Show simple item record

dc.contributor.advisorPanta Carranza, Dante Omar
dc.contributor.authorRuiz Meléndez, Roberto
dc.date.accessioned2022-04-21T01:36:32Z
dc.date.available2022-04-21T01:36:32Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/20.500.12692/86535
dc.description.abstractLa presente investigación tuvo como objetivo desarrollar un modelo predictivo de fallas utilizando machine learning para mejorar la disponibilidad en los buses de la empresa Turismo Nacional Imperial Cusco S.A.C. ya que la constante alza en los precios para mantener disponible un bus ocasiona que las empresas de transporte realicen el cambio de los repuestos cuando el daño sea notorio, sin embargo, la falla en ocasiones paraliza el servicio que se realiza. De diseño experimental y tipo aplicada analizó como muestra 7 buses que realizan transporte de personal, asimismo utilizo la metodología CRISP-DM para el desarrollo del modelo predictivo. Mediante el procesamiento del modelo machine learning en Matlab se evidenció una precisión del 82.8% con el algoritmo de árbol de decisiones, obteniendo como resultado de aplicar el modelo predictivo una reducción de 53.65 a 10.26 en el indicador tiempo medio entre fallos (MTBF) y de 786.81 a 11.79 en el indicador tiempo medio de reparación (MTTR). En conclusión, el modelo predictivo de machine learning en Matlab R2019b incrementa la disponibilidad en los buses de la empresa Turismo Nacional Imperial Cusco S.A.C.en_US
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad César Vallejoes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceRepositorio Institucional - UCVes_PE
dc.sourceUniversidad César Vallejoes_PE
dc.subjectTransporte urbanoes_PE
dc.subjectTurismoes_PE
dc.subjectMejora continuaes_PE
dc.titleMachine learning en matlab para mejorar la disponibilidad en los buses de la empresa Turismo Nacional Imperial Cusco SACes_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.disciplineIngeniería Mecánica Eléctricaes_PE
thesis.degree.grantorUniversidad César Vallejo. Facultad de Ingeniería y Arquitecturaes_PE
thesis.degree.nameIngeniero Mecánico Electricistaes_PE
dc.description.sedeTrujilloes_PE
dc.description.escuelaEscuela de Ingeniería Mecánica Eléctricaes_PE
dc.description.lineadeinvestigacionSistemas y planes de mantenimientoes_PE
renati.advisor.dni17435779
renati.advisor.orcidhttps://orcid.org/0000-0002-4731-263Xes_PE
renati.author.dni08400700
renati.discipline713076es_PE
renati.jurorCarranza Montenegro, Daniel
renati.jurorLujan Lopez, Jorge Eduardo
renati.jurorPanta Carranza, Dante Omar
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.03.01es_PE
dc.publisher.countryPEes_PE
dc.description.ligBiodiversidad, cambio climático y calidad ambientales_PE
dc.description.rsuInnovación tecnológica y desarrollo sosteniblees_PE
dc.description.odsProducción y consumo responsablees_PE


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess