al muro de concreto armado para estabilizar taludes en la avenida Morales Duarez en Carmen de la Legua Reynoso- Callao, 2019.	Estabilizar taludes	Propiedades del suelo	Peso especifico	Equipo granulometrico	Población: La población de la siguiente investigación son 120 ml de la cuadra 9 de la Av. Morales Duarez –Carmen de la Legua Reynoso. Muestra: La
¿Cómo contribuye el muro de concreto armado aplicando arriostre postensado en el factor de seguridad mediante el método de equilibrio límite para estabilizar taludes en la avenida Morales Duarez en Carmen de la Legua Reynoso -callao, 2019?	Determinar el análisis de estabilidad para que el muro de concreto armado aplicando arriostre postensado estabilice taludes en la avenida Morales Duarez en Carmen de la Legua Reynoso- Callao, 2019.		Analisis de estabilidad	Factor de seguridad	Equipo de corte directo	muestra en este proyecto de investigación es 10 metros de la cuadra 9 de la Av. Morales Duarez –Carmen de la Legua Reynoso.

ANEXO III: MATRIZ DE ANTECEDENTES

Antecedente	N°	Título	Año	País	Población	Muestra	Tipo Investiga ción	Resultados	VI	VD
INTERNACIONAL	1	PROCEDIMIENTO PARA LA ESTABILIZACION DEL TALUD UBICADO EN LA AUTOPISTA MEXICO – ACAPULCO DEL KM 195+880 AL 196+365; diseño de infraestructura vial, Universidad Nacional Autónoma de México – México.	2015	Mexico	200,000 habitantes	AUTOPISTA MEXICO - ACAPAULCO KM 195+880 AL 196+365	Aplicada	Se utilizara el muro estructural de concreto armado con una malla triple torsion reforzada con cables de acero de 1/2 "	X	
	2	REVISION ESTRUCTURAL Y PROPUESTA DE LOS MUROS DE CONTENCIÓN EN EL FRACCIONAMIENTO DENOMINADO "EL MILAGRO" EN LA CUIDAD DE URUAPAN, MICHOACÁN.; diseño de infraestructura vial; Universidad Don Vasco A.C México.	2015	Mchoacan - Mexico	Fraccionamiento "EL MILAGRO"	muros de mamposteria	no experimental - cuantitativo	Que las dimensiones de los muros de contención existentes no son las adecuadas, los materiales empleados en la construcción del muro son de muy buena calidad	X	
	3	Estudio de taludes en condiciones dinámicas para áreas urbanas en el cantón Esmeraldas, sector "las palmas"	2015	Ecuador	Área urbana del sector Las Palmas	El estudio del talud en el sector Las Palmas	Historico- Descriptivo- Experimental	Se tomaran medidas correctivas para impedir los desplazamientos laterales		X
	4	ALTERNATIVAS DE ESTABILIZACIÓN DEL TALUD UBICADO EN EL KILÓMETRO 6+479 DEL PROYECTO DE AMPLIACIÓN DE LA AV. SIMÓN BOLÍVAR, TRAMO PANAMERICANA NORTE – TAJAMAR	2016	Quito-Ecuador	400,000 habitantes	Tramo I de la carretera panamericana - Tajamar	Aplicada	Talud estable mediante el metodo de estructuras postensadas con mas seguridad a un menor costo	X	
	5	"METODOLOGIA DE DISEÑO DE MUROS DE CONTENCION CONSTRUIDOS A BASE DE GEOSINTETICOS. EJEMPLOS PRACTICOS DE LA CARRETERA MITLA - TEHUANTEPEC II";	2015	Mexico	Un tramo de la carretera Mitla- Tehuantepec	Estudio del tramo de la carretera Mitla- Tehuantepec	Cuasi experimental - Aplicada - Cuantitativo	la topografia sirvio de mucha informacion para poder realizar el diseño		X

NACIONAL	6	"Diseño del muro rígido para la estabilización de taludes en tramos de constante deslizamiento de la carretera Shapaja – Chazuta, 2017"	2017	Chazuta- Tarapoto	Tramo de la carretera Shapaja a Chazuta que tiene 23 km	Los taludes críticos en el km 12+500 – 12+507 al km 12+549 – 12+568 del sector Chumia en la carretera Shapaja – Chazuta	Explicativo - Pre experimental	Muros rigidos con factor de seguridad para deslizamiento como para volteo.	X	
	7	Análisis comparativo de estabilidad de talud y propuesta de solución con muros anclados en la Carretera Las Pirias-Cajarmarca, 2018	2018	Las Pirias- Cajamarca	Poblacion del tramo 15+280 de la carretera Las Pirias	El estudio donde la altura del talud era de 30 metros.	Cuasi experimental - Aplicada - Cuantitativo	Ubicación muy inestable por su bajo factor de seguridad	X	
	8	Estabilidad de Taludes con Muros de Contención en la Ampliación Virgen de Lourdes Zona 4, Villa María del Triunfo, Lima -2018	2018	Villa Maria del Triunfo -Lima	20 muros a proyectar en las calles y avenidas en la zona de Virgen de Lourdes	No probabilística ya que no se utilizará fórmula matemática para hallar la cantidad de taludes y muros.	Aplicada - No Experimental - Transversal	Zona muy inestable por su bajo factor de seguridad		X
	9	Análisis de estabilidad del talud Carretera Central Km 117 + 800 – 118 + 000 y propuesta de solución con el uso de gaviones – 2018	2018	Lima- Peru	Tramo de la Carretera Central km. 117+ 800 - 118 + 000	El análisis de la estabilidad del talud en dicha carretera.	No Experimental - Cuantitatito	Uso de gaviones genera mejores resultados en seguridad	X	
	10	Estabilidad de taludes aplicando muros de contención de mampostería en el Distrito de Comas-Lima 2017	2017	Comas- Lima	Calles del A.A.H.H. Villa Disciplina del disrtito de Comas.	La calle 1 del Asentamiento Humano Villa Disciplina, localizado en la cuarta zona de Collique, distrito de comas.	No Experimental - Aplcativo	muros de contención de mampostería es la solución para la estabilidad para mejorar la calidad de vida de los pobladores del AA.HH. Villa Disciplina		X

ANEXO IV: LEVANTAMIENTO TOPOGRÁFICO

INFORME

Objetivo

Este estudio de levantamiento topográfico tiene como objetivo obtener información fundamental para conocer el perfil del talud y obtener su volumen de relleno, esta información se obtuvo en campo y luego fue llevada a gabinete para obtener los resultados confiables.

Gracias a estos trabajos podremos obtener la planimetría y la altimetría la cual lo podremos observar en los planos topográficos mediante los puntos de control tomados en campo.

Trabajos en campo

- Personal empleado
- 01 Ingeniero civil Jefe
- 01 Técnico en topografía
- 02 ayudantes (tesista y amigo)
 - Equipos y materiales utilizados

Fuente: Aula3ingenieria

Receptor de referencia

Fuente: Aula3ingenieria

• Procedimiento

Lo primero que hicimos fue reconocer el talud de la avenida Morales Duarez la cuadra 8, luego empezamos a tomar los puntos con el GPS y el receptor de referencia en la parte alta del talud con una distancia aproximadamente de 40 pasos dejando trazos, luego fuimos al pie del talud para tomar los puntos guiándonos de los trazos realizados en la parte superior del talud hasta finalizar dicha tare

Trabajos en gabinete

Almacenamiento de la información proporcionada de campo

Elaboración de los planos topográficos a escala promedio

Utilización del software CIVILCAD y AUTOCAD.

Datos obtenidos del levantamiento topográfico: Se puede apreciar el programa AutoCAD los siguientes datos: Las cotas rojas es el rio Rímac, las cotas negras con los taludes de la cuadra 8, con este plano se obtuvo la planimetría y los volúmenes del talud.

PUNTO	NORTE	ESTE	ELEVACION	DESCRIPCION
1	272371.166	8668335.715	51.443	GPS-1
2	272107.127	8668283.695	51.869	GPS-2
3	272692.126	8668401.755	59.756	E1
4	272656.742	8668477.153	59.387	E2
5	272699.453	8668499.357	56.842	E3
6	272142.990	8668396.771	50.552	E4
7	271751.089	8668307.987	46.135	E5
8	271497.309	8668285.328	44.342	E6
9	271416.622	8668204.031	45.555	E7
10	271213.096	8668132.412	43.798	E8
11	271041.689	8668012.242	40.296	E9
12	271423.493	8668104.428	44.502	E10
13	271600.955	8668180.008	45.465	E11
14	271742.338	8668210.384	47.179	E12
15	271502.545	8668116.713	45.307	EST
16	271594.700	8668187.177	45.662	EST
17	271594.700	8668187.178	45.656	EST
18	271494.520	8668154.836	46.598	EST
19	271501.530	8668110.014	45.286	PMT
20	271501.949	8668105.720	45.183	PIS
21	271498.781	8668097.352	45.104	PIS
22	271498.695	8668099.106	45.320	PL
23	271498.054	8668097.634	45.104	PIS
24	271498.530	8668097.111	45.104	PIS

25	271501.328	8668105.849	45.340	V
26	271497.570	8668115.257	45.352	RAN
27	271496.197	8668117.390	45.174	PIS
28	271497.047	8668120.478	45.365	RAN
29	271496.068	8668118.370	45.170	PIS
30	271502.069	8668111.604	45.273	FAROL
31	271499.828	8668120.817	45.417	V
32	271495.398	8668125.617	45.199	PIS
33	271493.408	8668131.303	45.421	PT
34	271491.500	8668133.120	45.201	PIS
35	271497.243	8668134.987	45.407	RAN
36	271497.246	8668134.931	45.419	R
37	271496.873	8668136.924	45.213	PIS
38	271498.311	8668135.453	45.434	R
39	271498.016	8668137.576	45.215	PIS
40	271499.818	8668135.128	45.341	FARO
41	271504.078	8668135.395	45.562	M
42	271507.001	8668131.142	45.516	М
43	271511.137	8668132.587	45.577	М
44	271512.395	8668129.294	45.230	R
45	271508.923	8668121.868	45.230	V
46	271506.238	8668119.805	45.318	М
47	271506.999	8668117.598	45.189	V
48	271506.409	8668119.131	45.320	М
49	271507.184	8668119.757	45.303	М

50	271494.023	8668144.493	45.273	PIS
51	271495.083	8668144.885	45.265	PIS
52	271494.604	8668145.868	45.272	V
53	271493.775	8668145.342	45.270	V
54	271494.930	8668146.554	45.261	V
55	271493.237	8668145.731	45.279	V
56	271492.153	8668144.222	45.242	V
57	271491.245	8668145.762	45.297	V
58	271490.369	8668144.340	45.253	PIS
59	271489.021	8668146.098	45.438	PT
60	271488.366	8668146.598	45.435	PC
61	271490.379	8668144.574	45.435	V
62	271488.347	8668145.242	45.318	PIS
63	271488.606	8668147.349	45.437	V
64	271486.522	8668147.041	45.306	PIS
65	271490.501	8668147.997	45.389	V
66	271486.706	8668147.086	45.624	V
67	271487.797	8668149.693	45.432	V
68	271486.614	8668147.726	45.439	V
69	271489.286	8668148.742	45.451	V
70	271485.995	8668149.429	45.465	M
71	271487.242	8668150.521	45.398	V
72	271491.504	8668147.874	45.362	ST
73	271492.974	8668147.912	45.290	V
74	271498.793	8668148.704	45.269	V
75	271499.600	8668147.330	45.297	R
76	271499.250	8668147.910	45.522	V

77	271504.823	8668153.548	45.266	V
78	271505.270	8668150.555	45.358	V
79	271513.989	8668100.128	45.304	V
80	271512.506	8668100.458	45.159	PIS
81	271515.256	8668107.968	45.358	PL
82	271517.547	8668115.567	45.368	ST
83	271515.281	8668109.132	45.238	PIS
84	271517.273	8668115.682	45.217	PIS
85	271518.758	8668115.484	45.362	V
86	271519.211	8668121.874	45.211	PIS
87	271504.610	8668111.967	45.180	PIS
88	271520.695	8668121.704	45.366	V
89	271521.515	8668128.611	45.237	PIS
90	271523.213	8668128.804	45.365	V
91	271523.832	8668133.092	45.197	PIS
92	271525.948	8668136.320	45.250	PIS
93	271527.152	8668135.478	45.365	V
94	271528.575	8668139.569	45.195	V
95	271529.803	8668138.791	45.406	V
96	271531.085	8668137.785	44.576	G
97	271531.123	8668139.590	44.753	M
98	271529.748	8668134.016	44.528	V
99	271531.668	8668139.370	44.595	V
100	271531.394	8668134.082	44.500	М
101	271530.062	8668127.206	44.261	V
102	271531.137	8668136.203	44.542	V
103	271533.460	8668139.214	44.532	V

104	271536.841	8668134.310	44.390	M
105	271537.348	8668142.490	44.550	EST
106	271537.924	8668134.101	44.335	VER
107	271538.493	8668140.350	44.387	GCI
108	271537.770	8668142.606	44.270	V
109	271537.596	8668144.843	44.279	M
110	271539.091	8668144.568	44.227	ВТ
111	271539.799	8668142.925	44.233	V
112	271535.727	8668143.802	44.579	M
113	271533.466	8668141.851	44.594	M
114	271529.741	8668140.633	45.245	PL
115	271529.527	8668140.839	45.218	PIS
116	271532.241	8668142.348	45.435	PAL
117	271531.701	8668143.250	45.269	PIS
118	271536.115	8668146.835	45.298	PIS
119	271538.262	8668146.655	45.040	ARB
120	271540.969	8668146.734	44.226	M
121	271540.851	8668149.793	45.344	PIS
122	271541.317	8668145.065	44.213	V
123	271541.990	8668149.039	45.190	ARB
124	271541.616	8668143.437	44.195	M
125	271544.896	8668148.146	44.279	V
126	271540.314	8668134.529	44.126	V
127	271542.130	8668134.640	44.121	LP
128	271551.066	8668150.217	44.361	V
129	271540.348	8668143.674	44.222	LC
130	271546.408	8668150.823	45.185	ARB

131	271546.911	8668151.319	45.272	ARB
132	271551.389	8668153.717	45.358	PIS
133	271516.849	8668137.763	45.219	PIS
134	271522.440	8668145.603	45.276	PIS
135	271520.026	8668142.552	45.254	PIS
136	271522.305	8668145.612	45.433	VER
137	271521.830	8668149.077	45.538	ARB
138	271520.950	8668150.247	45.356	PIS
139	271526.210	8668151.578	45.499	AP
140	271527.002	8668153.506	45.418	PIS
141	271527.247	8668151.886	45.536	ARB
142	271528.727	8668152.003	45.257	PIS
143	271531.222	8668155.614	45.370	PIS
144	271531.872	8668155.138	45.376	ARB
145	271532.535	8668154.571	45.309	PIS
146	271535.969	8668157.908	45.387	PIS
147	271537.030	8668157.197	45.295	PIS
148	271542.621	8668160.960	45.372	PIS
149	271543.386	8668160.089	45.322	PIS
150	271547.964	8668163.318	45.413	PIS
151	271546.419	8668167.118	45.408	R
152	271534.737	8668161.410	45.376	R
153	271538.669	8668154.357	45.328	R
154	271529.474	8668147.367	45.307	R
155	271520.325	8668135.364	45.222	R
156	271651.466	8668186.747	46.242	EST
157	271775.638	8668210.702	47.742	EST

4-0	0-4404-00	0000000		
158	271494.792	8668218.229	42.412	EST
159	271807.094	8668222.860	47.970	EST
160	271512.823	8668155.029	45.546	PL
161	272210.411	8668281.973	52.699	PIS
162	271513.349	8668155.007	45.376	PIS
163	271513.213	8668155.636	45.343	V
164	271507.498	8668154.919	45.317	SAR
165	271513.073	8668157.907	45.282	SAR
166	271515.236	8668158.582	45.330	SAR
167	271517.955	8668160.412	45.301	SAR
168	271519.874	8668161.523	45.300	SAR
169	271519.992	8668161.705	45.299	R
170	271521.016	8668162.167	45.348	SAR
171	271522.485	8668160.649	45.347	V
172	271522.842	8668160.179	45.347	PIS
173	271522.668	8668156.709	45.372	BD
174	271514.663	8668141.790	45.632	PAL
175	271508.264	8668138.664	45.516	M
176	271531.130	8668164.289	45.388	PIS
177	271530.830	8668164.757	45.389	V
178	271530.549	8668165.507	45.365	ВТ
179	271529.574	8668166.450	45.366	SAR
180	271535.536	8668166.670	45.558	LET
181	271522.935	8668163.278	45.622	VER
182	271539.355	8668168.008	45.394	PIS
183	271537.295	8668170.057	45.359	SAR
184	271551.849	8668173.407	45.409	PIS

185	271551.437	8668173.951	45.384	VER
186	271557.478	8668178.504	45.384	SAR
187	271558.939	8668176.669	45.617	PL
188	271559.392	8668176.362	45.450	PIS
189	271559.311	8668177.028	45.394	VER
190	271569.490	8668179.880	45.445	PIS
191	271567.105	8668181.982	45.465	SAR
192	271579.664	8668182.950	45.458	PIS
193	271579.380	8668183.554	45.436	VER
194	271578.565	8668185.458	45.396	SAR
195	271583.783	8668184.385	45.650	PL
196	271585.752	8668184.602	45.478	PIS
197	271585.608	8668185.208	45.426	VER
198	271584.835	8668187.166	45.491	SAR
199	271599.023	8668190.675	45.447	SAR
200	271599.155	8668188.574	45.439	VER
201	271600.166	8668188.107	45.480	PIS
202	271602.621	8668187.363	45.460	BD
203	271604.653	8668189.183	45.467	PIS
204	271604.946	8668189.967	45.446	VER
205	271595.122	8668189.763	45.447	SAR
206	271618.911	8668192.540	45.534	PIS
207	271618.730	8668193.223	45.502	VER
208	271618.730	8668195.301	45.508	SAR
209	271618.904	8668192.838	45.728	PL
210	271636.530	8668197.399	45.686	VER
211	271636.659	8668199.536	45.727	SAR

212	271636.813	8668196.804	45.721	PIS
213	271653.890	8668201.457	45.913	VER
214	271653.914	8668203.450	45.889	SAR
215	271654.097	8668200.650	45.973	PIS
216	271668.266	8668206.563	46.081	SAR
217	271668.815	8668203.877	46.149	PIS
218	271676.786	8668205.537	46.227	PIS
219	271677.127	8668208.352	46.221	SAR
220	271688.140	8668210.529	46.349	SAR
221	271689.140	8668207.929	46.399	PIS
222	271704.323	8668210.988	46.585	PIS
223	271703.654	8668213.651	46.583	SAR
224	271689.032	8668208.247	46.558	PL
225	271727.892	8668216.050	47.051	PL
226	271727.753	8668216.368	46.831	VER
227	271727.942	8668215.719	46.873	PIS
228	271730.390	8668208.266	46.865	PIS
229	271721.077	8668204.166	46.890	ARB
230	271733.765	8668206.621	47.084	ARB
231	271720.864	8668206.359	46.725	PIS
232	271719.625	8668202.635	47.155	PAL
233	271707.826	8668203.660	46.535	PIS
234	271708.276	8668201.648	46.759	ARB
235	271695.265	8668201.222	46.444	PIS
236	271695.752	8668199.099	46.757	ARB
237	271695.047	8668199.077	46.773	PAT
238	271682.558	8668198.581	46.247	PIS

239	271683.127	8668196.606	46.441	ARB
240	271670.248	8668196.165	46.159	PIS
241	271670.656	8668194.211	46.401	ARB
242	271676.663	8668197.490	46.265	PIS
243	271657.570	8668193.465	45.971	PIS
244	271650.350	8668191.799	45.876	PIS
245	271657.845	8668191.374	46.236	ARB
246	271649.262	8668191.465	46.043	V
247	271648.688	8668189.402	46.124	ARB
248	271635.697	8668186.226	46.070	ARB
249	271635.531	8668188.452	46.388	PIS
250	271633.328	8668186.404	45.986	R
251	271634.827	8668185.211	46.062	R
252	271622.504	8668185.281	45.526	PIS
253	271633.122	8668184.477	46.833	R
254	271635.130	8668182.896	46.131	R
255	271633.386	8668183.660	46.893	R
256	271622.370	8668184.852	45.680	R
257	271633.476	8668181.560	45.856	PIS
258	271622.934	8668182.356	46.778	R
259	271613.189	8668183.231	45.507	PIS
260	271627.576	8668180.232	45.782	PIS
261	271623.194	8668181.297	46.768	R
262	271607.048	8668175.520	45.653	PIS
263	271604.739	8668181.078	45.488	PIS
264	271607.280	8668178.512	46.707	R
265	271606.481	8668176.320	45.868	R

266	271607.286	8668177.748	46.651	R
267	271605.188	8668180.014	45.726	R
268	271604.675	8668178.610	45.797	R
269	271597.371	8668179.323	45.463	PIS
270	271604.175	8668176.847	45.750	ARB
271	271597.139	8668177.339	45.615	ARB
272	271591.393	8668173.889	45.755	ARB
273	271584.433	8668173.987	45.632	ARB
274	271588.304	8668177.148	45.471	PIS
275	271580.771	8668175.127	45.427	PIS
276	271586.115	8668170.683	45.452	PIS
277	271578.640	8668170.623	45.669	ARB
278	271575.111	8668173.464	45.431	PIS
279	271570.411	8668167.104	45.401	PIS
280	271571.918	8668170.708	45.498	ARB
281	271570.385	8668167.263	45.582	VER
282	271569.240	8668171.572	45.421	PIS
283	271569.308	8668171.416	45.603	VER
284	271562.595	8668167.455	45.499	ARB
285	271558.342	8668167.609	45.388	PIS
286	271556.342	8668164.831	45.464	ARB
287	271551.907	8668164.963	45.396	PIS
288	271551.077	8668162.748	45.333	PIS
289	271549.921	8668163.358	45.613	ARB
290	271547.820	8668163.302	45.393	PIS
291	271548.419	8668161.954	45.332	PIS
292	271555.573	8668154.551	45.321	PL

293	271552.863	8668154.160	45.312	PIS
294	271558.832	8668155.771	45.314	RAN
295	271561.765	8668156.508	45.301	RAN
296	271559.490	8668152.738	44.498	V
297	271547.976	8668147.325	44.227	FARO
298	271551.419	8668150.262	44.348	SAR
299	271564.347	8668149.369	44.509	LP
300	271558.875	8668150.024	44.392	FARO
301	271569.755	8668152.837	44.597	FARO
302	271564.228	8668151.539	44.542	PT
303	271570.299	8668152.699	44.620	V
304	271571.729	8668158.837	45.380	PIS
305	271573.119	8668158.683	45.369	PT
306	271574.682	8668152.074	44.687	PL
307	271580.011	8668155.729	44.772	FARO
308	271573.242	8668158.461	44.671	R
309	271582.633	8668160.554	44.818	R
310	271584.266	8668154.683	44.656	LP
311	271589.925	8668161.059	45.001	R
312	271588.770	8668158.085	44.975	FARO
313	271588.994	8668162.248	45.318	PL
314	271589.479	8668162.780	45.439	PIS
315	271590.641	8668158.020	45.017	V
316	271598.414	8668158.178	45.134	LP
317	271596.832	8668159.595	45.099	VER
318	271596.285	8668162.611	45.114	VER
319	271596.443	8668164.472	45.469	PIS

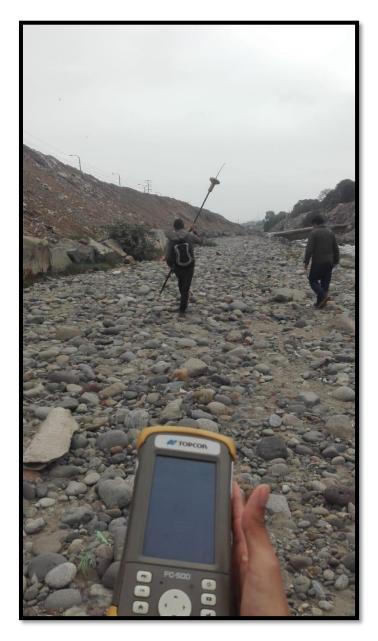
320	271599.372	8668160.756	45.173	FARO
321	271605.101	8668159.931	45.241	LP
322	271609.367	8668167.419	45.560	PIS
323	271610.999	8668163.388	45.344	VER
324	271608.849	8668163.181	45.285	FARO
325	271615.136	8668162.419	45.412	FA
326	271613.580	8668168.411	45.631	PIS
327	271617.820	8668165.516	45.464	FARO
328	271621.274	8668170.114	45.721	PIS
329	271625.982	8668167.328	45.599	VER
330	271625.506	8668170.658	45.732	PL
331	271628.586	8668168.401	45.485	FARO
332	271632.405	8668172.450	45.993	V
333	271635.719	8668173.382	45.864	PIS
334	271636.099	8668171.747	45.925	VER
335	271636.367	8668170.067	45.844	VER
336	271630.244	8668167.234	45.702	LP
337	271636.927	8668168.746	45.863	LP
338	271637.270	8668173.478	45.854	PIS
339	271639.452	8668173.025	45.854	PIS
340	271642.833	8668170.730	45.815	PIS
341	271641.748	8668172.023	45.820	PIS
342	271643.644	8668167.008	45.754	PIS
343	271640.199	8668166.670	45.855	LP
344	271642.017	8668166.665	45.830	V
345	271643.454	8668159.954	45.806	PL
346	271643.693	8668150.280	45.766	LP

347	271647.138	8668150.802	45.649	PIS
348	271645.358	8668150.874	45.750	PIS
349	271655.009	8668152.299	45.755	PIS
350	271656.668	8668152.583	45.842	V
351	271651.547	8668168.295	45.839	PIS
352	271653.165	8668168.714	45.999	V
353	271650.578	8668172.887	45.944	PIS
354	271654.654	8668169.960	46.022	LP
355	271650.788	8668174.100	46.086	V
356	271655.956	8668172.052	46.065	LP
357	271651.977	8668175.676	46.113	V
358	271655.576	8668173.834	46.062	V
359	271650.176	8668174.325	45.943	PIS
360	271654.905	8668175.724	46.172	VAL
361	271651.666	8668176.161	45.992	PIS
362	271656.190	8668174.438	46.045	FARO
363	271645.027	8668175.999	45.951	BD
364	271642.694	8668176.758	45.941	BD
365	271655.059	8668176.510	46.199	V
366	271656.013	8668177.995	46.098	PIS
367	271655.429	8668176.483	46.103	V
368	271659.126	8668178.531	46.155	PIS
369	271658.660	8668178.038	46.159	PL
370	271672.065	8668175.692	46.175	LP
371	271677.141	8668182.348	46.336	PIS
372	271676.418	8668178.733	46.230	FARO
373	271680.429	8668182.930	46.390	PIS

374	271680.326	8668179.079	46.257	V
375	271678.456	8668177.185	46.238	LP
376	271694.169	8668185.762	46.563	PIS
377	271695.962	8668182.684	46.521	PIS
378	271694.217	8668185.403	46.641	PL
379	271696.657	8668181.280	46.517	LP
380	271702.653	8668187.430	46.650	PIS
381	271703.938	8668184.054	46.620	V
382	271706.883	8668183.277	46.637	LP
383	271705.866	8668187.337	46.671	V
384	271706.345	8668184.576	46.632	V
385	271706.235	8668188.194	46.717	PIS
386	271712.288	8668189.314	46.744	PIS
387	271716.293	8668189.614	46.844	PIS
388	271719.656	8668187.839	46.792	FARO
389	271718.556	8668190.651	46.879	PIS
390	271719.283	8668187.325	46.788	V
391	271728.295	8668192.464	46.938	PIS
392	271729.095	8668188.171	46.907	LP
393	271728.306	8668192.524	46.966	PIS
394	271728.250	8668192.041	47.022	V
395	271731.616	8668192.810	47.027	PL
396	271735.095	8668193.844	47.032	PIS
397	271739.105	8668194.548	47.082	PIS
398	271739.059	8668191.539	46.976	V
399	271747.152	8668196.033	47.377	PIS
400	271742.995	8668192.781	46.915	FARO

401	271746.012	8668196.265	47.143	RON
402	271750.057	8668196.623	47.192	PIS
403	271751.832	8668196.068	47.196	PIS
404	271750.845	8668192.098	47.198	LP
405	271735.864	8668202.527	47.052	PIS
406	271727.915	8668203.258	47.258	ARB
407	271715.974	8668198.658	46.851	PIS
408	271715.204	8668200.707	47.012	ARB
409	271704.383	8668196.353	46.708	PIS
410	271702.588	8668198.161	46.826	ARB
411	271689.649	8668193.445	46.512	PIS
412	271689.834	8668195.660	46.665	ARB
413	271676.408	8668190.778	46.361	PIS
414	271677.180	8668193.151	46.507	ARB
415	271664.949	8668188.516	46.222	PIS
416	271664.840	8668190.558	46.420	ARB
417	271657.771	8668186.998	46.111	PIS
418	271652.231	8668187.980	46.273	ARB
419	271650.437	8668185.660	46.230	VER
420	271650.417	8668185.410	46.049	PIS
421	271642.734	8668185.815	46.244	ARB
422	271642.642	8668183.649	45.969	PIS
423	271773.978	8668212.267	47.644	ARB
424	271767.165	8668208.734	47.467	PIS
425	271761.936	8668209.966	47.686	ARB
426	271749.408	8668205.219	47.225	PIS
427	271749.381	8668205.363	47.403	V

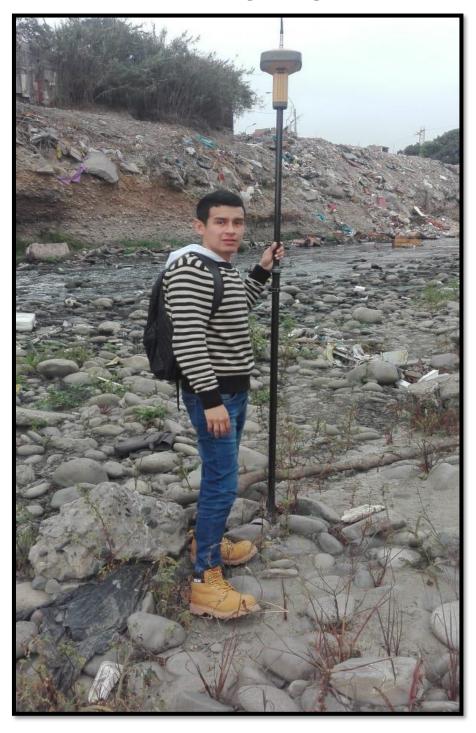
428	271750.103	8668207.738	47.414	ARB
429	271744.566	8668204.236	47.187	PIS
430	271747.990	8668211.818	47.035	PIS
431	271746.401	8668209.226	47.339	ARB
432	271750.675	8668211.593	47.386	R
433	271755.537	8668210.927	47.645	ARB
434	271765.069	8668215.206	47.239	PIS
435	271768.986	8668214.766	47.604	ST
436	271767.601	8668213.326	47.752	ARB
437	271753.629	8668194.824	47.165	PIS
438	271752.499	8668194.507	47.289	V
439	271753.138	8668190.666	47.138	LP
440	271754.491	8668193.892	47.133	PIS
441	271756.386	8668191.592	47.005	PIS
442	271754.649	8668191.217	47.137	V
443	271760.554	8668190.712	46.962	BD
444	271759.070	8668198.865	47.332	BD
445	271757.593	8668189.129	46.887	V
446	271755.183	8668188.578	46.963	V
447	271758.953	8668182.980	46.753	V
448	271756.387	8668183.076	46.933	V
449	271754.975	8668182.637	46.885	LP
450	271758.677	8668173.214	46.768	V
451	271757.223	8668172.976	46.813	LP
452	271756.765	8668183.004	46.888	PT
453	271758.277	8668176.315	46.862	PL
454	271760.914	8668173.694	46.787	PIS


455	271760.510	8668184.018	46.790	R
456	271768.313	8668183.391	46.944	LC
457	271765.724	8668185.275	46.754	PIS
458	271765.111	8668187.878	46.800	PIS
459	271767.803	8668185.122	46.908	V
460	271765.377	8668189.861	46.905	PIS
461	271769.806	8668184.044	46.950	LP
462	271767.054	8668191.751	46.960	PIS
463	271771.159	8668186.004	46.900	LP
464	271772.334	8668187.944	46.984	V
465	271771.312	8668192.584	47.006	PIS
466	271775.342	8668192.881	47.019	FARO
467	271767.884	8668191.923	46.972	V
468	271771.604	8668197.940	46.993	V
469	271766.893	8668197.055	46.968	V
470	271764.564	8668189.045	46.864	PIS
471	271764.064	8668191.827	46.956	PIS
472	271764.436	8668193.133	47.052	PIS
473	271765.705	8668196.861	47.269	PIS
474	271766.757	8668197.112	47.309	V
475	271766.752	8668198.690	47.350	PIS
476	271770.848	8668200.921	47.497	PIS
477	271769.025	8668200.360	47.443	PIS
478	271767.849	8668199.573	47.422	PIS
479	271772.287	8668200.804	47.391	PL
480	271771.113	8668200.308	47.537	V
481	271783.336	8668200.749	47.149	FARO

482	271782.744	8668203.311	47.627	PIS
483	271789.415	8668201.497	47.260	VER
484	271771.090	8668190.139	47.036	VER
485	271793.023	8668196.498	47.246	FARO
486	271795.305	8668197.269	47.316	V
487	271791.313	8668193.988	47.572	ARB
488	271794.812	8668191.137	47.197	LP
489	271801.314	8668204.349	47.404	FARO
490	271801.092	8668206.868	47.853	PIS
491	271810.551	8668205.688	47.574	V
492	271808.232	8668207.884	48.131	PL
493	271812.996	8668200.376	47.550	FARO
494	271808.353	8668208.285	47.954	PIS
495	271808.113	8668207.322	47.795	R
496	271812.748	8668200.652	47.586	R
497	271823.725	8668208.721	47.721	R
498	271823.588	8668211.349	48.135	PIS
499	271827.010	8668211.383	48.344	V
500	271824.777	8668197.544	47.411	LP
501	271828.410	8668212.101	48.333	V
502	271827.071	8668211.245	47.987	V
503	271828.410	8668212.306	48.165	PIS
504	271827.270	8668203.745	47.769	V
505	271835.337	8668204.881	48.935	FARO
506	271833.300	8668199.454	47.736	LP
507	271832.573	8668199.238	47.436	FA
508	271833.581	8668199.546	47.850	FA

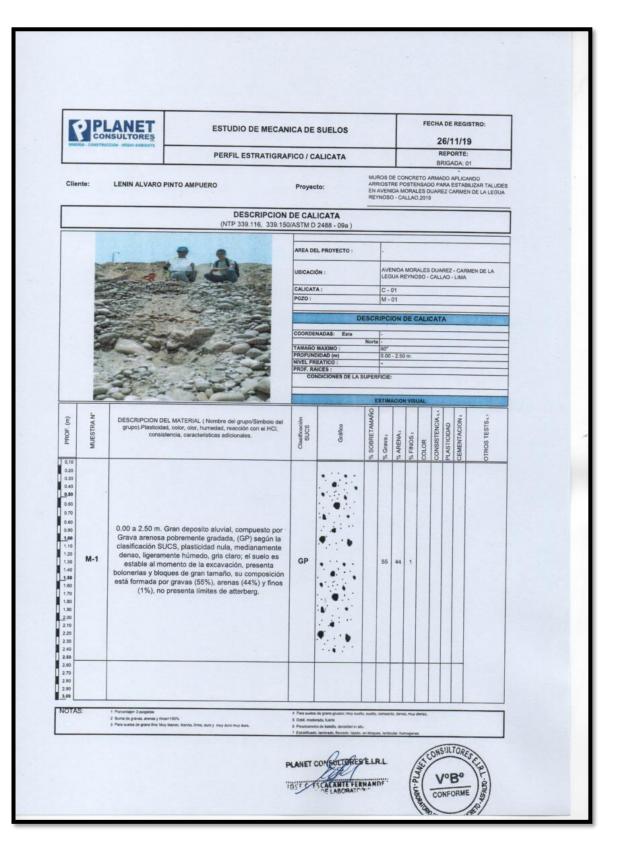
509	271806.802	8668216.547	47.890	PIS
510	271808.696	8668217.493	47.925	PIS
511	271796.962	8668216.934	47.998	ARB
512	271807.779	8668218.915	48.064	ARB
513	271796.371	8668214.503	47.770	PIS
514	271802.222	8668220.321	48.014	ARB
515	271791.483	8668218.095	47.881	ARB
516	271792.245	8668214.333	47.873	M
517	271785.911	8668214.834	47.816	ARB
518	271793.457	8668213.936	47.757	PIS
519	271779.483	8668215.739	47.723	ARB
520	271782.470	8668212.608	47.805	ST
521	271778.293	8668217.767	47.414	PIS
522	271782.837	8668211.818	47.625	PIS
523	271875.743	8668230.609	48.938	EST
524	271974.019	8668256.881	50.008	EST
525	271748.771	8668219.895	47.086	PIS
526	271749.039	8668220.691	47.071	CICLO
527	271745.210	8668216.024	47.062	BFO
528	271742.496	8668221.343	46.991	SAR
529	271750.876	8668222.293	47.090	PAR
530	271755.669	8668221.975	47.130	CICLO
531	271755.974	8668221.374	47.182	PIS
532	271753.371	8668222.815	47.071	PAR
533	271765.406	8668223.598	47.298	PL
534	271765.557	8668223.611	47.485	PL
535	271763.886	8668225.607	47.226	SAR

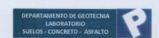
PANEL FOTO GRAFICO


Equipo de levantamiento topográfico GPS

Coordinación para la colocación de puntos para el levantamiento topográfico

Tesista tomando puntos al pie del talud


Tesista verificando que el punto este correcto

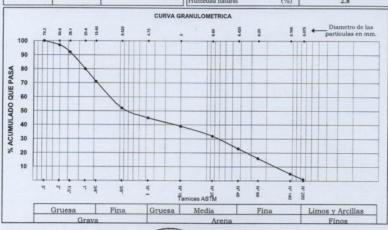

Grupo del levantamiento topográfico

ANEXO V: ESTUDIO MECÁNICA DE SUELOS

2.50 m.

LABORATORIO DE MECANICA DE SUELOS

PC-LMS-170 - 19


Solicitante : LENIN ALVARO PINTO AMPUERO Trinchera :

MUROS DE CONCRETO ARMADO APLICANDO ARRICOSTRE PARA ESTABILIZAR TALUDES EN AVENIDA MORALES DUAREZ CARMEN DE LA LEGUA REYNOSO . CALLAO,2019 MAB - I

Ubicación : AVENIDA MORALES DUAREZ - CARMEN DE LA LEGUA Longitud : REYNOSO - CALLAO - LIMA LONGITUDO CONTROL DE LA LEGUA LONGITUDO CONTROL DEL LA LEGUA LONGITUDO CONTROL DE LA LEGUA LONGITUDO CONTROL DEL LA LEGUA LONGITUDO CONTROL DE LA LEGUA LONGITUDO CONTROL DEL LA LEGUA LONGITUDO CONTROL DE LA LEGUA LO

Fecha : Lima 2 de diciembre de 2019

	IS GRANULOMETRIC NTP 339.128 / AST			ES DE CONSIST	
MALLA	ABERTURA	% QUE PASA	Limite liquido	(%)	NT
	mm.		Limite plastico	(%)	NP
			Indice plastico	(%)	-
3"	76.20	100	Limite de contraccion	(%)	
2"	50.80	97	Resultado	s: ASTM - D 248	7 / D 3282
1 1/2"	38.10	92	Coeficiente de:		
1"	25.40	80	-Uniformidad		62.58
3/4"	19.05	71	-Curvatura		0.23
3/8"	9.525	52	Material:		
Nº 4	4.750	45	-Grava	%	55
Nº 10	2.000	39	-Arena	%	44
Nº 20	0.850	32	-Finos	%	1
Nº 40	0.425	23	Clasificacion:		
Nº 60	0.250	16	-AASHTO		
Nº 140	0.106	5	-SUCS	GP con arena	
Nº 200	0.075	1	Nombre de grupo:		
			CONTENIDO	DE HUMEDAD	ASTM - D 2216
			Humedad natural	(%)	2.8

NOTA:

PLANET CONSULTORES E.I.R.L.

WILLIAM ALDO SEGOVIA HERRERA INGENIERO CIVIL Reg. CIP Nº 145028

PLANET CORSULTORES E.LR.L.

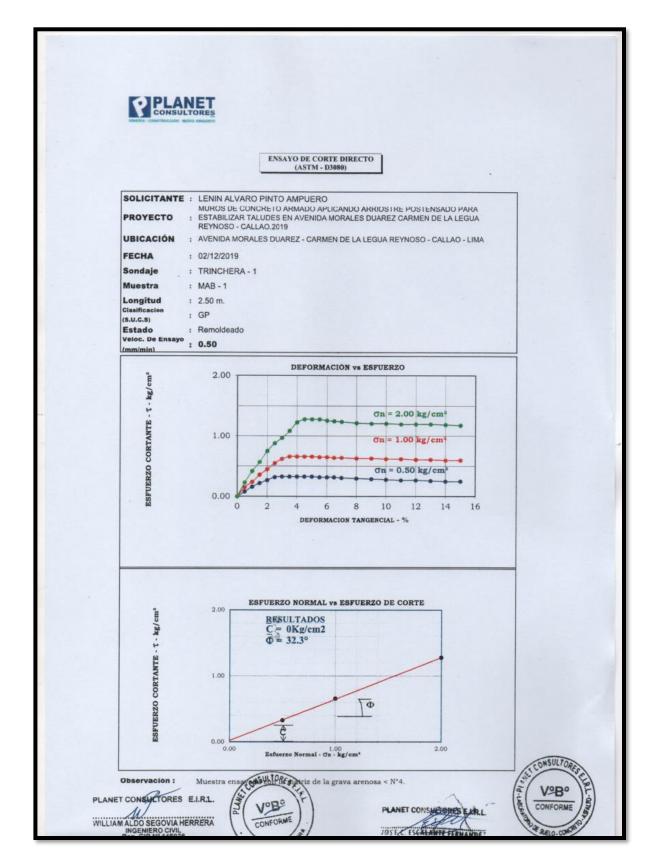
ENSAYO DE CORTE DIRECTO (ASTM - D3080)

SOLICITANTE : LENIN ALVARO PINTO AMPUERO MUROS DE CONCRETO ARMADO APLICANDO ARRIOSTRE POSTENSADO PARA ESTABILIZAR TALUDES EN AVENIDA MORALES DUAREZ CARMEN DE LA LEGUA REYNOSO - CALLAO,2019 PROYECTO UBICACIÓN AVENIDA MORALES DUAREZ - CARMEN DE LA LEGUA REYNOSO - CALLAO - LIMA 02/12/2019 FECHA TRINCHERA - 1 Sondaje MAB - 1 2.50 m. Longitud GP (8.U.C.S) Remoldeado Estado

Datos del Especimen	: ESPECIMEN 01		ESPECIMEN 02	ESPECIMEN 03
Altura (h) (cm)	1	2.540	2.540	2.540
Diametro (Φ) (cm)	:	6.00	6.00	6.00
Densidad Seca (gr/cm³)	:	1.621	1.621	1.621
Humedad Inicial (%)	:	2.80	2.80	2.80
Humedad Saturación (%)	1	20.11	19.74	19.32
Esfuerzo Normal (kg/cm²)	1	0.50	1.00	1.50

ESPECIN	IEN 01	ESPECIA	MEN 02	ESPECIM	EN 03
Deformación Tangencial (%)	Esfuerzo de Corte kg/cm²	Deformación Tangencial (%)	Esfuerzo de Corte kg/cm²	Deformación Tangencial (%)	Esfuerzo de Corte kg/cm²
0.5	0.08	0.5	0.15	0.5	0.23
1.0	0.16	1.0	0.24	1.0	0.42
1.5	0.22	1.5	0.36	1.5	0.57
2.0	0.27	2.0	0.45	2.0	0.75
2.5	0.32	2.5	0.55	2.5	0.88
3.0	0.33	3.0	0.62	3.0	0.97
3,5	0.33	3.5	0.66	3.5	1.09
4.0	0.33	4.0	0.66	4.0	1.23
4.5	0.33	4.5	0.66	4.5	1.28
5.0	0.33	5.0	0.66	5.0	1.28
5.5	0.32	5.5	0.65	5.5	1.28
6.0	0.32	6.0	0.65	6.0	1.26
6.5	0.32	6.5	0,64	6.5	1.25
7.0	0.31	7.0	0.64	7.0	1.24
8.0	0.30	8.0	0.63	8.0	1.22
9.0	0.29	9.0	0.63	9.0	1.21
10.0	0.28	10.0	0.62	10.0	1.21
11.0	0.27	11.0	0.62	11.0	1.20
12.0	0.27	12.0	0.61	12.0	1.20
13.0	0.26	13.0	0.61	13.0	1.20
14.0	0.25	14.0	0.60	14.0	1.19
15.0	0.25	15.0	0.60	15.0	1.18

OBSERVACIONES: Muestra ensayada con la matriz de la grava arenosa < N°4.


PLANET CONSULTORES E.I.R.L.

WILLIAM ALDO SEGOVIA HERRERA INGENIERO CIVIL Reg. CIP N° 146028

PLANET CONSULTORES ELR.L

ANALISIS DE SUELO - SALES

: LENIN ALVARO PINTO AMPUERO SOLICITANTE MUROS DE CONCRETO ARMADO APLICANDO ARRIOSTRE POSTENSADO PARA

ESTABILIZAR TALUDES EN AVENIDA MORALES DUAREZ CARMEN DE LA LEGUA

REYNOSO - CALLAO, 2019

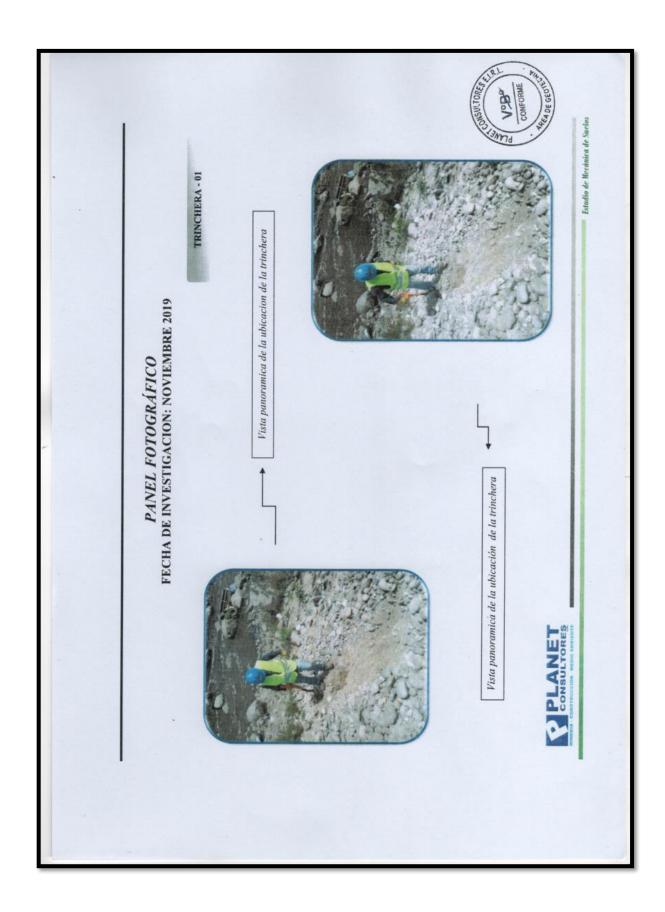
PROYECTO

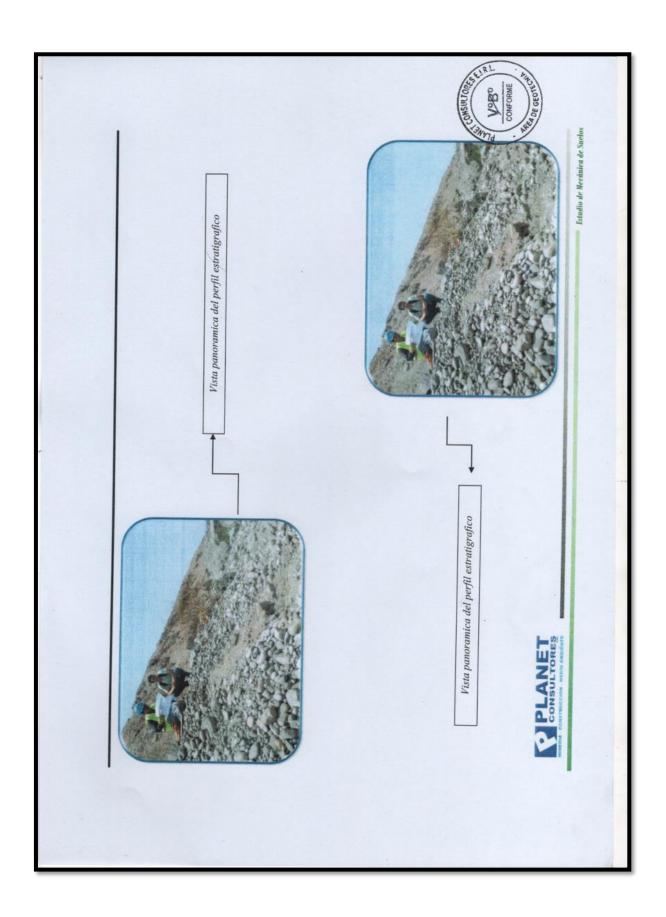
: AVENIDA MORALES DUAREZ - CARMEN DE LA LEGUA REYNOSO - CALLAO - LIMA

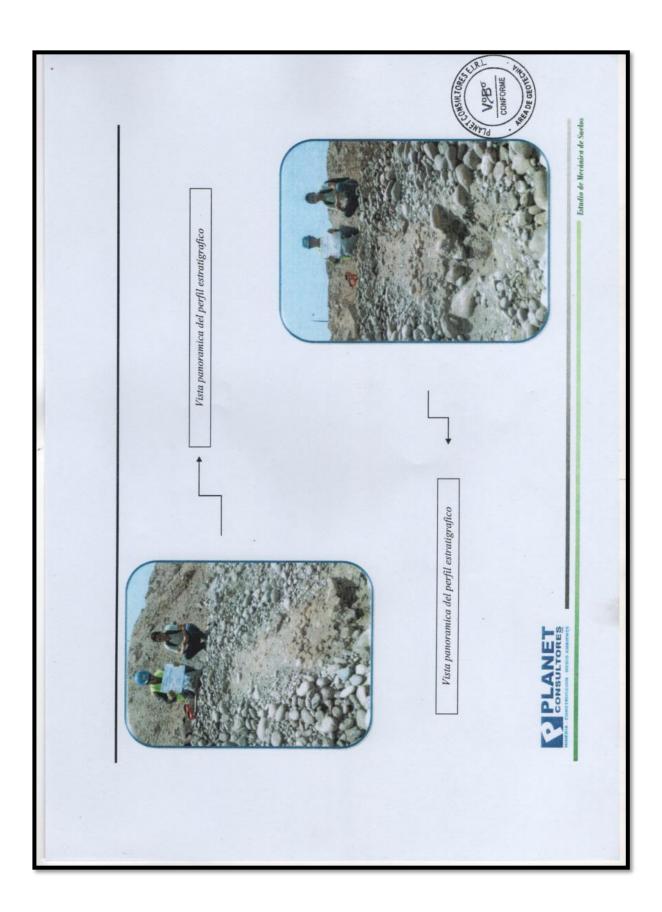
. T-1 TRINCHERA

UBICACIÓN

: Téc. J.E.F. RESP. ANALISIS FECHA DE ANALISIS : 2 de Diciembre de 2019




PLANET CONSULTORES E.I.R.L. WILLIAM ALDO SEGOVIA HERRERA


No.Bo CONFORME

Sales Solubles Totales: Determ. de Sales Solubles en suelos y agua subterránea - NTP339,152 - 2002 Cloruro Soluble: Determ. de cloruros solubles en suelos y agua subterránea - NTP339,177 - 2002 Sulfato Soluble: Determ. de sulfatos solubles en suelos y agua subterránea - NTP339.178 - 2002

P.E.000820

RUC: 20544680677

DIRECCION: Calle 30, Mz. W1, Lt. 08, Urb. El Alamo - COMAS - LIMA - PERÚ

CONTACTANOS: Oficina Central: 01 - 5576383 Moviles: 999132211 / 914956247

Pag. WEB: www.planetconsultores.com

DEPARTAMENTO:

GEOTECNIA - GEOMECANICA

LABORATORIO DE SUELOS Y CONCRETO

ESTUDIO : ESTUDIOS DE MECANICA DE SUELOS PARA ESTUDIANTES DE LA UNIVERSIDAD CESAR VALLEJO

"E.M.S. PARA ESTUDIANTES DE UNIV. CESAR VALLEJO / LENIN PINTO AMPUERO"

CUADRO DE COSTOS

CLIENTE:	ESTUDIANTES DE LA UNIV. CESAR VALLEJO	PERS. CONTACTO:	ING. LENIN PINTO AMPUERO
UBICACION:	LIMA	TELEFONOS:	934 566 539
SERVICIO:	ESTUDIO DE MECANICA DE SUELOS	TELEFONOS:	
DESCRIPCION DEL	ESTUDIO : ESTUDIOS DE MECANICA DE SUELOS PARA ESTUDIANTES DE LA UNIVERSIDAD CESAR VALLEJO	E MAIL:	
SERVICIO:	"E.M.S. PARA ESTUDIANTES DE UNIV. CESAR VALLEJO / LENIN PINTO AMPUERO"	E MAII ·	

ITEM	DESCRIPCION RA ESTUDIANTES DE UNIV. CESAR VALLEJO / LENIN PINTO /	UNIDAD	Unidad Personal o Servicio o Equipos	Unidad DIAS	Precio UNITARIO S/.	Parcial S/.	PARCIAL PARTIDA S/.
1.00	PERSONAL PROFESIONAL						<u> </u>
1.01	Coordinador de Campo	Pers/Dia	0	1	200.00	0.00	
1.02	Tecnico de Suelos	Pers/Dia	1	1	100.00	100.00	
1.03	Asistente de Campo / Chofer	Pers/Dia	1	1	80.00	80.00	
	Sub Total						S/ 180
2.00	TRABAJO DE CAMPO				93		V.
2.01	Calicatas de 3m , Mediante manera manual	Unidad	0	1	100.00	0.00	
2.02	Calicatas de 1.5m a 2.0m, Mediante manera manual	Unidad	1	1	50.00	50.00	
	Sub Total						S/ 50
3.00	ENSAYOS DE LABORATORIO						
3.01	Análisis Granulométrico	Unidad	1	1	50.00	50.00	
3.02	Clasificaciones de Suelos	Unidad	1	1	20.00	20.00	
3.03	Contenido de Humedad	Unidad	1	1	20.00	20.00	
3.04	Límites de Atterberg (LL y LP)	Unidad	1	1	50.00	50.00	
3.05	Corte Directo	Unidad	1	1	250.00	250.00	
3.06	Ensayo de DPL	Unidad	0	1	300.00	0.00	
	Sub Total						S/ 390
4.00	ANALISIS QUIMICOS						
4.01	Sales Solubles Totales en Suelo	Unidad	1	1	30.00	30.00	
4.02	Contenido de Sulfatos Solubles en Suelo	Unidad	1	1	30.00	30.00	
4.03	Contenido de Cloruros Solubles en Suelo	Unidad	1	1	30.00	30.00	
	SubTotal						S/ 90
5.00	PROCESAMIENTO Y LOGISTICA				2		
5.01	Movilidad en el Area de Estudio	Equi/Dia	1	1	100.00	100.00	
5.02	Alimentación de Personal	Pers/Dia	2	1	10.00	20.00	
5.03	EPPs	Pers/Dia	0	1	0.00	0.00	
5.04	Seguros SCTR de Personal	Pers/Dia	0	1	0.00	0.00	
	Sub Total						S/ 120
6.00	TRABAJOS DE GABINETE						
6.01	Creación de Informe y Registros (Interpretacion Calicatas)	Unidad	0	1	600.00	0.00	
	Sub Total						S/
	Total Costo Directo						
			00/				
	Gastos Generales y Utilidad		0%				

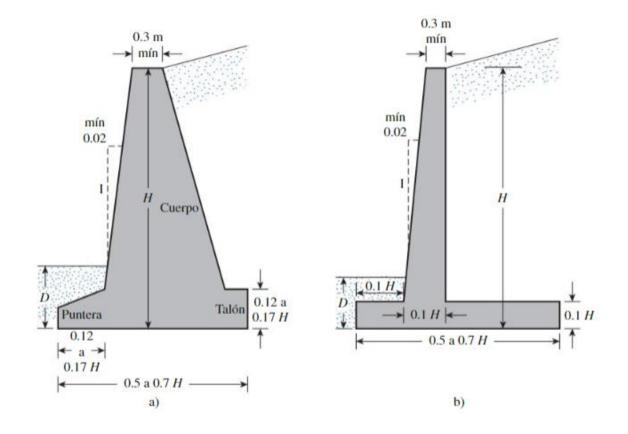
COSTO TOTAL de E.M.S. (SIN IGV)

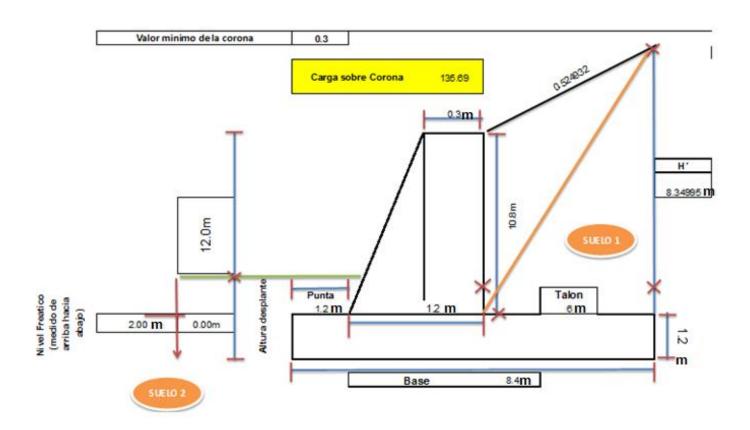
S/ 830.00

PANEL FOTOGRÁFICO

Tesista realizando el análisis granulométrico

Tesista tomando apuntes del ensayo de corte directo




Tesista metiendo la muestra al horno

FUENTE: Elaboración propia

ANEXO VI: DISEÑO DEL MURO DE CONCRETO ARMADO APLICANDO ARRIOSTRE POSTENSADO

Datos de entrada

Parametros de muro de contención			
Altura del muro (H)	12.0m		
Angulo de inclinación (α)	5.0°		
Altura de desplante (Df)	0.0m		
Corona	0.3m		
Peso unitario concreto	21.0kg/m³		
Nivel freatico (Medido	2.0m		
desde arriba)			
Porcentaje deseado de B	70.0%		
Punta	1.2m		
Talon	6.0m		
Base	8.4m		
Altura base	1.2m		

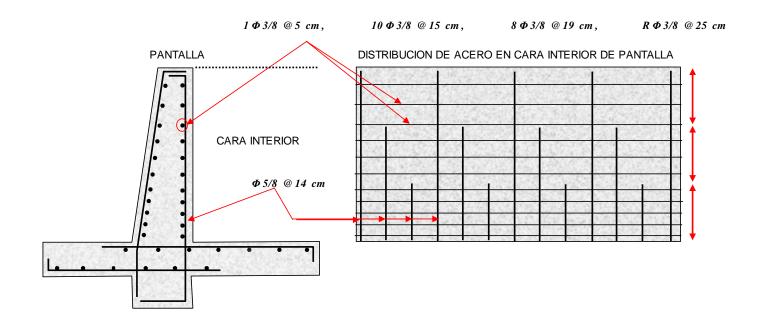
Parametros del suelo 1			
Cohesión (C) 0kN/m²			
Angulo de fricción (*)	32°		
Peso Unitario (_v)	17kN/m³		

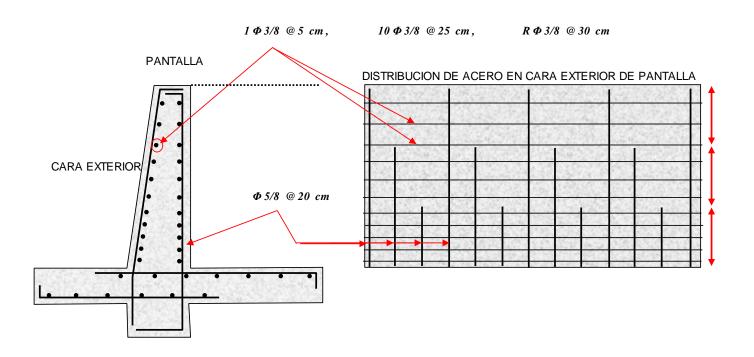
Parametros del suelo 2		
Cohesión (C) 33kN/m²		
Angulo de fricción (⁶)	32°	
Peso Unitario (γ)	18kN/m³	

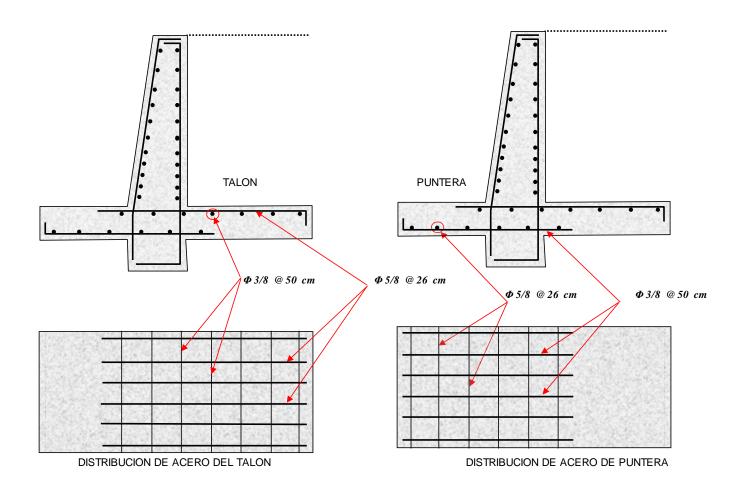
Figura	Area(m²)	Peso Unitario (γ)	Pesos(w)	Inercia	Momento
1	4.86	21.0kN/m³	102.06	1.800	183.708
2	3.24	21.0kN/m ³	203.73	2.25	458.3925
3	10.08	21.0kN/m ³	211.68	4.2	889.056
4	64.8	17.0kN/m³	1101.6	5.4	5948.64
5	0.000	17.0kN/m³	0.000	6.400	0
	Sumatorias		1644.87520		7696.56

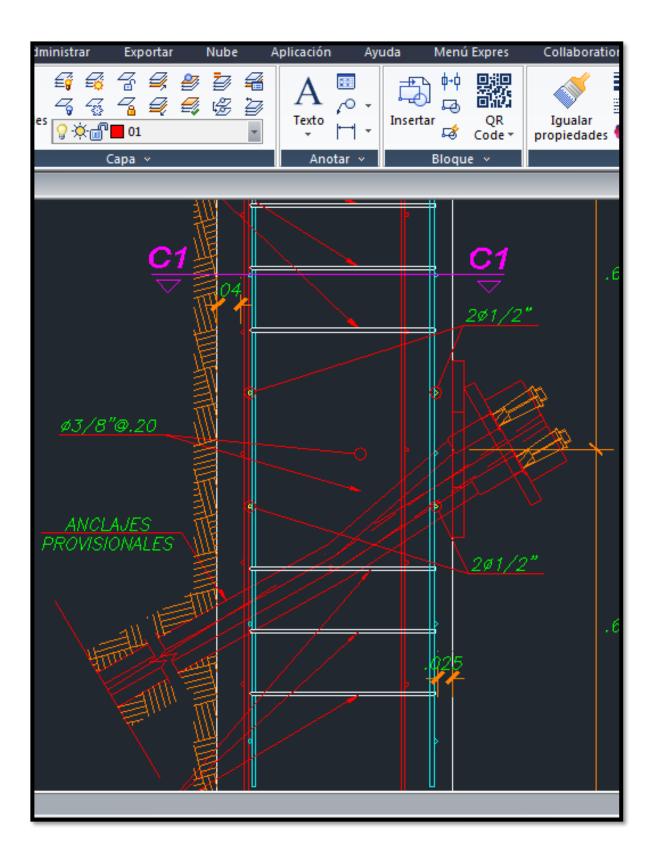
Rankine			
Qu	Qadm		
1817.17421	605.72kN/m ²		
60.57Tn/m			

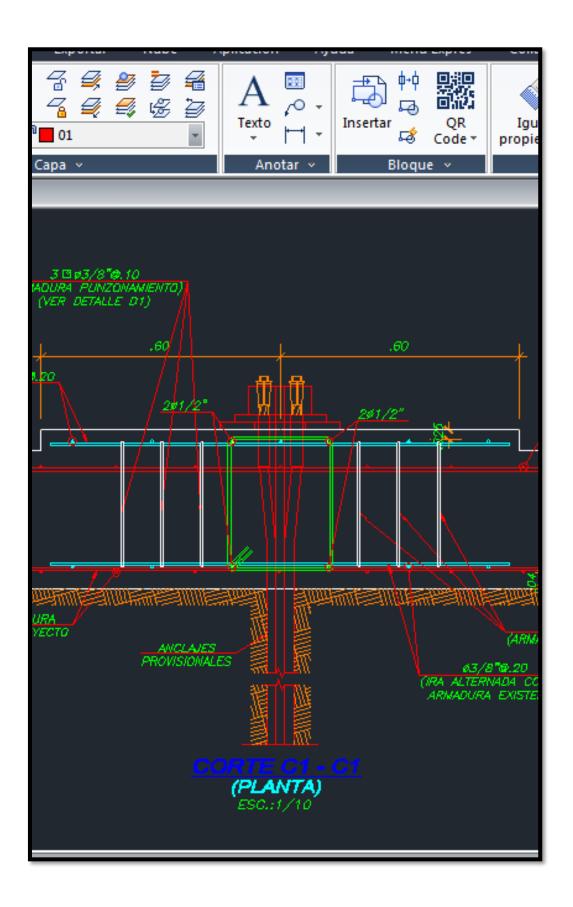
Datos Calculados			
H´	8.34995		
Ka	0.49960		
Pa	296.08141		
Кр	2.76983		
Рр	145.0834974		
Ph	294.95473		
Pv	25.80520		
Za	2.78332		
Zp	0.00000		
Ca	22.0000		
di	18.6667		
е	0.803312302		
B´	3.99337540		
qmax	282.239		
ngulo inclinació	19.149		


Factor de seguridad por volcamiento				
= —				
	Suma de los momentos de las fuerzas que tienden a volvar el muro respecto al punto			
	Suma de los momentos de las fuerzas que tienden a resistir el muro respecto al punto			
7696.56				
— 407.39* — 1700.17 N*m				
Por lo tanto el FS de volcamiento es:				
4.52				


Factor de seguridad por deslizamiento Suma de las fuerzas horizontales resistentes Suma de las fuerzas horizontales de empuje $= \frac{(\Sigma V) \tan \delta' + Bc'_a + P_p}{P_a \cos \alpha}$ $= \frac{()}{2.48}$ Por lo tanto el FS de deslizamiento es:


Factor de seguridad por capacidad de carga					
	=				
	Capacidad de carga última				
	Capacidad de carga máxima				
=					
Por lo tanto el FS de deslizamiento es:					
	6.68				


Factor de seguridad por volcamiento				
4.5200	Fsv > 2.0	Ok		
Factor de seguridad por deslizamiento				
2.4799	Fsd > 1.5	Ok		
Factor de seguridad por carga				
6.6895	Fsc > 3.0	Ok		


EMPUJE DEL SUELO		EMPUJE DEL MURO
Ea== 14.5 ton/m2	\	Ep= 29.6 Ton/m2

