

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Estudio comparativo para estabilizar la subrasante con cenizas de residuos orgánicos y aditivo químico, Av.

Cordillera Occidental, Chorrillos – Lima, 2021

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE : INGENIERO CIVIL

AUTORES:

Bartolo Medina, Frank Kevin https://orcid.org/0000-0003-2445-371X

Domínguez Carrasco, Campañolly Ivan https://orcid.org/0000-0002-0143-6397

ASESOR:

Mg. Pinto Barrantes, Raúl Antonio https://orcid.org/0000-0002-9573-0182

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

2021

Dedicatoria

En este proyecto de investigación agradecemos a Dios por cuidarnos y no dejarnos caer en los momentos más difíciles.

A nuestros padres y hermanos por darnos todo el apoyo, amor y la orientación necesaria en toda la formación académica.

A mi novia y a mi hija por ser mi motivación para lograr uno de mis sueños más anhelados.

A todos nuestros docentes de la universidad Cesar Vallejo en especial a los docentes Pinto Barrantes, Raúl y Benites Zúñiga, Jose Luis por guiarme en todo el desarrollo de la tesis.

Agradecimiento

Agradecemos a Dios por bendecir nuestras vidas, por derramar mucho amor en todos nosotros, por guiarnos y apoyarnos en los momentos de dificultades y debilidades.

Agradecemos a nuestros Padres por ser el motivo de inspiración, por confiar y creer en nuestras expectativas, por su apoyo, por los consejos y valores que nos han enseñado en el transcurso de nuestras vidas.

Agradecemos a nuestro docente Pinto Barrantes, Raúl Antonio por haber compartido sus conocimientos, el apoyo y su paciencia en el transcurso de nuestro proyecto de investigación.

Índice de contenidos

Dedic	atoriai
Agrad	decimientoii
Índice	e de contenidosiii
Índice	e de tablasiv
Índice	e de gráficos y figurasxii
Resu	men xv
Abstr	act xvi
l.	INTRODUCCIÓN
II.	MARCO TEÓRICO
III.	METODOLOGÍA
3.1	. Tipo y Diseño de Investigación
3.2	. Variables y Operacionalización
3.3	. Población, muestra y muestreo
3.5	. Procedimientos
3.6	. Método de análisis de datos
3.7	. Aspectos éticos
IV.	RESULTADOS
V.	DISCUSIÓN
VI.	CONCLUSIONES
VII.	RECOMENDACIONES
REFE	ERENCIAS
ΔNE.	(09

Índice de tablas

TABLA N° 1. Numero de calicatas para la exploración de suelos	15
TABLA N° 2. Guía referencial para la selección del tipo de estabilizador	17
TABLA N° 3. Materiales que se usan para el ensayo Proctor estándar y modifica 19	ado
TABLA N° 4. Determinación de la densidad máxima	23
TABLA N° 5. Categorías de sub-rasante	24
TABLA N° 6. Relación número de golpes con el facto para el límite líquido	28
TABLA N° 7. Tabla de estimados de precisión	29
TABLA N° 8. Tabla de Ensayos para la calicata más critica	34
TABLA N° 9. Tabla de Ensayos con diferentes cantidades	34
TABLA N° 10. Datos del laboratorio de la calicata C – 01 ensayado con la mues patrón.	
TABLA N° 11. Fórmulas para el análisis granulométrico	36
TABLA N° 12. Tabla de datos para la curva granulométrica	37
TABLA N° 13. Tamaño de las partículas	38
TABLA N° 14. Descripción de la muestra	38
TABLA N° 15. Método de ensayo para determinar el límite líquido, limite plástica indice de plasticidad de suelos NTP 339.129	
TABLA N° 16. Tabla de datos y tamizados para la muestra patrón	39
TABLA N° 17. Clasificación de suelo	41
TABLA N° 18. Datos del laboratorio de la calicata C – 01 ensayado con la mues patrón.	
TABLA N° 19. Datos del laboratorio de la calicata C – 01 ensayado de CBR cor muestra patrón.	
TABLA N° 20. Datos de expansión de suelos de la calicata C – 01 ensayado CBR con la muestra patrón.	

TABLA N° 21. Datos de penetración de suelos de la calicata C – 01 ensayo de CBR con la muestra patrón
TABLA N° 22. Datos de penetración y presión o esfuerzo estándar
TABLA N° 23. C.B.R. al 100 % y al estado natural
TABLA N° 24. Datos del laboratorio de la calicata C – 02 ensayado con la muestra patrón
TABLA N° 25. Distribución del tamaño de partícula C-02
TABLA N° 26. Método de ensayo de Índice de plasticidad para de la C-02 53
TABLA N° 27. Sistema Unificado de Clasificación de Suelos
TABLA N° 28. Método de ensayo para determinar el límite líquido, limite plástico e índice de plasticidad de suelos C-02
TABLA N° 29. Datos del laboratorio de la calicata C – 02 ensayo de CBR con la muestra patrón
TABLA N° 30. Datos de expansión de suelos de la calicata C – 02 ensayo de CBR con la muestra patrón
TABLA N° 31. Datos de penetración de suelos de la calicata C – 02 ensayo de CBR con la muestra patrón
TABLA N° 32. Datos de penetración y presión o esfuerzo estándar 59
TABLA N° 33. Datos de penetración y presión o esfuerzo estándar C-02 60
TABLA N° 34. Datos del laboratorio de la calicata C – 03 ensayo de granulometría con la muestra patrón
TABLA N° 35. Distribución del tamaño de partículas C-03
TABLA N° 36. Método de ensayo de Índice de plasticidad para de la C-03 63
TABLA N° 37. Dosificación de la muestra N°1 de residuos orgánicos 64
TABLA N° 38. Datos de la muestra N°1 de la calicata C – 01 ensayado cenizas de residuos orgánicos más la muestra patrón
TABLA N° 39. Dosificación de la muestra N°2 de residuos orgánicos 65

TABLA N° 40. Datos de la muestra N°2 de la calicata C – 01 ensayado cenizas de
residuos orgánicos más la muestra patrón65
TABLA N° 41. Dosificación de la muestra N°3 de residuos orgánicos. 65
TABLA Nº 42. Datos de la muestra N°3 de la calicata C – 01 ensayado cenizas de
residuos orgánicos más la muestra patrón 66
TABLA N° 43. Dosificación de la muestra N°1 de residuos orgánicos 67
TABLA N° 44. Datos de Clasificación de suelo para la muestra N°1 67
TABLA N° 45. Dosificación de la muestra N°2 de residuos orgánicos 68
TABLA N° 46. Datos de Clasificación de suelo para la muestra N°2 68
TABLA N° 47. Dosificación de la muestra N°3 de residuos orgánicos. 68
TABLA N° 48. Datos de Clasificación de suelo para la muestra N°3 69
TABLA N° 49. Clasificación de suelos, método S.U.C.S
TABLA N° 50. Dosificación de la muestra N°1 de residuos orgánicos 70
TABLA N° 51. Tabla para determinar la densidad máxima seca y Humedad Optima
de la muestra N°170
TABLA N° 52. Dosificación de la muestra N°2 de residuos orgánicos
TABLA N° 53. Tabla para determinar la densidad máxima seca y Humedad Optima de la muestra N°271
TABLA N° 54. Dosificación de la muestra N°3 de residuos orgánicos
TABLA N° 55. Tabla para determinar la densidad máxima seca y Humedad Optima de la muestra N°3
TABLA N° 56. Tabla de determinación de la Densidad Máxima seca y Optimo contenido de humedad de cada muestra. 73
TABLA N° 57. Dosificación de la muestra N°1 de residuos orgánicos
TABLA N° 58. Tabla del ensayo del CBR ASTM D 1883 de la muestra N°1 74
TABLA N° 59. Tabla de resultados de CBR de la muestra N°1
TABLA N° 60. Dosificación de la muestra N°2 de residuos orgánicos
TABLA N° 61. Tabla del ensayo del CBR ASTM D 1883 de la muestra N°2 75

TABLA N° 62. Tabla de resultados de CBR de la muestra N°2
TABLA N° 63. Dosificación de la muestra N°3 de residuos orgánicos
TABLA N° 64. Tabla del ensayo del CBR ASTM D 1883 de la muestra N°3 76
TABLA N° 65. Tabla de resultados de CBR de la muestra N°3
TABLA N° 66. Dosificación de la muestra N°1 de residuos orgánicos
TABLA N° 67. Tabla de penetración para la muestra N°178
TABLA N° 68. Tabla de golpes por cada molde de la muestra N°1 78
TABLA N° 69. Dosificación de la muestra N°2 de residuos orgánicos
TABLA N° 70. Tabla de penetración para la muestra N°279
TABLA N° 71. Tabla de golpes por cada molde de la muestra N°2 79
TABLA N° 72. Dosificación de la muestra N°3 de residuos orgánicos
TABLA N° 73. Tabla de penetración para la muestra N°3
TABLA N° 74. Tabla de golpes por cada molde de la muestra N°3 80
TABLA N° 75. Dosificación de la muestra N°1 de Aditivo Químico
TABLA Nº 76. Datos de la muestra Nº1 de la calicata C – 01 ensayado Aditivo Químico más la muestra patrón
TABLA N° 77. Dosificación de la muestra N°2 de Aditivo Químico
TABLA N° 78. Datos de la muestra N°2 de la calicata C – 01 ensayado Aditivo Químico más la muestra patrón
TABLA N° 79. Dosificación de la muestra N°3 de Aditivo Químico
TABLA N° 80. Datos de la muestra N°3 de la calicata C – 01 ensayado Aditivo Químico más la muestra patrón
TABLA N° 81. Dosificación de la muestra N°1 de Aditivo Químico y su clasificación de suelo SUCS
TABLA N° 82. Dosificación de la muestra N°2 de Aditivo Químico y su clasificación de suelo SUCS
TABLA N° 83. Dosificación de la muestra N°3 de Aditivo Químico y su clasificación de suelo SUCS

TABLA N° 84. Tabla de las muestras con sus respectivas clasificaciones de suelos
SUCS 86
TABLA N° 85. Tabla de su dosificación para determinar la densidad máxima seca y Humedad Optima de la muestra N°187
TABLA N° 86. Tabla de su dosificación para determinar la densidad máxima seca y Humedad Optima de la muestra N°2
TABLA N° 87. Tabla de su dosificación para determinar la densidad máxima seca y Humedad Optima de la muestra N°3
TABLA N° 88. Tabla de determinación de la Densidad Máxima seca y Optimo contenido de humedad de cada muestra. 89
TABLA N° 89. Tabla de dosificación y CBR para la calicata C – 01 ensayado con aditivo terrasil más muestra patrón, muestra N°1
TABLA N° 90. Gráfico de penetración de CBR muestra N°1
TABLA N° 91. Tabla de dosificación y CBR para la calicata C – 01 ensayado con aditivo terrasil más muestra patrón, muestra N°2
TABLA N° 92. Gráfico de penetración de CBR muestra N°2
TABLA N° 93. Tabla de dosificación y CBR para la calicata C – 01 ensayado con aditivo terrasil más muestra patrón, muestra N°3
TABLA N° 94. Gráfico de penetración de CBR muestra N°3
TABLA N° 95. Tabla de Dosificación y Penetración de la muestra N°1 con el aditivo terrasil.
TABLA N° 96. Tabla de golpes por cada molde de la muestra N°1 93
TABLA N° 97. Tabla de Dosificación y Penetración de la muestra N°2 con el aditivo terrasil
TABLA N° 98. Tabla de golpes por cada molde de la muestra N°2
TABLA N° 99. Tabla de Dosificación y Penetración de la muestra N°3 con el aditivo terrasil
TABLA N° 100. Tabla de golpes por cada molde de la muestra N°3

TABLA Nº 101. Resumen de los conteos de tránsito a nivel del día y tipo de
vehículo96
TABLA N° 102. Cálculos del IMDS Y IMDA 202197
TABLA N° 103. IMDA para el año 2021
TABLA N° 104. Proyección de tráfico para 4 años99
TABLA N° 105. Fórmulas para calcular los ejes equivalentes (pavimentos flexibles)
99
TABLA N° 106. Cálculo de los ejes equivalentes
TABLA N° 107. Factores de Distribución Direccional y de Carril
TABLA Nº 108. Nivel de confiabilidad para una sola etapa de diseño 105
TABLA Nº 109. Valores recomendados de nivel de Confiabilidad Para una sola
etapa de diseño (10 o 20 años) según rango de Tráfico105
TABLA N° 110. Desviación estándar normal
TABLA N° 111. Índice de Serviciabilidad ΔPSI106
TABLA N° 112. Serviciabilidad inicial pi
TABLA N° 113. Serviciabilidad final pt
TABLA N° 114. Coeficientes estructurales
TABLA N° 115. Coeficientes de drenajes (cd)
TABLA N° 116. Parámetros de cada capa113
TABLA N° 117. Cálculo del SN* 115
TABLA N° 118. Espesores de cada capa115
TABLA N° 119. Parámetros de diseño del pavimento propuesto
TABLA N° 120. Nivel de confiabilidad para una sola etapa de diseño 118
TABLA Nº 121. Valores recomendados de Nivel de Confiabilidad Para una sola
etapa de diseño (10 o 20 años) según rango de Tráfico118
TABLA N° 122. Desviación estándar normal (Z _R)119
TABLA N° 123. Índice de Serviciabilidad ΔPSI119

TABLA N° 124. Serviciabilidad inicial (PI)
TABLA N° 125. Serviciabilidad final (PT)
TABLA N° 126. Coeficientes estructurales
TABLA N° 127. Coeficientes de drenajes (CD)
TABLA N° 128. Parámetros de cada capa
TABLA N° 129. Cálculo del SN*
TABLA N° 130. Espesores de cada capa
TABLA N° 131. Parámetros de diseño del pavimento propuesto
TABLA N° 132. Nivel de confiabilidad para una sola etapa de diseño 131
TABLA Nº 133. Valores recomendados de Nivel de Confiabilidad Para una sola
etapa de diseño (10 o 20 años) según rango de Tráfico
TABLA N° 134. Desviación estándar normal (Z _R)
TABLA N° 135. Índice de Serviciabilidad ΔPSI
TABLA N° 136. Serviciabilidad inicial PI
TABLA N° 137. Serviciabilidad final PT
TABLA N° 138. Coeficientes estructurales
TABLA N° 139. Coeficientes de drenajes (CD)
TABLA N° 140. Parámetros de cada capa
TABLA N° 141. Cálculo del SN*
TABLA N° 142. Espesores de cada capa
TABLA N° 143. Parámetros de diseño del pavimento propuesto
TABLA N° 144. Clasificación de Suelos por método S.U.C.S
TABLA N° 145. Tabla de CBR para la muestra patrón
TABLA N° 146. Proctor modificado
TABLA N° 147. CBR (California Bearing Ratio). Expansión del suelo 149
TABLA N° 148. CBR (California Bearing Ratio)
TABLA N° 149. Índice de plasticidad151

TABLA N° 150. Índice de plasticidad	152
TABLA N° 151. CBR (California Bearing Ratio). Expansión del suelo	153
TABLA N° 152. CBR (California Bearing Ratio)	153
TABLA N° 153. CBR (California Bearing Ratio)	154

Índice de gráficos y figuras

FIGURA N°1. Av. Cordillera Occidental-Chorrillos	2
FIGURA N°2. Proceso para la identificación del tipo de suelo	. 16
FIGURA N°3. Proceso de estabilización de tipo de selección	. 17
FIGURA N°4. Molde cilíndrico de 4,0 pulgadas	. 20
FIGURA N°5. Molde cilíndrico de 6,0 pulgadas.	. 21
FIGURA N°6. Ejemplo de grafico de curva de compactación	. 21
FIGURA N°7. Molde cilíndrico 4,00 pulgadas.	. 23
FIGURA N°8. Equipos utilizados para el ensayo Proctor modificado	. 25
FIGURA N°9. Aparato manual para límite líquido	. 27
FIGURA N°10. Muestreo del suelo antes y después de la prueba	. 28
FIGURA N°11. Curva de compactación	. 37
FIGURA N°12. Carta de plasticidad	. 42
FIGURA N°13. Curva de compactación	. 45
FIGURA N°14. Curva granulométrica C-02	. 52
FIGURA N°15. Carta de plasticidad	. 56
FIGURA N°16. Corrección de la curva. E.C	. 60
FIGURA N°17. Curva granulométrico C-03	. 61
FIGURA N°18. Curva granulométrica de todas las muestras de residuos orgánios	icos
FIGURA N°19. Curva de compactación o Proctor	. 72
FIGURA N°20. Curva granulométrica de todas las muestras de	. 83
FIGURA N°21. Curva granulométrica de todas las muestras del Aditivo Terrasil	88
FIGURA N°22. N° de vehículos / día	. 96
FIGURA N°23. Proyección de tráfico para 4 años	. 99
FIGURA N°24. Conjunto de ejes y numero de neumáticos	100
FIGURA N°25. Vista de sección transversal de la vía	102

FIGURA N°26.	IMDA para un pedio de diseño de 20 años (2025-2045)	103
FIGURA N°27.	Módulo de resiliencia de la carpeta asfáltica Mr	109
FIGURA N°28.	Abaco para calcular el a1 y Mr(base)	109
FIGURA N°29.	Abaco para calcular el a2 y Mr(Sub Base)	110
FIGURA N°30.	Cálculo del SN1	112
FIGURA N°31.	Cálculo del SN2	112
FIGURA N°33.	Cálculo del SN3	113
FIGURA N°34.	Parámetros de diseño de cada capa	116
FIGURA N°35.	Dimensión de la Sección Longitudinal	116
FIGURA N°36.	Dimensiones de del ancho de calzada de la vía	116
FIGURA N°37.	Módulo de resiliencia de la carpeta asfáltica Mr	122
FIGURA N°38.	Abaco para calcular el a1 y Mr(base)	122
FIGURA N°39.	Abaco para calcular el a2 y Mr(Sub Base)	123
FIGURA N°40.	Cálculo del SN1	125
FIGURA N°41.	Cálculo del SN2	125
FIGURA N°42.	Cálculo del SN3	126
FIGURA N°43.	Parámetros de diseño de cada capa	129
FIGURA N°44.	Dimensión de la Sección Longitudinal	129
FIGURA N°45.	Dimensiones de del ancho de calzada de la vía	129
FIGURA N°46.	Módulo de resiliencia de la carpeta asfáltica Mr	135
FIGURA N°47.	Abaco para calcular el a1 y Mr(base)	135
FIGURA N°48.	Abaco para calcular el a2 y Mr(Sub Base)	136
FIGURA N°49.	Cálculo del SN1	138
FIGURA N°50.	Cálculo del SN2	138
FIGURA N°51.	Cálculo del SN3	139
FIGURA N°52.	Parámetros de diseño de cada capa	142
FIGURA N°53.	Dimensión de la Sección Longitudinal	142

FIGURA N°54. Dimensiones de del ancho de calzada de la vía	142
FIGURA N°55. Mapa político del Perú	143
FIGURA N°56. Mapa político del departamento de Lima	144
FIGURA N°57. Mapa del distrito de Chorrillos	144
FIGURA N°58. Mapa de la provincia de Lima	144
FIGURA N°59. Calicata N° 01	145
FIGURA N°60. Calicata N° 02	146
FIGURA N°61. Calicata N° 03	146
FIGURA N°62. Curva de Proctor	148
FIGURA N°63. Ensayo de C.B.R.	150
FIGURA N°64. Ejemplo de variables independiente y dependiente	167

Resumen

En el presente proyecto de investigación tiene como objetivo determinar de qué manera influye las cenizas de residuos orgánicos y aditivos químicos en la estabilización de la subrasante en la Av. Cordillera Occidental – Chorrillos – Lima. Nuestro tipo de diseño de investigación es experimental ya que en el proyecto de investigación se da a conocer la utilidad de nuestras variables (Dependiente & Independiente). Estas variables serán usadas por estudios, tales como el CBR, Proctor Modificado, Limite Liquido y Limite Plástico; para así determinar la resistencia que nos ofrece cada estabilizador.

Como metodología, las cascaras de arroz y bagazo de caña de azúcar son productos de desechos provenientes de los campos de cultivos, siendo este un material que ayude a disminuir la contaminación del medio ambiente incluyendo este producto en el mejoramiento de la subrasante. Por otro lado, el Terrasil es un producto compuesto 100% de organozilanos, tiene como beneficio reducir la permeabilidad, mantener los valores de CBR en seco y tiene un control en la erosión de suelo, taludes y bermas.

Los resultados obtenidos, muestra que el tipo de suelo arenoso es pobremente graduado con limo en el Sistema Unificado de Clasificación de Suelos (SUCS), para el *CBR* (California Bearing Ratio) se adicionó 6% de CCA + 10% CBCA lo cual aumento de 3.90% a 15.00%, con 8% de CCA + 20% CBCA aumento de 3.90% a 18.80% y con 10% de CCA + 35% CBCA disminuye de 3.90% a 15.20%. y para el terrasil se adiciono 2% lo cual aumento de 3.90% a 5.70%, con 4% aumento de 3.90% a 9.70 % y con 7% aumento de 3.90% a 6.20%.

En conclusión se obtuvieron resultados favorables tanto para las cenizas de residuos orgánicos como el aditivo químico, mejorando sus propiedades físicas y el aumento de la capacidad portante, la cual beneficia a ese tipo de suelo poder estabilizar la subrasante.

Palabras clave: Sub-rasante, Estabilizar, cenizas de bagazo de caña de azúcar y cascara de arroz, Aditivo Terrasil.

Abstract

The objective of this research project is to determine how organic waste ash and chemical additives influence the stabilization of the subgrade on Av. Cordillera Occidental - Chorrillos - Lima. Our type of research design is experimental since the usefulness of our variables (Dependent & Independent) is disclosed in the research project. These variables will be used by studies, such as CBR, Modified Proctor, Liquid Limit and Plastic Limit; in order to determine the resistance offered by each stabilizer.

As a methodology, rice husks and sugarcane bagasse are waste products from crop fields, this being a material that helps reduce environmental pollution by including this product in the improvement of the subgrade. On the other hand, Terrasil is a product composed of 100% organozilanes, it has the benefit of reducing permeability, maintaining dry CBR values and having control over soil erosion, slopes and berms.

The results obtained show that the type of sandy soil is poorly graded with silt in the Unified Soil Classification System (SUCS), for the CBR (California Bearing Ratio) 6% CCA + 10% CBCA was added, which increased 3.90% to 15.00%, with 8% CCA + 20% CBCA increased from 3.90% to 18.80% and with 10% CCA + 35% CBCA decreased from 3.90% to 15.20%. and for terrasil 2% was added which increased from 3.90% to 5.70%, with 4% increase from 3.90% to 9.70% and with 7% increase from 3.90% to 6.20%.

In conclusion, favorable results were obtained for both the organic waste ashes and the chemical additive, improving their physical properties and increasing the bearing capacity, which benefits this type of soil to be able to stabilize the subgrade.

Keywords: Sub-grade, Stabilize, sugarcane bagasse ash and rice husk, Terrasil Additive.

I. INTRODUCCIÓN

Desde tiempos muy remotos los caminos y carreteras han sido de gran utilidad para que las personas puedan trasladarse de un lugar a otro, estos medios de transporte que se diseñaron eran muy duraderos, con bajo presupuestos y de gran envergadura. Así generando un beneficio social y económico. En la actualidad con el avance de la tecnología y la investigación, las carreteras han sido pavimentadas y mejoradas. Sin embargo, según el centro del comercio exterior (CCEX) de la cámara de comercio. El Perú está conformada por una red vial de 95 863 km de las cuales

16% esta pavimentada con una longitud de 15 496 km y el 84% restante es afirmado o trocha con una longitud de 80 367 km. Las carreteras que se encuentran a nivel de la subrasante o trochas presentan problemas como ahuellamiento, bacheos entre otros, y muchos de estos a causa del tipo de suelo que presentan. El manual de carreteras del Ministerio de Transporte y Comunicaciones (2018), Indica que para estabilizar un suelo este debe tener el CBR menor al 6% de lo contrario no es necesario realizar un mejoramiento de las propiedades físicas o un amento a su capacidad portante. Bajo los argumentos mencionados nace la necesidad de investigar sobre la estabilización de la subrasante con cenizas de residuos orgánicos y aditivos químicos.

En la relación con realidad problemática internacional, Informa que cuando se va a ejecutar proyectos viales en el oriente ecuatoriano se puede encontrar con suelos inadecuados para la subrasante, debido a las propiedades que no garantizan una estabilidad a la estructura del pavimento, estos suelos suelen ser reemplazados por materiales con mejores características. En la construcción del paso lateral de la Ciudad de Macas – Ecuador, se encontraron suelos arcillosos con limite liquido mayor al 100%, especialmente en el km 3+000. Se hicieron ensayos de laboratorio en donde se determinó que el índice de plasticidad es mayor al 50% el porcentaje de humedad es 80%, CBR de 1% y porcentaje de material fino superior al 50%.¹

En relacional a la realidad problemática nacional, La comunicación es el desarrollo principal, es por ello que las carreteras deben estar en buenas condiciones para

_

¹ (CASTILLO, 2017 pág. 15)

poder interrelacionar con departamentos, provincias y distritos, y así poder llevar buenas relaciones económicas culturales y turísticas. En gran mayoría la infraestructura vial es afectado por el nivel freático que se presenta en la subrasante. En el distrito de Pachacama, el acceso a algunas principales vías se encuentra en abandono y mal estado, es por ello que aún cuentan con avenidas no pavimentadas. Como es el caso de la venida 13 de julio de dicho distrito que se encuentra a nivel de la subrasante con un suelo arenoso y con baja capacidad portante presentados problemas de ahuellamientos, hundimientos, huecos, generando inseguridad para los conductores.²

En relación a la realidad problemática local, se encuentra ubicado en la Av. Cordillera Occidental distrito de Chorrillos. Esta avenida no está pavimentada y se encuentra en un mal estado debido a que es un suelo arenoso y no recibe un mantenimiento adecuado por parte de la entidad responsable. Se ha podido observar que presenta problemas de ahuellamiento, bacheos, huecos y asentamientos. Generando inseguridad para los conductores y peatones que transitan esta avenida, este tipo de problemas pueden producir accidentes vehiculares ocasionando pérdidas de vidas humanas y económicas. Es por ello que se realizara una investigación para estabilizar la subrasante con cenizas de residuos orgánicos (cenizas de cascara de arroz y cenizas de bagazo de caña de azúcar) y aditivo químico (Terrasil)

FIGURA N°1. Av. Cordillera Occidental-Chorrillos.

Fuente: Elaboración propia

_

² (ALDO, 2019 pág. 25)

En esta investigación se planteó el primer problema general. ¿De qué manera influye las cenizas de residuos orgánicos y aditivo químico en la estabilización de la subrasante en la Av. Cordillera Occidental - Chorrillos - Lima, 2021?. Y así mismo se planteó el primer problema específico: ¿De qué manera influye las cenizas de residuos orgánicos y aditivo químico en el óptimo contenido de humedad y máxima densidad seca en la subrasante en la Av. Cordillera Occidental - Chorrillos - Lima, 2021?. Y como segundo problema específico tenemos ¿De qué manera influye las cenizas de residuos orgánicos y aditivo químico en el Porcentaje de expansión del suelo en la subrasante en la Av. Cordillera Occidental - Chorrillos - Lima, 2021?. Por consiguiente, tenemos el tercer problema específico ¿De qué manera influye las cenizas de residuos orgánicos y aditivo químico en la Resistencia de la subrasante en la Av. Cordillera Occidental - Chorrillos - Lima, 2021?. Del mismo modo se planteó el cuarto problema específico, ¿De qué manera influye las cenizas de residuos orgánicos y aditivo químico en el índice de plasticidad de la subrasante en la Av. Cordillera Occidental - Chorrillos - Lima, 2021?.

Siguiendo con el desarrollo del proceso de la estructura que presenta este proyecto de investigación. Se justifica teóricamente con la contribución que se da sobre las teorías de estabilización de la subrasante y con el comportamiento de las variables o relación entre ellas. Con los resultados se pueden reforzar las teorías de estabilización de la subrasante con cenizas de residuos orgánicos, ya que aumenta su capacidad para soportar las cargas provocadas por los vehículos., se justifica técnicamente al pretender encontrar nuevas maneras de estabilizar la subrasante que poseen suelos arenosos con un CBR menor a 6%. Conociendo que el objetivo es mejorar la subrasante para soportar las cargar que va recibir por un extenso periodo de tiempo.

De tal modo se justifica socialmente con el aporte que brindamos a los estudiantes que realizan investigaciones acerca del mejoramiento de suelos, ya que contaran con diferentes alternativas de solución para la estabilización de la subrasante con cenizas de residuos orgánicos y aditivo químico (terrasil). De obtener los resultados esperados, también beneficiara a la entidad encargada de realiza el mejoramiento de la avenida Ancón, ya que puede optar por utilizar este proyecto de investigación,

con resultados altamente favorable y un presupuesto minimizado, finalmente beneficiando a la sociedad, a los conductores y peatones que transitas esta avenida. Así mismo se justifica metodológicamente para poder obtener resultados confiables en la investigación es indispensable contar con el proceso metodológico, en esta investigación presentamos nuevos instrumentos para la recolección y análisis de datos.

A continuación, siguiendo con el proceso de la investigación se planteó como primer objetivo general. Determinar de qué manera influye las cenizas de residuos orgánicos y aditivo químico en la estabilización de la subrasante en la Av. Cordillera Occidental - Chorrillos - Lima, 2021. Así mismo se planteó el primer objetivo específico. Determinar de qué manera influye las cenizas de residuos orgánicos y aditivo químico en el óptimo contenido de humedad y máxima densidad seca en la subrasante en la Av. Cordillera Occidental - Chorrillos - Lima, 2021. Del mismo modo se planteó el segundo objetivo específico; Determinar de qué manera influye las cenizas de residuos orgánicos y aditivo químico en el Porcentaje de expansión del suelo en la subrasante en la Av. Cordillera Occidental - Chorrillos - Lima, 2021. El tercer objetivo específico se formuló de la siguiente manera. Determinar de qué manera influye las cenizas de residuos orgánicos y aditivo químico en la Resistencia de la subrasante en la Av. Cordillera Occidental - Chorrillos - Lima, 2021. Por consiguiente, tenemos el cuarto objetivo específico que es; Determinar de qué manera influye las cenizas de residuos orgánicos y aditivo químico en el índice de plasticidad de la subrasante en la Av. Cordillera Occidental - Chorrillos - Lima, 2021.

En esta investigación se planteó como hipótesis general; Las cenizas de residuos orgánicos y aditivo químico influyen en la estabilización de la subrasante en la Av. Cordillera Occidental - Chorrillos - Lima, 2021. Como primera hipótesis específico tenemos; Las cenizas de residuos orgánicos y aditivo químico influyen en el óptimo contenido de humedad y máxima densidad seca en la subrasante en la Av. Cordillera Occidental - Chorrillos - Lima, 2021. De la misma manera se planteó la segunda hipótesis específica; Las cenizas de residuos orgánicos y aditivo químico influyen en el Porcentaje de expansión del suelo en la subrasante la Av. Cordillera Occidental - Chorrillos - Lima, 2021. Del mismo modo se propuso la tercera hipótesis específico; Las cenizas de residuos orgánicos y aditivo químico influyen en la Resistencia de la

subrasante en la Av. Cordillera Occidental - Chorrillos - Lima, 2021. Por último y cuarta hipótesis específica tenemos; Las cenizas de residuos orgánicos y aditivo químico Influye en el índice de plasticidad de la subrasante en la Av. Cordillera Occidental - Chorrillos - Lima, 2021.

II. MARCO TEÓRICO

En esta investigación Rodríguez (2016) Su objetivo fue analizar la subrasante incluyendo el aditivo terrasil como un agente estabilizador. Fue un estudio de tipo experimental, nivel de investigación exploratorio – Descriptivo – Explicativo. Y cuenta con una población de 3.822 metros que se encuentra en la ciudad de Quevedo en el sector San Camilo. La separación de las calicatas fue de 500 metros, sumando así 9 muestras. Los instrumentos empleados fueron equipos para la realización de los ensayos de suelo. En los resultados se obtuvo que el aditivo Terrasil impermeabiliza el suelo y da un mejoramiento a su resistencia ya sea en suelos C, M, S; incluyendo el aditivo terrasil se redujo el material pétreo, dando así también la reducción de la base, que son utilizados como principal factor en la construcción vial.³

En esta investigación para Ramos y Lozano (2016) Su objetivo es mejorar las propiedades físicas y mecánicas de la subrasante mediante una estabilización, con aditivos alternos como cenizas de carbón y convencionales como la cal, en porcentajes de 10%, 20% y 40%. En la ciudad de Bogotá. La investigación es de tipo experimental con un nivel de investigación aplicada. En la población, se consideró 2 kilómetros de la ciudad de Bogotá. En las muestras tenemos las calitas realizadas en la avenida. Los instrumentos empleados fueron fichas de y equipos para la realización de los ensayos. Teniendo como resultados al ensayo Proctor estándar donde el suelo patrón posee una máxima densidad seca mayor que las demás muestras con los aditivos (muestra patrón s100; máxima densidad seca 1.81gr/cm3, muestras con cal tenemos s60-ccm40; 1.76 gr/cm3, y las muestras con cenizas de carbón s90-ccm10; 1.78 grcm3) y un óptimo contenido de humedad menor a de los aditivos (muestra patrón s100; óptimo contenido de humedad 22.59%, muestras con cal tenemos s60-ccm10; 37%, y las muestras con cenizas de carbón s90-ccm10; 28%). En el caso de la humedad las muestras con cenizas de carbón requieren entre un 15% y 19% menos agua que las muestras con cal, por otro lado, los ensayos de compresión inconfinada demuestran que las muestras con cenizas de carbón son entre 348% y 1200% más resistente que las muestras con cal. También se observa que la cal actúa mejor en bajas concentraciones, mientras que las cenizas actúan

⁻

³ (RODRÍGUEZ, 2016 pág. 125)

mejor en altas concentraciones. Así mismo los ensayos de corte directo nos da como resultado que los ángulos de fricción aumenta y la cohesión de los suelos disminuyen cuando las concentraciones de los aditivos disminuyen, pasa todo lo contrario si la concentración de los aditivos aumenta. En resumen, las partículas internas van a permanecer unidas. en cuanto a costo por 1m3 tenemos: cal 10%; \$ 150 aprox. Con cenizas ce carbón 10%; \$60 aprox. Se puede decir que, con las muestras de cenizas de carbón se obtuvieron mejores resultados. Finalmente, concluyeron que para realizar la estabilización de la subrasante con el aditivo cal se debe usar el porcentaje de 10% y en cuanto a las cenizas de carbón se usara el porcentaje de 40% ya que con estas muestras se obtuvieron los mejores resultados. Se recomienda estabilizar la subrasante con cenizas de carbón ya que los costos son bajos y con un adecuado mejoramiento de la subrasante.⁴

En esta investigación para Cusme (2018) Tuvo como objetivo estabilizar la subrasante adicionando el aditivo químico permazyme 11X en porcentajes de 0,00075 %; 0,0015 %; 0,0030 %; 0,0060 % y 0,0090% para determinar su comportamiento en el proyecto mi lote en la ciudad de Guayaquil, provincia del Guayas – Ecuador. Fue un estudio de tipo Experimental con un Nivel de Investigación Exploratorio – Descriptivo – Explicativo. En la población se consideró los suelos de la vía ubicada en la ciudad de Guayaquil. Teniendo como muestra a los suelos extraídos de una calicata de un 1.50 mt. de profundidad. Los instrumentos empleados fueron equipos para la realización de los ensayos de suelo. En los resultados se tiene al ensayo de CBR que aumento su valor a un 6%, también tenemos al ensayo Proctor modificado que se obtuvo la máxima densidad seca y el óptimo contenido de humedad con la dosificación de 0.003%, los límites de atterberg disminuyo su valor en un 20%.5

Espinoza y Velásquez (2018) Tuvieron como objetivo mejorar la subrasante mediante la estabilización química (cenizas de bagazo de caña de azúcar) con porcentajes de 10%, 20% y 30%. En el tramo Pinar – Marian distrito de Independencia. Fue una investigación de tipo aplicada, con una población

_

⁴ (RAMOS Y LOZANO, 2016 pág. 27)

⁵ (CUSME, 2018 pág. 109)

conformada por los suelos arcillosos existentes en la carretera del tramo Pinar a Marian teniendo como muestra a los suelos extraídas de las calicatas realizadas en el tramo Pinar a Marian. Los instrumentos que se utilizados fueron las fichas de recolección de datos, formatos plasmados en las normas peruanas y extranjeras. Los principales resultados fueron el ensayo de CBR, adicionando el 10% C.C.A. con una lectura del 95% del CBR para la subrasante obteniendo un resultado de 11.56%. adicionando el 20% C.C.A. con una lectura del 95% del CBR para la subrasante obteniendo un resultado de 15.18%. adicionando el 30% C.C.A. con una lectura del 95% del CBR para la subrasante obteniendo un resultado de 10.42%. Para el límite de Atterberg se seleccionó la calicata patrón con mayor deficiencia con un I.P. de 16.11%, al adicionar 10% CCA se obtiene un IP de 11.59%, adicionando 20% C.C.A. se obtiene un I.P. 9.73% Y adicionando 30% C.C.A. se obtiene un I.P. 12.04%. Se concluyó que las muestras con sustitución de 20% de CCA fueron superiores a los demás.⁶

Diaz (2018). Tuvo como objetivo mejorar la subrasante agregando porcentajes de cenizas de cascara de arroz a la muestra patrón para mejor el óptimo contenido de humedad, el C.B.R. y el aumento de su capacidad portante. Fue un estudio de tipo Aplicada con un Nivel de Investigación Descriptiva – Aplicativa. Con una población que está conformado por los ensayos de mecánica de suelos y como muestra tuvieron muestra dos ensayos que está constituido por el ensayo de Proctor modificado y el ensayo de CBR. Los instrumentos empleados fueron equipos para la realización de ensayos de Proctor Modificado y CBR; y fichas de recolección de datos. En los resultados se obtuvieron que la combinación de suelo arcilloso y ceniza de cascara de arroz, el valor del CBR incrementó al 100% de la máxima densidad seca del Proctor Modificado de 9.7% hasta 15.2%, esto se logró con un contenido de 20% de ceniza de cascara de arroz; según el porcentaje obtenido, el óptimo contenido de humedad disminuyó un 11.2% a 8.1%, el porcentaje de absorción disminuye notablemente en cada molde de muestra, analizando se determinó añadiendo más ceniza de cascara de arroz disminuye los resultados de 2.20% hasta 0.98% en el molde 1, de 2.80% a 1.02% en el molde 2 y de 3.00% al 1.23% en el

⁻

⁶ (ESPINOZA Y VELÁSQUEZ, 2018 pág. 80)

molde 3; dado el contenido porcentual de la ceniza de cascara de arroz 20% se logró que la capacidad portante de la subrasante aumente, los resultados que se obtuvieron de CBR al 95% su aumento fue de 8.0% hasta 13.80% y el CBR al 100% fue de 9.7% al 15.2%.⁷

Marcos (2019) Tuvo como objetivo determinar el mejoramiento de las características estructurales de los pavimentos mediante la estabilización con químicos, también aplicar las tasas de los estabilizadores basando en recomendación y especificación de fabricante, determinar la óptima dosis de los agentes químicos; mediante parámetro in-situ (IRI) comprobar los niveles de servicio establecidos para el pavimento; analizar el presupuesto que generara este tipo de proyecto con el sistema de estabilizador recomendado, en los resultados se obtuvo que en los ensayos de laboratorio del tramo de prueba y de campo, la dosificación de 45kg/m³ de cemento y 0.3 kg/m³; también se obtiene un CBR mayores a 150% para suelos del tipo A-2-4 (0) con estabilización de Proes al 95% de la MDS; según los resultados del laboratorio en la parte de estabilizador liquido se puede asegurar las características solicitadas de capacidad portante de la base estabilizada; se muestra que el terrasil otorga un incremento en la capa estabilizada de 1.25 de su CBR, de igual manera no se consideró ejecutar este producto en la misma estabilización por motivos de consideración del producto y bajo la condición local trabajada; la mejor resultado para la estabilización con terrasil fue de 1% de cemento y 0.5% de aditivo liquido terrasil; el cemento es la principal agente de incremento en CBR que fue la más adecuada, ya que los aditivos líquidos y otros precisan de suelos más plásticos CL O CH para el incremento de CBR; los principales problemas son fisuras o grietas, en donde se deben moderar al tipo de estabilización realizada.8

Adeyanju, Okeke, Akinwumi, Busari (2020). The Objective of this study is to determine the mechanical properties of the natural subgrade, CKD – stabilized subgrade, and RHA – based goepolymer stabilized subgrade. Also, to determine the asphaltic pavement thickness using the result of the soaked CBR values for the natural subgrade, CKD stabilized subgrade and RHA based geopolymer stabilized

⁻

⁷ (DÍAZ Básquez, 2018 pág. 128)

^{8 (}MARCOS, 2019 pág. 125)

subgrade. As a result, the natural moisture content of the soil was recorded to be 8.5%. In addition, its mechanical strength is low with medium free swelling potential. According to the Nigeria Highway Manual 2013, this soil is classified as SI subgrade. Such subgrades are recommended to have pavement thickness of approximately one meter for high volume traffic loads. It was recommended to dig up to 1.2 m where necessary during the construction of the road. In conclusion, to improve the mechanical resistance, reducing the thickness of the pavement to provide a good satisfactory service on the road in its useful life and design, it had to be divided into four phases. The first phase used the CKD as a stabilizer and the determination of the natural properties of the soil. [...]. The second phase used the RHA [...]. The last phase used the cost analysis of the natural subgrade as well as the stabilized subgrade.⁹

of using rural waste materials RHA, SCBA and CDA in soil stabilization; To investigate the chemical and physical properties of stabilizing agents; to investigate the physical and engineering properties of natural soil and stabilized soil by adding 2.5%, 5 %, 7.5%, 10% and 12.5% of ash in soil; to compare the thickness of the pavement to get the maximum soaked CBR value obtained for stabilized soil also from natural soil. As a conclusion, alluvial soil was identified as an intermediate plastic; RHA, SCBA, CDA were used to stabilize the soil for road construction. Sufficient cementitious property was found in RHA and SCBA instead of CDA; Whit different ash, the plasticity decreases whit an increase in the [...].; The compaction characteristic of the stabilized [...]; Soaked and unsoaked CBR of the soil [...]; A similar trend was obtained from the CBR for UCS. The UCS value [...]; Based on the maximum value of CBR and UCS, the ash the stabilization [...]; The implication of

Yadav, Gaurav, Kishor, Suman (2017). It had as objective to explore the possibility

Por último, tenemos a Patel, Mishra, Parmar y Gautam (2015). The objective was to study the changes in soil index properties in untreated loose soils and to use the dose

thickness indicates that there [...]; In this sequence, [...], but can still be used to

improve the engineering properties of alluvial soil.¹⁰

_

⁹ (Subgrade Stabilization using Rice Husk Ash-based Geopolymer (GRHA) and Cement Kiln Dust (CKD), 2020 págs. 2-3-7)

^{10 (}Stabilization of alluvial soil subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads, 2017 págs. 255-261)

as a road construction stabilizer (Terrasil, Zycobond) to limit volume changes in highly plasticizable soils. Structural value or credit during packaging design. As a result, this is believed to be due to the fact that solidification is promoted by the chemical reaction of the soil, resulting in a denser material that reduce permeability; so that the soil goes from the fragile to the ductile state when it is moisture content. The reaction to the ground is revealed and its reflections are shown in a plastic limit; swelling is the process by which water passes through the pores through which dirt expands. [...]. The fleece Well Index has an intrinsic relationship with both the liquidity limit and the rate of expansion. [...]. In conclusion the work was to add terrasil 0.041%, zycobond 0.020% as part of the appropriate measure under the zydex trade agreement to provide manholes to improve the design characteristics of natural uses. [...] the soil begins to be coated with chemicals to form large agglomerates, [...]. The CBR estimates for untreated CL soils and the same soils treated with Terrasil 0.041% zycobond 0.020% show a range from 6.64% to 12.15%. [...]. 11

Como Antecedentes en Artículos tenemos a Jiménez, Bastidas y Consuegras (2019). Tuvo como objetivo contrapesar el efecto ambiental de la extracción de material estéril de la minería de carbón aplicándolo en la estabilización de suelos para infraestructura vial. Se dieron dos objetivos: aumentar la capacidad del soporte del suelo y disminuir los costos, restricciones asociadas a las granulometría, plasticidad y costos de los aditivos. Los Instrumentos empleados fueron equipos para la realización del Proctor Modificado, CBR, Granulometría, Densidad real y aparente, Sanidad de los agregados, Resistencia al desgaste, Limite de Atterberg. Se obtuvo como resultado que, en las Características inicial del material, los materiales utilizados de los residuos tomadas de las pilas, eran homogénea, [...], los resultados que se obtuvieron en la composición mineralógica por parte de Bastidas, con respecto al índice de plasticidad se obtuvo que entre 10 y 30; y LL entre 40 y 60, con esto se determinó que la arcilla es de tipo arcilla caolinitas, [...]. En conclusión, se obtuvo que las herramientas usados por el Algoritmos Evolutivos (AEMO) se obtiene el porcentaje óptimos de cal y cemento que se mezclaran para ser usados como material afirmado, subbase, terraplén; La formulación de AEMO en descripción de funciones objetivo, restricciones y variables de optimización, se obtuvo mezclas

_

¹¹ (Patel, y otros, 2015 pág. 1089)

optimas de residuos y porcentajes mínimos de cal y cemento [...]; se pueden usar herramientas en obras civiles para eludir posibles errores al ejecutar mezclas de residuos [...].¹²

En este mismo antecedente también tenemos ah Goñas y Saldaña (2020), tuvo como objetivo estimar el influjo del subproducto que se consiguió en la quema de carbón mineral y vegetal que proviene de la industria ladrillera [...]; los instrumentos empleados fueron ficha técnica de ensayos del laboratorio; como conclusión se obtuvo que las cenizas de carbón perfeccionan las propiedades mecánicas de suelo tipo CH Y OH, aun cuando no logra el tipo de material para ser usado como subrasante apropiado ya que el valor del CBR es de 3.5% y 3.7%, sin alcanzar el 6% valor mínimo según manual de carretera "Suelos, Geología, Geotécnica y Pavimentos"; Capacidad de soporte sin cenizas de carbón por la calicata 1 y 2 fue de 2.1% y 2.2% a nivel de la subrasante; Tipo de suelo CH de la calicata 1 y OH para la calicata 2, esto se obtuvo con la capacidad de soporte de 2.3%, 2.9% y 3.5% incrementando la cenizas de carbón de 15%, 20% y 25% y la capacidad de soporte (CBR) de 2.6%, 3.0% y 3.7% con el mismo porcentaje de cenizas de carbón; con esto se determinó que la adición del 25% de cenizas de carbón produce un mejor comportamiento de la subrasante del suelo ya sea para la calicata 1 y 2.13

Para Ospina, Chaves y Jiménez (2020) Tuvieron como objetivo estabilizar la subrasante de tipo arcilloso, adicionando escoria de acero en porcentajes de 25%, 50% y 75%. Fue un estudio de tipo Experimental con un Nivel de Investigación Exploratorio – Descriptivo. En la población, se consideró todas las calicatas realizadas para extraer la muestra patrón, en cuanto a las muestras se consideró 2390 gr de muestra patrón para realizar los ensayos requeridos. Los instrumentos que se emplearon fueron las fichas y cuaderno de obra para anotar el número de calicata, profundidad y cantidad de muestra a extraer. Finalmente, en los resultados tenemos al ensayo de CBR que aumentó en un 378.92%, también tenemos el ensayo de índice de plasticidad reduciéndolo hasta un 0%. Se concluye que la escoria de acero es un aditivo sumamente efectivo para mejorar la subrasante de suelos de arcilla caolinita. La muestra que mejor resultado dio es la dosificación de 25% de

_

^{12 (}Jiménez, y otros, 2019 pág. 249)

¹³ (Goñas Labajos, y otros, 2020 pág. 30)

escoria de acero y 75% de muestra acilla caolinita ya que aumentó significativamente el CBR y la densidad máxima seca.¹⁴

Residuos orgánicos es un material descompuesto que es muy proveniente de diferentes especies de flora y fauna, ya sea sobras de cualquier producto o desechos.¹⁵

Residuos orgánicos son productos derivados de producción y consumo, que no llegaron a un valor económico.¹⁶

El Aditivo Estabilizador se emplea materiales orgánicos o de granulometría muy finas y esto debe ser capaz de mezclarse tanto intima como homogéneamente con el suelo con la finalidad de tener un mejor tratamiento ya que deberá presentar mejores propiedades de resistencia.¹⁷

La ceniza es un término analítico al residuo inorgánico, extra yente al calcinar una materia orgánica esto causa una pérdida de volatilización, por lo cual no tienen las mismas sustancias de lo que tenía antes de ser calcinado.¹⁸

La cáscara de arroz es un desecho muy importante producido por el arroz con una consistencia quebradiza, abrasiva con una densidad baja, obteniendo así varios compontes químicos tales como el Sílice. La descomposición térmica de la cascarilla de arroz: una alternativa de aprovechamiento integral¹⁹

La cascarilla de arroz es un subproducto naciente de la molienda del grano de arroz que proviene de los campos de cultivo.²⁰

El arroz es un cereal que está incluido en la base alimenticia del ser humano, es cultivado y utilizado a nivel mundial mayormente comestible en Asia y Sudamérica.²¹

El bagazo es una biomasa residual perteneciente de la caña de azúcar, es renovable por lo que se puede cultivar, sus factores de las propiedades de bagazo como

13

¹⁴ (Ospina Garcia, y otros, 2020 pág. 185)

¹⁵ (Ambiental, 2017 pág. 41)

¹⁶ (Navarro, y otros, 1995 pág. 11)

¹⁷ (NORMA CE.020, 2012 pág. 3)

^{18 (}LABORATORIO DE ALIMENTOS UNAM, 2008 pág. 6)

¹⁹ (ORINOQUIA, 2010 pág. 25)

²⁰ (Instituto de Investigaciones Químicas y Biológicas, 2013)

²¹ (MAPFRE, 2021)

combustible pueden variar como su humedad de 45% a 55%, las cenizas de 1.5% a 8% y el de 1% a 2.5%.²²

La caña de azúcar aprovisiona sacarosa para la azúcar blanco y moreno, se puede extraer el bagazo, también se puede extraer compost agrícolas, vinazas, ceras, fibras, etc.²³

El azúcar es un producto utilizado en mayormente en las bebidas y comida a nivel mundial, es extraído de la caña de azúcar.²⁴

El Terrasil es un producto de última generación compuesto al 100% por organozilanos, capaz de rechazar el agua, elimina el hinchazón y absorción del suelo, que brinda mejores beneficios como aumento de valores del CBR, consigue mejores características hidrófobas. ²⁵

Es un estabilizante de suelos basado en la nanotecnología con fines de incrementar el CBR, reduce los efectos de la erosión, elimina el índice de plasticidad, etc.²⁶

El Terrasil es un aditivo químico que tiene como beneficio reducir la permeabilidad, mantener los valores de CBR en seco y tiene un control en la erosión de suelo, taludes y bermas.²⁷

Según la norma CE 020 Suelos y taludes. Estabilización está definido como un proceso físico o químico que nos permite mejorar la resistencia del suelo.²⁸

Para la Norma MTC-05-14 Sección suelos y pavimentos. Para encontrar las características físicas y mecánicas de los materiales de la subrasante se realizarán excavaciones de las calicatas con una profundidad mínima de 1.5 metros. A continuación, se detallará el número mínimo de calicatas por kilómetro

²² (MANSO, y otros, 2017 pág. 1)

²³ (INFOAGRO, 2011)

²⁴ (ESCALANTE, 2018)

²⁵ (OPTIMASOIL, 2014)

²⁶ (BREM S.A.C., 2015)

²⁷ (ECOROAD S.A.C., 2021)

²⁸ (CE.020 SUELOS Y TALUDES, 2012 pág. 2)

TABLA Nº 1. Numero de calicatas para la exploración de suelos

Tipo de Carretera	Profundidad (m)	Número mínimo de Calicatas	Observación	
Autopistas: carreteras de IMDA mayor de 6000 veh/dia, de calzadas separadas, cada una con dos o más carriles	1.50 m respecto al nivel de sub rasante del proyecto	Calzada 2 carriles por sentido: 4 calicatas x km x sentido Calzada 3 carriles por sentido: 4 calicatas x km x sentido Calzada 4 carriles por sentido: 6 calicatas x km x sentido	Las calicatas se ubicarán	
Carreteras Duales o Multicarril: carreteras de IMDA entre 6000 y 4001 veh/dia, de calzadas separadas, cada una con dos o más carriles	e 6000 y 4001 veh/dia, de 1.50 m respecto al nivel de separadas, cada una con dos o sub rasante del proyecto Calicatas x km x sentido 4 calicatas x km x sentido 4 calicatas x km x sentido 5		longitudinalmente y en forma alternada	
Carreteras de Primera Clase: carreteras con un IMDA entre 4000-2001 veh/dia, de una calzada de dos carriles.	1.50 m respecto al nivel de sub rasante del proyecto	4 calicatas x km		
Carreteras de Segunda Clase; carreteras con un IMDA entre 2000-401 veh/día, de una calzada de dos carriles.	1.50 m respecto al nivel de sub rasante del proyecto	3 calicatas x km Las calicata ubicarán		
Carreteras de Tercera Clase: carreteras con un IMDA entre 400-201 veh/dia, de una calzada de dos carniles.	1.50 m respecto al nivel de sub rasante del proyecto	2 calicatas x km	longitudinalmente y en forma alternada	
Carreteras de Bajo Volumen de Trânsito: carreteras con un IMDA ≤ 200 veh/dia, de una calzada.	1.50 m respecto al nivel de sub rasante del proyecto	1 calicata x km		

Fuente: Elaboración Propia, teniendo en cuenta el Tipo de Carretera establecido en la RD 037-2008-MTC/14 y el Manual de Ensayo de Materiales del

Fuente: Norma MTC-05-14 Sección suelos y pavimentos

Para la Norma MTC-05-14 Sección suelos y pavimentos. Define a la estabilización de suelos como el mejoramiento de las propiedades físicas de los suelos que sigue un proceso mecánico que usaran productos químicos naturales o sintéticos. Estas estabilizaciones generalmente se realizan en las subrasantes inadecuadas o pobres. Y también estas estabilizaciones se les conoce como suelo cemento, suelo cal entre otros. A diferencia que cuando se estabiliza una subbase o base granular se le conoce como base o subbase granular tratada. Los criterios geotécnicos para la estabilización se suelos indica que la capa de la subrasante de suelos es buna o apta, cuando tiene un CBR mayor o igual al 6% si el CBR es mejor al 6% la subrasante debe ser estabilizada ya que el contiene un suelo inadecuado o un suelo pobre ²⁹

²⁹ (MTC-05-14 Sección suelos y pavimentos, 2014 pág. 92)

15

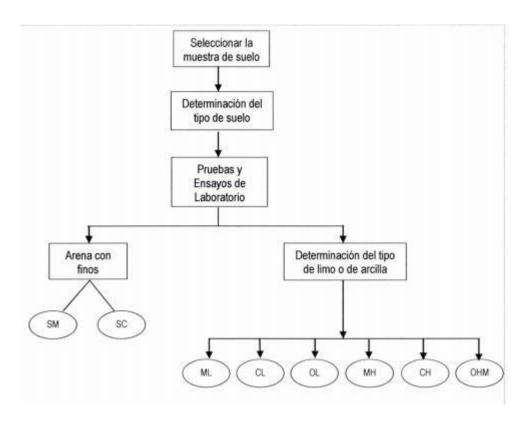


FIGURA N°2. Proceso para la identificación del tipo de suelo

Fuente: Norma MTC-05-14 Sección suelos y pavimentos

Factores a considerar para la estabilización adecuada

- a) Tipo de suelo a estabilizar
- b) Uso propuesto de suelo estabilizado
- c) Tipo de aditivo estabilizador de suelos
- d) Experiencia en el tipo de estabilización que se aplicará
- e) Disponibilidad de tipo de aditivo estabilizador
- f) Disponibilidad de equipo adecuado
- g) Costos comparativos

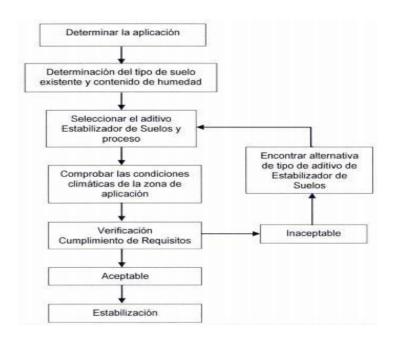


FIGURA N°3. Proceso de estabilización de tipo de selección

Fuente: Norma MTC-05-14 Sección suelos y pavimentos

TABLA N° 2. Guía referencial para la selección del tipo de estabilizador

Área Clase de suelo 1 A SW o SP	Clase de suelo	Tipo de Estabilizador Recomendado		Restricción en LL e IP del suelo	Restricción en el porcentaje que pasa la malla 200	Observaciones	
		(1)	Asfalto	Wind Sheet 28	MANAGE TO SERVICE TO		
	(2)	Cemento Portland					
		(3)	Cal-Cemento-Cenizas volantes	IP no excede de 25			
SW - SM 0 SP - SM 0 SW - SC 0 SP - PC		(1)	Asfalto	IP no excede de 10			
	SP - SM 0 SW - SC 0 SP - PC	(2)	Cemento Portland	IP no excede de 30	Divalue State		
		(3)	Cal	IP no menor de 12	Company of the		
		(4)	Cal-Cemento-Cenizas volantes	IP no excede de 25			
SM o SC o SM-SC	1 C	(1)	Asfalto	IP no excede de 10	No debe exceder el 30% en peso		
		30323	(2)	Cemento Portland	(b)	EXCHINE !	
		(3)	Cal	IP no menor de 12	B/// SEE 12 13		
		(4)	Cal-Cemento-Cenizas volantes	IP no excede de 25			

2 A GW o GP	(1)	Asfalto			Solamente material bien graduado.	
	GW o GP	(2)	Cemento Portland			El material deberá contene cuanto menos 45% en peso de material que pasa la Malla Nº 4.
		(3)	Cal-Cemento-Cenizas volantes	IP no excede de 25		
GW - GM o GP - GM o GW - GC o GP-GC	(1)	Asfalto	IP no excede de 10		Solamente material bien graduado.	
	(2)	Cemento Portland	IP no excede de 30		El material deberà contener cuanto menos 45% en peso de material que pasa la Malla Nº 4.	
	GP-GC	(3)	Cal	IP no menor de 12		I WE WIND
	(4)	Cal-Cemento-Cenizas volantes	IP no excede de 25			
GM o GC o GM - GC		(1)	Asfalto	IP no excede de 10	No debe exceder el 30% en peso	Solamente material bien graduado.
	GC o	(2)	Cemento Portland	(b)		El material deberà contener cuanto menos 45% en peso de material que pasa la Malla Nº 4.
		(3)	Cal	IP no menor de 12	TOTAL PROPERTY.	
		(4)	Cal-Cemento-Ceniza	IP no excede de 25	Parent Property	
3 ML o OH OL o ML o OH OL o ML-CL	CL o (1)	(1)	Cemento Portland	LL no menor de 40 IP no menor de 20		Suelos orgánicos y fuertemente ácidos contenidos en esta área no
	ML o OH o OL o	ML o OH o OL o (2)	Cal	IP no menor de 12		son susceptibles a l estabilización por método ordinarios
(b) I		dice Plá taje que	stico pasa la Malia Nº 200) / 4	Sin restricción u o No es nece aditivo estabi	sario	: US Army Corps of Engineers

Fuente: Norma MTC-05-14 Sección suelos y pavimentos

Para la norma CE 020 Suelos y taludes. La estabilización de suelos mediante métodos químicos solo se aplicará cuando el suelo o terrenos no cumpla con los requisitos mínimos de resistencia o deformaciones en obras de ingeniería civil. o este no pueda ser eliminado o remplazado por otro. En este método tenemos: la Estabilización con cal, estabilización con cemento, estabilización con asfalto en to otras más que nos sirven como referencias³⁰

Para la norma CE 020 Suelos y taludes. Las estabilizaciones de suelos mediante métodos físicos se realizan con adecuados equipos mecánicos de compactación para optimizar el rendimiento en la ejecución de la obra, dicho equipo será

³⁰ (CE.020 SUELOS Y TALUDES, 2012 pág. 3)

_

establecido por el profesional responsable. En este método tenemos a la estabilización por compactación³¹

Para Sans el objetivo del ensayo Proctor modificado es determinar el óptimo contenido de humedad y la máxima densidad seca para una mejor compactación de una energía dada. Procedimiento para el Proctor modificado en laboratorio. Este cuenta con un con un molde o envase de 6 pulgadas de diámetro en la parte exterior, igualmente con una altura 6 de pulgadas, posteriormente se procederá a realizar la compactación esto se hará en 5 capas, cada capa tendrá un diámetro de 2.5 cm de espesor y 25 golpes por cada capa con un compactador que tiene un peso de 10 libras. Lo cual se dejará caer desde una altura de 18 pulgadas.³²

TABLA N° 3. Materiales que se usan para el ensayo Proctor estándar y modificado

E = (N. n. P. h)/V

Donde:

E = Energía de compactación

N = Número de golpes por capa n = Número de capas de suelo

P = Peso del pisón

h = Altura de caída libre del pisón

V = Volumen de suelo compactado

Ensayo	Proctor Estándar	Proctor Modificado	
Norma	NTP-339.142	NTP-339.141	
Energía de Compactación	12,300 Lb.ft/ft3	56,250 Lb.ft/ft3.	
Peso del martillo	5.5 lb	10 lb	
Altura de caída del martillo	12 pulgadas	18 pulgadas	
Número de golpes por capas	depende del molde	depende del molde	
Número de capas	3	5	
volumen del molde cm3	depende del método de prueba	depende del método de prueba	

Fuente: CE 020 Estabilización de suelos y taludes

Para Das, el objetivo Proctor modificado usados en laboratorios nos permite determinar optimo contenido de humedad en relación al peso unitarios de suelo seco (Curva de compactación), la muestra se compactará en un molde de 4 o 6 pulgadas de diámetro, el pisón consta de lbf que se deja caer desde una altura de 18 pulgadas generándose una energía de compactación de 56000 lb pie/pie³ (2 700 kn m/m³).

19

³¹ (CE.020 SUELOS Y TALUDES, 2012)

³² (SANS Llanos, 1975 pág. 41)

Este ensayo se realizará a suelos que contenga material igual o menor a 30% de peso retenido en el tamiz 3/4 de pulgada33

Aparatos

- > Ensamblaje de molde
- Molde de 4 o 6 pulgadas
- Pisón o martillo
- Balanza horno de secado
- Regla
- Tamices o mallas
- Herramientas de mezcla

Según el manual de ensayos de materiales el Proctor modificado es un ensayo utilizado para la compactación de suelos este ensayo se realiza en laboratorio y se usa una energía modificada de (2 700 kN-m/m3 (56 000 pie-lbf/pie3)).34

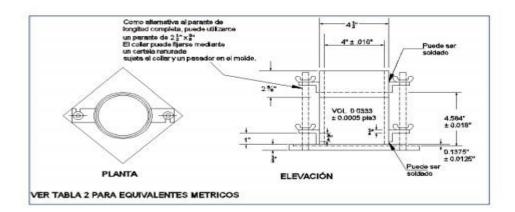


FIGURA N°4. Molde cilíndrico de 4,0 pulgadas

Fuente: elaborado por manual de materiales Proctor modificado

^{33 (}DAS, 2014 pág. 90)

³⁴ (MANUAL DE ESAYO DE MATERIALES, 2016 pág. 105)

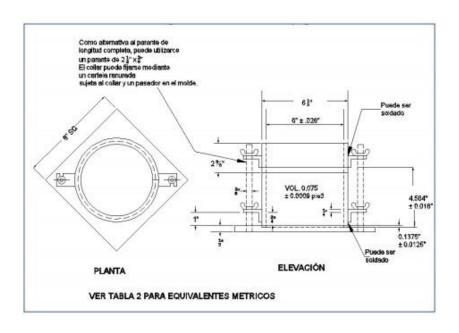


FIGURA N°5. Molde cilíndrico de 6,0 pulgadas.

Fuente: Elaborado por manual de materiales Proctor modificado

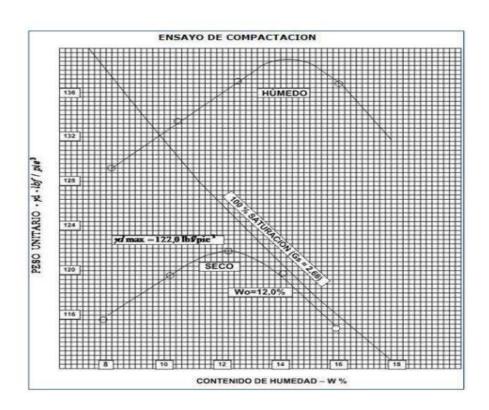


FIGURA N°6. Ejemplo de grafico de curva de compactación

Fuente: Elaborado por manual de materiales Proctor modificado

Según la norma técnica peruana (N.T.P) El contenido de humedad es el peso de agua obtenida de una muestra o suelo seco al peso de las partículas y esta expresado en porcentajes. Se hallar el peso de agua eliminada. Secando la muestra o suelo húmedo en un horno a una temperatura de 110°c° más mes 5°c°. la pérdida de peso debido al secado es el peso del agua³⁵

Según Martines el contenido de humedad expresa la cantidad de agua en un material sólido [...] el término humedad se utiliza para describir cuan húmedo es un material o sustancia. Gran parte de los materiales solidos estas formados por suelo seco y agua es por ello que la masa total sería la masa seca más la masa de agua.³⁶

Para el M.T.C. E 215 el contenido de humedad se halla a través del secado de la muestra, las partículas de los agregados mayores a 50 mm deberán secarse más tiempo para que desaparezca la humedad del interior de la partícula hasta la superficie³⁷

Huerta en su artículo afirma que la densidad es la propiedad que posee cualquier fluido o líquido y se define como la masa por unidad de volumen³⁸

En la web Green fast, define a la densidad como una relación entre el peso de una sustancia y su volumen que ocupa dicha sustancia³⁹

El A.S.T.M. D1557, define a la densidad máxima seca como la relación entre el contenido de humedad y la densidad de esta al ser expuestos a una variación a trabajos mecánicos externos⁴⁰

³⁵ (NORMA TÉCNICA PERUANA 329. 127, 2014 pág. 2)

³⁶ (MARTINES, 2010 pág. 2)

³⁷ (M.T.C E 215, 2016 pág. 361)

³⁸ (HUERTA, 2021 pág. 6)

³⁹ (Green facts, 2021)

⁴⁰ (EI A.S.T.M. D1557, 2000)

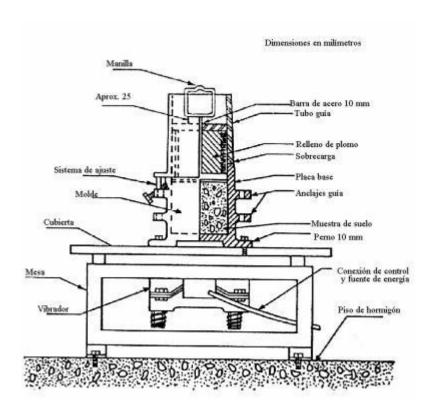


FIGURA N°7. Molde cilíndrico 4,00 pulgadas.

Fuente: Elaborado por manual de materiales Proctor modificado

TABLA Nº 4. Determinación de la densidad máxima

Determinación de la densidad	maxima	
Método : vía seca - vía húmeda		
Espesor de la placa de sobrecarga (cm) =	3404	
Muestra Nº	1	2
Promedio de lecturas de diales iniciales		
Promedio de lecturas de diales finales	83	
Area del molde	98 89	
Volumen del molde		
Peso del suelo vibrado (sólo vía seca)	204 00	
Peso del suelo vibrado y seco (sólo vía humeda)	85.85	
Densidad máxima seca (vía) (grs / cm ³)		

Fuente: Elaborado por manual de materiales Proctor modificado

Para Quintana y Lizcano el CBR (Californian Bearing Ratio) sirve para determinar la calidad del material del suelo en función a su resistencia, el CBR es un ensayo que,

si su valor está por debajo de 6% el terreno necesita ser estabilizado o mejorado, pero si su valor esta igual o por encima de 6% este terreno se considera regular⁴¹

TABLA Nº 5. Categorías de sub-rasante

CATEGORIAS DE SUBRASANTE	CBR
S ₀ : Sub-rasante inadecuada	CBR < 3%
S ₁ : Sub-rasante insuficiente	3% ≤ CB R< 6%
S ₂ : Sub-rasante regular	6% ≤ CBR < 10%
S ₃ : Sub-rasante buena	10% ≤ CBR< 20%
S ₄ : Sub-rasante muy buena	20% ≤ CBR< 30%
S ₅ : Sub-rasante excelente	CBR ≥ 30%

Fuente: MTC E-132

Para la NTP (Norma Técnica Peruana) 339.145. El objetivo del ensayo CBR es determina o evaluar la resistencia de los materiales cohesivos, la muestra que se usara tiene que tener una graduación de los materiales que pasen por el tamiz de 19.00mm ³/₄ de pulgada y más del 75% del peso que pasan por dicho tamiz, si la muestra retenida en el tamiz 34 de pulga es mayor a 25% en peso. Este material se cambia con otra muestra igual en peso que se encuentra entre los tamices 3/4 de pulga y N° 4.42

Aparatos para el ensayo del CBR

- Máquina de carga:
- Molde
- Disco espaciador
- Apisonador
- Aparato para medir la expansión
- Pesas pistón de penetración

Para el MTC E-132, el CBR de suelos (laboratorio) su objetivo es determinar el índice de resistencia de los suelos, este índice se usa para para evaluar la capacidad de soporte de la sub-rasante, sub base y afirmado o material de base. los ensayos para

⁴¹ (RONDON, y otros, 2015 pág. 380) ⁴² (NTP 139.145 pág. 18)

determinación de las relaciones de Peso Unitario - Humedad, usando un equipo modificado.

Equipos que se utilizan en el laboratorio⁴³

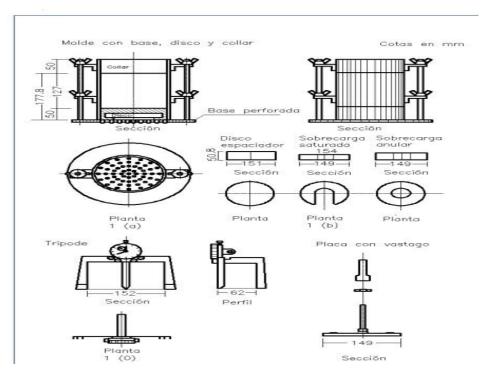


FIGURA N°8. Equipos utilizados para el ensayo Proctor modificado.

Fuente: Elaborado por MTC E-132

El porcentaje también conocido como el tanto por cien de algo, esta es una fracción que equivale a una cantidad determinada de cada 100.⁴⁴

Un suelo expansivo es un efecto ocasionado a cualquier suelo o material rocoso, estos suelos en condiciones de humedad suelen aparecer cambios de hinchazón o encogimiento. Estos suelos expansivos no es el causante de variedades de problemas a menos que se construya alguna estructura sobre ella y esta sea dañada inadecuadamente.⁴⁵

El suelo es un material mineral y orgánico, que se ha formado por la desintegración de las rocas a través del tiempo por las acciones de los micro o macro organismos y entre otros factores como son el viento y el agua y/o factores climáticos.⁴⁶

⁴³ (MANUAL DE ESAYO DE MATERIALES, 2016 pág. 72)

^{44 (}VARELA, 2019)

⁴⁵ (MÉNDEZ S., y otros, 2015 pág. 7)

⁴⁶ (Ministerio de Agricultura y Riego., 2015)

La resistencia es parte de los elementos estructurales que son capases de aguantar los esfuerzos a la cual están sometidos sin romper⁴⁷.

La sub-rasante es un nivel superior del movimiento de tierra, cuando este haya sido finalizado respecto al proyecto integrado, se construirá sobre este mismo la estructura del pavimento que esté compuesto por su sub-base, base y carpeta asfáltica. ⁴⁸

Resistencia de la sub-rasante se detalla mayormente en los ensayos de campo o laboratorio y esto varia con respecto al tipo de suelo. El ensayo de impacto que cuenta con un equipo denominado difractómetro de impacto, es mayormente utilizado para obtener una vasta de información, ya que es una tecnología no destructiva.

Para Crespo. El límite líquido se caracteriza como el contenido de humedad en función al peso seco de la muestra, así cambiando de estado de líquido a plástico. el límite líquido contiene una pequeña resistencia de suelos plástico con respecto al esfuerzo cortante. Para realizar el ensayo del límite líquido primero colocamos la muestra húmeda en la copa de Casagrande para posteriormente dividirlo en dos partes con el acanalador siguiendo el proceso se pasa a realizar los respectivos golpes para cerrar la ranura de la muestra.⁴⁹

Según la Norma Técnica Peruana (N.T.P.) el límite líquido es el contenido de humedad que esta expresado en porcentajes. El cual este se encuentra al momento de cerrarse la ranura de ½ pulgas cuando se deja caer la cosa por 25 veces con una altura de 1 cm a razón de 2 caídas pro segundo.⁵⁰

Para el MTC E 110 el límite líquido está definido como el contenido de humedad y expresado en porcentajes donde el LL se encuentra en el límite entre los estados sólidos y líquidos. Se le considera el contenido de humedad al cual la muestra preparada está dividida por un surco de ½ pulgada el cual se va cerrando al momento de dejar caer la copa 25 veces con una altura de 1 cm a razón de 2 caídas por segundo.⁵¹

⁴⁷ (TORRES, 2014 pág. 25)

⁴⁸ (MTC-05-14 Sección suelos y pavimentos, 2014)

^{49 (}CRESPO Villalaz, 2004 pág. 70)

⁵⁰ (NTP 339. 129, 2014 pág. 3)

^{51 (}MTC E 110 pág. 67)

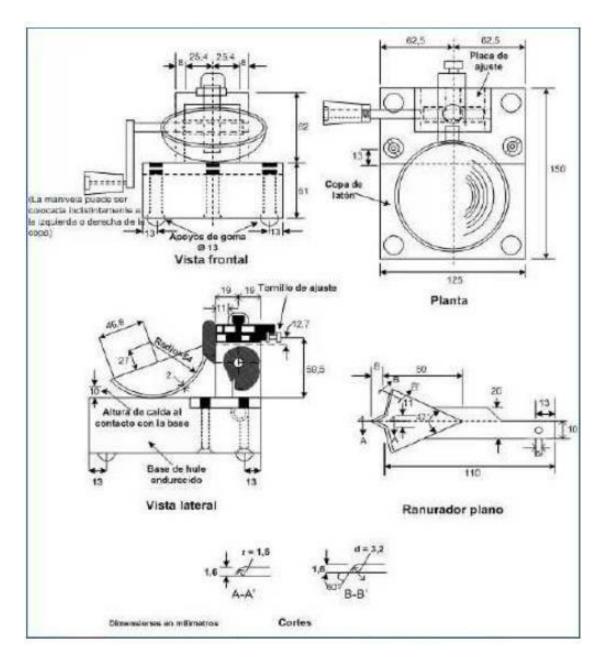
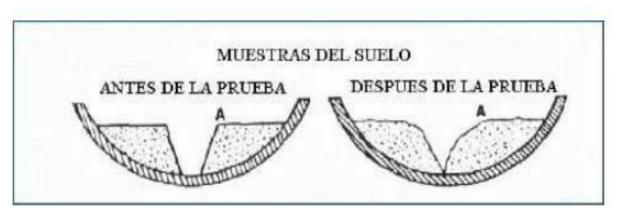



FIGURA N°9. Aparato manual para límite líquido.

Fuente: Elaborado por MTC E 110

FIGURA N°10. Muestreo del suelo antes y después de la prueba.

Fuente: Elaborado por MTC E 110

Fórmulas para el límite líquido

Donde:

N = Número de golpes requeridos para cerrar la ranura para el contenido de humedad

W² = Contenido de humedad del suelo

K = Factor dado en la tabla A1

TABLA Nº 6. Relación número de golpes con el facto para el límite líquido

Tabla A -1

N (Numero de golpes)	K (Factor para límite líquido)
20	0,974
21	0,979
22	0,985
23	0,990
24	0,995
25 26	1,000 1,005
26	1,005
27	1,009
28	1,014
29	1,018
30	1,022

Fuente: Elaborado por MTC E 110

Para Crespo el Limite plástico está definido como el contenido de humedad que se expresa en porcentajes respecto al peso del suelo secado en horno, por lo general para realizar el ensayo del límite plástico se usa el material sobrante que se preparó para el límite líquido con una muestra aproximadamente de 20 gr, luego se amasa la muestra hasta que disminuya su humedad formando rollitos o forma de cilindros pequeños hasta que se pueda enrollar sobre la placa de vidrio sin que se peque en las manos, tenemos que enrollar hasta que estos tengan un diámetro de 1/8 de pulgada. El ensayo debe continuar hasta que los rollitos se cuarteen o empiecen a rajarse y desmoronarse luego estos se colocan en un recipiente para ser secado en la estufa para hallar el contenido de humedad.⁵²

Para la Norma Técnica Peruana (N.T.P) El límite líquido es el contenido de humedad que su valor numérico se encuentra expresado en porcentaje. Donde la el suelo o la muestra se encuentran en estados entre estado plástico y semi sólido.53

Según el manual de ensayos de materiales el límite plástico lo define como la humedad más baja con la que es capaz de formarse barrita de suelo de 1/8 de pulgada sobre un vidrio templado, sin que este se agriete o desmoronen

TABLA N° 7. Tabla de estimados de precisión

Tabla de estimados de precisión. Índice de precisión y tipo de Desviación Rango Aceptable de ensayo Estándar dos resultados Precisión de un operador simple Límite Plástico 0,9 2,6 Precisión Multilaboratorio Límite Plástico 3,7 10,6

Fuente: Elaborado por el manual de ensayos de materiales

El límite plástico está expresado en porcentajes de humedad y casi siempre se aproxima a un número entero. 54

^{52 (}CRESPO Villalaz, 2004 pág. 76)

⁵³ (NTP 139.145 pág. 3)

⁵⁴ (MANUAL DE ESAYO DE MATERIALES, 2016 pág. 73)

Para Sanz el índice de plasticidad (Id) es muy importante ya que nos permite conocer

o clasificar los suelos. Un índice de plasticidad alto nos indica que es un suelo muy

arcilloso y un índice de plasticidad bajo indica que el suelo es poco arcilloso.

I.P. > 20 Suelos muy arcillosos

I.P. > 10 Suelos arcillosos

I.P. < 4 Suelos poco arcillosos

I.P. = 0 Suelos carecen de arcillas

Los límites de atterberg e índice de plasticidad existen solo en suelos finos de

plasticidad que están por debajo de 20 micras. Sin embargo, aún existen quienes

usan el I.P. en suelos que no son necesarios o que no satisfacen esta condición.

Diciendo que el IP es igual a 0 o nulo.55

Según el manual de ensayos de materiales el índice de plasticidad es la diferencia

del límite líquido y el límite plástico. Si por alguna razón no se puede determinar el

LL y el LP el índice de plasticidad se colocará la abreviatura NP que significa (no

plástico). Por otro lado, si el límite plástico es igual o excede el valor del límite líquido

igualmente no se tendrá un Límite plástico y se colocará la abreviatura NP (no

plástico)56

Formula del índice de plasticidad (I.P.)

Donde:

L.L. = Límite líquido

L.P. = Límite plástico

I.P.= Límite plástico

L.L Y L.P., son números enteros

⁵⁵ (SANS Llanos, 1975 pág. 38)

⁵⁶ (MANUAL DE ESAYO DE MATERIALES, 2016 pág. 73)

30

III. METODOLOGÍA

3.1. Tipo y Diseño de Investigación

La investigación es de tipo Aplicada busca averiguar para así actuar, construir y modificar; esto preocupa la aplicación rápida sobre la realidad concreta, en esta investigación se realiza para conocer la realidad ya sea en cualquier clase de su ámbito, y planificar soluciones reales y factibles al problema explorado.⁵⁷

En esta investigación se realiza para conocer la realidad ya sea en cualquier clase de su ámbito, y planificar soluciones reales y factibles al problema explorado.

Diseño de investigación: Diseño experimental: se refiere a un término de experimentos donde las variables son manipuladas intencionalmente en la cual la variable independiente es la causa y la variable dependiente es el efecto.⁵⁸

Es diseño experimental, por lo que en nuestra investigación se da a conocer la utilidad de nuestras variables (Dependiente e Independiente).

Nivel de investigación: Investigación Explicativa se centra en identificar la razón por la que ocurre un fenómeno determinado, para así implantar en que condición se encuentra este, y por qué la relación de dos o más variables.⁵⁹

Es explicativo, ya que en nuestra investigación las dos variables tienen una relación de causa y efecto,

Enfoque de investigación: Enfoque cuantitativo trabaja junto a la recolección de datos experimentar las hipótesis en base a una medición numérica y estadística con el objetivo de probar teorías.⁶⁰

Es cuantitativo ya que los resultados lo determinamos en porcentajes.

3.2. Variables y Operacionalización

La variable es aplicada en seres vivos, objeto y hechos en las cuales obtiene variedades de valores en relación a una variable determinada. Ejemplo: la persona se puede clasificar de acuerdo a su inteligencia, no todos pueden tener el mismo nivel de inteligencia, es decir varias su inteligencia.⁶¹

⁵⁷ (VALDERRAMA, 2015 pág. 38)

⁵⁸ (HERNANDEZ, 2014 pág. 129)

⁵⁹ (VALDERRAMA, 2015 pág. 38)

^{60 (}HERNANDEZ, 2014 pág. 4)

^{61 (}HERNANDEZ, 2014 pág. 105)

La operacionalización es una agrupación entre métodos y actividades en la cual se

desarrolla para mensurar una variable.62

Variable independiente: Cenizas de residuos orgánicos y un aditivo químico

Variable dependiente: Estabilización de la subrasante

3.3. Población, muestra y muestreo

Según Hernández la población es un grupo o conjunto de cosas que tienen relación

entre sí.63 En esta investigación la población es 1.50 kilómetro de la avenida

Cordillera Occidental del distrito de Chorrillos.

Para Hernández la muestra es un subconjunto, parte o cantidad pequeña pero

representativa de la población o universo del cual se extraigan los datos.⁶⁴ Para

nuestra investigación la muestra que se tomó es 848.50 metros de la avenida

Cordillera Occidental del distrito de Chorrillos.

El muestreo es un proceso o método que tenemos que seguir para poder seleccionar

los elementos de la muestra que deben ser representativos de la población. Según

Valderrama Consiste en una serie de procedimientos y criterios para poder obtener

los componentes de la población.

Muestreo probabilístico:

Muestreo aleatorio simple

Muestreo sistemático

Muestreo estratificado

Muestreo por conglomerados

Muestro no probabilístico

Muestreo por cuotas

Muestreo intencional o de conveniencia

Muestreo bolo de nieve⁶⁵

⁶² (HERNANDEZ, 2014 pág. 120)⁶³ (HERNANDEZ, 2014 pág. 174)

64 (HERNANDEZ, 2014 pág. 171)

65 (VALDERRAMA, 2015 pág. 188)

32

En esta investigación se hará uso del muestreo no probabilístico intencional o de conveniencia. Ya que la muestra o los componentes no dependen de la probabilidad si no del propósito del investigador o grupo de investigadores. también de las características de la investigación.

3.4. Técnicas e instrumentos de recolección de datos

Para Valderrama recolectar datos implica preparar un plan que nos permita recolectar la información con un propósito específico.

Fuentes primarias:

· Observación y encuestas

Fuentes secundarias

• Bibliotecas, tesis y hemerotecas: 66

En esta investigación se utilizó la técnica de la observación.

Para Valderrama los instrumentos de recolección de datos son los medios materiales que utilizamos para la juntar reunir o almacenar la información [...] pueden ser formularios listos de chequeos, inventarios fichas de investigación entre otros.⁶⁷

En esta investigación para la recolección de datos se utilizarán los instrumentos de fichas de investigación con la finalidad de obtener y recopilar todos los datos en decampo para optimizar la trabajabilidad.

3.5. Procedimientos

Primeramente, se realizó un recorrido en toda la avenida Cordillera Occidental – Chorrillos. Para posteriormente realizar los estudios de mecánica de suelos con fines de pavimentación que geográficamente se encuentra ubicado entre las coordenadas UTM:

- Punto de Inicio del Tramo 18 L 283082.12 E; 8650726.26 N
- > Punto de final del Tramo 18 L 282456.99 E; 8651308.12 N

se realizaron 3 calicatas que se encuentras ubicados a cada 350 metros aproximadamente en la avenida Cordillera occidental – Chorrillos, las dimensiones

_

^{66 (}VALDERRAMA, 2015 pág. 194)

^{67 (}VALDERRAMA, 2015 pág. 195)

de las calicatas es de 1m x 1m x 1.50m de profundidad. Las muestras extraídas fueron de 3 sacos con 70 kg por cada calicata.

Los ensayos que se realizaron fueron:

TABLA Nº 8. Tabla de Ensayos para la calicata más critica

Muestra patrón					
	ENSAYOS	Proctor	C.B.R (Califo	rnia Bearing	Índice de
CANTIDA		modificado	Ratio)		plasticidad
Calicata 1	Muestra 1 ^{ra}				
Calicata 1	Muestra 2 ^{da}				
Calicata 1	Muestra 3ra				

Fuente: Elaboración propia

TABLA Nº 9. Tabla de Ensayos con diferentes cantidades

	Calicata más crítica (C1)					
CA	ENSAYOS		Proctor modificado	C.B.R (California Bearing Ratio)	Índice de plasticidad	
Residuos Orgánicos	Muestra 1 ^{ra}	CCA 6%	10%			
Orgá	Muestra	CCA	CBCA			
sor	2 ^{da}	8%	20%			
sidu	Muestra	CCA	CBCA			
R	3 ^{ra}	10%	35%			
0 8	Muestra	1 ^{ra}	2%			
Aditivo químico	Muestra 2 ^{da}		4%			
A B	Muestra	3 ^{ra}	7%			

Fuente: Elaboración propia

Donde:

C.C.A: Cenizas de cascara de arroz

C.B.C.A: Cenizas de bagazo de caña de azúcar

Aditivo químico: Terrasil

3.6. Método de análisis de datos

En este proyecto para realizar el análisis de datos se utilizó el programa Excel 2020.

3.7. Aspectos éticos

Para este proyecto se revisó e investigó diferentes antecedentes los cuales tienen una relación con nuestras variables de estudio, y a través de ello se propone desarrollar y mejorar los conocimientos sobre el aditivo orgánico de cenizas de cascara de arroz y bagazo de caña de azúcar también sobre el aditivo químico terrasil. Estos aditivos se usarán como componentes para estabilizar la subrasante con suelos arenosos. Así mismo la información plasmada en este proyecto de investigación está citada conforme dicta el sistema ISO 690.

IV. RESULTADOS

CÁLCULOS:

Análisis granulométrico de suelos por tamizado NTP 339.128

TABLA N° 10. Datos del laboratorio de la calicata C – 01 ensayado con la muestra patrón.

DATOS DE LABORATORIO/ MUESTRA PATRÓN					
CALICATA C - 01 CÓDIGO DEL PROYECTO EKV-0004					
MUESTRA M - 01 NÚMERO DE SOLICITUD LEM2110002-0					
PROFUNDIDAD	0.50 m - 1.50 m	FECHA DE ENSAYO	30/09/2021		

TAMIZ	ABERT. (mm)	PESO RET. (g)
3 in	76.200	0.000
2 in	50.800	0.000
11/2 in	38.500	0.000
1 in	25.400	0.000
3/4 in	19.050	0.000
3/8 in	9.525	0.000
N°. 4	4.750	0.500
N°. 10	2.000	23.800
N°. 20	0.841	21.600
N°. 40	0.419	27.200
N°. 60	0.250	43.500
N°. 140	0.105	116.800
N°. 200	0.074	56.700
< N°. 200	0.074	38.900

TABLA N° 11. Fórmulas para el análisis granulométrico

TAMIZ	ABERT. (mm)	PESO RET. (g)	% RET. PARC.	% QUE PASA
i	di	Wi	Wi/WT*100	W'i=100- Wi/WT*100
i-1	d(i-1)	W(i-1)	W(i-1) /WT*100	W'(i-1) = W'i-W(i-1)/WT*100
i-3	d(i-2)	W(i-2)	W(i-2) /WT*100 W'(i-2) = W'(i-1)- W(i-2) /WT*100	
i-4	d(i-3)	W(i-3)	W(i-3) /WT*100 W'(i-3) = W'(i-2)- W(i-3) /WT*100	
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
Fondo	d(i-n)	W fondo	W fondo 0	

 $\Sigma = WT$ $\Sigma = 100\%$

Calculando datos para graficar la curva granulométrica

TABLA N° 12. Tabla de datos para la curva granulométrica.

TAMIZ	ABERT. (mm)	PESO RET. (g)	% RET. PARC.	% RET. AC.	% QUE PASA
3 in	76.200	0.000	0.000	0.000	100.000
2 in	50.800	0.000	0.000	0.000	100.000
11/2 in	38.500	0.000	0.000	0.000	100.000
1 in	25.400	0.000	0.000	0.000	100.000
3/4 in	19.050	0.000	0.000	0.000	100.000
3/8 in	9.525	0.000	0.000	0.000	100.000
N°. 4	4.750	0.500	0.152	0.152	99.848
N°. 10	2.000	23.800	7.234	7.386	92.614
N°. 20	0.841	21.600	6.565	13.951	86.049
N°. 40	0.419	27.200	8.267	22.219	77.781
N°. 60	0.250	43.500	13.222	35.441	64.559
N°. 140	0.105	116.800	35.502	70.942	29.058
N°. 200	0.074	56.700	17.234	88.176	11.824
< N°. 200	0.074	38.900	11.824	100.000	0.000
-	WT=	329.000			

Fuente: Elaboración propia

La curva granulométrica se construye con el diámetro de partículas (eje de las abscisas a una escala logarítmica) vs el % que pasa por los tamices (eje de las ordenadas a una escala lineal). Por lo tanto, la curva granulométrica tendrá una escala semilogarítmica

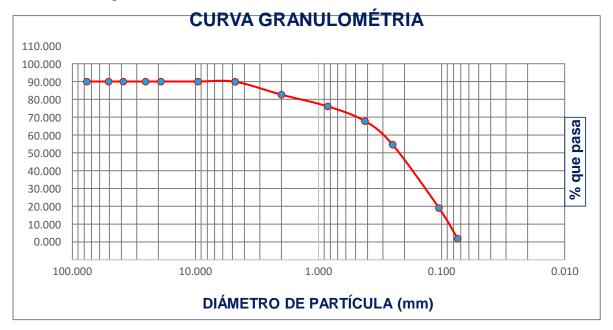


FIGURA N°11. Curva de compactación

Fuente: Elaboración propia

TABLA Nº 13. Tamaño de las partículas.

DISTRIBUCIÓN DEL TAMAÑO DE PARTÍCULAS (mm)				
Bolones < 300 mm (12") y > 75 mm 0.00 Arena Mediana < 2.00 mm y > 0.425 14.				
(3") % mm (#40):			%	
C 75 4 75 (114)		Arena Fina < 0.425 mm y > 0.075 mm	66.00	
Grava < 75 mm y > 4.75 mm (#4)				
Arena Gruesa < 4.75 mm y > 2.00 7.20			11.80	
mm (#10):	%	% Limo y Arcilla < 0.074 mm	%	

Fuente: Elaboración propia

TABLA Nº 14. Descripción de la muestra.

IADEA N 17. Descrip	ocioni de la m
PESO TOTAL	329.00gr
FRACCION	0.303951gr
PESO FRACCION	0.0 gr
FRACCION 2	N/A %
GRAVA	0.2 %
ARENA	88.0 %
FINOS	11.8 %
Tam. Máx. Partícula	2 In
D10	0.074
D30	0.107
D60	0.224
Coef. Uniformidad	3.02
Coef. Curvatura	0.70

Fuente: Elaboración propia

La fracción se pesa en una balanza con una sensibilidad de 0,1 %. La sumatoria de las fracciones más el peso de la muestra inicial no debe diferir más del 1% (dato laboratorio).

$$66662 = 100 - 99.848 = 0.2 \%$$

$$666660 = 88.2 - 0.2 = 88\%$$

Calculando los diámetros efectivos D10, D30 Y D50


$$Dx = \left(\frac{\sqrt{2} - \sqrt{1}}{\sqrt{2} \sqrt{2} - \sqrt{2} \sqrt{1}} * \left(\frac{2}{\sqrt{2}} \sqrt{2} - \frac{2}{\sqrt{2}} \sqrt{1}\right)\right) + 2$$

Coeficiente de uniformidad

Coeficiente de curvatura

$$CC = \frac{D30^2}{D60 \text{ MD10}}$$

TABLA N° 15. Método de ensayo para determinar el límite líquido, limite plástico e índice de plasticidad de suelos NTP 339.129.

CLASIFICACIÓN DE SUELOS MEDIANTE EL SISTEMA UNIFICADO DE CLASIFICACIÓN DE SUELOS (S.U.C.S.) NTP 339.134

TABLA Nº 16. Tabla de datos y tamizados para la muestra patrón.

DATOS DE LABORATORIO/ MUESTRA PATRÓN					
CALICATA C - 01 CÓDIGO DEL PROYECTO EKV-0004					
MUESTRA M - 01 NÚMERO DE SOLICITUD LEM2110002-0:					
PROFUNDIDAD	0.50 m - 1.50 m	FECHA DE ENSAYO	30/09/2021		

TAMIZ	ABERT. (mm)	PESO RET. (g)	% RET. PARC.	% RET. AC.	% QUE PASA
3 in	76.200	0.000	0.000	0.000	100.000
2 in	50.800	0.000	0.000	0.000	100.000
11/2 in	38.500	0.000	0.000	0.000	100.000
1 in	25.400	0.000	0.000	0.000	100.000
3/4 in	19.050	0.000	0.000	0.000	100.000
3/8 in	9.525	0.000	0.000	0.000	100.000
N°. 4	4.750	0.500	0.152	0.152	99.848
N°. 10	2.000	23.800	7.234	7.386	92.614
N°. 20	0.841	21.600	6.565	13.951	86.049
N°. 40	0.419	27.200	8.267	22.219	77.781
N°. 60	0.250	43.500	13.222	35.441	64.559
N°. 140	0.105	116.800	35.502	70.942	29.058
N°. 200	0.074	56.700	17.234	88.176	11.824
< N°. 200	0.074	38.900	11.824	100.000	0.000
	W/T=	329 000			·

Fuente: Elaboración propia

1) Primeramente analizamos el porcentaje que pasa por el tamiz # 200 (0.075mm) de la muestra del suelo:

Para la calicata – 01 el porcentaje pasante por el tamiz #200 de la muestra patrón es:

2) Al ser la muestra un suelo grueso, analizaremos la malla #4 (475mm)

Para la calicata – 01 el porcentaje pasante por el tamiz # 4 de la muestra patrón es:

3) nuevamente analizaremos la malla #200 (0.075mm)

Para la calicata – 01 el porcentaje pasante por el tamiz #200 de la muestra patrón es:

Tenemos:

ARI	ENA
SP – SM	SW - SM
SP – SC	SW - SC

TABLA Nº 17. Clasificación de suelo.

SISTEMA UN	IIFICADO DE CLASI	FICACIÓN DE SUELO	S (S.U.C.S.)
Tipo de suelo	Prefijo	Subgrupo	Sufijo
Grava	G	Bien graduada	W
Arena	S	Pobremente	Р
		graduada	
Limo	M	Limoso	M
Arcilla	С	Arcilloso	С
Orgánico	0	Baja plasticidad	L
Organico		Alta plasticidad	Н

Fuente: Elaboración propia

Criterios a tomar en cuenta:

1). Granulometría

??
$$=$$
 ?? $=$ 6 **?** $=$ 3

Cu = Coeficiente de uniformidad

$$20 = \frac{0.224}{0.074} = 3.027$$

Cc = Coeficiente de curvatura

Como Cu = 3.027 entonces es un suelo arenoso pobremente graduada (SP)

2). Límites de Atterberg

FIGURA N°12. Carta de plasticidad

Fuente: Elaboración propia

En la carta de plasticidad tenemos en el eje de las abscisas el límite líquido (LL) y en el eje de las ordenadas el índice de plasticidad. Uniendo esos dos puntos se conocerá el complemento de la clasificación de suelos

Las muestras extradas de las calicatas no presentan límite líquido y limite plástico ya que son suelos arenosos o suelos exentos de arcillas. son suelos no plásticos

CLASIFICACIÓN DE SUELOS S.U.C.S. PARA LA CALICATA C - 01 ES:

ARENA POBREMENTE GRADUADA CON LIMO: SP SM

Método de compactación del suelo en el laboratorio energía de compactación (56,000 ft-lbf / ft3 (2,700 kN-m / m3)) NTP 339.141

TABLA N° 18. Datos del laboratorio de la calicata C – 01 ensayado con la muestra patrón.

	DATOS DE LABOR	ATORIO/ MUESTRA PATRÓN	
CALICATA	C - 01	CÓDIGO DEL PROYECTO	EKV-0004
MUESTRA	M - 01	NÚMERO DE SOLICITUD	LEM2110002-01
PROFUNDIDAD	0.50 m - 1.50 m	FECHA DE ENSAYO	30/09/2021

	ENSAYO PROCTOR MODIFICADO (NTP,	339.141 /	ASTM D	1557)	
N°	DE MOLDE		-	1	
VO	LUMEN DEL MOLDE (Cm3):		21	24	
MA	SA DEL MOLDE (g):		64	48	
1	N°. pruebas	1	2	3	4
2	Masa del molde + Suelo húmeda (g)	9941	10112	10137	10128
3	Masa del Suelo Húmeda compactado (g)	3493	3664	3689	3680
4	Densidad Humedad (g/cm3)	1.645	1.725	1.737	1.733
	DETERMINACION DEL PORTECENTAJE DE HUMED	AD (NTP,	339.127	/ ASTM D	2216)
5	N°. pruebas	1	2	3	4
6	Masa de Suelo húmedo + Tara (g)	511.69	542.54	591.51	539.63
7	Masa de Suelo Seco + Tara (g)	508.2	535.03	576.6	524.4
8	Masa de Tara (g.)	219.8	288.8	285.3	303.3
9	Masa de Agua (g)	3.490	7.510	14.910	15.230
10	Masa de Suelo Seco (g.)	288.40	246.23	291.30	221.10
11	Humedad %	1.21	3.05	5.12	6.89
12	Densidad Seca. (g/cm3)	1.625	1.674	1.652	1.621

Fuente: Elaboración propia

3) Masa del Suelo Húmeda compactado (g)

♦ ♦6600 hú**♦♦** 9941 gr - 6448 gr = 3493 gr

4) Densidad Humedad (g/cm3)

$$\delta h \acute{u}$$
 $\frac{3493 \text{ gr}}{2124c} = 1.645$

9) Masa de Agua (g)

10) Masa de Suelo Seco (g.)

11) Humedad %

3.49
$$\approx 100 = 1.21 \%$$

12) Densidad Seca. (g/cm3)

$$\delta = \frac{1.645}{1 + \frac{1.21}{100}} = 1.625$$

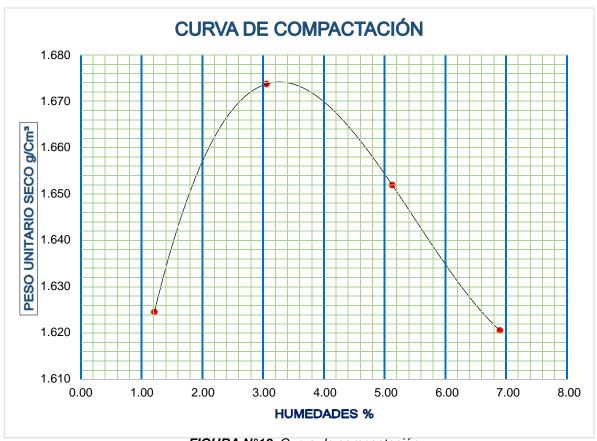


FIGURA N°13. Curva de compactación

Fuente: Elaboración propia

Densidad Máxima Seca (g/cm3) = 1.674 (g/cm3)

Gravedad Especifica de los sólidos (ASTM D 854) (ASTM C 127) = 2.754

Humedad Optima (%) = 3.16%

Humedad 100% de sat. (%) = 23.43 %

Standard test method for california bearing ratio (CBR) of laboratory-compacted soils ASTM D1883

TABLA N° 19. Datos del laboratorio de la calicata C – 01 ensayado de CBR con la muestra patrón.

	DATOS DE LABOR	RATORIO/ MUESTRA PATRÓN	
CALICATA	C - 01	CÓDIGO DEL PROYECTO	EKV-0004
MUESTRA	M - 01	NÚMERO DE SOLICITUD	LEM2110002-01
PROFUNDIDAD	0.00 m - 1.50 m	FECHA DE ENSAYO	2021-10-07

E	NSAYO	CBR AST	M D 18	83		
N° DE MOLDE		10		11		12
N° de capa		5		5		5
Golpes por capa N°		56		25		10
	NO	SATURAD	NO	SATURAD	NO	SATURAD
Condición de la muestra	SAT.	0	SAT.	0	SAT.	0
Peso molde + Suelo húmedo	10226	10737	11538	12051	10784	11312
Peso de molde (g)	6560	6560	7857	7857	7273	7273
Peso del suelo húmedo (g)	3666	4177	3681	4194	3511	4039
Volumen del molde (cm³)	2112	2112	2132	2132	2119	2119
Densidad húmeda (g/cm³)	1.736	1.978	1.727	1.967	1.657	1.906
% de humedad	2.981	16.89	3.02	16.9	2.96	18.01
Densidad seca (g/cm³)	1.686	1.692	1.676	1.683	1.609	1.615
Densidad Máxima						
Laboratorio (g/cm³						
Tarro №						
Tarro + Suelo húmedo (g)	565.6	698.4	685	688.5	446.3	691.5
Tarro + Suelo seco (g)	555.8	628.2	673.6	620.9	439.9	616.3
Peso del Agua (g)	9.8	70.2	11.4	67.6	6.4	75.2
Peso del tarro (g)	227	212.6	296.4	220.8	223.7	198.8
Peso del suelo seco (g)	328.8	415.6	377.2	400.1	216.2	417.5
% de humedad	2.981	16.891	3.022	16.896	2.960	18.012
Promedio de Humedad (%)		o: Elaboració				

Fuente: Elaboración propia

Peso del Suelo Húmeda compactado (g)

6660-661-66610/hú**���**= (**6660-66660**+ **66610**/hú**-6660**- **6660-66600**

10226 gr - 6560 gr = 3666 gr

Densidad Humedad (g/cm3)

Densidad Seca. (g/cm3)

$$\delta = \frac{1.736 \frac{1.736}{100}}{1 + \frac{2.981}{100}} = 1.686 \frac{1.736}{100}$$

Peso del Agua (g)

Peso de Suelo Seco (g.)

$$P \stackrel{\text{(3)}}{\text{(3)}} \stackrel{\text{(3)}}{\text{(3)}} \stackrel{\text{(3)}}{\text{(3)}} \stackrel{\text{(3)}}{\text{(3)}} \stackrel{\text{(3)}}{\text{(3)}} = 555.8 \text{ gr} - 227 \text{ gr} = 328.8 \text{ gr}$$

Humedad %

TABLA N° 20. Datos de expansión de suelos de la calicata C – 01 ensayado de CBR con la muestra patrón.

			EX	(PAN	ISIÓN				
			EXPANS	IÓN		EXPANS	IÓN	EXPANSIÓN	
FECHA	HORA	DIAL	mm	%	DIAL	mm	%	mm	%
subtotal									
Total					0.00	1%			

Fuente: Elaboración propia

Los datos de penetración para la calicata C-01 muestra patrón son lo siguiente:

TABLA N° 21. Datos de penetración de suelos de la calicata C – 01 ensayo de CBR con la muestra patrón

		N	OLDE	E N° 10)	N	OLDE	E N° 11		M	OLDE	N° 12		
N° de d	сара		5 5					5						
Golpes capa	=		50	6			2	5			10			
PENETRA CIÓ	PRESI ÓN STAND	CAR GA	COF	RRECC	IÓN	CAR GA	COF	RRECCI	ÓN	CAR GA	COR	RECCI	ÓN	
(in)	kg/c m²	kg-f	kg/c m²	kg/c m²	%	kg-f	kg/c m²	kg/c m²	%	kg-f	kg/c m²	kg/c m²	%	
0		0	0.0			0	0.0			0	0.0			
0.025		38.2	2.0			29.5	1.6			18.4	1.0			
0.05		73.1	3.8			58.6	3.1			38.2	2.0			
0.075		117	6.1			99.2	5.2			55.6	2.9			
0.1	70	167.9	8.7	11.6	16.6	150.1	7.8	11	15.8	78.1	4.1	4	5.8	
0.125		224.2	11.6			199.7	10.4			100.9	5.3			
0.15		278.5	14.4			251.7	13.1			125	6.5			
0.175		329.8	17.1			299.9	15.5			147.8	7.7			
0.2	105	383.7	19.9	21.5	20.5	345.5	17.9	19.5	18.6	169.2	8.8	8.8	8.4	
0.3		516.4	26.7			446.1	23.1			252.3	13.1			
0.4		591.8	30.6			421.9	21.9			321	16.6			
0.5		540.9	28.0			391.8	20.3			368.6	19.1			
AREA PISTO		19.35	Ecm2											

Fuente: Elaboración propia

TABLA N° 22. Datos de penetración y presión o esfuerzo estándar

	PENETRACIÓN		PRE	SIÓN
mm	pulgadas	MN/m2	kgf/cm2	lb/plg2
2,54	0,1	6,90	70,31	1,000
5,08	0,2	10,35	105,46	1,500

Fuente: Elaboración propia

Fórmula para calcular los esfuerzos kg/cm²

Cálculo de penetración para el monde 10 con 56 golpes

Para una penetración de 0.025 pulgadas

Para una penetración de 0.05 pulgadas

$$600000 = \frac{73.1 \, \text{ eV}}{19.35 \, \text{cm}^2} = 3.8 \, \text{eV}$$

Para una penetración de 0.75 pulgadas

Para una penetración de 0.1 pulgadas

$$167.9 = \frac{167.9}{19.35 \text{ cm}^2} = 8.7$$

Para una penetración de 0.125 pulgadas

$$19.35 \text{ cm}^2 = 11.6$$

Para una penetración de 0.15 pulgadas

Para una penetración de 0.175 pulgadas

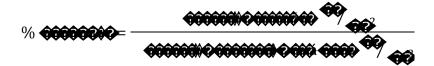
Para una penetración de 0.2 pulgadas

Para una penetración de 0.3 pulgadas

$$6000000 = \frac{516.4 \, \text{cm}^2}{19.35 \, \text{cm}^2} = 26.7 \, \text{cm}^2$$

Para una penetración de 0.4 pulgadas

$$6000000 = \frac{591.4 \text{ } 600}{19.35 \text{ cm}^2} = 30.6 \text{ } 600$$

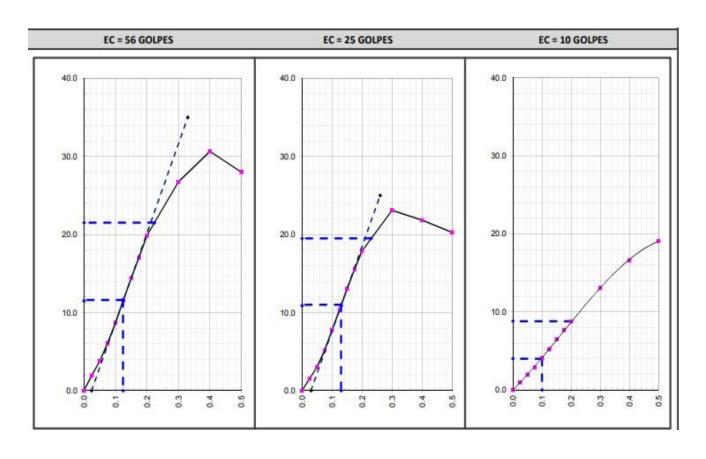

Para una penetración de 0.5 pulgadas

$$6000000 = \frac{540 \text{ } 600}{19.35 \text{ } \text{cm}^2} = 28.0 \text{ } 600$$

Corrección del Curva E.C.

Para realizar la corrección se debe graficar la curva para cada espécimen, la penetración en el eje de las abscisas y las presiones en el eje de las ordenadas, si la curva no tiene punto de inflexión se tomarán los valores correspondientes para 0.1 in y 02 in de penetración, si la curva presenta punto de inflexión entonces se corregirá trazando una línea recta que intercepte con la tangente y corte con el eje de las abscisas colocando el cero desde dicho corte.

Fórmula para calcular los valores de Relación de Soporte corregidos



Esfuerzo de referencia estándar: ver la tabla 21

TABLA N° 23. C.B.R. al 100 % y al estado natural.

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

Análisis granulométrico de suelos por tamizado NTP 339.128

TABLA N° 24. Datos del laboratorio de la calicata C – 02 ensayado con la muestra patrón.

	DATOS DE LABOR	ATORIO/ MUESTRA PATRÓN	
CALICATA	C - 02	CÓDIGO DEL PROYECTO	EKV-0004
MUESTRA	M - 01	NÚMERO DE SOLICITUD	LEM2110002-01
PROFUNDIDAD	0.0 m - 1.50 m	FECHA DE ENSAYO	30/09/2021

TAMIZ	ABERT, mm.	PESO RET. (g)	%RET. PARC.	%RET. AC.	% Q' PASA	DESCRIPCIO	N DE LA MUESTRA
3 in	76,200	0.0	0.0	0,0	100.0	PESO TOTAL	10142.0
2 in	50.800	0,0	0.0	0.0	100.0	FRACCION	0.009860
11/2 in	38,500	210.3	2.1	2,1	97.9	PESO FRACCION	327.4
1 in	25,400	102,3	1.0	3,1	96.9	FRACCION 2	0,243991
3/4 in	19.050	428.2	4.2	7.3	92.7	GRAVA	20.1
3/8 in	9.525	514.2	5.1	12.4	87.6	ARENA	69.2
No. 4	4,750	785.3	7.7	20.1	79.9	FINOS	10.7
No. 10	2.000	22.70	5.5	25.7	74,3	Tam. Máx. Particula	2 In
No. 20	0.841	23,40	5.7	31,4	68.6	D10	0.074
No. 40	0.419	28.60	7.0	38.3	61.7	D30	0.121
No. 60	0.250	47.60	11.6	50.0	50.0	D60	0.389
No. 140	0.105	98.30	24.0	73.9	26.1	Coef. Uniformidad	5.26
No. 200	0.074	63.10	15.4	89.3	10.7	Coef. Curvatura	0.51
No. 200	0.074	43.7	10.7	100,0	0.0		

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

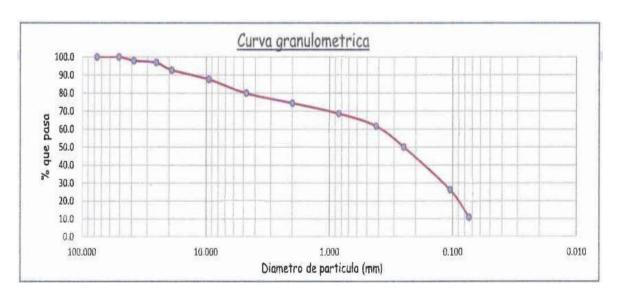


FIGURA N°14. Curva granulométrica C-02

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

TABLA N° 25. Distribución del tamaño de partícula C-02.

ELABORADO POR : TECNICO :	LABOR	CUB DE LABORATORIO VARGA	L KENSEL AS VILLEGAS NIERO CIVIL
Arena Gruesa < 4.75 mm y > 2.00 mm (#10):	5.5 %	% Limo y Arcilla < 0.074 mm:	10.7 %
Grava < 75 mm y > 4.75 mm (#4) :	20.1 %	Arena Fina < 0.425 mm y > 0.075 mm (#200):	51.0 %
Bolones $\leq 300 \text{ min } (12^n) \text{ y} > 75 \text{ min } (3^n)$:	0.0 %	Arena Mediana < 2.00 mm y > 0.425 mm (#40):	12.7 %

Clasificación de suelos mediante el sistema unificado de clasificación de suelos (S.U.C.S.) NTP 339.134

TABLA N° 26. Método de ensayo de Índice de plasticidad para de la C-02.

DATOS DE LABORATORIO/ MUESTRA PATRÓN									
CALICATA C - 02 CÓDIGO DEL PROYECTO EKV-0004									
MUESTRA	M - 01	NÚMERO DE SOLICITUD	LEM2110002-01						
PROFUNDIDAD	0.50 m - 1.50 m	FECHA DE ENSAYO	30/09/2021						

			unificad						
		M	ETODO DE ENS			NULOMETRI	co		
		, ,		NTP 33					
TAMIZ	ABERT. mm.	PESO RET. (g)	%RET. PARC.	%RET. AC.	% Q' PASA	Com	posicion	granulom	etrica
3 in	76.200	0.0	0.00	0.00	100.0	Com	posicion	Branaron	CHILDE
2 in	50.800	0.0	0.00	0.00	100.0	GRAVAS	Gravas Gruesa	%	7,30
11/in	38,500	210.3	2.07	2.07	97.9	dicting	Gravas Fina	%	12.81
1 in	25.400	102.3	1.01	3.08	96.9		Arenas Gruesa	%	11.25
3/4 in	19.050	428.2	4.22	7.30	92.7	ARENAS	Arenas Media	%	18,59
3/8 in	9.525	514,2	5.07	12.37	87.6		Arenas Fina	%	39.38
No. 4	4.750	785.3	7.74	20.12	79.9	FINOS	Limos y Arcillas	%	10.7
No. 10	2.000	22.70	5.54	25.66	74.3				
No. 20	0.841	23.40	5.71	31.37	68.6	GR	AVAS	20.1	%
No. 40	0.419	28.60	6.98	38.34	61.7				
No. 60	0.250	47.60	11.61	49.96	50.0	AR	ENAS	69.2	%
No. 140	0.105	98.30	23.98	73.94	26.1		Marian.	T()	
No. 200	0.074	63.10	15.40	89.34	10.7		NOS	10.7	%
< No. 200	0.074	43.70	10.66	100.00	0.0				

Fuente: Elaborado por el laboratorio EX K VAR S.A.C

1) Primeramente analizamos el porcentaje que pasa por el tamiz # 200 (0.075mm) de la muestra del suelo:

Para la calicata – 02 el porcentaje pasante por el tamiz #200 de la muestra patrón es:

2) Al ser la muestra un suelo grueso, analizaremos la malla #4 (475mm)

Para la calicata – 01 el porcentaje pasante por el tamiz # 4 de la muestra patrón es:

3) nuevamente analizaremos la malla #200 (0.075mm)

Para la calicata – 01 el porcentaje pasante por el tamiz #200 de la muestra patrón es:

#��� ���% Es un porcentaje que se encuentra dentro del rango establecido

Tenemos:

ARENA								
SP - SM	SW - SM							
SP – SC	SW - SC							

TABLA N° 27. Sistema Unificado de Clasificación de Suelos.

SISTEMA UN	IIFICADO DE CLASI	FICACIÓN DE SUELO	S (S.U.C.S.)
Tipo de suelo	Prefijo	Subgrupo	Sufijo
Grava	G	Bien graduada	W
Arena	S	Pobremente	Р
		graduada	
Limo	M	Limoso	M
Arcilla	С	Arcilloso	С
Orgánico	0	Baja plasticidad	L
Organico		Alta plasticidad	Н

Fuente: Elaboración propia

Criterios a tomar en cuenta:

1). Granulometría

??
$$=$$
 ?? $=$ 6 **?** $=$ 3

Cu = Coeficiente de uniformidad

Cc = Coeficiente de curvatura

Como:

Cu = 5.26 entonces es un suelo arenoso pobremente graduada (SP)

2). Límites de Atterberg

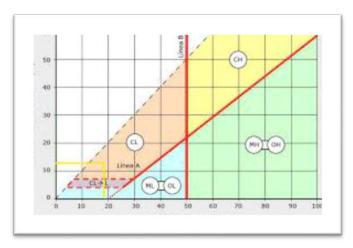
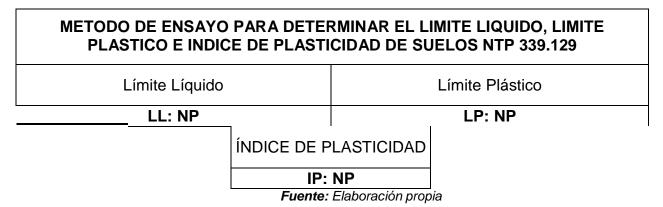



FIGURA N°15. Carta de plasticidad

Fuente: Elaboración XDOCS

Las muestras extradas de las calicatas no presentan límite líquido y limite plástico ya que son suelos arenosos o suelos exentos de arcillas. son suelos no plásticos.

TABLA N° 28. Método de ensayo para determinar el límite líquido, limite plástico e índice de plasticidad de suelos C-02.

Clasificación de suelos SUCCS para la calicata C-02 es arena pobremente graduada con limo con grava: **SP SM**

Standard test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils ASTM D1883

TABLA N° 29. Datos del laboratorio de la calicata C – 02 ensayo de CBR con la muestra patrón.

	DATOS	DE LABORA	ATORIO/	MUESTR	A PATRÓN			
CALICATA	C - 02		CÓDIG	O DEL PR	OYECTO	EKV-0004		
MUESTRA	M - 01		NÚMEI	RO DE SO	LICITUD	LEM211	0002-01	
PROFUNDIDAD	0.00 m	- 1.50 m	FECH	HA DE EN	SAYO	2021-	10-07	
			CRIPCIÓN DE MU	ESTRA	N=10-01(2020)		Value of the same	
MATERIAL/CALICATA:		C-02_M-1	PROFU	NDIDAD:	0.00 m - 1.50 m	TMP	-	
	ZIL DAIS	ENS	SAYO CBR ASTM	1883		LES SEC		
Molde Nº		1	4		15		21	
Nº Capa		5	i		5		5	
Golpes por capa №		5	6		25		10	
Condición de la muestra		NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO	
Peso molde + Suelo húmedo		12349	12717	11881	12300	11436	11862	
Peso de molde (g)		8248	8248	8017	8017	7629	7629	
Peso del suelo húmedo (g)		4101	4469	3864	4283	3807	4233	
Volumen del molde (cm³)		2113	2113	2113	2113	2116	2116	
Densidad húmeda (g/cm³)		1.941	2.115	1.829	2.027	1.799	2.000	
% de humedad		5.08	14.10	5.24	16.00	5.48	16.71	
Densidad seca (g/cm³)		1.847	1.854	1.738	1.747	1.706	1.714	
Densidad Máxima Laboratorio (g	/cm³)	7	-	-	-		-	
Tarro Nº								
Tarro + Suelo húmedo (g)		652.80	771.00	1053.70	915.90	1341.50	920.40	
Tarro + Suelo seco (g)		635,90	714.70	1016.00	820.00	1290.90	819.50	
Peso del Agua (g)		16.90	56.30	37.70	95.90	50.60	100.90	
Peso del tarro (g)		303.40	315.50	297.20	220.80	366,90	215.60	
Peso del suelo seco (g)		332.50	399.20	718.80	599.20	924.00	603.90	
% de humedad		5.1	14.1	5.2	16.0	5.5	16.7	
Promedio de Humedad (%)								

Fuente: Elaborado por el laboratorio EX K VAR S.A.C

Peso del Suelo Húmeda compactado (g)

Densidad Humedad (g/cm3)

Densidad Seca. (g/cm3)

Peso del Agua (g)

Peso de Suelo Seco (g.)

TABLA N° 30. Datos de expansión de suelos de la calicata C – 02 ensayo de CBR con la muestra patrón.

			Е	XPAN	ISIÓN				
			EXPANSIÓN			EXPANSIÓN		EXPANSIÓN	
FECHA	HORA	DIAL	mm	%	DIAL	mm	%	mm	%
subtotal									
Total					0.00	%		•	

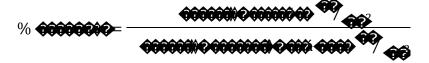
TABLA N° 31. Datos de penetración de suelos de la calicata C – 02 ensayo de CBR con la muestra patrón.

				PENET	RACIÓN								
	CARGA		MOLD	E N° 14	117-5-1117		MOLD	E N° 15		127-212	MOLD	E N° 21	
PENETRACIÓN (in)	STAND.	CA	RGA	CORRE	CCIÓN	CA	RGA	CORRE	CCIÓN	CA	RGA	CORRE	caó
	kg/cm²	kg-f	kg/cm²	kg/cm²	%	kg-f	kg/cm²	kg/cm³	%	kg-f	kg/cm²	kg/cm²	9
0.000	- 4	0.0	0.0	8		0.0	0.0			0.0	0.0		
0.025		71.4	3.7			23.1	1.2		(14.5	0.8		
0.050		127.0	6.6			41.9	2.2			25.5	1.3		
0.075		179.0	9.3			63.0	3.3			44.6	2.3		
0.100	70	236.6	12.2	12.2	17.4	85.1	4.4	4.4	6.3	57.0	3.0	3.2	4
0.125		294.9	15.3			104.2	5.4			70,4	3.6		
0.150		352.2	18.2			124.3	6.4			85.1	4.4		
0.175		414.2	21.4			142.8	7.4		2 3	98.9	5.1		
0.200	105	474.2	24.5	24.5	23.3	160.9	8.3	8.3	7.9	113.9	5.9	6.4	6
0.300		656.2	34.0			230.9	12.0			178.6	9.2		
0.400		745.3	38.6			296.3	15.3			250.7	13.0		
0.500		757.0	39.2			356.2	18.4			326.4	16.9		-

TABLA Nº 32. Datos de penetración y presión o esfuerzo estándar.

	PENETRACIÓN	PRES	IÓN	
mm	pulgadas	MN/m2	kgf/cm2	lb/plg2
2,54	0,1	6,90	70,31	1,000
5,08	0,2	10,35	105,46	1,500

Fuente: Elaboración propia


Fórmula para calcular los esfuerzos kg/cm²

Corrección del Curva E.C.

Para realizar la corrección se debe graficar la curva para cada espécimen, la penetración en el eje de las abscisas y las presiones en el eje de las ordenadas, si la curva no tiene punto de inflexión se tomarán los valores correspondientes para 0.1 in y 02 in de penetración, si la curva presenta punto de inflexión entonces se corregirá trazando una línea recta que intercepte con la tangente y corte con el eje de las abscisas colocando el cero desde dicho corte.

Fórmula para calcular los valores de Relación de Soporte corregidos

Esfuerzo de referencia estándar: ver la tabla 32

TABLA Nº 33. Datos de penetración y presión o esfuerzo estándar C-02.

Fuente: Elaborado por el laboratorio EX K VAR S.A.C

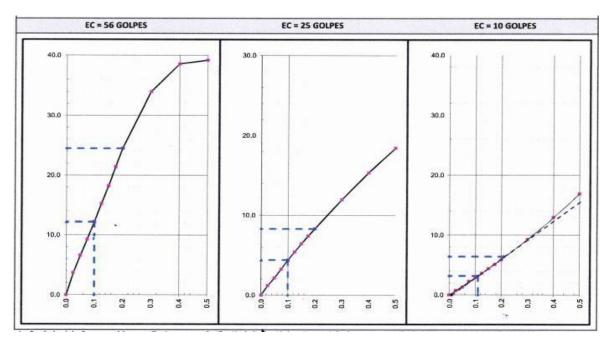


FIGURA N°16. Corrección de la curva. E.C.

Fuente: Elaborado por el laboratorio EX K VAR S.A.C

Análisis granulométrico de suelos por tamizado NTP 339.128

TABLA N° 34. Datos del laboratorio de la calicata C – 03 ensayo de granulometría con la muestra patrón.

DATOS DE LABORATORIO/ MUESTRA PATRÓN								
CALICATA C - 03 CÓDIGO DEL PROYECTO EKV-0004								
MUESTRA	M - 01	NÚMERO DE SOLICITUD	LEM2110002-01					
PROFUNDIDAD 0.50 m - 1.50 m FECHA DE ENSAYO 30/09/2021								

TAMIZ	ABERT. mm.	PESO RET. (g)	%RET, PARC.	%RET. AC.	% Q' PASA	DESCRIPCIO	N DE LA MUESTRA
3 in	76.200	0.0	0.0	0.0	100.0	PESO TOTAL	277.8
2 in	50.800	0.0	0.0	0.0	100.0	FRACCION	0.359971
11/2 in	38.500	0.0	0.0	0.0	100.0	PESO FRACCION	0.0
1 in	25.400	0.0	0.0	0.0	100.0	FRACCION 2	N/A
3/4 in	19.050	0.0	0.0	0.0	100.0	GRAVA	0.3
3/8 in	9.525	0.0	0.0	0.0	100.0	ARENA	91.8
No. 4	4,750	0.8	0.3	0.3	99.7	FINOS	7.9
No. 10	2.000	1.67	0.6	0.9	99.1	Tam. Máx. Particula	2 In
No. 20	0.841	1.39	0.5	1.4	98.6	D10	0.088
No. 40	0.419	10.83	3.9	5.3	94.7	D30	0.125
No. 60	0.250	72.23	26.0	31.3	68.7	D60	0.214
No. 140	0.105	135.01	48.6	79.9	20.1	Coef. Uniformidad	2.43
No. 200	0.074	33.89	12.2	92.1	7.9	Coef. Curvatura	0.83
No. 200	0.074	21.9	7.9	0.001	0.0		

Fuente: Elaborado por el laboratorio EX K VAR S.A.C

La curva granulométrica se construye con el diámetro de partículas (eje de las abscisas a una escala logarítmica) vs el % que pasa por los tamices (eje de las ordenadas a una escala lineal). Por lo tanto, la curva granulométrica tendrá una escala semilogarítmica

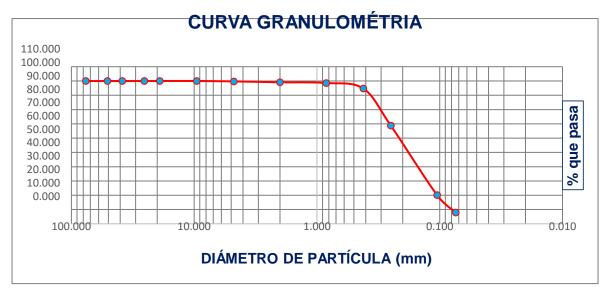


FIGURA N°17. Curva granulométrico C-03

TABLA N° 35. Distribución del tamaño de partículas C-03

DISTRIBUCIÓN DE	DISTRIBUCIÓN DEL TAMAÑO DE PARTÍCULAS (mm)								
` ',	0.00	Arena Mediana < 2.00 mm y > 0.425	4.4%						
(3")	%	mm (#40):	4.470						
Crove (75 mans) \ 4.75 mans (#4)	0.30	Arena Fina < 0.425 mm y > 0.075 mm	86.00						
Grava < 75 mm y > 4.75 mm (#4)	%	(#200)	%						
Arena Gruesa < 4.75 mm y > 2.00	0.60	0/ 1: A roille 0 074	7.90						
mm (#10):	%	% Limo y Arcilla < 0.074 mm	%						

Fuente: Elaboración propia

La fracción se pesa en una balanza con una sensibilidad de 0,1 %. La sumatoria de las fracciones más el peso de la muestra inicial no debe diferir más del 1% (dato laboratorio)

Calculando los diámetros efectivos D10, D30 Y D50

$$Dx = \left(\frac{\sqrt{2} - \sqrt{1}}{\sqrt{2} \sqrt{2} - \sqrt{2} \sqrt{1}} * \left(\frac{2}{\sqrt{2}} \sqrt{2} - \frac{2}{\sqrt{2}} \sqrt{2}\right)\right) + 2$$

Coeficiente de uniformidad

Coeficiente de curvatura

$$CC = \frac{D30^2}{D60 \text{ MD10}}$$

Clasificación de suelos mediante el Sistema Unificado de Clasificación de Suelos (S.U.C.S.) NTP 339.134

TABLA N° 36. Método de ensayo de Índice de plasticidad para de la C-03.

	DATOS DE LABORATORIO/ MUESTRA PATRÓN								
CALICATAC - 01CÓDIGO DEL PROYECTOEKV-0004									
MUESTRA	M - 01	NÚMERO DE SOLICITUD	LEM2110002-01						
PROFUNDIDAD	PROFUNDIDAD 0.50 m - 1.50 m FECHA DE ENSAYO 30/09/2021								

		М	ETODO DE ENS	AYO PARA EL NTP 33		NULOMETRI	CO			
TAMIZ	ABERT, mm,	PESO RET. (g)	%RET. PARC.	%RET. AC.	% Q' PASA	Composicion granulometrica				
3 in	76.200	0.0	0.00	0.00	100.0	Composition granulon			iica	
2 in	50.800	0.0	0.00	0.00	100.0	GRAVAS Gravas Gruesa		%	0.00	
11/ in	38,500	0.0	0.00	0.00	100.0	UKATAS	Gravas Fina	%	0.30	
1 in	25.400	0.0	0.00	0.00	100.0	ARENAS Arenas Gruesa Arenas Media Arenas Fina		%	1.10	
3/4 in	19.050	0.0	0.00	0.00	100.0			%	29.90	
3/8 in	9.525	0.0	0.00	0.00	100.0			%	60.80	
No. 4	4.750	0.8	0.30	0.30	99.7	FINOS	Limos y Arcillas	%	7.9	
No. 10	2.000	1.67	0.60	0.90	99.1					
No. 20	0.841	1.39	0.50	1.40	98.6	GRAVAS		0.3 %		
No. 40	0.419	10.83	3.90	5.30	94.7					
No. 60	0.250	72.23	26.00	31.30	68.7	AR	ENAS	91.8 %		
No. 140	0.105	135.01	48.60	79.90	20.1					
No. 200	0.074	33.89	12.20	92.10	7.9	FI	NOS			
< No. 200	0.074	21.95	7.90	100.00	0.0				- 8	
М	ETODO DE ENS	AYO PARA DET	ERMINAR EL L	IMITE LIQUID NTP 33		STICO E IND	ICE DE PLASTIC	IDAD DE SUELOS		
	1	IMITE LIQUIDO	0	000000000000000000000000000000000000000		1	IMITE PLASTIC	0		
	LL:	NP					LP:	NP		
				INDICE DE PL	ASTICIDAD					

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

CLASIFICACIÓN DE SUELOS S.U.C.C.S. PARA LA CALICATA C - 03 ES:

arena pobremente graduada con limo: SP SM

RESULTADOS CON RESIDUOS ORGÁNICICOS

Los resultados a mostrar se detallan a la calicata más crítica, en este caso es la calicata C-01, ya que sus propiedades resultaron ser de baja calidad para la estabilización de suelo contando con un CBR a 0.1 in de 3.9% a comparación de las otras calicatas (C-02 Y C-03) que sobrepasaron el porcentaje de 6% lo que indica la norma MTC.

Análisis granulométrico de suelos por tamizado NTP 339.128

Se muestra las siguientes tablas indicando las dosificaciones de residuos orgánicos adicionando la muestra extraída del suelo natural.

TABLA N° 37. Dosificación de la muestra N°1 de residuos orgánicos.

	Calicata más crítica (C-01)									
	DOSIFICACIÓN									
Residuos Orgánicos	Muestra 1 ^{ra}	CCA	CBCA	MUESTRA PATRON						
o igai nece		6%	10%	84%						

Fuente: Elaboración propia.

TABLA N° 38. Datos de la muestra N°1 de la calicata C – 01 ensayado cenizas de residuos orgánicos más la muestra patrón.

	•	DAT	OS DE LA	BORATO	RIO/ MU	JESTRA PATRÓ	N	
CALICA	ΓΑ	C - 01		CÓI	DIGO DEI	PROYECTO	EKV-0004	
MUEST	RA	M - 02		NÚ	MERO DE	SOLICITUD	LEM2110002-01	
PROFUN	NDIDAD	0.50 m	- 1.50 m	FEC	HA DE EI	NSAYO	30/09/20	21
TAMIZ	ABERT. mm.	PESO RET. (g)	%RET. PARC.	%RET. AC.	% Q' PASA	DESCRIPC	TON DE LA MUESTR	A
3 in	76.200	0.0	0.0	0.0	100.0	PESO TOTAL	399.4	gr
2 in	50.800	0.0	0.0	0.0	100.0	FRACCION	0.250376	gr
11/2 in	38.500	0.0	0.0	0.0	100.0	PESO FRACCION	0.0	gr
1 in	25.400	0.0	0.0	0.0	100.0	FRACCION 2	N/A	%
3/4 in	19.050	0.0	0.0	0.0	100.0	GRAVA	1.3	%
3/8 in	9.525	0.0	0.0	0.0	100.0	ARENA	85.2	%
No. 4	4.750	5.2	1.3	1.3	98.7	FINOS	13.5	%
No. 10	2.000	4.39	1.1	2.4	97.6	Tam. Máx. Particula	2 In	
No. 20	0.841	15.98	4.0	6.4	93.6	D10	0.074	
No. 40	0.419	54.72	13.7	20.1	79.9	D30	0.113]
No. 60	0.250	47.93	12.0	32.1	67.9	D60	0.212]
No. 140	0.105	164.95	41.3	73.4	26.6	Coef. Uniformidad	2.86	1
No. 200	0.074	52.32	13.1	86.5	13.5	Coef. Curvatura	0.81]
< No. 200	0.074	53.9	13.5	100.0	0.0	SWEWNESSERVENCE		1

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

TABLA N° 39. Dosificación de la muestra N°2 de residuos orgánicos.

	Calicata más crítica (C-01)									
		DOSIFICACIÓN	٧							
Residuos Orgánicos	Muestra 2 ^{ra}	CCA	CBCA	MUESTRA PATRON						
o i gai i i co		8%	20%	84%						

Fuente: Elaboración propia.

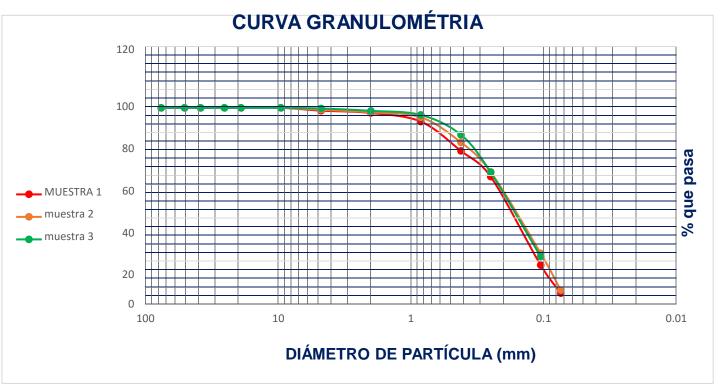
TABLA N° 40. Datos de la muestra N°2 de la calicata C – 01 ensayado cenizas de residuos orgánicos más la muestra patrón.

IZ	ABERT. mm.	PESO RET. (g)	%RET. PARC.	%RET. AC.	% Q' PASA	DESCRIPCION	N DE LA MUESTR
8	76.200	0.0	0.0	0.0	100.0	PESO TOTAL	380.0
	50.800	0.0	0.0	0.0	100.0	FRACCION	0.263158
im	38.500	0.0	0.0	0.0	100.0	PESO FRACCION	0.0
	25.400	0.0	0.0	0.0	100.0	FRACCION 2	N/A
n	19.050	0.0	0.0	0.0	100.0	GRAVA	0.9
n	9.525	0.0	0.0	0.0	100.0	ARENA	84.2
4	4.750	3.4	0.9	0.9	99.1	FINOS	14.9
0	2.000	4.56	1.2	2.1	97.9	Tam. Máx. Particula	2 In
0.	0.841	8.74	2.3	4.4	95.6	D10	0.074
0	0.419	44.46	11.7	16.1	83.9	D30	0.101
0	0.250	52.44	13.8	29.9	70.1	D60	0.199
40	0.105	144.40	38.0	67.9	32.1	Coef. Uniformidad	2.68
00	0.074	65.36	17.2	85.1	14.9	Coef. Curvatura	0.69
200	0.074	56.6	14.9	100.0	0.0	Partition of the Control of the Cont	•

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

TABLA N° 41. Dosificación de la muestra N°3 de residuos orgánicos.

	Calicata más crítica (C-01)								
DOSIFICACIÓN									
Residuos Orgánicos	Muestra 3 ^{ra}	CCA	CBCA	MUESTRA PATRON					
o i gai i i co		10%	35%	84%					


TABLA N° 42. Datos de la muestra N°3 de la calicata C – 01 ensayado cenizas de residuos orgánicos más la muestra patrón.

TAMIZ	ABERT. mm.	PESO RET. (g)	%RET. PARC.	%RET. AC.	% Q' PASA	DESCRIPCIO!	N DE LA MUESTRA
3 in	76.200	0.0	0.0	0.0	100.0	PESO TOTAL	522.1 g
2 in	50.800	0.0	0.0	0.0	100.0	FRACCION	0.191534 g
11/2 in	38.500	0.0	0.0	0.0	100.0	PESO FRACCION	0.0 g
1 in	25.400	0.0	0.0	0.0	100.0	FRACCION 2	N/A 9
3/4 in	19.050	0.0	0.0	0.0	100.0	GRAVA	0.3 9
3/8 in	9.525	0.0	0.0	0.0	100.0	ARENA	83.3 %
No. 4	4.750	1.6	0.3	0.3	99.7	FINOS	16.4 %
No. 10	2.000	5.74	1.1	1.4	98.6	Tam. Máx. Particula	2 In
No. 20	0.841	9.92	1.9	3.3	96.7	D10	0.074
No. 40	0.419	48.56	9.3	12.6	87.4	D30	0.103
No. 60	0.250	91.37	17.5	30.1	69.9	D60	0.201
No. 140	0.105	205.19	39.3	69.4	30.6	Coef. Uniformidad	2.72
No. 200	0.074	74.14	14.2	83.6	16.4	Coef. Curvatura	0.72
No. 200	0.074	85.6	16.4	100.0	0.0		

Grafica de las curvas granulométricas de las muestras m1, m2 y m3

La curva granulométrica se construye con el diámetro de partículas (eje de las abscisas a una escala logarítmica) vs el % que pasa por los tamices (eje de las ordenadas a una escala lineal). Por lo tanto, la curva granulométrica tendrá una escala semilogarítmica.

FIGURA N°18. Curva granulométrica de todas las muestras de residuos orgánicos

Clasificación de suelos mediante el Sistema Unificado de Clasificación de Suelos (S.U.C.S.) NTP 339.134

Se mostrarán el peso retenido tanto para la primera, segunda y tercera muestra, para extraer los resultados de composición granulométrica de cada una de ellas.

TABLA N° 43. Dosificación de la muestra N°1 de residuos orgánicos.

	Calicata más crítica (C-01)								
	DOSIFICACIÓN								
Residuos Orgánicos	Muestra 1 ^{ra}	CCA	CBCA	MUESTRA PATRON					
Organioos		6%	10%	84%					

Fuente: Elaboración propia.

TABLA N° 44. Datos de Clasificación de suelo para la muestra N°1.

		NULOMETRI		AYO PARA EL A NTP 33	ETODO DE ENS	М	****	
Composicion granulometrica				%RET. AC.	%RET. PARC.	PESO RET. (g)	ABERT. mm.	TAMIZ
luiometrea	Composition granulometric			0.00	0.00	0.0	76.200	3 in
	avas Gruesa	GRAVAS Gravas Gruesa		0.00	0.00	0.0	50.800	2 in
8	avas Fina	GIGTTAS	100.0	0.00	0.00	0.0	38.500	11/in
	enas Gruesa		100.0	0.00	0.00	0.0	25,400	1 in
2	enas Media	ARENAS	100.0	0.00	0.00	0.0	19.050	3/4 in
54	enas Fina		100.0	0.00	0.00	0.0	9.525	3/8 in
	nos y Arcillas	FINOS	98.7	1.30	1.30	5.2	4.750	No. 4
394			97.6	2.40	1.10	4.39	2.000	No. 10
1.3 %	S	GRAVAS		6.40	4.00	15.98	0.841	No. 20
			79.9	20.10	13.70	54.72	0.419	No. 40
85.2 %	S	ARI	67.9	32.10	12.00	47.93	0.250	No. 60
	100 (10)	C-10-0	26.6	73.40	41.30	164.95	0.105	No. 140
13.5 %		FE	13.5	86.50	13.10	52.32	0.074	No. 200
	- 50		0.0	100.00	13.50	53.92	0.074	< No. 200
DE SUELOS	DE PLASTICI	STICO E INDI		AMITE LIQUIDO NTP 33	ERMINAR EL I	AYO PARA DET	ETODO DE ENS	М
	TE PLASTIC	I.	-)	IMITE LIQUIDO	1	

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

TABLA N° 45. Dosificación de la muestra N°2 de residuos orgánicos.

	Cali	cata más crítica (DOSIFICACIÓN	. ,	
Residuos	Mucatra 218	CCA	CBCA	MUESTRA PATRON
Orgánicos	Muestra 2 ^{ra}	8%	20%	84%

Fuente: Elaboración propia.

TABLA N° 46. Datos de Clasificación de suelo para la muestra N°2

		М	ETODO DE ENS	AYO PARA EL NTP 33	ANALISIS GRA! 39.128	NULOMETRI	co		
TAMIZ	ABERT. mm.	PESO RET. (g)	%RET. PARC.	%RET. AC.	% Q' PASA	Composicion granulometrica			rica
3 in	76.200	0.0	0.00	0.00	100.0	•			
2 in	50.800	0.0	0.00	0.00	100.0	GRAVAS Gravas Gruesa Gravas Fina		%	0.0
11/ in	38.500	0.0	0.00	0.00	100.0			%	0.9
1 in	25.400	0.0	0.00	0.00	100.0		Arenas Gruesa	%	3.5
3/4 in	19.050	0.0	0.00	0.00	100.0	ARENAS	Arenas Media	%	25.5
3/8 in	9.525	0.0	0.00	0.00	100.0	Arenas Fina		%	55.2
No. 4	4.750	3.4	0.90	0.90	99.1	FINOS	Limos y Arcillas	%	14.
No. 10	2.000	4.56	1.20	2.10	97.9	GRAVAS			
No. 20	0.841	8.74	2.30	4.40	95.6			0.9 %	
No. 40	0.419	44.46	11.70	16.10	83.9			-	- 1
No. 60	0.250	52.44	13.80	29.90	70.1	AR	ENAS	84.2 %	
No. 140	0.105	144.40	38.00	67.90	32.1				
No. 200	0.074	65.36	17.20	85.10	14.9	FI	NOS		
< No. 200	0.074	56,62	14.90	100.00	0.0				
М	ETODO DE ENS	SAYO PARA DET	TERMINAR EL I	AMITE LIQUID NTP 33		STICO E IND	ICE DE PLASTIC	CIDAD DE SUELOS	
	1	LIMITE LIQUID	0			1	LIMITE PLASTIC	co	
	LL;	NP					LP:	NP	
			8	INDICE DE PI	ASTICIDAD		- 3		

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

TABLA N° 47. Dosificación de la muestra N°3 de residuos orgánicos.

	Calicata más crítica (C-01)									
DOSIFICACIÓN										
Residuos Orgánicos	Muestra 3 ^{ra}	CCA	CBCA	MUESTRA PATRON						
2.33.11000		10%	35%	84%						

TABLA Nº 48. Datos de Clasificación de suelo para la muestra N°3.

	co	NULOMETRI		AYO PARA EL NTP 3:	ETODO DE ENS	М	4:	-2		
ranulometrica	Composicion granulometrica				%RET. PARC.	PESO RET. (g)	ABERT. mm.	TAMIZ		
randiometrica	posicion g	Com	100.0	0.00	0.00	0.0	76.200	3 in		
%	Gravas Gruesa	GRAVAS Gravas Gruesa		GRAVAS	100.0	0.00	0.00	0.0	50.800	2 in
%	Gravas Fina	320,030,000	100.0	0.00	0.00	0.0	38.500	11/ in		
%	Arenas Gruesa	ARENAS	100.0	0.00	0.00	0.0	25.400	1 in		
%	Arenas Media		100.0	0.00	0.00	0.0	19.050	3/4 in		
%	Arenas Fina	0.000	100.0	0.00	0.00	0.0	9.525	3/8 in		
%	Limos y Arcillas	FINOS	99.7	0.30	0.30	1.6	4.750	No. 4		
- 1X	11 82	100000	98.6	1.40	1.10	5.74	2.000	No. 10		
0.3 %	AVAS	GR.	96.7	3.30	1.90	9.92	0.841	No. 20		
	-		87.4	12.60	9.30	48.56	0.419	No. 40		
83.3 %	ENAS	AR	69.9	30.10	17.50	91.37	0.250	No. 60		
			30.6	69.40	39.30	205.19	0.105	No. 140		
16.4 %	NOS	FI	16.4	83.60	14.20	74.14	0.074	No. 200		
			0.0	100.00	16.40	85.62	0.074	< No. 200		
DAD DE SUELOS	CE DE PLASTIC	STICO E INDI		IMITE LIQUID NTP 33	ERMINAR EL I	SAYO PARA DET	ETODO DE ENS	MI		
3	IMITE PLASTIC	1			0	LIMITE LIQUID	1			
NP	LP:					NP	LL:			
	1000		ASTICIDAD	INDICE DE PI		3000 10	Settles?			

TABLA Nº 49. Clasificación de suelos, método S.U.C.S.

	CAL	ICATA MÁS C	RÍTICA (C - 01)								
CLASIFICACIÓN DE SUELOS (Método S.U.C.S)											
	Muestra 1 ^{ra}	CCA	CBCA	SM Arena limosa							
S	Widestra 1	6%	10%								
RESIDUOS ORGÁNICOS	Muestra 2 ^{da}	CCA	CBCA	SM Arena limosa							
ESIE		8%	20%	Om Archa iiiiosa							
RE OR	Muestra 3 ^{ra}	CCA	CBCA	SM Arena limosa							
	Widostia 5	10%	35%								

Fuente: Elaboración propia.

La tabla N°47 se observa que todas las muestras con diferentes porcentajes de residuos orgánicos, nos dice que son suelos clasificados como Arenas Limosas **SM**.

Método de compactación del suelo en el laboratorio energía de compactación (56,000 ft-lbf / ft3 (2,700 kN-m / m3)) NTP 339.141

Se ejecutó el ensayo del Proctor Modificado para cada muestra con sus diferentes porcentajes de cenizas de residuos orgánicos con el fin de obtener los resultados de la Densidad Máxima Seca y la Humedad Optima (Optimo contenido de Humedad).

Esto se demuestra en las siguientes tablas:

TABLA N° 50. Dosificación de la muestra N°1 de residuos orgánicos.

	Calicata más crítica (C-01)									
	DOSIFICACIÓN									
Residuos Orgánicos	Muestra 1 ^{ra}	CCA	CBCA	MUESTRA PATRON						
organicos		6%	10%	84%						

Fuente: Elaboración propia.

TABLA N° 51. Tabla para determinar la densidad máxima seca y Humedad Optima de la muestra N°1.

	DATOS DE LABORATORI	0				
CALICATA:	C - 01	CÓDIGO PROY	Y.:	EKV-0004		
MUESTRA:	M - 01	Nº DE SOLICI	TUD:	LEM2110002-05	5	
PROF.:	0.50 m - 1.50 m	FECHA DE EN	SAYO:	30/09/2021		
	ENSAYO PROCTOR MODIFICADO (NTP, 33	9.141 / ASTM D 15	57)			
No. DE MOLD	E: 1 VOLUMEN DEL MOLDE (Cm3):	2124	MASA DEL MO	LDE (g):	6448	
1	No. Pruebras	1	2	3	4	
2	Masa del molde + Suelo humedo (g)	9889.67034	10103.28971	10152.23072	10097.52222	
3	Masa del Suelo Humedo (g)	3441.67034	3655.289708	3704.230724	3649.522219	
4	Densidad Humedad (g/cm3)	1.620	1.721	1.744	1.718	
	DETERMINACION DEL PORTECENTAJE DE HUMEDA	D (NTP, 339.127/	ASTM D 2216)			
5	No. Pruebras	1	2	3	4	
6	Masa de Suelo Humedo + Tara (g)	280.19	281.04	316.81	485.89	
7	Masa de Suelo Seco + Tara (g)	278.70	277.60	310.90	474.60	
8	Masa de Tara (g.)	155.70	162.40	189.50	303.30	
9	Masa de Agua (g)	1.49	3.44	5.91	11.29	
10	Masa de Suelo Seco (g.)	123.00	115.20	121.40	171.30	
11	Humedad %	1.21	2.99	4.87	6.59	
12	Densidad Seca. (g/cm3)	1.601	1.671	1.663	1.612	
	RESULTADOS FINALES					
13	Densidad Maxima Seca (g/cm3)	1.676	Humedad Opt	tima (%)	3.62	
14	Gravedad Especifica de los solidos (ASTM D 854) (ASTM C 127).	2.754	Humedad 100	% de sat. (%)	23.36	

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

TABLA N° 52. Dosificación de la muestra N°2 de residuos orgánicos.

	Calicata más crítica (C-01)									
	DOSIFICACIÓN									
Residuos Orgánicos	Muestra 2 ^{ra}	CCA	CBCA	MUESTRA PATRON						
3.9		8%	20%	84%						

Fuente: Elaboración propia.

TABLA N° 53. Tabla para determinar la densidad máxima seca y Humedad Optima de la muestra N°2

	DATOS DE LABORATORI	0				
CALICATA:	C - 01	CÓDIGO PRO	Y.:	EKV-0004 LEM2110002-06		
MUESTRA:	M - 01	N° DE SOLIC	ITUD:			
PROF.:	0.50 m - 1.50 m	FECHA DE E	NSAYO:	30/09/2021		
	ENSAYO PROCTOR MODIFICADO (NTP, 33	9.141 / ASTM D 1	557)			
No. DE MOLD	E: 1 VOLUMEN DEL MOLDE (Cm3):	2124	MASA DEL N	AOLDE (g):	6448	
1	No. Pruebras	1	2	3	4	
2	Masa del molde + Suelo humedo (g)	9930	10055	10106	10089	
3	Masa del Suelo Humedo (g)	3482	3607	3658	3641	
4	Densidad Humedad (g/cm3)	1.639	1.698	1.722	1.714	
	DETERMINACION DEL PORTECENTAJE DE HUMEDA	D (NTP, 339.127	/ ASTM D 2216)	1 22		
5	No. Pruebras	1	2	3	4	
6	Masa de Suelo Humedo + Tara (g)	400.70	482.81	479.98	511.76	
7	Masa de Suelo Seco + Tara (g)	398.70	477.20	470.90	498.60	
8	Masa de Tara (g.)	219.80	288.80	285.30	303.30	
9	Masa de Agua (g)	2.00	5.61	9.08	13.16	
10	Masa de Suelo Seco (g.)	178.90	188.40	185.60	195.30	
11	Humedad %	1.12	2.98	4.89	6.74	
12	Densidad Seca. (g/cm3)	1.621	1.649	1.642	1.606	
-534	RESULTADOS FINALES	,	10)	10		
13	Densidad Maxima Seca (g/cm3)	1.651	Humedad O	ptima (%)	3.52	
14	Gravedad Especifica de los solidos (ASTM D 854) (ASTM C 127).	2.754	Humedad 10	00% de sat. (%)	24.26	

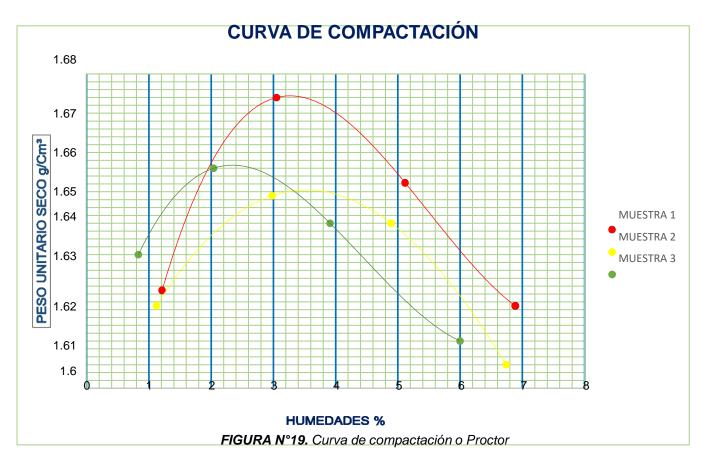

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

TABLA N° 54. Dosificación de la muestra N°3 de residuos orgánicos.

	Calicata más crítica (C-01)									
	DOSIFICACIÓN									
Residuos Orgánicos	Muestra 3 ^{ra}	CCA	CBCA	MUESTRA PATRON						
organicos		10%	35%	84%						

TABLA N° 55. Tabla para determinar la densidad máxima seca y Humedad Optima de la muestra N°3.

	DATOS DE LABORATORIO	O				
CALICATA:	C - 01	CÓDIGO PRO	Y.:	EKV-0004 LEM2110002-07		
MUESTRA:	M - 01	Nº DE SOLIC	ITUD:			
PROF.:	0.50 m - 1.50 m	FECHA DE E	NSAYO:	30/09/2021		
	ENSAYO PROCTOR MODIFICADO (NTP, 33	9.141 / ASTM D 1	557)			
No. DE MOLDI	E: 1 VOLUMEN DEL MOLDE (Cm3):	2124	MASA DEL N	IOLDE (g):	6448	
1	No. Pruebras	1	2	3	4	
2	Masa del molde + Suelo humedo (g)	9947	10037	10071	10077	
-3	Masa del Suelo Humedo (g)	3499	3589	3623	3629	
4.	Densidad Humedad (g/cm3)	1.647	1.690	1.706	1.709	
	DETERMINACION DEL PORTECENTAJE DE HUMEDA	D (NTP, 339.127	ASTM D 2216)	N.	1-	
. 5	No. Pruebras	1	2	3	4	
6	Masa de Suelo Humedo + Tara (g)	494.70	489.02	559.07	557.08	
7	Masa de Suelo Seco + Tara (g)	492.20	483.40	544.90	542.60	
8	Masa de Tara (g.)	190.60	207.80	182.60	301.30	
9	Masa de Agua (g)	2.50	5.62	14.17	14.48	
10	Masa de Suelo Seco (g.)	301.60	275.60	362.30	241.30	
11	Humedad %	0.83	2.04	3.91	6.00	
12	Densidad Seca. (g/cm3)	1.634	1.656	1.642	1.612	
	RESULTADOS FINALES		91		0	
13	Densidad Maxima Seca (g/cm3)	1.657	Humedad O	ptima (%)	2.56	
14	Gravedad Especifica de los solidos (ASTM D 854) (ASTM C 127).	2.754	Humedad 10	00% de sat. (%)	24.04	

En la figura N°19 se observa la curva de compactación de cada muestra que es generado por los valores de Humedad % y Peso Unitario seco (g/cm³).

TABLA N° 56. Tabla de determinación de la Densidad Máxima seca y Optimo contenido de humedad de cada muestra.

	CALICATA MÁS CRÍTICA (C - 01)											
PROCTOR MODIFICADO												
	Muestra	En	sayo	Densidad maxima seca (g/cm³)	Óptimo contenido de humedad (%)							
RESIDUOS ORGÁNICOS	Muestra 1 ^{ra}	CCA 6%	CBCA 10%	1.676	3.62							
ONGANICOS	Muestra 2 ^{da}	CCA 8%	CBCA 20%	1.676	3.52							
	Muestra 3 ^{ra}	10%	CBCA 35%	1.657	2.56							

Fuente: Elaboración propia.

En la tabla N°52, se observa que la densidad máxima seca para la muestra 1 es de 1.676 g/cm³, para la muestra 2 con 1.676 g/cm³ y la muestra 3 con 1.657 g/cm³; prosiguiendo con el Optimo contenido de humedad para la muestra 1 con 3.62 %, para la muestra 2 con 3.52% y la muestra 3 con 2.56%.

Standard test method for California Bearing Ratio (CBR) of laboratory-compacted soils ASTM D1883

Para el ensayo de CBR se ejecutó los valores de densidad seca para determinar los datos de CBR

TABLA N° 57. Dosificación de la muestra N°1 de residuos orgánicos.

	Calicata más crítica (C-01)										
	DOSIFICACIÓN										
Residuos	Muestra 1 ^{ra}	CCA	CBCA	MUESTRA PATRON							
Orgánicos		6%	10%	84%							

TABLA N° 58. Tabla del ensayo del CBR ASTM D 1883 de la muestra N°1

			DES	CRIPCIÓ	N DE MUE	STRA						
MATERIAL/CALI	CATA:		C-01_M-1		PROFUN	IDIDAD:	0.00 m -	1.50 m	TMP		<u></u>	
1			EN:	SAYO CB	R ASTM D	1883						
Molde Nº			4	1	- 8		5		7			
Vº Capa			5	- 6		5			5			
Golpes por capa Nº		5	6		- 1	25		1	.0			
Condición de la muestra		NO SATURADO	SATI	URADO	NO SATURADO	SATUR	ADO	NO SATURADO	SATU	JRADO		
Peso molde + Suelo húmedo		11591	13	2140	11041	116	36	9935	10	0541		
Peso de molde (g)			8017	8	017	7550	755	50	6523	6	523	
Peso del suelo húmedo (¿	g)		3574	4	123	3491	408	36	3412	4	018	
Volumen del molde (cm³)		2109	. 2	109	2132	21	32	2116	2	116		
Densidad húmeda (g/cm	3)		1.695	1	.955	1.637	1.9	17	1.612	1.	899	
% de humedad			1.60	1	7.00	1.76	18.	79	1.67	19	9.50	
Densidad seca (g/cm³)			1.668	1	.671	1.609	1.614		1.586	1.589		
Densidad Máxima Laboratorio (g/cm²)		275	1-3			(to the control of t				-		
Tarro Nº				6								
Tarro + Suelo húmedo (g)		700.90	636.30		805.20	789.60		704.80	676.60		
Tarro + Suelo seco (g)			694.90	4.90 575.90		796.50	714.60		697.00	598.60		
Peso del Agua (g)			6.00	00 60.40		8.70	75.00		7.80	78	8.00	
Peso del tarro (g)			320.80	22	20.60	303.30	0 315.50		228.70	19	198.60	
Peso del suelo seco (g)			374,10	35	55.30	493.20	399.10		468.30		400.00	
% de humedad			1.6	1	17.0	1.8	18.8		1.7	1	19.5	
Promedio de Humedad (%)			8	- 5		18					
			4	EXP	ANSIÓN		10		*S			
FECHA	HORA	TIEMPO	DIAL	EXPA	ANSIÓN	DIAL	EXPAN	ISIÓN	DIAL	EXPA	NSIÓN	
PECHA	HURA	h	DIAL	mm	%	DIAL	mm	%	DIAL	mm	%	
				3				X .	3			
	- 51	ė.		8 :				Ł.	8 8		3 5	
		95		20					20			
Sub Total Total	1					0.0 %					1	

TABLA N° 59. Tabla de resultados de CBR de la muestra N°1.

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

TABLA N° 60. Dosificación de la muestra N°2 de residuos orgánicos.

	Calicata más crítica (C-01)								
DOSIFICACIÓN									
Residuos Orgánicos	Muestra 2 ^{ra}	CCA	CBCA	MUESTRA PATRON					
Organio03		8%	20%	84%					

Fuente: Elaboración propia.

TABLA N° 61. Tabla del ensayo del CBR ASTM D 1883 de la muestra N°2

			DE	SCRIPCIÓ	N DE MU	ESTRA					
MATERIAL/CAI	LICATA:		C-01_M-1		PROFU	NDIDAD:	0.00 m	- 1.50 m	TMP	9	
			EN	SAYO CB	R ASTM D	1883					
Molde Nº			1	10			11		1	2	
Nº Capa			5				5			5	
Golpes por capa Nº				56			25		1	0	
Condición de la muestra	a		NO SATURADO	SATU	IRADO	NO SATURADO	SATU	RADO	NO SATURADO	SATU	RADO
Peso molde + Suelo húr	medo		10106	10	665	11356	11	934	10610	11	228
Peso de molde (g)			6561	6	561	7859	78	159	7273	72	73
Peso del suelo húmedo	(g)		3545	4	104	3497	40	175	3337	39	55
Volumen del molde (cm	18)		2117	2	117	2132	2132		2119	21	19
Densidad húmeda (g/cr	n³)		1.675	1.	939	1.640	1.911		1.575	1.8	366
% de humedad			1.62	17	7.39	1.81	18	.30	1.69	20	.20
Densidad seca (g/cm ⁸)			1.648	1.	652	1.611	1.0	515	1.549	1.	
Densidad Máxima Labo	sidad Máxima Laboratorio (g/cm³)			1	70		1	-	-	2	ŧ.
Tarro Nº	ro Nº										
Tarro + Suelo húmedo (g)		834.80 737.00		750.00	872	2.90	923.10	84	1.00	
Tarro + Suelo seco (g)			826.60	66	1.30	741.90	78	4.80	912.70	740	0.50
Peso del Agua (g)			8.20	0 75.70 8.10 88.10 10.4		10.40	10	3.50			
Peso del tarro (g)			320.60	0 226.10 295.20 303.30 297.1		297.10	228.10				
Peso del suelo seco (g)			506.00	43	5.20	446.70	48:	1.50	615.60	512.40	
% de humedad			1.6	1.6 17.4 1.8 18.3 1.7		1.7	7 20.				
Promedio de Humedad	(%)				- 1		1				
			i.	EXP	ANSIÓN	3	10		Š (5)		
FECHA	HORA	TIEMPO	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN
PECHA	HORA	h	DIAL	mm	%	DIAL	mm	%	DIAL	mm	%
					8 8						
										29	
Sub Total	1				87 - 5		1		1	- 4	
Total	300	0	ė.	10.	50 0	0.0 %	500	G.	** S	77	

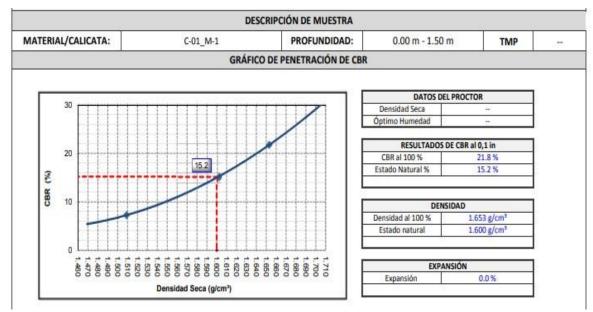
Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

TABLA N° 62. Tabla de resultados de CBR de la muestra N°2.

TABLA Nº 63. Dosificación de la muestra Nº3 de residuos orgánicos.

	Calicata más crítica (C-01)								
		DOSIFICACIÓN	N						
Residuos Orgánicos	Muestra 3 ^{ra}	CCA	CBCA	MUESTRA PATRON					
Organiooo		10%	35%	55%					

Fuente: Elaboración propia.


TABLA N° 64. Tabla del ensayo del CBR ASTM D 1883 de la muestra N°3.

	DES	CRIPCIÓN DE MU	JESTRA			
MATERIAL/CALICATA:	C-01_M-1	PROFU	INDIDAD:	0.00 m - 1.50 m	TMP	
	ENS	AYO CBR ASTM	D 1883	111		111
Molde Nº	1	0		11	1	2
Nº Capa	5			5		5
Golpes por capa Nº	5	6		25	1	0
Condición de la muestra	NO SATURADO	SATURADO	NO SATURAD	O SATURADO	NO SATURADO	SATURADO
Peso molde + Suelo húmedo	11816	12397	11463	12071	10933	11582
Peso de molde (g)	8263	8263	8020	8020	7640	7640
Peso del suelo húmedo (g)	3553	4134	3443	4051	3293	3942
Volumen del molde (cm³)	2113	2113	2113	2113	2116	2116
Densidad húmeda (g/cm³)	1.681	1.956	1.629	1.917	1.556	1.863
% de humedad	1.67	18.09	1.70	19.40	3.10	21.50
Densidad seca (g/cm ⁸)	1.653	1.656	1.602	1.606	1.509	1.533
Densidad Máxima Laboratorio (g/cm³)	# #		75	7.		155.5
Tarro Nº						
Tarro + Suelo húmedo (g)	730.70	705.00	857.40	809.70	811.50	801.00
Tarro + Suelo seco (g)	722.90	630.80	848.00	728.90	802.30	715.10
Peso del Agua (g)	7.80	74.20	9.40	80.80	9.20	85.90
Peso del tarro (g)	255.10	220.60	295.20	312.50	505.20	315.50
Peso del suelo seco (g)	467.80	410.20	552.80	416.40	297.10	399.60
% de humedad	1.7	18.1	1.7	19.4	3.1	21.5
Promedio de Humedad (%)				-10		

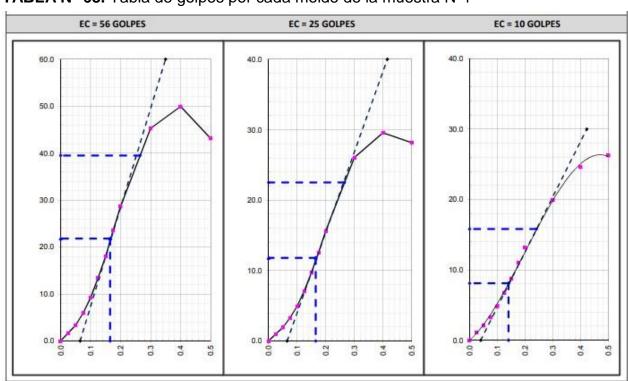
.

				EXPA	NSIÓN					1.5	
FFCUA	11004	TIEMPO	DIAI	ISIÓN	DIAL	EXPANSIÓN		DIAL	EXPAN	VSIÓN	
FECHA	HORA	h	DIAL	mm	%	DIAL	mm	%	DIAL	mm	9
	-			V 8							
				8 9							
Sub Total				-	-						
Total	- 10	9 10		Ø 6		0.0 %	70	2 0			

TABLA N° 65. Tabla de resultados de CBR de la muestra N°3.

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

En las siguientes tablas se observarán los golpes para cada molde de diferentes muestras:


TABLA Nº 66. Dosificación de la muestra Nº1 de residuos orgánicos

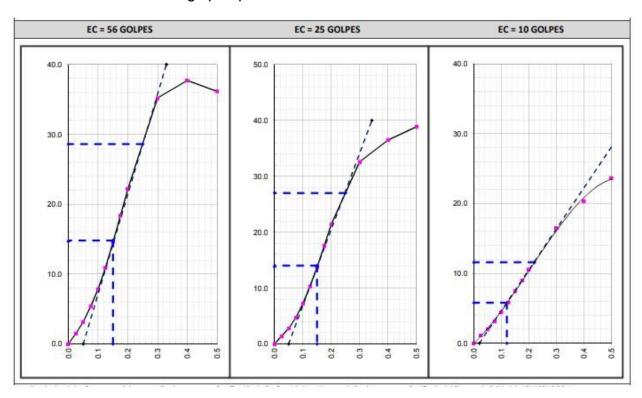
	Calicata más crítica (C-01)								
DOSIFICACIÓN									
Residuos Orgánicos	Muestra 1 ^{ra}	CCA	CBCA	MUESTRA PATRON					
2.92.11000		6%	10%	84%					

TABLA N° 67. Tabla de penetración para la muestra N°1.

				PENET	RACIÓN								
525	CARGA	MOLDE N° 4				MOLE	EN"5		MOLDE N° 7				
PENETRACIÓN (in)	STAND.	CA	RGA	CORRE	CCIÓN	CA	RGA	CORRE	CCIÓN	CA	RGA	CORRE	CCIÓN
(111)	kg/cm²	kg-f	kg/cm²	kg/cm²	%	kg-f	kg/cm ²	kg/cm²	%	kg-f	kg/cm ²	kg/cm²	%
0.000	8	0.0	0.0	W 8		0.0	0.0			0.0	0.0		
0.025	- C	32.8	1.7			18.8	1.0		Ü.	21.8	1.1		
0.050		65.0	3.4		0	36.9	1.9		0	40.2	2.1		
0.075		114.3	5.9	7		63.3	3.3			62.3	3.2		
0.100	70	178.0	9.2	21.8	31.0	95.5	4.9	11.8	16.8	93.5	4.8	8.1	11.5
0.125	0.	259.7	13.4	S/ 39		137.1	7.1	US .	2.	130.4	6.7	9	
0.150		348.2	18.0	1 3		187.3	9.7	8	(<u>)</u>	169.6	8.8		
0.175		454.1	23.5			242.6	12.6			212.5	11.0		
0.200	105	553.3	28.6	39.5	37.6	301.9	15.6	22.5	21.4	254.4	13.2	15.8	15.0
0.300		875.0	45.3			503.0	26.0		ĵ.	384.7	19.9		
0.400		964.8	49.9	7	- 1	571.1	29.6		3	475.2	24.6		
0.500	· ·	833.8	43.2	O 9		543.9	28.2	9		507.4	26.3	1	

TABLA N° 68. Tabla de golpes por cada molde de la muestra N°1

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.


TABLA Nº 69. Dosificación de la muestra Nº2 de residuos orgánicos

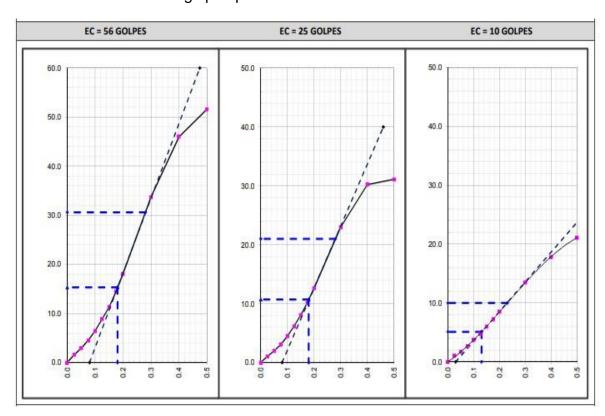
	Calicata más crítica (C-01)								
DOSIFICACIÓN									
Residuos Orgánicos	Muestra 2 ^{ra}	CCA	CBCA	MUESTRA PATRON					
Organicos		8%	20%	72%					

TABLA N° 70. Tabla de penetración para la muestra N°2.

				PENET	RACIÓN								
220	CARGA	CARGA MOLDE N° 10					MOLD	E N° 11			MOLD	E N° 12	
PENETRACIÓN (in)	STAND.	CA	RGA	CORRE	CCIÓN	CA	RGA	CORRE	CCIÓN	CA	RGA	CORRE	CCIÓN
(my	kg/cm²	kg-f	kg/cm²	kg/cm²	%	kg-f	kg/cm ²	kg/cm²	%	kg-f	kg/cm²	kg/cm²	%
0.000		0.0	0.0	W 8		0.0	0.0	e)		0.0	0.0	. ,	
0.025	- C	28.8	1.5			27.1	1.4		0	21.8	1.1		
0.050	10	60.7	3.1		0	53.3	2.8		0	38.5	2.0		
0.075		103.2	5.3	11	j	90.1	4.7		Ŭ	60.3	3.1		
0.100	70	151.8	7.9	14.8	21.0	138.7	7.2	14.0	19.9	86.5	4.5	5.8	8.2
0.125	2	210.8	10.9	4 9		198.7	10.3	0	22	112.6	5.8	1	
0.150		281.5	14.6	1 0	- 8	264.4	13.7	8	Ü	143.4	7.4		
0.175	100	354.6	18.4			338.1	17.5			173.6	9.0		
0.200	105	427.6	22.1	28.6	27.2	413.5	21.4	27.0	25.7	204.4	10.6	11.6	11.0
0.300	0	680.3	35.2	0		629.4	32.6		0	318.4	16.5		
0.400		728.6	37.7	1	- 0	704.8	36.5			393.4	20.4		
0.500	8	698.4	36.1	7	- 1	750.7	38.9	9	N.	457.1	23.7	1	

TABLA N° 71. Tabla de golpes por cada molde de la muestra N°2

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.


TABLA Nº 72. Dosificación de la muestra Nº3 de residuos orgánicos

	Calicata más crítica (C-01)								
DOSIFICACIÓN									
Residuos Orgánicos	Muestra 3 ^{ra}	CCA	CBCA	MUESTRA PATRON					
organiooo		10%	35%	55%					

TABLA N° 73. Tabla de penetración para la muestra N°3.

				PENET	RACIÓN								
	CARGA	CARGA MOLDE N°					MOLD	E N* 11			MOLD	E N° 12	
PENETRACIÓN (in)	STAND.	CA	RGA	CORRE	CCIÓN	CA	RGA	CORRE	CCIÓN	CA	RGA	CORRE	CCIÓN
lini	kg/cm²	kg-f	kg/cm²	kg/cm²	%	kg-f	kg/cm²	kg/cm²	%	kg-f	kg/cm²	kg/cm²	%
0.000		0.0	0.0			0.0	0.0			0.0	0.0		
0.025	- 5	30.5	1.6			20.1	1.0	8 8		19.8	1.0		,
0.050		56.3	2.9	, ,		38.2	2.0	. J		33.8	1.7		,
0.075		86.8	4.5			58.3	3.0			51.6	2.7		
0.100	70	125.0	6.5	15.3	21.8	86.5	4.5	10.7	15.2	71.7	3.7	5.1	7.3
0.125		170.6	8.8	9		119.3	6.2			92.5	4.8		
0.150	7	218.8	11.3	- 3		155.8	8.1	A A		115.3	6.0		9
0.175		279.5	14.5			196.4	10.2			139.1	7.2		
0.200	105	349.5	18.1	30.6	29.1	243.3	12.6	21.0	20.0	164.2	8.5	10.0	9.5
0.300		651.1	33.7	, ,		444.0	23.0	10 Y		260.7	13.5		
0.400		888.1	46.0			583.5	30.2			344.5	17.8		
0.500		996.3	51.6			600.9	31.1			406.8	21.1		

TABLA N° 74. Tabla de golpes por cada molde de la muestra N°3.

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

RESULTADOS CON EL ADITIVO TERRASIL

Para los resultados con el aditivo terrasil se adicionarán los porcentajes de cada muestra, para la cual estas deben estar mezcladas con la muestra patrón, para luego ejecutar los ensayos planteados en la tesis, con la finalidad de demostrar su rendimiento conforme a las propiedades para estabilizar.

Análisis granulométrico de suelos por tamizado NTP 339.128

En las siguientes tablas muestran los resultados del laboratorio con fines de demostrar la clasificación granulométrica.

TABLA Nº 75. Dosificación de la muestra Nº1 de Aditivo Químico.

	Calicata más crítica (C-01)									
DOSIFICACIÓN										
ADITIVO	Muestra 1 ^{ra}	Terrasil	MUESTRA PATRON							
QUIMICO	Widostia i	2%	98%							

Fuente: Elaboración propia.

TABLA N° 76. Datos de la muestra N°1 de la calicata C – 01 ensayado Aditivo Químico más la muestra patrón.

DATOS DE LABORATORIO/ MUESTRA PATRÓN								
CALICATA	C - 01	CÓDIGO DEL PROYECTO	EKV-0004					
MUESTRA	M - 01	NÚMERO DE SOLICITUD	LEM2110002-01					
PROFUNDIDAD	0.50 m - 1.50 m	FECHA DE ENSAYO	30/09/2021					

TAMIZ	ABERT. mm.	PESO RET. (g)	%RET. PARC,	%RET. AC.	% Q' PASA	DESCRIPCIO!	N DE LA MUESTRA
3 in	76.200	0.0	0.0	0.0	100.0	PESO TOTAL	346.8
2 in	50.800	0.0	0.0	0.0	100.0	FRACCION	0.288351
11/2 in	38.500	0.0	0.0	0.0	100.0	PESO FRACCION	0.0
1 in	25.400	0.0	0.0	0.0	100.0	FRACCION 2	N/A
3/4 in	19.050	0.0	0.0	0.0	100.0	GRAVA	1.3
3/8 in	9.525	0.0	0.0	0.0	100.0	ARENA	91.4
No. 4	4.750	4.5	13	1.3	98.7	FINOS	7.3
No. 10	2.000	3.12	0.9	2.2	97.8	Tam. Máx. Particula	2 In
No. 20	0.841	1.04	0.3	2.5	97.5	D10	0.090
No. 40	0.419	6.59	1.9	4.4	95.6	D30	0.127
No. 60	0.250	80.80	23.3	27.7	72.3	D60	0.205
No. 140	0.105	187.27	54.0	81.7	18.3	Coef. Uniformidad	2.29
No. 200	0.074	38.15	11.0	92.7	7.3	Coef. Curvatura	0.87
No. 200	0.074	25.3	7.3	100.0	0.0		

TABLA N° 77. Dosificación de la muestra N°2 de Aditivo Químico.

	Calicata más crítica (C-01)							
	DOSIFICACIÓN							
ADITIVO	Muestra 2 ^{do}	Terrasil	MUESTRA PATRON					
QUIMICO	iviuestia 2	6%	94%					

Fuente: Elaboración propia.

TABLA N° 78. Datos de la muestra N°2 de la calicata C – 01 ensayado Aditivo Químico más la muestra patrón.

TAMIZ	ABERT. mm.	PESO RET. (g)	%RET. PARC.	%RET. AC.	% Q' PASA	DESCRIPCIO?	N DE LA MUESTRA
3 in	76.200	0.0	0.0	0.0	100.0	PESO TOTAL	322.1
2 in	50.800	0.0	0.0	0.0	100.0	FRACCION	0.310463
11/2 in	38.500	0.0	0.0	0.0	100.0	PESO FRACCION	0.0
1 in	25.400	0.0	0.0	0.0	100.0	FRACCION 2	N/A
3/4 in	19.050	0.0	0.0	0.0	100.0	GRAVA	2.4
3/8 in	9.525	0.0	0.0	0.0	100.0	ARENA	88.3
No.4	4.750	7.7	2.4	2.4	97.6	FINOS	9.3
No. 10	2.000	2.25	0.7	3.1	96.9	Tam. Máx. Particula	2 In
No. 20	0.841	7.41	2.3	5.4	94.6	D10	0.087
No. 40	0.419	38.65	12.0	17.4	82.6	D30	0.122
No. 60	0.250	40.94	12.7	30.1	69.9	D60	0.209
No. 140	0.105	155.54	48.3	78.4	21.6	Coef. Uniformidad	2.41
No. 200	0.074	39.62	12.3	90.7	9.3	Coef. Curvatura	0.82
No. 200	0.074	30.0	9.3	100.0	0.0		A3

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

TABLA Nº 79. Dosificación de la muestra Nº3 de Aditivo Químico

	Calicata más crítica (C-01)							
		DOSIFICACIÓN						
ADITIVO	Muestra 3 ^{ra}	Terrasil	MUESTRA PATRON					
QUIMICO	Widdon'd G	7%	93%					

TABLA N° 80. Datos de la muestra N°3 de la calicata C – 01 ensayado Aditivo Químico más la muestra patrón.

TAMIZ	ABERT. mm.	PESO RET. (g)	%RET. PARC.	%RET. AC.	% Q' PASA	DESCRIPCION	DE LA MUESTRA
3 in	76.200	0.0	0.0	0.0	100.0	PESO TOTAL	456.7
2 in	50.800	0.0	0.0	0.0	100.0	FRACCION	0.218962
11/2 in	38.500	0.0	0.0	0.0	100.0	PESO FRACCION	0.0
1 in	25.400	0.0	0.0	0.0	100.0	FRACCION 2	N/A
3/4 in	19.050	0.0	0.0	0.0	100.0	GRAVA	0.8
3/8 in	9.525	0.0	0.0	0.0	100.0	ARENA	90.5
No. 4	4.750	3.7	0.8	0.8	99.2	FINOS	8.7
No. 10	2.000	8.22	1.8	2.6	97.4	Tam. Máx. Particula	2 In
No. 20	0.841	21.92	4.8	7.4	92.6	D10	0.090
No. 40	0.419	30.60	6.7	14.1	85.9	D30	0.129
No. 60	0.250	72.16	15.8	29.9	70.1	D60	0.211
No. 140	0.105	238.85	52.3	82.2	17.8	Coef. Uniformidad	2.35
No. 200	0.074	41.56	9.1	91.3	8.7	Coef. Curvatura	0.87
No. 200	0.074	39.7	8.7	100.0	0.0		

Grafica de las curvas granulométricas de las muestras m1, m2 y m3 con Aditivo terrasil

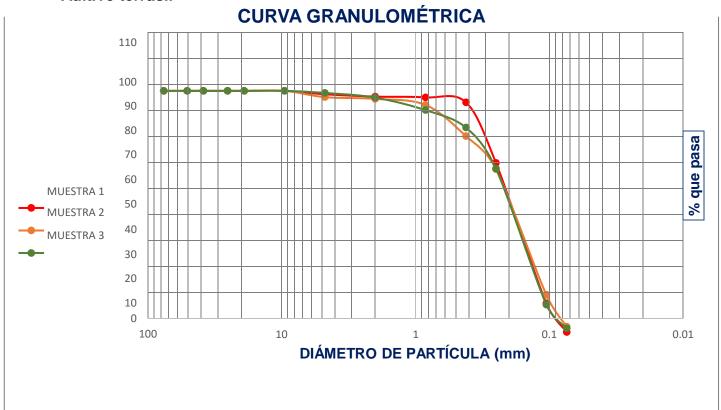


FIGURA N°20. Curva granulométrica de todas las muestras de

Clasificación de suelos mediante el Sistema Unificado de Clasificación de Suelos (S.U.C.S.) NTP 339. 134

Se mostrarán el peso retenido tanto para la primera, segunda y tercera muestra, para extraer los resultados de composición granulométrica de cada una de ellas

TABLA N° 81. Dosificación de la muestra N°1 de Aditivo Químico y su clasificación de suelo SUCS

	Calicata más crítica (C-01)							
	DOSIFICACIÓN							
ADITIVO	Muestra 1 ^{ra}	Terrasil	MUESTRA PATRON					
QUIMICO	iviuestia i	2%	98%					

3 in 76,200 0.0 0.00 0.00 100.0 Composicion granulometrica 2 in 50,800 0.0 0.00 0.00 100.0 GRAVAS Gravas Gruesa % 0 11/ in 38,500 0.0 0.00 0.00 100.0 Arenas Gruesa % 1 3/4 in 19,050 0.0 0.00 0.00 100.0 ARENAS Arenas Gruesa % 1 No. 4 4,750 4.5 1.30 1.30 98.7 FINOS Limos y Arcillas % No. 10 2,000 3.12 0.90 2.20 97.8 No. 20 0.841 1.04 0.30 2.50 97.5 GRAVAS 1.3 % No. 40 0.419 6.59 1.90 4.40 95.6 ARENAS 91.4 % No. 60 0.250 80.80 23.30 27.70 72.3 ARENAS 91.4 % No. 140 0.105 187.27 54.00 81.70			co	NULOMETRI		AYO PARA EL . NTP 33	ETODO DE ENS.	М	Xx	
2 in 50.800 0.0 0.00 0.00 100.0 GRAVAS Gravas Gruesa % 11/ in 38.500 0.0 0.00 0.00 100.0 100.0 GRAVAS Gravas Fina % 1 in 25.400 0.0 0.0 0.00 0.00 100.0 Arenas Gruesa % 1 in 19.050 0.0 0.0 0.00 0.00 100.0 Arenas Gruesa % 1 in 19.050 0.0 0.0 0.00 0.00 100.0 Arenas Gruesa % 1 in 19.050 0.0 0.0 0.00 0.00 100.0 Arenas Fina % 1 in 19.050 0.0 0.0 0.00 0.00 100.0 Arenas Fina % 1 in 19.050 0.0 0.0 0.00 0.00 100.0 Arenas Fina % 1 in 19.050 0.0 0.0 0.00 0.00 100.0 Arenas Fina % 1 in 19.050 0.0 0.0 0.00 0.00 100.0 Arenas Fina % 1 in 19.050 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Composicion granulometrica			% Q' PASA	%RET. AC.	%RET, PARC.	PESO RET. (g)		TAMIZ	
11 in 38.500 0.0 0.00 0.00 100.0	ionicurca	00.0 Composition granulomen			100.0	0.00	0.00	0.0		-
11/in 38.500 0.0 0.00 0.00 100.0 Gravas Fina % 1 1 1 25.400 0.0 0.00 0.00 100.0 ARENAS Arenas Gruesa % 22 378 in 9.525 0.0 0.00 0.00 0.00 100.0 Arenas Fina % 65 378 in 9.525 0.0 0.00 0.00 0.00 100.0 Arenas Fina % 65 378 in 9.525 0.0 0.00 0.00 0.00 100.0 Arenas Fina % 65 378 in 9.525 0.00 0.3.12 0.90 2.20 97.8 No. 10 2.000 3.12 0.90 2.20 97.8 No. 20 0.841 1.04 0.30 2.50 97.5 GRAVAS 1.3 % No. 40 0.419 6.59 1.90 4.40 95.6 No. 60 0.250 80.80 23.30 27.70 72.3 ARENAS 91.4 % No. 140 0.105 187.27 54.00 81.70 18.3 No. 200 0.074 38.15 11.00 92.70 7.3 FINOS 7.3 % No. 200 0.074 25.32 7.30 100.00 0.0 METODO DE ENSAYO PARA DETERMINAR EL LIMITE LIQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD DE SUELOS NTP 339,129	F	GRAVAS Gravas Gruesa %		100.0	0.00	0.00	0.0	50.800	2 in	
3/4 in 19.050 0.0 0.00 0.00 100.0 ARENAS Arenas Media % 22 3/8 in 9.525 0.0 0.0 0.00 0.00 100.0 Arenas Fina % 63 No. 4 4.750 4.5 1.30 1.30 98.7 FINOS Limos y Areillas % No. 10 2.000 3.12 0.90 2.20 97.8 No. 20 0.841 1.04 0.30 2.50 97.5 GRAVAS 1.3 % No. 40 0.419 6.59 1.90 4.40 95.6 No. 60 0.250 80.80 23.30 27.70 72.3 ARENAS 91.4 % No. 140 0.105 187.27 54.00 81.70 18.3 No. 200 0.074 38.15 11.00 92.70 7.3 FINOS 7.3 % No. 200 0.074 25.32 7.30 100.00 0.0 METODO DE ENSAYO PARA DETERMINAR EL LIMITE LIQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD DE SUELOS NTP 339,129	3	%	Gravas Fina	S. Or Control	100.0	0.00	0.00	0.0	38.500	11/ in
3/8 in 9.525 0.0 0.00 0.00 100.0 Arenas Fina % 65 No. 4 4.750 4.5 1.30 1.30 98.7 FINOS Limos y Arcillas % No. 10 2.000 3.12 0.90 2.20 97.8 No. 20 0.841 1.04 0.30 2.50 97.5 GRAVAS 1.3 % No. 40 0.419 6.59 1.90 4.40 95.6 No. 60 0.250 80.80 23.30 27.70 72.3 ARENAS 91.4 % No. 140 0.105 187.27 54.00 81.70 18.3 No. 200 0.074 38.15 11.00 92.70 7.3 FINOS 7.3 % No. 200 0.074 25.32 7.30 100.00 0.0 METODO DE ENSAYO PARA DETERMINAR EL LIMITE LIQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD DE SUELOS NTP 339,129	23	%	Arenas Gruesa		100.0	0.00	0.00	0.0	25.400	1 in
No. 4 4.750 4.5 1.30 1.30 98.7 FINOS Limos y Arcillas % No. 10 2.000 3.12 0.90 2.20 97.8 No. 20 0.841 1.04 0.30 2.50 97.5 GRAVAS 1.3 % No. 40 0.419 6.59 1.90 4.40 95.6 95.6 97.7 72.3 ARENAS 91.4 % 91.4 % No. 60 0.250 80.80 23.30 27.70 72.3 ARENAS 91.4 % No. 140 0.105 187.27 54.00 81.70 18.3 No. 200 0.074 38.15 11.00 92.70 7.3 FINOS 7.3 % No. 200 0.074 25.32 7.30 100.00 0.0 0.0 METODO DE ENSAYO PARA DETERMINAR EL LIMITE LIQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD DE SUELOS NTP 339,129	2	%	Arenas Media	ARENAS	100.0	0.00	0.00	0.0	19.050	3/4 in
No. 10 2.000 3.12 0.90 2.20 97.8 No. 20 0.841 1.04 0.30 2.50 97.5 GRAVAS 1.3 % No. 40 0.419 6.59 1.90 4.40 95.6 No. 60 0.250 80.80 23.30 27.70 72.3 ARENAS 91.4 % No. 140 0.105 187.27 54.00 81.70 18.3 No. 200 0.074 38.15 11.00 92.70 7.3 FINOS 7.3 % No. 200 0.074 25.32 7.30 100.00 0.0 METODO DE ENSAYO PARA DETERMINAR EL LIMITE LIQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD DE SUELOS NTP 339,129	6	96	Arenas Fina		100.0	0.00	0.00	0.0	9.525	3/8 in
No. 20 0.841 1.04 0.30 2.50 97.5 GRAVAS 1.3 % No. 40 0.419 6.59 1.90 4.40 95.6 No. 60 0.250 80.80 23.30 27.70 72.3 ARENAS 91.4 % No. 140 0.105 187.27 54.00 81.70 18.3 No. 200 0.074 38.15 11.00 92.70 7.3 FINOS 7.3 % No. 200 0.074 25.32 7.30 100.00 0.0 0.0 METODO DE ENSAYO PARA DETERMINAR EL LIMITE LIQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD DE SUELOS NTP 339,129	22	%	Limos y Arcillas	FINOS	98.7	1.30	1.30	4.5	4.750	No. 4
No. 40		CONTRACTOR OF THE CONTRACTOR O		97.8	2.20	0.90	3.12	2.000	No. 10	
No. 60 0.250 80.80 23.30 27.70 72.3 ARENAS 91.4 % No. 140 0.105 187.27 \$4.00 81.70 18.3 No. 200 0.074 38.15 11.00 92.70 7.3 FINOS 7.3 % No. 200 0.074 25.32 7.30 100.00 0.0 METODO DE ENSAYO PARA DETERMINAR EL LIMITE LIQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD DE SUELOS NTP 339,129	1.3 %			97.5	2.50	0.30	1.04	0.841	No. 20	
No. 140 0.105 187.27 54.00 81.70 18.3 No. 200 0.074 38.15 11.00 92.70 7.3 FINOS 7.3 % No. 200 0.074 25.32 7.30 100.00 0.0 METODO DE ENSAYO PARA DETERMINAR EL LIMITE LIQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD DE SUELOS NTP 339,129					95.6	4.40	1.90	6.59	0.419	No. 40
No. 200 0.074 38.15 11.00 92.70 7.3 FINOS 7.3 % No. 200 0.074 25.32 7.30 100.00 0.0 METODO DE ENSAYO PARA DETERMINAR EL LIMITE LIQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD DE SUELOS NTP 339,129	91.4 %	ARENAS 91.4 %		72.3	27.70	23.30	80.80	0.250	No. 60	
No. 200 0.074 25.32 7.30 100.00 0.0 METODO DE ENSAYO PARA DETERMINAR EL LIMITE LIQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD DE SUELOS NTP 339.129	0.0000000000000000000000000000000000000				18.3	81.70	54.00	187.27	0.105	No. 140
METODO DE ENSAYO PARA DETERMINAR EL LIMITE LIQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD DE SUELOS NTP 339.129	7.3 %		NOS	FI	7.3	92.70	11.00	38.15	0.074	No. 200
NTP 339.129			-		0.0	100.00	7.30	25.32	0.074	No. 200
LIMITE LIQUIDO LIMITE PLASTICO	SUELOS	IDAD DE SU	CE DE PLASTIC	STICO E INDI			ERMINAR EL L	AYO PARA DET	ETODO DE ENS	Mi
		О	IMITE PLASTIC	1			0	IMITE LIQUIDO	1	_
LL: NP LP: NP		NP	LP:			LL: NP				

Fuente: Elaborado por el laboratorio EX K VAR S.A.C

TABLA N° 82. Dosificación de la muestra N°2 de Aditivo Químico y su clasificación de suelo SUCS

	Calicata más crítica (C-01)							
DOSIFICACIÓN								
ADITIVO	Muestra 2 ^{do}	Terrasil	MUESTRA PATRON					
QUIMICO	ividestia Z	6%	94%					

		М	IETODO DE ENS	AYO PARA EL NTP 33		NULOMETRI	со		
TAMIZ	ABERT. mm. PESO RET. (g) %RET. PARC. %RET. AC. %Q'PASA				Com	Composicion granulometrica			
3 in	76.200	0.0	0.00	0.00	100.0	Com	posicion	granuloineur	ca
2 in	50.800	0.0	0.00	0.00	100.0	GRAVAS Gravas Gruesa		%	0.0
11/ in	38.500	0.0	0.00	0.00	100.0	CHCTTALS	Gravas Fina	%	2.4
1 in /	25.400	0.0	0.00	0.00	100.0	ARENAS Arenas Gruesa Arenas Media Arenas Fina		%	3.0
3/4 in	19.050	0.0	0.00	0.00	100.0			%	24.7
3/8 in	9.525	0.0	0.00	0.00	100.0			%	60.5
No. 4	4.750	7.7	2.40	2.40	97.6	FINOS	Limos y Arcillas	%	9.
No. 10	2.000	2.25	0.70	3.10	96.9	-			
No. 20	0.841	7.41	2.30	5.40	94.6			2.4 %	
No. 40	0.419	38.65	12.00	17.40	82.6				
No. 60	0.250	40.94	12.71	30.11	69.9				
No. 140	0.105	155.54	48.29	78.40	21.6			9.3 %	
No. 200	0.074	39.62	12.30	90.70	9.3	FI	INOS		
< No. 200	0.074	29.96	9.30	100.00	0.0	1		27	
М	ETODO DE ENS	SAYO PARA DE	TERMINAR EL I	AMITE LIQUID NTP 33				TIDAD DE SUELOS	
	31	LIMITE LIQUID	0				LIMITE PLASTIC	:0	
	LL:	NP					LP:	NP	
		8		INDICE DE PI	ASTICIDAD				

TABLA N° 83. Dosificación de la muestra N°3 de Aditivo Químico y su clasificación de suelo SUCS

			Calica	ata más (crítica (C	-01)			
			[DOSIFIC	CACIÓN				
ADITIVO Muestra			a 3 ^{ra}	Terrasil			MUES	TRA PATR	ON
QUIMIC	MICO 7%				93%				
		Sistema	unificad	o de clas	ificacion	de suel	os SUCS		
		M	ETODO DE ENS	SAYO PARA EL NTP 3	ANALISIS GRA 39.128	NULOMETR	ico		
TAMIZ	ABERT. mm.	PESO RET. (g)	%RET. PARC.	%RET. AC.	% Q' PASA	Con	mposicion granulometrica		rico
3 in	76.200	0.0	0.00	0.00	100.0	Con			
2 in	50.800	0.0	0.00	0.00	100.0	GRAVAS	Gravas Gruesa	%	0.
11/ in	38.500	0.0	0.00	0.00	100.0	3740718 188880	Gravas Fina	%	0.
1 in	25.400	0.0	0.00	0.00	100.0	ARENAS Arenas Media		96	6.
3/4 in	19.050	0.0	0.00	0.00	100.0			%	22
3/8 m	9.525	0.0	0.00	0.00	100.0	FRIOR	Arenas Fina	%	61.
No. 4	4.750	3.7	0.80	0.80	99.2	FINOS	Limos y Arcillas	%	- 3
No. 10 No. 20	2.000 0.841	8.22 21.92	1.80 4.80	2.60 7.40	97.4 92.6	★		0.8 %	
No. 40	0.419	30.60	6.70	14.10	85.9	Gr	CAVAS	U.5 7e	
No. 60	0.250	72.16	15.80	29.90	70.1	ARENAS		90.5 %	
No. 140	0.105	238.85	52.30	82.20	17.8	ARENAS 90.3			
No. 200	0.074	41.56	9.10	91.30	8.7	7 FINOS 8.7 %		6	
< No. 200	0.074	39.73	8.70	100.00	0.0				
M	ETODO DE EN					STICO E IND	ICE DE PLASTIC	CIDAD DE SUELOS	
		LIMITE LIQUID	0	.,,,,	37.127		LIMITE PLASTIC	co	
	LL:	NP					LP:	NP	
				INDICE DE P	LASTICIDAD NP		- 1		

Fuente: Elaborado por el laboratorio EX K VAR S.A.C

TABLA N° 84. Tabla de las muestras con sus respectivas clasificaciones de suelos SUCS.

	CAL	ICATA MÁS CRÍTICA (C - 01)								
	CLASIFICACIÓN DE SUELOS (Método S.U.C.S)									
		Terrasil	SP SM Arena							
_	Muestra 1 ^{ra}	2%	pobremente							
00			graduada con limo							
ADITIVO QUIMICO	Muestra 2 ^{da}	Terrasil	SP SM Arena							
Ø		6%	pobremente							
) -			graduada con limo							
ADI		Terrasil	SP SM Arena							
	Muestra 3 ^{ra}		pobremente							
		7%	graduada con limo							

Fuente: Elaboración propia.

La tabla N°84 se observa que todas las muestras con diferentes porcentajes del aditivo químico, nos dice que son suelos clasificados como Arenas pobremente graduada con limo SP **SM**.

Método de compactación del suelo en el laboratorio energía de compactación (56,000 ft-lbf / ft3 (2,700 kN-m / m3)) NTP 339.141

Se ejecutó el ensayo del Proctor Modificado para cada muestra con sus diferentes porcentajes de Aditivo químico con el fin de obtener los resultados de la Densidad Máxima Seca y la Humedad Optima (Optimo contenido de Humedad).

Esto se demuestra en las siguientes tablas:

TABLA N° 85. Tabla de su dosificación para determinar la densidad máxima seca y Humedad Optima de la muestra N°1.

Calicata más crítica (C-01)						
DOSIFICACIÓN						
ADITIVO	Muestra 1 ^{ra}	Terrasil	MUESTRA PATRON			
QUIMICO	Muestia i	2%	98%			

No. DE MOL	DE: VOLUMEN DEL MOLDE (Cm3):	2124 MASA DEL MOLDE (g): 6448			
1	No. Pruebras	1	2	3	4
2	Masa del molde + Suelo hamedo (g)	9902	10048	10124	10102
3	Masa del Suelo Humedo (g)		3600	3676	3654
4	Densidad Humedad (g/cm3)	1.626	1.695	1.731	1.720
	DETERMINACION DEL PORTECENTAJE DE HUMEDA	D (NTP, 339.127	(ASTM D 2216)		
5	No. Pruebras	1	2	3	4
6	Masa de Suelo Humedo + Tara (g)	402.98	485.16	466.43	528.84
7	Masa de Suelo Seco + Tara (g)	401.90	478.10	455.90	510.10
8	Masa de Tara (g.)	190.50	193.50	200.30	207.80
9	Masa de Agua (g)	1.08	7.06	10.53	18.74
10	Masa de Suelo Seco (g.)	211.40	284.60	255.60	302.30
11	Humedad %	0.51	2.48	4.12	6.20
12	Densidad Seca. (g/cm3)	1.618	1.654	1.662	1.620
	RESULTADOS FINALES				
13	Densidad Maxima Seca (g/cm3)	1.663	Humedad Optima (%)		3.71
14	Gravedad Especifica de los solidos (ASTM D 854) (ASTM C 127).	2,754	Humedad 100% de sat. (%)		23.82

TABLA N° 86. Tabla de su dosificación para determinar la densidad máxima seca y Humedad Optima de la muestra N°2.

		Calic	ata más crítica ((C-01)				
			DOSIFICACIÓN	J				
ADIT	TIVO	Muestra 2 ^{do} Terras			MUESTRA PATRON			
QUIMICO		6%			94%			
		ENSAYO PROC	TOR MODIFICADO (NTP, 3	339.141 / ASTM I	1557)			
No. DE MOLI	o. DE MOLDE: 1 VOLUMEN DEL MOLDE (Cm3):		2124	MASA DEL MO	MASA DEL MOLDE (g): 6448			
1	1 No. Pruebras		1	2	3	4		
2	2 Masa del molde + Suelo humedo (g)		9877	10014	10112	10056		
3	3 Masa del Suelo Humedo (g)		3429	3566	3664	3608		
4	4 Densidad Humedad (g/cm3)		1.614	1.679	1.725	1.699		
		DETERMINACION DEL P	ORTECENTAJE DE HUMED	AD (NTP, 339.12	27 / ASTM D 2216)			
5	5 No. Pruebras			1	2	3	4	
6	Masa de Suelo Humedo + Tara (g)		281.53	304.92	299.13	401.12		
7	7 Masa de Suelo Seco + Tara (g)		281.20	301.60	293.00	389.60		
8	8 Masa de Tara (g.)		125.60	136.40	144.20	201.40		
9	9 Masa de Agua (g)		0.33	3.32	6.13	11.52		
10	10 Masa de Suelo Seco (g.)		155.60	165.20	148.80	188.20		
11	Humedad %		0.21	2.01	4.12	6.12		
12	Densidad S	eca. (g/cm3)	1	1.611	1.646	1.657	1.601	
	-00		RESULTADOS FINALI	ES	- 10	31		
13	Densidad Maxima Seca (g/cm3)		1,660	Humedad Optima (%)		3.52		
14	Gravedad	Especifica de los solidos (ASTM	D 854) (ASTM C 127).	2.754	Humedad 100% de sat. (%)		23.93	

Fuente: Elaborado por el laboratorio EX K VAR S.A.C

TABLA N° 87. Tabla de su dosificación para determinar la densidad máxima seca y Humedad Optima de la muestra N°3.

Calicata más crítica (C-01)					
	DOSIFICACIÓN				
ADITIVO	Muestra 3ra	Terrasil	MUESTRA PATRON		
QUIMICO		7%	93%		

No. DE MOLD	E: 1 VOLUMEN DEL MOLDE (Cm3):	2124	MASA DEL MOI	DE (g): 6	448
1	No. Pruebras	1	2	3	4
2	Masa del molde + Suelo humedo (g)	9906	10091	10187	10162
3	Masa del Suelo Humedo (g)		3643	3739	3714
- 4	Densidad Humedad (g/cm3)	1.628	1.715	1.760	1.749
	DETERMINACION DEL PORTECENTAJE DE HUMEDA	D (NTP, 339.127	ASTM D 2216)		
5	No. Pruebras	1	2	3	4
6	Masa de Suelo Humedo + Tara (g)	495.48	489.02	423.25	429.70
1	Masa de Suelo Seco + Tara (g)	492.90	482.90	411.80	411.90
- 8	Masa de Tara (g.)		284.30	189.50	155.40
9	Masa de Agua (g)	2.58	6.12	11.45	17.80
10	Masa de Suelo Seco (g.)	189.60	198.60	222.30	256.50
11	Humedad %	1.36	3.08	5.15	6.94
12	Densidad Seca. (g/cm3)	1.606	1.664	1.674	1.635
	RESULTADOS FINALES	;	- 1	1	
13	Densidad Maxima Seca (g/cm3)	1.678	Humedad Optima (%)		4.39
14	Gravedad Especifica de los solidos (ASTM D 854) (ASTM C 127).	2,754	Humedad 100% de sat. (%)		23.28

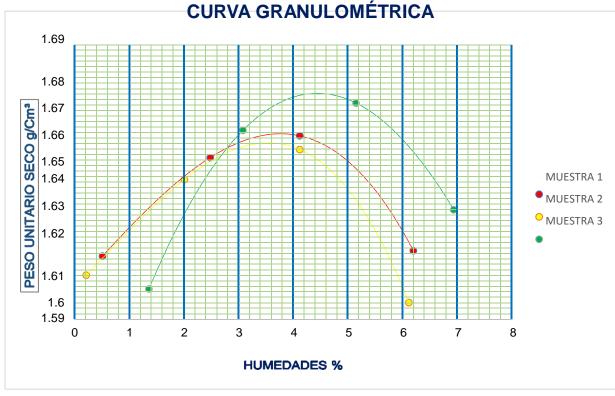


FIGURA N°21. Curva granulométrica de todas las muestras del Aditivo Terrasil

En la figura N°21 se observa la curva de compactación de cada muestra que es generado por los valores de Humedad % y Peso Unitario seco (g/cm³).

TABLA N° 88. Tabla de determinación de la Densidad Máxima seca y Optimo contenido de humedad de cada muestra.

	CAI	LICATA MÁS (CRÍTICA (C - 01)								
PROCTOR MODIFICADO											
	Muestra	Ensayo	Densidad maxima seca (g/cm³)	Óptimo contenido de humedad (%)							
ADITIVO TERRASIL	Muestra 1 ^{ra}	Terrasil 2%	1.663	3.71							
	Muestra 2 ^{da}	Terrasil 6%	1.660	3.52							
	Muestra 3 ^{ra}	Terrasil 7%	1.678	4.39							

Fuente: Elaboración propia

En la tabla N°83, se observa que la densidad máxima seca para la muestra 1 es de 1.663 g/cm³, para la muestra 2 con 1.660 g/cm³ y la muestra 3 con 1.678 g/cm³; prosiguiendo con el Optimo contenido de humedad para la muestra 1 con 3.71%, para la muestra 2 con 3.52% y la muestra 3 con 4.39%.

Standard test method for California Bearing Ratio (CBR) of laboratory-compacted soils ASTM D1883

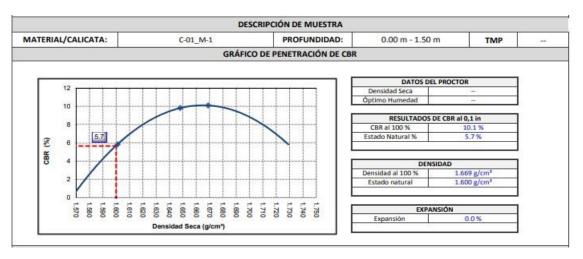

Se mostrarán el peso retenido tanto para la primera, segunda y tercera muestra, para extraer los resultados de composición granulométrica de cada una de ellas.

TABLA N° 89. Tabla de dosificación y CBR para la calicata C – 01 ensayado con aditivo terrasil más muestra patrón, muestra N°1.

			Calicata r	nás c	rítica	a (C-01	l)								
			DOS	SIFICA	ACIĆ	N									
ADITIVO	Muz	estra 1'	·a	Ter	rasil			MUESTRA PATRON							
QUIMICO	IVICE	colla i		2%					98%						
-		No.	DES	CRIPCIÓN	DE MUE	STRA									
MATERIAL/CALIC	ATA:		C-01_M-1		PROFUN	DIDAD:		0.00 m -	1.50 m		TMP	52			
			ENS	AYO CBR	ASTM D	1883									
Molde Nº			. 4					5		y.	7	N.			
№ Capa			5					5			5				
Golpes por capa Nº			5	7				5	100		10	7.			
Condición de la muestra			NO SATURADO	SATURA		NO SATURA	ADO	SATU		NO SAT	700000000000000000000000000000000000000		RADO		
Peso molde + Suelo húme	do		11630	1226	200	11141		118	2000	100	57570		696		
Peso de molde (g)			8012	801	- 0	7547		75	100	65	700		21		
Peso del suelo húmedo (g))		3618	425	7/3	3594	-	42		3489				- 0.00	75
Volumen del molde (cm³)			2109	210		2132	-	21		100	2116		16		
Densidad húmeda (g/cm³)			1.716	2.01	-	1.686	-	2.0		1.6	-		973		
% de humedad			2.81 1.669	20.4		2.31 1.648		21.	200	3.0			.71		
Densidad seca (g/cm ⁸)			1.009	1.07	0	1.048	-	1.6		1.6	50.50	2070	008		
Densidad Máxima Laborat	torio (g/cm²)		55	25		33		5		1	170		400		5
Tarro Nº				2	- 4			8		100	- 1				
Tarro + Suelo húmedo (g)			505.10	560.7	70	633.50	rii.	726	.80	915	.90	656	5.40		
Tarro + Suelo seco (g)			497.50	499.3	-	622.70	18	635	.90	897	.70	576	5.70		
Peso del Agua (g)			7.60	61.4	0	10.80		90.	90	18.	20	79	.70		
Peso del tarro (g)			227.10	198.5	50	155.50		220	.60	297	.30	225	5.80		
Peso del suelo seco (g)			270.40	300.8	80	467.20	Ď.	415	.30	600	.40	350	0.90		
% de humedad			2.8	20.4	4	2.3		21	.9	3.	0	22	2.7		
Promedio de Humedad (%	5)		e .					2							
	100			EXPAN	ISIÓN					.00	10				
FECHA	HORA	TIEMPO	DIAL	EXPANS		DIAL		EXPAN		DI	AL		NSIÓN		
		h		mm	%			mm	%			mm	%		
Sub Total Total				X 8		0.0 %	-								

Fuente: Elaborado por el laboratorio EX K VAR S.A.C

TABLA N° 90. Gráfico de penetración de CBR muestra N°1.

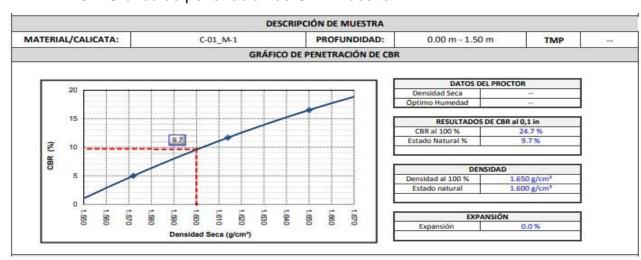

Fuente: Elaborado por el laboratorio EX K VAR S.A.C

TABLA N° 91. Tabla de dosificación y CBR para la calicata C – 01 ensayado con aditivo terrasil más muestra patrón, muestra N°2.

		(Calicata r	nás c	rítica	(C-01)								
			DOS	SIFICA	ACIÓ	N								
ADITIVO	Mu	estra 2º	lo	Te	errasi	il	MUESTRA PATRON							
QUIMICO	iviut	5311a Z			6%		94%							
			D	ESCRIPCIÓ	N DE MU	ESTRA						l		
MATERIAL/CALICA	TA:		C-01_M-1		PROFU	NDIDAD:	0.00 m	- 1.50 m		TMP		_		
				NSAYO CB	R ASTM I	1883				3333				
Molde Nº			1	10			11		Ti .	1	,			
Nº Capa			2	5			5		15	5				
Golpes por capa Nº				56			25		1	10				
Condición de la muestra			NO SATURADO	SATU	JRADO	NO SATURADO	SATU	RADO	NO SAT	URADO	SATU	RADO		
Peso molde + Suelo húmed	0		10172	10	1697	11415	12	033	11	435		000		
Peso de molde (g)			6562	6	562	7860	71	360	79	993	79	993		
Peso del suelo húmedo (g)	į.		3610	4	135	3555	4:	173	3442		125,777		40	007
Volumen del molde (cm³)			2117	2	117	2132	2	32	2119		- 1337	119		
Densidad húmeda (g/cm³)			1.705	1	953	1.667	1.7	957	1.624		1.1	891		
% de humedad			3.32	_	5.81	3.27	-	.21	-	28		.3B		
Densidad seca (g/cm ^k)			1.650		672	1.614		528		572		584		
Densidad Máxima Laborato	rio (g/cm³)			41 634		-	-	-	2000					
Deliasa Hamila Escarata	187 7		9		1963				19	6 8		100		
Tarro Nº														
Tarro + Suelo húmedo (g)			753.30	71	5.00	676.30	75	7.40	62	1.00	72	3.70		
Tarro + Suelo seco (g)			736.50	64	4.50	664.70	-	2.60	600	3.50	643	2.00		
Peso del Agua (g)			16.80	70	0.50	11.60	74	.80	12	50	81	.70		
Peso del tarro (g)			231.10	22	5.10	309.80	31	2.50	22	7.20	220	0.50		
Peso del suelo seco (g)			505.40	41	9.40	354.90	37	0.10	38:	1.30	42	1.50		
% de humedad			3.3	1	6.8	3.3	2	0.2	3	.3	19	9.4		
Promedio de Humedad (%)				33			10	N 5-1-2	33	9	- 12			
			-	EXP	ANSIÓN	-	-		-					
		TIEMPO		EXPA	NSIÓN		EXPA	NSIÓN	T		EXPA	NSIÓN		
FECHA	HORA	h	DIAL	mm	%	DIAL	mm	%	Di	AL	mm	%		
Sub Total														
Total						0.0 %								

Fuente: Elaborado por el laboratorio EX K VAR S.A.C

TABLA N° 92. Gráfico de penetración de CBR muestra N°2.

Fuente: Elaborado por el laboratorio EX K VAR S.A.C

TABLA N° 93. Tabla de dosificación y CBR para la calicata C – 01 ensayado con aditivo terrasil más muestra patrón, muestra N°3.

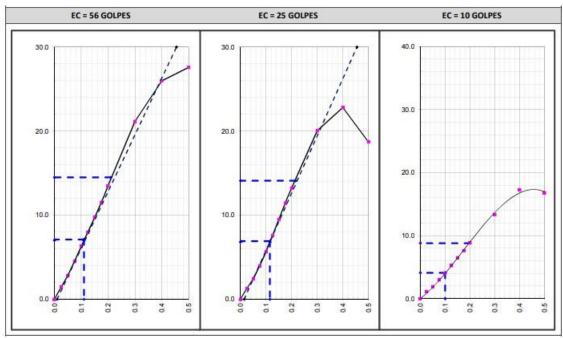
			Calicata r	más	crític	a (C-01))						
			DOS	SIFIC	CACI	ÓN							
ADITIVO	Mu	estra 3	} ra	T	erra	sil		MUES	TRA	PAT	RON		
QUIMICO					7%			93%					
		14	DE	DESCRIPCIÓN DE MUESTRA									
MATERIAL/CALICA	TA:		C-01_M-1		PROFU	NDIDAD:	0.00	m - 1.50 m		TMP	- 1		
			EN	SAYO CB	R ASTM	1883							
Molde Nº			1	4		1	15		1	2	1		
№ Capa				5			5		Ü	5			
Golpes por capa №			5	6			25		ñ	1	0		
Condición de la muestra			NO SATURADO	SATU	RADO	NO SATURAD	O SA	TURADO	NO SAT	TURADO	SATU	RADO	
Peso molde + Suelo húmed	0		11890	12	454	11510		12061	11	074	110	656	
Peso de molde (g)			8250	8.	250	8020		8020	7	7632 763		32	
Peso del suelo húmedo (g)			3640	4204		3490	- 165	4041		442	402		
Volumen del molde (cm³)			2113	2	113	2113		2113	2	116	21	116	
Densidad húmeda (g/cm³)	}		1.723	1.	990	1.652		1.912	1.	627	1.9	902	
% de humedad			3.39	18	3.90	3.27	1	19.09	3	.52	20	.39	
Densidad seca (g/cm³)			1.667	1.674		1.600	-	1.606	1.	572	1.5	580	
Densidad Máxima Laborato	orio (g/cm²)		75	1 8	# .	-		#5		m i	- 8		
Tarro Nº			E			1	-			- 3			
Tarro + Suelo húmedo (g)			767.50	60	6.50	798.00	-	859.60	90	2.30	91/	4.40	
Tarro + Suelo seco (g)			752.40	0.000	0.90	779.90	-	771.90	2 175	1.70	77.5	0.10	
Peso del Agua (g)			15.10	100	5.60	18.10	-	87.70		0.60		4.30	
Peso del tarro (g)			306.90		0.80	227.10	- 10	312.50	-	7.20		8.60	
Peso del suelo seco (g)			445.50	4	0.10	552.80		459.40	4 177	4.50		1.50	
% de humedad			3.4	225	8.9	3.3		19.1	New York	3.5	1000	0.4	
Promedio de Humedad (%)			2.7		0.7	3.3	16				-		
r romedio de Humedau (76)			1	EVO	ANSIÓN				1				
6	_	TIEMPO	T	2.7	NSIÓN	T	EV	PANSIÓN	_		EXPA	NSIÓN	
FECHA	HORA	h	DIAL	mm	%	DIAL	mn		D	IAL	mm	%	
S .													
Sub Total			2				1 2	-	6				
Total						0.0 %							

Fuente: Elaborado por el laboratorio EX K VAR S.A.C

TABLA Nº 94. Gráfico de penetración de CBR muestra Nº3.

Fuente: Elaborado por el laboratorio EX K VAR S.A.C

En las siguientes tablas se observarán los golpes para cada molde de diferentes muestras:


TABLA N° 95. Tabla de Dosificación y Penetración de la muestra N°1 con el aditivo terrasil.

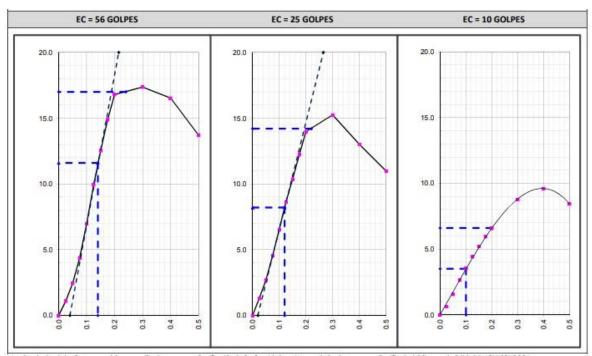
	Calicata más crítica (C-01)										
		DOSIFICACIÓN									
ADITIVO	Muestra 1 ^{ra}	Terrasil	MUESTRA PATRON								
QUIMICO	ividestia i	2%	98%								

				PENET	RACIÓN								
	CARGA		MOLE	DE N° 4			MOLE	E N" 5		MOLDE N° 7			
PENETRACIÓN (in)	STAND.	CA	CARGA		CORRECCIÓN		CARGA		CCIÓN	CARGA		CORRECCIÓN	
(in)	kg/cm²	kg-f	kg/cm²	kg/cm²	%	kg-f	kg/cm²	kg/cm²	%	kg-f	kg/cm²	kg/cm²	%
0.000	- U	0.0	0.0			0.0	0.0			0.0	0.0		
0.025		27.8	1.4			25.1	1.3)		21.1	1.1		
0.050		54.6	2.8			46.6	2.4	0	1 1	36.9	1.9		
0.075		87.1	4.5	i		76.7	4.0			57.3	3.0		
0.100	70	121.7	6.3	7.1	10.1	109.3	5.7	6.9	9.8	78.8	4.1	4.1	5.8
0.125	14	154.2	8.0	- 20		146.1	7,6	0.	45 3	101.5	5.3		0
0.150	18	188.7	9.8	- 8		183.6	9.5			125.3	6.5		3
0.175	3	222.5	11.5			220.8	11.4			147.5	7.6		
0.200	105	260.7	13.5	14.5	13.8	255.7	13.2	14.1	13.4	170.9	8.8	8.8	8.4
0.300		408.5	21.1			387.4	20.1	0		257.7	13.3		
0.400		502.0	26.0			440.7	22.8	Ĩ		333.1	17.2		
0.500	100	532.8	27.6			361.6	18.7	87	7	324.7	16.8		

Fuente: Elaborado por el laboratorio EX K VAR S.A.C

TABLA N° 96. Tabla de golpes por cada molde de la muestra N°1.

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.


TABLA N° 97. Tabla de Dosificación y Penetración de la muestra N°2 con el aditivo terrasil

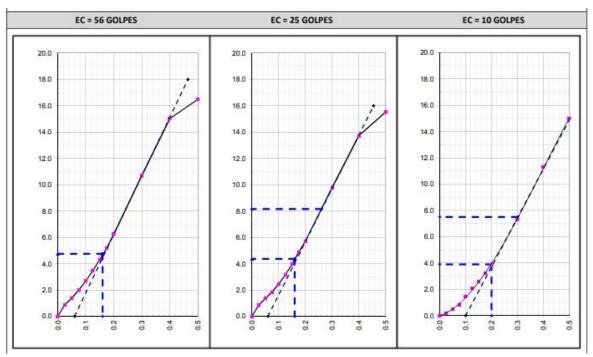
	Calicata más crítica (C-01)										
	DOSIFICACIÓN										
ADITIVO	Muestra 2 ^{do}	Terrasil	MUESTRA PATRON								
QUIMICO	Widestia Z	6%	94%								

				PENET	RACIÓN								
	CARGA	1	MOLD	E N° 10		MOLDE N* 11				MOLDE N° 12			
PENETRACIÓN (in)	STAND.	CARGA		CORRECCIÓN		CARGA		CORRECCIÓN		CARGA		CORRECCIÓN	
(my	kg/cm²	kg-f	kg/cm²	kg/cm²	%	kg-f	kg/cm ²	kg/cm²	%	kg-f	kg/cm ²	kg/cm²	%
0.000		0.0	0.0		- 1	0.0	0.0			0.0	0.0		
0.025		20.9	1.1	J		25.0	1.3		į.	12.1	0.6		
0.050		47.0	2.4			51.9	2.7		0	30.1	1.6		
0.075		84.5	4.4			87.7	4.5		0	50.8	2.6		
0.100	70	134.7	7.0	11.6	16.5	126.3	6.5	8.2	11.7	67.9	3.5	3.5	5.0
0.125		191.6	9.9		-	166.7	8.6			85.4	4.4	1	
0.150	0.	242.1	12.5	S 9	- 2	200.0	10.4	3	2	100.7	5.2		-
0.175	8	287.5	14.9		- 8	236.0	12.2			114.8	5.9		
0.200	105	324.5	16.8	17.0	16.2	270.1	14.0	14.2	13.5	126.9	6.6	6.6	6.3
0.300		335.4	17.4			294.6	15.2)	169.1	8.8		
0.400		319.4	16.5			251.3	13.0		Ĵ	185.5	9.6		
0.500	100	265.0	13.7	77		212.3	11.0		10	163.1	8.4	1	

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

TABLA N° 98. Tabla de golpes por cada molde de la muestra N°2

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.


TABLA N° 99. Tabla de Dosificación y Penetración de la muestra N°3 con el aditivo terrasil

	Calicata más crítica (C-01)											
	DOSIFICACIÓN											
ADITIVO	Muestra 3 ^{ra}	Terrasil	MUESTRA PATRON									
QUIMICO		7%	93%									

				PENET	RACIÓN								
	CARGA	ľ	MOLD	E N" 14		MOLDE N° 15					MOLD	E N" 21	
PENETRACIÓN (in)	STAND.	CARGA		CORRECCIÓN		CA	RGA	CORRECCIÓN		CARGA		CORRECCIÓN	
(my	kg/cm²	kg-f	kg/cm²	kg/cm²	%	kg-f	kg/cm²	kg/cm²	%	kg-f	kg/cm²	kg/cm²	96
0.000		0.0	0.0	§ §		0.0	0.0		9	0.0	0.0	- 8	
0.025	4.	16.8	0.9	6 G		16.1	0.8		Į.	3.7	0.2		
0.050		26.8	1.4			26.1	1.4			9.4	0.5		
0.075		38.2	2.0	0 0	1	35.5	1.8			16.1	0.8		
0.100	70	51.6	2.7	4.8	6.8	47.3	2.4	4.4	6.2	28.2	1.5	3.9	5.
0.125	17	66.7	3.5	8 6		60.7	3.1			40.2	2.1		
0.150	13	83.4	4.3	2 2		76.4	4.0	9	.5	49.9	2.6	- 3	
0.175		100.2	5.2	§ 3	- 0	93.8	4.9		Q.	62.3	3.2	- 8	
0.200	105	120.3	6.2	28.5	27.1	110.3	5.7	8.2	7.8	74.1	3.8	7.5	7.
0.300		206.4	10.7			189.0	9.8			141.1	7.3		-
0.400		290.2	15.0			265.1	13.7			218.9	11.3		
0.500		318.4	16.5		7	299.6	15.5			289.8	15.0		

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

TABLA N° 100. Tabla de golpes por cada molde de la muestra N°3.

Fuente: Elaborado por el laboratorio EX K VAR S.A.C.

DISEÑO DEL PAVIMENTO FLEXIBLE MÉTODO AASTHO 1993

Zona de estudio:

DEPARTAMENTO	LIMA	AÑO ACTUAL	2021
PROVINCIA	LIMA	MES	SETIEMBRE
DISTRITO	CHORRILLOS	PEAJE (Mas cercano)	CHILCA
PRERIODO DE DISEÑO	20 años	TIEMPO DE ESTUDIO MAS CONSTRUCCIÓN	4 años

TABLA N° 101. Resumen de los conteos de tránsito a nivel del día y tipo de vehículo

	VE	HÍCULO	S LIVIA	ANOS		V	EHÍCU	LOS PE	SADO	S
Días	Automóvil	Station Wagon	Pikup	Panel	C. Rural	Micro	Bus 2E	>=3 E	2 E	TOTAL
LUNES	146	95	50	167	200	57	29	52	41	744
MARTES	146	97	49	163	198	59	32	51	40	744
MIÉRCOLES	150	91	50	167	195	66	29	52	39	748
JUEVES	148	96	51	162	200	64	32	53	43	753
VIERNES	156	99	46	160	197	61	29	41	40	748
SÁBADO	151	100	46	170	196	62	29	49	42	754
DOMINGO	164	92	49	172	203	81	36	39	39	797
TOTAL	1061	670	341	1161	1389	450	216	337	284	5909

Fuente: Elaboración propia

FIGURA N°22. N° de vehículos / día

Determinar los factores de corrección estacional de una estación de peaje cercano al a zona de estudio

Factor de corrección estacional para vehículos livianos

F.C.E. Vehículos ligeros:	1.504617

Ver anexo N° 33 de factor de corrección estacional para vehículos livianos

Factor de corrección estacional para vehículos pesados

Ver anexo N° 34 de factor de corrección estacional para vehículos pesados

Índice medio diario semanal (IMDS)

$$IMD_{S} = \frac{(\sum Vi)}{7}$$

Índice medio diario anual (IMDA)

$$IMD_A = IMD_S * FC$$

Donde: IMDS = Índice Medio Diario Semanal de la Muestra Vehicular

Tomada

IMDA = Índice Medio Anual

Vi = Volumen Vehicular diario de cada uno de los días de conteo

FC = Factores de Corrección Estacional

TABLA Nº 102. Cálculos del IMDS Y IMDA 2021

	VEHÍCULOS LIVIANOS						VEHÍCULOS PESADOS			
	automóvil	Station Wagon	Pikup	Panel	C. Rural	Micro	Bus 2E	>=3 E	2 E	TOTAL
IMDS	151.571	95.714	48.714	165.857	198.429	64.286	30.857	48.143	40.571	755.429
FC	1.505	1.505	1.505	1.505	1.505	0.999	0.999	0.999	0.999	
IMDA 2021	229	145	74	250	299	65	31	49	41	1183
DISTRIBUCIÓN (%)	19.4	12.3	6.3	21.1	25.3	5.5	2.6	4.1	3.5	100.0

Fuente: Elaboración propia

Demanda Proyectada desde el tiempo de estudio hasta la ejecución de la obra

Donde: Tn = Tránsito proyectado al año "n" en veh/día

T0 = Tránsito actual (año base) en veh/día

n = año futuro de proyección

r = tasa anual de crecimiento de tránsito

TABLA Nº 103. IMDA para el año 2021

		TRÁNSITO ACTUAL (AÑO BASE) veh/día										
	VI	EHÍCUL	OS LIV	'IANO	VEH	ÍCULO:	S PESA	DOS				
TIPO DE VEHÍCULO	automóvil	Station Wagon	Pikup	Panel	C. Rural	Micro	Bus 2E	>=3 E	2 E	TOTAL		
IMDA 2021	229	145	74	250	299	65	31	49	41	1183		

Fuente: Elaboración propia

año futuro de proyección (n)

n = 4 años

Tasa de Crecimiento x Región en Lima (r %)

Vehículos para pasajeros o vehículos livianos

$$r(vp) = 1.45\%$$

Ver anexo N° 35 Tasa de Crecimiento Anual de la Población

Vehículos de carga o vehículos pesados

$$R(vc) = 3.69\%$$

Ver anexo N° 35 Tasa de Crecimiento Anual del PBI Regional (Lima)

TABLA Nº 104. Proyección de tráfico para 4 años

	PROYECCIÓN DE TRÁFICO PARA 4 AÑOS										
	VE	HÍCULO	S LIVIA	VEHÍC	ULOS	PESA	ADOS				
	automóvil	nutomóvil Station Wagon Pikup Panel C. Rural					Bus 2E	>=3 E	2 E	TOTAL	
AÑO 2021	229	145	74	250	299	65	31	49	41	1093	
AÑO 2022	229	145	74	250	299	65	31	49	41	1093	
AÑO 2023	232	147	75	254	303	67	32	51	43	1111	
AÑO 2024	236	149	76	257	308	70	33	53	44	1129	
AÑO 2025	239	151	77	261	312	72	35	55	46	1248	

FIGURA N°23. Proyección de tráfico para 4 años

TABLA N° 105. Fórmulas para calcular los ejes equivalentes (pavimentos flexibles)

Tipo de Eje	Eje Equivalente (EE _{8.2 ton})
Eje Simple de ruedas simples (EEs1)	EE _{S1} = [P / 6.6] ^{4.0}
Eje Simple de ruedas dobles (EEs2)	EE _{S2} = [P / 8.2] ^{4.0}
Eje Tandem (1 eje ruedas dobles + 1 eje rueda simple) (EE _{TA1})	EE _{TA1} = [P / 14.8] ^{4.0}
Eje Tandem (2 ejes de ruedas dobles) (EE _{TA2})	EE _{TA2} = [P / 15.1] ^{4.0}
Ejes Tridem (2 ejes ruedas dobles + 1 eje rueda simple) (EE _{TR1})	EE _{TR1} = [P / 20.7] ^{3.9}
Ejes Tridem (3 ejes de ruedas dobles) (EE _{TR2})	EE _{TR2} = [P / 21.8] ^{3.9}
P = peso real por eje en tonelada	s

Fuente: Elaborado por el M.T.C.

Conjunto de Eje (s)	Nomenclatura	Nº de Neumáticos	Grafico
EJE SIMPLE (Con Rueda Simple)	1RS	02	
EJE SIMPLE (Con Rueda Doble)	1RD	04	
EJE TANDEM (1 Eje Rueda Simple + 1 Eje Rueda Doble)	1RS + 1RD	06	
EJE TANDEM (2 Ejes Rueda Doble)	2RD	08	
EJE TRIDEM (1 Rueda Simple + 2 Ejes Rueda Doble)	1RS + 2RD	10	
EJE TRIDEM (3 Ejes Rueda Doble)	3RD	12	

FIGURA N°24. Conjunto de ejes y numero de neumáticos

TABLA N° 106. Cálculo de los ejes equivalentes

TIPO DE VEH	TIPO DE VEHÍCULO		TIPO EJE	NÚMERO	CARGA	f	f. IMDA
			EJE	LLANTAS	EJE Tn	EE (8.2 Tn)	FLEXIBLE
	AUTOS	239	SIMPLE	2	1	0.000527	0.1260
		239	SIMPLE	2	1	0.000527	0.1260
VEHÍCULOS LIGEROS	STATIÓN	151	SIMPLE	2	1	0.000527	0.0798
	WAGON	151	SIMPLE	2	1	0.000527	0.0798
	PIK UP	77	SIMPLE	2	1	0.000527	0.0407

					Σf. IN	/IDA total	506.45
		46	SIMPLE	4	11	3.238287	148.0281
CAMIÓN	2 E	46	SIMPLE	2	7	1.265367	57.84225
		55	SIMPLE	6	16	1.365945	74.62324
	>=3 E	55	SIMPLE	2	7	1.265367	69.12855
OMNIBUS		35	SIMPLE	4	11	3.238287	111.9237
	2E	35	SIMPLE	2	7	1.265367	43.7344
		72	SIMPLE	2	1	0.000527	0.0382
	MICROS	72	SIMPLE	2	1	0.000527	0.0382
		312	SIMPLE	2	1	0.000527	0.1645
	COMBI RURAL	312	SIMPLE	2	1	0.000527	0.1645
		261	SIMPLE	2	1	0.000527	0.1376
	PANEL	261	SIMPLE	2	1	0.000527	0.1376
		77	SIMPLE	2	1	0.000527	0.0407

Factor Crecimiento Acumulado (Fca)

$$\frac{1 + \sqrt{1 - 1}}{\sqrt{1 + 1}}$$

Donde:

r = Tasa anual de crecimiento

r=3.69%

n = Período de diseño n= 20 años

n= 20 años = 28.84

$$\frac{(1+3.69\%)^{20}-1}{3.69\%} = 28.84$$

$$(1+0.0369)^{20}-1$$

$$\frac{(1+0.0369)^{20}-1}{0.0369}$$

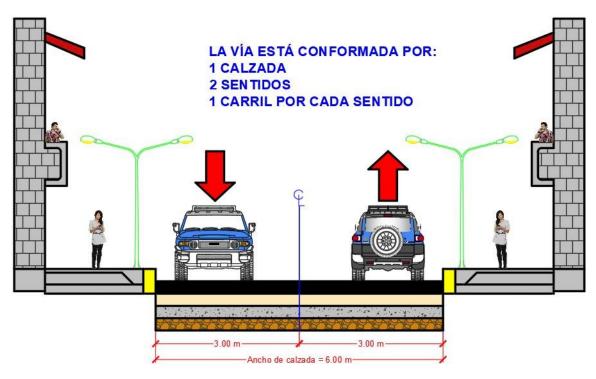


FIGURA N°25. Vista de sección transversal de la vía

TABLA N° 107. Factores de Distribución Direccional y de Carril

Número de calzadas	Número de sentidos	Número de carriles por sentido	Factor Direccional (Fd)	Factor Carril (Fc)	Factor Ponderado Fd x Fc para carril de diseño
	1 sentido	1	1.00	1.00	1.00
1 calzada	1 sentido	2	1.00	0.80	0.80
(nava IMDa tatal da	1 sentido	3	1.00	0.60	0.60
(para IMDa total de	1 sentido	4	1.00	0.50	0.50
la calzada)	2 sentidos	1	0.50	1.00	0.50
	2 sentidos	2	0.50	0.80	0.40
2 calzadas con	2 sentidos	1	0.50	1.00	0.50
separador central	2 sentidos	2	0.50	0.80	0.40
	2 sentidos	3	0.50	0.60	0.30
(para IMDa total de las dos calzadas)	2 sentidos	4	0.50	0.50	0.25

Fuente: Elaborado por el M.T.C.

Factor direccional (Fd) = 0.50

Factor carril (Fc) = 1.00

Factor direccional * factor carril (Fd*Fc) = 0.50

Cálculo del ESAL que se encuentra expresado en los ejes equivalentes

Datos

$$6660 = (50.45)$$

******** 28.84

FIGURA N°26. IMDA para un pedio de diseño de 20 años (2025-2045)

Fuente: Elaboración propia

IMDA 2045

IMDA 2045 = IMDA 2025 x 365 x FCA

IMDA 2045 = 1 183 veh/día x 365 x 28.84

IMDA 2045= 13 144 631 Veh/día

DISEÑO DEL PAVIMENTO FLEXIBLE MÉTODO AASTHO 1993

Subrasante sin estabilizar: CBR = 4%

Uno de los requisitos indispensable para realizar el diseño del pavimento flexible es tener el C.B.R. (California Bearing Ratio) de la subrasante mayor igual al 6%, sin embargo, este diseño se realizó con un C.B.R. menor a lo estipulado en las normas peruanas de carreteras, con fines de hacer una comparación con otros diseños con subrasante estabilizada con residuos orgánicos y con aditivo terrasil

Formula General de AASHTO

$$\frac{662(\frac{\Delta P}{\bullet})}{(4.2 - 1.5)}$$

$$+ 2.32. 66262 - 8.07$$

Fuente: Elaborado por el GUÍA AASTHO.

LOG (W₁₈) = NÚMERO DE EJES EQUIVALENTES TOTAL

ZR = DESVIACIÓN ESTÁNDAR NORMAL

S₀ = DESVIACIÓN ESTÁNDAR COMBINADA

SN = NÚMERO ESTRUCTURAL

ΔPSI = ÍNDICE DE SERVICIABILIDAD

PI = SERVICIABILIDAD INICIAL

PT = SERVICIABILIDAD FINAL

MR = MÓDULO DE RESILIENTE

LOG (W₁₈) = NÚMERO DE EJES EQUIVALENTES TOTAL

W (18) = 2 666 210 psi

TABLA Nº 108. Nivel de confiabilidad para una sola etapa de diseño

	Niveles de confiabilidad				
Clasificación	Recomendado				
	Urbana	Rural			
Autopistas interestatales	85.0 - 99.9	80.0 - 99.9			
Arterias principales	80.0 – 99.9	75.0 – 95.0			
Colectoras de tránsito	80.0 – 95.0	75.0 – 95.0			
Carreteras locales	50.0 - 80.0	50.0 - 80.0			

Fuente: Elaborado por CE.010 pavimentos urbanos

Para el presente Estudio, por ser una vía urbana; le corresponde una confiabilidad que varía de 80% - 95%

TABLA N° 109. Valores recomendados de nivel de Confiabilidad Para una sola etapa de diseño (10 o 20 años) según rango de Tráfico

TIPO DE CAMINOS	TRÁFIC O	-	VALENTES JLADOS	NIVEL DE CONFIABILIDAD (R)
	TP0	75,000.00	150,000.00	65%
Bajo de o	TP1	150,001.00	300,000.00	70%
minos de Volumen (Tránsito	TP2	300,001.00	500,000.00	75%
Caminos Volum Trán	TP3	500,001.00	750,000.00	80%
	TP4	750,001.00	1,000,000.00	80%
o de inos	TP5	1,000,001.00	1,500,000.00	85%
Resto de Caminos	TP6	1,500,001.00	3,000,000.00	<mark>85%</mark>

Fuente: Elaborado por el manual de carreteras sección suelos y pavimentos

La confiabilidad de adoptó teniendo en cuenta los ejes equivalentes. En nuestra investigación contamos con 2,666,210 EE

➤ Confiabilidad adoptada es R = 85%

TABLA Nº 110. Desviación estándar normal

R	Z _R
Nivel de Confiabilidad	Desviación Standard
75	-0.674
80	-0.841
<mark>85</mark>	<mark>-1.037</mark>
90	-1.282
91	-1.34
92	-1.405
93	-1.476
94	-1.555
95	-1.645
96	-1.751
97	-1.881
99.9	-3.750

Fuente: Elaborado por CE.010 pavimentos urbanos

 \triangleright Se adopta un: R = 85 %.

> ZR = -1.037

Desviación estándar combinada (S₀)

Guía AASHTO recomienda adoptar para los pavimentos flexibles, valores de S_{o} comprendidos entre 0.40 y 0.50, en el presente Manual se adopta para los diseños recomendados el valor de 0.45.

 $S_0 = 0.45$.

TABLA N° 111. Índice de Serviciabilidad ΔPSI

Índice de servicio	Calificación		
5	Excelente		
4	Muy bueno		
3	Bueno		
2	Regular		
1	Malo		
0	Intransitable		

Fuente: Elaborado por el manual de carreteras sección suelos y pavimentos

Su valor varía de 0 a 5. Un valor de 5 refleja la mejor comodidad teórica (difícil de alcanzar) y por el contrario un valor de 0 refleja el peor. Cuando la condición de la vía decrece por deterioro, el PSI también decrece.

$$A \Leftrightarrow P \Leftrightarrow P \Leftrightarrow \triangle P \Leftrightarrow \triangle P = 4 - 2.5 = 1.5$$

TABLA N° 112. Serviciabilidad inicial pi

TIPO DE CAMINOS	TRÁFICO	EJES EQUIVALENT	ES ACUMULADOS	Δ INICIAL (P _i)
0	TP0	75,000.00	150,000.00	3.8
e Bajc de o	TP1	150,001.00	300,000.00	3.8
ninos de olumen c Tránsito	TP2	300,001.00	500,000.00	3.8
Caminos de Bajo Volumen de Tránsito	TP3	500,001.00	750,000.00	3.8
0	TP4	750,001.00	1,000,000.00	3.8
Resto de Caminos	TP5	1,000,001.00	1,500,000.00	4
Resto	TP6	1,500,001.00	3,000,000.00	4

Fuente: Elaborado por el manual de carreteras sección suelos y pavimentos

TABLA N° 113. Serviciabilidad final pt

TIPO DE CAMINOS	TRÁFICO	EJES EQUIVALENT	Δ FINAL (P _T)	
0	TP0	75,000.00	150,000.00	2.00
Bajo de o	TP1	150,001.00	300,000.00	2.00
minos de Volumen Tránsito	TP2	300,001.00	500,000.00	2.00
Caminos de Bajo Volumen de Tránsito	TP3	500,001.00	750,000.00	2.00
	TP4	750,001.00	1,000,000.00	2.00
o de nos	TP5	1,000,001.00	1,500,000.00	2.50
Resto de Caminos	TP6	1,500,001.00	3,000,000.00	<mark>2.50</mark>

Fuente: Elaborado por el manual de carreteras sección suelos y pavimentos

Módulo de resiliencia de la subrasante (m_r.)

Fórmula para hallar el módulo de resiliencia de la subrasante para suelo de fundación

$$2555 200^{0.64}$$

Fuente: manual de carreteras

CBR (subrasante) = 4 %.

1. SN = NÚMERO ESTRUCTURAL

$$SN = a1 \times d1 + a2 \times d2 \times m2 + a3 \times d3 \times m3$$

Donde:

a1, a2, a3 = coeficientes estructurales de las capas: superficial, base y subbase, respectivamente

d1, d2, d3 = espesores (en centímetros) de las capas: superficial, base y subbase, respectivamente

$$\mathbf{\hat{q}}\mathbf{\hat{q}} + \mathbf{\hat{q}}\mathbf{\hat{q}}\mathbf{\hat{q}} \gg \mathbf{\hat{q}}\mathbf{\hat{q}}\mathbf{\hat{q}}$$

m2, **m3** = coeficientes de drenaje para las capas de base y subbase, respectivamente

MODULO DE RESILIENCIA CARPETA ASFATICA (Mr.)

Tomando como módulo de elasticidad de la mezcla asfáltica E= 450 000 psi

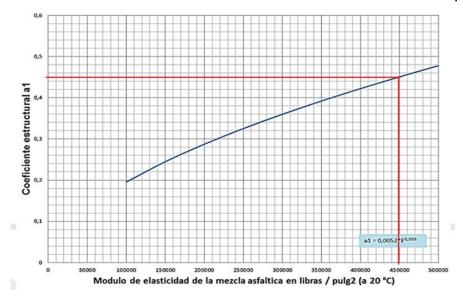


FIGURA N°27. Módulo de resiliencia de la carpeta asfáltica Mr

Fuente: Elaborado por la guía AASHTO

MODULO DE RESILIENCIA BASE GRANULAR (MR.)

De acuerdo al manual de carreteras vigente en nuestro país el material usado para la construcción de la capa utilizada como base granular el valor CBR de ser ≥ 80 %.

Asumimos un valor CBR ≥ 80 %

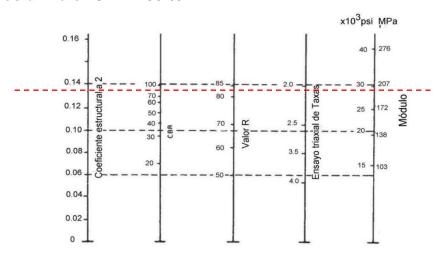


FIGURA N°28. Abaco para calcular el a1 y Mr(base)

Fuente: Elaborado por la guía AASHTO

Cálculo del coeficiente estructural de la base (a2)

MODULO DE RESILIENCIA SUBBASE GRANULAR (Mr.)

De acuerdo al manual de carreteras vigente en nuestro país el material usado para la construcción de la capa utilizada como sub base granular el valor CBR de ser ≥ 40 %

Asumimos un valor CBR ≥ 40 %

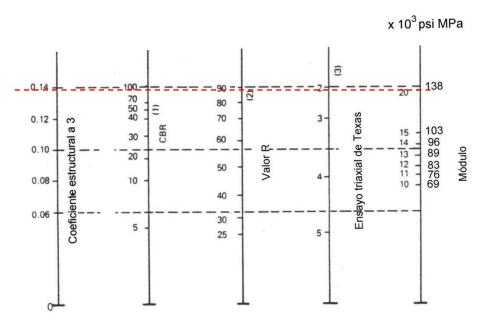


FIGURA N°29. Abaco para calcular el a2 y Mr(Sub Base)

Fuente: Elaborado por la guía AASHTO

Cálculo del coeficiente estructural (a3)

TABLA N° 114. Coeficientes estructurales

Coeficiente estructural	Valores estimados / pul.		
Concreto asfáltico	a1 0.440		
Base Granular	a2	0.134	
Sub Base Granular	а3	0.120	

TABLA N° 115. Coeficientes de drenajes (cd)

Calidad	Término	% de Tiempo de exposición de la estructura del pavimento a nivel de Humedad próximos a la			
Drenaje	Remoción	pavimento a nivel de Humedad proximos a saturación			
Dienaje	de agua	< 1%	< 1% 1 - 5% 5 -2 5%		
Excelente	2 horas	1.40 – 1.35	1.35 - 1.30	1.30 – 1.20	1.20
Buena	1 día	1.35 – 1.25	1.25 – 1.15	1.15 – 1.00	1.00
Aceptable	1 semana	1.25 – 1.15	1.15 – 1.05	1.00 - 0.80	0.80
Pobre	1 mes	1.15 – 1.05	1.05 – 0.80	0.80 - 0.60	0.60
Muy Pobre	El agua no drena	1.05 – 0.95	0.95 – 0.75	0.75 – 0.40	0.40

Fuente: Guía de Diseño de Estructuras de Pavimentos AASHTO - 1993

En base a las condiciones particulares del proyecto, tales como la topografía donde se desarrolla la vía, las precipitaciones pluviales anuales medias y suelo con permeabilidad media, se estima que el tiempo de exposición de la estructura a nivel de humedad próxima a la saturación es del orden de 1 a 5%, es así que los coeficientes de drenaje son:

El manual de suelos y pavimentos recomienda utilizar el coeficiente de drenaje de 1%

Cd = 1.10 %

m1 = 1.10 %

m2 = 1.10 %

Cálculo del número estructural mediante el software ECUACIONES AASHTO 93

Carpeta asfáltica (SN)

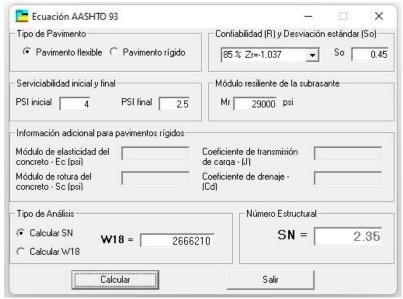


FIGURA N°30. Cálculo del SN1

Fuente: Elaboración propia

Base granular (SN)

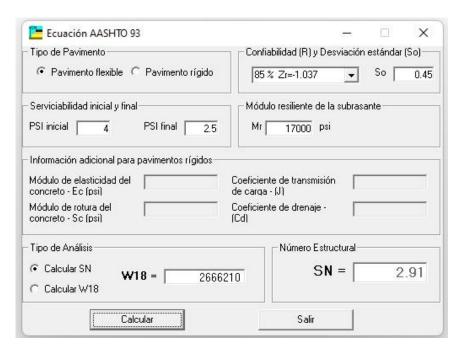


FIGURA N°31. Cálculo del SN2

Fuente: Elaboración propia

Sub Base granular (SN)



FIGURA N°33. Cálculo del SN3

Fuente: Elaboración propia

Estructuración de pavimentos flexibles

Se muestra para los parámetros de diseño de pavimento flexible para periodo de diseño 20 años en él se resumen los espesores del paquete estructural bajo el siguiente criterio.

$$\mathbf{QQ1}^* = \mathbf{QQQ1} \gg \mathbf{QQ1} \qquad \mathbf{QQQ} + \mathbf{QQQ} \gg \mathbf{QQQ}$$

TABLA Nº 116. Parámetros de cada capa

Parámetors de cada capa	Drenaje (m)	Coeficiente estructural (a)	Número estructural (SN)
Carpeta asfáltica		a1 = 0.173 /cm	2.35
Base granular	m1 = 1.00	a2 = 0.053 /cm	2.91
Sub Base granular	m2 = 1.00	a3 = 0.047 /cm	4.33

Fuente: Elaboración propia

Cálculo de los espesores de las capas del pavimento flexible

Carpeta asfáltica

$$\Rightarrow = \frac{2.35}{0.173 / 20} = 13.58$$

Adoptamos un valor de diámetro mínimo para la carpeta asfálticas 6 cm

$$\mathbf{OO}^* = \mathbf{OO} \mathbf{OO}$$

Base granular

$$= \frac{2.91 - 1.038}{0.053 / 2221.10} = 32.109$$

Adoptamos un valor de diámetro mínimo para la carpeta asfálticas 25.00 cm

$$2^* = 2^* + 2^*$$

Sub Base granular

$$= \frac{4.33 - 2.495}{0.047 21.10} = 35.49$$

Redondeamos a un número entero

SN(Rquerido) < SN(Resultado)

$$SN(Resultado) = a1 \times d1 + a2 \times d2 \times m2 + a3 \times d3 \times m3$$

$$SN(Resultado) = (0.173 / cm * ? ? ? ? ? ? + (0.053 / cm * ? ? ? ? ? ? * 1.10) + (0.047 / cm * ? ? ? ? ? ? ? * 1.10)$$

TABLA Nº 117. Cálculo del SN*

	m	а	SN	d	SN*
Carpeta asfáltica		0.173 /cm	2.35	13.58 cm	1.038
Base granular	1.1	0.053 /cm	2.91	32.11 cm	2.495
Sub-Base granular	1.1	0.047 /cm	4.33	35.48 cm	

Fuente: Elaboración propia

TABLA N° 118. Espesores de cada capa

d1	d2	d3
6 cm	25 cm	40 cm
CAPA SUPERFICIAL	BASE	SUB BASE

SN(Requerido)	4.33	Debe cumplir SNR (Resultado) > SNR (Requerido)
SN(Resultado)	4.56	SI CUMPLE

Fuente: Elaboración propia

TABLA Nº 119. Parámetros de diseño del pavimento propuesto

	Drenaje (m)	Coeficiente estructural (a)	Número estructural (SN)	Espesores mínimos teóricos
Carpeta asfáltica		a1 = 0173	2.35	6.00 cm
Base granular	m1 = 1.10	a2 = 0.053	2.91	25.00 cm
Sub Base granular	m2 = 1.10	a3 = 0.047	4.33	40.00 cm
	71.00 cm			

Fuente: Elaboración propia

FIGURA N°34. Parámetros de diseño de cada capa

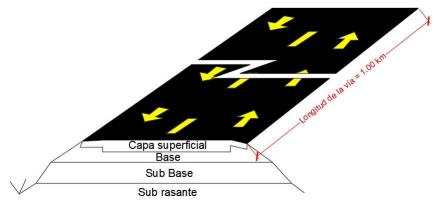


FIGURA N°35. Dimensión de la Sección Longitudinal

Fuente: Elaboración propia

FIGURA Nº36. Dimensiones de del ancho de calzada de la vía

Fuente: Elaboración propia

DISEÑO DEL PAVIMENTO FLEXIBLE MÉTODO AASTHO 1993

Subrasante estabilizada con aditivo terrasil: CBR = 9.7%

Uno de los requisitos indispensable para realizar el diseño del pavimento flexible es tener el C.B.R. (California Bearing Ratio) de la subrasante mayor igual al 6%,

$$(3.40 + 9.36. + 9.36. + 1) - 0.20 + \frac{2.2(-2.5)}{0.40 + \frac{109 \text{ 4}}{(2.2 + 1)^{5.19}}} + 2.32. + 2.32. + 2.32$$

Fuente: Elaborado por el GUÍA AASTHO

LOG (W₁₈) = NÚMERO DE EJES EQUIVALENTES TOTAL

Z_R = DESVIACIÓN ESTÁNDAR NORMAL

S₀ = DESVIACIÓN ESTÁNDAR COMBINADA

SN = NÚMERO ESTRUCTURAL

ΔPSI = ÍNDICE DE SERVICIABILIDAD

PI = SERVICIABILIDAD INICIAL

PT = SERVICIABILIDAD FINAL

MR = MÓDULO DE RESILIENTE

LOG (W₁₈) = Número de ejes equivalentes total

W(18) = 2666210 psi

TABLA Nº 120. Nivel de confiabilidad para una sola etapa de diseño

	Niveles de confiabilidad		
Clasificación	Recomendado		
	Urbana	Rural	
Autopistas interestatales	85.0 - 99.9	80.0 - 99.9	
Arterias principales	80.0 - 99.9	75.0 – 95.0	
Colectoras de tránsito	80.0 - 95.0	75.0 – 95.0	
Carreteras locales	50.0 - 80.0	50.0 - 80.0	

Fuente: Elaborado por CE.010 pavimentos urbanos

Para el presente Estudio, por ser una vía urbana; le corresponde una confiabilidad que varía de 80% - 95%

TABLA N° 121. Valores recomendados de Nivel de Confiabilidad Para una sola etapa de diseño (10 o 20 años) según rango de Tráfico

TIPO DE CAMINOS	TRÁFIC O	EJES EQUIVALENTES ACUMULADOS		NIVEL DE CONFIABILIDAD (R)
	TP0	75,000.00	150,000.00	65%
Bajo de o	TP1	150,001.00	300,000.00	70%
de en sitc	TP2	300,001.00	500,000.00	75%
Caminos Volum Trán	TP3	500,001.00	750,000.00	80%
	TP4	750,001.00	1,000,000.00	80%
o de inos	TP5	1,000,001.00	1,500,000.00	85%
Resto de Caminos	TP6	1,500,001.00	3,000,000.00	<mark>85%</mark>

Fuente: Elaborado por el manual de carreteras sección suelos y pavimentos

La confiabilidad de adoptó teniendo en cuenta los ejes equivalentes. En nuestra investigación contamos con 2,666,210 EE

➤ Confiabilidad adoptada es R = 85%

TABLA N° 122. Desviación estándar normal (Z_R)

R	Z _R		
Nivel de	Desviación		
Confiabilidad	Standard		
75	-0.674		
80	-0.841		
<mark>85</mark>	<mark>-1.037</mark>		
90	-1.282		
91	-1.34		
92	-1.405		
93	-1.476		
94	-1.555		
95	-1.645		
96	-1.751		
97	-1.881		
99.9	-3.750		

Fuente: Elaborado por CE.010 pavimentos urbanos

 \triangleright Se adopta un: R = 85 %.

> ZR = -1.037

S₀ = DESVIACIÓN ESTÁNDAR COMBINADA

Guía AASHTO recomienda adoptar para los pavimentos flexibles, valores de S_o comprendidos entre 0.40 y 0.50, en el presente Manual se adopta para los diseños recomendados el valor de 0.45.

 $S_0 = 0.45$.

TABLA N° 123. Índice de Serviciabilidad ΔPSI

Índice de servicio	Calificación		
5	Excelente		
4	Muy bueno		
3	Bueno		
2	Regular		
1	Malo		
0	Intransitable		

Fuente: Elaborado por el manual de carreteras sección suelos y pavimentos

Su valor varía de 0 a 5. Un valor de 5 refleja la mejor comodidad teórica (difícil de alcanzar) y por el contrario un valor de 0 refleja el peor. Cuando la condición de la vía decrece por deterioro, el PSI también decrece.

$$A \implies = P - P$$
 $\triangle PSI = 4 - 2.5 = 1.5$

TABLA N° 124. Serviciabilidad inicial (PI)

TIPO DE CAMINOS	TRÁFICO	EJES EQUIVALENTES ACUMULADOS		Δ INICIAL (P _i)
Caminos de Bajo Volumen de Tránsito	TP0	75,000.00	150,000.00	3.8
	TP1	150,001.00	300,000.00	3.8
	TP2	300,001.00	500,000.00	3.8
	TP3	500,001.00	750,000.00	3.8
	TP4	750,001.00	1,000,000.00	3.8
Resto de Caminos	TP5	1,000,001.00	1,500,000.00	4
	TP6	1,500,001.00	3,000,000.00	4

Fuente: Elaborado por el manual de carreteras sección suelos y pavimentos

TABLA N° 125. Serviciabilidad final (PT)

TIPO DE CAMINOS	TRÁFICO	EJES EQUIVALENTES ACUMULADOS		Δ FINAL (P _T)
Bajo de o	TP0	75,000.00	150,000.00	2.00
	TP1	150,001.00	300,000.00	2.00
ıminos de l Volumen c Tránsito	TP2	300,001.00	500,000.00	2.00
Caminos de Bajo Volumen de Tránsito	TP3	500,001.00	750,000.00	2.00
	TP4	750,001.00	1,000,000.00	2.00
o de	TP5	1,000,001.00	1,500,000.00	2.50
Resto de Caminos	TP6	1,500,001.00	3,000,000.00	<mark>2.50</mark>

Fuente: Elaborado por el manual de carreteras sección suelos y pavimentos

Módulo de Resiliencia de la Subrasante (MR.)

Fórmula para hallar el módulo de resiliencia de la subrasante para suelo de fundación

$$2555 200^{0.64}$$

Fuente: manual de carreteras

CBR (subrasante) = 9.7 %.

SN = Número estructural

$$SN = a1 \times d1 + a2 \times d2 \times m2 + a3 \times d3 \times m3$$

Donde:

a1, a2, a3 = coeficientes estructurales de las capas: superficial, base y subbase, respectivamente

d1, d2, d3 = espesores (en centímetros) de las capas: superficial, base y subbase, respectivamente

$$62 + 62 \gg 62$$

m2, **m3** = coeficientes de drenaje para las capas de base y subbase, respectivamente

Módulo de Resiliencia Carpeta Asfáltica (Mr.)

Tomando como módulo de elasticidad de la mezcla asfáltica E= 450 000 psi

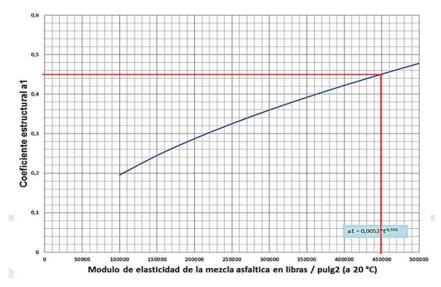


FIGURA N°37. Módulo de resiliencia de la carpeta asfáltica Mr

Fuente: Elaborado por la guía AASHTO

Módulo de Resiliencia Base Granular (MR.)

De acuerdo al manual de carreteras vigente en nuestro país el material usado para la construcción de la capa utilizada como base granular el valor CBR de ser ≥ 80%.

Asumimos un valor CBR ≥ 80 %

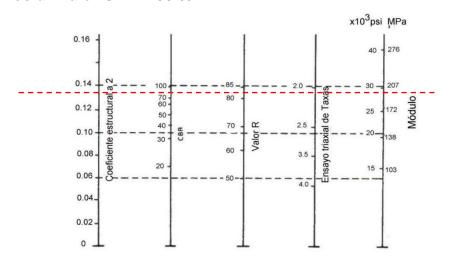


FIGURA N°38. Abaco para calcular el a1 y Mr(base)
Fuente: Elaborado por la guía AASHTO

Cálculo del coeficiente estructural de la base (a2)

Módulo de Resiliencia Subbase Granular (Mr.)

De acuerdo al manual de carreteras vigente en nuestro país el material usado para la construcción de la capa utilizada como sub base granular el valor CBR de ser ≥ 40 %

Asumimos un valor CBR ≥ 40 %

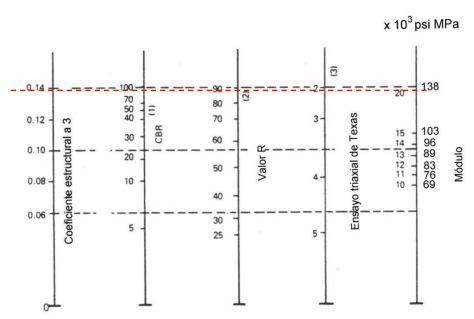


FIGURA N°39. Abaco para calcular el a2 y Mr(Sub Base)

Fuente: Elaborado por la guía AASHTO

Cálculo del coeficiente estructural (a3)

60= 060(0

TABLA N° 126. Coeficientes estructurales

Coeficiente estructural	Valores estimados / pul.		
Concreto asfáltico	a1	0.440	
Base Granular	a2	0.134	
Sub Base Granular	а3	0.120	

TABLA N° 127. Coeficientes de drenajes (CD)

Calidad	Término	% de Tiempo de exposición de la estructura del pavimento a nivel de Humedad próximos a la saturación			
Drongio	Remoción				
Drenaje d	de agua	< 1%	1 - 5%	5 -2 5%	> 25%
Excelente	2 horas	1.40 – 1.35	1.35 - 1.30	1.30 – 1.20	1.20
Buena	1 día	1.35 – 1.25	1.25 – 1.15	1.15 – 1.00	1.00
Aceptable	1 semana	1.25 – 1.15	1.15 – 1.05	1.00 - 0.80	0.80
Pobre	1 mes	1.15 – 1.05	1.05 – 0.80	0.80 - 0.60	0.60
Muy Pobre	El agua no drena	1.05 – 0.95	0.95 – 0.75	0.75 – 0.40	0.40

Fuente: Guía de Diseño de Estructuras de Pavimentos AASHTO - 1993

En base a las condiciones particulares del proyecto, tales como la topografía donde se desarrolla la vía, las precipitaciones pluviales anuales medias y suelo con permeabilidad media, se estima que el tiempo de exposición de la estructura a nivel de humedad próxima a la saturación es del orden de 1 a 5%, es así que los coeficientes de drenaje son:

El manual de suelos y pavimentos recomienda utilizar el coeficiente de drenaje de 1%

Cd = 1.10 %

m1 = 1.10 %

m2 = 1.10 %

Cálculo del número estructural mediante el software ECUACIONES AASHTO 93

Carpeta asfáltica (SN)

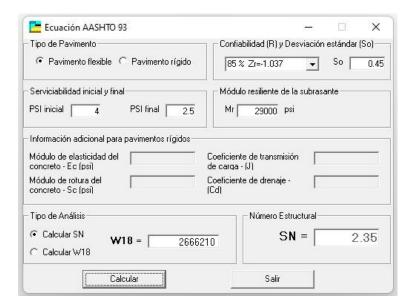


FIGURA N°40. Cálculo del SN1 Fuente: Elaboración propia

Base granular (SN)

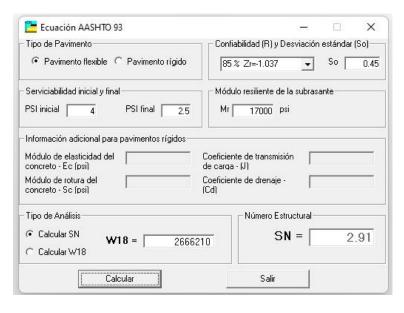


FIGURA N°41. Cálculo del SN2

Sub Base granular (SN)

FIGURA N°42. Cálculo del SN3

Fuente: Elaboración propia

Estructuración de Pavimentos Flexibles

Se muestra para los parámetros de diseño de pavimento flexible para periodo de diseño 20 años en él se resumen los espesores del paquete estructural bajo el siguiente criterio.

TABLA Nº 128. Parámetros de cada capa

Parámetors de cada capa	Drenaje (m)	Coeficiente estructural (a)	Número estructural (SN)
Carpeta asfáltica		a1 = 0.173 /cm	2.35
Base granular	m1 = 1.00	a2 = 0.053 /cm	2.91
Sub Base granular	m2 = 1.00	a3 = 0.047 /cm	3.48

Cálculo de los espesores de las capas del pavimento flexible

Carpeta asfáltica

$$\Rightarrow = \frac{2.35}{0.173 / 20} = 13.58$$

Adoptamos un valor de diámetro mínimo para la carpeta asfálticas 6 cm

Base granular

$$= \frac{2.91 - 1.038}{0.053 / 2221.10} = 32.109$$

Adoptamos un valor de diámetro mínimo para la base 20.00 cm

$$2^* = 2^* + 2^*$$

Sub Base granular

$$= \frac{3.48 - 2.204}{0.047} = 24.68$$

Redondeamos a un número entero

SN(Rquerido) < SN(Resultado)

 $SN(Resultado) = a1 \times d1 + a2 \times d2 \times m2 + a3 \times d3 \times m3$

$$SN(Resultado) = (0.173 / cm * (0.053 / cm$$

(0.047 /cm * *** *** *** 1.10)

TABLA Nº 129. Cálculo del SN*

	m	а	SN	d	SN*
Carpeta asfáltica		0.173 /cm	2.35	13.58 cm	1.038
Base granular	1.1	0.053 /cm	2.91	32.11 cm	2.204
Sub-Base granular	1.1	0.047 /cm	3.48	24.68 cm	

Fuente: Elaboración propia

TABLA Nº 130. Espesores de cada capa

d1		d2	d3	
6 cm		20 cm	25 cm	
CAPA SUPERFICIAL			BASE SUB BASE	
SN(Requerido)	3.	48 Debe cumplir SNR (Resulta		ado) > SNR (Requerido)
SN(Resultado)	3.	50 SI CUMPLE		MPLE

Fuente: Elaboración propia

Como SN(Resultado) > SN (Requerido)

TABLA Nº 131. Parámetros de diseño del pavimento propuesto

PARÁMETROS DE DISEÑO DEL PAVIMENTO PROPUESTO						
	Drenaje (m)	Coeficiente estructural (a)	Número estructural (SN)	Espesores mínimos teóricos		
Carpeta asfáltica		a1 = 0173	2.35	6.00 cm		
Base granular	m1 = 1.10	a2 = 0.053	2.91	20.00 cm		
Sub Base granular	m2 = 1.10	a3 = 0.047	3.48	25.00 cm		
Espesor total del pavimento 51.00 cm						

FIGURA Nº43. Parámetros de diseño de cada capa

Fuente: Elaboración propia

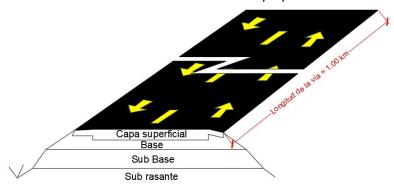


FIGURA N°44. Dimensión de la Sección Longitudinal

Fuente: Elaboración propia

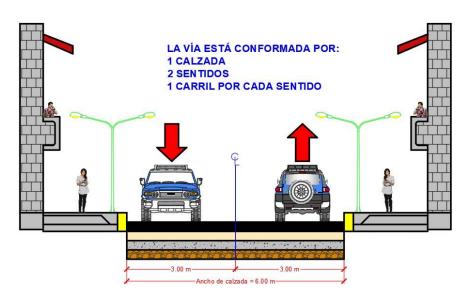


FIGURA Nº45. Dimensiones de del ancho de calzada de la vía

DISEÑO DEL PAVIMENTO FLEXIBLE MÉTODO AASTHO 1993

Subrasante estabilizada con cenizas de residuos orgánicos: CBR = 18.80%

Uno de los requisitos indispensable para realizar el diseño del pavimento flexible es tener el C.B.R. (California Bearing Ratio) de la subrasante mayor igual al 6%,

$$(3.40 + 9.36. + 9.36. + 1) - 0.20 + \frac{2.2(-1.5)}{0.40 + \frac{109 \text{ 4}}{(2.2 + 1)^{5.19}}} + 2.32. + 2.32. + 2.32$$

Fuente: Elaborado por el GUÍA AASTHO

LOG (W₁₈) = Número de ejes equivalentes total

Z_R = Desviación estándar normal

S₀ = Desviación estándar combinada

SN = Número estructural

ΔPSI = índice de Serviciabilidad

PI = Serviciabilidad inicial

PT = Serviciabilidad final

MR = Módulo de resiliente

LOG (W₁₈) = Número de ejes equivalentes total

W(18) = 2666210 psi

TABLA Nº 132. Nivel de confiabilidad para una sola etapa de diseño

	Niveles de	Niveles de confiabilidad		
Clasificación	Reco	mendado		
	Urbana	Rural		
Autopistas interestatales	85.0 - 99.9	80.0 - 99.9		
Arterias principales	80.0 – 99.9	75.0 – 95.0		
Colectoras de tránsito	<mark>80.0 – 95.0</mark>	75.0 – 95.0		
Carreteras locales	50.0 - 80.0	50.0 - 80.0		

Fuente: Elaborado por CE.010 pavimentos urbanos

Para el presente Estudio, por ser una vía urbana; le corresponde una confiabilidad que varía de 80% - 95%

TABLA N° 133. Valores recomendados de Nivel de Confiabilidad Para una sola etapa de diseño (10 o 20 años) según rango de Tráfico

TIPO DE CAMINOS	TRÁFIC O	*	VALENTES JLADOS	NIVEL DE CONFIABILIDAD (R)
	TP0	75,000.00	150,000.00	65%
Bajo de	TP1	150,001.00	300,000.00	70%
Caminos de Volumen (Tránsito	TP2	300,001.00	500,000.00	75%
	TP3	500,001.00	750,000.00	80%
	TP4	750,001.00	1,000,000.00	80%
Resto de Caminos	TP5	1,000,001.00	1,500,000.00	85%
Resto	TP6	1,500,001.00	3,000,000.00	<mark>85%</mark>

Fuente: Elaborado por el manual de carreteras sección suelos y pavimentos

La confiabilidad de adoptó teniendo en cuenta los ejes equivalentes. En nuestra investigación contamos con 2,666,210 EE

➤ Confiabilidad adoptada es R = 85%

TABLA N° 134. Desviación estándar normal (Z_R)

R	\mathbf{Z}_{R}
Nivel de	Desviación
Confiabilidad	Standard
75	-0.674
80	-0.841
<mark>85</mark>	<mark>-1.037</mark>
90	-1.282
91	-1.34
92	-1.405
93	-1.476
94	-1.555
95	-1.645
96	-1.751
97	-1.881
99.9	-3.750

Fuente: Elaborado por CE.010 pavimentos urbanos

- ➤ Se adopta un: R = 85 %.
- > ZR = -1.037

S₀ = Desviación Estándar Combinada

Guía AASHTO recomienda adoptar para los pavimentos flexibles, valores de S_o comprendidos entre 0.40 y 0.50, en el presente Manual se adopta para los diseños recomendados el valor de 0.45.

 $S_0 = 0.45$.

TABLA N° 135. Índice de Serviciabilidad ΔPSI

Índice de servicio	Calificación
5	Excelente
4	Muy bueno
3	Bueno
2	Regular
1	Malo
0	Intransitable

Fuente: Elaborado por el manual de carreteras sección suelos y pavimentos

Su valor varía de 0 a 5. Un valor de 5 refleja la mejor comodidad teórica (difícil de alcanzar) y por el contrario un valor de 0 refleja el peor. Cuando la condición de la vía decrece por deterioro, el PSI también decrece.

TABLA N° 136. Serviciabilidad inicial PI

TIPO DE CAMINOS	TRÁFICO	EJES EQUIVALENT	TES ACUMULADOS	Δ INICIAL (P _i)
	TP0	75,000.00	150,000.00	3.8
e Bajo	TP1	150,001.00	300,000.00	3.8
ios de umen ránsit	TP2	300,001.00	500,000.00	3.8
Caminos de Bajo Volumen de Tránsito	TP3	500,001.00	750,000.00	3.8
	TP4	750,001.00	1,000,000.00	3.8
o de inos	TP5	1,000,001.00	1,500,000.00	4
Resto de Caminos	TP6	1,500,001.00	3,000,000.00	4

Fuente: Elaborado por el manual de carreteras sección suelos y pavimentos

TABLA N° 137. Serviciabilidad final PT

TIPO DE CAMINOS	TRÁFICO	EJES EQUIVALENT	TES ACUMULADOS	Δ FINAL (P _T)
	TP0	75,000.00	150,000.00	2.00
e Bajo	TP1	150,001.00	300,000.00	2.00
ios de umen ránsit	TP2	300,001.00	500,000.00	2.00
Caminos de Bajo Volumen de Tránsito	TP3	500,001.00	750,000.00	2.00
	TP4	750,001.00	1,000,000.00	2.00
o de nos	TP5	1,000,001.00	1,500,000.00	2.50
Resto de Caminos	TP6	1,500,001.00	3,000,000.00	<mark>2.50</mark>

Fuente: Elaborado por el manual de carreteras sección suelos y pavimentos

Módulo de Resiliencia de la Subrasante (MR.)

Fórmula para hallar el módulo de resiliencia de la subrasante para suelo de fundación

$$2555 200^{0.64}$$

Fuente: manual de carreteras

CBR (subrasante) = 18.80 %.

SN = Número estructural

$$SN = a1 \times d1 + a2 \times d2 \times m2 + a3 \times d3 \times m3$$

Donde:

a1, a2, a3 = coeficientes estructurales de las capas: superficial, base y subbase, respectivamente

d1, d2, d3 = espesores (en centímetros) de las capas: superficial, base y subbase, respectivamente

$$62 + 62 \gg 62$$

m2, **m3** = coeficientes de drenaje para las capas de base y subbase, respectivamente

Módulo de Resiliencia Carpeta Asfáltica (Mr.)

Tomando como módulo de elasticidad de la mezcla asfáltica E= 450 000 psi

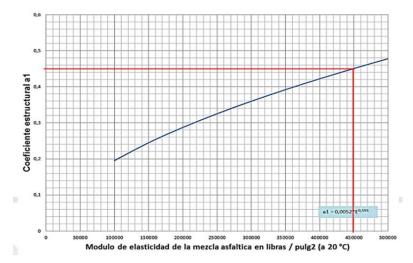


FIGURA Nº46. Módulo de resiliencia de la carpeta asfáltica Mr

Fuente: Elaborado por la guía AASHTO

Módulo de Resiliencia Base Granular (M_R.)

De acuerdo al manual de carreteras vigente en nuestro país el material usado para la construcción de la capa utilizada como base granular el valor CBR de ser ≥ 80%.

Asumimos un valor CBR ≥ 80 %

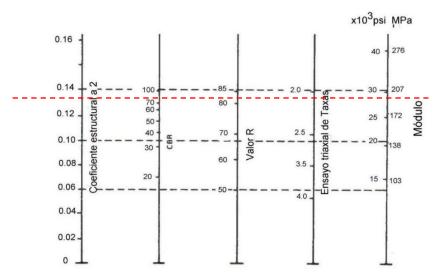


FIGURA N°47. Abaco para calcular el a1 y Mr(base)
Fuente: Elaborado por la guía AASHTO

Cálculo del coeficiente estructural de la base (a2)

$$= 0.249$$

Módulo de Resiliencia Subbase Granular (Mr.)

De acuerdo al manual de carreteras vigente en nuestro país el material usado para la construcción de la capa utilizada como sub base granular el valor CBR de ser ≥ 40 %

Asumimos un valor CBR ≥ 40 %

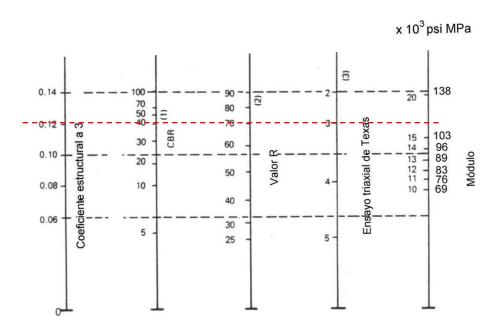


FIGURA N°48. Abaco para calcular el a2 y Mr(Sub Base)

Fuente: Elaborado por la guía AASHTO

Cálculo del coeficiente estructural (a3)

$$= 0.227$$

TABLA N° 138. Coeficientes estructurales

Coeficiente estructural	Valores estimados / pul.			
Concreto asfáltico	a1 0.440			
Base Granular	a2	0.134		
Sub Base Granular	аЗ	0.120		

Fuente: Elaboración propia

TABLA N° 139. Coeficientes de drenajes (CD)

Calidad	Término	% de Tiempo de exposición de la estructura del pavimento a nivel de Humedad próximos a la				
Drongio	Remoción pavimento a filver de Fidiriedad saturación			•	15 a la	
Drenaje	de agua	< 1%	1 - 5%	5 -2 5%	> 25%	
Excelente	2 horas	1.40 – 1.35	1.35 - 1.30	1.30 – 1.20	1.20	
Buena	1 día	1.35 – 1.25	1.25 – 1.15	1.15 – 1.00	1.00	
Aceptable	1 semana	1.25 – 1.15	1.15 – 1.05	1.00 - 0.80	0.80	
Pobre	1 mes	1.15 – 1.05	1.05 – 0.80	0.80 - 0.60	0.60	
Muy Pobre	El agua no drena	1.05 – 0.95	0.95 – 0.75	0.75 – 0.40	0.40	

Fuente: Guía de Diseño de Estructuras de Pavimentos AASHTO - 1993

En base a las condiciones particulares del proyecto, tales como la topografía donde se desarrolla la vía, las precipitaciones pluviales anuales medias y suelo con permeabilidad media, se estima que el tiempo de exposición de la estructura a nivel de humedad próxima a la saturación es del orden de 1 a 5%, es así que los coeficientes de drenaje son:

El manual de suelos y pavimentos recomienda utilizar el coeficiente de drenaje de 1%

Cd = 1.10 %

m1 = 1.10 %

m2 = 1.10 %

Cálculo del número estructural mediante el software ECUACIONES AASHTO 93

Carpeta asfáltica (SN)

FIGURA N°49. Cálculo del SN1 Fuente: Elaboración propia

Base granular (SN)

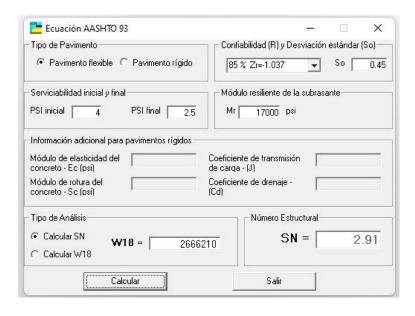


FIGURA N°50. Cálculo del SN2

Sub Base granular (SN)

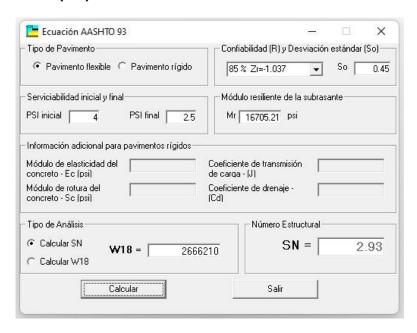


FIGURA N°51. Cálculo del SN3

Fuente: Elaboración propia

Estructuración de Pavimentos Flexibles

Se muestra para los parámetros de diseño de pavimento flexible para periodo de diseño 20 años en él se resumen los espesores del paquete estructural bajo el siguiente criterio.

$$\mathbf{QQ1}^* = \mathbf{QQQ1} \gg \mathbf{QQ1} \qquad \mathbf{QQQ} + \mathbf{QQQ} \gg \mathbf{QQQ}$$

TABLA Nº 140. Parámetros de cada capa

Parámetors de cada capa	Drenaje (m)	Coeficiente estructural (a)	Número estructural (SN)
Carpeta asfáltica		a1 = 0.173 /cm	2.35
Base granular	m1 = 1.00	a2 = 0.053 /cm	2.91
Sub Base granular	m2 = 1.00	a3 = 0.047 /cm	2.93

Cálculo de los espesores de las capas del pavimento flexible

Carpeta asfáltica

$$\Rightarrow = \frac{2.35}{0.173 / 20} = 13.58$$

Adoptamos un valor de diámetro mínimo para la carpeta asfálticas 6 cm

$$\mathbf{OO}^* = \mathbf{OO} \mathbf{OO}$$

Base granular

$$= \frac{2.91 - 1.038}{0.053 / 2221.10} = 32.109$$

Adoptamos un valor de diámetro mínimo para la carpeta asfálticas 25.00 cm

$$2^* = 2^* + 2^*$$

Sub Base granular

$$= \frac{2.93 - 2.495}{0.047 \text{ (1.10)}} = 14.043 \text{ (2.10)}$$

Redondeamos a un número entero

SN(Rquerido) < SN(Resultado)

 $SN(Resultado) = a1 \times d1 + a2 \times d2 \times m2 + a3 \times d3 \times m3$

$$SN(Resultado) = (0.173 / cm * (0.053 / cm$$

(0.047 /cm * *** *** *** 1.10)

TABLA Nº 141. Cálculo del SN*

	m	а	SN	d	SN*
Carpeta asfáltica		0.173 /cm	2.4	13.58 cm	1.038
Base granular	1.1	0.053 /cm	2.97	32.109 cm	2.204
Sub-Base granular	1.1	0.047 /cm	2.93	14.043 cm	

Fuente: Elaboración propia

TABLA Nº 142. Espesores de cada capa

d1			d2	d3
6 cm			20 cm	40 cm
CAPA SUPERFICIAL		BASE	SUB BASE	
SN(Requerido)	2.	93	Debe cumplir SNR (Resulta	ado) > SNR (Requerido)
SN(Resultado)	3.	24	SI CU	MPLE

Fuente: Elaboración propia

Como SN(Resultado) > SN (Requerido)

TABLA Nº 143. Parámetros de diseño del pavimento propuesto

PARÁMETROS DE DISEÑO DEL PAVIMENTO PROPUESTO						
	Drenaje (m)	Coeficiente estructural (a)	Número estructural (SN)	Espesores mínimos teóricos		
Carpeta asfáltica		a1 = 0173	2.35	6.00 cm		
Base granular	m1 = 1.10	a2 = 0.053	2.91	20.00 cm		
Sub Base granular	m2 = 1.10	a3 = 0.047	2.93	20.00 cm		
	46.00 cm					

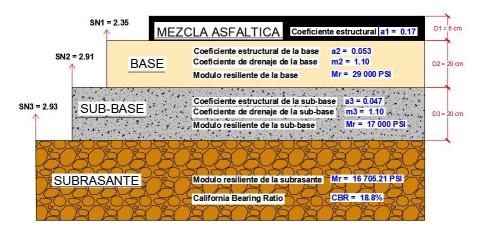


FIGURA N°52. Parámetros de diseño de cada capa

Fuente: Elaboración propia

FIGURA N°53. Dimensión de la Sección Longitudinal

Fuente: Elaboración propia



FIGURA N°54. Dimensiones de del ancho de calzada de la vía

Descripción de la zona de estudio

Estudio comparativo para estabilizar la subrasante con cenizas de residuos orgánicos y aditivo químico, Av. Cordillera occidental, Chorrillos – Lima, 2021

FIGURA N°55. Mapa político del Perú

Fuente: Elaborado por IStock

FIGURA N°56. Mapa político del departamento de Lima

Fuente: Elaborado por IStock

Ubicación del proyecto

FIGURA N°57. Mapa del distrito de Chorrillos

FIGURA N°58. Mapa de la provincia de Lima

Limites:

Norte : Con el distrito de Barranco

Sur : Con el distrito de Villa el Salvador

Este : Con el distrito de San Juan de Miraflores

Oeste : Con el océano pacífico

Ubicación geográfica

El distrito de Chorrillos tiene las siguientes coordenadas geográficas:

Latitud: -12.1692, Longitud: -77.0244 | 12° 10′ 9″ Sur, 77° 1′ 28″ Oeste

Según el censo realizado por el INEI Chorrillo cuenta con una población 351 582 habitantes hasta el 2020, con una altitud de 45 m.s.n.m. con un área territorial de 38.94 km²

Clima: El clima que tiene el distrito de Chorrillos es árido

Desarrollo

Para el desarrollo del proyecto de investigación se realizó el estudio de mecánica de suelo y los ensayos correspondientes, primeramente, se realizaron 03 calicatas para la extracción de muestras que se utilizó en los ensayos del laboratorio

FIGURA N°59. Calicata N° 01

FIGURA N°60. Calicata N° 02

FIGURA N°61. Calicata N° 03

CLASIFICACIÓN DE SUELOS C-01, C-02 Y C-03

Prosiguiendo con el proceso de los estudios de mecánica de suelos, las muestras extraídas de las calicatas, estas serán sometidas al ensayo de análisis granulometría con el método de S.U.C.S. (Sistema unificado de clasificación de suelos) para determinar su clasificación de suelos.

TABLA N° 144. Clasificación de Suelos por método S.U.C.S.

CLASIF	CLASIFICACIÓN DE SUELOS			
Muestra patrón	S.U.C.S.			
	SP - SM			
C-01	Arena pobremente graduada con			
	limo			
	SP SM			
C-02	Arena pobremente graduada con			
	limo con grava			
	SP - SM			
C-03	Arena pobremente graduada con limo			

Fuente: Elaboración propia

TABLA N° 145. Tabla de CBR para la muestra patrón

MUESTRA PATRON					
ENSAYO	C.B.R	EXPANSIÓN			
	(California	DEL SUELO			
	Bearing Ratio)	(%)			
CALICATAS	(%)				
CALICATA-01	3.90	0.00			
CALICATA-02	8.80	0.00			
CALICATA-03	9.00	0.00			

Resumen de los resultados

Estabilización con residuos orgánicos

Se determinó el óptimo contenido de humedad y la máxima densidad seca para diferentes porcentajes de cenizas de residuos orgánicos en la subrasante.

TABLA N° 146. Proctor modificado

	Calita mas crítica (C-1)				
	muestra		Densidad maxima	Óptimo contenido	
	muestra		seca (g/cm³)	de humedad (%)	
Mu	estra patr	on	1.674	3.16	
Muestra	CCA	CBCA	1.676	3.62	
1ra	6%	10%	1.070	0.02	
Muestra	CCA	CBCA	1.651	3.52	
2da	8%	20%	1.001	0.02	
Muestra	CCA	CBCA	1.657	2.56	
3ra	10%	35%			

Fuente: Elaboración propia

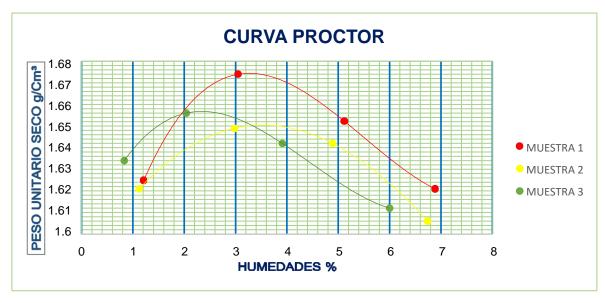


FIGURA N°62. Curva de Proctor

En la tabla Nº 146 presenta los valores del proctor modificado. Adicionando 6 % de CCA + 10 % CBCA la densidad maxima seca aumenta de 1.674 g/cm³ a 1.676 g/cm³, con 8 % de CCA + 20 % CBCA disminuye de 1.674 g/cm³ a 1.651 g/cm³ y con 10 % de CCA + 35 % CBCA disminuye de 1.674 g/cm³ a 1.657 g/cm³.

Para el optimo contenido de humedad se adicionó 6 % de CCA + 10 % CBCA lo cual aumento de 3.16 % a 3.62 %, con 8 % de CCA + 20 % CBCA aumento de 3.16 % a 3.52 % y con 10 % de CCA + 35% CBCA disminuye de 3.16 % a 2.56 %.

Se determinó la expansión del suelo para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la subrasante.

TABLA Nº 147. CBR (California Bearing Ratio). Expansión del suelo

Calita mas crítica (C-1)						
	muestra	Expansión del suelo				
	muestra		(%)			
Mu	iestra patr	on	0.00 (%)			
Muestra	CCA	CBCA	0.00 (%)			
1ra	6%	10%	0.00 (70)			
Muestra	CCA	CBCA	0.00 (%)			
2da	8%	20%	0.00 (70)			
Muestra	CCA	CBCA	0.00 (%)			
3ra	10%	35%	0.00 (70)			

Fuente: Elaboración propia

En la tabla Nº 147 se puede observar los resultados de la expansión del suelo. Debido a que tenemos un suelo arenos no presenta expansión de suelo.

Se determinó la resistencia de la subrasante para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico.

FIGURA N°63. Ensayo de C.B.R.

Fuente: Elaboración propia

TABLA N° 148. CBR (California Bearing Ratio)

	Calita	ca (C-1)	
		Resistencia de la	
	muestra		subrasante al 100%
			(%)
Muestra patron			3.90
Muestra	CCA	CBCA	15.00
1ra	6%	10%	10.00
Muestra	CCA	CBCA	18.80
2da	8%	20%	10.00
Muestra	CCA	CBCA	15.20
3ra	10%	35%	10.20

En la tabla N°148 se observa que para el *CBR* (*California Bearing Ratio* se adicionó 6% de CCA + 10% CBCA lo cual aumento de 3.90% a 15.00%, con 8% de CCA + 20% CBCA aumento de 3.90% a 18.80y con 10% de CCA + 35% CBCA disminuye de 3.90% a 15.20%.

Se determinó el *índice* de plasticidad para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la subrasante.

TABLA N° 149. Índice de plasticidad

	Calita mas crítica (C-1)					
	muestra		Límite líquido	Límite plástico		
Mu	iestra patr	on	NP	NP		
Muestra	CCA	CBCA	NP	NP		
1ra	6%	10%	141	141		
Muestra	CCA	CBCA	NP	NP		
2da	8%	20%	1	141		
Muestra	CCA	CBCA	NP	NP		
3ra	10%	35%				

Fuente: Elaboración propia

En la tabla Nº149 se puede observar que no presenta limite liquido y limite plastico ya que son suelos arenosos por la cual no tiende a pasar de su estado semisolido a un estado plastico

Estabilización con aditivo químico (terrasil)

Para el aditivo terrasil se determinó el óptimo contenido de humedad y la máxima densidad seca para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la subrasante.

TABLA N° 150. Índice de plasticidad

Calita mas crítica (C-1)				
Muoetro	Maradas		Óptimo contenido	
Muestra		seca (g/cm³)	de humedad (%)	
Muestra pati	Muestra patron		3.16	
Muestra 1ra	2%	1.663	3.71	
Muestra 2da	4%	1.660	3.52	
Muestra 3ra	7%	1.678	4.39	

Fuente: Elaboración propia

En la tabla Nº 150 presenta los valores del proctor modificado. Adicionando 2 % del aditivo terrasil la densidad maxima seca disminuye de 1.674 g/cm³ a 1.663 g/cm³, con 4 % disminuye de 1.674 g/cm³ a 1.660 g/cm³ y con 7 % aumenta de 1.674 g/cm³ a 1.678 g/cm³.

Para el optimo contenido de humedad se adicionó 2 % del aditivo terrasil la densidad maxima seca aumenta de 3.16 % a 3.71 %, con 4% aumenta de 3.16 % a 3.52 % y con 7% aumenta de 3.16 % a 4.39 %.

Se determinó la expansión del suelo para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la subrasante.

TABLA Nº 151. CBR (California Bearing Ratio). Expansión del suelo

Calita mas crítica (C-1)				
Muestra	Expansión del suelo (%)			
Muestra patr	0.00%			
Muestra 1ra	2%	0.00%		
Muestra 2da	4%	0.00%		
Muestra 3ra	7%	0.00%		

Fuente: Elaboración propia

En la tabla Nº151 se puede observar los resultados de la expansión del suelo. Debido a que tenemos un suelo arenos no presenta expansión de suelo.

Objetivo específico 3. Determinar la resistencia de la subrasante para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la Av. Cordillera occidental, Chorrillos – Lima, 2021

TABLA N° 152. CBR (California Bearing Ratio).

Calita mas crítica (C-1)				
Muestra		Resistencia de la		
		subrasante al 100%		
Muestra patron		3.90		
Muestra 1ra	2%	5.70		
Muestra 2da	4%	9.70		
Muestra 3ra	7%	6.20		

Fuente: Elaboración propia

En la tabla N°152 se puede observa que para el *CBR* (*California Bearing Ratio*) adicionando el aditivo terrasil el 2% lo cual aumento de 3.90% a 5.70%, con 4% aumento de 3.90% a 9.70 % y con 7% aumento de 3.90% a 6.20%.

Se determinó el índice de plasticidad para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la subrasante de la Av. Cordillera occidental, Chorrillos – Lima, 2021

TABLA N° 153. CBR (California Bearing Ratio).

Calita mas crítica (C-1)					
Muestra		Límite líquido	Límite plástico		
Muestra patron		NP	NP		
Muestra 1ra	2%	NP	NP		
Muestra 2da	4%	NP	NP		
Muestra 3ra	7%	NP	NP		

Fuente: Elaboración propia

En la tabla Nº153 se puede observar que no presenta limite liquido y limite plastico ya que son suelos arenosos.

V. DISCUSIÓN

1. Uno de los objetivos de nuestra tesis fue evaluar como influyen las cenizas de residuos orgánicos y aditivo químico en la estabilización de la subrasante.

Los resultados que se obtuvo por Rodríguez (2016) incorporando el aditivo terrasil, se dedujo que sí guardan relación de manera cómo influye el terrasil en la estabilización de la subrasante.

Los datos extraídos del antecedente concuerda con nuestra tesis ya que define que el terrasil impermeabiliza y mejora la resistencia del suelo ya sea en suelos limosos, arcillosos o arenosos; también el aditivo terrasil influye en la reducción del material pétreo, dando también la reducción de la base, a comparación de los resultados de nuestra tesis se obtuvo que nuestros estabilizadores (Cenizas de cascara de arroz + Cenizas de bagazo de caña de azúcar y el Aditivo terrasil) también generaron una reducción del material pétreo y de la base, a su vez dando una mejor resistencia al suelo arenoso.

 Comparamos los resultados encontrados del óptimo contenido de humedad y la máxima densidad seca para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la subrasante.

Los resultados obtenidos por Díaz V. (2018) incluyendo solo la cenizas de cascara de arroz, si guardan relacion con el optimo contenido de humedad pero no con la maxima densidad seca, esto quiere decir que sus resultados del optimo contenido de humedad a 20% de ceniza de cascara de arroz disminuye, por otro lado en la maxima densidad seca a 20% de ceniza de cascara de arroz aumenta.

Estos datos determinado por el antecedente no concuerda por parte de la maxima densidad seca con mi tesis, por que a su mayor porcentaje de CCA aumenta su valor de OCH, a comparación con los resultados de nuestra tesis a mayo porcentaje de CCA combinando con CBCA disminuye su valor de OCH.

Los resultados incluyendo el aditivo terrasil para la discusión no se encuentran disponibles en los antecedentes, por lo tanto no se podra comparar nuestros resultados.

 Comparamos los resultados encontrados del expansión del suelo para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la subrasante.

Los resultados obtenidos por Espinoza y Velásquez (2018) incluyendo solo la ceniza de bagazo de caña de azúcar, no guardan relacion con el expansión del suelo, se debe que en la tesis del antecedente obtuvo datos favorables.

Estos datos determinados por el antecedente no concuerda con mi tesis, por que se añadio un 10, 20 y 30% de CBCA a un suelo arcilloso en donde sus valores disminuyo de 1.47% a 0.24% con 20% de CBCA, a comparación con los resultados de nuestra tesis combinando los procentajes de 8% de CCA con el 20% de CBCA, no presenta expansión debido a que la zona de estudio presenta suelo arenoso

Los resultados incluyendo el aditivo terrasil para la discusión no se encuentran disponibles en los antecedentes, por lo tanto no se podra comparar nuestros resultados.

 Comparamos los resultados de la resistencia de la subrasante para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la subrasante.

Los resultados obtenidos por Espinoza y Velásquez (2018), incluyendo solo la ceniza de bagazo de caña de azucar, si guardan relacion con el resistencia de la subrasante, se debe que en la tesis del antecedente aumento el valor del CBR a un 10% de la muestra patron llegando asi a sus 15.18%.

Estos datos determinados por el antecedente se asemeja al de mi tesis ya que al añadir el 20% de CBCA con la muestra natural, obteniendo un incremento en el CBR, a comparación con nuestro resultados de nuestra tesis tambien se dio un incremento de 14.9% al añadir el 20% de CBCA con el 8% de CCA consiguiendo un 18.8% de CBR.

Los resultados obtenidos por Diaz (2019), incluyendo el aditivo terrasil, no guardan relación con la resistencia del suelo, lo cual tuvo un valor de CBR altisimo añadiendo cemento.

Estos datos determinados por el antecedente no concuerda con mi tesis, por que al momento que ah añadido el cemento, su valor de CBR aumento, a

- comparacion con nuestra tesis el valor del CBR aumento pero sin añadir otros productos.
- Comparamos los resultados del índice de plasticidad para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la subrasante.

Los resultados obtenidos por Patel, Mishra, Parmar y Gautam (2015), si guardan relación con el índice de plasticidad, esto se debe a que en el artículo del antecedente hizo de utilidad al aditivo Terrasil un 0.041% más el Zycobond con un 0.020% la cual generó que el límite líquido y sus máximas cualidades del plástico se redujeron a comparación de su muestra patrón.

Estos datos determinados por el antecedente no concuerdan con nuestra tesis, ya que su suelo del investigador presenta plasticidad a diferencia de nuestra tesis, las muestras extraídas contienen suelos arenosos y presentando resultados nulos que significas que no presentan plasticidad.

VI. CONCLUSIONES

- 1. Para el tipo de suelo arenoso calificado como Arena pobremente graduada con limo (SP MS) en el Sistema Unificado de Clasificación de Suelos (SUCS), a las cuales se les influyeron las Cenizas de cascara de arroz (CCA) con porcentajes de 6%, 8% y 10%; junto con las Cenizas de bagazo de caña de azúcar (CBCA) con 10%, 20% y 35% comparando con el Aditivo Terrasil con 2%, 4% y 7%, se obtuvieron resultados favorables tanto para las cenizas de residuos orgánicos como el aditivo químico, mejorando sus propiedades físicas y el aumento de la capacidad portante, la cual beneficia a ese tipo de suelo poder estabilizar la subrasante.
- 2. La densidad máxima seca en los resultados, muestra que al principio aumenta para luego disminuir, a medida que se eleva los porcentajes de residuos orgánicos, esto muestra que al adicionar 6% de CCA + 10% CBCA aumentó de 1.674 g/cm³ a 1.676 g/cm³, con 8% de CCA + 20% CBCA disminuye de 1.674 g/cm³ a 1.651 g/cm³ finalizando con 10% de CCA + 35% CBCA disminuye de 1.674 g/cm³ a 1.657 g/cm³, en el caso del terrasil disminuyen y luego aumenta, a medida que se eleva sus porcentajes esto se demuestra que a 2 % su densidad maxima seca disminuyo de 1.674 g/cm³ a 1.663 g/cm³, con 4 % disminuyo de 1.674 g/cm³ a 1.660 g/cm³ y con 7 % aumento de 1.674 g/cm³ a 1.678 g/cm³, estos datos son optimos para estabilizar.
- 3. Para el óptimo contenido de humedad incorporando los porcentajes de cenizas de residuos orgánicos se dio a conocer que al momento de adicionar 6% de CCA + 10% CBCA aumentó de 3.16 % a 3.62 %, con 8% de CCA + 20% CBCA aumentó de 3.16 % a 3.52 y con 10% de CCA + 35% CBCA disminuyó de 3.16% a 2.56 %; a comparación del Aditivo terrasil adicionando el 2 % aumenta de 3.16 % a 3.71 %, con 4% aumenta de 3.16 % a 3.52 % y con 7% aumenta de 3.16 % a 4.39 %, resultando valores efectivas para estabilizar.
- 4. Para la expansión de suelo, se observó que no contiene expansión ya que no es un suelo cohesivo, esto quiere decir que al momento de saturarse o humedecerse no tiende a aumentar su volumen.

- 5. La muestra de suelo natural (muestra patrón) su CBR al 0.1 in es de 3.90% al estado natural, dando el caso que no llega al 6%, por lo tanto se necesita dar un mejoramiento a lo que pide la Norma MTC, por otro lado adicionando los porcentajes de las cenizas de residuos organicos y el aditivio quimico se observa un aumento del CBR al momento de adicionarlo a la mezcla. Al 6% de CCA + 10% CBCA aumentó de 3.90% a 15.00% su CBR al 0.1 in, con 8% de CCA + 20% CBCA aumento de 3.90% a 18.80 su CBR al 0.1 in y con 10% de CCA + 35% CBCA aumentó de 3.90% a 15.20% su CBR al 0.1 in, por otro lado el terrasil al 2% aumentó de 3.90% a 5.70% su CBR al 0.1 in, con 4% aumento de 3.90% a 9.70 % su CBR al 0.1 in y con 7% aumento de 3.90% a 6.20% su CBR al 0.1 in. Logrando asi obtener valores optimas para una buena estabilización.
- 6. El Índice de plasticidad para este tipo de suelo arenoso, se obtuvo que es NP (no plástico) tanto para el límite líquido y limite plástico, esto quiere decir que es un suelo que está bajo de contenido de humedad llamado suelos friables o desmenuzables

VII. RECOMENDACIONES.

- Para realizar la estabilización de suelos primeramente se recomienda realizar los estudios de mecanica de suelos para conocer la resistencia de la subrasante a mejorar, ya que, un suelo puede ser estabilizado si su valor de C.B.R es menor al 6%, de lo contrario no es necesario mejora sus propiedades físicas y aumentar su capacidad portante.
- En esta investigación para realizar una estabilización de la subrasante con suelos arenosos calificado como arena pobremente graduada con limo (SP -SM) se recomienda utilizar como agente estabilizador cenizas de cascara de arroz (C.C.A.) mezclado con cenizas de bagazo de caña de azúcar (C.B.C.A)
- 3. Se recomienda emplear la dosificación del mezclado de la muestra patrón con las cenizas de cáscara de arroz (C.C.A.) con un porcentaje de 8% más las cenizas de bagazo de caña de azúcar (C.B.C.A) con un porcentaje de 20% la cual no dieron resultados favorables, en cuanto al C.B.R aumento de 3.90 % a 18.80% logrando mejorar sus propiedades y aumentar su capacidad portante
- 4. Para esta investigación se recomienda diseñar el pavimento flexible con la subrasante estabilizada con residuos orgánicos ya que este es el agente estabilizador que mejores resultados nos generaron en cuanto al C.B.R, máxima densidad seca y optimo contenido de humedad
- 5. Se recomienda utilizar el diseño de pavimente flexible con la subrasante estabilizada con residuos orgánicos, ya que con este estabilizador se obtienen menores espesores des sus capas: Base granular disminuyen de 25cm (subrasante sin estabilizar) a 20cm (subrasante estabilizada) y la subbase granular de 40cm (subrasante sin estabilizar) a 20cm (subrasante estabilizada) Total del espesor de pavimento flexible (subrasante sin estabilizar) 71 cm y Total espesor de pavimento flexible (subrasante estabilizada) 46 cm

REFERENCIAS

Ancade; Anter; Leca. (2008). Manual de Estabilización de Suelos con Cemento o Cal. En IE. (IECA) (Ed.). Madrid: I.S.B.N.: 978-84-89702-23-3.

Adeyanju, Emmanuel, y otros. Subgrade Stabilization using Rice Husk Ash-based Geopolymer (GRHA) and Cement Kiln Dust (CKD). Ogun State: s.n., págs. 2-3-7,2020.

Antonio, P. (2009). Rigidez a Baja Deformación De Mezclas de Suelo de la Formación Pampeano y Cemento Portland. (Tesis de grado en Ingeniería Civil). Universidad de Buenos Aires, Buenos Aires.

Bada, D. F. (2016). Aplicación del Aditivo Químico Conaid para Atenuar la Plasticidad del Material Granular del Tramo de la Carretera Tauca – Bambas (km73 + 514 – km132 + 537) de la Ruta Nacional pe – 3na. (Tesis Para Obtener El Grado De Maestro En Transportes Y Conservación Vial). Universidad Privada Antenor Orrego, Trujillo.

Con-Aid Argentina S.A. (s.f.). Estabilización Química De Suelos. [En Línea] Conaid.com 2021 [Fecha de consulta: 19 de mayo del 2021].

Disponible en: http://www.conaid.com.ar/descargas/Documento-11.pdf

Cortes, C. M., & Fernández, M. A. (2015). Influencia de las zeolitas y biopolímeros en el mejoramiento de la resistencia de suelos del sur, este y norte de lima para vías a nivel de afirmado. (Para optar el título profesional de Ingeniero Civil). Universidad

De la Fuente, E. (2013). Suelo - Cemento Sus Usos, propiedades y aplicación. (M. e. Venanzi, Ed.) México: ISBN 968-464-018-8.

Goñas Labajos, Olger y Saldaña Nuñez, Jhon Hilmer. 2020. Estabilización de los suelos con cenizas de carbon para uso como subrasante mejorada. Ciencias Naturales e Ingenieria. Vol. 3(1).

Hernández, R., Fernández, C., & Baptista, M. d. Metodología de la Investigación. 2006 México: McGraw HILL IINTERAMERICMA EDITORES, S.A. DE C.V.

Hernández, R., Fernández, C., & Baptista, M. d. (S. D. McGraw-Hill / Interamericana Editores, Ed.) Metodología de la Investigación. 2014 [Fecha de consulta: 20 de mayo del 2021].

Disponible en: http://observatorio.epacartagena.gov.co/wp content/uploads/2017/08/metodología de la investigacion-sexta-edicion.compressed.pdf

Huamán, X. E. Análisis de la estabilización del material de cantera Km 02+700 de la ruta CU-123 San Jerónimo Mayumbamba, con la adición de estabilizante iónico Cusco. 2015

Juárez, E., & Rico, A. Mecánica de suelos. Tomo 1 Fundamentos de la mecánica de Suelos. 2012 (S. Limusa, Ed.) México: ISBN 13: 9789681800697.

LABORATORIO DE ALIMENTOS UNAM. Fundamento y Técnicas de Analisis de Alimentos. Pág. 6. 2008. [Fecha de consulta: 14 de junio del 2021].

Disponible en:

http://depa.fquim.unam.mx/amyd/archivero/FUNDAMENTOSYTECNICASDE ANALISISDEALIMENTOS_12286.pdf

Méndez S. y Pineda N. Comportamiento de Cimentaciones en Suelos Expansivos. 2015.

Montejo, A. Ingeniería de Pavimentos Para Carreteras. 2002 Bogota: ISBN: 958-96036-2-9.

MTC. Manual De Diseño De Carreteras No Pavimentadas De Vajo Volumen De Tránsito. En D. G. Ferrocarriles. Lima: Tarea Asociación Gráfica Educativa. 2008. [Fecha de consulta: 23 de mayo del 2021].

Disponible en Dirección General de Caminos y Ferrocarriles.

MTC. "Manual de carreteras" Suelos, Geología, Geotecnia y Pavimento. Lima: R.D. N°10-2014-MTC/14. 2014. [En Linea]. MTC.gob.pe 2014. [Fecha de consulta: 23 de mayo del 2021].

Disponible en:

https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/manuales.html92

MTC. Manual de Carreteras. R.D. Nº 10-2014-MTC/14. 2014 [Fecha de consulta: 23 de mayo del 2021].

MTC. Manual de ensayo de materiales. Lima. [En Línea] MTC.gob.pe 2016 [Fecha de consulta: 23 de mayo del 2021].

Disponible en:

https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/manuales.html

MTC. Manual de Carreteras: Diseño Geométrico DG-2018 [En Línea] MTC.gob.pe 2018. [Fecha de consulta: 23 de mayo del 2021]. Disponible en Dirección General de Caminos Y Ferrocarriles: https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/documentos/manuales/Manual.de.Carreteras.DG-2018.pdf

Ministerio de Agricultura y Riego [En Línea]. Especificación de Suelo. Especificación de Suelo 2015. [Fecha de consulta: 14 de junio del 2021].

Disponible en: https://www.minagri.gob.pe/portal/41-sector-agrario/recursos-naturales/316-suelo

MAPFRE. [En Línea] MAPFRE.com 2021. [Fecha de consulta: 15 de junio del 2021].

Disponible en: https://www.salud.mapfre.es/nutricion/alimentos/el-arroz-un-cereal-con-muchas-posibilidades/

Ospina-Garcia, Chavez-Pabon, Jimenez-Sicacha. (2020). Mejoramiento de subrasantes de tipo arcilloso mediante la adision de escoria de acero. Rev.investig. desarro. innov., Vol. 11 (1), pag.185-196.

OPTIMASOIL. [En Linea] Optimasoil.com 2014 [Fecha de consulta: 15 de junio del 2021].

Disponible en: https://www.optimasoil.com/terrasil/

Patel N., y otros. Subgrade Soil Stabilization using Chemical Additives [En Línea], (02):1089-1095, 2015.

Paz Bellido, C. A. (2014). Estabilización de Suelos Con Aditivo Con-Aid. Obtenido de Scribd: https edoc. site estabilización-de-suelos-con-aditivo-con-aid-pdf-free.html

Quiran, W. E. (2015). "Estabilización de suelos con productos Enzimáticos, como alternativa a la carencia de bancos de préstamo de material en el departamento de Guatemala". Guatemala.

Ravines, M. A. (2010). Pruevas con un Producto Enzimatico Como Agente Estabilizador de Suelos para Carreteras. (Tesis para optar el Título de Ingeniero Civil). Universidad de Piura, Piura.

Rodriguez, D. I. (2016). "Analisis comparativo de la compactación y humedad de la subrasante natural y la subrasante utilizando productos químicos biodegradables (terrasil), se la vía ecológica del Canton Quevedo, provincia de los Ríos.". Ambato Ecuador.

Sánchez, M. A. (2014). Estabilización de suelos expansivos con cal y cemento en el sector calcical del Cartón Tosagua provincia de Manabi. (Disertación de grado previo a la obtención del título de ingeniero civil). Pontificia Universidad Católica del Ecuador, Quito.

Schiffman, L., & Kanuk, L. (2010). Comportamiento del Consumidor. México: Pearson Educación México S.A. de C.V.

Soza, M. M., & Bustamante, J. F. (2003). Estudio de alternativa para estabilización de suelos con material existente en el camino Boquete – Santa Ana. (Tesina sometida a la consideración de la comisión del programa de estudio de maestrías en ingeniería de transportes para optar algrado de master en ingeniería de transporte). Universidad nacional de ingeniería Pedro Arauz Palacios, Managua, Nicaragua.

SANS Llanos, Juan José. 1975. Mecánica de suelos. 1ra. Madrid: Barcelona, 1975. pág. 67.

Stabilization of alluvial soil subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads. Anjani Kumar, Yadav, y otros. 2017. Patna: s.n., 27 de February de 2017, págs. 255-261.

Subgrade Stabilization using Rice Husk Ash-based Geopolymer (GRHA) and Cement Kiln Dust (CKD). Adeyanju, Emmanuel, y otros. 2020. Ogun State: s.n., 26 de May de 2020, págs. 2-3-7.

TDM, T. Pavimentación – Estabilización de Vías Proyecto Perú [En Línea]. Grupotdm.com 2010 [Fecha de consulta: 15 de junio del 2021].

Disponible en: CASOS ICÓNICOS: www.grupotdm.com

TORRES M. Estructuras [En Linea]. EDU.xunta 2014 [Fecha de consulta: 14 de junio del 2021].

Disponible en:

https://www.edu.xunta.gal/espazoAbalar/sites/espazoAbalar/files/datos/1464 947489/contido/51_resistencia.html

Torres, R. (2006). Programa de caminos rurales balance y perspectivas. Facultad de ciencias económicas de la universidad nacional mayor de santos marcos, 11, 43-45.

Obtenido de

http://sisbib.unmsm.edu.pe/bibvirtualdata/publicaciones/economia/29/a04.pdf

Ugaz, R. M. (2006). Estabilización de Suelos y su Aplicación en el Mejoramiento de Subrasante. (Tesis Volumen I para optar el título profesional de Ingeniero Civil). Universidad nacional de Ingeniería, Lima.

Vásquez, M. D. (2010). Pavimentos no Tradicionales para Carreteras de Selva Baja Con Bajo Volumen de Tránsito, Aplicación: Carretera Contamana- Aguas Calientes, Loreto. (Tesis Para Optar el Título Profesional de Ingeniero Civil). Universidad Nacional de Ingeniería, LIMA.

Velarde, A. D. (2015). "Aplicación de la metodología de superficie de respuesta en la determinación de la resistencia a la compresión simple de suelos arcillosos estabilizados con Cal y Cemento". Puno

Varela R. Porcentaje [En Línea]. Numdea.com 2019. [Fecha de consulta: 15 de junio del 2021]. Disponible en: https://numdea.com/porcentaje.html

ANEXOS

ANEXO 1

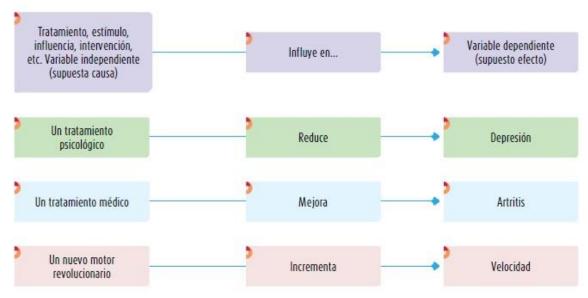


FIGURA N°64. Ejemplo de variables independiente y dependiente

Fuente: Elaborado por Hernández Sampieri R.

ANEXO N° 2: Matriz de consistencia

MATRÍZ DE CONSISTENCIA

TÍTULO: "Estudio coparativo para estabilizar la subrasante con cenizas de reciduos orgánicos y aditivo químico, Av. Ancon, Puente Piedra – Lima, 2021"

AUTORES: - Bartolo Medina, Frank Kevin

- Dominguez Carrasco, Campañolly Ivan

POBLEMA	OBJETIVO	HIPOTESIS	VARIABLES		VARIABLES		VARIABLES		VARIABLES		DIMENSIONES	INDICADORES	INSTRUMENTOS
PROBLEMA GENERAL	OBJETIVO GENERAL	HIPÓTESIS GENERAL		UÍMICO	Cenizas de cascara de arroz	6% 8% 10%	Balanza de precision						
¿De que manera influyen las cenizas de residuos orgánicos y aditivo químico en la	las cenizas de las cenizas de residuos orgánicos y químico en la ación de la estabilización de la subrasante en la Av. Cordillera occidental.	DIENTI	RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO	Cenizas de bagazo de caña de azúcar	10% 20% 35%	Balanza de precision							
subrasante en la Av. Cordillera occidental,		INDE	CENIZAS DE RESIDUOS (Aditivo Terrasil	2% 4% 7%	Probeta y/o vaso de precipitado.							

PROBLEMAS ESPECÍFICOS	OBJETIVOS ESPECÍFICOS	HIPÓTESIS ESPECÍFICAS	VARIA	BLE	DIMENSIONES	INDICADORES	INSTRUMENTOS
¿Cuál será el valor de optimo contenido de humedad máxima densidad seca para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la subrasante de la AV. Cordillera Occidental, Chorrillos, Lima, 2021?	máxima densidad seca para diferentes porcentajes de	densidad seca varian para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico			Optimo contenido de humedad Y máxima densidad seca	Proctor Modificado	ASTM D-1557 y UNE103-501-94.
¿Cual será la expansión del suelo para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la subrasante en la Av. Cordillera occidental, Chorrillos – Lima, 2021?	Determinar la expansión del suelo para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la subrasante en la Av. Cordillera occidental, Chorrillos – Lima, 2021	de cenizas de residuos orgánicos y aditivo químico	EPENDIENTE (Y)	DE LA SUBRASANTE	Porcentaje de expansión del suelo	C.B.R (California Bearing Ratio)	MTC E 132
¿Cuál será la resistencia de la subrasante para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la Av. Cordillera occidental, Chorrillos – Lima, 2021?	Determinar la resistencia de la subrasante para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la Av. Cordillera occidental, Chorrillos – Lima, 2021	diferentes porcentajes de cenizas de residuos	DEPENE	ESTABILIZACIÓN	Resistencia de la subrasante	C.B.R (California Bearing Ratio)	MTC E 132
¿Cuál sera el índice de plasticidad para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la subrasante de la Av. Cordillera occidental, Chorrillos – Lima, 2021?	residuos orgánicos y aditivo químico en la subrasante de	El índice de plasticidad varia para diferentes porcentajes de cenizas de residuos orgánicos y aditivo químico en la subrasante de la Av. Cordillera occidental, Chorrillos – Lima, 2021			Índice de plasticidad	Límite líquido Límite plástico	NTP 339.130

MATRIZ DE OPERACIONALIZACIÓN

TÍTULO: "Estudio coparativo para estabilizar la subrasante con cenizas de reciduos orgánicos y aditivo químico, Av. Ancon, Puente Piedra – Lima, 2021"

AUTORES: - Bartolo Medina, Frank Kevin

- Dominguez Carrasco, Campañolly Ivan

VARIABLE (X)	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA DE MEDICIÓN
ORGÁNICOS Y IICO	Para Navarro y Gomes (1995) los residuos orgánicos es un material descompuesto que es muy proveniente de diferentes especies de flora y fauna, ya sea sobras de		Cenizas de cáscara de arroz	6% 8% 10%	Razón
E RESIDUOS ORG ADITIVO QUÍMICO	cualquier producto o desechos (p.11). Según la Norma CE.020 (2012) "menciona que el aditivo estabilizador se emplea materiales orgánicos o de granulometría muy	medida con diferentes porcentajes de cenizas de cascará de arroz, bagazo de caña de azúcar y aditivo terrasil	bagazo de caña	10% 20% 35%	Razón
CENIZAS DE I	finas y esto debe ser capaz de mezclarse tanto intima como homogéneamente con el suelo con la finalidad de tener un mejor tratamiento ya que deberá presentar mejores propiedades de resistencia" (p.3).	, and the second	Aditivo Terrasil	2% 4% 7%	Razón

VARIABLE (Y)	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	ÍTEMS	ESCALA DE MEDICIÓN
SUBRASANTE	Para la Norma MTC-05- 14 Sección suelos y pavimentos (2014).		Optimo contenido de humedad Y máxima densidad seca	Proctor Modificado	ASTM D-1557 UNE 103-501- 94.	Razón
4	físicas de los suelos. Se	medida mediante los ensayos del Proctor modificado,	Porcentaje de expansión del suelo	C.B.R. (California Bearing Ratio)	MTC E 132	Razón
ESTABILIZACIÓN DE	considera subrasante regular cuando tiene un CBR mayor o igual al 6% si el CBR es menor al 6% es un suelo pobre	CBR, (California Bearing Ratio), Limite líquido y límite plástico.	Resistencia de la subrasante	C.BR. (California Bearing Ratio)	MTC E 132	Razón
ESTABII	o inadecuado (p.92).		Índice de plasticidad	Límite líquido Límite plástico	NTP 339.130	Razón

ANEXO N° 5: Instrumentos de recolección de datos para el Proctor modificado

INSTRUMENTOS DE RECOLECCION DE DATOS; FICHA DE REGISTRO DE DATOS.

""Estudio comparativo para estabilizar la subrasante con cenizas de residuos orgánicos y aditivo químico, Av. Ancón, Puente Piedra - Lima, 2021""

ASUNTO: PROCTOR MODIFICADO

AUTORES: - Bartolo Medina, Frank Kevin

- Dominguez Carrasco, Campañolly Ivan

Ubicación				
Distrito				
Provincia				
Departamento				
	C:	CALICATA	A MÁS CRÍTICA	
			OPTIMO	DENSIDAD
	ENS	SAYOS	CONTENIDO DE	MÁXIMA SECA
			HUMEDAD	
DOSIFICACIÓN				AOTM D 4557
			ASTM D-1557	ASTM D-1557
M	.P.			
	C.C.A.	C.B.C.A.		
M.P. + C.C.A. +	6%	10%		
C.B.C.A.	8%	20%		
	10%	35%		
	TERI	RASIL		
M.P. + TERRASIL	2	%		
WI.I . T ILINIAGIL	4	%		
	7	" %		

M.P.: Muestra patrón

C.C.A.: Cenizas de cáscara de arroz

C.B.C.A.: Ceniza de bagazo de caña de azúcar

TERRASIL: Aditivo terrasil C..: Calicata

VALIDACIÓN I	DE INSTRUMENTO
Apellidos y Nombres ING. SANTOS RICARDO, PADILLA PICHEN	Firma / CIP SAME ALAGO PADILLA PICHÉR INSENIERO CAVIL CIP 51630
Apellidos y Nombres ING. MINAYA ROSARIO, CARLOS DANILO	Firma / CIP
Apellidos y Nombres ING. VARGAS ASPAJO, NISOFRO	Firma / CIP Ing. Civil Nisofro Vargas A. CIP: 181089

ANEXO Nº 6: Instrumentos de recolección de datos para el C.B.R.

C.B.C.A.:

C..:

TERRASIL: Aditivo terrasil

Calicata

INSTRUMENTOS DE RECOLECCION DE DATOS; FICHA DE REGISTRO DE DATOS.

""Estudio comparativo para estabilizar la subrasante con cenizas de residuos orgánicos y aditivo químico, Av. Ancón, Puente Piedra - Lima, 2021""

ASUNTO: C.B.R. (California Bearing Ratio)

AUTORES: - Bartolo Medina, Frank Kevin

- Dominguez Carrasco, Campañolly Ivan

Ubicación					
Distrito					
Provincia					
Departamento					
		C: CALIC	CATA MÁS CI	RÍTICA	
		ENSAYO	S	PORCENTAJE	RESISTENICA
_				DE	DE LA
DOSIFICACIÓ	N		C.B.R.	EXPANSIÓN	SUBRASANTE
				DEL SUELO	
			MTC E 132	MTC E 132	MTC E 132
ı	M.P.				
	C.C.A.	C.B.C.A.			
M.P. + C.C.A.	6%	10%			
+ C.B.C.A.	8%	20%			
	10%	35%			
	TERRASIL				
M.P. +	2%				
TERRASIL	4	4%			
	1	7%			
	uestra pat enizas de	trón cáscara de	arroz		

Ceniza de bagazo de caña de azúcar

VALIDACIÓN I	DE INSTRUMENTO
Apellidos y Nombres ING. SANTOS RICARDO PADILLA PICHEN	Firma / CIP SAME LARCO PADILLA PICHER INSENERGICANIL CIP 51630
Apellidos y Nombres ING. MINAYA ROSARIO, CARLOS DANILO	Firma / CIP
Apellidos y Nombres ING. VARGAS ASPAJO, NISOFRO	Firma / CIP Fig. Civil Nisofro Vargas A. CIP: 181089

INSTRUMENTOS DE RECOLECCION DE DATOS; FICHA DE REGISTRO DE DATOS.

""Estudio comparativo para estabilizar la subrasante con cenizas de residuos orgánicos y aditivo químico, Av. Ancón, Puente Piedra - Lima, 2021""

ASUNTO: (Límite líquido y Límite plástico)

AUTORES: - Bartolo Medina, Frank Kevin

Dominguez Carrasco, Campañolly Ivan

Ubicación					
Distrito					
Provincia					
Departamento					
		C: CALIC	ATA MÁS CRÍ	TIC A	
		C. CALIC	ATA WAS CRIT	IICA	
		ENSAYO	LÍMITE	LÍMITE	INDICE DE
			LÍQUIDO	PLÁSTICO	PLASTICIDAD
DOSIFICACIÓ	N		ASTM D-	ASTM D-	ASTM D-4318
			4318	4318	
N	M.P.				
	C.C.A.	C.B.C.A.			
M.P. + C.C.A.	6%	10%			
+ C.B.C.A.	8%	20%			
	10%	35%			
	TERRASIL				
M.P. +	2% 4%				
TERRASIL					
	7	7 %			
MP· Mu	estra patr	ón			

wuestra patron

C.C.A.: Cenizas de cáscara de arroz
C.B.C.A.: Ceniza de bagazo de caña de azúcar

TERRASIL: Aditivo terrasil

C..: Calicata

VALIDACIÓN I	DE INSTRUMENTO
Apellidos y Nombres ING. SANTOS RICARDO PADILLA PICHEN	SAMES ACARD PADILLA PICHÉRI INSERIENG CAVIL CIP 51630
Apellidos y Nombres ING. MINAYA ROSARIO, CARLOS DANILO	Firma / CIP
Apellidos y Nombres ING. VARGAS ASPAJO, NISOFRO	Firma / CIP Fing. Civil Nisofro Vargas A. CIP: 181089

ANEXO Nº 8. Cotización de estudio de mecánica de suelos

		EX - K - W/	AR S.A.C	RUC		20601912946	
	COTIZACIÓN ESTU	DIO DE MECÂN	ICA DE SUELO	os			
Obra ESTUDI Cliente Contratista Fecha Departamento	O COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE IVAN DOMINGUEZ CARRASCO Y KEVIN BARTOLO MEI EX - K - VAR SAC Set-21 LIMA	DINA	RGÁNICOS Y ADIT	IVO QUÍMICO LIMA			
01	EXPLORACION IN-SITU						
01.01	TRASLADO DE PERSONAL Y EQUIPOS			S/ 150.00	S/-	150.00	
01.02	CALICATA 3 METROS DE PROF.	UND	3.00	S/	S/	900.00	
		-		300.00		-	
02	ENSAYOS EN LABORATORIO Y EMICION DE EMS (ESTUDIO DE MECÁNICA DE SUELO)						
02.01	ENSAYOS EN LABORATORIO CON FINES DE MECANICA DE SUELOS.	UND	1.00	S/ 1,800.00	S/	3400.00	
03	ENSAYOS FISICOS DE CONTROL DE CALIDAD						
03.01	CALIFORNIA BEARING RATIO (CBR) (ASTM D-1883)	UND	6.00	S/ 250.00	S/	1,500.00	
03.02	PROCTOR MODIFICADO (ASTM D - 1557)	UND	6.00	S/ 150.00	S/	900.00	
03.03	LIMITES DE ATTERBERG (ASTM D - 4318)	UND	6.00	S/ 160.00	S/	960.00	
			SUBT	OTAI	S/.	7,810.00	
			GASTOS GEN		s/.	390.50	
			TOTAL,	SIN IGV	S/.	8,200.50	
			I.G.V.	parties.	S/.	1,476.09	
NOTAS A COM	<u>NSIDERAR</u>		ТОТ	ΓAL	RAUL VARGAS V	ENTER9/6/6.59	
LA PROPUEST TRABAJO	TA INCLUYE EL SISTEMA DE PROTECCIÓN PARA LOS EC	QUIPOS DURANTE					
PARTE DEL EN POR INGENIER	NTREGABLE FÍSICO SERA EL EMS Y DISEÑO DE PAVIME RO CIP.	ENTO FIRMADO			J.A		
	A ECONÓMICA TIENE VIGENCIA HASTA 29/09/2021				RAUL KEN VARGAS VILL INGENIERO	CIVIL	
	uispe - jefe de laboratorio gas Villegas - GERENTE GENERAL - EX K VAR S.A.C.				ngeniero	01537	
	200 2000 GENERALE GENERALE EVIN AUTO						

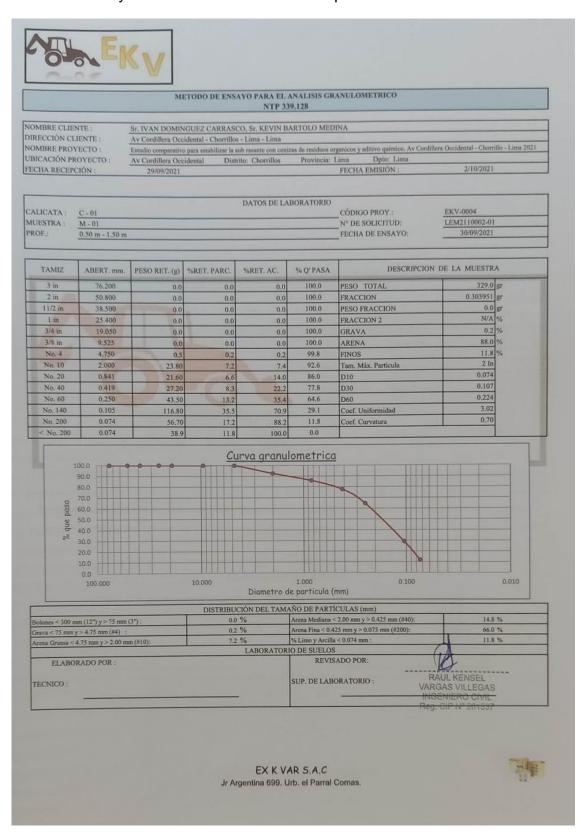
TLF 964250936 - 940920225

ANEXO N° 9. Boucher

DEPOSITO EN EFECTIVO
SANTIAGO DE SURCO, 18-10-2021

CIA...: 0011-0057-70-0259906211 DIV: SOLES
TIT...: RAUL ALARTE QUISPE

REF...: DEPOSITO EN EFECTIVO


IMPORTE..: S/ 0.10

C/C ITF..: S/ 0.10

CLAVE: B633/EH12/XP60071 /000000475/16:06

OF. PROCERES

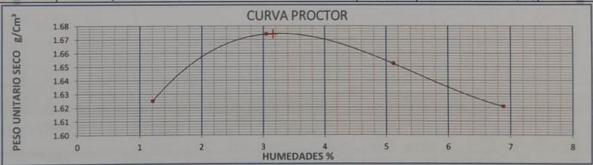
Anexo 9: Ensayos realizados con la muestra patrón

METODO PARA LA CLASIFICACION DE SUELOS CON PROPOSITOS DE INGENIERIA (Sistema unificado de clasificación de suelos, SUCS). NTP 339,134

NOMBER OF STREET			cries cannaci	CO E- VEVINI B	ARTOLO MEDI	VA.				
NOMBRE CLIENTE: Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA DIRECCIÓN CLIENTE: Av Cordillera Occidental - Chorrillos - Lima - Lima										
	E PROYECTO: Estudio comparativo para estabilizar la sub rasante con cenizas de residuos organicos y aditivo quimico, Av Cordillera Occidental - Chorrillo-1									
THE RESERVE OF THE PARTY OF THE	BICACIÓN PROYECTO: Av Cordillera Occidental Distrito: Chorrillos Provincia: Lima Dpto: L									
FECHA RECEI		29/09/2021	rocina) Loss			FECHA EMISIÓN: 2/10/2021				
				DATOS DE LA	BORATORIO					
CALICATA:	C-01					CÓDIGO PRO		EKV-0004		
MUESTRA:	M - 01					N° DE SOLICI		LEM2110002-01		
PROF.:	0.50 m - 1.50 m					FECHA DE EN	SAYO:	30/09/2021		
		Sistema	unificad	o de clasi	ificacion	de suele	os SUCS			
		М	ETODO DE ENS	AYO PARA EL	ANALISIS GRA	NULOMETRI	со			
	,			NTP 33	The second secon		10000		200	
TAMIZ	ABERT. mm.	PESO RET. (g)	%RET. PARC.	%RET. AC.	% Q' PASA	Com	posicion	granulom	etrica	
3 in	76.200	0.0	0.00	0.00	100.0			1000	0.00	
2 in	50:800	0.0	0.00	0.00	100.0	GRAVAS	Gravas Gruesa	9/6	0.15	
11/in	38.500	0.0	0.00	0.00	100.0	11.50.20	Gravas Fina	%	13,80	
1 in	25.400	0.0	0.00	0.00	100.0	ARENAS	Arenas Gruesa	%	21.49	
3/4 in	19.050	0.0	0.00	0.00	100.0	AKENAS	Arenas Media		52.74	
3/8 in	9.525	0,0	0.00	0.00	100.0		Arenas Fina	%	11.8	
No. 4	4.750	0.5	0.15	0.15	99.8	FINOS	Limos y Arcillas	76	11.0	
No. 10	2.000	23.80	7,23	7.39	92.6	CD.	43/40			
No. 20	0.841	21.60	6.57	13.95	86.0	GR	AVAS 0.2		76	
No. 40	0.419	27,20	8.27	22.22	77.8		2000	88.0 %		
No. 60	0.250	43.50	13.22	35.44	64.6	AR	RENAS 88.0			
No. 140	0.105	116.80	35.50	70.94	29.1	-		11.8 %		
No. 200	0.074	56.70	17.23	88.18	11.8	F	NOS			
< No. 200	0.074	38.90	11.82	100.00	0.0	CTICO E IND	CE DE DI ACTI	CIDAD DE SUEL	os	
1	METODO DE EN	SAYO PARA DET	TERMINAR EL I	NTP 3.		ISTICO E IND	ICE DE PLASTI	CIDAD DE SUEL	US .	
		LIMITE LIQUID	0			1	LIMITE PLASTI	со		
No.	LL:	NP					LP:	NP		
	Libr			INDICE DE P	LASTICIDAD					
				IP:	NP					
			CL	ASIFICACION	DE SUELOS SU	CS				
			_					٨		
	SP SM	Arena pobi	emente grad	duada con li	imo			\mathcal{A}		
				LABORATORI				1/1		
ELABO	RADO POR:				REVISA	DO POR:	******	12		
TECNICO:					SUP. DE LABORATORIO : RAUL NISEL VARGAS VILLEGAS					

METODO DE COMPACTACION DEL SUELO EN EL LABORATORIO ENERGIA DE COMPACTACION (56,000 ft-lbf/ ft3 (2,700 kN-m / m3)) NTP 339.141

NOMBRE CLIENTE : Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA


AV Cordillera Occidental - Chorrillos - Lima - Lima

NOMBRE PROYECTO : Estudio comparativo para estabilizar la sub rasante con cenizas de residuos organicos y aditivo quimico, Av Cordillera Occidental - Chorrillo - Lima 2021

UBICACIÓN PROYECTO : AV Cordillera Occidental Distrito: Chorrillos Provincia: Lima Dpto: Lima

FECHA RECEPCIÓN : 29/09/2021 FECHA EMISIÓN : 2/10/2021

	DATOS DE LABORATORIO	0			
CALICATA:	C-01	CÓDIGO PRO	Y.:	EKV-0004	
MUESTRA:	M - 01	N° DE SOLIC	N° DE SOLICITUD:		
PROF.:	0.50 m - 1.50 m	FECHA DE ENSAYO:		30/09/2021	
	ENSAYO PROCTOR MODIFICADO (NTP, 33	9.141 / ASTM D 1	557)	11/2	
No. DE MOLD	E: 1 VOLUMEN DEL MOLDE (Cm3):	2124	MASA DEL N	(OLDE (g):	6448
1	No. Pruebras	1	2	3	4
2	Masa del molde + Suelo humedo (g)	9941	10112	10137	10128
3	Masa del Suelo Humedo (g)	3493	3664	3689	3680
4	Densidad Humedad (g/cm3)	1.645	1.725	1.737	1.733
	DETERMINACION DEL PORTECENTAJE DE HUMEDA	D (NTP, 339.127	ASTM D 2216)		
5	No. Prucbras	1	2	3	4
6	Masa de Suelo Humedo + Tara (g)	511.69	542.54	591.51	539.63
7	Masa de Suelo Seco + Tara (g)	508.20	535.03	576.60	524:40
8	Masa de Tara (g.)	219.80	288.80	285.30	303.30
9	Masa de Agua (g)	3.49	7.51	14.91	15.23
10	Masa de Suelo Seco (g.)	288.40	246.23	291.30	221.10
11	Humedad %	1.21	3.05	5.12	6.89
12	Densidad Seca. (g/cm3)	1.625	1.674	1.652	1.621
	RESULTADOS FINALES		10.00		
13	Densidad Maxima Seca (g/cm3)	1.674	Humedad O	ptima (%)	3.16
14	Gravedad Especifica de los solidos (ASTM D 854) (ASTM C 127).	2.754	Humedad 10	00% de sat. (%)	23.43

	LABORATORIO DE SUELOS	1/1
ELABORADO POR:	REVISADO POR:	VA
TECNICO:	SUP. DE L'ABORATORIO :	RAS NENSEL VARGAS VILLEGAS INGENIERO CIVIL
		Pag CIP Nº 201537

N° LEM2110203/01 INFORME DE ENSAYO Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils ASTM D1883 "ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO, AV. CORDILLERA NOMBRE DE PROYECTO: OCCIDENTAL - CHORRILLOS - LIMA 2021." UBICACIÓN DEL PROYECTO: AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA - LIMA. PROCEDENCIA: -SOLICITANTE: FECHA DE RECEPCIÓN: 2021-10-01 Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA DIRECCIÓN SOLICITANTE: -FECHA DE EMISIÓN: 2021-10-07 **DESCRIPCIÓN DE MUESTRA** MATERIAL/CALICATA: 0.00 m - 1.50 m TMP PROFUNDIDAD: C-01 M-1 **ENSAYO CBR ASTM D 1883** 12 Molde Nº 10 11 Nº Capa 5 5 10 Golpes por capa № NO SATURADO SATURADO NO SATURADO SATURADO Condición de la muestra NO SATURADO SATURADO Peso molde + Suelo húmedo 10226 10737 10784 7273 Peso de molde (g) 6560 7857 4194 3511 4039 Peso del suelo húmedo (g) 3666 4177 3681 Volumen del molde (cm³) 2119 2119 2132 1.657 1.906 1.967 Densidad húmeda (g/cm³) 1.736 1.978 1.727 18.01 % de humedad 2.98 16.89 16.90 2.96 1.615 1.683 1.609 Densidad seca (g/cm3) 1.686 1.692 1.676 Densidad Máxima Laboratorio (g/cm³) Tarro + Suelo húmedo (g) 688.50 446.30 691.50 565.60 698.40 685.00 616.30 439.90 620.90 Tarro + Suelo seco (g) 555.80 628.20 673.60 Peso del Agua (g) 9.80 70.20 11.40 67.60 6.40 75.20 198.80 220.80 212.60 296.40 Peso del tarro (g) Peso del suelo seco (g) 328.80 415.60 377.20 400.10 216.20 417.50 16.9 3.0 18.0 16.9 3.0 % de humedad 3.0 Promedio de Humedad (%) EXPANSIÓN TIEMPO EXPANSIÓN EXPANSIÓN EXPANSIÓN DIAL HORA **FECHA** mm mm 96 mm Sub Total 0.0 % Total PENETRACIÓN MOLDE Nº 11 MOLDE Nº 10 CARGA MOLDE Nº 12 PENETRACIÓN CORRECCIÓN CARGA CORRECCIÓN STAND. CARGA CARGA CORRECCIÓN (in) kg/cm² kg/cm² kg/cm² kg/cm² kg-f kg/cm² kg/cm² kg/cm² kg-f kg-f 0.000 0.0 0.0 0.0 0.0 0.0 0.0 29,5 18.4 38.2 2.0 1.5 1.0 58.6 38.2 3.0 73.1 3.8 2.0 117.0 6.1 99.2 5.1 55.6 2.9 0.075 150.1 11.0 4.0 0.100 70 167.9 8.7 11.6 16.5 7.8 15.6 78.1 4.0 5.7 224.2 11.6 199.7 10.3 100.9 0.125 14.4 251.7 13.0 125.0 0.150 278.5 6.5 329.8 17.1 299.9 15.5 147.8 7.7 0.175 383.7 19.9 21.5 20.5 345.5 17.9 19.5 18.6 169.2 8.8 105 8.8 0.200 8.4 516.4 26.7 446.1 23.1 0.300 591.8 30,6 421.9 21.8 321.0 16.6 0.400 0.500 540.9 28.0 391.8 20.3

Los Resultados de los Ensayos no deben ser utilizados como una Certificación de Conformidad con Normas de Producto o como Certificado del Sistema de Calidad de Li
Prohibido la Reproducción Total o Parcial, Excepto con Autorización previa por escrito de LEMICONS S.R.L.

Los Resultados solo están Relacionados con la Muestra Ensayella. La Muestra ha sido identificada y Entregada en el Laboratorio por el Cliente bajo su Responsabilidad. 368.6 19.1

> RAUL KENSEL VARGAS VILLEGAS INGENIERO CIVIL Reg. CIP IV° 201537

ANGEL EDUARDO GOMEZ GARCIA INGENIERO CIVIL Reg. CIP N° 79951 1 de 2

LEM-LAB-F-12 2019-09-28 Ver.:01

LEMICONS S.R.L. Calle Tritoma Mz. J Lote 27 Coop, Huaytapallana, Los Olivos Lima

Telf.: 994236763 / 652-8558

INFORME DE ENSAYO

N° LEM2110203/01

Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils ASTM D1883

NOMBRE DE PROYECTO:

"ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO, AV. CORDILLERA OCCIDENTAL-

CHORRILLOS - LIMA 2021."

UBICACIÓN DEL

AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA - LIMA.

PROCEDENCIA:

PROYECTO: SOLICITANTE:

Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA

FECHA DE

2021-10-01

DIRECCIÓN

RECEPCIÓN:

SOLICITANTE:

FECHA DE EMISIÓN: 2021-10-07

DESCRIPCIÓN DE MUESTRA

MATERIAL/CALICATA:

C-01_M-1

PROFUNDIDAD:

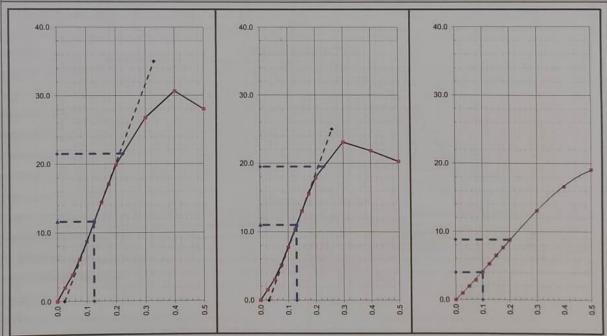
0.00 m - 1.50 m

TMP

GRÁFICO DE PENETRACIÓN DE CBR

DATOS DEL	PROCTOR
Densidad Seca	**
Óptimo Humedad	

RESULTADOS DE CBR al 0,1 in			
CBR al 100 %	16.5 %		
Estado Natural %	3.9 %		


DENS	IDAD
Densidad al 100 %	1.686 g/cm3
Estado natural	1.600 g/cm ³

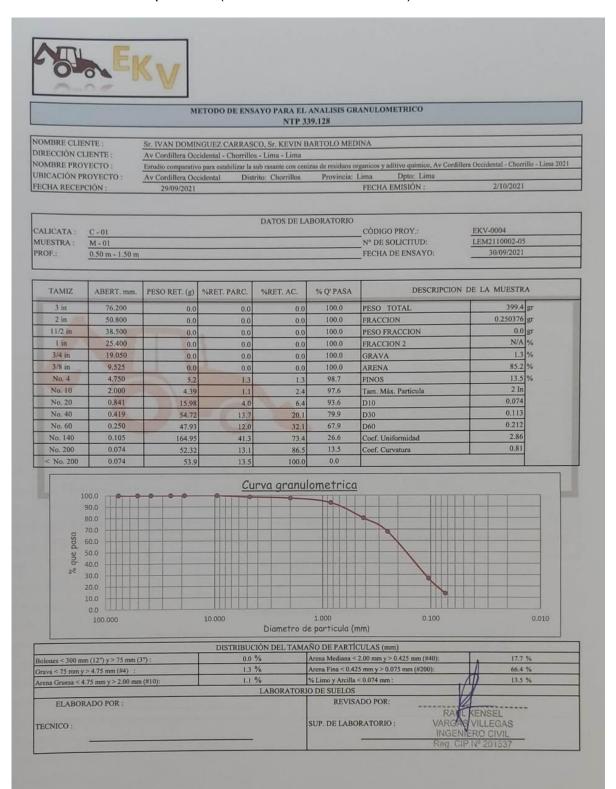
0.0 %

EC = 56 GOLPES

EC = 25 GOLPES

EC = 10 GOLPES

Los Resultados de los Ensayos no deben ser utilizados como una Certificación de Conformidad con Normas de Producto o como Certificado del Sistema de Calidad de LEMICONS S.R.L.
Prohibido la Reproducción Total o Parcial, Excepto con Autorización previa por escrito de LEMICONS S.R.L.
Los Resultados solo están Relacionados con la Muesta Ensayada. La Muestra ha sido Identificada y Entregada en el Laboratorio por el Cliente bajo su Responsabilidad.


RAVIL VENSEL VARGAS VILLEGAS INGENIERO CIVIL Reg. CIP Nº 201537

LEMICONS S.R.L. Calle Tritoma Mz. J Lote 27 Coop. Huaytapallana, Los Olivos Lima Telf.: 994236763 / 652-8558

ANGEL EDUARDO GOMEZ GARCIA INGENIERO CIVIL 2 de 2 Reg. CIP N° 79951

LEM-LAB-F-13 2019-09-28 Ver.:00

Anexo 10: Muestra patrón + (6% de CCA + 10% CBCA)

METODO PARA LA CLASIFICACION DE SUELOS CON PROPOSITOS DE INGENIERIA (Sistema unificado de clasificación de suelos, SUCS). NTP 339,134

NOMBRE CLIENTE:	Sr. IVAN DOMINGUEZ CA	ARRASCO, Sr. KEVIN B.	ARTOLO MEDINA			
DIRECCIÓN CLIENTE:	Av Cordillera Occidental - Chorrillos - Lima - Lima					
NOMBRE PROYECTO:	Estudio comparativo para estab	ilizar la sub rasante con cenia	eas de residuos organicos y	aditivo quimico, Av Cordill	era Occidental - Chorrillo - Lima 2021	
UBICACIÓN PROYECTO:	Av Cordillera Occidental	Distrito: Chorrillos	Provincia: Lima	Dpto: Lima		
FECHA RECEPCIÓN:	29/09/2021		FECHA	A EMISIÓN :	2/10/2021	

ALICATA:	C-01			DATOS DE LA	BORATORIO	CÓDIGO PRO	Y.:	EKV-0004	
UESTRA:	M = 01					N° DE SOLICITUD:		LEM2110002-05	
ROF.:	0.50 m - 1.50 m					FECHA DE EN	SAYO:	30/09/2021	
		Sistema	unificad	o de clasi	ificacion	de suel	os SUCS		
		М	ETODO DE ENS	AYO PARA EL NTP 3:		ANULOMETRI	со		
TAMIZ	ABERT, mm.	PESO RET. (g)	%RET. PARC.	%RET, AC.	% Q' PASA	Com	nogicion	granulomat	rica
3 in	76.200	0.0	0.00	0.00	100.0	Com	posicion	granulomet	lica
2 in	50.800	0:0	0.00	0,00	100.0	GRAVAS	Gravas Gruesa	%	0.00
11/ in	38.500	0.0	0.00	0.00	100.0		Gravas Fina	%	1.30
1 in	25.400	0.0	0.00	0.00	100.0		Arenas Gruesa	%	5.10
3/4 in	19.050	0.0	0.00	0.00	100.0	ARENAS	Arenas Media	%	25.70
3/8 in	9.525	0,0	0.00	0.00	100.0		Arenas Fina	%	54.40
No. 4	4.750	5.2	1.30	1.30	98.7	FINOS	Limos y Arcillas	%	13.5
No. 10	2.000	4.39	1.10	2.40	97.6				
No. 20	0.841	15.98	4.00	6.40	93.6				
No. 40	0.419	54.72	13.70	20.10	79.9			77	
No. 60	0.250	47.93	12.00	32.10	67.9	AR	ENAS	85.2 %	
No. 140	0.105	164.95	41,30	73.40	26.6				
No. 200	0.074	52.32	13.10	86,50	13.5	F	INOS	13.5 %	
< No. 200	0.074	53.92	13,50	100.00	0.0				
1	METODO DE EN	SAYO PARA DET	TERMINAR EL I	LIMITE LIQUID NTP 3		ASTICO E IND	ICE DE PLASTIC	CIDAD DE SUELOS	
		LIMITE LIQUID	0			- 1	LIMITE PLASTI	co	
	LL:	NP					LP:	NP	
				INDICE DE P	NP NP				

CLASIFICACION DE SUELOS SUCS

SM Arena limosa

	LABORATORIO DE SUELOS	167
ELABORADO POR:	REVISADO POR:	AT
TECNICO:	SUP. DE LABORATORIO :	RAUL KENSEL VARGAS VILLEGAS INGENIERO CIVII
		Pea CIP Nº 201537

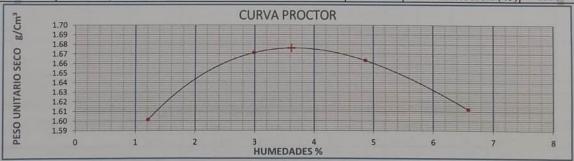
METODO DE COMPACTACION DEL SUELO EN EL LABORATORIO ENERGIA DE COMPACTACION (56,000 ft-lbf / ft3 (2,700 kN-m / m3)) NTP 339.141

NOMBRE CLIENTE:
DIRECCIÓN CLIENTE:
NOMBRE PROYECTO:
UBICACIÓN PROYECTO:
UBICACIÓN PROYECTO:
TECHA RECEPCIÓN:

Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA

Av Cordillera Occidental - Chorrillos - Lima - Lima

Estudio comparativo para estabilizar la sub rasante con cenizas de residuos organicos y aditivo quimico, Av Cordillera Occidental - Chorrillo - Lima 2021


Av Cordillera Occidental Distrito: Chorrillos Provincia: Lima Dpto: Lima

EFECHA RECEPCIÓN:

29/09/2021

FECHA EMISIÓN: 2/10/2021

	DATOS DE LABORATORIO)			
CALICATA:	C-01	CÓDIGO PRO	<i>(.:</i>	EKV-0004	
MUESTRA:	M = 01	N° DE SOLICT	TUD:	LEM2110002-05	
PROF.:	0.50 m - 1,50 m	FECHA DE EN	SAYO:	30/09/2021	
	ENSAYO PROCTOR MODIFICADO (NTP, 339	0.141 / ASTM D 15	57)		
No. DE MOLD	E: 1 VOLUMEN DEL MOLDE (Cm3):	2124	MASA DEL MO	LDE (g):	6448
1	No. Pruebras	1	2	3	4
2	Masa del molde + Suelo humedo (g)	9889.67034	10103.28971	10152.23072	10097.52222
3	Masa del Suelo Humedo (g)	3441.67034	3655.289708	3704.230724	3649.522219
4	Densidad Humedad (g/cm3)	1.620	1.721	1.744	1.718
	DETERMINACION DEL PORTECENTAJE DE HUMEDAI	D (NTP, 339.127/	ASTM D 2216)		
5	No. Pruebras	1	2	3	-4
6	Masa de Suelo Humedo + Tara (g)	280.19	281.04	316.81	485.89
7	Masa de Suelo Seco + Tara (g)	278.70	277.60	310.90	474.60
8	Masa de Tara (g.)	155.70	162.40	189.50	303.30
9	Masa de Agua (g)	1.49	3.44	5.91	11.29
10	Masa de Suelo Seco (g.)	123.00	115.20	121.40	171.30
11	Humedad %	1.21	2.99	4.87	6.59
12	Densidad Seca. (g/cm3)	1.601	1.671	1.663	1.612
	RESULTADOS FINALES				
13	Densidad Maxima Seca (g/cm3)	1.676	Humedad Opt	tima (%)	3.62
14	Gravedad Especifica de los solidos (ASTM D 854) (ASTM C 127).	2.754	Humedad 100	% de sat. (%)	23.36

	LABORATORIO DE SUELOS	1/1
ELABORADO POR :	REVISADO POR:	KI
TECNICO:	SUP. DE LABORATORIO :	VARGAS VILLEGAS
		Pag CIP US 20 527

INFORME DE ENSAYO N° LEM2110206/04 Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils ASTM D1883 NOMBRE DE PROYECTO: "ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO, AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA 2021." UBICACIÓN DEL PROYECTO: AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA - LIMA. PROCEDENCIA: M1+95g DE CENIZA SOLICITANTE: Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA FECHA DE RECEPCIÓN: 2021-10-01 DIRECCIÓN SOLICITANTE: FECHA DE EMISIÓN: 2021-10-18 DESCRIPCIÓN DE MUESTRA MATERIAL/CALICATA: C-01_M-1 PROFUNDIDAD: 0.00 m - 1.50 m TMP ENSAYO CBR ASTM D 1883 Molde Nº Nº Capa Golpes por capa Nº Condición de la muestra NO SATURADO SATURADO NO SATURADO SATURADO NO SATURADO SATURADO Peso molde + Suelo húmedo 12140 11041 9935 Peso de molde (g) 8017 8017 Peso del suelo húmedo (g) 3574 4123 3491 4086 3412 4018 Volumen del molde (cm3) 2109 Densidad húmeda (g/cm³) 1.695 1.955 1.637 1.917 1.612 1.899 % de humedad 1.60 17.00 1.76 18.79 1.67 19.50 Densidad seca (g/cm³) 1.668 1.671 1.609 1.614 1.586 1.589 Densidad Máxima Laboratorio (g/cm³) Tarro Nº Tarro + Suelo húmedo (g) 805.20 789.60 Tarro + Suelo seco (g) 694.90 575.90 796.50 714.60 697.00 598.60 Peso del Agua (g) 6.00 60.40 8.70 75.00 7.80 78.00 Peso del tarro (g) 320.80 220.60 228.70 Peso del suelo seco (g) 374.10 355.30 493.20 399.10 468.30 400.00 % de humedad 1.6 17.0 1.8 18.8 1.7 19.5 Promedio de Humedad (%) **EXPANSIÓN** TIEMPO EXPANSIÓN EXPANSIÓN DIAL mm % mm Sub Total 0.0 % Total PENETRACIÓN MOLDE Nº 4 MOLDE N° 5 CARGA MOLDE N° 7 PENETRACIÓN CORRECCIÓN CARGA CORRECCIÓN STAND. CARGA CARGA CORRECCIÓN kg/cm² kg-f kg/cm² kg/cm² kg/cm² kg-f kg/cm² kg/cm² kg/cm² kg-f 0.000 0.0 0.0 0,0 0.0 0.025 32.8 18.8 1.0 21.8 1.1 65.0 3.4 36.9 1.9 0.050 40.2 2.1 0.075 114.3 5.9 63.3 3.3 62.3 3.2 9.2 11.8 0.100 70 178.0 21.8 31.0 4.9 16.8 93.5 4.8 8.1 11.5 259.7 13.4 137.1 7.1 130.4 6.7 0.125 348.2 18.0 187.3 169.6 8.8 454.1 242.6 12.6 23.5 11.0 0.175 0.200 105 553.3 28.6 39.5 37.6 301.9 15.6 22.5 21.4 254.4 13.2 15.8 15.0 503.0 875.0 45.3 26.0 384.7 19.9 0.300 964.8 49,9 571.1 29.6 475,2 24.6 0.400 543.9 28.2 507.4 como Certificado del Sistema de Calidad de LEMICONS S.R.L 833.8 26.3 0.500 Los Resultados de los Erisayos no deben ser utilizados como una Certificación de Conformidad con Normas de Producto o como Certificado del Sistema de Calidad de La Prohibidad la Reproducción Total o Parcial, Excepto con Autogia-den previa por escrito de LEMICONS S.R.L.
Los Resultados solo están Relacionados con la Muestra Engisyad. La Muestra ha sido identificada y Entregada en el Laboratorio por el Cliente bajo su Responsabilidad.

> AULKENSEL VARGAS VILLEGAS

Reg. CIP Nº 201637 LEMICONS S.R.L. Calle Tritoma Mz. J Lote 27 Coop. Huaytapallana, Los Olivos – Lima

ANGEL EDUARDO GOMEZ GARCIA INGENIERO CIVIL Lima Reg. CIP N° 79951 1 de

1 de 2

LEM-LAB-F-12 2019-09-28 Ver.:01

Telf.: 994236763 / 652-8558

INFORME DE ENSAYO

N° LEM2110206/04

Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils ASTM D1883

NOMBRE DE PROYECTO:

*ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO, AV. CORDILLERA OCCIDENTAL

CHORRILLOS - LIMA 2021."

UBICACIÓN DEL

AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA - LIMA.

PROCEDENCIA:

M1+95g DE CENIZA

PROYECTO: SOLICITANTE:

FECHA DE

2021-10-01

DIRECCIÓN

Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA

RECEPCIÓN:

SOLICITANTE:

FECHA DE EMISIÓN: 2021-10-18

DESCRIPCIÓN DE MUESTRA

MATERIAL/CALICATA:

C-01_M-1

PROFUNDIDAD:

0.00 m - 1.50 m

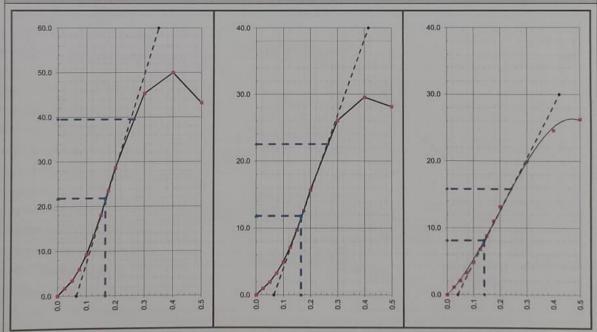
TMP

GRÁFICO DE PENETRACIÓN DE CBR

Densidad Seca	
Óptimo Humedad	
	water to the later
RESULTADOS DE	CBR al 0.1 in

DATOS DEL PROCTOR

CBR al 100 %	31.0 %
Estado Natural %	15.0 %


DENS	IUAU
Densidad al 100 %	1.668 g/cm3
Estado natural	1.600 g/cm ³

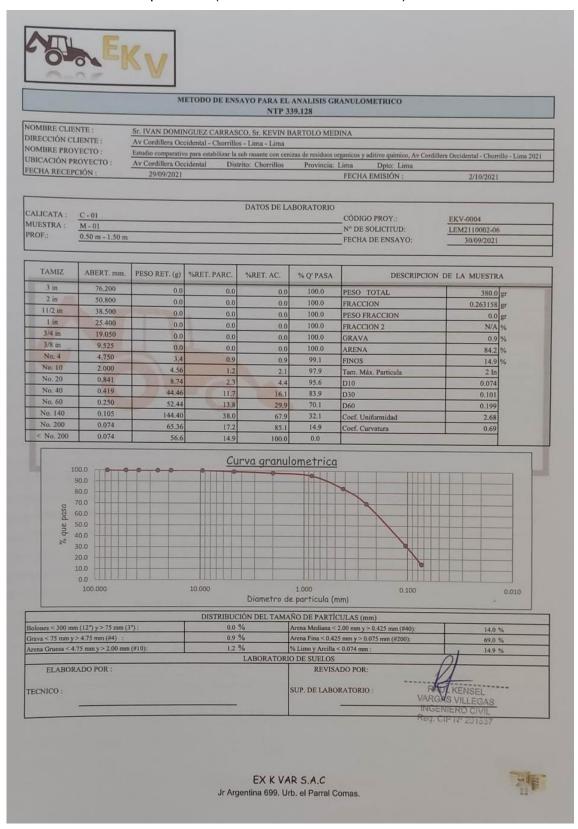
EXPANSIÓN			
Expansión	0.0 %		

EC = 56 GOLPES

EC = 25 GOLPES

EC = 10 GOLPES

Los Resultados de los Ensayos no deben ser utilizados como una Certificación de Conformidad con Normas de Producto o como Certificado del Sistema de Calidad de LEMICONS S.R.L. Prohibido la Reproducción Total o Parcial, Excepto con Autorization previa por escrito de LEMICONS S.R.L. Los Resultados solo están Relacionados con la Muestra Ensaya y La Muestra ha sido Identificada y Entregada en el Laboratorio por el Cliente bajo su Responsabilidad.


PACKENSEL VARGAS VILLEGAS INGENIERO CIVIL Reg CIP Nº 201537

LEMICONS S.R.L. Calle Tritoma Mz. J Lote 27 Coop. Huaytapallana, Los Olivos - Lima Telf.: 994236763 / 652-8558

ANGEL EDUARDO GOMEZ GARCIA 2 de 2 Reg. CIP Nº 79951

LEM-LAB-F-13 2019-09-28 Ver.:00

Anexo 11: Muestra patrón + (8% de CCA + 20% CBCA)

SM

Arena limosa

NOMBRE CLIENTE:

METODO PARA LA CLASIFICACION DE SUELOS CON PROPOSITOS DE INGENIERIA (Sistema unificado de clasificación de suelos, SUCS). NTP 339.134

NOMBRE CLIE	NTE:	The state of the s		CO, Sr. KEVIN BA	ARTOLO MEDIN	A			
DIRECCIÓN CI		Av Cordillera Occ						MANUAL MA	
NOMBRE PRO UBICACIÓN PI	YECTO:				Commence of the Commence of th			ra Occidental - Chorril	o - Lima 2021
FECHA RECEP	CIÁN.	Av Cordillera Occ	idental Dist	rito: Chorrillos		Provincia: Lima Dpto: Lima			
PECHA RECEP	CION:	29/09/2021				FECHA EMISI	ON:	2/10/2021	
				DATOS DE LA	BORATORIO				
CALICATA:	C - 01				(CÓDIGO PRO	Ya	EKV-0004	
MUESTRA:	M - 01				1	N° DE SOLICI	TUD:	LEM2110002-06 30/09/2021	
PROF.:	0.50 m - 1.50 m					FECHA DE ENSAYO:			
		Sistema	unificad	o de clasi	ficacion	de suel	os SUCS	6	
		M	ETODO DE ENS	SAYO PARA EL		NULOMETRI	со		
TAMIZ	ADDDT	I prop per ()	BIDDER BIDGE	NTP 33					
3 in	76,200	PESO RET. (g)	%RET. PARC.	%RET. AC.	% Q' PASA	Com	posicion	granulome	etrica
2 in	50.800	0,0	0.00	0.00	100.0		•		
11/in	38,500	0.0	0.00	0.00	100.0	GRAVAS	Gravas Gruesa	%	0.0
1 in	25,400	0.0	0,00	0.00	100.0		Gravas Fina	%	0.9
3/4 in	19.050	0.0	0.00	0.00	100.0	ADENIAG	Arenas Gruesa	%	3.5
3/8 in	9.525	0.0		0.00	100.0	ARENAS	Arenas Media	%	25.5
No. 4	4.750	0.0		0.00	100.0	rm to a	Arenas Fina	%	55.2
No. 10	2.000	3.4	0.90	0.90	99.1	FINOS	Limos y Arcilla	s %	14.
No. 20	0.841	4.56		-	97.9	CD	AVAS	-	-
No. 40	0.419	8.74	2,30	4,40	95.6	GR	AVAS	- 0.9	%
No. 60	0.250	44,46			83.9	4.70	F2140		
No. 140	0.105	52.44		100000000000000000000000000000000000000	70.1	AF	ENAS	_ 84.2	Y ₀
No. 200	0.074	144.40		-	32.1	-		***	
< No. 200	0.074	65.36 56.62			14.9	F	INOS	14.9	%
-					0.0	STICO F IND	ICE DE PLASTI	CIDAD DE SUELO	O.C.
	ILIODO DE L	ISATO TARCEDE	TERMINAL EL	NTP 3		STICO E IND	ACE DE LEASTI	CIDAD DE SCEL	<i>J</i> S
		LIMITE LIQUID	00				LIMITE PLAST	ICO	
	LL:	NP					LP:	NP	
				INDICE DE P	LASTICIDAD				
				IP:	ND		1		
				11.	NP				

	LABORATORIO DE SUELOS	
ELABORADO POR: TECNICO:	REVISADO POR: SUP. DE LABORATORIO :	RAUL KENSEL VARGAS VILLEGAS INSENIERO CIVIL

29/09/2021

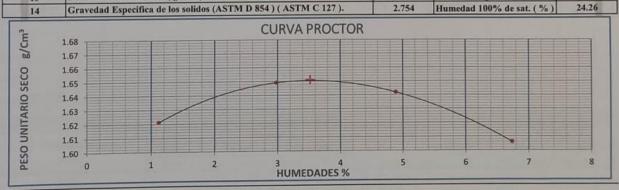
FECHA RECEPCIÓN:

METODO DE COMPACTACION DEL SUELO EN EL LABORATORIO ENERGIA DE COMPACTACION (56,000 ft-lbf/ ft3 (2,700 kN-m / m3)) NTP 339.141

NOMBRE CLIENTE : Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA

AV Cordillera Occidental - Chorrillos - Lima - Lima

NOMBRE PROYECTO : Estudio comparativo para estabilizar la sub rasante con cenizas de residuos organicos y aditivo químico, Av Cordillera Occidental - Chorrillo - Lima 2021


UBICACIÓN PROYECTO : Av Cordillera Occidental Distrito: Chorrillos Provincia: Lima Dpto: Lima

	DATOS DE LABORATORIO	
CALICATA: C-01	CÓDIGO PROY.:	EKV-0004

FECHA EMISIÓN :

2/10/2021

CALICATA:	C-01	CÓDIGO PRO	Y.:	EKV-0004		
MUESTRA:	M - 01	N° DE SOLIC	ITUD:	LEM2110002-06		
PROF.:	0,50 m - 1.50 m	FECHA DE E	NSAYO:	30/09/2021		
	ENSAYO PROCTOR MODIFICADO (NTP, 3	39.141 / ASTM D 1	557)	- 7200		
No. DE MOLD	E: 1 VOLUMEN DEL MOLDE (Cm3):	2124	MASA DEL N	OLDE (g):	6448	
1	No. Pruebras	1	2	3	4	
2	Masa del molde + Suelo humedo (g)	9930	10055	10106	10089	
3	Masa del Suelo Humedo (g.)	3482	3607	3658	3641	
4	Densidad Humedad (g/cm3)	1.639	1.698	1.722	1.714	
	DETERMINACION DEL PORTECENTAJE DE HUMED	AD (NTP, 339.127	ASTM D 2216)			
5	No. Pruebras	1	2	3	4	
6	Masa de Suelo Humedo + Tara (g)	400.70	482.81	479.98	511.76	
7	Masa de Suelo Seco + Tara (g)	398.70	477.20	470.90	498.60	
8	Masa de Tara (g.)	219.80	288.80	285.30	303.30	
9	Masa de Agua (g)	2.00	5.61	9.08	13.16	
10	Masa de Suelo Seco (g.)	178.90	188.40	185.60	195.30	
11	Humedad %	1.12	2.98	4.89	6.74	
12	Densidad Seca. (g/cm3)	1.621	1.649	1,642	1.606	
	RESULTADOS FINALI	ES				
13	Densidad Maxima Seca (g/cm3)	1.651	Humedad O	ptima (%)	3.52	
			PRODUCTION OF THE PARTY		100000	

	LABORATORIO DE SUELOS	M
ELABORADO POR :	REVISADO POR: SUP. DE LABORATORIO :	RAIN KENSEL VARGAS VILLEGAS
TECNICO:	SUP. DE LABORATORO	INGENIERO CIVIL Reg. CIP Nº 201537

N° LEM2110206/05 **INFORME DE ENSAYO** Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils ASTM D1883 NOMBRE DE PROYECTO: "ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO, AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA 2021. UBICACIÓN DEL PROYECTO: AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA - LIMA. PROCEDENCIA: M1+190 g DE CENIZA SOLICITANTE: Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA FECHA DE RECEPCIÓN: 2021-10-01 DIRECCIÓN SOLICITANTE: FECHA DE EMISIÓN: 2021-10-18 DESCRIPCIÓN DE MUESTRA MATERIAL/CALICATA: TMP PROFUNDIDAD: 0.00 m - 1.50 m C-01 M-1 **ENSAYO CBR ASTM D 1883** Molde № 10 12 11 Nº Capa 5 5 5 Golpes por capa № 56 25 10 Condición de la muestra SATURADO NO SATURADO SATURADO NO SATURADO SATURADO NO SATURADO Peso molde + Suelo húmedo 10106 10665 11356 11934 10610 Peso de molde (g) 7859 7859 Peso del suelo húmedo (g) 3545 4104 3497 4075 3337 3955 Volumen del molde (cm³) 2119 2119 2117 Densidad húmeda (g/cm³) 1.675 1.939 1.640 1.911 1.575 1.866 20.20 % de humedad 1.62 17.39 1.81 18.30 1.69 Densidad seca (g/cm³) 1.648 1.652 1.611 1.615 1.549 1.552 Densidad Máxima Laboratorio (g/cm³) Tarro Nº Tarro + Suelo húmedo (g) 834.80 737.00 750.00 872.90 923.10 844.00 Tarro + Suelo seco (g) 826,60 661.30 741.90 784.80 912.70 Peso del Agua (g) 8.20 88.10 10.40 103.50 75.70 8.10 Peso del tarro (g) 320.60 226.10 295.20 303.30 297.10 228.10 Peso del suelo seco (g) 512.40 506.00 435.20 446.70 481.50 615.60 % de humedad 1.6 17.4 1.8 18.3 1.7 20.2 Promedio de Humedad (%) EXPANSIÓN TIEMPO EXPANSIÓN EXPANSIÓN **EXPANSIÓN FECHA** HORA DIAL DIAL DIAL mm mm mm **Sub Total** 00%

				PENET	RACIÓN									
	CARGA		MOLD	E N" 10			MOLD	E N° 11			MOLD	E N" 12		
PENETRACIÓN	STAND.	STAND.	CA	RGA	CORRE	CCIÓN	CA	RGA	CORRE	CCIÓN	CA	RGA	CORRE	CCIÓN
(in)	kg/cm²	kg-f	kg/cm²	kg/cm²	%	kg-f	kg/cm²	kg/cm²	%	kg-f	kg/cm²	kg/cm²	%	
0.000		0.0	0.0			0.0	0.0			0.0	0.0			
0.025		28.8	1.5			27.1	1.4			21.8	1.1			
0.050		60.7	3.1			53.3	2.8			38.5	2.0			
0.075		103.2	5.3			90.1	4.7			60.3	3.1			
0.100	70	151.8	7.9	14.8	21.0	138.7	7.2	14.0	19.9	86.5	4.5	5.8	8.2	
0.125		210.8	10.9			198.7	10.3			112.6	5.8			
0.150		281.5	14.6			264.4	13.7			143.4	7.4			
0.175		354.6	18.4			338.1	17.5			173.6	9.0			
0.200	105	427.6	22.1	28.6	27.2	413.5	21.4	27.0	25.7	204.4	10.6	11.6	11.0	
0.300		680.3	35.2			629.4	32.5			318.4	16.5			
0.400		728.6	37.7			704.8	36.5			393.4	20.4			
0.500		698.4	36.1		Later and the	750.7	38.9			457.1	23.7			

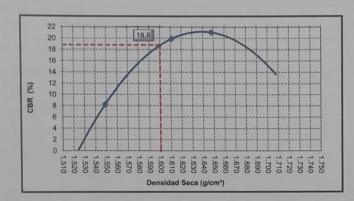
Los Resultados de los Ensayos no deben ser utilizados como una Certificación de Conformidad con Normas de Producto o como Certificado del Sistema de Calidad de LEMICONS S.R.L. Prohibido la Reproducción Total o Parcial, Excepto con Autoriace en previa por escrito de LEMICONS S.R.L. Los Resultados solo están Relacionados con la Muestra Ensayada de Autoriace de Calidad de LEMICONS S.R.L. Los Resultados solo están Relacionados con la Muestra Ensayada de Calidad de LEMICONS S.R.L.

RAUL KENSEL VARGAS VILLEGAS INGENIERO CIVIL Reg. CIP Nº 201537

LEMICONS S.R.L. Calle Tritoma Mz. J Lote 27 Coop. Huaytapallana, Los Olivos - Lima Telf.: 994236763 / 652-8558

ÁNGEL EDUARDO GOMEZ GARCIA INGENIERO CIVIL Reg. CIP Nº 79951

1 de 2



N" LEM2110206/05 INFORME DE ENSAYO Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils ASTM D1883 NOMBRE DE "ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO, AV. CORDILLERA OCCIDENTAL-PROYECTO: CHORRILLOS - LIMA 2021." UBICACIÓN DEL M1+190 g DE CENIZA AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA - LIMA. PROCEDENCIA: PROYECTO: 2021-10-01 FECHA DE SOLICITANTE: Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA RECEPCIÓN: DIRECCIÓN FECHA DE EMISIÓN: 2021-10-18 SOLICITANTE:

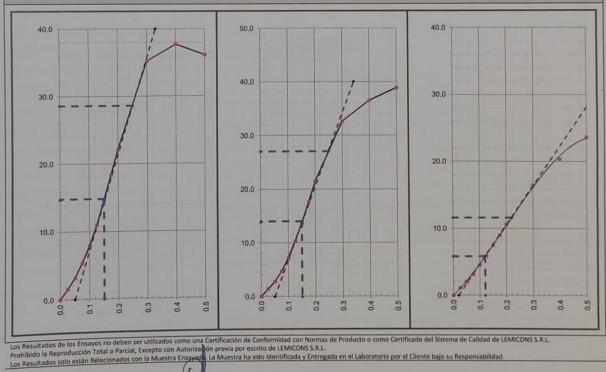
DESCRIPCIÓN DE MUESTRA

MATERIAL/CALICATA: PROFUNDIDAD: TMP C-01_M-1 0.00 m - 1.50 m

GRÁFICO DE PENETRACIÓN DE CBR

Densidad Seca	
Óptimo Humedad	

CBR al 100 %	21.0 %
Estado Natural %	18.8 %


DENSIDAD				
Densidad al 100 %	1.648 g/cm3			
Estado natural	1.600 g/cm3			

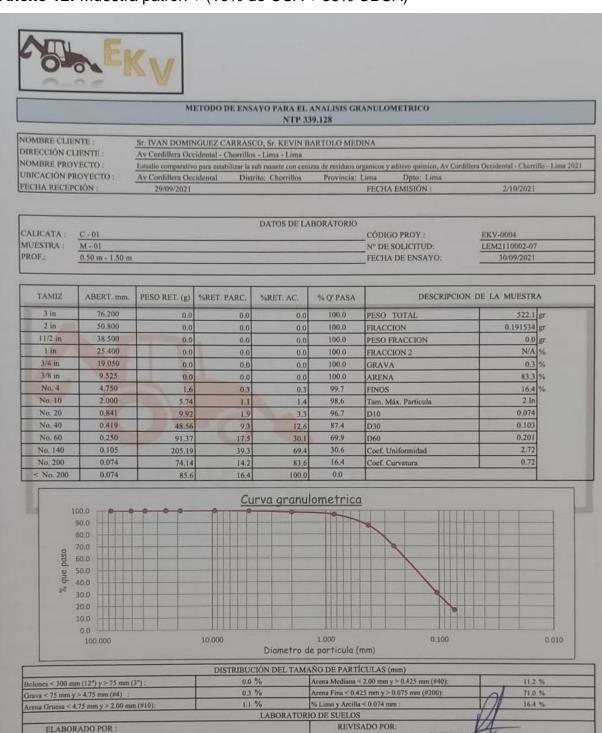
EXPANSIÓN			
Expansión	0.0 %		

EC = 56 GOLPES

EC = 25 GOLPES

EC = 10 GOLPES

RAVA KENSEL VARGAS VILLEGAS INGENIERO CIVIL


Reg. CIP N° 201537 LEMICONS S.R.L. Calle Tritoma Mz. J Lote 27 Coop. Huaytapallana, Los Olivos – Lima Telf.: 994236763 / 652-8558

ANGEL EDUARDO GOMEZ GARCIA INGENIERO CIVIL

Reg. CIP N° 79951

2 de 2

Anexo 12: Muestra patrón + (10% de CCA + 35% CBCA)

	DISTRIBUCIÓN DEI	TAMAÑO DE PARTÍCULAS (mm)		
Bolones < 300 mm (12") y > 75 mm (3"):	0.0 %	Arena Mediana < 2.00 mm y > 0.425 mm (#40):	11.2 %	
Grava < 75 mm y > 4.75 mm (#4) :	0.3 %	Arena Fina < 0.425 mm y > 0.075 mm (#200):	71.0 %	
Arena Gruesa < 4.75 mm y > 2.00 mm (#10):	1.1 %	% Limo y Arcilla < 0.074 mm :	16.4 %	
	LABOR	ATORIO DE SUELOS		
ELABORADO POR: TECNICO:		REVISADO POR:	MENSEL	
		SUP, DE LABORATORIO : VARGAS VILLEGAS INGENIERO CIVII		
			P Nº 201537	

METODO PARA LA CLASIFICACION DE SUELOS CON PROPOSITOS DE INGENIERIA (Sistema unificado de clasificación de suelos, SUCS). NTP 339.134

NOMBRE CLIENTE:	Sr. IVAN DOMINGUEZ CA	ARRASCO, Sr. KEVIN B.	ARTOLO MEDINA		
DIRECCIÓN CLIENTE:	Av Cordillera Occidental - C	horrillos - Lima - Lima			
NOMBRE PROYECTO:	Estudio comparativo para estab	ilizar la sub rasante con centi	ras de residuos organicos y	aditivo quimico, Av Coro	dillera Occidental - Chorrillo - Lima 2021
UBICACIÓN PROYECTO:	Av Cordillera Occidental	Distrito: Chorrillos	Provincia: Lima	Dpto: Lima	
FECHA RECEPCIÓN:	29/09/2021		FECH/	EMISIÓN:	2/10/2021

ALICATA:	20.000			DATOS DE LA	BORATORIO			***************************************	
MUESTRA:	C-01					CÓDIGO PRO	77.50	EKV-0004	
MUESTRA: M - 01 PROF.: 0.50 m - 1.50 m					N° DE SOLICITUD: FECHA DE ENSAYO:		LEM2110002-07 30/09/2021		
	0.50 m - 1.50 m					FECHA DE EN	SAIO.	30/09/2021	
		Sistema	unificad	o de clas	ificacion	de suel	os SUCS		
			ETODO DE ENS		ANALISIS GR				
TAMIZ	ABERT. mm.	PESO RET. (g)	%RET. PARC.	%RET. AC.	% Q' PASA	C		~~~~	mi o o
3 in	76,200	0.0	0.00	0.00	100.0	Com	posicion	osicion granulometric	
2 in	50.800	0.0	0.00	0.00	100.0	GRAVAS	Gravas Gruesa	%	0.00
11/in	38.500	0.0	0.00	0.00	100.0	GIGAVAS	Gravas Fina	%	0.30
1 in	25.400	0.0	0.00	0.00	100.0	ARENAS	Arenas Gruesa	%	3.00
3/4 in	19.050	0.0	0.00	0.00	100.0		Arenas Media	%	26.80
3/8 in	9.525	0.0	0.00	0.00	100.0		Arenas Fina	%	53.50
No. 4	4.750	1.6	0.30	0.30	99.7	FINOS	Limos y Arcillas	%	16.4
No. 10	2.000	5.74	1.10	1.40	98.6				
No. 20	0.841	9.92	1.90	3.30	96.7	GRAVAS 0.3 %			
No. 40	0.419	48.56	9.30	12.60	87.4				
No. 60	0.250	91.37	17.50	30.10	69.9	AR	ENAS	83.3 %	
No. 140	0.105	205.19	39.30	69.40	30.6				
No. 200	0.074	74.14	14.20	83,60	16.4	FINOS		16.4 %	
< No. 200	0.074	85.62		100.00	0.0				
N	METODO DE EN	SAYO PARA DE	FERMINAR EL I	LIMITE LIQUID NTP 3		ASTICO E IND	ICE DE PLASTI	CIDAD DE SUELOS	
		LIMITE LIQUID	0				LIMITE PLASTI	CO	
	LL:	NP					LP:	NP	
				INDICE DE P	NP				

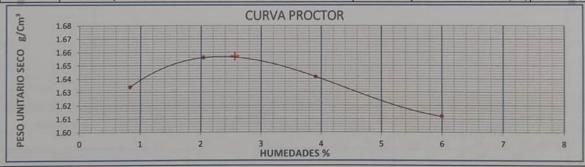
CLASIFICACION DE SUELOS SUCS

Arena limosa

	LABORATORIO DE SUELOS	1//
ELABORADO POR : TECNICO :	REVISADO POR: SUP. DE LABORATORIO :	RAUL KAISEL VARGAS VILLEGAS INGENIFRO CIVIL
		Reg. CIP Nº 201537

METODO DE COMPACTACION DEL SUELO EN EL LABORATORIO ENERGIA DE COMPACTACION (56,000 fi-lbf / fi3 (2,700 kN-m / m3)) NTP 339.141

NOMBRE CLIENTE:
DIRECCIÓN CLIENTE:
NOMBRE PROYECTO:
UBICACIÓN PROYECTO:
TECHA RECEPCIÓN:
Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA


Av Cordillera Occidental - Chorrillos - Lima - Lima

Estudio comparativo para estabilizar la sub rasante con cenizas de residuos organicos y aditivo químico, Av Cordillera Occidental - Chorrillo - Lima 2021

Av Cordillera Occidental Distrito: Chorrillos Provincia: Lima Dpto: Lima

FECHA EMISIÓN: 2/10/2021

	DATOS DE LABORATORI	0			
CALICATA:	C-01	CÓDIGO PRO	Y.:	EKV-0004	
MUESTRA:	M - 01	Nº DE SOLIC	TTUD:	LEM2110002-0	7
PROF.:	0.50 m - 1.50 m	FECHA DE E	NSAYO:	30/09/2021	
	ENSAYO PROCTOR MODIFICADO (NTP. 33	9.141 / ASTM D I	557)		
No. DE MOLD	E: 1 VOLUMEN DEL MOLDE (Cm3):	2124	MASA DEL M	(OLDE (g):	6448
1	No. Pruebras	1	2	3	4
2	Masa del molde + Suelo humedo (g)	9947	10037	10071	10077
3	Masa del Suelo Humedo (g)	3499	3589	3623	3629
4	Densidad Humedad (g/cm3)	1.647	1.690	1,706	1.709
	DETERMINACION DEL PORTECENTAJE DE HUMEDA	D (NTP, 339.127	/ ASTM D 2216)	0.	
5	No. Pruebras	1	2	3	4
6	Masa de Suelo Humedo + Tara (g)	494.70	489.02	559.07	557.08
7	Masa de Suelo Seco + Tara (g)	492.20	483.40	544.90	542.60
8	Masa de Tara (g.)	190.60	207.80	182.60	301.30
9	Masa de Agua (g)	2.50	5.62	14.17	14.48
10	Masa de Suelo Seco (g.)	301.60	275,60	362.30	241.30
11	Humedad %	0.83	2.04	3.91	6,00
12	Densidad Seca. (g/cm3)	1.634	1.656	1.642	1,612
	RESULTADOS FINALES				
13	Densidad Maxima Seca (g/cm3)	1.657	Humedad O	ptima (%)	2.56
14	Gravedad Especifica de los solidos (ASTM D 854) (ASTM C 127).	2.754	Humedad 10	0% de sat. (%)	24.04

	LABORATORIO DE SUELOS	1//
ELABORADO POR: TECNICO:	REVISADO POR: SUP, DE LABORATORIO :	VAROAS VILLEGAS
		Pan CIP Nº 201537

INFORME DE ENSAYO N° LEM2110206/06 Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils ASTM D1883 NOMBRE DE PROYECTO: "ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO, AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA 2021." UBICACIÓN DEL PROYECTO: AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA - LIMA. PROCEDENCIA: M1+380 g DE CENIZA SOLICITANTE: Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA FECHA DE RECEPCIÓN: 2021-10-01 DIRECCIÓN SOLICITANTE: FECHA DE EMISIÓN: 2021-10-18 DESCRIPCIÓN DE MUESTRA MATERIAL/CALICATA: C-01_M-1 PROFUNDIDAD: 0.00 m - 1.50 m TMP ENSAYO CBR ASTM D 1883 Molde N₽ 10 12 Nº Capa 5 5 Golpes por capa Nº 56 25 10 Condición de la muestra NO SATURADO SATURADO NO SATURADO SATURADO NO SATURADO SATURADO Peso molde + Suelo húmedo 11463 Peso de molde (g) 8263 8020 8020 7640 Peso del suelo húmedo (g) 4134 3443 4051 3293 3942 Volumen del molde (cm3) Densidad hůmeda (g/cm³) 1.681 1.956 1.629 1.917 1.556 1.863 % de humedad 1.67 18.09 1.70 19:40 3.10 21.50 Densidad seca (g/cm³) 1.653 1.656 1.602 1.606 1.509 1.533 Densidad Máxima Laboratorio (g/cm³) Tarro Nº Tarro + Suelo húmedo (g) 730.70 705.00 809.70 811.50 801.00 Tarro + Suelo seco (g) 722.90 630.80 848.00 728.90 802.30 Peso del Agua (g) 7.80 74.20 9.40 80.80 9.20 85.90 Peso del tarro (g) 220.60 295.20 Peso del suelo seco (g) 467.80 410.20 552.80 416.40 297.10 399.60 % de humedad 1.7 18.1 19.4 3.1 21.5 Promedio de Humedad (%) **EXPANSIÓN** TIEMPO **EXPANSIÓN** EXPANSIÓN EXPANSIÓN FECHA HORA DIAL DIAL mm mm % mm Sub Total 0.0 % Total PENETRACIÓN MOLDE Nº 10 CARGA MOLDE Nº 11 MOLDE Nº 12 PENETRACIÓN STAND. CARGA CORRECCIÓN CARGA CORRECCIÓN CARGA CORRECCIÓN kg-f kg/cm² kg/cm² kg/cm² kg-f kg/cm² kg/cm² kg/cm² kg/cm² kg-f 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.025 30.5 1.6 20.1 19.8 1.0 56.3 2.9 38.2 2.0 33.8 1.7 86.8 4.5 58.3 3.0 51.6 2.7 0,100 6.5 15.3 21.8 4.5 10.7 15.2 71.7 3.7 5.1 7.3 170.6 8.8 0.125 119.3 6.2 92.5 4.8 218.8 11.3 155.8 8.1 115.3 6.0 0.175 14.5 196.4 10.2 139.1 0.200 1.05 349.5 18.1 30.6 29.1 243.3 12.6 21.0 20.0 164.2 8.5 10.0 9.5 651.1 0.300 33.7 444.0 23.0 260.7 13.5 583.5 0.400 888.1 46.0 30.2 344.5 17.8 996.3 51.6 600.9 31.1
cación de Conformidad con Normas de Froducto o como Certificado del Sistema de Calidad de I rivis por escrito de LEMICONS S.R.L.
uestra ha sido Identificada y Entregada en el Laboratorio por el Cliente bajo su Responsabilidad 406.8 Idad de LEMICONS S.R. 0.500 21.1 os Resultados de los Ensayos no deben ser util Prohibido la Reproducción Total o Parcial, Exce tos solo están Relacionados con la

> RAIL KENSEL VARGAS VILLEGAS INGENIERO CIVIL Red. CIP Nº 201537

ANGEL EDUARDO GOMEZ GARCIA INGENIERO CIVIL Lima Reg. CIP N° 79951 1 de 2

LEM-LAB-F-12 2019-09-28 Ver.:01

LEMICONS S.R.L. Calle Tritoma Mz. J Lote 27 Coop. Huaytapallana, Los Olivos - Lima

Telf.: 994236763 / 652-8558

N* LEM2110206/06 INFORME DE ENSAYO Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils ASTM D1883 NOMBRE DE "ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO, AV. CORDILLERA OCCIDENTAL PROYECTO: CHORRILLOS - LIMA 2021."

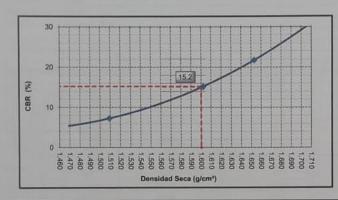
UBICACIÓN DEL AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA - LIMA. PROYECTO:

PROCEDENCIA: M1+380 g DE CENIZA

Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA

2021-10-01 FECHA DE

DIRECCIÓN SOLICITANTE:


SOLICITANTE:

RECEPCIÓN: FECHA DE EMISIÓN: 2021-10-18

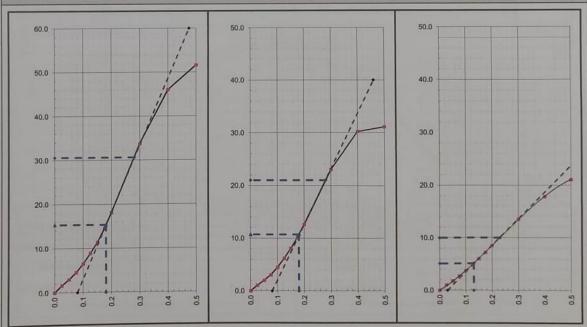
DESCRIPCIÓN DE MUESTRA

MATERIAL/CALICATA: PROFUNDIDAD: 0.00 m - 1.50 m TMP C-01_M-1

GRÁFICO DE PENETRACIÓN DE CBR

DATOS DEL PROCTOR	
Densidad Seca	-
Óptimo Humedad	-

RESULTADOS DE CBR al 0,1 in	
CBR al 100 %	21.8 %
Estado Natural %	15.2 %


DENSIDAD		
Densidad al 100 %	1.653 g/cm ³	
Estado natural	1.600 g/cm3	

EXPANSIÓN		
0.0 %		

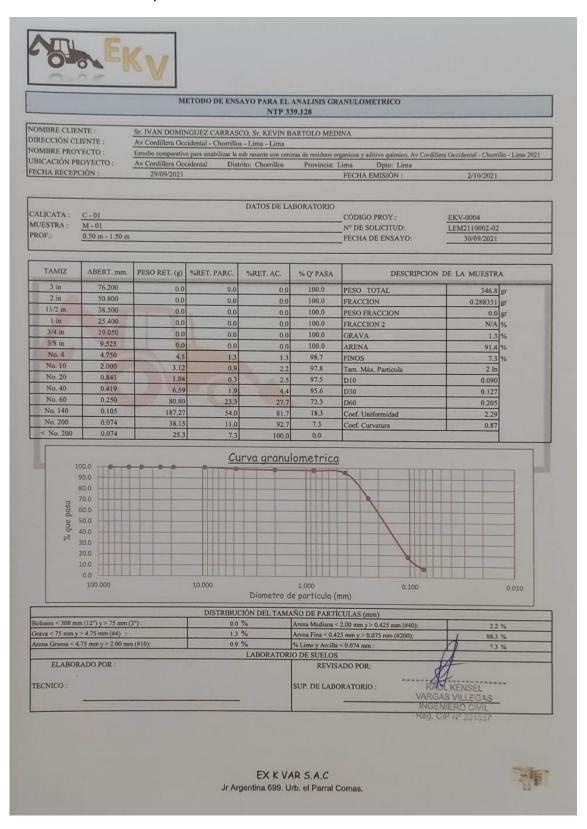
EC = 56 GOLPES

EC = 25 GOLPES

EC = 10 GOLPES

Los Resultados de los Ensayos no deben ser utilizados como una Certificación de Conformidad con Normas de Producto o como Certificado del Sistema de Calidad de LEMICONS S.R.L. Prohibido la Reproducción Total o Parcial, Excepto són putorización previa por escrito de LEMICONS S.R.L. Los Resultados solo están Relacionados con la Muestro Essayada. La Muestra ha sido identificada y Entregada en el Laboratorio por el Cliente bajo su Responsabilidad.

KAUL KENSEL VARGAS VILLEGAS INGENIERO CIVIL


LEMICONS S.R.L. Calle Tritoma Mz. J Lote 27 Coop, Huaytapallana, Los Olivos - Lima

ANGEL EDUARDO GOMEZ GARCIA INGENIERO CIVIL 2 de 1 Reg. CIP N° 79951

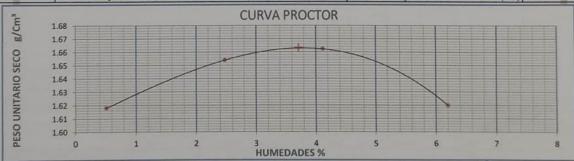
LEM-LAB-F-13 2019-09-28 Ver.:00

Telf.: 994236763 / 652-8558

Anexo 12: Muestra patrón + 2% de Aditivo Terrasil

METODO DE COMPACTACION DEL SUELO EN EL LABORATORIO ENERGIA DE COMPACTACION (56,000 ft-lbf / ft3 (2,700 kN-m / m3)) NTP 339.141

NOMBRE CLIENTE:
DIRECCIÓN CLIENTE:
NOMBRE PROYECTO:
UBICACIÓN PROYECTO:
UBICACIÓN RECEPCIÓN:
Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA


Av Cordillera Occidental - Chorrillos - Lima - Lima

Latudio comparativo para estabilizar la sub rasante con cenizas de residuos organicos y aditivo quimico, Av Cordillera Occidental - Chorrillo - Lima 2021

Av Cordillera Occidental Distrito: Chorrillos Provincia: Lima Dpto: Lima

FECHA EMISIÓN: 2/10/2021

	DATOS DE LABORATORIO				
CALICATA:	C-01	CÓDIGO PRO	Y.:	EKV-0004	
MUESTRA:	M-01	N° DE SOLIC	ITUD:	LEM2110002-02	
PROF.:	0.50 m - 1.50 m	FECHA DE EN	NSAYO:	30/09/2021	
	ENSAYO PROCTOR MODIFICADO (NTP, 33	9.141 / ASTM D I	557)		
No. DE MOLD	E: 1 VOLUMEN DEL MOLDE (Cm3);	2124	MASA DEL M	IOLDE (g):	6448
1	No. Pruebras	1	2	3	4
2	Masa del molde + Suelo humedo (g)	9902	10048	10124	10102
3	Masa del Suelo Humedo (g)	3454	3600	3676	3654
4	Densidad Humedad (g/cm3)	1.626	1.695	1.731	1.720
	DETERMINACION DEL PORTECENTAJE DE HUMEDA	D (NTP, 339.127	/ASTM D 2216)		
5	No. Pruebras	1	2	3	4
6	Masa de Suelo Humedo + Tara (g)	402.98	485.16	466.43	528.84
7	Masa de Suelo Seco + Tara (g)	401.90	478.10	455.90	510.10
8	Masa de Tara (g.)	190.50	193.50	200.30	207.80
9	Masa de Agua (g)	1.08	7.06	10.53	18.74
10	Masa de Suelo Seco (g.)	211.40	284.60	255.60	302.30
11	Humedad %	0.51	2.48	4.12	6.20
12	Densidad Seca. (g/cm3)	1.618	1.654	1.662	1,620
	RESULTADOS FINALES				
13	Densidad Maxima Seca (g/cm3)	1.663	Humedad O	ptima (%)	3.71
14	Gravedad Especifica de los solidos (ASTM D 854) (ASTM C 127).	2.754	Humedad 10	00% de sat. (%)	23.82

	LABORATORIO DE SUELOS	VA-
ELABORADO POR :	REVISADO POR:	RAUL KENSEL
TECNICO:	SUP. DE LABORATORIO :	VARGAS VILLEGAS INGENIERO CIVIL
		Reg. CIP Nº 201537

N° LEM2110206/01 INFORME DE ENSAYO Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils ASTM D1883 NOMBRE DE PROYECTO: "ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO, AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA 2021." UBICACIÓN DEL PROYECTO: AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA - LIMA. PROCEDENCIA: MUESTRA 1 + 2% ADITIVO TERRASIL SOLICITANTE: Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA FECHA DE RECEPCIÓN: 2021-10-01 DIRECCIÓN SOLICITANTE: FECHA DE EMISIÓN: 2021-10-14 DESCRIPCIÓN DE MUESTRA MATERIAL/CALICATA: 0.00 m - 1.50 m C-01 M-1 PROFUNDIDAD: TMP ENSAYO CBR ASTM D 1883 Molde Nº Nº Capa Golpes por capa Nº 25 10 Condición de la muestra SATURADO NO SATURADO SATURADO NO SATURADO SATURADO NO SATURADO Peso molde + Suelo húmedo 11630 12268 11141 Peso de molde (g) 7547 8012 8012 7547 Peso del suelo húmedo (g) 3489 4175 3618 4276 4256 3594 Volumen del molde (cm3) Densidad húmeda (g/cm³) 1.716 2.018 1.686 2.006 1.649 1.973 % de humedad 22.71 2.81 20.41 2.31 21.89 3.03 Densidad seca (g/cm³) 1.669 1.601 1.608 1.676 1.648 1.646 Densidad Máxima Laboratorio (g/cm³) Tarro + Suelo húmedo (g) 726.80 915.90 656.40 Tarro + Suelo seco (g) 497.50 499.30 635.90 897.70 Peso del Agua (g) 7.60 61.40 10.80 90.90 18.20 79.70 Peso del tarro (g) 220.60 297.30 225.80 Peso del suelo seco (g) 270.40 300,80 467.20 415.30 350.90 600.40 % de humedad 2.8 20,4 2.3 21.9 3.0 22.7 Promedio de Humedad (%) EXPANSIÓN TIEMPO EXPANSIÓN EXPANSIÓN **EXPANSION** FECHA HORA DIAL DIAL mm mm mm Sub Total 0.0 % Total PENETRACIÓN MOLDE Nº 4 MOLDE Nº 5 CARGA MOLDE Nº 7 PENETRACIÓN CORRECCIÓN CARGA CARGA CORRECCIÓN STAND. CARGA CORRECCIÓN (in) kg/cm² kg-f kg/cm² kg/cm² kg-f kg/cm² kg/cm² kg-f kg/cm² kg/cm² 0.000 0.0 0.0 27.8 1.4 1.3 1.1 54.6 2.8 46.6 2.4 36.9 1.9 0.075 87.1 4.0 109.3 78.8 0.100 70 6.3 7.1 10.1 5.7 6.9 9.8 4.1 4.1 5.8 154.2 0.125 8.0 146.1 7.6 101.5 5.3 188.7 9.8 9.5 125,3 11.5 220.8 147.5 0.175 7.6 260.7 13,5 14.5 13.8 105 255.7 13.2 14.1 170.9 0.200 13,4 8.8 8.8 8.4

26.0 532.8 27.6 361.6 18.7 ación de Conformidad con Normas de Producto o como Certificado del Sis 324.7 tema de Calidad de LEMICONS S.R.L Los Resultados de los Ensayos no deben ser utiliza Prohibido la Reproducción Yotal o Parcial, Excepto Los Resultados solo están Relacionados con la Mu

21.1

rifficación de Contormalas con restrias de Prisonate Contorna el Contorna de Prisona de

408.5

502.0

VARGAS VILLEGAS INGENIERO CIVIL

ANGEL EDUARDO GOMEZ GARCIA INGENIERO CIVIL Lima Reg. CIP N° 79951 1 de

333.1

13.3

16.8

0.300

0.400

387.4

440.7

20.1

22.8

INFORME DE ENSAYO N° LEM2110206/01 Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils ASTM D1883 NOMBRE DE "ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO, AV. CORDILLERA OCCIDENTAL-PROYECTO: CHORRILLOS - LIMA 2021." UBICACIÓN DEL AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA - LIMA. PROCEDENCIA: MUESTRA 1 + 2% ADITIVO TERRASIL PROYECTO: FECHA DE 2021-10-01 SOLICITANTE: Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA RECEPCIÓN: DIRECCIÓN FECHA DE EMISIÓN: 2021-10-14 SOLICITANTE:

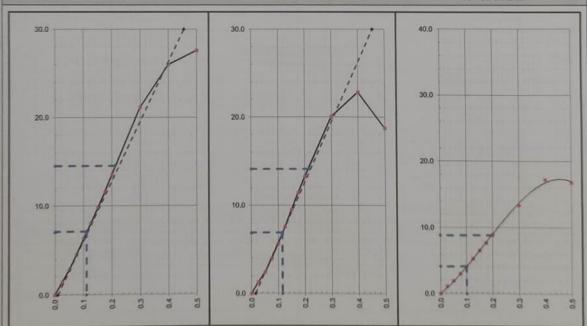
DESCRIPCIÓN DE MUESTRA

MATERIAL/CALICATA: C-01_M-1 PROFUNDIDAD: 0.00 m - 1.50 m TMP -

GRÁFICO DE PENETRACIÓN DE CBR

DATOS DEL PROCTOR	
Densidad Seca	-
Óptimo Humedad	-

RESULTADOS DE CBR al 0,1 in	
CBR al 100 %	10.1 %
Estado Natural %	5.7%


DENSIDAD		
Densidad al 100 %	1.669 g/cm ³	
Estado natural	1.600 g/cm3	

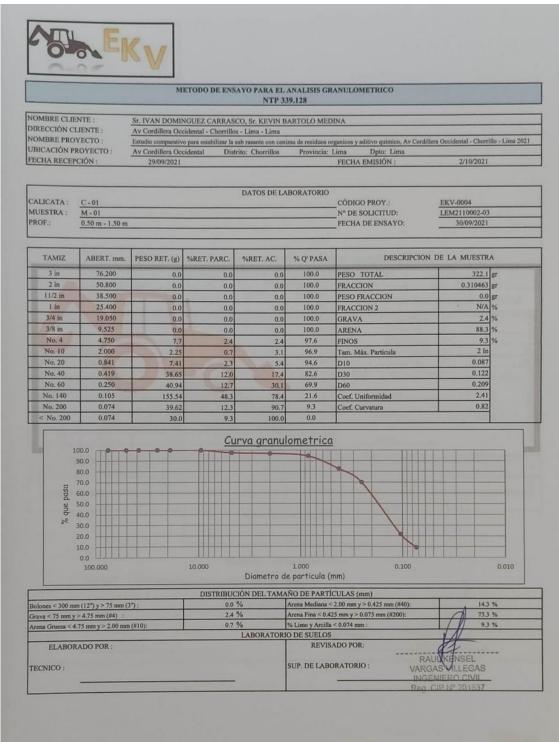
EXPANSIÓN		
Expansión	0.0 %	

EC = 56 GOLPES

EC = 25 GOLPES

EC = 10 GOLPES

Los Resultados de los Ensayos no deben ser utilizados como una Certificación de Conformidad con Normas de Producto o como Certificado del Sistema de Calidad de LEMICONS S.R.L.
Prohibido la Reproducción Total o Parcial, Excepto con Autorización previa por escrito de LEMICONS S.R.L.
Los Resultados solo están Relacionados con la Muestra Prilayan. La Muestra ha sido Identificada y Entregada en el Laboratorio por el Cliente bajo su Responsabilidad.


VARIGAS VILLEGAS INGENIERO CIVIL

LEMICONS S.R.L. Calle Tritoma Mz. J Lote 27 Coop. Huaytapallana, Los Olivos – Lima Telf.: 994236763 / 652-8558

ANGEL EDUARBO GOMEZ GARCIA INGENIERO CIVIL Reg. CIP N° 79951 2 de 2

LEM-LAB-F-13 2019-09-28 Ver.:00

Anexo 13: Muestra patrón + 4% de Aditivo Terrasil

EX K VAR S.A.C

Jr Argentina 699. Urb. el Parral Comas.

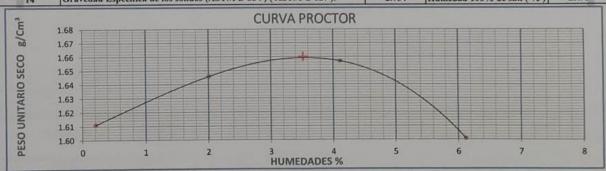
METODO PARA LA CLASIFICACION DE SUELOS CON PROPOSITOS DE INGENIERIA (Sistema unificado de clasificación de suelos, SUCS). NTP 339.134

NOMBRE CLI		Sr. IVAN DOMIN	NGUEZ CARRAS	CO, Sr. KEVIN B	ARTOLO MEDI	NA			
DIRECCIÓN O		Av Cordillera Occ							
NOMBRE PRO								ra Occidental - Chorrillo -	Lima 2021
UBICACIÓN I		Av Cordillera Occ	idental Dis	trito: Chorrillos	Provincia: L		o: Lima	2/10/2021	
FECHA RECE	PCION:	29/09/2021				FECHA EMISI	ON:	2/10/2021	
				DATOS DE LA	BORATORIO				
CALICATA:	C-01				No.	CÓDIGO PRO		EKV-0004	
MUESTRA:	M - 01					N° DE SOLICI		LEM2110002-03	
PROF.:	0.50 m + 1.50 m	1				FECHA DE EN	ISAYO:	30/09/2021	
		Sistema	unificad	o de clasi	ificacion	de suel	os SUCS		
				SAYO PARA EL					
			MI OOO DE EN	NTP 33		u.tomo.nibin			
TAMIZ	ABERT, mm.	PESO RET. (g)	%RET, PARC,	%RET. AC.	% Q' PASA	Com	nosicion	granulomet	rica
3 in	76.200	0.0	0.00	0.00	100.0	Con			
2 in	50,800	0.0	0.00	0.00	100.0	GRAVAS	Gravas Gruesa	%	0.00
11/ in	38,500	0.0	0,00	0.00	100.0	- Old File	Gravas Fina	%	2.40
1 in	25.400	0.0	0.00	.0.00	100,0	100000000000000000000000000000000000000	Arenas Gruesa	%	3.00
3/4 in	19.050	0.0	0.00	0.00	100.0	ARENAS	Arenas Media	%	24.71
3/8 in	9.525	0,0	0.00	0.00	100.0		Arenas Fina	%	60.59
No.4	4.750	7.7	2.40	2.40	97.6	FINOS	Limos y Arcilla	s %	9.3
No. 10	2,000	2.25	0.70	3,10	96.9				
No. 20	0.841	7.41	2.30	5.40	94.6	GF	AVAS	2.4 %	
No. 40	0.419	38.65	12.00	17.40	82.6				
No. 60	0.250	40.94	12.71	30.11	69.9	AF	ENAS	_ 88.3 %	
No. 140	0.105	155.54	48.29	78.40	21.6	1			
No. 200	0.074	39.62	12.30	90.70	9.3		INOS	9.3 %	
No. 200	0.074	29.96	9.30	100.00	0.0				
1	METODO DE EN	SAYO PARA DET	ERMINAR EL			ASTICO E IND	ICE DE PLASTI	CIDAD DE SUELOS	
		LIMITE LIQUID	0	NTP 33	39.129		LIMITE PLAST	ICO.	-
- Common		EIMITE EIQUID			-				The same of
	LL:	NP					LP:	NP	
		= = = 7		INDICE DE PI	LASTICIDAD				
				IP:	NP				
			-						
			CI	ASIFICACION I	DE SUELOS SU	CS			
	SP SM	Arana nahr	amanta ara	duada con li	mo			-1	
	SF SIVI	Atena poor	emente gra	duada con n	шо				
				LABORATORIO	O DE SUELOS			111	
ELABO	RADO POR :					DO POR:		A	
1000								AT	
TECNICO:					SUP. DE LABO	RATORIO:		UKENSEL	
						_		AS VILLEGAS	
								NIERO CIVIL	
							Keg. (DIP Nº 201537	

METODO DE COMPACTACION DEL SUELO EN EL LABORATORIO ENERGIA DE COMPACTACION (56,000 ft-lbf/ ft3 (2,700 kN-m/m3)) NTP:339.141

NOMBRE CLIENTE:
DIRECCIÓN CLIENTE:
NOMBRE PROYECTO:
UBICACIÓN PROYECTO:
UBICACIÓN PROYECTO:
TECHA RECEPCIÓN:

Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA


Av Cordillera Occidental - Chorrillos - Lima - Lima

Estudio comparativo para estabilizar la sub rasante con cenizas de residuos organicos y aditivo quimico, Av Cordillera Occidental - Chorrillo - Lima 2021

Av Cordillera Occidental Distrito: Chorrillos Provincia: Lima Dpto: Lima

TECHA RECEPCIÓN:
29/09/2021
FECHA EMISIÓN:
2/10/2021

	DATOS DE LABORATORIO					
CALICATA:	C-01	CÓDIGO PRO	Y.:	EKV-0004		
MUESTRA:	M + 01	N° DE SOLICI	TUD:	LEM2110002-03		
PROF.:	0.50 m - 1.50 m	FECHA DE EN	NSAYO:	30/09/2021		
	ENSAYO PROCTOR MODIFICADO (NTP, 33	9.141 / ASTM D I	557)		- 11	
No. DE MOLD	E: 1 VOLUMEN DEL MOLDE (Cm3):	2124	MASA DEL M	(OLDE (g): 64	448	
1	No. Prucbras	1	2	3	4	
2	Masa del molde + Suelo humedo (g)	9877	10014	10112	10056	
3	Masa del Suelo Humedo (g)	3429	3566	3664	3608	
4	Densidad Humedad (g/cm3)	1.614	1.679	1.725	1.699	
	DETERMINACION DEL PORTECENTAJE DE HUMEDA	D (NTP, 339,127	ASTM D 2216)			
5	No. Pruebras	1	2	3	4	
6	Masa de Suelo Humedo + Tara (g)	281.53	304.92	299.13	401.12	
7	Masa de Suelo Seco + Tara (g)	281.20	301.60	293.00	389.60	
8	Masa de Tara (g.)	125.60	136,40	144.20	201.40	
9	Masa de Agua (g)	0.33	3.32	6.13	11.52	
10	Masa de Suelo Seco (g.)	155.60	165.20	148.80	188.20	
11	Humedad %	0.21	2.01	4.12	6.12	
12	Densidad Seca. (g/cm3)	1.611	1.646	1.657	1.601	
	RESULTADOS FINALE	5				
13	Densidad Maxima Seca (g/cm3)	1.660	Humedad O	ptima (%)	3.52	
14	Gravedad Especifica de los solidos (ASTM D 854) (ASTM C 127).	2.754	Humedad 1	00% de sat. (%)	23.93	

	LABORATORIO DE SUELOS	V/I
ELABORADO POR :	REVISADO POR:	P
ECNICO:	SUP. DE LABORATORIO :	RAUL KENSEL VARGAS VILLEGAS
		INGENIERO CIVIL

INFORME DE ENSAYO N° LEM2110206/02 Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils ASTM D1883 NOMBRE DE PROYECTO: "ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO, AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA 2021." UBICACIÓN DEL PROYECTO: AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA - LIMA. PROCEDENCIA: MUESTRA 1 + 4% ADITIVO TERRASIL SOLICITANTE-Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA FECHA DE RECEPCIÓN: 2021-10-01 DIRECCIÓN SOLICITANTE: FECHA DE EMISIÓN: 2021-10-14 DESCRIPCIÓN DE MUESTRA MATERIAL/CALICATA: C-01 M-1 PROFUNDIDAD: 0.00 m - 1.50 m TMP **ENSAYO CBR ASTM D 1883** Molde Nº 10 12 Nº Capa 5 5 Golpes por capa Nº 56 25 10 Condición de la muestra NO SATURADO SATURADO NO SATURADO SATURADO NO SATURADO SATURADO Peso moide + Suelo húmedo Peso de molde (g) 6562 7860 Peso del suelo húmedo (g) 3610 4135 4173 3442 4007 Volumen del molde (cm³) 2132 2119 2119 Densidad húmeda (g/cm³) 1.705 1.953 1.667 1.957 1.624 1.891 % de humedad 3.32 16.81 3.27 20.21 3.28 19.38 Densidad seca (g/cm3) 1.650 1.614 1.628 1.584 1.672 Densidad Máxima Laboratorio (g/cm³) Tarro Nº Tarro + Suelo húmedo (g) 676.30 621.00 Tarro + Suelo seco (g) 736.50 644.50 664.70 682.60 608.50 642.00 Peso del Agua (g) 16.80 70.50 11.60 74.80 12.50 81.70 Peso del tarro (g) 231.10 309,80 Peso del suelo seco (g) 419.40 354.90 505.40 381 30 421.50 % de humedad 3.3 16.8 3.3 20.2 3.3 19.4 Promedio de Humedad (%) **EXPANSIÓN** TIEMPO EXPANSIÓN EXPANSION EXPANSIÓN FECHA HORA DIAL DIAL DIAL mm mm mm Sub Total 0.0 % Total PENETRACIÓN MOLDE Nº 10 CARGA MOLDE Nº 11 MOLDE Nº 12 PENETRACIÓN CORRECCIÓN STAND. CARGA CARGA CORRECCIÓN CORRECCIÓN (in) kg/cm² kg-f kg/cm² kg/cm² kg-f kg/cm² kg/cm² kg-f kg/cm² kg/cm² 0.0 0.0 0.0 0.0 0.0 0.025 1.1 25.0 1.3 0,6 47.0 51.9 24 2.7 30.1 1.6 0.075 84.5 4.4 87.7 4.5 50.8 134.7 0.100 70 7.0 11.6 16.5 126.3 6.5 8.2 11.7 67.9 3.5 3.5 5.0 0.125 191.6 9.9 155.7 8.6 85.4 4.4 0.150 242.1 12.5 200.0 10.4 100.7 5.2 287.5 14.9 0.175 236.0 12.2 114.8 5.9 105 324.5 17.0 0.200 16.8 16.2 270.1 14.0 14.2 13.5 126.9 6.6 6.3 335.4 17.4 294.6 0.300 15.2 169.1 8.8 0.400 16.5 251.3 13.0 185.5 9.5 265.0 13.7 212.3 163.1 terna de Calidad de LEMICONS S.R.L 8.4

Certificación de Conformidad con Normas de Producto o como Certificado del Sistema de Calidad de L ón previa por escrito de LEMICONS S.R.L. La Muestra ha sido identificada y Entregada en el Laboratorio por el Cliente bajo su Responsabilidad. Los Resultados de los Ensayos no deben ser utilizar Prohibido la Reproducción Total o Parcial, Excepto Los Resultados solo están Relacionados con la Mue

VARGAS VILLEGAS

LEM-LAB-F-12 2019-09-28 Ver.:01 CP LEMICONS S.R.L. Calle Tritoma Mz. J Lote 27 Coop. Huaytapallana, Los Olivor - Lima Telf.: 994236763 / 652-8558

ANGEL EDUARDO GOMEZ GARCIA INGENIERO CIVIL Reg. CIP Nº 79951

1 de 2

INFORME DE ENSAYO

N° LEM2110206/02

Standard Test Method for California Bearing Ratio (CBR) of Loboratory-Compacted Soils ASTM D1883

NOMBRE DE PROYECTO:

"ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO, AV. CORDILLERA OCCIDENTAL-

CHORRILLOS - LIMA 2021."

UBICACIÓN DEL

AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA - LIMA.

PROCEDENCIA:

MUESTRA 1 + 4% ADITIVO TERRASIL

PROYECTO: SOLICITANTE:

Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA

FECHA DE

2021-10-01

0.00 m - 1.50 m

MATERIAL/CALICATA:

RECEPCIÓN:

DIRECCIÓN

SOLICITANTE


FECHA DE EMISIÓN:

2021-10-14

TMP

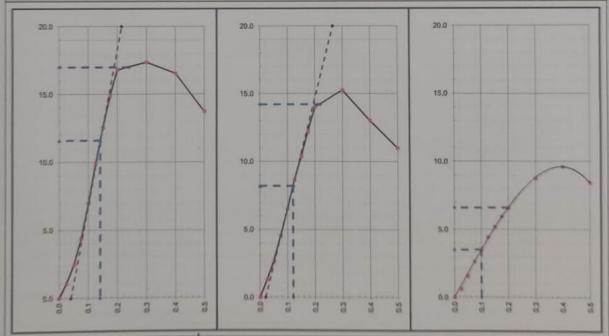
PROFUNDIDAD: GRÁFICO DE PENETRACIÓN DE CBR

DESCRIPCIÓN DE MUESTRA

C-01_M-1

DATOS DEL P	ROCTOR
Densidad Seca	-
Óptimo Humedad	- 11

CBR al 100 %	24,7 %
Estado Natural %	9.7%

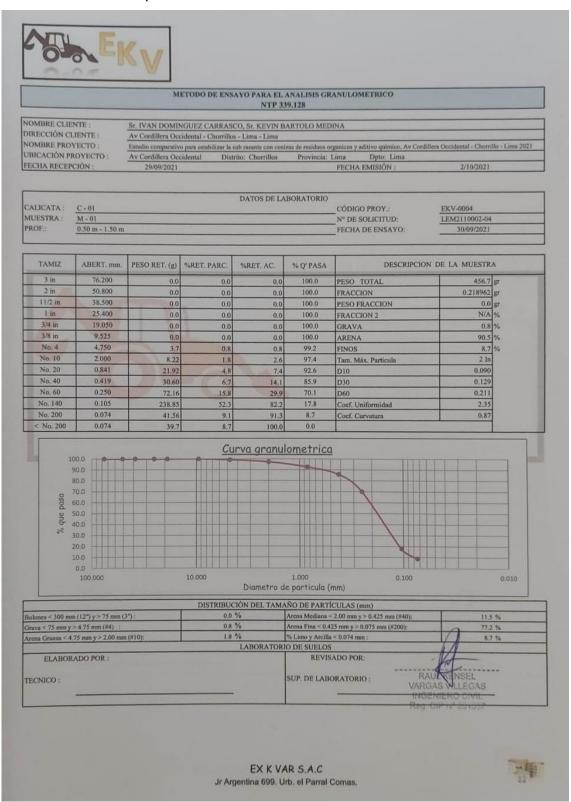

DENSIDAD			
Densidad al 100 %	1.650 g/cm ³		
Estado natural	1.600 g/cm3		

EXPANSIO	N
Expansión	0.0 %

EC = 56 GOLPES

EC = 25 GOLPES

EC = 10 GOLPES



Los Besultados de los Encayos no deben ser utilizados como una Certificación de Conformidad con Normas de Producto o como Certificado del Sistema de Califod de LEASCONS E.R.L. Projubidos la Reproducción Total o Partial, Escepto con Autoritación previa por escrito de LEMICONS S.R.L.

Los Besultados usos están Relaccionados con la Muestra Episophia. La Muestra ha sido identificada y Cotregada en el Laboratorio por el Cliente bajo su Responsabilidas.

ANGEL EDUARDO GOMEZ GARCIA INGENIERO CIVIL Ring CIP N° 79951 2 de 2

Anexo 14: Muestra patrón + 7% de Aditivo Terrasil

METODO PARA LA CLASIFICACION DE SUELOS CON PROPOSITOS DE INGENIERIA (Sistema unificado de clasificación de suelos, SUCS). NTP 339.134

NOMBRE CLI	ENTE:	Sr. IVAN DOMIN	NGUEZ CARRAS	CO, Sr. KEVIN E	BARTOLO MEDI	NA			
DIRECCIÓN C		Av Cordillera Occ	idental - Chorrillo	s - Lima - Lima					
NOMBRE PRO				sub rasante con cen	izas de residuos org	anicos y aditivo q	uimico, Av Cordiller	a Occidental - Chorrillo	- Lima 2021
UBICACIÓN P		Av Cordillera Occ	idental Dist	trito: Chorrillos	Provincia: Li	ima Dpte	: Lima		
FECHA RECEI	PCIÓN:	29/09/2021				FECHA EMISI	ÓN:	2/10/2021	
C14 T TC1 - 101 -				DATOS DE LA			200		
CALICATA:	C-01					CÓDIGO PRO		EKV-0004	
MUESTRA: PROF.:	M + 01					N° DE SOLICI		LEM2110002-04	
PROF.:	0.50 m - 1.50 m					FECHA DE EN	SAYO:	30/09/2021	
		Sistema	unificad	o de clas	ificacion	de suel	os SUCS		
			ETODO DE ENS						
				NTP 3	39.128				
TAMIZ	ABERT, mm.	PESO RET. (g)	%RET. PARC.	%RET. AC.	% Q' PASA	Com	nocioion	granulome	trica
3 in	76.200	0.0	0.00	0.00	100.0	Com	posicion	granulome	uica
2 in	50.800	0.0	0.00	0.00	100.0	GRAVAS	Gravas Gruesa	%	0.00
11/in	38.500	0.0	0.00	0.00	100.0	GRAVAS	Gravas Fina	%	0.80
1 in	25.400	0.0	0.00	0.00	100.0		Arenas Gruesa	%	6.60
3/4 in	19.050	0.0	0.00	0.00	100.0	ARENAS	Arenas Media	%	22,50
3/8 in	9.525	0.0	0.00	0.00	100.0		Arenas Fina	%	61.40
No. 4	4.750	3.7	0.80	0.80	99.2	FINOS	Limos y Arcillas	%	8.7
No. 10	2.000	8.22	1.80	2.60	97.4				
No. 20	0.841	21.92	4.80	7.40	92.6	GR	AVAS	0.8 %	
No. 40	0.419	30.60	6.70	14.10	85.9			-	
No. 60	0.250	72.16	15.80	29.90	70.1	AR	ENAS	90.5 %	
No. 140	0.105	238.85	52.30	82.20	17.8				
No. 200	0.074	41.56	9.10	91.30	8.7	F	INOS	8.7 %	
< No. 200	0.074	39.73	8.70	100.00	0.0				
N	METODO DE EN	SAYO PARA DET	TERMINAR EL			STICO E IND	ICE DE PLASTI	CIDAD DE SUELO	S
		LIMITE LIQUID	0	NIPS	39.129		LIMITE PLASTI	CO	-
	-								
	LL:	NP		INDICE DE B	LASTICIDAD		LP:	NP	
				INDICE DE L	LASTICIDAD				
				IP:	NP				
					200		-		
			CI	ASIFICACION	DE SUELOS SU	CS			
		WITH WARRY CO.			-				
	SP SM	Arena pobr	emente grad	duada con I	imo				
				LABORATOR	O DE SUELOS			14	
ELABOI	RADO POR:				REVISA	DO POR:	3	HCT	
TECNICO:					SUP. DE LABOR	RATORIO:		IL KENSEL AS VILLEGAS	

METODO DE COMPACTACION DEL SUELO EN EL LABORATORIO ENERGIA DE COMPACTACION (56,000 ft-lbf/ ft3 (2,700 kN-m/ m3)) NTP 339.141

NOMBRE CLIENTE:
DIRECCIÓN CLIENTE:
NOMBRE PROYECTO:
UBICACIÓN PROYECTO:
UBICACIÓN PROYECTO:
UBICACIÓN PROYECTO:

VECHA RECEPCIÓN:

Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA

AV Cordillera Occidental - Chorrillos - Lima - Lima

Estudio comparativo para estabilizar la sub rasante con cenizas de residuos organicos y aditivo quimico, Av Cordillera Occidental - Chorrillo - Lima 2021

AV Cordillera Occidental Distrito: Chorrillos Provincia: Lima Dpto: Lima

FECHA EMISIÓN: 2/10/2021

CALIFORN	DATOS DE LABORATORIO			PREST MODA	
CALICATA: MUESTRA:	C-01		CÓDIGO PROY: EKV-000		
PROF.:	M - 01 0.50 m - 1.50 m	N° DE SOLIC		LEM2110002-04 30/09/2021	
PROP.:	0.50 m = 1.50 m	FECHA DE E	NSAYO:	30/09/2021	
	ENSAYO PROCTOR MODIFICADO (NTP, 33	9.141 / ASTM D I	557)		
No. DE MOLD	E: 1 VOLUMEN DEL MOLDE (Cm3):	2124	MASA DEL M	MOLDE (g):	6448
1	No. Pruebras	1	2	3	4
2	Masa del molde + Suelo humedo (g)	9906	10091	10187	10162
3	Masa del Suelo Humedo (g)	3458	3643	3739	3714
4	Densidad Humedad (g/cm3)	1.628	1.715	1.760	1.749
EE III LE	DETERMINACION DEL PORTECENTAJE DE HUMEDA	D (NTP, 339.127	ASTM D 2216)	N-	
5	No, Pruebras	1	2	3	4
6	Masa de Suelo Humedo + Tara (g)	495,48	489.02	423.25	429.70
7	Masa de Suelo Seco + Tara (g)	492.90	482.90	411.80	411.90
8	Masa de Tara (g.)	303.30	284.30	189.50	155.40
9	Masa de Agua (g)	2.58	6.12	11.45	17.80
10	Masa de Suelo Seco (g.)	189.60	198.60	222.30	256.50
11	Humedad %	1.36	3.08	5.15	6.94
12	Densidad Seça. (g/cm3)	1,606	1.664	1.674	1.635
I SHOW	RESULTADOS FINALES				
13	Densidad Maxima Seca (g/cm3)	1.678	Humedad O	ptima (%)	4.39
14	Gravedad Especifica de los solidos (ASTM D 854) (ASTM C 127).	2.754		90% de sat. (%)	23.28

				CLIDVA	POCTOR				
E	1.70			CURVAP	ROCTOR				
SO UNITARIO SECO B/C	1.69 1.68 1.67 1.66 1.65 1.64 1.63 1.62 1.61								
PE	0	1	2	3 HUMED	ADES %	5	6	7	8

	LABORATORIO DE SUELOS	N //
ELABORADO POR :	REVISADO POR:	W.
TECNICO:	SUP. DE LABORATORIO :	RAUL KENEEL
		VARGAS VILLEGAS INGENIERO CIVIL
		Phys. (2) Dy 100 (100) (200)

N° LEM2110206/03 INFORME DE ENSAYO Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils ASTM D1883 "ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO, AV. CORDILLERA NOMBRE DE PROYECTO: OCCIDENTAL - CHORRILLOS - LIMA 2021." UBICACIÓN DEL PROYECTO: AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA - LIMA. PROCEDENCIA: MUESTRA 1 + 7% ADITIVO TERRASIL SOLICITANTE: FECHA DE RECEPCIÓN: 2021-10-01 Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA FECHA DE EMISIÓN: 2021-10-14 DIRECCIÓN SOLICITANTE: **DESCRIPCIÓN DE MUESTRA** TMP 0.00 m - 1.50 m MATERIAL/CALICATA: C-01_M-1 PROFUNDIDAD: **ENSAYO CBR ASTM D 1883** Molde Nº 14 Nº Capa 5 5 Golpes por capa No 56 25 10 SATURADO NO SATURADO SATURADO NO SATURADO Condición de la muestra NO SATURADO SATURADO Peso molde + Suelo húmedo 11890 12061 7632 Peso de molde (g) 8250 8020 8020 4024 3442 Peso del suelo húmedo (g) 3640 4204 3490 4041 Volumen del molde (cm³) 2113 Densidad húmeda (g/cm³) 1.902 1.527 1.912 1.723 1.990 1.652 19.09 3.52 20,39 % de humedad 3.39 18.90 3.27 1.572 1.580 Densidad seca (g/cm³) 1.667 1.674 1.600 1.606 Densidad Máxima Laboratorio (g/cm³) Tarro Nº Tarro + Suelo húmedo (g) 814.40 798.00 859.60 902.30 767,50 696.50 Tarro + Suelo seco (g) 881.70 771.90 752,40 620.90 779.90 Peso del Agua (g) 20.60 104.30 15.10 75.60 18.10 87.70 Peso del tarro (g) 306.90 220.80 297.20 198.60 Peso del suelo seco (g) 445.50 400.10 552.80 459.40 584.50 511.50 % de humedad 3.4 18.9 3.3 19.1 3.5 20.4 Promedio de Humedad (%) EXPANSIÓN TIEMPO EXPANSIÓN **EXPANSIÓN** EXPANSIÓN FECHA DIAL mm % mm % mm % Sub Total 0.0 % Total PENETRACIÓN CARGA MOLDE Nº 14 MOLDE Nº 15 MOLDE N° 21 PENETRACIÓN STAND. CARGA CORRECCIÓN CARGA CORRECCIÓN CARGA CORRECCIÓN (in) kg/cm² kg-f kg/cm² kg/cm² kg/cm² kg/cm kg-f kg-f kg/cm² kg/cm² 0.000 0.0 0.0 0.0 16.8 0.9 16.1 0.8 3.7 0.2 0.050 26.8 1.4 26.1 1.4 9.4 0.5 38.2 2.0 1.8 15.1 0.8 70 27 4.8 47.3 0.100 6.8 2.4 4.4 3.9 1.5 66.7 3.5 60.7 0.125 3.1 40.2 2.1 83.4 0.150 4.3 76.4 4.0 49.9 2.6 100.2

16.5 Los Resultados de los Ensayos no deben ser utilizados como una Certificación de Conformidad con Normas de Producto o como Certificado del Sistema de Calidad de Li Prohibido la Reproducción Total o Parcial, Escepto con Autorización previa por escrito de LEMICONS S.R.L. Los Resultados solo están Relacionados con la Muestra Disarada. La Muestra ha sido identificada y Entregada en el Laboratorio por el Cliente bajo su Responsabilidad.

6.2

10.7

15.0

28.5

27.1

120.3

206.4

290.2

318.4

TENSEL ARGAS VILLEGAS INGENIERO CIVIL

105

ANGEL EDUARDO GOMEZ GARCIA INGENIERO CIVIL Reg. CIP Nº 79951

62.3

74.1

141.1

218.9

3.2

3.8

7.3

11.3

15.0

7.1

FM-LAB-F-12 2019-09-28 Ver.:01

0.175

0.200

0,300

0.400

LEMICONS S.R.L. Calle Tritoma Mz. J Lote 27 Coop. Huaytapallana, Los Olivos - Lima Telf.: 994236763 / 652-8558

93.8

189.0

265.1

4.9

5.7

9.8

13.7

8.2

7.8

INFORME DE ENSAYO

N° LEM2110206/03

Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils ASTM D1883

NOMBRE DE

"ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO, AV. CORDILLERA OCCIDENTAL

PROYECTO: CHORRILLOS - LIMA 2021."

UBICACIÓN DEL

AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA - LIMA.

PROCEDENCIA:

MUESTRA 1 + 7% ADITIVO TERRASIL

PROYECTO:

FECHA DE

SOLICITANTE:

Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA

RECEPCIÓN:

2021-10-01

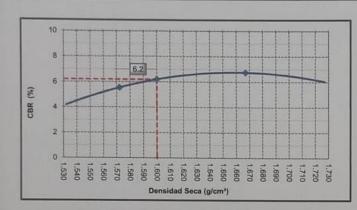
DIRECCIÓN

FECHA DE EMISIÓN:

2021-10-14

SOLICITANTE

DESCRIPCIÓN DE MUESTRA PROFUNDIDAD:


MATERIAL/CALICATA:

C-01_M-1

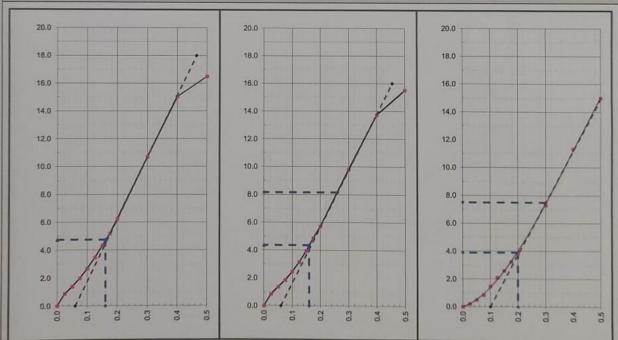
0.00 m - 1.50 m

TMP

GRÁFICO DE PENETRACIÓN DE CBR

DATOS DEL PI	ROCTOR
Densidad Seca	-
Óptimo Humedad	-

RESULTADOS DE CBR al 0,1 in			
CBR al 100 %	6.8 %		
Estado Natural %	6.2 %		


DENS	IDAD
Densidad al 100 %	1.667 g/cm ³
Estado natural	1.600 g/cm3

EXPANSIÓN			
Expansión	0.0%		

EC = 56 GOLPES

EC = 25 GOLPES

EC = 10 GOLPES

Los Resultados de los Ensayos no deben ser utilizados como una Certificación de Conformidad con Normas de Producto o como Certificado del Sistema de Calidad de LEMICONS S.R.L.
Prohibido la Reproducción Total o Parcial, Excepto con Autorización previa por escrito de LEMICONS S.R.L.
Los Resultados solo están Relacionados con la Muestra Enjayada. La Muestra ha sido identificada y Entregada en el Laboratorio por el Cliente bajo su Responsabilidad.

RAUL KENSEL INGENIERO CIVIL

> LEMICONS S.R.L. Calle Tritoma Mz. J Lote 27 Coop. Huaytapallana, Los Olivos - Lima Telf.: 994236763 / 652-8558

ANGEL EDUARDO GOMEZ GARCIA INGENIERO CIVIL Reg. CIP N° 79951

LEM-LAB-F-13 2019-09-28 Ver.:00

2 de 2

Anexo 15: Muestra patrón Calicata C-02

METODO DE ENSAYO PARA EL ANALISIS GRANULOMETRICO NTP 339.128

NOMBRE CLIENTE Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA

DIRECCIÓN CLIENTE Av Cordillera Occidental - Chordillos - Lima - Lima

NOMBRE PROYECTO Estudio congarativo para estabilicar in sub manne con centicas de residuos arganismo y addivo quintor, Av Cordillera Occidental - Chordillo - Lima - 2021

UBICACIÓN PROYECTO : Av Cordillera Occidental Districe Chordillos Provincia: Lima Dpix: Lima

PECHA RECEPCIÓN 29/09/2021 FECHA EMISIÓN: 2/10/2021

		DATOS DE LABORATORIO	
CALICATA:	C-02	CÓDIGO PROY	EKV-0004
MUESTRA:	M - 91	N° DE SOLICITUD:	LEM2110002-08
PROF.:	0.00 m = 1.50 m	FECHA DE ENSAYO:	30/09/2021

TAMIZ	ABERT, tom.	PESO RET, (g)	%RET. PARC.	SRET, AC	% Q'PASA	DESCRIPCION	N DE LA MUESTRA
3 in	76,200	0.0	0.0	9,0	100.0	PESO TOTAL	10142.0
2 int	59.800	0,0	0.0	0.0	100.0	FRACCION	0.009860
11/2 in	38,500	210.3	2.1	2.1	97,9	PESO FRACCION	327.4
Lin	25.400	102.3	1.0	3,1	96,9	FRACCION 2	0,243991
3/4 in	19,050	428.2	4.2	7.3	92.7	GRAVA	20.1
3/8 in	9,525	514.2	5.1	12.4	167.6	ARENA	69.2
No. 4	4,750	785.3	7.7	20,1	79.9	FINOS-	10.7
No. 10	2.000	22.70	5.5	25.7	74,3	Tam Mix Particula	2 in
No. 20	0.841	23,40	5.7	31.4	68.6	D10	0.074
No. 40	0.419	28.60	7.0	38.3	61.7	D30	6.121
No. 60	0,250	47,60	11.6	50.0	50,0	D60	0.389
No. 140	0,105	98.30	24.0	73.9	26.1	Coef. Uniformidad	3.26
No. 200	0.074	63.10	15,4	89,3	10,7	Coef. Curvatura	0.51
No. 200	0.074	43.7	10.7	100,0	6,0		

	DISTRIBUCION DEI	TAMAÑO DE PARTICULAS (mm)	190
Boloues < 300 mm (12°) y × 75 mm (3°):	0.0 %	Arona Modiana < 2,20 mm y > 0,425 mm (#40):	12.7 %
Grava < 75 mm y ≥ 4.15 mm (84) :	20.1 %	Arona Fina < 0.425 pan y > 0.075 mm (#200)	51.0 %
Arena Gruesa < 4.75 mm y > 2.00 mm (#10):	55 %	% Limo y Areilla < 0.074 mm:	10.7 %
	LABOR	ATORIO DE SUELOS	20
ELABORADO POR : TECNICO :		SUP. DE LABORATORIO: VARG	JL KENSEL AS VILLEGAS NIERO CIVIL CIP IV 201537
		let 3-	CIP III 2410-1

METODO PARA LA CLASIFICACION DE SUELOS CON PROPOSITOS DE INGENIERIA (Sistema unificado de clasificación de suelos, SUCS). NTP 339.134

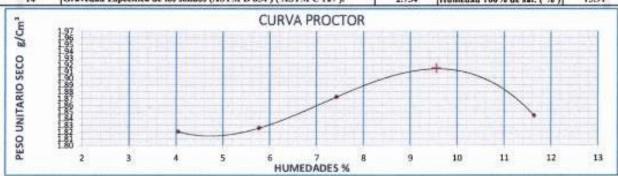
NOMBRE CLIENTE :	Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA Av Cordillera Occidental - Chorrillos - Linta - Linta						
DIRECCIÓN CLIENTE:							
NOMBRE PROYECTO:	Estadio comparativo para catal-	alizar la sub resente con cent	zas de residuos o	rganiero y	aditivo quinceo,	Ay Cordillera Occidental - Chomillo - Lima 202	
UBICACIÓN PROYECTO:	Av Cordillera Occidental	Distrito: Chorrillos	Provincia:	Lima	Dpto: Lima		
FECHA RECEPCION	29/09/2021			FECH.	A EMISION :	2/10/2021	

ALICATA	C - 02			DATOS DE LA	BORATORIO	CÓDIGO PRO	y -	EKV-0004			
(UESTRA:	M - 01					N° DE SOLICITUD:		LEM2110002-08			
ROF.:	0.00 m - 1.50 m					FECHA DE EN		30/09/2021			
		Sistema	Control of the Control of the Control								
		M	ETODO DE ENS	AYO PARA EL. NTP 33		NULOMETRI	со				
TAMIZ	ABERT, mm.	PESO RET. (g)	%RET. PARC.	NRET. AC.	% Q'PASA	Com	Composicion gra		aranulametrica		
3 in	76.200	0.0	0.00	0.00	100.0	Com	posicion	granuion	Idiica		
2 in	50,800	0.0	0.00	0.00	100.0	GRAVAS	Gravas Gruesa	*	7,3		
11/ in :	38,500	210.3	2.07	2.07	97.9	GEOGRA	Gravas Fina	%	12.8		
1 in	25,400	102.3	1.01	3.08	96.9	160001900000	Arenas Gruesa	%	1102		
3/4 in	19.050	428.2	4.22	7.30	92.7	ARENAS	Arenas Media	%	18.5		
3/8 in	9.525	514.2	5.07	12.37	87.6		Arenas Fina	%	39.3		
No. 4	4.750	785.3	7.74	20.12	79.9	FINOS	Limos y Arcillas	54	10		
No. 10	2.000	22.70	5.54	25.66	74.3	337700					
No. 20	0.841	23.40	5.71	31.37	68.6	GR	AVAS	20.	1.%		
No. 40	0.419	28.60	6.98	38.34	61.7						
No. 60	0.250	47,60	11.61	49.96	50.0	AR	ENAS	69.	2 %		
No. 140	0.105	98.30	23.98	73.94	26.1						
No. 200	0,074	63.10	15.40	89,34	10.7	FI	NOS	10.7 %			
< No. 200	0.074	43.70	10.66	100.00	9.0						
	METODO DE EN	SAYO PARA DET	ERMINAR EL I	AMITE LIQUIDO NTP 33		ASTICO E IND	ICE DE PLASTIC	CIDAD DE SUE	LOS		
		LIMITE LIQUIDO	,				LIMITE PLASTI	со			
	LL:	NP					LP:	NP			
				INDICE DE PL	ASTICIDAD		To Allen	Stope 1			

CLASIFICACION DE SUELOS SUCS

SP SM Arena pobremente graduada con limo con grava

P. DE LABORATORIO:	RAUL RENSEL VARGAS VILLEGAS INGENIERO CIVIL REJ. CH. 11 201537
9	REVISADO POR:



METODO DE COMPACTACION DEL SUELO EN EL LABORATORIO ENERGIA DE COMPACTACION (56,000 fi-lbf / fi3 (2,700 kN-m / m3)) NTP 339.141

NOMBRE CLIENTE :	Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA					
DIRECCIÓN CLIENTE:	OCTÓN CLIENTE : Av Cordiflera Occidental - Chorrillos - Lima - Lima					
COMBRE PROYECTO: Estudio congeniativo para estabilizar la sub rissante con cetizas de residuos organicos y aditivo quimico. Av Cordillera Occidental - Chorollo				lera Occidental - Chomillo - Lina 2021		
UBICACIÓN PROYECTO:	Av Cordillera Occidental	Distrito: Chorrillos	Provincia: Lima	Dpsa: Lima		
FECHA RECEPCIÓN -	29/09/2021		FECH/	A EMISIÓN :	2/10/2021	

Corner and	DATOS DE LABORATORI	0	9100			
CALICATA:	C - 02	CÓDIGO PRO	Y.:	EKV-0004		
MUESTRA	M - 01	N° DE SOLIC	ITUD:	LEM2110002-08		
PROF.:	0.00 m - 1.50 m	FECHA DE ENSAYO:		30/09/2021		
	ENSAYO PROCTOR MODIFICADO (NTP, 33	9.141 / ASTM D 1	557)			
No. DE MOLD	E: 1 VOLUMEN DEL MOLDE (Cm3):	2124	MASA DEL M	6OLDE (g):	6448	
1	No. Praebras	1	2	1	- 4	
2	Masa del molde + Suelo humedo (g)	10471	10550	10720	10821	
3	Mass del Suelo Humedo (g)	4023	4102	4272	4373	
4	Dessidad Homedad (g/cm3)	1,894	1.931	2.011	2.059	
	DETERMINACION DEL PORTECENTAJE DE HUMEDA	D (NTP, 339.127	ASTM D 2216)			
5	No. Pruebras	1	2	3	4	
6	Masa de Sucio Humedo + Tara (g)	518.50	580.90	557.70	556.00	
7	Massa de Suelo Seco + Tara (g)	506.10	560.70	533.50	519.60	
8	Masa de Tara (g.)	199.40	210.80	207.60	207.00	
9	Masa de Agua (g)	12.40	20.29	24.20	36.40	
10	Maso de Suelo Seco (g.)	306.70	349.90	325.90	312.60	
	Humedad %	4.04	5.77	7.43	11.64	
12	Densidad Seca. (g/cm3)	1.820	1.826	1.872	1,844	
	RESULTADOS FINALES					
13	Densidad Maxima Seca (g/cm3)	1.915	Humedad O	ptima (%)	9.56	
14	Gravedad Especifica de los solidos (ASTM D 854) (ASTM C 127).	2.754	Humedad 10	00% de sut. (%)	15.91	

	LABORATORIO DE SUELOS	JA.
ELABORADO POR : TECNICO :	REVISADO POR: SUP. DE LABORATORIO :	RAUL KENSEL VARGAS VILLEGAS INGENIERO CIVIL REJ. CIP IN 201537

INFORME DE ENSAYO N° LEM2110203/02

Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils ASTM D1883

"ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADMIVO QUÍMICO, AV. CORDILLERA NO MBRE DE PROYECTO:

OCCIDENTAL - CHORRILLOS - LIMA 2021."

BICACIÓN DEL PROYECTO: AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA – LIMA.

PROCEDENCIA: -

SOLICITANTE:

Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA

FECHA DE RECEPCIÓN: 2021-10-01

D RECCIÓN SOLICITANTE:

FECHA

FECHA DE EMISIÓN: 2021-10-07

	DES	CRIPCIÓN DE MU	ESTRA				
MATERIAL/CALICATA: C-02_M-		C-02_M-1 PROFU		INDIDAD: 0.00 m - 1.50 m		-	
	ENS	AYO CBR ASTM	D 1883			e en	
Molde Nº	1	4		15		ži.	
Nº Capa	5		V.	5	5 10		
Golpes por capa Nº	50	6	A	25			
Condición de la muestra	NO SATURADO	SATURADO	NO SATURAD	O SATURADO	NO SATURADO	SATURADO	
Peso malde + Suela húmedo	12349	12717	11881	12300	11436	11862	
Pesode molde (g)	8248	8248	8017	8017	7629	7629	
Peso del suelo húmedo (g)	4101	4469	3864	4283	3807	4233	
Volumen del molde (cm²)	2113	2113	2113	2113	2116	2116	
Densidad húmeda (g/cm²)	1.941	2.115	1.829	2.027	1.799	2.000	
% de humedad	5.08	14.10	5.24	16.00	5.48	16,71	
Densidad seca (g/cm³)	1.847	1.854	1.738	1.747	1.706	1.714	
Densidad Máxima Laboratorio (g/cm³)	н н	*		-	-	-	
Tarro Nº							
Tarro + Suelo húmedo (g)	652.80	771.00	1053.70	915.90	1341.50	920.40	
Tarro + Suelo seco (g)	635.90	714.70	1016.00	H20.00	1290,90	819.50	
Peso del Agua (g)	16.90	56.30	37.70	95.90	50.60	100.90	
Peso del tarro (g)	303.40	335.50	297,20	220.80	366,90	215.60	
Peso del suelo seco (g)	332.50	399.20	718.50	599.20	924.00	603.90	
% de humedad	5.1	14.1	5.2	16.0	5.5	16.7	
Promedio de Humedad (%)		Lating Tel		9			

EVDA	NSIÓN			-		-	_
EXPAN	10000		EXPAN	NSIÓN		EXPAN	15101
mm	%	DIAL	mm	%	DIAL	mm	,
_	-		-	-		+	_

Sub Total

Total 0.0 %

DIAL

TIEMPO

HORA

				PENET	RACIÓN								
The Company of the Association of the Company of th	CARGA						MOLD	E N° 15	cosmicion	MOLDE N° 21			
PENETRACIÓN	STAND.	CA	RGA	CORRE	CCIÓN	CA	RGA	CORRE	CCIÓN	CA	RGA	CORRE	CCIÓN
(in)	kg/cm²	kg-f	kg/cm²	kg/cm ³	%	kg-f	kg/cm²	kg/cm ²	*	kg-f	kg/cm²	kg/cm²	%
0.000		0.0	0.0		3	0,0	0.0		- 01	0.0	0.0		
0.025		71.4	3.7			23.1	1.2			14.5	0.8		3
0.050		127.0	5.6			41.9	2.2			25.5	1.3		3
0.075		179.0	9.3		Ž	63.0	3.3		- was	44.6	2.3		S-1.
0.100	70	236.6	12.2	12.2	17.4	85.1	4.4	4.4	6.3	57.0	3.0	3.2	4.6
0.125		294.9	15.3		3	104.2	5.4			70.4	3.6		
0.150		352.2	18.2		8	124.3	6.4			85.1	4.4		
0.175	1 2001	414.2	21.4			142.8	7.4			90.9	5.1	(Constant	1
0.200	105	474.2	24.5	24.5	23.3	160.9	8.3	8.3	7.9	113.9	5.9	6.4	6.1
0.300	N.	656.2	34.0		y	230.9	12.0			178.6	9.2		
0.400		745.3	38.6		-	296.3	15.3			250.7	13.0		
0.500		757.0	39.2		8	356.2	18.4			326.4	16.9		

135.2 18.4 335.2 18.4

KAUL KENSEL VARGAS VILLEGAS INGENIERO CIVIL

Fig. d. C.IP N° 201637 LEMICONS S.R.L. Calle Tritoma Mz. J Lote 27 Coop. Huaytapallana, Los Olivos/Lima Telf.: 994236763 / 652-8558

ANGEL EDUARDO GOMEZ GARCIA INGENIERO CIVIL Reg. CIP N° 79951

LEM-LA8-F-12 2019-09-28 Ver.:01

INFORME DE ENSAYO N° LEM2110203/02 Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils ASTM D1883 "ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUB RASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO, AV. CORDILLERA OCCIDENTAL NOMBRE DE PROYECTO: CHORRILLOS - LIMA 2021."

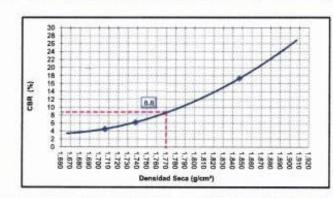
UBICACIÓN DEL AV. CORDILLERA OCCIDENTAL - CHORRILLOS - LIMA - LIMA. PROCEDENCIA:

PROYECTO:

Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA SOUCITANTE:

FECHA DE

RECEPCIÓN:


2021-10-01

DIRECCIÓN SOLICITANTE: FECHA DE EMISIÓN: 2021-10-07

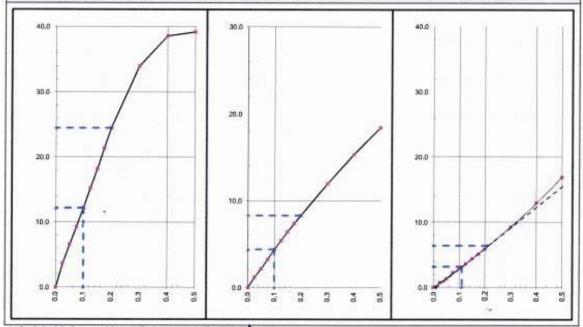
DESCRIPCIÓN DE MUESTRA

MATERIAL/CALICATA:	C-02_M-1	PROFUNDIDAD:	0.00 m - 1.50 m	TMP	++
--------------------	----------	--------------	-----------------	-----	----

GRÁFICO DE PENETRACIÓN DE CBR

DATOS DEL PROCTOR					
Densidad Seca	-				
Óptimo Humedad	-				

CBR al 100 %	17.4 %
Estado Natural %	8.8%


DENSIDAD				
Densidad al 100 %	1.847 g/cm²			
Estado Natural	1.770 g/cm*			

EXPANS	ION
Expansion	0.0%

EC = 56 GOLPES

EC = 25 GOLPES

EC = 10 GOLPES

Los Resultados de los Emayos no deben ser utilizados como una Certificación de Concernidad con Normos de Producto o como Certificado del Sistema de Calidad de LEMICONS S.R.L.
Prohibido la Reproducción Total o Parcial, Excepto con Autorización previa por especial de LEMICONS S.R.L.
Los Resultados solo están Relacionados con la Muestra Chayyada. La Muestra ha del dentificada y Entregada en el Laboratorio por el Cliente bajo su Responsabilidad.

RAULHENSEL VARGAS VILLEGAS INGENIERO CIVIL

Fed. C.P # 201537

ÁNGEL EDUARDO GOMEZ GARCIA INGENIERO CIVIL 2 de 2

LEM-LAB-F-13 2019-09-28 Ver.:00

LEMICONS S.R.L. Calle Tritoma Mz. J Lote 27 Coop. Huaytapallana, Los Olivoy Lima Tell: 994236763 / 652-8558

Reg. CIP Nº 79951

Anexo 15: Muestra patrón Calicata C-03

METODO DE ENSAYO PARA EL ANALISIS GRANULOMETRICO NTP 339.128

Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA NOMBRE CLIENTE: DIRECCIÓN CLIENTE : NOMBRE PROYECTO : Av Cordillera Occidental - Chorrillos - Lima - Lima

Estudio comparativo para estabilizar la sab rasante con oraizas de resideos organicos y aditivo quinico, Av Cordillera Occidental - Chorrillos - Lima 2021

Av Cordillera Occidental Distrito: Chorrillos Provincia: Lima Dpto: Lima UBICACIÓN PROYECTO: FECHA RECEPCIÓN : FECHA EMISIÓN: 29/09/2021

		DATOS DE LABORATORIO	
CALICATA:	C - 03	CÓDIGO PROY.:	EKV-0004
MUESTRA:	M - 01	N° DE SOLICITUD:	LEM2110002-09
PROF.:	0.00 m - 1.50 m	FECHA DE ENSAYO:	30/09/2021

TAMIZ	ABERT mm.	PESO RET. (g)	%RET. PARC.	%RET. AC.	% Q' PASA	DESCRIPCION	N DE LA MUESTR
3 in	76.200	0.0	0.0	0.0	100.0	PESO TOTAL	277.8
2 in	50.800	0.0	0.0	0.0	100,0	FRACCION	0.359971
11/2 in	38.500	0.0	0.0	0.0	100.0	PESO FRACCION	0.0
1 in	25.400	0.0	0.0	0.0	100.0	FRACCION 2	N/A
3/4 in	19.050	0.0	0.0	0.0	100.0	GRAVA	0.3
3/8 in	9.525	0.0	0.0	0.0	100.0	ARENA	91.8
No. 4	4,750	0.8	0.3	0.3	99.7	PINOS	7.9
No. 10	2.000	1.67	0.6	0.9	99,1	Tam. Máx. Particula	2 In
No. 20	0.841	1.39	0.5	1,4	98.6	D10	0.088
No. 40	0.419	10.83	3.9	5.3	94.7	D30	0.125
No. 60	0.250	72.23	26.0	31.3	68.7	D60	0.214
No. 140	0.105	135.0t	48.6	79.9	20.1	Coef. Uniformidad	2.43
No. 200	0.074	33.89	12.2	92.1	7.9	Coef. Curvatura	0.83
No. 200	0.074	21.9	7.9	100.0	0.0	Contracting 60	

	DISTRIBUCIÓN DEL	TAMAÑO DE PARTÍCULAS (mm)	
Bolones < 300 mm (12") y > 75 mm (3"):	0.0 %	Arena Mediana < 2.00 mm y > 0.425 mm (#40):	44%
Grava < 75 mm y > 4.75 mm (¥4) ;	0.3 %	Arena Fina < 0.425 mm y > 0.075 mm (#200):	86.8 %
Arena Gruesa < 4.75 mm y > 2.00 mm (#10):	0.6 %	% Lime y Aroilla < 0.074 mm :	7.9 %
	LABOR	ATORIO DE SUELOS	
ELABORADO POR: TECNICO:		SUP. DE LABORATORIO VARGI	LVENSEL AS VILLEGAS NIERO CIVIL
		First.	CIP (4 201537

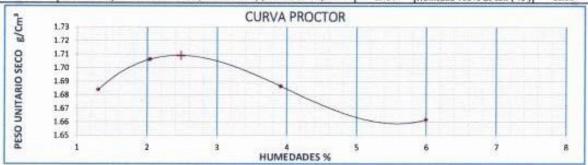
2/10/2021

NOMBRE CLIENTE:

METODO PARA LA CLASIFICACION DE SUELOS CON PROPOSITOS DE INGENIERIA (Sistema unificado de clasificación de suelos, SUCS). NTP 339.134

Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA.

DINELALIDA S		We continue a continue								
NOMBRE PRO							uimics, Av Cordille	ra Occidental - Chumillo - I	Lima 2021	
UBICACIÓN I		Av Cordillera Occide	notal Distri	to: Chorrillos	Provincia: Li		o: Lima			
FECHA RECE	PCIÓN:	29/09/2021				FECHA EMISI	ÓN:	2/10/2021		
		=		DATOS DE LA	BORATORIO					
CALICATA:	C-03			DATIOS DE LA		CÓDIGO PRO	y .	EKV-0004		
MUESTRA:	M - 01					Nº DE SOLICI		LEM2110002-09		
PROF.:	0.00 m - 1.50 m					FECHA DE EN	SAYO:	30/09/2021		
100000-10	-									
	1 1 141	Sistema u	nificado	de clasi	ficacion	de suel	os SUCS	i i		
		MET	ODO DE ENSA	YO PARA EL. NTP 33	ANALISIS GRA	NULOMETRI	co		100	
TAMIZ	ABERT, mm.	PESO RET. (g) %	RET. PARC.	%RET. AC.	% Q' PASA					
3 in	76,200	0.0	0.00	0.00	100.0	Com	posicion	granulometr	1ca	
2 in	50,800	0.0	0.00	0.00	100.0		Gravas Gruesa	%	0.00	
11/ in	38,500	0.0	0.00	0.00	100.0	GRAVAS	Gravas Fina	%	0.30	
Tin	25,400	0.0	0.00	0.00	100.0		Arenas Gruesa	%	1.10	
3/4 in	19.050	0.0	0.00	0.00	100,0	ARENAS	Arenas Media	%	29.90	
3/8 in	9.525	0.0	0.00	0.00	100.0		Arenas Finu	5	60,80	
No. 4	4.750	0.8	0.30	0.30	99.7	FINOS	Limos y Arcilla	s %	7.9	
No. 10	2.000	1.67	0.60	0.90	99.1					
No. 20	0.841	1.39	0.50	1.40	98.5	GR	AVAS	0.3 %		
No. 40	0.419	10.83	3.90	5.30	94.7					
No. 60	0.250	72.23	26.00	31.30	68.7	AR	ARENAS 91.8 1			
No. 140	0.105	135.01	48.60	79.90	20.1					
No. 200	0.074	33.89	12.20	92.10	7.9	F	INOS	7.9 %		
< No. 200	0.074	21.95	7.90	100.00	0.0					
3	METODO DE EN	SAYO PARA DETER	MINAR EL LI	시크리(1414) (1717년) 전하임(1		STICO E IND	ICE DE PLASTI	CIDAD DE SUELOS		
		LIMITE LIQUIDO		NIP 33	P 339.129 LIMITE PLASTICO					
Same	LL	NP					LP:	NP		
	Like	at		INDICE DE PL	ASTICIDAD		T.	Del		
		1.0								
				IP: 3	NP					
			CLA	SIFICACION D	E SUELOS SUC	25				
	SP SM	Arena pobren	nente gradu	ada con lir	mo					
			-	LABORATORIO	no error os			A		
ELABOR	RADO POR :			- Indian I Dillic	REVISAL	O POR:				
TECNICO:				s	SUP. DE LABOR		VARG	AS VILLEGAS		
			-		-	-	Reg.	ENIERO CIVIL CIP IIP 201537		



METODO DE COMPACTACION DEL SUELO EN EL LABORATORIO ENERGIA DE COMPACTACION (56,000 fi-lbf/fi3 (2,700 kn-m /m3)) NTP 339.141

NOMBRE CLIENTE :	Sr. IVAN DOMINGUEZ CARRASCO, Sr. KEVIN BARTOLO MEDINA							
DIRECCIÓN CLIENTE:	Av Cordillera Occidental - Chorrillos - Lima - Lima							
NOMBRE PROYECTO:	Estudio comparativo para estab	dizur la sub rasante con cenic	zas de residuos organicos y	silitive quintice, Av Cordill	lera Occidental - Chemillo - Lima 2021			
UBICACIÓN PROYECTO:	Av Cordillera Occidental	Distrito: Chorrillos	Provincia: Lima	Dpto: Lima				
FECHA RECEPCIÓN	29/09/2021		FECH/	A EMISION:	2/10/2021			

V. Marchan	DATOS DE LABORATORI	0		757535-014		
CALICATA:	C - 03	CÓDIGO PRO	Y.:	EKV-0004 LEM2110002-09		
MUESTRA:	M - 01	N° DE SOLIC	ITUD:			
PROF.:	0.00 m - 1.50 m	FECHA DE ENSAYO:				
V= 4	ENSAYO PROCTOR MODIFIC ADO (NTP, 33	9.141 / ASTM D I	(557)			
No. DE MOLD	E: 1 VOLUMEN DEL MOLDE (Cm3):	2124	MASA DEL N	(OLDE (g):	448	
1	Nn. Pruebras	1	2	- 3	4	
2	Masa del molde + Suelo humedo (g)	10071	10146	10170	10189	
3	Masa del Suelo Humedo (g)	3623	3698	3722	3741	
4	Densidad Hamedad (g/cm3)	1.706	1.741	1.752	1.761	
	DETERMINACION DEL PORTECENTAJE DE HUMEDA	D (NTP, 339,127	/ASTM D 2216)	C.		
5	No. Pruebras	1	2	3	4	
6	Masa de Suelo Humedo + Tara (g)	472.40	476.50	478.50	445.60	
7	Masa de Suelo Seco + Tara (g)	468.90	471.20	468,30	432.10	
8	Masa de Tara (g)	199.40	210.80	207.60	207,00	
9	Masa de Agua (g)	3.50	5.30	10.20	13.50	
10	Masa de Suelo Seco (g.)	269.50	260.40	260.70	225.10	
11	Humedad %	1.30	2.04	3.91	6.00	
12	Densidad Seca. (g/cm3)	1.684	1.706	1.686	1.662	
	RESULTADOS FINALES					
13	Densidad Maxima Seca (g/cm3)	1,709	Humedad Optima (%)			
14	Gravedad Especifica de los solidos (ASTM D 854) (ASTM C 127).	2.754	Humedad 10	fumedad 100% de sat. (%)		

	LABORATORIO DE SUELOS	12
ELABORADO POR : TECNICO :	REVISADO POR: SUP. DE LABORATORIO :	RAUL HENSEL VARGAS VILLEGAS INGENIERO CIVIL
		Red. CIP Nº 201537

ENSAYO DE CBR ASTM D 1883

Opto: Lima

MUESTRA : G @ M-@ PROFUNDIDAD:

PROCEDENCIA: DESITIO

UBICACIÓN: Av. Cordillera Occidental Distrito: Chamillos Provincias: Lima SOLICITA: Sr. IVAN DOMINGUEZ CARRASCO, Sy KEVIN BARTOLO MEDIN A

CÓDIGO DE PROVECTO: EIX 4004 N° DESOLICITUD: LEM2130002-09 FECHA DE INGRESO: 29/09/2021 FECHA DE ENSAYO: 30/09/2021

Molde Nº		1	7	2	3	2	5			
Nº Capa.		5			5 5					
Golpes por capa	lpes por capa Nº		56		2	5	1	2		
Cond. de la muestra		NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATU	RADO		
Peso molde + Su	elo húmedo	- 1	10249	10756	11521	12030	10780	11325		
Peso de molde (g	pr)		6560	6560	7857	7857	7273	7.	7273	
Pesodel suelo hi	imedo (gr)	- 3	3689	4196	3664	4173	3507	- 4	4052	
Volumen del moi	ide (cc)	- 3	2115	2115	2125	2125	2115	2	115	
Dens idad h úmed	ia (gr/cc)		1.744	1.984	1.724	1.964	1.658	. 12	916	
% de humedad	(0.5% (0.0	- 3	3.09	1637	297	17.21	337	- 17	7.27	
Densidad seca (g	pr/c c)	- 3	1.692	1.705	1.674	1.676	1.604	17	634	
Densidad Máxim	a Laboratorio	(grs/cc)	1.709	1.709	1.709	1.709	1.709	1.7	709	
		ACTACAS	99.0	99.8	98.0	98.1	939	9	5.6	
Tarro Nº		- 3		- See Miles	10	2) Marie		1	oct in	
Tarro + Suelo hú	medo (gr.)		325.8	456.2	326.8	3698	401.2	339		
Farro + Suelo sec	co (gr.)	- 8	3198	418.1	322.5	345.1	394.6	335.6		
Pesodel Agua (gr.)		6.0	381	43	24.7	66	24.2			
Pesodel tarro (gr.)			125.6	185.4	177.7	2016	1985	195.5		
Peso del suelo seco (gr.)		- 3	1942	232.7	144.8	143.5	196.1	140.1		
% de humedad	A PACKETON	å	3.09	1637	297	17.21	3.37		17.27	
Promedio de Hu	medad (%)									
				E	XPANSIÓN	on	***			
FECHA	HORA	TIEMPO	DIAL	EXPANSIÓN	DIAL	EXP ANSIÓN	DIAL	EXPANSIÓN		
	V (c.	Hir.		mon %		mm %		10000	96	
	\$ 8	S		S		grand in		-	S	
	13	31 3	1	5 - 6		ā 3	3	3	6	
					- 10	8 8			2	
Sub Total	18	3		0.0	0	0,00			0.0	
Total	757	(V)		A	0.0 %		V- V		A- 21	

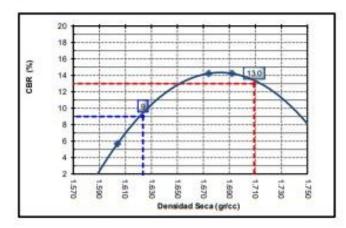
PENETRACIÓ N

	CARGA	MOLDEN® CARGA		Ę.	17:		MOLDE No		23		MOLDEN®		25	
PENETRACIÓN Pale	STAND			CORRECCIÓN		CARGA		CORRECCIÓN		CARGA		CORRECCIÓN		
	kg/cm2	Kg-f	kg/cmr	lig/emz	166	Ng-f	lig/cm:	kg/em	96	Kerf	lig/cmt	lg/cm	76	
0.000		0.0	0.0			0.0	0.0			0.0	0.0			
0.025	3 (3	367	1.9	8	8 -	28.6	1.5	3 6		17.3	0.9	Š.	8	
0.050	30 3	70.2	3.6	5 1		56.8	29	H H		35.9	1.9		8	
0.075		112.3	5.8			96.2	5.0			52.3	2.7			
0.100	70	161.2	8.3	10.0	142	145.6	7.5	10.0	14.2	73.4	3.8	4.0	5.7	
0.125	76 7	215.2	11.1	5		193.1	10.0	35 - 33	- 3	94.8	4.9	1	9	
0.130	135	267.4	13.8		3 3	244.1	12.6	21 H	- 5	117.5	6.1	1	8	
0.175		316.6	16.4			290.9	15.1			138.9	7.2			
0.200	105	368.4	19.1	20.0	190	335.1	17.3	19.0	18.1	199.0	8.2	9.0	8.6	
0.300	38 77 39	495.7	25.7	S-111	1	432.7	22.4		444	237.2	123	S mice	ā - 111	
0.400	36 3	568.1	29.4	3		456.8	23.6	(i)	- 3	301.7	156	ž.	8	
0.500		519.3	26.9			652.1	23.4			346.5	17.9			

Nº BALANZA		MIENTO DE SECADO :	COCINA X	PRINSACIR: 1
	ENSAYADO POR	Service	REVISA	ADO POR
NOMBRE FIRMA	an Westerland	NOMBRE FIRMA	110000	

ENSAYO DE CBR ASTM D 1883

MUESTRA: C-03M-01

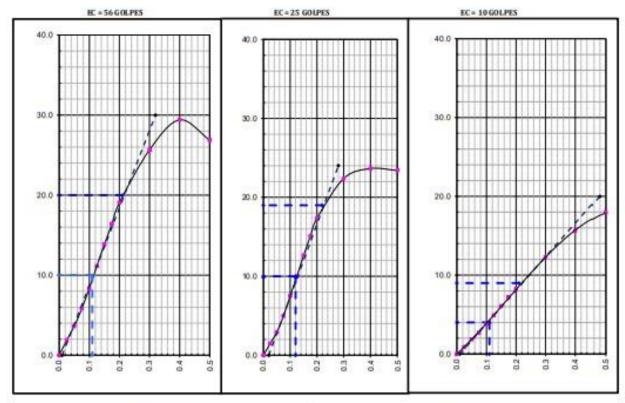

PROCEDENCIA: DESITIO

UBICACIÓN: Av. Cordillera Occidental Distrito: Chorrillos Provincias: Lima Dpto: Lima SOLICITA: Sr. IVAN DOMINGUEZ CARRASCO, Sr KEVIN BARTOLO MEDINA

CÓDIGO DE PROYECTO: EKV-0004 N° DE SOLICITUD: LEMZ 110002-09 FECHADE INGRESO: 29/09/2021

FECHA DE ENSAYO: 30/09/2021

GRÁFICO DE PENETRACIÓN DE CBR



Datos del Proctor 1.709 gr/cc 6.2 % Densi dad Seca Optimo Humedad

RESULTADOS DE CBR al 0,11 13.0 % CBR al 100 % CBR at 95 % 9.0 %

DENSIDAD 1.709 gr/cc Densi dad al 100 % Densi dad al 95 % 1.624 gr/cc

EXPANSION Expansión 0.0 %

	ENSA YA DO POR	REVISADO POR	
NOMBRE FIRMA		NOMBRE FIRMA	

Anexo 16: Calibración del equipo California Bearing Ratio (C.B.R.)

Anexo 17: Equipo para realizar el ensayo Californea Bearing Ratio (C.B.R.)

Anexo 18: peso del monde + muestra

Anexo 19: Anillos que simulan la sobre carga del pavimento flexible en cada molde

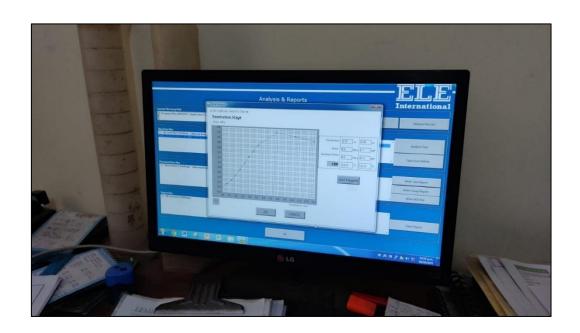
Anexo 18: Aditivo terrasil y las probetas que se usaron para la dosificación

Anexo 20: Cascarilla de arroz y bagazo de caña de azúcar

Anexo 21: Dosificación de las Cenizas de cascara de arroz

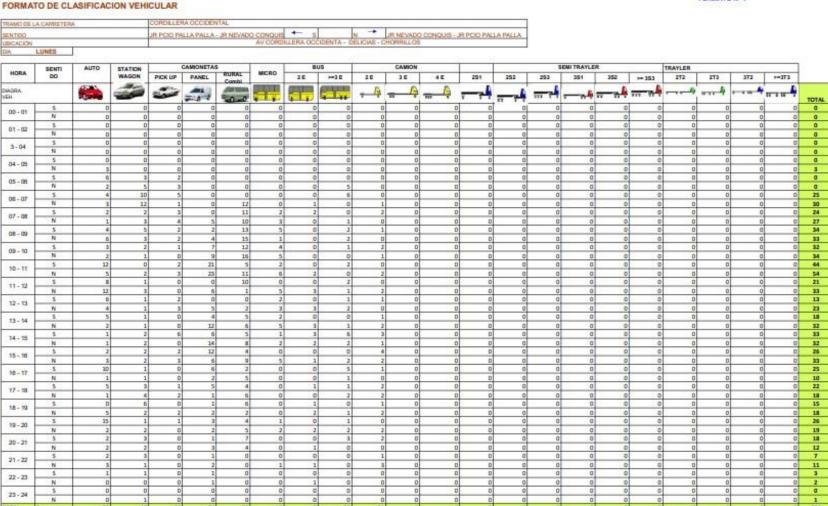
Anexo 22: Probetas sumergidas por 4 días para realizar el ensayo C.B.R.

Anexo 22: Calicatas




Anexo 23: Muestra extraídas de las calicatas

Anexo 23: Programa incorporado al equipo del C.B.R. que grafica las curvas de penetración



Anexo 24: Conteo de tráfico vehicular - lunes

Anexo 25: Conteo de tráfico vehicular - martes

TRAMO DE LA CARRETERA CORDELERA OCCIDENTAL. JE REVADO CONQUES - JE PCIO PALLA PALLA - JE NEVADO CONQUES - JE PCIO PALLA PALLA DEL CAS - CHORRILLOS DIA MARTES

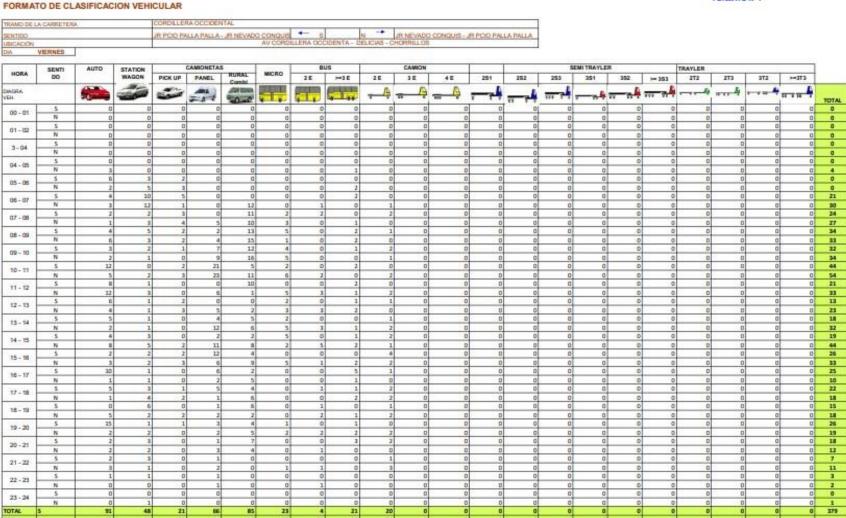
59A 59A 6 07 11 - 02 12 - 03 14 - 03 15 - 04 15 15 - 08 15 - 09 15 - 0	5 N S N S N S N S N S N S N S N S N S N	0 0 0 0 0 0 0 0 0 0 2 3 8 4 4 2 2 2 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	1 C	0 0	252 21 0 0 0 0	253 0 0 0 0	0 0	0 0		0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3T2	>=3T3	10
0 - 01 1 - 02 3 - 04 4 - 05 5 - 08 8 - 07 7 - 08 8 - 09 9 - 10 9 - 11 11 - 12 2 - 13 3 - 14 4 - 15	N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5	0 0 0 0 0 0 0 0 0 0 2 8 8 2 4 4 2 2	0 0 0 0 0 0 0 0 0 0 3 5 30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0	0 0 0 0 0		0 0	0 0	0	0 0	0 0 0	0 0	0 0	0 0 0 0 0 0	0 0 0	0 0 0 0	
0 - 01 1 - 02 3 - 04 4 - 05 5 - 06 5 - 06 6 - 07 7 - 08 8 - 09 9 - 10 0 - 11 1 - 12 2 - 13 3 - 14 4 - 15	N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5	0 0 0 0 3 5 2 4 3 2 1	5 10 12	0 0 0 0 0 0 2 2 3 5 1	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	1 C	0 0	0 0 0 0	0	0	0 0	0 0	0 0	0 0	0 0	0	
1 - 02 3 - 04 4 - 05 5 - 06 5 - 07 7 - 08 5 - 09 9 - 10 9 - 11 1 - 12 2 - 13 3 - 14 4 - 15 5	5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N	0 0 0 0 3 5 2 4 3 2 1	5 10 12	0 0 0 0 0 0 2 2 3 5 1	0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	1 0	0	0 0	0	0	0 0	0	_		0	0	
1 - 02 1 -	N S N S N S N S N S N S N S N S N S N S	0 0 0 0 3 5 2 4 3 2 1	5 10 12	0 0 0 0 2 3 5 1	0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0	0 0 0 0 0	0 0 0	1 0	0	0 0	0	0	0	0	_		_	0	
3-04 4-05 5-06 6-07 7-08 8-09 9-10 0-11 1-12 2-13 3-14 4-15	5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N	0 0 0 3 5 5 2 4 3 2 1 4 6	5 10 12	0 0 0 2 3 5 1 1	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 0 0 0	0 0	0 0 0	0		0	0		0	_		_		_	0	
1-04 4-05 5-08 5-08 6-07 7-08 8-09 9-10 0-11 1-12 2-13 3-14 4-15	N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5	0 0 3 8 2 4 3 2 2 1 4 6	5 10 12	0 0 0 2 3 5 1 1	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 0	0 0	0	0		0	0			_		_		_	-	
4 - 05 5 - 06 6 - 07 7 - 08 9 - 10 0 - 11 11 - 12 2 - 13 3 - 14	5 N S N S N S N S N S N S N S N S N S N	0 3 5 2 4 3 2 1 4 6	5 10 12	0 0 2 3 5 1 1 3	000000000000000000000000000000000000000	0 0 0 0 0 12	0 0	0	0 0	0	0		0	0) D		: 0	
4 - 05 5 - 08 8 - 07 7 - 08 8 - 09 9 - 10 0 - 11 1 - 12 2 - 13 3 - 14	N S N S N S N S N S N S N S N S N S N S	3 6 2 4 3 2 1 4 6	5 10 12	0 2 3 5 1 1	0 0	0 0 0	0 0	0	0 0	0	0				0	0			1 -			0	-
5-08 5-07 7-08 5-09 9-10 9-10 9-11 1-12 7-13 3-14 4-15	5 N S N S N S N S N S N S N S N S N S N	2 4 3 2 1 4 6	5 10 12	3 5 1 3	0	0 0	0	0	0	. 0						0							
7 - 08 - 00 - 10 - 11 - 12 - 13 - 14 - 15	N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5	1 4 6	10 12	- 4	0	0 0	0		-		0		0	0	0	- 0	0			0	0	0	
6-07 7-08 8-09 9-10 0-11 1-12 2-13 3-14	5 N S N S N S N S	1 4 6	12	- 4	0	12	.0				0		0	0	0	0	. 0			0	0	0	
7 - 08 8 - 09 9 - 10 9 - 10 9 - 11 1 - 12 2 - 13 3 - 14 4 - 15	5 N 5 N 5 N 5	1 4 6		- 4	0		0		6	0	D		0	0	0	. 0	0	. 0	0	D	0	0	1
7 - 08 8 - 09 9 - 10 9 - 11 1 - 12 2 - 13 3 - 14 4 - 15	N 5 N 5 N 5 S	1 4 6	2 3 5	- 4		11		1	0	1	D		D	0	.0	0	. 0	. 0	0	D	0	. 0	
8 - 09 9 - 10 9 - 10 1 - 12 2 - 13 3 - 14 4 - 15	5 N 5 N 5	6	3 5				- 2	- 2	. 0	2	0		0	0	.0	0	. 0	. 0		0	0	. 0	
9 - 10 9 - 10 0 - 11 1 - 12 2 - 13 3 - 14 4 - 15	N 5 N 5	6	5	2		10	- 1		1	0	0	1 0	0	0	0	0	0	. 0		0	0	.0	
9 - 10	5 N 5		3		2	13	- 3		2	. 1	. 0				.0	0	0					.0	
2-10 0-11 1-12 2-13 3-14	N 5	2		2	- 4	15				0	. 0		0	0	.0	0	. 0	. 0		. 0	Ú	.0	
0 - 11 1 - 12 2 - 13 3 - 14 4 - 15	5	. 2	. 2	1	- 7				-	2	0	1	0	0	0		. 0	. 0		0	0	0	
2 - 13 2 - 13 3 - 14 4 - 15			1		9	16				1	D	1		0	0		8						
1 - 12 2 - 13 3 - 14	N.	12		2	21			-			0		0	0	0	4/11	. 0			0	0	. 0	
2 - 13	-		2	3	23					2	0	1 - 5	0	0	0	0	. 0			D	0	0	-
2 - 13	5	- 6	1		0	10	_			- 0	0		-	- 0	-	-				D	0	0	-
2 - 13 3 - 14 4 - 15	N S	12	- 1	2	_						0		0	0	0				_	0	0	0	
4 - 15	N	- 4	- 1	-	-	2	1	_	_	-						0			-		- 0		-
4 - 15	5	5	1	0	- 4	3				1	0		0	0	0	-	0			0	0	0	
1-15	N	2	1	0	12	100	- 5		-	2	0		0	0	0	_	. 0			0	0	0	
10-11	5	1	- 4	5			1	- 1	3	2			0	0	0	0	. 0	0	0	0	ū	0	
8 10	N	1	2	D	14		- 2	. 2	1	1	D		D	0	.0	0	. 0	. 0	0	D	0	. 0	
	5	2	2	- 2	12	- 4	0		0	- 4	0		0	0	.0	0	. 0			0	0	. 0	
	N	. 3	. 2	3	. 6	9	. 5	- 1	1	2	0		. 0	0	.0	0	0	. 0		0	0	.0	
5 - 17	5	30	1		- 0	2		-		1	0		0	0	.0	0	. 0			0	0	.0	
2000	N	1	1	0	2	5	0			. 0	0		0	0	.0	0	. 0	. 0		0	Ò	- 0	
7 - 18	5	5		1	- 5	- 4					0	1	0	0	0		. 0			0	0	0	
(A)	N	1	4	2	1	6				1		-			0		- 8				0		
5 - 19	5	0			1	- 6				1	0		0	0	0	-	0	0	0	D	0	0	
	N 5	35	2	1	2	2	0			2	0			0	0	0	. 0	0	-		0	0	
9 - 20	N		1				2				0			- 0	0	0					- 0	- 0	
	5	2	3	. 0	1	7	0		-	2	0		0	0	0	- 0				0	0	0	
0 - 21	N	2	2	0	-	4		_	_	0	D		D	0	0		0	0	0	D	0	0	
- Sec. 201	5	2	1	0	1	0	_			1	0		0	0	0			0	0	0	0	0	
1 - 22	N	1	1	0	2	0		_			0		0	0	0	- O	. 0			0	0		
	5	1	1	0	1	0	0		0	0	0		0			0	. 0			0	ū		
2-23	N	0	D	D	1	. 0	Ó	1	0	D	D		D	0	. 0	0	. 0	. 0	0	D	0	0	
3 - 24	5	0	0	0		0	0		0	0	0		0	0	. 0	0	0	. 0		0	0	- 0	
	N	0	1	D						0	D		D	0	.0	0	0	0		0	0	.0	
AL S		SE SE	49	26	66	86	21	. 16	29	20	0		0		0	0	. 0			0	0	0	

Anexo 26: Conteo de tráfico vehicular - miércoles

Ministerio de transcertes y Comunicaciones FORMATO DE CLASIFICACION VEHICULAR

35250	SENTI	AUTO	STATION	- 8	CAMIONETA		WEST 8		us		CAMION	D			- 11	SEMITRAYLI	IR.		TRAYLER				
HDRA	00		WAGON	PICK UP	PANEL	RURAL Combi	MICRO	28	3-3 E	2.0	3.0	4.0	291	252	253	351	352	>= 151	272	213	372	>=373	
GRA.				-	-	50-0			-	- 4	100 A			-			- n4	- 31 A				H + H +	TO
0-01	5	. 0			0	0	. 0		0		0		D	0			. 0			0 0	0	0	
	N.	D		. 0	0	0					_		-							0 0	0	0	_
- 02	- 5	D			.0	0		-	-				D	0		-		-		0 0	0	-	-
	N	0			0	0	_		_		_	_	D	0	0	-		_		0 1	0	0	_
04	S N				0	0			-		_		-	_		-				0 1	0		•
25121	5	0			0	0							0	_	0				-	0 1	0	0	_
- 05	N				0	0			-		_	_	0					-	-	0			-
	5		1		0	0			-		-		-	-					1	0 1	0	_	-
- 06	N.	2		1	0	0														0			•
	5	4	10	- 5	0	0			6	0	0	1	0		0					0 0	0	0	П
- 07	N	. 3	12	1	0	12	0	- 1		- 1			0				. 0	. 0		0 0		0	П
- 08	5	. 2	2	3	0	11	2	- 2	0	2		1			0					0 0	0	0	
- 90	N.	1	. 1	- 4	- 5	10	3		1		0	1	0	0	. 0		. 0	. 0		0 0	0	0	Г
- 09	5	4		2	2	13		- 0	2	1		1 1	0	0	0		. 0	0		0 0	0	0	
- 100	N			2	. 4	15					_	-	0	0	0					0 1	0	0	_
9-10	5	- 1		1	.7	12		_		2				_		-		-		0 0	0	0	•
	N	2	1	. 0	9	16				1			. 0	_						-	0	. 0	_
- 11	5	12		2	21			-	-						0		-	-		0 0	0	0	•
	N S		- 2	-	23				-	- 2			0 0	0	0			_	-	0 0	0	0	_
- 12	- N	12	-			10		_					0				-	-	-			0	-
	5	6		2	0	0				1		-	_	_	_					0 1	1 0	-	_
2 - 13	N	- 4		-	3	2	1	1	,	-		-	0			-				0 0	0	. 0	•
	5	3	i		4	5			0	1			-	_					1	0 1	0	0	_
1-14	N	2	1		12	0	_		1	- 1					0	-			-	0 0		0	П
	5	4	3	0		_	- 4		1		0	1	0	0	0		. 0			0 0	0	0	П
4 - 15	N.	1	2		14		2		2	1			D	0	0	0	. 0	. 0		0 0	0	0	П
5 - 16	5	2	2	2	12	4	0		. 0	- 4		1 0			0			. 0		0 0	0 0	0	
104	N.	3	. 2	3	6	9	5		2	. 2		1	0	0	0		. 0	. 0		0 0	0	0	
5-17	5	30	1		6	2	0		- 5	1		1 0		0	0		. 0			0 0	0	0	
	N	. 1	1		- 2	5			-			-	0	-	- 0						0	0	-
7 - 18	5	5		1	- 5	- 4				2	_		0	0	0	-				0 0	0	0	-
	N	1	4	2	1	- 6	0			2				0	0				- 1	0 0		0	-
1-19	5	1	1	-	5	2	-						_	_	-						0	0	_
	N S	15		1	2	4	0		-	0			-	-	0				_	0 0	1 0	0	-
9 - 20	N N	15	-	- 1		-	2	-	-											0		0	-
	5	2	3	0	1	7	0			2	+	-	0	0				_		0 1	0	0	_
- 25	N	1	1	0	1	4					_		0	0						0	0	0	-
	5	1	1	0	_	- 0				1	_		0	0						0 1	0	-	_
- 22	N	3	1		2	0		- 13	0	1	. 0				0					0 0	0	0	
2 - 23	5	1	1		1	0	0		. 0		0		0	0	0	0	. 0	. 0		0 0	0	0	
- 23	N				1	0	0		0	0	0		D	0	0	0	. 0	. 0		0 1	0	0	
3 - 24	5	. 0			0	0	.0		. 0			1 0	. 0	0	0			0		0 0	0	0	
_	N	0		0		0							0							0 0	0		_
'AL	5	92								19			0							0 0	0	0	
AL.	N	58	48	23	97	112	38	22	22	20		1	0	0	0				- 1	0 0	0	0	

Anexo 27: Conteo de tráfico vehicular - jueves


TRAMO DE LA CARRETERA CORDILLERA GOCIDENTAL SENTIDO JR PCID PALLA PALLA - JR NEVADO CONQUE S N JR NEVADO CONQUES - JR PCID PALLA PALLA LIBICACIÓN AV CORDILLERA GOCIDENTA - DELICIAS - CHORNILL OS

30220 T	SENTI	AUTO	STATION	-	CAMIONETA		0000000		us	10	CAMION			-	07 3	SEMITRAYLE	R		TRAYLER			07 - 10	
HORA	00	20000000	WAGON	PICK UP	PANEL	RURAL	MICRO	25	>=3 E	2.0	3.0	4.0	251	352	251	351	352	>= 353	272	213	3T2	>=3T3	
RA.				-	=	- Common		Taly)	51,	-4	- A				201 7		~ ~ 4	VVV 93-4				H + H +	7
-01	5	D		D		0	0		0	0	D	1	0 0	0	0		. 0	.0	1	0 0		0	
	N.	0		D					0		_	3 3	0 0	0			0	0		0 0		0 0	
-02	- 5	0		D				-	0	- 0	D	- 34	0	0			. 0		- 4	0		0	
	N	0		0	0	0		- 0		0			0	0	0		. 0		_	0 0		0	
-04	5	0		. 0	0	0	0			0	0		0	0			. 0	0	-	0	- (0	_
	N.	0		0			0		_	. 0	0	9 91	0		0	0	.0			0 0		0	
- 05	5	0		D	0	0	_	_	-	0	-		-	-	0		. 0			-		0	_
	N	3	. 0	0	0	0			_	. 0			0	_	0	0	0	0		-		0	_
5-06	S N		-	- 1		0	_		-	. 0	-	-	0		0	-	0				- 1		
V. 10.5	5	2	30	3	0	0		-		0	-		0	0	0	0	0	0		0 0	-	0 0	
-07	N	-	150			The second second		-	-	1	-		0 0		-		0			-			
	5	2	12	- 1		12				2			0	-	0	_	_	0		-		-	\vdash
- 08	N		- 1	-		10		_	-	0						0	- 0	-					Н
-	5	4		2		13				1		- 1	0		0	-	0		1	0 0		0	
-09	N	-		- 1	-	15		1							- 0	0		- 0		0		1 0	
	5	1 1		1	7	12		1 0	1	2	0		0		0	-	0	0		-			
9 + 10	N	2	1	- 0		16			_	1	0					0	- 0					0	
	5	12	0	2	21				_	0	0	-	0	0	0	_				0		0	
71	N.				23	_		_	175	- 5	0		0			0				0		0	
510.52	5	8	1	0						0		-	-		0	-	0	0	_	-		-	
1+12	N	12	- 1	0		1		_		2	100	- 0	0		0	0	- 0	-		0		0	
23.000	5	6	1	2	0	0				1	_		0 0	0	0		0	0	1	0 0		0	
2-13	N.	4	1	1		2	_		2		0		0	0		0	0					0	
190	5	5	1	0	- 4	5	2		0	1	0		0 0	0	0	_	0	0		0		0	
3 - 14	N	2	1		12	-	_	1	1	2			0 0	0	0	0	0			0 0		0	Œ
1972	5	4	1	0		4	- 4		1	0	0	0	0 0	0	0	0	0	0	- 1	0 0	6 11	0	
4-15	N	1	2	0	14		2	2	2	1	0	-	0 0	0		0	0	0	- 1	0		0	
	5	2	2	2	12	- 4	0		0	- 4	0	1	0	0	0	0	.0	0	- 0	0		0	
5-3E	N	. 3	2		6	9	5	1	2	2	D	- 1	0 0		0	0	0	0	- 1	0 0		0	
5-17	5	30	1	D	6	2	. 0		5	1	D		0 0			0	0	0		0		0	
9-37	N	1	1	0	2		0		1	D	D		0	0		0	0	. 0		0 0			
- 18	. 5	5	. 3	1	- 5	- 4	. 0		1	2	D	1	0 0	0	0	. 0		.0	- 1	0 0	9 01	0	
100	. N	1	- EA	. 2	1	6			2	2	D	3 4	0 0	d	. 0		0	0	- 1	0 0		0	-
5 - 19	5	0			1	6		1	0	1	D	3	0	0			0	0	1	0 0	- 1	0	
	N.	5	. 2	2	2	2	0	- 2	1	2	0	13	0	0	. 0		0	0		0 0		0	
2 - 20	5	15	1	1		- 4	1		1	0	.0	2 2	0 0	0	. 0	0	. 0	0	- 1	0 0	0.00	0	
- 400	N	2	. 2	0	- 2	5				2	0	- 0	0 0		0	0	.0	0		0 0	. (0	
-21	5	1		7	1	. 7	0		1	2	D	- 1	0 0	0	0	0	0	0	- 0	0 0		0	
-	N.	2	. 2	D	_	5	- 4	, ,		5	D		0	0		0	0	0		0	1	0	
- 22	- 5	2	1	0		0		-		1	0	- 4	0 0	0	0	_	0	0	- 0	0 0	- 1	-	_
100	N	3	1	0		0		1		- 1	-	= 0	0		0		0	0	- 1	0 0	- (0	
2-23	5	1	1	0		0			0	0	-	- 1	0 0	0	0	0	0	0	- 0	0 0		0	
033711	N	0		0		0				0	-		0	a	0	0	0	0	- 1	0 0		0	
3 - 24	5	D		0		0				- 0			0	0	0	_	. 0	0		0		0	_
	N	D		D						0			_		0		8			_	- 1		_
NL .	2	90	48	28	96	87	22	4	25	18	0	0.00	0	0	0		0			0		0	_

Anexo 28: Conteo de tráfico vehicular - viernes

Anexo 29: Conteo de tráfico vehicular - sábado

FORMATO DE CLASIFICACION VEHICULAR

TRAMO DE LA GARRETERA	CORDLLERA OCCIDENTAL
SENTIDO	JR PCIO PALLA PALLA - JR NEVADO CONQUES S N JR NEVADO CONQUES - JR PCIO PALLA PALLA
UBICACIÓN	AV CORDILLERA OCCIDENTA - DELICIAS - CHORRILLOS
TO PERADO	

	SENTI	AUTO	STATION	V	CAMIONETA				ius	/	CAMION	8	V			SEMITRAYLER	R		TRAYLER				1
HORA	00		WAGON	PICK UP	PANEL	Combi	MICRO	2.0	-1E	2.0	3.0	4.0	251	252	253	351	352	- 151	212	273	372	>=373	
AGRA. H				-	=					-4	83 P				111		4			****			101
00-01	5	D		0	0	0	0		0 0				0	0	0	0	0			0 0	0	0	- 0
00-01	N	0		0	0	0	0		0				0	0	0	0	0	0	- 1	0 0	1 0	a	
		D	. 0		0	0	0		0					0	0	0	. 0	- 0	11	0 0	0	0	- 31
11-02	N	0		D		0	0		0				0	0	0	0	. 0	0		0 0		0	
	5	0		0	0	0	0		0					0		0	0	0	7 31	0 0		0	
3-04	N.	n			0		0		0					0	0	0				n r		n	
and the same of	5	0	0	0	0		_		0		0		0	0	0		0	0	- 3	0 0	0	0	_
04 - 05	N.	2	- 0	0		-	_	-					0				. 0		3 15	0 0		0	_
	3		- 1	2	0		_		-	0	-			0	0		0	_	10	0 0		0	
05 - 06	N		-			0		-	_						0	_	- 0	-	_	0 0			
	5	- 4	10	-	- 0	0			-		_		0	0	0		-	-	_	0 0	1 0	0	_
70+30	N.		12			12			The last						0		1000	-		0 1		U	
	5	3	12	1	0					1	_		0	0	0	-	0			0 0	0	0	_
17 - 08	N		- 1	-	- 0	- 11		4	-	-					0							U	
		1	- 1	-	. 3	10								0	_		0	_	_	0 0	0	0	
38 - 09	5	- 4	- 5	2	- 2	13				1				_	0			-	-	0 0	0	0	
	N	- 6	1	2	4	15					_			-	0		0			0 0	0	0	
29 - 10	5	3	2	1	. 7	12	-		-					0	0	-	0		- 1	0 0	0	0	
10,5150	N	2	1	0	9	16			-	1				0	0	0	0	. 0		0 0	0	0	
10 - 11	5	12	. 0	2	21			- 0	2					0	0	0	0	- 0	2 1-1	0 0	0	0	_
78.00	N	5	. 2	3	. 23			= 1	0					0	0	0	. 0			0 0	0		
11+12	5		1	D	0	10	0		2					0		0	0	0	V - 1	0 0	0	0	
11.7.14	N.	12	. 3		6	1	3		1	. 2				ı a	0	0	0	0		0 0	0	ū	
12 - 13	5	6	1	. 2		0	2	24	1	- 1			0	0		0	0	0	5 131	0 0		0	133
12 - 13	N.	. 4	1		5	. 2		1 3	2		. 0		. 0	0	0	0	0	0	9.3	0 0	1	0	
20000	5	5	1		- 4	3	2		0	1			0	0		0	0	0	9 19	0 0	0		
13 - 14	N.	2	1	0	12	. 6	5	- 0	1	. 2					a	0	0	0		0 0		a	
	5	4	- 3	0	2	- 4	- 4		1	. 0				0	0	0	0	0	1.0	0 0	0	0	1
14 - 15	N	1	- 2	. 2	14		2		2	1			0	0	0	0	0			0 0		0	
S01527	5	2	1	2	12		0		0	- 4			0	0	0	0	0			0 0	0	g.	_
15 - 16	N		- 7			0	- 5			- 1				0	0	0	0		1 0	0 0		0	
100	5	30		0		2	0			1			0	0	0	0	0	0		0 0		0	
16 - 17	N		-		-	-	0			-					0	_	0	- 0		0 0			
	5	5	-	1			0			2			0	0	0			0		0 0	1 0	0	_
17 + 18	N		-	-	- :	-	0			- 1			0		0		. 0	-		0 0		0	_
		0	-	0	-	- 0	2			5			_	_	0				_	0 0	1 0	0	
15 - 19	5					- 3				- 3				0	_		-						_
	N		- 2	- 2	2	2	0		-	1				0	0	-	. 0	-		0 0		0	
19 - 20	5	15	1	1	3	- 4										_	. 0		_	0 0		0	_
	N.	2	2		- 2	5	2	_	-					-	0		0	-	_	0 0	0	0	
20 - 21	- 5	2	- 3	0	1	7	_	_		- 2	-			0	0	-	0		-	0 0	0	0	_
	N.	. 2	2	. 0	- 3	- 4	-						. 0	0	0		0			0 0		0	_
21 - 22	- 5	2		0	1					- 1				0	0		0	0	111	0 0		0	_
	N.	3	1	. 0	. 2	0		1		- 1				0	0	_	0		_	0 0		0	
22 - 23	- 5	1	- 1	. 0	1		0		0					0	0	0	0	0		0 0	0	0	
	N	. 0			1		0	1	. 0					0	0	0	0	. 0	3 24	0 0	0	0	
23 - 24	5	0			0	0	0		0					0	0	0	0	.0	- 21	0 0	0	0	
- 24	N	D	- 1	. 0	0	0	0		0		0		0	0	0	0	0	0		0 0	0	0	
TAL	5	91	52	21	73	84	24	(3	27	22		0	0	0	0	0	0	. 0		0 0	0	0	- 4
TAL	Dist.	60												0						0 0		0	_

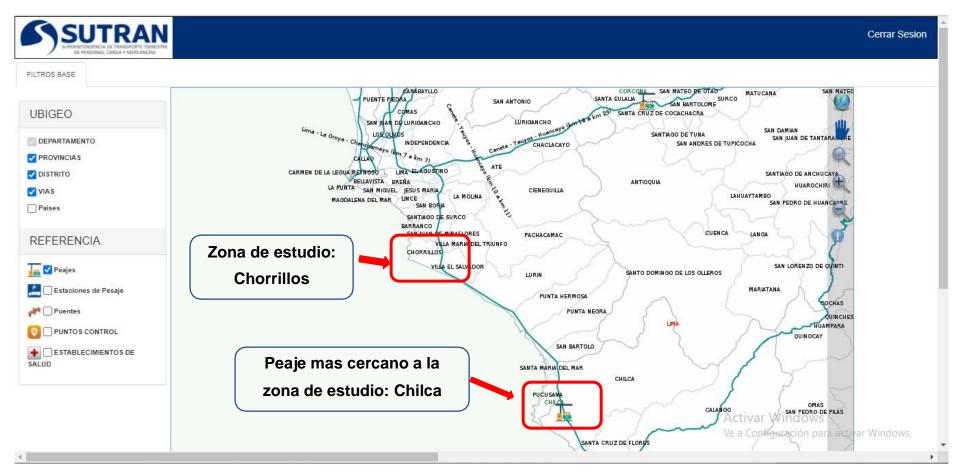
Anexo 30: Conteo de tráfico vehicular - domingo

FORMATO DE CLASIFICACION VEHICULAR

TRAMO DE LA CARRETERA	CORDILLERA OCCIDENTAL
SENTIDO	JR PCIO PALLA PALLA - JR NEVADO CONQUIS S N JR NEVADO CONQUIS - JR PCIO PALLA PALLA
UBICACIÓN	AV COMPELERA OCCIDENTA - DELICIAS - CHOMPELLOS

	SENTI	AUTO	STATION	L	CAMIONETA				us	/	CAMION	8				SEMITRAYLE	IR .		TRAYLER				1
DRA.	00	A Colorest Color	WAGON	PICK UP	PANEL	Combi	MICRO	28	-1E	2.0	3.6	4.6	251	252	253	351	352	>= 161	2T2	273	3T2	>=3T3	1
GRA.				-	-	-		NIT.	5	-4	8 A				111		- n4	*** B		****			١,
an .	5	0		0	0				0		0		0	o	0	0	0	0		0		0	
un	N	0	. 0	0		0	0		0		0		0		0	d	. 0	-0		0		0	
02.	5	0	. 0	0	0	0	0	- 0	0				0	0	0	0	0	-0	. 0		0	0	
(C)	N	0	. 0	0					_			_	0	. 0	0	_		0					-
4	5	0	- 0				0		0			- 1						0				0	4
	N	0	_	0	0	- 0					_		0	-	0			0	0	0	0		-
25	S N	0	0	0	0		_				-		-	_	0		-		D	D	0	0	•
-	3	5		0	0	5			-	0	-	- 1	0		0	_		0		0	0	0	
36	N.	0				3	_	•	-		-				0								-
15-1		- 4	2	-	0	0					_	-	0	0	0	_		0		0	0	0	-
11	N		12	1	0	12			1	1			n		0	_			n	0		0	-
333	5	12		8	9	13			-	- 7	-	-	0	0	_			. 0	0	0	0	0	t
08	N	2	- 1	4	. 5	10			1	0	0		0	0		_	-	0	0	0	0	0	t
	- 5	4		2	2	11		-	1	1	. 0		0	0	0			0	. 0	0	0	0	t
29	N	8	1	. 2	- 4	15	1		2				. 0	0	0	0	0	0	0		0	0	Т
10	- 5	3	2	1	7	. 2	- 4		1	. 2	. 0		0		0	0	0	0	0			0	ī
-	N	2	1	0	- 9	16	- 5		0	1			0	. 0	.0	0	0	. 0		0	. 0	0	
11	5	12	. 0	2	21	3	2	- 0	2	- 1			0	0		0	. 0	-0		0	0	0	I
	N	5	2		. 21			- 1	. 0	. 2				0			. 0	. 0					
12	5			0	0	- 10			1					0		0	. 0	. 0			0	0	1
-	N.	12		0	-	1				. 2	_	_	-	-	- 0			. 0		. 0	0		-
13	- 5	6		2				-		1	-							. 0	. 0	D			•
_	N:	4		3	5	2			-		_	- 1	-	-		_		. 0		0	0	0	-
14	- 5	5	- 1												_	_	-	-	0	0	- 0		•
-	N S	- 2	1	0						2	_		0		0				0		- 0	0	-
15	N	1		0	14			-		1			n	-	0					0			-
	5	2	-	2	12				-	- 4	_		-		0				0	0	0	0	-
16	N	1	- 7	1		9		-	-	- 1		100							n	0	0	0	-
	- 5	30	1	0	- 6	2			_	1	_	_	0	_	0	_		0	0	0	0	0	-
17	N	1	- 1	0	2		-			. 0		- 1	0	0	-0	0	0	0		0	0	0	t
a	- 5	5	1	1	5	. 4	0		1	. 2	. 0		0	a	0	0	0	0	0	0		0	T
a	N	1	- 4	2	1		0		2		0		0	. 0		ú	0	. 0	0	. 0	. 0	0	T
19	5	D	6	0	1	- 6	13	- 31		- 1		- 0	0	0	0	0	. 0	-0			0	0	
	N	5	. 2	2	2	2		1	1	. 2		- 1			0	. 0	. 0	0					
20	5	15	1	1	. 3	- 4	1	- 0	1			- 1				0	0	0	D			0	1
	N.	2				5				2	_	_	-	_	0				0	0	0	0	-
21	5	2	- 3	0		7	_	_	-	2							-	0	0				•
	N	. 2	2	0	_	- 4			_			- 1	0	- 4	0			0		0		0	-
22	- 5	2	1	0				-							_				0			0	-
-	N	3	1	0		0			_	3	_		-	-	0	_				0	0	0	-
23	- 5	0		0		0		-							0				0		- 0	0	-
80	N S	0	_	0		0			-		_	-	_	_	0			0		-		0	-
24	N.	0		0				_	_	-			-		_				D	_	0		
	5	101		_	_					19				_	0				0		_		
		63								20					-				0				_

Anexo 31: Resumen del Conteo de tráfico vehicular – lunes a domingo



FORMATO DE CLASIFICACION VEHICULAR ESTUDIO DE TRAFICO

RAMO DE L	A CARRETER	A.		CORDILLE	RA OCCIDE	NTAL			0					10 10	ESTACION	U.					CHILCA		
ENTIDO				JR PCIO PA	ALLA PALLA	- JR NEVAC	•	8	N -	JR NEVAD	CONQUIS	- JR POIO PAI	LAPALLA		CODIDO DE	LAESTAC	ION				E-1		
EPARTAME	ENTO													8 8	DIA Y FECH	IA.			- 1	7	BETIEMBRE	2021	
ROVINCIA	2000													N 1	DISTRITO	V. C.						DECKAS	
				•											РЕПОООО								
					CAMIONETA	s			sus		CAMION					EMI TRAYLE	R		TRAYLER				Ĺ
	NA.		WAGON	PICK UP	PANEL	RURAL	MICRO	2.6	>=3 E	2.6	3 E	46	261	252	253	381	382	>=353	212	213	3T2	>=3T3	
				-	4	Atten		rii iye	(I)	- 4	- A						, ,,	111 € 4		n + 1 - F		4	TO
LUNES	8	88	47	27	70	88	19	7	30	21	0	0	0	0	0	0	0	0	0	0	0	0	
100000000000000000000000000000000000000	N	58	48	23	97	112	38	22	22	20	0	0	0	0	0	0	0	0	0	0	0	0	
1/09/2021	TOTAL	146	95	50	167	200	57	29	52	41	0	0	0	0	0	0	0	0	0	0	0	0	
MARTES	8	88	49	26	66	86	21	10	29	20	0	0	0	0	0	0	0	0	0	0	0	0	
	.N	58	48	23	97	112	38	22	22	20	0	0	0	0	0	.0	0	0	0	0	0	0	
2/09/2021	TOTAL	146	97	49	163	198	59	32	51	40	0	0	0	0	0	0	0	0	0	0	0	0	
ÉRCOLES	8	92	43	27	70	83	28	7	30	19	0	0	0	0	0	0	0	0	0	0	0	0	
	N.	58	48	23	97	112	38	22	22	20	0	0	0	0	0	. 0	0	0	0	0	.0	0	
3/09/2021	TOTAL	150	91	50	167	195	66	29	52	39	0	0	0	0	0	.0	0	0	0	0	0	0	
JUEVES	8	90	48	28	66	87	22	4	25	18	0	0	0	0	8	0	0	0	0	0	0	0	
	N.	58	48	23	96	113	42	28	28	25	0	0	0	0	0	0	0	0	0	0	0	0.	8
4/09/2021	TOTAL	148	96	51	162	200	64	32	53	43	0	0	0	0	0	0	0	0	0	0	0	0	
VIERNES	8	91	48	21	66	85	23	4	21	20	0	0	0	0	0	0	0	0	0	0	0	0	
	N	65	51	25	94	112	38	25	20	20	0	0	0	0	0	0	0	0	0	0	0	0	8
5/09/2021	TOTAL	156	99	46	160	197	61	29	41	40	0	0	0	0	0	0	0	0	0	0	0	0	
SÁBADO	8	91	52	21	73	84	24	7	27	22	0	0	0	0	0	0	0	0	0	0	0	0	
	N	60	48	25	97	112	38	22	22	20	0	0	0	0	0	0	0	0	0	0	0	0	1
8/09/2021	TOTAL	151	100	46	170	195	62	29	49	42	0	0	0	0	0	0	0	0	0	0	0	0	
OOMNGO	8	101	44	26	75	91	44	9	21	19	0	0	0	0	0	0	0	0	0	0	0	0	
CHEMO	N	63	48	23	97	112	37	27	18	20	0	0	0	0	8	0	0	0	0	0	0	0	3
7/09/2021	TOTAL	164	92	49	172	203	81	36	39	39	0	0	0	0	0	0	0	0	0	0	0	0	
TOTAL	200000	1061	670	341	1161	1389	450	216	337	284	0	0	0	0	0	0		0	0	0			5

Anexo 32: Estación de peaje más cercano a la zona de estudio (Chilca)

Anexo 33: Factores de corrección de vehículos ligeros por unidad de peaje - Promedio (2010-2016)

		ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SETIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE	Total
N°	Peaje	Ligeros	Ligeros	Ligeros	Ligeros	Ligeros								
		FC	FC	FC	FC	FC								
1	AGUAS CALIENTES	0.9394	0.8663	1.1161	1.0973	1.1684	1.1945	0.9458	0.8773	0.9386	1.0294	1.0292	0.9845	1.0000
2	AGUAS CLARAS	1.0204	1.0668	1.1013	1.0449	0.9979	0.9863	0.8917	0.9168	1.0069	1.0155	1.0712	0.8127	1.0000
3	AMBO	0.7822	0.8431	0.8697	0.7549	0.7755	0.7823	0.7479	0.9820	1.0329	0.9842	0.9966	0.8835	1.0000
4	ATICO	0.8849	0.7376	1.0576	1.0168	1.1538	1.1764	0.9711	0.9893	1.0821	1.0845	1.1559	0.9021	1.0000
5	AYAVIRI	0.9913	0.9287	1.0870	1.0730	1.1003	1.0878	0.9449	0.9108	0.9242	1.0455	1.0348	0.9733	1.0000
6	CAMANA	0.5935	0.4934	1.0509	1.2563	1.3886	1.3961	1.2549	1.2278	1.3076	1.2658	1.2303	0.8494	1.0000
7	CANCAS	0.8722	0.8703	1.0694	1.1121	1.1631	1.2130	0.9722	0.9150	1.0516	1.0161	1.0259	0.8914	1.0000
8	CARACOTO	1.0576	0.9886	1.0999	1.0550	1.0578	1.0471	0.9900	0.8677	0.9953	0.9895	1.0077	0.7648	1.0000
9	CASARACRA	1.1441	1.1924	1.2529	0.9991	0.9240	1.0245	0.8401	0.8801	1.0508	0.9739	1.1465	0.8656	1.0000
10	CATAC	1.0992	1.0589	1.3534	1.0405	1.0772	1.0762	0.8316	0.8717	0.9632	0.9514	1.1169	0.9747	1.0000
11	CCASACANCHA	1.0321	1.0692	1.1050	1.0611	1.0719	1.0565	0.9517	0.9133	0.8930	0.9959	0.9734	0.7789	1.0000
12	CHACAPAMPA	1.0342	0.9781	0.9986	1.0653	1.0693	1.2488	1.0419	0.9217	0.9818	0.9211	1.0968	0.9676	1.0000
13	CHALHUAPUQUIO	1.1804	1.2304	1.2157	1.0487	1.0103	1.0467	0.7867	0.8314	1.0145	0.9547	1.0196	0.9379	1.0000
14	CHICAMA	0.9891	0.9536	1.0369	1.0347	1.0520	1.0477	0.9368	0.9915	1.0553	1.0166	1.0421	0.7493	1.0000
15	CHILCA	0.6041	0.5736	0.7824	1.0624	1.5470	1.6110	1.3032	1.4238	1.5046	1.2451	1.1887	0.6261	1.0000
16	CHULLQUI	1.0428	1.0728	1.0509	1.0163	1.0500	0.9407	0.9832	0.9316	0.9915	0.9207	1.2832	0.8829	1.0000
17	CHULUCANAS	1.0210	1.0629	1.1565	1.1355	1.0650	1.0374	0.9771	0.9150	0.9843	0.9479	0.9145	0.7502	1.0000
18	CIUDAD DE DIOS	0.9338	0.9146	1.1930	1.0736	1.0024	1.0271	0.9071	0.9185	1.0902	0.8660	1.0664	0.6549	1.0000
19	CORCONA	1.1416	1.1681	1.2623	1.0206	0.9748	1.0336	0.7786	0.8795	1.0065	0.9892	1.1933	0.8888	1.0000
20	CRUCE BAYOVAR	0.9033	0.8846	1.0933	1.0974	1.1592	1.1950	0.8640	0.9864	1.1644	0.9986	1.0861	0.6673	1.0000
21	CUCULI	0.9988	1.0350	1.1242	1.1174	1.1070	0.9545	0.9574	0.9186	0.9449	0.9671	0.9672	1.0218	1.0000
22	DESVIO OLMOS	0.9736	1.0105	1.1312	1.1600	1.1451	1.0896	0.9427	0.8716	0.9919	0.9562	1.0093	0.7176	1.0000

Anexo 34: Factores de corrección de vehículos pesados por unidad de peaje - Promedio (2010-2016)

		Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Setiembre	Octubre	Noviembre	Diciembre	Total
Código	Peaje	Pesados	Pesados	Pesados	Pesados	Pesados								
		FC	FC	FC	FC	FC								
1	AGUAS CALIENTES	1.0234	0.9771	1.0540	1.0631	1.0703	1.1254	0.9831	0.9574	0.9655	0.9434	0.9429	0.9922	1.0000
2	AGUAS CLARAS	1.0497	1.0164	0.9941	1.0038	0.9878	0.9823	0.9940	0.9597	0.9819	1.0086	1.0042	0.8920	1.0000
3	AMBO	0.7967	0.7869	0.8193	0.7762	0.7945	0.7905	0.7890	1.0495	1.0086	0.9572	0.9482	0.9447	1.0000
4	ATICO	1.0402	0.9961	1.0326	1.0478	1.0392	1.0365	1.0288	0.9862	0.9828	0.9573	0.9313	0.9458	1.0000
5	AYAVIRI	1.0377	1.0057	1.0835	1.0533	1.0511	1.0319	0.9884	0.9505	0.9335	0.9456	0.9485	0.9933	1.0000
6	CAMANA	0.9370	0.8802	1.0410	1.0753	1.0804	1.0953	1.0782	1.0099	1.0099	0.9947	0.9786	0.8325	1.0000
7	CANCAS	1.0490	0.9888	1.0151	1.0452	1.0584	1.0381	1.0041	0.9824	1.0019	0.9551	0.9433	0.9563	1.0000
8	CARACOTO	1.0489	1.0165	1.0879	1.0415	1.0743	1.0541	0.9982	0.9041	0.9575	0.9453	0.9765	0.8133	1.0000
9	CASARACRA	1.1123	1.0819	1.1121	0.9769	0.9865	0.9782	0.9872	0.9697	0.9731	0.9521	1.0674	0.9416	1.0000
10	CATAC	1.0538	1.0807	1.1606	1.0756	1.0119	0.9642	0.9591	0.9372	0.9719	0.9644	0.9958	0.9684	1.0000
11	CCASACANCHA	1.0985	1.0820	1.0974	1.0774	1.0216	0.9848	0.9688	0.9568	0.9552	0.9509	0.9198	0.7875	1.0000
12	CHACAPAMPA	1.1253	0.9872	0.9856	1.0061	1.0477	1.0441	1.0496	0.9939	0.9340	0.9269	0.9523	1.0257	1.0000
13	CHALHUAPUQUIO	1.0741	1.0868	1.0814	1.0640	1.0533	0.9822	0.9411	0.9321	0.9569	0.9455	0.9498	0.9948	1.0000
14	CHICAMA	0.9742	0.9585	1.0327	1.0799	1.0586	1.0428	1.0427	0.9889	0.9895	0.9814	0.9459	0.7964	1.0000
15	CHILCA	0.9471	0.9731	1.0202	1.0429	1.0652	1.0551	1.0341	0.9979	0.9991	0.9830	0.9674	0.8073	1.0000
16	CHULLQUI	0.9571	0.9658	1.0534	1.0776	1.0809	1.0402	1.0171	0.9865	0.9731	0.9169	1.2400	0.9257	1.0000
17	CHULUCANAS	1.0042	0.9705	1.1344	1.1580	1.0939	1.0464	1.0225	0.9536	0.9603	0.9195	0.8980	0.7996	1.0000
18	CIUDAD DE DIOS	0.9412	0.9568	1.1245	1.0109	0.9763	1.0522	1.0638	1.0509	1.0687	0.8375	0.8101	0.6639	1.0000
19	CORCONA	1.1221	1.0894	1.1031	0.9536	0.9648	0.9756	0.9759	0.9653	0.9769	0.9739	1.0900	0.9561	1.0000
20	CRUCE BAYOVAR	0.9925	0.9617	1.0163	1.0654	1.0473	1.0635	1.0368	0.9979	1.0155	0.9779	0.9314	0.7892	1.0000
21	CUCULI	0.9544	1.0489	1.1882	1.1610	1.0781	0.9789	0.9835	0.9222	0.9034	0.9413	0.9400	1.0895	1.0000
22	DESVIO OLMOS	1.0670	1.0554	1.0607	1.0567	1.0520	1.0192	0.9857	0.9187	0.9394	0.9597	0.9510	0.8440	1.0000

Anexo 35: Tasa de crecimiento de vehículos ligeros y pesados

Tasa de Crecimien Vehículos Liger	
	TC
Amazonas	0.62%
Ancash	0.59%
Apurímac	0.59%
Arequipa	1.07%
Ayacucho	1.18%
Cajamarca	0.57%
Callao	1.56%
Cusco	0.75%
Huancavelica	0.83%
Huánuco	0.91%
Ica	1.15%
Junín	0.77%
La Libertad	1.26%
Lambayeque.	0.97%
Lima Provincia	1.45%
Lima	1.45%
Loreto	1.30%
Madre de Dios	2.58%
Moquegua	1.08%
Pasco	0.84%
Piura.	0.87%
Puno.	0.92%
San Martín	1.49%
Tacna	1.50%
Tumbes	1.58%
Ucayali	1.51%

Tasa de Crecimien	
Vehículos Pesac	
	PBI
Amazonas	3.42%
Ancash	1.05%
Apurímac	6.65%
Arequipa	3.37%
Ayacucho	3.60%
Cajamarca	1.29%
Cusco	4.43%
Huancavelica.	2.33%
Huánuco	3.85%
Ica	3.54%
Junín	3.90%
La Libertad	2.83%
Lambayeque	3.45%
Callao	3.41%
Lima Provincia	3.07%
Lima	3.69%
Loreto	1.29%
Madre de Dios	1.98%
Moquegua	0.27%
Pasco	0.36%
Piura	3.23%
Puno	3.21%
San Martín	3.84%
Tacna	2.88%
Tumbes	2.60%
Ucayali	2.77%

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, PINTO BARRANTES RAUL ANTONIO, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - LIMA NORTE, asesor de Tesis titulada: "ESTUDIO COMPARATIVO PARA ESTABILIZAR LA SUBRASANTE CON CENIZAS DE RESIDUOS ORGÁNICOS Y ADITIVO QUÍMICO, AV. CORDILLERA OCCIDENTAL – CHORRILLOS – LIMA, 2021", cuyos autores son DOMINGUEZ CARRASCO CAMPAÑOLLY IVAN, BARTOLO MEDINA FRANK KEVIN, constato que la investigación cumple con el índice de 28.00% de similitud establecido, y verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

LIMA, 20 de Diciembre del 2021

Apellidos y Nombres del Asesor:	Firma
PINTO BARRANTES RAUL ANTONIO	Firmado digitalmente por:
DNI : 07732471	RPINTOBA el 21-12-2021
ORCID 0000-0002-9573-0182	00:35:42

Código documento Trilce: TRI - 0237982

