

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Respuesta sísmica mediante el método convencional (E-030) y el método basado en desplazamientos, edificación de vivienda, Cusco-2021"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

INGENIERO CIVIL

AUTOR:

Condori Sánchez, Ángel Ramiro (ORCID: 0000-0001-9844-8847) Quispe Florez, Guido Aristides (ORCID: 0000-0002-1629-0677)

ASESOR:

Dr. Tello Malpartida, Omart Demétrio (ORCID: 0000-0002-5043-6510)

LÍNEA DE INVESTIGACIÓN:

Diseño Sísmico y Estructural

LIMA- PERÚ

2022

Dedicatoria

A Dios:

La presente tesis está dedicada a Dios, por darme una maravillosa vida, salud, fuerzas, por haberme concebido mi deseo de cumplir esta meta en mi formación profesional y sobre todo por guiarme en todo momento durante mi vida le doy gracias por ser mi guía día a día.

A mi familia:

A mis queridos padres, mi mamita Simeona y mi papito Sebastián por su infinitoamor y paciencia que tienen hacia sus hijos.

A mis hermanos Washington, Irma, Esther, Verónica, Edson, William y Angélica;por el estímulo constante de superación, por el apoyo moral y emocional que mebrindan en todo momento, a mis sobrinos Sebastián, Daniela y Cristian, porque son un motivo para seguir adelante

A mi docente:

Dr. Omart Demétrio, Tello Malpartida, quien gracias a él logre destacar en muchos aspectos formativos.

Agradecimiento

"A mis docentes y en especial a mi tutor por su ayuda, paciencia y dedicación. Agradecemos también a nuestras familias por darnos ánimos durante este proceso. A nuestros amigos de toda la vida que me acompañan desde siempre.

Índice de contenidos

Dedi	icato	oria	ii
Agra	dec	imiento	iii
Índio	ce de	e contenidos	iv
Índio	ce de	e figuras	vi
Índio	ce de	e ecuaciones	X
Índio	ce de	e tablas	xiv
Resu	ıme	n	xviii
Abst	ract		xix
1	INIT		1
ı. 11			ı
111.	ME	TODOLOGIA	71
3.1	Tip	o y diseño de investigación	71
3.2	Var	iables y operacionalización	72
3.3	Pot	olación, muestra y muestreo	72
3.4	Téc	cnicas e instrumentos de recolección de datos	73
3.5	Pro	cedimientos	74
3.5.	1	Recaudación de información preliminar	74
3.5.	2	Análisis Sísmico convencional según E-030 (MBF)	78
3.5.	3	Diseño de elementos estructurales según E-060	. 103
3.5.	4	Análisis estático no lineal (MBF)	. 127
3.5.	5	Método basado en desplazamientos (DDBD)	. 133
3.5.	6	Diseño de elementos estructurales según el DDBD	. 165
3.5.	7	Análisis estático no lineal (DDBD)	. 181

IV.	RESULTADOS	183
V.	DISCUSIÓN	203
VI.	CONCLUSIONES	206
VII.	RECOMENDACIONES	208
RE	FERENCIAS	. 211
AN	EXOS	214

ÍNDICE DE FIGURAS

Figura 1. Parámetros sísmicos (Muñoz, 2020, pp.36)	11
Figura 2. Factores de Zona según E-030	12
Figura 3. Clasificación de suelos según E-030	12
Figura 4. Factor de Suelo y periodos "Tp" y "Tl" según E-030	12
Figura 5. Categoría de edificaciones según E-030	13
Figura 6. Interpretación de los factores Z, S y C (Muñoz, 2020, pp.19)	14
Figura 7. Coeficiente básico de reducción	15
Figura 8. Componentes del factor de reducción de fuerzas sísmicas (Muñoz, 2020)	16
Figura 9. Diseño por corte capacidad en vigas según E-060	22
Figura 10. Disposiciones especiales del refuerzo transversal en vigas según E-060	23
Figura 11. Diseño por capacidad en columnas según E-060	24
Figura 12. Disposiciones especiales para diseño sísmico	25
Figura 13. Máxima separación de barras sin apoyo lateral	27
Figura 14. Elementos de borde especiales en muros según E-060	28
Figura 15. Requisitos de estribos según E-060	29
Figura 16. Influencia del acero de refuerzo en la rigidez (Córdova, 2017)	32
Figura 17. Efecto de la curvatura de fluencia en la respuesta sísmica (Priestley, 2007)	33
Figura 18. Formulación del DDBD (Gomel, 2017) adoptado de Priestley et al. (2007)	34
Figura 19. Altas demandas de ductilidad en vigas conectadas a muros	42
Figura 20. Fuerzas en pórticos (Pérez, 2014)	51
Figura 21. Momento transmitido de las vigas hacia el muro Sullivan (2005)	53
Figura 22. Modificación de momentos en los muros debido a las vigas conectadas Jim	énez &
Jovel (2017)	53
Figura 23. Envolvente de momento para el diseño de vigas según el DDBD	57
Figura 24. Cortante de diseño en vigas según el DDBD	58
Figura 25. Diseño Por capacidad de muros según el DDBD	59
Figura 26. Curva de capacidad (ASCE 41-17)	61
Figura 27. Tipos de modelamiento no lineal en componentes	62
Figura 28. Relación fuerza-desplazamiento de componentes según ASCE 41-13	62
Figura 29. Definición de rotulas plásticas en vigas según ASCE 41-13	63
Figura 30. Rigidez efectiva de elementos según ASCE 41-17	64
Figura 31. Rigidez efectiva según LATBSDC (2020)	65
Figura 32. Rigidez efectiva según ACI 318-19	65
Figura 33. Modelo de fibras para elementos de concreto armado (Taucer, Spacone & F	ilippou,
1991)	66
Figura 34. Modelo numérico de concreto confinado (Mander et al., 1988)	67
Figura 35. Resistencia esperada de materiales según ASCE 41-17	67

Figura 36. Resistencia esperada de materiales según LATBSDC	68
Figura 37. Resistencia esperada de materiales según ACHISINA	68
Figura 38. Método del espectro de capacidad (ATC-40)	69
Figura 39. Curva bilineal del espectro de capacidad (FEMA 440)	70
Figura 40 Planta típica de arquitectura del edificio en estudio	75
Figura 41 Modelo matemático de la estructura	77
Figura 42. Factor de amplificación sísmica y espectro de aceleraciones (Regular)	81
Figura 43 Verificación de irregularidad torsional	88
Figura 44 Verificación de irregularidad por discontinuidad del diafragma	89
Figura 45 Periodos en traslación pura	92
Figura 46 Cortantes estáticas y momentos de entrepiso	95
Figura 47 Factor de amplificación sísmica y Espectro de Aceleraciones finales	96
Figura 48. Cortantes y momentos finales del Análisis modal espectral	98
Figura 49 Control de derivas	100
Figura 50 Cortantes y momentos escalados	101
Figura 51 Nomenclatura de muros	102
Figura 52 Diagrama de momento flector envolvente de la viga	106
Figura 53 Área de acero requerida en la viga	106
Figura 54 Demanda y capacidad de la viga	108
Figura 55 Envolvente de fuerzas cortantes	109
Figura 56 Demanda y capacidad a cortante de la viga	111
Figura 57 Armado propuesto para la columna exterior del pórtico 3	112
Figura 58. Diagrama de interacción eje débil columna C-3 (30x70)	113
Figura 59. Diagrama de interacción eje fuerte columna C-3 (30x70)	114
Figura 60. Armado del muro 5X	121
Figura 61. Diagrama de interacción muro 5X	122
Figura 62. Cálculo de la altura del eje neutro en muro 5X para la carga axial de diseño	123
Figura 63. Momento rotación y rigidez efectiva de viga del pórtico 4 según ASCE 41-13	127
Figura 64. Modelo de fibras en columna C-3 (30x70)	127
Figura 65. Modelo de fibras en muro 5X	128
Figura 66. Curvas esfuerzo deformación del concreto no confinado y confinado para la co	lumna
C-3 (30x70cm)	128
Figura 67. Curva esfuerzo deformación del acero de refuerzo con resistencia esperada	129
Figura 68. Curva de capacidad del MBF en ambas direcciones	129
Figura 69. Obtención del punto de desempeño con el método del espectro de capacidad	en X e
Y respectivamente en el edificio diseñado según el MBF	130
Figura 70. Formación de rotulas plásticas para el sismo de diseño en X e Y respectiva	mente
	131
Figura 71. Validación de desplazamientos obtenidos con el MBF	132
Figura 72 Distribución de cortantes y momentos en pórticos y muros	134

Figura 73 Nomenclatura de pórticos y muros	. 143
Figura 74. Espectro de desplazamiento inelástico dirección X	. 147
Figura 75 Cortantes y momentos finales dirección X	. 149
Figura 76 Influencia de las vigas conectadas en los momentos del muro 1X	. 155
Figura 77. Espectro de desplazamientos inelásticos para el sismo en Y	. 161
Figura 78. Cortantes y momentos finales para el sismo en Y	. 162
Figura 79. Corrección de momentos en muros sismo Y	. 165
Figura 80. Envolvente de momento de la viga eje 4 con el DDBD	. 168
Figura 81. Demanda y capacidad de viga eje 4 con el DDBD	. 169
Figura 82. Diagrama de interacción eje débil columna C-3 (35X70) con el DDBD	. 172
Figura 83. Diagrama de interacción eje fuerte columna C-3 (35X70) con el DDBD	. 173
Figura 84. Armado de acero en muro 5X con el DDBD	. 177
Figura 85. Diagrama de interacción de muro 5X usando el DDBD	. 177
Figura 86. Envolvente de momentos en el muro 5X usando el DDBD	. 178
Figura 87. Armado de muro 5X en la mitad de la altura usando el DDBD	. 179
Figura 88. Diagrama de interacción en la mitad del muro 5X usando el DDBD	. 179
Figura 89. Envolvente de cortantes usando el DDBD en el muro 5X	. 180
Figura 90. Curvas de capacidad del edificio diseñado según el DDBD	. 181
Figura 91. Obtención del punto de desempeño con el método del espectro de capacidad er	۱Xе
Y respectivamente en el edificio diseñado según el DDBD	. 182
Figura 92. Validación de desplazamientos obtenidos con el DDBD	. 183
Figura 93. Análisis comparativo de cortantes usando el DDBD y el MBF	. 184
Figura 94. Análisis comparativo de desplazamientos usando el DDBD y el MBF	. 185
Figura 95. Análisis comparativo de momentos usando el DDBD y el MBF	. 187
Figura 96. Análisis comparativo de derivas usando el DDBD y el MBF	. 188
Figura 97. Análisis comparativo de la cantidad de acero de refuerzo en vigas usando el DDI	BD y
el MBF	. 190
Figura 98. Análisis comparativo de la cantidad de acero de refuerzo en columnas usano	lo el
DDBD y el MBF	. 190
Figura 99. Análisis comparativo de la cantidad de refuerzo longitudinal en muros usando el D	DBD
y el MBF	. 191
Figura 100. Nomenclatura de columnas	. 192
Figura 101. Análisis comparativo de la cantidad de refuerzo horizontal en muros usando el D	DBD
y el MBF	. 193
Figura 102. Resumen del cómputo de acero de refuerzo en el edificio	. 194
Figura 103. Análisis comparativo de las dimensiones en vigas usando el DDBD y el MBF	. 195
Figura 104. Análisis comparativo de las dimensiones en columnas usando el DDBD y el	MBF
	. 196
Figura 105. Análisis comparativo de las dimensiones de muros usando el DDBD y el MBF	. 196
Figura 106. Análisis comparativo de la curva de capacidad en X usando el DDBD y el MBF	. 198

													20	1
Figura	109.	Análisis	compa	rativo de	e los de	esplaza	amient	os inela	ásticos	usanc	lo el D	DBD y	el MB	F
Figura	107.	Análisis	compar	rativo de	e la curv	/a de c	apacio	dad en	Y usar	ndo el	DDBD	y el M	BF.19	9

ÍNDICE DE ECUACIONES

Ecuación 1. Cortante Basal según E-030	11
Ecuación 2. Coeficiente de amplificación sísmica tramo 1	. 14
Ecuación 3. Coeficiente de amplificación sísmica tramo 2	. 14
Ecuación 4. Coeficiente de amplificación sísmica tramo 3	. 14
Ecuación 5. Coeficiente de reducción de fuerzas sísmicas	. 15
Ecuación 6. Distribución de fuerzas en altura	. 16
Ecuación 7. Factor de distribución de fuerzas sísmicas en altura	. 16
Ecuación 8. Periodo fundamental aproximado	. 17
Ecuación 9. Aceleración espectral	. 17
Ecuación 10. Requisito de resistencia según E-060	. 18
Ecuación 11. Combinación de diseño Nº1	. 18
Ecuación 12. Combinación de diseño N°2	. 18
Ecuación 13. Combinación de diseño Nº3	. 18
Ecuación 14. Módulo de ruptura para el concreto Ecu. (9.12) de E-060	. 19
Ecuación 15. Momento de agrietamiento Ecu. (9.11) de E-060	. 19
Ecuación 16. Acero mínimo en flexión: Ecu. (10.3) de E-060	. 20
Ecuación 17. Cuantía balanceada	. 20
Ecuación 18. Cuantía máxima	. 20
Ecuación 19. Longitud de desarrollo según E-060	. 21
Ecuación 20. Requisito del diseño por corte según E-060 (Ecu. 11.1 y 11.2)	. 21
Ecuación 21. Cortante resistente por el concreto (Ecu. 11.3) de E-060	. 22
Ecuación 22. Cortante resistente por los estribos (Ecu. 11.15) de E-060	. 22
Ecuación 23. Cortante máxima que pueden soportar los estribos (Art. 11.5.7.9)	. 22
Ecuación 24 Cortante por capacidad en vigas según E-060	. 23
Ecuación 25 Resistencia máxima de diseño a compresión Ecu. 10-2 de E-060	24
Ecuación 26. Cortante por capacidad en la columna	. 25
Ecuación 27. Cortante resistente por el concreto para elementos en compresión (Ecu. 11.4)) de
E-060	. 25
Ecuación 28. Cortante resistente por el concreto para elementos en tracción (Ecu. 11.8) de	эE-
060	. 25
Ecuación 29. Condición mínima para la verificación por flexo compresión según E-060	. 27
Ecuación 30. Altura del eje neutro límite para elementos de borde	. 27
Ecuación 31. Peralte efectivo del muro (Art. 21.9.4.5)	. 30
Ecuación 32. Contribución del concreto a cortante (Art. 11.10.5)	30
Ecuación 33. Cortante máxima según el Art. 11.10.4	. 30
Ecuación 34. Cortante máxima en los estribos según la Ecu. 11-2	. 30
Ecuación 35. Cortante requerida en estribos según la Ecu. 11-1	30

Ecuación 36.	Resistencia a corte del refuerzo horizontal según la Ecu. 11-31	30
Ecuación 37.	Cuantía de refuerzo horizontal en muro	31
Ecuación 38.	Cortante por capacidad en muros	31
Ecuación 39.	Amortiguamiento para edificios de muros de concreto y puentes.	35
Ecuación 40.	Amortiguamiento para edificios de pórticos de concreto	35
Ecuación 41.	Factor de reducción de espectro inelástico	35
Ecuación 42	Rigidez Efectiva del SDOF	36
Ecuación 43	Cortante Inelástica	36
Ecuación 44.	Cortante asignada a los pórticos en el DDBD	36
Ecuación 45.	Cortante asignada a los muros en el DDBD	36
Ecuación 46.	Distribución de fuerzas en altura según el DDBD	36
Ecuación 47.	Cálculo de la altura de inflexión	37
Ecuación 48.	Longitud equivalente del sistema.	37
Ecuación 49.	Resistencia esperada del acero de refuerzo en el DDBD	37
Ecuación 50.	Curvatura de fluencia en muros rectangulares	37
Ecuación 51.	Corrección de la deriva de diseño por efecto de modos superiores	38
Ecuación 52.	Desplazamiento de fluencia de cada nivel (condición 1)	38
Ecuación 53.	Desplazamiento de fluencia de cada nivel (condición 2)	38
Ecuación 54.	Perfil de desplazamientos en el DDBD	39
Ecuación 55.	Desplazamiento equivalente del SDOF	39
Ecuación 56.	Altura equivalente del SDOF	39
Ecuación 57.	Masa equivalente del SDOF	39
Ecuación 58.	Desplazamiento de fluencia en muros del SDOF	39
Ecuación 59.	Ductilidad en muros	40
Ecuación 60.	Con flexión paralela al alma o flexión paralela a las alas con el alma en compres	ión
		40
Ecuación 61.	Con flexión paralela a las alas y con el alma en tracción	40
Ecuación 62.	Curvatura ultima para muros rectangulares	40
Ecuación 63.	Curvatura ultima para muros con aletas	41
Ecuación 64.	Rotación de fluencia de un muro	41
Ecuación 65.	Capacidad de rotación ultima en muros	41
Ecuación 66.	Longitud de rotula plástica en muros (a)	41
Ecuación 67.	Longitud de rotula plástica en muros (b)	41
Ecuación 68.	Demanda de ductilidad en muros	42
Ecuación 69.	Ductilidad disponible en un muro	42
Ecuación 70.	Rotación de fluencia de vigas no unidas a muros	43
Ecuación 71.	Rotación de fluencia de vigas con un extremo unido a un muro	43
Ecuación 72.	Rotación de fluencia de vigas con ambos extremos unidos a un muro	43
Ecuación 73.	Ductilidad en pórticos	43
Ecuación 74.	Amortiguamiento inelástico en muros	.44

Ecuación 75. Amortiguamiento inelástico en pórticos	44
Ecuación 76. Periodo efectivo de prueba	44
Ecuación 77. Ductilidad del sistema	44
Ecuación 78. Amortiguamiento total en muros	44
Ecuación 79. Amortiguamiento total en pórticos	45
Ecuación 80. Amortiguamiento equivalente del SDOF	45
Ecuación 81. Rigidez de cada muro	46
Ecuación 82. Rigidez de cada pórtico	46
Ecuación 83. Coordenada del centro de rigidez en la dirección X	46
Ecuación 84. Coordenada del centro de rigidez en la dirección Y	47
Ecuación 85. Coordenada del centro de resistencia en la dirección X	47
Ecuación 86. Coordenada del centro de resistencia en la dirección Y	47
Ecuación 87. Rigidez torsional dúctil para sismo en X	47
Ecuación 88. Rigidez torsional dúctil para sismo en Y	47
Ecuación 89. Excentricidad de rigidez en la dirección X e Y	47
Ecuación 90. Rotación del centro de masa debido al sismo en X e Y	48
Ecuación 91. Excentricidad de resistencia para sismo en X e Y	48
Ecuación 92. Desplazamiento máximo del edificio debido a los efectos de torsión por sist	mo en X
е Ү	48
Ecuación 93. Factor de corrección por torsión	48
Ecuación 94. Coordenadas de pseudo - desplazamientos	49
Ecuación 95. Desplazamiento espectral inelástico	49
Ecuación 96. Periodo Efectivo del SDOF	49
Ecuación 97. Rigidez Efectiva del SDOF	50
Ecuación 98. Cortante basal inelástica	50
Ecuación 99. Momento volcante en cada pórtico	50
Ecuación 100. Momento en los extremos de una viga	51
Ecuación 101. Partición del momento total en un pórtico	51
Ecuación 102. Momento tomado por las columnas	52
Ecuación 103. Momento en la base de las columnas	52
Ecuación 104. Cortante en columnas	52
Ecuación 105. Momentos en columnas interiores de piso típico	52
Ecuación 106. Momentos en columnas exteriores de piso típico	53
Ecuación 107. Momento transmitido de viga a muro	54
Ecuación 108. Reducción de momento en cada nivel del muro	54
Ecuación 109. Requisito general de diseño mediante el DDBD	55
Ecuación 110. Resistencia esperada a compresión del concreto	55
Ecuación 111. Momento de viga en cara de columna	56
Ecuación 112. Momento de diseño fuera de la longitud de rotula plástica	56
Ecuación 113. Cortante de diseño a lo largo de la viga	57

Ecuación 114. Resistencia del concreto para el diseño por capacidad a cortante	57
Ecuación 115. Resistencia del acero de refuerzo para el diseño por capacidad a cortante	57
Ecuación 116. Momento requerido en la mitad de la altura del muro	59
Ecuación 117. Coeficiente asociado al diseño por capacidad a flexión de muros	59
Ecuación 118. Periodo fundamental elástico	60
Ecuación 119. Factor de amplificación por modos superiores para el diseño por corte	60
Ecuación 120. Coeficiente asociado al diseño por capacidad a corte de muros	60
Ecuación 121. Cortante por capacidad en la parte superior del muro	60
Ecuación 122. Acciones gravitacionales en el análisis no lineal (ASCE 41-17)	61

ÍNDICE DE TABLAS

Tabla 1 % de carga viva en la masa sísmica (Adaptado de E-030)	17
Tabla 2 Resumen de las dimensiones de elementos	76
Tabla 3 Resumen de cargas utilizadas	76
Tabla 4 Propiedades del Material	77
Tabla 5 Factor de zona	78
Tabla 6 Factor de Suelo	78
Tabla 7 Periodos "Tp" y "Tl"	79
Tabla 8 Categoría de la edificación	79
Tabla 9 Determinación del sistema estructural	80
Tabla 10 Espectro de aceleraciones	82
Tabla 11 Centro de masa y centro de rigidez	83
Tabla 12 Modos de vibración y masas participativas	84
Tabla 13 Verificación de irregularidad de rigidez en la dirección X	85
Tabla 14 Verificación de irregularidad de rigidez en la dirección Y	85
Tabla 15 Verificación de irregularidad de masa o peso	86
Tabla 16 Verificación de irregularidad torsional en la dirección X	87
Tabla 17 Verificación de irregularidad torsional en la dirección Y	88
Tabla 18 Verificación de irregularidad por discontinuidad del diafragma (a)	90
Tabla 19 Verificación de irregularidad por discontinuidad del diafragma (b)	90
Tabla 20 Resumen de irregularidades y factor de reducción de fuerzas sísmicas	91
Tabla 21 Peso sísmico de la estructura obtenido del ETABS	93
Tabla 22 Análisis sísmico estático	93
Tabla 23 Distribución de fuerzas en altura	94
Tabla 24 Parámetros Sísmicos finales	96
Tabla 25 Espectro de aceleraciones finales en X, Y	97
Tabla 26 Cortantes y momentos de entrepiso del análisis modal espectral	98
Tabla 27 Factor para el cálculo de desplazamientos laterales	99
Tabla 28 Desplazamientos y derivas máximas en X	99
Tabla 29 Desplazamientos y derivas máximas en Y	100
Tabla 30 Escalamiento de la cortante dinámica	101
Tabla 31 Cortantes y momentos escalados	101
Tabla 32 Verificación del sistema estructural	103
Tabla 33. Diseño por cortante en columna C-3 (a)	115
Tabla 34. Diseño por cortante en columna C-3 (b)	115
Tabla 35. Diseño por cortante en columna C-3 (c)	116
Tabla 36. Diseño por cortante en columna C-3 (d)	116
Tabla 37. Diseño por cortante en columna C-3 (e)	116
Tabla 38. Diseño por cortante en columna C-3 (f)	117

Tabla 39. Diseño por cortante en columna C-3 (g)	117
Tabla 40. Diseño por cortante en columna C-3 (h)	117
Tabla 41. Resumen del diseño por corte en la columna C-3	119
Tabla 42. Diseño por corte del muro 5X	126
Tabla 43. Punto de desempeño en el edificio diseñado según el MBF	130
Tabla 44. Validación de desplazamientos obtenidos con el MBF	131
Tabla 45 Distribución de cortantes y momentos en pórticos y muros	133
Tabla 46 Calculo de la longitud equivalente de muro del sistema	135
Tabla 47 Propiedades del acero de refuerzo	135
Tabla 48 Desplazamientos y derivas de diseño	136
Tabla 49 Propiedades del sistema equivalente de un grado de libertad	137
Tabla 50 Demanda de ductilidad en muros	137
Tabla 51 Capacidad de ductilidad en muros	138
Tabla 52 Calculo del centro de rigidez y centro de resistencia dirección X (Muros)	140
Tabla 53 Calculo del centro de rigidez y centro de resistencia dirección X (Pórticos)	140
Tabla 54 Calculo del centro de rigidez y centro de resistencia dirección Y (Muros)	142
Tabla 55 Calculo del centro de rigidez y centro de resistencia dirección Y (Pórticos)	142
Tabla 56. Rotación de fluencia en pórticos	145
Tabla 57. Cálculo de la ductilidad equivalente de los pórticos	145
Tabla 58 Espectro de desplazamientos dirección X	148
Tabla 59 Fuerzas cortantes y momentos finales dirección X	149
Tabla 60 Cortantes y momentos de cada pórtico	150
Tabla 61 Cortantes y momentos en vigas del pórtico 4	150
Tabla 62 Cortantes y momentos en las vigas dirección X	152
Tabla 63 Cortantes y momentos en columnas dirección X	152
Tabla 64 Cortantes y momentos en muros	153
Tabla 65. Distribución de cortantes y momentos en la dirección Y	156
Tabla 66. Longitud equivalente de muro en la dirección Y	156
Tabla 67. Desplazamiento y derivas en la dirección Y	157
Tabla 68. Propiedades del SDOF en la dirección y	157
Tabla 69. Demanda de ductilidad en muros en la dirección Y	158
Tabla 70 Capacidad de ductilidad en muros en la dirección Y	158
Tabla 71. Rotación de fluencia de vigas en la dirección Y	159
Tabla 72. Ductilidad de pórticos en la dirección Y	159
Tabla 73. Cortantes y momentos finales en la dirección Y	162
Tabla 74. Fuerzas de pórticos para el sismo en Y	163
Tabla 75. Momentos y cortantes en vigas para el sismo en Y	163
Tabla 76. Momentos y cortantes en columnas para el sismo en Y	163
Tabla 77. Fuerzas en muros dirección Y	164
Tabla 78. Corrección de momentos en muro 1Y debido a las vigas conectadas	164

Tabla 79. Corrección de momentos en muro 2Y debido a las vigas conectadas 10	64
Tabla 80. Cargas axiales en columna C-3 para el sismo en dirección X con el DDBD1	70
Tabla 81. Cargas axiales en columna C-3 para el sismo en dirección Y con el DDBD1	71
Tabla 82. Diseño por corte en columna C-3 (35X70) con el DDBD (a) 1	73
Tabla 83. Tabla 80. Diseño por corte en columna C-3 (35X70) con el DDBD (b) 1	74
Tabla 84. Tabla 80. Diseño por corte en columna C-3 (35X70) con el DDBD (c) 1	74
Tabla 85. Tabla 80. Diseño por corte en columna C-3 (35X70) con el DDBD (d) 1	74
Tabla 86. Tabla 80. Diseño por corte en columna C-3 (35X70) con el DDBD (e) 1	75
Tabla 87. Tabla 80. Diseño por corte en columna C-3 (35X70) con el DDBD (f) 1	75
Tabla 88. Tabla 80. Diseño por corte en columna C-3 (35X70) con el DDBD (g) 1	75
Tabla 89. Tabla 80. Diseño por corte en columna C-3 (35X70) con el DDBD (h) 1	76
Tabla 90. Diseño por corte usando el DDBD en el muro 5X18	81
Tabla 91. Punto de desempeño del edificio diseñado con el DDBD18	82
Tabla 92. Validación de desplazamientos obtenidos con el DDBD18	82
Tabla 93. Análisis comparativo de cortantes usando el DDBD y el MBF	83
Tabla 94. Análisis comparativo de desplazamientos usando el DDBD y el MBF 18	85
Tabla 95. Análisis comparativo de momentos usando el DDBD y el MBF 18	86
Tabla 96. Análisis comparativo de derivas usando el DDBD y el MBF18	88
Tabla 97. Análisis comparativo de la cantidad de acero de refuerzo en vigas usando el DDBD	Уу
el MBF	89
Tabla 98. Análisis comparativo de la cantidad de acero de refuerzo en columnas usando el DDE	3D
y el MBF19	90
Tabla 99. Análisis comparativo de la cantidad de refuerzo longitudinal en muros usando el DDE	3D
y el MBF	91
Tabla 100. Análisis comparativo de la cantidad de refuerzo horizontal en muros usando el DDE	3D
y el MBF	93
Tabla 101. Resumen del cómputo de acero de refuerzo en el edificio19	93
Tabla 102. Análisis comparativo de las dimensiones en vigas usando el DDBD y el MBF 19	95
Tabla 103. Análisis comparativo de las dimensiones en columnas usando el DDBD y el ME	BF
	95
Tabla 104. Análisis comparativo de las dimensiones de muros usando el DDBD y el MBF 19	96
Tabla 105. Resumen de la variación de volumen de concreto19	97
Tabla 106. Análisis comparativo de la curva de capacidad usando el DDBD y el MBF19	98
Tabla 107. Análisis comparativo de la cortante inelástica en X usando el DDBD y el MBF 19	99
Tabla 108. Análisis comparativo de la cortante inelástica en Y usando el DDBD y el MBF 19	99
Tabla 109. Análisis comparativo de los desplazamientos inelásticos en X usando el DDBD y	el
MBF	01

RESUMEN

La presente investigación tuvo como objetivo determinar la precisión en la respuesta sísmica de una edificación de vivienda usando el método convencional E-030 (MBF) y el método basado en desplazamientos (DDBD). El tipo de investigación fue por enfoque cuantitativo y por propositivo aplicada, nivel explicativo y diseño cuasiexperimental, la población estuvo constituida por las edificaciones de vivienda medianamente altas en la ciudad del Cusco. La muestra es una edificación de vivienda de 9 niveles y fue un muestreo intencional no probabilístico. Los principales resultados muestran las variaciones promedio usando el DDBD con respecto al MBF de 60.63%, 115.48%, 54.99%, 122.4%, 69.86%, 19.29%. 27.56% y -24.51% para cortantes, momentos, desplazamientos, derivas, cantidad de acero de refuerzo, dimensiones de inelástica V desplazamientos elementos. cortante basal inelásticos respectivamente. Para determinar la precisión de los resultados se realizó en análisis estático no lineal, obteniendo para la cortante inelástica un error promedio 97.2% menor usando el DDBD en comparación al MBF. En los desplazamientos se obtuvo errores promedio de 8.3% y 47.86% usando el DDBD y el MBF respectivamente, por tanto, se recomienda usar el DDBD como una metodología novedosa y segura para diseñar sísmicamente edificios, ya que predice de mejor manera la respuesta sísmica.

Palabras clave: Respuesta sísmica, Método basado en fuerzas, Método basado en desplazamientos.

ABSTRACT

The objective of this research was to determine the precision in the seismic response of a residential building using the conventional method E-030 (MBF) and the displacement-based method (DDBD). The type of research was by quantitative approach and applied purpose, explanatory level and quasiexperimental design, the population was made up of medium-high housing buildings in the city of Cusco. The sample is a 9-story residential building and it was a non-probabilistic intentional shot. The main results show the average variations using the DDBD with respect to the MBF of 60.63%, 115.48%, 54.99%, 122.4%, 69.86%, 19.29%, 27.56% and -24.51% for shears, moments, displacements, drifts, amount of reinforcing steel, element dimensions, inelastic base shear and inelastic displacements respectively. To determine the precision of the results, a nonlinear static analysis was performed, obtaining for the inelastic shear an average error 97.2% lower using the DDBD compared to the MBF. In the displacements, average errors of 8.3% and 47.86% were obtained using the DDBD and the MBF respectively, therefore, it is recommended to use the DDBD as a new and safe methodology to design buildings seismically, since it better predicts the seismic response.

Keywords. Seismic Response, Force based method Method, Displacement Based Method.

I. INTRODUCCIÓN

La E-030 norma técnica peruana de diseño sismorresistente y la mayoría de códigos de diseño sísmico utilizan el método de fuerzas reducidas para estimar las fuerzas de diseño en los elementos estructuras y los desplazamientos debido a la acción sísmica, sin embargo, hoy en día existen métodos de diseño que predicen de mejor manera la respuesta real de la estructura. En un estudio comparativo de los métodos de diseño realizado por Moreno, Bairan y Huamán (2011) mencionan que: "la estructura diseñada mediante el método basado en desplazamientos alcanza la fuerza y el desplazamiento para la que fue dimensionada, mientras que para el diseño con el método basado en fuerzas no alcanza el nivel de ductilidad considerado en el dimensionamiento" (p.9). El método basado en fuerzas (MBF) presenta varias desventajas ya que es un análisis lineal simplificado, mientras que en la realidad la estructura incursiona en el rango inelástico y la rigidez no es constante debido al daño progresivo de los elementos estructurales. "La filosofía de diseño sismorresistente consiste en evitar pérdida de vidas humanas, asegurar la continuidad de los servicios básicos y minimizar los daños a la propiedad" (E-030, 2018, p.3). Uno de los controles presentes en la norma para minimizar los daños es limitar los desplazamientos relativos de entrepiso, los cuales son calculados indirectamente a partir de las fuerzas sísmicas de diseño y modificadas para obtener demandas inelásticas por el factor 0.85R para estructuras regulares y R para estructures irregulares, sin embargo para Calvi, Priestley y Kowalsky (2008) "Una definición adecuada de vulnerabilidad estructural debería estar relacionada con las deformaciones, no con la resistencia" (p.1). Un proceso más racional de diseño seria calcular las fuerzas en los elementos a partir de un desplazamiento objetivo para la demanda sísmica y que junto con un diseño estructural dúctil se garantice el buen desempeño global de la estructura. Actualmente en la norma E-030 para estructuras de concreto armado se establece como límite de deriva el valor de 0.7%. Para Rodríguez (2018) "La norma por sismo E.030 específica para el análisis el empleo de secciones sin agrietar, por lo que se recomienda que para el análisis se empleen secciones agrietadas, especificando en este caso una distorsión límite de entrepiso igual a 1.5%" (p.69). El valor de 1.5% se puede usar

1

como referencia para establecer el desplazamiento objetivo y utilizar el método de diseño directo basado en desplazamientos (DDBD). A pesar de que el uso del método basado en desplazamientos puede traer consigo una estructura más costosa, la ventaja es que se predice de mejor manera el comportamiento real de las estructuras por lo que en un futuro podría ser incorporada en la norma técnica peruana de diseño sismorresistente como alternativa de diseño.

Por lo mencionado surge el problema general de la investigación: ¿Cuál será la precisión en la respuesta sísmica de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos?, que traen los problemas específicos: Pe1 ¿Cuál será la diferencia en las cortantes de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos?, Pe2 ¿Cuál será la diferencia en los desplazamientos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos?, Pe3 ¿Cuáles será la diferencia en los momentos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos? **Pe4** ¿Cuáles será la diferencia en las derivas de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos? Pe5 ¿Cuáles será la diferencia en la cantidad de acero de refuerzo de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos? Pe6 ¿Cuáles será la diferencia en las dimensiones de los elementos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos? Pe7 ¿Cuáles será la diferencia en la cortante basal inelástica de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos? Pe8 ¿Cuáles será la diferencia en los desplazamientos inelásticos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos?

Justificación Práctica: Al momento de diseñar las estructuras con las normativas se cumple con ciertos requisitos y se espera que tengan un desempeño adecuado, sin embargo, la única forma de verificación seria con el análisis no lineal estático o no lineal dinámico que toman en cuenta la naturaleza no lineal de sus componentes, estos análisis requieren el conocimiento suficiente sobre el tema de los profesionales y también requiere un elevado costo computacional. Las investigaciones demuestran que el método basado en desplazamiento predice con éxito el comportamiento no lineal de las estructuras, por lo que si en un futuro se incluye en la norma se podría conocer con mayor precisión la respuesta sísmica desde la etapa de diseño. Justificación Social: La evaluación de muchas edificaciones que fueron diseñadas con los códigos pasados muestran que sufrirán grandes daños y en algunos casos llegar al colapso. Incluso algunos edificios diseñados con la normativa actual pueden no llegar al desempeño deseado debido a que el método de las fuerzas no predice bien el comportamiento de algunas estructuras con características especiales. Por lo que el conocimiento sobre el comportamiento no lineal y su inclusión en las normas puede ayudar a reducir los daños en edificios, asegurar el funcionamiento de servicios y en algunos casos evitar las pérdidas de vidas humanas. Justificación Económica: Debido a que en general el método basado en desplazamiento es más exigente que el método basado en fuerzas, la presente investigación ayudara a conocer el impacto que tiene con cuantificación de materiales y su efecto en el presupuesto total de las edificaciones.

El objetivo general es Determinar la precisión en la respuesta sísmica de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos. Y los objetivos específicos: Oe1 Determinar la diferencia en las cortantes de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos. Oe2 Evaluar la diferencia en los desplazamientos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos. Oe2 Evaluar la diferencia en los desplazamientos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos. Oe3 Establecer la diferencia en los momentos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos. Oe4 Analizar la diferencia en las derivas de una edificación de vivienda usando el

3

método convencional E-030 y el método basado en desplazamientos. **Oe5** Describir la diferencia en la cantidad de acero de refuerzo de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos. **Oe6** Describir la diferencia en las dimensiones de los elementos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos. **Oe7** Comparar la diferencia en la cortante basal inelástica de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos. **Oe8** Comparar la diferencia en los desplazamientos inelásticos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos.

Se prevé como hipótesis general que existe una mayor precisión en la respuesta sísmica de una edificación de vivienda usando el método basado en desplazamientos. Y como hipótesis específicas: He1 Existe una diferencia significativa en las cortantes de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos. He2 Existe una diferencia significativa en los desplazamientos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos. He3 Existe una diferencia significativa en los momentos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos. He4 Existe una diferencia significativa en las derivas de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos. He5 Existe una diferencia significativa en la cantidad de acero de refuerzo de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos. He6 Existe una diferencia significativa en las dimensiones de los elementos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos. He7 Existe una diferencia significativa en la cortante basal inelástica de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos. He8 Existe una diferencia significativa en los desplazamientos inelásticos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos.

II. MARCO TEÓRICO

Antecedentes

Como antecedentes en el ámbito internacional se tiene a Andrade & Carrillo (2018), en su investigación titulada Análisis Comparativo entre los diseños sismorresistentes de la norma Ecuatoriana de la Construcción [NEC 2015] y el diseño basado en desplazamiento [DDBD]. Tuvo como objetivo de investigación realizar un análisis comparativo entre la normativa NEC 2015 que plantea el DBF y el DDBD. Fue un estudio de tipo cuantitativo comparativo, la población de estudio fue estructuras de hormigón armado en la ciudad de Quito, la muestra son 2 estructuras típicas de 5 y 10 pisos. Los instrumentos empleados fueron la NEC 2015 y los programas SAP2000 y RUAUMOKO CARR 2006. Los principales resultados fueron que para el diseño con el DBF del edificio de 10 pisos la cortante basal fue 0.072W, la columna del primer piso 100x100cm, la viga del primer piso 50x65cm. Para el DDBD del edificio de 10 pisos la cortante basal fue 0.1597W, las dimensiones de la columna del primer piso son de 120x120cm y de la viga del primer piso 50x90cm. Para el diseño con el DBF del edificio de 5 pisos la fuerza sísmica fue 0.223W, la columna del primer piso 90x90cm, la viga del primer piso 40x80cm. Para el DDBD del edificio de 5 pisos la fuerza sísmica fue 1.34W, la columna del primer piso 90x90cm, la viga del primer piso 40x60cm. Los desplazamientos inelásticos se validaron con análisis no lineal tiempo historia obteniendo para el edificio de 5 niveles un desplazamiento inelástico de 0.01132m y para el DDBD de 0.0092m. Se concluyo que la demanda con el DDBD está en el orden de 600% y 219% con respecto al DBF para el edificio de 5 y 10 pisos respectivamente, lo que representa una gran demanda en las secciones y un incremento en el costo.

Jimenes y Jovel (2017), en su investigación titulada *Evaluación del diseño por Desempeño basado en desplazamientos aplicado a sistema de marcos de concreto Reforzado Combinados con paredes de Corte.* Tuvo como objetivo establecer una guía de diseño para los ingenieros estructurales en la aplicación del método de DDBD aplicado a sistemas duales. La muestra son 2 edificios de 6 y 12 niveles de concreto reforzado combinado con paredes de concreto (sistema dual) y se realizó análisis estático lineal. Los principales resultados

obtenidos son que existe un incremento en la cortante en el edificio de 6 pisos de 32.97% al usar el método basado en desplazamientos. El aumento del costo al usar el DDBD en el edificio de 6 pisos es 3.8%. Existe un incremento en la cortante en el edificio de 12 pisos de 85.37% al usar el método de DDBD. El aumento del costo al usar el método de DDBD en el edificio de 12 pisos es 50.15%. Para el edificio de 12 niveles en cuanto a las dimensiones de los elementos se obtuvo que usando el DDBD en lugar del MBF tuvo que incrementar las dimensiones de las columnas C2 de 0.50x0.50m a 0.60x0.60m, las dimensiones de la columna C1 se mantuvieron, las dimensiones de la viga V1 de 0.3x0.6m a 0.30x0.65m y las dimensiones de la viga V2 de 0.25X0.50m a 0.30x0.50m. Se concluye que el diseño usando el método de DDBD produce desplazamientos mucho mayores que los obtenidos con el DBF. Los dos métodos brindan diseños seguros estructuralmente y cumplen con la filosofía de diseño, sin embargo, el DDBD es una metodología más consciente en cuanto a la compresión del comportamiento y desempeño de los edificios. La variación de los resultados es mayor en cuanto más pisos tenga el edificio, así mismo los resultados del análisis estático no lineal tiene mejor aproximación con el método de DDBD en ambos casos.

Suarez (2018), en su investigacion "Análisis sísmico comparativo entre el método de diseño basado en fuerzas y el método de diseño directo basado en desplazamientos". Tuvo como objetivo demostrar la importancia práctica del analisis sismico usando el MBF y el DDBD en un edificio de hormigon armado con 6 niveles. En cuanto a los instrumentos se uso material validado como son articulos ciuentificos y libros. Se uso el software ETABS para realizar un análisis no lineal estático. Los principales resultados obtenido fueron que el coeficiente de la cortante basal para el DBF y DDBD son 0.126 y 0.097 respectivamente. En cuanto a las derivas se obtiene un incremento promedio en ambas direcciones de 141.91%. El acero requerido en las columnas interiores para el DBF y DDBD son 61.07cm2 y 56.25 cm2 respectivamente. Con el analisis no lineal se obtuvo una sobreresistencia de 1.9 y una ductilidad de 4.722. Se concluyo que con el DBF metodo de se obtuvo mayores momentos en la vigas У correspondientemente mayor acero, las derivas inelasticas tambein

incrementaron. Lo que da a entender que el metodo de DDBD considera la capacidad eficiente de los elementos estructurales.

Morales (2020), en su investigacion *"Metodo directo de diseño basado en desplazamientos (DDBD) aplicado a sistemas mixtos de hormigon armado".* Tuvo como objetivo presentar la aplicabilidad del DDBD a una estructura mixta de 12 niveles . En cuanto a los instrumentos se bibliogafia existente relacionada al tema. Se uso el software RUAUMOKO 2D para realizar el análisis no lineal timepo historia. Los principales resultados obtenidos fueron que se observo un incremento del **acero de refuerzo** en el muro M2, en todas las vigas y en las columnas C1 y C2, y se observo una reduccion del acero de refuerzo en los muros M1 y M3, y en la columna C3. Despues de realizar el analisis no lineal tiempo historia para 3 registros sismicos naturales se concluye que el DDBD demostro un buen control de deformaciones relativas y absolutas.

Moreno, Bairan & Huaman (2011), en su investigacion realizaron un estudio comparativo del metodo basado en fuerzas y el metodo basado en desplzamientos aplicado a un edificio aporticado de 6 niveles ubicado en España. Para cumplir con los objetivos propuestos se hace uso del metodo del espectro de capacidad y el analisis estatico no lineal obteniendo como principales resultados que para el diseño con el MBF y el DDBD se obtuvo cortantes de 5510.80 kN y 7941.82 kN, y la **cortante basal inelastica** con el MBF y el DDBD resulto 10112.97 kN y 11966.27 kN, en cuanto a los desplazamientos obtenido con el analisis no lineal estatico resultaron 384mm y 404mm para el MBF y el DDBD respectivamente, el valor de 404mm se ajusta al valor obtenido con la metodologia del DDDB que resulto 410mm. Se concluye que con el MBF no se alcanza el nivel de ductilidad considerado y con el DDBD se alcanza los desplazamientos y fuerzas para la que fue diseñada.

A **nivel nacional** se tiene a Córdova (2017), en su investigación titulada *"Diseño sísmico directo basado en desplazamientos de un sistema estructural dual"*. Tuvo como objetivo de investigación aplicar la metodología de DDBD en un sistema dual para contribuir al mejoramiento del comportamiento sísmico. La muestra fue un edificio de 5 pisos dual en ambas direcciones, con uso destinado a oficinas. Se hizo un estudio de ambas metodologías para posteriormente

comprobar los resultados mediante análisis dinámico tiempo historia con el software ETABS. Los principales resultados obtenidos son que las derivas en las direcciones X, Y usando el DBF son de 0.4 y 0.6% respectivamente, las derivas usando el DDBD son del 2.5%, la cortante basal en las direcciones X, Y usando DBF es 1312 kN y 1299 kN, usando DDBD fueron 2024 kN y 3145 kN. Para los **momentos** en la base en las direcciones X e Y usando el MBF obtuvo 12536 ton.m y 12359 ton.m respectivamente, usando el DDBD obtuvo 18927 ton.m y 29324 ton.m. Se concluye que el método de DDBD considera una deriva de 2.5% por lo que los desplazamientos con este método resultan sustancialmente mayores que usando el DBF. El DDBD brinda una gran ductilidad a la estructura por lo que puede lograr un desplazamiento máximo antes del colapso.

Ccahuana & Coronel (2020), en su investigación "Análisis sísmico comparativo entre un edificio de placas de concreto armado y una edificación de pórticos de acero a través del Diseño Directo Basado en Desplazamientos", tuvieron como objetivo realizar un análisis sísmico comparativo aplicando la metodología de DDBD en un edificio de 15 niveles usando placas de concreto armado y pórticos de acero ubicado en la ciudad de Lima. Fue un estudio del tipo exploratorio y comparativo. La muestra fue la torre T-Tower de 15 pisos con 3m de altura en cada nivel. Los principales resultados para el edificio con muros fueron que la cortante basal con el método de DDBD es mayor al DBF en 27.02%. Para el edificio de acero la cortante basal con el método de DDBD es mayor al DBF en 75.40%. El momento en la base del edificio dual con el DBF es de 2361308 kgfm y con el DDBD es de 29182467 kgf-m, lo cual es un incremento de 12 veces debido al número de niveles. En cuanto a comparación de los sistemas estructurales la cortante basal en el sistema de muros es mayor en comparación al sistema de pórticos de acero en 27.28%. Se concluye que la metodología de DDBD otorga un mayor control de daños, desplazamientos y derivas que el DBF. Las estructuras analizadas con la metodología DBF cumplen con las derivas máximas permisibles de la norma E0.30, mientras que las analizadas con el método DDBD se obtiene derivas fuera de los límites de la norma. Los resultados obtenidos con el DDBD son mayores en todos los casos respecto a lo obtenido con el DBF, el DDBD ofrece mayores desplazamientos y capacidad de carga a los edificios.

Sucapuca (2021), en su investigación titulada "*Evaluación sísmica de un edificio dual de concreto armado ubicado en la ciudad de Tacna, mediante un enfoque basado en desplazamientos*", tuvo como objetivo evaluar el diseño sísmico de un edificio dual de concreto armado ubicado en la ciudad de Tacna, mediante la metodología de DDBD. Fue un estudio del tipo básico con enfoque cuantitativa, el diseño de investigación es de nivel Descriptivo-Explicativo, la población son los edificios de la ciudad de Tacna y la muestra es un edificio con altura típica en la ciudad de Tacna, esto se hizo por un muestreo por conveniencia. Los principales resultados fueron que los **desplazamientos** en las direcciones X, Y fueron 1.705cm y 2.015cm usando el método estático y 2.94cm y 2.86cm usando el DDBD. Los resultados del análisis no lineal dan como resultado desplazamientos máximos inelásticos de 1.891cm y 2.142cm. Se concluye que el procedimiento de DDBD ofrece un excelente control de desplazamientos para edificios con gran altura y genera diseños más conservadores y más costosos en comparación con el DBF.

Bases teóricas

Método basado en fuerzas (MBF); Es una metodología mediante la cual se obtiene fuerzas sísmicas laterales de diseño a partir de un espectro elástico. A partir de estas fuerzas laterales y con un modelo elástico se obtiene los desplazamientos y fuerzas internas que son reducidas por un factor R que depende del sistema estructural. (Pérez, 2014, p.2-1). Las fuerzas internas así obtenidas, deben interpretarse como la resistencia mínima requerida que debe tener cada componente estructural para solicitaciones sísmicas y no como las "fuerzas internas producidas por el sismo" (Muñoz, 2020, pp.34).

El método basado en fuerzas reducidos está presente en las normativas de diseño sísmico a nivel internacional, el método consiste básicamente en realizar el análisis estructural en el rango lineal bajo la solicitación de un espectro de respuesta elástico que depende de cada país, reducido por un factor R, lo cual implica que la estructura disipara una parte de la energía inducida por el sismo en forma de energía de deformación, todos los códigos aceptan que la estructura incursiona en el rango inelástico pero limitan el daño de tal forma que los edificios tengan un desempeño adecuado y cumplan con los objetivos para los que fueron diseñados. Por lo tanto, el factor R dependerá de la capacidad que tendrá el edificio de deformarse sin llegar al colapso, esta característica depende de la sobreresistencia real y ductilidad que tendrá cada edificio en particular, sin embargo, en la norma de nuestro país este factor depende únicamente del sistema estructural por lo que generaliza de alguna manera el comportamiento no lineal de las estructuras, este es una de las desventajas del método basado en fuerzas reducidas. La norma técnica E-030 de diseño sismorresistente acepta dos procedimientos de análisis, estático y dinámico modal espectral, ambos con las suposiciones del método basado en fuerzas y se detallan a continuación.

Análisis Sísmico Estático según E-030; Llamado también análisis de fuerzas estáticas equivalentes consiste en aplicar un conjunto de fuerzas laterales en el centro de gravedad de cada planta del edificio siguiendo un patrón que se asemeja al modo fundamental. El primer modo de la estructura suele excitar una gran parte de la masa por lo que este método es aceptado en una gran parte de los códigos de diseño sísmico. Adicional a esto la norma considera una

excentricidad accidental del centro de masas que pueda ocurrir debido a la incertidumbre en el cálculo de su ubicación, por tanto, se aplicaran unos momentos de torsión en cada nivel. La fuerza cortante en la base de la estructura es calculada mediante la ecuación 1:

$$V = \frac{Z \cdot U \cdot C \cdot S}{R} \cdot P \qquad \text{con: } \frac{C}{R} \ge 0.11$$

Ecuación 1. Cortante Basal según E-030

Dónde:

- Z: Factor de zona
- U: Factor de Uso o Importancia
- C: Factor de amplificación sísmica
- S: Factor de Suelo
- R: Factor de Reducción de fuerzas sísmicas
- P: Pesos sísmico

Figura 1. Parámetros sísmicos (Muñoz, 2020, pp.36)

El factor Z representa la aceleración en un suelo rígido para la ubicación del proyecto debido un sismo con periodo de retorno de 475 años y con probabilidad de excedencia del 10% en 50 años. Este factor se calcula con la tabla N°1 de la norma.

Tabla N° 1 FACTORES DE ZONA "Z"		
ZONA	Z	
4	0,45	
3	0,35	
2	0,25	
1	0,10	

Figura	2	Factores	do	Zona	cogún	E-030
riyula	۷.	raciones	ue	2011a	segun	E-030

El factor S está relacionado con las condiciones geotécnicas y la ubicación del del proyecto, la norma clasifica a los suelos en 5 perfiles.

Tabla N° 2 CLASIFICACIÓN DE LOS PERFILES DE SUELO				
Perfil	\overline{V}_{S}	\overline{N}_{60}	\bar{S}_u	
S ₀	> 1500 m/s	-	-	
S ₁	500 m/s a 1500 m/s	> 50	>100 kPa	
S ₂	180 m/s a 500 m/s	15 a 50	50 kPa a 100 kPa	
S ₃	< 180 m/s < 15 25 kPa a 50 kPa			
S ₄	Clasificación basada en el EMS			

Figura 3. Clasificación de suelos según E-030

Tabla N° 3 FACTOR DE SUELO " <i>S</i> "				
ZONA SUELO	S ₀	S ₁	S ₂	S ₃
Z ₄	0,80	1,00	1,05	1,10
Z ₃	0,80	1,00	1,15	1,20
Z ₂	0,80	1,00	1,20	1,40
Ζ,	0,80	1,00	1,60	2,00

Tabla N° 4 PERÍODOS "Tℯ" Y "Tւ"				
	Perfil de suelo			
	S0	S1	S2	S3
$T_{P}(s)$	0,3	0,4	0,6	1,0
$T_{L}(s)$	3,0	2,5	2,0	1,6

Figura 4. Factor de Suelo y periodos "Tp" y "TI" según E-030

La amplificación que se hace mediante el factor U tiene la finalidad de dotar de mayor rigidez, y ductilidad a edificios importantes para mejorar su comportamiento sísmico (Muñoz, 2020, pp. 21).

El factor de uso o importancia depende del nivel de desempeño que se requiere lograr y los objetivos que se busca en la estructura. Este factor se extrae de la tabla N°5 de la norma.

Tabla N° 5 CATEGORÍA DE LAS EDIFICACIONES Y FACTOR " <i>U</i> "			
CATEGORÍA	DESCRIPCIÓN	FACTOR U	
	A1: Establecimientos del sector salud (públicos y privados) del segundo y tercer nivel, según lo normado por el Ministerio de Salud.	Ver nota 1	
A Edificaciones Esenciales	 A2: Edificaciones esenciales para el manejo de las emergencias, el funcionamiento del gobierno y en general aquellas edificaciones que puedan servir de refugio después de un desastre. Se incluyen las siguientes edificaciones: Establecimientos de salud no comprendidos en la categoría A1. Puertos, aeropuertos, estaciones ferroviarias de pasajeros, sistemas masivos de transporte, locales municipales, centrales de comunicaciones. Estaciones de bomberos, cuarteles de las fuerzas armadas y policía. Instalaciones de generación y transformación de electricidad, reservorios y plantas de tratamiento de agua. Instituciones educativas, institutos superiores tecnológicos y universidades. Edificaciones cuyo colapso puede representar un riesgo adicional, tales como grandes hornos, fábricas y depósitos de materiales inflamables o tóxicos. Edificios que almacenen archivos e información esencial del Estado. 	1,5	
B Edificaciones Importantes	Edificaciones donde se reúnen gran cantidad de personas tales como cines, teatros, estadios, coliseos, centros comerciales, terminales de buses de pasajeros, establecimientos penitenciarios, o que guardan patrimonios valiosos como museos y bibliotecas. También se consideran depósitos de granos y otros almacenes importantes para el abastecimiento.	1,3	
C Edificaciones Comunes	Edificaciones comunes tales como: viviendas, oficinas, hoteles, restaurantes, depósitos e instalaciones industriales cuya falla no acarree peligros adicionales de incendios o fugas de contaminantes.	1,0	
D Edificaciones Temporales	Construcciones provisionales para depósitos, casetas y otras similares.	Ver nota 2	

Figura 5. Categoría de edificaciones según E-030

Se denomina factor de amplificación sísmica al cociente entre la máxima aceleración que se produce en una estructura de un grado de libertad y la máxima aceleración a la que se somete en su base, este factor depende del periodo de la estructura, así como de la aceleración que recibe (Muñoz, 2020, pp.18). La norma establece su cálculo en función de los periodos Tp y TI obtenidos de la tabla N°4 y el periodo fundamental T.

$$C(T) = 2,5$$
 Si: $T < T_p$

Ecuación 2. Coeficiente de amplificación sísmica tramo 1

$$C(T) = 2, 5 \cdot \frac{T_p}{T} \qquad \text{Si: } T_p < T < T_L$$

Ecuación 3. Coeficiente de amplificación sísmica tramo 2

$$C(T) = 2, 5 \cdot \frac{T_p \cdot T_L}{T^2} \qquad \text{Si: } T > T_L$$

Ecuación 4. Coeficiente de amplificación sísmica tramo 3

Figura 6. Interpretación de los factores Z, S y C (Muñoz, 2020, pp.19)

El coeficiente básico de reducción de fuerzas sísmicas R_o depende del sistema estructural y se obtiene de la tabla N°7 de la norma E-030, adicionalmente la norma considera la importancia de proyectar edificios lo más regulares posibles; ya que edificios con singularidades aumentan la incertidumbre de la respuesta

de la estructura. La norma modifica el coeficiente R_o por unos factores de irregularidad en altura y planta I_a , I_p que dependen de la magnitud y tipo de la irregularidad, son menores a 1 por lo que la fuerza sísmica de diseño aumenta y por consiguiente el costo total. Estos factores se obtienen de la tabla N°8 y 9 de la E-030. En general se busca evitar estas irregularidades ya que la experiencia de terremotos pasados muestra que son la causa de grandes daños y en muchos casos provocan el colapso. El coeficiente de reducción de fuerzas sísmicas se calcula con:

$$R = R_o \times I_a \times I_p$$

Tabla N° 7 SISTEMAS ESTRUCTURALES			
Sistema Estructural	Coeficiente Básico de Reducción R_{0} (*)		
Acero:			
Pórticos Especiales Resistentes a Momentos (SMF)	8		
Pórticos Intermedios Resistentes a Momentos (IMF)	7		
Pórticos Ordinarios Resistentes a Momentos (OMF)	6		
Pórticos Especiales Concéntricamente Arriostrados (SCBF)	8		
Pórticos Ordinarios Concéntricamente Arriostrados (OCBF)	6		
Pórticos Excéntricamente Arriostrados (EBF)	8		
Concreto Armado:			
Pórticos	8		
Dual	7		
De muros estructurales	6		
Muros de ductilidad limitada	4		
Albañilería Armada o Confinada.	3		
Madera (Por esfuerzos admisibles)	7		

Ecuación 5. Coeficiente de reducción de fuerzas sísmicas

Figura 7. Coeficiente básico de reducción

Una parte del factor de reduccion representa a la sobre resistencia de la estructura debido a los factores de amplificación de cargas y factores de minoración de resistencia en la etapa de diseño, también se debe a la mayor resistencia de los materiales en relación a los valores nominales; esta componente se denomina factor de reducción por sobreresistencia R_{Ω} y su valor esta alrededor de 2. La componente restante de este coeficiente está relacionada directamente al comportamiento inelástico y se denomina factor de reducción por ductilidad R_{μ} (Muñoz, 2020, p.44)

Figura 8. Componentes del factor de reducción de fuerzas sísmicas (Muñoz, 2020)

Una vez calculada la cortante basal estática con los parámetros sísmicos se realiza la distribución de fuerzas sísmicas en altura con la ecuación N°2:

$$F_i = \alpha_i \times V$$

Ecuación 6. Distribución de fuerzas en altura

Donde:

$$\alpha_i = \frac{P_i(h_i)^k}{\sum_{j=1}^n P_j(h_j)^k}$$

Ecuación 7. Factor de distribución de fuerzas sísmicas en altura

Si
$$T < 0, 5s \rightarrow k = 1$$

$$Si T > 0, 5s \rightarrow k = 0, 75 + 0, 5 \cdot T \le 2$$

 h_i : Alturas acumuladas de cada entrepiso

 P_i : Pesos sísmico de cada entrepiso según E-030 tomado como el 100% de la carga permanente y un porcentaje de la carga viva según la tabla N°1.

T: Periodo fundamental en la dirección de análisis, se puede estimar con:

$$T = \frac{h_n}{C_T}$$

Ecuación 8. Periodo fundamental aproximado

El coeficiente C_T para edificios de:

- Pórticos de concreto $C_T = 35$
- Pórticos de concreto con muros en cajas de ascensor o escalera C_T =45.
- Muros de concreto $C_T = 60$.

Tabla 1 % de carga viva en la masa sísmica (Adaptado de E-030)

Categoría	% de carga viva
АуВ	50
С	25
Depósitos	80
Azoteas y techos	25

Análisis Modal Espectral; En el método estático de fuerzas equivalentes se asumió que la contribución a la respuesta sísmica estaba dada por el 100% del modo ficticio, otro procedimiento presente en la norma E-030 es el análisis modal espectral que incluye la contribución de los modos reales en la respuesta final, el mínimo número de modos necesario son los que exciten a la masa en la dirección de análisis un 90%. Las respuestas de cada modo se combinan con algún criterio de combinación modal, el más conocido es el criterio de la combinación cuadrática completa CQC.

La aceleración espectral de cada modo se calcula con la ecuación N°3:

$$S_a = \frac{ZUCS}{R} g$$

Ecuación 9. Aceleración espectral

Donde g es la aceleración de la gravedad y los demás parámetros ya se mencionaron con anterioridad.

Desplazamientos máximos y control de derivas; Según el artículo 28 de la norma E-030 los desplazamientos laterales para estructuras regulares se calcularán multiplicando por 0.75R los desplazamientos obtenidos del análisis lineal elástico, y para estructuras irregulares por 0.85R.

Escalamiento de la cortante dinámica; De acuerdo al artículo 26.4 para estructuras regulares la cortante obtenida del análisis dinámico modal espectral no deberá ser menor que el 80% de la cortante obtenida con el análisis estático y para estructuras irregulares como mínimo el 90%, para tal propósito se escala las fuerzas, excepto los desplazamientos.

Verificación de sistema estructural; De acuerdo con el artículo 13.1 la norma E-030 categoriza a las estructuras de concreto armado en función del porcentaje de fuerza cortante que toman los pórticos y muros. Para estructuras donde la cortante que toman los muros esta entre 20% y 70% son categorizados como sistemas duales, debajo de este límite se categoriza como pórticos y por encima de muros estructurales.

Diseño de elementos estructurales según E-060; Según el capítulo 9 de la norma E-060 la resistencia de diseño de todos los elementos debe ser por lo menos la resistencia requerida según:

$$\phi R_n \geq R_u$$

Ecuación 10. Requisito de resistencia según E-060

La resistencia requerida para cargas muertas, vivas y de sismo serán:

 $U = 1, 4 \cdot CM + 1, 7 \cdot CV$

Ecuación 11. Combinación de diseño Nº1

$$U=1,25\cdot(CM+CV)\pm CS$$

Ecuación 12. Combinación de diseño Nº2

 $U = 0.9 \cdot CM \pm CS$

Ecuación 13. Combinación de diseño Nº3
Dónde:

CM: Carga muerta

CV : Carga viva

CS : Carga de sismo, según la norma E.030 en el artículo 21.1 el análisis se puede realizar considerando que el total de la fuerza sísmica actúa independiente en cada dirección ortogonal, por lo tanto se tiene 5 combinaciones en total:

 $U_{1} = 1,4 CM + 1,7 CV$ $U_{2} = 1,25 (CM + CV) \pm CS_{x}$ $U_{3} = 1,25 (CM + CV) \pm CS_{y}$ $U_{4} = 0.9 CM \pm CS_{x}$ $U_{5} = 0.9 CM \pm CS_{y}$

Diseño de vigas en sistema dual o de muros estructurales

Factores de minoración

- Flexión: Según artículo 9.2.3.1 $\phi_f = 0.9$
- Corte y torsión: Según artículo 9.3.2.3 $\phi_c = 0.85$

Refuerzo mínimo en elementos sujetos a flexión (Art. 10.5):

En cualquier sección de un elemento estructural - excepto en zapatas y losas macizas - sometidos a flexión, donde por el análisis se requiere refuerzo de acero en tracción, el área de acero que se proporcione será la necesaria para que la resistencia de diseño de la sección sea por lo menos 1.2 veces el momento de agrietamiento de la sección bruta Mcr (ϕ Mn≥1.2Mcr).

$$f_r = 2 \cdot \sqrt{f'_c}$$

Ecuación 14. Módulo de ruptura para el concreto Ecu. (9.12) de E-060

$$M_{cr} = \frac{f_r \cdot I_g}{Y_t}$$

Ecuación 15. Momento de agrietamiento Ecu. (9.11) de E-060

$$As_{\min} = \frac{0, 7 \cdot \sqrt{f'_c}}{f_y} \cdot b \cdot d$$

Ecuación 16. Acero mínimo en flexión: Ecu. (10.3) de E-060

Refuerzo máximo en elementos sujetos a flexión (Art. 10.3.4):

En elementos no preesforzados sujetos a flexión o flexocompresión en los cuales \$\phi\$Pn sea menor que 0,1 f'c Ag, el refuerzo de acero en tracción no deberá exceder de 0,75 Asb, donde Asb es la cantidad de acero en tracción que produce la falla balanceada en la sección, definida en 10.3.2.

Cuantía balanceada (Art. 10.3.2):

La condición de falla balanceada se produce en una sección transversal cuando el refuerzo en tracción alcanza la deformación unitaria correspondiente a fy al mismo tiempo que el concreto en compresión alcanza su deformación unitaria máxima utilizable de 0.003. Este criterio es general y se aplica a secciones de cualquier forma sin acero en compresión o con él.

$$\rho_b = \frac{0.85 \cdot f'_c \cdot \beta_1}{f_y} \left(\frac{\varepsilon_c}{\varepsilon_y + \varepsilon_c} \right) = 0.021$$

Ecuación 17. Cuantía balanceada

$$\rho_{\rm max} = 0,75 \cdot \rho_b = 0,016$$

Ecuación 18. Cuantía máxima

Disposición del acero del refuerzo longitudinal (Art. 21.4.4):

- Art. 21.4.4.1 Deberá existir refuerzo continuo a todo lo largo de la viga, constituido por dos barras tanto en la cara superior como en la inferior, con un área de acero no menor de la especificada en 10.5.
- Art. 21.4.4.3 La resistencia a momento positivo en la cara del nudo no debe ser menor que un tercio de la resistencia a momento negativo provista en dicha cara. La resistencia a momento negativo y positivo en cualquier sección a lo largo de la longitud del elemento deben ser mayores

de un cuarto de la máxima resistencia a momento proporcionada en la cara de cualquiera de los nudos.

Desarrollo del refuerzo para flexión Art. 12.10

 Art. 12.10.3 El refuerzo se debe extender, más allá del punto en el que ya no es necesario para resistir flexión, una distancia igual a d ó 12 db, la que sea mayor, excepto en los apoyos de vigas simplemente apoyadas y en el extremo libre de los voladizos.

Dónde

- d : Diámetro de la varilla
 - d:Peralte efectivo

La longitud de desarrollo según la tabla 12.1 de la norma E-060 se calcula con:

$$l_{d} = \left(\frac{f_{y} \cdot \psi_{t} \cdot \psi_{e} \cdot \lambda}{8, 2 \cdot \sqrt{f'_{c}}}\right) d_{b}$$

Ecuación 19. Longitud de desarrollo según E-060

Dónde:

 $\psi_t = 1,3$ Para varillas superiores

- $\psi_e = 1,0$ Para varillas sin tratamiento superficial
- $\lambda = 1,0$ Para concretos de peso normal

Diseño por corte

$$\phi V_n = \phi_c \cdot (V_c + V_e)$$

Ecuación 20. Requisito del diseño por corte según E-060 (Ecu. 11.1 y 11.2)

$$V_c = 0,53 \cdot \sqrt{f'_c} \cdot b \cdot d$$

Ecuación 21. Cortante resistente por el concreto (Ecu. 11.3) de E-060

$$V_e = \frac{n \cdot A_{sh} \cdot f_y \cdot d}{s}$$

Ecuación 22. Cortante resistente por los estribos (Ecu. 11.15) de E-060

Donde:

ⁿ: Numero de ramas de estribos

 A_{sh} : Área del acero transversal

s: Separación de estribos

$$V_{e,\max} = 2, 1 \cdot \sqrt{f'_c} \cdot b \cdot d$$

Ecuación 23. Cortante máxima que pueden soportar los estribos (Art. 11.5.7.9)

La cortante de diseño para vigas que resistan efectos sísmicos se calculara según el artículo 21.4.3 como la suma del cortante asociado con el desarrollo de los momentos nominales (Mn) del elemento en cada extremo restringido de la luz libre y el cortante isostático calculado para las cargas de gravedad tributarias amplificadas.

Figura 9. Diseño por corte capacidad en vigas según E-060

$$V_u = \frac{M_{n,isq} + M_{n,der}}{l_n} \pm W_u \cdot \frac{l_n}{2}$$

Ecuación 24 Cortante por capacidad en vigas según E-060

Figura 10. Disposiciones especiales del refuerzo transversal en vigas según E-060

Espaciamiento del refuerzo transversal dentro de la zona de confinamiento (Art. 21.4.4):

- Longitud de confinamiento: $L_c = 2 \cdot h$
- El espaciamiento del refuerzo transversal no debe exceder el menor de (a), (b), (c) y (d):
 - (a): $d/4 \ge 15 cm$
 - (b): $10 \cdot d_b$
 - (C): $24 \cdot d_e$
 - (d): 30*cm*

Espaciamiento del refuerzo transversal fuera de la zona de confinamiento (Art. 21.4.4.5):

Los estribos deben estar espaciados a no más de 0,5*d* a lo largo de la longitud del elemento. En todo el elemento la separación de los estribos, no deberá ser mayor que la requerida por fuerza cortante.

Diseño por flexión y carga axial (Capítulo 10)

La cuantía mínima para elementos en compresión según el artículo 10.9.1 no debe ser menor que 1%.

$$\phi P_n = 0,80 \cdot \phi_{com} \cdot \left[0,85 \cdot f'_c \cdot (A_g - A_{st}) + f_y \cdot A_{st}\right]$$

Ecuación 25 Resistencia máxima de diseño a compresión Ecu. 10-2 de E-060

Factores de minoración

- Según el artículo 9.3.2.2 el factor de minoración para compresión es $\phi_{com} = 0,70$
- Según el artículo 9.3.2.2 el factor de minoración para flexocompresión # puede incrementarse linealmente hasta 0,90 en la medida que ϕP_n disminuye desde $0, 1 \cdot f'_c A_e$ o ϕP_b , el que sea menor, hasta cero.

 ϕP_{b} : Carga axial minorada para la condición de falla balanceada

Diseño por corte

La cortante de diseño para columnas se calculará según el artículo 21.4.3, en los elementos en flexocompresión los momentos nominales en los extremos de la luz libre del elemento, estarán asociados a la fuerza axial Pu que dé como resultado el mayor momento nominal posible.

Figura 11. Diseño por capacidad en columnas según E-060

$$V_u = \frac{M_{ni} + M_{ns}}{h_n}$$

Ecuación 26. Cortante por capacidad en la columna

Dónde:

 $M_{\rm ni}, M_{\rm ns}$: Momentos nominales inferior y superior respectivamente

$$\phi V_c = \phi_c \cdot 0,53 \cdot \sqrt{f'_c} \cdot b \cdot d \cdot \left(1 + \frac{N_u}{140 \cdot A_g}\right)$$

Ecuación 27. Cortante resistente por el concreto para elementos en compresión (Ecu. 11.4) de E-060 Dónde:

- N_u : Es la carga axial en compresión
- A_{g} : Es el área bruta de la sección

$$\phi V_c = \phi_c \cdot 0,53 \cdot \sqrt{f'_c} \cdot b \cdot d \cdot \left(1 - \frac{N_u}{35 \cdot A_g}\right)$$

Ecuación 28. Cortante resistente por el concreto para elementos en tracción (Ecu. 11.8) de E-060

Disposiciones especiales para diseño sísmico según capítulo 21

Figura 12. Disposiciones especiales para diseño sísmico

Espaciamiento del refuerzo dentro de la zona de confinamiento (Art. 21.4.5)

- La longitud de confinamiento no debe ser el mayor entre (a), (b) y (c):
- (a): Una sexta parte de la luz libre de la columna:
- (b): La mayor dimensión del elemento
- (C): 50*cm*
- El espaciamiento Sono debe exceder el menor de (d), (e) y (f):
- (d): $8 \cdot d_b$
- (e): $\min(b,h)/2$
- (f): 10*cm*

Espaciamiento del refuerzo fuera de la zona de confinamiento (Art. 21.4.5.5)

El espaciamiento del refuerzo colocado perpendicularmente al eje del elemento no será menor que d/2 y 60cm, así mismo no será mayor que la requerida por fuerza cortante. La separación máxima no deberá exceder 16 veces el diámetro de la barra longitudinal, 48 veces el diámetro del estribo y la menor dimensión del elemento en compresión.

- $\checkmark d/2$
- **√** 60*cm*
- \checkmark 16 d_b
- \checkmark 48 d_e
- $\checkmark \min(b,h)$

Requisitos adicionales

El artículo 7.10.5.3 de la norma donde indica que ninguna barra longitudinal debe estar separada a más de 15cm libres de una barra apoyada lateralmente.

Figura 13. Máxima separación de barras sin apoyo lateral

Diseño de muros de corte

La cuantía mínima según el artículo 11.10.10.3: $\rho_{\rm v}=0.0025$

Se requerirá la verificación por flexo compresión cuando:

$$P_{U} \geq 0, 1 \cdot f_{c} \cdot A_{g}$$

Ecuación 29. Condición mínima para la verificación por flexo compresión según E-060

Diseño de elementos especiales de borde

Los elementos de borde en la zona en compresión deben ser confinados cuando la profundidad del eje neutro exceda:

$$c \geq \frac{l_m}{600(\delta_u / h_m)}$$

Ecuación 30. Altura del eje neutro límite para elementos de borde

Según el artículo 21.9.7.4 este criterio solo aplica para muros continuos y diseñados para tener una sola sección critica para flexión y carga axial.

Si se requiere elementos de borde especiales la separación máxima dentro del núcleo confinado según 21.9.7.6 (e) será el menor de:

$$\checkmark \quad s_o = 10d_b$$

$$\checkmark \quad s_o = \min(e, l_c)$$

 \checkmark $s_o = 25 \, cm$

Figura 14. Elementos de borde especiales en muros según E-060

La longitud del elemento de borde debe cumplir con 21.9.7.6 (a) y no será menor que:

$$\checkmark \quad \frac{c}{2}$$

$$\checkmark \quad c - 0, 1 \times l_m$$

La altura de confinamiento debe cumplir con 21.9.7.4 y no será menor del mayor valor obtenido con:

 $\checkmark l_m$

$$\checkmark \frac{M_u}{4 \cdot V_u}$$

Donde no se requiera elementos de borde confinados se debe cumplir con 21.9.7.7:

La separación máxima del refuerzo transversal no deberá exceder 16 veces el diámetro de la barra longitudinal, 48 veces el diámetro del estribo y la menor dimensión del elemento en compresión.

- \checkmark 16 d_b
- \checkmark 48 d_e
- $\checkmark \min(b,h)$
- ✓ 25*cm*

En cualquier caso, los estribos deberán cumplir con

- Ninguna barra longitudinal esté separada a más de 150 mm libres de una barra apoyada lateralmente. (figura 13)
- El refuerzo transversal debe disponerse mediante estribos cerrados de confinamiento sencillos o múltiples. Se pueden usar grapas suplementarias del mismo diámetro de barra y con el mismo espaciamiento que los estribos cerrados de confinamiento.
- La distancia, centro a centro, transversal al eje del elemento, entre las ramas de estribos cerrados de confinamiento múltiples o entre las grapas suplementarias, hx, no deben exceder 350 mm medidos centro a centro.

Figura 15. Requisitos de estribos según E-060

Diseño por corte

$$d=0,80\cdot l_w$$

Ecuación 31. Peralte efectivo del muro (Art. 21.9.4.5)

$$V_c = A_{cw} \cdot (\alpha_c \cdot \sqrt{f'_c})$$

Ecuación 32. Contribución del concreto a cortante (Art. 11.10.5)

 A_{cw} : Área resistente a cortante (área del alma) $A_{cw} = d \cdot e$

e: Espesor del muro

Donde α_c depende de la esbeltez del muro según:

- $\checkmark \quad \alpha_c \text{ es } 0,80 \text{ para} \frac{h_m}{l_w} \le 1,5;$
- \checkmark $\alpha_c \, {\rm es} \, {\rm 0,53} \, {\rm para} \, \frac{h_m}{l_w} > 2$

✓ α_c varia linealmente entre 0,80 y 0,53 para $\frac{h_m}{l_w}$ entre 1,5 y 2,0.

$$V_n \leq 2, 6 \cdot \sqrt{f'_c} \cdot A_{cw}$$

Ecuación 33. Cortante máxima según el Art. 11.10.4

$$V_{s,\max} = V_n - V_c$$

Ecuación 34. Cortante máxima en los estribos según la Ecu. 11-2

$$V_{s,req} = \frac{V_u - \phi_c \cdot V_c}{\phi_c}$$

Ecuación 35. Cortante requerida en estribos según la Ecu. 11-1

$$V_s = A_{cw} \cdot \rho_h \cdot f_y$$

Ecuación 36. Resistencia a corte del refuerzo horizontal según la Ecu. 11-31

$$\rho_h = \frac{A_v}{s \cdot e}$$

Ecuación 37. Cuantía de refuerzo horizontal en muro

Dónde:

- A_{v} : Área de la varilla de refuerzo transversal
- s: Separación del acero transversal

La cortante de diseño según el Art. 21.9.5.3 se ajustará a la capacidad a flexión instalada del muro según:

$$V_{u} = V_{ua} \left(\frac{M_{n}}{M_{ua}} \right)$$

Ecuación 38. Cortante por capacidad en muros

Dónde:

- V_{ua} : Cortante obtenido del análisis
- M_{ua} : Momento obtenido del análisis

 $M_{\scriptscriptstyle n}$: Momento nominal obtenido para la carga axial de diseño

Esta disposición se limita al mayor valor obtenido de:

$$\checkmark \quad l_w \\ \checkmark \quad \frac{M_u}{4 \cdot V_u}$$

✓ Altura de los 2 primeros pisos.

Método de diseño directo basado en desplazamientos (DDBD);

Este método surge debido a las incongruencias y limitaciones del MBF. (Priestley et al, 2007) menciona alguna de ellas:

• El MBF es independiente del refuerzo en los elementos por lo que considera que la rigidez es independiente de la resistencia, lo cual no es cierto debido a que la cuantía de acero influye directamente en la rigidez después de la fisuración como se observa en la figura N°9.

Figura 16. Influencia del acero de refuerzo en la rigidez (Córdova, 2017)

Adicionalmente Priestley demostró que la curvatura de fluencia de una sección se puede estimar con la deformación de fluencia del acero de refuerzo y la dimensión del elemento:

Para columnas circulares:	$\varphi_{y} \approx 2.25 \varepsilon_{y} / D$
Para columnas rectangulares:	$\varphi_{y} \approx 2.10 \varepsilon_{y} / h_{c}$
Para muros rectangulares en volado:	$\varphi_{y} \approx 2.10 \varepsilon_{y} / l_{w}$
Para vigas de concreto:	$\varphi_{v} \approx 1.70 \varepsilon_{v} / h_{b}$

• El MBF distribuye las fuerzas sísmicas en proporción a la rigidez de cada elemento ya que se trata de un análisis lineal, sin embargo, en un edificio con pórticos y muros se observa con las expresiones de Priestley que los muros fluirán primero, posteriormente a esto los pórticos tomaran mayor fuerza debido a que mantienen su rigidez inicial como se aprecia en la figura N°10:

Figura 17. Efecto de la curvatura de fluencia en la respuesta sísmica (Priestley, 2007)

Procedimiento general: Se parte del desplazamiento deseado o de diseño y se halla en un espectro de desplazamiento el máximo periodo admisible para cumplir esa condición. Con el periodo y con la masa del edificio se dedúcela rigidez necesaria y de allí la resistencia de diseño. Se usa una estructura elástica de rigidez equivalente a la estructura inelástica (Calvi, Priestley y Kowalsky, 2008).

Esquemáticamente el procedimiento general se muestra en la figura N°18.

Figura 18. Formulación del DDBD (Gomel, 2017) adoptado de Priestley et al. (2007)

Los pasos se detallan a continuación:

- a) Sistema equivalente de 1 grado de libertad (SDOF): El primer paso del método de DDBD es encontrar un modelo equivalente de un grado de libertad, esto se realiza mediante los principios de la dinámica estructural.
- b) Ductilidad de desplazamiento μ : El desplazamiento de fluencia se puede obtener a partir de las características geométricas de los elementos y del acero de refuerzo como demostró Priestley, el desplazamiento máximo está relacionado al nivel de desplazamiento que se requiere alcanzar. La ductilidad de desplazamiento se puede calcular como $\mu = \Delta_{max} / \Delta_y$.

c) Amortiguamiento viscoso equivalente ξ: El amortiguamiento está relacionado a la capacidad de deformación de la estructura por lo que se puede estimar a partir de la ductilidad desplazamiento como se muestra en la figura 11.c o a partir de las expresiones 3.17a y 3.17b del libro de Priestley:

$$\xi = 0,05+0,444 \left(\frac{\mu - 1}{\mu \pi}\right)$$

Ecuación 39. Amortiguamiento para edificios de muros de concreto y puentes.

$$\xi = 0,05 + 0,565 \left(\frac{\mu - 1}{\mu \pi}\right)$$

Ecuación 40. Amortiguamiento para edificios de pórticos de concreto.

d) Espectro de desplazamiento inelástico: A partir del amortiguamiento efectivo y el espectro elástico de desplazamientos se puede obtener el espectro inelástico mediante el factor de reducción R_{ξ} que se obtiene con la ecuación 2.9 del libro de Priestley (2007):

$$R_{\xi} = \left(\frac{0,1}{0,05 + \xi_{SDOF}}\right)^{0.5}$$

Ecuación 41. Factor de reducción de espectro inelástico

- e) Periodo efectivo T_{eff} : A partir del desplazamiento objetivo y del espectro inelástico de desplazamiento se puede obtener el periodo efectivo como se muestra en la figura 11.d.
- f) **Rigidez Efectiva** K_{eff} : Con el periodo efectivo y la masa equivalente se puede obtener la rigidez efectiva con la ecuación de la dinámica estructural:

$$K_{eff} = \frac{m_e \times 4 \times \pi^2}{T_{eff}^2}$$

Ecuación 42 Rigidez Efectiva del SDOF

 g) Cortante de diseño: Finalmente se puede obtener la cortante inelástica con la ecuación 7:

$$V = K_{eff} \times \Delta_{\max}$$

Ecuación 43 Cortante Inelástica

Procedimiento para sistemas duales (pórticos + muros)

Paso 1) Distribucion de cortantes y momentos en porticos y muros

$$V_f = \beta_f \cdot V_{base}$$

Ecuación 44. Cortante asignada a los pórticos en el DDBD

$$V_w = (1 - \beta_f) \cdot V_{base}$$

Ecuación 45. Cortante asignada a los muros en el DDBD

La distribucion de fuerzas cortantes en los porticos es constante en todos los niveles e implica que los porticos estan sujetos a una carga concentrada en el techo y que las vigas tengan igual resistencia en todos los niveles excepto en el techo donde es 50% respecto de los otros niveles (Priestley et al., pp.389).

Las fuerzas inerciales se distribuyen en altura consistentes con el primer modo de vibración:

$$F_i = \frac{m_i \cdot h_i}{\sum m_i \cdot h_i}$$

Ecuación 46. Distribución de fuerzas en altura según el DDBD

De esta forma se obtiene la distribución de cortantes y momentos en altura en función de un cortante total unitaria.

Paso 2) Calculo de la altura de inflexion

La altura de inflexión se calcula con simple interpolación lineal entre las alturas donde se observa el cambio de signo en los momentos de los muros.

$$H_{cf} = h_i + (h_{i+1} - h_i) \cdot \left(\frac{M_{iw}}{M_{iw} - M_{i+1w}}\right)$$

Ecuación 47. Cálculo de la altura de inflexión

Paso 3) Cálculo de desplazamientos

3.1) Cálculo de la longitud equivalente de muro del edificio

Según Pérez (2014, pp.3-29) la longitud de muro equivalente o característica del sistema se puede calcular con:

$$L_{weq} = \frac{\sum V_i \cdot L_i}{\sum V_i}$$

Ecuación 48. Longitud equivalente del sistema.

3.2) Cálculo de la curvatura de fluencia

Priestley et al. (2007, pp.144) recomienda usar la resistencia esperada del acero de refuerzo con la ecuación 4.23b:

$$f_{ye} = 1, 1 \cdot f_y$$

Según Morales (2020, pp. 51) la curvatura de fluencia de un muro rectangular se puede estimar con la ecuación:

$$\phi_{wy} = (1, 5 - 2, 0) \cdot \frac{\varepsilon_y}{L_w}$$

Ecuación 50. Curvatura de fluencia en muros rectangulares

3.3) Selección de la deriva limite

Para asegurar un adecuado desempeño sísmico la norma E-030 establece una deriva límite de 0.007 para estructuras de concreto armado, sin embargo, este límite es consistente con sección brutas e ignorando el acero de refuerzo. Ya que el DDBD es un diseño que se basa en el comportamiento no lineal del edificio, la deriva limite debería ser consistente con sección fisuradas o agrietas y considerando el acero de refuerzo. Rodríguez (2018, pp. 69) recomienda

utilizar una distorsión límite de entrepiso de 1.5%. cuando se empleen secciones agrietadas.

Sullivan et al (2005, pp.7) sugiere tomar en cuenta el efecto de lo modos superiores mediante la ecuación:

$$\theta_{d,\omega} = \theta_{d,\text{limit}} \left[1 - \frac{(N-5)}{100} \left(\frac{M_{OT,frame}}{M_{OT,total}} + 0.25 \right) \right] \le \theta_{d,\text{limit}}$$

Ecuación 51. Corrección de la deriva de diseño por efecto de modos superiores

Dónde:

 $\theta_{d,\lim it}$: Deriva límite de diseño objetivo

N : Numero de niveles

 $M_{OT, frame}$: Momento en la base de los pórticos

 $M_{OT,total}$: Momento total en la base del edificio

 $\theta_{d,\omega}$: Deriva de diseño corregida por efectos de modos superiores

El desplazamiento de fluencia de cada nivel se calcula según las ecuaciones 7.7a y 7.7b del libro de Priestley et al. (2007, pp.394).

Si:
$$h_i \ge H_{cf}$$
 $\Delta_{y,i} = \frac{\phi_{y,w} \cdot H_{cf} \cdot h_i}{2} - \frac{\phi_{y,w} \cdot H_{cf}^2}{6}$

Ecuación 52. Desplazamiento de fluencia de cada nivel (condición 1)

Si:
$$h_i < H_{cf}$$
 $\Delta_{y,i} = \frac{\phi_{y,w} \cdot h_i^2}{2} - \frac{\phi_{y,w} \cdot h_i^3}{6 \cdot H_{cf}}$

Ecuación 53. Desplazamiento de fluencia de cada nivel (condición 2)

El desplazamiento de diseño de cada nivel se calcula según la ecuación 7.10 del libro de Priestley et al. (2007, pp.395):

$$\Delta_i = \Delta_{y,i} + \left(\theta_d - \frac{\phi_{y,w} \cdot H_{cf}}{2}\right) \cdot h_i$$

Ecuación 54. Perfil de desplazamientos en el DDBD

Paso 4) Sistema equivalente de un grado de libertad (SDOF).

Según Sullivan et al. (2005, pp.8) las ecuaciones para calcular el desplazamiento de diseño, la altura equivalente y la masa equivalente respectivamente son:

$$\Delta_d = \frac{\sum_{i=1}^n m_i \cdot {\Delta_i}^2}{\sum_{i=1}^n m_i \cdot {\Delta_i}}$$

Ecuación 55. Desplazamiento equivalente del SDOF

$$h_e = \frac{\sum_{i=1}^n m_i \cdot \Delta_i \cdot h_i}{\sum_{i=1}^n m_i \cdot \Delta_i}$$

Ecuación 56. Altura equivalente del SDOF

$$m_e = \frac{\sum_{i=1}^n m_i \cdot \Delta_i^2}{\Delta_d}$$

Ecuación 57. Masa equivalente del SDOF

Paso 5) Amortiguamiento del sistema

5.1) Ductilidad en muros

El desplazamiento de fluencia del sistema equivalente se calcula con la ecuación 7.7a del libro de Priestley et al. (2007, pp.394):

$$h_{e} \geq H_{cf}: \Delta_{he,y} = \frac{\phi_{y,w} \cdot H_{cf} \cdot h_{e}}{2} - \frac{\phi_{y,w} \cdot H_{cf}^{2}}{6}; \quad h_{e} \geq H_{cf}: \Delta_{y,w} = \frac{\phi_{y,w} \cdot h_{e}^{2}}{2} - \frac{\phi_{y,w} \cdot h_{e}^{3}}{6 \cdot H_{cf}};$$

Ecuación 58. Desplazamiento de fluencia en muros del SDOF

La ductilidad en los muros se calcula con la ecuacion 7.14 del libro de Priestley et al. (2007, pp.396):

$$\mu_{w} = \frac{\Delta_{d}}{\Delta_{he,y}}$$

Ecuación 59. Ductilidad en muros

5.2) Verificacion de ductilidad en muros

Sumillan et al. (2005, p.9) menciona que se debe verificar la ductilidad en los muros para la deriva de diseño en funcion de la capacidad de rotacion inelastica del muro.

Curvatura de fluencia

- ✓ Para muros rectangulares según la ecuación 48.
- Para un muro en forma de C se usará la expresión sugerida por Priestley et al. (2012, pp.81):

$$\phi_{wy} = 1, 4 \cdot \frac{\varepsilon_y}{L_w}$$

Ecuación 60. Con flexión paralela al alma o flexión paralela a las alas con el alma en compresión

$$\phi_{wy} = 1, 8 \cdot \frac{\varepsilon_y}{L_w}$$

Ecuación 61. Con flexión paralela a las alas y con el alma en tracción

Curvatura ultima

✓ Para muros rectangulares según Sullivan et al. (2005, pp.10):

$$\phi_{u,w} = \frac{0,072}{L_w}$$

 Según Pérez (2014, pp.5-60) un muro con aletas alcanzara una curvatura máxima menor dada por:

$$\phi_{u,w} = 0,9 \cdot \frac{0,072}{L_w}$$

Ecuación 63. Curvatura ultima para muros con aletas

Rotación de fluencia

La rotación de fluencia de cada muro se calcula con la ecuacion 7.9 del libro de Priestley et al. (2007, pp.394):

$$\theta_{y,w} = \phi_{y,w} \cdot \frac{H_{cf}}{2}$$

Ecuación 64. Rotación de fluencia de un muro

Capacidad de rotación ultima

La capacidad de rotación ultima de muros se calcula con la ecuacion 7.9 del libro de Priestley et al. (2007, pp.394):

$$\theta_{u,w} = \theta_{y,w} + (\phi_{u,w} - \phi_{y,w}) \cdot L_p$$

Ecuación 65. Capacidad de rotación ultima en muros

Longitud de rotula plástica

Según Sullivan et al. (2005, pp.10) se considera el menor de:

$$L_{p1} = 0,022 \cdot f_{ye} \cdot d_b + 0,054 \cdot H_{cf}$$

Ecuación 66. Longitud de rotula plástica en muros (a)

$$L_{p2} = 0, 2 \cdot L_{w} + 0, 03 \cdot H_{cf}$$

Ecuación 67. Longitud de rotula plástica en muros (b)

Dónde:

- d : Diámetro de la varilla en (m)
 - f_{ye} : Resistencia a la fluencia esperada en MPa

H_{cf} : Altura de inflexión

Demanda de ductilidad

La demanda de ductilidad en el muro para la deriva de diseño se calcula según Sullivan et al. (2005, pp.9) como:

$$\mu_{\phi wall} = 1 + \frac{1}{L_p \cdot \phi_{y,w}} \left(\theta_d - \frac{\phi_{y,w} \cdot H_{cf}}{2} \right)$$

Ecuación 68. Demanda de ductilidad en muros

Ductilidad disponible en muros

$$\mu_{w,\max} = \frac{\phi_{u,w}}{\phi_{v,w}}$$

Ecuación 69. Ductilidad disponible en un muro

5.3) Ductilidad en pórticos

Otro efecto importante de la interacción de muros con vigas es que aumenta la demanda de ductilidad en estas, por lo que se debe calcular la rotación de fluencia de estas vigas considerando esa característica como lo sugiere Sullivan (2005, pp.22):

Figura 19. Altas demandas de ductilidad en vigas conectadas a muros

Rotación de fluencia de vigas

Según Sullivan (2005, pp.22):

$$\theta_{y,beam} = 0, 5 \cdot \frac{\varepsilon_y \cdot l}{h}$$

Ecuación 70. Rotación de fluencia de vigas no unidas a muros

$$\theta_{y,link1} = 0, 4 \cdot \frac{\varepsilon_y \cdot l}{h}$$

Ecuación 71. Rotación de fluencia de vigas con un extremo unido a un muro

$$\theta_{y,link2} = 0,31 \cdot \frac{\varepsilon_y \cdot l}{h}$$

Ecuación 72. Rotación de fluencia de vigas con ambos extremos unidos a un muro

Sullivan et al (2005, p.22) propone calcular la ductilidad del pórtico en cada nivel con:

$$\mu_{frame,i} = \frac{\frac{\theta_{d,i}}{\theta_{y,link}} n_{link} + \frac{\theta_{d,i}}{\theta_{y,beam}} (n_b - n_{link})}{n_b}$$

Dónde:

 $\theta_{{\scriptscriptstyle d},{\scriptscriptstyle i}}$: Deriva de diseño en el nivel i.

 $\theta_{y,link}$: Rotación de fluencia promedio de vigas conectadas a muros

 $\theta_{y,beam}$: Rotación de fluencia promedio de vigas no conectadas a muros

 $\mu_{frame,i}$: Ductilidad del pórtico en el nivel i.

La ductilidad final de los pórticos según Sullivan et al (2005, p.9) se estima como el promedio de la ductilidad de cada nivel.

5.4) Amortiguamiento en pórticos y muros

Sullivan et al (2005, p.22) propone calcular el amortiguamiento histerético en pórticos y muros con las ecuaciones dependientes del periodo efectivo y la ductilidad del sistema:

$$\xi_{hyst,wall} = \frac{95}{\pi} \left(1 - \frac{1}{\mu_{wall}^{0.5}} - 0, 1 \cdot r \cdot \mu_{wall} \right) \left(1 + \frac{1}{\left(T_{e,trial} + 0, 85\right)^4} \right) \frac{1}{1,30}$$

Ecuación 74. Amortiguamiento inelástico en muros

$$\xi_{hyst,frame} = \frac{120}{\pi} \left(1 - \frac{1}{\mu_{frame}^{0.5}} - 0, 1 \cdot r \cdot \mu_{frame} \right) \left(1 + \frac{1}{\left(T_{e,trial} + 0, 85\right)^4} \right) \frac{1}{1,30}$$

Ecuación 75. Amortiguamiento inelástico en pórticos

Dónde:

 $T_{e,trial}$: Periodo efectivo de prueba estimado según Sullivan (2005, pp.11):

$$T_{e,trial} = \frac{N}{6} \sqrt{\mu_{sys}}$$

Ecuación 76. Periodo efectivo de prueba

N : Número de pisos

 μ_{svs} : Ductilidad del sistema se puede estimar según Pérez (2014, pp.5-65) con:

$$\mu_{sys} = \frac{\mu_{frame} \cdot V_{frame} + \mu_{wall} \cdot V_{wall}}{V_T}$$

Ecuación 77. Ductilidad del sistema

r: Coeficiente de rigidez post elástico. Según Sullivan et al. (2005, pp.11) típicamente tomado como 0.05 para estructuras nuevas de concreto armado.

Considerando el amortiguamiento elástico de 5% para estructuras de concreto armado, el amortiguamiento final en muros y marcos será:

$$\xi_{wall} = \xi_{elas, wall} + \xi_{hyst, wall}$$

Ecuación 78. Amortiguamiento total en muros

$$\xi_{\mathit{frame}} = \xi_{\mathit{elas, frame}} + \xi_{\mathit{hyst, frame}}$$

Ecuación 79. Amortiguamiento total en pórticos

5.5) Amortiguamiento equivalente

El amorotguamiento según Suvillan (2005, pp.11) se calcula como un promedio ponderado del amortiguamiento por los momentos en la base de cada sistema obtenido en el paso 1.

$$\xi_{SDOF} = \frac{M_{w} \cdot \xi_{w} + M_{f} \cdot \xi_{f}}{M_{OT}}$$

Ecuación 80. Amortiguamiento equivalente del SDOF

Paso 6) Corrección por efectos de torsión

Para Pérez (2014, pp.3-52) el método de DDBD permite estimar de manera confiable los desplazamientos en el centro de masa, por lo que debería evaluarse los desplazamientos adicionales que pudieran producirse por la torsión.

Así mismo Pérez (2014, pp-3-50) menciona que el centro de rigidez esta más relacionado con el comportamiento elástico del edificio, por lo que es necesario calcular el centro de resistencia y su excentricidad respecto al centro de masa para evaluar los efectos de torsión en el rango inelástico. También será necesario calcular una rigidez rotacional dúctil o efectiva debido a la fluencia de los elementos en la dirección que se esté estudiando, suponiendo que todos los elementos alcanzan la fluencia se puede estimar la rigidez rotacional efectiva dividiendo la rigidez rotacional elástica por la ductilidad del sistema como se detalla en el paso 6.5. La rigidez rotacional esta influenciada por la rigidez torsional elástica de los muros en dirección perpendicular, los muros perimetrales son los que aportan mayor rigidez torsional, por lo que son importantes en edificios con problemas de torsión. A este tipo de edificios con muros perimetrales en dirección perpendicular al sismo se les denomina "Sistemas restringidos a torsión" Priestley et al. (2007, pp.334).

El centro de resistencia está relacionado con la resistencia asignada a cada muro, para Pérez (2014, pp.3-52) en el método de DDBD se puede modificar la rigidez de los elementos cambiando la resistencia o equivalentemente cambiando la fuerza cortante a cada elemento, de esta manera se puede ejercer cierto control en la posición del centro de rigidez y el centro de resistencia con el objetivo de reducir los problemas de torsión.

Pérez (2014, pp.3-52) menciona que la torsión accidental no es una solución eficiente para atender los problemas de la torsión en el rango inelástico ya que con ello solo se aumenta la resistencia en todos los elementos sin disminuir esencialmente el centro de resistencia, por lo que se sugiere no considerar torsión accidental en el método de DDBD.

Se hace uso de las siguientes expresiones:

$$K_{w} = \frac{V_{w}}{\Delta_{y,w}}$$

Ecuación 81. Rigidez de cada muro

$$K_f = \frac{V_f}{\Delta_{y,f}}$$

Ecuación 82. Rigidez de cada pórtico

Dónde:

 V_w, V_f : Porcentaje de cortante asignado a cada muro o pórtico respectivamente

 $\Delta_{y,w}$: Desplazamiento de fluencia de cada muro usando la altura equivalente del SDOF con la ecuación 56.

 $\Delta_{y,f}$: Desplazamiento de fluencia del pórtico $\Delta_{y,f} = \theta_{y,pro} \cdot H_{cf}$

 $\theta_{v, pro}$: Rotación de fluencia promedio del pórtico

$$X_{CR} = \frac{\sum K_y \cdot X}{\sum K_y} = \frac{\sum K_w \cdot X + \sum K_f \cdot X}{K_w + K_f}$$

Ecuación 83. Coordenada del centro de rigidez en la dirección X

$$Y_{CR} = \frac{\sum K_x \cdot Y}{\sum K_x} = \frac{\sum K_w \cdot Y + \sum K_f \cdot Y}{K_w + K_f}$$

Ecuación 84. Coordenada del centro de rigidez en la dirección Y

$$X_{CV} = \frac{\sum V_y \cdot X}{\sum V_y} = \frac{\sum V_w \cdot X + \sum V_f \cdot X}{V_w + V_f}$$

Ecuación 85. Coordenada del centro de resistencia en la dirección X

$$Y_{CV} = \frac{\sum V_x \cdot Y}{\sum V_x} = \frac{\sum V_w \cdot Y + \sum V_f \cdot Y}{V_w + V_f}$$

Ecuación 86. Coordenada del centro de resistencia en la dirección Y

Dónde:

X, Y: Coordenadas de cada pórtico y/o muro respecto al origen de referencia

6.5) Calculo de la rigidez rotacional dúctil efectiva suponiendo que todos los elementos alcanzan el estado de fluencia según la ecuación 6.25 del libro de Priestley et al. (2007, pp.337):

$$(J_{R,\mu})_{x} = \frac{\sum K_{x} \cdot (Y_{i} - Y_{CR})^{2}}{\mu_{sys}} + \sum K_{y} \cdot (X_{i} - X_{CR})^{2}$$

Ecuación 87. Rigidez torsional dúctil para sismo en X

$$(J_{R,\mu})_{y} = \frac{\sum K_{y} \cdot (X_{i} - X_{CR})^{2}}{\mu_{sys}} + \sum K_{x} \cdot (Y_{i} - Y_{CR})^{2}$$

Ecuación 88. Rigidez torsional dúctil para sismo en Y

6.6) Calculo de la rotación del centro de masa debido a la torsión

Conociendo el centro de masa se puede calcular la excentricidad de rigidez:

$$e_x = X_{CR} - X_{CM} \qquad e_y = Y_{CR} - Y_{CM}$$

Ecuación 89. Excentricidad de rigidez en la dirección X e Y

El giro del centro de masa se calcula con la ecuación 6.24 del libro de Priestley et al. (2007, pp.337):

$$\theta_x = \frac{V_{T,x} \cdot e_y}{(J_{R,\mu})_x} \qquad \qquad \theta_y = \frac{V_{T,y} \cdot e_x}{(J_{R,\mu})_y}$$

Ecuación 90. Rotación del centro de masa debido al sismo en X e Y

Dónde:

 $V_{T,x}$, $V_{T,y}$: Cortante total del sismo, si se trabaja con porcentajes resulta la unidad.

6.7) Factor de corrección por torsión

El desplazamiento máximo del edificio se calcula con la ecuación 6.26 del libro de Priestley et al. (2007, pp.337)

$$e_{cv,\max,x} = Y_{CV} - Y_{\max} \qquad e_{cv,\max,y} = X_{CV} - X_{\max}$$

Ecuación 91. Excentricidad de resistencia para sismo en X e Y

$$\Delta_{\max,x} = \Delta_{d.x} + \theta_x \cdot e_{cv,\max,x} \qquad \Delta_{\max,y} = \Delta_{d.y} + \theta_y \cdot e_{cv,\max,y}$$

Ecuación 92. Desplazamiento máximo del edificio debido a los efectos de torsión por sismo en X e Y

Dónde:

 X_{max} , Y_{max} : Distancia del pórtico y/o muro más alejado del centro de resistencia

Según Pérez (2014, pp.3-54) es suficientemente preciso corregir la distorsión angular inicial por un factor:

$$\eta = \frac{\Delta_{C.M.}}{\Delta_{\max}} = \frac{\Delta_d}{\Delta_{\max}} < 1$$

Ecuación 93. Factor de corrección por torsión

Dónde:

 $\Delta_{C.M.}$: Desplazamiento en el centro de masa del sistema equivalente de un grado de libertad.

 Δ_{max} : Desplazamiento máximo entre todos los pórticos y/o muros.

Paso 7) Calculo de la cortante basal inelástica

Según Pérez (2014, pp. 3-23) las coordenadas del espectro de desplazamiento pueden obtenerse a partir de las aceleraciones espectrales mediante:

$$S_d = \frac{S_a}{\omega^2}$$

Ecuación 94. Coordenadas de pseudo - desplazamientos

Dónde:

 S_a : Aceleraciones espectrales

$$ω$$
: Frecuencia angular $ω = \frac{2π}{T}$

T: Periodo

Las coordenadas del espectro de desplazamientos inelásticos se obtienen reduciendo las coordenadas de desplazamiento espectral por el factor de reducción obtenido con la ecuación 39:

$$S_{d,ine} = \frac{S_d}{R_{\varepsilon}}$$

Ecuación 95. Desplazamiento espectral inelástico

7.2) Periodo Efectivo

Se calcula con la expresión:

$$T_e = \frac{\Delta_d \cdot T_L}{\Delta_L \cdot R_{\xi}}$$

Ecuación 96. Periodo Efectivo del SDOF

Dónde:

- Δ : Desplazamiento espectral correspondiente al periodo T_L
 - 7.3) Rigidez efectiva

Se calcula con la expresión de la dinámica clásica estructura para un sistema de un grado de libertad:

$$K_e = 4\pi^2 \cdot \frac{m_e}{T_e^2}$$

Ecuación 97. Rigidez Efectiva del SDOF

7.4) Cortante basal inelástica

Con la rigidez secante y el desplazamiento de diseño se obtiene la cortante inelástica mediante:

$$V_{ine} = K_e \cdot \Delta_d$$

Ecuación 98. Cortante basal inelástica

Paso 8) Cortantes y momentos finales del edificio

Las cortantes y momentos finales del edificio se obtienen multiplicando la distribución de fuerzas unitarias del paso 1 multiplicado por la cortante basal obtenida en el paso 7.4.

Paso 9) Fuerzas en los elementos

9.1) Fuerzas en pórticos

Con los porcentajes de cortantes asignadas a cada pórtico en el paso de corrección por torsión y la cortante inelástica calculada en el paso 7 es posible determinar la fuerza cortante y posteriormente el momento volcante en cada pórtico teniendo en cuenta que lo mencionado en el paso 1, una distribución constante de la cortante en los pórticos es equivalente a aplicar la cortante basal como una carga concentrada en el techo, de esta manera el momento se obtiene multiplicando la cortante por la altura total del edificio.

$$M_{f,i} = V_i \cdot h_n$$

 $M_{f,i}$: Momento volcante en el pórtico i

 V_i : Cortante asignada en el pórtico i

 h_n : Altura total del edificio

Para el diseño de las vigas Pérez (2014, pp.3-48) propone suponer que las cortantes en todas las vigas de un mismo nivel son inversamente proporcionales a sus luces y suponiendo un punto de inflexión en el centro de luz se tendría momentos iguales en los extremos.

Momentos en los extremos de las vigas en piso típico:

$$M_{b,i} = V_{b,i} \cdot L_i$$

Ecuación 100. Momento en los extremos de una viga

 a) Según Pérez (2014, pp.3-48) el momento en la base es tomado por las vigas y otra parte por las columnas según:

$$M_f = \sum V_i \cdot L_i + \sum M_{col}$$

Ecuación 101. Partición del momento total en un pórtico

Figura 20. Fuerzas en pórticos (Pérez, 2014)

 b) Si se supone que todas las columnas presentan un punto de inflexión situado al 60% de la altura del primer piso se tiene:

$$\sum M_{col} = V_f \cdot 0, 6 \cdot h_1$$

Ecuación 102. Momento tomado por las columnas

Según Pérez (2014, pp.5-64) para calcular los momentos en la base de las columnas suponiendo un punto de inflexión situado al 60% de la altura del primer nivel y 50% en los pisos típicos se aplica un factor de amplificación mediante:

$$M'_{col} = M_{col} \left(\frac{0, 6 \cdot h_1}{0, 5 \cdot h_{pt}} \right) = 1, 2 \cdot M_{col} \cdot \frac{h_1}{h_{pt}}$$

Ecuación 103. Momento en la base de las columnas

Dónde:

 M'_{col} : Momento en la base de una columna externa o interna

 M_{col} : Momento en el piso típico de una columna externa o interna

 h_1 : Altura del primer nivel

 h_{pt} : Altura del piso típico

Las cortantes en las columnas se obtiene mediante equilibrio con la ecuación:

$$V_{col} = \frac{M_{col, \sup} + M_{col, \inf}}{h_{col}}$$

Ecuación 104. Cortante en columnas

 h_{col} : Altura de la columna

Los momentos en las columnas se obtiene por equilibrio en los nudos de los elementos, de esta manera se tiene:

$$M_{col,int} = M_{b,i}$$

Ecuación 105. Momentos en columnas interiores de piso típico

$$M_{col,ext} = \frac{M_{b,i}}{2}$$

Ecuación 106. Momentos en columnas exteriores de piso típico

9.2) Fuerzas en muros

Priestley et al. (2007, pp.393) menciona que estos valores deben ser corregidos debido al momento que trasmiten las vigas hacia los muros, así mismo debido a la conexión entre vigas y muros el momento volcante en el base se incrementara debido al incremento del brazo en las fuerzas cortantes de las vigas, como se aprecia en la figura 21. Este incremento del momento en la base es compensando con una reducción del momento en el muro.

Figura 21. Momento transmitido de las vigas hacia el muro Sullivan (2005)

Figura 22. Modificación de momentos en los muros debido a las vigas conectadas Jiménez & Jovel (2017)

Según Sullivan (2005, pp.20) el momento trasmitido de la viga al centro del muro este dado por la ecuación:

$$M_{bWall} = M_b \left(\frac{1 + \frac{L_w}{L_b}}{1 + \frac{d_{col}}{L_b}} \right) = M_b \left(\frac{L_b + L_w}{L_b + d_{col}} \right)$$

Ecuación 107. Momento transmitido de viga a muro

Dónde:

- M_b : Momento de la viga en eje de columna
- L_b : Longitud de la viga
- L_{w} : Longitud del muro
- $d_{\it col}$: Peralte de la columna en la dirección de análisis

La reducción del momento en cada piso será:

$$\Delta M_{w,i} = \sum_{j=i}^{N} \sum_{k=1}^{n} M_{bWall,k} - \sum_{k=1}^{n} M_{beam,k}$$

Ecuación 108. Reducción de momento en cada nivel del muro

Dónde:

 $M_{beam,k}$: Momento de la viga que se conecta al muro

 $\Delta M_{\scriptscriptstyle w,i}$: Incremento de momento en los pórticos debido al muro en el piso i

- N: Número de pisos
- n: Número de tramos de vigas en el pórtico
Diseño de elementos estructurales con el DDBD

Los requisitos generales de diseño por capacidad de elementos incluyendo los efectos de modos superiores debe cumplir con la ecuación 5.55 del libro de Priestley et al. (2007, pp.263):

$$\phi_s \cdot S_D \ge S_R = \phi^{\circ} \cdot \omega \cdot S_E$$

Ecuación 109. Requisito general de diseño mediante el DDBD

Dónde:

- ϕ : Factor de reducción de resistencia relacionado al tipo de acción
 - S_D : Resistencia de diseño por capacidad
 - ϕ° : Factor de sobreresistencia para el requerimiento de capacidad de las rotulas plásticas
 - ω: Amplificación debido a los modos superiores
 - S_E : Acción de diseño obtenido del DDBD

Diseño de vigas

a) Diseño por flexión de rotulas plásticas

Según Priestley et al. (2007, pp.251) para el diseño de las rotulas plásticas en las vigas no se combina las fuerzas de gravedad y de sismo debido a la capacidad de distribución de momentos, se considera el mayor momento obtenido del análisis por cargas gravitacionales amplificadas y el obtenido con el DDBD. Así mismo se debe diseñar las rotulas plásticas para el momento en la cara de columna o muro y usarse las resistencias esperadas de los materiales según las ecuaciones 4.23a y 4.23b del libro de Priestley:

$$f'_{ce} = 1, 3 \cdot f'_{c}$$

Ecuación 110. Resistencia esperada a compresión del concreto

 $f_{ve} = 1, 1 \cdot f_v$ (Ecuación 47)

El momento de diseño será:

$$M_{E} = M'_{E} \cdot \left(\frac{l_{b} - d_{c}}{l_{b}}\right)$$

Ecuación 111. Momento de viga en cara de columna

Dónde:

 l_b : Longitud de viga entre ejes

 d_c : Peralte de la columna

b) Diseño por capacidad a flexión

Según Priestley et al. (2007, pp.265) Ecu. 5.56 para el diseño de la zona entre las rotulas plásticas se diseñará para el momento combinado dado por:

$$M^{\circ}_{E+G}(x) = M^{\circ}_{E,l} + (M^{\circ}_{E,r} - M^{\circ}_{E,l}) \cdot \frac{x}{l_n} + \frac{w_G \cdot l_n}{2} \cdot x - \frac{w_G \cdot x^2}{2}$$

Ecuación 112. Momento de diseño fuera de la longitud de rotula plástica

Dónde:

 M_{EJ}° : Momento en el extremo izquierdo dado por $M_{E}^{\circ} = M_{E} \cdot \phi^{\circ}$

 $M_{E,r}^{\circ}$: Momento en el extremo derecho

 w_G : Cargas gravitacionales amplificadas por 30% debido a la respuesta vertical elástica en la viga debido a aceleraciones verticales (Priestley et al., 2007, pp.265)

 ϕ : Factor de sobreresistencia asociada a la rótula plástica en la viga. Para edificios con muros y pórticos se puede suponer 1.1 (Priestley et al., 2007, pp.401)

Figura 23. Envolvente de momento para el diseño de vigas según el DDBD

c) Diseño por capacidad a corte

Según Priestley et al. (2007, pp.266) Ecu. 5.57 la cortante a lo largo de la viga esta dado por:

$$V_{E+G}^{\circ}(x) = \frac{M_{E,r}^{\circ} - M_{E,l}^{\circ}}{l_n} + \frac{w_G \cdot l_n}{2} - w_G \cdot x$$

Para el diseño por cortante se deberá usar la máxima resistencia de las rotulas plásticas correspondientes a las resistencias de los materiales según las ecuaciones 4.24a y 4.24b del libro de Priestley et al. (2007, pp.144):

$$f'_{co} = 1, 7 \cdot f'_{c}$$

Ecuación 114. Resistencia del concreto para el diseño por capacidad a cortante

$$f_{yo} = 1, 3 \cdot f_y$$

Ecuación 115. Resistencia del acero de refuerzo para el diseño por capacidad a cortante

Figura 24. Cortante de diseño en vigas según el DDBD

El momento resistente debería calcular con un análisis momento curvatura de la sección, sin embargo, Priestley et al. (2007, pp.170) recomienda utilizar los siguientes valores del factor de sobreresistencia:

Cuando no se considera el endurecimiento de la sección en el diseño: $\phi^{\circ} = 1, 6$

Cuando se considera el endurecimiento de la sección en el diseño: $\phi^{\circ} = 1,25$

Sin embargo, se considera $\phi^{\circ} = 1,1$ debido a la baja ductilidad en pórticos como indica Priestley et al. (2007, pp.401).

Según Jimenez & Jovel (2017, pp. 92) para el diseño por corte se usará resistencias nominales y un factor de reducción de $\phi_c = 0.85$, por lo que la capacidad a corte de la viga se calcula similarmente a la norma E-060:

Diseño de columnas

El momento y cortante obtenido del DDBD deberán amplificarse por el factor de sobreresistencia relacionado a las rotulas plásticas en las vigas asumido como $\phi^{\circ} = 1,1$ en todos los pisos excepto en la base y el factor de amplificación por modos superiores asumido como $\omega = 1,3$ en todos los pisos excepto la base. Debido a que se acepta el mecanismo de rotula plástica en la base de la columna

el factor de reducción se considera $\phi_s = 1, 0$, ya que el mecanismo supuesto no considera la formación de rotulas plásticas, en los pisos superiores se considera $\phi_s = 0,9$.

Diseño de muros

Figura 25. Diseño Por capacidad de muros según el DDBD

a) Diseño por capacidad a flexión

El momento en la mitad de la altura del muro esta dado por la ecuación 6.48 del libro de Priestley et al. (2007, pp.)

$$M_{0,5H}^{\circ} = C_{1,T} \cdot \phi^{\circ} \cdot M_B$$

Ecuación 116. Momento requerido en la mitad de la altura del muro

$$C_{1,T} = 0, 4 + 0, 075 \cdot T_i \cdot \left(\frac{\mu_s}{\phi^{\circ}} - 1\right) \ge 0, 4$$

Ecuación 117. Coeficiente asociado al diseño por capacidad a flexión de muros

Dónde:

 ϕ° : Factor de sobreresistencia asociado al endurecimiento del acero de refuerzo, en el cálculo no se consideró por loque se considera 1.2 (Priestley et al., 2007, pp.368)

 M_{B} : Momento en la base incluyendo el exceso de resistencia.

μ_s : Ductilidad del sistema

 I_i : Periodo fundamental elástico (Priestley et al., 2007, pp.410)

$$T_i = \frac{T_{efe}}{\sqrt{\mu_s}}$$

Ecuación 118. Periodo fundamental elástico

a) Diseño por corte

El factor de amplificación por efectos de modos superiores esta dado por la ecuación 7.18 del libro de Priestley et al. (2007, pp.402)

$$\omega_V = 1 + \frac{\mu_s}{\phi^\circ} C_{2,T}$$

Ecuación 119. Factor de amplificación por modos superiores para el diseño por corte

$$C_{2,T} = 0, 4 + 0, 2 \cdot (T_i - 0, 5) \le 1, 15$$

Ecuación 120. Coeficiente asociado al diseño por capacidad a corte de muros

Dónde:

 ϕ : Factor de sobreresistencia para corte, se debería obtener mediante un análisis momento curvatura, cuando se ignora en el diseño el endurecimiento del acero se puede suponer 1.6 (Priestley et al., 2007, pp.170)

La cortante en el extremo superior del edificio según la ecuación 7.19 del libro de Priestley (2007) será:

$$V_n^\circ = 0, 4 \cdot V_{BASE}^\circ$$

Ecuación 121. Cortante por capacidad en la parte superior del muro

Análisis no lineal estático pushover

Según ATC-40 (1996) es un análisis donde se aplican cargas crecientes en una sola dirección hasta que la estructura alcance el colapso y de esta forma se determina la relación fuerza-desplazamiento o curva de capacidad de la

estructura. El análisis se realiza sobre un modelo matemático donde se incorpora las características del comportamiento no lineal de los componentes.

Por lo general el nodo donde se controla el desplazamiento está localizado en el centro de masas del último techo y las cargas se aplican en cada diafragma de piso en proporción a la distribución de fuerzas inerciales Se deberá aplicar por lo menos dos distribuciones verticales de cargas laterales (Toledo, 2011, pág. 74).

La curva de capacidad por tanto grafica en el eje X los desplazamientos en el nudo de control y en el eje Y la cortante basal como se muestra en la figura 26.

Figura 26. Curva de capacidad (ASCE 41-17)

Según ASCE 41-17 indica que las fuerzas gravitacionales deberán adicionarse al análisis sísmico estático no lineal, para ello las acciones de las cargas gravitacionales se puede estimar con:

$$Q_G = 1, 1 \cdot (Q_D + Q_L + Q_S)$$

Ecuación 122. Acciones gravitacionales en el análisis no lineal (ASCE 41-17)

Dónde:

- Q : Acción causada por cargas muertas
 - Q_L : Acción causada por el 25% de las cargas vivas

$\mathit{Q}_{\scriptscriptstyle S}$: Acción causada por cargas de nieve

Para representar la no linealidad de los elementos estructurales como son vigas, columnas y muros existen diferentes modelos, pero generalmente se dividen en 2 tipos: plasticidad concentrada y plasticidad distribuida como se muestra en la figura 27.

Figura 27. Tipos de modelamiento no lineal en componentes

El comportamiento no lineal de los elementos que se modelan mediante plasticidad concentrada requiere ser definidos mediante relaciones fuerzadeformación o momento-rotación y para ello las normas internacionales como el ASCE 41-13 ya tienen definido estas relaciones incluyendo sus criterios de aceptación como se observa en las figuras 28 y 29:

Figura 28. Relación fuerza-desplazamiento de componentes según ASCE 41-13

El software ETABS puede definir automáticamente las rotulas plásticas según ASCE 41-13 en los elementos en función a la cuantía de refuerzo longitudinal y al nivel de fuerza cortante.

			N	lodeling Paramete	ersª	А	Acceptance Criteria ^a		
			Plastic Rota (radi	Plastic Rotations Angle (radians)		Plastic	Rotations Angle (radians) Performance Level		
	Conditions		а	Ь	c	ю	LS	СР	
Condition	i. Beams controlled by fl	exure ^b							
$\frac{\rho - \rho'}{\rho_{\text{bal}}}$	Transverse reinforcement ^c	$\frac{V}{b_w d \sqrt{f_c'}}^d$							
≤0.0	С	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05	
≤0.0	С	≥6 (0.5)	0.02	0.04	0.2	0.005	0.02	0.04	
≥0.5	С	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03	
≥0.5	С	≥6 (0.5)	0.015	0.02	0.2	0.005	0.015	0.02	
≤0.0	NC	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03	
≤0.0	NC	≥6 (0.5)	0.01	0.015	0.2	0.0015	0.01	0.015	
≥0.5	NC	≤3 (0.25)	0.01	0.015	0.2	0.005	0.01	0.015	
≥0.5	NC	≥6 (0.5)	0.005	0.01	0.2	0.0015	0.005	0.01	
Condition	ii. Beams controlled by s	hear ^b							
Stirrup sp	acing $\leq d/2$		0.0030	0.02	0.2	0.0015	0.01	0.02	
Stirrup sp	acing > $d/2$		0.0030	0.01	0.2	0.0015	0.005	0.01	
Condition	iii. Beams controlled by	inadequate development	or splicing along the	e span ^b					
Stirrup sp	acing $\leq d/2$		0.0030	0.02	0.0	0.0015	0.01	0.02	
Stirrup sp	acing > $d/2$		0.0030	0.01	0.0	0.0015	0.005	0.01	
Condition	iv. Beams controlled by	inadequate embedment i	nto beam-column jo	int ^b					
			0.015	0.03	0.2	0.01	0.02	0.03	

Figura 29. Definición de rotulas plásticas en vigas según ASCE 41-13

Estas relaciones se encuentran normalizadas con respecto a la fuerza o momento de fluencia, por lo que es necesario definir la rigidez efectiva de cada componente, para cubrir ese objetivo las guías y normas internacionales incluyen algunas recomendaciones basadas en ensayos experimentales, a continuación, se mencionan algunos:

• Según ASCE 41-17:

Table 10-5. Effective Stiffness Values

Component	Flexural Rigidity	Shear Rigidity	Axial Rigidity
Beams-nonprestressed ^a	$0.3E_{cE}I_{g}$	$0.4E_{cE}A_{w}$	_
Beams—prestressed"	$E_{cE}I_{g}$	$0.4E_{cE}A_{w}$	—
Columns with compression caused by design gravity loads $> 0.5A_{-}f'_{-}b'$	$0.7 E_{cE} l_g$	$0.4E_{cE}A_w$	$E_{cE}A_g$
Columns with compression caused by design gravity loads $\leq 0.1A_g f'_{cE}$ or with tension ⁶	$0.3E_{cE}l_{g}$	$0.4E_{cE}A_{w}$	$E_{cE}A_g$ (compression) $E_{sE}A_s$ (tension)
Beam-column joints	Refer to Section 10.4.2.2.1		ECEAG
Flat slabs-nonprestressed	Refer to Section 10.4.4.2	$0.4E_{cE}A_{c}$	<u> </u>
Flat slabs-prestressed	Refer to Section 10.4.4.2	$0.4E_{cE}A_{g}$	_
Walls—cracked ^c	$0.35E_{cE}A_{g}$	$0.4E_{cE}A_w$	$E_{cE}A_g$ (compression) $E_{sE}A_s$ (tension)

Figura 30. Rigidez efectiva de elementos según ASCE 41-17

 Sagun Los Angeles Tall Buildings Structural Design Council (LATBSDC) 2020:

Component	omponent Service-Level Linear Models			МС	MCE _R -Level Nonlinear Models			
	Axial	Flexural	Shear	Axial	Flexural	Shear		
Structural walls ¹ (in- plane)	1.0Ec [*] Ag or 0.75 EcAg ^{**}	0.75 <i>E</i> cIg	0.4EcAg	1.0EcAg	0.35 <i>E</i> cIg	0.2E _c Ag		
Structural walls (out-of-plane)		$0.25 E_c I_g$			$0.25 E_c I_g$			
Basement walls (in-plane)	$1.0E_cA_g$	$1.0 E_c I_g$	$0.4E_cA_g$	$1.0E_cA_g$	$0.8E_cI_g$	$0.2E_cA_g$		
Basement walls (out-of-plane)		0.25EcIg			0.25EcIg			
Coupling beams with or without diagonal reinforcement	1.0E _c Ag	$0.07 \left(\frac{\ell}{h}\right) E_c I_g \\ \le 0.3 E_c I_g$	0.4 <i>EcAg</i>	1.0 <i>E_cA_g</i>	$0.07 \left(\frac{\ell}{h}\right) E_c I_g \\ \le 0.3 E_c I_g$	0.4 <i>EcAg</i>		
Coupling beams with steel-fiber reinforcement	$1.0E_cA_g$	$0.07 \left(\frac{\ell}{h}\right) E_c I_g \\ \le 0.3 E_c I_g$	0.4EcAg	$1.0E_cA_g$	$0.07 \left(\frac{\ell}{h}\right) E_c I_g \\ \le 0.3 E_c I_g$	$0.4E_{c}A_{g}$		
Steel Coupling Beams ²	$1.0E_sA_s$	$0.07\left(\frac{\ell}{h}\right)(EI)_{tr}$	0.4EsAweb	1.0 <i>E</i> _s <i>A</i> _s	$0.07\left(\frac{\ell}{h}\right)(EI)_{tr}$	0.4EsAweb		
Non-PT diaphragms ³	$0.5E_cA_g$	$0.5E_cI_g$	$0.4E_cA_g$	$0.25 E_c A_g$	$0.25 E_c I_g$	$0.1E_cA_g$		
PT diaphragms ³	$0.8E_cA_g$	$0.8E_cI_g$	$0.4E_cA_g$	$0.5E_cA_g$	$0.5E_cI_g$	$0.2E_cA_g$		
Beams	1.0EcAg	0.5 EcIg	0.4EcAg	1.0EcAg	0.3EcIg	0.4EcAg		
Columns	1.0EcAg	$0.7E_cI_g$	$0.4E_cA_g$	$1.0E_cA_g$	$0.7E_cI_g$	$0.4E_cA_g$		
Mat (in-plane)	$0.8E_cA_g$	$0.8E_cI_g$	$0.4E_cA_g$	$0.5E_cA_g$	$0.5E_cI_g$	$0.4E_cA_g$		
Mat ⁴ (out-of-plane)		$0.8 E_c I_g$			$0.5 E_c I_g$			

Table 3. Reinforced Concrete Stiffness Properties*

Figura 31. Rigidez efectiva según LATBSDC (2020)

• Según ACI 318-19:

IJ

Component		Axial	Flexural	Shear
Baama	nonprestressed	$1.0E_cA_g$	$0.3E_cI_g$	$0.4E_cA_g$
Deallis	prestressed 1.0E _c A _g		$1.0E_cI_g$	$0.4E_cA_g$
Columns with compression coursed	$\geq 0.5 A_g f_c'$	$1.0E_cA_g$	$0.7E_cI_g$	$0.4E_cA_g$
by design gravity loads ^[2]	$\leq 0.1 A_g f_c'$ or with tension	$\begin{array}{c} 1.0E_{c}A_{g}\left(\text{compression}\right)\\ 1.0E_{c}A_{st}\left(\text{tension}\right) \end{array} 0.3E_{c}I_{g} \end{array}$		$0.4E_{c}A_{g}$
Stanotural malla ^[3]	in-plane $1.0E_cA_g$		$0.35E_cI_g$	$0.2E_cA_g$
Suucturar waris ^{1,2}	out-of-plane	$1.0E_cA_g$	$0.25 E_c I_g$	$0.4E_cA_g$
Dianhraoma (in plana antri)[4]	nonprestressed	$0.25 E_c A_g$	$0.25E_cI_g$	$0.25 E_c A_g$
Diaphragnis (in-plane only).	prestressed	$0.5E_cA_g$	$0.5E_cI_g$	$0.4E_cA_g$
Coupling beams	with or without diagonal reinforcement	$1.0E_cA_g$	$0.07 \left(\frac{\ell_n}{h}\right) E_c I_g$ $\leq 0.3 E_c I_g$	$0.4E_cA_g$

Figura 32. Rigidez efectiva según ACI 318-19

Cuando se utiliza modelos de plasticidad distribuida estos valores de rigidez efectiva no son aplicables ya que en este tipo de modelos representa

explícitamente los efectos de agrietamiento del concreto y fluencia del acero (ACI 318-19, pp.592).

El modelo de fibras consiste en dividir la sección en pequeños elementos donde cada uno está definido según el material y la curva esfuerzo-deformación correspondiente como se aprecia en la figura 39. Este modelo toma en cuenta la interacción entre la carga axial y momento, por lo que es útil para modelar elementos en flexo compresión (columnas y muros).

Figura 33. Modelo de fibras para elementos de concreto armado (Taucer, Spacone & Filippou, 1991)

Para el

modelamiento de elementos mediante fibras se debe definir previamente las curvas esfuerzo deformación del acero de refuerzo, concreto no confinado y

concreto confinado. El confinamiento que se genera en las secciones trae un efecto positivo en el comportamiento no lineal del concreto ya que el concreto confinado tendrá mayor ductilidad que el concreto no confinado, para definir la relación esfuerzo deformación del concreto confinado el software ETABS usa el modelo numérico de Mander (1988), para ello es necesario definir la sección del elemento, la resistencia y separación del refuerzo transversal.

Figura 34. Modelo numérico de concreto confinado (Mander et al., 1988)

Cabe mencionar que para el análisis no lineal es necesario utilizar la resistencia esperada de los materiales, algunas guías y estándares internacionales se recomiendan los siguientes valores:

Según el ASCE 41-17:

Properties to Expected Strength Material Properties				
Material Property	Factor			
Concrete compressive strength	1.50			
Reinforcing steel tensile and yield strength	1.25			
Connector steel yield strength	1.50			

Table 10-1. Factors to Translate Lower-Bound Material

Figura 35. Resistencia esperada de materiales según ASCE 41-17

• Según LATBSDC 2020:

Material	Expected strength		
Reinforcing Steel	Expected Yield Strength, <i>fye</i> , ksi	Expected Ultimate Strength, <i>fue</i> , ksi	
A615 Grade 60	70	106	
A615 Grade 75	82	114	
A706 Grade 60	69	95	
A706 Grade 80	85	112	
A706 Grade 100	105	To be determined based on tests and documented substantiations	
Structural Steel***			
ASTM A36/A36M	$15f_{v}^{*}$	$1.2 f_{u}^{**}$	
ASTM A572/A572M Grade 50	$1.0 f_{y}$	$1.1 f_u$	
ASTM A913/A913M Grade 50, 60, 65 or 70	1.1 fv	$1.1 f_u$	
ASTM A992/A992M	$1.1 f_y$	$1.1 f_u$	
Plates			
ASTM A36/A36M	1.3 fy	$1.2 f_u$	
ASTM A572/A572M Grade 50, 55	$1.1 f_y$	$1.2 f_u$	
Concrete		$f'_{ce} = 1.3f'_c$	

Table 2. Expected Material Strengths

Figura 36. Resistencia esperada de materiales según LATBSDC

 Según La asociación Chilena de Sismología e Ingeniería Antisísmica (ACHISINA) 2017:

Material Resistencia a la fluencia para		Resistencia esperada
Resistencia a la lidencia para		Resistencia
Acero estructural	Perfiles y barras estructurales laminadas en caliente ASTM A36/A36M ASTM A572/A572M Grado 42 (290) ASTM A992/A992M Todos los demás grados Secciones estructurales huecas ASTM A500, A501, A618 y A847 Tuberías de acero ASTM A53/A53M Placas Todos los demás productos	$1,5F_{\gamma}$ $1,3F_{\gamma}$ $1,1F_{\gamma}$ $1,1F_{\gamma}$ $1,3F_{\gamma}$ $1,4F_{\gamma}$ $1,1F_{\gamma}$ $1,1F_{\gamma}$
Resistencia a la fluencia para el acero de refuerzo		1,17 veces el f _y especificado
Resistencia máxima para el hormigón		1,3 veces el fc especificado

Figura 37. Resistencia esperada de materiales según ACHISINA

Método del espectro de capacidad

Para calcular la respuesta sísmica con la curva de capacidad obtenida del análisis no lineal estático es necesario representar la demanda sísmica y la capacidad en un mismo formato de coordenadas, para lo cual el método del espectro de capacidad consiste en representar ambas curvas en coordenadas de aceleración vs desplazamiento. La demanda sísmica que inicialmente se tiene en formato de aceleraciones vs periodo también se convierte al mismo formato, la curva de capacidad se convierte a formato de aceleraciones vs desplazamientos para lo cual se transforma a un sistema equivalente de un grado de libertad.

En este método se asume que el amortiguamiento equivalente del sistema es proporcional al área encerrada por la curva de capacidad. La solución determina el desplazamiento máximo inelástico (punto de desempeño), y es un proceso iterativo (Toledo, 2011, pág. 72).

Figura 38. Método del espectro de capacidad (ATC-40)

El proceso consiste en suponer un punto de desempeño y representar el espectro de capacidad mediante una curva bilineal equivalente donde se cumple

la igualdad de energías con ambas curvas, con el desplazamiento supuesto y el desplazamiento de fluencia se calcula la ductilidad, FEMA 440 presenta ecuaciones para determinar el amortiguamiento y periodo efectivo en función a la ductilidad, con estos 2 últimos se puede calcular el factor de reducción de aceleración espectral y finalmente calcular la intersección entre la demanda sísmica y el espectro de capacidad, el proceso iterativo se realiza hasta que el desplazamiento supuesto coincide con la intersección de ambas curvas.

Figura 39. Curva bilineal del espectro de capacidad (FEMA 440)

III. METODOLOGÍA

3.1 Tipo y diseño de investigación

Cabezas et al. (2018) establece que una investigación con enfoque cuantitativo se fundamenta en la investigación de medidas numéricas y se utiliza la observación para la recolección de datos y responder las preguntas de investigación (p.66). Por lo tanto, la presente investigación tiene un **enfoque cuantitativo** debido a que todos los indicadores en estudio son valores numéricos.

Para Muñoz (2018) "A diferencia de la investigación teórica, la práctica o aplicada busca o tiene como fin la aplicación inmediata de los conocimientos obtenidos, lo cual no significa que sea menos meritoria. Opino que ambas son necesarias, una no puede existir sin la otra, pues se retroalimentan y se autocorrigen" (p.86). La presenta investigación por **propósito** es de tipo **aplicada** porque se aplica la normativa y conocimiento generado por especialistas para solucionar una problemática.

Cabezas et al. (2018) menciona que las investigaciones con nivel explicativo no solo describen las características o establecen relaciones entre conceptos, también responden a las causas de los sucesos y fenómenos físicos (p.69). Por lo que la presente investigación tiene **nivel explicativo** debido a que se estudia la causa del efecto que se produce en la variable dependiente que en este caso es la respuesta sísmica debido la manipulación de las variables independientes.

Para Borja (2016) una investigación de diseño experimental debe tener 3 requisitos fundamentales que son la manipulación de variables, la medición del efecto de la variable independiente y asegurar que las modificaciones en la variable dependiente se deban exclusivamente a los cambios de la variable independiente (p.14). La presente investigación tiene un **diseño experimental** porque se manipula variable independiente mediante la

modalidad o diferentes maneras que se presenta, en esto caso se presenta mediante el MBF y DDBD. Así mismo los cambios en la variable dependiente que es la respuesta sísmica se deberá únicamente al método empleado. La muestra empleada no ha sido escogida al azar por lo que el experimento es **cuasi-experimental.**

3.2 Variables y operacionalización

Variable independiente: El método convencional y el método basado en desplazamiento

Variable dependiente: Respuesta sísmica

3.3 Población, muestra y muestreo

La población es un conjunto finito o infinito de elementos con características comunes para los cuales se podrá aplicar las conclusiones de la investigación, queda delimitada por el problema y objetivos del estudio (Arias, 2006, p.81).

En la presente investigación la *población* está constituida por todas las edificaciones de vivienda medianamente altas con sistema estructural de pórticos y muros en la ciudad del Cusco

La *muestra* es una edificación de vivienda de 9 niveles con sistema estructural constituido por pórticos y muros. Por que

En un *muestreo no probabilístico intencional* la muestra se escoge en base criterios o juicios preestablecidos por el investigador (Arias, 2006, p.85). En esta investigación la muestra se escogió en base a los siguientes criterios: a) En la ciudad del Cusco se construyen edificios multifamiliares de hasta 11 niveles, b) Debido a los requerimientos sismorresistentes los edificios de mediana altura son estructurados a base de pórticos con muros para proveerles rigidez lateral, c) hay una tendencia de proyectar y diseñar edificios multifamiliares en la ciudad de Cusco aprovechando al máximo la altura.

3.4 Técnicas e instrumentos de recolección de datos

"La observación es una técnica que consiste en visualizar o captar mediante la vista, en forma sistemática, cualquier hecho, fenómeno o situación que se produzca en la naturaleza o en la sociedad, en función de unos objetivos de investigación preestablecidos" (Arias, 2006, p.69).

En la presente investigación se utilizará la técnica de observación y los instrumentos que sirven como guía de observación serán fichas técnicas donde se organizan los resultados, Estas fichas son validados por juicio de expertos. Ver anexo 3

- Ficha técnica N°1: Análisis sísmico según E-030 (Indicador: Cortantes y momentos)
- Ficha técnica N°2: Análisis sísmico según E-030 (Indicador: Desplazamientos y derivas)
- Ficha técnica N°3: Método basado en desplazamientos (Indicador: Cortantes y momentos)
- Ficha técnica N°4: Método basado en desplazamientos (Indicador: Desplazamientos y derivas)
- Ficha técnica N°5: Análisis estático no lineal (Indicador: Cortantes y Desplazamientos inelásticos)
- Ficha técnica N°6: Cuantificación de materiales (Indicador: Cantidad de acero de refuerzo)
- Ficha técnica N°7: Cuantificación de materiales (Indicador: Dimensiones de elementos)

3.5 Procedimientos

A continuación, se realiza el desarrollo de la investigación:

3.5.1 Recaudación de información preliminar

Ubicación

El edificio en estudio llamado "Residencial Aura" se encuentra ubicado en el distrito de Wanchaq, provincia del Cusco, departamento del Cusco.

Características generales

El edificio se encuentra sobre un área de terreno de aproximadamente 382 m2, consta de 9 pisos destinados a vivienda multifamiliar, la altura total del edificio es de 23.2m con una altura típica de entrepiso de 2.6m y en el último nivel de 2.4m. Cuenta con una caja de ascensor y una escalera metálica para el trasporte vertical. La profundidad de cimentación según el estudio de mecánica de suelos no debe ser menor a 1.8m, el suelo de fundación consiste en grava arenosa con presencia de finos con una capacidad portante de 0.84kg/cm2 por lo que se sugiere una platea de cimentación, según la norma E-030 de diseño sismorresistente corresponde a un perfil tipo S2 (ver anexo IV).

Estructuración

El edificio es estructurado con muros de corte y vigas peraltadas en ambas direcciones con el objetivo de dotar suficiente rigidez lateral y controlar las derivas máximas permisibles de la norma. A su vez consta con losas aligeradas y una losa maciza en la zona de la caja de ascensor, estos elementos horizontales tienen la finalidad de funcionar como un diafragma rígido y trasmitir las fuerzas sísmicas a los elementos estructurales.

Figura 40 Planta típica de arquitectura del edificio en estudio

Predimensionamiento

El predimensionamiento es un proceso preliminar donde se estiman las dimensiones iníciales de los elementos estructurales, esto se realiza con ayuda de la normativa y por recomendaciones de especialistas en el tema.

	DIMENSIONES			
	Ancho o espesor (cm)	Largo (cm)		
	25	45		
Vigas en X	30	50		
	30	60		
Vigas en Y	25	45		
Columnoo	30	60		
Columnas	30	70		
Placas	20-30	Variable		
Losa Aligerada	20			

Tabla 2 Resumen de las dimensiones de elementos

Cargas

Las cargas sobre la estructura se estiman en base al peso propio de los materiales y dimensiones de elementos según la norma E-020 de cargas.

CARGAS UTILIZADAS					
	Carga distribuida (kg/m2)	FUENTE			
Peso propio del aligerado	350	(E-020)			
Piso terminado	100	Ver anexo			
Tabiquería	90-360	Ver anexo			
Techo metálico	50	Ver anexo			
Carga viva de piso	200	(E-020)			
Carga viva de techo	60	(E-020)			

Tabla 3 Resumen de cargas utilizadas

Materiales

En la tabla 4 se muestran las propiedades básicas necesarias para el análisis lineal elástico convencional.

Tabla 4	Propiedades	del	Material
---------	-------------	-----	----------

MATE	FUENTE			
CONCRETO:	f'c	210	kg/cm2	Dato
Módulo de Elasticidad	Ec	217370.651	kg/cm2	Ecu. 8.3 (E-060)
Peso volumétrico	γc	2400	kg/m3	ANEXO 1 (E-020)

Aspectos del modelamiento

El modelo matemático del edificio fue realizado en el software ETABS en su versión 20 con licencia académica de prueba (ver anexo V) las vigas y columnas fueron modeladas como elementos línea o elementos "frame", los muros como elementos "Shell", las losas aligeradas se modelaron como elementos "membrane", los cuales no aportan rigidez fuera de su plano y solo tienen la finalidad de trasmitir las cargas verticales hacia los demás elementos. Así mismo se asignó la condición de diafragma rígido lo cual impide deformaciones axiales relativas en los elementos horizontales.

Figura 41 Modelo matemático de la estructura

3.5.2 Análisis Sísmico convencional según E-030 (MBF)

Paso 1) Parámetros sísmicos

1.1) Factor de zona

En el anexo 01 de la norma de diseño sismorresistente E-030 se encuentra la zonificación sísmica, la ciudad del Cusco se encuentra ubicada en zona sísmica 2 al cual le corresponde un factor de zona de 0.25 según la tabla N°1 de la E-030.

FACTOR DE ZONA					
ZONA	Z				
4	0.45				
3	0.35				
2 0.25					
1	0.10				
Euente: E-030					

Tabla 5 Factor de zona

1.2) Parámetros de sitio

Según el estudio de mecánica de suelos el perfil de suelo corresponde a un tipo S2, junto con la zona se calculan los parámetros de sitio según las tablas N°3 y N°4 de la norma E.030 como se indica a continuación.

FACTOR DE SUELO							
ZONA/SUELO	SO	S1	S2	S3			
4	0.80	1.00	1.05	1.10			
3	0.80	1.00	1.15	1.20			
2	0.80	1.00	1.20	1.40			
1	0.80	1.00	1.60	2.00			

Tabla 6 Factor de Suelo

Fuente: E-030

	PERIODO "Tp" y "TI"						
	Perfil de suelo						
	50 S1 S2 S3						
Тр	0.30	0.40	0.60	1.00			
ΤI	3.00	2.50	2.00	1.60			
2							

Tabla 7 Periodos "Tp" y "Tl"

Fuente: E-030

1.3) Factor de Uso

El factor de uso está relacionado con la categoría de la edificación, para una edificación de vivienda según la tabla N°5 de la norma corresponde a una edificación común o categoría C.

CATEGORIA DE LA EDIFICACION						
CATEGORIA	DESCRIPCION	FACTOR U				
A	A1: Establecimiento del sector salud (públicos y privados) del segundo y tercer nivel, según lo normado por el ministerio de salud.	Con aislamiento 1.0 y sin aislamiento 1.5.				
Edificaciones Esenciales	A2: Edificaciones esenciales para el manejo de las emergencias, el funcionamiento del gobierno y en general aquellas que puedan servir de refugio después de un desastre.	1.50				
B Edificaciones donde se reúnen gran cantidad de personas tales como cines, teatros, estadios, coliseos, centros comerciales, terminales de buses de pasajeros, establecimientos penitenciarios, o que guardan patrimonios valiosos como museos y bibliotecas.		1.30				
C Edificaciones comunes tales como: <i>viviendas</i> , oficinas, hoteles, restaurantes, depósitos e instalaciones industriales cuya falla no acarree peligros adicionales de incendios o fugas de contaminantes.		1.00				
D Edificaciones temporales	Construcciones provisionales para depósitos, casetas y otras similares.	A criterio del proyectista				

Fuente: E-030

1.4) Coeficiente básico de reducción

Debido al número de niveles y la cantidad de muros se prevé que el sistema estructural es de muros estructurales, sin embargo, esto se comprobará

posteriormente al análisis en el paso 7. El coeficiente básico de reducción para un sistema estructural de muros de corte según la tabla N°7 de la E-030 es 6.

SISTEMAS ESTRUCTURALES					
Sistema Estructural	Coeficiente Básico de Reducción Ro				
Acero:					
Pórticos Especiales Resistentes a Momento (SMF)	8				
Pórticos Intermedios Resistentes a Momento (IMF)	5				
Pórticos Ordinarios Resistentes a Momento (OMF)	4				
Pórticos Especiales Concéntricamente Arriostrados (SCBF)	7				
Pórticos Ordinarios Concéntricamente Arriostrados (OCBF)	4				
Pórticos Excéntricamente Arriostrados (EBF)	8				
Concreto Armado:					
Pórticos	8				
Dual	7				
De muros estructurales	6				
Muros de ductilidad limitada	4				
Albañilería Armada o Confinada	3				
Madera	7				

Tabla 9 Determinación del sisten	na estructural

Fuente: E-030

1.5) Coeficiente de reducción de fuerzas sísmicas

Se calcula con la ecuación N°5, y los factores de irregularidad de las tablas 8 y 9 de la E-030, sin embargo, preliminarmente se considerará la estructura regular ($I_a = I_p = 1.0$) y posterior al análisis dinámico modal espectral preliminar se verificará las irregularidades en el paso 3.

 $R = R_o \cdot I_a \cdot I_p = 6, 0 \cdot 1, 0 \cdot 1, 0 = 6, 0$

Paso 2) Análisis modal espectral preliminar

2.1) Espectro de respuesta

Con los parámetros sísmicos establecidos en los pasos anteriores se puede calcular la aceleración espectral según el artículo 26.2 de la E.030 y la ecuación N°8:

$$S_a(C) = \frac{Z \cdot U \cdot C \cdot S}{R} \cdot g = \frac{0,25 \cdot 1,0 \cdot C \cdot 1,20}{60} \cdot 9,81 \frac{m}{s^2} = 0,49 \frac{m}{s^2} \cdot C$$

Donde C es el coeficiente de amplificación sísmica dependiente del periodo y los parámetros de sitio, se calcula según el artículo 11 de la E-030 con las ecuaciones 2, 3 y 4:

De esta manera es posible construir el espectro de aceleración tabulando los periodos como se muestra en la tabla 10 y en la figura 42,

Figura 42. Factor de amplificación sísmica y espectro de aceleraciones (Regular)

(1)	(2)	(3)
T (s)	С	Sa (m/s2)
0	2.500	1.226
0.1	2.500	1.226
0.2	2.500	1.226
0.3	2.500	1.226
0.4	2.500	1.226
0.5	2.500	1.226
0.6	2.500	1.226
0.7	2.143	1.051
0.8	1.875	0.920
0.9	1.667	0.818
1	1.500	0.736
1.1	1.364	0.669
1.2	1.250	0.613
1.3	1.154	0.566
1.4	1.071	0.526
1.5	1.000	0.491
1.6	0.938	0.460
1.7	0.882	0.433
1.8	0.833	0.409
1.9	0.789	0.387
2	0.750	0.368
2.1	0.680	0.334
2.2	0.620	0.304
2.3	0.567	0.278
2.4	0.521	0.255
2.5	0.480	0.235
2.6	0.444	0.218
2.7	0.412	0.202
2.8	0.383	0.188
2.9	0.357	0.175
3	0.333	0.164
3.1	0.312	0.153
3.2	0.293	0.144
3.3	0.275	0.135
3.4	0.260	0.127
3.5	0.245	0.120
3.6	0.231	0.114
3.7	0.219	0.107
3.8	0.208	0.102
3.9	0.197	0.097
4	0.188	0.092

	4.0	_				
Iahla	1()	Lenortro	do	200	araciona	c
i avia	10	LSDECUU	ue	auci	CIACIONE	o

2.2) Definición de la masa sísmica

Se definió la masa sísmica según la tabla N°1. Así mismo se considera una excentricidad de la masa del 5% en cada dirección de análisis de acuerdo al artículo 25.5 de la norma E-030, el signo correspondiente será el que produzca un incremento en la excentricidad, por lo que es necesario conocer el centro de masa y centro de rigidez.

	Centro d	de masa	Centro d	le rigidez
Diag	XCCM	YCCM	XCR	YCR
PISO	m	m	m	m
8	7.486	11.775	7.038	14.665
7	7.493	11.960	7.047	14.797
6	7.466	11.966	7.060	14.955
5	7.453	11.969	7.076	15.132
4	7.445	11.971	7.093	15.319
3	7.454	12.001	7.112	15.478
2	7.448	11.998	7.133	15.497
1	7.451	11.956	7.125	15.098
	7.462	11.950	7.085	15.117

Tabla	4.4	Contro	da	-		aantra	da	rigidan	
iabia	11	Centro	ue	IIIasa	y	Centro	ue	ngiuez	

Excentricidad en X:	exc.X	0.377	m
Excentricidad en Y:	exc.Y	-3.168	m

Según la tabla 11 la excentricidad accidental para X, Y seria 5% y -5% respectivamente.

2.3) Análisis modal

Como se observa en la tabla 12 el primer modo corresponde a traslación en la dirección X, el segundo modo es rotacional y el tercer modo es de traslación en la dirección Y. Debido a que se trata de diafragmas rígidos se considera 3 grados de libertad por piso haciendo un total de 27 en los 9 niveles, sin embargo, los resultados muestran que solo serían necesarios los 7 primeros modos para superar el 90% de la masa participativa como se menciona en el artículo 26.1.2 de la E-030.

Mada	Period			DZ	0	0	C
IVIOGO	sec		UT	RZ	Sumux	Sumor	SUMRZ
1	0.722	0.5512	0.0070	0.1752	0.5512	0.0070	0.1752
2	0.504	0.1544	0.2329	0.3237	0.7055	0.2399	0.4989
3	0.473	0.0343	0.4610	0.2063	0.7398	0.7009	0.7053
4	0.184	0.1306	0.0009	0.0334	0.8704	0.7018	0.7387
5	0.118	0.0259	0.0314	0.1354	0.8962	0.7331	0.8741
6	0.107	0.0022	0.1677	0.0282	0.8984	0.9009	0.9023
7	0.089	0.0411	0.0001	0.0090	0.9395	0.9009	0.9113
8	0.070	0.0132	0.0001	0.0001	0.9527	0.9010	0.9114
9	0.059	0.0004	0.0223	0.0032	0.9531	0.9233	0.9146
10	0.057	0.0005	0.0004	0.0377	0.9536	0.9238	0.9523
11	0.052	0.0209	0.0000	0.0000	0.9745	0.9238	0.9523
12	0.049	0.0001	0.0001	0.0015	0.9746	0.9239	0.9539
13	0.048	0.0020	0.0037	0.0028	0.9766	0.9276	0.9567
14	0.047	0.0003	0.0063	0.0051	0.9769	0.9339	0.9618
15	0.046	0.0005	0.0318	0.0059	0.9773	0.9658	0.9677
16	0.041	0.0010	0.0010	0.0009	0.9783	0.9668	0.9686
17	0.039	0.0055	0.0000	0.0042	0.9838	0.9668	0.9728
18	0.035	0.0057	0.0016	0.0108	0.9896	0.9684	0.9837
19	0.033	0.0000	0.0004	0.0000	0.9896	0.9689	0.9837
20	0.032	0.0020	0.0004	0.0016	0.9915	0.9692	0.9854
21	0.032	0.0000	0.0036	0.0003	0.9915	0.9728	0.9857
22	0.031	0.0000	0.0120	0.0011	0.9916	0.9849	0.9868
23	0.030	0.0000	0.0000	0.0000	0.9916	0.9849	0.9868
24	0.030	0.0000	0.0001	0.0001	0.9916	0.9850	0.9869
25	0.030	0.0000	0.0000	0.0000	0.9916	0.9850	0.9869
26	0.029	0.0002	0.0009	0.0008	0.9917	0.9859	0.9877
27	0.029	0.0021	0.0000	0.0023	0.9939	0.9859	0.9901

Tabla 12 Modos de vibración y masas participativas

2.4) Criterio de combinación

El análisis modal espectral se realizó según el artículo 26 de la norma E-030 donde se menciona que la respuesta total del edificio (fuerzas cortantes, momentos flectores, desplazamientos) se puede obtener mediante una combinación cuadrática completa de la respuesta de cada modo.

2.5) Desplazamientos Laterales

Según el artículo 28 los desplazamientos laterales se calcularán multiplicando por 0.75R los valores obtenidos del análisis modal espectral.

Paso 3) Verificación de irregularidades

3.1) Irregularidades estructurales en altura

Irregularidad de rigidez - Piso blando

Según la tabla N°8 de la E.030 la rigidez de entrepiso puede calcularse como la razón entre la fuerza cortante de entrepiso y el correspondiente desplazamiento de entrepiso. Existirá irregularidad cuando la rigidez lateral de un entrepiso es menor que el 70% de la rigidez del entrepiso inmediato superior o menor que el 80% de la rigidez lateral promedio de los 3 niveles superior adyacentes.

Piso	Cortante (ton)	Desplazamiento relativo (m)	Rigidez (ton/m)	< 0.7	< 0.8	
9	16.30	0.00115	14149.22	-	-	
8	63.10	0.00199	31772.91	2.25	-	Regular
7	98.52	0.00222	44318.26	1.39	-	Regular
6	127.51	0.00236	54052.40	1.22	1.80	Regular
5	151.13	0.00241	62684.78	1.16	1.44	Regular
4	170.43	0.00233	73082.20	1.17	1.36	Regular
3	185.26	0.00211	87886.34	1.20	1.39	Regular
2	195.88	0.00170	115359.42	1.31	1.55	Regular
1	202.02	0.00118	171349.70	1.49	1.86	Regular

Tabla 13 Verificación de irregularidad de rigidez en la dirección X

Tabla 14 Verificación de irregularidad de rigidez en la dirección Y

Piso	Cortante (ton)	Desplazamiento relativo (m)	Rigidez (ton/m)	< 0.7	< 0.8	
9	23.04	0.00113	20411.16	-	-	
8	84.96	0.00141	60127.60	2.95	-	Regular
7	131.87	0.00145	91069.34	1.51	-	Regular
6	169.21	0.00145	117018.26	1.28	2.05	Regular
5	198.95	0.00140	142415.53	1.22	1.59	Regular
4	222.60	0.00129	172956.88	1.21	1.48	Regular
3	240.26	0.00111	217037.76	1.25	1.51	Regular
2	252.45	0.00085	298049.35	1.37	1.68	Regular
1	259.28	0.00058	444733.45	1.49	1.94	Regular

Irregularidad de resistencia - Piso débil

Debido a la continuidad en altura de todos los elementos verticales la resistencia de un entrepiso a las fuerzas sísmicas no será menor que la resistencia del entrepiso inmediato superior en ningún nivel, por lo que no es necesario la verificación.

Irregularidad de masa o peso

Según la tabla N°8 de la E-030 existirá irregularidad cuando la masa de un piso sea mayor que 1.5 veces la masa de un piso adyacente, este criterio no aplica a azoteas.

Pico	Mx=My	Wi / Wi . 1	\\\; . 1 / \\\;	
FISO	tonf-s²/m	VVI / VVI+I	VVI+1/ VVI	
9	11.122	-	-	
8	38.061	-	-	
7	36.816	0.967	1.034	Regular
6	37.391	1.016	0.985	Regular
5	37.396	1.000	1.000	Regular
4	37.391	1.000	1.000	Regular
3	36.816	0.985	1.016	Regular
2	37.391	1.016	0.985	Regular
1	42.454	1.135	0.881	Regular

Tabla 15	Verificación	de	irregularidad	de	masa o	peso
----------	--------------	----	---------------	----	--------	------

Irregularidad geométrica vertical

Debido a la continuidad en altura de todos los elementos verticales no es necesario la verificación.

Discontinuidad de los sistemas resistentes

Debido a la continuidad en altura de todos los elementos verticales no es necesario la verificación.

3.2) Irregularidades estructurales en planta

Irregularidad torsional

Esta verificación solo aplica si los desplazamientos laterales calculados según el artículo 28 de la E.030 superan el 50% del límite establecido, para estructuras de concreto armado este límite es de 0.007 (tabla N°11 E-030). Como se muestra en la tabla N°17 no es necesario realizar la verificación de irregularidad torsional en la dirección Y ya que las derivas máximas no superan 0.0035.

	(1)	(2)	(3)	(4)	(5)		(6)	
Piso	h	$\Delta \mathbf{px}$	$\Delta \mathbf{x} \ \mathbf{max}$	δx ine (m)	Limite	¿Aplica?	Ratio	
9	2.40	0.00519	0.00698	0.00291	0.0035	No	I	Regular
8	2.60	0.00894	0.01296	0.00498	0.0035	Si	1.45	Irregular
7	2.60	0.01000	0.01454	0.00559	0.0035	Si	1.45	Irregular
6	2.60	0.01062	0.01535	0.00590	0.0035	Si	1.45	Irregular
5	2.60	0.01085	0.01562	0.00601	0.0035	Si	1.44	Irregular
4	2.60	0.01049	0.01514	0.00582	0.0035	Si	1.44	Irregular
3	2.60	0.00949	0.01371	0.00527	0.0035	Si	1.45	Irregular
2	2.60	0.00764	0.01105	0.00425	0.0035	Si	1.45	Irregular
1	3.40	0.00531	0.00764	0.00225	0.0035	No	-	Regular
0	0.00	0.00000	0.00000	0.00000	0.0035	No	-	Regular

Tabla 16 Verificación de irregularidad torsional en la dirección X

- (1): Alturas de cada entrepiso.
- (2): Desplazamientos relativos promedio de entrepiso.
- (3): Desplazamientos relativos máximos de entrepiso.
- (4): Deriva máxima de entrepiso.
- (5): 50% de la deriva límite establecido por la E-030.
- (6): (3) / (2)

Piso	h	$\Delta \mathbf{px}$	$\Delta \mathbf{x} \ \mathbf{max}$	δx ine (m)	Limite	¿Aplica?	Ratio	
9	2.40	0.00508	0.00593	0.00247	0.0035	No	-	Regular
8	2.60	0.00636	0.00653	0.00251	0.0035	No	-	Regular
7	2.60	0.00652	0.00670	0.00258	0.0035	No	-	Regular
6	2.60	0.00651	0.00670	0.00258	0.0035	No	-	Regular
5	2.60	0.00629	0.00648	0.00249	0.0035	No	-	Regular
4	2.60	0.00579	0.00598	0.00230	0.0035	No	-	Regular
3	2.60	0.00498	0.00515	0.00198	0.0035	No	-	Regular
2	2.60	0.00381	0.00395	0.00152	0.0035	No	-	Regular
1	3.40	0.00262	0.00272	0.00080	0.0035	No	-	Regular
0	0.00	0.00000	0.00000	0.00000	0.0035	No	-	Regular

Tabla 17 Verificación de irregularidad torsional en la dirección Y

Figura 43 Verificación de irregularidad torsional

Según la norma E-030 el factor de irregularidad por torsión afecta a las dos direcciones a pesar de que no se cuenta con dicha irregularidad en la dirección Y según la tabla 17.

Esquinas entrantes

La estructura en planta es de forma rectangular y presenta vigas peraltas en todo el perímetro como se observa en la figura N°44, por lo que no existe esquinas entrantes.

Discontinuidad del diafragma

Según la tabla 9 de la E-030 existe esta irregularidad cuando las aberturas del diafragma son mayores que el 50% del área total y cuando alguna sección trasversal en cualquier dirección es menor que el 25% de la sección transversal con las dimensiones totales en planta.

Figura 44 Verificación de irregularidad por discontinuidad del diafragma

Área total en planta (At)	369.00	m2
Ancho de abertura N°1 (a1)	4.41	m
Largo de abertura N°1 (b1)	4.85	m
Ancho de abertura N°2 (a2)	7.83	m
Largo de abertura N°2 (b2)	4.85	m
Área total de aberturas (A'=a1.b1+a2.b2)	59.36	m2
Ratio (A'/At)	16.09	%
Limite >	25.00	%
Verificación	Regular	

Tabla 18 Verificación de irregularidad por discontinuidad del diafragma (a)

Tabla 19 Verificación de irregularidad por discontinuidad del diafragma (b)

Longitud del aligerado (L1)	14.76	m
N° de vigas transversales (n)	4	
Ancho de viga transversal (b)	0.25	m
Altura del aligerado (H)	0.2	m
Espesor de la losa superior (e1)	0.05	m
Ancho de vigueta (t)	0.1	m
Separación entre viguetas (S)	0.4	m
N° de viguetas nv= (L1-n.b)/S	34.4	
Área total del aligerado A1=L1.e1+nv.(H-e1).t	1.254	m2
Longitud de la losa maciza (L2)	2.52	m
Espesor losa maciza (e2)	0.2	m
Área de losa maciza A2=L2.e2	0.504	m2
Ratio (A2/A1)	40.19	%
Limite <	25.00	%
Verificación	Regular]

Sistemas no paralelos

Todos los elementos estructurales son paralelos entre sí en ambas direcciones por lo que no es necesario realizar esta verificación.
3.3) Resumen de irregularidades

	DIRE	DIRECCION			
RESUMEN DE IRREGULARIDADES	X	Y			
EN ALTURA					
Irregularidad de Rigidez – Piso Blando	No	No			
Irregularidades de Resistencia – Piso Débil	No	No			
Irregularidad Extrema de Rigidez	No	No			
Irregularidad Extrema de Resistencia	No	No			
Irregularidad de Masa o Peso	No	No			
Irregularidad Geométrica Vertical	No	No			
Discontinuidad en los Sistemas Resistentes	No	No			
Discontinuidad extrema de los Sistemas Resistentes	No	No			
EN PLANTA	-	-			
Irregularidad Torsional	Si	Si			
Irregularidad Torsional Extrema	No	No			
Esquinas Entrantes	No	No			
Discontinuidad del Diafragma	No	No			
Sistemas no Paralelos	No	No			
FACTOR DE REDUCCION DE FUERZAS SISMICAS					
Factor de irregularidad en altura (la)	1.00	1.00			
Factor de irregularidad en planta (Ip)	0.75	0.75			
Coeficiente de reducción básico (Ro)	6.00	6.00			
Coeficiente de reducción de fuerzas sísmicas (R=Ro.la.lp)	4.50	4.50			

Tabla 20 Resumen de irregularidades y factor de reducción de fuerzas sísmicas

Paso 4) Análisis estático o de fuerzas estáticas equivalentes

4.1) Periodos para el análisis sísmico estático

Según el artículo 25.4.1 de la E.030 el periodo fundamental de la estructura se puede estimar con la ecuación N°8:

Por lo tanto, se tiene: $T = \frac{24.00}{60} = 0.40s$

Los periodos para el análisis estático se pueden calcular alternativamente según el artículo 25.4.2, restringiendo los giros en planta, es decir en traslación pura.

Figura 45 Periodos en traslación pura

Estos valores serán usados en los cálculos ya que son más precisos que el calculado en el paso 4.1.

4.2) Factor de amplificación sísmica

Según el artículo 11 de la E-030 en la dirección X se tiene:

$$T_x = 0,62 > T_p = 0,6$$

 $\therefore C_x = 2,5 \cdot \frac{T_p}{T_x} = 2,5 \times \frac{0,6}{0,62} = 2,42$

En la dirección Y:

$$T_{\gamma} = 0,47 < T_{p} = 0,6$$

$$\therefore C_{\gamma} = 2,5$$

4.3) Peso Sísmico

Según el artículo 23 de la norma E-30 que indica que edificaciones de categoría C se considera el 100% de la carga muerta y 25% de la carga viva.

	P (Ton)
Carga Muerta (CM)	2956.68
Carga Viva (CV)	523.25
Peso Sísmico (CM+0.25CV) Art. 23	3087.50

Tabla 21 Peso sísmico de la estructura obtenido del ETABS

4.4) Cortante basal estática

Se realiza según el artículo 28 de la norma E-030.

Tabla 22 Análisis sísmico estático

Factor de Zona (Tabla N°1 E-030) Factor de Uso (Tabla N°5 E-030) Factor de Amplificación (Art. 14 E-030) Factor de Suelo (Tabla N°3 E-030) Coef. Básico de Red. (Tabla N°7 E-030) Irregularidad en altura (Tabla N°8 E-030) Irregularidad en planta (Tabla N°9 E-030) Coef. de Reducción (Articulo 22 E-030) Verificación (Art. 28.2.2 E-030)

Peso Sísmico (ETABS) Coeficientes Cortante Estática (Art. 28.2 E-030) Coeficiente k (Art. 28.3.2 E-030)

PARAMETROS SISMICOS						
	X Y					
Z	0.2	25				
U	1.	00				
С	2.42	2.50				
S	1.20					
Ro	6.00	6.00				
la	1.00	1.00				
lp	0.75	0.75				
R	4.50	4.50				
C/P>0.11	0.54	0.56				
C/K>0.11	ok	ok				
Ps (Ton)	308	7.50				
ZUCS/R	0.16	0.17				
V (Ton)	497.98	514.58				
k	1.06	1.00				

4.5) Distribución de fuerzas en altura

Según el artículo 25.3.2 de la E-030 el coeficiente k se calcula de la siguiente manera:

En X: $T = 0,62 > 0,5 \rightarrow k = 0,75 + 0,5 \times 0,62 = 1,06$

En Y: $T = 0,47 < 0,5 \rightarrow k = 1$

Tabla 23 Distribución de fuerzas en altura

	(1)		(2)	(3)			(4	4)	(!	5)	(6	6)	(7	7)
	н	h	М	Р	P x h^kx	P x h^ky			Fi X	Fi Y	Vi X	Vi Y	Мх	Mv
Piso	m	m	tonf- s²/m	Ton	Ton.m	Ton.m	αχ	αy	Ton	Ton	Ton	Ton	(ton.m)	(ton.m)
9	24.00	2.40	11.12	109.108	3168.701	2618.597	0.068	0.066	34.042	34.153	34.042	34.153	0.00	0.00
8	21.60	2.60	38.06	373.381	9697.806	8065.035	0.209	0.204	104.186	105.187	138.228	139.339	1162.63	1166.40
7	19.00	2.60	36.82	361.161	8188.044	6862.067	0.177	0.174	87.966	89.497	226.195	228.836	15702.42	15823.03
6	16.40	2.60	37.39	366.801	7114.838	6015.536	0.153	0.152	76.437	78.456	302.631	307.293	35946.22	36303.26
5	13.80	2.60	37.40	366.858	5926.105	5062.635	0.128	0.128	63.666	66.028	366.297	373.321	59689.63	60412.39
4	11.20	2.60	37.39	366.801	4748.994	4108.171	0.102	0.104	51.020	53.580	417.317	426.901	83875.67	85062.23
3	8.60	2.60	36.82	361.161	3534.026	3105.988	0.076	0.079	37.967	40.509	455.284	467.411	106235.53	107935.63
2	6.00	2.60	37.39	366.801	2450.591	2200.806	0.053	0.056	26.327	28.704	481.611	496.114	124678.75	126870.10
1	3.40	3.40	42.45	416.477	1523.908	1416.022	0.033	0.036	16.372	18.468	497.983	514.583	138502.73	141110.36
0	0.00	0.00											147699.58	150613.78
				Σ	46353.013	39454.857	1.000	1.000	497.98	514.58				

- (1): Alturas acumuladas
- (2): Masas sísmicas de entrepiso obtenidas del ETABS
- (3): Pesos sísmicos de entrepiso $P = M \cdot g$
- (4): Proporción de fuerza inercial en cada nivel según la ecuación N°7 $\alpha_i = \frac{P_i(h_i)^k}{\sum_{j=1}^n P_j(h_j)^k}$
- (5): Fuerzas de inercia de cada nivel $F_i = \alpha_i \times V$
- (6): Cortante de entrepiso $V_i = \sum_{j=i}^n F_i$
- (7): Momentos volcantes $M_i = V_{i+1} \times (h_{i+1} h_i) + M_{i-1}$

Figura 46 Cortantes estáticas y momentos de entrepiso

Paso 5) Análisis dinámico modal espectral final

Tabla 24 Parámetros Sísmicos finales

	PARAMETROS SISMICOS				
		X	Ŷ		
Factor de Zona (Tabla N°5)	Z	0.25			
Factor de Uso (Tabla N°8)	U	1.00			
Factor de Suelo (Tabla N°6)	S	1.20			
Pariadas (Tabla NºZ)	Тр	0.60			
renouus (Tabla IV T)	TI 2.00		00		
Coef. de Reducción (Tabla N°20)	R	4.50 4.50			

5.1) Espectro de respuesta

Similarmente al paso 2 las aceleraciones espectrales para las direcciones X, Y respectivamente serán:

$$S_{a,x}(C) = S_{a,y}(C) = \frac{Z \cdot U \cdot C \cdot S}{R} \cdot g = \frac{0,25 \cdot 1,0 \cdot C \cdot 1,20}{4,50} \cdot 9,81 \frac{m}{s^2} = 0,65 \frac{m}{s^2} \cdot C$$

Figura 47 Factor de amplificación sísmica y Espectro de Aceleraciones finales

T (s)	С	Sa X (m/s2)	Sa Y (m/s2)
0	2.500	1.635	1.635
0.1	2.500	1.635	1.635
0.2	2.500	1.635	1.635
0.3	2.500	1.635	1.635
0.4	2.500	1.635	1.635
0.5	2.500	1.635	1.635
0.6	2.500	1.635	1.635
0.7	2.143	1.401	1.401
0.8	1.875	1.226	1.226
0.9	1.667	1.090	1.090
1	1.500	0.981	0.981
1.1	1.364	0.892	0.892
1.2	1.250	0.818	0.818
1.3	1.154	0.755	0.755
1.4	1.071	0.701	0.701
1.5	1.000	0.654	0.654
1.6	0.938	0.613	0.613
1.7	0.882	0.577	0.577
1.8	0.833	0.545	0.545
1.9	0.789	0.516	0.516
2	0.750	0.491	0.491
2.1	0.680	0.445	0.445
2.2	0.620	0.405	0.405
2.3	0.567	0.371	0.371
2.4	0.521	0.341	0.341
2.5	0.480	0.314	0.314
2.6	0.444	0.290	0.290
2.7	0.412	0.269	0.269
2.8	0.383	0.250	0.250
2.9	0.357	0.233	0.233
3	0.333	0.218	0.218
3.1	0.312	0.204	0.204
3.2	0.293	0.192	0.192
3.3	0.275	0.180	0.180
3.4	0.260	0.170	0.170
3.5	0.245	0.160	0.160
3.6	0.231	0.151	0.151
3.7	0.219	0.143	0.143
3.8	0.208	0.136	0.136
3.9	0.197	0.129	0.129
4	0.188	0.123	0.123

Tabla 25 Espectro de aceleraciones finales en X, Y

5.2) Resultados del análisis modal espectral final

A continuación, se muestran los resultados del análisis modal espectral obtenidos a partir de una comunicación según lo mencionado en el paso 2.5.

Piso	H (m)	h (m)	VX (ton)	VY (ton)	Mx (ton.m)	My (ton.m)
9	24.00	2.40	21.73	30.73	0.00	0.00
8	21.60	2.60	84.13	113.28	45.43	65.55
7	19.00	2.60	131.36	175.82	252.05	347.23
6	16.40	2.60	170.01	225.61	580.19	793.48
5	13.80	2.60	201.51	265.27	1004.36	1366.26
4	11.20	2.60	227.24	296.79	1504.78	2036.69
3	8.60	2.60	247.02	320.35	2066.08	2782.65
2	6.00	2.60	261.17	336.60	2674.57	3584.93
1	3.40	3.40	269.36	345.71	3318.35	4427.15
0	0.00	0.00			4283.81	5563.18

Tabla 26 Cortantes y momentos de entrepiso del análisis modal espectral

Figura 48. Cortantes y momentos finales del Análisis modal espectral

5.3) Desplazamientos máximos y control de derivas

Dado que se tiene una estructura irregular se multiplicará por el factor 0.85R los desplazamientos obtenidos del análisis lineal elástico para obtener los desplazamientos inelásticos.

		R	Facto	or
X	4.50	Irregular	0.85R	3.83
Y	4.50	Irregular	0.85R	3.83

Tabla 27 Factor para el cálculo de desplazamientos laterales

Tabla 28 Desplazamientos y derivas máximas en X

	(1)	(2)	(3)	(4)	(5)		_
Piso	h	h	δx ela (m)	δx ine (m)	$\Delta \mathbf{x}/\mathbf{h}$	Limite	
9	24.00	2.40	0.03348	0.12805	0.00330	0.007	Cumple
8	21.60	2.60	0.03141	0.12014	0.00565	0.007	Cumple
7	19.00	2.60	0.02757	0.10545	0.00634	0.007	Cumple
6	16.40	2.60	0.02326	0.08898	0.00669	0.007	Cumple
5	13.80	2.60	0.01872	0.07159	0.00681	0.007	Cumple
4	11.20	2.60	0.01409	0.05389	0.00660	0.007	Cumple
3	8.60	2.60	0.00960	0.03673	0.00598	0.007	Cumple
2	6.00	2.60	0.00554	0.02119	0.00482	0.007	Cumple
1	3.40	3.40	0.00226	0.00866	0.00255	0.007	Cumple
0	0.00	0.00	0.00000		0.00000	0.007	Cumple

(1): Alturas acumuladas

(2): Altura de entrepiso

- (3): Desplazamientos obtenidos del análisis lineal elástico modal espectral (ETABS)
- (4): Desplazamientos máximos inelásticos $\delta_{x} = \delta'_{x} \times 0.85 R$
- (5): Desplazamientos máximos inelásticos relativos $\Delta_{xi} = \delta_{i+1} \delta_i$
- (6): Derivas máximas inelásticas (5) / (2)

Piso	h	h	δy ela (m)	δy ine (m)	Δ y/h	Limite	
9	24.00	2.40	0.01684	0.05684	0.00280	0.007	Cumple
8	21.60	2.60	0.01485	0.05012	0.00285	0.007	Cumple
7	19.00	2.60	0.01266	0.04271	0.00292	0.007	Cumple
6	16.40	2.60	0.01041	0.03512	0.00292	0.007	Cumple
5	13.80	2.60	0.00816	0.02752	0.00283	0.007	Cumple
4	11.20	2.60	0.00598	0.02018	0.00261	0.007	Cumple
3	8.60	2.60	0.00397	0.01340	0.00225	0.007	Cumple
2	6.00	2.60	0.00224	0.00757	0.00172	0.007	Cumple
1	3.40	3.40	0.00091	0.00309	0.00091	0.007	Cumple
0	0.00	0.00	0.00000		0.00000	0.007	Cumple

Tabla 29 Desplazamientos y derivas máximas en Y

Figura 49 Control de derivas

Paso 6) Escalamiento de la cortante dinámica

Se procede a escalar la cortante dinámica de acuerdo al artículo 26.4, a un 90% como mínimo porque se trata de una estructura irregular.

i abia 30 Escalarillento de la cortante dinamic	Tabla 30	Escalamiento	de la	cortante	dinámica
---	----------	--------------	-------	----------	----------

	Х	Y
V dina (Ton)	269.36	345.71
V est (Ton)	497.98	514.58
%	54.09	67.18
V min %	90	90
F.E.	1.66	1.34
V dina esc.	448.18	463.12

Tabla 31 Cortantes y momentos escalado	S
--	---

Piso	H (m)	h (m)	VX (ton)	VY (ton)	Mx (ton.m)	My (ton.m)
9	24.00	2.40	36.16	41.16	0.00	0.00
8	21.60	2.60	139.99	151.76	86.79	98.79
7	19.00	2.60	218.57	235.54	450.76	493.35
6	16.40	2.60	282.88	302.24	1019.03	1105.76
5	13.80	2.60	335.29	355.37	1754.52	1891.59
4	11.20	2.60	378.09	397.60	2626.27	2815.55
3	8.60	2.60	411.01	429.15	3609.32	3849.31
2	6.00	2.60	434.56	450.92	4677.94	4965.11
1	3.40	3.40	448.18	463.12	5807.80	6137.51
					7331.63	7712.13

Figura 50 Cortantes y momentos escalados

Paso 7) Verificación de sistema estructural

Según los resultados en la tabla 32 el porcentaje de cortante que toman los muros es mayor que el 70% en ambas direcciones, por lo que se comprueba que efectivamente se trata de sistema de muros estructurales.

Figura 51 Nomenclatura de muros

MURO	SX	SY
M1Y		64.38
M2Y		89.36
M3Y		82.59
M4Y		59.93
M5Y		18.35
M1X	106.69	
M2X	23.43	
M3X	25.40	
M4X	46.13	
M5X	51.83	
∑Vw (ton)	253.49	314.61
V basal (ton)	269.36	345.71
%	94.11	91.01
%V min	70.00	70.00
S.E.	MUROS	MUROS

Tabla 32 Verificación del sistema estructural

3.5.3 Diseño de elementos estructurales según E-060

Diseño de vigas

Como ejemplo se diseñará la viga intermedia del pórtico 4:

Geometría de la viga:

- Ancho: b = 30 cm
- Peralte: h = 50 cm
- Peralte efectivo: d = h-9cm=50-9=41cm (Para 2 capas de acero de refuerzo)
- Luz libre: $l_n = 5m$

Datos de los materiales:

Concreto:

- Resistencia a la compresión: $f'_c = 210 \frac{kg}{cm^2}$
- Deformación unitaria del concreto: $\varepsilon_c = 0,003$

• Densidad del concreto: $\gamma_c = 2,40 \frac{ton}{m^3}$

Acero de refuerzo:

- Esfuerzo de fluencia: $f_y = 4200 \frac{kg}{cm^2}$
- Módulo de elasticidad: $E_s = 2 \cdot 10^6 \frac{kg}{cm^2}$
- Deformación de fluencia: $\varepsilon_s = \frac{f_y}{E_s} = \frac{4200}{2 \cdot 10^6} = 0,0021$

Paso 1) Diseño por flexión

• Inercia y centroide de la sección bruta:

$$I_g = \frac{b \cdot h^3}{12} = \frac{30 \cdot 50^3}{12} = 312500 \, cm^4$$
$$Y_t = h/2 = 25 \, cm$$

Módulo de ruptura para el concreto según la ecuación 14:

$$f_r = 2 \cdot \sqrt{f'_c} = 2\sqrt{210} = 28.98 \, kg \, / \, cm^2$$

Momento de agrietamiento positivo según la ecuación 15:

$$M_{cr} = \frac{f_r \cdot I_g}{Y_t} = 3,623 ton \cdot m$$

Momento ultimo:

$$\phi M_n = 1, 2 \cdot M_{cr} = 7,07 \, ton \cdot m$$

• Área de acero requerido:

$$\lambda = \frac{0.85 \cdot f'_c \cdot b \cdot d}{f_y} = 52,275 \, cm^2$$
$$As_{\min} = \lambda \left(1 - \sqrt{1 - \frac{2 \cdot (\phi M_n)}{\phi \cdot \lambda \cdot f_y \cdot d}} \right) = 2,885 \, cm^2$$

Acero mínimo en flexión según la ecuación 16:

$$As_{\min} = \frac{0, 7 \cdot \sqrt{f'_c}}{f_v} \cdot b \cdot d = 2,971 cm^2$$

- 1.1) Refuerzo máximo en elementos sujetos a flexión (Art. 10.3.4):
 - Factor de bloque equivalente (Art.10.2.7.3)

Como
$$f'_{c} = 210 \frac{kg}{cm^{2}} < 280 \frac{kg}{cm^{2}} \rightarrow \beta_{1} = 0,85$$

• Cuantía balanceada (Art. 10.3.2) según ecuación 17:

$$\rho_{b} = \frac{0.85 \cdot f'_{c} \cdot \beta_{1}}{f_{y}} \left(\frac{\varepsilon_{c}}{\varepsilon_{y} + \varepsilon_{c}} \right) = 0.021$$

Cuantía máxima

$$\rho_{\rm max} = 0,75 \cdot \rho_b = 0,016$$

• Área de acero máximo

 $As_{\max} = \rho_{\max} \cdot b \cdot d = 19,603 cm^2$

• Altura del bloque en compresión

$$a_{\max} = \frac{As_{\max} \cdot f_y}{0,85 \cdot f'_c \cdot b} = 15,375 \, cm$$

• Momento resistente máximo con acero en tracción solamente $\phi M_n = \phi_f \cdot As_{\max} \cdot f_y \cdot (d - a_{\max}) = 24,685 ton \cdot m$

1.2) Diseño para la envolvente del diagrama de momento flector:

Figura 52 Diagrama de momento flector envolvente de la viga

Figura 53 Área de acero requerida en la viga

• Área de acero requerido máximo en la viga: $As_{req} = 9,4 cm^2$

• Área de acero colocado en la viga: $As_{col} = 3\phi 5/8" + 2\phi 5/8" = 9,9 cm^2$ Se colocará $3\phi 5/8"$ como acero corrido en la parte superior e inferior y $2\phi 5/8"$ como refuerzo adicional en los extremos.

- 1.3) Disposición del acero del refuerzo longitudinal (Art. 21.4.4):
 - Verificación de acero mínimo:

$$As_{corrido} = 3\phi 5 / 8'' = 5,94 \, cm^2 > As_{min} = 2,971 \, cm^2$$

 Verificación de resistencia a momento positivo en los nudos
 El acero colocado negativo y positivo en los extremos es el mismo, por loque la verificación no es necesaria.

• Verificación de resistencia a momento en cualquier sección de viga

$$As_{corrido} > \frac{As_{max}}{4}$$
 2,91 $cm^2 > \frac{9,4 cm^2}{4} = 2,35 cm^2$ Se

verifica

- 1.4) Desarrollo del refuerzo para flexión Art. 12.10
 - Momento resistente del acero corrido:

$$\phi M_n = \phi_f \cdot As_{corrido} \cdot f_y \cdot \left(d - \frac{As_{corrido} \cdot f_y}{1, 7 \cdot f'_c \cdot b} \right) = 8,68 \ ton \cdot m$$

• Punto de corte teórico obtenido del diagrama de momentos (fig. 52)

$$x_{ct} = 0,35m$$

• Extensión más allá del punto teórico

$$d = 41cm \ 0 \ 12d_b = 12 \cdot \frac{5}{8} \cdot 2,54cm = 19,1cm$$

• Punto de corte final

$$x_{cf} = x_{ct} + d = 35\,cm + 41\,cm = 76\,cm$$

Se considerará 80cm como longitud del bastón.

• Verificación del desarrollo del bastón según ecuación 19

$$l_d = \left(\frac{4200 \cdot 1, 3 \cdot 1, 0 \cdot 1, 0}{8, 2 \cdot \sqrt{210}}\right) \frac{5}{8} \cdot 2,54 = 72,94 \, cm$$

$$x_{cf} = 80 \, cm > l_d = 72,94 \, cm$$
 Se verifica

Figura 54 Demanda y capacidad de la viga

Paso 2) Diseño por corte

2.1) Cortante por capacidad

- Espesor de la losa maciza: e = 0,20m
- Ancho tributario de losa maciza: $A_1 = 1,213m$
- Peso distribuido de la losa aligerada: $w_{alig} = 350 kg / m^2$
- Ancho tributario de la losa aligerada: $A_2 = 2,26m$
- Sobrecarga muerta por piso terminado: $w_{pt} = 100 kg / m^2$
- Sobrecarga muerta por tabiquería sobre losa: $w_{tab} = 200 kg / m^2$
- Carga viva sobre losas: $w_{sc} = 200 kg / m^2$

Carga muerta total distribuida sobre la viga:

$$W_{cm} = b \cdot h \cdot \gamma_{c} + e \cdot \gamma_{c} \cdot A_{1} + (w_{alig} + w_{tab}) \cdot A_{2} + w_{pt} \cdot (A_{1} + A_{2}) = 2,532 \frac{ton}{m}$$

Carga viva distribuida sobre la viga: $W_{cv} = w_{SC} \cdot (A_1 + A_2) = 0,695 \frac{ton}{m}$

Carga ultima sobre la viga: $W_u = 1,25 \cdot (W_{cm} + W_{cv}) = 4,033 \frac{ton}{m}$

<u>Caso 1:</u>

Momento probable en el extremo inferior izquierdo:

$$M_{n,isq} = As_{col,isq} \cdot f_{y} \cdot \left(d - \frac{As_{col,isq} \cdot f_{y}}{1,7 \cdot f'_{c} \cdot b}\right) = 15,43 ton \cdot m$$

Momento probable en el extremo superior derecho:

$$M_{n,der} = As_{col,der} \cdot f_{y} \cdot \left(d - \frac{As_{col,der} \cdot f_{y}}{1,7 \cdot f'_{c} \cdot b} \right) = 15,43 \, ton \cdot m$$

Cortante por capacidad según la ecuación 24:

$$V_{u,isq} = \frac{M_{n,isq} + M_{n,der}}{l_n} + W_u \cdot \frac{l_n}{2} = \frac{2 \cdot 15,43}{5,0} + 4,033 \cdot \frac{5,0}{2} = 16,26 \text{ ton}$$
$$V_{u,der} = \frac{M_{n,isq} + M_{n,der}}{l_n} - W_u \cdot \frac{l_n}{2} = \frac{2 \cdot 15,43}{-4,033} \cdot \frac{5,0}{-4,033} = -3,91 \text{ ton}$$

$$V_{u,der} = \frac{1}{l_n} - W_u \cdot \frac{\pi}{2} = \frac{1}{5,0} - 4,033 \cdot \frac{1}{2} = -\frac{1}{5,0}$$

<u>Caso 2:</u>

Dado que se tiene refuerzos iguales en los extremos la cortante por capacidad será igual, pero en sentido inverso.

Figura 55 Envolvente de fuerzas cortantes

2.2) Espaciamiento del refuerzo dentro de la zona de confinamiento (Art. 21.4.4)

• Longitud de confinamiento: $L_c = 2 \cdot h = 2 \cdot 50 cm = 100 cm$

El espaciamiento no debe exceder el menor de (a), (b), (c) y (d):

(a):
$$d/4 \ge 15 \ cm$$
 $d/4 = 41/4 = 10, 25 \ cm \ge 15 \ cm$

(b):
$$10 \cdot d_b = 10 \cdot \frac{5}{8} \cdot 2,54 \, cm = 15,875 \, cm$$

(c):
$$24 \cdot d_e = 24 \cdot \frac{3}{8} \cdot 2,54 \, cm = 22,86 \, cm$$

(d): 30*cm*

Se podría adoptar una separación de 15cm, pero se usará 10cm dentro de la zona de confinamiento.

2.3) Espaciamiento del refuerzo fuera de la zona de confinamiento (Art. 21.4.4.5):

 $s \le 0, 5 \cdot d = 0, 5 \cdot 41cm = 20, 5cm$

Por lo tanto, se considera una separación de 20cm fuera de la zona de confinamiento.

2.4) Verificación de la capacidad a fuerza cortante de la viga:

Cortante resistente por el concreto según la ecuación 21:

$$V_c = 0,53 \cdot \sqrt{f'_c} \cdot b \cdot d = 0,53 \cdot \sqrt{210} \cdot 30 \cdot 41 = 9,45Ton$$

Cortante resistente por los estribos en la zona de confinamiento según la ecuación 22:

$$V_e = \frac{n \cdot A_{sh} \cdot f_y \cdot d}{s} = \frac{2 \cdot 0,71 \cdot 4200 \cdot 41}{10} = 24,54Ton$$

Cortante máxima que pueden soportar los estribos según la ecuación 23.

$$V_{e,\max} = 2,1 \cdot \sqrt{f'_c} \cdot b \cdot d = 37,43 ton > V_e = 24,54 ton$$
 Se verifica

Cortante nominal según la ecuación 20:

 $\phi V_n = \phi_c \cdot (V_c + V_e) = 0,85 \cdot (9,45 + 24,54) = 28,89 ton$

Cortante de diseño en los extremos

Según el artículo 11.1.3.1 se permite diseñar los elementos para la fuerza cortante a una distancia "d" de la cara.

De la figura 55 la cortante ultima a una distancia de 0,41m de la cara:

 $V_{\!\scriptscriptstyle u}=\!14,60\,ton<\!\phi\!V_{\!\scriptscriptstyle n}=28,89\,ton$ Se verifica

Cortante resistente por los estribos fuera de la zona de confinamiento

$$V_{e} = \frac{n \cdot A_{sh} \cdot f_{y} \cdot d}{s} = \frac{2 \cdot 0,71 \cdot 4200 \cdot 41}{20} = 12,27ton$$

Cortante nominal fuera de la zona de confinamiento

$$\phi V_n = \phi_c \cdot (V_c + V_e) = 0,85 \cdot (9,45 + 12,27) = 18,46 ton$$

Cortante de diseño zona central

De la figura 55 la cortante ultima a una distancia $L_c = 100 cm$ de la cara:

Figura 56 Demanda y capacidad a cortante de la viga

Por lo tanto, el diseño final a cortante de la viga será:

1@5cm, 10@10cm, Rto.@20cm

Diseño de columnas

Como ejemplo se diseñará la columna exterior del pórtico 3:

Geometría de la columna:

Ancho: b = 30 cm, Peralte: h = 70 cm

Alturas libres:

Primer piso: $h_{n,1} = 2,8m$, piso típico: $h_{n,pt} = 2,0m$ y último piso: $h_{n,9} = 1,8m$

Datos de los materiales:

Similar a los utilizados en el diseño de vigas.

Paso 1) Diseño por flexión y carga axial (Capítulo 10)

Para cumplir con la cuantía mínima 1% se propone inicialmente un armado con 14 varillas de 5/8" como se muestra en la figura 57.

Área de la varilla: $A_v = \frac{\pi \cdot (5/8 \cdot 2, 54 \text{ cm})^2}{4} = 1,98 \text{ cm}^2$

Área de acero colocado: $A_{st} = 14 \cdot 1,98 \text{ cm}^2 = 27,72 \text{ cm}^2$

Cuantía: $\rho = \frac{A_{st}}{b \cdot h} = \frac{27,72}{30 \cdot 70} = 0.0132$

Figura 57 Armado propuesto para la columna exterior del pórtico 3

El diagrama de interacción de la columna se obtiene variando la altura del eje neutro y haciendo un equilibrio de fuerza y momento en la sección trasversal.

Según la ecuación 25 la resistencia de diseño no deberá exceder:

$$\phi P_n = 0,80 \cdot 0,70 \cdot [0,85 \cdot 210 \cdot (2100 - 27,72) + 4200 \cdot 27,72] / 1000 = 272,32 ton$$

El factor de minoración para flexocompresión ϕ puede incrementarse linealmente hasta 0,90 en la medida que ϕP_n disminuye desde $0,1 \cdot f'_c \cdot A_g = 0,1 \cdot 210 \cdot 2100 / 1000 = 44,1 ton$

Figura 58. Diagrama de interacción eje débil columna C-3 (30x70)

Figura 59. Diagrama de interacción eje fuerte columna C-3 (30x70)

Según las figuras 58 y 58 el armado propuesto es adecuado para las cargas amplificadas.

Paso 2) Diseño por cortante

2.1) Cortante por capacidad

Considerando estribos de 3/8" y un recubrimiento de 4cm, el peralte efectivo en la dirección del eje fuerte y débil será respectivamente:

$$d_x = h - r - \phi_e - \frac{\phi_v}{2} = 70 - 4 - \frac{3}{8} \cdot 2,54 - \frac{5}{8 \cdot 2} \cdot 2,54 = 64,25 \, cm$$

$$d_{y} = b - r - \phi_{e} - \frac{\phi_{v}}{2} = 30 - 4 - \frac{3}{8} \cdot 2,54 - \frac{5}{8 \cdot 2} \cdot 2,54 = 24,25 \, cm$$

Según la ecuación 23 la fuerza cortante máxima que pueden tomar los estribos en la dirección del eje fuerte y débil será respectivamente:

$$V_{e,\max X} = 2,1 \cdot \sqrt{f'_c} \cdot b \cdot d_x = 2,1 \cdot \sqrt{210} \cdot 30 \cdot 64,25/1000 = 58,66 ton$$
$$V_{e,\max Y} = 2,1 \cdot \sqrt{f'_c} \cdot h \cdot d_y = 2,1 \cdot \sqrt{210} \cdot 70 \cdot 24,25/1000 = 51,67 ton$$

	1.25(CM+CV) + SX												
Diee	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)				
F150	h (m)	Pu (Ton)	a(cm)	Mn (Ton.m)	Vu (Ton)	φVc (Ton)	Ve	ramas	s (cm)				
9	1.80	-10.18	12.51	35.05	38.94	13.02	30.50	3	18.91				
8	2.00	-27.80	14.64	38.82	36.93	13.77	27.25	3	21.17				
7	2.00	-46.75	16.56	41.92	40.37	14.59	30.33	3	19.02				
6	2.00	-66.82	18.96	44.87	43.40	15.44	32.89	3	17.54				
5	2.00	-87.70	21.44	47.32	46.10	16.34	35.01	3	16.48				
4	2.00	-108.93	23.84	49.13	48.22	17.25	36.44	3	15.83				
3	2.00	-129.83	26.39	50.64	49.89	18.14	37.35	3	15.45				
2	2.00	-149.59	28.55	51.12	50.88	18.99	37.52	3	15.37				
1	2.80	-167.51	30.64	51.39	36.61	19.75	19.83	3	29.09				

Tabla 33. Diseño por cortante en columna C-3 (a)

- (1): Altura libre de cada piso
- (2): Carga axial para la combinación de diseño
- (3): Altura del bloque equivalente en compresión para la carga axial de diseño
- (4): Momento nominal para la altura equivalente de la columna 3.
- (5): Cortante por capacidad en la columna según la ecuación 26: $V_u = \frac{M_{ni} + M_{ns}}{h_n}$

(6): Cortante resistente del concreto para elementos en compresión o con tracción significativa (Ecuaciones 27 y 28)

- (7): Cortante en los estribos
- (8): Numero de ramas en la dirección de análisis
- (9): Espaciamiento de estribos requerido por fuerza cortante

Tabla 34. Diseño por cortante en columna C-3 (b)

	1.25(CM+CV) - SX												
Piso	h (m)	Pu (Ton)	a(cm)	Mn (Ton.m)	V (Ton)	φVc (Ton)	Ve	ramas	s (cm)				
9	1.80	1.18	11.27	32.52	36.14	12.53	27.77	3	20.77				
8	2.00	-1.43	11.54	33.10	32.81	12.65	23.73	3	24.31				
7	2.00	-3.05	11.72	33.47	33.29	12.71	24.20	3	23.84				
6	2.00	-3.57	11.77	33.58	33.53	12.74	24.46	3	23.59				
5	2.00	-3.34	11.75	33.54	33.56	12.73	24.51	3	23.54				
4	2.00	-2.88	11.70	33.43	33.49	12.71	24.44	3	23.60				
3	2.00	-2.83	11.69	33.41	33.42	12.71	24.37	3	23.67				
2	2.00	-4.12	11.83	33.70	33.56	12.76	24.47	3	23.58				
1	2.80	-7.95	12.26	34.56	24.38	12.92	13.48	3	42.80				

	0.9(CM)+SX												
Piso	h (m)	Pu (Ton)	a(cm)	Mn (Ton.m)	V (Ton)	φVc (Ton)	Ve	ramas	s (cm)				
9	1.80	-8.63	12.34	34.72	38.58	12.95	30.15	3	19.14				
8	2.00	-22.49	13.99	37.73	36.22	13.55	26.68	3	21.62				
7	2.00	-37.63	15.60	40.46	39.09	14.19	29.29	3	19.70				
6	2.00	-53.89	17.38	42.99	41.72	14.89	31.57	3	18.27				
5	2.00	-70.96	19.48	45.45	44.22	15.62	33.65	3	17.15				
4	2.00	-88.35	21.51	47.37	46.41	16.37	35.35	3	16.32				
3	2.00	-105.41	23.43	48.84	48.11	17.10	36.49	3	15.81				
2	2.00	-121.30	25.34	50.09	49.47	17.78	37.28	3	15.47				
1	2.80	-135.29	26.97	50.79	36.03	18.37	20.77	3	27.78				

Tabla 35. Diseño por cortante en columna C-3 (c)

Tabla 36. Diseño por cortante en columna C-3 (d)

				0.9(C	M)-SX				
Piso	h (m)	Pu (Ton)*	a(cm)	Mn (Ton.m)	V (Ton)	φVc (Ton)*	Ve	ramas	s (cm)
9	1.80	2.74	11.10	32.15	35.73	12.12	27.78	3	20.77
8	2.00	3.88	10.98	31.89	32.02	11.92	23.65	3	24.39
7	2.00	6.07	10.76	31.40	31.64	11.54	23.64	3	24.40
6	2.00	9.36	10.43	30.63	31.01	10.98	23.57	3	24.48
5	2.00	13.40	10.04	29.70	30.16	10.29	23.38	3	24.67
4	2.00	17.70	9.65	28.72	29.21	9.55	23.12	3	24.95
3	2.00	21.59	9.30	27.80	28.26	8.89	22.79	3	25.32
2	2.00	24.17	9.08	27.20	27.50	8.45	22.42	3	25.74
1	2.80	24.28	9.07	27.17	19.42	8.43	12.93	3	44.61

*La columna está en tracción por lo que se utiliza la ecuación 28 para calcular la

resistencia del concreto.

Tabla 37. Diseño por cortante en columna	C-3 (e)
--	---------

	1.25(CM)+CV+SY												
Piso	h (m)	Pu (Ton)	a(cm)	Mn (Ton.m)	V (Ton)	φVc (Ton)	Ve	ramas	s (cm)				
9	1.80	-5.73	5.29	13.29	14.76	11.30	4.08	2	35.61				
8	2.00	-17.15	5.77	14.36	13.83	11.73	2.46	2	58.90				
7	2.00	-28.78	6.30	15.43	14.89	12.17	3.21	2	45.28				
6	2.00	-40.45	6.87	16.45	15.94	12.61	3.92	2	37.07				
5	2.00	-52.13	7.47	17.41	16.93	13.05	4.57	2	31.79				
4	2.00	-63.82	7.98	18.15	17.78	13.49	5.05	2	28.75				
3	2.00	-75.42	8.50	18.84	18.49	13.93	5.37	2	27.01				
2	2.00	-86.90	9.05	19.50	19.17	14.36	5.66	2	25.67				
1	2.80	-98.44	9.63	20.12	14.15	14.79	-0.76	2	-190.97				

	1.25(CM+CV)-SY												
Piso	h (m)	Pu (Ton)	a(cm)	Mn (Ton.m)	V (Ton)	φVc (Ton)	Ve	ramas	s (cm)				
9	1.80	-3.28	5.20	13.07	14.53	11.21	3.90	2	37.19				
8	2.00	-12.07	5.55	13.88	13.48	11.54	2.28	2	63.61				
7	2.00	-21.02	5.94	14.72	14.30	11.88	2.85	2	50.90				
6	2.00	-29.95	6.35	15.52	15.12	12.21	3.42	2	42.47				
5	2.00	-38.91	6.79	16.31	15.92	12.55	3.96	2	36.67				
4	2.00	-47.99	7.25	17.07	16.69	12.89	4.47	2	32.48				
3	2.00	-57.24	7.69	17.74	17.41	13.24	4.90	2	29.63				
2	2.00	-66.81	8.11	18.33	18.03	13.60	5.21	2	27.84				
1	2.80	-77.01	8.58	18.94	13.31	13.99	-0.80	2	-182.20				

Tabla 38. Diseño por cortante en columna C-3 (f)

Tabla 39. Diseño por cortante en columna C-3 (g)

	0.9CM+SY												
Piso	h (m)	Pu (Ton)	a(cm)	Mn (Ton.m)	V (Ton)	φVc (Ton)	Ve	ramas	s (cm)				
9	1.80	-4.17	5.23	13.14	14.61	11.24	3.96	2	36.67				
8	2.00	-11.84	5.54	13.86	13.50	11.53	2.32	2	62.53				
7	2.00	-19.66	5.88	14.59	14.23	11.82	2.83	2	51.36				
6	2.00	-27.51	6.24	15.31	14.95	12.12	3.33	2	43.59				
5	2.00	-35.39	6.61	16.00	15.65	12.42	3.81	2	38.13				
4	2.00	-43.24	7.01	16.68	16.34	12.71	4.27	2	34.03				
3	2.00	-51.00	7.41	17.32	17.00	13.01	4.70	2	30.88				
2	2.00	-58.61	7.75	17.83	17.57	13.29	5.04	2	28.83				
1	2.80	-66.22	8.08	18.29	12.90	13.58	-0.80	2	-181.02				

Tabla 40. Diseño por cortante en columna C-3 (h)

				0.9C	M+SY				
Piso	h (m)	Pu (Ton)	a(cm)	Mn (Ton.m)	V (Ton)	φVc (Ton)	Ve	ramas	s (cm)
9	1.80	-1.72	5.14	12.93	14.36	11.15	3.78	2	38.39
8	2.00	-6.77	5.34	13.41	13.17	11.34	2.15	2	67.53
7	2.00	-11.90	5.55	13.88	13.64	11.53	2.49	2	58.41
6	2.00	-17.02	5.77	14.36	14.12	11.73	2.82	2	51.45
5	2.00	-22.17	5.99	14.82	14.59	11.92	3.14	2	46.20
4	2.00	-27.41	6.23	15.29	15.05	12.12	3.46	2	42.00
3	2.00	-32.82	6.49	15.78	15.54	12.32	3.78	2	38.39
2	2.00	-38.52	6.77	16.28	16.03	12.54	4.11	2	35.33
1	2.80	-44.79	7.09	16.81	11.82	12.77	-1.12	2	-129.42

En todos los casos se verifica que la cortante en los estribos no excede los limites según el artículo (Art. 11.5.7.9).

2.2) Disposiciones especiales para diseño sísmico según capítulo 21:

Espaciamiento del refuerzo dentro de la zona de confinamiento (Art. 21.4.5):

La longitud de confinamiento no debe ser el mayor entre (a), (b) y (c):

(a): Una sexta parte de la luz libre de la columna:

Primer piso: 280/6 = 47cm, piso típico: 200/6 = 34cm y último piso: 180/6 = 30cm

(b): La mayor dimensión del elemento 70cm

(C): 50*cm*

El espaciamiento So no debe exceder el menor de (d), (e) y (f):

(d):
$$8 \cdot d_b = 8 \cdot \frac{5}{8} \cdot 2,54 \, cm = 12,7 \, cm$$

- (e): $\min(b,h)/2 = 15 \, cm$
- (f): 10*cm*

Por lo tanto, la longitud de confinamiento será 70cm y se usará 10cm dentro de la zona de confinamiento.

Espaciamiento del refuerzo fuera de la zona de confinamiento (Art. 21.4.5.5):

d/2 = 32.1 cm

60*cm*

$$16d_b = 16 \cdot \frac{5}{8} \cdot 2,54 \, cm = 25,4 \, cm$$

$$48d_e = 48 \cdot \frac{3}{8} \cdot 2,54 \, cm = 45,72 \, cm$$

 $\min(b,h) = 30\,cm$

Por lo tanto, la separación máxima fuera de la zona de confinamiento será de 25cm.

Según los resultados de las tablas 33 a 40 se tiene el siguiente diseño final a córtate para las columnas:

	S max	(cm)			
PISOS	Eje fuerte	Eje debil	Diseño final		
9	18.91	35.61	1@50m 7@100m Bto @1750m		
6-8	17.54	37.07			
2-5	15.45	25.67	1@5cm, 7@10cm, Rto.@15cm		
1	27.78	-	1@5cm, 7@10cm, Rto.@25cm		

Tabla 41. Resumen del diseño por corte en la columna C-3

En la dirección del eje débil no es necesario más de 2 ramas, sin embargo, se colocará un estribo intermedio para cumplir con el requisito del artículo 7.10.5.3 de la norma donde indica que ninguna barra longitudinal debe estar separada a más de 15cm libres de una barra apoyada lateralmente.

Diseño de muros de corte

Como ejemplo se diseñará el muro 5X

Dimensiones del muro:

Espesor:	e = 0.30 m
Longitud:	$l_w = 2,80 m$
Altura Total	$h_w = 3, 4 + 2, 60 \times 7 + 2, 4 = 24 m$
Solicitaciones:	
Combo 1: 1,4 <i>CM</i> +1,7 <i>CV</i>	
Carga Axial:	$P_{\rm U} = 329, 33 {\rm Ton}$
Momento:	$M_{\rm U} = 8 {\rm Ton} \cdot {\rm m}$
Combo 2: $1,25(CM + CV) + CS_x$	
Carga Axial:	$P_{\rm U} = 385,03 {\rm Ton}$
Momento:	$M_{II} = 450,73 \text{ ton} \cdot \text{m}$

Fuerza Cortante:	$V_{\rm U} = 97,69 {\rm ton}$			
Desplazamiento Inelástico:	$\delta = 8,35 \mathrm{cm}$			
Combo 3: $1,25(CM + CV) - CS_x$				
Carga Axial:	$P_{\rm U} = 185, 13 {\rm Ton}$			
Combo 4: $0.9CM + CS_x$				
Carga Axial:	$P_{\rm U} = 275, 26 {\rm ton}$			
Momento:	$M_{\rm U} = 443,93 {\rm ton} \cdot {\rm m}$			
Fuerza Cortante:	$V_{\rm U} = 86,96 {\rm ton}$			
Desplazamiento Inelástico:	$\delta = 8,35 \mathrm{cm}$			

Combo 5: $0.9CM - CS_x$

• Carga Axial: $P_{\rm U} = 75,08 \text{ ton}$

Materiales:

Similar al utilizado en el diseño de vigas y columnas

Paso 1) Diseño por flexocompresión en la base del muro

La cuantía mínima en el alma según el artículo 11.10.10.3: $\rho_{\rm v}$ = 0.0025

Utilizando varilla de 3/8" con una separación de 17,5 cm:

$$A_v = \frac{\pi \times (3/8 \times 2,54 \text{ cm})^2}{4} = 0,71 \text{ cm}^2$$

La cuantía longitudinal será:

$$\rho_{\nu} = \frac{2 \cdot A_{\nu}}{e \cdot s} = \frac{2 \cdot 0,71 \, \text{cm}^2}{30 \, \text{cm} \cdot 17,5 \, \text{cm}} = 0.00271 \ge 0.0025 \quad \text{ok}$$

El elemento de borde se predimensionará con el 15% de la longitud total de la placa:

 $l_c = 0,15 \cdot l_w = 0,15 \cdot 2,80 \text{ m} = 42 \text{ cm}$

Por lo tanto, el elemento de borde será de 0.30 x 0.50 m, la cuantía necesaria en los bordes para las solicitaciones resulto 2.2%:

El área de acero en el borde será:

 $A_s = 0,022 \cdot e \cdot l_c = 0,022 \cdot 30 \text{ cm} \cdot 50 \text{ cm} = 33 \text{ cm}^2$

Usando acero con diámetro de 3/4":

Área de la varilla: $A_v = \frac{\pi \cdot (3/4 \cdot 2, 54 \text{ cm})^2}{4} = 2.85 \text{ cm}^2$

el número de varillas será:

$$N_v = \frac{A_s}{A_v} = \frac{33 \text{ cm}^2}{2,85 \text{ cm}^2} = 11,58 \approx 12 \text{ varillas}$$

Por lo tanto, el armado preliminar del muro será:

Figura 60. Armado del muro 5X

Se hará verificación por flexo-compresión ya que:

$$P_{\rm U} = 385,03 \text{ ton} \ge 0,1 \cdot f_{\rm c} \cdot A_{\rm g} = \frac{0,1 \cdot 210 \frac{\text{kg}}{\text{cm}^2} \cdot 8400 \text{cm}^2}{1000} = 176,4 \text{ ton}$$

Para la construcción del diagrama de interacción se seguirá el mismo procedimiento para columnas y se consideraron los siguientes parámetros:

- Deformación unitaria del concreto: $\varepsilon_c = 0,003$
- Módulo de elasticidad del acero: $E_s = 2 \cdot 10^6 \frac{kg}{cm^2}$

• Deformación unitaria del acero en fluencia: $\varepsilon_c = \frac{f_y}{E_s} = \frac{4200}{2 \cdot 10^6} = 0,0021$

- Factor de reduccion para compresion: $\phi_c = 0,7$
- Factor de reduccion para flexion: $\phi_f = 0.9$
- Factor de bloque rectangular equivalente de Witney: $\beta = 0,85$

PLACA L=2,80 m

Figura 61. Diagrama de interacción muro 5X

Paso 2) Diseño de elementos especiales de borde

 $\frac{\delta_u}{h_m} = \frac{8,35cm}{24 \cdot 100} = 0.003 \ge 0.005$

El valor de C limite será:

$$c_{lim} = \frac{l_m}{600(\delta_u / h_m)} = \frac{280 \text{ cm}}{600 \cdot 0,005} = 93,33 \text{ cm}$$

El valor de "c" correspondiente a la carga axial de diseño (Pu) y el Momento Nominal (Mn) se calcula haciendo un análisis de compatibilidad de esfuerzos y deformaciones. Se realiza el cálculo para la combinación 2 ya que es la que produce mayor carga axial y por consiguiente una mayor profundidad del bloque en compresión.

PLACA L=2,80 m

Figura 62. Cálculo de la altura del eje neutro en muro 5X para la carga axial de diseño

Del grafico para la carga axial de 385.03 se obtiene un valor de a=80.18cm.

Por lo tanto:

$$c = \frac{a}{\beta_1} = \frac{80,18}{0,85} = 94,33$$
cm

Como el valor de "c" para la carga axial de diseño es mayor que "c lim" entonces según la norma E-060 se requiere elementos de borde especiales y la separación máxima dentro del núcleo confinado según 21.9.7.6 (e) será el menor de:

*
$$s_o = 10d_b = 10 \cdot 0,75 \cdot 2,54 \ cm = 19,05 \ cm$$

* $s_o = \min(e, l_c) = 30 \ cm$
* $s_o = 25 \ cm$

La máxima separación de estribos en el elemento de borde será 17.5cm.

La longitud del elemento de borde debe cumplir con 21.9.7.6 (a) y no será menor que:

*
$$\frac{c}{2} = \frac{94,42 \text{ cm}}{2} = 47,21 \text{ cm}$$

* $c - 0.1 \times l_m = 94,42 \text{ cm} - 0,1 \cdot 280 \text{ cm} = 66,42 \text{ cm}$

Por lo tanto, se requiere una longitud del elemento de borde confinado con estribos de 70cm.

La altura de confinamiento debe cumplir con 21.9.7.4 y no será menor del mayor valor obtenido con:

*
$$l_m = 2,80 \text{ m}$$

* $\frac{M_u}{4V_u} = \frac{450,73}{4.97,69} = 1,15 \text{ m}$

Se confinará todo el primer nivel.

Donde no se requiera elementos de borde confinados se debe cumplir con 21.9.7.7:

$$16d_b = 16 \cdot \frac{3}{4} \cdot 2,54 \, cm = 30,48 \, cm$$

$$48d_e = 48 \cdot \frac{3}{8} \cdot 2,54 \, cm = 45,72 \, cm$$

 $\min(b,h) = 30\,cm$

 $25\,cm$

Paso 3) Diseño por corte

Peralte efectivo del muro (Art. 21.9.4.5)

$$d = 0,80 \cdot l_w = 0,80 \cdot 2,80 = 2,24 \, m$$

Área resistente a cortante

 $A_{cw} = e \cdot d = 0,30 \cdot 2,24 = 0,672 \, m^2 = 6720 cm^2$

Contribución del concreto a cortante (Art. 11.10.5):

Esbeltez del muro

$$\frac{h_m}{l_w} = \frac{24,0}{2,8} = 8,57 > 2,0$$
$$V_c = A_{cw} \cdot (\alpha_c \cdot \sqrt{f'_c})$$

Para
$$\frac{h_m}{l_w} > 2,0$$
 $\alpha_c = 0,53$

$$V_c = 6720 \cdot (0,53 \cdot \sqrt{210}) / 1000 = 51,61 \text{ ton}$$

Cortante de diseño (Art. 21.9.5.3)

De la figura 61 para la carga axial de la combinación 2 se obtiene un momento nominal de:

$$M_n = 760, 72 ton \cdot m$$

$$V_u = 97,69 \left(\frac{760,72}{450,73}\right) = 148 \ ton$$

Esta disposición se limita al mayor valor obtenido de:

•
$$l_w = 2,8m$$

•
$$\frac{M_u}{4V_u} = \frac{450,73}{4.97,69} = 1,15 \text{ m}$$

• Altura de los 2 primeros pisos.

Cortante máxima (Art. 11.10.4)

$$V_n \le 2, 6 \cdot \sqrt{f'_c} \cdot A_{cw} = 2, 6 \cdot \sqrt{210} \cdot 6720 / 1000 = 253, 19 \text{ ton}$$

Cortante máxima en los estribos (Ecu. 11-2)

 $V_{s,\max} = V_n - V_c = 253,19 - 51,61 = 201,58$ ton

Cortante requerida en estribos (Ecu. 11-1)

$$V_{s,req} = \frac{V_u - \phi_c \cdot V_c}{\phi_c} = \frac{(148 - 0.85 \cdot 51.61)}{0.85} = 122,51ton < V_{s,max}$$

Usando doble malla de ½" @ 17.5cm la cuantía de refuerzo horizontal será:

$$\rho_h = \frac{2 \cdot 1, 27}{17, 5 \cdot 30} = 0,00483$$

Resistencia a corte del refuerzo horizontal (Ecu. 11-31)

$$V_s = A_{_{cw}} \cdot \rho_h \cdot f_y = 6720 \cdot 0,00483 \cdot 4200 / 1000 = 136,2 ton > V_{_{s,req}} = 122,51 ton$$

Se puede seguir un proceso similar para obtener la separación requerida del acero horizontal obteniendo asi:

PISO	Vua (ton)	Mua (ton.m)	Mn(ton.m)	Ω	Vu (ton)	Vs (ton)	Av (cm2)	s (cm)
9	4.60	56.52	-	-	4.60	-46.20	0.81	-32.99
8	41.74	36.44	-	-	41.74	-2.51	0.81	-606.72
7	44.18	33.19	-	-	44.18	0.37	0.81	4153.71
6	49.09	50.18	-	-	49.09	6.14	0.81	248.33
5	54.66	78.93	-	-	54.66	12.70	0.81	120.05
4	58.66	116.90	-	-	58.66	17.40	0.81	87.61
3	61.43	166.25	-	-	61.43	20.65	0.81	73.80
2	63.82	233.62	732.79	3.14	200.19	183.91	1.98	20.26
1	87.69	450.73	760.72	1.69	148.00	122.50	1.27	19.51

Tabla 42. Diseño por corte del muro 5X

El diseño por corte final del muro queda:

Primer piso: Doble malla de ½" @ 17.5cm

Segundo piso: Doble malla de 5/8" @ 20cm

Resto: Doble malla de 3/8" @ 17.5cm (Cuantía mínima de 0,0025)
3.5.4 Análisis estático no lineal (MBF)

El comportamiento no lineal de las vigas se modelo mediante plasticidad concentrada según las tablas del ASCE 41-13, así mismo se asignó la rigidez efectiva según las recomendaciones de las normas internacionales somo se muestra en la figura 63.

genopeny	butu for boorri						
cement Cont	rol Parameters						
Point	Moment/SF	Rotatio	n/SF				
E-	-0.2	-0.0	5				
D-	-0.2	-0.025	25	── ┼ ──╄┼			
C-	-1.1	-0.02	5				
B-	-1	0					
A	0	0					
В	1	0		──			
C	1.1	0.0243	38				
D	0.2	0.0245	62			Property/Stiffness Modifiers for Analysis	
	0.2	0.047		Symmetric		Cross-section (axial) Area	1
			Add	itional Backhone Curve B	siste		
			Add	Initial Backbolle Curve Po	Jints	Shear Area in 2 direction	0.4
				BC - Between Points B a	and C	Shear Area in 3 direction	0.4
				CD - Between Points C a	and D		0.1
aling for Mon	nent and Dotation					Torsional Constant	1
amy for mon			Positive	Negative		Moment of Inertia about 2 axis	0.3
Use Yield	d Moment	Moment SF	17.2453	14.0355	tonf-m		
Use Yield	d Rotation	Rotation SF	1	1		Moment of Inertia about 3 axis	0.3
(Steel Of	bjects Only)						
ceptance Cri	iteria (Plastic Rotatio	on/SF)					
_			Positive	Negative			
Immed	diate Occupancy		0.009338	-0.01			
Life S	afety		0.024338	-0.025			
Collap	se Prevention		0.047353	-0.05			

Figura 63. Momento rotación y rigidez efectiva de viga del pórtico 4 según ASCE 41-13

Las columnas y muros se modelaron mediante plasticidad distribuida para considerar la interacción con la carga axial, para ello fue necesario definir las curvas esfuerzo deformación del acero y concreto como se muestra en las figuras

		Fiber	Area m²	Coord3 m	Coord2 m	Material /// Stress Strain Curve
		11	0.0002	-0.09252	0.17551	Acero fye /// SSC1
		12	0.0002	-0.09252	0.29252	Acero fye /// SSC1
		13	0.0002	0	-0.29252	Acero fye /// SSC1
		14	0.0002	0	0.29252	Acero fye /// SSC1
		15	0.0092	-0.12715	0.30227	Concreto F'ce /// SSC1
		16	0.0067	0	0.30227	Concreto F'ce /// SSC1
	• • •	17	0.0092	0.12715	0.30227	Concreto F'ce /// SSC1
		18	0.0157	-0.12715	0	Concreto F'ce /// SSC1
++	0	19	0.0157	0.12715	0	Concreto F'ce /// SSC1
		20	0.0092	-0.12715	-0.30227	Concreto F'ce /// SSC1

Figura 64. Modelo de fibras en columna C-3 (30x70)

Figura 65. Modelo de fibras en muro 5X

Figura 66. Curvas esfuerzo deformación del concreto no confinado y confinado para la columna C-3 (30x70cm)

Figura 67. Curva esfuerzo deformación del acero de refuerzo con resistencia esperada

Definido el comportamiento del concreto y acero, así como la no linealidad de las vigas, columnas y muros se procede con el análisis no lineal estático a partir del análisis no lineal gravitacional definido según la ecuación 122, se asignó una distribución de carga consistente con las cargas sísmicas resultantes del análisis modal espectral obteniendo de esta forma las curvas de capacidad que se muestran en la figura 68.

Figura 68. Curva de capacidad del MBF en ambas direcciones

El espectro obtenido en el análisis modal espectral, pero sin ser afectado por el factor de reducción R se introduce en el software para posteriormente convertirlo al formato desplazamiento vs aceleración y poder aplicar el método del espectro de capacidad, de esta forma se obtiene el punto de desempeño mostrado en la figura 69 y tabla

Figura 69. Obtención del punto de desempeño con el método del espectro de capacidad en X e Y respectivamente en el edificio diseñado según el MBF

PUNTO DE DESEM	Х	Y	
Desplazamiento espectral	Sd (cm)	11.14	7.62
Aceleración espectral	Sa (cm/s2)	445.37	343.35
Desplazamiento	Desplazamiento D (m)		
Cortante	V (ton)	1070.06	995.42
Cortante de diseño	Vd (ton)	448.18	463.12
Variación %		138.75	114.94
Sobreresistencia	Ω	2.39	2.15

Tabla /	12	Dunto	do	docom	noño	on	~	odificio	disoñado	sogún	~	MDE
i avia 4	ю.	Funto	ue	uesem	peno	en	ΕI	eunicio	uiseriauu	segun	ΕI	IVIDE

Figura 70. Formación de rotulas plásticas para el sismo de diseño en X e Y respectivamente

Tabla 44. Validación de desplazamientos obtenidos con el IVIBI	Tabla 44.	Validación	de	desplazamientos	obtenidos	con	el	MBF
--	-----------	------------	----	-----------------	-----------	-----	----	-----

		VALIDAC	ION DE DESPLA	ZAMIENT	OS CON EL M	BF		
		X			Y			
Piso	MBF	Pushover	Variación %	MBF	Pushover	Variación %		
9	12.805	20.092	-36.27	5.684	14.770	-61.52		
8	12.014	19.309	-37.78	5.012	13.188	-62.00		
7	10.545	16.734	-36.99	4.271	11.468	-62.75		
6	8.898	14.292	-37.74	3.512	9.719	-63.87		
5	7.159	11.729	-38.96	2.752	7.956	-65.40		
4	5.389	9.090	-40.72	2.018	6.190	-67.40		
3	3.673	6.446	-43.01	1.340	4.438	-69.80		
2	2.119	3.879	-45.38	0.757	2.722	-72.20		
1	0.866	1.544	-43.89	0.309	1.085	-71.55		
0	0.000	0.000	0.00	0.000	0.000	0.00		

Figura 71. Validación de desplazamientos obtenidos con el MBF

3.5.5 Método basado en desplazamientos (DDBD)

Sismo en dirección X

Paso 1) Distribucion de cortantes y momentos en porticos y muros

Para la direccion X se asigno un 25% de cortante a los porticos ($\beta_f = 0,25$).

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Piso	mi	hi	mi*hi	Fi	ViT	Motm	Vif	Viw	Miw	Mif
9	11.12	24.00	266.93	0.066	0.066	0.00	0.25	-0.184	0.000	0.000
8	38.06	21.60	822.12	0.204	0.271	0.16	0.25	0.021	-0.441	0.600
7	36.82	19.00	699.50	0.174	0.445	0.86	0.25	0.195	-0.387	1.250
6	37.39	16.40	613.20	0.152	0.597	2.02	0.25	0.347	0.120	1.900
5	37.40	13.80	516.07	0.128	0.725	3.57	0.25	0.475	1.022	2.550
4	37.39	11.20	418.77	0.104	0.830	5.46	0.25	0.580	2.258	3.200
3	36.82	8.60	316.61	0.079	0.908	7.62	0.25	0.658	3.765	3.850
2	37.39	6.00	224.34	0.056	0.964	9.98	0.25	0.714	5.477	4.500
1	42.45	3.40	144.34	0.036	1.000	12.48	0.25	0.750	7.334	5.150
0		0.00				15.88			9.884	6.000
		Σ	4021.90	1.000						

Tabla 45 Distribución de cortantes y momentos en pórticos y muros

- (1): Masa de entrepiso obtenidas del ETABS
- (2): Altura de entrepiso
- (4): Porcentaje de fuerzas inerciales según ecuación 43.
- (5): Porcentaje de cortantes totales de entrepiso $V_{iT} = \sum_{i=1}^{n} F_i$
- (6): Porcentaje de momentos totales $M_{i,otm} = V_{i+1} \cdot (h_{i+1} h_i) + M_{i-1,otm}$
- (7): Porcentaje de cortante asignado a los pórticos (constante en altura)
- (8): Porcentaje de cortante asignado a los muros (5)-(7)
- (9): Porcentaje de momentos asignado a los muros $M_{i,w} = V_{i+1,w} \cdot (h_{i+1} h_i) + M_{i-1,w}$

(10): Porcentaje de momentos asignado a los pórticos $M_{if} = V_{if} \cdot (h_n - h_i)$

h_n : Altura total del edificio

Figura 72 Distribución de cortantes y momentos en pórticos y muros.

Paso 2) Calculo de la altura de inflexion

En este caso el cambio de signo del momento está entre los niveles 6 y 7, por lo tanto usando la ecuación 47: :

$$H_{cf} = 16,40 + (19,0-16,40) \cdot \left(\frac{0,12}{0,12 - (-0,387)}\right) = 17,014m$$

Sin embargo, para los próximos cálculos se usará la altura de inflexión corregida debido a la interacción entre muros y las vigas de los pórticos como se detalla en el paso 9.2. La altura de inflexión corregida resulto $H_{cf} = 14,75 m$.

Paso 3) Calculo de desplazamientos

3.1) Calculo de la longitud equivalente de muro del edificio

La longitud de muro equivalente según la ecuación 48:

$$L_{weq} = \frac{\sum V_i \cdot L_i}{\sum V_i} = \frac{3,97}{1,00} = 3,97m$$

MURO	L	е	e.L²	V	V*L
1	5.3	0.25	7.02	0.53	2.83
2	1.95	0.25	0.95	0.07	0.14
3	1.95	0.25	0.95	0.07	0.14
4	2.5	0.3	1.88	0.14	0.36
5	2.8	0.3	2.35	0.18	0.50
		Σ	13.15	1.00	3.97

Tabla 46 Calculo de la longitud equivalente de muro del sistema

3.2) Calculo de la curvatura de fluencia

Módulo de elasticidad del acero	E	2100000	kg/cm2
Resistencia nominal de fluencia	fy	4200	kg/cm2
Factor de resistencia esperada del material	α	1.1	
Resistencia efectiva de fluencia	fye	4620	kg/cm2
Deformación de fluencia εye=fy/Ε	εye	0.0022	

La curvatura de fluencia según la ecuación 50:

$$\phi_{wy} = 1,5 \cdot \frac{0,0022}{3,97} = 0,00083 \, m^{-1}$$

3.3) Selección de la deriva limite

Para efectos de comparación de ambas metodologías se usará derivas equivalentes, la deriva máxima del centro de masa en la dirección X usando el MBF fue de 0.009, su equivalente con secciones fisuradas seria:

$$\theta'_{d} = 0,0042 \cdot \frac{0,015}{0,007} = 0,009$$

Sin embargo, esta deriva tiene que incluir los efectos de torsión por lo que la deriva de diseño se estima a $\theta_{d,\lim i} = 0,014$, incluyendo el factor de corrección por torsión que resulto 0.707 en el paso 6, la deriva de diseño corregida será:

$$\theta_d = \theta_{d, \lim it} \cdot \eta = 0,014 \cdot 0,707 = 0,009898$$

Adicionalmente se debe corregir por efectos de modos superiores, por lo según la ecuación 51:

$$\theta_{d,\omega} = 0,009898 \left[1 - \frac{(9-5)}{100} \left(\frac{6,0}{15,88} + 0,25 \right) \right] = 0,00965$$

Que resulta aproximado a la deriva de diseño equivalente al MBF, por lo que se procede con el análisis.

3.4) Distribución de desplazamientos y derivas en altura

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Piso	hi	∆yi	Δi	mi	mi.∆i	mi.∆i²	mi.∆i.hi	θi=∆i/h
9	24	0.117	0.201	11.12	2.240	0.451	53.771	0.0096
8	21.6	0.102	0.178	38.06129	6.786	1.210	146.570	0.0096
7	19	0.086	0.153	36.81564	5.640	0.864	107.159	0.0096
6	16.4	0.070	0.128	37.39052	4.790	0.614	78.555	0.0096
5	13.8	0.054	0.103	37.39629	3.853	0.397	53.168	0.0095
4	11.2	0.039	0.078	37.39052	2.929	0.230	32.810	0.0090
3	8.6	0.025	0.055	36.81564	2.026	0.111	17.422	0.0081
2	6	0.013	0.034	37.39052	1.273	0.043	7.638	0.0068
1	3.4	0.004	0.016	42.45433	0.696	0.011	2.367	0.0048
0	0	0.000	0.000					0.0000
				Σ	30.233	3.931	499.459	

Tabla 48 Desplazamientos y derivas de diseño

(1): Alturas acumuladas

- (2): Desplazamiento de fluencia de cada nivel según las ecuaciones 52 y 53
- (3): Desplazamiento de diseño de cada nivel según la ecuación 54
- (4): Masa de cada nivel obtenido del ETABS
- (5): (4)x(3)
- (6): (5)x(3)
- (7): (5)x(1)

(8): Derivas de diseño de cada nivel $\theta_{d,i} = \frac{\Delta_i}{h_i - h_{i-1}}$

Paso 4) Sistema equivalente de un grado de libertad (SDOF).

Las columnas 5, 6 y 7 de la tabla 46 servirán para calcular las propiedades del sistema equivalente de un grado de libertad con las ecuaciones 55, 56 y 57:

Tabla 49 Propiedades del sistema equivalente de un grado de libertad

Desplazamiento equivalente	Δd	0.130	m
Altura equivalente	He	16.520	m
Masa equivalente	me	232.498	tonf-s²/m

Paso 5) Amortiguamiento del sistema

5.1) Ductilidad en muros

El desplazamiento de fluencia del sistema equivalente según la ecuacion 58 sera:

$$\Delta_{he,y} = \frac{0,00083 \cdot 14,75 \cdot 16,52}{2} - \frac{0,00083 \cdot 14,75^2}{6} = 0,071m \quad \text{Como: } 16,52 \ge 14,75$$

La ductilidad en los muros según la ecuacion 59 sera:

$$\mu_w = \frac{\Delta_d}{\Delta_{he,y}} = \frac{0,3}{0,071} = 1,828$$

5.2) Verificacion de ductilidad en muros

Tabla 50 Demanda de ductilidad en muros

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
MURO	L	Forma	coef	φyw	Lp2	Lpf	μφω
1	5.3	Rect	1.5	0.00062	1.503	1.055	15.327
2	1.95	С	1.4	0.00158	0.833	0.833	2.788
3	1.95	С	1.4	0.00158	0.833	0.833	2.788
4	2.5	Rect	1.5	0.00132	0.943	0.943	4.428
5	2.8	Rect	1.5	0.00118	1.003	1.003	5.493

(1): Longitud de los muros

(2): Curvatura de fluencia de cada muro según corresponda con las ecuaciones60 y 61.

(3): Longitud de rotula plástica según la ecuación 67: $L_{p2} = 0, 2 \cdot L_w + 0, 03 \cdot H_{cf}$

(4): Longitud mínima de rotula plástica: $L_p = \min(L_{p1}, L_{p2})$

$$f_{ye} = 1, 1 \cdot 420 MPa = 462 MPa$$

Considerando varilla de 1"

$$L_{p1} = 0,022 \cdot 462 MPa \cdot 0,0254 m + 0,054 \cdot 15,95 = 1.119 m$$

(5): Demanda de ductilidad en el muro para la deriva de diseño según la

ecuación 68:
$$\mu_{\phi_{wall}} = 1 + \frac{1}{L_p \cdot \phi_{y,w}} \left(\theta_d - \frac{\phi_{y,w} \cdot H_{cf}}{2} \right)$$

Tabla 51 Capacidad de ductilidad en muros

	(1)	(2)	(3)		(4)	(5)	(6)	(7)
MURO	L	φyw	Өуw	coef	φuw	θuw	µw max	Verificación
1	5.3	0.00062	0.00459	1	0.01358	0.01826	21.818	ok
2	1.95	0.00158	0.01165	0.9	0.03692	0.04107	23.377	ok
3	1.95	0.00158	0.01165	0.9	0.03692	0.04107	23.377	ok
4	2.5	0.00132	0.00974	1	0.02880	0.03563	21.818	ok
5	2.8	0.00118	0.00869	1	0.02571	0.03329	21.818	ok

(1): Longitud de los muros

- (2): Curvatura de fluencia de cada muro calculada en la tabla 48:
- (3): Rotación de fluencia de cada muro con la ecuacion 64:
- (4): Curvatura ultima de muros según corresponda con las ecuaciones 62 y 63
- (5): Capacidad de rotación ultima de muros según la ecuacion 65
- (6): Ductilidad disponible en muros: $\mu_{w,\max} = \frac{\phi_{u,w}}{\phi_{y,w}}$
- (7): Verificación de capacidad de ductilidad $\mu_{w,\max} > \mu_{\phi,w}$ y $\theta_d > \theta_{u,w}$

5.3) Ductilidad en pórticos

La ductilidad de cada pórtico dependerá de la deriva de diseño de cada uno en particular, en el caso que exista torsión esta deriva será diferente en cada pórtico dependiendo del giro en planta que se calcula en el paso 6. Este es un análisis iterativo porque la deriva de cada pórtico depende la rigidez torsional y esta a su vez depende de la ductilidad del sistema, después de realizar este cálculo iterativo cuyo detalle se muestra en el paso 6 la ductilidad en los pórticos resulto:

$$\mu_{frame} = 1,28$$

5.4) Amortiguamiento en pórticos y muros

Ductilidad del sistema según ecuación 77: $\mu_{sys} = \frac{1,28 \cdot 0,25 + 1,828 \cdot 0,75}{1,00} = 1,69$

Periodo efectivo de prueba según ecuación 76: $T_{e,trial} = \frac{9}{6}\sqrt{1,69} = 1,95s$

Con el periodo efectivo de prueba se empieza el cálculo iterativo, sin embargo, se presentan los cálculos finales con el periodo efectivo calculado en el paso 7.2.

$$T_{e} = 1,42s$$

El amortiguamiento inelástico de muros y pórticos según las ecuaciones 74 y 75:

$$\xi_{hyst,wall} = \frac{95}{\pi} \left(1 - \frac{1}{1,828^{0.5}} - 0,1 \cdot 0,05 \cdot 1,828 \right) \left(1 + \frac{1}{(1,42+0,85)^4} \right) \frac{1}{1,30} = 6,06\%$$

$$\xi_{hyst,frame} = \frac{120}{\pi} \left(1 - \frac{1}{1,28^{0.5}} - 0,1 \cdot 0,05 \cdot 1,28 \right) \left(1 + \frac{1}{(1,42+0,85)^4} \right) \frac{1}{1,30} = 3,35\%$$

Considerando el amortiguamiento elástico de 5% para estructuras de concreto armado, el amortiguamiento final en muros y marcos será:

$$\begin{aligned} \xi_{wall} &= \xi_{elas,wall} + \xi_{hyst,wall} = 5,0\% + 6,06\% = 11,1\% = 0,11 \\ \xi_{frame} &= \xi_{elas,frame} + \xi_{hyst,frame} = 5,0\% + 3,35\% = 8,3\% = 0,083 \end{aligned}$$

5.5) Amortiguamiento equivalente

El amorotiguamiento equivalente según la ecuacion 80 sera:

$$\xi_{SDOF} = \frac{9,884 \cdot 0,11 + 6,0 \cdot 0,083}{15,88} = 0,10$$

Paso 6) Corrección por efectos de torsión

En las tablas 50 y 51 se presenta el cálculo del centro de rigidez y resistencia:

	(1)	(2)	(3)	(4)	(5)				
Muro	∆he,y	V'	Vw	Kw	Y	Kw.Y	(Y-Ycr)²	Kw.(Y- Ycr)²	Vw.Y
1	0.053	0.400	0.340	6.381	19.200	122.514	12.624	80.553	7.690
2	0.135	0.054	0.050	0.370	14.680	5.430	0.935	0.346	0.796
3	0.135	0.054	0.050	0.370	12.880	4.764	7.656	2.832	0.698
4	0.113	0.107	0.130	1.151	9.830	11.313	33.837	38.941	1.051
5	0.101	0.134	0.180	1.785	9.830	17.543	33.837	60.388	1.319
	Σ	0.75	0.75	10.056		161.565		183.061	11.553

Tabla 52 Calculo del centro de rigidez y centro de resistencia dirección X (Muros)

Tabla 53 Calculo del centro de rigidez y centro de resistencia dirección X (Pórticos)

	(6)	(7)	(8)	(9)	(10)				
Pórtico	θf	$\Delta \mathbf{y}\mathbf{f}$	Vf	Kf	Y	Kf.Y	(Y-Ycr) ²	Kf.(Y-Ycr) ²	Vf.Y
1	0.012	0.20	0.030	0.151	0.000	0.000	244.827	36.967	0.000
2	0.012	0.20	0.030	0.151	5.400	0.815	105.000	15.854	0.162
3	0.006	0.11	0.055	0.523	9.830	5.139	33.837	17.691	0.541
4	0.008	0.14	0.055	0.404	14.680	5.932	0.935	0.378	0.807
5	0.006	0.11	0.050	0.466	19.200	8.944	12.624	5.881	0.960
6	0.012	0.19	0.030	0.157	25.000	3.935	87.479	13.768	0.750
		Σ	0.25	1.852		24.766		90.540	3.220

(1): Desplazamiento de fluencia de cada muro considerando la altura del sistema equivalente de un grado de libertad según la ecuación 58

(2): Porcentaje de cortante basal en cada muro obtenido en la tabla 44 multiplicado por el porcentaje de cortante total que toman los muros (75%).

(3): Porcentaje de cortante basal asignado en cada muro con la finalidad de reducir la excentricidad del centro de rigidez.

(4): Rigidez de cada muro calcula con la ecuación 81

(5): Coordenada en el eje Y de cada muro tomado como eje de referencia la coordenada del pórtico 1 (Ver figura 64)

(6): Rotación de fluencia de cada pórtico obtenido como el promedio de las vigas en el pórtico obtenido en la tabla 54

(7): Desplazamiento de cada pórtico considerando la altura del SDOF: $\Delta_{y,f} = \theta_{y,f} \cdot h_e$

(8): Porcentaje de cortante basal asignado a cada pórtico, se asigna con cierta libertad entre los diferentes elementos (Pérez, 2014, pp.3-68), también depende de la cantidad de columnas, sentido y dimensión del peralte. Su elección también influye (aunque en menor medida) en la reducción de la excentricidad del centro de rigidez.

(9): Rigidez de cada pórtico calcula con la ecuación 82

(10): Coordenada en el eje Y de cada pórtico tomado como eje de referencia la coordenada del pórtico 1 (Ver figura 64)

6.1) Calculo del centro de rigidez coordenada Y

$$\sum K_x = \sum K_w + \sum K_f = 10,06 + 1,85 = 11,91 \, m^{-1}$$

$$\sum K_x \cdot Y = \sum K_w \cdot Y + \sum K_f \cdot Y = 161,57 + 24,77 = 186,33$$

$$Y_{CR} = \frac{\sum K_x \cdot Y}{\sum K_x} = \frac{186,33}{11,91m^{-1}} = 15,65m$$

6.2) Calculo del centro de resistencia coordenada Y

$$Y_{CV} = \frac{\sum V_x \cdot Y}{\sum V_x} = \frac{\sum V_w \cdot Y + \sum V_f \cdot Y}{V_w + V_f} = \frac{11,553 + 3,22}{0,75 + 0,25} = 14,77 \, m$$

El procedimiento es similar para la dirección Y, de igual manera que en la dirección X se considera un 20% de cortante asignada a los pórticos. Se asigno la cortante a cada muro proporcional al cuadrado de su longitud debido a que

todos presentan el mismo espesor, no se modificó dicho cortante debido a que los efectos de torsión en la dirección Y son insignificantes. La rotación de fluencia en los pórticos se calcula considerando el efecto que tiene la interacción entre muros y vigas similar al calculado en la tabla 54. El detalle del cálculo se presenta en la tabla 69 correspondiente al análisis en la dirección Y.

L	φyw	Muro	∆ he,y	Vw	Kw	х	Kw.X	(X-Xcr)²	Kw.(X- Xcr)²	Vw.X
5.4	0.000611	1	0.052	0.1811	3.462	0.000	0.000	53.561	185.438	0.000
5.8	0.000569	2	0.049	0.2089	4.290	0.000	0.000	53.561	229.775	0.000
5.8	0.000569	3	0.049	0.2089	4.290	14.760	63.320	55.375	237.558	3.083
5.4	0.000611	4	0.052	0.1811	3.462	14.760	51.102	55.375	191.720	2.672
1.8	0.001833	5	0.157	0.0201	0.128	2.585	0.331	22.406	2.873	0.052
			Σ	0.8	15.633		114.753		847.364	5.808

Tabla 54 Calculo del centro de rigidez y centro de resistencia dirección Y (Muros)

Tabla 55 Calculo del centro de rigidez y centro de resistencia dirección Y (Pórticos)

Portico	θf	$\Delta \mathbf{y} \mathbf{f}$	Vf	Kf	X	Kf.X	(X-Xcr) ²	Kf.(X-Xcr) ²	Vf.X
А	0.008	0.14	0.0350	0.256	0.000	0.000	53.561	13.694	0.000
В	0.008	0.13	0.0400	0.300	4.410	1.322	8.460	2.535	0.176
С	0.010	0.16	0.0300	0.182	5.530	1.007	3.199	0.583	0.166
D1	0.010	0.16	0.0300	0.182	9.510	1.732	4.803	0.875	0.285
D2	0.010	0.17	0.0300	0.176	9.710	1.709	5.719	1.006	0.291
E	0.008	0.14	0.0350	0.256	14.760	3.774	55.375	14.158	0.517
		Σ	0.200	1.351		9.543		32.850	1.436

6.3) Calculo del centro de rigidez coordenada X

$$\sum K_{y} = \sum K_{w} + \sum K_{f} = 15,63 + 1,351 = 16,98 m^{-1}$$
$$\sum K_{y} \cdot X = \sum K_{w} \cdot X + \sum K_{f} \cdot X = 114,75 + 9,54 = 124,23$$
$$X_{CR} = \frac{\sum K_{y} \cdot X}{\sum K_{y}} = \frac{124,3}{16,98 m^{-1}} = 7,32 m$$

6.4) Calculo del centro de resistencia coordenada X

$$X_{CV} = \frac{\sum V_y \cdot X}{\sum V_y} = \frac{\sum V_w \cdot X + \sum V_f \cdot X}{V_w + V_f} = \frac{5,81 + 1,436}{0,75 + 0,25} = 7,243m$$

6.5) Calculo de la rigidez rotacional dúctil efectiva para sismo en la dirección X según la ecuación 87:

$$(J_{R,\mu})_{x} = \frac{\sum K_{x} \cdot (Y_{i} - Y_{CR})^{2}}{\mu_{sys}} + \sum K_{y} \cdot (X_{i} - X_{CR})^{2}$$

$$(J_{R,\mu})_x = \frac{183,06+90,54}{1,69} + 847,36+32,85 = 1042,032 m$$

Figura 73 Nomenclatura de pórticos y muros

6.6) Calculo de la rotación del centro de masa debido a la torsión en dirección X

Conociendo el centro de masa calculado con el software ETABS en la tabla 11 se calcula la excentricidad de rigidez en la dirección Y:

$$e_y = Y_{CR} - Y_{CM} = 15,65 - 11,95 = 3,7 m$$

El giro del centro de masa se calcula con la ecuación 90:

$$\theta_x = \frac{V_T \cdot e_y}{(J_{R,y})_x} = \frac{1 \cdot 3,7 \, m}{1042,032m} = 0.00355 \, rad$$

6.7) Factor de corrección por torsión

El desplazamiento máximo del edificio se encontrará en el pórtico 1, ya que es el más alejado del centro de rigidez y se calcula con las ecuaciones 91 y 92:

$$e_{cv,max} = Y_{CV} - Y_{max} = 14,77 - 0 = 14,77m$$

$$\Delta_{\max} = \Delta_d + \theta_x \cdot e_{cv,\max} = 0,13\,m + 0,00355 \cdot 14,77\,m = 0,182\,m$$

Por lo tanto, el factor de corrección por torsión será: $\eta = \frac{\Delta_d}{\Delta_{\text{max}}} = \frac{0.13}{0.182} = 0.713$

Este es un cálculo iterativo como se mencionó en el paso 3.3, el error resultante seria: $\frac{0,713-0,707}{0,713} = 0,8\%$ ya que el error es suficientemente pequeño se puede continuar con el siguiente paso, caso contrario se tendría que volver al paso 3.3 para ajustar la deriva de diseño hasta obtener un error aceptable.

6.8) Verificación de la ductilidad en pórticos

		(1)	(2)		(3)	
Pórtico	n		h	Factor	Øy link	θy beam
	1	5.53	0.45	0.5		0.0135
P1	1	3.98	0.45	0.5		0.0097
	1	5.25	0.45	0.5		0.0128
	1	5.53	0.45	0.5		0.0135
P2	1	3.98	0.45	0.5		0.0097
	1	5.25	0.45	0.5		0.0128
D 2	1	4.43	0.6	0.31	0.00504	
FJ	1	5.25	0.6	0.4	0.00770	
	1	2.43	0.5	0.4	0.00428	
P4	1	5.3	0.5	0.4	0.00933	
	1	5.05	0.5	0.5		0.0111
DE	1	4.16	0.6	0.4	0.00610	
FJ	1	4.7	0.6	0.4	0.00689	
	1	4.16	0.45	0.5		0.0102
P6	1	5.3	0.45	0.5		0.0130
	1	4.7	0.45	0.5		0.0115

Tabla 56. Rotación de fluencia en pórticos

(1): Longitud de la viga entre ejes.

(2): Peralte de la viga

(3): Rotación de fluencia de vigas según corresponda con las ecuaciones 70, 71 y 72

				(1)	(2)	(3)	(4)	(5)
Pórtico	n link	n beam	n	Өу prom	Y	Δi	Өі	μi
P1	0	3	3	0.01203	14.774	0.1825	0.0135	1.126
P2	0	3	3	0.01203	9.374	0.1633	0.0121	1.008
P3	2	0	2	0.00637	4.944	0.1476	0.0110	1.720
P4	2	1	3	0.00680	0.094	0.1304	0.0097	1.238
P5	2	0	2	0.00650	-4.426	0.1143	0.0085	1.306
P6	0	3	3	0.01154	-10.226	0.0937	0.0070	1.000

Tabla 57. Cálculo de la ductilidad equivalente de los pórticos

Vigas totales:	n	16	
----------------	---	----	--

(1): Rotación de fluencia promedio del pórtico obtenido de la tabla 54

(2): Coordenada Y de cada pórtico

(3): Desplazamiento máximo corregido por torsión

(4): Deriva máxima en cada pórtico

(5): Ductilidad de cada pórtico según la ecuación 73 (Se utilizo la deriva de diseño para todos los pisos, sin embargo, debería calcularse para cada piso en particular)

El valor resultante en la tabla 55 es el que se muestra en el paso 5.3.

Paso 7) Calculo de la cortante basal inelástica

7.1) Espectro de desplazamiento elástico e inelástico

(1): Según la norma de diseño sismorresistente E-030 las condiciones de peligro sísmico y parámetros de sitio son:

$$Z = 0,25$$
 $U = 1,00$ $S = 1,20$ $T_P = 0,6s$ $T_L = 2,5s$

(2): Según la norma de diseño sismorresistente E-030 el coeficiente de amplificación sísmica C depende del periodo mediante las ecuaciones 2,3 y 4.

(3): La aceleración espectral según la ecuación 9 será:

$$S_a(C) = 0,25 \cdot 1,00 \cdot 1,20 \cdot 9,81 \cdot C = 2,943 \frac{m}{s^2} \cdot C$$

(4): Coordenadas del espectro de desplazamiento obtenidas con la ecuación 94.

(5): Coordenadas del espectro de desplazamientos inelásticos obtenidas con la ecuación 39 y 95.

$$R_{\xi} = \left(\frac{0,1}{0,05 + \xi_{SDOF}}\right)^{0.5} = \left(\frac{0,1}{0,05 + 0,10}\right)^{0.5} = 0,816$$

1.28

Figura 74. Espectro de desplazamiento inelástico dirección X

7.2) Periodo Efectivo

Se calcula entrando al grafico del espectro de desplazamiento con el desplazamiento de diseño obtenido en el paso 4 o equivalentemente con la expresión 96:

$$T_e = \frac{0.13 \cdot 2}{0.224 \cdot 0.816} = 1,426 \, s$$

7.3) Rigidez efectiva

Según la ecuación 97:

$$K_e = 4\pi^2 \cdot \frac{m_e}{T_e^2} = 4\pi^2 \cdot \frac{231,434}{1,426^2} = 4514 \frac{ton}{m}$$

7.4) Cortante basal inelástica para sismo en X

Con la rigidez secante y el desplazamiento de diseño se obtiene la cortante inelástica mediante la ecuación 98:

$$V_{ine} = K_e \cdot \Delta_d = 4514 \cdot 0, 13 = 586, 98 ton$$

(1)	(2)	(3) (4)		(5)	(6)
T (s)	С	Sa (m/s2)	ω	Sd (m)	Sd.R ξ (m)
0.000	2.500	7.358	0.000	0.000	0.000
0.100	2.500	7.358	62.832	0.002	0.002
0.200	2.500	7.358	31.416	0.007	0.006
0.300	2.500	7.358	20.944	0.017	0.014
0.400	2.500	7.358	15.708	0.030	0.024
0.500	2.500	7.358	12.566	0.047	0.038
0.600	2.500	7.358	10.472	0.067	0.055
0.700	2.143	6.306	8.976	0.078	0.064
0.800	1.875	5.518	7.854	0.089	0.073
0.900	1.667	4.905	6.981	0.101	0.082
1.000	1.500	4.415	6.283	0.112	0.091
1.100	1.364	4.013	5.712	0.123	0.100
1.200	1.250	3.679	5.236	0.134	0.109
1.300	1.154	3.396	4.833	0.145	0.119
1.400	1.071	3.153	4.488	0.157	0.128
1.500	1.000	2.943	4.189	0.168	0.137
1.600	0.938	2.759	3.927	0.179	0.146
1.700	0.882	2.597	3.696	0.190	0.155
1.800	0.833	2.453	3.491	0.201	0.164
1.900	0.789	2.323	3.307	0.212	0.173
2.000	0.750	2.207	3.142	0.224	0.182
2.100	0.680	2.002	2.992	0.224	0.182
2.200	0.620	1.824	2.856	0.224	0.182
2.300	0.567	1.669	2.732	0.224	0.182
2.400	0.521	1.533	2.618	0.224	0.182
2.500	0.480	1.413	2.513	0.224	0.182
2.600	0.444	1.306	2.417	0.224	0.182
2.700	0.412	1.211	2.327	0.224	0.182
2.800	0.383	1.126	2.244	0.224	0.182
2.900	0.357	1.050	2.167	0.224	0.182
3.000	0.333	0.981	2.094	0.224	0.182
3.100	0.312	0.919	2.027	0.224	0.182
3.200	0.293	0.862	1.963	0.224	0.182
3.300	0.275	0.811	1.904	0.224	0.182
3.400	0.260	0.764	1.848	0.224	0.182
3.500	0.245	0.721	1.795	0.224	0.182
3.600	0.231	0.681	1.745	0.224	0.182
3.700	0.219	0.645	1.698	0.224	0.182
3.800	0.208	0.611	1.653	0.224	0.182
3.900	0.197	0.580	1.611	0.224	0.182
4.000	0.188	0.552	1.571	0.224	0.182

Tabla 58 Espectro de desplazamientos dirección X

Bastaría con multiplicar la distribución de fuerzas obtenidas en la columna 4 de la tabla 43 por la cortante del paso 7.

Piso	hi	Fi	ViT	Motm	Vif	Viw	Miw	Mf
9	24.00	38.958	38.958	0.000	146.745	-107.787	0.000	0.000
8	21.60	119.986	158.943	93.498	146.745	12.198	-258.690	352.188
7	19.00	102.089	261.032	506.750	146.745	114.287	-226.975	733.725
6	16.40	89.495	350.527	1185.433	146.745	203.782	70.171	1115.262
5	13.80	75.318	425.845	2096.802	146.745	279.100	600.003	1496.799
4	11.20	61.118	486.963	3203.998	146.745	340.218	1325.662	1878.336
3	8.60	46.209	533.172	4470.102	146.745	386.427	2210.229	2259.873
2	6.00	32.742	565.914	5856.348	146.745	419.169	3214.938	2641.410
1	3.40	21.067	586.980	7327.723	146.745	440.235	4304.776	3022.947
0	0.00			9323.455			5801.575	3521.880

Tabla 59 Fuerzas cortantes y momentos finales dirección X

Figura 75 Cortantes y momentos finales dirección X

Paso 9) Fuerzas en los elementos

9.1) Fuerzas en pórticos

	(1)	(2)	(3)
Pórtico	V	Vf (Ton)	Mtf (Ton.m)
1	0.03	17.609	422.626
2	0.03	17.609	422.626
3	0.055	32.284	774.814
4	0.055	32.284	774.814
5	0.05	29.349	704.376
6	0.03	17.609	422.626
Σ	0.25	146.745	

Tabla 60 Cortantes y momentos de cada pórtico

A continuación, se detalla los cálculos para el pórtico 4:

Tabla 61 Cortantes y momentos en vigas del pórtico 4

	(1)		(2)		(3)	(4)
Viga	L	1/L	α	α.L	Vf (Ton)	Mv (Ton.m)
1	2.43	0.412	0.516	1.253	11.441	27.802
2	5.3	0.189	0.236	1.253	5.246	27.802
3	5.05	0.198	0.248	1.253	5.505	27.802
	Σ	0.798	Σα.L	3.758		

(1): Longitud de cada tramo de viga en el pórtico

(2): Proporción de cortante en cada tramo de viga en piso típico: $v_{pt,i} = \frac{L_i^{-1}}{\sum L_i^{-1}}$

(3): Fuerza cortante en cada tramo de viga en piso típico: $V_{b,i} = v_{pt,i} \cdot \Psi$

(4): Momentos en los extremos de las vigas en piso típico: $M_{b,i} = V_{b,i} \cdot L_i$

El factor Ψ se calcula de la siguiente manera:

c) En el piso típico el momento resistente por los pórticos será:

$$\sum v_{pt,i} \cdot L_i = 3,758m$$

 d) Teniendo en cuenta lo mencionado en el paso 1, las cortantes en las vigas del último nivel deben ser la mitad con respecto a los otros niveles.

$$\sum V_{roof,i} \cdot L_i = 3,758m \cdot 0,5 = 1,879m$$

 e) Por lo tanto, para todo el edificio el momento resistente por los pórticos será:

$$\sum v_i \cdot L_i = (N-1) \cdot \sum v_{pt,i} \cdot L_i + \sum v_{roof,i} \cdot L_i = 8 \cdot 3,758 + 1,879 = 31,946m$$

f) El momento flector en la base del pórtico 4 obtenido de la tabla x es:

$$M_{f,4} = 774,81 ton \cdot m$$

g) El momento en la base es tomado por las vigas y otra parte por las columnas según las ecuaciones 101 y 102:

Por lo tanto, para el pórtico 4 se tiene:

$$\sum M_{col} = 32,284 \cdot 0,6 \cdot 3,4 = 65,86 \text{ ton} \cdot m$$
$$\sum V_i \cdot L_i = M_f - \sum M_{col} = 774,81 - 65,86 = 708,95 \text{ ton} \cdot m$$

 h) El factor multiplicador a la columna (2) para obtener las fuerzas cortantes finales en las vigas será:

$$\Psi = \frac{\sum V_i \cdot L_i}{\sum v_i \cdot L_i} = \frac{708,95}{31,946} = 22,19 \text{ ton}$$

Los momentos en las columnas se obtiene por equilibrio en los nudos con las ecuaciones 105 y 106:

Para columnas interiores de piso típico: $M_{col,int} = M_{b,i} = 27,8 ton \cdot m$

Para columnas exteriores de piso típico: $M_{col,ext} = \frac{M_{b,i}}{2} = \frac{27,8}{2} = 13,9 ton \cdot m$

Momento en la base de una columna interior:

$$M'_{col,int} = 1, 2 \cdot M_{col,int} \cdot \frac{h_1}{h_{pt}} = 1, 2 \cdot 27, 8 \cdot \frac{3, 4}{2, 6} = 43,63 ton \cdot m$$

Momento en la base de una columna exterior según la ecuación 103:

$$M'_{col,ext} = 1, 2 \cdot M_{col,ext} \cdot \frac{h_1}{h_{pt}} = 1, 2 \cdot 13, 9 \cdot \frac{3, 4}{2, 6} = 21,81 ton \cdot m$$

Las cortante en la columna exterior del primer nivel según la ecuación 104:

$$V_{col} = \frac{M_{col,sup} + M_{col,inf}}{h_{col}} = \frac{13,9 + 21,81}{3,4} = 10,5ton$$

Realizando el mismo procedimiento para cada uno de los pórticos en la dirección X se obtiene.

Pórtico	l (m)	M (Ton.m)	V (Ton)
	5.53		2.742
P1	3.98	15.16	3.810
	5.25		2.889
	5.53		2.742
P2	3.98	15.165	3.810
	5.25		2.889
DO	4.43	41 702	9.414
гJ	5.25	41.703	7.943
	2.43		11.441
P4	5.3	27.802	5.246
	5.05		5.505
D 5	4.16	37 012	9.113
FJ	4.7	57.912	8.066
P6	4.16		3.645
	5.3	15.165	2.861
	4.7		3.227

Tabla 62 Cortantes y momentos en las vigas dirección X

Tabla 63 Cortantes y momentos en columnas dirección X

	Mcol interior (Ton.m)		Mcol exterior (Ton.m)		Vcol in	terior (Ton)	Vcol exterior (Ton)	
Pórtico	1° piso	Piso típico	1° piso	Piso típico	1° piso	Piso típico	1° piso	Piso típico
P1	23.80	15.16			11.46	14.44		
P2	23.80	15.16			11.46	14.44		
P3			32.72	20.85			15.76	19.86
P4	43.63	27.80	21.81	13.90	21.01	26.48	10.50	13.24
P5			19.61	18.96			11.34	18.05
P6	23.80	15.16	11.90	7.58	11.46	14.44	5.73	7.22

9.2) Fuerzas en muros

Con la distribución de cortantes y momentos en altura de los muros en el paso 1 junto con el porcentaje asignado en cada muro en la tabla 50 y la cortante inelástica calculada en el paso 8 es posible determinar las fuerzas finales en cada muro. Para el muro en forma de C se sumaron las cortantes y momentos que toman los muros M2X Y M3X con propósitos de diseño.

MURO		1		2		3		Δ	
				2		5			
LONG	TUD (m)	Ę	5.3	1.95			2.5	4	2.8
	V	199	9.573	58	3.698	7	6.307	105.656	
Piso	h	V (Ton)	M (Ton.m)	V (Ton)	M (Ton.m)	V (Ton)	M (Ton.m)	V (Ton)	M (Ton.m)
9	24.00	-48.864	0.000	- 14.372		-18.683		-25.869	
8	21.60	5.530	-117.273	1.626	-34.492	2.114	-44.840	2.928	-62.086
7	19.00	51.810	-102.895	15.238	-30.263	19.810	-39.342	27.429	-54.474
6	16.40	92.381	31.811	27.171	9.356	35.322	12.163	48.908	16.841
5	13.80	126.525	272.001	37.213	80.000	48.377	104.001	66.984	144.001
4	11.20	154.232	600.967	45.362	176.755	58.971	229.781	81.652	318.159
3	8.60	175.180	1001.970	51.524	294.697	66.981	383.106	92.742	530.455
2	6.00	190.023	1457.438	55.889	428.658	72.656	557.256	100.600	771.585
1	3.40	199.573	1951.498	58.698	573.970	76.307	746.161	105.656	1033.146
0	0.00		2630.047		773.543		1005.606		1392.378

Corrección de los momentos en muros debido a las vigas conectadas:

Para el pórtico 5 se tiene:

El momento trasmitido por las vigas al eje del muro según la ecuación 107 :

$$M_{bWall} = M_{b1} \left(\frac{L_{b1} + L_{w}}{L_{b1} + d_{col1}} \right) + M_{b2} \left(\frac{L_{b2} + L_{w}}{L_{b2} + d_{col2}} \right) = 37,91 \cdot \left(\frac{4,16+5,3}{4,16+0} + \frac{4,7+5,3}{4,7+0} \right) = 166,88 ton \cdot m$$

El peralte de la columna en este caso se considera 0 porque las longitudes de las vigas son a la cara de la placa.

El momento en el base obtenido del DDBD fue de: $M_{Wall, base} = 2630, 05 ton \cdot m$

La reducción del momento en un piso típico:

$$\Delta M_{w,pt} = \sum_{j=i}^{N} \sum_{k=1}^{n} M_{bWall,k} - \sum_{k=1}^{n} M_{beam,k} = 166,88 - 2 \cdot 37,91 = 91,05 \ ton \cdot m$$

El momento corregido en la base será:

$$M'_{Wall,base} = M_{Wall,base} - \Delta M_{w,pt} \cdot 8,5 = 1856,1 ton \cdot m$$

El termino 8.5 es debido a que en el último piso la resistencia de la viga es la mitad que los pisos típicos y por tanto el momento transmitido también será la mitad.

Se puede hacer lo mismo para cada piso y obtener el diagrama de momentos corregido como se muestra en la figura 67.

La altura de inflexión correspondiente al diagrama de momentos corregidos disminuye en comparación al diagrama de momentos original, esta nueva altura se calcula de manera similar observando el cambio de signo con interpolación lineal, de esta manera y promediando los valores para los muros se obtiene el valor corregido de 14.7m mencionado en el paso 2.

Este proceso se puede hacer desde el inicio de la etapa de diseño ya que solo depende de la distribución de momentos asignada y el momento transmitido por las vigas al centro del muro como la disminución del momento en altura debido al aumento de momento en los pórticos se puede calcular en función de una cortante unitaria tal como se hizo en la columna 2 de la tabla 43.

Figura 76 Influencia de las vigas conectadas en los momentos del muro 1X

Sismo en dirección Y

Paso 1) Distribucion de cortantes y momentos en porticos y muros

Para la direccion Y se asigno un 20% de cortante a los porticos (β_f =0,20).

Piso	mi	hi	mi*hi	Fi	ViT	Motm	Vif	Viw	Miw	Mif
9	11.12	24.00	266.93	0.066	0.066	0.00	0.2	-0.134	0.000	0.000
8	38.06	21.60	822.12	0.204	0.271	0.16	0.2	0.071	-0.321	0.480
7	36.82	19.00	699.50	0.174	0.445	0.86	0.2	0.245	-0.137	1.000
6	37.39	16.40	613.20	0.152	0.597	2.02	0.2	0.397	0.500	1.520
5	37.40	13.80	516.07	0.128	0.725	3.57	0.2	0.525	1.532	2.040
4	37.39	11.20	418.77	0.104	0.830	5.46	0.2	0.630	2.898	2.560
3	36.82	8.60	316.61	0.079	0.908	7.62	0.2	0.708	4.535	3.080
2	37.39	6.00	224.34	0.056	0.964	9.98	0.2	0.764	6.377	3.600
1	42.45	3.40	144.34	0.036	1.000	12.48	0.2	0.800	8.364	4.120
0		0.00				15.88			11.084	4.800
		Σ	4021.90	1.000						

Tabla 65. Distribución de cortantes y momentos en la dirección Y

Paso 2) Calculo de la altura de inflexion

La altura de inflexión corregida resulto $H_{cf} = 17,73 m$.

Paso 3) Calculo de desplazamientos

3.1) Calculo de la longitud equivalente de muro del edificio

Tabla 66. Longitud	l equivalente de	muro en la	dirección Y
--------------------	------------------	------------	-------------

MURO	L	е	e.L²	V	V*L
1	5.4	0.25	7.29	0.23	1.22
2	5.8	0.25	8.41	0.26	1.51
3	5.8	0.25	8.41	0.26	1.51
4	5.4	0.25	7.29	0.23	1.22
5	1.8	0.25	0.81	0.03	0.05
		Σ	32.21	1.00	5.52

$$L_{weq} = \frac{\sum V_i \cdot L_i}{\sum V_i} = \frac{5,52}{1,00} = 5,52m$$

3.2) Calculo de la curvatura de fluencia según la ecuación 50:

$$\phi_{wy} = 1.5 \cdot \frac{0.0022}{5.52} = 0.000598 m^{-1}$$

3.3) Selección de la deriva limite

Para efectos de comparación de ambas metodologías se usará derivas equivalentes, la deriva máxima del centro de masa en la dirección Y usando el MBF fue de 0.00292, su equivalente con secciones fisuradas seria:

$$\theta'_{d} = 0,00292 \cdot \frac{0,015}{0,007} = 0,0063$$

Por lo que se elige una deriva aproximada de diseño de 0.007.

La deriva corregida por efectos de modos superiores según la ecuación 51:

$$\theta_{d,\omega} = 0,007 \left[1 - \frac{(9-5)}{100} \left(\frac{4,8}{15,88} + 0,25 \right) \right] = 0,0068$$

3.4) Distribución de desplazamientos y derivas en altura

Piso	hi	∆yi	Δi	mi	mi.∆i	mi.∆i²	mi.∆i.hi	θi=∆i/h
9	24	0.096	0.133	11.12	1.479	0.197	35.491	0.0068
8	21.6	0.083	0.117	38.06129	4.435	0.517	95.802	0.0068
7	19	0.069	0.099	36.81564	3.635	0.359	69.062	0.0068
6	16.4	0.056	0.081	37.39052	3.027	0.245	49.637	0.0067
5	13.8	0.042	0.063	37.39629	2.374	0.151	32.758	0.0064
4	11.2	0.030	0.047	37.39052	1.754	0.082	19.642	0.0058
3	8.6	0.019	0.032	36.81564	1.171	0.037	10.074	0.0050
2	6	0.010	0.019	37.39052	0.703	0.013	4.221	0.0040
1	3.4	0.003	0.008	42.45433	0.360	0.003	1.225	0.0025
0	0	0.000	0.000					0.0000
				Σ	18.938	1.604	317.912	

Tabla 67. Desplazamiento y derivas en la dirección Y

Paso 4) Sistema equivalente de un grado de libertad (SDOF).

Tabla 68.	Propiedades	del SDOF	en la	dirección y
-----------	-------------	----------	-------	-------------

Desplazamiento equivalente	Δd	0.085	m
Altura equivalente	Не	16.787	m
Masa equivalente	me	223.624	tonf-s²/m

Paso 5) Amortiguamiento del sistema

5.1) Ductilidad en muros

Se cumple la condicion: $h_i < H_{cf} : 16,787 < 17,73$

$$\Delta_{y,i} = \frac{\phi_{y,w} \cdot h_i^2}{2} - \frac{\phi_{y,w} \cdot h_i^3}{6 \cdot H_{cf}} \qquad (\text{Ecuación 53})$$

$$\Delta_{he,y} = \frac{0,000598 \cdot 16,787^2}{2} - \frac{0,000598 \cdot 16,787^2}{6 \cdot 17,73} = 0,058m$$

$$\mu_{w} = \frac{\Delta_{d}}{\Delta_{he,y}} = \frac{0,085}{0,058} = 1,47 \qquad \text{(Ecuación 59)}$$

5.2) Verificacion de ductilidad en muros

MURO	L	Forma	coef	φyw	Lp2	Lpf	μφw
1	5.4	Rect	1.5	0.00061	1.612	1.216	3.130
2	5.8	Rect	1.5	0.00057	1.692	1.216	3.828
3	5.8	Rect	1.5	0.00057	1.692	1.216	3.828
4	5.4	Rect	1.5	0.00061	1.612	1.216	3.130
5	1.8	С	1.4	0.00171	0.892	0.892	1.000

Tabla 70 Cap	acidad de o	ductilidad	en muros	en la	dirección	Y
--------------	-------------	------------	----------	-------	-----------	---

MURO	L	φyw	Өуw	coef	φuw	θuw	µw max	Verificación
1	5.4	0.00061	0.00542	1	0.01333	0.02088	21.818	ok
2	5.8	0.00057	0.00504	1	0.01241	0.01944	21.818	ok
3	5.8	0.00057	0.00504	1	0.01241	0.01944	21.818	ok
4	5.4	0.00061	0.00542	1	0.01333	0.02088	21.818	ok
5	1.8	0.00171	0.01517	0.9	0.04000	0.04932	23.377	ok

5.3) Ductilidad en pórticos

La rotación de fluencia se calcula según las ecuaciones 70, 71 y 72:

Pórtico	n	I	h	Factor	Øy link	Oy beam
P-A	1	4.28	0.55	0.4	0.006848	
	1	5.15	0.55	0.5		0.0103
	1	4.82	0.55	0.4	0.007712	
	1	1.8	0.55	0.5		0.0036
P-B	1	4.37	0.55	0.5		0.00874
	1	5.95	0.55	0.5		0.0119
	1	5.54	0.55	0.5		0.01108
P-C	1	4.43	0.55	0.5		0.00886
D D1	1	5.54	0.55	0.5		0.01108
P-D1	1	4.43	0.55	0.5		0.00886
<u>р</u> рэ	1	4.37	0.55	0.5		0.00874
P-DZ	1	5.95	0.55	0.5		0.0119
	1	4.28	0.55	0.4	0.006848	
P-E	1	5.15	0.55	0.5		0.0103
	1	4.82	0.55	0.4	0.007712	
				Promedio:	0.00728	0.00957818

Tabla 71. Rotación de fluencia de vigas en la dirección Y

La ductilidad de cada pórtico se calcula con la ecuación 73:

Piso	θD	μfi
9	0.0068	1
8	0.0068	1
7	0.0068	1
6	0.0067	1
5	0.0064	1
4	0.0058	1
3	0.0050	1
2	0.0040	1
1	0.0025	1
0		
	μf	1.0000

Tabla 72. Ductilidad de pórticos en la dirección Y

5.4) Amortiguamiento en pórticos y muros

Ductilidad del sistema según la ecuación 77: $\mu_{sys} = \frac{1,0 \cdot 0,20 + 1,47 \cdot 0,8}{1,00} = 1,375$

Periodo efectivo de prueba según la ecuación 76: $T_{e,trial} = \frac{9}{5}\sqrt{1}$,

76: $T_{e,trial} = \frac{9}{6}\sqrt{1,475} = 1,76 \, s$

Con el periodo efectivo de prueba se empieza el cálculo iterativo, sin embargo, se presentan los cálculos finales con el periodo efectivo calculado en el paso 7.2.

$$T_e = 0,86 s$$

Amortiguamiento inelástico de muros según la ecuación 74:

$$\xi_{hyst,wall} = \frac{95}{\pi} \left(1 - \frac{1}{1,47^{0.5}} - 0, 1 \cdot 0, 05 \cdot 1, 47 \right) \left(1 + \frac{1}{(0,86+0,85)^4} \right) \frac{1}{1,30} = 4,35\%$$

Como la ductilidad de pórticos es 1 el amortiguamiento inelástico será:

$$\xi_{hyst, frame} = 0\%$$

Considerando el amortiguamiento elástico de 5% para estructuras de concreto armado, el amortiguamiento final en muros y marcos será:

$$\begin{aligned} \xi_{wall} &= \xi_{elas,wall} + \xi_{hyst,wall} = 5,0\% + 4,35\% = 9,4\% = 0,094 \\ \\ \xi_{frame} &= \xi_{elas,frame} + \xi_{hyst,frame} = 5,0\% = 0,05 \end{aligned}$$

5.5) Amortiguamiento equivalente según la ecuación 80:

$$\xi_{SDOF} = \frac{11,084 \cdot 0,094 + 4,8 \cdot 0,05}{15,88} = 0,08$$

Paso 7) Calculo de la cortante basal inelástica

7.1) Espectro de desplazamiento elástico e inelástico según ecuaciones 39 y 95:

$$R_{\xi} = \left(\frac{0,1}{0,05 + \xi_{SDOF}}\right)^{0.5} = \left(\frac{0,1}{0,05 + 0,08}\right)^{0.5} = 0,876$$

Figura 77. Espectro de desplazamientos inelásticos para el sismo en Y

7.2) Periodo Efectivo

$$T_e = \frac{0,085 \cdot 2}{0,224 \cdot 0,876} = 0,86s$$

7.3) Rigidez efectiva

$$K_e = 4\pi^2 \cdot \frac{m_e}{T_e^2} = 4\pi^2 \cdot \frac{231,434}{0,86^2} = 11806,7\frac{ton}{m}$$

7.4) Cortante basal inelástica para sismo en X

$$V_{ine} = K_e \cdot \Delta_d = 11806, 7 \cdot 0,085 = 999,88 ton$$

Paso 8) Cortantes y momentos finales del edificio en la dirección X

Bastaría con multiplicar la distribución de fuerzas obtenidas en la columna 4 de la tabla 63 por la cortante del paso 7.

Piso	hi	Fi	ViT	Motm	Vif	Viw	Miw	Mf
9	24.00	66.361	66.361	0.000	199.976	- 133.615	0.000	0.000
8	21.60	204.387	270.749	159.268	199.976	70.773	-320.675	479.943
7	19.00	173.901	444.650	863.214	199.976	244.674	-136.666	999.880
6	16.40	152.448	597.098	2019.304	199.976	397.122	499.486	1519.818
5	13.80	128.299	725.397	3571.759	199.976	525.421	1532.003	2039.756
4	11.20	104.111	829.508	5457.791	199.976	629.532	2898.098	2559.693
3	8.60	78.713	908.221	7614.512	199.976	708.245	4534.881	3079.631
2	6.00	55.774	963.995	9975.887	199.976	764.019	6376.318	3599.569
1	3.40	35.885	999.880	12482.274	199.976	799.904	8362.767	4119.507
0	0.00			15881.867			11082.442	4799.425

Tabla 73. Cortantes y momentos finales en la dirección Y

Figura 78. Cortantes y momentos finales para el sismo en Y
Paso 9) Fuerzas en los elementos

9.1) Fuerzas en pórticos

Pórtico	V	Vf	Mtf	
A	0.0350	34.996	839.899	
В	0.0400	39.995	959.885	
С	0.0300	29.996	719.914	
D1	0.0300	29.996	719.914	
D2	0.0300	29.996	719.914	
E	0.0350	34.996	839.899	
Σ	0.2000	199.976		

Tabla 74. Fuerzas de pórticos para el sismo en Y

Tabla 75. Momentos y cortantes en vigas para el sismo en Y

Pórtico	l (m)	M (Ton.m)	V (Ton)
	4.28		7.744
P-A	5.15	33.14	6.436
	4.82		6.877
	1.8		19.135
P-B	4.37	34.44	7.882
	5.95		5.789
P-C	5.54	20 740	6.994
<i>P-</i> C	4.43	30.740	8.747
	5.54	20 740	6.994
P-DT	4.43	30.740	8.747
D D2	4.37	20 740	8.867
P-DZ	5.95	30.740	6.512
	4.28		7.744
P-E	5.15	33.14	6.436
	4.82		6.877

Tabla 76. Momentos y cortantes en columnas para el sismo en Y

	Mcol interior (Ton.m)		Mcol ext	Mcol exterior (Ton.m)		terior (Ton)	Vcol exterior (Ton)	
Portico	1° piso	Piso tipico	1° piso	Piso tipico	1° piso	Piso tipico	1° piso	Piso tipico
А	44.28	26.54			20.83	25.90		
В	28.73	17.22	14.37	8.61	13.52	16.80	6.76	8.40
С	64.64	38.75	32.32	19.37	30.41	37.80	15.20	18.90
D1	64.64	38.75	32.32	19.37	30.41	37.80	15.20	18.90
D2	64.64	38.75	32.32	19.37	30.41	37.80	15.20	18.90
Е	44.28	26.54			20.83	25.90		

9.2) Fuerzas en muros

М	URO	1	y 4	2 y 3		5		
LONG	LONGITUD (m)		5.4	Ę	5.8		1.8	
	V	181	1.040	208	3.854	20	.116	
Piso	h	V	Μ	V	М	V	М	
9	24.00	-32.257	0.000	-37.212		-3.584		
8	21.60	17.086	-77.416	19.711	-89.310	1.898	-8.602	
7	19.00	59.068	-32.993	68.143	-38.062	6.563	-3.666	
6	16.40	95.871	120.584	110.601	139.110	10.652	13.398	
5	13.80	126.845	369.850	146.333	426.671	14.094	41.094	
4	11.20	151.979	699.646	175.328	807.137	16.887	77.738	
3	8.60	170.982	1094.792	197.250	1262.990	18.998	121.644	
2	6.00	184.446	1539.343	212.784	1775.841	20.494	171.038	
1	3.40	193.109	2018.903	222.778	2329.078	21.457	224.323	
0	0.00		2675.476		3086.523		297.275	

Tabla 77. Fuerzas en muros dirección Y

Tabla 78. Corrección de momentos en muro 1Y debido a las vigas conectadas

Corrección de momentos en muro 1Y								
Peralte de la columna en la dirección de análisis	dcol	0	m					
Longitud de la viga	Lb	4.28	m					
Longitud de muro	Lw	5.4	m					
Momento en la viga (eje de columna)	Mb'	33.14	Ton.m					
Momento en el muro	Mb wall	74.9631646	Ton.m					

Tabla 79. Corrección de momentos en muro 2Y debido a las vigas conectadas

Corrección de momentos en muro 2Y								
Peralte de la columna en la dirección de análisis	dcol	0	m					
Longitud de la viga	Lb	4.82	m					
Longitud de muro	Lw	5.8	m					
Momento en la viga (eje de columna)	Mb'	33.14	Ton.m					
Momento en el muro	Mb wall	73.0287391	Ton.m					

Figura 79. Corrección de momentos en muros sismo Y

3.5.6 Diseño de elementos estructurales según el DDBD

Diseño de vigas

Se diseñará la viga intermedia del pórtico 4 con fines de comparación. Para este ejemplo las dimensiones de la viga se mantienen en 30x50cm.

- Resistencia esperada a la compresión: $f'_{ce} = 1, 3 \cdot f'_{c} = 1, 3 \cdot 210 = 273 \frac{kg}{cm^2}$
- Resistencia esperada a la fluencia: $f_{ye} = 1, 1 \cdot f_y = 1, 1 \cdot 4200 = 4620 \frac{kg}{cm^2}$

El momento en el eje de la columna o borde de muro obtenido del análisis por el DDBD para la viga en estudio es:

$$M'_{F} = 27,802 ton \cdot m$$

El momento en la cara será:

$$M_E = 27,802 \cdot \left(\frac{5,3-0,6}{5,3}\right) = 24,65 \text{ ton} \cdot m$$

El área de acero requerido será:

$$\lambda = \frac{0.85 \cdot f'_{ce} \cdot b \cdot d}{f_{ye}} = 61,78 \, cm^2$$
$$As_{req} = \lambda \left(1 - \sqrt{1 - \frac{2 \cdot M_E}{\phi_f \cdot \lambda \cdot f_{ye} \cdot d}} \right) = 15,236 \, cm^2$$

Donde el factor de reducción por flexión en la rótula plástica es $\phi_f = 1$

Área de acero colocado en la viga: $As_{col} = 3\phi 5/8"+3\phi 3/4"=14,49 cm^2$

En la parte superior se colocará $2\phi 3/4"+1\phi 5/8"=7,68 cm^2$ como acero corrido y $1\phi 3/4"+2\phi 5/8"=6,81 cm^2$ como refuerzo adicional en los extremos.

Desarrollo del refuerzo para flexión

• Momento resistente del acero corrido:

$$\phi M_n = \phi_f \cdot As_{corrido} \cdot f_{ye} \cdot \left(d - \frac{As_{corrido} \cdot f_{ye}}{1, 7 \cdot f'_{ce} \cdot b} \right) = 13,64 \ ton \cdot m$$

• Punto de corte teórico obtenido del diagrama de momentos (fig. x)

$$x_{ct} = 0, 5 \cdot l_n \cdot \left(1 - \frac{\phi M_n}{M_E}\right) = 1,12m$$

• Extensión más allá del punto teórico

$$d = 41 cm$$

• Punto de corte final

 $x_{cf} = x_{ct} + d = 111.7cm + 41cm = 153.7cm \approx 1,6m$

• Verificación del desarrollo del bastón (Se considera resistencias nominales para estar del lado seguro)

$$l_d = \left(\frac{4200 \cdot 1, 3 \cdot 1, 0 \cdot 1, 0}{8, 2 \cdot \sqrt{210}}\right) \frac{3}{4} \cdot 2,54 = 87,5 \, cm$$

$$x_{cf} = 160 cm > l_d = 87,5 cm$$
 Se verifica

En la parte inferior se colocará todo el acero corrido debido a la envolvente de momentos que se muestra en la figura 71 y se detalla a continuación:

d) Diseño por capacidad a flexión

El momento resistente con el acero colocado:

$$M_{E} = \phi_{f} \cdot As_{col} \cdot f_{ye} \cdot \left(d - \frac{As_{col} \cdot f_{ye}}{1, 7 \cdot f'_{ce} \cdot b}\right) = 25,48 \operatorname{ton} \cdot m$$

$$M_{E,l}^{\circ} = M_{E,r}^{\circ} = \phi^{\circ} \cdot M_{E} = 1, 1 \cdot 25, 48 = 28,03 ton \cdot m$$

La carga distribuida por cargas gravitacionales es de:

$$W_u = \left(W_{cm} + W_{cv}\right) = 2,16\frac{ton}{m}$$

La carga distribuida amplificada:

 $w_G = W_u \cdot 1, 3 = 2, 16 \cdot 1, 3 = 2, 81 ton / m$

El momento combinado dentro la longitud será:

$$M^{\circ}_{E+G}(x) = 28,03 + \frac{2 \cdot 28,03}{5} \cdot x + \frac{2,81 \cdot 5}{2} \cdot x - \frac{2,81 \cdot x^2}{2}$$

Por lo tanto, se tiene la envolvente de momentos:

Figura 80. Envolvente de momento de la viga eje 4 con el DDBD

Debido al incremento del momento positivo se coloca acero corrido en la parte inferior.

e) Diseño por capacidad a corte

La máxima resistencia de las rotulas plásticas se calculará con las ecuaciones 47 y 110:

$$f'_{co} = 1,7 \cdot f'_{c} = 1,7 \cdot 210 = 357 \frac{kg}{cm^{2}}$$
$$f_{yo} = 1,3 \cdot f_{y} = 1,3 \cdot 4200 = 5460 \frac{kg}{cm^{2}}$$

Los momentos en los extremos se calculan con un factor de sobreresistencia de $\phi^{\circ} = 1, 1$.

Por lo tanto, la cortante a lo largo de la viga es:

$$V_{E+G}^{\circ}(x) = \frac{M_{E,r}^{\circ} - M_{E,l}^{\circ}}{l_n} + \frac{w_G \cdot l_n}{2} - w_G \cdot x = \frac{2 \cdot 28,03}{5} + \frac{2,81 \cdot 5}{2} - 2,81 \cdot x$$

Utilizando el factor de reducción por corte: $\phi_c = 0.85$ la demanda y capacidad por corte de la viga se muestra en la figura 72:

Figura 81. Demanda y capacidad de viga eje 4 con el DDBD

Por lo tanto, el diseño final a cortante de la viga será:

1@5cm, 10@10cm, Rto.@20cm

Diseño de columnas

Para efectos de comparación se diseñará la columna exterior del pórtico 3 cuyas dimensiones debido a las solicitaciones se incrementó de 30x70cm a 35x70cm en comparación al diseño con el MBF y la norma E-060.

Fuerzas obtenidas del DDBD para el primer nivel:

- Momento: $M_{EX} = 32,72 \ ton \cdot m$ $M_{EY} = 44,28 \ ton \cdot m$
- Cortante: $V_{EX} = 15,76 \text{ ton } V_{EY} = 20,83 \text{ ton}$

Fuerzas obtenidas del DDBD para piso típico:

- Momento: $V_{EY} = 20,83 ton M'_{EY} = 26,54 ton \cdot m$
- Cortante: $V'_{FX} = 19,86 \text{ ton } V'_{FY} = 25,9 \text{ ton}$

Al ser una columna exterior para el análisis en la dirección X la columna estará sometida a fuerzas axiales producto de la cortante en la viga, la carga transmitida por la viga a la columna en un piso típico fue de: $V_{viga} = 7,94 ton$

• Carga axial en la base: $P_{EX} = 8.7,94 + 0,5.7,94 = 67,49 \text{ ton}$

De manera similar se puede obtener la carga axial en cada nivel.

Para el análisis en la dirección Y la columna no estará sujeta a cargas axiales importantes ya que al ser una columna interior las cortantes de las vigas se restan, al llegar a la columna vigas de diferente longitud la carga axial transmitida a la columna en un piso típico esta dado por:

$$V_{viga1} - V_{viga2} = 7,74 \text{ ton} - 6,44 \text{ ton} = 1,31 \text{ ton}$$

• Carga axial en la base: $P_{EY} = 8.1,31+0,5.1,31=11,12$ ton

Momentos gravitacionales:

En la dirección X la columna no carga a una viga principal por lo que los momentos debido a cargas muertas y vivas podría ignorarse al tratarse de valores pequeños.

Sin embargo, en la dirección Y la columna carga 2 vigas principales, estos momentos no deberían ignorarse y se combinan con los momentos de sismo, del análisis por cargas gravitacionales se obtuvo los siguientes valores.

- Momento debido a cargas muertas: $M_{Dy} = 1,09 ton \cdot m$
- Momento debido a cargas vivas: $M_{Lv} = 0,3ton \cdot m$

Al no tener una recomendación para el tratado de cargas axiales estas se combinan con las cargas de sismo según lo indicado en la norma E-060, de esta manera se obtiene:

DD (ton)	DL (ton)	DE ton)		Pu (i	ton)	
PD (ton)	PL (ton)	PE ton)	1.25CM+CV+SX	0.9CM+SX	1.25CM+CV-SX	0.9CM-SX
-2.676	-0.290	-3.970	-7.678	-6.379	0.262	1.561
-10.595	-1.981	-11.910	-27.630	-21.446	-3.810	2.374
-18.750	-3.707	-19.850	-47.921	-36.725	-8.221	2.975
-26.937	-5.447	-27.790	-68.270	-52.033	-12.690	3.547
-35.218	-7.216	-35.730	-88.773	-67.427	-17.313	4.033
-43.625	-9.024	-43.670	-109.481	-82.932	-22.141	4.408
-52.184	-10.881	-51.610	-130.442	-98.576	-27.222	4.644
-60.968	-12.808	-59.550	-151.770	-114.421	-32.670	4.679
-70.103	-14.754	-67.490	-173.561	-130.583	-38.581	4.397

Tabla 80. Cargas axiales en columna C-3 para el sismo en dirección X con el DDBD

	DL (ten)	PE ton)	Pu (ton)					
PD (ton)	PL (ton)		1.25CM+CV+SY	0.9CM+SY	1.25CM+CV-SY	0.9CM-SY		
-2.676	-0.290	-0.655	-4.363	-3.064	-3.053	-1.754		
-10.595	-1.981	-1.965	-17.685	-11.501	-13.755	-7.571		
-18.750	-3.707	-3.275	-31.346	-20.150	-24.796	-13.600		
-26.937	-5.447	-4.585	-45.065	-28.828	-35.895	-19.658		
-35.218	-7.216	-5.895	-58.938	-37.592	-47.148	-25.802		
-43.625	-9.024	-7.205	-73.016	-46.467	-58.606	-32.057		
-52.184	-10.881	-8.515	-87.347	-55.481	-70.317	-38.451		
-60.968	-12.808	-9.825	-102.045	-64.696	-82.395	-45.046		
-70.103	-14.754	-11.135	-117.206	-74.228	-94.936	-51.958		

Tabla 81. Cargas axiales en columna C-3 para el sismo en dirección Y con el DDBD

Las fuerzas de diseño en el primer piso serán:

• $M_{DX} = \frac{\phi^{\circ} \cdot \omega \cdot M_{EX}}{\phi_s} = \frac{1, 0 \cdot 1, 0 \cdot 32, 72}{1, 0} = 32, 72 \text{ ton} \cdot m$

•
$$\phi_s V_{DX} = \phi^{\circ} \cdot \omega \cdot V_{EX} = 1, 0 \cdot 1, 0 \cdot 15, 76 = 15, 76 ton$$

• $M_{DY} = \frac{\phi^{\circ} \cdot \omega \cdot M_{EY}}{\phi_s} = \frac{1, 0 \cdot 1, 0 \cdot 44, 28}{1, 0} = 44, 28 \text{ ton} \cdot m$

•
$$\phi_s V_{DY} = \phi^{\circ} \cdot \omega \cdot V_{EY} = 1, 0 \cdot 1, 0 \cdot 20, 83 = 20, 83 \text{ ton}$$

Y en un piso típico:

• $M'_{DX} = \frac{\phi^{\circ} \cdot \omega \cdot M'_{EX}}{\phi_s} = \frac{1,1 \cdot 1,3 \cdot 20,85}{0,9} = 33,128 \, ton \cdot m$

•
$$\phi_s V'_{DX} = \phi^{\circ} \cdot \omega \cdot V'_{EX} = 1, 1 \cdot 1, 3 \cdot 19, 86 = 28, 4 \text{ tors}$$

•
$$M'_{DY} = \frac{\phi^{\circ} \cdot \omega \cdot M'_{EY}}{\phi_{\circ}} = \frac{1,1 \cdot 1,3 \cdot 26,54}{0,9} = 42,17 \ ton \cdot m$$

• $\phi_s V'_{DY} = \phi^{\circ} \cdot \omega \cdot V'_{EY} = 1, 1 \cdot 1, 3 \cdot 25, 9 = 37, 04 ton$

Se puede observar que los valores de momento flector de diseño en el primer piso y en un piso típico son muy cercanos por lo que se usara el mismo diseño.

Para el diseño a flexocompresion en la base se muestra el diagrama de interacción calculado con las resistencias esperadas de los materiales:

- Resistencia esperada a la compresión: $f'_{ce} = 1, 3 \cdot f'_{c} = 1, 3 \cdot 210 = 273 \frac{kg}{cm^2}$
- Resistencia esperada a la fluencia: $f_{ye} = 1, 1 \cdot f_y = 1, 1 \cdot 4200 = 4620 \frac{kg}{cm^2}$
- Deformación unitaria del concreto: $\varepsilon_c = 0,003$
- Módulo de elasticidad del acero: $E_s = 2 \cdot 10^6 \frac{kg}{cm^2}$
- Deformación unitaria del acero en fluencia: $\varepsilon_{se} = \frac{f_{ye}}{E_s} = \frac{4620}{2 \cdot 10^6} = 0,00231$
- Factor de bloque rectangular equivalente de Witney: $\beta = 0.85$

La cuantía requerida para las solicitaciones impuestas resulto 3.3% principalmente debido a las solicitaciones en el eje débil como se muestra en la figura 73, usando acero de 1" resulta 16 varillas.

EJE DEBIL COLUMNA 35X70

Figura 82. Diagrama de interacción eje débil columna C-3 (35X70) con el DDBD

EJE FUERTE COLUMNA 35X70

Figura 83. Diagrama de interacción eje fuerte columna C-3 (35X70) con el DDBD

Dado que con el DDBD se recomienda un factor de reducción de 0.85 para corte el diseño es similar a la norma E-060, obteniéndose así:

	1.25(CM+CV+SX										
Piso	h (m)	Pu (Ton)	Vu (Ton)	φVc (Ton)	Ve	ramas	s (cm)				
9	1.90	-7.68	28.40	14.97	15.80	3	36.43				
8	2.10	-27.63	28.40	15.82	14.79	3	38.90				
7	2.10	-47.92	28.40	16.69	13.77	3	41.78				
6	2.10	-68.27	28.40	17.56	12.75	3	45.13				
5	2.10	-88.77	28.40	18.44	11.72	3	49.09				
4	2.10	-109.48	28.40	19.32	10.68	3	53.87				
3	2.10	-130.44	28.40	20.21	9.63	3	59.76				
2	2.10	-151.77	28.40	21.13	8.56	3	67.24				
1	2.90	-173.56	15.76	22.06	-7.41	3	-77.69				

Tahla	82	Diseño	nor corte	en	columna	C-3	(35X70) con i)(a)
i avia	02.	DISEIIO	por cone	en	columna	U-3	(33×70)) 0011 0	/ (a)

	1.25(CM+CV)-SX										
Piso	h (m)	Pu (Ton)	V (Ton)	φVc (Ton)	Ve	ramas	s (cm)				
9	1.90	-6.38	28.40	14.92	15.86	3	36.28				
8	2.10	-21.45	28.40	15.56	15.10	3	38.10				
7	2.10	-36.72	28.40	16.21	14.34	3	40.14				
6	2.10	-52.03	28.40	16.87	13.57	3	42.41				
5	2.10	-67.43	28.40	17.52	12.79	3	44.98				
4	2.10	-82.93	28.40	18.19	12.02	3	47.89				
3	2.10	-98.58	28.40	18.85	11.23	3	51.24				
2	2.10	-114.42	28.40	19.53	10.43	3	55.15				
1	2.90	-130.58	15.76	20.22	-5.25	3	-109.65				

Tabla 83. Tabla 80. Diseño por corte en columna C-3 (35X70) con el DDBD (b)

Tabla 84. Tabla 80. Diseño por corte en columna C-3 (35X70) con el DDBD (c)

	0.9CM+SX										
Piso	h (m)	Pu (Ton)	Vu (Ton)	φVc (Ton)	Ve	ramas	s (cm)				
9	1.90	0.26	28.40	14.63	16.19	3	35.53				
8	2.10	-3.81	28.40	14.81	15.99	3	35.99				
7	2.10	-8.22	28.40	15.00	15.77	3	36.49				
6	2.10	-12.69	28.40	15.19	15.54	3	37.02				
5	2.10	-17.31	28.40	15.38	15.31	3	37.58				
4	2.10	-22.14	28.40	15.59	15.07	3	38.19				
3	2.10	-27.22	28.40	15.81	14.81	3	38.84				
2	2.10	-32.67	28.40	16.04	14.54	3	39.58				
1	2.90	-38.58	15.76	16.29	-0.63	3	-918.45				

Tabla 85. Tabla 80	. Diseño por corte en	columna C-3	(35X70) con (el DDBD (d)
--------------------	-----------------------	-------------	---------------	-------------

	0.9CM-SX									
Piso	h (m)	Pu (Ton)	V (Ton)	φVc (Ton)	Ve	ramas	s (cm)			
9	1.90	1.56	28.40	14.58	16.26	3	35.39			
8	2.10	2.37	28.40	14.54	16.30	3	35.30			
7	2.10	2.98	28.40	14.52	16.33	3	35.24			
6	2.10	3.55	28.40	14.49	16.36	3	35.17			
5	2.10	4.03	28.40	14.47	16.38	3	35.12			
4	2.10	4.41	28.40	14.46	16.40	3	35.08			
3	2.10	4.64	28.40	14.45	16.42	3	35.06			
2	2.10	4.68	28.40	14.45	16.42	3	35.05			
1	2.90	4.40	15.76	14.46	1.53	3	375.53			

	1.25(CM+CV) +SY									
Piso	h (m)	Pu (Ton)	φVc (Ton)	Ve	ramas	s (cm)				
9	1.90	-4.36	37.04	13.47	27.73	5	15.70			
8	2.10	-17.69	37.04	13.98	27.12	5	16.05			
7	2.10	-31.35	37.04	14.51	26.50	5	16.43			
6	2.10	-45.06	37.04	15.04	25.88	5	16.83			
5	2.10	-58.94	37.04	15.58	25.24	5	17.25			
4	2.10	-73.02	37.04	16.13	24.60	5	17.70			
3	2.10	-87.35	37.04	16.68	23.95	5	18.18			
2	2.10	-102.05	37.04	17.25	23.28	5	18.70			
1	2.90	-117.21	20.83	17.84	3.52	5	123.74			

Tabla 86. Tabla 80. Diseño por corte en columna C-3 (35X70) con el DDBD (e)

Tabla 87. Tabla 80. Diseño por corte en columna C-3 (35X70) con el DDBD (f)

1.25(CM+CV) -SY									
Piso	h (m)	Pu (Ton)	φVc (Ton)	Ve	ramas	s (cm)			
9	1.90	-3.06	37.04	13.41	27.79	5	15.67		
8	2.10	-11.50	37.04	13.74	27.41	5	15.89		
7	2.10	-20.15	37.04	14.08	27.01	5	16.12		
6	2.10	-28.83	37.04	14.41	26.62	5	16.36		
5	2.10	-37.59	37.04	14.75	26.22	5	16.61		
4	2.10	-46.47	37.04	15.10	25.81	5	16.87		
3	2.10	-55.48	37.04	15.45	25.40	5	17.14		
2	2.10	-64.70	37.04	15.80	24.98	5	17.43		
1	2.90	-74.23	20.83	16.17	5.48	5	79.47		

Tabla 88. Tabla 80	. Diseño por corte en	columna C-3	(35X70) con	el DDBD (g)
--------------------	-----------------------	-------------	-------------	-------------

	0.9CM+CV+Sy									
Piso	h (m)	Pu (Ton)	Vu (Ton)	φVc (Ton)	Ve	ramas	s (cm)			
9	1.90	-2.78	37.04	13.40	27.80	5	15.66			
8	2.10	-11.90	37.04	13.76	27.39	5	15.90			
7	2.10	-21.32	37.04	14.12	26.96	5	16.15			
6	2.10	-30.79	37.04	14.49	26.53	5	16.41			
5	2.10	-40.38	37.04	14.86	26.09	5	16.69			
4	2.10	-50.15	37.04	15.24	25.64	5	16.98			
3	2.10	-60.12	37.04	15.63	25.19	5	17.28			
2	2.10	-70.39	37.04	16.02	24.72	5	17.61			
1	2.90	-81.10	20.83	16.44	5.16	5	84.30			

	0.9CM+CV+SY									
Piso	h (m)	Pu (Ton)	φVc (Ton)	Ve	ramas	s (cm)				
9	1.90	-1.75	37.04	13.36	27.85	5	15.63			
8	2.10	-7.57	37.04	13.59	27.59	5	15.78			
7	2.10	-13.60	37.04	13.82	27.31	5	15.94			
6	2.10	-19.66	37.04	14.06	27.03	5	16.10			
5	2.10	-25.80	37.04	14.30	26.75	5	16.27			
4	2.10	-32.06	37.04	14.54	26.47	5	16.45			
3	2.10	-38.45	37.04	14.79	26.18	5	16.63			
2	2.10	-45.05	37.04	15.04	25.88	5	16.83			
1	2.90	-51.96	20.83	15.31	6.49	5	67.04			

Tabla 89. Tabla 80. Diseño por corte en columna C-3 (35X70) con el DDBD (h)

Espaciamiento del refuerzo fuera de la zona de confinamiento:

- d/2 = 32.1 cm
- 60*cm*
- $16d_b = 16 \cdot 1 \cdot 2,54 \, cm = 40,64 \, cm$
- $\min(b,h) = 35 \, cm$

Por lo tanto, la separación máxima fuera de la zona de confinamiento será de 30cm.

De las tablas 80 a 87 se concluye que en la dirección X la combinación más crítica es la 3 y 4 debido a que la columna está en flexotracción siendo la separación máxima del acero transversal de 35cm, por loque se adopta 30cm como separación final. Sin embargo, en la dirección Y es más crítico y se tiene una separación máxima de 15cm usando 5 ramas de estribos.

Diseño final por corte: 1@5cm, 7@10cm, Rto.@15cm

Cabe indicar que en el DDBD las columnas no se diseñan por capacidad porque solo se acepta la formación de rotulas plásticas en la base de las columnas.

Diseño de muros

Para propósito de comparación se diseñará el muro 5X cuyas dimensiones de 0.3x2.80m se mantiene en comparación al MBF y la NTP E-060.

a) Diseño por flexión

Momento en el base obtenido del DDBD: $M_{EX} = 979, 28 ton \cdot m$

Para el diseño se considera la resistencia esperada de los materiales y un factor de reducción a flexión de 1 similar al procedimiento en columnas. El armado que cumple con la solicitación se muestra en la siguiente figura:

Figura 84. Armado de acero en muro 5X con el DDBD

PLACA L=2.80m

Figura 85. Diagrama de interacción de muro 5X usando el DDBD

b) Diseño por capacidad a flexión

El momento nominal para la carga axial de diseño según la gráfica 76 es:

$$M_B = 1234, 25 \ ton \cdot m$$

Cálculo del momento en la mitad de la altura del muro:

Periodo fundamental elástico: $T_i = \frac{T_{efe}}{\sqrt{\mu_s}} = \frac{1,43}{\sqrt{1,691}} = 1,097$

$$C_{1,T} = 0, 4+0,075 \cdot T_i \cdot \left(\frac{\mu_s}{\phi^\circ} - 1\right) = 0, 4+0,075 \cdot 1,097 \cdot \left(\frac{1,691}{1,2} - 1\right) = 0,434$$

$$M_{0.5H}^{\circ} = 0,434 \cdot 1,2 \cdot 1234,25 = 642,26 ton \cdot m$$

La envolvente de momentos se muestra en la figura 77:

Figura 86. Envolvente de momentos en el muro 5X usando el DDBD

El armado requerido en la mitad del muro para resistir el momento por capacidad será:

Figura 87. Armado de muro 5X en la mitad de la altura usando el DDBD

PLACA L=2.80m

Figura 88. Diagrama de interacción en la mitad del muro 5X usando el DDBD

c) Diseño por corte

Cortante en el base obtenido del DDBD: $V_{EX} = 105,66 ton$

Factor de amplificación por efectos de modos superiores:

Del procedimiento del DDBD se obtuvo un periodo efectivo de 1,65s, por tanto:

$$C_{2,T} = 0,4+0,2 \cdot (1,097-0,5) = 0,519 \le 1,15$$

$$\omega_{V} = 1 + \frac{1,691}{1,6} \cdot 0,519 = 1,549$$

La cortante de diseño en la base será:

$$V_{BASE}^{\circ} = \omega_V \cdot \phi^{\circ} \cdot V_{EX}$$
$$V_{BASE}^{\circ} = 1,549 \cdot 1,6 \cdot 105,66 = 234,05 ton$$

La cortante de diseño en el techo según la ecuación 121:

$$V_n^{\circ} = 0, 4 \cdot V_{BASE}^{\circ} = 0, 4 \cdot 234, 05 = 93, 62 ton$$

La envolvente de cortante se muestra en la figura x:

Figura 89. Envolvente de cortantes usando el DDBD en el muro 5X

Para el diseño por cortante se usa un factor de reducción de 0.85, el diseño por corte final del muro queda:

PISO	Vu (ton)	Vs (ton)	Ø1	Av (cm2)	s (cm)	Doble malla:
9	93.62	58.53	3/8	0.713	22.91	3/8" @ 17.5cm
8	107.67	75.05	3/8	0.713	17.86	3/8" @ 17.5cm
7	122.88	92.95	1/2	1.267	25.64	1/2" @ 25cm
6	138.09	110.85	1/2	1.267	21.50	1/2" @ 20cm
5	153.31	128.75	1/2	1.267	18.51	1/2" @ 17.5cm
4	168.52	146.65	5/8	1.979	25.40	5/8" @ 25cm
3	183.73	164.54	5/8	1.979	22.63	5/8" @ 22.5cm
2	198.95	182.44	5/8	1.979	20.41	5/8" @ 20cm
1	234.05	223.75	3/4	2.850	23.97	3/4" @ 17.5cm

Tabla 90. Diseño por corte usando el DDBD en el muro 5X

3.5.7 Análisis estático no lineal (DDBD)

En esencia el proceso es el mismo que se detalló en 3.5. pero con el acero calculado según 3.5.6.

Figura 90. Curvas de capacidad del edificio diseñado según el DDBD

Figura 91. Obtención del punto de desempeño con el método del espectro de capacidad en X e Y respectivamente en el edificio diseñado según el DDBD

Tabla 91.	Punto de	desempeño	del edificio	diseñado	con el DDBD
-----------	----------	-----------	--------------	----------	-------------

PUNTO DE DESEMI	Х	Y	
Desplazamiento espectral	10.06	6.42	
Aceleración espectral	Sa (cm/s2)	470.88	529.74
Desplazamiento	0.16	0.10	
Cortante	V (ton)	1205.75	1452.76
Cortante de diseño	Vd (ton)	586.98	999.88
Variación %		105.42	45.29
Sobreresistencia	Ω	2.05	1.45

Tabla 92. Validación de desplazamientos obtenidos con el DDBD

		VALIDACI	ON DE DESPLAZ	ZAMIENTO	OS CON EL D	DBD	
		Х		Y			
Piso	DDBD	Pushover	Variación %	DDBD	Pushover	Variación %	
9	20.144	16.070	25.35	13.296	11.035	20.49	
8	17.828	14.662	21.59	11.653	9.870	18.07	
7	15.319	12.881	18.93	9.873	8.577	15.11	
6	12.811	11.074	15.68	8.095	7.267	11.39	
5	10.302	9.154	12.55	6.348	5.947	6.73	
4	7.835	7.177	9.16	4.690	4.635	1.20	
3	5.502	5.187	6.08	3.182	3.350	-5.03	
2	3.404	3.273	4.03	1.881	2.120	-11.26	
1	1.640	1.501	9.22	0.849	0.978	-13.27	
0	0.000	0.000	0.00	0.000	0.017	0.00	

Figura 92. Validación de desplazamientos obtenidos con el DDBD

IV. RESULTADOS

INDICADOR 1: CORTANTES

CORTANTES DE ENTREPISO (ton)									
Diee	M	BF	DD	BD	Varia	Variación %			
FISU	Х	Y	Х	Y	Х	Y			
9	36.16	41.16	38.958	66.361	7.732	61.222			
8	139.99	151.76	158.943	270.749	13.539	78.411			
7	218.57	235.54	261.032	444.650	19.429	88.777			
6	282.88	302.24	350.527	597.098	23.913	97.558			
5	335.29	355.37	425.845	725.397	27.008	104.123			
4	378.09	397.60	486.963	829.508	28.794	108.629			
3	411.01	429.15	533.172	908.221	29.722	111.631			
2	434.56	450.92	565.914	963.995	30.226	113.783			
1	448.18	463.12	586.980	999.880	30.968	115.899			

Tabla 93. Análisis comparativo de cortantes usando el DDBD y el MBF

Figura 93. Análisis comparativo de cortantes usando el DDBD y el MBF

Según la tabla 93 y la figura 93 la cortante basal usando el DDBD en lugar del MBF crece en ambas direcciones, en la dirección X se tiene un incremento promedio del 23.48%. En la dirección Y se tiene un incremento promedio de 97.78%, esto debido a que en la dirección Y se tiene una estructura más rígida y por lo tanto presenta un menor periodo que corresponde a una mayor rigidez y por consiguiente a una mayor cortante basal.

Contrastación de hipótesis

En tal sentido la hipótesis específica: "Existe una diferencia significativa en las cortantes de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos", fue aceptada debido a que existe una variación significativa en las 2 direcciones.

INDICADOR 2: DESPLAZAMIENTOS

	DESPLAZAMIENTOS (m)								
Diee	М	BF	DD	BD	Variación %				
PISO	Х	Y	Х	Y	X	Y			
9	0.128	0.057	0.285	0.133	122.517	133.913			
8	0.120	0.050	0.252	0.117	109.902	132.508			
7	0.105	0.043	0.217	0.099	105.481	131.147			
6	0.089	0.035	0.181	0.081	103.643	130.492			
5	0.072	0.028	0.146	0.063	103.561	130.618			
4	0.054	0.020	0.111	0.047	105.647	132.427			
3	0.037	0.013	0.078	0.032	111.877	137.375			
2	0.021	0.008	0.048	0.019	127.244	148.636			
1	0.009	0.003	0.023	0.008	167.721	174.856			
0	0.000	0.000	0.000	0.000	0.000	0.000			

Tabla 94. Análisis comparativo de desplazamientos usando el DDBD y el MBF

Figura 94. Análisis comparativo de desplazamientos usando el DDBD y el MBF

Ī

Según la tabla 94 y la figura 94 el desplazamiento máximo estimado en la dirección X usando el MBF es de 12.8cm y usando el DDBD fue de 28.5cm, cabe indicar que este último es el desplazamiento máximo corregido debido a los efectos de torsión. El incremento de los desplazamientos promedio del DDBD con respecto al MBF fue de 105.76%. En la dirección Y el desplazamiento máximo usando el MBF es de 5.7cm y usando el DDBD fue de 13.3cm siendo el incremento promedio de 125.2%.

Contrastación de hipótesis

En tal sentido la hipótesis específica: "Existe una diferencia significativa en los desplazamientos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos", fue aceptada debido a que existe una variación significativa en las 2 direcciones.

INDICADOR 3: MOMENTOS

MOMENTOS VOLCANTES (ton.m)									
Diag	M	BF	DI	OBD	Varia	Variación %			
PISO	Х	Y	X	Y	Х	Y			
9	0.00	0.00	0.000	0.000	0.00	0.00			
8	86.79	98.79	93.498	159.268	7.732	61.222			
7	450.76	493.35	506.750	863.214	12.421	74.969			
6	1019.03	1105.76	1185.433	2019.304	16.329	82.616			
5	1754.52	1891.59	2096.802	3571.759	19.509	88.823			
4	2626.27	2815.55	3203.998	5457.791	21.998	93.844			
3	3609.32	3849.31	4470.102	7614.512	23.849	97.815			
2	4677.94	4965.11	5856.348	9975.887	25.191	100.920			
1	5807.80	6137.51	7327.723	12482.274	26.170	103.377			
	7331.63	7712.13	9323.455	15881.867	27.168	105.934			

Tabla 95. Análisis comparativo de momentos usando el DDBD y el MBF

Figura 95. Análisis comparativo de momentos usando el DDBD y el MBF

Según la tabla 95 y la figura 95 los momentos volcantes usando el DDBD en lugar del MBF son mayores, en la dirección X se tiene un incremento promedio de 20.04% y en la dirección Y de 89.95%. La variación mayor en la dirección Y se debe a que se tiene una estructura mucho más rígida.

Contrastación de hipótesis

En tal sentido la hipótesis especifica: "Existe una diferencia significativa en los momentos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos", fue aceptada debido a que existe una variación significativa en las 2 direcciones.

INDICADOR 4: DERIVAS

	DERIVAS (m/m)								
Diag	M	ЗF	DD	BD	Variao	ción %			
PISO	Х	Y	Х	Y	Х	Y			
9	0.0033	0.0028	0.0136	0.0068	314.092	144.391			
8	0.0056	0.0028	0.0136	0.0068	141.651	140.358			
7	0.0063	0.0029	0.0136	0.0068	115.411	134.177			
6	0.0067	0.0029	0.0136	0.0067	103.978	130.032			
5	0.0068	0.0028	0.0134	0.0064	97.212	125.650			
4	0.0066	0.0026	0.0127	0.0058	92.306	122.638			
3	0.0060	0.0022	0.0114	0.0050	90.927	122.776			
2	0.0048	0.0017	0.0096	0.0040	99.251	130.567			
1	0.0025	0.0009	0.0068	0.0025	167.721	174.856			
0	0.00	0.00	0.0000	0.0000	0.000	0.000			

Tabla 96. Análisis comparativo de derivas usando el DDBD y el MBF

Figura 96. Análisis comparativo de derivas usando el DDBD y el MBF

Según la tabla 96 y la figura 96 las derivas usando el DDBD en lugar del MBF son mayores para ambas direcciones, el incremento promedio de las derivas en la dirección X es de 122.26% y en la dirección Y de 122.54%. Estas variaciones se deben a que la norma E-030 permite el uso de secciones brutas, sin embargo, en el DDBD se estudia a la estructura en el rango inelástico y por tanto se debe considerar la rigidez efectiva de los elementos.

Contrastación de hipótesis

En tal sentido la hipótesis especifica: "Existe una diferencia significativa en las derivas de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos", fue aceptada debido a que existe una variación significativa en las 2 direcciones.

INDICADOR 5: CANTIDAD DE ACERO DE REFUERZO

	Cantidad	de acero de ref	uerzo long. (kg)
VIGA	MBF	DDBD	Variación %
1	192.646	194.310	0.86
2	151.882	194.310	27.93
3	343.058	418.240	21.92
4	199.165	310.652	55.98
5	225.933	339.102	50.09
6	192.646	194.310	0.86
A	262.625	450.454	71.52
В	180.247	390.471	116.63
С	117.304	311.277	165.36
D1	123.563	309.701	150.64
D2	155.517	294.403	89.31
E	262.625	450.454	71.52
Σ	2407.210	3857.684	60.26

Tabla 97. Análisis comparativo de la cantidad de acero de refuerzo en vigas usando el DDBD y el MBF

Figura 97. Análisis comparativo de la cantidad de acero de refuerzo en vigas usando el DDBD y el MBF

Tabla 98. Análisis comparativo de la cantidad de acero de refuerzo en columnas usando el DDBD y el MBF

	Cantidad de acero de refuerzo long. (kg)								
COLUMINA	MBF	Variación %							
1	1890.864	3176.712	68.00						
2	1815.264	2168.208	19.44						
3	551.502	1613.52	192.57						
4	945.432	2823.66	198.66						
5	472.716	1147.122	142.67						
Σ	5675.778	10929.222	92.56						

Figura 98. Análisis comparativo de la cantidad de acero de refuerzo en columnas usando el DDBD y el MBF

MURO	Cantidad	de acero de refu	ierzo long. (kg)
WORO	MBF	Variacion %	
1X	1327.536	1838.34	38.48
С	2091.276	2419.092	15.68
4X	1478.43	2299.788	55.56
5X	1226.34	2299.788	87.53
1Y, 4Y	1428.3	2697.444	88.86
2Y, 3Y	1541.916	2839.464	84.15
Σ	9093.798	14393.916	58.283

Tabla 99. Análisis comparativo de la cantidad de refuerzo longitudinal en muros usando el DDBD y el MBF

Figura 99. Análisis comparativo de la cantidad de refuerzo longitudinal en muros usando el DDBD y el MBF

Figura 100. Nomenclatura de columnas

MURO	Cantidad de	Cantidad de acero de refuerzo horiz. (kg)								
WORO	MBF	Variación %								
1X	559.58592	1192.9822	113.19							
С	434.85744	493.39072	13.46							
4X	348.38228	426.40316	22.40							
5X	366.97258	546.46848	48.91							
1Y, 4Y	538.47752	1022.37182	89.86							
2Y, 3Y	576.65352	1112.14232	92.86							
Σ	2824.92926	4793.7587	69.695							

Tabla 100. Análisis comparativo de la cantidad de refuerzo horizontal en muros usando el DDBD y el MBF

Figura 101. Análisis comparativo de la cantidad de refuerzo horizontal en muros usando el DDBD y el MBF

Elemento	Resumen de cantidad de acero de refuerzo (kg)									
	MBF	Variación %								
Vigas	2407.210	3857.684	60.26							
Columnas	5675.778	10929.222	92.56							
A.L. Muros	9093.798	14393.916	58.28							
A.H. Muros	2824.92926	2824.92926 4793.7587 69.69								
Σ	20001.716	33974.580	69.86							

Tabla 101. Resumen del cómputo de acero de refuerzo en el edificio

Figura 102. Resumen del cómputo de acero de refuerzo en el edificio

Según la tabla 97 y la figura 97 el incremento máximo del acero requerido en vigas usando el DDBD en comparación al MBF fue en la dirección Y debido al mayor incremento de la cortante basal. Según la tabla 98 y la figura 98 el incremento máximo del acero requerido en columnas usando el DDBD en comparación al MBF fue en la columna C4. El incremento mínimo del acero requerido en columnas usando el DDBD en comparación al MBF fue en la columna C2. Según la tabla 99 y la figura 100 el incremento máximo del acero horizontal requerido en muros usando el DDBD en comparación al MBF fue en el muro 1X y el mayor incremento según la tabla 100 y la figura 101 del acero longitudinal fue en los muros 1Y y 4Y. Según la tabla 101 y la figura 102 el incremento promedio del acero de refuerzo en todo el edificio usando el DDBD en comparación al MBF fue de 69.86%.

Contrastación de hipótesis

En tal sentido la hipótesis especifica: "Existe una diferencia significativa en la cantidad de acero de refuerzo de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos", fue aceptada debido a que existe una variación significativa en la cantidad total del acero de refuerzo.

INDICADOR 6: DIMENSIONES DE LOS ELEMENTOS

			Di	mensiones	de elen	nentos			
VIGA			MBF						
VIGA	Base	Peralte	Longitud	Volumen	Base	Peralte	Longitud	Volumen	Variación
	(m)	(m)	(m)	(m3)	(m)	(m)	(m)	(m3)	%
1	0.25	0.45	132.84	14.94	0.3	0.45	132.84	17.93	20.00
2	0.25	0.45	132.84	14.94	0.3	0.45	132.84	17.93	20.00
3	0.3	0.6	87.12	15.68	0.3	0.6	87.12	15.68	0.00
4	0.3	0.5	115.02	17.25	0.3	0.5	115.02	17.25	0.00
5	0.3	0.5	79.74	11.96	0.3	0.6	79.74	14.35	20.00
6	0.25	0.45	127.44	14.34	0.3	0.45	127.44	17.20	20.00
А	0.25	0.45	128.25	14.43	0.3	0.55	128.25	21.16	46.67
В	0.3	0.5	109.08	16.36	0.3	0.55	109.08	18.00	10.00
С	0.25	0.45	89.73	10.09	0.3	0.55	89.73	14.81	46.67
D1	0.25	0.45	89.73	10.09	0.3	0.55	89.73	14.81	46.67
D2	0.3	0.5	92.88	13.93	0.3	0.55	92.88	15.33	10.00
E	0.25	0.45	128.25	14.43	0.3	0.55	128.25	21.16	46.67
Σ				168.46				205.62	22.06

Tabla 102. Análisis comparativo de las dimensiones en vigas usando el DDBD y el MBF

Figura 103. Análisis comparativo de las dimensiones en vigas usando el DDBD y el MBF

<u></u>		Dimensiones de elementos								
	IVIINA	MBF			DDBD					
Tipo:	n	Base (m)	Peralte (m)	Altura (m)	Volumen (m3)	Base (m)	Peralte (m)	Altura (m)	Volumen (m3)	Variación %
1	4	0.3	0.6	24.00	17.28	0.3	0.6	24.00	17.28	0.00
2	2	0.3	0.7	24.00	10.08	0.3	0.7	24.00	10.08	0.00
3	1	0.3	0.7	24.00	5.04	0.35	0.7	24.00	5.88	16.67
4	2	0.3	0.6	24.00	8.64	0.35	0.6	24.00	10.08	16.67
5	1	0.3	0.6	24.00	4.32	0.35	0.6	24.00	5.04	16.67
Σ					45.36				48.36	6.614

Tabla 103. Análisis comparativo de las dimensiones en columnas usando el DDBD y el MBF

Figura 104. Análisis comparativo de las dimensiones en columnas usando el DDBD y el MBF

	20			Dim	ensiones	de eleme	ntos			
WOF	10		MB	F		DDBD				
Tipo:		Espesor	Longitud	Altura	Volumen	Espesor	Longitud	Altura	Volumen	Variación
	n	(m)	(m)	(m)	(m3)	(m)	(m)	(m)	(m3)	%
1X	1	0.2	4.6	24.00	22.08	0.25	4.6	24.00	27.6	25.00
		0.2	2.3	24.00		0.25	2.2	24.00		
C	1	0.2	1.4	24.00	21 10	0.25	1.4	24.00	20.24	22 52
C	T	0.3	0.6	24.00	24.40	0.3	0.6	24.00	50.24	23.35
		0.25	0.4	24.00		0.3	0.6	24.00		
4X	1	0.3	2.5	24.00	18	0.3	2.5	24.00	18	0.00
5X	1	0.3	2.8	24.00	20.16	0.3	2.8	24.00	20.16	0.00
1Y	2	0.2	5.4	24.00	51.84	0.25	5.4	24.00	64.8	25.00
2Y	2	0.2	5.8	24.00	55.68	0.25	5.8	24.00	69.6	25.00
Σ					192.24				230.4	19.85

Tabla 104. Análisis comparativo de las dimensiones de muros usando el DDBD y el MBF

Figura 105. Análisis comparativo de las dimensiones de muros usando el DDBD y el MBF

Elomonto	Volumen de concreto (m3)							
Elemento	MBF	DDBD	Variación %					
Vigas	168.4611	205.6158	22.06					
Columnas	45.36	48.36	6.61					
Muros	192.24	230.4	19.85					
Σ	406.0611	484.3758	19.29					

Tabla 105. Resumen de la variación de volumen de concreto

Según la tabla 102 y la figura 103 el incremento promedio del volumen de concreto en vigas el DDBD en comparación al MBF fue de 22.06%. Según la tabla 103 y la figura 104 el incremento promedio del volumen de concreto en columnas usando el DDBD en comparación al MBF fue de 6.61%. Según la tabla 104 y la figura 105 el incremento promedio del volumen de concreto en muros usando el DDBD en comparación al MBF fue de 19.85%. Según la tabla 105 promedio del volumen de concreto en todo el edificio usando el DDBD en comparación al MBF fue de 19.85%.

Contrastación de hipótesis

En tal sentido la hipótesis especifica: "Existe una diferencia significativa en las dimensiones de los elementos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos", fue aceptada debido a que existe una variación significativa en las dimensiones de los elementos.

INDICADOR 7: CORTANTE BASAL INELASTICA

CURVA Y ESPECTRO DE CAPACIDAD MBF							
X				Y			
D (cm)	V (ton)	Sd (cm)	Sa (g)	D (cm)	V (ton)	Sd (cm)	Sa (g)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.50	223.76	1.24	0.10	1.75	430.04	1.08	0.16
2.73	244.66	1.35	0.10	3.50	591.83	2.16	0.20
7.05	563.22	3.70	0.24	4.87	676.81	3.03	0.24
9.69	721.40	5.17	0.30	6.62	780.29	4.13	0.27
12.29	843.97	6.72	0.35	8.42	860.69	5.27	0.30
14.96	951.61	8.35	0.40	10.27	932.48	6.44	0.32
17.50	1025.74	9.89	0.43	12.04	992.74	7.56	0.35
20.05	1080.07	11.42	0.46	13.84	1049.06	8.68	0.36
22.74	1125.50	13.03	0.49	15.67	1095.03	9.83	0.38
25.25	1168.01	14.54	0.51	17.81	1138.77	11.17	0.40
28.13	1212.32	16.29	0.53	19.87	1174.86	12.46	0.41
30.78	1247.05	17.90	0.54	21.93	1205.47	13.75	0.42
33.29	1276.55	19.46	0.55	23.79	1229.83	14.90	0.43
34.21	1286.79	20.03	0.56	24.51	1239.05	15.35	0.43

Tabla 106. Análisis comparativo de la curva de capacidad usando el DDBD y el MBF

Figura 106. Análisis comparativo de la curva de capacidad en X usando el DDBD y el MBF

Figura 107. Análisis comparativo de la curva de capacidad en Y usando el DDBD y el MBF

PUNTO DE DESEMP	EÑO X	MBF	DDBD	Variación %
Desplazamiento espectral	Sd (cm)	11.14	10.06	-10.74
Aceleración espectral	Sa (cm/s2)	445.37	470.88	5.42
Desplazamiento	D (m)	0.20	0.16	-25.00
Cortante	V (ton)	1070.06	1205.75	11.25
Cortante de diseño	Vd (ton)	448.18	586.98	23.65
Variación %		138.75	105.42	-31.63
Sobreresistencia	Ω	2.39	2.05	-16.23

Tabla 107. Análisis comparativo de la cortante inelástica en X usando el DDBD y el MBF

Tabla	108.	Análisis	comparativo	de la	cortante	inelástica	en Y	⁄ usando el	DDBD v el MBF
i abia		/ 11/01/01/0	oomparativo	40.14	00/10/10	monaotroa	011 1	abanao oi	2222 9 01 11121

PUNTO DE DESEMP	EÑO Y	MBF	DDBD	Variación %
Desplazamiento espectral	Sd (cm)	7.62	6.42	-18.69
Aceleración espectral	Sa (cm/s2)	343.35	529.74	35.19
Desplazamiento	D (m)	0.14	0.10	-36.32
Cortante	V (ton)	995.42	1452.76	31.48
Cortante de diseño	Vd (ton)	463.12	999.88	53.68
Variación %		114.94	45.29	-153.76
Sobreresistencia	Ω	2.15	1.45	-47.93

Interpretación.

Según la tabla 106 y las figuras 106 y 107 en ambas direcciones la curva de capacidad del DDBD en comparación al MBF tiene mayor resistencia. Los resultados que se obtuvieron para el punto de desempeño con el método del espectro de capacidad según las tablas 107 y 108 indica que se tiene una mayor cortante inelástica con el DDBD en comparación al MBF en ambas direcciones, el incremento en la dirección X fue de 11.25% y en la dirección Y de 31.48%. Según Muñoz (2020, pp.44) la resistencia lateral instalada en los edificios es significativamente mayor debido a la mayor resistencia de los materiales, el uso de factores de amplificación de cargas, el uso de factores de minoración, entre otros factores. Por ende, siempre existirá esta diferencia significativa, sin embargo, según las tablas 107 y 108 se obtiene menor diferencia en ambas direcciones usando el DDBD en lugar del MBF, en la dirección X se tiene 31.63% menos error y en la dirección Y se tiene 153.76% menos error, por lo que usando el DDBD se predice de mejor manera la cortante basal inelástica.

Contrastación de hipótesis

En tal sentido la hipótesis específica: "Existe una diferencia significativa en la cortante inelástica de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos", fue aceptada debido a que existe una variación significativa en las 2 direcciones.

INDICADOR 8: DESPLAZAMIENTOS INELASTICOS

		Pushover	X		Pushover	Y
Piso	MBF	DDBD	Variación %	MBF	DDBD	Variación %
9	20.092	16.070	25.025	14.770	11.035	33.852
8	19.309	14.662	31.689	13.188	9.870	33.617
7	16.734	12.881	29.914	11.468	8.577	33.693
6	14.292	11.074	29.058	9.719	7.267	33.743
5	11.729	9.154	28.129	7.956	5.947	33.776
4	9.090	7.177	26.649	6.190	4.635	33.551
3	6.446	5.187	24.262	4.438	3.350	32.470
2	3.879	3.273	18.537	2.722	2.120	28.379
1	1.544	1.501	2.840	1.085	0.978	10.918
0	0.000	0.000	0.000	0.000	0.017	0.000

Tabla 109. Análisis comparativo de los desplazamientos inelásticos en X usando el DDBD y el MBF

Interpretación.

Después de obtener el punto de desempeño y sus correspondientes desplazamientos inelásticos según la tabla 109 se obtiene desplazamientos inelásticos mayores del edificio diseñado con el MBF debido a que al incrementar el refuerzo en el edificio diseñado según el DDBD se aumenta su rigidez. El máximo incremento en las direcciones X e Y fueron de 25.03% y 33.85%. Los incrementos promedios en las direcciones X e Y fueron de 21.61% y 27.4%. Después de validar las 2 metodologías mediante el análisis no lineal estático pushover se determinó los desplazamientos para la demanda sísmica mediante el método del espectro de capacidad obteniendo la precisión de los desplazamientos calculados con ambas metodologías que se muestran en las tablas 44 y 91 y en las figuras 71 y 91. La máxima variación de los desplazamientos inelásticos según el DDBD en las direcciones X, Y son de 25.35% y 20.49%. la máxima variación de los desplazamientos inelásticos según el MBF en las direcciones X, Y son de 36.27% y 61.52%. La variación promedio de los desplazamientos inelásticos según el DDBD en las direcciones X, Y son de 12.26% y 4.34%, la variación promedio de los desplazamientos inelásticos según el MBF en las direcciones X, Y son de 36.07% y 59.65%, por lo que el DDBD predice de mejor manera los desplazamientos en comparación al MBF.

Contrastación de hipótesis

Según estos resultados la hipótesis especifica: "Existe una mayor precisión en los desplazamientos inelásticos de una edificación de vivienda usando el método basado en desplazamientos, Cusco 2021.", fue aceptada debido a que la variación es menor con el DDBD.

V. DISCUSIÓN

INDICADOR 1: CORTANTES

El incremento promedio de las cortantes en la dirección X, Y usando el DDBD en comparación al MBF fue de 23.48% y 97.78%. Ccahuana & Coronel (2020) para un edificio de 15 niveles y con un área aproximada de 800m2 obtuvieron una variación de la cortante en la base de 27.02%, siendo la mayor obtenida con el DDBD. Estos resultados son aproximados en la dirección X, sin embargo, en la dirección Y se obtiene resultados diferentes debido a que se tiene una estructura rígida, así mismo el número de pisos y al área en planta también son considerablemente diferentes, ya que en la presente investigación el edificio es de 9 niveles con 300m2 de área aproximadamente.

INDICADOR 2: DESPLAZAMIENTOS

El incremento máximo del desplazamiento en el techo en las direcciones X, Y usando el DDBD en comparación al MBF fue de 105.76% y 125.2%. Sucapuca (2021) para un edificio de 3 niveles usando el método estático lineal obtuvo desplazamientos de 1.71cm y 2.015cm en las direcciones X, Y respectivamente, usando el DDBD obtuvo 2.94cm y 2.86cm lo cual significa incrementos de 71.93% y 41.94%. Estos resultados son diferentes debido principalmente al número de niveles ya que los desplazamientos son proporcionales a la altura del edificio.

INDICADOR 3: MOMENTOS

El incremento de momentos en las direcciones X, Y usando el DDBD en comparación al MBF fue de 20.04% y 89.95%. Córdova (2017) estudio un edificio dual de 5 niveles y obtuvo momentos volcantes mayores en ambas direcciones usando el DDBD para una deriva límite de 0.025, para las direcciones X e Y usando el MBF obtuvo 12536 ton.m y 12359 ton.m respectivamente, usando el DDBD obtuvo 18927 ton.m y 29324 ton.m lo cual representa incrementos de 50.98% y 137.27%. Estos resultados son diferentes debido a que en la presente investigación se utilizó una deriva de diseño consistente con los desplazamientos

del modelo lineal, el número de niveles y la irregularidad torsional también influyen los valores calculados.

INDICADOR 4: DERIVAS

El incremento promedio de las derivas en la dirección X, Y usando el DDBD en comparación al MBF fue de 122.26% y 122.54%. Suarez (2018) para un edificio aporticado de 6 niveles usando el MBF según la normativa ecuatoriana diseño la estructura para una deriva máxima de 0.0118, siendo el límite de 0.02. Usando el DDBD para la deriva límite de 0.02 se obtiene un incremento promedio de las derivas em ambas direcciones de 141.91%. Estos resultados son similares a los obtenidos en la presente investigación en la dirección X, ya que la razón entre la deriva de diseño con el DDBD y la deriva con el MBF es aproximadamente 2 en ambos casos.

INDICADOR 5: CANTIDAD DE ACERO DE REFUERZO

El incremento promedio del acero total en el edificio usando el DDBD en comparación al MBF fue de 69.86%. Morales (2020) para un edificio de 12 niveles realizo un análisis comparativo usando la normativa chilena y el DDBD obteniendo un incremento promedio del acero longitudinal del 13.4%. Estos resultados son diferentes debido a que Morales (2020) utilizo una deriva de diseño de 0.015, que es significativamente mayor que las derivas de diseño utilizadas en la presente investigación, una deriva menor trae consigo una mayor cortante y por consiguiente un mayor costo del edifico.

INDICADOR 6: DIMENSIONES DE ELEMENTOS

El incremento promedio del volumen de concreto en el edificio usando el DDBD en comparación al MBF fue de 19.29%. Jiménez & Jovel (2017) estudio un edificio de 12 niveles estructurado con pórticos y muros de corte con un área en planta de 1000m2 aproximadamente, obteniendo que usando el DDBD en lugar del MBF tuvo que incrementar las dimensiones de las columnas C2 de 0.50x0.50m a 0.60x0.60m, las dimensiones de la columna C1 se mantuvieron, las dimensiones de la viga V1 de 0.3x0.6m a 0.30x0.65m y las dimensiones de la viga V2 de 0.25X0.50m a 0.30x0.50m. Dado que la longitud de los elementos no varia lo anterior implica un incremento promedio del volumen de concreto de 18.63%. Estos resultados son similares a los obtenidos en la presente investigación ya que la variación de las dimensiones de los elementos y por consiguiente del volumen de concreto al usar ambas metodologías es independiente de la configuración particular de cada edificio.

INDICADOR 7: CORTANTE BASAL INELASTICA

Los resultados del análisis no lineal estático y la obtención del punto de desempeño mediante el método del espectro de capacidad en las direcciones X, Y indican que con el DDBD se logra un incremento de la cortante inelástica en comparación al MBF en 11.25% y 31.48%. Moren, Bairan & Huamán. (2011) realizo la comprobación del DDBD y MBF con análisis no lineal estático en un edificio aporticado de 6 niveles obteniendo como resultados que la cortante inelástica del MBF fue de 10112,97kN y con el DDBD fue de 11966,27kN, lo cual significa un incremento de 18.36%, en promedio los resultados son similares, sin embargo, las diferencias se pueden deber al tipo de sistema estructural en cada caso de estudio, al numero de niveles, entre otros factores.

INDICADOR 8: DESPLAZAMIENTOS INELASTICOS

Los resultados del análisis no lineal estático y la obtención del punto de desempeño mediante el método del espectro de capacidad en las direcciones X, Y indican que con el MBF se logra un incremento promedio de los desplazamientos inelásticos en comparación al DDBD en 21.61% y 27.4%. Andrade & Carrillo (2018) realizo un análisis comparativo de un edificio de 5 niveles con el MBF y el DDBD, validando posteriormente ambos métodos el análisis no lineal tiempo historia obteniendo que para el MBF el máximo desplazamiento inelástico fue de 0.01132m y para el DDBD fue de 0.0092m, lo anterior implica un incremento del MBF en comparación al DDBD de 23%, estos resultados son similares, sin embargo el número de pisos o la altura del edificio influye significativamente en los desplazamientos inelásticos y también el tipo de análisis no lineal, ya que el análisis no lineal tiempo historia incluye los efectos de los modos superiores en la respuesta.

VI. CONCLUSIONES

- Con el procedimiento desarrollado en la presente investigación se determinó la diferencia en las cortantes usando el DDBD y el MBF, siendo esta variación significativa. Según la tabla 93 y la figura 93 las variaciones promedio fueron de 23.48% y 97.78% en las direcciones X, Y respectivamente, la cortante basal según el DDBD será mayor mientras más rígida sea la estructura.
- Posterior al desarrollo de la presente investigación se evaluó la diferencia en los **desplazamientos** usando el DDBD y el MBF siendo esta variación significativa. Según la tabla 94 y la figura 94 las variaciones promedio fueron de 105.76% y 125.2% en las direcciones X, Y respectivamente, el perfil de desplazamientos obtenido según el DDBD resulto sustancialmente mayor a los estimados con la E-030, la principal razón es porque en el análisis convencional se usa secciones brutas mientras que con el DDBD los desplazamientos se calculan considerando el comportamiento no lineal de las secciones y por consiguiente secciones fisuradas.
- De lo realizado en el presente trabajo se estableció la diferencia de los momentos usando el DDBD y el MBF, siendo esta variación significativa.
 Según la tabla 95 y la figura 95 las variaciones promedio fueron de 20.04% y 89.95% en las direcciones X, Y respectivamente. La mayor variación en la dirección Y se debe principalmente a que se tiene una mayor rigidez.
- Con los resultados obtenidos en la presente investigación se analizó la diferencia en las **derivas** usando el DDBD y el MBF, siendo esta variación significativa. Según la tabla 95 y la figura 95 el incremento promedio fue de 122.25% y 122.54% en las direcciones X, Y respectivamente usando el DDBD en lugar del MBF. Con el método convencional se proyectó el edificio de tal manera de cumplir con la deriva máxima de 0.007, sin embargo, esta deriva está relacionada a secciones brutas, y siendo el límite recomendado de 0.015 para secciones fisuradas se escogió como deriva de diseño en el DDBD las derivas resultantes del método convencional multiplicados por el factor 0.015/0.007=2.14, esto para fines de comparación.

- En el presente trabajo se ha descrito la diferencia en la cantidad de acero de refuerzo usando el DDBD y el MBF, siendo esta variación significativa. Según la tabla 101 y la figura 102 el incremento promedio del acero de refuerzo en el edificio usando el DDBD en lugar del MBF fue de 69.86%.
- De los resultados obtenidos en la presente investigación se ha descrito la diferencia las dimensiones de los elementos usando el DDBD y el MBF, siendo esta variación significativa. Según la tabla 105 obtuvo un incremento del volumen de concreto de 19.29% usando el DDBD en lugar del MBF.
- En la presente investigación se ha comparado la diferencia de la cortante basal inelástica obtenida mediante análisis no lineal estático usando el DDBD y el MBF, siendo esta variación significativa. Según las tablas 107 y 108 los incrementos de la cortante usando DDBD en comparación al MBF en las direcciones X, Y fueron de 11.25% y 31.48%.
- En la presente investigación se comparó los desplazamientos inelásticos mediante análisis no lineal estático usando el DDBD y el MBF, siendo esta variación significativa. Según la tabla 109 y la figura 109 las variaciones promedio en las direcciones X, Y fueron de 21.61% y 27.4%.

El presente trabajo tuvo como objetivo general determinar la precisión en la respuesta sísmica usando el DDBD y el MBF, para lo cual se determino la diferencia que tienen ambas metodologías en cuanto a cortantes, momentos, desplazamientos, derivas, cantidad de acero de refuerzo, dimensiones de elementos, cortante inelásticas y desplazamientos inelásticos. Estas variaciones promedio fueron de 60.63%, 115.48%, 54.99%, 122.4%, 69.86%, 19.29%, 27.56% y -24.51% respectivamente. Se observa un incremento significativo usando el DDBD en comparación al MBF en todos los indicadores a excepción de los desplazamientos inelásticos, donde el DDBD presenta menores desplazamientos inelásticos debido al incremento de la rigidez. Para determinar la precisión de los resultados se realizó en análisis estático no lineal, obteniendo para la cortante inelástica según las tablas 107 y 108 una menor diferencia en ambas direcciones usando el DDBD en lugar del MBF, en la dirección X se tiene 31.63% menos error y en la dirección Y se tiene 153.76% menos error. La variación promedio de los desplazamientos inelásticos según el DDBD en las

direcciones X, Y son de 12.26% y 4.34% y la variación promedio de los desplazamientos inelásticos según el MBF en las direcciones X, Y son de 36.07% y 59.65%. Finalmente considerando las diferencias indicadas el método que presenta una mayor precisión en la respuesta sísmica es el DDBD dado que predice de mejor manera la cortante basal inelástica y los desplazamientos inelásticos.

VII. RECOMENDACIONES

• En la presente investigación se estudió un edificio destinado a uso de vivienda con 9 niveles y se determinó la **cortante basal** mediante el método convencional y el DDBD obteniendo una diferencia significativa en ambas direcciones, se recomienda estudiar la sensibilidad que tiene esta variable según el número de pisos, área en planta, deriva de diseño, longitud de muros y el porcentaje de cortante asignado a muros y pórticos.

 De acuerdo a los resultados obtenidos de los desplazamientos con ambos métodos, el DDBD presenta mayores valores con respecto a los obtenidos con la E-030. Así mismo se observó que el perfil de desplazamientos es susceptible a la altura de inflexión que a su vez depende del porcentaje de cortante asignado a los muros y pórticos en la etapa inicial de diseño, por lo que se recomienda corregir dicha altura cuando se tiene muros conectados con vigas. Los desplazamientos también son sensibles a la deriva de diseño escogida por lo que se recomienda estudiar la variación del perfil de desplazamientos para varios niveles de deriva.

• Considerando que en la presente investigación se obtuvo **momentos volcantes** en la base significativamente mayores usando el DDBD en comparación a la norma E-030, la magnitud del momento también es susceptible a la deriva de diseño escogida por lo que se recomienda estudiar la relación entre ellas usando varios niveles de deriva y observar el efecto que tiene esta variación en el diseño de la

cimentación, ya que mientras mayor sea el momento producirá mayores excentricidades y por consiguiente mayores presiones.

• Para el caso de las derivas, el valor límite establecido es de 0.007, sin embargo, esta deriva está relacionada con secciones brutas, por lo que para el DDBD se utilizó la recomendación de usar como deriva limite 0.015, la razón entre estos valores es de aproximadamente 2 veces, este valor se uso para estimar los desplazamientos inelásticos a partir de los desplazamientos obtenidos con inercias brutas y definir las derivas de diseño con el DDBD, este proceso se hizo para fines de comparación, sin embargo la deriva de diseño debería escogerse en función al nivel de desempeño que se requiere lograr, por tanto se recomienda que cuando se utilice el DDBD se elija una deriva de diseño consistente con el nivel de desempeño buscado según normativas o guía internacionales. Otro efecto importante a considerar es la corrección de la deriva de diseño por efectos de torsión, se recomienda estudiar este fenómeno en otros tipos de edificios.

• En cuanto a la **cortante basal inelástica** obtenida a partir del análisis estático no lineal para el diseño con el MBF y el DDBD se obtuvo menores errores con el DDBD, esto debido a que el MBF usa factores de reducción de resistencia a flexión y factores de amplificación de cargas, en el DDBD se amplifica las solicitaciones por efectos de sobreresistencia y por efectos de modos superiores, ya que el análisis estático no lineal solo considera la contribución del primer modo en la respuesta, se recomienda comprobar las cortantes inelásticas con otros procedimientos como por ejemplo el análisis no lineal tiempo historia.

• En la presente investigación se observó que los **desplazamientos inelásticos** calculados con el análisis no lineal estático para el DDBD son menores que los obtenido para el MBF, principalmente debido a que debido al incremento de acero y las dimensiones de los elementos en el DDBD se obtiene una estructura con mayor rigidez. Sin emabrgo debería verificarse los desplazamientos inelásticos con un análisis no lineal que incluya la contribución de modos superiores, ya que con el DDBD se hizo dicha corrección en la deriva de diseño, resultando casi despreciable ya que es un edificio de 9 niveles, se recomienda estudiar este efecto para edificios más altos.

• Acorde a los resultados existe una variación significativa en la cantidad de **acero de refuerzo** de los elementos que conforman la edificación, la variación total dependerá de la cantidad de elementos en planta y número de niveles por lo que se recomienda estudiar la variación de la cantidad de refuerzo de los elementos estructurales en edificaciones con diferentes características en planta y altura.

• Conforme a la investigación el incremento de las **dimensiones de los elementos** se debió principalmente al incremento las solicitaciones en el DDBD en comparación al MBF, sin embargo, este incremento depende de la cortante y que a su vez depende de la deriva de diseño, por lo que se recomienda estudiar este incremento de dimensiones para diferentes niveles de deriva.

Se recomienda usar el DDBD como una metodología novedosa y segura para realizar el diseño por desempeño sísmico de edificios, ya que puede predecir de mejor manera la respuesta sísmica no lineal en comparación al MBF, sin la necesidad de realizar procedimientos complejos como son el análisis estático no lineal o el análisis no lineal tiempo historia. Así mismo se recomienda estudiar una variedad de edificios peruanos para que sirvan de base y se pueda incluir el DDBD con alternativa de diseño en la norma peruana de Diseño Sismorresistente E-030.

REFERECIAS

AMERICAN Concrete Intitute (USA). Requisitos de Reglamento para Concreto Estructural ACI 318-19. Farmington Hills, 2019. 680 pp.

AMERICAN Society of Civil Engineers. Seismic Evaluation and Retrofit of Existing Buildings ASCE 41-13. Virginia, 2014. 555 pp. ISBN: 978-0-7844-7791-5

AMERICAN Society of Civil Engineers. Seismic Evaluation and Retrofit of Existing Buildings ASCE 41-17. Virginia, 2017. 623 pp. ISBN: 978-0-7844-8081-6

ANDRADE, Javier y CARRILLO, Fredy. Análisis comparativo entre los diseños sismorresistentes de la norma Ecuatoriana de la Construcción. Tesis (Magister en Ingeniería Estructural). Quito: Escuela Politécnica Nacional, Facultad de Ingeniería Civil y Ambiental, 2018. 152 pp.

APPLIED Technology Council. Improvement of Nonlinear Static Seismic Analysis procedures FEMA 440. Washington D.C., 2005. 392 pp.

APPLIED Technology Council. Seismic evaluation and retrofit of concrete buildings ATC-40. Redwood City, 1996. 334 pp.

ARIAS Fidias, El proyecto de investigación. 6ta Edición. Venezuela. Episteme, 2012. 138pp. ISBN: 980-07-8529-9

BORJA Manuel. Metodología de la investigación científica para ingenieros. Chiclayo, 2016. 38 pp.

CABEZAS Edison, ANDRADE Diego, TORRES Johana. Introducción a la metodología de la investigación científica. Ecuador. Universidad de las fuerzas armadas ESPE, 2018. 137 pp. ISBN: 978-9942-765-44-4

CALVI G., PRIESTLEY M. y KOWALSKY M. Displacement-Based Seismic Design of Structures. Pavia. University of Pavia, 2008. 24 pp.

CCAHUANA, Willians y CORONEL, Juan. Análisis sísmico comparativo entre un edificio de placas de concreto armado y una edificación de pórticos de acero a través del diseño directo basado en desplazamientos. Tesis (Grado de Ingeniero Civil). Lima: Universidad Peruana de ciencias aplicadas, Facultad de Ingeniería, 2020. 113 pp.

CHOPRA Anil. Dinámica de Estructuras. 4ta Edición. Editorial Pearson. México, 2014. 944 pp.

CORDOVA Romel. Diseño Sísmico Directo Basado en Desplazamiento de un sistema dual. Tesis (Magister en Ingeniería Civil). Lima: Pontificia Universidad Católica del Perú, Escuela de Postgrado, 2017. 91pp.

EL PERUANO (Perú). Reglamento Nacional De Edificaciones Norma E-030 Diseño Sismorresistente. Lima, 2018. 32 pp.

EL PERUANO (Perú). Reglamento Nacional De Edificaciones Norma E-020 Cargas. Lima, 2006. 21 pp.

EL PERUANO (Perú). Reglamento Nacional De Edificaciones Norma E-060 Concreto Armado. Lima, 2009. 205 pp.

JIMENEZ, Ricardo y JOVEL, Gerardo. Evaluación del diseño por Desempeño basado en desplazamientos aplicado a sistema de marcos de concreto Reforzado Combinados con paredes de Corte. Tesis (Maestro en Ingeniería Estructural). San Salvador: Universidad de El Salvador, Facultad de Ingeniería y Arquitectura, 2017. 268 pp.

LOS Angeles Tall Buildings Structural Design Council (LATBSDC). An alternative

procedure for seismic design of tall buildings located in the Los Angeles Region.

Los Angeles, 2020. 94pp.

MANDER J., PRIESTLEY M. y PARK R. Theoritical Stress-Strain Model for Confined Concrete. J. Struct. Eng., 1988. 1804-1826.

METODOLOGIA de la investigación científica por Hernández [et al.]. Editorial McGRAW-HILL. 1991. 497pp. ISBN: 968-422-931-33456789012

MORALES, Alejandro. Método directo de diseño basado en desplazamientos (DDBD) aplicado a sistemas mixtos de hormigón armado. Valparaíso: Universidad de Valparaíso, Escuela de Ingeniería Civil, 2020. 45-57.

MORENO Rosangel, BAIRAN Jesús y HUAMAN Víctor. Estudio comparativo del diseño sísmico basado en fuerzas y desplazamientos aplicados a un edificio de hormigón armado de mediana altura. 2011. 10pp.

MUÑOZ Alejandro. COMENTARIOS A LA NORMA PERUANA E.030 DISEÑO SISMORRESISTENTE. SENCICO. Lima, 2020. 59pp.

MUÑOZ Carlos. Metodología de la investigación. México D, F. Editorial Progreso S.A de C.V. 2016. 307pp. ISBN: 9786074265422 NATIONAL Institute of Standars and Technology (NIST). Nonlinear Structural Analysis for Seismic Design. Redwood City, 2010. 36 pp.

PEREZ Francisco. Diseño Sísmico Basado en Desplazamientos. Medellín. 2014. 301p.

PRIESTLEY M., CALVI G. y KOWALSKY M. Displacement-Based Seismic Design of Structures. Pavia. IUSS PRESS, 2007. 733 pp. ISBN: 978-88-6198-000-6

RODRIGUEZ Mario. Una revisión crítica de las normativas de diseño sismorresistente en el Perú: E-030 Sismo E-060 Concreto Armado. Vol. 23, 1, 47-71. 2018.

SUAREZ, José. Análisis sísmico comparativo entre el método basado en fuerzas y el método de diseño directo basado en desplazamientos. Tesis (Título de Ingeniero Civil). Manabí: Universidad estatal del sur de Manabí. Facultad de ciencias técnicas, 2018. 126 pp.

SUCAPUCA, Luis. Evaluación sísmica de un edificio dual de concreto armado ubicado en la ciudad de Tacna, mediante un enfoque basado en desplazamientos. Tesis (Maestro en Ingeniería Civil). Tacna: Universidad privada de Tacna. Escuela de Postgrado, 2021. 116 pp.

SULLIVAN T., PRIESTLEY M. y CALVI G. Direct Displacement-Based Design of Frame -Wall Structures. Pavia. University of Pavia, 2005. 40 pp.

SULLIVAN T., PRIESTLEY M. y CALVI G. A model code for the Displacement-Based Seismic Design of Structures. Pavia. IUSS PRESS, 2012. 40 pp ISBN: 978-88-6198-072-3

TAUCER, Fabio, SPACONE Enrico y FILIPPOU Filip. A fiber beam-column element for seismic response analysis of reinforced concrete structures. Berkeley: University of California, 1991. 141pp.

TOLEDO Vlacev. Ingeniería sísmica basada en desempeño. Perú. Comunidad para la ingeniería civil, 2011. 315pp.

ANEXOS ANEXO 1: OPERACIONALIZACIÓN DE VARIABLES

VARIABLES	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	UNIDAD DE MEDIDA	ESCALA DE MEDICIÓN
Variables	Procedimiento mediante el cual se determinan unas fuerzas laterales de diseño, basadas en las			Factor de Zona	-	Razón
	según el caso, de un modelo elástico de la	respuesta sísmica de un		Factor de Uso	-	Razón
	aceleraciones de diseño. A partir de esas fuerzas laterales se obtienen los	lineal para una excitación sísmica dada a partir de las	Método convencional E-	Factor de Suelo	-	Razón
X1: Método Convencional E-	desplazamientos sísmicos y se calculan las fuerzas internas de los elementos de la	propiedades dinámicas del edificio y un espectro de	030	Coeficiente de Reducción	-	Razón
030	estructura, que se reducen por unos factores R, similares a una relación de ductilidad, dependientes del sistema estructural (Pérez, 2014, p.2-1).	aceleraciones elástico reducido.		Masa Sísmica	Ton-s2/m	Razón
	Procedimiento mediante el cual se parte del desplazamiento deseado o de diseño y se halla	Se obtiene las fuerzas internas en los elementos estructurales		Altura de inflexión	m	Razón
VO: Mátada	en un espectro de desplazamiento el máximo	del edificio en su estado	Dura is de des us	Perfil de Desplazamientos	m	Razón
basado en desplazamientos	Con el periodo y con la masa del edificio se dedúcela rigidez pecesaria y de allí la resistencia	inelástico o deformado. a partir de un desplazamiento escogido	lineales de la estructura	Desplazamiento de fluencia	m	Razón
acopiazamientoo	de diseño. Se usa una estructura elástica de	y un modelo equivalente de 1	ootraotara	Amortiguamiento efectivo	%	Razón
	rigidez equivalente a la estructura inelástica (Calvi, Priestley y Kowalsky, 2008).	demanda sísmica.		Factor de Reducción	-	Razón
Variable		Es lo que caracteriza a una		Cortante Basal	Ton	Razón
dependiente:		estructura ante la ocurrencia de	Respuesta diobal	Desplazamientos	m	Razón
	Para Chopra (2012) La respuesta sismica es	un evento sismico, fuerzas	Respuesta giobai	Momentos en la base	Ton.m	Razón
Respuesta	(deformación fuerzas internas esfuerzos	desplazamientos derivas etc		Derivas		Razón
Sísmica	etcétera). (p.197)	Se obtiene después de realizar	Pespuesta no	Cortante basal inelástica	Ton	Razón
Clonitod		el análisis estructural ante cargas sísmicas.	lineal	Desplazamiento máximo inelástico	cm	Razón
			Cuantificación	Cantidad de acero	kg	Razón
			CuantineaciOII	Dimensiones de elementos	m	Razón

ANEXO 2: MATRIZ DE CONSISTENCIA

		MATRIZ DE CONSIST	ENCIA		
TÍTULO:	RESPUESTA SÍSMICA MEDIA	NTE EL MÉTODO CONVENCIONAL VIVIEI	- (E-030) Y EL MÉTODO NDA, CUSCO-2021	BASADO EN DESPLAZAI	MIENTOS, EDIFICACIÓN DE
PROBLEMAS	OBJETIVOS	HIPÓTESIS	VARIABLES	DIMENSIONES	INDICADORES
PROBLEMA GENERAL	OBJETIVO GENERAL	HIPÓTESIS GENERAL	V. INDEPENDIENTE		Factor de Zona
				MÉTODO	Factor de Uso
					Factor de Suelo
¿Cuál será la precisión en la	Determinar la precisión en la			(E-030)	Coeficiente de Reducción
respuesta sísmica de una	respuesta sísmica de una	Existe una mayor precisión			Masa Sísmica (Ton)
edificación de vivienda	edificación de vivienda	en la respuesta sísmica de	(E-030) Y EL		Altura de Inflexión (m)
convencional E-030 y el	convencional E-030 y el	usando el método basado en desplazamientos Cusco	MÉTODO BASADO EN	MÉTODO BASADO	Perfil de Desplazamientos (m)
desplazamientos, Cusco 2021?	desplazamientos, Cusco 2021.	2021.	DESPLAZAMIENT OS	EN DESPLAZAMIENTO	Desplazamiento de Fluencia (m)
				S	Amortiguamiento Efectivo (%)
					Factor de Reducción

PROBLEMAS ESPECÍFICOS	OBJETIVOS ESPECÍFICOS	HIPÓTESIS ESPECÍFICAS	V. DEPENDIENTE		
¿Cuál será la diferencia en las cortantes de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021?	Determinar la diferencia en las cortantes de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021.	Existe una diferencia significativa en las <i>cortantes</i> de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021.			Cortantes (Ton)
¿Cuál será la diferencia en los desplazamientos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021?	Evaluar la diferencia en los desplazamientos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021.	Existe una diferencia significativa en los <i>desplazamientos</i> de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021.		Respuesta Global (Análisis	Desplazamientos (cm)
¿Cuáles será la diferencia en el los <i>momentos</i> de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021?	Establecer la diferencia en los momentos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021.	Existe una diferencia significativa en los <i>momentos</i> de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021.	SISMICA	Sísmico lineal)	Momentos (Ton.m)
¿Cuáles será la diferencia en las derivas de los elementos estructurales de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021?	Analizar la diferencia en las derivas de los elementos estructurales de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021.	Existe una diferencia significativa en las <i>derivas</i> de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021.			Derivas ()

¿Cuáles será la diferencia en la <i>cantidad de acero de refuerzo</i> de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021?	Describir la diferencia en la cantidad de acero de refuerzo de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021.	Existe una diferencia significativa en la <i>cantidad de</i> <i>acero de refuerzo</i> de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021.	Cuantificación	Cantidad de Acero de Refuerzo (kg)
¿Cuáles será la diferencia en el las dimensiones de los elementos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021?	Describir la diferencia en <i>las dimensiones de los elementos</i> de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021.	Existe una diferencia significativa en <i>las</i> <i>dimensiones de los</i> <i>elementos</i> de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021.	de Materiales	<i>Dimensiones de elementos</i> (m)
¿Cuáles será la diferencia en la cortante basal inelástica de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021?	Comparar la diferencia en la cortante basal inelástica de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021.	Existe una diferencia significativa en la <i>cortante</i> <i>basal inelástica</i> de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021.	Respuesta no	Cortante basal inelástica (Ton)
¿Cuáles será la diferencia en los desplazamientos inelásticos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021?	Comparar la diferencia en los desplazamientos inelásticos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021.	Existe una diferencia significativa en los desplazamientos inelásticos de una edificación de vivienda usando el método convencional E-030 y el método basado en desplazamientos, Cusco 2021.	lineal	Desplazamientos inelásticos (cm)

VALIDACION DEL INSTRUMENTO DE INVESTIGACION

Datos Generales

- <u>Nombre del instrumento</u>: Fichas técnicas
- <u>Título de la investigación</u>: Respuesta Sísmica Mediante El Método Convencional (E-030) y El Método Basado en Desplazamientos, Edificación de Vivienda, Cusco-2021
- <u>Autores del instrumento:</u> Ángel Ramiro Condori Sánchez y Guido Arístides Quispe Flórez.

Interpretación

Intervalos	Resultados
0.00-0.49	Validez nula
0.50-0.59	Validez muy baja
0.60-0.69	Validez baja
0.70-0.79	Validez aceptable
0.80-0.89	Validez buena
0.90-1.00	Validez muy buena

Criterios

1. Objetividad	Se expresa en hechos observables
2. Claridad	Esta presentado con lenguaje claro
Organización	Esta presentado de acuerdo a las dimensiones e indicadores
4. Actualidad	Acorde al avance de las investigaciones
5. Formato	Se respeta aspectos técnicos de presentación
6. Suficiencia	Suficiente en cantidad para medir la variable
7. Coherencia	Adecuado para medir la variable
8. Consistencia	Tiene concordancia con las bases teóricas
9. Pertinencia	Se mide lo previsto según los objetivos
10. Metodología	Tiene un sustento alineado a la investigación

FICHA TECNICA Nº 1: ANALISIS SISMICO SEGÚN E-030 INDICADOR: CORTANTES Y MOMENTOS

5 g * *

UNIVERSIDAD CÉSAR VALLEJO

Piso H M P $X_{\rm h}\Lambda_{\rm tX}$ $Y_{\rm h}\Lambda_{\rm tX}$ <	Piso H M P $P \times h^{A} k_{X}$ <		1					MINHLIGIO	SISMICO L	ESTATICO						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dien	E	-	W	•	D v hAleu									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	E	1		-	L AN TA	F X D KY	1		X	>	111.0	-		
9 101 101 101 101 101 8 1 1 1 1 1 8 1 1 1 1 1 8 1 1 1 1 1 8 1 1 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 100 100 100 100 100 8 7 7 100 100 100 8 7 100 100 100 100 9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100		III	E	tonf-s²/m	Ton	Tonm	Toon	ð	٩			VIX	VIY	-	
		6									Ton	Ton	Ton	Ton	Mx (ton.m)	My (ton.m)
		•												101		
		0														
		~														
		-														
		ŝ														
		-														
	3 0 2	4														
		"				1										
		,														
		2														
		-	-		1								i			
		0														
														100 States 100 States		

ESCALAMIEN	TO	×	>
Cortante dinamica	V dina (Ton)	-	
Cortante estatico	V est (Ton)		
Porcentaje	%		
Porcentaje minimo	V min %		
Factor de escala	ų		
Cortante dinamica escalada	V dina esc.	T	

		NAMES	1 OUTINOIS	UINAMICO		
Piso	H (m)	h (m)	VX (ton)	VY (ton)	Mx (ton.m)	MV (ton.m)
6						
8						
7						
9						
5						
4						
3						
2						
-						
0						

Experto N°2
Ing. Juan de Dios Flores Jorge
CIP: 92463
COLEGIO DE INGENIEROS DEL PERI CONSELO DEPARTAMENTAL CUSCO Ing. Juan de Dios Alores Jorge Ing. Suan de Dios Alores Jorge
Calificación:985

Experto N°3
Ing. Milagros Pilar Bustamante Torres
CIP: 263655
Contractor
Calificación: 0,90

FICHA TECNICA N° 2: ANALISIS SISMICO SEGÚN E-030 INDICADOR: DESPLAZAMIENTOS Y DERIVAS

UNIVERSIDAD CÉSAR VALLEJO

	R	Reg. o Irreg.?	Factor
X			0.85R o 0.75R
Y			0.85R o 0.75R

Piso	h	h	ōx ela (m)	ōx ine (m)	Av/h	Limito
9				on the first	25011	Linte
8						0.007
7						0.007
						0.007
6						0.007
5	i					0.007
4						0.007
3						0.007
0						0.007
2						0.007
1						0.007
0						0.007
				1		0.007

Piso	h	b	õv ela (m)	δy ine (m)	Auth	1 1
9				oy me ting	Δy/n	Limite
8						0.007
7			_			0.007
						0.007
6						0.007
5						0.007
4						0.007
3			-			0.007
2						0.007
2						0.007
1						0.007
0						0.007

FICHA TECNICA N° 3: METODO BASADO EN DESPLAZAMIENTOS INDICADOR: CORTANTES Y MOMENTOS

Piso	mi	hi	mřhi	Fi	ViT	Motm	Vif	Viw	Miw	Mif
9										
8										
7										
6										
5										
4										
3										
2										
1										
0			4							
		Σ								

FICHA TECNICA Nº 4: METODO BASADO EN DESPLAZAMIENTOS INDICADOR: DESPLAZAMIENTOS Y DERIVAS

FISO	hi	Δyi	Δi	mi	noi Ai	mai 4 12		
9					1 116-24	mr	mi.di.hi	⊖i≃∆i/h
8					†			
7					<u> </u>			
6								
5								
4								
3								
2								
1								
0								

-

Experto N°3

FICHA TECNICA N° 5: ANALISIS ESTATICO NO LINEAL INDICADOR: CORTANTES Y DESPLAZAMIENTOS INELASTICOS

D/ml		^				Y	
D (m)	V (ton)	Sd (cm)	Sa (cm/s2)	D (m)	V (ton)	Sd (cm)	Sa (cm/s2
							-

PUNTO DE DESEM	IPEÑO	X	V
Desplazamiento espectral	Sd (cm)		
Aceleracion espectral	Sa (cm/s2)		C
Desplazamiento	D (m)		
Cortante	V (ton)		
Cortante de diseño	Vd (ton)		
Variacion %	(1011)		
Sobreresistencia	0		

		VALIDACIO	N DE DESPLAZA	MENTOS C	ON EL DORD	
		X				
Piso	DDBD	Pushover	Variacion %	DDBD	Duchover	Maria
9				0000	rushover	variación %
8						
7		1				
6						
5						0
4						
3						
2						
1		1				

_		VALIDACIO	N DE DESPLAZA	MENTOS C	ON LA F-030			
		x		Y				
Piso	E-030	Pushover	Variacion %	E-030	Ruchavor	14-2		
9	1				rusitover	variación		
8								
7								
6								
5								
4								
3								
2								
1								

Experto N°3
Ing. Milagros Pilar Bustamante Torres
CIP: 263655
Hilagros Pilar Bustamante Tarres ING. CIVIL CIP: 263655 Calificación:

FICHA TECNICA N° 6: CUANTIFICACION DE MATERIALES INDICADOR: CANTIDAD DE ACERO DE REFUERZO

MCA	Cantidad de acero de refuerzo long. (kg)							
VIGA	Convencional	DDBD	Variacion %					
1								
2								
3								
4								
5								
6								
A								
В								
C								
D1								
D2								
E								
Σ								

COLUMANA	Cantidad de acero de refuerzo long. (kg)								
COLUMINA	Convencional	DDBD	Variacion %						
1									
2									
3									
4									
5									
Σ									

MUDO	Cantidad de a	Cantidad de acero de refuerzo long. (kg)		Cantidad de ac	o horiz. (kg)	
mono	Convencional	DDBD	Variacion %	Convencional	DDBD	Variacion %
1X						
С						
4X						
5X						
ťΥ						
2Y						
Σ						

Elemente	Resumen de cantidad de acero de refuerzo (kg)							
Liemento	Convencional	DDBD	Variacion %					
Vigas								
Columnas								
A.L. Muros								
A.H. Muros								
Σ								

Experto N°3

Ing. Milagros Pilar Bustamante Torres

CIP: 263655

Har Bustamante Torres ING. CIVIL CIP: 263855 Calificación: 0,85

FICHA TECNICA Nº 6: CUANTIFICACION DE MATERIALES

INDICADOR: DIMENSIONES DE ELEMENTOS

				Dimensiones	de elemente	os			1
VIGA Convencior		encional		DDBD					
	Base (m)	Peraite (m)	Longitud (m)	Volumen (m3)	Base (m)	Peralte (m)	Longitud (m)	Volumen (m3)	Variacion %
1								i di anti fi i di a	Para di la di di la
2			-						
3									
4			1						
5									
6									
A									
В									
С									
D1									
D2									
E									
Σ									

				Dimensiones	de elementos	5			1
COLUMNA	Convencional					1			
	Base (m)	Peralte (m)	Longitud (m)	Volumen (m3)	Base (m)	Peralte (m)	Longitud (m)	Volumen (m3)	Variacion %
1									Failed of A
2									
3									
4									
5									
Σ									

				Dimensiones	de elementos	s			1	
MURO		Convencional				DDBD				
	Base (m)	Peralte (m)	Longitud (m)	Volumen (m3)	Base (m)	Peralte (m)	Longitud (m)	Volumen (m3)	Variacion %	
1X										
С										
4X										
5X										
1Y										
2Y										
Σ										

Experto N°2 Ing. Juan de Dios Flores Jorge CIP: 92463 COLECIO DE INGENIEROS DEL PERI Juan de Dios Flores Jorge Ing Calificación: 0,85

Experto N°3

Ing. Milagros Pilar Bustamante Torres

CIP: 263655

laoros Pilar Bustamante Torres ING. CIVIL CIP: 263655 Calificación: 0,90

ANEXO 4: ESTUDIO DE SUELOS

8.3.- PARÁMETROS SÍSMICOS.

De acuerdo a la zonificación sísmica del Perú, establecido en la norma de diseño Sismo resistente E - 030 del reglamento nacional de edificaciones, la región Cusco Es la zona 2, con aceleraciones máximas que varían entre 0.16 a 0.17, del plano de aceleraciones máximas normalizadas.

ESTUDIO GEOTÉCNICO DE CIMENTACIONES

Tipo	Descripción	$T_{p}(S)$	
Sī	Roca o Suelos Rígidos	0.4	1.0
S_2	Suelos Intermedios	0.6	1.2
S ₃	Suelos Flexibles o con estratos de gran espesor	0.9	1.4
S4	Condiciones Excepcionales	*	*
o serán m	es de 1p y 5 para este seran establectuos por el enores que los especificados para el perfil tipo	S ₃	

La descripción litológica hecha precedentemente, indica que la zona de estudio se emplaza sobre materiales poco consolidados de arcillas altamente plásticas, según la Norma E.030, a un "Perfil Tipo S2: Suelos intermedios, teniéndose los siguientes parámetros:

- ✓ Periodo que define la plataforma del espectro (Tp): Tp = 0.60 seg.
- ✓ Factor de Suelo (S): S = 1.20
- ✓ Factor de Zona (Z): aceleración máxima del terreno con una probabilidad de 10% de ser excedida en 50 años

Z = 0.30 (g)

✓ Factor de Ampliación Sísmica (C):

15

GENIEROS

Gongora

GED

Ing.

ANEXO 5: LICENCIA ACADEMICA DE ETABS

E About ETABS [TRIAL LICENSE - NOT FOR COMMERCIAL USE] **ETABS Ultimate 64-bit** Ê Version 20.1.0 Build 2822 Integrated Building Design Software Copyright @ 1984-2022 Computers and Structures, Inc. A product of: Computers and Structures, Inc. web: www.csiamerica.com This product is licensed to: LENOVO Physical Memory Total: 8032.266 MB Available: 1967.41 MB Windows Version: Windows 10 (Version 10.0) Build 19044 64-bit User Settings Folder 30 days left on Trial License

E License Information

 \times

?

License Details	
Activation Key	Not Applicable
Computer ID	+FMuXPgjYCmZzsWnNYnb
Activation Type	Online
License Code	Not Applicable
License Type	Trial
License Status	Trial Activated
License Level	Trial
Instance Count	No limit
License Expires	Wed May 4 11:12:24 2022

ANEXO 6: PLANOS DE ARQUITECTURA

228

