

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, distrito y provincia de Virú, 2021.

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

AUTORES:

Albinco Ruiz, Yeymi Tatiana (ORCID: 0000-0003-2506-0942) Gonzales Oribe, Luis Alfonso (ORCID: 0000-0002-5737-3233)

ASESORES:

Mg. Horna Araujo, Luis Alberto (ORCID: 0000-0002-3674-9617)

Mg. Villar Quiroz, Josualdo Carlos (ORCID: 0000-0003-3392-9580)

LÍNEA DE INVESTIGACIÓN

Diseño de Infraestructura Vial

TRUJILLO - PERÚ 2021

Dedicatoria

A mi familia, quienes nos enseñaron que el mejor conocimiento que se puede tener es el que se aprende por sí mismo; por su amor, lucha constante y sacrificio.

A todas y cada una de las personas que formaron parte de este largo camino, por su amistad y apoyo.

Gonzáles Oribe, Luis Alfonso

A Dios, por ser mi guía constante y no dejarme flaquear en momentos difíciles.

A mi familia, porque siempre estuvieron para mí, dándome su apoyo moral, por su amor y comprensión.

Albinco Ruiz, Yeymi Tatiana

Agradecimiento

A Dios, por tantas bendiciones en mi vida y por acompañarme en este largo camino.

A nuestra Universidad, nuestra casa de estudios, por la confianza depositada en cada uno de sus alumnos para llevar a cabo uno de nuestros objetivos que es lograr la realización profesional.

Gonzáles Oribe, Luis Alfonso

A nuestros asesores, por el tiempo y los conocimientos brindados para poder realizar nuestra tesis de la mejor manera.

A mi familiar, mi principal motivación, por impulsarme a ser mejor cada día.

Albinco Ruiz, Yeymi Tatiana

Índice de Contenidos

Dedicatoria	ii
Agradecimiento	iii
Índice de Contenidos	iv
Índice de Tablas	vi
Índice de figuras	ix
Índice de Ecuaciones	xi
Resumen	xii
Abstract	xiii
I. INTRODUCCIÓN	1
1.1. Realidad Problemática	1
1.2. Planteamiento del problema	7
1.3. Justificación	7
1.4. Objetivos	9
1.5. Hipótesis	10
II. MARCO TEÓRICO	11
2.1 Antecedentes	11
2.2 Bases teóricas	21
III. METODOLOGÍA	30
3.1 Enfoque, tipo y diseño de investigación	30
3.2 Variables y operacionalización	31
3.3 Población, muestra y muestreo	33
3.4 Técnicas e instrumentos de recolección de datos, validez y confi	abilidad. 33
3.5 Procedimientos	36
3.6 Método de análisis de datos	40

3.7	' Aspectos éticos	40
3.8	B Desarrollo del proyecto de investigación	41
IV.	RESULTADOS	95
4.1	Levantamiento topográfico	95
4.2	2 Estudio de tráfico	98
4.3	B Estudio de mecánica de suelos	99
4.4	Mejoramiento	109
4.5	5 Diseño de Pavimento Rígido	110
4.6	S Diseño Geométrico	111
V.	DISCUSIÓN	112
VI. C	ONCLUSIONES	119
VII. F	RECOMENDACIONES	121
REFI	ERENCIAS	122
ANE	XOS	127

Índice de Tablas

Tabla 1.	Valores de bombeo de la calzada	25
Tabla 2.	Valores de radio donde se puede prescindir de peralte	25
Tabla 3.	Valores de peralte máximo	26
Tabla 4.	Peralte mínimo	26
Tabla 5.	Valores de bombeo2	26
Tabla 6.	Instrumentos y validaciones	34
Tabla 7.	Resumen del tráfico ligero	49
Tabla 8.	Resumen del tráfico pesado	49
Tabla 9.	Tasas anuales de crecimiento	50
Tabla 10.	Factor direccional y factor carril	50
Tabla 11.	Numero de ensayos Mr y CBR	51
Tabla 12.	Determinación del número de calicatas	52
Tabla 13.	Resumen de los sondajes realizados	52
Tabla 14.	Detalles de las muestras	53
Tabla 15.	Contenido de humedad	53
Tabla 16.	Determinación de la densidad	53
Tabla 17.	Valor del CBR para el diseño del pavimento	53
Tabla 18.	Categorías de subrasante	54
Tabla 19.	Capacidad de soporte de la sub rasante	54
Tabla 20.	Ensayo Granulométrico por Tamizado	56
Tabla 21.	Contenido de Humedad evaporable en los suelos	57
Tabla 22.	Proctor Ensayo de compactación	58
Tabla 23.	Proctor	62
Tabla 24.	Determinación del límite plástico	62
Tabla 25.	Ensayo de Proctor	64
Tabla 26.	Resultado	67
Tabla 27.	Determinación de los límites de consistencia	68
Tabla 28.	Resumen de límites de índice de plasticidad	69

Tabla 29. Ensayo de Proctor	70
Tabla 30. Resultado final	73
Tabla 31. Límites de Consistencia	74
Tabla 32. Límites de Consistencia de Suelos	74
Tabla 33. Ensayo de Proctor	75
Tabla 34. Resumen de límites	76
Tabla 35. Proctor	78
Tabla 36. Límites de consistencia	79
Tabla 37. Límites de Consistencia de Suelos	80
Tabla 38. Ensayo de Proctor	81
Tabla 39. Proctor	84
Tabla 40. Tipo de tráfico de diseño	85
Tabla 41. Valor de Confiabilidad	86
Tabla 42. Valor de Desviación Estándar Normal	86
Tabla 43. Valores de resistencia del concreto	87
Tabla 44. valores de coeficientes de transferencias de cargas	88
Tabla 45. Rangos de Velocidad de Diseño en Función a la Clasificación por Demanda y Orografia.	91
Tabla 46. Valores de Peralte Máximo	91
Tabla 47. Distancia de visibilidad de parada (metros) en pendiente 0%	92
Tabla 48. Valores de Bombeo de la Calzada	92
Tabla 49. Valores referenciales para taludes en corte	93
Tabla 50. Valores referenciales en zonas de relleno	94
Tabla 51. Ancho de bermas	94
Tabla 52. Coordenadas UTM Huancaquito Alto y la Panamericana	95
Tabla 53. Resumen de la nivelación	96
Tabla 54. Coordenadas de los puntos de foto control	97
Tabla 55. índice medio diario anual	98
Tabla 56. Prueba de Granulometría	99
Tabla 57. Granulometria de la C-2 – M-1	100

Tabla 58. Granulometria de la C-3 – M-1	101
Tabla 59. Granulometria de la C-4 – M-1	102
Tabla 60. Granulometria de la C-5 – M-1	103
Tabla 61. Límites de consistencia e índices de plasticidad	104
Tabla 62. Contenido de contenido de humedad	105
Tabla 63. Ensayo de proctor modificado	106
Tabla 64. Clasificación según los métodos AASHTO Y SUCS	107
Tabla 65. Porcentaje de CBR de la subrasante	108
Tabla 66. Resumen de los ensayos con distintos porcentajes de Cal	109
Tabla 67. Espesores de capas del pavimento rígido	110
Tabla 68. Tabla de resumen del diseño geométrico	111

Índice de figuras

Figura 1. D	iagrama del diseño de investigación	.31
Figura 2. P	unto de foto control N° 2 y N°4	.41
Figura 3. T	oma de datos con GPS	.42
Figura 4. T	oma de datos para la poligonal con estación total	.43
Figura 5. ⊤	oma de datos con nivel	.43
Figura 6. R	egistro fotográfico con drone	.44
Figura 7. P	unto geodésico certificado	.44
Figura 8. P	rocesamiento de imágenes con Agisoft	.45
Figura 9. U	bicación de los puntos de fotocontrol	.45
Figura 10.	Limpieza y tratamiento de la nube de puntos con Autodesk Recap	.46
Figura 11.	Limpieza y tratamiento de la nube de puntos con Autodesk Recap	.46
Figura 12.	Generación de la superficie del terreno con Civil 3D	.47
	Curva Granulométrica por Tamizado	
Figura 14.	Optimo contenido de Humedad	.59
Figura 15.	Gráfico penetración CBR EC-55 golpes	.60
Figura 16.	Gráfico penetración CBR EC-26 golpes	.60
	Gráfico penetración CBR EC-12 golpes	
Figura 18.	Grafico del CBR	.61
Figura 19.	Número de golpes vs contenido de humedad	.63
Figura 20.	Curva de Contenido de Humedad	.65
Figura 21.	Gráfico Penetración CBR a 55 golpes	.65
Figura 22.	Gráfico Penetración CBR a 26 golpes	.66
Figura 23.	Gráfico penetración CBR a 12 golpes	.66
Figura 24.	Gráfico final de CBR	.67
Figura 25.	Número de Golpes vs Contenido de Humedad	.69
Figura 26.	Curva de Contenido de Humedad	.71
Figura 27.	Gráfico Penetración CBR a 55 golpes	.71
Figura 28.	Gráfico Penetración CBR a 26 golpes	.72

Figura 29.	Gráfico Penetración CBR a 12 golpes	.72
Figura 30.	Gráfico del CBR	.73
Figura 31.	Número de Golpes vs Contenido de Humedad	.75
Figura 32.	Curva de Contenido de Humedad	.76
Figura 33.	Gráfico de penetración CBR a 55 golpes	.77
Figura 34.	Gráfico de penetración CBR a 26 golpes	.77
Figura 35.	Gráfico de penetración CBR a 12 golpes	.78
Figura 36.	Grafico del CBR	.79
Figura 37.	: Número de Golpes vs Contenido de Humedad	.80
Figura 38.	: Curva de Contenido de Humedad	.82
Figura 39.	Gráfico de penetración CBR a 55 golpes	.82
Figura 40.	Gráfico de penetración CBR a 26 golpes	.83
Figura 41.	Gráfico de penetración CBR a 12 golpes	.83
Figura 42.	Gráfico del CBR	.84
Figura 43.	Carreteras de tercera clase	.89
Figura 44.	Terreno Plano	.90
Figura 45.	Vehículo de diseño	.90
Figura 46.	Sección Transversal Tipica	.93
Figura 47.	Espesores de capas del pavimento rígido1	10

Índice de Ecuaciones

Ecuación 1.	Cálculo de peralte	26
Ecuación 2.	Índice Medio Diario Semanal	48
Ecuación 3.	Índice Medio Diario Anual	48
Ecuación 4.	Cálculo de ESAL	51
Ecuación 5.	Coeficiente de reacción combinado	86
Ecuación 6.	Módulo de rotura	87
Ecuación 7.	Módulo elástico del concreto	88
Ecuación 8.	Espesor de pavimentos de concreto	89

Resumen

La presente investigación tuvo lugar en la carretera que une el distrito de

Huancaquito alto con la carretera Panamericana en la provincia de Virú, teniendo como objetivo general realizar un mejoramiento y diseño de infraestructura vial para

la carretera que une Huancaquito alto y la Panamericana. Se hizo uso de una

metodología no experimental descriptiva, teniendo como población a los cinco

kilómetros longitudinales de la carretera que une el distrito de Huancaquito Alto y

la carretera Panamericana Norte. Se utilizaron técnicas como la observación y el

análisis documental, para las cuales se hizo uso de instrumentos de recolección de

datos como guías de observación y fichas de recolección de datos. El problema se

establece en la inexistencia de una infraestructura vial adecuada para la buena

transitabilidad de los pobladores del lugar, retrasando el desarrollo de la localidad.

Se realizó estudios de suelos de la subrasante obteniendo un CBR igual a 9% y un

mejoramiento del material a usarse en la sub base obteniendo un CBR igual a

41.1%. Se logró hacer el mejoramiento y diseñar la infraestructura vial con un

pavimento rígido siguiendo los procedimientos establecidos por el método AASHTO

93 y los manuales de diseño del ministerio de transportes.

Palabras Clave: Mejoramiento, Infraestructura Vial, resistencia, tráfico

Χij

Abstract

The present investigation took place on the highway that connects the district of

Huancaquito Alto with the Panamericana highway in the province of Virú, with the

general objective of carrying out an improvement and design of the road

infrastructure for the highway that connects Huancaquito Alto and the

Panamericana. A non-experimental descriptive methodology was used, having as

a population the five longitudinal kilometers of the highway that connects the district

of Huancaquito Alto and the North Panamericana highway. Techniques such as

observation and documentary analysis were used, for which data collection

instruments such as observation guides and data collection sheets were used. The

problem is established in the non-existence of an adequate road infrastructure for

the good walkability of the inhabitants of the place, delaying the development of the

town. Soil studies of the subgrade were carried out obtaining a CBR equal to 9%

and an improvement of the material to be used in the subbase obtaining a CBR

equal to 41.1%. It was possible to make the improvement and design the road

infrastructure with a rigid pavement following the procedures established by the

AASHTO 93 method and the design manuals of the Ministry of Transportation.

Keywords: Improvement, Road Infrastructure, resistance, traffic

Xiii

I. INTRODUCCIÓN

1.1. Realidad Problemática

La infraestructura vial a nivel mundial es uno de los grandes motores del crecimiento económico y social, brinda desarrollo a todos los países ya que sirve para trasladar a personas y productos, permitiendo así el desarrollo y mejoramiento de las prioridades de la población como la educación, trabajo, alimentación y salud, internacionalmente los países subdesarrollados que se encuentran en América Latina tienen escasez de infraestructura vial siendo una de las causas el poco presupuesto asignados por los gobiernos, de esa manera dificulta que los pueblos y regiones puedan conectarse. Por ello requiere considerar los presupuestos adecuados como también las especificaciones técnicas de las diferentes normas vigentes, con la finalidad de poder brindar un excelente servicio y de esa manera evitar pérdidas humanas como pérdidas económicas. (Fustamante, 2020)

Las vías con las que cuenta Guatemala están en desarrollo, muchas zonas del país carecen de pavimentos, por ello las municipalidades realizan diagnósticos de necesidades para dar soluciones mediante proyectos de diseño de infraestructura vial, se realizaron mediante estudios técnicos donde se proponen soluciones, se determinó mediante los ensayos de laboratorio, estudios técnicos, presupuestos y planos todo en base a las normas establecidas, de esta manera poder desarrollar adecuadamente la infraestructura vial. (Castellanos Pineda, 2020).

En el Salvador en las zonas que se encuentran a su alrededor la infraestructura vial son de gran importancia para el desarrollo del país, pero las vías presentan deterioros, por ello es la preocupación del gobierno. Por ese motivo se requiere de proyectos de diseño de infraestructura vial de acuerdo a los requerimientos de seguridad, capacidad y estética. Pero el problema que se presenta en la

construcción son los suelos expansivos, por lo que el volumen va incrementando pero de manera no uniforme, sino al contrario se produce incrementos en las zonas y cuando se llegan a contraer se van generando asentamientos, es por ello que van dañando severamente las estructuras, cuando pasa ese tipo problema se toma la decisión de optar por mejoramiento de los suelos, donde se someterán a los suelos naturales a cierta manipulación o tratamiento, obteniéndose un suelo firme y estable, con la capacidad de poder soportar las condiciones de las cargas a las que serán sometidas y a los climas más severos.(Hernández, Mejía y Zelaya, 2016)

En Colombia sus vías se encuentran de manera deficientes que por diferentes motivos se han ido deteriorando y perdiendo sus propiedades, la falta de mantenimiento y diversos factores ambientales hacen que la resistencia y estabilidad del suelo vaya disminuyendo y generando daños a la estructura de la vía. En el país se busca materiales alternativos o material natural para que puedan ser usados como afirmados, posteriormente realizarle un mejoramiento y de esa manera aumentar la resistencia y estabilidad del material. (Carvajal, Rincón y Zarate, 2018)

El Perú es un país que invierte en diseño de infraestructura vial, pero el gran problema es que la mayoría de los presupuestos que son asignados por el gobierno no son suficientes para realizar los diseños adecuados, como también otro problema es que se realizan infraestructuras con períodos cortos y no se cumplen con las normas establecidas, y muchas de las obras de pavimentaciones son retrasados por lo que la mayoría de sus vías presentan déficit, ocasionando diversos problemas a la población, por ello las vías deberían siempre encontrarse en una adecuada condición para su respectiva serviciabilidad. (Mendoza Torres, 2019).

En el Perú las vías son de suma importancia para la comunicación y movilización que permiten un buen desarrollo del país, por ese motivo es muy importancia mantener en buen estado las vías. Una de las opciones en el país para mantener las vías en óptimas condiciones durante su tiempo de vida es realizar un mejoramiento al suelo de tal forma que estos tengan un comportamiento eficaz ante los diversos factores que serán sometidos, el uso de aditivos para mejorar el suelo es muy común y se llega adquirir las propiedades necesarias y eficientes y reduce mantenimientos, y no genera impactos negativos en el medio ambiente. (Cabrera y Dios, 2020)

En el sector de Huancaquito alto que una con el panamericana norte solicita realizar un diseño de infraestructura vial para que de esa manera la población pueda contar con un pavimento acorde a sus necesidades, ya que existe vía que no cuenta con las condiciones necesarias, por su estado en la que se encuentran al transitar los diversos vehículos ocasionan varios problemas afectando al sector principalmente a sus pobladores y ocasionándoles enfermedades por la constante aspiración de polvo, como también se generan retrasos a los pobladores para trasladar sus productos, ya que en el lugar la mayoría de la población están dedicados a lo que es la agricultura, por lo que es muy importante para el desarrollo social y económico.

Para la aplicación del diseño de infraestructura vial se realiza en función a las normas establecidos en la DG-2018, el Manual de Carreteras del MTC, manual de mecánica de suelos y cimentaciones. Como también para el mejoramiento del material de la base se realizará en función a la norma CE020. Estabilización de suelos y taludes. Las normas descritas nos darán un aporte fundamental ya que es la base principal sobre la cual se desarrollarán todos cálculos correspondientes con el objetivo de cumplir con todos los requerimientos del proyecto.

(Rivera, Bohórquez y Fernandez,2016). Concluyen que para la localidad Los Mártires en la ciudad de Bogotá, resulta más eficiente optar por el pavimento rígido frente al flexible, ya que indican que no

presentaría falla por ahuellamiento y garantizaran una mejor distribución de esfuerzos frente a cargas altas, además de una vida útil mayor y una diferencia de costos de aproximadamente 24% mayor frente a su par flexible.

(Vargas, 2016). Nos indica que, en Costa Rica, es muy poca la investigación que se hace en el campo del diseño de pavimentos rígidos. Dándosele mayor relevancia a los pavimentos de tipo flexible utilizando métodos tradicionales que tienden a inclinarse por la utilización de pavimentos flexibles.

(Sosa, 2019). Nos recomienda que para la extracción de muestras de las calicatas evitar en lo posible es que estas se vean alteradas por factores externos ya que de ocurrir aquello, los resultados obtenidos en el posterior estudio de suelos no corresponderían a real comportamiento de la subrasante; además recomienda ser muy minucioso al momento del coteo de vehículos para nuestro estudio de tráfico porque solo así nos aseguraremos un óptimo ESAL y por lo tanto un diseño eficiente. La falta de infraestructura vial en nuestro país origina que las comunicaciones, el comercio, las interrelaciones sociales y la prestación de servicios médicos entre pueblos y ciudades se vean afectadas, perjudicando la salud y economía de los pobladores. Es por esto que este proyecto se realiza con la finalidad de brindar una alternativa de solución ante este problema, contribuyendo de esta manera a evitar enfermedades por ingesta de polvo, menorando los costos y tiempo de transporte.

La falta de pavimentación en las carreteras de nuestro país origina que las comunicaciones, el comercio, las interrelaciones sociales y la prestación de servicios médicos entre pueblos y ciudades se vean afectadas, perjudicando la salud y economía de los pobladores. Es por esto que el presente trabajo de investigación brinda una alternativa de solución para este problema, contribuyendo de esta manera a evitar

enfermedades por ingesta de polvo, menorando los costos y tiempo de transporte.

La empresa PILOTES-TERRATEST PERU S.A.C. con RUC: N° 20513530481 realizó la ingeniería de detalle y ejecución de la mejora de suelo mediante columnas de grava en el muro 36 y 37 del Paso Superior Ramadillas y en el muro 10 y 11 del Paso Superior Ferrocarril. En concordancia a los EMS hechos en el lugar, se encontró un terreno con alto grado de licuefacción por lo que se decidió proponer la implantación de columnas de gravas las cuales tendrían que atravesar el estrato desfavorable gasta concentrar y apoyarse sobre un estrato firme. Esto como medida para mitigar el potencial de licuefacción y como una manera de mejorar la capacidad de carga del

La empresa COVIDA S.R.L. con RUC: N° 20481030146 realizo un proyecto de recuperación del servicio de transitabilidad vial, ca. Francisco. de paula Quiroz desde la prolongación. av. Miraflores hasta ca. Pumacahua, distrito de El Porvenir - provincia de Trujillo - departamento de La Libertad", cuenta con una superficie de extensión de 25,499.90 kilómetros cuadrados y una densidad de 63,4 habitantes por cada kilómetro cuadrado. La cifra invertida en la realización del proyecto fue de S/.1'193,971.

La vía que une el sector Huancaquito Alto y la panamericana actualmente carece de un pavimento adecuado por lo que afecta a la población y perjudica a que los vehículos y las personas puedan trasladarse adecuadamente, también afecta al traslado de sus productos. Debió al estado de la vía afecta directamente al desarrollo económico y social, produciendo gastos extras.

Las vías de comunicación son construidas con el objetivo de brindar una buena transitabilidad a los peatones y vehículos. Pero en realidad es que los problemas que se presentan son por la falta de infraestructura vial y mejoramiento, todos los problemas se ven reflejados por los diversos accidentes de tránsito que van dejando sin vida a varias personas. A causa de los diseños inadecuados de las carreteras, inversiones ineficientes o retrasos, y la falta de programas de prevención de accidentes. Como ya es de conocimiento existe diferentes normas y reglamentos sociales políticos y económicos que no se cumplen adecuadamente, ocasionando por ello que el número de accidentes que se dan en el interior del país vaya en aumento. Por ello es importante que la construcción y mejoramiento de vías como también es vital para disminuir y precaver los accidentes de tránsito. (Cachique y La Rosa, 2019).

También existen otras causas que afecta directamente las infraestructuras viales, ya que en verano las vías se ven afectadas por la constante polvadera y impide la visibilidad y contaminando así el medio ambiente, afectando principalmente a los usuarios que originan daños a la salud ya sea con infecciones respiratorias u otras enfermedades principalmente por el material que constituye la vía, y también contaminando y deteriorando las fachadas de las viviendas, también dañando el patrimonio del lugar y también dificultando el desplazamiento normal de las personas por el sector

Por todos los problemas expuestos, decidimos realizar un mejoramiento del material de la base y elaborar una estructura vial acorde a las necesidades de la población ya que es muy importante para mejorar así el nivel de serviciabilidad y confort en las vías y también para el beneficio de la población, como también garantizar una mejor seguridad vial de los usuarios, y buscar un mejor desarrollo económico y social de la población.

Con este presente proyecto se busca desarrollar la solución a los problemas que existen en el sector Huancaquito Alto que une con la Panamericana ya que no cuentan con una adecuada infraestructura vial, se realizara un mejoramiento del material de la base y un diseño de pavimento, para ello

se realizara los estudios adecuados de la zona y así desarrollar los cálculos correspondientes para el diseño del pavimento.

Esta tesis se realiza con la finalidad de ser una alternativa para soluciona los problemas ya expuestos, al no poder desarrollarse este proyecto, es muy importante saber que la zona seguirá careciendo de un adecuado pavimento y así seguirá retrasando al desarrollo económico de la población, como también les seguirá dificultando para poder trasladar sus productos, como también afectará a la salud de los pobladores por la contaminación generada por la falta de infraestructura vial. La población tiene el deber de recibir una vía adecuada con óptimas condiciones para obtener buena transitabilidad, de esa manera haciendo que ahorren esfuerzo y tiempo y así mejorar a la zona.

1.2. Planteamiento del problema

¿Cuál es el mejoramiento y el diseño de la infraestructura vial de la carretera que une Huancaquito Alto y la Panamericana, provincia y distrito de Virú,2021?

1.3. Justificación

a. Justificación general

Según el Reporte de competitividad Global 2019 del foro económico mundial, el Perú se encuentra ocupando la casilla número 97 de un total de 141 países esto con respecto al área de infraestructura vial. Según el MEF los gobiernos regionales en su conjunto solo gastaron el 48.1% de su presupuesto asignado el año 2019 siendo el gobierno regional de La Libertad uno de los que menos invirtió en infraestructura vial (7.4%). (Comex Perú 2020)

La realización de la presente investigación tuvo lugar gracias a la falta de una infraestructura vial adecuada para la carretera que une el centro poblado Huancaquito Alto y la carretera Panamericana Norte en el distrito y provincia de Virú. Razón por la cual se pudo observar una notoria merma en la calidad de vida y seguridad de los pobladores y visitantes del lugar, además de un lento desarrollo social y económico.

La investigación se presentó como una alternativa que ayude a menguar y para solucionar los problemas originados a raíz de la carencia de infraestructura vial que se logre satisfacer y cumplir con las necesidades que la población demanda, tanto para el cuidado de su salud como para su desarrollo personal, social y económico.

Al desarrollar el presente proyecto se buscó lograr una mejora sustancial en las condiciones de transitabilidad la cual se vea reflejada en la disminución de costos y tiempo de transporte, reducir la cantidad de casos de enfermedades respiratorias originadas por inhalación de polvo, promover la agro inversión y las visitas turísticas.

La alternativa de solución presentada tuvo como principales beneficiarios a los pobladores del centro poblado Huancaquito Alto, así como a los diversos visitantes y transportistas que hacen uso de la vía en mención para diferentes actividades económicas que aportan directamente en el desarrollo integral del lugar.

b. Justificación teórica

El desarrollo de la presente investigación permitió conocer de manera profunda y detallada la relación que existe entre el mejoramiento de la base y su influencia en el diseño del espesor de las capas del pavimento rígido. Además, se pudo poner a prueba y corroborar la eficacia y precisión del levantamiento topográfico haciendo uso de una técnica poco usada como es la fotogrametría.

c. Justificación práctica

Con el presente proyecto se buscó solucionar el problema de transitabilidad, y, contribuir con el crecimiento integro de la localidad Huancaquito Alto y la región La Libertad, haciendo uso y poniendo en práctica los conocimientos adquiridos durante nuestro proceso de formación académica. El mejoramiento del suelo y el diseño de infraestructura vial es de gran importancia para el desarrollo completo de las nuevas comunidades en nuestro país, para que de esta manera se pueda asegurar que las actuales y nuevas generaciones de ciudadanos desarrollen sus actividades de manera eficaz y eficiente en un ambiente sano y seguro.

d. Justificación Metodológica

El método de recolección de datos utilizado durante el desarrollo de la presente investigación fue la observación de campo y el análisis documental, para la observación de campo se hizo uso de libretas de campo y, para el análisis documental la consulta a los manuales peruanos de diseño brindados por el ministerio de transportes y comunicaciones.

En el análisis y procesamiento de datos se utilizaron softwares como Topcon Tools, Agisoft Photoscan, Autodesk Recap, AutoCAD Civil 3d y MS Excel.

1.4. Objetivos

1.4.1. Objetivo General

Determinar el mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú 2021.

1.4.2. Objetivos específicos:

- **O.E.1.**Realizar estudio de topografía para conocer la superficie del terreno de la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú, 2021
- **O.E.2.**Realizar un mejoramiento del material a usarse en la base para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú, 2021.
- **O.E.3.**Realizar un estudio de suelos del material de préstamo a usarse en la base de la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú, 2021.
- **O.E.4**. Elaborar el diseño geométrico de la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú, 2021.
- **O.E.5**. Realizar un estudio de suelos para conocer las características físicas de la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú, 2021.
- **O.E.6**.Realizar un estudio de tráfico de la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú, 2021.
- **O.E.7.** Realizar el diseño de pavimento rígido para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú, 2021.

1.5. Hipótesis

El mejoramiento y diseño de infraestructura vial cumplirá con lo establecido en las normas CE020 Estabilización de Suelos y Taludes, así como en el Manual de Suelosy Pavimentos del Ministerio de Transportes y Comunicaciones, así también con lo estipulado en el Manual de Carreteras: Diseño DG 2018 en la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú, 2021.

II. MARCO TEÓRICO

2.1 Antecedentes

Internacionales

"Diseño Geométrico y Diseño de Pavimento de la vía Callasay – Zhordan desde abscisa 2+000 hasta 6+300"

(Guamán, 2017). Se elaboró el diseño geométrico y un pavimento que lo componen Callasay-Zhordan, empleando los conocimientos de la ingeniería civil, y de esa manera mejorar las condiciones de circulación de la vía. (p. 04). Se tomará los algunos criterios de diseño en base a una topografía que se realizó, se obtuvo que el tráfico de diseño será de 155 vehículos de acuerdo a norma, su sección será de 8.60m, en ancho de carril será de 3.60m, las cunetas serán de 0.60m.(p. 11). Se realizo un estudio de suelos mediante la excavación de calicatas con una profundidad de 1.50m, las muestras fueron extraídas por cada kilómetro las cuales los análisis se realizaron en el laboratorio. (p. 33). Los cálculos se trabajaron mediante el método de ASSHTO, donde también contará con sus respectivas obras de drenaje. El autor concluye que con la propuesta que se realizó en este proyecto sería una solución del problema presentado en la zona ya que el trazado que presenta la vía no es la adecuada y no garantiza seguridad. (p. 73)

Este trabajo de investigación da a conocer el estado actual en la que se encuentra la vía, y las deficiencias que presenta, los aspectos y estudios que se deberá tener en cuenta para poder realizar un diseño de infraestructura completo, donde sea un pavimento durable con un confort adecuado a la población.

"Estabilización de suelos cohesivos por medio de Cal en las Vías de la comunidad de San Isidro del Pegón, municipio Potosí-Rivas" (Altamirano y Diaz, 2015). El fin de este estudio fue estabilizar los suelos cohesivos de la vía de la comunidad San Isidro del Pegón, municipio de Potosí Departamento Rivas, haciendo uso de la mezcla

de cal hidratada. (p.06). la vía tiene una longitud de 5.05 km, durante la temporada de invierno el afecta el suelo y llega a dañarse las vías, para mejorar el problema se realizará la estabilización de suelos. Por ello se realizó los estudios correspondientes en la zona. (p.49). Los resultados nos dicen que el suelo de acuerdo a la norma AASHTO son de baja capacidad de carga. Para no realizar muchos ensayos se trabajó con los porcentajes 3, 6, 9 y 12 %, en lo que respecta a las características físicas hubo una mejora; la humedad requerida aumento generada entre la cal y arcilla, pero no se cumplió con el parámetro de expansión, pero fue un resultado aceptable, se determinó que con un 9% de cal se logra un mejor resultado. (p. 86). El estudio llego a concluir que la estabilización de suelos es recomendable realizarlo con otro tipo de cal, como cal viva, de esa manera se logrará mejores resultados y así se cumplirá con los estándares requeridos. (p.88).

El proyecto de investigación da a conocer el estado en las que se encuentran las vías y nos brinda la información de la estabilización de suelos con la cal hidratada y que tan efectivo es aplicar este método para la estabilización de suelos.

"Propuesta de estabilización de suelos arcillosos para su aplicación en pavimentos rígidos en la facultad multidisciplinaria Oriental de la Universidad del Salvador"

(Hernández, Mejía y Zelaya, 2016). Se analizó la mejoría al comportamiento del suelo arcilloso por medio del uso de cal como aditivo para estabilizar, posteriormente el suelo ser usado como subrasante en pavimentos rígidos. (p. 07). luego de realizar los ensayos necesarios se obtuvo los siguientes resultados del suelo natural, un I.P. de 45%, L.L. de 75% y L.P. de 30% y en la muestra suelo-cal el suelo se transforma en un suelo no plástico. del ensayo de granulometría se obtuvo un suelo fino y con la muestra suelo-cal se

obtuvo un 79.33% que paso por la malla. En el ensayo de gravedad el suelo natural se obtuvo 2.43 y la mezcla 2.28. del Proctor se obtuvo la humedad máxima de 18.80% y de la mezcla la humedad optima fue de 19.40%. el CBR. Del suelo natural salió un 1.93% y con la mezcla adicionando un 5% el CBR se obtuvo 54%. (p. 138). Los espesores que se requiere sin estabilizar el suelo es 6.30plg, con el suelo estabilizado el espesor de 4.3plg. (p. 164). El autor nos dice que el suelo en su estado natural no está apto para realizar un diseño de pavimento por lo tanto requiere de un mejoramiento de suelo ya que debido a que la combinación de suelo-cal se obtiene mejores resultados se optó por la estabilización química. (p.165).

La investigación muestra la información de relevancia obtenida a través de ensayos y fuentes de información del mejoramiento del suelo haciendo uso de la cal, cumpliendo con los parámetros establecidos y obteniendo un óptimo suelo mejorado, permite realizar un adecuado diseño de pavimento rígido.

Nacionales

"Análisis comparativo de las propiedades mecánicas de un afirmado natural y estabilizado con cemento reciclado al 2%, 4% y 6% para base, Los Olivos - 2020."

(Quispe, 2020). La investigación tuvo como objetivo hacer un análisis de comparación de los ensayos del suelo natural y a un suelo estabilizado con el reciclado del cemento para la base, Los olivos. (p. 39). La metodología de la investigación fue tipo aplicada, con un diseño cuasi experimental. La población fue el número de muestras. (p. 43). De acuerdo a los ensayos se debe tomar un CBR de 95%. Los ensayos para la estabilización con cemento reciclado fueron con 2%, 4%, y 6%. El material de la base tuvo una densidad máxima de 2.303 g/cm3, el contenido de humedad de 6.9% y el grado de compactación de 95.44%. El material de la base con el 2% de cemente reciclado tuvo una densidad máxima de 2.375 g/cm3, el contenido de humedad de 6.4% y el grado de

compactación de 95.70%. El material de la base con el 4% de cemente reciclado tuvo una densidad máxima de 2.445 g/cm3, el contenido de humedad de 5.7% y el grado de compactación de 95.93%. El material de la base con el 6% de cemente reciclado tuvo una densidad máxima de 2.428 g/cm3, el contenido de humedad de 4.8% y un grado de compactación de 95.44%. (p. 73). Con el análisis que se realizó con los porcentajes se llegó a concluir que el reciclado del cemento tiene un buen funcionamiento para la estabilización de suelos, también debido a que por ser reciclado le impide tener una adherencia con el material. (p. 77).

Esta investigación provee información sobre el proceso de análisis de comparación de los ensayos del suelo estabilizado y el suelo natural e identificar cual es el a través del análisis si optimo trabajar con el cemento reciclado para el mejoramiento del suelo.

"Diseño de infraestructura vial entre los caseríos Quillinshacucho, Oxapampa, Paraguran y centro poblado Atoshaico, distrito Bambamarca, Cajamarca".

(Guevara, 2020). En esta investigación se tuvo como finalidad diseñar una infraestructura vial entre los caseríos Quillinshacucho, Oxapampa, y el centro poblado Atoshaico, Bambamarca. (p.07). Este estudio fue de tipo descriptivo, se utilizó la metodología simple para poder determinar los parámetros que intervienen en el diseño de la infraestructura vial del lugar de estudio. La población fueron los habitantes del tramo de los caseríos. (p. 08). se realizaron diferentes tipos de estudios para poder realizar el diseño adecuado para la vía, por ello se hizo un procedimiento de levantamiento topográfico y se pudo obtener la altimetría y la planimetría donde se determinó que tiene una zona accidentada con una pendiente del 5%, también se realizó un estudio de suelos respectivamente donde se concluyó que es un suelo arcilloso y de baja plasticidad. (p.04). también un estudio para las obras de arte y también un estudio hidrológico donde se determinaron las

cualidades de las cunetas que será de 0.30 x 0.75 m y las alcantarillas de 21.6 pulg y 22.4 pulg, se realizó un EIA y arrojó que tiene impactos negativos y se determinó con ayuda de la DG-2018 que la velocidad 30 Km/h, y un ancho de calzada de 6m y un bombeo de 2% y bermas de 0.50m y los peraltes 4%. El autor recomienda que para esta vía se debe realizar su respectivo mantenimiento periódico de la vía, como también realizar los estudios y cálculos correspondientes y respetando las normas. (p. 15).

De la investigación rescatamos la importancia de realizar un estudio adecuado tomando los criterios establecidos, de esa manera tener en cuenta y desarrollar un adecuado diseño de infraestructura vial y brindar las mejores condiciones al pavimento con el fin que se cumpla con el tiempo de diseño.

"Estabilización de suelos cohesivos por medio de aditivos (Eco Road 2000) para pavimentación en Palian – Huancayo - Junín."

(De La Cruz y Salcedo, 2016). Se tuvo como objetivo realizar una evaluación a la influencia del aditivo Eco Road 2000 en las propiedades de los suelos en el anexo de Palian – Huancayo – Junín. (p. 16). Fue un estudio de tipo explicativo, tuvo como muestra las vías no pavimentadas de Palian. (p. 52).la determinación de las características en los materiales se realizó a través de un estudio de suelo cumpliendo lo establecido en el "Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos - MTC", donde nos dio como resultado un CBR de 95 %, al aplicarlo al aditivo con 6 combinaciones de base se tomó 1 litro por 15 m³, con la combinación 1 litro por 11 m³ se obtiene un 38.55 %. También se realizó un cálculo para un diseño de pavimento rígido, con suelo natural y con suelo estabilizado donde la diferencia es en los espesores del pavimento. (p. 122). El autor concluyó que con la estabilización de suelos se logra obtener un suelo más estable, y de acuerdo en costos también disminuye. (p. 133)

La investigación de este proyecto brinda información sobre la evaluación de la influencia del aditivo Eco Road 2000 para mejorar el suelo y la desigualdad de realizar un diseño de pavimento rígido con un suelo más estable ya que de esa manera obtendremos un pavimento en óptimas condiciones

"Diseño de infraestructura vial con pavimento rígido para transitabilidad del barrio Señor de los Milagros, distrito Canoas de Punta Sal, provincia Contralmirante Villar de la región de Tumbes - 2018"

(Ortiz y Tocto, 2019). Se tuvo como fin realizar un diseño de infraestructura vial con un pavimento rígido para mejorar la transitabilidad en el barrio Señor de los Milagros, distrito Canoas de Punta Sal, provincia Contralmirante Villar, de la región de Tumbes. (p. 14). Fue una investigación no experimental descriptiva y aplicada. La población fueron las vías condicionadas a una pavimentación en los barrios del Distrito de canoas de Punta Sal. (p.18). en el barrio presenta problemas ya que a causa de las lluvias sus vías se vuelven intransitables, ya que no se cuenta con el pavimento adecuado en la zona y otras partes que si cuentan con pavimentos están prácticamente destruidos. (p. 20). para diseñar la estructura de diseño se realizaron los estudios básicos como estudio de tránsito, topográfico, mecánica de suelos, estudio de impacto ambiental, hidrológicos y el diseño del pavimento rígido mediante AASHTO 93. donde los resultados obtenidos del suelo fueron "SC" arenas arcillosas de textura firme húmeda, "SP" arenas mal graduadas, arenas con grava con pocos finos o sin ellos y "SM" arenas limosas, mezclas de arena y limo mal graduada, un CBR de 8.5% y 95%, de los cálculos se obtuvo que con una resistencia de f'210 kg/cm² con un espesor de 0.15 m. (p. 27). El autor recomienda realizar un adecuado diseño de infraestructura vial cumpliendo con los procesos constructivos, cumpliendo las normas establecidas y bajo la supervisión de profesionales. (p. 28). Esta investigación da a conocer el gran problema que presentan las vías en dicho distrito y la gran necesidad de requerir un pavimento en óptimas condiciones y de esa manera brindar a la población un pavimento adecuado para solucionar la transitabilidad de la zona.

Regionales

"Diseño de infraestructura vial del centro poblado Pakatnamu primera etapa, distrito Guadalupe, Región la Libertad 2017"

(Amambal, 2017). La finalidad fue diseñar una infraestructura vial en el centro poblado Pakatnamu, Guadalupe, la libertad. (P. 31). Esta investigación es no experimental y descriptivo. Muestra las Pistas y veredas a diseñar en el centro poblado Pakatnamu primera etapa. (p. 33). Tuvo como objetivo dar solución al problema principal que es la transitabilidad. Donde se realizó los estudios la zona presento un mal estado de circulación peatonal y vehicular. Se realizo los estudios necesarios para el diseño, se realizó el IMDA y dio como resultado 502 vehículos; el estudio topográfico arrojo pendientes de 0.03 – 3.4%, el levantamiento se realizó en 13 calles: en el estudio de suelos dio un CBR de 30.86 y 42.62. y un material clasificado como grava limo arcillosa con arena y CBR de 80.25%; a través de la DG-2018 se determinó que tendrá un bombeo de 2% y la velocidad de 40 Km/h; y con datos del SENAMHI se determinó un periodo de retorno de 25 años y cunetas triangulares t=0.40m; los costos, presupuestos y tiempo de obra se realizó a través de las partidas correspondientes. (p. 45). se recomendó utilizar durante la ejecución de la obra se deberá tener en cuenta la calidad de los materiales a usar y cumplir con las respectivas especificaciones. (p. 63).

La presente investigación muestra la importancia de hacer un diseño adecuado siguiendo la metodología y haciendo uso de las normas correctamente y de esa manera brindar un pavimento adecuado de acuerdo a las necesidades que tiene la población y mejorar la transitabilidad, ya que las vías son de suma importancia para el desarrollo de la población.

"Optimización de la estabilización de suelos arcillosos en el sector Curva del Sun – Campiña de Moche, con concreto reciclado para pavimentación, provincia de Trujillo, La Libertad– 2017"

(Del Rio, 2017). Esta investigación tuvo como fin la Optimización de la estabilización de suelos arcillosos en el sector Curva del Sun -Campiña de Moche, con concreto reciclado para pavimentación, provincia de Trujillo, La Libertad. (p. 11). Esta investigación es de tipo no experimental - correlacional. La población está conformada por cantidad de probetas para los ensayos CBR. (p. 24). Se realizo los ensayos respectivos, granulometría, limite líquido, limite plástico, Proctor modificado y CBR; se trabajará de acuerdo a las normas establecidas. Donde nos da como resultados un CBR de 9.52%, se tenía un suelo o limoso arcilloso, y un L.L. de 29.4, L.P. de 16 y un índice de Plasticidad de 13.4. (p. 36). Se concluyo que usar el concreto reciclado como material estabilizador de suelos y también se usa para cambiar la textura del suelo por una textura más gruesa. (p. 37). Este estudio brinda información importante acerca de la optimización de estabilización de suelos y el método correcto para estabilizar el suelo con un material reciclado trabajando en base a las normas establecidas.

"Diseño de infraestructura vial urbana caserío Cerro Colorado, Distrito Pacanga, Provincia Chepén - La Libertad"

(Yacupaico, 2020). Se realizo un diseño de infraestructura vial en el caserío cerro colorado, Chepén. (p. 02). El proyecto es una investigación de diseño experimental. La muestra fue Caserío Cerro Colorado, distrito Pacanga -La Libertad. (p. 09). Nos recomendó realizar los estudios necesarios con la finalidad de diseñar un óptimo pavimento. Con el adecuado levantamiento topográfico a 12 con un área de 3.45 ha. calles se llegó a concluir que la inclinación cada 1 m será 3.00% con un bombeo de 2%; en el estudio de tráfico se determinó

que el diseño será para 20 años y el IMDA es de 154 veh/día, el estudio de suelos se hizo con 7 calicatas, dio un CBR de 6.9 por AASHTO; y en costos y presupuestos se hizo mediante el S10 con las partidas adecuadas y sus metrado necesarios. (p. 14). El autor recomendó colocar la señalización adecuado y sus respectivos mantenimientos evitara accidentes en las vías, que los profesionales que van a realizar los proyectos deben estar capacitados. (p. 25).

Este trabajo es de gran importancia porque muestra la relevancia que tiene las vías y lo esenciales que son para el desarrollo de la zona y nuestro país ya que a través de estas vías se pueden trasladar las personas como también trasladar sus productos, de esa manera las vías se convierten en un medio principal para la conectividad.

Locales

"Diseño para el mejoramiento de la carretera del tramo AA.HH.

Fujimori-Desvió Porvenir, Distrito Chao, Provincia Viru-La Libertad" (Marvin y Billy, 2019). Tuvo como objetivo este proyecto diseñar la carretera del tramo AA. HH Fujimori – desvió Porvenir, Distrito Chao, Provincia Viru – La Libertad. (p.09). esta investigación es de tipo Descriptivo-Simple -No Experimental. La población Tramo AA.HH. Fujimori, AA.HH. San Carlos Alto, desvío Porvenir y toda zona beneficiada. (p. 15). Se realizará el levantamiento topográfico, mecánica de suelos, estudio de hidrología, se realizará un diseño geométrico de acuerdo a la DG-2018, estudio de impacto ambiental y costos y presupuestos. Los resultados de los estudios y cálculos efectuados obtuvieron que la calzada ser de 6.60m, bombeo de 2.5%, 0.50m de berma, v=40km/h, cunetas de 0.75 x 0.40m triangulares; en el impacto ambiental, arrojo un impacto negativo. (p. 108). El autor concluyo que al terminar el proyecto la municipalidad le haga sus respectivos mantenimientos a la vía y colocar las señalizaciones correspondientes. (p. 109).

La investigación brinda una adecuada información acerca del estado en la que se encuentra la vía y la suma importancia de mejorar la vía, de esa manera ofrecer una vía en óptimas condiciones para la tranquilidad y beneficencia de la población y para una mejor transitabilidad de los vehículos

"Transitabilidad vial y diseño de pavimento de la vía Panamericana Norte - anexo Huacacorral - Virú, 2020."

(Neira y Rebaza, 2020). La siguiente investigación tuvo como objetivo evaluar la transitabilidad vial y realizar el diseño del pavimento para la vía Panamericana Norte y Anexo Huacacorral –Virú. (p. 09). Es una investigación no experimental. La población de la investigación es toda la vía Panamericana Norte - Anexo Huacacorral - Virú, 2020. (p.25). se realizó estudio de suelos, estudio topográfico y se realizó un diseño estructural de pavimento usando el método AASHTO 93. Se obtuvo una pendiente de 36.68 %, mediante el estudio de suelos salió un CBR de 11.28% y con el estudio de tráfico dio un IDMA de 96 veh/día. (p.52). el autor determino que aplicando la metodología indicada y aplicando las normas correctamente para el diseño de la estructura de pavimento, darle su mantenimiento indicado el pavimento se conservara en las mejores condiciones. (p.53).

Este trabajo es muy importante porque da a conocer lo esencial que son las vías para que la zona y se pueda desarrollar adecuadamente, de esa manera las personas y vehículos puedan trasladarse de una manera segura como también trasladar sus productos agrícolas, las vías siendo el medio principal para una adecuada conectividad entre lugares.

2.2 Bases teóricas

2.2.1 Diseño de infraestructura vial

Con el diseño de la infraestructura vial podemos llegar a determinar las diferentes características físicas, para después poder realizar el procedimiento adecuado y así poder cumplir con las condiciones necesarias y poder diseñar una vía óptima para una buena serviciabilidad. (Quenaya y Tarrillo, 2019)

2.2.2 Pavimentos

Los pavimentos podemos dar como definición a una estructura conformada por capas que va apoyada en subrasante (terreno natural o mejorada) para así poder sostener todas cargas estáticas y/o móviles en su determinado periodo de vida, y nos brinda diferentes funciones como puede transmitir con comodidad los esfuerzos que producen las cargas del tránsito a las terracerías, facilita una superficie de rodamiento uniforme, como el color, la textura, y entre otros agentes que pueden perjudicar al pavimento. (León, 2020)

2.2.2.1 Pavimento rígido

Los pavimentos rígidos se conforman por la losa de concreto, y van apoyados en el terreno (subrasante) o capa designada de un pavimento. Por su rigidez alta que tienen el concreto, como también el módulo de elasticidad, también cuando se distribuye. (Higuera, 2011).

2.2.3 Estudio Topográfico

El estudio topográfico se define como una representación gráfica de la superficie del terreno, y se debe establecer puntos sobre la superficie, donde consiste en describir el terreno y especificar las características de la topografía de la zona, las secciones transversales, el ancho, el alineamiento y desniveles, el estudio se realiza mediante el uso de

equipos especiales en topografía. Realizar este estudio nos va ser útil para las distintas obras que se vaya a realizar. (Mejía y Zavala, 2020)

2.2.4 Estudio de suelos

Para cuando se vaya a realizar es estudio de suelos debemos efectuará primeramente el debido reconocimiento del lugar a realizarse el estudio para así determinar las características y también los riesgos como también ver que todo esté en correctas condiciones, posteriormente se programa la exploración de suelos y así poder reconocer los diversos tipos de suelos que se vaya encontrar. (Manual de Carreteras; Suelos, Geología, geotecnia y pavimentos, 2014)

2.2.4.1 Granulometría

La granulometría, nos da como definición que es la formación, porcentaje, los distintos tamaños de los agregados. Las proporciones nos suele indicar el menor y el mayor tamaño a través del tamizado y dependiendo de las especificaciones técnicas y se representa por una cifra, por su tamaño con el que se pasó al inicio y el tamaño con el que quedo retenido al final después de haber pasado por los diferentes tamices. (Tuesta y Velásquez, 2020)

2.2.4.2 CBR

El Ensayo CBR que viene siendo un parámetro del suelo el cual cuantifica la capacidad resistente de las capas que vienen a ser como subrasante, sub base y base en lo que es la estructura de los pavimentos. El ensayo del CBR es empírico y se lleva a cabo bajo condiciones de la humedad y de la densidad. Este parámetro es muy necesario y se obtiene atreves de estudios geotécnicos y estos se realizan a través de un estudio previo del diseño y posteriormente a la construcción de los pavimentos. (Araujo, 2015).

2.2.4.3 Contenido de humedad

El contenido de humedad de un suelo, es el peso del agua contenida y el peso seco del suelo y este procedimiento se obtiene poniendo a secar a la muestra en el horno a una cierta temperatura. (Manual de Carreteras; Suelos, Geología, geotecnia y pavimentos, 2014)

2.2.4.4 Límites de Consistencia

2.2.4.4.1 Límite Líquido

Es la cantidad de agua que contiene una muestra expresada en porcentaje respecto al peso del suelo seco, y se delimita la transición entre el estado líquido y plástico de un suelo. (Manual de ensayo de materiales, 2016).

2.2.4.4.2 Límite Plástico

El límite plástico se designa al porcentaje de humedad mínimo con la que pueden formarse barritas de la muestra, las barritas se rodaran en la palma de la mano y en una superficie lisa, hasta que las estas vayan presentando grietas. (Manual de ensayo de materiales, 2016).

2.2.4.5 Proctor

El Proctor es un ensayo que su finalidad es determinar la densidad máxima y la humedad optima que haya alcanzado el suelo al ser compactada con una energía por unidad de volumen determinado, y procedimiento más usado es la compactación por gravedad. (Manual de Carreteras; Suelos, Geología, geotecnia y pavimentos, 2014)

2.2.4.6 Abrasión los Ángeles

El Abrasión los Ángeles es un ensayo que mide la resistencia y se utiliza para poder determinar los pesos perdidos de las muestras al momento de determinar los desgastes. (Manual de ensayo de materiales, 2016).

2.2.5 Estudio de tráfico

Para poder hacer un diseño de pavimento, es de suma importante poder determinar el flujo vehicular, en resumen, calcular el tipo de vehículos que van a transitar por dicha carretera y también determinar la frecuencia y con estos datos determinar las diferentes características de los diseños de los pavimentos. (Vega, 2018)

2.2.5.1 Índice Diario Medio Anual (IMDA)

El IMDA nos indica que es el promedio aritmético diarios de los volúmenes para todo el año, de una parte, del pavimento. En los tramos especificados los valores nos brindan el proyectista y así poder determinar las características para el diseño. Las cantidades del vehículo/día son muy importantes para su evaluación de los programas de seguridad y su medición de los servicios que proporciona el transporte, ya que las carreteras se diseñan para un determinado volumen del tránsito en los distintos pavimentos. Los diseños de las carreteras se diseñan a través del volumen del tránsito. (Manual de Carreteras: Diseño Geométrico de Carreteras DG-2018.)

2.2.6 Diseño geométrico

El diseño geométrico es la proyección del eje real sobre el terreno y mediante esto de defina los elementos que van a componer la carretera como la velocidad y de esa manera sea segura y económica. Los alineamientos horizontales y verticales se deben balancear, cumpliendo con todos los requisitos mínimos para una buena transitabilidad de la vía (Horna, 2020).

2.2.6.1 Alineamiento horizontal

Se constituye por unas rectas y compuestas por curvas y tangentes, que se define con una línea preliminar, conectadas por curvas circulares de grado de curvatura y de esta manera al pasar

de un tramo a recto a un curvo nos permita tener una transición segura y suave. (Ospina, 2012)

2.2.6.2 Bombeo

El bombeo para tramos en curvas o tangentes, contra peralte, se debe tener una pendiente mínima transversal que también se le conoce como bombeo, con el objetivo de evacuar el agua que queda en la superficie. (DG-2018.)

Tabla 1. Valores de bombeo de la calzada

Velocidad (km/h)	40	60	80	≥100
Radio (m)	3.500	3.500	3.500	7.500

Fuente: DG-2018.

2.2.6.3 Peralte

Peralte son las inclinaciones transversales de las vías o también llamado plataforma de los tramos en las curvas, y está diseñada para resistir a la energía centrífuga de los vehículos. (DG-2018.)

Tabla 2. Valores de radio donde se puede prescindir de

peralte

Buckle a studed	Peralte Má	Ver		
Pueblo o ciudad	Absoluto	Normal	Figura	
Atravesamiento de zonas urbanas	6,0%	4,0%	302.02	
Zona rural (T. Plano, Ondulado o Accidentado)	8,0%	6,0%	302.03	
Zona rural (T. Accidentado o Escarpado)	12,0	8,0%	302.04	
Zona rural con peligro de hielo	8,0	6,0%	302.05	

Fuente: D G - 2018.

 Tabla 3.
 Valores de peralte máximo

$$P = \frac{V^2}{127R} - f$$

Dónde:

P: Peralte máximo asociado a V

V : Velocidad de diseño (Km/h)

R: Radio mínimo absoluto (m)

F: Coeficiente de fricción lateral máximo asociado a V

Utilizamos la siguiente fórmula para su respectivo calculo para el peralte bajo

Ecuación 1. Cálculo de peralte

Tabla 4. Peralte mínimo

Velocidad de diseño km/h	Radios de curvatura
V≥100	5.000 ≤ R < 7.500
40 ≤ V < 100	2.500 ≤ R < 3.500

Fuente: DG-2018.

2.2.6.4 Sección transversal

Se define en un punto, es una sección vertical normal al alineamiento horizontal, este le permite determinarla colocación y el tamaño de los elementos que están formando parte de las vías en los puntos correspondientes por segmento y su conexión con el terreno natural. (Escipión, 2001)

Tabla 5.Valores de bombeo

	Bombe	Bombeo (%)				
Tipo de Superficie	Precipitación <500 mm/año	Precipitación >500 mm/año				
Pavimento asfáltico y/o concreto Portland	2,0	2,5				
Tratamiento superficial	2,5	2,5-3,0				
Afirmado	3,0-3,5	3,0-4,0				

Fuente: DG-2018.

2.2.6.5 Pendientes longitudinales y transversales

Las pendientes del terreno cumplen un papel importante, que es trasladar las aguas de la superficie de rodadura de la estructura, las pendientes se condicionan; velocidad de diseño por la jerarquía de los pavimentos, el terreno. (Manual de Diseño Geométrico INVIAS – 2008)

2.2.6.6 Curvas horizontales y verticales

2.2.6.6.1 Curvas horizontales

Las curvas horizontales se usan en ferrocarriles, vías y otras. y como alternativa suavizar los cambios en los movimientos verticales, es decir, su longitud gradualmente desde la pendiente de la tangente de entrada a la de la tangente de salida. En lo general se utiliza unos arcos circulares, como también en las curvas horizontales. (Cardenas,2013)

2.2.6.6.2 Curvas verticales

Las curvas verticales se utilizan para actuar conforme la rasante en las diferentes pendientes, en los ferrocarriles, vías y otros caminos. El objetivo principal es suavizar los cambios en el movimiento vertical, se puede decir que la longitud se ejecute al paso gradualmente en las inclinaciones de las tangentes de entrada hasta la tangente de salida. Se utilizan arcos parabólicos, en reemplazo de arcos circulares como en las curvas horizontales. (Márquez y Urrutia, 2008)

2.2.6.7 Periodo de diseño

El Periodo de Diseño que se emplea por el manual para un diseño, para un pavimento rígido será de 20 años mínimo. Los ajustes de diseño en los pavimentos para los periodos de diseños los hará el ingeniero según los términos que indica los proyectos y que solicite la entidad responsable. (Manual de Carreteras del MTC, 2013)

2.2.7 Diseño de pavimento

El diseño de pavimento está formado por una estructura que permitirá las circulaciones de los diferentes tránsitos y está conformada por una o más capas, y sobre ellas actúan cargas que transmiten los vehículos y debe transferir durante el tiempo de vida, las tensiones provocadas hacia la subrasante y también al material que, constituidos las capas, el pavimento debe encontrase en perfectas condiciones para la seguridad y su comodidad. (Baldera, 2021)

2.2.7.1 Base

Nos indica que es una capa que forma parte de una estructura del pavimento y tiene como objetivo absorber los esfuerzos transmitidos por las cargas del vehículo y distribuye los esfuerzos de manera uniforme hacia el terreno. El material que se vaya usar debe cumplir debidamente los requisitos que están especificadas. (Bustamante y Cubas, 2020)

2.2.8. Estabilización

La estabilización es un proceso ya sea físico o químico que se realiza al suelo, mediante este proceso mejorar las condiciones mecánicas del material o suelo. (Norma CE.020 "Estabilización de suelos y taludes" del RNE, 2018).

2.2.9. Aditivo Estabilizador

Un aditivo estabilizador es empleado para un tratamiento que se realiza en la superficie de los suelos con materiales orgánicos o materiales granulométricas muy finas. (Norma CE.020 "Estabilización de suelos y taludes" del RNE, 2018).

2.2.10. Calicatas

Son excavaciones que se hace al suelo, con una profundidad que indica la norma, generalmente son para estudiar el suelo, se debe tomar las precauciones respectivas y así se evitara desprendimientos de las paredes del suelo y contaminaciones de los estratos. (Manual de ensayo de materiales, 2016).

2.2.11. Cal

La cal es la descomposición de rocas calizas por el acto de la cal, que se conoce como cal viva, su calor es blanco, la cal al momento de tener contacto con el agua se hidrata, cuando se agrega la cal a materiales arcillosos (base, sub-base y subrasante), por las reacciones producen un aumento en los límites de consistencia, de esa manera se genera que disminuya el índice plástico, consecuentemente aumenta la estabilidad y resistencia de los materiales. (Hernández, Mejía y Zelaya, 2016).

III. METODOLOGÍA

3.1 Enfoque, tipo y diseño de investigación

3.1.1 Enfoque de la investigación

La presente investigación tiene un enfoque cuantitativo debido a que se desarrolla partiendo de lo general hacia lo específico buscando medir con precisión las variables en estudio, además, basa su recolección y análisis de datos en el conteo y la medición numérica para probar la hipótesis.

3.1.2 Tipo de investigación

3.1.2.1 Según su propósito

Con respecto a su propósito se pudo determinar que esta investigación es de tipo aplicada, ya que durante su desarrollo se nutre, apoya y pone en práctica conocimientos y teorías ya existentes. En ese sentido se hizo uso de manuales, normas y reglamentos establecidos por el MTC de Perú para determinar los procedimientos y parámetros de diseño en los distintos estudios de campo y gabinete.

3.1.2.2 Según el diseño

Considerando que, durante todo el proceso de análisis, las variables en estudio solo fueron observadas y descritas en su contexto natural y que por lo tanto no han sido manipuladas por los investigadores, se pudo establecer que según su diseño la presente tesis es de tipo no experimental descriptiva.

3.1.2.3 Según el nivel

Según el nivel esta investigación es de tipo descriptiva porque el análisis de los hechos, fenómenos y realidades serán realizadas desde la perspectiva de la comprensión y descripción de estos sin buscar la explicación o razón de ser de los anteriormente mencionados.

3.1.3 Diseño de investigación

El diseño de esta investigación es no experimental descriptiva ya que las variables de estudio serán descritas en su contexto natural y no

serán manipuladas de ninguna manera, aplicada de manera transversal debido a que la toma de datos se dio en un único punto en el tiempo.

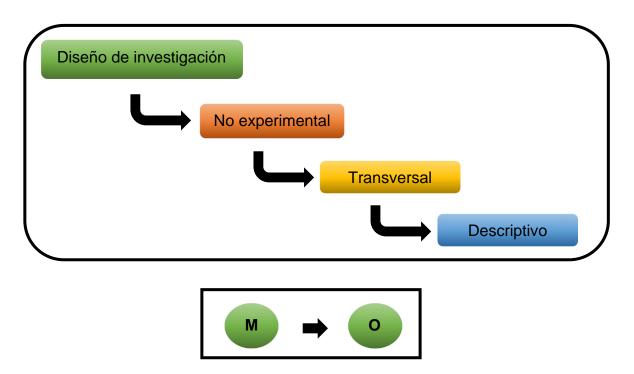


Figura 1. Diagrama del diseño de investigación

Dónde:

M: Carretera Huancaquito Alto – Panamericana Norte O: Mejoramiento y Diseño de infraestructura Vial.

3.2 Variables y operacionalización

3.2.1 Variables:

Mejoramiento:

Es el procedimiento a través del cual se mejoran las características de resistencia de los materiales a usarse en las distintas capas que conformarán el pavimento. (Altamirano y Diaz, 2015)

Diseño de infraestructura vial:

Es el conjunto de cálculos y procesos a través de los cuales se determinan las características y dimensiones de todos los componentes que conforman una estructura vial. (Guevara, 2020)

3.2.2 Matriz de clasificación de variables.

		CL	ASIFICACIÓ	N	
VARIABLES	Relación	Naturaleza	Escala de medición	Dimensión	Forma de medición
Mejoramiento	Independiente	Cuantitativa Continua	Razón	Multidimensional	Indirecta
Diseño de infraestructura vial	Independiente	Cuantitativa continua	Razón	Multidimensional	Indirecta

3.2.3 Matriz de operacionalización de variables. (Anexo 3)

3.3 Población, muestra y muestreo

3.3.1 Población

La carretera que une el distrito Huancaquito Alto con la carretera Panamericana Norte, provincia y distrito de Virú, 2021.

3.3.2 Muestra y muestreo

3.3.2.1 Técnica de muestreo

La técnica utilizada para la presente investigación es de carácter no probabilístico puesto que la muestra no fue tomada bajo selección aleatoria, sino a consideración de los investigadores. Esta se dio por juicio de expertos siguiendo criterios que contribuyan de la mejor manera a la investigación como son: Progresiva con mayor tráfico, zonas con diferente tipo de suelo, cercanía a zonas urbanas

3.3.2.2 Tamaño de la muestra

Se consideró como tamaño de la muestra a los 5.4 kilómetros que conforman la carretera que une Huancaquito Alto y la Carretera Panamericana.

3.3.3 Unidad de análisis

Se consideró como unidad de análisis a los 5.4 kilómetros que conforman la carretera que une Huancaquito Alto y la Carretera Panamericana.

3.4 Técnicas e instrumentos de recolección de datos, validez y confiabilidad.

3.4.1 Técnica de recolección de datos

Se usará la técnica de observación de campo no experimental para profundizar en el conocimiento del comportamiento y la recopilación de datos para el estudio de topografía, estudio de tráfico y estudio de mecánica de suelos. También se hará uso de la técnica de análisis documental para la recolección de datos necesarios a través de la consulta del Manual de Carreteras "Suelos, Geología, Geotecnia y Pavimentos" Sección: Suelos y Pavimentos para el diseño de los espesores de las capas de la estructura del

pavimento, así también, el Manual de Carreteras "Diseño geométrico" DG - 2018 para el diseño geométrico de la vía en estudio.

3.4.2 Instrumentos de recolección de datos

En relación a las técnicas anteriormente mencionadas para la recolección de datos, se hizo uso de los siguientes instrumentos:

En el estudio de clasificación vehicular se utilizó la guía de observación N°1 (Anexo 4.1)

Para la toma de muestras en el estudio de mecánica de suelos utilizamos la guía de observación N°2 (Anexo 4.2)

Para el registro de los puntos en el levantamiento topográfico se usaron las guías de observación N°3, N°4 y N°5 (Anexo 4.3,4.4,4.5)

Para el estudio hidrológico se usará la ficha de recolección de datos N° 06

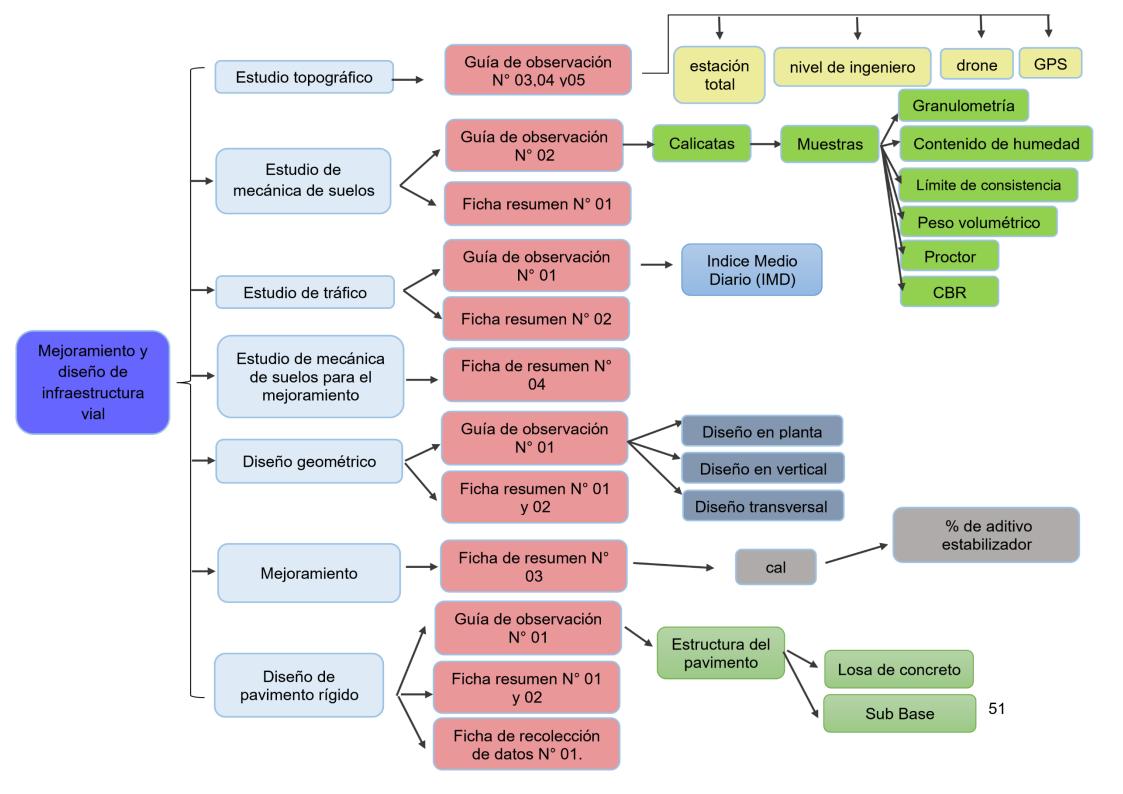
Tabla 6. Instrumentos y validaciones

ETAPAS DE LA INVESTIGACIÓN (Dimensiones)	INSTRUMENTOS	VALIDACIÓN
Estudio de mecánica de suelos	Ficha resumen N° 04	Juicio de expertos
Mejoramiento	Ficha de resumen N° 03	Juicio de expertos
Levantamiento topográfico	 Guía de observación N° 03,04 y 05 	Juicio de expertos
Estudio de mecánica de suelos	 Guía de observación N° 02 Ficha resumen N° 01 	Juicio de expertos.
Estudio de tráfico	• Guía de observación N° 01	Ministerio de Transportes y Comunicaciones (MTC)
2014410 40 1141100	• Ficha resumen N° 02	Juicio de expertos
Diseño geométrico	 Guía de observación N° 01 Ficha resumen N° 01 y 02 	Juicio de expertos.

	 Guía de observación N° 01 	
Diseño de pavimento	 Ficha resumen N° 01 y 02 Ficha de recolección de datos N° 01. 	Juicio de expertos.

3.4.3 Validación de los instrumentos de recolección de datos

Los instrumentos usados para la correcta recolección de datos que se emplearán en la presente investigación, serán validados por profesionales de la ingeniería civil, los cuales cuentan con bastos conocimientos y experiencias relacionadas a la investigación.


La guía de observación N° 02 será validada por el Ing. José Christian Huertas Martell (CIP 148105), mientras que las guías de observación número 03, 04 y 05 serán validadas por el ingeniero civil Jorge Luis Plasencia Valdiviezo. (CIP 182197)

Las fichas de resumen N° 01 y 02 serán validadas por los ingenieros civiles Villar Quiroz, Josualdo Carlos (CIP 106997), Horna Araujo, Luis Alberto (CIP 24002) Flores Acuña Víctor Raúl con (CIP 64319), Cesar Abel Carrasco Torres (CIP 69471), Santos Hermenegildo Mantilla (CIP 45516), Víctor Alberto Tenorio Flores (CIP 96776) y, por último, la ficha de resumen N° 03 será validada por el ingeniero civil Amado Teófilo Espinola Villanueva con CIP (208707)

Por otro lado, la guía de observación número 1 se encuentra validada por el ministerio de transportes y comunicaciones (MTC).

3.4.4 Confiabilidad del instrumento de recolección de datos Las herramientas y equipos utilizados en el del levantamiento topográfico cuentan con su certificado de calibración vigente, así como también los datos recabados por el EMS tienen el respaldo del ingeniero José Huertas Martell con (CIP 148105) quien es el jefe del laboratorio donde se realizó el estudio.

3.5 Procedimientos

3.5.1 Estudio topográfico

Para el registro en campo se utilizó una estación total, un nivel de ingeniero, un drone y 2 GPS con sus respectivos accesorios complementarios junto con las guías de observación N°3, N°4 y N°5 las cuales consisten en una libreta de campo donde tomamos nota de los datos para su posterior análisis a través de los programas de computadora Topcon Tools, Agisoft Photoscan, Autodesk Recap, AutoCAD Civil 3d y MS Excel. que nos ayudó a procesar los datos tomados con los gps y con el drone para que de esta manera llegar a conseguir la nube de puntos y posteriormente recrear la superficie de la zona objeto de investigación para obtener sus curvas de nivel y su geo referencia.

3.5.2 Estudio de mecánica de suelos

Se realizaron excavaciones de cinco calicatas a una profundidad de 1.5 metros, para la toma de las muestras de todos los estratos que se encuentren en cada una de ellas, las muestras fueron cuidadosamente transportadas para que de esta manera el contenido de humedad de la muestra no se vea alterado, además se tomó el registro del tamaño de los estratos y la profundidad a la que se encontraban en la guía de observación N°2. Luego estos datos junto con las muestras fueron enviadas a un laboratorio para el posterior análisis de sus propiedades físicas (análisis granulométrico, contenido de humedad, límites de consistencia, peso volumétrico y clasificación) además de los ensayos de Proctor modificado y CBR.

3.5.3 Estudio de tráfico

En el estudio de tráfico se procedió a realizar el conteo de vehículos que transitan en un periodo de 24 horas diarias durante 7 días, los datos obtenidos se registraron en la guía de observación N°1 en la cual se cuantificó las unidades vehiculares que hacen uso de la vía, así como también el tipo de estos, para posteriormente poder determinar los factores de diseño para la vía objeto de estudio.

3.5.4 Diseño geométrico

Para la realización del diseño geométrico se usaron los resultados del en estudio topográfico y los parámetros indicados en los manuales de diseño el cual se encuentra debidamente reglamentado y respaldado por el Ministerio de Transportes y Comunicaciones de Perú (MTC) así también, se hizo uso del software Autocad Civil 3D para la importación de los puntos, creación y edición de la superficie, triangulación y etiquetado de las curvas de nivel, ingreso de los criterios de diseño, dibujo de los alineamientos, realización de las tablas de elementos de curvas, creación del perfil longitudinal y sus bandas (cota terreno, cota rasante, altura de corte/relleno), creación de secciones transversales, reporte de movimiento de tierras, tabla de volúmenes totales.

3.5.5 Mejoramiento

En relación a los resultados obtenidos en el estudio de mecánica de suelos se buscó mejorar las propiedades mecánicas del material que se usará en la base mediante su mezcla con cal para que de esta manera se pueda llegar a alcanzar los niveles mínimos de resistencia (% CBR) requeridos. Este proceso de dio determinando a través de un estudio de mecánica de suelos la resistencia natural del material y posteriormente los porcentajes de aditivo estabilizador (cal) necesarios a usarse para lograr su optimo desarrollo durante todo el tiempo para el que fue diseñado.

3.5.6 Diseño de pavimento rígido

En el diseño de los espesores del pavimento se usó el porcentaje de CBR obtenido determinado en el estudio de suelos, y el índice medio diario anual (IMDA) que proporciona el estudio de tráfico vehicular, se siguió lo indicado en el manual de suelos y pavimentos, el cual está basado en el método AASHTO 93 quien a su vez sustenta su metodología en la deformación y resistencia a la fatiga para determinar los espesores de las capas del pavimento los cuales estarán en condiciones de resistir las cargas impuestas por el tráfico vehicular en su totalidad, los agentes climáticos

externos, asegurarnos un óptimo drenaje superficial y un costo de mantenimiento en relación a su beneficio.

3.6 Método de análisis de datos

Por tratarse de una investigación de tipo no experimental descriptiva transversal (debido a que la toma de datos se dará en un solo periodo de tiempo). El análisis de datos se hará a través del uso de cuadros y gráficas que permitan brindar y explicar de manera sencilla y práctica los procesos de cálculo y diseño, así como los resultados de la investigación.

3.7 Aspectos éticos

Esta investigación se llevó a cabo respetando todos los principios éticos y morales, habiendo citado y referenciado a cada uno de los autores de las tesis y fuentes informativas utilizadas para enriquecer la presente investigación. Las citas y referencias se hicieron utilizando los formatos ISO 690 y 690-2.

Así mismo se adjuntará un reporte de similitud brindado por la plataforma *turnitin* la cual otorgará el porcentaje de similitud y originalidad de la investigación el mismo que será adjuntado en la sección de anexos.

3.8 Desarrollo del proyecto de investigación

3.8.1 Levantamiento topográfico

3.8.1.1 Trabajos de campo

Ubicación:

Sector : Huancaquito Alto

Distrito : Virú

Provincia : Virú

Departamento : La Libertad

Marcado de los BM's

Se procedió a marcar y establecer los puntos de foto control marcando con yeso y pintura cada 500 metros, esto sirvió posteriormente para tomar coordenadas con el GPS y para referenciar con las fotos que tomará posteriormente el drone.

Figura 2. Punto de foto control N° 2 y N°4

Figura 3. Toma de datos con GPS

Levantamiento de la poligonal

La toma de datos para la poligonal abierta se hizo con estación total y haciendo uso de la libreta de campo. Ver guía de observación N°3 (anexo 4.3)

Figura 4. Toma de datos para la poligonal con estación total.

Nivelación

Para este estudio se hizo uso de un nivel topográfico y una regla de ingeniero, además de la libreta de campo correspondiente. Ver guía de observación N° 04 (Anexo 4.4)

Figura 5.

Toma de datos con nivel

Registro fotográfico con drone.

El registro fotográfico se hizo con un drone y se sobrevoló toda la zona de estudio.

Figura 6. Registro fotográfico con drone

Referenciación a punto geodésico

Todos los datos obtenidos por el GPS se referenciaron a un punto geodésico certificado por el instituto geográfico nacional

Figura 7. Punto geodésico certificado

3.8.1.2 Trabajos en gabinete

Procesamiento de imágenes

Se utilizo el software Agisoft Photoscan para el procesamiento de las imágenes que el drone tomó en campo para posteriormente ingresar los puntos de foto control los cuales se utilizaron para georreferenciar las fotografías y darle una cota obteniendo de esta manera la nube de puntos.

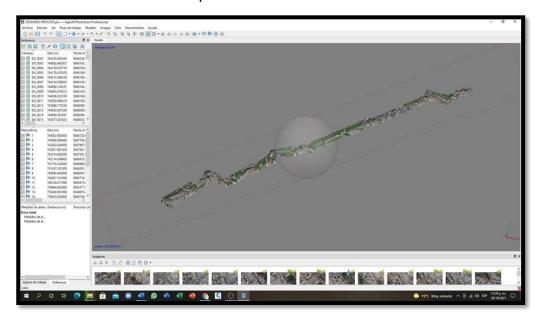


Figura 8. Procesamiento de imágenes con Agisoft

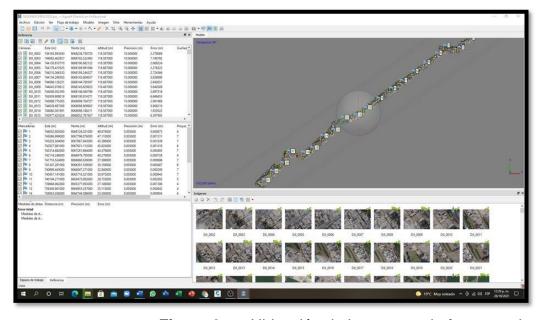


Figura 9. Ubicación de los puntos de fotocontrol

Importación de la nube de puntos y depuramiento

Una vez terminado el procesamiento de las imágenes se procede a generar la nube de puntos y a exportarlas para ser importadas con el software Autodesk Recap, en el cual se procede a depurar todo lo que altera el relieve natural del terreno como son árboles, autos, etc.

Una vez obtenida lista nuestra nube de puntos se procedió a guardar y queda lista para ser importada en el Civil 3D

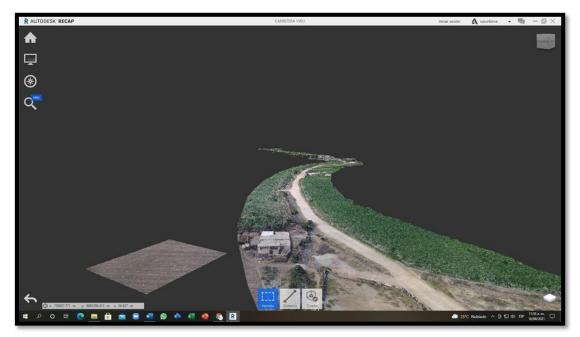


Figura 10. Limpieza y tratamiento de la nube de puntos con Autodesk Recap

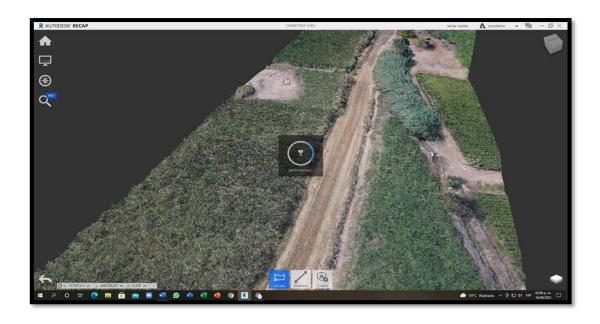


Figura 11. Limpieza y tratamiento de la nube de puntos con Autodesk Recap

Importación de la nube de puntos a Civil 3D y generación de curvas de nivel En este proceso ya se tiene la nube de puntos completa y lista para ser importada por el Civil 3D y generar la superficie del terreno, las curvas de nivel, el perfil, etc.

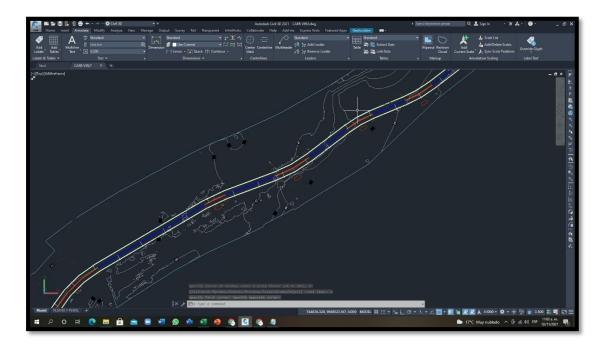


Figura 12. Generación de la superficie del terreno con Civil 3D

3.8.2 Estudio de tráfico

El conteo de unidades vehiculares se realizó durante una semana, durante 24 horas del día según el flujo vehicular de la zona. Para ello se hizo uso de una guía de observación N° 1(Anexo 4.1) para colocar los datos obtenidos del estudio de tráfico, la fecha de inicio fue el 05 de septiembre, y se culminó el 11 de septiembre del presente año. Para el estudio se ubicó una estación de conteo en la progresiva 2+460.

3.8.2.1 Conteo vehicular

Los datos que se obtuvieron al realizar el conteo de vehículos que hacen uso de la vía, se registraron en la guía de observación, para posteriormente ser procesados en una hoja de cálculo, obteniendo el IMDA para después obtener el número de ejes equivalentes (EE).

3.8.2.2 Indice Medio Diario Semanal (IMDs)

Para la obtención de este dato se calculó mediante la siguiente

fórmula.

Ecuación 2. Índice Medio Diario Semanal

$$IMDs = \sum \frac{Vi}{7}$$

Dónde:

IMDs = Índice Medio Diario Semanal

Vi = Volumen vehicular diario

3.8.2.3 Factor de Corrección Estacional (Fce)

Los valores del peaje de Viru para el factor de corrección estacional se obtuvieron de la Ficha Técnica Estándar del Ministerio de Transportes y Comunicaciones.

Vehículos Livianos	Fce=1.0231
Vehículos Pesados	Fce=1.0210

3.8.2.4 Indice Medio Diario Anual (IMDa)

Para determinar el IMDa el índice medio diario se multiplico por el índice medio diario semanal y por el factor de corrección estacional.

Ecuación 3. Índice Medio Diario Anual

$$IMDa = IMDs \ x \ Fce$$

Dónde:

IMDa = Indice medio diario anual

Fce = Factor de corrección estacional

IMDs = Indice medio diario semanal

Vehículos livianos

Tabla 7.Resumen del tráfico ligero

D/		a w		3.61			
Día	Automóvil	S. Wagon	Pick Up	Panel	Rural	Micro	
Domingo 05/09/2020	29	4	25	4	8	1	
Lunes 06/09/2020	39	4	17	7	12	3	
Martes 07/09/2020	32	7	27	3	4	2	
Miércoles 08/09/2020	27	2	27	7	14	3	
Jueves 09/09/2020	30	1	22	9	6	0	
Viernes 10/09/2020	33	5	24	9	8	2	
Sábado 11/09/2020	30	5	19	11	6	2	
IMDa	32	4	24	7	8	2	

Vehículos pesados

 Tabla 8.
 Resumen del tráfico pesado

Día	Ómnibus		camión			Semitraylers				Traylers				
Dia	2E	2E	3E	4E	2S1	2S2	2S3	3S1	3S2	>=3S3	2T2	2T3	3T2	>=3T3
Domingo 05/09/2020	5	25	11	19	7	3	2	2	2	1	2	3	4	2
Lunes 06/09/2020	2	25	16	14	11	4	1	5	10	5	5	3	2	3
Martes 07/09/2020	3	34	19	8	12	7	6	4	6	5	1	5	4	5
Miércoles 08/09/2020	0	38	10	15	7	5	3	1	6	5	2	6	3	7
Jueves 09/09/2020	2	37	13	12	6	6	5	4	4	3	9	2	3	2
Viernes 10/09/2020	2	35	21	17	7	7	3	3	3	1	6	4	9	6
Sábado 11/09/2020	3	31	17	12	4	3	10	3	4	2	4	4	2	2
IMDa	2	33	16	14	8	5	4	3	5	3	4	4	4	4

3.8.2.5 Tasas Anuales de Crecimientos

Los datos se obtienen de la ficha técnica estándar del Ministerio de Transportes y Comunicaciones para la región la Libertad.

Tabla 9. Tasas anuales de crecimiento

Tasa anual de crecimiento Vehículos livianos	r:	1.26 %
Tasa anual de crecimiento Vehículos pesados	r:	2.83 %

3.8.3.6 Factor direccional y Factor Carril (Fd, Fc)

La obtención de estos datos se hizo de del Manual de Carreteras, Suelos, Geología, Geotecnia, y Pavimentos de acuerdo al número de calzadas, sentidos y carriles por sentido.

Tabla 10. Factor directional y factor carril

N° de calzadas	1
N° de sentidos	2
N° de carriles por sentido	1
Ed	0.50
Ec	1
Factor direccional * factor carril	0.50

3.8.3.7 Factor Camión (FC)

Para el cálculo del factor camión se obtuvo determinando los ejes equivalentes, donde se multiplica el valor de carga de un tipo de vehículo respecto a su eje, así como lo indica el cuadro 6.4 del Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos, donde nos da los siguientes resultados Ver (Anexo 7).

3.8.3.8 Calculo de ESAL

Para el cálculo del ESAL se utilizó los valores de la sumatoria del factor IMDa que se multiplico por 365 días del año por el factor Fc y por el factor del crecimiento acumulado Fca.

Cálculo de ESAL:

Ecuación 4. Cálculo de ESAL

$$\#EE = 365 * (\Sigma f. IMDa) * Fd * Fc * Fca$$

Dónde:

Factor direccional Fd : 0.50

Factor carril Fc : 1

Factor direccional * factor carril : 0.50

$$#EE = 365 * (\Sigma f. IMDa) * Fd * Fc * Fca$$

$$#EE = 365 * (782.4777) * 0.50 * 26.41$$

#EE = 3771479

3.8.3 Estudio de mecánica de suelos

3.8.3.1 Estudios de campo

Determinación de la cantidad de exploraciones.

Se determinó la cantidad de calicatas según lo indicado en el manual de suelos y pavimentos.

Tabla 11. Numero de ensayos Mr y CBR

Carreteras Duales o Multicarril: carreteras de IMDA entre 6000 y 4001 vel/día, de calzadas separadas, cada una con dos o más carriles	Calzada 2 carriles por sentido: 1 Mr cada 3 km x sentido y 1 CBR cada 1 km x sentido Calzada 3 carriles por sentido: 1 Mr cada 2 km x sentido y 1 CBR cada 1 km x sentido Calzada 4 carriles por sentido: 1 Mr cada 1 km y 1 CBR cada 1 km x sentido
Carreteras de Primera Clase: carreteras con un IMDA entre 4000 - 2001 veh/día, de una calzada de dos carriles.	Cada 1 km se realizará un CBR
Carreteras de Segunda Clase: carreteras con un IMDA entre 2000 - 401 veh/día, de una calzada de dos carriles.	Cada 1.5 km se realizará un CBR
Carreteras de Tercera Clase: carreteras con un IMDA entre 400 - 201 veh/día, de una calzada de dos carriles.	Cada 2 km se realizará un CBR
Carreteras de Bajo Volumen de Tránsito: carreteras con un IMDA ≤ 200 veh/día, de una calzada.	Cada 3 km se realizará un CBR

Fuente: Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013

Tabla 12. Determinación del número de calicatas

Tipo de Carretera	Profundidad (m)	Número mínimo de Calicatas	Observación
Autopistas: carreteras de IMDA mayor de 6000 veh/día, de calzadas separadas, cada una con dos o más carriles	1.50m respecto al nivel de subrasante del proyecto	Calzada 2 carriles por sentido: 4 calicatas x km x sentido Calzada 3 carriles por sentido: 4 calicatas x km x sentido Calzada 4 carriles por sentido: 6 calicatas x km x sentido	Las calicatas se ubicarán longitudinalmente
Carreteras Duales o Multicarril: carreteras de IMDA entre 6000 y 4001 vehídia, de caizadas separadas, cada una con dos o más carriles	1.50m respecto al nivel de subrasante del proyecto	Calzada 2 carriles por sentido: 4 calicatas x km x sentido Calzada 3 carriles por sentido: 4 calicatas x km x sentido Calzada 4 carriles por sentido: 6 calicatas x km x sentido	y en forma alternada
Carreteras de Primera Clase: carreteras con un IMDA entre 4000- 2001 veh/día, de una calzada de dos carriles.	1.50m respecto al nivel de subrasante del proyecto	4 calicatas x km	
Carreteras de Segunda Clase: carreteras con un IMDA entre 2000-401 veh/día, de una calzada de dos carriles.	1.50m respecto al nivel de subrasante del proyecto	3 calicatas x km	Las calicatas se ubicarán longitudinalmente
Carreteras de Tercera Clase: carreteras con un IMDA entre 400-201 veh/dia, de una calzada de dos carriles.	1.50m respecto al nivel de subrasante del proyecto	2 calicatas x km	y en forma alternada
Carreteras de Bajo Volumen de Tránsito: carreteras con un IMDA ≤ 200 veh/día, de una calzada.	1.50m respecto al nivel de subrasante del proyecto	1 calicata x km	

Fuente: Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013

En ese sentido se dispuso el sondaje y toma de muestras de 5 calicatas de 150 cm de profundidad cada una.

Determinación de la cantidad de ensayos de CBR

Debido a que el volumen de tráfico es bajo y, en el estudio de tráfico se determinó un IMDA inferior a los 200 vehículos por día, se terminó hacer un solo ensayo de CBR.

Tabla 13. Resumen de los sondajes realizados

Sondaje	Tipo de sondaje	Profundidad (m)	Cota (msnm)	Profundidad NAF (m)	Progresiva	Lado
C-1	Calicata	1.50	100	NP	0+483.60	Derecha
C-2	Calicata	1.50	100	NP	1+519.00	Derecha
C-3	Calicata	1.50	100	NP	2+571.20	Derecha
C-4	Calicata	1.50	100	NP	3+549.80	Izquierda
C-5	Calicata	1.50	100	NP	4+620.00	Derecha

3.8.3.2 Ensayos de laboratorio

Los ensayos de laboratorio realizados fueron los mostrados a continuación

Perfiles estratigráficos

Tabla 14. Detalles de las muestras

Muestra	AASHTO	Prof	Cont. De	% en muestra de:			mites d istencia		
		(m) Hui	(m)	Humedad	Grava	Arena	Finos	LL	LP
C-1, M-1	A-2-4(0)	0.25-1.50	8.10	7.53	89.28	3.20	NP	NP	NP
C-2, M-1	A-4(4)	0.25-1.50	7.80	0.29	44.86	54.85	14.81	6.81	8.00
C-3, M-1	A-3(0)	0.20-1.50	10.11	0.00	97.39	2.62	NP	NP	NP
C-4, M-1	A-4(5)	0.25-1.50	8.50	0.37	40.63	59.00	17.20	6.78	10.42
C-5, M-1	A-4(1)	0.20-1.50	9.21	0.00	60.27	39.74	17.09	6.72	10.37

Ensayo de Proctor modificado

Tabla 15. Contenido de humedad

Muestra N°	1	2	3	4	5
Tara N°	1	2	3	4	5
Peso Tara + suelo Húmedo (gr)	58.81	54.53	56.93	53.60	56.12
Peso Tara + suelo seco (gr)	53.99	51.10	53.08	49.53 4.07	51.04 5.08
Peso del agua (gr)	2.82	3.43	3.85		
Peso tara (gr)	20.20	17.60	22.48	20.30	19.51
Peso suelo seco (gr)	33.79	33.50	30.60	29.23	31.53
Contenido de Humedad	8.35	10.24	12.58	13.92	16.11

Tabla 16. Determinación de la densidad

Muestra N°	1	2	3	4	5
Peso molde + Peso suelo humedo (gr)	3850	3960	4070	4050	3958
Peso molde (gr)	2150	2150	2150	2150	2150
Peso suelo húmedo (gr)	1700	1810	1920	1900	1808
Volumen suelo humedo (cm3)	956.04	956.04	956.04	956.04	956.04
Densidad húmeda (gr/cm3)	1.78	1.89	2.01	1.99	1.89
Densidad seca (gr/cm3)	1.64	1.72	1.78	1.74	1.63

Razón soporte de california

Tabla 17. Valor del CBR para el diseño del pavimento

Muestra	OCH (%)	MDS (%)	CBR (%)
C-1, M-1	12.58	1.78	9

Nivel freático

La excavación de las calicatas se hizo a un nivel de -1.50 m hasta el cual no se llegó a encontrar la napa freática.

Capacidad de soporte de la sub - rasante

La sub rasante es la superficie del terreno natural, su capacidad de soporte junto a las distintas características de las otras capas del pavimento y el tránsito; hacen las variables necesarias una un buen diseño de pavimento.

Tabla 18. Categorías de subrasante

Categorías de Subrasante	CBR
S ₀ : Subrasante Inadecuada	CBR < 3%
S ₁ : Subrasante Pobre	De CBR ≥ 3% A CBR < 6%
S ₂ : Subrasante Regular	De CBR ≥ 6% A CBR < 10%
S ₃ : Subrasante Buena	De CBR ≥ 10% A CBR < 20%
S ₄ : Subrasante Muy Buena	De CBR ≥ 20% A CBR < 30%
S ₅ : Subrasante Excelente	CBR ≥ 30%

Fuente: Manual de Suelos, Geología, Geotecnia y Pavimentos, 2013

Tabla 19. Capacidad de soporte de la sub rasante

Muestra	CBR (%)	Categoría	Mejoramiento
C-2, M-1	9	Regular	No necesita

3.8.4 Mejoramiento del material a usarse en la sub base. Para este estudio se procedió a extraer una muestra de afirmado de la zona "El Barrio", lugar cercano a la zona de estudio, la cual fue enviada al laboratorio para los ensayos de abrasión, análisis granulométrico, CBR, contenido de humedad, límites y Proctor.

Con la finalidad de mejorar la resistencia del material se hicieron pruebas agregándole porcentajes de cal en proporciones de 2%,4%,6% y 8%.

3.8.4.1 Ensayos del afirmado sin aditivo estabilizador

3.8.4.1.1 Desgaste por abrasión (NTP 400.019)

Procesamiento de datos A = 5 005.5 g B = 3 459.6 g%Desgaste = 100*(A-B) /A% Desgaste = 30.88%

Tamaño de	el Agregado	MÉTODO					
Pasa Tamiz	Retenido T.	A	В	С	D	F	G
2"	1 1/2"					5000±50	
1 1/2"	1"	1250±25				5000±25	5000±25
1"	3/4"	1250±25					5000±25
3/4"	1/2"	1250±10	2500±10				
1/2"	3/8"	1250±10	2500±10				
3/8"	1/4"			2500±10			
1/4"	Nº4			2500±10			
Nº4	Nº8				5000±10		

3.8.4.1.2 Análisis Granulométrico

Se realizó un análisis de la granulometría de la muestra a través del paso por un juego completo de tamices.

Tabla 20. Ensayo Granulométrico por Tamizado

	Tabla 20. Ensayo Granulométrico por Tamizado ARENA ARCILLOSA CON GRAVAS									
		Tamiz		Peso	Porcentaje	Porcentaje	Porcentaje			
				Retenido	Retenido	Retenido	que Pasa			
PESO:				(g)	Parcial (%)	Acumulado	(%)			
5175.8g	Malla	Abert.	Serie			(%)				
0.1.0.09		(mm)								
	3"		32854	0.0	0.0	0.0	100.0			
		76.200								
SUCS: SC	2"	70.200	33708	0.0	0.0	0.0	100.0			
		50.800								
AASHTO:	1	30.000	42260	89.6	1.7	1.7	98.3			
A-2-7 (2)	1/2"	20 400		23.0		•••	33.0			
	1"	38.100	42774	196.5	3.8	5.5	94.5			
%W 6.52	1"		72//7	130.5	0.0	0.0	04.0			
%Grava:	3/4"	25.400	46118	334.8	6.5	12.0	88.0			
17.7	3/4		40110	334.0	0.5	12.0	00.0			
	0/0"	19.050	40007	407.4	0.4	444	05.0			
L.L 43.30	3/8"		42967	107.4	2.1	14.1	85.9			
%Arena:		9.500								
48.9	Nº 4		34993	186.0	3.6	17.7	82.3			
		4.750								
LD 04 50	Nº 10		45806	385.2	7.4	25.1	74.9			
I.P 24.58		2.000								
%Finos: 33.40	Nº 20		45149	695.5	13.4	38.5	61.5			
33.40		0.840								
	Nº 40		43661	655.2	12.7	51.2	48.8			
D10: -		0.420								
Cu: -	Nº 80		34874	227.4	4.4	55.6	44.4			
		0.180								
D30: -	Nº		34875	342.0	6.6	62.2	37.8			
Cc: -	100	0.150								
	Nº		44659	227.4	4.4	66.6	33.4			
D60: 0.78	200	0.075								
	< Nº	0.0.0		1728.8	33.4	100.0	0.0			
	200									

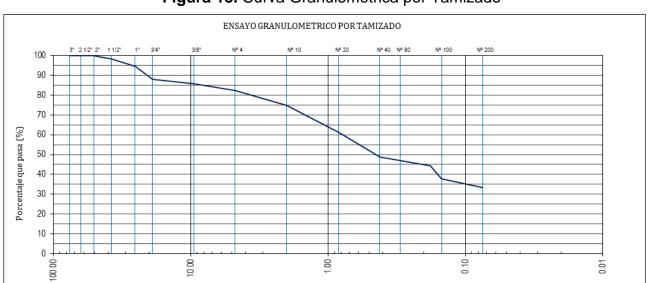


Figura 13. Curva Granulométrica por Tamizado

3.8.4.1.3 Contenido de Humedad evaporable en los suelos

Tabla 21. Contenido de Humedad evaporable en los suelos

Abertura (mm)

ARENA ARCILLOSA CON GRAVAS						
Muestra	M-1	M-2				
Masa del Contenedor (g)	80.59	69.58				
Masa de SH + Contenedor (g)	853.60	787.41				
Masa de SS + Contenedor (g)	806.59	743.25				
Masa de SS (g), Ms	726.00	673.67				
Masa de Agua (g), Mw	47.01	44.16				
Contenido de Humedad (%)	6.48	6.56				
	6.52					

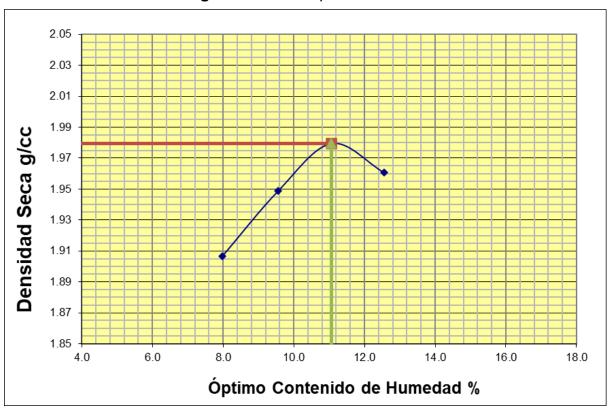
3.8.4.1.4 Límites de consistencia

En el cálculo de los límites se encontraron los siguientes valores.

Límite plástico: 18.72% Límite líquido: 43.30%

El detalle del ensayo se encuentra en el anexo 7.2

3.8.4.1.5 Proctor Ensayo de compactación N.T.P 339.141


Tabla 22. Proctor Ensayo de compactación

N° DE ENSAYO	1 2		3		4			
Peso molde+Suelo Húmedo (gr)	7137.60 7299.60		7434.70		7452.50			
Peso del Molde (gr)	2764.90		2764.90		2764.90		2764.90	
Peso Suelo Húmedo (gr)	4372.70		4534.70		4669.80		4687.60	
Volumen del molde (cc)	2124.00 2124.00		4.00	2124.00		2124.00		
Densidad Suelo húmedo (g/cc)	2.0)59	2.135		2.199		2.207	
Número de Tarro	1	2	3	4	5	6	7	
Numero de Tarro	-1	2	3	4	5	ь	- /	8
Cantidad de agua agregada	8% 9.5%		11%		12.5%			
Peso Tarro +Suelo húmedo (gr)	342.28	295.41	312.92	336.47	329.78	385.20	287.33	355.97
Peso Tarro + Suelo Seco (gr)	321.14	278.37	289.54	312.55	302.49	351.68	262.41	322.16
Peso Tarro (gr)	52.70	67.50	44.20	62.80	56.10	48.30	64.90	51.60
Peso del agua	21.14	17.04	23.38	23.92	27.29	33.52	24.92	33.81
Peso de suelo seco	268.44	210.87	245.34	249.75	246.39	303.38	197.51	270.50
Humedad (%)	7.9	8.1	9.5	9.6	11.1	11.0	12.6	12.5
Humedad promedio (%)	7.9	978	9.554		11.062		12.557	
Densidad Seca (g/cc)	1.9	907	1.949		1.980		1.961	

METODO	В
NUMERO DE CAPAS	5
NUMERO DE GOLPES	25
DSM (g/cm³)	1.98
OCH (%)	11.06

DATOS DEL MOLDE	
N°:	1
PESO(g):	2764.9
VOLUMEN (cc):	2124.0

Figura 14. Óptimo contenido de Humedad

3.8.4.1.6 Gráficos de penetración CBR a 55, 26 y 12 golpes

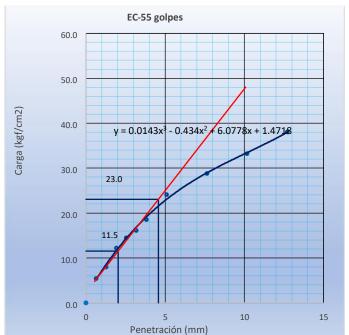
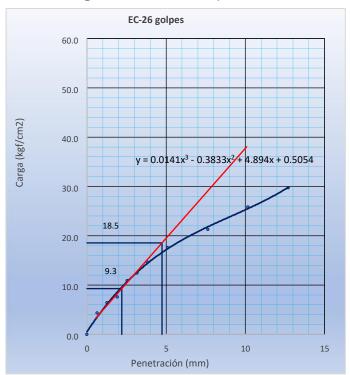



Figura 15. Gráfico penetración CBR EC-55 golpes

Figura 16. Gráfico penetración CBR EC-26 golpes

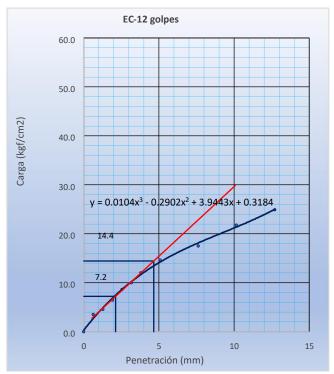


Figura 18. Gráfico del CBR

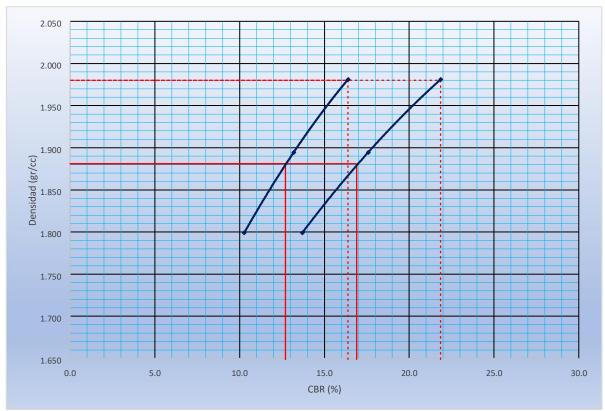


Tabla 23. Proctor

Proctor / Densic	dad Natural / O.C.H.				
Máxima Dens. Seca (gr/cc)			1.980		
95% de la M.D.S. (gr/cc)					
Densidad Natural (gr/cc)					
Öptimo Humedad (%)			11.06%		
N golpes	C.B.R. (0.1")	C.B.R. (0.2")	Densidad		
56	16.4	21.8	1.981		
26	13.2	17.6	1.895		
12 10.3 13.7					
RESULTADO:	S DE C.B.R. (0.1")				
C.B.R. al 100% de la M.D.S.					
C.B.R. al 95% de la M.D.S.					
RESULTADOS	S DE C.B.R. (0.2")		-07		
C.B.R. al 100% de la M.D.S.					
C.B.R. al 95% de la M.D.S.					
% de Expan	sión		Bajo		

3.8.4.2 Ensayos agregando el 2% de cal como aditivo estabilizador

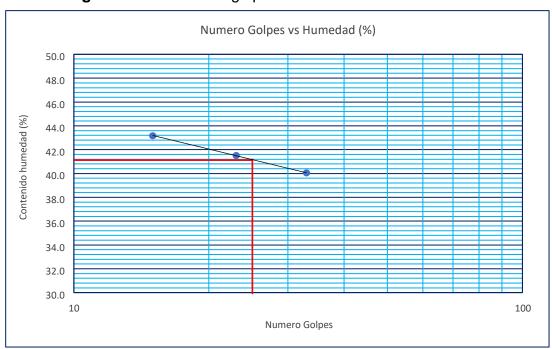

3.8.4.2.1 Límites de consistencia

Tabla 24. Determinación del límite plástico

DETERMINA	ACIÓN DEL L	ÍMITE PLÁSTICO	O (MTC E-111)
Nº Tarro	1	2	
Tarro + Suelo húmedo. (g)	19.98	20.47	
Tarro + Suelo seco (g)	18.73	19.16	
Peso Agua (g)	1.25	1.31	
Peso del Tarro (g)	12.90	13.02	
Peso del suelo seco (g)	5.83	6.14	
Humedad (%)	21.44	21.34	
Limite Plastico (%)		21.39	

DETERA	MNACIÓN DE	L LÍMITE LÍOUIF	O DE LOS					
DETERMINACIÓN DEL LÍMITE LÍQUIDO DE LOS SUELOS (MTC E-110)								
		,						
Nº Tarro	3	4	5					
Numero de Golpes	15	23	33					
Peso tarro + suelo húmedo (g)	43.92	45.77	49.58					
Peso tarro+suelo seco (g)	35.25	36.03	39.85					
Peso del Agua (g)	8.67	9.74	9.73					
Peso del tarro (g)	15.17	12.57	15.55					
Peso del suelo seco (%)	20.08	23.46	24.3					
Humedad (%)	43.18	41.52	40.04					
Limite Liquido (%)		41.12						

Figura 19. Número de golpes vs contenido de humedad

Límite líquido (%)	41.12
Límite Plástico (%)	21.39

3.8.4.2.2 Proctor

Tabla 25. Ensayo de Proctor

N° DE ENSAYO		1	2		3		14	4	
Peso molde+Suelo Húmedo (g)	599	4.50	6098.00		6176.00		6182.00		
Peso del Molde (g)	408	4.00	4084.00		4084.00		4084.00		
Peso Suelo Húmedo (g)	191	0.50	201	4.00	209	2.00	2098.00		
Volumen del molde (cc)	939	0.00	939	9.00	939	939.00		939.00	
Densidad Suelo húmedo (g/cc)	2.0	35	2.145		2.228		2.234		
Número de Tarro	1	2	3	4	5	6	7	8	
Cantidad de H₂O agregada	8.0)%	10.	.0%	12.0%		14.0%		
Peso Tarro +Suelo húmedo (g)	325.14	239.86	363.87	316.85	285.41	308.55	276.23	283.6	
Peso Tarro + Suelo Seco (q)	303.95	226.10	335.29	292.16	260.48	281.56	247.69	253.58	
Peso Tarro (g)	42.60	51.20	49.20	47.50	51.80	55.60	42.90	41.50	
Peso del agua	21.19	13.76	28.58	24.69	24.93	26.99	28.54	29.98	
Peso de suelo seco	261.35	174.90	286.09	244.66	208.68	225.96	204.79	212.08	
Humedad (%)	8.1	7.9	10.0	10.1	11.9	11.9	13.9	14.1	
Humedad promedio (%)	7.9	88	10.	041	11.946		14.036		
Densidad Seca (g/cc)	1.8	84	1.949		49 1.990		1.959		

METODO	С
NUMERO DE CAPAS	5
NUMERO DE GOLPES	56
DSM (g/cm³)	1.99
OCH (%)	11.95

	DATOS DEL MOLDE
1	Nº:
4084.0	PESO(g):
939.0	VOLUMEN (cc):

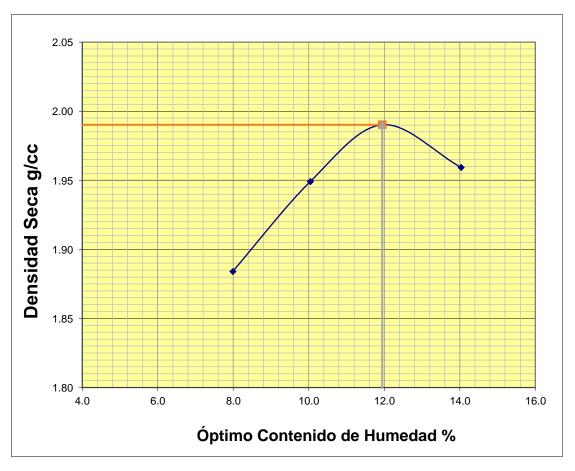
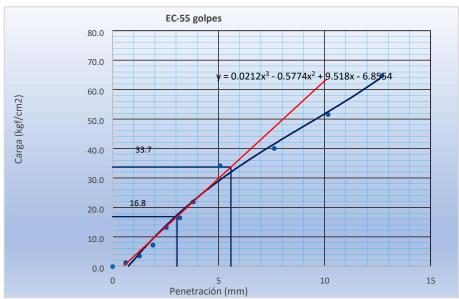



Figura 20. Curva de Contenido de Humedad

3.8.4.2.3 Gráficos de penetración CBR a 55, 26 y 12 golpes

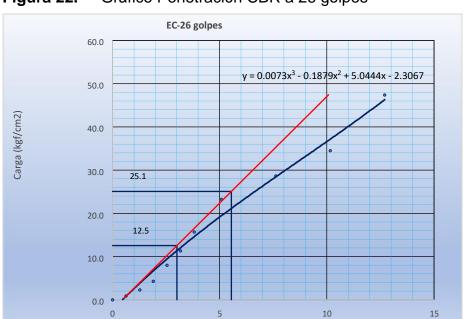


Figura 22. Gráfico Penetración CBR a 26 golpes

Penetración (mm)

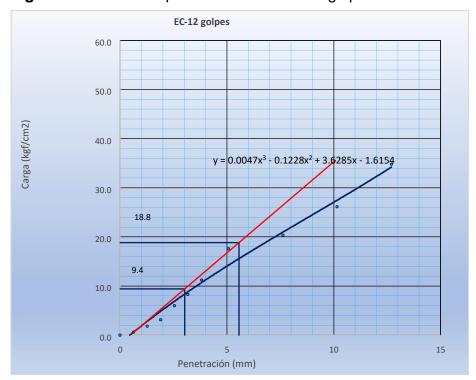


Figura 24. Gráfico final de CBR

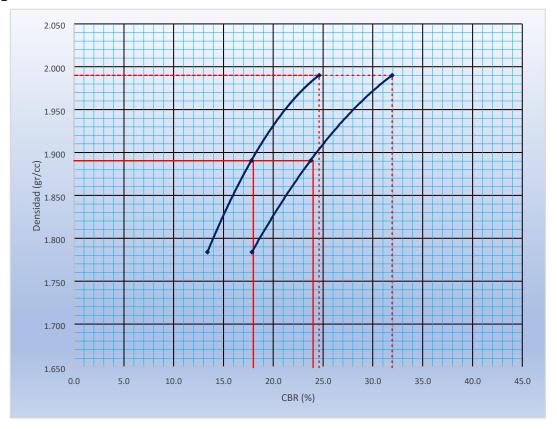


Tabla 26. Resultado

PROCTOR	/ DENSIDAD NATU	JRAL / O.C.H.	
Máxima Dens, Seca (gr/cc)			1.990
95% de la M.D.S. (gr/cc)			1.891
Densidad Natural (gr/cc)			1050
Optimo Humedad (%)	AMAR		11.95%
N golpes	C.B.R. (1")	C.B.R. (2")	Densidad
56	24.6	31.9	1.990
26	17.8	23.8	1.891
12	13.4	17.9	1.784
RESI	JLTADOS DE C.B.F	R. (0.1")	
C.B.R. al 100% de la M.D.S.		de de	24.6
C.B.R. al 95% de la M.D.S.			16.9
RES	ULTADOS DE C.B.I	R. (0.2")	
C.B.R. al 100% de la M.D.S.			31.9
C.B.R. al 95% de la M.D.S.		45	24.0
% de Expansión			bajo

3.8.4.3 Ensayos agregando el 4% de cal como aditivo estabilizador

3.8.4.3.1 Límites de consistencia

Tabla 27. Determinación de los límites de consistencia

Nº Tarro	3	4	13
Tarro + Suelo humedo. (g)	25.61	25.44	
Tarro + Suelo seco (g)	25.18	25.17	
Peso Agua (g)	0.43	0.27	i k
Peso del Tarro (g)	23.38	24.03	
Peso del suelo seco (g)	1.80	1.14	
Humedad (%)	23.89	23.68	6
Limite Plastico (%)		23.79	
	5.00	6.00	7.00
Numero de Golpes	5.00 15	6.00 24	7.00
Nº Tarro Numero de Golpes Peso tarro + suelo humedo (g)	39500	1883	11 11 11 11 11 11 11 11 11 11 11 11 11
Numero de Golpes Peso tarro + suelo humedo (g) Peso tarro+suelo	15	24	33
Numero de Golpes Peso tarro + suelo humedo (g) Peso tarro+suelo seco (g) Peso del Agua (g)	15 51.59	24 48.56	33 50.69
Numero de Golpes Peso tarro + suelo	15 51.59 45.17	24 48.56 43.73	33 50.69 45.23
Numero de Golpes Peso tarro + suelo humedo (g) Peso tarro+suelo seco (g) Peso del Agua (g) Peso del tarro (g) Peso del suelo seco	15 51.59 45.17 6.42	24 48.56 43.73 4.83	33 50.69 45.23 5.46
Numero de Golpes Peso tarro + suelo humedo (g) Peso tarro+suelo seco (g) Peso del Agua (g)	15 51.59 45.17 6.42 29.42	24 48.56 43.73 4.83 31.33	33 50.69 45.23 5.46 30.57

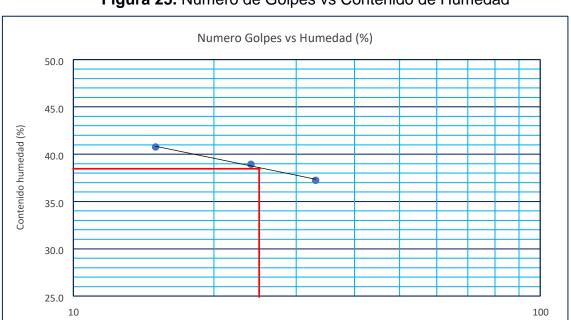


Figura 25. Número de Golpes vs Contenido de Humedad

Límites de consistencia de suelos

Tabla 28. Resumen de límites de índice de plasticidad

Numero Golpes

LÌMITE LÌQUIDO (%)	38.46
LÍMITE PLÁSTICO (%)	23.79
INDICE DE PLASTICIDAD (%)	14.67

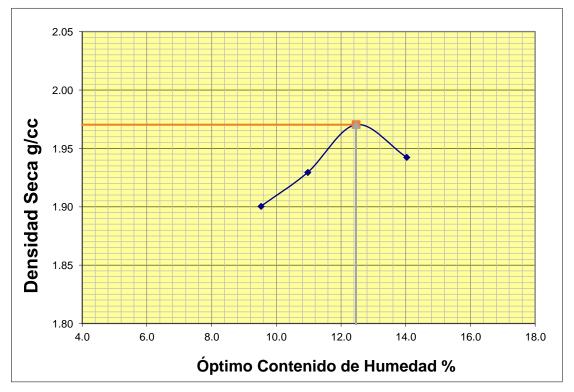

3.8.4.3.2 Proctor Ensayo de compactación N.T.P 339.141

Tabla 29. Ensayo de Proctor

N° DE ENSAYO		1		2	3		4		
Peso molde+Suelo Húmedo (q)	7186.00		7312.50		7471.30		7469.20		
Peso del Molde (g)	276	4.90	2764.90		2764.90		2764.90		
Peso Suelo Húmedo (g)	442	1.10	454	7.60	470	4706.40		4704.30	
Volumen del molde (cc)	2124.00		2124.00		2124.00		2124.00		
Densidad Suelo humedo (g/cc)	2.0	081	2.1	141	2.2	216	2.2	15	
Número de Tarro	1	2	3	4	5	6	7	8	
Cantidad de H₂O agregada	9.	5%	11.	.0%	12.	5%	14.	0%	
Peso Tarro +Suelo humedo (q)	267.51	274.79	261.74	277.84	271.98	263.55	260.15	280.29	
Peso Tarro + Suelo Seco (g)	247.59	254.61	240.69	255.75	246.62	239.87	234.74	253.27	
Peso Tarro (g)	39.45	41.82	50.67	52.37	44.71	48.36	54.50	59.80	
Peso del agua	19.92	20.18	21.05	22.09	25.36	23.68	25.41	27.02	
Peso de suelo seco	208.14	212.79	190.02	203.38	201.91	191.51	180.24	193.47	
Humedad (%)	9.6	9.5	11.1	10.9	12.6	12.4	14.1	14.0	
Humedad promedio (%)	9.5	527	10.	970	12.	462	14.	032	
Densidad Seca (g/cc)	1.9	900	1.9	929	1.9	970	1.9	142	

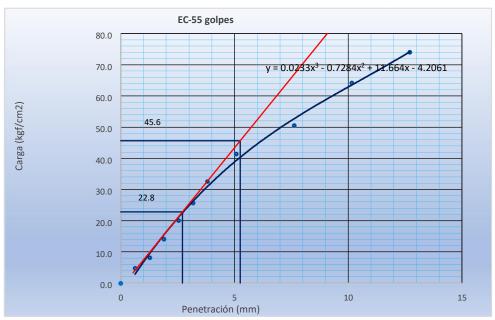

METOD	0 C	
NUMERO DE CAPA	S 5	
NUMERO DE GOLPE	S 56	
DSM (g/cm	n³) 1.97	
осн (9	%) 12.46	ò
DATOS DEL MOLDE	- 100	
N°:		1
PESO(g):	2764.	
VOLUMEN (cc):	2124.	

Figura 26. Curva de Contenido de Humedad

3.8.4.3.3 Gráficos de penetración CBR a 55, 26 y 12 golpes

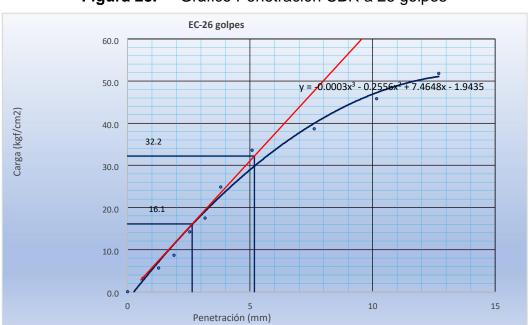
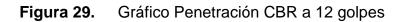



Figura 28. Gráfico Penetración CBR a 26 golpes

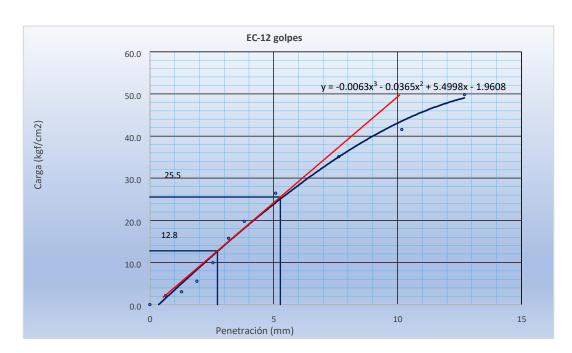
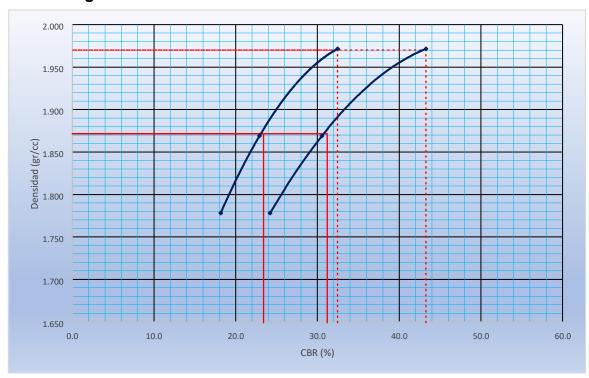



Tabla 30. Resultado final

PROCTOR / DENSID	AU NATUKA	L/U.C.H.	
Máxima Dens. Seca (gr/cc)	1.970		
95% de la M.D.S. (gr/cc)			1.872
Densidad Natural (gr/cc)			
Optimo Humedad (%)	A12 MARCHANIA		12.46%
N golpes	Densidad		
55	32.5	43.3	1.971
26	22.9	30.5	1.869
12	1.778		
RESULTADOS	DE C.B.R. (0	.1")	
C.B.R. al 100% de la M.D.S.	32.5		
C.B.R. al 95% de la M.D.S.	23.4		
RESULTADOS	DE C.B.R. (0	.2")	
C.B.R. al 100% de la M.D.S.	43.3		
C.B.R. al 95% de la M.D.S.	31.2		
% de Expansión			BAJA

Figura 30. Gráfico del CBR

3.8.4.4 Ensayos agregando el 6% de cal como aditivo estabilizador

3.8.7.4.1 Límites de consistencia

Tabla 31. Límites de Consistencia

		EL LÍMITE PLÀSTICO (MTC I	E-111)
Nº Tarro	3	4	
Tarro + Suelo humedo. (g)	22.46	26.83	
Tarro + Suelo seco	22.13	25.85	20
Peso Agua (g)	0.33	0.98	
Peso del Tarro (g)	20.98	22.45	
Peso del suelo seco (g)	1.15	3.40	
Humedad (%)	28.70	28.82	0
Limite Plastico (%)		28.76	
DETER	MINACIÓN DEL LÍMIT	E LÍQUIDO DE LOS SUELO	S (MTC E-110)
Nº Tarro	5.00	6.00	7.00
Nº Tarro Numero de Golpes Peso tarro + suelo humedo (g) Peso tarro+suelo	5.00 16	6.00 23	7.00 31
Nº Tarro Numero de Golpes Peso tarro + suelo humedo (g) Peso tarro+suelo seco (g)	5.00 16 53.88	6.00 23 47.78	7.00 31 52.21
Nº Tarro Numero de Golpes Peso tarro + suelo humedo (g) Peso tarro+suelo	5.00 16 53.88 48.14	6.00 23 47.78 44.21	7.00 31 52.21 47.31
Nº Tarro Numero de Golpes Peso tarro + suelo humedo (g) Peso tarro+suelo seco (g) Peso del Agua (g)	5.00 16 53.88 48.14 5.74	6.00 23 47.78 44.21 3.57	7.00 31 52.21 47.31 4.90
Nº Tarro Numero de Golpes Peso tarro + suelo humedo (g) Peso tarro+suelo seco (g) Peso del Agua (g) Peso del tarro (g) Peso del suelo	5.00 16 53.88 48.14 5.74 33.50	6.00 23 47.78 44.21 3.57 34.65	7.00 31 52.21 47.31 4.90 33.65

Tabla 32. Límites de Consistencia de Suelos

LÍMITE LÍQUIDO (%)	36.80
LÍMITE PLÁSTICO (%)	28.76
ÍNDICE DE PLASTICIDAD (%)	8.04

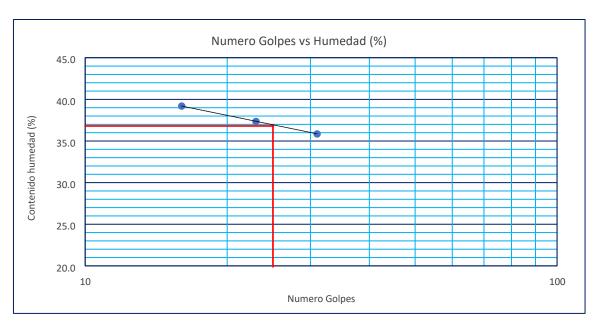


Figura 31. Número de Golpes vs Contenido de Humedad

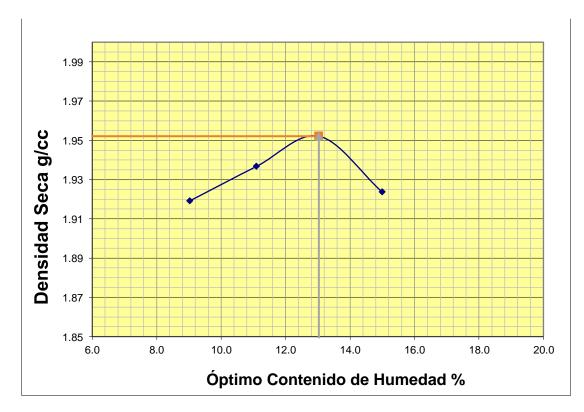
3.8.4.4.2 Proctor Ensayo de compactación N.T.P 339.141

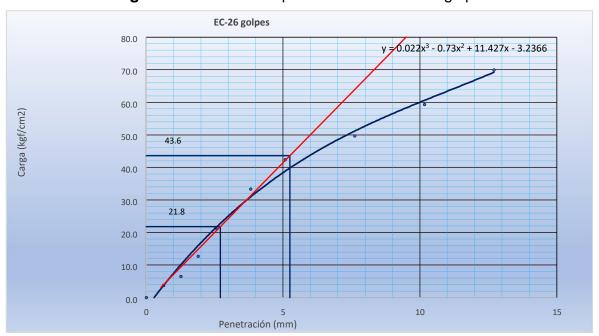
Tabla 33. Ensayo de Proctor

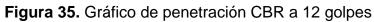
<u>Húmedo_(q)</u>	720	9.25	733	5.00	745	1.50	746	3.50
Peso del Molde (g)	276	4.90	276	4.90	2764.90		2764.90	
Peso Suelo Húmedo (q)	444	4.35	457	0.10	468	6.60	4698.60	
Volúmen del molde (cc)	212	4.00	212	4.00	212	4.00	212	4.00
Densidad Suelo humedo (g/cc)	2.0	92	2.	152	2.2	206	2.2	212
Número de Tarro	1	2	3	4	5	6	7	8
Cantidad de H₂O agregada	9.0	0%	11.	.0%	13.	.0%	15.	.0%
Peso Tarro +Suelo humedo (g)	321.02	357.19	265.14	303.82	346.28	358.05	265.69	287.74
Peso Tarro + Suelo Seco (q)	298.63	331.78	243.69	278.24	312.47	322.62	236.55	256.47
Peso Tarro (q)	51.64	49.21	50.85	47.21	52.62	51.19	42.71	47.38
Peso del aqua	22.39	25.41	21.45	25.58	33.81	35.43	29.14	31.27
Peso de suelo seco	246.99	282.57	192.84	231.03	259.85	271.43	193.84	209.09
Humedad (%)	9.1	9.0	11.1	11.1	13.0	13.1	15.0	15.0
Humedad promedio (%)	9.0)29	11.	098	13.	032	14.	994
Densidad Seca (g/cc)	1.9	19	1.5	937	1.9	952	1.9	924

Tabla 34. Resumen de límites

METODO		
NUMERO DE CAPAS		
NUMERO DE GOLPES		
DSM (g/cm³)		
OCH (%)		
DATOS DE	L MOLDE	
N°:	1	
PESO(g): 276		
VOLUMEN (cc):	2124.0	




Figura 32. Curva de Contenido de Humedad


3.8.4.4.3 Gráficos de penetración CBR a 55, 26 y 12 golpes

EC-55 golpes 100.0 0.0607x³ 1.6423x² + 18.161x - 7.4999 90.0 80.0 Carga (kgf/cm2) 70.0 57.8 60.0 50.0 40.0 28.9 30.0 20.0 10.0 0.0 10 15 Penetración (mm)

Figura 33. Gráfico de penetración CBR a 55 golpes

Figura 34. Gráfico de penetración CBR a 26 golpes

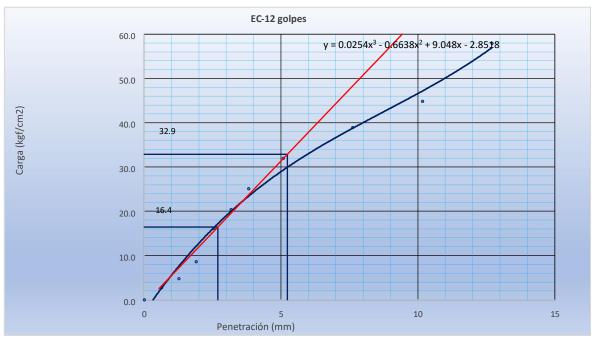
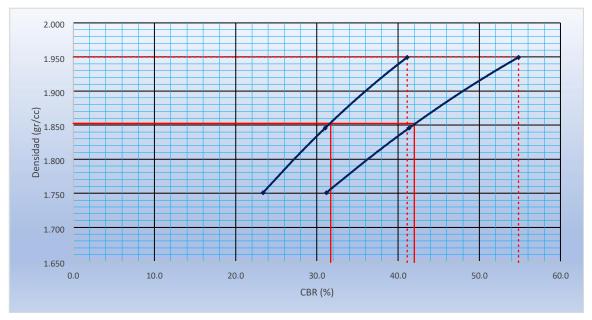



Tabla 35. Proctor

PROCTOR / DENSID	AD NATURAL	/ O.C.H.	
Máxima Dens. Seca (gr/cc)			1.950
95% de la M.D.S. (gr/cc)			1.853
Densidad Natural (gr/cc)			14
Optimo Humedad (%)			13.03%
N golpes	C.B.R. (0.1")	C.B.R. (0.2")	Densidad
55	41.1	54.8	1.950
26	31.0	41.3	1.846
12	1.751		
RESULTADOS	DE C.B.R. (0.	1")	
C.B.R. al 100% de la M.D.S.			41.1
C.B.R. al 95% de la M.D.S.			31.7
RESULTADOS	DE C.B.R. (0.	2")	
C.B.R. al 100% de la M.D.S.	54.8		
C.B.R. al 95% de la M.D.S.	42.0		
% de Expans	sión		BAJA

Figura 36. Gráfico del CBR

3.8.4.5 Ensayos agregando el 8% de cal como aditivo estabilizador

3.8.7.5.1 Límites de consistencia

Tabla 36. Límites de consistencia

DETERMINACIÓN DEL LÍMITE PLÁSTICO (MTC E-111)					
№ Tarro	3	4			
Tarro + Suelo humedo. (g)	27.91	27.54			
Tarro + Suelo seco (g)	25.41	25.33			
Peso Agua (g)	2.50	2.21			
Peso del Tarro (g)	16.58	17.48			
Peso del suelo seco (g)	8.83	7.85			
Humedad (%)	28.31	28.15			
Limite Plastico (%)	28.23				

Nº Tarro	2.00	3.00	4.00
Numero de Golpes	17	23	33
Peso tarro + suelo humedo (g)	47.38	46.88	46.81
Peso tarro+suelo seco (g)	41.57	41.62	42.12
Peso del Agua (g)	5.81	5.26	4.69
Peso del tarro (g)	26.27	26.84	28.27
Peso del suelo seco (%)	15.30	14.78	13.85
Humedad (%)	37.97	35.59	33.86
Limite Liquido (%)	2507VV60 53	35 25	50 DA 000

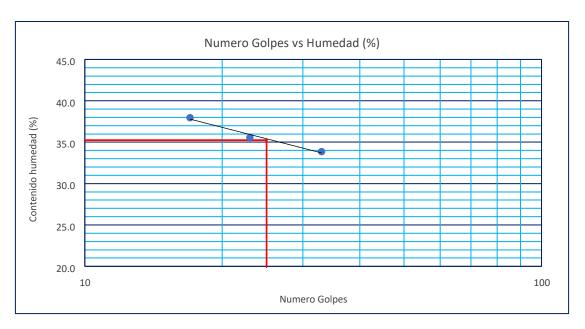


Figura 37. : Número de Golpes vs Contenido de Humedad

Límites de consistencia de suelos

Tabla 37. Límites de Consistencia de Suelos

LÍMITE LÍQUIDO (%)	35.25
LÍMITE PLÁSTICO (%)	28.23
ÍNDICE DE PLASTICIDAD (%)	7.02

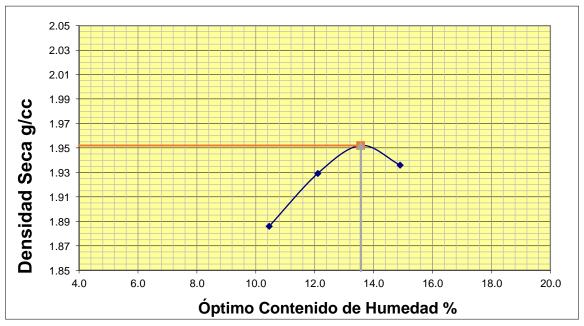

3.8.7.5.2 Proctor Ensayo de compactación N.T.P 339.141

Tabla 38. Ensayo de Proctor

N° DE ENSAYO		1		2	;	3		4
Peso molde+Suelo Húmedo (g)	718	9.14	7358.50		7473.30		7489.60	
Peso del Molde (g)	276	4.90	276	4.90	2764.90		2764.90	
Peso Suelo Húmedo (g)	442	4.24	459	3.60	4708.40		4724.70	
Volumen del molde (cc)	212	4.00	212	4.00	212	2124.00		4.00
Densidad Suelo húmedo (g/cc)	2.0)83	2.163 2.217		2.224			
Número de Tarro	1	2	3	4	5	6	7	8
Cantidad de H₂O agregada	10.	.5%		.0%		.5%	15.0%	
Peso Tarro +Suelo húmedo (g)	283.17	323.69	314.47	285.92	300.25	287.96	333.22	278 43
Peso Tarro + Suelo Seco (g)	261.34		286.47	261.45	271.59	261.29	297.58	
Peso Tarro (g)	51.55	48.32	55.91	58.63	61.09	63.88	58.13	56.32
Peso del agua	21.83	26.16	28.00	24.47	28.66	26.67	35.64	28.84
Peso de suelo seco	209.79	249.21	230.56	202.82	210.50	197.41	239.45	193.27
Humedad (%)	10.4	10.5	12.1	12.1	13.6	13.5	14.9	14.9
Humedad promedio (%)	10.	451	12.	105		563	14.	903
Densidad Seca (g/cc)	1.8	386	1.9	929	1.9	952	1.9	936

METODO	С
NUMERO DE CAPAS	5
NUMERO DE GOLPES	56
DSM (g/cm³)	1.95
OCH (%)	13.56
DATOS DEL MOLDE	
N°:	1
PESO(g):	2764.9
VOLUMEN (cc):	2124.0

Figura 38. : Curva de Contenido de Humedad

3.8.7.5.3 Gráficos de penetración CBR a 55, 26 y 12 golpes

Figura 39. Gráfico de penetración CBR a 55 golpes

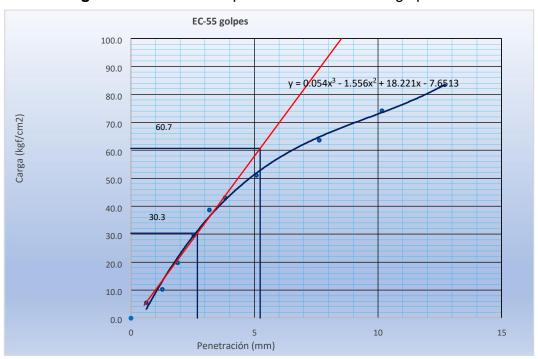


Figura 40. Gráfico de penetración CBR a 26 golpes

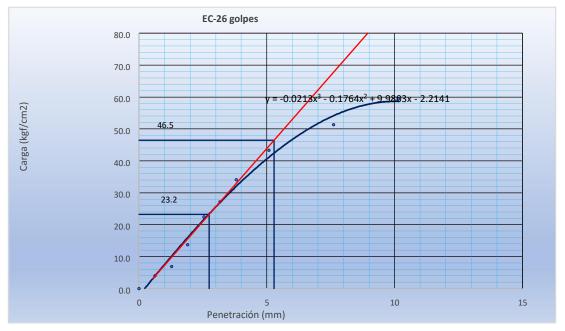


Figura 41. Gráfico de penetración CBR a 12 golpes

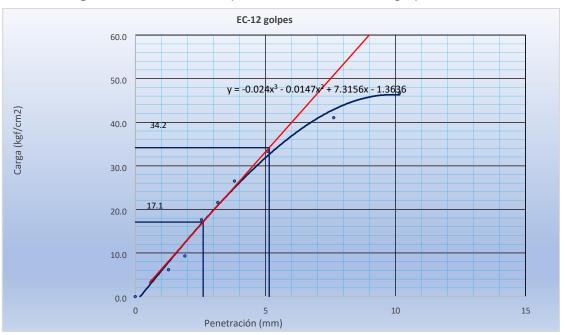
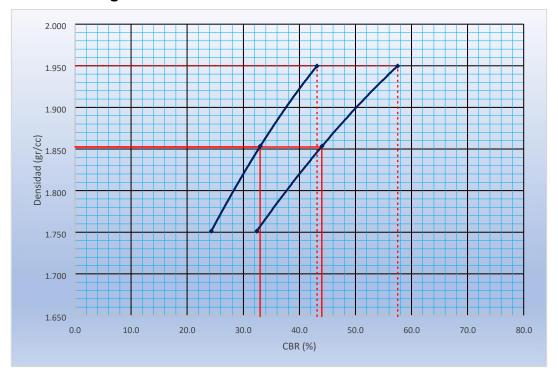



Tabla 39. Proctor

Máxima Dens. Seca (gr/cc)			1.950
95% de la M.D.S. (gr/cc)	1.853		
Densidad Natural (gr/cc)			23
Optimo Humedad (%)			13.56%
N golpes	C.B.R. (0.1")	C.B.R. (0.2")	Densidad
55	43.2	57.5	1.950
26	33.0	44.1	1.854
12	24.3	32.4	1.751
RESULTADOS	DE C.B.R. (0.	.1")	
C.B.R. al 100% de la M.D.S.			43.2
C.B.R. al 95% de la M.D.S.	33.0		
RESULTADOS	DE C.B.R. (0.	.2")	
C.B.R. al 100% de la M.D.S.	57.5		
C.B.R. al 95% de la M.D.S.	44.0		
% de Expansi	ión		BAJA

Figura 42. Gráfico del CBR

3.8.5 Diseño de pavimento rígido según AASHTO 93

Para realizar el cálculo de la estructura del pavimento rígido se necesitó obtener el ESAL, CBR, módulo de reacción de la subrasante, tipo de tráfico, coeficiente estadístico de desviación estándar normal, nivel de confiabilidad, desviación estándar combinado, índice de serviciabilidad final según rango de tráfico índice de serviciabilidad inicial según rango de tráfico y el diferencial de serviciabilidad según rango de tráfico.

3.8.5.1 Transito (ESALs)

Este dato se obtuvo del Manual de Suelos, Geología, Geotecnia y Pavimentos, donde el valor del W18= 3 771 4479 y se identificó un tipo de tráfico Tp7.

Tabla 40. Tipo de tráfico de diseño

TIPOS TRAFICO PESADO	RANGOS DE TRAFICO
EXPRESADO EN EE	PESADO EXPRESADO EN EE
Тр7	>3 000,000 EE ≤ 5 000,000 EE

3.8.5.2 Serviciabilidad

3.8.3.2.1 Indice de Serviciabilidad Inicial (PI)

Según el del Manual de Suelos, Geología, Geotecnia y Pavimentos, el índice de serviciabilidad inicial PI=4.30.

3.8.5.2.2 Indice de Serviciabilidad Final (PT)

El método de ASHTO determina el valor de índice de serviciabilidad final según el rango de tráfico PT=2.50

3.8.5.3 Confiabilidad (R)

El valor de la confiabilidad se determinó en base al tipo de tráfico según el Manual de Suelos, Geología, Geotecnia y Pavimentos

Tabla 41. Valor de Confiabilidad

TIPO DE CAMINOS	TRAFICO	EQUIVA	ES LENTES ILADOS	NIVEL DE CONFIABILIDAD (R)
Resto de caminos	Тр7	3,000,001	5,000,000	85 %

3.8.5.4 Desviación Estándar Normal (Zr)

Este dato se obtuvo del Manual de Suelos, Geología, Geotecnia y Pavimentos, según el tipo de tráfico y el nivel de confiabilidad, donde se identificó el Zr=-1.036.

Tabla 42. Valor de Desviación Estándar Normal

TIPO DE CAMINOS	TRAFICO	EQUIVA	ES LENTES JLADOS	NIVEL DE CONFIABILIDAD (R)	DESVIACION ESTANDAR NORMAL (ZR)
Resto de caminos	Tp7	3,000,001	5,000,000	85 %	-1.036

3.8.5.5 Desviación Estándar Combinada (So)

Según el Manual de Suelos, Geología, Geotecnia y Pavimentos recomienda trabajar el So=0.35.

3.8.5.6 Resistencia del Suelo (K).

Cuando hay superioridad de calidad en la base o sub base que, en la subrasante, aumenta el coeficiente de reacción, para ellos se aplicó la siguiente formula.

Ecuación 5. coeficiente de reacción combinado

$$K_c = (1 + (\underbrace{}_{38} K_0 \times K_0) \times K_0$$

Dónde:

K1 (kg/cm3) : Coeficiente de reacción de la sub base granular

KC (kg/cm3) : Coeficiente de reacción combinado

K0 (kg/cm3) : Coeficiente de reacción de la subrasante H: Espesor de la subbase granular

$$K_c = 62.04$$

3.8.5.7 Resistencia a la Flexotracción (MR) Este

valor se define por la siguiente fórmula.

Ecuación 6. Módulo de rotura

$$Mr = a\sqrt{f'c}$$

Datos:

$$a = 2.407$$

f'c= 280 kg/cm²

Tabla 43. Valores de resistencia del concreto

RANGOS DE TRÁFICO PESADO EXPRESADO EN EE	RESISTENCIA MÍNIMA A LA FLEXOTRACCIÓN DEL CONCRETO (MR)	RESISTENCIA MÍNIMA EQUIVALENTE A LA COMPRESIÓN DEL CONCRETO (F'C)
≤ 5'000,000 EE	40 kg/cm ²	280 kg/cm ²

$$Mr = 2.407\sqrt{280 \ kg/cm2}$$

$$Mr = 40 \ kg/cm2$$

3.8.5.8 Módulo Elástico del Concreto (EC)

De acuerdo a AASHTO 93 el módulo elástico se estima usando la siguiente formula.

Ecuación 7. Módulo elástico del concreto

$$Ec = 57,000 * (f'c)^{0.5}$$
 (f'c en PSI)

$$Ec = 57,000 * (3982.524)^{0.5}$$

3.8.5.9 Drenaje (cd)

El valor asumido para las capas granulares se obtiene del Manual de Suelos, Geología, Geotecnia y Pavimentos, es 1.00.

3.8.5.10 Transferencia de cargas (J)

Este parámetro se usa como trasmisor de cargas en las juntas, y el valor que se obtuvo según el Manual de Suelos, Geología, Geotecnia y Pavimentos para concreto hidráulico con pasadores fue J=2.8.

Tabla 44. valores de coeficientes de transferencias de cargas

			l.	
TIPO DE BERMA	GRANULAR	O ASFÁLTICA	Concreto	HIDRÁULICO
	SI (con pasadores)	NO (con pasadores)	SI (con pasadores)	NO (con pasadores)
VALORES J	3.2	3.8 – 4.4	2.8	3.8

3.8.5.11 Espesores mínimos

En el Manual de Suelos, Geología, Geotecnia y Pavimentos nos indicó en la figura 14.2 el espesor mínimo de la base de la losa de 15 cm.

3.8.5.12 Calculo del Espesor de Losa para Pavimento Rígido

Para calcular el espesor de la losa se realizó mediante la siguiente ecuación de AASHTO 93:

Ecuación 8. Espesor de pavimentos de concreto

<u>ΔPSI</u>

 $log^{10}(^{4.5-1.5}) + (4.22-0.32P_t)\overline{xlog_{10}(1.51Mx]^rC}^{dx}(0(.090.09D_0D_{.75}^{0.75}--17.132.38_0)_{.25})) \ log_{10}(W_{18}) \\ = Z_RS_0 + 7.35 \ log_{10}(D+25.4) - 10.39 + 1.25x10_{19}$

Se reemplazo los datos a la formula donde nos dio el siguiente valor a usar como espesor de la losa de concreto:

 E_c/k) (D + 25.4)

Losa de Concreto = 21cm Sub Base = 15 cm

3.8.6 Diseño geométrico

Este proceso se llevó a cabo siguiendo los parámetros que están dispuestos en la DG 2018 y en el reglamento nacional de vehículos.

3.8.6.1 Clasificación por demanda

Considerando los valores del estudio de tráfico en el cual encontramos un IMDA inferior a 400 veh/día, se determinó que la carretera es de tercera clase.

Figura 43. Carreteras de tercera clase

101.05 Carreteras de Tercera Clase

Son carreteras con IMDA menores a 400 veh/día, con calzada de dos carriles de 3.00 m de ancho como mínimo. De manera excepcional estas vías podrán tener carriles hasta de 2.50 m, contando con el sustento técnico correspondiente.

Fuente: DG 2018

3.8.6.2 Clasificación por orografía

Por tener pendientes en su mayoría menores al 3% se determinó que el terreno es PLANO (tipo 1)

Figura 44. Terreno Plano

102.01 Terreno plano (tipo 1)

Tiene pendientes transversales al eje de la vía, menores o iguales al 10% y sus pendientes longitudinales son por lo general menores de tres por ciento (3%), demandando un mínimo de movimiento de tierras, por lo que no presenta mayores dificultades en su trazo.

Fuente: DG 2018

3.8.6.3 Vehículo de diseño

Según los datos obtenidos en el estudio de tráfico y en concordancia con el reglamento nacional de vehículos, se determinó que el tipo de vehículo T3S3

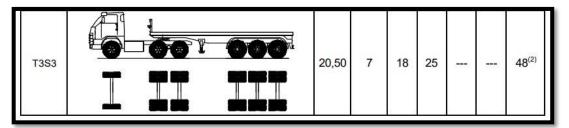


Figura 45. Vehículo de diseño

Fuente: Reglamento Nacional de Vehículos

3.8.6.4 Velocidad de diseño

En concordancia con la clasificación por demanda y por orografía se procedió a elegir la velocidad de diseño: 40 km/h.

Tabla 45. Rangos de Velocidad de Diseño en Función a la Clasificación por Demanda y Orografía.

CLASIFICACIÓN	OROGRAFÍA		VEL	-						n/h)	RAMO	,
		30	40	50	60	70	80	90	100	110	120	130
	Plano											
Autopista de	Ondulado											
primera clase	Accidentado											
721	Escarpado											
	Plano								1			
Autopista de	Ondulado											Î
segunda clase	Accidentado		2							2		
	Escarpado											
	Plano		\$\$	-00			4 3					3
Carretera de	Ondulado											
primera clase	Accidentado		,									5-
	Escarpado											
200	Plano			- 0								0
Carretera de	Ondulado											
segunda clase	Accidentado		2									-
	Escarpado											
	Plano											
Carretera de	Ondulado											
tercera clase	Accidentado											
	Escarpado						-					4

Fuente: DG2018

3.8.6.5 Radio mínimo y peraltes máximos.

Por tratarse de un área rural y plana, se utilizó un radio mínimo de 50 y un peralte máximo de 8%

Tabla 46. Valores de Peralte Máximo

Pueblo o ciudad	Peralte Má	ximo (p)	Ver
Pueblo o ciudad	Absoluto	Normal	Figura
Atravesamiento de zonas urbanas	6.0%	4.0%	302.02
Zona rural (T. Plano, Ondulado o Accidentado)	8.0%	6.0%	302.03
Zona rural (T. Accidentado o Escarpado)	12.0	8.0%	302.04
Zona rural con peligro de hielo	8.0	6.0%	302.05

Fuente: DG 2018

3.8.6.6 Distancia de visibilidad de parada

Esta distancia es la necesaria que necesita un vehículo para detenerse antes de alcanzar algún objeto que se encuentre en su trayectoria mientras se conduce a la velocidad directriz.

Tabla 47. Distancia de visibilidad de parada (metros) en pendiente 0%

Velocidad de diseño						
(km/h)	(m)	(m)	Calculada	Redondeada		
20	13.9	4.6	(m) 18.5	(m) 20		
30	20.9	10.3	31.2	35		
40	27.8	18.4	46.2	50		
50	34.8	28.7	63.5	65		
60	41.7	41.3	83.0	85		
70	48.7	56.2	104.9	105		
80	55.6	73.4	129.0	130		
90	62.6	92.9	155.5	160		
100	69.5	114.7	184.2	185		
110	76.5	138.8	215.3	220		
120	93.4	165.2	248.6	250		
130	90.4	193.8	284.2	285		

Fuente: DG 2018

3.8.6.7 Calzada y bombeo

De acuerdo a lo indicado por el manual de diseño geométrico, la calzada deberá contar con 2 carriles de 3 metros cada uno y se consideró un bombeo del 2% como consecuencia de los bajos índices de precipitación en la zona.

Tabla 48. Valores de Bombeo de la Calzada

	Bombe	0 (%)
Tipo de Superficie	Precipitación <500 mm/año	Precipitación >500 mm/año
Pavimento asfáltico y/o concreto Portland	2.0	2.5
Tratamiento superficial	2.5	2.5-3.0
Afirmado	3.0-3.5	3.0-4.0

Fuente: DG 2018

3.8.6.8 Pendiente mínima y máxima-

Se obtuvo como pendiente mínima 0.2% debido a que se consideró un bombeo del 2.0% y una pendiente máxima del 8%

3.8.6.8 Sección transversal típica

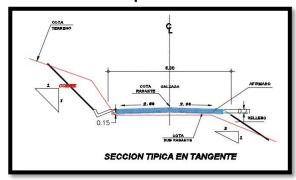


Figura 46. Sección Transversal Típica

3.8.6.9 Talud de corte y relleno

Se trata de la inclinación que se le da lateralmente a la carretera. Tanto en casos de terraplén como de corte, esta inclinación se determina hallando la tangente del ángulo que forman la horizontal y la superficie del terreno.

Tabla 49. Valores referenciales para taludes en corte

Clasif	icación				Material	
de ma	teriales	Roca fija	Roca suelta	Grava	Limo arcilloso o arcilla	Arenas
Altura	<5 m	1:10	1:6- 1:4	1:1 - 1:3	1:1	2:1
de corte	5-10 m	1:10	1:4- 1:2	1:1	1:1	*
	>10 m	1:8	1:2	*	*	*

Fuente: DG20118

Tabla 50. Valores referenciales en zonas de relleno

Ta Taludes referenciales er	bla 304.11 1 zonas de reller	no (terrapiene	s)			
Talud (V:H)						
Materiales	Altura (m)					
	<5	5-10	>10			
Gravas, limo arenoso y arcilla	1:1.5	1:1.75	1:2			
Arena	1:2	1:2.25	1:2.5			
Enrocado	1:1	1:1.25	1:1.5			

Fuente: DG 2018

3.8.6.10 Bermas

Son franjas longitudinales continuas a la calzada las cuales sirven para paradas de emergencia de los vehículos que transitan por la vía, así como también para el confinamiento del pavimento.

Tabla 51. Ancho de bermas

Velocidad directriz	Ancho berma (*)
15	0.50
20	0.50
30	0.50
40	0.50
50	0.75
60	0.75
70	0.90
80	1.20
90	1.20

Fuente: Manual de diseño de carreteras pavimentadas de bajo volumen de tránsito.

IV. RESULTADOS

4.1 Levantamiento topográfico

4.1.1 Cálculo de la poligonal

Tabla 52. Coordenadas UTM Huancaquito Alto y la Panamericana

PROYECTO: Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú 2021

Provincia de Virú 2021						I I
ESTACIÓN TOTAL:	TOPCON GPT-3205NW - U80397 FECH					20/09/2021
OPERADOR:	Tec. Luis Cruzado Zavaleta			COORDENADAS UTM:		
PUNTOS	COORDENADAS		СОТА	ÀNGULO	DISTANCIA	
	NORTE	ESTE				
E	N	E	С	Α	D	
E1	9068126.031	744052.905	49.874			
E2	9067796.876	743696.999	47.11	230º55`28"	484.78	
E3	9067867.643	743203.504	43.396	127º47`23"	498.543	
E4	9067601.112	742927.981	45.92	186º14 `2 "	383.343	
E5	9067281.864	742514.882	44.379	180º40`51"	522.082	
E 6	9066979.785	742114.248	40.27	178º16`17"	501.756	
E7	9066660.636	741716.524	37.398	180º39`40"	509.942	
E8	9066391.539	741347.281	35.159	178º32`28"	456.896	
E 9	9066047.371	740899.445	32.84	180º54`44"	564.809	
E10	9065718.521	740457.141	30.975	182º7`7"	551.158	
E11	9065475.892	740104.271	28.735			428.236

4.1.2 Nivelación ida y vuelta

Tabla 53. Resumen de la nivelación

NIVELACIÓN					
BM- 0.0	BM- 0.5	DIF	BM- 2.5	BM-3.0	DIF
IDA	2.764		IDA	2.872	
VUELTA	2.762	0.002	VUELTA	2.868	0.004
BM- 0.5	BM- 1.0	DIF	BM- 3.0	BM- 3.5	DIF
IDA	3.714		IDA	2.239	
VUELTA	3.711	0.003	VUELTA	2.238	0.001
BM- 1.0	BM- 1.5	DIF	BM- 3.5	BM- 4.0	DIF
IDA	-2.524		IDA	2.319	
VUELTA	-2.526	-0.002	VUELTA	2.317	0.002
BM- 1.5	BM- 2.0	DIF	BM- 4.0	BM- 4.5	DIF
IDA	1.541		IDA	1.865	
VUELTA	1.536	0.005	VUELTA	1.864	0.001
BM- 2.0	BM- 2.5	DIF	BM-4.5	BM- 5.0	DIF
IDA	4.109		IDA	2.240	
VUELTA	4.112	0.003	VUELTA	2.239	0.001

4.1.3 Coordenadas de los puntos de foto control

Tabla 54. Coordenadas de los puntos de foto control

PROYECTO: Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú 2021					
ESTACIÓN TOTAL:	TOPCON GPT-3205NW - U80397 FECHA:			20/09/2021	
OPERADOR:	Tec. Luis Cruzado Zavaleta		COORDENADAS UTM:		
PUNTOS	COORDENADAS NORTE ESTE		СОТА		
PFC	N	E	С		
PFC 1	9068126.031	744052.905	49.874		
PFC 2	9067796.876	743696.999	47.11		
PFC 3	9067867.643	743203.504	43.396		
PFC 4	9067601.112	742927.981	45.92		
PFC 5	9067281.864	742514.882	44.379		
PFC 6	9066979.785	742114.248	40.27		
PFC 7	9066660.636	741716.524	37.398		
PFC 8	9066391.539	741347.281	35.159		
PFC 9	9066047.371	740899.445	32.84		
PFC 10	9065718.521	740457.141	30.975		
PFC 11	9065475.892	740104.271	28.735		

4.2 Estudio de tráfico

4.2.1 Índice Medio Diario Anual (IMDa)

Estación de conteo: progresiva 2+460

Tabla 55. índice medio diario anual

ÍNDICE MEDIO DIARIO ANUAL					
TIPO DE VEHÍCULO IMDa DISTRIBUCIÓN (%)					
Autos	32	17.20			
s. Wagon	4	2.15			
Pick Up	24	12.90			
Panel	7	4.17			
Rural	8	4.30			
Micro	2	1.08			
Ómnibus 2E	2	1.08			
camión 2E	33	17.74			
camión 3E	16	8.60			
camión 4E	14	7.53			
Semitraylers 2S1	8	4.30			
Semitraylers 2S2	5	2.69			
Semitraylers 2S3	4	2.15			
Semitraylers 3S1	3	1.61			
Semitraylers 3S2	5	2.69			
Semitraylers > =3S3	3	1.61			
Traylers 2T2	4	2.15			
Traylers 2T3	4	2.15			
Traylers 3T2	4	2.15			
Traylers >=3T3	4	2.15			
TOTAL 186 100					

4.3 Estudio de mecánica de suelos

4.3.1 Granulometría

SUCS:

AASHTO:

4.3.1.1 CALICATA C -1

Tabla 56. Prueba de Granulometría

Tabla 56. Prueba de Granulometría				
C-1				
	M-1			
OBSERVACIO	ONES:			
T. MÁXIMO N	OMINAL			
LÍMITE DE C	ONSISTENCIA:			
Límite Líquid				
Límite Plástic				
	ntracción: NP			
Indice de Pla	sticidad: NP			
Porcentaje e	າ muestra:			
%Grava (3" a	#4): 7.53%			
%Arena (#4 a #200) 89.28%				
%Finos (menor a #200): 3.20%				
Características granulométricas.				
D60: (mm):	0.63			
D50: (mm):	0.47			
D30: (mm):	0.29			
D10: (mm):	0.17			
Cu:	3.71			
Cc:	0.79			
Clasificación:				

SP

A-2-4 (0)

99

4.3.1.2 CALICATA C -2

Tabla 57. Granulometría de la C-2 - M-1

	C-2				
	M-1				
OBSERVACIO	ONES:				
T. MÁXIMO N					
LÍMITE DE C	ONSISTENCIA:				
Límite Líquid	lo 14.81%				
Límite Plástic	co 6.81%				
Límite de Co	ntracción: 6.23%				
Índice de Pla	asticidad: 8.00%				
Porcentaje ei	n muestra:				
%Grava (3" a	#4): 0.29%				
%Arena (#4 a #200) 44.86%					
%Finos (men	or a #200): 54.85%				
Característic	as granulométricas.				
D60: (mm):	-				
D50: (mm):	-				
D30: (mm):	-				
D10: (mm):	-				
Cu:	- Cc:				
-					
Clasificación:					
Clasificación: SUCS:	CL				

4.3.1.3 CALICATA C 3

Tabla 58. Granulometría de la C-3 – M-1

	C.	:-3
	M	I-1
OBSERVACIO	ONES:	
T. MÁXIMO N	NOMINAL	L 16
LÍMITE DE C	ONSISTE	ENCIA:
Límite Líquid	lo	NP
Límite Plástic	co	NP
Límite de Co	ntracciór	n: NP
Indice de Pla	asticidad	I: NP
Porcentaje e	n muestr	ra:
%Grava (3" a	•	
%Arena (#4 a	a #200)	97.39%
%Finos (men	or a #200	0): 2.62%
Característic	as granu	ılométricas.
D60: (mm):	0.22	
D50: (mm):	0.20	
D30: (mm):	0.16	
D10: (mm):	0.10	
Cu:	2.20	
Cc:	1.16	
Clasificación:		
Clasificación: SUCS:	SP	

4.3.1.4 CALICATA C 4

Tabla 59. Granulometría de la C-4 – M-1

	141	1		
OBSERVACIO				
T. MÁXIMO N				
LÍMITE DE CO	ONSISTE	NCIA:		
Límite Líquid	0	17.20%		
Límite Plástic	:0	6.78%		
Límite de Cor	ntracciór	n: 6.07%		
Índice de Pla	sticidad	: 10.42%		
%Grava (3" a	•			
%Arena (#4 a #200) 40.63%				
%Finos (men	or a #200)): 59.00%		
Característica	as granu	lométricas.		
D60: (mm):	0.63			
D50: (mm):	0.47			
D30: (mm):	0.29			
D10: (mm):	0.17			
Cu:	3.71			
Cc:	0.79			
Clasificación:				
SUCS:	SP			
AASHTO:	A-4 (5	5)		

4.3.1.3 CALICATA C 3

Tabla 60. Granulometría de la C-5 - M-1

C-5					
	M-1				
OBSERVACIO	ONES:				
T. MÁXIMO N	IOMINAL 16				
LÍMITE DE CO	DNSISTENCIA:				
LL	17.09%				
LP	6.72%				
	ntracción: 6.02%				
IP: 10.37	%				
D					
Porcentaje en	n muestra:				
%Grava (3" a	#4): 0.00%				
	#200) 60.27%				
	or a #200): 39.74%				
(
Característica	as granulométricas.				
D60: (mm):	-				
D50: (mm):	0.16				
D30: (mm):	-				
D10: (mm):	-				
Cu:	- Cc:				
-					
Clasificación:					
SUCS:	SC				
AASHTO:	A-4 - (1)				

4.3.2 Límites de consistencia

Tabla 61. Límites de consistencia e índices de plasticidad

Calicata:	C 1	C2	C 3	C4	C 5
Límite líquido	NP	14.81%	NP	17.20%	17.09%
Límite plástico	NP	6.81%	NP	6.78%	6.72%
Límite de contracción	NP	6.23%	NP	6.07%	6.02%
Índice de plasticidad	NP	8.00%	NP	10.42%	10.37%

4.3.3 Contenido de humedad

Tabla 62. Contenido de contenido de humedad

MUESTRA	CONTENIDO DE HUMEDAD (%)
C-1, M-1	8.10
C-2, M-1	7.80
C-3, M-1	10.11
C-4, M-1	8.50
C-5, M-1	9.21

4.3.4 Proctor modificado

Tabla 63. Ensayo de Proctor modificado

Máxima densidad seca (g/cm3)	1.78
Optimo contenido de humedad (%)	12.58

4.3.5 Clasificación

Tabla 64. Clasificación según los métodos AASHTO Y SUCS

Muestra	AASHTO	sucs
C-1, M-1	A-2-4 (0)	SP
C-2, M-1	A-4 (4)	CL
C-3, M-1	A-3 - (0)	SP
C-4, M-1	A-4 (5)	SP
C-5, M-1	A-4 - (1)	SC

4.3.6 CBR

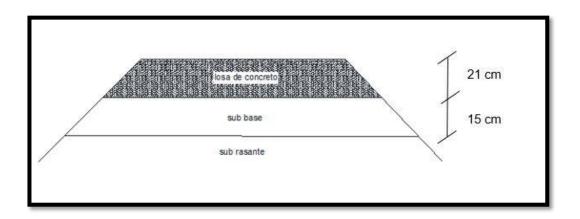
Tabla 65. Porcentaje de CBR de la subrasante

Muestra	CBR (%)	Categoría	Mejoramiento
C-2, M-1	9	Regular	No necesita

4.4 Mejoramiento

Tabla 66. Resumen de los ensayos con distintos porcentajes de Cal.

rabia de. Resumen de los ensayos con distintos porcentajes de Cal.									
MUESTRA	LÍMITE LÍMITE	ÍNDICE DE	PROCTOR MODIFICADO		C.B.R. 0.1"		C.B.R. 0.2"		
	LÍQUIDO	LÍQUIDO PLÁSTICO	PLASTICIDAD	D.S.M.(g/cm³)	O.C.H. (%)	95%	100%	95%	100%
MATERIAL DE PRÉSTAMO	43.30	18.72	24.58	1.98	11.06	12.70	16.40	16.90	21.80
CON 2% DE CAL	41.12	21.39	19.73	1.99	11.95	16.90	24.60	24.00	31.90
CON 4% DE CAL	38.46	23.79	14.67	1.97	12.46	23.40	32.50	31.20	43.30
CON 6% DE	36.80	28.76	8.04	1.95	13.03	31.70	41.10	42.00	54.80
CON 8% DE	35.25	28.23	7.02	1.95	13.56	33.00	43.20	44.00	57.50


4.5 Diseño de Pavimento Rígido

4.5.1 Capas del pavimento Rígido

Tabla 67. Espesores de capas del pavimento rígido

Capas de pavimento	(cm)
Losa de concreto	21 cm
Subbase granular	15 cm

Figura 47. Espesores de capas del pavimento rígido

4.6 Diseño Geométrico

Tabla 6. Tabla de resumen del diseño geométrico

Table 9. Table de Tesamen del dische gesmethe					
Características del diseño	Características técnicas de la investigación				
Categoría según la demanda	Tercera Clase				
Orografía	Tipo 1: Terreno plano				
Tipo de pavimento	Pavimento rígido				
Ancho de calzada	6.00 m				
Pendiente máxima	8%				
Velocidad de diseño	40 km/h				
Radio mínimo	50 m				
Bermas	0.5m				
Bombeo de la calzada	2.0%				
Talud de Corte	2:1				
Talud de relleno	1:2				

V. DISCUSIÓN

El mejoramiento y diseño de infraestructura vial de la carretera que une Huancaquito Alto y la carretera Panamericana se basa y respalda en las normativas establecidas en los manuales del Ministerio de Transportes y Comunicaciones de Perú. Estos se obtuvieron inicialmente realizando un estudio de topografía que se llevó a cabo a través de la fotogrametría, en el cual se obtuvo el relieve de la zona de estudio, para luego dar paso al estudio de mecánica de suelos hallándose un CBR% de la subrasante quien determinó que el estudio se realizó en un terreno regular. Se hizo el diseño en planta y perfil de una carretera de tercera clase con velocidad de 40 km/h y un diseño de pavimento rígido a través del método AAHSTO 93. En cuanto al mejoramiento, se realizó con un material cercano a la zona, el cual a través de un estudio de mecánica de suelos se determinó que contaba con un CBR inferior a lo estipulado en la normativa por lo que se procedió a mejorarlo agregándole un 6% de cal. De esta manera se prueba la hipótesis planteada por los investigadores.

Según lo mostrado en las figuras 8 y 10 se puede observar las imágenes tomadas por el drone y su procesamiento a través de los softwares Agisoft Photoscan y Autodesk Recap luego del cual se obtuvo la nube de puntos que reflejaban el relieve exacto del terreno reflejado en el conjunto de curvas de nivel. Por otro lado, en el estudio de mecánica de suelos de la subrasante se realizaron cinco sondajes de los cuales se halló un porcentaje de CBR de 9%, clasificando a la subrasante como regular, clasificación suficiente para no necesitar algún tipo de mejoramiento (Ver tabla 19). En el estudio de tráfico, se realizó registro del conteo vehicular en un periodo de siete días, hallándose un W18 = 3 771 479 el cual se clasifica como un TP7 según el manual de suelos y pavimentos (Tabla 45). Para el diseño geométrico se determinó el ancho de la calzada de 6 metros y la señalización se realizó según lo indicado por el manual de dispositivos de control de tránsito del MTC. En lo concerniente al diseño del pavimento rígido, se realizó siguiendo el método

AASHTO 93, obteniendo un espesor de la base igual a 15 cm y el de la losa de concreto igual a 21 cm. Para el mejoramiento del material a usarse en la subbase, se tomó una muestra que queda cerca al lugar de estudio llamada "el barrio" la cual a través de ensayos de laboratorio se pudo mejorar su resistencia inicial de 16 % a 41% agregándole cal en un porcentaje igual al 6% tal como se muestra en la Tabla 71.

Guamán (2017) en su proyecto elaboró un diseño geométrico determinando una sección de 8.60 m, un ancho de carril de 3.60m y cunetas de 0.60m. Realizo un estudio de mecánica de suelos mediante calicatas con una profundidad de 1.50m, los valores de CBR obtenidos fueron de 2.12%, 3.13%,6.15% y 7.4% concluyendo que se reemplace la subrasante por una capa de 25cm de material de préstamo de suelo mejorado que contenga un CBR no menor a 10%, los valores del espesor del pavimento finalmente fueron una capa de material mejorado de 25cm, base de 20cm y carpeta asfáltica de 5 cm. El diseño del pavimento se hizo a través del método de ASSHTO. En comparación a los datos obtenidos en el estudio, la subrasante resultó ser regular por tener un 9% de CBR motivo por el cual no fue necesario plantear un mejoramiento, sin embargo, para la capa de la subbase se tuvo que hacer un mejoramiento de un material de préstamo para cumplir con el mínimo que estipula la norma (CBR 40%). En cuanto al diseño del pavimento no guarda relación puesto que en la investigación se hizo un diseño de pavimento rígido en comparación al flexible que presentan los autores.

(Altamirano y Diaz, 2015) en su investigación usó una mezcla de cal hidratada para estabilizar los suelos cohesivos de la vía de la comunidad San Isidro de Pegón. La vía tiene una longitud de 5.05 km, se realizaron 4 calicatas y se trabajó con los porcentajes 3, 6, 9 y 12 %, en lo que respecta a la plasticidad, densidad de compactación hubo una mejora; la humedad requerida aumento generada entre la cal y arcilla, no se cumplió con el parámetro de expansión, pero fue un resultado aceptable, se determinó que con un 9% de cal se logra un mejor resultado. En contraste con la presente investigación existe una

diferencia en cuanto a la cantidad de calicatas puesto que los autores realizaron 4 y en la presente investigación se hicieron 5, respecto al porcentaje de cal utilizado en las muestras difiere de las utilizadas en este proyecto ya que se utilizaron porcentajes de cal de 2%,4%,6% y 8% llegando a tener porcentajes de CBR iguales a 24.6%, 32.50, %41.10% y 43.20% respectivamente, siendo el 6% el que alcanza un CBR necesario según lo indicado en la norma de estabilización de suelos.

(Hernández, Mejía y Zelaya, 2016). En su investigación encontraron un índice de plasticidad del 45%, límite liquido el 75% y límite plástico el 30%, en el ensayo de granulometría se obtuvo un suelo fino y con la muestra suelo-cal se obtuvo un 79.33% que paso por la malla. En el ensayo de gravedad el suelo natural se obtuvo 2.43 y la mezcla 2.28. del Proctor se obtuvo la humedad máxima de 18.80% y de la mezcla la humedad óptima fue de 19.40%. el CBR. Del suelo natural salió un 1.93% y con la mezcla adicionando un 5% el CBR se obtuvo 54%, también lograron determinar una losa de concreto de espesor igual a 11cm mientras que en la presente investigación se determinó un espesor de 21 cm, ambos resultados fueron hallados a través de la metodología AASHTO 93.

(Quispe, 2020) En su tesis realizó una estabilización con cemento reciclado al 2%, 4%, y 6%, encontrando que el material de la base tenía una densidad máxima de 2.303 g/cm3, el contenido de humedad de 6.9% y el grado de compactación de 95.44%. El material de la base con el 2% de cemento reciclado tuvo una densidad máxima de 2.375 g/cm3, el contenido de humedad de 6.4% y el grado de compactación de 95.70%. El material de la base con el 4% de cemento reciclado tuvo una densidad máxima de 2.445 g/cm3, el contenido de humedad de 5.7% y el grado de compactación de 95.93%. El material de la base con el 6% de cemente reciclado tuvo una densidad máxima de 2.428 g/cm3, el contenido de humedad de 4.8% y el grado de compactación de 95.44%. Con respecto a la presente investigación

existen diferencias ya que a pesar de que ambos traten de un mejoramiento, estos se hicieron con diferente estabilizador, sin embargo, se puede evidenciar una similitud en las cantidades optimas de aditivo estabilizador necesario (6%) para alcanzar los márgenes solicitados por la norma ce.020 de estabilización de suelos.

(Guevara, 2020). En su investigación trabajó en una zona accidentada con pendiente del 5%, en su estudio de suelos se encontró que el lugar objeto de estudio se trataba de un suelo arcilloso y de baja plasticidad, determinaron una velocidad de 30 Km/h, y un ancho de calzada de 6m, bermas de 0.50m y un bombeo de 2%. En relación a la presente investigación se resalta la coincidencia en las dimensiones del ancho de la calzada, las bermas y el bombeo sin embargo a diferencia de la investigación de Guevara 2020, se trabajó con un una velocidad de 40km/h y sobre un suelo donde predominan las arenas.

(De La Cruz y Salcedo, 2016) en su investigación Obtuvieron como resultado un CBR de 95 %, al aplicarlo al aditivo con 6 combinaciones de base se tomó 1 litro por 15 m3, con la combinación 1 litro por 11 m3 se obtiene un 38.55 %. También realizaron un cálculo para un diseño de pavimento rígido, con suelo natural y con suelo estabilizado donde la diferencia de la losa de concreto se reduce de 12 cm a 7 cm y la subbase pasa de 20cm a 10 cm cuando se usa el aditivo estabilizador. En relación a la presente investigación se coincide en que el uso de aditivos estabilizadores influye de buena manera y de forma positiva en el diseño de las capas estructurales de los pavimentos.

(Ortiz y Tocto, 2019). En su investigación utilizaron el método AASHTO 93 para su diseño de pavimento rígido, en el estudio de suelos los resultados obtenidos fueron "SC" arenas arcillosas de textura firme húmeda, "SP" arenas mal graduadas, arenas con grava con pocos finos o sin ellos y "SM" arenas limosas, mezclas de arena y limo mal graduada, un CBR de 8.5% al 95%, de los cálculos se obtuvo una resistencia de f´210 kg/cm2 con un espesor de 0.15 m. En relación a la presente investigación se puede afirmar que se utilizó el

mismo método para el cálculo de los espesores de pavimento rígido considerando una resistencia a la compresión del concreto de f'280 kg/cm2 y obteniendo un espesor de la losa de concreto de 21 cm y una subbase de afirmado de 15 cm. A pesar de tener similitud en las características del terreno, los resultados de los autores Ortiz y Tocto difieren de los presentados en esta investigación debido a las diferencias en el tráfico.

Amambal, (2017). En su estudio de tráfico determinó un IMDA de 502 vehículos, en su estudio topográfico arrojo pendientes de 0.03 – 3.4%, el levantamiento se realizó en 13 calles; en el estudio de suelos dio un CBR de 30.86 y 42.62. y un material clasificado como grava limo arcillosa con arena; siguiendo los lineamientos de la DG-2018 determinaron un bombeo de 2% y la velocidad de 40 Km/h. En comparación a la presente investigación se puede afirmar que el CBR del material no cumplía con lo requerido en la norma y por lo tanto se tuvo que buscar un lugar cercano de donde tomar material de préstamo e iniciar un proceso de mejoramiento de este para elevar su % de CBR inicial que era de 16% y elevarlo a 41% a través de agregarle 6% de cal. En el diseño geométrico se consideraron parámetros similares debido a que ambas investigaciones se realizaron en un terreno con bajas pendientes, en ese sentido.

Del Rio, (2017) en su estudio determinó un CBR de 9.52% lo cual lo clasifica como un suelo regular, con predominancia de limos arcillosos, sus límites de consistencia fueron: El L.L fue de 29.4, L.P obtuvo un valor de 16 y un I.P de 13.4. Por otro lado, la presente investigación coincide en el valor del porcentaje de CBR teniendo un 9% sin embargo si existe una mayor diferencia en sus límites de consistencia, los límites plásticos varían en un intervalo de 14.81% hasta 17.09% en tres de las cinco muestras, en las otras dos no presentan, los límites plásticos lo hacen en intervalos de 6.81% hasta 6.72% y el índice de plasticidad varía entre 8% y 10.37%.

Yacupaico, (2020). En su estudio realizó su levantamiento topográfico a un área de 3.45 ha. en el cual se llegó a determinar pendientes de hasta 3.00%, en su diseño geométrico consideró un bombeo de 2%; en el estudio de tráfico se determinó un diseño para 20 años y el IMDA es de 154 veh/día, el estudio de suelos se hizo con 7 calicatas, dio un CBR de 6.9%, En comparación a la presente investigación se notan valores relativamente similares en el diseño geométrico sin embargo cabe resaltar que el estudio de Yacupaico se trata de un diseño de infraestructura vial urbana y es regido por una norma técnica distinta al que se usó en la presente investigación por tratarse de una carretera.

Marvin y Billy, (2019). En su investigación consideraron para su diseño geométrico una velocidad igual a 40km/h, y posteriormente un ancho de la calzada de 6.60m, bombeo de 2.5%, 0.50m de berma. Estos resultados tienen cierta similitud con los encontrados en la presente investigación ya que se consideró la misma velocidad de diseño debido a que ambas investigaciones tienen relieves similares, sin embargo, se tomaron valores para el bombeo de 2% y para el ancho de la calzada 6 m. Estos valores se encuentran establecidos en el manual de diseño geométrico DG 2018, se colocó una berma de 0.50 a cada lado de la calzada según los lineamientos indicados en el manual de diseño de carreteras de bajo volumen de tránsito.

Neira y Rebaza, (2020). En su estudio realizó un diseño estructural del pavimento flexible a través método de AASHTO 93, donde se obtuvieron los espesores de la base, sub base y carpeta asfáltica iguales a 20 cm, 20cm y 8 cm respectivamente además en su estudio de suelos salió un CBR de 11.28% el cual le permitió cumplir con lo mínimo que establece la norma y no necesitó hacer un mejoramiento de la subrasante, con el estudio de tráfico dio un IDMA de 96 veh/día. En comparación a los resultados que se obtuvieron en la investigación se diferencia una leve variación en el porcentaje de CBR el cual se encontró en un 9% clasificándose como un suelo regular y que no necesita mejoramiento. El diseño de pavimento se hizo con el mismo método AASHTO

93 pero siguiendo lo indicado en su apartado correspondiente a pavimentos rígidos.

Las limitaciones que se presentaron en el proceso de desarrollo de la presente investigación tuvieron lugar debido a las exigentes restricciones ocasionadas por el Covid 19, las cuales no permitieron el uso de los laboratorios con los que cuenta nuestra casa de estudios, asimismo, en laboratorios particulares tampoco se nos fue permitido presenciar la realización de los ensayos de laboratorio, sin embargo a pesar de las dificultades anteriormente mencionadas se logró cumplir con todos los objetivos trasados al inicio de la investigación. En esta investigación se comparte información importante para el desarrollo de proyectos de infraestructura vial con la finalidad que los resultados obtenidos sean usados en futuras investigaciones o ejecución del proyecto, colaborando con el desarrollo vial de la provincia e incentivando a que otros investigadores puedan ahondar más en la investigación.

El mejoramiento y diseño de infraestructura vial de la carretera que une Huancaquito Alto y la Panamericana, se encuentra ubicado en la provincia y distrito de Virú. Se cumplió con cada uno de los estudios indicados en las normas dentro de las cuales se encuentra enmarcado el proyecto.

Finalmente, los resultados aquí presentados cumplen con todo lo establecido en las normas brindadas por el ministerio de transportes y comunicaciones. Todos los estudios fueron realizados secuencialmente desde el levantamiento topográfico hasta el diseño final del pavimento para que de esta manera se pueda concretar íntegramente en la investigación.

VI. CONCLUSIONES

- Se realizó un mejoramiento al material de la base y se diseñó la infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru, la metodología que utilizo para el diseño es AASHTO 93 para el pavimento rígido, utilizando y respetando las normas DG-2018, el Manual de Carreteras del MTC, manual de mecánica de suelos y cimentaciones y para el mejoramiento del material se realizó en función a la norma CE020.
 - Estabilización de suelos y taludes.
- Se realizó un levantamiento topográfico de la vía que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru, haciendo uso del método de la fotogrametría, los instrumentos que se utilizó fueron GPS con lo que se tomó las coordenadas, estación total, nivel topográfico y un Drone con el que se hizo el registro fotográfico, los datos fueron procesados en los softwares Agisoft Photoscan, Autodesk Recap, Civil 3D obteniendo finalmente la superficie del terreno, las curvas de nivel, perfil, etc.
- Se realizó un mejoramiento al material extraído de la zona "El Barrio" que se usara como base para la carretera, adicionando la cal para mejorar su resistencia, por ello se realizaron los ensayos correspondientes a la muestra con los porcentajes de 2%, 4%, 6% y 8% de cal, dado que con el 6% se logró aumentar la resistencia como también incrementar el CBR a 41.10%.
- Se elaboró un diseño geométrico de la vía donde se tomó como guía la norma de diseño geométrico DG 2018, donde se definió una carretera de tercera clase por la cantidad de vehículos que pasan por día, con una velocidad de diseño de 40 km/h, un bombeo de 2%, con un ancho de calzada de 3 m por carril, con una berma de 0.50 de acuerdo a la velocidad y peralte máximo de 8% y los demás parámetros establecidos para asegurar un diseño apropiado.
- Se realizó un estudio de Mecánica de Suelos donde se hizo las excavaciones de 5 calicatas de 1.50 m de profundidad y las muestras fueron trasladados al laboratorio para los ensayos correspondientes, los resultados obtenidos del

- CBR fue de 9%, no se encontró nivel freático en profundidad estudiada, se clasifica a la subrasante como regular.
- Se elaboró el diseño de pavimento rígido en base al Manual de Suelos, Geología, Geotecnia y Pavimentos mediante el método de AASHTO 93 y la cual da como resultado los siguientes espesores, 21 cm de losa de concreto, 15 cm sub base granular.
- Se realizó un estudio de trafico de la carretera que une Huancaquito Alto y la Panamericana obteniendo como resultado un IMDA de 186 vehículos por día, y un número de ejes equivalentes ESAL=37771479.

VII. RECOMENDACIONES

- A las autoridades tener en cuenta la presente investigación ya que se cumple con los diferentes criterios técnicos que establece las normas y manuales ya que los diferentes resultados obtenidos son válidos para el proyecto.
- Se recomienda a los investigadores realizar los estudios necesarios de la zona y posteriormente realizar el proceso de diseño de infraestructura vial respetando los parámetros que están definidos en los manuales, para obtener una buena estructura de pavimento, como también brindándole sus mantenimientos correspondientes y evitar deterioros en la vía, de esa manera mantendrá la vía en óptimas.
- Se recomienda al ejecutor del proyecto que durante los procesos se debe respetar los parámetros correspondientes que establece las normas y manuales, cumplir todo lo planteado en las especificaciones y planos técnicas correspondientes, y considerar la calidad de los materiales que se vayan a utilizar y la mano de obra deberá ser calificado.

REFERENCIAS

- Fustamante. Diseño de infraestructura vial entre los caseríos la Esmeralda y Conga el Verde, distrito de Chalamarca, Cajamarca. Tesis de titulación. Facultad de Ingeniería y Arquitectura. Universidad Cesar Vallejo, 2020.
- Castellanos Pineda. diseño de pavimento de la aldea la choleña a jabillal y puente vehicular de ingreso a san José del golfo, Guatemala. Trabajo de graduación. Facultad de Ingeniería. Universidad de San Carlos de Guatemala, 2020.
- Hernández, Mejía y Zelaya. propuesta de estabilización de suelos arcillosos para su aplicación en pavimentos rígidos en la facultad multidisciplinaria oriental de la universidad de el salvador. trabajo de titulación. facultad multidisciplinaria oriental. universidad de el salvador, 2016.
- Mendoza, Edgar. Relación entre los métodos de diseño de pavimento flexible empírico Mecanístico ASSHTO 93 y SHELL para determinar la vida útil del pavimento. Tesis de titulación. Facultad de ingeniería. Universidad Ricardo Palma, 2019.
- 5. Rivera, Bohórquez y Fernández. Diseño y evaluación económica de una alternativa de rehabilitación en pavimento rígido para el tramo de la carrera 22 entre calles 15 y 17, localidad de Los mártires en Bogotá D.C. Trabajo de titulación. Facultad de Ingeniería. Universidad Católica de Colombia, 2016. Disponible en: http://repositorioslatinoamericanos.uchile.cl/handle/2250/88409
- 6. Vargas, Luis. Herramienta de cálculo complementaria a la nueva metodología de diseño mecanístico-empírico de pavimentos rígidos de Costa Rica. Trabajo final de graduación. Facultad de Ingeniería. Universidad de Costa Rica, 2016.

Disponible en:

http://repositorio.sibdi.ucr.ac.cr:8080/jspui/handle/123456789/3566

 Sosa, Luis. Pavimento con Geo sintéticos para mejorar la resistencia en la capa estructural de la avenida Tréboles provincia y distrito de Chiclayo – Lambayeque. Tesis de titulación. Facultad de ingeniería. Universidad Cesar Vallejo, 2019. Disponible en:

- https://repositorio.ucv.edu.pe/handle/20.500.12692/44413
- Cachique y La Rosa. Diseño alternativo para infraestructura vial en el caserío Nueva Esperanza, distrito de Huicungo, provincia Mariscal Cáceres. Tesis de titulación. Facultad de ingeniería. Universidad Cesar Vallejo, 2019.
- Guamán. Diseño Geométrico y Diseño de Pavimento de la vía Callasay –
 Zhordan desde abscisa 2+000 hasta 6+300. Trabajo de graduación. Unidad
 Académica de ingeniería, industria y construcción. Universidad católica de
 cuenca, 2017.
- 10. Altamirano y Diaz. Estabilización de suelos cohesivos por medio de Cal en las Vías de la comunidad de San Isidro del Pegón, municipio Potosí- Rivas. Trabajo de titulación. Facultad de Ciencias e Ingenierías. universidad nacional autónoma de nicaragua UNAN-Managua, 2015.
- 11. Hernández, Mejía y Zelaya. Propuesta de estabilización de suelos arcillosos para su aplicación en pavimentos rígidos en la facultad multidisciplinaria Oriental de la Universidad del Salvador. Trabajo de graduación. facultad multidisciplinaria oriental. universidad de el salvador, 2016.
- 12. Quispe. Análisis comparativo de las propiedades mecánicas de un afirmado natural y estabilizado con cemento reciclado al 2%, 4% y 6% para base, Los Olivos – 2020. Tesis de titulación. Facultad de ingeniería. Universidad privada del norte, 2020.
- 13. Guevara. Diseño de infraestructura vial entre los caseríos Quillinshacucho, Oxapampa, Paraguran y centro poblado Atoshaico, distrito Bambamarca, Cajamarca. tesis de titulación. Facultad de Ingeniería. Universidad Cesar Vallejo. 2020
- 14. De La Cruz y Salcedo. Estabilización de suelos cohesivos por medio de aditivos (Eco Road 2000) para pavimentación en Palian – Huancayo – Junín. Tesis de titulación. facultad de ingeniería. universidad peruana los andes, 2016.
- 15. Ortiz y Tocto. Diseño de infraestructura vial con pavimento rígido para transitabilidad del barrio Señor de los Milagros, distrito Canoas de Punta Sal, provincia Contralmirante Villar de la región de Tumbes 2018. Tesis de titulación. facultad de ingeniería civil. Universidad cesar vallejo, 2019.

- 16. Amambal. Diseño de Infraestructura Vial del Centro Poblado Pakatnamu Primera Etapa, Distrito Guadalupe, Región la Libertad. tesis de titulación. Facultad de Ingeniería. Universidad Cesar Vallejo. 2017.
- 17. Del Rio. Optimización de la estabilización de suelos arcillosos en el sector Curva del Sun – Campiña de Moche, con concreto reciclado para pavimentación, provincia de Trujillo, La Libertad. Tesis de titulación. Facultad de ingeniería. Universidad cesar vallejo,2017.
- 18. Yacupaico. Diseño de infraestructura vial urbana caserío Cerro Colorado, Distrito Pacanga, Provincia Chepén - La Libertad. tesis de titulación. Facultad de Ingeniería y Arquitectura. Universidad Cesar Vallejo. 2020.
- 19. Marvin y Billy. Diseño para el mejoramiento de la carretera del tramo AA.HH. Fujimori-Desvió Porvenir, Distrito Chao, Provincia Viru- La Libertad. Tesis de titulación. Facultad de ingeniería. Universidad cesar vallejo. 2019.
- 20. Neira y Rebaza. Transitabilidad vial y diseño de pavimento de la vía Panamericana Norte - anexo Huacacorral - Virú, 2020. Tesis de titulación. Facultada de ingeniería y arquitectura. Universidad cesar vallejo, 2020.
- 21. Quenaya y Tarrillo. diseño de infraestructura vial para accesibilidad del tramo c.p.u. capote km 0+000 al c.p.r. Pancal km 7+000, Picsi, Lambayeque. 2018. tesis de titulación. facultad de ingeniería, arquitectura y urbanismo. universidad señor de sipan.2019
- 22. Higuera. Nociones sobre métodos de diseño de estructuras de pavimentos para carreteras: Principios fundamentales, el tránsito, factores climáticos y geotecnia vial (1ra ed.) Boyacá, Colombia: Dirección de investigaciones de la Universidad Pedagógica y Tecnológica de Colombia.2011
- 23. Dirección General de Caminos y Ferrocarriles. 2014. Manual de Carreteras Suelos, Geología, Geotécnica y Pavimentos. Ministerio de Transportes y Comunicaciones. Lima: s.n., 2014.
- 24. Araujo. correlación del CBR con propiedades índices de Suelos. Seminario de investigación e innovación. facultad de ingeniería. Universidad de Piura. 2015.

- 25. Vega, diseño de los pavimentos de la carretera de acceso al nuevo puerto de Yurimaguas (km 1+000 a 2+000). tesis de titulación. facultad de ciencias e ingeniería. Pontificia Universidad Católica del Perú. 2018
- 26. Dirección General de Caminos y Ferrocarriles. 2018. Manual de Carreteras Diseño Geométrico DG-2018. Ministerio de Transportes y Comunicaciones. Lima: s.n., 2018.
- 27. Ponce. drenaje de carreteras. 2017. disponible en: http://ponce.sdsu.edu/drenaje_de_carreteras_b.html.
- 28. Cárdenas. diseño geométrico de carreteras. 2ª. ed. –Bogotá: eco ediciones. Biblioteca nacional de Colombia. 2013.
- 29. Escipión. Manual de Diseño Geométrico de Carreteras dg 2001 Ministerio de transportes y comunicaciones. Lima: s.n., 2001.
- 30. Manual de Diseño Geométrico INVIAS 2008. Ministerio de Transportes y comunicaciones. Lima: s.n., 2008.
- 31. Dirección General de Caminos y Ferrocarriles. 2013. Manual de Carreteras Suelos, Geología, Geotécnica y Pavimentos. Ministerio de Transportes y Comunicaciones. Lima: s.n., 2013.
- 32. Márquez y Urrutia. Estudio técnico económico de las calles Mebasa la Aguja 26 de febrero. tesis de titulación. Facultad de ciencias e ingeniería.
 Universidad nacional autónoma de Nicaragua Unan-Managua. 2008.
- 33. Carvajal, Rincón y Zarate. Mejoramiento del material de afirmado de la cantera la esmeralda mediante la adición de ceniza de cascarilla de arroz y material reciclado de escombro. Trabajo de titulación. Facultad de ingenierías. Universidad cooperativa de Colombia. 2018.
- 34. Cabrera y Dios. Mejoramiento de la superficie de rodadura afirmada con la aplicación de cloruro de calcio en la Avenida Pradera, Urbanización la Pradera Pimentel Chiclayo Lambayeque. Tesis de titulación. Facultad de Ingeniería y Arquitectura. Universidad de San Martin de Porres. 2020
- 35. León, Diseño de Infraestructura Vial Tramo Cutervo Valle Conday-Conga de Allanga, Distrito Cutervo, Cajamarca. Tesis de titulación. Facultad de Ingeniería. Universidad Cesar Vallejo, 2020.

- 36. Mejía y Zavala. Diseño de infraestructura vial tramo ciudad La Peca caserío San Martin Cruce Sector Almendra, distrito La Peca, Amazonas. Tesis de Titulación. Facultad de Ingeniería. Universidad Cesar Vallejo, 2020.
- 37. Dirección General de Caminos y Ferrocarriles. 2016. Manual de Ensayo de Materiales 2016. Ministerio de Transportes y Comunicaciones. Lima: s.n.2016.
- 38. Tuesta y Velásquez. Diseño de infraestructura vial entre los anexos de Santa María y Soscomal, distrito Pisuquia, Amazonas. Tesis de titulación. Facultad de Ingeniería. Universidad Cesar Vallejo, 2020.
- 39. Horna. Diseño de Infraestructura vial entre los caseríos San Felipe y Corrales, Distrito De Cutervo, Cajamarca. Tesis de Titulación. Facultad de Ingeniería. Universidad Cesar Vallejo, 2020.
- 40. Baldera. Diseño de infraestructura vial tramo ciudad de Mórrope Caserío
 Carrizal-Caserío Annape Distrito de Mórrope, Lambayeque Tesis de Titulación. Facultad de Ingeniería. Universidad Cesar Vallejo, 2021.
- 41. Baldera. iseño de infraestructura vial tramo ciudad de Bambamarca Centro Poblado Lucmacucho, distrito Bambamarca, Cajamarca. Tesis de Titulación. Facultad de Ingeniería. Universidad Cesar Vallejo, 2020.
- 42. Norma CE.020 "Estabilización de suelos y taludes" del RNE, 2018. Ministerio de Vivienda, Construcción y Saneamiento. Lima: s.n., 2018.

ANEXOS

Anexo 1. Declaratoria de autenticidad (autores)

DECLARATORIA DE AUTENTICIDAD DE AUTORES

Nosotros, Albinco Ruiz Yeymi Tatiana y Gonzales Oribe Luis Alfonso, alumnos de la Facultad de Ingeniería y Arquitectura y Escuela Profesional de Ingeniería Civil de la Universidad Cesar Vallejo sede Trujillo, declaramos bajo Juramento que todos los datos e información que acompañan al Trabajo de Investigación titulado "Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú.", son:

- 1. De nuestra autoría.
- 2. El presente Trabajo de Investigación no ha sido plagiado ni total, ni parcialmente.
- 3. El Trabajo de Investigación no ha sido publicado ni presentado anteriormente.
- 4. Los resultados presentados en el presente Trabajo de Investigación son reales, no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumimos la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad Cesar Vallejo.

Trujillo, 13 de diciembre del 2021

Yeymi Tatiana Albinco Ruiz

DNI: 75727903

Gonzales Oribe Luis Alfonso

DNI: 71930080

Anexo 2. Declaratoria de autenticidad (asesor)

DECLARATORIA DE AUTENTICIDAD DEL ASESOR

Yo, VILLAR QUIROZ, JOSUALDO CARLOS, docente de la Facultad de Ingeniería

y Arquitectura y Escuela Profesional Ingeniería Civil de la Universidad Cesar Vallejo

sede Trujillo, revisor del trabajo de investigación titulada: "Mejoramiento y diseño

de infraestructura vial para la carretera que une Huancaquito Alto y la

Panamericana, Distrito y Provincia de Virú.", de los estudiantes Albinco Ruiz Yeymi

Tatiana y Gonzales Oribe Luis Alfonso, constato que la investigación tiene un índice

de similitud de 23% verificable en el reporte de originalidad del programa Turnitin,

el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas

no constituyen plagio. En tal sentido asumo la responsabilidad que corresponda

ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de

información aportada, por lo cual me someto a lo dispuesto en las normas

académicas vigentes de la Universidad Cesar Vallejo.

Trujillo, 02 de octubre del 2021

VILLAR QUIROZ, JOSUALDO CARLOS

DNI: 40132759

128

Anexo 3
3.1 Matriz de operacionalización de variables.

Variables	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Escala de medición
Mejoramiento	Es el proceso mediante el cual se mejoran las características de resistencia de los materiales a usarse en las distintas capas que conformarán el pavimento.	La presente investigación se realiza a través de la observación y la realización de estudios pertinentes para determinar los factores que influirán en el mejoramiento del material para la base.	Estudio de mecánica de suelos Mejoramiento del material a usarse en la base del pavimento.	Granulometría Límite de consistencia Proctor Modificado Desgaste CBR Contenido de humedad Porcentaje de aditivo estabilizador	R A Z O N
Diseño de infraestructura vial	Es el proceso a través del cual se determinan las características y dimensiones de todos los componentes que conforman una estructura vial.	La presente investigación se realiza a través de la observación y la realización de estudios pertinentes para determinar las características y dimensiones de todos los	Estudio de Tráfico vehicular Estudio de topografía	Índice medio diario (IMD) Ubicación de puntos de Foto control Nivelación Poligonal Curvas de nivel Granulometría Límite de consistencia	

	Estudio de	Contenido de
componentes	mecánica de	Humedad
que conforman	suelos	Proctor
una estructura		Modificado
vial para la		Clasificación
Carretera que		Ciasilicación
une el distrito		CBR
Huancaquito		Perfil longitudinal
Alto y la		Pendientes
Panamericana Norte, distrito y	Diseño	T Gridionico
	geométrico	Secciones
Virú.		Elementos de
		Curvas
		Mov. de tierras
	Diseño de	Espesor de la base
	pavimento rígido	Espesor de la losa
	que conforman una estructura vial para la Carretera que une el distrito Huancaquito Alto y la Panamericana Norte, distrito y provincia de	componentes que conforman una estructura vial para la Carretera que une el distrito Huancaquito Alto y la Panamericana Norte, distrito y provincia de Virú. Diseño de pavimento

Anexo 3.2 Matriz de indicadores de variables

OBJETIVO ESPECÍFICO	DIMENSIONES	INDICADORES	DESCRIPCIÓN	TÉCNICA/ INSTRUMENTO	TIEMPO EMPLEAD O	MODO DE CÁLCULO
Realizar un mejoramiento del material de la subbase	Estudio de mecánica de suelos Mejoramiento del material a usarse en la base	Granulometría Límites de consistencia Proctor modificado Desgaste CBR Contenido de humedad Porcentaje de aditivo estabilizador	Para realizar el mejoramiento se hará uso de un material de préstamo de la zona "El Barrio" el cual será enviado a un laboratorio para la determinación de sus indicadores.	 Técnica: Observación Instrumento: Ficha resumen N° 03 y 04 	3 semanas	Ensayos de laboratorio
Realizar un levantamiento topográfico.	Levantamiento Topográfico	Ubicación de puntos de foto control Nivelación	Para realizar el levantamiento topográfico se hará uso de la fotogrametría, además de una estación total y un nivel. Los estudios de	 Técnica: Observación Instrumento: Guía de observación N° 03, 04 y 05 	1 semana	Procesamiento de imágenes e información en los softwares topcon tools, Agisoft, Autodesk Recap y Autocad civil 3D

		Poligonal	gabinete serán hechos con los softwares topcon tools, Agisoft, Autodesk Recap y Autocad civil 3D			
		Curvas de nivel	El estudio de suelo se			
Realizar el estudio de mecánica de suelos	Estudio de mecánica de suelos	Granulometría (%) Límites de consistencia (%) Contenido de humedad (%) CBR (%) Proctor Modificado Clasificación de suelos	realizará con el fin de determinar la capacidad portante del suelo, sus propiedades físicas, contenido de humedad, para luego de ello, realizar los respectivos ensayos de laboratorio de las muestras extraídas y finalmente	• Técnica: Observación Instrumento: Guía de observación N° 02, ficha resumen N° 01.	3 semanas	Ensayos de laboratorio en base a las normas ASTM, para el análisis granulométrico se usará ASTM D 422, contenido de humedad ASTM D 2216 y límite de consistencia ASTM D 4318; y el Manual de suelos, geología, geotecnia y pavimentos

Realizar el estudio de tráfico	Estudio de tráfico	Índice Medio Diario (IMD)	Se realiza el conteo vehicular de los vehículos que transitan por el lugar de estudio con la ayuda de la Guía de observación N° 01, con el objetivo de obtener el IMD.	• Técnica: Observación • Instrumento: Guía de observación N° 01, ficha resumen N° 02.	1 semana	Procesamiento de información en MS Excel mediante la tabulación.
Elaborar el diseño	Diseño geométrico	Perfil Longitudinal (m) Bombeo (%)	Se realizará el diseño de la carretera tomando en consideración los	Técnica:	1 semana	Se realizará en base a los parámetros establecidos en la
geométrico de la carretera que une Huancaquito Alto y la panamericana.		Sección transversal (m) Pendientes Elementos de curva Movimiento de tierras (m³) Señalización	parámetros que rige la norma DG 2018 del ministerio de transportes y comunicaciones.	 Revisión documental Instrumento: Guía de observación N° 01, ficha resumen N° 01 y 02. 		norma GH. 020 componentes de Diseño Urbano, cuyos datos obtenidos serán procesados en el Software Civil 3D.

Elaborar el diseño de pavimento	Diseño de pavimento rígido	de Concreto (cm)	El diseño de pavimento será realizado con el método AASHTO 93, necesario para realizar los procedimientos requeridos y determinar los espesores de las capas que conforman la estructura del pavimento.		Técnica: Observación Instrumento: Guía de observación N° 01, ficha resumen N° 01 y 02. Ficha de recolección de datos N° 01.	4 días	Procedimientos de la guía del método AASHTO 93, para pavimentos flexibles.
---------------------------------------	----------------------------	------------------	---	--	---	--------	---

Anexo 3.3 Matriz de consistencia

- Apellidos y nombres:
 O Albinco Ruiz Yeymi Tatiana
 - O Gonzales Oribe Luis Alfonso

PROBLEMA	OBJETIVOS	MARCO TEÓRICO	HIPÓTESIS	VARIABLES	METODOLOGÍA
	OBJETIVOS	WARCO LEGRICO	HIPUTESIS	VARIABLES	WETODOLOGIA
GENERAL ¿Cuál es el mejoramiento y el diseño de la infraestructura vial de la carretera que une Huancaquito Alto y la Panamericana, provincia y distrito de Virú,2021?	O. GENERAL: Realizar un mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana Norte en el distrito y provincia de Virú 2021	(Guamán, 2017) en su tesis titulada "Diseño Geométrico y Diseño de Pavimento de la vía Callasay – Zhordan desde abscisa 2+000 hasta 6+300" (Ramos y Lozano, 2019) en su tesis titulada "Estabilización de		Independiente Mejoramiento.	Enfoque de investigación El proyecto presenta un enfoque cuantitativo deductivo, cuenta con dos variables y se basará en la realización de cálculos para el mejoramiento del material a usarse en la base del pavimento y el diseño de una infraestructura vial. Tipo de inventigación
Los pobladores del distrito Huancaquito Alto no cuentan con una vía apta para su transitabilidad, dificultando que tanto las personas como la mercadería puedan trasladarse desde su distrito hasta vías principales (Panamericana Norte). Un apropiado diseño de	O. ESPECIFICOS: Realizar un levantamiento topográfico para conocer la superficie del terreno de la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú, 2021. Realizar un	titulada "Diseño de infraestructura vial entre los caseríos Quillinshacucho, Oxapampa, Paraguran y centro poblado Atoshaico, distrito Bambamarca, Cajamarca". (De la Cruz y Carranza, 2019)	y El mejoramiento _{de} diseño vial infraestructura lo cumplirá con las establecido en j20 normas de Estabilización Suelos y Taludes, como en el Manual Suelos, Geología, y Geotecnia del Pavimentos de	Diseño de infraestructura vial	investigación Por el propósito: Aplicada Por el diseño: No experimentaldescriptiva Por el nivel: Descriptiva Diseño de investigación No experimental-descriptiva transversal Población Cinco kilómetros de la carretera que une el distrito de Huancaquito Alto

para el mejoramiento de base y	Ministerio	
para el mejoramiento de base y subbase en pavimentos"		
·		

infraestructura vial, es fundamental en el sistema de transporte de las naciones, el estado en el que se presente interviene de forma directa en gran parte de los costos usuario de la carretera, aumentándole cuando su estado no es óptimo.

material a usarse en la base para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú, 2021.

Elaborar el diseño geométrico de la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú, 2021.

Realizar un estudio de suelos para conocer las características físicas de la sub rasante de la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú, 2021.

Elaborar un estudio de tráfico de la zona en la que se encuentra la carretera que une Huancaquito Alto y la Panamericana, (Marvin y Billy, 2019) en su tesis titulada "Diseño para el mejoramiento de la carretera del tramo AA.HH. Fujimori-Desvió Porvenir, Distrito Chao, Provincia Viru- La Libertad"

Transportes У Comunicaciones. así también lo con estipulado en el Manual de Carreteras: Diseño Geométrico DG 2018 en la carretera que une Huancaquito Alto Panamericana. Distrito y Provincia de Virú, 2021.

con la carretera Panamericana Norte.

Muestra

<u>Técnica</u> <u>de</u> <u>muestreo</u>:

No probabilístico a través de juicio de expertos

<u>Tamaño</u> <u>de</u> <u>muestra</u>:

Cinco kilómetros de la carretera que une el distrito de Huancaquito Alto con la carretera Panamericana Norte. **Unidad de análisis**

Toda la muestra.

Técnicas e instrumentos

Técnicas

- Revisión documental
- O Observación Instrumentos
- O Guía de observación N° 1
- O Guía de observación N° 2
- Guía de observación N° 3
- Guía de observación N° 4
- Guía de observación N° 5
- O Ficha resumen N° 01
- O Ficha resumen N° 02
- Ficha resumen N° 03
- O Ficha resumen N° 04

Distrito y Provincia de Virú, 2021.		
Realizar el diseño de pavimento rígido para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú, 2021.		

Anexo 4 Instrumentos de recolección de datos.

Anexo 4.1 Guía de observación N° 1

ESTUDIO DE TRÁFICO

Carretera:																							
Tramo:													Año	de estu	dio:								
Código de e	estación:												Tipo	de pavi	mento:								
Estación:													Ubicación:										
			de correcc	ión	Veh. Livia	anos	Fe:				Sentido:												
		estacio	nal		Veh. Pes	ados	Fe:																
		Auto	S.	Camione	tas			Ómı	nibus		Cam	nión		Semi	traylers					Trayle	ers		
		movil	Wagon	PickUp	Panel	Rural	Micro	2E	3E	4E	2E	3E	4E	2S1	2S2	2S3	3S1	3S2	>=3S3	2T2	2T3	3T2	>=3T3
DIA						20.00	.		0	000	, , , , , , , , , , , , , , , , , , , 	<u>6</u>	-000 A		80 g d	808 3 A	8 88 A	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	999 88 8	5 6 5 A	55 6 3 A	9 99	0
Domingo																							
	Total																						
Lunes																							
	Total																						
Martes																							
	Total																						
Miércoles																							
	Total																						
Jueves																							
																							i

	Total											
Viernes												
	Total											
Sábado												
	Total											
IMDs												
	Total											
IMDa												
	Total											
2021	Total											

Anexo 4.2 Guía de observación 2

ESTUDIO DE MECÁNICA DE SUELOS

PROYECTO: Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú 2021.

RESPONSABLE:						FECHA:
SONDAJE	TIPO DE SONDAJE	PROFUNDIDAD (m)	COTA (m.s.n.m)	PROFUNDIDAD NAF (m)	PROGRESIVA	LADO
1	C 1					
2	C 2					
3	C 3					
4	C 4					
n	C 5					

Anexo 4.3 Guía de observación 3

ESTUDIO DE TOPOGRAFÍA (POLIGONAL)

PROYECTO: carretera que u Provincia de V	une Huancaqı						
ESTACIÓN TOTAL:				FECHA	:		
OPERADOR:				COORDEN/ UTM:	ADAS		
PUNTOS	COORDE		СОТА	ÀNGULO DIS		ANCIA	
_	NORTE	ESTE	_	_	_		
E	N	E	С	Α		D	
E1							
E2							
E3							
E4							
E 5							
E 6							
E7							
E8							
E9							
E10							
E11							

Anexo 4.4 Guía de observación 4 ESTUDIO DE TOPOGRAFÍA (NIVELACIÓN)

PROYEC	estructura vial	S			
para la ca	irretera que	une Huancaq	uito Alto y la	l	\
Panameri	cana, Distr	ito y Provincia	de Virú 202	1	
NIVEL:				FECHA:	
OPERAD	OR:				
OI LIVAD	OIK.				
PTO	VA	ALT.	VD	СОТА	OBS
BM- 0.0					
PC - 1					
PC - 2					
PC - 3					
BM- 0.5					
		VI	UELTA		
PTO	VA	ALT.	VD	СОТА	OBS
BM- 0.5					
PC - 1					
PC – 2					
PC – 3					
BM- 0.0					

Anexo 4.5 Guía de observación 5

ESTUDIO DE TOPOGRAFÍA (PUNTOS DE FOTOCONTROL)

PROYECTO: Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú 2021.									
ESTACIÓN TOTAL:			FECHA:						
OPERADOR:			COORDENADAS UTM:						
PUNTOS	COORDE NORTE	ENADAS ESTE	СОТА						
PFC	N	E	С						
PFC 1									
PFC 2									
PFC 3									
PFC 4									
PFC 5									
PFC 6									
PFC 7									
PFC 8									
PFC 9									
PFC 10									
PFC 11									

Anexo 4.6 Ficha de resumen N° 01

Proyecto: Mej la Panamerican				al para la ca	arretera que	une Huanca	quito Alto y		T
Responsable:									
Laboratorio:						Fech	a:		
Autores:									
			ESTUDIO I	DE MECÁN	IICA DE SUE	ELOS		_	
	ı (sare	ı (a aree	índice de	PROCTOR I	MODIFICADO	C.B.R	R. 0.1"	C.B.I	R. 0.2"
MUESTRA	LÍMITE LÍQUIDO	LÍMITE PLÁSTICO	ÍNDICE DE PLASTICIDAD	D.S.M.(g/ cm³)	O.C.H.(%)	95%	100%	95%	100%
MATERIAL DE PRÉSTAMO									
CON 2% DE CAL									

CON 4% DE CAL					
CON 6% DE CAL					
CON 8% DE CAL					

Anexo 4.7 Ficha resumen N° 02

Proyecto: Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú 2021.								cana,				
Responsabl	e :							Fecha:				
Laboratorio:												
Autores:												
			ESTUD	OIO DE ME	CÁNICA I	DE SUELO	os		ļ			
			EST	RATOS EN	ICONTRAD	OS EN SU	IS PRINCIP	PALES PROPIEDAD	ES			
MUESTRA	PROFUNDIDAD (m)	GRA	NULOMETR	IA	LÍMITE C	DE CONSIS (%)	STENCIA	CONTENIDO DE		SIFICACIÓN DE SUELOS S AASTHO		
		% GRAVA	% ARENA	% FINOS	L.L	L.P	I.P	HUMEDAD (%)	sucs	AASTHO		

Anexo 4.8 Ficha resumen N° 03

Proyecto: Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú 2021.													
	sponsak										Fecha:		
	boratorionionionionionionionionionionionionioni	D :											
						ESTUD	OIO DE ME	CÁNICA I	DE SUEL	os			
M		octor ficado	C.I	3.R		EST	RATOS EN	CONTRAD	OS EN SU	IS PRINCIF	PALES PROPIEDAD	ES	
E S T	ОСН	MDS	0.1	0.2	GRA	NULOMETR	RIA	LÍMITE I	DE CONSIS (%)	STENCIA	CONTENIDO DE		ICACIÓN DE JELOS
R A	(%)	(%)	"	"	% GRAVA	% ARENA	% FINOS	L.L	L.P	I.P	HUMEDAD (%)	sucs	AASTHO

Anexo 4.9 Ficha resumen N° 04

	Mejoramiento y diseño de infraestructura vial para la Carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú 2021.	
Autores:		
Fecha:		

ÍNDICE MEDIO DIARIO ANUAL								
TIPO DE VEHÍCULO	IMDa	DISTRIBUCIÓN (%)						
TOTAL								

Anexo 5 Validez y confiabilidad de los instrumentos Anexo 5.1 Matriz para evaluación de expertos

MATRIZ PARA EVALUACIÓN DE EXPERTOS

Título de la investigación:	ejoramiento y diseño de infraestructura vial para Carretera que une Huancaquito Alto y la anamericana, Distrito y Provincia de Virú 2021				
Línea de investigación:	Diseño de Infraestructura Via	l			
Apellidos y nombres del experto:					
El instrumento de medici	ón pertenece a la variable:	Diseño de infraestruc	tura vial		

Mediante la matriz de evaluación de expertos, Ud. tiene la facultad de evaluar cada una de las preguntas marcando con una "x" en las columnas de SÍ o NO. Asimismo, le exhortamos en la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

Ítems	Proguntas	Apre	ecia	Observaciones	
Itellis	Preguntas	SÍ	NO	Observaciones	
1	¿El instrumento de medición presenta el diseño				
•	adecuado?				
2	¿El instrumento de recolección de datos tiene				
	relación con el título de la investigación?				
3	¿En el instrumento de recolección de datos se				
3	mencionan las variables de investigación?				
4	¿El instrumento de recolección de datos facilitará				
4	el logro de los objetivos de la investigación?				
5	¿El instrumento de recolección de datos se				
3	relaciona con las variables de estudio?				
	¿Cada una de los ítems del instrumento de				
6	medición se relaciona con cada uno de los				
	elementos de los indicadores?				
7	¿El diseño del instrumento de medición facilitará el				
•	análisis y procesamiento de datos?				
8	¿El instrumento de medición será accesible a la				
0	población sujeto de estudio?				
9	¿El instrumento de medición es claro, preciso y				
	sencillo de manera que se pueda obtener los datos				
	requeridos?				

9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?		
Suge	rencias:		
	CIP:		

Anexo 6: Instrumentos de recolección de datos completos

Anexo 4.8 Guía de observación 4

ESTUDIO DE TOPOGRAFÍA (NIVELACIÓN)

Tabla 68. Nivelación ida y vuelta

PROYEC	TO: Mejora	amiento y dis	eño de infr	aestructura vial	M
para la ca	ırretera que	une Huancac	juito Alto y	la	
Panameri	cana, Distr	ito y Provincia	de Virú 202	21	
NIVEL:				FECHA:	20/09/2021
OPERADOR:		Tec. Luis	Cruzado Z	Zavaleta	
			IDA		
PTO	VA	ALT.	VD	COTA	OBS
BM- 0.0	0.541	50.415		49.874	
PC - 1	0.452	49.664	1.203	49.212	
PC – 2	0.485	48.997	1.152	48.512	
PC - 3	0.397	48.364	1.030	47.967	
BM- 0.5			1.254	47.110	
	1.875	-	4.639		
		2.764			
		V	UELTA		
PTO	VA	ALT.	VD	СОТА	OBS
BM- 0.5	1.123	48.233		47.110	
PC - 1	1.025	48.770	0.488	47.745	
PC – 2	1.001	49.206	0.565	48.205	
PC - 3	1.270	50.024	0.452	48.754	
BM- 0.0			0.152	49.872	
	4.419	-	1.657		
		2.762			

PTO	VA	ALT.	VD	COTA	OBS
BM- 0.5	0.512	47.622		47.110	
PC - 1	0.432	46.734	1.320	46.302	
PC – 2	0.471	45.753	1.452	45.282	
PC - 3	0.385	45.015	1.123	44.630	
BM- 1.0			1.619	43.396	
	1.800	-	5.514		
		3.714			
PTO	VA	ALT.	VD	СОТА	OBS
BM- 1.0	1.132	44.528		43.396	
PC - 1	1.564	45.614	0.478	44.050	
PC – 2	1.652	46.711	0.555	45.059	
PC - 3	1.021	47.120	0.612	46.099	
BM- 0.5			0.013	47.107	
	5.369	-	1.658		
		3.711			

IDA								
PTO	VA	ALT.	VD	СОТА	OBS			
BM- 1.0	1.320	44.716		43.396				
PC - 1	1.123	45.327	0.512	44.204				
PC – 2	1.123	45.796	0.654	44.673				
PC - 3	0.904	46.229	0.471	45.325				
PC – 4	1.021	46.465	0.785	45.444				
BM- 1.5			0.545	45.920				

	5.491	-	2.967		
		-2.524			
		V	UELTA		
PTO	VA	ALT.	VD	СОТА	OBS
BM- 1.5	0.478	46.398		45.920	
PC - 1	0.555	46.097	0.856	45.542	
PC – 2	0.612	45.675	1.034	45.063	
PC - 3	0.650	45.260	1.065	44.610	
PC – 4	0.013	44.250	1.023	44.237	
BM- 1.0			0.856	43.394	
	2.308	-	4.834		
		-2.526			

			IDA		
PTO	VA	ALT.	VD	СОТА	OBS
BM- 1.5	0.512	46.432		45.920	
PC - 1	0.546	45.993	0.985	45.447	
PC - 2	0.546	45.559	0.980	45.013	
PC - 3	0.545	45.254	0.850	44.709	
BM- 2.0			0.875	44.379	
	2.149	-	3.690		
		1.541			
		V	UELTA		
РТО	VA	ALT.	VD	СОТА	OBS
BM- 2.0	0.856	45.235		44.379	
PC - 1	1.034	45.791	0.478	44.757	
PC – 2	1.065	46.301	0.555	45.236	

PC - 3	0.856	46.545	0.612	45.689	
BM- 1.5			0.630	45.915	
	3.811	-	2.275		
		1.536			

			IDA		
PTO	VA	ALT.	VD	СОТА	OBS
BM- 2.0	0.210	44.589		44.379	
PC - 1	0.132	43.521	1.200	43.389	
PC - 2	0.210	42.611	1.120	42.401	
PC - 3	0.121	41.600	1.132	41.479	
BM- 2.5			1.330	40.270	
	0.673	-	4.782		
		4.109			
		V	UELTA	•	
РТО	VA	ALT.	VD	COTA	OBS
BM- 2.0	1.132	41.402		40.270	
PC - 1	1.100	42.378	0.124	41.278	
PC - 2	1.200	43.477	0.101	42.277	
PC - 3	1.120	44.387	0.210	43.267	
BM- 2.5			0.005	44.382	
	4.552	-	0.440		
		4.112			

			IDA		
РТО	VA	ALT.	VD	СОТА	OBS
BM- 2.5	0.650	40.920		40.270	
PC - 1	0.245	40.033	1.132	39.788	
PC - 2	0.500	39.388	1.145	38.888	
PC - 3	0.240	38.608	1.020	38.368	
BM- 3.0			1.210	37.398	
	1.635	-	4.507		
		2.872			
		V	UELTA		
PTO	VA	ALT.	VD	COTA	OBS
BM- 3.0	1.145	38.543		37.398	
PC - 1	1.210	39.563	0.190	38.353	
PC – 2	1.023	40.066	0.520	39.043	
PC - 3	1.320	40.918	0.468	39.598	
BM- 2.5			0.652	40.266	
	4.698	-	1.830		
		2.868			

			IDA		
РТО	VA	ALT.	VD	СОТА	OBS
BM- 3.0	0.540	37.938		37.398	
PC - 1	0.500	37.453	0.985	36.953	
PC – 2	0.352	36.795	1.010	36.443	
PC - 3	0.601	36.451	0.945	35.850	
PC – 4	0.545	36.180	0.816	35.635	

BM- 3.5			1.021	35.159	
	2.538	-	4.777		
		2.239			
		V	UELTA	•	
РТО	VA	ALT.	VD	СОТА	OBS
BM- 3.5	1.020	36.179		35.159	
PC - 1	1.250	36.579	0.850	35.329	
PC - 2	1.658	37.615	0.622	35.957	
PC - 3	1.254	38.655	0.214	37.401	
PC - 4	0.885	38.917	0.623	38.032	
BM- 3.0			1.520	37.397	
	6.067	-	3.829		
		2.238			

	IDA							
РТО	VA	ALT.	VD	СОТА	OBS			
BM- 3.5	0.254	35.413		35.159				
PC - 1	0.542	34.838	1.117	34.296				
PC - 2	0.452	34.270	1.020	33.818				
PC - 3	0.540	33.852	0.958	33.312				
BM- 4.0			1.012	32.840				
	1.788	-	4.107					
		2.319						
		V	UELTA		•			
PTO	VA	ALT.	VD	COTA	OBS			
BM- 4.0	0.912	33.752		32.840				
PC - 1	1.014	34.516	0.250	33.502				
PC – 2	0.865	35.056	0.326	34.191				

PC - 3	0.899	35.610	0.345	34.711	
BM- 3.5			0.452	35.158	
	3.690	-	1.373		
		2.317			

			IDA		
PTO	VA	ALT.	VD	СОТА	OBS
BM- 4.0	0.564	33.404		32.840	
PC - 1	0.632	33.051	0.985	32.419	
PC - 2	0.580	32.777	0.854	32.197	
PC - 3	0.366	32.185	0.958	31.819	
BM- 4.5			1.210	30.975	
	2.142	-	4.007		
		1.865			
		V	UELTA		
PTO	VA	ALT.	VD	COTA	OBS
BM- 4.5	1.120	32.095		30.975	
PC - 1	1.210	32.794	0.511	31.584	
PC - 2	1.000	33.205	0.589	32.205	
PC - 3	0.989	33.440	0.754	32.451	
BM- 4.0			0.601	32.839	
	4.319	-	2.455		
		1.864			

			IDA		
РТО	VA	ALT.	VD	СОТА	OBS
BM- 4.5	0.452	31.427		30.975	
PC - 1	0.583	30.810	1.200	30.227	
PC - 2	0.532	30.132	1.210	29.600	
PC - 3	0.850	29.982	1.000	29.132	
PC - 4	0.750	29.747	0.985	28.997	
BM- 1.0			1.012	28.735	
	3.167	-	5.407		
		2.240			
		VI	UELTA	<u> </u>	
РТО	VA	ALT.	VD	COTA	OBS
BM- 5.0	1.320	30.055		28.735	
PC - 1	1.110	30.380	0.785	29.270	
PC - 2	1.152	31.045	0.487	29.893	
PC - 3	0.978	31.258	0.765	30.280	
PC - 4	1.032	31.632	0.658	30.600	
BM- 0.5			0.658	30.974	
	5.592	-	3.353		
		2.239			

Anexo 7. Estudio de tráfico

Tabla 69. Factor camión de vehículos

Table 03. Factor carrillor de verticulos								
TIPO DE '	VEHI′CULO	IMDA	TIPO	NUMERO	CARGA	"f" P.	f. IMDA	
		2025	EJE	LLANTAS	EJE Tn	RÍGIDO	RÍGIDO	
	Autos	33.22	SIMPLE	2	1	0.00043639	0.01449885	
		33.22	SIMPLE	2	1	0.00043639	0.01449885	
	S. Wagon	4.15	SIMPLE	2	1	0.00043639	0.00181236	
		4.15	SIMPLE	2	1	0.00043639	0.00181236	
	Pick Up	24.92	SIMPLE	2	1	0.00043639	0.01087414	
VEHICULOS		24.92	SIMPLE	2	1	0.00043639	0.01087414	
LIGEROS	Panel	7.27	SIMPLE	2	1	0.00043639	0.00317162	
		7.27	SIMPLE	2	1	0.00043639	0.00317162	
	Rural	8.31	SIMPLE	2	1	0.00043639	0.00362471	
		8.31	SIMPLE	2	1	0.00043639 0.00043639	0.00362471	
	Micros	2.08	SIMPLE	2	1	0.00043639	0.00090618	
		2.08	SIMPLE	2	1	1.27283418	0.00090618	
	2E	2.17	SIMPLE	2	7	3.33482627	2.7679697	
OMNIBUS		2.17	SIMPLE	4	11	0.00 .02027	7.25208219	
	2E	35.88	SIMPLE	2	7	1.27283418	45.6715	
		35.88	SIMPLE	4	11	3.33482627	119.659356	
	3E	17.40	SIMPLE	2	7	1.27283418	22.1437576	
CAMIÓN		17.40	TANDEM	8	18	3.45800441	60.1596129	
	4E	15.22	SIMPLE	2	7	1.27283418		
		15.22	TRIDEM	10	23	3.68535214	19.3757879 56.1004746	
	2S1	8.70	SIMPLE	2	7	1.27283418	11.0718788	
		8.70	SIMPLE	4	11	3.33482627		
		8.70	SIMPLE	4	11	3.33482627	29.0083288 29.0083288	
	2S2	5.44	SIMPLE	2	7	1.27283418		
		5.44	SIMPLE	4	11	3.33482627	6.91992424 18.1302055	
		5.44	TANDEM	8	18	3.45800441		
	2S3	4.35	SIMPLE	2	7	1.27283418	18.799879 5.5359394	
		4.35	SIMPLE	4	11	3.33482627	14.5041644	
		4.35	TRIDEM	12	25	4.16493128		
SEMITRAYLERS	3S1	3.26	SIMPLE	2	7	1.27283418	18.1145412 4.15195455	
	331	3.26	TANDEM	8	18	3.45800441	11.2799274	
		3.26	SIMPLE	4	11	3.33482627 1.27283418	10.8781233	
	3S2	5.44	SIMPLE	2	7	3.45800441		
	352					3.45800441	6.91992424	
		5.44	TANDEM	8	18	1.27283418	18.799879	
		5.44	TANDEM	8	18	3.45800441	18.799879	
	>=S3	3.26	SIMPLE	2	7	4.16493128	4.15195455	
		3.26	TANDEM	8	18	1.27283418	11.2799274	
		3.26	TRIDEM	12	25	1.27203410	13.5859059	
TRAYLERS	2T2	4.35	SIMPLE	2	7		5.5359394	

	•				i .	
	4.35	SIMPLE	4	11	3.33482627	14.
	4.35	SIMPLE	4	11	3.33482627	
	4.35	SIMPLE	4	11	3.33482627	14.
2T3	4.35	SIMPLE	2	7	1.27283418	14.
	4.35	SIMPLE	4	11	3.33482627 3.33482627	5.
	4.35	SIMPLE	4	11	3.45800441	14.
	4.35	TANDEM	8	18	1.27283418	14
3T2	4.35	SIMPLE	2	7	3.45800441	15.
	4.35	TANDEM	8	18	3.33482627 3.33482627	
	4.35	SIMPLE	4	11	1.27283418	5
	4.35	SIMPLE	4	11	3.45800441	15.
>=3T3	4.35	SIMPLE	2	7	3.33482627	14.
	4.35	TANDEM	8	18	3.45800441	14.
	4.35	SIMPLE	4	11	-	5.
	4.35	TANDEM	8	18	1	15.
<u> </u>	I .				1	

14.5041644 14.5041644 5.5359394 14.5041644 14.5041644 15.0399032 5.5359394 15.0399032 14.5041644 5.5359394 15.0399032 14.5041644

15.0399032

Anexo 7.2 Límites de consistencia

DETERMINACIÓ	N DEL LÍMITE I	PLÁSTICO (MTC	E-111)
Nº Tarro	3	4	
Tarro + Suelo húmedo. (g)	31.81	29.12	
Tarro + Suelo seco (g)	30.48	28.11	
Peso Agua (g)	1.33	1.01	
Peso del Tarro (g)	23.41	22.69	
Peso del suelo seco (g)	7.07	5.42	
Humedad (%)	18.81	18.63	
Limite Plástico (%)		18.72	-1
	(MTC E-11	,	
	(WITC E-TI	0)	
Nº Tarro	5	6	7
Número de Golpes	19	24	32
Peso tarro + suelo húmedo (g)	51.64	49.69	48.82
Peso tarro+suelo seco (g)	45.67	44.85	44.29
Peso del Agua (g)	5.97	4.84	4.53
_	5.97 32.44	4.84 33.74	4.53
(g)		-	
(g) Peso del tarro (g) Peso del suelo	32.44	33.74	33.49

Anexo 8. Validez y confiabilidad de los instrumentos

Anexo 8.1 Matriz para evaluación de expertos

MATRIZ PARA EVALUACIÓN DE EXPERTOS

investigación:	Mejoramiento y diseño de infraestructura vial para la Carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú 2021	
Línea de investigación:	Diseño de Infraestructura Vial	
Apellidos y nombres del experto:	Villar Quiroz, Josualdo Carlos	

El instrumento de medición pertenece a la variable: Diseño de infraestructura vial

Mediante la matriz de evaluación de expertos, Ud. tiene la facultad de evaluar cada una de las preguntas marcando con una "x" en las columnas de SÍ o NO. Asimismo, le exhortamos en la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

Ítems	Proguntas	Apre	ecia	Observaciones
ILEIIIS	Preguntas	SÍ	NO	Observaciones
1	¿El instrumento de medición presenta el diseño	х		
_	adecuado?			
2	¿El instrumento de recolección de datos tiene	Х		
_	relación con el título de la investigación?			
3	¿En el instrumento de recolección de datos se	х		
	mencionan las variables de investigación?	^		
4	¿El instrumento de recolección de datos facilitará	x		
7	el logro de los objetivos de la investigación?			
5	¿El instrumento de recolección de datos se	v		
	relaciona con las variables de estudio?	Х		
	¿Cada una de los ítems del instrumento de			
6	medición se relaciona con cada uno de los	Χ		
	elementos de los indicadores?			
7	¿El diseño del instrumento de medición facilitará el	х		
'	análisis y procesamiento de datos?	X		
8	¿El instrumento de medición será accesible a la			
0	población sujeto de estudio?	Х		
9	¿El instrumento de medición es claro, preciso y			
	sencillo de manera que se pueda obtener los datos	Χ		
	requeridos?			

Sugerencias:

CIP: 106997

8.2 Matriz para evaluación de expertos

MATRIZ PARA EVALUACIÓN DE EXPERTOS

investigación:	Mejoramiento y diseño de infraestructura vial para la Carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú 2021				
Línea de investigación:	Diseño de Infraestructura Vial				
Apellidos y nombres del Horna Araujo, Luis Alberto					
experto:					
El instrumento de medición pertenece a la variable: Diseño de infraestructura vial					

Mediante la matriz de evaluación de expertos, Ud. tiene la facultad de evaluar cada una de las preguntas marcando con una "x" en las columnas de SÍ o NO. Asimismo, le exhortamos en la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

Ítems	Proguntas	Apr	ecia	Observaciones
Items	Preguntas	SÍ NO diseño	NO	Observaciones
1	¿El instrumento de medición presenta el diseño	Χ		
	adecuado?			
2	¿El instrumento de recolección de datos tiene	Χ		
	relación con el título de la investigación?			
3	¿En el instrumento de recolección de datos se	Х		
	mencionan las variables de investigación?			
4	¿El instrumento de recolección de datos facilitará	X		
-	el logro de los objetivos de la investigación?			
5	¿El instrumento de recolección de datos se	Х		
3	relaciona con las variables de estudio?	^		
	¿Cada una de los ítems del instrumento de			
6	medición se relaciona con cada uno de los	Χ		
	elementos de los indicadores?			
7	¿El diseño del instrumento de medición facilitará el	Х		
7	análisis y procesamiento de datos?	Χ		
	¿El instrumento de medición será accesible a la	· · ·		
8	población sujeto de estudio?	X		
9	¿El instrumento de medición es claro, preciso y			
	sencillo de manera que se pueda obtener los	Χ		
	datos requeridos?			
Ļ	1			

Sugerencias:

Luds Alberto Horna Araujo
ING. CIVIL
CIP. 24002

8.3 Matriz para evaluación de expertos

MATRIZ PARA EVALUACIÓN DE EXPERTOS Título de la investigación: Mejoramiento y diseño de infraestructura vial para la Carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú 2021 Línea de investigación: Diseño de Infraestructura Vial Apellidos y nombres del experto: El instrumento de medición pertenece a la variable: Diseño de infraestructura vial

Mediante la matriz de evaluación de expertos, Ud. tiene la facultad de evaluar cada una de las preguntas marcando con una "x" en las columnas de SÍ o NO. Asimismo, le exhortamos en la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

Ítems 1	Duramundas	Aprecia		Observaciones
	Preguntas	SÍ	NO	Observacione
1	¿El instrumento de medición presenta el diseño adecuado?	X		
2	¿El instrumento de recolección de datos tiene relación con el título de la investigación?	X		
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?	X		
4	¿El instrumento de recolección de datos facilitará el logro de los objetivos de la investigación?	X		
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?	X		
6	¿Cada una de los ítems del instrumento de medición se relaciona con cada uno de los elementos de los indicadores?	X		
7	¿El diseño del instrumento de medición facilitará el análisis y procesamiento de datos?	Х		
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	×		
9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	X		

Sugerencias:		

FIRMA

8.4 Matriz para evaluación de expertos

MATRIZ PARA EVALUACIÓN DE EXPERTOS Título de la investigación: Mejoramiento y diseño de infraestructura vial para la Carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú 2021 Línea de investigación: Diseño de Infraestructura Vial Apellidos y nombres del experto: El instrumento de medición pertenece a la variable: Diseño de infraestructura vial

Mediante la matriz de evaluación de expertos, Ud. tiene la facultad de evaluar cada una de las preguntas marcando con una "x" en las columnas de SÍ o NO. Asimismo, le exhortamos en la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

Ítems ZEI instrume	Preguntas	Apr	ecia	Observaciones
		SÍ	SÍ NO	Observaciones
1	¿El instrumento de medición presenta el diseño adecuado?	X		
2	¿El instrumento de recolección de datos tiene relación con el título de la investigación?	X		
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?	X		
4	¿El instrumento de recolección de datos facilitará el logro de los objetivos de la investigación?	X		
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?	X		
6	¿Cada una de los ítems del instrumento de medición se relaciona con cada uno de los elementos de los indicadores?	X		
7	¿El diseño del instrumento de medición facilitará el análisis y procesamiento de datos?	X		
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	X		
9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	X		

Sugerencias:	-		

FIRMA

8.5 Matriz para evaluación de expertos

MATRIZ PARA EVALUACIÓN DE EXPERTOS Título de la investigación: Mejoramiento y diseño de infraestructura vial para la Carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú 2021 Línea de investigación: Diseño de Infraestructura Vial Apellidos y nombres del experto: El instrumento de medición pertenece a la variable: Diseño de infraestructura vial

Mediante la matriz de evaluación de expertos, Ud. tiene la facultad de evaluar cada una de las preguntas marcando con una "x" en las columnas de SÍ o NO. Asimismo, le exhortamos en la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

Ítems	Dwaguntas	Aprecia		01 .	
Items	Preguntas	SÍ	NO	Observacione	
1	¿El instrumento de medición presenta el diseño adecuado?	X		,	
2	¿El instrumento de recolección de datos tiene relación con el título de la investigación?	X			
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?	×			
4	¿El instrumento de recolección de datos facilitará el logro de los objetivos de la investigación?	×			
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?	×			
6	¿Cada una de los ítems del instrumento de medición se relaciona con cada uno de los elementos de los indicadores?	X			
7	¿El diseño del instrumento de medición facilitará el análisis y procesamiento de datos?	×			
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	×			
9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	×			

Sugerencias:				

FIRMA

8.6 Matriz para evaluación de expertos

Título de la investigación: Línea de investigación: Apellidos y nombres del experto:		Mejoramiento y diseño de infraestructura vial para la Carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú 2021 Diseño de Infraestructura Vial Victor Jenorio Alores									
										de infra	estructura vial
						pregun correct	tas marcando con una	ción de expertos, Ud. tiene la facul "x" en las columnas de SÍ o NO. A ando sus observaciones y/o sugere variable en estudio.	simisn	no, le e	xhortamos en la
Ítems	Preguntas		Apro	ecia NO	Observaciones						
1	¿El instrumento de medición presenta el diseño adecuado?										
2	¿El instrumento de re con el título de la inve	colección de datos tiene relación estigación?	X								
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?										
4	¿El instrumento de recolección de datos facilitará el logro de los objetivos de la investigación?		X								
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?										
6	¿Cada una de los ítems del instrumento de medición se relaciona con cada uno de los elementos de los indicadores?										
7	¿El diseño del instrun análisis y procesamie	nento de medición facilitará el nto de datos?	X								
8		edición será accesible a la	X								
9		edición es claro, preciso y sencillo da obtener los datos requeridos?	X								
Suge	rencias:										
		Alberto Tenorio Figres ING Cress CIF IR 16470		_							

9. Estudio de Mecánica de Suelos

INFORME TÉCNICO

ESTUDIO DE MECANICA DE SUELOS (EMS) CON FINES DE PAVIMENTACION

OBRA:

MEJORAMIENTO DE LA CARRETERA EMPALME PANAMERICANA NORTE (PUENTE VIRU) - HUANCAQUITO ALTO - A NIVEL DE ASFALTO 4.7 KM UBICADA EN EL DISTRITO DE VIRU PROVINCIA DE VIRU DEPARTAMENTO LA LIBERTAD

SOLICITANTE:

CORPORACION JJRD S.A.C.

UBICACIÓN:

LUGAR DISTRITO Huançaquito Alto

PROVINCIA VIRU

Viru

DEPARTAMENTO :

LA LIBERTAD

MARZO del 2021

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 🔾 044-603601 🗍 974960020 943721150 947510463

HUERTAS ESTRUCTURAS & GEOTECNIA SRL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

INDICE

1.0	Generalidades	- 3
1.1	. Objetivo Del Estudio	3
1.2	Normatividad	
1.3	Ubicación y descripción del Área de Estudio	3
1.4	Características generales de la obra	
1.5	Conclusiones generales del estudio	-
2.0	Investigaciones de Campo	
2.1	Justificación de la Cantidad de Exploraciones	4
2.2	Profundidad minima de investigación	-
2.3		3
2.4	Ensayos de Laboratorio	
3.0	Perfiles Estratigráficos	8
3.1	Resumen de estratos	8
3.2	Nivel Frentico	9
4.0	Análisis del Tráfico y Calculo de Capacidad de Soporte de la Sub-rasante	
4.1.	Análisis del Trafico	. 0
4.2	Capacidad de Soporte de la sub-rasante	10
5.0	Diseño del Pavimento	- 11
5.1.	Módulo Resilente	- 11
5.2	Metodologia de Diseño	12
5.3	Parametros de diseño	12
5.4	Espesores del pavimento.	13
5.5	Especificaciones Técnicas	14
6.0	Conclusiones y Recomendaciones	17
6.1	Conclusiones	17
6.2	Recomendaciones	18

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

INFORME TECNICO

1.0 Generalidades

1.1. Objetivo Del Estudio

El objetivo del presente Informe Técnico, es realizar un Estudio de Suelos con fines de pavimentación para la obra denominada: MEJORAMIENTO DE LA CARRETERA EMPALME PANAMERICANA NORTE (PUENTE VIRU) — HUANCAQUITO ALTO — A NIVEL DE ASFALTO 4.7 KM UBICADA EN EL DISTRITO DE VIRU PROVINCIA DE VIRU DEPARTAMENTO LA LIBERTAD.

El proceso seguido para los fines propuestos, fue el siguiente:

- Inspección y evaluación visual del área de estudio.
- Exploraciones de campo.
- Ensayos de laboratorio
- Determinación de la resistencia de los suelos (Ensayo de CBR).
- Determinación de espesores del pavimento a proyectar.
- Conclusiones y recomendaciones.

1.2. Normatividad

Los trabajos de investigación se han realizado según el Manual de Carreteras del Perú, la cual se basa en la aplicación de la Mecanica de Suelos que indica ensayos fundamentales y necesarios para prodecir el comportamiento de un suelo bajo la acción de sistemas de carga.

1.3. Ubicación y descripción del Área de Estudio

El área de estudio está ubicada en Huancaquito Alto, distrito de Viru, provincia de Viru, región de La Libertad.

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

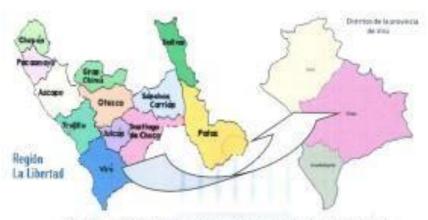


Figura 1.1 Mapa politico del terreno en estudio (fuente: GOOGLE)

L4. Características generales de la obra-

La obra en estadio posec una longitud total de 4.7 km, donde se proyecta pavimentar la zona señalada en el proyecto general, para lo cual realizaron los trabajos correspondientes.

Tabla 1.1 Características generales de la obra proyectada (Fuente: Solicitante)

Dato	Condición
Tipo de Pavimento	Flexible
Longitud y/o Area del proyecto	4.7 km

1.5. Conclusiones generales del estudio

Se realizaron ensayos estándar de laboratorio y de campo con fines de identificación y clasificación, así como ensayos de resistencia (C.B.R.), comprobando in situ que en el terreno donde se construirá esta pavimentación, existe un material de relleno inorgánico de color beige oscuro en un espesor promedio de 0.50 m.

Para el cálculo de los espesores del pavimento se tomó el suelo el cual lo constituye una arcilla ligeramente plástica (A-4(4), de acuerdo al o al AASHTO) que se encuentra en estado semi denso, de particulas de forma sub angulosas. En base a las

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

propiedades de las sub rasante y aplicando la metodología del AASTHO y recomendaciones del Manual de Carreteras, se obtuvo los siguientes espesores para el pavimento proyecto.

Tabla 1.2 Espesores del Pavimento Flexible proyectado (fuente: propia)

Pavimento	Espesor (cm)	Observación	
Carpeta Asfaltica	5.00	Pavimento en caliente	
Base	25.00	Ver especificaciones técnicas	
Sub base	20.00	Ver especificaciones técnicas De 2 a 6 pulg.	
Over side	20.00		
Total	70.00		

2.0 Investigaciones de Campo

2.1. Justificación de la Cantidad de Exploraciones

El alcance de las investigaciones de campo deberia ser apropiados para el tamaño e importancia de la obra a proyectar, además de satisfacer la complejidad de las características locales. El programa de exploración, así como la determinación de los ensayos de laboratorio, se han guiado por los requerimientos y condiciones específicos del sitio, así como las normativas que se señalaran a continuación.

A OF CHIPMINGS IN SUPERIOR

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

Tipo de Carretera	de Carretera Profundidad Número mínimo de Calicater		Observación	
Antopolias, cometeras de MEA mayor do 6000 ededas de calcadas separadas, cada aña com das a mão parsões	1.50 m respects at ever de sub rasarra del proyecto	Cabada 2 centes por sendo 4 calcode a kin a sendo Cabada 3 centes por sendo: 4 calcode 3 centes por sendo: 4 calcode 3 centes por sendo: 5 calcode 4 centes por sendo: 5 calcode r kin a sendo:	Lan calculai, se ubscadas	
Cambras Dures o Multicero cambras de MCA estido y 4001 y etido de calipidas sopradas, cada una cer dos a más cambra	155 in respects a must de successario de projecto	Catada 7 ceres po sendo 4 celodo 4 celodo 5 ceres po sendo 4 celodo 5 ceres po sendo 4 celodo 4 celodo 4 celodo 5 ceres por sendo 6 celodo 6 c	angludrumento en forma abenisch	
Cameteras de Piercera Clase, canederas con- us MCA serve 4000 2001 vehidas de una Missila de das cambra.	150 m respects at milet de sub tesamie del proyecto	Salada i in		
Cameroras de Segunda Clasar cameroras con un WiCh como 2009 401 selhidia, de uno cazado seldos carsies	1.60 er respects at exact de- sult recente del projecto	Tostatui x im	Las taricates se ubscelle	
Canada as de Teoresa Diase catedasas con un RICA entre 430-301 venidas de una caldada de dos carries.	150 m respects almost de submissable desprésents	Transation o No.	implichsemente y en forma plemach	
Camerine de Bajo Volgman de Triétada. Camerines com un 1954, 1 201 yell (da da una calcada	1 50 m respects at hise de two revante del proyects	Traktota v kei		

Figura 2.1 Número de calicatas para exploración de suelos (Fuente: cuadro 4.1 de la sección de Suelos y Pavimentos del manual de Carreteras del Perú)

M ON COSTAN METER SAFELL

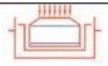
Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

Tipo de Carrelora	Nº May CBR		
Nutripiates committee de NOA major de 2001 veltrige de Laborias reconstats. Latin una con dire o mijo salmites	 Careala 2 comine per annaço 1 filo sata en e sentat y 1 (20 filosos 1 len y perinto) Caleala 3 comine per sentato 1 filo calor en e sentato y 1 (20 filosofic anna sentato) Caleala 4 comine per sentato 1 filo calor en y 1 (20 calor 1 comine) 		
Carrelmon Dumin Multiplini carrelmon in MCH-setta 6000 + MCT vertifica de infraeties legislentes, ciella erie des dels eridas parties	 Certada P cambio pir semojo: 3 NA cata ski slovota y CSRI cata nacioni semblo. Carpada P cambio pir semblo Y VA cata em planeto: y CSRI cata; il les planeto: Cartada P cambio pur semblo: 1 VA cata sky y CSRI cata 1 sei semblo: 		
Carefula de Pirrara Dans Samenos cor un REA emis 410 - 200 emillo en una capada pe pos cambra.	19 cap (ery 1000 pail (er.		
Constante de Segundo-Ciese, commencian de 1920a entre 2000 - AST adminis de una constante de dire confiere	Color Librarian rescues an CRR P1		
Common in Tyronia Cope common corpo MSA colo. 400 - 201 umbro de una compo entire contra	Esta Zint su material as CBIT P1		
Carrier and the an EEE A 5 200 world all and collected	Cata Sterior regions in CBS		

Figura 2.2 Número mínimo de ensayos de CBR (Fuente: Cuadro 4.2 de la sección de Suelos y Pavimentos del manual de Carreteras del Perú)

Debido al tipo de via y el tráfico proyectado, se realizaron 05 puntos de investigaciones, siendo este el número minimo de exploraciones recomendados por la norma.

2.2. Profundidad mínima de investigación


La profundidad minima de las investigaciones de campo estará de acuerdo a las disposiciones de la normativa peruana para este tipo de estudios, los cuales se muestran a continuación.

3.2.5	La profundidad mínima de investigación será de 1,50 m por debajo de la cota de rasante final de la via.
	Si dentro de la profundidad explorada se encontraran suelos blandos o altamente compresibles, la profundidad de investigación debará ampliarse a criterio del PR.
328	Donde exista rellenos no controlados se deberá investigar en todo su espesor debiendo profundizarse no menos de 0.50 m dentro del suelo natural.
3.2.7	Donde se encuentren macizos rocosos dentro de la profuncidad de investigación, se deberá registrar su profuncidad y grado de fracturamiento y estimar su resistencia a la compresión.

Figura 2.3 Profundidad mínimo de investigación para el caso de pavimento (fuente:

Articulo 3.2.5, 3.2.6 y 3.2.7 de la norma CE 010 del RNE)

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 (044-603601 974960020 943721150 947510463

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

2.3. Sondajes realizados

Se realizaron 05 sondajes de exploración subterránea, distribuidos en el terreno de acuerdo al proyecto. Las cotas del terreno están referenciadas a cotas relativas que están en función al nivel de vereda.

Tabla 2.1 Resumen de sondajes realizado en la zona en estudio

Sondaje	Tipo de Sondaje	Profundidad (m)	Cota (msnm)	Profundidad NAF (m)	Progresiva	Lado
C-1	Calicata	1.50	100.00	NP	0+483.60	Derecha
C-2	Calicata	1:50	100.00	NP	1+519.00	Derecha
C-3	Calicata	1.50	100.00	NP	2+571.20	Derecha
C-4	Calicata	1.50	100.00	NP	3+549.80	Izquierda
C-5	Calicata	1.50	100:00	NP	4+620.00	Derecha

donde

NP - No presenta

2.4. Ensayos de Laboratorio:

Se realizaron los siguientes ensayos de Laboratorio

Contenido de Humedad	NTP 339.127
Analisis Granulométrico	NTP 339.128
Clasificación Unificada de Suelos (ASTHO)	NTP 339.134
Descripción Visual-Manual	NTP 339.150
Contenido de Sales Solubles Totales en Suelos y Agua Subterranea	NTP 339.152
Proctor Modificado	ASTM D-1557
CBR	MTC 132

3.0 Perfiles Estratigráficos

3.1. Resumen de estratos

Sobre la base de los registros de calicatas, ensayos de laboratorio e información recopilada, se han elaborado los perfiles estratigráficos:

WE LESS COST NAME A STOTYCH SEL

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 © 044-603601 [] 974960020 943721150 947510463

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

Tabla 3.1 Resumen de los estratos encontrados con sus principales propiedades

MUESTRA	MUESTRA	TRA AASHTO	Prof. (m)	Cont. De	Porce	ntaje en Mues	tra de:	Limite	s de Consi	stencia
			Trace (res)	Humedad (%)	Grave (%)	Arena (%)	Finos (%)	LL (%)	LP (%)	IP (%)
C-1,M-1	A-2-4 (0)	0.25 - 1.50	8.10	7.53%	89.28%	3.20%	NP	NP	NP	
C-2,M-1	A-4 (4)	0.25 - 1.50	7.80	0.29%	44.86%	54.85%	14.81%	6.81%	8.00%	
C-3,M-1	A-3 (0)	0.20 - 1.50	10.11	0.00%	97.39%	2.62%	NP	NP	NP	
C-4,M-1	A-4 (5)	0.25 - 1.50	8.50	0.37%	40.63%	59.00%	17.20%	6.78%	10.42%	
C-5,M-1	A-4 (1)	0.20 - 1.50	9.21	0.00%	60.27%	39.74%	17.09%	401.44	10.37%	

Además, en base al número de puntos de CBR mostrados en la figura 2.2 se obtuvieron los siguientes resultados para el diseño de pavimento.

Tabla 3.2 Propiedades físicas y valores de CBR para el diseño del pavimento

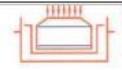
Muestra	OCH (%)	MDS (g/cm3)	CBR (%)
C-2,M-1	12.58	1.78	9

donde

OCH - Optimo Contenido de humedad

MDS = Máxima Densidad Seca

CBR - California Bearing Ratio


3.2. Nivel Freático

No se encontró a la profundidad estudiada de -1.50 metros del nivel del terreno natural (NTN), el cual fue medido en la fecha indicada en el informe.

4.0 Análisis del Tráfico y Calculo de Capacidad de Soporte de la Subrasante

4.1. Análisis del Trafico

Se realizó el cálculo del tráfico de diseño, en una carretera de similares características, considerando un factor de crecimiento anual del 5%, se obtuvieron los siguientes resultados

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

CALCULO DEL EAL:

Tipo de Vehiculo	Veh/dia	Veh/año	Factor camión	F. de crec, para tasa anual de crec, de \$%	EAL
Livianos					
Autos y camionetas	75	27375	0.00004	33.06	36
De 2 ajes, 4 ruedas	50	18250	0.002	33.06	1207
De 2 ejes, 6 rueday	25	9125	0.24	33.06	72401
De 3 ejes o más	30	10950	1.02	33.06	369247
Pesados	W	10000000	10	1	
Semi t, de 4 ejes	5	1825	0.48	33.06	28961
Semit de 5 ejes	2	730	5.17	33.06	28237
Semi L de 6 ejes o mils	- 1	365	1.19	33.06	14360
			111 111111	Total	514440

EAL (diseño): 5.14 E+05

4.2. Capacidad de Soporte de la sub-rasante

La sub rasante es la capa superficial de terreno natural. Su capacidad de soporte en condiciones de servicio, junto con el tránsito y las características de los materiales de construcción de la superficie de rodadura, constituyen las variables básicas para el diseño del pavimento, que se colocará encima.

Se considera como materiales aptos para las capas de la sub-rasante suelos con CBR mayor o igual 6%. En caso de ser menor se procederá a la estabilización de los suelos, para la cual se analizarán alternativas de solución, de acuerdo a la naturaleza del suelo, como estabilización mecánica, el reemplazo del suelo, estabilización quimica, estabilización con geo sintéticos, elevación de la rasante, cambiar trazo entre otros.


Según lo encontrado en campo se puede concluir lo mostrado en la tabla 4.1

Tabla 4.1 Capacidad de Soporte de la Sub rasante

Muestra	CBR (%)	Categoría	Mejoramiento
C-2, M-1	9	Regular	No necesita

ON THE SHIP WAS THE WAS THE SAME OF THE SA

Calle Palsajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 Q 044-603601 [] 974960020 943721150 947510463

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

Categorias de Sub rasante	CBR	
So: Sub-rasante Inadecuada	CBR < 3%	
Sc. Sub rasante insuficiente	De CBR 2:3% A CBR < 6%	
S ₂ Sub rasante Regular	De CSR 2:6% A CBR < 10%	
Sc. Sub rasante Buena	De CBR ≥ 10% A CBR < 209	
Si Sub rasante Muy Buena	De CBR it 20% A CBR < 30%	
Si. Sub rasante Excelente	CBR = 30%	

Figura 4.2 Categoria de la sub-rasante en función al CBR (Fuente: Cuadro 4.11 de la sección de Suelos y Pavimentos del manual de Carreteras del Perú)

5.0 Diseño del Pavimento

El diseño del pavimento de un pavimento a nivel de Solución de Ingenieria, se efectuará con los resultados idóneos obtenidos en los ensayos de Laboratorio y en las muestras representativas tomadas, los que se convertirán en el sustento técnico para la estructura que se está definiendo como mejor alternativa.

Para efectos del diseño se ha analizado la: "Manual de carreteras: suelos, geologia, geotecnia y pavimentos", la norma CE.010 de Pavimento Urbanos del RNE y los criterios de diseño de la Guia AASHTO para la definición de coeficientes estructurales de capa y el Número Estructural requerido.

5.1. Módulo Resilente

El método de diseño de pavimentos necesita de diversos parâmetros, uno de estos es el Modulo Resilente (MR), dicho parâmetro de importancia; pero debido a la especializado en la realización del ensayo, se cuenta con publicaciones donde se muestra diferentes correlaciones de MR con CBR, y para el caso del presente informe se hizo uso de la fórmula 5.1, la que es recomendad en el manual de carreteras del Perú.

Mr (psi) = 2555 x CBR 0.64

(5.1) HERMATTRECUMENT SHOPE AND INC. (5.1)

uertas estructuras a geotecnia srl

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

Aplicando la anterior formula se obtiene lo siguiente

Tabla 5.1 Modulo Resilente para diseño del payimento

8.44 C 100 C 2 C 2	violutio recomense para disent	was parameters
Muestra	CBR (%)	MR (KIP/pulg2)
C-2,M-1	9	10.43

5.2. Metodologia de Diseño

En base al pavimento proyectado se optó por usar la metodología del AASTHO 93. Este procedimiento está basado en los modelos que fueron desarrollados en función a la performance del pavimento, las cargas vehiculares y resistencia de la sub-rasante para cálculo de espesores.

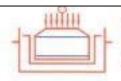
El propósito del modelo es el cálculo del Numero estructural requerido (SNr), en base al cual se identifican y determinan un conjunto de espesores de cada capa de la estructura del pavimento, que deben ser construidas sobre la sub rasante para soportar las cargas vehiculares con aceptable serviciabilidad durante el periodo de diseño establecido del proyecto.

$$Log W_{18} = ZR \times S_0 + 9.36 Log(SN+1) - 0.20 + \frac{Log (\Delta PSV - 4.2 - 1.5)}{0.40 (1.094/(SN+1)^{5.19})} + 2.32 Log Mr - 8.07$$

Figura 5.2 Ecuacion basica para diseño de un pavimento flexible (fuente: AASTHO 93)

5.3. Parámetros de diseño

En base a la metodologia utilizada para el diseño del pavimento se obtuvieron los siguientes parâmetros los cuales serán utilizados en el diseño del pavimento.


Datos para el diseño del pavimento

Tipo de Carretera. Crecimiento Anual Función de la Carretera: Tipo de Zona: Calidad de Drenaje: % de Tiempo de exposición: CBR sub-rasante CBR sub base (MIN): CBR base (MIN): Periodo de Diseño (Años) Numero de Ejes Equivalentes Total (W18) Pavimentada con bajos volúment 5:00% Colectora de transito Urbana Aceptable > 25 % 9% 40% 80% 20

8.98E+05

PETERSON INTERNED NAME OF THE

GE CRISTMAN HUERTAS MARTELL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

Serviciabilidad Inicial (pl)
Serviciabilidad Final (pl)
Factor de Conflabilidad (R)
STANDARD NORMAL DEVIATE (Zr)
OVERALL STANDARD DEVIATION (So)

4.2 2.0 88% -1.175 0.45

CONTRACTOR FAMILIES	Corciom	SALIS GOSTORIOS ESTRUCTURAL A. (ORI)	DESERVACION
Cara Suremoni			
Carpeti, fictation on Catenas, montara 2 letts (Arv.) etto 000 PSIs y 20 °C (SA °F)		district.	Capa Superfixer accomendado pano badocine tipos de Turko)
Carpets Publico en Tro, reacis actifica con enumen		2.71 m	Cape Super-South economic bette years Traffice in 1708,000 bit
Bospainana Ji mit		91231-94	Capa Superfloor economicate come 1140cc n < 500 300 EU
Transport Superfice transport		п	Calla Tager fact recommendate cand Traplox 6 000,000 DC . No Parks on hethers can people fits major as fit y en utal ion to eas pronunciables convection within provery confronces, or on thinking ago collegues as hereatic devisituales.
Lecharda eshibica (sopry soul) on 12 - rore			Capin Superficial necessarios de para Tradico is 000 880 EE. Pali Apica en Transpo, am presidente directo el EL y en Nationa que alonguen as Transpos de varionales.
There are considerable in a below apported.			

Figura 5.3 Valor del coeficiente estructural para la capa superficial (fuente: Cuadro 12.13 del Manual de Carreteras del Peru)

5.4. Espesores del pavimento

Con los valores de Diseño obtenidos, C.B.R. igual a 9%, un EAL de 514448 y clima de 20 grados centígrados en promedio, se obtiene el siguiente diseño para una pavimentación tipo rigido y adoquinado exige que tenga los siguientes espesores:

MARKALLISTANDA GARCIA CHARA.

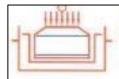
INC. INTE CRISTINAN HARTAS MATELL

CIP. 148105

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

Tabla 5.2 Espesores del Pavimento Flexible proyectado (fuente: propia)

Pavimento	Espesor (cm)	Observación
Carpeta Asfâltica	5.00	Pavimento en caliente
Base	25.00	Ver especificaciones técnicas
Sub base	20.00	Ver especificaciones técnicas
Over side	20.00	De 2 a 6 pulg.
Total	70.00	35.0001.0000.000


El valor señalado para el espesor total del pavimento, se deberá considerar desde el nível del terreno natural, esto es desde el material identificado como Arcilla Ligeramente Plástica.

Para el presente estudio se tuvo en cuenta la ubicación de la napa freática, la cual se encuentra a una profundidad mayor de 1.50 metros desde la superficie.

5.5. Especificaciones Técnicas

Tanto la base como la sub base deben cumplir ciertos parámetros mínimos, los cuales fueron asumidos en el cálculo de los espesores del pavimento, por lo que deberian ser verificados en obra para que se tenga correlación de lo supuesto en calculo con lo realizado en obra. A continuación, se presenten algunas especificaciones técnicas de la norma CE.010

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

n. Especificaciones técnicas para Sub base (Fuente: Norma CE.010)

wants.	Porcentaje que Pasa en Peso				
Tamiz	Gradación A *	Gradación B	Gradación C	Gradación D	
50 mm (2")	100	100	-		
25 mm (1")	200	75 - 95	100	100	
9,5 mm (3/8")	30 - 66	40 - 75	50 ~ 85	60 - 100	
4,75 mm (N° 4)	25 - 55	30 - 60	35 - 65	50 - 88	
2.0 mm (N° 10)	15 - 40	20 - 45	25 - 50	40 - 70	
4,25 µm (N° 40)	8 - 20	15 - 30	15 - 30	25 - 45	
75 µm (N° 200)	2-8	5 - 15	5-15	8 - 15	

Foerto: Sección 103 de las EG-2000 del MTC.

La curva do gradaciós. "A" deberá empleante en zonas cuyo atitud sea qual o superior el 3000 moment.

Ensayo Norma	Marina	Requerimiento		
Elisayo	Worma	< 3000 msnmm	≥ 3000 msnmm	
Abrasión Los Angeles	NTP 400,019:2002	50 % máximo		
CBR de laboratorio	NTP 339.145:1999	30-40 % minimo*		
Limite Liquido	NTP 339.129:1999	25% máximo		
Indice de Plasticidad	NTP 339.129:1999	8% máximo	4% máximo	
Equivalente de Arena	NTP 339.146:2000	25% minimo	35% minimo	
Sales Solubles Totales	NTP 339.152.2002	1% máximo		

MY 1956 COSTOLAR AGENCY ANTICITY COLD 148105

HUERTAS ESTRUCTURAS & GEDTECNIA SRI. Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

b. Especificaciones técnicas para base (Fuente: Norma CE.010)

· woman	Porcentaje que Pasa en Peso			
Tamiz	Gradación A *	Gradación B	Gradación C	Gradación D
50 mm (2")	100	100		3
25 mm (1°)	V = P	75 - 95	100	100
9,5 mm (3/8")	30 - 65	40 - 75	50 - 85	60 - 100
4,75 mm (N° 4)	25 - 55	30 - 60	36 - 65	50 - 85
2,0 mm (N° 10)	15 - 40	20 - 45	25 - 50	40 - 70
425 jum (Nº 40)	8 - 20	15 - 30	15 - 30	25-45
75 µm (N° 200)	2 = 8	5-15	5 -15	8-15

Fuente. Secption 305 de las EG-2000 del MTC.

La curva de gradación "A" debera emplearse en zonas cuya artitud sea igual o superior a 3000 msnmm.

Valor Relativo de So NTP 339.145	porte, CBR 1999
Vias Locales y Colectoras	Minimo 80%
Vias Arteriales y Expresas	Minimo 100%

Ensayo	110	Requesimientos		
	Norma	Altitud		
		< 3000 msnmm	≥ 3000 manmm	
Particulas con una cara fracturada	MTC E210-2000	30% minimo		
Particulas con dos caras fracturadas	MTC E210-2000	40% mínima	50% minimo	
Abresion Los Ángeles	NTP 400.019:2002	40% máximo		
Sales Solubles	NTP 338 152 2002	0.5% máximo		
Pérdida con Sulfato de Sodio	NTF 400.016:1999	===	12% máximo	
Pérdida con Sulfato de Magnesio	NTP 400.016:1999		18% máximo	

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

	Norma	Requerimientos	
Ensayo		< 3000 msnmm	> 3000 msnmm
Índice Plástico	NTP 339.129:1999	4% máximo	2% máximo
Equivalente de arena	NTP 339.146:2000	35% mínimo	45% minimo
Sales solubles	NTP 339.152:2002	0.5% n	naximo
Indice de durabilidad	MTC E214-2000	35% n	ninimo

6.0 Conclusiones y Recomendaciones

6.1 Conclusiones

El terreno estudiado arroja los siguientes valores para ser considerados en los planos de proyecto:

- Se han ejecutado 05 calicatas de 1,50 m distribuidos en toda el área en estudio con fines de pavimentación y extracción de muestras para su análisis en laboratorio (Ver Plano de Ubicación de Calicatas en Anexos).
- La profundidad de la napa freática, NO fue encontrada a -1.50 m desde el nivel del terreno natural.
- El material de sub-rasante obtuvo un valor de CBR igual a 9%, el cual NO necesita mejoramiento o estabilización y se encuentra dentro de la categoria BUENA para ser usado como sub-rasante.

AN IOS CHETTAN MENTA MATELL CIP. 148105

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

Tabla 6.1 Propiedades fisicas y valores de CBR para el diseño del pavimento

Muestra	OCH (%)	MDS (g/cm3)	CBR (%)
C-1,M-1	12.58	1.78	9

 Según la metodología aplicada, las características de la sub rasante y el tráfico de diseño, se obtuvo los siguientes espesores para el pavimento proyectado.

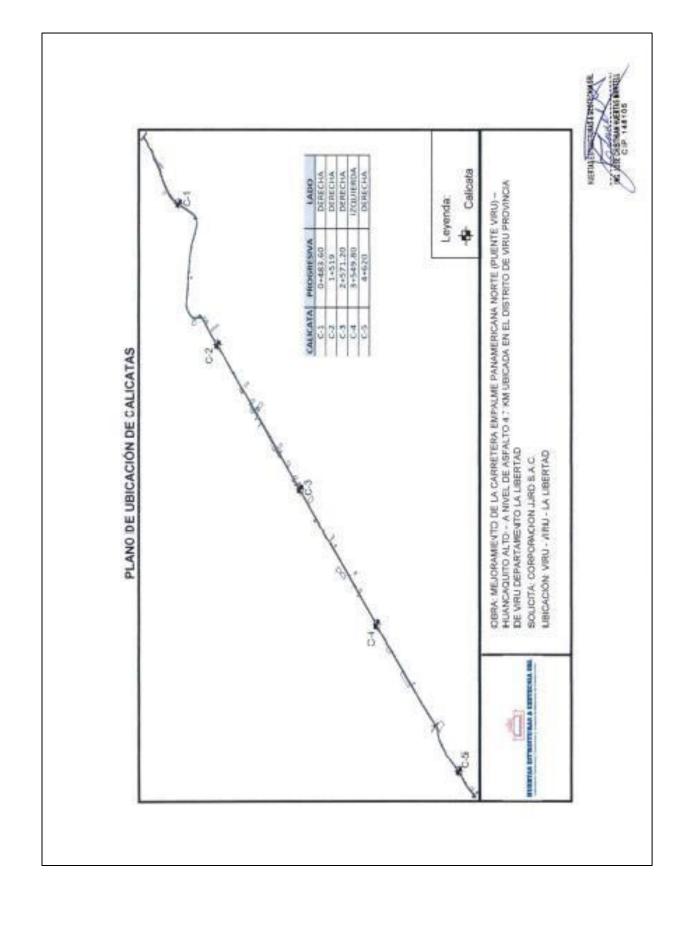
Tabla 6.2 Espesores del Pavimento Flexible proyectado (fuente: propia)

Pavimento	Espesor (cm)	Observación
Carpeta Asfáltica	5.00	Pavimento en caliente
Base	25.00	Ver especificaciones técnicas
Sub base	20,00	Ver especificaciones técnicas
Over side	20.00	De 2 a 6 pulg.
Total	70.00	

6.2 Recomendaciones

- Las canteras de extracción de materiales que se utilizarán en este proyecto deberán satisfacer en su totalidad (previo ensayo de laboratorio), los requerimientos indicados en los diferentes cuadros que se anexan en el presente informe, los mismos que serán verificados antes de la colocación en las diferentes partidas de este proyecto.
- En los sectores de vias donde se apruebe utilizar los rellenos como subrasante, se deberán compactar estos materiales hasta alcanzar una densidad mayor al 95% de la máxima obtenida en el ensayo Próctor Modificado en un espesor como mínimo de 0.20 m.
- Es necesario que el sistema de drenaje funcione adecuadamente para asegurar que el pavimento tenga la vida útil proyectada. Se recomienda programar acciones


Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion


periódicas de limpieza integral, mantenimiento y verificación del funcionamiento de los sistemas de alcantarillado pluvial y sanitario de cada una de las vías.

- La pendiente minima recomendada para proveer un área de circulación de rápido drenaje y secado y libre de charcos es del 1.0%. Los cambios en pendientes deben ser graduales para evitar que los vehículos dañen el pavimento.
- Se recomienda que la clave del tubo de desagüe (si existiera) tendrà que ir profundizada como minimo a una altura de 1.20 metros, desde la superficie de la sub rasante considerada en el proyecto, dado que, a ese nivel, los incrementos de los esfuerzos producidos por las capas externas son prácticamente nulos.
- Una vez concluida esta obra de pavimentación, y después de 12 (doce) meses como minimo, se recomienda sellar estos trabajos con la finalidad de impermeabilizar y vitalizar su superficie. Realizado este primer sellado, se deberá repetir estos trabajos en forma anual, a fin de conservarlo siempre en buen estado.

Trujillo, Marzo del 2021

ME LASTRAN HUSTRIA MATELLE COP. 148-108

HUERTAS ESTRUCTURAS & GEOTECNIA SRI. Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

OBRA	MEJORAMIENTO DE LA CARRETERA EMPALME PANAMERICANA NORTE (PUENTE VIRU) – HUANCAQUITO ALTO – A NIVEL DE ASFALTO 4.7 KM UBICADA EN EL DISTRITO DE VIRU PROVINCIA DE VIRU DEPARTAMENTO LA LIBERTAD	CALICATA	C-I
SOLICITA: UBICACIÓN	CORPORACION JIRO S A C VIRU - VIRU - LA LIBERTAD	COTA (m):	100.00
STORESTON I	THE THOUSE IS CONTRACTED.	PROF. (m): NAF (m):	NP.

REGISTRO DE PERFIL DEL SUELO

Esc.	Prof.(m)	Esp.(mts)	Descripcion Visual del Suelo	SUCS	Simbola	Muestra
5-2117	0	00 - 100	CALICATA C-1 (100) PROGRESIVA 0	+483,60	4	
-	4.25	0.28	MATERIAL DE RELIENC-CRIQUADES	(00)	25	
	-150	126	ARENA UNITORNE COLOR BEIGE AMARILIENTO, ESTADO DE DOMP, SEMETENSA, ESTRUCTURA TIPO NO COMENTA PARTICULAS DE FORMA SUR AMERICASA	(SP)		M-1
			NAF = NO SE ENCONTRO A LA PROFUNDIDAD ESTUDIADA			
					ALL MATE	OKETHAN A SEETEN OKETHAN AUGSTAS MI CIP. 148105

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 🔾 044-603601 🗍 974960020 943721150 947510463

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

OBRA: MEXIBAMIENTO DE LA CARRETERA EMPALME PANAMERICANA NORTE (PUENTE VBU) – HUANCAQUITO ALTO – A NIVEL DE ASPALTO 4.7 KM UBICADA EN LE DISTRUTO DE VIRU PROVINCIA DE VBU DEPARCAMENTO LA LIBERTAD SOLICITA: CORMIRACIÓN URD 5.A.C. URICACIÓN: VBU - VBU - LA LIBERTAD

Prof (m) 0.25 - 0.50

and the latest terminal termin	A STATE OF THE STA			-
CANTERA	MATERIAL IN SITU	Sondajic:	C-1	
CLASE DE SUELO:	ARENA UNIFORME	Maestra:	56-1	

PRUEBA GRANULOMETRICA (NTP 339.128)

Pesic Origin	al-(gr)		200.00			Especific	caciones	OBSERVACIONES:	
Pérd, por le	vedo(gr)		6.40			Links		T. Maximo Nominal:	No.4
Perso Tierrica	ado (gr)		193.60			Superor	infetor	Limites de Consistencia:	
ABERT	MALLA	Peso	34	% Ref	- K	4.	- %	Linke Liquido	NP.
Fulg/melle	1989	Retenide	Retoreto	Ajumuledo.	Pass	Paux	Fee	Linete Plastico:	NP
								Limite de Contraccion:	NP.
2	50.000							Indice de Plesticidad	NB.
1.1/2"	38.100								
- 5"	25.400						7	Porcentaje en musetra:	
34"	19.050						-	% Grave (3" n #4):	7.53%
1/2"	12,700							% Arena (#4 s #200):	89.28%
38"	9.505	0.00	3.90%	0.00%	100.00%		0	% Finos (Menor a #200):	3.20%
No.4	4.750	15.05	7.80%	7,52%	92.40%	G			
No 8	2.361	11.75	5.88%	13.40%	96.60%	4.	-	Caracteristicas Cranuforn	etricas:
No 10	2.000	3.98	1.00%	15.30%	84.61%	-		Dec (mm)	0.63
No 16	1.191	15.80	7.92%	23.20%	79,71%	-		Dac (mm):	0.47
No 30	0.595	35.65	17.83%	41,12%	50.00%	4:		Day (ren)	0.29
No 40	0.400	24.32	12.10%	53.20%	45,73%			Disc grang:	0.17
No SD	0.296	31.90	15.95%	69.23%	30.70%			Cu	3.71
No 100	0.149	40.50	24,25%	93.40%	6.53%	-		Cer	0.79
No 200	0.075	6.05	3.32%	96.00%	3.20%		0.1	Clasification:	
Pk	40	8.40	3.20%	100.00%	0.00%	Contendo de	himself (%)	sucs SP	
Sum	storie	200.00	100.00%	77.00		8.	10	AASHTO: A-2-4	0.1

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 Q 044-603601 [] 974960020 943721150 947510463

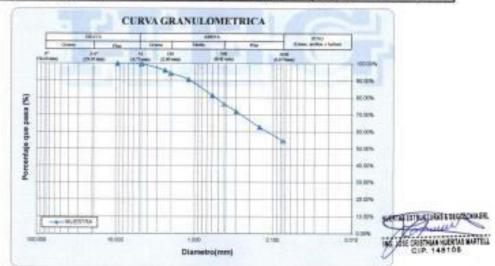
Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

OBRA.	MEJORAMIENTO DE LA CARRETERA EMPALME PANAMERICANA NORTE (PUENTE VIRU) – HUANCAQUITO ALTO – A NIVEL DE ASFALTO 4.7 KM UBICADA EN EL DISTRITO DE VIRU PROVINCIA DE VIRU DEPARTAMENTO LA LIBERTAD	CALICATA:	C-2
SOLICITA: UBICACIÓN	CORPORACION JJRD S.A.C. VIRU - VIRU - LA LIBERTAD	COTA (m) PROF. (m): NAF (m)	100.00 1.50 NP

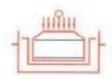
REGISTRO DE PERFIL DEL SUELO

Esc.	Prof.(m)	Esp.(mts)	Descripcion Visual del Suelo	SUCS	Simbolo	Muestra
	(Rescalled)	HX-20-22	CALICATA C-2 (100) PROGRESIVA	1+519		
	0.35	126	MATERIAL DE HELLENG-ORDANICO	(OL)	1923	
	-150	12	ARCILLA LIGERAMENTE PLASTICA COLOR BESIE DECURO. PARCIALMENTE HUMIDIA, ESTRUCTURA CONESTVA, OCNORET, RLANDA, RETRAE AL SECADO.	(CL)		: M-1
			NAF = NO SE ENCONTRO A LA PROFUNDIDAD ESTUDIADA			
					1	Aufull
					2	GIP, 148105

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion


OBRA: MEJORAMENTO DE LA CARBETERA EMPALME PANAMERICANA NORTE (PLENTE, VIRU) — HUANCAQUITO ALTO — A NIVEL DE ASPALTO 4.7 KM URICADA EN EL DISTRITO DE VIRU PROVINCIA DE VIRU DEPARTAMENTO LA LEBERTAD.
SOLICITA: CORPORACION LIRU S.A.C.
URICACIÓN: VIRU - VIRU - LA LIBERTAD.

Prof (m) 8-25 - 1.50


CANTERA:	MATERIAL IN SITE	Stadair	6.2
CLASE DE SUELO:	ARCILLA LIGERAMENTE PLASTICA	Muestra	M-1

PRUEBA GRANULOMETRICA (NTP 339.128)

Pena Origin	ref (gr)	-	200.00			Dapacific	caciones	OBSERVACIONES:			
Pérd per le	væde(gr):	2	109.70			Limbu		Limbu		T. Maximo Nominal:	No.4
Peso Tanio	rade (gr)	22	90.30			Superior	infetor	Limites de Consistencia			
ABERT	MALLA	Peso	*	% Flor	%	%.	- 4	Limite Liquido:	14.01%		
Polghnila	nin	Reteniti)	Reterido	Acumulado	Pass	Pasa	Pine	Limite Plantico:	681%		
								Limite de Commission	6.23%		
7	50,800						1	Indice de Plasficidad	8.00%		
110	38,100						-				
T*	25,400							Porcentaje en muestra:			
347	19.060					ē .		% Grava (8" a #4).	0.29%		
3/2"	12.700	10000	42.7					% Arena (#4 a #200):	44,86%		
36"	9.525	D.00	0.00%	0.00%	100.00%			% Fittos (Wenor a #200)	54.85%		
No.4	4.750	0.58	0.29%	0.29%	99.71%		-	Opening the Control of the Control o	2775035		
No 8	2.361	7.52	3.79%	4.06%	25.25%			Caracteristicas Granulomo	etricas:		
No 10	2.000	3.48	1.74%	5.79%	94.21%			Dec trest			
No 16	1.191	7.19	3.60%	9.39%	90.62%			Dec. (mire):	02		
No 30	0.505	18.70	9.30%	18.74%	81.27%		7	Dac (ren)			
No.42	0.420	9.79	4.90%	23.63%	76.37%	2		Drix (rent)	- 25		
Nii 50	0.296	8.75	4.38%	20.01%	72.00%			Cu:			
No 100	0.149	18.50	9.25%	37.06%	62.75%			Ce:			
No 200	0.075	15.79	7.90%	45.15%	54.99%			Clasificacion:			
Pie	ito	109.70	54.85%	100.00%	0.00%	Comunido de	humedad (%)	sucs CL			
Sum	eloria .	200.00	100.00%	777777	1000	7.1		AASHTO: A-4	41		

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 Q 044-603601 [] 974960020 943721150 947510463

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

OBRA: MEXICAMENTO DE LA CAPRETIRA EMPALME PANAMERICANA NORTE (PUENTE VEIU) - IIILANCAQUITO ALTO - A NIVIL DE ASFALTO 4.2 KM CRICADA EN EL DECENTO DE VEIU PAGVINCIA DE VEIU DEPARTAMENTO LA LIBERTAD SOLIETA: CORPORAÇION DEDISAC. URICACIÓN: VIEII - VISU: LA LIBERTAD

DESCRIPCEN DE LA MUESTRA. CANTERA: MATERIAL IN STEL CLASE DE STELO: ARCILLA), ESERAMENTE PLASTICA (CL.)

Pref (m) 0.25+1.50:

LIMITES DE CONSISTENCIA (NTP 339.129)

ENSAYO Nº		2	3	4
Tara + suelo formedo	56.12	54.29	55.30	57.75
19/8 + Karsi Seco	52.16	40.09	50.60	53.20
Agus	5.94	5.39	4.50	4.75
Peac do la tara	20.20	17.60	19.02	18.60
Pass del quels seco	21.66	31.29	31.60	34.40
% humedad	18.50%	17,23%	14.81%	13,62%
No gripes	7	11	25	96
LIMITE LIQUIDIO		14.91%	-	

LIMITE PLASTICO

ENBAYO N°	: 1	1	
Tara + sueto homede	29.36	22.67	
Tare + suoio asco	23.16	22.79	
Ague	0.20	0.29	
Peac de la tara	20.20	19.72	
Peso del austo saco	1.98	3.04	
% humedad	0.71%	6.9(%)	
LIMITE PLANTICE:	6.81%		

RESULTADOS: Limite Liquido: 14.81% Liquido Plastico Limita de Caran

Calle Palsajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 🔾 044-603601 🗍 974960020 943721150 947510463

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

OBRA	MEJORAMIENTO DE LA CARRETERA EMPALME PANAMERICANA NORTE (PUENTE VIRU) – HUANCAQUITO ALTO – A NIVEL DE ASFALTO 4.7 KM UBICADA EN EL DISTRITO DE VIRU PROVINCIA DE VIRU DEPARTAMENTO LA LIBERTAD	CALICATA	C-3
SOLICITA	CORPORACION JIRD S.A.C.	COTA (m):	100.00
UBICACIÓN.	VIRU - VIRU - LA LIBERTAD	PROF. (m):	1.50
		NAF (m):	NP

REGISTRO DE PERFIL DEL SUELO

Est.	Prof.(m)	Esp.(mts)	Descripcion Visual del Suelo	SUCS	Simbolo	Muestra
12.22	La Production	CT INCOME CONTROL	CALICATA C-3 (100) PROGRESIVA 2-	+571.20		
	0.29	0.30	MODBLE, DE RELLEMO (RELEGIO)	(01.)	3.3	
	+1.50	1.30	ARENA UNITORNE COLOR BEKE AMARELENTO, ESTADO DE COMP. SEMI DENSA, ESTELCTURA, TENONO CONTENVA PARTICUEAS DE FORMA SUB ANQUILORA	(SP)		M-1
2						
				ř		
			NAF = NO SE ENCONTRO A LA PROFUNDIDAD			
			ESTUDIADA			
7						
					W.	AND CHISTOMA METERS OF

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 🗘 044-603601 🗍 974960020 943721150 947510463

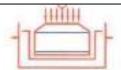
Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

CERA: MEJORAMENTO DE LA CARRETERA EMPALME PANAMERICANA NORTE (FUENTE VBID) – DICANCAÇUITO ALTO – A NIVEL DE ASSALTO 47 KM UNICADA UN EL DISTRITO DE VBID PROVINCIA DE VBID DEPARTAMENTO LA LIBERTAD SOLICITA: CORPORACION JIRO 8.A.C.

URICACIÓN: VIKU - VIKU - LA LIBERTAD

Profitors 1

0.20+1.50


CANTERA: MATERIAL IN SETU CLASE DE SUELO: ARENA UNIFORME

Sondaje: C-3 Maestra: M-L

PRUEBA GRANULOMETRICA (NTP 339.128)

Pesa Driginal (gr)			290.00		- 3	Expects	cacionee	OBSERVACIONES:	
Pérd: por leveda(gr)		5.23			1.0	Limites		T. Maximo Nominal:	No 16
Peno Tierez	nedo igri	7	194.77	Large Co.	1	Rupetor	Inflation	Limites de Consistencia:	. 30.00
ABERT	ALLW	Peso	. %	Tu Ret	- %	5	1.5	Limite Liquido	MR
Pulgimella	2000	Reterido	Retendo	Acumulada	Pass	Pesa	Ponis	Limite Plastics:	MP
- 1115	44.77	11717	93.50 = 0.0	12,120		200		Limite de Contraccion:	
. 2	50.500							Indice de Plasticidad	NP
110	38,100							CONTRACTOR CONTRACTOR	1000
T	25,400							Porcentaje en muestra:	
34"	19 050							% Grave (3" a #4);	0.00%
1/2"	12.700							% Arena (#4 a #200):	97.395
W	9.525							% Finos (Menor a 4200)	2.62%
140.4	4,750								228
No.8	2.381	F						Caracteristicas Granulom	etricas
No 10	2,000	0.00	0.00%	0.00%	100.00%			Distriction of the Control of the Co	0.22
No.15	1.191	0.38	0.19%	0.19%	99.61%			Disc (mm)	0.20
No 30	0.595	0.36	0.19%	0.35%	99.60%	. 3		Districtions)	0.16
No 40	0.420	0.90	0.45%	0.80%	99.21%	7		Diprones:	0.10
No 50	0.296	5.10	2.95%	3.35%	96.66%			Ou:	2.20
No 100	0.149	145.41	72.71%	76.00%	23.96%			Ce:	1.95
No 200	0.079	42.67	25.34%	97.39%	2.62%			Clasificacion	35.27
Ple	60.	5.23	2.62%	100.00%	0.00%	Contenido de l	humeded (No.	SUCS SP	
Suns	toria	200.00	100.00%			10.	11	AABHTO A-3	1 0 1

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

OBRA:	MEJORAMIENTO DE LA CARRETERA EMPALME PANAMERICANA NORTE (PUENTE VIRU) – HUANCAQUITO ALTO – A NIVEL DE ASFALTO 4.7 KM UBICADA EN EL DISTRITO DE VIRU PROVINCIA DE VIRU DEPARTAMENTO LA LIBERTAD	CALICATA	C-4
SOLICITA:	CORPORACION JIRD S.A.C.	COTA (m):	100.00
UBICACION:	VIRU - VIRU - LA LIBERTAD	PROF. (m):	1.50
		NAF (m):	NP

REGISTRO DE PERFIL DEL SUELO

Esc.	Prof.(m)	Esp.(mts)	Descripcion Visual del Suelo	SUCS	Simbolo	Muestra
			CALICATA C-4 (100) PROGRESIVA 3-	549.80	Section 2	
	425	0.25	MOCREEGL DE RELIZANO GROUNDECO	(OL)	10000	
	+1.50	135	ARCELA LIGHIAMENTE PLASTICA COLOR BIRGE OSCURO, PARCIALMENTE HEMELA, ESTRUCTURA COGISSIVA, CONSIST. HEANDA, RETRAE AL SECADO.	(CL)		M-1
					П	
			NAF = NO SE ENCONTRO A LA PROFUNDIDAD ESTUDIADA			
	0.					offive special res
						E CHEMINIST

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

OBRA MEJORAMENTO DE LA CABRETERA EMPALME PANAMERICANA NORTE (PUENTE VIRU) — RUANCAQUITO ALTO — A NIVEL DE ASPALTO 4.7 KM URICADA EN EL DISTRITO DE VIRU PROVINCIA DE VIRU DEPARTAMENTO LA LIBERTAD SOLICITA CORPORACION UNO S.A.C.

DBICACIÓN VIRU- VIRU- LA LIBERTAD

Prof (in) 0.25-1.50

CANTERA: MATERIAL IN SITU Sondaje: C-4
CLASE DE SUELO: ARCILLA LIGERAMENTE PLASTICA Mestre: M-1

PRUEBA GRANULOMETRICA (NTP 339.128)

Perso Original (gr)			200.00			Expects	caciones	OBSERVACIONES:	
Pérd: por istoleta(pr)			115.00			Lie	rière -	T. Maximo Nominal:	No 4
Peeo Tamig	100 me		62.00			Superior	Inferior	Limites de Consistencia:	
ABERT	MALLA	Peso	- 4	76-70et	36	- %	4		7.20%
Pulgimelle	3080	Retendo	Retendo	Acumulada	Pasa	Pees	Poss		178%
					-				00%
- 7	50,000								0.429
1.107	36.100								
9*	25.400							Porcentaje en muestra:	
3/4"	19,050							The Court of the C	37%
1/2"	12,700							A CONTRACTOR OF THE PROPERTY O	0.635
3/61	9.525	0.00	0.00%	0.00%	100:00%				2.00%
No.4	4.750	0.74	0.37%	978.0	99.63%				
. No 8	2.361	6.65	3.33%	3.70%	96.31%			Caracteristicas Granulometri	loas:
No 10	2:000	3.15	1,58%	5.27%	94,73%			Dec: (mm)	-
No 16	1,191	7.0t	3.91%	8.78%	91,23%			Dec: (mm):	2
No 30	0.595	15,96	7.90%	15.78%	83.25%	8 9		Doc (wwg.	9
No.40	0.420	10.21	5.11%	21,86%	78,14%			Dig (week)	9
No.50	0.290	0.99	3.40%	25.36%	74.65%	5 5		Cur	
No 100	0.140	17.00	0.51%	33.86%	66.14%			Co:	
No 200	0.075	14.20	7,14%	41,00%	59.00%	2		Clasificacion	
Fleto		118.00	59.00%	100.00%	0.00%	Contenido de	furnedad (%)	SUCS CL	
Suns	done	200.00	100.00%			8.0	50	AABHTD A-4 I	5 7

Calle Paisajista s/n Mz. I Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 Q 044-603601 Q 974960020 943721150 947510463

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

OBRA: MEADRAMENTO DE LA CABRETERA EMPACME PANAMERICARA NORTE (PLENTE VERU) - BUANCAQUETO ACTO - A SIVEL DE ABFALDO A 7 EM URICADA EN EL DESTRITO DE VERU PROVINCIA DE VERU DEPARTAMENTO LA LIMERTAD SOLICITA: ODRIGRACION DED 8,A.C.
UNICACIÓN VERU - VERU - LA LIBERTAD

DESCRIPCEM DE LA MIESTRA. CANTERA: MATERIAL DI SETU CLASE DE SUELO: ARCELA LIGERAMENTE PLASFICA (CL)

Profi(m) 0.25 - 1.50. Nowher C-4

LIMITES DE CONSISTENCIA (NTP 339.129)

LIMITE LIQUIDO

ENSAYO N°	100000000000000000000000000000000000000	2	-1	4			
Tars + duels fromedo	59.21	00.80	54.50	55.79			
Tare + suciti soco	51.98	49.85	49.45	50.74			
Agon	7.25	5.70	5.15	5.06			
Peec de la tary	20.20	22.49	19.50	19.60			
Peec del sook seco	21.76	27.37	29.95	32.14			
% humedad	22.82%	20,83%	17.20%	15.71%			
No. gripes		51	25	56			
LIMITE LIQUIDO	17.20%						

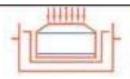
LIMITE PLASTICO

EMSAYO Nº	1	2	_
Taca + suelo húmedo	26,70	20.60	
Tara + aueto seco	26.50	20.36	
Agua	0.20	0.22	
Pesso de la tara	23.12	17.50	_
Petro del suato soco	3.38	2.88	
% humeded	5.62%	7.54%	
LIMITE PLANTICO	6.78%		

RESULTADOS

Limite Liquido:	17.22%	
Linguistic Phasitions:	6.76%	
Linete de Contraccion:	8.27%	
indine de Plasticidad:	10.42%	

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 044-603601 [] 974960020 943721150 947510463



HUEBTAS ESTRUCTURAS & GEOTECNIA SRL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

OBRA:	MEJORAMIENTO DE LA CARRETERA EMPALME PANAMERICANA NORTE (PUENTE VIRU) – HUANCAQUITO ALTO – A NIVEL DE ASFALTO 4.7 KM UBICADA EN EL DISTRITO DE VIRU PROVINCIA DE VIRU DEPARTAMENTO LA LIBERTAD	CALICATA:	C-5
SOLICITA	CORPORACION JIRD & A.C.	COTA (m):	100.00
UBICACION	VIRU - VIRU - LA LIBERTAD	PROF. (m):	1.50
	- The state of the	NAF (m)	NP

REGISTRO DE PERFIL DEL SUELO

Esc.	Prot.(m)	Esp.(mts)	Descripcion Visual del Suelo	SUCS	Simbolo	Muestra
			CALICATA C-5 (100) PROGRESIVA	4+620		
	020	1.35	MATERIAL DE RELLENCORDANICO	(JOL)	100	
	-130	136	ARENA ARCELIOSA, COLORI BERGE OSCUBO, ESTADO DE COMPACTIDAD SEMI DENSA, PARCIALMENTE SECA, PARTICULAS DE FORMA SUB ANGULOSA.	(SC)		W 1
H						
Ē		No.		1		
		100				
E						
E			NAF = NO SE ENCONTRO A LA PROFUNDIDAD ESTUDIADA			
					9	CAMPENDAG NATION
E						GIP. 14810

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

OBRA: MEJORAMENTO DE LA CARRETTRA EMPALME PANAMERICANA NORTE (PUENTE VIIIU) — BUANCAQUITO ALTO — A NIVEL DE ANFALTO 6.7 KM (ENCADA EN EL DISTRITO DE VIIIU PROVINCIA DE VIEU DEPARTAMENTO LA LIBERTAD ROBOTTA: CORPORACION URD S.A.C.

UNICACIÓN VIRU - VIRU - LA LIBERTAD

Prof(so) 0.30 - 1.50

CANTERA	MATERIAL IN SITU	E-st-l-	6.6	7
The second secon		Sendaje:	C-9	- 1
CLASE DE SUELO:	ARENA ARCILLOSA	Muestrac	M-I	-1

PRUEBA GRANULOMETRICA (NTP 339.128)

Peso Original (gr)			200.00			Especificaciones		OBSERVACIONES:
Péré, per lavado(gr)			79.47		Limites		rive	T. Maximo Nominal: No 8
Pessa Tarnia	ade (yr)		120.53			Superior	infenor	Limites de Consistencia:
ABERT	MALLA	Pego	%	% Ref	76	7.96	. %	Limite Liquids: 17.08%
Pulghtels:	:nn	Retenito	Retendo	Acumulado	Pasa	Poss	Pase	Limite Plestico: 6.72%
1.1		2			100			Limite de Contracctor: 6.02%
7	50.000							Indice de Plastoidat 10.37%
1107	36.100							
10	25.400							Porcentaje en muestra:
360	19,055							% Grave (3" a #4): 0.00%
1/2"	12.700					11		% Arena (#4 a #200) 60.27%
Mr.	9.525							% Finos (Wenor a #200): 39.74%
No.4	4.750	0.00	0.00%	0.00%	100.00%	- :		
No.5	2.301	A.00	2.00%	2.00%	86.00%	- 12		Características Granulometricas:
No 10	2.000	1.45	0.73%	2.73%	97.28%		- 0	Dec (ive)
No 16	1.191	7.06	2.63%	6.28%	63.78%			Des: (mm): 0.16
No 30	0.595	22.08	11,04%	17.23%	82.71%		1	Die (we)
No 40	0.420	17,35	B 08%	29.97%	74.04%			Ditt (mm)
No 50	0.296	10.70	1.35%	3432%	65.63%			Cu:
No 100	0.140	33.30	10.00%	51.01%	49.00%			Ca: -
No 200	0.075	18.52	0.26%	60.27%	39.74%		- 3	Clasificacion:
Plats		79.47	39,74%	100.00%	0.00%	Contenido de	humedad (%)	BUCB BC
Sum	storks :	200.00	100.00%			9.	H	AASHTO A4 [1]

Calle Palsajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 📞 044-603601 🗍 974960020 943721150 947510463

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

OBRA MEJORAMENTO DE LA CARRETTRA EMPALME PANAMERICANA NORTE (PUENTE VIRCI) - HUADICAÇUTTO ALTO - A RIPTE DE ASEALTO ET EM UBICADA EN EL OSTRETO DE VIRU PROVINCIA DE VIRU DEPARTAMENTO LA LIBERTAD SOLICITAL OMPONACION URD S.A.C. UBICACIÓN: VIRU - LA LIBERTAD

DESCRIPCION DE LA MURITEA: CANTERA: MATURIAL DI SITO CLASE DE SUELO, ABERA ARCELLOSA (SC)

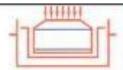
Profino 820-138 Sodaje C-6 Manero M-1

LIMITES DE CONSISTENCIA (NTP 339.129)


LIMITE LIQUIDO

EMSAYO AF	1	2	1 1	- 4
Tiera + suelo hársado	53.50	54.47	58.708	51.56
Tata + suelo soco	47.70	48.60	50.34	-49.75
Agus	5.86	5.68	6.45	4.91
Pleas de la tara	20.20	20.38	19.21	18.60
Peso del suelo sevo	27.50	26.44	32.13	30.18
% humeded	21.39%	18.67%	16 96%	15.90%
No golpes	.7	- 11	26	35
LIMITÉ LIQUIORI		17,00%		

LIMITE PLASTICO


ENSAVO M*		2	
Tara + suelo haresto.	38.35	22.760	
Tara + suelo seco	26.15	22.58	
Agus .	0.20	0.21	
Preco de la tara	29.12	19.61	
Peno del suelo sissi	3.03	3.07	
% humoded	0.60%	6.64%	
LIMITE PLASTICO	6,72%		

Limita Liquido:	17.08%
Liquido Plastice:	6.72%
Limite de Contracción:	8.02%
Indice de Plasticidad:	10.27%

Calle Paisajista s/n Mz. I Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 Q 044-603601 [] 974960020 943721150 947510463

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

ENSAYO DE PROCTOR MODIFICADO D-1557 TIPO A

GRICA MUXIRAMENTO DE LA CARRETERA EMPALME PANAMERICANA NORTE (PUENTE VIRU) - RUANCAQUITO ALTO - A NIVIL DE ASFALTO 4.1 EM URICADA EN IL DESTRITO DE VIRU PROVINCIA DE VIRU DEPARTAMENTO LA LEJERTAD SOLICITA: CORPORACION JURO 5.A.C.

UBICACIÓN: VIRU - VIRU - LA LIBERTAD

CANTIBIA MATERIAL SUB RASANTE (ARCELIA LIGERAMENTE PLASTICA)

GOLPESICAPA: 5/25

DIMENSIONES MOLDE (Molds N° 01):

Diametro: 10.20 cm Altura: 11.70 cm Volumen: 956.04 cm³


DSM(g/ec): 1.78 OCH (%): 12.88

DETERMINACION DEL CONTENIDO DE HUMEDAD

WUESTRA No	1	2	3	4	5
Tara No	1	- 2	3	4	.5
Peso Tara + Suelo Húmedo (pr).	56,61	54.53	56,93	53.60	56.12
Peso Tata + Suelo Seco (gr)	53.99	51.10	53.08	49.53	51.04
Peso del Agua (gr)	2.82	3.43	3.85	4,07	5.08
Peso tara (gr)	20.20	17.60	22.48	20.30	19.51
Peso Suelo Seco (gr)	33.79	33.50	30.60	29.23	31.53
Contendo de humedad (16)	8.30	10.24	12.06	13.89	10.11

DETERMINACION DE LA DENSIDAD

MUESTRA No	1	2	3	4	5
Peso Moide+Peso Suelo Hümedo (gr)	3850	3990	4070	4050	2958
Peac Molde (gr)	2150	2150	2150	2150	2150
Peso Suelo Húmedo (gr)	1700	1810	1920	1900	1806
Volumen Suela Húrneda (gr)	955.04	996.04	956.04	996.04	995,04
Densitac Humeda (gr/cm3)	1.70	1.09	2.01	1.90	1.65
Deneided Secs (gt/cm3)	1.64	1.72	1.78	1.74	1.63

MA ANT ENGINEER NEEDS AND THE

RAZON SOPORTE DE CALIFORNIA (C.B.R.)

OBRA MEXIRAMENTO DE LA CARRETERA EMPALME PANAMERICANA NORTE DURNITE VIRO) - HENVICADETO ALTO - A NIVEL DE ASEALTO ATRIMURICADA EN EL DISTRITO DE VIRO PROVINCIA DE VIRO DEPARTAMENTO LA LIBERTAD SOLICITA: CORNORACION LINDIE A.C.

CHICAGÓN: VIRU - VIRU - LA LEBERTAD PECHA: TRUTELO, 29 DE MARIO DEL 2021

CANTERA MATERIAL SUB BASANTE (ABCILLA LEGRAMENTE PLASTICA)

MODELO LEXUS Nº SERIE: SK 244267

METODO DE COMPACTACION			MOI	DES		_
Moide N°	1		2			
Número de Capas	5		5			
Número de golpes por capas		98	25		12	
Sobrecarga (gr)	-45	530	4530		4530	
Condiciones de la Muestra	Anties de	Desp. de	Antes de	Desp. de	Antes de	Desp: de
	Empapar	Empaper	Empapar	Empapar	Empaper	Empapar
Muestra húmeda + Molde (gr.)	9400.00	9695.00	9220.00	9685.00	8700.00	9555.00
Peso del Molde (gr.)	4895.00	4895.00	4945.00	4945.00	4880.00	4880.00
Peso de la Muestra húmeda (gr.)	4505.00	4800.00	4275.00	4740.00	3820.00	4675.00
Volumen de la Muestra (cm3)	2141.21	2141.21	2085.23	2085.23	2085.23	2085.23
Densidad húmeda (gr/cm3)	2.10	2.24	2.05	2.27	1.83	2.24
CONTENIDO DE HUMEDAD	7000	A T 1 10 10 10 10	4.00		1,60	2.24
Tara N°	4	4	. 0		0	- 8
Muestra hümede + Tara (gr.)	56.40	59.50	68.25	61.20	58.30	61.47
Muestra seca + Tare (gr.)	52.61	49.66	62.92	51.00	53.64	50.68
Peso del Agua (gr.)	3.79	P.84	5.33	10.20	4.66	10.79
Peso de la Tara (gr.)	21,40	22.48	20.38	21.40	17.20	20.38
Muestra Seca (gr.)	31.21	27.18	42.54	29.60	36.35	30.30
Contenido de húmedad (%)	12,14%	36.20%	12.53%	34.46%	12.82%	35.61%
DENSIDAD SECA (gr./cm3)	1.88	1000	1.82	04/49/4	1.62	20.0176

DATOS DE EXPANSION

Molde N"		4530		2 4530		3 4530		
Sobrecarga (gr)								
Fecha Hora	Tiempo	Lectura	Hinsham.	Lecture	Hincham.	Lectura	Hinchen	
		(horas)	dial	mm.	dial	mm.	dal	mm.
26-Mar	7:30 p.m.	0	0.00	0.0000	0.00	0.0000	0.00	0.0000
27-Mar	7:30 p. m.	24	2.00	0.0505	3.00	0.0762	4.00	0.1016
28-Mar	7:30 p.m.	48	6.00	0.4508	7.00	0.4762	8.00	0.5016
29-Mar	7:30 p.m.	72	10.00	0.8508	11.00	0.8782	12.00	0.9016

ME AND CONTRACTOR MATERIAL PARTY OF THE CONTRACTOR PARTY OF THE CONTRACTOR

HUERTAS ESTRUCTURAS & GEOTECNIA SRI

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

ENSAYO CARGA - PENETRACION

Penetr Deform Rd	Penetr.		Malde N° (M .	Molde Nº 02				doide N° 0	13
	pulg.	Er	isayo de Ca	rga	Erisayo de Carga			Ensayo de Carga		
	(gulg)	90	Ibs.	theirwig2	kg	lbs.	ibs/pulg2	ke	lbs.	lbs/pulg2
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	0.02	30.00	98.14	21.05	10.00	22.05	7.02	5.00	11.02	3.51
40	0.04	70.00	154.32	49.12	50.00	110.23	35.09	35.00	77.16	24.58
60	0.06	100.00	220.46	70.18	70.00	154.32	49.12	50.00	110.23	35.09
80	0.08	150.00	330.69	105.26	100.00	220.46	70.18	75.00	165.35	52.63
100	0.10	200.00	440.92	140.35	150.00	330.69	105.26	100.00	220.46	70.18
120	0.12	250.00	551.16	175.44	200.00	440.92	140.35	120.00	264.55	84,21
160	0.16	300.00	661.39	210.53	230.00	507.08	161.40	180.00	396.83	126.32
200	0.20	350.00	771.62	245.61	250.00	561.16	175.44	200.00	440.92	140.35
240	0.24	400.00	881.85	280.70	280.00	617.29	196.49	220.00	485.02	154.39
300	0.30	450.00	992.08	315,79	320.00	705.48	224.56	260.00	573.20	182.46
360	0.36	460.00	1014.13	322.81	330.00	727.53	231.58	265.00	584.22	185.96
400	0.40	480.00	1068.22	336.84	350.00	771.62	245.61	270.00	595.25	189.47
500	0.50	485.00	1069.24	340.35	356.00	784.65	249.82	280.00	617.29	196.49

14.04%

10.37%

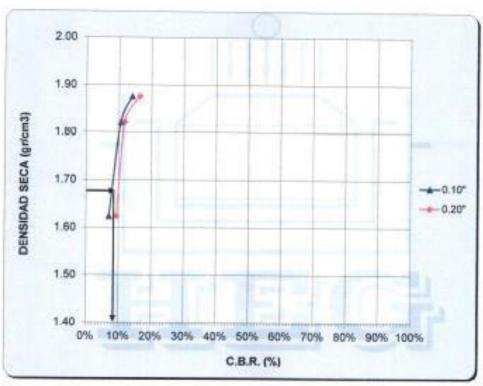
0.2

Corrección de cere galgi. 56 golipes: 0 25 golipes: 0 12 golipes: 0

MO ASSECTATION AND THE SECURITY OF THE SECURIT

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 • 044-603601 | 974960020 943721150 947510463

10.53%


11,70%

7.02%

9.36%

CURVA DENSIDAD SECA - CBR

VALORES PROCTOR MODIFICADO: DENSIDAD SECA MAXIMA (gricm3): 1.78 HUMEDAD OPTIMA (%): 12.58

95 % DENSIDAD SECA MAXIMA (gr/cm3): 1.69 C.B.R. (%): 9.00

NO SEE CASTAMA VIENTE MATERIA

HUERTAS ESTRUCTURAS & GEOTECNIA SRL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

OBRA: MEJORAMIENTO DE LA CARRETERA EMPALME PANAMERICANA NORTE (PUENTE VIRU) – HUANCAQUITO ALTO – A NIVEL DE ASFALTO 4.7 KM UBICADA EN EL DISTRITO DE VIRU PROVINCIA DE VIRU DEPARTAMENTO LA LIBERTAD SOLICITA: CORPORACION JIRD S.A.C. UBICACIÓN: VIRU – VIRU – LA LIBERTAD

Hoja 1/2

DISEÑO DE PAVIMENTOS FLEXIBLES

METODO DEL AASHTO 93

DATOS:

Tipo de Carretera: Crecimiento Anual: Funcion de la Carretera: Tipo de Zona: Calidad de Drenaje: % de Tiempo de exposicion: CBR subrasante: CBR sub base (MIN): CBR base (MIN):

Pini	mentada con bajos volumenes
	5.00%
	Colectora de transito
	Rural
	Aceptable
	> 25 %
	9%
	40%
	80%

CALCULO DEL EAL:

Tipo de Vehiculo	Veh/dia	Veh/año	Factor camión	F. de crec. para tasa arcail de crec, de \$%	EAL
Livianos			N		
Autos y convionetas	75	27375	0.00004	33.06	36
De 2 ejes, 4 nuedes	50	18250	0.002	33.06	1207
De 2 ejes, 6 ruedas	25	9125	0.24	33.06	72401
De 3 ejes o más	30	10950	1.02	33.06	369247
Pesados					
Semi t. de 4 ejes	5	1825	0.48	33.06	28961
Semi t. de 5 ejes	2	730	1.17	33.06	28237
Semi t. de 6 ejes o más	1	365	1.19	33.06	14360
PARTY FRANKS - JUNESCH		2111111		Total	514440

1. REQUISITOS DEL DISEÑO

- a. Período de Diseño (Años)
- b. Numero de Ejes Equivalentes Total (W18)
- c. Serviciabilidad Inicial (pl)
- d. Serviciabilidad Final (pt)
- e. Factor de Conflabilidad (R) STANDARD NORMAL DEVIATE (Zr) OVERALL STANDARD DEVIATION (So)

20
5.14E+05
4.2
2.0
85%
-1.036
0.45

2. PROPIEDADES DE MATERIALES

Mr (psi) = 2555 x CBR 0.64

- a. Modulo de Resiliencia de la Base (KIP/pig²)
- b. Modulo de Resiliencia de la Sub-Base (KJP/plg*)
- c. Modulo de Resiliencia de la Sub-Rasante (KIP/pig²)

ME CHETWAN HEETES WATEL

42.21 27.08 10.43

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 • 044-603601 [] 974960020 943721150 947510463

HUERTAS ESTRUCTURAS & GEOTECNIA SRL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

OBRA: MEJORAMIENTO DE LA CARRETERA EMPALME PANAMERICANA NORTE (PUENTE VIRU) – HUANCAQUITO ALTO – A NIVEL DE ASFALTO 4.7 KM UBICADA EN EL DISTRITO DE VIRU PROVINCIA DE VIRU DEPARTAMENTO LA LIBERTAD SOLICITA: CORPORACION JIRD S.A.C. UBICACIÓN: VIRU - VIRU - LA LIBERTAD

Hoja 2/2

DISEÑO DE PAVIMENTOS FLEXIBLES

METODO DEL AASHTO 93

3. CALCULO DEL NUMERO ESTRUCTURAL

 $Log W_{iA} = ZR \times S_{ij} + 9.36 Log(SN + 1) - 0.20 + \frac{Log (\Delta PSV - 4.2 - 1.5)}{0.40 (L094/(SN + 1)^{S19})} + 2.32 Log Mr - 8.07$

SN Requerido	G ₁	N18 NOMINAL	N18 CALCULO
2.57	-0.08894	5.71	5.71

4. ESTRUCTURACION DEL PAVIMENTO

 COEFICIENTES ESTRUCTURALES DE CAPA Concreto Axiátrico (a1)
 Base granular (a2)
 Subbase (a3)

	0.39
	0.13
_	0.40
	W.141

b COEFICIENTES DE DRENAJE DE CAPA Base granular (m2) Subbase (m3)

0.80
0.80

ALTERNATIVA	SNreq	SNresul	D1(cm)	D2(cm)	D3(cm)
1	2.57	2.62	6.75	20.00	20.00
2	2.57	2.57	5.00	25.00	20.00

5. DISEÑO PROPUESTO:

CARPETA ASFALTICA	5.00 cm	=	2 pulg
BASE	25.00 cm	=	10 pulg
SUB BASE	20.00 cm	=	B pulg
OVER SIDE (2" a 8")	20.00 cm		8 pulg
SUB RASANTE			0.000
Total:	70.00 cm		28 pulg

ME LOSE CRISTINAN HURSTAN MATELL CIP. 148105

Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú.

1. Generalidades

1.1. Objetivo del estudio

El presente informe técnico tiene como objetivo realizar un Estudio de Suelos, para el proyecto MEJORAMIENTO Y DISEÑO DE INFRAESTRUCTURA VIAL PARA LA CARRETERA QUE UNE HUANCAQUITO ALTO Y LA PANAMERICANA, DISTRITO Y PROVINCIA DE VIRÚ.

Para determinar las características físicas-mecánicas del suelo, se realizaron mediante trabajos de campo, laboratorio y trabajo de gabinete. Proceso que se siguió para el estudio fue:

- Inspección del terreno
- · Exploraciones de campo
- Extracción de muestras
- Ensayos de laboratorio
- Determinación de la resistencia del material (ensayo de CBR)
- Conclusiones y recomendaciones

1.2. Normatividad

La investigación se realizó en base a las normas según el Manual de Carreteras del MTC y CE020. Estabilización de suelos y taludes, la cual se basa en la aplicación de la mecánica de suelos que indica ensayos fundamentales y necesarios para predecir el comportamiento de un suelo bajo la acción de sistemas de carga.

1.3. Ubicación y Descripción del Área de Estudio

El área donde se realizó el estudio está ubicada en Huancaquito A

Distrito de Virú, Provincia de Virú, Región de La Libertad.

Amado Teffio Espinola Villa ING. CIVIL R. CIP Nº 208707

942 238 924 / 971318314

Ar. Salvedar Lora 1331. Urb. Las Jardines emporecion aj sucie gualLeon

Escaneado con CamScanner

Figura 1: Mapa del lugar de estudio

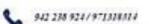
1.4. Características generales de la obra

La obra en estudio posee una longitud total de 4.7 km, donde se proyecta pavimentar la zona señalada en el proyecto general, para lo cual realizaron los trabajos correspondientes.

Tabla 1: características del proyecto

Dato	Condición
Tipo de pavimento	Rígido
Longitud y/o área del proyecto	4.7 km

2. Investigaciones de campo


2.1. Trabajo de campo

La muestra de afirmado se extrajo de la zona "El Barrio", lugar cercano a la zona de estudio

2.2. Ensayos de laboratorio

NTP 400.019
NTP 339.128
MTC 132
NPT 339.127
ASTM D423

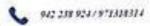
NO. CNIL.

Av. Salrador Lora 1931. Urb. Los Jordines corporacion aj socia gravil con

Proctor Modificado ASTM 1557

2.3. Resumen de material afirmado

Grannesti	200000	NAME PLÁSTICO	REND DE PLANTONO	PROCTER MODIFICADIO		CAR ST.		CEALL	
MUESTRA	UNKTE UQUIDO			DAMINA	OCKUM	ms	100%	90%	1004
MATERIAL DE PRÉSTIMAS	49.32	1872	24.58	1.04	11.26	12.70	1847	16.90	ne
COM IN DR CAL	41.11	n.n	18.79	289	21.85	3836	26.45	24.20	81.90
CON 4% DE CAL	36.46	2379	14.67	187	12.44	28.40	12.00	31.25	49,60
CON IN DE CAL	20.00	38.76	\$14	1.95	13,00	91.70	41.02	12.20	54.83
CON EN ON CAL	8.8	38.29	122	1.15	13.56	FE 202	415	400	\$1.50


	MATERIAL ACES	WADIO	
CHARGE DE LABORATORIO	REQUISIO PARA 4 2000 malan	PENJITADO DE ENSÁRIO	personative
GRANGI DMETRÍA	TABLA 403-01	Ver rentificado	NO CUMPLE
ADRABIÓN LOS ANGOLES	50% máx.	30.88	CLRAFILE
CBA 81°	60% min.	364	NO CUMPLE
UMTH LIQUIDG	52% máx.	45.3	NO CLIMPLE
NOWS OF PLASTICIDAD	A4% cols.	24.58	MO CLIMPLE

2,4. Especificaciones técnicas

Tanto la base como la sub base deben cumplir ciertos parámetros mínimos, los cuales tueron asumidos en el cálculo de los espesores del pavimento, por lo que deberían ser verificado en obra para que se tenga correlación de lo supuesto en calculo con lo realizado en obra. A continuación, se presentan algunas especificaciones técnicas de la norma CE.010

> Amado Teofilo Espinola Villa ING. CML

R. CIP Nº 200707



Ar. Salvador Lara 1331. Urb, Las Jardines

corporacion aj suca gwail com

Requerimientos de Calidad para Sub-Base Granular

		Reque	rimiento
Ensayo	Morrie	< 3000 manusus	≥ 3893 manner
Abrasión Los Angeles	NTP 400 019 2002	50 %	máximo
CBR de taboratorio	NTP 339 145 1999	30-40-5	N rsinino*
Limite Liquido	NTP 239 129 1998	25%	máximo
Indice de Plastedad	NTP 339 129 1998	6% mlasmo	4% indemo
Equiralente de Arena	NTP 339.146:2000	25% minima	25% mireno
Sates Solubles Totales	NTP 339.152-2002	1% 1	ndaino

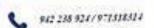
Valor Relativo de Soporte, CBR [NTP 339.145:1999]

Vias Locales y Colectoras	Minimo 80%
Vias Arteriales y Expresas	Minimo 100%

Torres 5	even a ward	Percentaje que l	Page on Pege	
Tamix	Gradación A *	Gradación R	Gradación C	Gradación D
50 mm (2")	100	100	+	100
25 mm (1")		75 95	100	100
9.5 mm (3/87)	30 - 65	40-75	50 - 85	60 - 100
4.75 mm (N° 4)	25 - 55	30-60	35 - 65	50 - 65
2.0 mm (N° 10)	15-60	20-45	25 - 50	40 - 70
4.25 pm (N° 40)	8-20	15 30	15-30	25 - 45
75 pm (NP 200)	2-8	5-15	5-15	8-15

ING. CIVIL R. CP Nº 208707




		Requer	mientos
Ensayo	Norma	Alti	tud
		< 3000 msnmm	≥ 1000 msnmm
Particulas con una cara fracturado	MTC E - 210 (1999)	80% n	niremo
Particulas con dos caras- fracturadas	MTC E - 210 (1999)	40% minimo	50% minima
Abrasión Los Ángeles	NTP 400.019 2002	40% m	sáximo
Sales Solubles	NTP339.152.2002	0.5% n	náximo
Perdida con Sulfato de Sodio	NTP 400.016 1999	-	12% máximo
Pérdida con Sulfato de Magnesio	NTP 400 016 1999		18% maximo

		Requeri	mientos
Ensayo	Norma	< 3000 manmm	> 3000 mannm
Índice Plástica	NTP 339.129.1998	4% redximo	2% maximo
Equivalente de arena	NTP 339.146:2000	35% minimo	45% minimo
Sales solubles	NTP 339.152.2002	0.5% r	náxámo
Índice de durabilidad	MTC E - 214 (1999)	35% r	inimo

3. Conclusiones

De acuerdo al material de préstamo estudiado arroja los siguientes valores:

- De acuerdo al Estudio de Mecánica de Suelos se procedió a extraer una muestra del material de afirmado de la cantera zona "El Barrio", posteriormente llevado al laboratorio para realizar los ensayos de abrasión, análisis granulométrico, CBR, contenido de humedad, limites de consistencia y Proctor modificado.
- El material extraido de la cantera a ser usado como afirmado para pavimento se obtuvo un valor de CBR de 16.4 %, el ensayo de abraarrojo un valor de 30.88 %, el límite líquido 43.3, indice de HG. CIVIL CIP Nº 208701 24.58.

Ar. Salvadar Lura 1331, Urh. Les Jardines

corporacion.aj.un@gmail.com

Se realizo ensayos al material adicionándole cal de 2%, 4%, 6% y 8%, donde después de realizar el ensayo concluimos que el material de préstamo con 6% de cal arroja un valor de CBR de 41.10%, este es el valor indicado con el que se trabajara y con el que cumple con lo requerido.

ANEXOS

PLOP Nº 208TOT

Av. Salvadar Lara 1331. Urb. Los Jardines 🔀 corporacion aj sucij gwall-com

PROYECTO: Mejoramiento y diseño de infinestructura viali para la camelora que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú.

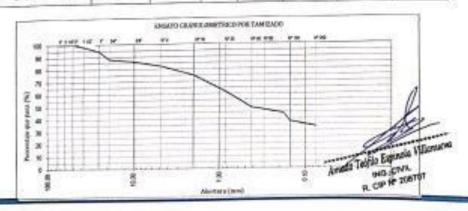
UBICACIÓN: Huancoquito Alto y la Panamericana, Distrito y Provincia de Viru TESISTAS: Albinco Ruiz, Yeymi Taliana; Gonzales Oribe, Luis Alfonso MUESTRA: Material para alirmodo

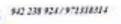
A = 5,005.5 g

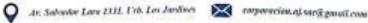
B = 3,459.6 g

A - B *100 % Desgaste =

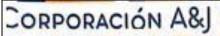
30.88 % % Desgaste =


Temato de	6 Agergado			MET	000		
Pera Timir	Retrible L.	A	R .	C	D	F	G
25	11/2*			-		5000150	
1.1/2*	1"	1250125				3000125	500012
. F*	3/45	1250125					90012
5/4"	1/2"	1250110	2500+10				
1/2"	301"	1250110	2500×10				
30"	104"	1	CONTRACTOR	2500110			
194"	N'4			2500110		-	
N'4	N/R				5000110		

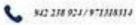



PROYECTO: "Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú.

UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru TESISTAS: Albinoo fiulz, Yeymi Tatlana; Gonzales Oribe, Luis Alfonso MUESTRA: Material para afirmado


		ARENA ARC	ILLOSA (ON GRAVA	LS		
		Tareir		Fron	Porcentaja	Porcestaje Retenido	Percentajo
PESO: 5175.8g	Melle	Abert. (mm)	Serie	Retenida (g)	Retmide Paccial (%)	Aconoslado (%)	que Pasa (%)
	3"	76,200	32834	0.0	0.0	0.0	100.0
SUCS: SC	1"	50,900	.13708	0.0	0.0	0.0	100.0
0000000000	1107	38,100	42250	89,6	1,7	1.7	01.3
AASHTO: A-2-7 (2)	1"	25,400	42774	196.5	3.8	5.5	94.5
SHEEDS - MINN	300	19,050	45118	334.8	6.5	12.0	85.0
NW 6.52 NGreen	3/8"	9,500	42967	197.4	2.1	14.1	85.9
17.7	N*4	4,750	34993	186.0	3.6	17.7	82.1
	N* 10	2,000	45806	385.2	7.4	25.1	74.9
LL4330 SAmue	N* 30	0,840	45149	695.5	13.4	38.5	61.5
48.9	N* 48	0,420	43661	655.2	12.7	51.2	48.8
and a superior of the superior	Nº 86	0,180	34874	227.4	4.4	55.6	44.4
LP 24.58 %Fines:	Nº 100	0.150	34875	342.0	5.5	62.2	37.8
33.49	N° 200	8,075	44639	227,4	4.4	66.6	33,4
Don: - Ca:-	< N° 200			1728.8	33.4	100.0	0.0
D60: 0.78		7.					

CONTENIDO TOTAL DE HUMEDAD EVAPORABLE EN LOS SUELOS NTP 339,127


PROYECTO: "Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú.

UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru TESISTAS; Albinco Ruiz, Yeymi Tatiana; Gonzales Oribe, Luis Alfonso MUESTRA: Material para afirmado

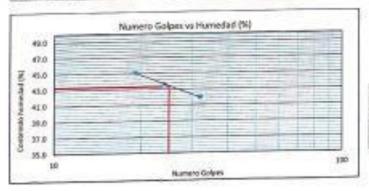
ARENA ARCILLOSA CON GRAVAS

	M-1	M-2
Masa del Contenedor (g)	80.59	69.58
Maxa de Suelo Húmedo + Contenedor (g)	853.60	787:41
Masa de Suelo Seco + Contenedor (g)	806.59	743,25
Masa de Suelo Seco (g), M,	726.00	673.67
Masa de Agua (g), M.,	47.01	44.16
Contenido de Humedad (%)	6.48	6.56
	6.	52

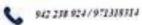
R CIP Nº 208T07

Av. Sahnidar Lura 1331. Urb. Las Jardines

comparacion of sarigement com



PROYECTO: Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú.

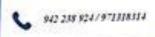

UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru TESISTAS: Albinco Rutz, Yeymi Tatiana; Gonzales Oribe, Luis Alfonso MUESTRA: Material para afirmado

	DETERMINACION DEL LIM	ITE PLASTICO (MTC E-111)	
NY Tarre	1		
Tarro + Surlo hamedo. (g)	\$1.61	29.12	
Tarro + Sucio sere (g)	50.48	28.11	
Poso Agus (g)	1.33	101	
Peso del Tarro (g)	20.41	77.59	
Peso del soela reco (g)	THE	5.42	
Famedad (%)	10.81	11.63	
Limite Flastico (%)		:8 12	
	-		1
Nº Tamo	70	36	
			10
Numero de Golpes	and the second s	800	48.82
Peus tarto - suelo homedo (g)	81.84		
Pesa tarro - suelo framerio (g) Pesa tarro-suela serzi (g)	51.84 46.67	49.00	49.82
Pesa tano - suelo hamedo (g) Pesa tano-suelo sem (g) Pesa del Ague (g)	51.84 45.67 5.00	45 ED	49.82 44.20
Peas tarc - suelo hamelió (g) Peas tarc- suelo sem (g) Peas del Agua (g) Peas del barto (g)	51.84 45.67 5.67 12.44	49.00 44.00 4.34 20.74	43.62 44.20 4.53
Peau tano - sualo hamerio (g) Peau tano-suelo sem (g) Peau del Agua (g) Peau del tamo (g) Peau del suelo seco (fk)	51.84 45.67 5.97 82.44 13.20	45 (B) 44 (B) 4 (B) 23 74 11 (B)	48.82 44.20 4.53 33.49 13.8
Peas tarc - suelo hamelió (g) Peas tarc- suelo sem (g) Peas del Agua (g) Peas del barto (g)	51.84 45.67 5.67 12.44	49.00 44.00 4.34 20.74	412 425 431 3346

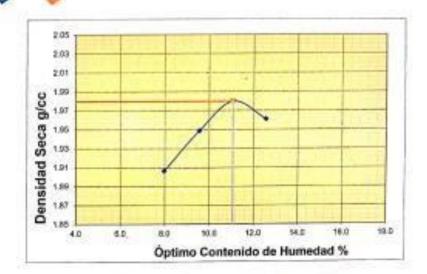
Limites de Consistençia de sueltos Limbs (quido (%) Lorde Plántico (N) 15.72 Indica de Plantociat (%) 34.56

Amazio Printe Esproda Villanarea THO CHY R. CIP Nº TREFER

PROYECTO: Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamencana, Distrito y Provincia de Viriu.


UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru TESISTAS; Albinco Rutz, Yeymi Tatiana; Conzales Oribe, Luis Alfonso

Demidad Seca (g/cc)	1.5	NOT	1.5	49	1.3	199	1.5	161
Hamedad promedio (%)	1,978		9,554		11/062		12.557	
Humedad (%)	7.9	8.1	9.5	9.6	11.1	11.0	126	12.5
Peso de suelo sece	268.44	210.87	245.34	249,75	246.39	303.58	19731	276.56
Peso del agna	21.14	17.64	23.38	23,92	27.29	33.52	24.92	53.88
Peso Tarre (g)	52.70	67.50	44,20	62.90	36.10	48.30	64,90	51.16
Peso Tarro - Suelo Soco (g)	321.14	218.31	289.54	312.55	302.49	351.65	252.41	322.0
Peso Tarro - Suele himado (g)	342.25	295.41	31232	336,47	329.78	365.20	257.33	355.9
Centidad de H:O agregada		*	9,5%		11%		12.5%	
Número de Tarro	1	.2	8:	4	. 5	6	1	8
Densidad Suelo hámedo (g/cc)	2,699		for(g/cc) 2.699 2.135 2.199		199	1.	207	
Volumm del molde (cc)	2124,90		212	2124.00 212		1.00	213	4.00
Peso Surio Hámodo (g)	437	2.76	4534.76		4144 50		468740	
Prio del Molde (g)	278	4.00	236	4.90	279	4.90	22	4.90
Paso molde-Suelo Hámodo (g)	713	7.68	7299.60		7414.79		7852.58	
Nº DE ENSAVO		1	2	1		1		


METOBO	В
NUMERO DE CAPAS	5
NUMERO DE GOLPES	.25
D6M (g/em²)	1.99
OCII (%)	11.00

DATOS DEL M	OLDE
Nº:	-1
PESO(g): VOLUMEN	2794.9
VOLUMEN (re):	2124.0

Q Av. Salvador Lara 1331. Urb. Los Jardines

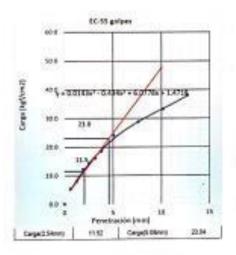
corporation.al.sac@gmoil.com

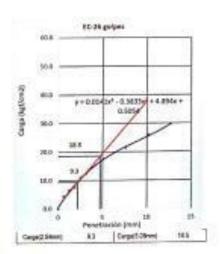
CBR - MTC E 132 - 2000

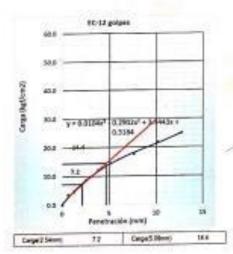
PROYECTO: "Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú."

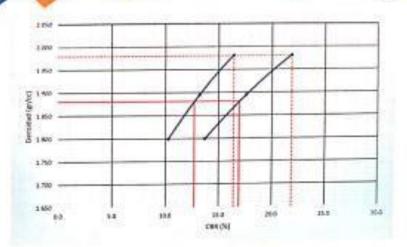
UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru TESISTAS: Albinco Ruiz, Yeymi Tariana; Gonzales Oribe, Luis Alfonso

М	ues	511	CA: Mi	menal p	ara afire		atus de l	a Maretra					
Precedent	12	-		30		- 27	Min				В		
de Muest			t VII				Procier				В		
Tipe de			0.00	TERLA		Mixima densidad sees				: 1.98			
Massra			E PA	BMAD	0	(gr/cm3)				117	8199		
			INC.	BANAL	× .		Opt	rao exet. H	besedud (%)	11	11.06%		
						Dates a		s para el e			W8335		
теритеся	(e	_	- 641	-		- 2000	Carrie	Area Pist			19.4 cm2		
to massing			: Ho	mods				Penetrasi	ée:		DAM CART		
						Compa	ctación	de Especia	nenes				
: M	lolide	N	.0.		- 1			1			3		
N	20	pa.	11111		5			5					
Gelges	per	699	u Nº	48	56	1000	-	26	1000	-	12	Saturada	
Cond I				Satu	rada	Saterada	Setan	sale	Sationada	5800	radu	107.5	
Peso m			soelo	124	80	12480	126	38	12638	125	524	12524	
	úme	-	r-6	5357	8031	200000	-	8172	77500		8306		
Peno				37.11	-		-		Y23203	0733	-	later.	
Pese del	(g)		eranco.	44	80	4449	446	6	4456	42	16	4216	
Volumen			de feet	373	2022	0.500		2122	- 0000		2119	10000	
Densidad				2.2		2.700	2.10	19	2.105	1.9	98	1,991	
-	101	3.8	-	_		Contenido de	hamed	ad de los e	perimenes	2007		2010	
	arro	Nº.	F			5-1-21-11-11-11-1	100	200	200				
Tarro + 5	Stock	hi	mede (286	44	299.04	303.	17	320.75	276	31	300.96	
	1)		1	2.50			1,000		13000	- 27.00		222.65	
Tarre+				260		271.63	279.		291.42	251		273,45	
Perod				25.		27.41	28.6		26.72	25.	52	25.63	
Pese				26.		247,48	252	47	264.7	227		248.42	
Peso del				234		11.08	11.0	ne.	11.08	-11.		11.07	
	neda			111.	1.981		11.	1,095			1 799	1114	
Demoda	Rd No.	00.0	g-10)		1.764		Ехра						
	Ho				Est	amión.	1		ausiān	200010	Espan	nión	
Fechs	le		Hara	Dial	men.	1%	Dul	nen.	%	Dial	6189	74	
15/11/21			24	42	0.11	0.08	96.00	9.24	0.19	146.00	0.37	0.29	
16/11/21			41	86	0.22	0.17	174.00	0.44	0.35	301.00	0.76	0.60	
17/11/21			72	122	0.31	0.24	214.00	0.34	0.43	475.00	1.21	0.95	
0.11/21			.96	156	0.40	0.31	296.00		0.50	622.00	1.58	1.24	
20000	383		15-50-17	-11-11	1000	L - 475		ración.	1.0				
Penetrac	u.		arge	Mold	e de 56 go	dpes/cags	Moh	le de 26 ga	bes/capa	Mol	de de 12 galpes	capa	
mm			steder	Diel	Kgfeva2	Corregida	Dist	Kgfeml	Corregida	Dist	KgFcm2	Corregio	
	_	K	g/cm2	109.00	5.40		87.00	431	-	71.00	3.52	-	
0.63	_	-		161.00	197		129.00	6.30		92.00	4.56	11	
1.90	_			246.00	12.18		155.00			131.00	0.49	V/-	
2.54	-	-	10.31	292.00	14.45	11.52	220.00		9.27	134.00	8.62	322	
3.17			100	325.00	16.10		251.00			202.00	10.00	200	
3.81				375.00	18.57		296.00	14.60		243,00			
5.08		1	05.46	486.00	24.97	23.04	355:00	17.58	18.54	296.00		sold Miles	
7.62				581.00	29.78		430.00			15418) 439 (u)	add I talled out	N/SL	
10.16				671.00	33.23		522.00	25.85		439.00	H. CON	-ca257	
12.70	-			768.00	38.04		600,00	29.72		503.00	M. COP N	-	



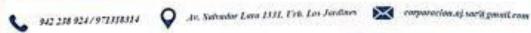






Armado Profile Expensis Villanaces HIG CIVIL

Proctor / Densided Natura	a/ocu
Máxima Dem. Sera (gr/cc)	1.960
95% de la M.O.S. (gr/m)	1.881
Devoided Natural (gr/w)	-
Optimo Humodad (%)	11,08%

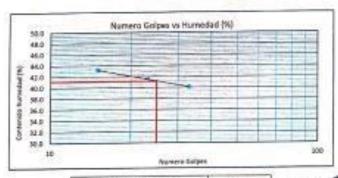

Ngslpm	(8.1°)	(0.17)	Densidad	
56	16.4	21.8	1.981	
26	13.2	17.6	1.895	
1.7	163	13.7	1.799	

11000
26.0
127

RESULTADOS DE C.B.R. (0.2	7
C.R.R. at 100% de la M.D.S.	218
CAR at 75% de la M.D.S.	16.1

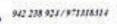
% de Expunción

Anado Togos Espenda Villanura R CIP Nº 208707

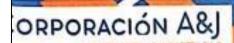

LIMITES DE CONSISTENCIA - PASA LA MALLA Nº 40 - (ASTM D 4318)

PROYECTO: Mejoramiento y diseño de infraestructura vial para la carretera que une Huancequito Alto y la Panamericana, Distrito y Provincia de Virú.

UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru


TESISTAS: Albinoo Ruiz, Yeymi Tatiana; Gonzales Onbe, Luis Alfonso

	DETERMINACIÓN DEL LÍN	MTE PLASTICO (MTC E-111)	
Nº Tarre	(1)	2	
Tarro + Suelo hemado, (g)	44	30.47	
Tarre + Suelo seco (g)	16.73	19.16	
Pero Agrantal	1.25	tát	
Pese del Tarro (g)	12.90	15/02	
Pere del serio seso (g)	5.83	614	
Humoded (%)	21.44	2159	
Limite Plantice (%)		2139	
		NOO DE LOS SUELOS (MTC E-115)	
The same of the sa	terminal terminal and a second		
NY Terre	1		5 20
NY Terre Nurseo de Gobel	3 15	23	
NY Turre Numero de Giopes Pesarters + suels humedo (g)	3 15 43.60	29 4577	30
HY Turre Munero de Gobes Fessi sers + suelo humedo (g) Fessi sers + suelo seso (g)	3 15 43.00 35.25	4 28 4577 3623	30 49.58
HY Terre Munero de Golpes Peso terro + suelo humedo (g) Peso terro-suelo seco (g) Peso del Ague (g)	3 15 43.62 35.25 8.67	4 28 4577 3629 674	30 49 58 39 85 973
MY Terre Munero de Golpes Peso terro + suelo humedo (g) Peso terro + suelo esco (g) Peso del Ague (g) Peso del Sero (g)	\$ 15 43.62 35.25 8.67 15.57	4 23 4577 3633 674 1247	30 49 58 39 85 9 73 15,95
HY Terre Munero de Golpes Peso sers + suelo humedo (g) Peso sers + suelo neco (g) Peso del Ague (g) Peso del Sero (g) Peso del Sero (g)	\$ 15 43.62 35.25 8.67 15.57 20.08	4 23 4577 3633 674 1257 2346	30 49.58 39.85 971 15.06 34.1
MY Terre Munero de Golpes Peso terro + suelo humedo (g) Peso terro + suelo esco (g) Peso del Ague (g) Peso del Sero (g)	\$ 15 43.62 35.25 8.67 15.57	4 23 4577 3633 674 1247	30 49.58 39.85 9.73 15.95



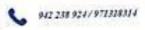
Limite liquido (%) 41.12 21.39 Limite Plástico (%) 19.73 Îndice de Plasticidad (%)

Amado Telifio Espinola Villanurus ING. CIVIL R. CIP Nº 208707

PROYECTO: Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú.

UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru TESISTAS: Albinco Ruiz, Yeymi Tatiana; Gonzales Oribe, Luis Alfonso MUESTRA: Material para afirmado con adición de 2% de cal

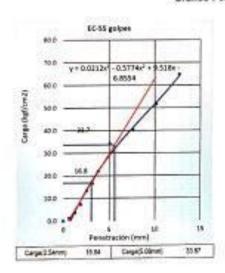
N* DE ENSAVO	1			2		3		4	
Peso molde+Suelo Húmedo (g)	599	5994.50		8.00	6176.00		618	2.00	
Peso del Molde (g)	408	4.00	408	4.00	408	4.00	408	4.00	
Peso Suelo Húmedo (g)	191	0.50	201	4.00	209	2,00	209	8.00	
Velumen del molde (cc)	939	00,00	939	000	935	1,00	939	00,9	
Densidad Suelo húmedo (g/cc)	2.0	35	2.0	145	2.7	228	2.3	134	
Número de	1	2	3	4	5	6	7	8	
Tarro Cantidad de H ₂ O agregada	8.0%		10.0%		12,0%		14.0%		
Poso Tarro +Suelo húmedo (g)	325.14	239,86	363.87	316.85	285.41	308.55	276.23	283.6	
Peso Tarro + Suelo Seco (g)	303,95	226.10	335.29	292.16	260.48	281.56	247.69	253.58	
Резо Талто (g)	42.60	51.20	49.20	47.50	51.80	55.60	42.90	41.50	
Peso del agua	21.19	13.76	28.58	24.69	24.93	26.99	28.54	20.98	
Peso de verlo seco	261.35	174.90	286.09	244.66	208.68	225.96	204.79	212.08	
Humedad (%)	8.1	7.9	10.0	10.1	11.9	11.9	13.9	14.1	
Humedad promedio (%)	7.5	188	10.040		11.946		14.036		
Densidad Seca (g/cc)	1.5	884	1.5	149	1.5	990	1.5	259	

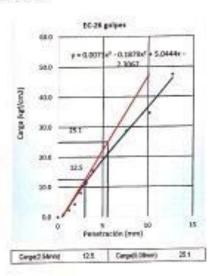

Amado felfio Espinola Villanurua ING. CIVIL R. CIP Nº 208707

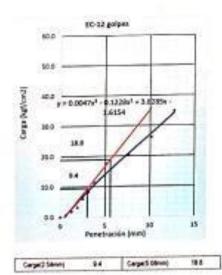
METODO	С
NUMERO DE CAPAS	5
NUMERO DE GOLPES	56
DSM (g/cm²)	1.99
OCH (%)	11.95

DATOS DEL MOL	DE
N°:	1
PESO(g):	4084.0
VOLUMEN(cc):	939.0

PROYECTO: Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú.

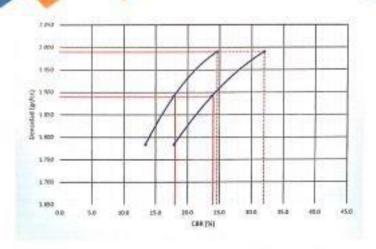

UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru TESISTAS: Albinco Ruiz, Yeymi Tatiana; Gonzales Oribe, Luis Alfonso


MUESTRA: Material para afirmado con adición de 2% de cal


1168170	3/2/			988-1-	M.Y. XO	Dutes d	e la Mue					
Province of VS01							Parel			c		
Tipo de Maestra I Altora			coa la		Minima demokrat sects				= 1.99			
1000000						Ontil		model (free		11.95%		
	-	-				Parties mercess	-	_			7.7.4	
Proporación.	de-	-	10.0	1.601	-	ARREST PRINCES	tim bear	Asea Peak	n de.	100	19.4 cm2	
neunin	1		106	eesk				Prostració		133	1974 1981	
						Compactacle	a de Esp				-	
Molde N°					- 1	A DESCRIPTION	100	1			- 1	_
Nº Capa					. 5			5				
Golpes par	capa?	V.			56			36			12	- 1
Cond. de la	munit	is.		Satisfie	hr :	Setonsde	Setu	-	Saturada	10.00	ends .	Sacarada
Pese molde	n Stari	k þ	lanedo	12536	83	12536	1366		12668	12	128	12523
Pese de radi		_			8851		-	8072		-	8508	-
Peo del sue	lo bio	mid	otp	4393	100	4305	449		4494	40		4215
Volumes de	i mold	M-go	e)	1	2822			2122			2110	1.000
Dennished b	med	1 (8)	rice):	2.225	_	2.228	2.0		2.08	- 13	106	1.996
	- 110	-		and the same	Contr	nide de base	relied de l	ice expection	inis.		- 1	
Tarro N.								2000		2000000		100.00
Tamo + Sec	to bûm	ando	100	108.73		123.72	114		119.54	_	1.54	118.49
Tamo + Sac	во нист	100	6	108,6	2	10.40				113.33		19830
Peso del Ag	an (30)	1		0.0	and the second second		9.50		9,97	10.51		10.58
Peso del tare	w fat	Ü,		24.2	-	27.14	25.8	-	26.47	25,48		23.44
Peso del suo	le sero	oig	9	84.)1		86.29	79.2			17.84		85.17
Humedad (260		0.00	13.30		11.90			12.00	- 11	96	11.55
Descided or	es (gr	rice	1		1.990	1		1.891	-		1.782	
				_	1	1000	parties	-	- 1		-	781
Fects	Bee		Hora	Dist	-	amilie.	Dist		enside	+ Dial		1000
1000	In	-	1,172		pun	*	****	889	**	170.00	0.33	0.36
161121	12.5	-	34	31	0,10	8.08	75.00	0.18	0.15	274.00	0.30	0.55
17/11/01	12.5	-	48	81	0.21	4.16	153:00	0.39	0.40	400.00	1.62	0.86
1811101	123	-	12	115	0.29	6.23	198:00	0.50	-	400,000	and the latest devices	1.07
19/1/01	122	27	99	136	0.53	6.21	276.80	0.70	0.55	908.00	1.29	LW
		_		-		Per	activación				-	-
Penetrad	de l		erge	Midd	de 56 po	fpen/cape	Mele	iede 26 go	(pes/rapa	Mel	de de 12 got	bes,calis
-			ninder glem2	Dist	Kølmt	Corregida	Dist	Kgflowl	Corregida	Dist	Kg0cm2	Corregion
0.00	_	-		25.00	1.24	-	18.80	5.89	-	12.00	0.59	11
0.63	_	-		12.00	3.51		46.90	2.28		11.00	1.0	W
1.37		-	-	147.00	7.29		16:50	4.26		64.00	3.17	40
1.99	-	-	16.05	268.00	13.27	16.88	162.00	1.02	12.35	121.00	selle	-
2.54	-	-	78.31	154.60	16.94	10.00	129.06	11.34	-	19660	400,000	pinels V
3.17	-	-		442.60	21.99		107.00	15.70		726-00	II. INC	
	-		05.46	191.50	34.22	1142	469.00	23.23	25.65	155.00	ROP	* 2087TF
5.08			(日本) (単位)	1 6073.00	271.00	20000	S AMENDE	Married .		1000000		

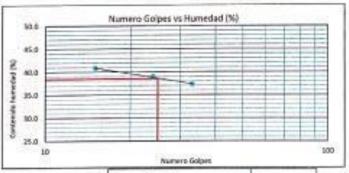
CORPORACIÓN A&J 697.00 34.52 104206 11.61 47.35 193.00 14.82 Liter no

Gráfico Penetración CBR



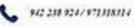
Amade Populo Esperola Villanurus NG. CN/L R. CIP Nº 208707

PROC	TOR / DENSEDAD NATUR	CALTOLER	
Missima Dens. Suca (gn/cc)			1,990
95% de la M.D.S. (gr/cs)			1.891
Densidad Natural (gr/cc)			
Optimo Humedad (%)	A STREET, ST.	Lite Objects Africal	.11.95%
N golpes	C.B.R. (1")	C.B.R. (2")	Densidad
56	24.6	31.9	1.990
26	17.8	23.8	1.891
12	13.4	17.9	1.784
	RESULTADOS DE C.B.R.	(0.1")	100
C.B.R. al 100% de la M.D.S.		0.07	24,6
C.B.R. al 95% de la M.D.S.			16.9
	RESULTADOS DE C.B.R.	(0.2")	
C.B.R. al 100% de la M.D.5.			31.9
C.B.R. al 95% de la M.D.S.			24,0
% de Expansión			hajo


PROYECTO: Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú.

UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru TESISTAS: Albinco Ruiz, Yeymi Tatiana; Gonzales Oribe, Luis Alfonso

do con adición de 4% de cal


DETERMINACIÓN DEL LÍMITE PLÁSTICO (MFC 6-911)						
Mº Tarro	1					
Tarro + Suele harnedo. [g]	25.61	25.44				
Tarro - Suele scot (g)	2.1	25.17				
Peso Agua (g)	1.43	0.27				
Peso del Tarro (g)	22.36	24.05				
Peso del mario seco (g)	180	1,94				
Hemoded (%)	23.89	23.60				
Limite Plastico (%)		23.79				

DETERMINACIÓN DEL LÍMITE LÍQUIDO DE LOS SUELOS (MTC E-110)						
S ^p Tamo	5.00	6,00	7.80			
Numero de Golpes	(6)	24	33			
Peso tarro - suelo hamedo (g)	. 51.59	40.50	50.89			
Peac tarro-scelo seco (g)	45.17	42.73	45.23			
Peso del Agua (g)	8.42	4.63	548			
Peac del tero (gi	29.40	31.33	30.57			
Peso del suelo seco (N)	15.75	12.43	14.86			
Hamedad (N)	40.76	38.95	37.24			
Limite Liquido (%)		38.48				

LÍMITE LÍQUIDO (%) 38.46 LÍMITE PLÁSTICO (%) 23.79 INDICE DE PLASTICIDAD (%) 14.67

Arrada Todito Espinois Villanueva ING. CIVIL R CIP Nº 208707

PROCTOR ENSAYO DE COMPACTACIÓN N.T.P 339.141

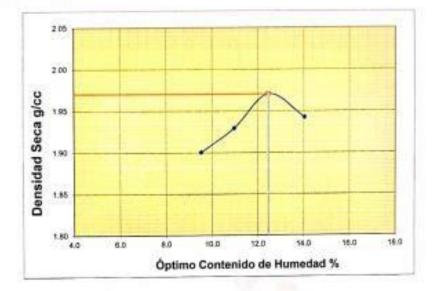
PROYECTO: "Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú."

UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru TESISTAS: Albinco Ruiz, Yeymi Tatlana; Gonzales Oribe, Luis Alfonso

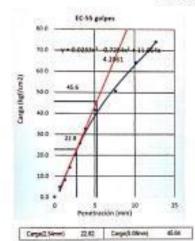
MUESTRA: Material para afirmado con adición de 4% de cal

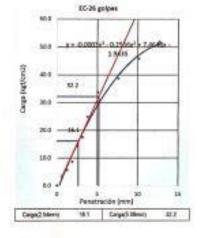
N° DE ENSAYO	- 30	1		1		1	-	4	
Pase molde-Sucia Himado (g)	718	0.00	731	2.50	747	1.30	746	0.20	
Péso del Molde (g)	276	4.90	276	4.90	276	4.90	276	4.90	
Peso Suelo Hámedo (g)	442	1.10	454	7,60	470	6.40	470	4,30	
Volumen del molde (cc)	213	4.00	212	4.00	212	4.00	212	4,00	
Densidad Socio humedo (g/cc)	2.0	181	2.1	141	2.7	116	2.5	2.215	
Número de Tarro	100	2	1	4	5	6	7	8	
Cantidad de HoO agregada	9.5	9%	113	0%	12.	5%	14.	874	
Pago Tarro -Sucio Isamelo (g)	267.51	274,79	261.34	277.84	271.98	263,55	260.15	280.25	
Peso Turro - Suelo Seco (g)	247.59	254.61	240.69	255.75	246.62	239,87	234.74	253.2	
Peso Turo (g)	39.45	41.82	50.67	52,37	44.71	48,36	54.50	59,80	
Poso del agua	19.92	20.18	21.05	22.09	25.36	23.66	25.41	27.60	
Peno de suelo seco	208.14	212.79	190.02	203.18	201.91	191.51	189.24	193,4	
Humedad (%)	9.6	9.5	11.1	10.9	12.6	12.4	14.1	14.0	
Humedad promedia (%)	9.5	527	10.	970	12.	462	100	633	
Densidad Soca (g/pc)	1.5	900	1.5	929	1.5	770	1.5	142	

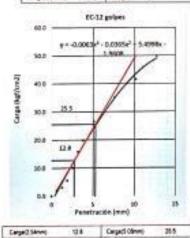
	METODO	C
NUMERO	DE CAPAS	5
NUMERO	DE GOLPES	56
	DSM (g/cm²)	1,97
	OCH (%)	12.46
DATOS DEL M	OLDE	
Nº:		
PESO(g):	-	2764.5
VOLUMEN (ex)s		2124.4

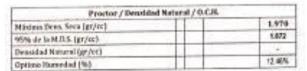

Arrado Teahio Espensia Villanuese R CIP Nº 208707

CBR - MTC E 132 - 2000

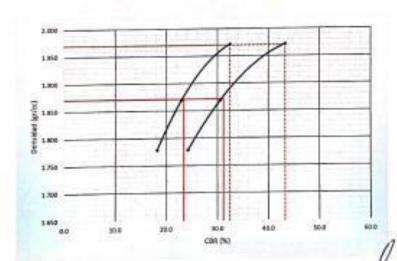

PROYECTO: "Mojoramiento y diseño de infraestructura vial para la carretera que une Huancaquite Alte y la Panamericana, Distrito y Provincia de Virú."


UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru-TESTAS: Albinco Ruiz, Yeymi Taliana; Gonzales Oribe, Luis Alfonso


MU	ESIK	A: Mo	tenni par	a atimae	do con adio	de la Mi					
Procedos	en de		41000000		Date	GF 18.30	KSU S			2001	
Mestra	can de	13	VIRO							C	
Tipode			ALTER.	DA						1.97	
Missira		- 4									
33335										12,46%	
-	-				Dates nece	sarios pu	m el ensay	0		_	_
Proparaci macetra	òn de	9	Hümeda				Ann Pist Pestresi			[9,4 cm2	
					Compacts	ción de E	specimene				
Molde N	-			1			1			3	
Nº Capa				3			5			5	
Golpes p		Nº		36			26			12	
Cond. de	la muca	(m	Saturada	Sa	turada	Satura	rds.	Seturado:	Safe	rada	Saturada
Poso mol himedo	de + Su	de	12516	- 3	2516	1267		12632	125	500	12527
Paso de a	solde (g	¥		8031			8172			8308	
Peso del i	pelo hi	mode	4485		1485	446		4460	-42	19	4219
Volumen	del mo	ide (00)		2022			2122			2110	
Densidad (g/cc)	hùme	is	2.218	1	.215	2,10	7000 15 3	2.102	2.0	00	2.000
			10	Con	tenido de ho	medad d	las especi	menes			
Tarro Nº			1							-	
Tarro + S	eclo lui	mode (131.15		29.56	132.5	5/63	135.57	145	982	143.25
Tarro + S	uclo se	10 (g)	119.89		8.35	120.8		123.28	132		130,02
Peso del .	Agus I	g)	11.26		1.21	.11.7	and the same of	12.29	13.	Contract Con	13.26
Peso del t	arro ()	Ó.	30.25		8.47	26.6	_	24.78	35.		23.64
Peso del s	suelo su	(g) co	89.64		9.35	94.3	_	98.5	106		106.38
Humeda	8 (%)		12.56	A CONTRACTOR OF THE PARTY OF TH	2.47	12.4		12.48	12.	1.778	12.46
Densidad	seca (j	price)		1.971			1,869		-	1,238	
				-		Expansión		- 201		P	neión
Fecha	Hora	Hora	Dial		ansién	Dial	mm	onside %	Dist	min	76
	lec.	100	3.5	0.01	0.06	63.00	0.16	0.13	108.00	0.27	0.22
17/11/21		24	32	10100	0.15	128.00	0.13	0.26	231.00	0.59	0.46
18/11/21	10:34	48	96	0.19	0.19	173.00	0.44	0.35	269.00	0.94	0.74
19/11/21	10:36	96	118	0.30	0.24	249.00	0.63	0.50	458.00	1.16	0.92
20/11/21	10:35	1.50	104	4,30		enetració		1.22	1	TOWN THE	10
-		arga	Melde	de 56 gal			e de 26 gal	pes/cupa	Mok	le de 12 gol	Skapa
Penetrac mm	Es Es	tiedar g/cm2	Annual Contract of the Contrac	Kg/cml	100000000000000000000000000000000000000	Dial	Kg0cm2	Corregida	Dial	Kgfcml	17
0.63	- 1	E-cess	96.00	4.75		65.00	3.22		43.00	213	
1.27			165.00	8.17		114.00	5.65		62.00	SIE	-
1.90			285.00	14,12	-7495F	175.00	8.67	Colleges	112.00	Station	Williams
2.54	13	70.31	405.00	20.06	22.62	287,00	14.21	16.11	407,000	editi Espen	No Filespe
3.17		-	519.00	25.71		354.00	17.53	11/2/2017		did ion	-
3.81			659.00	32.64		502.00	24.86	-7700-11-5	400.00	o cher 3	garue
5.08		05.46	836.00	41.41	45.64	629.00	33.63	32.21	534,00	26.45	25.54


Gráfico Penetración CBR

Ampete Teofile Espinola Villenacea NO CNIL R. CIP Nº 208707



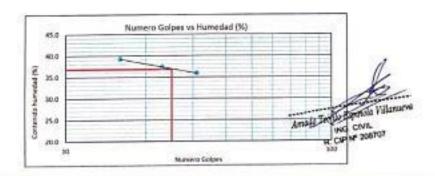
N golpes	E48.	68R (0.1')	Deseided
55	32.5	63.3	1.971
26	22.9	30.5	1.889
12	18.2	24.2	1.276

RESULTADOS DE €.B.R. [0.1"]	Line Colleged
CR3. al 100% de la M.D.S.	32.5
C.B.B. al 95% de la M.D.S.	23.4

RESULTADOS DE C.R.R. (0.2")	1/2-3
C.B.R. al 100% de la M.D.S.	43.3
C.B.R. al 95% de la M.D.S.	31.2

 	2.11
% de Expansión	BAJA

PROYECTO: Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú.


UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru TESISTAS: Albinco Ruiz, Yeymi Tatiana; Gonzales Oribe, Luis Alfonso

MUESTRA: Material para afirmado con adición de 6% de cal-

Nº Tarro	3	- 4	
Tarro + Suelo humedo. (g)	22.46	26.83	
Farro + Suelo seco (g)	22.13	25.85	
Pero Agua (g)	0.33	0.98	
eso del Tarro (g)	20.98	22.45	
Peso del suelo soco gl	1.15	3.40	
furnodad (%)	28.70	28.82	
imite Plastico (%)		28.76	
DETER	MINACIÓN DEL LÍMI	TE LÍQUIDO DE LOS SUELO	OS (MTC E-110)
Nº Turro	5,00	6,00	7.00
Character day College	16	71	3.1

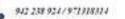
Nº Turro	5,00	6,00	7.00
Numero de Golpea	16	23	31
Peso tarro + suelo humedo (g)	53.88	47.78	52.21
Peso tarro+sudo seco (g)	48.14	44.21	47.31
Peso del Agua (g)	5.74	3.37	4.90
Peso del tarro (g)	33.50	34.65	33.65
Peso del suelo seon (%)	14.64	9.56	13.66
Humodad (%)	39.21	37.34	35.87
Limite Liquido (%)		36.80	

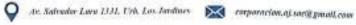
LÍMITE LÍQUIDO (%)	36.80
LÍMITE PLÁSTICO (%)	28.76
ÍNDICE DE PLASTICIDAD (%)	8.04



942 238 924/971318314

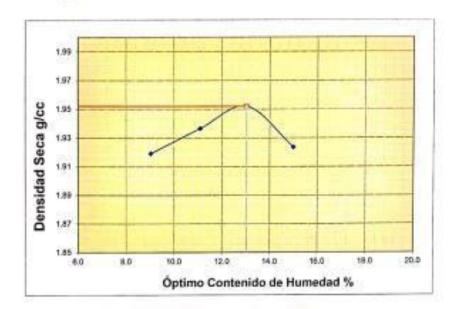
Av. Salvador Lara 1311, Urb. Los Jurdines corporacion, aj, sac@gmall.com

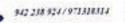

PROYECTO: "Majoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú."


UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru TESISTAS: Albinco Ruiz, Yeymi Tatiana; Gonzales Oribe, Luis Alfonso MUESTRA: Material para afirmado con adición de 6% de cal

Nº DE ENSAYO		1	25	1	3		0	4
Peso molde+Sucto Himado (g)	720	9.25	733	5.00	7451.50		7463.50	
Peso del Molde (g)	276	4.90	276	4.90	2764.90		2764.90	
Pero Suelo Hámedo (g)	444	4.35	457	0.10	4696.60 4608.60		8.60	
Volumen del molde (ec)	212	4.00	212	4.00	2124.00 2124.00		4.00	
Densidad Suelo humedo (g/cc)	2.5	992	2.	152	2.206		2.3	112
Número de Tamo	i	1	3	4	5	6	7	8
Cantidad de H ₂ O agregada	9)	226	11.	0%	13.0%		15.8%	
Peso Tarro "Suelo humedo (g)	321.02	357.19	265.14	303.82	346.28	358.05	265.69	287.16
Peso Tarro + Suelo Seco (g)	298.63	331.78	243.69	278.24	312.47	322,62	236.55	256.47
Peso Tarro (g)	51.64	49.21	50.85	47.21	52.62	51.19	42.71	47.38
Peso del agua	22.39	25.41	21.45	25.58	33.81	35.43	29.14	31.27
Peso de suelo seco	246.99	282.57	192.84	231.03	259.83	271.43	193.84	209.06
Humedad (%)	9.1	9.0	11.1	11.1	13.0	13.1	15.0	15.0
Humedad promedio (%)	9.5	129	11.	890	13.032		14,994	
Descidad Seca (g(pc)	1.3	119	1.5	137	1.952		1.924	

C	METODO	- 1000000	
5	NUMERO DE CAPAS		
56	NUMERO DE GOLPES		
1.95	DSM (g/cm²)		
OCH (%) 13.03			
MOLDE	DATOS DEL		
i i		Nº:	
2764.9		PESO(g):	
2124/		VOLUMEN (ec):	


Arnado Teofilo Espinola Villanueva ING. CIVIL R. CIP Nº 208707



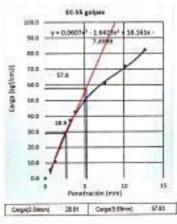
PROYECTO: Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú.

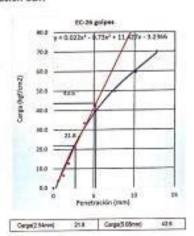
UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru TESISTAS: Albinco Ruiz, Yeymi Tatiana; Gonzales Oribe, Luis Alfonso

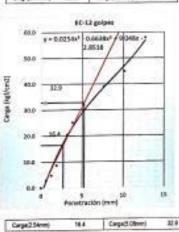
MUESTRA: Material para afirmado con adición de 6% de cal-

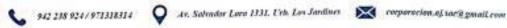
			-	odoci o do c		Dates	de la Mue					
Procedence de Muestre			: VIII	RÚ.							C	
Tipo de			ALTERADA						1.95			
Muestra			LONG	TERALIN.								
5 (00°11)						-					3.03%	
						Dates neces	arios para	Arm Pisto	242		Contract of the Contract of th	_
Proparació de muestra			: He	meda				Penetració			19.4 cm2	
P. Carlotte						Compartac	ión de Esp	ecimenes				
Molde N					1	1071-0000	ALC: NO	2		1	3	
Nº Capa		-39		-	5			5				
Golpes po	г сар	a N			.56	10-10	120000	16		1	12	-
Cond. de la	a music	STR		Saturada	D 100	Saturoda	Sature	da	Saturada	Satur	nda	Saturada
Peso mold	e + Si	aelio		12497		12487	1259	9	12509	124	85	12485
húmado Puso de m	abbs 6	40		10000	8031	271.02	7 7.000	8172	a market		8308	200
Peso del si	THE REAL PROPERTY.		de (e)	4456	-	4456	4427		4427	417	T	4)77
Volumen o				44.0	2022	7000	1 33	2122	-X86 -	90	2110	-23/10
Densidad	_	-	Apple	2.204		2.204	2.09	6	2.086	1.99	90	1.980
					Con	tenido de hu	medad de l	os especima	1961	1		
Tarro Nº											200	100000
Tarro + Su	elo b	Arron	do (g)	132.86	2	136.97	140.5		138.82	140	and the same of th	139.37
Tarro + Suelo seco (g)		120.58	10	124.08	127.2			127.46		13.25		
Peso del Agus (g)		12.28		12.89	13.3		12.98	25.0		24.69		
Poso del ta	200 (21		26.15		25.48	24.69			101		101.43
Peso del s	_	eco.	(g)	94.43		98.6	102.5		13.02	13.0		17.06
Humedad		100	35,	13.00	1.050	13.07	13.0	1,846	13-02	320	1.751	12/04
Demidad	Secial I	(gorle	ne)	1000	1,950		aparsión	1,840			- servet	
		-				amión	apansion	Esp	ansiān		Espa	orido
Fecha	Ho		Hora	Dial	1.4	24	Dial	mn	%	Dul	mm	16
18/11/21	210	-	24	28	0.07	0.06	51.00	0.13	0.10	78.00	0.20	0.16
19/11/21	-	-	48	58	0.15	0.12	105.00	0.27	0.21	179.00	0.45	0.36
20/11/21	-	_	72	39	0.20	0.16	161.00	0.41	0.32	285.00	0.72	0.57
21/11/21	21:2	-	96	108	0.27	0.22	224.00	0.57	0.45	401.00	1.02	0.80
						Po	antración	/				
Pesetrac	40		arga	Melde	de 56 golp	es/capa	Muld	e de 26 gal	pes/caps	1	ie de 11 golp	10.5 TO Chap
Penetrac	-		Sedar	Dial	Kg/cm2	Corregida	Dial	Kgf/cm2	Corregida	Dist	Kg@cm2	Corregida
0.63	-	- 10	Smil	111.00	5.50	-	75.00	3.71	722	56.00	2.77	1 7/1
1.27				216.00	10.70		132.00	6.54		96,00	4.15	7
1.90				397.00	19.66		256.00	12.68		174.00	8.62	
2.54		7	10.0	578.00	28.63	28.91	432.00	21,40	21.90	325.00	18.10/	16.44
3.17			77	752.00	37.25		528.00	26.15		412.00	145	-
3.81			0.100	864.00	42.79		674.00	33.38		506.00		
5.01		. 10	05.46	1012.00	50.12	57.83	856.00	42,40	43.61	-017DE	an Elphinia	Nighthan
7.62		75	177	1231.00	60.97	1000	1002.00	49.63		905.00	THIS CALL	
10.16		-		1452.00	71.92		1197.00	59,29		1169.00	CIP 19 3081	07
12.70				1663.00	82.37		1412.00	89.94		1100.00	31.90	

Av. Salvador Lura 1331, Urb. Los Jurdines corporacion aj sacij gmail com

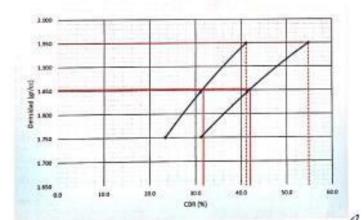






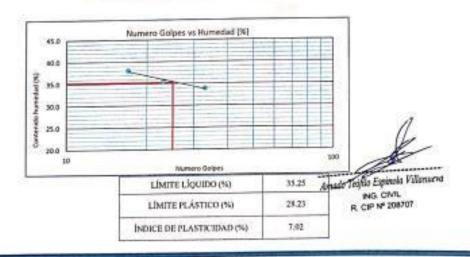

Gráfico Penetración CBR

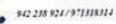
Austra Topio Espinole Villanueva ING CIVIL R. CIP Nº 208707



Armady Leoffer Espirola Villanuewa NG CML R. CIP Nº 206707

Av. Subrador Lure 1331. Urb. Los Jardines corporacion al sacij gmail con




LÍMITES DE CONSISTENCIA - PASA MALLA Nº 40 (ASTM D 4318)

PROYECTO: "Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú."

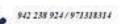
UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru TESISTAS: Albinco Ruiz, Yeymi Tatiana; Gonzales Oribe, Luis Alfonso

	DETERMINACION DEL LIM	TE PLASTICO (MTC E-111)	
Nº Tame	3		
Tarro > Suelo bamedo. (g)	27.91	27.54	
Tarro - Saelo sece (g)	25.41	25,33	
Peno Agua (g)	250	2.21	
Penodel Tarro (g)	16.58	17.46	
Peso del suelo seco (g)	8.83	7.85	
Hamedad (%)	20.21	28.15	
Limito Plastico (%)		28.23	
	2.00	NDO DE LOS SUELOS (MTC E-116)	406
Nº Tarro	17	23	n
Numero de Galges Peso tarto + suelo humedo (g)	47.38	45.08	46.81
Pero terro-meio seco (g)	41.57	41.82	42.12
Peso del Agua (g)	5.81	5.36	4.68
Paso del tarro (g)	26.27	26.84	20.27
Preso del suelo saco (%)	15.30	14.78	11.85
Hyraedad (%)	37.57	35.59	33.86
A second of the		20.74	•

Limite Liquido (%)

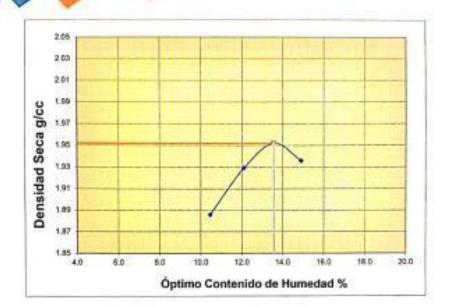
Av. Salvador Lara 1331. Urh. Los Jordines corporacion.aj.suc@gmail.com

Escaneado con CamScanner


PROYECTO: "Mejoramiento y diseño de infraestructura vial para la carretera que une Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú."

UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru TESISTAS: Albinco Ruiz, Yeymi Tationa; Gonzales Oribe, Luis Alfonso MUESTRA: Material para afirmado con adición de 8% de cal

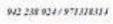
Nº DE ENSAYO	2.8		- 10	1	- 2	1	- 09	
Peso molde+Surlo Húmedo (g)	718	9.14	735	8,50	747	1.30	7400	9.60
Peso del Molde (g)	276	4.90	276	4.90	276	4.90	276	4.90
Peso Suelo Hámedo (g)	442	4.24	459	1.60	470	1.40	4724.70	
Valumen del molde (cc)	2124.00		2124.00 212		4.00	2124.00		
Densidad Suelo himedo (g/cc)	2.0	163	2.1	63	2.2	117	2.7	24
Número de Tarro	1	2	3	4	5	6	7	8
Cantidad de H ₂ O agregada	16.	5%	12.	0%	13.	5%	15.	0%
Peso Tarro +Snelo búmedo (g)	283.17	323.69	314.47	285.92	300.25	287.96	333.22	278.43
Peso Tarro + Socio Seco (g)	261.34	297.53	286,47	261.45	271.59	261.29	297.58	249.59
Peso Tarre (g)	51,55	48.32	55.91	58.63	61.09	63.88	58.13	56,32
Peso del agua	21.83	26.16	28.00	24.47	28.66	26.67	35.64	28.84
Peso de suelo seco	209.79	249.21	230.56	202.82	210.50	197.41	239.45	193.2
Humedad (%)	10.4	10.5	12.1	12.1	13.6	13.5	14.9	14.9
Humedad promodio (%)	10.	451	12.	105	13.	563	14.	963
Densidad Seca (g/cc)	D	196	1.5	929	1.5	H52	1.5	736


METODO	c
. NUMERO DE CAPAS	5
NUMERO DE GOLPES	56
DSM (g/cm²)	1.95
OCH (%)	13.56
DATOS DEL MOLDE	
N°1	1
PESO(g):	1764.9
VOLUMEN (cc):	2124.0

Amaia Tayah Espinola Villanueva NO CIVIL R. CIP Nº 208707

Amade Teople Espinole Valanteres ING CIVIL R. CIP Nº 208707

CBR - MTC E 132 - 2000

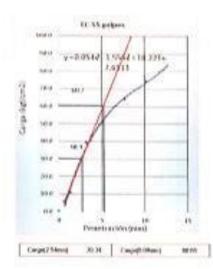

PROYECTO: "Mejoramiento y diseño de infraestructura vial para la carretera que uno

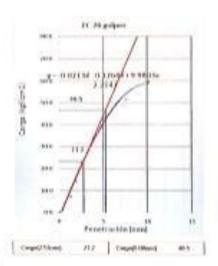
Huancaquito Alto y la Panamericana, Distrito y Provincia de Virú.

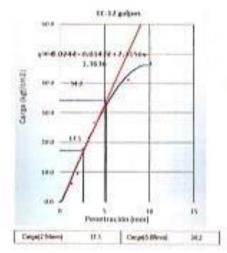
UBICACIÓN: Huancaquito Alto y la Panamericana, Distrito y Provincia de Viru TESISTAS: Albinco Ruiz, Yeymi Tatiana: Gonzales Oribe, Luis Alfonso

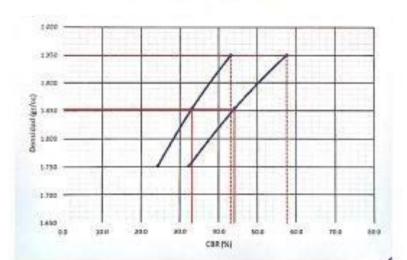
MUESTRA: Material para afirmado con adición de 8% de cal

					Datos	de la Mue					
Procedenc	ia de		VIRÚ							c	
Muestra		1	A STATE OF THE STA							100	
Tipo de Meestra		8.0	ALTERAD	Aco						1,95	
MINORIA.										13.56%	
					Dates neces	aries para					
Preparoció		- 1	Hémeda				Ann Pist			19.4 cm2	
de muestra	1	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1. 1. 10.	Penetraca	en		_	
	_			-	Compactac	ion de Exp	2		7	- 3	
Molde N	_	_	-	5			5		_	5	
N° Caps	-	89		56			26			12	
Golpes pe Cond. de			Saturada		tirido	Satura		Saturada	San	mda	Saturada
Feso mold			7.55		- 0.0	3,111		185757	12	903	12500
himede	PE - DE		12506		2506	1263	8	12638	12	0.0	12200
Peso de m	solde (s	Ó		8031			8172			6,508	
Peso del s	nelo hi	imedo	4475		647.5	4460	6	4466	-41	95	4195
(g)			77.0		W. W.	-	2122			2110	
Volumen				2022		2.10	- Contract of the Contract of	2.105	100	185	1.998
Densidad	hàme	ia (g/cc)	2,213		1213 tenido de hun				1.5	190	1.766
-	Carrier No.		1	Con	remoto ne muc	MAGNAGE DE S	as especial	CIPCO .			
	arro N		-	-	313/8	2000	100	A2000	- 50.		10000
Tarco + Suelo hámedo (141.25	- 1	41.92	138.02		136.69	136	1.94	135.05	
Tarre +		seca (g)	127.57	- 1	28.09	124.5	7	123,47	120	1.22	121.86
	fel Ago		13.68		3.83	13.4	5	13.22		.72	13.10
	del tarr		26,02	3.7	5.84	25.4	7	25,69	-	.12	23.96
Peso del			101.55	1	92.25	99,1		97,78		1.1	97.9
Hen	nedad !	(%)	13,47		3.53	13.5		13.52	13	57	13.47
Densida	d secu	(grice)		1.950			1.854			1.751	
						spansión					
Fechs	Hors	Hora	Dial		noin	Dial		consider.	Dial		moion *5
Pecas	lec.	40000	53570	mm	* %		211	36	**	mm	
19/11/21	15:36		25	0.06	0.05	44	0.11	0.09	112	0.13	0.11
20/11/21	15:38	_	- 51	0.13	0.10	87	0.22	0.25	198	0.50	0.40
21/11/21	15:38	_	71	0.18	0.14	127	0.49	0.38	341	0.57	0.68
22/11/21	15:4	96	88	0.22	0.18	netración	11.49	0.36	241.	1481	1/20
	-	Carga	Moto	de 56 golg	and the factor of the factor o		e de 26 ga	laes/carno	Mode	le de 12 galj	es/ceas
Penetraci	én ;	ståndar	-	132			2000	N200 25354	Dial	PUCAL PROPERTY	1.3000 VALUE
mm		Kg/cm2	Dial	Kgieml	Corregida	Dial	Kg@cre2	Corregida	-	Keffern	Corregida
0.63		3.77	111.00	5.50		81.00	4.01		72.00	3.57/	
1.27	5 5		208.00	10.30		139,00	6.88		124.00	NIN	-
1.90		15010	401.00	19.86	IV.	278.00	13.77	- NAV	189,00	A	Secret.
2.54		70.31	597.00	29.57	30.34	453,00	22.44	23.23	356.00	Listenska V	Bernardf
3.17		INSCRIPTION OF THE PERSON OF T	782.00	38.73	100000	549.00	27.19		11.35.45	Francer s	0.00
3.81	-	155777	871.00	43.14	10000	689,00	34,13	A)	PHILIP.	ac thin	
5.48		105.46	1031.00	\$1.06	10.68	874.00	43.29	46.46	\$19.80	P 11/16	34.15
7,62		10000	1287.00	63.74	A STATE OF THE PARTY OF THE PAR	1037.00	51.36		\$75000	41.96	
10.16			1499.00	74.24		1200.00	59,44		945.00	46.81	
12.70			1682.00	13.31	-	1439.00	71.27		1215,00	40.18	






Ar. Salvador Lora 1331. Ush. Los Jurdines corporacion aj saci gmail com


La Espetiole Villannere NO CIVIL N CIP Nº 200707

PROCTOR / DENSI	DAD NATURAI	. / O.C.II.		
Máxima Dens, Seca (gr/ce)				
95% de la M.D.S. (gr/ce)			1.853	
Desoided Natural (grice)			100	
Optime Hernodad (%)			13.56%	
N galpes	(#.t")	C.B.R. (0.2°)	Densidad	
55	43.2	57,5	1,950	
26	33.0	44.1	1.854	
12	24.3	32.4	1.751	
RESULTADO	S DE C.B.R. (0.	1")	12.0 Years	
C.B.R. at 100% de la M.D.S.		00.00	43.2	
C.B.B. al 95% de la M.D.S.	Esewistera	277	33.0	
RESULTADO	6 DE C.B.R. (0.	2")		
C.B.R. al 190% de la M.D.S.				
C.B.R. al 95% de la M.D.S.			44.0	
% de Expan	nión		BAIA	

Annale People Espinole Villanseva ING. CIVIL R. CIP Nº 208707

942 238 924 / 971318314

Av. Salvador Luce 1331. Urb. Los Jurdines 🔀 corporacion,aj.sac@gwall.com

Anexo 11. Certificado de Calibración y Mantenimiento del GPS SOUTH G1

CERTIFICADO DE OPERATIVIDAD

Mantenimiento general	Reparacion	Operatividad	Garantia I año	Nuevo
	189	OK		

DATOS DEL EQUIPO

Nombre	1	GPS DIFERENCIAL	Especificaciones de Precicion (RMS) 1 2 3
Marca	:	GALAXY SOUTH	- Horizontal: 2.5mm + 0.5 ppm RMS
Modelo	:	G1	- Vertical: 5mm + 0.5 ppm RM5
Colector Modelo		e:X11139031075102 X11	 Tiempo de observacion: Va de 4 a 30 minutos en funcion de la distancia entre los receptores y otros factores ambientales
	4.17	E Serie: SG1093117288214EDN VER Serie: SG1093117288192EDN	

CERTIFICADO DE OPERATIVIDAD

008-00369 Nio: Fecha 28/04//2021

METODOLOGIA APLICADA Y TRAZABILIDAD DE LOS PATRONES

Los valores de rendimiento asumen un mínimo de 4 satélite, siguiendo los procedimientos recomendados en el manual del producto. Las zona de elevada recepción múltiple, los valores alto del PDOP y los periodos de condiciones atmosférica extremas pueden afectar al rendimiento

COSOLA GROUP S.A.C. bajo la acreditación de SGS ISO 9001-2008 certifica que el instrumento identificado a sido verificado en concordancia con los procedimientos de verificación establecida por el fabricante

CALIBRACIÓN Y MANTENIMIENTO

Fecha	Mantenimiento	Calibración	Próxima Operatividad	Observación
28/04/2021	8	X	1 AÑO	% 100 OPERATIVO

Responsable de Verificación	Propietario	RUC
COSOLA GROUP S.A.C.	PLASENCIA & ASOCIADOS S.A.C.	20482319425
ABORATORIO COSOLA GROUP SAC		
Sonia Andla Girno na uro mbaco i abacco		
(Kanday DPS 7 Oceas)	Firma y Sello	

CERTIFICADO DE CALIBRACION

DATOS DEL EQUIPO

Equipo	Marca	Modelo	Serie
ESTACION TOTAL ~	TOPCON	GPT-3205NW	U80397

Nº Orden: 3027GE

ENTIDAD CERTIFICADORA:

GEOSERVIC E.LR.L.

METODOLOGIA APLICADA Y TRAZABILIDAD DE LOS PATRONES

Para controlar y calibrar los ángulos se contrastan con un colimador TOPCON con telescopio de 32x en cuyo reticulo enfocado al infinito, el grosor de sus trazos está dentro de 01", que es patronado periódicamente por un teodolito KERN modelo DKM 2A precisión al 01" con el método de lectura Directa-Inversa

Para controlar y calibrar la constante promedio en las Distancias se hacen las mediciones en una base establecida con una Estación Total Marca TOPCON modelo GPT-3002W nueva de precisión en distancia de +/- (2mm + 2 ppm x D) M.S.E. = linea de la medida.

El control angular se ejecuta en la base soporte metàlica fijada en cimiento específico a influencias del clima y enfocados sos reticulos al infinito.

Las distancias son medidas con la Estación total instalada en una base fijada en la pared y el prisma estacionado sobre un tripode KERN de bastón centrador en cada punto de control establecido, tomando en consideración la temperatura y la presión atmosférica.

VALOR PATRON	VALOR OBTENIDO	DIF
ANG. HZ: 00°00'00" / 180°00'00"	00'00'00'' / 180'00'00''	00"
ANG. V. 90'00'00" / 270'00'00"	90°00'00". / 270°00'00"	00"

NORMA APLICADA

Desviación estándar basada en la norma ISO 9001:2000 FM /ISO 14001 para Estación Total TOPCON ES-105

CALIBRACIÓN Y MANTENIMIENTO

Fecha	Mantenimiento	Calibración	Próxima Calibración	Observación
03/09/2021	1	-	6 moses	100% OPERATIVO
Responsabl	le de Verificación	Prop	rieturio	Obra
JORDY BAUTISTA TITO		PLASENCIA & ASOCIADOS SAC RUC 20482319425		
-	RUU D			

GEOSERVIC E.LR. L. Jr. Toedoro Cardenas 273. Oficina 303 Santa Beatriz - Lima - Pers. Certificado no podra ser emindo por etras empresas. Telefono: 910031700

CERTIFICADO CALIBRACION - COLIMADOR

DATOS DEL EQUIPO

COLIMADOR	DE 5 ELESCOPIOS		
Marca :	FÖIF	Precisión Angular	: ±1/2trazo del colimador enfocado al infinito ± 0,5"
Modelo	CF 5	Tipo	Doble Reticule: al infinito y a 2,0 m.
Articulo	CGT-C-01	Twee St.	Apertura de Obietivo 40mm
Serie	11002	Telescopio	40x Imagen Directa

CERTIFICADO DE CALIBRACION

Nº 01+3005C

ENTIDAD CERTIFICADORA

GEOSERVIC

METODOLOGIA APLICADA Y TRAZABILIDAD DE LOS PATRONES

Para calibrar y controlar este instrumento se contrastan los tubos, colimadores FOEF con telescopio de 38x en cuyos reticulos enfocados al infinito, el grasor de sus trazos está deutro de 01°; patronado periódicamente por una Estación total OTS-685 R1000 de precisión al 1° con el método de lectura Directa – Inversa y refrendado con el colimador CF 5 FOIF. La temperatura y la precisión atmosférica medida con Altimetro Thommen de precisión, la temperatura y la humedad relativa se

define con un Barotermohigrómetro de marca Control Company patronados periódicamente con los métodos de calibración control y ajuste exigidos por el fabricante.

TEMPERATURA LABORATORIO	HUMEDAD RELATIVA LABORATORIO	Presión atmosférica
25*	67%	760 mmhg

NORMA APLICADA

Desviación estándar basada en la norma DIN 18723 e ISO 12857 del Colimador Original CF 5 FOIF.

RESULTADOS

Distancia Lectura de Instrumento Patrón	Distancia Instrumento contrastado	Diferencia
Reticulos enfocados al infinito:	± 1.4 de grosor de trazo (aprox. 0.4")	± 1.4 de grosor de trazo (0.411)
Porcentaje de Error: # 0.001 %	± 1.5 del grosor de trazo del reticulo enfocado al infinito.	

CALIBRACIÓN Y MANTENIMIENTO

Fecha	Mantenimiento	Calibración	Próxima Calibración	Observación
03/09/2021		x	06 meses	% 100 OPERATIVO
Responsable	de Verificación	Propietar	io	Obrac
GIAN PIER	RE MORAN M.	GEOSERVIC E.I.R.L.		
GEOSEI	THE TECHOO TVIC ELELL	Firma y Se	dio	