

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Reforzamiento **estructural del servicio ac**adémico de la Escuela de Matemática de la Universidad Nacional de San Agustín, Arequipa 2022

AUTORA:

Rivera Achulli, Fabiola Amelia (orcid.org/ 0000-0001-5924-2707)

ASESOR:

Mg. Sigüenza Abanto, Robert Wilfredo (orcid.org/ 0000-0001-8850-8463)

LÍNEA DE INVESTIGACIÓN:

Diseño Sísmico y Estructural

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo Sostenible y Adaptación al Cambio Climático

LIMA – PERÚ

2022

Dedicatoria

Este proyecto se la dedico a mi Ángel que se encuentra en el cielo, mi madre Haydee, hermanas, terceras personas y en especial a mi querido hijo, quienes son mis motores y motivos para continuar creciendo como personas y llega ser algún día merecedor de los esfuerzos y sacrificios realizados.

Agradecimiento

Agradecer de manera pública a mi entorno (familiares, amigos y conocidos), que sin saber ha colaborado que desarrolle esta Tesis, que a pesar de muchas circunstancias y postergaciones siempre ha creído en mí.

Índice de contenido

Carat	tula	i
Dedic	catoria	ii
Agrad	decimiento	iii
Índice	e de contenido	iv
Índice	e de tabla	V
Índice	e de gráficas y figuras	vi
I. II	NTRODUCCIÓN	1
II. N	IARCO TEÓRICO	5
III.	METODOLOGÍA	19
3.1.	Tipo y diseño de investigación	20
3.2.	Variables y operacionalización	20
3.3.	Población, muestra y muestreo	20
3.4.	Técnicas e instrumentos de recolección de datos	21
3.5.	Procedimientos	21
3.6.	Método de análisis de datos	24
3.7.	Aspectos Éticos	27
IV.	RESULTADOS	29
V. D	DISCUSION	41
VI.	CONCLUSIONES	58
VII.	RECOMENDACIONES	61
REFE	ERENCIAS	63
ANE	(OS	64

Índice de tablas

Tabla 1. Periodo de modos de vibración y respectivas masas	43
Tabla 2. Fuerzas cortantes en la base (Tn)	44
Tabla 3. Integración de fuerzas (Tn)	45
Tabla 4. Densidad de muros en ambas direcciones	46
Tabla 5. Desplazamientos máximos y derivaciones entrepisos, dirección "X"	47
Tabla 6. Desplazamientos máximos y derivaciones entrepisos, dirección "Y"	47
Tabla 7. Tabla periodo de los seis (6) modos de vibración y respectivas masas .	49
Tabla 8. Fuerzas cortantes en la base (Tn)	51
Tabla 9. Determinación del sistema estructural dirección "X"	52
Tabla 10. Determinación del sistema estructural dirección "Y"	52
Tabla 11. Desplazamientos máximos y derivaciones entrepisos, dirección "X"	53
Tabla 12. Desplazamientos máximos y derivaciones entrepisos, dirección "Y"	54

Índice de gráficas y figuras

Figura 1. Fallas comunes en Columnas	9
Figura 2. Fallas comunes en Vigas	10
Figura 3. Daños estructurales y sus causas más comunes	11
Figura 4. Encamisado de viga, columnas y nudos con concreto reforzado	12
Figura 5. Encamisado total (4 caras) / encamisado parcial (3 caras)	13
Figura 6. Elementos de refuerzo con acero de construcción y/o concreto-mo	rtero
con fibra	13
Figura 7. Propiedades que aporta el Enchaquetado	14
Figura 8. Edificios de columnas cuyas fallas son por fuerzas cortantes (afecta desempeño físico de toda la edificación)	
Figura 9. Edificios con rigidez laterales insuficientes antes los antecede sísmicos	
Figura 10. Edificios con niveles inferiros débiles	15
Figura 11. Edificios con vigas / columnas con traslapes insuficientes	16
Figura 12. Encamisado total (4 caras) / encamisado parcial (3 caras)	16
Figura 13. Encamisado y sus anclajes al elemento existente	17
Figura 14. Encamisado de viga	17
Figura 15. Encamisado en mudo (viga/columna)	18
Figura 16. Vista de pasillo en fachada posterior	22
Figura 17. Vista frontal de escaleras del pabellón existente	22
Figura 18. Plano vista en planta – primer nivel	24
Figura 19. Plano vista en planta – segundo nivel	25
Figura 20. Plano vista en planta – tercer nivel	25
Figura 21. Plano vista en planta – primer nivel (reformulado)	26
Figura 22. Plano vista en planta – segundo nivel (reformulado)	26
Figura 23. Plano vista en planta – tercer nivel (reformulado)	26
Figura 24. Plano vista en planta – cuarto nivel (nuevo)	27
Figura 25. Vista general del modelo estructural del módulo de Edificación Exist (EE) en 3D	
Figura 26. Metrado de cargas asignado cargas al programa Etabs - EE	31
Figura 27. Vista general de las cargas Muertas asignadas a las viguetas	32

Figura 28. Vista general de las cargas vivas asignadas a las viguetas - Metrados de cargas de una viga32
Figura 29. Vista las cargas muertas asignadas a las vigas como cargas permanentes de los 3 niveles
Figura 30. Espectro inelástico sistema de muros estructurales R=834
Figura 31. Espectro Inelástico sistema de Albañilería Confinada R=335
Figura 32. Vista general del modelo estructural del módulo de Edificación Proyectado (EP) en 3D35
Figura 33. Metrado de cargas asignado cargas al programa Etabs - EP 36
Figura 34. Vista general de las cargas Muertas asignadas a las viguetas 37
Figura 35. Vista general de las cargas vivas asignadas a las viguetas - Metrados de
cargas de una viga37
Figura 36. Vista las cargas muertas asignadas a las vigas como cargas
permanentes de los 4 niveles
Figura 37. Espectro inelástico sistema de muros estructurales R=640
Figura 38. Espectro Inelástico sistema de Albañilería Confinada R=640
Figura 39. Vista de la planta del 1º Nivel del Módulo. Nótese la disposición y
dimensiones de sus elementos principales (columnas y vigas)42
Figura 40. Vista de la elevación principal del Módulo. En esta vista se muestra las columnas y vigas típicas consideradas en el diseño42
Figura 41. Vista del modelo sísmico de la edificación en su tercer modo de vibración
(transversal) T=0.135 seg43
Figura 42. Vista del modelo sísmico de la edificación en su tercer modo de vibración
(rotacional) T=0.101 seg44
Figura 43. Evaluación para muros de concreto, exportado del ETABS 45
Figura 44. Vista de la planta del 1º Nivel del Módulo. Nótese la disposición y
dimensiones de sus elementos principales (columnas y vigas)48
Figura 45. Vista de la elevación principal del Módulo. En esta vista se muestra las columnas y vigas típicas consideradas en el diseño48
Figura 46. Vista del modelo sísmico de la edificación en su primer modo de vibración
(longitudinal) T=0.228 seg 50
Figura 47. Vista del modelo sísmico de la edificación en su segundo modo de
vibración (rotacional) T=0.147 seg 50

Figura 48. Vista del modelo sísmico de la edificación en su tercer modo de vibraciór
(rotacional) T=0.105 seg51
Figura 49. Foto de proceso de descubrimiento de concreto para reforzamiento 55
Figura 50. Foto de proceso de Apuntalamiento para reforzamiento55
Figura 51. Foto de proceso de colocación de acero vertical y horizontal para reforzamiento
Figura 52. Foto de proceso de reforzamiento de columna existente con acero56
Figura 53. Foto de proceso de vaciado de concreto en reforzamiento, técnica encamisado57

Resumen.

Luego del terremoto del 23 de junio del 2001, la Universidad Nacional de San

Agustín dispone el reforzamiento del Facultad de Ciencias Naturales y Formales,

departamento de Matemáticas de las Áreas de Ingeniera a la edificación construida

entre los años 1976 al 1977, con una antigüedad mayor a 25 años, destinada al

sector de educación a 388 alumnos, a los cuales no se le puede otorgar un

adecuado acceso a conocimientos teóricos y prácticos para su formación

profesional en la escuelas profesional y departamental de Matemáticas.

Según los antecedentes obtenido del levantamiento arquitectónico, antigüedad y

necesidades del área usuaria, se determinar proyectar un nivel más de un tercer

nivel a un cuarto nivel; por tal sentido se considera la propuesta arquitectónica del

Jefatura de Proyectos y obras y se realiza los calculo y cumplimento de los

parámetros indicados en el Reglamento Nacional de Edificaciones E.030 DISEÑO

SISMORRESISTENTE RM-043-2019-VIVIENDA.

Con el cumplimiento de los parámetros establecidos en la Normativa cumpliremos

el objetivo de mantener la edificación existente mediante el reforzamiento

estructural y cubrir la necesidad que tiene la escuela de Matemáticas de la UNSA

Arequipa.

Palabras claves: Reforzamiento, Estructural, Antisísmico, Escuela.

ix

Abstract

After the earthquake of June 23, 2001, the National University of San Agustín orders

the reinforcement of the Faculty of Natural and Formal Sciences, Department of

Mathematics of the Engineering Areas to the building built between the years 1976

to 1977, with a greater antiquity to 25 years, intended for the education sector to

388 students, who cannot be granted adequate access to theoretical and practical

knowledge for their professional training in the professional and departmental

schools of Mathematics.

According to the information obtained from the architectural survey, age and needs

of the user area, it is determined to project a level more than a third level to a fourth

level; In this sense, the architectural proposal of the Head of Projects and Works is

considered and the calculation and compliance with the parameters indicated in the

National Building Regulation E.030 EARTHQUAKE-RESISTANT DESIGN RM-043-

2019-HOUSING is carried out.

By complying with the parameters established in the Regulations, we will fulfill the

objective of maintaining the existing building through structural reinforcement and

meeting the needs of the UNSA Mathematics School in Areguipa

Keywords: Reinforcement, Structural, Anti-seismic, School.

Х

I. INTRODUCCIÓN

Un sismo de grandes magnitudes ocurrió el 23 de junio de 2001 (Mw 8.2), teniendo fricción de las placas Nazca en Sudamérica, siendo Perú uno de los países afectados; las localidades con mayor impacto telúrico fueron: Moquegua y Tacna Arequipa y sus adjuntos Ocoña, Camaná, Mollendo, todas ubicadas al sureste del epicentro. En general, se ha observado los daños materiales y humanos de importancia en casi todas las localidades mencionadas y cercanas a la costa Peruana (Tavera et al., 2002).

El área de Ciencias Sociales, ubicada en la avenida Venezuela de la UNSA, la mayoría de las edificaciones han sufrido daños arquitectónico/estructurales, siendo la Escuela de Matemática una de tantas afectadas sumando las réplicas constantes, es tiene la necesidad de Reforzamiento Estructural.

Según las evidencias descritas, el desarrollo del trabajo de investigación tiene como objetivo principal el análisis estructural y reforzamiento del Facultad de Ciencias Naturales y Formales de las Áreas de Ingeniera, de la Universidad Nacional de San Agustin – Arequipa – Perú, esto conlleva a la evaluación de la estructura existente y su cumplimiento de los parámetros establecidos con la normativa actual y, según sus resultados el posible reforzamiento estructural con la finalidad de mantener las arquitectura actual.

Realidad problemática

La Universidad Nacional de San Agustín, ubicada en la Ciudad Arequipa, está compuesto de son órganos universitarios, el presente estudio está dirigido hacia la Escuela de Matemáticas, designados a la a la Facultad de Ciencias Naturales y Formales de las Áreas de Ingeniera.

Se tienen los antecedentes de edificación entre los años 1976 al 1977, con una antigüedad mayor a 25 años, luego del terremoto de Junio del 2001, no se a realizado trabajos de reforzamiento como el resto de Facultades y Escuelas. La escuela otorga ambientes destina al sector de educación a 388 alumnos, a los cuales no se le puede otorgar un adecuado acceso a conocimientos teóricos y prácticos para su formación profesional en la escuelas profesional y departamental de Matemáticas, por las condiciones actuales de sus ambientes inadecuados.

La edificación cuenta con juntas estructurales, entre el núcleo de escalera y el pabellón de tres niveles, las cuales presenta una separación mayor a lo usual, el cual evidencia la inestabilidad estructura de ambos elementos (edificación y escalera), por lo que se debe realizar un Análisis Estructural, y determinar las condiciones y acciones que convengan para el reforzamiento.

Formulación del problema

De la evidencia establecida, se plantea las siguientes problemáticas de la presente investigación:

- Problema General

Del problema general de la investigación fue el determinar ¿Por qué se debe realizar el Reforzamiento Estructural del Servicio Académico de la Escuela de Matemática de la UNSA, Arequipa 2022?.

- Problemas específicos

Se propone la formulación de este estudio, pues se hace necesario plantear un reforzamiento estructural por lo que se plantea como interrogante: ¿Cómo una propuesta estructural que cubra la necesidad de la Escuela de Matemáticas de la UNSA, podrá regenerar la eficacia de los servicios, a través de la implementación, conservación, restauración y mejoramiento estructural de sus sistemas existentes, mas no la modificación sustancial de sus sistemas resistentes?

Justificación del estudio

"La justificación de una investigación puede ser de carácter teórico, práctico o metodológico" (Méndez, C., 2011, p.195).

- Justificación teórica
- Justificación practica
- Justificación social
- Justificación metodológica
- Justificación económica

Hipótesis

Hipótesis general

Hipótesis general: Se alcanzará la justificación del Reforzamiento Estructural del Servicio Académico de la Escuela de Matemática de la UNSA, Arequipa 2022.

- Hipótesis específicos.

Hipótesis especifico 01: Se obtendrá los resultados del levantamiento arquitectónico del Servicio Académico de Escuela de Matemática - UNSA, Arequipa 2022.

Hipótesis especifico 02: Se obtendrá los resultados proporcionados por el análisis del Reforzamiento Estructural de Escuela de Matemática - UNSA, Arequipa 2022.

Hipótesis especifico 03: Se obtendrá los resultados relacionados por el diseño sismo resistente del Servicio Academico de la Escuela de Matemática - UNSA, Arequipa 2022.

Objetivos

- Objetivo general

Diseñar el reforzamiento estructural en el servicio académico en la Escuela de Matemática - UNSA, Arequipa 2022.

Objetivos específicos

Objetivo Especifico 01: Conseguir los resultados de la intervención a través del levantamiento arquitectonico del Servicio Académico de la Escuela de Matemática - UNSA, Arequipa 2022.

Conseguir los resultados a través del análisis del Reforzamiento Estructural de la Escuela de Matemática - UNSA, Arequipa 2022.

Conseguir los resultados correspondientes por el diseño sismo resistente del Servicio Académico de la Escuela de Matemática - UNSA, Arequipa 2022.

II. MARCO TEÓRICO

Trabajos previos

La intervención contempla Reforzamiento Estructural, el según las recomendaciones del Análisis, la ampliación de un reacondicionamiento de los espacios existentes, que permitan cumplir las normas del RNE, ANR y lo estipulado por la SUNEDU para el Licenciamiento Institucional.

En términos generales el Análisis estructural recomienda la rigidizarían de la estructura mediante muros de concreto y el reacondicionamiento implica acciones para la redistribución de espacios, según las necesidades establecidas, nivelación de pisos, creación de falsos pisos para instalaciones, generación de ductos para instalaciones sanitarias, nuevos tabiques y divisiones, cambio de pisos y luminarias.

La escuela otorga ambientes destina al sector de educación a 388 alumnos, a los cuales no se le puede otorgar un adecuado acceso a conocimientos teóricos y prácticos para su formación profesional en la escuelas profesional y departamental de Matemáticas, por las condiciones actuales de sus ambientes inadecuados.

Teoría del proyecto

El proyecto deberá ser proyectado obteniendo en cálculo la carga viva y muerta de la edificación existente y proyectada según su uso que indica en la Norma de Cargas E-020 del Reglamento Nacional de Construcciones vigente.

El principio fundamental del diseño sismo resistente consiste en impedir pérdida de vidas; certificar la continuación de los servicios académicos de la Escuela de Matemáticas, según sus necesidades básicas y recortar los daños a la edificación.

Levantamiento arquitectónico

Según lo mencionado por (Almagro, 2016, p. 17), el proceso de levantar arquitectónicamente / estructuralmente es la primera instancia de obtener la medidas, análisis y las posibles operaciones de las cuales darán el panorama de la arquitectura y estructura a reforzar y la posibles soluciones para el tipo de reforzamiento para salvaguarda el bien material, las consideraciones del tipo de material , estado del elemento y las edades constructivos son esenciales para u

optimo reconocimiento y posibles proyección de la reforzamiento de la edificación existente.

Se debe considerar la posible proyección para cubrir las necesidades de la usuario, el cual se considera de acuerdo a lo dispuesto a la institución universitaria, considerando (Jiménez y Pinto, 2003, p. 49).

Análisis estructural

Se define análisis estructural al cálculo de las deformaciones y fuerzas internas que desarrollan los variados elementos de la estructura cuando están expuestas a la aplicación de cargas externas (Novely, 2015, p. 5).

Sobre el análisis estructural, se refiere que análisis sísmico se debe realizar utilizando el método dinámico de Superposición Modal Espectral, en concordancia con la Norma de Diseño Sismoresistente E-030 (artículo 18.2c) del Reglamento Nacional de Construcciones referido al Análisis Dinámico que establece dos criterios de superposición: el primero, en función de la suma de valores absolutos (25%) y la media cuadrada (75%), y el segundo como combinación cuadrática completa de los valores calculados para cada modo.

En cada dirección se debe considerar los modos de vibración cuya suma de masas efectivas sea por lo menos el 90% de la masa de la estructura, tomando por lo menos los tres primeros modos predominantes en la dirección de análisis. Para cada una de las direcciones consideradas en el análisis, la fuerza cortante en la base del edifico debe ser mayor que el 80% del valor calculado en el artículo 17.3 por ser una estructura regular.

Diseño sismoresistente

Del espectro designado aun diseño sísmico, se deberá tomar los parámetros establecidos en la Norma E-030-2003 de Diseño Sismo resistente establecida en el Reglamento Nacional de Construcción, considerando las tablas, parámetros, condiciones y demás indicado para el cumplimiento de los cálculos, tratando de establecer resultados óptimos a un posible evento sísmico.

Se tiene a disponibilidad diferentes técnicas para incrementar la resistencia y la capacidad de deformación o ductilidad a través del reforzamiento estructural, las cuales se pueden mencionar las siguientes:

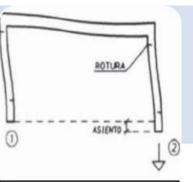
- Enchaquetado o zunchado con malla de acero y concreto o mortero de protección.
- Enchaquetado o envoltura con láminas de acero (relleno, adheridas, ancladas).
- Enchaquetado o envoltura con ángulo y platinas de acero (relleno, adheridas).
- Enchaquetado o envoltura con materiales compuestos

Reforzamiento de elementos

La columnas es uno de los elementos estructurales de pieza fundamental para la capacidad sismo resistente, por lo tanto el necesario mejorar el reforzamiento resistencia sísmica y su rigidez, para reducir sus daños ante un evento sísmico. En la actualidad se tiene varias técnicas de reforzamiento para columnas, las cuales se tiene:

- Encamisado metálico
- Encamisado con fibra de carbón
- Encamisado con malla electrosoldada

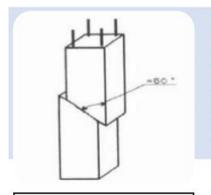
El objetivo del encamisado / enchachetado permite incrementar la resistencia a los esfuerzos de flexión, cortante y esfuerzo axial de los elementos existentes. El refuerzo se adicionara en los sentidos que este lo requiera, tanto longitudinal y/o transversal en la sección de columna existente, y columnas con el vaciado de concreto premezclado


Fallas en elementos estructurales

Según el proceso constructivo de sus elementos estructurales, edad de la edificación, técnica de construcción, y otros parámetros, es que se debe considerar para realizar el reforzamiento de la estructura según la necesidad de ampliación, remodelación, refacción y otros; por lo tanto se debe identificar las fallas más comunes, según el elemento estructural.

APLASTAMIENTO

Exceso de carga, sección insuficiente, concreto de baja resistencia, armadura insuficiente, estribos muy separados o incorrectos


FLEXION

Concreto deficiente, armadura insuficiente, omisión de anclajes en columnas de los últimos pisos, asiento en la cimentaciónn, mayores solicitaciones que las consideradas, el empuje horizontal del sismo, no previsto, hinchamiento del terreno por expansividad

TRACCION

Asiento de la cimentación, zapatas de menor dimensión que la requerida, cimientos sobre relleno en ladera, excavación en terreno adyacente a una cota inferior a la cimentación existente.

CORTANTE

En columnas extremas con poca altura que arrancan de la cimentacion y de muros de contencion y le acometen vigas de grandes luces

En columnas sometidas a empujes horizontales (de tierra y sismo), situadas en laderas cuando se prod|uce un deslizamiento de tierra.

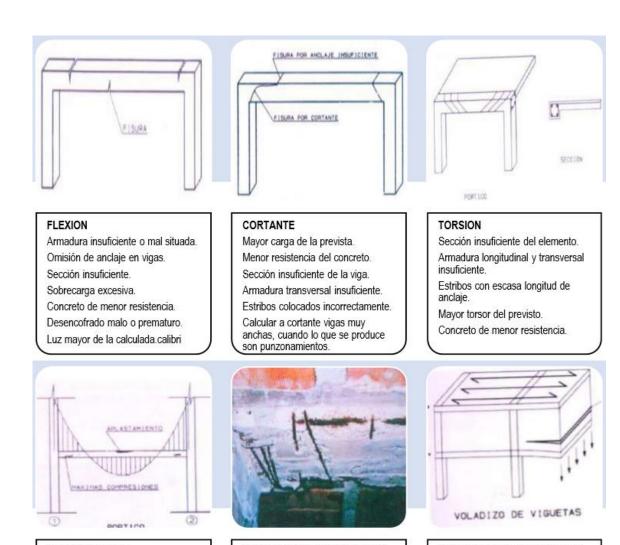
CORROSION DE LA ARMADURA

Concreto con escaso vibrado y gran número de poros.

Concreto muy fluido con gran número de poros capilares.

Armadura con escaso recubrimiento.

Columnas ubicadas en ambientes agresivos, estanques donde varia su estado (húmedo a seco y viceversa).



DESAGREGACION DEL CONCRETO

Ocasionado por el ácido láctico (leche), La salmuera (conservacion de productos como aceituna), La glucosa, el azufre que se encuentra en las aguas residuales

Figura 1. Fallas comunes en Columnas

Fuente: Modificado de (Torrealva, D., 2007)

APLASTAMIENTO

Sección insuficiente con cuantías muy elevadas de armaduras en zona de tracción.

Concreto de menor resistencia con abundante armadura en la zona traccionada

Calculo deficiente.

Exceso de carga.

CORROSION DE LA ARMADURA Agua o agregados inadecuados.

Aditivos inadecuados.

Concretos muy fluidos, escaso vibrado, que dejan poros.

Escaso recubrimiento.

Ambientes agresivos, de forjados sanitarios, bodegas o depósitos bastante humedos.

ROTURAS EN ZONAS CRITICAS

Rotura en las zonas de flexión porque la sección de la armadura es ahora insuficiente.

Aplastamiento del hormigón en las zonas más comprimidas.

Menor adherencia de la armadura. Mayor peligro de corrosión.

Figura 2. Fallas comunes en Vigas

Fuente: Modificado de (Torrealva, D., 2007)

Elemento estructural	Tipo de daño	Causa más común
	Grietas inclinadas Grietas verticales	Cortante Flexocompresión adherencia -
Columnas	Desprendimiento del recubrimiento Aplastamiento del concreto Pandeo del acero de refuerzo	Flexocompresión Flexocompresión Flexocompresión
Vigas	Grietas inclinadas Roturas de estribos Grietas verticales Rotura del refuerzo Aplastamiento del concreto	Cortante o Torsión Cortante o Torsión Flexión Flexión Flexión
Unión viga- columna	Grietas inclinadas Falla por adherencia del refuerzo de vigas	- Cortante
Sistemas de piso	Grietas alrededor de columnas en losas o placas planas – Grietas longitudinales	Penetración Flexión
Muros de concreto	Grietas inclinadas Grietas horizontales Aplastamiento del concreto Pandeo del acero de refuerzo	Cortante Flexocompresión o deslizamiento - Flexocompresión o deslizamiento - Flexocompresión o deslizamiento
Muros de mampostería	Grietas inclinadas Grietas verticales en las esquinas y en el centro Grietas horizontales	Flexión Volteo Deslizamiento

Figura 3. Daños estructurales y sus causas más comunes

Fuente: (Iglesias, J.; Robles, F.; De la Cera, J.; Oscar, M.; González, C,;1985)

Técnica del encamisado / enchaquetado

Con la finalidad de lograr una adecuada rehabilitación de la escuela de matemáticas, después del terremoto de 23 Junio 2001, desde una reparación hasta un reforzamiento, de desarrolla las técnicas básicas en la cual se podría mencionar:

- Las deficiencias estructural a corregir
- Descripción de las técnicas y de ser el caso sus variables
- Modo de comportamiento y falla
- Concepto básicos de análisis y diseño

- Aspectos fundamentales de construcción y supervisión entre otros

El encamisado de Viga, columnas y nudos con concreto reforzado, consiste en adicionar una capa de concreto o mortero

Figura 4. Encamisado de viga, columnas y nudos con concreto reforzado

Se denomina encamisado total si se cubre y/o rodea todo el elemento; encamisado parcial si cubre algunas caras

Figura 5. Encamisado total (4 caras) / encamisado parcial (3 caras)

Esta capa de concreto se refuerza por elementos de acero longitudinales y transversales o por medio de alambre de malla soldada de la misma manera se puede utilizar concreto/mortero con fibras varias

Figura 6. Elementos de refuerzo con acero de construcción y/o concreto-mortero con fibra

Las propiedades del contribuyen a aumentar la rigidez, resistencia y la capacidad de deformación. También el aumento de la resistencia a la carga axial, fuerza cortante y el momento flexionante del elemento estructural.

Figura 7. Propiedades que aporta el Enchaquetado

Esta técnica es recomendada en los siguientes casos:

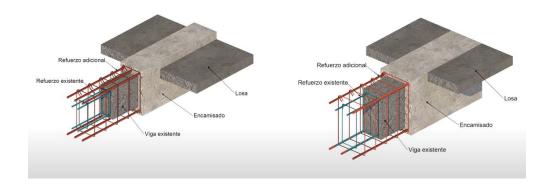
Figura 8. Edificios de columnas cuyas fallas son por fuerzas cortantes (afectan el desempeño físico de toda la edificación)

Figura 9. Edificios con rigidez laterales insuficientes antes los antecedentes sísmicos

Figura 10. Edificios con niveles inferiros débiles

Figura 11. Edificios con vigas / columnas con traslapes insuficientes

Aunque es recomendable realizar encamisados totales, las configuraciones interiores, exteriores y fachadas pueden representar un obstáculo, por lo tanto se podrá encamisar 2 o 3 caras el cual debe garantizar el trabajo monolítico.


Figura 12. Encamisado total (4 caras) / encamisado parcial (3 caras)

La adherencia correcta se puede obtener mediante anclas de barra de acero empotradas en elemento existente adicionadas con resina o poxicos.

Figura 13. Encamisado y sus anclajes al elemento existente

En caso de vigas, la losa puede ser un obstáculo para un encamisado total, por lo tanto el encamisado lateral e inferiros del elemento existente es una buena alternativa, otorgando la capacidad a la deflexión y/o corte y el aumento de compactación entre columna y corte.

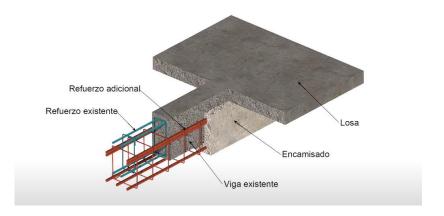


Figura 14. Encamisado de viga

El encamisado en elementos mixto de columnas y vigas para incrementar a rigidez del edificio y evitar la falla en el nudo

Figura 15. Encamisado en mudo (viga/columna)

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

3.1.1. Tipo de investigación: La presente investigación está enmarcada de

tipo APLICADA, según Behar Rivero, D. (2008); al tomar bibliografía

existente como las Normas E020, 030, 050, 060 y demás, con el fin de la

demostración del comportamiento de la edificación frente a un evento

sísmico simulando resultados mediante Software, que permita el

descarte de fallas estructurales.

3.1.2. Diseño de investigación

• En cuanto al diseño el mismo es experimental, el cual es para

Hernández, R; Fernández, C. y Baptista, M. (2010). En esta

investigación se va evaluar condiciones reales, y las variables

independientes no pueden ser manipuladas porque fueron

sucediendo.

Según levantamiento topográfico, resultados de laboratorio y la

modelación mediante Software, se deberá minimizar los daños

ocasionados por un eventual evento telúrico, por lo que no se

manipula la variable independiente, la presenta investigación se

define diseño no experimental, por el desarrollo de los pasibles

simulaciones con los datos obtenidos de nuestra muestra.

3.2. Variables y operacionalización

Variable 01: Independiente: Reforzamiento estructural

Variable 02: Dependiente: Servicios Académicos

3.3. Población, muestra y muestreo

3.3.1. Población: Según Eyssautier, M. (2006); se determina que la presente

investigación considera una población se encuentra conformada por

todas población que conforma la Universidad Nacional de San Agustín,

Arequipa 2022.

20

- 3.3.2. Muestra: En atención a Hernández (2006); Del presente informe se determina la muestra, está conformada por los integrantes (alumnado, docentes, área administrativa y tercera personas) del pabellón de la Escuela de Matemáticas - UNSA, Arequipa 2022.
- **3.3.3. Muestreo**: Se considera el muestreo no probabilístico, considerando el tiempo de antigüedad de la construcción existente.

3.4. Técnicas e instrumentos de recolección de datos

De lo mencionado por (Gutiérrez, 2004), el presente informe se aplicó la observación directa y recolección de datos donde se realizaron visitas de inspecciones de la Escuela de Matemáticas - UNSA, Arequipa 2022, realizando Fichas Técnicas, Cuadro de reportes y mediciones

- Técnicas: Según Gutiérrez (2004); se considera levantamiento de edificación existente, procesamiento de datos por software, etc.
- Instrumentos: Según Arias (2006); se considera equipos y materiales para levantamiento de edificación existente, equipo de cómputo para procesamiento de datos, etc.

3.5. Procedimientos

3.5.1. Levantamiento Arquitectónico

Considerando lo mencionado por Almagro (2016, p. 17) y Jiménez y Pinto (2003 p. 49); se adjunta en Anexos el Informe de Levantamiento Topográfico realizado en el cual se Concluye y Recomienda:

- Se obtuvieron plano topográfico, identificando todos los elementos necesarios de identificar para realizar un buen mantenimiento (postes, cajas de agua y desagüe, buzones, etc.).
- Se permitió complementar el plano obtenido con el plano arquitectónico, pudiendo tener una correcta posición espacial de las edificaciones.

 El terreno existente tiene ciertas variaciones con respecto al terreno inscrito (según ficha otorgada por la entidad), existe incompatibilidad por el área y el perímetro.

Figura 16. Vista de pasillo en fachada posterior

Figura 17. Vista frontal de escaleras del pabellón existente

Pruebas de laboratorio El estudio de Suelos (calicatas)

La presente ensayo de calicatas tiene por objeto investigar el subsuelo del terreno asignado a la obra: Reforzamiento Estructural del Servicio Académico de la Escuela de Matemática de la Universidad Nacional de San Agustín, Arequipa 2022, por medio de trabajos de campo a través de calicatas "a cielo abierto", ensayos de laboratorio estándar y especiales, a fin de obtener las principales características físicas / mecánicas del suelo, así como, sus propiedades de resistencia y labores de desarrollo de gabinete, en base a los cuales se define los perfiles estratigráficos, tipo y profundidad de cimentación, capacidad portante admisible, asentamientos y las recomendaciones generales para la construcción.

En tal sentido se Adjunta en Anexos el Informe de estudio de suelos realizado en el cual se Concluye y Recomienda:

- El predio estudiado se encuentra ubicado en la Universidad Nacional de San Agustín, Distrito Cercado, Provincia y Región Arequipa.
- El predio presenta una buena accesibilidad.
- Se recomienda tener en cuenta los Sistemas de Drenaje necesarios para la evacuación del agua en época de Iluvia.
- Capacidad Portante: La calicata 01 del terreno es de 2.73 kg/cm2; la capacidad portante para la calicata 02 y 03 del terreno es de 2.31 kg/cm2.
- Profundidad Mínima de Cimentación: según los resultados, se debe considerar una profundidad de 2.60 m.
- Material Predominante: Para la calicata 01 es un suelo SP (Material tipo conglomerado heterogéneo con matriz areno limo gravoso). El material predominante para la calicata 02 y 03 es un suelo SM (Material tipo conglomerado heterogéneo con matriz limo areno gravoso).
- Se recomienda eliminar todas las impurezas orgánicas con lechada de cal.
- Agresividad del Suelo a la Cimentación: Se ha considerado que el suelo no es agresivo, para cuyo efecto se usará Cemento Tipo IP en todas las cimentaciones.

- Asentamiento: El Asentamiento Inmediato para la calicata 1 es de 1.30 cm.
 El Asentamiento Inmediato para la calicata 2 y 3 es de 1.45 cm.
- Los parámetros para el análisis sismo resistente se recomienda considerar un factor s = 1.20 y Ts = 0.60.
- Napa Freática: No se encontró la napa freática hasta la profundidad de 3.00m.
- Las Conclusiones y Recomendaciones son válidas para la zona en estudio y para los niveles de cargas consideradas en el Proyecto.

3.6. Método de análisis de datos

3.6.1. Estructura Existente (EE)

Del levantamiento arquitectónico, se procede a digitalizarlo en el sofware AutoCAD, tomando en consideración las medidas de columnas, vigas, muros, alfeices, escaleras, ventanas y/o todo elemento arquitectónico que se encontró; del primer, Segundo y Tercer piso.

Descripción de los componentes estructurales.

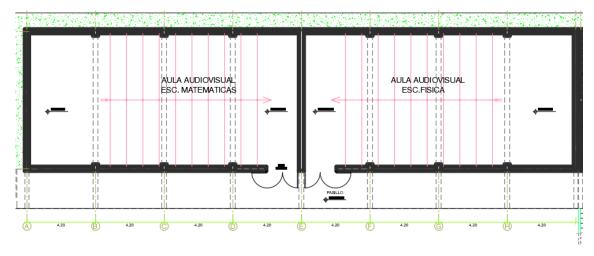


Figura 18. Plano vista en planta – primer nivel

Figura 19. Plano vista en planta – segundo nivel

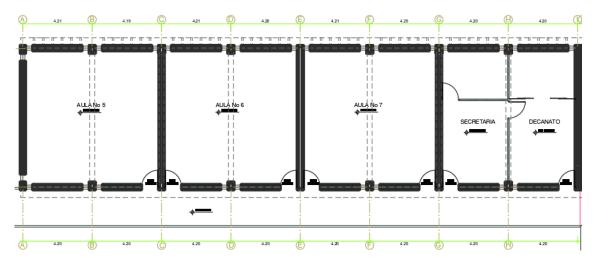


Figura 20. Plano vista en planta - tercer nivel

De los componentes / elementos estructurales se tiene:

- Columnas Rectangular de 0.25 x 0.40 m
- Columnas Rectangular de 0.30 x 0.40 m
- Viga Principal de 0.30 x0.50m
- Viga Principal de 0.25 x0.50m
- Viga Secundaria de 0.25 x 0.450 m
- Viga de Borde de 0.20 x 0.20 m
- Losa aligerada de 0.20 m
- Muro de Albañilería Confinada de 25 cm

3.6.2. Estructura Proyectada (EP)

De los planos proyectados, según la necesidad de la Universidad Nacional de San Agustín descrito por la Oficina de Proyectos y Obras de la Subdirección de Infraestructuras, se tiene la descripción de los componentes estructurales.

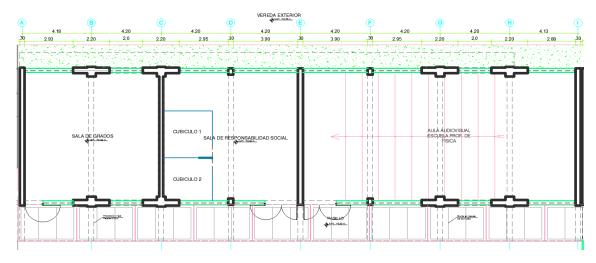


Figura 2. Plano vista en planta – primer nivel (reformulado)

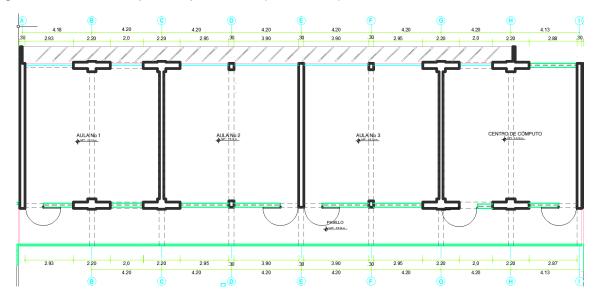


Figura 3. Plano vista en planta – segundo nivel (reformulado)

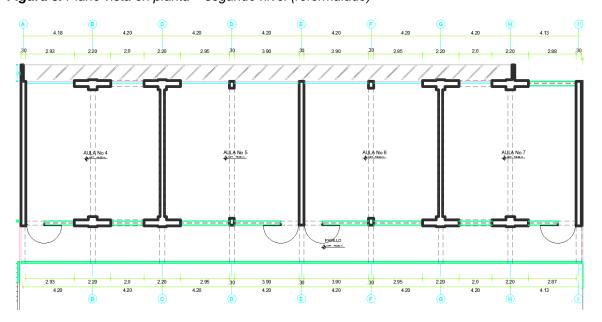


Figura 23. Plano vista en planta – tercer nivel (reformulado)

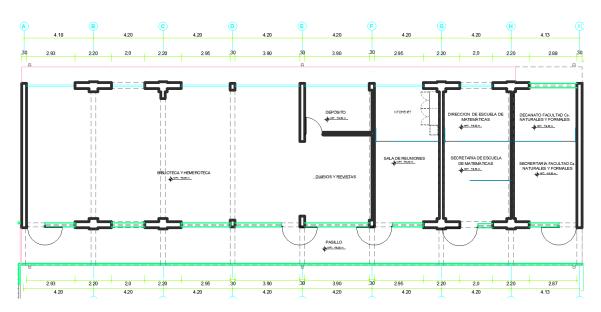


Figura 24. Plano vista en planta – cuarto nivel (nuevo)

De los componentes / elementos estructurales se tiene:

- Columnas Rectangular de 0.25 x 0.40 m
- Columnas Rectangular de 0.30 x 0.40 m
- Columnas Rectangular de 0.47 x 0.62 m
- Viga Principal de 0.30 x0.50m
- Viga Principal de 0.25 x0.50m
- Viga Secundaria de 0.25 x 0.450 m
- Viga Secundaria de 0.37 x 0.80 m
- Viga de Borde de 0.20 x 0.20 m
- Losa aligerada de 0.20 m
- Muro de Albañilería Confinada de 25 cm
- Muro de Concreto de 30 cm
- Muro de Concreto de 37 cm
- Muro de Concreto de 52 cm

3.7. Aspectos Éticos

Se consideró el cumplimiento del Reglamento Nacional de Edificaciones E.030 DISEÑO SISMORRESISTENTE RM-043-2019-VIVIENDA; por lo tanto se tiene los siguientes parámetros para Estructura Existente (EE) y Estructura Proyectada (EP).

Concreto

fc : Resistencia a la compresión del concreto 210 Kg/cm2

Ec : Módulo de Elasticidad del Concreto 217370.651 Kg/cm2

v ∶ Módulo de Poisson 0.15

G=Ec/2.3 Módulo de corte 94508.98 Kg/cm2

Acero de refuerzo

fy : Esfuerzo de fluencia del acero 4200 Kg/cm2

Es : Módulo de elasticidad 2000000 Kg/cm2

Deformación unitaria máxima 0.0021

Albañilería

Ladrillo tipo IV sólido kin kong de arcilla industrial - TABLA 9 - ARTICULO 24.7

Dimensiones del ladrillo: Ancho= 0.13 m, largo= 0.23 m, altura=0.09 m

: Resistencia a la compresión Axial en las Unidades 130 Kg/cm2

f_m : Resistencia a la compresión Axial en Pilas 65 Kg/cm2

V'm : Resistencia a la compresión del muro de albañilería 8.1 Kg/cm2

Em: Módulo de Elasticidad de la albañilería Em=500f'm 32500 Kg/cm2

Gm : Módulo de Corte Gm=0.4Em 13000 Kg/cm2

IV. RESULTADOS

Análisis estructural

Se define análisis estructural al cálculo de las deformaciones y esfuerzos internos que desarrollan los distintos elementos de la estructura cuando están expuestas a la aplicación de cargas externas (Novely, 2015, p. 5).

Edificación Existente (EE)

Análisis estructural de la Edificación Existente (EE)

Modelo estructural

El análisis sísmico de los módulos típicos se realizó haciendo uso del programa ETABS. Los diversos módulos fueron analizados con modelos tridimensionales. En el análisis de la estructura se supuso un comportamiento lineal y elástico. Los elementos de concreto armado se representaron con elementos lineales. Los muros de albañilería se modelaron con elementos tipo Shell, con rigideces de membrana y de flexión, aun cuando estas últimas son poco significativas. Los modelos se analizaron considerando sólo los elementos estructurales, sin embargo, los elementos no estructurales han sido ingresados en el modelo como solicitaciones de carga debido a que aquellos no son importantes en la contribución de la rigidez y resistencia de la edificación.

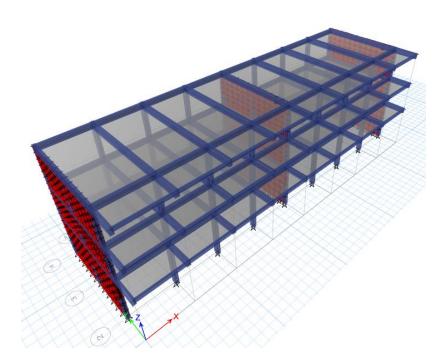


Figura 25. Vista general del modelo estructural del módulo de Edificación Existente (EE) en 3D

Según la Figura del modelo estructural del módulo de Edificación Existente (EE), los componentes no estructurales fueron procesados como cargas intactas, generando los siguientes datos:

Metrados de carga

CARGA PARA EL TECHO HORIZONTAL - PLANO

CARGA MUERTA: CM

Ladrillo techo: 72.00 kg/m2

202.00 kg/m2 0.202tn/m2

Acabados: 130.00 kg/m2

CARGA VIVA: CV

 Aulas :
 250 kg/m2

 Corredores - Balcones :
 400 kg/m2

 Azotea :
 100 kg/m2

CARGA DE TABIQUERIA SOBRE VIGUETAS O VIGAS CHATAS

OTRAS CARGAS

CARGA MUERTA: CM

Ventanas y Puerta: 100.00 kg/m 0.10tn/m

CARGA MUERTA: CM

Baranda : 100.00 kg/m 0.10tn/m

Figura 26. Metrado de cargas asignado cargas al programa Etabs - EE

Para el cálculo del peso total de la edificación se usó el 100% de la carga muerta más el 50% de la carga viva según lo indicado en la Norma de Estructuras E.030 correspondiente a las edificaciones categoría A (edificaciones esenciales).

Metrado de cargas de una vigueta

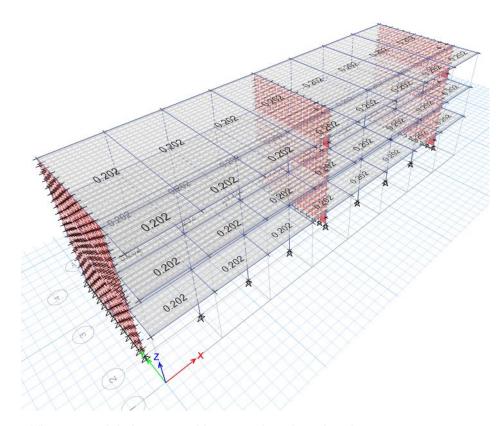


Figura 27. Vista general de las cargas Muertas asignadas a las viguetas

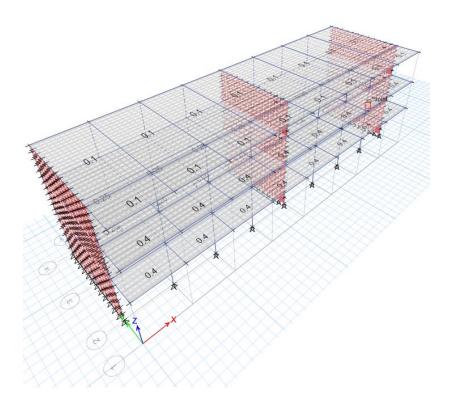


Figura 28. Vista general de las cargas vivas asignadas a las viguetas - Metrados de cargas de una viga

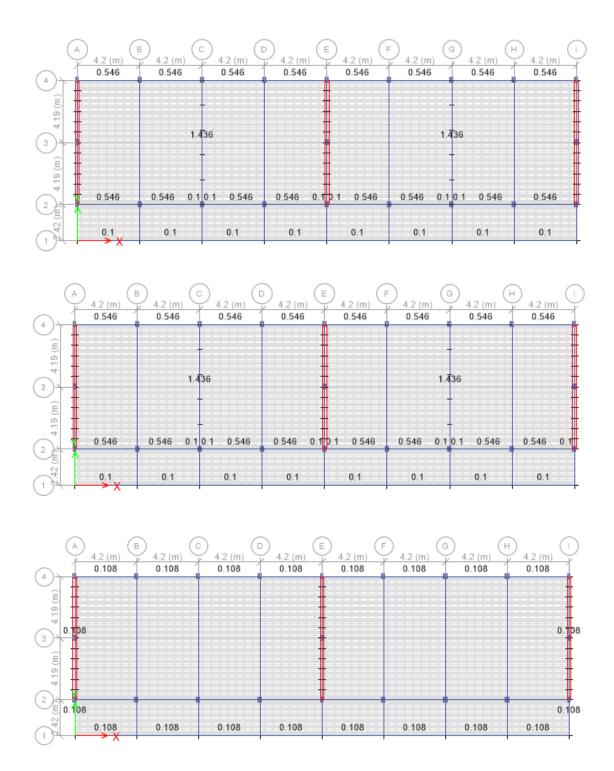


Figura 29. Vista las cargas muertas asignadas a las vigas como cargas permanentes de los 3 niveles

Análisis sísmico de Edificación Existente (EE)

En análisis sísmico de las estructuras se realizó siguiendo los criterios de la Norma E.030 Diseño Sismo resistente mediante el método CQC (Complete Quadratic Combination). La respuesta máxima elástica esperada (r) correspondiente al efecto

conjunto de los diferentes modos de vibración empleados (ri), el cual se determinará mediante este método de los valores calculados para cada modo.

$$_{r}=\sqrt{\sum\sum_{r_{i}}\rho_{ij}\,r_{j}}$$

Los parámetros sísmicos considerados para el análisis de las edificaciones se consideraron los valores más críticos a fin de uniformizar las condiciones de diseño para los prototipos sistémicos:

Factor de zona Z = 0.35 (Zona 3)

Factor de uso e importancia U = 1.50 (Categoría A)

Factor de suelo S3 = 1.20 (Según Estudio de Suelos

Periodos T p = 1.00 sTL=1.60 s

Factor de amplificación sísmica C = 2.50Factor de reducción C = 2.50Rx=8 (Porticos)

Ry=3 (Albañilería Confinada)

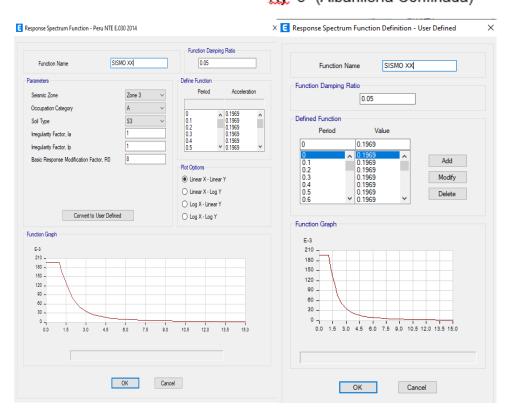


Figura 30. Espectro inelástico sistema de muros estructurales R=8

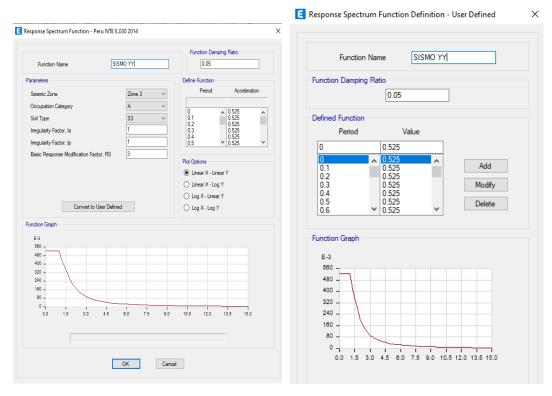


Figura 31. Espectro Inelástico sistema de Albañilería Confinada R=3.

Edificación Proyectada (EP)

Análisis estructural de la Edificación proyectada (EE)

Modelo estructural

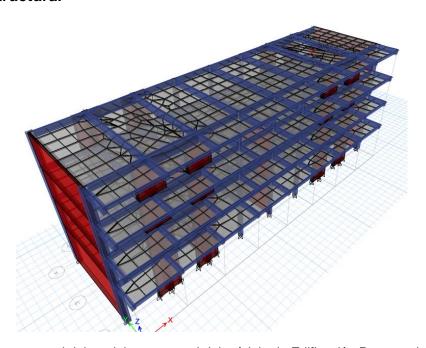


Figura 32. Vista general del modelo estructural del módulo de Edificación Proyectado (EP) en 3D

Según la Figura del modelo estructural del módulo de Edificación Proyectada (EP), los elementos no estructurales fueron ingresados como cargas permanentes, generando los siguientes datos:

Metrados de carga

CARGA MUERTA: CM

Baranda:

CARGA PARA EL TECHO HORIZONTAL - PLANO CARGA MUERTA: CM Ladrillo techo: 72.00 kg/m2 202.00 kg/m2 0.202tn/m2 Acabados: 130.00 kg/m2 **CARGA VIVA: CV** Aulas : 250 kg/m2 Corredores - Balcones : 400 kg/m2 Azotea: 100 kg/m2 CARGA DE TABIQUERIA SOBRE VIGUETAS O VIGAS CHATAS VIGAS CHATAS O VIGUETAS **MURO DE LADRILLO** VIGAS CHATAS O VIGUETAS 0.15 m 0.15 m 0.25 m 0.15 m espesor 1.65 m 2.9 m altura 0.4 m 2.9 m Peso esp all 1800 Kg/m3 1800 Kg/m3 1800 Kg/m3 1800 Kg/m3 1305 kg/m Carga Distr 446 kg/m 108 kg/m 783 kg/m **OTRAS CARGAS CARGA MUERTA: CM** Ventanas y Puerta: 100.00 kg/m 0.10tn/m

Figura 4. Metrado de cargas asignado cargas al programa Etabs - EP

0.10tn/m

100.00 kg/m

Para el cálculo del peso total de la edificación se usó el 100% de la carga muerta más el 50% de la carga viva según lo indicado en la Norma de Estructuras E.030 correspondiente a las edificaciones categoría A (edificaciones esenciales).

Metrado de cargas de una vigueta

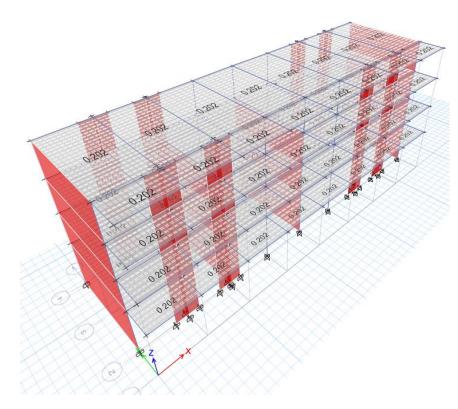
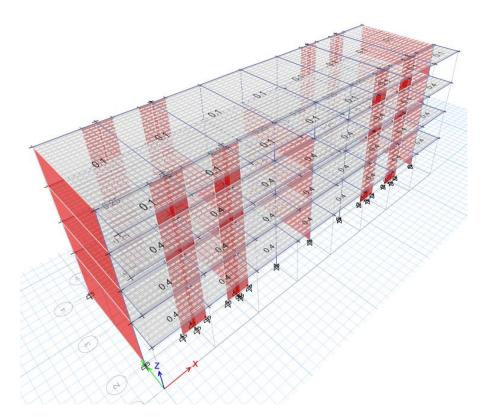



Figura 54. Vista general de las cargas Muertas asignadas a las viguetas

Figura 65. Vista general de las cargas vivas asignadas a las viguetas - Metrados de cargas de una viga

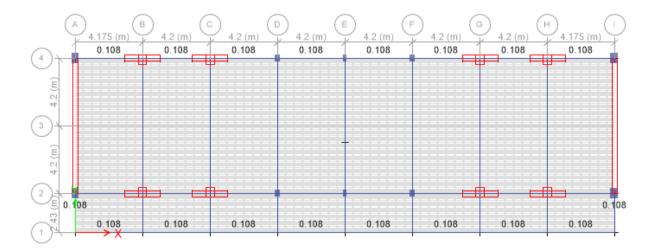


Figura 76. Vista las cargas muertas asignadas a las vigas como cargas permanentes de los 4 niveles

Análisis sísmico de Edificación Proyectada (EP)

En análisis sísmico de las estructuras se realizó siguiendo los criterios de la Norma E.030 Diseño Sismo resistente mediante el método CQC (Complete Quadratic Combination). La respuesta máxima elástica esperada (r) correspondiente al efecto conjunto de los diferentes modos de vibración empleados (ri), el cual se determinará mediante este método de los valores calculados para cada modo.

$$_{r}=\sqrt{\sum\sum _{ri}\rho _{ij}\,r_{j}}$$

Los parámetros sísmicos considerados para el análisis de las edificaciones se consideraron los valores más críticos a fin de uniformizar las condiciones de diseño para los prototipos sistémicos:

Factor de zona Z = 0.35 (Zona 3)

Factor de uso e importancia U = 1.50 (Categoría A)

Factor de suelo S3 = 1.20 (Según Estudio de

Suelos

Periodos T p= 1.00 s

TL=1.60 s

Factor de amplificación sísmica C = 2.50

Factor de reducción Rx=6 (Porticos)

Ry=6 (Albañilería Confinada)

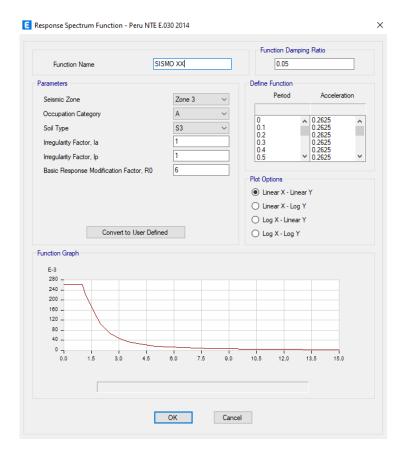


Figura 37. Espectro inelástico sistema de muros estructurales R=6

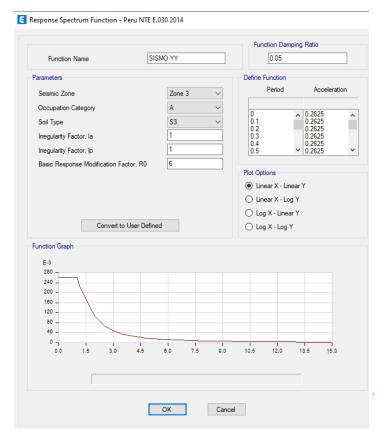
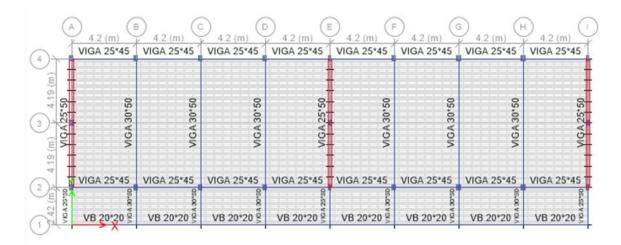
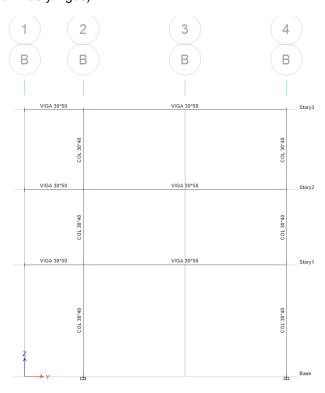



Figura 38. Espectro Inelástico sistema de Albañilería Confinada R=6.


V. DISCUSION

Edificación Existente (EE)

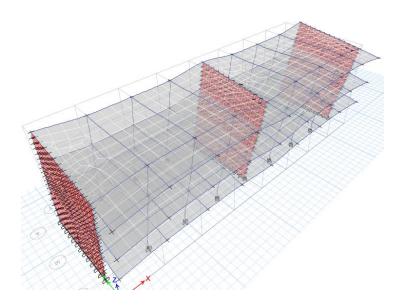
Del modelamiento sísmico: El modelo estructural del módulo se muestra a continuación, en el cual se incluyeron los parámetros indicados en el capítulo anterior y se tomaron en consideración las hipótesis de análisis desarrollado.

Figura 39. Vista de la planta del 1º Nivel del Módulo. Nótese la disposición y dimensiones de sus elementos principales (columnas y vigas).

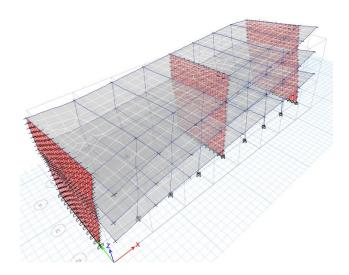
Figura 40. Vista de la elevación principal del Módulo. En esta vista se muestra las columnas y vigas típicas consideradas en el diseño.

Periodo fundamental de vibración: En cada dirección se consideran aquellos modos de vibración cuya suma de masas efectivas sea por lo menos el 90% de la masa de la estructura.

A continuación, se muestran los periodos de los seis (6) modos de vibración y sus respectivas masas de participación.


Tabla 1. Periodo de modos de vibración y respectivas masas

Case	Mode	Period	UX	UY	SumUX	SumUY	RZ	SumRZ
		sec						
Modal	1	1.001	0.9728	0	0.9728	0	0.00003773	0.00003773
Modal	2	0.291	0.0246	0	0.9974	0	0.0002	0.0002
Modal	3	0.212	0	0.896	0.9974	0.896	0.0000018	0.0002
Modal	4	0.17	0.00001509	0.000001475	0.9974	0.896	0.8876	0.8878
Modal	5	0.167	0.0026	0	1	0.896	0.0072	0.895
Modal	6	0.067	0	0.0988	1	0.9948	0	0.895
Modal	7	0.054	0	0	1	0.9948	0.1	0.995
Modal	8	0.04	0	0.0052	1	1	0	0.995
Modal	9	0.032	0	0	1	1	0.005	1


Fuente: Desarrollo propio, exportado del software ETABS.

Como se puede mostrar en el Cuadro, la suma de las masas efectivas en los primeros modos de vibración es mayores al 90% de la masa total de la estructura, cumpliendo con lo especificado en la Norma E.030.

A continuación, se muestran los desplazamientos y rotaciones de los tres (03) primeros modos de vibración.

Figura 8. Vista del modelo sísmico de la edificación en su tercer modo de vibración (transversal) T=0.135 seg

Figura 92. Vista del modelo sísmico de la edificación en su tercer modo de vibración (rotacional) T=0.101 seg.

Fuerza cortante estática en la base, Fuerza dinámica escalada en la base y Fuerza Cortante Mínima (Norma E 030- Articulo 29.4): De acuerdo a lo que establece la Norma E.030 Diseño Sismo resistente, la fuerza cortante mínima en la base obtenida del análisis dinámico no puede ser menor que el 80% de la fuerza cortante en la base obtenida del análisis estático para estructuras regulares, ni menor que el 90% para estructuras irregulares.

En el cuadro siguiente se muestran las fuerzas cortantes obtenidas en el módulo desarrollado bajo los análisis estático y dinámico:

Tabla 2. Fuerzas cortantes en la base (Tn)

	S ESTATICO	S DINAMICO	80% S ESTA	ESCALAR
DIRECCION XX	200.4663	191.9489	160.37304	0.84
DIRECCION YY	531.2356	474.6662	424.98848	0.90

Fuente: Desarrollo propio

Como se puede apreciar en el cuadro anterior, los cortantes obtenidos mediante el análisis dinámico (Vx = 191.9489 Tn y Vy = 474.6662 Tn), son mayores al 80% de la fuerza cortante obtenida mediante el análisis estático (Vx = 160.37304 Tn y Vy = 424.98848 Tn), cumpliendo con lo especificado en la Norma E.030.

Verificación del sistema estructural: inicialmente se consideró un sistema estructural para cada dirección.

Rx 8 Pórticos

Ry 3 Albañilería confinada

Al ser los muros de concreto armado en la Dirección X-X, el sistema predomínate se realiza la evaluación:

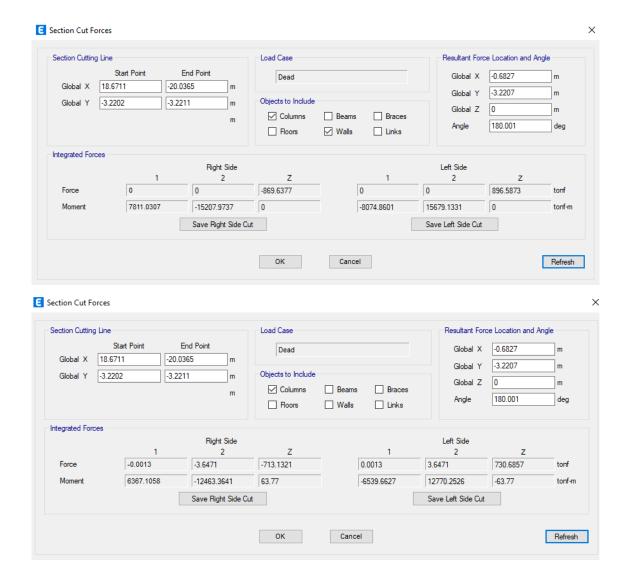


Figura 10. Evaluación para muros de concreto, exportado del ETABS

Tabla 3. Integración de fuerzas (Tn)

DESCRIPCION	FUERZAS	%
Cortante total	869.637	82.00%
Cortante columnas	713.13	02.0075

Fuente: Desarrollo propio

Según el RNE E.030, en el Articulo 16, muros estructurales. Sistema en el que la resistencia sísmica está dada predominantemente por muros estructurales sobre

los que actúa por lo menos el 70% de la fuerza cortante en la base. Según el análisis en la Dirección X-X se tiene un 90.41%, por tanto, se corrobora el sistema estructura empleado.

Al ser los muros de Albañilería Confinada el sistema predominante en la dirección Y-Y, se verifica la densidad de Muros:

Tabla 4. Densidad de muros en ambas direcciones

DIRECCIÓN "Y"								
Muro	Longitudes y espesor efectivo		Área de muros portantes	Material				
	0.13	0.25	L*t (m2)	A-C				
Y1		8.15	2.04	А				
Y2		8.15	2.04	Α				
Y3		8.15	2.04	Α				
	ΣΥ	24.45						
.U.S.N	1.89							
.U.S.N/60	0.0315							
	DENSIDAD	MINIMA DE M	UROS "Y"					
$\sum I * t$								

$$\sum \frac{L*t}{Ap}$$
 0.016491299 > 0.0315 FALLA

Fuente: Desarrollo propio.

Se corrobora que el sistema estructural asumido, es el correcto en la dirección Y-Y, al cumplir con la densidad de muros.

Verificación de irregularidades: En atención al Artículo 19 del RNE E.030, Regularidad Estructural, se indica que, según lo analizado se tiene que la estructura es Regular tanto en planta y Altura, los elementos estructurales que se proponen son simétricas y uniformes en plata y cuentan con continuidad en todos los niveles, por tanto, se asume para cada caso lo siguiente:

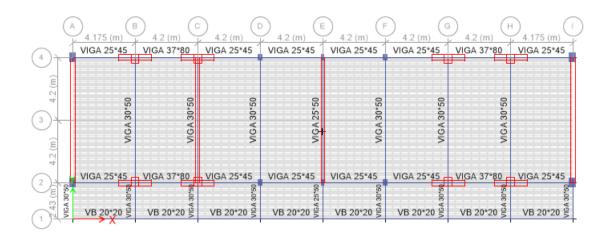
Desplazamiento máximo en el último nivel, máximo desplazamiento de entrepiso y deriva máxima: En el cuadro siguiente se muestran los desplazamientos y derivas de entrepisos de los diafragmas de cada nivel. Estos valores fueron determinados multiplicando los resultados obtenidos en el programa de análisis por 0.75 R, conforme se especifica en la Norma E.030 Diseño Sismo resistente.

Tabla 5. Desplazamientos máximos y derivaciones entrepisos, dirección "X"

Story	Output Case	Case Type	Step Type	Direction	Drift
Story3	DESPLAZAMIENTO	Combination	Max	Х	0.012173
Story2	DESPLAZAMIENTO	Combination	Max	Х	0.024964
Story1	DESPLAZAMIENTO	Combination	Max	Х	0.049553

Fuente: Desarrollo propio, exportado del software ETABS.

Tabla 6. Desplazamientos máximos y derivaciones entrepisos, dirección "Y"


Story	Output Case	Case Type	Step Type	Direction	Drift
Story3	DESPLAZAMIENTO	Combination	Max	Υ	0.00161
Story2	DESPLAZAMIENTO	Combination	Max	Υ	0.00204
Story1	DESPLAZAMIENTO	Combination	Max	Υ	0.00204

Fuente: Desarrollo propio, exportado del software ETABS.

Como se puede apreciar en el cuadro anterior, los desplazamientos obtenidos en el análisis sísmico realizado en el módulo NO CUMPLE satisfactoriamente con las máximas derivas exigidas en la Norma E.030 Diseño Sismo resistente.

Edificación Proyectada (EP)

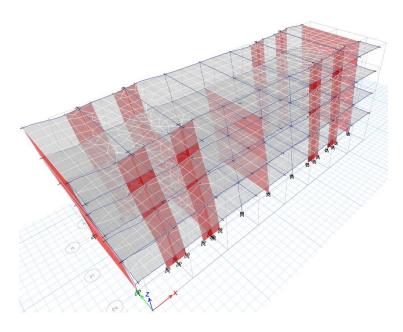
Del modelamiento sísmico: El modelo estructural del módulo se muestra a continuación, en el cual se incluyeron los parámetros indicados en el capítulo anterior y se tomaron en consideración las hipótesis de análisis desarrollado.

Figura 44. Vista de la planta del 1º Nivel del Módulo. Nótese la disposición y dimensiones de sus elementos principales (columnas y vigas).

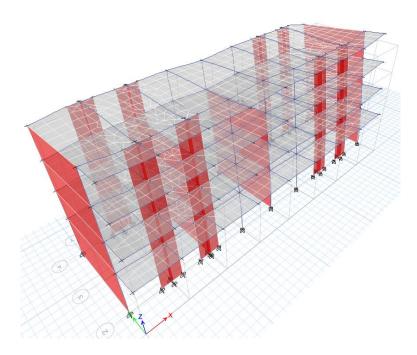
Figura 45. Vista de la elevación principal del Módulo. En esta vista se muestra las columnas y vigas típicas consideradas en el diseño.

Periodo fundamental de vibración: En cada dirección se consideran aquellos modos de vibración cuya suma de masas efectivas sea por lo menos el 90% de la masa de la estructura.

A continuación, se muestran los periodos de los seis (6) modos de vibración y sus respectivas masas de participación.


Tabla 7. Tabla periodo de los seis (6) modos de vibración y respectivas masas

Case	Mode	Period	UX	UY	SumUX	SumUY	RZ	SumRZ
		sec						
Modal	1	0.228	0.8285	0.000008871	0.8285	0.000008871	0.0005	0.0005
Modal	2	0.147	0.00002792	0.8039	0.8285	0.8039	0.0133	0.0138
Modal	3	0.105	0.0004	0.0121	0.8289	0.8159	0.8013	0.8151
Modal	4	0.06	0.1295	0	0.9584	0.8159	0.0002	0.8153
Modal	5	0.041	5.766E-07	0.161	0.9584	0.9769	0.0002	0.8156
Modal	6	0.029	0.00000541	0.0002	0.9584	0.9771	0.165	0.9806
Modal	7	0.028	0.0327	0	0.9912	0.9771	0.0001	0.9807
Modal	8	0.022	0	0.0177	0.9912	0.9949	0.000008874	0.9807
Modal	9	0.017	0.0087	7.256E-07	0.9999	0.9949	0.00001822	0.9807
Modal	10	0.015	5.732E-07	0.0051	0.9999	1	0.00004754	0.9808
Modal	11	0.015	0.0001	0	1	1	0.0158	0.9966
Modal	12	0.011	0.00001851	0.000004837	1	1	0.0034	1_


Fuente: Desarrollo propio, exportado del software ETABS.

Como se puede mostrar en el Cuadro, la suma de las masas efectivas en los primeros modos de vibración es mayores al 90% de la masa total de la estructura, cumpliendo con lo especificado en la Norma E.030.

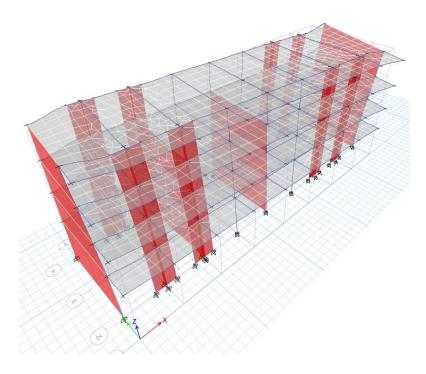

A continuación, se muestran los desplazamientos y rotaciones de los tres (03) primeros modos de vibración.

Figura 116. Vista del modelo sísmico de la edificación en su primer modo de vibración (longitudinal) T=0.228 seg.

Figura 127. Vista del modelo sísmico de la edificación en su segundo modo de vibración (rotacional) T=0.147 seg.

Figura 138. Vista del modelo sísmico de la edificación en su tercer modo de vibración (rotacional) T=0.105 seg.

Fuerza cortante estática en la base, Fuerza dinámica escalada en la base y Fuerza Cortante Mínima (Norma E 030- Articulo 29.4): De acuerdo a lo que establece la Norma E.030 Diseño Sismo resistente, la fuerza cortante mínima en la base obtenida del análisis dinámico no puede ser menor que el 80% de la fuerza cortante en la base obtenida del análisis estático para estructuras regulares, ni menor que el 90% para estructuras irregulares.

En el cuadro siguiente se muestran las fuerzas cortantes obtenidas en el módulo desarrollado bajo los análisis estático y dinámico:

Tabla 8. Fuerzas cortantes en la base (Tn)

	S ESTATICO	S DINAMICO	80% S ESTA	ESCALAR
DIRECCION XX	437.5533	371.0355	350.04264	0.94
DIRECCION YY	437.5533	363.1036	350.04264	0.96

Fuente: Desarrollo propio.

Como se puede apreciar en el cuadro anterior, los cortantes obtenidos mediante el análisis dinámico (Vx = 371.0355 Tn y Vy = 363.1036 Tn), son mayores al 80 % de

la fuerza cortante obtenida mediante el análisis estático (Vx = 350.04264 Tn y Vy = 350.04264 Tn), cumpliendo con lo especificado en la Norma E.030.

Verificación del sistema estructural: inicialmente se consideró un sistema estructural para cada dirección.

Rx 6 Pórticos

Ry 6 Albañilería confinada

Al ser los muros de concreto armado en la Dirección X-X, el sistema predomínate se realiza la evaluación:

Tabla 9. Determinación del sistema estructural dirección "X"

Vx -437.5533

Story	ory Pier Load Case/Combo Location		P	V2	
				tonf	tonf
Story1	PX1	SEST XX	Bottom	90.8078	53.09
Story1	PX2	SEST XX	Bottom	-84.0176	52.6651
Story1	PX3	SEST XX	Bottom	93.3676	52.3526
Story1	PX4	SEST XX	Bottom	-88.5832	52.8972
Story1	PX5	SEST XX	Bottom	-88.2629	53.4677
Story1	PX6	SEST XX	Bottom	93.9383	52.8331
Story1	PX7	SEST XX	Bottom	-84.8961	53.1454
Story1	PX8	SEST XX	Bottom	90.4643	53.6314
				Σ	424.0825 Tnf

% -96.92%

Fuente: Desarrollo propio.

Tabla 10. Determinación del sistema estructural dirección "Y"

Vy -437.5533

Stom.	Dies	Pier Load Case/Combo		Р	V2	
Story	Pier	Load Case/Combo	Location tonf		tonf	
Story1	PY1	SEST XX	Bottom	-0.2721	137.7809	
Story1	PY2	SEST XX	Bottom	-0.4797	201.5918	
				Σ	339.3727 Tnf	f

% -77.56%

Fuente: Desarrollo propio.

Según el RNE E.030, en el Articulo 16, Muros Estructurales. Sistema en el que la resistencia sísmica está dada predominantemente por muros estructurales sobre los que actúa por lo menos el 70% de la fuerza cortante en la base. Según el análisis en la Dirección X-X se tiene un 96.92%, y en la dirección Y-Y se tiene el 77.56 % por tanto, se corrobora el sistema estructura empleado en ambas direcciones.

Verificación de irregularidades: Tomando en consideración lo indicado en el Artículo 19 del RNE E.030, Regularidad Estructural, se indica que, según lo analizado se tiene que la estructura es Regular tanto en planta y Altura, los elementos estructurales que se proponen son simétricas y uniformes en plata y cuentan con continuidad en todos los niveles, por tanto, se asume para cada caso lo siguiente:

Desplazamiento máximo en el último nivel, máximo desplazamiento de entrepiso y deriva máxima: En el cuadro siguiente se muestran los desplazamientos y derivas de entrepisos de los diafragmas de cada nivel. Estos valores fueron determinados multiplicando los resultados obtenidos en el programa de análisis por 0.75 R, conforme se especifica en la Norma E.030 Diseño Sismorresistente.

Tabla 11. Desplazamientos máximos y derivaciones entrepisos, dirección "X"

Story	Output Case	Case Type	Step Type	Direction	Drift
040	DEODI AZAMIENTO	O and in attack	M	V	0.004.444
Story3	DESPLAZAMIENTO	Combination	Max	Х	0.001411
Story3	DESPLAZAMIENTO	Combination	Max	X	0.001791
Story2	DESPLAZAMIENTO	Combination	Max	Х	0.001982
Story1	DESPLAZAMIENTO	Combination	Max	Χ	0.001128

Fuente: Desarrollo propio, exportado del software ETABS.

Tabla 12. Desplazamientos máximos y derivaciones entrepisos, dirección "Y"

Story	Output Case	Case Type	Step Type	Direction	Drift
Story3	DESPLAZAMIENTO	Combination	Max	Υ	0.000931
Story3	DESPLAZAMIENTO	Combination	Max	Υ	0.000971
Story2	DESPLAZAMIENTO	Combination	Max	Υ	0.000936
Story1	DESPLAZAMIENTO	Combination	Max	Υ	0.000586

Fuente: Desarrollo propio, exportado del software ETABS.

Como se puede apreciar en el cuadro anterior, los desplazamientos obtenidos en el análisis sísmico realizado en el módulo CUMPLE satisfactoriamente con las máximas derivas exigidas en la Norma E.030 Diseño Sismorresistente.

TECNICA DEL ENCAMISADO

Con la finalidad de lograr una adecuada rehabilitación de la escuela de matemáticas, después del terremoto de 23 Junio 2001, desde una reparación hasta un reforzamiento.

Luego de la verificación de los elementos estructurales (columnas y vigas), se toma en cuenta la proyección del reforzamiento, considerando tomar el ACI 369R-11, 2011; el proceso constructivo son las siguientes:

- Según la evaluación estructural a través del software ETAPS, los ejes a refaccionar son A-A, B-B, C-C, D-D, E-E, F-F, G-G, H-H e I-I, según la arquitecta proyectada (EP).
- Se debe apuntalar el entorno del elemento estructural (columnas) para asegurar la estabilidad de la edificación.
- Con herramientas automáticas que retira el tarrajeo de las columnas hasta dejar al descubierto el acero vertical y los estribos. De a I misma manera la cimentación para poder incorporarle el acero vertical
- El elemento expuesto no solo será columnas sino su cimentación y sobre cimiento, la técnica incluye reforzamiento de la cimentación.

Figura 149. Foto de proceso de descubrimiento de concreto para reforzamiento.

Figura 50. Foto de proceso de Apuntalamiento para reforzamiento.

- Se colocara las barra de acero verticales desde la cimentación hasta pasar la losa aligerando con respectivo estribos, grapado al elemento antiguo, se debe tomar en cuanta no lastimar las vigas existentes.

Figura 51. Foto de proceso de colocación de acero vertical y horizontal para reforzamiento.

- Se debe mencionar que según el retiro del tarrajeo y concreto en columnas, se deberá evaluar el nivel de porosidad, calidad del concreto existe, estado del acero vertical y el horizontal.
- Según los cálculos no solo se está engrosando la columnas con la técnica del encamisado sino se está generando a las a las columnas, generando la modificación de columnas rectangular a columna en forma de más amplia tipo placa, por lo tanto el picado de muros de ladrillo será con las medidas según diseño.

Figura 52. Foto de proceso de reforzamiento de columna existente con acero

- Al culminar la colocación del acero, se deberá colocar el encofrado con madera desde la cimentación hasta el 50% del alto del ambiente, tomando todas las consideraciones de procesos de encofrado indicados en la Normativa vigente.

- Luego de darle estabilidad al encofrado se procede al vaciado de concreto diseñado, considerando en todo momento la vibración para asegurar que el concreto ingrese en todo el entorno y entre el concreto viejo y nuevo.
- Se debe considerar el posible uso de aditivo para la unión correcta del concreto antiguo con el nuevo.
- Una vez culminado la primera parte del vaciado, se procede a vaciado la según parte con el mismo procedimiento,
- No se debe encofrar hasta el tope de la columna y losa, ya que esta tercera parte se deberá realizar desde el nivel siguiente para garantizar el correcto amarre entre columna, losa y viga.
- Según la experiencia del personal técnico, se deberá disponer en campo algunos posibles campos para solucionar los posibles hallazgos de los diferentes elementos estructurales.

Figura 53. Foto de proceso de vaciado de concreto en reforzamiento, técnica encamisado.

 Este procedimiento se deber realizar en todos los elementos a reforzar según el diseño estructural. VI. CONCLUSIONES

- 1. El levantamiento topográfico, arquitectónico, estructural y datos de estudio de suelos nos otorga un panorama del estado de la edificación, vertido en el programa ETABS (software) la Edificación Existente (EE) de 3 niveles generando las simulaciones con los parámetros de la norma E.030 DISEÑO SISMORRESISTENTE RM-043-2019-VIVIENDA, evidenciando lo siguiente:
 - Se Concluye que por el uso según Articulo 15 en la tabla N° 5 pertenece a edificaciones esenciales (A2); asimismo considerando el Artículo 17.-Categoría y Sistemas Estructurales, nos indica que esta edificación le corresponde los siguientes sistemas estructurales como: Sistema Dual, Muros de Concreto Armado, albañilería Armada o confinada; por consiguiente la edificación existente no cumple con la Norma, siendo actualmente un sistema Aporticado
 - De la Estructura Existente la resistencia sísmica está dada predominantemente por Porticos sobre los cuales por lo menos el 80% de la fuerza cortante en la base. Según el análisis en la dirección X-X se tiene un 90.41% (CUMPLE) de los muros estructurales, el análisis en la dirección Y-Y los muros de albañilería confinada el sistema predominante se verifica la densidad de muros el cual 0.0164913 < 0.0315 (FALLA) según RNE E.030, en el Articulo 16.
 - Se Concluye que por el uso de la Edificación según la Tabla N° 5 pertenece a edificaciones esenciales (A2); asimismo considerando el Artículo 17.- Categoría y Sistemas Estructurales, nos indica que esta edificación le corresponde los siguientes sistemas estructurales como: Sistema Dual, Muros de Concreto Armado, albañilería Armada o confinada; por consiguiente la edificación existente no cumple con la Norma, siendo actualmente un sistema Aporticado.
 - Se concluye que la Infraestructura Existente, según la Normativa Vigente
 E.030 Diseño Sismorresistente, los desplazamientos de base y
 entrepisos de los diagramas de cada nivel obtenido en el análisis sísmico
 realizado en el módulo NO CUMPLE; por lo que se requiere un
 reforzamiento con Muros Estructurales como el que se esta planteando.
 - También se asumió por criterio que al generar un 4to nivel a la edificación existente con los parámetros actuales RNE- RM-043-2019-VIVIENDA,

- no cumplirían y se dispondría el reforzamiento Estructural para mantener la construcción.
- También se asumió por criterio que al generar un 4to nivel a la edificación existente con los parámetros actuales RNE- RM-043-2019-VIVIENDA, no cumplirían y se dispondría el reforzamiento Estructural para mantener la construcción.
- 3. Según la propuesta de Reforzamiento Estructura con la técnica del encamisado descrito, se debe considerar la experiencia del personal técnico, que deberá disponer en campo algunos posibles campos para solucionar los posibles hallazgos de los diferentes elementos estructurales.

VII. RECOMENDACIONES

- Se recomienda emplear este sistema de reforzamiento, antes de tomar como opción la demolición de infraestructuras existentes
- Los Resultados del presente Estudio se recomienda solo para la zona investigada y no para ningún otro lugar, ni tipo de obra diferente a la estudiada
- Se recomienda el seguir adecuados procesos constructivos para así evitar patologías como cangrejeras entre otras patologías que debilitan la resistencia del concreto

REFERENCIAS

- ACI 369R-11.(2011).ACI 369r-11 Guide for Seismic Rehabilitation of Existing Concrete Frame Buildings and Commentary. ACI-American Concrete Institute.
- ACI 440.2R-08. (2008). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthenins Concrete Structures. American Concrete Institute: ACI Committee 440.
- Aguilar,J.; Breña,S.; Del Valle,E.; Iglesias,J.; Picado, M.; James M. (1996).
 Rehabilitation of existing reinforced concrete building in mexico city. PMFSEL 96-3 Ferguson Structural Engineering Laboratory The University of Texas at Austin.
- Antonio Blanco Blasco-Ricardo Araujo Alvarez-Jose Antonio Terry. (2009).
 Reforzamiento del estadio nacional de Lima Perú. Lima
- APLIKA PERU. (24 de Junio de 2014). Reforzamiento Estructural en Edificaciones. Obtenido de Reforzamiento Estructural en Edificaciones: https://prezi.com/oirhsiv9dcyo/reforzamiento-estructural-en-edificaciones/
- N.T.E. E030. (2016). REGLAMENTO NACIONAL DE EDIFICACIONES.
- N.T.E. E060. (2006). Reglamento Nacional de Edificaciones
- Oviedo, S. (2010). Metodos de Reforzamiento en Edificios de Concreto Armado
- Palomino, A. (2016). Manual de Análisis Estático y Dinámico NTE E030.
- Silgado, E. (1978). Historia de los sismos más notables ocurridos en el Perú (1513-1974). INGEOMIN Boletin N°3 Serie C. Geodinámica e Ingeniería Geológica. LIMA-PERU: Instituto de Geología y Minería.
- Soto, E. (2008). Rehabilitación de Estructuras de Concreto. TESIS-UNAM.
- Torrealva, D. (2007). Curso de Reparación y Refuerzo de estructuras de Concreto y Mampostería. Lima: ACI-PERU.
- Villamarin, E. ; Yañez, E. (2010). Reforzamiento sísmico de estructuras aporticadas, regulares en planta y regulares en elevación. Sangolqui

ANEXOS

Anexo N°1: Matriz de operacionalización de las Variables de investigación

Variables	Definicion Conceptual	Definicion Operacional	Dimenciones	Indicadores
	El proceso de reforzamiento estructural comprende primero el investigar los planos existentes de la estructura, en su situación actual,			Rigidez
Variable 01: Reforzamiento estructural	para ser definida su calidad sismoresistente y así obtener sus características de configuración y poder definir loes elementos de refuerzo; segundo la propuesta de reforzamiento se debe acomodar a la remodelación para dar una buena configuración; tercero se debe analizar, afinar y diseñar la estructura modificada para la remodelación; cuarto se debe definir los detalles	El Reforzamiento estructural es una variable de naturaleza cualitativa politómica y se mide a través de una escala nominal	Reforzamiento estructural con la Tecnica de encamisado	Resitencia Cortante
	de conexión de la estructura antigua con la nueva y con los elementos el refuerzo (lcochea, 1998, p. 31).			Esfuerzos axiales
				Comportamiento estructural
		El levantamiento arquitectónico se debe entender como la forma primaria del conocer y por ello la consolidación de procedimientos, las medidas y el análisis indispensable para	Aspectos Estructurales	Resistencia de los elementos estructurales
	Son las actividades que se realizan para atender	poder comprender y a la vez documentar la configuración completa del bien arquitectónico (Jiménez y Pinto, 2003, p. 49). El levantamiento arquitectónico es la primera forma del saber, por ello, es la unión de medidas, análisis y operaciones que		Analisis Dinamico
Variable 02: Servicios Académicos	demandas y necesidades específicas de los agentes sociales con el concurso de la comunidad académica. Los principales Servicios	serán necesarios para la documentación y entendimiento de la configuración completa del bien arquitectónico, en sus propiedades métricas y dimensionales, en su importancia		Analisis Estatico
Academicos	Académicos son: consultorías, asesorías, interventorías, conceptos, y evaluación de programas y políticas	histórica, en sus propiedades constructivas y estructurales tanto en las funcionales como formales. (Almagro, 2016, p. 17).	Analiss Sismicos	Capacidad Portante
		El levantamiento arquitectónico se debe entender como la forma primaria del conocer y por ello la consolidación de		Coeficiente de reduccion sismica (Ro)
		primaria del conocer y por ello la consolidacion de procedimientos, las medidas y el análisis indispensable para poder comprender y a la vez documentar la configuración completa del bien arquitectónico (Jiménez y Pinto, 2003, p. 49).		Resistencia de Albañileria (compresion axial)
		Norma E-030-2003 de Diseño Sismorresistente del Reglamento Nacional de Construcciones.		Respuestas Sismicas

Anexo N°2; Panel Fotográfico

Foto 1; Vista de perpectiva de la Escuela de Matemáticas

Foto 2; Vista posterior de la Escuela de Matemáticas

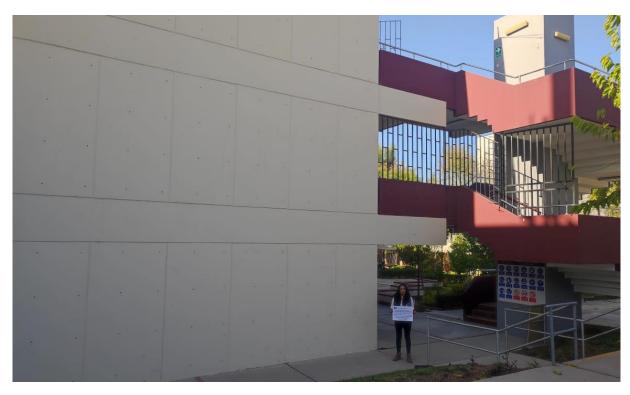


Foto 3; Vista lateral de la Escuela de Matemáticas

Foto 4; Vista perspectiva primer nivel

Foto 5; Vista interior de SS.HH.

Foto 6; Ambiente interior de aula segundo nivel

Foto 7; Existencia de canal de agua frente al pabellón

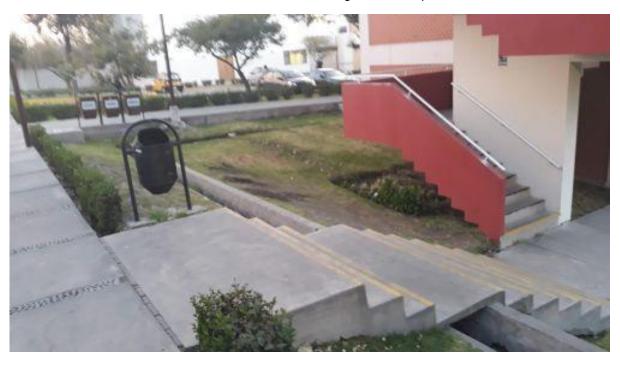


Foto 8; Desnivel existente de la Edificación en relación a la circulación del entorno

Foto 9; Equipo topográfico para el levantamiento de la edificación Existente

Anexo N°2; Estudio de Suelos

ESTUDIO DE SUELOS

Reforzamiento Estructural del Servicio Académico de la Escuela de Matemática de la Universidad Nacional de San Agustín, Arequipa 2022

A SOLICITUD

Rivera Achulli, Fabiola Amelia

ABRIL -2022

Urb. Aurora H-4 Cercado 🗃 281392 🕥 959609660 RPM +235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

Ing. Curtos Chávez Rodriguez Esp. Geotecnia CIP 20474

GEOTECNIA AQP EIRL

Ing. CARLOS ENRIQUE CHÁVEZ RODRIGUEZ
MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS – SUPERVISIÓN Y ASESORIA

INDICE

A. GENERALIDADES

Objeto del Estudio Ubicación y Descripción del Área en estudio Acceso al Área en Estudio Condición Climática

B. GEOMORFOLOGIA Y GEOLOGÍA

C. SISMICIDAD EN EL AREA EN ESTUDIO

Sismicidad del área de estudio

D. INVESTIGACIONES DE CAMPO

Calicatas o Pozos de Exploración Muestreo y Registros de Exploración

E. ENSAYOS DE LABORATORIO

Ensayos Estándar Ensayos Especiales Clasificación de suelos

F. PERFILES ESTRATIGRAFICOS

Descripción de la Conformación del Subsuelo del Área en estudio

G. ANALISIS DE LA CIMENTACIÓN

Tipo y Profundidad de cimentación Cálculo de la Capacidad Portante Admisible Cálculo de Asentamientos

H. CONCLUSIONES Y RECOMENDACIONES

ANEXOS

ANEXO I:

ENSAYOS DE LABORATORIO

- Ensayos Estándar
- Ensayos Especiales

ANEXO II:

TRABAJOS DE CAMPO

Registros de Exploración

ANEXO III:

MATERIAL FOTOGRAFICO

- Perfiles estratigráficos.
- Material Fotográfico.

DAGE ESCOPEDO FLORES
PROEMERO DAN

Urb. Aurora H-4 Cercado 281392 3 959609660 RPM *235505 E-mail: carlos. ch56@hotmail.com RUC: 20456332847

Ing. Carlos Chinez Rodriguez Esp. Genteonia CIP 20474

MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS – SUPERVISIÓN Y ASESORIA

A. GENERALIDADES

Objeto del Estudio:

El presente Informe tiene por objeto investigar el subsuelo del terreno asignado a la obra: REFORZAMIENTO ESTRUCTURAL DEL SERVICIO ACADÉMICO DE LA ESCUELA DE MATEMÁTICA DE LA UNIVERSIDAD NACIONAL DE SAN AGUSTÍN, AREQUIPA 2022; por medio de trabajos de campo a través de calicatas "a cielo abierto", ensayos de laboratorio estándar y especiales, a fin de obtener las principales características físicas y mecánicas del suelo, así como, sus propiedades de resistencia y labores de gabinete, en base a los cuales se define los perfiles estratigráficos, tipo y profundidad de cimentación, capacidad portante admisible, asentamientos y las recomendaciones generales para la construcción.

Para este estudio de suelos realizaremos lo siguiente:

- o Reconocimiento del terreno.
- o Distribución y ejecución de calicatas.
- o Ejecución de ensayos de Laboratorio.
- o Evaluación de los trabajos de campo y laboratorio.
- o Perfiles Estratigráficos.
- o Análisis de la Capacidad Portante Admisible.
- o Determinación de Asentamientos.
- o Conclusiones y Recomendaciones.

Ubicación y Descripción del Área en Estudio:

La zona en estudio, se encuentra ubicado en la Universidad Nacional de San Agustín en el Distrito de Cercado, Provincia y Región de Arequipa.

Acceso del Área en Estudio:

Presenta una buena accesibilidad.

Condiciones Climáticas de la zona:

El área de estudio se caracteriza por presentar un clima desértico montano templado, las lluvias se presentan por periodos estacionarios (enero-abril), con promedios anuales de 98-277mm, y humedades relativas que oscilan alrededor de 65%.

Las temperaturas promedio anuales varían de 12°C a 21°C.

Urb. Aurora H-4 Cercado **281392** 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

Ing. Carlos Chávez Rodriguez Esp. Geotocnia CIP 20474

MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS - SUPERVISIÓN Y ASESORIA

B. GEOMORFOLOGIA Y GEOLOGÍA

Geomorfología:

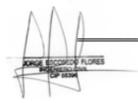
En el área en estudio se presentan tres unidades geomorfológicas:

- a) Cordillera de Laderas: Ocupa la parte sur de la ciudad, se caracteriza por presentar un relieve de cerros de superficie rocosa, con drenaje dendrítico y esporádicamente paralelo.
- Cadena del Barroso: Formada por las estribaciones de los tres volcanes: Chachani, Misti y Pichu Pichu. Tiene una superficie inclinada, cortada por numerosas quebradas de paredes empinadas.
- c) Penillanura de Arequipa: Es una superficie ligeramente plana, inclinada hacia el oeste con una pendiente de aproximadamente 4%. Está conformada por materiales tufáceos hacia el oeste y materiales detríticos hacia el este. Cuenta con cinco subunidades: Valle del Chili, Superficie del Cercado, Superficie de Socabaya, Superficie de Pachacútec y Superficie del Aeropuerto.

Geología:

En la ciudad de Arequipa se encuentra unidades ígneas, sedimentarias y metamórficas, cuyas edades se ubican en forma discontinua desde el prepaleozoico hasta el cuaternario reciente. Entre éstas tenemos:

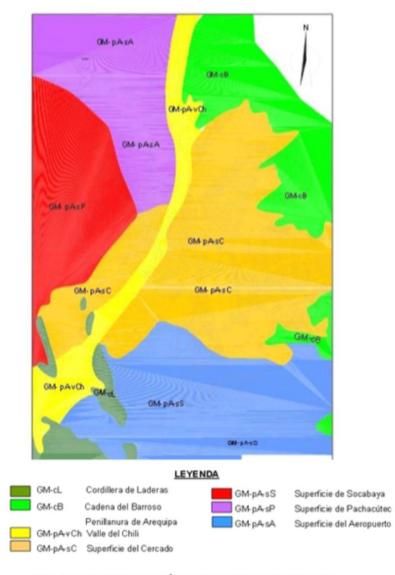
- Gabrodiorita de La Caldera: Son rocas ígneas intrusivas que afloran en la parte sur de la ciudad.
- Granodiorita de Tiabaya: Estas rocas afloran en forma de elipses groseras en los cerros vecinos al distrito de Tiabaya.
- Volcánico Sencca Compacto: Constituido por un tufo blanco compacto, coherente y algo poroso. Es conocido con el nombre de sillar.
- Volcánico Sencca Salmón: Son tufos de color rosáceo, estratificados en bancos subhorizontales.
- Volcánico Chila: Conformado por derrames andesíticos y basálticos de color marrón oscuro, altamente fracturados.
- Flujos de Barro: Compuestos por bloques andesíticos de diversos tamaños, cuyos intersticios están rellenados por una matriz arenotufácea.


Urb. Aurora H-4 Cercado 281392 3 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

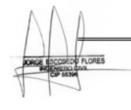
ling. Carlos Chávez Rodriguez Esp. Geotscrita

and the state of the same of t

- Depósitos Piroclásticos: Son tobas volcánicas de color blanco amarillentas, deleznables, ásperas y de aspecto azucarado, muy livianas.
- o Materiales Aluviales: Conformados por el Aluvial de Acequia Alta, Aluvial de Umacollo y Aluvial de Miraflores, constituidos por gravasy arenas de distinta formación; además del Aluvial reciente, constituido por materiales que rellenan los cauces de los ríos y quebradas.
- Eluviales Recientes: Están conformados por arenas limosas de color beige, de origen residual, que constituyen los terrenos de cultivos.

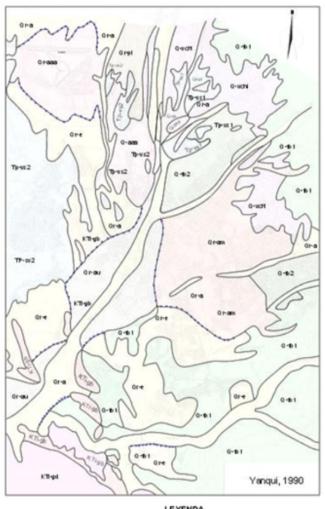

Urb. Aurora H-4 Cercado 🗃 281392 🕲 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

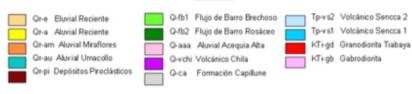
Ing. Carlos Chavez Kodriguez Esp. Geotocnia GIP 20474



GEOTECNIA AQP EIRL Ing. CARLOS ENRIQUE CHAVEZ RODRIGUEZ

Ing. CARLOS ENRIQUE CHÁVEZ RODRIGUEZ
MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS – SUPERVISION Y ASESORIA


FIGU. 1 : MAPA GEOMORFOLÓGICO DE LA CIUDAD DE AREQUIPA


Urb. Aurora H-4 Cercado 8 281392 3 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847 Ing. Carlos Chárez Rodríguez Esp. Ocotocna CIP 20474

GEOTECNIA AQP EIRL Ing. CARLOS ENRIQUE CHÁVEZ RODRIGUEZ MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS – SUPERVISION Y ASESORIA

LEYENDA

FIG. 2: MAPA GEOLÓGICO DE LA CIUDAD DE AREQUIPA

Urb. Aurora H-4 Cercado 🕿 281392 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS – SUPERVISIÓN Y ASESORIA

Características Geotécnicas:

En base a la información geotécnica recopilada y a los ensayos realizados, se han obtenido las características físico-mecánicas de los suelos de cimentación, las que se presentan en la Tabla N° 1.

TABLA N° 1

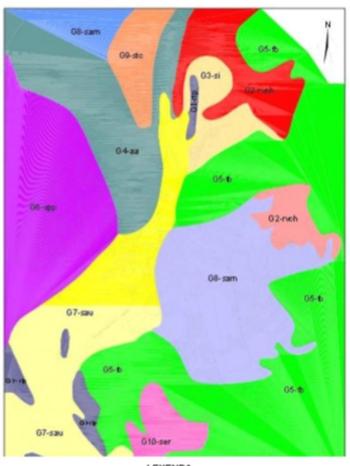
CARACTERÍSTICAS GEOTECNICAS DE LAS ZONAS PROPUESTAS.

Zona	Df (m)	B (m)	γ (gr/cm³)	÷ (°)	C (Kg/cm²)	DR (%)	qa (Kg/cm²)
G1 - rpt	0.00 - 0.50	0.40	2.2 - 2.4	30 - 39	70.0 - 90.0	> 100	30.0
G2 - rvch	0.40 - 0.50	0.40	1.7 - 2.2	32	0.0 - 30.0		15.0
G3 - si	0.40 - 0.50	0.40	1.3	30			5.0
G4 - saa	0.80 - 1.00	0.40	1.4 - 1.8	29 - 32	0.0 - 0.4	50 - 100	3.5
G5 - fb	0.80 - 1.00	0.40	1.3 - 2.0	30 - 36	0.0 - 2.0	70 - 100	3.0
G6 - spp	0.80 - 1.00	0.40	1.1 - 1.6	26 - 31	0.0 - 0.4	0 - 90	3.0 2.0
G7 - sau	1.00 - 1.50	0.40	1.5 - 2.0	30 - 35	0.0 - 0.5	40 - 90	1.5
G8 - sam	1.00 - 1.50	0.40	1.4 - 1.7	32 - 36	0.0	0 - 50	1.0
G9 - ste	1.00 - 1.50	0.40	0.6 - 1.2	30 - 35	0.0 - 0.1	0 - 100	0.5
G10 - ser	1.00 - 1.50	0.50	1.4 - 1.7	29 - 36	0.0	0 - 50	0.5

Para calcular la capacidad portante del suelo se ha tomado en consideración la cimentación de una vivienda de interés social típica, de tipo zapata corrida, con un ancho de 0.40 a 0.50 m. y emplazada entre 0.80 y 1.50 m. de profundidad. Debido a lo errático de la geología, en la ciudad de Arequipa existen diversos tipos de suelos de cimentación, tales como: rocas ígneas, con capacidades portantes mayores que 10 Kg/cm2; sillares, con capacidades portantes mayores que 5

Kg/cm2; depósitos aluviales, con capacidades portantes de 3.5 a 1.0 Kg/cm2; depósitos de materiales piroclásticos y suelos eluviales, con capacidades portantes de 0.5 Kg/cm2. Estos suelos, debido a su origen volcánico, generalmente contienen fragmentos de piedra pómez, lapilli y cenizas volcánicas, por lo que presentan pesos unitarios bastante bajos; además, debido a la forma en que han sido depositados, en algunos lugares se encuentran en estado suelto. Se recomienda que estos datos sean tomados solamente como referenciales para el caso de viviendas de interés social, debiendo realizarse necesariamente estudios de mecánica de suelos para estructuras de cierta envergadura.

SONGE ENCOREDO PLORES
PROPERO CANA
GOP ASSIA


Urb. Aurora H-4 Cercado 8 281392 3 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

ling. Carlos Chávez Rodriguez Esp. Geotecnia CIP 20474

GEOTECNIA AQP EIRL Ing. CARLOS ENRIQUE CHAVEZ RODRIGUEZ

Ing. CARLOS ENRIQUE CHÁVEZ RODRIGUEZ
MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS – SUPERVISIÓN Y ASESORIA

LEYENDA

Qué			q _* (Kg/m²)			q _* (Kg/m²)		
	G1-rpt	Rocas Preterciarias	30.0		G6-spp	Suelo Puzolánico de Pachacútec	2.0	
	G2-rvch	Rocas Volcánicas de Chila	15.0		G7-sau	Suelo Aluvial de Umacollo	1.5	
	G3-si	Sillar	5.0		G8-sam	Suelo Aluvial de Miraflores	1.0	
_	G4-saa	Suelo de Acequia Alta	3.5	_	G9-stc	Suelo Tobáceo Compresible	0.5	
	G5-fb	Flujos del Barro	3.0		G10-ser	Suelo Aluvial Reciente	0.5	

FIG. 3 MAPA GEOTECNICO DE LA CILIDAD DE AREOLIPA

Urb. Aurora H-4 Cercado 🗃 281392 📵 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847 Ing. Carlos Charez Rodrigo

Características Dinámicas:

Para evaluar las características dinámicas del suelo, en este estudio se ha utilizado la técnica de medición de microtrepidaciones, que permite evaluar el período de vibración natural del terreno. Estas mediciones pueden ser verificadas con análisis de amplificación sísmica a deformaciones pequeñas de la roca basal a la superficie.

El estudio de las microtrepidaciones como un método de microzonificación sísmica se ha llevado a cabo en varios países. En el Japón, Kanai et al (1954) utilizaron este método hace más de 30 años para clasificar al suelo en cuatro categorías, habiéndose utilizado después dichos resultados en el reglamento sismorresistente del Japón. Taniwangsa (1981) utilizó esta metodología en Indonesia para realizar la microzonificación sísmica de la capital Jakarta. En Chile se ha utilizado el método en la microzonificación sísmica de varias ciudades (Lástrigo y Monge, 1972; Thomas, Monge y Saragoni, 1980).

En el Perú se han realizado ensayos de medición de microtrepidaciones en Chimbote (Morimoto et al, 1971; Hermoza, 1972; Alva Hurtado et al, 1986), en Huaraz (Kuroiwa et al, 1973; Alva Hurtado et al, 1986), en La Molina,Lima (Martinez, 1989), Nueva Ciudad Majes (Meneses, 1990), Cusco y Tacna (Tokeshi, 1990), La Punta y Callao (Huamán, 1990) y últimamente en las ciudades de Rioja, Moyobamba y Soritor.

a. Técnica de medición de microtrepidaciones:

El material que constituye la tierra se encuentra vibrando constantemente en todas direcciones. Un instrumento suficientemente sensible puede detectar estos continuos movimientos de micro trepidaciones. Se define como micro trepidación a la vibración natural del terreno con un período que varía de 0.05 a 2.0 seg. y con una amplitud de 0.1 a 1 micrón.

Las micro trepidaciones se originan por causas naturales y artificiales; las causas naturales son condiciones volcánicas, ondas oceánicas y condiciones atmosféricas, mientras que las artificiales son el tráfico, las maquinarias industriales, etc. Comúnmente el equipo utilizado en la medición de micro trepidaciones consta de lo siguiente:

- a) Sensores.- Se utilizan 3 sensores: 2 horizontales y 1 vertical, dispuestos ortogonalmente entre sí.
- Amplificador.- Dado que las amplitudes de las microtrepidaciones son muy pequeñas, es necesario utilizar un amplificador que normalmente incluye circuitos de integración y diferenciación.
- c) Registro de información.- Las vibraciones medidas se graban en una cinta magnética, para luego ser procesadas directamente en la computadora analógica.
- d) Monitor de registros.- Se utiliza un oscilógrafo para verificar la forma de la onda de microtrepidaciones durante la medición y evitar la grabación de perturbaciones e interferencias.

Urb. Aurora H-4 Cercado 8 281392 3 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

Ing. Carlos Chávez Rodriguez Esp. Gestecnia CIP 20474

GEOTECNIA AQP EIRL

Ing. CARLOS ENRIQUE CHÁVEZ RODRIGUEZ
MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS – SUPERVISION Y ASESORIA

 e) Analizador analógico-digital FFT.- Es una computadora analógica para efectuar el análisis de Fourier de la onda grabada, graficar el registro medido, calcular y graficar el espectro de Fourier, proporcionando también la frecuencia predominante de la onda.

En las mediciones se registran los desplazamientos en dos direcciones horizontales perpendiculares y una vertical. La onda medida en el campo es visualizada en el gabinete, con el objeto de definir la parte representativa de la misma a ser procesada en el analizador analógico digital de ondas (FFT Analyzing Scope TEAC-3000), que calcula el espectro de Fourier y la frecuencia predominante. El período predominante en un punto es calculado promediando los valores de períodos predominantes de las dos componentes horizontales registradas en dicho punto. El período predominante de la componente vertical solamente es considerado como referencial.

b. Medición de microtrepidaciones en el ciudad de arequipa:

En la ciudad de Arequipa se realizaron 227 puntos de medición de microtrepidaciones, distribuidos más o menos uniformemente en toda la ciudad. Los trabajos de campo se llevaron a cabo en dos campañas de 12 días cada una.

El mapa de curvas isoperíodos de la ciudad de Arequipa, que se muestra en la Fig. 4, presenta períodos predominantes entre 0.15 y 0.45 seg., existiendo una gran área con valores de períodos predominantes entre 0.25 y 0.40 seg.

En algunos lugares, estos valores han podido ser comprobados con análisis de amplificación sísmica, los cuales se han realizado en base a los ensayos SPT de estudios recopilados y a la información geológica de la zona. Los resultados de estos análisis dan valores muy similares a los obtenidos por el método de medición de microtrepediciones, como en el caso de la Plaza de Armas, donde el período fundamental del suelo obtenido por amplificación sísmica, es de 0.37 seg. y el período predominante obtenido por medición de microtrepidaciones es de 0.38 seg.

Los valores de períodos predominantes han sido agrupados en rangos para definir la zonificación sísmica, considerando básicamente las condiciones geotécnicas de los suelos que delimitan las curvas isoperíodos, lográndose así proponer las siguientes zonas:

o ZONA A: Conformada por las rocas ígneas intrusivas de la Cordillera de Laderas que ocupan la parte sur oeste de la ciudad y por las rocas ígneas del Volcánico Chila que afloran en la parte norte, en la margen izquierda del río Chili. Los valores de períodos predominantes obtenidos en esta zona varían entre 0.15 y 0.25 seg. los suelos de cimentación presentan

PORCE ESCOPICIÓ PLORES
PORCES DATA

EN 165 SER

Ing. Carlos Chavez Rodriguez Esp. Geotocriss CIP 20474

excelentes características geotécnicas, pudiéndoles asignar una capacidad portante superior a 10 Kg/cm2.

- o ZONA B: Conformada por los afloramientos de sillar, parte de los suelos puzolánicos de Pachacútec y parte de los flujos de barro que constituyen las laderas de la Cadena del Barroso. Los valores de períodos predominantes obtenidos en esta zona varían de 0.20 a 0.30 seg., llegando hasta 0.35 seg. en los flujos de barro. Se incluye en esta zona el área del Cercado comprendida entre las Urbanizaciones Cerro Juli, Parque Industrial, Ferroviarios, IV Centenario y Municipal, que presentan valores de períodos predominantes de 0.15 a 0.25 seg. Las características geotécnicas de esta zona son buenas, presentando valores de capacidad portante entre 2.0 y 3.5 Kg/cm2.
- o ZONA C: Conformada por la mayor parte del casco urbano, entre las que se encuentran los distritos de Cayma, Yanahuara, el Cercado, parte de Cerro Colorado y las partes bajas de los distritos de Miraflores, Mariano Melgar y Paucarpata. Los suelos de esta zona presentan características geotécnicas bastante erráticas, encontrándose valores de capacidad portante entre 1.0 y 2.5 Kg/cm2.

El nivel freático se encuentra a mas de 5 m. de profundidad, excepto en la zona del balneario Tingo, en la que el nivel freático se encuentra muy cerca de a la superficie. Los valores de períodos predominantes obtenidos en esta zona se encuentran en el rango de 0.30 a 0.45 seg.

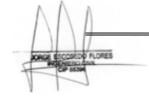
o ZONA D: Conformada por el material piroclástico que cubre las urbanizaciones Alto Cayma y Francisco Bolognesi, y por los suelos eluviales de Bellapampa, donde el nivel freático se encuentra cercano a la superficie. Esta zona presenta condiciones geotécnicas desfavorables, encontrándose valores de capacidad portante de 0.50 Kg/cm2. Los valores de períodos predominantes obtenidos en esta zona también se encuentran en el rango de 0.30 a 0.45 seg. En la Fig. 5 se presenta el mapa de Microzonificación Sísmica Preliminar de la Ciudad de Arequipa.

NORGE SICCIDED FLORES
PROSPERO DAY

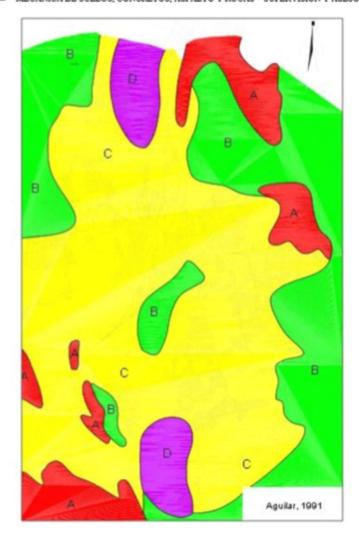
Urb. Aurora H-4 Cercado 8 281392 3 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847 Ing. Carlos Chivez Rodriguez Esp. Geotecnia

GEOTECNIA AQP EIRL

Ing. CARLOS ENRIQUE CHÁVEZ RODRIGUEZ


MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS – SUPERVISION Y ASESORIA

LEYENDA


FIG. 4: MAPA DE CURVAS ISOPERIODO DE LA CIUDAD DE AREQUIPA

Urb. Aurora H-4 Cercado 🕿 281392 3 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

GEOTECNIA AQP EIRL
Ing. CARLOS ENRIQUE CHAVEZ RODRIGUEZ
MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS – SUPERVISION Y ASESORIA

LEYENDA

ZONA C ZONA A ZONA D ZONA B

FIG. 5: MAPA DE MICROZONIFICACION SÍSMICA DE LA CIUDAD DE AREQUIPA

Urb. Aurora H-4 Cercado 👩 281392 🕦 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

Ing. Carlos Chávez Rodriguez Exp. Geotocnia CIP 20474

MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS – SUPERVISION Y ASESORIA

C. SISMICIDAD EN EL AREA EN ESTUDIO

Sismicidad Del Área En Estudio:

A partir de la información (macro sísmica), se han confeccionado los mapas de líneas Isosistas de algunos sismos destructores que han tenido incidencia sobre la Franja Nº1, donde se emplazan las ciudades de Arequipa, Moquegua, Tacna y parte de Puno (INGEMMET).

De acuerdo a esto se ha determinado que la intensidad máxima en la Escala Modificada de Mercalli (E.M.M.), los sismos que han ocurrido en la franja Nº1 varían entre VII y X grados.

Según el Mapa de Zonificación Sísmica del Sur del Perú – Reglamento Nacional de Edificaciones 2014; hace referencia que la Región Sur del Perú se considera Dividida en tres Zonas de las tres Clasificadas, de acuerdo a la sismicidad observada y a la potencialidad Sísmica de dichas Zonas, se ha determinado a la Zona 3 de Sismicidad Alta (Dptos. De Arequipa, Moquegua, Tacna, Ayacucho, Ica, Lima, Ancash, La Libertad, Cajamarca, Lambayeque, Piura y Tumbes).

D. INVESTIGACIONES DE CAMPO

Calicatas o Pozos de Exploración:

Se realizó tres (03) calicatas o pozos de exploración "a cielo abierto", designados como C-1, C-2 y C-3 los cuales fueron ubicados convenientemente y con profundidades suficientes de acuerdo a la intensidad de las cargas estimadas en el proyecto de construcción.

Este sistema de exploración nos permite evaluar directamente las diferentes características del subsuelo en su estado natural.

Hasta la profundidad explorada no se encontró el nivel freático.

La excavación alcanza la siguiente profundidad:

Pozo	Profundidad (m) A cielo abierto			
C-1	3.00			
C-2	3.00			
C-3	3.00			

EDO FLORES

Urb. Aurora H-4 Cercado 281392 3 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

ling, Carlos Chávez Rodriguez Esp., Geotecnia CIP 20474

MECANICA DE SUELOS, CONCRETOS, ASPALTO I ROCAS - SUPERVISION I ASESORIA

Muestreo y Registros de Exploración:

Se tomó muestra disturbada representativa del estrato atravesado en la calicata y en cantidades suficientes como para realizar los ensayos de identificación y clasificación, también se extrajo muestra representativa para el ensayo de Corte Directo.

Paralelamente al muestreo se realizó los registros de exploración, en los que se indican las diferentes características de los estratos subyacentes, tales como tipo de suelo, espesor del estrato, color, humedad, plasticidad, compacidad, etc.

E. ENSAYOS DE LABORATORIO

Los ensayos de laboratorio Estándar y Especiales, fueron realizados en el Laboratorio de Mecánica de Suelos de GEOTECNIA AQP E.I.R.L.; bajo las Normas de la Americam Society For Testing and Materials (A.S.T.M.).

Ensayos Estándar:

Se realizaron los siguientes ensayos:

- o Análisis Granulométrico por Tamizado ASTM D-422
- Límite Líquido y Límite Plástico ASTM D-4318
- o Contenido de Humedad ASTM D-2216

Ensayos Especiales:

Fueron realizados los siguientes:

 En una muestra representativa del pozo de 0.00 - 3.00 m de profundidad, se realizó el ensayo de Corte Directo Saturado-Inalterado.

Clasificación de Suelos:

Las muestras ensayadas en el laboratorio se han clasificado de acuerdo al Sistema Unificado de Clasificación de Suelos (S.U.C.S.).

F. PERFILES ESTRATIGRÁFICOS

De acuerdo a los trabajos de campo, ensayos de laboratorio y a la inspección realizada, se efectuó tres (03) perfiles estratigráficos del terreno de la construcción.

Urb. Aurora H-4 Cercado **281392** 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

Ing. Carlos Chinez Rodriguez Esp. Geotocnia CSP 20474

GEOTECNIA AQP EIRL

Ing. CARLOS ENRIQUE CHÁVEZ RODRIGUEZ
MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS – SUPERVISIÓN Y ASESORIA

Descripción de la conformación del subsuelo del Área en estudio:

De acuerdo al perfil estratigráfico inferido, y a la inspección realizada se concluye que el subsuelo está conformado para la calicata 1 con Material de Clasificación SUCS. "SP", la calicata 2 y 3 con Material de Clasificación SUCS. "SM" de acuerdo al perfil anexo.

En general el área de estudio está conformado desde la superficie γ con una profundidad de 3.00 m., La calicata 1 en su superficie presenta Material de chacra, seguido de material tipo conglomerado heterogéneo con matriz areno limo gravoso. La calicata 2 γ 3 en su superficie presenta Material de chacra, seguido de material tipo conglomerado heterogéneo con matriz limo areno gravoso.

Para más detalles de la conformación del subsuelo ver el Perfil estratigráfico anexo.

G. ANÁLISIS DE CIMENTACIÓN

Tipo y Profundidad de Cimentación:

De acuerdo a los trabajos de campo, ensayos de laboratorio, descripción del perfil estratigráfico, características del proyecto y al análisis efectuado, se concluye que la cimentación será a la profundidad de 2.60 m.

Cálculo de la Capacidad Portante Admisible: CALICATA 1

Con los datos obtenidos en el Ensayo de Corte Directo Remoldeado - Saturado (Ø = 29.00° y c = 0.00 Kg/cm²) en la condición mas desfavorable y aplicando la Teoría de Karl Terzaghi y corroborado por Meryerhoft para cimentaciones superficiales, se tiene:

$$gad = \frac{1}{FS} (SNC + yDf Nq + 0.4B yNy)$$

Dónde:

: Capacidad portante admisible = Kg/cm2 gad : Ángulo de Fricción Interna = 29.00° Ø C : Cohesión (gr/cm3) = 0.00 : Densidad Natural (gr/cm³) = 1.72 Df : Prof. De Cimentación (m) = 2.60 : Ancho de cimiento (m) = 1.00 : Factores de capacidad de carga respectivamente para una falla local. : Factor de Seguridad FS = 3

NONCE ESCOPEDÓ FLORES
POSIDEROL CANA
CAP 05394

Urb. Aurora H.-4 Cercado 8 281392 3 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847 ling, Carlos Chavez Rodriguez Exp. Geotocosia CIP 20474

MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS – SUPERVISIÓN Y ASESORIA

Reemplazando se obtiene:

qad = 2.73 Kg/cm2

Cálculo de la Capacidad Portante Admisible: CALICATA 2 y 3

Con los datos obtenidos en el Ensayo de Corte Directo Remoldeado - Saturado (Ø = 27.50° y c = 0.00 Kg/cm2) en la condición más desfavorable y aplicando la Teoría de Karl Terzaghi y corroborado por Meryerhoft para cimentaciones superficiales, se tiene:

$$\frac{1}{\text{gad}} = \frac{1}{\text{FS}} \left(\frac{\text{CNc} + yDf}{\text{Nq+0.4B} yNy} \right)$$

Dónde:

qad : Capacidad portante admisible = Kg/cm² : Ángulo de Fricción Interna = 27.50° C : Cohesión (gr/cm3) = 0.00 : Densidad Natural (gr/cm3) = 1.68 : Prof. De Cimentación (m) = 2.60 : Ancho de cimiento (m) = 1.20 NgyNy : Factores de capacidad de carga respectivamente para una falla local. FS : Factor de Seguridad = 3


Reemplazando se obtiene:

q_{ad} = 2.31 Kg/cm²

Cálculo de Asentamientos: CALICATA 1

Aplicando el Método Elástico:

 $SI = \frac{QB(1-\mu^2)}{Fc} \times If$

Urb. Aurora H-4 Cercado 🗃 281392 📵 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847 Ing. Curlos Chisser Rodriguez Esp. Geothermi CIP 20474

MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS – SUPERVISION Y ASESORIA

Dónde:

En el análisis de Asentamiento se ha considerado los valores en base a la caracterización geotécnica y estado de compacidad del suelo más desfavorable recomendados por J. Bowles; y éstos son:

μ : Relación de Poisson 0.28

Es : Módulo de elasticidad 182 (Kg/cm²)

Con respecto al esfuerzo y a las dimensiones para el cálculo de asentamiento, éstos corresponden a la capacidad de carga, para estas condiciones, el asentamiento elástico, considerándose zapata rígida con asentamiento inmediato.

Reemplazando valores se obtiene:

Cálculo de Asentamientos: CALICATA 2 Y 3

Aplicando el Método Elástico:

$$SI = \frac{QB(1-\mu^2)}{Es} \times If$$

Dónde:

En el análisis de Asentamiento se ha considerado los valores en base a la caracterización geotécnica y estado de compacidad del suelo más desfavorable recomendados por J. Bowles; y éstos son:

μ : Relación de Poisson 0.29

Es : Módulo de elasticidad 172 (Kg/cm²)

Con respecto al esfuerzo y a las dimensiones para el cálculo de asentamiento, éstos corresponden a la capacidad de carga, para estas condiciones, el asentamiento elástico, considerándose zapata rígida con asentamiento inmediato.

Reemplazando valores se obtiene:

Si = 1.45 cm.

ling, Carlos Chávez Rodriguez Esp. Geotocnia GIP 20474

H. CONCLUSIONES Y RECOMENDACIONES

De acuerdo a los trabajos de campo, ensayos de Laboratorio, a las características de proyecto y al análisis efectuado, se concluye lo siguiente:

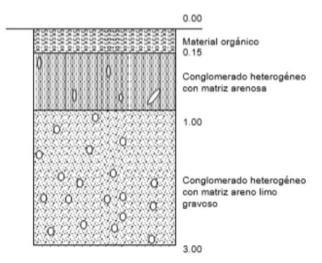
- a) El terreno de estudio se encuentra ubicado en la Universidad Nacional de San Agustín, en el Distrito del Cercado, Provincia y Región de Arequipa.
- b) El terreno presenta una buena accesibilidad.
- Se recomienda tener en cuenta los Sistemas de Drenaje necesarios para la evacuación del agua en época de Iluvia.
- d) Capacidad Portante: La capacidad Portante para la calicata 1 del terreno es de 2.73 kg/cm². La capacidad Portante para la calicata 2 y 3 del terreno es de 2.31 kg/cm².
- e) Profundidad Mínima de Cimentación: La profundidad Mínima de cimentación será a la profundidad de 2.60 m.
- f) Material Predominante: El material predominante para la calicata 1 es un suelo SP (Material tipo conglomerado heterogéneo con matriz areno limo gravoso). El material predominante para la calicata 2 y 3 es un suelo SM (Material tipo conglomerado heterogéneo con matriz limo areno gravoso).
- g) Se recomienda eliminar todas las impurezas orgánicas con lechada de cal.
- Agresividad del Suelo a la Cimentación: Se ha considerado que el suelo no es agresivo, para cuyo efecto se usará Cemento Tipo IP en todas las cimentaciones.
- Asentamiento: El Asentamiento Inmediato para la calicata 1 es de 1,30 cm. El Asentamiento Inmediato para la calicata 2 y 3 es de 1,45 cm.
- Los parámetros para el análisis sismo resistente se recomienda considerar un factor s = 1.20 y Ts = 0.60.
- Napa Freática: No se encontró la napa freática hasta la profundidad de 3.00m.
- Las Conclusiones y Recomendaciones son válidas para la zona en estudio y para los niveles de cargas consideradas en el Proyecto.

DONGE ESCOPION FLORES

Urb. Aurora H-4 Cercado **28** 281392 **959609660 RPM *235505** E-mail: carlos_ch56@hotmail.com RUC: 20456332847

ing, Carlos Chavez Rodriguez Erop. Geotecnia CIP 20474

PERFIL ESTRATIGRÁFICO


OBRA : REFORZAMIENTO ESTRUCTURAL DEL SERVICIO ACADÉMICO DE LA ESCUELA DE

MATEMÁTICA DE LA UNIVERSIDAD NACIONAL DE SAN AGUSTÍN, AREQUIPA 2022

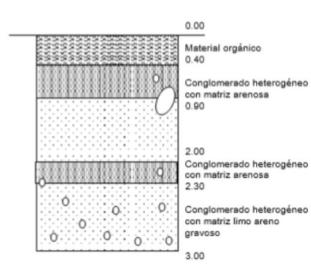
UBICACIÓN : UNIVERSIDAD NACIONAL DE SAN AGUSTÍN - CERCADO - AREQUIPA

MUESTRA : CALICATA 1 FECHA : ABRIL 2022

C-1

Urb. Aurora H-4 Cercado 🗃 281392 📵 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847 ling, Carlos Chiavez Rodriguez Esp. Geordeonia CIP 20474

PERFIL ESTRATIGRÁFICO


OBRA : REFORZAMIENTO ESTRUCTURAL DEL SERVICIO ACADÉMICO DE LA ESCUELA DE

MATEMÁTICA DE LA UNIVERSIDAD NACIONAL DE SAN AGUSTÍN, AREQUIPA 2022

UBICACIÓN : UNIVERSIDAD NACIONAL DE SAN AGUSTÍN - CERCADO - AREQUIPA

MUESTRA : CALICATA 2 FECHA : ABRIL 2022

C-2

Urb. Aurora H-4 Cercado 🗃 281392 🕄 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

ling, Carlos Chávez Rodriguez Esp. Geotecnia CIP 20474

PERFIL ESTRATIGRÁFICO

OBRA : REFORZAMIENTO ESTRUCTURAL DEL SERVICIO ACADÉMICO DE LA ESCUELA DE

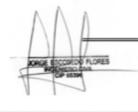
MATEMÁTICA DE LA UNIVERSIDAD NACIONAL DE SAN AGUSTÍN, AREQUIPA 2022

UBICACIÓN : UNIVERSIDAD NACIONAL DE SAN AGUSTÍN - CERCADO - AREQUIPA

MUESTRA : CALICATA 3 FECHA : ABRIL 2022

C-3

0.00 Material orgánico 0.40 Conglomerado heterogéneo con matriz arenosa 1.00 Conglomerado heterogéneo con matriz arenosa 2.20 Conglomerado heterogéneo con matriz limo areno 0 0 gravoso 0 0. 0 D: 3.00



Urb. Aurora H-4 Cercado 8 281392 3 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847 leg. Carlos Chavez Rodriguez Esp. Geotecnia CSP 20474

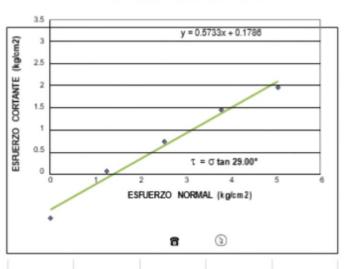
UBICACIÓN DE CALICATAS

Urb. Aurora H-4 Cercado 🗃 281392 🕲 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

Ing. Carlos Chávez Rodriguez Esp. Geotocnia GIP 20474

ENSAYO DE CORTE DIRECTO

: REFORZAMIENTO ESTRUCTURAL DEL SERVICIO ACADÉMICO DE LA ESCUELA DE OBRA


MATEMÁTICA DE LA UNIVERSIDAD NACIONAL DE SAN AGUSTÍN, AREQUIPA 2022 UBICACION : UNIVERSIDAD NACIONAL DE SAN AGUSTIN - CERCADO - AREQUIPA

FECHA : ABRIL 2022 CALICATA 1 110.8

PESO DE LA MUESTRA SECA + RECIPIENTE:

DEFORMACION	ESPECIMEN 01	ESPECIMEN 02	ESPECIMEN 03	ESPECIMEN 04	
TANGENCIAL	s (kg/cm²)	s (kg/cm²)	s (kg/cm ²)	s (kg/cm2)	
dh (mm.)	0.126	0.253	0.379	0.505	
	t (kg/cm²)	t (kg/cm²)	t (kg/cm²)	t (kg/cm²)	
0.00	0.000	0.000	0.000	0.000	
0.20	0.223	0.507	0.761	0.904	
0.40	0.294	0.589	0.802	0.975	
0.60	0.365	0.619	0.822	2.066	
0.80	0.406	0.700	0.853	1.158	
1.00	0.497	0.731	0.893	1.219	
1.20	0.528	0.761	0.975	1.320	
2.40	0.629	0.822	1.036	1.412	
1.60	0.731	0.904	1.066	1.503	
1.80	0.792	0.934	1.168	1.625	
2.00	0.802	1.005	1.259	1.737	
2.20	0.833	1.036	1.361	1.848	
2.40	0.863	1.158	1.462	1.950	
2.60	0.873	1.229	1.594	2.021	
2.80	0.883	1.381	1.625	2.072	
3.00	0.914	1.401	1.747	2.173	
3.20	0.954	1.493	1.838	2.326	
3.40	0.975	1.533	1.991	2.448	
3.60	0.995	1.564	2.204	2.620	
3.80	1.005	1.696	2.316	2.793	
4.00	1.056	1.716	2.427	2.935	

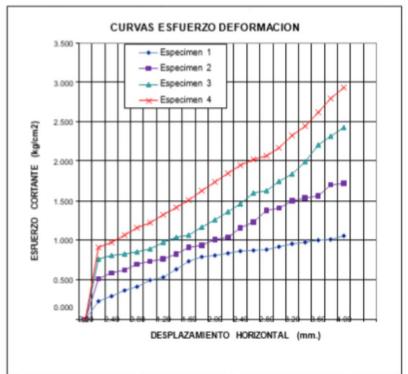
ENVOLVENTE DE RESISTENCIA

Urb. Aurora H-4 Cercado 281392 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS - SUPERVISION Y ASESORIA

ENSAYO DE CORTE DIRECTO

: REFORZAMIENTO ESTRUCTURAL DEL SERVICIO ACADÉMICO DE LA ESCUELA DE


110.8

MATEMÁTICA DE LA UNIVERSIDAD NACIONAL DE SAN AGUSTÍN, AREQUIPA 2022 : UNIVERSIDAD NACIONAL DE SAN AGUSTÍN - CERCADO - AREQUIPA UBICACIÓN

: ABRIL 2022 CALICATA 1 FECHA

PESO DE LA MUESTRA SECA + RECIPIENTE:

VOLUMEN :

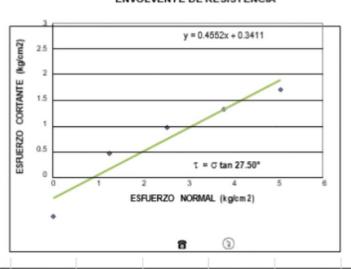
3

Urb. Aurora H-4 Cercado 281392 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

31

ENSAYO DE CORTE DIRECTO

: REFORZAMIENTO ESTRUCTURAL DEL SERVICIO ACADÉMICO DE LA ESCUELA DE


MATEMÁTICA DE LA UNIVERSIDAD NACIONAL DE SAN AGUSTÍN, AREQUIPA 2022 : UNIVERSIDAD NACIONAL DE SAN AGUSTÍN - CERCADO - AREQUIPA

: ABRIL 2022 FECHA CALICATA 2 Y 3

PESO DE LA MUESTRA SECA + RECIPIENTE: 112.5

LEGIS DE DE MENER	THE STREET PROCEEDS	114.5		
VOLUMEN :	11.3			
DEFORMACION	ESPECIMEN 01	ESPECIMEN 02	ESPECIMEN 03	ESPECIMEN 0
TANGENCIAL	s (kg/cm²)	s (kg/cm²)	s (kg/cm ²)	s (kg/cm²)
dh (mm.)	0.126	0.253	0.379	0.505
	t (kg/cm²)	t (kg/cm²)	t (kg/cm²)	t (kg/cm²)
0.00	0.000	0.000	0.000	0.000
0.20	0.233	0.507	0.761	0.863
0.40	0.294	0.558	0.822	0.914
0.60	0.355	0.629	0.873	0.954
0.80	0.375	0.690	0.924	1.005
1.00	0.447	0.731	0.965	2.066
1.20	0.528	0.782	1.005	1.147
1.40	0.599	0.822	1.066	1.229
1.60	0.640	0.873	1.158	1.340
1.80	0.670	0.904	1.219	1.412
2.00	0.711	0.954	1.279	1.473
2.20	0.741	0.985	1.340	1.544
2.40	0.761	1.046	1.401	1.716
2.60	0.812	1.117	1.422	1.767
2.80	0.873	1.178	1.513	1.848
3.00	0.924	1.290	1.594	1.960
3.20	0.985	1.310	1.686	2.102
3.40	1.046	1.361	1.747	2.153
3.60	1.097	1.503	1.869	2.265
3.80	1.168	1.584	1.991	2.377
4.00	1.219	1.716	2.072	2.448

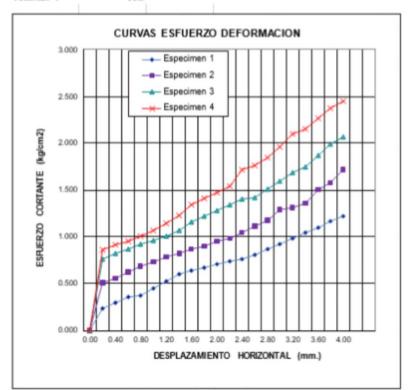
ENVOLVENTE DE RESISTENCIA

Urb. Aurora H-4 Cercado 281392 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

Ing. CARLOS ENRIQUE CHÁVEZ RODRIGUEZ
MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS – SUPERVISIÓN Y ASESORIA

ENSAYO DE CORTE DIRECTO

: REFORZAMIENTO ESTRUCTURAL DEL SERVICIO ACADÉMICO DE LA ESCUELA DE OBRA


MATEMÁTICA DE LA UNIVERSIDAD NACIONAL DE SAN AGUSTÍN, AREQUIPA 2022

: UNIVERSIDAD NACIONAL DE SAN AGUSTÍN - CERCADO - AREQUIPA UBICACIÓN

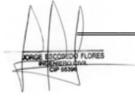
: ABRIL 2022 CALICATA 2 Y 3 FECHA 112.5

PESO DE LAMUESTRA SECA + RECIPIENTE:

VOLUMEN : 11.3

Urb. Aurora H-4 Cercado 8 281392 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

GEOTECNIA AQP EIRL Ing. CARLOS ENRIQUE CHÁVEZ RODRIGUEZ MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS – SUPERVISIÓN Y ASESORIA


ANALISIS DE SUELOS

OBRA : REFORZAMIENTO ESTRUCTURAL DEL SERVICIO ACADÉMICO DE LA ESCUELA DE MATEMÁTICA DE LA UNIVERSIDAD NACIONAL DE SAN AGUSTÍN, AREQUIPA 2022 UBICACIÓN : UNIVERSIDAD NACIONAL DE SAN AGUSTÍN - CERCADO - AREQUIPA

FECHA : ABRIL 2022

MALLAS	DESCRIPCION		1		2		3		
SEPIE	CAL/MUESTRA		C-1		-2	(0-3	$\overline{}$	
AMERICANA	PROF. (m)	0.00	- 3.00	0.00 - 3.00		0.00 - 3.00			
	ABERTURA (mm)	RET.	PASA	RET.	PASA	RET.	PASA		
3"	76.200								
2 1/2"	63.500								
2	50.800								
11/2"	38.100		100						
1"	25.400	5.0	95						
3/4*	19.050		95						
1/2"	12.700		95		100		100		
3/8*	9.525	18.0	77	15.6	84	14.2	88		
1/4"	6.350		77		84		86		
N' 4	4.760	19.0	58	21.8	63	20.0	66		
N' 6	3.360		58		63	-	66		
Nº 8	2.380		58	-	63		66		
Nº 10	2.000	15.2	42.8	15.4	47.2	15.9	49.9		
N'16	1.190	-	42.8	-	47.2		49.9		
N° 20	0.840		42.8	-	47.2	-	49.9		
N° 30	0.590	-	42.8	-	47.2	-	49.9		
N° 40	0.426	12.3	30.5	15.1	32.1	16.2	33.7		
N° 50	0.297	-	30.5	-	32.1	-	33.7		
N° 80	0.177	-	30.5	-	32.1	-	33.7		
Nº 100	0.149	19.8	10.7	10.6	21.5	12.0	21.7		
N° 200	0.074	15.6	- 4.9	8.7	12.8	8.0	13.7		
- N° 200		6.8	- 11.7	12.8	- 0.0	13.7	-		
NATI	LIRAL (%)		3.8		5.6		4.8		
LIMITE LIQUIDO			20.4		23.8		24.6		
NDICE PLASTIC	XX (%)		NP		NP		NP		
CLASIFICACION	N SUCS		SP	5	SM		SM		
			and the same and the same and				The second second	The same of the same of the	

LA INTERPRETACION AJENA DE LOS RESULTADOS ES DE EXCLUSIVA RESPONSABILIDAD DEL USUARIO, SALVO NOTA: LAS RECOMENDACIONES ADJUNTAS.

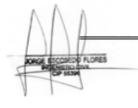
Urb. Aurora H-4 Cercado 8 281392 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

GEOTECNIA AQP EIRL Ing. CARLOS ENRIQUE CHAVEZ RODRIGUEZ

MECANICA DE SUELOS, CONCRETOS, ASFALTO Y ROCAS - SUPERVISION Y ASESORIA

DENSIDAD MAXIMA Y MINIMA

OBRA


REFORZAMIENTO ESTRUCTURAL DEL SERVICIO ACADÉMICO DE LA ESCUELA DE MATEMÁTICA DE LA UNIVERSIDAD NACIONAL DE SAN AGUSTÍN, AREQUIPA 2022

: UNIVERSIDAD NACIONAL DE SAN AGUSTÍN - CERCADO - AREQUIPA ECHA : ABRIL 2022

CALICATA 1							
ENSAYO	DENSIDAD MÍNIMA			DENSIDAD MĀXIMA			
ENSARO	1	2	3	1	2	3	
VOLUMEN DEL MOLDE/MUESTRA (cm³)	1,341.98	1,341.98	1,341.98	1,341.98	1,341.98	1,341.98	
PESO DEL MOLDE (g)	5,310.00	5,310.00	5,310.00	5,310.00	5,310.00	5,310.00	
PESO DEL SUELO + MOLDE (g)	7,556.36	7,556.45	7,556.85	7,680.25	7,680.36	7,680.41	
PESO DEL SUELO (g)	2,246.36	2,246.45	2,246.85	2,370.25	2,370.36	2,370.41	
DENSIDAD MINIMA/MAXIMA (g/cm³)	2.674	1.674	1.674	1.766	1.766	1.766	
RESULTADO	DENSIDA	D MÍNIMA:	1.674	DENSIDA	D MÁXIMA:	1.766	

CALICATA 2							
ENSAYO	DENSIDAD MİNIMA		DENSIDAD MÁXIMA				
ENSATO	1	2	3	1	2	3	
VOLUMEN DEL MOLDE/MUESTRA (cm³)	1,341.98	1,341.98	1,341.98	1,341.98	1,341.98	1,341.98	
PESO DEL MOLDE (g)	5,310.00	5,310.00	5,310.00	5,310.00	5,310.00	5,310.00	
PESO DEL SUELO + MOLDE (g)	7,500.12	7,500.05	7,500.19	7,630.25	7,630.54	7,630.44	
PESO DEL SUELO (g)	2,190.12	2,190.05	2,190.19	2,320.25	2,320.54	2,320.44	
DENSIDAD MINIMA/MAXIMA (g/cm²)	1.632	1.632	1.632	1.729	1.729	1.729	
RESULTADO	DENSIDAD MÍNIMA: 1.		1.632	DENSIDA	D MÁXIMA:	1.729	

CALICATA 3							
ENSAYO	DENS	DAD MÍNIM	IA	DEN:	SIDAD MÁXI	MA	
ZASAFO	1	2	3	1	2	3	
VOLUMEN DEL MOLDE/MUESTRA (cm³)	1,341.98	1,341.98	1,341.98	1,341.98	1,341.98	1,341.90	
PESO DEL MOLDE (g)	5,310.00	5,310.00	5,310.00	5,310.00	5,310.00	5,310.0	
PESO DEL SUELO + MOLDE (g)	7,490.25	7,490.36	7,490.25	7,635.48	7,635.58	7,635.3	
PESO DEL SUELO (g)	2,180.25	2,180.36	2,180.25	2,325.48	2,325.58	2,325.3.	
DENSIDAD MINIMA/MAXIMA (g/cm³)	1.625	1.625	1.625	1.733	1.733	1.73.	
RESULTADO	DENSIDAD MÍNIMA: 1.625		DENSIDAD MÁXIMA: 1.733				

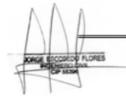
Urb. Aurora H-4 Cercado 8 281392 3 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

DENSIDAD NATURAL

OBRA : REFORZAMIENTO ESTRUCTURAL DEL SERVICIO ACADÉMICO DE LA ESCUELA DE MATEMÁTICA DE LA UNIVERSIDAD NACIONAL DE SAN AGUSTÍN, AREQUIPA 2022

UBICACIÓN : UNIVERSIDAD NACIONAL DE SAN AGUSTÍN - CERCADO - AREQUIPA

FECHA : ABRIL 2022


DESCRIPCION	CALICATA 1	CALICATA 2	CALICATA 3
1 Peso suelo + bandejos grs.	3,825	3,780	3,860
2 Peso bandeja	282	282	282
3 Peso neto suelo + grava (1)-(2)	3,543	3,498	3,578
4 Peso grava secada al aire			
5 Peso de arena + el frasco	7,985	8,056	8,102
6 Peso de arena que queda + frasco	3,269	3,298	3,268
7 Peso neto de arena empleada (5) (6)	2,982	3,024	3,100
8 Densidad de la arena	1.51	1.51	1.51
9 Volumen del hueco (7) : (8) cc	1,975	2,003	2,053
10 Volumen de grava por desplazamiento			
11 Peso del suelo (3) - (4) grs.	3,543	3,498	3,578
12 Volumen suelo (9) (10) cc.	1,975	2,003	2,053
13 Densidad húmeda (11) grs.	1.79	1.75	1.74
14 % de humedad contenida	4.30	3.80	3.80
15 Densidad seco (13): 1 + 14) 100 grs.	1.720	1.683	1.679

Urb. Aurora H-4 Cercado 🖥 281392 📵 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847


Urb. Aurora H-4 Cercado **a** 281392 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

Ing. Carlos Chiercz Rodriguez Esp. Geotecnia CIP 20474

Urb. Aurora H-4 Cercado 👸 281392 🕲 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847 ling, Carlos Chárce Rodriguez Esp. Geolecnia GIP 20474

Urb. Aurora H-4 Cercado 🗃 281392 🕲 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847 ling, Curlos Chávez Rodriguez Esp., Gentronia GIP 20474

NORGE ESCOPEDO FLORES
POSTORES
POSTORES

Urb. Aurora H-4 Cercado **2** 281392 **9** 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

ling, Carlos Chuncz Rodelguez Esp. Geotecnia CSP 20474

Urb. Aurora H-4 Cercado 🗃 281392 🕲 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

Ing. Carlos Chirvez Rodriguez Esp. Gestecnia GIP 20474

Urb. Aurora H-4 Cercado 🛜 281392 💿 959609660 RPM *235505 E-mail: carlos_ch56@hotmail.com RUC: 20456332847

log, Carlos Churcz Rodriguez Esp. Geotecnia CSP 20474

Anexo N°3; Informe de Levantamiento Topográfico

INFORME DE LEVANTAMIENTO TOPOGRAFICO

"Reforzamiento Estructural del Servicio Académico de la Escuela de Matemática de la Universidad Nacional de San Agustín, Arequipa 2022"

UNSA, ABRIL - 2022

TOPOGRAPO: Mac B. Mamani Apaza

Email: survey_bm@botmsil.com - Telefono: 054-325767 / CELULAR: 959214430

GENERALIDADES

1. ANTECEDENTES

La identificación de necesidades de inversión de los establecimientos del área estratégica, ha permitido identificar y estimar necesidades de inversión en el área de matemáticas, basados en el análisis de la demanda y oferta futura de los servicios de educación en el marco de lo que ofrece el Plan Esencial, utilizando parámetros y criterios establecidos por la metodología de Planteamiento Multianual de Inversiones.

 La infraestructura del establecimiento sobrepasa los 10 años de antigüedad y ouenta con un adecuado mantenimiento.

2. OBJETO:

El presente informe tiene como objeto principal realizar el levantamiento topográfico para el proyecto: "REFORZAMIENTO ESTRUCTURAL DEL SERVICIO ACADÉMICO DE LA ESCUELA DE MATEMÀTICA DE LA UNIVERSIDAD NACIONAL DE SAN AGUSTÍN, AREQUIPA 2022" Para tal efecto se iniciaron los trabajos en campo en abril del 2020.

3. UBICACIÓN Y ACCESIBILIDAD AL TERRENO:

El área de MATEMATICAS de la UNSA se ubica en:

DEPARTAMENTO : AREQUIPA PROVINCIA : AREQUIPA DISTRITO : AREQUIPA

MICROLOCALIZACIÓN

ACCESIBILIDAD

 El AREA DE MATEMATICAS, debido a su ubicación es de fácil acceso, se encuentra a 15 minutos de la plaza de armas de AREQUIPA, se puede llegar por la calle mercaderes. Las vías de acceso para llegar a la unas, se encuentran asaltadas y en buen estado.

TOPOGRAFO: Mac B. Mamani Apaza

RUC: 10449600814

4 DESCRIPCIÓN DEL TERRENO EXISTENTE

El terreno posee una forma de terreno regular, con una pendiente media de 2.5% salvo nivelaciones realizadas para la construcción de edificaciones, zonas de circulación y plataformas de recreación. Presentando una diferencia de desniveles de hasta 7 mt en los puntos más extremos.

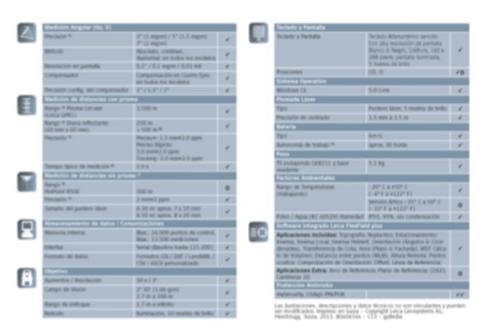
El terreno tiene una altura máxima de 2159.35m.s.n.m, correspondiente a la parte más alejada de las edificaciones y una cota inferior de 2164.16 m.s.n.m por lo que la altitud media del terreno es de 2175.00 m.s.n.m.

5. DESCRIPCIÓN DE LA INFRAESTRUCTURA EXISTENTE

El área de matemáticas se compone de pabellón, los cuales en su totalidad son de dos niveles. La infraestructura está compuesta por muros de ladrillo, tarrajeados y pintados, los pisos externos son de cemento mientras los internos son revestidos con cerámico.

6. ESPECIFICACIONES TÉCNICAS DE LOS EQUIPOS EMPLEADOS

Se emplearon básicamente 03 equipos para la realización del levantamiento topográfico:


GP5 Montana 650

En la siguiente tabla se muestra las especificaciones técnicas del primer equipo empleado: TABLA Nº1: CUADRO DE ESPECIFICACIONES TÉCNICAS DE ESTACIÓN TOTAL LEICA TS-02

TOPOGRAPO: Msc B. Msmsni Apszs

Email: survey_bm@hotmail.com - Telefono: 054-325767 / CELULAR: 959214430

En la siguiente tabla se muestra las especificaciones técnicas del segundo equipo empleado:

TABLA N°2: CUADRO DE ESPECIFICACIONES TÉCNICAS DE GPS NAVEGADOR GARMIN
MONTANA 650

ESP. TEC	NICAS
Sensor GPS	12 Canales
Waypoints	4,000
Memoria interna	3,0 GB
Rutes	200
Auto routing	Sí
Trecks	10,000 pts.
Memoria externa	Slot para MicroSD
Mapa base	Si
Mapas opcionales	Sí
Bateria	Bateria (ión-litio)
Tiempo de trebajo	Hasta 16 horas con bateria
Tamaño de pantalla	(5,06 x 8,93 cm; 4")
Pentalla tactil	Si
Resolución de pantalla	(272 x 480 pixeles)
Cámara	Si
Cálculo de área	Si
Tipo de antena	Alta Sensibilidad (HotFix)

TOPOGRAPO: Mac B. Mamani Apaza

RUC: 10449600814

Peso	289 g con una bateria
Aleme audible	No
Resistencia al agua	Si (IPX7)
Dimensiones del equipo	(7,48 x 14,42 x 3,64 am)
Comunicación PC	USB
Luz de fondo	Si
Opción de antena externa	Si
WAAS / EGNOS	Si
MGRS formato de posición	
Altimetro barométrico	Si
Pesos y ceza	Si
Juegos	No
Calculadore	No
lconos para waypoints	Si
Transf. Bluelooth entre equipos	Si
Información astronómica	Sí
Predicción de mareas	Si

METODOLOGÍA EMPLEADA:

El Levantamiento Topográfico se refiere al establecimiento de puntos de control vertical y horizontal dentro del área de estudio, los cuales fueron enlazados a un Sistema de Control Vertical y horizontal, y a la toma de una cantidad adecuada de puntos de levantamiento a fin de representar fidedignamente el terreno así como las estructuras existentes relacionadas con el presente estudio en planos topográficos a escalas adecuadas.

El Proceso completo de un levantamiento se dividió en dos partes: trabajos de campo, para la toma de datos, y trabajos de gabinete, para el cálculo y procesamiento de los datos para finalmente plasmarlos en planos.

La metodología adoptada para el cumplimiento de los objetivos del estudio, en concordancia con los Términos de Referencia del Contrato, se tomó especial cuidado en el levantamiento del saneamiento básico cuales se tomaron cada 10 m. en líneas rectas y 5 m. en zonas de poca accesibilidad debido a infraestructuras, el detalle interno de patios en zonas en edificación.

Se monumentaran con hitos sobre zonas encementadas, fácilmente identificables puntos de control o Bech Mark (B.M.).

Establecida la metodología a seguir se procedimiento de la siguiente manera:

- Se recopiló y evaluó la información topográfica existente.
 Se hizo un reconocimiento del terreno y se estableció una línea base para establecer el azimut de Partida, al inicio del tramo en estudio, a la cual se le dio coordenadas y cotas relativas usando un Navegador GPS.

TOPOGRAPO: Mac B. Mamani Apaza RUC: 10449600814

- ✓ Se procedió al marcado de BM's en veredas de fácil visibilidad,
- ✓ El levantamiento de las poligonales de apoyo se hizo mediante coordenadas relativas y se nivelaron para el control vertical, las cuales se enlazan a la base antes mencionada, para lo cual se empleó una Estación Total LEICA TS-02.
- ✓ Luego en gabinete se procedió al Ajuste y Compensación de las Poligonales de Apoyo para el cálculo de las coordenadas corregidas y compensadas.
- Para culminar el trabajo de campo del Levantamiento Topográfico, usando una Estación Total LEICA TS-02, mediante la toma de datos en un número adecuado de puntos y toma de vistas fotográficas mediante una cámara digital, incluyéndose el puente existente, las obras de arte y de, taludes, cursos de agua y otros existentes.
- ✓ Procesamiento de la data topográfica en AutoCAD Civil 3D- 2015.
- ✓ Elaboración de Planos a escalas adecuadas utilizando el software AutoCAD Civil 3D- 2015, basados en los datos topográficos procesados, libretas de campo y en fotográfias.

6.1. TRABAJOS EN CAMPO

RECONOCIMIENTO DEL AREA DE ESTUDIO

Para el trabajo de campo, primero se evaluó el terreno y el área de trabajo, con la finalidad de ubicar la mejor posición visual desde la cual se ha realizado el respectivo levantamiento topográfico.

GEOREFERENCIACIÓN

El sistema de coordenadas empleados, fue el sistema UTM PSAD 56, en base al levantamiento topográfico realizado por COFOPRI, basado en estudios previos realizados previos por el IGN.

LEVANTAMIENTO TOPOGRÀFICO TAQUIMÉTRICO

La medición de los ángulos horizontales se efectuó con una Estación Total LEICA TS-02, la cual elimina los errores del cálculo de ángulos horizontales y verticales que se producen normalmente en los teodolitos convencionales. El principio de lectura está basado en la lectura de una señal integrada sobre la superficie completa del dispositivo electrónico horizontal y vertical y la obtención de un valor angular medio. De esta manera, se elimina completamente la falta de precisión que se produce debido a la excentricidad y a la graduación, el sistema de medición de ángulos facilita la compensación automática en los siguientes casos:

- Corrección automática de errores del sensor de ángulos.
- Corrección automática del error de colimación y de la inclinación del eje de muñones.
- Corrección automática de error de colimación del seguidor.
- Cálculo de la medida aritmética para la eliminación de los errores de punteria.

Medición De Distancias Electrónicas

La medición electrónica de distancias se ha ejecutado con el distanció metro incorporado de la Estación Total. El módulo de medición de distancia de Estación Total Leica opera dentro del área infrarroja del espectro electromagnético. Transmite un rayo de luz infrarroja, el rayo de luz reflejado es recibido por el instrumento y con ayuda de un comparador, se puede medir el desfase entre la señal transmitida y recibida. El tiempo de medida para cada punto toma 1 segundos. La precisión de la medida de distancia es de +-(2.3mm+3ppm). El

TOPOGRAPO: Msc B. Mamani Apaza RUC: 10449600814

factor PPM (partes por millón) puede ser considerado en términos de milímetros por kilómetro. Por ello, 3PPM significa 1 mm / Km.

Corrección Atmosférica

La velocidad de la luz varía levemente al ir atravesando diferentes presiones y temperaturas de aire, se debe aplicar un factor de corrección atmosférica para obtener la distancia correcta al final de los cálculos. Este factor de corrección atmosférica se calcula con la siguiente fórmula:

Ppm = 275 - 79.55, p/ (273-p)

p: Presión en milibares

T: Temperatura del aire en grados Celsius

El Estación Total Leica calcula y corrige esto automáticamente, la corrección cero se obtiene con una temperatura ambiente de 12°C y a una presión atmosférica de 462 mmHg.

6.2. TRABAJOS EN GABINETE

Los trabajos en gabinete consistieron en:

- Compensación de las Poligonales Básicas de Apoyo de la Red Horizontal.
- A continuación se detalla la metodología adoptada para la compensación de la red de control horizontal:
- Se compensar los ángulos horizontales observados en campo para que cumplan la condición ceométrica.
- geométrica.
 Con un azimut de partida conocido y los ángulos horizontales compensados se calculan los azimuts de los lados de la poligonal.
- Con los azimuts calculados y las distancias observadas se calculan los incrementos en Este y Norte, los cuales son adicionados a las coordenadas de un vértice para obtener las coordenadas del siguiente, así hasta cerrar la poligonal.
- La diferencia entre las coordenadas calculadas y las coordenadas del punto de inicio se debe repartir proporcionalmente en toda la poligonal, obteniendo coordenadas topográficas.

RED DE CONTROL VERTICAL

Se refiere al conjunto de procedimientos y operaciones en campo y gabinete destinados a determinar la elevación de puntos sobre el terreno, convenientemente elegidos y demarcados, con respecto a un plano de referencia (Nivel Medio del Mar).

Para los levantamientos Topográficos verticales se podrá utilizar el método de nivelación geométrica, o el método de nivelación trigonométrica. La selección de uno, cualquiera de ellos, deberá estar ligada a consideraciones relacionadas con el propósito, utilidad de levantamiento y capacidad relativa para producir los resultados esperados, los que deben formar parte de los criterios contemplados en el estudio.

ENLACE A LA RED GEODÉSICA VERTICAL

A. Trabajo en Campo

El trabajo en campo consistió en el levantamiento de lo puntos verticales y horiazontales.

- a. Personal Empleado
- En el tramo estará conformado una sección rectangular

TOPOGRAPO: Msc B. Mamani Apaza

RUC: 10449600814

de 0.60m de ancho y 0.4m de profundidad.

- 01 Topógrafo.
- 01 Cadista.
- 03 Prismeros.

b. Recursos Empleados:

- 01 Estación Total LEICA TS-02
- 02 Equipos de radiocomunicación Motorola.
- 02 Prismas y Porta Prismas.
- 01 camioneta Toyota 4x4.
- 01 GPS Garmin Etrex Vista C, entre otros accesorios como trípodes, baterías, winchas, pintura, fierro, cemento etc.

Los circuitos que se realizaron en campo para enlazar las poligonales de apoyo a la línea base y se establecieron y monumentaron los Bech Mark (B.M.)

B. Trabajo En Gabinete

El trabajo en gabinete consistió en la compensación de los circuitos de nivelación para encontrar la elevación o cota definitiva de los vértices de las poligonales de apoyo.

Cuando el circuito de nivelación es cerrado, es posible que la cota resultante para el punto final, que es el mismo inicial, no coincida con la cota propia de este punto. La diferencia entre estos dos valores de la cota del punto inicial es el error verdadero de todo el circuito, y se llama error de cierre. Es evidente que las cotas de los puntos intermedios, determinadas al recorrer el circuito, pueden ser también erróneas en ese caso también se procede a su compensación.

Esta corrección, restada de la correspondiente cota observada, da la cota corregida o compensada. Se tiene en cuenta que cuando el error de cierre es positivo todas las correcciones se restan, y al contrario.

PROCESAMIENTO

Procesamiento de Datos

Terminado el trabajo en campo de topografía se procedió al procesamiento en gabinete de la información topográfica.

A. Dibuio

Una vez terminado el trabajo de procesamiento de datos se procedió al procesamiento en gabinete de la información topográfica en el software Autodesk AutoCAD Civil 3D- 2015., elaborando planos topográficos a escala adecuada en la respectiva lámina.

Los trabajos de gabinete consistieron básicamente en:

- Procesamiento de la información topográfica tomada en campo.
- Elaboración de planos topográficos a escalas adecuadas.
- Además del procesamiento de imágenes satelitales.

Los datos correspondientes al levantamiento topográfico han sido procesados en sistemas computarizados, utilizando los siguientes equipos y software:

- 01 Laptop Pentium I7 3.0 GHz
- 01 Impresora hp 1020

TOPOGRAFO: Mac B. Mamani Apaza

RUC: 10449600814

- Software Autodesk AutoCAD Civil 3D- 2015 para el procesamiento de los datos
- · Software AutoCAD Civil 3D- 2015 para la elaboración de los planos correspondientes.

7. METODOLOGÍA EMPLEADA:

7.1. SERVICIOS BÁSICOS EXISTENTES

El Centro de posee las siguientes instalaciones:

- o Instalación del servicio de agua potable.
- Instalación del servicio de desagüe.
- Instalación del servicio eléctrico
 Instalación de cableado, telefonía e internet.

TOPOGRAPO: Mac B. Mamani Apaza

Email: survey_bm@hotmail.com - Telefono: 054-325767 / CELULAR: 959214430

7.2. DATA TOPOGRÁFICA

Durante el levantamiento topográfico se realizó la siguiente toma de puntos:

PUNTO	NORTE	ESTE	COTA	DESCRIPCION
1	200000.0956	8000002.345	1999.9907	INC
2	200000.0328	8000002.125	1999.9884	INC
	199999.6185	8000002.546	1999,9722	HIC
4	199998.863	8000000.981	1999.9452	INC
	191998.6419	8000000.769	1999.9373	INC
6	199997.1181	7999909.201	1999.8832	INC
7	199996.9054	7919199.075	1999.8698	INC
8	199995.7387	7999997.949	1999.8204	INC
9	199995.5149	7919107.739	1999.811	INC
10	199996.713	7919199.725	1999.8764	INC
11	199996.3965	7999995.969	1999.8227	INC
12	199996.6075	79199905.755	1999.8324	INC
13	199997.2998	7999994.159	1999.8447	HIC
14	199997.7291	7919194.568	1999.8641	1NC
15	199997.9379	7091994.35	1999.871	INC
16	200000.5169	7099996.87	1999.9752	INC
17	200000.3085	7999997.083	1999.9641	3NC
18	199999.8747	7999906.666	1999.9451	3NC
19	199999.1824	7919198.248	1999.924	INC
20	199998.9716	7099998.46	1999.9196	BNC
21	200002.316	7919190.588	1999.9689	iR
22	200002.5019	7999990.398	1999.9575	ia
23	200006.5091	7999989.933	1999.9418	ia
24	200006.68	7999990.063	1999.9635	ia
25	200001.1925	7999999.346	1999.9906	ia
26	200001.3528	7919199.357	1999.9907	ia
27	200005.3505	7999999.594	2000.0483	ia
28	200005.4848	7919199.623	2000.0511	iR
29	200005.0772	8000001.686	2000.0694	iav
30	200004.8485	8000003.517	2000.0942	iRV
31	200005.0109	8000003.536	2000.1151	1
32	200005.244	8000001.711	2000.1416	,
33	200006.884	8000003.716	2000.194	3
34	200007.7489	8000003.821	2000.2172	3
35	200009.1399	8000001.395	2000.4273	cc
36	200009.474	7999998.31	2000.6027	oc oc
37	200008.6419	7999998.22	2000.5598	ic ic
36	200007.9263	7999997.448	2000.5625	oc oc
39	200008.0737	7999997.448	2000.5929	20

TOPOGRAFO: Mac B. Mamani Apaza

RUC: 10449600814

40	200008.9803	7999995.26	2000.6017	cc
41.	200009.8621	7919194.723	2000,5924	CCA
42	200010.274	7999990:947	2000.6442	ce
43	200000.6569	8000003.572	2000.0174	UR.
44	200000.7996	8000003.599	2000.0157	us.
45	200004.5226	8000006.121	2000.1004	SIMP
46	200000.544	8000005.664	1999.9992	UMP
47	200005.8479	8000006.014	2000.0681	VIB
46	200010.0919	8000006-462	2000.147	VAB
49	200016.4716	8000007.005	2000.4063	VIII
50	200025.7284	8000007.731	2000.7959	V/B
51	200009.6599	8000001.634	2000,4439	VAB
52		8000001.889	2000.5707	V88
	200011.4841 199997.2367	8000004.55		VAB
53			1999.7511	
.54	199996.4127	8000007.604	1999.7054	VAB
55	199993.6193	8000010.926	1999.7219	WB
.56	199992.2674	8000017.192	2000.7368	WIES
57	199990.4955	8000024.385	1999.862	VIB
58	199994.2967	8000022.002	1999.9696	V/B
59	200006.9648	8000026.314	2001.6952	VRS
60	200014.4086	8000027,075	2001.5753	WBS
61	199998.3467	8000000:909	1999.9423	ય
62	199991.8766	8000030.305	2000.0153	ય
63	200006.4843	7999991.074	2000.522	ì
64	200007.4336	7909095.294	2000.5945	3
65	200007.4183	7909095.896	2000.5889	9
66	200006.8414	7999995.868	2000.5476	9
67	200007.7357	7999999.422	2000.5096	DR.
68	200008.5714	7999999.529	2000.4963	DR.
69	200009.3175	7999999.624	2000.4527	rik
70	200007.6564	8000000.233	2000.462	TR.
71	200006.1664	8000000.498	2000.3718	3
72	200006.7793	8000004.614	2000.0228	3
73	200004.3277	8000007.843	2000.0074	ia.
74	200004.4672	8000007.646	2000.1118	ia.
75	200004.3241	8000007.638	2000.018	ap.
76	200000.3481	8000007.217	1999.9351	W.
77	200000.4255	8000007.255	1999.9308	ia.
78	200000.2002	8000007.198	2000.0135	ia.
79	199999.7808	8000012.206	1999.896	iik
80	199999.6114	8000011.98	2000.0604	ia.
81	1999997.8282	8000012.033	1999.9154	5R
				-
82	199997.6268	8000011.808	2000.0301	art.

Email: survey_bm@botmail.com - Telefono: 054-325767 / CELULAR: 959214430

83	199997.6125	8000013.733	1999.8909	SAP
84	199997.3969	8000013.715	2000.0181	un.
85	199998.2675	8000013.852	1999.8806	inp
86	199998.101	8000014.85	1999.8967	SRP
87	199997.95	8000015.558	1999.89	URP
86	199997.8378	8000016.528	1999.9045	UIP
89	199997.2832	8000016.485	1999.8973	URP.
90	199997.0746	8000016.436	2000.0383	URP.
91	199997.1895	8000015.422	2000.0247	ia.
92	199997.2778	8000014.713	2000.0321	UR.
90	199996.8391	8000018.392	2000:0416	UR.
94	199997.0528	8000018.196	1999.9429	ia.
95	199998.8184	8000018.582	2000.0615	ia .
96	199998.2154	8000023.471	2000.0641	uk .
97	199998.4495	8000023.241	1999.9237	ia.
96	199998.9294	8000023.547	2000.0855	/
99	200001.2627	8000023.767	2000.1483	1
100	200001.4183	8000023.515	2000.0069	iik
101	200006.1878	8000024.245	2000.2798	iik
102	200006.2167	8000023.998	2000.1449	iik
108	200004.7406	8000020.825	2000.07	3
104	200004.839	8000020.001	2000.0726	3
105	200004.1857	8000019.914	2000.0656	5
106	200007.8214	8000019.219	2000.1967	ì
107	200008.4656	8000016.18	2000.2186	ł
108	200009.332	8000013.166	2000.224	ì
109	199998.4664	8000028.486	2000.1835	1
110	199998.3121	8000027.538	2000.3119	5
111	199997.6103	8000027.474	2000.3124	2
112	199997.5185	8000028.414	2000.165	CIV CIV
113	199996.8224	8000030.754	2000.1514	í
114	199996.3901	8000030.989	2000.1394	4
115	199996.7983	8000031.09	2000.1581	DA.
116	199996.5164	8000033.562	2000.1235	cev
117	199998.6931	8000033.77	2000.1558	t
118	199991,2039	8000027.769	1999.9558	:av
119	199990.2229	8000027.692	1999.9339	:N
120	199990.3714	8000026.751	1999.8892	:N
121	199988.9012	8000027.566	1999.9008	NLV.
122	199989.2965	8000023.491	1999.821	ΨV
123	199986.1723	8000022.767	1999.7952	i
124	199987.1781	8000031.007	1999.8571	9
125	199988.6117	8000029.944	1999.8897	2

Email: survey_bm@hotmail.com - Telefono: 054-325767 / CELULAR: 959214430

126	199988.4612	8000031.141	1999.8852	9
127	199987.7782	8000031.087	1999.872	9
128	199968.863	8000032.422	1999.9103	э
129	199989.3091	8000032.89	1999.9184	o .
130	199969.3687	8000032.201	1999.8745	9
131	199989.9993	8000032.259	1999.8489	9
132	199987.5827	8000032.733	1999.8145	ce
133	199987.0218	8000034.028	1999.8625	1
134	199987.6686	8000031.076	1999.8598	1
135	199983.3349	8000033.857	1999.8512	4
136	199983.5971	8000029.83	1999.9055	4
137	199985.9221	8000029.849	1999.8556	ł.
138	199988.1528	8000013.468	1999.7792	i .
139	199991.7065	8000012.187	1999.7844	WV
140	199991.0025	8000015.414	1999.8007	/RP
141	199991.206	8000014.45	1999.8018	/RP
142	199992.6311	8000013.958	1999.842	VL VRP
143	199993.1832	8000013.026	1999.8405	VL VRP
144	199994.768	7999997.878	1999.7764	1
145	199992.3205	7999993.786	1999.6659	1
146	199992.8532	7999991.34	1999.6494	1
147	199995.9561	7919192.352	1999.7777	1
148	200013.7837	8000004.495	2000.4289	1
149	200014.2668	8000008.39	2000.4211	1
150	200019.3827	8000009.049	2000.6114	ia.
151	200019.3429	8000009.256	2000.4819	ia.
152	200022.1388	8000005.404	2000.7236	à
153	200022.4523	8000005.447	2001.0537	3
154	200055.2838	8000017.559	2001,9106	w
155	200055.2329	8000017.612	2001.8486	1
156	200060.8159	8000018.155	2001.9961	ND QU
157	200060.8173	8000018.18	2001.9435	t .
158	200066.4572	8000018.799	2002.0282	t
159	200066.3941	8000018.736	2002.0766	ar ar
160	200066.5512	8000018.796	2002.0566	ł
161	200074.1643	8000019.873	2002.1441	t
162	200075.2809	8000010.089	2002.1504	ł
163	200067.4232	8000009.262	2002.0297	ND CM
164	200080.172	7999993.119	2002.1365	ia.
165	200080.1887	7999992.92	2002.2102	SR.
166	200069.6913	7999993.94	2008.0858	PLS
167	200058.3541	7999990.76	2001.9098	ia.
168	200054.9217	8000003.81	2002.6456	MUR

Email: survey_bm@botmail.com - Telefono: 054-325767 / CELULAR: 959214430

169	200058.0337	7999991.552	2001.8888	5
170	200057,2963	7999991.487	2001.853	э
171	200056.9053	7999992.024	2001.8394	-0
172	200056.8532	7999992.69	2001.8743	CIA
179	200057.792	7999994.005	2001.9043	w
174	200057.5078	7999996.582	2001.9148	ND CH
175	200055.099	7919198.334	2001.9347	w.
176	200053.3661	7919196.674	2001.9146	w
177	200050.8061	8000001.168	2001.8864	1
178	200053.0671	8000001.918	2001.9035	1
179	200053.4206	8000007.57	2001.9324	1
180	200051.2379	8000008.538	2001.948	/G
181	200050.7701	8000008.482	2001.6719	/G
182	200050.1787	8000006.624	2001.5885	/G
183	200050.614	8000006.667	2001.9115	/G
184	200051.4046	8000008.939	2001.9466	1
185	200053.5248	8000011.963	2001.9554	1
186	200054.6096	8000012.904	2001.9445	
187	200055.6924	8000013.639	2001.9173	4
188	200055.9722	8000010.922	2001.9404	1
189	200056.6438	8000004.399	2001.9073	/
190	200055.9432	8000004.329	2001.844	9
194	200056.0116	8000003.57	2001.8802	э
192	200047.1782	7999998.484	2001.2179	э
193	200047.0424	7999998.98	2001.1928	9
194	200047.4712	7999999.065	2001.225	9
196	200047.7444	7999995.462	2001.2466)
196	200046.1141	7999991.986	2001.1457	9
197	200043.0362	7999998.348	2001.0636	9
196	200042.9449	7999994.242	2001.0494	0
199	200042.9766	7999992.13	2000.9928	9
200	200044.0137	7999992.236	2001.1124	9
201	200043.9098	7999993.3	2001.0416	5
202	200042.7764	7999993.986	2001.0257	6
208	200041.0776	7999992.955	2001.055	00
204	200040.0958	7999968.904	2001.0599	COMUR
205	200043.2863	7999909.221	2001.0437	/MUR
206	200049.3175	7999991.821	2001.3191	ય
207	200050.8956	7999990.03	2001.4545	VIR
208	200046.5372	7999989.58	2001.2444	VE
209	200046.2684	7999996.921	2001.2543	188
210	200052.6788	7999992.235	2001.6785	URB BRA
211	200040.7851	7999994.647	2001.1054	w

Email: survey_bm@botmsil.com - Telefono: 054-325767 / CELULAR: 959214430

212	200041.4629	8000005.673	2001.0612	,
213	200039.7074	8000005.485	2001.0767	ce
214	200039.4803	8000007.261	2001.0515	1
215	200041.2673	8000007.461	2001.0442	1
216	200040.8429	8000010.991	2001.1843	/SR
217	200042.0943	8000011.304	2001.1613	SR.
218	200042.3289	8000011.119	2001.2887	SR.
219	200033.4067	8000004.776	2001.1137	w
220	200032.8104	8000004.736	2001.0668	00
221	200032.3243	8000006.464	2001.0368	i
222	200033.992	8000006.655	2001.0532	i .
223	200033.5904	80000t0.335	2001.0409	4
224	200024.4304	8000003.816	2001.062	20
225	200022.6327	8000003.62	2001.0746	3
226	200022.3208	8000003.599	2000.7455	3
227	200022.9527	8000003.64	2000.9191	3
228	200021.7497	8000003.51	2000.7351	9
229	200021.5856	8000003.151	2000.7004	9
230	200020.8736	8000003.082	2000.6752	o c
231	200021.0134	8000002.773	2000.6893	o c
232	200020.4542	8000002.717	2000.6877	5
233	200019.5899	8000002.544	2000.6859	00
234	200021.0712	8000003.397	2000.6884	ય
235	200014.8458	8000002.769	2000.4806	AF.
236	200012.1592	8000002.473	2000.3854	re e
237	200013.5231	8000001.851	2000.5946	w
238	200013.0624	8000002.015	2000.4464	9
239	200013.5961	8000002.632	2000.4222	3
240	200012.2688	8000001.963	2000.4353	9
241	200012.6379	8000002.547	2000.4031	9
242	200010.3061	8000001.763	2000.3209	3
243	200010.8249	8000002.345	2000.333	9
244	200018.8053	8000014.088	2000.5088	3
245	200018.8561	8000017.169	2000.5509	3
246	200018.9208	8000020.25	2000.5425	ą.
247	200031.3154	8000021.414	2000.944	4
248	200031.7395	8000018.41	2000.971	1
249	200032.0616	8000015.396	2000.94	3
250	200041.6718	8000014.688	2001.2002	iR.
251	200041.8503	8000014.661	2001.3455	iR.
252	200042.137	8000015.519	2001.3649	SR.
253	200041.955	8000015.59	2001.2049	SR.
254	200042.761	8000016.379	2001.2402	SR.

Emzil: survey_bm@botmzil.com - Telefono: 054-325767 / CELULAR: 959214430

255	200042.8194	8000016.166	2001.3965	ia.
256	200042.3625	8000022,471	2001.2652	ia:
257	200042.3601	8000022.695	2001.4291	ik
258	200041.3958	8000022.996	2001.3949	iR
259	200041.2871	8000022.811	2001.2413	ia.
260	200040.4124	8000023.851	2001.1821	Life.
261	200040.6364	8000023.931	2001.3375	SR .
262	200039.9638	8000027.258	2001.1775	ia.
263	200040.1167	8000027.484	2001.344	ia.
264	200048.8851	8000033.34	2001.9273	/
265		8000033.592	2001.7976	,
266	200051.2659	8000032.788	2001.7976	ZIA.
267	200052.8491	8000032.444	2001.8222	IA I
268	200052.0555	8000026.118	2001.843	,
269	200051.4961	8000024.208	2001.8047	/
270	200049.9378	8000023.211	2001.6729	/SR
271	200049.9119	8000023.428	2001.932	/SR
272	200049.8252	8000024.062	2001.567	3
273	200049.0945	8000023.998	2001.6226	3
274	200050.2331	8000017.193	2001.6559	iR
275	200050.3613	8000016.991	2001.8553	iR
276	200050.2151	8000017.486	2001.6625	iR
277	200050.3331	8000017.384	2001.8694	iik
278	200050.5629	8000017.208	2001.8708	1
279	200051.6909	8000017.21	2001.8836	1
280	200052.7607	8000016.986	2001.8129	
281	200053.0239	8000016.757	2001.8281	/
282	200052.0094	8000017.21	2001.8131	iR
283	200051.8802	8000017.215	2001.8824	iR
284	200051.8451	8000017.571	2001.8967	iR
285	200051.9423	8000017.718	2001.803	iR
286	200055.6702	8000021.318	2001.863	RR
287	200060.844	8000023.853	2001.9257	RR
288	200055.3799	8000030.42	2001.8605	RR
289	200053.5553	8000037.951	2001.8323	RR.
290	200075.3685	8000025.644	2002.176	RR
291	200077.0756	8000016.369	2002.1667	RR
292	200076.8615	8000006.802	2002.1593	RR
293	200075.0966	8000030.036	2002,1598	RR
294	200068.5314	8000030.889	2002.0984	3
295	200068.3704	8000032.36	2002.0779	1
296	200068.0112	8000035.719	2002.0709	1

TOPOGRAFO: Msc B. Msmani Apaza

Email: survey_bm@botmail.com - Telefono: 054-325767 / CELULAR: 959214430

296	200067.7828	8000037,603	2002.0676	ч.
299	200074.1706	8000036,386	2002.1277	1
300	200074.062	8000036.966	2002.1579	1
301	200073.2724	8000038.208	2001.9869	us.
302	200073.3326	8000039.679	2002.0782	1
303	200073.2634	8000042.136	2002.0496	1
304	200067.6185	80,00039.08	2002.0526	1
305	200046.7349	8000012.404	2001.4093	VA
306	200046.7703	8000002.911	2001.5108	VRPAL
307	200044.821	8000027.657	2001.6427	VASC.
308	200040.2187	8000029.409	2001.3669	VRSC
309	200032.5807	8000028.405	2002.2179	VRSC.
310	200022.2758	8000027.719	2001.1656	VASC:
311	200022.2538	8000027.372	2001.173	VASC
312	200051.2978	8000009-807	2001.5742	9
313	200050.0875	8000009.659	2001.5439	э
314	200050.1956	8000008.446	2001.3972	э
315	200048.601	8000035.731	2001.9205	/CI
316	200048.4714	8000036.955	2001.9351	/CI
317	200047.3439	8000095.622	2001.8769	/CI
318	200047.2369	8000036.832	2001.8858	/CI
319	200046.4445	8000036.821	2001.2446	CANL
320	200046.5609	8000036.824	2001.3063	CANL
321	200046.1695	8000036.839	2000.8415	CANL
322	200045.977	8000036.862	2001.2479	CANE
323	200045.8684	8000036.919	2001.2441	CANL
324	200044.7572	8000035.428	2001.809	ય
325	200038.6042	8000036.253	2001.4877	00
326	200038.7347	8000034.815	2001.5671	4
327	200038.9006	8000032.42	2001.5673	1
328	200020.323	8000030.598	2000.938	1
329	200019.03	8000030.503	2000.8843	i .
330	200019.5828	8000032.945	2000.9314	1
331	200020.8562	8000025.793	2000.7394	1
332	200020.0147	8000025.585	2000.7	iR.
333	200019.8999	8000025.325	2000.5798	iik
334	200019.4859	8000033.08	2000.7683	э с
335	200019.3377	8000034.233	2000.8457	o .
336	200018.1883	8000032.984	2000.7357	9
337	200017.9116	8000032.876	2000.9094	N.
336	200000.3643	8000032,489	2000.2121	tev
339	200000.5017	8000031.075	2000.2769	į.
340	200001.2418	8000031.714	2000.2127	3

Email: survey_bm@botmail.com - Telefono: 054-325767 / CELULAR: 959214430

341	200038.7257	8000040.932	2001.5688	36C
342	200042.2494	8000041.302	2001.5777	36C
343	200041.8598	8000045.293	2000.9382	36C
364	200049.756	8000047.281	2001.7373	/
345	200047.218	8000048.133	2001.9075	/D
346	200047.4844	8000045.889	2001.9184	/D
347	200046.2487	8000045.771	2001.918	32
346	200045.5888	8000045.704	2001.3665	32
349	200044.8203	8000045.624	2001.3596	36
350	200044.5518	8000047.885	2001.3673	36
351	200045.3575	8000047.976	2001.3806	32
352	200045.0789	8000050.18	2001.301	CANL
353	200044.9668	8000050.163	2001.3013	CANL
354	200044.5051	8000050.094	2001.2925	CANL
355	200044.3377	8000050.63	2001.2865	CANL
356	200044.6007	8000050.649	2000.8734	CANL
357	200042.1706	8000047.642	2000.1409	36
358	200042.411	8000045.377	2000.1352	36
359	200041.1079	8000047.566	2000.1374	1
360	200058.3763	8000040.566	2001.9021	/
361	200059.0376	8000034.589	2001.9199	1
362	200059.4204	8000032.694	2001.931	1
363	200060.3113	8000031.426	2001.9408	1
364	200063.4831	8000041.109	2002.0206	1
365	200062.23	8000041.699	2002.0696	1
366	200061.6845	8000041.644	2001.9762	э
367	200061.7714	8000040.914	2002.0497	9
368	200061.737	8000041.294	2001.9619	
369	200059.8111	8000041.124	2001.9298	ı
370	200059.6072	8000042.991	2001.9313	1
371	200061.6522	8000046.853	2002.019	1
372	200062.8403	8000046.984	2001.9979	1
373	200042.6243	8000049.871	2001.0103	VABS -
374	200044.5468	8000058.039	2001.6489	VABS
375	200033.7936	8000067.012	2000.3611	VARS
376	200032.3634	8000064.431	2000.2881	VARS.
377	200030.7459	8000062.221	2000.312	VRBS
378	200031.1482	8000054.835	2000.3518	NRES .
379	200005.8424	8000046.599	2000.0973	WIES .
380	200012.076	8000047.148	2000.3213	VRBS
381	200017.2308	8000047.733	2000.7163	VRBS
382	200037.7531	8000044.925	2000.15	cc
383	200043.5149	8000050.267	2001.1575	1RR

Email: survey_bm@hotmail.com - Telefono: 054-325767 / CELULAR: 959214430

384	200040.1391	8000049.471	2000.2382	RR
385	200037.6894	8000054.438	2000.277	IRR
386	200041,7675	8000056.023	2001.1781	IRR
387	200033.0096	8000048.186	2000.0596	URR.
386	200032.172	8000047.614	2000.1542	IRR
389	200023.0842	8000046.819	2000.1323	IRR
390	200022.674	8000054.515	2000.1168	IRR
395	200023.589	8000057.498	2000.1507	IRR
392	200025.5954	8000060.35	2000.1117	IRR
393	200027.3335	8000059.646	2000.1379	IRR
394	200033.5622	8000066.664	2000.2619	URR.
395	200033.8061	8000067.015	2000.2974	VARS.
396	200032.3926	8000064.501	2000.2553	NAMS.
397	200030.7907	8000062.262	2000.2061	VARS
396	200060.0924	8000060.886	2001.9106	1
399	200047.2194	8000070.048	2001.6895	1
400	200044.8243	8000069.673	2001.9331	1
401	200045.3588	8000064.997	2001.5882	э
402	200044.3204	8000063.557	2001.4478	9
403	200043.0699	8000068.324	2001.3342	CANL
404	200042.9415	8000068.319	2001.3323	CANL
405	200042.4948	8000068.3	2001.3376	CANL
406	200042.3606	8000068.362	2001.3281	CANL
407	200046.0696	8000059.207	2001.9368	ų
408	200052.9267	8000063.304	2001.8858	>
409	200052.0174	8000071.294	2001.8785	>
410	200031.2707	8000068.831	2000.1635	ic or
411	200032.5195	8000069.133	2000.1638	1
412	200027.1705	8000060.478	2000.1171	1
413	200026.8338	8000061.687	2000.1469	cc
414	200025.0325	8000061.744	2000.0501	3
415	200021.9434	8000062.919	2000.0631	CCAL
416	200021.8674	8000059.499	2000.1868	ic ii
417	200021.8013	8000056.593	2000.0299	1
418	200021.4602	8000056.41	2000.0204	4
419	200019.2033	8000055.196	2000.0268	1
420	200017.8067	8000054.453	2000.0155	1
421	200018.0797	8000054.182	1999.8717	9
422	200018.7223	8000053.785	1999.9031	9
423	200019.1099	8000054.455	1999.9118	5
424	200018.7307	8000052.57	1999.9785	3
425	200018.726	8000051.939	1999.9936	9
426	200018.0571	8000051.996	1999.9806	9

TOPOGRAFO: Mac B. Mamani Apaza RUC: 10449600814

427	200014.5611	8000052,449	2000.1301	9
428	200021.6455	8000055.772	1999.9448	3
429	200022.3816	8000054.812	2000.0373	3
430	200023.2495	8000055.539	2000.0911	9
431	200023.471	8000056.477	2000.1926	3
432	200021.7924	8000045.632	2000.0984	/
433	200019.4593	8000045.409	2000.1001	/
434	200020.7154	8000043.239	2000.1455	cc
435	200020.5007	8000043.199	2000.2549	w
436	200016.872	8000056.809	2000.06	cc
437	200024.0089	8000063.563	2000.0572	CCA
438	200036.7684	8000067	2000.3132	in .
439	200040.3794	8000068.474	2001.1853	RF.
440	200036.189	8000057.867	2000.2557	in .
441	199996.1047	8000069.597	2000.0467	cc
442	200003.7678	8000043.927	2000.7398	36
443	200003.316	8000047.927	2001.6303	35
464	199999.8393	8000047.566	2001.6513	36
445	199999.5352	8000041.16	2001.0403	ces
446	200014.8899	8000052.124	2000.0215	0
447	200014.9683	8000052.757	2000.0185	2
448	200014.3311	8000052.805	2000.0266	9
449	200007.6777	8000054.216	1999.9963	п
450	200007.9722	8000054.708	2000.002	п
451	200007.4957	8000055.003	2000.0072	п
452	200009.9841	8000056.085	2000.0089	NT .
453	200009.6659	8000055.56	2000.0033	KT .
454	200006.9498	8000057.002	2000.0139	KT .
455	200004.4368	8000058.763	2000.0208	KT .
456	200012.0657	8000058.004	2000.0153	2
457	200011.5914	8000057.225	1999.9554	9
458	200010.8142	8000057,679	2000.0046	9
459	200010.8988	8000058.027	2000.0147	iR
460	200010.6027	8000057.859	2000.045	源
461	200009.7452	8000056.559	2000.0375	iR
462	200009.7276	8000056.24	2000.0056	iR
463	200005.6368	8000061.261	2000.0217	iR.
464	200005.6176	8000060.938	2000.028	iR.
465	200004.7459	8000059.61	2000.016	iR
466	200004.4821	8000059.451	1999.9968	iR
467	200004.442	8000058.77	2000.0077	ŝ
468	200003.0756	8000058.923	1999.9865	/
469	200003.8431	8000058.385	2000	1

Emzil: survey_bm@botmzil.com - Telefono: 054-325767 / CELULAR: 959214430

470	200002.6235	8000056.441	1999.9879	/
471	200007.8078	8000053.193	1999.9798	/
472	200009.034	8000055.258	1999.9995	1
473	200009.843	8000054.803	2000.0139	/
474	200011.5054	8000057.266	1999.9968	1
475	200008.5891	8000060.118	2000.022	,
476	200005.8467	8000061.821	2000.0195	9
477	200005.3894	8000061.081	2000.0195	5
479	200004.6258	8000061.555	1999.9191	9
479	200004.7033	8000061.478	1999,9946	3
480	200005.0906	8000062.304	2000.0149	5
481	199998.1571	8000066.591	2000.0262	9
482	199995,1963	8000068.433	2000.0233	3
483	199995.174	8000068.389	1999.8219	3
484	199993.155	8000009.603	1999.8304	3
485	199993.165	8000069.639		3
486	199993.26	8000066.23	1999.9516	0040
487	199997.9915	8000058.563	1999.7462	1
466	199998.1679	8000056.914	1999.7328	/
489	199999.1866	8000056.533	2000.0395	1
490	199999.2265	8000058.812	1999.9759	1
495	199998.0247	8000056.191	1999.9454	ì
492	199996.3378	8000056.729	1999.7377	/
493	199994.4932	8000053.995	1999.7512	ce
494	199996.6797	8000053.321	1999.7224	/
495	199997.7508	8000054.274	1999.8474	np.
496	199997.22	8000047.704	1999.7323	/
497	199998.2411	8000047.804	1999.7223	,
496	199998.3021	8000046.863	1999.7223	,
	199998.314	8000046.867	1999.7136	/RP
499 500	199997.3259	8000046.764	1999.7135	/RP
501	199999.6529	8000064.228	2000.5416	35
502	200000 8853	8000063.24	2000.5954	35
503	2000013818	8000058.451	2002.0259	35
504	200000.3715	8000057.178	2002.0236	35
505	199996.3798	8000057.176	2003.0277	35
506	199999.5255	8000041.158	2003.0277	200
507	1999998.7186	8000043.377	2000.1442	/RP
			2000.1262	
508 509	199997.6504 199996.5211	8000043.313 8000033.925	1999.7776	JRP 3
				3
510 511	199996.5373 199998.6681	8000033.629 8000033.779	2000.1283	3
512	199996.6785	8000036.134	1999.7527	4V

Email: survey_bm@botmail.com - Telefono: 054-325767 / CELULAR: 959214430

513	199996.2515	8000054.751	2000.6834	:cus
514	199996.5307	8000054.767	2000.6967	cus
515	199996.7226	8000052.827	2000.536	:ous
516	199997.1879	8000048.208	2000.5924	cous
517	199997.3836	8000046.258	2000.6403	cous
518	199997.8224	8000041.661	2000,6184	:cus
519	199998.0358	8000009.715	2000.5447	cous
520	199998.508	80000035.082	2000.4009	cous
521	199994.7162	8000051.265	1999.7641	00
522	199996.1621	8000036.08	1999.7763	cc
523	199993.9817	8000059.126	1999.7582	c
524	199999.8087	8000047.572	2001.6402	36
525	200000.176	8000043.547	2003.1277	36
526	200003.3085	8000047.939	2001.6452	36
527	200002.6967	8000050.594	2000.0402	VRRS.
528	200005.7512	8000046.633	2000.0588	VRIIS
529	200002.4334	8000054.632	2000.0538	URBS .
530	200012.0019	8000047.191	2000.0769	vans
531	200000.9093	8000049.302	2000.1033	VARS
532	200017.1866	8000047.642	2000.0624	VARS
533	200014.1619	8000051.54	2000.0692	VRES
534	199999:972	8000002.346	2000.4806	
535	199997.1044	8000015.846	2000.0418	1.1
536	200022.4782	8000005.282	2001.0559	12
537	200051.004	8000023.804	2001.9607	3
538	200060.2085	8000031.61	2002.0885	31
539	200026.7352	8000046.144	2004.2485	32
540	200015.4869	8000045.037	2004.247	13
541	200004.2784	7999991.2	1999.9596	40
542	200001.2992	8000021.196	1999.9881	W.
543	200039.9382	8000013.394	2001.1231	W.
544	200045.4868	8000066.223	2001.9391	90
545	200007.6939	8000010.468	2000.1283	W.
546	199998.766	8000032.37	2000.1821	4V
547	200041.3685	7999990.519	2001.0529	W.
548	200040.0063	8000046.365	2000.1225	w
549	199999.5306	8000015.356	1999.9348	w
550	200011.0023	8000008.475	2000.2004	W.
551	200049.9279	8000035.419	2001.9359	w
552	200049.2826	8000048.371	2001.9295	W.
553	200000.1351	8000021.782	1999.9535	w
554	200011.0318	8000008.258	2000.3312	W.
555	200048.5627	8000047.174	2001.9261	w

Emzil: survey_bm@botmzil.com - Telefono: 054-325767 / CELULAR: 959214430

L	556	200049.9964	8000034.538	2001.9419	w
	557	199985.9409	8000034.636	1999.8694	w
	558	200012.6963	8000004.521	2000.3715	w
	559	200041.6618	8000033.926	2001,6755	w
Г	560	200014.6757	8000004.745	2000.4391	w

8. CONCLUSIONES Y RECOMENDACIONES:

- Se obtavieron plano topográfico, identificando todo los elementos necesarios de identificar para realizar un buen mantenimiento (postes, cajas de agua y desagüe, buzones, etc.).
- Se permitió complementar el plano obtenido con el plano arquitectónico, pudiendo tener una correcta posición espacial de las edificaciones.
- El terreno existente tiene cierta variaciones con respecto al terreno inscrito difiriéndose tanto en el área y el perimetro tal como se muestra en el cuadro:

PLANOS

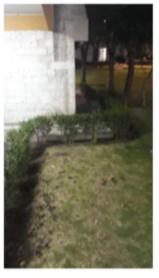
- 1. PLANOS DE UBICACIÓN.
- 2. PLANO TOPOGRAFICO.

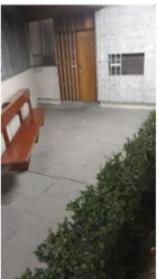
ANEXOS


1. REGISTRO FOTOGRÁFICO:

TOPOGRAPO: Mac B. Mamani Apaza

Email: survey_bm@hotmail.com - Telefono: 054-325767 / CELULAR: 959214430


TOPOGEAFO: Mac B. Memeni Apeze

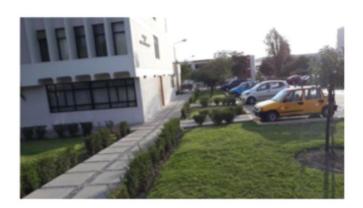

Email: survey_buildhemail.com . Telefonc: 054-325767 / CELULAE: 959214430

EUC: 13449600514

Email: survey_bm@botmail.com - Telefono: 054-325767 / CELULAR: 959214430

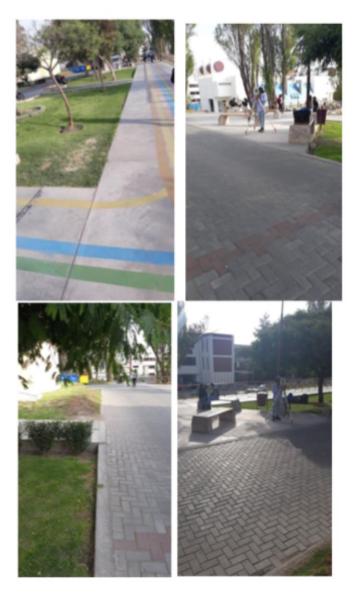
Email: survey_bm@botmail.com - Telefone: 054-325767 / CELULAR: 959214430

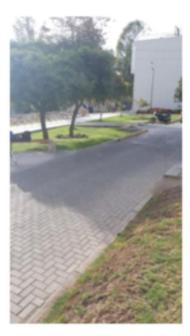
Email: survey_bm@botmail.com - Telefono: 054-325767 / CELULAR: 959214430


Emzil: survey_bm@botmzil.com - Telefono: 054-325767 / CELULAR: 959214430

TOPOGRAPO: Msc B. Msmsni Apszs

Email: survey_bm@botmail.com - Telefone: 054-325767 / CELULAR: 959214430




Emsil: survey_bm@botmsil.com - Telefono: 054-325767/CELULAR: 959214430

Emzil: survey_bm@botmzil.com - Telefono: 054-325767 / CELULAR: 959214430

TOPOGRAPO: Msc B. Msmsni Apszs

Emzil: survey_bm@botmzil.com - Telefono: 054-325767 / CELULAR: 959214430

2. CERTIFICADO DE CALIBRACIÓN DEL EQUIPO UTILIZADO:

Merce LEICA Audelo 1902	Precision Aumentos Altonos con prisma	CADO DE CALIBR	ricion	
Number : ESTACIÓN TOTAL Marca : LEXCA Andréo : TSIQ Serie : 1396331	Aumentus			
Mense : LEICA Andels : 1502 : Barle : 1200231	Aumentus			
Andelo : 1902 Serie : 1356331				
		3500m		
CERTIFICADO DE CALIBRACIÓN	Precision en Distancia	2mm + 2ppm		
DENTIFICATION DE CARDENACION				
Fo. : 20-014/2018				
echa : 25/01/2018				
ENTIGAD CERTIFICADORA:	LABORATORIO CI	OSOLA S.A.C		
METODOLOGÍA APLICADA Y TRAZABI	LIDAD DE LOS PATRO	NES		
era controler y calibrar esta instrumen	tio se contrasta con u	n colleador original TOPCO	N con telescopi	io de 32x en ru
refocado al infinito, al grosor de aus l	irazos está dentro de	O1"; que es patronado perió:	dicamente por u	un teodolita KEI
WM 2A precisión al 01" con al métod	io de lectura Directa-li	nversa y refrendado con un r	rivel automático	TOPCON mo
le precisión +/- 0.7 mm nivelación dot	de de tium.			
l control se ejecuta en la base sopo	de metilles fileds so	in named alone a influencia	a dal elima v a	andreaster less
infinite.	a caract qual o	in heart their a surrence	a de cama y s	mocasos ios
TEMPERATURA LABORATORIO	HUMEDAD R	RELATIVA LABORATORIO	PREI	S. ATM.
2P CELCUS		67%	760	mm Hg
KORMA APLICADA				
lesvisción estándar basada en la nomi	a 13O 8001 /13O 1400	11 del rilvel autumation K3-10	IZ TOPCON CY	GNUS de prec
6.7 mm rávelación doble de Tiern.				
ESULTADOS				
letancia Lactura de instrumento P	Table I action location	serio Contrastado II	Merencia	
	THE CHANGE PROPERTY.	Contraction (
oroentaje de error: ni- 0.001%				
CALIBRACIÓN Y MANTENIMIENTO				
Fecha Mantenimiento 26/01/2018	Calibración	Próxima Calibración	Observe	
And Colored		06 meses	% 100 OPER	WIIVO
		Propietario		Obra
Responsable de Verificación		ECOSURVE E.I.R.L.		
LABORATORIO COSOLA GROUP				
		HUC.:205/9592911		
LABORATORIO COSOLA GROUP S.A.G				
LABORATORIO COSOLA GROUP S.A.C COSOLA GROUP S.A.C.				
LABORATORIO COSOLA GROUP S.A.G		MUC. 2010/99/EA11		
LABORATORIO COSOLA GROUP S.A.C COSOLA GROUP S.A.C.				

TOPOGRAPO: Msc B. Msmsni Apszs

RUC: 10449600814