Influencia de las cenizas de cascarillas de arroz en la estabilización de suelos del camino de Villa Primavera – Piura 2022

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:
INGENIERO CIVIL

AUTOR:
Garcia Zapata, Jesus Amberly (orcid.org/0000-0002-8735-6573)

ASESOR:
Dr. Requis Carbajal, Luis Villar (orcid.org/0000-0002-3816-7047)

LÍNEA DE INVESTIGACIÓN:
Diseño de Infraestructura Vial

LINEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA
Desarrollo sostenible y adaptación al cambio climático

PIURA – PERÚ
2022
Agradecimiento

A mi asesor Mg. Requis Carbajal, Luis Villar por llevarnos en el camino correcto de la investigación y la perseverancia.

A el Laboratorio de suelos del Ingeniero Raúl Morales (Telemau) por la buena disposición de su personal y los equipos que me facilitaron.

A mis abuelos, madre, esposa e hijos por el esfuerzo y dedicación a un solo propósito lograr uno de mis objetivos más anhelados convertirme en un gran profesional.
Dedicatoria

La investigación es dedicada a mis abuelos, madre, esposa e hijos, quienes son testigos de los grandes sacrificios que realizamos para salir adelante.

Para para mi familia que ellos son la base de este logro por obtener pronto gracias por el apoyo y esto es para ellos parte fundamental de mi crianza y de la clase y calidad de persona que soy
Índice de contenidos

Carátula
Agradecimiento ... ii
Dedicatoria .. iii
Índice de contenidos .. iv
Índice de tablas .. vi
Índice de figuras o ilustraciones .. vii
Resumen .. xi
Abstract .. xii

I. INTRODUCCIÓN ... 1

II. MARCO TEÓRICO .. 5

III. MÉTODOLOGÍA .. 15
 3.1. Tipo y Diseño de investigación ... 15
 3.2. Variables y operacionalización .. 15
 3.3. Población, muestra y muestreo .. 16
 3.4. Técnicas e instrumentos de recolección de datos ... 16
 3.5. Procedimientos ... 16
 3.6. Método de análisis de datos ... 17
 3.7. Aspectos éticos ... 17

IV. RESULTADOS .. 18

V. DISCUSIÓN DE RESULTADOS .. 51

VI. CONCLUSIONES ... 53

VII. RECOMENDACIONES .. 55

REFERENCIAS ... 56
ANEXOS .. 60
Anexo 01. Matriz de consistencia .. 61
Anexo 02: Matriz de operacionalización de variables .. 63
Anexo 3: Declaratoria de autenticidad del autor .. 64
Anexo 04: Limites de consistencia .. 65
Anexo 05: Ensayo de proctor modificado ... 76
Anexo 06: Ensayo de CBR ... 87
Anexo 07: Hoja de registro N° 01 ... 98
Anexo 08: Hoja de registro N° 02 ... 99
Anexo 09: Hoja de registro N° 03 ... 100
Anexo 10: Certificado de calibración de copa casa grande 101
Anexo 11: Certificado de calibración de balanza 103
Anexo 12: Certificado de calibración de horno 107
Anexo 13: Certificado de calibración de prensa - CBR 112
Anexo 14: Factura de laboratorio ... 115
Anexo 15: Validación de instrumentos ... 116
Anexo 16: Constancia de inscripción de expertos. 120
Anexo 17: reporte turnitin ... 123
Anexo 18: experiencia de expertos ... 126
Anexo 20: Panel fotográfico ... 130
Índice de tablas

Tabla 1. Clasificación de suelos según granulometría .. 10
Tabla 2. Clasificación de suelos según su plasticidad .. 11
Tabla 3. Clasificación de suelos SUCS ... 12
Tabla 4. Clasificación de suelos AASHTO ... 13
Tabla 5. Calidad de subrasante según CBR ... 13
Tabla 6. Estadísticas de fiabilidad ... 17
Tabla 7. Límites de Atterberg del camino ... 18
Tabla 8. Proctor modificado del camino ... 20
Tabla 9. California bearing ratio (CBR a 1") del camino .. 22
Tabla 10. Límites de Atterberg del camino con 5% CCA .. 24
Tabla 11. Proctor modificado del camino con 5% CCA .. 26
Tabla 12. California bearing ratio (CBR a 1") del camino con 5% CCA 28
Tabla 13. Límites de atterberg del camino con 10% CCA 30
Tabla 14. Proctor modificado del camino con 10% CCA 32
Tabla 15. California bearing ratio (CBR a 1") del camino con 10% CCA 34
Tabla 16. Límites de atterberg del camino con 15% CCA 36
Tabla 17. Proctor modificado del camino con 15% CCA 38
Tabla 18. California bearing ratio (CBR a 1") del camino con 10% CCA 40
Tabla 19. Comparativo de resultados CBR .. 42
Tabla 20. Resultados de Proctor (máxima densidad) .. 43
Tabla 21. Tabla de descriptivos de las Calicatas (CBR) .. 43
Tabla 22. Descriptivos de Tratamiento (Proctor) .. 44
Tabla 23. Descriptivos de la Plasticidad .. 45
Tabla 24. Estadísticos de límites de consistencia .. 45
Tabla 25. Prueba de Normalidad: CBR; Proctor, IP .. 46
Tabla 26. Tabla t student aplicada al Índice de Plasticidad 47
Tabla 27. Prueba ANOVA Índice de plasticidad .. 47
Tabla 28. Tabla t student aplicadas al CBR ... 48
Tabla 29. Prueba ANOVA CBR ... 49
Tabla 30. Tabla t student aplicadas al Proctor .. 50
Tabla 31. Prueba ANOVA Proctor .. 50
Índice de figuras o ilustraciones

Figura 1. California bearing ratio (CBR a 1") C-1 del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: EMS). . 22

Figura 2. California bearing ratio (CBR a 1") C-2 del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).. 23

Figura 3. California bearing ratio (CBR a 1") C-3 del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).. 23

Figura 4. Límites de consistencia muestra C-1 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura.. 24

Figura 5. Límites de consistencia muestra C-2 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura.. 25

Figura 6. Límites de consistencia muestra C-3 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura.. 25

Figura 7. Proctor modificado C-1 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).. 26

Figura 8. Proctor modificado C-2 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).. 27

Figura 9. Proctor modificado C-3 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).. 27

Figura 10. California bearing ratio (CBR a 1") C-1 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Laboratorio de mecánica de suelos).. 28
Figura 11. California bearing ratio (CBR a 1") C-2 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos) 29

Figura 12. California bearing ratio (CBR a 1") C-3 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos) 29

Figura 13. Límites de consistencia muestra C-1 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura ... 30

Figura 14. Límites de consistencia muestra C-2 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura ... 31

Figura 15. Límites de consistencia muestra C-3 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura ... 31

Figura 16. Proctor modificado C-1 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos) ... 32

Figura 17. Proctor modificado C-2 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: EMS) ... 33

Figura 18. Proctor modificado C-3 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos) ... 33

Figura 19. California bearing ratio (CBR a 1") C-1 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos) ... 34

Figura 20. California bearing ratio (CBR a 1") C-2 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos) ... 35

Figura 21. California bearing ratio (CBR a 1") C-3 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos) ... 35
Figura 22. Límites de consistencia muestra C-1 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura... 36

Figura 23. Límites de consistencia muestra C-2 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura... 37

Figura 24. Límites de consistencia muestra C-3 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura... 37

Figura 25. Proctor modificado C-1 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos)................................. 38

Figura 26. Proctor modificado C-2 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos)................................. 39

Figura 27. Proctor modificado C-3 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos)................................. 39

Figura 28. California bearing ratio (CBR a 1") C-1 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos)................................. 40

Figura 29. California bearing ratio (CBR a 1") C-2 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos)................................. 41

Figura 30. California bearing ratio (CBR a 1") C-3 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura... 41

Figura 31. Calicatas CBR.. 42

Figura 32. Comparativo de medias de tratamiento (CBR)................................. 44

Figura 33. Comparativo (Proctor) de tratamiento.. 44

Figura 34: Inicio de excavación calicata 01... 130

Figura 35: Excavación de calicata 01... 130

Figura 36: muestra completa de calicata 01... 131
Figura 37: Inicio de excavación calicata 02 ... 131
Figura 38: profundidad de 1.5 metros calicata 02 ... 132
Figura 39: fin de muestreo de calicata 02 ... 132
Figura 40: inicio de muestreo de calicata 03 ... 133
Figura 41: excavación total de calicata 03 ... 133
Figura 42: muestra total de calicata 03 ... 134
Figura 43: ensayo de límites de consistencia ... 134
Figura 44: ensayo de proctor modificado ... 135
Figura 45: ensayo de análisis granulométrico .. 135
Figura 46: compactación para ensayo de CBR ... 136
Figura 47: muestras de suelo natural extraídas para su análisis natural y modificado con cenizas de cascarilla de arroz ... 137
Figura 48: cascarillas de arroz en los molinos de Ignacio escudero - Sullana – Piura ... 137
Figura 49: horno artesanal de calcinación de cenizas de cascarilla de arroz 138
Figura 50: obtención de cenizas de cascarilla de arroz ... 138
Figura 51: cenizas de cascarilla de arroz para la dosificación del 5, 10 y 15 %. 138
Figura 52: toma de suelo arcilloso para su análisis natural y comparativo........ 139
Figura 53: adición de cenizas 5, 10 y 15% en muestras de suelo natural para los respectivos ensayos de laboratorio ... 139
Resumen

Esta tesis contó como objetivo determinar la influencia de las cenizas de cascarillas de arroz en la estabilización de suelos del camino de Villa Primavera - Piura 2022.

Se trabajó con el diseño de investigación es experimental - cuasi experimental. Para realizar la investigación se trabajó con 4 muestras de suelo arcilloso.

Cabe mencionar que, se realizaron tres tipos de mezcla con 5%, 10% y 15% de ceniza, donde a partir de los análisis efectuados, la plasticidad en el 5% experimenta una baja del 14.0433 llegando a 0.7667, lo cual determinó la relación de las cenizas de cascarillas de arroz en la estabilización de suelos, donde con un valor significativo 0.02 (p<0.05), para los niveles mencionados, por ello se concluyó que, Las cenizas de cascarillas de arroz influye en la estabilización de suelos del camino de Villa Primavera - Piura 2022.

Palabras clave: Cenizas cascarillas de arroz, estabilización suelos, índice plasticidad y porctor modificado
Abstract

The objective of this research was to determine the influence of rice husk ashes on the soil stabilization of the Villa Primavera - Piura 2022 road.

The research design was experimental - quasi-experimental. To carry out the investigation, we worked with 4 clay soil samples.

It is worth mentioning that three types of mixture were made with 5%, 10% and 15% ash, where from the analyzes carried out, the plasticity in 5% experiences a drop of 14.0433 reaching 0.7667, which determined the influence of the ashes of rice husks in soil stabilization, where with a significant value 0.02 (p <0.05), for the mentioned levels, for this reason it was concluded that, The ashes of rice husks significantly influence the stabilization of soils of the way of Villa Primavera - Piura 2022.

Keywords: Rice husk ash, soil stabilization, plasticity index and modified porctor
I. INTRODUCCIÓN

Los suelos inestables son un problema con el que los profesionales de la ingeniería civil han tenido que lidiar durante muchos años, ya que las diversas construcciones que se han llevado a cabo han creado muchas dificultades en relación con la base de cimentación prevista Hernández (2017, p. 7). Algunos suelos no reúnen las características mínimas requeridas en su estado natural, es decir, su resistencia es insuficiente para aguantar la masa o las cargas de las infraestructuras, lo que hace que comiencen a aparecer problemas a lo largo del tiempo como el desgaste, la degradación temprana y la deformación. No solo eso, pues la inestabilidad es una condición que expone a la vida a un riesgo latente, a los bienes materiales y el ambiente. En vista de ello, expertos han propuesto una solución mediante el uso de aditivos como el NaCl, el CaCl2, oxido de calcio, así como aditivos de diferentes tipos de ceniza para aumentar su facultad de carga y su vida útil.

En la investigación efectuada en Brasil por Pereira (2018, p. 3), resalta la estabilización que deben tener los suelos, que sirven como base para mejoras futuras que se deseen realizar y sugiere el California Bearing Ratio (CBR), donde mejora su valor de 336% and 659%, luego de los tratamientos aplicados.

En el Perú, el Reglamento Nacional de Edificaciones, RNE (2018, p. 28) establece en la norma CE 020 las consideraciones técnicas mínimas para la estabilización de suelos y taludes. Estos métodos han sido utilizados ampliamente en proyectos viales cuyas subrasantes tienen poca capacidad portante y son susceptibles a asentamientos. Cabe mencionar que estos métodos varían de acuerdo a las condiciones establecidas en la naturaleza, puesto que el Perú presenta una geología muy variable, con diferentes clases de suelos, geotecnia diferente según su ubicación geográfica, por lo que se estudia con mucho cuidado a las subrasantes de los proyectos, pues es imprescindible disponer de datos adecuados de resistencia, estabilidad volumétrica, compresibilidad y permeabilidad durante la construcción de los diferentes proyectos, para
así poder ejecutar las obras en su totalidad, evitar fallos y futuros daños por hundimientos o asentamientos y conseguir una infraestructura con mayor capacidad portante y resistencia.

El camino del sector de Villa Primavera, perteneciente a Ignacio Escudero provincia de Sullana, de la región Piura, presenta suelos que se caracterizan por ser inestables, o sea por su baja capacidad de carga, lo que requiere un tratamiento previo para crear diversas bases para la construcción de carreteras. Además, la mayoría de caminos y calles de la zona no están pavimentados y, si lo están, están sujetas a los problemas que la baja resistencia del suelo causa, como la formación de surcos, los desniveles y las ondulaciones, tal como ocurre en el camino Villa Primavera, dificultando el tránsito vehicular e inclusive volviéndose intransitable en periodos lluviosos. Además de conocer las propiedades mecánicas y físicas del suelo, es esencial proponer métodos alternativos de mejora basados en soluciones ecológicas, renovables e incluso reciclables, como el uso de cenizas de cascarillas de arroz (CCA) como estabilizador.

Diferentes investigadores han experimentado mezclar muestras de suelos naturales con diferentes tipos de cenizas, y considerando que el distrito de Ignacio Escudero es una zona arrocera con más de dos mil hectáreas de extensión agrícola, esta investigación considera aprovechar los residuos producto de esta actividad económica, o sea reutilizar las cenizas de cascarillas de arroz y estudiar su influencia sobre las características originales del suelo natural del sector Villa Primavera, a fin de estudiar como mejoran las propiedades como lo es el CBR, por ejemplo. Los resultados de este estudio piloto deberían proporcionar una opción económica y saludable con el medio ambiente para la estabilización del suelo, mejorando las características físicas y mecánicas, aumentando la resistencia y evitando la deformación y otras formas de deterioro.

Frente a esto, el presente estudio ha planteado como problema general: ¿Cómo influyen las cenizas de cascarillas de arroz en la mejora de suelos del camino de Villa Primavera - Piura 2022? Además, se ha
planteado como problemas específicos: (a) ¿Cuáles son las propiedades del suelo natural del camino de Villa Primavera - Piura 2022?, (b) ¿Cómo son las características del suelo modificado con cenizas de cascarillas de arroz del camino de Villa Primavera - Piura 2022?, y (c) ¿Cómo será el análisis comparativo entre el suelo normal y el suelo modificado con cenizas de cascarillas de arroz del camino de Villa Primavera - Piura 2022?

Por la problemática expuesta, se escogió como objetivo general: Establecer la influencia de las cenizas de cascarillas de arroz en la estabilización de suelos del camino de Villa Primavera - Piura 2022. Los objetivos específicos de este estudio fueron primero: (a) Determinar las características del suelo natural del camino de Villa Primavera - Piura 2022, (b) Definir las propiedades del suelo modificado con cenizas de cascarillas de arroz del camino de Villa Primavera - Piura 2022, y (c) Realizar el análisis comparativo entre el suelo normal y el suelo modificado con cenizas de cascarillas de arroz del camino de Villa Primavera - Piura 2022.

Por lo tanto, tenemos como hipótesis general: La hipótesis general de esta investigación fue: Las cenizas de cascarillas de arroz influye en la estabilización de suelos del camino de Villa Primavera - Piura 2022.

Como hipótesis específico tenemos: (a) La evaluación de las características mecánicas del suelo normal del camino de Villa primavera – Piura 2022, (b) La medición de las propiedades físico mecánicas del suelo modificado con cenizas de cascarillas de arroz del camino de Villa primavera – Piura 2022, y (c) El cálculo de las propiedades mecánicas del suelo natural y las características mecánicas y físicas del suelo modificado con cenizas de cascarillas de arroz del camino de Villa primavera – Piura 2022.

La importancia que tiene este estudio es la contribución a la reutilización de residuos naturales como lo son las cenizas de cascarillas de arroz como insumo para modificar las cualidades del suelo, especialmente de aquellos que no son capaces de soportar valores adecuados de densidad y la capacidad de carga, ya que la inestabilidad
puede provocar asentamientos y, por tanto, daños en las estructuras situadas sobre ellos, razón por la cual este estudio tiene justificación práctica y ambiental. La metodología utilizada en este estudio puede ser utilizada por investigadores, académicos y profesionales que deseen comprender por qué la ceniza de la Cca. de arroz estabiliza los suelos y puede proporcionar una base metodológica y un argumento para ello.
II. MARCO TEORICO

Antecedentes internacionales

Barragán y Cuervo (2019, p. 78) en Colombia realizaron un estudio de ingeniería con el propósito de brindar soporte o estabilizar un suelo de tipo arenoso - arcilloso en estado natural, mejorando su comportamiento físico mecánico adicionándole cenizas de cascarillas de arroz (CCA), obteniendo como hallazgo principal un efecto positivo en factores como la resistencia o capacidad de soporte, la misma que fue aumentada hasta en un 19% respecto a sus características en estado natural, concluyendo que las cenizas de cascarilla de arroz impactan positivamente sobre los atributos físico mecánicos de suelos arcillosos en estado natural.

Castro y Scipión (2017, p. 4) en Lima realizaron un estudio de ingeniería con el propósito de establecer un método alternativo en donde se utilicen las cenizas de cascarillas de arroz para estabilizar suelos de tipo arcillosos y así mejorar las características de la subrasante, obteniendo como hallazgo principal que al realizar varias mezclas de suelo natural con cenizas de cascarillas de arroz en diferentes porcentajes, valores como el CBR aumentaron entre un 5% hasta un 19,4% en el caso del diseño de mezcla al 20%. Por otro lado, la compresión equivalente ilimitada aumentó de 6,9 kg/cm2 a 8,7 kg/cm2. La mejor proporción de ceniza de cascarilla de arroz y arcilla es 20% CCA y 80% suelo natural. Los cientificos concluyeron que la ceniza de Cca. de arroz es un excelente inmovilizador y, por lo tanto, tiene efectos prometedores en la ingeniería de pavimentos.

López (2021, p. 112) en Moyobamba realizó un estudio de ingeniería con el propósito de estudiar la influencia de las Cca en el mejoramiento de características de suelos de tipo arcillosos. Realizó ensayos para determinar características como granulometría, límites de consistencia, Proctor Modificado y CBR, obteniendo como hallazgo principal que las mezclas del 5%, 10% y 15% de cenizas de cascarillas de arroz con las muestras de suelo natural amplificaron estos valores, aumentando valores como el CBR de 3.96% a 10.5%, y llegando a la conclusión que, si es factible emplear este
residuo para estabilizar suelos, siendo una alternativa que brinda unos excelentes resultados.

Llamoga (2017, p. 139) en Cajamarca realizó un estudio de ingeniería con el propósito de evaluar cómo afectan las cenizas de cascarillas de arroz al ser adicionadas en las muestras de suelo natural, sobre las propiedades de expansión y CBR de suelos arcillosos, obteniendo como principales hallazgos que al adicionar ceniza en un 4% y 7% se reduce la expansión en un 16.84% y un 21.12%, sin embargo se obtiene un aumento del potencial de expansión en la mezcla del 10% de cenizas de cascarillas de arroz con suelo natural, precisamente un incremento del 0.43%. Por otro lado, el CBR también incrementó al adicionar cenizas de cascarillas de arroz frente al resultado obtenido solo en suelo natural, llegando a aumentar hasta en un 7.8%. El diseño óptimo fue del 7% lo que llevo a la conclusión que las cenizas de cascarillas de arroz pueden ser empleadas en el tratamiento de estabilización de suelos arcillosos.

Antecedentes locales

Mory (2020, p. 88) en Piura realizó un estudio de ingeniería con el propósito de evaluar como la incorporación de cenizas de cascarillas de arroz puede afectar al comportamiento mecánico de una muestra de suelo arenoso, encontrando entre los principales hallazgos que al agregar cenizas de cascarillas de arroz es capaz de reducir la densidad máxima y aumentar la cantidad de agua óptima para una compactación adecuada. Con agregar el 5% de cenizas, el suelo aumentó su resistencia, un 109% superior a la del suelo natural. La adición de un 10% y un 15% de cenizas disminuyó la función de soporte en comparación con el suelo que contenía un 5% de cenizas, pero siguió siendo superior al suelo natural. En la conclusión de incorporación de cenizas de cascarillas de arroz tiene un efecto positivo sobre las propiedades de los suelos arenosos y puede aplicarse hasta en un quince por ciento.

Ramal y Raymundo (2020, p.131) , en Piura aplicaron un estudio de ingeniería con el propósito de analizar las bondades de las cenizas de cascarillas de arroz en el uso como fuente de estabilización de suelos, especialmente aquellos de bajo volúmenes de tránsito considerando que este residuo se
produce en gran abundancia en la región piurana, llegando a concluir que usar cenizas de cascarillas de arroz como estabilizador es factible, y se presenta como una solución verde y eco amigable que es capaz de mejorar los suelos, aumentar la capacidad del CBR.

Zevallos y Honores (2019, p. 148) en Piura realizaron una exploración de ingeniería con el propósito de estudiar como las cenizas de cascarillas de arroz y la cal determina en el comportamiento de atributos físicos y mecánicos de suelos arcillosos, concluyendo que, para suelos cohesivos como los arcillosos, el uso de cal como estabilizador era mejor que el uso de ceniza de Cca. de arroz, porque el primer ejemplar aumentaba el soporte portante en un ciento cuarenta y cuatro por ciento, mientras que el siguiente sólo la aumentaba en un setenta y dos por ciento, teniendo en cuenta que la capacidad portante original del suelo en estado natural era del 3,3%.

Cajeleon y Mondragón (2018 pág. 11) tuvieron como objetivo estabilizar los suelos agregando cenizas de cáscaras de arroz. Su población fue 37 kilómetros carretera Choros - Pipingos. Los instrumentos usados son protocolos estandarizado, dentro de los cuales resalta: Análisis granulométrico, Limite de Consistencia y Valor de Soporte de California. Entre los resultados obtenidos, el autor indica, que al adicionar entre el 10% a 15% de ceniza se logra un CBR entre 8.5% y 10.3%. Se concluye que al estabilizar los suelos con cenizas de Cca. de arroz, se obtiene un tipo de suelo regular. Lopez y Zapata (2021 pág. 12) tuvieron como objetivo Calcular el impacto de adicionar ceniza de Cca. de arroz, a fin de estabilizar los suelos y hacerlo más resistente. Fue de enfoque cuantitativo, usando indicadores: CBR, granulometría y el Proctor. En cuanto al resultado logrado luego de usar la Cca se incrementó el CBR de 3.6% hasta 5.4% al incluir 6% de ceniza de Cca. de arroz, y un 12.20% en la humedad optima, alcanzando, en su compactación, una densidad máxima de 1.90 gr/cm3. El estudio concluye que la ceniza de Cca. de arroz
Bases teóricas y conceptuales

Suelo: según Zohra y Laredj (2020, p. 3) “definen al suelo como un conjunto de partículas unidas por una cohesión de diminuta fuerza”.

Ceniza: según Pachla y Marangon (2020, p. 2), la ceniza es “un polvo de color gris claro resultante de una ignición completa, por lo general, compuesto por álcalis y sales de tierras, sílice y otros”, esto quiere decir, es el sobrante que se produce a partir de la combustión de una clase o determinado tipo de material. Sus aplicaciones son diferentes, siendo su principal uso en aglomerados de acuerdo a Muñoz y King (2016, p. 21). Los usos comerciales de las cenizas de cascarillas de arroz son en el proceso de extracción de sílice, tal como lo indica Mor, S.; Manchanda (2017, p. 1286), como material puzolánico como lo indican Rukzo y Chindaprasirt (2016, p. 1745) y otras aplicaciones. La sílice existe en formas amorfas y cristalinas y va a depender del grado de temperatura y duración de la combustión. Esta sílice amorfa es muy reactiva, sobre todo cuando tiene un tamaño de partícula fino. Dado que el cemento Portland requiere un enorme calentamiento en su fabricación, la sustitución parcial del cemento por cenizas de cascarillas de arroz supondrá un menor consumo de energía y podrá generar reducciones de emisiones certificadas (créditos de carbono) (Nurtanto y Junaidi, 2020, p. 8).

En cuanto a la constitución de las cenizas de cascarillas de arroz:

El análisis químico: indica que el material está compuesto principalmente por SiO2 (93%) y puede utilizarse como material puzolánico según la norma ASTM C 618. El contenido de óxido de sílice de cenizas de cascarillas de arroz es mucho mayor que el de las cenizas volantes. A partir de estudios anteriores sobre el uso de cenizas de residuos agrícolas como constituyentes del hormigón, las cenizas de cascarillas de arroz podrían utilizarse como material cementante cuando tiene un tamaño de partícula fino. Además, durante la trituración, la estructura porosa de las partículas de ceniza de Cca. de arroz colapsó y el efecto negativo sobre la absorción de agua se redujo en gran medida, como lo indica (Pornkasem, 2018, p. 10).
Estabilización de suelos: Gatto (2018, p. 132) define a la estabilización del suelo como la aplicación de métodos físico, químicos y biológicos a los suelos con el fin de alterar sus propiedades de manera positiva (o sea mejorarlas) y utilizarlo con fines de ingeniería. Esto es afirmado también por Guney y Firooz (2017, p. 14) quienes indican que la acción de mezclar suelo con otros materiales para mejorar sus propiedades es lo que se le conoce como estabilización. El MTC (2016, p. 128) lo define como una mejora para mejorar la dureza del suelo, y que se logra con la aplicación de agentes externos o naturales como el material cementante, el óxido de calcio o el betún en suelos considerados inadecuados o pobres.

Estabilización con cenizas de Cca. de arroz: Las cenizas de cascarillas de arroz es un subproducto de la combustión de las cascarillas que la molienda del arroz deja. Su uso como estabilizador del suelo es una alternativa ecológica respecto a su eliminación final. Algunos estudios han demostrado que aplicando una combinación de este tipo de cenizas y cal a suelos arenosos se puede lograr que se estabilicen. Las cenizas de cascarillas de arroz se producen por combustión incontrolada en hornos convencionales o por combustión en laboratorio a temperaturas controladas. La mejora de los suelos arenosos con cenizas de cascarillas de arroz es una alternativa a la eliminación final que tiene beneficios ambientales, sociales y económicos (Behak, 2016, p. 110).

Estudios de suelos: Es un informe técnico que da a conocer los atributos mecánicos, físicos y químicos de un determinado suelo, resultados que son obtenidos mediante la aplicación de procedimientos, métodos, actividades y ensayos estandarizados o normados. Antes de ejecutarse cualquier proyecto, es indispensable que se conozcan las características de la cimentación citado por Albarracín y Monterroza (2015, p. 92). Cada técnica empleada tiene un nivel de dificultad, y cada resultado obtenido puede diferir de acuerdo a las características geológicas de las muestras de suelos evaluadas. Los proyectos de ingeniería emplean estos resultados dentro de sus parámetros de diseño (Cherubin y Tornela, 2007, p. 122).
Las pruebas de suelo consisten en la perforación de pozos de muestreo de al menos 1,50 metros de profundidad en el suelo natural. Estos agujeros se conocen como calicatas o pozos de exploración, de donde se extraen las muestras tomadas que son almacenadas y transportadas para su posterior análisis en el laboratorio. Bajo norma, la separación que deben tener estas calicatas está dadas por una distancia de entre 250 m y 2 km.

El MTC (2018, p. 123) exige una serie de parámetros mínimos que los suelos destinados a aplicaciones de ingeniería deben cumplir, por lo que es indispensable saber la naturaleza del suelo previa realización de cualquier trabajo. A Continuación, se dan a conocer las siguientes cualidades básicas del suelo.

Granulometría; el análisis granulométrico o tamizado da como resultado una caracterización de los agregados que componen el suelo según sus granos y se agrupan por los porcentajes de la tabla siguiente:

Tabla 1. Clasificación de suelos según granulometría

<table>
<thead>
<tr>
<th>Tipo de material</th>
<th>Tamaño de partículas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravoso</td>
<td>65 mm - 4.75 mm</td>
</tr>
<tr>
<td>Arenoso</td>
<td>grueso: 4.75 mm - 2.10 mm</td>
</tr>
<tr>
<td></td>
<td>medio: 2.10 mm - 0.42 mm</td>
</tr>
<tr>
<td></td>
<td>fino: 0.42 mm – 0.074 mm</td>
</tr>
<tr>
<td>Materiales finos</td>
<td></td>
</tr>
<tr>
<td>Límos</td>
<td>0.074 mm – 0.005 mm</td>
</tr>
<tr>
<td>Arcillas</td>
<td>Menor a 0.005 mm</td>
</tr>
</tbody>
</table>

Fuente: (MTC, 2018, p. 134)
Flexibilidad: Propiedad del suelo que no se descompone cuando es absorbido por el agua, es decir, grado de estabilidad. Para determinar esto, se utiliza el límite de Atterberg. Determinan la sensibilidad del suelo al contenido de agua, miden la cohesión, y son: punto de fusión (LL), punto de fusión (LP) y límite de contracción (LC). Además del límite, también puede especificar el Índice de plástico (PI), es el producto de LL - LP. Según el índice plástico del suelo, el suelo se divide en las siguientes categorías:

<table>
<thead>
<tr>
<th>Índice de plasticidad</th>
<th>Plasticidad</th>
<th>Característica</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP > 20</td>
<td>Alto</td>
<td>Suelo alto arcilloso</td>
</tr>
<tr>
<td>1 < IP ≤ 10</td>
<td>Medio</td>
<td>Suelo arcilloso</td>
</tr>
<tr>
<td>IP < 6</td>
<td>Bajo</td>
<td>Suelo bajo arcilloso</td>
</tr>
<tr>
<td>IP = 0</td>
<td>NP</td>
<td>Suelo sin arcilla</td>
</tr>
</tbody>
</table>

Fuente: (MTC, 2018, p. 143)

Proctor modificado: De esta prueba se conocen la Máxima Densidad (MDS) y el Contenido de Humedad (COH), que son datos importantes para calcular el California o CBR Bearing Ratio.

Tipo del suelo: Se informará bajo los sistemas SUCS y AASHTO de acuerdo con el Manual de Carreteras del Departamento de Transporte.
Tabla 3. Clasificación de suelos SUCS

<table>
<thead>
<tr>
<th>Divisiones mayores</th>
<th>Símbolo del grupo</th>
<th>Nombre del grupo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suelo granular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grueso el 50% o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mas se retuvo en el</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamiz N° 200 (0.075mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grava</td>
<td>GW</td>
<td>Grava bien graduada, grava fina o gruesa</td>
</tr>
<tr>
<td>Símbolo del grupo: Grava < 50% de la porción gruesa que pasa el tamiz Nº 4 (4.75 mm)</td>
<td>GW</td>
<td>Grava bien graduada, grava fina o gruesa</td>
</tr>
<tr>
<td>Grava limpia</td>
<td>SW</td>
<td>Arena fina bien graduada</td>
</tr>
<tr>
<td>Símbolo del grupo: Arena limpia menos del 5 % pasa el tamiz Nº 200</td>
<td>SW</td>
<td>Arena fina bien graduada</td>
</tr>
<tr>
<td>Grava con más de 12 % de finos pasantes del tamiz Nº 200</td>
<td>GM</td>
<td>Grava límosa</td>
</tr>
<tr>
<td>Grava pobremente graduada</td>
<td>GP</td>
<td>Grava pobremente graduada</td>
</tr>
<tr>
<td>Grava arcillosa</td>
<td>GC</td>
<td>Grava arcillosa</td>
</tr>
<tr>
<td>Suelo granular Grueso</td>
<td>SP</td>
<td>Arena pobremente graduada</td>
</tr>
<tr>
<td>Símbolo del grupo: Arena con más de 12 % de finos pasantes del tamiz Nº 200</td>
<td>SP</td>
<td>Arena pobremente graduada</td>
</tr>
<tr>
<td>Suelo de grado fino más del 50 % de la muestra pasa el tamiz Nº 200 (0.075mm)</td>
<td>SM</td>
<td>Arena limosa</td>
</tr>
<tr>
<td>Limos y arcillas Limite líquido < 50</td>
<td>SM</td>
<td>Arena limosa</td>
</tr>
<tr>
<td>Limos y arcillas Limite líquido > 50</td>
<td>OL</td>
<td>Arena arcillosa</td>
</tr>
<tr>
<td>Símbolo del grupo: Inorgánico</td>
<td>OL</td>
<td>Arena arcillosa</td>
</tr>
<tr>
<td>Limos y arcillas Limite líquido > 50</td>
<td>MH</td>
<td>Limo orgánico, arcilla orgánica</td>
</tr>
<tr>
<td>Inorgánico</td>
<td>MH</td>
<td>Limo de alta plasticidad, limo elástico</td>
</tr>
<tr>
<td>Orgánico</td>
<td>OH</td>
<td>Arcilla orgánica, limo orgánico</td>
</tr>
<tr>
<td>Suelos altamente orgánicos</td>
<td>Pt</td>
<td>Turba</td>
</tr>
</tbody>
</table>

Fuente. Adaptado de (Longa y Sánchez, 2021, p. 132)
Tabla 4. Clasificación de suelos AASHTO

<table>
<thead>
<tr>
<th>Clasificación general</th>
<th>Materiales granulares (35% o menos pasa el tamiz # 200)</th>
<th>Materiales limo arcillosos (más de 35% pasa el tamiz # 200)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificación de grupo</td>
<td>A-1</td>
<td>A-3</td>
</tr>
<tr>
<td>Clasificación de grupo</td>
<td>A-1-a</td>
<td>A-1-b</td>
</tr>
<tr>
<td>Tamizado, % que pasa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 10 (2.00mm)</td>
<td>50 máx.</td>
<td></td>
</tr>
<tr>
<td>No. 40 (425 pm)</td>
<td>30 máx.</td>
<td>50 máx.</td>
</tr>
<tr>
<td>No. 200 (75pm)</td>
<td>15 máx.</td>
<td>25 máx.</td>
</tr>
<tr>
<td>Consistencia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limite liquido</td>
<td>B</td>
<td>40 máx.</td>
</tr>
<tr>
<td>Índice de plasticidad</td>
<td>6 máx.</td>
<td>N.P.</td>
</tr>
<tr>
<td>Tipos de materiales característicos</td>
<td>Cantos, grava y Arena fina</td>
<td>Grava y arena limo arcillosas</td>
</tr>
<tr>
<td>Calificación</td>
<td>Excelente a bueno</td>
<td></td>
</tr>
<tr>
<td>Fuente. Adaptado de (Longa y Sánchez, 2021, p. 132)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ensayos CBR: Resistencia del suelo, equivalente al 94% de la densidad máxima en seco, con una penetración de carga de 1”. La resistencia del suelo se clasifica según la siguiente tabla:

Tabla 5. Calidad de subrasante según CBR

<table>
<thead>
<tr>
<th>Categorías de subrasante</th>
<th>CBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>So:</td>
<td>CBR < 3%</td>
</tr>
<tr>
<td>Si</td>
<td>3% ≤ CBR < 6%</td>
</tr>
<tr>
<td>S2</td>
<td>6% ≤ CBR < 10%</td>
</tr>
<tr>
<td>S3</td>
<td>10% ≤ CBR < 20%</td>
</tr>
<tr>
<td>S4</td>
<td>20% ≤ CBR < 30%</td>
</tr>
<tr>
<td>S5</td>
<td>CBR > 30%</td>
</tr>
</tbody>
</table>

Fuente: (MTC, 2018, p. 174)
La consolidación de suelos ha evolucionado al pasar del tiempo y se ha convertido en un tema más maduro, tanto que incluso algunos autores lo consideran de un arte a una ciencia (Montejo, 2019, p. 131).

Aplicaciones de la ceniza en la ingeniería: Según el Departamento de Transporte de Estados Unidos, nombrado en US-DT (2021, p. 81) las cenizas se han utilizado exitosamente en muchos proyectos de ingeniería para mejorar la resistencia del suelo. Como tal, puede utilizarse para estabilizar las diferentes capas compuestas por material granular y que a su vez componen la estructura de capas del pavimento, como la subrasante, el balasto y el relleno, y para reducir las presiones laterales del suelo. También puede influir en la estabilidad de los terraplenes y los taludes. Así lo corrobora un estudio realizado por Prakashrao y Gajbhiye (2016, p. 4) en el que se comprobó que la adición de cenizas aumentaba el valor CBR de los suelos mixtos. Otra razón para utilizar las puzolanas volantes como equilibrador va por el hecho de que es mucho más barato utilizarlas que sustituir el suelo directamente. Por otro lado, este material se utiliza en los países occidentales para la construcción de pavimentos de carreteras, especialmente para su estabilización (Goñás y Saldaña, 2020, p. 198).
III. MÉTODOLOGÍA

3.1. Tipo y Diseño de investigación

Este proyecto de tesis es de tipo básica según las definiciones del CONCYTEC (2018) ya que se focaliza en el entendimiento del comportamiento de la variable, de su particularidad, de sus cambios, fenómenos, lo que deriva a profundizar el conocimiento científico.

Asimismo, el diseño de investigación es experimental - cuasi experimental. De acuerdo con Carrasco (2019, p. 476) en este tipo de estudio existe una manipulación intencional de los atributos de la variable dependiente. La evaluación se dará mediante el siguiente esquema de investigación:

\[G: O_1 - X - O_2 \]

Dónde: G es grupo de control, O1 es observación antes del experimento, X es el experimento y O2 es observación después del experimento.

3.2. Variables y operacionalización

V1: Estabilización de suelos (Variable dependiente)

Definición conceptual: Es la aplicación de procedimientos físicos, químicos, mecánicos o biológicos al suelo para modificar positivamente las propiedades del suelo (en otras palabras, mejorarlas) y utilizarlas con fines de ingeniería (Gatto, 2018, pág. 132).

Definición operacional: Esta se operationaliza según los ensayos que se realizarán los cuales han sido precitados como granulometría, Límites de Atterberg, Proctor modificado y CBR.

V2: Cenizas de cascarillas de arroz (Variable independiente)

Definición conceptual: Las cenizas de cascarillas de arroz es un subproducto de la combustión de las cascarillas que la molienda del arroz deja.

Definición operacional: Esta se medirá con respecto a las distintas proporciones o porcentajes de mezclas que se realizarán con las muestras de suelo natural. Estas son 5%, 10% y 15%.
3.3. Población, muestra y muestreo

Población: Cubrirá toda la vía desde el cantón Ignacio Escudero, provincia de Sullana, departamento de Piura, hasta el cantón Villa Primavera, con un recorrido de 2.071 km.

Muestra: Será de tipo no probabilística e intencional. Se extraerán 4 muestras de suelo arcilloso, calicatas que serán cavadas cada 500m de equidistancia.

Unidad de análisis: subrasante.

3.4. Técnicas e instrumentos de recolección de datos

Técnica: aplicamos el análisis documental. Carrasco (2019, pág. 476) indica que esta técnica involucra la recopilación de documentos de los cuales se extraerá la información puntual que está relacionada con la problemática y los fines de la investigación.

Instrumentos: Documentos escritos. Se utilizará el Estudio de Caracterización de Suelos y sus fichas de caracterización, de acuerdo a cada ensayo realizado por el laboratorio de suelos. Precisamente se emplearán las fichas de todos los ensayos.

3.5. Procedimientos

Obtención de la ceniza: Coordinará la distribución y combustión en el horno industrial con el molino de arroz. La ceniza se almacenará en bolsas de plástico y se enviará al laboratorio para probar diferentes diseños de mezcla: 95 % tierra 5 % ceniza de Cca. de arroz, 90 % tierra 10 % ceniza de Cca. de arroz y 85 % tierra 15 % ceniza de Cca. de arroz.

Obtención de las muestras de suelo: Se recomienda hacer tres pozos con un tamaño de 1,50m x 1,50m y al menos 1,50m de profundidad, separados por al menos 500m. Las muestras extraídas se almacenarán en bolsas de plástico codificadas y se llevarán al laboratorio para realizar las pruebas correspondientes. Esos serían: límites de Atterberg, Proctor y CBR.

Se aplicó el Alfa de Cronbach, para nuestra validación juicio de expertos arrojando los siguientes valores
Tabla 6. Estadísticas de fiabilidad

<table>
<thead>
<tr>
<th>Alfa de Cronbach</th>
<th>N de elementos</th>
</tr>
</thead>
<tbody>
<tr>
<td>.769</td>
<td>10</td>
</tr>
</tbody>
</table>

Fuente: SPSS

El valor obtenido 0.769, indica una alta confiabilidad, por lo que las validaciones son confiables para la investigación.

3.6. Método de análisis de datos

Los resultados obtenidos del informe de suelos se ordenarán y presentarán en forma de tabla descriptiva. En el cual, los resultados serán ordenados, organizados y agrupados de acuerdo a cada criterio de prueba, pozos perforados y toma de muestras de suelo para cada criterio de prueba.

De manera similar, se utilizará la prueba t de Student para la aceptación o rechazo de la hipótesis. Para ello se utilizará el software SPSS 21.

3.7. Aspectos éticos

Se tendrá en cuenta el Código de Ética para la investigación de la Universidad Cesar Vallejo. Este estudio cumple con los principios éticos de justicia, beneficencia, no maleficencia, honradez (UCV, 2017, pág. 12).
IV. RESULTADOS

Primer objetivo determinación de las propiedades del suelo natural del camino de Villa Primavera – Piura. Los ensayos son los límites de consistencia, proctor modificado y CBR

Tabla 7. Límites de Atterberg del camino

<table>
<thead>
<tr>
<th>muestra</th>
<th>límite líquido (LL)</th>
<th>límite plástico (LP)</th>
<th>índice de plasticidad (IP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-01</td>
<td>32.76</td>
<td>15.38</td>
<td>17.38</td>
</tr>
<tr>
<td>C-02</td>
<td>30.98</td>
<td>21.53</td>
<td>9.45</td>
</tr>
<tr>
<td>C-03</td>
<td>33.5</td>
<td>18.3</td>
<td>15.3</td>
</tr>
</tbody>
</table>

Fuente: EMS.

Figura 1. Límites de consistencia muestra C-1 del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura
Figura 2. Límites de consistencia muestra C-2 del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura

Figura 3. Límites de consistencia muestra C-3 del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura
La Tabla 6, Figura 1, figura 2 y Figura 3 presentan los límites de consistencia de las muestras extraídas del camino para. La muestra C-1 su LL es 32.76, el LP 15.38 y el IP es 17.38. en la muestra C-2 tiene un LL de 30.98, LP 21.53 y el IP de 9.45.y en la muestra C-3 se alcanzó, LL 33.5, un LP de 18.3 y el IP es 15.3.

Tabla 8. Proctor modificado del camino

<table>
<thead>
<tr>
<th>muestra</th>
<th>Profundidad (m)</th>
<th>máxima densidad seca (gr/cm³)</th>
<th>optimo contenido de humedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-01</td>
<td>1.5</td>
<td>1.76</td>
<td>12.96</td>
</tr>
<tr>
<td>C-02</td>
<td>1.5</td>
<td>1.77</td>
<td>12.69</td>
</tr>
<tr>
<td>C-03</td>
<td>1.5</td>
<td>1.77</td>
<td>12.52</td>
</tr>
</tbody>
</table>

Fuente: EMS.

Figura 4. Proctor modificado C-1 del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: EMS).
Figura 5. Proctor modificado C-2 del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: EMS).

Figura 6. Proctor modificado C-3 del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Laboratorio de mecánica de suelos).
La Tabla 7, Figura 4, Figura 5 y figura 6 muestran que, la (MDS) de la muestra C–1 obtuvimos el valor de 1.76 gr/cm3, y el (C de HO) es 12.96%, mientras la (MDS) de la muestra C–2 se obtuvo un valor de 1.77 gr/cm3 y el (C de HO) fue 12.69%. y la (MDS) de la muestra C–3 se obtuvo el valor 1.77 gr/cm3 y el (C de HO) dio 12.52%.

Tabla 9. California bearing ratio (CBR a 1") del camino

<table>
<thead>
<tr>
<th>muestra</th>
<th>Profundidad (m)</th>
<th>(CBR a 1")</th>
<th>95%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-01</td>
<td>1.5</td>
<td>1.84</td>
<td>2.34</td>
<td></td>
</tr>
<tr>
<td>C-02</td>
<td>1.5</td>
<td>2.45</td>
<td>2.71</td>
<td></td>
</tr>
<tr>
<td>C-03</td>
<td>1.5</td>
<td>2.90</td>
<td>3.26</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: laboratorio de mecánica de suelos.

![Diagrama de densidad seca](image)

Figura 1. California bearing ratio (CBR a 1") C-1 del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: EMS).
Figura 2. California bearing ratio (CBR a 1") C-2 del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).

Figura 3. California bearing ratio (CBR a 1") C-3 del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).
Tabla 8, Figura 7, Figura 8 y figura 9 señalan que, a 1" de penetración y al 95% de la (MDS) los resultados del CBR de la parte C-1 es de 1.84%, En la muestra C-2 el CBR es 2.45%. y para la muestra C-3 es 2.90%

Para el siguiente objetivo tenemos la Determinación de las propiedades del suelo modificado con cenizas de cascarillas de arroz del camino de Villa Primavera – Piura

Con 5% de ceniza de cascarilla de arroz

Tabla 10. Límites de Atterberg del camino con 5% CCA

<table>
<thead>
<tr>
<th>muestra</th>
<th>límite líquido</th>
<th>límite plastico</th>
<th>índice de plasticidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-01</td>
<td>12.28</td>
<td>9.98</td>
<td>2.3</td>
</tr>
<tr>
<td>C-02</td>
<td>9.84</td>
<td>N.P.</td>
<td>N.P.</td>
</tr>
<tr>
<td>C-03</td>
<td>N.P.</td>
<td>N.P.</td>
<td>N.P.</td>
</tr>
</tbody>
</table>

Fuente: Estudio de mecánica de suelos.

Figura 4. Límites de consistencia muestra C-1 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura
Figura 5. Límites de consistencia muestra C-2 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura

Figura 6. Límites de consistencia muestra C-3 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura
La Tabla 9, Figura 10, figura 11 y Figura 12 denotan los límites de consistencia de las muestras extraídas del camino para cada calicata. La muestra (C-1 + 5% CCA) se obtuvo un (LL) de 12.28, un (LP) de 9.98 y un (IP) de 2.3. y la muestra (C-2 + 5% CCA) se obtuvo un (LL) de 9.84 (LP) no presenta y no presenta (LP) y la muestra (C-3 + 5% CCA) no presento (LL), (LP) y (IP).

Tabla 11. Proctor modificado del camino con 5% CCA

<table>
<thead>
<tr>
<th>muestra</th>
<th>Profundidad (m)</th>
<th>máxima densidad seca (gr/cm³)</th>
<th>óptimo contenido de humedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-01</td>
<td>1.5</td>
<td>1.75</td>
<td>13.54</td>
</tr>
<tr>
<td>C-02</td>
<td>1.5</td>
<td>1.65</td>
<td>13.46</td>
</tr>
<tr>
<td>C-03</td>
<td>1.5</td>
<td>1.65</td>
<td>12.80</td>
</tr>
</tbody>
</table>

Fuente: EMS

Figura 7. Proctor modificado C-1 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).
Figura 8. Proctor modificado C-2 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).

Figura 9. Proctor modificado C-3 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).
La Tabla 10, Figura 13, Figura 14 y figura 15 muestran que, la (MDS) para la muestra (C-1 + 5% CCA) obtuvimos un valor de 1.75 gr/cm³, y el contenido de humedad óptimo nos dio 13.54%, mientras la (MDS) en la muestra (C-2 + 5% CCA) se obtuvo un valor de 1.65 gr/cm³ y el contenido de humedad óptimo es 13.46%. y la (MDS) de la muestra (C-3 + 5% CCA) se obtuvo un valor de 1.65 gr/cm³ y el contenido de humedad óptimo fue 12.80%.

Tabla 12. California bearing ratio (CBR a 1") del camino con 5% CCA

<table>
<thead>
<tr>
<th>muestra</th>
<th>Profundidad (m)</th>
<th>(CBR a 1") 95%</th>
<th>(CBR a 1") 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-01</td>
<td>1.5</td>
<td>1.77</td>
<td>2.06</td>
</tr>
<tr>
<td>C-02</td>
<td>1.5</td>
<td>2.03</td>
<td>2.21</td>
</tr>
<tr>
<td>C-03</td>
<td>1.5</td>
<td>2.39</td>
<td>2.78</td>
</tr>
</tbody>
</table>

Fuente: EMS

Figura 10. California bearing ratio (CBR a 1") C-1 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Laboratorio de mecánica de suelos).
Figura 11. California bearing ratio (CBR a 1") C-2 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).

Figura 12. California bearing ratio (CBR a 1") C-3 + 5% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).
Tabla 11, Figura 16, Figura 17 y figura 18 determinan que, a 1” de penetración y al 95% de la (MDS) los resultados del CBR de la muestra C-1 + 5% cenizas de cascarillas de arroz es de 1.77%, En la muestra C-2 + 5% cenizas de cascarillas de arroz el CBR es 2.03%. y para la muestra C-3 + 5% cenizas de cascarillas de arroz es 2.39%

Con 10% de ceniza de cascarilla de arroz

Tabla 13. Límites de atterberg del camino con 10% CCA

<table>
<thead>
<tr>
<th>muestra</th>
<th>límite líquido LL</th>
<th>límite plastico LP</th>
<th>índice de plasticidad IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-01</td>
<td>N.P.</td>
<td>N.P.</td>
<td>N.P.</td>
</tr>
<tr>
<td>C-02</td>
<td>N.P.</td>
<td>N.P.</td>
<td>N.P.</td>
</tr>
<tr>
<td>C-03</td>
<td>N.P.</td>
<td>N.P.</td>
<td>N.P.</td>
</tr>
</tbody>
</table>

Fuente: Laboratorio de mecánica de suelos.

Figura 13. Límites de consistencia muestra C-1 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura
Figura 14. Límites de consistencia muestra C-2 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura

Figura 15. Límites de consistencia muestra C-3 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura
La Tabla 12, Figura 19, figura 20 y Figura 21 muestran que las muestras del camino (C-1 + 10% CCA), (C-2 + 10% CCA) y (C-3 + 10% CCA) no presentan límite líquido, límite plástico y índice de plasticidad.

Tabla 14. Proctor modificado del camino con 10% CCA

<table>
<thead>
<tr>
<th>muestra</th>
<th>Profundidad (m)</th>
<th>máxima densidad seca (gr/cm³)</th>
<th>óptimo contenido de humedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-01</td>
<td>1.5</td>
<td>1.69</td>
<td>13.23</td>
</tr>
<tr>
<td>C-02</td>
<td>1.5</td>
<td>1.62</td>
<td>14.70</td>
</tr>
<tr>
<td>C-03</td>
<td>1.5</td>
<td>1.64</td>
<td>13.30</td>
</tr>
</tbody>
</table>

Fuente: EMS

Figura 16. Proctor modificado C-1 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).
Figura 17. Proctor modificado C-2 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: EMS).

Figura 18. Proctor modificado C-3 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).
La Tabla 13, Figura 22, Figura 23 y figura 24 indican que, la (MDS) en la muestra (C-1 + 10% CCA) arrojo el valor 1.69 gr/cm3, el contenido de humedad óptimo fue 13.23%, mientras la (MDS) para la muestra(C-2 + 10% CCA) se obtuvo un resultado de 1.62 gr/cm3 y el contenido de humedad óptimo es 14.70%. y la (MDS) de la muestra (C-3 + 10% CCA) se obtuvo el valor de 1.64 gr/cm3 y el contenido de humedad óptimo dio 13.30%

Tabla 15. California bearing ratio (CBR a 1") del camino con 10% CCA

<table>
<thead>
<tr>
<th>muestra</th>
<th>Profundidad (m)</th>
<th>(CBR a 1")</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>C-01</td>
<td>1.5</td>
<td>1.56</td>
</tr>
<tr>
<td>C-02</td>
<td>1.5</td>
<td>1.79</td>
</tr>
<tr>
<td>C-03</td>
<td>1.5</td>
<td>2.30</td>
</tr>
</tbody>
</table>

Fuente: EMS

Figura 19. California bearing ratio (CBR a 1") C-1 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).
Figura 20. California bearing ratio (CBR a 1") C-2 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).

Figura 21. California bearing ratio (CBR a 1") C-3 + 10% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).
Tabla 14, Figura 25, Figura 26 y figura 27 reflejan que, a 1” de penetración al 95% de (MDS) los resultados del CBR de la muestra C-1 + 10% cenizas de cascarillas de arroz es de 1.56%, para la muestra C-2 + 10% cenizas de cascarillas de arroz el CBR es 1.79%. y para la muestra C-3 + 10% cenizas de cascarillas de arroz es 2.30%

Para el 15% de ceniza de cascarilla de arroz

Tabla 16. Límites de atterberg del camino con 15% CCA

<table>
<thead>
<tr>
<th>muestra</th>
<th>limite liquido LL</th>
<th>límite plastico LP</th>
<th>índice de plasticidad IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-01</td>
<td>N.P.</td>
<td>N.P.</td>
<td>N.P.</td>
</tr>
<tr>
<td>C-02</td>
<td>N.P.</td>
<td>N.P.</td>
<td>N.P.</td>
</tr>
<tr>
<td>C-03</td>
<td>N.P.</td>
<td>N.P.</td>
<td>N.P.</td>
</tr>
</tbody>
</table>

Fuente: EMS

Figura 22. Límites de consistencia muestra C-1 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura
Figura 23. Límites de consistencia muestra C-2 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura

Figura 24. Límites de consistencia muestra C-3 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura
La Tabla 15, Figura 28, figura 29 y Figura 30 muestran que las muestras del camino (C-1 + 10% CCA), (C-2 + 10% CCA) y (C-3 + 10% CCA) no presentan límite líquido, límite plástico y índice de plasticidad.

Tabla 17. Proctor modificado del camino con 15% CCA

<table>
<thead>
<tr>
<th>muestra</th>
<th>Profundidad (m)</th>
<th>maxima dencidad seca (gr/cm³)</th>
<th>óptimo contenido de humedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-01</td>
<td>1.5</td>
<td>1.61</td>
<td>14.79</td>
</tr>
<tr>
<td>C-02</td>
<td>1.5</td>
<td>1.59</td>
<td>14.94</td>
</tr>
<tr>
<td>C-03</td>
<td>1.5</td>
<td>1.63</td>
<td>15.05</td>
</tr>
</tbody>
</table>

Fuente: EMS

Figura 25. Proctor modificado C-1 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).
Figura 26. Proctor modificado C-2 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).

Figura 27. Proctor modificado C-3 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).
La Tabla 16, Figura 31, Figura 32 y figura 33 muestran que, la (MDS) en la muestra (C-1 + 15% CCA) obtuvimos el valor de 1.61 gr/cm3, y el contenido de humedad óptimo es 14.79%, mientras la (MDS) para la muestra(C-2 + 15% CCA) dio un valor de 1.59 gr/cm3 y el contenido de humedad óptimo es 14.94%. y la (MDS) en la muestra (C-3 + 15% CCA) se obtuvo un valor de 1.63 gr/cm3 y el (C de HO) es 15.05%.

Tabla 18. California bearing ratio (CBR a 1") del camino con 10% CCA

<table>
<thead>
<tr>
<th>muestra</th>
<th>Profundidad (m)</th>
<th>(CBR a 1")</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95%</td>
<td>100%</td>
</tr>
<tr>
<td>C-01</td>
<td>1.5</td>
<td>1.43</td>
</tr>
<tr>
<td>C-02</td>
<td>1.5</td>
<td>1.61</td>
</tr>
<tr>
<td>C-03</td>
<td>1.5</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Fuente: EMS

Figura 28. California bearing ratio (CBR a 1") C-1 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).
Figura 29. California bearing ratio (CBR a 1") C-2 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura (Fuente: Estudio de mecánica de suelos).

Figura 30. California bearing ratio (CBR a 1") C-3 + 15% cenizas de cascarillas de arroz del camino del sector villa primavera del distrito de Ignacio escudero Sullana – Piura.
Tabla 17, Figura 34, Figura 35 y figura 36 determinan que, a 1” de penetración al 95% de la (MDS) los resultados del CBR son para la muestra C-1 + 10% cenizas de cascarillas de arroz es de 1.43%, para la muestra C-2 + 10% cenizas de cascarillas de arroz el CBR es 1.61%. y para la muestra C-3 + 10% cenizas de cascarillas de arroz es 1.95%

En el siguiente objetivo estudiaremos el análisis comparativo entre el suelo natural y el suelo modificado con cenizas de cascarillas de arroz del camino de Villa Primavera – Piura.

Las modificaciones se realizaron al 5%, 10% y 15%,

Veamos las tablas resúmenes:

Tabla 19 Comparativo de resultados CBR.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Sin tratamiento</th>
<th>+5% ceniza</th>
<th>+10% ceniza</th>
<th>+15% ceniza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calicata 1</td>
<td>1.84</td>
<td>1.77</td>
<td>1.56</td>
<td>1.43</td>
</tr>
<tr>
<td>Calicata 2</td>
<td>2.45</td>
<td>2.03</td>
<td>1.79</td>
<td>1.61</td>
</tr>
<tr>
<td>Calicata 3</td>
<td>2.90</td>
<td>2.39</td>
<td>2.30</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Fuente: EMS

Conforme a la tabla anterior, a más % de ceniza se observa una reducción del CBR.

![Comparativo Calicatas CBR](image)

Figura 31. Calicatas CBR
Así mismo tenemos los resultados del Proctor.

Tabla 20. Resultados de Proctor (máxima densidad)

<table>
<thead>
<tr>
<th>Proctor</th>
<th>Sin tratamiento</th>
<th>+5% ceniza</th>
<th>+10% ceniza</th>
<th>+15% ceniza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calicata 1</td>
<td>1.76</td>
<td>1.75</td>
<td>1.69</td>
<td>1.61</td>
</tr>
<tr>
<td>Calicata 2</td>
<td>1.77</td>
<td>1.65</td>
<td>1.62</td>
<td>1.59</td>
</tr>
<tr>
<td>Calicata 3</td>
<td>1.77</td>
<td>1.65</td>
<td>1.64</td>
<td>1.63</td>
</tr>
</tbody>
</table>

Fuente: EMS

De acuerdo a la tabla anterior, a más % de ceniza se observa una reducción del CBR

Veamos los descriptivos que se obtuvieron

Acerca del CBR

Tabla 21. Tabla de descriptivos de las Calicatas (CBR)

<table>
<thead>
<tr>
<th>CBR</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Media</th>
<th>Desviación estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin tratamiento</td>
<td>1.83965133</td>
<td>2.90247846</td>
<td>2.39793210</td>
<td>0.53344720</td>
</tr>
<tr>
<td>+5% ceniza</td>
<td>1.77273100</td>
<td>2.38798681</td>
<td>2.06434520</td>
<td>0.30887578</td>
</tr>
<tr>
<td>+10% ceniza</td>
<td>1.56496235</td>
<td>2.30000000</td>
<td>1.88402116</td>
<td>0.37698171</td>
</tr>
<tr>
<td>+15% ceniza</td>
<td>1.43456971</td>
<td>1.94544642</td>
<td>1.66169007</td>
<td>0.26010475</td>
</tr>
</tbody>
</table>

Fuente: SPSS
Figura 32. Comparativo de medias de tratamiento (CBR)

Se puede observar que el valor más reducido del CBR correspondió al de 15% logrando una reducción del 9.8% (parte de 2.398 y llega a 1.662)

Descriptivo del Proctor

<table>
<thead>
<tr>
<th>Proctor</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Media</th>
<th>Desviación estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin tratamiento</td>
<td>1.756504</td>
<td>1.769076</td>
<td>1.763861</td>
<td>0.006554</td>
</tr>
<tr>
<td>+5% ceniza</td>
<td>1.647061</td>
<td>1.749501</td>
<td>1.681322</td>
<td>0.059045</td>
</tr>
<tr>
<td>+10% ceniza</td>
<td>1.615361</td>
<td>1.693641</td>
<td>1.648334</td>
<td>0.040571</td>
</tr>
<tr>
<td>+15% ceniza</td>
<td>1.589283</td>
<td>1.625748</td>
<td>1.608521</td>
<td>0.018315</td>
</tr>
</tbody>
</table>

Fuente: EMS

Figura 33. Comparativo (Proctor) de tratamiento
Descriptivo de la Plasticidad

Tabla 23. Descriptivos de la Plasticidad

<table>
<thead>
<tr>
<th>Índice Plasticidad</th>
<th>Sin tratamiento</th>
<th>+5% ceniza</th>
<th>+10% ceniza</th>
<th>+15% ceniza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calicata 1</td>
<td>17.38</td>
<td>2.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Calicata 2</td>
<td>9.45</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Calicata 3</td>
<td>15.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuente: EMS

Se puede observar que la plasticidad disminuyó en su totalidad, cuando se aplicó la mezcla de 10% y de 15%.

Tabla 24. Estadísticos de límites de consistencia

<table>
<thead>
<tr>
<th></th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Media</th>
<th>Desviación estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin tratamiento</td>
<td>9.4500</td>
<td>17.3800</td>
<td>14.0433</td>
<td>4.1116</td>
</tr>
<tr>
<td>+5% ceniza</td>
<td>0.0000</td>
<td>2.3000</td>
<td>0.7667</td>
<td>1.3279</td>
</tr>
<tr>
<td>+10% ceniza</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>+15% ceniza</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Fuente: EMS

Dentro de los 3 indicadores analizados, el valor de la plasticidad es el que tuvo mejoras notables, luego de aplicar el estudio de EMS

Análisis Inferencial

Prueba de Normalidad

Dado que se tiene una cantidad de ítems menor a 50, se aplicó la prueba de Shapiro-Wilk, con un valor de significancia de 5%, los mismo que fueron procesados con SPSS 24.

Tomando decisión

P-sig > α : datos siguen distribución normal (H0)

P-sig ≤ α : datos no sigue distribución normal (H1)

Tabla 25. Prueba de Normalidad: CBR; Proctor, IP

<table>
<thead>
<tr>
<th>Dosificación</th>
<th>Kolmogorov-Smirnova</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estadístico</td>
<td>gl</td>
</tr>
<tr>
<td>CBR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBR_Sin tratamiento</td>
<td>.207</td>
<td>3</td>
</tr>
<tr>
<td>CBR +5% ceniza</td>
<td>.208</td>
<td>3</td>
</tr>
<tr>
<td>CBR +10% ceniza</td>
<td>.268</td>
<td>3</td>
</tr>
<tr>
<td>CBR+15% ceniza</td>
<td>.253</td>
<td>3</td>
</tr>
<tr>
<td>PROCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR_Sin tratamiento</td>
<td>.295</td>
<td>3</td>
</tr>
<tr>
<td>PR +5% ceniza</td>
<td>.384</td>
<td>3</td>
</tr>
<tr>
<td>PR+10% ceniza</td>
<td>.286</td>
<td>3</td>
</tr>
<tr>
<td>PR+15% ceniza</td>
<td>.210</td>
<td>3</td>
</tr>
<tr>
<td>INDICE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP_Sin tratamiento</td>
<td>.287</td>
<td>3</td>
</tr>
<tr>
<td>PLAST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP +5% ceniza</td>
<td>.385</td>
<td>3</td>
</tr>
</tbody>
</table>

Fuente: SPSS

Siendo los valores mayores a α, se acepta la hipótesis nula, con lo cual se aplicará la prueba paramétrica de t-student, al seguir los datos una distribución normal.

Prueba Estadística Inferencial

Índice de plasticidad

H0 (P-valor>α): con la adición de cenizas de cascarillas de cascarilla arroz el índice de plasticidad no influye significativamente en la estabilización de suelos del camino de Villa Primavera - Piura 2022

Ha (P-valor<=α): con la adición de cenizas de cascarillas de arroz el índice de plasticidad influye significativamente en la estabilización de suelos del camino de Villa Primavera - Piura 2022.

Con un nivel de confianza: 95% -> Valor $t = 2.920$

Nivel de error: 5%

Luego de aplicar el estadístico, se obtuvieron los datos siguientes:
Tabla 26. Tabla t student aplicada al Índice de Plasticidad

<table>
<thead>
<tr>
<th>Par</th>
<th>Sin tratamiento - +5% ceniza</th>
<th>Sin tratamiento - +10% ceniza</th>
<th>Sin tratamiento - +15% ceniza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>13,27659</td>
<td>14,04333</td>
<td>14,04333</td>
</tr>
<tr>
<td>Desviac. estándar</td>
<td>3,315842</td>
<td>4,111646</td>
<td>4,111646</td>
</tr>
<tr>
<td>Media de error estándar</td>
<td>1,914402</td>
<td>2,373859</td>
<td>2,373859</td>
</tr>
<tr>
<td>Inferior</td>
<td>5,039589</td>
<td>3,829438</td>
<td>3,829438</td>
</tr>
<tr>
<td>Superior</td>
<td>21,51361</td>
<td>24,25722</td>
<td>24,25722</td>
</tr>
<tr>
<td>T</td>
<td>6,935</td>
<td>5,916</td>
<td>5,916</td>
</tr>
<tr>
<td>gl</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sig. (bilateral)</td>
<td>,020</td>
<td>,027</td>
<td>,027</td>
</tr>
</tbody>
</table>

Fuente: datos SPSS

Se acepta la hipótesis alterna, con la agregación de las cenizas de cascarillas de arroz el índice de plasticidad influye significativamente en la estabilización de suelos del camino de Villa Primavera - Piura 2022, dado el t calculado, en las 3 mezclas del 5%, 10% y el 15 es $> 2,920$ y se encuentra en la región de rechazo, rechazándose la hipótesis nula. Adicionalmente los valores de significancia (p-valor) son $< \alpha$.

Se aplicó la prueba de ANOVA, con los resultados siguientes:

Tabla 27. Prueba ANOVA Índice de plasticidad

<table>
<thead>
<tr>
<th>Valor INDICE PLASTICIDAD</th>
<th>Suma de cuadrados</th>
<th>-gl</th>
<th>Media cuadrática</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>428,907</td>
<td>3</td>
<td>142,969</td>
<td>30,632</td>
<td>,000</td>
</tr>
<tr>
<td>Dentro de grupos</td>
<td>37,338</td>
<td>8</td>
<td>4,667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>466,245</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: datos SPSS

De acuerdo a la prueba ANOVA, aplicada, el valor de significancia (p-valor) es menor que (0.05), lo que indica que se acepta la hipótesis alternativa (H_a), es decir con la adición de cenizas de cascarillas de arroz
el índice de plasticidad influye significativamente en la estabilización de suelos del camino de Villa Primavera - Piura 2022.

CBR

H0 (P-valor>\(\alpha\)): La adición de cenizas de cascarillas de arroz el CBR no influye significativamente en la estabilización de suelos del camino de Villa Primavera - Piura 2022.

Ha (P-valor<\(\leq\)\(\alpha\)): La adición de cenizas de cascarillas de arroz el CBR influye significativamente en la estabilización de suelos del camino de Villa Primavera - Piura 2022.

Con un nivel de confianza: 95% => Valor \(t = 2.920\)

Nivel de error: 5%

Luego de aplicar el estadístico, se obtuvieron los datos siguientes:

<table>
<thead>
<tr>
<th>Par</th>
<th>CBR_Sintratamiento - CBR +5% ceniza</th>
<th>CBR_Sintratamiento - CBR +10% ceniza</th>
<th>CBR_Sintratamiento - CBR +15% ceniza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Media</td>
<td>Desviac. estándar</td>
<td>Media</td>
</tr>
<tr>
<td>Par 1</td>
<td>.333587</td>
<td>.235789</td>
<td>.136133</td>
</tr>
<tr>
<td>Par 2</td>
<td>.513911</td>
<td>.209485</td>
<td>.120946</td>
</tr>
<tr>
<td>Par 3</td>
<td>.736242</td>
<td>.292059</td>
<td>.168620</td>
</tr>
</tbody>
</table>

Fuente: datos SPSS

Se acepta la hipótesis alterna, con la adición de las cenizas de cascarillas de arroz el CBR influye significativamente en la estabilización de suelos del camino de Villa Primavera - Piura 2022, en las mezclas del 10% y el 15%, dado que \(t\) calculado obtenido es > 2,920 y se encuentra en la región de rechazo,
(rechazándose la hipótesis nula). Adicionalmente los valores de significancia (p-valor) de la adición del 10% y del 15% son \(\leq \alpha \).

Se aplicó la prueba de ANOVA, con los resultados siguientes:

Tabla 29. Prueba ANOVA CBR

<table>
<thead>
<tr>
<th>Valor CBR</th>
<th>Suma de cuadrados</th>
<th>gl</th>
<th>Media cuadrática</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>871</td>
<td>3</td>
<td>290</td>
<td>1,970</td>
<td>0,197</td>
</tr>
<tr>
<td>Dentro de grupos</td>
<td>1,179</td>
<td>8</td>
<td>147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2,051</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: datos SPSS

De acuerdo a la prueba ANOVA, aplicada, el valor de significancia (p-valor) es mayor que (0.05), lo que indica que se acepta la hipótesis nula (H\(_0\)), es decir La adición de cenizas de cascarillas de arroz el CBR no influye significativamente en la estabilización de suelos del camino de Villa Primavera - Piura 2022

Protor:

H\(_0\) (P-valor>\(\alpha\)): La adición de cenizas de cascarillas de arroz el protor no influye significativamente en la estabilización de suelos del camino de Villa Primavera - Piura 2022

Ha (P-valor\(\leq\)\(\alpha\)): La adición de cenizas de cascarillas de arroz el protor influye significativamente en la estabilización de suelos del camino de Villa Primavera - Piura 2022.

Con un nivel de confianza: 95% -> Valor \(t = 2.920\)

Nivel de error: 5%

Luego de aplicar el estadístico, se obtuvieron los datos siguientes:
Se acepta la hipótesis alterna, con la adición de las cenizas de caracillas de arroz el proctor influye significativamente en la estabilización de suelos del camino de Villa Primavera - Piura 2022, en las mezclas del 10% y el 15%, dado que t calculado obtenido es > 2,920 y se encuentra en la región de rechazo, (rechazándose la hipótesis nula). Adicionalmente los valores de significancia (p-valor) de la adición del 10% y del 15% son <= α.

Se aplicó la prueba de ANOVA, con los resultados siguientes:

Tabla 31. Prueba ANOVA Proctor

<table>
<thead>
<tr>
<th></th>
<th>Suma de cuadrados</th>
<th>Media cuadrática</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>.039</td>
<td>.013</td>
<td>9.484</td>
<td>.005</td>
</tr>
<tr>
<td>Dentro de grupos</td>
<td>.011</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.050</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: datos SPSS

De acuerdo a la prueba ANOVA, aplicada, el valor de significancia (p-valor) es menor que (0.05), lo que indica que se acepta la hipótesis alterativa (Hₐ), es decir la adición de cenizas de caracillas de arroz el proctor influye significativamente en la estabilización de suelos del camino de Villa Primavera - Piura 2022.
V. DISCUSIÓN DE RESULTADOS

De acuerdo al presente estudio que tuvo como objetivo determinar la influencia de las cenizas de cascarillas de arroz en la estabilización de suelos del camino de Villa Primavera - Piura 2022, se realizaron pruebas al 5%, 10% y 15% donde luego de aplicar las cenizas de arroz al suelo, el índice de plasticidad se redujo a cero en las mezclas del 10% y del 15%. En cuanto a las coincidencias existentes, tenemos la investigación realizada por Castro y Scipión (2017, p. 4) quienes también usaron cenizas de arroz para estabilizar el suelo y mejoraron el suelo, a diferencia mejoró el índice de CBR mejorando en un 19.4% el diseño de la mezcla, a diferencia de esta investigación el 20% de aplicación de cenizas, constituyó la mejora propuesta en mejora del suelo; existen también coincidencias con Castro y Scipión (2017, p. 4), en cuanto a las mejoras del suelo usando cenizas, a diferencia del presente estudio se mejoró el CBR hasta un 19.4% al realizar la mezcla al 20%, siendo la mejor proporción de ceniza de cascarilla de arroz y arcilla es 20% CCA y 80% suelo natural. En cuanto a la base teórica tenemos que según Pachla y Marangon (2020, p. 2), la ceniza es “un polvo de color gris claro que resulta de una combustión completa, generalmente compuesto por ácalis y sales de tierras, sílice y óxidos metálicos”, esto quiere decir que es el residuo que se produce a partir de la combustión de una clase o determinado tipo de material. Sus aplicaciones son diferentes, siendo su principal uso en aglomerados de acuerdo a Muñoz y King (2016, p. 21). Los usos comerciales de las cenizas de cascarillas de arroz son en el proceso de extracción de sílice, tal como lo indica Mor, S.; Manchanda (2017, p. 1286).

En cuanto a las propiedades encontradas del suelo natural del camino de Villa Primavera - Piura 2022, se identificaron en la calicata C1 es arcilla, las siguientes características: color pardo oscuro, consistencia baja, humedad media, plasticidad baja y para la calicata C3 es arena arcillosa de baja plasticidad color pardo oscuro, consistencia baja, humedad
media, plasticidad baja, en cuanto al análisis granulométrico nos representa una curva normal bien graduado y en cuanto a los límites de consistencia del suelo, se obtuvo que en la muestra extraída en estado natural muestran LL (límite líquido) de 32.8 y un L.P (límite plástico) de 15.4 dejando resultados un índice de plasticidad de 17.4%. un 12.20%. Existen coincidencias con la investigación realizada por López y Zapata (2021 pág. 12) en la humedad optima, quien evaluó la compactación, alcanzando una (MDS) de 1.90 gr/cm3., a fin de evaluar la estabilización del suelo. En cuanto a la estabilización de suelos, para Gatto (2018, p. 132) define es la utilización de métodos fisicoquímicos y mecánicos o biológicos a los suelos con el fin de alterar sus propiedades de manera positiva (o sea mejorarlas) y utilizarlo con fines de ingeniería. Esto es afirmado también por Guney y Firooz (2017, p. 14) quienes indican que la acción de mezclar suelo con otros materiales para mejorar sus propiedades es lo que se le conoce como estabilización.

En cuanto a las propiedades del suelo modificado con cenizas de cascarillas de arroz del camino de Villa Primavera - Piura 2022, se realizaron 3 modificaciones: 5, de 10 y de 15, resaltando entre otras los límites de Atterberg, específicamente el límite de plástico LP, que experimentó una alta mejora en las 3 calicatas estudiadas, así mismo sucedió con el protor y el CBR. Esto coincide con Ramal y Raymundo (2020, p.131) quien también usaron como indicador al CBR, pero guarda diferencias con Mory (2020, p. 88), quien sólo realizó 2 modificaciones de 10% y de 15%. En cuanto a la base teórica, de acuerdo a lo indicado por Sandoval (2019) el CBR (California Bearing Ratio) es un ensayo para evaluar y diseñar subrasantes o superficies para colocación de estructuras.
VI. CONCLUSIONES

Las conclusiones son las siguientes:

- El tipo de suelo encontrado en el sector Villa primavera del distrito de Ignacio escudero de la provincia de Sullana de la calcita C1 arcilla de color pardo oscuro, consistencia baja, humedad media, plasticidad baja. Según la clasificación SUCS corresponde a una CL, para la calcita C" es arcilla de baja plasticidad con arena color pardo oscuro, consistencia baja, humedad media, plasticidad baja. Según la clasificación SUCS corresponde a una CL y para la calcita C3 es arena arcillosa de baja plasticidad color pardo oscuro, consistencia baja, humedad media, plasticidad baja. Según la clasificación SUCS corresponde a una CL.

- Respecto a los límites de consistencia del suelo, la muestra natural: se obtuvo que la muestra extraída en estado natural presenta LL (límite líquido) de 32.8 y un L.P (límite plástico) de 15.4 dando como resultado el índice de plasticidad 17.4%. De la muestra natural + 5 % de cenizas: dando como resultado L.L de 12.3 %, un L.P de 10 % y el IP de 2.3%. de la muestra natural + 10% de cenizas: no se pudo determinar la plasticidad acorde a lo establecido de la norma de ensayo ASTM D-4318 y para la muestra natural + 15% de cenizas: no se pudo determinar la plasticidad acorde a lo indicado en la norma de ensayo ASTM D-4318.

- Los ensayos de proctor modificado nos arroja para la muestra inalterada del suelo en promedio de 1.77 g/cm3 (MDS) y 12.72 % (OCH). Para la muestra con 5% de ceniza de las 3 calicatas en promedio fue de 1.68 gr/cm3 (MDS) y 13.26 % (OCH). Para la muestra con 10% de ceniza de las 3 calicatas en promedio fue de 1.65 gr/cm3 (MDS) y 13.73 % (OCH). Para la muestra con 15% de ceniza de las 3 calicatas en promedio fue de 1.61 gr/cm3 (MDS) y 14.93 % (OCH).

- El ensayo de CBR en promedio de las tres calicatas fue al 95% fue 2.40, al 100% fue de 2.77. Para las muestras con 5% de ceniza en promedio se tiene al 95% de CBR fue de 2.06 y al 100% fue de 2.35. Para las muestras con 10% de ceniza en promedio se tiene al 95%
de CBR fue de 1.87 y al 100% fue de 2.11. Para las muestras con 15% de ceniza en promedio se tiene al 95% de CBR fue de 1.66 y al 100% fue de 1.97.
VII. RECOMENDACIONES

Las recomendaciones son las siguientes:

- Se debe realizar ensayos de laboratorio con porcentajes menores al 5 % de ceniza de pajilla, puede ser de 2%, 3% y 4 % para poder obtener valores más adecuados para la estabilidad del suelo.

- Se puede realizar combinaciones de otros materiales similares a la ceniza de Cca. de arroz para el fin de obtener resultados satisfactorios a la estabilidad del suelo.

- Se pueden aplicar métodos de estabilización de suelos con la mescla de cenizas de cascarillas de arroz.

- Podemos aplicar arena gruesa para tener un mejor resultado en el CBR y proctor ya que dichas arenas poseen un CBR de 12 a 18%, en combinación de las cenizas de cascarillas de arroz.
REFERENCIAS

ANEXOS
Anexo 01. Matriz de consistencia

<table>
<thead>
<tr>
<th>PROBLEMAS</th>
<th>OBJETIVOS</th>
<th>HIPÓTESIS</th>
<th>VARIABLES E INDICADORES</th>
<th>METODOLOGÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problema General</td>
<td>Objetivo General</td>
<td>Hipótesis General</td>
<td>Variable Dependiente</td>
<td>Dimensiones</td>
</tr>
<tr>
<td>¿Cómo influyen las cenizas de cascarillas de arroz en la estabilización de suelos del camino de Villa Primavera – Piura 2022?</td>
<td>Establecer la influencia de las cenizas de cascarillas de arroz en la estabilización de suelos del camino de Villa Primavera – Piura 2022.</td>
<td>Las cenizas de cascarillas de arroz influye en la estabilización de suelos del camino de Villa Primavera – Piura 2022.</td>
<td>Cenizas de cascarillas de arroz</td>
<td>Porcentajes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problema Específicos</th>
<th>Objetivos Específicos</th>
<th>Hipótesis Específico</th>
<th>Variable Dependiente</th>
<th>Dimensiones</th>
<th>Indicadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Cuáles son las propiedades del suelo natural del camino de Villa Primavera – Piura 2022?</td>
<td>Determinar las características del suelo natural del camino de Villa Primavera – Piura 2022</td>
<td>La evaluación de los caracteres mecánicos del suelo normal del camino de villa primavera – Piura 2022</td>
<td>Estabilización de suelos</td>
<td>Análisis Granulométrico</td>
<td>Clasificación SUCS o AASHTO SUCS o AASHTO</td>
</tr>
<tr>
<td>¿Cómo son las características del suelo modificado con cenizas de cascarillas de arroz del camino de Villa</td>
<td>Definir las propiedades del suelo modificado con cenizas de cascarillas de arroz del camino de Villa</td>
<td>La medición de las propiedades físico mecánicas del suelo modificado con cenizas de cascarillas de arroz del camino de Villa</td>
<td>LIMITES DE CONSISTENCIA</td>
<td>%LL</td>
<td>%LP</td>
</tr>
</tbody>
</table>

TITULO: Influencia de las cenizas de cascarillas de arroz en la estabilización de suelos del camino de Villa Primavera – Piura 2022

Tipo de estudio: Aplicado

Diseño de Investigación: Experimental

Nivel: Explicativo

Método de Investigación: Hipotético-Deductivo

Población: Estará conformada por la totalidad de la subrasante del camino de Villa Primavera – Piura 2022, en un tramo de 2+071 km. Piura.

Muestra: Se extraerán 3 muestras de suelo arcilloso, calicatas que serán cavadas cada 500m de equidistancia.
<table>
<thead>
<tr>
<th>Primavera - Piura 2022?</th>
<th>Primavera - Piura 2022</th>
<th>¿Cómo será el análisis comparativo entre el suelo normal y el suelo modificado con cenizas de cascarillas de arroz del camino de Villa Primavera - Piura 2022?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realizar el análisis comparativo entre el suelo normal y el suelo modificado con cenizas de cascarillas de arroz del camino de Villa Primavera - Piura 2022.</td>
<td>camino de villa primavera – Piura 2022</td>
<td>El cálculo de las propiedades mecánicas del suelo natural y las características mecánicas y físicas del suelo modificado con cenizas de cascarillas de arroz del camino de villa primavera – Piura 2022.</td>
</tr>
</tbody>
</table>

Muestreo:

- No probabilístico

| Propiedades Mecánicas | Proctor Modificado CBR |
Anexo 02: Matriz de operacionalización de variables

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>DEFINICION CONCEPTUAL</th>
<th>DEFINICION OPERACIONAL</th>
<th>DIMENSIONES</th>
<th>INDICADORES</th>
<th>ESCALAS DE MEDICION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cenizas de cascarillas de arroz</td>
<td>La cascarilla de arroz es el principal residuo que se obtiene de la producción de arroz. Debido a la baja degradabilidad natural este residuo puede acumularse en el ambiente dando origen a graves problemas medioambientales.(Aliaga y Badajos, 2018, p. 63).</td>
<td>Para la comprensión de la variable independiente se puede calcular a través de su dimensión: Porcentajes de 5%, 10% y 15% de la ceniza de cascarilla de arroz</td>
<td>Propiedades físicas</td>
<td>Límites de consistencia, peso específico</td>
<td>razón</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Análisis granulométrico</td>
<td>SUCS, AASHTO</td>
<td>razón</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Propiedades químicas</td>
<td>%SiO2</td>
<td>razón</td>
</tr>
<tr>
<td>Estabilización de suelos</td>
<td>La estabilización del suelo, se define, como la aplicación de métodos físicos, químicos, mecánicos o biológicos a los suelos con el fin de alterar sus propiedades de manera positiva (o sea mejorarlas) y utilizarlo con fines de ingeniería (Gatto, 2018, p. 132)</td>
<td>Determinación de la estabilización de los suelos</td>
<td>Propiedades mecánicas</td>
<td>CBR</td>
<td>Razón</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Propiedades físicas</td>
<td>Densidad de campo</td>
<td>Razón</td>
</tr>
</tbody>
</table>

Fuente: Elab. Propia
ANEXO 3: Declaratoria de autenticidad del autor

ANEXO 02: DECLARATORIA DE AUTENTICIDAD DEL AUTOR

Yo, García Zapata, Jesús Amberly, alumno de la Facultad de Ingeniería Escuela Profesional Ingeniería Civil de la Universidad César Vallejo, identificado(a) con DNI 47360734, declaro bajo juramento que todos los datos y informaciones que acompañan a la Tesis titulada “Influencia de las cenizas de cascarillas de arroz en la estabilización de suelos del camino de Villa Primavera – Piura 2022” Son:

1. De mi autoría.
2. El presente Trabajo de Tesis no ha sido plagiado ni total, ni parcialmente.
3. El Trabajo de tesis no ha sido publicado ni presentado anteriormente.
4. Los resultados presentados en el presente Trabajo de Investigación son reales, no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumimos la responsabilidad que corresponda ante cualquier falsedad, ocultamiento o omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Piura, 08 de agosto del 2022

...
García Zapata, Jesús Amberly

DNI: 47360734
Anexo 04: Limites de consistencia

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>N.º TARRO</th>
<th>Nº 26</th>
<th>Nº 29</th>
<th>Nº 43</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESO TARRO + SUELO HUMEDO (g)</td>
<td>68.70</td>
<td>65.50</td>
<td>74.00</td>
</tr>
<tr>
<td>PESO TARRO + SUELO SECO (g)</td>
<td>51.40</td>
<td>50.30</td>
<td>68.30</td>
</tr>
<tr>
<td>PESO DE AGUA (g)</td>
<td>17.30</td>
<td>15.20</td>
<td>5.70</td>
</tr>
<tr>
<td>PESO DEL TARRO (g)</td>
<td>66.10</td>
<td>45.40</td>
<td>52.10</td>
</tr>
<tr>
<td>PESO DEL SUELO SECO (g)</td>
<td>15.20</td>
<td>12.60</td>
<td>15.52</td>
</tr>
<tr>
<td>CONTENIDO DE HUMEDAD (%)</td>
<td>34.64</td>
<td>32.70</td>
<td>31.40</td>
</tr>
<tr>
<td>NUMERO DE GOLPES</td>
<td>16</td>
<td>25</td>
<td>34</td>
</tr>
</tbody>
</table>

CONTENIDO DE HUMEDAD A 25 GOLPES

CONTESTES FISICAS DE LA MUESTRA

- **LÍMITE LIQUIDO:** 32.3
- **LÍMITE PLÁSTICO:** 15.6
- **ÍNDECE DE PLASTICIDAD:** 17.7
LABORATORIO DE SUELOS, CONCRETO Y PAVIMENTOS

Dirección: Calle Leóncio Prado N° 612 - Sullana
Contacto: 068 195 533 / 978738129
Correo electrónico: laboratoriotelemau@gmail.com

Informe N°: 6755
Fecha de Emisión: 20/06/2022
Solicitante: García Zapata, Jesús Aníbal

LIMITES DE CONSISTENCIA-PASA LA MALLA Nº40
(NORMA MTC E-110, E-111, AASHTO T-20, T-50, ASTM D 4318)

PROYECTO: INFLUENCIA DE LAS CENIZAS DE CASCARRILLAS DE ÁRBOLO EN LA ESTATIBILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PRIMINVERA - INIÓNACO ESCUDEIRO - SULLANA 2022
MUESTRA: SUBBASEANTE DE TERRENO NATURAL + 5% DE CENIZAS
CALICATA: C-01

DATOS DE LA MUESTRA
TAMAÑO MÁXIMO: Nº 40
PROF. (m): 0.00 - 1.50 m

LÍMITE LIQUIDO

<table>
<thead>
<tr>
<th>Nº TARNO</th>
<th>31</th>
<th>32</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESO TARRNO + SUELO HÚMEDO (g)</td>
<td>81.09</td>
<td>62.89</td>
<td>69.41</td>
</tr>
<tr>
<td>PESO TARRNO + SUELO SECO (g)</td>
<td>58.79</td>
<td>61.13</td>
<td>63.81</td>
</tr>
<tr>
<td>PESO DE AGUA (g)</td>
<td>1.20</td>
<td>1.45</td>
<td>1.88</td>
</tr>
<tr>
<td>PESO DEL TARRNO (g)</td>
<td>56.37</td>
<td>49.40</td>
<td>40.02</td>
</tr>
<tr>
<td>PESO DEL SUELO SECO (g)</td>
<td>9.46</td>
<td>11.61</td>
<td>13.98</td>
</tr>
<tr>
<td>CONTENIDO DE HUMEDAD (%)</td>
<td>13.53</td>
<td>12.22</td>
<td>11.97</td>
</tr>
<tr>
<td>NUMERO DE GOLPES</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
</tbody>
</table>

LÍMITE PLÁSTICO

<table>
<thead>
<tr>
<th>Nº TARRNO</th>
<th>24</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESO TARRNO + SUELO HÚMEDO (g)</td>
<td>62.99</td>
<td>52.05</td>
</tr>
<tr>
<td>PESO TARRNO + SUELO SECO (g)</td>
<td>60.47</td>
<td>50.17</td>
</tr>
<tr>
<td>PESO DE AGUA (g)</td>
<td>1.17</td>
<td>0.88</td>
</tr>
<tr>
<td>PESO DEL TARRNO (g)</td>
<td>59.32</td>
<td>50.07</td>
</tr>
<tr>
<td>PESO DEL SUELO SECO (g)</td>
<td>11.05</td>
<td>1.29</td>
</tr>
<tr>
<td>CONTENIDO DE HUMEDAD (%)</td>
<td>13.27</td>
<td>10.26</td>
</tr>
</tbody>
</table>

![Gráfico Contenido de Humedad a 25 Golpes](image)

<table>
<thead>
<tr>
<th>NÚMERO DE GOLPES</th>
<th>CONTENIDO DE HUMEDAD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
</tr>
</tbody>
</table>

CONSTANTES FÍSICAS DE LA MUESTRA

<table>
<thead>
<tr>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>LÍMITE LIQUIDO</td>
</tr>
<tr>
<td>LÍMITE PLÁSTICO</td>
</tr>
<tr>
<td>ÍNDICE DE PLASTICIDAD</td>
</tr>
</tbody>
</table>
LABORATORIO DE SUELOS, CONCRETO Y PAVIMENTOS

Dirección: Calle Leóncio Prado N°612 - Sullana
Contacto: 566 191 533 / 979786128
Correo electrónico: laboratoriotelemau@gmail.com

Informa N°: 6795
Fecha de Emisión: 20/06/2022
Solicitante: García Zapata, Jesús Amberly

LIMITES DE CONSISTENCIA-PASA LA MALLA N°40
(NORMA MTC E-110, E-111, AASHTO T-99, T-90, ASTM D-4318)

PROYECTO
Influencia de las cenizas de cascarrilla de amigote en la estabilización de suelos del camino de Villa Primavera - Ingrado Escudero - Sullana 2023

MUESTRA
Subrasante de terreno natural + 10 % de cenizas

CALCADA
C-01

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>TAMAÑO MÁXIMO</th>
<th>Nº 40</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MUESTREO</th>
<th>M - H</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROF (m)</td>
<td>0.00 - 1.50 m</td>
</tr>
</tbody>
</table>

LÍMITE LÍQUIDO

<table>
<thead>
<tr>
<th>Nº TARIRO</th>
<th>PESO TARIRO + SUELO HUMEDO (g)</th>
<th>PESO TARIRO + SUELO SECO (g)</th>
<th>PESO DE AGUA (g)</th>
<th>PESO DEL TARIRO (g)</th>
<th>CONTENIDO DE HUMEDAD (%)</th>
<th>NÚMERO DE GOLPES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LÍMITE PLÁSTICO

<table>
<thead>
<tr>
<th>Nº TARIRO</th>
<th>PESO TARIRO + SUELO HUMEDO (g)</th>
<th>PESO TARIRO + SUELO SECO (g)</th>
<th>PESO DE AGUA (g)</th>
<th>PESO DEL TARIRO (g)</th>
<th>CONTENIDO DE HUMEDAD (%)</th>
<th>NÚMERO DE GOLPES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTENIDO DE HUMEDAD A 25 GOLPES

![Graph showing moisture content vs. number of blows]

CONSTANATES FÍSICAS DE LA MUESTRA

<table>
<thead>
<tr>
<th>CARACTERÍSTICA</th>
<th>N.P</th>
</tr>
</thead>
<tbody>
<tr>
<td>LÍMITE LÍQUIDO</td>
<td>N.P</td>
</tr>
<tr>
<td>LÍMITE PLÁSTICO</td>
<td>N.P</td>
</tr>
<tr>
<td>ÍNDICE DE PLASTICIDAD</td>
<td>N.P</td>
</tr>
</tbody>
</table>

OBSERVACIONES
No se pudo determinar límite líquido ni límite plástico
Proyecto: Influencia de las cienzas de cascarrillas de arena en la estabilización de suelos del camino de Villa Primavera - Ingenio Escudero - Sullana 2022

Muestra: Surrasante de terreno natural + 15% de cenizas

Datum de la muestra:
- Muestra: N° 01
- Tamén Máximo: N° 40
- tamaño (mm): 0.06 - 1.59

Límite Líquido

<table>
<thead>
<tr>
<th>Límite Líquido</th>
<th>Peso Tierra + Suelo Humedo (g)</th>
<th>Peso Tierra + Suelo Seco (g)</th>
<th>Peso de Agua (g)</th>
<th>Peso del Tierra (g)</th>
<th>Contenido de Humedad (%)</th>
<th>Número de Golpes</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Límite Plástico

<table>
<thead>
<tr>
<th>Límite Plástico</th>
<th>Peso Tierra + Suelo Humedo (g)</th>
<th>Peso Tierra + Suelo Seco (g)</th>
<th>Peso de Agua (g)</th>
<th>Peso del Tierra (g)</th>
<th>Contenido de De Humedad (%)</th>
<th>Número de Golpes</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contenido de Humedad a 25 Golpes

<table>
<thead>
<tr>
<th>Número de Golpes</th>
<th>Contenido de Humedad (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>N.P</td>
</tr>
<tr>
<td>15</td>
<td>N.P</td>
</tr>
<tr>
<td>20</td>
<td>N.P</td>
</tr>
<tr>
<td>25</td>
<td>N.P</td>
</tr>
<tr>
<td>30</td>
<td>N.P</td>
</tr>
</tbody>
</table>

Observaciones:
- Límite líquido y el límite plástico no se pudo determinar, no se obtuvo plasticidad.
LABORATORIO DE SUELOS, CONCRETO Y PAVIMENTOS

Dirección : Calle Leoncio Prado N° 512 - Sullana
Contacto : 968 195 533 / 989 381 298
Correo electrónico : laboratorio@telemau.com

Informe N° : 6795
Fecha de emisión : 20/07/2022
Solicitante : García Zapata, Jesús Anfary

LIMITES DE CONSISTENCIA-PASA LA MALLA Nº40
(NU/RMA MTC E-110, E-111, ASHTO T-85, T-90, ASTM D 4318)

PROYECTO : INFLUENCIA DE LAS CENIZAS DE CASCARRILLAS DE ARROZ EN LA ESTABILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PRIMAVERA - IñANICO ESCUDERO - SULLANA 2022
MUESTRA : SUBRASANTE DE TERRENO NATURAL
CALCATA : C-02

DATOS DE LA MUESTRA
TAMAÑO MÁXIMO : Nº 40
MUESTREO : M - 01
PROF. (m) : 0.00 - 1.50 m

<table>
<thead>
<tr>
<th>LÍMITE LIQUIDO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N° TARRITO</td>
<td>46</td>
<td>48</td>
</tr>
<tr>
<td>PESO TARRITO + SUELO HUMEDO (g)</td>
<td>59.40</td>
<td>59.75</td>
</tr>
<tr>
<td>PESO TARRITO + SUELO SECO (g)</td>
<td>57.50</td>
<td>59.51</td>
</tr>
<tr>
<td>PESO DE AGUA (g)</td>
<td>2.90</td>
<td>0.74</td>
</tr>
<tr>
<td>PESO DEL TARRITO (g)</td>
<td>56.14</td>
<td>58.04</td>
</tr>
<tr>
<td>PESO DEL SUELO SECO (g)</td>
<td>6.06</td>
<td>2.27</td>
</tr>
<tr>
<td>CONTENIDO DE HUMEDAD (%)</td>
<td>31.05</td>
<td>31.22</td>
</tr>
<tr>
<td>NUMERO DE GOLPES</td>
<td>15</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LÍMITE PLÁSTICO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N° TARRITO</td>
<td>52</td>
<td>58</td>
</tr>
<tr>
<td>PESO TARRITO + SUELO HUMEDO (g)</td>
<td>55.30</td>
<td>53.10</td>
</tr>
<tr>
<td>PESO TARRITO + SUELO SECO (g)</td>
<td>55.47</td>
<td>52.60</td>
</tr>
<tr>
<td>PESO DE AGUA (g)</td>
<td>3.23</td>
<td>0.60</td>
</tr>
<tr>
<td>PESO DEL TARRITO (g)</td>
<td>52.90</td>
<td>55.12</td>
</tr>
<tr>
<td>PESO DEL SUELO SECO (g)</td>
<td>1.21</td>
<td>0.63</td>
</tr>
<tr>
<td>CONTENIDO DE DE HUMEDAD (%)</td>
<td>16.76</td>
<td>17.48</td>
</tr>
</tbody>
</table>

CONTENIDO DE HUMEDAD A 25 GOLPES

<table>
<thead>
<tr>
<th>NUMERO DE GOLPES</th>
<th>CONTENIDO DE HUMEDAD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>100</td>
<td>29</td>
</tr>
</tbody>
</table>

OBSERVACIONES

<table>
<thead>
<tr>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIMITES LÍQUIDOS</td>
</tr>
<tr>
<td>LIMITES PLÁSTICOS</td>
</tr>
<tr>
<td>NÚMERO DE GOLPES</td>
</tr>
</tbody>
</table>
LIMITES DE CONSISTENCIA-PASA LA MALLA N°40
(NORMA MTC E-110, E-111, AASHTO T-99, T-90, ASTM D-4216)

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>4M-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESO (g)</td>
<td>0.01, 1.16</td>
</tr>
</tbody>
</table>

LÍMITE LIQUIDO

<table>
<thead>
<tr>
<th>N° TAÑIDO</th>
<th>29</th>
<th>29</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESO TAÑIDO + SUELO HUMEDO (g)</td>
<td>98.24</td>
<td>99.24</td>
<td>99.24</td>
</tr>
<tr>
<td>PESO TAÑIDO + SUELO SECO (g)</td>
<td>98.76</td>
<td>99.76</td>
<td>99.76</td>
</tr>
<tr>
<td>PESO DE AGUA (g)</td>
<td>1.55</td>
<td>2.08</td>
<td>1.55</td>
</tr>
<tr>
<td>PESO DEL TAÑIDO (g)</td>
<td>96.69</td>
<td>97.69</td>
<td>97.69</td>
</tr>
<tr>
<td>PESO DEL SUELO SECO (g)</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>CONTENIDO DE HUMEDAD (%)</td>
<td>11.25</td>
<td>11.25</td>
<td>11.25</td>
</tr>
<tr>
<td>NÚMERO DE GOLPES</td>
<td>15</td>
<td>24</td>
<td>30</td>
</tr>
</tbody>
</table>

LÍMITE PLÁSTICO

<table>
<thead>
<tr>
<th>N° TAÑIDO</th>
<th>29</th>
<th>29</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESO TAÑIDO + SUELO HUMEDO (g)</td>
<td>N.P.</td>
<td>N.P.</td>
<td>N.P.</td>
</tr>
<tr>
<td>PESO TAÑIDO + SUELO SECO (g)</td>
<td>N.P.</td>
<td>N.P.</td>
<td>N.P.</td>
</tr>
<tr>
<td>PESO DE AGUA (g)</td>
<td>N.P.</td>
<td>N.P.</td>
<td>N.P.</td>
</tr>
<tr>
<td>PESO DEL TAÑIDO (g)</td>
<td>N.P.</td>
<td>N.P.</td>
<td>N.P.</td>
</tr>
<tr>
<td>PESO DEL SUELO SECO (g)</td>
<td>N.P.</td>
<td>N.P.</td>
<td>N.P.</td>
</tr>
<tr>
<td>CONTENIDO DE DE HUMEDAD (%)</td>
<td>N.P.</td>
<td>N.P.</td>
<td>N.P.</td>
</tr>
</tbody>
</table>

CONTENIDO DE HUMEDAD A 25 GOLPES

- N.P.

CONSTANTES FÍSICAS DE LA MUESTRA

LÍMITE LIQUIDO	3.6
LÍMITE PLÁSTICO	N.P.
ÍNDICE DE PLASTICIDAD	N.P.

OBSERVACIONES

UP-94 PUEDE DE TRÁNSITO DE PASO Y LÍMITE PLÁSTICO.
LABORATORIO DE SUELOS, CONCRETO Y
PAVIMENTOS

Dirección: Calle Leoncelo Prado N°512 - Sullana
Contacto: 968 950 533 / 677 762 129
Correo electrónico: laboratoriotelemau@gmail.com

INFORME N°: 6225
Fecha de Envió: 25/06/2022
Solicitante: Garcé Zapata, Jesús Amílcar

LIMITES DE CONSISTENCIA-PASA LA MALLA Nº40
(NORMA MTC E-110, E-111, AASHTO T-69, T-90, ASTM D 4318)

DATOS DE LA MUESTRA

MUESTRAS: DURAMASANTE DE TERRENO NATURAL + 15% DE CENIZAS
CAJCATA: C-02

TAMAÑO MÁXIMO: Nº 40

PROYECTO: INFLUENCIA DE LAS CENIZAS DE CASCARRILAS DE AFROZ EN LA ESTABILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PIMARPEPA - MINAS DE BICUERO - SULLANA 2022

NRO. PROF.

<table>
<thead>
<tr>
<th>N° TARNO</th>
<th>PESO TARNO + SUELO HUMEDO (g)</th>
<th>PESO TARNO + SUELO SECO (g)</th>
<th>PESO DE AGUA (g)</th>
<th>PESO DEL TARNO (g)</th>
<th>PESO DEL SUELO SECO (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nº TARNO

<table>
<thead>
<tr>
<th>N° TARNO</th>
<th>PESO TARNO + SUELO HUMEDO (g)</th>
<th>PESO TARNO + SUELO SECO (g)</th>
<th>PESO DE AGUA (g)</th>
<th>PESO DEL TARNO (g)</th>
<th>PESO DEL SUELO SECO (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTENIDO DE HUMEDAD A 25 GOLPES

<table>
<thead>
<tr>
<th>CONTENIDO DE HUMEDAD (70)</th>
<th>N.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>N.P.</td>
</tr>
<tr>
<td>26</td>
<td>N.P.</td>
</tr>
<tr>
<td>28</td>
<td>N.P.</td>
</tr>
</tbody>
</table>

OBSEVACIONES

% DE Peso determinar el ensayo límite plástico

CONSTANTES FRÍASES DE LA MUESTRA

<table>
<thead>
<tr>
<th>LÍMITE LÍQUIDO</th>
<th>N.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LÍMITE PLÁSTICO</td>
<td>N.P.</td>
</tr>
<tr>
<td>RESISTENCIAS DE PLASTICIDAD</td>
<td>N.P.</td>
</tr>
</tbody>
</table>
Datos de la Muestra

Tamaño Mínimo
- Nº: 40
- PROF. (m): 0.00 - 0.55 m

Límite Líquido

<table>
<thead>
<tr>
<th>Nº TARRO</th>
<th>0%</th>
<th>10%</th>
<th>15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso Tarro + Suelo Humedo (g)</td>
<td>66.52</td>
<td>62.82</td>
<td>67.92</td>
</tr>
<tr>
<td>Peso Tarro + Suelo Seco (g)</td>
<td>60.62</td>
<td>59.84</td>
<td>55.62</td>
</tr>
<tr>
<td>Peso de Agua (g)</td>
<td>4.92</td>
<td>5.16</td>
<td>4.42</td>
</tr>
<tr>
<td>Peso del Tarro (g)</td>
<td>48.42</td>
<td>50.24</td>
<td>44.81</td>
</tr>
<tr>
<td>Peso del Suelo Seco (g)</td>
<td>13.87</td>
<td>9.40</td>
<td>13.69</td>
</tr>
<tr>
<td>Contenido de Humedad (%)</td>
<td>35.18</td>
<td>33.83</td>
<td>32.29</td>
</tr>
<tr>
<td>Número de Golpes</td>
<td>16</td>
<td>24</td>
<td>32</td>
</tr>
</tbody>
</table>

Límite Plástico

<table>
<thead>
<tr>
<th>Nº TARRO</th>
<th>0%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso Tarro + Suelo Humedo (g)</td>
<td>53.82</td>
<td>56.74</td>
</tr>
<tr>
<td>Peso Tarro + Suelo Seco (g)</td>
<td>53.27</td>
<td>55.09</td>
</tr>
<tr>
<td>Peso de Agua (g)</td>
<td>5.69</td>
<td>1.55</td>
</tr>
<tr>
<td>Peso del Tarro (g)</td>
<td>51.12</td>
<td>49.86</td>
</tr>
<tr>
<td>Peso del Suelo Seco (g)</td>
<td>2.11</td>
<td>3.83</td>
</tr>
<tr>
<td>Contenido de Humedad (%)</td>
<td>14.48</td>
<td>14.21</td>
</tr>
</tbody>
</table>

Contenido de Humedad a 25 Golpes

Constantes Físicas de la Muestra

- Límite Líquido: 35.5%
- Límite Plástico: 15.2%
- Índice de Plastocidad: 15.3%

Observaciones
LABORATORIO DE SUELOS, CONCRETO Y PAVIMENTOS

Información N°: 6785
Fecha de Emisión: 25/06/2022
Solictante: García Zapata, Jesús Ambury

LIMITES DE CONSISTENCIA-PASA LA MALLA N°40
(NORMA MTC E-110, E-111, AASHTO T-98, T-92, ASTM D 4318)

PROYECTO: INFLUENCIA DE LAS CENIZAS DE CASCARRILLES DE AVEO EN LA ESTABILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PRIMAVERA - INGÁNACO RINCÓN - SULLANA 2022

MUESTRA: SURFASANTE DE TERRENO NATURAL + 5 % DE CENIZAS
CALCADA: C-05

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>M-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESO (g)</td>
<td>0.45 - 1.56 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N° TARRO</th>
<th>PESO TARRO + SUELLO HÚMEDO (g)</th>
<th>PESO TARRO + SUELLO SECO (g)</th>
<th>PESO DE AGUA (g)</th>
<th>PESO DEL TARRO (g)</th>
<th>PESO DEL SUELLO SECO (g)</th>
<th>CONTENIDO DE HUMEDAD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N° TARRO</th>
<th>PESO TARRO + SUELLO HÚMEDO (g)</th>
<th>PESO TARRO + SUELLO SECO (g)</th>
<th>PESO DE AGUA (g)</th>
<th>PESO DEL TARRO (g)</th>
<th>PESO DEL SUELLO SECO (g)</th>
<th>CONTENIDO DE HUMEDAD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
</tr>
</tbody>
</table>

CONTENIDO DE HUMEDAD A 25 GOLPES

<table>
<thead>
<tr>
<th>NÚMERO DE GOLPES</th>
<th>CONTENIDO DE HUMEDAD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>N.P</td>
</tr>
<tr>
<td>15</td>
<td>N.P</td>
</tr>
<tr>
<td>20</td>
<td>N.P</td>
</tr>
<tr>
<td>25</td>
<td>N.P</td>
</tr>
<tr>
<td>100</td>
<td>N.P</td>
</tr>
</tbody>
</table>

CONSTATES FÍSICAS DE LA MUESTRA

<table>
<thead>
<tr>
<th>NÚMERO DE GOLPES</th>
<th>CONTENIDO DE HUMEDAD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.P</td>
<td>N.P</td>
</tr>
</tbody>
</table>

OBSERVACIONES

N.P (NO PRECISO) REPRODUZIR EL ANÁLISIS DE LOS LÍMITES LÍQUIDO Y PLÁSTICO.
Límites de Consistencia-Pasa la Malla N°40

Proyecto: Influencia de las Cenizas de Carbón de Arroz en la Estabilización de Suelos del Camino de Villa Primavera - Ing. César Esquivel - Sullana 2022

Muestra: Suspension de Terreno Natural - 15 % de Cenizas

Calcita (C-01)

Datos de la Muestra

- **Muestra:** M-21
- **Prof. (m):** 0.00 - 1.50 m

Límite Líquido

<table>
<thead>
<tr>
<th>Nº Tiempo</th>
<th>Peso Tiempo + Suelo Húmedo (g)</th>
<th>Peso Tiempo + Suelo Seco (g)</th>
<th>Peso de Agua (g)</th>
<th>Peso del Tiempo (g)</th>
<th>Peso del Suelo Seco (g)</th>
<th>Contenido de Humedad (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
</tr>
</tbody>
</table>

Límite Plástico

<table>
<thead>
<tr>
<th>Nº Tiempo</th>
<th>Peso Tiempo + Suelo Húmedo (g)</th>
<th>Peso Tiempo + Suelo Seco (g)</th>
<th>Peso de Agua (g)</th>
<th>Peso del Tiempo (g)</th>
<th>Peso del Suelo Seco (g)</th>
<th>Contenido de Humedad (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
<td>N.P</td>
</tr>
</tbody>
</table>

Contenido de Humedad a 26 Golpes

![Graph showing content of humidity at 26 blows]

Observaciones: No se pudo medir el límite líquido y límite plástico.
DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>M-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROF. (m)</td>
<td>0.00 - 1.50 m</td>
</tr>
</tbody>
</table>

LIMITES LIQUIDOS

<table>
<thead>
<tr>
<th>Nº TIEMPO</th>
<th>PESO TAMPO + SUELO HUMEDO (g)</th>
<th>PESO TAMPO + SUELO SECO (g)</th>
<th>PESO DE AGUA (g)</th>
<th>PESO DEL TAMPO (g)</th>
<th>CONTENIDO DE HUMEDAD (%)</th>
<th>NUMERO DE GOLPES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.P</td>
<td>N.P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LIMITES PLÁSTICOS

<table>
<thead>
<tr>
<th>Nº TIEMPO</th>
<th>PESO TAMPO + SUELO HUMEDO (g)</th>
<th>PESO TAMPO + SUELO SECO (g)</th>
<th>PESO DE AGUA (g)</th>
<th>PESO DEL TAMPO (g)</th>
<th>CONTENIDO DE HUMEDAD (%)</th>
<th>NUMERO DE GOLPES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.P</td>
<td>N.P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTENIDO DE HUMEDAD A 25 GOLPES

![Graph showing content of moisture at 25 impacts](image)

<table>
<thead>
<tr>
<th>NUMERO DE GOLPES</th>
<th>CONTENIDO DE HUMEDAD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.P</td>
</tr>
</tbody>
</table>

CONSTANTES MECANICAS DE LA MUESTRA

<table>
<thead>
<tr>
<th>LIMITES LIQUIDOS</th>
<th>M.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIMITES PLÁSTICOS</td>
<td>M.P.</td>
</tr>
<tr>
<td>INDICE DE PLASTICIDAD</td>
<td>M.P.</td>
</tr>
</tbody>
</table>

OBSERVACIONES

No se pudo realizar el análisis de límite líquido y límite plástico.
Anexo 05: Ensayo de proctor modificado

![Laboratorio Telemau logo]

Informe N°: 6785
Fecha de Em.: 26/06/2022
Solicitante: García Zapata, Jesúsamberly

ENSAYO PROCTOR MODIFICADO
(NORMA MTC E-115, ASTM D-1557, AADITO T-100)

PROYECTO: INFLUENCIA DE LAS CENIZAS DE CASCARILLAS DE ARROZ EN LA ESTABILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PRIMAVERA - INACACIO ESCUDERO - SULLANA 2022

MUESTRA: SUBRASTANTE DE TERRENO NATURAL
CALICATA: C-01

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>MUESTREO</th>
<th>M - 01</th>
<th>CLASIF. (SUIC)</th>
<th>CLASIF. (AASHTO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROF. (m)</td>
<td>0.00 - 1.50 m</td>
<td>CLASIF. (AASHTO)</td>
<td></td>
</tr>
</tbody>
</table>

METODO DE COMPACTACION

<table>
<thead>
<tr>
<th>Peso suelo + molde</th>
<th>gr</th>
<th>5461</th>
<th>5500</th>
<th>5597</th>
<th>6022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso molde</td>
<td>gr</td>
<td>3702</td>
<td>3702</td>
<td>3702</td>
<td>3702</td>
</tr>
<tr>
<td>Peso suelo mojado compactado</td>
<td>gr</td>
<td>1990</td>
<td>1771</td>
<td>1935</td>
<td>1800</td>
</tr>
<tr>
<td>Volumen del molde</td>
<td>cm³</td>
<td>901.6</td>
<td>901.6</td>
<td>901.6</td>
<td>901.6</td>
</tr>
<tr>
<td>Peso volumétrico humedo</td>
<td>gr</td>
<td>1.624</td>
<td>1.801</td>
<td>1.970</td>
<td>1.997</td>
</tr>
<tr>
<td>Recipiente N°</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Peso del suelo mojado + tara</td>
<td>gr</td>
<td>4068.6</td>
<td>4623</td>
<td>4717.2</td>
<td>5055.5</td>
</tr>
<tr>
<td>Peso del suelo seco + tara</td>
<td>gr</td>
<td>512.1</td>
<td>520.8</td>
<td>420.2</td>
<td>330.6</td>
</tr>
<tr>
<td>Tara</td>
<td>gr</td>
<td>46.7</td>
<td>52.5</td>
<td>91.5</td>
<td>51.1</td>
</tr>
<tr>
<td>Peso de agua</td>
<td>gr</td>
<td>312.1</td>
<td>520.8</td>
<td>420.2</td>
<td>330.8</td>
</tr>
<tr>
<td>Contenido de agua</td>
<td>%</td>
<td>7.83</td>
<td>9.85</td>
<td>12.26</td>
<td>15.38</td>
</tr>
<tr>
<td>Peso volumétrico seco</td>
<td>gr/cm³</td>
<td>1.686</td>
<td>1.730</td>
<td>1.705</td>
<td>1.732</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RELACIÓN HUMEDAD-DENSIDAD</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Contenido de humedad (%)</th>
<th>7.83</th>
<th>9.85</th>
<th>12.26</th>
<th>15.38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad máxima (gr/cm³)</td>
<td>1.732</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humedad límpsa (%)</td>
<td>33.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagrama de relación humedad-densidad
ENSAVO PROCTOR MODIFICADO

(NORMA MTC E-115, ASTM D-1557, AASHTO T-180)

PROYECTO: INFLUENCIA DE LAS CENIZAS DE CASCARILLAS DE ARROZ EN LA ESTABILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PRINCIPE - IGNACIO ESCUDERO - SULLANA 2002

MUESTRA: SUBBASANTE DE TERRONEDO NATURAL + 5 % DE CENIZAS

CALCITADA: C-04

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>MUESTREO</th>
<th>M-01</th>
<th>CLASE (BUCE)</th>
<th>ML</th>
<th>PROF. (m)</th>
<th>0.00 - 1.50 m</th>
<th>CLASE (AASHTO)</th>
<th>A-4 (°)</th>
</tr>
</thead>
</table>

METODO DE COMPACTACION: A

<table>
<thead>
<tr>
<th>Peso suelo + molde (gr)</th>
<th>3280</th>
<th>5491</th>
<th>5560</th>
<th>1095</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso molde (gr)</td>
<td>3665</td>
<td>3302</td>
<td>3762</td>
<td>1982</td>
</tr>
<tr>
<td>Peso suelo humedo compactado (gr)</td>
<td>1620</td>
<td>1729</td>
<td>1758</td>
<td>1812</td>
</tr>
<tr>
<td>Volumen del molde (cm³)</td>
<td>931.6</td>
<td>931.6</td>
<td>931.6</td>
<td>931.6</td>
</tr>
<tr>
<td>Peso volumétrico humedo (gr)</td>
<td>1.730</td>
<td>1.856</td>
<td>1.930</td>
<td>1.955</td>
</tr>
<tr>
<td>Recipiente N°</td>
<td>1</td>
<td></td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Peso del suelo humid+tara (gr)</td>
<td>621.9</td>
<td>875.5</td>
<td>124.0</td>
<td>423.5</td>
</tr>
<tr>
<td>Peso del suelo seco + tara (gr)</td>
<td>490.7</td>
<td>514.1</td>
<td>173.4</td>
<td>368.3</td>
</tr>
<tr>
<td>Tara (gr)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Peso de agua (gr)</td>
<td>41.2</td>
<td>64.4</td>
<td>20.8</td>
<td>55.7</td>
</tr>
<tr>
<td>Peso del suelo seco (gr)</td>
<td>450.7</td>
<td>514.1</td>
<td>173.4</td>
<td>368.3</td>
</tr>
<tr>
<td>Contenido de agua (%)</td>
<td>8.87</td>
<td>10.49</td>
<td>11.68</td>
<td>15.45</td>
</tr>
<tr>
<td>Peso volumétrico seco (gr/cm³)</td>
<td>1.812</td>
<td>1.680</td>
<td>1.729</td>
<td>1.794</td>
</tr>
</tbody>
</table>

Densidad máxima (g/cm³): 1.780

Humedad óptima (%): 15.5
ENSAYO PROCTOR MODIFICADO
(NORMA MTC E-115, ASTM D-1857, AASHTO T-180)

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>MUESTREO</th>
<th>M - 01</th>
<th>CLASIF. (EUCL)</th>
<th>ML</th>
<th>CLASIF. (AASHTO)</th>
<th>A-4 (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROF. (m)</td>
<td>0.60 - 1.50 m</td>
<td></td>
<td></td>
<td>CLASIF. (AASHTO)</td>
<td>A-4 (B)</td>
</tr>
</tbody>
</table>

METODO DE COMPACTACION

<table>
<thead>
<tr>
<th></th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso suelo + molde</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>5346</td>
</tr>
<tr>
<td></td>
<td>5482</td>
</tr>
<tr>
<td></td>
<td>5552</td>
</tr>
<tr>
<td></td>
<td>5603</td>
</tr>
<tr>
<td>Peso molde</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>3762</td>
</tr>
<tr>
<td></td>
<td>3762</td>
</tr>
<tr>
<td></td>
<td>3762</td>
</tr>
<tr>
<td>Peso suelo humedo compactado</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>1567</td>
</tr>
<tr>
<td></td>
<td>1750</td>
</tr>
<tr>
<td></td>
<td>1790</td>
</tr>
<tr>
<td></td>
<td>1840</td>
</tr>
<tr>
<td>Volumen del molde</td>
<td>cm³</td>
</tr>
<tr>
<td></td>
<td>931.6</td>
</tr>
<tr>
<td></td>
<td>931.6</td>
</tr>
<tr>
<td></td>
<td>931.6</td>
</tr>
<tr>
<td></td>
<td>931.6</td>
</tr>
<tr>
<td>Peso volumétrico humedo</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>1.704</td>
</tr>
<tr>
<td></td>
<td>1.825</td>
</tr>
<tr>
<td></td>
<td>1.921</td>
</tr>
<tr>
<td></td>
<td>1.684</td>
</tr>
<tr>
<td>Recipiente Nº</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Peso del suelo húmedo + tara</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>3339</td>
</tr>
<tr>
<td></td>
<td>679.5</td>
</tr>
<tr>
<td></td>
<td>199.9</td>
</tr>
<tr>
<td></td>
<td>306.5</td>
</tr>
<tr>
<td>Peso del suelo seco + tara</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>490.1</td>
</tr>
<tr>
<td></td>
<td>615.1</td>
</tr>
<tr>
<td></td>
<td>176.1</td>
</tr>
<tr>
<td></td>
<td>915.1</td>
</tr>
<tr>
<td>Tara</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>Peso de agua</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>40.5</td>
</tr>
<tr>
<td></td>
<td>60.8</td>
</tr>
<tr>
<td></td>
<td>20.8</td>
</tr>
<tr>
<td></td>
<td>60.7</td>
</tr>
<tr>
<td>Peso del suelo seco</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>490.1</td>
</tr>
<tr>
<td></td>
<td>615.1</td>
</tr>
<tr>
<td></td>
<td>176.1</td>
</tr>
<tr>
<td></td>
<td>915.1</td>
</tr>
<tr>
<td>Contenido de agua</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>9.34</td>
</tr>
<tr>
<td></td>
<td>10.90</td>
</tr>
<tr>
<td></td>
<td>13.52</td>
</tr>
<tr>
<td></td>
<td>15.67</td>
</tr>
<tr>
<td>Peso volumétrico seco</td>
<td>g/cm³</td>
</tr>
<tr>
<td></td>
<td>1.564</td>
</tr>
<tr>
<td></td>
<td>1.646</td>
</tr>
<tr>
<td></td>
<td>1.683</td>
</tr>
<tr>
<td></td>
<td>1.615</td>
</tr>
</tbody>
</table>

Densidad máxima (g/cm³)

1.894

Humedad óptima (%)

13.6
ENSAYO PROCTOR MODIFICADO
(NORMA MTC E-115, ASTM D-1557, AASHTO T-180)

PROYECTO: INFLUENCIA DE LAS CENIZAS DE CASCARRILLAS DE ARROZ EN LA ESTABILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PRINCIPE-IGNACIO ESCUDEÑO-SULLANA 2022

MUESTRA: SUBASAANTE DE TERRIZO NATURAL + 15 % DE CENIZAS

CALCULADA: C-91

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>MUESTREO</th>
<th>M - 01</th>
<th>CLAS. (MUCS)</th>
<th>ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROF. (m)</td>
<td>0.00 - 1.50 m</td>
<td>CLAS. (AASHTO) A-4 (0)</td>
<td></td>
</tr>
</tbody>
</table>

METODO DE COMPACTACION

<table>
<thead>
<tr>
<th></th>
<th>gr</th>
<th>5305</th>
<th>5421</th>
<th>5420</th>
<th>5425</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso suelo + media</td>
<td>gr</td>
<td>3792</td>
<td>3762</td>
<td>3762</td>
<td>3762</td>
</tr>
<tr>
<td>Peso rocío</td>
<td>gr</td>
<td>1567</td>
<td>1630</td>
<td>1700</td>
<td>1714</td>
</tr>
<tr>
<td>Volumen del rocío (cm³)</td>
<td>cm³</td>
<td>933.6</td>
<td>931.6</td>
<td>931.6</td>
<td>931.6</td>
</tr>
<tr>
<td>Peso volumétrico rocío</td>
<td>gr</td>
<td>1.661</td>
<td>1.718</td>
<td>1.821</td>
<td>1.660</td>
</tr>
<tr>
<td>Rocío N°</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Peso del rocío+media</td>
<td>gr</td>
<td>621.3</td>
<td>652.2</td>
<td>599.9</td>
<td>655.4</td>
</tr>
<tr>
<td>Peso del suelo seco + media</td>
<td>gr</td>
<td>564.6</td>
<td>562.8</td>
<td>492.2</td>
<td>394.2</td>
</tr>
<tr>
<td>Tara</td>
<td>gr</td>
<td>6.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Peso de agua</td>
<td>gr</td>
<td>86.7</td>
<td>76.4</td>
<td>64.7</td>
<td>61.7</td>
</tr>
<tr>
<td>Peso del suelo seco</td>
<td>gr</td>
<td>504.6</td>
<td>502.8</td>
<td>427.2</td>
<td>394.2</td>
</tr>
<tr>
<td>Contenido de agua (%)</td>
<td>10.6</td>
<td>12.08</td>
<td>14.05</td>
<td>16.94</td>
<td></td>
</tr>
<tr>
<td>Peso volumétrico seco</td>
<td>gr/m³</td>
<td>1.569</td>
<td>1.670</td>
<td>1.606</td>
<td>1.573</td>
</tr>
</tbody>
</table>

Densidad máxima (g/cm³) 1.851
Humedad límite (%) 14.5
ENSAYO PROCTOR MODIFICADO
(NORMA MTC 115, ASTM D-1557, AASHTO T-180)

PROYECTO: INFLUENCIA DE LAS CENIZAS DE CASCARRILLAS DE ARROZ EN LA ESTABILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PRIMAVERA - RODRIGO ESCUDERO - SULLANA 2022

MUESTRA: SUBRAMANTE DE TERCERO NATURAL

CALCITADA: C-02

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>MUESTREO</th>
<th>M - 01</th>
<th>CLASF. (SUCC)</th>
<th>CL</th>
<th>CLASF. (AASHTO)</th>
<th>A - 4</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROF. (m)</td>
<td>0.00 - 1.50 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MÉTODO DE COMPACTACIÓN

<table>
<thead>
<tr>
<th>Paso suelo + molde</th>
<th>g</th>
<th>5492</th>
<th>5939</th>
<th>5923</th>
<th>5609</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso molde</td>
<td>g</td>
<td>3902</td>
<td>3922</td>
<td>3762</td>
<td>3742</td>
</tr>
<tr>
<td>Peso suelo húmedo compactado</td>
<td>g</td>
<td>1584</td>
<td>1728</td>
<td>1647</td>
<td>1647</td>
</tr>
<tr>
<td>Volumen del molde</td>
<td>cm³</td>
<td>931.6</td>
<td>931.6</td>
<td>931.6</td>
<td>931.6</td>
</tr>
<tr>
<td>Peso volumétrico húmedo</td>
<td>g</td>
<td>1.778</td>
<td>1.885</td>
<td>1.076</td>
<td>1.683</td>
</tr>
<tr>
<td>Recipiente N°</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Peso del suelo húmedo + tara</td>
<td>g</td>
<td>539.6</td>
<td>622.1</td>
<td>521.1</td>
<td>550.5</td>
</tr>
<tr>
<td>Peso del suelo seco + tara</td>
<td>g</td>
<td>494.6</td>
<td>565.6</td>
<td>466.0</td>
<td>535.8</td>
</tr>
<tr>
<td>Tara</td>
<td>g</td>
<td>46.0</td>
<td>46.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Peso de agua</td>
<td>g</td>
<td>36.0</td>
<td>86.5</td>
<td>92.3</td>
<td>73.3</td>
</tr>
<tr>
<td>Peso del suelo seco</td>
<td>g</td>
<td>458.6</td>
<td>559.1</td>
<td>464.6</td>
<td>562.5</td>
</tr>
<tr>
<td>Contenido de agua</td>
<td>%</td>
<td>7.28</td>
<td>0.90</td>
<td>13.11</td>
<td>14.97</td>
</tr>
<tr>
<td>Peso volumétrico seco</td>
<td>g/cm³</td>
<td>1.666</td>
<td>1.714</td>
<td>1.763</td>
<td>1.736</td>
</tr>
</tbody>
</table>

Relación humedad-densidad

Densidad máxima (g/cm³): 1.788
Humedad óptima (%): 13.3
ENSAYO PROCTOR MODIFICADO
(NORMA MTC E-115, ASTM D-1557, AAGHTO T-100)

PROYECTO
INFLUENCIA DE LAS CENIZAS DE CASCARRILLES DE ARROZ EN LA ESTABILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PRIMAVERA - INGALAO ESCUDERO - SULLANA 2022

MUESTRA
SUELO BAJANTE DE TERRENO NATURAL + 5% DE CENIZAS

CALICATA
C-02

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>MUESTREO</th>
<th>N - 01</th>
<th>CLASIF. (SOIL)</th>
<th>ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROF. (m)</td>
<td>0.05-1.50</td>
<td>CLASIF. (SANDITO A-4 (B))</td>
<td></td>
</tr>
</tbody>
</table>

MÉTODO DE COMPACTACIÓN

<table>
<thead>
<tr>
<th>Peso suelo + rocín</th>
<th>gr</th>
<th>5300</th>
<th>5300</th>
<th>5400</th>
<th>5410</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso moído</td>
<td>gr</td>
<td>3762</td>
<td>3762</td>
<td>3762</td>
<td>3762</td>
</tr>
<tr>
<td>Peso suelo humedo compactado</td>
<td>gr</td>
<td>1545</td>
<td>1557</td>
<td>1737</td>
<td>1670</td>
</tr>
<tr>
<td>Volumen del moído</td>
<td>cm³</td>
<td>531.6</td>
<td>531.6</td>
<td>531.6</td>
<td>531.6</td>
</tr>
<tr>
<td>Peso volumétrico humedo</td>
<td>gr</td>
<td>1.666</td>
<td>1.767</td>
<td>1.805</td>
<td>1.823</td>
</tr>
<tr>
<td>Recipiente N°</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Peso del suelo humedo+bara</td>
<td>gr</td>
<td>469.5</td>
<td>467.6</td>
<td>352.6</td>
<td>529.3</td>
</tr>
<tr>
<td>Peso del suelo seco + bara</td>
<td>gr</td>
<td>436.1</td>
<td>541.9</td>
<td>321.1</td>
<td>544.6</td>
</tr>
<tr>
<td>Tara</td>
<td>gr</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Peso de agua</td>
<td>gr</td>
<td>76.4</td>
<td>68.9</td>
<td>42.8</td>
<td>84.7</td>
</tr>
<tr>
<td>Peso del suelo seco</td>
<td>gr</td>
<td>430.1</td>
<td>541.0</td>
<td>321.1</td>
<td>544.6</td>
</tr>
<tr>
<td>Contenido de agua</td>
<td>%</td>
<td>51.5</td>
<td>11.82</td>
<td>13.24</td>
<td>15.56</td>
</tr>
<tr>
<td>Peso volumétrico seco</td>
<td>gr/cm³</td>
<td>1.617</td>
<td>1.683</td>
<td>1.047</td>
<td>1.086</td>
</tr>
</tbody>
</table>

Relación Humedad-Densidad

- Densidad máxima (platos): 1.647
- Humedad óptima (%): 13.5
ENSAYO PROCTOR MODIFICADO

(NORMA MTC E-115, ASTM D-1557, AASHTO T-180)

PROYECTO: INFLUENCIA DE LAS CENIZAS DE CASCARRILLAS DE ARBROZ EN LA ESTABILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PRIMAVERA - IGNACIO ESCUDERO - SULLANA 2022

MUESTRA: SUBRAVAITE DE TERRENO NATURAL + 15% DE CENIZAS

CALICATADA: C-02

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>MUESTREO</th>
<th>M - 01</th>
<th>CLASIF. (RUCS)</th>
<th>ML</th>
<th>PROF. (m)</th>
<th>0.00 - 1.50 m</th>
<th>CLASIF. (AASHTO)</th>
<th>A-A (c)</th>
</tr>
</thead>
</table>

METODO DE COMPACTACION

<table>
<thead>
<tr>
<th>Peso suelo + molde</th>
<th>gr</th>
<th>5305</th>
<th>5425</th>
<th>5425</th>
<th>5425</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso molde</td>
<td>gr</td>
<td>3703</td>
<td>3703</td>
<td>3703</td>
<td>3703</td>
</tr>
<tr>
<td>Peso suelo húmedo compactado</td>
<td>gr</td>
<td>1546</td>
<td>1609</td>
<td>1701</td>
<td>1701</td>
</tr>
<tr>
<td>Volumen del molde</td>
<td>cm³</td>
<td>951.6</td>
<td>951.6</td>
<td>951.6</td>
<td>951.6</td>
</tr>
<tr>
<td>Peso volumétrico húmedo</td>
<td>gr</td>
<td>1.656</td>
<td>1.769</td>
<td>1.666</td>
<td>1.632</td>
</tr>
<tr>
<td>Rockcante N°</td>
<td></td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Peso del suelo húmedo+tara</td>
<td>gr</td>
<td>429.3</td>
<td>580.5</td>
<td>495.3</td>
<td>500.6</td>
</tr>
<tr>
<td>Peso del suelo seco + tara</td>
<td>gr</td>
<td>385.5</td>
<td>499.6</td>
<td>339.9</td>
<td>492.5</td>
</tr>
<tr>
<td>Tara</td>
<td>gr</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Peso de agua</td>
<td>gr</td>
<td>79.4</td>
<td>82.7</td>
<td>96.4</td>
<td>81.1</td>
</tr>
<tr>
<td>Peso del suelo seco</td>
<td>gr</td>
<td>306.1</td>
<td>496.9</td>
<td>343.5</td>
<td>492.5</td>
</tr>
<tr>
<td>Contenido de agua</td>
<td>%</td>
<td>10.21</td>
<td>12.66</td>
<td>14.89</td>
<td>10.81</td>
</tr>
<tr>
<td>Peso volumétrico seco</td>
<td>gr/cm³</td>
<td>1.563</td>
<td>1.563</td>
<td>1.569</td>
<td>1.569</td>
</tr>
<tr>
<td>Densidad máxima (gr/cm³)</td>
<td></td>
<td>1.569</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humedad límica (%)</td>
<td></td>
<td>14.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagrama de relación humedad-densidad](image-url)
ENSAYO PROCTOR MODIFICADO

(NORMA MTC-E-115, ASTM D-1557, AASHTO T-180)

PROYECTO
- INFLUENCIA DE LAS CENIZAS DE CASCARILLAS DE AROZ EN LA ESTABILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PRIMAVERA - INGNACIO ESCUDERO - BULANNA 2022

MUESTRA
- SUBASANTE DE TERRENO NATURAL

CALICATA
- C-03

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>MUESTREO</th>
<th>M - 01</th>
<th>CLASIF. (BUEN)</th>
<th>CLASIF. (AAMTO/A-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROF. (m)</td>
<td>0.00 - 1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

METODO DE COMPACTACION

<table>
<thead>
<tr>
<th></th>
<th>g</th>
<th>g</th>
<th>g</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso suelo + molde</td>
<td>5449</td>
<td>5494</td>
<td>5519</td>
<td>5614</td>
</tr>
<tr>
<td>Peso molde</td>
<td>3702</td>
<td>3702</td>
<td>3702</td>
<td>3702</td>
</tr>
<tr>
<td>Peso suelo húmedo-compactado</td>
<td>1857</td>
<td>1762</td>
<td>1895</td>
<td>1892</td>
</tr>
<tr>
<td>Volumen del molde</td>
<td>531.6</td>
<td>591.6</td>
<td>501.6</td>
<td>531.6</td>
</tr>
<tr>
<td>Peso volumétrico húmedo</td>
<td>1.776</td>
<td>1.861</td>
<td>1.902</td>
<td>1.908</td>
</tr>
<tr>
<td>Recuperante N²</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Peso del suelo húmedo-tara</td>
<td>530.2</td>
<td>529.2</td>
<td>541.8</td>
<td>522.3</td>
</tr>
<tr>
<td>Peso del suelo seco + tara</td>
<td>484.1</td>
<td>480.5</td>
<td>480.9</td>
<td>459.6</td>
</tr>
<tr>
<td>Tara</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Peso de agua</td>
<td>36.9</td>
<td>45.7</td>
<td>45.7</td>
<td>42.5</td>
</tr>
<tr>
<td>Peso del suelo seco</td>
<td>447.2</td>
<td>434.8</td>
<td>435.2</td>
<td>417.1</td>
</tr>
<tr>
<td>Contenido de agua</td>
<td>7.45</td>
<td>9.31</td>
<td>13.62</td>
<td>15.67</td>
</tr>
<tr>
<td>Peso volumétrico seco</td>
<td>1.686</td>
<td>1.727</td>
<td>1.760</td>
<td>1.726</td>
</tr>
</tbody>
</table>

- **Densidad máxima (g/cm³):** 1.789
- **Humedad óptima (%):** 13.5

RELACION HUMEDAD-DENSIDAD
ENSAYO PROCTOR MODIFICADO
(NORMA MTC E-116, ASTM D-1867, AASHTO T-180)

PROYECTO: INFLUENCIA DE LAS CENIZAS DE CASCARILLAS DE ARROZ EN LA ESTABILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PRIMAVERA - INGINACIO ESCUDERO - SULLANA 2022

MUESTRA: SUBRABANTE DE TERRENO NATURAL + 5 % DE CENIZAS

CALCADA: C-03

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>MUESTREO</th>
<th>M-01</th>
<th>CLASIF. (SUCB)</th>
<th>NIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROF. (m)</td>
<td>0.60 - 1.50 m</td>
<td>CLASIF. (ASHTO)</td>
<td>4-4 (B)</td>
</tr>
</tbody>
</table>

METODO DE COMPACTACION

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso suelo + moldes</td>
<td>gr</td>
<td>5312</td>
<td>5393</td>
<td>5490</td>
<td>5492</td>
<td></td>
</tr>
<tr>
<td>Peso moldes</td>
<td>gr</td>
<td>3762</td>
<td>3762</td>
<td>3762</td>
<td>3762</td>
<td></td>
</tr>
<tr>
<td>Peso suelo húmedo compactado</td>
<td>gr</td>
<td>1960</td>
<td>1891</td>
<td>1728</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>Volumen del molde</td>
<td>cm³</td>
<td>931.6</td>
<td>931.6</td>
<td>931.6</td>
<td>931.6</td>
<td></td>
</tr>
<tr>
<td>Peso volumétrico humedoso</td>
<td>gr</td>
<td>1.664</td>
<td>1.751</td>
<td>1.855</td>
<td>1.825</td>
<td></td>
</tr>
<tr>
<td>Recipiente N°</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Peso del suelo húmedo+llena</td>
<td>gr</td>
<td>4732</td>
<td>5832</td>
<td>4932</td>
<td>3172</td>
<td></td>
</tr>
<tr>
<td>Peso del suelo seco + tara</td>
<td>gr</td>
<td>432.1</td>
<td>524.2</td>
<td>401.8</td>
<td>537.1</td>
<td></td>
</tr>
<tr>
<td>Tara</td>
<td>gr</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Peso de agua</td>
<td>gr</td>
<td>58.6</td>
<td>58.0</td>
<td>50.8</td>
<td>76.5</td>
<td></td>
</tr>
<tr>
<td>Peso del suelo seco</td>
<td>gr</td>
<td>432.1</td>
<td>524.2</td>
<td>401.8</td>
<td>537.1</td>
<td></td>
</tr>
<tr>
<td>Contenido de agua</td>
<td>%</td>
<td>8.82</td>
<td>10.68</td>
<td>12.65</td>
<td>14.11</td>
<td></td>
</tr>
<tr>
<td>Peso volumétrico seco</td>
<td>gr/cm³</td>
<td>1.529</td>
<td>1.582</td>
<td>1.647</td>
<td>1.939</td>
<td></td>
</tr>
</tbody>
</table>

Densidad máxima (gr/cm³) = 1,842
Humedad (optima %) = 12.5

![Diagrama de relación humedad-densidad](image)
ENSAVO PROCTOR MODIFICADO

(NORMA MTC E-115, ASTM D-1557, AASHTO T-190)

PROYECTO
INFLUENCIA DE LAS CENIZAS DE CASCARRILLAS DE ARROZ EN LA ESTABILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PRIMAVERA - IGNACIO ESCUDERO - SULLANA 2022

MUESTRA
SUBRASANTE DE TERRENO NATURAL + 10 % DE CENIZAS

CALICATA
C-95

<table>
<thead>
<tr>
<th>DATOS DE LA MUESTRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUESTREO:</td>
</tr>
<tr>
<td>PROP. (m):</td>
</tr>
<tr>
<td>CLASIF. (BUCS)</td>
</tr>
<tr>
<td>CLASIF. (AASHTO)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>METODO DE COMPACTACION</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso suelo + molde</td>
<td>gr 5205 5290 5400 5450</td>
</tr>
<tr>
<td>Peso media</td>
<td>gr 3782 3782 3782 3782</td>
</tr>
<tr>
<td>Peso suelo húmedo</td>
<td>gr 1946 1836 1728 1696</td>
</tr>
<tr>
<td>Volumen del molde</td>
<td>cm³ 591.6 591.6 591.6 591.6</td>
</tr>
<tr>
<td>Peso volumétrico húmedo</td>
<td>gr 1.686 1.706 1.905 1.921</td>
</tr>
<tr>
<td>Recipiente N°</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>Peso del suelo húmedo+tara</td>
<td>gr 4922 4946 286 309.6</td>
</tr>
<tr>
<td>Peso del suelo seco + tara</td>
<td>gr 45.1 95.7 54.0 42.9</td>
</tr>
<tr>
<td>Tara</td>
<td>gr 0.6 0.0 0.0 0.0</td>
</tr>
<tr>
<td>Peso de agua</td>
<td>gr 45.1 95.7 54.0 42.9</td>
</tr>
<tr>
<td>Peso del suelo seco</td>
<td>gr 45.2 49.1 39.5 30.9</td>
</tr>
<tr>
<td>Contenido de agua</td>
<td>% 9.19 11.29 13.66 14.98</td>
</tr>
<tr>
<td>Peso volumétrico seco</td>
<td>gr/cm³ 1.617 1.578 1.434 1.586</td>
</tr>
</tbody>
</table>

DENSIDAD MAXIMA (pg/cm³)
1.638

Humedad óptima (%)
13.5

RELAJON HUMEDAD-DENSIDAD
ENSAYO PROCTOR MODIFICADO

PROYECTO: INFLUENCIA DE LAS CENIZAS DE CASCARRILLAS DE ARROZ EN LA ESTABILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PRIMAVERA - INDIAOESCUDERO - BULLANA 2022

MUESTRA: SURRENDANTE DE TERRERNO NATURAL +15 % DE CENIZAS

CALCAGA: C-03

DATOS DE LA MUESTRA

- **MUESTREO**: M-01
- **CLASIF. (SUCB)**: NL
- **PROF. (m)**: 0.00 - 1.50 m
- **CLASIF. (SANDO): 4-4 (t)

METODO DE COMPACTACION: A

<table>
<thead>
<tr>
<th>Peso suelo + mobile</th>
<th>gr</th>
<th>5328</th>
<th>5434</th>
<th>5475</th>
<th>5481</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso mobile</td>
<td>gr</td>
<td>3762</td>
<td>3762</td>
<td>3762</td>
<td>3762</td>
</tr>
<tr>
<td>Peso suelo humedo compactado</td>
<td>gr</td>
<td>1567</td>
<td>1567</td>
<td>1573</td>
<td>1569</td>
</tr>
<tr>
<td>Volumen del mobile</td>
<td>cm³</td>
<td>931.6</td>
<td>931.6</td>
<td>921.8</td>
<td>931.6</td>
</tr>
<tr>
<td>Peso volúmenico humedo</td>
<td>gr</td>
<td>1.882</td>
<td>1.772</td>
<td>1.839</td>
<td>1.813</td>
</tr>
<tr>
<td>Recipiente N°</td>
<td></td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Peso del suelo humedo+tara</td>
<td>gr</td>
<td>520.1</td>
<td>520.6</td>
<td>520.9</td>
<td>519.9</td>
</tr>
<tr>
<td>Peso del suelo seco + tara</td>
<td>gr</td>
<td>469.9</td>
<td>475.1</td>
<td>465.0</td>
<td>445.1</td>
</tr>
<tr>
<td>Tara</td>
<td>gr</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Peso de agua</td>
<td>gr</td>
<td>0.2</td>
<td>0.5</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Peso del suelo seco</td>
<td>gr</td>
<td>469.9</td>
<td>475.1</td>
<td>465.0</td>
<td>445.1</td>
</tr>
<tr>
<td>Contenido de agua</td>
<td>%</td>
<td>13.68</td>
<td>12.84</td>
<td>14.17</td>
<td>16.66</td>
</tr>
<tr>
<td>Peso volumétrico seco</td>
<td>gr/cm³</td>
<td>1.620</td>
<td>1.576</td>
<td>1.611</td>
<td>1.559</td>
</tr>
</tbody>
</table>

Densidad máxima (gr/cm³): 1.620

Humedad óptima (%): 14.5

RELACIÓN HUMEDAD-DENSIDAD

![Diagrama de relación humedad-densidad](image)
Anexo 06: Ensayo de CBR
RELACION DE SOPORTE DE CALIFORNIA (C.B.R.)

PROYECTO: IMPULSA DE LAS CERDAS DE CARGUERAS DE PAPEL DE LA SISTEMATIZACIÓN DE BUELOS DEL CAMINO DE VILLA PANCHIMALCO - HONDURAS (BRUGUERS - VILLANUEVA, 2012)

MUESTRA: MATERIAL DE TIERRA NATURAL, 6% DE CEMENTO

CANTIDAD: 0.49

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>INDICADOR</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>0.01</td>
</tr>
<tr>
<td>MS</td>
<td>1.50 m</td>
</tr>
</tbody>
</table>

MÉTODOS DE OCTONABRACIÓN

<table>
<thead>
<tr>
<th>NORMA</th>
<th>DESCRIPCIÓN</th>
<th>RESULTADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D1557</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOLUMEN MÁXIMO SÉCA (piso)</td>
<td>1.979</td>
<td></td>
</tr>
<tr>
<td>ÓPTIMO CONTIEMPO DE HUMEDAD (%)</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>VULV. MÁXIMA DENSIDAD SÉCA (piso)</td>
<td>1.992</td>
<td></td>
</tr>
</tbody>
</table>

RESULTADOS:

<table>
<thead>
<tr>
<th>Valor en C.B.R. al 10% de la M.O.S.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7% de la M.O.S.</td>
<td>2.1</td>
</tr>
<tr>
<td>5.5% de la M.O.S.</td>
<td>1.0</td>
</tr>
</tbody>
</table>

CURSIVIZACIÓN:

<table>
<thead>
<tr>
<th>TIPO DE MAZOS</th>
<th>RESISTENCIA (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>75</td>
</tr>
<tr>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td>150</td>
<td>75</td>
</tr>
</tbody>
</table>
RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.)
(NORMA MTC E-16, ASHTO T-180, ASTM D 1585)

MUESTRA: PLENA\LANT DE TERRENO NATURAL + 5% DE CEMENTO

LAVADO: 1 G-61

DATOS DE LA MUESTRA

PROYECTO: INVESTIGACIÓN DE LAS DENSIDADES DE CARGUILLAS DE ASFALTO EN LA ENERGIZACIÓN EN CAUCHO TELÓN DE CAUCHO

RESULTADOS:
- Valor de C.B.R. al 100% de la M.A.R. = 9.0 (%)
- Valor de C.B.R. al 95% de la M.A.R. = 9.0 (%)

OBSERVACIONES:

METODO DE CONTRAPACCIÓN: ASTM C695

MÁXIMA EMPEDRACIÓN BÉLM (pCm): 1.100
OPTIMO CONTENIDO DE HUMEDAD (%): 10.2
95% MÁXIMA EMPEDRACIÓN BÉLM (pCm): 0.089

C.B.R. al 100% de M.A.R. (%) = 9.0
C.B.R. al 95% de M.A.R. (%) = 9.0
RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.)

MUESTRA: SIERRITA DE TIERRA NATURAL

CALCULADA: 4.00

METODO DE COMPUTACION: ASTM D1557

MAXIMA DENSIDAD BICA (g/m³): 1.764

OPTIMO CONTENIDO DE HUMEDAD (%): 12.7

10% MAXIMA IDEALIDAD BICA (g/m³): 1.671

RESULTADOS:
- Valor de C.B.R. a 1% de la M.C.: 2.1 (%)
- Valor de C.B.R. a 10% de la M.C.: 2.1 (%)

OBSERVACIONES:
RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.)
(NORMA MFCC 0-122, AGUADO T-193, ASTM D 1557)

PROYECTO: IMPLENSA DE LAS CARGAS DE CARRETERAS DE ARIDO DE LA ESTABILIZACIÓN EN SULO EN EL CAMINO DE VILLA PENISULA - NORMA ESDEGEO - SOLUAN 2013

MUESTRA: SORBENTE DE TIERRA NATURAL + 3% DE CEMENTO

CALCULADA: 0.62

DATOS DE LA MUESTRA

MÉTODO DE CONTRASTACIÓN: ASTM D 1557
MÁXIMA DENSIDAD SECA (g/cm³): 1.647
OPORTUNIDADES DE HUMEDAD (%): 0.9
MÁXIMA DENSIDAD SECA (g/cm³): 1.655

MUESTRAS:
- C.B.R. a 10% de M.D.: 0.9
- C.B.R. a 20% de M.D.: 2.0
- C.B.R. a 30% de M.D.: 3.3
- C.B.R. a 40% de M.D.: 4.5

RESULTADOS:
- Valor de C.B.R. a 10% de M.D.: 0.9 (%)
- Valor de C.B.R. a 20% de M.D.: 2.0 (%)
- Valor de C.B.R. a 30% de M.D.: 3.3 (%)
- Valor de C.B.R. a 40% de M.D.: 4.5 (%)

OBSEVACIONES:
RELACIÒN DE SOPORTE DE CALIFORNIA (C.B.R.)

MINAS DEL SUR DE CALIFORNIA, EEUU

DATOS DE LA MUESTRA

MUESTRA: M-31

MATERIAL: SUELOS NATURALES

DENSIDAD: 2.01 - 2.06 kg/m³

MÉTODO DE COMPACTACIÓN

ASTM D698

RESULTADOS:

valores de C.B.R. al 100% de la M.A.:

C.B.R. al 50% de la M.A.:

valores de C.B.R. al 100% de la M.A.:

Observaciones:
RELACION DE SOPORTE DE CALIFORNIA (C.B.R.)
(NORMA MTC 5-002, AMBAYO T-002, ASTM D 1585)

PROYECTO:
INFORME DE LAS FEMES DE COMPRESION DE SUELOS PARA LA ESTABILIZACION DE BORDES DEL CAMINO DE VILLA PIRAYERA - NORMICO ESCUDERO - JULIO AÑO 2002

MUESTRA:
MARMOLANTE DE TIERRAS NATURAL

CALCULADA:
C-44

DATOS DE LA MUESTRA

MALETA:
M-31

NÚMERO DE UDS.
1.001 - 1.050

METODO DE COMPACTACION:
ASTM (D1586)

MUELO MAQUINA:
ASTM (D698)

OPCION CONTENEDOR DE RAMADO (%)
15,0%

85% MÁXIMA DENSIDAD SECA (g/m³):
1.691

RESULTADOS:

CLASIFICACIóN:
C.B.R. AL 100% de la M.D.B. (%)
30,0

CLASIFICACIóN:
C.B.R. AL 85% de la M.D.B. (%)
30,0

OBSERVACIONES:

ET = 10 DÍAS
ET = 20 DÍAS
ET = 30 DÍAS

- Curvas de compresión
- Curvas de dilatación
RELACION DE SOPORTE DE CALIFORNIA (C.B.R.)
(NORMA MTC-F-132, ASABASO T-993, ASTM C 192)

PROYECTO:
MUESTRA:
CALCULADA:
DATOS DE LA MUESTRA:

MUESTRA: M-42

MÉTODO DE EMPUJADER: ASTM D1557
MÁXIMA DENSIDAD SECA (gm/cc) 1.567
OPTIMO CONTENIDO DE HUMEDAD (%) 10.8
M.P. MÁXIMA DENSIDAD SECA (gm/cc) 1.865

C.B.R. al 100% de M.D.S. (%) 6.0 2.0 6.0 3.1
C.B.R. al 50% de M.D.S. (%) 6.0 2.0 6.0 2.0

INFORMACIÓN:
- Volumen de C.B.R. al 100% de M.D.S. M 2.5 (%)
- Volumen de C.B.R. al 50% de M.D.S. M 2.5 (%)

OBSERVACIONES:

Reacción (mm) 115
Reacción (mm) 50
Reacción (mm) 15
RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.)
(PÍRICA NF C 152.40, ANHÍG. 0·1·900, ASTM D 1866)

PROYECTO: ...
MUESTRA: ...
DATOS DE LA MUESTRA: ...

METODOS DE COMPACTACIÓN: ASTM D 698
- DENSIDAD MÁXIMA SOCA (g/cm³): 1.630
- OÍNOMA CONTENIDO DE HUMEDAD (%) : 13.3
- SÓL DENSIDAD MÁXIMA SOCA (g/cm³): 1.854

C.B.R. al 100% de la M.E.B.: 4,2, 3, 2, 1
C.B.R. al 80% de la M.E.B.: 4,2, 3, 2, 1

- VALOR DEL C.B.R. AL 100% DE LA M.E.B.: 114,1 %
- VALOR DEL C.B.R. AL 80% DE LA M.E.B.: 26,7 %

CONCLUSIONES: ...

- FIG. 1: 30 GOLPES
- FIG. 2: 20 GOLPES
- FIG. 3: 15 GOLPES
REGISTRO DE EXCAVACIONES

PROYECTO: INFLUENCIA DE LAS CENIZAS DE CASCARILLAS DE ARROZ EN LA ESTABILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PRIMAVERA - INGNACIO ESCUDERO - SULLANA 2022

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>Prof. (m)</th>
<th>Muestra</th>
<th>Humedad (%)</th>
<th>Clasificación</th>
<th>DESCRIPCIÓN DEL MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>M-1</td>
<td>22.20</td>
<td>CL</td>
<td>Clasificada como arcilla color pardo claro con baja plasticidad, humedad media. Según la clasificación SUCS corresponde a una CL.</td>
</tr>
</tbody>
</table>

REGISTRO DE EXCAVACIONES
REGISTRO DE EXCAVACIONES

PROYECTO: INFLUENCIA DE LAS CENIZAS DE CASCARILLAS DE ARROZ EN LA ESTABILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PRIMAVERA - INGACIO ESCUDERO - SULLANA 2022

CLIENTE: García Zapata, Jesús Amberly

UBICACIÓN: km 1+300

FECHA: 06/06/2022

PROFUNDIDAD: 1.50

MÉTODO EXCAVACIÓN: MANUAL

NIVEL AGUA: NP

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>Prof. (m)</th>
<th>Muestra</th>
<th>Humedad (%)</th>
<th>Clasificación</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>M-1</td>
<td>14.40</td>
<td>CL</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CLASIFICACIÓN:

Clasificada como arcilla de baja plasticidad con arena. Humedad media, color pardo claro. Según la clasificación SUCS corresponde a una CL.

Anexo 08: Hoja de registro N° 02
Anexo 09: Hoja de registro N° 03

REGISTRO DE EXCAVACIONES

PROYECTO: INFLUENCIA DE LAS CENIZAS DE CASCARILLAS DE ARROZ EN LA ESTABILIZACIÓN DE SUELOS DEL CAMINO DE VILLA PRIMAVERA - IGNACIO ESCUDERO - SULLANA 2022

CALICATA: C-03

CLIENTE: García Zapata, Jesús Amberly
UBICACIÓN: km 2+ 200
FECHA: 06/06/2022
COTA: 48
PROFUNDIDAD: 1.50
MÉTODO EXCAVACIÓN: MANUAL
NIVEL AGUA: NP

DATOS DE LA MUESTRA

<table>
<thead>
<tr>
<th>Prof. (m)</th>
<th>Muestra</th>
<th>Humedad (%)</th>
<th>Clasificación</th>
<th>SUCS</th>
<th>Símbolo</th>
<th>DESCRIPCIÓN DEL MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>M-1</td>
<td>13.15</td>
<td>CL</td>
<td></td>
<td></td>
<td>Clasificada como arcilla arenosa color pardo oscuro con baja plasticidad, humeda media. Según la clasificación SUCS corresponde a una CL.</td>
</tr>
<tr>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo 10: Certificado de calibración de copa casa grande
PERU TEST S.A.C.
CALIBRACIÓN, MANTENIMIENTO Y VENTAS DE EQUIPOS Y INSTRUMENTOS DE LABORATORIO
SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA
RUC N° 20602182721

INFORME DE VERIFICACIÓN
PT - IV - 0336 - 2021

6. Método de Verificación

7. Lugar de Verificación
Laboratorio de Longitud de PERU TEST S.A.C.
Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martín De Porres - Lima

8. Condiciones ambientales

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>23.8 °C</td>
<td>12.9 °C</td>
</tr>
<tr>
<td>Humedad Relativa</td>
<td>49%</td>
<td>60%</td>
</tr>
</tbody>
</table>

9. Patrones de referencia

<table>
<thead>
<tr>
<th>Totalidad</th>
<th>Patrón aplicado</th>
<th>Certificado de calibración</th>
</tr>
</thead>
<tbody>
<tr>
<td>METRO</td>
<td>PIE DE REY DIGITAL de 200 mm [MARCA: INDEZ]</td>
<td>L-0035-2018</td>
</tr>
<tr>
<td>INACAL</td>
<td>BLOQUES PATRON DE LONGITUD [MARCA: REGEL]</td>
<td>L-0-070-2018</td>
</tr>
<tr>
<td>METRO</td>
<td>[ERRONCIGROSÍMETRO DIGITAL [MARCA: BACO]</td>
<td>T-1695-2019</td>
</tr>
</tbody>
</table>

10. Observaciones
Se colocó una etiqueta autoadhesiva con la indicación de VERIFICACIÓN.
(*) Serial grabado en el instrumento

11. Resultados
El equipo cumple con las especificaciones técnicas siguientes:

<table>
<thead>
<tr>
<th>DIMENSIONES DE LA BASE DE CORPA DURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancho (mm)</td>
</tr>
<tr>
<td>53.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HERRAMIENTA DE ROSEADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior (mm)</td>
</tr>
<tr>
<td>9.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIMENSIONES DE LA CORPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio de la copa (mm)</td>
</tr>
<tr>
<td>55.40</td>
</tr>
</tbody>
</table>

FIN DE DOCUMENTO

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martín de Porres - Lima
Sucursal: Calle Sincut Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque
Teléfono: 913028221; 913028263; 91302824 Oficina: (511) 764 5730
E-mail: wntas@perutest.com.pe Web: www.perutest.com.pe
Anexo 11: Certificado de calibración de balanza

CERTIFICADO DE CALIBRACIÓN

Nº 8349380694

OTORGADO A: SALINAS RETO PATRICIA INES

CERTIFICA QUE: El instrumento de medición con el modelo y nro de serie indicados lnea abajo, ha sido calibrado, probado y verificado utilizando patrones certificados con trazabilidad en el Instituto Nacional de Calidad INACAL.

Instrumento de medición: Balanza Digital
Capacidad: 30 kg
Marca: OHAUS
Modelo: R21P50
Nro de Serie: 8349380694
Fecha de Calibración: 11.01.2022
Próxima Calibración: 25.06.2022

MÉTODO DE CALIBRACIÓN
CALIBRACIÓN EFECTUADA SEGÚN NORMA METROLÓGICA NMP 603-1996 Y PROCEDIMIENTO DE CALIBRACIÓN DE BALANZAS DE FUNCIONAMIENTO NO AUTOMÁTICO PARA BALANZAS DE CLASE I Y CLASE II

INCERTIDUMBRE DE LA MEDICIÓN
U = 1 gr. + 0.00034

PATRONES
01 Pesa de 10 kg, 01 Pesa de 5 kg, 01 Pesa de 1 kg, 01 Pesa 500 gr, 01 Jgo de Pesas de 2 mg a 200 gr, CERTIFICADOS LM-C-134-2019, LM-132-2019, LM-133-2019, LM-134-2019, LM-C-133-2019, PE19-C-0465

TRAZABILIDAD
Las pesas tienen trazabilidad a los Patrones Nacionales del Instituto Nacional de la Calidad INACAL

CONDICIONES DE CALIBRACIÓN
Temperatura Inicial 20.0°C Final 20.1°C
Humedad Relativa 61 %

RESULTADO DE LA MEDICIÓN
Los errores encontrados son menores a los errores máximos permitidos por la norma metroológica consultada.
CERTIFICADO DE CALIBRACIÓN

ORION LABORATORIOS E.I.R.L.
Calibración, Ensayos de Laboratorio Suelos, Concreto y Asfalto

RAZON SOCIAL: SALINAS RETO PATRICIA INES

VARCA: OH4US

MODELO: R21P30

SERIE: 8340300694

CAPACIDAD: 30 kg

CLASE: I

DIÁMETRO DE ESCALA: 1 g

DIÁMETRO DE VERIFICACIÓN: 1 g

<table>
<thead>
<tr>
<th>N°</th>
<th>Carga L1 = 15000 g</th>
<th>Carga L2 = 30000 g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L (g)</td>
<td>AL (g)</td>
</tr>
<tr>
<td>1</td>
<td>15000</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>15000</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>15000</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>15000</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>15000</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>15000</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>15000</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>15000</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>15000</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>15000</td>
<td>0</td>
</tr>
</tbody>
</table>

CARGA

<table>
<thead>
<tr>
<th>15000 g</th>
<th>0 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>30000 g</td>
<td>0 g</td>
</tr>
</tbody>
</table>

ERRORES MÁXIMOS PERMISIBLES

<table>
<thead>
<tr>
<th>15 g</th>
<th>30 g</th>
</tr>
</thead>
</table>

ENSAYO DE EXCENTRICIDAD

<table>
<thead>
<tr>
<th>Posición</th>
<th>Carga</th>
<th>Determinación de error corregida Eo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>L (g)</td>
</tr>
<tr>
<td>1</td>
<td>10 gr.</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10 gr.</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

ENSAYO DE PESAJE

<table>
<thead>
<tr>
<th>Carga</th>
<th>L (g)</th>
<th>AL (g)</th>
<th>E (g)</th>
<th>Ec (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5000</td>
<td>5000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10000</td>
<td>10000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15000</td>
<td>15000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15000</td>
<td>15000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15000</td>
<td>15000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30000</td>
<td>30000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ESCORRENCIENTES

<table>
<thead>
<tr>
<th>I (g)</th>
<th>AL (g)</th>
<th>E (g)</th>
<th>Ec (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

DESCORRENCIENTES

<table>
<thead>
<tr>
<th>I (g)</th>
<th>AL (g)</th>
<th>E (g)</th>
<th>Ec (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
CERTIFICADO DE CALIBRACIÓN

Nº 8349380652

OTORGADO A: SALINAS RETO PATRICIA INES

CERTIFICA QUE: El instrumento de medición, con el modelo y n° de serie indicados a continuación, ha sido calibrado, probado y verificado utilizando patrones certificados con trazabilidad en el Instituto Nacional de Calidad INACAL.

Instrumento de medición: Balanza Digital
Capacidad: 30 kg
Marca: OHAUS
Modelo: R211P30
Nro de Serie: 8349380652
Fecha de Calibración: 09.06.2021
Próxima Calibración: 09.12.2021

MÉTODO DE CALIBRACIÓN
CALIBRACIÓN EFECTUADA SEGÚN NORMA METROLÓGICA NMP 003-1996 Y PROCEDEIMIENTO DE CALIBRACIÓN DE BALANZAS DE FUNCIONAMIENTO NO AUTOMÁTICO PARA BALANZAS DE CLASE I Y CLASE II

INCIERTIDUMBRE DE LA MEDICIÓN
$U = 1 \text{ gr}, + 0.00034$

PATRONES
01 Pesa de 10 kg, 01 Pesa de 5 kg, 01 Pesa de 1 kg, 01 Pesa 500 gr, 01 Jg de Pesas de 2 mg a 200 gr, CERTIFICADOS LM-C-134-2019, LM-132-2019, LM-133-2019, LM-134-2019, LM-C-133-2019-PE-I9-C-0465

TRAZABILIDAD
Las pesas tienen trazabilidad a los Patrones Nacionales del Instituto Nacional de la Calidad INACAL.

CONDICIONES DE CALIBRACIÓN
Temperatura Inicial: 20.0°C
Final: 20.1°C
Humedad Relativa: 61%

RESULTADO DE LA MEDICIÓN
Los errores encontrados son menores a los errores máximos permitidos por la norma metroológica consultada.
Certificado de Calibración

Datos Iniciales
- **Número:** 8349380052
- **Fecha:** 9/6/2022
- **Caducidad:** 9/27/2022

Medición 1

<table>
<thead>
<tr>
<th>Carga L1 (15000 g)</th>
<th>Carga L2 (30000 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Carga

- **Carga L1:** 15000 g
- **Carga L2:** 30000 g

Diferencia Máxima Encontrada

<table>
<thead>
<tr>
<th>Encontrada</th>
<th>Permisibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 g</td>
<td>15 g</td>
</tr>
<tr>
<td>0 g</td>
<td>30 g</td>
</tr>
</tbody>
</table>

Ensayo de Excentricidad

<table>
<thead>
<tr>
<th>Posición</th>
<th>Carga</th>
<th>Determinación de error corregido Eo</th>
<th>e.m.p (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 gr.</td>
<td>10 g 1 -0.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10 gr.</td>
<td>10 g 1 -0.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10 gr.</td>
<td>10 g 1 -0.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10 gr.</td>
<td>10 g 1 -0.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10 gr.</td>
<td>10 g 1 -0.5</td>
<td></td>
</tr>
</tbody>
</table>

Ensayo de Pesaje

<table>
<thead>
<tr>
<th>Carga</th>
<th>CRECIENTES</th>
<th>DECRECIENTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>l (g)</td>
<td>AL (g)</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>15000</td>
<td>15000</td>
<td>15000</td>
</tr>
<tr>
<td>30000</td>
<td>30000</td>
<td>30000</td>
</tr>
</tbody>
</table>
Anexo 12: Certificado de calibración de horno
Área de Metrología
Laboratorio de Temperatura

6. Método de Calibración

La calibración se efectuó por comparación directa con termómetros patrones calibrados que tienen trazabilidad a la Escala Internacional de Temperatura de 1990 (EIT 90), se consideró como referencia el Procedimiento para la Calibración de Módulos Isotérmicos con aire como Medio Termoestático PC-018; 2da edición; junio 2009, del SINM-NDECOPI.

7. Lugar de calibración

Laboratorio de temperatura de PERUTEST S.A.C.
Jr. La Madrid Mz. E Lote 14 Urb. Los Olivos - San Martín De Porres - Lima

8. Condiciones Ambientales

<table>
<thead>
<tr>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>22.5 °C</td>
</tr>
<tr>
<td>Humedad Relativa</td>
<td>63 %</td>
</tr>
</tbody>
</table>

9. Patrones de referencia

<table>
<thead>
<tr>
<th>Trazabilidad</th>
<th>Patrón utilizado</th>
<th>Certificado y/o Informe de calibración</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT - LABORATORIO ACREDITADO</td>
<td>TERMOMÉTRICO DE INDICACIÓN DIGITAL DE 10 CANALES TERMOPARÉS TIPO T - DIGISENSE</td>
<td>LT-1145-2019</td>
</tr>
<tr>
<td>METROL</td>
<td>TERMINOLOGÍA DIGITAL MARCA: BOECO</td>
<td>T-1685-2019</td>
</tr>
</tbody>
</table>

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación de CALibrado.
- La periodicidad de la calibración depende del uso, mantenimiento y conservación del instrumento de medición.
11. Resultados de Medición

- Temperatura ambiental promedio: 22,05 °C
- Tiempo de calentamiento y estabilización del equipo: 2 horas
- El controlador se puso en 110°C

PARA LA TEMPERATURA DE 110°C

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Temperatura del equipo (°C)</th>
<th>NIVEL SUPERIOR</th>
<th>NIVEL INFERIOR</th>
<th>T prom (°C)</th>
<th>T max-T min (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>02</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>04</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>06</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>08</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>10</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>12</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>14</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>16</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>18</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>20</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>22</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>24</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>26</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>28</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>30</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>32</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>34</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>36</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>38</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>40</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>42</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>44</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>46</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>48</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>50</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>52</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>54</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>56</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>58</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>60</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>62</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>64</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>66</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>68</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>70</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>MAX</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>MIN</td>
<td>110.0</td>
<td>109.7</td>
<td>109.4</td>
<td>109.5</td>
<td>5.3</td>
</tr>
<tr>
<td>DIF</td>
<td>0.0</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
</tr>
</tbody>
</table>
CERTIFICADO DE CALIBRACIÓN
PT - LT - 048 - 2021
Área de Metrología
Laboratorio de Temperatura

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>VALOR (°C)</th>
<th>INCERTIDUMBRE EXPANDIDA (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Máxima Temperatura Medida</td>
<td>113.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Mínima Temperatura Medida</td>
<td>103.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Desviación de Temperatura en el Tiempo</td>
<td>1.6</td>
<td>0.1</td>
</tr>
<tr>
<td>Desviación de Temperatura en el Espacio</td>
<td>3.7</td>
<td>0.9</td>
</tr>
<tr>
<td>Estabilidad Medida (±)</td>
<td>0.8</td>
<td>0.04</td>
</tr>
<tr>
<td>Uniformidad Medida</td>
<td>0.1</td>
<td>0.12</td>
</tr>
</tbody>
</table>

T.PrOM : Promedio de la temperatura en una posición de medición durante el tiempo de calibración.
T.prom : Promedio de las temperaturas en las diez posiciones de medición para un instante dado.
T.MAX : Temperatura máxima.
T.MIN : Temperatura mínima.
DTT : Desviación de Temperatura en el Tiempo.

Para cada posición de medición su “desviación de temperatura en el tiempo” DTT está dada por la diferencia entre la máxima y la mínima temperatura en dicha posición.
Entre dos posiciones de medición su “desviación de temperatura en el espacio” está dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.

Incertidumbre expandida de las indicaciones del termómetro propio del Medio Isotermo : 0.05 °C.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

La uniformidad es la máxima diferencia medida de temperatura entre las diferentes posiciones espaciales para un mismo instante de tiempo.
La Estabilidad es considerada igual a ± 1/2 DTT.

Durante la calibración y bajo las condiciones en que está ha sido hecha, el medidor Isotermo SI CUMPLE con los límites especificados de temperatura.
Áreas de Metrología
Laboratorio de Temperatura

CERTIFICADO DE CALIBRACIÓN
PT - L T 048 - 2021

DISTRIBUCIÓN DE TEMPERATURAS EN EL EQUIPO
TEMPERATURA DE TRABAJO: 110°C ± 10°C

DISTRIBUCIÓN DE LOS TERMOPARES

Los sensores 5 y 10 están ubicados en el centro de sus respectivos niveles.
Los sensores del 1 al 4 y del 6 al 9 se ubicaron a 6 cm de las paredes laterales y a 8 cm del fondo y frente del equipo a calibrar.

12. Incertidumbre
La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.
<table>
<thead>
<tr>
<th>N°</th>
<th>Columna 1</th>
<th>Columna 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Expediente</td>
<td>190683</td>
</tr>
<tr>
<td>2</td>
<td>Solicitante</td>
<td>SALINAS RETO PATRICIA INES</td>
</tr>
<tr>
<td>3</td>
<td>Dirección</td>
<td>Calle Leoncio Prado N° 612 Sullana - Piura.</td>
</tr>
<tr>
<td>4</td>
<td>Equipo</td>
<td>PRENSA CBR</td>
</tr>
<tr>
<td>5</td>
<td>Capacidad</td>
<td>5000 kgf</td>
</tr>
<tr>
<td>6</td>
<td>Marca</td>
<td>TAMIEQUIPOS</td>
</tr>
<tr>
<td>7</td>
<td>Modelo</td>
<td>TCP051</td>
</tr>
<tr>
<td>8</td>
<td>Número de Serie</td>
<td>0166</td>
</tr>
<tr>
<td>9</td>
<td>Identificación</td>
<td>NO INDICA</td>
</tr>
<tr>
<td>10</td>
<td>Procedencia</td>
<td>COLOMBIA</td>
</tr>
<tr>
<td>11</td>
<td>Ubicación</td>
<td>NO INDICA</td>
</tr>
<tr>
<td>12</td>
<td>Indicador</td>
<td>DIGITAL</td>
</tr>
<tr>
<td>13</td>
<td>Marca</td>
<td>HIWEIGH</td>
</tr>
<tr>
<td>14</td>
<td>Número de Serie</td>
<td>190301022</td>
</tr>
<tr>
<td>15</td>
<td>División de Escala / Resolución</td>
<td>0.1 kgf</td>
</tr>
<tr>
<td>16</td>
<td>Fecha de Calibración</td>
<td>2022-06-20</td>
</tr>
</tbody>
</table>

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI). Los resultados son válidos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

METROLOGÍA & TÉCNICAS S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.
7. Método de Calibración

La calibración se realizó por el método de comparación directa utilizando patrones trazables al SI calibrados en las Instalaciones de LEDI-PUCP tomado como referencia el método descrito en la norma UNIE-EN ISO 7500-1 "Verificación de Máquinas de Ensayo Uniaxiales Enfocadas. Parte 1: Máquinas de ensayo de tracción/compresión. Verificación y calibración del sistema de medida de fuerza." - Julio 2006.

8. Lugar de calibración

Instalaciones de la empresa Técnicas CP B.A.C.
Av. Santa Ana Mz H lote 2 Urb. San Diego, San Martín de Porres - Lima

9. Condiciones Ambientales

<table>
<thead>
<tr>
<th></th>
<th>Inicial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>16.7 °C</td>
<td>18.9 °C</td>
</tr>
<tr>
<td>Humedad Relativa</td>
<td>72 % HR</td>
<td>72 % HR</td>
</tr>
</tbody>
</table>

10. Patrones de referencia

<table>
<thead>
<tr>
<th>Trazabilidad</th>
<th>Patrón utilizado</th>
<th>Informe/Certificado de calibración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caldas, patrones calibrados en el National Standards Testing Laboratory of Maryland - USA</td>
<td>Celda de carga calibrada a 20 lbf con inercidiumbre del orden de 0.5 %</td>
<td>LEDI-PUCP INF-LE 030-19B</td>
</tr>
</tbody>
</table>

11. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- Durante la realización de cada secuencia de calibración, la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de ± 2.0 °C.
12. Resultados de Medición

El equipo presenta CELDA DE CARGA con las siguientes características:
- Capacidad: 5 tn
- Marca: ZEMIC
- Modelo: HS-C3.5-ST-6B
- Nº de Serie: TC002720

<table>
<thead>
<tr>
<th>Indicación del Equipo</th>
<th>Indicación de Fuerza (Ascenso)</th>
<th>Patrón de Referencia</th>
<th>Error de Exactitud</th>
<th>Incertidumbre U (k=2) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>F_1 (kgf)</td>
<td>F_2 (kgf)</td>
<td>F_3 (kgf)</td>
<td>F_4 (kgf)</td>
</tr>
<tr>
<td>10</td>
<td>500,0</td>
<td>498,5</td>
<td>498,0</td>
<td>498,0</td>
</tr>
<tr>
<td>20</td>
<td>1000,0</td>
<td>998,3</td>
<td>998,0</td>
<td>998,0</td>
</tr>
<tr>
<td>30</td>
<td>1500,0</td>
<td>1498,5</td>
<td>1498,0</td>
<td>1498,5</td>
</tr>
<tr>
<td>40</td>
<td>2000,0</td>
<td>1998,5</td>
<td>1998,0</td>
<td>1998,5</td>
</tr>
<tr>
<td>50</td>
<td>2500,0</td>
<td>2499,5</td>
<td>2499,0</td>
<td>2499,0</td>
</tr>
<tr>
<td>60</td>
<td>3000,0</td>
<td>3000,0</td>
<td>2999,5</td>
<td>2999,0</td>
</tr>
<tr>
<td>70</td>
<td>3500,0</td>
<td>3501,5</td>
<td>3500,5</td>
<td>3501,0</td>
</tr>
<tr>
<td>80</td>
<td>4000,0</td>
<td>4001,5</td>
<td>4001,5</td>
<td>4001,0</td>
</tr>
<tr>
<td>90</td>
<td>4500,0</td>
<td>4502,5</td>
<td>4502,5</td>
<td>4502,0</td>
</tr>
<tr>
<td>100</td>
<td>5000,0</td>
<td>5003,5</td>
<td>5003,0</td>
<td>5003,0</td>
</tr>
</tbody>
</table>

MÁXIMO ERROR RELATIVO DE CERO (e_0) 0,00 %

13. Incertidumbre

La incertidumbre expansidad de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura $k=2$, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.

La incertidumbre expansiva de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Fin del Documento
Anexo 14: Factura de laboratorio

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Unidad</th>
<th>Descripción</th>
<th>Valor Unitario</th>
<th>ICBPER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>UNIDAD</td>
<td>EN SUELOS DE SUBRAÍNCE EN TERRERO NATURAL Y ESTABILIZACIÓN CON CENIZAS DE CASCARILLO DE ARRÁZ</td>
<td>1200.0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Valor de Venta de Operaciones Gratuitas: S/ 0.00

Sub Total Ventas: S/ 1200.00
Descuentos: S/ 0.00
I GV: S/ 0.00
ICBPER: S/ 0.00

SON: CIENTO CINCUENTA Y 00/100 SOLES

Esta es una representación impresa de la factura electrónica, generada en el Sistema de SUNAT. Puede verificarla utilizando su clave SOL.
Anexo 3: Ficha de validación (juicio de expertos)

<table>
<thead>
<tr>
<th>TÍTULO</th>
<th>AUTOR: Garcia Zapata, Jesús Amberly</th>
</tr>
</thead>
<tbody>
<tr>
<td>FICHA DE VALIDACIÓN</td>
<td></td>
</tr>
<tr>
<td>"Influencia de las cenizas de cascarillas de arroz en la estabilización de suelos del camino de Villa Primavera – Piura 2022"</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIABLES EMPLEADAS</th>
<th>DIMENSIONES</th>
<th>INDICADORES</th>
<th>INSTRUMENTOS</th>
<th>VALIDEZ DEL JUICIO DE EXPERTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SUCS</td>
<td>Formato de ensayo de análisis granulométrico de los agregados</td>
<td>INGENIERO Nº 1</td>
</tr>
<tr>
<td>Cenizas de cascarillas de arroz</td>
<td>Análisis granulométrico</td>
<td>AASHTO</td>
<td>0.96</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>Porcentajes</td>
<td>5 % 10 % 15 %</td>
<td>Formato de ensayo de análisis granulométrico de los agregados</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>Estabilización de suelos</td>
<td>Propiedades físico mecánicas</td>
<td>Granulometría, límites, proctor y CBR</td>
<td>0.95</td>
</tr>
</tbody>
</table>

INTERPRETACIÓN DEL VALOR DE LA VALIDEZ (según Hernández, 2014)	Sumatoria	2.76	2.75	2.75	
Valor de la validez obtenida	Interpretación	Sumatoria(nº de instrumentos)	0.91	0.92	0.91
De 0 a 0.60	Inaceptable	Promedio de la validez obtenida	0.91		
Mayor a 0.60 y menor o igual que 0.70	Deficiente				
Mayor a 0.70 y menor o igual que 0.80	Aceptable				
Mayor a 0.80 y menor o igual que 0.90	Buena				
Mayor a 0.90	Excelente				

Fuente: Elaboración propia
Validación de instrumento – experto 2

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Tesis: “Influencia de las cenizas de cascarrillas de arroz en la estabilización de suelos del camino de Villa Primavera – Plura 2022”

Autor: García Zapata, Jesús Amberly

Fecha: 09/04/2022

<table>
<thead>
<tr>
<th>Criterios</th>
<th>Indicadores</th>
<th>INACEPTABLE</th>
<th>MÍNIMAMENTE ACEPTABLE</th>
<th>ACEPTABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Claridad</td>
<td>Esta formulada con lenguaje comprensible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Objetividad</td>
<td>Esta adecuado a las leyes y principios científicos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Actualidad</td>
<td>Está adecuado a los objetivos y a las necesidades reales de la investigación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Organización</td>
<td>Existe una organización lógica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Suficiencia</td>
<td>Toma en cuenta los aspectos metodológicos esenciales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Intencionalidad</td>
<td>Está adecuado para valorar las variables de la hipótesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Consistencia</td>
<td>Se respalda en fundamentos técnicos y/o científicos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Coherencia</td>
<td>Existe coherencia entre los problemas, objetivos, hipótesis, variables e indicadores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Metodología</td>
<td>La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Pertinencia</td>
<td>El instrumento muestra la relación entre los componentes de la investigación y su adecuación al método científico</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Promedio de valoración: 95%

Luego de revisar el instrumento:

procede su aplicación

debe corregir

Nombre del especialista: Ing. Patricia Inés Salinas Reto

Nº CIP: 110792

Firma y sello:

Fuente: Elaboración propia
Validación de instrumento – experto 1

Tesis: “Influencia de las cenizas de cascarillas de arroz en la estabilización de suelos del camino de Villa Primavera – Piura 2022”

Autor: García Zapata, Jesús Amberly

Fecha: 09/04/2022

<table>
<thead>
<tr>
<th>Criterios</th>
<th>Indicadores</th>
<th>INACEPTABLE</th>
<th>MÍNIMAMENTE ACEPTABLE</th>
<th>ACEPTABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Claridad</td>
<td>Está formulada con lenguaje comprensible</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>2. Objetividad</td>
<td>Está adecuado a las leyes y principios científicos</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>3. Actualidad</td>
<td>Está adecuado a los objetivos y a las necesidades reales de la investigación</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>4. Organización</td>
<td>Existe una organización lógica</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>5. Suficiencia</td>
<td>Toma en cuenta los aspectos metodológicos esenciales</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>6. Intencionalidad</td>
<td>Está adecuado para valorar las variables de la hipótesis</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>7. Consistencia</td>
<td>Se respaldó en fundamentos técnicos y/o científicos</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>8. Coherencia</td>
<td>Existe coherencia entre los problemas, hipótesis, variables e indicadores</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>9. Metodología</td>
<td>La estrategia responde una metodología y diseño aplicado para lograr probar la hipótesis</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>10. Pertinencia</td>
<td>El instrumento muestra la relación entre los componentes de la investigación y su adecuación al método científico</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

Promedio de valoración: 93.4

Luego de revisar el instrumento:

- procede su aplicación: ☒
- debe corregir: ☐

Nombre del especialista:

Ing. Morales Rueda Raúl Ronald

Nº CIP: 85896

Firma y sello:

Fuente: Elaboración propia
Validación de instrumento – experto 3

VALIDACIÓN DE INSTRUMENTOS
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Tesis: “Influencia de las cenizas de cascarillas de arroz en la estabilización de suelos del camino de Villa Primavera – Piura 2022”

Autor: García Zapata, Jesús Amberly

Fecha: 09/04/2022

<table>
<thead>
<tr>
<th>Críteros</th>
<th>Indicadores</th>
<th>INACEPTABLE</th>
<th>MINIMAMENTE ACEPTABLE</th>
<th>ACEPTABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Claro</td>
<td>Está formulada con lenguaje comprensible</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2. Objetividad</td>
<td>Está adecuado a las leyes y principios científicos</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>3. Actualidad</td>
<td>Está adecuado a los objetivos y a las necesidades reales de la investigación</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>4. Organización</td>
<td>Existe una organización lógica</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>5. Suficiencia</td>
<td>Toma en cuenta los aspectos metodológicos esenciales</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>6. Intencionalidad</td>
<td>Está adecuado para valorar las variables de la hipótesis</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>7. Consistencia</td>
<td>Se respalda en fundamentos técnicos y/o científicos</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>8. Coherencia</td>
<td>Existe coherencia entre los problemas, objetivos, hipótesis, variables e indicadores</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>9. Metodología</td>
<td>La estrategia responde una metodología y diseño aplicados para lograr probar las hipótesis</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>10. Pertinencia</td>
<td>El instrumento muestra la relación entre los componentes de la investigación y su adecuación al método científico</td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Promedio de valoración: 94%

Luego de revisar el instrumento:

procede su aplicación: x

debe corregir:

Nombre del especialista:
Ms C. Ing. Miguel Angel Chan Heredia

Nº CIP: 88837

Firma y sello:

Fuente: Elaboración propia
Anexo 16: Constancia de inscripción de expertos.

CONSTANCIA DE INSCRIPCIÓN EN EL REGISTRO NACIONAL DE GRADOS Y TÍTULOS

La Dirección de Documentación e Información Universitaria y Registro de Grados y Títulos, a través del Jefe (e) de la Unidad de Registro de Grados y Títulos, deja constancia que la información contenida en este documento se encuentra inscrita en el Registro Nacional de Grados y Títulos administrado por la Sunedu.

INFORMACIÓN DEL CIUDADANO
Apellidos: CHAN HEREDIA
Nombres: MIGUEL ANGEL
Tipo de Documento de Identidad: DNI
Número de Documento de Identidad: 18166174

INFORMACIÓN DE LA INSTITUCIÓN
Nombre: UNIVERSIDAD NACIONAL DE PIURA
Rector: DR. CESAR AUGUSTO REYES PEÑA
Secretario General: DR. DENNYS RAFIN SILVA VALDIVIEZO
Director De La Escuela De Post Grado: DR. SANTOS LEANDRO MONTAÑO ROALCABA

INFORMACIÓN DEL DIPLOMA
Grado Académico: MAESTRO
Denominación: MAESTRO/MAGISTER EN INGENIERIA CIVIL
Fecha de Expedición: 16/02/18
Resolución/Acta: 040-CU-2018
Diploma: UNP007749
Fecha Matrícula: 05/09/2011
Fecha Egreso: 10/01/2014
Fecha de emisión de la constancia: 11 de Julio de 2022

Firmado digitalmente por:
Jorge Martin Veintimilla Vega
Jefe (e)
Unidad de Registro de Grados y Títulos
Superintendencia Nacional de Educación Superior Universitaria - Sunedu

Esta constancia puede ser verificada en el sitio web de la Superintendencia Nacional de Educación Superior Universitaria - Sunedu (www.sunedu.gob.pe), utilizando lectura de códigos o teléfono celular escaneando el código QR. El celular debe poseer un software gratuito descargado desde internet.

Documento electrónico emitido en el marco de la Ley N° 28789 – Ley de Firmas y Certificados Digitales, y su Reglamento aprobado mediante Decreto Supremo N° 052-2008-PCM.
(*) El presente documento deja constancia únicamente del registro del Grado o Título que se señala.
CONSTANCIA DE INSCRIPCIÓN EN EL REGISTRO NACIONAL DE GRADOS Y TÍTULOS

La Dirección de Documentación e Información Universitaria y Registro de Grados y Títulos, a través del Jefe (e) de la Unidad de Registro de Grados y Títulos, deja constancia que la información contenida en este documento se encuentra inscrita en el Registro Nacional de Grados y Títulos administrada por la Sunedu.

INFORMACIÓN DEL CIUDADANO

Apellidos: Morales Rueda
Nombres: Raúl Ronald
Tipo de Documento de Identidad: DNI
Número de Documento de Identidad: 40942797

INFORMACIÓN DE LA INSTITUCIÓN

Nombre: Universidad de Piura
Rector: Antonio Aburúa Puyol
Secretario General: Carlos Hakansson Nieto
Decano: Susana Vegas Chiyon

INFORMACIÓN DEL DIPLOMA

Título profesional: Ingeniero Civil
Fecha de Expedición: 14/12/2005
Resolución/Acta: CS-1098-2005
Diploma: A595003

Fecha de emisión de la constancia: 11 de Julio de 2022

Jorge Martín Veintimilla Vega
Jefe (e)
Unidad de Registro de Grados y Títulos
Superintendencia Nacional de Educación Superior Universitaria - Sunedu

Esta constancia puede ser verificada en el sitio web de la Superintendencia Nacional de Educación Superior Universitaria - Sunedu (www.sunedu.gob.pe), utilizando lector de códigos o teléfono celular enfocado al código QR. El celular debe poseer un software gratuito descargado desde Internet.

Documento electrónico emitido en el marco de la Ley N° Ley N° 27269 – Ley de Firmas y Certificados Digitales, y su Reglamento aprobado mediante Decreto Supremo N° 052-2008-PCM.

(*) El presente documento deja constancia únicamente del registro del Grado o Título que se señala.
CONSTANCIA DE INSCRIPCIÓN EN EL REGISTRO NACIONAL DE GRADOS Y TÍTULOS

La Dirección de Documentación e Información Universitaria y Registro de Grados y Títulos, a través del Jefe (e) de la Unidad de Registro de Grados y Títulos, deja constancia que la información contenida en este documento se encuentra inscrita en el Registro Nacional de Grados y Títulos administrada por la Sunedu.

<table>
<thead>
<tr>
<th>INFORMACIÓN DEL CIUDADANO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Apellidos</td>
<td>SALINAS RETO</td>
</tr>
<tr>
<td>Nombres</td>
<td>PATRICIA INES</td>
</tr>
<tr>
<td>Tipo de Documento de Identidad</td>
<td>DNI</td>
</tr>
<tr>
<td>Numero de Documento de Identidad</td>
<td>41908482</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INFORMACIÓN DE LA INSTITUCIÓN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre</td>
<td>UNIVERSIDAD DE PIURA</td>
</tr>
<tr>
<td>Rector</td>
<td>ANTONIO ABRUÑA PUYOL</td>
</tr>
<tr>
<td>Secretario General</td>
<td>DANTE ARTURO MARTIN GUERRERO CHANDUVI</td>
</tr>
<tr>
<td>Decano</td>
<td>BERTHA SUSANA VEGAS CHYON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INFORMACIÓN DEL DIPLOMA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Título profesional</td>
<td>INGENIERO CIVIL</td>
</tr>
<tr>
<td>Fecha de Expedición</td>
<td>29/05/2009</td>
</tr>
<tr>
<td>Resolución/Acta</td>
<td>CS 1043/09</td>
</tr>
<tr>
<td>Diploma</td>
<td>A1070661</td>
</tr>
</tbody>
</table>

Fecha de emisión de la constancia: 11 de Julio de 2022

Este constancia puede ser verificada en el sitio web de la Superintendencia Nacional de Educación Superior Universidad - Sunedu (www.sunedu.gob.pe), utilizando lectores de códigos o teléfono celular escaneando el código QR. El celular debe poseer un software gratuito descargado desde internet.

Documento electrónico emitido en el marco de la Ley N° 27269 – Ley de Firma y Certificados Digitales, y su Reglamento aprobado mediante Decreto Supremo N° 052-2008-PCM.
(*) El presente documento deja constancia únicamente del registro del Grado o Título que se señala.

Calle Atilasas N° 337 - Urb. las Gardenias. Santiago de Surco - Lima - Perú / (011) 500-3030
Anexo 17: reporte turnitin.

Informe de Originalidad

<table>
<thead>
<tr>
<th>Índice de Similaridad</th>
<th>Fuentes de Internet</th>
<th>Publicaciones</th>
<th>Trabajos del Estudiante</th>
</tr>
</thead>
<tbody>
<tr>
<td>21%</td>
<td>20%</td>
<td>1%</td>
<td>7%</td>
</tr>
</tbody>
</table>

Fuentes Primarias

<table>
<thead>
<tr>
<th>Nro.</th>
<th>Fuente del Estudiante</th>
<th>Fuente de Internet</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>repositorio.ucv.edu.pe</td>
<td></td>
<td>8%</td>
</tr>
<tr>
<td>2</td>
<td>trome.pe</td>
<td></td>
<td>4%</td>
</tr>
<tr>
<td>3</td>
<td>Submitted to Universidad Anahuac México Sur</td>
<td></td>
<td>2%</td>
</tr>
<tr>
<td>4</td>
<td>Submitted to Universidad Cesar Vallejo</td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>5</td>
<td>hdl.handle.net</td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>6</td>
<td>Repositorio.Unap.Edu.Pe</td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>7</td>
<td>qdoc.tips</td>
<td></td>
<td><1%</td>
</tr>
<tr>
<td>8</td>
<td>es.wikipedia.org</td>
<td></td>
<td><1%</td>
</tr>
<tr>
<td></td>
<td>Titulo</td>
<td>Fuente</td>
<td>Porcentaje</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>9</td>
<td>Submitted to Universidad Nacional Autonoma de Chota</td>
<td>Trabajo del estudiante</td>
<td><1 %</td>
</tr>
<tr>
<td>10</td>
<td>repositorio.upn.edu.pe</td>
<td>Fuente de Internet</td>
<td><1 %</td>
</tr>
<tr>
<td>11</td>
<td>repositorio.unh.edu.pe</td>
<td>Fuente de Internet</td>
<td><1 %</td>
</tr>
<tr>
<td>12</td>
<td>www.coursehero.com</td>
<td>Fuente de Internet</td>
<td><1 %</td>
</tr>
<tr>
<td>13</td>
<td>tecnologiadeprocesos.blogspot.com</td>
<td>Fuente de Internet</td>
<td><1 %</td>
</tr>
<tr>
<td>14</td>
<td>Submitted to Universidad Catolica De Cuenca</td>
<td>Trabajo del estudiante</td>
<td><1 %</td>
</tr>
<tr>
<td>15</td>
<td>Repositorio.Ucv.Edu.Pe</td>
<td>Fuente de Internet</td>
<td><1 %</td>
</tr>
<tr>
<td>16</td>
<td>dspace.ucuenca.edu.ec</td>
<td>Fuente de Internet</td>
<td><1 %</td>
</tr>
<tr>
<td>17</td>
<td>1library.co</td>
<td>Fuente de Internet</td>
<td><1 %</td>
</tr>
<tr>
<td>18</td>
<td>Submitted to Universidad Marcelino Champagnat</td>
<td>Trabajo del estudiante</td>
<td><1 %</td>
</tr>
<tr>
<td>19</td>
<td>www.openaccess.hacettepe.edu.tr:8080</td>
<td>Fuente de Internet</td>
<td><1 %</td>
</tr>
</tbody>
</table>
Submitted to Universidad Tecnológica de los Andes
Trabajo del estudiante

repositorio.untrm.edu.pe
Fuente de Internet

repository.unimilitar.edu.co
Fuente de Internet

www.merca20.com
Fuente de Internet

www.scribd.com
Fuente de Internet

Publicación

archive.org
Fuente de Internet

repositorio.unj.edu.pe
Fuente de Internet
Anexo 18: experiencia de expertos.

CURRICULUM VITAE

MIGUEL ANGEL CHAN HEREDIA
INGENIERO CIVIL
CIP Nº 88837

I.- DATOS GENERALES:
1.1.- Nombres y Apellidos : MIGUEL ÁNGEL CHAN HEREDIA
1.2.- Profesión : INGENIERO CIVIL
1.3.- Documento de Identidad : 18166174
1.4.- Fecha de Nacimiento : 12 DE OCTUBRE DE 1975
1.5.- Estado Civil : CASADO
1.6.- Correo Electrónico : mchangheredia@hotmail.com
1.7.- Teléfono : Cel. 938192113

II.- ESTUDIOS:
2.1.- Estudios Universitarios:
 Institución : UNIVERSIDAD ANTONIO ORREGO – TRUJILLO
 Profesión : INGENIERO CIVIL

2.2.- Estudios de Maestría:
 Maestría : MAESTRÍA EN EDUCACIÓN Y GESTIÓN EDUCATIVA
 Institución : Universidad César Vallejo -Piura
 Año : 2004 – 2005

 Estudios : MAESTRÍA EN INGENIERÍA CIVIL
 Institución : Universidad Nacional de Piura
 Año : 2012 - 1013

2.2.- Estudios Secundarios:
 Institución : G. U. E. "JOSÉ FAUSTINO SÁNCHEZ CARRIÓN"

2.3.- Estudios Primarios:
 Institución : "PEDRO M. UREÑA" – 81014
 Año : 1980 - 1986
IV.- EXPERIENCIA LABORAL:

Obra: CONSTRUCCION DE CERCO PERIMETRICO – PLANTA DE ALIMENTOS CHIMU AGROPECUARIA
Cargo: SUPERVISOR DE OBRA
Constructora: CHIMU CONTRATISTAS GENERALES – 2005
Institución: BANCO DE MATERIALES – U. O. TRUJILLO
Cargo: INSPECTOR
Año: 1998

Institución: CONSTRUCCIONES Y SERVICIOS SAN VICENTE E.I.R.L
Cargo: ASESOR DE ELABORACION DE EXPEDEINTES TECNICOS
Año: 2004

Institución: MUNICIPALIDAD PROVINCIAL DE SULLANA
Cargo: PROYECTISTA DE ELABORACION DE EXPEDEINTE TECNICO DISEÑO ESTRUCTURAL PUENTE LIMA.
Año: 2004

Institución: H Y P CONSTRUCTORA
Cargo: SUPERVISOR DE OBRA / INGENIERO PROYECTISTA
Año: 2005

Institución: GALA INDUSTRIA DE LA CONSTRUCCION S.R.L
Cargo: SUPERVISOR DE OBRA
Año: 2005

Institución: GOBIERNO REGIONAL DE PIURA
Cargo: SUPERVISOR DE OBRA: Protección de Dique Margen Izquierda del Río Piura tramo Pte Independencia - San Ernesto
Año: 2007

Institución: MUNICIPALIDAD DISTRITAL DE BELLAVISTA-SULLANA
Año : 2007

Institución: MUNICIPALIDAD DISTRITAL DE BELLAVISTA-SULLANA
Cargo : PROYECTISTA – ALAMEDA AA, HH. JOSE MARIATEGUI EL PORVENIR.
Año : 2007

Institución: TPCH - TUBOS Y POSTES CHICLAYO S. R. L.
Cargo : ASESORÍA - Calculo Estructural de Tuberías.
Año : 2007

Institución: MUNICIPALIDAD DISTRITAL DE CATACAOS
Cargo : SUPERVISOR OBRA: CONSTRUCCION DE VEREDAS CALLE COMERCIO Cdra. 13, HASTA CAPILLA SAN MIGUEL, MONTE SULLÓN.
Año : 2008

Institución: MUNICIPALIDAD DISTRITAL DE BELLAVISTA – LA UNION
Cargo : PROYECTISTA: AMPLIACION Y MEJORAMIENTO DEL ESTADIO MUNICIPAL DE SAN CLEMENTE
Año : 2008

Institución: MUNICIPALIDAD DISTRITAL DE VILLA SANTA ANA – LA HUACA
Cargo : PROYECTISTA EXPEDIENTE TECNICO: CONSTRUCCIÓN DE SERVICIOS HIGIÉNICOS Y CULMINACIÓN DEL CERCO PERIMÉTRICO DE LA P. N. P. DE LA HUACA
Año : 2008

Institución: MUNICIPALIDAD PROVINCIAL DE SECHURA
Cargo : PROYECTISTA ENSPECIALISTA EN ESTRUCTURAS PROYECTO A NIVEL DE PERFIL: CONSTRUCCION DEL PALACIO MUNICIPAL DE SECHURA
Año : 2008
Institución : SUB REGIÓN DE OBRAS DE MORROPÓN
Cargo : PROYECTISTA ESPECIALISTA EN ESTRUCTURAS DEL PROYECTO A NIVEL DE PERFIL: CONSTRUCCIÓN DEL TERMINAL TERRESTRE DE CHULUCANAS.
Año : 2008

Institución : MUNICIPALIDAD DISTRITAL DE CASTILLA - PIURA
Año : 2008

Institución : INEI – PIURA
Cargo : JEFE DE APLICADORES – EVALUACIÓN DOCENTE PARA EL NOMBRAIMIENTO 2008
Año : 2008

Institución : MUNICIPALIDAD PROVINCIAL DE PIURA
Cargo : SUPERVISOR DE LA OBRA: PLATAFORMA DEPORTIVA DE A.A. H.H.
Año : 2009

Institución : MUNICIPALIDAD DE CHULUCANAS
Cargo : SUPERVISOR DE OBRA: SISTEMA DE ABASTECIMIENTO DE AGUA Y ELIMINACION DE EXCRETAS – LETRINAS SECTOR CRUZ DE CAMPANAS
Año : 2011

Institución : MUNICIPALIDAD DE MARCAVELICA
Cargo : SUPERVISOR DE OBRA: MEJORAMIENTO SISTEMA DE AGUA Y PAVIMENTACIÓN DE LA CALLE SANTA VICTORIA
Año : 2013

Institución : MUNICIPALIDAD DE VICE
Cargo : SUPERVISOR DE OBRA: CONSTRUCCIÓN DE CERCO DE COLISEO RECREACIONAL
Año : 2013
Anexo 20: Panel fotográfico

Figura 34: Inicio de excavación calicata 01

Figura 35: Excavación de calicata 01
Figura 36: muestra completa de calicata 01

Figura 37: Inicio de excavación calicata 02
Figura 38: profundidad de 1.5 metros calicata 02

Figura 39: fin de muestreo de calicata 02
Figura 40: inicio de muestreo de calicata 03

Figura 41: excavación total de calicata 03
Figura 42: muestra total de calicata 03

Figura 43: ensayo de límites de consistencia.
Figura 44: ensayo de proctor modificado.

Figura 45: ensayo de análisis granulométrico
Figura 46: compactación para ensayo de CBR
Figura 47: muestras de suelo natural extraídas para su análisis natural y modificado con cenizas de cascarilla de arroz

Figura 48: cascarillas de arroz en los molinos de Ignacio escudero - Sullana – Piura.
Figura 49: horno artesanal de calcinación de cenizas de cascarilla de arroz.

Figura 50: obtención de cenizas de cascarilla de arroz

Figura 51: cenizas de cascarilla de arroz para la dosificación del 5, 10 y 15 %.
Figura 52: toma de suelo arcilloso para su análisis natural y comparativo.

Figura 53: adición de cenizas 5, 10 y 15% en muestras de suelo natural para los respectivos ensayos de laboratorio.