

FACULTAD DE INGENIERÍA INDUSTRIAL ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL

"Gestión del mantenimiento para incrementar la disponibilidad de motores y compresores a gas en el lote X, 2021"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL: Ingeniero Industrial

AUTOR:

Temoche Socola Percy Paul (ORCID: 0000-0003-2668-5645)

ASESOR:

Mag. Carrascal Sánchez, Jenner (ORCID: 0000-0001-6882-8339)

LÍNEA DE INVESTIGACIÓN:

Gestión Empresarial y Productiva

Piura – Perú 2022

Dedicatoria

"En primer lugar a Dios, a mis dos ángeles en el cielo, para mi esposa y mis hijos por mis días de ausencia en nuestro tiempo, a mis padres por todo el esfuerzo y apoyo brindado a mis hermanos por siempre estar allí en mi camino y darme su hombro, a todos los profesionales que me han apoyado a mi formación profesional"

Agradecimiento

Un agradecimiento especial a la Universidad Cesar Vallejo, por darme la oportunidad de crecer profesionalmente, a sus buenos docentes por el apoyo brindado a mis compañeros de clase apoyándonos siempre de una u otra forma "

Índice de contenidos

	edicate	oria	iii
Δ	graded	cimiento	iv
ĺı	ndice d	e contenidos	v
ĺnd	ice de	Tablas	vii
ĺnd	ice de l	Figuras	ix
F	RESUM	EN	x
Α	BSTR	ACT	12
l.	INTR	ODUCCIÓN	13
II.	MAR	CO TEÓRICO	18
III.	ME	rodología	28
	3.1.	Tipo y diseño de investigación	28
	3.2.	Variables y Operacionalizacion	28
	3.3.	Población, muestra, muestreo, unidad de análisis	29
	3.4.	Técnicas e instrumentos de recolección de datos	31
	3.5.	Procedimientos	32
	3.6.	Método de análisis de datos	32
	3.7.	Aspectos éticos	33
IV.	RES	SULTADOS	34
	4.1 y com	Analizar la situación de los mantenimientos efectuados a los motores presores a gas	
	4.2	Determinar la Disponibilidad de los motores y compresores a gas	35
	4.4 4.5 motor 4.6	Diagrama de pareto de los componentes con mayor cantidad de	41
	4.7	encionesEvaluar cuál es el beneficio económico que nos genera la propuesta	
٧.		JSIÓN	
VI.	COI	NCLUSIONES	51
VII.	REC	COMENDACIONES	53
DE		ICIAS	5 1

ANEXOS	59
Anexo N° 1 Matriz de Operacionalizacion	59
Anexo N° 4 Propuesta de mejora de la Gestión de mantenimiento de motores y compresores a gas en el lote X año 2021	
Anexo 4.1. GENERALIDADES:	81
Anexo 4.2 OBJETIVOS	82
Anexo 4.3. ALCANCE:	82
Anexo 4.4. LINEAMIENTOS CONCEPTUALES	82
Anexo 4.5 DESARROLLO DE LA METODOLOGÍA DE INGENIERÍA	85
Política de mantenimiento	87
Aplicar plan de Capacitación a personal de mantenimiento en el tema implementación del Ciclo PHVA	106

Índice de Tablas

Tabla N° 1: Relación de Motores y compresores a gas	27
Tabla N° 2: Técnicas e instrumentos de recolección de Datos	. 28
Tabla N° 3: Mantenimiento realizados a motores marca AJAX	63
Tabla N° 4: Mantenimiento realizados a motores marca CAT 3306	64
Tabla N° 5: Mantenimiento realizados a motores marca CAT 3406	. 64
Tabla N° 6: Mantenimiento realizados a motores marca CAT 3408.	. 65
Tabla N° 7 Mantenimiento realizados a motores marca CAT 3512	65
Tabla N° 8: Mantenimiento realizados a motores marca CAT 3508	66
Tabla N° 10: Mantenimiento realizados a motores marca CAT 398	66
Tabla N° 11: Mantenimiento realizados a motores marca SIEMENS ELECTRICO	. 67
Tabla N° 12: Consolidado de mantenimientos realizados a motores y compresores	67
Tabla N° 13: Análisis de la disponibilidad motores y compresores marca Waukesha	68
Tabla N° 14: Análisis de la disponibilidad motores y compresores marca AJAX	68
Tabla N° 15: Análisis de la disponibilidad motores y compresores marca Cat 3306	. 63
Tabla N° 16: Análisis de la disponibilidad motores y compresores marca CAT 3406	63
Tabla N° 17: Análisis de la disponibilidad motores y compresores marca CAT 3408	69
Tabla N° 18: Análisis de la disponibilidad motores y compresores marca CAT 3512	81
Tabla N° 19: Análisis de la disponibilidad motores y compresores marca CAT 3508	83
Tabla N° 20: Análisis de la disponibilidad motores y compresores marca CAT SIEMENS	84
Tabla N° 21: Consolidado de indicadores de mantenimiento de motores y compresores	85
Tabla N° 22: Función del trabajador.	87
Tabla N° 23: Tiempo de trabajo del personal entrevistado	89
Tabla N° 24: Capacitación recibida por el personal entrevistado	92
Tabla N° 25: Repuestos para realizar las actividades de mantenimiento	87

Tabla N° 27: Personal Cuenta con manuales Técnicos
Tabla N° 28: Ordenes de trabajo Revisadas para establecer las principales fallas de los
Motores y compresores a gas
Tabla N° 29: Análisis documental de mantenimiento correctivo 2021
Tabla N° 30: Pareto de mantenimiento correctivos
Tabla N° 31: Repuestos para realizar las actividades de mantenimiento
Tabla N° 32: Dificultades durante los mantenimientos
Tabla N° 33: Consolidado de indicadores de mantenimiento de $$ motores y compresores 85
Tabla N° 34: Comparación de indicador de disponibilidad después de la mejora

Índice de Figuras

Figura N° 1: Esquema de la mejora continua ciclo Deming	24
Figura N° 2: Pareto de Mantenimientos Correctivos	42
Figura N° 3: Árbol Lógico de Decisiones	33
Figura N° 4: Formato de Planificación de Mantenimiento Preventivo	85
Figura N° 5:	91
Figura N° 6: Diagrama de Barras de disponibilidad mensual del año	37
Figura N° 7: Diagrama de Pareto para el tiempo de paradas	38
Figura N° 8: Diagrama de Ishikawa para el análisis de la baja disponibilidad	41
Figura N° 9: Diagrama de Pareto para el análisis de causa raíz	42
Figura N° 10: Formación de equipo de trabajo	45
Figura N° 11: Resultados del número de prioridades de riesgos	64
Figura N° 12: Procedimiento de Mantenimiento	65

RESUMEN

El presente proyecto de investigación tiene como objetivo realizar la "Gestión del mantenimiento para incrementar la disponibilidad de motores y compresores a gas en el lote X, El Alto-Talara 2021 para lo cual se implementa la herramienta de ingeniera basado en el ciclo PHVA, aplicando a la gestión de mantenimiento lo que nos va permitir a incrementar la disponibilidad de nuestros equipos en un 92.35%, reflejado en al ahorro del costo de mantenimiento.

Se llevó a cabo el estudio atraves de la aplicación de nuestros instrumentos propuestos el análisis de las actividades de mantenimiento, así como los indicadores de disponibilidad, este estudio se realizó en un lapso de un año 2021, y también comprende diagnosticar el estado de la gestión de mantenimiento realizada llegando a conocer cuáles son las actividades que han contribuido a que exista una baja disponibilidad en los equipos tanto a nivel de gestión como a nivel de componentes de los equipos, se ejecutó un análisis de criticidad de componentes producto de la aplicación de instrumentos que descubren las principales fallas de los motores y compresores a gas. Se identifica a los sistemas de encendido y sistema de protección, control y monitores fueron los más críticos.

Así miso se evalúa el beneficio económico que se obtiene de la implementación de la mejora del sistema de gestión del mantenimiento, aplicando el ciclo PHVA.

Palabras Clave: Gestión de mantenimiento, disponibilidad de motores y compresores, ciclo PHVA.

ABSTRACT

The objective of this research project is to carry out the "Maintenance management to increase the availability of gas engines and compressors in lot X, El Alto-Talara 2021, for which the engineering tool based on the PHVA cycle is implemented, applying to maintenance management, which will allow us to increase the availability of our equipment by 92.35%, reflected in savings in maintenance costs.

The study was carried out through the application of our proposed instruments, the analysis of both preventive and corrective maintenance activities, as well as the availability indicators, this study was carried out in a period of one year 2021, and also includes diagnosing the status of the maintenance management carried out, getting to know which are the activities that have contributed to the low availability of the equipment, both at the management level and at the level of the equipment components, for which a criticality analysis of the equipment was carried out. Components product of the application of instruments that discover the main failures of gas engines and compressors. It should be noted that the result shown shows us that the components such as ignition systems and protection, control and monitor systems were the most critical.

Thus, the economic benefit obtained from the implementation of the improvement of the maintenance management system is evaluated, applying the PHVA cycle.

Keywords: Maintenance management, availability of motors and compressors, PHVA cycle

I. INTRODUCCIÓN

A nivel internacional, son muchas las empresas que, de alguna forma, buscan implementar sistemas de mantenimiento que les permitan satisfacer ciertos requerimientos que son emitidos por los clientes, en ese mismo sentido, también buscar que sus activos, como son maquinarias y herramientas, se mantengan siempre en constante operación manteniendo, paralelamente, sus costos bajo control. El mantenimiento, desde la perspectiva que se le otorga en este estudio, constantemente va a servir para conservar los equipos en buen estado asegurando de esta forma que las empresas lleven a buen puerto los objetivos empresariales. Cada organización, en lo que concierne al rubro de la industria, constantemente instituye sus tácticas de mantenimiento, únicas y efectivas, para sus procesos esto posibilita que el objeto de análisis de los inconvenientes como mantenimiento sean infinitas.

El mantenimiento es algo primordial para todas las empresas para poder hacer la conservación de todos los equipos en un estupendo estado y reafirmar la consecución de las metas de producción en las organizaciones. Con el incremento de la industria, las tácticas y herramientas de mantenimiento han cambiado una y otra vez a fin de ser más efectivas en el cumplimiento de sus fines, asegurando tal cual el manejo constante de los activos, reduciendo los precios de reparación7 de los grupos y priorizando la estabilidad al medio ambiente y más que nada a los individuos.".(Rincón, Ch, 2017, p 1)

En lo que corresponde al contexto nacional, las empresas operadoras de lotes petroleros, buscan mantener la producción en sus indicadores proyectados, el área de compresión de gas juega un rol importante, ya que mantener operativas las maquinas designadas para este fin necesitan administrar de manera óptima los recursos de personal, repuestos, herramientas, logística etc., de no ser así surgen infinidad de problemas en esta área de mantenimiento, esto considerando que estas máquinas trabajan ininterrumpidamente.

"Uno de los factores más importante a considerar en el contexto del uso de los motores y compresores a gas en zona de producción petrolera es que se cuenta que las características más importantes son: la formación de alta torsión de desempeño a pequeñas revoluciones; igualmente se debe considerar el bajo costo del combustible en este caso el gas, el cual se produce de la extracción y de las baterías que se utilizan para la separación de petróleo crudo. (Vílchez, R, 2019.p1)

El principal uso de los motores y compresores de Gas en este lote petrolero es el de comprimir el gas proveniente de los pozos, en las baterías, se deriva hacia las estaciones de compresión donde se ubican 2 o 3 equipos moto compresores, Aquí se utiliza desde el gas combustible a baja presión hasta el gas que se envía a la planta eléctrica para la generación de energía, y gas que se envía a ventas.

En el lote X, se cuenta con un sistema de compresión de gas constituida por (12) estaciones de compresión y (29) moto-compresores, los cuales son de accionamiento reciprocante, con una capacidad instalada de 40.88 MMPCD, y 12,467 HP, actualmente este lote petrolero esta administrado por la empresa CNPC PERU. Se cuenta con motores de las marcas: Caterpillar, Ajax, Waukesha y compresores de las marcas Ariel, Ajax, Ingersoll rand, Gemini, actualmente se aplica el mantenimiento preventivo, correctivo, predictivo, y mantenimiento mayor u overhaul. El mantenimiento que se lleva a cabo por la empresa de servicios Confipetrol, esta es una de la empresa de alta participación en el sector hidrocarburos y que cuenta con un sistema de gestión integrado y con personal altamente calificado, en el lote x se viene ejecutando un plan de mantenimiento, así como el reemplazo de motores nuevos en algunas locaciones como se requiere para continuar con la producción de gas en este lote.

De acuerdo con algunas investigaciones, Confipetrol constituye el gremio de las empresas líderes a escala mundial dado a que se instaura en gran parte de los sectores mineros, así como energéticos e industriales que se sitúan en toda América del Sur. De acuerdo con la misma Confipetrol, es una compañía que se encuentra ampliamente capacitada y altamente especializada en brindar toda una serie de soluciones en materia de operación, así como de mantenimiento, confiabilidad y gestión de activos en varios sectores. Conviene mencionar que, además, cuenta con amplia experiencia de trabajo en los sectores relacionados con

el campo de los hidrocarburos, las grandes industrias, el sector minero, así como el energético, para los cuales, en toda ocasión, ha desarrollado una serie de metodologías y procedimientos especializados cuyo propósito el propósito ha sido garantizar tanto la confiabilidad como la disponibilidad y la eficiencia de los activos. De acuerdo con algunas investigaciones, se ha podido determinar que dicha empresa tiene alta presencia en países latinoamericanos como Colombia, Perú, Bolivia y Chile y que, además, cuenta con un equipamiento categorizado como de la más alta tecnología especializada para el diagnóstico de activos.

En ese mismo sentido, la empresa anteriormente mencionada tiene como visión construir y mantener la confianza que tiene su gran cartera de clientes hacia el servicio que ellos ofrecen los cuales, según distintos portales online, se diferencian pueden distinguirse con mucha facilidad en el mercado. Así como ir de la mano a sus necesidades, siempre garantizar el cumplimiento del marco legal y de los estándares de seguridad y calidad con los que cuenta. Confipetrol Andina SA es una organización dedicada y socialmente consciente, que se ajusta a las leyes vigentes y apropiadas, talentosa para brindar una ayuda de gran alcance para el mantenimiento y la actividad y que garantiza la administración de confiabilidad, disponibilidad y diagnósticos certeros, persistentemente tiene una reacción rápida a las necesidades de los consumidores.

Dentro del mantenimiento que es llevado a cabo por la organización se tiene un sinfín de inconvenientes que se proporcionan en la ejecución de este, la mayor parte de dichos problemas en los mantenimientos, tienen la posibilidad de minimizarse o borrarse, si se ejecutaría tácticas optimas de administración de mantenimiento, del mismo modo métodos adecuados que identifique cuales son las fallas habituales y la forma positiva de darle solución de forma positiva, así como darle una mejor capacidad al personal para la resolución de dichos inconvenientes. Por esto es necesario realizar toda la gestión relacionada con el mantenimiento de tal forma que se logre aumentar la disponibilidad de motores y compresores a gas en el lote X, El Alto-Talara 2021, para consumar este objetivo se necesita actualizar la información que existe, especialmente de los mantenimientos correctivos que se haya ejecutado en la compañía en una época de tiempo definido.

La formulación del Problema de investigación, realiza el cuestionamiento general: ¿Cómo la gestión del mantenimiento incrementara la disponibilidad de motores y compresores de gas en el Lote X, al elaborar una propuesta de gestión del mantenimiento? y los problemas específicos: ¿Cuál es la situación actual de los mantenimientos de los motores y compresores a gas en el Lote X.?, ¿Cómo puede evitarse las fallas ocurridas en los motores y compresores de gas del Lote X?, ¿Cómo estimar el costo beneficio de implementar esta propuesta en los motores y compresores de gas en el Lote X.?

La justificación de esta propuesta es la siguiente:

Justificación operativa, responde a mantener equipos como son motores y compresores con mayor vida útil para cumplir su función en el lote X, con esto aseguramos que las paradas intempestivas sean menores, evitar problemas de perdida de producción por inoperatividad de equipos así mismo permite a la empresa mejorar su perfil empresarial, convirtiéndose en un aliado de las empresas operadoras del sector que utilizan motores y compresores a gas en sus operaciones.

Justificación social: se encuentra determinada en el sentido que el personal involucrado en ejecutará el mantenimiento a través de la propuesta contribuirán en el desarrollo de sus economías locales, mejorando la calidad de vida de sus familias y fortaleciendo sus experiencias laborales y profesionales.

Justificación económica: se da en reducir los costos que se generan en mantenimiento de los motores y compresores a gas ya que el gasto que se realice en repuestos, planillas, consumibles, serán más efectivos y tendrán más redundancia, ahorrando dinero y tiempo, es decir será más efectivo.

Justificación metodológica: se da en la medida que este trabajo de investigación servirá para las futuras generaciones beneficiando a técnicos, supervisores, estudiantes y personas en general quienes tendrán este material a la mano como consulta.

Establecemos la Hipótesis siguiente: como un modelo de gestión de mantenimiento permite incrementar la disponibilidad de los motores y compresores a Gas en el Lote X.

El objetivo general de este trabajo es el siguiente:

Elaborar un modelo de gestión de mantenimiento que permita incrementar la disponibilidad de motores y compresores a gas en el Lote X aplicando el ciclo PHVA, y como **objetivos específicos**: analizar el estado en que se encuentran los mantenimientos realizados a los motores y compresores a gas en el lote X, determinar la disponibilidad de los motores y compresores a gas, diseñar un modelo de gestión de mantenimiento basado en el ciclo PHVA, que nos permita disminuir las fallas de los motores y compresores a gas, evaluar cuál es beneficio económico que nos genera la propuesta.

II. MARCO TEÓRICO

Los trabajos anteriores a esta propuesta se han resumido en las investigaciones:

Urrego (2017), nos presenta "Elaboración de un plan de mantenimiento preventivo para equipos de la línea de perforación de la empresa cimentaciones de Colombia Ltda." Según el autor, el propósito de este estudio es mejorar la confiabilidad, disponibilidad y mantenibilidad de los activos del área de perforación de la empresa. Para ello, el autor adopta un plan de mantenimiento preventivo para controlar las actividades periódicas efectivas; y agregando cada unidad El servicio La vida útil del equipo se utiliza para evitar tiempos de inactividad, sobrecostos y prevenir fallas en los componentes y mejorar su funcionamiento. Este trabajo analiza primero los tipos de mantenimiento que existen en la industria y los métodos utilizados por diversas empresas, y luego el autor pretende mostrar la diversidad de equipos utilizados en la línea de perforación para explicar al jurado cómo funcionan estos equipos. Empresas, diferentes tipos de equipos, diferentes sistemas, subsistemas y componentes. De esta manera, se realiza una evaluación detallada de la situación real de la empresa, para lo cual se utilizan herramientas de frecuencia de fallas y como herramientas, encuestas, entrevistas e inspecciones, y reconocidas herramientas de causa raíz. Se utilizan para analizar y determinar la ocurrencia de equipos. Asimismo, el autor utiliza métodos de análisis crítico para evaluar y determinar cómo estos factores afectan a la población, el personal, la producción y los sectores ambientales. Toda esta información modificada permite obtener resultados sobre el tiempo de reparación, tiempo medio entre fallas, confiabilidad, disponibilidad, mantenibilidad, etc. En este trabajo, se recomienda brindar siempre esta información con el fin de utilizar el ciclo PDCA para realizar cambios para la mejora continua.

Rincón (2017), en su trabajo: "Actualización del plan de mantenimiento enfocado en confiabilidad para la implementación del módulo "prometes" de la plataforma SAP en el tren de laminación 2 para la empresa Gerdau Diaco s.a. planta tuta. Plan de mantenimiento basado en RCM del tren 2 de laminación de la planta Tuta de Gerdau Diaco. En el contexto del trabajo de referencia, es necesario comprender el

funcionamiento del nuevo software SAP y su módulo de mantenimiento para la gestión del mantenimiento, y se encuentra que existen problemas menores en la planificación, ejecución y reporte de actividades. Se encuentran inconsistencias, indicando que la estructura del plan de mantenimiento no es suficiente para optimizar Utilizar las funciones de la nueva plataforma de gestión de mantenimiento. Para el trabajo actual, el autor recomienda implementar un nuevo plan de mantenimiento para garantizar que los métodos de mantenimiento centrados en la confiabilidad (RCM) se utilicen para evaluar los modos de falla principales y los modos de falla más relevantes, y analizar cómo afectan las respectivas operaciones. Asimismo, la implementación del trabajo anterior comienza con una tarea importante, como es la investigación de los equipos existentes, la elaboración de un listado de equipos críticos para que se consideren repuestos importantes y se determine su importancia y cantidad de inventario, y también monitorear y proponer un plan de mantenimiento, destacando que no existe un índice de mantenimiento analizado previo

Da Costa (2010), en su trabajo de tesis para obtener el grado de Ingeniero Mecánico. Desarrollado en la Pontificia Universidad Católica del Perú, con el nombre de "Aplicación del mantenimiento centrado en la confiabilidad a motores a gas de dos tiempos en pozos de alta producción", el autor describe su trabajo utilizando el método FMEA para analizar las fallas que ocurrieron en los equipos objetos de este estudio, y a partir de esto logró determinar la criticidad y cómo afectan el índice de productividad, índice de mantenimiento y el impacto en los equipos. Al implementar sus recomendaciones de mantenimiento a través de diversas actividades como el medio ambiente, tales como: optimización del mantenimiento preventivo, mantenimiento predictivo, cambios de sistemas de componentes, implementación de inspecciones sensoriales, etc. Los resultados de la investigación del autor lograron un mantenimiento centrado en la confiabilidad, mejoraron los indicadores de confiabilidad del equipo, eliminaron fallas inaceptables en el mantenimiento, mejoraron la capacidad de los técnicos responsables del mantenimiento del equipo y obtuvieron una respuesta más rápida al inventario de repuestos y recomendaciones para reemplazar el equipo que ha causado Problemas de mantenimiento debidos al tiempo de funcionamiento.

En el trabajo de Villegas (2016), nos presenta: "Propuesta de mejora en la gestión del área de mantenimiento, para la optimización del desempeño de la empresa "Máncer S.R.L. contratistas generales", El autor mencionó que en la industria de la construcción, la eficiencia siempre debe ser tratada como un indicador de operación. La empresa en estudio también cuenta con una cantidad considerable de equipos mecánicos, incluyendo una flota de 33 máquinas tales como excavadoras, excavadoras, cargadoras pequeñas y carreteras. Se destacan los rodillos., Compresor neumático y hormigonera. De esta forma es importante contar con la disponibilidad del equipo y el valor sea superior al 90% para optimizar el desempeño de la empresa, lo que reducirá los costos de alquiler. Del mismo modo, cesarán los retrasos en el trabajo y los cambios de planes debidos a averías o disfunciones. El autor llegó a la conclusión de que los problemas ocasionados por el mantenimiento ocasionaron una enorme pérdida de recursos económicos, por lo que desde el punto de vista numérico la empresa pagó el precio de S /. 319,975.80 se utiliza para el arrendamiento de máquinas para reemplazar equipos cuando el equipo falla o deja de estar disponible. Esta tarifa es una vez al año. Esto también indica que no se ha implementado un plan de mantenimiento preventivo adecuado, y lo mismo ocurre con el mantenimiento correctivo realizado en la empresa. Presentándose la falta de un historial de mantenimiento y sin registros, por lo que se recomienda mejorar la gestión del mantenimiento, lo que reducirá en gran medida los costos de alquiler y aumentará la disponibilidad de equipos de 68% a 78.5%, lo que le permitirá ahorrar a la empresa 12,877.80 durante el año 2002.

Villena (2017), en su trabajo para optar el título de ingeniero industrial nos dice La utilidad del mantenimiento en la industria, existen numerosos artículos de investigación y casos de estudio que confirman los efectos positivos de aplicar un programa TPM sobre la eficiencia y efectividad de los sistemas productivos, ya sea aplicándolo solo o en combinación con otros paradigmas de mejora continua como JIT y TQM. Los conceptos de LM y TPM tienen muchas similitudes, pero son dos conceptos diferentes. Aunque ambos comienzan con la mejora continua en la producción, TPM se enfoca principalmente en mejorar los equipos de producción, mientras que la manufactura esbelta lo hace más fluido. La mejora global continua

es el punto común de estos dos conceptos. Idealmente, la decisión de implementar TPM sobre otros conceptos debería depender de la estrategia empresarial basada en estas diferencias, pero en la práctica, puede ver variaciones que contienen una combinación de muchos conceptos. Hay casos en la industria que muestran que la elección de TPM está relacionada con ciertas industrias y / o que se debe utilizar el mantenimiento preventivo para mejorar la eficiencia. Después de consultar la literatura, enfatizó el consenso general sobre la implementación generalizada de TPM en todo el mundo, no solo en las industrias de fabricación y ensamblaje, sino también en las industrias de procesamiento.

En el trabajo de **Mendo cilla (2018**), nos presenta la siguiente revisión: "modelo de gestión de mantenimiento en instalaciones de superficie en una empresa de transporte y operación de gas natural" Para el trabajo actual, el autor presenta el análisis de toda la información existente del proceso de mantenimiento actual, comprende sus debilidades y ventajas en detalle y considera muchos factores relevantes del mantenimiento realizado en los principales objetos de revisión. En la encuesta, podemos destacar el proceso de mantenimiento, planes disponibles, buenas prácticas, métodos utilizados, la formación del área de ejecución del mantenimiento, los métodos de planificación utilizados, cómo se realiza el seguimiento, implementación y control de todas las áreas involucradas en la gestión del mantenimiento. Una vez conocidos todos estos datos, se inicia un análisis más detallado de las especificaciones técnicas sobre qué instalaciones se pueden utilizar para el mantenimiento, así como un análisis de la estructura de supervisión de las operaciones actuales. A partir del análisis realizado, el autor recomienda implementar un sistema de gestión para mejorar las actividades realizadas y aumentar la tasa de mantenimiento, enfocándose principalmente en la mejora continua de los procesos existentes.

En la tesis para optar el título de ingeniero industrial de **Guevara (2018)** "Propuesta de mejora del área de mantenimiento de motores de vehículos convertidos a glp y su incremento en la rentabilidad de la empresa visa gas e.i.r.l", se propone realizar un estudio analítico en el área de mantenimiento de la empresa para diagnosticar cuales son las áreas críticas, a través del uso de la herramienta de causa raíz, este

trabajo de analizar cada uno de los problemas suscitados en el manteamiento y atacar los problemas con el análisis de causa raíz, permitió al autor proponer solución que aumentaba la rentabilidad en la empresa, como conclusión se indica la importancia de implementa un sistema de mantenimiento, con la finalidad de aumentar la disponibilidad de equipo.

El trabajo de **Martínez- Minchan (2019)**, denominado "Mejora en la gestión de mantenimiento para incrementar la disponibilidad mecánica de los equipos de carguío y acarreo de una empresa minera de la Libertad", el autor analizó las razones de la baja disponibilidad de los equipos estudiados y encontró una serie de problemas que van desde la mala gestión de la adquisición de repuestos, la insuficiente capacitación del personal hasta la gestión de datos y los indicadores de mantenimiento. A través de la investigación se han implementado mejoras que les permitan incrementar la disponibilidad de maquinaria y equipos. Para ello, registro, mantenimiento preventivo, plan de ejecución de tareas, plan de mantenimiento en base al fabricante y tiempo de servicio, procedimientos de trabajo seguros basados en las fallas más comunes. y se han implementado los registros de fallas Formularios y planes de capacitación de empleados.

Torres (2015) el autor nos ilustra con su trabajo: "Implementación de un sistema de mantenimiento para mejorar la disponibilidad mecánica de jumbos axera-05 de la empresa congemin minera horizonte", debido a la disponibilidad mecánica impredecible, los equipos existentes en la empresa fueron evaluados minuciosamente y se mantuvieron por debajo de la tasa esperada, lo que perjudicó a la empresa y su productividad, por lo que también se recomienda implementar un sistema de gestión para corregir estos problemas. Una propuesta más completa para mantener el sistema aumenta la disponibilidad en un 4,64%. A partir de este punto, resulta que, si bien muchas empresas del sector sí cuentan con algún tipo de mantenimiento, nada puede garantizar que sea óptimo, pues el análisis del autor del mantenimiento realizado en la empresa mantiene indicadores de disponibilidad inadecuados.

Respecto a las teorías que respaldan el presente trabajo podemos considerar las siguientes:

Es Importante tener bien definido el término mantenimiento, según **Mora (2009)**, el mantenimiento corresponde a la tarea de mantener en un estado óptimo. Esta acción llamada mantenimiento permite que las maquinas o equipos que forman parte del aparato de producción se mantengan vigentes operativa y disponibles para sus fines como son la producción de bienes o servicios así mismo realiza una comparación con diferentes ramas de la ingeniería señalando que en cada una de estas es importante cuidar o mantener equipos diferentes cada uno ligado con su especialidad.

García, (2010) cuestiona ¿porque debemos gestionar el mantenimiento?: Resaltando la necesidad de reconocer a la competencia como un factor que obliga a disminuir costos en lo más mínimo, igual, de aquí se desprende la necesidad de realizar un gasto efectivo en lo que concierne a los recursos que usamos en el mantenimiento, convirtiéndose en un factor importante conocer y analizar bien las características del modelo que cada industria; de la misma forma se requiere conocer los equipos y de qué forma intervienen en la cadena de producción dándoles un valor y una importancia requerida para definir de manera concreta igualmente señala la importancia que conocer el consumos de repuestos y su stock junto con los materiales que permitan asegurar las disponibilidad de los equipos de tal manera que estas acciones no perjudiquen las metas de la empresa ni sus planes de producción.

Según las necesidades en la gestión de mantenimiento las empresas o las industrias realizan trabajo coordinado entre las áreas definiendo muchas veces como parte importante de la gestión de mantenimiento varias dimensiones las cuales están orientadas a conseguir los objetivos trazados así tenemos el mantenimiento preventivo, mantenimiento correctivo y los planes de mantenimiento, el autor Tavares (1999) nos entrega las definiciones de lo que significa el **Mantenimiento Preventivo**, considerando que consiste en realizar todas las actividades de inspecciones, ajustes, limpieza, etc., para con este despliegue poder reducir o evitar las fallas existentes en un equipo, así mismo reconoce también el concepto de **Mantenimiento Correctivo** consiste en realizar

servicios de mantenimiento pero a equipos que ya cuenten con una falla y que estén perjudicando la línea de producción o de servicio considerando los materiales,

repuestos o consumibles que se utilicen en este trabajo de corrección.

Es importante contar con la teoría referente a nuestra variable dependiente la cual nos va permitir orientar nuestro trabajo consultando a reconocidos autores los que nos ayuda a entender mejor los conceptos intervinientes, así tenemos que el factor de disponibilidad de un equipo o sistema es un porcentaje que nos indica cuánto tiempo está funcionando ese equipo o sistema operativo respecto de la duración total durante el periodo en el que se desea que funcione., no debe ser confundido con la rapidez de respuesta. La disponibilidad de un equipo solo puede aumentarse disminuyendo el tiempo fuera de servicio, la disponibilidad así teniendo como referencia el mismo es importante en las industrias ya que nos permite contar con equipos o sistemas útiles teniendo como comparativo la totalidad de equipos con

los que se cuenta (Fernandez, 2005)

La disponibilidad según el autor consultado cuenta con tres tipos, en este trabajo se considera utilizar la disponibilidad operativa como parte de nuestro estudio, operacionalizándola y abarcando la teoría existente de esta. También es importante conocer las fórmulas existentes con respecto a la disponibilidad para tal efecto según tenemos:

$$Disponibilidad = \frac{MTBF}{MTBF + MTTR}$$

Dónde: D= Disponibilidad

MTBF: Tiempo medio entre fallas

MTTR: Tiempo medio de reparación

Las fórmulas para el tiempo medio entre fallas es la siguiente:

$$MTBF = \frac{Tiempo\ Total\ de\ Operaciones}{Numero\ de\ Fallas}$$

24

Las fórmulas para el tiempo medio entre reparación es la siguiente:

$$MTTR = \frac{Tiempo Total de Paradas}{Numero de Fallas}$$

Para poder integrar este trabajo es necesario conocer las herramientas utilizadas en la industria, las cuales soportan a la gestión de mantenimiento para poder conseguir los objetivos que las gerencias se plantean dentro de sus actividades así tenemos el ciclo Deming o ciclo PHVA, que para efectos del presente trabajo será de mucha utilidad en el proceso de estudio, ahondando en la bibliografía existente encontramos el trabajo de Villa, P. E. P., & Vásquez, F. N. M. (2007). En su libro: "Reflexiones para implementar un sistema de gestión de la calidad (ISO 9001:2000) en cooperativas y empresas de economía solidaria. Colombia dicen":

Este método es muy conocido y usado en la industria cuyo creador fue Walter Shewhart, quien lo inserto en el año 1920 y fue W. Edwards Deming, quien los hizo popular, razón por la cual se le conoce como "Ciclo de Deming", Así tenemos que el PHVA es un ciclo que puede desarrollarse dentro de cada área de la organización, llegando a integrar todos los aspectos de la organización. El Ciclo PHVA está muy relacionado con la planificación, la implementación de mejoras, además del control de estas y siempre apunta a ejecutar una mejora continua, para conocer mejor esta herramienta se describe cada una de las etapas:

- Planear: En esta etapa se realiza un trabajo de planificación exhaustivo, enfocando los esfuerzos a la visión de la meta que se quiere conseguir, determinando los tiempos, con este trabajo se tiene claro cuáles son los objetivos para poder realizar un diagnóstico veraz de la situación actual en la que se encuentra la organización esto permitirá dilucidar la realidad de cuál es el estado de la organización, enfocados descubrir cuál es la realidad cuales son las fortalezas las debilidades y la amenazas que se tiene , una vez desarrollado este trabajo se puede sacar la conclusión de cuál sería la soluciona estos problemas y establecemos un plan para mejorar el cual se puede comprobar en el proceso continuamente.
- Hacer: Esta etapa ya tiene que ver con la ejecución, mejor dicho con la

acción de realizar lo que se planteó anteriormente a través del diagnóstico, pero no solamente se ejecuta o se realizar la acción sino también se desarrollan actividades para controlar y verificar si lo planificado se está cumpliendo, herramientas importantísimas como diagramas de Gantt, check list, etc., esto nos permite mantener una brújula y medir los que se está realizando en la implementación de la mejora continua. Cabe resaltar que en esta etapa es donde se podemos visualizar si se hizo un buen diagnóstico consiente y veraz ya que las acciones que se realicen en la implementación vienen guiadas con este trabajo, de allí que podemos señalar que cada una de las etapas del ciclo Deming son importantes ..

- Verificar: Teniendo un patrón de las actividades que se plantearon en la etapa anterior aquí se realiza la comparación de lo que obtuvimos implementando nuestras propuestas, pero es importante que este trabajo se realiza estableciendo un indicador de medición que nos dé la certeza de obtener una comparación real y concienzuda, de esta forma concluiremos en esta etapa sabiendo que se avanzó y en qué medida
- Actuar: Esta etapa cierra el ciclo de implementación del PHVA, llegando a consistir en la acción de verificar resultados y analizar que se mejoró, para esto ya se debe de entregar de forma un trabajo de sistematización que arroje documentos en cualquier tipo de formatos de acuerdo a lo que se plantee, con esto conseguimos dejar constancia del trabajo realizado y que sirva como guía para volver a implementar mejoras en los procesos, cabe señalar que esta etapa nos permite conocer mejor en los avances que se tuvo en la implementación del ciclo actuando de manera real sobre los problemas y las soluciones que se brindaron.

Fig. N° 01
Esquema de la mejora continua Ciclo Deming

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

La presente investigación realizada cumple un diseño no experimental, descriptivo siguiendo el concepto de (Hernández Sampieri, 2014) "La investigación va a recolectar datos en un solo momento, es decir en un tiempo determinado, pues luego los investigadores tendrán que describir las variables y analizar su incidencia".

Cabe destacar que se tiene la tarea de observar cómo se comportan las maquinas, analizar datos, esta información se recoge en un tiempo determinado, en periodos establecidos, se explicaran las variables y su repercusión.

Así mismo el estudio se orienta a analizar las capacidades y las características del personal técnico y supervisor de la empresa quienes están ligado directamente a las actividades de mantenimiento.

Para el presente estudio de investigación, se aplicará énfasis en el estudio de las fallas que se producen en los motores y compresores a gas del Lote X, desarrollando el trabajo de investigar cómo repercute en la disponibilidad en el plan de producción.

Tipo de investigación

Diseño de investigación

3.2. Variables y Operacionalizacion

Variable Independiente:

Gestión del Mantenimiento

Definición Conceptual: La gestión del Mantenimiento se define como el uso efectivo y eficiente de todos los instrumentos con los que se cuenta en el mantenimiento industrial como son: recursos materiales, repuestos, equipos, consumibles, también consideramos recursos humanos, personal técnico, supervisores, auditores etc. Asimismo, no podemos dejar de mencionar al tiempo como un recurso importante en el mantenimiento, una buena gestión de mantenimiento nos lleva a cumplir las

metas y objetivos trazados. De igual forma "hace referencia a la gestión de todos los procesos involucrados directa e indirectamente en las actividades de mantenimiento. Controlar, ordenar y corregir estas actividades permitirá ahorrar carga de trabajo, especialmente ahorros económicos" (Martínez Calisaya, 2012)

Variable Dependiente:

Disponibilidad:

Indica el porcentaje de tiempo adecuado de la máquina para su uso y funcionamiento. El cálculo de este índice tiene en cuenta la suma del número de paradas planificadas correspondientes al proceso de mantenimiento rutinario, y la suma de las paradas no planificadas correspondientes a la ocurrencia de accidentes y fallas de los equipos. La disponibilidad de una máquina, equipo, sistema o activo físico depende en gran medida de su MTBF o tiempo medio entre fallas y su MTTR o tiempo medio de reparación. Duffuaa, Raouf y Cambell (2010) definen que es "la capacidad del equipo para llevar a cabo con éxito la función requerida en un momento específico o durante un período de tiempo específico" (p.41)

3.3. Población, muestra, muestreo, unidad de análisis

De acuerdo con Valderrama, 2015, (p. 182), la población se define como "una agrupación finita o infinita de cosas, seres y elementos, los cuales poseen características y/o atributos similares, capaz de ser contemplados".

Para el presente trabajo se ha considerado como población los 30 motores y compresores a Gas con los que cuenta el Lote X, para realizar la compresión de gas producido en el Lote, así como el personal de mantenimiento dedicado a la ejecución de programa correctivo dentro del servicio.

La definición de muestra, está determinada por el siguiente concepto: según Bayardo (1987) Es una parte de la población que se desea estudiar la cual tiene características especiales y que representan a la población objeto de estudio, la cual es tomada para sintetizar el trabajo del investigador. Por Conveniencia en este

trabajo de investigación se va a considerar la totalidad de la población a efectos de realizar un mejor análisis.

Para definir el muestreo tenemos: al autor Rodríguez Ballena, A. R., & Santisteban Yesquen, J. E. (2021). El muestreo aleatorio simple implica la selección aleatoria de los participantes a través de métodos aleatorios. El muestreo sistemático implica la selección aleatoria del primer individuo y luego la selección sistemática de los individuos restantes. El muestreo aleatorio estratificado implica dividir la población en varios grupos de acuerdo con una determinada característica, y luego muestrear proporcionalmente.

Tabla 1 Relación de Motores y compresores a gas

MOTORES Y COMPRESORES

	MOTOR			COMPRESOR		
ITEM	MARCA	MODELO	SERIAL	MARCA	MODELO	TIPO COMPRESOR
1	Waukesha	L-5108 GSI	C-11759/1	Dresser Rand	4-RDS	Recipr Separable
2	Ajax	DPC-360	78000	Ajax	DPC-360	Recipr Integral
3	Caterpillar	G-3306 NA	07Y06350	Gardner Denver	SSQ	Tornillo
4	Caterpillar	G-3306 NA	07Y06247	Gardner Denver	SSQ	Tornillo
5	Caterpillar	G-3512 SITA	7NJ00279	Gemini	D-504	Recipr Separable
6	Caterpillar	G-3306 NA	G6X02514	Gardner Denver	SSQG99B	Tornillo
7	Caterpillar	G-3508TA	9TGOO509	Gemini	D-504	Recipr Separable
8	SIEMENS	ELECTRICO		Ingersoll Rand	2-RDS	Recipr Separable
9	SIEMENS	ELECTRICO		Ingersoll Rand	2-RDS	Recipr Separable
10	Caterpillar	G-398	73-B-1027	Ingersoll Rand	2-RDS	Recipr Separable
11	Caterpillar	G-3408 TA	BAZ02464	Ariel	JGA/4	Recipr Integral
12	Caterpillar	G-398	73-B-1034	Ingersoll Rand	2-RDS	Recipr Separable
13	Caterpillar	G-398	73-B-1033	Ingersoll Rand	2-RDS	Recipr Separable
14	Ajax	DPC-600	83457	Ajax	DPC-600	Recipr Separable
15	Caterpillar	G-398	73-B-1025	Ingersoll Rand	2-RDS	Recipr Separable
16	Caterpillar	G-398	73-B-1039	Ingersoll Rand	2-RDS	Recipr Separable
17	Ajax	DPC-600	81281	Ajax	DPC-600	Recipr Integral
18	Ajax	DPC-360	78002	Ajax	DPC-360	Recipr Integral
19	SIEMENS	ELECTRICO		Ingersoll Rand	2-RDS	Recipr Separable
20	Caterpillar	G-398	73-B-1030	Ingersoll Rand	2-RDS	Recipr Separable
21	Caterpillar	G-398	73-B-1170	Ingersoll Rand	2-RDS	Recipr Separable
22	Caterpillar	G-398	73-B-1026	Ingersoll Rand	2-RDS	Recipr Separable
23	Caterpillar	G-3508LE	WPN01654	Ariel	JGJ/4	Recipr Separable
23	Ajax	DPC-360	77996	Ajax	DPC-360	Recipr Integral
24	Caterpillar	G-3406 TA	4FD02488	Ariel	JGA/4	Recipr Separable
24	Caterpillar	G-3408TA	BAZ02473	Ariel	JGA/4	Recipr Separable
25	Caterpillar	G-3406TA	4FD03081	Ariel	JGA/4	Recipr Separable
26	Caterpillar	G-3508LE	WPN01655	Ariel	JGJ/4	Recipr Separable
27	Ajax	C-42		Ajax	C-42	Recipr Integral
28	Ajax	DPC-2803-LE	84778	Ajax	DPC-2803-LE	ReciprIntegral
29	Ajax	DPC-2803-LE	84340	Ajax	DPC-2803-LE	ReciprIntegral

Fuente: Elaboracion Propia

3.4. Técnicas e instrumentos de recolección de datos

Técnicas de recolección de datos

Las técnicas de recolección de datos según Torres, M., Salazar, F. G., & Paz, K. (2019). "La recopilación de datos en la investigación científica se realiza básicamente a través de observaciones, encuestas o entrevistas y experimentos con sujetos de investigación."

Las técnicas e instrumentos que se utilizaran en el presente trabajo tienen como base la elaboración de entrevistas , las cuales se realizaran al supervisor de mantenimiento, técnico mecánico 1, Técnico mecánico 2, Técnico Instrumentistas 1, Técnico Instrumentista 2, personal planificador (especialista en programa, SAP), así mismo se realizara la observación en campo de los equipos pertenecientes a la población del presente estudio, los cuales están ubicados en las diferentes estaciones de compresión del Lote X, igualmente se lleva a cabo el análisis documental de los trabajos de mantenimiento correctivo llevados a cabo en el año 2020, esto plasmado en Ordenes de trabajo correctivo, las cuales fueron revisadas exhaustivamente.

Tabla 2

Técnicas e Instrumentos de Recolección de Datos

Técnicas	Instrumentos
Encuesta	Cuestionario
Observación	Check List de equipos
Análisis documental	Ordenes de Trabajo ejecutadas en el periodo 2021 analizadas con hojas de cálculo de Excel

Fuente Elaboración Propia

3.5. Procedimientos

La presente investigación cuenta con la aprobación de la jefatura del área de mantenimiento con el respaldo de la empresa se procede a evaluar la información obtenida atraves de los instrumentos utilizados, así mismo dentro de las actividades planteadas se procederá a visitar las estaciones de compresión donde se encuentran con la finalidad de evaluar las condiciones y los sistemas como se encuentran en las locaciones respectiva.

Los procedimientos utilizados permitirán asimismo deliberar como se encuentran los indicadores respectivos referidos a las variables objeto de estudio como son la gestión de mantenimiento y la disponibilidad, procesar estos datos nos llevara a la consecución de los objetivos planteados conociendo como mejoraran estos indicadores luego de implementar la mejora propuesta

3.6. Método de análisis de datos

Utilizando técnicas e instrumentos de recopilación de datos, se extraerán los datos de entrada, como el número de motores de gas y compresores que fallaron en el sistema del lote X, el número de fallas o intervenciones, el costo unitario promedio útil de producción del motor y el tiempo promedio entre adquisiciones El número de fallas, la suma del número de fallas y el número de fallas, el tiempo medio de reparación, es decir, el cociente del número de reparaciones y la suma del número de fallas, la tasa de fallas, el recíproco de su valor El tiempo medio entre fallos y la tasa de reparación son recíprocos del tiempo medio de reparación.

En segundo lugar, se determinará el índice de mantenimiento, como: disponibilidad, es decir, el cociente del tiempo medio entre fallas y la suma del tiempo medio de reparación y el tiempo medio entre fallas, determine cuantitativamente y multiplíquelo por la probabilidad o frecuencia. Determinar la ocurrencia de la falla a través de la multiplicación de su impacto, establecer características de valor utilizar criterios de evaluación estandarizados para determinar qué motores son críticos, semicríticos y no críticos. Finalmente, en cuarto lugar, se determinará la reducción de los costos de producción y de mantenimiento, así como nuevos indicadores de mantenimiento que reflejarán el aumento de la disponibilidad.

3.7. Aspectos éticos

Cabe señalar que para este trabajo se considera mantener un comportamiento ético y responsable para poder citar a autores de manera efectiva, con todas las consideraciones establecidas, el uso de la información de diferentes autores está citado como fuentes referenciales, los datos que se han usado para el presente trabajo son originales y se han elaborado con propiedad, se ha consultado las fuentes y además se ha informado a los involucrados, exponiéndoles de que se trata el siguiente estudio, también se informó cómo se utilizara la información en la que participan de manera concreta.

La realización del presente estudio sigue todos los parámetros para respaldarse con la teoría existente, los gráficos, tablas y datos son verdaderos obtenidos con un trabajo minucioso, aplicando las herramientas de estudio adquirido en la carrera de ingeniería industrial.

IV. RESULTADOS

4.1 Analizar la situación de los mantenimientos efectuados a los motores y compresores a gas.

Para cumplir uno de los objetivos de nuestro trabajo que consiste en analizar el estado en que se encuentran los mantenimientos de los motores y compresores a gas en el lote X, se realizó la aplicación del instrumento check list y de igual manera se realizó el análisis documental de datos respectivo de los mantenimientos realizados en el año 2021, con los que se pudo obtener los siguientes datos:

En la tabla N° 3 se aprecia que el año 2021 se realizó 104 mantenimiento correctivos a los motores marca AJAX lo que corresponde al 82 % de los mantenimientos realizados contra 23 mantenimientos preventivos que corresponde al 18 % de los mantenimientos, lo que afecta directamente a la disponibilidad de este motor.

En la tabla N° 4 se aprecia que el año 2021 se realizó 49 mantenimiento correctivos a los motores marca WAUKESHA lo que corresponde al 90 % de los mantenimientos realizados contra 5 mantenimientos preventivos que corresponde al 24 % de los mantenimientos, lo que afecta directamente a la disponibilidad de este motor

En la tabla N° 5 se aprecia que el año 2021 se realizó 41 mantenimiento correctivos a los motores marca CAT 3306 lo que corresponde al 65 % de los mantenimientos realizados contra 22 mantenimientos preventivos que corresponde al 35 % de los mantenimientos, lo que afecta directamente a la disponibilidad de este motor.

En la tabla N° 6 se aprecia que el año 2021 se realizó 29 mantenimiento correctivos a los motores marca CAT 3406 lo que corresponde al 53 % de los mantenimientos realizados contra 25 mantenimientos preventivos que corresponde al 47 % de los mantenimientos, lo que afecta directamente a la disponibilidad de este motor En la tabla N° 7 se aprecia que el año 2021 se realizó 72 mantenimiento correctivos a los motores marca CAT 3408 lo que corresponde al 73 % de los mantenimientos realizados contra 26 mantenimientos preventivos que corresponde al 27 % de los mantenimientos, lo que afecta directamente a la disponibilidad de este motor En la tabla N° 8 se aprecia que el año 2021 se realizó 69 mantenimiento correctivos a los motores marca CAT 3512 lo que corresponde al 92 % de los mantenimientos

realizados contra 6 mantenimientos preventivos que corresponde al 8 % de los mantenimientos, lo que afecta directamente a la disponibilidad de este motor.

En la tabla N° 9 se aprecia que el año 2021 se realizó 17 mantenimiento correctivos a los motores marca CAT 3508 lo que corresponde al 58 % de los mantenimientos realizados contra 12 mantenimientos preventivos que corresponde al 42 % de los mantenimientos, lo que afecta directamente a la disponibilidad de este motor.

En la tabla N° 10 se aprecia que el año 2021 se realizó 69 mantenimiento correctivos a los motores marca CAT 398 lo que corresponde al 55 % de los mantenimientos realizados contra 57 mantenimientos preventivos que corresponde al 45 % de los mantenimientos, lo que afecta directamente a la disponibilidad de este motor

En la tabla N° 11 se aprecia que el año 2021 se realizó 35 mantenimiento correctivos a los motores marca SIEMENS ELECTRICO lo que corresponde al 61 % de los mantenimientos realizados contra 23 mantenimientos preventivos que corresponde al 39 % de los mantenimientos, lo que afecta directamente a la disponibilidad de este motor.

En la Tabla N° 12 se puede apreciar las labores de mantenimiento que se realizan en los motores y compresores de gas donde se observa que en el año 2021 se realizaron 361 actividades correctivas y 156 preventivas, lo que indica que el 64 % de tareas totales de mantenimiento están enfocados en acciones correctivas, afectando la disponibilidad de los compresores de gas, de igual forma en este análisis se ha incluido los datos de los mantenimientos predictivos aplicados al mantenimiento de motores y compresores a gas

4.2 Determinar la Disponibilidad de los motores y compresores a gas.

Para el desarrollo del presente proyecto necesitamos conocer la disponibilidad de nuestros equipos motores y compresores a gas, por lo que hacemos uso de uno de los instrumentos propuestos como es la el análisis de documental de datos a través hoja de cálculo Excel, con esta herramienta podemos analizar las ordenes de trabajo correctivo que se han desarrollado en el mantenimiento de equipos en mención, ayudándonos a conocer las frecuencias de falla mensual, las horas disponibles de los equipos, como también las horas de producción, estos datos principalmente nos arrojan los indicadores de mantenimiento que son causa de nuestro estudio.

En la tabla N° 13, se logra identificar el MTBF y el MTTR del motor marca Waukesha obteniendo un valor de disponibilidad de 86.87 %, el cual se encuentra por debajo de la disponibilidad que solicita el cliente que es 95%

En la tabla N° 14, se logra identificar el MTBF y el MTTR del motor marca Ajax obteniendo un valor de disponibilidad de 85.84 %, el cual se encuentra por debajo de la disponibilidad que solicita el cliente que es 95%

En la tabla N° 15, se logra identificar el MTBF y el MTTR del motor marca Caterpillar G3306, obteniendo un valor de disponibilidad de 92.87 %, el cual se encuentra por debajo de la disponibilidad que solicita el cliente que es 95%

En la tabla N° 16, se logra identificar el MTBF y el MTTR del motor marca Caterpillar G3406, obteniendo un valor de disponibilidad de 88.38 %, el cual se encuentra por debajo de la disponibilidad que solicita el cliente que es 95%

En la tabla N° 17, se logra identificar el MTBF y el MTTR del motor marca Caterpillar G3408, obteniendo un valor de disponibilidad de 89.34 %, el cual se encuentra por debajo de la disponibilidad que solicita el cliente que es 95%

En la tabla N° 18, se logra identificar el MTBF y el MTTR del motor marca Caterpillar G3512, obteniendo un valor de disponibilidad de 86.59 %, el cual se encuentra por debajo de la disponibilidad que solicita el cliente que es 95%

En la tabla N° 19, se logra identificar el MTBF y el MTTR del motor marca Caterpillar G398 obteniendo un valor de disponibilidad de 89.92 %, el cual se encuentra por debajo de la disponibilidad que solicita el cliente que es 95%

En la tabla N° 20, se logra identificar el MTBF y el MTTR del motor marca G3508 obteniendo un valor de disponibilidad de 94.94 %, el cual se encuentra por debajo

de la disponibilidad que solicita el cliente que es 95%

En la tabla N° 21 se logra identificar el MTBF y el MTTR del motor marca Siemens, obteniendo un valor de disponibilidad de 91.91 %, el cual se encuentra por debajo de la disponibilidad que solicita el cliente que es 95%

4.3 Diseñar un modelo de gestión de mantenimiento que nos permita disminuir las fallas de los motores y compresores a gas

Análisis de la gestión de mantenimiento dentro de la empresa.

Es importante para efectos de nuestra proyecto realizar el análisis de la gestión de mantenimiento y su desarrollo en la empresa Confipetrol, ya que esta información nos brindara un panorama abierto de la situación en la que se encuentran los equipos motores y compresores que se van a estudiar para mejorar e incrementar la disponibilidad, uno de los indicadores importantes dentro de las actividades de mantenimiento realizado para nuestro cliente principal.

Por lo tanto de nuestra entrevista realizada al personal involucrado se obtuvieron las siguientes respuestas:

1.- ¿ Que función de desempeña dentro de la empresa?

Tabla 22 Función del trabajador

	N°	PORCENTAJE
PERSONAL	COLABORADORES	(%)
SUPERVISOR MANTENIMIENTO	2	18%
TECNICO MECANICO	4	37%
TECNICO INSTRUMENTISTA	3	27%
PLANIFICADOR	2	18%
TOTAL	11	100%

Fuente: Elaboración Propia.

De nuestro tabla 22 podemos sacar la conclusión que se ha entrevistado a un porcentaje aceptable para nuestra investigación donde tenemos que 37% son técnicos mecánicos, 27% técnicos instrumentistas, 18% supervisor de mantenimiento y 18% planificador, donde podemos ver que el personal involucrado en las actividades es multidisciplinario sin embargo se evidencia que por la cantidad de equipos motores y compresores existe una falta de comunicación e integración en el personal entrevistado.

2.- ¿Qué tiempo viene desempeñando dicha función?

Tabla 23 Tiempo de trabajo del personal entrevistado

TIEMPO DE TRABAJO	N° COLABORADORES	PORCENTAJE (%)
MENOS DE 1 AÑO	1	9%
DE 1 A 2 AÑOS	2	18%
MAS DE 2 AÑOS	8	73%
TOTAL	11	100%

Fuente: Elaboración Propia.

A través de la tabla 23 podemos apreciar que el personal conoce bastante de su trabajo tenemos un 73% de personal preparado quienes realizan su tareas asignadas de manera óptima, tenemos igualmente un 9% de personal que recién se está integrando a este trabajo y que necesita apoyo y acompañamiento y un 18% de personal que cuenta con experiencia pero que recién se está integrando a realizar trabajos en este tipo de máquinas, si bien cierto la necesidad del servicio está cubierta se presenta el inconveniente que la experiencia de los técnicos se ve limitada por las distancias que hay que cubrir en las tareas de mantenimiento de tipo correctivo ya que las locaciones de compresión están alejadas.

3.- ¿Ha recibido Capacitación de la empresa acerca de motores y compresores a gas?

Tabla 24 Capacitación recibida por el personal entrevistado

CAPACITACION	RESPUESTA	PORCENTAJE (%)
2	SI	19%
9	NO	81%
11		100%

Fuente: Elaboración Propia

En la tabla de la pregunta 3 apreciamos que dentro del personal entrevistado, existe un 19 % de personal capacitado en motores y compresores y un 81% de personal a quienes no se ha capacitado, simplemente se han adquirido capacitaciones otorgadas por la empresa pero de otros temas, si bien es cierto los motores y compresores con los que se cuenta son antiguos tenemos la adquisición de 2 a 3 motores que se han instalado en algunas locaciones. Asimismo el personal planificador carece de estas capacitaciones y por la necesidad de su trabajo debería estar capacitados para familiarizarse con los componentes de los motores y compresores ya que ellos son quienes generan las órdenes de trabajo.

4. ¿Dentro de la tareas de mantenimiento, ha contado con repuestos necesarios?

Tabla 25
Repuestos para realizar las actividades de mantenimiento

PERSONAL	RESPUESTA	PORCENTAJE (%)
4	SI	36%
7	NO	64%
11		100%

Fuente Elaboración Propia

En la tabla 25, se consulta al personal sobre los repuestos para ejecutar los mantenimientos, teniendo que el 36% de personal respondió que si cuenta con repuestos para los mantenimientos y 64 % no cuenta con los repuestos necesarios para realizar un buen mantenimiento, lo que atrasa el arranque de los motores y compresores a gas, además se puntualiza que no se cuenta con repuestos críticos para el mantenimiento.

5.- ¿Cuál de los siguientes mantenimientos presenta más dificultades durante su ejecución?

Tabla 26
Dificultades durante los mantenimientos

MANTENIMIENTO	RESPUESTA	PORCENTAJE (%)
PREVENTIVO	1	9%
CORRECTIVO	10	91%
	11	100%

Fuente: Elaboración Propia

En la tabla 26 apreciamos que hay un alto porcentaje de dificultades en los mantenimientos correctivos 91%, ya que estas fallas se presentan de manera regular, y por las distancias entre estaciones de comprensión, se tiene que desplazar en primer lugar al personal para evaluar la falla de parada del personal, luego del diagnóstico, se solicita material y/o repuestos a almacén de logística, esperando la atención oportuna y que además existan los recursos.

6.- ¿Se cuenta con los manuales técnicos de los equipos motores y compresores ordenadamente?

Tabla 27
Personal Cuenta con manuales Técnicos

PERSONAL	RESPUESTA	PORCENTAJE (%)
SI	4	19%
NO	7	81%
	11	100%

Fuente Elaboración Propia

En la tabla 27, se obtiene un 81% de los entrevistados afirman que no se cuenta con manuales técnicos lo que dificulta hacer alguna consulta sobre las especificaciones técnicas de los motores y compresores a gas, asimismo no se cuenta con usuario de la aplicación Siscat, que pertenece a los motores Caterpillar y que permite contar con manuales técnicos así como el código de repuestos de esa marca.

4.4 Análisis de las principales fallas de los motores y compresores a gas.

Se realizó el análisis de información con la que cuenta la empresa, para este análisis se utilizaron los formatos de órdenes de trabajo y formatos diario de actividades establecidos en la empresa. Los formatos revisados comprenden un periodo 12 meses, en el año 2021 a continuación presentamos la tabla resumen 28.

Tabla 28

Ordenes de trabajo Revisadas para establecer las principales fallas de los Motores y compresores a gas

							AÑO 2	2021						TOTA	L ANUAL
DESCRIPCION		ene-21	feb-21	mar-21	abr-21	may-21	jun-21	jul-21	ago-21	sep-21	oct-21	nov-21	dic-21	ACUMU LADO	PROME DIO
ODT EMITIDAS	Cant	83	71	79	69	50	62	29	48	38	56	65	28	678	56,5
ODT CUMPLIDAS	Cant	83	69	72	63	45	59	23	45	33	52	62	25	631	52,58
ACUMULADO EMITIDAS DEL MES	Cant	83	154	233	302	352	414	443	491	529	585	650	678	1356	1.412,50
ACUMULADO CUMPLIDAS DEL MI	Cant	83	152	224	287	332	391	414	459	492	544	606	631	1262	1.314,58
% CUMPLIMIENTO	%	100%	97%	91%	91%	90%	95%	79%	94%	87%	93%	95%	89%	93%	0,92
% CUMPLIMIENTO ACUMULADO	%	100%	99%	96%	95%	94%	94%	93%	93%	93%	93%	93%	93%		0,95
OBJETIVO	%	85%	85%	85%	85%	85%	85%	85%	85%	85%	85%	85%	85%	85%	0,85

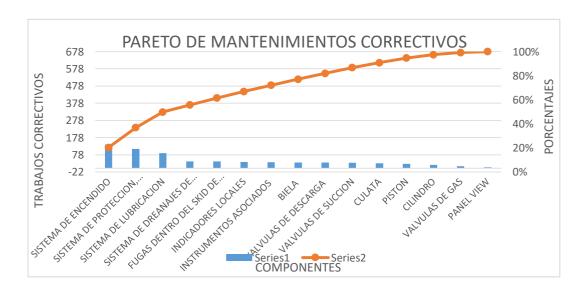
Fuente Elaboracion Propia

4.5 Análisis documental de mantenimientos correctivos realizados a los motores y compresores a gas Año 2021

Con apoyo de la información proporcionada por el sistema SAP, utilizado por la empresa se logra analizar los mantenimientos correctivos de los motores y compresores a gas definiendo los sistemas que presentaron mayores problemas y las causas que lo originaron, así mismo se conoce el tiempo de duración de la intervención y parada del equipo, la actividad realizada, considerando la fecha ya la hora de intervención

Tabla 29
Análisis documental de mantenimiento correctivo 2021

		Clase				
Orden	Aviso	de orden	Fecha entrada	Equipo	Denominación	Texto breve
Orden	AVISO	oruen	entraua	Lquipo	Denominación	REVISRA REPARAR SISTEMA DE
4470071672	47091647	PES1	13/12/2021	5000024143	Motor Caterpillar G-3508	ENCENDIDO, CILINDRO SIN CHISPÁ LIMPIEZA DEL SISTEMA DE
4470071672	47091870	PES1	07/01/2021	5000001068	Caterpillar G-3408	REFRIGERACION
4470071672	47091906	PES1	08/01/2021	5000001068	Caterpillar G-3408	REEMPLAZAR ARNES DE COMUNICACION
4470071672	47091914	PES1	09/01/2021	5000000448	Caterpillar G-398	REEMPLAZAR BOBINAS BAJO OHMNIAJE
4470071672	47091915	PES1	09/01/2021	5000000448	Caterpillar G-398	REVISAR SISTEMA GAS COMBUSTIBLE REVISAR / REPARAR TERMOCUPLA 1°.
4470071672	47091916	PES1	09/01/2021	5000000461	Ingersoll Rand 2-RDS	ETAPA
4470071672	47091635	PES1	09/01/2021	5000000475	Ingersoll Rand 2-RDS SISTEMA QUEMADO DE GAS	REVISAR SISTEMA DE ENFRIAMIENTO PUESTA EN SERVICIO DEL SISTEMA CPU
4470071672	47091918	PES1	09/01/2021	5000027068	A FLARE	95
4470071672	47091928	PES1	10/01/2021	5000000383	Dresser Rand 4-RDS	ELIMINAR FUGA POR BOMBA DE AGUA ELIMINAR FUGA AGUA x SIST.
4470071672	47091929	PES1	10/01/2021	5000024142	Motor Caterpillar G-3508 TA	ENFRIAMIENTO
4470071672	47091939	PES1	13/01/2021	5000000384	Waukesha L-5108 GSI	REPARAR BOMBA AUXILIAR DE AGUA
4470071672	47091950	PES1	14/01/2021	5000000384	Waukesha L-5108 GSI	REPARACION DE ARRANCADOR
4470071672	47091944	PES1	14/01/2021	5000000384	Waukesha L-5108 GSI	REVISAR SISTEMA DE GAS COMBUSTIBLE INSTALAR VALVULAS EN SISTEMA
4470071672	47091974	PES1	15/01/2021	5000000508	Ingersoll Rand 2-RDS	DRENAJE
4470071672	47092008	PES1	15/01/2021	5000001068	Caterpillar G-3408	CONFIGURAR ANUNCIADOR CENTURION MURPHY REVISAR VALVULA REGULAD. GAS
4470071672	47092025	PES1	16/01/2021	5000000384	Waukesha L-5108 GSI	COMBUSTIBLE LIMPIEZA INTERNA Y EXTERNA DE CAJA
4470071672	47091986	PES1	16/01/2021	5000000476	Caterpillar G-398	LUBRICADORA
4470071672	47092027	PES1	16/01/2021	5000000482	Caterpillar G-3408	ELIMINAR FUGA x LINEA SIST. ENFRIAMIENTO REVISAR ALTA PRESION GAS DESCARGA
4470071672	47092013	PES1	16/01/2021	5000001067	ARIEL JGA/4	2°. Et REVISAR ALTA PRESION GAS DESCARGA
4470071672	47092033	PES1	16/01/2021	5000001067	ARIEL JGA/4	2°. Et
4470071672	47092044	PES1	16/01/2021	5000027259	Medidor Digital ABB Gas Combustible	VERIFICAR DATOS DE TX DE PRESION DIGITAL
4470071672	47092060	PES1	17/01/2021	5000000476	Caterpillar G-398	REPARACION DE BOMBA DE AGUA
4470071672	47092125	PES1	20/01/2021	5000000469	Ajax DPC-360	REVISAR SISTEMA DE IGNICION / ARRANQUE
4470071672	47092124	PES1	20/01/2021	5000024142	Motor Caterpillar G-3508 TA	REVISAR VARILLAJE DE GOBERNADOR
4470071672	47092126	PES1	20/01/2021	5000047571	Valv. Neum. FISHER gas combustible	REPARAR VALVULA DE GAS COMBUSTIBLE
4470071672	47092133	PES1	21/01/2021	5000001068	Caterpillar G-3408	REEMPLAZAR VARILLA DE GOBERNADOR
4470071672	47092178	PES1	23/01/2021	5000000475	Ingersoll Rand 2-RDS	INSPECCIONAR PROTECCION DE VIBRACIONES.
4470071672	47092206	PES1	27/01/2021	5000000424	Caterpillar G-398	REEMPLAZAR VIBRASWITCH DE MOTOR REVISAR MOTOR POR OSCILACION DE
4470071672	47092209	PES1	27/01/2021	5000000531	Caterpillar G-3512 SITA	RPM.
4470071672	47092256	PES1	28/01/2021	5000000377	Caterpillar G-398	REINSTALAR MEMORIA EEPROM


Fuente: Sistema SAP, 2021 Confipetrol Andina S.A.

4.6 DIAGRAMA DE PARETO DE LOS COMPONENTES CON MAYOR CANTIDAD DE INTERVENCIONES

TABLA 30
PARETO DE MANTENIMIENTO CORRECTIVOS

COMPONENTES	ODT CORRECTIVOS	%	ACUMULADO	% ACUMULADO
SISTEMA DE ENCENDIDO	138	20%	138	20%
SISTEMA DE PROTECCION, CONTROL Y MONITOREO	112	17%	250	37%
SISTEMA DE LUBRICACION	88	13%	338	50%
SISTEMA DE DREANAJES DE LIQUIDOS	40	6%	378	56%
FUGAS DENTRO DEL SKID DE MOTOR	39	6%	417	62%
INDICADORES LOCALES	37	5%	454	67%
INSTRUMENTOS ASOCIADOS	35	5%	489	72%
BIELA	34	5%	523	77%
VALVULAS DE DESCARGA	33	5%	556	82%
VALVULAS DE SUCCION	32	5%	588	87%
CULATA	28	4%	616	91%
PISTON	26	4%	642	95%
CILINDRO	19	3%	661	97%
VALVULAS DE GAS	12	2%	673	99%
PANEL VIEW	5	1%	678	100%
Total general	678	100%		
(80% TOTAL)	542,4			

Figura 2
Pareto mantenimientos correctivos

Nota: se realizó el análisis de las actividades con mayor porcentaje de intervenciones consideradas como trabajos correctivos.-

Luego de realizar el análisis de las fallas más frecuentes y de determinar los indicadores de mantenimiento como la disponibilidad la cual se ha venido afectando y disminuyendo debido a diversos problemas como son la falta de repuestos, la falta de capacitación y de herramientas técnicas como manuales y software asociado a los equipos motores y compresores así como la falta de comunicación y de formatos claros y precisos podemos iniciar el trabajo de estructurar un modelo de gestión de mantenimiento que nos permita incrementar los índices de disponibilidad inherente a motores y compresores a gas para lo cual iniciamos la implementación de un análisis de criticidad de equipos enfocados a los sistemas de los motores y compresores que han presentado mayores fallas y especialmente enfocados a sus componentes.

En primer lugar definiremos nuestro equipo de natural de trabajo el cual está conformado con los siguientes profesionales y técnicos: Supervisor de Mantenimiento de compresión, Supervisor de Instrumentación, Planificador, técnico mecánico 1, técnico instrumentista 1, Técnico recorredor de producción.

El supervisor de mantenimiento posee las actitudes necesarias 'para liderar los mantenimiento realizados y programados, conoce profundamente los aspectos más relevantes en cuanto a las fallas reportadas por sus colaboradores, el supervisor de mantenimiento apoyo en todo momento a identificar los principales compontes susceptibles a fallas durante la operación y que causaron la disminución de la disponibilidad de los equipos.

De tal forma una vez aplicadas las formulas en los 2 sistemas que presentan más problemas y donde se ha tenido más fallas en las actividades de mantenimiento efectuadas a los motores y compresores a gas tenemos necesariamente de proponer una lista de repuestos críticos.

4.7 Evaluar cuál es el beneficio económico que nos genera la propuesta.

En esta parte se presenta los costos del Mantenimiento, aplicados a la presente investigación, para lo cual consideramos cuales fueron los costos que asume la empresa para poder implementar un modelo de gestión de mantenimiento que permita aplicar el ciclo PHVA, en las diversas etapas tanto en la ejecución del mantenimiento preventivo así como en la gestión de recursos y componentes de los sistemas con más fallas presentadas. Para llevarlo a cabo, se determinará los costos de implementación y ejecución del modelo, además los costos de los materiales e insumos necesarios para el modelo de mantenimiento propuesto. En la tabla siguiente se detalla esta información. En la tabla 34, es necesario mostrar los costos de capacitación e implementación del modelo de Gestión de Mantenimiento aplicando el ciclo PHVA. Ya que se brindara capacitación importante en los temas de Sistemas de encendido aplicado al personal que tiene participación directa en la ejecución de los mantenimientos. Los costos asociados a lo que se refiere a capacitación asciende a S. / 9,649.00soles. En la tabla 35, se muestra el costo de la ejecución del modelo de gestión de mantenimiento usando el ciclo PHVA, incluyendo en esta estructura de costos los gastos perteneciente a materiales de oficina como son, papel, lapiceros, archivadores, etc materiales que se entregaran junto con las hojas de los formularios creados para registrar la configuración de los sistemas de control del encendido de motores a gas, esta información se adecua a la necesidad de implementará una data histórica y que sirva de consulta previo a los mantenimiento que se ejecuten después de la implementación de la mejora, tenemos un costo total de S./ 1,479.00 soles. En la tabla 36, se presentan los costos anuales referentes a los repuestos que se establecieron como críticos y de los cuales tienen que existir un stock según los que se proyecta en los mantenimientos preventivos y en las actividades específicas, ya que en este apartado se describe las actividades donde es necesario sustituir el repuesto y en otras cosas solo hacerle mantenimiento y /o limpieza. Los precios actualizados se han obtenido dela información brindada por el personal de almacén, quien posee las cotizaciones actualizadas de los repuestos brindados. De tal forma que tenemos un costo anual de S/. 66,710.00 que incluye la capacitación, la ejecución y los repuestos para el mantenimiento se calcula sumando el total de las tablas respectivas cuyo monto asciende a S. / 77,838.00 soles al año. En la tabla 37 se muestra la comparación de los costos del mantenimiento ejecutado en el año 2021 donde tenemos la información que la perdida de oportunidad al año fue de S./ 112, 615.23 así mismo tenemos que el mantenimiento con la implementación del ciclo PHVA tiene un costo de S./ 77,838.00. El Análisis costo beneficio del trabajo al implementar un Sistema de Gestión de Mantenimiento aplicando el ciclo PHVA, para la empresa Confipetrol Andina S.A., se lleva acabo puesto que si bien es cierto la empresa ejecuta actividades de mantenimiento bien resaltadas, no está familiarizado en utilizar un ciclo de mejora continua a nivel operativo . Se obtiene un beneficio importante en disminuir las horas de mantenimiento utilizado en reparaciones correctivas, se previene los fallos que según el estudio de fallas se da más en los sistemas de encendido, atacando este problema se asegura que existan menos paradas inesperadas de los motores y compresores a gas.

De esta manera podemos establecer que para efectos de esta implementación el beneficio/ Costo está determinado por la siguiente formula:

<u>Benefici</u>o = <u>112,615.18</u> Costo 77,831.00

<u>Beneficio</u> = 1.45 Costo

Por lo que podemos afirmar que implementando el ciclo PHVA, en la gestión de mantenimiento por cada sol invertido se obtiene un beneficio de 1.45 soles esto nos asegura el impacto positivo de nuestra mejora, además se minimiza la presencia de fallas reduciendo la perdida de oportunidad y que se presente menos producción de gas para su comercialización.

V. DISCUSIÓN

Dentro de nuestros objetivos específicos planteados en la siguiente investigación tenemos analizar el estado en que se encuentran los mantenimientos realizados a los motores y compresores a gas en el lote X, por lo que haciendo una comparación sobre el trabajo de Da Costa (2010), quien en su trabajo de tesis para obtener el grado de Ingeniero Mecánico. Desarrollado en la Pontificia Universidad Católica del Perú, con el nombre de "Aplicación del mantenimiento centrado en la confiabilidad a motores a gas de dos tiempos en pozos de alta producción", el autor describe su trabajo utilizando el método FMEA para analizar las fallas que ocurrieron en los equipos objetos de este estudio, y a partir de esto logró determinar la criticidad y cómo afectan el índice de productividad, índice de mantenimiento y el impacto en los equipos. Al implementar sus recomendaciones de mantenimiento a través de diversas actividades como el medio ambiente, tales como: optimización del mantenimiento preventivo, mantenimiento predictivo, cambios de sistemas de componentes, implementación de inspecciones sensoriales, etc. Los resultados de la investigación del autor lograron un mantenimiento centrado en la confiabilidad, realizando una comparación, con el estudio presentado podemos determinar que la finalidad de nuestro trabajo coincide con el del autor y muestra que mejorar la gestión del mantenimiento incide positivamente en la disponibilidad de los equipos, permitiéndonos brindar un aporte positivo a la empresa, asimismo las herramientas de ingeniería utilizadas en ambos trabajos permiten identificar los componentes críticos en el sistema de compresión de gas natural dentro de las instalaciones del Lote

Vílchez (2019), presenta su trabajo de investigación para obtener el grado de Ingeniero industrial presentado su proyecto de tesis: "Propuesta de gestión del mantenimiento centrado en la confiabilidad para reducir las fallas en los motores de compresión de gas de la empresa Confipetrol Andina S.A, Lote X, El Alto – 2018."El estudio comprende la propuesta de gestión de mantenimiento centrado en la confiabilidad para reducir las fallas en los motores de compresión de gas basado en análisis de modos y efectos de fallos de los 09 motores de compresión de gas, operados por la empresa Confipetrol Andina S.A. en el Lote X, El Alto. Con la finalidad de aumentar la disponibilidad, confiabilidad y mantenibilidad, teniendo

como resultado la disminución de 617 horas a 127 horas anuales de trabajo en mantenimiento, se realizó una extracción de datos durante 1 año de evaluación en el periodo 2018, obteniendo 16 programas de mantenimiento, con un tiempo para reparar de 127 horas/año para lo cual las pérdidas económicas ascendieron a USD \$ 21,933.84. Mediante un análisis de criticidad a los principales componentes en falla de las unidades de bombeo, resultaron críticos el motor, el pistón, la culata, el cigüeñal, la cruceta, los rodamientos y a través de un análisis de modos y efectos de fallos a las 06 fallas de los 2 componentes críticos, se evaluaron 08 efectos potenciales, con la propuesta del mantenimiento centrado en la confiabilidad, dando solución a los componentes críticos de los motores de compresión de gas, los costos de redujeron hasta el valor 42,158.04 US\$/año, con un beneficio de 1,52 US\$/año por cada dólar invertido, y retorno operacional en el corto tiempo.

Tapia (2017) en la investigación de su nombre "Aplicación del Ciclo de Deming en el mantenimiento de filtros Larox para incrementar la productividad en el área de operaciones,

Servicios Generales Mecánicos Unidos S.R.L. - Huarmey — 2017", se presenta como objetivo principal: "Disponer como la aplicación del ciclo Deming en el mantenimiento de filtros Larox" influye en el crecimiento de la empresa, beneficiando a su mejora de manera contundente. Aplicando lo aprendido, en aulas y con las propuestas implementadas contribuye a mejorar la productividad en un 11.4%. Y se concreta desde una óptica de mejora continua es posible lograr mejorar los objetivos propuestos es importante señalara que esto se debe de considerar que es aplicable para todas las empresas Del presente trabajo se verifica que la data obtenida si se aplica un método de mejora continua se incrementan la productividad laboral de la empresa en un 11 %, similar al estudio de Tapia. (Tapia Herbozo 2017), partiendo de esa experiencia podemos hacer la similitud con nuestro trabajo analizando que si hay coincidencias con nuestros trabajo ya que nuestra propuesta genera el incremento de la disponibilidad de los motores y compresores a gas beneficiando de una manera considerable a la empresa y a su

cliente matriz.

Çabe resaltar que el Ciclo Deming y su implementación es un trabajo que se debe de revisar en el tiempo, sacando a resaltar lo más positivo de la implementación, y comprometiendo a todo el personal desde la alta gerencia hasta el personal Técnico operativo.

VI. CONCLUSIONES

- 1. Durante el estudio realizado a las actividades de mantenimiento se evaluó que las actividades de mantenimiento correctivo aplicado a los motores y compresores de gas superan a las actividades de mantenimiento preventivo en un porcentaje considerable, lo que repercute negativamente en la gestión de mantenimiento y principalmente en los valores de disponibilidad de los equipos razón por la cual se propone en la etapa Planificar del Ciclo PHVA preparar un nuevo plan de mantenimiento preventivo, replanteando las actividades realizadas.
- 2. Al analizar los índices de disponibilidad se pudo determinar cuáles de los motores presentan un porcentaje menor a lo planeado, asimismo nos permite al realizar la evaluación posterior a la aplicación de la mejora basada en el ciclo PHVA, verificar el incremento de este índice y las alternativas de mejora enfocándonos en las actividades que se realizan a estos motores y las actividades dentro del mantenimiento que deben implementarse, se elabora un formato de planificación de mantenimiento preventivo que nos permite aprovechar al máximo los recursos con los que se cuenta para los mantenimientos planeados.
- 3. De igual forma se realiza un análisis de los principales problemas encontrados durante el desarrollo de los mantenimientos realizados por la empresa arrojando a través de la entrevista que unos de los principales problemas que se presentan es el tema de repuestos y capacitación en temas de motores, por lo que se implementó la mejora de implementar una lista de repuestos críticos que nos permitirá realizar el cambio de estos repuesto durante la actividad de overhould, se analiza también un análisis de los sistemas que han requerido mayores atenciones de mantenimientos correctivos atraves de un Pareto, descubriendo que los sistemas de encendido son los elementos más atendidos por diversos problemas en sus componentes así como los sistemas de protección control y monitoreo por lo que se implementa la planificación del mantenimiento preventivo de estos

sistemas y además se implementan formatos específicos que permitan monitorear el estado y configuración de estos sistemas.

4. Analizar el beneficio/costo que genera la propuesta nos va a permitir proponer a la gerencia implementar las mejoras que se van a ver reflejadas en ganancia económica, y que demuestra que hay beneficio económico, tanto a través de la ejecución de los mantenimiento así como la capacitación de los colaboradores, para lo cual es importante documentar siguiendo el cronograma de trabajo las actividades realizadas

VII. RECOMENDACIONES

- Se recomienda aplicar las mejoras que comprende la gestión de mantenimiento enfocada atraves del ciclo PHVA, propuesto en el presente trabajo, teniendo como objetivo incrementar la disponibilidad de los motores y compresores a gas.
- 2. Mejorar las actividades de mantenimiento realizando una planificación más concreta identificando las actividades que corresponden según la clasificación del mantenimiento a ejecutar es decir las actividades de mantenimiento se deben de diferenciar en su aplicación a las actividades consideradas por horas de funcionamiento ya que se encuentran generalizadas y se aplica el mismo mantenimiento a las diferentes planificaciones.
- 3. Conservar el stock de repuestos críticos en las cantidades propuestas ya que se convierte en una facilidad necesaria en miras a atender algún mantenimiento correctivo e incluso ante los preventivos programados, ya que si no se tiene stock de repuestos de desnaturaliza el mantenimiento, pasando a ser solo actividades de limpieza, lo que perjudicaría a la disponibilidad de los equipos.
- 4. Cumplir con la capacitación propuesta en uso de sistema Siscat, para agilizar los pedidos de repuestos y conocer los diagramas diferentes de los equipos con los que cuenta el cliente, con la finalidad de disminuir la perdida de horas hombre y agilizar el proceso de compra.
- Aprovechar en la medida de lo necesario al equipo de especialistas y técnicos conservando su constitución en aras de seguir monitoreando el cumplimiento de la metodología aplicada en el presente estudio como lo es el ciclo PHVA.

REFERENCIAS

AGUILAR, G., & Nelson, S. (2018). Propuesta de mejora del área de mantenimiento de motores de vehículos convertidos a GLP y su incremento en la rentabilidad de la empresa Visa Gas EIRL.

ANDIA, V., OMAR, A., MENDOZA, P., & ENRIQUE, L. (2017). Propuesta de implementación de un plan de mantenimiento de equipos bajo las técnicas del TPM en una empresa constructora. Universidad Peruana de Ciencias Aplicadas (UPC). Retrieved from http:// hdl.handle.net/10757/622200 España: Universidad Politécnica de Valencia.

AZOY Capote, A. (2014). Método para el cálculo de Indicadores de Mantenimiento. La Habana - Cuba: Instituto de Investigaciones de Ingeniería Agrícola (IAgric).

BAYARDO, María Guadalupe Moreno. Introducción a la metodología de la investigación educativa. Editorial progreso, 1987.

CORTEZ MÉNDEZ, Pedro Mauricio. Análisis de confiabilidad, disponibilidad y mantenibilidad de motores Waukesha en la planta de generación gas-diésel de la Empresa Repsol Ecuador. 2017.

DA Costa Burga, M. (2011). Aplicación del mantenimiento centrado en la confiabilidad a motores a gas de dos tiempos en pozos de alta producción.

DE LA BARRERA, Jasmín Herrera; BUENDÍA, Juan Miguel Martínez; GARCÍA, Laura Martínez. Software de sostenibilidad turística para el cumplimiento de la NTS colombiana. Turismo y Sociedad, 2021, vol. 28, p. 187-205.

DUFFUAA, S., RAOUF, A., & CAMPBELL, J. (2010). Sistemas de mantenimiento. Planificación y control. Editorial Limusa, México.

FLORES, C. A., PINEDO, Y. G., ORELLANA, G. M., LUNA, C. M., OCAS, B. P., GILIO, K. P. & ROJO, C. M. (2016). Gestión de mantenimiento preventivo y su relación con la disponibilidad de la flota de camiones 730e Komatsu-2013. Ingeniería industrial, (34), 11-26.

FERNÁNDEZ, Francisco Javier González. Teoría y práctica del mantenimiento industrial avanzado. FC editorial, 2005.

GARCIA J.M., MARTINEZ R.F. Barriers and facilitators of the TPM Implementación", Intangible Capital, 2013

GARRIDO, S. G. (2010). Organización y gestión integral de mantenimiento. Ediciones Diaz de santos.

GUEVARA AGUILAR, Santos Nelson. Propuesta de mejora del área de mantenimiento de motores de vehículos convertidos a GLP y su incremento en la rentabilidad de la empresa Visa Gas EIR L. 2018.

HERNÁNDEZ Sampieri, R., FERNÁNDEZ Collado, C., & BAPTISTA Lucio, M. (2014). Capítulo 9 Recoleccion de datos cuantitativos. R. Hernández Sampieri, Metodología de la investigación.

INDIGOYEN AGUILAR, Arnold Clay. Mantenimiento centrado en la confiabilidad para incrementar la disponibilidad de la chancadora Sandvik ch870-Compañía Minera Milpo SAA. 2020.

LLONTOP BELLODAS, Fernando. Propuesta de mejora del plan de mantenimiento preventivo para aumentar la disponibilidad de motores diésel en los camiones 730e, Bayovar-Piura, 2018. 2020

MARTÍNEZ Calizaya, A. L. (2012). Proponer una gestión de mantenimiento para todos los equipos de línea amarilla de una empresa que brinda servicio en alquiler de maguinaria.

MARTÍNEZ Durand, A. K., & MINCHAN Pompa, P. (2019). Mejora en la gestión de mantenimiento para incrementar la disponibilidad mecánica de los equipos de carguío y acarreo de una empresa minera de La Libertad.

MENDOCILLA Muñoz, K. Y. (2018). Modelo de gestión de mantenimiento en instalaciones de superficie en una Empresa de Transporte y Operación de Gas Natural.

MIÑO ORMAZA, Melania Paola. Análisis de confiabilidad, disponibilidad y mantenibilidad (RAM) de un motor de combustión interna WARTSILA 18V32LNGD. 2015.

MORA, Luis Alberto. Mantenimiento-planeación, ejecución y control. Alfaomega Grupo Editor, 2009.

MONCADA SUAREZ, David Fernando. Implementación de un programa de mantenimiento preventivo para mejorar la disponibilidad de vehículos en una distribuidora de gas—Pacasmayo, 2019. 2021.

RINCÓN Chaparro, M. G. (2017). Actualización del plan de mantenimiento enfocado en confiabilidad para la implementación del módulo "Prometheus" de la plataforma SAP en el tren de laminación 2 para la Empresa Gerdau Diaco SA planta Tuta

RODRIGUEZ BALLENA, Abel Raú; SANTISTEBAN YESQUEN, Jackeline Elizabeth. Plan de gestión de mantenimiento para aumentar la disponibilidad de las unidades en la empresa TYMSAC. 2021.

RODRÍGUEZ, José. Gestión del mantenimiento. Recuperado de https://www.scribd.com/doc/7497765/Gestion-del-mantenimiento. Fecha de acceso, 2008, vol. 26, no 05, p. 2015.

RODRÍGUEZ MACHADO, Antonio. Manual de gestión de mantenimiento. 2012. Tesis Doctoral. Universidad Central" Marta Abreu" de Las Villas.

GASCON Rivera, A, SANCHEZ, F. "Transactional Failure Mode and Effect Analysis an application to map risks in the service industry", Case Studies on Transport Policy, 2021.

SAAVEDRA Urteaga, J. L. (2020). Diseño de un sistema de gestión de mantenimiento del sistema eléctrico de baja tensión del distrito de Pimentel de la empresa Electronorte SAC para mejorar el servicio al cliente-Pimentel 2018.

TAVARES, Lourival Augusto. Administración moderna de mantenimiento. Novo Polo Publicacoes, 1999.

TORRES Rojas, S. R. (2015). Implementación de un sistema de mantenimiento para mejorar la disponibilidad mecánica de Jumbos Axera-05 de la Empresa Congemin Minera Horizonte.

TORRES, Mariela; SALAZAR, Federico G.; PAZ, Karim. Métodos de recolección de datos para una investigación. 2019.

URREGO, J. (2017). Elaboración de un plan de mantenimiento preventivo para equipos de la línea de perforación de la empresa cimentaciones de Colombia Ltda. Repository. Usta. Edu. Co, 135.

VALDERRAMA, Edwin Yesid, et al. Alistamiento para la certificación en las normas de calidad ISO 9001 Para la empresa "mantenimiento y montajes JM SAS". 2015.

VILLA, Pastor Emilio Pérez; VÁSQUEZ, Francisco Nahum Múnera. Reflexiones para implementar un sistema de gestión de calidad (ISO 9001: 2000) en cooperativas y empresas de economía solidaria. U. Cooperativa de Colombia, 2007.

VILLEGAS Arenas, J. C. (2017). Propuesta de mejora en la gestión del área de mantenimiento, para la optimización del desempeño de la empresa Manfer S.R.L. Contratistas Generales, Arequipa 2016.

VILCHEZ Rivas, J. R. (2019). Propuesta de gestión del mantenimiento centrado en la confiabilidad para reducir las fallas en los motores de compresión de gas de la empresa Confipetrol Andina SA, Lote X, El Alto–2018.

VIVEROS, P., STEGMAIER, R., KRISTJANPOLLER, F., BARBERA, L., & CRESPO, A. (2013). Propuesta de un modelo de gestión de mantenimiento y sus principales herramientas de apoyo. Ingeniare. Revista chilena de ingeniería, 21(1), 125-138.

VILLENA CENTENO, Luis Alberto. Propuesta de mejora en los procesos de producción y medio ambiente para reducir los costos operativos de la empresa Curtiduría Orión SAC. 2017.

ZAPATA, A. (2016). Ciclo de la calidad PHVA. Universidad Nacional de Colombia.

ZEGARRA, Manuel. Indicadores para la gestión del mantenimiento de equipos pesados. Ciencia y desarrollo, 2016, vol. 19, no 1, p. 25-37.

ANEXOS

Anexo N° 1 Matriz de Operacionalizacion.

Tipo	Variable	Definición Conceptual	Definición Operacional	Dimensiones	Indicador	Escala de medición
	y prioridades de mantenimiento, para ello se diseñan las estrategias		La gestión de mantenimiento se realiza de una forma sistematizada, ejecutando un plan de mantenimiento donde	Mantenimiento Correctivo	Índice de mantenimiento correctivo (%) Horas dedicadas a mantenimiento correctivo/horas dedicadas a mantenimiento	Razón
Variable Independiente	Gestión de Mantenimiento	y se asignan las responsabilidades correspondientes. Estas acciones facilitan las tareas de planificación, programación y control de la ejecución del mantenimiento, Es preciso determinar que toda la gestión del mantenimiento apunta conseguir la mejora continua y siempre se tiene en cuenta aspectos económicos mas importantes para toda empresa(Viveros, P., Stegmaier, R., Kristjanpoller, F., Barbera, L., & Crespo, A. (2013)	sistematizada, ejecutando un plan de mantenimiento donde se incluyen los equipos que participan en el proceso productivo, dando énfasis tener indicadores positivos y acordes con el objetivo de la empresa, para lo cual se optimizan los recursos, el personal, y todo lo concerniente al mantenimiento, siempre en la gestión de mantenimiento se lleva a cabo una evaluación constante que nos permite analizar cómo se avanza y con qué problemas se encuentra el personal mantenedor día a día.	Mantenimiento Preventivo	Tasa de mantenimiento Preventivo (%) Horas planificadas para mantenimiento preventivo / total horas planificadas	Razón
		Representa el porcentaje de tiempo durante el cual una maquina esta apta para su	Factor medible que se caracteriza por entregar datos reales en tiempo real para	MTBF Tiempo Medio entre fallas	MTBF: Tiempo Medio entre fallas/ Numero de Fallas	Razón
Variable Dependiente	Disponibilidad p rudd	uso y funcionamiento. El cálculo de este indicador toma en cuenta la suma de los tiempos para paradas planificadas, que corresponden a los procesos de mantenimiento rutinario, así como la suma de los tiempos para paradas no planificadas Duffuaa, Raouf y Cambell (2010)	poder tener un registro y analizar el desempeño tanto de máquinas como de equipos, los datos de disponibilidad son muy usados para ir efectuando una mejora continua, además la evaluaciones este parámetro en el mantenimeinto permite medir el avance de nuestro plan de mantenimiento.	<i>MTTR</i> Tiempo Medio de Reparación	MTTR: Tiempo Medio de Reparación/Numero de reparaciones	Razon

Fuente: Elaboración Propia.

Anexo N° 2 Hoja de Cálculo Para Análisis de Datos de mantenimiento

N° Orden	Fecha	Hora Ini Treal	Hoira fin Real	Pto Trabajo	Tipo de Manteni miento	Text Notificación	Trabajo Real	Fecha Reporte

Fuente: Elaboración propia

Entrevista

Estimado Compañeros a efectos de desarrollar el presente proyecto de investigación, se requiere su apoyo para desarrollar las siguientes preguntas llenando con una X donde corresponda, según crea conveniente:

l	¿Cuál es su función dentr	o de la empresa?:	
2	¿Qué tiempo viene desem	peñando dicha func	ción?
	Menos de un año		
	De 1 a 2 años		
	Más de 2 años		
3	¿Ha recibido Capacitaciór compresores a gas?	ı de la empresa ace	rca de motores y
	Si		
	No		
4	¿Dentro de la tareas de m repuestos necesarios?	antenimiento, ha co	ontado con
	Si		
	No		
5	¿Cuál de los siguientes m dificultades durante su eje		enta más
	Preventivo		
	Correctivo		

	Overhoul		
6	Se cuenta con los ma compresores ordena	anuales técnicos de los e damente	quipos motores y
		Si	
		No	
7		rramientas, consumibles, actividades de mantenim	
		Si	
		No	
8		o de la supervisión en las eversa con el apoyo de la	
		Si	
		No	
9	¿Se ejecutaron toda mantenimientos reali	s las tareas programadas zados?	en los
		Si	
		No	

Check list de Equipos Motores y Compresores Lote X

Equipo:	Ubicación:	
Marca	Serie	
Modelo:	Tag:	
Fecha de Check list:		
Detalle:		Observación
1 Sistemas de Encendido		
2Sistema de Lubricación		
3sistema de refrigeración		
4sistema de drenaje de líquidos		
5sistema de control y monitoreo		
6sistema de indicadores locales		
7tablero de control		
8 Instrumentos Asociados		
9 Niveles de Aceite		
10 Niveles de Agua		
11 Fugas dentro del skid		
12 Pintura		
13 sistema de parada de emergencia		
14 Válvulas de Gas		

Fuente: Elaboración Propia

Certificado de validez de contenido del instrumento que mide la variable independiente y dependiente

Nº		Coh	erencia1	a1 Relevancia ²		Claridad ³		Sugerencias
	Variable / Dimensión							
	VARIABLE INDEPENDIENTE: Gestión del Mantenimiento Dimensión 1 Mantenimiento Correctivo Tasa de Mantenimiento Correctivo (%) = Horas dedicadas a mantenimiento correctivo	S i	No	Si X	No	Si	No	
	Horas dedicadas a mantenimiento.							
	Dimensión 2 Mantenimiento Preventivo Tasa de Mantenimiento Preventivo (%) = Horas planificadas para mantenimiento preventivo total horas planificadas	X		X		X		
	VARIABLE DEPENDIENTE: Disponibilidad	S	No	Si	No	Si	No	
	Dimensión 1: MTBF: Tiempo Medio entre fallas Numero de Fallas	X		X		X		
	Dimensión 2: MTTR: Tiempo Medio de Reparación Numero de reparaciones	X		х		X		

Observaciones (precisar si hay suficiencia): Si hay suficinecia

Opinión de aplicabilidad: Aplicable [Sí]

Aplicable después de corregir [] No aplicable []

Apellidos y nombres del juez validador. Mg. Ruidías Alamo, Víctor Gerardo

Especialidad del validador: Ingeniero Industrial

¹ Coherencia: El item tiene relación lógica con la dimensión o indicador que está midiendo ²Relevancia: El item es esencial o importante, para representar al componente o dimensión específica del constructo

*Claridad: Se entiende sin dificultad alguna el enunciado del item, es conciso, exacto y directo

Nota: Suficiencia, se dice suficiencia cuando los items planteados son suficientes para medir la dimensión

Victor Berardo Ruidias Alamo Ingeniero Industria!

Firma del Experto Informante.

Certificado de validez de contenido del instrumento que mide la variable

Nº			ieren ia1	Relev	ancia ²	Cla	ridad³	Sugerencias
	Variable / Dimensión							
	VARIABLE INDEPENDIENTE: Gestión del Mantenimiento	Si	No	Si	No	Si	No	
	Dimensión 1							
	Mantenimiento Correctivo	X		X		X		
	Tasa de Mantenimiento Correctivo (%) =							
	Horas dedicadas a mantenimiento correctivo							
	Horas dedicadas a mantenimiento.							
	Tasa de mantenimiento Preventivo (%)							
	Dimensión 2							
	Mantenimiento Preventivo	X		X		X		
	Tasa de Mantenimiento Preventivo (%) =							
	Horas dedicadas a mantenimiento Preventivo							
	Horas dedicadas a mantenimiento.							
	VARIABLE DEPENDIENTE: Disponibilidad	Si	No	Si	No	Si	No	
	Dimensión 1:							
	MTBF: Tiempo Medio entre fallas	X		X		X		
	Numero de Fallas							
	Dimensión 2:							
	MTTR: Tiempo Medio de Reparación	X		X		X		
	Numero de reparaciones							

independiente y dependiente

Observaciones (precisar si hay suficiencia): Si hay suficiencia $\,$

Opinión de aplicabilidad: Aplicable [X]

Aplicable después de corregir [] No aplicable []

Apellidos y nombres del juez validador. Mg. Gerardo Sosa Panta

Especialidad del validador: Ingeniero Industrial

Mg. Gerardo Sosa Panta INGENIERO INDUSTRIAL CIP. 67114

Firma del experto

informante

¹ Coherencia: El ítem tiene relación lógica con la dimensión o indicador que está midiendo ²Relevancia: El ítem es esencial o importante, para representar al componente o dimensión

específica del constructo 3**Claridad:** Se entiende sin dificultad alguna el enunciado del ítem, es conciso, exacto y directo

Nota: Suficiencia, se dice suficiencia cuando los ítems planteados son suficientes para medir la dimensión

Certificado de validez de contenido del instrumento que mide la variable independiente y dependiente

Nº			neren ia1	Relev	ancia ²	Claridad ³		Sugerencias
	Variable / Dimensión VARIABLE INDEPENDIENTE: Gestión	Si	No	Si	No	Si	No	
	del Mantenimiento							
	Dimensión 1							
	Mantenimiento Correctivo	X		X		X		
	Tasa de Mantenimiento Correctivo (%) = Horas							
	dedicadas a mantenimiento correctivo							
	Horas dedicadas a mantenimiento.							
	Tasa de mantenimiento Preventivo (%)							
	Dimensión 2							
	Mantenimiento Preventivo							
	Tasa de Mantenimiento Preventivo (%) = Horas	X		X		X		
	dedicadas a mantenimiento Preventivo							
	Horas dedicadas a mantenimiento.							
	VARIABLE DEPENDIENTE: Disponibilidad	Si	No	Si	No	Si	No	
	Dimensión 1:							
	MTBF: Tiempo Medio entre fallas	X		X		X		
	Numero de Fallas							
	Dimensión 2:							
	MTTR: Tiempo Medio de Reparación Numero de reparaciones	X		X		X		
	realists de reparaciones							

Observaciones (precisar si hay suficiencia):HAY SUFICIENCIA
Opinión de aplicabilidad: Aplicable [X]
Aplicable después de corregir [] No aplicable []
Apellidos y nombres del juez validador. Mg. Montoya Cárdenas, Gustavo Adolfo DNI: 07500140
Especialidad del validador: Ingeniero Industrial, Magister en Administración Estratégica de Empresas
¹ Coherencia: El ítem tiene relación lógica con la dimensión o indicador que está midiendo específica del constructo ² Relevancia: El ítem es esencial o importante, para representar al componente o dimensión
³ Claridad: Se entiende sin dificultad alguna el enunciado del ítem, es conciso, exacto y directo Notala dimensión : Suficiencia, se dice suficiencia cuando los ítems planteados son suficientes para medir
MONTON AGOL 195**** MONTON CARDENAS INGENERO INDUSTRIAL Reg. TIP N° 144806
Firma del Experto Informante.

TABLA 3

MANTEMIENTO REALIZADO A EQUIPOS MOTORES Y COMPRESORES

MARCA AJAX

AÑO 2021	MANTENIMIENTOS	MANTENIMIENTOS	TOTAL
ANO 2021	CORRECTIVOS	PREVENTIVOS	MANTENIMIENTOS
ENERO	1	2	3
FEBRERO	2	4	6
<i>MARZO</i>	7	0	7
ABRIL	9	4	13
MAYO	13	0	13
JUNIO	12	2	14
JULIO	19	<i>3</i>	22
AGOSTO	17	2	19
SETIEMBRE	7	0	7
OCTUBRE	8	0	8
NOVIEMBRE	<i>3</i>	5	8
DICIEMBRE	6	1	7
TOTAL	104	23	127
TOTAL%	82%	18%	100%

Fuente: Elaboración Propia

TABLA 4

MANTEMIENTO REALIZADO A EQUIPOS MOTORES Y COMPRESORES MARCA
WAUKESHA

AÑO 2021	MANTENIMIENTO	MANTENIMIENTO	TOTAL
ANO 2021	CORRECTIVOS	PREVENTIVO	MANTENIMIENTOS
ENERO	4	0	4
FEBRERO	8	2	10
MARZO	6	0	6
ABRIL	6	0	6
MAYO	2	0	2
JUNIO	5	1	6
JULIO	3	0	3
<i>AGOSTO</i>	2	0	2
SETIEMBRE	3	0	3
OCTUBRE	3	2	5
NOVIEMBRE	3	0	3
DICIEMBRE	4	0	4
TOTAL	49	5	54
TOTAL%	90%	10%	100%
Consists Clarks an	: / D : .		

Fuente Elaboración Propia

TABLA 5

MANTEMIENTO REALIZADO A EQUIPOS MOTORES Y COMPRESORES

MARCA CAT 3306

AÑO 2021	MANTENIMIENTOS CORRECTIVOS	MANTENIMIENTOS PREVENTIVOS	TOTAL MANTENIMIENTOS
ENERO	1	2	3
FEBRERO	2	4	6
MARZO	1	2	3
ABRIL	3	2	5
MAYO	5	0	5
JUNIO	3	0	3
JULIO	2	6	8
<i>AGOSTO</i>	<i>3</i>	2	5
SETIEMBRE	8	0	8
OCTUBRE	9	2	11
NOVIEMBRE	<i>3</i>	2	5
DICIEMBRE	1	0	1
TOTAL	41	22	63
TOTAL%	65%	35%	100%

Fuente Elaboración Propia

TABLA 6

MANTEMIENTO REALIZADO A EQUIPOS MOTORES Y COMPRESORES

MARCA CAT 3406

AÑO 2021	MANTENIMIENTOS	MANTENIMIENTOS	TOTAL
ANO 2021	CORRECTIVOS	PREVENTIVOS	MANTENIMIENTOS
ENERO	1	0	1
FEBRERO	2	3	5
<i>MARZO</i>	2	2	4
ABRIL	0	4	4
MAYO	1	1	2
JUNIO	0	2	2
JULIO	8	5	13
<i>AGOSTO</i>	7	0	7
SETIEMBRE	4	0	4
OCTUBRE	2	4	6
NOVIEMBRE	1	2	3
DICIEMBRE	1	2	3
TOTAL	29	25	54
TOTAL%	53%	47%	100%

FUENTE: ELABORACION PROPIA

TABLA 7

MANTEMIENTO REALIZADO A EQUIPOS MOTORES Y COMPRESORES

MARCA CAT 3408

AÑO 2021		MANTENIMIENTOS	TOTAL
	CORRECTIVOS	PREVENTIVOS	MANTENIMIENTOS
ENERO	7	2	9
<i>FEBRERO</i>	3	5	8
<i>MARZO</i>	11	2	13
ABRIL	5	4	9
MAYO	5	2	7
JUNIO	4	0	4
JULIO	3	2	5
AGOSTO	<i>3</i>	2	5
SETIEMBRE	6	4	10
OCTUBRE	15	1	16
NOVIEMBRE	4	2	6
DICIEMBRE	6	0	6
TOTAL	72	26	98
TOTAL%	73%	27%	100%

FUENTE: ELABORACION PROPIA

TABLA 8

MANTEMIENTO REALIZADO A EQUIPOS MOTORES Y COMPRESORES MARCA
CAT 3512

AÑO 2021	MANTENIMIENTOS	MANTENIMIENTOS	TOTAL
ANO 2021	CORRECTIVOS	PREVENTIVOS	MANTENIMIENTOS
ENERO	2	2	4
FEBRERO	8	0	8
<i>MARZO</i>	6	0	6
ABRIL	6	0	6
MAYO	8	2	10
JUNIO	5	0	5
JULIO	3	0	3
<i>AGOSTO</i>	4	0	4
SETIEMBRE	5	0	5
OCTUBRE	9	0	9
NOVIEMBRE	8	2	10
DICIEMBRE	5	0	5
TOTAL	69	6	75
TOTAL%	92%	8%	100%

FUENTE: ELABORACION PROPIA

TABLA 9

MANTEMIENTO REALIZADO A EQUIPOS MOTORES Y COMPRESORES

MARCA CAT 3508

	•					
AÑO 2021	MANTENIMIENTOS	MANTENIMIENTOS	TOTAL			
	CORRECTIVOS	PREVENTIVOS	MANTENIMIENTOS			
ENERO	2	2	4			
<i>FEBRERO</i>	O 0 3		3			
MARZO	1	1	2			
ABRIL	0	0	0			
MAYO	1	0	1			
JUNIO	4	2	6			
JULIO	5	0	5			
AGOSTO	0	0	0			
SETIEMBRE	1	1	2			
OCTUBRE	1	2	3			
NOVIEMBRE	1	1	2			
DICIEMBRE	1	0	1			
TOTAL	17	12	29			
TOTAL%	58%	42%	100%			
FUENTE FUENCE AND ADDRESS						

FUENTE: ELABORACION PROPIA

TABLA 11

MANTEMIENTO REALIZADO A EQUIPOS MOTORES MARCA SIEMENS ELECTRICO

AÑO 2021	MANTENIMIENTOS MANTENIMIENTOS CORRECTIVOS PREVENTIVOS		TOTAL MANTENIMIENTOS
ENERO	1	2	3
FEBRERO	5	3	8
<i>MARZO</i>	3	3	6
ABRIL	5	3	8
MAYO	4	1	5
JUNIO	6	1	7
JULIO	3	2	5
AGOSTO	2	2	4
SETIEMBRE	2	4	6
OCTUBRE	2	2	4
NOVIEMBRE	1	0	1
DICIEMBRE	1	0	1
TOTAL	35	23	58
TOTAL%	61%	39%	100%

FUENTE: ELABORACION PROPIA

TABLA 12
CONSOLIDADO DE MANTENIMIENTOS REALIZADOS A MOTORES Y COMPRESORES A GAS AÑO 2021

AÑO 2021	MANTENIMIENTO CORRECTIVO	MANTENIMIENTO PREVENTIVO	MANTENIMIENTO PREDICTIVO	TOTAL MANTENIMIENTOS REALIZADOS
WAUKESHA	49	5	6	28
AJAX	104	23	0	127
CATERPILLAR G3306	41	22	12	64
CATERPILLAR G3406	29	25	6	47
CATERPILLAR 3408	72	26	10	108
CATERPILLAR 3512	69	6	6	28
CATERPILLAR G398	69	57	0	96
CATERPILLAR G				
3508	17	12	5	34
SIEMENS ELECTRICO	35	23	3	33
TOTAL	485	199	48	565
TOTAL %	64%	27%	9%	100%

Fuente Elaboración Propia

TABLA 13

ANALISIS DE LA DISPONIBILIDAD MOTORES Y COMPRESORES MARCA WAUKESHA AÑO 2021

	MES	DIAS DE TRABAJO	HORAS DE TRABAJO	HORAS DISPONIBLES	FRECUENCIA DE FALLAS	HORAS DE PARADA	HORAS DE PRODUCION	мтвғ	MTTR	DISP. (%)
1	ENERO	31	24	744	4	51	693	173	12,75	93,15%
2	FEBRERO	28	24	672	8	125	547	68	15,63	81,40%
3	MARZO	31	24	744	6	25	719	120	4,17	96,64%
4	ABRIL	30	24	720	6	87	633	106	14,50	87,92%
5	MAYO	31	24	744	2	64	680	340	32,00	91,40%
6	JUNIO	30	24	720	5	156	564	113	31,20	78,33%
7	JULIO	31	24	744	3	202	542	181	67,33	72,85%
8	AGOSTO	31	24	744	2	48	696	348	24,00	93,55%
9	SETIEMBRE	30	24	720	3	59	661	220	19,67	91,81%
10	OCTUBRE	31	24	744	3	45	699	233	15,00	93,95%
11	NOVIEMBRE	30	24	720	3	36	684	228	12,00	95,00%
12	DICIEMBRE	31	24	744	4	89	655	164	22,25	88,04%
			•				TOTAL DISPO	NIBILIDA	D 2021	88,67%

Fuente: Elaboración Propia

TABLA 14

ANALISIS DE LA DISPONIBILIDAD MOTORES Y COMPRESORES MARCA AJAX MES DIAS DE TRABAJO DE TRABAJO DE TRABAJO DE PALLAS DE PRODUCION MTBF MTTR DISP. (%)

	MES	DIAS DE TRABAJO	DE TRABAJO	HORAS DISPONIBLES	DE FALLAS	DE PARADA	PRODUCION	MTBF	MTTR	DISP. (%)
1	ENERO	31	24	744	1	36	708	708	36,00	95,16%
2	FEBRERO	28	24	672	2	20	652	326	10,00	97,02%
3	MARZO	31	24	744	7	165	579	83	23,57	77,82%
4	ABRIL	30	24	720	9	87	633	70	9,67	87,92%
5	MAYO	31	24	744	13	55	689	53	4,23	92,61%
6	JUNIO	30	24	720	12	156	564	47	13,00	78,33%
7	JULIO	31	24	744	19	202	542	29	10,63	72,85%
8	AGOSTO	31	24	744	17	168	576	34	9,88	77,42%
9	SETIEMBRE	30	24	720	7	153	567	81	21,86	78,75%
10	OCTUBRE	31	24	744	8	145	599	75	18,13	80,51%
11	NOVIEMBRE	30	24	720	3	36	684	228	12,00	95,00%
12	DICIEMBRE	31	24	744	6	25	719	120	4,17	96,64%
	•	TOTAL, D	DISPONIBILIDA	AD 2021		•		154,43	14,43	85,84%

Fuente Elaboración Propia

Tabla 15

ANALISIS DE LA DISPONIBILIDAD MOTORES Y COMPRESORES MARCA CATERPILLAR 3406 AÑO 2021

	MES	DIAS DE TRABAJO	HORAS DE TRABAJO	HORAS DISPONIBLES	FRECUENCIA DE FALLAS	HORAS DE PARADA	HORAS DE PRODUCION	MTBF	MTTR	DISP. (%)
1	ENERO	31	24	744	1	25	719	719	25,00	96,64%
2	FEBRERO	28	24	672	2	59	613	307	29,50	91,22%
3	MARZO	31	24	744	2	26	718	359	13,00	96,51%
4	ABRIL	30	24	720	5	182	538	108	36,40	74,72%
5	MAYO	31	24	744	1	21	723	723	21,00	97,18%
6	JUNIO	30	24	720	5	256	464	93	51,20	64,44%
7	JULIO	31	24	744	8	87	657	82	10,88	88,31%
8	AGOSTO	31	24	744	7	123	621	89	17,57	83,47%
9	SETIEMBRE	30	24	720	4	54	666	167	13,50	92,50%
10	OCTUBRE	31	24	744	2	69	675	338	34,50	90,73%
11	NOVIEMBRE	30	24	720	1	57	663	663	57,00	92,08%
12	DICIEMBRE	31	24	744	1	54	690	690	54,00	92,74%
							TOTAL DISPO	NIBILIDA	D 2021	88.38%

Fuente Elaboracion Propia

Tabla 16

ANALISIS DE LA DISPONIBILIDAD MOTORES Y COMPRESORES MARCA CATERPILLAR 3408 AÑO 2021

	MES	DIAS DE TRABAJO	HORAS DE TRABAJO	HORAS DISPONIBLES	FRECUENCIA DE FALLAS	HORAS DE PARADA	HORAS DE PRODUCION	MTBF	MTTR	DISP. (%)
1	ENERO	31	24	744	7	132	612	87	18,86	82,26%
2	FEBRERO	28	24	672	3	65	607	202	21,67	90,33%
3	MARZO	31	24	744	11	221	523	48	20,09	70,30%
4	ABRIL	30	24	720	5	63	657	131	12,60	91,25%
5	MAYO	31	24	744	5	32	712	142	6,40	95,70%
6	JUNIO	30	24	720	4	98	622	156	24,50	86,39%
7	JULIO	31	24	744	3	60	684	228	20,00	91,94%
8	AGOSTO	31	24	744	3	23	721	240	7,67	96,91%
9	SETIEMBRE	30	24	720	6	18	702	117	3,00	97,50%
10	OCTUBRE	31	24	744	15	112	632	42	7,47	84,95%
11	NOVIEMBRE	30	24	720	4	18	702	176	4,50	97,50%
12	DICIEMBRE	31	24	744	6	96	648	108	16,00	87,10%
							TOTAL DISPO	NIRII IDA	D 2021	89.34%

Fuente Elaboración Propia

TABLA 17

ANALISIS DE LA DISPONIBILIDAD MOTORES Y COMPRESORES MARCA CATERPILLAR 3512 AÑO 2021

	MES	DIAS DE TRABAJO	HORAS DE TRABAJO	HORAS DISPONIBLES	FRECUENCIA DE FALLAS	HORAS DE PARADA	HORAS DE PRODUCION	MTBF	MTTR	DISP. (%)
1	ENERO	31	24	744		48	696	348	24,00	93,55%
•	LINEINO	31	2-4	,	2	40	030	340	24,00	33,3370
2	FEBRERO	28	24	672	8	265	407	51	33,13	60,57%
3	MARZO	31	24	744	6	121	623	104	20,17	83,74%
4	ABRIL	30	24	720	6	202	518	86	33,67	71,94%
5	MAYO	31	24	744	8	29	715	89	3,63	96,10%
6	JUNIO	30	24	720	5	85	635	127	17,00	88,19%
7	JULIO	31	24	744	3	80	664	221	26,67	89,25%
8	AGOSTO	31	24	744	4	99	645	161	24,75	86,69%
9	SETIEMBRE	30	24	720	5	23	697	139	4,60	96,81%
10	OCTUBRE	31	24	744	9	15	729	81	1,67	97,98%
11	NOVIEMBRE	30	24	720	8	174	546	68	21,75	75,83%
12	DICIEMBRE	31	24	744	5	12	732	146	2,40	98,39%
							TOTAL DISPON	NIBILIDA	D 2021	86,59%

Fuente Elaboración Propia

TABLA 18

ANALISIS DE LA DISPONIBILIDAD MOTORES Y COMPRESORES MARCA CATERPILLAR 398 AÑO 2021

	MES	DIAS DE TRABAJO	HORAS DE TRABAJO	HORAS DISPONIBLES	FRECUENCIA DE FALLAS	HORAS DE PARADA	HORAS DE PRODUCION	MTBF	MTTR	DISP. (%)
1	ENERO	31	24	744	7	96	648	93	13,71	87,10%
2	FEBRERO	28	24	672	7	123	549	78	17,57	81,70%
3	MARZO	31	24	744	4	21	723	181	5,25	97,18%
4	ABRIL	30	24	720	5	102	618	124	20,40	85,83%
5	MAYO	31	24	744	5	22	722	144	4,40	97,04%
6	JUNIO	30	24	720	7	79	641	92	11,29	89,03%
7	JULIO	31	24	744	1	65	679	679	65,00	91,26%
8	AGOSTO	31	24	744	7	99	645	92	14,14	86,69%
9	SETIEMBRE	30	24	720	12	23	697	58	1,92	96,81%
10	OCTUBRE	31	24	744	7	28	716	102	4,00	96,24%
11	NOVIEMBRE	30	24	720	3	152	568	189	50,67	78,89%
12	DICIEMBRE	31	24	744	4	65	679	170	16,25	91,26%
			,				TOTAL DISPO	NIBILIDA	D 2021	89,92%

Fuente Elaboracion Propia

TABLA 19

ANALISIS DE LA DISPONIBILIDAD MOTORES Y COMPRESORES MARCA CATERPILLAR 3508 AÑO 2021

	MES	DIAS DE TRABAJO	HORAS DE TRABAJO	HORAS DISPONIBLES	FRECUENCIA DE FALLAS	HORAS DE PARADA	HORAS DE PRODUCION	MTBF	MTTR	DISP. (%)
1	ENERO	31	24	744	2	23	721	361	11,50	96,91%
2	FEBRERO	28	24	672	5	55	617	123	11,00	91,82%
3	MARZO	31	24	744	1	21	723	723	21,00	97,18%
4	ABRIL	30	24	720	5	145	575	115	29,00	79,86%
5	MAYO	31	24	744	1	12	732	732	12,00	98,39%
6	JUNIO	30	24	720	4	35	685	171	8,75	95,14%
7	JULIO	31	24	744	5	33	711	142	6,60	95,56%
8	AGOSTO	31	24	744	5	62	682	136	12,40	91,67%
9	SETIEMBRE	30	24	720	1	10	710	710	10,00	98,61%
10	OCTUBRE	31	24	744	1	12	732	732	12,00	98,39%
11	NOVIEMBRE	30	24	720	1	11	709	709	11,00	98,47%
12	DICIEMBRE	31	24	744	1	20	724	724	20,00	97,31%
		-					TOTAL DISPO	NIBILIDA	D 2021	94,94%

Fuente Elaboración Propia

TABLA 20

ANALISIS DE LA DISPONIBILIDAD MOTORES Y COMPRESORES MARCA SIEMENS ELECTRICO AÑO 2021

	MES	DIAS DE TRABAJO	HORAS DE TRABAJO	HORAS DISPONIBLES	FRECUENCIA DE FALLAS	HORAS DE PARADA	HORAS DE PRODUCION	MTBF	MTTR	DISP. (%)
1	ENERO	31	24	744	1	12	732	732	12,00	98,39%
2	FEBRERO	28	24	672	5	52	620	124	10,40	92,26%
3	MARZO	31	24	744	3	23	721	240	7,67	96,91%
4	ABRIL	30	24	720	5	21	699	140	4,20	97,08%
5	MAYO	31	24	744	4	87	657	164	21,75	88,31%
6	JUNIO	30	24	720	6	11	709	118	1,83	98,47%
7	JULIO	31	24	744	3	47	697	232	15,67	93,68%
8	AGOSTO	31	24	744	2	23	721	361	11,50	96,91%
9	SETIEMBRE	30	24	720	2	55	665	333	27,50	92,36%
10	OCTUBRE	31	24	744	2	64	680	340	32,00	91,40%
11	NOVIEMBRE	30	24	720	1	96	624	624	96,00	86,67%
12	DICIEMBRE	31	24	744	1	3	741	741	3,00	99,60%
		•				•	TOTAL DISPO	NIBILIDA	D 2021	94,34%

Fuente Elaboración Propia

TABLA 21

CONSOLIDADO DE INDICADORES DE MANTENIMIENTO DE MOTORES Y COMPRESORES A GAS AÑO 2021

AÑO 2021	MTBF	MTTR	DISPONIBILIDAD
WAUKESHA	191,13	22,54	88,67%
AJAX	154,43	14,43	85,84%
CATERPILLAR G3306	330,59	21,87	92,87%
CATERPILLAR G3406	361,31	30,30	88,38%
CATERPILLAR 3408	139,80	13,56	89,34%
CATERPILLAR 3512	135,25	17,78	86,59%
CATERPILLAR G398	166,83	18,72	89,92%
CATERPILLAR G 3508	448,23	13,77	94,94%
SIEMENS ELECTRICO	342,82	23,21	91,91%
PROMEDIO	252,27	19,57	89,83%

Fuente Elaboración Propia

Tabla 34
Costos de capacitacion implementacion Ciclo PHVA

IT	CONCEPTO	COSTO	CANTIDAD	SUB TOTAL (SOLES)
	Capacitacion de Personal Operativo, supervision,	720	6	4320
1	adminsitrativos.Implementacion de Mejoras Continua Ciclo PHVA			
	Documentos para el seguimiento de las	168	10	1680
2	actividades realizaas en el marco de la implementacion del ciclo PHVA	108	10	1000
1	Materiales Utiles de escritorio	125	12	1500
		1658	1	1658
1	Personal Capacitador		_	
1	Facilidades del Personal Capacitador	235	1	235
_1	Otro Gastos (transporte, break, impresiones)	256	1	256
				9649

Nota: descripcion de gastos previstos para la capacitacion en locacion del cliente

Fuente : Elaboracion propia

Tabla 35 Costos de ejecucion Ciclo PHVA

IT	CONCEPTO	соѕто	C	ANTIDAD	SUB TOTAL (SOLES)
1	Mueble para disposicion de documentos		363	1	363
2	Papel Bond A - 4, presentacion por millar		14	10	140
3	Materiales Utiles de escritorio		720	1	720
5	Impresión de formularios en papel autocopia	nt	256	1	256
					1479

Nota: descripcion de gastos previstos para la etapa de eejcucion

Fuente: Elaboracion propia

TABLA 36 costo de Repuestos sistema de encendido proyectado

IT	DESCRIPCION	MARCA	CANTIDAD	P.UNITARO	TOTAL
1	MODULO CENTURION CPU 95	ALTRONICS	6	5.632,00	33.792,00
2	ELEMENTOS ELECTRICOS RELES	S/R	6	58,00	348,00
3	SENSORES DE EFECTO HALL	ALTRONICS	12	189,00	2.268,00
4	CABLE DE BUJIAS	S/(R	30	165,00	4.950,00
5	BOBINAS DE IGNICION	ALTRONICS	24	521,00	12.504,00
6	BUJIAS	S/R	124	65,00	8.060,00
9	MODULO VARISPARK	ALTRONICS	2	1.542,00	3.084,00
10	FUENTE DE ALIMENTACION 24VDC	ALTRONICS	2	852,00	1.704,00
		TOTALSOLES			66.710,00

Fuente: elaboracion Propia

Tabla 37 Comparativo entre el manteni

comparativo entre el mantem						
IT	CONCEPTO	TOTAL (SOLES)				
1	Costo de la propuesta implementacion Ciclo PHVA	77,838,00				
2	Costos del mantenimiento año 2021(*)	112,615,18				
	(*) I. C					

Nota: (*) Informacion de la empresa

Fuente : Elaboracion propia

Propuesta de mejora de la Gestión de mantenimiento de motores y compresores a gas en el lote X año 2021

Anexo N° 4 Propuesta de mejora de la Gestión de mantenimiento de motores y compresores a gas en el lote X año 2021

Anexo 4.1. GENERALIDADES:

Dentro del presente trabajo de investigación se ha realizado el diagnostico actual en el que se encuentran los mantenimientos realizados a los motores y compresores objeto de estudio, observando de manera concisa que los indicadores de mantenimiento específicamente la disponibilidad inherente de van venido disminuyendo considerablemente mostrando deficiencias en los mantenimiento lo que se ha reflejado en horas no disponibles y en mantenimientos correctivos en una cantidad considerable superando a los mantenimientos preventivos y además los mantenimientos predictivos que si se han aplicado no presentan contundencia ya que se ejecutan pero no se refleja en la programación de actividades que se desprendan en los mantenimientos programadas por el área de planificación.

Así mismo se ha identificado las principales fallas que se han presentado en los motores y compresores de compresión de gas encontrando varios sistemas y componentes que están afectando la disponibilidad de los equipo, para lo cual se realizó un análisis de criticidad que nos ha permitido establecer los principales componentes y repuestos que se tienen que cambiar aprovechando que el programa de mantenimiento establece realizar actividades de overhoul las que se realizan y en las que se incide más en cambiar repuestos mecánicos como biela, pistón camisas anillos etc, obviado sistemas de control e instrumentación que cumplen un rol importante en la conservación de los activos según fabricante y según técnicas de mantenimiento moderno.

Anexo 4.2 OBJETIVOS

Objetivo General:

Elaborar un modelo de gestión de mantenimiento que permita incrementar la disponibilidad de motores y compresores a gas en el Lote X.

Objetivos Específicos:

- ✓ Proponer un equipo de trabajo con profesionales de la empresa para el desarrollo del modelo de gestión de mantenimiento que permita incrementar la disponibilidad de motores y compresores a gas en el Lote X
- ✓ Diseñar y proponer un diagrama de flujo actual y propuesto con mejoras en la gestión del actual plan de mantenimiento de motores y compresores a gas en el Lote X.
- ✓ Promover plan de capacitación para el personal del área de mantenimiento de motores y compresores a gas en el Lote X

.

Anexo 4.3. ALCANCE:

La presente propuesta de mejora busca establecer una guía metodológica basado en el ciclo PHVA que permita mejorar la actual gestión del mantenimiento de motores y compresores a gas en el lote X, optimizando los recursos con los que se cuenta y minimizando los costos operativos y por ende el incremento de la disponibilidad de los activos teniendo en cuenta los aspectos de mejora continua y herramientas de ingeniería.

Anexo 4.4. LINEAMIENTOS CONCEPTUALES

Ciclo PHVA: Una herramienta de gestión plenamente vigente. Actualmente, las empresas se enfrentan a un nivel de competencia demasiado alto que para poder crecer y a veces incluso para lograr su propia supervivencia, han de mejorar continuamente, evolucionar y renovarse de forma fluida y constante.

Verástegui (2018) Define que: El mejoramiento Continuo es un proceso que describe muy bien lo que es la esencia de la calidad y refleja lo que las empresas necesitan hacer si quieren ser competitivas a lo largo del tiempo.

El ciclo Deming PHVA de mejora continua es una herramienta de gestión presentada en los años 50 por el estadístico estadounidense Edward Deming. Tras varias décadas de uso, este sistema o método de gestión de calidad se encuentra plenamente vigente (ha sido adoptado recientemente por la familia de normas ISO) por su comprobada eficacia para: reducir costos, optimizar la productividad, ganar cuota de mercado e incrementar la rentabilidad de las organizaciones. Logrando, además, el mantenimiento de todos estos beneficios de una manera continua, progresiva y constante.

- ➤ Planificar: En la etapa de planificación se establecen objetivos y se identifican los procesos necesarios para lograr unos determinados resultados de acuerdo a las políticas de la organización. En esta etapa se determinan también los parámetros de medición que se van a utilizar para controlar y seguir el proceso.
- ➤ Hacer: Consiste en la implementación de los cambios o acciones necesarias para lograr las mejoras planteadas. Con el objeto de ganar en eficacia y poder corregir fácilmente posibles errores en la ejecución, normalmente se desarrolla un plan piloto a modo de prueba o testeo.
- ➤ Verificar: Una vez se ha puesto en marcha el plan de mejoras, se establece un periodo de prueba para medir y valorar la efectividad de los cambios. Se trata de una fase de regulación y ajuste.
- Actuar: Realizadas las mediciones, en el caso de que los resultados no se ajusten a las expectativas y objetivos predefinidos, se realizan las correcciones y modificaciones necesarias. Por otro lado, se toman las decisiones y acciones pertinentes para mejorar continuamente el desarrollo de los procesos.

Las principales ventajas para las organizaciones de esta herramienta de gestión son:

- Conseguir mejoras en el corto plazo y resultados visibles.
- Reducción de costos de fabricación de productos y prestación de servicios.
- Incremento de la productividad y enfocar a la organización hacia la competitividad.
- Contribuye a la adaptación de los procesos a los avances tecnológicos.
- Permite detectar y eliminar procesos repetitivos.
- Entre sus puntos débiles encontramos:
- Cuando el mejoramiento se concentra en un área específica de la organización, se puede perder la perspectiva de interdependencia que existe entre los distintos departamentos y áreas de las organizaciones.
- ➤ Requiere de cambios importantes en toda la organización, lo que puede acarrear inversiones importantes en infraestructuras o recursos humanos.

Anexo 4.5 DESARROLLO DE LA METODOLOGÍA DE INGENIERÍA

Desarrollo de la propuesta

Programación de actividades del plan de mejora utilizando el ciclo PHVA

PLANIFICAR:

El planear consta de la selección del equipo de trabajo indicado, luego se establecen políticas, misión, visión y objetivos para el área encargada de mantenimiento.

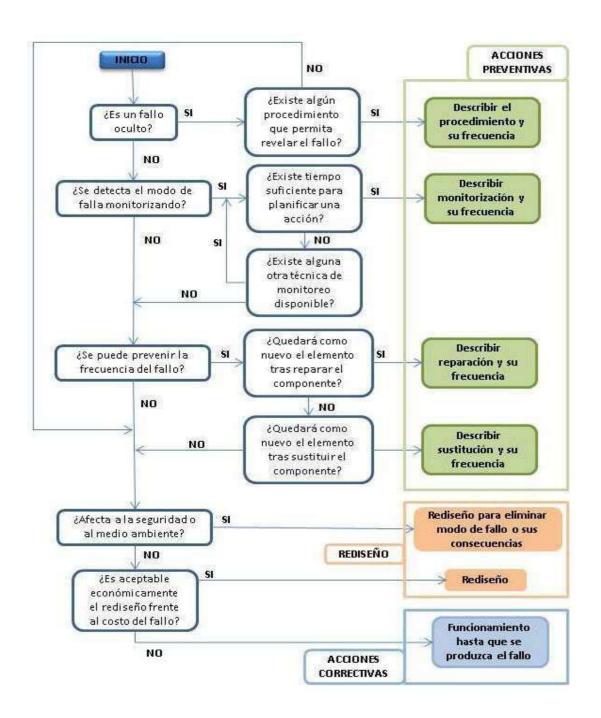
Estrategia:

a) Formación del equipo de trabajo.

El equipo de gestión de activos se ha conformado para dar soluciones exactas, debe ser muy disciplinado y se tendrán profesionales como ingenieros y técnicos de mantenimiento (Especialistas en los equipos de las marcas con las que se cuentan en el lote X). Se plantea que el equipo de mantenimiento de motores y compresores a gas este constituido por 6 personas permanentes y otros de soporte temporales (caso de los especialistas). En el grupo de trabajo existen seis integrantes:

Supervisor de mantenimiento: Es el encargado de la gestión del mantenimiento y generar soluciones oportunas.

Supervisor de Seguridad: Es el encargado de la seguridad y salud ocupacional del equipo de trabajo para los mantenimientos de motores y compresores de gas en el lote X.


Técnico de Mantenimiento Mecánico:

Técnico Mantenimiento de Instrumentación:

Planificador de Tareas de Mantenimiento:

Técnico de Almacén:

Fig. 3 Árbol Lógico de Decisiones

Dentro del esquema propuesto y para llevar un orden en el despliegue realizado por el equipo de trabajo, se pretende seguir el presente árbol lógico de decisiones, si bien es cierto se realiza una revisión de seguimiento al sistema de gestión de mantenimiento con el que se cuenta con la finalidad de proponer las mejoras necesarias siguiendo el orden de las prioridades que se desprenden del análisis de los resultados y luego de aplicados los instrumentos respectivo, esta actividad nos orienta a que nuestra mejora aplicando el ciclo PHVA, nos conlleve a mejorar los indicadores respectivos, especialmente la disponibilidad de nuestros motores y compresores a gas

b) Misión del mantenimiento: Mantener la disponibilidad de los activos motores y compresores de gas en el lote X, dentro los estándares de calidad, seguridad, salud ocupacional y cuidado al medio ambiente; brindando la operatividad del sistema de compresión de gas para el cliente CNPC PERU.

c) Visión del mantenimiento

Ser en el 2025 una de las empresa líder en el mantenimiento de motores y compresores a gas , a nivel nacional e internacional ejecutando nuestras actividades de manera segura tanto para el personal de operaciones y el medio ambiente; aplicando la mejora continua en nuestros procesos de mantenimiento.

Política de mantenimiento

La política de gestión de mantenimiento de motores y compresores a gas debe estar alineada a la estrategia organizacional y consta de los lineamientos para asegurar la continuidad del servicio y la eficiencia de su prestación.

La política de mantenimiento está conformada 5 compromisos que se detallan de la siguiente manera:

- Mejorar la confiabilidad operacional de los activos motores y compresores , plasmando el equilibrio entre desempeño, costo y riesgo de los activos en cada ciclo de vida
- 2. Acatar la normatividad legal y otros estándares internos de la empresa, así como estándares internacionales.
- 3. Incentivar la mejora continua de los procesos.
- Capacitar y Adiestrar al personal relacionado con los activos en todo su ciclo de vida.
- 5. Identificar, evaluar y minimizar los riesgos que afecte la integridad de las personas, medio ambiente y activos.

DISEÑO

ANÁLISIS DE CRITICIDAD:

En esta etapa jerarquizaremos las partes principales que compone el sistema de encendido de un motor de compresión de gas, con la finalidad de optimizar su funcionamiento mediante la mejora de su mantenimiento. Los criterios empleados serán: Frecuencia de fallas. Impacto operacional. Flexibilidad operacional. Coste de mantenimiento. Impacto en seguridad, ambiente e higiene. Los criterios empleados para la obtención de la criticidad total del sistema, se muestran en los siguientes cuadros:

FRECUENCIA DE FALLAS				
ELEVADO MAYOR A 4 FALLAS /MES	4			
PROMEDIO 2-4 /MES	3			
BUENO 1-2 FALLAS /MES	2			
EXCELENTE 1 FALLA AL /MES	1			

IMPTACTO OPERACIONAL	
PARADA TOTAL DEL EQUIPO	10
PARADA PARCIAL DEL EQUIPO Y REPERCUTE A OTRO EQUIP, SUBSISTEMA	7 A 9
IMPACTA A NIVELES DE PRODUCCION O CALIDAD	5 A 6
REPERCUTE EN COSTOS OPERACIONALES ASOCIADOS A LA DISPONIBILIDAD	2 A 4
NO GENERA NINGUN EFECTO SIGNIFICATIVO	1

FLEXIBILIDAD OPERACIONAL	
NO EXISTE OPCION IGUAL O EQUIPO SIMILAR DE REPUESTO	4
EL EQUIPO PUEDE SEGUIR FUNCIONANDO	2 A 3
EXISTE OTRO IGUAL O DISPONIBLE FUERA DEL SISTEMA STAN BY	1

COSTOS DE MANTENIMIENTO	
MAYOR O IGUAL A US\$400 (INCLUYE REPUESTOS)	2
MENOR O IGUAL A US\$400 (INCLUYE REPUESTOS)	1

IMPACTO A LA SEGURIDAD MEDIO AMBIENTE E HIGIENE				
ACCIDENTE CATASTROFICO	8			
ACCIDENTE MAYOR SERIO	6 A 7			
ACCIDENTE MENOR E INCIDENTE MENOR	4 A 5			
CUASIACCIDENTE O INCIDENTE MENOR	2 A 3			
DESVIO	1			
NO PROVOCA NINGUN TIPO DE RIESGO	0			

Luego de conocer los parámetros a considerar en la evaluación de la criticidad por componentes y además orientados por las principales fallas que se han presentado en el mantenimiento realizado a motores y compresores de gas podemos considerar la siguiente formulas en nuestro modelo de criticidad:

CRITICIDAD = FRECUENCIA X CONSECUENCIA
FRECUENCIA = NUMERO DE FALLAS EN UN TIEMPO DETERMINADO
CONSECUENCIA= (IMPACTO EN OPERACIONAL X FLEXIBILIDAD
OPERACIONAL) + COSTO DE MANTENIMIENTO + IMPACTO EN SEGURIDAD
Y MEDIO AMBIENTE.

Asimismo es importante conocer cómo vamos a determinar, la jerarquización de nuestros componentes con la finalidad de conocer la criticidad de cada uno de ellos aplicada la formula se considerara la siguiente característica:

Critico	Semi Critico	No critico
C ≥ 90	40 ≤ C < 90	C < 40

De tal forma una vez aplicadas las formulas en los 2 sistemas que presentan más problemas y donde se ha tenido más fallas en las actividades de mantenimiento efectuadas a los motores y compresores a gas tenemos el siguiente análisis de los resultados del análisis de criticidad de componentes explicada en la tabla 22:

TABLA № 22
RESULTADOS DEL ANALISIS DE CRITICIDAD SISTEMA DE ENCENDIDO DE MOTORES Y COMPRESORES A GAS

ITEM	COMPONENTE	FRECUENCIA*	IMPACTO OPERACIONAL	FLEXIBILIDAD	COSTOS DE MANTENIMIENTO	IMPACTO EN SEGURIDAD MEDIO AMBIENTE Y SALUD	CONSECUENCIA	TOTAL	JERARQUIA
1	MODULO CENTURION CPU 95	4	10	4	2	0	42	168	CRITICO
2	TABLERO ELECTRICO	2	1	4	1	0	5	10	NO CIRITICO
3	DISPLAY DE CPU 95	4	7	4	2	0	30	120	CRITICO
4	ELEMENTOS ELECTRICOS FUSIBLES	2	5	1	1	1	7	14	NO CIRITICO
5	CABLEADO INTERNO TABLERO	2	5	1	1	1	7	14	NO CIRITICO
6	ELEMENTOS ELECTRICOS RELES	2	5	4	1	0	21	42	SEMICRITICO
7	SENSORES DE EFECTO HALL	4	10	4	1	0	41	164	CRITICO
8	CABLE DE BUJIAS	4	10	4	1	2	43	172	CRITICO
9	BOBINAS DE IGNICION	4	10	4	1	0	41	164	CRITICO
10	BUJIAS	4	10	1	1	2	13	52	SEMICRITICO
11	CABLE PRINCIPAL	4	5	4	2	0	22	88	SEMICRITICO
12	CABLE SECUNDARIO	4	5	4	2	0	22	88	SEMICRITICO
13	MODULO VARISPARK	4	10	4	2	2	44	176	CRITICO
14	FUENTE DE ALIMENTACION 24VDC	4	10	1	1	0	11	44	SEMICRITICO

^{*:} Frecuencia de Fallas analizadas en el año 2021, atraves de analisis de datos mantenimientos correctivos 2021

Fuente: elaboracion Propia

Dentro del análisis de criticidad aplicado al sistema de encendido se puede determinar que existen 06 componentes críticos y 04 elementos semicríticos, habiendo atraves de nuestros resultados concluido con que la baja disponibilidad de los motores y compresores se debe a la falta de repuestos en los mantenimientos correctivos, y siendo parte fundamental de las actividades de mantenimiento se propone en esta etapa de planificación elaborar la respectiva lista de repuestos críticos para que sea considerada a través del área correspondiente su gestión de compra y asegurar su existencia en almacén, asimismo se entrelaza esta información con el área de supervisión y planificación, para coordinar la programación de las actividades semanales donde se garantice que se cuenta con estos repuestos y generar la ordenes de trabajo respectivas.

TABLA 23

Lista de Repuestos Críticos sistemas de encendido

IT	DESCRIPCION	MARCA	CANTIDAD	P.UNITARO	TOTAL
	MODULO CENTURION CPU				
1	95	ALTRONICS	1	5.632,00	5.632,00
2	ELEMENTOS ELECTRICOS RELES	S/R	12	58,00	696,00
3	SENSORES DE EFECTO HALL	ALTRONICS	3	189,00	567,00
4	CABLE DE BUJIAS	S/(R	12	165,00	1.980,00
5	BOBINAS DE IGNICION	ALTRONICS	6	521,00	3.126,00
6	BUJIAS	S/R	1	65,00	65,00
9	MODULO VARISPARK	ALTRONICS	2	1.542,00	3.084,00
	FUENTE DE ALIMENTACION				
10	24VDC	ALTRONICS	2	852,00	1.704,00
		TOTALSOLES			16.854,00

Fuente : elaboración Propia

Resultado del análisis de criticidad aplicado al sistema de protección, control y monitoreo de motores y compresores a gas.

TABLA № 24

RESULTADOS DEL ANALISIS DE CRITICIDAD SISTEMA DE PROTECCION, CONTROL Y MONITOREO

ITEM	COMPONENTE	FRECUENCIA*	IMPACTO OPERACIONAL	FLEXIBILIDAD	COSTOS DE MANTENIMIENTO	IMPACTO EN SEGURIDAD	CONSECUENCIA	TOTAL	JERARQUIA
1	solenoide de accionamiento gas comb.	3	10	4	2	0	42	126	CRITICO
2	Valvula reguladora de presion	2	1	4	1	0	5	10	NO CRITICO
3	transductor de presion aceite motor	2	7	4	2	0	30	60	SEMICRITICO
4	$transductor\ de\ temperatura\ acei.\ Compr$	3	5	1	1	1	7	21	NO CRITICO
5	switch de presion arranque del motor	4	5	1	1	1	7	28	NO CRITICO
6	$solenoide\ de\ accionamiento\ arranque\ M$	4	5	4	1	0	21	84	SEMICRITICO
7	switch de nivel tanque aguamotor	4	10	4	1	0	41	164	CRITICO
8	swirch de vibraciones motor	4	10	4	1	2	43	172	CRITICO
9	carburador	2	10	4	1	0	41	82	SEMICRITICO
10	valvula fisher de gas combustible	4	10	1	1	2	13	52	SEMICRITICO
11	switch de vibraciones compresor	1	5	4	2	0	22	22	NO CRITICO
12	swirch de vibraciones aeroenfriador	1	5	4	2	0	22	22	NO CRITICO
13	termocupla de escape	4	10	4	1	2	43	172	CRITICO
14	sistema de drenaje autoamtico deliquidos	5 4	10	1	2	5	17	68	SEMICRITICO
15	sensores de temperratura de cilindros	2	10	4	1	0	41	82	SEMICRITICO
16	Baterias	4	1	4	1	0	5	20	NO CRITICO
17	bombin de lubricacion	4	7	4	1	0	29	116	CRITICO
18	caja lubricadora	4	5	1	1	1	7	28	NO CRITICO
19	lineas de agua de refirgeracion de motor	4	5	1	1	1	7	28	NO CRITICO

^{*:} Frecuencia de Fallas analizadas en el año 2021, atraves de analisis de datos mantenimientos correctivos 2021

Fuente : elaboracion Propia

Otro componente al cual se le aplico el análisis de criticidad es el sistema de protección, control y monitoreo de donde se determina que existen 05 componentes críticos y 06 elementos semicríticos, se considera importante para la mejora de la gestión de mantenimiento asegurar un stock de repuestos críticos que permita mantener esta cantidad de repuestos disponible en almacén para poder atender un eventual correctivo que permita atender en el menor tiempo posible esta contingencia, para lo cual se debe articular entre las areas correspondientes, la cotización, compra y difusión de la lista de repuestos entre las areas involucradas

FORMULARIOS DE PLANIFICACION DE MANTENIMIENTO PREVENTIVO

Siguiendo con la metodología del ciclo PHVA, en la etapa de planificación es importante reconocer que los formularios son necesarios para estandarizar las actividades de mantenimiento si bien es cierto la empresa cuenta con un formato de planificación de mantenimientos correctivos, y analizando la realidad de la gestión de mantenimiento encontramos que no existen procedimientos para los mantenimiento preventivos realizados a los motores y compresores a gas, por lo que se hace necesario utilizar este formato previo a la adecuación y creación de los procedimientos respectivos.

Fig. 4
Formato de Planificación de Mantenimiento Preventivo

	-						
ရာ							
CONFIPETROL CONFIPETROLS	S.A.	Fecha de emisión: 09/01/2022					
COMPRESION DE	GAS	Versión: 1	Revisión: 0				
01.02 Guía Planificación de Man	tenimiento Preventivo	Página: 1					
FORMULARI	O DE PLANIFICACIO	N MANTENIMIENTO PRE\	/ENTIVO				
DESCRIPCION DEL TRABAJO	MANTTO. PREVENTIVO	DE SISTEMA DE ENCENDIDO A GAS LOTE X	- MOTORES Y COMPRESORES				
	IDENTIFICACIO	N DEL EQUIPO					
MARCA	AJAX	MODELO	DPC-360				
SISTEMA	CPU-95	Requirente	CNPC PERU S.A				
Número de equipo	C-2	Fecha Pedido	01/01/2022				
Descripcion del equipo	Motor a gas	Planificador	Percy Temoche Socola				
Ubicación del equipo	EPN-30	№ Revisión	0				
Planta en que se encuentra	ESTACION DE COMPRESION	Fecha Emisión	09/01/2022				
Criticidad del equipo	2	Estándar №	STD-IN.				
SEGURIDAD							
Tiene procedimiento asociado?	HSEQ-S&SO-PET-1 Permisos d	e trabajo					
	OYM-INS-PET-3 Mantenimiento	de instrumentos y Control					
	HSEQ-S&SO-PET-3 Manejo de	residuos					
Riesgos potenciales	Golpes con herramientas, mani	puleo de cargas pesadas, caídas a dife	rente nivel y contacto eléctrico				
Bloqueos	Desenergizar y bloquear motor	y bloqueo de valvulas manuales de linea	a de gas de succion, gas combustible,				
bioqueos	gas de arranque, descarga de gas, Señalizar área de trabajo						
Comunicaciones de seguridad	omunicaciones de seguridad Coordinación con Fiscalizador y operador de estacion de compresion						
Equipos de protección personal	Casco, guantes, vestuario de t	rabajo, zapatos dieléctricos, anteojos, et	tc				
MEDIO AMBIENTE							
Posibles residuos a generar	Residuos de material utilizado o	retirado en la actividad, trapos,					
Posibles emisiones	Ninguna						
PERMISOS / HABILITACIONES		OBSER\	/ACIONES				
Trabajos en caliente	NO						
Trabajos en frío	SI	trabajos de mantenimiento y reparacion	n de elementos de sistemas de encendido				
Excavación de zanja	NO						
Espacio confinado	NO						
Trabajo eléctrico	SI	Trabajos electricos en tablero de contr	ol 24VDC, 220 VAC				
Izaje de cargas	NO						
Trabajo en altura	NO						
Ambiental	NO						
HERRAMIENTAS		LISTADO DE REPUE	ESTOS / MATERIALES				
	Valor	Descripción	Número CEM				
Según : Listado de herramientas del Servicio de Instrumentacion		Listado de material electrico.	Según Anexo 1				
EQUIPOS		MATERIAL CONSUMIB.					
Multimetro Digital Calibrado		Trapo	0.5 kl.				
<u> </u>		Biodegradable	1 gL.				
		Limpiacontactos	1 Unid				
		•					
		WD-40	1 Unid				
DEDCOMAL							
PERSONAL							
01 Personal Tecnico Instrumentista I							
01 Auxiliar de Instrumentista							

CONFIPETROL	CONFIPETROL S.A	Fecha de emisión: 09/	01/2022				
	COMPRESION DE GAS	Versión: 1	Revisión: 0				
	01.02 Guía Planificación de Mantenimiento Preventivo	Página: 2					
	FORMULARIO DE PLANIFICACION MANTENIMIENTO PREVENTIVO						

ETAPAS	DESCRIPCION DOCUMENTACION RELACIONADA	DETALLE
1	Planos, manuales y otra información de ingeniería	SI
	que esté relacionadad con el trabajo	
2	Fotos relacionadas	NO
3	Trabajos anteriores similares	SI
4	Posibles contingencias	Trabajo crítico, cumplimiento dentro del tiempo programado
5	Valorización del trabajo	
	Materiale	6
	Mano de Obra	A Comment of the Comm
	Herramienta	
	Equipo	6

ETAPAS	DESCRIPCION DE LA TAREA	CUADRILLA	TIEMPO	PUNTOS CLAVE
Α	Tiempo de paro estimado del equipo (downtime)		06 horas	
В	Trabajos previos a la ejecución			
	Retirar material necesario de almacén Confipetrol.	Instrumentacion		
	Transportar los materiales al área de trabajo	Instrumentacion		
	Informar y coordinar al fiscalizador responsables de mantenimeinto y operador de Estacion	Supervisor Confipetrol	01 hora	
	de Compresion, para el inicio de los trabajos programados.	Supervisor Corinpetror		
	Bloqueo y Etiquetado de Valvulas, Señalizar o barricar área de trabajo.	Instrument / Operador		
С	Ejecución del trabajo		04 horas	
	INSPECCION DEL AREA DE TRABAJO			ļ
	La cuadrilla encargada del trabajo debe realizar un recorrido al area en donde se			
	realizara la labor, verificando los siguientes puntos:	Instrumentistas		
	* Comunicación constante con personal mecanico e instrumentistas responsables del trabajo	Instrumentistas		
	para iniciar trabajos.			
	* Detectar en el recorrido de la instalacion, si existen cableados energizados	Instrumentistas		
	* Evaluacion e identificacion de peligros y riesgos del trabajo.	Instrumentistas		
	* Verificar el estado de los equipos de protección individual, equipos de protección colectiva y	Instrumentistas		
	herramientas que se vayan a utilizar.	motramentotas		
	Bloquear, aislar, medir, consignar el tablero electrico del motor para los trabajos electricos de	Operador / Instrument		
	normalizacion del equipo.	operador / motrament		
	INICIO DE TRABAJOS			
	Coordinar con el operador de turno, para sacar fuera de servicio el Motor C-3, en campo.	Operador		
	Bloquear valvulas manuales de entrada y salida de gas.	Operador		
	Desernegizar tablero de control principal del motor, abrir fusibles y desconectar varispark	Instrumentistas		Durante la ejecución
	Verificar Cables de Bujia, desmontar, realizar medicion, registrar	Instrumentistas		del trabajo de
	Verificar bobinas, realizar medicion, registrar	Instrumentistas		mantenimiento
	Verificar Bujias, retirar medicion, calibrar, registrar medicion final	Instrumentistas		preventivo del motor,
	Verificar estado de Pickup Magnetico Altronics, registrar valores	Instrumentistas		estara fuera de
	Verificar estado de Cable Primario, realizar Medicion, registrar.	Instrumentistas	04 hrs.	servicio
	Verififcar Estado de Cable Secundario, realizar medicion, registrar	Instrumentistas		
	Verificar estado de tablero local Altronics CPU-95, realizar medicion Varispark, registrar	Instrumentistas		
	Verificar Fuente de alimentacion 24VDC, realizar medicion, registrar	Instrumentistas		
	verificar Fusibles, medir, registrar.	Instrumentistas		
	verificar modulo de visualizacion	Instrumentistas		
	verificar cableado de modulo de visualizacion	Instrumentistas		ĺ
	verificar parametros de configuracion Altronics CPU-95	Instrumentistas		
	registra parametros de configuracion Altronics CPU-95	Instrumentistas		
	verificar registro de fallas y eventos Altronics CPU-95	Instrumentistas		
	verificar estado y modo del sistema Altronics CPU-95	Instrumentistas		
	Verificar Nivel de energia de encendido Altronics CPU-95	Instrumentistas		
	Verificar Modo y Numero de disparos, registrar	Instrumentistas		
	Verificar Tiempo Global en grados BTDC registrar	Operador / Instrument		
	verificar voltaje de bujias por cilindro, registrar	Operador		
	Entrega de trabajos al personal de operaciones.	Instrument / Operador		ĺ
	Conformidad de trabajo terminado por parte de operaciones.	Instrument / Operador		
D	Trabajos posteriores a la ejecución			
	Limpieza del lugar de trabajo	Personal Instrument	0.15 hr.	
E	Completar documentación OT			
-	Realizar reporte de trabajo	Personal Instrument	0.15 hr.	1
		. 1.55.1a. moramon	0.10111.	

Fuente: confipetrol Andina S.A.

ELABORACION DE FORMATO PARA REGISTRO DE CONFIGURACION DE SISTEMA DE ENCENDIDO MOTORES

Otra de las deficiencias que arrojaron nuestros resultados en la etapa previa fueron la falta de registros que puedan ser analizados antes de que se presente los problemas y el manejo eficiente de esta información, debido a que las tareas realizadas eran generales y básicas, no se tomaba en cuenta algunas funcionabilidades de los sistemas de encendido propias del equipo, debido a esto se obviaba el registro pertinente de valores importantes dentro del mantenimiento que podían beneficiar en el tiempo de vida de los sistemas de encendido, por este motivo en la etapa de planificación se elabora el presente formato aplicado al sistema de encendido de la marca Altronics CPU 95.

Fig. 5
Formato de Registro de Configuración

CONFIPETROL	FORMATO DE R CONFIPETROL S.A. IDENTIFICACION D	EGISTRO DE CONFIGURACION SISTE ENCENDIDO F01-03S.E.CPU,95 PEL EQUIPO	MA DE
MARCA	MO	DELO	
SERIE TAG DEL EQUIPO MOTOR	VE UB ES		
CODIGO DE PÁTRON DE DISPARO		MUTISTRIKE	ON
CODIGO DE FUNCION ESPECIAL			OFF
TIPO DE MODULO DE ENCENDIDO			
FECHA DE CONFIGURACION			E1
TIEMPO CONFIGURADO		CHISPA DE ENCENDIDO	E2
CONFIGURADO POR			E 3
VERSION DEL TERMINAL			
DESCRIPCION DE LA CURVA DE LAZO DE CORRIENTE	4 mA	AJUSE DE SOBREVELOCIDAD	
DESCRIPCION DE LA CURVA	4 mA	HORA	
DE RETARDO DE RPM	20mA	FECHA	
UBICACIÓN		FALLA # 1	
UBICACIÓN		FALLA#2	
NUMERO DE MOTOR		FALLA #3	
COMENTARIO # 1		FALLA # 4	
COMENTARIO # 2		FALLA # 5	

PLANIFICACIÓN DEL MANTENIMIENTO PREVENTIVO

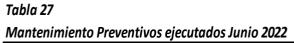
Para mejorar el sistema de gestión del mantenimiento es necesario planificar el mantenimiento preventivo en función a las horas de funcionamiento de los equipos teniendo que considerar mantenimiento a las 750 Horas, 1500 Horas, 3000 Horas, 4500 Horas, 6000 y 9000 Horas lo que tiene que ir a la par con las actividades que se desarrollan en las mismas la diferenciación de los mantenimientos incide en los recursos asignados, el personal, la seguridad industrial y la supervisión.

Establecer nuestro programa de mantenimiento va a permitir que los equipos estén en constante inspección y monitoreo, considerando que son equipos que trabajan las 24 horas del día y que están sometidos a trabajo continuo, los que se necesita es que se logre la efectividad del mantenimiento, el cual tiene que estar a la mano con las exigencias que propone el cliente.

El rol del planificador encargado de la programación es muy importante ya que de este surge la contundencia en los mantenimiento, es decir se hace necesario que el personal este mentalizado en ejecutar un mantenimiento programado de la mejor manera, por lo que se necesita todos los recurso que estén a la mano, se hace importante que se conozca el equipo y las instalaciones.

Fig. 6
Programa de Mantenimiento Preventivo.

Motor y Compresor



Equi	pos en Es	tación					CONFIPE	rol
•			Programa de M	lantenimiento	Preventivo Sema	nal Mayo 2022		
			Dato	os generales d	el Equipo	Mant.	Fecha Tentativa	AVANCE
Item	Estación	ubicación	Equipo	Marca	Modelo		de Programación	7.07.0.02
1	EPN30	C4 EPN30	Motor	Caterpillar	G-3306 NA	3000 h	sep-21	0%
-	EPN30	C4 EPN30	Compresor	Gardner Denver	SSQ	4500 h	sep-21	0%
2	EPN31	C1 EPN31	Motor	Caterpillar	G-3406 TA	3000 h	sep-21	0%
3	EPN31	C3 EPN31	Motor	Caterpillar	G-3508 TA	6000 h	sep-21	0%
3	EPN31	C3 EPN31	Compresor	Ariel	JGJ/4	1500 h	sep-21	0%
4	ETA29	C2 ETA29	Motor	SIEMENS	CMZ	М	sep-21	0%
4	ETA29	C2 ETA29	Compresor	Ingersoll Rand	2-RDS	1500 h	sep-21	0%
-	ETA29	C3 ETA29	Motor	SIEMENS	CMZ	M (ANUAL)	sep-21	0%
5	ETA29	C3 ETA29	Compresor	Ingersoll Rand	2-RDS	1500 h	sep-21	0%
6	ETA27	C3 ETA27	Motor	Caterpillar	G-3408 TA	750 h	sep-21	0%
-	ELA06	C1 ELA06	Motor	Caterpillar	G-398	6000 h	sep-21	0%
7	ELA06	C1 ELA06	Compresor	Ingersoll Rand	2-RDS	9000 h	sep-21	0%
0	ELA06	C3 ELA06	Motor	Caterpillar	G-398	3000 h	sep-21	0%
8	ELA06	C3 ELA06	Compresor	Ingersoll Rand	2-RDS	9000 h	sep-21	0%
9	EZA04	C1 EZA04	Motor	Caterpillar	G-3406 TA	750 h	sep-21	0%
10	EZA04	C2 EZA04	Motor	Caterpillar	G-3408 TA	1500 h	sep-21	0%
10	EZA04	C2 EZA04	Compresor	Ariel	JGA/4	4500 h	sep-21	0%
11	ECA18	C2 ECA18	Moto-compreso	ı Ajax	DPC-360	4500 h	sep-21	0%
12	ECA18	C3 ECA18	Motor	Caterpillar	G-398	6000 h	sep-21	0%
12	ECA18	C3 ECA18	Compresor	Ingersoll Rand	2-RDS	9000 h	sep-21	0%
4.0	ECA18	C4 ECA18	Motor	SIEMENS	CMZ	М	sep-21	0%
13	ECA18	C4 ECA18	Compresor	Ingersoll Rand	2-RDS	1500	sep-21	0%
14	ECA22	C3 ECA22	Moto-compreso	ı Ajax	DPC-360	1500 h	sep-21	0%
15	ECA22	C4 ECA22	Motor	Caterpillar	G-3508 TA	3000 h	sep-21	0%
15	ECA22	C4 ECA22	Compresor	Ariel	JGJ/4	9000 h	sep-21	0%

HACER:

Ejecución del mantenimiento preventivo aplicado a motores y compresores a gas

Dentro de la aplicación de nuestro ciclo PHVA, en la etapa hacer nuestra propuesta propone ejecutar, luego de haber planificado las actividades dentro del mantenimiento preventivo, enfocando la realización del mantenimiento de una manera más específica se logró programar la ejecución de los siguientes mantenimientos teniendo en cuenta que uno de nuestros sistemas que ha presentado más problemas, es el sistema de encendido y aplicando los formatos propuestos en la etapa de planificación, se muestra en la tabla 27, los mantenimientos preventivos ejecutados hasta el mes de Junio del 2022

Wanteniiii	I TEVELLU	os ejecutuuo	3 741110 ZUZZ	CONFIFETROL
Orden	Clase de orden	Fecha entrada	Denominación	Denominación Texto breve
4480186926	PES2	06/01/2022	C2-ECA22	$Ingersoll\ Rand\ MANTENIMIENTO\ 1500H\ COMPR\ INGERSOLL\ RAND$
4480186927	PES2	07/01/2022	C2-ECA22	Caterpillar G-3 MANTENIMIENTO 1500H MOTOR CAT G-398
4480186941	PES2	08/01/2022	C1-EZA04	CATERPILLAR G MANTENIMIENTO 750h MOTOR CAT G-3406
4480187064	PES2	09/01/2022	C1-EZA04	CATERPILLAR G MANTENIMIENTO 750 H MOTOR - INSTRUMENTOS
4480187252	PES2	10/01/2022	C4-EPN30	Motor Caterpil MANTTO. PREVENT. 3000H. INSTR. MOTOR
4480187267	PES2	11/01/2022	C2-ECA18	Ajax DPC-360 MANTTO. PREV. 1500H. INSTRUMENTOS MTC.
4480187296	PES2	12/01/2022	C2-EZA04	ARIEL JGA/4 MANTTO 1500H INSTR COMPRESOR ARIEL
4480187295	PES2	13/01/2022	C2-EZA04	Caterpillar G-3 MANTTO. PREVENT. 1500H. INSTR. MOTOR
4480187302	PES2	01/02/2022	C1-ELA06	Ingersoll Rand MANTTO. PREV. 1500H. INSTRUM. COMPRESOR
4480187301	PES2	02/02/2022	C1-ELA06	Caterpillar G-3 MANTTO. PREV. 6000H. INSTRUMENTOS MOTOR
4480187660	PES2	03/02/2022	C8-EPN30	Caterpillar G3: MANTTO. PREVENT. 3000H. INSTR. MOTOR
4480187686	PES2	04/02/2022	C2-ETA29	Ingersoll Rand MANTTO. PREV. 9000H. INSTR. COMPRESOR
4480187369	PES2	05/02/2022	C4-ETA28	Caterpillar G-3 MANTTO. PREV. 1500H. INSTRUMENTOS MOTOR
4480187738	PES2	06/02/2022	C4-ECA18	Ingersoll Rand MANTTO. PREV. 9000H. INSTR. COMPRESOR
4480187725	PES2	07/02/2022	C4-ECA18	Motor Electrica MANTENIMIENTO 3 M MOTOR ELECTRICO
4480187751	PES2	05/03/2021	C2-ETA29	Ingersoll Ranc MANTTO. PREV. 1500H. INSTR. COMPRESOR
4480187101	PES2	17/01/2022	C2-ETA29	Motor Electrica MANTTO PREV 3MESES MOTOR SIEMENS
4480187790	PES2	12/03/2022	C1-EZA04	CATERPILLAR G MANTTO. PREV. 750H. INSTRUMENTOS MOTOR
4480188163	PES2	09/04/2022	C3-ELA06	Ingersoll Rand MANTTO. PREVENT. 4500H. INSTR. COMPR.
4480188160	PES2	10/04/2022	C3-ELA06	Caterpillar G-3 MANTENIMIENTO MOTOR CAT G-398
4480188162	PES2	11/04/2022	C3-ELA06	Caterpillar G-3 MANTTO. PREV. 1500H INSTRUMENTOS MOTOR
4480188164	PES2	12/04/2022	C1-EPN31	Caterpillar G-3 MANTENIMIENTO MOTOR CAT G-3406
4480188254	PES2	13/04/2022	C2-ECA22	Ingersoll Ranc MANTTO. PREVENT. 1500H. INSTR. COMPR.
4480188253	PES2	14/04/2022	C2-ECA22	Caterpillar G-3 MANTTO. PREV. 3000H. INSTRUMENTOS MOTOR
4480188427	PES2	15/04/2022	C1-ETA28	Ingersoll Ranc MANTTO. PREV. 4500H. INSTRUM. COMPRESOR
4480188424	PES2	16/04/2022	C1-ETA28	Caterpillar G-3 MANTENIMIENTO MOTOR CAT G-398
4480188439	PES2	03/05/2022	C4-ECA18	Ingersoll Rand MANTTO. PREV. 4500H. INSTR. COMPRESOR
4480188449	PES2	04/05/2022	C4-ETA28	Ingersoll Ranc MANTTO. PREV. 1500H. INSTRUMENTOS COMPR.
4480188446	PES2	05/05/2022	C4-ETA28	Caterpillar G-3 MANTENIMIENTO MOTOR CAT G-398
4480188448	PES2	06/05/2022	C4-ETA28	Caterpillar G-3 MANTTO. PREV. 3000H. INSTRUMENTOS MOTOR
4480188843	PES2	01/06/2022	C3-EPN31	Motor Caterpil MANTENIMIENTO 3000 h MOTOR CAT G-3508
4480188844	PES2	02/06/2022	C3-EPN31	ARIEL JGA/4 MANTTO. 1500 h COMPR. ARIEL JGJ/4
4480188849	PES2	03/06/2022	C3-EPN31	Motor Caterpil MANTTO. PREV. 3000H. INSTRUM. MOTOR CAT.
4480188850	PES2	04/06/2022	C3-EPN31	ARIEL JGA/4 MANTTO. COMPR. 1500H ARIEL JGJ/4
4480188860	PES2	05/06/2022	C3-ELA06	Caterpillar G-3 MANTENIMIENTO 6000 h MOTOR CAT G-398
4480188864	PES2	06/06/2022	C3-ELA06	Caterpillar G-3 MANTTO. PREV. 6000H INSTRUMENTOS MOTOR
4480188871	PES2	07/06/2022	C1-EPN31	Caterpillar G-3 MANTENIMIENTO MOTOR CAT G-3406
4480189163	PES2	08/06/2022	C1-ETA27	Ingersoll Rand MANT 1500H COMPR INGERSOLL RAND 2-RDS
4480189162	PES2	09/06/2022	C1-ETA27	Caterpillar G-3 MANTTO PREV. 1500H. INSTRUMENT. MOTOR
4480188837	PES2	30/05/2022	C1-EZA04	ARIEL JGA/4 MANTTO PREV 1500H INSTRUM COMP ARIEL JGA
4480188865	PES2	02/06/2022	C3-ELA06	Ingersoll Rand MANTTO. PREVENT. 1500H. INSTR. COMPR.
4480189306	PES2	28/06/2022	C4-ETA28	Caterpillar G-3 MANTTO. PREV. 1500H. INSTRUMENTOS MOTOR
4480188165	PES2	12/04/2022	C1-EPN31	Caterpillar G-3 MANTTO. PREV. 750H. INSTRUMENTOS MOTOR
4480188146	PES2	31/03/2022	C2-EPN30	Ajax DPC-360 MANTTO. PREV. 1500H. INSTRUM. MTC. AJAX
4480189067	PES2	17/06/2022	C1-ELA06	Caterpillar G-3 MANTTO. PREV. 1500H. INSTRUMENTOS MOTOR

ACTIVIDADES REALIZADAS DENTRO DEL MANTENIMIENTO PREVENTIVO APLICADO A LOS SISTEMAS DE ENCENDIDO

Las actividades realizadas a los motores y compresores a gas que se lograron aplicar tenemos, que se realizó 9 mantenimientos de 750 horas, 19 mantenimientos preventivos de 1500 horas, 6 mantenimientos de 3000 Horas, 6 mantenimientos de 4500 horas, 3 mantenimientos de 6000 horas y 2 mantenimientos de 9000 horas, las actividades realizadas se distribuyen de la siguiente manera:

TABLA 28
CANTIDAD DE MANTENIMIENTO EJECUTADO POR HORAS DE FUNCIONAMIENTO

ΙT	MANTENIMIENTO	CAT-3512	CAT 3306	AJAX-398	WAUKESHA	CAT-398	CAT-3408	CAT - 3406	CAT -3508	TOTAL
1	MP 750 HORAS		2	1	1		1	4		9
2	MP 1500 HORAS	1	1	4		1	8	2	2	19
3	MP 3000 Horas		2			2			2	6
4	MP 4500 Horas	2			4					6
5	MP 6000 Horas			3						3
6	MP 9000 Horas						2			2

Fuente: Elaboracion Propia

ACTIVIDADES REALIZADAS DENTRO DEL MANTENIMIENTO PREVENTIVO EJECUTADO APLICADO A LOS SISTEMAS DE ENCENDIDO

Plenamente identificada la deficiencia que existe en los mantenimientos realizado al sistema de encendido de los motores y compresores a gas se llevó a cabo la ejecución de mantenimiento preventivo por componentes aplicando la documentación técnica del manual del fabricante e identificando las partes de los repuestos y llevando a cabo las acciones respectivas lo que se vio reflejado en la reducción de las fallas ocurridas en los motores y compresores a gas por causa de sistema de encendido, a continuación en las siguientes tablas se presentan las actividades realizadas.

45

TABLA 29
ACTIVIDADES REALIZADAS COMPONENTE MODULO DE ENCENDIDO

ACTIVIDAD	DES REALIZADAS COMPONENTE I	MODULO DE	ENCENDIDO altronic	c					
MODULO ENCENDIDO CPU 95									
MARCA	ALTRONICS	MODELO	CPU 95						
SERIE	791950	SISTEMA	ENCENDIDO						
N° de Pieza	Descripcion		Actividad realizada						
661668-A	EEPROM	Verificar,Insp	eccionar estado, limpieza, sujecion a placa						
601780-16	Microprocesador	Verificar, Insp	peccionar estado, limpieza, sujecion						
710121-SS	Caja, Acero Inoxidable	Limpieza,esto	ado soporte, verificar estado de hermeticidad						
501222	Junta, conector	verificar esta	do, asegurar						
902648	Tornillo 6-32	ajustar, verifi	icar estado						
510517	Tapón, conector	verificar aseg	gurar						
601871	Fusible de 15	medir, registi	rar medicion						
204015	Enchufe 6 clavijas	limpieza ajus	te, verificar estado						
204016	Enchufe 5 clavijas	limpieza ajus	te, verificar estado						
204014	Enchufe, 12 posiciones	limpieza ajus	te, verificar estado						
610674	EmpacaduraJunta, tapa	Limpieza,esto	ado soporte, verificar estado de hermeticidad						
772065-1	Tarjeta lógica de cubierta	Verificar, Insp	peccionar estado, limpieza, sujecion						
610662	Separador	Verificar, Insp	peccionar estado, limpieza, sujecion						
772059-1	Conjunto tarjeta lógica	inspeccionar,	medir, registrar medicion						
772064-1	Tarjeta lógica blindadade blindaje	Verificar, Insp	peccionar estado, limpieza, sujecion						
781059-8	Conjunto placa potencia, mod.	inspeccionar,	medir, registrar medicion						
710015	Separador de nilón	verificar esta	do, asegurar						
610165	Soporte elástico	verificar esta	do, asegurar						
610386	Cinta de conexión a tierra	Verificar, Insp	peccionar estado, limpieza, sujecion						
902593	Perno 5/16"-18	verificar esta	do, asegurar						
510527	Conexión conduit	Verificar, Insp	peccionar estado, limpieza, sujecion						
210622	Chapa inferior	Verificar, Insp	peccionar estado, limpieza, sujecion						
210625	Empacadura, plato	Verificar, Insp	peccionar estado, limpieza, sujecion						
702120A	Eti queta	Verificar, Insp	peccionar estado, limpieza, sujecion						
610636	Aislador, T-MOS	Verificar, Insp	peccionar estado, limpieza, sujecion						
610530	Aislador,regulador de voltaje	Verificar, Insp	peccionar estado, limpieza, sujecion						

Fuente: instrucciones de Servicio Manual CPU 95 SI 01-02

TABLA 30
ACTIVIDADES REALIZADAS COMPONENTE BUJIAS

	1				
MARCA SERIE	CATERPILLAR	MODELO SISTEMA	194-8518 ENCENDIDO		
N° de Pieza	Descripción	31372171171	Actividad realizad	a	
	Cuerpo de Válvula	Verificar, Inspeccionar estado, limpieza,			
	Aislamiento	medir con v Verificar, In	a za, lijad, eliminar		
194-8518	Conector a bobina	sulfatación			
	separación de electrodo	Medir, registra, calibrar			
	Junta, conector	verificar estado, asegurar			
	Hexagonal para ajuste	ajustar, ver			

Fuente: instrucciones de Servicio Manual Bujía Cat

194-8518

TABLA 31
ACTIVIDADES REALIZADAS COMPONENTE BOBINAS DE ENCENDIDO

	BOBINA	AS DE ENCENDIDO					
MARCA	ALTRONICS	MODELO	501061				
SERIE		SISTEMA	ENCENDIDO				
N° de Pieza	Descripcion		Actividad realiz	rada			
	Cuerpo de Bobina	Verificar,Insp	Verificar,Inspeccionar estado, limpieza,				
	Tuerca de Sujecion	asegurar, cambiar, verificar					
	Placa de sujecion al motor	Verificar,Inspeccionar estado, limpieza, lijad, eliminar sulfatacion					
	Terminal Negativo	Medir, regist	ra, calibrar				
501061	Conector Interno	Verificar,Inspeccionar estado, limpieza, lijad, eliminar sulfatacion					
	Placa de Bobina	Verificar,Inspeccionar estado, limpieza, lijad, eliminar sulfatacion					
	Cableado	Verificar,Inspeccionar estado, limpieza, lijad, eliminar sulfatacion					
	Teminal Positivo	Medir egistra medicion con repecto a tierrra					
	alojamiento de Cable	ajustar, verif	icar estado				

Fuente: instrucciones de Servicio Manual Bobina altronics 501061

TABLA 32
ACTIVIDADES REALIZADAS COMPONENTE CAPTADOR MAGNETICO DE EFECTO HALL

	PICKUF	MAGNETICO	DE EFECTO HALL			
MARCA	ALTRONICS	MODELO	591014-2			
SERIE		SISTEMA	ENCENDIDO			
N° de Pieza	Descripcion		Actividad realizad	da		
	Cuerpo de acero inoxidable 303	Verificar,Inspeccionar estado, limpieza,				
	collar de acero inoxdable 304	asegurar, cambiar, verificar				
	Tuerca Hexagonal SS 15/16	Verificar,Insp	eccionar estado, ajustar			
591014-2	conector de Acero Recubierto	Medir, registra, inspeccionar				
	Pines de Conexión,	Verificar,Insp	eliminar sulfatacion			
	Conectoress rapidos, asegurar	Verificar,Insp	eliminar sulfatacion			
	Placa de montaje	Verificar,Insp				

Fuente: instrucciones de Servicio Manual Captador magnetico 72002

TABLA 33
ACTIVIDADES REALIZADAS COMPONENTE CABLE DE BOBINA

		CABLE DE B	OBINA			
MARCA	ALTRONICS	MODELO	591018			
SERIE		SISTEMA	ENCENDIDO			
N° de Pieza	Descripcion		Actividad realizad	la		
	cable de bobina	Verificar,Inspeccionar estado, limpieza,				
	conector superior a bujia	Verificar,Inspeccionar estado, limpieza, lijad, eliminar sulfatacion				
591018	conector inferior a bobina	Verificar,Inspeccionar estado, limpieza, lijad, eliminar sulfatacion				
591018	goma de ptroteccion cilindro	Verificar,Inspeccionar estado, limpieza,				
	goma de proteccion a bujia	Verificar,Inspeccionar estado, limpieza,				
	aislamiento silicona	medir registra valores				

Fuente: instrucciones de Servicio Manual Cable de bobina 591018

Aplicar plan de Capacitación a personal de mantenimiento en el tema implementación del Ciclo PHVA

Dentro de nuestros objetivos específicos se propone aplicar un plan de capacitación en el tema implementación del ciclo PHVA, con la finalidad de que tanto el personal de producción así como el personal de mantenimiento tengan un conocimiento más amplio de la herramienta de mejora continua que se desea implementar, esta capacitación se debe de brindar de forma práctica, contemplando las características técnicas del equipo, y las herramientas de diagnóstico con las que cuenta por lo que hemos planteado nuestro plan de capacitación de la siguiente manera:

1.- OBJETIVO

Integrar al personal de mantenimiento y de producción en el conocimiento de la implementación del ciclo PHVA, aplicado a la gestión de mantenimiento de motores y compresores a gas, descubriendo su importancia y su aplicación, así como para detectar fallas tempranas que permitirá convertir el mantenimiento preventivo más efectivo y aumentar la disponibilidad de los equipos en mención.

2.- ALCANCE

Nuestro plan de capacitación será aplicado a todo el personal de mantenimiento e instrumentación, así como a los recorredores de producción quienes tienen a cargo la producción en el lote X.

3.- RECURSOS

 HUMANOS: Se comprende a todo el personal de la empresa confipetrol dedicado al mantenimiento y al personal de producción en total 34 trabajadores. MATERIALES: La empresa confipetrol brindara las facilidades respectivas en su centro de capacitación, facilitando un proyector multimedia, mobiliario pizarra y material de escritorio para el personal.

5. EVALUACION

Luego de impartida la capacitación en los respectivos temas se aplicará una evaluación referente a los contenidos de la capacitación que nos permitirá de forma concreta y sencilla evaluar el grado de conocimiento que tiene el personal acerca de ciclo de implementación de la mejora continua ciclo PHVA.

PLAN DE CAPACITACION PROPUESTO: IMPLEMENTACION DEL CICLO PHVA DENTRO DE LAS ACTIVIDADES DE MANTENIMENTO DE MOTORES Y COMPRESORES A GAS

TEMA A DESARROLLAR	OBJETIVOS-COMPETENCIAS A GENERAR	RESULTADOS ESPERADOS	DURACION (horas)	RESPONSABLE
Introducción al Ciclo PHVA PLANIFICAR HACER VERIFICAR ACTUAR	 Mejora los conocimientos acerca de la herramienta de Mejora continua PHVA Conocer la funcionabilidad y Aplicación de la herramienta PHVA. Desarrollar habilidades para Aplicación PHVA en las actividades de mantenimiento. 	Personal tiene conocimiento de los conceptos del ciclo PHVA	2 horas	Capacitador Externo
Implementación del ciclo PHVA en las actividades de mantenimiento de motores y compresores a gas	Integrar la herramienta PHVA a las actividades de Mantenimiento de motores y compresores a gas Identificar las etapas del ciclo PHVA, y adecuar su análisis dentro de las actividades desarrolladas. Comprometerse en la aplicación del ciclo PHVA, en las actividades programadas.	Personal tiene la capacidad de desarrollar actividades del ciclo PHVA, reconociendo cada una de sus etapas Personal utiliza los indicadores con parte del Hacer en el ciclo PHVA adaptándolas a sus actividades	2 Horas	Participantes en general

	Reconocer las actividades que	Propone	
	intervienen en el ciclo PHVA	mejoras en la	
	Identificar el funcionamiento del	gestión de	
Evaluación de	ciclo PHVA	mantenimient 1 Hora	Participantes
retroalimentacion	Verificar datos externos aplicados	o aplicando el	
acerca de la capacitación del Ciclo PHVA	en ciclo PHVA.	ciclo PHVA	

VERIFICAR:

Es necesario en la etapa de verificar, realizar la comparación obtenida de los indicadores de mantenimiento analizada al aplicar nuestros instrumentos en las actividades previas a la investigación para poder concluir en qué medida al aplicar nuestra propuesta de gestión de mantenimiento utilizando al herramienta del ciclo PHVA, se logró incrementar las disponibilidad inherente de los motores y compresores a gas, para lo cual desarrollamos la tabla comparativa que nos muestra la disponibilidad antes y después de aplicada la mejora, la metodología utilizada es el análisis de datos en este caso de los 6 meses del año 2022 en las que podemos apreciar que hay un incremento de la disponibilidad de 4,7 % reflejado en horas máquina disponible y el ingreso de las ganancias por ventas de gas. Impactando positivamente en la producción de nuestro lote y de sus operaciones.

Asimismo para poder demostrar en esta etapa verificar podemos afirmar que hubo una reducción considerable de mantenimientos correctivos, y además se registra las fallas que corresponde al sistema de encendido con una cantidad en un 38 % menos, además atraves de los mantenimientos preventivos programados se puedo generar avisos en el programa SAP de componentes críticos pertenecientes al sistema de encendido que se requería cambiar o intervenir evitando así que el índice de disponibilidad baje.

Se analizaron sistemas de encendido, registrándose 78 formatos de registros de configuración, lo que permitió implementar una data de información de 22 de los motores que van de la mano con la planificación de trabajos preventivos.

TABLA 34
COMPARACION DE INDICADOR DE DISPONBILIDAD DESPUES DE LA MEJORA

		AÑO 202.	1*	AÑO 2022*								
MARCA	MTBF	MTTR	DISPONIBILIDAD	MTBF	MTTR	DISPONIBILIDAD						
WAUKESHA	184,33	18,33	88,72%	190,25	17,18	91,35%						
AJAX	214,51	16,08	88,14%	182,35	14,23	89,39%						
CATERPILLAR G3306	383,33	25,47	91,02%	398,16	23,98	92,54%						
CATERPILLAR G3406	384,65	29,35	86,78%	384,65	26,53	89,18%						
CATERPILLAR 3408	127,77	17,35	86,04%	127,77	15,78	91,47%						
CATERPILLAR 3512	146,68	22,61	83,33%	189,31	20,96	89,74%						
CATERPILLAR G398	133,63	10,32	91,53%	158,74	10,12	92,30%						
CATERPILLAR G 3508	370,86	15,54	93,21%	396,64	14,23	93,17%						
SIEMENS ELECTRICO	247,26	15,48	90,38%	369,00	12,00	91,24%						
PROMEDIO	243,67	18,95	88,79%	266,32	17,22	91,15%						

Periodo de analisis de disponibilidad de los 06 primeros meses del Año

Fuente Elaboración Propia

ACTUAR:

En esta fase del ciclo se desarrolla el plan de acción ejecutado en un periodo de tiempo que iniciara tentativamente en el mes de enero 2022. Donde se utilizará un cronograma de ejecución de la propuesta implementada.

Se debe tener un plan de acción donde se detalle las actividades primordiales que deben incorporarse como parte del modelo de gestión de mantenimiento de motores y compresores de gas. El plan de acción en su detalle debe contar con los tiempos y los plazos en días calendarios, indicando la secuencia lógica de dichas actividades y los responsables de la ejecución y reporte de cada una de ellas.

FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA

INDUSTRIAL

PLAN DE MEJORA DE LA GESTION DE MANTENIMIENTO APLICANDO EL CICLO

PHVA CRONOGRAMA DE EJECUCION

RESPONDABLE PERCY PAUL TEMOCHE SOCOLA AREA COMPRESION
EMPRESA CONFIPETROL

DETALLE DEL PLAN DE ACTIVIDADES DEL PROYECTO		ENERO FEBRERO MARZO ABRIL												RESULTADOS EVIDENCIAS				
		SEM	SEM	SEM	SEM	SEM	SEM	SEM	SEM	SEM	SEM	SEM	SEM	SEM	SEM	SEM	SEM	
ACTIVIDADES	ACCIONES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
INICIO DE ACTIVIDADES INTRODUCTORIAS	PRESENTACION DE CARTA DE SOLICITUD																	
	ENTREVISTA CON GERENTE Y SUPERVISOR DE LA EMPRESA																	
	IDENTIFICAR LA PROPUETA DE MEJORA EN BASE AL UN PROBLEMA																	
APLICAR CICLO PHVA	ANALIZAR LA REALIDAD PROBLEMÁTICA DEFINIR EL PROBLEMA																	
PARA MEJORAR LA	APLICAR HERRAMIENTA DE INGENIERIA CICLO PHVA																	
GESTION DE MANTENIMIENTO DE MOTORES Y COMPRESORES A GAS	VERIFICAR LAS HERRAM IENTAS DE INGENIERIA A APLICAR																	
	ESTABLECER LOS OBJETIVOS DE LA PROPUESTA DE MEJORA																	
	REUNIR ANTECDENTES SUSTENTO TEORICO, EVIDENCIAS DE LA MEJORA																	
SEGUIMIENTO DE LA PROPUESTA	EXPONER A LA EMPRESA LA PROPUESTA DE MEJORA SOLICITADA																	
	COMPARAR LOS RESULTADOS DE LA PROPUESTA DE MEJORA																	
	ANALISI DE KPIS DISPONIBILIDAD DEL EQUIPO																	
SUSTENTARTORIA	SUSTENTAR ANTE LA EMPRESA LA APLICACIÓN DEL CICLO PHVA																	
	ENTREGAR INFORME Y DOCUMENTACION REQUERIDA																	

Figura 2: Sistema de Encendido Altronics

Figura 3: Motor Caterpillar 3408

