

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Diseño de infraestructura vial de las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniera Civil

AUTORES:

Cedrón Pilco, Bernardo Raúl Ángel (ORCID: 0000-0003-4818-6775) Marquillo Gutierrez, Yesenia Thalía (ORCID: 0000-0003-2876-4726)

ASESORES:

Mg. Horna Araujo, Luis Alberto (ORCID: 0000-0002-3674-9617)

Mg. Villar Quiroz, Josualdo Carlos (ORCID: 0000-0003-3392-9580)

LÍNEA DE INVESTIGACIÓN

Construcción Sostenible

Diseño de Infraestructura Vial

TRUJILLO - PERÚ 2021

Dedicatoria

A Dios, como creador nuestro por haberme dado inteligencia, paciencia y fortalecer mi camino para dirigirme por el sendero correcto, permitiéndome obtener con éxito cada una de mis metas propuestas.

A mi familia, por ser mi gran soporte, quienes me apoyaron para poder llegar a esta instancia de mis estudios, dándome apoyo moral y psicológico.

Marquillo Gutierrez, Yesenia Thalía

A Dios, por guiarme por el mejor camino, haciendo de mí una persona de bien, responsable y perseverante en cada una de las metas trazadas,

A mi familia, por apoyarme siempre de forma incondicional y ser mi fuerza ante cualquier adversidad, motivándome para no rendirme y sacar lo mejor de mí.

A nuestra casa de estudios, Universidad Cesar Vallejo por acogernos durante todo este tiempo y brindarnos las mejores oportunidades profesionales.

Cedrón Pilco, Bernardo Raúl Ángel

Agradecimiento

A Dios por estar siempre a mi lado, por darme fuerza y permitirme seguir adelante con sabiduría, esfuerzo y constancia, siendo mi mejor amigo y ayudándome en los momentos más difíciles.

A mis padres, por su comprensión, su eterno apoyo y el amor que siempre me han brindado para seguir adelante en esta primera meta.

A mi hermana, por ser mi mejor amiga, mi soporte y apoyo incondicional y por ser mi compañía en momentos de angustia.

A los docentes y asesores, por dedicarnos su tiempo y habernos brindado sus conocimientos para la realización eficaz de este Proyecto de Tesis y a lo largo de la carrera universitaria.

A mi compañero de tesis, por su paciencia, comprensión y apoyo, por enseñarme que cada sacrificio vale la pena y no dejarme sola en ningún momento.

Marquillo Gutierrez, Yesenia Thalía

A Dios, por tantas bendiciones en mi vida y porque en cada paso que doy siempre está presente dándome fuerza para no declinar.

A mi familia por su apoyo y lucha constante que hacen que hoy en día esté a un pequeño paso de cumplir uno de mis primeros objetivos como es culminar mi carrera profesional.

A los docentes, por sus enseñanzas y tiempo para poder realizar un correcto trabajo que cumpla con sus expectativas.

A mi compañera de tesis, por creer en mí, porque nunca le faltó paciencia y comprensión, por su apoyo, motivación y por siempre impulsarme a sacar lo mejor de mí sin rendirme.

Cedrón Pilco, Bernardo Raúl Ángel

Índice de contenido

Dedicatoriaii
Agradecimientoiv
Índice de contenidovi
Índice de tablasix
Índice de figurasxii
Índice de ecuacionesxiii
Resumenxiv
Abstractxv
I. INTRODUCCIÓN1
1.1. Realidad problemática1
1.2. Planteamiento del problema7
1.3. Justificación 8
1.4. Objetivos
1.4.1. Objetivo General:10
1.4.2. Objetivos específicos:
1.5. Hipótesis
II. MARCO TEÓRICO11
2.1 Antecedentes
2.2 Bases Teóricas
III. METODOLOGÍA29
3.1. Tipo, enfoque y diseño de investigación
3.1.1. Enfoque de investigación29
3.1.2. Tipo de investigación
3.1.3. Diseño de investigación
3.2 Variables y operacionalización 31

3.	2.1.	Variable	31
3.	2.2.	Matriz de clasificación de variables	31
3.	2.3.	Matriz de operacionalización de variables (Anexo 3.1)	31
3.3.	Pol	blación, muestra y muestreo	32
3.	3.1.	Población	32
3.	3.2.	Muestra y muestreo	32
3.	3.3.	Unidad de análisis	33
3.4.	Técni	icas e instrumentos de recolección de datos, validez y confiabilidad .	33
3.	4.1.	Técnica de recolección de datos	33
3.	4.2.	Instrumento de recolección de datos	33
3.	4.3.	Validación del instrumento de recolección de datos	35
3.	4.4.	Confiabilidad del instrumento de recolección de datos	35
3.5.	Pro	ocedimientos	35
3.	5.1.	Diseño de infraestructura vial	37
3.6.	Mé	todo de análisis de datos	50
3.	6.1.	Técnicas de análisis de datos	50
3.7.	Asp	pectos éticos	52
3.8.	Des	sarrollo del proyecto de investigación	52
3.	8.1.	Levantamiento topográfico	52
3.	8.2.	Estudio de suelos	57
3.	8.3.	Estudio de tráfico	58
3.	8.4.	Estudio hidrológico y obras de arte	65
3.	8.5.	Diseño geométrico	77
3.	8.6.	Diseño de pavimento flexible según AASHTO 93	79
IV.	RES	JLTADOS	85
4.1.	Lev	/antamiento topográfico	85
4.	1.1.	Coordenadas	85

4.1.2. Curvas de nivel	96
4.2. Estudio de mecánica de suelos	97
4.2.1. Granulometría	97
4.2.2. Límites de consistencia	98
4.2.3. Contenido de humedad	99
4.2.4. CBR %	100
4.2.5. Proctor modificado	101
4.2.6. Clasificación de suelos	102
4.3. Estudio de tráfico	103
4.3.1. Índice Medio Diario Anual (IMDa)	103
4.4. Estudio hidrológico	104
4.4.1. Precipitaciones	104
4.4.2. Caudal de diseño y diseño de obras de arte	105
4.5. Diseño geométrico	106
4.5.1. Diseño geométrico en planta y perfil	106
4.5.2. Señalización	107
4.6. Diseño de pavimento	108
V. DISCUSIÓN	109
VI. CONCLUSIONES	115
VII. RECOMENDACIONES	116
REFERENCIAS	117
ANEYOS	124

Índice de tablas

Tabla 1. Inclinaciones máximas del talud Interior de la cuneta	22
Tabla 2. Dimensiones mínimas	23
Tabla 3. Valores de bombeo de la calzada	25
Tabla 4. Valores de pendiente máxima	26
Tabla 5. Requisitos mínimos para el diseño estructural de pavimentos	27
Tabla 6. Esquema del diseño transversal	30
Tabla 7. Matriz de clasificación de variables	31
Tabla 8. Calles del sector Cafetal I	32
Tabla 9. Instrumentos y validaciones	34
Tabla 10. Ensayos de laboratorio	40
Tabla 11. Factor direccional y factor carril	42
Tabla 12. Relación de cargas por Eje para determinar EE	43
Tabla 13. Coeficientes de escorrentía del método racional	44
Tabla 14. Riesgo de falla admisible	45
Tabla 15. Nivel de confiabilidad	47
Tabla 16 . Desviación Estándar Normal (Z _R)	48
Tabla 17. Índice de Serviciabilidad final (pt)	49
Tabla 18. Nivel de Servicio PSI	49
Tabla 19. Valores m _i recomendados por la AASHTO	50
Tabla 20. Extracción de muestras para EMS	57
Tabla 21. Resumen de conteo vehicular	59
Tabla 22. Resumen de clasificación vehicular de tráfico ligero	62
Tabla 23. Resumen de clasificación vehicular de tráfico pesado	62
Tabla 24. Factor direccional y factor carril	64
Tabla 25. Factor camión de vehículos	64

Tabla 26.	Cálculo de ESAL	65
Tabla 27.	Registro de precipitaciones máximas	67
Tabla 28.	Cálculo de precipitaciones máximas y del valor Φ	70
Tabla 29.	Precipitación de diseño	71
Tabla 30.	Intensidad de Iluvia	72
Tabla 31.	Valores obtenidos para el hietograma de diseño	74
Tabla 32.	Valores obtenidos para el caudal de diseño	75
Tabla 33.	Tipo de tráfico de diseño	79
Tabla 34.	Categoría de subrasante	80
Tabla 35.	Valor de Confiabilidad	80
Tabla 36.	Valor de Desviación Estándar Normal	81
Tabla 37.	Valores de PSI y calificación de serviciabilidad	82
Tabla 38.	Coeficientes estructurales de las capas del pavimento a _i	83
Tabla 39.	Coordenadas UTM sector Cafetal I	85
Tabla 40.	Granulometría	97
Tabla 41.	Límites de consistencia	98
Tabla 42.	Contenido de Humedad	99
Tabla 43.	Valor de CBR al 95% de MDS para 0.1" de penetración 1	00
Tabla 44.	Proctor modificado	01
Tabla 45.	Clasificación de suelos1	02
Tabla 46.	Índice Medio Diario Anual1	03
Tabla 47.	Dimensiones finales de cuneta triangular 1	05
Tabla 48.	Diseño en planta y perfil1	06
Tabla 49.	Señalización horizontal1	07
Tabla 50.	Espesores de capas del pavimento1	80
Tabla 51.	Matriz de operacionalización de variables 1	26
Tabla 52.	Matriz de indicadores de variables1	28

Tabla 53. Matriz de consistencia del Marco Metodológico	131
Tabla 54. Matriz de consistencia del Diseño de Ejecución	133

Índice de figuras

Figura 1. Curvas circulares simples	. 24
Figura 2. Diagrama del diseño de investigación	. 30
Figura 3. Localización del Proyecto - Sector Cafetal I	. 37
Figura 4. Perfil longitudinal	. 38
Figura 5. Curvas de nivel	. 39
Figura 6. Gráfico CBR inalterado	. 51
Figura 7. Gráfico de composición vehicular	. 51
Figura 8. Software Civil 3D	. 54
Figura 9. Software Civil 3D	. 54
Figura 10. Configuración del software Civil 3D	. 55
Figura 11. Importación de puntos en el software Civil 3D	. 55
Figura 12. Creación de la superficie del terreno en el software Civil 3D	. 56
Figura 13. Curvas de nivel en el software Civil 3D	. 56
Figura 14. Curva Intensidad - Duración – Frecuencia	. 73
Figura 15. Hietograma de diseño	. 74
Figura 16. Sección de cuneta	. 76
Figura 17. Ecuación AASHTO 93	. 82
Figura 18. Plano topográfico de curvas de nivel	. 96
Figura 19. Histograma de registro histórico de precipitaciones	104
Figura 20. Diseño de cuneta triangular	105
Figura 21. Espesores de capas del pavimento	108

Índice de ecuaciones

Ecuación 1. Índice Medio Diario Anual	21
Ecuación 2. Riesgo de falla admisible	21
Ecuación 3. Ecuación de Manning	22
Ecuación 4. Caudal de aporte (Q)	23
Ecuación 5. Peralte	25
Ecuación 6. Índice Medio Diario Anual	41
Ecuación 7. Factor de crecimiento acumulado	41
Ecuación 8. Caudal de aporte (Q)	43
Ecuación 9. Riesgo de falla admisible	44
Ecuación 10. Ecuación de Manning	45
Ecuación 11. Módulo Resiliente	47
Ecuación 12. Variación de Serviciabilidad	49
Ecuación 13. Índice Medio Diario Semanal	60
Ecuación 14. Índice Medio Diario Anual	61
Ecuación 15. Factor de crecimiento acumulado	63
Ecuación 16. Cálculo de ESAL	65
Ecuación 17. Riesgo de falla admisible	69
Ecuación 18. Periodo de retorno	69
Ecuación 19. Precipitación máxima	70
Ecuación 20. Precipitación de diseño	71
Ecuación 21. Cálculo de la curva IDF	72
Ecuación 22. Caudal Q de aporte	75
Ecuación 23. Ecuación de Manning	76
Ecuación 24. Módulo resiliente	80
Ecuación 25. Pérdida de serviciabilidad	81
Ecuación 26. Número estructural requerido	84

Resumen

La presente investigación tuvo como escenario principal el sector Cafetal I, distrito

de Guadalupe, en la provincia de Pacasmayo y tuvo como objetivo elaborar el

diseño de infraestructura vial en las calles del sector Cafetal I, beneficiando

directamente a todos los pobladores habitantes del lugar. Se empleó una

metodología no experimental aplicada, de tipo descriptiva, teniendo como población

a todas las calles del sector Cafetal I y como muestra a 7 calles del mismo. Se

utilizaron técnicas como la observación y análisis documental e instrumentos como

guías de observación, fichas resumen y fichas de recolección de datos,

indispensable en la recopilación de información. El problema principal radica en la

inexistencia de vías aptas que permita la circulación de vehículos e individuos,

dificultando el acceso a distintos lugares y perjudicando el desarrollo de la

población. Se realizó el estudio de tráfico obteniendo un IMDa equivalente a 62

vehículos y un tráfico de diseño de 418 979 EE. Además, se obtuvo un CBR% 13.7,

correspondiente a una subrasante buena, y un caudal de diseño de 0.104 m³/s. Se

logró diseñar la infraestructura vial de la zona con pavimento de tipo flexible guiado

por el método AASHTO 93 cumpliendo con las normas correspondientes.

Palabras clave: Diseño, infraestructura vial, pavimento, calles.

xiv

Abstract

The main scenario of this research was the Cafetal I sector, district of Guadalupe,

in the province of Pacasmayo, and its objective was to elaborate the design of road

infrastructure in the streets of the Cafetal I sector, directly benefiting all the

inhabitants of the area. A descriptive, non-experimental applied methodology was

used, with all the streets of the Cafetal I sector as population and 7 streets as

sample. Techniques such as observation and documentary analysis were used, as

well as instruments such as observation guides, summary sheets and data

collection sheets, which were indispensable for the collection of information. The

main problem lies in the lack of suitable roads that allow the circulation of vehicles

and individuals, making it difficult to access different places and hindering the

development of the population. The traffic study was carried out, obtaining an IMDa

equivalent to 62 vehicles and a design traffic of 418,979 EE. In addition, a CBR%

13.7 was obtained, corresponding to a good subgrade, and a design flow rate of

0.104 m³/s. The road infrastructure of the area was designed with flexible pavement

guided by the AASHTO 93 method, complying with the corresponding standards.

Keywords: Design, road infrastructure, pavement, streets.

ΧV

I. INTRODUCCIÓN

1.1. Realidad problemática

En el mundo, la infraestructura vial es indispensable para el crecimiento de un país social y económicamente, ya que las poblaciones hacen uso de estas para comunicarse entre ellas mismas para el intercambio de productos y servicios. Las vías de comunicación y el nivel de avance de la población poseen entre sí una dependencia, dado que éstas permiten el desarrollo de un país, debido a esto las vías deben estar en óptimas condiciones, lo cual conlleva a realizar estudios tanto para su diseño y avance para una efectiva comunicación entre poblaciones. Contar con una adecuada infraestructura vial permitirá un mayor acceso de vías, lo cual facilitará la movilidad de las personas hacia distintos lugares, permitiendo así aumentar y mejorar los intercambios económicos de las regiones. (Castañeda y Vigo, 2018)

Por otra parte, el 80% de la carga en Colombia se realiza de manera terrestre, por ello, se debe dar prioridad a las inversiones en diseño de infraestructura vial nueva, con el fin de asegurar la infraestructura que permita tener una economía competitiva. Así pues, dentro de los planes de desarrollo, el estado colombiano ha establecido una hoja de ruta de tal manera que se promueva el desarrollo de la red de infraestructura vial. (Rojas y Ramírez, 2018)

En cuanto a infraestructura vial, Colombia tiene carencias que perjudican la apertura, el desarrollo económico y genera dificultad frente a los retos de la globalización. Se evidencia que existen desventajas significativas como la insuficiencia de auténticos diseños de infraestructura vial en importantes ciudades, así como a nivel rural; es usual contemplar que la mayor parte de las vías nacionales poseen únicamente dos carriles, así también se observa el deficiente estado de la estructura del pavimento de vías urbanas y rurales, sin contar que solo el 20% de éstas se encuentran pavimentadas. (Acosta y Alarcón, 2017)

Asimismo, Brasil cuenta con una red vial compuesta por 1.691.522 kilómetros, pero solo 12%. están pavimentados, o sea, 203.599 kilómetros. Además, cuenta 5.446 kilómetros de calzada doble, y otros 1.317 kilómetros

en proceso de ensanchamiento para convertirse en dobles calzadas. El resto de vías pavimentadas son de un solo carril. La Confederación Nacional de Transportes halló que del 49.9% del asfaltado en el país, casi la mitad se encuentra clasificada como regular, mala o pésima, esto por múltiples problemas como huecos, trizas, desniveles, entre otros. También, los puntos críticos donde no es eficiente la seguridad vial aumentaron su número de 250 en el reporte 2013 para 289 este año. El mal diseño de infraestructura vial repercute en un aumento de costos y vuelve a un país menos productivo en cuanto a economía. El costo de transporte de cargas por vías brasileñas es de un 26%, quiere decir que este porcentaje se añade al precio del producto transportado debido a la defectuosa condición del pavimento. (Oliveira, 2014)

En cuanto a carreteras de segundo orden en Ecuador, la gestión de diseño infraestructura vial es limitada. No existe un sistema de información adecuado referido a las redes viales por lo que no responden oportuna y exactamente cuándo se les requiere. El problema radica en que existe de un daño excesivo de los elementos viales ya que no se cuenta ni se promueve un plan de control, registro, monitoreo y de provisión de datos para futuros planes y programas de intervención que se pueda aplicar a la realidad física, económica y social del pueblo ecuatoriano generando considerables consecuencias: incremento en precios de mantenimiento de vías y de operación vehicular. (Salazar, 2008)

En Perú es difícil elaborar y ejecutar proyectos en el ámbito del diseño de infraestructuras viales, debido a su elevado costo, y además, por lo tedioso que resulta dejar en óptimas condiciones las áreas sobre las cuales de construirán las carreteras, que muy aparte de que va a favorecer de manera directa a los pobladores cercanos al lugar del proyecto, son ellos mismos quienes en reiteradas oportunidades se rehúsan a la ejecución de obras, por el motivo de tener que poner a disposición los terrenos para llevarlos a cabo, al uso de las canteras para la extracción del material, a proporcionar el acceso a lugares en donde pueda acumularse el material excedente, incluso al encause de cursos de agua, entre otros factores que causan que se

perjudique la normal ejecución de los proyectos viales. (Pajares y Monzón, 2018)

La falta de redes viales en las diferentes regiones del Perú, especialmente en las que cuentas con déficit elevado de vías en zona rural y parte de la selva atasca el crecimiento tanto económico como urbano, esto a pesar de contar con un número elevado de lugares turísticos, sectores agrícolas, mineras y agroindustrias. (Bonilla, 2017)

Las calles del sector Cafetal I requieren desde tiempo atrás un diseño de infraestructura vial que les permita contar con una vía en la calidad más óptima para ser transitada, el estado actual en el que se encuentra genera problemas en la población, dificultando su acceso, aumentando el consumo de combustible de los vehículos al tener que movilizarse por calles en condiciones no aptas y generando gastos en su mantenimiento provocado por daños al transitar por el lugar, ocasionando accidentes, y dando una mala imagen al sector. Además, al pasar los vehículos por las calles, provocan el incremento de polvo de manera constante, lo cual viene afectando a los habitantes del lugar debido a dificultades respiratorias, lo que origina un impacto social negativo para las personas pertenecientes al lugar y calles vecinas.

Por tanto, para el correcto desarrollo de la presente investigación; es decir, un adecuado diseño de infraestructura vial, nos regiremos de acuerdo a los criterios establecidos en el Manual de Suelos, Geología, Geotecnia y Pavimentos 2013 y el Manual de Hidrología, Hidráulica y Drenaje correspondientes al Ministerio de Transportes y Comunicaciones (MTC). Así también, el proyecto se basará en los parámetros de las normas GH. 020 Componentes de Diseño Urbano y CE. 010 Pavimentos Urbanos, comprendidos en el Reglamento Nacional de Edificaciones (RNE), los cuales presentan estándares básicos, uniformes y necesarios para estudios o proyectos de vialidad urbana, atendiendo los objetivos de seguridad y confort, con el fin de mejorar la red de transporte del país.

De acuerdo a la investigación de Castañeda y Vigo (2018) señalan que, tener un diseño de infraestructura vial es esencial en cuanto a economía se refiere, pues permite el desarrollo y emprendimiento de actividades públicas y privadas, esta contribuye a elevar el patrimonio del Estado. Debido a esto, si no se tiene una infraestructura vial otorgada eficazmente por la empresa pública o privada, las actividades empresariales de una nación no tendrían una correcta ejecución. También, las características más importantes en donde la ausencia de diseño de la infraestructura vial influye son: aumento de los Costos en traslado de personas, movilización de mercancías, mayor tiempo de viaje e inseguridad.

Porras (2020), encontró que, en el Centro Poblado de Gallito – Lambayeque la infraestructura vial se encuentra en estado de deterioro, encontrando presencia de desechos, huecos, piedras, y sobre todo deplorable señalización de la trocha; lo que origina que los transportistas que hacen uso de esta trocha día a día como vía por dónde transportar productos agrícolas y de primera necesidad, circulen con gran dificultad y se puedan causar perdidas en sus productos. Una de los aspectos positivos en el diseño de infraestructura vial es que potenciará el desarrollo, para así a su vez dar solución a los inconvenientes que aquejan los pobladores en los últimos años, logrando aportar a una mejor calidad de vida y contar con un mejor desarrollo económico de ambas comunidades.

Delgado (2020), encontró que, según la inspección hecha en la zona estudiada Los Huayacanes, La Esperanza, esta no cuenta con vías que permitan trasportar sus productos, además que debido a la ubicación (ceja de selva) las lluvias son abundantes y el acceso se vuelve bastante peligroso, esto genera problemas en el traslado que hacen día a día los pobladores, sumado al calor excesivo que predomina en la zona, hacen que se imposibilite una buena comunicación vial, atascando las mejoras económicas y sobre todo aumentando el tiempo de traslado de los habitantes del lugar, debido a esto se requiere un apropiado diseño de infraestructura vial para poder dar solución a dichos problemas.

De acuerdo a lo planteado podemos decir que, a nivel nacional existen carencias en cuanto a la transitabilidad en zonas tanto urbanas como rurales, por ello es importante contar con una infraestructura adecuada, dado que implica el desarrollo del territorio nacional generando impacto positivo en lo social y económico. Los proyectos viales permiten brindar y dar solución a las necesidades de la población, zanjando el déficit de acceso a sus diferentes regiones, provincias, distritos, centros poblados, etc. Asimismo, a través de las vías se realiza la movilización de los productos cuya producción está dada en diferentes lugares, sumándose el intercambio sociocultural.

La empresa COVIDA S.R.L. con RUC: N° 20481030146 realizó una obra correspondiente al servicio de transitabilidad vial en las calles de la urbanización Huerta Grande, cuya labor comprende el diseño de una infraestructura vial con 6 mil 472 m² de veredas, pavimentación con carpeta asfáltica de 15 mil 400 m², áreas verdes con 2 mil 382 m², más de mil 300 metros lineales de sardineles, 812 m² de rampas de concreto y el pintado de señalizaciones de mil 013 m². El monto del proyecto asciende a los S/ 3'364,670.56 (Tres millones trescientos sesenta y cuatro mil seiscientos setenta con 56/100 soles).

La empresa J Y S SERVICIOS GENERALES SAC con RUC: N° 20552465301 ejecutó la obra concerniente al servicio de transitabilidad en la calle Iquitos parte baja y calles aledañas de la Urb. Los Cocos, Jaén – Cajamarca, cuya obra consta del diseño de una nueva infraestructura vial para su posterior ejecución con pavimento rígido. El monto del proyecto asciende a los S/ 2'063,787.47 (Dos millones sesenta y tres mil setecientos ochenta y siete con 47/100 soles).

En la actualidad, el déficit de infraestructuras viales afecta tanto a peatones, como a vehículos y pobladores. Las calles del sector Cafetal I no cuentan con una vía apta para su transitabilidad, dificultando que tanto las personas como la mercadería puedan trasladarse desde un punto a otro. Una apropiada estructura vial es fundamental en el sistema de transporte de las naciones, el estado en el que se presente interviene de forma directa en gran parte de los costos usuario de la carretera, aumentándole cuando su estado

no es óptimo, como el consumo de combustible y deterioro de vehículos, así como también disminuye la calidad de servicio y afecta la seguridad vial.

El acelerado incremento de las ciudades demanda una mayor infraestructura de transporte y, por ende, un pronto progreso de la red vial actual. La insuficiencia por cubrir estos problemas que presenta el país y que sigue persistiendo hasta el día de hoy, es la causa que se ha originado por diversas razones; desde la contratación, por el inconveniente de la corrupción y por los proyectos y planes que se tuvieron para dar solución a este rezago, hasta la inversión, la cual ha sido escasa y no logra cubrir la demanda que a nivel oficial se tiene. (Guerra, 2020)

Así también, existen causas naturales, como lluvias o inundaciones que poco a poco van deteriorando las vías del país, trayendo consigo consecuencias como hundimientos de las calles, donde se evidencia la baja calidad en obras de drenaje y pavimentación, ocasionando que la transitabilidad de las zonas afectadas se vea interrumpida, además del malestar que genera en los habitantes del sector. Las calles del sector Cafetal I no se llegaron a pavimentar, lo que provocó fisuras, grietas y orificios que significan un peligro para los transeúntes quienes continuamente hacen uso de estas vías, pues al transitar tanto peatones como vehículos por un mal pavimento se genera la presencia de polvillo con los químicos utilizados para la construcción de dicho pavimento esparciéndose por el aire, teniendo como secuela enfermedades respiratorias agudas y crónicas en los habitantes de la zona. Es por esto que, debido al problema presentado, se planteó realizar un diseño de infraestructura vial óptimo, con la finalidad de poder buscar un avance y mejora en la transitabilidad vehicular y peatonal, brindando, además, una mejor imagen del lugar y seguridad a las personas que habitan en él.

Con el presente estudio se busca plantear una solución al problema existente en las calles del sector Cafetal I, distrito de Guadalupe, por la carencia de infraestructura vial en el lugar mencionado, elaborando el diseño más adecuado, teniendo en cuenta que debemos conocer el lugar, su topografía y realizar un estudio de la zona, para así poder efectuar el cálculo del diseño

del pavimento con toda la información referente a las características del terreno del lugar.

Es importante saber que, de no realizarse este proyecto como una alternativa de solución al problema, la población seguirá careciendo de una infraestructura que le permita transitar con seguridad y realizar sus actividades de la mejor manera, padeciendo por más tiempo los problemas que perjudican tremendamente en la salud poblacional, por el polvo que genera y lo riesgoso que resulta. Por otro lado, las autoridades tienen el deber de proporcionar a los pobladores del sector Cafetal I una infraestructura vial de calidad, mejorando la imagen del lugar y contribuyendo a un mejor desarrollo de la sociedad con una vía segura y transitable.

1.2. Planteamiento del problema

¿Cuál es el diseño de infraestructura vial de las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021?

1.3. Justificación

La razón primordial para la realización de este proyecto de investigación es la inexistencia de infraestructura vial en las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, donde los habitantes del lugar viven expuestos a condiciones precarias que resultan perjudiciales para la salud, economía y desarrollo del lugar donde viven, ante este problema que es la falta de un diseño adecuado de una infraestructura que permita transitar a la población por una vía que les garantice seguridad.

De esta manera, el trabajo presentado como una posible solución a los diferentes problemas que suelen sufrir los vecinos durante tiempo atrás, contribuirá en el desarrollo, mejora de vida y economía de los individuos que residen en las calles del sector al contar con vías de calidad. Al desarrollar el proyecto planteado como una alternativa ante el problema presentado en las calles del sector Cafetal I, se logrará aportar a su pronta solución, pudiendo, además, cubrir lo requerido por los individuos en el área de influencia del proyecto, mejorando el nivel de servicio, generando un impacto positivo por su contribución.

En consecuencia, esta alternativa frente al problema beneficiará de forma directa a los habitantes de las calles del sector Cafetal I, distrito de Guadalupe, tanto en salud, como en lo social y económico, permitiéndoles lograr un próspero desarrollo a futuro. Por otro lado, indirectamente se beneficiarán las investigaciones que se efectúen en un futuro, contando con un trabajo previo como base debidamente detallado con todo lo que corresponde al tema a tratar.

Por su parte, Añorga (2019), sostuvo que la realidad empeora en La Libertad con respecto a la Red Vial Departamental o Regional, dado que solo está pavimentado un 4.8% de un total de 1.932 km. En cuanto a la Red Vial Vecinal, esto se agrava: de los 5,602 kilómetros, solo el 2,8% está asfaltado.

Por otro lado, en nuestro país el 80% del total de transporte de pasajeros se da por carretera, y el 60% de ese porcentaje está dado por el transporte

de carga. Este dato representa una crisis en el sistema de transitabilidad vial, ya que el Perú cuenta con 78 mil kilómetros de carretera, de los cuales la mayoría son generalmente vías vecinales no pavimentadas, y solo 300 km son autopistas. (Rivera, 2016)

En tal sentido, de acuerdo a los datos presentados y en base a la solución de la problemática identificada en nuestra investigación, resulta preciso plasmar el proyecto como alternativa, desarrollándose con el objetivo de contar con un diseño de infraestructura vial que establezca vías de circulación en la que tanto vehículos como peatones puedan circular, solucionando la carencia de infraestructura básica de la zona, contribuyendo con datos que sean utilizados en el estudio y teniendo en cuenta ciertos parámetros y requerimientos de diseño.

La justificación práctica se basa en contar con una infraestructura vial de las calles en condiciones aceptables, que permita un mejor tránsito vehicular y peatonal en el sector Cafetal I, siendo fundamental que la población viva en un lugar donde pueda transitar de manera segura, obteniéndose como consecuencia de la nueva obra según el diseño definitivo de acuerdo a los respectivos estudios de ingeniería. Asimismo, el proyecto contribuirá a la reducción de accidentes peatonales que son causados por la ausencia de pistas, se definirá la zona peatonal y así los habitantes no tendrían que circular por la vía en su totalidad como lo vienen haciendo, dado que es un lugar muy transitado, pues cerca se encuentra un coliseo y una losa deportiva donde mayormente los niños y jóvenes acuden para un momento de recreación, creando también un enfoque a largo plazo, mejorando el tiempo en el que los vehículos recorren las calles y evitando enfermedades de tipo respiratorias. (Pezo y Lozano, 2018)

Así pues, el proyecto de investigación de diseño no experimental y de tipo descriptivo, se llevará a cabo basándose en lo definido por el Ministerio de Transportes y Comunicaciones, utilizando las normas concernientes al sector, así como también se hará uso de las normas técnicas CE.010 Pavimentos Urbanos y GH. 020 Componentes de Diseño Urbano. Además, utilizará la metodología de recolección de datos en campo, a través de los

estudios necesarios a realizar para el proyecto, donde posteriormente se hará uso de Softwares como Civil 3D, y MS Excel para el correcto procesamiento de datos.

1.4. Objetivos

1.4.1. Objetivo General:

Elaborar el diseño de infraestructura vial de las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021.

1.4.2. Objetivos específicos:

- **O.E.1.** Realizar el levantamiento topográfico para definir trazos y conocer la superficie del área a estudiar del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021.
- **O.E.2.** Realizar el estudio de mecánica de suelos para analizar las propiedades físicas del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021.
- **O.E.3.** Realizar el estudio de tráfico del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021.
- **O.E.4.** Realizar el estudio hidrológico de la zona del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021.
- **O.E.5.** Elaborar el diseño geométrico del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021.
- **O.E.6.** Elaborar el diseño de pavimento de las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021.

1.5. Hipótesis

El diseño de infraestructura vial cumplirá con los parámetros que establecen el Manual de Suelos, Geología y Geotecnia y el Manual de Hidrología, Hidráulica y Drenaje del Ministerio de Transportes y Comunicaciones; así como también se regirá con lo estipulado en el Reglamento Nacional de Edificaciones en la sección de Habilitaciones Urbanas con la norma GH. 020 Componentes de Diseño Urbano y CE. 010 Pavimentos Urbanos en el sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021.

II. MARCO TEÓRICO

2.1 Antecedentes

"Estudio y diseño vial de la av. 15 de noviembre (etapa III de 1.71 km de longitud), Cantón Tena, provincia de Napo"

(Moreno, 2013). El propósito de la investigación fue facilitar una herramienta técnica que mejore y mantenga la vía a estudiar en las más óptimas condiciones, para brindar una adecuada serviciabilidad, reduciendo la duración de recorrido (p.02). Para ello, se propuso un diseño geométrico vial teniendo en cuenta las particularidades de la vía. El estudio fue de tipo descriptiva, la población fue los habitantes del cantón Tena y la muestra fue la av. 15 de noviembre (p.12). De acuerdo a cada estudio ejecutado para el proyecto y con los datos proporcionados por los mismos, se obtiene como resultado que la estructura del pavimento comprende una subbase de 30 cm, una base de 20 cm y concreto asfáltico de 7.5 cm, mejorando la estructura y volviéndose segura para el tránsito de peatones y vehículos. Finalmente, el autor concluye que, resulta importante la decisión de realizar el estudio y diseño vial, pues así se podrá tener mejoras concernientes al servicio, la conexión entre ciudades y el turismo incentivando el progreso de la localidad, cantón y la provincia, propiciando la rapidez operativa, economía, regularidad y estabilidad al usuario, todo dentro del marco de las actividades y costos previstos. (p.311)

En este proyecto se rescata la importancia de aportar un estudio detallado y los criterios adecuados a tener en cuenta para el diseño vial de la red urbana de la ciudad Tena, con aptas condiciones geométricas de la vía para la demanda actual y futura de tráfico, determinando un periodo de vida útil y extenso.

"Diseño de la red vial de la parroquia La Villegas, Cantón La Concordia, provincia de Santo Domingo de los Tsáchilas"

(Aldeán, 2015). Elaboró el diseño geométrico urbano de las vías de circulación, que componen la red vial de la parroquia La Villegas (p.04). Este estudio fue de tipo descriptivo; se utilizó una metodología simple para determinar las variables que intervienen en el diseño urbano de las calles en

estudio. La población fueron los habitantes de la provincia Santo Domingo (p.07). Se realizó el estudio topográfico, estudio de mecánica de suelos, encuestas socioeconómicas y estudio de tráfico de donde se obtuvieron los datos fundamentales en el proceso de diseño de los distintos tipos de pavimentos que se considerarán en la investigación. Por otra parte, la investigación contiene el procedimiento básico para el diseño de pavimentos asfáltico y de adoquín. Se pudo definir el tipo pavimento a usar en las calles mencionadas, considerando la influencia del análisis económico y diversas condiciones existentes. Así también, se conoció las propiedades concretas que influyen en un proyecto vial en zonas de influencia urbana y rural de una población. El autor concluye que, con el trabajo planteado se intenta dar una solución a la problemática que tiene la parroquia La Villegas, en base al diseño de la red vial cumpliendo a cabalidad las especificaciones técnicas de la AASHTO, dado que en la actualidad no son cumplidas. (p.242)

Este estudio proporciona información relevante acerca de cómo diseñar un pavimento que satisfaga las necesidades de transporte, y permita que las personas vivan en una zona que les proporcione seguridad al trasladarse, con un periodo de diseño y metodología basado en las técnicas AASHTO.

"Diseño de infraestructura vial para accesibilidad del tramo Callanca km 0+000 a cruce de carretera Saltur km 7+026, Pomalca, Chiclayo, Lambayeque 2018"

(Gonzales, 2019). Tuvo como finalidad diseñar la infraestructura vial para mejorar la accesibilidad del tramo Callanca Km 0+000 a cruce de carretera Saltur Km 7+026, Pomalca, Chiclayo, Lambayeque 2018 (p.18). La averiguación fue cuantitativa descriptiva, no experimental (p.20). La población fue 100 % del tramo de la infraestructura vial y la muestra fue 7.026 Km de la vía beneficiando a los Centros Poblados aledaños a esta (Buenos Aires, Collud, Las Palmeras, San Antonio y Los Ceibos) (p.22). Se consideró como instrumento la técnica de observación y las fichas para anotación de datos. Se obtuvo como resultados un diseño con las siguientes características: espesor de afirmado de 0.40 m., ancho de la superficie de rodadura de 6.00 m. con un bombeo de 3.00% y un peralte máximo de

4.00%. Además, se obtuvo también que un adecuado servicio de una carretera tiene gran dependencia con respecto a su sistema de drenaje (p.26). Al acumularse el agua de lluvia sobre la calzada, origina cierto nivel de riesgo por deslizamiento, agravándose la situación con el tráfico rápido. La infiltración puede generar reblandecimiento de la plataforma y deteriorar la estructura. El autor concluye que, el diseño presentado será adecuado ya que se trató de cumplir estrictamente todas las condiciones que imparten los reglamentos para diseño de carreteras, en este caso, para pavimentos flexibles de tercera clase cumpliendo con la vida útil para lo cual fue diseñado. (p.32)

La investigación de este proyecto proporciona información acerca del estado de las vías poco transitadas y la importancia de dar mantenimiento periódico para conservar su buen estado, ofreciendo tranquilidad y conservación de la misma, para que, de esa manera, cumpla con el tiempo de vida útil para la cual fue diseñada.

"Diseño de pavimento flexible en el AA. HH Barrio 5 sector T2, distrito El Porvenir, Trujillo, 2019".

(Flores, 2019). El autor diseñó el pavimento flexible en el sector T2 del AA. HH Barrio 5, siendo necesario un espacio ideal para un mejor desplazamiento vehicular y peatonal, dado que las vías presentaban deterioro en un 60% del total (p.04). Además, el estudio dio a conocer los beneficios de su realización. Fue una investigación no experimental – descriptiva, recopilando y sintetizando la información requerida. Tuvo por población a todas las calles del asentamiento humano. Asimismo, desarrolló la técnica de la observación, recolectando los datos necesarios para el proyecto mediante instrumentos como guías de observación. Se obtuvo como resultados un pavimento con un espesor de 5 cm de la capa de rodadura; en la capa de subbase un valor de 20 cm y 15 cm para la capa de base, utilizando el método AASHTO 93 (p.57). Finalmente, se concluye que, se logró determinar el diseño de pavimento flexible en la zona especificada, habiendo realizado los estudios correspondientes para su correcto desarrollo garantizando una mejor transitabilidad. (p.59)

Esta investigación brinda información acerca del estado actual de la transitabilidad en el sector T2 del AA. HH Barrio 5, además de identificar sus causas y sus consecuencias, aspectos a tener en cuenta en el diseño de una estructura que proporcione durabilidad y eficacia buscando mejorar la calidad de circulación y evitando limitaciones.

"Diseño estructural del pavimento flexible para el anillo vial del Óvalo Grau – Trujillo - La Libertad"

(Gómez, 2014). Se tuvo como fin, diseñar la estructura del pavimento flexible para el anillo vial del Óvalo Grau (p.04). Fue un estudio de tipo descriptivo, su muestra estuvo compuesta por el tramo en estudio del anillo del Óvalo Grau y la población fue toda la red vial del lugar. Las técnicas empleadas en el estudio fueron la medición y observación con la finalidad de recopilar información. El método utilizado en la investigación está orientado a la comparación de las Normas de suelo y pavimentos y a la metodología AASHTO 93 para el diseño del pavimento flexible y (p.09). Asimismo, con los resultados se halló una estructura con las siguientes especificaciones: carpeta= 10 cm., base= 35 cm. y subbase= 30 cm, así como también, se obtuvo que existe relación entre el espesor de la estructura del pavimento calculado con los Factores de Equivalentes de ejes tipo de 80 Kn o 18 Kips o ESALs y el Módulo Resiliente de la Subrasante hallada. (p.64).

En consecuencia, el autor concluye que, existen indicadores que determinan ciertamente la conducta del pavimento como el lugar de emplazamiento, teniendo en consideración variables de tránsito, factores ambientales, propiedades mecánicas de los materiales y suelo, el drenaje y niveles de serviciabilidad y confiabilidad, dando como consecuencia, un resultado más eficiente y duradero. (p.66)

El estudio fue de gran ayuda dado que plantea criterios estructurales de acuerdo a parámetros de normas y metodologías para un correcto diseño de pavimento con el fin de lograr un buen nivel de transitabilidad que permita contar con vías que manifiesten seguridad y comodidad al usuario.

"Diseño de una pavimentación flexible de los sectores San José de Moro, El Algarrobal, Huaca Blanca del distrito de Pacanga – Chepén -La Libertad"

(Leyva y Bazán, 2018). Los autores diseñaron la estructura de pavimento flexible para 7.432 km de la vía que conduce por los sectores San José de Moro, El Algarrobal y Huaca Blanca (p. 29). La investigación usó el diseño descriptivo simple (p. 30). Su población y muestra estuvo comprendida por toda su área de influencia, que corresponde a los sectores San José de Moro, El Algarrobal y Huaca Blanca. Para la toma de información se encuentra la técnica de observación con respecto a la realidad de los pobladores. Asimismo, se emplearon instrumentos referentes a los estudios realizados, como estudio topográfico y estudio de mecánica de suelos (p. 34). Los principales resultados fueron un tipo de terreno ondulado con una pendiente máxima de 4%. Además, de acuerdo a las particularidades existentes del lugar se presenta un SNreg de 2.175, definiendo como valores finales para la capa de rodadura 10 cm, para la base 15 cm y 15 cm para la sub base. Finalmente se concluye que, el pavimento se afectado principalmente por las cargas de tráfico vehicular impuestas al pavimento y las características de la subrasante, por lo que estudios previos resultan indispensables, calculando así el tráfico requerido.

La investigación recalca la importancia de un mantenimiento a forma de prevención de incidencias, que a su vez sea rutinario en los tiempos necesarios para evitar el deterioro de la vía. Por otro lado, el presente proyecto adoptó procedimientos del método AASHTO 93 y el análisis del comportamiento del pavimento durante el periodo de diseño, necesario para un correcto estudio de vías y diseño de la misma.

"Diseño de infraestructura vial para transitabilidad vehicular y peatonal con pavimentos flexibles en el C.P Seman, Guadalupe, Pacasmayo, La Libertad 2018".

(Carbajal y Estrada, 2020). El estudio abarcó el diseño de infraestructura vial para mejorar la transitabilidad vehicular y peatonal en el C.P. Seman, Guadalupe, Pacasmayo, La Libertad (p.09). La naturaleza del proyecto fue

no experimental. La población fue el porcentaje en su totalidad de la vía, la cual consta de un total de 22,132.05 m² de pavimento rígido, 8,643.41 m² de vereda y 8,234.71 m² de berma; y la muestra fueron el área de estudio es 39, 010.17 m². Los instrumentos empleados fueron cuestionarios (p.14). La estructura de diseño fue un pavimento flexible de 2 carriles con un espesor de base 0.30 m. y sub base de 0.20 m, con cunetas triangulares de 2,096.66 ml. y un tiempo de vida proyectado de 20 años. Asimismo, las características de las veredas fueron concreto f'c= 175kg/m², e= 0.10 m. y juntas de dilatación cada 3m (p.22). Se concluyó que el C.P Seman, presenta muchas deficiencias en el aspecto vehicular y peatonal es por ello se propone este diseño tanto de pavimento, veredas y algunas áreas verdes con el fin de aportar al desarrollo de este centro poblado y a la vez incitar a sus autoridades a ejecutar esta propuesta y/o en su defecto sirva como guía en la ejecución. (p.28)

Esta investigación dio a conocer el déficit de una infraestructura vial en los centros poblados pequeños y la necesidad de éste al ser un pueblo relacionado a la agricultura en el cual sus pobladores se trasladan en sus vehículos para acudir a su centro de trabajo, mostrando la importancia de las vías al conectar distintos lugares.

2.2 Bases Teóricas

2.2.1 Diseño de infraestructura vial

El diseño de infraestructura vial se refiere al desarrollo de una estructura que reúna las características necesarias y deseadas de una vía óptima permitiendo que los vehículos circulen en condiciones seguras y cómodas hacia diferentes lugares. (Bernal, 2004)

2.2.2 Vías

Escenario destinado al uso común donde se desarrolla el tráfico que se encuentra dentro del límite urbano. (Norma CE.010 Pavimentos Urbanos)

Calzada

Su función primordial radica en posibilitar la circulación de vehículos. Está conformada por dos carriles o más, así como también cuenta con uno o dos sentidos para transitar. (Correa, 2021)

Carril

Es parte que conforma la calzada que tiene la finalidad permitir la circulación de una fila de vehículos. Ésta debe contar con el ancho suficiente para tal fin. (Norma CE.010 Pavimentos Urbanos)

Bermas

Parte correspondiente a una vía cuyo fin es el de proporcionar un óptimo soporte lateral al pavimento de la calzada impidiendo la rotura de los bordes donde, en su mayoría, es utilizado por peatones y ciclistas. (Manual de Seguridad Vial, 2016)

Veredas

Sección de la vía comprendida entre el límite de propiedad y la pista cuya finalidad radica en permitir el paso individuos. (CE.010 Pavimentos Urbanos)

Sardinel

Conformado por elementos prefabricados de concreto cuyo propósito es limitar el espacio de circulación, donde los vehículos transitarían únicamente sobre la calzada, brindando seguridad a los peatones. (Manual de diseño geométrico de vías urbanas, 2005)

2.2.3 Tipos de vías

Locales

Permiten el ingreso directamente a áreas residenciales, industriales y comerciales, debiendo llevar únicamente su tránsito propio, generado

tanto de ingreso como de salida. Generalmente transitan vehículos livianos. (Correa, 2021)

Colectoras

Conducen el tránsito de las vías locales a las arteriales y viceversa. Son los vehículos que se dirigen a destinos como casas o comercio los que generalmente usan este tipo de vías. El flujo de tránsito es interrumpido frecuentemente por intersecciones semaforizadas. (Correa, 2021)

Arteriales

Posibilitan conexiones interurbanas con regular fluidez y acceso limitado. No se permite la descarga de mercancía y el estacionamiento. Asimismo, conforman la red vial básica de la ciudad. (Norma CE.010 Pavimentos Urbanos)

Expresas

Estas vías unen zonas con tráfico elevado y poseen una fluidez media con respecto a las conexiones interurbanas; además, transportan vehículos livianos en gran cantidad y alta velocidad. (Norma CE.010 Pavimentos Urbanos)

2.2.4 Pavimentos

Se encuentran conformados por capas que varían en cuanto a espesor y calidad, que se apoyan sobre una capa de soporte conocida como subrasante. Estas capas están compuestas por materiales directos, siendo los especialistas los encargados de definir sus características para así soportar las cargas aplicadas por el tráfico. (Sandoval y Rivera, 2019)

2.2.4.1 Tipos de pavimentos

Pavimento Flexible

Es un tipo de pavimento formado principalmente por una mezcla asfáltica que se apoya en dos capas inferiores (base y sub-base). Sin embargo, se puede excluir cualquiera de estas dos capas si se dan las condiciones. (Castaño y otros, 2009)

Pavimento Rígido

Aquellos hechos de concreto de cemento principalmente y el cual comprende una capa superficial o losa plana de concreto construida sobre una capa de base granular y apoyada sobre una subrasante. Se distinguen principalmente por poseer un ciclo de vida eficaz prolongado y estar diseñada para todo tipo de tráfico, tales como calles, avenidas, aeropuertos entre otros. (Guerra, 2020)

Pavimento Articulado

Su capa de rodamiento la conforma elementos prefabricados de pequeñas dimensiones que por parte individual poseen alta resistencia, denominados adoquines, unidos entre sí por un sellante para su retención y que ayuda a impermeabilizar la estructura. (Díaz, 2018)

2.2.5 Estudio topográfico

Se refiere al conjunto que engloba todas aquellas operaciones necesarias a realizar en un terreno específico con las herramientas necesarias para una representación gráfica adecuada, lo cual es importante para situar el proyecto a ejecutar. Para saber la posición de puntos en el área de interés, se requiere fijar su ubicación a través de tres coordenadas como latitud, longitud y elevación. El inicio para la realización de una serie de procesos básicos cuando se requiere identificar y conocer el terreno a estudiar, es el levantamiento topográfico. (Berniz y Gómez, 2010)

2.2.6 Estudio de suelos

Estudiar los suelos y canteras tiene como finalidad conocer la ubicación, examinar la calidad de agua y materiales y ver que todo esté en correctas condiciones; es decir que el estudio de suelos permite identificar que los materiales estén de acuerdo a norma, puesto que involucra el comportamiento y su utilidad en un pavimento. (Kaliakin, 2017)

Realizar un estudio de suelos es imprescindible para lograr un correcto diseño de pavimento, y fundamental para todo tipo de cálculo, permitiendo evaluar las singularidades físicas del suelo de la zona a estudiar en el proyecto.

2.2.6.1 Granulometría

Es la distribución por tamaños de las partículas de un árido. Para conocer la distribución de tamaños de las partículas que componen una muestra de árido se separan estos mediante cedazos o tamices. (Universidad de Alicante, 2009)

2.2.6.2 CBR

Es un valor que determina el soporte del suelo que refiere al 95% de la M.D.S y a una inserción de carga de 2.54 milímetros. (Dirección General de Caminos y Ferrocarriles, 2013)

2.2.7 Estudio de tráfico

Este estudio pretende cuantificar el conteo vehicular para, de esa manera, conocer con seguridad volumen transitado por la vía y así poder designar características de diseño, en tramos homogéneos siendo fundamental para la evaluación económica de diferentes alternativas. (Jordán, 2020)

2.2.7.1 Indice Medio Diario (IMD)

Cantidad promedio de vehículos que transitan en una vía determinada medido en un total de 24 horas. (Ministerio de Transportes y Comunicaciones, 2006)

2.2.7.2 Índice Medio Diario Anual (IMDA)

Es el promedio aritmético del conteo de tránsito diario en todo el año predecible o que ya existe en un sector de una vía. Esto nos da una idea cuantitativa de lo importante que resulta la vía en el sector tomado para la muestra ya que nos permitirá analizar opciones de

mejoras mediante cálculos de viabilidad económica. (Manual de Carreteras: Diseño Geométrico de Carreteras DG-2018.)

Ecuación 1. Índice Medio Diario Anual

$$IMDa = FC \times IMDs$$

Donde:

IMDa = Índice Medio Diario Anual

FC = Factor de corrección estacional

IMDs = Índice Medio Diario Semanal

Siendo el valor del IMDA de 100%

2.2.7.3 ESALs de Diseño

Correspondiente a la cantidad de cargas aplicadas por Eje Estándar previsto a lo largo del tiempo para el cual fue diseñado el pavimento. (Norma CE.010 Pavimentos Urbanos)

2.2.8 Estudio hidrológico

Es un estudio que abarca todos los aspectos para el diseño hidráulico de obras de drenaje y sus complementarias, está basada en identificar y conocer los cauces y estructuras hidráulicas de evacuación, permitiendo realizar los cálculos correspondientes para el diseño o tratamiento de los sistemas hidráulicos. (Manual de Carreteras: Diseño Geométrico de Carreteras DG-2018.)

2.2.8.1 Periodo de retorno

Aquel promedio de tiempo determinado en años, en donde se supera o iguala el valor de un caudal máximo cada cierto año. Resulta importante considerar la posibilidad excedencia de un evento, la vida útil de la estructura y el riesgo de falla admisible. A su vez, este último se puede calcular mediante la fórmula siguiente:

Ecuación 2. Riesgo de falla admisible

$$R = 1 - (1 - 1/T)^n$$

Dónde:

R = Riesgo de falla admisible

T = Periodo de retorno

n = Vida útil de la obra

2.2.9 Obras de drenaje

Comprende la construcción de todas las obras relacionadas con la evacuación de aguas que puedan causar obstrucciones, acumulaciones o daños en la estructura. Es esencial crear un diseño óptimo para evitar filtraciones que provoquen deterioro de la estructura. (Manual de Carreteras: Diseño Geométrico de Carreteras DG-2018.)

2.2.9.1 Cunetas

Son desniveles longitudinales ubicados en los extremos de las vías de circulación cuya función es recoger el agua de las lluvias que drena a éstas. Son de suma importancia para la infraestructura vial, ya que permite mantener la seguridad para los vehículos en circulación. Tiene como objetivo recibir el agua de la superficie para posteriormente evacuarla a zonas fuera de la vía. (Arteaga, 2015)

Tabla 1. Inclinaciones máximas del talud Interior de la cuneta

V.D. (Km/h)	I.I	I.M.D.A (VEH./DIA)			
V.D. (Km/h)	< 750)	> 750		
	1:02				
<70		(*)	1:03		
	1:03				
> 70	1:03		1:04		

Fuente: Manual de Hidrología, Hidráulica y Drenaje, 2016

a) Capacidad de las cunetas

Se utilizará principio del flujo en canales abiertos, haciendo uso de la ecuación de Manning:

Ecuación 3. Ecuación de Manning

$$Q = A \times V = \frac{A \times R_h^{2/3} \times s^{1/2}}{n}$$

Dónde:

Q: Caudal (m³/seg)

V: Velocidad media (m/s)

A: Área de la sección (m²)

P: Perímetro mojado (m)

Rh: A/P Radio hidráulico (m) (área de la sección entre el perímetro mojado).

S: Pendiente del fondo (m/m)

n: Coeficiente de rugosidad de Manning

b) Caudal Q de aporte

Es el caudal calculado en el área de aporte correspondiente a la longitud de cuneta. Se hace uso de la siguiente fórmula:

Ecuación 4. Caudal de aporte (Q)

$$Q = \frac{C \times I \times A}{3.6}$$

Dónde:

Q: Caudal en m3/s

C: Coeficiente de escurrimiento de la cuenca

A: Área aportante en km²

I: Intensidad de la lluvia de diseño en mm/h

c) Dimensiones mínimas

Se fijarán de acuerdo a las condiciones pluviales.

Tabla 2. Dimensiones mínimas

REGIÓN	PROFUNDIDAD (D) (M)	ANCHO (A) (M)
Seca (<400 mm/año)	0.20	0.50
Lluviosa (De 400 a <1600 mm/año)	0.30	0.75
Muy Iluviosa (De 1600 a <3000 mm/año)	0.40	1.20
Muy Iluviosa (>3000 mm/año)	0.30*	1.20

Fuente: Manual de Hidrología, Hidráulica y Drenaje, 2016

2.2.10 Diseño geométrico

Es la acción principal a realizar dentro de un proceso de construcción o regeneramiento de una vía estableciendo su forma geométrica y definiendo los elementos que la componen para que se mantenga de manera segura, estética, económica, funcional y acorde al beneficio del medio ambiente. (Navarro, 2017)

2.2.10.1 Velocidad de diseño

Referida a la máxima velocidad en la que los vehículos pueden circular de forma segura sobre un carril de la vía en específico. (Manual de diseño geométrico de vías urbanas, 2005)

2.2.10.2 Alineamiento horizontal

Es una proyección del camino sobre un plano de vista horizontal, compuesto por tangentes y curvas. (Yugcha, 2016)

2.2.10.2.1 Curvas horizontales

Son arcos de circunferencia de un único radio que conectan dos tangentes consecutivas, formando así una proyección horizontal de curvas, ya sean reales o espaciales. (Cárdenas, 2013)

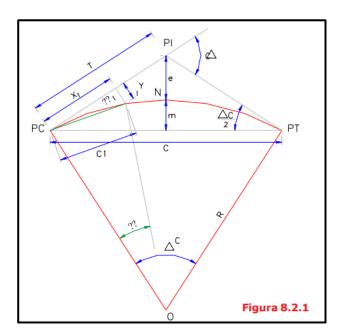


Figura 1. Curvas circulares simples. Fuente: Manual de diseño geométrico de vías urbanas, 2005

2.2.10.2.2Sobreancho

Tiene por fin mantener la seguridad de los vehículos al transitar en algunos tramos de curvas. El ancho puede variar de acuerdo al tipo de vehículo, radio de curvatura y velocidad de directriz. (Manual de diseño geométrico de vías urbanas, 2005)

2.2.10.3 Bombeo

Es una pequeña pendiente transversal que tiene por finalidad la evacuación de aguas superficiales. Los valores del bombeo están sujetos a factores como la precipitación de la zona y el tipo de superficie. (Manual de diseño geométrico de vías urbanas, 2005)

Tabla 3. Valores de bombeo de la calzada

Ancho Mínimo de	Bombeo %		
Carril en Pista Normal (Mts) (2, 3) 2.75	Precipitación < 500 Precipitación > 50 mm/año Precipitación > 50		
Pavimento superior	2.0	2.5	
Tratamiento superficial	2.5 (1)	2.5 - 3.0	
Afirmado	3.0 – 3.5 (1)	3.0 – 4.9	
(1) En dimas definitivamente	e desérticos se puede reb	ajar los bombeos hasta	

un mínimo de 1.0 % para pavimentos superiores y 2% para el resto

Fuente: Manual de diseño geométrico de vías urbanas, 2005

2.2.10.4 Peralte

Inclinación transversal al eje que se le da a la vía para que pueda equilibrar el efecto de la fuerza centrífuga en los vehículos que pasan por una sección curva. (Yugcha, 2016)

Ecuación 5. Peralte

$$p = \frac{v^2}{127R} - f$$

Donde:

p: Peralte máximo asociado a V

V: Velocidad de diseño (km/h)

R: Radio mínimo absoluto (m)

f: Coeficiente de fricción lateral máximo asociado a V

2.2.10.5 Sección transversal

Representación de la elevación de la vía hecha en base a un corte vertical normal al alineamiento horizontal. Esta sección permite la visualización de los distintos elementos de la vía para su identificación y medición. (Manual de Carreteras: Diseño Geométrico de Carreteras DG-2018.)

2.2.10.6 Alineamiento vertical

2.2.10.6.1 Perfil Longitudinal

Línea que representa de forma gráfica la disposición de la vía verticalmente en función al terreno. (Manual de diseño geométrico de vías urbanas, 2005)

2.2.10.6.2Pendientes

Son inclinaciones del terreno natural. La línea máxima de pendiente del terreno natural se considerará como la inclinación máxima de este sin importar su dirección, alrededor del eje de la vía. (Cárdenas, 2013)

Tabla 4. Valores de pendiente máxima

TIPO DE VÍA	Terreno Plano	Terreno Ondulado	Terreno Montañoso
Vía Expresa	3%	4%	4%
Vía Arterial	4%	5%	7%
Vía Colectora	6%	8%	9%
Vía Local	Según topografía	10%	10%
Rampas de acceso o salidas a vías libres de Intersecciones	6% - 7%	8% - 9%	8% - 9%

Fuente: Manual de diseño geométrico de vías urbanas, 2005

2.2.10.6.3 Curvas verticales

Son los elementos del diseño en perfil que unen dos tangentes verticales sucesivas, de tal manera que a lo largo de su longitud se realiza un cambio paulatino de la tangente de salida. (Yugcha, 2016)

2.2.10.7 Periodo de diseño

Se refiere al tiempo determinado al iniciar el diseño, determinando las características del pavimento y analizando su comportamiento para múltiples opciones en el transcurso del tiempo a largo plazo, de modo que sea posible cumplir con las exigencias del servicio durante aquel periodo. (Universidad Mayor de San Simón).

2.2.11 Diseño de pavimento

Consiste en hallar mediante cálculos el grosor de las capas que forman la sección de la estructura de un pavimento, con el fin de soportar cargas en un periodo establecido. (Proccsa, 2020)

Tabla 5. Requisitos mínimos para el diseño estructural de pavimentos

Tipo de Pavimento		Flexible Rígido		Adoquines	
	Sub-rasante	Suelos G Suelos Co Esp ≥ 250 mm	95 % de compactación: Suelos Granulares - Proctor Modificado Suelos Cohesivos - Proctor Estándar Espesor compactado: ≥ 250 mm – Vías locales y colectoras ≥ 300 mm – Vías arteriales y expresas		
	Sub-base	CBR ≥ 40 %			
	Base	CBR ≥ 80 %	N.A.*	CBR ≥ 80%	
Imprima	ción/capa de apoyo	Penetración de la Imprimación ≥ 5 mm	N.A.*	Cama de arena fina, de espesor comprendido entre 25 y 40 mm.	
Espesor	Vías locales	≥ 50 mm		≥ 60 mm	
de la	Vías colectoras	≥ 60 mm	≥ 150 mm	≥ 80 mm	
capa de	Vías arteriales	≥ 70 mm		NR**	
rodadura	Vías expresas	≥ 80 mm	≥ 200 mm	NR**	
Material		Concreto asfáltico ***	MR ≥ 34 Kg/cm ² (3,4 MPa)	f' _c ≥ 380 Kg/cm ² (38 MPa)	

Fuente: Norma Técnica CE. 010 Pavimentos Urbanos

2.2.11.1 Base

Es la capa ubicada entre el suelo de fundación y la carpeta de rodadura. En esta se distribuyen y transmiten las cargas provocadas por el tránsito en el suelo de fundación o sub base. (Amambal, 2017)

2.2.11.2 Sub base

Es una capa de grosor previamente calculado que contiene material especificado y el cual soporta las cargas transmitidas por la base y la carpeta asfáltica. Dependiendo de la composición del suelo y del diseño del pavimento, en algunos diseños esta capa se omite. (Manual de suelos, geología, geotecnia y pavimentos, 2013)

2.2.11.3 Carpeta asfáltica

Es la parte superior del pavimento. Tiene tres funciones que son ejercer como superficie de rodamiento, impermeabilizar el pavimento y resistir esfuerzos producidos por cargas de tránsito. (Chávez, 2018)

2.2.12 Método AASHTO 93

Su finalidad es calcular el número estructural requerido (SNr), con el cual se determinan los espesores de cada capa del pavimento que serán construidas sobre la sub rasante para que puedan soportar las cargas vehiculares durante el periodo de diseño respectivo. (Manual de suelos, geología, geotecnia y pavimentos, 2013)

2.2.13 Señalización

La señalización en un proyecto de infraestructura vial busca regular correctamente la circulación de vehículos y peatones para que, de esa manera, el tránsito se desarrolle de forma segura y ordenada, estando acorde con el diseño geométrico desarrollado. Es importante el uso de señalización para prevenir e informar a los transeúntes, minimizando los riesgos de accidentalidad derivados de maniobras vehiculares. (Gómez, 2018)

III. METODOLOGÍA

3.1. Tipo, enfoque y diseño de investigación

3.1.1. Enfoque de investigación

El proyecto presenta un enfoque cuantitativo deductivo, cuenta con una sola variable y se basará en la realización de cálculos para el diseño de una infraestructura vial. La investigación cuantitativa pretende hallar la asociación entre variables y objetivación de los resultados por medio de una muestra haciendo a una población de donde es proveniente la muestra. (Pita y Pértegas, 2002)

3.1.2. Tipo de investigación

3.1.2.1. Tipo de investigación por el propósito

La investigación de acuerdo a su propósito es aplicada; es decir; no se crearán nuevas teorías, sino que, el diseño geométrico se enfocará en el uso de la norma GH. 020 Componentes de Diseño Urbano; para las obras de arte, como el drenaje urbano, se utilizará el Manual de Hidrología, Hidráulica y Drenaje del Ministerio de Transportes y Comunicaciones y para la pavimentación se aplicará lo dispuesto en la norma CE. 010 Pavimentos Urbanos y el manual de suelos, geología, geotecnia y pavimentos 2013.

3.1.2.2. Tipo de investigación por el diseño

Según el diseño, la investigación es de tipo no experimental porque no existe manipulación de variables, dado que hay una sola variable y no existe otra que la pueda modificar; y es descriptiva porque se describirá de forma detallada los distintos estudios necesarios a realizarse. Los diseños descriptivos investigan la incidencia y valores en que se manifiesta las variables. (Cholán, 2017)

3.1.2.3. Tipo de investigación por el nivel

Se considera una investigación de nivel descriptiva, pues se recopilará información sobre la variable que permita realizar el correcto cálculo y diseño de la infraestructura vial de la calle a estudiar. En esta investigación se detallan los datos y características de la población a estudiar. (Valle, 2012)

3.1.3. Diseño de investigación

La investigación es de tipo no experimental, pues se lleva a cabo sin realizar la manipulación de la única variable de estudio; transversal porque la medición de la variable se efectuará en un solo periodo de tiempo, y descriptivo porque se recogen los datos conforme a la realidad, sin modificarlos.

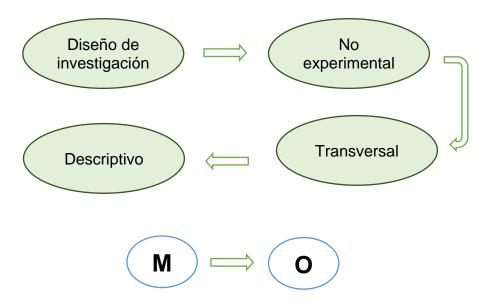


Figura 2. Diagrama del diseño de investigación

Tabla 6. Esquema del diseño transversal

Estudio	T
M	0

Donde:

M: Calles del sector Cafetal I.

O: Observación de la variable: diseño de infraestructura vial.

3.2. Variables y operacionalización

3.2.1. Variable

Diseño de infraestructura vial:

El diseño de infraestructura vial se refiere al desarrollo de una estructura que reúna las características necesarias y deseadas de una vía óptima permitiendo que los vehículos circulen en condiciones seguras y cómodas hacia diferentes lugares. La persona que diseña transforma información necesaria para crear una estructura que una vez realizada, cumpla las expectativas requeridas. (Bernal, 2004)

3.2.2. Matriz de clasificación de variables

Tabla 7. Matriz de clasificación de variables

		CLASIFICACIÓN				
VARIABLES	Relación	Naturaleza	Escala de medición	Dimensión	Forma de medición	
Diseño de infraestructura vial	Independiente	Cuantitativa continua	Razón	Multidimensional	Indirecta	

3.2.3. Matriz de operacionalización de variables (Anexo 3.1)

3.3. Población, muestra y muestreo

3.3.1. Población

La investigación tiene por población a todas las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021.

López (2004) señala que, la población es el conjunto de componentes que poseen algunas características comunes observables en un lugar y en un momento determinado, de los cuales se desea conocer algo en una investigación.

3.3.2. Muestra y muestreo

3.3.2.1. Técnica de muestreo

La técnica de muestreo corresponde al no probabilístico, dado que los elementos elegidos se basan en criterios de conocimiento y selección de los investigadores, considerando lo más adecuado para la investigación. Este se dará por juicio de experto, tomando en cuenta ciertos criterios los cuales fueron: Calles que no cuentan con infraestructura vial, calles con mayor transitabilidad de individuos y vehículos, y calles donde se encuentran ubicados lugares de gran concurrencia como un coliseo y una losa deportiva.

3.3.2.2. Tamaño de muestra

De todas las calles que comprende el sector Cafetal I, las que cumplen con los criterios de juicio de experto del investigador, son las siguientes:

Tabla 8. Calles del sector Cafetal I

N°	Calles del sector Cafetal I
01	Andrés Rázuri
02	Rodríguez Razzeto
03	José Federico Vera Albújar
04	Sixto Balarezo

05	Gonzáles Aguinaga
06	Guillermo Leyva
07	Carlos Manuel Cox

3.3.3. Unidad de análisis

Una calle del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo.

3.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad

3.4.1. Técnica de recolección de datos

La presente investigación utilizó la técnica de observación no experimental participativa directa, la misma que es sistemática o estructurada, pues se recopilaron datos de campo necesarios para la investigación con la disposición de instrumentos estandarizados para medir las variables. Asimismo, se utilizó la técnica de análisis documentario, pues la investigación se apoyó en fuentes de carácter documental como datos proporcionados por el SENAMHI que aportaron lo requerido para un correcto estudio hidrológico.

3.4.2. Instrumento de recolección de datos

En base a las técnicas de recolección de información presentadas, como la observación no experimental y el análisis documentario, se tuvo como instrumentos para la recopilación de datos lo siguiente:

Para el levantamiento topográfico se usó de la guía de observación N° 01 para la recolección de los puntos topográficos en el lugar de estudio (Anexo 4.1).

De igual manera, para el estudio de mecánica de suelos se utilizó la guía de observación N° 02 y la ficha resumen N° 01, que permitió obtener datos de las muestras de suelo luego de realizar las calicatas en las calles determinadas, analizando las propiedades físicas del suelo en estudio (Anexo 4.2 y anexo 4.5).

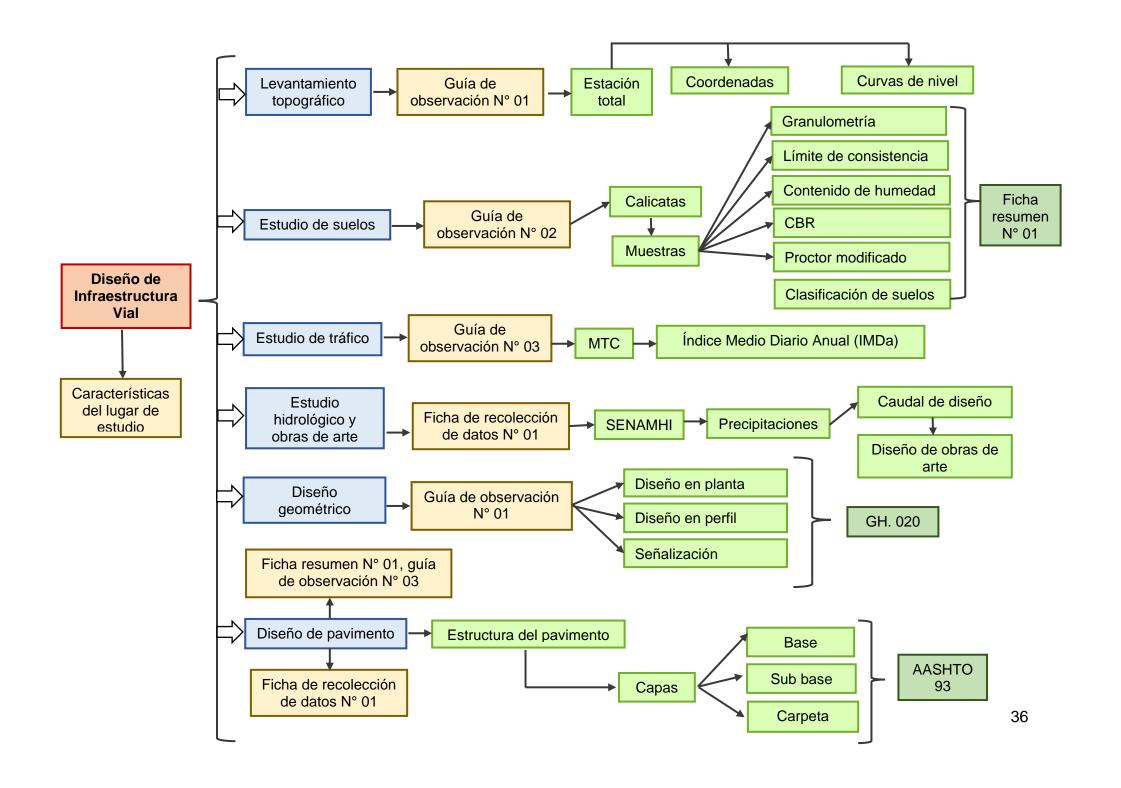
Por otra parte, para el conteo vehicular del lugar de estudio se utilizó una guía de observación N° 03 con la cual se pudo conocer la cantidad promedio de vehículos que transitan en la zona (Anexo 4.3), y posterior a ello, hallar el IMDa requerido para la investigación.

Finalmente, mediante la ficha de recolección de datos N° 01 (Anexo 4.4), se obtuvo información del SENAMHI, quien nos proporcionó datos relevantes que posteriormente fueron procesados y tabulados en MS Excel para un correcto estudio hidrológico regido bajo los parámetros del Manual de Hidrología, Hidráulica y Drenaje 2016.

Tabla 9. Instrumentos y validaciones

ETAPAS DE LA INVESTIGACIÓN (Dimensiones)	INSTRUMENTOS	VALIDACIÓN
Levantamiento topográfico	 Guía de observación N° 01 	Juicio de expertos
Estudio de mecánica de suelos	Guía de observación N° 02Ficha resumen N° 01	Juicio de expertos.
Estudio de tráfico	Guía de observación N° 03	Ministerio de Transportes y Comunicaciones (MTC)
Estudio hidrológico y obras de arte	Ficha de recolección de datos N° 01	• SENAMHI
	Guía de observación N° 01	 Juicio de expertos.
Diseño geométrico	Ficha de recolección de datos N° 01	• SENAMHI
Diseño de pavimento	Ficha resumen N° 01	Juicio de expertos.
	Guía de observación N° 03	Ministerio de Transportes y Comunicaciones (MTC)
	 Ficha de recolección de datos N° 01. 	• SENAMHI

3.4.3. Validación del instrumento de recolección de datos


Los instrumentos de recolección de datos empleados en el proyecto fueron validados a través del juicio de experto por ingenieros especialistas en el tema de investigación con amplia experiencia y conocimiento en los estudios respectivos, quienes han realizado trabajos relacionados al proyecto. Las guías de observación N° 01 y 02 y la ficha resumen N° 01, tienen la validación por parte de los ingenieros Renzo Rojas Marquillo con CIP 159170, Paul Yerko Vargas Vigo con CIP 87339, Jhon Alexander Dionicio Terrones con CIP 192360 y Rafael Ricardo Flores Fernández con CIP 29192 quienes son especialistas en proyectos de infraestructura vial; asimismo, están validadas también por el ingeniero Josualdo Carlos Villar Quiroz con CIP 106997, asesor metodólogo, y el ingeniero Luis Alberto Horna Araujo, con CIP 24002, asesor técnico. (Anexo 7.1, 7.2,7.3, 7.4, 7.5 7.6)

Por otra parte, la guía de observación N° 03 (Anexo 4.3) tiene la validación por el Ministerio de Transportes y Comunicaciones. Del mismo modo, la ficha de recolección de datos N° 01 está validada por el Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI). (Anexo 4.4)

3.4.4. Confiabilidad del instrumento de recolección de datos

- Los equipos utilizados en el levantamiento topográfico garantizarán su confiabilidad a través del certificado de calibración correspondiente. (Anexo 9)
- Los datos proporcionados por el estudio de mecánica de suelos garantizarán su confiabilidad mediante el jefe de laboratorio de suelos.

3.5. Procedimientos

3.5.1. Diseño de infraestructura vial

3.5.1.1 Características del lugar de estudio

Nombre: Sector Cafetal I

Clima: El clima del distrito de Guadalupe es cálido y seco; sin embargo la temperatura también suele cambiar de acuerdo a la época del año en la que se encuentre. En invierno alcanza una temperatura promedio mínima de 15°C que va desde abril a ocutbre, y en verano presenta una temperatura máxima de 28°C entre los meses de diciembre a marzo.

Figura 3. Localización del Proyecto - Sector Cafetal I. Fuente: Google Earth Pro

3.5.1.2 Levantamiento topográfico

Para la realización de la topografía se utilizarán como instrumentos una estación total y la guía de observación N° 01, la cual consta de una libreta de campo, donde se recopilarán los datos obtenidos del estudio. Posterior al trabajo de campo, se procede a realizar el trabajo de gabinete, donde con los puntos obtenidos con la ayuda de la estación total marca LEICA modelo TS06 PLUS 2" R500, se procesarán en el Software Civil 3D para crear las curvas de nivel de la zona de estudio,

con la finalidad de representar gráficamente el polígono y características superficiales del lugar. Con el presente estudio se indicará la ubicación geográfica en base a coordenadas UTM, así como el desnivel o la inclinación exacta y lo accidentado de la superficie del terreno. Se debe tomar en cuenta un informe topográfico de lo realizado adjuntando, además, los planos del lugar. (Amambal, 2017)

Coordenadas: Tienen como función la representación de la cartografía referenciando distintos puntos de un lugar específico a estudiar sobre la superficie terrestre.

Perfil longitudinal: Se realizará para relacionar altimétricamente el terreno donde se ha replanteado la planta con la rasante proyectada. A partir de esto se podrá describir detalladamente la forma del terreno. (Franquet, 2010)

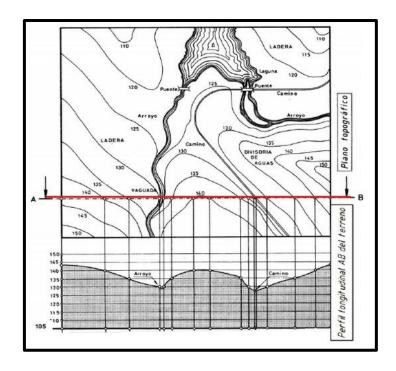


Figura 4. Perfil longitudinal. Fuente: Google

Curvas de nivel: Habiendo insertado los puntos en el software, se procede a realizar las curvas de nivel, que son aquellas líneas dibujadas en el plano topográfico unidas por puntos con igual altitud acotadas respectivamente.

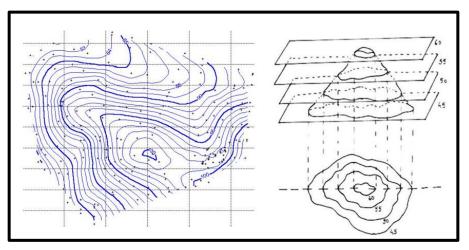


Figura 5. Curvas de nivel. Fuente: Google

3.5.1.3 Estudio de suelos

Se realizará el estudio de mecánica de suelos usando como instrumento la guía de observación N° 02, donde se extraerá información luego de realizar las calicatas respectivas. Las calicatas se realizarán con una profundidad establecida distribuidas en puntos estratégicamente para definir la calidad y tipo de suelo. El material extraído servirá para poder llevar a cabo los ensayos en laboratorio y, de esa manera, determinar ciertos indicadores necesarios como granulometría, límite de consistencia, contenido de humedad, el CBR del suelo y su capacidad portante. Además, se realizará la clasificación de suelos mediante el Sistema Unificado de Clasificación de Suelos (SUCS) para determinar sus características. Este estudio ayudará a conocer cuál es su composición real, evaluando las condiciones en las que se encuentra y conociendo las características necesarias para realizar una estructura óptima evitando posibles fallas o desperfectos a corto o largo plazo. (Manual de suelos, geología, geotecnia y pavimentos, 2013)

Los ensayos de laboratorio serán conforme a las normas establecidas, entre los cuales podemos mencionar los siguientes:

Tabla 10. Ensayos de laboratorio

ENSAYO	NORMA ASTM		
Análisis Granulométrico	ASTM D 422.		
Contenidos de Humedad	ASTM D 2216		
Límites de Consistencia	ASTM D 4318		
Clasificación de los suelos	ASTM D 2487		
SUCS			
Descripción visual de los	ASTM D 2487		
suelos			

Granulometría: Este ensayo consistirá en pasar una muestra de suelo seco a través de una serie de mallas de dimensiones estandarizadas a fin de determinar las proporciones relativas de los diversos tamaños de las partículas.

Límite de consistencia: Estos ensayos sirven para expresar cuantitativamente el efecto de la variación del contenido de humedad en las características de plasticidad de un suelo cohesivo. La obtención de los límites líquido y plástico de una muestra de suelo permite determinar un tercer parámetro que es el índice de plasticidad.

Contenido de humedad: Es un ensayo rutinario de laboratorio para determinar la cantidad de agua presente en una porción de suelo en términos de su peso en seco.

Asimismo, luego de tener los datos e información requerida obtenida del estudio de suelos realizado en la zona, mediante la ayuda de la ficha resumen N° 01 como instrumento, se desarrollará una debida verificación con la finalidad de que los resultados obtenidos sean los correctos, plasmándolos en dicha ficha.

3.5.1.4 Estudio de tráfico

El presente estudio se llevará a cabo mediante la guía de observación N° 03 como instrumento de recolección de datos, la cual es proporcionada por el Ministerio de Transportes y Comunicaciones (MTC), con la finalidad de realizar el conteo vehicular clasificando los vehículos que transitan por las calles del sector Cafetal I, ubicando un

punto fijo para la estación desde donde se realizará el conteo, de tal manera que permita conocer los volúmenes de tráfico que soportan las calles en estudio, así como la composición vehicular, variación diaria y horaria y así, poder determinar el Índice Medio Diario Anual (IMDa). Este procedimiento se repitió reiteradas veces por un periodo de tiempo determinado. Los datos procesados corresponden al trabajo de gabinete posterior a realizarse el trabajo de campo debido, usando MS Excel mediante hojas de cálculo, información que garantizará mayor consistencia y credibilidad para el fin requerido. (Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013)

Ecuación 6. Índice Medio Diario Anual

$$IMDa = FC \times IMDs$$

Donde:

IMDa = Índice Medio Diario Anual

FC = Factor de corrección estacional

IMDs = Índice Medio Diario Semanal

Siendo el valor del IMDA de 100%

Factor de corrección estacional (Fce)

Será establecido en relación al peaje más cercano de la zona correspondiente

Factor de crecimiento acumulado (Fca)

Se define en correlación con la dinámica de crecimiento socioeconómico. (Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013)

Ecuación 7. Factor de crecimiento acumulado

$$Fca = \frac{(1+r)^n - 1}{r}$$

Donde:

r = Tasa anual de crecimiento

n = Periodo de diseño

Factor direccional y factor carril (Fd, Fc)

El factor direccional es la relación de número de vehículos pesados que circulan en un sentido, y el factor carril se refiere al mayor número de EE recibido. (Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013)

Tabla 11. Factor direccional y factor carril

Número de calzadas	Número de sentidos	Número de carriles por sentido	Factor Direccional (Fd)	Factor Carril (Fc)	Factor Ponderado Fd x Fc para carril de diseño
	1 sentido	1	1.00	1.00	1.00
4 selsede	1 sentido	2	1.00	0.80	0.80
1 calzada	1 sentido	3	1.00	0.60	0.60
(para IMDa total de la calzada)	1 sentido	4	1.00	0.50	0.50
	2 sentidos	1	0.50	1.00	0.50
	2 sentidos	2	0.50	0.80	0.40
2 calzadas con	2 sentidos	1	0.50	1.00	0.50
separador central	2 sentidos	2	0.50	0.80	0.40
(para IMDa total de las dos calzadas)	2 sentidos	3	0.50	0.60	0.30
	2 sentidos	4	0.50	0.50	0.25

Fuente: Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013

Factor Camión (FC)

El factor camión es una representación de las cargas ejercidas en una vía por acción del tráfico. Este representa el daño que ocurre en el pavimento en función de un "eje equivalente", el cual aplica una determinada cantidad de toneladas de un eje simple rodado doble. (Allen y otros, 2020)

Ejes Equivalentes (EE)

Son factores de equivalencia que representan el factor destructivo de las diversas cargas por tipo de eje según el vehículo. (Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013)

Tabla 12. Relación de cargas por Eje para determinar EE

Tino do Fio	Eje Equivalente		
Tipo de Eje	(EE _{8.2 tn})		
Eje Simple de ruedas simples (EEs1)	EE _{S1} = [P / 6.6] ^{4.0}		
Eje Simple de ruedas dobles (EEs2)	EE _{S2} = [P / 8.2] ^{4.0}		
Eje Tandem (1 eje ruedas dobles + 1 eje rueda simple) (EE _{TA1})	EE _{TA1} = [P / 14.8] ^{4.0}		
Eje Tandem (2 ejes de ruedas dobles) (EE _{TA2})	EE _{TA2} = [P / 15.1] ^{4.0}		
Ejes Tridem (2 ejes ruedas dobles + 1 eje rueda simple) (EE _{TR1})	EE _{TR1} = [P / 20.7] ^{3.9}		
Ejes Tridem (3 ejes de ruedas dobles) (EE _{TR2})	EE _{TR2} = [P / 21.8] ^{3.9}		
P = peso real por eje en toneladas			

Fuente: Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013

3.5.1.5 Estudio hidrológico y obras de arte

El presente estudio se realizará con la ayuda de la ficha de recolección de datos N° 01 como instrumento, proporcionada por el Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI), la cual hace referencia a un registro de datos de precipitación diaria de la zona, su temperatura máxima y mínima, cuyos datos serán procesados en MS Excel con la finalidad de calcular la intensidad máxima en mm/h. (Agudelo, 2002)

3.5.1.5.1 Diseño de obras de arte

A lo largo del trazado de una vía se requiere ubicar, diseñar y construir las obras de drenaje que permitan la evacuación de aguas y eviten filtraciones que perjudiquen la estructura causando su deterioro, por tal motivo, se realizará el diseño de cunetas triangulares como parte de las obras de arte a ejecutar.

• Caudal de aporte (Q)

Se tendrá en cuenta la ecuación del método racional para hallar el caudal de aporte (Q), la cual es la siguiente:

Ecuación 8. Caudal de aporte (Q)

$$Q = \frac{C \times I \times A}{3.6}$$

Dónde:

Q: Caudal en m3/s

C: Coeficiente de escurrimiento de la cuenca

A: Área aportante en km²

I: Intensidad de la lluvia de diseño en mm/h

Coeficiente de escorrentía

Se determinará teniendo como referencia las particularidades hidrológicas y geomorfológicas del terreno. (Manual de hidrología, hidráulica y drenaje, 2016)

Tabla 13. Coeficientes de escorrentía del método racional

		PENDIENTE DEL TERRENO				
COBERTURA VEGETAL	TIPO DE SUELO	PRONUNCIADA	ALTA	MEDIA	SUAVE	DESPRECIABLE
VEGETAL		> 50%	> 20%	> 5%	> 1%	< 1%
	Impermeable	0,80	0,75	0,70	0,65	0,60
Sin vegetación	Semipermeable	0,70	0,65	0,60	0,55	0,50
	Permeable	0,50	0,45	0,40	0,35	0,30
	Impermeable	0,70	0,65	0,60	0,55	0,50
Cultivos	Semipermeable	0,60	0,55	0,50	0,45	0,40
	Permeable	0,40	0,35	0,30	0,25	0,20
Pastos.	Impermeable	0,65	0,60	0,55	0,50	0,45
vegetación	Semipermeable	0,55	0,50	0,45	0,40	0,35
ligera	Permeable	0,35	0,30	0,25	0,20	0,15
	Impermeable	0,60	0,55	0,50	0,45	0,40
Hierba, grama	Semipermeable	0,50	0,45	0,40	0,35	0,30
	Permeable	0,30	0,25	0,20	0,15	0,10
	Impermeable	0,55	0,50	0,45	0,40	0,35
Bosques, densa vegetación	Semipermeable	0,45	0,40	0,35	0,30	0,25
	Permeable	0,25	0,20	0,15	0,10	0,05

Fuente: Manual de hidrología, hidráulica y drenaje, 2016

Periodo de retorno

Se establecerá un tiempo de vida útil y un riesgo de falla admisible, con lo cual, a partir de la fórmula dada se obtendrá el periodo de retorno.

Ecuación 9. Riesgo de falla admisible

$$R = 1 - (1 - 1/T)^n$$

Dónde:

R = Riesgo de falla admisible

T = Periodo de retorno

n = Vida útil de la obra

Tabla 14. Riesgo de falla admisible

TIPO DE OBRA	RIESGO ADMISIBLE (**) (%)
Puentes (*)	25
Alcantarillas de paso de quebradas importantes y badenes	30
Alcantarillas de paso quebradas menores y descarga de agua de cunetas	35
Drenaje de la plataforma (a nivel longitudinal)	40
Subdrenes	40
Defensas Ribereñas	25

Fuente: Manual de hidrología, hidráulica y drenaje, 2016

Capacidad de las cunetas

Se encuentra definido por el caudal que transita con la cuneta llena y el caudal que produce la velocidad máxima admisible. (Manual de hidrología, hidráulica y drenaje, 2016)

Ecuación 10. Ecuación de Manning

$$Q = A \times V = \frac{A \times R_h^{2/3} \times s^{1/2}}{n}$$

Dónde:

Q: Caudal (m³/seg)

V: Velocidad media (m/s)

A: Área de la sección (m²)

P: Perímetro mojado (m)

Rh: A/P Radio hidráulico (m) (área de la sección entre el perímetro mojado).

S: Pendiente del fondo (m/m)

n: Coeficiente de rugosidad de Manning

3.5.1.6 Diseño geométrico

Para el diseño geométrico se tendrá en cuenta la información obtenida en las guías de observación N° 01 y en la ficha de recolección de datos N° 01. Además, se tendrá en consideración los

parámetros que rige la norma GH. 020 Componentes de Diseño Urbano, con el fin de diseñar el alineamiento horizontal para luego poder obtener el cuadro correspondiente a los elementos de curva. También, se crearán las secciones transversales y curvas horizontales y verticales, que proporcione una vía que cumpla con todos los requerimientos que establece la norma para finalmente, obtener el diseño en planta y perfil según corresponda. Con este estudio se busca determinar las características geométricas de la vía, partiendo de factores como el tránsito, topografía, velocidades, de modo que se pueda circular de forma segura. Este procedimiento será realizado en el Software Civil 3D, donde el resultado final se plasmará en planos que permita apreciar a detalle el diseño establecido. (Agudelo, 2002)

Señalización Vial

La señalización se realizará una vez concluido el diseño geométrico en el Software Civil 3D, detallando cada tipo de señal a utilizarse en el proyecto tanto horizontal como vertical, con el objetivo de evitar accidentes y priorizando la seguridad de todos los usuarios de la vía.

3.5.1.7 Diseño de pavimento

Para este proceso se utilizarán los datos proporcionados por los instrumentos como la ficha resumen N° 01 referente al estudio de suelos, con la que obtendremos el dato del CBR necesario para un correcto diseño de pavimento; la guía de observación N° 03 con la cual se realizará el estudio de tráfico y con el que obtendremos el IMDa para calcular el ESAL de diseño; y, finalmente, la ficha de recolección de datos N° 01 que corresponde al estudio hidrológico.

Método Guía AASHTO 93

Se utilizará el método AASHTO 93, el cual tiene una guía organizada y estructurada, fundamental para realizar los procedimientos necesarios y determinar los espesores de las capas que conforman la estructura del pavimento, como lo son la base, sub base y carpeta asfáltica, para un correcto diseño del mismo. El espesor considerado

deberá ser el adecuado para soportar toda clase de agente externo que atente contra la estructura del pavimento. Para el diseño respectivo se tendrán en cuenta las siguientes variables: (Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013)

 Módulo de resiliencia: Corresponde a la medida de rigidez presentada por la subrasante, el cual se halla mediante la siguiente ecuación:

Ecuación 11. Módulo Resiliente

$$Mr_{(psi)} = 2555 \times CBR^{0.64}$$

Confiabilidad (%R): Representa la probabilidad que tiene una estructura en específica de comportarse en el transcurso del periodo de diseño para el cual fue elaborado, influyendo sobre la estructura y comportamiento del pavimento. (Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013)

Tabla 15. Nivel de confiabilidad (%R)

TIPO DE CAMINOS	TRAFICO	EJES EQUIVALEN	NIVEL DE CONFIABILIDAD (R)	
	T _{P0}	100,000	150,000	65%
Caminos de Bajo	T _{P1}	150,001	300,000	70%
Volumen de	T _{P2}	300,001	500,000	75%
Tránsito	T _{P3}	500,001	750,000	80%
	T _{P4}	750 001	1,000,000	80%
	T _{P5}	1,000,001	1,500,000	85%
	T _{P6}	1,500,001	3,000,000	85%
	TP7	3,000,001	5,000,000	85%
	T _{P8}	5,000,001	7,500,000	90%
	T _{P9}	7,500,001	10'000,000	90%
Resto de Caminos	T _{P10}	10'000,001	12'500,000	90%
	T _{P11}	12'500,001	15'000,000	90%
	T _{P12}	15'000,001	20'000,000	95%
	T _{P13}	20'000,001	25'000,000	95%
	T _{P14}	25'000,001	30'000,000	95%
	T _{P15}	>30'000,000		95%

Fuente: Manual de suelos, geología, geotecnia y pavimentos 2013

 Desviación Estándar Normal (Z_R): Este valor está referido a la confiabilidad para una distribución normal. (Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013)

Tabla 16. Desviación Estándar Normal (Z_R)

TIPO DE CAMINOS	TRAFICO	EJES EQUIVALENT	DESVIACIÓN ESTÁNDAR NORMAL (ZR)	
	T _{P0}	100,001	150,000	-0.385
	Тр	150,001	300,000	-0.524
Caminos de Bajo Volumen de Tránsito	T _{P2}	300,001	500,000	-0.674
	T _{P3}	500,001	750,000	-0.842
	T _{P4}	750 001	1,000,000	-0.842
	Тр5	1,000,001	1,500,000	-1.036
Resto de Caminos	T _{P6}	1,500,001	3,000,000	-1.036
	TP7	3,000,001	5,000,000	-1.036
	T _{PB}	5,000,001	7,500,000	-1.282
	Трэ	7,500,001	10'000,000	-1.282
	T _{P10}	10'000,001	12'500,000	-1.282
	T _{P11}	12'500,001	15'000,000	-1.282
	T _{P12}	15'000,001	20'000,000	-1.645
	T _{P13}	20'000,001	25'000,000	-1.645
	T _{P14}	25'000,001	30'000,000	-1.645
	T _{P15}	>30'000,000		-1.645

Fuente: Manual de suelos, geología, geotecnia y pavimentos 2013

- Desviación Estándar Combinada (So): Este valor toma en cuenta factores que influyen en el comportamiento del pavimento. Se recomienda un So= 0.45. (Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013)
- Índice de Serviciabilidad final (pt): Se da cuando el pavimento no proporciona la comodidad y seguridad requerida para el tránsito. Este valor se hallará de acuerdo al tipo de vía existente. (Norma CE.010 Pavimentos Urbanos)

Tabla 17. Índice de Serviciabilidad final (pt)

pt	Tipo de Vía
3,00	Expresas
2,50	Arteriales
2,25	Colectoras
2,00	Locales y estacionamientos

Fuente: Norma CE. 010 Pavimentos Urbanos

- Índice de Serviciabilidad inicial (po): El valor dado para esta variable será el establecido por la guía AASHTO en pavimentos flexible, el cual es de 4,2. (Norma CE.010 Pavimentos Urbanos)
- Variación de Serviciabilidad (∆PSI):

Este valor se hallará a través de la ecuación siguiente:

Ecuación 12. Variación de Serviciabilidad

$$\Delta PSI = P_o - P_t$$

Nivel de Servicio PSI:

Se clasificará de acuerdo al valor obtenido anteriormente en la variación de serviciabilidad.

Tabla 18. Nivel de Servicio PSI

PSI	Calificación
0,0	Intransitable
0,1 - 1,0	Muy malo
1,1 - 2,0	Malo
2,1 - 3,0	Regular
3,1 - 4,0	Bueno
4,1 - 4,9	Muy bueno
5,0	Excelente

Fuente: Norma CE. 010 Pavimentos Urbanos

- Número Estructural: Será el espesor total de las capas que conforman la estructura del pavimento.
- Coeficiente de drenaje (mi):

Tabla 19. Valores m_i recomendados por la AASHTO

m _i	Tiempo transcurrido para que el	Porcentaje de tiempo en que la estructura del pavimento estará expuesta a niveles de humedad cercanas a la saturación					
Calificación del drenaje	suelo libere el 50% de su agua libre	Menos a 1%	1 - 5%	5 - 25%	Más de 25%		
Excelente	2 horas	1,40 - 1,35	1,35 -1,30	1,30 -1,20	1,20		
Bueno	1 día	1,35 - 1,25	1,25 -1,15	1,15 -1,00	1,00		
Regular	1 semana	1,25 - 1,15	1,15 - 1,05	1,00 - 0,80	0,80		
Pobre	1 mes	1,15 - 1,05 1,05 - 0,80 0,80 - 0,60 0,60					
Muy pobre	Nunca	1,05 - 0,95 0,95 - 0,75 0,75 - 0,40 0,40					

Fuente: Norma CE. 010 Pavimentos Urbanos

3.6 Método de análisis de datos

3.6.1 Técnicas de análisis de datos

La presente investigación es de diseño no experimental – transversal, dado que se realizará en un solo periodo de tiempo, para lo cual se utilizará la técnica de análisis de datos estadística descriptiva, haciendo uso de gráficos que permitirán realizar correctamente el análisis de la información obtenida. El proyecto presenta una variable cuantitativa continua, por lo que los instrumentos a emplear son tablas, gráficos lineales y circulares e histogramas para procesar los datos recopilados en campo y sustentar los cálculos efectuados.

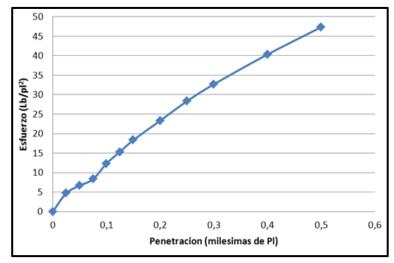


Figura 6. Gráfico CBR inalterado. Fuente: Google

Descripción: La figura N° 6 muestra muestra la capacidad de penetración para el CBR inalterado que determina la comparación y posterior verificación entre los valores de diseño de la estructura del pavimento y los obtenidos mediante el ensayo.

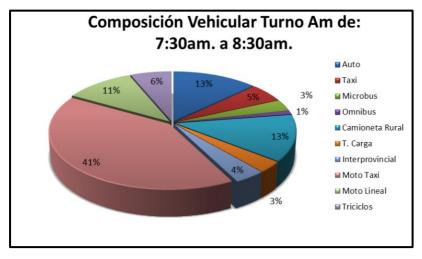


Figura 7. Gráfico de composición vehicular. Fuente: Google

Descripción: La figura N° 7 es la representación gráfica de los resultados obtenidos en un estudio de tráfico que hace referencia al volumen vehicular en un horario determinado de cada tipo de vehículo que circulan en un lugar específico.

3.7 Aspectos éticos

La ética es pieza clave e indispensable para todo profesional, pues permite que un trabajo pueda realizarse con autenticidad y sea fiable, respetando las investigaciones e ideas de distintos autores.

En la presente investigación, se ha tomado información de diversos proyectos de fuentes veraces publicados anteriormente que fueron base y guía para el desarrollo del trabajo. Asimismo, basados en las normas ISO 690 y 690-2, se citó correctamente la información utilizada de los distintos libros, investigaciones, tesis y revistas, con el propósito de poder garantizar la originalidad del proyecto. Además, a través del programa TURNITIN, se realizó el análisis del porcentaje de similitud de la investigación realizada, el cual nos da un resultado de un 20%, siendo este menor del 25%, requisito para ser aprobado exitosamente. (Anexo 11 y 12)

3.8 Desarrollo del proyecto de investigación

3.8.1 Levantamiento topográfico

Generalidades

En el presente proyecto de investigación se describe de forma detallada el procedimiento necesario para la realización del estudio topográfico, con lo cual se analizó el lugar de estudio llevando a cabo el levantamiento con los puntos obtenidos mediante la estación total, los mismos que fueron posteriormente procesados en el software correspondiente para la representación del plano topográfico y el correcto diseño de infraestructura vial.

Ubicación:

Sector : Cafetal I

Distrito : Guadalupe

Provincia : Pacasmayo

Departamento : La Libertad

Método

Para el desarrollo de la presente investigación se hizo uso de las normas correspondientes con el propósito de realizar un adecuado diseño vial. Para el estudio topográfico se empleó como instrumento un GPS que nos proporcionó las coordenadas en tiempo real del lugar; y una estación total marca LEICA modelo TS06 PLUS 2" R500, equipo con el cual pudimos obtener los puntos correspondientes, para lo cual se utilizó la guía de observación N° 01 (Anexo 4.1). Todos los datos recopilados fueron procesados y plasmados en el software Civil 3D con el fin de representar las curvas de nivel y elevaciones.

3.8.1.1 Coordenadas

Se utilizó el instrumento técnico GPS para la recolección de los datos de campo requeridos, como las coordenadas UTM, que nos permitieron referenciar los puntos sobre la superficie, y que fueron guardadas en la base de datos.

3.8.1.2 Estación total

Para proceder con el levantamiento topográfico se usó la estación total marca LEICA modelo TS06 PLUS 2" R500, colocándola sobre los puntos referenciales tomados anteriormente. Este instrumento determinó la posición y elevación de los puntos midiendo sus distancias, cada uno con su respectiva descripción. Todos los datos recopilados con la ayuda del equipo, fueron guardados en la base de datos y descargados en una memoria USB para poder continuar con el procesamiento de la información con el software Civil 3D, que es un programa de cálculo y dibujo.

3.8.1.3 Curvas de nivel mayores y menores

3.8.1.3.1 Software Civil 3D

Figura 8. Software Civil 3D

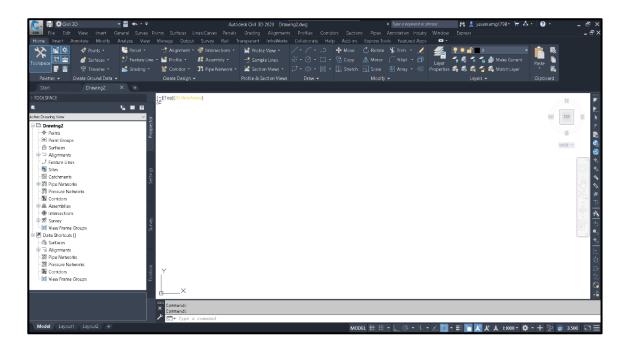


Figura 9. Software Civil 3D

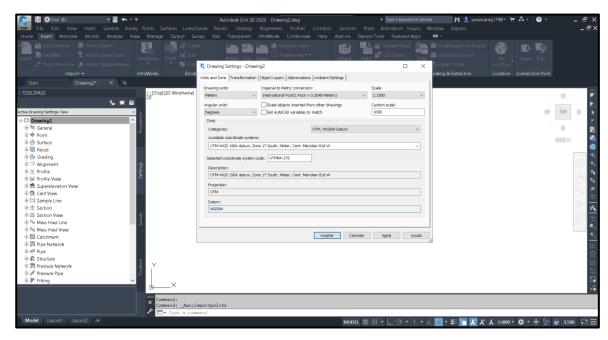


Figura 10. Configuración del software Civil 3D

Como primer paso, se realizó la configuración del programa estableciendo como sistema de coordenadas UTM-WGS84, con la zona 17S, donde se localiza la zona a estudiar.

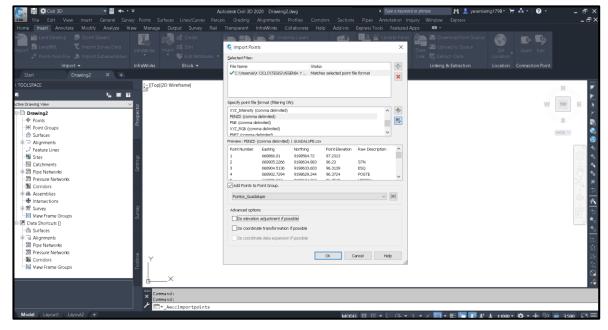


Figura 11. Importación de puntos en el software Civil 3D

En segundo lugar, para llevar a cabo la representación gráfica del levantamiento topográfico, se importaron los puntos recogidos en campo con la ayuda de la estación total.

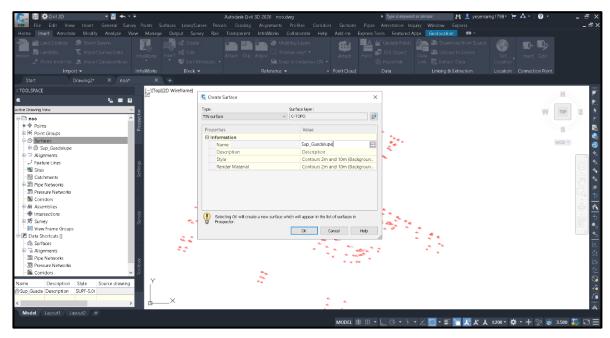


Figura 12. Creación de la superficie del terreno en el software Civil 3D

Para crear la superficie se ubicará en Prospector, seleccionando con un clic derecho la opción Surfaces y luego Create Surfaces, completando la información necesaria para tal fin.

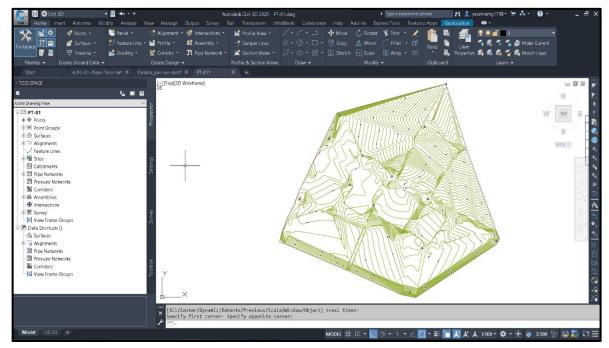


Figura 13. Curvas de nivel en el software Civil 3D

Finalmente, luego de la respectiva configuración, añadimos la superficie creada mediante la opción Point Groups, obteniendo así las curvas de nivel mayores y menores.

3.8.2 Estudio de suelos

Para el presente estudio se realizaron un total de 04 calicatas ubicadas cada una en distintos lugares dentro de la zona de estudio en el sector Cafetal I. Dichos lugares son los siguientes:

- Calle Andrés Rázuri
- Coliseo (esquina)
- Calle Gonzáles Aguinaga (esquina)
- Calle Sixto Balarezo con José Demaizon (esquina)

Las calicatas tuvieron una profundidad de 1.50 metros. Con la ayuda del GPS se obtuvo las coordenadas de ubicación de las mismas. Las muestras recolectadas sirvieron para realizar el estudio correspondiente, fueron analizadas por el laboratorio de suelos para obtener los datos necesarios.

Los datos principales se recolectaron mediante la guía de observación N° 02 (Anexo 4.2), los cuales fueron:

Tabla 20. Extracción de muestras para EMS

CALICATAS	CALICATAS COORDENADAS F		PROFUNDIDAD (m)		DESCRIPCIÓN
	Este	Norte	Desde	Hasta	
C-01	668930.589	9198523.087	0.00	1.50	Calle Andrés Razuri
C-02	668821.191	9198515.143	0.00	1.50	Esquina Coliseo
C-03	668683.461	9198560.186	0.00	1.50	Esquina R. González A.
C-04	668868.196	9198664.169	0.00	1.50	Esquina Sixto Balarezo
0-04	000000.130	3130004.103	0.00		con José Demaizon

Una vez obtenidos los datos de campo del lugar para la determinación de las propiedades físicas y mecánicas del suelo, se procedió con el estudio de suelos respectivos a cargo del Laboratorio de Cerámicos y Suelos, para así, posterior a ello, poder trabajar con la ficha resumen N° 01 (Anexo 4.5) donde se procesaron los datos que luego nos proporcionó los valores respectivos de granulometría, límites de consistencia,

contenido de humedad, proctor modificado y un valor de CBR de 13.70%.

3.8.3 Estudio de tráfico

Para la presente investigación se utilizó la guía de observación N° 03 (Anexo 4.3) para el conteo vehicular, el cual se realizó en un total de siete días consecutivos durante un determinado rango horario, teniendo como fecha de inicio 03 de agosto, y como fecha de culminación el 09 de agosto del presente año. Se tuvo en cuenta el flujo de vehículos, así como su direccionalidad. El conteo se realizó en un punto específico ubicado estratégicamente, al cual denominamos "Estación 1", que se encuentra en la calle Andrés Rázuri – Guadalupe.

3.8.3.1 Conteo de tráfico vehicular

Se realizó la recolección de información en base al conteo visual de los distintos vehículos que circulan por la ruta del presente estudio en forma independiente con el fin de conocer el volumen y la clasificación vehicular de acuerdo el número de ejes agrupados según lo establecido por el Ministerio de Transportes y Comunicaciones en su formato correspondiente, datos que fueron procesados en MS Excel y obtener los resultados requeridos.

Tabla 21. Resumen de conteo vehicular

	RESUMEN CONTEO VEHICULAR EN LA ESTACIÓN 1										
HORA	MAR	MIÉR	JUEV	VIER	SÁB	DOM	LUN	Vol. Prom. Diario			
00-01	0	0	0	0	1	0	0	0			
01-02	0	1	0	0	1	1	0	0			
02-03	1	0	1	0	0	1	0	0			
03-04	1	1	0	0	0	1	1	1			
04-05	0	2	3	2	1	0	0	1			
05-06	2	0	1	1	0	3	1	1			
06-07	5	2	2	2	5	1	4	3			
07-08	5	4	5	1	3	5	2	4			
08-09	2	5	6	5	6	3	7	5			
09-10	1	7	4	5	1	3	4	4			
10-11	2	2	2	4	6	2	4	3			
11-12	7	2	5	5	2	2	3	4			
12-13	1	5	4	3	3	4	3	3			
13-14	4	0	1	3	4	4	2	3			
14-15	3	4	3	4	5	2	1	3			
15-16	5	4	4	6	2	4	2	4			
16-17	3	5	5	1	2	3	7	4			
17-18	5	1	4	3	0	3	2	3			
18-19	3	3	4	6	3	0	8	4			
19-20	6	6	3	4	3	3	3	4			
20-21	1	1	1	2	2	1	2	1			
21-22	1	1	2	3	2	4	0	2			
22-23	0	0	0	0	1	3	0	1			
23-24	0	0	0	0	0	1	0	0			

3.8.3.2 Índice medio diario semanal (IMDs)

El cálculo del IMDs se dio mediante la ecuación 08, el cual permitió hallar el número de vehículos que circulan en un total de siete días.

Ecuación 13. Índice Medio Diario Semanal

$$IMDs = \sum \frac{Vi}{7}$$

Donde:

IMDs = Índice Medio Diario Semanal

Vi = Volumen vehicular diario

Vehículos Ligeros

Autos

$$IMDs = 129/7 = 18$$

Station Vagon

$$IMDs = 36/7 = 5$$

Camioneta

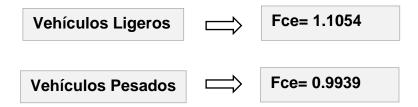
$$IMDs = 82/7 = 12$$

Vehículos Pesados

C2E

$$IMDs = 75/7 = 11$$

C3E


$$IMDs = 57/7 = 9$$

C4E

$$IMDs = 18/7 = 3$$

3.8.3.3 Factor de corrección estacional (Fce)

Este valor fue determinado por una serie de tráfico en todo un año por una unidad de peaje. Se tomaron los siguientes valores para el Factor de Corrección Estacional:

Estos valores fueron obtenidos con relación al peaje Pacanguilla proporcionado por la Ficha Técnica Estándar del Ministerio de Transportes y Comunicaciones.

3.8.3.4 Índice medio diario anual (IMDa)

Se revisó y procesó la información hallando el IMDa que se obtuvo de multiplicar el índice medio diario semanal con el factor de corrección estacional.

Ecuación 14. Índice Medio Diario Anual

$$IMDa = Fce \times IMDs$$

Vehículos Ligeros

Autos

$$IMDa = 1.1054 \times 18 = 20$$

Station Vagon

$$IMDa = 1.1054 \times 5 = 6$$

Camioneta

$$IMDa = 1.1054 \times 12 = 13$$

Tabla 22. Resumen de clasificación vehicular de tráfico ligero

DÍAS	AUTOS	STATION VAGON	CAMIONETA
MARTES 3	16	6	11
MIERCOLES 4	18	4	10
JUEVES 5	19	4	12
VIERNES 6	17	9	10
SABADO 7	20	3	13
DOMINGO 8	22	6	17
LUNES 9	17	4	9
Vol. Prom. Diario	18	5	12
IMDa	20	6	13

Vehículos Pesados

C2E

$$IMDa = 0.994 \times 11 = 11$$

C3E

$$IMDa = 0.994 \times 9 = 9$$

C4E

$$IMDa = 0.994 \times 3 = 3$$

Tabla 23. Resumen de clasificación vehicular de tráfico pesado

DÍAS		CAMIÓN		
DIAS	C2E	C3E	C4E	
MARTES 3	12	9	4	
MIERCOLES 4	11	10	3	
JUEVES 5	12	11	2	
VIERNES 6	12	9	3	
SABADO 7	9	6	2	
DOMINGO 8	7	2	0	
LUNES 9	12	10	4	
Vol. Prom. Diario	11	9	3	
IMDa	11	9	3	

- Se tuvo en cuenta un periodo de diseño de 20 años, que corresponde al tiempo de vida útil del pavimento.
- Se consideró una tasa anual de crecimiento de 1.26% para tráfico liviano, y 2.83% para tráfico pesado.

3.8.3.5 Factor de crecimiento acumulado (Fca)

El presente valor se obtuvo de la Ficha Técnica Estándar del Ministerio de Transportes y Comunicaciones. Se obtiene mediante la siguiente ecuación:

Ecuación 15. Factor de crecimiento acumulado

$$Fca = \frac{(1+r)^n - 1}{r}$$

Donde:

r = Tasa anual de crecimiento

n = Periodo de diseño

Vehículos ligeros

$$Fca = \frac{(1+0.0126)^{20} - 1}{0.0126} = 22.59$$

Vehículos pesados

$$Fca = \frac{(1+0.0283)^{20} - 1}{0.0283} = 26.41$$

3.8.3.6 Factor direccional y factor carril (Fd, Fc)

Para determinar el valor correcto, se consideró el número de sentidos y de carriles por sentido de la vía. Se adoptó un Fd= 0.50 y Fc= 1.00, teniendo en cuenta que la vía está comprendida por 1 calzada de dos sentidos y 1 carril por cada sentido. Dichos valores fueron tomados del cuadro del Manual de Suelos, Geología, Geotecnia y Pavimentos.

Tabla 24. Factor direccional y factor carril

Número de calzadas	1 calzada
Número de sentidos	2 sentidos
Número de carriles por sentido	1
Factor Direccional (Fd)	0.50
Factor Carril (Fc)	1.00
Fd x Fc	0.50

Fuente: Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013

3.8.3.7 Factor camión (FC)

En la investigación, el factor camión utilizado fue el resultado obtenido del cálculo para la determinación de Ejes Equivalentes estandarizados de 8.2 tn en el cual multiplica el valor de la carga de un determinado tipo de vehículo respecto a su eje, con la respectiva fórmula de la relación de cargas por eje dada en la tabla 6.3 del Manual de suelos, geología y pavimentos. Para esto se obtuvo un valor por cada eje conforme al tipo de vehículo, el cual sumado con sus demás ejes dio como resultado los valores de Factor Camión dados en la tabla N° 20. Para hallar el peso de los ejes de cada tipo de vehículo, se utilizó la información comprendida en el Reglamento Nacional de Vehículos.

Tabla 25. Factor camión de vehículos

VEHÍCULOS	FC
AUTOS	0.0011000
STATION VAGON	0.0011000
CAMIONETA	0.0011000
CAMION 2E	4.5037000
CAMION 3E	3.2846000
CAMION 4E	2.7736000

3.8.3.8 Cálculo de ESAL

Permite conocer las cargas vehiculares a las que se expone el pavimento. Asimismo, el valor W18 corresponde a la sumatoria de ESALs establecido en un periodo de 20 años.

Tabla 26. Cálculo de ESAL

	IMDa	IMDa X 365	F.C.A.	FC	ESAL
AUTOS	20	7,435	22.59	0.00110	184.7219
STATION VAGON	6	2,075	22.59	0.00110	51.5503
CAMIONETA	13	4,842	22.59	0.00110	120.2840
CAMION 2E	11	3,991	26.41	4.50370	474,651.2218
CAMION 3E	9	3,265	26.41	3.28460	283,228.8326
CAMION 4E	3	1,088	26.41	2.77360	79,721.8829
					837,958.49

Ecuación 16. Cálculo de ESAL

$$\mathbf{W_{18}} = \sum \text{ESAL's} * \text{Fd} * \text{Fc}$$

Cada dato fue procesado en una hoja de cálculo en MS Excel, donde se calculó y obtuvo el valor final de ESAL en el periodo de tiempo determinado.

$$\mathbf{W_{18}} = 837,958.49 \times 0.50 \times 1.0$$

$$\mathbf{W_{18}} = 418\,979\,\mathsf{EE}$$

3.8.4 Estudio hidrológico y obras de arte

3.8.4.1 Hidrología

El presente estudio se llevó a cabo utilizando la técnica de revisión documental, recopilando a través de la ficha de recolección de datos N° 01 (Anexo 4.4) la información proporcionada por el SENAMHI, para posteriormente hallar el caudal de diseño adecuado para las obras de drenaje.

3.8.4.1.1 Recolección de datos hidrológicos

Los datos se obtuvieron de la estación meteorológica Talla, ubicada en el distrito de Guadalupe, provincia de Pacasmayo, región La Libertad. Posee una altitud de 117 m.s.n.m. Esta información fue procesada en MS Excel realizando un filtro para obtener las precipitaciones por meses en un rango determinado de años, el cual fue del 2000 al 2020 y, de esa manera, hallar las precipitaciones máximas de cada año.

Tabla 27. Registro de precipitaciones máximas

ESTACIÓN TALLA

Estación: TALLA / 100136 Longitud: 79°25'8.61" Dpto.: La libertad

Parámetro: Precipitación máxima en 24 horas (mm) Latitud: 7°16'48.33" Prov.: Pacasmayo

Altitud: 117 m.s.n.m. Dist.: Guadalupe

AÑO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SET.	OCT.	NOV.	DIC.	MÁXIMO
2000	0.0	3.8	1.9	1.0	8.5	0.4	0.0	0.3	0.0	0.0	1.0	5.5	8.5
2001	1.8	0.9	8.4	4.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	8.4
2002	0.4	7.6	6.1	1.8	0.0	0.2	0.0	0.0	0.0	0.6	1.6	1.0	7.6
2003	0.3	4.4	1.2	0.1	0.0	0.7	0.0	0.0	0.5	0.0	1.1	1.6	4.4
2004	0.0	1.2	8.0	1.5	0.0	0.0	0.0	0.0	5.0	0.4	0.0	0.5	5.0
2005	3.0	0.9	2.4	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	3.0
2006	1.4	8.0	6.2	1.4	0.0	0.0	0.2	0.2	0.0	0.0	1.0	8.0	6.2
2007	2.5	0.0	6.1	2.8	1.1	0.0	0.0	0.0	0.0	0.0	3.7	2.2	6.1
2008	0.8	5.3	2.6	0.4	0.0	2.4	0.0	0.5	1.6	0.0	4.1	0.0	5.3
2009	4.2	5.7	3.3	2.7	0.0	0.1	0.0	0.0	0.2	0.0	0.4	0.0	5.7
2010	0.1	11.9	4.7	4.7	0.0	0.0	0.0	0.0	0.0	5.5	0.4	1.7	11.9
2011	2.8	0.5	1.8	1.2	1.0	0.0	0.0	0.0	1.0	0.0	0.4	8.4	8.4
2012	1.7	6.5	4.9	0.9	0.0	0.0	0.0	0.0	0.0	2.5	1.2	5.7	6.5

2013	3.2	1.8	10.9	1.2	0.9	0.0	0.0	0.0	0.0	4.4	0.0	0.4	10.9
2014	4.8	2.0	2.2	0.0	0.6	0.0	0.3	0.1	0.5	1.2	0.9	2.1	4.8
2015	1.5	3.9	3.6	1.4	0.7	0.2	0.0	0.1	0.5	1.2	0.9	2.1	3.9
2016	1.5	3.9	3.6	1.4	0.7	0.2	0.0	0.1	0.5	3.0	0.0	1.2	3.9
2017	0.2	10.6	0.0	0.0	0.4	0.0	0.0	0.0	0.0	3.2	0.0	2.7	10.6
2018	0.9	5.9	2.5	0.0	0.4	0.5	0.0	0.0	0.0	3.0	0.2	3.6	5.9
2019	1.0	3.4	2.1	0.9	0.6	0.0	0.0	0.0	0.0	0.8	2.1	2.4	3.4
2020	0.0	0.6	0.0	1.1	0.1	0.0	0.3	0.0	0.0	0.0	0.0	2.5	2.5
PROMEDIO	1.5	3.9	3.6	1.4	0.7	0.2	0.0	0.1	0.5	1.2	0.9	2.1	6.3
DESV. EST.	1.4	3.3	2.8	1.3	1.8	0.5	0.1	0.1	1.1	1.7	1.2	2.1	2.7
MÁXIMO	4.8	11.9	10.9	4.7	8.5	2.4	0.3	0.5	5.0	5.5	4.1	8.4	11.9
MÍNIMO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5
Nº Datos	21	21	21	21	21	21	21	21	21	21	21	21	21

3.8.4.1.2 Periodo de retorno

Para el cálculo del valor en mención, se empleó la fórmula para hallar el riesgo admisible, la cual se presenta a continuación:

Ecuación 17. Riesgo de falla admisible

$$R = 1 - (1 - 1/T)^n$$

Donde:

R = Riesgo de falla admisible

T = Periodo de retorno

n = Vida útil de la obra

La ecuación mostrada, fue despejada para calcular el periodo de retorno (T) de la siguiente manera:

Ecuación 18. Periodo de retorno

$$T = \frac{1}{(1 - \sqrt[n]{1 - R})}$$

El valor referente al riesgo admisible se obtuvo mediante la tabla N° 02 del manual de hidrología, hidráulica y drenaje. Se optó por un valor de R= 40% para drenaje de plataforma (a nivel longitudinal). De igual forma fue establecida la vida útil, considerando n= 15 años por la misma razón. Por tanto, de acuerdo a cada dato fijado, reemplazando en la ecuación se obtuvo un periodo de retorno de 30 años

$$T = \frac{1}{(1 - \sqrt[15]{1 - 0.4)}}$$

$$T = 29.87 = 30 \, a\tilde{n}os$$

3.8.4.1.3 Método de Gumbel

Precipitación máxima (Pmáx)

Se desarrollaron los cálculos correspondientes en MS Excel aplicando el método de Gumbel, donde previamente se halló la precipitación promedio (Pm) y la desviación estándar de las precipitaciones (σρ),

con lo que posteriormente se halló la precipitación máxima (Pmáx) mediante la siguiente ecuación:

Ecuación 19. Precipitación máxima

$$\boxed{ P_{\text{máx}} = P_{\text{m}} - \frac{\sigma_{\text{p}}}{\sigma_{\text{N}}} \big[\mathring{Y}_{\text{N}} - lnT \big] }$$

Donde:

 $P_{m\acute{a}x}$: Precipitación máxima para el periodo de retorno establecido (m³/s)

P_m: Promedio de precipitaciones (m³/s)

 σ_p : Desviación estándar de las precipitaciones

 $\sigma_N \ \overline{y}_N$: Constantes en función de N

T: Periodo de retorno

Los valores obtenidos fueron reemplazados en la ecuación 12:

$$P_{m\acute{a}x} = 6.33 - \frac{2.65}{1.0696} [0.5252 - ln30]$$

$$P_{m\acute{a}x} = 13.46 \ mm$$

Por otro lado, se realizaron los cálculos de Pmáx para determinados periodos de retorno, dichos valores se establecieron en la siguiente tabla:

Tabla 28. Cálculo de precipitaciones máximas y del valor Φ

T (años)	P _{máx}	Ф		
2	6.75	0.50		
5	9.02	0.80		
10	10.74	0.90		
25	13.01	0.96		
50	14.73	0.98		
75	15.73	0.99		
100	16.45	0.99		
500	20.44	1.00		

Precipitación de diseño (P_d)

Para hallar la precipitación de diseño, se tuvo en cuenta el valor $P_{m\acute{a}x}$ para cada periodo de retorno obtenido anteriormente, Asimismo, habiendo hallado el dato correspondiente al intervalo de confianza (ΔP) en MS Excel, se procedió a calcular la precipitación de diseño para el tiempo determinado.

Ecuación 20. Precipitación de diseño

$$P_d = P_{m\acute{a}x} \pm \Delta P$$

Tabla 29. Precipitación de diseño

Т	P máx.	ΔΡ	Ρd
(años)	(mm)	(mm)	(mm)
2	6.75	2.42	9.17
5	9.02	2.42	11.44
10	10.74	2.83	13.56
25	13.01	2.83	15.84
50	14.73	2.83	17.56
75	15.73	2.83	18.56
100	16.45	2.83	19.28
500	20.44	2.83	23.27

3.8.4.1.4 Cálculo de la intensidad de diseño

Este valor se halla dividiendo la precipitación entre la duración establecida comúnmente en horas. Se establecieron distintas intensidades para periodos de retorno determinados.

Tabla 30. Intensidad de Iluvia

DURA	ACIÓN	Intensidad de la lluvia (mm/h) para diferentes tiempo retorno							oos de
Horas	Min	2	5	10	25	50	75	100	500
24	1440	0.38	0.48	0.57	0.66	0.73	0.77	0.80	0.97
18	1080	0.46	0.58	0.69	0.80	0.89	0.94	0.97	1.18
12	720	0.61	0.76	0.90	1.06	1.17	1.24	1.29	1.55
8	480	0.78	0.97	1.15	1.35	1.49	1.58	1.64	1.98
6	360	0.93	1.16	1.38	1.61	1.78	1.89	1.96	2.37
5	300	1.04	1.30	1.55	1.81	2.00	2.12	2.20	2.65
4	240	1.19	1.49	1.76	2.06	2.28	2.41	2.51	3.02
3	180	1.41	1.75	2.08	2.43	2.69	2.85	2.96	3.57
2	120	1.79	2.23	2.65	3.09	3.42	3.62	3.76	4.54
1	60	2.75	3.43	4.07	4.75	5.27	5.57	5.78	6.98

En la hoja de cálculo utilizada para el desarrollo del estudio hidrológico, se plasmó el proceso de solución para cada dato obtenido.

3.8.4.1.5 Curvas de Intensidad – Duración – Frecuencia (IDF)

En las curvas IDF se representó la relación existente de la intensidad o magnitud de una lluvia dada en mm/h, para un tiempo de duración determinado con una probabilidad de ocurrencia que viene a ser la frecuencia, también conocida como periodo de retorno. Para ello, se hizo uso de los registros de precipitaciones obtenidos del SENAMHI. Asimismo, con la intensidad de diseño hallada, se obtuvo de la hoja de cálculo, los valores para la aplicación de la fórmula de la curva IDF, la cual es la siguiente:

Ecuación 21. Cálculo de la curva IDF

$$I = \frac{KT^m}{t^n}$$

Donde:

I = Intensidad máxima (mm/h)

K, m, n = factores característicos de la zona de estudio

T = período de retorno en años

t = duración de la precipitación equivalente al tiempo de concentración (min)

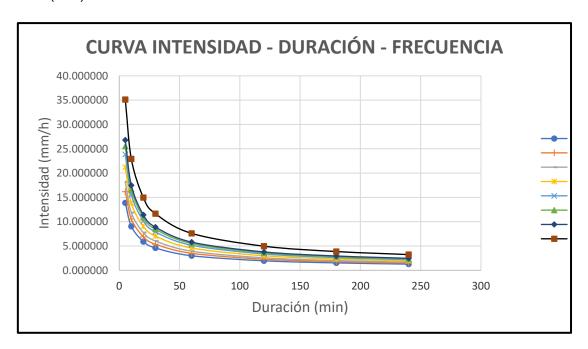


Figura 14. Curva Intensidad - Duración - Frecuencia

3.8.4.1.6 Hietograma de diseño

En este gráfico se expresará la precipitación definida en intervalos de tiempo, siendo desarrollado con la metodología de bloques alternos, donde para obtener el del hietograma de diseño se utilizará la curva IDF obtenida previamente. Se estableció un periodo de retorno de 40 años. A partir de lo calculado, se obtuvo la siguiente tabla:

Tabla 31. Valores obtenidos para el hietograma de diseño

DURACIÓN (min)	INTENSIDAD (mm/h)	PROFUNDIDAD ACUMULADA (mm)	PROFUNDIDAD INCREMENTAL (mm)	TIEMPO (minutos)	PRECIPITACIÓN (mm)
5	21.868	1.822	1.822	0-5	0.100
10	14.268	2.378	0.556	5-10	0.106
15	11.115	2.779	0.401	10-15	0.112
20	9.310	3.103	0.325	15-20	0.120
25	8.114	3.381	0.278	20-25	0.129
30	7.252	3.626	0.245	25-30	0.141
35	6.595	3.847	0.221	30-35	0.155
40	6.074	4.050	0.202	35-40	0.175
45	5.649	4.237	0.187	40-45	0.202
50	5.294	4.412	0.175	45-50	0.245
55	4.992	4.576	0.164	50-55	0.325
60	4.732	4.732	0.155	55-60	0.556
65	4.504	4.880	0.148	60-65	1.822
70	4.303	5.020	0.141	65-70	0.401
75	4.124	5.155	0.135	70-75	0.278
80	3.963	5.285	0.129	75-80	0.221
85	3.818	5.409	0.124	80-85	0.187
90	3.686	5.529	0.120	85-90	0.164
95	3.565	5.645	0.116	90-95	0.148
100	3.454	5.757	0.112	95-100	0.135
105	3.352	5.866	0.109	100-105	0.124
110	3.257	5.972	0.106	105-110	0.116
115	3.169	6.075	0.103	110-115	0.109
120	3.087	6.175	0.100	115-120	0.103

Figura 15. Hietograma de diseño

3.8.4.2 Obras de drenaje

A partir del cálculo del caudal, se diseñará como obra de drenaje una cuneta triangular para la correcta evacuación de aguas, con el propósito de prevenir la ocurrencia de posibles filtraciones que traigan consigo el deterioro del pavimento.

a) Caudal de aporte (Q)

Ecuación 22. Caudal Q de aporte

$$Q=\frac{C\,x\,I\,x\,A}{360}$$

Coeficiente de escorrentía

Se consideró un coeficiente de escorrentía C= 0.5, el cual corresponde a una cobertura vegetal sin vegetación y un tipo de suelo semipermeable, esto de acuerdo a la tabla N° 08 del manual de hidrología, hidráulica y drenaje.

Intensidad

Los cálculos para este valor fueron realizados en una plantilla hecha en MS Excel con ayuda del software Hidroesta, de donde se obtuvo como intensidad máxima I= 27.63 mm/h

Tabla 32. Valores obtenidos para el caudal de diseño

Coeficiente de escorrentía	0.5
Intensidad de Iluvia	13.01 mm/h
Área	5.77 ha

$$Q = \frac{0.5 \times 13.01 \times 5.77}{360}$$

$$Q=0.104~m^3/s$$

El cálculo hidráulico se efectuó en el software HCanales, con lo cual se hallaron los resultados referentes a los parámetros para el dimensionamiento de la cuneta triangular.

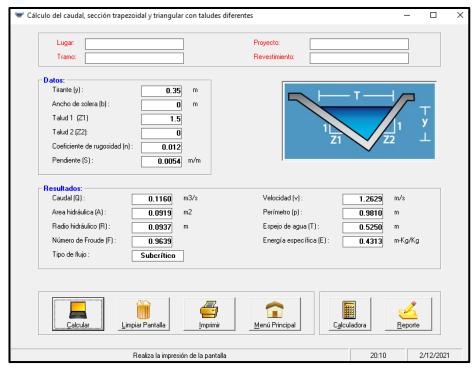


Figura 16. Sección de cuneta. Fuente: H canales

b) Capacidad de las cunetas

Ecuación 23. Ecuación de Manning

$$Q = A x V = \frac{(A x R^{\frac{2}{3}} x S^{\frac{1}{2}})}{n}$$

Asimismo, de acuerdo al terreno del proyecto, y en base a los cálculos efectuados en MS Excel, se halló la pendiente de S= 0.0054.

Se optó por un coeficiente de rugosidad de Manning n= 0.012, el cual corresponde a una cuneta de concreto. Por otro lado, habiendo hallado un tirante y= 0.40 m (Figura N $^{\circ}$ 20), se colocaron los datos en el software Hcanales, el cual arrojó un área hidráulica A= 0.16 m 2 y un radio hidráulico R= 0.1236 m.

$$Q = A \times V = \frac{(0.09 \times 0.0937^{\frac{2}{3}} \times 0.0054^{\frac{1}{2}})}{0.012}$$

 $Q=0.1160\,m^3/s$

 $0.1160 \text{ m}^3/\text{s} > 0.1040 \text{ m}^3/\text{s}$

Qmanning > Qaporte - CUMPLE

3.8.5 Diseño geométrico

El propósito es realizar el diseño geométrico de las calles del sector Cafetal I, siguiendo los pasos y parámetros establecidos en las normas respectivas, con lo cual se procederá a obtener el diseño tanto en planta como en perfil mediante el software Civil 3D, haciendo uso de estudios realizados previamente como el estudio topográfico, con el que delimitamos la zona de estudio y creamos la superficie para las curvas de nivel mayores y menores.

3.8.5.1 Clasificación de vías

Las calles del sector Cafetal I se encuentra clasificada como una vía local secundaria.

3.8.5.2 Diseño geométrico en planta

3.8.5.2.1 Calzada

De acuerdo a la norma GH. 020 del RNE, una calle clasificada como vía local secundaria, tendrá una calzada mínima de 2.70 m por módulo.

3.8.5.2.2 Bombeo

Se consideró un bombeo de 2% en base a lo establecido en el Manual de Diseño Geométrico de Vías Urbanas, considerando una precipitación menor a 500 mm/año.

3.8.5.2.3 Vehículo de diseño

Con los resultados obtenidos del estudio de tráfico realizado con anterioridad, se pudo definir el tipo de vehículos que circulan por el lugar de estudio, que en su mayoría fueron vehículos ligeros. Además, se observó también que transitan vehículos pesados, siendo el tipo C4 el de mayor tamaño.

3.8.5.2.4 Velocidad de diseño

En el caso de zonas urbanas, el Reglamento Nacional de Tránsito estableció una velocidad de 40 km/h. para calles y jirones.

3.8.5.2.5 Radio mínimo

La norma GH. 020 componentes de diseño urbano, estableció para vías locales secundarias, un radio mínimo de 30 m.

3.8.5.3 Diseño geométrico en perfil

3.8.5.2.6 Pendiente mínima

El Manual de Diseño Geométrico de Vías Urbanas indica que si el bombeo de la calzada es de por lo menos 2% se considerará una pendiente mínima de 0.3%.

3.8.5.2.7 Pendiente máxima

El diseño de infraestructura vial se realizará en un terreno plano, por lo que el Manual de Diseño Geométrico de Vías Urbanas indica que para tal tipo de terreno la pendiente máxima es según la topografía.

3.8.5.4 Rampas peatonales

De acuerdo a la norma GH. 020, el ancho mínimo para las rampas es de 0.90 m; por tanto, se establecieron 3 tipos de rampas de ancho variable mayor a lo indicado. Del mismo modo, según la norma citada, se considera una pendiente no mayor al 12%.

3.8.5.5 Señalización

Para una correcta señalización en las vías de las calles del sector Cafetal I, se siguió lo establecido en el Manual de dispositivos de control de tránsito automotor para calles y carreteras.

3.8.5.5.1 Líneas de cruce peatonal

Se utilizarán franjas de 0.50 m. de ancho de color blanco espaciadas cada 0.50 m. y de un ancho de 4.00 m; las franjas deberán estar a una distancia no menor de 1.50 m. de la línea más próxima de la vía interceptante.

3.8.5.5.2 Línea central

Separa carriles en ambos sentidos. Será de color amarillo y de forma continua porque no se permitirá el cruce al otro carril.

3.8.5.5.3 Flechas Direccionales

Las flechas tendrán una longitud de 4.50 m., en su parte inferior tendrá un ancho de 0.40 m. El área de las flechas será de 1.45 y 1.80 m². La pintura de tránsito de las flechas será de color blanco.

3.8.6 Diseño de pavimento flexible según AASHTO 93

Para el cálculo de cada capa que comprende a la estructura del diseño de pavimento flexible, se usaron las guías de observación anteriormente desarrolladas y empleadas, que corresponden, en primer lugar, al estudio topográfico, el cual proporcionó la ubicación con las coordenadas de la zona, datos que se procesaron en el Software de dibujo Civil 3D; el estudio de suelos, con el que se obtuvo ciertos datos como el contenido de humedad, límites de consistencia, granulometría, proctor modificado y CBR, el estudio de tráfico, de donde se obtuvo el IMDa para el cálculo de ESAL.

3.8.6.1 Cálculo de tráfico de diseño

Se obtuvo el valor del W18= 418 979 EE que corresponde al número de cargas que producen los vehículos. Por lo tanto, según tabla del Manual de Suelos, Geología, Geotecnia y Pavimentos, se identificó un tipo de tráfico Tp2.

Tabla 33. Tipo de tráfico de diseño

TIPOS DE TRÁFICO PESADO EXPRESADO EN EE	RANGOS DE TRÁFICO PESADO EXPRESADOS EN EE
Tag	>300,000 EE
Тр2	≤ 500,000 EE

Fuente: Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013

3.8.6.2 Categoría del suelo

De acuerdo al estudio de mecánica de suelos realizado en la zona de estudio, se obtuvo un valor de CBR igual a 13.7%, siendo el más bajo, por lo que el suelo, de acuerdo a la subrasante se clasifica como

regular, esto según el Manual de Suelos, Geología, Geotecnia y Pavimentos.

Tabla 34. Categoría de subrasante

CATEGORÍAS DE SUBRASANTE	CBR
S ₃ : Subrasante Buena	De CBRE ≥ 10% a
33. Subrasante buena	CBR < 20%

Fuente: Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013

3.8.6.3 Módulo Resiliente (Mr)

Este valor depende del estado de los esfuerzos, contenido de humedad y densidad de un suelo. Se halló el Mr que corresponde mediante la siguiente ecuación:

Ecuación 24. Módulo resiliente

$$Mr_{(psi)} = 2555 \times CBR^{0.64}$$
 $Mr_{(psi)} = 2555 \times 13.70^{0.64}$
 $Mr_{(psi)} = 13642$

3.8.6.4 Confiabilidad (%R)

De acuerdo al tipo de tráfico se adoptó el siguiente valor:

Tabla 35. Valor de Confiabilidad

TIPO DE CAMINOS	TRÁFICO	_	E ILADOS	R
Caminos de bajo				
volumen de	Tp2	300,001	500,000	75%
tránsito				

Fuente: Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013

3.8.6.5 Desviación Estándar Normal (Zr)

El valor Zr se determinó de acuerdo al nivel de confiabilidad obtenido, siendo R= 75%. Según el Manual de Suelos, Geología, Geotecnia y Pavimentos, la desviación estándar normal es la siguiente:

Tabla 36. Valor de Desviación Estándar Normal

TIPO DE CAMINOS	TRÁFICO	EE ACUM	IULADOS	Zr
Caminos de bajo volumen de tránsito	Tp2	300,001	50,000	-0.674

Fuente: Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013

3.8.6.6 Desviación Estándar Combinada (So)

El Método AASHTO 93 recomienda establecer para pavimentos flexibles valores de So entre 0.40 y 0.50. En este caso, para el presente proyecto se tomó So= 0.45.

3.8.6.7 Índice de Serviciabilidad

Serviciabilidad Final (Pt)

De acuerdo a la Norma Técnica de Pavimentos Urbanos CE. 010, se determinó una serviciabilidad final de Pt= 2.00, dado que la vía está clasificada como vía local.

Serviciabilidad Inicial (Po)

El método AASHTO estableció para pavimentos flexibles un valor inicial deseable de Po= 4.2.

3.8.6.8 Pérdida de Serviciabilidad (△PSI)

Está definida por la diferencia entre la serviciabilidad inicial y serviciabilidad final.

Ecuación 25. Pérdida de serviciabilidad

$$\Delta PSI = p_o - p_t$$

$$\Delta PSI = 4.20 - 2.00$$

$$\Delta PSI = 2.20$$

3.8.6.9 Nivel de Servicio PSI

Se obtuvo un valor de PSI de 2.20 clasificado como regular.

Tabla 37. Valores de PSI y calificación de serviciabilidad

PSI	Calificación
0.0	Intransitable
0.1 – 1.0	Muy malo
1.1 – 2.0	Malo
2.1 – 3.0	Regular
3.1 – 4.0	Bueno
4.1 – 4.9	Muy bueno
5.0	Excelente

Fuente: Norma Técnica CE. 0.10 Pavimentos Urbanos

3.8.6.10 Cálculo del Número Estructural (SN)

El cálculo fue efectuado mediante el Software Ecuación AASHTO 93, obteniendo un valor de SN= 2.13.

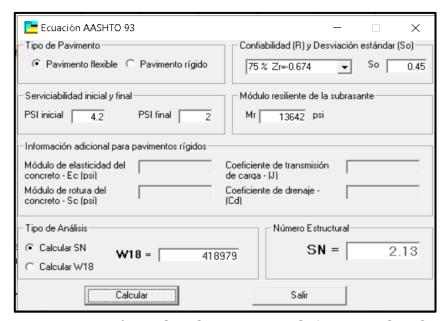


Figura 17. Ecuación AASHTO 93. Fuente: Software AASHTO 93

3.8.6.11 Determinación de coeficientes

De acuerdo al cuadro 12.13 del manual de suelos, geología, geotecnia y pavimentos, se consideraron para cada capa del pavimento, los siguientes valores de coeficiente estructural (a_i cm):

Tabla 38. Coeficientes estructurales de las capas del pavimento ai

COMPONENTE DEL PAVIMENTO	COEFICIENTE	a _i cm	OBSERVACIÓN		
Capa Superficial					
Carpeta asfáltica en caliente, módulo 2,965 Mpa (430,000 PSI) a 20 °C (68 °F).	a ₁	0.170 cm	Capa superficial recomendada para todo tipo de tráfico,		
Base					
Base granular CBR 80%, compactada al 100% de la MDS	a ₂	0.052 cm	Capa de base recomendada para tráfico ≤5'000,000 EE		
Subbase					
Subbase granular CBR 40%, compactada al 100% de la MDS	a ₃	0.047 cm	Capa de subbase recomendada para tráfico ≤15'000,000 EE		

Fuente: Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013

3.8.6.12 Coeficiente de drenaje (m_i)

Según el Manual de Suelos y Pavimentos, se asume un coeficiente de drenaje para las capas de base y subbase de 1.00. Este coeficiente depende de la calidad del drenaje.

3.8.6.13 Espesores mínimos

De acuerdo al cuadro 12.7 del manual de suelos y pavimentos, se establece un espesor de carpeta asfáltica mínimo de 6 cm, base de 15 cm y sub base de 15 cm.

3.8.6.14 Cálculo de Número Estructural Requerido

Se aplicó la fórmula dada por la guía AASHTO, para hallar los datos correspondientes al SN requerido. Los datos a aplicar son los hallados

anteriormente, como espesores mínimos, coeficientes de capas y drenaje.

Ecuación 26. Número estructural requerido

$$SNreq = a_1 x d_1 + a_2 x d_2 x m_2 + a_3 x d_3 x m_3$$

$$SNreq = 0.17 \ x \ 6 + 0.052 \ x \ 12 \ x \ 1 + 0.047 \ x \ 12 \ x \ 1$$

$$SNreq = 2.378$$

Luego de reemplazar los datos correspondientes, se obtuvo los siguientes valores por capa:

Carpeta asfáltica (d1) = 7 cm

Base (d2) = 12 cm

Sub base (d3) = 12 cm

2.378 > 2.13

SNreq > SNcalculado CUMPLE

Finalmente, los valores a usar fueron:

Carpeta asfáltica = 7 cm

Base = 15 cm

Sub base= 15 cm

IV. RESULTADOS

4.1. Levantamiento topográfico

4.1.1. Coordenadas

Tabla 39. Coordenadas UTM sector Cafetal I

PROYECTO	Diseño de Infraestructura Vial de las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021.				
ESTACIÓN TOTAL		TS06 PLUS 2" 500	FECHA	20/07/2021	
OPERADOR	Frank Alexande	r La Rosa Alayo	COORDENAS UTM	WGS84	
PUNTOS		ENADAS	СОТА	DESCRIPCIÓN	
	NORTE	ESTE			
Р	N	E	Z	D	
E-1	668866.01	9198564.72	97.2313	STN	
E-3	668905.23	9198634.88	96.23	STN	
1	668904.51	9198633.60	96.3139	ESQ	
2	668902.73	9198629.24	96.3724	POSTE	
3	668905.01	9198634.36	96.2548	VEREDA	
4	668909.08	9198630.70	96.3888	ESQ	
5	668908.32	9198631.08	96.2479	ACCESO	
6	668904.11	9198624.72	96.3155	ACCESO	
7	668901.34	9198626.86	96.3416	ACCESO	
8	668901.13	9198626.79	96.3932	VEREDA	
9	668894.87	9198617.27	96.6525	VEREDA	
10	668895.02	9198617.14	96.6611	ACCESO	
11	668896.66	9198615.84	96.5253	BZN	
12	668897.80	9198615.13	96.5666	ACCESO	
13	668890.78	9198604.02	96.703	ACCESO	
14	668887.43	9198605.81	96.7384	POSTE	
15	668887.49	9198605.67	96.7305	VEREDA	
16	668887.62	9198605.55	96.7706	ACCESO	
17	668886.66	9198606.18	96.7449	CASA	
18	668891.01	9198602.85	96.8073	CASA	
19	668877.26	9198591.98	97.0691	CASA	
20	668878.03	9198591.61	97.0577	VEREDA	
21	668878.04	9198591.66	96.8187	VEREDA	
22	668878.25	9198591.45	96.8472	ACCESO	

23	668881.45	9198589.43	97.0808	ACCESO
24	668871.26	9198573.72	97.266	POSTE
25	668866.83	9198574.20	97.3057	POSTE
26	668868.38	9198569.76	97.1723	ACCESO
27	668865.20	9198571.43	97.1402	ACCESO
28	668864.43	9198572.21	97.281	ESQ
29	668864.80	9198571.04	97.132	VEREDA
30	668868.58	9198568.11	97.3234	VEREDA
31	668869.15	9198569.01	97.3184	ESQ
32	668866.91	9198566.65	97.1977	ACCESO
33	668867.07	9198563.53	97.2148	ACCESO
34	668869.48	9198560.48	97.1833	ACCESO
35	668878.56	9198554.50	97.1833	ACCESO
36	668880.92	9198559.14	97.4204	POSTE
37	668881.87	9198559.52	97.3912	VEREDA
38	668882.95	9198559.96	97.4289	CASA
39	668887.57	9198553.25	97.408	POSTE
40	668894.32	9198545.63	97.2753	ACCESO
41	668895.77	9198550.86	97.4639	VEREDA
42	668896.21	9198551.59	97.4858	CASA
43	668903.85	9198546.82	97.4153	CASA
44	668903.35	9198546.14	97.4141	VEREDA
45	668910.45	9198537.55	97.2528	ACCESO
46	668913.03	9198542.27	97.4744	CASA
47	668912.60	9198541.44	97.4744	VEREDA
48	668914.86	9198539.91	97.3567	POSTE
49	668922.55	9198536.50	97.5854	POSTE
50	668923.06	9198537.30	97.5924	CASA
51	668923.99	9198529.32	97.256	ACCESO
52	668927.42	9198533.80	97.5817	VEREDA
53	668928.26	9198534.75	97.5915	CASA
54	668936.41	9198522.92	97.2436	ACCESO
55	668939.68	9198528.04	97.4154	VEREDA
56	668940.33	9198528.80	97.5394	CASA
57	668953.57	9198520.27	97.6861	POSTE
58	668954.55	9198519.78	97.6222	POSTE
59	668954.81	9198520.51	97.6658	VEREDA
60	668955.32	9198521.39	97.7701	CASA
61	668951.92	9198515.53	97.2793	ACCESO
62	668962.78	9198516.72	97.6801	VEREDA
63	668963.28	9198517.50	97.7951	ESQ

64 668964.53 9198508.68 97.5919 ACCESO 65 668968.42 9198506.48 97.8905 PISTA 66 668962.70 9198497.98 97.9148 PISTA 67 668963.78 9198503.33 97.801 BZ 68 668952.03 9198505.86 97.3419 ACCESO 69 668949.10 9198502.00 97.2793 ESQ 70 668906.17 9198515.89 97.2782 ACCESO 71 668910.30 9198531.22 97.2612 ACCESO 72 668903.30 9198535.07 97.2138 ACCESO 73 668903.9 9198535.01 97.2392 ACCESO 74 668903.90 9198535.01 97.2392 ACCESO 75 668903.91 9198534.15 97.3282 CASETA 76 668903.91 9198534.15 97.3282 CASETA 77 668903.11 9198532.84 97.2723 CASETA 78 668903.11 9198532.84 97.2723 CASETA 78 668906.04 9198527.25 97.2613 POSTE 80 668896.89 9198527.39 97.1657 ACCESO 868896.89 9198527.39 97.1657 ACCESO 868896.89 9198527.39 97.1657 ACCESO 83 668898.89 9198517.60 96.9733 ACCESO 83 668898.89 9198502.58 96.9539 POSTE 84 668887.81 9198499.57 96.8927 ACCESO 83 668874.81 9198499.57 96.8927 ACCESO 868874.81 9198499.57 96.992 ACCESO 86886.26 9198490.50 96.9578 ACCESO 868865.74 9198494.60 96.9584 ACCESO 91 668865.29 9198494.25 96.9579 ACCESO 91 668865.29 9198495.29 96.9579 ACCESO 86866865.29 9198490.50 96.9584 ACCESO 91 668865.29 9198490.50 96.9584 ACCESO 91 668865.29 9198494.25 96.9579 ACCESO 86866865.29 9198494.20 96.9579 ACCESO 86866865.29 9198490.50 96.9584 ACCESO 91 668865.29 9198495.29 96.9579 ACCESO 86866865.29 9198495.29 96.9579 ACCESO 91 668865.29 9198494.25 96.8944 ACCESO 92 668865.74 9198494.60 96.9584 ACCESO 92 668865.74 919849.59 96.9579 ACCESO 92 668865.74 919849.59 96.9579 ACCESO 93 668865.29 9198495.29 96.9579 ACCESO 94 668865.29 9198495.29 96.9579 ACCESO 95 668864.49 919849.30 96.9944 ACCESO 96.68864.49 919849.30 96.9944 ACCESO 96.68864.49 919849.30 96.9944 ACCESO 96.68865.29 9198486.89 97.0063 CASA 97.912 PISTA 98 666885.29 9198486.89 97.0063 CASA 96.992 ESQ 96.68865.91 9198487.89					
66 668962.70 9198497.98 97.9148 PISTA 67 668963.78 9198503.33 97.801 BZ 68 668963.78 9198503.33 97.801 BZ 69 668949.10 9198502.00 97.2793 ESQ 70 668936.17 9198515.89 97.2782 ACCESO 71 668903.30 9198531.22 97.2612 ACCESO 72 668903.30 9198535.07 97.2138 ACCESO 73 66890.89 9198535.01 97.2392 ACCESO 74 668890.38 9198533.68 97.201 ACCESO 75 668905.19 9198533.31 97.3748 CASETA 76 668903.91 9198532.84 97.2723 CASETA 77 668903.11 9198532.84 97.2723 CASETA 78 668908.12 9198517.60 99.72613 POSTE 80 668896.89 9198527.39 97.1657 ACCESO 81 668890.50	64	668964.53	9198508.68	97.5919	ACCESO
67 668963.78 9198503.33 97.801 BZ 68 668952.03 9198505.86 97.3419 ACCESO 69 668949.10 9198502.00 97.2793 ESQ 70 668936.17 9198515.89 97.2782 ACCESO 71 668910.30 9198531.22 97.2612 ACCESO 72 668903.30 9198535.07 97.2138 ACCESO 73 668908.9 9198535.01 97.2392 ACCESO 74 668890.89 9198533.68 97.201 ACCESO 75 668905.19 9198533.31 97.3748 CASETA 76 668903.11 9198534.15 97.3282 CASETA 77 668903.11 9198532.84 97.2723 CASETA 78 668908.12 9198528.53 97.3288 ESQ 79 668906.04 9198527.25 97.2613 POSTE 80 668896.89 9198527.39 97.1657 ACCESO 81 668896.89 9198517.60 96.9733 ACCESO 82 668880.55 9198504.20 96.922 ACCESO 83 668888.55 9198504.20 96.922 ACCESO 84 668888.70 9198499.32 97.0466 CASA 85 668874.81 9198499.67 96.8927 ACCESO 86 668874.81 919849.67 96.8927 ACCESO 87 66886.89 9198495.39 96.9678 CASA 87 668870.92 9198496.75 96.9678 CASA 88 668868.26 9198495.29 96.9579 ACCESO 89 668865.74 9198494.60 96.973 ACCESO 90 66886.29 9198495.29 96.9579 ACCESO 91 668855.28 9198495.29 97.0063 CASA 93 668868.26 9198495.29 96.9579 ACCESO 90 668865.29 9198496.29 97.0063 CASA 91 668855.28 9198494.25 96.8464 ACCESO 92 668865.29 9198496.29 97.0063 CASA 93 668868.29 9198495.30 96.9994 ACCESO 94 668855.28 919849.30 96.9916 ESQ 95 668844.39 919849.71 97.368 ACCESO 96 668844.39 919849.71 97.368 ACCESO 97 668843.83 919843.31 97.314 PISTA 98 668825.59 9198447.87 97.368 ACCESO 97 668843.83 919843.31 97.314 PISTA 98 668852.59 9198447.18 96.952 ESQ 96 668847.46 919843.31 97.314 PISTA 98 668825.59 9198437.18 96.952 ESQ 96 668844.39 9198437.18 96.952 ESQ 97 668845.39 9198437.18 96.952 ESQ 96 668845.39 9198437.19 96.9912 PISTA 98 668855.28 9198437.19 97.306 ACCESO 97 668845.89 9198437.19 97.306 ACCESO 98 668855.28 9198447.49 97.914 PISTA 99 668855.48 9198433.35 97.381 ACCESO 96 668847.25 9198446.78 96.8403 ESQ 100 668825.48 9198445.59 96.8403 ESQ 101 668825.48 9198433.35 97.381 ACCESO 101 668825.99 9198445.79 96.9406 ACCESO	65	668968.42	9198506.48	97.8905	PISTA
68 668952.03 9198505.86 97.3419 ACCESO 69 668949.10 9198502.00 97.2793 ESQ 70 668936.17 9198515.89 97.2782 ACCESO 71 668910.30 9198531.22 97.2612 ACCESO 72 668903.30 9198535.07 97.2138 ACCESO 73 668900.89 9198535.01 97.2392 ACCESO 74 668899.38 919853.68 97.201 ACCESO 75 668905.19 9198533.31 97.3748 CASETA 76 668903.11 9198532.84 97.2723 CASETA 77 668903.11 9198527.25 97.2613 POSTE 80 668906.04 9198527.25 97.2613 POSTE 80 668896.89 919857.39 97.1657 ACCESO 81 668890.50 9198517.60 96.9733 ACCESO 82 66880.55 9198504.20 96.922 ACCESO 83 668878.15 </td <td>66</td> <td>668962.70</td> <td>9198497.98</td> <td>97.9148</td> <td>PISTA</td>	66	668962.70	9198497.98	97.9148	PISTA
69 668949.10 9198502.00 97.2793 ESQ 70 668936.17 9198515.89 97.2782 ACCESO 71 668910.30 9198531.22 97.2612 ACCESO 72 668903.30 9198535.01 97.2392 ACCESO 73 668908.89 9198535.01 97.2392 ACCESO 74 668899.38 9198533.68 97.201 ACCESO 75 668906.19 9198533.31 97.3748 CASETA 76 668903.91 9198532.84 97.2723 CASETA 77 668908.12 9198528.53 97.3282 CASETA 78 668906.04 9198527.39 97.1657 ACCESO 80 668896.89 9198527.39 97.1657 ACCESO 81 668890.50 9198517.60 96.973 ACCESO 82 66880.55 9198504.20 96.922 ACCESO 83 668874.81 9198499.32 97.0466 CASA 85 668874.81<	67	668963.78	9198503.33	97.801	BZ
70 668936.17 9198515.89 97.2782 ACCESO 71 668910.30 9198531.22 97.2612 ACCESO 72 668903.30 9198535.07 97.2138 ACCESO 73 668900.89 9198535.01 97.2392 ACCESO 74 668899.38 9198533.68 97.201 ACCESO 75 668905.19 9198533.31 97.3748 CASETA 76 668903.91 9198534.15 97.3282 CASETA 76 668903.11 9198532.84 97.2723 CASETA 78 668906.12 9198527.25 97.2613 POSTE 80 668896.89 9198527.39 97.1657 ACCESO 81 668890.50 9198517.60 96.9733 ACCESO 82 668880.55 9198504.20 96.922 ACCESO 83 66888.69 9198502.58 96.9539 POSTE 84 668887.15 9198499.32 97.0466 CASA 85 668878.1	68	668952.03	9198505.86	97.3419	ACCESO
71 668910.30 9198531.22 97.2612 ACCESO 72 668903.30 9198535.07 97.2138 ACCESO 73 668900.89 9198535.01 97.2392 ACCESO 74 668899.38 9198533.68 97.201 ACCESO 75 668905.19 9198533.31 97.3748 CASETA 76 668903.91 9198534.15 97.3282 CASETA 76 668903.11 9198528.53 97.3288 ESQ 79 668906.04 9198527.25 97.2613 POSTE 80 668896.89 9198527.39 97.1657 ACCESO 81 668890.50 9198517.60 96.9733 ACCESO 82 668880.55 9198504.20 96.922 ACCESO 83 668887.81 9198499.32 97.0466 CASA 85 66887.4.81 9198499.32 97.0466 CASA 85 66887.15 9198490.50 96.9678 CASA 86 66887.15	69	668949.10	9198502.00	97.2793	ESQ
72 668903.30 9198535.07 97.2138 ACCESO 73 668900.89 9198535.01 97.2392 ACCESO 74 668899.38 9198533.68 97.201 ACCESO 75 668905.19 9198533.31 97.3748 CASETA 76 668903.91 9198532.84 97.2723 CASETA 77 668903.11 9198528.53 97.3288 ESQ 79 668908.12 9198527.25 97.2613 POSTE 80 66896.89 9198527.39 97.1657 ACCESO 81 668896.89 9198517.60 96.9733 ACCESO 82 668880.55 9198504.20 96.922 ACCESO 83 66889.86 9198502.58 96.9539 POSTE 84 668887.48 9198499.32 97.0466 CASA 85 66887.48 9198499.57 96.922 ACCESO 86 66887.15 9198496.50 96.9678 CASA 87 66886.20	70	668936.17	9198515.89	97.2782	ACCESO
73 668900.89 9198535.01 97.2392 ACCESO 74 668899.38 9198533.68 97.201 ACCESO 75 668905.19 9198533.31 97.3748 CASETA 76 668903.91 9198532.84 97.2723 CASETA 77 668903.11 9198528.53 97.3288 ESQ 79 668906.12 9198527.25 97.2613 POSTE 80 668896.89 9198527.25 97.2613 POSTE 81 668890.50 9198517.60 96.9733 ACCESO 82 668808.55 9198504.20 96.922 ACCESO 83 668808.55 9198502.58 96.9539 POSTE 84 66888.80 9198590.50 96.9539 POSTE 84 668874.81 9198490.50 96.9678 CASA 85 668874.81 9198490.50 96.9678 CASA 87 668870.92 9198494.52 96.9579 ACCESO 88 668868.26	71	668910.30	9198531.22	97.2612	ACCESO
74 668899.38 9198533.68 97.201 ACCESO 75 668905.19 9198533.31 97.3748 CASETA 76 668903.91 9198534.15 97.3282 CASETA 77 668903.11 9198532.84 97.2723 CASETA 78 668908.12 9198528.53 97.3288 ESQ 79 668906.04 9198527.25 97.2613 POSTE 80 668890.89 9198527.39 97.1657 ACCESO 81 668890.50 9198517.60 96.9733 ACCESO 82 668880.55 9198504.20 96.922 ACCESO 83 668880.55 9198502.58 96.9539 POSTE 84 668887.6 9198499.32 97.0466 CASA 85 668874.81 9198499.32 97.0466 CASA 86 668878.15 9198490.50 96.9678 CASA 87 668870.92 9198496.75 96.9128 ACCESO 88 668863.26	72	668903.30	9198535.07	97.2138	ACCESO
75 668905.19 9198533.31 97.3748 CASETA 76 668903.91 9198534.15 97.3282 CASETA 77 668903.11 9198532.84 97.2723 CASETA 78 668908.12 9198528.53 97.3288 ESQ 79 668906.04 9198527.25 97.2613 POSTE 80 668890.89 9198527.39 97.1657 ACCESO 81 668890.50 9198517.60 96.9733 ACCESO 82 668880.55 9198504.20 96.922 ACCESO 83 668889.86 9198502.58 96.9539 POSTE 84 66888.87.0 9198499.32 97.0466 CASA 85 668874.81 9198499.67 96.8927 ACCESO 86 668878.15 9198490.50 96.9678 CASA 87 668870.92 9198496.75 96.9128 ACCESO 88 668868.26 9198495.29 96.9579 ACCESO 89 668865.74<	73	668900.89	9198535.01	97.2392	ACCESO
76 668903.91 9198534.15 97.3282 CASETA 77 668903.11 9198532.84 97.2723 CASETA 78 668908.12 9198528.53 97.3288 ESQ 79 668906.04 9198527.25 97.2613 POSTE 80 668896.89 9198527.39 97.1657 ACCESO 81 668890.50 9198517.60 96.9733 ACCESO 82 668880.55 9198504.20 96.922 ACCESO 83 668889.86 9198502.58 96.9539 POSTE 84 668887.11 9198499.32 97.0466 CASA 85 668874.81 9198499.67 96.8927 ACCESO 86 668878.15 9198490.50 96.9678 CASA 87 668870.92 9198496.75 96.9128 ACCESO 88 668868.26 9198495.29 96.9579 ACCESO 89 668861.60 9198493.80 96.9094 ACCESO 91 668855.23 </td <td>74</td> <td>668899.38</td> <td>9198533.68</td> <td>97.201</td> <td>ACCESO</td>	74	668899.38	9198533.68	97.201	ACCESO
77 668903.11 9198532.84 97.2723 CASETA 78 668908.12 9198528.53 97.3288 ESQ 79 668906.04 9198527.25 97.2613 POSTE 80 668896.89 9198527.39 97.1657 ACCESO 81 668890.50 9198517.60 96.9733 ACCESO 82 668880.55 9198504.20 96.922 ACCESO 83 668889.86 9198502.58 96.9539 POSTE 84 668887.0 9198499.32 97.0466 CASA 85 668874.81 9198499.57 96.8927 ACCESO 86 668878.15 9198490.50 96.9678 CASA 87 668870.92 9198496.75 96.9128 ACCESO 88 668868.26 9198495.29 96.9579 ACCESO 89 668865.74 9198494.60 96.9584 ACCESO 91 668865.29 9198494.25 96.8464 ACCESO 92 668865.29 <td>75</td> <td>668905.19</td> <td>9198533.31</td> <td>97.3748</td> <td>CASETA</td>	75	668905.19	9198533.31	97.3748	CASETA
78 668908.12 9198528.53 97.3288 ESQ 79 668906.04 9198527.25 97.2613 POSTE 80 668896.89 9198527.39 97.1657 ACCESO 81 668890.50 9198517.60 96.9733 ACCESO 82 668880.55 9198504.20 96.922 ACCESO 83 668889.86 9198502.58 96.9539 POSTE 84 668887.0 9198499.32 97.0466 CASA 85 668874.81 9198499.67 96.8927 ACCESO 86 668870.92 9198490.50 96.9678 CASA 87 668870.92 9198495.29 96.9579 ACCESO 88 668868.26 9198495.29 96.9579 ACCESO 89 668861.60 9198493.80 96.9094 ACCESO 91 668858.33 9198494.25 96.8464 ACCESO 92 668865.29 9198486.58 96.9452 POSTE 94 668852.15 <td>76</td> <td>668903.91</td> <td>9198534.15</td> <td>97.3282</td> <td>CASETA</td>	76	668903.91	9198534.15	97.3282	CASETA
79 668906.04 9198527.25 97.2613 POSTE 80 668896.89 9198527.39 97.1657 ACCESO 81 668890.50 9198517.60 96.9733 ACCESO 82 668880.55 9198504.20 96.922 ACCESO 83 668889.86 9198502.58 96.9539 POSTE 84 668887.0 9198499.32 97.0466 CASA 85 668874.81 9198499.67 96.8927 ACCESO 86 668878.15 9198490.50 96.9678 CASA 87 668870.92 9198496.75 96.9128 ACCESO 88 668868.26 9198495.29 96.9579 ACCESO 89 668865.74 9198494.60 96.9584 ACCESO 90 668861.60 9198493.80 96.9094 ACCESO 91 668858.33 9198494.25 96.8464 ACCESO 92 668865.29 9198486.58 96.9452 POSTE 94 668852.15<	77	668903.11	9198532.84	97.2723	CASETA
80 668896.89 9198527.39 97.1657 ACCESO 81 668890.50 9198517.60 96.9733 ACCESO 82 668880.55 9198504.20 96.922 ACCESO 83 668889.86 9198502.58 96.9539 POSTE 84 668887.09 9198499.32 97.0466 CASA 85 668874.81 9198499.67 96.8927 ACCESO 86 668878.15 9198490.50 96.9678 CASA 87 668870.92 9198496.75 96.9128 ACCESO 88 668868.26 9198495.29 96.9579 ACCESO 89 668865.74 9198494.60 96.9584 ACCESO 90 668865.74 9198494.25 96.8464 ACCESO 91 668858.33 9198494.25 96.8464 ACCESO 92 668865.29 9198486.58 96.9452 POSTE 94 668855.28 9198486.58 96.9216 ESQ 95 668847.46 </td <td>78</td> <td>668908.12</td> <td>9198528.53</td> <td>97.3288</td> <td>ESQ</td>	78	668908.12	9198528.53	97.3288	ESQ
81 668890.50 9198517.60 96.9733 ACCESO 82 668880.55 9198504.20 96.922 ACCESO 83 668889.86 9198502.58 96.9539 POSTE 84 668887.092 9198499.32 97.0466 CASA 85 668874.81 9198490.50 96.8927 ACCESO 86 66887.15 9198490.50 96.9678 CASA 87 668870.92 9198496.75 96.9128 ACCESO 88 668868.26 9198495.29 96.9579 ACCESO 89 668865.74 9198494.60 96.9584 ACCESO 90 668861.60 9198493.80 96.9094 ACCESO 91 668858.33 9198494.25 96.8464 ACCESO 92 668865.29 9198486.58 96.9452 POSTE 94 668855.28 9198485.87 96.9216 ESQ 95 668847.46 9198437.18 96.952 ESQ 96 668844.39	79	668906.04	9198527.25	97.2613	POSTE
82 668880.55 9198504.20 96.922 ACCESO 83 668889.86 9198502.58 96.9539 POSTE 84 668888.70 9198499.32 97.0466 CASA 85 668874.81 9198499.67 96.8927 ACCESO 86 668878.15 9198490.50 96.9678 CASA 87 668870.92 9198496.75 96.9128 ACCESO 88 668868.26 9198495.29 96.9579 ACCESO 89 668865.74 9198494.60 96.9584 ACCESO 90 668861.60 9198493.80 96.9094 ACCESO 91 668858.33 9198494.25 96.8464 ACCESO 92 668865.29 9198486.29 97.0063 CASA 93 668862.15 9198486.58 96.9452 POSTE 94 668855.28 9198495.37 96.9216 ESQ 95 668844.39 9198427.87 97.368 ACCESO 97 668843.83	80	668896.89	9198527.39	97.1657	ACCESO
83 668889.86 9198502.58 96.9539 POSTE 84 668888.70 9198499.32 97.0466 CASA 85 668874.81 9198499.67 96.8927 ACCESO 86 668878.15 9198490.50 96.9678 CASA 87 668870.92 9198496.75 96.9128 ACCESO 88 668868.26 9198495.29 96.9579 ACCESO 89 668865.74 9198494.60 96.9584 ACCESO 90 668861.60 9198493.80 96.9094 ACCESO 91 668858.33 9198494.25 96.8464 ACCESO 92 668865.29 9198486.58 96.9452 POSTE 94 668862.15 9198485.87 96.9216 ESQ 95 668847.46 9198437.18 96.952 ESQ 96 668843.83 9198427.87 97.368 ACCESO 97 668843.83 9198427.49 97.914 PISTA 99 668835.31	81	668890.50	9198517.60	96.9733	ACCESO
84 668888.70 9198499.32 97.0466 CASA 85 668874.81 9198499.67 96.8927 ACCESO 86 668878.15 9198490.50 96.9678 CASA 87 668870.92 9198496.75 96.9128 ACCESO 88 668868.26 9198495.29 96.9579 ACCESO 89 668865.74 9198494.60 96.9584 ACCESO 90 668861.60 9198493.80 96.9094 ACCESO 91 668858.33 9198494.25 96.8464 ACCESO 92 668865.29 9198486.29 97.0063 CASA 93 668862.15 9198486.58 96.9452 POSTE 94 668855.28 9198485.87 96.9216 ESQ 95 668847.46 9198437.18 96.952 ESQ 96 668844.39 9198427.87 97.368 ACCESO 97 668843.83 9198427.49 97.914 PISTA 98 668825.48	82	668880.55	9198504.20	96.922	ACCESO
85 668874.81 9198499.67 96.8927 ACCESO 86 668878.15 9198490.50 96.9678 CASA 87 668870.92 9198496.75 96.9128 ACCESO 88 668868.26 9198495.29 96.9579 ACCESO 89 668865.74 9198494.60 96.9584 ACCESO 90 668861.60 9198493.80 96.9094 ACCESO 91 668858.33 9198494.25 96.8464 ACCESO 92 668865.29 9198486.29 97.0063 CASA 93 668862.15 9198486.58 96.9452 POSTE 94 668855.28 9198485.87 96.9216 ESQ 95 668847.46 9198437.18 96.952 ESQ 96 668843.83 9198427.87 97.368 ACCESO 97 668843.83 9198427.49 97.912 PISTA 98 668822.59 9198427.49 97.914 PISTA 99 668835.31	83	668889.86	9198502.58	96.9539	POSTE
86 668878.15 9198490.50 96.9678 CASA 87 668870.92 9198496.75 96.9128 ACCESO 88 668868.26 9198495.29 96.9579 ACCESO 89 668865.74 9198494.60 96.9584 ACCESO 90 668861.60 9198493.80 96.9094 ACCESO 91 668858.33 9198494.25 96.8464 ACCESO 92 668865.29 9198486.29 97.0063 CASA 93 668862.15 9198486.58 96.9452 POSTE 94 668855.28 9198485.87 96.9216 ESQ 95 668847.46 9198437.18 96.952 ESQ 96 668844.39 9198427.87 97.368 ACCESO 97 668843.83 9198427.49 97.912 PISTA 98 668825.59 9198427.49 97.914 PISTA 99 668835.31 9198431.27 97.403 BZ 100 668826.48	84	668888.70	9198499.32	97.0466	CASA
87 668870.92 9198496.75 96.9128 ACCESO 88 668868.26 9198495.29 96.9579 ACCESO 89 668865.74 9198494.60 96.9584 ACCESO 90 668861.60 9198493.80 96.9094 ACCESO 91 668858.33 9198494.25 96.8464 ACCESO 92 668865.29 9198486.29 97.0063 CASA 93 668862.15 9198486.58 96.9452 POSTE 94 668855.28 9198485.87 96.9216 ESQ 95 668847.46 9198437.18 96.952 ESQ 96 668844.39 9198427.87 97.368 ACCESO 97 668843.83 9198423.32 97.912 PISTA 98 668822.59 9198427.49 97.914 PISTA 99 668835.31 9198433.35 97.381 ACCESO 101 668825.48 9198433.35 97.381 ACCESO 102 668847.25	85	668874.81	9198499.67	96.8927	ACCESO
88 668868.26 9198495.29 96.9579 ACCESO 89 668865.74 9198494.60 96.9584 ACCESO 90 668861.60 9198493.80 96.9094 ACCESO 91 668858.33 9198494.25 96.8464 ACCESO 92 668865.29 9198486.29 97.0063 CASA 93 668862.15 9198486.58 96.9452 POSTE 94 668855.28 9198485.87 96.9216 ESQ 95 668847.46 9198437.18 96.952 ESQ 96 668844.39 9198427.87 97.368 ACCESO 97 668843.83 9198427.49 97.912 PISTA 98 668822.59 9198427.49 97.914 PISTA 99 668835.31 9198431.27 97.403 BZ 100 668825.48 9198433.35 97.381 ACCESO 101 668826.91 9198441.15 96.99 ESQ 102 668847.25 <	86	668878.15	9198490.50	96.9678	CASA
89 668865.74 9198494.60 96.9584 ACCESO 90 668861.60 9198493.80 96.9094 ACCESO 91 668858.33 9198494.25 96.8464 ACCESO 92 668865.29 9198486.29 97.0063 CASA 93 668862.15 9198486.58 96.9452 POSTE 94 668855.28 9198485.87 96.9216 ESQ 95 668847.46 9198437.18 96.952 ESQ 96 668843.83 9198427.87 97.368 ACCESO 97 668843.83 9198423.32 97.912 PISTA 98 668822.59 9198427.49 97.914 PISTA 99 668835.31 9198431.27 97.403 BZ 100 668826.91 9198433.35 97.381 ACCESO 101 668826.91 9198441.15 96.99 ESQ 102 668847.25 9198486.78 96.8403 ESQ 103 668848.95 <td< td=""><td>87</td><td>668870.92</td><td>9198496.75</td><td>96.9128</td><td>ACCESO</td></td<>	87	668870.92	9198496.75	96.9128	ACCESO
90 668861.60 9198493.80 96.9094 ACCESO 91 668858.33 9198494.25 96.8464 ACCESO 92 668865.29 9198486.29 97.0063 CASA 93 668862.15 9198486.58 96.9452 POSTE 94 668855.28 9198485.87 96.9216 ESQ 95 668847.46 9198437.18 96.952 ESQ 96 668844.39 9198427.87 97.368 ACCESO 97 668843.83 9198423.32 97.912 PISTA 98 668822.59 9198427.49 97.914 PISTA 99 668835.31 9198431.27 97.403 BZ 100 668825.48 9198433.35 97.381 ACCESO 101 668826.91 9198441.15 96.99 ESQ 102 668847.25 9198486.78 96.8403 ESQ 103 668848.95 9198495.30 96.7496 ACCESO	88	668868.26	9198495.29	96.9579	ACCESO
91 668858.33 9198494.25 96.8464 ACCESO 92 668865.29 9198486.29 97.0063 CASA 93 668862.15 9198486.58 96.9452 POSTE 94 668855.28 9198485.87 96.9216 ESQ 95 668847.46 9198437.18 96.952 ESQ 96 668844.39 9198427.87 97.368 ACCESO 97 668843.83 9198423.32 97.912 PISTA 98 668822.59 9198427.49 97.914 PISTA 99 668835.31 9198431.27 97.403 BZ 100 668825.48 9198433.35 97.381 ACCESO 101 668826.91 9198441.15 96.99 ESQ 102 668847.25 9198486.78 96.8403 ESQ 103 668848.95 9198495.30 96.7496 ACCESO	89	668865.74	9198494.60	96.9584	ACCESO
92 668865.29 9198486.29 97.0063 CASA 93 668862.15 9198486.58 96.9452 POSTE 94 668855.28 9198485.87 96.9216 ESQ 95 668847.46 9198437.18 96.952 ESQ 96 668844.39 9198427.87 97.368 ACCESO 97 668843.83 9198423.32 97.912 PISTA 98 668822.59 9198427.49 97.914 PISTA 99 668835.31 9198431.27 97.403 BZ 100 668825.48 9198433.35 97.381 ACCESO 101 668826.91 9198441.15 96.99 ESQ 102 668847.25 9198486.78 96.8403 ESQ 103 668848.95 9198495.30 96.7496 ACCESO	90	668861.60	9198493.80	96.9094	ACCESO
93 668862.15 9198486.58 96.9452 POSTE 94 668855.28 9198485.87 96.9216 ESQ 95 668847.46 9198437.18 96.952 ESQ 96 668844.39 9198427.87 97.368 ACCESO 97 668843.83 9198423.32 97.912 PISTA 98 668822.59 9198427.49 97.914 PISTA 99 668835.31 9198431.27 97.403 BZ 100 668825.48 9198433.35 97.381 ACCESO 101 668826.91 9198441.15 96.99 ESQ 102 668847.25 9198486.78 96.8403 ESQ 103 668848.95 9198495.30 96.7496 ACCESO	91	668858.33	9198494.25	96.8464	ACCESO
94 668855.28 9198485.87 96.9216 ESQ 95 668847.46 9198437.18 96.952 ESQ 96 668844.39 9198427.87 97.368 ACCESO 97 668843.83 9198423.32 97.912 PISTA 98 668822.59 9198427.49 97.914 PISTA 99 668835.31 9198431.27 97.403 BZ 100 668825.48 9198433.35 97.381 ACCESO 101 668826.91 9198441.15 96.99 ESQ 102 668847.25 9198486.78 96.8403 ESQ 103 668848.95 9198495.30 96.7496 ACCESO	92	668865.29	9198486.29	97.0063	CASA
95 668847.46 9198437.18 96.952 ESQ 96 668844.39 9198427.87 97.368 ACCESO 97 668843.83 9198423.32 97.912 PISTA 98 668822.59 9198427.49 97.914 PISTA 99 668835.31 9198431.27 97.403 BZ 100 668825.48 9198433.35 97.381 ACCESO 101 668826.91 9198441.15 96.99 ESQ 102 668847.25 9198486.78 96.8403 ESQ 103 668848.95 9198495.30 96.7496 ACCESO	93	668862.15	9198486.58	96.9452	POSTE
96 668844.39 9198427.87 97.368 ACCESO 97 668843.83 9198423.32 97.912 PISTA 98 668822.59 9198427.49 97.914 PISTA 99 668835.31 9198431.27 97.403 BZ 100 668825.48 9198433.35 97.381 ACCESO 101 668826.91 9198441.15 96.99 ESQ 102 668847.25 9198486.78 96.8403 ESQ 103 668848.95 9198495.30 96.7496 ACCESO	94	668855.28	9198485.87	96.9216	ESQ
97 668843.83 9198423.32 97.912 PISTA 98 668822.59 9198427.49 97.914 PISTA 99 668835.31 9198431.27 97.403 BZ 100 668825.48 9198433.35 97.381 ACCESO 101 668826.91 9198441.15 96.99 ESQ 102 668847.25 9198486.78 96.8403 ESQ 103 668848.95 9198495.30 96.7496 ACCESO	95	668847.46	9198437.18	96.952	ESQ
98 668822.59 9198427.49 97.914 PISTA 99 668835.31 9198431.27 97.403 BZ 100 668825.48 9198433.35 97.381 ACCESO 101 668826.91 9198441.15 96.99 ESQ 102 668847.25 9198486.78 96.8403 ESQ 103 668848.95 9198495.30 96.7496 ACCESO	96	668844.39	9198427.87	97.368	ACCESO
99 668835.31 9198431.27 97.403 BZ 100 668825.48 9198433.35 97.381 ACCESO 101 668826.91 9198441.15 96.99 ESQ 102 668847.25 9198486.78 96.8403 ESQ 103 668848.95 9198495.30 96.7496 ACCESO	97	668843.83	9198423.32	97.912	PISTA
100 668825.48 9198433.35 97.381 ACCESO 101 668826.91 9198441.15 96.99 ESQ 102 668847.25 9198486.78 96.8403 ESQ 103 668848.95 9198495.30 96.7496 ACCESO	98	668822.59	9198427.49	97.914	PISTA
101 668826.91 9198441.15 96.99 ESQ 102 668847.25 9198486.78 96.8403 ESQ 103 668848.95 9198495.30 96.7496 ACCESO	99	668835.31	9198431.27	97.403	BZ
102 668847.25 9198486.78 96.8403 ESQ 103 668848.95 9198495.30 96.7496 ACCESO	100	668825.48	9198433.35	97.381	ACCESO
103 668848.95 9198495.30 96.7496 ACCESO	101	668826.91	9198441.15	96.99	ESQ
	102	668847.25	9198486.78	96.8403	ESQ
	103	668848.95	9198495.30	96.7496	ACCESO
104 668832.87 9198492.69 96.8116 CASA	104	668832.87	9198492.69	96.8116	CASA

121 668859.57 9198553.79 97.0356 ACCESO 122 668860.97 9198554.52 97.0619 ACCESO 123 668860.93 9198554.42 97.2242 PARQUE-VERED 124 668862.57 9198554.33 97.2458 PARQUE-VERED 125 668862.58 9198554.42 97.0573 ACCESO 126 668874.17 9198546.97 97.0688 ACCESO 127 668874.13 9198546.89 97.2299 PARQUE-VERED 128 668888.62 9198537.57 97.2579 PARQUE-VERED 129 668888.71 9198537.61 97.0907 ACCESO 130 668889.51 9198536.26 97.1287 ACCESO 131 668889.42 9198534.79 97.2582 PARQUE-VERED 132 668889.09 9198534.79 97.2586 PARQUE-VERED 133 668889.13 9198517.00 96.8899 ACCESO 134 668877.32 9198517.05 97.116 PARQUE-VERED <th></th> <th></th> <th></th> <th></th> <th></th>					
107 668825.15 9198505.02 96.7948 ACCESO 108 668815.70 9198509.21 96.8168 ACCESO E-4 668822.823 9198515.51 97.1543 STN 109 668809.55 9198502.22 96.967 CASA 110 668819.62 9198513.51 96.928 ACCESO 111 66882.45 9198513.29 96.9355 ACCESO 112 668825.47 9198517.81 97.5166 VEREDA 113 668825.05 9198519.59 97.5132 COLISEO 114 668826.37 9198518.93 97.0879 ACCESO 115 668836.14 9198534.03 97.0879 ACCESO 116 668836.08 9198534.13 97.4586 VEREDA 117 668847.86 9198554.66 97.5011 COLISEO 118 668849.68 9198555.00 97.5098 VEREDA 119 668859.57 9198553.79 97.2023 PARQUE-VEREDA 120 </td <td>105</td> <td>668834.89</td> <td>9198501.71</td> <td>96.7659</td> <td>ACCESO</td>	105	668834.89	9198501.71	96.7659	ACCESO
108 668815.70 9198509.21 96.8168 ACCESO E-4 668822.823 9198515.51 97.1543 STN 109 668809.55 9198502.22 96.967 CASA 110 668819.62 9198513.51 96.928 ACCESO 111 66882.45 9198513.29 96.9355 ACCESO 112 668825.47 9198517.81 97.5166 VEREDA 113 668825.05 9198519.59 97.5132 COLISEO 114 668826.37 9198518.93 97.0879 ACCESO 115 668836.14 9198534.03 97.0879 ACCESO 116 668836.08 9198534.13 97.4586 VEREDA 117 668847.86 9198554.66 97.5011 COLISEO 118 668849.68 9198553.70 97.5098 VEREDA 119 668853.29 9198560.40 97.1818 ACCESO 120 668859.57 9198553.79 97.0356 ACCESO 122	106	668826.59	9198497.07	96.7809	POSTE
E-4 668822.823 9198515.51 97.1543 STN 109 668809.55 9198502.22 96.967 CASA 110 668819.62 9198513.51 96.928 ACCESO 111 668822.45 9198513.29 96.9355 ACCESO 111 668825.47 9198517.81 97.5166 VEREDA 113 668825.05 9198519.59 97.5132 COLISEO 114 668826.37 9198518.93 97.0879 ACCESO 115 668836.14 9198534.03 97.0811 ACCESO 116 668836.08 9198534.13 97.4586 VEREDA 117 668847.86 9198554.66 97.5011 COLISEO 118 668849.68 9198555.00 97.5098 VEREDA 119 668853.29 9198560.40 97.1818 ACCESO 120 668859.57 9198553.70 97.2023 PARQUE-VERED 121 668859.57 9198553.70 97.2023 PARQUE-VERED 122 668860.97 9198554.52 97.0619 ACCESO 123 668860.93 9198554.42 97.2242 PARQUE-VERED 124 668862.57 9198554.33 97.2458 PARQUE-VERED 125 668862.58 9198554.42 97.0573 ACCESO 126 668874.17 9198546.97 97.0688 ACCESO 127 668874.13 9198546.99 97.0573 ACCESO 128 668888.62 9198537.57 97.2579 PARQUE-VERED 129 668888.62 9198537.57 97.2579 PARQUE-VERED 129 668888.71 9198537.61 97.0907 ACCESO 130 668889.42 9198537.61 97.0907 ACCESO 131 668889.42 9198534.79 97.2586 PARQUE-VERED 132 668889.42 9198536.26 97.1287 ACCESO 133 668889.13 9198534.71 97.131 ACCESO 134 668877.25 9198517.00 96.8899 ACCESO	107	668825.15	9198505.02	96.7948	ACCESO
109 668809.55 9198502.22 96.967 CASA 110 668819.62 9198513.51 96.928 ACCESO 111 668822.45 9198513.29 96.9355 ACCESO 112 668825.05 9198517.81 97.5166 VEREDA 113 668825.05 9198519.59 97.5132 COLISEO 114 668826.37 9198518.93 97.0879 ACCESO 115 668836.14 9198534.03 97.0811 ACCESO 116 668836.08 9198534.13 97.4586 VEREDA 117 668847.86 9198554.66 97.5011 COLISEO 118 668849.68 9198555.00 97.5098 VEREDA 119 668853.29 9198560.40 97.1818 ACCESO 120 668859.57 9198553.70 97.2023 PARQUE-VEREDA 121 668860.97 9198554.52 97.0619 ACCESO 122 668860.97 9198554.33 97.2242 PARQUE-VEREDA	108	668815.70	9198509.21	96.8168	ACCESO
110 668819.62 9198513.51 96.928 ACCESO 111 668822.45 9198513.29 96.9355 ACCESO 112 668825.47 9198517.81 97.5166 VEREDA 113 668825.05 9198519.59 97.5132 COLISEO 114 668826.37 9198518.93 97.0879 ACCESO 115 668836.14 9198534.03 97.0811 ACCESO 116 668836.08 9198534.13 97.4586 VEREDA 117 668847.86 9198554.66 97.5011 COLISEO 118 668849.68 9198555.00 97.5098 VEREDA 119 668853.29 9198560.40 97.1818 ACCESO 120 668859.57 9198553.79 97.0203 PARQUE-VEREDA 121 668860.97 9198554.52 97.0619 ACCESO 122 668860.97 9198554.33 97.2242 PARQUE-VEREDA 124 668862.58 9198554.42 97.0573 ACCESO	E-4	668822.823	9198515.51	97.1543	STN
111 668822.45 9198513.29 96.9355 ACCESO 112 668825.47 9198517.81 97.5166 VEREDA 113 668825.05 9198519.59 97.5132 COLISEO 114 668826.37 9198518.93 97.0879 ACCESO 115 668836.14 9198534.03 97.0811 ACCESO 116 668836.08 9198534.13 97.4586 VEREDA 117 668847.86 9198554.66 97.5011 COLISEO 118 668849.68 9198555.00 97.5098 VEREDA 119 668853.29 9198560.40 97.1818 ACCESO 120 668859.57 9198553.70 97.2023 PARQUE-VERED 121 668859.57 9198553.79 97.0356 ACCESO 122 668860.93 9198554.52 97.0619 ACCESO 123 668860.93 9198554.42 97.2242 PARQUE-VERED 124 668862.58 9198554.42 97.0573 ACCESO	109	668809.55	9198502.22	96.967	CASA
112 668825.47 9198517.81 97.5166 VEREDA 113 668825.05 9198519.59 97.5132 COLISEO 114 668826.37 9198518.93 97.0879 ACCESO 115 668836.14 9198534.03 97.0811 ACCESO 116 668836.08 9198534.13 97.4586 VEREDA 117 668847.86 9198554.66 97.5011 COLISEO 118 668849.68 9198555.00 97.5098 VEREDA 119 668853.29 9198560.40 97.1818 ACCESO 120 668859.57 9198553.70 97.2023 PARQUE-VEREDA 121 668859.57 9198554.52 97.0619 ACCESO 122 668860.93 9198554.52 97.0619 ACCESO 123 668860.93 9198554.33 97.2458 PARQUE-VEREDA 124 668862.58 9198554.42 97.0573 ACCESO 125 668861.41 9198546.89 97.2299 PARQUE-VEREDA <	110	668819.62	9198513.51	96.928	ACCESO
113 668825.05 9198519.59 97.5132 COLISEO 114 668826.37 9198518.93 97.0879 ACCESO 115 668836.14 9198534.03 97.0811 ACCESO 116 668836.08 9198534.13 97.4586 VEREDA 117 668847.86 9198554.66 97.5011 COLISEO 118 668849.68 9198555.00 97.5098 VEREDA 119 668853.29 9198560.40 97.1818 ACCESO 120 668859.57 9198553.70 97.2023 PARQUE-VEREDA 121 668859.57 9198553.79 97.0356 ACCESO 122 668860.97 9198554.52 97.0619 ACCESO 123 668860.93 9198554.42 97.2242 PARQUE-VEREDA 124 668862.57 9198554.33 97.2458 PARQUE-VEREDA 125 668862.58 9198554.42 97.0573 ACCESO 126 668874.17 9198546.97 97.0688 ACCESO <	111	668822.45	9198513.29	96.9355	ACCESO
114 668826.37 9198518.93 97.0879 ACCESO 115 668836.14 9198534.03 97.0811 ACCESO 116 668836.08 9198534.13 97.4586 VEREDA 117 668847.86 9198554.66 97.5011 COLISEO 118 668849.68 9198555.00 97.5098 VEREDA 119 668853.29 9198560.40 97.1818 ACCESO 120 668859.57 9198553.70 97.2023 PARQUE-VEREDA 121 668859.57 9198554.52 97.0619 ACCESO 122 668860.97 9198554.52 97.0619 ACCESO 123 668860.93 9198554.42 97.2242 PARQUE-VEREDA 124 668862.57 9198554.33 97.2458 PARQUE-VEREDA 125 668862.58 9198554.42 97.0573 ACCESO 126 668874.17 9198546.89 97.2299 PARQUE-VEREDA 129 668888.62 9198537.61 97.0907 ACCESO	112	668825.47	9198517.81	97.5166	VEREDA
115 668836.14 9198534.03 97.0811 ACCESO 116 668836.08 9198534.13 97.4586 VEREDA 117 668847.86 9198554.66 97.5011 COLISEO 118 668849.68 9198555.00 97.5098 VEREDA 119 668853.29 9198560.40 97.1818 ACCESO 120 668859.57 9198553.70 97.2023 PARQUE-VERED 121 668869.57 9198553.79 97.0356 ACCESO 122 668860.97 9198554.52 97.0619 ACCESO 123 668860.93 9198554.42 97.2242 PARQUE-VERED 124 668862.57 9198554.33 97.2458 PARQUE-VERED 125 668862.58 9198554.42 97.0573 ACCESO 126 668874.17 9198546.89 97.2299 PARQUE-VERED 128 668888.62 9198537.57 97.2579 PARQUE-VERED 129 668888.71 9198536.26 97.1287 ACCESO <td>113</td> <td>668825.05</td> <td>9198519.59</td> <td>97.5132</td> <td>COLISEO</td>	113	668825.05	9198519.59	97.5132	COLISEO
116 668836.08 9198534.13 97.4586 VEREDA 117 668847.86 9198554.66 97.5011 COLISEO 118 668849.68 9198555.00 97.5098 VEREDA 119 668853.29 9198560.40 97.1818 ACCESO 120 668859.57 9198553.70 97.2023 PARQUE-VERED 121 668869.57 9198553.79 97.0356 ACCESO 122 668860.97 9198554.52 97.0619 ACCESO 123 668860.93 9198554.42 97.2242 PARQUE-VERED 124 668862.57 9198554.33 97.2458 PARQUE-VERED 125 668862.58 9198554.42 97.0573 ACCESO 126 668874.17 9198546.97 97.0688 ACCESO 127 668874.13 9198537.57 97.2579 PARQUE-VERED 128 668888.62 9198537.61 97.0907 ACCESO 130 668889.13 9198536.26 97.1287 ACCESO	114	668826.37	9198518.93	97.0879	ACCESO
117 668847.86 9198554.66 97.5011 COLISEO 118 668849.68 9198555.00 97.5098 VEREDA 119 668853.29 9198560.40 97.1818 ACCESO 120 668859.57 9198553.70 97.2023 PARQUE-VERED 121 668859.57 9198553.79 97.0356 ACCESO 122 668860.97 9198554.52 97.0619 ACCESO 123 668860.93 9198554.42 97.2242 PARQUE-VERED 124 668862.57 9198554.33 97.2458 PARQUE-VERED 125 668862.58 9198554.42 97.0573 ACCESO 126 668874.17 9198546.97 97.0688 ACCESO 127 668874.13 9198546.89 97.2299 PARQUE-VERED 128 668888.62 9198537.57 97.2579 PARQUE-VERED 129 668888.71 9198536.26 97.1287 ACCESO 130 668889.13 9198536.26 97.2582 PARQUE-VERED	115	668836.14	9198534.03	97.0811	ACCESO
118 668849.68 9198555.00 97.5098 VEREDA 119 668853.29 9198560.40 97.1818 ACCESO 120 668859.57 9198553.70 97.2023 PARQUE-VERED 121 668859.57 9198553.79 97.0356 ACCESO 122 668860.97 9198554.52 97.0619 ACCESO 123 668860.93 9198554.42 97.2242 PARQUE-VERED 124 668862.57 9198554.33 97.2458 PARQUE-VERED 125 668862.58 9198554.42 97.0573 ACCESO 126 668874.17 9198546.97 97.0688 ACCESO 127 668874.13 9198546.89 97.2299 PARQUE-VERED 128 668888.62 9198537.57 97.2579 PARQUE-VERED 129 66888.71 9198536.26 97.1287 ACCESO 130 668889.13 9198534.79 97.2582 PARQUE-VERED 132 668889.13 9198534.71 97.131 ACCESO	116	668836.08	9198534.13	97.4586	VEREDA
119 668853.29 9198560.40 97.1818 ACCESO 120 668859.57 9198553.70 97.2023 PARQUE-VERED 121 668859.57 9198553.79 97.0356 ACCESO 122 668860.97 9198554.52 97.0619 ACCESO 123 668860.93 9198554.42 97.2242 PARQUE-VERED 124 668862.57 9198554.33 97.2458 PARQUE-VERED 125 668862.58 9198554.42 97.0573 ACCESO 126 668874.17 9198546.97 97.0688 ACCESO 127 668874.13 9198537.57 97.2579 PARQUE-VERED 129 668888.62 9198537.61 97.0907 ACCESO 130 668889.51 9198536.26 97.1287 ACCESO 131 668889.42 9198534.79 97.2586 PARQUE-VERED 132 668889.09 9198534.71 97.131 ACCESO 134 668877.32 9198517.00 96.8899 ACCESO	117	668847.86	9198554.66	97.5011	COLISEO
120 668859.57 9198553.70 97.2023 PARQUE-VERED 121 668859.57 9198553.79 97.0356 ACCESO 122 668860.97 9198554.52 97.0619 ACCESO 123 668860.93 9198554.42 97.2242 PARQUE-VERED 124 668862.57 9198554.33 97.2458 PARQUE-VERED 125 668862.58 9198554.42 97.0573 ACCESO 126 668874.17 9198546.97 97.0688 ACCESO 127 668874.13 9198546.89 97.2299 PARQUE-VERED 128 668888.62 9198537.57 97.2579 PARQUE-VERED 129 668888.61 9198537.61 97.0907 ACCESO 130 668889.51 9198536.26 97.1287 ACCESO 131 668889.42 9198534.79 97.2582 PARQUE-VERED 132 668889.09 9198534.71 97.131 ACCESO 134 668877.32 9198517.00 96.8899 ACCESO	118	668849.68	9198555.00	97.5098	VEREDA
121 668859.57 9198553.79 97.0356 ACCESO 122 668860.97 9198554.52 97.0619 ACCESO 123 668860.93 9198554.42 97.2242 PARQUE-VERED 124 668862.57 9198554.33 97.2458 PARQUE-VERED 125 668862.58 9198554.42 97.0573 ACCESO 126 668874.17 9198546.97 97.0688 ACCESO 127 668874.13 9198546.89 97.2299 PARQUE-VERED 128 668888.62 9198537.57 97.2579 PARQUE-VERED 129 668888.71 9198537.61 97.0907 ACCESO 130 668889.51 9198536.26 97.1287 ACCESO 131 668889.42 9198534.79 97.2582 PARQUE-VERED 132 668889.09 9198534.79 97.2586 PARQUE-VERED 133 668889.13 9198517.00 96.8899 ACCESO 134 668877.32 9198517.05 97.116 PARQUE-VERED <td>119</td> <td>668853.29</td> <td>9198560.40</td> <td>97.1818</td> <td>ACCESO</td>	119	668853.29	9198560.40	97.1818	ACCESO
122 668860.97 9198554.52 97.0619 ACCESO 123 668860.93 9198554.42 97.2242 PARQUE-VERED 124 668862.57 9198554.33 97.2458 PARQUE-VERED 125 668862.58 9198554.42 97.0573 ACCESO 126 668874.17 9198546.97 97.0688 ACCESO 127 668874.13 9198546.89 97.2299 PARQUE-VERED 128 668888.62 9198537.57 97.2579 PARQUE-VERED 129 668888.71 9198537.61 97.0907 ACCESO 130 668889.51 9198536.26 97.1287 ACCESO 131 668889.42 9198536.26 97.2582 PARQUE-VERED 132 668889.09 9198534.79 97.2586 PARQUE-VERED 133 668889.13 9198517.00 96.8899 ACCESO 134 668877.32 9198517.05 97.116 PARQUE-VERED	120	668859.57	9198553.70	97.2023	PARQUE-VEREDA
123 668860.93 9198554.42 97.2242 PARQUE-VERED 124 668862.57 9198554.33 97.2458 PARQUE-VERED 125 668862.58 9198554.42 97.0573 ACCESO 126 668874.17 9198546.97 97.0688 ACCESO 127 668874.13 9198546.89 97.2299 PARQUE-VERED 128 668888.62 9198537.57 97.2579 PARQUE-VERED 129 668888.71 9198537.61 97.0907 ACCESO 130 668889.51 9198536.26 97.1287 ACCESO 131 668889.42 9198536.26 97.2582 PARQUE-VERED 132 668889.09 9198534.79 97.2586 PARQUE-VERED 133 668889.13 9198534.71 97.131 ACCESO 134 668877.32 9198517.00 96.8899 ACCESO 135 668877.25 9198517.05 97.116 PARQUE-VERED	121	668859.57	9198553.79	97.0356	ACCESO
124 668862.57 9198554.33 97.2458 PARQUE-VERED 125 668862.58 9198554.42 97.0573 ACCESO 126 668874.17 9198546.97 97.0688 ACCESO 127 668874.13 9198546.89 97.2299 PARQUE-VERED 128 668888.62 9198537.57 97.2579 PARQUE-VERED 129 668888.71 9198537.61 97.0907 ACCESO 130 668889.51 9198536.26 97.1287 ACCESO 131 668889.42 9198536.26 97.2582 PARQUE-VERED 132 668889.09 9198534.79 97.2586 PARQUE-VERED 133 668889.13 9198534.71 97.131 ACCESO 134 668877.32 9198517.00 96.8899 ACCESO 135 668877.25 9198517.05 97.116 PARQUE-VERED	122	668860.97	9198554.52	97.0619	ACCESO
125 668862.58 9198554.42 97.0573 ACCESO 126 668874.17 9198546.97 97.0688 ACCESO 127 668874.13 9198546.89 97.2299 PARQUE-VERED 128 668888.62 9198537.57 97.2579 PARQUE-VERED 129 668888.71 9198537.61 97.0907 ACCESO 130 668889.51 9198536.26 97.1287 ACCESO 131 668889.42 9198536.26 97.2582 PARQUE-VERED 132 668889.09 9198534.79 97.2586 PARQUE-VERED 133 668889.13 9198534.71 97.131 ACCESO 134 668877.32 9198517.00 96.8899 ACCESO 135 668877.25 9198517.05 97.116 PARQUE-VERED	123	668860.93	9198554.42	97.2242	PARQUE-VEREDA
126 668874.17 9198546.97 97.0688 ACCESO 127 668874.13 9198546.89 97.2299 PARQUE-VERED 128 668888.62 9198537.57 97.2579 PARQUE-VERED 129 668888.71 9198537.61 97.0907 ACCESO 130 668889.51 9198536.26 97.1287 ACCESO 131 668889.42 9198536.26 97.2582 PARQUE-VERED 132 668889.09 9198534.79 97.2586 PARQUE-VERED 133 668889.13 9198534.71 97.131 ACCESO 134 668877.32 9198517.00 96.8899 ACCESO 135 668877.25 9198517.05 97.116 PARQUE-VERED	124	668862.57	9198554.33	97.2458	PARQUE-VEREDA
127 668874.13 9198546.89 97.2299 PARQUE-VERED 128 668888.62 9198537.57 97.2579 PARQUE-VERED 129 668888.71 9198537.61 97.0907 ACCESO 130 668889.51 9198536.26 97.1287 ACCESO 131 668889.42 9198536.26 97.2582 PARQUE-VERED 132 668889.09 9198534.79 97.2586 PARQUE-VERED 133 668889.13 9198534.71 97.131 ACCESO 134 668877.32 9198517.00 96.8899 ACCESO 135 668877.25 9198517.05 97.116 PARQUE-VERED	125	668862.58	9198554.42	97.0573	ACCESO
128 668888.62 9198537.57 97.2579 PARQUE-VERED 129 668888.71 9198537.61 97.0907 ACCESO 130 668889.51 9198536.26 97.1287 ACCESO 131 668889.42 9198536.26 97.2582 PARQUE-VERED 132 668889.09 9198534.79 97.2586 PARQUE-VERED 133 668889.13 9198534.71 97.131 ACCESO 134 668877.32 9198517.00 96.8899 ACCESO 135 668877.25 9198517.05 97.116 PARQUE-VERED	126	668874.17	9198546.97	97.0688	ACCESO
129 668888.71 9198537.61 97.0907 ACCESO 130 668889.51 9198536.26 97.1287 ACCESO 131 668889.42 9198536.26 97.2582 PARQUE-VERED 132 668889.09 9198534.79 97.2586 PARQUE-VERED 133 668889.13 9198534.71 97.131 ACCESO 134 668877.32 9198517.00 96.8899 ACCESO 135 668877.25 9198517.05 97.116 PARQUE-VERED	127	668874.13	9198546.89	97.2299	PARQUE-VEREDA
130 668889.51 9198536.26 97.1287 ACCESO 131 668889.42 9198536.26 97.2582 PARQUE-VERED 132 668889.09 9198534.79 97.2586 PARQUE-VERED 133 668889.13 9198534.71 97.131 ACCESO 134 668877.32 9198517.00 96.8899 ACCESO 135 668877.25 9198517.05 97.116 PARQUE-VERED	128	668888.62	9198537.57	97.2579	PARQUE-VEREDA
131 668889.42 9198536.26 97.2582 PARQUE-VERED 132 668889.09 9198534.79 97.2586 PARQUE-VERED 133 668889.13 9198534.71 97.131 ACCESO 134 668877.32 9198517.00 96.8899 ACCESO 135 668877.25 9198517.05 97.116 PARQUE-VERED	129	668888.71	9198537.61	97.0907	ACCESO
132 668889.09 9198534.79 97.2586 PARQUE-VERED 133 668889.13 9198534.71 97.131 ACCESO 134 668877.32 9198517.00 96.8899 ACCESO 135 668877.25 9198517.05 97.116 PARQUE-VERED	130	668889.51	9198536.26	97.1287	ACCESO
133 668889.13 9198534.71 97.131 ACCESO 134 668877.32 9198517.00 96.8899 ACCESO 135 668877.25 9198517.05 97.116 PARQUE-VERED	131	668889.42	9198536.26	97.2582	PARQUE-VEREDA
134 668877.32 9198517.00 96.8899 ACCESO 135 668877.25 9198517.05 97.116 PARQUE-VERED	132	668889.09	9198534.79	97.2586	PARQUE-VEREDA
135 668877.25 9198517.05 97.116 PARQUE-VERED	133	668889.13	9198534.71	97.131	ACCESO
	134	668877.32	9198517.00	96.8899	ACCESO
400 00007.00 0100701.01 07.0070 51.501.71	135	668877.25	9198517.05	97.116	PARQUE-VEREDA
136 668867.09 9198501.81 97.0052 PARQUE-VERED	136	668867.09	9198501.81	97.0052	PARQUE-VEREDA
137 668867.13 9198501.71 96.9299 ACCESO	137	668867.13	9198501.71	96.9299	ACCESO
138 668865.05 9198500.26 96.9647 PARQUE-VERED	138	668865.05	9198500.26	96.9647	PARQUE-VEREDA
139 668865.01 9198500.11 96.8766 ACCESO	139	668865.01	9198500.11	96.8766	ACCESO
140 668862.81 9198500.06 96.8602 ACCESO	140	668862.81	9198500.06	96.8602	ACCESO
141 668862.67 9198500.26 96.9944 PARQUE-VERED	141	668862.67	9198500.26	96.9944	PARQUE-VEREDA
142 668851.97 9198505.73 96.974 PARQUE-VERED	142	668851.97	9198505.73	96.974	PARQUE-VEREDA
143 668851.86 9198505.64 96.7308 ACCESO	143	668851.86	9198505.64	96.7308	ACCESO
144 668836.07 9198513.82 96.8095 ACCESO	144	668836.07	9198513.82	96.8095	ACCESO

145	668836.13	9198513.93	96.9848	PARQUE-VEREDA
146	668835.33	9198515.47	96.9907	PARQUE-VEREDA
147	668835.25	9198515.43	96.8302	ACCESO
148	668835.72	9198517.11	96.8315	ACCESO
149	668835.74	9198517.00	96.976	PARQUE-VEREDA
150	668847.36	9198534.94	97.0731	PARQUE-VEREDA
151	668847.35	9198534.99	96.9196	ACCESO
E-2	668805.728	9198585.08	97.2682	STN
152	668850.23	9198568.19	97.1832	ACCESO
153	668843.64	9198581.09	97.3628	POSTE
154	668835.84	9198587.72	97.2597	CASA
155	668834.99	9198587.00	97.2562	VEREDA
156	668830.45	9198580.72	97.2615	ACCESO
157	668818.09	9198588.00	97.2204	ACCESO
158	668816.33	9198592.52	97.1858	ACCESO
159	668816.45	9198595.92	97.1261	ACCESO
160	668821.66	9198596.92	97.3838	ESQ
161	668820.94	9198596.06	97.3795	VEREDA
162	668819.79	9198597.60	97.4919	VEREDA
163	668819.83	9198599.56	97.5151	VEREDA
164	668821.33	9198598.14	97.5439	CASA
165	668821.35	9198599.77	97.5514	CASA
166	668821.25	9198601.99	97.4056	POSTE
167	668819.50	9198600.53	97.2582	ACCESO
168	668825.75	9198611.51	97.2275	ACCESO
169	668827.03	9198610.73	97.5064	VEREDA
170	668827.98	9198610.06	97.521	CASA
171	668841.62	9198636.38	96.777	ACCESO
172	668847.77	9198643.02	96.6869	POSTE
173	668857.18	9198659.48	96.4397	ACCESO
174	668860.37	9198665.01	96.4585	ACCESO
175	668867.85	9198675.36	96.3283	ACCESO
176	668868.53	9198676.03	96.3037	PISTA
177	668868.61	9198674.50	96.3936	POSTE
178	668869.64	9198675.25	96.4825	VEREDA
179	668870.34	9198674.98	96.5076	ESQ
180	668861.02	9198678.43	96.3552	VEREDA
181	668862.07	9198679.28	96.2987	PISTA
182	668861.66	9198677.62	96.3059	ACCESO
183	668858.49	9198676.35	96.3884	CASA
184	668852.02	9198664.33	96.4966	POSTE

185	668853.14	9198663.99	96.3628	ACCESO
186	668840.74	9198649.53	96.7863	CASA
187	668841.48	9198648.99	96.7616	VEREDA
188	668843.09	9198647.87	96.6111	ACCESO
189	668832.40	9198634.77	96.86	POSTE
190	668831.17	9198629.02	96.8531	ACCESO
191	668812.46	9198604.44	97.2862	POSTE
192	668813.97	9198601.90	97.2298	ACCESO
193	668810.74	9198604.03	97.5358	ESQ
194	668810.83	9198602.55	97.5001	VEREDA
195	668810.56	9198597.65	97.2532	ACCESO
196	668808.48	9198594.14	97.2302	BZ
197	668802.90	9198605.58	97.4034	POSTE
198	668800.96	9198606.61	97.426	POSTE
199	668802.43	9198609.25	97.5371	CASA
200	668801.88	9198608.41	97.5295	VEREDA
201	668799.91	9198605.08	97.2386	ACCESO
202	668793.21	9198613.79	97.3274	CASA
203	668792.80	9198612.97	97.2612	VEREDA
204	668791.09	9198610.23	97.2101	ACCESO
205	668781.50	9198619.24	97.3721	POSTE
206	668777.74	9198622.56	97.4471	CASA
207	668777.15	9198621.80	97.6044	VEREDA
208	668775.54	9198618.09	97.3941	ACCESO
209	668765.01	9198623.95	97.453	BZ
210	668765.04	9198629.44	97.4241	CASA
211	668764.53	9198628.67	97.4063	VEREDA
212	668762.92	9198625.55	97.4795	ACCESO
213	668759.33	9198630.99	97.568	POSTE
214	668743.72	9198638.53	97.5719	POSTE
215	668742.36	9198637.16	97.5675	ACCESO
216	668725.24	9198647.96	97.6879	POSTE
217	668723.65	9198650.23	97.7854	ESQ
218	668723.39	9198649.46	97.8146	VEREDA
219	668721.31	9198649.14	97.5918	ACCESO
220	668721.94	9198651.63	97.5639	ACCESO
221	668727.40	9198639.28	97.6238	ACCESO
222	668758.11	9198620.81	97.4765	ACCESO
223	668754.70	9198621.45	97.6041	VEREDA
224	668754.34	9198620.53	97.4949	ESQ
225	668753.58	9198616.61	97.5508	POSTE

226	668748.53	9198601.92	97.4973	ACCESO
227	668746.39	9198582.45	97.322	BZ
228	668740.59	9198584.52	97.5529	ACCESO
229	668738.12	9198586.04	97.6414	POSTE
230	668732.63	9198577.45	97.4863	CASA
231	668733.60	9198576.90	97.387	VEREDA
232	668736.40	9198575.68	97.3063	ACCESO
233	668722.09	9198554.49	97.4318	POSTE
234	668718.29	9198549.29	97.5049	ESQ
235	668718.89	9198548.21	97.5131	VEREDA
236	668720.51	9198546.59	97.2274	ACCESO
237	668737.89	9198556.67	97.4355	PARQUE-VEREDA
238	668737.60	9198556.63	97.2526	ACCESO
239	668738.13	9198560.76	97.3083	ACCESO
240	668738.32	9198560.69	97.445	PARQUE-VEREDA
241	668750.98	9198580.38	97.4831	PARQUE-VEREDA
242	668750.80	9198580.38	97.3074	ACCESO
243	668765.91	9198603.40	97.469	PARQUE-VEREDA
244	668770.07	9198610.50	97.3971	ACCESO
245	668773.92	9198600.40	97.4785	POSTE
246	668788.42	9198591.17	97.3899	POSTE
247	668798.96	9198591.44	97.2589	ACCESO
248	668794.52	9198584.86	97.4197	PARQUE-VEREDA
249	668794.81	9198584.67	97.2993	ACCESO
250	668779.92	9198561.42	97.2597	ACCESO
251	668779.65	9198561.55	97.4301	PARQUE-VEREDA
252	668767.03	9198542.06	97.3619	PARQUE-VEREDA
253	668767.31	9198541.98	97.184	ACCESO
254	668764.50	9198539.97	97.1629	ACCESO
255	668764.73	9198540.33	97.3635	PARQUE-VEREDA
256	668760.54	9198541.00	97.3433	PARQUE-VEREDA
257	668760.25	9198540.92	97.1812	ACCESO
258	668749.23	9198548.31	97.3942	PARQUE-VEREDA
259	668749.16	9198548.20	97.2521	ACCESO
260	668709.79	9198544.86	97.5073	ACCESO
261	668706.37	9198544.42	97.5545	POSTE
262	668723.59	9198537.54	97.5836	VEREDA
263	668723.24	9198536.76	97.6187	CASA
264	668728.89	9198540.96	97.3887	ACCESO
265	668744.40	9198535.23	97.1642	ACCESO
266	668741.79	9198530.34	97.2789	VEREDA

267 668740,98 9198529,40 97,3149 CASA 268 668743,35 9198529,66 97,2775 POSTE 269 668759,12 9198526,37 97,0202 ACCESO 270 668769,10 9198526,37 97,0477 ACCESO 271 668769,09 9198526,40 97,0226 ACCESO 272 668764,48 9198520,55 97,2017 VEREDA 273 668764,48 919854,72 96,9946 ACCESO 274 668772,85 919854,77 96,9946 ACCESO 275 668778,30 919854,77 97,476 VEREDA 276 668778,30 9198545,06 97,4736 ESQ 277 668780,89 9198545,06 97,4736 ESQ 278 668780,89 9198554,16 97,488 COLISEO 279 668781,61 9198554,25 97,488 COLISEO 280 66874,61 919857,26 97,3724 POSTE 281 66					
269 668759.12 9198529.14 97.0202 ACCESO 270 668769.10 9198526.37 97.0477 ACCESO 271 668769.09 9198526.40 97.0226 ACCESO 272 668764.94 9198520.55 97.2017 VEREDA 273 668764.48 9198519.83 97.22 CASA 274 668779.23 9198544.57 97.476 VEREDA 275 668779.23 9198545.41 97.149 ACCESO 276 668780.85 9198545.06 97.4736 ESQ 277 668780.85 9198545.01 97.4736 ESQ 278 668780.89 9198550.41 97.305 POSTE 280 668781.61 9198554.25 97.46 BZ 281 66879.969 9198577.26 97.3724 POSTE 282 668802.29 9198580.07 97.2297 ACCESO 283 668803.83 9198580.00 97.4794 COLISEO 285 668805	267	668740.98	9198529.40	97.3149	CASA
270 668769.10 9198526.37 97.0477 ACCESO 271 668769.09 9198526.40 97.0226 ACCESO 272 668764.94 9198520.55 97.2017 VEREDA 273 668764.48 9198519.83 97.22 CASA 274 668772.85 9198534.72 96.9946 ACCESO 275 668779.23 9198545.71 97.476 VEREDA 276 668778.30 9198545.61 97.488 COLISEO 277 668780.85 9198545.16 97.488 COLISEO 278 668780.89 9198554.16 97.488 COLISEO 279 668782.06 9198550.41 97.305 POSTE 280 668781.61 9198557.25 97.46 BZ 281 66879.969 9198577.26 97.3724 POSTE 282 668803.83 9198581.90 97.4801 VEREDA 284 668803.83 9198580.00 97.4794 COLISEO 285 <td< td=""><td>268</td><td>668743.35</td><td>9198529.66</td><td>97.2775</td><td>POSTE</td></td<>	268	668743.35	9198529.66	97.2775	POSTE
271 668769.09 9198526.40 97.0226 ACCESO 272 668764.94 9198520.55 97.2017 VEREDA 273 668764.48 9198519.83 97.22 CASA 274 668772.85 9198534.72 96.9946 ACCESO 275 668779.23 9198545.47 97.476 VEREDA 276 66878.30 9198545.41 97.149 ACCESO 277 66878.85 9198545.66 97.4736 ESQ 278 668780.89 9198550.41 97.305 POSTE 280 668781.61 9198550.41 97.305 POSTE 281 66879.69 9198577.26 97.3724 POSTE 282 668802.29 9198581.90 97.4801 VEREDA 283 668803.81 9198581.90 97.4794 COLISEO 284 668803.83 9198580.00 97.4794 COLISEO 285 668805.57 9198588.37 97.2351 ACCESO 286 6	269	668759.12	9198529.14	97.0202	ACCESO
272 668764.94 9198520.55 97.2017 VEREDA 273 668764.48 9198519.83 97.22 CASA 274 668772.85 9198534.72 96.9946 ACCESO 275 668779.23 9198545.77 97.476 VEREDA 276 668778.30 9198545.41 97.149 ACCESO 277 668780.85 9198545.16 97.4736 ESQ 278 668780.89 9198550.41 97.305 POSTE 280 668781.61 9198550.41 97.305 POSTE 281 668799.69 9198577.26 97.3724 POSTE 282 668802.29 9198582.67 97.2297 ACCESO 283 668803.83 9198581.90 97.4801 VEREDA 284 668803.83 9198581.90 97.2494 COLISEO 285 668805.57 9198588.37 97.2351 ACCESO 286 668742.631 9198575.89 97.2454 ACCESO 286 <t< td=""><td>270</td><td>668769.10</td><td>9198526.37</td><td>97.0477</td><td>ACCESO</td></t<>	270	668769.10	9198526.37	97.0477	ACCESO
273 668764.48 9198519.83 97.22 CASA 274 668772.85 9198534.72 96.9946 ACCESO 275 668779.23 9198544.57 97.476 VEREDA 276 668780.85 9198545.41 97.149 ACCESO 277 668780.85 9198545.06 97.4736 ESQ 278 668780.89 9198545.16 97.488 COLISEO 279 668782.06 9198554.25 97.46 BZ 281 668799.69 9198577.26 97.3724 POSTE 282 668802.29 9198581.90 97.4801 VEREDA 283 668803.51 9198581.90 97.4801 VEREDA 284 668803.83 9198580.00 97.4794 COLISEO 285 668805.57 9198588.37 97.2351 ACCESO 286 668824.56 9198575.89 97.249 STN 287 668765.36 9198519.39 97.299 ESQ 288 668744.85	271	668769.09	9198526.40	97.0226	ACCESO
274 668772.85 9198534.72 96.9946 ACCESO 275 668779.23 9198544.57 97.476 VEREDA 276 668780.85 9198545.41 97.149 ACCESO 277 668780.85 9198545.06 97.4736 ESQ 278 668780.89 9198545.16 97.488 COLISEO 279 668782.06 9198550.41 97.305 POSTE 280 668781.61 9198550.42 97.46 BZ 281 668799.69 9198577.26 97.3724 POSTE 282 668803.51 9198581.90 97.4801 VEREDA 284 668803.51 9198580.00 97.4794 COLISEO 285 668803.57 9198588.37 97.2351 ACCESO 286 668804.56 9198575.89 97.249 STN 287 668765.36 9198573.89 97.249 STN 288 668744.85 9198473.78 97.384 ESQ 289 668744.85 </td <td>272</td> <td>668764.94</td> <td>9198520.55</td> <td>97.2017</td> <td>VEREDA</td>	272	668764.94	9198520.55	97.2017	VEREDA
275 668779.23 9198544.57 97.476 VEREDA 276 668778.30 9198545.41 97.149 ACCESO 277 668780.85 9198545.06 97.4736 ESQ 278 668780.89 9198545.16 97.488 COLISEO 279 668782.06 9198550.41 97.305 POSTE 280 668781.61 9198552.25 97.46 BZ 281 668799.69 9198577.26 97.3724 POSTE 282 668802.29 9198582.67 97.2297 ACCESO 283 668803.51 9198581.90 97.4801 VEREDA 284 668803.83 9198581.90 97.4794 COLISEO 285 668804.56 9198575.89 97.2454 ACCESO 286 668824.56 9198579.39 97.249 STN 287 668765.36 9198519.39 97.2095 ESQ 288 668744.85 9198473.78 97.384 ESQ 289 668745.83<	273	668764.48	9198519.83	97.22	CASA
276 668778.30 9198545.41 97.149 ACCESO 277 668780.85 9198545.06 97.4736 ESQ 278 668780.89 9198545.16 97.488 COLISEO 279 668782.06 9198550.41 97.305 POSTE 280 668781.61 9198557.26 97.46 BZ 281 668799.69 9198577.26 97.3724 POSTE 282 668802.29 9198582.67 97.2297 ACCESO 283 668803.51 9198581.90 97.4801 VEREDA 284 668803.83 9198580.00 97.4794 COLISEO 285 668805.57 9198588.37 97.2351 ACCESO 286 668824.56 9198575.89 97.2454 ACCESO E-5 668742.631 9198531.39 97.2095 ESQ 287 668765.36 9198517.38 97.384 ESQ 288 668744.85 9198473.78 97.381 ESQ 290 668749.5	274	668772.85	9198534.72	96.9946	ACCESO
277 668780.85 9198545.06 97.4736 ESQ 278 668780.89 9198545.16 97.488 COLISEO 279 668782.06 9198550.41 97.305 POSTE 280 668781.61 9198552.25 97.46 BZ 281 66879.69 9198577.26 97.3724 POSTE 282 668802.29 9198581.90 97.4801 VEREDA 283 668803.51 9198581.90 97.4801 VEREDA 284 668803.83 9198580.00 97.4794 COLISEO 285 668805.57 9198588.37 97.2351 ACCESO 286 668824.56 9198575.89 97.2454 ACCESO E-5 668742.631 9198532.69 97.249 STN 287 668765.36 9198519.39 97.2095 ESQ 288 668744.85 9198473.78 97.384 ESQ 289 668749.58 9198471.72 97.245 ACCESO 290 668740.50	275	668779.23	9198544.57	97.476	VEREDA
278 668780.89 9198545.16 97.488 COLISEO 279 668782.06 9198550.41 97.305 POSTE 280 668781.61 9198554.25 97.46 BZ 281 668799.69 9198577.26 97.3724 POSTE 282 668802.29 9198582.67 97.2297 ACCESO 283 668803.51 9198581.90 97.4801 VEREDA 284 668803.83 9198580.00 97.4794 COLISEO 285 668805.57 9198588.37 97.2351 ACCESO 286 668824.56 9198575.89 97.2454 ACCESO E-5 668742.631 9198532.69 97.249 STN 287 668765.36 9198473.78 97.384 ESQ 288 668744.85 9198473.78 97.384 ESQ 289 668745.83 9198471.42 97.381 ESQ 290 668740.58 9198471.42 97.381 ESQ 291 668746.83 <td>276</td> <td>668778.30</td> <td>9198545.41</td> <td>97.149</td> <td>ACCESO</td>	276	668778.30	9198545.41	97.149	ACCESO
279 668782.06 9198550.41 97.305 POSTE 280 668781.61 9198554.25 97.46 BZ 281 668799.69 9198577.26 97.3724 POSTE 282 668802.29 9198582.67 97.2297 ACCESO 283 668803.51 9198581.90 97.4801 VEREDA 284 668803.83 9198580.00 97.4794 COLISEO 285 668805.57 9198588.37 97.2351 ACCESO 286 668824.56 9198575.89 97.2454 ACCESO E-5 668742.631 9198573.89 97.249 STN 287 668765.36 9198573.89 97.249 STN 288 668744.85 9198473.78 97.384 ESQ 289 668745.83 9198473.51 97.252 ACCESO 290 668749.58 9198471.42 97.381 ESQ 291 668750.25 9198471.42 97.381 ESQ 292 668746.83	277	668780.85	9198545.06	97.4736	ESQ
280 668781.61 9198554.25 97.46 BZ 281 668799.69 9198577.26 97.3724 POSTE 282 668802.29 9198582.67 97.2297 ACCESO 283 668803.51 9198581.90 97.4801 VEREDA 284 668803.83 9198580.00 97.4794 COLISEO 285 668805.57 9198588.37 97.2351 ACCESO 286 668824.56 9198575.89 97.2454 ACCESO 287 668765.36 9198519.39 97.2095 ESQ 288 668742.631 9198573.78 97.384 ESQ 289 668743.83 9198473.78 97.384 ESQ 289 668745.83 9198471.72 97.245 ACCESO 290 668749.58 9198471.42 97.381 ESQ 291 668750.25 9198471.42 97.381 ESQ 292 668746.83 9198462.38 97.472 ACCESO 293 668743.43 <td>278</td> <td>668780.89</td> <td>9198545.16</td> <td>97.488</td> <td>COLISEO</td>	278	668780.89	9198545.16	97.488	COLISEO
281 668799.69 9198577.26 97.3724 POSTE 282 668802.29 9198582.67 97.2297 ACCESO 283 668803.51 9198581.90 97.4801 VEREDA 284 668803.83 9198580.00 97.4794 COLISEO 285 668805.57 9198588.37 97.2351 ACCESO 286 668824.56 9198575.89 97.2454 ACCESO E-5 668742.631 9198532.69 97.249 STN 287 668765.36 9198519.39 97.2095 ESQ 288 668744.85 9198473.78 97.384 ESQ 289 668745.83 9198473.51 97.252 ACCESO 290 668749.58 9198471.42 97.381 ESQ 291 668766.83 9198471.42 97.381 ESQ 292 668746.83 9198466.48 97.463 ACCESO 293 668740.83 9198467.88 97.472 ACCESO 294 668744.	279	668782.06	9198550.41	97.305	POSTE
282 668802.29 9198582.67 97.2297 ACCESO 283 668803.51 9198581.90 97.4801 VEREDA 284 668803.83 9198580.00 97.4794 COLISEO 285 668805.57 9198588.37 97.2351 ACCESO 286 668824.56 9198575.89 97.2454 ACCESO E-5 668742.631 9198532.69 97.249 STN 287 668765.36 9198519.39 97.2095 ESQ 288 668744.85 9198473.78 97.384 ESQ 289 668745.83 9198471.72 97.245 ACCESO 290 668749.58 9198471.42 97.381 ESQ 291 668750.25 9198471.42 97.381 ESQ 292 668746.83 9198466.48 97.472 ACCESO 293 668743.43 9198467.88 97.472 ACCESO 294 668740.50 9198462.38 97.91 PISTA 295 668744.80	280	668781.61	9198554.25	97.46	BZ
283 668803.51 9198581.90 97.4801 VEREDA 284 668803.83 9198580.00 97.4794 COLISEO 285 668805.57 9198588.37 97.2351 ACCESO 286 668824.56 9198575.89 97.2454 ACCESO E-5 668742.631 9198532.69 97.249 STN 287 668765.36 9198519.39 97.2095 ESQ 288 668744.85 9198473.78 97.384 ESQ 289 668745.83 9198473.51 97.252 ACCESO 290 668749.58 9198471.72 97.245 ACCESO 291 668750.25 9198471.42 97.381 ESQ 292 668746.83 9198466.48 97.463 ACCESO 293 668743.43 9198467.88 97.472 ACCESO 294 668740.50 9198462.38 97.91 PISTA 295 66874.80 9198517.24 97.1979 ESQ 297 668769.40<	281	668799.69	9198577.26	97.3724	POSTE
284 668803.83 9198580.00 97.4794 COLISEO 285 668805.57 9198588.37 97.2351 ACCESO 286 668824.56 9198575.89 97.2454 ACCESO E-5 668742.631 9198532.69 97.249 STN 287 668765.36 9198519.39 97.2095 ESQ 288 668744.85 9198473.78 97.384 ESQ 289 668745.83 9198473.51 97.252 ACCESO 290 668749.58 9198471.72 97.245 ACCESO 291 668750.25 9198471.42 97.381 ESQ 292 668746.83 9198466.48 97.463 ACCESO 293 668740.83 9198467.88 97.472 ACCESO 294 668740.50 9198462.38 97.91 PISTA 295 668744.80 9198461.16 97.91 PISTA 296 66870.60 9198517.27 97.0775 ACCESO 298 668766.62<	282	668802.29	9198582.67	97.2297	ACCESO
285 668805.57 9198588.37 97.2351 ACCESO 286 668824.56 9198575.89 97.2454 ACCESO E-5 668742.631 9198532.69 97.249 STN 287 668765.36 9198519.39 97.2095 ESQ 288 668744.85 9198473.78 97.384 ESQ 289 668745.83 9198473.51 97.252 ACCESO 290 668749.58 9198471.72 97.245 ACCESO 291 668750.25 9198471.42 97.381 ESQ 292 668746.83 9198466.48 97.463 ACCESO 293 668746.83 9198467.88 97.472 ACCESO 294 668740.50 9198462.38 97.91 PISTA 295 668744.80 9198461.16 97.91 PISTA 296 66870.66 9198517.24 97.1979 ESQ 297 668769.40 9198517.27 97.0775 ACCESO 298 668766.62	283	668803.51	9198581.90	97.4801	VEREDA
286 668824.56 9198575.89 97.2454 ACCESO E-5 668742.631 9198532.69 97.249 STN 287 668765.36 9198519.39 97.2095 ESQ 288 668745.83 9198473.78 97.384 ESQ 289 668745.83 9198471.51 97.252 ACCESO 290 668749.58 9198471.72 97.245 ACCESO 291 668750.25 9198471.42 97.381 ESQ 292 668746.83 9198466.48 97.463 ACCESO 293 668743.43 9198467.88 97.472 ACCESO 294 668740.50 9198462.38 97.91 PISTA 295 668744.80 9198461.16 97.91 PISTA 296 66870.40 9198517.24 97.1979 ESQ 297 668769.40 9198518.70 97.0775 ACCESO 298 668766.62 9198518.70 97.092 ACCESO 300 668786.60	284	668803.83	9198580.00	97.4794	COLISEO
E-5 668742.631 9198532.69 97.249 STN 287 668765.36 9198519.39 97.2095 ESQ 288 668744.85 9198473.78 97.384 ESQ 289 668745.83 9198473.51 97.252 ACCESO 290 668749.58 9198471.72 97.245 ACCESO 291 668750.25 9198471.42 97.381 ESQ 292 668746.83 9198466.48 97.463 ACCESO 293 668743.43 9198467.88 97.472 ACCESO 294 668740.50 9198462.38 97.91 PISTA 295 668744.80 9198461.16 97.91 PISTA 296 66870.40 9198517.24 97.1979 ESQ 297 668769.40 9198518.70 97.0775 ACCESO 298 668766.62 9198518.70 97.0736 ACCESO 300 668787.06 9198539.47 97.4456 VEREDA 301 668786.60	285	668805.57	9198588.37	97.2351	ACCESO
287 668765.36 9198519.39 97.2095 ESQ 288 668744.85 9198473.78 97.384 ESQ 289 668745.83 9198473.51 97.252 ACCESO 290 668749.58 9198471.72 97.245 ACCESO 291 668750.25 9198471.42 97.381 ESQ 292 668746.83 9198466.48 97.463 ACCESO 293 668743.43 9198467.88 97.472 ACCESO 294 668740.50 9198462.38 97.91 PISTA 295 668744.80 9198461.16 97.91 PISTA 296 668770.66 9198517.24 97.1979 ESQ 297 668769.40 9198517.27 97.0775 ACCESO 298 668766.62 9198518.70 97.0736 ACCESO 299 668770.18 9198539.47 97.4456 VEREDA 301 668786.60 9198539.47 97.4736 VEREDA 302 668788.84<	286	668824.56	9198575.89	97.2454	ACCESO
288 668744.85 9198473.78 97.384 ESQ 289 668745.83 9198473.51 97.252 ACCESO 290 668749.58 9198471.72 97.245 ACCESO 291 668750.25 9198471.42 97.381 ESQ 292 668746.83 9198466.48 97.463 ACCESO 293 668743.43 9198467.88 97.472 ACCESO 294 668740.50 9198462.38 97.91 PISTA 295 668744.80 9198461.16 97.91 PISTA 296 668770.66 9198517.24 97.1979 ESQ 297 668769.40 9198517.27 97.0775 ACCESO 298 668766.62 9198518.70 97.0736 ACCESO 299 668770.18 9198525.35 97.0092 ACCESO 300 668786.60 9198539.47 97.4456 VEREDA 301 668786.60 9198539.88 97.4915 COLISEO 303 668788	E-5	668742.631	9198532.69	97.249	STN
289 668745.83 9198473.51 97.252 ACCESO 290 668749.58 9198471.72 97.245 ACCESO 291 668750.25 9198471.42 97.381 ESQ 292 668746.83 9198466.48 97.463 ACCESO 293 668743.43 9198467.88 97.472 ACCESO 294 668740.50 9198462.38 97.91 PISTA 295 668744.80 9198461.16 97.91 PISTA 296 66870.66 9198517.24 97.1979 ESQ 297 668769.40 9198517.27 97.0775 ACCESO 298 668766.62 9198518.70 97.0736 ACCESO 299 668770.18 9198525.35 97.0092 ACCESO 300 668787.06 9198539.47 97.4456 VEREDA 301 668786.60 9198539.88 97.4915 COLISEO 303 668788.39 9198539.12 97.4922 COLISEO 304 66	287	668765.36	9198519.39	97.2095	ESQ
290 668749.58 9198471.72 97.245 ACCESO 291 668750.25 9198471.42 97.381 ESQ 292 668746.83 9198466.48 97.463 ACCESO 293 668743.43 9198467.88 97.472 ACCESO 294 668740.50 9198462.38 97.91 PISTA 295 668744.80 9198461.16 97.91 PISTA 296 668770.66 9198517.24 97.1979 ESQ 297 668769.40 9198517.27 97.0775 ACCESO 298 668766.62 9198518.70 97.0736 ACCESO 299 668770.18 9198525.35 97.0092 ACCESO 300 668787.06 9198539.47 97.4456 VEREDA 301 668786.60 9198539.88 97.4915 COLISEO 303 668788.84 9198539.12 97.4922 COLISEO 304 668806.29 9198527.43 97.5026 COLISEO 305 <td< td=""><td>288</td><td>668744.85</td><td>9198473.78</td><td>97.384</td><td>ESQ</td></td<>	288	668744.85	9198473.78	97.384	ESQ
291 668750.25 9198471.42 97.381 ESQ 292 668746.83 9198466.48 97.463 ACCESO 293 668743.43 9198467.88 97.472 ACCESO 294 668740.50 9198462.38 97.91 PISTA 295 668744.80 9198461.16 97.91 PISTA 296 668770.66 9198517.24 97.1979 ESQ 297 668769.40 9198517.27 97.0775 ACCESO 298 668766.62 9198518.70 97.0736 ACCESO 299 668770.18 9198525.35 97.0092 ACCESO 300 668787.06 9198539.47 97.4456 VEREDA 301 668786.60 9198539.88 97.4915 COLISEO 302 668788.84 9198539.12 97.4922 COLISEO 304 668806.29 9198527.43 97.5026 COLISEO 305 668808.24 9198527.27 97.4996 COLISEO	289	668745.83	9198473.51	97.252	ACCESO
292 668746.83 9198466.48 97.463 ACCESO 293 668743.43 9198467.88 97.472 ACCESO 294 668740.50 9198462.38 97.91 PISTA 295 668744.80 9198461.16 97.91 PISTA 296 668770.66 9198517.24 97.1979 ESQ 297 668769.40 9198517.27 97.0775 ACCESO 298 668766.62 9198518.70 97.0736 ACCESO 299 668770.18 9198525.35 97.0092 ACCESO 300 668787.06 9198539.47 97.4456 VEREDA 301 668788.60 9198539.47 97.4736 VEREDA 302 668788.84 9198539.88 97.4915 COLISEO 303 668788.39 9198539.12 97.4922 COLISEO 304 668806.29 9198527.43 97.5026 COLISEO 305 668808.24 9198527.27 97.4996 COLISEO	290	668749.58	9198471.72	97.245	ACCESO
293 668743.43 9198467.88 97.472 ACCESO 294 668740.50 9198462.38 97.91 PISTA 295 668744.80 9198461.16 97.91 PISTA 296 668770.66 9198517.24 97.1979 ESQ 297 668769.40 9198517.27 97.0775 ACCESO 298 668766.62 9198518.70 97.0736 ACCESO 299 668770.18 9198525.35 97.0092 ACCESO 300 668787.06 9198539.47 97.4456 VEREDA 301 668786.60 9198538.67 97.4736 VEREDA 302 668788.84 9198539.88 97.4915 COLISEO 303 668788.39 9198539.12 97.4922 COLISEO 304 668806.29 9198527.43 97.5026 COLISEO 305 668808.24 9198527.27 97.4996 COLISEO	291	668750.25	9198471.42	97.381	ESQ
294 668740.50 9198462.38 97.91 PISTA 295 668744.80 9198461.16 97.91 PISTA 296 668770.66 9198517.24 97.1979 ESQ 297 668769.40 9198517.27 97.0775 ACCESO 298 668766.62 9198518.70 97.0736 ACCESO 299 668770.18 9198525.35 97.0092 ACCESO 300 668787.06 9198539.47 97.4456 VEREDA 301 668786.60 9198538.67 97.4736 VEREDA 302 668788.84 9198539.88 97.4915 COLISEO 303 668788.39 9198539.12 97.4922 COLISEO 304 668806.29 9198527.43 97.5026 COLISEO 305 668808.24 9198527.27 97.4996 COLISEO	292	668746.83	9198466.48	97.463	ACCESO
295 668744.80 9198461.16 97.91 PISTA 296 668770.66 9198517.24 97.1979 ESQ 297 668769.40 9198517.27 97.0775 ACCESO 298 668766.62 9198518.70 97.0736 ACCESO 299 668770.18 9198525.35 97.0092 ACCESO 300 668787.06 9198539.47 97.4456 VEREDA 301 668786.60 9198538.67 97.4736 VEREDA 302 668788.84 9198539.88 97.4915 COLISEO 303 668788.39 9198539.12 97.4922 COLISEO 304 668806.29 9198527.43 97.5026 COLISEO 305 668808.24 9198527.27 97.4996 COLISEO	293	668743.43	9198467.88	97.472	ACCESO
296 668770.66 9198517.24 97.1979 ESQ 297 668769.40 9198517.27 97.0775 ACCESO 298 668766.62 9198518.70 97.0736 ACCESO 299 668770.18 9198525.35 97.0092 ACCESO 300 668787.06 9198539.47 97.4456 VEREDA 301 668786.60 9198538.67 97.4736 VEREDA 302 668788.84 9198539.88 97.4915 COLISEO 303 668788.39 9198539.12 97.4922 COLISEO 304 668806.29 9198527.43 97.5026 COLISEO 305 668808.24 9198527.27 97.4996 COLISEO	294	668740.50	9198462.38	97.91	PISTA
297 668769.40 9198517.27 97.0775 ACCESO 298 668766.62 9198518.70 97.0736 ACCESO 299 668770.18 9198525.35 97.0092 ACCESO 300 668787.06 9198539.47 97.4456 VEREDA 301 668786.60 9198538.67 97.4736 VEREDA 302 668788.84 9198539.88 97.4915 COLISEO 303 668788.39 9198539.12 97.4922 COLISEO 304 668806.29 9198527.43 97.5026 COLISEO 305 668808.24 9198527.27 97.4996 COLISEO	295	668744.80	9198461.16	97.91	PISTA
298 668766.62 9198518.70 97.0736 ACCESO 299 668770.18 9198525.35 97.0092 ACCESO 300 668787.06 9198539.47 97.4456 VEREDA 301 668786.60 9198538.67 97.4736 VEREDA 302 668788.84 9198539.88 97.4915 COLISEO 303 668788.39 9198539.12 97.4922 COLISEO 304 668806.29 9198527.43 97.5026 COLISEO 305 668808.24 9198527.27 97.4996 COLISEO	296	668770.66	9198517.24	97.1979	ESQ
299 668770.18 9198525.35 97.0092 ACCESO 300 668787.06 9198539.47 97.4456 VEREDA 301 668786.60 9198538.67 97.4736 VEREDA 302 668788.84 9198539.88 97.4915 COLISEO 303 668788.39 9198539.12 97.4922 COLISEO 304 668806.29 9198527.43 97.5026 COLISEO 305 668808.24 9198527.27 97.4996 COLISEO	297	668769.40	9198517.27	97.0775	ACCESO
300 668787.06 9198539.47 97.4456 VEREDA 301 668786.60 9198538.67 97.4736 VEREDA 302 668788.84 9198539.88 97.4915 COLISEO 303 668788.39 9198539.12 97.4922 COLISEO 304 668806.29 9198527.43 97.5026 COLISEO 305 668808.24 9198527.27 97.4996 COLISEO	298	668766.62	9198518.70	97.0736	ACCESO
301 668786.60 9198538.67 97.4736 VEREDA 302 668788.84 9198539.88 97.4915 COLISEO 303 668788.39 9198539.12 97.4922 COLISEO 304 668806.29 9198527.43 97.5026 COLISEO 305 668808.24 9198527.27 97.4996 COLISEO	299	668770.18	9198525.35	97.0092	
302 668788.84 9198539.88 97.4915 COLISEO 303 668788.39 9198539.12 97.4922 COLISEO 304 668806.29 9198527.43 97.5026 COLISEO 305 668808.24 9198527.27 97.4996 COLISEO	300	668787.06	9198539.47	97.4456	VEREDA
303 668788.39 9198539.12 97.4922 COLISEO 304 668806.29 9198527.43 97.5026 COLISEO 305 668808.24 9198527.27 97.4996 COLISEO	301	668786.60	9198538.67	97.4736	VEREDA
304 668806.29 9198527.43 97.5026 COLISEO 305 668808.24 9198527.27 97.4996 COLISEO	302	668788.84	9198539.88		COLISEO
305 668808.24 9198527.27 97.4996 COLISEO	303	668788.39	9198539.12	97.4922	
	304	668806.29	9198527.43	97.5026	COLISEO
306 668807.18 9198526.41 97.5221 VEREDA	305	668808.24	9198527.27	97.4996	
	306	668807.18	9198526.41	97.5221	VEREDA

307	668806.66	9198525.62	97.5004	VEREDA
308	668796.21	9198524.52	96.9807	ACCESO
309	668740.02	9198554.14	97.4459	PARQUE-VEREDA
310	668739.94	9198554.07	97.2799	ACCESO
311	668738.04	9198557.24	97.3321	PARQUE-VEREDA
312	668737.42	9198557.23	97.276	ACCESO
313	668718.31	9198549.25	97.5116	ESQ
314	668718.84	9198548.16	97.5084	VEREDA
315	668720.85	9198538.66	97.4948	VEREDA
316	668720.67	9198537.76	97.5164	CASA
317	668700.37	9198549.86	97.4091	ACCESO
318	668695.80	9198558.09	97.4451	ACCESO
319	668695.00	9198559.28	97.4917	VEREDA
320	668695.69	9198559.86	97.4893	CASA
321	668679.34	9198565.10	97.5212	ACCESO
322	668676.53	9198559.38	97.4564	ACCESO
323	668680.88	9198554.86	97.5692	POSTE
324	668677.41	9198555.42	97.6162	ESQ
325	668677.58	9198556.02	97.6166	VEREDA
326	668682.79	9198566.06	97.7287	ESQ
327	668682.31	9198565.18	97.7284	VEREDA
328	668671.78	9198562.65	97.4848	BZN
E-6	668672.147	9198562.19	97.5072	STN
329	668676.22	9198556.40	97.6237	VEREDA
330	668675.16	9198555.41	97.6254	VEREDA
331	668675.80	9198554.95	97.6311	ESQ
332	668678.19	9198559.56	97.4176	ACCESO
333	668675.77	9198560.17	97.5278	ACCESO
334	668673.98	9198558.21	97.5085	ACCESO
335	668671.71	9198552.82	97.4905	ACCESO
336	668672.99	9198551.95	97.5092	POSTE
337	668667.03	9198535.67	97.498	CASA
338	668666.31	9198536.13	97.47	VEREDA
339	668664.56	9198536.91	97.4214	ACCESO
340	668658.05	9198517.08	97.4679	POSTE
341	668654.96	9198512.65	97.3583	ACCESO
342	668656.29	9198511.81	97.3784	VEREDA
343	668657.07	9198511.36	97.4328	ESQ
344	668651.00	9198504.02	97.501	ACCESO
345	668648.96	9198499.82	97.9232	PISTA
346	668642.16	9198501.54	97.9448	PISTA
			ı	1

348 668643.37 9198504.68 97.9382 ACC 349 668645.20 9198514.05 97.8483 E 350 668647.57 9198513.04 97.4942 ACC 351 668647.84 9198517.26 97.4969 PC 352 668658.61 9198534.94 97.43 ACC 353 668655.86 9198538.07 97.5304 VEI 354 668654.42 9198537.06 97.5559 C 355 668663.06 9198553.90 97.5777 PC 356 668668.68 9198558.46 97.5158 ACC 357 668666.22 9198560.18 97.5545 PC 358 668670.85 9198573.08 97.5692 C 359 668671.72 9198572.59 97.573 VEI 360 668675.20 9198570.49 97.5174 ACC 361 668681.15 9198566.65 97.7161 VEI 362 668678.61 9198567.65 <th>CESO CESO SSQ CESO OSTE CESO REDA ASA OSTE CESO OSTE ASA REDA REDA REDA CESO</th>	CESO CESO SSQ CESO OSTE CESO REDA ASA OSTE CESO OSTE ASA REDA REDA REDA CESO
349 668645.20 9198514.05 97.8483 E 350 668647.57 9198513.04 97.4942 ACC 351 668647.84 9198517.26 97.4969 PC 352 668658.61 9198534.94 97.43 ACC 353 668655.86 9198538.07 97.5304 VEI 354 668654.42 9198537.06 97.5559 C. 355 668663.06 9198553.90 97.5777 PC 356 668668.68 9198558.46 97.5158 ACC 357 668666.22 9198560.18 97.5545 PC 358 668670.85 9198573.08 97.5692 C. 359 668671.72 9198572.59 97.573 VEI 360 668675.20 9198570.49 97.5174 ACC 361 668681.15 9198566.65 97.7161 VEI 362 668678.61 9198567.65 97.7282 E	ESQ CESO DSTE CESO REDA ASA DSTE CESO DSTE ASA REDA CESO
350 668647.57 9198513.04 97.4942 ACC 351 668647.84 9198517.26 97.4969 PC 352 668658.61 9198534.94 97.43 ACC 353 668655.86 9198538.07 97.5304 VEI 354 668654.42 9198537.06 97.5559 CA 355 668663.06 9198553.90 97.5777 PC 356 668668.68 9198558.46 97.5158 ACC 357 668666.22 9198560.18 97.5545 PC 358 668670.85 9198573.08 97.5692 CA 359 668671.72 9198572.59 97.573 VEI 360 668675.20 9198570.49 97.5174 ACC 361 668681.15 9198566.65 97.7161 VEI 362 668678.61 9198567.65 97.5189 ACC 363 668682.24 9198567.65 97.7282 E	CESO DSTE CESO REDA ASA DSTE CESO DSTE ASA REDA CESO
351 668647.84 9198517.26 97.4969 PC 352 668658.61 9198534.94 97.43 ACC 353 668655.86 9198538.07 97.5304 VEI 354 668654.42 9198537.06 97.5559 C. 355 668663.06 9198553.90 97.5777 PC 356 668668.68 9198558.46 97.5158 ACC 357 668666.22 9198560.18 97.5545 PC 358 668670.85 9198573.08 97.5692 C. 359 668671.72 9198572.59 97.573 VEI 360 668675.20 9198570.49 97.5174 ACC 361 668681.15 9198566.65 97.7161 VEI 362 668678.61 9198565.61 97.5189 ACC 363 668682.24 9198567.65 97.7282 E	DSTE CESO REDA ASA DSTE CESO DSTE ASA REDA CESO
352 668658.61 9198534.94 97.43 ACC 353 668655.86 9198538.07 97.5304 VER 354 668654.42 9198537.06 97.5559 Cz 355 668663.06 9198553.90 97.5777 PC 356 668668.68 9198558.46 97.5158 ACC 357 668666.22 9198560.18 97.5545 PC 358 668670.85 9198573.08 97.5692 Cz 359 668671.72 9198572.59 97.573 VER 360 668675.20 9198570.49 97.5174 ACC 361 668681.15 9198566.65 97.7161 VER 362 668678.61 9198565.61 97.5189 ACC 363 668682.24 9198567.65 97.7282 E	CESO REDA ASA DSTE CESO DSTE ASA REDA CESO
353 668655.86 9198538.07 97.5304 VEI 354 668654.42 9198537.06 97.5559 Cz 355 668663.06 9198553.90 97.5777 PC 356 668668.68 9198558.46 97.5158 ACG 357 668666.22 9198560.18 97.5545 PC 358 668670.85 9198573.08 97.5692 Cz 359 668671.72 9198572.59 97.573 VEI 360 668675.20 9198570.49 97.5174 ACG 361 668681.15 9198566.65 97.7161 VEI 362 668678.61 9198567.65 97.5189 ACG 363 668682.24 9198567.65 97.7282 E	REDA ASA DSTE CESO DSTE ASA REDA CESO
354 668654.42 9198537.06 97.5559 C. 355 668663.06 9198553.90 97.5777 PC 356 668668.68 9198558.46 97.5158 ACC 357 668666.22 9198560.18 97.5545 PC 358 668670.85 9198573.08 97.5692 C. 359 668671.72 9198572.59 97.573 VEI 360 668675.20 9198570.49 97.5174 ACC 361 668681.15 9198566.65 97.7161 VEI 362 668678.61 9198565.61 97.5189 ACC 363 668682.24 9198567.65 97.7282 E	ASA DSTE CESO DSTE ASA REDA CESO
355 668663.06 9198553.90 97.5777 PC 356 668668.68 9198558.46 97.5158 ACC 357 668666.22 9198560.18 97.5545 PC 358 668670.85 9198573.08 97.5692 CA 359 668671.72 9198572.59 97.573 VEI 360 668675.20 9198570.49 97.5174 ACC 361 668681.15 9198566.65 97.7161 VEI 362 668678.61 9198565.61 97.5189 ACC 363 668682.24 9198567.65 97.7282 E	OSTE CESO OSTE ASA REDA CESO
356 668668.68 9198558.46 97.5158 ACC 357 668666.22 9198560.18 97.5545 PC 358 668670.85 9198573.08 97.5692 CA 359 668671.72 9198572.59 97.573 VEI 360 668675.20 9198570.49 97.5174 ACC 361 668681.15 9198566.65 97.7161 VEI 362 668678.61 9198565.61 97.5189 ACC 363 668682.24 9198567.65 97.7282 E	CESO OSTE ASA REDA CESO
357 668666.22 9198560.18 97.5545 PC 358 668670.85 9198573.08 97.5692 C. 359 668671.72 9198572.59 97.573 VEI 360 668675.20 9198570.49 97.5174 ACC 361 668681.15 9198566.65 97.7161 VEI 362 668678.61 9198565.61 97.5189 ACC 363 668682.24 9198567.65 97.7282 E	OSTE ASA REDA CESO
358 668670.85 9198573.08 97.5692 Cz 359 668671.72 9198572.59 97.573 VEI 360 668675.20 9198570.49 97.5174 ACC 361 668681.15 9198566.65 97.7161 VEI 362 668678.61 9198565.61 97.5189 ACC 363 668682.24 9198567.65 97.7282 E	ASA REDA CESO
359 668671.72 9198572.59 97.573 VEI 360 668675.20 9198570.49 97.5174 ACC 361 668681.15 9198566.65 97.7161 VEI 362 668678.61 9198565.61 97.5189 ACC 363 668682.24 9198567.65 97.7282 E	REDA CESO
360 668675.20 9198570.49 97.5174 ACC 361 668681.15 9198566.65 97.7161 VEI 362 668678.61 9198565.61 97.5189 ACC 363 668682.24 9198567.65 97.7282 E	CESO
361 668681.15 9198566.65 97.7161 VER 362 668678.61 9198565.61 97.5189 ACC 363 668682.24 9198567.65 97.7282 E	
362 668678.61 9198565.61 97.5189 ACC 363 668682.24 9198567.65 97.7282 E	REDA
363 668682.24 9198567.65 97.7282 E	
	CESO
364 668681 32 0108567 07 07 7177 1/5	SQ
000001.32 9180301.81 91.1111 VEI	REDA
365 668679.72 9198568.99 97.5015 ACC	CESO
366 668683.88 9198574.05 97.5996 PC	OSTE
367 668679.61 9198587.20 97.6568 PC	OSTE
368 668685.79 9198592.81 97.6734 ACC	CESO
369 668690.54 9198590.53 97.6738 ACC	CESO
370 668695.92 9198595.21 97.6878 C	ASA
371 668694.88 9198595.65 97.8052 VEI	REDA
372 668685.54 9198602.03 97.8273 C	ASA
373 668686.74 9198601.79 97.8847 VEI	REDA
374 668698.24 9198602.66 97.7116 PC	OSTE
375 668694.92 9198618.27 97.7063 PC	OSTE
376 668699.99 9198630.58 97.8177 C	ASA
377 668700.80 9198630.22 97.8177 VER	REDA
378 668710.08 9198625.69 97.7204 VEI	REDA
379 668708.55 9198626.21 97.7195 ACC	CESO
380 668704.00 9198628.37 97.7196 ACC	CESO
381 668715.62 9198637.45 97.7464 PC	OSTE
382 668717.97 9198638.86 97.7497 E	SQ
383 668717.56 9198640.08 97.7106 VER	REDA
384 668716.00 9198642.40 97.7168 ACC	CESO
385 668738.44 9198679.57 97.725 E	SQ
386 668731.64 9198680.31 97.647	BZ
387 668726.92 9198683.81 96.712 E	SQ

388 668718.47 9198642.26 97.7206 ACCESO E-3 668905.227 9198634.88 95.9876 STN 389 668910.03 9198631.61 96.1929 PISTA 390 668913.69 9198637.74 96.1988 CASA 391 668913.25 9198636.91 96.2036 PISTA 392 668918.84 9198634.75 96.1972 ESQ 393 668904.73 9198641.70 96.015 POSTE 394 668908.63 9198639.08 96.0164 ACCESO 395 668894.05 9198647.45 96.1484 ACCESO 396 668889.38 9198644.82 96.1867 ACCESO 397 668888.90 9198644.20 96.249 VEREDA 398 668877.37 9198657.59 96.2414 POSTE 399 668870.39 9198656.61 96.1841 ACCESO 400 668860.05 9198659.21 96.442 ESQ 402 668					
389 668910.03 9198631.61 96.1929 PISTA 390 668913.69 9198637.74 96.1988 CASA 391 668913.25 9198636.91 96.2036 PISTA 392 668918.84 9198634.75 96.1972 ESQ 393 668904.73 9198641.70 96.015 POSTE 394 668908.63 9198639.08 96.0164 ACCESO 395 668894.05 9198647.45 96.1484 ACCESO 396 668889.38 9198644.82 96.1867 ACCESO 397 668888.90 9198644.20 96.249 VEREDA 398 668877.37 9198657.59 96.2414 POSTE 399 668876.94 9198656.61 96.1841 ACCESO 400 668870.39 9198655.24 96.236 ACCESO 401 668860.05 9198659.21 96.442 ESQ	388	668718.47	9198642.26	97.7206	ACCESO
390 668913.69 9198637.74 96.1988 CASA 391 668913.25 9198636.91 96.2036 PISTA 392 668918.84 9198634.75 96.1972 ESQ 393 668904.73 9198641.70 96.015 POSTE 394 668908.63 9198639.08 96.0164 ACCESO 395 668894.05 9198647.45 96.1484 ACCESO 396 668889.38 9198644.82 96.1867 ACCESO 397 668888.90 9198644.20 96.249 VEREDA 398 668877.37 9198657.59 96.2414 POSTE 399 668876.94 9198656.61 96.1841 ACCESO 400 668870.39 9198655.24 96.236 ACCESO 401 668860.05 9198659.21 96.442 ESQ	E-3	668905.227	9198634.88	95.9876	STN
391 668913.25 9198636.91 96.2036 PISTA 392 668918.84 9198634.75 96.1972 ESQ 393 668904.73 9198641.70 96.015 POSTE 394 668908.63 9198639.08 96.0164 ACCESO 395 668894.05 9198647.45 96.1484 ACCESO 396 668889.38 9198644.82 96.1867 ACCESO 397 668888.90 9198644.20 96.249 VEREDA 398 668877.37 9198657.59 96.2414 POSTE 399 668876.94 9198656.61 96.1841 ACCESO 400 668870.39 9198655.24 96.236 ACCESO 401 668860.05 9198659.21 96.442 ESQ	389	668910.03	9198631.61	96.1929	PISTA
392 668918.84 9198634.75 96.1972 ESQ 393 668904.73 9198641.70 96.015 POSTE 394 668908.63 9198639.08 96.0164 ACCESO 395 668894.05 9198647.45 96.1484 ACCESO 396 668889.38 9198644.82 96.1867 ACCESO 397 668888.90 9198644.20 96.249 VEREDA 398 668877.37 9198657.59 96.2414 POSTE 399 668876.94 9198656.61 96.1841 ACCESO 400 668870.39 9198655.24 96.236 ACCESO 401 668860.05 9198659.21 96.442 ESQ	390	668913.69	9198637.74	96.1988	CASA
393 668904.73 9198641.70 96.015 POSTE 394 668908.63 9198639.08 96.0164 ACCESO 395 668894.05 9198647.45 96.1484 ACCESO 396 668889.38 9198644.82 96.1867 ACCESO 397 668888.90 9198644.20 96.249 VEREDA 398 668877.37 9198657.59 96.2414 POSTE 399 668876.94 9198656.61 96.1841 ACCESO 400 668870.39 9198655.24 96.236 ACCESO 401 668860.05 9198659.21 96.442 ESQ	391	668913.25	9198636.91	96.2036	PISTA
394 668908.63 9198639.08 96.0164 ACCESO 395 668894.05 9198647.45 96.1484 ACCESO 396 668889.38 9198644.82 96.1867 ACCESO 397 668888.90 9198644.20 96.249 VEREDA 398 668877.37 9198657.59 96.2414 POSTE 399 668876.94 9198656.61 96.1841 ACCESO 400 668870.39 9198655.24 96.236 ACCESO 401 668860.05 9198659.21 96.442 ESQ	392	668918.84	9198634.75	96.1972	ESQ
395 668894.05 9198647.45 96.1484 ACCESO 396 668889.38 9198644.82 96.1867 ACCESO 397 668888.90 9198644.20 96.249 VEREDA 398 668877.37 9198657.59 96.2414 POSTE 399 668876.94 9198656.61 96.1841 ACCESO 400 668870.39 9198655.24 96.236 ACCESO 401 668860.05 9198659.21 96.442 ESQ	393	668904.73	9198641.70	96.015	POSTE
396 668889.38 9198644.82 96.1867 ACCESO 397 668888.90 9198644.20 96.249 VEREDA 398 668877.37 9198657.59 96.2414 POSTE 399 668876.94 9198656.61 96.1841 ACCESO 400 668870.39 9198655.24 96.236 ACCESO 401 668860.05 9198659.21 96.442 ESQ	394	668908.63	9198639.08	96.0164	ACCESO
397 668888.90 9198644.20 96.249 VEREDA 398 668877.37 9198657.59 96.2414 POSTE 399 668876.94 9198656.61 96.1841 ACCESO 400 668870.39 9198655.24 96.236 ACCESO 401 668860.05 9198659.21 96.442 ESQ	395	668894.05	9198647.45	96.1484	ACCESO
398 668877.37 9198657.59 96.2414 POSTE 399 668876.94 9198656.61 96.1841 ACCESO 400 668870.39 9198655.24 96.236 ACCESO 401 668860.05 9198659.21 96.442 ESQ	396	668889.38	9198644.82	96.1867	ACCESO
399 668876.94 9198656.61 96.1841 ACCESO 400 668870.39 9198655.24 96.236 ACCESO 401 668860.05 9198659.21 96.442 ESQ	397	668888.90	9198644.20	96.249	VEREDA
400 668870.39 9198655.24 96.236 ACCESO 401 668860.05 9198659.21 96.442 ESQ	398	668877.37	9198657.59	96.2414	POSTE
401 668860.05 9198659.21 96.442 ESQ	399	668876.94	9198656.61	96.1841	ACCESO
	400	668870.39	9198655.24	96.236	ACCESO
402 668864.34 9198665.78 96.431 ESQ	401	668860.05	9198659.21	96.442	ESQ
	402	668864.34	9198665.78	96.431	ESQ

4.1.2. Curvas de nivel



Figura 18. Plano topográfico de curvas de nivel

4.2. Estudio de mecánica de suelos

4.2.1. Granulometría

Tabla 40. Granulometría

N° calicata	C-1	C-2	C-3	C-4
Estrato	E-1	E-2	E-3	E-4
Profundidad	1.50	1.50	1.50	1.50
% Grava	-	-	-	-
% Arena	35.5	36.7	29.2	24.8
% Finos	64.5	63.3	70.8	75.2

4.2.2. Límites de consistencia

Tabla 41. Límites de consistencia

N° calicata	C-1	C-2	C-3	C-4
Profundidad	1.50	1.50	1.50	1.50
Límite Líquido	30.0	33.9	30.0	41.0
Límite Plástico	17.7	13.8	22.4	21.5
Índice de Plasticidad	12.4	20.1	7.6	19.5

4.2.3. Contenido de humedad

Tabla 42. Contenido de Humedad

N° calicata	C-1	C-2	C-3	C-4
Profundidad	1.50	1.50	1.50	1.50
Estrato	E-1	E-2	E-3	E-4
Contenido de Humedad	14.6	17.2	22.7	32.7

4.2.4. CBR %

Tabla 43. Valor de CBR al 95% de MDS para 0.1" de penetración.

	M.D.S	95% (M.D.S)	C.B.R
C-1	1.750 g/cm ³	1.663 g/cm ³	14.3 %
C-2	1.700 g/cm ³	1.614 g/cm ³	13.9 %
C-3	1.710 g/cm ³	1.625 g/cm ³	13.7 %
C-4	1.780 g/cm ³	1.691 g/cm ³	16.0 %

C.B.R. REPRESENTATIVO AL 95%	13.7%

4.2.5. Proctor modificado

Tabla 44. Proctor modificado

N° cal	icata	C-1	C-2	C-3	C-4
Profun	didad	1.50	1.50	1.50	1.50
Estra	ato	E-1	E-2	E-3	E-4
PROCTOR	Densidad Máxima seca	1.75 g/cm³	1.70 g/cm³	1.71 g/cm³	1.78 g/cm³
PROCTOR	Humedad óptima	12.00 %	12.50 %	12.80 %	12.00 %

4.2.6. Clasificación de suelos

Tabla 45. Clasificación de suelos

N° calicata	C-1	C-2	C-3	C-4
Estrato	E-1	E-2	E-3	E-4
Profundidad	1.50	1.50	1.50	1.50
SUCS	CL	CL	CL	CL
AASHTO	A-6	A-6	A-4	A-7-6

4.3. Estudio de tráfico

4.3.1. Índice Medio Diario Anual (IMDa)

Tabla 46. Índice Medio Diario Anual

TIPO DE VEHÍCULO	IMDa	DISTRIBUCIÓN (%)
Automóvil	20	32.76
Station Vagon	6	9.14
Camioneta	13	21.33
Camión 2E	11	17.58
Camión 3E	9	14.39
Camión 4E	3	4.80
TOTAL	62	100

4.4. Estudio hidrológico

4.4.1. Precipitaciones

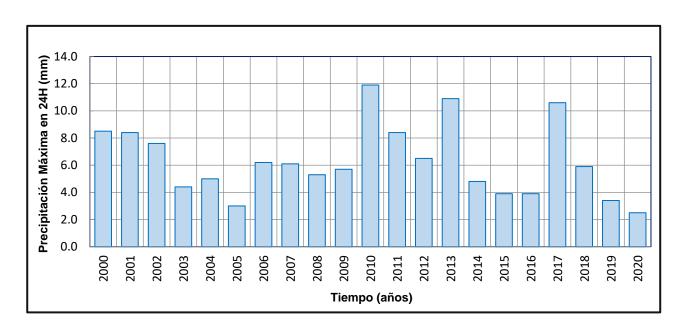


Figura 19. Histograma de registro histórico de precipitaciones

4.4.2. Caudal de diseño y diseño de obras de arte

4.4.2.1 Caudal de diseño

Q de diseño= 0.104 m³/s

4.4.2.2 Diseño de obras de arte

Tabla 47. Dimensiones finales de cuneta triangular

Ancho	а	0.7	m
Espejo de agua	Т	0.60	m
Profundidad	D	0.40	m
Talud	Exterior - Z1	1.5	
	Interior - Z2	C)
Tirante	у	0.35	m
Borde Libre	BL	0.05	m
Velocidad	V	1.26	m/s
Espesor	е	0.1	m

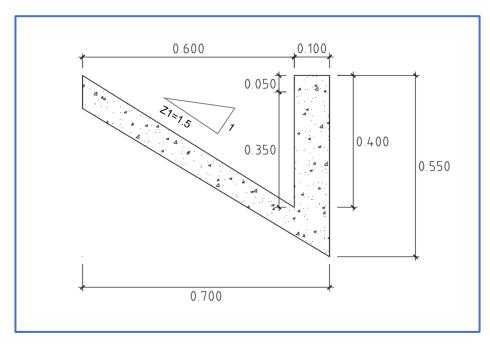


Figura 20. Diseño de cuneta triangular

4.5. Diseño geométrico

4.5.1. Diseño geométrico en planta y perfil

Tabla 48. Diseño en planta y perfil

		Clasificación de vías
		Locales secundarias
		N° Calzadas
		1
		N° Carriles
		2
DISEÑO	Р	Sentidos
GEOMÉTRICO	Α	1 por carril
EN PLANTA	R	Ancho de carril
LINFLANIA	Á	Variable (mínimo 2.70m)
	M E	Bombeo
		2%
	T	Velocidad de diseño
	R	40 km/h
	0	Radio mínimo
	S	30 m
		Clasificación de vías
DISEÑO GEOMÉTRICO EN PERFIL		Locales secundarias
		Pendiente mínima
		0.3%
		Pendiente máxima
		Según topografía

4.5.2. Señalización

Tabla 49. Señalización horizontal

MARCAS EN EL PAVIMENTO					
TIPO	DESCRIPCIÓN	TOTAL			
	Líneas de cruce peatonal	17			
	Flecha direccional - giro a la derecha	5			
	Flecha direccional - giro a la izquierda	7			
*	Flecha direccional - siga adelante o gire a la derecha o izquierda	10			
+	Flecha direccional - gire a la derecha o izquierda	8			

4.6. Diseño de pavimento

Tabla 50. Espesores de capas del pavimento

Capas del pavimento	(cm)
Carpeta asfáltica	7.00
Base	15.00
Sub base	15.00

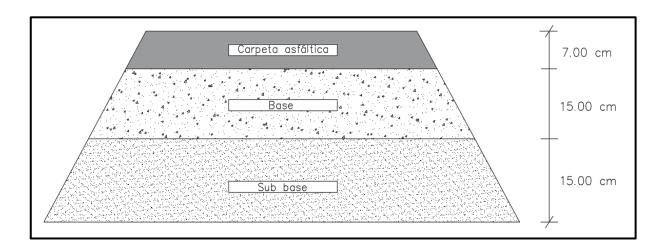


Figura 21. Espesores de capas del pavimento

V. DISCUSIÓN

El diseño de infraestructura vial de las calles del sector Cafetal I se basa en las normas comprendidas en el Reglamento Nacional de Edificaciones y en los manuales del Ministerio de Transportes y Comunicaciones. Se obtuvo el diseño de infraestructura vial partiendo del estudio topográfico del lugar, obteniendo los puntos respectivos, y posterior a ello, las muestras de las calicatas realizadas para determinar el CBR% representativo. Asimismo, se realizaron los diseños en planta y perfil para una vía local con velocidad de diseño de 40 km/h. En cuanto al diseño de pavimento, fue de tipo flexible basado en el método AASHTO 93. De esta manera se comprueba la validez de la hipótesis planteada por los investigadores, cumpliendo a su vez, cada objetivo específico establecido.

De acuerdo a la tabla 39, se observan los puntos obtenidos del estudio topográfico. Se utilizó el software Civil 3D para el procesamiento de datos con lo que se tuvo como resultado las curvas de nivel plasmadas en la figura 18. Por otra parte, en el estudio de suelos se realizaron 4 calicatas en diferentes puntos del lugar; en la tabla 43 se observan los datos de CBR% obteniendo distintos porcentajes como 14.9%, 13.9%, 13.7% y 16%, de los cuales se seleccionó el más desfavorable correspondiente a la calicata 03, clasificando a la subrasante como buena de acuerdo al manual de Suelos, Geología, Geotecnia y Pavimentos. En el estudio de tráfico se estableció 7 días de conteo vehicular realizado en un punto ubicado de forma estratégica, el cual se encuentra en la calle Andrés Rázuri. Tal como se observa en la tabla 46, de dicho conteo se obtuvo un IMDa de 62 veh/día y un tráfico de diseño de W18= 418 979 E.E, en lo cual el manual de suelos y pavimentos establece que, a un rango de tráfico comprendido entre >300,000 ≤500,00 EE se clasifica como TP2. Para el estudio hidrológico y obras de arte se recopilaron datos de la estación Talla ubicada en Guadalupe a 117 m.s.n.m, considerando datos comprendidos entre los años 2000 y 2020, información que fue proporcionada por el SENAMHI y con lo que posteriormente se halló la intensidad máxima para luego calcular

el caudal de diseño siendo Q= 0.104 m³/s, necesario para las obras de arte respectivas, en este caso, una cuneta de tipo triangular, donde de acuerdo a la tabla 47 la cuneta cuenta con un ancho de 0.70m, una profundidad de 0.40 m y un tirante de 0.35 m. En el diseño geométrico se establecieron los anchos de calzada de acuerdo a la clasificación de la vía teniendo un mínimo de 2.70 m por carril, así como también se realizó la señalización respectiva según el Manual de dispositivos de control de tránsito del MTC. En relación al diseño de pavimento flexible, se obtuvo un espesor de carpeta de 7 cm, una subbase y base de 15 cm, haciendo un espesor total de 37 cm, tal como lo muestra la figura 21.

Moreno (2013) en su proyecto "Estudio y diseño vial de la av. 15 de noviembre (etapa III de 1.71 km de longitud), Cantón Tena, provincia de Napo" calculó los espesores de pavimento en base al método AASHTO. Los valores de CBR de diseño seleccionados varían entre 5.0% y 11.0%, teniendo como mínimo el valor CBR=5.0%, lo cual clasifica a la subrasante como pobre, por tal motivo, plantearon realizar un mejoramiento de la misma. El periodo de vida útil fue 20 años. Los valores finales obtenidos fueron carpeta de 7.5 cm, base de 20 cm, y subbase de 30 cm. Se consideró un mejoramiento de la subrasante con un espesor de 40 cm. Del mismo modo, el terreno presentado fue ondulado con una velocidad de diseño de 90 km/h por tratarse de carreteras. En comparación con los datos del estudio, la subrasante presentada fue buena por ser mayor que el 10%, motivo por el cual no fue necesario la realización de mejoramiento alguno. Así también, la investigación se trató de diseño de infraestructura vial de calles, por lo que existe diferencia en este tipo en relación con las características del diseño geométrico del proyecto de los autores al tratarse de una carretera, haciendo uso de las especificaciones establecidas en el MTOP, mientras que en la investigación se utilizó la norma GH.020. Sin embargo, la metodología utilizada para diseñar el pavimento fue la misma por tratarse de un tipo flexible.

Aldeán (2015) en el análisis de suelos ejecutó 5 calicatas de 1.20 m de profundidad con muestras cada 40 cm. Asimismo, realizó la clasificación de acuerdo al método SUCS obteniendo con ello un suelo limo inorgánico de alta plasticidad (MH) y limo inorgánico ligeramente plástico (ML); y con respecto al método AASHTO obtuvieron como resultado suelo limoso (A-5) y arcilloso (A-7-5). Posteriormente se determinó un CBR% de diseño de 16%, encontrándose dentro de la clasificación de subrasante buena (S3) por estar comprendido entre el 10% y 20%. Los datos presentados por los autores presentan similitud en cuanto a la categoría de subrasante, y referente a la clasificación AASHTO, en ambos casos se cuenta con un suelo clasificado como regular a pobre. Sin embargo, también existe contraste en parte de los resultados obtenidos por el presente proyecto, en el cual se realizaron 4 calicatas de 1.5 m de profundidad, donde el CBR fue de 13.7% de diseño y la clasificación SUCS corresponde a arcillas inorgánicas de plasticidad baja a media (CL).

Gonzáles (2019), en su tesis "Diseño de infraestructura vial para accesibilidad del tramo Callanca km 0+000 a cruce de carretera Saltur km 7+026, Pomalca, Chiclayo, Lambayeque 2018" llevó a cabo su estudio de tráfico en un periodo de siete días de duración durante 24 horas de forma continua, donde halló que el mayor flujo vehicular es de 141 vehículos que corresponde al día domingo. Del mismo modo, el IMDa calculado es 132 veh/día y su composición de tráfico presenta una distribución del IMDa de un 61.36% de vehículos ligeros y un 38.64% de vehículos pesados. Existen ciertas diferencias en comparación con el presente proyecto, pues los resultados obtenidos por el mismo son menores, donde el mayor flujo vehicular es de 60 vehículos en los días jueves y viernes. Así también, se tiene un IMDa de 62 veh/día y la distribución de tráfico está dada por un 63.24% de tráfico ligero y 36.76% de tráfico pesado. Sin embargo, ambos proyectos coinciden en la realización del conteo, siendo éste de forma corrida durante una semana, además de estar regidos por las mismas normas y parámetros.

Flores (2019), en su estudio presentó un tráfico de diseño de W₁₈= 851 638. El procedimiento con el que se llevó a cabo el proyecto en mención, fue en base al Manual de Suelos y Pavimentos y la norma CE. 010 de Pavimentos Urbanos. Asimismo, el diseño de espesores de pavimento flexible fue elaborado mediante el método AASHTO 93. Obtuvo como resultado 40 cm de espesor total de capas, teniendo 5 cm de carpeta, 15 cm de base y 20 de subbase. El proyecto de investigación presenta similitud en cuanto al procedimiento utilizado, pues se basó en el mismo método para diseño de pavimento flexible y fue regido bajo los parámetros de las mismas normas citadas anteriormente. En cuando al tráfico de diseño, en la presente investigación se obtuvo un valor menor al de la tesis del autor, dado que, a diferencia de éste, en el sector Cafetal I hay menos circulación de vehículos.

Gómez (2014), presentó su proyecto ubicado en Trujillo, departamento de La Libertad, en el cual emplearon la técnica de la observación para la recolección de datos haciendo uso del softaware Autocad y Microsoft Excel para el procesamiento de datos, donde se realizaron 04 calicatas de 1.5 m de profundidad. De acuerdo a sus estudios realizados se presenta un suelo arcilloso de mediana plasticidad y una subrasante clasificada como regular por obtener un CBR de 8.2%. Presentaron un periodo de diseño de 20 años, con un resultado final de 75 cm de espesor total incluyendo carpeta asfáltica, base y subbase. A diferencia del autor, en el presente estudio se hizo uso del software Civil 3D. La metodología utilizada fue la misma en ambos casos, así como el periodo de diseño establecido y la cantidad de calicatas ejecutadas con igual profundidad; no obstante, los resultados del autor difieren con los hallados por la investigación, teniendo espesores de capas menores por presentar un CBR% mayor y, por ende, la subrasante es considerada buena.

Leyva y Bazán (2018) según los estudios efectuados en su proyecto, presenta un terreno ondulado, se clasifica como una carretera de tercera clase con una velocidad de diseño de 40 Km/h y un bombeo de 2.5%. En

su estudio hidrológico, recopilaron información de los últimos 20 años de la estación Talla ubicada en Guadalupe. Hallaron una intensidad máxima de 24.15 mm/h para un periodo de retorno de 40 años. Para las obras de arte se diseñó una alcantarilla de paso para evacuar los flujos provenientes de las quebradas ubicada en la progresiva 00+072.26; y cunetas de tipo triangular con revestimiento de concreto f'c= 175 kg/cm², donde emplearon el método racional para hallar el caudal (Q) de aporte. También, obtuvieron espesores de carpeta asfáltica, base y subbase de 0.10 m, 0.15 m y 0.15 m respectivamente. Se presentó disparidad de hallazgos, pues en este caso se trata de calles urbanas clasificadas como vías locales. Respecto al estudio hidrológico, al igual que el estudio mencionado, se obtuvieron los datos de la misma estación en el distrito de Guadalupe, no obstante, contrario al autor se estableció un periodo de retorno de 30 años y se diseñaron únicamente cunetas triangulares aplicando el mismo método para hallar el caudal. En lo que concierne a los espesores de capas, existe similitud en los valores a excepción del obtenido para la carpeta asfáltica, siendo en este caso 0.07 m.

Carbajal y Estrada (2020) en su estudio de suelos se realizaron 11 calicatas a cielo abierto con profundidad de 1.50 m, donde según la clasificación SUCS los suelos que conforman el terreno natural se definen como arena pobremente graduada con grava; cuya indicación en el sistema AASHTO es bueno. Tuvieron un CBR representativo al 95% de 9.65% referente a la calicata 11. Consideraron, en el estudio hidrológico, un coeficiente de escorrentía de valor 0.50. Se diseñó la vía con 2 carriles y veredas con espesor de 0.10 m. y un diseño de pavimento flexible. Tanto en el proyecto presentado, como en la investigación de Carbajal y Estrada existen similitudes, se tiene también una vía urbana clasificada como local en concordancia con las bases del manual de Suelos y Pavimentos, y un coeficiente 0.50. Ambos se desarrollaron en el mismo lugar, siendo éste Guadalupe; cuentan con el mismo número de carriles y espesor de vereda. Sin embargo, éstos se diferencian en el valor obtenido de CBR%.

Las limitaciones presentadas en el proyecto de investigación hacen referencia a la situación que se vive actualmente por la pandemia, teniendo cierta restricción en la realización del estudio de mecánica de suelos, dado que este, por lo mencionado, no se pudo llevar a cabo haciendo uso de los laboratorios con los que cuenta la universidad; sin embargo, pese a ello se pudo cumplir con lo que cada objetivo especificaba. Además, para el estudio hidrológico, mediante un análisis de revisión documental, se obtuvieron los datos para los posteriores cálculos a realizarse, determinando el caudal de diseño y las dimensiones de la obra de arte indicada. La investigación presentada brinda información necesaria para la ejecución de proyectos de infraestructura vial, aportando alternativas de solución frente a un problema que cada vez es más recurrente, con el propósito de que los estudios realizados sean tomados en consideración para una futura ejecución brindando mejor transitabilidad con vías que cumplan los estándares definidos en cada norma correspondiente, fomentando la iniciativa de los investigadores.

El diseño de infraestructura vial de las calles del sector Cafetal I se encuentra ubicado en el distrito de Guadalupe, provincia de Pacasmayo. Se cumplió con cada uno de los estudios establecidos siguiendo los parámetros dados en las normas que rigen el proyecto, contando con el diseño de vías de siete calles del sector que cumple con los criterios brindados y tomados para la investigación.

En conclusión, los resultados presentados cumplen con lo permitido por las normas del Reglamento Nacional de Edificaciones y del Ministerio de Transportes y Comunicaciones. Cada estudio planteado fue indispensable para concretar el proyecto de investigación, siguiendo un orden desde el estudio topográfico hasta el diseño de pavimento determinando espesores de capas adecuados para soportar las cargas de los vehículos que circulen por las calles, y diseño geométrico, contando con vías locales secundarias con una velocidad de 40 km/h.

VI. CONCLUSIONES

- Se diseñó la infraestructura vial de las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, haciendo uso de la metodología AASHTO 93 para pavimento flexible, regido bajo los parámetros de las normas GH. 020, CE. 010 y el manual de suelos y pavimentos.
- Se realizó el levantamiento topográfico en el sector Cafetal I empleando como instrumento una estación total marca LEICA modelo TS06 PLUS
 2" R500 con lo que se obtuvo los puntos de la zona de estudio. Asimismo, se hizo uso del software Civil 3D, donde se procesaron los datos para finalmente obtener las curvas de nivel.
- Se realizó el estudio de mecánica de suelos, con un total de 04 calicatas ubicadas en distintos puntos de la zona a 1.5 m. de profundidad de lo que se obtuvo un CBR de 13.7%, con lo cual se concluye que la subrasante se clasifica como buena.
- Se ejecutó el estudio de tráfico en el sector Cafetal I desarrollado en un tiempo de 7 días, con lo que se obtuvo un valor de IMDa= 62 veh/día, y un tráfico de diseño de W18= 418 979 E.E.
- Se realizó el estudio hidrológico y diseño de obras de arte obteniendo un caudal (Q) de diseño de 0.104 m³/s, y una cuneta triangular de 0.70m de ancho, una profundidad de 0.40 m, tirante de 0.35 m y borde libre de 0.05 m.
- Se elaboró el diseño geométrico para vías locales secundarias en base a la norma GH. 020 componentes de diseño urbano y el Manual de diseño geométrico de vías urbanas, obteniendo una vía con calzada de ancho variable con 2.70 m. como mínimo por carril y una velocidad de 40 km/h, entre otras características más.
- Se elaboró el diseño de pavimento flexible guiado en el manual de suelos, geología, geotecnia y pavimentos y la norma CE. 010 pavimentos urbanos, obteniendo finalmente un espesor de carpeta asfáltica de 7.00 cm, base de 15.00 cm y subbase de 15.00 cm.

VII. RECOMENDACIONES

- A la Municipalidad Distrital de Guadalupe, se recomienda considerar la propuesta planteada con la finalidad de usar los datos y cálculos efectuados para un mejor estudio de vía y, en un futuro, llevar a cabo la ejecución del proyecto en beneficio de los usuarios y habitantes de la localidad, con previa disposición de los mismos.
- Se recomienda a la entidad competente, realizar el estudio y evaluación de redes de agua y desagüe en el lugar de estudio de forma anticipada, a fin de evitar filtraciones que perjudiquen la estructura del pavimento.
- A ingenieros, cumplir los parámetros e indicaciones establecidos en cada norma y reglamento competente para el área correspondiente, asegurando así, una obra de calidad en base a estándares definidos y aprobados que permitan la elaboración y ejecución de proyectos destacables y eficaces.
- A los pobladores, se les recomienda tener previa disponibilidad y solicitar a la municipalidad la ejecución de proyectos de infraestructura vial que les brinde la posibilidad de un mejor desarrollo del lugar en el que viven.
- A los estudiantes e investigadores indagar más sobre el tema planteado y manejar softwares relacionados con la carrera que les permita ampliar conocimientos y realizar proyectos óptimos.

REFERENCIAS

- ACOSTA Ariza, Manuela y ALARCÓN Romero, Pedro. Análisis de la Cantidad y el estado de las Vías Terciarias en Colombia y la oportunidad de la Ingeniería Civil para su construcción y mantenimiento. Trabajo de Titulación (Para Optar el Título de Ingeniero Civil). Bogotá: Universidad Católica de Colombia, 2017. 181 pp.
- AGUDELO, John. Diseño geométrico de vías. Trabajo de Grado (Para optar el título de Especialista en Vías y Transporte). Medellín: Universidad Nacional de Colombia, 2002. 531 pp.
- ALDEÁN Tinoco, Donny. Diseño de la red vial de la parroquia La Villegas, Cantón La Concordia, provincia de Santo Domingo de los Tsáchilas. Trabajo de Titulación (Para Optar el Título de Ingeniero Civil). Quito: Universidad Central del Ecuador, 2015. 489 pp.
- AMAMBAL Cholán, José. Diseño de Infraestructura Vial del Centro Poblado Pakatnamu primera etapa, distrito Guadalupe, región La Libertad 2017. Trabajo de Titulación (Para obtener el Título de Ingeniero Civil). Chiclayo: Universidad César Vallejo, 2017. 260 pp.
- 5. Análisis cualitativo del flujo de agua de infiltración para el control del drenaje de una estructura de pavimento flexible en la ciudad de Bogotá D.C por Castaño [et al]. Revista Infraestructura Vial [en línea]. Agosto 2009, vol. 11, n° 22. [Fecha de consulta: 19 de abril de 2021].

Disponible en: https://revistas.ucr.ac.cr/index.php/vial/article/view/1730/1703

 ARTEAGA, Juan. Diseño de estructuras de concreto armado. MACRO, Colonia Nápolis, México, 2015.

ISBN: 978-612-304-252-3

7. BERNAL, Jairo. Diseño conceptual de productos asistido por ordenador: Un estudio analítico sobre aplicaciones y definición de la estructura básica de un nuevo programa. Tesis (Para optar el Título de Doctor en Ingeniería). Barcelona: Universidad Politécnica de Cataluña, 2004.

- 8. BERNIS, Josep Y GÓMEZ, Antonio. Nivelación de terrenos por regresión tridimensional. 1.ª ed. España: UNED-Tortosa, 2010. 488 pp.
- 9. BONILLA Arbildo, Bryan. DISEÑO PARA EL MEJORAMIENTO DE LA CARRETERA TRAMO, EMP. LI842 (VAQUERIA) PAMPATAC EMP. LI838, DISTRITO DE HUAMACHUCO, PROVINCIA DE SANCHEZ CARRION, DEPARTAMENTO DE LA LIBERTAD. Trabajo de Titulación (Para optar el título de Ingeniero Civil). Trujillo: Universidad César Vallejo, 2017. 178 pp.
- 10. CARBAJAL Fonseca, Junior y ESTRADA Chunga, Rubén. Diseño de Infraestructura Vial para transitabilidad vehicular y peatonal con pavimentos flexibles en el C.P Seman, Guadalupe, Pacasmayo, La Libertad 2018. Trabajo de Titulación (Para obtener el Título de Ingeniero Civil). Chiclayo: Universidad César Vallejo, 2020. 100 pp.
- 11. CÁRDENAS, James. 2013. Diseño Geométrico de Carreteras. 2° Edición. Bogotá: Ecoe Ediciones, 2013. 544 pp. ISBN: 978-958-648-859-4.
- 12. CASTAÑEDA Pajares, Rocío y VIGO Monzón, Elsy. La Inversión Pública y la dotación de Infraestructura Vial en el distrito de Cajamarca. Tesis (Para Optar el Grado académico de Maestro en Gestión Pública). Perú: Universidad César Vallejo, 2018. 106 pp.
- 13. CASTILLO Quispe, Juan. Propuesta de diseño de un pavimento rígido para el mejoramiento de la transitabilidad vehicular y peatonal de la localidad de Lajón distrito Huaranchal, Otuzco La Libertad 2017. Trabajo de Titulación (Para obtener el Título de Ingeniero Civil). Trujillo: Universidad Privada de Trujillo, 2016.
- 14. CASTRO Jaimes, Walter. Construcción de una Infraestructura Vial y Transitabilidad en las Vías Asociación de vivienda "Las Américas" distrito de Vegueta Huaura lima, 2019". Trabajo de Titulación (Para Optar el Título de Ingeniero Civil). Huacho: Universidad Nacional José Faustino Sánchez Carrión, 2019. 81 pp.
- 15. CHÁVEZ, Rocío. Diseño del pavimento flexible para la av. Morales Duárez, de la vía expresa línea amarilla en la ciudad de Lima. Trabajo de Titulación (Para

- obtener el Título de Ingeniero Civil). Lima: Universidad Nacional Federico Villarreal, 2018.
- 16. DELGADO Gonzales, Gilmer. Diseño de infraestructura vial tramo Cruce Sedaflor – Caserío los Huayacanes – Caserío la Esperanza, distrito de Cajaruro, Amazonas. Trabajo de Titulación (Para obtener el título de Ingeniero Civil). Chiclayo: Universidad César Vallejo, 2020. 181 pp.
- 17. Determinación de los factores camión para pavimentos rígidos de Costa Rica en el período 2007-2017 por Allen [et al]. Revista Ingeniería. [en línea]. 2020. [Fecha de consulta: 18 de noviembre de 2021].

Disponible en: DOI: 10.15517/ri. v31i0.48008

- 18. DÍAZ Espinoza, Sandy. La Revaloración de la performance funcional y estructural de los pavimentos articulados en la ciudad de Jaén. Tesis (Para optar el título de Ingeniero Civil). Cajamarca: Universidad Nacional de Cajamarca, 2018. 137 pp.
- 19. Dirección General de Caminos y Ferrocarriles. 2006. Reglamento Nacional de Gestión de Infraestructura Vial. Ministerio de Transportes y Comunicaciones. Lima, 2006. 12 pp.
- 20. Dirección General de Caminos y Ferrocarriles. 2013. Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos. Ministerio de Transportes y Comunicaciones. Lima, 2013. 352 pp.
- 21. Dirección General de Caminos y Ferrocarriles. 2018. Manual de Carreteras Diseño Geométrico DG-2018. Ministerio de Transportes y Comunicaciones. Lima, 2018. 285 pp.
- 22. Dirección General de Caminos y Ferrocarriles. 2016. Manual de Seguridad Vial. Ministerio de Transportes y Comunicaciones. Lima, 2013. 326 pp.
- 23. FRANQUET, Josep. Conceptos previos. *En su: Nivelación de terrenos por regresión tridimensional.* 1.^{ra} ed. España: UNED-Tortosa, 2010. pp. 28-30.
- 24. GARCÍA, Andrés. Diseño de pavimento asfáltico por el método de AASHTO-93 empleando el software DISAASHTO-93. Programa de especialización en

ingeniería de pavimentos. Bogotá: Universidad Militar Nueva Granada, 2015. 22 pp.

25. GÓMEZ Montoya, Edwin. Diseño Geométrico y Estudio de las vías urbanas: Hayuelos, Toyota y Seminario en Tunja. Práctica con Proyección Empresarial. Tunja: Universidad Pedagógica y Tecnológica de Colombia, 2018. 109 pp.

26. GOMEZ Vallejos, Susan. Diseño estructural del pavimento flexible para el anillo vial del Óvalo Grau – Trujillo - La Libertad. Trabajo de Titulación (Para obtener el Título de Ingeniero Civil). Trujillo: Universidad Privada Antenor Orrego, 2014. 121 pp.

27. GONZÁLES Muñoz, Lenin. Diseño de infraestructura vial para accesibilidad del tramo Callanca km 0+000 a cruce de Carretera Saltur km 7+026, Pomalca, Chiclayo, Lambayeque 2018. Trabajo de Titulación (Para Optar el Título de Ingeniero Civil). Chiclayo: Universidad César Vallejo, 2019. 451 pp.

28. GUERRA, Rodrigo. Análisis del comportamiento de tensiones máximas inducidas en pavimentos rígidos debido al reemplazo parcial de losas. Revista Iteckne [en línea]. 2020, vol. 17, n° 2. [Fecha de consulta: 18 de noviembre de 2021].

Disponible en: https://doi.org/10.15332/iteckne.v17i2.2470

29. Instituto de la Construcción y Gerencia. Norma Técnica CE. 010 Pavimentos Urbanos. Lima. 68 pp.

30. Instituto de la Construcción y Gerencia. Manual de Diseño Geométrico de Vías Urbanas. Lima, 2005. 138 pp.

31. JORDÁN, Ruberth. Diseño de infraestructura vial tramo caserío Gramalotes – centro turístico los Peroles Negros, distrito de San José de Lourdes, Cajamarca. Tesis (Para obtener el Título de Ingeniero Civil). Chiclayo: Universidad César Vallejo, 2020.

32. KALIAKIN, Victor. Soil Mechanics. 1.ª ed. California: Butterworth-Heinemann, 2017. 462 pp.

ISBN: 9780128014844

33. LOPEZ, Pedro Luis. Población muestra y muestreo. Punto Cero [online]. 2004, vol. 09, n° 08 [Fecha de consulta: 31 de mayo de 2021], pp. 69-74.

Disponible en:

- http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1815-02762004000100012&Ing=es&nrm=iso. ISSN 1815-0276.
- 34. MORENO Carlosama, Santiago. Estudio y diseño vial de la av. 15 de noviembre (etapa III de 1.71 km de longitud), Cantón Tena, provincia de Napo. Trabajo de Titulación (Para Optar el Título de Ingeniero Civil). Quito: Universidad Central del Ecuador, 2013. 484 pp.
- 35. NAVARRO, Sergio. 2017. Diseño y Cálculo geométrico de Viales. Universidad Nacional de Ingeniería. Estelí: s.n., 2017. 245 pp.
- 36.OLIVEIRA, Fausto. Reporte analiza en detalle red vial de Brasil [en línea]. Construcción Latinoamericana. 27 de octubre de 2014. [Fecha de consulta: 18 de abril de 2021]
 - Disponible en: https://www.construccionlatinoamericana.com/news/Reporte-analiza-en-detalle-red-vial-de-Brasil/4102100.article
- 37. PARRADO Méndez, Albert y CÁRCIA Home, Andrés. Propuesta de un diseño geométrico vial para el mejoramiento de la movilidad en un sector periférico del occidente de Bogotá. Trabajo de Titulación (Para Optar el Título de Ingeniero Civil). Bogotá: Universidad Católica de Colombia, 2017. 155 pp.
- 38. PEREDA Rondón, Christopher y MONTOYA Salas, Mario. Estudio y Optimización de la Red Vial Avenida América Sur, Tramo Prolongación Cesar Vallejo Avenida Ricardo Palma, Trujillo. Trabajo de Titulación (Para obtener el Título de Ingeniero Civil). Trujillo: Universidad Privada Antenor Orrego, 2018. 149 pp.
- 39. PEZO Pinedo, Leandrus y LOZANO Macalapu, Christian. Estudio definitivo del mejoramiento de la infraestructura vial urbana de los jirones Jr. Manco Cápac cdras. 01 al 06, Jr. Felipe Saavedra cdra. 03 y 06, Jr. Marcos Ríos Mori cdra 01, Jr. Eladio Pashanace Tapullima y Jr. Remigio Reátegui cdra 02, en la ciudad y provincia de Lamas San Martín. Trabajo de Titulación (Para Optar el Título

- de Ingeniero Civil). Tarapoto: Universidad Nacional de San Martín Tarapoto, 2018. 136 pp.
- 40. PITA, S. y PÉRTEGAS, S. Investigación cuantitativa y cualitativa. Mayo, 2002. 4pp.
- 41. PORRAS Crisanto, Andraitt. Diseño de Infraestructura Vial para mejorar el Nivel de Servicio Vehicular del tramo Centro Poblado de Gallito Lambayeque, Lambayeque, 2020. Trabajo de Titulación (Para optar el título de Ingeniero Civil). Chiclayo: Universidad César Vallejo, 2020. 204 pp.
- 42. PROCCSA. Ingeniería Civil Vías terrestres [en línea]. [Fecha de consulta: 4 de mayo de 2021]Disponible en: https://www.proccsa.com.mx/diseno-de-pavimentos.html
- 43. RIVERA Gonzales, Evert. Aplicación y comparación de las diferentes metodologías de diagnóstico para la conservación y mantenimiento del tramo PR 00+000 PR 01+020 de la vía al llano (DG 78 BIS Sur Calle 84 Sur) en la UPZ Yomasa- Colombia. Trabajo de Titulación (Para Optar el Título de Ingeniero Civil). Bogotá: Universidad Católica de Colombia, 2016.
- 44. ROJAS, Miguel y RAMÍREZ, Andrés. Inversión en infraestructura vial y su impacto en el crecimiento económico: Aproximación de análisis al caso infraestructura en Colombia (1993-2014). Revista Ingenierías Universidad de Medellín [en línea]. Enero-junio 2018, vol. 17, n° 32. [Fecha de consulta: 17 de abril de 2021].

Disponible en: DOI: 10.22395/rium.v17n32a6

- 45. SALAZAR Noboa, Galo. Sistema Institucional de Gestión de las Carreteras de segundo orden del Ecuador, para disminuir costos de mantenimiento vial y de operación de vehículos. Tesis (Para obtener el título de Magíster en Vías Terrestres). Ecuador: Universidad Técnica de Ambato, 2008. 168 pp.
- 46. SANDOVAL, Andrés y RIVERA, William. Correlación del CBR con la resistencia a la compresión inconfinada. Revista Ciencia e Ingeniería Neogranadina [en línea]. Enero-junio 2019, vol. 29, n° 1. [Fecha de consulta: 18 de noviembre de 2021].

Disponible en: https://doi.org/10.18359/rcin.3478

- 47. Universidad Mayor De San Simón. Manual Completo Diseño de Pavimentos. 644 pp.
- 48. VALLVERDY, Arsenio. Pavimentos en infraestructura vial: Avances y desafíos [en línea]. EMB Construcción. Setiembre de 2010. [Fecha de consulta: 03 de mayo de 2021]

Disponible

en: http://www.emb.cl/construccion/articulo.mvc?xid=535&ni=pavimentos-en-infraestructura-vial-avances-y-desafios

49. YUGCHA, Carlos. Mejoramiento del tránsito vehicular y peatonal con una propuesta de movilidad continua entre la vía Tisaleosán Diego-Alobamba del cantón Tisaleo provincia de Tungurahua. Proyecto Técnico (Para obtener el Título de Ingeniero Civil). Ambato: Universidad Técnica de Ambato, 2016.

ANEXOS

Anexo 1. Declaratoria de autenticidad (autores)

DECLARATORIA DE AUTENTICIDAD DE AUTORES

Nosotros, Cedrón Pilco, Bernardo Raúl Ángel y Marquillo Gutierrez, Yesenia Thalía,

alumnos de la Facultad de Ingeniería y Arquitectura y Escuela Profesional de

Ingeniería Civil de la Universidad Cesar Vallejo sede Trujillo, declaramos bajo

Juramento que todos los datos e información que acompañan al Trabajo de

Investigación titulado "Diseño de infraestructura vial de las calles del sector Cafetal

I, distrito de Guadalupe, provincia de Pacasmayo", son:

1. De nuestra autoría.

2. El presente Trabajo de Investigación no ha sido plagiado ni total, ni

parcialmente.

3. El Trabajo de Investigación no ha sido publicado ni presentado

anteriormente.

4. Los resultados presentados en el presente Trabajo de Investigación

son reales, no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumimos la responsabilidad que corresponda ante cualquier

falsedad, ocultamiento u omisión tanto de los documentos como de información

aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes

de la Universidad Cesar Vallejo.

Trujillo, 14 de diciembre del 2021

Cedrón Pilco, Bernardo Raúl Ángel

DNI: 70291324

Marquillo Gutierrez, Yesenia Thalía

DNI: 70323692

Anexo 2. Declaratoria de autenticidad (asesor)

DECLARATORIA DE AUTENTICIDAD DEL ASESOR

Yo, VILLAR QUIROZ, JOSUALDO CARLOS, docente de la Facultad de Ingeniería

y Arquitectura y Escuela Profesional Ingeniería Civil de la Universidad Cesar Vallejo

sede Trujillo, revisor del trabajo de investigación titulada.

"Diseño de infraestructura vial de las calles del sector Cafetal I, distrito de

Guadalupe, provincia de Pacasmayo", de los estudiantes Cedrón Pilco, Bernardo

Raúl Ángel y Marquillo Gutierrez, Yesenia Thalía, constato que la investigación

tiene un índice de similitud de 20% verificable en el reporte de originalidad del

programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas

no constituyen plagio. En tal sentido asumo la responsabilidad que corresponda

ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de

información aportada, por lo cual me someto a lo dispuesto en las normas

académicas vigentes de la Universidad Cesar Vallejo.

Trujillo, 14 de diciembre del 2021

VILLAR QUIROZ, JOSUALDO CARLOS

DNI: 40132759

Anexo 3. Anexo 3.1 Matriz de operacionalización de variables

Tabla 51. Matriz de operacionalización de variables

VARIABLE	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA DE MEDICIÓN	
	Se refiere al	Se procede a realizar el	Levantamiento	Coordenadas		
	desarrollo de una estructura que	diseño geométrico de las calles teniendo en	ico de topográfico Curvas de nivel		Razón	
	reúna las	cuenta estudios		Granulometría (%)		
	características	previos y cumpliendo	Estudio de	Límite de consistencia (%)	Razón	
Diseño de	necesarias y	los parámetros	mecánica de Suelo	Contenido de Humedad (%)		
Infraestructura	deseadas de una	propuestos por las		CBR (%)	razon	
Vial	vía óptima	normas		Proctor Modificado		
	permitiendo que	·		Clasificación de suelos		
	los vehículos	como la GH. 020	Estudio de	Índice Medio Diario Anual	Razón	
	circulen en	Componentes de	tráfico	(IMDa)	ΝαΣΟΠ	
	condiciones	diseño urbano; y para		Precipitaciones	Razón	
	seguras y	la pavimentación el		Caudales de diseño	Nazon	

cómodas hacia	Manual de Suelos,	Estudio			
diferentes	Geología, Geotecnia y	Hidrológico y	Diseño de obras de arte		
lugares con la	Pavimentos 2013 y la	obras de arte			
finalidad de	norma CE. 010	D: ~	Diseño en planta	Razón	
cubrir los	Pavimentos urbanos.	Diseño	Diseño en perfil	Kazon	
requerimientos		geométrico -	Señalización	Nominal	
de la población.			Base (cm)		
(Bernal, 2004)		Diseño de	Sub base (cm)	Razón	
	pavimento		Carpeta asfáltica (cm)		

Anexo 3.2 Indicadores de variables

Tabla 52. Matriz de indicadores de variables

OBJETIVO ESPECÍFICO	DIMENSIONES	INDICADORES	DESCRIPCIÓN	TÉCNICA/ INSTRUMENTO	TIEMPO EMPLEADO	MODO DE CÁLCULO
		Coordenadas	Para realizar el levantamiento topográfico se empleará una estación total para recopilar los puntos topográficos y posteriormente, los datos serán procesados mediante el Software Civil 3D.	Técnica: Observación	1 semana	Procesamiento de información en el software Civil 3D
	Levantamiento Topográfico	Curvas de nivel		 Instrumento: Guía observación N° 01. 		
Realizar el estudio de mecánica de suelos para analizar las propiedades físicas de la zona.	Estudio de mecánica de suelos	Granulometría (%) Límites de consistencia (%) Contenido de humedad (%) CBR (%) Proctor Modificado	Se llevará a cabo con el objetivo de realizar los ensayos correspondientes con las muestras recolectadas, para así conocer y analizar los resultados obtenidos de cada estudio, así como las propiedades del suelo,	Técnica: Observación Instrumento: Guía de observación N° 02, ficha resumen N° 01.	3 semanas	Ensayos de laboratorio en base a las normas ASTM, para el análisis granulométrico se usará ASTM D 422, contenido de humedad ASTM D 2216 y límite de consistencia ASTM D 4318; y el Manual de suelos,
		Clasificación de suelos	determinando el CBR			geología, geotecnia y pavimentos

Realizar el estudio de tráfico	Estudio de tráfico	Índice Medio Diario Anual (IMDa)	respectivo y finalmente analizar su clasificación SUCS y AASHTO. Se realiza el conteo vehicular de los vehículos que transitan por el lugar de estudio con la ayuda de la Guía de observación N° 03, con el objetivo de obtener el IMDa.	 Técnica: Observación Instrumento: Guía de observación N° 03 	1 semana	IMDa= FC x IMDs Donde: IMDS = ∑Vi / 7 Procesamiento de información en MS Excel mediante la tabulación.
Realizar el estudio hidrológico de la zona.	Estudio hidrológico y obras de arte	Precipitaciones Caudales de diseño Diseño de obras	Con la ayuda de la ficha de recolección de datos se toma la información obtenida por el SENAMHI para calcular la precipitación máxima en mm/h. Posteriormente, con la información necesaria y según lo requerido, se diseñarán las obras de arte	 Técnica: Revisión documental Instrumento: Ficha de recolección de datos N° 01 	3 días	Tabulación de información en MS Excel.

Elaborar el diseño geométrico de las calles del sector Cafetal I.	Diseño geométrico	Diseño en planta Diseño en perfil Señalización	Se realizará el diseño de las calles tomando en consideración los parámetros que rige la norma GH. 020 componentes de diseño urbano del RNE.	•	Técnica: Revisión documental Instrumento: Guía de observación N° 01 Ficha de recolección de datos N° 01	5 días	Se realizará en base a los parámetros establecidos en la norma GH. 020 Componentes de Diseño Urbano, cuyos datos obtenidos serán procesados en el Software Civil 3D.
Elaborar el diseño de pavimento	Diseño de pavimento	Base (cm) Subbase (cm) Carpeta asfáltica (cm)	El diseño de pavimento será realizado con el método AASHTO 93, necesario para realizar los procedimientos requeridos y determinar los espesores de las capas que conforman la estructura del pavimento.		Técnica: Revisión documental Instrumento: Ficha resument N° 01 Guía de observación N° 03. Ficha de recolección de datos N° 01.	4 días	Procedimientos de la guía del método AASHTO 93, para pavimentos flexibles.

Anexo 3.3 Matriz de Consistencia del Marco Metodológico

Tabla 53. Matriz de consistencia del Marco Metodológico

- Apellidos y nombres:

 ➤ Cedrón Pilco, Bernardo Raúl Ángel
 - > Marquillo Gutierrez, Yesenia Thalía

PROBLEMA CENTRAL	FORMULACIÓN DEL PROBLEMA	TÍTULO	OBJETIVOS	HIPÓTESIS
Las calles del sector Cafetal I no cuentan con una vía apta para su transitabilidad, dificultando que tanto las personas como la mercadería puedan trasladarse desde un punto a otro. Un apropiado diseño de infraestructura vial, es fundamental en el sistema de transporte de las naciones, el estado en el que se presente interviene de forma directa en gran parte de los costos	infraestructura vial de	Diseño de infraestructura vial de las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021.	 O. GENERAL: Elaborar el diseño de infraestructura vial de las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021. O. ESPECIFICOS: Realizar el levantamiento topográfico para definir trazos y conocer la superficie del área a estudiar del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021. Realizar el estudio de mecánica de suelos para analizar las propiedades físicas del sector Cafetal I, distrito de 	El diseño de infraestructura vial cumplirá con los parámetros que establecen el Manual de Suelos, Geología y Geotecnia y el Manual de Hidrología, Hidráulica y Drenaje del Ministerio de Transportes y Comunicaciones; así como también se regirá con lo estipulado en el Reglamento Nacional de

usuario de la carretera, aumentándole cuando su estado no es óptimo.		 Guadalupe, provincia de Pacasmayo, 2021. Realizar el estudio de tráfico del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021. Realizar el estudio hidrológico de la zona del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021. Elaborar el diseño geométrico de las calles del sector Cafetal I. Elaborar el diseño de pavimento de las calles del sector Cafetal I. 	Edificaciones en la sección de Habilitaciones Urbanas con la norma GH. 020 Componentes de Diseño Urbano y CE. 010 Pavimentos Urbanos en el sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021.
		•	

Anexo 3.4 Matriz de Consistencia del Diseño de Ejecución

Tabla 54. Matriz de consistencia del Diseño de Ejecución

TIPO DE INVESTIGACIÓN	DISEÑO DE INVESTIGACIÓN	POBLACIÓN - MUESTRA	TECNICAS E INSTRUMENTOS
		Población	Técnicas
Por el propósito. La investigación de acuerdo a su propósito es aplicada; es decir; no se crearán nuevas teorías. Por el diseño. Según el diseño, la investigación es de tipo no experimental porque no existe manipulación de variables, y es descriptiva porque se describirá de forma detallada los distintos estudios necesarios a realizarse. Por el nivel.	La investigación es de tipo no experimental, pues se lleva a cabo sin realizar la manipulación de la única variable de estudio; transversal porque la medición de la variable se efectuará en un solo periodo de tiempo, y descriptivo porque se recogen los datos conforme a la realidad, sin modificarlos.	Todas las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021 Muestra Siete calles del sector Cafetal I.	 Revisión documental Observación Instrumentos Guía de observación N° 1 Guía de observación N° 2 Guía de observación N° 3 Ficha de recolección de datos N° 1 Ficha resumen N° 01
Se considera una investigación de nivel descriptiva, pues se recopilará información sobre la variable que permita realizar el correcto cálculo y diseño de la infraestructura vial de la calle a estudiar.			

Anexo 4. Instrumentos de recolección de datos

Anexo 4.1 Guía de observación N° 01

LIBRETA DE CAMPO

	Diseño de Infraes strito de Guadalup				
ESTACIÓN TOTAL:				FECHA:	
OPERADOR:				COORDENAD UTM:	AS WGS84
PUNTOS	COORDE NORTE	ENADAS ESTE	СОТА	DESCRIPCIÓN	
P	N	E	Z	D	
	N	—	_		

Anexo 4.2 Guía de observación N° 02

ESTUDIO DE MECÁNICA DE SUELOS

PROYECTO: Diseño de Infraestructura Vial de las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021.

AUTORES:

RESPONSABLE:	SPONSABLE:									
LABORATORIO:						FECHA:				
NIO	CALICATAC	CANTIDAD	DD OF INDIDAD	ESTRA	ATO 1	DESCRIPCIÓN				
N°	CALICATAS	DE ESTRATOS	PROFUNDIDAD	DESDE	HASTA					
1	C 1									
2	C 2									
3	C 3									
4	C 4									
n	C n									

Anexo 4.3 Guía de observación N° 03

ESTUDIO DE CLASIFICACIÓN VEHICULAR

ESTACIÓN	
FECHA	
UBICACIÓN	

			STATION	(CAMIONETAS	3		В	US		CAMION			SEMI TI	RAYLER			TRA	/LER		
HORA	MOTOS	AUTO	WAGON	PICK UP	PANEL	RURAL Combi	MICRO	2 E	3 E	2 E	3 E	4 E	2S1/2S2	2\$3	3\$1/3\$2	>= 3\$3	2T2	2T3	3T2	3T3	TOTAL
						0-0	0 0		0000	₽ ₽	~		**************************************	000 8 0		~~~		 ₽	****		
0-1																					
1-2																					
2-3																					
3-4																					
4-5																					
5-6																					
6-7																					
7-8																					
8-9																					
9-10																					
10-11																					
11-12																					
12-13																					
13-14																					
14-15																					
15-16																					
16-17																					
17-18																					
18-19																					
19-20																					
20-21																					
21-22																					
22-23																					
23-24																					
TOTALES							<u> </u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>			<u> </u>				

Anexo 4.4 Ficha de recolección de datos N° 01- SENAMHI

PROYECTO:	Cafetal I, Pacasmayo	alles del sector provincia de					
AUTORES:	Cedrón Pilo Marquillo G	co, Bernardo Gutierrez, Ye	o Raúl Ángel esenia Thalía				
Año	Mes	Día	Procinitación	Tempe	Temperatura		
Allo	ivies	Dia	Precipitación	Máxima	Mínima		

Anexo 4.5 Ficha resumen N° 01

Proyecto: Diseño de infraestructura vial de las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021.

Responsable: Jorge Barrantes Villanueva

Fecha:

Laboratorio: Cerámicos y Suelos Universidad Nacional de Trujillo

Autores: Cedrón Pilco, Bernardo Raúl Ángel - Marquillo Gutierrez, Yesenia Thalía

ESTUDIO DE MECÁNICA DE SUELOS

			EST	RATOS EN	PALES PROPIEDADES					
MUESTRA	PROFUNDIDAD (m)	GRANULOMETRIA			LÍMITE DE CONSISTENCIA (%)			CONTENIDO DE HUMEDAD	CLASIFICACIÓN DE SUELOS	
		% GRAVA	% ARENA	% FINOS	L.L	L.P	I.P	(%)	sucs	AASTHO

Ane	Anexo 5. Validez y confiabilidad de instrumentos								
Ane	Anexo 5.1 Matriz para evaluación de expertos								
	MATRI	Z PARA EVALUACIÓN DE E	XPE	ERT	os				
Título	de la	Diseño de Infraestructura Via	l de l	las	calles				
invest	_	sector Cafetal I, distrito de Gu de Pacasmayo, 2021.	ıada	iupe	e, pro	vincia			
Línea		Diseño de Infraestructura Via	ı .						
Apellidos y nombres del									
experi	_								
El instrumento de medición pertenece a la variable: Diseño de infraestructura vial									
		uación de expertos, Ud. tiene							
		ando con una "x" en las colum					nismo, le		
		n de los ítems, indicando sus					dio		
sugerencias, con la finalidad de mejorar la medición sob					ecia				
Ítems	Pr	eguntas	S	•	NO	Obser	vaciones		
1	adecuado?	medición presenta el diseño							
2		recolección de datos tiene de la investigación?							
3		de recolección de datos se bles de investigación?							
4		recolección de datos facilitará vos de la investigación?							
5	¿El instrumento de i	recolección de datos se							
<u> </u>	relaciona con las va								
	, •	ems del instrumento de							
6	elementos de los inc	na con cada uno de los dicadores?							
7		mento de medición facilitará	el						
	análisis y procesam								
8	¿El instrumento de i población sujeto de	medición será accesible a la estudio?							
9	l -	medición es claro, preciso y							
		que se pueda obtener los dato	os						
	requeridos?								

Sugerencias:		
	FIRMA CIP:	

Anexo 6: Instrumentos de recolección de datos completos

Anexo 6.1. Guía de observación N° 1

LIBRETA DE CAMPO

PROYECTO	Diseño de Infraestructura Vial de las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021.					
ESTACIÓN TOTAL		TS06 PLUS 2" 600	FECHA	20/07/2021		
OPERADOR	Frank Alexande	r La Rosa Alayo	COORDENAS UTM	WGS84		
PUNTOS	COORDI	ENADAS	СОТА	DESCRIPCIÓN		
	NORTE	ESTE				
Р	N	E	Z	D		
E-1	668866.01	9198564.72	97.2313	STN		
E-3	668905.23	9198634.88	96.23	STN		
1	668904.51	9198633.60	96.3139	ESQ		
2	668902.73	9198629.24	96.3724	POSTE		
3	668905.01	9198634.36	96.2548	VEREDA		
4	668909.08	9198630.70	96.3888	ESQ		
5	668908.32	9198631.08	96.2479	ACCESO		
6	668904.11	9198624.72	96.3155	ACCESO		
7	668901.34	9198626.86	96.3416	ACCESO		
8	668901.13	9198626.79	96.3932	VEREDA		
9	668894.87	9198617.27	96.6525	VEREDA		
10	668895.02	9198617.14	96.6611	ACCESO		
11	668896.66	9198615.84	96.5253	BZN		
12	668897.80	9198615.13	96.5666	ACCESO		
13	668890.78	9198604.02	96.703	ACCESO		
14	668887.43	9198605.81	96.7384	POSTE		
15	668887.49	9198605.67	96.7305	VEREDA		
16	668887.62	9198605.55	96.7706	ACCESO		
17	668886.66	9198606.18	96.7449	CASA		
18	668891.01	9198602.85	96.8073	CASA		
19	668877.26	9198591.98	97.0691	CASA		
20	668878.03	9198591.61	97.0577	VEREDA		
21	668878.04	9198591.66	96.8187	VEREDA		
22	668878.25	9198591.45	96.8472	ACCESO		
23	668881.45	9198589.43	97.0808	ACCESO		

24	668871.26	9198573.72	97.266	POSTE	
25	668866.83	9198574.20	97.3057	POSTE	
26	668868.38	9198569.76	97.1723	ACCESO	
27	668865.20	9198571.43	97.1402	ACCESO	
28	668864.43	9198572.21	97.281	ESQ	
29	668864.80	9198571.04	97.132	VEREDA	
30	668868.58	9198568.11	97.3234	VEREDA	
31	668869.15	9198569.01	97.3184	ESQ	
32	668866.91	9198566.65	97.1977	ACCESO	
33	668867.07	9198563.53	97.2148	ACCESO	
34	668869.48	9198560.48	97.1833	ACCESO	
35	668878.56	9198554.50	97.1833	ACCESO	
36	668880.92	9198559.14	97.4204	POSTE	
37	668881.87	9198559.52	97.3912	VEREDA	
38	668882.95	9198559.96	97.4289	CASA	
39	668887.57	9198553.25	97.408	POSTE	
40	668894.32	9198545.63	97.2753	ACCESO	
41	668895.77	9198550.86	97.4639	VEREDA	
42	668896.21	9198551.59	97.4858	CASA	
43	668903.85	9198546.82	97.4153	CASA	
44	668903.35	9198546.14	97.4141	VEREDA	
45	668910.45	9198537.55	97.2528	ACCESO	
46	668913.03	9198542.27	97.4744	CASA	
47	668912.60	9198541.44	97.4744	VEREDA	
48	668914.86	9198539.91	97.3567	POSTE	
49	668922.55	9198536.50	97.5854	POSTE	
50	668923.06	9198537.30	97.5924	CASA	
51	668923.99	9198529.32	97.256	ACCESO	
52	668927.42	9198533.80	97.5817	VEREDA	
53	668928.26	9198534.75	97.5915	CASA	
54	668936.41	9198522.92	97.2436	ACCESO	
55	668939.68	9198528.04	97.4154	VEREDA	
56	668940.33	9198528.80	97.5394	CASA	
57	668953.57	9198520.27	97.6861	POSTE	
58	668954.55	9198519.78	97.6222	POSTE	
59	668954.81	9198520.51	97.6658	VEREDA	
60	668955.32	9198521.39	97.7701	CASA	
61	668951.92	9198515.53	97.2793	ACCESO	
62	668962.78	9198516.72	97.6801	VEREDA	
63	668963.28	9198517.50	97.7951	ESQ	
64	668964.53	9198508.68 97.5919		ACCESO	

65	668968.42	9198506.48	97.8905	PISTA	
66	668962.70	9198497.98	97.9148	PISTA	
67	668963.78	9198503.33	97.801	BZ	
68	668952.03	9198505.86	97.3419	ACCESO	
69	668949.10	9198502.00	97.2793	ESQ	
70	668936.17	9198515.89	97.2782	ACCESO	
71	668910.30	9198531.22	97.2612	ACCESO	
72	668903.30	9198535.07	97.2138	ACCESO	
73	668900.89	9198535.01	97.2392	ACCESO	
74	668899.38	9198533.68	97.201	ACCESO	
75	668905.19	9198533.31	97.3748	CASETA	
76	668903.91	9198534.15	97.3282	CASETA	
77	668903.11	9198532.84	97.2723	CASETA	
78	668908.12	9198528.53	97.3288	ESQ	
79	668906.04	9198527.25	97.2613	POSTE	
80	668896.89	9198527.39	97.1657	ACCESO	
81	668890.50	9198517.60	96.9733	ACCESO	
82	668880.55	9198504.20	96.922	ACCESO	
83	668889.86	9198502.58	96.9539	POSTE	
84	668888.70	9198499.32	97.0466	CASA	
85	668874.81	9198499.67	96.8927	ACCESO	
86	668878.15	9198490.50	96.9678	CASA	
87	668870.92	9198496.75	96.9128	ACCESO	
88	668868.26	9198495.29	96.9579	ACCESO	
89	668865.74	9198494.60	96.9584	ACCESO	
90	668861.60	9198493.80	96.9094	ACCESO	
91	668858.33	9198494.25	96.8464	ACCESO	
92	668865.29	9198486.29	97.0063	CASA	
93	668862.15	9198486.58	96.9452	POSTE	
94	668855.28	9198485.87	96.9216	ESQ	
95	668847.46	9198437.18	96.952	ESQ	
96	668844.39	9198427.87	97.368	ACCESO	
97	668843.83	9198423.32	97.912	PISTA	
98	668822.59	9198427.49	97.914	PISTA	
99	668835.31	9198431.27	97.403	BZ	
100	668825.48	9198433.35	97.381	ACCESO	
101	668826.91	9198441.15	96.99	ESQ	
102	668847.25	9198486.78	96.8403	ESQ	
103	668848.95	9198495.30	96.7496	ACCESO	
104	668832.87	9198492.69	96.8116	CASA	
105	668834.89	9198501.71	96.7659	ACCESO	

106	668826.59	9198497.07	96.7809	POSTE	
107	668825.15	9198505.02	96.7948	ACCESO	
108	668815.70	9198509.21	96.8168	ACCESO	
E-4	668822.823	9198515.51	97.1543	STN	
109	668809.55	9198502.22	96.967	CASA	
110	668819.62	9198513.51	96.928	ACCESO	
111	668822.45	9198513.29	96.9355	ACCESO	
112	668825.47	9198517.81	97.5166	VEREDA	
113	668825.05	9198519.59	97.5132	COLISEO	
114	668826.37	9198518.93	97.0879	ACCESO	
115	668836.14	9198534.03	97.0811	ACCESO	
116	668836.08	9198534.13	97.4586	VEREDA	
117	668847.86	9198554.66	97.5011	COLISEO	
118	668849.68	9198555.00	97.5098	VEREDA	
119	668853.29	9198560.40	97.1818	ACCESO	
120	668859.57	9198553.70	97.2023	PARQUE-VEREDA	
121	668859.57	9198553.79	97.0356	ACCESO	
122	668860.97	9198554.52	97.0619	ACCESO	
123	668860.93	9198554.42	97.2242	PARQUE-VEREDA	
124	668862.57	9198554.33	97.2458	PARQUE-VEREDA	
125	668862.58	9198554.42	97.0573	ACCESO	
126	668874.17	9198546.97	97.0688	ACCESO	
127	668874.13	9198546.89	97.2299	PARQUE-VEREDA	
128	668888.62	9198537.57	97.2579	PARQUE-VEREDA	
129	668888.71	9198537.61	97.0907	ACCESO	
130	668889.51	9198536.26	97.1287	ACCESO	
131	668889.42	9198536.26	97.2582	PARQUE-VEREDA	
132	668889.09	9198534.79	97.2586	PARQUE-VEREDA	
133	668889.13	9198534.71	97.131	ACCESO	
134	668877.32	9198517.00	96.8899	ACCESO	
135	668877.25	9198517.05	97.116	PARQUE-VEREDA	
136	668867.09	9198501.81	97.0052	PARQUE-VEREDA	
137	668867.13	9198501.71	96.9299	ACCESO	
138	668865.05	9198500.26	96.9647	PARQUE-VEREDA	
139	668865.01	9198500.11	96.8766	ACCESO	
140	668862.81	9198500.06	96.8602	ACCESO	
141	668862.67	9198500.26	96.9944	PARQUE-VEREDA	
142	668851.97	9198505.73	96.974	PARQUE-VEREDA	
143	668851.86	9198505.64	96.7308	ACCESO	
144	668836.07	9198513.82	96.8095	ACCESO	
145	668836.13	9198513.93	96.9848	PARQUE-VEREDA	

146 668835.35 9198515.47 96.9907 PARQUE-VEREDA 147 66835.25 9198515.43 96.8302 ACCESO 148 668835.72 9198517.10 96.976 PARQUE-VEREDA 150 668847.36 9198534.94 97.0731 PARQUE-VEREDA 151 668847.35 9198534.99 96.9196 ACCESO 152 668850.23 9198568.19 97.1832 ACCESO 153 668843.64 9198587.72 97.2597 CASA 154 668835.84 9198587.72 97.2597 CASA 155 668834.64 9198587.00 97.2562 VEREDA 156 668830.45 9198587.00 97.2615 ACCESO 157 668816.09 9198580.02 97.2015 ACCESO 158 668816.33 9198592.52 97.1858 ACCESO 159 668816.99 9198596.06 97.3795 VEREDA 160 668821.66 9198599.97 97.4919 VEREDA						
148 668835.72 9198517.11 96.8315 ACCESO 149 66835.74 9198517.00 96.976 PARQUE-VEREDA 150 668847.36 9198534.99 96.9196 ACCESO 151 668847.35 9198534.99 96.9196 ACCESO E-2 668805.728 9198585.08 97.2682 STN 152 668850.23 9198581.09 97.3628 POSTE 153 668843.64 9198587.72 97.2597 CASA 154 668835.84 9198587.00 97.2552 VEREDA 155 668834.99 9198587.00 97.2562 VEREDA 156 668834.99 9198587.00 97.2562 VEREDA 156 668818.09 9198588.00 97.2204 ACCESO 157 668818.09 9198595.92 97.1858 ACCESO 158 668816.33 9198595.92 97.1261 ACCESO 159 668816.39 919859.60 97.3795 VEREDA 160	146	668835.33 9198515.47		96.9907	PARQUE-VEREDA	
149 668835.74 9198517.00 96.976 PARQUE-VEREDA 150 668847.36 9198534.94 97.0731 PARQUE-VEREDA 151 668847.35 9198585.08 97.2682 STN E-2 668805.728 9198586.19 97.1832 ACCESO 152 668850.23 9198568.19 97.1832 ACCESO 153 668843.64 9198581.09 97.3628 POSTE 154 668830.49 9198587.72 97.2597 CASA 155 668830.45 9198580.09 97.2562 VEREDA 156 668816.09 9198588.00 97.2562 VEREDA 157 668818.09 9198588.00 97.2204 ACCESO 158 668816.33 9198595.92 97.1858 ACCESO 159 668816.45 9198595.92 97.1261 ACCESO 160 668821.66 9198596.00 97.3795 VEREDA 161 668821.33 9198595.60 97.5151 VEREDA <td< td=""><td>147</td><td>668835.25</td><td>9198515.43</td><td>96.8302</td><td>ACCESO</td></td<>	147	668835.25	9198515.43	96.8302	ACCESO	
150 668847.36 9198534.94 97.0731 PARQUE-VEREDA 151 668847.35 9198534.99 96.9196 ACCESO E-2 668805.728 9198585.08 97.2682 STN 152 668850.23 9198568.19 97.1832 ACCESO 153 668843.64 9198581.09 97.3628 POSTE 154 668835.84 9198587.72 97.2597 CASA 155 668834.99 9198587.00 97.2562 VEREDA 156 668830.45 9198580.07 97.2615 ACCESO 157 668816.09 9198580.07 97.204 ACCESO 157 668816.09 9198598.00 97.2204 ACCESO 158 668816.33 9198595.92 97.1858 ACCESO 159 668816.45 9198596.92 97.3838 ESQ 161 668821.06 9198596.92 97.3838 ESQ 161 6688201.79 9198597.60 97.4919 VEREDA 162	148	668835.72	9198517.11	96.8315	ACCESO	
151	149	668835.74	9198517.00	96.976	PARQUE-VEREDA	
E-2 668805.728 9198585.08 97.2682 STN 152 668850.23 9198568.19 97.1832 ACCESO 153 668843.64 9198581.09 97.3628 POSTE 154 668834.99 9198587.72 97.2597 CASA 155 668834.99 9198587.00 97.2562 VEREDA 156 668830.45 9198580.72 97.2615 ACCESO 157 668816.09 9198588.00 97.2204 ACCESO 158 668816.33 9198592.52 97.1858 ACCESO 159 668816.45 9198595.92 97.1261 ACCESO 160 668821.66 9198596.92 97.3838 ESQ 161 668820.94 9198597.60 97.3795 VEREDA 163 668819.83 9198597.60 97.4919 VEREDA 163 668819.83 9198597.71 97.5514 CASA 164 668821.35 9198599.77 97.5514 CASA 165 <t< td=""><td>150</td><td>668847.36</td><td>9198534.94</td><td>97.0731</td><td>PARQUE-VEREDA</td></t<>	150	668847.36	9198534.94	97.0731	PARQUE-VEREDA	
152 668850.23 9198568.19 97.1832 ACCESO 153 668843.64 9198581.09 97.3628 POSTE 154 668836.84 9198587.72 97.2597 CASA 155 668834.99 9198587.00 97.2562 VEREDA 156 668830.45 9198580.72 97.2615 ACCESO 157 668818.09 9198588.00 97.2204 ACCESO 158 668816.33 9198592.52 97.1858 ACCESO 159 668816.45 9198595.92 97.1261 ACCESO 160 668821.66 9198596.02 97.3838 ESQ 161 668820.94 9198597.60 97.3795 VEREDA 162 668819.79 9198597.60 97.4919 VEREDA 163 668819.33 9198599.76 97.5151 VEREDA 164 668821.35 9198599.77 97.5514 CASA 165 668821.35 9198601.99 97.4056 POSTE 167	151	668847.35	9198534.99	96.9196	ACCESO	
153 668843.64 9198581.09 97.3628 POSTE 154 668835.84 9198587.72 97.2597 CASA 155 668834.99 9198587.00 97.2562 VEREDA 156 668830.45 9198580.72 97.2615 ACCESO 157 668818.09 9198598.00 97.2204 ACCESO 158 668816.33 9198592.52 97.1858 ACCESO 159 668816.45 9198595.92 97.1858 ACCESO 160 668821.66 9198596.92 97.3838 ESQ 161 668820.94 9198596.06 97.3795 VEREDA 162 668819.83 9198599.60 97.5151 VEREDA 163 668819.83 9198599.76 97.5151 VEREDA 164 668821.35 9198599.77 97.5514 CASA 165 668821.25 9198601.99 97.4056 POSTE 166 668821.25 9198600.53 97.2582 ACCESO 168	E-2	668805.728	9198585.08	97.2682	STN	
154 668835.84 9198587.72 97.2597 CASA 155 668834.99 9198587.00 97.2562 VEREDA 156 668830.45 9198580.72 97.2615 ACCESO 157 668818.09 9198588.00 97.2204 ACCESO 158 668816.33 9198595.92 97.1261 ACCESO 159 668816.45 9198595.92 97.1261 ACCESO 160 668821.66 9198596.92 97.3838 ESQ 161 668820.94 9198596.06 97.3795 VEREDA 162 668819.79 9198599.60 97.4919 VEREDA 163 668819.83 9198599.76 97.5151 VEREDA 164 668821.33 9198599.77 97.5439 CASA 165 668821.35 9198599.77 97.5514 CASA 166 668821.25 9198600.53 97.2582 ACCESO 167 668819.50 9198611.51 97.2275 ACCESO 168	152	668850.23	9198568.19	97.1832	ACCESO	
155 668834.99 9198587.00 97.2562 VEREDA 156 668830.45 9198580.72 97.2615 ACCESO 157 668818.09 9198588.00 97.2204 ACCESO 158 668816.33 9198592.52 97.1858 ACCESO 159 668816.45 9198595.92 97.1261 ACCESO 160 668821.66 9198596.02 97.3838 ESQ 161 668829.94 9198597.60 97.3795 VEREDA 162 668819.79 9198597.60 97.4919 VEREDA 163 668819.83 9198597.60 97.5151 VEREDA 164 668821.33 9198599.56 97.5151 VEREDA 165 668821.35 9198599.77 97.5514 CASA 166 668821.25 9198601.99 97.4056 POSTE 167 668819.00 9198600.53 97.2582 ACCESO 168 668827.03 9198610.73 97.5064 VEREDA 170	153	668843.64	9198581.09	97.3628	POSTE	
156 668830.45 9198580.72 97.2615 ACCESO 157 668818.09 9198588.00 97.2204 ACCESO 158 668816.33 9198592.52 97.1858 ACCESO 159 668816.45 9198595.92 97.1261 ACCESO 160 668816.46 9198596.92 97.3838 ESQ 161 668820.94 9198596.06 97.3795 VEREDA 162 668819.79 9198597.60 97.4919 VEREDA 163 668819.83 9198599.56 97.5151 VEREDA 164 668821.33 9198599.56 97.5151 VEREDA 165 668821.35 9198599.77 97.5514 CASA 166 668821.25 9198601.99 97.4056 POSTE 167 668819.50 9198600.53 97.2582 ACCESO 168 668827.75 9198610.73 97.5064 VEREDA 170 668827.98 9198610.03 97.521 CASA 171	154	668835.84	9198587.72	97.2597	CASA	
157 668818.09 9198588.00 97.2204 ACCESO 158 668816.33 9198592.52 97.1858 ACCESO 159 668816.45 9198595.92 97.1261 ACCESO 160 668821.66 9198596.92 97.3838 ESQ 161 668820.94 9198596.06 97.3795 VEREDA 162 668819.83 9198597.60 97.4919 VEREDA 163 668819.83 9198599.56 97.5151 VEREDA 164 668821.33 9198599.77 97.5514 CASA 165 668821.35 9198601.99 97.4056 POSTE 166 668821.25 9198601.99 97.4056 POSTE 167 668819.50 9198600.53 97.2582 ACCESO 168 668827.25 9198611.51 97.2275 ACCESO 169 668827.98 9198610.03 97.521 CASA 170 668847.77 9198643.02 96.6869 POSTE 173 <	155	668834.99	9198587.00	97.2562	VEREDA	
158 668816.33 9198592.52 97.1858 ACCESO 159 668816.45 9198595.92 97.1261 ACCESO 160 668821.66 9198596.92 97.3838 ESQ 161 668820.94 9198596.06 97.3795 VEREDA 162 668819.79 9198597.60 97.4919 VEREDA 163 668819.83 9198599.56 97.5151 VEREDA 164 668821.33 9198599.77 97.5514 CASA 165 668821.35 9198599.77 97.5514 CASA 166 668821.25 9198601.99 97.4056 POSTE 167 668819.50 9198600.53 97.2582 ACCESO 168 668827.03 9198610.73 97.5064 VEREDA 170 668827.98 9198610.06 97.521 CASA 171 668847.77 9198630.38 96.777 ACCESO 172 668847.77 9198659.48 96.4397 ACCESO 174 <t< td=""><td>156</td><td>668830.45</td><td>9198580.72</td><td>97.2615</td><td>ACCESO</td></t<>	156	668830.45	9198580.72	97.2615	ACCESO	
159 668816.45 9198595.92 97.1261 ACCESO 160 668821.66 9198596.92 97.3838 ESQ 161 668820.94 9198596.06 97.3795 VEREDA 162 668819.79 9198597.60 97.4919 VEREDA 163 668819.83 9198599.56 97.5151 VEREDA 164 668821.33 9198599.77 97.5439 CASA 165 668821.35 9198599.77 97.5514 CASA 166 668821.25 9198601.99 97.4056 POSTE 167 668819.50 9198600.53 97.2582 ACCESO 168 668827.03 9198610.73 97.5064 VEREDA 170 668827.98 9198610.06 97.521 CASA 171 668847.77 9198636.38 96.777 ACCESO 172 668847.77 9198659.48 96.4397 ACCESO 174 668867.18 9198675.36 96.3283 ACCESO 175 <t< td=""><td>157</td><td>668818.09</td><td>9198588.00</td><td>97.2204</td><td>ACCESO</td></t<>	157	668818.09	9198588.00	97.2204	ACCESO	
160 668821.66 9198596.92 97.3838 ESQ 161 668820.94 9198596.06 97.3795 VEREDA 162 668819.79 9198597.60 97.4919 VEREDA 163 668819.83 9198599.56 97.5151 VEREDA 164 668821.33 9198599.77 97.5439 CASA 165 668821.35 9198599.77 97.5514 CASA 166 668821.25 9198601.99 97.4056 POSTE 167 668819.50 9198600.53 97.2582 ACCESO 168 668825.75 9198611.51 97.2275 ACCESO 169 668827.03 9198610.06 97.521 CASA 170 668827.98 9198610.06 97.521 CASA 171 668841.62 9198636.38 96.777 ACCESO 172 668847.77 9198643.02 96.6869 POSTE 173 668867.85 9198675.36 96.3283 ACCESO 174 66	158	668816.33	9198592.52	97.1858	ACCESO	
161 668820.94 9198596.06 97.3795 VEREDA 162 668819.79 9198597.60 97.4919 VEREDA 163 668819.83 9198599.56 97.5151 VEREDA 164 668821.33 9198598.14 97.5439 CASA 165 668821.35 9198599.77 97.5514 CASA 166 668821.25 9198601.99 97.4056 POSTE 167 668819.50 9198600.53 97.2582 ACCESO 168 668825.75 9198611.51 97.2275 ACCESO 169 668827.03 9198610.73 97.5064 VEREDA 170 668827.98 9198610.06 97.521 CASA 171 668841.62 9198636.38 96.777 ACCESO 172 668847.77 9198643.02 96.6869 POSTE 173 668857.18 9198659.48 96.4397 ACCESO 174 668860.37 9198675.36 96.3283 ACCESO 175	159	668816.45	9198595.92	97.1261	ACCESO	
162 668819.79 9198597.60 97.4919 VEREDA 163 668819.83 9198599.56 97.5151 VEREDA 164 668821.33 9198598.14 97.5439 CASA 165 668821.35 9198599.77 97.5514 CASA 166 668821.25 9198601.99 97.4056 POSTE 167 668819.50 9198600.53 97.2582 ACCESO 168 668825.75 9198611.51 97.2275 ACCESO 169 668827.03 9198610.73 97.5064 VEREDA 170 668827.98 9198610.06 97.521 CASA 171 668841.62 9198636.38 96.777 ACCESO 172 668847.77 9198643.02 96.6869 POSTE 173 668857.18 9198659.48 96.4397 ACCESO 174 668860.37 9198665.01 96.4585 ACCESO 175 668867.85 9198675.36 96.3283 ACCESO 176	160	668821.66	9198596.92	97.3838	ESQ	
163 668819.83 9198599.56 97.5151 VEREDA 164 668821.33 9198598.14 97.5439 CASA 165 668821.35 9198599.77 97.5514 CASA 166 668821.25 9198601.99 97.4056 POSTE 167 668819.50 9198600.53 97.2582 ACCESO 168 668825.75 9198611.51 97.2275 ACCESO 169 668827.03 9198610.73 97.5064 VEREDA 170 668827.98 9198610.06 97.521 CASA 171 668841.62 9198636.38 96.777 ACCESO 172 668847.77 9198643.02 96.6869 POSTE 173 668857.18 9198659.48 96.4397 ACCESO 174 668860.37 9198665.01 96.4585 ACCESO 175 668867.85 9198675.36 96.3283 ACCESO 176 668868.61 9198674.50 96.3936 POSTE 178 <	161	668820.94	9198596.06	97.3795	VEREDA	
164 668821.33 9198598.14 97.5439 CASA 165 668821.35 9198599.77 97.5514 CASA 166 668821.25 9198601.99 97.4056 POSTE 167 668819.50 9198600.53 97.2582 ACCESO 168 668825.75 9198611.51 97.2275 ACCESO 169 668827.03 9198610.73 97.5064 VEREDA 170 668827.98 9198610.06 97.521 CASA 171 668841.62 9198636.38 96.777 ACCESO 172 668847.77 9198643.02 96.6869 POSTE 173 668857.18 9198659.48 96.4397 ACCESO 174 668860.37 9198659.48 96.4397 ACCESO 175 668867.85 9198675.36 96.3283 ACCESO 176 668868.53 9198676.03 96.3037 PISTA 177 668868.61 9198674.50 96.3936 POSTE 178 <t< td=""><td>162</td><td>668819.79</td><td>9198597.60</td><td>97.4919</td><td>VEREDA</td></t<>	162	668819.79	9198597.60	97.4919	VEREDA	
165 668821.35 9198599.77 97.5514 CASA 166 668821.25 9198601.99 97.4056 POSTE 167 668819.50 9198600.53 97.2582 ACCESO 168 668825.75 9198611.51 97.2275 ACCESO 169 668827.03 9198610.73 97.5064 VEREDA 170 668827.98 9198610.06 97.521 CASA 171 668841.62 9198636.38 96.777 ACCESO 172 668847.77 9198643.02 96.6869 POSTE 173 668857.18 9198659.48 96.4397 ACCESO 174 668860.37 9198665.01 96.4585 ACCESO 175 668867.85 9198675.36 96.3283 ACCESO 176 668868.53 9198676.03 96.3037 PISTA 177 668868.61 9198674.50 96.3936 POSTE 178 668869.64 9198674.98 96.5076 ESQ 180 <td< td=""><td>163</td><td>668819.83</td><td>9198599.56</td><td>97.5151</td><td>VEREDA</td></td<>	163	668819.83	9198599.56	97.5151	VEREDA	
166 668821.25 9198601.99 97.4056 POSTE 167 668819.50 9198600.53 97.2582 ACCESO 168 668825.75 9198611.51 97.2275 ACCESO 169 668827.03 9198610.73 97.5064 VEREDA 170 668827.98 9198610.06 97.521 CASA 171 668841.62 9198636.38 96.777 ACCESO 172 668847.77 9198643.02 96.6869 POSTE 173 668857.18 9198659.48 96.4397 ACCESO 174 668860.37 9198655.01 96.4585 ACCESO 175 668867.85 9198675.36 96.3283 ACCESO 176 668868.53 9198676.03 96.3037 PISTA 177 668868.61 9198674.50 96.3936 POSTE 178 668869.64 9198674.98 96.5076 ESQ 180 668861.02 9198674.98 96.5076 ESQ 180	164	668821.33	9198598.14	97.5439	CASA	
167 668819.50 9198600.53 97.2582 ACCESO 168 668825.75 9198611.51 97.2275 ACCESO 169 668827.03 9198610.73 97.5064 VEREDA 170 668827.98 9198610.06 97.521 CASA 171 668841.62 9198636.38 96.777 ACCESO 172 668847.77 9198643.02 96.6869 POSTE 173 668857.18 9198659.48 96.4397 ACCESO 174 668860.37 9198665.01 96.4585 ACCESO 175 668867.85 9198675.36 96.3283 ACCESO 176 668868.53 9198676.03 96.3037 PISTA 177 668868.61 9198674.50 96.3936 POSTE 178 668869.64 9198675.25 96.4825 VEREDA 179 668870.34 9198674.98 96.5076 ESQ 180 668861.02 9198679.28 96.2987 PISTA 181 <	165	668821.35	9198599.77	97.5514	CASA	
168 668825.75 9198611.51 97.2275 ACCESO 169 668827.03 9198610.73 97.5064 VEREDA 170 668827.98 9198610.06 97.521 CASA 171 668841.62 9198636.38 96.777 ACCESO 172 668847.77 9198643.02 96.6869 POSTE 173 668857.18 9198659.48 96.4397 ACCESO 174 668860.37 9198665.01 96.4585 ACCESO 175 668867.85 9198675.36 96.3283 ACCESO 176 668868.53 9198676.03 96.3037 PISTA 177 668868.61 9198674.50 96.3936 POSTE 178 668869.64 9198675.25 96.4825 VEREDA 179 668870.34 9198674.98 96.5076 ESQ 180 668861.02 9198678.43 96.3552 VEREDA 181 668862.07 9198679.28 96.2987 PISTA 182 <	166	668821.25	9198601.99	97.4056	POSTE	
169 668827.03 9198610.73 97.5064 VEREDA 170 668827.98 9198610.06 97.521 CASA 171 668841.62 9198636.38 96.777 ACCESO 172 668847.77 9198643.02 96.6869 POSTE 173 668857.18 9198659.48 96.4397 ACCESO 174 668860.37 9198665.01 96.4585 ACCESO 175 668867.85 9198675.36 96.3283 ACCESO 176 668868.53 9198676.03 96.3037 PISTA 177 668868.61 9198674.50 96.3936 POSTE 178 668869.64 9198674.50 96.3936 POSTE 179 668870.34 9198674.98 96.5076 ESQ 180 668861.02 9198678.43 96.3552 VEREDA 181 668862.07 9198679.28 96.2987 PISTA 182 668861.66 9198677.62 96.3059 ACCESO 183 <t< td=""><td>167</td><td>668819.50</td><td>9198600.53</td><td>97.2582</td><td>ACCESO</td></t<>	167	668819.50	9198600.53	97.2582	ACCESO	
170 668827.98 9198610.06 97.521 CASA 171 668841.62 9198636.38 96.777 ACCESO 172 668847.77 9198643.02 96.6869 POSTE 173 668857.18 9198659.48 96.4397 ACCESO 174 668860.37 9198659.48 96.4397 ACCESO 175 668867.85 9198675.36 96.3283 ACCESO 176 668868.53 9198676.03 96.3037 PISTA 177 668868.61 9198674.50 96.3936 POSTE 178 668869.64 9198675.25 96.4825 VEREDA 179 668870.34 9198674.98 96.5076 ESQ 180 668861.02 9198678.43 96.3552 VEREDA 181 668862.07 9198679.28 96.2987 PISTA 182 668861.66 9198677.62 96.3059 ACCESO 183 668858.49 9198676.35 96.3884 CASA 184 <td< td=""><td>168</td><td>668825.75</td><td>9198611.51</td><td>97.2275</td><td>ACCESO</td></td<>	168	668825.75	9198611.51	97.2275	ACCESO	
171 668841.62 9198636.38 96.777 ACCESO 172 668847.77 9198643.02 96.6869 POSTE 173 668857.18 9198659.48 96.4397 ACCESO 174 668860.37 9198665.01 96.4585 ACCESO 175 668867.85 9198675.36 96.3283 ACCESO 176 668868.53 9198676.03 96.3037 PISTA 177 668868.61 9198674.50 96.3936 POSTE 178 668869.64 9198675.25 96.4825 VEREDA 179 668870.34 9198674.98 96.5076 ESQ 180 668861.02 9198678.43 96.3552 VEREDA 181 668862.07 9198679.28 96.2987 PISTA 182 668861.66 9198677.62 96.3059 ACCESO 183 668852.02 9198664.33 96.4966 POSTE	169	668827.03	9198610.73	97.5064	VEREDA	
172 668847.77 9198643.02 96.6869 POSTE 173 668857.18 9198659.48 96.4397 ACCESO 174 668860.37 9198665.01 96.4585 ACCESO 175 668867.85 9198675.36 96.3283 ACCESO 176 668868.53 9198676.03 96.3037 PISTA 177 668868.61 9198674.50 96.3936 POSTE 178 668869.64 9198675.25 96.4825 VEREDA 179 668870.34 9198674.98 96.5076 ESQ 180 668861.02 9198678.43 96.3552 VEREDA 181 668862.07 9198679.28 96.2987 PISTA 182 668861.66 9198677.62 96.3059 ACCESO 183 668858.49 9198676.35 96.3884 CASA 184 668852.02 9198664.33 96.4966 POSTE	170	668827.98	9198610.06	97.521	CASA	
173 668857.18 9198659.48 96.4397 ACCESO 174 668860.37 9198665.01 96.4585 ACCESO 175 668867.85 9198675.36 96.3283 ACCESO 176 668868.53 9198676.03 96.3037 PISTA 177 668868.61 9198674.50 96.3936 POSTE 178 668869.64 9198675.25 96.4825 VEREDA 179 668870.34 9198674.98 96.5076 ESQ 180 668861.02 9198678.43 96.3552 VEREDA 181 668862.07 9198679.28 96.2987 PISTA 182 668861.66 9198677.62 96.3059 ACCESO 183 668858.49 9198676.35 96.3884 CASA 184 668852.02 9198664.33 96.4966 POSTE	171	668841.62	9198636.38	96.777	ACCESO	
174 668860.37 9198665.01 96.4585 ACCESO 175 668867.85 9198675.36 96.3283 ACCESO 176 668868.53 9198676.03 96.3037 PISTA 177 668868.61 9198674.50 96.3936 POSTE 178 668869.64 9198675.25 96.4825 VEREDA 179 668870.34 9198674.98 96.5076 ESQ 180 668861.02 9198678.43 96.3552 VEREDA 181 668862.07 9198679.28 96.2987 PISTA 182 668861.66 9198677.62 96.3059 ACCESO 183 668858.49 9198676.35 96.3884 CASA 184 668852.02 9198664.33 96.4966 POSTE	172	668847.77	9198643.02	96.6869	POSTE	
175 668867.85 9198675.36 96.3283 ACCESO 176 668868.53 9198676.03 96.3037 PISTA 177 668868.61 9198674.50 96.3936 POSTE 178 668869.64 9198675.25 96.4825 VEREDA 179 668870.34 9198674.98 96.5076 ESQ 180 668861.02 9198678.43 96.3552 VEREDA 181 668862.07 9198679.28 96.2987 PISTA 182 668861.66 9198677.62 96.3059 ACCESO 183 668858.49 9198676.35 96.3884 CASA 184 668852.02 9198664.33 96.4966 POSTE	173	668857.18	9198659.48	96.4397	ACCESO	
176 668868.53 9198676.03 96.3037 PISTA 177 668868.61 9198674.50 96.3936 POSTE 178 668869.64 9198675.25 96.4825 VEREDA 179 668870.34 9198674.98 96.5076 ESQ 180 668861.02 9198678.43 96.3552 VEREDA 181 668862.07 9198679.28 96.2987 PISTA 182 668861.66 9198677.62 96.3059 ACCESO 183 668858.49 9198676.35 96.3884 CASA 184 668852.02 9198664.33 96.4966 POSTE	174	668860.37	9198665.01	96.4585	ACCESO	
177 668868.61 9198674.50 96.3936 POSTE 178 668869.64 9198675.25 96.4825 VEREDA 179 668870.34 9198674.98 96.5076 ESQ 180 668861.02 9198678.43 96.3552 VEREDA 181 668862.07 9198679.28 96.2987 PISTA 182 668861.66 9198677.62 96.3059 ACCESO 183 668858.49 9198676.35 96.3884 CASA 184 668852.02 9198664.33 96.4966 POSTE	175	668867.85	9198675.36	96.3283		
178 668869.64 9198675.25 96.4825 VEREDA 179 668870.34 9198674.98 96.5076 ESQ 180 668861.02 9198678.43 96.3552 VEREDA 181 668862.07 9198679.28 96.2987 PISTA 182 668861.66 9198677.62 96.3059 ACCESO 183 668858.49 9198676.35 96.3884 CASA 184 668852.02 9198664.33 96.4966 POSTE	176	668868.53	9198676.03	96.3037	PISTA	
179 668870.34 9198674.98 96.5076 ESQ 180 668861.02 9198678.43 96.3552 VEREDA 181 668862.07 9198679.28 96.2987 PISTA 182 668861.66 9198677.62 96.3059 ACCESO 183 668858.49 9198676.35 96.3884 CASA 184 668852.02 9198664.33 96.4966 POSTE	177	668868.61	9198674.50	96.3936	POSTE	
180 668861.02 9198678.43 96.3552 VEREDA 181 668862.07 9198679.28 96.2987 PISTA 182 668861.66 9198677.62 96.3059 ACCESO 183 668858.49 9198676.35 96.3884 CASA 184 668852.02 9198664.33 96.4966 POSTE	178	668869.64	9198675.25	96.4825		
181 668862.07 9198679.28 96.2987 PISTA 182 668861.66 9198677.62 96.3059 ACCESO 183 668858.49 9198676.35 96.3884 CASA 184 668852.02 9198664.33 96.4966 POSTE						
182 668861.66 9198677.62 96.3059 ACCESO 183 668858.49 9198676.35 96.3884 CASA 184 668852.02 9198664.33 96.4966 POSTE		668861.02	9198678.43	96.3552		
183 668858.49 9198676.35 96.3884 CASA 184 668852.02 9198664.33 96.4966 POSTE						
184 668852.02 9198664.33 96.4966 POSTE						
185 668853.14 9198663.99 96.3628 ACCESO						
	185	668853.14	9198663.99	96.3628	ACCESO	

186	668840.74	9198649.53	96.7863	CASA	
187	668841.48	9198648.99	96.7616	VEREDA	
188	668843.09	9198647.87	96.6111	ACCESO	
189	668832.40	9198634.77	96.86	POSTE	
190	668831.17	9198629.02	96.8531	ACCESO	
191	668812.46	9198604.44	97.2862	POSTE	
192	668813.97	9198601.90	97.2298	ACCESO	
193	668810.74	9198604.03	97.5358	ESQ	
194	668810.83	9198602.55	97.5001	VEREDA	
195	668810.56	9198597.65	97.2532	ACCESO	
196	668808.48	9198594.14	97.2302	BZ	
197	668802.90	9198605.58	97.4034	POSTE	
198	668800.96	9198606.61	97.426	POSTE	
199	668802.43	9198609.25	97.5371	CASA	
200	668801.88	9198608.41	97.5295	VEREDA	
201	668799.91	9198605.08	97.2386	ACCESO	
202	668793.21	9198613.79	97.3274	CASA	
203	668792.80	9198612.97	97.2612	VEREDA	
204	668791.09	9198610.23	97.2101	ACCESO	
205	668781.50	9198619.24	97.3721	POSTE	
206	668777.74	9198622.56	97.4471	CASA	
207	668777.15	9198621.80	97.6044	VEREDA	
208	668775.54	9198618.09	97.3941	ACCESO	
209	668765.01	9198623.95	97.453	BZ	
210	668765.04	9198629.44	97.4241	CASA	
211	668764.53	9198628.67	97.4063	VEREDA	
212	668762.92	9198625.55	97.4795	ACCESO	
213	668759.33	9198630.99	97.568	POSTE	
214	668743.72	9198638.53	97.5719	POSTE	
215	668742.36	9198637.16	97.5675	ACCESO	
216	668725.24	9198647.96	97.6879	POSTE	
217	668723.65	9198650.23	97.7854	ESQ	
218	668723.39	9198649.46	97.8146	VEREDA	
219	668721.31	9198649.14	97.5918	ACCESO	
220	668721.94	9198651.63	97.5639	ACCESO	
221	668727.40	9198639.28	97.6238	ACCESO	
222	668758.11	9198620.81	97.4765	ACCESO	
223	668754.70	9198621.45	97.6041	VEREDA	
224	668754.34	9198620.53	97.4949	ESQ	
225	668753.58	9198616.61	97.5508	POSTE	
226	226 668748.53 9198601.92		97.4973 ACCESO		

227	668746.39	9198582.45	97.322	BZ	
228	668740.59	9198584.52	97.5529	ACCESO	
229	668738.12	9198586.04	97.6414	POSTE	
230	668732.63	9198577.45	97.4863	CASA	
231	668733.60	9198576.90	97.387	VEREDA	
232	668736.40	9198575.68	97.3063	ACCESO	
233	668722.09	9198554.49	97.4318	POSTE	
234	668718.29	9198549.29	97.5049	ESQ	
235	668718.89	9198548.21	97.5131	VEREDA	
236	668720.51	9198546.59	97.2274	ACCESO	
237	668737.89	9198556.67	97.4355	PARQUE-VEREDA	
238	668737.60	9198556.63	97.2526	ACCESO	
239	668738.13	9198560.76	97.3083	ACCESO	
240	668738.32	9198560.69	97.445	PARQUE-VEREDA	
241	668750.98	9198580.38	97.4831	PARQUE-VEREDA	
242	668750.80	9198580.38	97.3074	ACCESO	
243	668765.91	9198603.40	97.469	PARQUE-VEREDA	
244	668770.07	9198610.50	97.3971	ACCESO	
245	668773.92	9198600.40	97.4785	POSTE	
246	668788.42	9198591.17	97.3899	POSTE	
247	668798.96	9198591.44	97.2589	ACCESO	
248	668794.52	9198584.86	97.4197	PARQUE-VEREDA	
249	668794.81	9198584.67	97.2993	ACCESO	
250	668779.92	9198561.42	97.2597	ACCESO	
251	668779.65	9198561.55	97.4301	PARQUE-VEREDA	
252	668767.03	9198542.06	97.3619	PARQUE-VEREDA	
253	668767.31	9198541.98	97.184	ACCESO	
254	668764.50	9198539.97	97.1629	ACCESO	
255	668764.73	9198540.33	97.3635	PARQUE-VEREDA	
256	668760.54	9198541.00	97.3433	PARQUE-VEREDA	
257	668760.25	9198540.92	97.1812	ACCESO	
258	668749.23	9198548.31	97.3942	PARQUE-VEREDA	
259	668749.16	9198548.20	97.2521	ACCESO	
260	668709.79	9198544.86	97.5073	ACCESO	
261	668706.37	9198544.42	97.5545	POSTE	
262	668723.59	9198537.54	97.5836	VEREDA	
263	668723.24	9198536.76	97.6187	CASA	
264	668728.89	9198540.96	97.3887	ACCESO	
265	668744.40	9198535.23	97.1642	ACCESO	
266	668741.79	9198530.34	97.2789	VEREDA	
267	668740.98	9198529.40	97.3149	CASA	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				

268 668743.35 9198529.66 97.2775 POSTE 269 668759.12 9198529.14 97.0202 ACCES 270 668769.10 9198526.37 97.0477 ACCES 271 668769.09 9198526.40 97.0226 ACCES	
270 668769.10 9198526.37 97.0477 ACCES	0
	-
271 668769.09 9198526.40 97.0226 ACCES	0
	0
272 668764.94 9198520.55 97.2017 VERED	Α
273 668764.48 9198519.83 97.22 CASA	
274 668772.85 9198534.72 96.9946 ACCES	0
275 668779.23 9198544.57 97.476 VERED	Α
276 668778.30 9198545.41 97.149 ACCES	0
277 668780.85 9198545.06 97.4736 ESQ	
278 668780.89 9198545.16 97.488 COLISE	0
279 668782.06 9198550.41 97.305 POSTE	Ξ
280 668781.61 9198554.25 97.46 BZ	
281 668799.69 9198577.26 97.3724 POSTE	=
282 668802.29 9198582.67 97.2297 ACCES	0
283 668803.51 9198581.90 97.4801 VERED	Α
284 668803.83 9198580.00 97.4794 COLISE	0
285 668805.57 9198588.37 97.2351 ACCES	0
286 668824.56 9198575.89 97.2454 ACCES	0
E-5 668742.631 9198532.69 97.249 STN	
287 668765.36 9198519.39 97.2095 ESQ	
288 668744.85 9198473.78 97.384 ESQ	
289 668745.83 9198473.51 97.252 ACCES	0
290 668749.58 9198471.72 97.245 ACCES	0
291 668750.25 9198471.42 97.381 ESQ	
292 668746.83 9198466.48 97.463 ACCES	0
293 668743.43 9198467.88 97.472 ACCES	
294 668740.50 9198462.38 97.91 PISTA	L
295 668744.80 9198461.16 97.91 PISTA	1
296 668770.66 9198517.24 97.1979 ESQ	
297 668769.40 9198517.27 97.0775 ACCES	0
298 668766.62 9198518.70 97.0736 ACCES	0
299 668770.18 9198525.35 97.0092 ACCES	0
300 668787.06 9198539.47 97.4456 VERED	
301 668786.60 9198538.67 97.4736 VERED	
302 668788.84 9198539.88 97.4915 COLISE	
303 668788.39 9198539.12 97.4922 COLISE	
304 668806.29 9198527.43 97.5026 COLISE	
305 668808.24 9198527.27 97.4996 COLISE	
306 668807.18 9198526.41 97.5221 VERED	
307 668806.66 9198525.62 97.5004 VERED	A

310 668739.94 9198554.07 97.2799 ACCESO						
310 668739.94 9198554.07 97.2799 ACCESO 311 668738.04 9198557.24 97.3321 PARQUE-VEREDA 312 668737.42 9198557.23 97.276 ACCESO 313 668718.31 9198549.25 97.5116 ESQ 314 668718.84 9198548.16 97.5084 VEREDA 315 668720.85 9198538.66 97.4948 VEREDA 316 668720.67 9198537.76 97.5164 CASA 317 668700.37 9198549.86 97.4091 ACCESO 318 668695.80 9198559.89 97.4451 ACCESO 319 668695.00 9198559.28 97.4917 VEREDA 320 668695.69 9198559.86 97.4893 CASA 321 668679.34 9198559.86 97.4893 CASA 321 668673.44 9198565.10 97.5212 ACCESO 322 668676.53 9198559.38 97.4564 ACCESO 323 668680.88 9198555.42 97.6162 ESQ 324 668677.41 9198555.42 97.6162 ESQ 325 668677.58 9198560.02 97.6166 VEREDA 326 668682.79 9198560.02 97.6166 VEREDA 327 668682.31 9198565.18 97.7287 ESQ 327 668682.31 9198565.18 97.7287 ESQ 328 668671.78 9198562.65 97.4848 BZN E-6 668672.147 9198562.19 97.5072 STN 329 668675.6 9198555.49 97.6254 VEREDA 331 668675.6 9198555.49 97.6254 VEREDA 332 66867.17 9198562.19 97.5072 STN 329 668675.16 9198555.49 97.6254 VEREDA 331 668675.80 9198555.49 97.6254 VEREDA 332 66867.17 9198562.19 97.5072 STN 332 66867.19 9198555.49 97.6254 VEREDA 333 668675.16 9198555.49 97.6254 VEREDA 334 668675.16 9198555.49 97.6254 VEREDA 335 668671.79 9198562.19 97.5072 STN 329 668676.22 9198556.40 97.6237 VEREDA 331 668675.80 9198555.49 97.6254 VEREDA 332 668675.16 9198555.41 97.6254 VEREDA 333 668675.16 9198555.41 97.6254 VEREDA 334 668675.80 9198555.41 97.6254 VEREDA 335 668675.16 9198555.41 97.6254 VEREDA 336 668675.80 9198555.50 97.4176 ACCESO 337 668667.01 9198551.95 97.5092 POSTE 337 668667.03 9198551.95 97.5092 POSTE 338 66867.07 919850.13 97.4324 VEREDA 339 668665.09 9198551.95 97.5092 POSTE 341 668654.96 9198593.91 97.4214 ACCESO 344 668651.00 919850.13 97.4328 ESQ 344 668651.00 919850.10 97.4328 ESQ 344 668651.00 919850.10 97.4328 ESQ 345 668684.96 919899.92 97.9323 PISTA 346 66864.96 919899.92 97.9323 PISTA 346 66864.16 9198501.54 97.9448 PISTA	308	668796.21	9198524.52	96.9807	ACCESO	
311 668738.04 9198557.24 97.3321 PARQUE-VEREDA 312 668737.42 9198557.23 97.276 ACCESO 313 668718.31 9198549.25 97.5116 ESQ 314 668718.84 9198538.66 97.4948 VEREDA 315 668720.85 9198538.66 97.4948 VEREDA 316 66870.37 9198537.76 97.5164 CASA 317 66870.37 9198559.86 97.4991 ACCESO 318 668695.80 9198559.28 97.4491 ACCESO 319 668695.00 9198559.28 97.4917 VEREDA 320 668695.69 9198559.88 97.4891 ACCESO 321 668675.34 9198559.88 97.4917 VEREDA 322 668676.53 9198559.89 97.4564 ACCESO 323 668671.58 9198556.10 97.5612 ACCESO 324 668671.58 9198556.02 97.6162 ESQ 325	309	668740.02	9198554.14	97.4459	PARQUE-VEREDA	
312 668737.42 9198557.23 97.276 ACCESO 313 668718.31 9198549.25 97.5116 ESQ 314 668718.84 9198549.25 97.5116 ESQ 315 668720.85 9198538.66 97.4948 VEREDA 316 668720.67 9198537.76 97.5164 CASA 317 668700.37 9198549.86 97.4091 ACCESO 318 668695.80 9198558.09 97.4451 ACCESO 319 668695.00 9198559.28 97.4917 VEREDA 320 668695.69 9198559.86 97.4893 CASA 321 668679.34 9198565.10 97.5212 ACCESO 322 668676.53 9198559.38 97.4564 ACCESO 323 668680.88 9198559.38 97.4564 ACCESO 324 668677.41 9198555.42 97.6162 ESQ 325 668677.58 9198556.02 97.6166 VEREDA 326 668682.79 9198566.06 97.7287 ESQ 327 668682.31 9198565.10 97.7287 ESQ 328 668671.78 9198565.10 97.7287 ESQ 329 668676.53 9198555.42 97.6162 ESQ 321 668678.80 9198555.42 97.6162 ESQ 322 668678.59 9198566.06 97.7287 ESQ 323 668680.88 9198556.02 97.6166 VEREDA 326 668682.79 9198566.06 97.7287 ESQ 327 668682.31 9198565.19 97.5072 STN 329 66867.178 9198562.19 97.5072 STN 329 668675.80 9198555.41 97.6254 VEREDA 330 668675.80 9198555.41 97.6254 VEREDA 331 668675.80 9198555.54 97.4348 BZN E-6 668678.19 9198555.49 97.6311 ESQ 333 668675.80 9198555.50 97.4176 ACCESO 333 668675.80 9198555.50 97.4176 ACCESO 334 668673.98 9198555.21 97.5085 ACCESO 335 668671.71 9198560.17 97.5278 ACCESO 336 668672.99 9198555.69 97.4176 ACCESO 337 668667.30 9198559.56 97.4176 ACCESO 338 668675.77 9198560.17 97.5278 ACCESO 339 668676.03 9198559.50 97.5092 POSTE 337 66866.31 9198553.51 97.5092 POSTE 339 668667.03 9198553.61 97.5085 ACCESO 330 668675.70 919850.19 97.5085 ACCESO 334 668668.00 9198536.11 97.4214 ACCESO 340 668658.05 9198511.36 97.4328 ESQ 341 668654.96 9198536.91 97.4214 ACCESO 344 668651.00 9198536.91 97.4214 ACCESO 345 668668.96 9198511.36 97.4328 ESQ 344 668651.00 9198504.02 97.501 ACCESO 345 668648.96 9198511.36 97.4328 ESQ 344 668654.96 9198511.36 97.4328 ESQ 345 668648.96 9198511.36 97.93448 PISTA	310	668739.94	9198554.07	97.2799	ACCESO	
313 668718.31 9198549.25 97.5116 ESQ 314 668718.84 9198548.16 97.5084 VEREDA 315 668720.85 9198538.66 97.4948 VEREDA 316 668720.67 9198537.76 97.5164 CASA 317 668700.37 9198549.86 97.4091 ACCESO 318 668695.80 9198556.09 97.4451 ACCESO 319 668695.00 9198559.28 97.4917 VEREDA 320 668695.89 9198559.36 97.4893 CASA 321 668675.34 9198559.38 97.4564 ACCESO 322 668676.53 9198559.38 97.4564 ACCESO 323 668680.88 9198554.86 97.5692 POSTE 324 668677.41 9198555.42 97.6162 ESQ 325 668682.31 919856.02 97.6166 VEREDA 326 668682.31 919856.18 97.7287 ESQ 327 66	311	668738.04	9198557.24	97.3321	PARQUE-VEREDA	
314 668718.84 9198548.16 97.5084 VEREDA 315 668720.85 9198538.66 97.4948 VEREDA 316 668720.67 9198537.76 97.5164 CASA 317 66870.37 9198549.86 97.4091 ACCESO 318 668695.80 9198558.09 97.4451 ACCESO 319 668695.60 9198559.28 97.44917 VEREDA 320 668695.69 9198559.38 97.4594 ACCESO 321 668676.53 9198559.38 97.4564 ACCESO 322 668676.53 9198554.86 97.5912 ACCESO 323 668680.88 9198554.86 97.5692 POSTE 324 668677.41 9198555.42 97.6162 ESQ 325 668677.58 9198566.06 97.7287 ESQ 327 668682.31 9198566.06 97.7284 VEREDA 328 668671.78 9198564.96 97.6237 VEREDA 329	312	668737.42	9198557.23	97.276	ACCESO	
315 668720.85 9198538.66 97.4948 VEREDA 316 668720.67 9198537.76 97.5164 CASA 317 668700.37 9198549.86 97.4091 ACCESO 318 668695.80 9198559.99 97.4451 ACCESO 319 668695.60 9198559.28 97.4917 VEREDA 320 668695.69 9198559.38 97.4917 VEREDA 321 668679.34 9198559.38 97.4564 ACCESO 322 668676.53 9198559.38 97.4564 ACCESO 323 668680.88 9198554.86 97.5692 POSTE 324 668677.41 9198554.2 97.6162 ESQ 325 668677.58 9198556.02 97.6166 VEREDA 326 668682.79 9198566.06 97.7284 VEREDA 327 668682.31 9198565.18 97.7284 VEREDA 328 668672.147 919856.06 97.7284 VEREDA 329	313	668718.31	9198549.25	97.5116	ESQ	
316 66872.0.67 9198537.76 97.5164 CASA 317 66870.37 9198549.86 97.4091 ACCESO 318 668695.80 9198558.09 97.4451 ACCESO 319 668695.00 9198559.28 97.4917 VEREDA 320 668695.69 9198559.86 97.4893 CASA 321 668679.34 9198559.38 97.4564 ACCESO 322 668676.53 9198559.38 97.4564 ACCESO 323 668680.88 9198554.86 97.5692 POSTE 324 668677.41 9198555.42 97.6162 ESQ 325 668677.58 9198560.02 97.6166 VEREDA 326 66862.31 9198565.18 97.7287 ESQ 327 66862.31 9198562.65 97.4848 BZN E-6 668672.147 9198562.65 97.4848 BZN 329 668676.22 9198556.40 97.6237 VEREDA 331 6686	314	668718.84	9198548.16	97.5084	VEREDA	
317 668700.37 9198549.86 97.4091 ACCESO 318 668695.80 9198558.09 97.4451 ACCESO 319 668695.00 9198559.28 97.4917 VEREDA 320 668695.69 9198559.86 97.4893 CASA 321 668679.34 9198559.38 97.4564 ACCESO 322 668676.53 9198554.86 97.5692 POSTE 323 668680.88 9198554.86 97.5692 POSTE 324 668677.41 9198556.02 97.6162 ESQ 325 668677.58 9198566.02 97.6166 VEREDA 326 66862.31 9198560.06 97.7287 ESQ 327 668682.31 9198562.65 97.4848 BZN E-6 668672.147 9198562.19 97.5072 STN 329 668675.16 9198554.41 97.6237 VEREDA 331 668675.80 9198554.95 97.6311 ESQ 332 66867	315	668720.85	9198538.66	97.4948	VEREDA	
318 668695.80 9198558.09 97.4451 ACCESO 319 668695.00 9198559.28 97.4917 VEREDA 320 668695.69 9198559.86 97.4893 CASA 321 668679.34 9198565.10 97.5212 ACCESO 322 668676.53 9198559.38 97.4564 ACCESO 323 668680.88 9198554.86 97.5692 POSTE 324 668677.41 9198555.42 97.6162 ESQ 325 668677.58 9198566.02 97.6166 VEREDA 326 668682.79 9198566.06 97.7287 ESQ 327 668682.31 919856.18 97.7284 VEREDA 328 668671.78 919856.40 97.6237 VEREDA 329 668676.22 9198556.40 97.6237 VEREDA 331 668675.16 9198555.41 97.6254 VEREDA 331 668675.80 9198559.56 97.4176 ACCESO 333 <	316	668720.67	9198537.76	97.5164	CASA	
319 668695.00 9198559.28 97.4917 VEREDA 320 668695.69 9198559.86 97.4893 CASA 321 668679.34 9198565.10 97.5212 ACCESO 322 668676.53 9198559.38 97.4564 ACCESO 323 668680.88 9198554.86 97.5692 POSTE 324 668677.41 9198555.42 97.6162 ESQ 325 668677.58 9198556.02 97.6166 VEREDA 326 668682.79 9198566.06 97.7287 ESQ 327 668682.31 9198565.18 97.7284 VEREDA 328 668671.78 9198562.65 97.4848 BZN E-6 668672.147 9198562.19 97.5072 STN 329 668676.22 9198554.95 97.6311 ESQ 331 668675.80 9198554.95 97.6311 ESQ 332 668678.19 9198555.49 97.5078 ACCESO 334 668673	317	668700.37	9198549.86	97.4091	ACCESO	
320 668695.69 9198559.86 97.4893 CASA 321 668679.34 9198565.10 97.5212 ACCESO 322 668675.33 9198559.38 97.4564 ACCESO 323 668680.88 9198554.86 97.5692 POSTE 324 668677.41 9198555.42 97.6162 ESQ 325 668677.58 9198556.02 97.6166 VEREDA 326 668682.79 9198560.06 97.7287 ESQ 327 668682.31 9198562.65 97.4848 BZN E-6 668672.147 9198562.19 97.5072 STN 329 668672.147 9198556.40 97.6237 VEREDA 330 668675.16 9198555.41 97.6254 VEREDA 331 668675.80 919855.95 97.4176 ACCESO 332 668671.71 9198559.56 97.4176 ACCESO 334 668673.99 919855.282 97.4905 ACCESO 335	318	668695.80	9198558.09	97.4451	ACCESO	
321 668679.34 9198565.10 97.5212 ACCESO 322 668676.53 9198559.38 97.4564 ACCESO 323 668680.88 9198554.86 97.5692 POSTE 324 668677.41 9198555.42 97.6162 ESQ 325 668677.58 9198556.02 97.6166 VEREDA 326 668682.79 9198566.06 97.7287 ESQ 327 668682.31 9198565.18 97.7284 VEREDA 328 668671.78 9198562.65 97.4848 BZN E-6 668672.147 9198562.19 97.5072 STN 329 668676.22 9198556.40 97.6237 VEREDA 330 668675.16 9198555.41 97.6254 VEREDA 331 668675.80 9198559.56 97.4176 ACCESO 333 668673.19 9198559.56 97.4176 ACCESO 334 668673.98 9198551.95 97.5085 ACCESO 335 <t< td=""><td>319</td><td>668695.00</td><td>9198559.28</td><td>97.4917</td><td>VEREDA</td></t<>	319	668695.00	9198559.28	97.4917	VEREDA	
322 668676.53 9198559.38 97.4564 ACCESO 323 668680.88 9198554.86 97.5692 POSTE 324 668677.41 9198555.42 97.6162 ESQ 325 668677.58 9198556.02 97.6166 VEREDA 326 668682.79 9198566.06 97.7287 ESQ 327 668682.31 9198565.18 97.7284 VEREDA 328 668671.78 9198562.65 97.4848 BZN E-6 668672.147 9198562.19 97.5072 STN 329 668676.22 9198556.40 97.6237 VEREDA 330 668675.16 9198555.41 97.6254 VEREDA 331 668675.80 9198554.95 97.6311 ESQ 332 668678.19 9198559.56 97.4176 ACCESO 333 668675.77 9198560.17 97.5278 ACCESO 334 668673.98 9198551.95 97.4905 ACCESO 335 6	320	668695.69	9198559.86	97.4893	CASA	
323 668680.88 9198554.86 97.5692 POSTE 324 668677.41 9198555.42 97.6162 ESQ 325 668677.58 9198556.02 97.6166 VEREDA 326 668682.79 9198566.06 97.7287 ESQ 327 668682.31 9198565.18 97.7284 VEREDA 328 668671.78 9198562.65 97.4848 BZN E-6 668672.147 9198562.19 97.5072 STN 329 668676.22 9198556.40 97.6237 VEREDA 330 668675.16 9198555.41 97.6254 VEREDA 331 668675.80 9198554.95 97.6311 ESQ 332 668678.19 9198559.56 97.4176 ACCESO 333 668675.77 9198560.17 97.5278 ACCESO 334 668673.98 919855.282 97.4905 ACCESO 335 668671.71 9198551.95 97.5092 POSTE 337 66	321	668679.34	9198565.10	97.5212	ACCESO	
324 668677.41 9198555.42 97.6162 ESQ 325 668677.58 9198556.02 97.6166 VEREDA 326 668682.79 9198566.06 97.7287 ESQ 327 668682.31 9198565.18 97.7284 VEREDA 328 668671.78 9198562.65 97.4848 BZN E-6 668672.147 9198562.19 97.5072 STN 329 668672.2 9198556.40 97.6237 VEREDA 330 668675.16 9198555.41 97.6254 VEREDA 331 668675.80 9198554.95 97.6311 ESQ 332 668678.19 9198559.56 97.4176 ACCESO 333 668675.77 9198560.17 97.5278 ACCESO 334 668673.98 9198558.21 97.5085 ACCESO 335 668671.71 9198551.95 97.5092 POSTE 337 668667.03 9198536.67 97.498 CASA 338 66866	322	668676.53	9198559.38	97.4564	ACCESO	
325 668677.58 9198556.02 97.6166 VEREDA 326 668682.79 9198566.06 97.7287 ESQ 327 668682.31 9198565.18 97.7284 VEREDA 328 668671.78 9198562.65 97.4848 BZN E-6 668672.147 9198562.19 97.5072 STN 329 668676.22 9198556.40 97.6237 VEREDA 330 668675.16 9198555.41 97.6254 VEREDA 331 668675.80 9198554.95 97.6311 ESQ 332 668678.19 9198559.56 97.4176 ACCESO 333 668675.77 9198560.17 97.5278 ACCESO 334 668673.98 9198558.21 97.5085 ACCESO 335 668671.71 9198551.95 97.5092 POSTE 337 668667.03 9198536.13 97.47 VEREDA 339 668667.03 9198536.13 97.47 VEREDA 340 66	323	668680.88	9198554.86	97.5692	POSTE	
326 668682.79 9198566.06 97.7287 ESQ 327 668682.31 9198565.18 97.7284 VEREDA 328 668671.78 9198562.65 97.4848 BZN E-6 668672.147 9198562.19 97.5072 STN 329 668676.22 9198556.40 97.6237 VEREDA 330 668675.16 9198555.41 97.6254 VEREDA 331 668675.80 9198554.95 97.6311 ESQ 332 668675.80 9198559.56 97.4176 ACCESO 333 668675.77 9198560.17 97.5278 ACCESO 334 668673.98 9198552.82 97.4905 ACCESO 335 668671.71 9198552.82 97.4905 ACCESO 336 668672.99 9198551.95 97.5092 POSTE 337 668667.03 9198536.13 97.47 VEREDA 339 668664.56 9198536.91 97.4214 ACCESO 340	324	668677.41	9198555.42	97.6162	ESQ	
327 668682.31 9198565.18 97.7284 VEREDA 328 668671.78 9198562.65 97.4848 BZN E-6 668672.147 9198562.19 97.5072 STN 329 668676.22 9198556.40 97.6237 VEREDA 330 668675.16 9198555.41 97.6254 VEREDA 331 668675.80 9198554.95 97.6311 ESQ 332 668678.19 9198559.56 97.4176 ACCESO 333 668673.98 9198558.21 97.5085 ACCESO 334 668673.98 9198552.82 97.4905 ACCESO 335 668671.71 9198552.82 97.4905 ACCESO 336 668672.99 9198551.95 97.5092 POSTE 337 668667.03 9198536.13 97.47 VEREDA 339 668664.56 9198536.91 97.4214 ACCESO 340 668658.05 9198517.08 97.4679 POSTE 341 <t< td=""><td>325</td><td>668677.58</td><td>9198556.02</td><td>97.6166</td><td colspan="2">VEREDA</td></t<>	325	668677.58	9198556.02	97.6166	VEREDA	
328 668671.78 9198562.65 97.4848 BZN E-6 668672.147 9198562.19 97.5072 STN 329 668676.22 9198556.40 97.6237 VEREDA 330 668675.16 9198555.41 97.6254 VEREDA 331 668675.80 9198554.95 97.6311 ESQ 332 668678.19 9198559.56 97.4176 ACCESO 333 668675.77 9198560.17 97.5278 ACCESO 334 668673.98 9198558.21 97.5085 ACCESO 335 668671.71 9198552.82 97.4905 ACCESO 336 668672.99 9198551.95 97.5092 POSTE 337 668667.03 9198536.67 97.498 CASA 338 668666.31 9198536.91 97.471 VEREDA 339 668664.56 9198536.91 97.4214 ACCESO 340 668658.05 9198517.08 97.3583 ACCESO 342 <td< td=""><td>326</td><td>668682.79</td><td>9198566.06</td><td>97.7287</td><td colspan="2">ESQ</td></td<>	326	668682.79	9198566.06	97.7287	ESQ	
E-6 668672.147 9198562.19 97.5072 STN 329 668676.22 9198556.40 97.6237 VEREDA 330 668675.16 9198555.41 97.6254 VEREDA 331 668675.80 9198554.95 97.6311 ESQ 332 668678.19 9198559.56 97.4176 ACCESO 333 668675.77 9198560.17 97.5278 ACCESO 334 668673.98 9198552.82 97.4905 ACCESO 335 668671.71 9198552.82 97.4905 ACCESO 336 668672.99 9198551.95 97.5092 POSTE 337 668667.03 9198536.13 97.47 VEREDA 339 668664.56 9198536.91 97.4214 ACCESO 340 668658.05 9198517.08 97.4679 POSTE 341 668654.96 9198512.65 97.3583 ACCESO 342 668656.29 9198511.81 97.3784 VEREDA 343	327	668682.31	9198565.18	97.7284	VEREDA	
329 668676.22 9198556.40 97.6237 VEREDA 330 668675.16 9198555.41 97.6254 VEREDA 331 668675.80 9198554.95 97.6311 ESQ 332 668678.19 9198559.56 97.4176 ACCESO 333 668675.77 9198560.17 97.5278 ACCESO 334 668673.98 9198558.21 97.5085 ACCESO 335 668671.71 9198552.82 97.4905 ACCESO 336 668672.99 9198551.95 97.5092 POSTE 337 668667.03 9198536.67 97.498 CASA 338 668666.31 9198536.91 97.47 VEREDA 339 668664.56 9198536.91 97.4214 ACCESO 340 668658.05 9198517.08 97.4679 POSTE 341 668654.96 9198511.81 97.3784 VEREDA 343 668657.07 9198511.36 97.4328 ESQ 344 <td< td=""><td>328</td><td>668671.78</td><td>9198562.65</td><td>97.4848</td><td>BZN</td></td<>	328	668671.78	9198562.65	97.4848	BZN	
330 668675.16 9198555.41 97.6254 VEREDA 331 668675.80 9198554.95 97.6311 ESQ 332 668678.19 9198559.56 97.4176 ACCESO 333 668675.77 9198560.17 97.5278 ACCESO 334 668673.98 9198558.21 97.5085 ACCESO 335 668671.71 9198552.82 97.4905 ACCESO 336 668672.99 9198551.95 97.5092 POSTE 337 668667.03 9198535.67 97.498 CASA 338 668666.31 9198536.13 97.47 VEREDA 339 668664.56 9198536.91 97.4214 ACCESO 340 668658.05 9198517.08 97.4679 POSTE 341 668654.96 9198512.65 97.3583 ACCESO 342 668654.96 9198511.36 97.4328 ESQ 344 668651.00 9198504.02 97.501 ACCESO 345	E-6	668672.147	9198562.19	97.5072	STN	
331 668675.80 9198554.95 97.6311 ESQ 332 668678.19 9198559.56 97.4176 ACCESO 333 668675.77 9198560.17 97.5278 ACCESO 334 668673.98 9198558.21 97.5085 ACCESO 335 668671.71 9198552.82 97.4905 ACCESO 336 668672.99 9198551.95 97.5092 POSTE 337 668667.03 9198536.67 97.498 CASA 338 668666.31 9198536.13 97.47 VEREDA 339 668664.56 9198536.91 97.4214 ACCESO 340 668658.05 9198517.08 97.4679 POSTE 341 668654.96 9198512.65 97.3583 ACCESO 342 668656.29 9198511.81 97.3784 VEREDA 343 668657.07 9198511.36 97.4328 ESQ 344 668651.00 9198504.02 97.501 ACCESO 345	329	668676.22	9198556.40	97.6237	VEREDA	
332 668678.19 9198559.56 97.4176 ACCESO 333 668675.77 9198560.17 97.5278 ACCESO 334 668673.98 9198558.21 97.5085 ACCESO 335 668671.71 9198552.82 97.4905 ACCESO 336 66867.09 9198551.95 97.5092 POSTE 337 668667.03 9198536.13 97.498 CASA 338 668666.31 9198536.13 97.47 VEREDA 339 668664.56 9198536.91 97.4214 ACCESO 340 668658.05 9198517.08 97.4679 POSTE 341 668654.96 9198512.65 97.3583 ACCESO 342 668656.29 9198511.81 97.3784 VEREDA 343 668657.07 9198511.36 97.4328 ESQ 344 668651.00 9198504.02 97.501 ACCESO 345 668648.96 9198499.82 97.9232 PISTA 346 <td< td=""><td>330</td><td>668675.16</td><td>9198555.41</td><td>97.6254</td><td>VEREDA</td></td<>	330	668675.16	9198555.41	97.6254	VEREDA	
333 668675.77 9198560.17 97.5278 ACCESO 334 668673.98 9198558.21 97.5085 ACCESO 335 668671.71 9198552.82 97.4905 ACCESO 336 668672.99 9198551.95 97.5092 POSTE 337 668667.03 9198535.67 97.498 CASA 338 668666.31 9198536.13 97.47 VEREDA 339 668664.56 9198536.91 97.4214 ACCESO 340 668658.05 9198517.08 97.4679 POSTE 341 668654.96 9198512.65 97.3583 ACCESO 342 668656.29 9198511.81 97.3784 VEREDA 343 668657.07 9198511.36 97.4328 ESQ 344 668651.00 9198504.02 97.501 ACCESO 345 668648.96 9198499.82 97.9232 PISTA 346 668642.16 9198501.54 97.9448 PISTA	331	668675.80	9198554.95	97.6311	ESQ	
334 668673.98 9198558.21 97.5085 ACCESO 335 668671.71 9198552.82 97.4905 ACCESO 336 668672.99 9198551.95 97.5092 POSTE 337 668667.03 9198535.67 97.498 CASA 338 668666.31 9198536.13 97.47 VEREDA 339 668664.56 9198536.91 97.4214 ACCESO 340 668658.05 9198517.08 97.4679 POSTE 341 668654.96 9198512.65 97.3583 ACCESO 342 668656.29 9198511.81 97.3784 VEREDA 343 668657.07 9198511.36 97.4328 ESQ 344 668651.00 9198504.02 97.501 ACCESO 345 668648.96 9198499.82 97.9232 PISTA 346 668642.16 9198501.54 97.9448 PISTA	332	668678.19	9198559.56	97.4176	ACCESO	
335 668671.71 9198552.82 97.4905 ACCESO 336 668672.99 9198551.95 97.5092 POSTE 337 668667.03 9198535.67 97.498 CASA 338 668666.31 9198536.13 97.47 VEREDA 339 668664.56 9198536.91 97.4214 ACCESO 340 668658.05 9198517.08 97.4679 POSTE 341 668654.96 9198512.65 97.3583 ACCESO 342 668656.29 9198511.81 97.3784 VEREDA 343 668657.07 9198511.36 97.4328 ESQ 344 668651.00 9198504.02 97.501 ACCESO 345 668648.96 9198499.82 97.9232 PISTA 346 668642.16 9198501.54 97.9448 PISTA	333	668675.77	9198560.17	97.5278	ACCESO	
336 668672.99 9198551.95 97.5092 POSTE 337 668667.03 9198535.67 97.498 CASA 338 668666.31 9198536.13 97.47 VEREDA 339 668664.56 9198536.91 97.4214 ACCESO 340 668658.05 9198517.08 97.4679 POSTE 341 668654.96 9198512.65 97.3583 ACCESO 342 668656.29 9198511.81 97.3784 VEREDA 343 668657.07 9198511.36 97.4328 ESQ 344 668651.00 9198504.02 97.501 ACCESO 345 668648.96 9198499.82 97.9232 PISTA 346 668642.16 9198501.54 97.9448 PISTA	334	668673.98	9198558.21	97.5085	ACCESO	
337 668667.03 9198535.67 97.498 CASA 338 668666.31 9198536.13 97.47 VEREDA 339 668664.56 9198536.91 97.4214 ACCESO 340 668658.05 9198517.08 97.4679 POSTE 341 668654.96 9198512.65 97.3583 ACCESO 342 668656.29 9198511.81 97.3784 VEREDA 343 668657.07 9198511.36 97.4328 ESQ 344 668651.00 9198504.02 97.501 ACCESO 345 668648.96 9198499.82 97.9232 PISTA 346 668642.16 9198501.54 97.9448 PISTA	335	668671.71	9198552.82	97.4905	ACCESO	
338 668666.31 9198536.13 97.47 VEREDA 339 668664.56 9198536.91 97.4214 ACCESO 340 668658.05 9198517.08 97.4679 POSTE 341 668654.96 9198512.65 97.3583 ACCESO 342 668656.29 9198511.81 97.3784 VEREDA 343 668657.07 9198511.36 97.4328 ESQ 344 668651.00 9198504.02 97.501 ACCESO 345 668648.96 9198499.82 97.9232 PISTA 346 668642.16 9198501.54 97.9448 PISTA	336	668672.99	9198551.95	97.5092	POSTE	
339 668664.56 9198536.91 97.4214 ACCESO 340 668658.05 9198517.08 97.4679 POSTE 341 668654.96 9198512.65 97.3583 ACCESO 342 668656.29 9198511.81 97.3784 VEREDA 343 668657.07 9198511.36 97.4328 ESQ 344 668651.00 9198504.02 97.501 ACCESO 345 668648.96 9198499.82 97.9232 PISTA 346 668642.16 9198501.54 97.9448 PISTA	337	668667.03	9198535.67	97.498	CASA	
340 668658.05 9198517.08 97.4679 POSTE 341 668654.96 9198512.65 97.3583 ACCESO 342 668656.29 9198511.81 97.3784 VEREDA 343 668657.07 9198511.36 97.4328 ESQ 344 668651.00 9198504.02 97.501 ACCESO 345 668648.96 9198499.82 97.9232 PISTA 346 668642.16 9198501.54 97.9448 PISTA	338	668666.31	9198536.13	97.47	VEREDA	
341 668654.96 9198512.65 97.3583 ACCESO 342 668656.29 9198511.81 97.3784 VEREDA 343 668657.07 9198511.36 97.4328 ESQ 344 668651.00 9198504.02 97.501 ACCESO 345 668648.96 9198499.82 97.9232 PISTA 346 668642.16 9198501.54 97.9448 PISTA	339	668664.56	9198536.91	97.4214	ACCESO	
342 668656.29 9198511.81 97.3784 VEREDA 343 668657.07 9198511.36 97.4328 ESQ 344 668651.00 9198504.02 97.501 ACCESO 345 668648.96 9198499.82 97.9232 PISTA 346 668642.16 9198501.54 97.9448 PISTA	340	668658.05	9198517.08	97.4679	POSTE	
343 668657.07 9198511.36 97.4328 ESQ 344 668651.00 9198504.02 97.501 ACCESO 345 668648.96 9198499.82 97.9232 PISTA 346 668642.16 9198501.54 97.9448 PISTA	341	668654.96	9198512.65	97.3583	ACCESO	
344 668651.00 9198504.02 97.501 ACCESO 345 668648.96 9198499.82 97.9232 PISTA 346 668642.16 9198501.54 97.9448 PISTA	342	668656.29	9198511.81	97.3784	VEREDA	
345 668648.96 9198499.82 97.9232 PISTA 346 668642.16 9198501.54 97.9448 PISTA	343	668657.07	9198511.36	97.4328	ESQ	
346 668642.16 9198501.54 97.9448 PISTA	344	668651.00	9198504.02	97.501	ACCESO	
	345	668648.96	9198499.82	97.9232	PISTA	
347 668643.38 9198504.73 97.9369 ACCESO	346	668642.16	9198501.54	97.9448	PISTA	
	347	668643.38	9198504.73	97.9369	ACCESO	

				1	
348	668643.37	9198504.68	97.9382	ACCESO	
349	668645.20	9198514.05	97.8483	ESQ	
350	668647.57	9198513.04	97.4942	ACCESO	
351	668647.84	9198517.26	97.4969	POSTE	
352	668658.61	9198534.94	97.43	ACCESO	
353	668655.86	9198538.07	97.5304	VEREDA	
354	668654.42	9198537.06	97.5559	CASA	
355	668663.06	9198553.90	97.5777	POSTE	
356	668668.68	9198558.46	97.5158	ACCESO	
357	668666.22	9198560.18	97.5545	POSTE	
358	668670.85	9198573.08	97.5692	CASA	
359	668671.72	9198572.59	97.573	VEREDA	
360	668675.20	9198570.49	97.5174	ACCESO	
361	668681.15	9198566.65	97.7161	VEREDA	
362	668678.61	9198565.61	97.5189	ACCESO	
363	668682.24	9198567.65	97.7282	ESQ	
364	668681.32	9198567.97	97.7177	VEREDA	
365	668679.72	9198568.99	97.5015	ACCESO	
366	668683.88	9198574.05	97.5996	POSTE	
367	668679.61	9198587.20	97.6568	POSTE	
368	668685.79	9198592.81	97.6734	ACCESO	
369	668690.54	9198590.53	97.6738	ACCESO	
370	668695.92	9198595.21	97.6878	CASA	
371	668694.88	9198595.65	97.8052	VEREDA	
372	668685.54	9198602.03	97.8273	CASA	
373	668686.74	9198601.79	97.8847	VEREDA	
374	668698.24	9198602.66	97.7116	POSTE	
375	668694.92	9198618.27	97.7063	POSTE	
376	668699.99	9198630.58	97.8177	CASA	
377	668700.80	9198630.22	97.8177	VEREDA	
378	668710.08	9198625.69	97.7204	VEREDA	
379	668708.55	9198626.21	97.7195	ACCESO	
380	668704.00	9198628.37	97.7196	ACCESO	
381	668715.62	9198637.45	97.7464	POSTE	
382	668717.97	9198638.86	97.7497	ESQ	
383	668717.56	9198640.08	97.7106	VEREDA	
384	668716.00	9198642.40	97.7168	ACCESO	
385	668738.44	9198679.57	97.725	ESQ	
386	668731.64	9198680.31	97.647	BZ	
387	668726.92	9198683.81	96.712	ESQ	
388	668718.47	9198642.26	97.7206	ACCESO	
	_	1	1		

E-3	668905.227	9198634.88	95.9876	STN
389	668910.03	9198631.61	96.1929	PISTA
390	668913.69	9198637.74	96.1988	CASA
391	668913.25	9198636.91	96.2036	PISTA
392	668918.84	9198634.75	96.1972	ESQ
393	668904.73	9198641.70	96.015	POSTE
394	668908.63	9198639.08	96.0164	ACCESO
395	668894.05	9198647.45	96.1484	ACCESO
396	668889.38	9198644.82	96.1867	ACCESO
397	668888.90	9198644.20	96.249	VEREDA
398	668877.37	9198657.59	96.2414	POSTE
399	668876.94	9198656.61	96.1841	ACCESO
400	668870.39	9198655.24	96.236	ACCESO
401	668860.05	9198659.21	96.442	ESQ
402	668864.34	9198665.78	96.431	ESQ

Anexo 6.2. Guía de observación N° 02

ESTUDIO DE MECÁNICA DE SUELOS

PROYECTO: Diseño de Infraestructura Vial de las calles del sector Cafetal I, distrito de Guadalupe, provincia de

Pacasmayo, 2021.

AUTORES: Cedrón Pilco, Bernardo Raúl Ángel

Marquillo Gutierrez, Yesenia Thalía

RESPONSABLE:	Jorge Barrant	Jorge Barrantes Villanueva				
LABORATORIO:	LABORATORIO: Cerámicos y Suelos Universidad Nacional de Trujillo					
N°	CALICATAS	CANTIDAD	PROFUNDIDAD	ESTRA	TO 1	DESCRIPCIÓN
N	CALICATAS	DE ESTRATOS	PROFUNDIDAD	DESDE	HASTA	DESCRIPCION
1	C 1	1	1.50	0.30	1.50	Calle Andrés Razuri
2	C 2	1	1.50	0.30	1.50	Esquina Coliseo
3	C 3	1	1.50	0.30	1.50	Esquina R. González A.
4	C 4	1	1.50	0.30	1.50	Esquina Sixto Balarezo con José Demaizon

Anexo 6.3. Guía de observación N° 03

ESTUDIO DE CLASIFICACIÓN VEHICULAR

ESTACIÓN	E-1
FECHA	MARTES-AGOSTO
UBICACIÓN	Calle Andrés Rázuri

ПОВА					MIONET	AS		В	JS		CAMION			SEMITE	RAYLER			TRA	/LER		
HORA	мотоѕ	AUTO	STATION WAGON		PANEL	RURAL Combi	MICRO	2 E	3 E	2 E	3 E	4 E	2\$1/2\$2	2\$3	3\$1/3\$2	>= 3S3	2T2	2T3	3T2	3T3	TOTAL
						0.0			00 00	~	~		**************************************	**************************************	~ * ∳	****		****			
0-1																					0
1-2																					0
2-3		1																			1
3-4		1																			1
4-5																					0
5-6		1	1																		2
6-7				1						1	2	1									5
7-8		1								1	2	1									5
8-9		1								1											2
9-10				1																	1
10-11										2											2
11-12		1	2	2						1	1										7
12-13				1																	1
13-14		1		1						1	1										4
14-15			1							2											3
15-16		1		1						1	1	1									5
16-17		2	1																		3
17-18				1						1	2	1									5
18-19		2	4	1						4											3
19-20		2	1	2						1											6
20-21		1																			1
21-22		1																			1
22-23																					1 0
23-24		46	6	44	0	0	0	0	0	40	•	4	_	•	_	0	0	0	•) FO
TOTALES		16	6	11	0	0	0	0	0	12	9	4	0	0	0	0	0	0	0	0	58

ESTACIÓN	E-1
FECHA	MIERCOLES-AGOSTO
UBICACIÓN	Calle Andrés Rázuri

					MIONET	AS		В	US		CAMION			SEMI T	RAYLER			TRAY	/LER		
HORA	мотоѕ	AUTO	STATION WAGON	PICK UP	PANEL	RURAL Combi	MICRO		3 E	2 E	3 E		2\$1/2\$2		3\$1/3\$2			2T3	3T2		TOTAL
						-0-0			00 00	÷ 🔓	∞ 		****	~~~ ₽	- 44	***	 ♣	 ₽		 ♣	
0-1																					0
1-2		1																			1
2-3																					0
3-4		1																			1
4-5				2																	2
5-6																					0
6-7		1		1																	2
7-8			1							2	1										4
8-9		1		2						1	1										5
9-10		2		1						1	2	1									7
10-11		1									1										2
11-12				1						1											2
12-13		3	1							1											5
13-14																					0
14-15		2		1						1											4
15-16		1	1							1	1										4
16-17		1		1						1	1	1									5
17-18										1											1
18-19		2									1										3
19-20			1	1						1	2	1									6
20-21		1																			1
21-22		1																			1
22-23																					0
23-24																					0
TOTALES	0	18	4	10	0	0	0	0	0	11	10	3	0	0	0	0	0	0	0	0	56

ESTACIÓN	E-1
FECHA	JUEVES-AGOSTO
UBICACIÓN	Calle Andrés Rázuri

				CA	MIONET	AS		ВІ	JS		CAMION			SEMI T	RAYLER			TRAY	/LER		
HORA	мотоѕ	AUTO	STATION WAGON	PICK UP	PANEL	Combi		2 E	3 E	2 E	3 E	4 E	2\$1/2\$2	2\$3	3\$1/3\$2	>= 3\$3	2T2	2Т3	3T2	3T3	TOTAL
				2		0.0		00	00 00	- [∞ ♣		**************************************	~~ ₹ ♣	~~*			.		≈ • • •	
0-1																					0
1-2																					0
2-3		1																			1
3-4																					0
4-5		1		2																	3
5-6										1											1
6-7		1									1										2
7-8		1								1	2	1									5
8-9			1	2						2	1										6
9-10		2								1	1										4
10-11		2																			2
11-12			1	2						1	1										5
12-13		2	1							1											4
13-14				1																	1
14-15										2	1										3
15-16		1								1	2										4
16-17		2		2						1											5
17-18			1								2	1									4
18-19		1		2						1											4
19-20		2		1																	3
20-21		1																			1
21-22		2																			2
22-23																					0
23-24	_		-		_	_	_	_	_			_	_	-	_	_	_	_	-	-	0
TOTALES	0	19	4	12	0	0	0	0	0	12	11	2	0	0	0	0	0	0	0	0	60

ESTACIÓN	E-1
FECHA	VIERNES-AGOSTO
UBICACIÓN	Calle Andrés Rázuri

	STATION			CAMIONETAS			BUS			CAMION			SEMI TI	RAYLER			TRAY	YLER			
HORA	MOTOS	AUTO	STATION WAGON	PICK UP				2 E	3 E	2 E	3 E	4 E	2\$1/2\$2	283	3\$1/3\$2			2T3	3T2	3T3	TOTAL
						-0-0	00		00000	₽	~		**************************************	000 8 A		· · · ·	→				
0-1																					0
1-2																					0
2-3																					0
3-4																					0
4-5		1	1																		2
5-6				1																	1
6-7		1	1																		2
7-8											1										1
8-9		1		1						1	1	1									5
9-10			1							2	2										5
10-11		1	1	1						1											4
11-12		1	1	1						1	1										5
12-13		1	1							1											3
13-14		2		1																	3
14-15		1		1						2											4
15-16		1		1						1	2	1									6
16-17			1																		1
17-18		1								2											3
18-19		2	1	1						1	1										6
19-20		2									1	1									4
20-21		1	1																		2
21-22		1		2																	3
22-23																					0
23-24																					0
TOTALES	0	17	9	10	0	0	0	0	0	12	9	3	0	0	0	0	0	0	0	0	60

ESTACIÓN	E-1
FECHA	SABADO-AGOSTO
UBICACIÓN	Calle Andrés Rázuri

HORA MOTOS AUTO		AUTO	STATION	CA	MIONET	AS	MIODO	Bl	JS		CAMION			SEMIT	RAYLER			TRA'	YLER		
HURA	мотоѕ	AUIU	WAGON	PICK UP		RUKAL	MICRO	2 E	3 E	2 E	3 E	4 E	2S1/2S2	2\$3	3S1/3S2			2T3	3T2		TOTAL
						0.0			00 00	~	∞		, , , ,	~~~		~~		****	• • • •		
0-1		1																			1
1-2				1																	1
2-3																					0
3-4																					0
4-5		1																			1
5-6																					0
6-7		1								1	2	11									5
7-8		2		1																	3
8-9		1	1	1						2	1										6
9-10		1																			1
10-11		1		1						1	2	1									6
11-12			1							1											2
12-13		1		2																	3
13-14		2		1						1											4
14-15		1		1						2	1										5
15-16		2																			2
16-17				1						1											2
17-18																					0
18-19		1		2																	3
19-20		2	1																		3
20-21		1		1																	2
21-22		1		1																	2
22-23		1																			1
23-24																					0
TOTALES	0	20	3	13	0	0	0	0	0	9	6	2	0	0	0	0	0	0	0	0	53

ESTACIÓN	E-1
FECHA	DOMINGO-AGOSTO
UBICACIÓN	Calle Andrés Rázuri

				CA	MIONET	AS		Bl	JS		CAMION			SEMI TI	RAYLER			TRAY	/LER		
HORA	мотоѕ	AUTO	STATION WAGON	PICK UP	PANEL	Combi		2 E	3 E	2 E	3 E		2S1/2S2		3\$1/3\$2			2Т3	3T2		TOTAL
						-0-0			00000	÷	***		, , ,	**************************************		~~					
0-1																					0
1-2		1																			1
2-3		1																			1
3-4		1																			1
4-5																					0
5-6		2	1																		3
6-7		1																			1
7-8		2	1	2																	5
8-9				1						1	1										3
9-10		1								2											3
10-11		1	1																		2
11-12				1						1											2
12-13		1	1	2																	4
13-14		1		2						1											4
14-15		1		1																	2
15-16		1	1	1							1										4
16-17				1						2											3
17-18		2		1																	3
18-19																					0
19-20		1		2																	3
20-21		1																		<u> </u>	1
21-22		2	1	1																<u> </u>	4
22-23		1		2																<u> </u>	3
23-24		1																		<u> </u>	1
TOTALES		22	6	17	0	0	0	0	0	7	2	0	0	0	0	0	0	0	0	0	54

ESTACIÓN	E-1
FECHA	LUNES-AGOSTO
UBICACIÓN	Calle Andrés Rázuri

				CA	MIONET	AS		Bl	JS		CAMION			SEMI TI	RAYLER			TRAY	/LER		
HORA	мотоѕ	AUTO	STATION WAGON		PANEL	RURAL Combi	MICRO	2 E	3 E	2 E	3 E	4 E	2\$1/2\$2		3\$1/3\$2			2T3	3T2	3T3	TOTAL
						-0-0		61-0	00 00	, [***	~~ ~ 	0 00	~~		***			
0-1																					0
1-2																					0
2-3																					0
3-4		1																			1
4-5																					0
5-6		1																			1
6-7		1	1	2																	4
7-8										2											2
8-9		1								1	3	2									7
9-10		1		1						1	1										4
10-11		1								1	1	1									4
11-12		2		1																	3
12-13			1							1	1										3
13-14		1		1																	2
14-15										1											1
15-16		1		1																	2
16-17		2	1	1						2	1										7
17-18		1								1											2
18-19		2		1						2	2	1									8
19-20		1		1							1										3
20-21		1	1																		2
21-22																					0
22-23																					0
23-24																					0
TOTALES		17	4	9	0	0	0	0	0	12	10	4	0	0	0	0	0	0	0	0	56

Anexo 6.4. Ficha de recolección de datos N° 01

Diseño de Infraestructura Vial de las calles del sector PROYECTO: Cafetal I, distrito de Guadalupe, provincia de

Pacasmayo, 2021.

Cedrón Pilco, Bernardo Raúl Ángel Marquillo Gutierrez, Yesenia Thalía **AUTORES:**

	Marquillo G				
۸ão	Maa	Día	Draginitación	Tempe	eratura
Año	Mes	Día	Precipitación	Máxima	Mínima
2000	1	1	0	27.2	18.2
2000	1	2	0	25.6	19.8
2000	1	3	0	25.8	17.4
2000	1	4	0	26.4	16.6
2000	1	5	0	26.4	16.9
2000	1	6	0	28.2	16.5
2000	1	7	0	26.4	16.6
2000	1	8	0	26.4	17.1
2000	1	9	0	27.8	19
2000	1	10	0	28.6	19.3
2000	1	11	0	29.8	19.4
2000	1	12	0	27.6	17
2000	1	13	0	27.6	17.8
2000	1	14	0	28	18.3
2000	1	15	0	27	18.3
2000	1	16	0	28.2	18.2
2000	1	17	0	27.6	17.4
2000	1	18	0	28	18.5
2000	1	19	0	28.4	19
2000	1	20	0	27.8	19.7
2000	1	21	0	28.4	20
2000	1	22	0	30	20.7
2000	1	23	0	28.2	19.8
2000	1	24	0	28.6	18.8
2000	1	25	0	29.6	19.2
2000	1	26	0	29	19.2
2000	1	27	0	26.2	20.1
2000	1	28	0	29.2	20.2
2000	1	29	0	28.6	20
2000	1	30	0	29.8	19.6
2000	1	31	0	30.4	19.5
2000	2	1	0	29.4	21
2000	2	2	0	29.6	20.5
2000	2	3	0	29.2	20.6
2000	2	4	0	29	20.4
2000	2	5	0	28.8	20.2
2000	2	6	0.3	27.6	20.3
2000	2	7	0	30	20.6
2000	2	8	0	28	19.7

2000	2	9	0	26.2	20
2000	2	10	0	28.6	19.9
2000	2	11	0	29.6	17.5
2000	2	12	0	29.4	17.5
2000	2	13	0	28.8	18
2000	2	14	0	29.2	18.3
2000	2	15	0	28.6	18.7
2000	2	16	0	27.8	18.8
2000	2	17	0	29.6	18.8
2000	2	18	0	28.4	19
2000	2	19	3.8	29	20.4
2000	2	20	0	28.6	19.7
2000	2	21	0	29.2	19.8
2000	2	22	0	28.8	20
2000	2	23	0	29.4	19.8
2000	2	24	0	29.2	19.2
2000	2	25	1	29	20.2
2000	2	26	0	28.8	21
2000	2	27	0	29.6	20.2
2000	2	28	0	29.2	19.8
2000	2	29	0.2	27.2	19.6
2000	3	1	0	28.4	19.2
2000		2	0	29	18.8
2000	3	3	0	28.8	19.5
2000	3 3 3	4	0	30	19.5
2000		5	0	29.8	20.1
2000	3	6	1.9	29.2	20.8
2000	3	7	0	28.4	20.7
2000	3	8	0	29.4	20
2000	3	9	0	31.4	20.1
2000		10	0	30.8	21.7
2000	3	11	0	30.4	21.2
2000	3	12	0	29.4	20.5
2000	3	13	0	29.4	19.4
2000	3	14	0	30.4	20.1
2000		15	0	29	19
2000	3	16	0	29	18.6
2000	3	17	0	30.2	18.7
2000	3	18	0	28.4	18.6
2000	3	19	0	28.2	16.5
2000	3	20	0	29.6	17.7
2000	3	21	0	28.4	17.8
2000	3	22	0	28.6	18.4
2000	3	23	0.1	28	17.4
2000	3	24	0	27.2	17.5
2000	3	25	1	30	18.9
2000	3	26	0	29.8	19

2000 3 27 0 -99.9 -99.9 -99.9 2000 3 28 0 -99.9 -99.9 -99.9 2000 3 30 0 29.8 -99.9 -99.9 2000 4 1 0.2 29.6 -99.9 -99.9 2000 4 1 0.2 29.6 -99.9 -99.9 2000 4 2 0 28.8 -99.9 -99.9 2000 4 3 0 29.6 -99.9 -99.9 2000 4 4 0.3 28.4 -99.9 -99.9 2000 4 6 0 29.2 -99.9 -99.9 2000 4 6 0 29.2 -99.9 -99.9 2000 4 8 0 28.6 -99.9 -99.9 2000 4 11 0 28.6 -99.9 -99.9 2000 <						
2000 3 29 1 -99.9 -99.9 2000 3 31 0 30 -99.9 2000 4 1 0.2 29.6 -99.9 2000 4 1 0.2 29.6 -99.9 2000 4 2 0 28.8 -99.9 2000 4 3 0 29.6 -99.9 2000 4 4 0.3 28.4 -99.9 2000 4 5 0 29.4 -99.9 2000 4 6 0 29.2 -99.9 2000 4 7 0 28.6 -99.9 2000 4 8 0 28.6 -99.9 2000 4 10 0 30.8 -99.9 2000 4 10 0 30.8 -99.9 2000 4 11 0 28.6 -99.9 2000	2000		27	0	-99.9	19.7
2000 3 29 1 -99.9 -99.9 2000 3 31 0 30 -99.9 2000 4 1 0.2 29.6 -99.9 2000 4 1 0.2 29.6 -99.9 2000 4 2 0 28.8 -99.9 2000 4 3 0 29.6 -99.9 2000 4 4 0.3 28.4 -99.9 2000 4 5 0 29.4 -99.9 2000 4 6 0 29.2 -99.9 2000 4 7 0 28.6 -99.9 2000 4 8 0 28.6 -99.9 2000 4 10 0 30.8 -99.9 2000 4 10 0 30.8 -99.9 2000 4 11 0 28.6 -99.9 2000	2000	3	28	0	-99.9	-99.9
2000 3 30 0 29.8 -99.9 2000 4 1 0.2 29.6 -99.9 2000 4 1 0.2 29.6 -99.9 2000 4 2 0 28.8 -99.9 2000 4 3 0 29.6 -99.9 2000 4 4 0.3 28.4 -99.9 2000 4 5 0 29.4 -99.9 2000 4 6 0 29.2 -99.9 2000 4 8 0 28.6 -99.9 2000 4 8 0 28.6 -99.9 2000 4 9 0 30.2 -99.9 2000 4 11 0 28.6 -99.9 2000 4 11 0 28.6 -99.9 2000 4 12 0 28.8 -99.9 2000	2000	3	29	1	-99.9	-99.9
2000 3 31 0 30 -99.9 2000 4 1 0.2 29.6 -99.9 2000 4 2 0 28.8 -99.9 2000 4 3 0 29.6 -99.9 2000 4 4 0.3 28.4 -99.9 2000 4 6 0 29.2 -99.9 2000 4 6 0 29.2 -99.9 2000 4 6 0 29.9 -99.9 2000 4 7 0 28.6 -99.9 2000 4 9 0 30.2 -99.9 2000 4 10 0 30.8 -99.9 2000 4 11 0 28.6 -99.9 2000 4 13 0 29.6 -99.9 2000 4 13 0 29.6 -99.9 2000	2000	3	30	0	29.8	-99.9
2000 4 1 0.2 29.6 -99.9 2000 4 2 0 28.8 -99.9 2000 4 3 0 29.6 -99.9 2000 4 4 0.3 28.4 -99.9 2000 4 5 0 29.4 -99.9 2000 4 6 0 29.2 -99.9 2000 4 7 0 28.6 -99.9 2000 4 8 0 28.6 -99.9 2000 4 9 0 30.2 -99.9 2000 4 11 0 28.6 -99.9 2000 4 11 0 28.6 -99.9 2000 4 11 0 28.6 -99.9 2000 4 12 0 28.8 -99.9 2000 4 15 0 29.6 -99.9 2000		3				
2000 4 2 0 28.8 -99.9 2000 4 3 0 29.6 -99.9 2000 4 4 0.3 28.4 -99.9 2000 4 5 0 29.4 -99.9 2000 4 6 0 29.2 -99.9 2000 4 8 0 28.6 -99.9 2000 4 8 0 28.6 -99.9 2000 4 10 0 30.8 -99.9 2000 4 11 0 28.6 -99.9 2000 4 11 0 28.6 -99.9 2000 4 12 0 28.8 -99.9 2000 4 13 0 29 -99.9 2000 4 14 0 30.2 -99.9 2000 4 15 0 29.6 -99.9 2000				0.2		
2000 4 3 0 29.6 -99.9 2000 4 4 0.3 28.4 -99.9 2000 4 5 0 29.4 -99.9 2000 4 6 0 29.2 -99.9 2000 4 7 0 28.6 -99.9 2000 4 9 0 30.2 -99.9 2000 4 10 0 30.8 -99.9 2000 4 11 0 28.6 -99.9 2000 4 11 0 28.6 -99.9 2000 4 11 0 28.6 -99.9 2000 4 13 0 29 -99.9 2000 4 14 0 30.2 -99.9 2000 4 15 0 29.6 -99.9 2000 4 17 0 29.6 -99.9 2000						
2000 4 4 0.3 28.4 -99.9 2000 4 5 0 29.4 -99.9 2000 4 6 0 29.2 -99.9 2000 4 7 0 28.6 -99.9 2000 4 8 0 28.6 -99.9 2000 4 9 0 30.2 -99.9 2000 4 10 0 30.8 -99.9 2000 4 11 0 28.6 -99.9 2000 4 12 0 28.8 -99.9 2000 4 13 0 29 -99.9 2000 4 15 0 29.6 -99.9 2000 4 15 0 29.6 -99.9 2000 4 16 0 29.4 -99.9 2000 4 17 0 29.6 -99.9 2000						
2000 4 5 0 29.4 -99.9 2000 4 6 0 29.2 -99.9 2000 4 7 0 28.6 -99.9 2000 4 8 0 28.6 -99.9 2000 4 9 0 30.2 -99.9 2000 4 10 0 30.8 -99.9 2000 4 11 0 28.6 -99.9 2000 4 12 0 28.8 -99.9 2000 4 13 0 29 -99.9 2000 4 14 0 30.2 -99.9 2000 4 15 0 29.6 -99.9 2000 4 16 0 29.4 -99.9 2000 4 16 0 29.4 -99.9 2000 4 18 0 28.2 -99.9 2000						
2000 4 6 0 29.2 -99.9 2000 4 7 0 28.6 -99.9 2000 4 8 0 28.6 -99.9 2000 4 9 0 30.2 -99.9 2000 4 10 0 30.8 -99.9 2000 4 11 0 28.6 -99.9 2000 4 12 0 28.8 -99.9 2000 4 13 0 29 -99.9 2000 4 15 0 29.6 -99.9 2000 4 16 0 29.4 -99.9 2000 4 17 0 29.6 -99.9 2000 4 18 0 28.2 -99.9 2000 4 18 0 28.2 -99.9 2000 4 21 0 28.6 -99.9 2000						
2000 4 7 0 28.6 -99.9 2000 4 8 0 28.6 -99.9 2000 4 9 0 30.2 -99.9 2000 4 10 0 30.8 -99.9 2000 4 11 0 28.6 -99.9 2000 4 12 0 28.8 -99.9 2000 4 13 0 29 -99.9 2000 4 14 0 30.2 -99.9 2000 4 15 0 29.6 -99.9 2000 4 16 0 29.4 -99.9 2000 4 16 0 29.4 -99.9 2000 4 18 0 28.2 -99.9 2000 4 18 0 28.2 -99.9 2000 4 20 0 27.6 -99.9 2000						
2000 4 8 0 28.6 -99.9 2000 4 9 0 30.2 -99.9 2000 4 10 0 30.8 -99.9 2000 4 11 0 28.6 -99.9 2000 4 12 0 28.8 -99.9 2000 4 13 0 29 -99.9 2000 4 14 0 30.2 -99.9 2000 4 15 0 29.6 -99.9 2000 4 16 0 29.4 -99.9 2000 4 16 0 29.4 -99.9 2000 4 18 0 28.2 -99.9 2000 4 19 0 27.6 -99.9 2000 4 20 0 27.6 -99.9 2000 4 21 0 28.6 -99.9 2000						
2000 4 9 0 30.2 -99.9 2000 4 10 0 30.8 -99.9 2000 4 11 0 28.6 -99.9 2000 4 12 0 28.8 -99.9 2000 4 13 0 29 -99.9 2000 4 14 0 30.2 -99.9 2000 4 15 0 29.6 -99.9 2000 4 16 0 29.4 -99.9 2000 4 17 0 29.6 -99.9 2000 4 18 0 28.2 -99.9 2000 4 19 0 27.6 -99.9 2000 4 20 0 27.6 -99.9 2000 4 21 0 28.2 -99.9 2000 4 22 0 28.6 -99.9 2000	2000		8	0	28.6	-99.9
2000 4 10 0 30.8 -99.9 2000 4 11 0 28.6 -99.9 2000 4 12 0 28.8 -99.9 2000 4 13 0 29 -99.9 2000 4 14 0 30.2 -99.9 2000 4 15 0 29.6 -99.9 2000 4 16 0 29.4 -99.9 2000 4 16 0 29.4 -99.9 2000 4 18 0 28.2 -99.9 2000 4 18 0 28.2 -99.9 2000 4 19 0 27.6 -99.9 2000 4 21 0 28.2 -99.9 2000 4 21 0 28.2 -99.9 2000 4 23 0 28.4 -99.9 2000	2000	4		0	30.2	
2000 4 11 0 28.6 -99.9 2000 4 12 0 28.8 -99.9 2000 4 13 0 29 -99.9 2000 4 14 0 30.2 -99.9 2000 4 15 0 29.6 -99.9 2000 4 16 0 29.4 -99.9 2000 4 16 0 29.6 -99.9 2000 4 18 0 28.2 -99.9 2000 4 18 0 28.2 -99.9 2000 4 19 0 27.6 -99.9 2000 4 21 0 28.2 -99.9 2000 4 21 0 28.6 -99.9 2000 4 22 0 28.6 -99.9 2000 4 24 1 30 -99.9 2000	2000	4	10	0	30.8	-99.9
2000 4 12 0 28.8 -99.9 2000 4 13 0 29 -99.9 2000 4 14 0 30.2 -99.9 2000 4 15 0 29.6 -99.9 2000 4 16 0 29.4 -99.9 2000 4 17 0 29.6 -99.9 2000 4 18 0 28.2 -99.9 2000 4 19 0 27.6 -99.9 2000 4 20 0 27.6 -99.9 2000 4 21 0 28.2 -99.9 2000 4 21 0 28.6 -99.9 2000 4 22 0 28.6 -99.9 2000 4 24 1 30 -99.9 2000 4 24 1 30 -99.9 2000	2000	4		0	28.6	-99.9
2000 4 14 0 30.2 -99.9 2000 4 15 0 29.6 -99.9 2000 4 16 0 29.4 -99.9 2000 4 17 0 29.6 -99.9 2000 4 18 0 28.2 -99.9 2000 4 19 0 27.6 -99.9 2000 4 20 0 27.6 -99.9 2000 4 21 0 28.2 -99.9 2000 4 21 0 28.6 -99.9 2000 4 22 0 28.6 -99.9 2000 4 23 0 28.4 -99.9 2000 4 24 1 30 -99.9 2000 4 25 0 29.4 -99.9 2000 4 26 0 29.6 -99.9 2000	2000		12	0	28.8	-99.9
2000 4 15 0 29.6 -99.9 2000 4 16 0 29.4 -99.9 2000 4 17 0 29.6 -99.9 2000 4 18 0 28.2 -99.9 2000 4 19 0 27.6 -99.9 2000 4 20 0 27.6 -99.9 2000 4 21 0 28.2 -99.9 2000 4 21 0 28.6 -99.9 2000 4 22 0 28.6 -99.9 2000 4 23 0 28.4 -99.9 2000 4 24 1 30 -99.9 2000 4 24 1 30 -99.9 2000 4 26 0 29.6 -99.9 2000 4 28 0 29 -99.9 2000	2000	4	13	0	29	-99.9
2000 4 16 0 29.4 -99.9 2000 4 17 0 29.6 -99.9 2000 4 18 0 28.2 -99.9 2000 4 19 0 27.6 -99.9 2000 4 20 0 27.6 -99.9 2000 4 21 0 28.2 -99.9 2000 4 21 0 28.6 -99.9 2000 4 22 0 28.6 -99.9 2000 4 23 0 28.4 -99.9 2000 4 24 1 30 -99.9 2000 4 25 0 29.4 -99.9 2000 4 26 0 29.6 -99.9 2000 4 28 0 29 -99.9 2000 4 28 0 29.6 -99.9 2000	2000	4	14	0	30.2	-99.9
2000 4 17 0 29.6 -99.9 2000 4 18 0 28.2 -99.9 2000 4 19 0 27.6 -99.9 2000 4 20 0 27.6 -99.9 2000 4 21 0 28.2 -99.9 2000 4 22 0 28.6 -99.9 2000 4 23 0 28.4 -99.9 2000 4 24 1 30 -99.9 2000 4 25 0 29.4 -99.9 2000 4 26 0 29.6 -99.9 2000 4 26 0 29.6 -99.9 2000 4 28 0 29 -99.9 2000 4 28 0 29 -99.9 2000 4 30 0 30 -99.9 2000	2000	4	15	0	29.6	-99.9
2000 4 18 0 28.2 -99.9 2000 4 19 0 27.6 -99.9 2000 4 20 0 27.6 -99.9 2000 4 21 0 28.2 -99.9 2000 4 22 0 28.6 -99.9 2000 4 23 0 28.4 -99.9 2000 4 24 1 30 -99.9 2000 4 25 0 29.4 -99.9 2000 4 26 0 29.6 -99.9 2000 4 27 0 28.6 -99.9 2000 4 28 0 29 -99.9 2000 4 29 0 29.6 -99.9 2000 4 30 0 30 -99.9 2000 5 1 0 29.4 -99.9 2000	2000	4	16	0	29.4	-99.9
2000 4 19 0 27.6 -99.9 2000 4 20 0 27.6 -99.9 2000 4 21 0 28.2 -99.9 2000 4 22 0 28.6 -99.9 2000 4 23 0 28.4 -99.9 2000 4 24 1 30 -99.9 2000 4 25 0 29.4 -99.9 2000 4 26 0 29.6 -99.9 2000 4 27 0 28.6 -99.9 2000 4 28 0 29 -99.9 2000 4 29 0 29.6 -99.9 2000 4 30 0 30 -99.9 2000 5 1 0 29.4 -99.9 2000 5 2 0 28.8 -99.9 2000	2000	4	17	0	29.6	-99.9
2000 4 20 0 27.6 -99.9 2000 4 21 0 28.2 -99.9 2000 4 22 0 28.6 -99.9 2000 4 23 0 28.4 -99.9 2000 4 24 1 30 -99.9 2000 4 25 0 29.4 -99.9 2000 4 26 0 29.6 -99.9 2000 4 27 0 28.6 -99.9 2000 4 28 0 29 -99.9 2000 4 29 0 29.6 -99.9 2000 4 30 0 30 -99.9 2000 5 1 0 29.4 -99.9 2000 5 2 0 28.8 -99.9 2000 5 3 0 26 -99.9 2000	2000	4	18	0	28.2	-99.9
2000 4 21 0 28.2 -99.9 2000 4 22 0 28.6 -99.9 2000 4 23 0 28.4 -99.9 2000 4 24 1 30 -99.9 2000 4 25 0 29.4 -99.9 2000 4 26 0 29.6 -99.9 2000 4 27 0 28.6 -99.9 2000 4 28 0 29 -99.9 2000 4 29 0 29.6 -99.9 2000 4 30 0 30 -99.9 2000 5 1 0 29.4 -99.9 2000 5 2 0 28.8 -99.9 2000 5 3 0 26 -99.9 2000 5 4 0.2 25.2 -99.9 2000	2000	4	19	0	27.6	-99.9
2000 4 22 0 28.6 -99.9 2000 4 23 0 28.4 -99.9 2000 4 24 1 30 -99.9 2000 4 25 0 29.4 -99.9 2000 4 26 0 29.6 -99.9 2000 4 27 0 28.6 -99.9 2000 4 28 0 29 -99.9 2000 4 29 0 29.6 -99.9 2000 4 30 0 30 -99.9 2000 5 1 0 29.4 -99.9 2000 5 2 0 28.8 -99.9 2000 5 3 0 26 -99.9 2000 5 4 0.2 25.2 -99.9 2000 5 5 0 29.4 -99.9 2000	2000	4	20	0	27.6	-99.9
2000 4 23 0 28.4 -99.9 2000 4 24 1 30 -99.9 2000 4 25 0 29.4 -99.9 2000 4 26 0 29.6 -99.9 2000 4 27 0 28.6 -99.9 2000 4 28 0 29 -99.9 2000 4 29 0 29.6 -99.9 2000 4 30 0 30 -99.9 2000 5 1 0 29.4 -99.9 2000 5 2 0 28.8 -99.9 2000 5 3 0 26 -99.9 2000 5 4 0.2 25.2 -99.9 2000 5 5 0 29.4 -99.9 2000 5 6 0 28.6 -99.9 2000 <	2000	4	21	0	28.2	-99.9
2000 4 24 1 30 -99.9 2000 4 25 0 29.4 -99.9 2000 4 26 0 29.6 -99.9 2000 4 27 0 28.6 -99.9 2000 4 28 0 29 -99.9 2000 4 29 0 29.6 -99.9 2000 4 30 0 30 -99.9 2000 5 1 0 29.4 -99.9 2000 5 2 0 28.8 -99.9 2000 5 3 0 26 -99.9 2000 5 4 0.2 25.2 -99.9 2000 5 4 0.2 25.2 -99.9 2000 5 5 0 29.4 -99.9 2000 5 6 0 28.6 -99.9 2000	2000	4	22	0	28.6	-99.9
2000 4 25 0 29.4 -99.9 2000 4 26 0 29.6 -99.9 2000 4 27 0 28.6 -99.9 2000 4 28 0 29 -99.9 2000 4 29 0 29.6 -99.9 2000 4 30 0 30 -99.9 2000 5 1 0 29.4 -99.9 2000 5 2 0 28.8 -99.9 2000 5 3 0 26 -99.9 2000 5 4 0.2 25.2 -99.9 2000 5 5 0 29.4 -99.9 2000 5 6 0 28.6 -99.9 2000 5 6 0 28.6 -99.9 2000 5 8 0 27.2 -99.9 2000 <	2000	4	23	0	28.4	-99.9
2000 4 26 0 29.6 -99.9 2000 4 27 0 28.6 -99.9 2000 4 28 0 29 -99.9 2000 4 29 0 29.6 -99.9 2000 4 30 0 30 -99.9 2000 5 1 0 29.4 -99.9 2000 5 2 0 28.8 -99.9 2000 5 3 0 26 -99.9 2000 5 4 0.2 25.2 -99.9 2000 5 5 0 29.4 -99.9 2000 5 6 0 28.6 -99.9 2000 5 6 0 28.6 -99.9 2000 5 8 0 27.2 -99.9 2000 5 8 0 27.2 -99.9 2000 <t< td=""><td>2000</td><td></td><td>24</td><td>1</td><td>30</td><td>-99.9</td></t<>	2000		24	1	30	-99.9
2000 4 27 0 28.6 -99.9 2000 4 28 0 29 -99.9 2000 4 29 0 29.6 -99.9 2000 4 30 0 30 -99.9 2000 5 1 0 29.4 -99.9 2000 5 2 0 28.8 -99.9 2000 5 3 0 26 -99.9 2000 5 4 0.2 25.2 -99.9 2000 5 5 0 29.4 -99.9 2000 5 5 0 29.4 -99.9 2000 5 6 0 28.6 -99.9 2000 5 7 0 28 -99.9 2000 5 8 0 27.2 -99.9 2000 5 9 0.3 28.6 -99.9 2000 <td< td=""><td>2000</td><td></td><td>25</td><td>0</td><td>29.4</td><td>-99.9</td></td<>	2000		25	0	29.4	-99.9
2000 4 28 0 29 -99.9 2000 4 29 0 29.6 -99.9 2000 4 30 0 30 -99.9 2000 5 1 0 29.4 -99.9 2000 5 2 0 28.8 -99.9 2000 5 3 0 26 -99.9 2000 5 4 0.2 25.2 -99.9 2000 5 5 0 29.4 -99.9 2000 5 6 0 28.6 -99.9 2000 5 7 0 28 -99.9 2000 5 8 0 27.2 -99.9 2000 5 9 0.3 28.6 -99.9 2000 5 10 0 27.2 -99.9 2000 5 10 0 27.2 -99.9 2000 <t< td=""><td>2000</td><td>4</td><td>26</td><td>0</td><td>29.6</td><td>-99.9</td></t<>	2000	4	26	0	29.6	-99.9
2000 4 29 0 29.6 -99.9 2000 4 30 0 30 -99.9 2000 5 1 0 29.4 -99.9 2000 5 2 0 28.8 -99.9 2000 5 3 0 26 -99.9 2000 5 4 0.2 25.2 -99.9 2000 5 5 0 29.4 -99.9 2000 5 6 0 28.6 -99.9 2000 5 7 0 28 -99.9 2000 5 8 0 27.2 -99.9 2000 5 9 0.3 28.6 -99.9 2000 5 10 0 27.2 -99.9 2000 5 11 0 28.2 -99.9	2000	4	27	0	28.6	-99.9
2000 4 30 0 30 -99.9 2000 5 1 0 29.4 -99.9 2000 5 2 0 28.8 -99.9 2000 5 3 0 26 -99.9 2000 5 4 0.2 25.2 -99.9 2000 5 5 0 29.4 -99.9 2000 5 6 0 28.6 -99.9 2000 5 7 0 28 -99.9 2000 5 8 0 27.2 -99.9 2000 5 9 0.3 28.6 -99.9 2000 5 10 0 27.2 -99.9 2000 5 11 0 28.2 -99.9	2000	4	28	0	29	-99.9
2000 5 1 0 29.4 -99.9 2000 5 2 0 28.8 -99.9 2000 5 3 0 26 -99.9 2000 5 4 0.2 25.2 -99.9 2000 5 5 0 29.4 -99.9 2000 5 6 0 28.6 -99.9 2000 5 7 0 28 -99.9 2000 5 8 0 27.2 -99.9 2000 5 9 0.3 28.6 -99.9 2000 5 10 0 27.2 -99.9 2000 5 11 0 28.2 -99.9	2000		29	0	29.6	-99.9
2000 5 2 0 28.8 -99.9 2000 5 3 0 26 -99.9 2000 5 4 0.2 25.2 -99.9 2000 5 5 0 29.4 -99.9 2000 5 6 0 28.6 -99.9 2000 5 7 0 28 -99.9 2000 5 8 0 27.2 -99.9 2000 5 9 0.3 28.6 -99.9 2000 5 10 0 27.2 -99.9 2000 5 11 0 28.2 -99.9	2000		30	0	30	-99.9
2000 5 3 0 26 -99.9 2000 5 4 0.2 25.2 -99.9 2000 5 5 0 29.4 -99.9 2000 5 6 0 28.6 -99.9 2000 5 7 0 28 -99.9 2000 5 8 0 27.2 -99.9 2000 5 9 0.3 28.6 -99.9 2000 5 10 0 27.2 -99.9 2000 5 11 0 28.2 -99.9	2000				29.4	-99.9
2000 5 4 0.2 25.2 -99.9 2000 5 5 0 29.4 -99.9 2000 5 6 0 28.6 -99.9 2000 5 7 0 28 -99.9 2000 5 8 0 27.2 -99.9 2000 5 9 0.3 28.6 -99.9 2000 5 10 0 27.2 -99.9 2000 5 11 0 28.2 -99.9	2000				28.8	-99.9
2000 5 5 0 29.4 -99.9 2000 5 6 0 28.6 -99.9 2000 5 7 0 28 -99.9 2000 5 8 0 27.2 -99.9 2000 5 9 0.3 28.6 -99.9 2000 5 10 0 27.2 -99.9 2000 5 11 0 28.2 -99.9	2000			0		-99.9
2000 5 6 0 28.6 -99.9 2000 5 7 0 28 -99.9 2000 5 8 0 27.2 -99.9 2000 5 9 0.3 28.6 -99.9 2000 5 10 0 27.2 -99.9 2000 5 11 0 28.2 -99.9				0.2		-99.9
2000 5 7 0 28 -99.9 2000 5 8 0 27.2 -99.9 2000 5 9 0.3 28.6 -99.9 2000 5 10 0 27.2 -99.9 2000 5 11 0 28.2 -99.9						-99.9
2000 5 8 0 27.2 -99.9 2000 5 9 0.3 28.6 -99.9 2000 5 10 0 27.2 -99.9 2000 5 11 0 28.2 -99.9						
2000 5 9 0.3 28.6 -99.9 2000 5 10 0 27.2 -99.9 2000 5 11 0 28.2 -99.9						
2000 5 10 0 27.2 -99.9 2000 5 11 0 28.2 -99.9		5				
2000 5 11 0 28.2 -99.9						
2000 5 12 0 27.4 -99.9						
	2000	5	12	0	27.4	-99.9

2000	5	13	8.5	27	-99.9
2000	5	14	0	27	-99.9
2000	5	15	0	26.6	-99.9
2000	5	16	0	26.8	-99.9
2000	5	17	0	26.6	-99.9
2000	5	18	0	26.8	-99.9
2000	5	19	0	26	-99.9
2000	5	20	0	27.4	-99.9
2000	5	21	0	26.4	-99.9
2000	5	22	0	28	-99.9
2000	5	23	0	27	-99.9
2000	5	24	0	25.6	-99.9
2000	5	25	0	25.6	-99.9
2000	5	26	0	26.6	-99.9
2000	5	27	0	26	-99.9
2000	5	28	0	25.6	-99.9
2000	5	29	0	27	-99.9
2000	5	30	0	26.4	-99.9
2000	5	31	0	27.4	-99.9
2000	6	1	0	25	-99.9
2000	6	2	0	27.6	-99.9
2000	6	3	0	27.2	-99.9
2000	6	4	0	27.2	-99.9
2000	6	5	0	24.6	-99.9
2000	6	6	0	23.2	-99.9
2000	6	7	0	26.2	-99.9
2000	6	8	0	25	-99.9
2000	6	9	0	25	-99.9
2000	6	10	0	25.6	-99.9
2000	6	11	0	25.6	-99.9
2000	6	12	0	26	-99.9
2000	6	13	0	23.2	-99.9
2000	6	14	0	23.2	-99.9
2000	6	15	0	24.2	-99.9
2000	6	16	0	26	-99.9
2000	6	17	0	24.8	-99.9
2000	6	18	0	21.8	-99.9
2000	6	19	0	25.6	-99.9
2000	6	20	0	25	-99.9
2000	6	21	0.4	21.8	-99.9
2000	6	22	0	22	-99.9
2000	6	23	0	23.8	-99.9
2000	6	24	0	21.4	-99.9
2000	6	25	0	21.8	-99.9
2000	6	26	0	23.6	-99.9
2000	6	27	0	21.8	-99.9
2000	6	28	0	23.8	-99.9

2000 6 29 0 26 -99.9 2000 6 30 0 24.2 -99.9 2000 7 1 0 21 -99.9 2000 7 2 0 22.8 -99.9 2000 7 4 0 22.4 -99.9 2000 7 4 0 22.4 -99.9 2000 7 6 0 25.4 -99.9 2000 7 6 0 25.4 -99.9 2000 7 8 0 24 -99.9 2000 7 9 0 24.2 -99.9 2000 7 10 0 25.4 -99.9 2000 7 11 0 24.6 -99.9 2000 7 12 0 24.6 -99.9 2000 7 14 0 24.4 -99.9 2000 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<>						
2000 7 1 0 21 -99.9 2000 7 2 0 22.8 -99.9 2000 7 3 0 25 -99.9 2000 7 4 0 22.4 -99.9 2000 7 5 0 25.4 -99.9 2000 7 6 0 25.4 -99.9 2000 7 7 0 25.4 -99.9 2000 7 8 0 24 -99.9 2000 7 10 0 25.9 -99.9 2000 7 10 0 25.5 -99.9 -99.9 2000 7 11 0 24.6 -99.9 -99.9 2000 7 13 0 25.4 -99.9 -99.9 2000 7 14 0 24.4 -99.9 -99.9 2000 7 16 0	2000	6	29	0	26	-99.9
2000 7 2 0 22.8 -99.9 2000 7 3 0 25 -99.9 2000 7 4 0 22.4 -99.9 2000 7 5 0 25.4 -99.9 2000 7 6 0 25.4 -99.9 2000 7 8 0 24 -99.9 2000 7 8 0 24 -99.9 2000 7 9 0 24.2 -99.9 2000 7 10 0 25 -99.9 2000 7 11 0 24.6 -99.9 2000 7 12 0 24.6 -99.9 2000 7 14 0 24.4 -99.9 2000 7 14 0 24.4 -99.9 2000 7 16 0 24.2 -99.9 2000 7	2000		30	0	24.2	-99.9
2000 7 3 0 25 -99.9 2000 7 4 0 22.4 -99.9 2000 7 5 0 25.4 -99.9 2000 7 6 0 25.4 -99.9 2000 7 7 0 25.4 -99.9 2000 7 9 0 24.2 -99.9 2000 7 10 0 25.5 -99.9 2000 7 11 0 24.6 -99.9 2000 7 11 0 24.6 -99.9 2000 7 13 0 25.4 -99.9 2000 7 13 0 25.4 -99.9 2000 7 15 0 23.6 -99.9 2000 7 16 0 24.2 -99.9 2000 7 17 0 22.6 -99.9 2000	2000		1	0	21	-99.9
2000 7 4 0 22.4 -99.9 2000 7 5 0 25.4 -99.9 2000 7 6 0 25.4 -99.9 2000 7 7 0 25.4 -99.9 2000 7 8 0 24 -99.9 2000 7 10 0 24.2 -99.9 2000 7 10 0 25.9 -99.9 2000 7 11 0 24.6 -99.9 2000 7 12 0 24.6 -99.9 2000 7 13 0 25.4 -99.9 2000 7 14 0 24.6 -99.9 2000 7 15 0 23.6 -99.9 2000 7 16 0 24.2 -99.9 2000 7 17 0 22.6 -99.9 2000	2000	7	2	0	22.8	-99.9
2000 7 4 0 22.4 -99.9 2000 7 5 0 25.4 -99.9 2000 7 6 0 25.4 -99.9 2000 7 7 0 25.4 -99.9 2000 7 8 0 24 -99.9 2000 7 10 0 24.2 -99.9 2000 7 10 0 25.9 -99.9 2000 7 11 0 24.6 -99.9 2000 7 12 0 24.6 -99.9 2000 7 13 0 25.4 -99.9 2000 7 14 0 24.6 -99.9 2000 7 15 0 23.6 -99.9 2000 7 16 0 24.2 -99.9 2000 7 17 0 22.6 -99.9 2000	2000	7	3	0	25	-99.9
2000 7 5 0 25.4 -99.9 2000 7 6 0 25.4 -99.9 2000 7 7 0 25.4 -99.9 2000 7 8 0 24 -99.9 2000 7 9 0 24.2 -99.9 2000 7 10 0 25 -99.9 2000 7 11 0 24.6 -99.9 2000 7 12 0 24.6 -99.9 2000 7 13 0 25.4 -99.9 2000 7 14 0 24.4 -99.9 2000 7 15 0 23.6 -99.9 2000 7 16 0 24.2 -99.9 2000 7 18 0 21.8 -99.9 2000 7 19 0 23.6 -99.9 2000	2000	7		0	22.4	·
2000 7 6 0 25.4 -99.9 2000 7 7 0 25.4 -99.9 2000 7 8 0 24 -99.9 2000 7 9 0 24.2 -99.9 2000 7 10 0 25 -99.9 2000 7 11 0 24.6 -99.9 2000 7 12 0 24.6 -99.9 2000 7 13 0 25.4 -99.9 2000 7 14 0 24.4 -99.9 2000 7 16 0 24.2 -99.9 2000 7 16 0 24.2 -99.9 2000 7 18 0 21.8 -99.9 2000 7 18 0 21.8 -99.9 2000 7 20 0 23.6 -99.9 2000					1	
2000 7 8 0 24 -99.9 2000 7 8 0 24 -99.9 2000 7 9 0 24.2 -99.9 2000 7 10 0 25 -99.9 2000 7 11 0 24.6 -99.9 2000 7 12 0 24.6 -99.9 2000 7 13 0 25.4 -99.9 2000 7 14 0 24.4 -99.9 2000 7 15 0 23.6 -99.9 2000 7 16 0 24.2 -99.9 2000 7 18 0 21.8 -99.9 2000 7 18 0 21.8 -99.9 2000 7 20 0 23.6 -99.9 2000 7 21 0 24.2 -99.9 2000						·
2000 7 8 0 24 -99.9 2000 7 9 0 24.2 -99.9 2000 7 10 0 25 -99.9 2000 7 11 0 24.6 -99.9 2000 7 12 0 24.6 -99.9 2000 7 13 0 25.4 -99.9 2000 7 15 0 23.6 -99.9 2000 7 16 0 24.2 -99.9 2000 7 16 0 24.2 -99.9 2000 7 17 0 22.6 -99.9 2000 7 18 0 21.8 -99.9 2000 7 19 0 23.6 -99.9 2000 7 20 0 23.6 -99.9 2000 7 21 0 24.2 -99.9 2000						
2000 7 9 0 24.2 -99.9 2000 7 10 0 25 -99.9 2000 7 11 0 24.6 -99.9 2000 7 12 0 24.6 -99.9 2000 7 13 0 25.4 -99.9 2000 7 14 0 24.4 -99.9 2000 7 15 0 23.6 -99.9 2000 7 16 0 24.2 -99.9 2000 7 17 0 22.6 -99.9 2000 7 18 0 21.8 -99.9 2000 7 19 0 23.6 -99.9 2000 7 20 0 23.6 -99.9 2000 7 21 0 24.2 -99.9 2000 7 23 0 19.6 -99.9 2000						
2000 7 10 0 25 -99.9 2000 7 11 0 24.6 -99.9 2000 7 12 0 24.6 -99.9 2000 7 13 0 25.4 -99.9 2000 7 14 0 24.4 -99.9 2000 7 15 0 23.6 -99.9 2000 7 16 0 24.2 -99.9 2000 7 18 0 21.8 -99.9 2000 7 19 0 23.6 -99.9 2000 7 19 0 23.6 -99.9 2000 7 21 0 24.2 -99.9 2000 7 21 0 24.2 -99.9 2000 7 23 0 19.6 -99.9 2000 7 24 0 22 -99.9 2000						
2000 7 11 0 24.6 -99.9 2000 7 12 0 24.6 -99.9 2000 7 13 0 25.4 -99.9 2000 7 14 0 24.4 -99.9 2000 7 16 0 24.2 -99.9 2000 7 16 0 24.2 -99.9 2000 7 17 0 22.6 -99.9 2000 7 18 0 21.8 -99.9 2000 7 19 0 23.6 -99.9 2000 7 20 0 23.6 -99.9 2000 7 21 0 24.2 -99.9 2000 7 22 0 21.4 -99.9 2000 7 23 0 19.6 -99.9 2000 7 24 0 22 -99.9 2000						
2000 7 12 0 24.6 -99.9 2000 7 13 0 25.4 -99.9 2000 7 14 0 24.4 -99.9 2000 7 15 0 23.6 -99.9 2000 7 16 0 24.2 -99.9 2000 7 17 0 22.6 -99.9 2000 7 18 0 21.8 -99.9 2000 7 19 0 23.6 -99.9 2000 7 20 0 23.6 -99.9 2000 7 21 0 24.2 -99.9 2000 7 21 0 24.2 -99.9 2000 7 22 0 21.4 -99.9 2000 7 23 0 19.6 -99.9 2000 7 25 0 23.8 -99.9 2000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2000 7 13 0 25.4 -99.9 2000 7 14 0 24.4 -99.9 2000 7 15 0 23.6 -99.9 2000 7 16 0 24.2 -99.9 2000 7 17 0 22.6 -99.9 2000 7 18 0 21.8 -99.9 2000 7 19 0 23.6 -99.9 2000 7 20 0 23.6 -99.9 2000 7 21 0 24.2 -99.9 2000 7 21 0 24.2 -99.9 2000 7 23 0 19.6 -99.9 2000 7 24 0 22 -99.9 2000 7 25 0 23.8 -99.9 2000 7 26 0 24 -99.9 2000						
2000 7 14 0 24.4 -99.9 2000 7 15 0 23.6 -99.9 2000 7 16 0 24.2 -99.9 2000 7 17 0 22.6 -99.9 2000 7 18 0 21.8 -99.9 2000 7 19 0 23.6 -99.9 2000 7 20 0 23.6 -99.9 2000 7 21 0 24.2 -99.9 2000 7 21 0 24.2 -99.9 2000 7 23 0 19.6 -99.9 2000 7 24 0 22 -99.9 2000 7 24 0 22 -99.9 2000 7 26 0 24 -99.9 2000 7 28 0 23.2 -99.9 2000						
2000 7 15 0 23.6 -99.9 2000 7 16 0 24.2 -99.9 2000 7 17 0 22.6 -99.9 2000 7 18 0 21.8 -99.9 2000 7 19 0 23.6 -99.9 2000 7 20 0 23.6 -99.9 2000 7 21 0 24.2 -99.9 2000 7 21 0 24.2 -99.9 2000 7 23 0 19.6 -99.9 2000 7 24 0 22 -99.9 2000 7 25 0 23.8 -99.9 2000 7 26 0 24 -99.9 2000 7 28 0 23.2 -99.9 2000 7 28 0 23.4 -99.9 2000						
2000 7 16 0 24.2 -99.9 2000 7 17 0 22.6 -99.9 2000 7 18 0 21.8 -99.9 2000 7 19 0 23.6 -99.9 2000 7 20 0 23.6 -99.9 2000 7 21 0 24.2 -99.9 2000 7 22 0 21.4 -99.9 2000 7 23 0 19.6 -99.9 2000 7 24 0 22 -99.9 2000 7 25 0 23.8 -99.9 2000 7 26 0 24 -99.9 2000 7 26 0 24 -99.9 2000 7 28 0 23.2 -99.9 2000 7 29 0 23.4 -99.9 2000						
2000 7 17 0 22.6 -99.9 2000 7 18 0 21.8 -99.9 2000 7 19 0 23.6 -99.9 2000 7 20 0 23.6 -99.9 2000 7 21 0 24.2 -99.9 2000 7 22 0 21.4 -99.9 2000 7 22 0 21.4 -99.9 2000 7 23 0 19.6 -99.9 2000 7 24 0 22 -99.9 2000 7 25 0 23.8 -99.9 2000 7 26 0 24 -99.9 2000 7 28 0 23.2 -99.9 2000 7 28 0 23.2 -99.9 2000 7 30 0 26.6 -99.9 2000						·
2000 7 18 0 21.8 -99.9 2000 7 19 0 23.6 -99.9 2000 7 20 0 23.6 -99.9 2000 7 21 0 24.2 -99.9 2000 7 22 0 21.4 -99.9 2000 7 23 0 19.6 -99.9 2000 7 24 0 22 -99.9 2000 7 25 0 23.8 -99.9 2000 7 26 0 24 -99.9 2000 7 27 0 22.4 -99.9 2000 7 28 0 23.2 -99.9 2000 7 29 0 23.4 -99.9 2000 7 31 0 23.8 -99.9 2000 8 1 0 24 -99.9 2000						
2000 7 19 0 23.6 -99.9 2000 7 20 0 23.6 -99.9 2000 7 21 0 24.2 -99.9 2000 7 22 0 21.4 -99.9 2000 7 23 0 19.6 -99.9 2000 7 24 0 22 -99.9 2000 7 25 0 23.8 -99.9 2000 7 26 0 24 -99.9 2000 7 27 0 22.4 -99.9 2000 7 28 0 23.2 -99.9 2000 7 29 0 23.4 -99.9 2000 7 30 0 26.6 -99.9 2000 7 31 0 23.8 -99.9 2000 8 1 0 24 -99.9 2000						
2000 7 20 0 23.6 -99.9 2000 7 21 0 24.2 -99.9 2000 7 22 0 21.4 -99.9 2000 7 23 0 19.6 -99.9 2000 7 24 0 22 -99.9 2000 7 25 0 23.8 -99.9 2000 7 26 0 24 -99.9 2000 7 27 0 22.4 -99.9 2000 7 28 0 23.2 -99.9 2000 7 29 0 23.4 -99.9 2000 7 30 0 26.6 -99.9 2000 7 31 0 23.8 -99.9 2000 8 1 0 24 -99.9 2000 8 2 0 24.4 -99.9 2000						
2000 7 21 0 24.2 -99.9 2000 7 22 0 21.4 -99.9 2000 7 23 0 19.6 -99.9 2000 7 24 0 22 -99.9 2000 7 25 0 23.8 -99.9 2000 7 26 0 24 -99.9 2000 7 27 0 22.4 -99.9 2000 7 28 0 23.2 -99.9 2000 7 29 0 23.4 -99.9 2000 7 30 0 26.6 -99.9 2000 7 31 0 23.8 -99.9 2000 8 1 0 24 -99.9 2000 8 2 0 24.4 -99.9 2000 8 3 0 24.6 -99.9 2000			•		1	
2000 7 22 0 21.4 -99.9 2000 7 23 0 19.6 -99.9 2000 7 24 0 22 -99.9 2000 7 25 0 23.8 -99.9 2000 7 26 0 24 -99.9 2000 7 27 0 22.4 -99.9 2000 7 28 0 23.2 -99.9 2000 7 29 0 23.4 -99.9 2000 7 30 0 26.6 -99.9 2000 7 31 0 23.8 -99.9 2000 8 1 0 24 -99.9 2000 8 2 0 24.4 -99.9 2000 8 3 0 24.6 -99.9 2000 8 4 0 25.8 -99.9 2000						
2000 7 23 0 19.6 -99.9 2000 7 24 0 22 -99.9 2000 7 25 0 23.8 -99.9 2000 7 26 0 24 -99.9 2000 7 27 0 22.4 -99.9 2000 7 28 0 23.2 -99.9 2000 7 29 0 23.4 -99.9 2000 7 30 0 26.6 -99.9 2000 7 31 0 23.8 -99.9 2000 8 1 0 24 -99.9 2000 8 2 0 24.4 -99.9 2000 8 3 0 24.6 -99.9 2000 8 4 0 25.8 -99.9 2000 8 5 0 25.4 -99.9 2000						
2000 7 24 0 22 -99.9 2000 7 25 0 23.8 -99.9 2000 7 26 0 24 -99.9 2000 7 27 0 22.4 -99.9 2000 7 28 0 23.2 -99.9 2000 7 29 0 23.4 -99.9 2000 7 30 0 26.6 -99.9 2000 7 31 0 23.8 -99.9 2000 8 1 0 24 -99.9 2000 8 2 0 24.4 -99.9 2000 8 3 0 24.6 -99.9 2000 8 4 0 25.8 -99.9 2000 8 5 0 25.4 -99.9 2000 8 6 0 24.8 -99.9 2000 <						
2000 7 25 0 23.8 -99.9 2000 7 26 0 24 -99.9 2000 7 27 0 22.4 -99.9 2000 7 28 0 23.2 -99.9 2000 7 29 0 23.4 -99.9 2000 7 30 0 26.6 -99.9 2000 7 31 0 23.8 -99.9 2000 8 1 0 24 -99.9 2000 8 2 0 24.4 -99.9 2000 8 3 0 24.6 -99.9 2000 8 4 0 25.8 -99.9 2000 8 5 0 25.4 -99.9 2000 8 6 0 24.8 -99.9 2000 8 8 0.3 25.4 -99.9 2000						
2000 7 26 0 24 -99.9 2000 7 27 0 22.4 -99.9 2000 7 28 0 23.2 -99.9 2000 7 29 0 23.4 -99.9 2000 7 30 0 26.6 -99.9 2000 7 31 0 23.8 -99.9 2000 8 1 0 24 -99.9 2000 8 2 0 24.4 -99.9 2000 8 3 0 24.6 -99.9 2000 8 4 0 25.8 -99.9 2000 8 5 0 25.4 -99.9 2000 8 6 0 24.8 -99.9 2000 8 7 0 24.4 -99.9 2000 8 8 0.3 25.4 -99.9 2000						
2000 7 27 0 22.4 -99.9 2000 7 28 0 23.2 -99.9 2000 7 29 0 23.4 -99.9 2000 7 30 0 26.6 -99.9 2000 7 31 0 23.8 -99.9 2000 8 1 0 24 -99.9 2000 8 2 0 24.4 -99.9 2000 8 3 0 24.6 -99.9 2000 8 4 0 25.8 -99.9 2000 8 5 0 25.4 -99.9 2000 8 6 0 24.8 -99.9 2000 8 7 0 24.4 -99.9 2000 8 8 0.3 25.4 -99.9 2000 8 9 0 25.4 -99.9 2000						
2000 7 28 0 23.2 -99.9 2000 7 29 0 23.4 -99.9 2000 7 30 0 26.6 -99.9 2000 7 31 0 23.8 -99.9 2000 8 1 0 24 -99.9 2000 8 2 0 24.4 -99.9 2000 8 3 0 24.6 -99.9 2000 8 4 0 25.8 -99.9 2000 8 5 0 25.4 -99.9 2000 8 6 0 24.8 -99.9 2000 8 7 0 24.4 -99.9 2000 8 8 0.3 25.4 -99.9 2000 8 8 0.3 25.4 -99.9 2000 8 9 0 25.4 -99.9 2000						
2000 7 29 0 23.4 -99.9 2000 7 30 0 26.6 -99.9 2000 7 31 0 23.8 -99.9 2000 8 1 0 24 -99.9 2000 8 2 0 24.4 -99.9 2000 8 3 0 24.6 -99.9 2000 8 4 0 25.8 -99.9 2000 8 5 0 25.4 -99.9 2000 8 6 0 24.8 -99.9 2000 8 7 0 24.4 -99.9 2000 8 8 0.3 25.4 -99.9 2000 8 8 0.3 25.4 -99.9 2000 8 9 0 25.4 -99.9 2000 8 10 0 25.6 -99.9 2000						
2000 7 30 0 26.6 -99.9 2000 7 31 0 23.8 -99.9 2000 8 1 0 24 -99.9 2000 8 2 0 24.4 -99.9 2000 8 3 0 24.6 -99.9 2000 8 4 0 25.8 -99.9 2000 8 5 0 25.4 -99.9 2000 8 6 0 24.8 -99.9 2000 8 7 0 24.4 -99.9 2000 8 8 0.3 25.4 -99.9 2000 8 8 0.3 25.4 -99.9 2000 8 9 0 25.4 -99.9 2000 8 10 0 25.6 -99.9 2000 8 11 0 25.2 -99.9 2000						
2000 7 31 0 23.8 -99.9 2000 8 1 0 24 -99.9 2000 8 2 0 24.4 -99.9 2000 8 3 0 24.6 -99.9 2000 8 4 0 25.8 -99.9 2000 8 5 0 25.4 -99.9 2000 8 6 0 24.8 -99.9 2000 8 7 0 24.4 -99.9 2000 8 8 0.3 25.4 -99.9 2000 8 9 0 25.4 -99.9 2000 8 10 0 25.6 -99.9 2000 8 11 0 25.2 -99.9 2000 8 11 0 23.2 -99.9 2000 8 12 0 23.2 -99.9						
2000 8 1 0 24 -99.9 2000 8 2 0 24.4 -99.9 2000 8 3 0 24.6 -99.9 2000 8 4 0 25.8 -99.9 2000 8 5 0 25.4 -99.9 2000 8 6 0 24.8 -99.9 2000 8 7 0 24.4 -99.9 2000 8 8 0.3 25.4 -99.9 2000 8 9 0 25.4 -99.9 2000 8 10 0 25.6 -99.9 2000 8 11 0 25.2 -99.9 2000 8 12 0 23.2 -99.9 2000 8 13 0 23.2 -99.9						·
2000 8 2 0 24.4 -99.9 2000 8 3 0 24.6 -99.9 2000 8 4 0 25.8 -99.9 2000 8 5 0 25.4 -99.9 2000 8 6 0 24.8 -99.9 2000 8 7 0 24.4 -99.9 2000 8 8 0.3 25.4 -99.9 2000 8 9 0 25.4 -99.9 2000 8 10 0 25.6 -99.9 2000 8 11 0 25.2 -99.9 2000 8 12 0 23.2 -99.9 2000 8 13 0 23.2 -99.9						
2000 8 3 0 24.6 -99.9 2000 8 4 0 25.8 -99.9 2000 8 5 0 25.4 -99.9 2000 8 6 0 24.8 -99.9 2000 8 7 0 24.4 -99.9 2000 8 8 0.3 25.4 -99.9 2000 8 9 0 25.4 -99.9 2000 8 10 0 25.6 -99.9 2000 8 11 0 25.2 -99.9 2000 8 12 0 23.2 -99.9 2000 8 13 0 23.2 -99.9					1	
2000 8 4 0 25.8 -99.9 2000 8 5 0 25.4 -99.9 2000 8 6 0 24.8 -99.9 2000 8 7 0 24.4 -99.9 2000 8 8 0.3 25.4 -99.9 2000 8 9 0 25.4 -99.9 2000 8 10 0 25.6 -99.9 2000 8 11 0 25.2 -99.9 2000 8 12 0 23.2 -99.9 2000 8 13 0 23.2 -99.9						+
2000 8 5 0 25.4 -99.9 2000 8 6 0 24.8 -99.9 2000 8 7 0 24.4 -99.9 2000 8 8 0.3 25.4 -99.9 2000 8 9 0 25.4 -99.9 2000 8 10 0 25.6 -99.9 2000 8 11 0 25.2 -99.9 2000 8 12 0 23.2 -99.9 2000 8 13 0 23.2 -99.9						·
2000 8 6 0 24.8 -99.9 2000 8 7 0 24.4 -99.9 2000 8 8 0.3 25.4 -99.9 2000 8 9 0 25.4 -99.9 2000 8 10 0 25.6 -99.9 2000 8 11 0 25.2 -99.9 2000 8 12 0 23.2 -99.9 2000 8 13 0 23.2 -99.9						
2000 8 7 0 24.4 -99.9 2000 8 8 0.3 25.4 -99.9 2000 8 9 0 25.4 -99.9 2000 8 10 0 25.6 -99.9 2000 8 11 0 25.2 -99.9 2000 8 12 0 23.2 -99.9 2000 8 13 0 23.2 -99.9						
2000 8 8 0.3 25.4 -99.9 2000 8 9 0 25.4 -99.9 2000 8 10 0 25.6 -99.9 2000 8 11 0 25.2 -99.9 2000 8 12 0 23.2 -99.9 2000 8 13 0 23.2 -99.9						
2000 8 9 0 25.4 -99.9 2000 8 10 0 25.6 -99.9 2000 8 11 0 25.2 -99.9 2000 8 12 0 23.2 -99.9 2000 8 13 0 23.2 -99.9						-99.9
2000 8 10 0 25.6 -99.9 2000 8 11 0 25.2 -99.9 2000 8 12 0 23.2 -99.9 2000 8 13 0 23.2 -99.9						·
2000 8 11 0 25.2 -99.9 2000 8 12 0 23.2 -99.9 2000 8 13 0 23.2 -99.9	2000				25.4	-99.9
2000 8 12 0 23.2 -99.9 2000 8 13 0 23.2 -99.9	2000		10		25.6	-99.9
2000 8 13 0 23.2 -99.9	2000		11	0	25.2	-99.9
	2000		12	0	23.2	-99.9
2000 8 14 0 24.8 -99.9	2000		13	0	23.2	-99.9
	2000	8	14	0	24.8	-99.9

2000	8	15	0	24.2	-99.9
2000	8	16	0	24.2	-99.9
2000	8	17	0	25.2	-99.9
2000	8	18	0	23	-99.9
2000	8	19	0	27.4	-99.9
2000	8	20	0	24.8	-99.9
2000	8	21	0	23.2	-99.9
2000	8	22	0	27	-99.9
2000	8	23	0	27.2	-99.9
2000	8	24	0	26.6	-99.9
2000	8	25	0	25.2	-99.9
2000	8	26	0	26	-99.9
2000	8	27	0	23.4	-99.9
2000	8	28	0	24	-99.9
2000	8	29	0	25.6	-99.9
2000	8	30	0	23.8	
2000	8	31	0	25.4	-99.9 -99.9
2000	9	1	0	26.2	
	9	2	0		-99.9
2000	9	3		26.6	-99.9
2000	9		0	25	-99.9
2000		4	0	26.2	-99.9
2000	9	5	0	24.4	-99.9
2000	9	6	0	25.6	-99.9
2000	9	7	0	24.8	-99.9
2000	9	8	0	26.2	-99.9
2000	9	9	0	24.6	-99.9
2000	9	10	0	27	-99.9
2000	9	11	0	28.6	-99.9
2000	9	12	0	25	-99.9
2000	9	13	0	24.6	-99.9
2000	9	14	0	26.4	-99.9
2000	9	15	0	26.2	-99.9
2000	9	16	0	25.4	-99.9
2000	9	17	0	26.2	-99.9
2000	9	18	0	26.4	-99.9
2000	9	19	0	27.2	-99.9
2000	9	20	0	26.6	-99.9
2000	9	21	0	25.2	-99.9
2000	9	22	0	26.2	-99.9
2000	9	23	0	24.2	-99.9
2000	9	24	0	25.8	-99.9
2000	9	25	0	26.3	-99.9
2000	9	26	0	27.6	-99.9
2000	9	27	0	28	-99.9
2000	9	28	0	26.4	-99.9
2000	9	29	0	26	-99.9
2000	9	30	0	26	-99.9

2000 10 1 0 26.2 -99.9 2000 10 2 0 26.6 -99.9 2000 10 3 0 26.2 -99.9 2000 10 4 0 25.4 -99.9 2000 10 6 0 26.6 -99.9 2000 10 6 0 26.8 -99.9 2000 10 8 0 26.8 -99.9 2000 10 8 0 26.8 -99.9 2000 10 11 0 26.8 -99.9 2000 10 11 0 26.8 -99.9 2000 10 11 0 26.8 -99.9 2000 10 14 0 26.8 -99.9 2000 10 14 0 26.6 -99.9 2000 10 15 0 26.8 -99.9 2						
2000 10 3 0 26.2 -99.9 2000 10 5 0 26.6 -99.9 2000 10 5 0 26.6 -99.9 2000 10 6 0 26.8 -99.9 2000 10 8 0 26.8 -99.9 2000 10 9 0 27 -99.9 2000 10 10 0 27.6 -99.9 2000 10 11 0 26.8 -99.9 2000 10 12 0 26.8 -99.9 2000 10 12 0 26.8 -99.9 2000 10 14 0 26.6 -99.9 2000 10 15 0 26.8 -99.9 2000 10 15 0 26.8 -99.9 2000 10 16 0 27 -99.9 200	2000	10	1	0	26.2	-99.9
2000 10 3 0 26.2 -99.9 2000 10 5 0 26.6 -99.9 2000 10 5 0 26.6 -99.9 2000 10 6 0 26.8 -99.9 2000 10 8 0 26.8 -99.9 2000 10 9 0 27 -99.9 2000 10 10 0 27.6 -99.9 2000 10 11 0 26.8 -99.9 2000 10 12 0 26.8 -99.9 2000 10 12 0 26.8 -99.9 2000 10 14 0 26.6 -99.9 2000 10 15 0 26.8 -99.9 2000 10 15 0 26.8 -99.9 2000 10 16 0 27 -99.9 200	2000	10	2	0	26.6	-99.9
2000 10 4 0 25.4 -99.9 2000 10 6 0 26.6 -99.9 2000 10 6 0 26.8 -99.9 2000 10 7 0 27.2 -99.9 2000 10 9 0 27.6 -99.9 2000 10 10 0 27.6 -99.9 2000 10 11 0 26.8 -99.9 2000 10 11 0 26.8 -99.9 2000 10 13 0 26.4 -99.9 2000 10 13 0 26.6 -99.9 2000 10 14 0 26.6 -99.9 2000 10 16 0 27 -99.9 2000 10 16 0 27 -99.9 2000 10 18 0 25.8 -99.9 20	2000	10	3	0	26.2	-99.9
2000 10 5 0 26.6 -99.9 2000 10 6 0 26.8 -99.9 2000 10 7 0 27.2 -99.9 2000 10 8 0 26.8 -99.9 2000 10 9 0 27 -99.9 2000 10 11 0 26.8 -99.9 2000 10 11 0 26.8 -99.9 2000 10 12 0 26.8 -99.9 2000 10 14 0 26.6 -99.9 2000 10 14 0 26.6 -99.9 2000 10 15 0 26.8 -99.9 2000 10 16 0 27 -99.9 2000 10 18 0 25.8 -99.9 2000 10 18 0 25.8 -99.9 20						
2000 10 6 0 26.8 -99.9 2000 10 7 0 27.2 -99.9 2000 10 8 0 26.8 -99.9 2000 10 9 0 27 -99.9 2000 10 10 0 27.6 -99.9 2000 10 11 0 26.8 -99.9 2000 10 12 0 26.8 -99.9 2000 10 13 0 26.4 -99.9 2000 10 14 0 26.6 -99.9 2000 10 16 0 27 -99.9 2000 10 16 0 27 -99.9 2000 10 16 0 27 -99.9 2000 10 17 0 25.8 -99.9 2000 10 19 0 26.4 -99.9 2000<						
2000 10 7 0 27.2 -99.9 2000 10 8 0 26.8 -99.9 2000 10 9 0 27 -99.9 2000 10 11 0 26.8 -99.9 2000 10 11 0 26.8 -99.9 2000 10 13 0 26.4 -99.9 2000 10 14 0 26.6 -99.9 2000 10 15 0 26.8 -99.9 2000 10 15 0 26.8 -99.9 2000 10 17 0 25.8 -99.9 2000 10 17 0 25.8 -99.9 2000 10 18 0 25.8 -99.9 2000 10 20 0 26.4 -99.9 2000 10 20 0 26.4 -99.9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
2000 10 8 0 26.8 -99.9 2000 10 9 0 27 -99.9 2000 10 11 0 27.6 -99.9 2000 10 11 0 26.8 -99.9 2000 10 12 0 26.8 -99.9 2000 10 13 0 26.4 -99.9 2000 10 14 0 26.6 -99.9 2000 10 15 0 26.8 -99.9 2000 10 16 0 27 -99.9 2000 10 16 0 27 -99.9 2000 10 18 0 25.8 -99.9 2000 10 18 0 25.8 -99.9 2000 10 20 0 26.6 -99.9 2000 10 20 0 26.6 -99.9 2						
2000 10 9 0 27 -99.9 2000 10 10 0 27.6 -99.9 2000 10 11 0 26.8 -99.9 2000 10 12 0 26.8 -99.9 2000 10 13 0 26.4 -99.9 2000 10 14 0 26.6 -99.9 2000 10 15 0 26.8 -99.9 2000 10 16 0 27 -99.9 2000 10 16 0 27 -99.9 2000 10 18 0 25.8 -99.9 2000 10 18 0 25.8 -99.9 2000 10 20 0 26.6 -99.9 2000 10 20 0 26.6 -99.9 2000 10 22 0 27.2 -99.9						
2000 10 10 10 27.6 -99.9 2000 10 11 0 26.8 -99.9 2000 10 12 0 26.8 -99.9 2000 10 13 0 26.4 -99.9 2000 10 14 0 26.6 -99.9 2000 10 15 0 26.8 -99.9 2000 10 16 0 27 -99.9 2000 10 17 0 25.8 -99.9 2000 10 18 0 25.8 -99.9 2000 10 19 0 26.4 -99.9 2000 10 21 0 27.8 -99.9 2000 10 21 0 27.2 -99.9 2000 10 23 0 27.2 -99.9 2000 10 23 0 27.2 -99.9						
2000 10 11 0 26.8 -99.9 2000 10 12 0 26.8 -99.9 2000 10 13 0 26.4 -99.9 2000 10 14 0 26.6 -99.9 2000 10 15 0 26.8 -99.9 2000 10 16 0 27 -99.9 2000 10 17 0 25.8 -99.9 2000 10 18 0 25.8 -99.9 2000 10 19 0 26.4 -99.9 2000 10 20 0 26.6 -99.9 2000 10 21 0 27.8 -99.9 2000 10 22 0 27.2 -99.9 2000 10 23 0 27.2 -99.9 2000 10 24 0 28 -99.9 <						
2000 10 12 0 26.8 -99.9 2000 10 13 0 26.4 -99.9 2000 10 14 0 26.6 -99.9 2000 10 15 0 26.8 -99.9 2000 10 16 0 27 -99.9 2000 10 17 0 25.8 -99.9 2000 10 18 0 25.8 -99.9 2000 10 19 0 26.4 -99.9 2000 10 20 0 26.6 -99.9 2000 10 21 0 27.8 -99.9 2000 10 22 0 27.2 -99.9 2000 10 23 0 27.2 -99.9 2000 10 24 0 28 -99.9 2000 10 25 0 26.6 -99.9 <						
2000 10 13 0 26.4 -99.9 2000 10 14 0 26.6 -99.9 2000 10 15 0 26.8 -99.9 2000 10 16 0 27 -99.9 2000 10 17 0 25.8 -99.9 2000 10 18 0 25.8 -99.9 2000 10 19 0 26.4 -99.9 2000 10 20 0 26.6 -99.9 2000 10 21 0 27.2 -99.9 2000 10 22 0 27.2 -99.9 2000 10 23 0 27.2 -99.9 2000 10 24 0 28 -99.9 2000 10 25 0 26.6 -99.9 2000 10 26 0 27.4 -99.9 <						
2000 10 14 0 26.6 -99.9 2000 10 15 0 26.8 -99.9 2000 10 16 0 27 -99.9 2000 10 17 0 25.8 -99.9 2000 10 18 0 25.8 -99.9 2000 10 19 0 26.4 -99.9 2000 10 20 0 26.6 -99.9 2000 10 21 0 27.2 -99.9 2000 10 22 0 27.2 -99.9 2000 10 23 0 27.2 -99.9 2000 10 24 0 28 -99.9 2000 10 25 0 26.6 -99.9 2000 10 26 0 27.4 -99.9 2000 10 28 0 26.6 -99.9 <						
2000 10 15 0 26.8 -99.9 2000 10 16 0 27 -99.9 2000 10 17 0 25.8 -99.9 2000 10 18 0 25.8 -99.9 2000 10 19 0 26.4 -99.9 2000 10 20 0 26.6 -99.9 2000 10 21 0 27.8 -99.9 2000 10 22 0 27.2 -99.9 2000 10 23 0 27.2 -99.9 2000 10 24 0 28 -99.9 2000 10 25 0 26.6 -99.9 2000 10 26 0 27.4 -99.9 2000 10 28 0 26.6 -99.9 2000 10 28 0 26.6 -99.9 <						
2000 10 16 0 27 -99.9 2000 10 17 0 25.8 -99.9 2000 10 18 0 25.8 -99.9 2000 10 19 0 26.4 -99.9 2000 10 21 0 26.6 -99.9 2000 10 21 0 27.8 -99.9 2000 10 22 0 27.2 -99.9 2000 10 23 0 27.2 -99.9 2000 10 24 0 28 -99.9 2000 10 25 0 26.6 -99.9 2000 10 26 0 27.4 -99.9 2000 10 27 0 26.4 -99.9 2000 10 28 0 26.6 -99.9 2000 10 30 0 26.8 -99.9 <						
2000 10 17 0 25.8 -99.9 2000 10 18 0 25.8 -99.9 2000 10 19 0 26.4 -99.9 2000 10 20 0 26.6 -99.9 2000 10 21 0 27.8 -99.9 2000 10 22 0 27.2 -99.9 2000 10 23 0 27.2 -99.9 2000 10 24 0 28 -99.9 2000 10 25 0 26.6 -99.9 2000 10 26 0 27.4 -99.9 2000 10 26 0 27.4 -99.9 2000 10 28 0 26.6 -99.9 2000 10 28 0 26.8 -99.9 2000 10 30 0 26.8 -99.9						
2000 10 18 0 25.8 -99.9 2000 10 19 0 26.4 -99.9 2000 10 21 0 26.6 -99.9 2000 10 21 0 27.8 -99.9 2000 10 22 0 27.2 -99.9 2000 10 24 0 28 -99.9 2000 10 24 0 28 -99.9 2000 10 25 0 26.6 -99.9 2000 10 26 0 27.4 -99.9 2000 10 27 0 26.4 -99.9 2000 10 28 0 26.6 -99.9 2000 10 29 0 26.8 -99.9 2000 10 31 0 28.2 -99.9 2000 11 1 0 27.4 -99.9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
2000 10 19 0 26.4 -99.9 2000 10 20 0 26.6 -99.9 2000 10 21 0 27.8 -99.9 2000 10 22 0 27.2 -99.9 2000 10 23 0 27.2 -99.9 2000 10 24 0 28 -99.9 2000 10 25 0 26.6 -99.9 2000 10 25 0 26.6 -99.9 2000 10 27 0 26.4 -99.9 2000 10 28 0 26.6 -99.9 2000 10 28 0 26.6 -99.9 2000 10 30 0 26.8 -99.9 2000 10 31 0 28.2 -99.9 2000 11 1 0 27.4 -99.9						
2000 10 20 0 26.6 -99.9 2000 10 21 0 27.8 -99.9 2000 10 22 0 27.2 -99.9 2000 10 23 0 27.2 -99.9 2000 10 24 0 28 -99.9 2000 10 25 0 26.6 -99.9 2000 10 26 0 27.4 -99.9 2000 10 27 0 26.4 -99.9 2000 10 28 0 26.6 -99.9 2000 10 29 0 26.8 -99.9 2000 10 31 0 28.2 -99.9 2000 10 31 0 28.2 -99.9 2000 11 1 0 27.4 -99.9 2000 11 1 0 27.4 -99.9 <						
2000 10 21 0 27.8 -99.9 2000 10 22 0 27.2 -99.9 2000 10 23 0 27.2 -99.9 2000 10 24 0 28 -99.9 2000 10 25 0 26.6 -99.9 2000 10 26 0 27.4 -99.9 2000 10 27 0 26.4 -99.9 2000 10 28 0 26.6 -99.9 2000 10 29 0 26.8 -99.9 2000 10 30 0 26 -99.9 2000 10 31 0 28.2 -99.9 2000 11 1 0 27.4 -99.9 2000 11 2 0 25.6 -99.9 2000 11 3 0 24.8 -99.9						
2000 10 22 0 27.2 -99.9 2000 10 23 0 27.2 -99.9 2000 10 24 0 28 -99.9 2000 10 25 0 26.6 -99.9 2000 10 26 0 27.4 -99.9 2000 10 27 0 26.4 -99.9 2000 10 28 0 26.6 -99.9 2000 10 28 0 26.8 -99.9 2000 10 30 0 26 -99.9 2000 10 31 0 28.2 -99.9 2000 11 1 0 27.4 -99.9 2000 11 2 0 25.6 -99.9 2000 11 3 0 24.8 -99.9 2000 11 4 0 26.2 -99.9 2						
2000 10 23 0 27.2 -99.9 2000 10 24 0 28 -99.9 2000 10 25 0 26.6 -99.9 2000 10 26 0 27.4 -99.9 2000 10 27 0 26.4 -99.9 2000 10 28 0 26.6 -99.9 2000 10 29 0 26.8 -99.9 2000 10 30 0 26 -99.9 2000 10 31 0 28.2 -99.9 2000 11 1 0 27.4 -99.9 2000 11 1 0 27.4 -99.9 2000 11 2 0 25.6 -99.9 2000 11 3 0 24.8 -99.9 2000 11 4 0 26.2 -99.9 20						
2000 10 24 0 28 -99.9 2000 10 25 0 26.6 -99.9 2000 10 26 0 27.4 -99.9 2000 10 27 0 26.4 -99.9 2000 10 28 0 26.6 -99.9 2000 10 29 0 26.8 -99.9 2000 10 30 0 26 -99.9 2000 10 31 0 28.2 -99.9 2000 11 1 0 27.4 -99.9 2000 11 2 0 25.6 -99.9 2000 11 3 0 24.8 -99.9 2000 11 4 0 26.2 -99.9 2000 11 4 0 26.2 -99.9 2000 11 7 0 26.4 -99.9 200						
2000 10 25 0 26.6 -99.9 2000 10 26 0 27.4 -99.9 2000 10 27 0 26.4 -99.9 2000 10 28 0 26.6 -99.9 2000 10 29 0 26.8 -99.9 2000 10 30 0 26 -99.9 2000 10 31 0 28.2 -99.9 2000 11 1 0 27.4 -99.9 2000 11 2 0 25.6 -99.9 2000 11 3 0 24.8 -99.9 2000 11 4 0 26.2 -99.9 2000 11 5 0 26.8 -99.9 2000 11 6 0 26 -99.9 2000 11 7 0 26.4 -99.9 2000						
2000 10 26 0 27.4 -99.9 2000 10 27 0 26.4 -99.9 2000 10 28 0 26.6 -99.9 2000 10 29 0 26.8 -99.9 2000 10 30 0 26 -99.9 2000 10 31 0 28.2 -99.9 2000 11 1 0 27.4 -99.9 2000 11 2 0 25.6 -99.9 2000 11 3 0 24.8 -99.9 2000 11 4 0 26.2 -99.9 2000 11 4 0 26.2 -99.9 2000 11 5 0 26.8 -99.9 2000 11 6 0 26 -99.9 2000 11 8 0 26.4 -99.9 2000<						
2000 10 27 0 26.4 -99.9 2000 10 28 0 26.6 -99.9 2000 10 29 0 26.8 -99.9 2000 10 30 0 26 -99.9 2000 10 31 0 28.2 -99.9 2000 11 1 0 27.4 -99.9 2000 11 2 0 25.6 -99.9 2000 11 3 0 24.8 -99.9 2000 11 4 0 26.2 -99.9 2000 11 5 0 26.8 -99.9 2000 11 6 0 26 -99.9 2000 11 7 0 26.4 -99.9 2000 11 8 0 26.2 -99.9 2000 11 10 0 26.6 -99.9 2000<						
2000 10 28 0 26.6 -99.9 2000 10 29 0 26.8 -99.9 2000 10 30 0 26 -99.9 2000 10 31 0 28.2 -99.9 2000 11 1 0 27.4 -99.9 2000 11 2 0 25.6 -99.9 2000 11 3 0 24.8 -99.9 2000 11 4 0 26.2 -99.9 2000 11 5 0 26.8 -99.9 2000 11 6 0 26 -99.9 2000 11 7 0 26.4 -99.9 2000 11 8 0 26.2 -99.9 2000 11 9 0 25.8 -99.9 2000 11 10 0 26.6 -99.9 2000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2000 10 29 0 26.8 -99.9 2000 10 30 0 26 -99.9 2000 10 31 0 28.2 -99.9 2000 11 1 0 27.4 -99.9 2000 11 2 0 25.6 -99.9 2000 11 3 0 24.8 -99.9 2000 11 4 0 26.2 -99.9 2000 11 5 0 26.8 -99.9 2000 11 6 0 26 -99.9 2000 11 7 0 26.4 -99.9 2000 11 8 0 26.2 -99.9 2000 11 8 0 26.2 -99.9 2000 11 9 0 25.8 -99.9 2000 11 10 0 26.6 -99.9 2000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2000 10 30 0 26 -99.9 2000 10 31 0 28.2 -99.9 2000 11 1 0 27.4 -99.9 2000 11 2 0 25.6 -99.9 2000 11 3 0 24.8 -99.9 2000 11 4 0 26.2 -99.9 2000 11 5 0 26.8 -99.9 2000 11 6 0 26 -99.9 2000 11 7 0 26.4 -99.9 2000 11 8 0 26.2 -99.9 2000 11 8 0 26.2 -99.9 2000 11 9 0 25.8 -99.9 2000 11 10 0 26.6 -99.9 2000 11 11 0 26.2 -99.9 2000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2000 10 31 0 28.2 -99.9 2000 11 1 0 27.4 -99.9 2000 11 2 0 25.6 -99.9 2000 11 3 0 24.8 -99.9 2000 11 4 0 26.2 -99.9 2000 11 5 0 26.8 -99.9 2000 11 6 0 26 -99.9 2000 11 7 0 26.4 -99.9 2000 11 8 0 26.2 -99.9 2000 11 9 0 25.8 -99.9 2000 11 10 0 26.6 -99.9 2000 11 11 0 26.2 -99.9 2000 11 11 0 26.2 -99.9 2000 11 13 0 25.2 -99.9 2000						
2000 11 1 0 27.4 -99.9 2000 11 2 0 25.6 -99.9 2000 11 3 0 24.8 -99.9 2000 11 4 0 26.2 -99.9 2000 11 5 0 26.8 -99.9 2000 11 6 0 26 -99.9 2000 11 7 0 26.4 -99.9 2000 11 8 0 26.2 -99.9 2000 11 9 0 25.8 -99.9 2000 11 10 0 26.6 -99.9 2000 11 11 0 26.2 -99.9 2000 11 11 0 26.2 -99.9 2000 11 13 0 25.2 -99.9 2000 11 13 0 25.2 -99.9 2000						
2000 11 2 0 25.6 -99.9 2000 11 3 0 24.8 -99.9 2000 11 4 0 26.2 -99.9 2000 11 5 0 26.8 -99.9 2000 11 6 0 26 -99.9 2000 11 7 0 26.4 -99.9 2000 11 8 0 26.2 -99.9 2000 11 9 0 25.8 -99.9 2000 11 10 0 26.6 -99.9 2000 11 11 0 26.2 -99.9 2000 11 12 0 26 -99.9 2000 11 13 0 25.2 -99.9 2000 11 13 0 25.2 -99.9 2000 11 14 0 25.6 -99.9 2000<						
2000 11 3 0 24.8 -99.9 2000 11 4 0 26.2 -99.9 2000 11 5 0 26.8 -99.9 2000 11 6 0 26 -99.9 2000 11 7 0 26.4 -99.9 2000 11 8 0 26.2 -99.9 2000 11 9 0 25.8 -99.9 2000 11 10 0 26.6 -99.9 2000 11 11 0 26.2 -99.9 2000 11 12 0 26 -99.9 2000 11 13 0 25.2 -99.9 2000 11 14 0 25.6 -99.9 2000 11 14 0 25.6 -99.9 2000 11 15 0 24.2 -99.9						
2000 11 4 0 26.2 -99.9 2000 11 5 0 26.8 -99.9 2000 11 6 0 26 -99.9 2000 11 7 0 26.4 -99.9 2000 11 8 0 26.2 -99.9 2000 11 9 0 25.8 -99.9 2000 11 10 0 26.6 -99.9 2000 11 11 0 26.2 -99.9 2000 11 12 0 26 -99.9 2000 11 13 0 25.2 -99.9 2000 11 14 0 25.6 -99.9 2000 11 14 0 25.6 -99.9 2000 11 15 0 24.2 -99.9						
2000 11 5 0 26.8 -99.9 2000 11 6 0 26 -99.9 2000 11 7 0 26.4 -99.9 2000 11 8 0 26.2 -99.9 2000 11 9 0 25.8 -99.9 2000 11 10 0 26.6 -99.9 2000 11 11 0 26.2 -99.9 2000 11 12 0 26 -99.9 2000 11 13 0 25.2 -99.9 2000 11 14 0 25.6 -99.9 2000 11 14 0 25.6 -99.9 2000 11 15 0 24.2 -99.9					•	
2000 11 6 0 26 -99.9 2000 11 7 0 26.4 -99.9 2000 11 8 0 26.2 -99.9 2000 11 9 0 25.8 -99.9 2000 11 10 0 26.6 -99.9 2000 11 11 0 26.2 -99.9 2000 11 12 0 26 -99.9 2000 11 13 0 25.2 -99.9 2000 11 14 0 25.6 -99.9 2000 11 15 0 24.2 -99.9						
2000 11 7 0 26.4 -99.9 2000 11 8 0 26.2 -99.9 2000 11 9 0 25.8 -99.9 2000 11 10 0 26.6 -99.9 2000 11 11 0 26.2 -99.9 2000 11 12 0 26 -99.9 2000 11 13 0 25.2 -99.9 2000 11 14 0 25.6 -99.9 2000 11 15 0 24.2 -99.9						
2000 11 8 0 26.2 -99.9 2000 11 9 0 25.8 -99.9 2000 11 10 0 26.6 -99.9 2000 11 11 0 26.2 -99.9 2000 11 12 0 26 -99.9 2000 11 13 0 25.2 -99.9 2000 11 14 0 25.6 -99.9 2000 11 15 0 24.2 -99.9						
2000 11 9 0 25.8 -99.9 2000 11 10 0 26.6 -99.9 2000 11 11 0 26.2 -99.9 2000 11 12 0 26 -99.9 2000 11 13 0 25.2 -99.9 2000 11 14 0 25.6 -99.9 2000 11 15 0 24.2 -99.9						
2000 11 10 0 26.6 -99.9 2000 11 11 0 26.2 -99.9 2000 11 12 0 26 -99.9 2000 11 13 0 25.2 -99.9 2000 11 14 0 25.6 -99.9 2000 11 15 0 24.2 -99.9						
2000 11 11 0 26.2 -99.9 2000 11 12 0 26 -99.9 2000 11 13 0 25.2 -99.9 2000 11 14 0 25.6 -99.9 2000 11 15 0 24.2 -99.9						
2000 11 12 0 26 -99.9 2000 11 13 0 25.2 -99.9 2000 11 14 0 25.6 -99.9 2000 11 15 0 24.2 -99.9						
2000 11 13 0 25.2 -99.9 2000 11 14 0 25.6 -99.9 2000 11 15 0 24.2 -99.9						
2000 11 14 0 25.6 -99.9 2000 11 15 0 24.2 -99.9						
2000 11 15 0 24.2 -99.9						
2000 11 16 0 24.8 -99.9						
	2000	11	16	0	24.8	-99.9

2000	11	47	0	00.0	000
	1 1	17	0	26.6	-99.9
2000	11	18	0	26.2	-99.9
2000	11	19	0	27.2	-99.9
2000	11	20	0	27	-99.9
2000	11	21	0	28.6	-99.9
2000	11	22	0	26	-99.9
2000	11	23	0	25.4	-99.9
2000	11	24	0	27.6	-99.9
2000	11	25	0	27.6	-99.9
2000	11	26	0	25.8	-99.9
2000	11	27	1	26.4	-99.9
2000	11	28	0.8	26.2	-99.9
2000	11	29	0.6	26.6	-99.9
2000	11	30	0	26.6	-99.9
2000	12	1	2.5	26	-99.9
2000	12	2	0	27.6	-99.9
2000	12	3	0	27.6	-99.9
2000	12	4	0	26.2	-99.9
2000	12	5	0	27	-99.9
2000	12	6	0	26	-99.9
2000	12	7	5.5	26.2	-99.9
2000	12	8	2.2	25.4	-99.9
2000	12	9	0.3	25.8	-99.9
2000	12	10	0	25.4	-99.9
2000	12	11	0	25.4	-99.9
2000	12	12	0	25.6	-99.9
2000	12	13	0	26.8	-99.9
2000	12	14	0	27.4	-99.9
2000	12	15	0	26.4	-99.9
2000	12	16	0	25.6	-99.9
2000	12	17	0	25	-99.9
2000	12	18	0	25	-99.9
2000	12	19	0.8	24.6	-99.9
2000	12	20	0	26.4	-99.9
2000	12	21	0	27.6	-99.9
2000	12	22	0	26.4	-99.9
2000	12	23	0	25.8	-99.9
2000	12	24	0	27.8	-99.9
2000	12	25	0	26.8	-99.9
2000	12	26	0	27.4	-99.9
2000	12	27	0	27.8	-99.9
2000	12	28	0	26.6	-99.9
2000	12	29	0	27	-99.9
2000	12	30	0	27	-99.9
2000	12	31	0	27.8	-99.9
2001	1	1	0	27.2	-99.9
2001	1	2	0	27.8	-99.9

2001	1	3	0	27.4	-99.9
2001	1	4	0	28	-99.9
2001	1	5	0	26.8	-99.9
2001	1	6	0	27.2	-99.9
2001	1	7	0	29.6	-99.9
2001	1	8	0	28.4	-99.9
2001	1	9	0	27.2	-99.9
2001	1	10	0	28.4	-99.9
2001	1	11	0	28.2	-99.9
2001	1	12	0	29.4	-99.9
2001	1	13	0.6	28.8	-99.9
2001	1	14	1	28.4	-99.9
2001	1	15	0	28.2	-99.9
2001	1	16	0	25.8	-99.9
2001	1	17	0	28.4	-99.9
2001	1	18	0	29.2	
	1		1		-99.9
2001		19	-	28	-99.9
2001	1 1	20	1.8	29	-99.9
2001		21	0	28.4	-99.9
2001	1	22	0	27.8	-99.9
2001	1	23	0	28.6	-99.9
2001	1	24	0	28.6	-99.9
2001	1	25	0.4	27.2	-99.9
2001	1	26	0	29	-99.9
2001	1	27	0	28.2	-99.9
2001	1	28	0	29.8	-99.9
2001	1	29	0	29.4	-99.9
2001	1	30	0	28.4	-99.9
2001	1	31	0	29	-99.9
2001	2	1	0	27.4	-99.9
2001	2	2	1	30.6	-99.9
2001	2	3	0	30	-99.9
2001	2	4	0	28.6	-99.9
2001	2	5	0	29.4	-99.9
2001	2	6	0.8	28	-99.9
2001	2	7	0	28.2	-99.9
2001	2	8	0	29.6	-99.9
2001	2	9	0	29.6	-99.9
2001	2	10	0	28.8	-99.9
2001	2	11	0	29	-99.9
2001	2	12	0	31	-99.9
2001	2	13	0	30.2	-99.9
2001	2	14	0	30	-99.9
2001	2	15	0	30	-99.9
2001	2	16	0	31.6	-99.9
2001	2	17	0	32	-99.9
2001	2	18	0	31.4	-99.9
			·		

2001	2	19	0	31.6	-99.9
2001	2	20	0	30.8	-99.9
2001	2	21	0	31	-99.9
2001	2	22	0	29.4	-99.9
2001	2	23	0	29.6	-99.9
2001	2	24	0	30	-99.9
2001	2	25	0.9	29.8	-99.9
2001	2	26	0	30.2	-99.9
2001	2	27	0	30.8	-99.9
2001	2	28	0	30.6	-99.9
2001		1	0	28.4	-99.9
2001	3 3 3	2	0	29.6	-99.9
2001	3	3	4.7	30.2	-99.9
2001	3	4	0.2	29.6	-99.9
2001	3	5	0	28.8	-99.9
2001	3	6	0	28.8	-99.9
2001	3	7	0	30.4	-99.9
2001	3	8	1.9	28.6	-99.9
2001		9	0.8	28.4	-99.9
2001	3 3 3	10	0	29.8	-99.9
2001	3	11	0	31	-99.9
2001		12	0	30	-99.9
2001	3	13	0	29.6	-99.9
2001	3	14	0	30	-99.9
2001	3	15	0	29.2	-99.9
2001	3	16	0	29.4	-99.9
2001	3	17	0	30.6	-99.9
2001	3	18	3.5	31	-99.9
2001	3	19	0.5	31.8	-99.9
2001	3	20	0	30.6	-99.9
2001	3	21	0	30.4	-99.9
2001	3	22	8.4	31	-99.9
2001	3	23	0.7	28.4	-99.9
2001	3	24	0	30.6	-99.9
2001		25	2	29.4	-99.9
2001	3	26	0	30	-99.9
2001	3	27	2.8	29.2	-99.9
2001	3	28	1.5	29.6	-99.9
2001	3	29	0	30	-99.9
2001	3	30	2.2	29	-99.9
2001	3	31	0	31	-99.9
2001	4	1	2	29.8	-99.9
2001	4	2	1.7	29.8	-99.9
2001	4	3	4	29.8	-99.9
2001	4	4	0	29	-99.9
2001	4	5	0	29.2	-99.9
2001	4	6	0	28.8	-99.9

0004	4	7	4 7	00.0	00.0
2001	4	7	4.7	29.8	-99.9
2001	4	8	0.1	28	-99.9
2001	4	9	0	29.4	-99.9
2001	4	10	0	29.8	-99.9
2001	4	11	0	28.8	-99.9
2001	4	12	0	30.2	-99.9
2001	4	13	0	30.6	-99.9
2001	4	14	0	29.4	-99.9
2001	4	15	0	27.8	-99.9
2001	4	16	0	29.4	-99.9
2001	4	17	0	28.6	-99.9
2001	4	18	0	30	-99.9
2001	4	19	0	29.2	-99.9
2001	4	20	0	30	-99.9
2001	4	21	0	29.8	-99.9
2001	4	22	0	30	-99.9
2001	4	23	0	29.4	-99.9
2001	4	24	0	29.2	-99.9
2001	4	25	0	26.4	-99.9
2001	4	26	0	25.6	-99.9
2001	4	27	0	26.8	-99.9
2001	4	28	0	27.2	-99.9
2001	4	29	0	27.2	-99.9
2001	4	30	0	28.4	-99.9
2001	5	1	0	27.6	-99.9
2001	5	2	0	28.4	
	5	3	0		-99.9
2001	5 5			29.4	-99.9
2001		4	0	30.2	-99.9
2001	5	5	0	28.4	-99.9
2001	5	6	0	28.2	-99.9
2001	5	7	0	27.8	-99.9
2001	5	8	0	26.8	-99.9
2001	5	9	0	27.6	-99.9
2001	5	10	0	26.2	-99.9
2001	5	11	0	28.6	-99.9
2001	5	12	0	26.2	-99.9
2001	5	13	0	28.4	-99.9
2001	5	14	0	27.6	-99.9
2001	5	15	0	25.8	-99.9
2001	5	16	0	25	-99.9
2001	5	17	0	24	-99.9
2001	5	18	0	24.8	-99.9
2001	5	19	0	26.2	-99.9
2001	5	20	0	25.8	-99.9
2001	5	21	0	25.2	-99.9
2001	5	22	0	26	-99.9
2001	5	23	0	25.4	-99.9
		5	_		55.5

2001	5	24	0	25.4	-99.9
2001	5	25	0	24.8	-99.9
2001	5	26	0	24.2	-99.9
2001	5	27	0	25.6	-99.9
2001	5	28	0	25.8	-99.9
2001	5	29	0	25	-99.9
2001	5	30	0	24.8	-99.9
2001	5	31	0	23	-99.9
2001	6	1	0	24.8	-99.9
2001	6	2	0	24	-99.9
2001	6	3	0	24.4	-99.9
2001	6	4	0	26	-99.9
2001	6	5	0	23.8	-99.9
2001	6	6	0	21	-99.9
2001	6	7	0	20	-99.9
2001	6	8	0	24	-99.9
2001	6	9	0	26.6	-99.9 -99.9
2001	6	10	0	24.4	-99.9
2001	6	11	0	24.6	-99.9
2001	6	12	0	25.8	-99.9
2001	6	13	0	24	-99.9
2001	6	14	0	21.8	-99.9 -99.9
2001	6	15	0	20.6	
	6		0		-99.9
2001	6	16 17	0	24.6 19.8	-99.9 -99.9
2001	6	18	0	21	-99.9
2001	6	19	0	21.2	-99.9
2001	6	20	0	20.4	-99.9
2001	6	21	0	22.2	-99.9
2001	6	22	0	21	-99.9 -99.9
2001	6	23	0.2	20.2	-99.9
2001	6	24	0.2	19.6	-99.9
2001	6	25	0	20	-99.9 -99.9
2001	6	26	0	21.4	-99.9
2001	6	27	0	22.8	
	6		0		-99.9
2001	6	28 29	0	21.8	-99.9
2001	6	30	0	24.8 24.4	-99.9 -99.9
2001	7	1	0	24.4	
	7	2	0	24.4	-99.9
2001	7	3			-99.9
2001	7	4	0	24.6	-99.9
2001	7	5		24	12.9
2001	7	6	0	26	13.4
2001	7	7	0	24.2	14.6
2001	7		0	24.8	15.4
2001	7	8	0	25.2	15
2001	/	9	0	24.2	14.8

2001	7	10	0	25	13.2
2001	7	11	0	22.6	13.8
2001	7	12	0	24.4	11.2
2001	7	13	0	24	11.2
2001	7	14	0	24.2	12.2
2001	7	15	0	23.8	14
2001	7	16	0	23	14.6
2001	7	17	0	23.8	13.6
2001	7	18	0	23	13.8
2001	7	19	0	22.2	14.8
2001	7	20	0	22.2	14.6
2001	7	21	0	25.2	13
2001	7	22	0	25.4	14
2001	7	23	0	24.8	14.6
2001	7	24	0	22.6	14.2
2001	7	25	0	19	14.6
2001	7	26	0	24.2	14.2
2001	7	27	0	24.2	13.4
2001	7	28	0	24.6	12.6
2001	7	29	0	23.6	12.8
2001	7	30	0	20.8	14
2001	7	31	0	23.6	13.6
2001	8	1	0	21	14.2
2001	8	2	0	20.6	14.2
2001	8	3	0	18.8	13.2
2001	8	4	0	22.2	13.2
2001	8	5	0	23.2	10.8
2001	8	6	0	25	10.6
2001	8	7	0	22	12
2001	8	8	0	23.8	13.2
2001	8	9	0	23.6	11.8
2001	8	10	0	24.6	11.2
2001	8	11	0	21.8	13.6
2001	8	12	0	20	13.8
2001	8	13	0	23.6	14
2001	8	14	0	24.4	11.4
2001	8	15	0	24.2	12
2001	8	16	0	24.4	12.6
2001	8	17	0	23.8	12.4
2001	8	18	0	24.8	12.6
2001	8	19	0	24	12.4
2001	8	20	0	24.8	11
2001	8	21	0	24.6	12.6
2001	8	22	0	24	14.2
2001	8	23	0	23.6	10.8
2001	8	24	0	26	12.4
2001	٥	<u> </u>			· <u>-</u> · ·

2001	8	26	0	23	14.4
2001	8	27	0	22.8	13.8
2001	8	28	0	25	10.8
2001	8	29	0	24.2	11.8
2001	8	30	0	24.6	13.6
2001	8	31	0	23.2	13
2001	9	1	0	24.8	12.2
2001	9	2	0	25.4	12.2
2001	9	3	0	25.2	14.4
2001	9	4	0	25	14
2001	9	5	0	26.8	13.8
2001	9	6	0	26.2	14.2
2001	9	7	0	24	13.2
2001	9	8	0	24	13.6
2001	9	9	0	24.2	11.8
2001	9	10	0	23.6	11.8
2001	9	11	0	25.6	13.4
2001	9	12	0	24.4	13.4
	9		0		
2001	9	13		26.2	12.4 13
2001	9	14	0	24.2	
2001		15	0	19.6	13.4
2001	9	16	0	26.8	12.6
2001	9	17	0	-99.9	13.2
2001	9	18	0	23.2	11
2001	9	19	0	24.4	11.1
2001	9	20	0	25	11.1
2001	9	21	0	24	10.8
2001	9	22	0	25	11.4
2001	9	23	0	25	12.4
2001	9	24	0	23.6	12.4
2001	9	25	0	24.8	12
2001	9	26	0	25	13
2001	9	27	0	23.2	12.8
2001	9	28	0	24.4	12.2
2001	9	29	0	24.4	11.2
2001	9	30	0	25.6	12.2
2001	10	1	0	23.6	11.2
2001	10	2	0	24.2	11.2
2001	10	3	0	24.2	10.2
2001	10	4	0	24	12.6
2001	10	5	0	26	13
2001	10	6	0	24.8	12.1
2001	10	7	0	25.2	11.6
2001	10	8	0	24.8	13
2001	10	9	0	24.2	13.4
2001	10	10	0	25.2	11.6
2001	10	11	0	25.2	12.2
		•	•		-

2001	10	12	0	25	12
2001	10	13	0	24.6	13.4
2001	10	14	0	25.6	13.2
2001	10	15	0	24	11.4
2001	10	16	0	24	12.4
2001	10	17	0	24	11.2
2001	10	18	0	24.2	12.4
2001	10	19	0	25	12.6
2001	10	20	0	26.8	13.6
2001	10	21	0	26	12.6
2001	10	22	0	24.6	12.6
2001	10	23	0	25	14.8
2001	10	24	0	26.6	15.6
2001	10	25	0	26.4	12.2
2001	10	26	0	25.4	13.4
2001	10	27	0	26	14.8
2001	10	28	0	26.8	15.6
2001	10	29	0	25.4	15.2
2001	10	30	0	25.2	15.2
2001	10	31	0	22.8	15.3
2001	11	1	0	25	15.4
2001	11	2	0	25.2	14.6
2001	11	3	0	24.8	13.8
2001	11	4	0	24.6	11.6
2001	11	5	0	24.8	10.4
2001	11	6	0	24.8	12.2
2001	11	7	0	25.2	13.2
2001	11	8	0	25.8	14.2
2001	11	9	0	26.6	13.8
2001	11	10	0	26.8	13.6
2001	11	11	0	25.2	13.4
2001	11	12	0	25.8	14.8
2001	11	13	0	25.8	14.8
2001	11	14	0	25.6	15.2
2001	11	15	0	26.8	15
2001	11	16	0	27	14.8
2001	11	17	0	26.6	14.2
2001	11	18	0	25.2	14.6
2001	11	19	0	27.4	15.6
2001	11	20	0	27.4	15.6
2001	11	21	0	26.4	13.6
2001	11	22	0	28.6	15.8
2001	11	23	0	27	15.8
2001	11	24	0	25.8	15.4
2001	11	25	0	25.6	16.2
0004					
2001	11 11	26 27	0	24.6 26	15.8 14.6

2001	4.4	•			
2001	11	28	0	26.8	15.2
2001	11	29	0	26.2	15.6
2001	11	30	0	24.8	15.4
2001	12	1	0	25.8	13.4
2001	12	2	0	25.6	13.4
2001	12	3	0	26	14
2001	12	4	0	27	14
2001	12	5	0	24.8	14.8
2001	12	6	0.3	24	15.6
2001	12	7	0	25.8	15.8
2001	12	8	0	25.6	15.8
2001	12	9	0	26.4	15.2
2001	12	10	0	25.4	16.2
2001	12	11	0	26.6	14.6
2001	12	12	0	26.8	15.8
2001	12	13	0	27.4	16.2
2001	12	14	0	27	16.6
2001	12	15	0	25.8	15.2
2001	12	16	0	25.4	15.4
2001	12	17	0	24.8	15.6
2001	12	18	0	26.6	17
2001	12	19	0	28.6	18
2001	12	20	0	26.8	18.4
2001	12	21	0	26.8	17.2
2001	12	22	0	27	16.8
2001	12	23	0	27.2	17.2
2001	12	24	0.5	26.8	17.4
2001	12	25	0	28	17.8
2001	12	26	0	27.6	17.8
2001	12	27	0	27.4	18
2001	12	28	0	26	17.4
2001	12	29	0	27.2	17.8
2001	12	30	0	27	17.4
2001	12	31	0	27.2	17.4
2002	1	1	0	27.2	16.8
2002	1	2	0	27.2	16.6
2002	1	3	0	26.8	17.2
2002	1	4	0	26.6	16.8
2002	1	5	0	26.6	16.8
2002	1	6	0	27	17
2002	1	7	0	27.4	17.2
2002	1	8	0	27	16.8
2002	1	9	0	29.6	16.6
2002	1	10	0	27.4	15.4
2002	1	11	0	26.8	15.4
2002	1	12	0	27	17
2002	1	13	0	27.6	17.4

2002	1	14	0	29	17.2
2002	1	15	0	27	16.4
2002	1	16	0	26.8	16.6
2002	1	17	0	26.8	17.2
2002	1	18	0	27.6	17.6
2002	1	19	0	27.6	18.8
2002	1	20	0	28	18.2
2002	1	21	0	26.6	18.6
2002	1	22	0	27.4	18.2
2002	1	23	0	27.6	17.6
2002	1	24	0	27	17.6
2002	1	25	0	27.6	17.8
2002	1	26	0	27.8	17.6
2002	1	27	0	27.8	17.6
2002	1	28	0.4	27.6	17.8
2002	1	29	0	29	18.6
2002	1	30	0.4	28.4	18.2
2002	1	31	0	29.6	19
2002	2	1	0	29.4	19.2
2002	2	2	0	29.4	18.6
2002	2	3	0	29	19.2
2002	2	4	1	29.4	20.8
2002	2	5	7.6	25.4	20.6
2002	2	6	0	30	20.4
2002	2	7	0	30.2	20.2
2002	2	8	0	30.2	19.8
2002	2	9	0	29	18.6
2002	2	10	0	29.4	19.2
2002	2	11	0	27.6	19.6
2002	2	12	0	29.6	19.6
2002		13	0	30	19.5
2002	2	14	0	29	19.4
2002	2	15	0	28.6	19.2
2002	2	16	0	28.8	19.2
2002	2	17	0	29.6	19
2002	2	18	0	29.4	18.8
2002	2	19	0	29.4	18.6
2002	2	20	0	28	18.6
2002	2	21	0	30.6	19.2
2002	2	22	0	30	19.4
2002	2	23	3	30.6	21.2
2002	2	24	0.3	29.6	19.8
2002	2	25	0	30.6	19.2
2002	2	26	0	29.6	19.4
2002	2	27	0	29.2	19.4
2002	2	28	0	29.2	20.4
2002	3	1	0	30.4	20.6

2002	3	2	0	31	20.2
2002		3	1	29.4	20.2
2002	3	4	0.3	30	20.4
2002	3	5	0	30.4	20.2
2002	3	6	0.9	29.4	20.4
2002	3	7	0	31	20
2002	3 3 3	8	0	31.2	20
2002	3	9	0	30.8	19.8
2002	3	10	0.2	30.4	19.6
2002	3	11	0.4	31	19.8
2002	3	12	0	31.2	20.2
2002	3 3 3	13	0.6	31	21
2002		14	0	30.6	21
2002	3	15	0	30.8	20.6
2002	3	16	0	31	20.8
2002	3	17	0	31	20.8
2002	3	18	2.2	31	21.4
2002		19	0	30.6	21.2
2002	3 3 3	20	6.1	30.4	21.6
2002	3	21	1	30.2	21.4
2002		22	0	30.8	21.6
2002	3	23	0	30.4	20
2002		24	0	30.8	20.4
2002	3	25	0	30.4	20.4
2002	3 3 3	26	0	29.8	20.6
2002		27	0.3	28.6	20.6
2002	3	28	2	31	20.8
2002	3	29	0	29.8	21
2002	3	30	0	30.6	21
2002	3	31	0	31	19.2
2002	4	1	1.3	30.8	20.2
2002	4	2	0	30	20.2
2002	4	3	1.8	31.8	19.8
2002	4	4	0	30.6	20.4
2002	4	5	0	30.6	20.2
2002	4	6	0	29.2	18.6
2002	4	7	0	29.8	18.8
2002	4	8	0.6	29.4	20.6
2002	4	9	0	29.8	19.8
2002	4	10	0	31	20
2002	4	11	0	30.8	19.2
2002	4	12	0	31	18.6
2002	4	13	0	29.6	17.6
2002	4	14	0	29.6	17.4
2002	4	15	0	30.6	17.6
2002	4	16	0	30	17.4
2002	4	17	0	29.6	17.6

2002	4	18	0	28.2	16.8
2002	4	19	0	28.4	17.6
2002	4	20	0	28	16.6
2002	4	21	0	29.8	17
2002	4	22	0	30.4	18
2002	4	23	0	29.8	17.6
2002	4	24	0	26.6	18.6
2002	4	25	0	29.6	16.6
2002	4	26	0	31.4	18
2002	4	27	0	30.6	16.8
2002	4	28	0	30.6	18.6
2002	4	29	0	29.8	15.8
2002	4	30	0	29.2	16.8
2002	5	1	0	27.6	15
2002	5	2	0	28.6	14.2
2002	5	3	0	28.6	13.6
2002	5	4	0	29.6	14.4
2002	5	5	0	29.2	15
2002	5	6	0	30.4	15
2002	5	7	0	30.4	16.6
2002	5	8	0	29.6	15.2
2002	5	9	0	30.4	16.2
2002	5	10	0	31	15.2
2002	5	11	0	31	15.6
2002	5	12	0	30.2	15
2002	5	13	0	31	14.8
2002	5	14	0	30.6	15.8
2002	5	15	0	27.8	15.6
2002	5	16	0	29	15.8
2002	5	17	0	28.6	16
2002	5	18	0	28.6	15
2002	5	19	0	28.8	15.2
2002	5	20	0	29.4	15.8
2002	5	21	0	28.6	16.2
2002	5	22	0	27.4	16.8
2002	5	23	0	29.8	15.8
2002	5	24	0	30	16.6
2002	5	25	0	31.8	17.6
2002	5	26	0	31.6	15.4
2002	5	27	0	28.6	15.6
2002	5	28	0	27.8	13.6
2002	5	29	0	28.2	13
2002	5	30	0	27.4	12.6
2002	5	31	0	28.2	13
2002	6	1	0	26.8	14.4
2002	6	2	0	28.4	12.6
2002	6	3	0	27	14

2002	6	4	0	28.6	14.2
2002	6	5	0	27.8	12.6
2002	6	6	0	26	12.8
2002	6	7	0	27.4	12.8
2002	6	8	0	27.2	13.2
2002	6	9	0	25.8	13.6
2002	6	10	0.2	25.6	12.6
2002	6	11	0	25.6	12.6
2002	6	12	0	27.6	12.4
2002	6	13	0	26.6	12.6
2002	6	14	0	25.6	12.8
2002	6	15	0	24.8	12.2
2002	6	16	0	25.4	12.2
2002	6	17	0	23.2	11.4
2002	6	18	0	24.4	10.8
2002	6	19	0	24.4	10.2
2002	6	20	0	25.6	11.8
2002	6	21	0	25.6	11.8
2002	6	22	0	26.8	12.2
2002	6	23	0	26.2	11.8
2002	6	24	0	22.8	13.8
2002	6	25	0	24	15.8
2002	6	26	0	26	10.8
2002	6	27	0	25.6	10.4
2002	6	28	0	25.2	10.4
2002	6	29	0	26.2	11.4
2002	6	30	0	27	11.8
2002	7	1	0	26.6	12.4
2002	7	2	0	24.6	12.4
2002	7	3	0	24.2	12.2
2002	7	4	0	23.2	12.6
2002	7	5	0	23.8	13.2
2002	7	6	0	25.6	12.8
2002	7	7	0	24.8	11.2
2002	7	8	0	24.8	10.2
2002	7	9	0	25.2	10.6
2002	7	10	0	24.8	10.8
2002	7	11	0	24.2	11.2
2002	7	12	0	23.8	12.2
2002	7	13	0	25	10.6
2002	7	14	0	24	11.6
2002	7	15	0	24.8	12.2
2002	7	16	0	24.8	11.3
2002	7	17	0	24	11.6
2002	7	18	0	23.8	11.4
2002	7	19	0	23.8	11.6
2002	7	20	0	24	12.2

2002	7	21	0	23.8	11.4
2002	7	22	0	23.6	10.6
2002	7	23	0	23.8	11
2002	7	24	0	24.4	12.8
2002	7	25	0	24.4	12.2
2002	7	26	0	23.8	12
2002	7	27	0	24.2	10.4
2002	7	28	0	24.8	10.6
2002	7	29	0	23.8	12.6
2002	7	30	0	24.8	13.4
2002	7	31	0	24.6	14.2
2002	8	1	0	23.8	13.2
2002	8	2	0	24.8	11.4
2002	8	3	0	23.6	12.2
2002	8	4	0	24.4	12.8
2002	8	5	0	23	11.6
2002	8	6	0	23.6	14.2
2002	8	7	0	24.6	11.8
2002	8	8	0	23.4	13.4
2002	8	9	0	23.4	11.6
2002	8	10	0	23	11.4
2002	8	11	0	22.2	14.2
2002	8	12	0	24.8	17.4
2002	8	13	0	24.6	10.4
2002	8	14	0	23.8	12
2002	8	15	0	23.2	13.6
2002	8	16	0	23.8	12.6
2002	8	17	0	25	11.2
2002	8	18	0	25.4	12.8
2002	8	19	0	23.8	12.6
2002	8	20	0	25	12.2
2002	8	21	0	24.6	12.6
2002	8	22	0	24.2	11.6
2002	8	23	0	23	13.8
2002	8	24	0	23.6	12
2002	8	25	0	26.2	14.6
2002	8	26	0	25.6	13.4
2002	8	27	0	25.8	13.6
2002	8	28	0	24.2	13.8
2002	8	29	0	25	14.6
2002	8	30	0	25.2	12.6
2002	8	31	0	23.6	11.6
2002	9	1	0	23.2	11.6
2002	9	2	0	24.6	9.6
2002	9	3	0	24.6	10.2
2002	9	4	0	25	12.6
2002	9	5	0	24	10

2002 9 6 0 24.6 9.6 2002 9 7 0 24.2 9.2 2002 9 8 0 24.6 10. 2002 9 9 0 24.8 12. 2002 9 10 0 25 11. 2002 9 11 0 24.6 13. 2002 9 12 0 24 13. 2002 9 13 0 25.8 11 2002 9 14 0 25.4 11. 2002 9 15 0 25.2 11. 2002 9 16 0 24.8 11. 2002 9 17 0 23.8 11. 2002 9 18 0 24.4 13. 2002 9 19 0 24.2 11. 2002 9 20<	2 2 2 8 2 3 2 6 2 6 2 6
2002 9 8 0 24.6 10. 2002 9 9 0 24.8 12. 2002 9 10 0 25 11. 2002 9 11 0 24.6 13. 2002 9 12 0 24 13. 2002 9 13 0 25.8 11. 2002 9 14 0 25.4 11. 2002 9 15 0 25.2 11. 2002 9 16 0 24.8 11. 2002 9 17 0 23.8 11. 2002 9 18 0 24.4 13. 2002 9 19 0 24.2 11. 2002 9 19 0 24.2 11. 2002 9 20 0 23.4 12 2002 9 2	2 8 2 3 2 6 2 6 2
2002 9 9 0 24.8 12. 2002 9 10 0 25 11. 2002 9 11 0 24.6 13. 2002 9 12 0 24 13. 2002 9 13 0 25.8 11. 2002 9 14 0 25.4 11. 2002 9 15 0 25.2 11. 2002 9 16 0 24.8 11. 2002 9 17 0 23.8 11. 2002 9 18 0 24.4 13. 2002 9 19 0 24.2 11. 2002 9 20 0 23.4 12 2002 9 21 0 25.6 10. 2002 9 22 0 24.4 10. 2002 9	2 8 2 3 2 6 2 6 2 6
2002 9 10 0 25 11. 2002 9 11 0 24.6 13. 2002 9 12 0 24 13. 2002 9 13 0 25.8 14 2002 9 14 0 25.4 11. 2002 9 15 0 25.2 11. 2002 9 16 0 24.8 11. 2002 9 17 0 23.8 11. 2002 9 18 0 24.4 13. 2002 9 19 0 24.2 11. 2002 9 19 0 24.2 11. 2002 9 20 0 23.4 12 2002 9 21 0 25.6 10. 2002 9 21 0 25.6 10. 2002 9 23 0 25.6 11.	8 2 3 6 2 6 2 6
2002 9 11 0 24.6 13. 2002 9 12 0 24 13. 2002 9 13 0 25.8 11. 2002 9 14 0 25.4 11. 2002 9 15 0 25.2 11. 2002 9 16 0 24.8 11. 2002 9 17 0 23.8 11. 2002 9 18 0 24.4 13. 2002 9 19 0 24.2 11. 2002 9 20 0 23.4 12. 2002 9 21 0 25.6 10. 2002 9 22 0 24.4 10. 2002 9 23 0 25.6 11.	2 2 6 2 6 2 6
2002 9 12 0 24 13 2002 9 13 0 25.8 11 2002 9 14 0 25.4 11. 2002 9 15 0 25.2 11. 2002 9 16 0 24.8 11. 2002 9 17 0 23.8 11. 2002 9 18 0 24.4 13. 2002 9 19 0 24.2 11. 2002 9 20 0 23.4 12. 2002 9 21 0 25.6 10. 2002 9 22 0 24.4 10. 2002 9 23 0 25.6 11.	2 6 2 6 2 6
2002 9 13 0 25.8 11 2002 9 14 0 25.4 11. 2002 9 15 0 25.2 11. 2002 9 16 0 24.8 11. 2002 9 17 0 23.8 11. 2002 9 18 0 24.4 13. 2002 9 19 0 24.2 11. 2002 9 20 0 23.4 12 2002 9 21 0 25.6 10. 2002 9 22 0 24.4 10. 2002 9 23 0 25.6 11.	2 6 2 6 2
2002 9 14 0 25.4 11. 2002 9 15 0 25.2 11. 2002 9 16 0 24.8 11. 2002 9 17 0 23.8 11. 2002 9 18 0 24.4 13. 2002 9 19 0 24.2 11. 2002 9 20 0 23.4 12. 2002 9 21 0 25.6 10. 2002 9 22 0 24.4 10. 2002 9 23 0 25.6 11.	2 6 2 6 2 6
2002 9 15 0 25.2 11. 2002 9 16 0 24.8 11. 2002 9 17 0 23.8 11. 2002 9 18 0 24.4 13. 2002 9 19 0 24.2 11. 2002 9 20 0 23.4 12. 2002 9 21 0 25.6 10. 2002 9 22 0 24.4 10. 2002 9 23 0 25.6 11.	6 2 6 2
2002 9 16 0 24.8 11. 2002 9 17 0 23.8 11. 2002 9 18 0 24.4 13. 2002 9 19 0 24.2 11. 2002 9 20 0 23.4 12. 2002 9 21 0 25.6 10. 2002 9 22 0 24.4 10. 2002 9 23 0 25.6 11.	2 6 2 6
2002 9 17 0 23.8 11. 2002 9 18 0 24.4 13. 2002 9 19 0 24.2 11. 2002 9 20 0 23.4 12. 2002 9 21 0 25.6 10. 2002 9 22 0 24.4 10. 2002 9 23 0 25.6 11.	6 2 6
2002 9 18 0 24.4 13. 2002 9 19 0 24.2 11. 2002 9 20 0 23.4 12 2002 9 21 0 25.6 10. 2002 9 22 0 24.4 10. 2002 9 23 0 25.6 11.	2 6
2002 9 19 0 24.2 11. 2002 9 20 0 23.4 12. 2002 9 21 0 25.6 10. 2002 9 22 0 24.4 10. 2002 9 23 0 25.6 11.	6
2002 9 20 0 23.4 12 2002 9 21 0 25.6 10. 2002 9 22 0 24.4 10. 2002 9 23 0 25.6 11.	
2002 9 21 0 25.6 10. 2002 9 22 0 24.4 10. 2002 9 23 0 25.6 11.	•
2002 9 22 0 24.4 10. 2002 9 23 0 25.6 11.	
2002 9 23 0 25.6 11.	8
	6
2002 9 24 0 244 11	4
	8
2002 9 25 0 25 12.	4
2002 9 26 0 25.2 12.	2
2002 9 27 0 25.4 13.	2
2002 9 28 0 24.6 13.	4
2002 9 29 0 26 13.	6
2002 9 30 0 25.2 14.	
2002 10 1 0 24.6 12	<u> </u>
2002 10 2 0 24.8 12.	6
2002 10 3 0 25.4 12.	6
2002 10 4 0 25.4 14.	2
2002 10 5 0 24.6 13.	
2002 10 6 0 21.8 12.	2
2002 10 7 0 27 13	,
2002 10 8 0 26 13.	
2002 10 9 0 25.6 14.	6
2002 10 10 0 26 14	
2002 10 11 0 23.6 14	
2002 10 12 0 25.6 14.	
2002 10 13 0 26.4 13.	
2002 10 14 0.5 27 14.	
2002 10 15 0 26.6 14.	
2002 10 16 0 26 13.	
2002 10 17 0 26.4 13.	
2002 10 18 0 28.2 14.	
2002 10 19 0 28.2 15	
2002 10 20 0 26.2 15	
2002 10 21 0 26.6 15.	2
2002 10 22 0 28.2 15.	

2002	10	23	0	30.4	16
2002	10	24	0.2	26.8	15.6
2002	10	25	0.6	26.6	15.2
2002	10	26	0	26.2	15.2
2002	10	27	0	26.4	15.4
2002	10	28	0	26.6	14.4
2002	10	29	0	25.8	13.6
2002	10	30	0	27	15
2002	10	31	0	25.8	13
2002	11	1	0	26	13.4
2002	11	2	0	25.4	12.4
2002	11	3	0	26	15.2
2002	11	4	0	27.4	13.6
2002	11	5	0	26	13.8
2002	11	6	1.6	25.6	15.2
2002	11	7	0	26.8	15.2
2002	11	8	0	27.6	14.2
2002	11	9	0.2	27.8	15.4
2002	11	10	0	27.4	15
2002	11	11	0.4	26	15.4
2002	11	12	0.4	27.2	14.8
2002	11	13	0	24.2	15.2
2002	11	14	0	27.2	14.2
2002	11	15	0	27.4	14.8
2002	11	16	0.1	27.4	13.2
2002	11	17	0	27.2	15.6
2002	11	18	0.1	26.4	14.8
2002	11	19	0	28	16.2
2002	11	20	0	28.8	15.6
2002	11	21	0.6	27	15.8
2002	11	22	0	24.6	16.8
2002	11	23	0	25	16.2
2002	11	24	0	27.2	16.6
2002	11	25	0	27.6	16.4
2002	11	26	0	25.8	15.8
2002	11	27	0	26.6	16.6
2002	11	28	0	27.4	16.4
2002	11	29	0	27.4	16.6
2002	11	30	0	27.2	16.6
2002	12	1	0	26.8	17
2002	12	2	0	26.6	16.4
2002	12	3	0	27.2	16
2002	12	4	0	27.2	16.2
2002	12	5	0	27.4	17
2002	12	6	0	29.4	17
2002	12	7	0	27.8	17.6
2002	12	8	0	26.6	16.8

2002	12	9	0	27.2	15
2002	12	10	0	27.2	15.6
2002	12	11	0	23	15.8
2002	12	12	0	26.8	16.8
2002	12	13	0	27.6	16.2
2002	12	14	0	27.2	16.4
2002	12	15	0	28.2	17.2
2002	12	16	0	29.2	17.8
2002	12	17	0	29.6	17.2
2002	12	18	0	27.2	15.8
2002	12	19	0	26.6	16.6
2002	12	20	0.1	28.2	18
2002	12	21	0	25.6	17.6
2002	12	22	0.3	27.4	16.4
2002	12	23	0	27.4	16.6
2002	12	24	0	28.4	16.4
2002	12	25	0	28.6	17.4
2002	12	26	1	28	17.6
2002	12	27	0	28.2	18.2
2002	12	28	0	27.4	17.2
2002	12	29	0	29.2	18
2002	12	30	0	27.4	16.6
2002	12	31	0	28	18.2
2003	1	1	0	29.6	18.4
2003	1	2	0	29.4	18
2003	1	3	0	27.8	17.2
2003	1	4	0	28.6	17.6
2003	1	5	0	28.4	18
2003	1	6	0	28	18.8
2003	1	7	0	28	17.2
2003	1	8	0	28.2	18.2
2003	1	9	0	28.4	18.2
2003	1	10	0	28.6	18
2003	1	11	0	28.2	18.6
2003	1	12	0	28.4	18.8
2003	1	13	0	27.4	19
2003	1	14	0	28.8	18.8
2003	1	15	0	29.2	18.6
2003	1	16	0	29	19
2003	1	17	0	29.2	19
2003	1	18	0	28.8	19.5
2003	1	19	0	29	20
2003	1	20	0	28.4	19.2
2003	1	21	0	28.6	18.8
2003	1	22	0	29.2	18.4
2003	1	23	0	27.4	17.4
2003	1	24	0	28.6	17.2

2003 1 25 0 28 18 2003 1 27 0.3 28.8 20.2 2003 1 27 0.3 28.8 20.2 2003 1 28 0.3 29.4 19.4 2003 1 29 0 29.2 19.2 2003 1 30 0 30.4 19.4 2003 2 1 0.6 30.4 20.2 2003 2 1 0.6 30.4 20.2 2003 2 1 0.6 30.4 20.2 2003 2 3 0 29.6 20.2 2003 2 3 0 29.6 20.2 2003 2 4 0 29.8 20.6 2003 2 6 0 29.8 20.6 2003 2 8 0.5 28.4 20.6 2003 <						
2003 1 27 0.3 28.8 20.2 2003 1 28 0.3 29.4 19.4 2003 1 29 0 29.2 19.2 2003 1 30 0 30.4 19.4 2003 1 31 0 29.4 19 2003 2 2 0.2 26.8 20.2 2003 2 2 0.2 26.8 20.2 2003 2 2 0.2 26.8 20.2 2003 2 3 0 29.6 20 2003 2 4 0 29.8 20.6 2003 2 5 0 29.6 20 2003 2 6 0 29.8 20.6 2003 2 8 0.5 28.4 20.6 2003 2 9 0.4 30.2 20.8 2003	2003	1	25	0	28	18
2003 1 28 0.3 29.4 19.4 2003 1 29 0 29.2 19.2 2003 1 30 0 30.4 19.4 2003 1 31 0 29.4 19 2003 2 1 0.6 30.4 20.2 2003 2 1 0.6 30.4 20.2 2003 2 3 0 29.6 20 2003 2 4 0 29.8 20.6 2003 2 5 0 29.6 20 2003 2 6 0 29.8 20.6 2003 2 7 4.4 29.2 20.8 2003 2 8 0.5 28.4 20.6 2003 2 10 0 30.4 20.4 2003 2 11 0 29.6 21 2003 2 <td>2003</td> <td>1</td> <td>26</td> <td>0</td> <td>28.2</td> <td>19.2</td>	2003	1	26	0	28.2	19.2
2003 1 29 0 29.2 19.2 2003 1 30 0 30.4 19.4 2003 1 31 0 29.4 19 2003 2 1 0.6 30.4 20.2 2003 2 2 0.2 26.8 20.2 2003 2 3 0 29.6 20 2003 2 4 0 29.8 20.6 2003 2 5 0 29.6 20 2003 2 6 0 29.8 20.6 2003 2 6 0 29.8 20.6 2003 2 7 4.4 29.2 20.8 2003 2 9 0.4 30.2 20.8 2003 2 9 0.4 30.2 20 2003 2 10 0 30.4 20.4 2003 2	2003	1	27	0.3	28.8	20.2
2003 1 30 0 30.4 19.4 2003 1 31 0 29.4 19 2003 2 1 0.6 30.4 20.2 2003 2 2 0.2 26.8 20.2 2003 2 3 0 29.6 20 2003 2 4 0 29.8 20.6 2003 2 5 0 29.8 20.6 2003 2 6 0 29.8 20.6 2003 2 7 4.4 29.2 20.8 2003 2 8 0.5 28.4 20.6 2003 2 9 0.4 30.2 20 2003 2 10 0 30.4 20.4 2003 2 11 0 29.6 21 2003 2 12 0 30.4 19.8 2003 2	2003	1	28	0.3	29.4	19.4
2003 1 31 0 29.4 19 2003 2 1 0.6 30.4 20.2 2003 2 2 0.2 26.8 20.2 2003 2 3 0 29.6 20 2003 2 4 0 29.8 20.6 2003 2 5 0 29.6 20 2003 2 6 0 29.8 20.6 2003 2 7 4.4 29.2 20.8 2003 2 8 0.5 28.4 20.6 2003 2 9 0.4 30.2 20 2003 2 10 0 30.4 20.6 2003 2 11 0 29.6 21 2003 2 11 0 29.6 21 2003 2 13 0 30.2 19.8 2003 2	2003	1	29	0	29.2	19.2
2003 2 1 0.6 30.4 20.2 2003 2 2 0.2 26.8 20.2 2003 2 3 0 29.6 20 2003 2 4 0 29.8 20.6 2003 2 5 0 29.6 20 2003 2 6 0 29.8 20.6 2003 2 7 4.4 29.2 20.8 2003 2 8 0.5 28.4 20.6 2003 2 9 0.4 30.2 20 2003 2 10 0 30.4 20.4 2003 2 11 0 29.6 21 2003 2 12 0 30.4 19.6 2003 2 12 0 30.4 19.6 2003 2 13 0 30.2 19.8 2003 2	2003	1	30	0	30.4	19.4
2003 2 1 0.6 30.4 20.2 2003 2 2 0.2 26.8 20.2 2003 2 3 0 29.6 20 2003 2 4 0 29.8 20.6 2003 2 5 0 29.6 20 2003 2 6 0 29.8 20.6 2003 2 7 4.4 29.2 20.8 2003 2 8 0.5 28.4 20.6 2003 2 9 0.4 30.2 20 2003 2 10 0 30.4 20.4 2003 2 11 0 29.6 21 2003 2 12 0 30.4 19.6 2003 2 12 0 30.4 19.6 2003 2 13 0 30.2 19.8 2003 2		1				
2003 2 2 0.2 26.8 20.2 2003 2 3 0 29.6 20 2003 2 4 0 29.8 20.6 2003 2 5 0 29.6 20 2003 2 6 0 29.8 20.6 2003 2 7 4.4 29.2 20.8 2003 2 8 0.5 28.4 20.6 2003 2 9 0.4 30.2 20 2003 2 10 0 30.4 20.4 2003 2 11 0 29.6 21 2003 2 12 0 30.4 19.6 2003 2 13 0 30.2 19.8 2003 2 13 0 30.2 19.8 2003 2 15 0 28.6 18.6 2003 2				0.6		
2003 2 3 0 29.6 20 2003 2 4 0 29.8 20.6 2003 2 5 0 29.6 20 2003 2 6 0 29.8 20.6 2003 2 8 0.5 28.4 20.6 2003 2 9 0.4 30.2 20 2003 2 10 0 30.4 20.4 2003 2 11 0 29.6 21 2003 2 11 0 29.6 21 2003 2 11 0 29.6 21 2003 2 12 0 30.4 19.6 2003 2 13 0 30.2 19.8 2003 2 15 0 28.6 18.6 2003 2 16 0 30.4 18.2 2003 2			2			
2003 2 4 0 29.8 20.6 2003 2 5 0 29.6 20 2003 2 6 0 29.8 20.6 2003 2 7 4.4 29.2 20.8 2003 2 8 0.5 28.4 20.6 2003 2 9 0.4 30.2 20 2003 2 10 0 30.4 20.4 2003 2 11 0 29.6 21 2003 2 12 0 30.4 19.6 2003 2 12 0 30.4 19.6 2003 2 13 0 30.2 19.8 2003 2 14 0 29.8 20.6 2003 2 15 0 28.6 18.6 2003 2 16 0 30.4 18.2 2003 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2003 2 5 0 29.6 20 2003 2 6 0 29.8 20.6 2003 2 7 4.4 29.2 20.8 2003 2 8 0.5 28.4 20.6 2003 2 9 0.4 30.2 20 2003 2 10 0 30.4 20.4 2003 2 11 0 29.6 21 2003 2 12 0 30.4 19.6 2003 2 13 0 30.2 19.8 2003 2 14 0 29.8 20.6 2003 2 15 0 28.6 18.6 2003 2 15 0 28.6 18.6 2003 2 16 0 30.4 18.2 2003 2 18 0 28.8 17.6 2003 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2003 2 7 4.4 29.2 20.8 2003 2 8 0.5 28.4 20.6 2003 2 9 0.4 30.2 20 2003 2 10 0 30.4 20.4 2003 2 11 0 29.6 21 2003 2 12 0 30.4 19.6 2003 2 13 0 30.2 19.8 2003 2 14 0 29.8 20.6 2003 2 15 0 28.6 18.6 2003 2 16 0 30.4 18.2 2003 2 16 0 30.4 18.2 2003 2 18 0 28.8 17.6 2003 2 18 0 28.8 17.6 2003 2 19 0 29.4 18.2 2003			5			
2003 2 7 4.4 29.2 20.8 2003 2 8 0.5 28.4 20.6 2003 2 9 0.4 30.2 20 2003 2 10 0 30.4 20.4 2003 2 11 0 29.6 21 2003 2 12 0 30.4 19.6 2003 2 13 0 30.2 19.8 2003 2 14 0 29.8 20.6 2003 2 15 0 28.6 18.6 2003 2 16 0 30.4 18.2 2003 2 16 0 30.4 18.2 2003 2 18 0 28.8 17.6 2003 2 18 0 28.8 17.6 2003 2 19 0 29.4 18.2 2003		2	6			
2003 2 8 0.5 28.4 20.6 2003 2 9 0.4 30.2 20 2003 2 10 0 30.4 20.4 2003 2 11 0 29.6 21 2003 2 12 0 30.4 19.6 2003 2 13 0 30.2 19.8 2003 2 14 0 29.8 20.6 2003 2 15 0 28.6 18.6 2003 2 16 0 30.4 18.2 2003 2 16 0 30.4 18.2 2003 2 18 0 28.8 17.6 2003 2 19 0 29.4 18.2 2003 2 19 0 29.4 18.2 2003 2 20 0 30 18.8 2003 2 </td <td></td> <td>2</td> <td></td> <td>4.4</td> <td></td> <td></td>		2		4.4		
2003 2 9 0.4 30.2 20 2003 2 10 0 30.4 20.4 2003 2 11 0 29.6 21 2003 2 12 0 30.4 19.6 2003 2 13 0 30.2 19.8 2003 2 14 0 29.8 20.6 2003 2 15 0 28.6 18.6 2003 2 16 0 30.4 18.2 2003 2 17 0 30.2 18.6 2003 2 18 0 28.8 17.6 2003 2 19 0 29.4 18.2 2003 2 19 0 29.4 18.8 2003 2 20 0 30 18.8 2003 2 21 0 29.2 18.8 2003 2 <td></td> <td></td> <td>8</td> <td></td> <td></td> <td></td>			8			
2003 2 10 0 30.4 20.4 2003 2 11 0 29.6 21 2003 2 12 0 30.4 19.6 2003 2 13 0 30.2 19.8 2003 2 14 0 29.8 20.6 2003 2 15 0 28.6 18.6 2003 2 16 0 30.4 18.2 2003 2 17 0 30.2 18.6 2003 2 18 0 28.8 17.6 2003 2 19 0 29.4 18.2 2003 2 19 0 29.4 18.2 2003 2 20 0 30 18.8 2003 2 21 0 29.2 18.8 2003 2 22 0 28.6 18.8 2003 2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2003 2 12 0 30.4 19.6 2003 2 13 0 30.2 19.8 2003 2 14 0 29.8 20.6 2003 2 15 0 28.6 18.6 2003 2 16 0 30.4 18.2 2003 2 17 0 30.2 18.6 2003 2 18 0 28.8 17.6 2003 2 19 0 29.4 18.2 2003 2 19 0 29.4 18.2 2003 2 20 0 30 18.8 2003 2 21 0 29.2 18.8 2003 2 21 0 29.2 18.8 2003 2 22 0 28.6 18.6 2003 2 23 0 29.4 18.8 2003 2						
2003 2 12 0 30.4 19.6 2003 2 13 0 30.2 19.8 2003 2 14 0 29.8 20.6 2003 2 15 0 28.6 18.6 2003 2 16 0 30.4 18.2 2003 2 17 0 30.2 18.6 2003 2 18 0 28.8 17.6 2003 2 19 0 29.4 18.2 2003 2 19 0 29.4 18.2 2003 2 20 0 30 18.8 2003 2 21 0 29.2 18.8 2003 2 21 0 29.2 18.8 2003 2 22 0 28.6 18.6 2003 2 23 0 29.4 18.8 2003 2		2				
2003 2 13 0 30.2 19.8 2003 2 14 0 29.8 20.6 2003 2 15 0 28.6 18.6 2003 2 16 0 30.4 18.2 2003 2 17 0 30.2 18.6 2003 2 18 0 28.8 17.6 2003 2 19 0 29.4 18.2 2003 2 20 0 30 18.8 2003 2 21 0 29.2 18.8 2003 2 21 0 29.2 18.8 2003 2 22 0 28.6 18.6 2003 2 22 0 28.6 18.6 2003 2 24 0 28.4 18.2 2003 2 25 0 31 18.4 2003 2 </td <td></td> <td></td> <td>12</td> <td></td> <td></td> <td>19.6</td>			12			19.6
2003 2 14 0 29.8 20.6 2003 2 15 0 28.6 18.6 2003 2 16 0 30.4 18.2 2003 2 17 0 30.2 18.6 2003 2 18 0 28.8 17.6 2003 2 19 0 29.4 18.2 2003 2 20 0 30 18.8 2003 2 21 0 29.2 18.8 2003 2 21 0 29.2 18.8 2003 2 22 0 28.6 18.6 2003 2 23 0 29.4 18.8 2003 2 24 0 28.4 18.2 2003 2 25 0 31 18.4 2003 2 26 0 29.8 19 2003 2 <td></td> <td>2</td> <td></td> <td></td> <td>30.2</td> <td></td>		2			30.2	
2003 2 15 0 28.6 18.6 2003 2 16 0 30.4 18.2 2003 2 17 0 30.2 18.6 2003 2 18 0 28.8 17.6 2003 2 19 0 29.4 18.2 2003 2 20 0 30 18.8 2003 2 21 0 29.2 18.8 2003 2 21 0 29.2 18.8 2003 2 22 0 28.6 18.6 2003 2 23 0 29.4 18.8 2003 2 24 0 28.4 18.2 2003 2 24 0 28.4 18.2 2003 2 26 0 29.8 19 2003 2 26 0 29.8 19.2 2003 3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2003 2 16 0 30.4 18.2 2003 2 17 0 30.2 18.6 2003 2 18 0 28.8 17.6 2003 2 19 0 29.4 18.2 2003 2 20 0 30 18.8 2003 2 21 0 29.2 18.8 2003 2 22 0 28.6 18.6 2003 2 22 0 28.6 18.8 2003 2 23 0 29.4 18.8 2003 2 24 0 28.4 18.2 2003 2 25 0 31 18.4 2003 2 26 0 29.8 19 2003 2 26 0 29.8 19 2003 2 28 0 29.4 19.2 2003 3			15	0		
2003 2 17 0 30.2 18.6 2003 2 18 0 28.8 17.6 2003 2 19 0 29.4 18.2 2003 2 20 0 30 18.8 2003 2 21 0 29.2 18.8 2003 2 22 0 28.6 18.6 2003 2 23 0 29.4 18.8 2003 2 24 0 28.4 18.2 2003 2 25 0 31 18.4 2003 2 26 0 29.8 19 2003 2 27 0 30.4 19.2 2003 2 28 0 29.4 19.2 2003 3 1 0 29.8 18.8 2003 3 2 0 28.4 18.4 2003 3						
2003 2 18 0 28.8 17.6 2003 2 19 0 29.4 18.2 2003 2 20 0 30 18.8 2003 2 21 0 29.2 18.8 2003 2 22 0 28.6 18.6 2003 2 23 0 29.4 18.8 2003 2 24 0 28.4 18.2 2003 2 25 0 31 18.4 2003 2 26 0 29.8 19 2003 2 27 0 30.4 19.2 2003 2 28 0 29.4 19.2 2003 3 1 0 29.8 18.8 2003 3 2 0 28.4 18.4 2003 3 3 0 29.4 18.6 2003 3						
2003 2 20 0 30 18.8 2003 2 21 0 29.2 18.8 2003 2 22 0 28.6 18.6 2003 2 23 0 29.4 18.8 2003 2 24 0 28.4 18.2 2003 2 25 0 31 18.4 2003 2 26 0 29.8 19 2003 2 27 0 30.4 19.2 2003 2 28 0 29.4 19.2 2003 3 1 0 29.8 18.8 2003 3 2 0 28.4 18.4 2003 3 2 0 28.4 18.4 2003 3 3 0 29.4 18.6 2003 3 4 0 29.4 18.6 2003 3			18	0		
2003 2 20 0 30 18.8 2003 2 21 0 29.2 18.8 2003 2 22 0 28.6 18.6 2003 2 23 0 29.4 18.8 2003 2 24 0 28.4 18.2 2003 2 25 0 31 18.4 2003 2 26 0 29.8 19 2003 2 27 0 30.4 19.2 2003 2 28 0 29.4 19.2 2003 3 1 0 29.8 18.8 2003 3 2 0 28.4 18.4 2003 3 2 0 28.4 18.4 2003 3 3 0 29.4 18.6 2003 3 4 0 29.4 18.6 2003 3	2003	2	19	0	29.4	18.2
2003 2 21 0 29.2 18.8 2003 2 22 0 28.6 18.6 2003 2 23 0 29.4 18.8 2003 2 24 0 28.4 18.2 2003 2 25 0 31 18.4 2003 2 26 0 29.8 19 2003 2 27 0 30.4 19.2 2003 2 28 0 29.4 19.2 2003 3 1 0 29.8 18.8 2003 3 2 0 28.4 18.4 2003 3 2 0 29.4 18.6 2003 3 4 0 29.4 18.6 2003 3 5 0 29.6 18.2 2003 3 6 0 29.6 18 2003 3			20	0		18.8
2003 2 22 0 28.6 18.6 2003 2 23 0 29.4 18.8 2003 2 24 0 28.4 18.2 2003 2 25 0 31 18.4 2003 2 26 0 29.8 19 2003 2 27 0 30.4 19.2 2003 2 28 0 29.4 19.2 2003 3 1 0 29.8 18.8 2003 3 2 0 28.4 18.4 2003 3 3 0 29.4 18.6 2003 3 4 0 29.4 18.6 2003 3 5 0 29.6 18.2 2003 3 6 0 29.6 18 2003 3 7 0 30.8 17.8 2003 3	2003	2	21	0	29.2	18.8
2003 2 23 0 29.4 18.8 2003 2 24 0 28.4 18.2 2003 2 25 0 31 18.4 2003 2 26 0 29.8 19 2003 2 27 0 30.4 19.2 2003 2 28 0 29.4 19.2 2003 3 1 0 29.8 18.8 2003 3 2 0 28.4 18.4 2003 3 3 0 29.4 18.6 2003 3 4 0 29.4 18.6 2003 3 5 0 29.6 18.2 2003 3 6 0 29.6 18 2003 3 7 0 30.8 17.8 2003 3 8 0 29.8 18 2003 3		2	22		28.6	18.6
2003 2 25 0 31 18.4 2003 2 26 0 29.8 19 2003 2 27 0 30.4 19.2 2003 2 28 0 29.4 19.2 2003 3 1 0 29.8 18.8 2003 3 2 0 28.4 18.4 2003 3 3 0 29.4 18.6 2003 3 4 0 29.4 18.6 2003 3 5 0 29.6 18.2 2003 3 6 0 29.6 18 2003 3 7 0 30.8 17.8 2003 3 8 0 29.8 18 2003 3 9 1.2 29.8 18.4	2003	2		0	29.4	18.8
2003 2 26 0 29.8 19 2003 2 27 0 30.4 19.2 2003 2 28 0 29.4 19.2 2003 3 1 0 29.8 18.8 2003 3 2 0 28.4 18.4 2003 3 3 0 29.4 18.6 2003 3 4 0 29.4 18.6 2003 3 5 0 29.6 18.2 2003 3 6 0 29.6 18 2003 3 7 0 30.8 17.8 2003 3 8 0 29.8 18 2003 3 9 1.2 29.8 18.4	2003	2	24	0	28.4	18.2
2003 2 27 0 30.4 19.2 2003 2 28 0 29.4 19.2 2003 3 1 0 29.8 18.8 2003 3 2 0 28.4 18.4 2003 3 3 0 29.4 18.6 2003 3 4 0 29.4 18.6 2003 3 5 0 29.6 18.2 2003 3 6 0 29.6 18 2003 3 7 0 30.8 17.8 2003 3 8 0 29.8 18 2003 3 9 1.2 29.8 18.4	2003	2	25	0	31	18.4
2003 2 28 0 29.4 19.2 2003 3 1 0 29.8 18.8 2003 3 2 0 28.4 18.4 2003 3 3 0 29.4 18.6 2003 3 4 0 29.4 18.6 2003 3 5 0 29.6 18.2 2003 3 6 0 29.6 18 2003 3 7 0 30.8 17.8 2003 3 8 0 29.8 18 2003 3 9 1.2 29.8 18.4	2003	2	26	0	29.8	19
2003 3 1 0 29.8 18.8 2003 3 2 0 28.4 18.4 2003 3 3 0 29.4 18.6 2003 3 4 0 29.4 18.6 2003 3 5 0 29.6 18.2 2003 3 6 0 29.6 18 2003 3 7 0 30.8 17.8 2003 3 8 0 29.8 18 2003 3 9 1.2 29.8 18.4	2003	2	27	0	30.4	19.2
2003 3 1 0 29.8 18.8 2003 3 2 0 28.4 18.4 2003 3 3 0 29.4 18.6 2003 3 4 0 29.4 18.6 2003 3 5 0 29.6 18.2 2003 3 6 0 29.6 18 2003 3 7 0 30.8 17.8 2003 3 8 0 29.8 18 2003 3 9 1.2 29.8 18.4	2003	2	28	0	29.4	19.2
2003 3 3 0 29.4 18.6 2003 3 4 0 29.4 18.6 2003 3 5 0 29.6 18.2 2003 3 6 0 29.6 18 2003 3 7 0 30.8 17.8 2003 3 8 0 29.8 18 2003 3 9 1.2 29.8 18.4	2003		1	0	29.8	18.8
2003 3 3 0 29.4 18.6 2003 3 4 0 29.4 18.6 2003 3 5 0 29.6 18.2 2003 3 6 0 29.6 18 2003 3 7 0 30.8 17.8 2003 3 8 0 29.8 18 2003 3 9 1.2 29.8 18.4	2003	3	2	0	28.4	18.4
2003 3 4 0 29.4 18.6 2003 3 5 0 29.6 18.2 2003 3 6 0 29.6 18 2003 3 7 0 30.8 17.8 2003 3 8 0 29.8 18 2003 3 9 1.2 29.8 18.4					29.4	18.6
2003 3 6 0 29.6 18 2003 3 7 0 30.8 17.8 2003 3 8 0 29.8 18 2003 3 9 1.2 29.8 18.4	2003	3		0	29.4	18.6
2003 3 6 0 29.6 18 2003 3 7 0 30.8 17.8 2003 3 8 0 29.8 18 2003 3 9 1.2 29.8 18.4	2003		5	0	29.6	18.2
2003 3 7 0 30.8 17.8 2003 3 8 0 29.8 18 2003 3 9 1.2 29.8 18.4	2003	3	6	0	29.6	18
2003 3 8 0 29.8 18 2003 3 9 1.2 29.8 18.4	2003	3	7	0	30.8	17.8
2003 3 9 1.2 29.8 18.4	2003	3	8	0	29.8	18
	2003	3	9	1.2	29.8	18.4
2003 3 10 0 28.6 18.6	2003		10	0	28.6	18.6
2003 3 11 0 30.6 18.6	2003	3	11	0	30.6	18.6
2003 3 12 0 30.6 17.8	2003	3	12	0	30.6	17.8

2003	3	13	0.2	30	18
2003	3	14	0	29.2	18.8
2003	3	15	0	29.8	17.2
2003	3	16	0	29.8	18
2003	3	17	0	29.8	18.8
2003	3	18	0	29	19
2003	3	19	0	30.4	18.4
2003	3	20	0	31	17.6
2003		21	0	29.6	17.2
2003	3	22	0	28.6	16.4
2003	3	23	0	28.2	16.8
2003	3	24	0	29.4	17.2
2003	3	25	0	29.4	17.8
2003	3	26	0	29.4	16
2003	3	27	0	29.4	16.2
2003	3	28	0	29.8	17.6
2003	3	29	0	27.8	17.2
2003		30	0	28.6	17.2
2003	3	31	0	30	18.2
2003	4	1	0	30	18.4
2003	4	2	0	28.2	16.8
2003	4	3	0	28.4	15.6
2003	4	4	0	29.4	16
2003	4	5	0	29.8	16.2
2003	4	6	0	29.6	16
2003	4	7	0	27.8	15.6
2003	4	8	0	29.4	16.4
2003	4	9	0	29.6	17
2003	4	10	0	31.6	16.6
2003	4	11	0	29.6	16.6
2003	4	12	0.1	27.2	16.2
2003	4	13	0	29.2	16.4
2003	4	14	0	28.8	16.6
2003	4	15	0	28.8	16
2003	4	16	0	29.4	15.6
2003	4	17	0	27.8	14.8
2003	4	18	0	27.8	14.8
2003	4	19	0	26.6	14.2
2003	4	20	0	27.6	14.8
2003	4	21	0	28.4	14.2
2003	4	22	0	26	14.4
2003	4	23	0	30	15.6
2003	4	24	0	28.2	14.2
2003	4	25	0	25.6	14.2
2003	4	26	0	28.2	13.8
2003	4	27	0	28.2	15.2
2003	4	28	0	28.6	14.6

2003	4	29	0	27.8	14.2
2003	4	30	0	27.8	14.4
2003	5	1	0	29.6	14.6
2003	5	2	0	27.2	15.2
2003	5	2 3	0	29.4	14.4
2003	5	4	0	28.4	14.4
2003	5	5	0	27	15
2003	5	6	0	28	14.8
2003	5	7	0	28.6	15
2003	5 5	8	0	26.6	15.4
2003	5	9	0	26.2	15
2003	5	10	0	26.8	13.4
2003	5	11	0	27.4	13.2
2003	5	12	0	27.6	14.2
2003	5	13	0	28	13.6
2003	5	14	0	28.2	14.2
2003	5	15	0	24.8	14
2003	5	16	0	26.8	13.6
2003	5	17	0	25.8	14
2003	5	18	0	26.2	13.8
2003	5	19	0	29	14
2003	5 5	20	0	28.6	13.6
2003		21	0	25.6	13.6
2003	5	22	0	26.2	14.2
2003	5	23	0	26	12.6
2003	5	24	0	27	12
2003	5	25	0	26.4	12.6
2003	5	26	0	26.4	14.6
2003	5	27	0	25.4	13.2
2003	5 5	28	0	25.6	13.6
2003		29	0	25.6	13.8
2003	5	30	0	24.8	13.2
2003	5	31	0	26.2	11.6
2003	6	1	0	24	12.2
2003	6	2	0	26.6	13.2
2003	6	3	0	26.6	11.2
2003	6	4	0	24.8	11.6
2003	6	5	0	26.6	13.2
2003	6	6	0	26.2	13.2
2003	6	7	0	27.8	13.8
2003	6	8	0	27.6	12.6
2003	6	9	0	25.4	12.4
2003	6	10	0	26.8	12.6
2003	6	11	0	25	11
2003	6	12	0	24.8	11.6
2003	6	13	0	26	12.6
2003	6	14	0	26.8	11.8

2003	6	15	0	25.8	12.4
2003	6	16	0	25.4	12.2
2003	6	17	0	23.2	13.2
2003	6	18	0	26.2	13
2003	6	19	0	26.8	11.8
2003	6	20	0	24	12.4
2003	6	21	0.7	23	13.2
2003	6	22	0	26.6	13
2003	6	23	0	26.6	13.6
2003	6	24	0	26.6	12.6
2003	6	25	0	25.2	12.8
2003	6	26	0	26	12.6
2003	6	27	0	25.4	14
2003	6	28	0	24.8	10.6
2003	6	29	0	26.6	10.6
2003	6	30	0	26.8	12
2003	7	1	0	25.4	12
2003	7	2	0	26.4	12
2003	7	3	0	23.2	13
2003	7	4	0	23.2	11
2003	7	5	0	25.8	14
2003	7	6	0	26	12
2003	7	7	0	25	13
2003	7	8	0	26.2	14
2003	7	9	0	25.4	11.4
2003	7	10	0	25.4	11.6
2003	7	11	0	24.2	12
2003	7	12	0	24.4	11.8
2003	7	13	0	25	11.2
2003	7	14	0	23.6	9.8
2003	7	15	0	23	10.2
2003	7	16	0	24.8	9.6
2003	7	17	0	24.6	9.4
2003	7	18	0	23.8	9.2
2003	7	19	0	24.8	9.2
2003	7	20	0	24.8	9.4
2003	7	21	0	25.4	9.2
2003	7	22	0	26	9.6
2003	7	23	0	26.4	10
2003	7	24	0	26	10.6
2003	7	25	0	25.6	11.2
2003	7	26	0	25.6	10.8
2003	7	27	0	25.4	11.2
2003	7	28	0	25.2	13.4
2003	7	29	0	24.6	9.6
2003	7	30	0	25.8	9.6
2003	7	31	0	24.6	10.6

2003			_		
2000	8	1	0	24	12.4
2003	8	2	0	25	12.6
2003	8	3	0	25.8	12.2
2003	8	4	0	25.4	11.8
2003	8	5	0	22.4	12.6
2003	8	6	0	23.6	11.8
2003	8	7	0	24.2	11.2
2003	8	8	0	26.2	11.6
2003	8	9	0	26.2	11.2
2003	8	10	0	22.6	11.4
2003	8	11	0	24	12.6
2003	8	12	0	23	10.2
2003	8	13	0	24.2	11
2003	8	14	0	23.2	9.8
2003	8	15	0	23.6	10
2003	8	16	0	26.8	10.2
2003	8	17	0	23.8	13.4
2003	8	18	0	24	13.6
2003	8	19	0	24.4	14.6
2003	8	20	0	23.4	15
2003	8	21	0	22.8	14
2003	8	22	0	23.6	13.4
2003	8	23	0	23.4	13.4
2003	8	24	0	23.8	13.6
2003	8	25	0	23.8	12.2
2003	8	26	0	24.4	12.8
2003	8	27	0	23.8	14
2003	8	28	0	23.8	13.8
2003	8	29	0	23.8	12.6
2003	8	30	0	23.4	14.6
2003	8	31	0	23.2	13
2003	9	1	0	24.4	14.2
2003	9	2	0	23.8	11.8
2003	9	3	0	23	12.8
2003	9	4	0	23	13.2
2003	9	5	0	25.8	14
2003	9	6	0	22.6	12.6
2003	9	7	0	23.6	15
2003	9	8	0	24.4	14
2003	9	9	0	22.2	13.8
2003	9	10	0.5	20.6	14.4
2003	9	11	0	22.4	15.4
2003	9	12	0	25	15
2003	9	13	0	23.2	15.8
2003	9	14	0	23.6	13.8
2003	9	15	0	22.6	15.8
2003	9	16	0	24.6	15.4

2003	9	17	0	23.6	13.2
2003	9	18	0	23.8	15
2003	9	19	0	23.8	13.6
2003	9	20	0	24	15.2
2003	9	21	0	25.2	15.2
2003	9	22	0	24.2	16.2
2003	9	23	0	25.4	16.4
2003	9	24	0	23.4	15.6
2003	9	25	0	25.4	14.8
2003	9	26	0	24.6	15
2003	9	27	0	23.6	15
2003	9	28	0	24.8	13.8
2003	9	29	0	24.2	14.2
2003	9	30	0	24.2	15.8
2003	10	1	0	25.6	14.8
2003	10	2	0	25	15.8
2003	10	3	0	25.2	16
2003	10	4	0	24.8	14
2003	10	5	0	24.2	15.8
2003	10	6	0	24.2	11.8
2003	10	7	0	24.8	11.4
2003	10	8	0	24.6	14
2003	10	9	0	25.4	15.2
2003	10	10	0	24.8	14
2003	10	11	0	25.8	14.2
2003	10	12	0	25	14
2003	10	13	0	25.4	15.2
2003	10	14	0	27.6	15.2
2003	10	15	0	25	15.8
2003	10	16	0	26.6	15.8
2003	10	17	0	26	15
2003	10	18	0	26.2	14
2003	10	19	0	25	15.2
2003	10	20	0	25.4	13.8
2003	10	21	0	26	15.8
2003	10	22	0	25	14.8
2003	10	23	0	23.8	15
2003	10	24	0	27.4	14.8
2003	10	25	0	29	16.4
2003	10	26	0	26.8	15
2003	10	27	0	25.6	16.4
2003	10	28	0	25.6	13.8
2003	10	29	0	23.4	15
2003	10	30	0	25.6	16.6
2003	10	31	0	25.4	16.6
2003	11	1	0	24.6	15.8
2003	11	2	0	25	12

2003	11	3	0	25.2	12
2003	11	4	0	25	14
2003	11	5	0	26.4	13.2
2003	11	6	0	25.4	14.6
2003	11	7	0	25.6	15.8
2003	11	8	0	26.2	15
2003	11	9	0	25.8	14.8
2003	11	10	0	26.2	16.6
2003	11	11	0	25.8	14.8
2003	11	12	0	26.4	14.2
2003	11	13	0	27.6	15
2003	11	14	0	26.8	16.6
2003	11	15	0.1	28.4	16.2
2003	11	16	1.1	27.6	18
2003	11	17	0	26.8	18
2003	11	18	0	27.4	14.8
2003	11	19	0	27.8	16
2003	11	20	0	26.2	15.6
2003	11	21	0	23.6	16
2003	11	22	0	27.2	16.8
2003	11	23	0	27.2	15.6
2003	11	24	0	26.2	15.6
2003	11	25	0	27.2	17.8
2003	11	26	0	27.2	16.2
2003	11	27	0	26.6	18.8
2003	11	28	0	27.4	19.2
2003	11	29	0	27.6	18.2
2003	11	30	0	28	17.8
2003	12	1	0	26.2	17.4
2003	12	2	0	28.6	19
2003	12	3	0.9	27.6	19.2
2003	12	4	0	28	19.4
2003	12	5	0	29.4	19.4
2003	12	6	0	27.4	16
2003	12	7	0	28.6	17
2003	12	8	0	28.2	15.2
2003	12	9	0	27	17.4
2003	12	10	0	29.6	16.6
2003	12	11	0	28.6	18.6
2003	12	12	0	27.6	18.2
2003	12	13	0	27.6	17.4
2003	12	14	0	28.6	18.8
2003	12	15	0	29.4	19.2
2003	12	16	0	31	17.4
2003	12	17	0	28.4	19.2
2003	12	18	0	28.4	19.4
2003	12	19	0	28.8	18.8

2003	12	20	0	29.8	18.8
2003	12	21	1.6	28.6	19
2003	12	22	0	28.4	19.2
2003	12	23	0	28.8	19.8
2003	12	24	0	29.2	19.4
2003	12	25	0	29.6	20
2003	12	26	0	27.6	20
2003	12	27	0	30	20.2
2003	12	28	0	28.4	19.4
2003	12	29	0	28.4	20
2003	12	30	0	27.8	19.2
2003	12	31	0	29	18.4
2004	1	1	0	29.6	18.4
2004	1	2	0	28.6	18.8
2004	1	3	0	29.2	19.2
2004	1	4	0	29.2	19.8
2004	1	5	0	28.8	19.6
2004	1	6	0	29	19.8
2004	1	7	0	29.4	19.8
2004	1	8	0	31.2	21.4
2004	1	9	0	30.4	22.2
2004	1	10	0	28	21.8
2004	1	11	0	31.4	21.2
2004	1	12	0	28.6	20.8
2004	1	13	0	28.4	20.6
2004	1	14	0	28.6	19.8
2004	1	15	0	29.4	20.4
2004	1	16	0	29.4	20.2
2004	1	17	0	27.8	19.4
2004	1	18	0	28	19.4
2004	1	19	0	27.6	19.6
2004	1	20	0	27.8	19.8
2004	1	21	0	29.4	19.2
2004	1	22	0	27.4	19.2
2004	1	23	0	27.6	18.6
2004	1	24	0	27.4	17.4
2004	1	25	0	27.6	17.8
2004	1	26	0	27.4	18.8
2004	1	27	0	28.8	19
2004	1	28	0	28	20.6
2004	1	29	0	28.8	21.2
2004	1	30	0	29	21.4
2004	1	31	0	29.6	21.6
2004	2	1	0	29	22.2
2004	2	2	1.2	29.2	21.6
2004	2	3	0	29.8	21.4
2004	2	4	0	29.6	21.8

2004	0	_	_		
2001	2	5	0	29.6	22.2
2004	2	6	1.1	29.6	22.6
2004	2	7	0.3	29.8	22.6
2004	2	8	0	30.4	22.4
2004	2	9	0.1	30	22.4
2004	2	10	0	31	22.6
2004	2	11	0.4	29.4	22.4
2004	2	12	0	29.8	22.4
2004	2	13	0	28.8	21.8
2004	2	14	0	30.4	22
2004	2	15	1.2	28.8	21.8
2004	2	16	0	29.8	21.8
2004		17	0	30	21.4
2004	2	18	0	28.8	21.8
2004	2	19	0	30	21.2
2004	2	20	0	29.4	21
2004	2	21	0	30	21
2004		22	0	31.6	20.8
2004	2	23	0	28	20.6
2004	2	24	0	29.6	20.8
2004	2	25	0	28.4	21.2
2004	2	26	0	30	21.8
2004	2	27	0	30	21.6
2004	2	28	0	29.8	20.8
2004	2	29	0	28.6	20
2004	3	1	0	30	21.4
2004	3	2	0	28.8	19.4
2004	3	3	0	29.4	20.2
2004	3	4	0.3	30	19.8
2004	3	5 6	8.0	30.6	21.2
2004	3		0	29.4	20.2
2004	3	7	0.8	30.6	21.4
2004	3	8	0	29.8	20.6
2004	3	9	0	29.4	19.2
2004	3	10	0.2	30.2	19
2004	3	11	0	30.2	20.2
2004	3	12	0	27.6	19.8
2004	3	13	0	31.6	20
2004	3	14	0	30.6	20.6
2004	3	15	0	29.4	19.8
2004	3	16	0	30.4	20.4
2004	3	17	0	30.2	19.5
2004	3	18	0	30	20.6
2004	3	19	0	29.4	20
2004	3	20	0	28.8	21.8
2004	3	21	0	30	21
2004	3	22	0	30.4	21.8

2004	3	23	0	29.6	20.2
2004	3	24	0	29.2	20
2004	3	25	0	30.2	20.6
2004	3	26	0	31	21.4
2004	3	27	0	30.8	22
2004	3	28	0	31.2	21.2
2004	3	29	0	31.4	21
2004	3	30	0	30.6	20.4
2004	3	31	0	28.6	19.2
2004	4	1	0	28.6	16
2004	4	2	1.5	29.4	15.8
2004	4	3	0	28.4	20.2
2004	4	4	0	28.6	19
2004	4	5	0	28.8	19.2
2004	4	6	0	27.8	19.6
2004	4	7	0	27.8	18.4
2004	4	8	0	28	18
2004	4	9	0	29.4	18.8
2004	4	10	0	29	20
2004	4	11	0	28.8	20
2004	4	12	0	29.6	20.2
2004	4	13	0	28.8	21
2004	4	14	0	29.4	21.2
2004	4	15	0	29.8	20.2
2004	4	16	0	30.4	21.4
2004	4	17	0	29.6	19.2
2004	4	18	0	28.4	18.4
2004	4	19	0	27	17.8
2004	4	20	0	28.6	18
2004	4	21	0	27.8	16.8
2004	4	22	0	29.8	17
2004	4	23	0	29.4	19.2
2004	4	24	0	31	18.6
2004	4	25	0	27.4	17
2004	4	26	0	27.8	18.6
2004	4	27	0	27.2	17.6
2004	4	28	0	27.8	17.8
2004	4	29	0	27.2	17
2004	4	30	0	27.2	15.4
2004	5	1	0	27.6	16.6
2004	5	2	0	27.4	16.8
2004	5	3	0	28.6	18.2
2004	5	4	0	29.2	17.2
2004	5	5	0	28.4	17.2
2004	5	6	0	28.6	18
2004	5	7	0	27.6	16.4
2004	5	8	0	28.2	16.4

2004	5	9	0	26.8	16
2004	5	10	0	26.8	15.4
2004	5	11	0	27.8	16
2004	5	12	0	27.4	15.8
2004	5	13	0	25	15.8
2004	5	14	0	26.4	14.6
2004	5	15	0	26.6	15
2004	5	16	0	28.6	16.4
2004	5	17	0	26.8	17.4
2004	5	18	0	27	16.6
2004	5	19	0	28.8	16.6
2004	5	20	0	25.8	16.8
2004	5	21	0	25.4	17.2
2004	5	22	0	26.2	15.8
2004	5	23	0	25	14.8
2004	5	24	0	25.8	14.8
2004	5	25	0	26	15.6
2004	5	26	0	24.4	15.8
2004	5	27	0	26.6	16.6
2004	5	28	0	26.2	14.6
2004	5	29	0	25.8	14.8
2004	5	30	0	26	13.8
2004	5 5	31	0	24.8	13.2
2004	6	1	0	23.6	13.6
2004	6	2	0	24.2	14
2004	6	3	0	25	13
2004	6	4	0	27.8	13
2004	6	5	0	26.4	14.4
2004	6	6	0	25.6	15
2004	6	7	0	25.4	13.2
2004	6	8	0	23.6	13.2
2004	6	9	0	25	13
2004	6	10	0	25	13.8
2004	6	11	0	24	13.2
2004	6	12	0	25	13.2
2004	6	13	0	24	14
2004	6	14	0	23.8	13.8
2004	6	15	0	24.2	12.8
2004	6	16	0	23.4	12.8
2004	6	17	0	21.2	12.6
2004	6	18	0	23.4	13
2004	6	19	0	25.4	14
2004	6	20	0	24.6	14.6
2004	6	21	0	24	15.2
2004	6	22	0	25	12
2004	6	23	0	23.2	13.2
2004	6	24	0	23.8	11.4

2004	6	25	0	25	12.4
2004	6	26	0	25.8	15.8
2004	6	27	0	24.4	14.8
2004	6	28	0	25.6	14.2
2004	6	29	0	23.8	14.8
2004	6	30	0	24	13.2
2004	7	1	0	22.6	13.6
2004	7	2	0	27.2	16.4
2004	7	3	0	25.6	16.6
2004	7	4	0	23.2	16.8
2004	7	5	0	22.6	15
2004	7	6	0	25	16
2004	7	7	0	23.8	15.4
2004	7	8	0	24	14.2
2004	7	9	0	25	14
2004	7	10	0	24.6	15
2004	7	11	0	24.4	14.8
2004	7	12	0	24	13.8
2004	7	13	0	24.8	14
2004	7	14	0	25	14.2
2004	7	15	0	25.6	15.2
2004	7	16	0	24.8	14.2
2004	7	17	0	23.6	15
2004	7	18	0	23.8	16.8
2004	7	19	0	24.8	13.4
2004	7	20	0	23.8	12.6
2004	7	21	0	23.6	13.8
2004	7	22	0	24.2	12.2
2004	7	23	0	24.6	12
2004	7	24	0	26.2	12.2
2004	7	25	0	25.2	16.6
2004	7	26	0	25.8	14.4
2004	7	27	0	23.4	16.4
2004	7	28	0	25	12.8
2004	7	29	0	24.6	13.6
2004	7	30	0	24.8	11.8
2004	7	31	0	24	13.2
2004	8	1	0	24	14.8
2004	8	2	0	24.2	12.6
2004	8	3	0	25.4	12.2
2004	8	4	0	24	12.6
2004	8	5	0	24.4	13
2004	8	6	0	24.8	11.4
2004	8	7	0	25.2	11.6
2004	8	8	0	23.6	13.2
2004	8	9	0	24.6	11.2
2004	8	10	0	24.4	11.2

2004	8	11	0	24.6	13.6
2004	8	12	0	25.6	10.4
2004	8	13	0	24.6	11
2004	8	14	0	24.6	11.6
2004	8	15	0	26.4	12.4
2004	8	16	0	24.8	12.2
2004	8	17	0	25	12.4
2004	8	18	0	25.4	12.6
2004	8	19	0	24.6	13.4
2004	8	20	0	25.4	12.2
2004	8	21	0	25	12
2004	8	22	0	24.2	12.8
2004	8	23	0	23.6	12.4
2004	8	24	0	24.8	11.8
2004	8	25	0	25.8	13
2004	8	26	0	26.2	13.2
2004	8	27	0	23.6	12.4
2004	8	28	0	24.2	12.6
2004	8	29	0	24.4	11.6
2004	8	30	0	25.2	12.2
2004	8	31	0	27.8	12
2004	9	1	0	26	15
2004	9	2	0	25	13.2
2004	9	3	0	25.2	11.4
2004	9	4	0	25.4	11.8
2004	9	5	0	25.8	13
2004	9	6	5	26.6	13.2
2004	9	7	0	24.6	15.2
2004	9	8	0	26.4	15.6
2004	9	9	0	26.4	16.2
2004	9	10	0	25.8	16.6
2004	9	11	0	26.2	14
2004	9	12	0	26.6	13.2
2004	9	13	0	25.6	12.8
2004	9	14	0	25	14.2
2004	9	15	0	26.2	14.6
2004	9	16	0	25.6	14.4
2004	9	17	0	26.2	15.6
2004	9	18	0	26.4	16.4
2004	9	19	0	26.6	16
2004	9	20	0	25.4	16.2
2004	9	21	0	24.6	16.2
2004	9	22	0	25.8	14.6
2004	9	23	0	26.4	13.8
2004	9	24	0	26.6	13.4
2004	9	25	0	26.4	15
2004	9	26	0	26.6	14.2

2004	9	27	0	26	15
2004	9	28	0	27.6	16.6
2004	9	29	0.3	27.2	16.8
2004	9	30	0	24.8	17.2
2004	10	1	0	27.4	16.4
2004	10	2	0	27.6	17
2004	10	3	0	27.4	17.2
2004	10	4	0.4	28.2	17.8
2004	10	5	0	27.4	17.4
2004	10	6	0	28	17.2
2004	10	7	0	27.6	17
2004	10	8	0	26.6	15.8
2004	10	9	0	27.4	15.4
2004	10	10	0	28.6	15.2
2004	10	11	0	26.2	15.4
2004	10	12	0	26.6	15.2
2004	10	13	0	26.6	14.8
2004	10	14	0	27	15.8
2004	10	15	0	27.8	15.6
2004	10	16	0	27	14.2
2004	10	17	0	27.2	16.8
2004	10	18	0	27.4	17
2004	10	19	0	25	15.2
2004	10	20	0	24.8	16
2004	10	21	0	25.4	16.6
2004	10	22	0	26	16.6
2004	10	23	0	24.6	17
2004	10	24	0	27.8	17
2004	10	25	0	25.6	16.6
2004	10	26	0	27.2	17.6
2004	10	27	0	27	15.2
2004	10	28	0	27.2	15.2
2004	10	29	0	27	16.4
2004	10	30	0	27	17
2004			0	+	
2004	10 11	31 1	0	25.8	16.8 16
		2		24.4	
2004	11 11	3	0	26.8	15.2
2004				27.4	16.4
2004	11	4	0	27	16.6
2004	11	5	0	28.6	17.4
2004	11	6 7	0	25	16
2004	11		0	27.6	17.6
2004	11	8	0	29.4	18.6
2004	11	9	0	26.6	18
2004	11	10	0	26.8	16.8
2004	11	11	0	27.6	17.2
2004	11	12	0	28.6	17.6

2004	11	13	0	26.6	17.6
2004					11.0
2004	11	14	0	26.8	18.8
2004	11	15	0	29	14.6
2004	11	16	0	26.6	17.8
2004	11	17	0	27	14
2004	11	18	0	27	14.2
2004	11	19	0	28	14.8
2004	11	20	0	28.8	16
2004	11	21	0	28.4	17
2004	11	22	0	27.6	16
2004	11	23	0	28.6	16.2
2004	11	24	0	29	15.4
2004	11	25	0	30.4	17.4
2004	11	26	0	29.6	17
2004	11	27	0	28.2	17
2004	11	28	0	27.4	18.2
2004	11	29	0	28.6	18.4
2004	11	30	0	27.6	15.8
2004	12	1	0	27.6	17.6
2004	12	2	0	28	18.4
2004	12	3	0	29.6	17.6
2004	12	4	0	29.2	18.2
2004	12	5	0	28.6	16.6
2004	12	6	0	29	19
2004	12	7	0	29	18.4
2004	12	8	0	29.2	19.4
2004	12	9	0	30.4	20
2004	12	10	0	30.2	20.2
2004	12	11	0	28	18
2004	12	12	0	30.2	19.6
2004	12	13	0	30.6	20.4
2004	12	14	0	27.8	21.2
2004	12	15	0.3	30.6	20.4
2004	12	16	0	30.4	20.6
2004	12	17	0	29.8	20.2
2004	12	18	0	29	18.6
2004	12	19	0	29.8	19
2004	12	20	0	29.2	19.4
2004	12	21	0	30	18.6
2004	12	22	0	31	18
2004	12	23	0	29.6	18
2004	12	24	0	30	17.8
2004	12	25	0	29.8	16.2
2004	12	26	0	30.6	16.6
2004	12	27	0	29.2	18.4
2004	12	28	0	29.4	18.8
2004	12	29	0	31.6	20

2004 12 2004 12 2005 1		0	31	18.4
2005 1	2 31	0 F	00.0	
		0.5	29.6	18
2005	1	0	30	19.2
2005 1	2	0	29.8	20.2
2005 1	3	0	31.4	19.4
2005 1	4	3	29	20.8
2005 1	5	0	30	20
2005 1	6	1	29.2	20.6
2005 1	7	0	31.6	20.2
2005 1	8	0	32.6	20.8
2005 1	9	0	32	20.2
2005 1	10	0	32.4	21.4
2005 1	11	0	31.6	22.2
2005 1	12	0	32	22.2
2005 1	13	0	32	21.8
2005 1	14	0	31.8	21.6
2005 1	15	0	31.4	21.8
2005 1	16	0	31.8	21.6
2005 1	17	0	31.6	20.6
2005 1	18	0	31.2	19.8
2005 1	19	0	32.2	21.2
2005 1	20	0	31.6	20
2005 1	21	0	31.8	18.6
2005 1	22	0	31.4	20.2
2005 1	23	0	30.8	19.6
2005 1	24	0	31.2	22.2
2005 1	25	0	32	21
2005 1	26	0	30	19.8
2005 1	27	0	30	18.6
2005 1	28	0	30.8	19
2005 1	29	0	30.6	20.2
2005 1	30	0	30.8	19.2
2005 1	31	0	30.6	19.6
2005 2	1	0	31	20.4
2005 2	2	0	29.8	21
2005 2		0	31.8	21.4
2005 2	4	0	32	22
2005 2		0	29.8	19.2
2005 2		0	32.2	20
2005 2	7	0	31.6	20.2
2005 2		0	29.8	20.8
2005 2	9	0.3	31.8	21.6
2005 2	10	0	27.2	22
2005 2	11	0	30.4	22.2
2005 2	12	0	30.4	22.4
2005 2		0	32.2	23
2005 2	14	0	31	21.4

2005	2	15	0	29.8	19.8
2005	2	16	0	30.8	20
2005	2	17	0	31.6	-99.9
2005	2	18	0	30.6	-99.9
2005	2	19	0	30.4	-99.9
2005	2	20	0	33.2	-99.9
2005	2	21	0	29.8	-99.9
2005	2	22	0	29.8	-99.9
2005	2	23	0	30	-99.9
2005	2	24	0	31.6	-99.9
2005	2	25	0	29.4	-99.9
2005	2	26	0.9	30.4	-99.9
2005	2	27	0	31	-99.9
2005	2	28	0	30.4	-99.9
2005	3	1	0	29.4	-99.9
2005	3	2	0	28.6	-99.9
2005	3	3	8.9	26.2	-99.9
2005	3	4	0.2	25.6	-99.9
2005			0.2	28	21.8
2005	3 3 3	5 6	0	30.2	21.6
2005	3	7	0.8	30.4	21.8
2005		8	0.0	30.4	22
2005	3	9	0	31.4	21
2005	3	10	0	30	21.8
2005	3	11	0	31.2	22
2005	3	12	0	30	21.8
2005	3	13	0	28.4	21.6
2005	3	14	0	29	22
2005	3	15	0	28.2	20.8
2005	3	16	0	27.6	21.2
2005	3	17	0	28.8	20.6
2005	3	18	0	26	20.6
2005	3	19	0	29.2	20.4
2005	3	20	0	28.8	19.8
2005		21	0	28.2	19.2
	3	22	0		
2005	3			28.8	19.2
2005	3	23	0	28.6	19.8
2005	3	24 25		28.4	20.4
2005	3	25	0	27.6 30.4	20.2
2005	3			_	20.2
2005	3	27	0	29.2	21 21.2
2005	3	28		29.2	
2005	3	29	0.3	28.8	20.6
2005	3	30	0	29.4	20.8
2005		31	0	29	21.2
2005	4	1 2	0	28.6	21
2005	4		0	28.4	20.4

2005	4	3	0	27.6	19.2
2005	4	4	0	27.8	19
2005	4	5	0	28.4	18.4
2005	4	6	0	29.6	19.4
2005	4	7	0.3	28.4	20.4
2005	4	8	0	27.8	20
2005	4	9	0	27.6	19.4
2005	4	10	0	29	19.2
2005	4	11	0	29	18.4
2005	4	12	0	28	19
2005	4	13	0	27.8	19
2005	4	14	0	25.4	19.2
2005	4	15	0	27.4	18
2005	4	16	0	29.8	18.8
2005	4	17	0	28.6	19.2
2005	4	18	0	29.6	19.8
2005	4	19	0.4	27.8	18.8
2005	4	20	0	28.4	18.8
2005	4	21	0	28.2	19.2
2005	4	22	0	29.6	19.4
2005	4	23	0	28.4	18.2
2005	4	24	0	30	18.8
2005	4	25	0	30.2	18.6
2005	4	26	0	29.2	19
2005	4	27	0	26.4	18.2
2005	4	28	0	26.8	18.4
2005	4	29	0	27.4	18
2005	4	30	0	27.2	18.2
2005	5	1	0	26.2	18.2
2005	5	2 3	0	26	18
2005	5	3	0	27	17.2
2005	5	4	0	26.2	17.4
2005	5	5	0	26	17
2005	5	6	0	25	16.6
2005	5	7	0	26.2	17.6
2005	5	8	0	24.6	16.2
2005	5	9	0	26.2	16.4
2005	5	10	0	25.6	15
2005	5	11	0	25.6	15.2
2005	5	12	0	26.2	15.4
2005	5	13	0	25.6	16.2
2005	5	14	0	25	16.4
2005	5	15	0	26.4	17.2
2005	5	16	0	25.8	17.4
2005	5	17	0	25.8	17.8
2005	5	18	0	25.6	17.4
2005	5	19	0	23.4	16.8

2005	5	20	0	21.2	16.8
2005	5	21	0	24	16.2
2005	5	22	0	20.4	17
2005	5	23	0	20.4	17.2
2005	5	24	0	22.6	17
2005	5	25	0	29.4	14.8
2005	5	26	0	23.8	13.4
2005	5	27	0	23	14
2005	5 5	28	0	23.4	13.2
2005		29	0	25.4	13.2
2005	5	30	0	23.4	13.4
2005	5	31	0	24	13
2005	6	1	0	25	13.8
2005	6	2	0	25.8	14.4
2005	6	3	0	25	14.2
2005	6	4	0	25	14.4
2005	6	5	0	23.8	15.4
2005	6	6	0	25.2	15
2005	6	7	0	25	15.4
2005	6	8	0	24.8	13.6
2005	6	9	0	24.6	13.6
2005	6	10	0	23.8	14
2005	6	11	0	24	13.8
2005	6	12	0	24	13.4
2005	6	13	0	24.6	14.4
2005	6	14	0	23.8	13.4
2005	6	15	0	23.8	12.8
2005	6	16	0	23.6	12.2
2005	6	17	0	24.6	12.6
2005	6	18	0	25.4	12.8
2005	6	19	0	25.4	13.8
2005	6	20	0	25.6	14.8
2005	6	21	0	25.2	14.6
2005	6	22	0	24.4	16
2005	6	23	0	25.6	14.2
2005	6	24	0	24.6	14
2005	6	25	0	24.4	14.6
2005	6	26	0	24.8	13.8
2005	6	27	0	24.6	16.6
2005	6	28	0	25.2	15
2005	6	29	0	25	15.4
2005	6	30	0	25.6	16.2
2005	7	1	0	24.6	15.6
2005	7	2	0	23.6	16.6
2005	7	3	0	24	17.2
2005	7	4	0	24.4	13.2
2005	7	5	0	23.8	15.6

2005	7	6	0	24.2	17.2
2005	7	7	0	23	15
2005	7	8	0	22.4	13.8
2005	7	9	0	23.4	13.4
2005	7	10	0	24.4	12
2005	7	11	0	25	11.6
2005	7	12	0	24.2	11.2
2005	7	13	0	24.8	14.2
2005	7	14	0	24.8	13.6
2005	7	15	0	23.2	13
2005	7	16	0	23.2	12.2
2005	7	17	0	23.4	11.6
2005	7	18	0	24.4	12.2
2005	7	19	0	23.2	11.8
2005	7	20	0	24.6	12.6
2005	7	21	0	24.4	12.2
2005	7	22	0	24	11.8
2005	7	23	0	23.4	11.2
2005	7	24	0	23	12.2
2005	7	25	0	20.8	14
2005	7	26	0	24.8	11.6
2005	7	27	0	25	12
2005	7	28	0	23.2	12.4
2005	7	29	0	24.2	10.8
2005	7	30	0	24.2	12.2
2005	7	31	0	24.4	11.8
2005	8	1	0	24	11.2
2005	8	2	0	24.8	11.8
2005	8	3	0	22.8	13
2005	8	4	0	25	11.8
2005	8	5	0	24.6	12.6
2005	8	6	0	25	12.6
2005	8	7	0	25.4	12.2
2005	8	8	0	24.8	12.6
2005	8	9	0	25.2	14.8
2005	8	10	0	24.6	14
2005	8	11	0	24.6	13.8
2005	8	12	0	24.8	13.6
2005	8	13	0	19.8	15.6
2005	8	14	0	24.8	15.8
2005	8	15	0	25.6	12.8
2005	8	16	0	25.2	12.6
2005	8	17	0	23.4	15.2
2005	8	18	0	25.8	12.6
2005	8	19	0	25.4	12.6
2005	8	20	0	24.6	13.6
2005	8	21	0	24.2	12.8

2005	8	22	0	25.4	12.8
2005	8	23	0	24.6	15.2
2005	8	24	0	25.4	15.2
2005	8	25	0	24.4	15
2005	8	26	0	24.8	13.8
2005	8	27	0	26.2	14
2005	8	28	0	25.6	15
2005	8	29	0	25.8	13.8
2005	8	30	0	24.6	14.2
2005	8	31	0	25.4	12.8
2005	9	1	0	25	15
2005	9	2 3	0	25.2	15.8
2005	9		0	26.2	14.8
2005	9	4	0	24	14.4
2005	9	5	0	23.6	13
2005	9	6	0	26	12.6
2005	9	7	0	24.4	13
2005	9	8	0	24.8	13.8
2005	9	9	0	24.4	13.2
2005	9	10	0	25.2	14.4
2005	9	11	0	24.8	14.8
2005	9	12	0	25	12
2005	9	13	0	25	12.6
2005	9	14	0	25.2	14.8
2005	9	15	0	24.8	15
2005	9	16	0	23.2	15.2
2005	9	17	0	24	13.2
2005	9	18	0	24	13.6
2005	9	19	0	25.8	13.8
2005	9	20	0	24.8	14.6
2005	9	21	0	24.4	15.6
2005	9	22	0	24.2	16.2
2005	9	23	0	23	15.8
2005	9	24	0	23.2	15.8
2005	9	25	0	23	15.6
2005	9	26	0	24.4	13.8
2005	9	27	0	24.2	14.6
2005	9	28	0	23.8	13.2
2005	9	29	0	22.2	13.6
2005	9	30	0	24	14.8
2005	10	1	0	25.2	12.4
2005	10	2	0	25.6	15.6
2005	10	3	0	25	15.4
2005	10	4	0	24.4	14.8
2005	10	5	0	24.6	13.2
2005	10	6	0	25	14
2005	10	7	0	23.8	15.4

2005	10	8	0	26.2	15.4
2005	10	9	0	25	15.2
2005	10	10	0	26	16.2
2005	10	11	0	26.2	16.6
2005	10	12	0	25.4	15.6
2005	10	13	0	26	15.6
2005	10	14	0	25.4	15.8
2005	10	15	0	25.6	14
2005	10	16	0	24.6	13.2
2005	10	17	0	24.8	13.4
2005	10	18	0	23.6	14.8
2005	10	19	0	25	13.4
2005	10	20	0	25.2	14.2
2005	10	21	0	26	16
2005	10	22	0	27.8	16.8
2005	10	23	0	25	15.6
2005	10	24	0	25.4	15.2
2005	10	25	0	24.8	16
2005	10	26	0	24	14.4
2005	10	27	0	25.2	13.4
2005	10	28	0	24.8	16
2005	10	29	0	25.8	15.2
2005	10	30	0	25	14
2005	10	31	0	24	16
2005	11	1	0.2	24.4	15.8
2005	11	2	0	26.2	15.4
2005	11	3	0	28	15
2005	11	4	0	25.2	14.8
2005	11	5	0	25.4	13.6
2005	11	6	0	28.2	15.2
2005	11	7	0	23.4	16.6
2005	11	8	0	26.8	16.2
2005	11	9	0	26	15.6
2005	11	10	0	26.8	16.8
2005	11	11	0	27	17.2
2005	11	12	0	26.6	17.2
2005	11	13	0	27.8	17.6
2005	11	14	0	26	17.2
2005	11	15	0	26.4	15
2005	11	16	0	25.6	14.8
2005	11	17	0	25.8	13.4
2005	11	18	0	25.8	14.2
2005	11	19	0	26	13.8
2005	11	20	0	23.8	16.6
2005	11	21	0	21.2	16.2
2005	11	22	0	23.6	17.8
2005	11	23	0	25.2	10.8

2005 11 24 0 24.2 14 2005 11 26 0 25.6 11.6 2005 11 26 0 25.6 11.8 2005 11 27 0 24.8 14.2 2005 11 28 0 25 13.8 2005 11 29 0 25.4 12.4 2005 11 30 0 24.6 13.2 2005 12 1 0 25.4 12.4 2005 12 1 0 25.6 13.8 2005 12 2 0 25.6 13.8 2005 12 3 0 25.8 14.6 2005 12 4 0 25.2 15 2005 12 4 0 25.8 17.6 2005 12 5 0 25.8 17.6 2005 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
2005 11 26 0 25.6 11.8 2005 11 27 0 24.8 14.2 2005 11 28 0 25 13.8 2005 11 29 0 25.4 12.4 2005 11 30 0 24.6 13.2 2005 12 1 0 25.4 12.4 2005 12 1 0 25.4 12.4 2005 12 1 0 25.4 12.4 2005 12 3 0 25.6 13.8 2005 12 3 0 25.6 13.8 2005 12 3 0 25.6 15 2005 12 4 0 25.2 15 2005 12 5 0 25.8 17.6 2005 12 7 0 25.6 16 2005 12	2005	11	24	0	24.2	14
2005 11 27 0 24.8 14.2 2005 11 28 0 25 13.8 2005 11 29 0 25.4 12.4 2005 11 30 0 24.6 13.2 2005 12 1 0 25.4 12.4 2005 12 2 0 25.6 13.8 2005 12 2 0 25.6 13.8 2005 12 4 0 25.2 15 2005 12 4 0 25.2 15 2005 12 5 0 25.8 14.6 2005 12 6 0 27.2 16.2 2005 12 8 0 26.6 14.6 2005 12 8 0 26.6 14.6 2005 12 8 0 26.6 14.6 2005 1	2005	11	25	0	25.6	11.6
2005	2005	11	26	0	25.6	11.8
2005 11 29 0 25.4 12.4 2005 11 30 0 24.6 13.2 2005 12 1 0 25.4 12.4 2005 12 2 0 25.6 13.8 2005 12 3 0 25.8 14.6 2005 12 4 0 25.2 15 2005 12 5 0 25.8 17.6 2005 12 6 0 27.2 16.2 2005 12 7 0 25.6 16 2005 12 7 0 25.6 16 2005 12 8 0 26.6 14.6 2005 12 8 0 26.6 14.6 2005 12 10 0 25 16.6 2005 12 11 0 26.8 17.4 2005 12<	2005	11	27	0	24.8	14.2
2005 11 30 0 24.6 13.2 2005 12 1 0 25.4 12.4 2005 12 2 0 25.6 13.8 2005 12 3 0 25.8 14.6 2005 12 4 0 25.2 15 2005 12 5 0 25.8 17.6 2005 12 6 0 27.2 16.2 2005 12 6 0 27.2 16.2 2005 12 8 0 26.6 14.6 2005 12 8 0 26.6 14.6 2005 12 9 0 24.2 15.4 2005 12 10 0 25 16.6 2005 12 11 0 26.8 17.4 2005 12 11 0 26.8 17.6 2005 <td< td=""><td>2005</td><td>11</td><td>28</td><td>0</td><td>25</td><td>13.8</td></td<>	2005	11	28	0	25	13.8
2005 12 1 0 25.4 12.4 2005 12 2 0 25.6 13.8 2005 12 3 0 25.8 14.6 2005 12 4 0 25.2 15 2005 12 5 0 25.8 17.6 2005 12 6 0 27.2 16.2 2005 12 7 0 25.6 16 2005 12 8 0 26.6 14.6 2005 12 9 0 24.2 15.4 2005 12 10 0 25 16.6 2005 12 10 0 25 16.6 2005 12 11 0 26.8 17.4 2005 12 11 0 26.8 17.4 2005 12 13 0 27 17.6 2005 12 </td <td>2005</td> <td>11</td> <td>29</td> <td>0</td> <td>25.4</td> <td>12.4</td>	2005	11	29	0	25.4	12.4
2005 12 2 0 25.6 13.8 2005 12 3 0 25.8 14.6 2005 12 4 0 25.2 15 2005 12 5 0 25.8 17.6 2005 12 6 0 27.2 16.2 2005 12 7 0 25.6 16 2005 12 8 0 26.6 14.6 2005 12 9 0 24.2 15.4 2005 12 10 0 25 16.6 2005 12 11 0 26.8 17.4 2005 12 11 0 26.8 17.4 2005 12 11 0 26.8 17.4 2005 12 13 0 27 17.6 2005 12 14 0 27.4 18.2 2005 1	2005	11	30	0	24.6	13.2
2005 12 3 0 25.8 14.6 2005 12 4 0 25.2 15 2005 12 5 0 25.8 17.6 2005 12 6 0 27.2 16.2 2005 12 7 0 25.6 16 2005 12 8 0 26.6 14.6 2005 12 9 0 24.2 15.4 2005 12 10 0 25 16.6 2005 12 11 0 26.8 17.4 2005 12 11 0 26.8 17.4 2005 12 12 0 26.2 16.8 2005 12 13 0 27 17.6 2005 12 13 0 27 17.6 2005 12 14 0 27.2 18.8 2005 12	2005	12	1	0	25.4	12.4
2005 12 4 0 25.2 15 2005 12 5 0 25.8 17.6 2005 12 6 0 27.2 16.2 2005 12 7 0 25.6 16 2005 12 8 0 26.6 14.6 2005 12 9 0 24.2 15.4 2005 12 10 0 25 16.6 2005 12 11 0 26.8 17.4 2005 12 11 0 26.8 17.4 2005 12 11 0 26.8 17.4 2005 12 13 0 27 17.6 2005 12 13 0 27 17.6 2005 12 14 0 27.4 18.2 2005 12 16 0 27 19.4 2005 12<	2005	12		0	25.6	13.8
2005 12 5 0 25.8 17.6 2005 12 6 0 27.2 16.2 2005 12 7 0 25.6 16 2005 12 8 0 26.6 14.6 2005 12 9 0 24.2 15.4 2005 12 10 0 25 16.6 2005 12 11 0 26.8 17.4 2005 12 11 0 26.2 16.8 2005 12 13 0 27 17.6 2005 12 13 0 27 17.6 2005 12 14 0 27.4 18.2 2005 12 15 0 27.2 18.8 2005 12 16 0 27 19.4 2005 12 18 0 27.4 19.4 2005	2005	12	3	0	25.8	14.6
2005 12 6 0 27.2 16.2 2005 12 7 0 25.6 16 2005 12 8 0 26.6 14.6 2005 12 9 0 24.2 15.4 2005 12 10 0 25 16.6 2005 12 11 0 26.8 17.4 2005 12 11 0 26.8 17.4 2005 12 12 0 26.2 16.8 2005 12 13 0 27 17.6 2005 12 14 0 27.4 18.2 2005 12 15 0 27.2 18.8 2005 12 16 0 27 19.4 2005 12 16 0 27 19.4 2005 12 18 0 27.4 19.4 2005 <td< td=""><td>2005</td><td>12</td><td></td><td>0</td><td>25.2</td><td>15</td></td<>	2005	12		0	25.2	15
2005 12 6 0 27.2 16.2 2005 12 7 0 25.6 16 2005 12 8 0 26.6 14.6 2005 12 9 0 24.2 15.4 2005 12 10 0 25 16.6 2005 12 11 0 26.8 17.4 2005 12 11 0 26.8 17.4 2005 12 12 0 26.2 16.8 2005 12 13 0 27 17.6 2005 12 14 0 27.4 18.2 2005 12 15 0 27.2 18.8 2005 12 16 0 27 19.4 2005 12 16 0 27 19.4 2005 12 18 0 27.4 19.4 2005 <td< td=""><td>2005</td><td>12</td><td>5</td><td>0</td><td>25.8</td><td>17.6</td></td<>	2005	12	5	0	25.8	17.6
2005 12 8 0 26.6 14.6 2005 12 9 0 24.2 15.4 2005 12 10 0 25 16.6 2005 12 11 0 26.8 17.4 2005 12 12 0 26.2 16.8 2005 12 13 0 27 17.6 2005 12 14 0 27.4 18.2 2005 12 15 0 27.2 18.8 2005 12 16 0 27 19.4 2005 12 17 0 28.2 19.2 2005 12 17 0 28.2 19.2 2005 12 18 0 27.4 19.4 2005 12 19 0 27.8 19.6 2005 12 20 0 27.4 19.2 2005	2005	12	6	0	27.2	16.2
2005 12 9 0 24.2 15.4 2005 12 10 0 25 16.6 2005 12 11 0 26.8 17.4 2005 12 12 0 26.2 16.8 2005 12 13 0 27 17.6 2005 12 14 0 27.4 18.2 2005 12 15 0 27.2 18.8 2005 12 16 0 27 19.4 2005 12 17 0 28.2 19.2 2005 12 17 0 28.2 19.2 2005 12 18 0 27.4 19.4 2005 12 19 0 27.8 19.6 2005 12 20 0 27.4 19.2 2005 12 21 0 29 19.6 2005	2005	12	7	0	25.6	16
2005 12 10 0 25 16.6 2005 12 11 0 26.8 17.4 2005 12 12 0 26.2 16.8 2005 12 13 0 27 17.6 2005 12 14 0 27.4 18.2 2005 12 15 0 27.2 18.8 2005 12 16 0 27 19.4 2005 12 16 0 27 19.4 2005 12 17 0 28.2 19.2 2005 12 18 0 27.4 19.4 2005 12 19 0 27.8 19.6 2005 12 19 0 27.4 19.2 2005 12 20 0 27.4 19.2 2005 12 21 0 29 19.6 2005	2005	12	8	0	26.6	14.6
2005 12 11 0 26.8 17.4 2005 12 12 0 26.2 16.8 2005 12 13 0 27 17.6 2005 12 14 0 27.4 18.2 2005 12 15 0 27.2 18.8 2005 12 16 0 27 19.4 2005 12 16 0 27 19.4 2005 12 17 0 28.2 19.2 2005 12 18 0 27.4 19.4 2005 12 19 0 27.8 19.6 2005 12 20 0 27.4 19.2 2005 12 21 0 29 19.6 2005 12 21 0 29 19.6 2005 12 23 0 27.4 20 2005 <	2005	12	9	0	24.2	15.4
2005 12 12 0 26.2 16.8 2005 12 13 0 27 17.6 2005 12 14 0 27.4 18.2 2005 12 15 0 27.2 18.8 2005 12 16 0 27 19.4 2005 12 17 0 28.2 19.2 2005 12 18 0 27.4 19.4 2005 12 18 0 27.4 19.4 2005 12 19 0 27.8 19.6 2005 12 20 0 27.4 19.2 2005 12 21 0 29 19.6 2005 12 21 0 29 19.6 2005 12 23 0 27.4 20 2005 12 23 0 27.8 20.4 2005	2005	12	10	0	25	16.6
2005 12 13 0 27 17.6 2005 12 14 0 27.4 18.2 2005 12 15 0 27.2 18.8 2005 12 16 0 27 19.4 2005 12 17 0 28.2 19.2 2005 12 18 0 27.4 19.4 2005 12 19 0 27.8 19.6 2005 12 20 0 27.4 19.2 2005 12 20 0 27.4 19.6 2005 12 21 0 29 19.6 2005 12 21 0 29 19.6 2005 12 23 0 27.4 20 2005 12 23 0 27 20.2 2005 12 24 0 27.8 20.4 2005 <	2005	12	11	0	26.8	17.4
2005 12 14 0 27.4 18.2 2005 12 15 0 27.2 18.8 2005 12 16 0 27 19.4 2005 12 17 0 28.2 19.2 2005 12 18 0 27.4 19.4 2005 12 19 0 27.8 19.6 2005 12 20 0 27.4 19.2 2005 12 21 0 29 19.6 2005 12 21 0 29 19.6 2005 12 22 0 27.4 20 2005 12 23 0 27 20.2 2005 12 23 0 27 20.2 2005 12 24 0 27.8 20.4 2005 12 26 0 26.2 20.8 2005 <	2005	12	12	0	26.2	16.8
2005 12 15 0 27.2 18.8 2005 12 16 0 27 19.4 2005 12 17 0 28.2 19.2 2005 12 18 0 27.4 19.4 2005 12 19 0 27.8 19.6 2005 12 20 0 27.4 19.2 2005 12 21 0 29 19.6 2005 12 21 0 29 19.6 2005 12 22 0 27.4 20 2005 12 23 0 27 20.2 2005 12 23 0 27 20.2 2005 12 24 0 27.8 20.4 2005 12 25 0 28.4 20.2 2005 12 26 0 26.2 20.8 2005 <	2005	12	13	0	27	17.6
2005 12 16 0 27 19.4 2005 12 17 0 28.2 19.2 2005 12 18 0 27.4 19.4 2005 12 19 0 27.8 19.6 2005 12 20 0 27.4 19.2 2005 12 21 0 29 19.6 2005 12 22 0 27.4 20 2005 12 23 0 27 20.2 2005 12 23 0 27.8 20.4 2005 12 24 0 27.8 20.4 2005 12 25 0 28.4 20.2 2005 12 26 0 26.2 20.8 2005 12 27 0 27.4 19.8 2005 12 28 0 27.8 20 2005	2005	12	14	0	27.4	18.2
2005 12 17 0 28.2 19.2 2005 12 18 0 27.4 19.4 2005 12 19 0 27.8 19.6 2005 12 20 0 27.4 19.2 2005 12 21 0 29 19.6 2005 12 22 0 27.4 20 2005 12 23 0 27 20.2 2005 12 23 0 27.8 20.4 2005 12 24 0 27.8 20.4 2005 12 25 0 28.4 20.2 2005 12 26 0 26.2 20.8 2005 12 27 0 27.4 19.8 2005 12 28 0 27.8 20 2005 12 29 0 27 18.6 2005	2005	12	15	0	27.2	18.8
2005 12 18 0 27.4 19.4 2005 12 19 0 27.8 19.6 2005 12 20 0 27.4 19.2 2005 12 21 0 29 19.6 2005 12 22 0 27.4 20 2005 12 23 0 27 20.2 2005 12 24 0 27.8 20.4 2005 12 25 0 28.4 20.2 2005 12 26 0 26.2 20.8 2005 12 27 0 27.4 19.8 2005 12 28 0 27.8 20 2005 12 28 0 27.8 20 2005 12 29 0 27 18.6 2005 12 30 0 26.6 18.4 2005 <	2005	12	16	0	27	19.4
2005 12 19 0 27.8 19.6 2005 12 20 0 27.4 19.2 2005 12 21 0 29 19.6 2005 12 22 0 27.4 20 2005 12 23 0 27 20.2 2005 12 24 0 27.8 20.4 2005 12 25 0 28.4 20.2 2005 12 26 0 26.2 20.8 2005 12 27 0 27.4 19.8 2005 12 28 0 27.8 20 2005 12 29 0 27 18.6 2005 12 30 0 26.6 18.4 2005 12 31 0 28 18.6	2005	12	17	0	28.2	19.2
2005 12 20 0 27.4 19.2 2005 12 21 0 29 19.6 2005 12 22 0 27.4 20 2005 12 23 0 27 20.2 2005 12 24 0 27.8 20.4 2005 12 25 0 28.4 20.2 2005 12 26 0 26.2 20.8 2005 12 27 0 27.4 19.8 2005 12 28 0 27.8 20 2005 12 29 0 27 18.6 2005 12 30 0 26.6 18.4 2005 12 31 0 28 18.6	2005	12	18	0	27.4	19.4
2005 12 21 0 29 19.6 2005 12 22 0 27.4 20 2005 12 23 0 27 20.2 2005 12 24 0 27.8 20.4 2005 12 25 0 28.4 20.2 2005 12 26 0 26.2 20.8 2005 12 27 0 27.4 19.8 2005 12 28 0 27.8 20 2005 12 29 0 27 18.6 2005 12 30 0 26.6 18.4 2005 12 31 0 28 18.6	2005	12	19	0	27.8	19.6
2005 12 22 0 27.4 20 2005 12 23 0 27 20.2 2005 12 24 0 27.8 20.4 2005 12 25 0 28.4 20.2 2005 12 26 0 26.2 20.8 2005 12 27 0 27.4 19.8 2005 12 28 0 27.8 20 2005 12 29 0 27 18.6 2005 12 30 0 26.6 18.4 2005 12 31 0 28 18.6	2005	12	20	0	27.4	19.2
2005 12 23 0 27 20.2 2005 12 24 0 27.8 20.4 2005 12 25 0 28.4 20.2 2005 12 26 0 26.2 20.8 2005 12 27 0 27.4 19.8 2005 12 28 0 27.8 20 2005 12 29 0 27 18.6 2005 12 30 0 26.6 18.4 2005 12 31 0 28 18.6	2005	12	21	0	29	19.6
2005 12 24 0 27.8 20.4 2005 12 25 0 28.4 20.2 2005 12 26 0 26.2 20.8 2005 12 27 0 27.4 19.8 2005 12 28 0 27.8 20 2005 12 29 0 27 18.6 2005 12 30 0 26.6 18.4 2005 12 31 0 28 18.6	2005	12	22	0	27.4	20
2005 12 25 0 28.4 20.2 2005 12 26 0 26.2 20.8 2005 12 27 0 27.4 19.8 2005 12 28 0 27.8 20 2005 12 29 0 27 18.6 2005 12 30 0 26.6 18.4 2005 12 31 0 28 18.6	2005	12	23	0	27	20.2
2005 12 26 0 26.2 20.8 2005 12 27 0 27.4 19.8 2005 12 28 0 27.8 20 2005 12 29 0 27 18.6 2005 12 30 0 26.6 18.4 2005 12 31 0 28 18.6		12	24	0	27.8	20.4
2005 12 27 0 27.4 19.8 2005 12 28 0 27.8 20 2005 12 29 0 27 18.6 2005 12 30 0 26.6 18.4 2005 12 31 0 28 18.6	2005	12	25	0	28.4	20.2
2005 12 28 0 27.8 20 2005 12 29 0 27 18.6 2005 12 30 0 26.6 18.4 2005 12 31 0 28 18.6	2005	12	26	0	26.2	20.8
2005 12 29 0 27 18.6 2005 12 30 0 26.6 18.4 2005 12 31 0 28 18.6	2005	12	27	0	27.4	19.8
2005 12 30 0 26.6 18.4 2005 12 31 0 28 18.6	2005	12	28	0	27.8	20
2005 12 31 0 28 18.6	2005	12	29	0	27	18.6
	2005	12	30	0	26.6	18.4
	2005	12	31	0	28	18.6
2020 12 31 0 26.4 19.2						
	2020	12	31	0	26.4	19.2

Anexo 6.5. Ficha resumen N° 01

Proyecto: Diseño de infraestructura vial de las calles del sector Cafetal I, distrito de Guadalupe, provincia de

Pacasmayo, 2021.

Responsable: Jorge Barrantes Villanueva

Laboratorio: Cerámicos y Suelos Universidad Nacional de Trujillo

Autores: Cedrón Pilco, Bernardo Raúl Ángel

Marquillo Gutierrez, Yesenia Thalía

Fecha:

ESTUDIO DE MECÁNICA DE SUELOS

		ESTRATOS ENCONTRADOS EN SUS PRINCIP				ALES PROPIEDADES				
MUESTRA	PROFUNDIDA D (m)	GRANULOMETRIA			LÍMITE DE CONSISTENCIA (%)			CONTENIDO DE HUMEDAD		ACIÓN DE LOS
		% GRAVA	% ARENA	% FINOS	L.L	L.P	I.P	(%)	SUCS	AASTHO
C-1, M-1	1.50	0.00%	35.5	64.5	30.0	17.7	12.4	14.6	CL	A-6
C-2, M-2	1.50	0.00%	36.7	63.3	33.9	13.8	20.1	17.2	CL	A-6
C-3, M-3	1.50	0.00%	29.2	70.8	30.0	22.4	7.6	22.7	CL	A-4
C-4, M-4	1.50	0.00%	24.8	75.2	41.0	21.5	19.5	32.7	CL	A-7-6

Anexo 7. Validez y confiabilidad de instrumentos

Anexo 7.1. Matriz para evaluación de expertos

MATRIZ PARA EVALUACIÓN DE EXPERTOS Título de la Diseño de Infraestructura Vial de las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021. Línea de investigación: Diseño de Infraestructura Vial Apellidos y nombres del experto: Rojas Marquillo, Renzo Luis Miguel El instrumento de medición pertenece a la variable: Diseño de infraestructura vial

Mediante la matriz de evaluación de expertos, Ud. tiene la facultad de evaluar cada una de las preguntas marcando con una "x" en las columnas de SÍ o NO. Asimismo, le exhortamos en la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

6.	Dayward	Apr	ecia	Observaciones
Items	Preguntas	Si	NO	Observaciones
1	¿El instrumento de medición presenta el diseño adecuado?	X		
2	¿El instrumento de recolección de datos tiene relación con el título de la investigación?	X		
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?	X		
4	¿El instrumento de recolección de datos facilitará el logro de los objetivos de la investigación?	X		
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?	X		
6	¿Cada una de los ítems del instrumento de medición se relaciona con cada uno de los elementos de los indicadores?	X		
7	¿El diseño del instrumento de medición facilitará el análisis y procesamiento de datos?	X		
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	X		
9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	X		

Sugerencias:

Rento E. Rojas Marquillo INGENIERO CIVIL R. CIP 159170

> FIRMA CIP: 159170

Anexo 7.2 Matriz para evaluación de expertos

Título de la investigación:	Diseño de Infraestructura Vis sector Cafetal I, distrito de G de Pacasmayo, 2021.		T
Línea de investigación:	Diseño de Infraestructura Vi	al	4,
Apellidos y nombres del experto:		19.	
El instrumento de medici	ón pertenece a la variable:	Diseño de infraestru	ctura vial

Mediante la matriz de evaluación de expertos, Ud. tiene la facultad de evaluar cada una de las preguntas marcando con una "x" en las columnas de SÍ o NO. Asimismo, le exhortamos en la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

٤.		Apr	ecia	Observaciones
Ítems	Preguntas	Si	NO	Observaciones
1	¿El instrumento de medición presenta el diseño adecuado?	х		
2	¿El instrumento de recolección de datos tiene relación con el título de la investigación?	х		
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?	х		
4	¿El instrumento de recolección de datos facilitará el logro de los objetivos de la investigación?	Х		
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?	X		
6	¿Cada una de los ítems del instrumento de medición se relaciona con cada uno de los elementos de los indicadores?	x		
7	¿El diseño del instrumento de medición facilitará el análisis y procesamiento de datos?	Х		
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	х		
9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	x		

Sugerencias:

FIRMA

Anexo 7.3 Matriz para evaluación de expertos

MATR	IZ PARA EVALUACIÓN DE	EXPERTOS			
Título de la investigación:	Diseño de Infraestructura Via sector Cafetal I, distrito de G de Pacasmayo, 2021.		T		
Línea de investigación:	Diseño de Infraestructura Vial				
experto:	Dionicio Terrones, Jhon Alex				
El instrumento de medici	ón pertenece a la variable:	Diseño de infraestru	ctura vial		

Mediante la matriz de evaluación de expertos, Ud. tiene la facultad de evaluar cada una de las preguntas marcando con una "x" en las columnas de SÍ o NO. Asimismo, le exhortamos en la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

	D		ecia	Observaciones
Ítems	Preguntas	Si	NO	Observaciones
1	¿El instrumento de medición presenta el diseño adecuado?	х		
2	¿El instrumento de recolección de datos tiene relación con el título de la investigación?	х		
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?	Х		
4	¿El instrumento de recolección de datos facilitará el logro de los objetivos de la investigación?	х		
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?	Х		
6	¿Cada una de los ítems del instrumento de medición se relaciona con cada uno de los elementos de los indicadores?	x		
7	¿El diseño del instrumento de medición facilitará el análisis y procesamiento de datos?	Х		
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	х		
9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	x		

-						
		~	0.00		20	
O.	ıu	u.	CII		as	٠
1000	-3		-	-		

Ing. CIVIL R.CIP N 192360

FIRMA

	MATR	IZ PARA EVALUACIÓN DE EX	(PER	ros		
Título de la Diseño de Infraestructura Via sector Cafetal I, distrito de G de Pacasmayo, 2021.						
inea de investigación: Diseño de Infraestructura Vial					4,	
exper	dos y nombres del to:	Flores Fernández, Rafael Rica				
El ins	trumento de medici	ón pertenece a la variable:	iseño	raestructura vial		
sugere tems	encias, con la finalida	on de los ítems, indicando sus o ad de mejorar la medición sobre reguntas	la va	riable ecia	en estudio. Observaciones	
1	(Consequence - Consequence - C	instrumento de medición presenta el diseño				
2		recolección de datos tiene de la investigación?	х			
3	mencionan las varia	de recolección de datos se ables de investigación?	x			
4	el logro de los objet	recolección de datos facilitará ivos de la investigación?	X			
5	relaciona con las va		X			
		ems del instrumento de na con cada uno de los dicadores?	x			
6	elementos de los in	diseño del instrumento de medición facilitará el alisis y procesamiento de datos?				
N905	elementos de los in ¿El diseño del instru análisis y procesam	umento de medición facilitará e iento de datos?	X			
6	elementos de los in ¿El diseño del instru análisis y procesam ¿El instrumento de población sujeto de	umento de medición facilitará e iento de datos? medición será accesible a la	X			

CONSULTOR-SUPERVISOR Ing. Rataol R. Fibres Fernández CIP/29192

FIRMA

Anexo 7.5 Matriz para evaluación de expertos

MATRIZ PARA EVALUACIÓN DE EXPERTOS Título de la biseño de Infraestructura Vial de las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021. Línea de investigación: Diseño de Infraestructura Vial Apellidos y nombres del experto: Villar Quiroz, Josualdo Carlos El instrumento de medición pertenece a la variable: Diseño de infraestructura vial

Mediante la matriz de evaluación de expertos, Ud. tiene la facultad de evaluar cada una de las preguntas marcando con una "x" en las columnas de SÍ o NO. Asimismo, le exhortamos en la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

Ítems	Droguntos	Apr	ecia	Observaciones	
items	Preguntas	SÍ	NO	Observaciones	
1	¿El instrumento de medición presenta el diseño adecuado?	Х			
2	¿El instrumento de recolección de datos tiene relación con el título de la investigación?	Х			
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?	X			
4	¿El instrumento de recolección de datos facilitará el logro de los objetivos de la investigación?	X			
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?	х			
6	¿Cada una de los ítems del instrumento de medición se relaciona con cada uno de los elementos de los indicadores?	х			
7	¿El diseño del instrumento de medición facilitará el análisis y procesamiento de datos?	Х			
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	Х			
9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	X			

Sugerencias:			

FIRMA CIP: 106997

Anexo 7.6 Matriz para evaluación de expertos

MATRIZ PARA EVALUACIÓN DE EXPERTOS Título de la investigación: Diseño de Infraestructura Vial de las calles del sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, 2021. Línea de investigación: Diseño de Infraestructura Vial Apellidos y nombres del experto: El instrumento de medición pertenece a la variable: Diseño de infraestructura vial

Mediante la matriz de evaluación de expertos, Ud. tiene la facultad de evaluar cada una de las preguntas marcando con una "x" en las columnas de SÍ o NO. Asimismo, le exhortamos en la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

Ítems	Droguntos	Apr	ecia	Observaciones	
items	Preguntas	Sİ	NO	Observaciones	
1	¿El instrumento de medición presenta el diseño adecuado?	Χ			
2	¿El instrumento de recolección de datos tiene relación con el título de la investigación?	X			
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?	Χ			
4	¿El instrumento de recolección de datos facilitará el logro de los objetivos de la investigación?	X			
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?	X			
6	¿Cada una de los ítems del instrumento de medición se relaciona con cada uno de los elementos de los indicadores?	X			
7	¿El diseño del instrumento de medición facilitará el análisis y procesamiento de datos?	Χ			
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	Χ			
9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	X			

Sugerencias:	
--------------	--

ESTUDIO DE MECANICA DE SUELOS

PROYECTO:

"DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR

CAFETAL I, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, 2021"

SOLICITANTE:

Yesenia Thalía Marquillo Gutierrez

DEPARTAMENTO: LA LIBERTAD

PROVINCIA: PACASMAYO

DISTRITO: GUADALUPE

TRUJILLO – PERU 2021

Juan Pablo II s/n Ciudad Universitaria-Ing de Materiales- UNT/email:lab.ceramicos.unt@gmail.com

"DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, 2021"

INDICE

- 1. GENERALIDADES
 - 1.1. Objetivo de estudio
 - 1.2. Normatividad
 - 1.3. Características del local y/o proyecto
 - 1.4. Ubicación y reconocimiento del terreno
- 2. GEOLOGÍA Y SISMICIDAD DEL ÁREA DE ESTUDIO
 - 2.1. Geología
- 3. INVESTIGACIONES REALIZADAS
 - 3.1. Trabajos de Campo
 - 3.1.1. Exploraciones
 - 3.2. Pruebas de laboratorio
 - 3.3. Clasificación de suelos
- 4. CARACTERÍSTICAS GEOTÉCNICAS
 - 4.1. Columnas estratigráficas
- ANÁLISIS DE TRÁFICO Y CÁLCULO DE CAPACIDAD DE SOPORTE DE LA SUBRASANTE
- 6. CÁLCULO DE ESPESORES DEL PAVIMENTO
- 7. CONCLUSIONES Y RECOMENDACIONES

ESTUDIO DE MECANICA DE SUELOS

"DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, 2021"

1. GENERALIDADES

1.1. Objetivo del estudio

El objetivo del presente informe es el diseño de infraestructura vial de las calles del sector Cafetal I, en el distrito de Guadalupe, provincia de Pacasmayo, departamento de La Libertad. Este objetivo se enmarca estratégicamente en promover e impulsar construcciones de carácter social y el ordenamiento territorial, el desarrollo urbano sostenible, fortaleciendo el Sistema Urbano Local en un marco de gestión eficiente y eficaz.

Para eso el estudio se ha efectuado por medio de trabajos de exploraciones de campo y ensayos de laboratorio, labores necesarias para definir el perfil estratigráfico del área en estudio, así como las características de esfuerzo y deformación, proporcionando los parámetros más importantes de los materiales; y los procedimientos de construcción más adecuados para la mejor realización de la obra.

Los trabajos realizados se basan en la aplicación de la mecánica de suelos, la cual tiene como finalidad básica de predecir las reacciones de este medio frente a las cargas que le transmiten las edificaciones, o más general aun, determinar cómo ha de comportarse frente a las solicitaciones mecánicas. Este comportamiento se materializa en una modificación de su estado inicial de tensiones y deformaciones. Así pues, es en la predicción del cambio de tensiones y deformaciones en una masa de suelo por efecto de una variación de las solicitaciones, donde radica el objeto de este estudio.

La secuencia seguida para la realización del estudio fue la siguiente:

- · Recopilación de datos generales del proyecto.
- Exploraciones en campo.
- Extracción de muestras.

UNIVERSIDAD NACIONAL DE TRUJILLO

- Ensayos de laboratorios.
- Análisis de cimentación.
- · Conclusiones y recomendaciones finales.

1.2. Normatividad

Los trabajos de investigación se han realizado según Norma Peruana CE-10 del RNE, la cual se basa en la aplicación de la Mecánica de Suelos que indica ensayos fundamentales y necesarios para predecir el comportamiento de un suelo bajo la acción de sistemas de carga y que, con la ayuda del análisis matemático, ensayos de laboratorio, ensayos de campo y de datos experimentales recogidos en obras anteriores, permite proyectar y ejecutar trabajos de fundaciones de toda índole.

1.3. Características del local y/o proyecto.

El área de estudio está ubicada en el Sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo en el Departamento de la Libertad. Se proyecta pavimentar la zona urbana señalada en el proyecto general con una vía tipo Local, para lo cual se realizaron los trabajos correspondientes.

1.4. Ubicación y reconocimiento del terreno

El proyecto se realizará en el Sector Cafetal I, distrito de Guadalupe, provincia de Pacasmayo, departamento de La Libertad. La intensidad y alcance de cada actividad ha sido definida en función de la extensión del área a reconocer, la complejidad del terreno, para lo cual se ha tenido en cuenta lo Estipulado en la Norma Peruana CE-10 de pavimentos.

UNIVERSIDAD NACIONAL DE TRUJILLO

Figura 1. Vista del lugar donde se realizará el proyecto.

El terreno presenta un perfil del tipo homogéneo, donde se encuentran material arcilloso arenoso de color beige oscuro. (Ver Perfil Estratigráfico).

A la profundidad de las excavaciones no se encontró la napa freática en la en el área donde se desarrollará el proyecto. Se realizaron ensayos estándar de

Juan Pablo II s/n Ciudad Universitaria-Ing de Materiales- UNT/email:lab.ceramicos.unt@gmail.com

laboratorio y de campo con fines de identificación y clasificación de suelos, así como ensayos de resistencias (CBR).

2. GEOLOGÍA Y SISMICIDAD DEL ÁREA DE ESTUDIO

2.1. Geología local

El proyecto se desarrollará a través de la unidad lito-estratigráfica denominada depósitos aluviales, cuya edad viene del cuaternario, constituido por arenas de grano fino. En general, el terreno presenta regulares condiciones de cimentación, deformación y estabilidad, la cual se cimentará sobre material arenoso mal graduado de origen eólico.

Regionalmente en el basamento rocoso predomina formaciones marinosedimentarias del Jurásico superior a Cretáceo inferior intrusionada por plutones del Batolito de la Costa y derrames volcánicos de andesita Cretáceo superior – Terciario Inferior, presentes en la región liberteña. Entre el cretáceo superior y terciario inferior, al generarse el solevantamiento de los Andes, tectónicamente la franja costera fue transversalmente disectada extendiéndose la Intrusión del Batolito costero en estribaciones, sus remanentes se manifiestan a través de movimientos isostáticos en el ámbito de estructuras paleotectónicas existentes entre el Zócalo Continental y la franja subsidente del contrafuerte andino, activo durante el vulcanismo del terciario inferior.

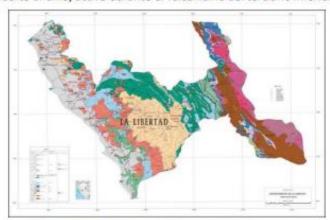


Figura 2. Mapa Geológico de la región La Libertad

2.2. Parámetros sísmicos del sitio

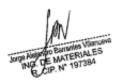
Dentro de los alcances de la "Norma Peruana CE-10" de "Diseño sismo resistente", el área de estudio se encuentra ubicada en el Sector Cafetal, distrito de Guadalupe, provincia de Pacasmayo, departamento de La Libertad; la cual está dentro de la denominada "Zona 4" de la clasificación de "Zonas sísmicas" del territorio nacional, correspondiéndole un "factor de zona" de Z=0.45 interpretándose como la aceleración máxima del terreno como una probabilidad de 10% al ser excedida en 50 años.

Además, le corresponde una sismicidad alta de intensidad X en la Escala Mercalli Modificado. La descripción litológica hecha precedentemente, indica que la construcción proyectada se emplazara sobre suelo arcilloso arenoso, según Norma CE-10, a un "Perfil Tipo S3: Suelos blandos, teniéndose los siguientes parámetros: Periodo que define la plataforma del espectro para el tipo de suelo

(Tp)=1.0 s

(TI): 1.6 s

Factor de Zona (Z): Z = 0.45


Factor de Uso (U): U= 1.0 (Edificaciones comunes Categoría C)

Factor de Ampliación sísmica

Factor de suelo (S): S = 1.10

Siendo T el periodo fundamental de la estructura para el análisis estático y periodo de modo en el análisis dinámico.

UNIVERSIDAD NACIONAL DE TRUJILLO



Figura 3. Mapa de zonificación Sísmica del Perú. (Fuente: Norma técnica de pavimentación CE-10. Diseño sismo resistentes)

Juan Pablo II s/n Ciudad Universitaria-Ing de Materiales- UNT/email:lab.ceramicos.unt@gmail.com

3. INVESTIGACIONES REALIZADAS

3.1. Trabajos de campo

Después de realizar el reconocimiento de la superficie del terreno en cuestión, se ha realizado los siguientes trabajos, a fin de contar con los elementos de juicio necesarios, para conocer los principales parámetros representativos de los suelos que subyacen en el terreno, donde se apoyaran las estructuras de la edificación.

3.1.1. Exploraciones

Debido a la homogeneidad de su conformación geológica, en el área indicada se realizó 4 exploraciones geotécnicas(calicatas), ubicada en el terreno de acuerdo a la distribución arquitectónica del proyecto.

Tabla 1. Calicatas exploradas para el proyecto.

CALICATA	PROFUNDIDAD (m			
CALICATA 01	1.50			
CALICATA 02	1.50			
CALICATA 03	1.50			
CALICATA 04	1.50			
	CALICATA 01 CALICATA 02 CALICATA 03			

3.2. Pruebas de laboratorios

Con las muestras alteradas de suelos, se han realizado los siguientes ensayos de laboratorio.

Tabla 2. Lista de ensayos realizados en el proyecto.

ENSAYOS	NORMA	
Humedad Natural	NTP 339.127	
Granulometría por Tamizado	NTP 339.128	-
Límites de Atterberg	ASTM D423	
Clasificación de suelos	SUCS/AASHTO	
Ensayo de sales solubles	N.T.P. 339.152	
Ensayo de sulfatos	N.T.P. 339.178	13
Ensayo de Cloruros	N.T.P. 339.177	100
Proctor Modificado	ASTM D-1557	1

UNIVERSIDAD NACIONAL DE TRUJILLO LABORATORIO DE CERÁMICOS Y SUELOS

CBR	MTC 132

3.3. Clasificación de suelos

Las muestras se clasificaron mediante el Sistema Unificado de Clasificación de Suelos (SUCS) y La Asociación Americana de Carreteras Estatales y Transportes (AASHTO), con la finalidad de reconocer los suelos previa comparación con otros que ya tienen sus parámetros ya establecidos.

4. CARACTERÍSTICAS GEOTÉCNICAS

4.1. Columnas estratigráficas

De acuerdo a las exploraciones realizadas, a lo observado en el campo y verificado en el laboratorio, los pozos calicatas nos otorgan las siguientes características.

Tabla 3. Perfil estratigráfico de la calicata: C - 1

CALICATA: C-1									
	C	RANULOM	ETRIA	SUCS MAXIMO LIMIT			ES CONSIS	TENCIA	w (%)
	GRAVA	ARENA	FINOS		(m)	L.L.	L.P.	I.P.	
0.00 - 0.40: Se									
evidencia la mezcla de suelo con desperdicio	0.0%	35.5%	64.5%	CL	2.4 mm	30.0	17.7	12.4	14.6 %
sólidos como material de relleno. 0.30 — 1.50: Se evidencia la presencia de suelo arenoso fino color marrón, conformado principalmente por arenas clasificación CL. No presenta coeficientes (curvatura y uniformidad). El proceso de excavación no es sencillo tiende a desmoronarse durante el proceso.							freáti excavac	co hasta l da. La estr ebajo de l im	: No se encontró el nivel a máxima profundidad atigrafía se prolonga aún a máxima profundidad vestigada.

Tabla 4. Perfil estratigráfico de la calicata: C - 2.

CALICATA: C - 2									
	(GRANULOM	ETRIA	SUCS MAXIMO LIMIT			ES CONSIS	TENCIA	w (%)
	GRAVA	ARENA	FINOS		(m)	L.L.	L.P.	I.P.	
0.00 - 0.40: Se									
evidencia la mezcla de suelo con desperdicio	0.0%	36.7%	63.3%	CL	2.4 mm	33.8	13.8	20.1	17.2 %
sólidos como material de relleno. 0.40 — 1.50: Se evidencia la presencia de suelo arenoso fino color marrón, conformado principalmente por arenas clasificación CL, no presenta coeficientes (curvatura y uniformidad). El proceso de excavación no es sencillo tiende a desmoronarse durante el proceso.							freáti excavad	co hasta l la. La estr ebajo de l im	: No se encontró el nivel a máxima profundidad atigrafía se prolonga aún a máxima profundidad vestigada. SIMBOLO:

Tabla 5. Perfil estratigráfico de la calicata: C – 3.

CALICATA: C-2									
	(SRANULOM	ETRIA	SUCS MAXIMO		LIMITES CONSISTENCIA		TENCIA	w (%)
	GRAVA	ARENA	FINOS		(m)	L.L.	L.P.	I.P.	
0.00 - 0.40: Se									
evidencia la mezcla de suelo con desperdicio	0.0%	29.2%	70.8%	CL	2.4 mm	30.0	22.4	7.6	22.7 %
sólidos como material de relleno. 0.40 — 1.50: Se evidencia la presencia de suelo arenoso fino color marrón, conformado principalmente por arenas clasificación CL, no presenta coeficientes (curvatura y uniformidad). El proceso de excavación no es sencillo tiende a desmoronarse durante el proceso.							freáti excavad	co hasta l la. La estr ebajo de l im	: No se encontró el nivel a máxima profundidad atigrafía se prolonga aún a máxima profundidad vestigada.

UNIVERSIDAD NACIONAL DE TRUJILLO LABORATORIO DE CERÁMICOS Y SUELOS

Tabla 6. Perfil estratigráfico de la calicata: C – 4.

CALICATA: C-2									
	(SRANULOM	ETRIA	SUCS MAXIMO		LIMITES CONSISTENCIA			w (%)
	GRAVA	ARENA	FINOS		(m)	L.L.	L.P.	I.P.	(1-9)
0.00 - 0.40: Se									
evidencia la mezcla de suelo con desperdicio	0.0%	24.8%	75.2%	CL	2.4 mm	41.0	21.5	19.5	32.7 %
sólidos como material de relleno. 0.40 — 1.50: Se evidencia la presencia de suelo arenoso fino color marrón, conformado principalmente por arenas clasificación CL, no presenta coeficientes (curvatura y uniformidad). El proceso de excavación no es sencillo tiende a desmoronarse durante el proceso.							freáti excavac	co hasta li la. La estri ebajo de li inv	: No se encontró el nivel a máxima profundidad atigrafía se prolonga aún a máxima profundidad vestigada. SIMBOLO:

UNIVERSIDAD NACIONAL DE TRUJILLO LABORATORIO DE CERÁMICOS Y SUELOS

La subrasante es la capa superficial de terreno natural. Su capacidad de soporte en condiciones de servicio, junto con el tránsito y las características de los materiales de construcción de la superficie de rodadura, constituyen las variables básicas para el diseño del pavimento, que se colocará encima, para este fin se realizaron los ensayos de laboratorio para el cálculo de la capacidad de soporte, obteniéndose los siguientes resultados:

Densidad Seca Máxima: 1.780 g/cm3

Humedad óptima: 12%

ESPECIFICACIONES TÉCNICAS

El material **BASE** (estructura de todo pavimento), deberá cumplir con las siguientes características:

MALLA	GRADUACIÓN, PASANDO (%)										
WIALLA	(A)	(B)	(C)	(D)							
(2")	100	100	-								
(1")	-	75-95	100	100							
(3/8")	30-65	40-75	50-85	60-100							
(N°4)	25-55	30-60	35-65	50-85							
(N°10)	14-40	20-45	25-50	40-70							
(N°40)	8-20	15-30	15-30	25-45							
(N°200)	2-8	5-15	5-15	8-15							
LL (%)		25 m	áximo								
IP (%)		6 má	iximo								
Desgaste de 50 máximo											
Abrasión		50 m	daiiiiu								

UNIVERSIDAD NACIONAL DE TRUJILLO

La base se compactará a humedad óptima hasta alcanzar una densidad seca de campo de por lo menos el 100% de la máxima densidad seca "Proctor Modificado" de laboratorio.

La capa sub base (o mejoramiento de suelo) en los pavimentos rígidos, tiene como principal función abaratar el costo del pavimento. Los requisitos de calidad para este material se dan en el siguiente cuadro:

Malla	Gra	aduación, pasando	(%)			
Widiia	(1)	(2)	(3)			
(2")	100					
(1")	59-100	100	-			
(3/8")	40-65	65-100	100			
(N°4)	30-50	50-80	80-100			
(N°10)	20-38	38-60	60-100			
(N°40)	11-20	20-38	38-70			
(N°200)	5-10	10-19	19-25			
Contracción	6 máx.	4.5 máx.	3 máx.			
Lineal (%)	o max.	4.5 max.	Sillax.			
Valor Relativo de	50 mínimo					
Soporte (%)		30 111111110				

5. CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

- MV CIP, N. 197384
- Correlacionando la investigación de campo realizada con los resultados de los ensayos de Laboratorio y según el análisis efectuado en el transcurso del informe, establecemos las siguientes Conclusiones:
- Se realizó el Estudio de Mecánica de Suelos y geotecnia, con fines de cimentación, para el proyecto: "DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, 2021".

UNIVERSIDAD NACIONAL DE TRUJILLO LABORATORIO DE CERÁMICOS Y SUELOS

- Para la realización de los Estudios de Mecánica de Suelos, la parte solicitante, procedió con la excavación y muestreo de (4) calicatas estratégicamente ubicadas, de tal manera que abarque al máximo el área donde se construirá la pavimentación; la profundidad de excavación máxima alcanzada fue de 1.50 m. por debajo del nivel actual del suelo natural. Las muestras obtenidas de la calicata, fueron del tipo Mab (muestras alteradas contenidas en bolsa de plástico), que llegaron al laboratorio, debidamente selladas e identificadas, y se proceda a realizar las determinaciones necesarias para poder determinar la clasificación del suelo, por el Sistema SUCS, a saber: límite líquido, límite plástico, y porcentaje mediante análisis granulométrico por lavado de partículas menores que las mallas de los tamices número 2 mm y 0.075mm, también se determinó la humedad natural además de la capacidad portante, y ensayos químicos para la agresividad del suelo a la pavimentación.
- Al momento de realizar los trabajos de campo, no se encontró el nivel freático hasta la máxima profundidad excavada (-1.50 m), a la fecha de realización de estos trabajos.
- Luego de realizar los correspondientes ensayos de laboratorio, y comparándolos con los trabajos de campo, se tiene que el sub suelo de la zona del proyecto; presenta estratigrafía relativamente homogénea, de comportamiento isotrópico, compuesta por un suelo color beige oscuro, del tipo transportado por el viento, que en la actualidad ha dado paso a la formación de un depósito de suelo arenoso limoso, identificado como un CL, en el sistema SUCS. En estado natural presenta consistencia, y condición húmeda, se advierte que al entrar en contacto suelo durante la excavación tiende a desmoronarse.

Como antecedentes de las conclusiones anteriores y según lo expresado a través del informe, se emiten las siguientes recomendaciones:

 Previo a la ejecución de los trabajos se deberá acondicionar el terreno, eliminando cualquier material inapropiado como suelos orgánicos (o capa

UNIVERSIDAD NACIONAL DE TRUJILLO

vegetal), suelos muy plásticos, maleza o similares.

- Se debe desarrollar un plan de trabajo de manera que el tiempo transcurrido entre las operaciones de excavación y las de vaciado y sellado de los cimientos, sea el menor posible con el fin de reducir al máximo la exposición del suelo de fundación a fenómenos ambientales que puedan alterar su comportamiento.
- En caso exista zonas donde se construirá Pisos, Veredas y Patios; se recomienda tener encuentra los requisitos que especifica la tabla 33 de la Norma CE 010 de Pavimentos Urbanos del RNE.

	o dePavimento emento	Aceras o Veredas	Pasajes Peatonales	Ciclovías				
Sub	orasante	95 % de com Suelos Granula Modificado Suelos C Están	res - Proctor ohesivos - Pro	ctor				
		Espesor com	pactado: ≥ 15	0 mm				
	Base	CBR ≥ 30	%	CBR ≥ 60%				
	Asfaltico	≥ 30 mm						
Espesor de	Asfaltico Concreto de	≥ 100 mm						
rodadura	Adoquines	≥ 40 mm (Se deberái arena fina, de espes						
	Asfaltico	Concreto a	sfáltico*					
Material	Concreto de cemento Portland	f'c ≥ 17,5 N	MPa (175 kg/c	m2)				
	Adoquines	f'c ≥ 32 MPa (320	kg/cm2)	N.R. **				

 El presente estudio solo es válido para la zona donde se construirá el proyecto.

6. BIBLIOGRAFÍA

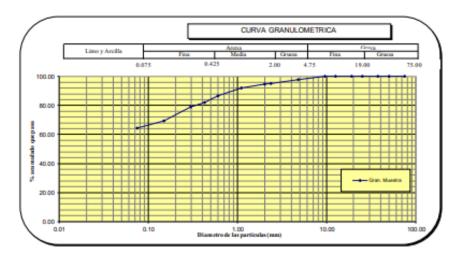
1. Alva Hurtado, Jorge E. (1995). Separatas UNI. PhD. CISMID-FIC.

- 2. Martinez Vargas Alberto (1991) Geotecnia para Ingenieros Mecánica de Suelos.
- 3. Carvallo, Elena (1987). Tesis toma y tratamiento de muestras de suelos UNI.
- Ministerio de Vivienda, Construcción y Saneamiento (2006). Reglamento Nacional de Construcciones. Norma E. 050. Suelos y cimentaciones.
- (1995) Designation: D 3080-90 Standard Test Method for Direct Shear Test of Soil Under Consolidated Drained Conditions.
- 6. Peck Hanson Thornburn (1995). Ingeniería de Cimentaciones

ANEXOS I: RESULTADOS DE ENSAYOS DE LABORATORIO

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM D 422

PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL (DISTRITO DE GUADALUPE


PROVINCIA DE PACASMAYO, 2021

MUESTRA : CALICATA 1

SOLICITANTES MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

5=8			GRANULOMI NTP. 339.101			OBSERVACIONES	Humedad natural 14.6			
BRALLA SERVIE ANIETE CAN	ABERTURA (mm)	PESO RET. (g)	% RET. PARCIAL	% RET. ACUMULADO	% QUE PASA	CLASIFICACIONES GRANULOMETRICAS				
3"	75.000				100.00	Grava (%)	-			
2*	50.000				100.0	Arena (%)	35.5			
1.1/2"	37.500				100.0	Finos(%)	64.5			
1"	25.000				100.0	D30	-			
3/4"	19.000				100.0	D60	-			
1/2"	12.500				100.0	D10	-			
3/8"	9.500				100.0	Cu	-			
N°4	4.750	4.6	2.3	2.3	97.7	Co	-			
N*8	2.360	4.9	2.5	4.8	95.2					
N°10	2.000	1.1	0.6	5.3	94.7	MODULO DE FINURA	1.39			
N*16	1.100	5.5	2.7	8.1	91.9	LIMITES	DE CONSISTENCIA			
N*30	0.600	10.3	5.2	13.2	86.8					
N°40	0.425	9.8	4.9	18.1	81.9	LL	30.0			
N°50	0.297	5.6	2.8	20.9	79.1	LP	17.7			
N°100	0.149	19.4	9.7	30.6	69.4	IP.	12.4			
N°200	0.075	9.8	4.9	35.5	64.5	CLASIFICA	ACION DE SUELOS			
< N°200	Fondo	129.0	64.5	100.0		SUCS	CL			
	Total	200.0	100.0			AASTHO	A-6			

Jurge Nagarine Samuries Vienname New DE MATERIALES NEW CIP. N° 197384

DETERMINACIÓN DE LOS LÍMITES DE CONSISTENCIA NTP 339.129

PROYECTO : DISEÑO DE INFRAESTRUCTURA VAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

PROVINCIA DE PACASMAYO, 2021

MUESTRA : CALICATA 1

SOLICITANTES MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

CRISTAL. No.	Wh + CRISTAL	Ws + CRISTAL	W AGUA	W CRISTAL	Wa	HUMEDAD	No. GOLPES
	(grs)	(grs)	(grs)	(grs)	(gra)	(29)	
		LIMITE LI	QUIDO				
1	81.32	80.04	1.28	76.12	3.92	32.7	15
2	78.8	77.28	1.52	72.35	4.93	30.8	21
3	91.27	90.15	1.12	86.29	3.86	29.0	31
		LÍMITE P	LÁSTICO				
1	45.85	45.71	0.14	45.09	0.62	22.6]
2	69.36	69.25	0.11	68.71	0.54	20.4]
3	58.21	58.18	0.03	57.88	0.3	10.0]

CONTENIDO DE HUMEDAD NATURAL NPT 339.127

DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE PROYECTO :

PROVINCIA DE PACASMAYO, 2021

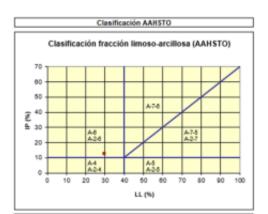
CALICATA 1

MUESTRA : SOLICITANTES

MARQUILLO GUTIERREZ, YESENIA THALÍA SECTOR CAFETAL, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD UBICACIÓN :

No.	Wh + CRISTAL (grs)	Ws + CRISTAL (grs)	AGUA (gra)	CRISTAL (grs)	Wa (grs)	HUMEDAD (%)	HJMEDAD (%)
1	135.96	128.48	7.48	76.11	52.37	14.3	1508-1
2	142.3	132.67	9.63	67.07	65.6	14.7	14.6
3	135.14	126.49	8.65	68.69	57.8	15.0	

CLASIFICACION DE SUELOS


PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

PROVINCIA DE PACASMAYO, 2021

MUESTRA : CALICATA 1

SOLICITANTES MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

Material limoso-arenoso Pobre a maio como subgrado A-6 Suelo arcilloso

Valor del indice de grupo (IG):

Sistema unificado de clasificación de suelos (S.U.C.S.)
Suelo de particulas finas.
Arcilla media plasticidad arenosa CL

PERFIL ESTRATIGRAFICO

PROYECTO: DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE

GUADALUPE, PROVINCIA DE PACASMAYO, 2021.

SOLICITANTE: MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN: SECTOR CAFETAL I, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO,

DEPARTAMENTO LA LIBERTAD

MUESTRA: CALICATA 1

Método de excavación: M	Método de excavación: Manual Largo : 2.				Perforación Calicata			
		Fondo : 1.50m.		00m.		C-1		
Superficie :	Plana	Nivel Freático : NP	Profundidad : 1.	50m.				
Prof.	GRAFI			М	MUESTRA			
m. SUCS	со	DESCRIPCIO	N DEL MATERIAL	N°	Tipo	Prof. m.	(%)	
		0.00 – 0.30: Se evidencia la mezcla e sólidos como material de relleno. 0.30 – 1.50: Se evidencia la presencolor marrón. Este material gracompuesto por 0% de Gravas, 35.5 Finos. No presenta coeficientes (c Presenta un módulo de finura d líquido de 30.0, limite plástico de 1 de 12.4 y tiene una humedad natur	cia de suelo arenoso fino nulométricamente está % de Arenas y 64.5% de urvatura y uniformidad). e 1.39. Presenta limite 7.7, índice de plasticidad al de 14.6%.	M-1		0.00-1.50	14.6	
- 6		No Presencia de niv	el freático					
Mab = muestra en ba	oka	Mis = muestr	en shelby	Pm = 0	enetró	imetro man	ual	

O TOWN AND THE PROPERTY OF THE

Juan Pablo II s/n Ciudad Universitaria-Ing de Materiales- UNT/email:lab.ceramicos.unt@gmail.com

Mib = muestra en bloque

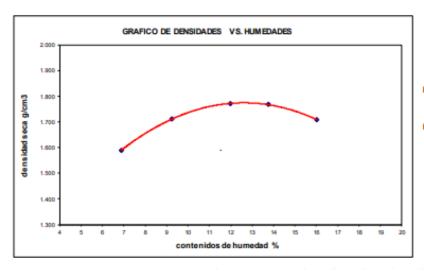
UNIVERSIDAD NACIONAL DE TRUJILLO LABORATORIO DE CERÁMICOS Y SUELOS

ENSAYO DE COMPACTACION PROCTOR MODIFICADO (NORMAS: NTP 339.141/ASTM D1557/ASSHTO T-180/MTC E-115)

PROYECTO: DISBÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO

DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

INTEGRANTES: MARQUILLO GUTTERREZ, YESENIA THALÍA


UBICACIÓN: SECTOR CAFETAL I, DISTRITO DE GUADALUFE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD MUESTRA: Peso del martillo: FECHA: 18 plg Altura de caída: Volumen molde: 98.91 cm3 # de capas: 5 Golpes por capa: Peso molde: 3560 25

DATOS PARA LA CURVA

AN A											
Muestra #		1	2	3	4	5					
Peso del molde + suelo húmedo	g	3728.00	3745.00	3756.00	3759.00	3756.00					
Peso del suelo húmedo	9	168.00	185.00	196.00	199.00	196.00					
Humedad calculada	%	6.88	9.26	11.97	13.78	16.02					
Densidad Húmeda	g/cm3	1.699	1.870	1.982	2.012	1.982					
Densidad seca	g/cm3	1.589	1.712	1.770	1.768	1.708					

Contenidos de humedad

Contempos de manifedad											
Muestra #			1		2		3		4		5
Recipiente #											
Rec + suelo húmedo	9	134.3	125.8	120.2	120.7	111.6	114.3	150.4	153	180.4	179.1
Rec + suelo seco	9	129	123	116.8	118.1	107.4	109.4	141.3	142.5	169	167
Peso del recipiente	g	66.04	70.96	85.48	83	70.05	70.86	70	71.54	99.56	90
Peso del suelo seco	g	62.93	52.05	31.31	35.05	37.33	38.53	71.29	71.00	69.46	77.01
Peso del agua	9	5.28	2.79	3.45	2.63	4.20	4.89	9.10	10.50	11.40	12.04
Contenido de Humedad	%	8.39	5.36	11.02	7.50	11.25	12.69	12.76	14.79	16.41	15.63
Humedad promedio	%	6.	88	9.	26	11.	.97	13	.78	16.	.02

Densidad Máxima: 1.750 g/cm3

Humedad óptima: 12.00 %

Juan Pablo II s/n Ciudad Universitaria-Ing de Materiales- UNT/email:lab.ceramicos.unt@gmail.com

PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

PROVINCIA DE PACASMAYO, DEPARTAMENTO DE LA LIBERTAD

MUESTRA : CALICATA 1

SOLICITADO : MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL I, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

DATOS DEL ENSAYO

Muestra #	1	2	3
N° de golpes	12	25	56
Peso del molde (g)	7924	7935	7925
Peso del molde + suelo húmedo (g)	11798	11894	12457
Peso suelo humedo (g)	3874	3959	4532
Volumen (cm3)	2122.7	2122.7	2122.7
Densidad humeda(g/cm3)	1.83	1.87	2.14
Densidad seca(g/cm³)	1.62	1.66	1.90
Contenido de humedad(%)	12.74	12.41	12.19

Datos de humedad del ensayo

Dates de Halliedad del ellacjo						
Muestra#	12 (12 golpes		25 golpes		olpes
Rec + suelo húmedo g	100.21	83.34	102.39	97.25	84.36	98.57
Rec + suelo seco g	97.68	79.74	98.87	94.99	81.69	95.20
Peso del recipiente g	74.01	55.41	66.65	78.72	58.89	68.58
Peso del suelo seco g	23.67	24.33	32.22	16.27	22.80	26.62
Peso del agua g	2.53	3.60	3.52	2.26	2.67	3.37
Contenido de Humedad %	10.69	14.80	10.92	13.89	11.71	12.66
Humedad promedio %	12	12.74		.41	12	.19

Ensayo de CBR 12 golpes por capa

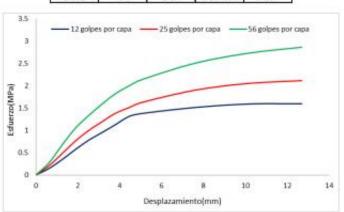
Penetración	Penetración	Carga	Area	Esfuerzo
(pulg)	(mm)	(KN)	(m ²)	(Mpa)
0.000	0	0.00	0.001932	0
0.025	0.64	0.29	0.001932	0.15
0.050	1.27	0.68	0.001932	0.35
0.075	1.91	1.12	0.001932	0.58
0.100	2.54	1.52	0.001932	0.79
0.125	3.18	1.85	0.001932	0.96
0.150	3.81	2.19	0.001932	1.13
0.175	4.45	2.54	0.001932	1.31
0.200	5.08	2.67	0.001932	1.38
0.300	7.62	2.93	0.001932	1.52
0.400	10.16	3.08	0.001932	1.59
0.500	12.7	3.09	0.001932	1.60

DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE PROYECTO

PROVINCIA DE PACASMAYO, DEPARTAMENTO DE LA LIBERTAD

MUESTRA CALICATA 1

SOLICITADO MARQUILLO GUTERREZ, YESENIA THALÍA


SECTOR CAFETAL I, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD UBICACIÓN

Ensayo de C			25 galpes por	
	Penetración	Carga	Area	Esfuerzo
(pulg)	(mm)	(KN)	(m ²)	(Mpa)
0.000	0.00	0.00	0.001932	0.00
0.025	0.64	0.41	0.001932	0.21
0.050	1.27	0.94	0.001932	0.49
0.075	1.91	1.49	0.001932	0.77
0.100	2.54	1.94	0.001932	1.00
0.125	3.18	2.32	0.001932	1.20
0.150	3.81	2.68	0.001932	1.39
0.175	4.45	2.92	0.001932	1.51
0.200	5.08	3.15	0.001932	1.63
0.300	7.62	3.68	0.001932	1.90
0.400	10.16	3.97	0.001932	2.05
0.500	12.70	4.09	0.001932	2.12

Ensayo de C	BR	56 golpes por capa			
Penetración (pulg)	Penetración (mm)	Carga (kN)	Area (m²)	Esfuerzo (Mpa)	
0.000	0	0	0.001932	0	
0.025	0.64	0.54	0.001932	0.280	
0.050	1.27	1.32	0.001932	0.683	
0.075	1.91	2.05	0.001932	1.061	
0.100	2.54	2.59	0.001932	1.341	
0.125	3.18	3.09	0.001932	1.599	
0.150	3.81	3.53	0.001932	1.827	
0.175	4.45	3.86	0.001932	1.998	
0.200	5.08	4.14	0.001932	2.143	
0.300	7.62	4.85	0.001932	2.510	
0.400	10.16	5.28	0.001932	2.733	
0.500	12.7	5.54	0.001932	2.867	

Juan Pablo II s/n Ciudad Universitaria-Ing de Materiales- UNT/email:lab.ceramicos.unt@gmail.com

DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE PROYECTO

MUESTRA : SOLICITADO : UBICACIÓN : MARQUILLO GUTTERREZ, YESENIA THALÍA

SECTOR CAFETAL I, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

GOLPES	Penetración (Pulg)	Esfuerzo (MPa)	Carga unit (MPa)	CBR (%)
12	0.1	0.79	6.9	11.40
12	0.2	1.38	10.3	13.42
25	0.1	1.00	6.9	14.55
25	0.2	1.63	10.3	15.83
56	0.1	1.34	6.9	19.43
56	0.2	2.14	10.3	20.80

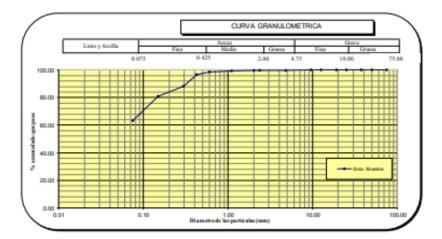
GOLPES	DENSIDAD	CBR 0.1"	CBR 0.2"
2574 742 74 54-504	(g/cm ³)	(%)	(%)
12	1.62	11.40	13.42
25	1.66	14.55	15.83
56	1.90	19.43	20.80

					BR 0.1"		CBR (0.2				
	1.98										
	1.94										
5	1.90									-	
5	1.86										1
음	1.82									/	
ğ	1.78							/	1		
R	1.74						/				
	2.44					/		/			
黃	1.70										
Densidad secalg/cm ³	1.66						-				
Densk				_	_						
Densk	1.66			-	_						
Densk	1.66										
Densk	1.66 1.62 1.58										
Demsik	1.66 · 1.62 · 1.58 · 1.54 ·	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00	19.00	20.00

M.D.S	1.750	g/cm ³
95%(M.D.S)	1.663	g/cm ³
C.B.R.(MD.S) 0.1"	14.3	%
C.B.R.(MD.S) 0.2"	15.5	%

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM D 422

PROYECTO : DISEÑO DE INFRAESTRUCTURA VAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE


PROVINCIA DE PACASMAYO, 2021

MUESTRA : CALICATA 2

SOLICITANTES MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

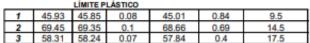
MALLA SER E EN CANA			GRANULOM NTP. 339-32			OBSERVACIONES	Humedad natural 17.2	
SER SER A MEN	ABERTURA (mm)	PESO RET. (g)	% RET. PARCIAL	% RET. ACUMULADO	% QUE PASA	CLASIFICACIO	NES GRANULOMETRICAS	
3*	75.000				100.00	Grava (%)	-	
2*	50.000				100.0	Arena (%)	36.7	
1.1/2"	37.500				100.0	Finos(%)	63.3	
1*	25.000				100.0	D30	-	
3/4"	19.000				100.0	D60	-	
1/2"	12.500				100.0	D10	-	
3/8"	9.500				100.0	Cu	-	
N°4	4.750	0.4	0.2	0.2	99.8	Ce	-	
N'8	2.360	0.1	0.0	0.2	99.8			
N°10	2.000	0.3	0.1	0.4	99.6	MODULO DE FINUR	A 0.74	
N°16	1.100	0.8	0.4	0.8	99.2	LIMITES	DE CONSISTENCIA	
N°30	0.600	1.5	0.8	1.5	98.5			
N°40	0.425	3.6	1.8	3.4	96.7	LL	33.9	
N°50	0.297	17.2	8.6	11.9	88.1	LP	13.8	
N*100	0.149	14.1	7.0	19.0	81.0	IP.	20.1	
N*200	0.075	35.6	17.8	36.7	63.3	CLASIFIC	CACION DE SUELOS	
< N°200	Fondo	126.5	63.3	100.0		SUCS	CL.	
	Total	200.0	100.0			AASTHO	A-6	

UNIVERSIDAD NACIONAL DE TRUJILLO LABORATORIO DE CERÁMICOS Y SUELOS

DETERMINACIÓN DE LOS LÍMITES DE CONSISTENCIA NTP 339.129

PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

PROVINCIA DE PACASMAYO, 2021


MUESTRA : CALICATA 2

SOLICITANTES MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

No.	Wh + CRISTAL (grs)	Wa + CRESTAL (gra)	W AGUA (gra)	W CRISTAL (grs)	Ws (grs)	HUMEDAD (%)	No. GOLPES
		LÍMITEL	iquido				
1	86.12	83.47	2.65	76.12	7.35	36.1	15
2	82.19	79.67	2.52	72.35	7.32	34.4	21
3	96.22	93.75	2.47	86.29	7.46	33.1	31
		LÍMITE P	LÁSTICO				_

L.L.	33.9
L.P.	13.8
I.P.	20.1

CONTENIDO DE HUMEDAD NATURAL NPT 339.127

DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE PROYECTO

PROVINCIA DE PACASMAYO, 2021

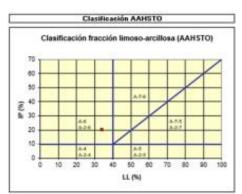
MUESTRA : SOLICITANTES CALICATA 2

MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

1	Wh +	Ws +	w	W	l .		
	CRISTAL	CRISTAL	AGUA	CRISTAL	Wa	HUMEDAD	HUMEDAD
No.	(grs)	(grs)	(grs)	(grs)	(grs)	(%)	(%)
1	98.95	95.39	3.56	75.17	20.22	17.6	
2	100.58	95.27	5.31	66.94	28.33	18.7	17.2
3	105.26	100.18	5.08	67.03	33.15	15.3	

CLASIFICACION DE SUELOS


PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GLADALUPE

PROVINCIA DE PACASMAYO, 2021

MUESTRA : CALICATA 2

SOLICITANTES MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

Material limoso-arenoso Pobre amalo como subgrado A-6 Suelo arcilloso

Valor del índice de grupo (IG):

10

Sistema unificado de clasificación de suelos (S.U.C.S.) Suelo de particulas linas. Arcilla media plasticidad arenosa CL

Jurge Nagara Barrunga Viserusia NGC TE MATERIALES NGC CE NO 197384

PERFIL ESTRATIGRAFICO

PROYECTO: DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE

GUADALUPE, PROVINCIA DE PACASMAYO, 2021.

SOLICITANTE: MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN: SECTOR CAFETAL I, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO,

DEPARTAMENTO LA LIBERTAD

MUESTRA: CALICATA 2

Método de e Superficie :	Fondo : 1.50m. Ancho : :		.00m. .00m. 50m.	lm. C-2		licata		
Prof.	Section Visit	GRAFI	000000000000		M	JESTRA	Hum.	
m.	sucs	co	DESCRIPCI	ÓN DEL MATERIAL	N"	Tipo	Prof. m.	(%
	α		0.00 – 0.30: Se evidencia la mezcla sólidos como material de relleno. 0.30 – 1.50: Se evidencia la prese color marrón. Este material gi compuesto por 0% de Gravas, 36 Finos. No presenta coeficientes (Presenta un módulo de finura líquido de 33.9, límite plástico de de 20.1 y tiene una humedad nati	ncia de suelo arenoso fino canulométricamente está .7% de Arenas y 63.3% de curvatura y uniformidad). de 0.74. Presenta límite 13.8, indice de plasticidad	M-2	Mab	0.00-1.50	17.2
1.50			No Presencia de n	ivel freático		b;—©		
. 0		3 8				\$ 199		100
- 0								
- D								
- 0								
- 8								
- 8								
. 8								
- 8								
Mab = n	nuestra en t	polsa	Mis = muest Mib = muestra en bloque	ra <mark>e</mark> n shelby I	Pm = p	enetró	metro man	ual

Juan Pablo II s/n Ciudad Universitaria-Ing de Materiales- UNT/email:lab.ceramicos.unt@gmail.com

UNIVERSIDAD NACIONAL DE TRUJILLO

ENSAYO DE COMPACTACION PROCTOR MODIFICADO (NORMAS: NTP 339.141/ASTM D1557/ASSHTO T-180/MTC E-115)

PROYECTO: DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL (, DISTRITO

DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

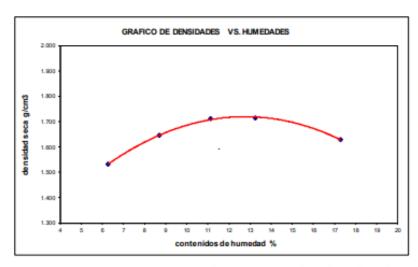
INTEGRANTES: MARQUILLO GUTIERREZ, YESENIA THALÍA

 UBICACIÓN:
 SECTOR CAFETAL I, DISTRITO DE GUADALUFE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

 MUESTRA:
 C2
 Peso del martillo:
 4.5 Kg

 FECHA:
 Altura de caida:
 18 plg

 Volumen molde:
 98.91
 cm3
 # de capas:
 5


 Peso molde:
 3560
 g
 Golpes por capa:
 25

DATOS PARA LA CURVA

DAT CO PAINA LA CONTA								
Muestra #		1	2	3	4	5		
Peso del molde + suelo húmedo	g	3721.00	3737.00	3748.00	3752.00	3749.00		
Peso del suelo húmedo	9	161.00	177.00	188.00	192.00	189.00		
Humedad calculada	%	6.28	8.70	11.11	13.25	17.28		
Densidad Húmeda	g/cm3	1.628	1.790	1.901	1.941	1.911		
Densidad seca	g/cm3	1.532	1.646	1.711	1.714	1.629		

Contenidos de humedad

Muestra #			1		2		3		4		5
Recipiente #											
Rec + suelo húmedo	g	134.8	125.1	120.2	120.8	110.5	116	149.9	154.4	183.4	181.5
Rec + suelo seco	9	129.1	123.3	116.7	118.6	108.1	109.8	142.6	142.7	171.2	167.9
Peso del recipiente	g	66.04	70.96	85.48	83	70.05	70.86	70	71.54	99.56	90
Peso del suelo seco	9	63.06	52.30	31.22	35.60	38.05	38.94	72.60	71.16	71.64	77.85
Peso del agua	9	5.65	1.88	3.50	2.20	2.40	6.20	7.30	11.70	12.20	13.65
Contenido de Humedad	%	8.96	3.59	11.21	6.18	6.31	15.92	10.06	16.44	17.03	17.53
Humedad promedio	%	6.	28	8.	70	11	.11	13	25	17.	28

Densidad Máxima:

1.700 g/cm3

Humedad óptima: 12.50 %

Juan Pablo II s/n Ciudad Universitaria-Ing de Materiales- UNT/email:lab.ceramicos.unt@gmail.com

PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

PROVINCIA DE PACASMAYO, DEPARTAMENTO DE LA LIBERTAD

MUESTRA : CALICATA 2

SOLICITADO : MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL I, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

DATOS DEL ENSAYO

Muestra#	1	2	3
N° de golpes	12	25	56
Peso del molde (g)	7924	7935	7925
Peso del molde + suelo húmedo (g)	11754	11954	12457
Peso suelo humedo (g)	3830	4019	4532
Volumen (cm3)	2122.7	2122.7	2122.7
Densidad humeda(g/cm3)	1.80	1.89	2.14
Densidad seca(g/cm3)	1.60	1.68	1.90
Contenido de humedad(%)	12.67	12.49	12.42


Datos de humedad del ensavo

Muestra #	12 (golpes	25 g	olpes	56 g	olpes
Rec + suelo húmedo g	91.65	78.69	100.25	98.08	90.25	91.68
Rec + suelo seco g	89.54	76.24	95.78	96.38	88.04	88.28
Peso del recipiente g	74.01	55.41	66.65	78.72	58.89	68.58
Peso del suelo seco g	15.53	20.83	29.13	17.66	29.15	19.70
Peso del agua g	2.11	2.45	4.47	1.70	2.21	3.40
Contenido de Humedad %	13.59	11.76	15.35	9.63	7.58	17.26
Humedad promedio %	12	2.67	12	.49	12	.42

Ensayo de CBR 12 golpes por capa

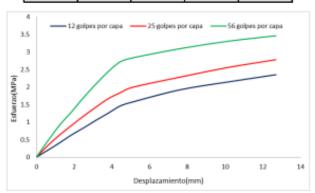
		12 goipes per capa				
Penetración	Penetración	Carga	Area	Esfuerzo		
(pulg)	(mm)	(KN)	(m ²)	(Mpa)		
0.000	0	0.00	0.001932	0		
0.025	0.64	0.41	0.001932	0.21		
0.050	1.27	0.82	0.001932	0.42		
0.075	1.91	1.26	0.001932	0.65		
0.100	2.54	1.64	0.001932	0.85		
0.125	3.18	2.05	0.001932	1.06		
0.150	3.81	2.43	0.001932	1.26		
0.175	4.45	2.83	0.001932	1.46		
0.200	5.08	3.04	0.001932	1.57		
0.300	7.62	3.72	0.001932	1.93		
0.400	10.16	4.15	0.001932	2.15		
0.500	12.7	4.55	0.001932	2.36		

PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

PROVINCIA DE PACASMAYO, DEPARTAMENTO DE LA LIBERTAD CALICATA 2

MUESTRA : CALICATA 2

SOLICITADO : MARQUILLO GUTIERREZ, YESENIA THALÍA


UBICACIÓN : SECTOR CAFETAL I, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

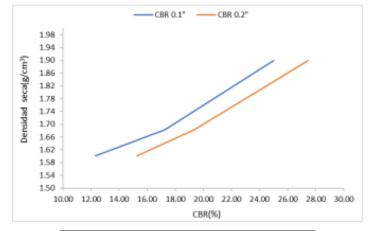
Ensayo de C	BR		25 golpes por capa		
Penetración	Penetración	Carga	Area	Esfuerzo	
(pulg)	(mm)	(KN)	(m ²)	(Mpa)	
0.000	0.00	0.00	0.001932	0.00	
0.025	0.64	0.68	0.001932	0.35	
0.050	1.27	1.26	0.001932	0.65	
0.075	1.91	1.79	0.001932	0.93	
0.100	2.54	2.30	0.001932	1.19	
0.125	3.18	2.78	0.001932	1.44	
0.150	3.81	3.23	0.001932	1.67	
0.175	4.45	3.56	0.001932	1.84	
0.200	5.08	3.85	0.001932	1.99	
0.300	7.62	4.42	0.001932	2.29	
0.400	10.16	4.95	0.001932	2.56	
0.500	12.70	5.38	0.001932	2.78	

Ensayo de CBR 56 golpes por cap							
Penetración	Penetración	Carga	Area	Esfuerzo			
(pulg)	(mm)	(kN)	(m ²)	(Mpa)			
0.000	0	0	0.001932	0			
0.025	0.64	0.95	0.001932	0.492			
0.050	1.27	1.81	0.001932	0.937			
0.075	1.91	2.55	0.001932	1.320			
0.100	2.54	3.33	0.001932	1.724			
0.125	3.18	4.05	0.001932	2.096			
0.150	3.81	4.71	0.001932	2.438			
0.175	4.45	5.25	0.001932	2.717			
0.200	5.08	5.46	0.001932	2.826			
0.300	7.62	5.97	0.001932	3.090			
0.400	10.16	6.38	0.001932	3.302			
0.500	12.7	6.68	0.001932	3.458			

Juan Pablo II s/n Ciudad Universitaria-Ing de Materiales- UNT/email:lab.ceramicos.unt@gmail.com

PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

PROVINCIA DE PACASMAYO, DEPARTAMENTO DE LA LIBERTAD


MUESTRA : CALICATA 2

SOLICITADO : MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL I, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

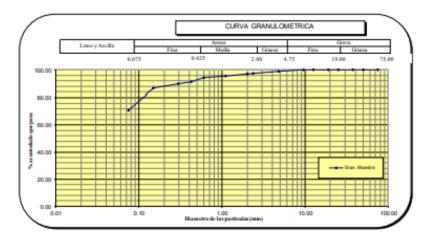
GOLPES	Penetración	Esfuerzo	Carga unit	CBR
	(Pulg)	(MPa)	(MPa)	(%)
12	0.1	0.85	6.9	12.30
12	0.2	1.57	10.3	15.28
25	0.1	1.19	6.9	17.25
25	0.2	1.99	10.3	19.35
56	0.1	1.72	6.9	24.98
56	0.2	2.83	10.3	27.44

GOLPES	DENSIDAD	CBR 0.1"	CBR 0.2"
	(g/cm ³)	(%)	(%)
12	1.60	12.30	15.28
25	1.68	17.25	19.35
56	1.90	24.98	27.44

M.D.S	1.700	g/cm ³
95%(M.D.S)	1.615	g/cm ³
C.B.R.(M.D.S) 0.1"	13.9	%
C.B.R.(M.D.S) 0.2"	16.5	%

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM D 422

PROYECTO : DISEÑO DE INFRAESTRUCTURA VAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE


PROVINCIA DE PACASMAYO, 2021

MUESTRA : CALICATA 3

SOLICITANTES MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

5 W S			GRANULOM NTP. 339.02			OBSERVACIONES Humedad natural 22.7				
SER E AMERICANA	ABERTURA (mm)	PESO RET. (g)	% RET. PARCIAL	% RET. ACUMULADO	% QUE PASA	CLASIFICACIONES GRANULOMETRICAS				
3*	75.000				100.00	Grava (%)	-			
2*	50.000				100.0	Arena (%)	29.2			
11/2"	37.500				100.0	Finos(%)	70.8			
1*	25.000				100.0	D30	-			
3/4"	19.000				100.0	D60	-			
1/2"	12.500				100.0	D10	-			
3/8"	9.500				100.0	Cu	-			
N°4	4.750	2.1	1.0	1.0	99.0	Ce	-			
N*8	2.360	3.1	1.5	2.6	97.4					
N°10	2.000	1.0	0.5	3.1	96.9	MODULO DE FINUR	A 0.78			
N°16	1.100	2.6	1.3	4.4	95.6	LIMITES	DE CONSISTENCIA			
N°30	0.800	2.7	1.4	5.7	94.3					
N°40	0.425	5.0	2.6	0.5	91.5	ш	30.0			
N°50	0.297	3.1	1.5	10.0	90.0	LP	22.4			
N°100	0.149	6.2	3.1	13.2	86.9	IP	7.6			
N°200	0.075	32.2	16.1	29.2	70.8	CLASIFIC	ACION DE SUELOS			
< N°200	Fondo	141.5	70.8	100.0		SUCS	CL.			
-	Total	200.0	100.0			AASTHO	A-4			

DETERMINACIÓN DE LOS LÍMITES DE CONSISTENCIA NTP 339.129

PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

PROVINCIA DE PACASMAYO, 2021

MUESTRA : CALICATA 3

SOLICITANTES MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL, DISTRITO DE GLIADALLIPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

No.	Wh + CRESTAL (grs)	Ws + CRISTAL (gra)	W AGUA	W CRISTAL (grs)	Wx (gra)	HUMEDAD (%)	GOLPES
1		LIMITE LI	QUIDO		1000		Si
1	80.45	79.31	1.14	76.12	3.19	35.7	15
2	75.69	74.91	0.78	72.35	2.56	30.5	21
3	89.67	88.92	0.75	86.29	2.63	28.5	31
7		LIMITE PL	ÁSTICO			0.65350	er er er er
1	45.88	45.81	0.07	45.09	0.72	9.7	

L.L.	30.0
L.P.	22.4
LP.	7.7

CONTENIDO DE HUMEDAD NATURAL NPT 339.127

PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

PROVINCIA DE PACASMAYO, 2021

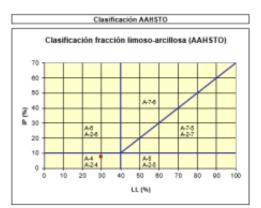
MUESTRA : CALICATA 3

SOLICITANTES MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

No.	Wh + CRISTAL (gra)	Ws + CRISTAL (grs)	AGUA (grs)	CRISTAL (grs)	Wa (grs)	HUMEDAD (%)	HUMEDAD (%)
1	108.49	102.49	6	76.11	26.38	22.7	0.000
2	89.37	85.17	4.20	67.07	18.1	23.2	22.7
3	91.49	87.34	4.15	68.69	18.65	22.3	

CLASIFICACION DE SUELOS


PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

PROVINCIA DE PACASMAYO, 2021

MUESTRA : CALICATA 3

SOLICITANTES MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

Material limoso-arenoso Pobre a maio como subgrado A-4 Suelo limoso

/alor del índice de grupo (IGI:

Sistema unificado de clasificación de suelos (S.U.C.S.)
Suelo de particulas finas.
Arcilla media plasticidad con arena CL

PERFIL ESTRATIGRAFICO

PROYECTO: DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE

GUADALUPE, PROVINCIA DE PACASMAYO, 2021.

SOLICITANTE: MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN: SECTOR CAFETAL I, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO,

DEPARTAMENTO LA LIBERTAD

MUESTRA: CALICATA 3

Método de	excavación: l	Manual			Largo	: 2.0	00m.	Per	foración Cal	icata
			Fondo	: 1.50m.	Ancho	: 1.0	00m.		C-3	
Superficie :		Plana	Nivel Freático : NP Profundidad : 1							
Prof.		GRAFI						М	UESTRA	Hum.
m.	SUCS	со			DEL MATERIAL		N°	Tipo	Prof. m.	(%)
	α	F 1	0.00 – 0.30: Se evidenos sólidos como material o 0.30 – 1.50: Se evidenos color marrón. Este compuesto por 0% di Finos. No presenta co Presenta un módulo líquido de 30.0, limito de 7.6 y tiene una hur	de relleno. ncia la presencia material grani e Gravas, 29.2% oeficientes (cur o de finura de e plástico de 22.	de suelo arenos ulométricamente de Arenas y 70.8 vatura y uniform 0.78. Presenta 4, índice de plasti	o fino está 8% de idad). límite	M-3	Mab	0.00-1.50	22.7
-	8		No Pro	esencia de nivel	freático					
-	1									
-)									
-	ð									
-	ð									
-	1									
_	N .									
_	9									
-	X									
Mah =	muestra en b	nolsa	M	is = muestra	en shelby	P	m = n	enetré	imetro man	ual

Juan Pablo II s/n Ciudad Universitaria-Ing de Materiales- UNT/email:lab.ceramicos.unt@gmail.com

Mib = muestra en bloque

ENSAYO DE COMPACTACION PROCTOR MODIFICADO (NORMAS: NTP 339.141/ASTM D1557/ASSHTO T-180/MTC E-115)

PROYECTO: DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO

DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

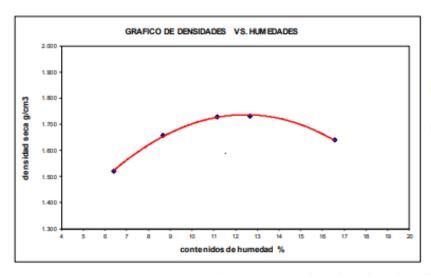
INTEGRANTES: MARQUILLO GUTIERREZ, YESENA THALÍA

 UBICACIÓN:
 SECTOR CAFETAL I, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

 MUESTRA:
 C3
 Peso del martillo:
 4.5 Kg

 FECHA:
 Altura de caida:
 18 plg

 Volumen molde:
 98.91
 cm3
 # de capas:
 5


 Peso molde:
 3560
 g
 Golpes por capa:
 25

DATOS DADA LA CUDVA

DATOS FARM LA CORVA						
Muestra #		1	2	3	4	5
Peso del molde + suelo húmedo	g	3720.00	3738.00	3750.00	3753.00	3749.00
Peso del suelo húmedo	g	160.00	178.00	190.00	193.00	189.00
Humedad calculada	%	6.40	8.65	11.17	12.68	16.56
Densidad Húmeda	g/cm3	1.618	1.800	1.921	1.951	1.911
Densidad seca	g/cm3	1.520	1.656	1.728	1.732	1.639

Contenidos de humedad

Muestra #			1		2		3		4		5
Recipiente #											
Rec + suelo húmedo	g	132.8	126.7	119.8	121.3	110.8	116.2	149.5	155	183.5	181.4
Rec + suelo seco	g	127.8	124.2	116.9	118.5	107.5	110.8	142.1	144.1	171.5	168.5
Peso del recipiente	g	66.04	70.96	85.48	83	70.05	70.86	70	71.54	99.56	90
Peso del suelo seco	g	61.76	53.24	31.37	35.50	37.45	39.94	72.10	72.51	71.94	78.50
Peso del agua	g	5.00	2.50	2.95	2.80	3.30	5.40	7.40	10.95	12.00	12.90
Contenido de Humedad	%	8.10	4.70	9.40	7.89	8.81	13.52	10.26	15.10	16.68	16.43
Humedad promedio	%	6.	40	8.	65	11	.17	12	.68	16	.56

Densidad Máxima:

1.710 g/cm3

Humedad óptima:

12.80 %

Juan Pablo II s/n Ciudad Universitaria-Ing de Materiales- UNT/email:lab.ceramicos.unt@gmail.com

PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

PROVINCIA DE PACASMAYO, DEPARTAMENTO DE LA LIBERTAD

MUESTRA : CALICATA 3

SOLICITADO : MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL I, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

DATOS DEL ENSAYO

Muestra #	1	2	3
N° de golpes	12	25	56
Peso del molde (g)	7924	7935	7925
Peso del molde + suelo húmedo (g)	11724	11987	12457
Peso suelo humedo (g)	3800	4052	4532
Volumen (cm ³)	2122.7	2122.7	2122.7
Densidad humeda(g/cm3)	1.79	1.91	2.14
Densidad seca(g/cm³)	1.59	1.68	1.89
Contenido de humedad(%)	12.67	13.44	13.03

Datos de humedad del ensayo

Muestra#	12 g	12 golpes		olpes	56 golpes		
Rec + suelo húmedo g	96.34	121.67	98.37	100.25	132.74	95.36	
Rec + suelo seco g	92.74	117.85	96.87	96.38	128.69	90.85	
Peso del recipiente g	74.01	55.41	66.65	78.72	58.89	68.58	
Peso del suelo seco g	18.73	62.44	30.22	17.66	69.80	22.27	
Peso del agua g	3.60	3.82	1.50	3.87	4.05	4.51	
Contenido de Humedad %	19.22	6.12	4.96	21.91	5.80	20.25	
Humedad promedio %	12	12.67		13.44		13.03	

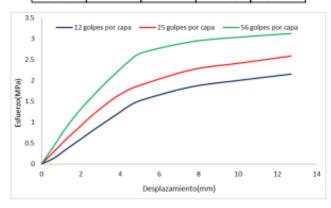
Ensayo de CBR 12 golpes por capa

Penetración (mm)	Carga	Area	Esfuerzo
(mm)	(1.45.1)		
(**************************************	(KN)	(m ²)	(Mpa)
0	0.00	0.001932	0
0.64	0.28	0.001932	0.14
1.27	0.69	0.001932	0.36
1.91	1.10	0.001932	0.57
2.54	1.51	0.001932	0.78
3.18	1.91	0.001932	0.99
3.81	2.29	0.001932	1.19
4.45	2.69	0.001932	1.39
5.08	2.96	0.001932	1.53
7.62	3.58	0.001932	1.85
10.16	3.89	0.001932	2.01
12.7	4.17	0.001932	2.16
	0 0.64 1.27 1.91 2.54 3.18 3.81 4.45 5.08 7.62 10.16	0 0.00 0.64 0.28 1.27 0.69 1.91 1.10 2.54 1.51 3.18 1.91 3.81 2.29 4.45 2.69 5.08 2.96 7.62 3.58 10.16 3.89	0 0.00 0.001932 0.64 0.28 0.001932 1.27 0.69 0.001932 1.91 1.10 0.001932 2.54 1.51 0.001932 3.18 1.91 0.001932 3.81 2.29 0.001932 4.45 2.69 0.001932 5.08 2.96 0.001932 7.62 3.58 0.001932 10.16 3.89 0.001932

DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE PROYECTO

PROVINCIA DE PACASMAYO, DEPARTAMENTO DE LA LIBERTAD CAUCATA 3

MUESTRA


MARQUILLO GUTIERREZ, YESENIA THALÍA SOLICITADO

SECTOR CAFETAL I, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD UBICACIÓN

Ensayo de C	BR		25 golpes por capa			
Penetración	Penetración	Carga	Area	Esfuerzo		
(pulg)	(mm)	(KN)	(m ²)	(Mpa)		
0.000	0.00	0.00	0.001932	0.00		
0.025	0.64	0.58	0.001932	0.30		
0.050	1.27	1.16	0.001932	0.60		
0.075	1.91	1.69	0.001932	0.87		
0.100	2.54	2.22	0.001932	1.15		
0.125	3.18	2.69	0.001932	1.39		
0.150	3.81	3.11	0.001932	1.61		
0.175	4.45	3.44	0.001932	1.78		
0.200	5.08	3.66	0.001932	1.89		
0.300	7.62	4.35	0.001932	2.25		
0.400	10.16	4.67	0.001932	2.42		
0.500	12.70	4.99	0.001932	2.58		

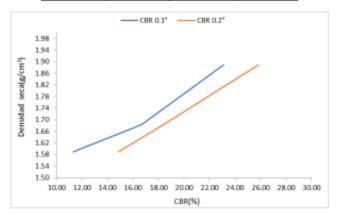
Ensayo de C	BR		56 golpes por capa			
Penetración	Penetración	Carga	Area	Esfuerzo		
(pulg)	(mm)	(kN)	(m ²)	(Mpa)		
0.000	0	0	0.001932	0		
0.025	0.64	0.85	0.001932	0.440		
0.050	1.27	1.71	0.001932	0.885		
0.075	1.91	2.45	0.001932	1.268		
0.100	2.54	3.08	0.001932	1.594		
0.125	3.18	3.68	0.001932	1.905		
0.150	3.81	4.23	0.001932	2.189		
0.175	4.45	4.75	0.001932	2.459		
0.200	5.08	5.14	0.001932	2.660		
0.300	7.62	5.66	0.001932	2.930		
0.400	10.16	5.88	0.001932	3.043		
0.500	12.7	6.04	0.001932	3.126		

INDICE DE CBR DE SUELOS

ASTM D 1883

PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

PROVINCIA DE PACASMAYO, DEPARTAMENTO DE LA LIBERTAD


MUESTRA : CALICATA 3

SOLICITADO : MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL I, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

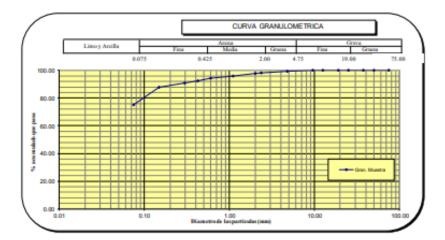
GOLPES	Penetración	Esfuerzo	Carga unit	CBR
	(Pulg)	(MPa)	(MPa)	(%)
12	0.1	0.78	6.9	11.33
12	0.2	1.53	10.3	14.87
25	0.1	1.15	6.9	16.65
25	0.2	1.89	10.3	18.39
56	0.1	1.59	6.9	23.10
56	0.2	2.66	10.3	25.83

GOLPES	DENSIDAD	CBR 0.1"	CBR 0.2"
	(g/cm ³)	(%)	(%)
12	1.59	11.33	14.87
25	1.68	16.65	18.39
56	1.89	23.10	25.83

M.D.S	1.710	g/cm ³
95%(M.D.S)	1.625	g/cm ³
C.B.R.(M.D.S) 0.1"	13.7	%
C.B.R.(M.D.S) 0.2"	17.2	%

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM D 422

PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE


PROVINCIA DE PACASMAYO, 2021

MUESTRA : CALICATA 4

SOLICITANTES MARQUILLO GUTIERREZ, YESENIA THALÍA

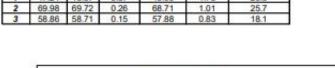
UBICACIÓN : SECTOR CAFETAL, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

SERVE SPRE SPICANA	GRANULOMETRIA MTP. 228.128 (89)					OBSERVACIONES	Humedad natural 32.7		
MAL SER A MEDIC	ABERTURA (mm)	PESO RET. (g)	% RET. PARCIAL	% RET. ACUMULADO	% QUEPASA	CLASIFICACIONES GRANULOMETRICAS			
3*	75.000				100.00	Grava (%)	-		
2*	50.000				100.0	Arena (%)	24.8		
1.1/2*	37.500				100.0	Finos(%)	75.2		
1*	25,000				100.0	D30	-		
3/4"	19.000				100.0	D60	-		
1/2"	12.500				100.0	D10	-		
3/8"	9.500				100.0	Cu	-		
N°4	4.750	1.4	0.7	0.7	99.3	Ce	-		
N°8	2.360	1.8	0.9	1.6	98.4				
N°10	2.000	1.1	0.6	2.2	97.8	MODULO DE FINUR	A 0.68		
N°16	1.100	3.6	1.8	3.9	96.1	LIMITES	DE CONSISTENCIA		
N°30	0.600	3.6	1.8	5.7	94.3				
N°40	0.425	3.5	1.7	7.5	92.5	ш	41.0		
N°50	0.297	3.1	1.5	9.0	91.0	LP	21.5		
N°100	0.149	6.6	3.3	12.3	87.7	IP	19.5		
N'200	0.075	25.0	12.5	24.8	75.2	CLASIFIC	ACION DE SUELOS		
< N°200	Fondo	150.4	75.2	100.0		SUCS	CL		
1	otal	200.0	100.0			AASTHO	A-7-6		

DETERMINACIÓN DE LOS LÍMITES DE CONSISTENCIA NTP 339,129

PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

PROVINCIA DE PACASMAYO, 2021


MUESTRA : CALICATA 4

SOLICITANTES MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

No.	Wh + CRISTAL (gra)	Ws + CRISTAL (grs)	AGUA (grs)	W CRISTAL (grs.)	Wa (gra)	HUMEDAD (54)	No. GOLPES
	San San	LIMITE LIC	OUIDO	120000	The second	G	50 V
1	81.32	79.76	1.56	76.12	3.64	42.9	17
2	78.8	76.92	1.88	72.35	4.57	41.1	23
3	91.27	89.84	1.43	86.29	3.55	40.3	30
		LIMITE PL	ASTICO				

41.0
21.5
19.5

CONTENIDO DE HUMEDAD NATURAL NPT 339.127

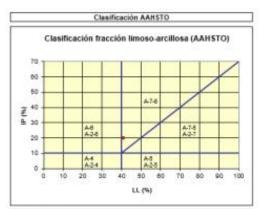
PROYECTO DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

PROVINCIA DE PACASMAYO, 2021

MUESTRA : CALICATA 4
SOLICITANTES MARQUILLO GUTIERREZ, YESENIA THALÍA
UBICACIÓN : SECTOR CAFETAL, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

No.	CRISTAL (gra)	Ws + CRISTAL (grs)	AGUA (gra)	CRISTAL (grs)	Ws (grs)	HUMEDAD (%)	HUMEDAD (%)
1	128.45	115.37	13.08	76.11	39.26	33.3	- 0000000
2	114.27	102.24	12.03	67.07	35.17	34.2	32.7
3	105.96	97.24	8.72	68.69	28.55	30.5	

CLASIFICACION DE SUELOS


PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

PROVINCIA DE PACASMAYO, 2021

MUESTRA : CALICATA 4

SOLICITANTES MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

Material limoso-arenoso Potre a malo como subgrado A-7-8 Suelo arcilloso

Valor del indice de grupo (IGI:

14

Sistema unificado de clasificación de suelos (S.U.C.S.) Suelo de particulas finas. Arcilla media plasticidad con arena CL.

Juan Pablo II s/n Ciudad Universitaria-Ing de Materiales- UNT/email:lab.ceramicos.unt@gmail.com

PERFIL ESTRATIGRAFICO

PROYECTO: DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE

GUADALUPE, PROVINCIA DE PACASMAYO, 2021.

SOLICITANTE: MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN: SECTOR CAFETAL I, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO,

DEPARTAMENTO LA LIBERTAD

MUESTRA: CALICATA 4

Método de excava	Método de excavación: Manual uperficie : Plana		: 1.50m. : NP		00 m. 00 m. 50 m.	Per	foración Cal C - 4	icata
Prof.	GRAFI					M	UESTRA	Hum
m. S	ucs co		DESCRIPCIÓN	DEL MATERIAL	N*	Tipo	Prof. m.	(%
0.30 		0.30 – 1.50: Se evider color marrón. Este compuesto por 0% di Finos. No presenta ci Presenta un módulo	de relleno. ncia la presencia material gran e Gravas, 24.8% oeficientes (cur o de finura de e plástico de 21.	suelo con desperdicio de suelo arenoso fino ulométricamente está de Arenas y 75.2% de vatura y uniformidad). 0.68. Presenta limite 5, indice de plasticidad de 32.7%.	M-4	Mab	0.00-1.50	32.1
-	8 8	No Pre	esencia de nivel	freático		W		
- 8								
- 0								
•								

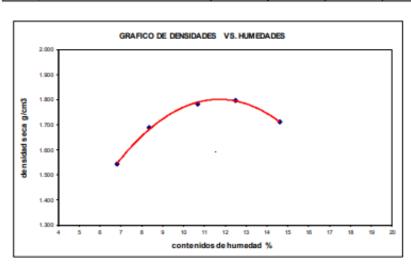
Mib = muestra en bloque

UNIVERSIDAD NACIONAL DE TRUJILLO LABORATORIO DE CERÁMICOS Y SUELOS

ENSAYO DE COMPACTACION PROCTOR MODIFICADO (NORMAS: NTP 339.141/ASTM D1557/ASSHTO T-180/MTC E-115)

PROYECTO: DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO

DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD


INTEGRANTES: MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN: SECTOR CAFETAL I, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD Peso del martillo: FECHA: Altura de calda: 18 plg Volumen molde: 98.91 cm3 # de capas: 5 Peso molde: 3560 Golpes por capa: 25

DATOS PARA LA CURVA

ENT COT AIRT EN CONTA						
Muestra #		1	2	3	4	5
Peso del molde + suelo húmedo	g	3723.00	3741.00	3755.00	3760.00	3754.00
Peso del suelo húmedo	9	163.00	181.00	195.00	200.00	194.00
Humedad calculada	%	6.82	8.34	10.68	12.48	14.61
Densidad Húmeda	g/cm3	1.648	1.830	1.971	2.022	1.961
Densidad seca	a/cm3	1.543	1.689	1.781	1.798	1.711

Citte indos de Halife des											
Muestra #			1		2		3		4		5
Recipiente #											
Rec + suelo húmedo	g	124.8	135.7	130.2	122.8	108.9	116.9	149.1	154.7	182.9	180.3
Rec + suelo seco	g	119	134	126.8	119.7	105.7	111.7	142.6	143.2	172.5	168.5
Peso del recipiente	g	66.04	70.96	85.48	83	70.05	70.86	70	71.54	99.56	90
Peso del suelo seco	g	52.96	63.04	41.32	36.70	35.69	40.88	72.64	71.66	72.98	78.50
Peso del agua	g	5.80	1.70	3.40	3.10	3.16	5.11	6.48	11.50	10.36	11.80
Contenido de Humedad	%	10.95	2.70	8.23	8.45	8.85	12.50	8.92	16.05	14.20	15.03
Humedad promedio	%	6.	82	8.	34	10	.68	12	.48	14.	.61

Densidad Máxima: 1.780 g/cm3

Humedad óptima: 12.00 %

PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

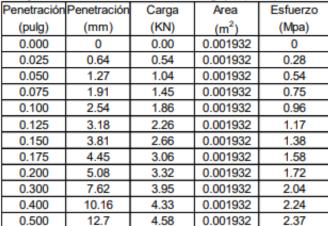
PROVINCIA DE PACASMAYO, DEPARTAMENTO DE LA LIBERTAD

MUESTRA : CALICATA 4

SOLICITADO : MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN : SECTOR CAFETAL I, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

DATOS DEL ENSAYO


Muestra #	1	2	3
N° de golpes	12	25	56
Peso del molde (g)	7924	7935	7925
Peso del molde + suelo húmedo (g)	11784	11987	12428
Peso suelo humedo (g)	3860	4052	4503
Volumen (cm ³)	2122.7	2122.7	2122.7
Densidad humeda(g/cm ³)	1.82	1.91	2.12
Densidad seca(g/cm³)	1.61	1.69	1.88
Contenido de humedad(%)	12.96	12.63	12.80

Datos de humedad del ensayo

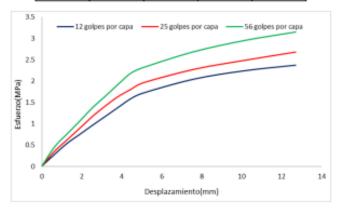
Muestra#	12 g	jolpes	25 g	olpes	56 golpes		
Rec + suelo húmedo g	105.20	75.63	102.65 96.25		144.68	95.85	
Rec + suelo seco g	101.67	73.28	99.24	93.99	141.45	90.99	
Peso del recipiente g	74.01	55.41	66.65	78.72	58.89	68.58	
Peso del suelo seco g	27.66	17.87	32.59	15.27	82.56	22.41	
Peso del agua g	3.53	2.35	3.41	2.26	3.23	4.86	
Contenido de Humedad %	12.76	13.15	10.46	14.80	3.91	21.69	
Humedad promedio %	12	2.96	12	.63	12.80		

12 golpes por capa

PROYECTO : DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE

PROVINCIA DE PACASMAYO, DEPARTAMENTO DE LA LIBERTAD

MUESTRA : CALICATA 4


SOLICITADO : MARQUILLO GUTIERREZ, YESENIA THALÍA

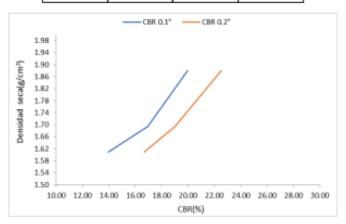
UBICACIÓN : SECTOR CAFETAL I, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD

Ensayo de C	BR		25 golpes por	capa
Penetración	Penetración	Carga	Area	Esfuerzo
(pulg)	(mm)	(KN)	(m ²)	(Mpa)
0.000	0.00	0.00	0.001932	0.00
0.025	0.64	0.68	0.001932	0.35
0.050	1.27	1.20	0.001932	0.62
0.075	1.91	1.73	0.001932	0.90
0.100	2.54	2.26	0.001932	1.17
0.125	3.18	2.73	0.001932	1.41
0.150	3.81	3.15	0.001932	1.63
0.175	4.45	3.48	0.001932	1.80
0.200	5.08	3.78	0.001932	1.96
0.300	7.62	4.39	0.001932	2.27
0.400	10.16	4.80	0.001932	2.48
0.500	12.70	5.17	0.001932	2.68

Ensayo de C	BR		56 golpes por	capa
Penetración	Penetración	Carga	Area	Esfuerzo
(pulg)	(mm)	(kN)	(m ²)	(Mpa)
0.000	0	0	0.001932	0
0.025	0.64	0.88	0.001932	0.455
0.050	1.27	1.47	0.001932	0.761
0.075	1.91	2.06	0.001932	1.066
0.100	2.54	2.66	0.001932	1.377
0.125	3.18	3.18	0.001932	1.646
0.150	3.81	3.71	0.001932	1.920
0.175	4.45	4.22	0.001932	2.184
0.200	5.08	4.48	0.001932	2.319
0.300	7.62	5.2	0.001932	2.692
0.400	10.16	5.71	0.001932	2.955
0.500	12.7	6.09	0.001932	3.152

DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I, DISTRITO DE GUADALUPE PROYECTO

PROVINCIA DE PACASMAYO, DEPARTAMENTO DE LA LIBERTAD


MUESTRA CALICATA 4

SOLICITADO MARQUILLO GUTIERREZ, YESENIA THALÍA

SECTOR CAFETAL I, PROVINCIA DE PACASMAYO, DEPARTAMENTO LA LIBERTAD UBICACIÓN

GOLPES	Penetración	Esfuerzo	Carga unit	CBR
	(Pulg)	(MPa)	(MPa)	(%)
12	0.1	0.96	6.9	13.95
12	0.2	1.72	10.3	16.68
25	0.1	1.17	6.9	16.95
25	0.2	1.96	10.3	19.00
56	0.1	1.38	6.9	19.95
56	0.2	2.32	10.3	22.51

GOLPES	DENSIDAD	CBR 0.1"	CBR 0.2"
	(g/cm ³)	(%)	(%)
12	1.61	13.95	16.68
25	1.69	16.95	19.00
56	1.88	19.95	22.51

M.D.S	1.780	g/cm ³
95%(M.D.S)	1.691	g/cm ³
C.B.R.(M.D.S) 0.1"	16	%
C.B.R.(M.D.S) 0.2"	18	%

ANALISIS QUIMICOS

PROYECTO: "DISEÑO DE INFRAESTRUCTURA VIAL DE LAS CALLES DEL SECTOR CAFETAL I,

DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO, 2021"
SOLICITANTE: MARQUILLO GUTIERREZ, YESENIA THALÍA

UBICACIÓN: SECTOR CAFETAL I, DISTRITO DE GUADALUPE, PROVINCIA DE PACASMAYO,

DEPARTAMENTO DE LA LIBERTAD.

RESULTADOS DEL ENSAYO

ENSAYO	NORMA	UNIDADES	RESULTADOS	
Cloruros	NTP 339.177	ppm	1410	
Solidos totales solubles	NTP 339.152	ppm	1354	
Sulfatos	NTP 339.178	ppm	1114	

Observaciones:

- · Las muestras fueron extraídas por el ingeniero analista
- Se recolectaron muestras alteradas en bolsas (Mab) herméticas para evitar que la muestra pierda sus características hasta llegar a laboratorio.

Anexo 9. Certificado de calibración del equipo topográfico

AÑO: 2021 Nº Cert - 17816

REPORTE DE CALIBRACIÓN

R.U.C: 20602023860

OTORGADO A: LIMDES SERVICIOS GENERALES S.A.C.

Estación Total Marca LEICA Modelo TS06 PLUS 2" R500

SERIE: 1402930 FECHA DE EMISION: 2021-03-26

GEOTOP SAC, CERTIFICA EL CUMPLIMIENTO DE LA NORMA DIN 18723, SEGUN LOS ESTANDARES INTERNACIONALES ESTABLECIDOS

ESPECIFICACIONES TÉCNICAS DEL INSTRUMENTO SEGÚN EL FABRICANTE

Precision del Distanciometro: +/-(2+2 ppm x D) mm

Constante Estadimetrica 100m Telescopio Imagen directa: 30X Lectura Minima: 1"/5"

recision Angular: 2"

CALIBRACIÓN

VERTICALOK

EQUIPO:

VERIFICACIÓN DEL EQUIPO

PANEL DE CONTROL

CONDICION FISICACK FUNCIONES DEL TECLADOOK MARCAS DEL TECLADOOK

NIVELOK TORNILLOSOK

BASE

PRECISIÓN

HORIZONTALOK

REVISIÓN

LIMPIEZA OK

ERROR VERTICAL Y HORIZONTAL OK PERPENDICULARIDAD OK PLOMADA Y PUNTERO LASER OK

CONDICION FISICACK

ANGULO VERTICALOK

PATRON DE MEDICIONES DEL INSTRUMENTO EN 00°00'00" ANGULO HZ 00000000 Der 180000000 ANGULO V 270°00'00' Arriba 60°00'00" 240°00'00" 180°

Abajo 120°00'00" 180° 300°00'00"

MEDICIONES DE PATRÓN					
ANGULO HZ	00°00'00"	180°00'00"			
ANGULO V	90°00'00"	270°00′00"			

APARIENCIA VISIBLE

RESULTADO V=OK HZ=OK

VALOR LE	ÍDO EN	EL INSTR	RUMENTO	VA	LORA	CORREGI	R	VALOR LEÍD	O EN E	L INSTRU	JMENTO CAL	IBRADO
	GRADOS	MINUTOS	SEGUNDOS		GRADOS	MINUTOS	SEGUNDOS	GF	RADOS	MINUTOS	SEGUNDOS	
VERTICAL	360	00	03	VERTICAL	00	00	03	VERTICAL	360	00	01	
HORIZONTAL	360	00	02	HORIZONTAL	. 00	00	02	HORIZONTAL	360	00	01	

CALIBRACIÓN DEL DISTANCIOMETRO							
MEDIDA PATRON (m)	MEDIDA INICIAL (m)	ERROR A CORREGIR DE MEDIDA INICIAL A MEDIDA PATRON (m)	MEDIDA FINAL (m)	DESVIACION ESTANDAR (m)			
50.003	50.001	0.002	50.002	0.001			
150.007	150.005	0.002	150.006	0.001			
200.002	200.001	0.001	200.001	0.001			

	RANGO DE TOLERANCIA							
	GRADOS	MINUTOS	SEGUNDOS					
+	360	00	02					
	350	59	58					

CERTIFICAMOS QUE EL EQUIPO EN MENCIÓN, SE ENCUENTRA TOTALMENTE REVISADO, CONTROLADO Y CALIBRADO, SEGÚN NORMA DIN 18723.

CONDICIONES AMBIENTALES DE CALIBRACIÓN Y VERIFICACIÓN

Taller de Servicio Técnico de GEOTOP S.A.C. Lugar:

Temperatura: Promedio de 20 grados C con variacion de +/- 0.5 grados C. Humedad Relativa de 58%.

AÑO: 2021 Nº Cert - 17816

REPORTE DE CALIBRACIÓN

TRAZABILIDAD DE LA VERIFICACIÓN

Equipo utilizado como patrón

Equipo Patrón Estación Total LEICA Modelo NOVA TM50 I 0.5" R1000 - Serie: 372623 con certificación SILVER Nº 372623-12182020 Equipo para medición de distancia: ubase Serie: 209042, Equipo para medición de ángulo: Estación Total LEICA Modelo TC1201+ Serie: 872459

Colimador Marca LEICA con telescopios cuyo retículo es enfocado al infinito. el grosor de sus brazos esta dentro de 1" y consta 4 colimadores: El colimador principal HZ1 consta de 4 retículos en plataforma fija, 2 colimadores verticales V1 y V2 constan de un solo retículo y el segundo colimador HZ2 incluye vista de cámara con distancia de enfoque infinito y una distancia focal de 250mm, apertura efectiva de 50mm y 2° de campo de visión, que es revisado periódicamente con el equipo patrón Estación Total LEICA Modelo NOVA TM50 I 0.5" R1000 - Serie: 372623, con método de lectura directa inversa.

Jefe de Soporte Técnico

FECHA DE CALIBRACIÓN: 2021-03-26
PRÓXIMA FECHA DE CALIBRACIÓN: 2021-09-26

DATOS: ESTE EQUIPO ANTES DE SALIR DE ALMACEN HA SIDO CHEQUEADO, Y SE ENCUENTRA EN PERFECTO ESTADO, ES DE SU RESPONSABILIDAD EL ADECUADO CUIDADO, ESTA EMPRESA NO SE RESPONSABILIZA POR POSIBLES DAÑOS CAUSADOS POR UNA MALA MANIPULACIÓN Y/O TRANSPORTE INAPROPIADO. A LA FIRMA SE MUESTRA LA CONFORMIDAD.

ENTREGUÉ CONFORME:

Anexo 10. Panel fotográfico

Foto N° 01: Lugar de estudio – calle Andrés Rázuri

Foto N° 02: Lugar de estudio – calle Andrés Rázuri

Foto N° 03: Visita al lugar de estudio – calle Vera Albújar

Foto N° 04: Realización de conteo vehicular para estudio de tráfico

Foto N° 05: Realización de conteo vehicular para estudio de tráfico

Foto N° 06: Realización de conteo vehicular para estudio de tráfico

Foto N° 07: Toma de puntos para estudio topográfico

Foto N° 08: Toma de puntos para estudio topográfico

Foto N° 09: Ejecución de calicatas

Foto N° 10: Ejecución de calicatas