

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Diseño estructural empleando vidrio molido al concreto como mejora a la resistencia de compresión, San Juan de Miraflores, 2021

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

AUTORES:

Rivera Centenaro, Felipe Mayckol (ORCID:0000-0002-1520-4001)

Sandivar Valero, Max Alexander (ORCID:0000-0002-2386-5416)

ASESOR:

Mg. Sigüenza Abanto, Robert Wilfredo (ORCID: 0000-0001-8850-8463)

LÍNEA DE INVESTIGACIÓN:

Diseño Sísmico y Estructural

LIMA – PERÚ

2021

Dedicatoria

La presente Tesis está dedicada primeramente a Dios que nunca me dejó caer, en esta lucha constante sin perder la fé, ayudándome a afrontar toda adversidad. Α mis padres; Nilda Centenaro Reyes quien siempre apostó toda su confianza en mí a pesar de las circunstancias de la vida, dio todo de sí para que este logro hoy sea realidad, y Felipe Rivera Avalos, gracias a tus sabios consejos y siempre inculcarme los valores necesarios para afrontar la vida. Son mi mayor fuente de inspiración para llegar hasta este punto de mi vida y seguir adelante siempre.

Rivera Centenaro Felipe Mayckol.

Dedico la presente tesis primeramente a Dios por brindarnos salud ante la pandemia que está afectando a nivel mundial, y hacer posible que se logre obtener el título profesional de ingeniero civil. Seguidamente a mi pareja Yoselin Sánchez Nuñez por su apoyo diario, y a mi hijo Mathías Sandivar por ser mis pilares de apoyo desde el inicio de la carrera, por haber dedicado más tiempo a mis estudios, ausentándome en reuniones familiares importantes. A mis padres por su apoyo desde la educación inicial hasta mi formación profesional.

Sandivar Valero Max Alexander

Agradecimiento

A su vez un agradecimiento especial al Mg. Ing. Segura Terrones Luis por su tiempo y aporte a nuestra tesis, el cual en el año 2020 con su soporte y guía me hizo ganador del concurso universitario de innovación que fue esencial para que el presente trabajo sea posible.

Rivera Centenaro Felipe Mayckol

Agradecemos a nuestro asesor Mg. Sigüenza Abanto Robert Wilfredo por su dedicación y paciencia durante todo este tiempo de enseñanza.

Sandivar Valero Max Alexander

Índice de contenidos

Ca	arátula	i	
De	edicato	ria i	i
Αç	gradeci	mientoiii	
ĺn	dice de	contenidos iv	,
ĺn	dice de	tablasv	,
ĺn	dice de	gráficos y figuras	∕ii
R	esume	ni:	X
ΑŁ	stract	x	(
	l.	INTRODUCCIÓN1	ĺ
	II.	MARCO TÉORICO5	;
	III.	METODOLOGÍA12	<u>,</u>
	3.1.	Tipos y diseño de Investigación13	3
	3.2.	Variables y operacionalización13	,
	3.3.	Población, muestra y muestreo14	
	3.4.	Técnicas e instrumentos de recolección de datos15	5
	3.5.	Procedimientos	;
	3.6.	Método de análisis de datos17	,
	3.7.	Aspectos éticos	7
	IV.	RESULTADOS18	3
	V.	DISCUSIÓN 60)
	VI.	CONCLUSIONES	1
	VII.	RECOMENDACIONES	;
	REFE	RENCIAS 67	,
	ANFX	(OS 71	1

Índice de tablas

Tabla 1: Definición de los tipos de concreto	11
Tabla 2: Cálculo del volumen de agregados Patrón	. 22
Tabla 3: Cálculo del volumen de agregados 20% V.M	. 23
Tabla 4: Cálculo del volumen de agregados 30% V.M	. 25
Tabla 5: Cálculo del volumen de agregados 40% V.M	. 26
Tabla 6: Resultados a la resistencia a la compresión - Patrón	29
Tabla 7 : Resultados a la resistencia a la compresión – 20% V.M	. 30
Tabla 8: Resultados a la resistencia a la compresión – 30% V.M	. 31
Tabla 9 : Resultados a la resistencia a la compresión – 40% V.M	. 32
Tabla 10: Ensayos a realizarse	33
Tabla 11: Análisis granulométrico por tamizado C-1	33
Tabla 12: Contenido de humedad C-1	34
Tabla 13: Límites de consistencia C-1	34
Tabla 14: Comp. física del suelo en función al tamaño de partículas C-1	34
Tabla 15: Clasificación del suelo C-1	. 35
Tabla 16: Análisis granulométrico por tamizado C-2	. 36
Tabla 17: Contenido de humedad C-2	. 36
Tabla 18: Límites de consistencia C-2	. 37
Tabla 19: Comp. física del suelo en función al tamaño de partículas C2	. 37
Tabla 20: Clasificación del suelo C-2	38
Tabla 21: Análisis granulométrico por tamizado C-3	. 38
Tabla 22: Contenido de humedad C-3	39
Tabla 23: Límites de consistencia C-3	. 39
Tabla 24: Composición física del suelo en función al tamaño de partículas Ca	3 39
Tabla 25: Clasificación del suelo C-3	40
Tabla 26: Contenido de sales de la C-1	41
Tabla 27: Contenido de sulfatos de la C-1	. 41
Tabla 28: Contenido de cloruros de la C-1	. 41
Tabla 29: Deformación horizontal y esfuerzo de corte – E1	. 42
Tabla 30: Deformación horizontal y esfuerzo de corte – E2	. 43

Tabla 31: Deformación horizontal y esfuerzo de corte – E3	45
Tabla 32: Análisis granulométrico del agregado fino por tamices	47
Tabla 33: Análisis granulométrico del agregado grueso por tamices	49

Índice de gráficos y figuras

Figura 1: Ensayo a la compresión del concreto	8
Figura 2: Ensayo a la tracción del concreto	9
Figura 3: Composición del vidrio	10
Figura 4: Beneficios que genera el reciclaje	10
Figura 5: Ubicación de zona de estudio	19
Figura 6: Lavado y limpieza de botellas de vidrio	20
Figura 7: Ensayo Slump ASTM 143 – Patrón	23
Figura 8: Ensayo Slump ASTM 143 – 20% V.M	24
Figura 9: Ensayo Slump ASTM 143 – 30% V.M	26
Figura 10: Ensayo Slump ASTM 143 – 40% V.M	28
Figura 11: El diámetro de las partículas que pasan por el tamizado C-1	. 35
Figura 12: El diámetro de las partículas que pasan por el tamizado C-2	. 37
Figura 13: El diámetro de las partículas que pasan por el tamizado C-3	. 40
Figura 14: Etapa de consolidación – Espécimen 1	43
Figura 15: Etapa de consolidación – Espécimen 2	44
Figura 16: Etapa de consolidación – Espécimen 3	46
Figura 17: Ensayo de corte directo bajo condiciones consolidadas drena ASTM D3080 I	
Figura 18: Ensayo de corte directo bajo condiciones consolidadas drena ASTM D3080 II	
Figura 19: Curva granulométrica AF	48
Figura 20: Curva granulométrica AG	50
Figura 21: Parámetros sísmicos	51
Figura 22: Espectro de Pseudo-aceleración	52
Figura 23: Espectro de Pseudo-aceleración -S2	53
Figura 24: Análisis estático del patrón 210 kg/cm2	53
Figura 25: Análisis estático del factor 291 kg/cm2	54
Figura 26: Análisis dinámico del patrón 210 kg/cm2	54
Figura 27: Análisis dinámico del factor 291 kg/cm2	55
Figura 28: Verificación de Driff en dirección XX f´c 210 kg/cm2	55

Figura 29: Diagrama de la verificación de Driff XX del f'c 210 kg/cm2	. 56
Figura 30: Verificación de Driff en dirección YY f'c 210 kg/cm2	. 56
Figura 31: Diagrama de la verificación de Driff YY del f'c 210 kg/cm2	. 57
Figura 32: Verificación de Driff en dirección XX f'c 291 kg/cm2	. 57
Figura 33: Diagrama de la verificación de Driff XX del f'c 291 kg/cm2	. 58
Figura 34: Verificación de Driff en dirección YY f'c 291 kg/cm2	. 58
Figura 35: Diagrama de la verificación de Driff YY del f´c 291 kg/cm2	. 59

RESUMEN

La presente investigación de tesis tiene como objetivo principal emplear vidrio

molido como agregado fino en 20%,30% y 40%, para poder mejorar la resistencia

del concreto, teniendo como ensayos a la resistencia de comprensión para medir

la resistencia en f'c a los 7, 14 y 28 días.

A la vez es diseño experimental porque se realizará ensayos de probetas 4"x 8"

para medir la resistencia del concreto empleando el vidrio molido y se realizará

en laboratorio, de nivel Cuasiexperimental porque no se seleccionará de forma

aleatoria, sino que se establecerá los parámetros para los ensayos a realizar en

diferentes grupos de porcentaje de vidrio molido.

Se realizaron 36 probetas 9 para cada diseño para poder comprobar la hipótesis

planteada, si aumenta la resistencia con empleo de vidrio molido en reemplazo

del A.F. Para el cual fueron sometido al ensayo de resistencia de comprensión

en probetas cilíndricas de 4"x8". Para luego realizar comparaciones entre los

diseños elaborados, y poder generar las conclusiones y recomendaciones de la

investigación para que sirva de antecedente para futuros investigadores.

Se concluye que el empleo del vidrio molido en los porcentajes de 20%, 30% y

40% como reemplazo del agregado fino, mejora la resistencia del concreto con

respecto al f'c 210 kg/cm2, en un 20% obtuvo hasta 248 kg/cm2, en un 30%

obtuvo hasta 264 kg/cm2 y en un 40% obtuvo hasta 291 kg/cm2, por lo tanto, a

mayor cantidad de vidrio molido en reemplazo del agregado fino aumenta la

resistencia.

Palabras clave: Vidrio molido, concreto, resistencia a la compresión.

İΧ

Abstract

The main objective of the present thesis research is to use ground glass as a fine

aggregate in 20%, 30% and 40%, in order to improve the resistance of concrete,

having as tests the compression resistance to measure the resistance in f'ca the

7, 14 and 28 days.

At the same time, it is an experimental design because tests of 4 "x 8" specimens

will be carried out to measure the resistance of the concrete using grinding and it

will be carried out in the laboratory, at a Quasi-experimental level because it will

not be selected randomly, but rather the parameters will be established for the

tests to be carried out in different groups of percentage of ground glass.

36 specimens 9 were made for each design to be able to verify the hypothesis

raised, if the resistance increases with the use of ground glass in replacement of

the A.F. For which they were subjected to the compression resistance test in

cylindrical specimens of 4 "x8". To then make comparisons between the designs

developed, and be able to generate the conclusions and recommendations of the

research to serve as a background for future researchers.

It is concluded that the use of ground glass in the percentages of 20%, 30% and

40% as a replacement for fine aggregate, improves the strength of concrete with

respect to f'c 210 kg / cm2, by 20% obtained up to 248 kg / cm2, 30% obtained

up to 264 kg / cm2 and 40% obtained up to 291 kg / cm2, therefore, the greater

the quantity of ground glass replacing the fine aggregate, the resistance

increases.

Keywords: Ground glass, concrete, compressive strength.

Χ

I. INTRODUCCIÓN

A nivel mundial el avance en el sector de la construcción ha ido cada vez mejorando, logrando aditivos que ayudan a la mezcla de concreto en poder reducir el agua, como acelerantes y como retardantes, así a la vez generan contaminación ambiental en su proceso de fabricación que producen impactos ambientales, teniendo en cuenta que el concreto es un componente que está compuesto por cemento, piedra, arena y agua.

A nivel nacional el Perú se encuentra en el octavo puesto a nivel de América Latina en el país más contaminando, por tal motivo se busca poder reducir la contaminación ambiental empleando materiales reciclables que puedan cumplir o mejorar al concreto, el vidrio molido es muy utilizado a nivel nacional, pero para la fabricación de nuevo vidrio.

El distrito de San Juan de Miraflores se encuentra en el departamento de Lima, encontrándose en una zona sísmica 4 por tal motivo se exige un control de la calidad del concreto en cuanto a su resistencia, basándose a ensayos como prueba de Slump, resistencia a la tracción y compresión; para verificar la resistencia requerida en diferentes elementos estructurales del proyecto.

El presente proyecto se plantea con el propósito de emplear vidrio molido como agregado fino en 20%,30% y 40%, para poder mejorar la resistencia del concreto, teniendo como ensayos a la resistencia de comprensión para medir la resistencia en f´c a los 7, 14 y 28 días.

Colmenarez (2014), para lograr el endurecimiento del concreto, debe comenzar su proceso de hidratación como es el curado después del vaciado del elemento estructural, para lograr la resistencia del concreto en su totalidad, en varios Países los días para poder medir la resistencia del concreto es 28 días, pero también se utilizan los días 7 y 14 para poder medir la resistencia del concreto.

Espinoza Rivera (2017), el vidrio es un material que se puede reciclar y puede ayudar mucho en los aspectos como ahorro de costos en materiales, poder generar el reciclaje y ser reutilizables. No hay muchas diferencias entre un vidrio reciclado y un vidrio recién fabricado, ya que para la fabricación de un vidrio se necesita calcin, que proviene de las botellas antiguas. En el año 2012 el vidrio era un material muy reciclado ocupando el segundo lugar, siendo triturado para

poder reutilizar en la fabricación de nueva materia prima y ahora en la actualidad en estudios de ingeniería.

Ante la problemática encontrada se buscará emplear el vidrio molido para mejorar la resistencia de compresión.

Por lo antes escrito como problema general ¿De qué manera mejorará el empleo de vidrio molido a la resistencia de compresión de un diseño estructural?, y como objetivos específicos tenemos:1. ¿De qué manera mejorará el empleo de vidrio molido en un 20% 30% y 40% como agregado fino en la resistencia del factor concreto 210 kg/cm2 de un diseño estructural? 2. ¿De qué manera el empleo de vidrio molido mejorara la resistencia a la compresión del factor concreto 210 kg/cm2, San Juan de Miraflores 2021? 3. ¿Cuál es la aplicación de mecánica de suelos para reconocer las características y propiedades del terreno? 4. ¿Cumplirá el diseño estructural empleando vidrio molido en el factor concreto 210 Kg/cm2 con el patrón en el programa ETABS?

El proyecto se justificará en poder establecer la mejora en la resistencia del concreto empleando vidrio molido factor concreto 210 Kg/cm2, en el aspecto ambiental teniendo en consideración el reemplazo al agregado fino, generándose un reciclaje del material para el uso del sector de la construcción aportando en la búsqueda de un equilibrio ambiental. En el aspecto tecnológico ayudará a poder reemplazar un material reciclable como es el vidrio molido por el agregado fino en el diseño del concreto factor concreto 210 Kg/cm2. En el aspecto económico se buscará poder disminuir el costo empleando un material reciclado por un material de construcción.

Como objetivo general se plantea: Determinar de qué manera mejorará el empleo de vidrio molido a la resistencia de compresión de un diseño estructural, y como objetivos específicos se plantea: OE.1. Determinar de qué manera mejorara el empleo de vidrio molido en un 20% 30% y 40% como agregado fino en la resistencia del concreto factor concreto 210 kg/cm2 de un diseño estructural, O.E.2. Determinar de qué manera el vidrio molido mejorará la resistencia a la compresión del factor concreto 210 kg/cm2, San Juan de Miraflores, 2021, O.E.3. Determinar la aplicación de mecánica de suelos para

reconocer las características y propiedades del terreno y O.E.4. Realizar el modelamiento estructural en el programa ETABS el diseño estructural factor concreto 210 kg/cm2 empleando vidrio molido y el patrón, San Juan de Miraflores, 2021

Como hipótesis general se plantea: Podremos determinar que el empleo de vidrio molido mejorara a la resistencia de compresión y tracción de un diseño estructural, y como hipótesis especificas se plantea: H.E.1. Podrá cumplir el 20% 30% Y 40% de vidrio molido como agregado fino al factor concreto 210 kg/cm2 de un diseño estructural, H.E.2. Podremos determinar que el empleo de vidrio molido mejore la resistencia a la compresión del factor concreto 210 kg/cm2, San Juan de Miraflores, 2021, H.E.3. Se podrá determinar la aplicación de mecánica de suelos para reconocer las características y propiedades del terreno y H.E.4. Se comparará el modelamiento estructural en el programa ETABS factor concreto 210 kg/cm2 empleando vidrio molido con respecto al patrón, San Juan de Miraflores, 2021

II. MARCO TEÓRICO

El presente proyecto se realizó una síntesis de antecedentes nacionales e internacionales con relación a nuestro tema a investigar el empleo de vidrio molido para mejorar la resistencia de compresión y tracción, en tesis de repositorios de universidades, revistas científicas, libros, estudios científicos.

Rivas Alzamora (2020), en su tesis de la UCV, teniendo como propósito determinar cómo influye el empleo de vidrio triturado en la resistencia a la compresión del concreto, generando un reciclaje para disminución de la contaminación y finalmente realizar una comparación del concreto tradicional con el concreto con empleo de vidrio molido.

Walhoff Tello (2017), en su tesis de la UNSAM, tiene como propósito poder estimar la resistencia del hormigón con el ensayo a la compresión a un factor de concreto 210 Kg/cm2, reemplazando el vidrio molido en porcentajes de 5% 10% y 15% por el cemento Portland. Como resultado se obtuvo que se puede reemplazar el cemento Portland por el vidrio molido en un máximo de 10% para tener mayor o igual la resistencia del concreto.

Mantilla Arias (2017), en su tesis de la UCV, tiene el propósito poder determinar proporciones de fibra de vidrio para poder mejorar la resistencia del concreto factor concreto 210 Kg/cm2, obteniendo como resultados que en las proporciones de 1% 3% y 5% en un factor de concreto a los 7, 14 y 28 días recomendando que se debe trabajar con menor proporción para una mezcla uniforme.

Guillén Ezcurra (2019), en su tesis de la UPN, tiene como propósito determinar en distintos porcentajes el empleo del vidrio sódico para verificar la resistencia a la compresión del hormigón. Teniendo como concreto patrón el factor concreto 210 Kg/cm2 adicionando en 5% 10% y 15% del vidrio sódico, teniendo en cuenta el diseño de mezcla ACI 211, a los 7, 14 y 28 días para realizar los ensayos de compresión axial.

Poma Ariza (2019), en su tesis de la UPN, tiene como propósito buscar el porcentaje adecuado del vidrio molido agregado en la mezcla del concreto, generando un aporte al medio ambiente y poder ayudar a aumentar la resistencia del concreto a través de un reemplazo del porcentaje adecuado de agregado fino.

Arieta Padilla y Rengifo Salazar (2019), en su tesis de la URP, tienen como propósito buscar la relación entre el concreto y el vidrio molido, en cuanto el concreto endurecido sea sometido a la resistencia de compresión controle las fisuras y las grietas. Se realizaron cuatro grupos de diseños de mezcla con vidrio molido de 1 al 5% a los 3, 7, 14 y 28 días. Teniendo como resultado que con respecto al concreto patrón 210 y al concreto con vidrio molido, la resistencia a la flexión no presenta mucha diferencia.

Poveda R, Granja V. y Ávila C. (2015), en su estudio de la Escuela Politécnica Nacional de la Facultad de Ingeniería, Ecuador, tiene como finalidad realizar estudios para poder aprovechar materiales reciclables como viruta de acero, bagazo de caña, espota de coco y vidrio molido, como resultado se obtuvo que el vidrio molido sea una opción al poder reemplazar al agregado fino o comento Portland para mejorar las condiciones del hormigón.

Palacios Martínez (2019), en su tesis de la UES, tiene como objetivo principal poder determinar en su estado fresco y endurecido el comportamiento del concreto a través del empleo del vidrio molido, para la cual se dividió en 4 fases, para término del estudio realizar estudio del concreto en estado fresco: el tiempo de fraguado, el asentamiento, temperatura del concreto fresco y su peso volumétrico en cuanto al estudio del concreto en estado endurecido: peso volumétrico y resistencia a la compresión.

Flores Alés, Jimenez Bayarri y Pérez Fargallo (2018), en su estudio tiene como motivo la reutilización del vidrio en estado triturado para ser incorporado al concreto para ver qué manera influye si mejora las propiedades del hormigón, teniendo consigo resultados favorables con la incorporación de vidrio triturado aumentando su resistencia.

Espinoza Rivero (2017), en su proyecto ITCS, tiene como motivo poder contribuir al cuidado del medio ambiente, utilizando el reciclaje del vidrio molido como reemplazante del cemento en proporciones, por el motivo de que su producción del cemento genera impactos ambientales, recomienda el uso del vidrio molido por ser un material de fácil accesibilidad y puede ser reciclado, puede ser utilizado en

diferentes tamaños que varían de cero a veinte milímetros, considerándose un material innovador para el sector de construcción.

La norma E.060 nos muestra parámetros del concreto, donde el control de calidad del concreto se haga mediante ensayos de laboratorio y ensayos de campos cumpliéndose las especificaciones técnicas indicadas en los planos de cada proyecto. Según la norma E.060 los ensayos se deben realizar en probetas cilíndricas y recomienda como mínimo 2 pruebas por cada ensayo, y para poder medir la resistencia a los veintiocho días para que pueda el concreto pueda alcanzar su máxima resistencia.

La resistencia a la compresión es un ensayo empleado a nivel nacional e internacional, este ensayo se realiza en su estado endurecido del concreto entre los más comunes a los siete, catorce y veintiocho días, para decretar si el concreto cumple con su resistencia requerida para diferente elemento estructural.

Como mínimo para poder tener un promedio de resistencia a la compresión del concreto se debe obtener dos probetas de la misma mezcla.

Figura 1: Ensayo a la compresión del concreto

La resistencia de tracción es un ensayo que se realiza en su estado endurecido en siete, catorce y veintiocho días, teniendo en cuenta el diámetro y la altura de la probeta para poder medir su resistencia máxima, al día mayor obtendrá la resistencia máxima, las probetas cilíndricas recibirán una fuerza de tracción hasta lograr su ruptura.

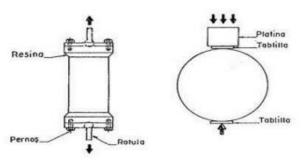


Figura 2: Ensayo a la tracción del concreto

En cuanto a los procesos constructivos, existe mucha deficiencia en un buen control de calidad del concreto en obras informales, poniendo en riesgo las vidas humanas. Desde no poder contar con unos planos diseñados por profesionales que tienen como guía a las normas E.030, E.060, para poder diseñar correctamente una edificación. Por tal motivo nuestro proyecto busca poder emplear un material reciclable para el uso en la mezcla del concreto para poder mejorar la resistencia, y poder buscar una disminución de costos en cuanto a los materiales a emplear.

El vidrio es un componente que puede ser considerado frágil, pero al ser triturado puede ayudar a aumentar resistencia y se puede dar diferentes usos dentro de las mezclas de edificaciones y pavimentos, siendo el vidrio molido un material más ligero que el agregado fino y grueso. Dentro del Reglamento Nacional de Edificaciones tenemos la Norma E.040, nos informa sobre las propiedades, características y diferentes usos del vidrio, pero aún no encontramos información sobre su gran aporte del vidrio en el estado molido para el sector de la construcción.

Figura 3: Composición del vidrio

El presento proyecto en preminencia del ambiente se llevará a cabo el reciclaje de botellas de vidrio para poder reemplazar al agregado fino en 20% 30% y 40%, generando una reutilización de un material consistente. Huaman M., Flores de la R. y Garcés V. (2016), interpretan que el cemento es un componente primordial en cuanto a la mezcla del concreto, pero a la vez es el componente que genera mayor contaminación y genera impactos ambientales, recomienda a poder utilizar materiales reciclables que puedan ser reemplazados por materiales muy contaminantes en beneficio del cuidado del medio ambiente y tener una mejor calidad del aire.

Figura 4: Beneficios que genera el reciclaje

El concreto en dos estados:

Estado fresco: Es el estado inicial que está compuesto por arena, piedra, cemento y agua, con la cual se puede trabajar con la mezcla y se puede moldear en los encofrados de los elementos estructurales, para la cual se necesita un vibrado del concreto para no dejar vacíos y no genere cangrejeras.

Estado endurecido: Es el estado final del concreto donde se mide si la resistencia de la mezcla es la adecuada de acuerdo a las especificaciones, para la cual se necesita emplear ensayos como a la resistencia a la compresión y tracción, mediante la obtención de muestras en probetas cilíndricas inicialmente.

El agregado fino es uno de los componentes del concreto, si en la mezcla faltará agregado fino se obtendrá una masa rígida y en cuanto a una demasía de agregado fino la mezcla exigirá mayor volumen de agua, por tal motivo se busca reemplazar en cantidad de porcentajes de vidrio molido obtenido mediante el reciclaje.

Tabla 1

Definición de los tipos de concreto

Concreto	Definición
Armado	Es la combinación del concreto simple y acero
	De refuerzo.
	Se utiliza en columnas, vigas, zapatas, etc.
Simple	Es la combinación de piedra, arena fina,
	cemento y agua.
	Se utiliza en solados o falsa zapatas.
Estructural	Es el concreto simple dosificado,transportado y
	Colocado teniendo en cuenta las
	especificaciones requeridas.
	Se utiliza en resistencias 400 >=250 Kg/cm2

Fuente: Elaboración Propia

III. METODOLOGÍA

3.1. Tipo y diseño de Investigación

Tipo de Investigación:

Según Paguatian (2016), la investigación es aplicada porque busca dar solución a la problemática identificada en la investigación, empleando la ciencia como ensayos de laboratorios, por tal motivo el presente proyecto de investigación es de tipo Aplicada porque se busca poder dar una solución a la problemática de sobre explotación de los materiales de construcción.

El proyecto es de tipo aplicada porque como finalidad poder reemplazar el agregado fino por el vidrio molido en porcentajes de 20% 30% y 40%, a la vez busca poder mejorar la resistencia del factor concreto 210 Kg/cm2, y se necesitara las pruebas de ensayos de resistencia a la compresión y tracción a los 7, 14 y 28 días.

Diseño de investigación:

El proyecto de investigación es diseño experimental porque se realizará ensayos de probetas para medir la resistencia del concreto empleando el vidrio molido y se realizará en laboratorio, de nivel Cuasiexperimental porque no se seleccionará de forma aleatoria, sino que se establecerá los parámetros para los ensayos a realizar en diferentes grupos de porcentaje de vidrio molido.

3.2. Variables y operacionalización:

Según Hernández (2014), la investigación se puede clasificar en 2 sectores las investigaciones no experimentales y experimentales. Por ende, nuestro proyecto de investigación es de enfoque cuantitativo.

Para el autor Espinoza (2018), comenta que se puede definir a la variable como hipótesis por tener la cabida de transformar y diferenciar varios valores la cuya diversificación es susceptible a su aplicabilidad para los seres humanos y fenómenos naturales.

El presente proyecto cuenta con 2 variables:

-Variable independiente: Diseño Estructural

-Variable dependiente: Resistencia

Definición Conceptual:

VI: Diseño Estructural

Según Navarro (2016), el diseño estructural influye en todo tipo de proyecto a realizar, ayuda a poder dar seguridad a la forma del diseño arquitectónico, verificar el dimensionamiento y las características de los elementos estructurales sean los adecuados y generar un factor de seguridad, para el cual se emplea una memoria de cálculo encargado por

un Ingeniero estructural colegiado. A hora en la actualidad se recurre

muchos diseños y cálculos estructurales en programas como Etabs, Sap

2000, Robots, etc.

VD: Resistencia

Según Cervera y Blanco (2015), es la capacidad máxima que posee un material ante un esfuerzo o carga, hasta lograr la ruptura, para la cual plantea en dos problemáticas en el momento de la práctica el mal dimensionamiento y la verificación de respuesta de los elementos estructurales. El cual, para medir la resistencia del concreto, la norma E0.60, nos plantea tres ensayos: ensayo a la compresión, tracción y flexión. Los resultados obtenidos hacemos una comparación a los

parámetros de la norma.

3.3. Población, Muestra y Muestreo

Población

Según López y Fachelli (2015), cuando se habla de población se refiere al conjunto de los elementos que conforman para en beneficio de los

resultados y poder inferir conclusiones.

14

En el presente proyecto de investigación la población está conformada por 36 probetas de mezcla de concreto con dimensiones de 4" x 8", reemplazando el vidrio molido por el agregado fino en porcentajes de 20% 30% y 40 % midiendo la resistencia a los 7, 14 y 28 días de su estado endurecido.

Muestra

Según López y Fachelli (2015), definen a la muestra al subconjunto de la población, la cual pasará por ensayos o pruebas, y estará en constante observación científica logrando poder obtener resultados para la investigación.

En el presente proyecto de investigación la muestra está conformada por 36 probetas de mezcla de concreto con dimensiones de 30 cm x 15 cm.

Muestreo

Según Sayago (2014), el muestreo está conformado por dos grupos el probabilístico y no probabilístico, el muestreo no probabilístico por conveniencia es aquella investigación que no está referenciada por la probabilidad sino limitada a los objetivos del investigador.

En el presente proyecto de investigación es de muestreo no probabilístico por conveniencia porque no utilizaremos la prueba estadística, estableciendo que se realizara una cantidad de probetas para el proyecto según nuestra conveniencia.

3.4. Técnicas e instrumentos de recolección de datos

Técnicas

Según Maya (2014), define a la técnica al conjunto de herramientas o instrumentos para ayudar a poder obtener resultados en la investigación con relación a los objetivos establecido.

El proyecto de investigación empleará la técnica de la observación, toda vez que mediante los ensayos del laboratorio se evaluará si aumenta la

resistencia del concreto empleando vidrio molido a través del ensayo de compresión.

Instrumento de recolección de datos

Según carrero (2018), define que primero se establece la técnica a emplear en la investigación para poder determinar los objetivos y concluir en base a los resultados.

Para el proyecto de investigación como instrumento se tendrá las fichas del laboratorio que se registraran los resultados obtenidos en distintos porcentajes de vidrio molido en la mezcla de concreto, que se someterá al ensayo de compresión, que tiene como objetivo determinar si aumenta la resistencia el empleo de vidrio molido en reemplazo del agregado fino.

Validez

Según Cardena (2017), explica que la validez va a en relación a los resultados que se desea buscar, en cuanto al instrumento debe abarcar la medición de la variable, las dimensiones y los indicadores de la investigación.

El instrumento de la investigación se tendrá como validez a los expertos de la línea de investigación establecida, para contar con su aprobación de las fichas de observación para verificar si aumenta la resistencia empleando vidrio molido en reemplazo del agregado fino y las fichas de recolección de datos.

Confiabilidad

El presente proyecto en cuanto a la confiabilidad dependerá de los instrumentos aprobados por los expertos de la línea de investigación establecida.

3.5. Procedimiento

Para el procedimiento del proyecto de investigación empieza con una problemática sobre explotación de los materiales constructivos no renovables y la contaminación que producen en su proceso de fabricación, el cual se empleará el reciclaje de las botellas de vidrio del distrito de San Juan de Miraflores para ser triturado y pueda pasar por la malla N200 como el agregado fino para ser reemplazado en distintos porcentajes, la investigación es de tipo aplicada con enfoque cuantitativo, en cuanto a la población será 36 probetas de mezcla de concreto con dimensiones de 4" x 8" cm, de tal manera la muestra del proyecto de investigación serán las 36 probetas de mezcla de concreto y como técnica e instrumento se empleará la técnica de la observación por el motivo que se evaluará si aumenta la resistencia del concreto empleando vidrio molido a través del ensayos a compresión. Finalmente, los datos obtenidos de los ensayos se procederán hacer un análisis comparativo del factor patrón del concreto 210 kg/cm2 y las probetas empleando vidrio molido, para poder realizar nuestras conclusiones de acuerdo a los objetivos planteados.

3.6. Método de Análisis de datos

En el proyecto de investigación como método de análisis de datos se realizará la estadística descriptiva porque los resultados se plasmarán en gráficos de barras y tablas de Excel, para poder comprobar nuestra hipótesis planteada se realizará las fichas de observación y fichas de recolección de datos.

3.7. Aspectos éticos

El presente proyecto ha sido realizado teniendo en cuenta normas vigentes en Perú como la Norma E0.60. (Concreto Armado) y la E0.30(Diseño Sismorresistente), teniendo en consideración fuentes de bases seguras. Así mismo cumpliendo la guía académica brindada por la universidad en el proceso de la realización del proyecto de investigación. Cumpliendo con el porcentaje de similitud establecido por la universidad

Los derechos de autor de las citas tienen como objetivo dar protección a su tesis, por tal motivo se citó a los autores respetando su originalidad y el formato APA.

IV. RESULTADOS

Localización de la zona de estudio

Para la ubicación de la zona de estudio se realizo un levantamiento topográfico empleando el Google Earth y el autocad, para ubicar donde se realizaron las 3 calicatas.

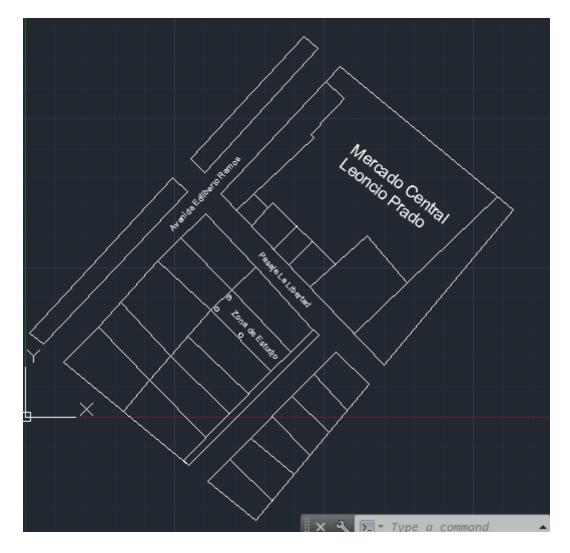


Figura 5. Ubicación de la zona de estudio

Fuente: Elaboración propia

Adquisición del vidrio

En cuanto a la necesidad de poder disminuir la contaminación ambiental, se genero un reciclaje de vidrio en el distrito de San Juan de Miraflores, juntando 40 kg en total.

Obteniendo 128 botellas, entre las cuales de gran uso era de gaseosa y bebidas alcoholicas, posteriormente ser lavadas las botellas para no alterar los ensayos a emplear. Finalmente emplearlo en el reemplazo del agregado fino en diferentes porcentajes de 20%, 30% y 40%.

Figura 6. Lavado y limpieza de botellas de vidrio

Fuente: Elaboración propia

Ensayo para estudio del suelo

Para la elaboración de nuestro diseño estructural, se debe realizar unos estudios básicos, como es el estudio de suelos para la cual se realizo según la Norma Técnica Peruana 3 calicatas a 3 metros de profundidad, la cual se realizaron en el laboratorio INGEOCONTROL, con número de RUC: 20602979190.

Teniendo sus equipos con los requisitos para la ejecución del proyecto de invetigación como certificación por INACAL y la calibración de sus equipos vigente.

Objetivo especifico 1: Determinar de qué manera mejorara el empleo de vidrio

molido en un 20% 30% y 40% como agregado fino en la resistencia del concreto f´c

210 kg/cm2 de un diseño estructural.

Elaboración de las probetas de concreto

Para el siguiente ensayo se necesitó un trompito para la mezcla del concreto, donde

se incorporó las cantidades según establecida por nosotros mismos, en reemplazo

del agregado fino por el vidrio molido, la cual se realizó 4 veces: Patrón, 20% de

V.M, 30% de V.M y 40% V.M.

Ensayo de temperatura ASTM C1064

El siguiente ensayo se realiza al concreto en su estado fresco para medir su calidad,

los siguientes materiales a emplear fueron una pequeña muestra de concreto, una

carretilla y dispositivo para medición de la temperatura, la cual nos ayuda a obtener

la temperatura del concreto en su estado actual.

Diseño patrón 210 Kg/cm2

Resistencia a la compresión requerida

F'cr= 294 Kg/cm2

Relación agua cemento: R a/c = 0.62

Determinación del volumen de agua: 228 L

Cantidad de aire atrapado: 2.5%

Cantidad de cemento: 386 Kg = 8.7 Bolsas x m3

Aditivo: No aplica

21

Tabla 2

Calculo del volumen de agregados

	Peso	Volumen			Mod.	P.U.	P.U	
Insumo	Específico	Absoluto	Humedad	Absorción	Fineza	suelto	compactado	TMN
Cemento	3120							
Sol	kg/m3 1000	0.1179 m3						
Agua	kg/m3	0.2280 m3						
Aditivo Aire	no aplica	0.000 m3						
atrapado Ag.	 2723	0.0250 m3						
Grueso	kg/m3 2568	0.2717 m3	0.40%	1.10%	6.81	1382	1471	1/2"
Ag. Fino	kg/m3 Volumen	0.3574 m3	1.80%	2.10%	3.27	1528	1688	
	de pasta Volumen	0.3709m3						
	de agreg.	0.6291m3						

Fuente: Elaboración propia

Proporción de agregados secos:

Agregado grueso: 43.2 % = 0.2717 m3 = 739.9 Kg

Agregado fino: 56.6% = 0.3574 m3 = 917.8 Kg

Proporción en volumen de obra

 Cemento
 A.F
 A.G
 Agua

 1
 :
 2.5
 :
 2.2
 :
 27.3L

Tanda de prueba mínima: 0.017 m3

Componente: Peso Húmedo

Cemento Sol 6.339 kg

Agua 4.105 L

Agregado grueso 12.926 kg

Agregado fino 16.258 kg

Figura 7. Ensayo Slump ASTM 143 – Patrón

Fuente: Laboratorio Ingeocontrol

Diseño patrón 210 Kg/cm2 con 20% de V.M reemplazo del A.F

Tabla 3

Cálculo del volumen de agregados – 20% V.M

	Peso	Volumen			Mod.	P.U.	P.U	
Insumo	Específico	Absoluto	Humedad	Absorción	Fineza	suelto	compactado	TMN
Cemento	3120							
Sol	kg/m3	0.1179 m3						
	1000							
Agua	kg/m3	0.2280 m3						
Aditivo	no aplica	0.000 m3						
Aire								
atrapado		0.0250 m3						
Ag.	2723							
Grueso	kg/m3	0.2717 m3	0.40%	1.10%	6.81	1382	1471	1/2"
	2568							
Ag. Fino	kg/m3	0.2859 m3	1.80%	2.10%	3.27	1528	1688	
Vidrio	2457							
molido	kg/m3	0.0715 m3	0.00%	0.00%		1389	1577	
	Volumen							
	de pasta	0.3709m3						
	Volumen							
	de agreg.	0.6291m3						

Fuente: Elaboración propia

Proporción de agregados secos

Agregado grueso: 43.2 % = 0.2717 m3 = 739.9 Kg

Agregado fino: 45.4% = 0.3574 m3 = 917.8 Kg

Vidrio molido: 11.4% = 0.0715 m3 = 175.6 Kg

Proporción en volumen de obra

Cemento A.F A.G V.M Agua

1 : 2.0 : 2.2 : 0.5 : 27.2 L

Tanda de prueba mínima: 0.017 m3

Componente: Peso Húmedo

Cemento Sol 6.339 kg

Agua 4.096 L

Agregado grueso 12.926 kg

Agregado fino 13.006 kg

Vidrio molido 3.06 kg

Slump obtenido 3

Figura 8. Ensayo Slump ASTM 143 - 20% V.M

Fuente: Laboratorio Ingeocontrol

Diseño patrón 210 Kg/cm2 con 30% de V.M reemplazo del A.F

Proporción de agregados secos

Agregado grueso: 43.2 % = 0.2717 m3 = 739.9 Kg

Agregado fino: 39.8% = 0.2502 m3 = 642.5 Kg

Vidrio molido: 17% = 0.1072 m3 = 263.4 Kg

Proporción en volumen de obra

Cemento A.F A.G V.M Agua

1 : 1.7 : 2.2 : 0.77 : 27.2 L

Tabla 4

Cálculo del volumen de agregados – 30% V.M

	Doco	Valuman			Mad	DII	DII	
	Peso	Volumen			Mod.	P.U.	P.U	
Insumo	Específico	Absoluto	Humedad	Absorción	Fineza	suelto	compactado	TMN
Cemento	3120							
Sol	kg/m3	0.1179 m3						
	1000							
Agua	kg/m3	0.2280 m3						
Aditivo	no aplica	0.000 m3						
Aire								
atrapado		0.0250 m3						
Ag.	2723							
Grueso	kg/m3	0.2717 m3	0.40%	1.10%	6.81	1382	1471	1/2"
	2568							
Ag. Fino	kg/m3	0.2502 m3	1.80%	2.10%	3.27	1528	1688	
Vidrio	2457							
molido	kg/m3	0.1072 m3	0.00%	0.00%		1389	1577	
	Volumen							
	de pasta	0.3709m3						
	Volumen							
	de agreg.	0.6291m3						

Fuente: Elaboración propia

Tanda de prueba mínima: 0.017 m3

Componente: Peso Húmedo

Cemento Sol 6.339 kg

Agua	4.091 L
Agregado grueso	12.926 kg
Agregado fino	11.38 kg
Vidrio molido	4.58 kg
Slump obtenido	2 3/4

Figura 9. Ensayo Slump ASTM 143 – 30%

Fuente: Laboratorio Ingeocontrol

Diseño patrón 210 Kg/cm2 con 40% de V.M reemplazo del A.F

Tabla 5

Cálculo del volumen de agregados – 40% V.M

	Peso	Volumen			Mod.	P.U.	P.U	
Insumo	Específico	Absoluto	Humedad	Absorción	Fineza	suelto	compactado	TMN
Cemento	3120							
Sol	kg/m3	0.1179 m3						
	1000							
Agua	kg/m3	0.2280 m3						
Aditivo	no aplica	0.000 m3						
Aire								
atrapado		0.0250 m3						
Ag.	2723							
Grueso	kg/m3	0.2717 m3	0.40%	1.10%	6.81	1382	1471	1/2"
	2568							
Ag. Fino	kg/m3	0.2144 m3	1.80%	2.10%	3.27	1528	1688	
Vidrio	2457							
molido	kg/m3	0.1430 m3	0.00%	0.00%		1389	1577	

Volumen

de pasta 0.3709m3

Volumen

de agreg. 0.6291m3

Fuente: Elaboración propia

Proporción de agregados secos

Agregado grueso: 43.2 % = 0.2717 m3 = 739.9 Kg

Agregado fino: 34.1% = 0.2144 m3 = 550.7 Kg

Vidrio molido: 22.7% = 0.1430 m3 =351.3 Kg

Proporción en volumen de obra

Cemento A.F A.G V.M Agua

1 : 1.5 : 2.2 : 1.03 : 27.1 L

Tanda de prueba mínima: 0.017 m3

Componente: Peso Húmedo

Cemento Sol 6.339 kg

Agua 4.086 L

Agregado grueso 12.926 kg

Agregado fino 9.755 kg

Vidrio molido 6.11 kg

Slump obtenido 2 1/2

Figura 10. Ensayo Slump ASTM 143 – 40%

Fuente: Laboratorio Ingeocontrol

Objetivo especifico 2: Determinar de qué manera el vidrio molido mejorará la resistencia a la compresión del factor concreto 210 kg/cm2, San Juan de Miraflores, 2021.

Tabla 6Resultado a la resistencia a la compresión - Patrón

					·	Tipo	·	·			
	Fecha de	Fecha de				de	R	Fue.			l
Identificación	Vaciado	Rotura	Edad	Diámetro	Altura	falla	Alt/Dia	Máx	Esfuerzo	F´C	%F´C
Probeta-	·									210	
patrón	28/10/2021	04/11/2021	7	10.01	20.05	5	2	13961	177kg/cm2	kg/cm2	84.50%
Probeta-										210	
patrón	28/10/2021	04/11/2021	7	10.01	20.11	5	2.01	13852	176kg/cm2	kg/cm2	83.80%
Probeta-										210	ļ
patrón	28/10/2021	04/11/2021	7	10.02	20.1	2	2	14018	178kg/cm2	kg/cm2	84.70%
Probeta-										210	ļ
patrón	28/10/2021	11/11/2021	14	10.01	20.1	5	2.01	16487	209kg/cm2	kg/cm2	99.80%
Probeta-										210	ļ
patrón	28/10/2021	11/11/2021	14	10	20.06	5	2.01	16103	205kg/cm2	kg/cm2	97.6%
Probeta-										210	
patrón	28/10/2021	11/11/2021	14	10.07	20.02	5	1.99	16433	206kg/cm2	kg/cm2	98.30%
Probeta-										210	
patrón	28/10/2021	25/11/2021	28	10.02	20.02	5	2.00	17896	227kg/cm2	kg/cm2	108.1%
Probeta-										210	
patrón	28/10/2021	25/11/2021	28	10.06	20.06	5	1.99	18762	236kg/cm2	kg/cm2	112.4%
Probeta-										210	
patrón	28/10/2021	25/11/2021	28	10.04	20.11	2	2.00	18853	238kg/cm2	kg/cm2	113.4%

Tabla 7Resultado a la resistencia a la compresión – 20% Vidrio molido

						Tipo					
	Fecha de	Fecha de				de	R	Fue.			
Identificación	Vaciado	Rotura	Edad	Diámetro	Altura	falla	Alt/Dia	Máx	Esfuerzo	F′C	%F′C
Probeta-										210	
20%V.M	28/10/2021	04/11/2021	7	10.00	20.08	5	2.01	14220	181kg/cm2	kg/cm2	86.2%
Probeta-										210	
20%V.M	28/10/2021	04/11/2021	7	10.03	20.06	5	2.00	14133	179kg/cm2	kg/cm2	85.2%
Probeta-										210	
20%V.M	28/10/2021	04/11/2021	7	10.01	20.09	5	2.01	14054	179kg/cm2	kg/cm2	85.0%
Probeta-										210	
20%V.M	28/10/2021	11/11/2021	14	10.05	20.11	5	2.00	17226	217kg/cm2	kg/cm2	103.4%
Probeta-										210	
20%V.M	28/10/2021	11/11/2021	14	10.01	20.05	5	2.00	17061	217kg/cm2	kg/cm2	103.2%
Probeta-										210	
20%V.M	28/10/2021	11/11/2021	14	10.03	20.09	5	2.00	16853	213kg/cm2	kg/cm2	102.6%
Probeta-										210	
20%V.M	28/10/2021	25/11/2021	28	10.04	20.04	5	2.00	19321	244kg/cm2	kg/cm2	116.2%
Probeta-										210	
20%V.M	28/10/2021	25/11/2021	28	10.01	20.07	2	2.00	19542	248kg/cm2	kg/cm2	118.2%
Probeta-										210	
20%V.M	28/10/2021	25/11/2021	28	10.10	20.01	5	1.98	19541	244kg/cm2	kg/cm2	116.1%

Tabla 8

Resultado a la resistencia a la compresión – 30% Vidrio molido

	Facha da	Casha da				Tipo					
	Fecha de	Fecha de				de	R	Fue.			
Identificación	Vaciado	Rotura	Edad	Diámetro	Altura	falla	Alt/Dia	Máx	Esfuerzo	F′C	%F´C
Probeta-										210	
30%V.M	28/10/2021	04/11/2021	7	10.00	20.04	2	2.00	14499	185kg/cm2	kg/cm2	87.9%
Probeta-										210	ľ
30%V.M	28/10/2021	04/11/2021	7	10.00	20.07	5	2.01	14385	183kg/cm2	kg/cm2	87.2%
Probeta-										210	ļ
30%V.M	28/10/2021	04/11/2021	7	10.03	20.10	5	2.00	14387	182kg/cm2	kg/cm2	86.7%
Probeta-										210	ľ
30%V.M	28/10/2021	11/11/2021	14	10.01	20.06	5	2.00	17802	226kg/cm2	kg/cm2	107.7%
Probeta-										210	ļ
30%V.M	28/10/2021	11/11/2021	14	10.01	20.04	2	2.00	17410	221kg/cm2	kg/cm2	105.3%
Probeta-										210	ļ
30%V.M	28/10/2021	11/11/2021	14	10.01	20.08	5	2.01	17555	223kg/cm2	kg/cm2	106.2%
Probeta-										210	
30%V.M	28/10/2021	25/11/2021	28	10.03	20.04	5	2.00	20840	264kg/cm2	kg/cm2	125.5%
Probeta-										210	
30%V.M	28/10/2021	25/11/2021	28	10.05	20.10	5	2.00	20424	257kg/cm2	kg/cm2	122.6%
Probeta-										210	
30%V.M	28/10/2021	25/11/2021	28	10.01	20.06	2	2.00	20328	258kg/cm2	kg/cm2	123.0%

Tabla 9

Resultado a la resistencia a la compresión – 40% Vidrio molido

						Tipo					
	Fecha de	Fecha de				de	R	Fue.			
Identificación	Vaciado	Rotura	Edad	Diámetro	Altura	falla	Alt/Dia	Máx	Esfuerzo	F′C	%F´C
Probeta-										210	
40%V.M	28/10/2021	04/11/2021	7	10.00	20.03	5	2.00	14913	190kg/cm2	kg/cm2	90.4%
Probeta-										210	
40%V.M	28/10/2021	04/11/2021	7	10.01	20.04	5	2.00	14795	188kg/cm2	kg/cm2	89.5%
Probeta-										210	
40%V.M	28/10/2021	04/11/2021	7	10.00	20.02	5	2.00	15109	192kg/cm2	kg/cm2	91.6%
Probeta-										210	
40%V.M	28/10/2021	11/11/2021	14	10.03	20.05	5	2.00	18042	228kg/cm2	kg/cm2	108.7%
Probeta-										210	
40%V.M	28/10/2021	11/11/2021	14	10.01	20.09	2	2.01	18114	230kg/cm2	kg/cm2	109.6%
Probeta-										210	
40%V.M	28/10/2021	11/11/2021	14	10.01	20.04	5	2.00	17841	227kg/cm2	kg/cm2	108.0%
Probeta-										210	
40%V.M	28/10/2021	25/11/2021	28	10.06	20.03	2	1.99	22701	286kg/cm2	kg/cm2	136.0%
Probeta-										210	
40%V.M	28/10/2021	25/11/2021	28	10.02	20.01	5	2.00	22968	291kg/cm2	kg/cm2	138.7%
Probeta-										210	
40%V.M	28/10/2021	25/11/2021	28	10.05	20.04	5	1.99	22456	283kg/cm2	kg/cm2	134.8%

Objetivo específico 3: Determinar la aplicación de mecánica de suelos para reconocer las características y propiedades del terreno.

Tabla 10

Ensayos a realizarse:

Ensayo	Norma			
Ensayo para clasificación de suelos	ASTM D2487			
:Análisis granulométrico por tamizado,	ASTM D6913			
Limites de consistencia (LL, LP e IP)	ASTM D4318			
Análisis químicos de suelos	Varios			
Sales, sulfatos y cloruros				
Corte directo de suelos	ASTM D3080			

Fuente: Elaboración propia

Ensayo para Clasificación del suelo para la Calicata N-1

Tabla 11Análisis Granulométrico por tamizado - C1

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM						
D6913						
TAMIZ	ABERTURA	PORCENTAJE QUE PASA				
IAWIZ	(mm)					
3"	76.200	100.0				
2"	50.800	100.0				
1 1/2"	38.100	100.0				
1"	25.400	100.0				
3/4"	19.000	100.0				
3/8"	9.500	100.0				
Nº 4	4.750	99.7				
Nº 10	2.000	99.2				
Nº 20	0.840	98.6				
Nº 40	0.425	97.6				
Nº 60	0.250	65.7				
Nº 100	0.150	14.6				
Nº 140	0.106	6.6				
Nº 200	0.075	2.8				

Tabla 12

Contenido de Humedad - C1

CONTENIDO DE HUN	CONTENIDO DE HUMEDAD ASTM D2216						
CONTENIDO DE HUMEDAD (%)	2.1						
MÉTODO DE SECADO	Horno a 110 +/-5°C						
MÉTODO DE REPORTE	"B"						
MATERIALES EXCLUÍDOS	Ninguno						
PROCEDIMIENTO DE OBTENCIÓN DE MUESTRA	"Secada al horno a 110 +/- 5°C"						
PROCEDIMIENTO DE TAMIZADO	tamizado integral						
TAMIZ SEPARADOR	Ninguno						
MÉTODO DE REPORTE DE RESULTADOS	"B"						

Tabla 13

Límites de Consistencia - C1

LÍMITES DE CONSISTENCIA ASTM D4318					
LÍMITE LÍQUIDO	N.P.				
LÍMITE PLÁSTICO	N.P.				
ÍNDICE DE PLASTICIDAD	N.P.				
INDICE DE CONSISTENCIA (Ic)					
INDICE DE LIQUIDEZ (IL)					
MÉTODO DE ENSAYO DE LÍMITE LÍQUIDO	Multipunto				

Tabla 14

Composición física del suelo en función al tamaño de partículas - C1

COMPOSICIÓN FÍSICA DEL SUELO EN FUNCIÓN AL TAMAÑO					
DE PARTÍ	CULAS				
CONTENIDO DE GRAVA	0.3				
PRESENTE EN EL SUELO %					
CONTENIDO DE ARENA	97.0				
PRESENTE EN EL SUELO %					
CONTENIDO DE FINOS	2.8				
PRESENTES EN EL SUELO %					

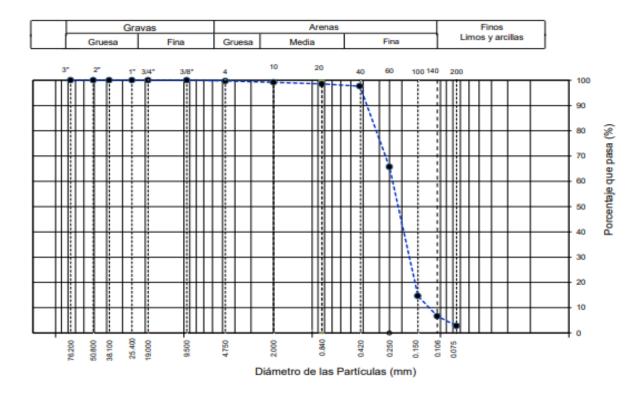


Figura 11. El diámetro de las partículas que pasan por el tamizado - c1

Fuente: Laboratorio INGEOCONTROL

Tabla 15

Clasificación del suelo - C1

CLASIFICACIÓN DEL SUELO						
CLASIFICACIÓN SUCS (ASTM D2487)	SP					
CLASIFICACIÓN AASHTO (ASTM D3282)	A-2-4 (1)					
NOMBRE DEL GRUPO	Arena pobremente gradada					

Ensayo para Clasificación del suelo para la Calicata N-2

Tabla 16Análisis Granulométrico por tamizado - C2

	,					
ANALIS	ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM					
D6913						
T / N / I 7	ABERTURA	PORCENTAJE QUE PASA				
TAMIZ	(mm)					
3"	76.200	100.0				
2"	50.800	100.0				
1 1/2"	38.100	100.0				
1"	25.400	100.0				
3/4"	19.000	100.0				
3/8"	9.500	99.6				
Nº 4	4.750	98.4				
Nº 10	2.000	91.2				
Nº 20	0.840	83.0				
Nº 40	0.425	67.7				
Nº 60	0.250	30.5				
Nº 100	0.150	7.8				
Nº 140	0.106	3.6				
Nº 200	0.075	2.0				

Fuente: Elaboración propia – Laboratorio INGEOCONTROL

Tabla 17

Contenido de Humedad - C2

CONTENIDO DE HUN	CONTENIDO DE HUMEDAD ASTM D2216						
CONTENIDO DE HUMEDAD (%)	3.8						
,							
MÉTODO DE SECADO	Horno a 110 +/-5°C						
MÉTODO DE REPORTE	"B"						
METODO DE NEI ONTE	D						
MATERIALES EXCLUÍDOS	Ninguno						
WATENIALES EXCEDIDOS	Miliguilo						
PROCEDIMIENTO DE	"Secada al horno a 110 +/- 5°C"						
OBTENCIÓN DE MUESTRA							
PROCEDIMIENTO DE TAMIZADO	tamizado compuesto						
TAMIZ SEPARADOR	N 4						
MÉTODO DE REPORTE DE	"B"						
RESULTADOS	_						

Tabla 18

Límites de consistencia - C2

LÍMITES DE CONSISTENCIA ASTM D4318			
LÍMITE LÍQUIDO	N.P.		
LÍMITE PLÁSTICO	N.P.		
ÍNDICE DE PLASTICIDAD	N.P.		
INDICE DE CONSISTENCIA (Ic)			
INDICE DE LIQUIDEZ (IL)			
MÉTODO DE ENSAYO DE LÍMITE LÍQUIDO	Multipunto		

Tabla 19

Composición física del suelo en función al tamaño de partículas - C2

COMPOSICIÓN FÍSICA DEL SUELO EN FUNCIÓN AL		
TAMAÑO DE PARTÍCULAS		
CONTENIDO DE GRAVA	1.6	
PRESENTE EN EL SUELO %		
CONTENIDO DE ARENA	96.4	
PRESENTE EN EL SUELO %		
CONTENIDO DE FINOS	2.0	
PRESENTES EN EL SUELO %		

Fuente: Elaboración propia – Laboratorio INGEOCONTROL

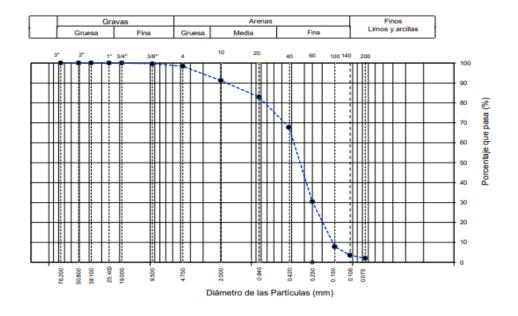


Figura 12. El diámetro de las partículas que pasan por el tamizado

Fuente: Laboratorio INGEOCONTROL

Tabla 20

Clasificación del suelo - C2

CLASIFICACIÓN DEL SUELO			
CLASIFICACIÓN SUCS (ASTM D2487)	SP		
CLASIFICACIÓN AASHTO (ASTM D3282) A-2			
NOMBRE DEL GRUPO	Arena pobremente gradada		

Ensayo para Clasificación del suelo para la Calicata N-3

Tabla 21Análisis Granulométrico por tamizado - C3

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM D6913			
TAMIZ	ABERTURA (mm)	PORCENTAJE QUE PASA	
3"	76.200	100.0	
2"	50.800	100.0	
1 1/2"	38.100	100.0	
1"	25.400	100.0	
3/4"	19.000	100.0	
3/8"	9.500	99.6	
Nº 4	4.750	99.0	
Nº 10	2.000	96.5	
Nº 20	0.840	91.2	
Nº 40	0.425	82.1	
Nº 60	0.250	44.6	
Nº 100	0.150	12.9	
Nº 140	0.106	4.2	
Nº 200	0.075	2.4	

Tabla 22

Contenido de Humedad - C3

CONTENIDO DE HUMEDAD ASTM D2216		
CONTENIDO DE HUMEDAD (%)	3.9	
MÉTODO DE SECADO	Horno a 110 +/-5°C	
MÉTODO DE REPORTE	"B"	
MATERIALES EXCLUÍDOS	Ninguno	
PROCEDIMIENTO DE OBTENCIÓN DE MUESTRA	"Secada al horno a 110 +/- 5°C"	
PROCEDIMIENTO DE TAMIZADO	tamizado compuesto	
TAMIZ SEPARADOR	N 4	
MÉTODO DE REPORTE DE RESULTADOS	"B"	

Límites de consistencia - C3

Tabla 23

LÍMITES DE CONSISTENCIA ASTM D4318			
LÍMITE LÍQUIDO	N.P.		
LÍMITE PLÁSTICO	N.P.		
ÍNDICE DE PLASTICIDAD	N.P.		
INDICE DE CONSISTENCIA (Ic)			
INDICE DE LIQUIDEZ (IL)			
MÉTODO DE ENSAYO DE LÍMITE LÍQUIDO	Multipunto		

Tabla 24

Composición física del suelo en función al tamaño de partículas - C3

COMPOSICIÓN FÍSICA DEL SUELO EN FUNCIÓN AL TAMAÑO DE PARTÍCULAS		
CONTENIDO DE GRAVA PRESENTE EN EL SUELO %	1.0	
CONTENIDO DE ARENA PRESENTE EN EL SUELO %	96.6	
CONTENIDO DE FINOS PRESENTES EN EL SUELO %	2.4	

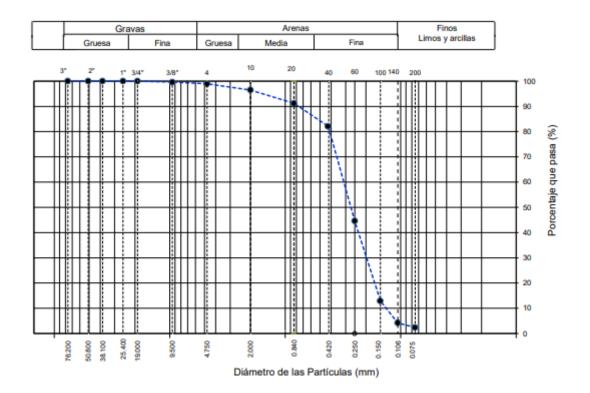


Figura 13. El diámetro de las partículas que pasan por el tamizado

Fuente: Laboratorio INGEOCONTROL

Tabla 25

Clasificación del suelo - C3

CLASIFICACIÓN DEL SUELO			
CLASIFICACIÓN SUCS (ASTM D2487) SP			
CLASIFICACIÓN AASHTO (ASTM D3282)	A-2-4 (1)		
NOMBRE DEL GRUPO	Arena pobremente gradada		

Fuente: Elaboración propia – Laboratorio INGEOCONTROL

Tomando como muestra la Calicata C-1, se realizaron los ensayos de Análisis químico de suelos sales, sulfatos y cloruro; finalmente el corte directo del suelo.

Ensayo de Análisis químico de suelos sales, sulfatos y cloruro

Tabla 26

Contenido de sales de la C-1

SALES SOLUBLES TOTALES	1997 p.p.m.	
(NTP 339.152 / BS 1377-Part 3)	0.1997 %	

Fuente: Elaboración propia – Laboratorio INGEOCONTROL

Tabla 27

Contenido de sulfatos de la C-1

SULFATOS SOLUBLES	984 p.p.m.
(NTP 339.178 / AASHTO T290)	0.0984 %

Fuente: Elaboración propia – Laboratorio INGEOCONTROL

Tabla 28

Contenido de cloruros de la C-1

CONTENIDO DE CLORUROS	663 p.p.m.	
SOLUBLES (NTP 339.177 / AASHTO T291)	0.0663 %	

Fuente: Elaboración propia – Laboratorio INGEOCONTROL

Ensayo de corte directo (velocidad de corte 0.5 mm/min)

Se realizo en 3 espécimen, teniendo como relación a la deformación horizontal y esfuerzo cortante.

Espécimen 1

Altura Inicial: 20.4 mm Lado de caja : 61.2 mmm Area Inicial: 29.4 cm2

Densidad Seca: 1.710 gr/cm2

Humedad Inic.: 2.10%

Esf. Normal: 0.54 kg/cm2

Esf. Corte: 0.36 kg/cm2

Tabla 29Deformación horizontal y esfuerzo de corte – E1

Deformación horizontal (%)	Esfuerzo de Corte (kg/cm2)	Deformación horizontal (%)	Esfuerzo de Corte (kg/cm2)
0.00	0.00	5.23	0.31
0.16	0.13	5.40	0.30
0.33	0.19	5.56	0.30
0.49	0.24	5.72	0.30
0.65	0.27	5.89	0.30
0.82	0.30	6.05	0.30
0.98	0.31	6.21	0.30
1.14	0.33	6.38	0.30
1.31	0.34	6.54	0.30
1.47	0.35	6.70	0.30
1.63	0.35	6.87	0.29
1.80	0.36	7.03	0.29
1.96	0.36	7.19	0.29
2.13	0.36	7.36	0.29
2.29	0.36	7.52	0.29
2.45	0.36	7.68	0.29
2.62	0.36	7.85	0.29
2.78	0.36	8.01	0.29
2.94	0.35	8.17	0.29
3.11	0.35	8.34	0.28
3.27	0.34	8.50	0.28
3.43	0.34	8.67	0.28
3.60	0.34	8.83	0.28
3.76	0.34	8.99	0.28
3.92	0.33	9.16	0.28
4.09	0.33	9.32	0.28
4.25	0.32	9.48	0.28
4.41	0.32	9.65	0.28
4.58	0.32	9.81	0.28
4.74	0.31	9.97	0.27
4.90	0.31	10.14	0.27
5.07	0.31		

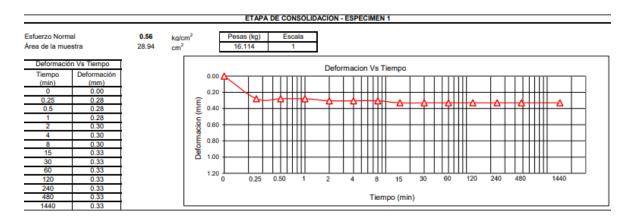


Figura 14. Etapa de consolidación – Espécimen 1

Fuente: Laboratorio INGEOCONTROL

Espécimen 2

Altura Inicial: 20.4 mm Lado de caja : 61.2 mmm Area Inicial: 29.4 cm2

Densidad Seca: 1.710 gr/cm2

Humedad Inic.: 2.10%

Esf. Normal: 1.05 kg/cm2

Esf. Corte: 0.69 kg/cm2

Tabla 30

Deformación horizontal y esfuerzo de corte – E2

Deformacio n horizontal (%)	Esfuerzo de Corte (kg/cm2)	Deformacio n horizontal (%)	Esfuerzo de Corte (kg/cm2)
0.00	0.00	5.23	0.68
0.16	0.12	5.40	0.67
0.33	0.19	5.56	0.67
0.49	0.23	5.72	0.66
0.65	0.28	5.89	0.66
0.82	0.32	6.05	0.66
0.98	0.35	6.21	0.66
1.14	0.38	6.38	0.65
1.31	0.42	6.54	0.65
1.47	0.45	6.70	0.64
1.63	0.47	6.87	0.64
1.80	0.50	7.03	0.63
1.96	0.52	7.19	0.63
2.13	0.54	7.36	0.63

2.29	0.56	7.52	0.62
2.45	0.58	7.68	0.62
2.62	0.60	7.85	0.62
2.78	0.61	8.01	0.61
2.94	0.63	8.17	0.60
3.11	0.63	8.34	0.61
3.27	0.65	8.50	0.60
3.43	0.66	8.67	0.60
3.60	0.66	8.83	0.59
3.76	0.67	8.99	0.59
3.92	0.67	9.16	0.59
4.09	0.68	9.32	0.59
4.25	0.68	9.48	0.60
4.41	0.68	9.65	0.60
4.58	0.68	9.81	0.59
4.74	0.68	9.97	0.59
4.90	0.69	10.14	0.59
5.07	0.68		

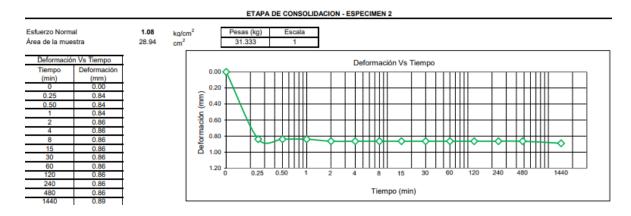


Figura 15. Etapa de consolidación - Espécimen 2

Fuente: Laboratorio INGEOCONTROL

Espécimen 3

Altura Inicial: 20.4 mm Lado de caja : 61.2 mmm Area Inicial: 29.4 cm2

Densidad Seca: 1.710 gr/cm2

Humedad Inic.: 2.10%

Esf. Normal: 2.03 kg/cm2

Esf. Corte: 1.31 kg/cm2

Tabla 31Deformación horizontal y esfuerzo de corte – E3

Deformacio n horizontal (%)	Esfuerzo de Corte (kg/cm2)	Deformacio n horizontal (%)	Esfuerzo de Corte (kg/cm2)
0.00	0.00	5.23	1.30
0.16	0.44	5.40	1.29
0.33	0.57	5.56	1.29
0.49	0.68	5.72	1.29
0.65	0.75	5.89	1.29
0.82	0.82	6.05	1.30
0.98	0.87	6.21	1.30
1.14	0.92	6.38	1.31
1.31	0.98	6.54	1.30
1.47	1.03	6.70	1.31
1.63	1.07	6.87	1.30
1.80	1.11	7.03	1.29
1.96	1.14	7.19	1.29
2.13	1.17	7.36	1.28
2.29	1.19	7.52	1.28
2.45	1.21	7.68	1.27
2.62	1.23	7.85	1.27
2.78	1.24	8.01	1.27
2.94	1.26	8.17	1.26
3.11	1.27	8.34	1.26
3.27	1.28	8.50	1.26
3.43	1.29	8.67	1.24
3.60	1.29	8.83	1.24
3.76	1.30	8.99	1.25
3.92	1.30	9.16	1.24
4.09	1.31	9.32	1.22
4.25	1.30	9.48	1.21
4.41	1.30	9.65	1.22
4.58	1.30	9.81	1.22
4.74	1.30	9.97	1.21
4.90	1.30	10.14	1.21
5.07	1.30		

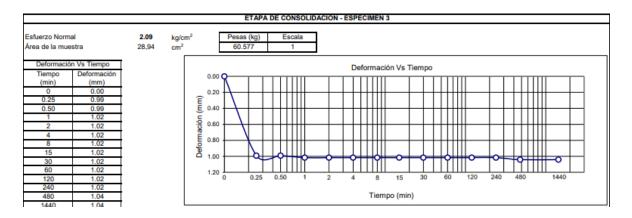


Figura 16. Etapa de consolidación - Espécimen 3

Fuente: Laboratorio INGEOCONTROL

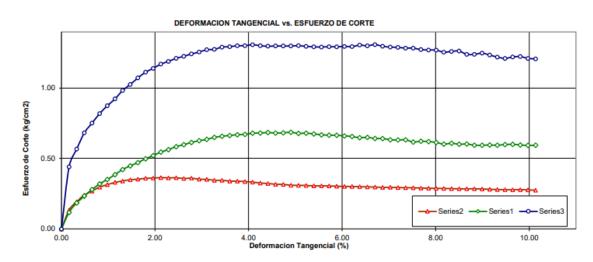


Figura 17. Ensayo de corte directo bajo condiciones consolidadas drenadas ASTM D3080

Fuente: Laboratorio INGEOCONTROL

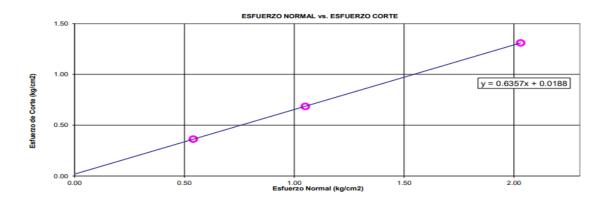


Figura 18. Ensayo de corte directo bajo condiciones consolidadas drenadas ASTM D3080

Fuente: Laboratorio INGEOCONTROL

Teniendo como resultado final:

-Cohesión: 0.02 Kg/cm2

-Angulo de fricción: 32.4

Para la elaboración de las probetas se realizó ensayos granulométricos a los materiales que se emplearan para la conformación del concreto, donde se muestra en las tablas de análisis:

Análisis granulométrico del agregado fino

Procedencia del agregado fino de la cantera de trapiche

Tabla 32Análisis granulométrico del agregado fino por tamices

DE TAM Marco d	ABERTURA DE TAMICES Marco de 8" de diámetro		% Parcial Retenid	% Acumula do	% Acumula do que	ESPECI ÓN	FICACI
Nombr e	mm	o g	0	Retenido	Pasa Pasa	Mínim o	Máxim o
4 in	100.0 0 mm						
3 1/2	90.00						
in	mm						
3 in	75.00						
	mm						
2 1/2	63.00						
in	mm						
2 in	50.00						
	mm						
1 1/2	37.50						
in	mm						
1 in	25.00						
	mm						
3/4 in	19.00						
	mm						
1/2 in	12.50						
0/0:	mm				400.0	400.00	400.00
3/8 in	9.50				100.0	100.00	100.00
NI _n 4	mm	04.4	4.07	4.07	05.00	05.00	400.00
No. 4	4.75 mm	31.4	4.37	4.37	95.63	95.00	100.00

No. 8	2.36	121.9	16.98	21.35	78.65	80.00	100.00
No. 16	mm 1.18	186.3	25.95	47.30	52.70	50.00	85.00
No. 30	mm 600	180.4	25.13	72.42	27.58	25.00	60.00
No. 50	μm 300	105.6	14.71	87.13	12.87	5.00	30.00
No.	μm 150	52.6	7.33	94.46	5.54	0.00	10.00
100 No.	μm 75						
200 < No.	μm < No.	39.8	5.54	100.00	0.00	_	_
200	200					MF	3.27
						TMN	

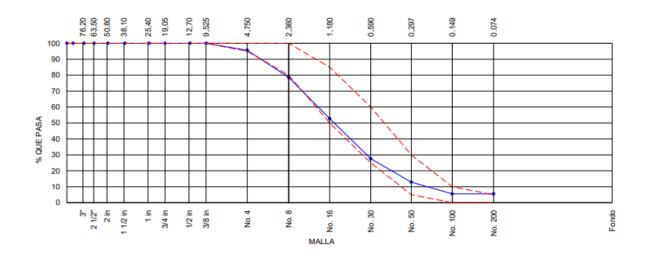


Figura 19. Curva Granulométrica AF

Fuente: Laboratorio INGEOCONTROL

Análisis granulométrico del agregado grueso

Procedencia del agregado grueso de la cantera de trapiche

Tabla 33Análisis granulométrico del agregado grueso por tamices

DE TAN Marco d de dián	ABERTURA DE TAMICES Marco de 8" de diámetro		eso % % eteni Parcial Acumo o g do Botoni		% Acumula do que	ESPECIFICAC IÓN	
Nomb re	mm	3	do	Retenido	Pasa	Mínimo	Máximo
4 in	100.0 0 mm						
3 1/2 in	90.00 mm						
3 in	75.00 mm						
2 1/2 in	63.00 mm						
2 in	50.00 mm						
1 1/2 in	37.50 mm						
1 in	25.00 mm				100.00	100.00	100.00
3/4 in	19.00 mm	15.8	0.52	0.52	99.48	90.00	100.00
1/2 in	12.50 mm	1352.8	44.47	44.99	55.01	50.00	79.00
3/8 in	9.50 mm	1090.4	35.85	80.84	19.16	20.00	55.00
No. 4	4.75 mm	570.4	18.75	99.59	0.41	0.00	10.00
No. 8	2.36 mm	10.6	0.35	99.94	0.06	0.00	5.00
No. 16	1.18 mm						
No. 30	600						
No. 50	μm 300 μm						

No.	150						
100	μm						
No.	75						
200	μm						
< No.	< No.	1.8	0.06	100.00	0.00	-	-
200	200						
						MF	6.81
						TMN	1/2"

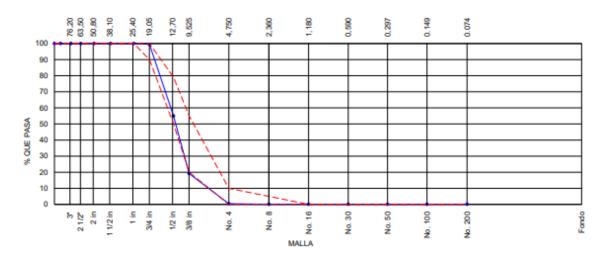


Figura 20. Curva Granulométrica AG

Fuente: Laboratorio INGEOCONTROL

Objetivo especifico 4: Realizar el modelamiento estructural en el programa ETABS el diseño estructural factor concreto 210 kg/cm2 empleando vidrio molido y el patrón, San Juan de Miraflores, 2021

Los parámetros que se emplearon para el calculo del espectro

Factor de zona: Z=0.45 (Zona 4)

Factor de Uso: U=1.00 (Categoría C-Vivienda)
Factor de Suelo: S=1.05 (Según E.M.S S2)

Periodo que define la TP=0.60 plataforma del Espectro: TL=2.00

Factor de Básico de Rox=8 (Sistema Pórticos)

Reducción

de Fuerza Sísmica: Roy=8 (Sistema Pórticos)

Factor de Reducción lax=0.90, lpx=0.90 R=la*lp*Ro=0.90*0.90*8=7.20 de Fuera Sísmica: lay=0.90, lpy=0.90 R=la*lp*Ro=0.90*0.90*8=7.20

Tabla N° 1 FACTORES DE ZONA "Z"				
ZONA	Z			
4	0,45			
3	0,35			
2	0,25			
1	0,10			

Tabla N° 3 FACTOR DE SUELO "S"						
SUELO	So	S ₁	S ₂	S ₃		
Z ₄	0,80	1,00	1,05	1,10		
Z ₃	0.80	1,00	1,15	1,20		
Z ₂	0,80	1,00	1,20	1,40		
Z ₁	0,80	1,00	1,60	2,00		

2,00	PERIO	Tabla N°		
Perfil de suelo				
	So	S ₁	S ₂	S ₃
T _P (s)	0,3	0,4	0,6	1,0
T _L (s)	3,0	2,5	2,0	1,6

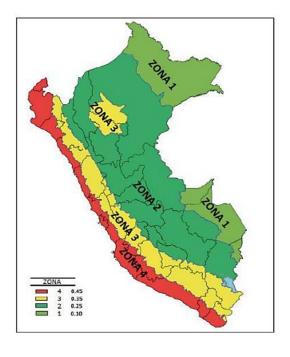


Figura 21. Parámetros sísmicos

Fuente: Norma E0.30

Perfil de Suelo: Zona Sísmica: Categoría:		S2 Z4 A	
Z:		0.45	
Tp (S):	0.60	TI (S)	2.00
Factor de suelo "S":		1.05	
Factor de Uso "U":		1.00	

Factor XX = $Z^*U^*S^*g/Rx$: 0.45*1.00*1.05*9.81/7.20 = 0.6438 Factor YY = $Z^*U^*S^*g/Ry$: 0.45*1.00*1.05*9.81/7.20 = 0.6438

T	С
0.00	2.50
0.10	2.50
0.20	2.50
0.30	2.50
0.40	2.50
0.50	2.50
0.60	2.50
0.70	2.14
0.80	1.88
0.90	1.67
1.00	1.50
1.10	1.36
1.20	1.25
1.30	1.15
1.40	1.07
1.50	1.00
1.60	0.94
1.70	0.88
1.80	0.83
1.90	0.79
2.00	0.75
2.10	0.68
2.20	0.62
2.30	0.57
2.40	0.52
2.50	0.48
2.60	0.44
2.70	0.41
2.80	0.38
2.90	0.36
3.00	0.33
3.10	0.31

Rx = Ro*la*lp:

Ry = Ro*la*lp:

3.20	0.29
3.30	0.28
3.40	0.26
3.50	0.24
3.60	0.23
3.70	0.22
3.80	0.21
3.90	0.20
4.00	0.19
4.10	0.18
4.20	0.17
4.30	0.16
4.40	0.15
4.50	0.15
4.60	0.14
4.70	0.14
4.80	0.13
4.90	0.12
5.00	0.12

7.20

7.20

Figura 22. Espectro de Pseudo-aceleración

Fuente: Norma E0.30

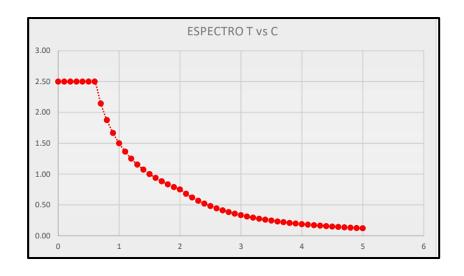


Figura 23. Espectro de Pseudo-aceleración - Suelo S2

Fuente: Norma E0.30

Análisis estático del factor patrón 210 kg/cm2

Z=	0.45								
U=	1.00					_			
S=	1.05				C		VERIFICAN		
TP:	0.60				COEF.	PESO	CORTANTE	CORTANTE	FACTOR
TL:	= 2.00			VX-Y = C	sísmico	EDIFICA	ESTÁTICA	DINÁMICA	sísmico
CX	2.50	TX=	0.957	VX=ZUCxS/Rx	0.148	270.888	39.998	24.156	1.4902
CY	2.50	TY=	1.112	VY=ZUCyS/Ry	0.148	270.888	39.998	22.255	1.6175
Rx:	8.00	G. VERTICAL Cx/Rx>0.11		0.313	CUMPLE				
R _X	8.00	E. ENTR.	ANTES	Cy/Ry>0.11	0.313	CU	MPLE		

Figura 24. Análisis estático del patrón 210 kg/cm2

Análisis estático del factor 291 kg/cm2 – empleando V.M.

Z=	0.45												
U=	1.00												
S=	1.05				С		VERIFICAM						
TP=	0.60								COEF.	PESO	CORTANTE	CORTANTE	FACTOR
TL=	2.00			VX-Y = C	Sismico	EDIFICA	ESTÁTICA	DINÁMICA	Sismico				
CX=	2.50	TX=	0.957	VX=ZUCxS/Rx	0.148	270.888	39.998	28.672	1.2555				
CY=	2.50	TY=	1.112	VY=ZUCyS/Ry	0.148	270.888	39.998	27.378	1.3149				
Rx=	8.00	Cx/Rx>0.11		0.313	CUMPLE								
R _V =	8.00			Cy/Ry>0.11	0.313	C	UMPLE						

Figura 25. Análisis estático del F´C 291 kg/cm2

Fuente: Elaboración propia

Análisis dinámico del factor patrón 210 kg/cm2

	CORTANTE DINAMICA - SIN AMPLIFICAR										
Starra	Load Case/Combo	T	P	VX	VY	T	MX	MY			
Storx	Load Case/Combo	Location	tonf.	tonf	tonf	tonf-m	tonf-m	tonf-m			
AZOTEA	SDXX Max	Bottom	0	3.1154	0.2142	33.5592	0.6425	9.3461			
AZOTEA	SDYY Max	Bottom	0	0.2157	3.3405	19.582	10.0215	0.647			
TECHO 03	SDXX Max	Bottom	0	11.6375	0.639	123.7897	1.9373	44.1223			
TECHO 03	SDYY Max	Bottom	0	0.7615	11.4253	59.6498	43.8836	2.919			
TECHO 02	SDXX Max	Bottom	0	18.7212	1.1676	198.3946	5.2583	99.8342			
TECHO 02	SDYY Max	Bottom	0	1.1757	17.711	90.6858	96.0345	6.3808			
TECHO 01	SDXX Max	Bottom	0	24.1563	1.511	255.668	11.449	200.1478			
TECHO 01	SDYY Max	Bottom	0	1.511	22.2553	113.7119	187.3593	12.5366			

Figura 26. Análisis dinámico del F´C 210 kg/cm2

Análisis dinámico del factor 291 kg/cm2

	CORTANTE DINAMICA - SIN AMPLIFICAR										
Stani	Load Case/Combo	Location	Р	VX	VY	T	MX	MY			
Storx		Location.	tonf.	tonf.	toof.	tont-m	toot-m	tont-m			
AZOTEA	SDXX Max	Bottom	0	3.693	0.2537	39.7852	0.7612	11.0791			
AZOTEA	SDYY Max	Bottom	0	0.2648	4.0993	24.0315	12.298	0.7944			
TECHO 03	SDXX Max	Bottom	0	13.8064	0.7577	146.87	2.2968	52.3392			
TECHO 03	SDYY Max	Bottom	0	0.9363	14.0454	73.3244	53.9324	3.5877			
TECHO 02	SDXX Max	Bottom	0	22.2198	1.3855	235.488	6.2389	118.4723			
TECHO 02	SDYY Max	Bottom	0	1.4469	21.7879	111.5577	118.1078	7.8496			
TECHO 01	SDXX Max	Bottom	0	28.6716	1.7932	303.4805	13.5879	237.5619			
TECHO 01	SDYY Max	Bottom	0	1.8598	27.3777	139.8818	230.4988	15.4308			

Figura 27. Análisis dinámico del F´C 291 kg/cm2

Fuente: Elaboración propia

Verificación de los desplazamientos permisibles según la Norma E0.30, patrón 210 kg/cm2

614	Load	D:	D-:6	T -1 -1	X	Y	Z	OBSERV	
Story	Case/Combo	Direction	Drift	Label	m	m	m	OBSERV.	
Azotea	DERIVA XX	X	0.0003861	140	8.25	14.4	13.2	<0.005	[CUMPLE]
Techo 3	DERIVA XX	X	0.0009469	140	8.25	14.4	10.2	<0.005	[CUMPLE
Techo 2	DERIVA XX	X	0.0015687	140	8.25	14.4	7.20	< 0.005	[CUMPLE]
Techo 1	DERIVA XX	X	0.0027999	140	8.25	14.4	4.20	< 0.005	[CUMPLE]

Figura 28. Verificación de Driff en dirección XX F´C 210 kg/cm2

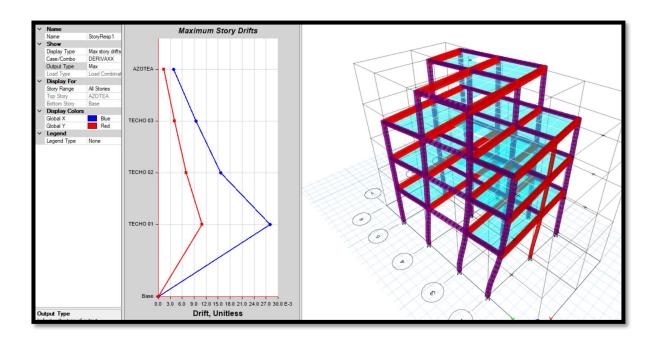


Figura 29. Diagrama de la verificación de Driff XX del F´C 210 kg/cm2

64	Load	D:	D.: 6	7 -1 -1	X	Y	Z	OBSERV	
Story	Case/Combo	Direction	Drift	Label	m m		m	OBSERV.	
Azotea	DERIVA YY	Y	0.0006552	140	8.25	14.4	13.2	< 0.005	[CUMPLE]
Techo 3	DERIVA YY	Y	0.0001229	140	8.25	14.4	10.2	<0.005	[CUMPLE
Techo 2	DERIVA YY	Y	0.0019278	140	8.25	14.4	7.20	< 0.005	[CUMPLE]
Techo 1	DERIVA YY	Y	0.0026002	140	8.25	14.4	4.20	< 0.005	[CUMPLE]

Figura 30. Verificación de Driff en dirección YY F´C 210 kg/cm2

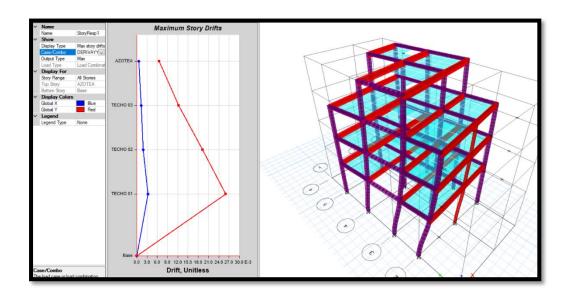


Figura 31. Diagrama de la verificación de Driff YY del F´C 210 kg/cm2

Verificación de los desplazamientos permisibles según la Norma E0.30, 291 kg/cm2

Story C	Load	Direction	Direction Drift	Label	Х	Υ	Z	OBSERV.	
	Case/Combo			Label	m	m	m	ODSERV.	
Azotea	DERIVA XX	Х	0.003821	140	8.25	14.4	13.2	<0.005	[CUMPLE]
Techo 3	DERIVA XX	Х	0.009375	140	8.25	14.4	10.2	<0.005	[CUMPLE
Techo 2	DERIVA XX	Х	0.001554	140	8.25	14.4	7.20	<0.005	[CUMPLE]
Techo 1	DERIVA XX	Х	0.002773	140	8.25	14.4	4.20	<0.005	[CUMPLE]

Figura 32. Verificación de Driff en dirección XX F´C 291 kg/cm2

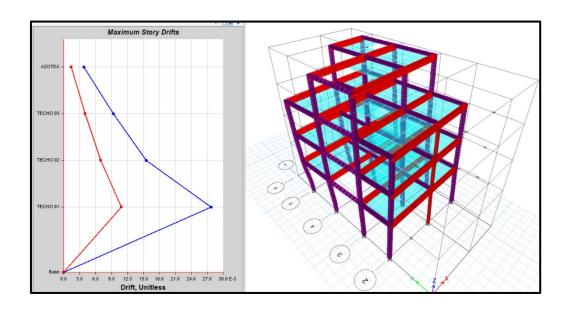


Figura 33. Diagrama de la verificación de Driff XX del F´C 291 kg/cm2

Stone	Load	Direction	D-:#	Label	Х	Υ	Z	OBSERV.	
Story	Case/Combo	Direction	Drift	Label	m	m	m	OBSERV.	
Azotea	DERIVA YY	Y	0.000647	140	8.25	14.4	13.2	<0.005	[CUMPLE]
Techo 3	DERIVA YY	Y	0.001216	140	8.25	14.4	10.2	<0.005	[CUMPLE
Techo 2	DERIVA YY	Υ	0.001908	140	8.25	14.4	7.20	<0.005	[CUMPLE]
Techo 1	DERIVA YY	Υ	0.002573	140	8.25	14.4	4.20	<0.005	[CUMPLE]

Figura 34. Verificación de Driff en dirección YY F´C 291 kg/cm2

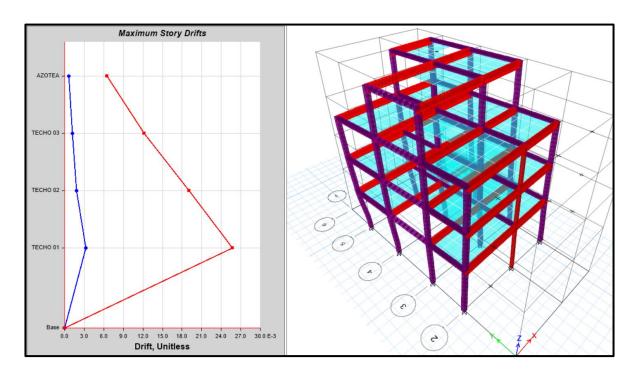


Figura 35. Diagrama de la verificación de Driff YY del F´C 291 kg/cm2

V. DISCUSIÓN

Según Mantilla Arias (2017) en su tesis tiene como objetivo principal determinar su influencia del vidrio en porcentajes para mejorar la resistencia a la compresión y flexión de un factor de concreto 210 kg/cm2, como resultados en el diseño patrón 210 kg/cm2 se logró medir su resistencia a la compresión requerida a los 28 teniendo un resistencia de 263.28 kg/cm2, en cuanto al diseño con 1% de fibra de vidrio se logró obtener una resistencia de 270.64 kg/cm2, con 3% de fibra de vidrio se logró obtener una resistencia de 274.64% y con 5% de fibra de vidrio se logró obtener una resistencia de 215.37 kg/cm2. Teniendo como interpretación que aumentó la resistencia en valores menores de fibra de vidrio y en el valor mayor de fibra de vidrio comenzó a disminuir la resistencia, por el motivo que al agregar la fibra de vidrio disminuye la trabajabilidad del concreto. Ahora en la resistencia a la flexión en el diseño patrón se alcanzo a una resistencia de 3.68 Mpa a los 28 días, con adición de 1% de fibra de vidrio se logró la resistencia de 3.55 Mpa, mientras que con la adición de 3% de fibra de vidrio se logró la resistencia de 3.84 Mpa finalmente con la adición de 5% se logró una resistencia requerida de 2.83 Mpa.

En la presente tesis se logró obtener la resistencia máxima a los 28 días del diseño patrón de 238 kg/cm2, con reemplazo del vidrio molido en 20% por el agregado fino se logró obtener una resistencia máxima de 248 kg/cm2 a los 28 días, con reemplazo del vidrio molido en 30% por el agregado fino se logró obtener una resistencia máxima de 264 kg/cm2 a los 28 días y con reemplazo del vidrio molido en 40% por el agregado fino se logró obtener una resistencia máxima de 291 kg/cm2, indicando que el vidrio molido es un material favorable para aumentar la resistencia y en cuanto al aumento de la resistencia mejores resultados a mayor porcentaje.

Según Rivera Bernales (2018) en sus tesis tienen como objetivo principal buscar aumentar la resistencia del concreto empleando vidrio molido en porcentajes de 25%, 30% y 35%, utilizando probetas de 6"x12", en el diseño patrón 210 kg/cm2 se llegó al esfuerzo máximo de 229.96 kg/cm2 a los 28 días, en el diseño con vidrio un 25% se llegó al esfuerzo máximo de 247.46 kg/cm2 a los 28 días, en el diseño con vidrio un 30% se llegó al esfuerzo máximo de 217.87 kg/cm2 a los 28 días y finalmente en el diseño con vidrio un 35% se llegó al esfuerzo máximo de 208.05 kg/cm2, teniendo una discrepancia en nuestros resultados, por tener la relación de

mayor cantidad de empleo de vidrio más resistencia y teniendo una relación en el día de la ruptura obteniendo el mayor esfuerzo máximo a los 28 días.

Según la Norma E0.60 se debe realizar ensayos del concreto en su estado fresco: Slump y control de temperatura; en cuanto a su estado endurecido: ensayo de resistencia de compresión a los 7, 14 y 28 días, en cuanto a la investigación se aplico los ensayos en su estado fresco y estado endurecido: Slump, control de temperatura y resistencia de compresión, teniendo como resultado que el vidrio es un material que puede reemplazar en porcentajes mayores teniendo como beneficios mayor resistencia en el concreto.

VI. CONCLUSIONES

Se concluye que el empleo del vidrio molido en los porcentajes de 20%, 30% y 40% como reemplazo del agregado fino, mejora la resistencia del concreto con respecto al f´c 210 kg/cm², en un 20% obtuvo hasta 248 kg/cm², en un 30% obtuvo hasta 264 kg/cm² y en un 40% obtuvo hasta 291 kg/cm², por lo tanto, a mayor cantidad de vidrio molido en reemplazo del agregado fino aumenta la resistencia.

Se concluye que el empleo de vidrio molido es muy favorable por los resultados obtenidos en el laboratorio con el método de resistencia a la compresión, el incremento en la resistencia de compresión en el diseño f´c 210 kg/cm2 con 40% vidrio molido en reemplazo del agregado a los 28 días, una resistencia máxima de 291 kg/cm2.

Se concluye que el tipo de suelo en la zona de estudio 5 de mayo, Pamplona Alta, San Juan de Miraflores es SP con denominación arena pobremente gradada según la clasificación SUCS, y según la norma E 0.30 pertenece al tipo de suelo S2.

Se concluye que el desplazamiento permisible según la norma E0.30 en el diseño patrón 210 kg/cm2 las derivas en dirección XX en el techo 1: 0.002799 < 0.005 "cumple", en el techo 2: 0.0015687 < 0.005 "cumple", en el techo 3: 0.0009469 < 0.005 "cumple" y en la azotea: 0.0003861 < 0.005 "cumple, y en cuanto en la dirección YY cumple en el techo 1, 2, 3 y azotea < 0.005 "cumple"; con comparación del factor 291 kg/cm2 con empleo de vidrio molido en reemplazo del agregado fino los desplazamiento también cumplen pero presentan un menor desplazamiento en cuanto a la dirección XX y YY.

VII. RECOMENDACIONES

Se recomienda a los futuros investigadores a continuar con la investigación con empleo de vidrio molido, pero en mayores porcentajes para verificar si aun cumple la resistencia requerida en reemplazo de algún material constructivo por su gran demanda del concreto en el sector constructivo.

Se recomienda que las probetas de concreto realizadas en el laboratorio se debe verificar el correcto curado, seguidamente de su desencofrado, para no tener alteraciones en los resultados y respetar correctamente las edades de las rupturas teniendo la fecha de elaboración a los 7, 14 y 28 días.

Se recomienda que la mezcla de concreto con empleo de vidrio molido no sea menor a 20% por que al disminuir el porcentaje del vidrio se acorta la resistencia requerida del patrón, y no será beneficioso para la mezcla.

Se recomienda el uso correcto de EPPS al momento de elaborar el diseño de concreto con empleo del vidrio molido, especialmente al momento de la mezcla perjudicando problemas a la vista o cortes.

REFERENCIAS

- Carrasco, S. (2009) Metodología de la investigación científica. Perú: Editorial San Marcos Daniel. Radebaugh. y Sullivan. (2004). Negocios internacionales: Ambiente y operaciones. Décima edición. México: Pearson Educación.
- Rivas, E (2020) "Adición de vidrio molido en la resistencia a la compresión del concreto, Trujillo – La Libertad." en la Universidad Cesar Vallejo para obtener el grado de Ingeniero Civil (Título de Ingeniero Civil)
- Mantilla J. (2017) "Influencia de la Fibra de Vidrio Tipo E en las Propiedades Mecánicas Resistencia a la Compresión y Flexión del Concreto f' c = 210 kg/cm2" en la Universidad Cesar Vallejo para obtener el grado de Ingeniero Civil (Título de Ingeniero Civil)
- 4. Torres L. (2020) "Adición del vidrio molido reciclado para mejorar las propiedades mecánicas del concreto estructural f´c= 210 kg/cm² 2020 " en la Universidad Cesar Vallejo para obtener el grado de Ingeniero Civil (Título de Ingeniero Civil)
- MUÑOZ Álvarez, Carolina Josefine. Comportamiento mecánico del hormigón reforzado con fibra de vidrio. Tesis para Obtener el Doctorado (Estructuras de Hormigón). Chile: Universidad Austral de chile, Departamento de Estructuras, 2009. 109pp
- SANCHEZ de Guzmán Diego. Tecnología del concreto y del mortero, BHANDAR EDITORIAL: Bogotá, 2001. 341 pp. ISBN: 9589247040
- RICO Rodríguez, Alfonso. La ingeniería de los suelos en las vías terrestres Carreteras, Ferrocarriles y Aeropistas. Limusa: México, 2005. 460 pp. ISBN: 9681800540
- 8. SENCAMER. Agregado grueso, determinación de la densidad y la absorción. Fondo norma: Venezuela, 1998. 50 pp. ISBN: 9800620648
- MORALES Ortuño, Sergio Alejandro. Fibra de vidrio, pruebas y aplicaciones. Tesis para obtener el doctorado (Mecánica Eléctrica). México: Escuela Superior de Ingeniería Mecánica y Eléctrica, Departamento de Mecánica Electrica, 2008. 76pp
- 10.GONZALES Sandoval, Federico. Manual de supervisión de obras de concreto. Limusa: México. 2004. 143 pp. ISBN.9681859073
- 11. GARCIA de Lomas Macarena. Comportamiento científico- técnico de los cementos Portland elaborados con catalizador FCC aplicación de la normativa vigente. Graficas: Madrid. 2007. 46 pp. ISBN 9788400085001

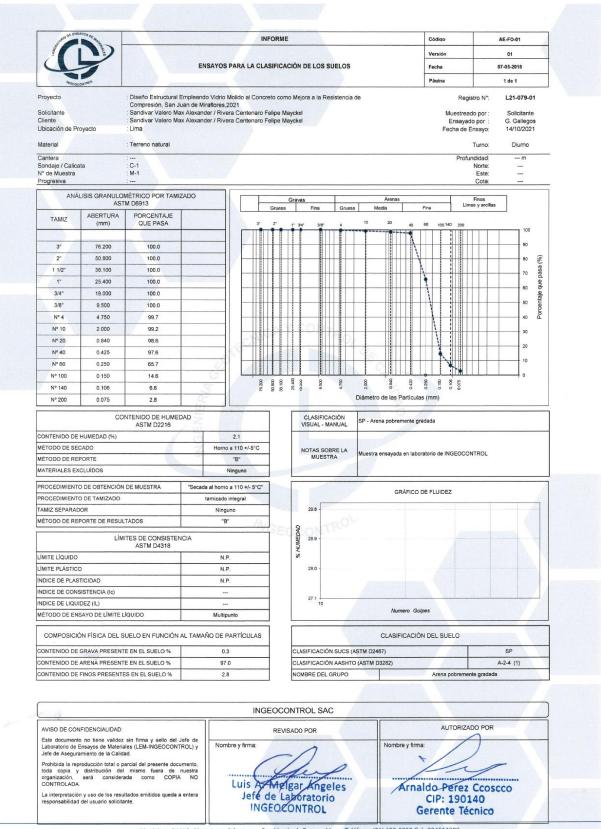
- 12.AL-ZUBAIDI, Aseel & SHABEEB, Kadhum & AYNOOR. Jan. Study The Effect of Recycled Glass on The Mechanical Properties of Green Concrete. Energy Procedia, 2017. 119.10.1016/j.egypro.2017.07.095. ISSN: 1876-6102.
- 13.BHAT, Veena and RAO, Bhavani Shankar, Influence of Glass Powder on the Properties of Concrete. International Journal of Engineering Trends and Technology, 2014. Vol.16, 196-199. ISSN: 2231-5381.
- 14. CAMAC Jesús. "Influencia al incorporar vidrio de sosa, cal y sílice en la resistencia del concreto f'c = 210 kg/cm2." Perú - Huancayo: Universidad Peruana Los Andes,2018.
- 15. CARDENA, Pedro; RENDON, Roberto; AGUILAR, Jorge y Otros. Métodos cualitativos o su combinación en la investigación: un acercamiento en las ciencias sociales. Revista Mexicana de Ciencias Agrícolas Vol.8 Núm.7 27 de septiembre 11 de noviembre, 2017 p. 1603-1617 ISSN: 2007-0934
- 16. CATALÁN, Carlos. Estudio de la influencia del vidrio molido en hormigones grado H15, H20, y H30. Universidad Austral de Chile, 2013.
- 17. CORONA, Jose. Apuntes sobre métodos de investigación. Universidad Nacional Experimental Francisco de Miranda, Mene de Mauroa, Falcón, Venezuela,(2016). Medisur vol.14 no.1 Cienfuegos ISSN 1727-897X.
- 18. ESLAVA, Adolfo. Análisis cualitativo y cuantitativo para los estudios políticos. Cinta moebio no.51 Santiago dic. 2014. Departamento de Gobierno y Ciencias Políticas, Universidad EAFIT, Medellín, Colombia. Disponible en: http://dx.doi.org/10.4067/S0717-554X2014000300001 ISSN 0717-554X
- 19. ESPINOZA, Eduardo. Las variables y su operacionalización en la investigación educativa. Parte I. Universidad Técnica de Machala. República del Ecuador Conrado vol.14 supl.1 Cienfuegos oct.- dic. 2018 E pub 03-Dic-2018. ISSN 2519-7320 versión On-line ISSN 1990-8644
- 20.GARCÍA, Bleger. Efecto de la fibra de vidrio en las propiedades mecánicas del concreto f´c =210 kg/cm2 en la ciudad de puno, 2017.Perú - Puno: Universidad Nacional del Altiplano Puno.
- 21. Peñafiel Carrillo, Daniela. 2016. Análisis de la Resistencia a la Compresión del Hormigón al emplear vidrio reciclado molido en reemplazo parcial del agregado fino. Universidad Técnica de Ambato. Ambato: s.n., 2016. pág. 114.

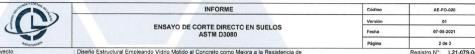
- 22. Resistencia mecánica del concreto y resistencia a la compresión (Articulo de un blog). Osorio, Jesús David. Colombia (21 de marzo del 2019). Disponible en: https://support.google.com/analytics/answer/1034328?hl=es
- 23. Sandoval-Vallejo, Eimar Andrés, Rivera-Mena, William Albeiro Correlación del CBR con la resistencia a la compresión inconfinada. Ciencia e Ingeniería Neogranadina [en línea]. 2019, Vol. 29, nº 1, pag. 135-151. Disponible en: https://www.redalyc.org/articulo.oa?id=91160956009
- 24. Santos Bardales, Mili Yanet. 2018. Efecto de la sustitución del agregado grueso por vidrio blanco en la resistencia del concreto. Ancash, UNIVERSIDAD SAN PEDRO. Huaraz: s.n., 2018. pág. 56.
- 25. Suque Soc, Carlos Eduardo. 2016. UTILIZACIÓN DE DESECHO DE VIDRIO COMO ÁRIDO GRUESO PARA LA ELABORACIÓN DE CONCRETO. UNIVERSIDAD SAN CARLOS DE GUATEMALA. GUATEMALA: s.n., 2016. pág. 134.
- 26. Silvestre Gutiérrez, Adán. 2017. ANÁLISIS DE MEZCLAS DE CONCRETO CON PROPORCIONES DE VIDRIO MOLIDO, TAMIZADO Y GRANULAR COMO ADITIVO, A FIN DE AUMENTAR LA RESISTENCIA A LA COMPRESIÓN DEL HORMIGÓN. PEREIRA: s.n., 2017.
- 27. VALENCIA VILLEGAS, Juan Pablo; GONZÁLEZ MESA, Ana María; ARBELAEZ PEREZ, Oscar Felipe. Evaluación de las propiedades mecánicas de concretos modificados con microesferas de vidrio y residuos de llantas. Lámpsakos, n. 22, p. 16-26, nov. 2019.
- 28. Sonia Zamora Gonzales1; Víctor Meza Contreras. Perception of formality of the glass recycling chain in the North Part of Lima. Anales Científicos, vol. 78 nº2, pages. 216-224 (2017).
- 29. Manuel Paredes G.; Manuel F. Herrador; Ismael Vieito Raña; Javier Eiras López; Fernando Varela Puga VII Congreso Internacional de Estructuras: Hormigón y Acero. 68, especial Congreso, junio 2017, 2017, págs. 329- 330. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=6940520
- 30. Morales Alejandre, Vicctor Michel. 2015. ESTUDIO DE CONCRETOS DE ALTA DURABILIDAD. MEXICO: s.n., 2016.

ANEXOS

Anexo 1: Matriz de Operacionalización de las variables

	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADOR	TIPO DE VARIAB LE		
	Según Navarro (2016), el diseño estructural influye en todo tipo de proyecto a			20% de vidrio molido	Ordinal		
	realizar, ayuda a poder dar seguridad a la forma del diseño arquitectónico, verificar el	Emplear el vidrio molido en distintos porcentajes de		30% de vidrio molido	Ordinal		
Variable Independient e (X) Diseño Estructural	dimensionamiento y las características de los elementos estructurales sean los adecuados y generar un factor de seguridad, para el cual se emplea una memoria de cálculo encargado por un Ingeniero estructural colegiado. A hora en la actualidad se recurre muchos diseños y cálculos estructurales en programas como Etabs, SAP 2000, Robots, etc. (Navarro, 2016)	porcentajes de 20% 30% y 40%, como reemplazo del agregado fino en un diseño estructural, por el motivo de que es un material no renovable	Empleo de vidrio molido como agregado fino	40% de vidrio molido	Ordinal		
	Según Cervera y Blanco (2015), es la capacidad máxima que posee un material ante un esfuerzo o carga, hasta lograr la	Luego del empleo		Factor de concreto a los 7 días	Ordinal		
Variable	ruptura, para la cual plantea en dos problemáticas en el momento de la práctica el mal dimensionamiento y la	de vidrio molido como agregado fino, se medirá la	como agregado to y la fino, se medirá la	omento de la práctica el al dimensionamiento y la fino, se medirá la		Factor de concreto a los 14 días	Ordinal
Dependiente (Y) Resistencia	verificación de respuesta de los elementos estructurales. El cual, para medir la resistencia del concreto, la norma E0.60, nos plantea tres ensayos: ensayo a la compresión, tracción y flexión. Los resultados obtenidos hacemos una comparación a los parámetros de la norma. (Cervera & Blanco, 2015)	resistencia mediante el ensayo de la resistencia a la compresión a los 7, 14 y 28 días.	Resistencia a la compresión	Factor de concreto a los 28 días	Ordinal		

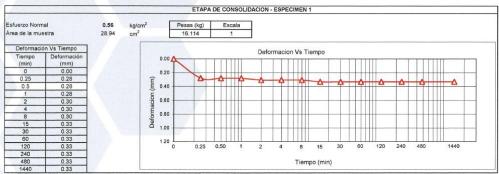

Fuente: Elaboración propia


Anexo 2: Matriz de Consistencia

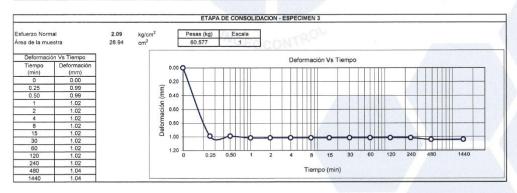
Problema	Objetivo	Hipótesis	Variables	Dimensione	Indicadores	Métodos	Técnica	Instrumen
Problema General: ¿De qué manera mejorará el empleo de vidrio molido a la resistencia de compresión de un diseño estructural?	Objetivo General: Determinar de qué manera mejorará el empleo de vidrio molido a la resistencia de compresión de un diseño estructural	Hipótesis General: Podremos determinar que el empleo de vidrio molido mejorara a la resistencia de compresión de un diseño estructural	Variable Independiente : Diseño estructural	Empleo de vidrio molido como agregado fino	20% de vidrio molido 30% de vidrio molido	Enfoque: Cuantitativa Tipo de Investigació n: Es aplicada.		
Problemas Específicos: PE.1. ¿De qué manera mejorara el empleo de vidrio molido en un 20% 30% y 40% como agregado fino en la resistencia del	como agregado fino en la resistencia del	Hipótesis Específicas: HE.1. Podrá cumplir el 20% 30% Y 40% de vidrio molido como agregado fino al factor concreto 210 kg/cm2 de un			40% de vidrio molido	Diseño de la Investigació n: Cuasi Experimental. Población de Estudio:	La tecnica de la	Ficha de observació
factor concreto 210 kg/cm2 de un diseño estructural? PE.2 ¿De qué manera el empleo de vidrio molido mejorara la resistencia a la	concreto f'c 210 kg/cm2 de un diseño estructural OE.2 Determinar de qué manera el vidrio molido mejorará la resistencia a la compresión del	HE.2. Podremos determinar que el empleo de vidrio molido mejore la resistencia a la		Resistencia a la compresión	Factor de concreto a los 14 días	36 probetas de mezcla de concreto con dimensiones de 10 cm x 15 cm.	Observaci ón	n
compresión del factor concreto 210 kg/cm2, San Juan de Miraflores, 2021? PE.3 ¿Cuál es la aplicación de mecánica de suelos para	factor concreto 210 kg/cm2, San Juan de Miraflores, 2021 OE.3. Determinar la aplicación de mecánica de suelos para reconocer las	compresión del concreto f´c 210 kg/cm2, San Juan de Miraflores, 2021. HE.3. Se podrá determinar la aplicación de mecánica de suelos para	Variable Dependiente: Resistencia		concreto a los 28 días Ensayos para clasificación de suelos Análisis			
reconocer las características y propiedades del terreno?	características y propiedades del terreno.	reconocer las características y propiedades del terreno.		Estudio de suelos	químicos de suelos Corte directo de suelos	Muestra: 36 probetas		
PE.4. ¿Cumplirá el diseño estructural empleando vidrio molido en el factor concreto 210 Kg/cm2 con el patrón en el	OE.4. Realizar el modelamiento estructural en el programa ETABS el diseño estructural factor concreto 210 kg/cm2 empleando vidrio molido y el	H4. Se comparará el modelamiento estructural en el programa ETABS factor concreto 210 kg/cm2 empleando vidrio molido con respecto al patrón,		Programa	Resultados de los ensayos			
programa ETABS?	patrón, San Juan de Miraflores, 2021.	San Juan de Miraflores, 2021.		Etabs	Modelamiento estructural			

Fuente: Elaboración propia

Anexo 3: Resultados del laboratorio Ingeocontrol


Proyecto : Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de Registro N°. 21 d-1979-04 Cilente : Compresion, San Juan de Miraflores, 2021 B. Melgar Solicitante : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Maycko Fecha de inicio de Ensayo : 20/10/2021 Ubicación del Proyecto : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Maycko Fecha de fin de Ensayo : 21/10/2021 Terreno Natural : T

 Código de Muestra
 :- Profundidad:
 -- m


 Sondaje / Calicata
 :C-1
 Norte:
 --

 N' de Muestra
 :M-1
 Este:
 --

 Progresiva
 :- Cota:
 --

ENSAYO DE CORTE DIRECTO EN SUELOS ASTM D3080

INFORME

Código AE-FO-020 Versión 01 Fecha 07-05-2021 Página 1 de 3

Proyecto Cliente Solicitante

Altura Inicial:

: Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de : Compresión, San Juan de Miraflores, 2021 : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol Ubicación del Proyecto

mm

Material Terreno Natural

ESPECIMEN 1

Registro N°: L21-079-04

ESPECIMEN 3

Altura Inicial:

Realizado por : B. Melgar Fecha de inicio de Ensayo : 20/10/2021 Fecha de fin de Ensayo : 21/10/2021

Código de Muestra Sondaje / Calicata N° de Muestra : C-1 : M-1 Progresiva

Profundidad: Norte: Este:

VELOCIDAD DE CORTE

Altura Inicial:

0.5 mm/min

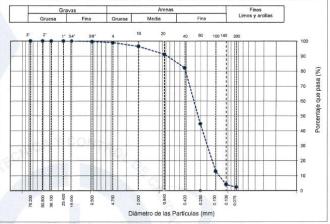
mm

ESPECIMEN 2

Area Inicial: Densidad Seca Humedad Inic.: Esf. Normal: Esf. Corte:		29.4 1.710 2.1 0.54 0.36	cm ² gr/cm ³ % kg/cm ² kg/cm ²	Area Inicial: Densidad Seca Humedad Inic.: Esf. Normal: Esf. Corte:		29.4 1.710 2.1 1.05 0.69	cm ² gr/cm ³ % kg/cm ² kg/cm ²	Area Inicial: Densidad Seca. Humedad Inic.: Esf. Normal: Esf. Corte:		29.4 1.710 2.1 2.03 1.31	cm ² gr/cm ³ % kg/cm ² kg/cm ²
Deformacion horizontal (%)	Esfuerzo de Corte (kg/cm2)	Deformacion horizontal (%)	Esfuerzo de Corte (kg/cm2)	Deformacion horizontal (%)	Esfuerzo de Corte (kg/cm2)	Deformacion horizontal (%)	Esfuerzo de Corte (kg/cm2)	Deformacion horizontal (%)	Esfuerzo de Corte (kg/cm2)	Deformacion horizontal (%)	Esfuerzo de Corte (kg/cm2)
0.00	0.00	5.23	0.31	0.00	0.00	5.23	0.68	0.00	0.00	5.23	1.30
0.16	0.13	5.40	0.30	0.16	0.12	5.40	0.67	0.16	0.44	5.40	1.29
0.33	0.19	5.56	0.30	0.33	0.19	5.56	0.67	0.33	0.57	5.56	1.29
0.49	0.24	5.72	0.30	0.49	0.23	5.72	0.66	0.49	0.68	5.72	1.29
0.65	0.27	5.89	0.30	0.65	0.28	5.89	0.66	0.65	0.75	5.89	1.29
0.82	0.30	6.05	0.30	0.82	0.32	6.05	0.66	0.82	0.82	6.05	1.30
0.98	0.31	6.21	0.30	0.98	0.35	6.21	0.66	0.98	0.87	6.21	1.30
1.14	0.33	6.38	0.30	1.14	0.38	6.38	0.65	1.14	0.92	6.38	1.31
1.31	0.34	6.54	0.30	1.31	0.42	6.54	0.65	1.31	0.98	6.54	1.30
1.47	0.35	6.70	0.30	1.47	0.45	6.70	0.64	1.47	1.03	6.70	1.31
1.63	0.35	6.87	0.29	1.63	0.47	6.87	0.64	1.63	1.07	6.87	1.30
1.80	0.36	7.03	0.29	1.80	0.50	7.03	0.63	1.80	1.11	7.03	1.29
1.96	0.36	7.19	0.29	1.96	0.52	7.19	0.63	1.96	1.14	7.19	1.29
2.13	0.36	7.36	0.29	2.13	0.54	7.36	0.63	2.13	1.17	7.36	1.28
2.29	0.36	7.52	0.29	2.29	0.56	7.52	0.62	2.29	1.19	7.52	1.28
2.45	0.36	7.68	0.29	2.45	0.58	7.68	0.62	2.45	1.21	7.68	1.27
2.62	0.36	7.85	0.29	2.62	0.60	7.85	0.62	2.62	1.23	7.85	1.27
2.78	0.36	8.01	0.29	2.78	0.61	8.01	0.61	2.78	1.24	8.01	1.27
2.94	0.35	8.17	0.29	2.94	0.63	8.17	0.60	2.94	1.26	8.17	1.26
3.11	0.35	8.34	0.28	3.11	0.63	8.34	0.61	3.11	1.27	8.34	1.26
3.27	0.34	8.50	0.28	3.27	0.65	8.50	0.60	3.27	1.28	8.50	1.26
3.43	0.34	8.67	0.28	3.43	0.66	8.67	0.60	3.43	1.29	8.67	1.24
3.60	0.34	8.83	0.28	3.60	0.66	8.83	0.59	3.60	1.29	8.83	1.24
3.76	0.34	8.99	0.28	3.76	0.67	8.99	0.59	3.76	1.30	8.99	1.25
3.92	0.33	9.16	0.28	3.92	0.67	9.16	0.59	3.92	1.30	9.16	1.24
4.09	0.33	9.32	0.28	4.09	0.68	9.32	0.59	4.09	1.31	9.32	1.22
4.25	0.32	9.48	0.28	4.25	0.68	9.48	0.60	4.25	1.30	9.48	1.21
4.41	0.32	9.65	0.28	4.41	0.68	9.65	0.60	4.41	1.30	9.65	1.22
4.58	0.32	9.81	0.28	4.58	0.68	9.81	0.59	4.58	1.30	9.81	1.22
4.74	0.31	9.97	0.27	4.74	0.68	9.97	0.59	4.74	1.30	9.97	1.21
4.90	0.31	10.14	0.27	4.90	0.69	10.14	0.59	4.90	1.30	10.14	1.21
5.07	0.31			5.07	0.68			5.07	1.30	-	

OBSERVACIONES:

Muestra provista e identificada por el solicitante


Las muestras fueron remoldeadas a la densidad seca de 1.710 g/cm3 y al contenido de humedad de 2.1% considerando partículas menores al tamiz No. 4

INGEOCONTROL SAC					
AVISO DE CONFIDENCIALIDAD:	REVISADO POR	AUTORIZADO POR			
Este documento no tiene validez sin firma y sello del Jefe de Laboratorio de Ensayos de Materiales (LEM-INGEOCONTROL) y Jefe de Aseguramiento de la Calidad. Prohibida la reproducción total o parcial del presente documento, toda copia y distribución del mismo fuera de nuestra organización, será considerada como COPIA NO CONTROLADA. La interpretación y uso de los resultados emitidos queda a entera responsabilidad del usuario solicitante.	Nombre y firma: Luis A., Melgar Angeles Jefe de Laboratorio	Arnaldo Perez Ccoscco CIP: 190140 Gerente Técnico			

INFORME	Código	AE-FO-01
	Versión	01
ENSAYOS PARA LA CLASIFICACIÓN DE LOS SUELOS	Fecha	07-05-2018
	Página	1 do 1

ANA		MÉTRICO POR TAMIZA M D6913	DO
TAMIZ	ABERTURA (mm)	PORCENTAJE QUE PASA	
3"	76.200	100.0	
2"	50.800	100.0	
1 1/2"	38.100	100.0	
1"	25.400	100.0	25071-
3/4"	19.000	100.0	
3/8"	9.500	99.6	
Nº 4	4.750	99.0	
Nº 10	2.000	96.5	
N° 20	0.840	91.2	
N° 40	0.425	82.1	
N° 60	0.250	44.6	
N° 100	0.150	12.9	
N° 140	0.106	4.2	
N° 200	0.075	2.4	120

CONTENIDO DE H ASTM D221	
CONTENIDO DE HUMEDAD (%)	3.9
MÉTODO DE SECADO	Horno a 110 +/-5°C
MÉTODO DE REPORTE	"B"
MATERIALES EXCLUÍDOS	Ninguno

PROCEDIMIENTO DE OBTENCIÓN DE MUESTRA	"Secada al horno a 110 +/- 5°C"
PROCEDIMIENTO DE TAMIZADO	Tamizado compuesto
TAMIZ SEPARADOR	N°4
MÉTODO DE REPORTE DE RESULTADOS	"P"

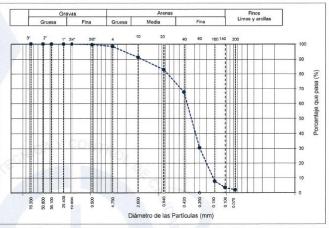
LÍMITES DE CONSISTENCIA ASTM D4318			
N.P.			
N.P.			
N.P.			
-			
Multipunto			

COMPOSICIÓN FÍSICA DEL SUELO EN FUNCIÓN AL TA	AMAÑO DE PARTÍCULAS
CONTENIDO DE GRAVA PRESENTE EN EL SUELO %	1.0
CONTENIDO DE ARENA PRESENTE EN EL SUELO %	96.6
CONTENIDO DE FINOS PRESENTES EN EL SUELO %	2.4

CLASIFICACIÓN VISUAL - MANUAL	SP - Arena pobremente gradada	
NOTAS SOBRE LA MUESTRA	Muestra ensayada en laboratorio de INGEOCONTROL	

CL	ASIFICACIÓN DEL SUEL	0
CLASIFICACIÓN SUCS (ASTM D2487)	A CONTRACTOR	SP
CLASIFICACIÓN AASHTO (ASTM D3282)	A-2-4 (1)
NOMBRE DEL GRUPO	Arena pob	premente gradada

	INGEOCONTROL SAC	
AVISO DE CONFIDENCIALIDAD: Este documento no tiene validez sin firma y sello del Jefe de	REVISADO POR	AUTORIZADO POR
aboratorio de Ensayos de Materiales (LEM-INGEOCONTROL) y efe de Aseguramiento de la Calidad, rohibida la reproducción total o parcial del presente documento,	Nombre y firma:	Nombre y firma:
da copia y distribución del mismo fuera de nuestra ganización, será considerada como COPIA NO ONTROLADA. a interpretación y uso de los resultados emitidos queda a entera	Luis A Melgar Angeles	Arnaldo Perez Ccoscco CIP: 190140
sponsabilidad del usuario solicitante.	Jefe de Laboratorio	Gerente Técnico


ENSAYOS PARA LA CLASIFICACIÓN DE LOS SUELOS

		_
Código	AE-FO-01	
Versión	01	
Fecha	07-05-2018	
Página	1 de 1	

Proyecto : Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de Compresión. San Juan de Miraflores 2021 Solicitante : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol : Ensayado por : G. Gallegos Ubicación de Proyecto : Lima : Terreno natural : Terreno natu

INFORME

ANA		MÉTRICO POR TAMIZAD M D6913	0
TAMIZ	ABERTURA (mm)	PORCENTAJE QUE PASA	4
3"	76.200	100.0	
2"	50.800	100.0	
1 1/2"	38.100	100.0	
1"	25.400	100.0	
3/4"	19.000	100.0	
3/8"	9.500	99.6	
Nº 4	4.750	98.4	
Nº 10	2.000	91.2	
Nº 20	0.840	83.0	
Nº 40	0.425	67.7	
Nº 60	0.250	30.4	
Nº 100	0.150	7.8	
Nº 140	0.106	3.6	
N° 200	0.075	2.0	D.

CONTENIDO DE HI ASTM D221	
CONTENIDO DE HUMEDAD (%)	3.8
MÉTODO DE SECADO	Homo a 110 +/-5°C
MÉTODO DE REPORTE	"B"
MATERIALES EXCLUÍDOS	Ninguno

CLASIFICACIÓN VISUAL - MANUAL	SP - Arena pobremente gradada	
NOTAS SOBRE LA MUESTRA	Muestra ensayada en laboratorio de INGEOCONTROL	

GRÁFICO DE FLUIDEZ

PROCEDIMIENTO DE OBTENCIÓN DE MUESTRA	"Secada al horno a 110 +/- 5°C"
PROCEDIMIENTO DE TAMIZADO	Tamizado compuesto
TAMIZ SEPARADOR	N°4
MÉTODO DE REPORTE DE RESULTADOS	"B" ///

LÍMITES DE CONSISTE ASTM D4318	NCIA
LÍMITE LÍQUIDO	N.P.
LÍMITE PLÁSTICO	N.P.
ÍNDICE DE PLASTICIDAD	N.P.
INDICE DE CONSISTENCIA (Ic)	-
INDICE DE LIQUIDEZ (IL)	-
MÉTODO DE ENSAYO DE LÍMITE LÍQUIDO	Multipunto

10	Numero Golpe	ıs		
27.1				
28.0 -				
28.9 -				
- TRO				

COMPOSICIÓN FÍSICA DEL SUELO EN FUNCIÓN AL TAMAÑO DE PARTÍCUI				
CONTENIDO DE GRAVA PRESENTE EN EL SUELO %	1.6			
CONTENIDO DE ARENA PRESENTE EN EL SUELO %	96.4			
CONTENIDO DE FINOS PRESENTES EN EL SUELO %	2.0			

CL	ASIFICACIÓN DEL SUI	ELO
CLASIFICACIÓN SUCS (ASTM D2487)		SP
CLASIFICACIÓN AASHTO (ASTM D328	2)	A-2-4 (1)
NOMBRE DEL GRUPO	Arena p	pobremente gradada

ANÁLISIS GRANULOMÉTRICO DE LOS AGREGADOS ASTM C136

INFORME

Código	AE-FO-63
Versión	01
Fecha	07-05-2018
Página	1 de 1

L21-79-07

Registro N°:

Proyecto : Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de

Compresión, San Juan de Miraflores, 2021

Solicitante Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol Solicitante Muestreado por : D. Fiestas Cliente : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol Ensayado por : Ubicación de Proyecto Fecha de Ensayo : 21/10/2021 : Lima Material : Agregado Grueso Turno : Diurno

Código de Muestra

Procedencia : Cantera Trapiche

N° de Muestra : --Progresiva : ---

AGREGADO GRUESO ASTM C33/C33M - 18 - HUSO # 67

Nombre	ABERTURA DE TAMICES Marco de 8" de diámetro		Peso Retenido	% Parcial	% Acumulado	% Acumulado	ESPECIF	ICACIÓN
3 1/2 in 90.00 mm 3 in 75.00 mm 2 in 50.00 mm 1 1/2 in 50.00 mm 1 in 25.00 mm 1 in 25.00 mm 1 in 19.00 mm 1 in 19.00 mm 1 in 12.50 mm	Nombre	mm	g	Retenido		que Pasa	Mínimo	Máximo
3 in 75.00 mm 2 1/2 in 63.00 mm 2 1 1/2 in 50.00 mm 1 1 1/2 in 37.50 mm 1 1 1/2 in 37.50 mm 1 1 1/2 in 19.00 mm 15.8 0.52 0.52 99.48 90.00 100.01 1/2 in 12.50 mm 1352.8 44.47 44.99 55.01 50.00 79.9 13/8 in 9.50 mm 1090.4 35.85 80.84 19.16 20.00 55.0 No. 4 4.75 mm 570.4 18.75 99.59 0.41 0.00 10.0 No. 8 2.36 mm 10.6 0.35 99.94 0.06 0.00 5.0 No. 16 1.18 mm No. 30 600 µm No. 50 300 µm No. 50 300 µm No. 50 300 µm No. 100 150 µm No. 200 75 µm No. 200 1.8 0.06 100.00 0.00	4 in'	100.00 mm						
2 1/2 in 63.00 mm 2 in 50.00 mm 1 1/2 in 37.50 mm 1 in 25.00 mm 1 19.00 mm 1 15.8 0.52 0.52 99.48 90.00 100.01 3/4 in 19.00 mm 1 1352.8 44.47 44.99 55.01 50.00 79.0 3/8 in 9.50 mm 1 090.4 35.85 80.84 19.16 20.00 55.0 No. 4 4.75 mm 570.4 18.75 99.59 0.41 0.00 10.0 No. 8 2.36 mm 1 0.6 0.35 99.94 0.06 0.00 5.0 No. 16 1.18 mm No. 30 600 µm No. 50 300 µm No. 100 150 µm No. 100 150 µm No. 200 75 µm No. 200 75 µm No. 200 < No. 200 1.8 0.06 100.00 0.00	3 1/2 in	90.00 mm						
2 in 50.00 mm 1 1/2 in 37.50 mm 1 in 25.00 mm 3/4 in 19.00 mm 1/2 in 12.50 mm 1/2 in 12.50 mm 1352.8 44.47 44.99 55.01 50.00 79.0 3/8 in 9.50 mm 1090.4 35.85 80.84 19.16 20.00 55.01 50.00 79.0 No. 4 4.75 mm 570.4 18.75 99.59 0.41 0.00 10.0 No. 8 2.36 mm 10.6 0.35 99.94 0.06 0.00 5.0 No. 16 1.18 mm No. 30 600 µm 0.00 0.00 5.0 No. 100 150 µm 0.00 150 µm 0.00 0.00 - - No. 200 75 µm 0.06 100.00 0.00 - -	3 in	75.00 mm						
1 1/2 in 37.50 mm 1 in 25.00 mm 1 in 25.00 mm 1 in 25.00 mm 1 15.8 0.52 0.52 99.48 90.00 100. 1/2 in 12.50 mm 1352.8 44.47 44.99 55.01 50.00 79.0 1/2 in 12.50 mm 1090.4 35.85 80.84 19.16 20.00 55.0 No. 4 4.75 mm 570.4 18.75 99.59 0.41 0.00 100. No. 8 2.36 mm 10.6 0.35 99.94 0.06 0.00 5.0 No. 16 1.18 mm No. 30 600 µm No. 50 300 µm No. 50 300 µm No. 100 150 µm No. 200 75 µm No. 200 < No. 200 1.8 0.06 100.00 0.00	2 1/2 in	63.00 mm						
1 in 25,00 mm 100.00 100.00 100.00 100.03/4 in 19,00 mm 15.8 0.52 0.52 99.48 90.00 100. 1/2 in 12,50 mm 1352.8 44.47 44.99 55.01 50.00 79.00 100. 1/2 in 9,50 mm 1090.4 35.85 80.84 19.16 20.00 55.00 100. 1/2 in 10,50 mm 1090.4 18.75 99.59 0.41 0.00 10.0	2 in	50.00 mm		o A V	COMP			
3/4 in 19.00 mm 15.8 0.52 0.52 99.48 90.00 100. 1/2 in 12.50 mm 1352.8 44.47 44.99 55.01 50.00 79.0 3/8 in 9.50 mm 1090.4 35.85 80.84 19.16 20.00 55.0 No. 4 4.75 mm 570.4 18.75 99.59 0.41 0.00 10.0 No. 8 2.36 mm 10.6 0.35 99.94 0.06 0.00 5.0 No. 16 1.18 mm No. 30 600 μm No. 50 300 μm No. 50 300 μm No. 100 150 μm No. 200 75 μm No. 200 75 μm No. 200 < No. 200 1.8 0.06 100.00 0.00	1 1/2 in	37.50 mm		6710.	THE STATE OF THE S	5,		
1/2 in 12,50 mm 1352.8 44.47 44.99 55.01 50.00 79.0 3/8 in 9.50 mm 1090.4 35.85 80.84 19.16 20.00 55.0 No. 4 4.75 mm 570.4 18.75 99.59 0.41 0.00 10.0 No. 8 2.36 mm 10.6 0.35 99.94 0.06 0.00 5.0 No. 16 1.18 mm No. 30 600 µm No. 50 300 µm No. 100 150 µm No. 100 150 µm No. 200 75 µm No. 200 < No. 200 1.8 0.06 100.00 0.00	1 in	25.00 mm	180	,		100.00	100.00	100.00
3/8 in 9.50 mm 1090.4 35.85 80.84 19.16 20.00 55.0 No. 4 4.75 mm 570.4 18.75 99.59 0.41 0.00 10.0 No. 8 2.36 mm 10.6 0.35 99.94 0.06 0.00 5.0 No. 16 1.18 mm 0.00 0.00 0.00 5.0 No. 30 600 µm 0.00 0.00 0.00 0.00 No. 50 300 µm 0.00 0.00 0.00 0.00 0.00 No. 200 75 µm 0.06 100.00 0.00 0.00 - - No. 200 1.8 0.06 100.00 0.00 - - -	3/4 in	19.00 mm	15.8	0.52	0.52	99.48	90.00	100.00
No. 4 4.75 mm 570.4 18.75 99.59 0.41 0.00 10.0 No. 8 2.36 mm 10.6 0.35 99.94 0.06 0.00 5.0 No. 16 1.18 mm No. 30 600 µm No. 50 300 µm No. 100 150 µm No. 200 75 µm No. 200 < No. 200 1.8 0.06 100.00 0.00	1/2 in	12.50 mm	1352.8	44.47	44.99	55.01	50.00	79.00
No. 8 2.36 mm 10.6 0.35 99.94 0.06 0.00 5.0 No. 16 1.18 mm No. 30 600 µm No. 50 300 µm No. 100 150 µm No. 200 75 µm No. 200 < No. 200 1.8 0.06 100.00 0.00	3/8 in	9.50 mm	1090.4	35.85	80.84	19.16	20.00	55.00
No. 16	No. 4	4.75 mm	570.4	18.75	99.59	0.41	0.00	10.00
No. 30 600 µm No. 50 300 µm No. 100 150 µm No. 200 75 µm No. 200 < No. 200 1.8 0.06 100.00 0.00	No. 8	2.36 mm	10.6	0.35	99.94	0.06	0.00	5.00
No. 50 300 µm No. 100 150 µm No. 200 75 µm No. 200 < No. 200 1.8 0.06 100.00 0.00	No. 16	1.18 mm				Valley or 1	J AW	
No. 100 150 µm	No. 30	600 µm						
No. 200 75 µm No. 200 < No. 200 1.8 0.06 100.00 0.00 -	No. 50	300 µm	in E		RA			
No. 200 < No. 200 1.8 0.06 100.00 0.00	No. 100	150 µm	7					
	No. 200	75 µm	-					
MF 6.8	< No. 200	< No. 200	1.8	0.06	100.00	0.00	-	-
				Vega Silver		Silling	MF	6.81

AVISO DE CONFIDENCIALIDAD:

Este documento no tiene validez sin firma y sello del Jefe de Laboratorio de Ensayos de Materiales (LEM-INGEOCONTROL) y Jefe de Aseguramiento de la Calidad.

Prohibida la reproducción total o parcial del presente documento, toda copia y distribución del mismo fuera de nuestra organización, será considerada como COPIA NO CONTROLADA.

La interpretación y uso de los resultados emitidos queda a entera responsabilidad del usuario solicitante.

REVISADO POR

Nombre y firma:

Luis A. Melgar Angeles Jefe de Laboratorio INGEOCONTROL AUTORIZADO POR

Nombre y firma:

Arnaldo Perez Ccoscco CIP: 190140 Gerente Técnico

INFORME Códiao AE-FO-87 Versión 01 CONTENIDO DE HUMEDAD EVAPORABLE DE LOS AGREGADOS ASTM C566-19 Fecha 30-04-2018 Página 1 de 1

Proyecto

Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de Compresión, San Juan de Miraflores,2021 Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol Solicitante Cliente Ubicación de Proyecto Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol

Agregado grueso / Agregado fino

Registro N°: L21-79-06

Solicitante D. Fiestas 21/10/2021 Diurno Muestreado por Ensayado por : Fecha de Ensayo : Turno :

CONTENIDO DE HUMEDAD DEL AGREGADO

ITEM	DESCRIPCION	UND.	DATOS	CANTERA
1	Masa del Recipiente	g	955.0	
2	Masa del Recipiente + muestra húmeda	g	3562.0	Tranisha
3	Masa del Recipiente + muestra seca	g	3552.1	Trapiche
4	CONTENIDO DE HUMEDAD	%	0.4	7

CONTENIDO DE HUMEDAD DEL AGREGADO FINO

ITEM	DESCRIPCION	UND.	DATOS	CANTERA
1	Masa del Recipiente	g	176.9	
2	Masa del Recipiente + muestra húmeda	CON POS	432.0	Trapiche
3	Masa del Recipiente + muestra seca	g	426.3	Trapicne
4	CONTENIDO DE HUMEDAD	%	2.3	7

INGEOCONTROL SAC AUTORIZADO POR AVISO DE CONFIDENCIALIDAD: REVISADO POR Nombre y firma: Nombre y firma: Prohibida la reproducción total o parcial del presente documento, toda copia y distribución del mismo fuera de nuestra organización, será considerada como COPIA NO CONTROLADA. Arnaldo Perez Ccoscco CIP: 190140 Luis A Melgar Angeles
Jere de Laboratorio
INGEOCONTROL Gerente Técnico

INFORME	Código	AE-FO-118
	Versión	01
ENSAYOS QUÍMICOS EN SUELOS, ROCAS Y AGUA	Fecha	07-05-2018
	Página	1 de 1

: Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de Compresión, San Juan de Miraflores,2021 : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol

Solicitante Cliente

Ubicación de Proyecto : Lima

: Terreno Natural

Registro N°: Muestreado por : L21-079-05

Solicitante Ensayado por : Fecha de Ensayo:

G. Gallegos 15/10/2021

Código de Muestra Sondaje / Calicata N° de Muestra Profundidad: --- m : C-1 Norte: Este: Progresiva Cota

	1997 p.p.m.
SALES SOLUBLES TOTALES (NTP 339.152 / BS 1377-Part 3)	0.1997 %

CHI FATOO COLUMNIES ANTO COLUMNIES TO TOO	984 p.p.m.
SULFATOS SOLUBLES (NTP 339.178 / AASHTO T290)	0.0984 %

CONTENIDO DE CLORUROS SOLUBLES (NTP 339.177 / AASHTO T291)	663 p.p.m.
CONTENIDO DE CLOROROS SOLUBLES (NTP 339.1777 AASHTO 1291)	0.0663 %

OBSERVACIONES:

* Sin presencia de materiales extraños ajenos al suelo.

INGEOCONTROL SAC

AVISO DE CONFIDENCIALIDAD:

Este documento no tiene validez sin firma y sello del Jefe de Laboratorio de Ensayos de Materiales (LEM-INGEOCONTROL) y Jefe de Aseguramiento de la Calidad.

Prohibida la reproducción total o parcial del presente documento, toda copia y distribución del mismo fuera de nuestra organización, será considerada como COPIA NO CONTROLADA.

La interpretación y uso de los resultados emitidos queda a entera responsabilidad del usuario solicitante.

REVISADO POR

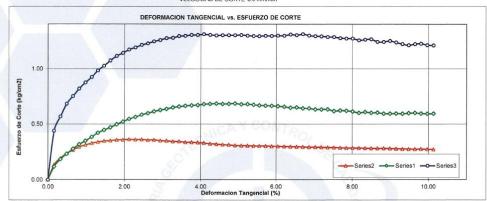
Nombre y firma:

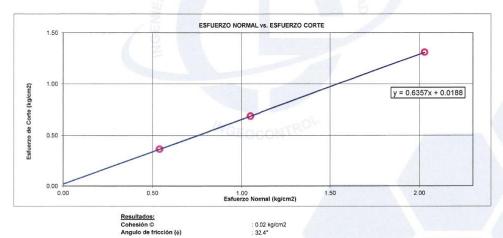
Luis A. Melgar Angeles
Jefe de Laboratorio

AUTORIZADO POR

Nombre y firma:

Arnaldo Perez Ccoscco CIP: 190140 Gerente Técnico




L Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de Compresión, San Juan de Miraflores,2021 Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol L21-079-04 B. Melgar 20/10/2021 21/10/2021 Registro N°: Realizado por : Fecha de inicio de Ensayo : Fecha de fin de Ensayo : Proyecto Cliente Solicitante
Ubicación del Proyecto
Material

Código de Muestra Profundidad: Sondaje / Calicata N° de Muestra Progresiva C-1 M-1 Norte: Este: Cota:

ENSAYO DE CORTE DIRECTO BAJO CONDICIONES CONSOLIDADAS DRENADAS ASTM D3080

VELOCIDAD DE CORTE 0.5 mm/min

OBSERVACIONES:

Muestra provista e identificada por el solicitante

Las muestras fueron remoldeadas a la densidad seca de 1.710 g/cm3 y al contenido de humedad de 2.1% considerando particulas menores al tamiz No. 4

INGEOCONTROL SAC					
AVISO DE CONFIDENCIALIDAD: Este documento no tiene validez sin firma y sello del Jefe de Laboratorio de Ensayos de Materiales (LEM- NOECCONTROL) y Jefe de Aseguramiento de la Calidad. Prohibida la reproducción tola lo parcial del presente documento, toda copia y distribución del mismo fuera de nuestra organización, será considerada como COPIA NO CONTROLADA. La interpretación y uso de los resultados emitidos queda a entera responsabilidad del usuario solicitante.	Nombre y firma: Luis A. Melgar Angeles Jefe de Laboratorio	Autorizado Por Nombre y firma: Arnaldo Perez Ccoscco CIP: 190140			

INFORME DETERMINACIÓN DEL PESO UNITARIO SUELTO Y COMPACTADO DE LOS AGREGADOS ASTM C29 / C29M - 17a

AE-FO-101 Código Versión 01 Fecha 30-04-2018 Página 1 de 1

Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de

L21-79-12

Solicitante Cliente

Compresión, San Juan de Miraflores, 2021 Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol

Muestreado por Ensayado por Solicitante D. Fiestas

Ubicación de Proyecto Material

Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol : Lima Agregado Grueso

Fecha de Ensayo : Turno :

21/10/2021

Código de Muestra

Procedencia

Diurno

N° de Muestra Progresiva

: Cantera Trapiche

PESO UNITARIO SUELTO

IDENTIFICACIÓN	1	2	PROMEDIO
Peso de molde (kg)	6.374	6.374	
Volumen de molde (m3)	0.009273	0.009273	
Peso de molde + muestra suelta (kg)	19.221	19.162	1
Peso de muestra suelta (kg)	12.847	12.788	
PESO UNITARIO SUELTO (kg/m3)	1385	1379	1382

PESO UNITARIO COMPACTADO

IDENTIFICACIÓN	1	2	PROMEDIO
Peso de molde (kg)	6.374	6.374	
Volumen de molde (m3)	0.009273	0.009273	
Peso de molde + muestra suelta (kg)	20.003	20.030	2 1
Peso de muestra suelta (kg)	13.629	13.656	6
PESO UNITARIO COMPACTADO (kg/m3)	1470	1473	1471

INGEOCONTROL SAC

AVISO DE CONFIDENCIALIDAD:

Este documento no tiene validez sin firma y sello del Jefe de Laboratorio de Ensayos de Materiales (LEM-INGEOCONTROL) y Jefe de Aseguramiento de la Calidad.

Prohibida la reproducción total o parcial del presente documento, toda copia y distribución del mismo fuera de nuestra organización, será considerada como COPIA NO CONTROLADA.

La interpretación y uso de los resultados emitidos queda a entera responsabilidad del usuario solicitante.

REVISADO POR

Nombre y firma:

Luis A. Melgar Angeles Jefe de Laboratorio

Nombre y firma:

Arnaldo Perez Ccoscco

CIP: 190140 Gerente Técnico

AUTORIZADO POR

INFORME Código AE-FO-67 Versión 01 DETERMINACIÓN DE LA GRAVEDAD ESPECÍFICA Y ABSORCIÓN DEL AGREGADO FINO ASTM C128-15 30-04-2018 Fecha Página 1 de 1

Proyecto Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de

Solicitante Cliente

Ubicación de Proyecto

Material : Agregado Fino

Compresión, San Juan de Miraflores,2021 Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol

Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol

Muestreado por Solicitante Ensavado por : B. Melgar 22/10/2021 Fecha de Ensayo : Turno : Diurno

Registro N°:

L21-079-11

Código de Muestra

Procedencia N° de Muestra Cantera Trapiche

Progresiva

	IDENTIFICACIÓN	1	2	
Α	Masa Mat. Sat. Sup. Seca (SSS)	500.06	500.11	
В	Masa Frasco + agua	669.68	683.21	
С	Masa Frasco + agua + muestra SSS	979.20	992.18	
D	Masa del Mat. Seco	490.01	490.05	
Gravedad	específica OD = D/(B+A-C)	2.572	2.564	2.568
Gravedad	específica SSS = A/(B+A-C)	2.624	2.616	2.620
Densidad i	relativa (Gravedad específica aparente) = D/(B+D-C)	2.715	2.706	2.711
% Absorci	ón = 100*((A-D)/D)	2.1	2.1	2.1

INGEOCONTROL SAC

AVISO DE CONFIDENCIALIDAD:

Este documento no tiene validez sin firma y sello del Jefe de Laboratorio de Ensayos de Materiales (LEM-INGEOCONTROL) y Jefe de Aseguramiento de la Calidad.

Prohibida la reproducción total o parcial del presente documento, toda copia y distribución del mismo fuera de nuestra organización, será considerada como COPIA NO CONTROLADA.

La interpretación y uso de los resultados emitidos queda a entera responsabilidad del usuario solicitante.

REVISADO POR

Nombre y firma:

Luis A. Melgar Angeles Jefe de Laboratorio INGEOCONTROL

AUTORIZADO POR

Nombre y firma:

Arnaldo Perez Ccoscco CIP: 190140 Gerente Técnico

INFORME MÉTODO DE PRUEBA ESTÁNDAR PARA LA DENSIDAD RELATIVA (GRAVEDAD ESPECÍFICA) Y LA ABSORCIÓN DE AGREGADOS GRUESOS ASTM C127-15

AE-FO-78 Código Versión 01 Fecha 30-04-2018 Página 1 de 1

L21-079-10

Solicitante

D. Fiestas 21/10/2021

Diurno

Registro N°:

Muestreado por

Ensayado por : Fecha de Ensayo :

Proyecto : Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de

Compresión, San Juan de Miraflores,2021

Solicitante : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol Cliente : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol Ubicación de Proyecto

: Lima

: Agregado Grueso

Tipo de muestra

Procedencia : Cantera Trapiche

N° de Muestra Progresiva

DATOS		A	В
1	Masa de la muestra sss	1337	1869
2	Masa de la muestra sss sumergida	853	1189
3	Masa de la muestra secada al horno	1323	1847

RESULTADOS	0.1	2	PROMEDIO
Gravedad específica de masa	2.730	2.716	2.723
Gravedad específica SSS	2.760	2.749	2.754
Densidad relativa (Gravedad especifica aparente)	2.813	2.807	2.810
Absorción (%)	1.1	1.2	1.1

INGEOCONTROL SAC

Prohibida la reproducción total o parcial del presente documento, toda copia y distribución del mismo fuera de nuestra organización, será considerada como COPIA NO CONTROLADA.

REVISADO POR Nombre y firma:

Luis A. Melgar Angeles Jefe de Laboratorio INGEOCONTROL

AUTORIZADO POR

Nombre y firma:

Arnaldo Perez Ccoscco CIP: 190140 Gerente Técnico

ANÁLISIS GRANULOMÉTRICO DE LOS AGREGADOS ASTM C136

INFORME

AE-FO-63 Versión Fecha 07-05-2018 Página 1 de 1

Registro N°:

Muestreado por :

Ensayado por

Turno:

Fecha de Ensayo :

L21-079-09

Solicitante

D. Fiestas

21/10/2021

Diumo

: Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de Proyecto

Compresión, San Juan de Miraflores,2021

Solicitante : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol Cliente : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol : Lima

Ubicación de Proyecto Material : Vidrio Molido

Código de Muestra Procedencia N° de Muestra Progresiva

AGREGADO GRUESO ASTM C33/C33M - 18 - HUSO # ARENA GRUESA

ABERTURA DE TAMICES Marco de 8" de diámetro			% Acumulado	% Acumulado	ESPECIFICACIÓN		
Nombre	mm	g	Retenido	Retenido	que Pasa	Mínimo	Máximo
4 in'	100.00 mm	II CONTRACT					
3 1/2 in	90.00 mm						
3 in	75.00 mm						
2 1/2 in	63.00 mm						
2 in	50.00 mm		- A V	COM			
1 1/2 in	37.50 mm		MICH	-141 R	17		
1 in	25.00 mm	-8	,		3.5		
3/4 in	19.00 mm	.0`			30		
1/2 in	12.50 mm	39 4		Benes	P C.		
3/8 in	9.50 mm	- 4			100.00	The same of	
No. 4	4.75 mm	11.6	1.40	1.40	98.60		
No. 8	2.36 mm	125.6	15.20	16.60	83.40	> As	
No. 16	1.18 mm	224.0	27.10	43.70	56.30	7 48	
No. 30	600 µm	174.4	21.10	64.80	35.20	40	
No. 50	300 µm	145.4	17.60	82.40	17.60		
No. 100	150 µm	119.8	14.50	96.90	3.10		
No. 200	75 µm						
< No. 200	< No. 200	25.6	3.10	100.00	0.00		

INGEOCONTROL SAC AUTORIZADO POR AVISO DE CONFIDENCIALIDAD REVISADO POR

Nombre y firma:

Luis A Melgar Angeles Jefe de Laboratorio INGEOCONTROL

Nombre y firma: Arnaldo Perez Ccoscco CIP: 190140 Gerente Técnico

ANÁLISIS GRANULOMÉTRICO DE LOS AGREGADOS ASTM C136

INFORME

Código	AE-FO-63
Versión	01
Fecha	07-05-2018
Página	1 de 1

Proyecto : Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de

Compresión, San Juan de Miraflores, 2021

Solicitante : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol
Cliente : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol
Ubicación de Proyecto : Lima

Ensayado por : D. F Fecha de Ensayo : 21/11 Turno : Di

Registro N°:

Muestreado por :

Material : Agregado Fino

ino

Solicitante
D. Fiestas
21/10/2021
Diurno

L21-079-08

Código de Muestra

Procedencia : Cantera Trapiche
N° de Muestra : ---

Progresiva :---

AGREGADO GRUESO ASTM C33/C33M - 18 - HUSO # ARENA GRUESA

	RTURA DE TAMICES co de 8" de diámetro Peso Retenido % Parcial %	% Acumulado	% Acumulado	ESPECIFICACIÓN			
Nombre	mm	g Retenido Retenido que Pasa		Mínimo	Máximo		
4 in'	100.00 mm						
3 1/2 in	90.00 mm						
3 in	75.00 mm						
2 1/2 in	63.00 mm						
2 in	50.00 mm		a A Y	COAL			
1 1/2 in	37.50 mm		1110).		
1 in	25.00 mm	76			50.		
3/4 in	19.00 mm	.0`		Well with the	4.		
1/2 in	12.50 mm	250		Linux y			
3/8 in	9.50 mm	- Y A			100.00	100.00	100.00
No. 4	4.75 mm	31.4	4.37	4.37	95.63	95.00	100.00
No. 8	2.36 mm	121.9	16.98	21.35	78.65	80.00	100.00
No. 16	1.18 mm	186.3	25.95	47.30	52.70	50.00	85.00
No. 30	600 µm	180.4	25.13	72.42	27.58	25.00	60.00
No. 50	300 µm	105.6	14.71	87.13	12.87	5.00	30.00
No. 100	150 µm	52.6	7.33	94.46	5.54	0.00	10.00
No. 200	75 µm						
< No. 200	< No. 200	39.8	5.54	100.00	0.00		-
				J. Gill		MF	3.27
					0.67	TMN	

Prohibida la reproducción total o parcial del presente documento, todi copia y distribución del mismo fuera de nuestra organización, ser considerada como COPIA NO CONTROLADA.

La interpretación y uso de los resultados emitidos queda a entera responsabilidad del usuario solicitante. Luis A Melgar Angeles Jefe de Laboratorio INGEOCONTROL Arnaldo Perez Ccoscco
CIP: 190140
Gerente Técnico

Solicitante Cliente

Progresiva

INFORME DETERMINACIÓN DEL PESO UNITARIO SUELTO Y COMPACTADO DE LOS AGREGADOS ASTM C29 / C29M - 17a

Código	AE-FO-101
Versión	01
Fecha	30-04-2018
Página	1 de 1

Proyecto : Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de

Compresión, San Juan de Miraflores,2021

: Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol

Ubicación de Proyecto : Lima Material : Vidrio Molido

Código de Muestra :--Procedencia :--N° de Muestra :---

Registro N°:

L21-079-15

Muestreado por : Solicitante Ensayado por : D. Fiestas Fecha de Ensayo : 26/10/2021 Turno : Diurno

PESO UNITARIO SUELTO

IDENTIFICACIÓN	1	2	PROMEDIC
Peso de molde (kg)	1.628	1.628	
Volumen de molde (m3)	0.002809	0.002809	
Peso de molde + muestra suelta (kg)	5.525	5.532	
Peso de muestra suelta (kg)	3.897	3.904	
PESO UNITARIO SUELTO (kg/m3)	1387	1390	1389

PESO UNITARIO COMPACTADO

IDENTIFICACIÓN	1	2	PROMEDIC
Peso de molde (kg)	1.628	1.628	
Volumen de molde (m3)	0.002809	0.002809	
Peso de molde + muestra suelta (kg)	6.011	6.103	2
Peso de muestra suelta (kg)	4.383	4.475	0
PESO UNITARIO COMPACTADO (kg/m3)	1560	1593	1577

INGEOCONTROL SAC

AVISO DE CONFIDENCIALIDAD:

Este documento no tiene validez sin firma y sello del Jefe de Laboratorio de Ensayos de Materiales (LEM-INGEOCONTROL) y Jefe de Aseguramiento de la Calidad.

Prohibida la reproducción total o parcial del presente documento, toda copia y distribución del mismo fuera de nuestra organización, será considerada como COPIA NO CONTROLADA.

La interpretación y uso de los resultados emitidos queda a entera responsabilidad del usuario solicitante.

REVISADO POR

Nombre y firma:

Luis A. Melgar Angeles Jefe de Laboratorio INGEOCONTROL Nombre y firma:

Arnaldo Perez Ccoscco CIP: 190140 Gerente Técnico

AUTORIZADO POR

Proyecto

Solicitante

Cliente

INFORME Código Versión DETERMINACIÓN DE LA GRAVEDAD ESPECÍFICA Y ABSORCIÓN DEL AGREGADO FINO ASTM C128-15 Fecha Página

Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de

Compresión, San Juan de Miraflores,2021 : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol

Ubicación de Proyecto Material : Vidrio Molido

Código de Muestra Procedencia N° de Muestra Progresiva

	IDENTIFICACIÓN	1	2	
А	Masa Mat. Sat. Sup. Seca (SSS)	500.01	500.03	
В	Masa Frasco + agua	657.90	661.40	
С	Masa Frasco + agua + muestra SSS	954.40	957.89	
D	Masa del Mat. Seco	500.01	500.03	
Gravedad específica OD = D/(B+A-C)		2.457	2.457	2.457
Gravedad	específica SSS = A/(B+A-C)	2.457	2.457	2.457
Densidad	relativa (Gravedad específica aparente) = D/(B+D-C)	2.457	2.457	2.457
% Absorción = 100*((A-D)/D)		0.0	0.0	0.0

INGEOCONTROL SAC

AVISO DE CONFIDENCIALIDAD:

Este documento no tiene validez sin firma y sello del Jefe de Laboratorio de Ensayos de Materiales (LEM-INGEOCONTROL) y Jefe de Aseguramiento de la Calidad.

Prohibida la reproducción total o parcial del presente documento, toda copia y distribución del mismo fuera de nuestra organización, será considerada como COPIA NO CONTROLADA.

REVISADO POR Nombre y firma:

Luis A. Melgar Angeles Jefe de Laboratorio INGEOCONTROL

AUTORIZADO POR Nombre y firma:

Arnaldo Perez Ccoscco CIP: 190140 Gerente Técnico

AE-FO-67

01

30-04-2018

1 de 1

L21-079-14

Solicitante

B. Melgar

26/10/2021

Diurno

Registro N°:

Turno:

Muestreado por :

Fecha de Ensayo :

Ensayado por :

INFORME DETERMINACIÓN DEL PESO UNITARIO SUELTO Y COMPACTADO DE LOS AGREGADOS ASTM C29 / C29M - 17a

AE-FO-101 Código Versión 01 Fecha 30-04-2018 Página 1 de 1

L21-079-13

: Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de Proyecto

Compresión, San Juan de Miraflores, 2021

Solicitante Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol Cliente Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol

Ubicación de Proyecto Lima Material : Agregado Fino Muestreado por

Registro N°:

Solicitante Ensayado por : D. Fiestas 21/10/2021 Fecha de Ensayo : Diurno

Código de Muestra

Cantera Trapiche

N° de Muestra Progresiva

PESO UNITARIO SUELTO

IDENTIFICACIÓN	1	2	PROMEDIC
Peso de molde (kg)	1.625	1.625	
Volumen de molde (m3)	0.002809	0.002809	
Peso de molde + muestra suelta (kg)	5.912	5.922	
Peso de muestra suelta (kg)	4.287	4.297]
PESO UNITARIO SUELTO (kg/m3)	1526	1530	1528

PESO UNITARIO COMPACTADO

IDENTIFICACIÓN	1	2	PROMEDIC
Peso de molde (kg)	1.625	1.625	
Volumen de molde (m3)	0.002809	0.002809	
Peso de molde + muestra suelta (kg)	6.365	6.368	2 1
Peso de muestra suelta (kg)	4.740	4.743	0
PESO UNITARIO COMPACTADO (kg/m3)	1687	1689	1688

INGEOCONTROL SAC

AVISO DE CONFIDENCIALIDAD

Prohibida la reproducción total o parcial del presente documento, toda copia y distribución del mismo fuera de nuestra organización, será considerada como COPIA NO CONTROLADA.

REVISADO POR

Nombre y firma:

Luis A. Melgar Angeles Jefe de Laboratorio INGEOCONTROL

AUTORIZADO POR

Nombre y firma:

Arnaldo Perez Ccoscco CIP: 190140 Gerente Técnico

Solicitante

Cemento

INFORME DISEÑO DE MEZCLAS DE CONCRETO - DISEÑO COMPROBADO REFERENCIA ACI 211.1

Código AE-FO-93 Versión 01 Fecha 30-09-2019 Página 1 de 1

Diseño Estructural Empleando Vidno Molido al Concreto como Mejora a la Resistencia de Compresión, San Juan de Miraflores,2021

Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol

REGISTRO N° L21-079-19 R. Leyva L. Melgar 28/10/2021 REALIZADO POR REVISADO POR FECHA DE ELABORACIÓN

Ubicación de Proyecto Ag. Grueso / Ag. Fino Agregado Procedencia

: Cemento Sol

210 kg/cm2 Asentamiento: Código de mezcla: 40% Vidrio

1. RESISTENCIA A LA COMPRESIÓN REQUERIDA F'cr = 294

2. RELACIÓN AGUA CEMENTO

5. CÁLCULO DE LA CANTIDAD DE CEMENTO

Cemento

6. ADITIVO

HUMEDAD ABSORCIÓN

1.1%

2.1%

0.4%

1.8%

0.0%

= 368 kg = 8.7 Bolsas x m³

P.U. SUELTO P.U. COMPACTADO

1577

1/2"

R a/c = 0.62

3. DETERMINACIÓN DEL VOLUMEN DE AGUA Agua = 228 L

No aplica

4. CANTIDAD DE AIRE ATRAPADO

Aire = 2.5%

Agregado grueso

Agregado fino

INSUMO	PESO ESPECÍFICO	VOLUMEN ABSOLUTO
Cemento Sol	3120 kg/m3	0.1179 m3
Agua	1000 kg/m3	0.2280 m3
- 1701 (1901)	No aplica	0.0000 m3
Aire atrapado ≈ 2.5%		0.0250 m3

2723 kg/m3

2568 kg/m3

2457 kg/m3 0.1430 m3 Volumen de pasta Volumen de agregados 0.3709 m3

0.2717 m3

0.2144 m3

10. PROPORCIÓN DE AGREGADOS SECOS

43.2% ≈ 0.2717 m3 ≈ 739.9 kg 34.1% ≈ 0.2144 m3 ≈ 550.7 kg Agregado grueso Agregado fino Vidrio molido 22.7% = 0.1430 m3 = 351.3 kg 14. RESUMEN DE PROPORCIONES EN PESO

MÓD. FINEZA

6.81

3.27

COMPONENTE	PESO SECO	PESO HÚMEDO
Cemento Sol	367.74 kg	367.74 kg
Agua	228.00 L	234.83 L
Vidrio molido	351.26 kg	351.26 kg
Agregado grueso	739.91 kg	742.87 kg
Agregado fino	550.69 kg	560.60 kg
	PUT	2257 kg

11. PESO HÚMEDO DE LOS AGREGADOS - CORRECCIÓN POR HUMEDAD

Agregado grueso 742.9 kg Agregado fino 560.6 kg Vidrio molido 351.3 kg

12. AGUA EFECTIVA CORREGIDA POR ABSORCIÓN Y HUMEDAD

Agua 235 L

13. PROPORCIÓN EN VOLUMEN DE OBRA

CEM A.F. A.G. V.M. AGUA 1 : 1.5 : 2.2 : 1.03 : 27.1 L

15. TANDA DE PRUEBA MÍNIMA	0.017 m3
COMPONENTE	PESO HÚMEDO
Cemento Sol	6.399 kg
Agua	4.086 L
Vidrio molido	6.11 kg
Agregado grueso	12.926 kg
Agregado fino	9.755 kg
Slump obtenido	2 1/2

OBSERVACIONES:

OBSERVACIONES:

*Muestras provistas e identificadas por el solicitante

*Prohibida la reproducción total o parcial de este documento sin la autorización de INGEOCONTROL

*Los valores presentados en le presente diseño pueden variar ligeramente en obra por cambios en la granulometría del agregado, correcciones por humedad y absorción, la limpieza de los agregados, el cambio de tipo de cemento y/o proporción de aditivo.

INGEOCONTROL SAC					
AVISO DE CONFIDENCIALIDAD:	REVISADC POR	AUTORIZADO POR			
Este documento no tiene validez sin firma y sello del Jefe de Laboratorio de Ensayos de Materiales (LEM-INGEOCONTROL) y Jefe de Aseguramiento de la Calidad.	Nombre y firma:	Nombre y firma:			
Prohibida la reproducción total o parcial del presente documento, toda copia y distribución del mismo fuera de nuestra organización, será considerada como COPIA NO CONTROLADA.		.//-			
La interpretación y uso de los resultados emitidos queda a entera responsabilidad del usuano solicitante.	Luis A. Melgar Angeles Jefe de Laboratorio INGEOCONTROL	Árnaldo Perez Ccoscco CIP: 190140 Gerente Técnico			

Proyecto

INFORME Código AE-FO-93 Versión 01 DISEÑO DE MEZCLAS DE CONCRETO - DISEÑO COMPROBADO REFERENCIA ACI 211.1 Fecha 30-09-2019 1 de 1

Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de Compresión, San Juan de Miraflores, 2021

Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol Ubicación de Proyecto Lima

L21-079-18 REGISTRO N° REALIZADO POR REVISADO POR : FECHA DE ELABORACIÓN :

P.U. SUELTO P.U. COMPACTADO

Asentamiento:

Código de mezcla:

R. Leyva L. Melgar 28/10/2021

30% Vidrio

TMN

1/2"

Agregado Ag. Grueso / Ag. Fino Procedencia

Cemento Sol

1. RESISTENCIA A LA COMPRESIÓN REQUERIDA

5. CÁLCULO DE LA CANTIDAD DE CEMENTO Cemento

= 368 kg = 8.7 Bolsas x m³

2. RELACIÓN AGUA CEMENTO

R a/c = 0.62

F'cr = 294

6. ADITIVO

1.1%

2.1%

1.8%

0.0%

No aplica

3. DETERMINACIÓN DEL VOLUMEN DE AGUA Agua = 228 L

4. CANTIDAD DE AIRE ATRAPADO

Aire = 2.5%

Agregado fino

Vidrio molido

9. CÁLCULO DEL VOLUMEN DE AGREGADOS

INSUMO	PESO ESPECÍFICO	VOLUMEN ABSOLUTO		
Cemento Sol	3120 kg/m3	0.1179 m3		
Agua	1000 kg/m3	0.2280 m3		
- 1	No aplica	0.0000 m3	- A	
Aire atrapado ≈ 2.5%	-	0.0250 m3	HUMEDAD	ABSORCIÓN
Agregado grueso	2723 kg/m3	0.2717 m3	0.4%	1.1%

2568 kg/m3

2457 kg/m3 0.1072 m3 Volumen de pasta Volumen de agregados 0.3709 m³

0.2502 m3

10. PROPORCIÓN DE AGREGADOS SECOS

43.2% ≈ 0.2717 m3 ≈ 739.9 kg 39.8% ≈ 0.2502 m3 ≈ 642.5 kg Agregado grueso Agregado fino Vidrio molido 17.0% ≈ 0.1072 m3 ≈ 263.4 kg

11. PESO HÚMEDO DE LOS AGREGADOS - CORRECCIÓN POR HUMEDAD

Agregado grueso

742.9 kg 654.0 kg

Agregado fino Vidrio molido

263.4 kg

12. AGUA EFECTIVA CORREGIDA POR ABSORCIÓN Y HUMEDAD

Agua

235 L

13. PROPORCIÓN EN VOLUMEN DE OBRA

CEM A.F. A.G. V.M. AGUA 1 : 1.7 : 2.2 : 0.77 : 27.2 L

14. RESUMEN DE PROPORCIONES EN PESO

MÓD. FINEZA

6.81

3.27

COMPONENTE	PESO SECO	PESO HÚMEDO
Cemento Sol	367.74 kg	367.74 kg
Agua	228.00 L	235.11 L
Vidrio molido	263.44 kg	263.44 kg
Agregado grueso	739.91 kg	742.87 kg
Agregado fino	642.47 kg	654.04 kg
	PUT	2263 kg

1382

15. TANDA DE PRUEBA MÍNIMA

15. TANDA DE PRUEBA MINIMA	0.017 m3
COMPONENTE	PESO HÚMEDO
Cemento Sol	6.399 kg
Agua	4.091 L
Vidrio molido	4.58 kg
Agregado grueso	12.926 kg
Agregado fino	11.38 kg
Slump obtenido	2 3/4

OBSERVACIONES:

DBSERVACIONES:

Muestras provistas e identificadas por el solicitante

Prohibida la reproducción total o parcial de este documento sin la autorización de INGEOCONTROL

Los valores presentados en el presente diseño pueden variar ligeramente en obra por cambios en la granulometría del agregado, correcciones
por humedad y absorción, la limpieza de los agregados, el cambio de tipo de cemento y/o proporción de aditivo.

INGEOCONTROL SAC

AVISO DE CONFIDENCIALIDAD:

Este documento no tiene validoz sin firma y sello del Jefe de Laboratorio de Ensayos de Materiales (LEM-INGEOCONTROL) y Jefe de Aseguramiento de la Calidad.

Prohibida la reproducción total o parcial del presente documento, toda copia y distribución del mismo fuera de nuestra organización, será considerada como COPIA NO CONTROLADA. La interpretación y uso de los resultados emitidos queda a entera responsabilidad del usuario solicitante.

REVISADO POR Nombre v firma

> Luis A Melgar Angeles Jefe de Laboratorio INGEOCONTROL

AUTORIZADO POR Nombre y firma:

> Arnaldo Perez Ccoscco CIP: 190140 Gerente Técnico

DISEÑO DE MEZCLAS DE CONCRETO - DISEÑO COMPROBADO REFERENCIA ACI 211.1

INFORME

Código AE-FO-93 Versión 01 Fecha

: Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de REGISTRO Nº: L21-079-17 Compresión, San Juan de Miraflores, 2021 Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol REALIZADO POR REVISADO POR Solicitante : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol FECHA DE ELABORACIÓN : Atención 28/10/2021 Ubicación de Proyecto : Lima : Ag. Grueso / Ag. Fino Fc de diseño: 210 kg/cm2 Agregado Procedencia Cemento Asentamiento: Código de mezcla: 3" - 4"

1. RESISTENCIA A LA COMPRESIÓN REQUERIDA

F'cr = 294

5. CÁLCULO DE LA CANTIDAD DE CEMENTO

Cemento

No aplica

6. ADITIVO

= 368 kg = 8.7 Bolsas x m³

2. RELACIÓN AGUA CEMENTO R a/c = 0.62

3. DETERMINACIÓN DEL VOLUMEN DE AGUA

Agregado fino

Vidrio molido

4. CANTIDAD DE AIRE ATRAPADO

Aire = 2.5%

9. CÁLCULO DEL VOLUMEN DE AGREGADOS

INSUMO	PESO ESPECÍFICO	VOLUMEN ABSOLUTO			
Cemento Sol	3120 kg/m3	0.1179 m3			
Agua	1000 kg/m3	0.2280 m3	7		
-	No aplica	0.0000 m3			
Aire atrapado ≈ 2.5%		0.0250 m3	HUMEDAD	ABSORCIÓN	Ī
Agranda anuesa	2722 ka/m2	0.2747 m2	0.494	4 404	T

2568 kg/m3

2457 kg/m3 Volumen de pasta 0.3709 m3 0.6291 m3

0.2859 m3

0.0715 m3

1.8%

0.0%

0.0%

14. RE

MÓD, FINEZA

COMPONENTE	PESO SECO	PESO HÚMEDO
Cemento Sol	367.74 kg	367.74 kg
Agua	228.00 L	235.38 L
Vidrio molido	175.63 kg	175.63 kg
Agregado grueso	739.91 kg	742.87 kg
Agregado fino	734.26 kg	747.47 kg
	PUT	2269 kg

1528

1389

P.U. SUELTO P.U. COMPACTADO

1688

1577

10. PROPORCIÓN DE AGREGADOS SECOS

Agregado grueso 43.2% ≈ 0.2717 m3 ≈ 739.9 kg Agregado fino 45.4% ≈ 0.2859 m3 ≈ 734.3 kg Vidrio molido 11.4% ≈ 0.0715 m3 ≈ 175.6 kg

11. PESO HÚMEDO DE LOS AGREGADOS - CORRECCIÓN POR HUMEDAD

742.9 kg Agregado grueso 747.5 kg Agregado fino 175.6 kg Vidrio molido

12. AGUA EFECTIVA CORREGIDA POR ABSORCIÓN Y HUMEDAD

13. PROPORCIÓN EN VOLUMEN DE OBRA

CEM A.F. A.G. V.M. AGUA 1 : 2.0 : 2.2 : 0.5 : 27.2 L

15. TANDA DE PRUEBA MÍNIMA	0.017 m3		
COMPONENTE	PESO HÚMEDO		
Cemento Sol	6.399 kg		
Agua	4.096 L		
Vidrio molido	3.06 kg		
Agregado grueso	12.926 kg		
Agregado fino	13.006 kg		
Slump obtenido	3		

OBSERVACIONES:

Muestras provistas e identificadas por el solicitante
 Prohibida la reproducción total o parcial de este documento sin la autorización de INGEOCONTROL
 Los valores presentados en el presente diseño pueden variar ligeramente en obra por cambios en la granulometría del agregado, correcciones por humedad y absorción, la limpieza de los agregados, el cambio de tipo de cemento y/o proporción de aditivo.

INGEOCONTROL SAC AUTORIZADO POR REVISADO POR AVISO DE CONFIDENCIALIDAD: Este documento no tiene validez sin firma y sello del Jefe de Laboratorio de Ensayos de Materiales (LEM-INGEOCONTROL) y Jefe de Aseguramiento de la Calidad. Nombre v firma: Prohibida la reproducción total o parcial del presente documento, toda copia y distribución del mismo fuera de nuestra organización, será considerada cemo COPIA NO CONTROLADA. La interpretación y uso de los resultados emitidos queda a entera responsabilidad del usuario solicitante. Arnaldo Perez Ccoscco Luis A. Melgar Angeles CIP: 190140 Jefe de Laboratorio Gerente Técnico INGEOCONTROL

INFORME DISEÑO DE MEZCLAS DE CONCRETO - DISEÑO COMPROBADO REFERENCIA ACI 211.1

AE-FO-93 Versión 01 Fecha 30-09-2019 Página 1 de 1

TMN

1/2"

3 1/2

L21-079-16 Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de Proyecto REGISTRO Nº Compression, San Juan de Miraflores, 2021

: Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol

: Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol R. Leyva L. Melgar REALIZADO POR REVISADO POR : FECHA DE ELABORACIÓN : 28/10/2021 Atención Ubicación de Proyecto : Ag. Grueso / Ag. Fino 210 kg/cm2 Agregado Procedencia Asentamiento: Cemento : Cemento Sol Código de mezcla: Patrón

1. RESISTENCIA A LA COMPRESIÓN REQUERIDA

5. CÁLCULO DE LA CANTIDAD DE CEMENTO

Cemento

= 368 kg = 8.7 Bolsas x m³

2. RELACIÓN AGUA CEMENTO

R a/c = 0.62

6. ADITIVO

3. DETERMINACIÓN DEL VOLUMEN DE AGUA Agua = 228 L

4. CANTIDAD DE AIRE ATRAPADO

9. CÁLCULO DEL VOLUMEN DE AGREGADOS

INSUMO	PESO ESPECÍFICO	VOLUMEN ABSOLUTO					
Cemento Sol	3120 kg/m3	0.1179 m3					
Agua	1000 kg/m3	0.2280 m3	٦				
 / (/ = 2 (5 / = 1)):	No aplica	0.0000 m3	- A				
Aire atrapado ≈ 2.5%	-	0.0250 m3	HUMEDAD	ABSORCIÓN	MÓD. FINEZA	P.U. SUELTO	P.U. COMPACTADO
Agregado grueso	2723 kg/m3	0.2717 m3	0.4%	1.1%	6.81	1382	1471
Agregado fino	2568 kg/m3	0.3574 m3	1.8%	2.1%	3.27	1528	1688

Volumen de pasta Volumen de agregados 0.6291 m3

10. PROPORCIÓN DE AGREGADOS SECOS

Agregado grueso Agregado fino

43.2% = 0.2717 m3 = 739.9 kg 56.8% = 0.3574 m3 = 917.8 kg

14. RESUMEN DE PROPORCIONES EN PESO

COMPONENTE	PESO SECO	PESO HÚMEDO
Cemento Sol	368 kg	368 kg
Agua	228 L	236 L
Agregado grueso	740 kg	743 kg
Agregado fino	918 kg	934 kg
	PUT	2281 kg

11. PESO HÚMEDO DE LOS AGREGADOS - CORRECCIÓN POR HUMEDAD

743 kg Agregado fino 934 kg

12. AGUA EFECTIVA CORREGIDA POR ABSORCIÓN Y HUMEDAD

Agua 236 L

13. PROPORCIÓN EN VOLUMEN DE OBRA

CEM A.F. A.G. AGUA 1 : 2.5 : 2.2 : 27.3 L

15. TANDA DE PRUEBA MÍNIMA	0.017 m3
COMPONENTE	PESO HÚMEDO
Cemento Sol	6.399 kg
Agua	4.105L
Agregado grueso	12.926 kg

- NESERVACIONES:

 Muestras provista e identificadas por el solicitante

 Prohibida la reproducción total o parcial de este documento sin la autorización de INGEOCONTRO.

 Los valores presentados en el presente diseño pueden variar ligeramente en obra por cambios en la granulometria del agregado, correcciones por humedad y absorción, la limpieza de los agregados, el cambio de tipo de cemento y/o proporción de aditivo.

INGEOCONTROL SAC AUTORIZADO POR AVISO DE CONFIDENCIALIDAD: REVISADO POR Este documento no tiene validez sin firma y sello del Jefe de Laboratorio de Ensayos de Materiales (LEM-INGEOCONTROL) y Jefe de Aseguramiento de la Calidad. Nombre y firma: Prohibida la reproducción total o parcial del presente documento, toda copia y distribución del mismo fuera de nuestra organización, será considerada como COPIA NO CONTROLADA. La interpretación y uso de los resultados emitidos queda a entera responsabilidad del usuario solicitante. Luis A Melgar Angeles Jefe de Laboratorio Arnaldo Perez Ccoscco CIP: 190140 INGEOCONTROL Gerente Técnico

Slump obtenido

CLIENTE

Tipo de muestra

INFORME Versión 01 MÉTODO DE PRUEBA ESTÁNDAR PARA LA RESISTENCIA A LA COMPRESIÓN DE PROBETAS CILÍNDRICAS DE HORMIGÓN Fecha Página 1 de 1

PROYECTO

: Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de Compresión, San Juan de Miraflores,2021 ; Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol ; Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol

SOLICITANTE UBICACIÓN DE PROYECTO : Lima

FECHA DE EMISIÓN

Concreto endurecido

Especimenes cilíndricos 4" x 8" F'c de diseño 210 kg/cm2

REGISTRO N°

REALIZADO POR

L21-079-23

R. Leyva L. Melgar REVISADO POR TURNO : Diumo

Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens ASTM C39/C39M-18

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD (dias)	DIÁMETRO (cm)	ALTURA (cm)	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	FUERZA MÁXIMA (kg)	ESFUERZO	F'c	% F'c
Probeta - 40% de vidrio molido	28/10/2021	4/11/2021	7	10.00	20 03	5	2.00	14913	190 kg/cm2	210 kg/cm2	90.4%
Probeta - 40% de vidrio molido	28/10/2021	4/11/2021	7	10.01	20 04	5	2.00	14795	188 kg/cm2	210 kg/cm2	89.5%
Probeta - 40% de vidrio molido	28/10/2021	4/11/2021	7	10.00	20.02	5	2.00	15109	192 kg/cm2	210 kg/cm2	91.6%
Probeta - 40% de vidrio molido	28/10/2021	11/11/2021	14	10.03	20.05	5	2.00	18042	228 kg/cm2	210 kg/cm2	108.7%
Probeta - 40% de vidrio molido	28/10/2021	11/11/2021	14	10.01	20.09	2	2.01	18114	230 kg/cm2	210 kg/cm2	109.6%
Probeta - 40% de vidrio molido	28/10/2021	11/11/2021	14	10.01	20.04	5	2.00	17841	227 kg/cm2	210 kg/cm2	108.0%
Probeta - 40% de vidrio molido	28/10/2021	25/11/2021	28	10.06	20.03	2	1.99	22701	286 kg/cm2	210 kg/cm2	136.0%
Probeta - 40% de vidrio molido	28/10/2021	25/11/2021	28	10.02	20.01	5	2.00	22968	291 kg/cm2	210 kg/cm2	138.7%
Probeta - 40% de vidrio molido	28/10/2021	25/11/2021	28	10.05	20.04	5	1.99	22456	283 kg/cm2	210 kg/cm2	134.8%

Use interpolation to determine correction factors for L/D values between those given in the table.

Fuente: ASTM C39

	Coefficient of Variation ⁴	Acceptable Range ⁴ of Individual Cylinder Strengths		
		2 cylinders	3 cylinders	
150 by 300 mm				
[6 by 12 in.]				
Laboratory conditions	2.4 %	6.6 %	7.8 %	
Field conditions	2.9 %	8.0 %	9.5 %	
100 by 200 mm				
[4 by 8 in.]				
Laboratory conditions	3.2 %	9.0 %	10.6 %	
Fuente: ASTM C39				

8.2 If the specimen length to diameter ratio is 1.75 or less, correct the result obtained in 8.1 by multiplying by the appropriate correction factor shown in the following table Note 11:

L/D: 1.75 1.50 1.25 1.00 Factor: 0.98 0.96 0.93 0.87

Fuente: ASTM C39

OBSERVACIONES:

- Muestras elaboradas y curadas por INGEOCONTROL
- * Las muestras cumplen con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuerzo Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

AVISO DE CONFIDENCIALIDAD:

Este documento no tiene validez sin firma y sello del Jefe de Laboratorio de Ensayos de Materiales (LEM-INGEOCONTROL) y Jefe de Aseguramiento de la Calidad.

Prohibida la reproducción total o parcial del presente documento, toda copia y distribución del mismo fuera de nuestra organización, será considerada como COPIA NO CONTROLADA.

La interpretación y uso de los resultados emitidos queda a entera responsabilidad del usuario solicitante.

Luis X. Melgar Angeles Jele de Laboratorio INGEOCONTROL

INGEOCONTROL SAC

Arnaldo Perez Ccoscco CIP: 190140 Gerente Técnico

INFORME MÉTODO DE PRUEBA ESTÁNDAR PARA LA RESISTENCIA A LA COMPRESIÓN DE PROBETAS CILÍNDRICAS DE HORMIGÓN

AE-FO-101 Versión 01 Fecha 30-04-2018

L21-079-22

R. Leyva

L. Melgar Diurno

REGISTRO N°

REALIZADO POR

REVISADO POR TURNO

Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de

Compresión, San Juan de Miraflores,2021 : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol SOLICITANTE Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol

UBICACIÓN DE PROYECTO FECHA DE EMISIÓN

: Concreto endurecido : Especimenes cilindricos 4" x 8" Tipo de muestra

F'c de diseño 210 kg/cm2

Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens ASTM C39/C39M-18

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD (días)	DIÁMETRO (cm)	ALTURA (cm)	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	FUERZA MÁXIMA (kg)	ESFUERZO	F'c	% F'c
Probeta - 30% de vidrio molido	28/10/2021	4/11/2021	7	10.00	20.04	2	2.00	14499	185 kg/cm2	210 kg/cm2	87.9%
Probeta - 30% de vidrio molido	28/10/2021	4/11/2021	7	10.00	20.07	5	2.01	14385	183 kg/cm2	210 kg/cm2	87.2%
Probeta - 30% de vidrío molido	28/10/2021	4/11/2021	7	10.03	20.10	5	2.00	14387	182 kg/cm2	210 kg/cm2	86.7%
Probeta - 30% de vidrio molido	28/10/2021	11/11/2021	14	10.01	20.06	5	2.00	17802	226 kg/cm2	210 kg/cm2	107.7%
Probeta - 30% de vidrio molido	28/10/2021	11/11/2021	14	10.01	20.04	2	2.00	17410	221 kg/cm2	210 kg/cm2	105.3%
Probeta - 30% de vidrio molido	28/10/2021	11/11/2021	14	10.01	20.08	5	2.01	17555	223 kg/cm2	210 kg/cm2	106.2%
Probeta - 30% de vidrio molido	28/10/2021	25/11/2021	28	10.03	20.04	5	2.00	20840	264 kg/cm2	210 kg/cm2	125.6%
Probeta - 30% de vidrio molido	28/10/2021	25/11/2021	28	10.05	20.10	5	2.00	20424	257 kg/cm2	210 kg/cm2	122.6%
Probeta - 30% de vidrio molido	28/10/2021	25/11/2021	28	10.01	20.06	2	2.00	20328	258 kg/cm2	210 kg/cm2	123.0%

Factor: 0.98 0.96 0.93 0.87 Use interpolation to determine correction factors for L/D values between those given in the table.

L/D: 1.75 1.50 1.25 1.00

Fuente: ASTM C39

	Coefficient of Variation ⁴	Acceptable Range ⁴ of Individual Cylinder Strength			
	10.0000000000	2 cylinders	3 cylinders		
150 by 300 mm					
[6 by 12 in.]					
Laboratory conditions	2.4 %	6.6 %	7.8 %		
Field conditions	2.9 %	8.0 %	9.5 %		
100 by 200 mm					
[4 by 8 in.]					
Laboratory conditions	3.2 %	9.0 %	10.6 %		
Fuente: ASTM C39					

Tipo 4
Fractura diagonal sin fisuras a través de los extremos; golpee suavemente con un martillo para distinguirla del Tipo 1

Fuente: ASTM C39

OBSERVACIONES:

- Muestras elaboradas y curadas por INGEOCONTROL
- * Las muestras cumplen con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuerzo

* Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

AVISO DE CONFIDENCIALIDAD Prohibida la reproducción total o pa y distribución del mismo fuera de como COPIA NO CONTROLADA. La interpretación y uso de los re responsabilidad del usuario solicitante.

Luis A. Melgar Angeles Jefe de Laboratorio INGEOCONTROL

INGEOCONTROL SAC

REVISADO POR

Arnaldo Perez Ccoscco CIP: 190140 Gerente Técnico

AUTORIZADO POR

INFORME Código AE-FO-101 01 Versión MÉTODO DE PRUEBA ESTÁNDAR PARA LA RESISTENCIA A LA COMPRESIÓN DE PROBETAS CILÍNDRICAS DE HORMIGÓN Fecha 30-04-2018 1 de 1

PROYECTO CLIENTE

Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de Compresión, San Juan de Miraflores,2021 Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol

SOLICITANTE

UBICACIÓN DE PROYECTO : Lima FECHA DE EMISIÓN :--

Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol

REALIZADO POR : REVISADO POR : TURNO :

REGISTRO Nº:

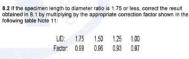
L21-079-21 R. Leyva L. Melgar Diurno

Presentación

Concreto endurecido Especimenes cilíndricos 4" x 8"

F'c de diseño

Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens ASTM C39/C39M-18


IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD (días)	DIÁMETRO (cm)	ALTURA (cm)	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	FUERZA MÁXIMA (kg)	ESFUERZO	F'c	% F'c
Probeta - 20% de vidrio molido	28/10/2021	4/11/2021	7	10.00	20.08	5	2.01	14220	181 kg/cm2	210 kg/cm2	86.2%
Probeta - 20% de vidrio molido	28/10/2021	4/11/2021	7	10.03	20.06	5	2.00	14133	179 kg/cm2	210 kg/cm2	85.2%
Probeta - 20% de vidrio molido	28/10/2021	4/11/2021	7	10.01	20.09	5	2.01	14054	179 kg/cm2	210 kg/cm2	85.0%
Probeta - 20% de vidrio molido	28/10/2021	11/11/2021	14	10.05	20.11	5	2.00	17226	217 kg/cm2	210 kg/cm2	103.4%
Probeta - 20% de vidrio molido	28/10/2021	11/11/2021	14	10.01	20.05	5	2.00	17061	217 kg/cm2	210 kg/cm2	103.2%
Probeta - 20% de vidrio molido	28/10/2021	11/11/2021	14	10.03	20.09	5	2.00	16853	213 kg/cm2	210 kg/cm2	101.6%
Probeta - 20% de vidrio molido	28/10/2021	25/11/2021	28	10.04	20.04	5	2.00	19321	244 kg/cm2	210 kg/cm2	116.2%
Probeta - 20% de vidrio molido	28/10/2021	25/11/2021	28	10.01	20.07	2	2.00	19542	248 kg/cm2	210 kg/cm2	118.2%
Probeta - 20% de vidrio molido	28/10/2021	25/11/2021	28	10.10	20.01	5	1,98	19541	244 kg/cm2	210 kg/cm2	116.1%

Use interpolation to determine correction factors for L/D values between those given in the table.

Fuente: ASTM C39

	Coefficient of Variation ⁴	Acceptable Range ⁴ of Individual Cylinder Strength			
		2 cylinders	3 cylinders		
150 by 300 mm					
[6 by 12 in.]					
Laboratory conditions	2.4 %	6.6 %	7.8 %		
Field conditions	2.9 %	8.0 %	9.5 %		
100 by 200 mm					
[4 by 8 in.]					
Laboratory conditions	3.2 %	9.0 %	10.6 %		
Fuente: ASTM C39					

Tipo 4 Fractura diagonal sin fisuras a través de los extremos; golpee suavemente con un martillo para distinguirla del Tipo 1

Fuente: ASTM C39

AVISO DE CONFIDENCIALIDAD:

OBSERVACIONES:

- * Muestras elaboradas y curadas por INGEOCONTROL
- * Las muestras cumplen con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuerzo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

INGEOCONTROL SAC

REVISADO POR

Este documento no tiene validez sin firma y sello del Jefe de Laboratorio de Ensayos de Materiales (LEM-INGEOCONTROL) y Jefe de Aseguramiento de la Cafdad. La interpretación y uso de los resultados emitidos queda responsabilidad del usuario solicitante.

> Luis A. Melgar Angeles Jefe de Laboratorio INGEOCONTROL

Arnaldo Perez Ccoscco CIP: 190140 Gerente Técnico

AUTORIZADO POR

CLIENTE

INFORME Código AE-FO-101 01 Versión MÉTODO DE PRUEBA ESTÁNDAR PARA LA RESISTENCIA A LA COMPRESIÓN DE PROBETAS CILÍNDRICAS DE HORMICÓN 30-04-2018 Fecha 1 de 1

Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de

Compresión, San Juan de Miraflores,2021 : Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol

SOLICITANTE Sandivar Valero Max Alexander / Rivera Centenaro Felipe Mayckol

UBICACIÓN DE PROYECTO : Lima FECHA DE EMISIÓN :--

Tipo de muestra Concreto endurecido Especimenes cilíndricos 4" x 8"

F'c de diseño 210 kg/cm2

Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens ASTM C39/C39M-18

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD (días)	DIÁMETRO (cm)	ALTURA (cm)	TIPO DE FALLA	RELACIÓN ALTURA / DIÁMETRO	FUERZA MÁXIMA (kg)	ESFUERZO	F'c	% F'c
Probeta - Patrón	28/10/2021	4/11/2021	7	10.01	20.05	5	2.00	13961	177 kg/cm2	210 kg/cm2	84.5%
Probeta - Patrón	28/10/2021	4/11/2021	7	10.01	20.11	5	2.01	13852	176 kg/cm2	210 kg/cm2	83.8%
Probeta - Patrón	28/10/2021	4/11/2021	7	10.02	20.02	2	2.00	14018	178 kg/cm2	210 kg/cm2	84.7%
Probeta - Patrón	28/10/2021	11/11/2021	14	10.01	20.10	5	2.01	16487	209 kg/cm2	210 kg/cm2	99.8%
Probeta - Patrón	28/10/2021	11/11/2021	14	10.00	20.06	5	2.01	16103	205 kg/cm2	210 kg/cm2	97.6%
Probeta - Patrón	28/10/2021	11/11/2021	14	10.07	20.02	5	1.99	16433	206 kg/cm2	210 kg/cm2	98.3%
Probeta - Patrón	28/10/2021	25/11/2021	28	10.02	20.02	5	2.00	17896	227 kg/cm2	210 kg/cm2	108.19
Probeta - Patrón	28/10/2021	25/11/2021	28	10.06	20.06	5	1.99	18762	236 kg/cm2	210 kg/cm2	112.49
Probeta - Patrón	28/10/2021	25/11/2021	28	10.04	20.11	2	2.00	18853	238 kg/cm2	210 kg/cm2	113,49

Use interpolation to determine correction factors for $\mbox{L/D}$ values between those given in the table.

REGISTRO Nº:

TURNO:

REALIZADO POR :

REVISADO POR

L21-079-20

R. Leyva L. Melgar

Diurno

Fuente: ASTM C39

	Variation ⁴	Individual Cylinder Strengths			
		2 cylinders	3 cylinders		
150 by 300 mm					
[6 by 12 in.]					
Laboratory conditions	2.4 %	6.6 %	7.8 %		
Field conditions	2.9 %	8.0 %	9.5 %		
100 by 200 mm					
[4 by 8 in.]					
Laboratory conditions	3.2 %	9.0 %	10.6 %		
Fuente: ASTM C39					

Tipo 4
Fractura diagonal sin fisuras a través de los extremos; golpee suavemente con un martillo para distinguirla del Tipo 1

Fuente: ASTM C39

OBSERVACIONES:

- * Muestras elaboradas y curadas por INGEOCONTROL
- Las muestras cumplen con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuerzo
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de INGEOCONTROL

INGEOCONTROL SAC AUTORIZADO POR AVISO DE CONFIDENCIALIDAD: La interpretación y uso de los resultados emitidos queda a entera responsabilidad del usuario solicitante. Arnaldo Perez Ccoscco Luis A. Melgar Angeles Jefe de Laboratorio CIP: 190140 Gerente Técnico INGEOCONTROL

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Originalidad de los Autores

Nosotros, RIVERA CENTENARO FELIPE MAYCKOL, SANDIVAR VALERO MAX ALEXANDER estudiantes de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - LIMA ESTE, declaramos bajo juramento que todos los datos e información que acompa ñan la Tesis titulada: "Diseño Estructural Empleando Vidrio Molido al Concreto como Mejora a la Resistencia de Compresión, San Juan de Miraflores,2021", es de nuestra autoría, por lo tanto, declaramos que la Tesis:

- 1. No ha sido plagiada ni total, ni parcialmente.
- 2. Hemos mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- 3. No ha sido publicada, ni presentada anteriormente para la obtención de otro grado académico o título profesional.
- 4. Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumimos la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de la información aportada, por lo cual nos sometemos a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Nombres y Apellidos	Firma
RIVERA CENTENARO FELIPE MAYCKOL DNI: 70939781 ORCID 0000-0002-1520-4001	Firmado digitalmente por: FMRIVERAR el 13-01-2022 20:17:00
SANDIVAR VALERO MAX ALEXANDER DNI: 76525036 ORCID 0000-0002-2386-5416	Firmado digitalmente por: MASANDIVARV el 13-01- 2022 20:21:16

Código documento Trilce: INV - 0557930

